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Abstract 

In industrial applications, rotating machinery is widely employed and plays a significant role. 

Rotating machinery in modern industry is growing larger and more precise as science and 

technology advance. Improving the availability, reliability, and security of rotating equipment 

has become a challenging task. PHM (Prognostics and Health Management) is a useful tool for 

doing this work. As a result, it has garnered considerable attention over the past few decades. 

The rotor–bearing system of modern rotating machinery is complex and needs accurate and 

reliable prediction of its dynamic characteristics. In condition monitoring, accurate fault 

identification is an essential task for designing a proper maintenance strategy. Vibration in 

rotating machinery is mostly caused by unbalance, misalignment, bearing faults, mechanical 

looseness, shaft cracks, and other malfunctions. Even if the perfect alignment was achieved 

initially, it could not be maintained over an extended period of time due to various effects, such 

as improper machine assembly, heat generated in casings from bearings, lubrication systems, 

compression of gases, and foundation movement, resulting in abnormal rotating preload. 

Though many researchers have worked on model-based and vibration analysis-based 

techniques for misalignment fault identification, none of the studies clearly classified the 

different types of misalignment faults. Also, the interaction among speed, load, and 

misalignment, and its combined effect on system vibration was not reported. The present work 

focuses on interactions between speed, load, and defect severity (parallel and angular 

misalignment) by investigating their effect on the system vibration. Response Surface 

Methodology (RSM) with Root Mean Square (RMS) as a response factor is used to understand 

the influence of such interactions on the system performance. Experiments are planned using 

the design of experiments (DoE) and analysis is carried out using Analysis of Variance 

(ANOVA). These observations will help to understand the misalignment defect and its effect 

in a better way. One of the significant challenges associated with misalignment study is the 

mounting of the sensor. Misalignment is introduced at the coupling between the drive and 

driven shaft, most of the studies reported that with the mounting of the accelerometer on the 

bearing housing, there is a possibility that the sensor is too far from the coupling. In industrial 

applications, the complex machinery may or may not have provision to mount sensors near 

coupling. To overcome this limitation, the present investigation is also focused on a non-

contact type sensor, which can be placed in closed proximity to coupling and the useful signal 

can be acquired using a microphone. This is one of the primary attempts to examine the impact 

of interactions among speed, load, and fault severity on system vibrations using a non-contact 
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type sensor. So, the current study also aims to implement an acoustic sensor with RSM using 

RMS as a response factor to see how defect type, defect severity, load, and speed affect rotor 

system efficiency. Using the DoE methodology, experiments were designed and evaluated to 

determine the effect of operating conditions on RMS. The results described are consistent with 

the results obtained using a vibration signal.  

Conventionally, the diagnosis of misalignment is carried out through vibration measurements. 

Especially, the presence of a strong 2x vibration peak is generally accepted. Both angular and 

parallel misalignment shows a peak at 2x, therefore, distinguishing misalignment type by using 

vibration signals alone is a difficult activity. This research work discusses the classification of 

misalignment i.e., angular, parallel, and combined misalignment by using a diagnostic medium 

such as the acoustic emission and the rotor vibration signal. Vibro-acoustic sensors are used to 

collect data from the misaligned rotor system at two different loading, three different speeds, 

and three defect severity conditions. Time domain features are extracted and ranked according 

to their significance to classification using the t-test technique. Extracted features are used to 

train different algorithms. SVM and Ensemble subspace discriminant algorithms give 100% 

accurate results for binary and multi-class fault classification respectively. This work also 

intended to explore using a small amount of training data using different algorithms. The 

proposed method outperforms fault classification using vibration signal and acoustic signal 

separately.  

Close to 70% of bearing failure occurs due to misalignment. Every rotary system will have 

some inherent misalignment and most of the time to avoid shaft bending due to severe 

accelerated tests there needs to be some clearance in the form of misalignment.  Establishing a 

diagnosis and prognostic strategy for a misaligned rotor system is crucial for increasing the 

reliability of PHM plans. There needs to be a prognostic scheme that can consider the preset 

misalignment and predict the remaining useful life of bearing. By using standard empirical 

formulae for ball pass frequency outer raceway, ball pass frequency inner raceway, and ball 

spin frequency, industries have developed robust bearing fault diagnosis schemes, but now 

predictive maintenance is gaining much attention. Apart from fault diagnosis, the industries are 

more focused on the correct prediction of the RUL of bearings to use the optimum life of 

bearings and plan maintenance activity on time.  

Two methods are proposed for the prediction of RUL of taper roller bearings. The data was 

collected at NBC bearing Jaipur. The proposed methodology includes extraction of time-
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frequency domain features and then by using wavelet scattering transform, scattering 

coefficients are determined. These zeroth and first-order scattering coefficients along with 

bearing age are used as an input vector for RUL prediction. The R2 error is used as the 

performance measure of the xgboost regression method. In another approach time domain 

feature-based HI is developed, and prediction is carried out using a nonlinear autoregressive 

network with exogenous inputs (NARX) neural network. 

In the present research work, a systematic approach has been followed towards the 

development of a reliable fault diagnosis and prognosis scheme for the rotor-bearing system 

by considering different forms of misalignment, bearing defect, and the actual problem in 

industrial settings regarding the noisy data and residual life assessment of bearings. 

Keywords: Misalignment, Condition monitoring, Fault Diagnosis, Prognostics, Predictive 

maintenance, Rotor-bearing system, Remaining useful life estimation, Classification, 

regression, Design of experiments, One-way ANOVA, NARX.  
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Chapter 1 

INTRODUCTION 

 

1.1 Background and Motivation 

1.1.1 Introduction to Rotor System 

In any mechanical system, rotating machinery is one of the most essential parts. It is usually 

susceptible to faults since its functions in a harsh working environment. Any defect in the 

rotating equipment could cause the overall degradation of mechanical systems and tends to fail, 

reducing the machinery's reliability, stability, and availability. Rotating machine parts 

nowadays is more advanced and complex, due to this, detecting potential faults has become 

more challenging. Rotating machinery vibration is mostly caused by disc unbalance and shaft 

misalignment. The vibration caused by these sources damages important system components 

such as bearings, gears, motors, seals, couplings, etc. 

1.1.2   Importance of Study on Misalignment 

The driveshaft of the prime mover and the shaft of the driven unit, which are both supported 

on bearings, must usually be in a straight line with the same elevations from the ground levels. 

A mechanical coupling is used to connect the two shafts. The shafts, however, are not 

concentric due to the unequal foundation level, and they are displaced either by the same lateral 

amount or by an angle. This situation causes shaft misalignment, which can be parallel, angular, 

or combined. There is an axial push and pull on the shafts because of this condition, and a high 

axial vibration is observed. To avoid shaft misalignments, essential shaft alignments are 

performed during machine installation by introducing metal shims or modifying jack bolts at 

the machine foundation. Flexible couplings are frequently utilized to accommodate minor 

misalignments. However, due to shim corrosion, uneven thermal expansion between the driven 

and driving ends, and other factors, the misalignment may worsen over time. This 

misalignment causes an increase in frictional forces within the coupling’s flexural parts, as well 

as an increase in the coupling’s temperature. Because of the increase in axial vibration levels 

at a frequency twice the rotating speeds of the shaft, misalignments in shafts can be identified 

rather simply by vibration monitoring. This is because when the misalignment increases, the 

torque on the shaft increases twice as fast as the rotational speed. The phase difference between 

bearings across the connection is 180 degrees during misalignment. A strong push in one 
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direction causes misalignment, which produces an elliptical orbit. The figure 1.1 indicates the 

types of shaft misalignment. Failure of rolling bearings frequently results from misalignment. 

It can result in cage fracture, which will cause the bearing to seize up, and causes for expensive 

downtime. Additionally, misalignment may lead to edge loading, which may speed up the 

failure of the bearing. So, the study of prediction of remaining useful life of rolling element 

bearing is important. 

 

Figure 1.1 Shaft misalignment: (a) parallel, (b) angular.[1] 

1.1.3 Importance of RUL Study of Rolling Element Bearings 

Prognostics is the process of predicting the future performance of machinery using prediction 

methods and calculating the remaining time before the machinery loses its capacity to operate, 

also known as the remaining useful life (RUL). Predictive maintenance is possible with an 

accurate RUL prediction of machinery, reducing costly unplanned maintenance. As a result, 

RUL prediction appears to be a trendy topic that has gotten much interest in recent years. 

Prognostics are far more efficient than diagnostics in achieving zero-downtime performance 

because they can schedule maintenance strategies before faults occur. The three main steps in 

the machinery prognostic process are state estimate, state prediction, and RUL prediction. State 

estimation is based on the output of diagnostics’ fault detection, which determines the fault 

pattern and severity. Condition estimation is used to quantify the severity of a malfunction and 

forecast the state of machine deterioration. Predicting the state’s degradation trend and pace, 

based on historical degradation curve data is known as state prediction. The time duration of 

the deterioration curve from the present state to the final failure is calculated based on a chosen 

failure threshold in the RUL prediction stage. Data-driven methods, model-based methods, and 

data–model fusion approaches are the three basic types of machinery prognostic methods. 

Instead of constructing models based on comprehensive system physics and human skill, data-

driven techniques aim to identify machinery degradation processes from measurement signals. 
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These methods are based on the idea that, unless a fault arises, the statistical features of data 

are reasonably consistent. Based on historical measurement signals, they generate RUL 

forecast findings. As a result, the precision of data-driven approaches is determined by the 

quantity and quality of past measurements. However, in most circumstances, gathering enough 

qualifying measurements is challenging. Model-based methods aim to create mathematical or 

physical models that characterize equipment degradation processes, and then update model 

parameters with measurable data. Expert knowledge and real-time data from machinery could 

both be included in model-based solutions. As a result, they may be helpful in the RUL 

prediction of machinery. They also require less information than data-driven techniques. 

Markov-based models, Wiener process models, and inverse Gaussian process models are some 

of the most often utilized models. Model-based methods, on the other hand, may not be 

appropriate for dealing with rotating machinery prognostics in the following scenarios: (1) 

Machinery fault patterns vary depending on operation; (2) The mechanical system is so 

complex that understanding the principles of the system operation is difficult and developing 

an accurate model is prohibitively expensive. 

1.2 Fault Diagnosis and Prognosis 

Shaft misalignment, unbalance, and bearing defects are some of the critical faults which may 

lead to catastrophic failure of the whole mechanical system and leads to unavoidable downtime 

which intern causes productivity loss. To avoid such unplanned downtime due to machinery 

breakdown, a proper maintenance activity needs to be conducted. Greater quality and higher 

reliability are needed because of the technological advancement and increasing complexity of 

items. As a result, preventive maintenance becomes increasingly more expensive. Eventually, 

many industry sectors began to incur high costs for preventive maintenance. Nowadays, 

condition-based monitoring (CBM), among other more effective maintenance techniques, is 

being used to deal with the problem. 

1.2.1 Importance of Condition-Based Monitoring (CBM) 

Based on the data gathered through condition monitoring, CBM suggests maintenance steps, 

by lowering the amount of unneeded scheduled preventive maintenance activities. If the CBM 

study is correctly established and successfully performed, can significantly save maintenance 

costs. In this study, diagnostics and prognostics are crucial components. Diagnostics focuses 

on locating, isolating, and identifying faults as they happen. When anything goes wrong in the 

monitored system, fault detection is the task that let us know; fault isolation is the task that 
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helps us to identify the critical component; and fault identification is the task that helps us to 

figure out what the fault is when it is discovered. The goal of prognostics is to identify faults 

before they manifest. The goal of prognosis is to identify impending faults and predict when 

and how probable they are to occur. Prior event analysis is used in prognostics, while posterior 

event analysis is used in diagnostics. To achieve zero-downtime performance, prognostics is 

far more effective than diagnostics. The CBM consists of two main stages, i.e., data acquisition 

and signal processing.  

1.2.1.1 Data Acquisition 

 The method of obtaining measurement signals from monitored devices using various types of 

sensors and storing the data in a computer is known as data acquisition. The health conditions 

of the monitored machines are meant to be linked to the measurement signals. These 

measurement signals contain certain valuable information about the device’s health. Vibration 

signals, acoustic signals, temperatures, and electric currents are only few of the different forms 

of measurement signals. Different sorts of sensors have been built to collect different types of 

signals, such as accelerometers, acoustic emission sensors, infrared thermometers, ultrasonic 

sensors, and so on. The signals are recorded and sent to a computer via data acquisition (DAQ) 

devices, where they are stored in memory for later processing.  

1.2.1.2 Signal Processing 

Time–domain, frequency–domain, and time–frequency–domain signal processing methods are 

the three types of traditional signal processing methods. Fault features in vibration signals 

recorded from rotating machinery are very weak, especially for early defects, because they are 

embedded in a lot of background noise. As a result, vibration signals should be preprocessed 

to eliminate background noise and measuring system errors, allowing for the acquisition of 

more meaningful information and an improvement in SNR. When a fault develops, the stiffness 

of the structural components surrounding the defect must change, causing an impulse or shock 

to develop. The gathered vibration signals may also vary because of this impulse. These time–

domain signals’ amplitudes and distributions can be altered. As a result, time–domain statistical 

features that reflect mechanical flaws can be retrieved from their time–domain features. Table 

1 from appendix shows common statistical properties in the time domain. In general, 

mechanical vibration can be induced by a fault, which raises the mean value, root amplitude, 

root mean square, and peak. When a fault becomes more severe, the above four characteristics 

can clearly show the fault's severity. The kurtosis value, crest factor, impulse factor, and 
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clearance factor can all be used to determine how much impulse is present in vibration signals. 

The kurtosis value and crest factor are good indications for incipient defects because they are 

resistant to changing operating conditions. The spikiness of the sharp impulses generated by 

the contact of a defect with the bearing mating surfaces can also be determined by the impulse 

and clearance factors. It's worth noting that the kurtosis value is quite sensitive to early defects. 

The kurtosis value might steadily grow as the severity level rises. However, it drops 

unexpectedly for more serious flaws. As a result, the kurtosis value is inappropriate for more 

severe problems. Table 1 from appendix shows the time domain features. They will be able to 

compensate for each other. Each indicator contains fault information differently at different 

fault levels. Many indicators can only represent fault changes to a certain extent. As a result, 

additional features should be retrieved to properly identify rotating equipment defects, and 

sensitive features should be further screened out.  

Signal processing in the frequency domain compensates for the deficiency of signal processing 

in the time domain, which only reflects the fluctuation in a signal’s waveform and does not 

reveal the signal’s intrinsic character. As the most extensively used analytical tool, the 

frequency spectrum can reflect the frequency components and distribution of a signal. By using 

the Fourier series, a periodic signal is first split into a sum of many sinusoidal components. The 

periodic signal’s frequency spectrum can then be obtained by projecting these sine and cosine 

signals in the frequency axis. The magnitude of the corresponding sine or cosine signal 

determines the amplitude of each frequency. As a result, the Fourier integral transform is 

offered as a method for converting a continuous periodic signal into a frequency spectrum. The 

Fourier integral transform, on the other hand, can only process continuous signals, not discrete 

ones. Computer processing of signals is not appropriate, based on this reasoning, the Discrete 

Fourier Transform (DFT) is offered as a method for computers to get the frequency spectrum 

of discrete signals. Traditional DFT takes longer to compute the DFT of a long enough signal 

as the data length increases. As a result, FFT is presented as a method for quickly calculating 

the DFT of a signal. Extracting some indicators in the frequency domain is critical for defect 

identification. Additionally, certain fault-related information may be available in these 

frequency–domain features or indications that is not present in the time domain. To put it 

another way, these frequency–domain properties effectively compensate for the time–domain 

features alone. When a malfunction occurs in the machinery, irregular frequencies appear in 

the vibration signal’s frequency spectra, which can reveal the machinery’s health status. 

Furthermore, because an undetectable change would form a spectrum line in the corresponding 

frequency spectrum, frequency spectra are more sensitive to incipient flaws. 
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Frequency domain can only process stationary signals, it is unable to process nonstationary 

signals. Furthermore, the frequency spectrum acquired by FT cannot indicate how each 

frequency changes over time. To circumvent these drawbacks, time–frequency analysis 

approaches for analyzing a nonstationary signal from a time–frequency distribution has been 

developed. Short Term Fourier Transform (STFT), Wigner Ville Distribution (WVD), wavelet 

transform (WT), even Wavelet Packet Transform (WPT), and Hilbert Huang Transform (HHT) 

are examples of classical time–frequency analysis approaches. These approaches can reflect a 

signal’s shift in both the time and frequency domains. With the introduction of time–frequency 

analysis techniques such as the standard wavelet transform and empirical mode decomposition 

(EMD), different signal processing algorithms can extract certain useful aspects from a signal’s 

time–frequency distribution. 

The primary goal of fault diagnosis is to assess relevant external data to evaluate the state of 

the inaccessible interior components and determine whether the machine has to be 

disassembled. Vibration analysis is one of the methods for identifying faults in rotary 

machinery. The vibration analysis allows for the extraction of crucial diagnostic data from the 

vibration signals by analyzing in time domain, frequency domain and time-frequency domain. 

The results of conventional fault diagnosis techniques are filtered signals and their spectra with 

signal processing techniques, which require a visual inspection of the diagnosis results to 

compare them with the healthy ones and find the fault characteristics, depending on the 

diagnosticians' expertise and their capacity to analyze the results. To use these diagnosis 

techniques properly, diagnosticians must thoroughly understand each monitored signal that 

they must examine one at a time. Traditional diagnosis may not be suited for dealing with huge 

data captured using sensors in the modern day because data are typically collected faster than 

diagnosticians can interpret them. Conversely, artificial intelligence can substitute 

conventional signal processing techniques for diagnosis experts to interpret collected signals 

quickly and effectively and produce reliable diagnosis results. Fault diagnosis using machine 

learning and deep learning has the potential to be a useful tool for handling large amounts of 

machinery fault data in the Big Data Era without the requirement for a diagnosis expert to 

evaluate data and identify issues. 

1.2.2 Importance of Machine Learning Techniques 

Data acquisition system is used to collect data from rotating machinery in real-time, and the 

volume of data collected by various sensors after the long-term operation has increased 



Introduction 

 

Page | 7  
 

massively. The potential of mechanical big data not only promises to improve conventional 

approaches to mechanical problem detection, but also opens new processing and information-

discovery possibilities for this discipline. Therefore, employing cutting-edge algorithms to 

successfully extract characteristics from huge data and precisely diagnose the machinery health 

problems becomes a new research area. 

Machine learning and deep learning is a framework for information processing that takes clues 

from how the human brain interprets data. These techniques offer a versatile mechanism for 

learning and identifying system flaws because of their capacity for extrapolating nonlinear 

correlations between input and output data. They are well-known as effective intelligence tool 

for rotating machinery defect diagnostics. The different machine learning techniques are Linear 

regression, logistic regression, decision trees, support vector machine (SVM), K-Nearest 

neighbor (KNN), and ensemble subspace discriminant algorithms are used for machinery fault 

diagnosis. Machine learning techniques are used in data-driven methodologies to extract the 

trend of degradation processes from the measured data. The interference of noise is always 

present in the raw measured data. Health indicators, which are meant to provide relevant 

information about degradation, are typically taken from the raw measured data to show the 

degradation trend of machinery. Various deep learning techniques such as convolutional neural 

networks, long short-term memory (LSTM) are also employed to track the degradation of 

machinery. These deep learning algorithms can automatically extract the functional features 

and can be used for fault diagnosis and prognosis by analyzing large datasets.   

1.3 Scope of Work 

In the present investigation, the combined effect of speed, load, and misalignment defects on 

system vibration is carried out. Both vibrational data and acoustic data is used separately for 

the response surface methodology study and a comparative study is performed. Results 

obtained using acoustic sensors were found in line with the result obtained using vibrational 

data. Conventional vibration analysis techniques can diagnose misalignment as reported by 

researchers, but it is challenging to classify the different forms of misalignment. This study 

uses vibro-acoustic sensor data fusion along with machine learning techniques to classify 

different forms of misalignment. As misalignment is one of the major reasons for bearing 

failure. Deterioration of bearing caused by misalignment and other malfunctions is studied 

using prognostics methodology. A remaining useful life of bearing is estimated by considering 

the degradation of bearing. The effect of noise is also considered during the analysis. The data 

is collected at NBC Bearing, Jaipur under actual industrial settings.  
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1.4 Organization of Thesis 

This thesis is divided into the following chapters to address the issues of misalignment fault 

classification, the effect of speed, load, and defect severity on system vibration, misalignment 

fault classification, and bearing residual life assessment. 

Chapter Two gives a detailed literature review of the misalignment fault diagnosis using model-

based, and signal-based techniques, the effect of misalignment on bearing life, and the 

prediction of remaining useful life of bearing using statistical data-driven techniques are carried 

out. The development of various fault diagnosis schemes is discussed.  

Chapter Three discusses the relation between speed, load, and the presence of various types of 

misalignment defects with varied degrees of severity and their impact on system vibration. To 

comprehend the impact of such interactions on system performance, Response Surface 

Methodology (RSM) is utilized. 

Chapter Four covers the classification of misalignment, such as angular, parallel, and 

combined, employing a diagnostic tool such as the rotor vibration signal and acoustic emission. 

Time domain features are retrieved and using the t-test technique, they are ranked in order of 

significance. Different algorithms are trained using the extracted features and classification is 

performed. 

Chapter Five discusses 2 approaches for the estimation of the RUL of taper roller bearing 

(TRB). In the first approach the data fusion, wavelet scattering in combination with xgboost 

regression is proposed, while in the second approach, time domain feature-based HI along with 

NARX neural network is proposed. The own dataset, collected at NBC bearing Jaipur is used 

in the study.  

Chapter Six presents the thesis's general conclusion. This chapter also discusses the novelties 

of the research and its potential application in the future. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Rotary machines are significant resources in most industrial applications. The applications 

include motors, generators, gas turbines, the transmission system of vehicles, helicopters, etc. 

The rotor-bearing coupling system of advanced rotary machinery is very complicated, it needs 

a precise and reliable estimation of its dynamic behavior. Unbalance, looseness of machine 

parts, misalignment, cracks, and other malfunctions are the main reasons for vibration in rotary 

systems. Misalignment and bearings are the most frequent and critical faults among them. In 

general, machines assembled with zero misalignment cannot retain their alignment over a long 

period due to foundation vibration, lubricating systems, compression of gas,es and heat 

generation in casings. In any rotating machinery, the basic cause of misalignment is improper 

assembly, excessive or unequal load, thermal distortion, bolt loosening, unequal foundation, 

and force transmission to supporting elements [1], [2]. Jesse et al. [3] in their experimental 

analysis classified the effects of misalignment on the rotor system separately. He suggested 

that offset misalignment degrades the bearing and angular misalignment degrades the coupling. 

Misalignment increases vibration amplitude (radially and axially)[4], which causes wear of 

bearings, bending and deformation of the shaft, deformation of the rotor, excessive temperature 

rise, shaft crack, bearing house damage, etc.[5]. Sanjiv Kumar [6] conducted an experiment in 

support of context to show how drastically the vibration amplitude of misalignment varies. Few 

researchers found that 2x running speed is an indication of a misalignment fault in the system 

[7]. Vibrational signals also consider external disturbances and unwanted noise from sensors 

and machine, which creates the need to filter these signals.  

2.2 Fault Diagnosis and Prognosis of Mechanical Systems 

Fault diagnosis of rotating machinery has become increasingly important in industrial 

applications to avoid economic losses and improve machine availability. The fault 

characteristic frequency and its harmonics are referred to as the main characteristics. The 

diagnosticians then identify faults based on the presence of these characteristics in signals. 

These traditional methods are effective and widely used in the diagnosis of rotating machinery 

faults. However, as modern industry has advanced, condition monitoring systems are being 

used to collect real-time data from machines to fully inspect the health conditions of rotating 
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machinery, and massive data are being collected after long periods of machine operation. 

Because data is generally collected faster than diagnosticians can analyze it, there is a demand 

for methods that can replace vibration analyst to automatically make decisions on the running 

health of the machines.  

A detailed literature review is carried out majorly focused on fault diagnosis of misaligned 

rotor system. The state-of-art has been discussed in 3 sections, Model based techniques, Signal 

based techniques and artificial intelligence (AI) techniques.  AI techniques are further extended 

for addressing data driven methodologies for the prediction of remaining useful life of rolling 

element bearing. 

2.2.1 Model Based Techniques  

Model-based method that employs theoretical and residual values to pinpoint the system's 

flaws. When incorporated into a rotor bearing coupling system, the coupling is modelled as a 

rigid body and treated as a rigid disc model. The model, however, ignores the coupling's 

flexibility. 

The Kramer [8] and Nelson and Crandall’s [9]  model considered the inherent coupling 

flexibility. The basic model recommended by Kramer considers mechanical coupling 

flexibility and describes it as radially stiff non-friction coupling. Classical FEM is used to 

model the coupled shaft as the 8-degree beam element at each node. In the revised model 

recommended by Kramer, while maintaining the constraints used in the first model, he also 

considered coupling’s rotational stiffness (kr) and damping (Cr). Nelson & Mcvaugh [10] 

presented a procedure for mathematical modelling of the rotor-bearing system by considering 

the effect of rotatory inertia, axial load and gyroscopic moments of developed finite element 

model. Consistent matrix approach was used for this study.  

Sekhar and Prabhu [11] considered the deflection, shear forces, slope and bending moment to 

model the rotor system with higher-order finite element method and derived moments and 

reaction forces developed owning to the flexibility of coupling misalignment. Lee and Lee [12] 

derived a dynamic model for a misaligned system by considering deformations and reaction 

forces. They verified experimental results with simulation results, they found that increase in 

natural frequency in the direction of misalignment. Axial vibration is also considered in this 

model, which is a key indicator of the existence of misalignment. Isermann [13] elaborately 

described methodology for machine and other processes by using some measurement, dynamic 

process and signal parameter to generate analytical assumptions. Jalan and Mohanty [14], 
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considered equivalent loads as a sign of a fault in the rotary system and by using experimental 

time response method for both faulty as well as the healthy system, they successfully detected 

the amount, type, and location of a mechanical fault in the rotor-bearing system.  

Jalan and Mohanty [14] used a residual generation method for misalignment and unbalance 

identification in the system. Pennacchi and Vania [15] suggested that combining model-based 

analysis with other techniques of fault diagnosis would provide better health information than 

a single diagnostic technique.  

2.2.2 Signal based techniques 

In a rotating system, shaft misalignment can be identified by using the signal-based technique. 

These signal-based techniques can be classified into two types, vibrational and non-vibrational 

signal analysis. 

2.2.2.1 Vibration Analysis 

Vibration analysis uses the vibrational signal for detecting any mechanical asymmetry by 

studying frequency harmonics of varying peak amplitude in a system. Such vibrational 

techniques are discussed in the following sections. 

2.2.2.1.1 Fast Fourier Transform (FFT) 

FFT works on converting the time domain into the frequency domain using a Fourier transform. 

It represents the vibration signal as peaks at various frequencies in the spectrum where the 

repetition of the signal occurs. This allows early detection of fault present in the system.  

Motor shaft misalignment was predicted online using spectra information produced by FFT 

and supporting vector regression[16]. The 2x and 4x reaction elements of the vibrational 

scheme have been proved experimentally by Dewell and Mitchell [17] for the evaluation of 

anticipated vibration frequencies for a misaligned coupling. Kumar et al. [18] used a full 

spectrum analysis for signal processing of complex vibration signals and revealed fault-specific 

whirl signatures and related fault. As per their conclusion, FFT loses the orbital information 

(both backward and forward whirling), which is preserved by full spectrum. 

FFT is replaced by other technical tools because it is inefficient in disclosing information for 

non-stationary signals, fault identification and separation. It also loses its time-domain signal 

information[19].  

 



Literature review 

 

Page | 12  
 

2.2.2.1.2 Orbit Analysis  

Orbit analysis uses orbit plots which show the shaft rotation under the given loading conditions 

[20]. It captures accelerometer data in time-domain itself, eliminating the need for the 

frequency-domain study. Analysis of the orbit is useful when the system simultaneously suffers 

from several failures. Orbit plot is almost circular in shape for healthy and distorted and 

asymmetrical for the unhealthy faulty system [21].  

 Monte et al. [20] extended the analysis to three dimensions, where axial direction helped in 

detecting system asymmetry. Orbit plot was constructed based on data captured by vibration 

measurement using accelerometers (2 in radial and 1 in the axial direction) and load imbalance, 

to detect parallel and angular misalignment. Costa et al. [22] deduced that the ellipticity of the 

orbit plot profile obtained from proximity sensors is used to detect rotary system misalignment. 

2.2.2.1.3 Discrete Wavelet Transforms (DWT) 

Wavelet transform is used for non-stationary signal analysis for early fault detection, which is 

otherwise a limitation for FFT [23]. Wavelet representation is more sensitive to misalignment 

fault diagnosis than FFT. It offers energy distribution over frequencies that change at all times 

[24]. It overcomes the problem of low-resolution and time information faced by other 

techniques. The correct choice of the mother wavelet function is very essential, as it helps to 

detect the error in the system accurately [25]. Umbrajkaar and Krishnamoorthy [19] analysed 

signal using DWT, helping in proper identification and fault wise separation of signals by 

proper selection and application of mother wavelet. The minimum, maximum, mode, median, 

mean values of detailed coefficients help in the correct selection of mother wavelet. By using 

DB2 as a mother wavelet, they combined DWT with FIS (Fuzzy inference system) for 

predicting the degree of misalignment [26]. The result obtained had the least deviation. It 

covered information in both time and frequency domain, making it a multilevel analysis.  

2.2.2.1.4 Continuous Wavelet Transform (CWT) 

CWT is useful for transient signal analysis and time-frequency localization [27]. It provides 

time-frequency information of signals of the misaligned motor system unlike Fourier analysis. 

It is preferred for more noisy data analysis. CWT for energy-limited signals is given by 

equation (2.1),   

                                       Wf(a, b) = ∫ f(t)
1

√a
 ψ ∗ (

t−b

a
)dt

∞

−∞
                                               (2.1)           



Literature review 

 

Page | 13  
 

Where ψ* is complex conjugation of ψ (t) (mother wavelet function), and a, b are the dilation 

and translation and 1/√a is used for energy preservation. In CWT, the wavelet function spans 

the entire frequency band, making it an inefficient way to analyse the data.  CWT analyses the 

transient signal, by decomposing it into a series of time-domain components with each 

component covering a certain range, thus providing a finer resolution than Orthogonal wavelet 

transformation (OWT) to extract mechanical error information. By analysing non-stationary 

signals, Al-Badour et al. [25] worked on a combination of both Wavelet transform and 

Continuous Wavelet transform to detect impulsive faults by considering 2 non-stationary signal 

producing cases (i) stator to blade rubbing (ii) fast start-up and coast down of the motor. 

Wavelet transform when combined with acoustic analysis can also detect underwater faulty 

objects with a neural network.   

2.2.2.1.5 Hilbert Huang Transform (HHT) 

It is a time-domain and frequency independent which does not affect the non-stationary 

modulating signal [23]. By removing carrier signals carrying irrelevant information, it helps in 

early detection of the fault via visual inspection in time-domain. The computational time of 

HHT is less as compared to CWT. It is used for multiple fault diagnosis in a rotary system and 

detection of a lower case of misalignment, which is otherwise difficult in other techniques. 

HHT is a two-step procedure: (1) Empirical mode decomposition (EMD) for obtaining intrinsic 

mode functions (IMF’s) (2) processing of IMFs with Hilbert transform for obtaining frequency 

corresponding to IMF[27].  

The Hilbert Transform h(t) of a function x(t)is given by equation (2.2) 

                                                 h(t) = H{x(t)} =
1

π
 ∫

x(τ)

t−τ
dτ

∞

−∞
                                             (2.2)                                              

Chandra and Sekhar [27] compared HHT with CWT and Fourier transform to experimentally 

detect the least possible misalignment. They corrupted the signals with instantaneous Gaussian 

noise with different SNR to check HHT performance, but Hilbert transforms effectively 

distinguished the error. Wu and Chung [28] utilized the combined method of EEMD and EMD, 

which decomposed non-stationary and non-linear signals in intrinsic mode functions (IMFs) to 

examine misaligned shaft characteristics in time-frequency Hilbert spectrum using intrawave 

frequency modulation (FM) phenomenon. Misalignment level was proportional to level to 

amplitude modulation (AM) in IMF. Fan and Zuo [23] proposed early fault detection methods 

that combine both HHT and Wavelet packet transform (WPT) for a multistage gearbox 
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containing close or identical frequency components and proved its efficiency and accuracy to 

handle non-stationary signals. HHT loses its performance while handling a low SNR. 

2.2.2.2 Non-Vibration Based Techniques 

2.2.2.2.1 Acoustic Emission (AE)Technique 

Tandon et al. [29] concluded AE to be more reliable than MCSA and Vibrational analysis after 

the study of peak amplitudes which increased proportionally to defect. Chacon et al.[30] carried 

out an experimental analysis to demonstrate enhancement of AE over vibrational analysis for 

detecting shaft angular misalignment. Chacon et al.[30] studied AE signal analysis for 

misalignment detection by linking shaft displacement with AE sensor and accelerometer 

analysed signals. He proposed a shaft angular misalignment (SAM) detection method which 

begins with signal acquisition using an AE sensor. The acquired signal is filtered from 

undesirable frequencies and amplified in the AE envelope spectrum to distinguish the signals 

of different frequencies and converted from analog to digital (ADC) signal. Fast Fourier 

transformation (FFT) comes into play after the envelope extraction to obtain the AE envelope 

frequency spectrum where the signals obtained at different frequencies are compared based on 

their amplitudes, thus defining the peak for misalignment detection.  Le and Hi [31] used EMD 

based acoustic feature where de noised AE signals are compressed into a single AE signal and 

by providing a threshold for separating healthy and damaged states, these compressed signals 

help in fault detection. 

2.2.2.2.2 Motor Current Signature Analysis (MCSA) 

It is the most popular and widely used tool for diagnosing mechanical and electrical problems 

related to AC motors. It is a non-contact type method for fault detection, where the motor works 

under its normal condition without any disturbance[32]. MCSA implementation does not 

require expensive sensors thus making it very economical[33]. It is widely used in induction 

machine’s fault diagnosis[34].  It focuses on analysing spectral information of stator current 

and uses FFT to extract the current features and signal processing. FFT of current samples can 

be generated by NV gate software packages where small misalignment can be detected by using 

FFT plot of current samples. MCSA provides an algorithm for diagnosing faults but fails to 

determine failure thresholds.  

Bossio et al. [35] inspected the misaligned motors by using current, flux as diagnostic medium 

and experimentally concluded that frequency components (f±nfr) produce sidebands of 
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different amplitude in the frequency spectrum that help to distinguish faulty and healthy 

systems.  

 Verma et al. [36] considered vibration and current as a diagnostic medium, concluded 

misalignment as a cause of instability in the healthy system. Experimentally, Sivarao et al.[32] 

revealed that the current increases with the load value and considering misalignment as a type 

of load on a healthy rotating system, the current value is proportional to the level of 

misalignment.  Current spectrum can also be generated by current and frequency values drawn 

from both healthy and faulty system using MATLAB with current spectrum showing a rise in 

amplitude for sideband frequency and reduction in peak amplitude for the faulty motor.  

Dewell and Mitchell [37] also investigated the presence of misalignment by using 2x and 4x 

frequency components. There are many harmonics at different frequencies in the motor current 

signature, and we need to perform signal conditioning to analyse the system's defects. 

2.2.3 Artificial Intelligence Techniques 

It is standard practice to diagnose misalignment when a strong peak appears at double the 

running speed. It is challenging to determine the type of misalignment by analyzing vibrational 

signal alone since both angular and parallel misalignment type display peak at 2x running 

speed. Also, to handle the big data from continuous data acquisition from machinery there is 

need of artificial intelligence (AI) techniques like machine learning and deep learning 

techniques. These AI techniques can help to classify the different misalignment fault types. 

Although a lot of work had been reported on model based and signal-based approaches towards 

misalignment fault diagnosis, but very limited work was reported to classify these faults using 

machine learning techniques. The subsequent sub-section discusses the use of machine learning 

techniques for the machinery fault diagnosis and prognosis. 

For misalignment fault detection, Haroun et al. [38] used the Autoregressive (AR) torque signal 

model. Firstly, the torque signal obtained from the experimental setup and coefficients of the 

AR model were extracted as features under various operating conditions. To pick the best 

features for fault classification, Min Redundancy Max Relevance (mRMR) was used. The 

features extracted from acoustic signal contributing significantly to the fault diagnosis and 

segregation of different faults. 

A full spectrum analysis was conducted for both signals to reveal the fault-specific whirl 

patterns. For fault detection, Alok Kumar et al. [39] used stator current and vibration samples. 

Feature extraction is carried out using multiscale entropy (MSE), and for fault classification by 
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using SVM. Vibration analysis was used by Umbrajkaar et al. [40] to perform misalignment 

fault classification using the machine learning method, SVM and ANN. For fault classification, 

they extracted time-frequency domain features. Feature ranking was carried out using the 

ReliefF algorithm, the accuracy of fault classification using ANN was 94.17 percent and using 

SVM was 97.72 percent. Yong et al. [41] carried out misalignment fault classification using 

vibrational data alone, they used power spectrum features to classify the faults using SVM, 

they reported an accuracy of 98%. Some researchers [40], [41] have already obtained near-

perfect results in misalignment fault classification for only angular and parallel cases, but there 

is need to attempts to establish an even higher accuracy than the 98% percent accuracy reported 

with considering combined misaligned case.  

Even though data-driven strategies for bearing fault diagnosis have been very well proposed 

and implemented[42]. Diagnosing and classifying the bearing faults is still a challenge based 

on the knowledge obtained from a single transducer. Gryllias et al. [43] suggested two stage 

hybrid approaches for the bearing fault diagnosis. Based on an envelope study to diagnose ball 

bearings with inner race, outer race, and ball faults. Safizadeh et al.[44] employed the K-nearest 

neighbour (KNN) classifier to determine the state of the ball bearing based on vibration and 

load signal data. With data from a single transducer, the functionality of these machine learning 

classifiers was tested. The overall device dependability is improved by combining data from 

various diagnostic transducers into a classifier. The sensor fusion technique provides precise 

decision-making capabilities to obtain defect-related data. Moslem et al. [45] carried out the 

multi sensor data level fusion for the diagnosis of gear box faults using motor current signature 

analysis. They presented a comparative study of sensor data fusion with other machine learning 

algorithms. The result of multi sensor data fusion were better. Praveen Kumar et al.[46] 

performed accelerometer, microphone, and acoustic emission data fusion for fault diagnosis in 

case of centrifugal pump. They extracted wavelet features for the analysis. Glowacz [47] 

carried out fault diagnosis of single-phase induction motor based on acoustic signals alone. 

Shan et al. [48] carried out multi sensor data fusion for ball fault screw diagnosis using CNN. 

Abdullah et al. [49] performed vibro-acoustic sensor data fusion for identification of bearing 

defect and estimation of defect size. Gunerkar et al. [50] performed a bearing fault classification 

using an accelerometer and microphone sensor data fusion. The fault classification is carried 

out using KNN.  Anil Kumar et al. [51] carried out bearing fault diagnosis using novel 

convolutional neural network for small training samples. They achieved a fault classification 

accuracy of 91%. The cost function of a CNN is adjusted by adding additional sparsity costs to 

the original cost function for effective feature learning from small training data. The sparsity 
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cost is calculated using a unique trigonometric cross-entropy function. Sugumaran et al.[52] 

investigated the effect of number of features on fault classification using SVM. Fatima et al. 

[53] used multi class SVM for faults classification in a rotor-bearing device due to bearings 

and unbalance by considering SVM generated by the various combinations of the two most 

sensitive features for each category of fault.  They found that as more transducers are included, 

the classification accuracy improves. To obtain certain features in both the time-frequency 

domain, Singh et al.[54] applied the stockwell transformation to the stator current signals. They 

applied SVM to the experimental data of defective bearings collected from the industry with 

91.66% success. Based on the principal component analysis process, the feature selection has 

been made. Using both supervised and unsupervised defect classification methods, the efficacy 

of the scheme was experimentally tested on a bearing test bed [55]. Once the features 

are retrieved, the dimensionality of the feature vectors must be minimized since there is no 

guarantee that most of these features are equally valuable in characterizing machine health. 

Misalignment is one of the major reasons for bearing degradation. Sometimes misalignment is 

provided in the experimental setup to avoid jamming due to severe accelerated test under high 

speed and loading conditions. So there need to be attention on predicting the possible failure 

when the system has inherent misalignment. 

A lot of emphasis has been paid to evaluating bearing reliability and predicting remaining 

useful life (RUL) because of the system's increasingly harsh operating circumstances. A large 

number of life data samples can be used to infer a specific statistical distribution for bearing 

life. However, in reality, bearing life is highly random due to the influence of manufacturing 

defects, misalignment, material flaws, and load changes[56], [57]. In engineering practice, 

research attention has turned to the evaluation of a single bearing's RUL while considering its 

real working circumstances. By creating a weibull proportional regression model based on the 

PRONOSTIA platform's monitored data, Kundu [58] estimated the bearing RUL. Liu[59] 

presented a new network to predict the bearing RUL employing the datasets made available by 

NASA and FEMTO-ST by combining the advantages of long- and short-term memory (LSTM) 

and statistical process analysis. Huang [60] described the transfer learning approach and built 

a transfer depth-wise separable convolution recurrent network to forecast the bearing RUL 

using the same public datasets while considering various working situations. To forecast the 

health state of a ball bearing, Xu [61] developed a novel health indicator termed moving 

average cross-correlation of the power spectral density (MACPSD). The issue with these health 

indicators, though, is that in reality, their computed values do not correspond to the degree of 

actual bearing deterioration.  Model-driven approaches, like the Paris-Erdogan approach [62], 
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can precisely forecast the bearing RUL under various working circumstances. Still, developing 

a useful model based on the physical system is necessary for accuracy. The statistical model, 

which is frequently referred to as an empirical model-based method, is used by the data-driven 

method to forecast the RUL. For instance, Kumar [63] coupled the Gaussian process regression 

with Kullback-Leibler divergence to forecast the RUL. To anticipate the RUL, Li [64] and Qiu 

[65] suggested a stochastic approach. To estimate the RUL of wind turbine bearings, Xing[66] 

and Li[67] suggested a mixed Gauss model-hidden Markov model (GM-HMM). 

Other approaches include artificial intelligence (AI) mathematical models like the support 

vector machine [68] and artificial neural network[69], which have the ability to solve complex 

systems issues without the need for prior knowledge. However, data-driven approaches lack 

universal adaptability and can only handle the specific work environment. On the other hand, 

a hybrid method combines the benefits of a model-driven method and a data-driven method; 

examples of this sort of methodology include the Kalman filter [70] and particle filter [71]. 

Although numerous studies about bearing RUL prediction have been offered, only a small 

number of pertinent studies have focused on accurately determining when damage would 

develop and when it will reach its end of life two factors that are essential for accurate 

prediction results. Entropic evidence was utilized by Antoni [72] to identify the early flaws in 

rotary equipment. To identify the first flaws in rotating equipment, Chegini [73] employed 

ensemble empirical model decomposition and wavelet packet decomposition, and Nirwan [74] 

used acoustic emission. Even though the detection findings from the aforementioned 

investigations were quite precise, the detection models or the extracted features were the result 

of extensive calculations. Implementing such techniques when real-time responses are required 

is challenging, particularly when the process of predicting bearing RUL is ongoing. 

ANNs mimic the functioning of human brains by connecting many nodes in a complex layer 

structure. They are the most widely used AI techniques in the field of RUL prediction in 

machinery. Feed-forward neural networks (FFNNs) are the most widely used. Most of 

publications [75]–[82] used an FFNN to learn the relationship between HIs and lifetime. To 

estimate the RUL of fatigue cracks, barufatti et al. [83] used FFNNs with sequential Monte-

Carlo sampling. A FFNN was utilized by Pan et al. [84]. To forecast future HIs, Wang et al.[85] 

utilized a three-layer FFNN. They then entered the anticipated HIs into a PH model to calculate 

the hazard rate and survival probability. The ability of recurrent neural networks (RNNs) to 

handle explicit time-series data makes them a popular choice for RUL prediction. To anticipate 

the RUL of machinery, Zemouri et al. [86] presented a recurrent radial basis function network. 

To improve the long-term prediction accuracy, Malhi et al. [87] developed a competitive 
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learning-based methodology to change the training method of RNNs. A predictive method 

based on an RNN that was trained using time gradient computations and extended KF was 

proposed by Heimes et al.[88]. By replacing the hidden layer with a sizable sparse reservoir, 

Peng et al. [89] improved the RNN and created a novel RUL prediction method. By enhancing 

RNNs' memory property, Liu et al.[90]  presented an improved RNN for RUL prediction. 

For predictive RUL estimate, Li et al. [91] developed a new deep learning architecture. To 

improve CNN feature extraction, a temporal window approach was employed for sample 

preparation. In the proposed method, the raw sensor measurements were directly employed as 

model inputs. They asserted that because their method required no prior understanding of 

prognostics or signal processing, it was more suitable for industrial usage. The suggested 

approach's prognostic performance was validated using experiments on the prominent C-

MAPSS dataset. The experimental findings of the proposed technique were compared to those 

of LSTM. Many sequential applications have embraced the RNN and its variation, the 

LSTM networks. In recent years, RUL prediction researchers have begun to examine the use 

of RNN, particularly LSTM. The RNN training approach consists of a Truncated Back 

Propagation via Time Gradient Calculation, an Extended Kalman Filter training method, and 

evolutionary algorithms. Wu et al. [92] used vanilla LSTM networks to obtain excellent RUL 

prediction accuracy in the context of demanding operations, working conditions, and model 

degradations. To detect the onset of decline, the RUL was generated using vanilla LSTM and 

a Relevance Vector Machines (RVM). The downside of this technique is that the RUL 

necessitates labelling at each time step for each sample, and some previous knowledge is 

necessary to identify an appropriate threshold before the SVM can be employed. Inspired by 

the Vanilla LSTM networks, Wu et al. [93] built another LSTM network focusing on fault 

forecasting with machinery degradation process, in which the RUL may be predicted without 

any pre-defined threshold. 

In a practical industrial setting, noise from the surrounding environment is inescapable, causing 

machinery performance to deteriorate. In many instances, it has been claimed that the added 

noise degrades diagnosis performance. Lower testing accuracies are the result of increased 

noise. For defect diagnosis, Zhang et al.[94] introduced a deep learning-based approach called 

Convolution Neural Networks with Training Interference (TICNN). They discovered that in a 

noisy environment, fault diagnosis performance suffers rapidly. The impact of noise on 

diagnosis is significant. Some researchers have performed a study on effect of noise on 

remaining useful life estimation of different rotating machinery. In the first step, degradation 

features were extracted from both the training and testing data sets by Xiao et al. [95] 
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employing probabilistic principal component analysis. In the second stage, the degradation 

characteristics were infused using additive white Gaussian noise (AWGN), which was then 

coupled with manually introduced noise before being imported into a bidirectional 

LSTM network. The AWGN increased the robustness of the RUL prediction approach and 

achieved machine prediction in a variety of settings. They proved the usefulness of the 

suggested strategy by using the C-MAPSS lifetime data set for aeroengines. 

2.3 Research Gaps 

Misalignment occurs most frequently and an important rotor problem. However, this rotor fault 

is not completely understood. Despite its importance and frequent occurrence in practice and 

unlike other malfunctions, only a few researchers have paid attention to misalignment due to 

the complexity in developing mathematical model. 

The above literature survey summarizes the different studies on coupling misalignment 

modelling, identification, and condition monitoring techniques in rotor systems. In addition to 

studies using vibration analysis, the literature highlights the misalignment identification by 

various techniques based on FFT, CWT etc. The state-of-art research on misalignment focuses 

the need for further work on this very important rotor fault. It causes for bearing failure. The 

prognosis of bearing is also one of the important aspects. The following are few key areas 

where still need a lot of research. 

1) Misalignment is one of the key reasons for vibrations in most of the rotating system. 

These rotary systems are associated with varied operating conditions. Speed and load 

are the most common parameters, which frequently change. There was NO 

investigation carried out on interactions among speed, load, and defect (misalignment) 

severity by investigating their effect on the system vibration.  

2) Conventionally, the diagnosis of misalignment is carried out through vibration 

measurements. Especially, the presence of strong 2x vibration peak is generally 

accepted. Both angular and parallel misalignment shows peak at 2x, therefore, 

distinguishing misalignment type based by vibration analysis alone is a difficult 

activity. No article mentioned about combined fault class, which also appears frequency 

in case of misalignment.  

3) Acoustic emission (AE) is playing an important role in the fault diagnosis of ball 

bearings, but such technology is very rarely used in misalignment fault diagnosis. The 

very first attempt of AE in Shaft angular misalignment is reported by Ferrando [30].  

Now a days, the focus is on non-contact type sensors. From the literature, it had been 
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observed imperatively, that early detection of the fault has not been attempted 

effectively along with vibration study alone. The role of AE in case of misalignment 

fault detection and classification needs to be investigated.  

4) Misalignment causes the degradation of bearings. Machineries fail well before its stated 

life. So, there is a need to understand this degradation of machinery and predict the 

possible failure well in advance. Prediction of remaining useful life is important to 

avoid such unplanned downtimes. A significant amount work has been reported on 

prediction of remaining useful life of ball bearing but in actual industrial settings, the 

acquired data will have lot of noise. This noise can affect the performance of algorithms 

but there was scanty literature found on RUL prediction of bearings in actual industrial 

settings.   

The present works aims at addressing these gaps and develop a hybrid model which classify 

the different types of misalignment faults. In its extension of understanding the 

characteristics of multiple fault types, there will be the establishment of study for the 

dynamics of interaction between multiple parameters and its effect on system vibrations. 

The study will not only improve the diagnosis of defective system but also results in reliable 

prognosis of defects, which will result in estimating the remaining useful life of taper roller 

bearings.  

2.4 Objective of the Present Work 

a) Experimental investigation of condition monitoring of misaligned rotor system using 

response surface methodology. 

b) Misalignment fault classification under different loading conditions. 

c) Investigate the role of acoustic data for misalignment fault classification. 

d) Estimation of remaining useful life of taper roller bearing with inherent misalignment 

in the setup. 
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Chapter 3 

EXPERIMENTAL INVESTIGATION USING RSM FOR CONDITION 

MONITORING OF MISALIGNED ROTOR SYSTEM 

 
 

3.1 Introduction 

Rotary machines are major assets in many industries such as aerospace, automobile, chemical, 

energy, and production of the modern era. A machine could be genuinely imperilled if a defect 

occurs in its rotor-bearing system. Early discovery of the defect, therefore, is essential for the 

avoidance of a complete breakdown of related large systems. Various model and signal-based 

methods are used for the detection of misalignment faults in the rotor-bearing system. Rivin 

[1] proposed that the couplings be classified as rigid, compensating for misalignment, and 

torsionally flexible. Misalignment of shafts is the reason to develop reaction forces and 

moments in the coupling. Gibbons [2] introduced parallel misalignment in the system and 

studied the effect of force and moment on the different types of coupling. Jalan and Mohanty 

[3] considered equivalent loads to be an indication of a rotary machine fault. They successfully 

detected the amount, type, and position of a mechanical fault in the rotor-bearing system by 

using the experimental time response method for both defective and healthy systems. Jalan and 

Mohanty [4] used a residual generation method for misalignment and unbalance identification 

in the system. Dewell and Mitchell [5] focused on a vibration in structure generated due to 

misalignment, several investigators [6] have developed vibration identification charts, coupling 

misalignment generally produces 2X frequency component. The study conducted by Xu and 

Marangoni [7], [8] showed that vibration responses due to coupling misalignment generally 

indicated at multiples even integer of speed of rotation. Wavelets provide time-scale signal 

information, allowing for the extraction of time-varying features. This property makes 

'wavelets' an effective method for non-stationary signals analysis. Newland [9], [10] introduced 

orthogonal wavelets and its implementation to signal analysis. Different wavelet techniques 

presented by Staszewski [11] for the identification of different faults. Prabhakar et al. [12] Used 

the finite element method to study vibration response, they studied the effect of misalignment 

and unbalance on rotor system. They modelled two separate flexible couplings. The continuous 

wavelet transform technique is used to derive the coupling misalignment characteristics from 

time domain signals in a rotor system.  

In their review paper, Jalan et al. [13] provides a brief overview of various model and signal-

based techniques for misalignment fault detection. Different machine learning and artificial 
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intelligent techniques have been used for the fault classification. The algorithms like Artificial 

Neural Networks (ANN) [14]–[16], Support Vector Machine (SVM) [17]–[19] and Fuzzy 

Logic Classifier [20], [21], are commonly used methods to identify failures. Darpe et al. [22] 

conducted an experiment to understand how misalignment causing for system vibrations. To 

monitor the whirl's direction, they used a Full Spectrum vibration signal. The laser technique 

is a non-contact method of fault detection that uses a laser set to locate the fault while the unit 

is under operational condition. It utilizes a laser distance that measures displacement rather 

than vibration; Simm et al. [23] used laser-based technique for the detection of misalignment. 

Chacon et al. [24] used acoustic emission technique for the detection of angular misalignment 

under different speed and loading conditions. Umbrajkaar et al. [25] used vibration analysis to 

classify misalignment faults using the machine learning techniques SVM and ANN. They used 

time-frequency domain features to classify the faults. 

3.2 Introduction to Response Surface Methodology 

The statistical methods assist to draw clear conclusions from the data obtained from 

experiments. Effective experimentation needs understanding of the main factors affecting the 

performance. Design of Experiment (DoE) [26] assists to evaluate the factors that are relevant 

for describing a variation in the process. Interactions between the factors are the main thing in 

many processes and it can be difficult or impossible to understand the mechanism properly if 

critical interactions are not detected.  These statistical techniques used effectively in many 

areas. Response Surface Methodology (RSM) is an experimental design technique for 

designing and optimizing the parameters [27]. In 1951, Box and Wilson [28] developed RSM. 

Including its mathematical and statistical techniques, RSM is an essential tool for product and 

process development, enhancement, and refinement. RSM is widely used in process or system 

performance where many input variables will affect the output. RSM’s approach is 

to estimate approximate model between the response and independent variables and improving 

it such that the model produces the desired output values. Here, the inputs or variables that 

affect the system's behaviour are called factors or variables, and the outputs depict the response 

that the system produces under the factors' causal action. If all the input parameters represent 

quantitative variables, then it is possible to interpret the responses as a function of levels and 

variables. The relationship between response Y, and independent variables 𝑋1𝑢, 𝑋2𝑢, 𝑋3𝑢 … 𝑋𝑘𝑢  

is given by Eq. (3.1). The nonlinear model is considered.  

                                             Y= 𝑓(𝑋1𝑢, 𝑋2𝑢, 𝑋3𝑢 … 𝑋𝑘𝑢, ) + 𝐸𝑢                                         (3.1) 
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Where, u=1,2,3…N. N represents observations in the factorial experiment and Xiu represents 

the level of ith factor in uth observation. The function 𝑓 is called as response function. The 

residual 𝐸𝑢 measures the experimental error of the uth observation. The implementation of the 

RSM is crucial when it is necessary to examine the relationship between the factor and 

dependent variable within the experimental region and not only at the borders, after the 

significant factors influencing the response have been identified. For these types of factorial 

designs, response surfaces are recommended for their effectiveness and prompt responses. 

Kankar et al. [29], [30] used RSM for bearing fault diagnosis and detailed explanation of 

operating parameter and interaction among the faults addressed and compared with the 

analytical dynamic model. Patil et al. [31] used kurtosis as the output vector and defect size, 

load, and speed as the input vector. Kankar et al. [32] used RSM to explore the reaction of 

rotor-bearing systems under dynamic conditions. Along with the defects on bearing, rotor 

defects were also simulated using cracked and un-cracked rotor.  

According to the literature review, numerous researchers have worked towards model-based 

fault diagnosis methods, and the severity of the defect has been evaluated with the help of 

dynamic modelling, but the interaction between load, speed, and defect, and their combined 

effect on system vibration has not been explored. This chapter delves into the relationship of 

speed, load, with the existence of several types of misalignment defects of varying severity and 

their effect on the system vibration. Response Surface Methodology (RSM) with Root Mean 

Square (RMS) (refer Table 1.1 from appendix for formulae) as a response factor is used to 

understand the influence of such interactions on the system performance. One second of data 

has been captured for each combination of experiments with 25KHz sampling frequency. The 

time domain features computed from each captured data file. Out of all features few of the 

features showing unstable trend, such features are not considered. while RMS was consistently 

showing an incremental trend as fault severity increased. So, RMS is used as a response 

parameter. Experiments are planned using design of experiments and analysis is carried out 

using analysis of variance (ANOVA). Machinery fault simulator is used to conduct the tests; 

misalignment is introduced in the horizontal plane. Described findings are in agreement with 

the experiments conducted for this study. DoE and RSM are employed to identify a rotor 

bearing system's dynamic response. Three level full factorial design used for the analysis. 

3.3 Experimental Test Rig 

In the present study, experiments are conducted with the machinery fault simulator, as shown 

in Figure 3.1 (a). It consists of three-phase AC servomotors, one HP motor controlled by one 
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HP variable-frequency AC drive. The shaft is coupled with a motor using the coupling and is 

supported on two bearings. A pre-amplified tri-axial accelerometer (Kistler 8076K, sensitivity 

102.0 mV/g) is used for the acquisition of vibration signals. The recorded vibration signals are 

filtered and analyzed using an eight channel multi-analyzer (OROS-OR35 with NVGATE 

software). Reverse dial indicator is used to check the initial alignment and to remove previously 

existing misalignment if any. 

Both parallel and angular misalignments are considered at three levels of severity. Parallel 

misalignment is introduced by rotating the jack bolts in clockwise direction by the same 

amount, while for angular misalignment only one jack bolt is rotated in clockwise direction by 

predefined amount. The details of the misalignment introduced are presented in Table 3.1, 

Factors considered in our analysis are speed, load, and defect. The levels of speed and load are 

given in Table 3.2, For each speed, load, and defect combination, one experiment is performed. 

 

(a) 

 

(b) 

Figure 3.1 (a) Spectra Quest machinery fault simulator (1-coupling, 2-microphone, 3-load, 4-

shaft, 5- Jack bolt) (b) Schematic of setup 
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Table 3.1 Defects (Parallel and Angular Misalignments). 

Sr.No. Defect type Unit Levels 

-1 0 1 

1 Parallel mm 0.3 0.5 0.7 

2 Angular degree 0.1 0.2 0.3 

Table 3.2 Experimental Load and Speed Conditions.  

Sr.No. Factors      Unit Levels 

-1 0 1 

1 Speed rpm 1020 1860 2580 

2 Load N 0 6.7 13.4 

3.4 Experimental Investigation Using RSM for Vibration Data 

3.4.1 Results and Discussion  

Design matrices for parallel and angular misalignments have been presented in Appendix I. 

For analysing the response parameter RMS, from the collected experimental data, Design 

Expert statistical software is used. Three-level full factorial design method is used. In which 3 

factors, each at three levels (low, intermediate, and high) is considered. A total of 33 (27) 

experiments are performed as the nonlinear model is considered for the study. These levels are 

coded in digital format of -1, 0, +1 (Refer to Table 3.2). 

3.4.1.1 ANOVA Results in Horizontal, Vertical, and Axial Directions for Parallel 

Misalignment 

Quadratic regression model is suggested by the Design Expert, which fits the data better than 

the linear model. Natural log and inverse square root transforms are used for data in horizontal 

and vertical directions while no transform function is used in case of axial direction data. To 

decrease variance variability, data transformations are commonly performed, otherwise the 

accuracy of the fit will be poor, and predictions might not give better results. Box et al. [28] 

recommended data transformation prior to process optimization, if needed.  Table 3.3 shows 

the results of ANOVA table for quadratic model of the RMS in horizontal, vertical, and axial 

directions for parallel misalignment. In the ANOVA analysis the p-value helps to determine 

which variables and correlations are statistically important.  It is observed that the individual 

effect of speed, load and defect are statistically significant in case of the horizontal direction; 

only speed in case of vertical direction while in the axial direction, both speed and load are 

statistically significant. p-values below 0.05 indicates model terms are significant. Model terms 
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for directions with p-value<0.001 are significant for the analysis, i.e., A, B, C, AB, A2, B2 in 

horizontal, A, A2 in vertical and A, B, B² are significant model terms in axial direction. 

Table 3.3 ANOVA Table for Quadratic Model.  

Direction  Horizontal  Vertical  Axial   

Source p-value p-value     p-value  

significant Model  < 0.0001 < 0.0001 < 0.0001 

Speed (A) < 0.0001 < 0.0001 < 0.0001 

Load (B) < 0.0001 0.5043 < 0.0001 

Defect (C) 0.0001 0.5571 0.2647 

            AB < 0.0001 0.5801 0.2395 

AC 0.3602 0.7027 0.5368 

BC 0.2042 0.9449 0.8427 

A² < 0.0001 < 0.0001 0.3288 

B² < 0.0001 0.3064 < 0.0001 

C² 0.6994 0.5762 0.3709 

Table 3.4 Fit Statistics. 

Direction  R2 Adjusted R2 Predicted R2 Adequate 

Precision 

Horizontal 0.9992 0.9989 0.9981 129.871 

Vertical 0.9925 0.9886 0.9810 37.8585 

Axial 0.9735 0.9595 0.9346 26.0293 

 

Fit statistics is indicated in Table 3.4. R2 is a statistical measure of how close the data fitted to 

the regression line. It calculates the percentage of variation in the dependent variable that can 

be explained by all the model's independent variables. Each independent variable in the model 

is assumed to contribute to the explanation of variance in the dependent variable. R2 is 

determined mathematically by dividing the sum of squares of residuals by the total sum of 

squares, then subtracting it from 1. It ranges from 0 percent to 100 percent. A model with an 

R2 value of 100 percent describes all variation in the target variable. A score of 0 percent 

indicates that the model has no predictive power. Higher R2 value means the better fit. It is also 

known as the coefficient of determination. R2 value is in good agreement with the adjusted R2, 

indicating that variables (predictors) clearly explain the amount of variation observed in the 

RMS value. Adjusted R2 calculates the percentage of variation explained by only those 

independent variables that contribute significantly to the explanation of the dependent 
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variable. The Predicted R² is also in good agreement with the Adjusted R² for all three 

directional data. The predicted R2 is a measure of how effectively a model predicts new 

observations' responses. This statistic assists to determine when a model fits the original data 

but is not capable of making accurate predictions for new data. Adequate Precision is the 

indication of the signal to noise ratio (desirable ratio > 4). It is observed that the signal is 

adequate for the analysis from Table 3.4. 

The coefficient estimate (refer Table 2 of appendix for horizontal, vertical, and axial directions 

in case of parallel misalignment) indicates the expected change in response per unit factor value 

while keeping the remaining factors constant. Standard error is very minimal for all three 

directional data (refer to Table 2 of appendix). 

Equation (3.2) indicates the second-degree polynomial equation for RMS in horizontal 

direction in terms of coded factors from Design Expert software. Equation (3.3) represents 

polynomial equation for RMS in vertical direction. and the same for RMS in axial direction is 

given by Eq. (3.4) 

ln(RMS) =  +2.49 + 0.6809 𝐴 − 0.0863 𝐵 + 0.0232 𝐶 − 0.0334 𝐴𝐵 + 0.0054 𝐴𝐶 −

0.0076 𝐵𝐶 − 0.2931 𝐴2 − 0.0757 𝐵2  + 0.0032𝐶2.                                                                          (3.2) 

1

Sqrt(RMS)
= +0.5057 − 0.2227𝐴 − 0.0033𝐵 − 0.0029𝐶 − 0.0033𝐴𝐵 − 0.0023𝐴𝐶 +

0.0004𝐵𝐶 + 0.0730𝐴2 − 0.0087𝐵2 + 0.0047𝐶2.                                                                                 (3.3) 

RMS =  +10.15 + 3.78 𝐴 + 0.8617 𝐵 − 0.1953 𝐶 − 0.2528 𝐴𝐵 − 0.1307 𝐴𝐶 +

0.0418 𝐵𝐶 + 0.2948𝐴2 + 2.85 𝐵2 − 0.2696𝐶2.                                                                                     (3.4) 
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Figure 3.2 Performance prediction of model in (a) horizontal, (b) vertical, and (c) axial 

directions 

 

Coefficients in the above equations indicate the relative influence of the variables. Figure 3.2 

shows predicted Vs actual RMS value comparison for horizontal, vertical, and axial direction. 

It depicts that the predicted and actual values are close and indicates fitness of the model. It is 

found that a quadratic model predicts well, and the generated surface response captures the 

parameter interaction accurately (refer figure 3.3). 

The interaction between the speed and load is shown in figure 3.3 using response surface plot. 

It shows an increase in the shaft speed results in an increase in the RMS value which results in 

increase in system vibrations. The curved and deformation in the response surface indicate that 

there exists a significant interaction between the speed and the load influencing the response. 

In case of horizontal and vertical directions, it is observed that there is not much change in 

RMS value with increase in load. In case of axial direction, the initial addition of load decreases 

the vibration while RMS value keeps on increasing as the load increases. Initial load helps to 

minimize the misalignment effect up to certain value; further increase in it causes the system 

to vibrate. 
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(a) 

 
(b) 

 
(c) 

Figure 3.3. Response surface plot for interaction between speed and load for (a) 

horizontal, (b) vertical and (c) axial direction 
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(a) 

 
(b) 

 
(c) 

Figure 3.4 Response surface plot for interaction between speed and defect for (a) 

horizontal, (b) vertical and (c) axial direction 
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Figure 3.4 shows the interaction between the speed and defect. The p-value > 0.05 for AC 

(speed-defect) in Tables 3.3 indicates that the interaction effect between speed and defect size 

is not significant for all three directional data. It is observed that, the increase in the speed 

results in an increase in the RMS value but RMS value is not affected much with increase in 

defect severity (refer figure 3.4). The response surface plot depicts that there is no significant 

interaction between the speed and defect in horizontal and vertical directional data but there is 

slight increase in RMS value in axial directional vibration data. From response surface plot, it 

is confirmed that RMS value increasing with the shaft frequency.  

The P value for load and defect interaction is 0.2042 in horizontal, 0.9449 in vertical and 0.8427 

in axial direction, indicates that there is no significant interaction between them. Figure 3.5 (a) 

shows the response surface plot in horizontal direction, it is observed that increase in the load 

results in a decrease in the vibration and increase in defect severity causes RMS value to 

increase slightly. In case of vertical direction (refer figure 3.5 (b)) there is slight increase in 

RMS with increase in load and defect severity, while in case of axial direction (refer figure 3.5 

(c)), as the load increases, RMS value is varying. Initially when the shaft is loaded with 6.7N, 

the RMS value found to be decreasing and when the load is increased to 13.4N, the RMS value 

started increasing, while slight increase in the RMS value is observed with fault severity. 

 

(a) 
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(b) 

 

(c) 

Figure 3.5. Response surface plot for interaction between load and defect for (a) 

horizontal, (b) vertical and (c) axial direction 

3.4.1.2 ANOVA Result in Horizontal, Vertical, and Axial Direction for Angular 

Misalignment 

Three levels of angular misalignment are considered for this study, the amounts of 

misalignment introduced are 0.1, 0.2 and 0.3 degrees. The results of angular misalignment in 

horizontal, vertical, and axial directions are discussed in this section.  From Tables 3.5, it is 

noticed that in case of horizontal A, B, C, AB, A2, B², in case of vertical A, A², B² and A, B, 

A², B², C2 are significant model terms in axial direction. From Table 3.6, is it observed that 
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there is reasonable agreement between Predicted R2 and Adjusted R2 and an adequate signal to 

noise ratio.  

Table 3.5 ANOVA for Quadratic Model. 

Direction Horizontal Vertical Axial  

Source p-value p-value p-value  

Model < 0.0001 < 0.0001 < 0.0001 significant 

Speed (A) < 0.0001 < 0.0001 < 0.0001  

Load(B) < 0.0001 0.1290 0.0001  

Defect(C) 0.0410 0.7995 0.9204  

AB < 0.0001 0.7407 0.6511  

AC 0.6512 0.6985 0.6700  

BC 0.7426 0.6423 0.7194  

A² < 0.0001 < 0.0001 0.0285  

B² < 0.0001 0.0111 < 0.0001  

C² 0.0864 0.8248 0.0461  

Table 3.6 Fit Statistics. 

Direction  R2 Adjusted R2 Predicted R2 Adeq Precision 

Horizontal 0.9995 0.9993 0.9989 163.9546 

Vertical 0.9946 0.9918 0.9863 45.8503 

Axial  0.9731 0.9589 0.9393 26.8207 

Equations (3.5), (3.6), and (3.7) represent the Second-degree polynomial equation in coded 

factors for horizontal, vertical, and axial directions, respectively.  

ln(RMS)  =  +2.48 + 0.6681𝐴 − 0.0888𝐵 − 0.0080𝐶 − 0.0382𝐴𝐵 − 0.0020𝐴𝐶 +

0.0015𝐵𝐶 − 0.3004𝐴2  − 0.0710 𝐵2  + 0.0114𝐶2 .                                               (3.5) 

1

Sqrt(RMS)
=  +0.5141 − 0.2137𝐴 − 0.0062𝐵 − 0.0010𝐶 − 0.0016𝐴𝐵 + 0.0019𝐴𝐶 +

0.0023𝐵𝐶 + 0.0721𝐴2 − 0.0192𝐵2 + 0.0015𝐶2                                                                                   (3.6)  

RMS =  +10.73 + 3.74 𝐴 + 0.8329 𝐵 − 0.0171 𝐶 − 0.0952 𝐴𝐵 − 0.0897 𝐴𝐶 −

0.0756 𝐵𝐶 + 0.7001𝐴2  + 2.79 𝐵2 − 0.6293𝐶2                                      (3.7) 
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Figure 3.6 (a), (b), (c) shows that there is close agreement between predicted Vs actual RMS 

values. 

 

Figure 3.6. Performance prediction of model for angular misalignment in (a) horizontal, (b) 

vertical, and (c) axial directions 

The interaction between speed and load (refer figure 3.7) for angular misalignment is same as 

parallel misalignment. With the increase in the speed, RMS value is continually increasing. 

There is no remarkable change observed in RMS value with increase in load in horizontal and 

vertical directions, while in axial direction the initial addition of load caused to reduce the 

vibration till some extent but further addition of load causes for system vibration (refer figure 

3.7 (c)). 
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Figure 3.7. Response surface plot for interaction between speed and load for (a) 

horizontal, (b) vertical and (c) axial direction 

From figure 3.8, it is observed that the response for angular misalignment is same as parallel 

misalignment. In horizontal and vertical directions, with increase in defect severity, RMS 

values are not affecting much. This may be because of load on the shaft reducing the effect of 

misalignment, while in case of axial direction there is variation in the RMS value in accordance 

with defect severity. 

From the surface plot as shown in figure 3.9, it is observed that there is slight drop in RMS 

value with increase in load and the fault severity in horizontal directional vibration data. There 

is slight increase in RMS value with increase in load and defect severity in vertical direction 

vibrational data while in case of axial direction as the load increases, RMS value is varying. 

Initially when the shaft is loaded with 6.7N, the RMS value found to be decreasing and when 

the load is increased to 13.4N, the RMS value started increasing. The load caused to eliminate 

the effect of misalignment.  Defect severity did not affect the RMS value significantly.  
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Figure 3.8. Response surface plot for interaction between speed and defect for (a) 

horizontal, (b) vertical and (c) axial direction 

 

Figure 3.9 Response surface plot for interaction between load and defect for (a) 

horizontal, (b) vertical and (c) axial direction 
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3.5 Experimental Instigation Using Response Surface Methodology for Acoustic Sensor 

Data 

3.5.1 Results and Discussion  

3.5.1.1 ANOVA Results for Parallel Misalignment 

Modern machinery is complicated and installing a sensor might be tricky at times. As a result, 

non-contact type sensors are critical in such situations. The same experimental setup (Figure 

3.1) is used for acoustic study. RMS is taken as a response parameter. For acoustic signal 

acquisition, a microphone (type 40DD, sensitivity 0.65 mV / Pa) is placed using magnetic 

stand. The response parameter is calculated from the recorded time domain data using 

MATLAB same as computed in case of vibrational data. The Design Expert recommends the 

2FI (Sequential sum of squares for the two-factor interaction) regression model, which fits the 

data superior to the linear model. For data transformation, natural log transforms are utilized. 

Data transformations are widely used to reduce variance variability; otherwise, the fit's 

accuracy would be low, and predictions may not yield better outcomes.  Table 3.7 shows the 

results of ANOVA.  It is observed that the individual effect of speed and load are statistically 

significant. Model terms with p-values < 0.05 are considered significant, the significant model 

terms are A, B, and AB. Table 3.8 shows the fit statistics. R2 indicates how well the data fits 

the regression line. The Predicted R2 is in good agreement with the Adjusted R2. From Table 

3.8, it is found that the signal appears to be sufficient for the analysis. 

Table 3.7 ANOVA Table for Parallel Misalignment.  

Source 
Sum of 

Squares 
df 

Mean 

Square 
p-value 

 

Model  12.60 6 2.10 < 0.0001 significant 

Speed (A) 11.79 1 11.79 < 0.0001 

Load (B) 0.4582 1 0.4582 0.0017 

Defect (C) 0.0001 1 0.0001 0.9635 

         AB 0.3112 1 0.3112 0.0075 

AC 0.0003 1 0.0003 0.9266 

BC 0.0451 1 0.0451 0.2708 

Residual 0.7034 20 0.0352  

Cor Total 13.31 26   

 

Table 3.8 Fit Statistics for Parallel Misalignment. 
R2 Adjusted R2 Predicted R2 Adequate 

Precision 

0.9471 0.9313 0.9131 21.6835 

 

The second-degree polynomial equation for RMS in the form of coded factors is shown in Eq. 

(3.8). 
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ln(RMS) =  +0.3421 + 0.8093 𝐴 + 0.1595 𝐵 − 0.0020 𝐶 + 0.1610 𝐴𝐵 + 0.0051 𝐴𝐶 +

0.0613 𝐵𝐶  

                                                                                                                                            (3.8)  

    

 

Figure 3.10. Performance prediction of model  

Figure 3.10 displays a comparison between predicted and actual RMS values, it shows that the 

predicted and actual values are in close agreement, indicates that the model is fit. A model is 

found to forecast well, and the generated surface response accurately depicts the parameter 

interaction. 

In case of parallel misalignment, the association between speed and load is depicted in figure 

3.11(a) using response surface plot. It indicates that when the shaft speed increases, the RMS 

value rises, leading to an increase in system vibrations. The curvature in the response surface 

represents a substantial interaction between the speed and load, which influences the output.  

Increased load also contributes to system vibration, and the RMS value continues to rise. The 

plots clearly show that when system is misaligned, increasing the speed, load, or speed 

combined with load causes the RMS value to rise, making the system unstable. 

Figure 3.11 (b) indicates the interaction between speed and defect. The P-value 0.9266 

indicates that they are not significant, increase in defect severity does not contribute towards 

system vibration but speed has effect on system vibrations, RMS value keeps on increases as 

speed increases.  

Figure 3.11 (c) depicts the interaction between load and defect. Surface response plot indicates 

the connection between change in load and defect and its effect on system vibrations. It is found 
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that change in load causing for increase in RMS but change in defect severity did not affect the 

response parameter.  

 

Figure 3.11. Response surface plot for parallel misalignment for interaction between (a) 

speed and load, (b) speed and defect and (c) load and defect 

3.5.1.2 ANOVA Result for Angular Misalignment 

Table 3.9 ANOVA Table for Angular Misalignment.  

Source 
Sum of 

Squares 

Mean 

Square 
df p-value 

 

Model  10.82 1.80 6 < 0.0001 significant 

Speed (A) 10.54 10.54 1 < 0.0001 

Load (B) 0.0886 0.0886 1 0.0306 

Defect (C) 0.0001 0.0001 1 0.9431 

       AB 0.1972 0.1972 1 0.0024 

AC 0.0009 0.0009 1 0.8172 

BC 0.0008 0.0008 1 0.8283 

Residual 0.3273 0.0164 20  

Cor Total 11.15  26  
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The model value < 0.001 shows the model is significant, from Table 3.9, it is found that A, B, 

and AB are significant model terms. Table 3.10 shows that the Predicted R2 and Adjusted R2 

have a reasonable agreement and an acceptable signal to noise ratio. 

Table 3.10 Fit Statistics for Angular Misalignment. 

R2 Adjusted 

R2 

Predicted 

R2 

Adequate 

Precision 

0.9707 0.9618 0.9359 27.6937 

 

The Second-degree polynomial equation in coded factors is represented by Eq. (3.9). 

ln(RMS)  =  +0.3060 + 0.7651𝐴 + 0.0702𝐵 + 0.0022𝐶 + 0.1282𝐴𝐵 + 0.0086𝐴𝐶 −

0.0081𝐵𝐶                                                                                                              (3.9) 

figure 3.12 illustrates that the predicted and actual RMS values are very similar. 

 
Figure 3.12. Performance prediction of model for angular misalignment  

 

For angular misalignment, the interaction between speed and load (refer figure 3.13 (a)) is same 

as in case of parallel misalignment. The RMS value rises in lockstep with the speed. When the 

load is increased, there is slight increment in the RMS value. The contour lines are slightly 

deformed for change in load intensity. From figure 3.13 (b), it is observed that with increase in 

defect severity, RMS value is not affected. This may be because of load on the shaft reducing 

the effect of misalignment, while there is uniform rise in RMS value with the increase in speed. 

The counter and surface plot in figure 3.13 (c) shows that as the severity of the fault increases, 

the RMS value decreases slightly. With increasing load, the RMS value increases considerably. 

The severity of the defect has no effect on the RMS value. 



Response Surface Methodology for Condition Monitoring of Misaligned Rotor System 

 

Page | 50  
 

 

 

Figure 3.13. Response surface plot for angular misalignment for interaction between (a) 

speed and load, (b) speed and defect and (c) load and defect 

 

Table 3.11 Comparison of Vibration and Acoustic Sensor 

Specification Vibration sensor Acoustic sensor 

Sensitivity  102.0 mV/g 0.65 mV / Pa 

Model Kistler 8076K 40DD 

Type of sensor Contact  Non-contact 

 

The study has also been extended to combined misalignment fault. Three defect severity are 

considered for the study (0.3mm+0.1 degree, 0.5mm+0.2 degree and 0.7mm+0.3 degree). The 

response surface plot shows the same nature as parallel and angular misalignment. The 

observations in the present study are based on the following unique aspects. 

Novelty in Misaligned Rotor System: The present study focuses specifically on a misaligned 

rotor system, which is distinct from previous studies that concentrate on bearing faults using 

response surface methodology. In this context, the observations regarding load value and defect 

size/type are different from those in studies that primarily examine bearing faults. 

Radial and Axial Load Interactions: While the radial load in this study may not have a 

significant impact on vibration amplitudes, there could be notable interactions among the 
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parameters in the axial direction. This finding is unique and novel. Unlike bearing studies 

where axial data is often ignored, here it plays a crucial role. 

Load Minimization and Defect Impact: It is observed that the effect of defects on vibration 

response can be minimized when subjected to load. This indicates that the load plays a role in 

attenuating the impact of defects on the vibration behavior of the system. Such observations 

align with the specific conditions and characteristics of the misaligned rotor system under 

investigation. 

The unique nature of the misaligned rotor system in this study leads to different observations 

compared to studies primarily focused on bearing faults or different rotor faults. These 

observations contribute to the novelty and understanding of the behavior of misaligned rotor 

systems and highlight the importance of axial data and load interactions in such systems. 

 
3.6 Conclusion 

Through the vibration data analysis following conclusions can be made 

• A surface response approach using three-level factor design and ANOVA has proven to be 

an effective technique for determining the significant factors associated with a misalignment. 

As the literature reported in this area is very scanty, this work will help to understand the 

misalignment defect and its effect in a better way. It is observed that all model terms are found 

to be statistically adequate. 

• Response surface shows that the change in load value does not affect vibration amplitude 

significantly in case of Horizontal and vertical directions, while significant variation in RMS 

value is observed in axial direction in both parallel and angular misalignment. This 

observation can play a vital role in identifying misalignment when there are multiple faults 

present in the system. Axial vibrations, which are often overlooked in bearing analysis, play 

a significant role in locating misalignment faults. This result is consistent with previous 

research on the function of axial vibration in the detection of misalignment defects. In the 

same experiment variation in load and its effect on RMS value in horizontal and vertical 

directions are also recorded but it is observed that there is no significant change in RMS 

value. These results differentiate the misalignment from other defects. 

• Defect size variation has no significant impact on the vibration response in horizontal and 

vertical directions; the change in RMS value is very small, while in case of axial direction a 

slight increase in RMS value with respect to defect severity is observed. This observation can 

help us to identify the misalignment from other faults. 
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• It is observed that there is a significant increase in RMS value with increase in speed in both 

types of misalignments. 

• Axial vibration plays an important role in the diagnosis of misalignment in the shaft.  

The following are some of the conclusions that can be drawn from the data obtained using 

acoustic signal investigation. 

• Response surface shows that the change in load value has significant impact on system 

vibrations.  

• The vibration response is unaffected by change in defect severity. In both types of 

misalignments, the change in RMS value is quite small as the defect severity increases. 

• In both types of misalignments, there is a substantial increase in RMS value with increase in 

speed. 

• Results obtained using acoustic sensor are well aligned with the RSM finding using 

vibrational data. So, acoustic sensors which is non-contact type can be effectively used at the 

places where installation of accelerometer is not possible. 

• The conditions considered in the present investigation mimic the actual conditions under 

which such type of fault is generated. So, it helps to understand the important parameters for 

system vibrations in misaligned rotor system. 
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Chapter 4 

MACHINE LEARNING TECHNIQUES FOR MISALIGNMENT FAULT 

CLASSIFICATION 

 

 
4.1 Introduction 

In the previous chapter interaction effect between speed, load, and misalignment on system 

vibrations has been studied. In the PHM scheme diagnostics plays a significant role. We need to 

identify the right type of fault in the system. As we studied, the misalignment in combination with 

speed and load causes system vibration to increase. It is essential to know what type of 

misalignment the system is subjected to. The correct diagnosis of fault can reduce unplanned 

downtime. The model-based technique failed to classify the misalignment fault, and vibration 

analysis shows a peak at 2x for both angular and parallel misalignment. So there need a study that 

segregates these faults.  

The selection of the appropriate features is essential for correctly identifying the issue of 

classification and, the choice of features can have a huge effect on the performance of classification. 

Generally, time-domain features are widely used to get a report on condition of machine. The 

energy entropy of the empirical mode decomposition is also used to derive features from the 

vibration signals. Features are then picked using the intrinsic mode functions process, which is then 

supplied to the Back Propagation, Artificial Neural Network (ANN) to recognize defects in 

bearings [1]. Two functions extraction methods, Hilbert Transform and fast Fourier transform used 

for vibration signals. The ANN-based fault estimation algorithm is used for the fault diagnosis of 

rolling bearings using a genetic algorithm and better classification results are obtained[2]. Delgado 

et al. [3] stated that classification accuracy for SVM were better than those for ANN. Similarly, 

Saidi et al. [4] have shown that the important benefit of SVM in fault diagnosis is that it is sufficient 

even for few sample-based decisions. Initially, the SVM was intended for binary classification[5]. 

However, more than two classes were needed by most induction motor diagnostic classification 

systems, such as: multiple fault conditions and/or multiple fault severity classes under different 

load levels. Samantha et al. [6] found contrast between the neural network (NN) and SVM and they 

also found that both NN and SVM gave 100 % accurate results in extracting features from the 

vibration signals of a defective gearbox. For automatic fault diagnosis of bearing, a combination of 

the decision tree and the fuzzy classifier is used [7]. Gunerkar et al. [8] perform a bearing fault 
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classification using an accelerometer and microphone sensor data fusion. The fault classification is 

carried out using K nearest neighbor (KNN).  

Haroun et al. [9] used the Autoregressive (AR) torque signal model for misalignment fault 

detection. Firstly, in different operating conditions, the torque signal obtained from the 

experimental setup and coefficients of the AR model were extracted as features. Min Redundancy 

Max Relevance (mRMR) was used to select the optimal features for fault classification. Finally, 

Self-Organizing Map neural network was used for fault classification. Chandan kumar et al. [10] 

carried out experimental research to detect rotor misalignment on a three-phase induction motor. 

To track the vibration and current signals, proximity and current probes were used. FFT was used 

for signal processing. For both signals to disclose the fault-specific whirl signatures, a full 

spectrum analysis was presented. Alok kumar et al. [11] used both stator current and vibration 

samples for fault detection. They used multi-scale entropy (MSE) for feature extraction and SVM 

for fault classification. Jun lin et al. [12] extracted features using MSE and then signal denoised 

using wavelet transform, they got better results than frequency related features. For different cases 

of misalignment at different operating frequencies, experimental findings using a torque sensor 

were recorded by Chandra shekhar et al. [13]. They used Fourier and wavelet transforms to detect 

the fault. Alok kumar et al. [14] concluded that misalignment effect can be predicted by the current 

signature alone without using the vibration signal. Orbit plots were used easily to illustrate the 

particular existence of the fault of misalignment. During machine operation, shaft displacement 

and stator current samples were measured and analysed under aligned and misaligned conditions. 

Chacon et al. [15] carried out detailed experimental investigation using the acoustic emission (AE) 

technique in order to determine the probability of detecting angular misalignment. The test rig was 

run under various load and speed conditions.  

By considering deformation and reaction forces, for a misaligned structure, Lee and Lee [16] 

derived a dynamic model. In this model, they considered axial vibration, which is a key indicator 

of the presence of misalignment. Isermann [17] elaborately defined the process of residual 

generation for the diagnosis of faults. Jalan and Mohanty [18] considered equal loads as an 

indication of a rotary system fault and successfully detected the amount, form and position of a 

mechanical fault in the rotor-bearing system by using the experimental time response method for 

both the defective and the healthy system. The research was expanded to three dimensions by 

Monte et al. [19], where axial direction helped to detect system inconsistency. Jalan et al. [20] 
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presented a review on the diagnosis of rotor system misalignment faults using model based and 

signal-based techniques. 

The minimal sample size available for training and testing is sometimes a constraining element in 

determining the optimal fault classification features and algorithms. In comparison to those trained 

with an unlimited sample size, training on a small dataset creates bias and variance in performance 

[21]. SVM has proven to be one of the most successful algorithms for dealing with few sampled 

data. Wei Liu et al. [22] used SVM for the detection of the coal-gangue interface during top-coal 

excavation mining with limited data available. Based on singular value decomposition techniques 

and SVM, they provided a new vibration signal analysis approach for detecting the coal-gangue 

interface. Umbrajkaar et al. [23] used vibration analysis to carry out misalignment fault 

classification using machine learning approach, SVM and ANN was used. They extracted time-

frequency domain features for fault classification. The feature ranking was done by using ReliefF 

algorithm, the accuracy of fault classification using ANN was 94.17% and using SVM was 

97.72%. Both angular and parallel misalignment shows peak at 2x, then it will be difficult to 

identify the type of misalignment. There are other rotor-bearing faults, which lead to major 2x 

vibrations. Therefore, distinguishing misalignment by using vibration signals alone is a difficult 

activity [24]. Acoustic signals were used for the detection of shaft angular misalignment [15]. In 

the present chapter two cases have been discussed, in case (i) Only binary (parallel and angular) 

fault classification is performed while in case (ii) Angular, parallel, and combined misalignment 

cases are considered.   

4.2 Experimental Test Rig and Loading Conditions 

 
Machinery Fault Simulator (MFS), shown in figure 3.1 is used to conduct the tests. Two loading 

conditions are considered i.e., zero N and 13.4 N. Two major types of misalignment faults are 

considered at three levels of defect severity and at three different speed conditions. The defect 

specifications are listed in Table 3.1, these values are decided based on literature survey and speed 

levels considered are 1020, 1860 and 2580 rpm.  

 

4.3 Binary Fault Classification (Angular and Parallel) 

In the present investigation, vibro-acoustic sensor data fusion technique is used to detect various 

forms of misalignment under different operating conditions. There are 18 tests performed for each 

fault case (total 36 experiments for parallel and angular), and 9 tests for each fault mode, for each 
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case. A pareto rule is applied while splitting the train/test data. Each case data was randomly 

divided into 80-20 portion, 80% of the data was used for training and 20% of data was used for 

testing purpose. The data division is done for each case separately. In misalignment fault 

classification, some researchers [23] had achieved near perfect results already, but this study aims 

to attempt to create an even higher accuracy approach than the 97.72% accuracy listed. 

For the analysis, Matlab R2019b, update cycle 5 with default settings is used. Feature extraction 

and feature ranking was carried out using diagnostic feature designer app. The ranked features then 

extracted to classification learner app.  Gaussian naive bayes, ensemble boosted trees, logistic 

regression, fine KNN and Cubic SVM results are discussed for misalignment fault classification 

by considering two loading conditions. These algorithms perform better for binary fault 

classification [5-8]. The classification accuracy of these algorithms is discussed using confusion 

matrix and positive predictive value & false discovery rate plot. Vibro-acoustic sensors are used 

to capture the data and time domain features are extracted from both sensors and ranked using one-

way ANOVA (t test). The selected features are used to train the machine learning algorithms. In 

the present study limited samples are used, one of the goals of this work is to explore fault 

classification using a small amount of dataset.  

 
4.3.1 Data Acquisition and Signal Processing 

 
To process and analyse the collected vibration and acoustic signals from MFS, an eight channel 

multi-analyser (OROS-OR35, NVGATE software) is used. For 10 seconds, the signal acquisition 

is carried out, the sampling rate during data acquisition was 25.6KHz, the sample times are 

synchronized between vibration and acoustic sensors while data acquiring from each signal and 

the obtained signals are passed through the built-in anti-aliasing filters of the analyser. To fetch 

the useful information from the acquired signal, different time domain features are extracted using 

MATLAB from vibrational signal in X (Radial), Z (Axial) directions and acoustic signal data.  
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Table 4.1. Feature Ranking For 13.4 N Load 
Feature Ranking Features t test-Score (One-way 

ANOVA) 

1 Acoustic Data_Skewness 1.4709 

2 Z_Vib.Data_CrestFactor 1.3494 

3 Z_Vib.Data 

_ImpulseFactor 
1.3437 

4 Z_Vib.Data 

_ClearanceFactor 
1.3426 

5 X_Vib.Data _Skewness 1.2714 

6 Acoustic Data 

_ShapeFactor 
1.0414 

7 Acoustic Data _SINAD 1.0222 

8 Acoustic Data 

_CrestFactor 
1.0122 

9 Acoustic Data _SNR 1.0065 

10 Acoustic Data 

_ImpulseFactor 
0.9945 

11 Acoustic Data 

_ClearanceFactor 
0.9842 

12 Acoustic Data _Kurtosis 0.9506 

13 Z_Vib.Data _THD 0.8431 

14 X_Vib.Data 

_CrestFactor 
0.7366 

15 X_Vib.Data 

_ImpulseFactor 
0.7269 

16 Acoustic Data _Mean 0.7254 

17 X_Vib.Data 

_ClearanceFactor 
0.7213 

18 Acoustic Data _RMS 0.6743 

19 Acoustic Data _Std 0.6742 

20 Acoustic Data _THD 0.6384 

21 Z_Vib.Data _Kurtosis 0.5444 

22 Z_Vib.Data 

_ShapeFactor 
0.5318 

23 Z_Vib.Data_PeakValue 0.5239 

24 X_Vib.Data _THD 0.5009 

25 X_Vib.Data _Mean 0.4392 

26 X_Vib.Data _Kurtosis 0.3884 

27 X_Vib.Data 

_ShapeFactor 
0.3587 

28 Z_Vib.Data _Mean 0.3352 

29 Z_Vib.Data_RMS 0.3319 

30 Z_Vib.Data_Std 0.3319 

31 Acoustic 

Data_PeakValue 
0.2557 

32 X_Vib.Data_SNR 0.2370 

33 X_Vib.Data_SINAD 0.2365 

34 Z_Vib.Data_SINAD 0.1817 

35 Z_Vib.Data_SNR 0.1799 

36 Z_Vib.Data_Skewness 0.1612 

37 X_Vib.Data_Std 0.0772 
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A slice from the original signal with 2048 points is shown in Figure 4.1. Feature extraction will 

help to decrease irrelevant variables that would otherwise reduce the accuracy of the classifier. A 

total of 37-time domain features are derived from vibrational and acoustic sensor data. After 

extracting the time domain features of the signal, they are ranked as per their importance towards 

fault classification using t test (One-way ANOVA). The ranking of features based on the one-way 

ANOVA is shown in Table 4.1 and the values indicates the ANOVA t Scores. The value in the 

table shows the t score values. The t test tells us how significant the differences between groups 

are. The t score is a ratio between the difference between two groups to the difference within the 

groups. The larger is the t score, the more difference between groups. The smaller the t score, the 

more similarity there is between groups. A large t score tells us that the groups are different, and 

a small t score indicates the groups are similar. The t score can be calculated using equation (4.1). 

t =
(∑𝐷) N⁄

√∑𝐷2 − (
(∑𝐷)

2

N )

(N − 1)(N)

 

                                                                                                                                                                                   (4.1) 

 

ΣD: Sum of the differences  

ΣD2: Sum of the squared differences 

(ΣD)2: Sum of the differences, squared. 

Features which are more sensitive towards fault classification are selected. We will get an 

indication of the relative efficacy of classification features if we refer to histograms. Histogram 

charts clustered by defect code can help decide if certain features are powerful differentiators 

between types of faults. Their distributions are more isolated from each other if they are strong 

differentiators. Feature representations appear to overlap and there are no features that can be used 

explicitly to distinguish faults. Figure 4.2 shows the flowchart of the proposed method. 

 

https://www.statisticshowto.com/what-is-statistical-significance/
https://www.statisticshowto.com/probability-and-statistics/t-distribution/t-score-formula/
https://www.statisticshowto.com/ratios-and-rates/
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Figure 4.1 Signal trace (a) vibrational signal in Z-direction (b) acoustic signal 

 
Figure 4.2. flowchart of the proposed method 

4.3.2 One-way ANOVA 

The objective of a one-way ANOVA is to see if data from different groups (levels) of a factor have 

the same mean. One-way ANOVA allows us to see if various groups of an independent variable 

have distinct impacts on the response variable y. One-way ANOVA is a basic variant of the linear 

model. The model's one-way ANOVA version is, 

                                                     𝑦𝑖𝑗 = 𝛼𝑗 + 𝜀𝑖𝑗                                    (4.2) 

with assumptions 

𝑦𝑖𝑗 is an observation, in which i represents the observation number, and j represents a different 

group (level) of the predictor variable y. 

𝛼𝑗 represents the population mean for the jth group. 

𝜀𝑖𝑗 is the random error, with zero mean and constant variance, 

The assumption that all group means are equal is tested using ANOVA, as compared to the 

alternative theory that at least one group differs from the others. ANOVA divides the entire 

variation in the data into two parts to test for differences in group means:  

a) Variation of group means from the overall mean, i.e., variation between groups. 

b) Variation of observations in each group from their group mean estimates, variation within 

group. 
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4.3.3 Results and Discussion 

 
Using the MATLAB’s diagnostic feature designer framework, the extraction and ranking of 

features is achieved. These ranked features are used to train the algorithms. Results of fault 

classification using naive bays, ensemble boosted trees, logistic regression, KNN and SVM are 

discussed in following sections.  

Naive Bayes algorithm is a collection of supervised learning algorithms based on Bayes’ theorem. 

The supervised learning classification algorithm logistic regression is used to predict the 

probability of a target variable. Because the nature of the objective or dependent variable is binary, 

there are only two classifications. In comparison to individual classifiers, the ensemble classifier 

combines several classifiers to produce better classification results. Boosting is a method of 

weighting constructed models based on their results by averaging/voting multiple models. The 

KNN classifier is a basic yet powerful fault classification tool. When a decision concerning new 

incoming data is required, the distance between test and training samples is computed. The KNN 

classifier uses the Euclidean distance method to calculate distances in multidimensional input 

space. The SVM is the most popular machine learning technique. The SVM algorithm is derived 

from an optimal separating hyper-plane in the context of linearly separable data. SVM creates a 

hyper-plane that is separated into two categories (can be extended to multi-class problems). From 

the literature it is found that SVM works well for binary fault classification and SVM also perform 

effectively with limited dataset. KNN was effectively used in numerous bearing fault classification 

and proved to be one of the effective tools.  

4.3.3.1 Case 1: No load condition  

The ranked features were imported to classification learner platform of matlab. In classification 

learner platform, the cross-validation model was chosen. The total data was divided into 5 folds. 

If we choose 5 folds, then the app: Partitions the data into 5 disjoint sets or folds, for each fold: 

Trains a model using the out-of-fold observations. Assesses model performance using in-fold data 

and calculates the average test error over all folds. This method gives a good estimate of the 

predictive accuracy of the final model trained with all the data. It requires multiple fits but makes 

efficient use of all the data, it is recommended for small data sets. So initially 4 folds (F1, F2, F3 

and F4) used for training (80% of data) and 1-fold (F5) was used for testing (20% of data). Then 

in next step it takes F1, F2, F3 and F5 for training and then use F4 for testing. Same way it uses 
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all data for training and for testing. In confusion matrix we can see 9 parallel and 9 angular faults 

cases of test data. This method suits best for small number of datasets. The ranked features are fed 

to the algorithms for training purpose. The testing accuracy changes with the number of input 

features, according to the performance measures of the features from large to small, with the 

number of sensitive features added one by one till all the features are fed to the selected algorithms. 

Some of them aren't affected by fault classification at all. These features would perplex the 

classifier, resulting in no discernible improvement in classification accuracy. Observing that the 

testing accuracy varies with the number of features fed into the algorithms, we may discover that 

the features have higher sensitivity at first, and that the testing accuracy improves as the number 

of features fed into the algorithms increases. However, as the number of selected features increases 

to 12 (of total 37 features), the accuracy begins to decline because the features added beyond that 

were not sensitive. This could imply that as the number of features increases, the selected features 

contain too much fault-unrelated information, and the values of these features have a significant 

degree of overlap.  

The confusion matrix and positive predictive value & false discovery rate plot are used to check 

the accuracy of each algorithm for proper fault classification. Confusion matrix map is used to 

understand how each class performed with the currently selected classifier. The rows (refer Figure 

4.3 a) represent the true class and in the columns the predicted class is shown. The diagonal cell 

shows the true class and the expected match for the class. The green colour cells show that the 

classifier categorizes true class findings correctly and well. Figure 4.4 shows the result for Naive 

Bayes algorithm. From the confusion matrix (refer figure 4.3 a), it is observed that five of nine 

angular faults are classified accurately while remaining are misclassified as parallel and seven of 

the parallel faults are classified accurately while two parallel faults are misclassified as angular. 

Figure 4.3 (b) shows the rows below the table with a summary. For the correctly predicted points 

in each class, positive predictive values are shown in green and false discovery rates for the 

incorrectly predicted points in each class are shown in pink colour below. False discovery rate for 

angular is 29% and for parallel, it is 36%. It depicts that 29% of the parallel fault misclassified as 

angular while 36% angular faults are misclassified as parallel. The positive predictive values for 

angular and parallel is 71% and 64% respectively. Figure 4.4 shows the result for ensemble boosted 

trees. This algorithm failed to distinguish between the parallel and angular fault. It is observed 

from figure 4.4(a), the confusion matrix, the classifier predicted the angular faults accurately while 
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failed to classify parallel faults. All the parallel faults are misclassified as angular fault. So, the 

false discovery rate is 50% and positive prediction is also 50%. The fault classification accuracy 

obtained using Naive Bays and ensemble boosted trees is 66.7% and 50% respectively. The result 

for logistic regression is indicated in figure 4.5. The accuracy achieved using logistic regression is 

quite better than naïve bays and ensemble boosted tress. This classifier was able to segregate the 

different faults effectively. All angular class faults are classified correctly while two of parallel 

faults misclassified as angular. From figure 4.5 (b). is it observed that positive prediction accuracy 

for parallel is 100% because none of angular class is predicted at parallel. The fault classification 

accuracy is 88.9%.  

Figure 4.6 shows the classification accuracy for KNN. KNN classifies the angular and parallel 

faults effectively.  Two faults from each class are misclassified. The positive predictive value for 

each case is 78%, and false discovery rate is 22% for each class. The accuracy achieved using this 

classifier is 77.8%. Figure 4.7 shows result for SVM algorithm. The precision of fault classification 

is 100%. The faults are accurately classified by this algorithm. Green diagonal entries imply that 

each fault is grouped into an exact category. The false discovery rate is zero for the predicted class; 

it indicates that no fault is misclassified. 
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Figure 4.3. Result of Naive Bays (a) confusion matrix (b) positive predictive value & false 

discovery rate plot  

 

Figure 4.4. Result of Ensemble boosted trees (a) confusion matrix (b) positive predictive value 

& false discovery rate plot.  
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Figure 4.5. Result of logistic regression (a) confusion matrix (b) positive predictive value & 

false discovery rate plot  

 

Figure 4.6. Result of KNN (a) confusion matrix (b) positive predictive value & false discovery 

rate plot 
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Figure 4.7. Result of SVM (a) confusion matrix (b) positive predictive value & false discovery 

rate plot  
 

The classification accuracy summary table for case I, which shows the comparison between 

vibration, acoustic and vibro-acoustic sensor data fusion is given in Table 4.2, 

Table 4.2 Summary Table for case I: No Load Conditions 
Machine Learning 

algorithm 

Vibration data Acoustic data Vibro-acoustic 

data 

(Sensor fused 

data) 

Naive Bayes 81.6% 72.4% 66.7% 

Ensemble boosted tress 46.8% 56.4% 50% 

Logistic regression 71.9% 76.6% 88.9% 

KNN 66% 72% 77.8% 

SVM 86.2% 76.2% 100% 
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Figure 4.8. Feature vs Testing accuracy plot for No load conditions 

Figure 4.8 shows the Feature vs Testing accuracy plot for No load condition, it depicts that SVM 

can achieve 100% accuracy in the scenarios explored only when considering twelve number of 

features as ranked using a one-way ANOVA. It does not perform at the stated 100% accuracy, 

100% of the time and other classifiers do outperform the SVM. Logistic regression outperforms 

SVM in some selected feature combinations. Ensemble boosted trees plot shows that there is not 

much effect on classification accuracy with number of feature addition. Naive bayes algorithm 

also gave result in the range of 60-70%. 

4.3.3.2 Case 2: With Load Condition (13.4 N) 

In case 2, the shaft is loaded with 13.4N of load at its centre. The readings are recorded for three 

different shaft frequencies. Total 20 features (refer Table 4.1) are used to train the algorithms based 

on their sensitivity towards fault classification, 4 features from radial direction vibrational data, 4 

from axial direction and 12 features are selected from acoustic data, which are contributing towards 

fault classification. The same method of feature selection is followed for both cases. Figures 4.9, 

4.10 and 4.11 indicate the fault classification result of Naïve Bayes, ensemble boosted trees and 

logistic regression. The accuracy achieved is 61.1%, 50% and 94.4% respectively. Naive bayes 

algorithm classified angular fault correctly but 5 of the parallel faults were misclassified as angular, 



Machine learning techniques for misalignment fault classification 

 

Page | 69  
 

so positive prediction value is 58% in case of parallel and only 2 of angular faults are misclassified 

as parallel so its positive prediction value is 67%. In case of ensemble boosted trees, the algorithm 

failed to segregate between angular and parallel faults. It grouped all faults into angular case. so, 

the accuracy is 50% and false discovery rate is also 50%. In case of logistic regression, only one 

misclassification noted. all angular faults are correctly classified but one of the parallel faults is 

classified as angular. The accuracy achieved using KNN is 83.3%.  

Figure 4.12 shows result for fault classification using KNN. It is observed that one angular and 2 

parallel faults are incorrectly classified. so, the positive prediction value in case of angular is 80% 

and in case of parallel it is 88%.  Figure 4.13 indicates the result of SVM, the accuracy obtained 

is 100%. All green entries indicates that each of the faults grouped into accurate class and this 

algorithm performed excellently compared to other.  

 

 

Figure 4.9. Result of Naive Bays (a) confusion matrix (b) positive predictive value & false 

discovery rate plot 
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Figure 4.10. Result of Ensemble boosted trees (a) confusion matrix (b) positive predictive value 

& false discovery rate plot. 

 

Figure 4.11. Result of Logistic regression (a) confusion matrix (b) positive predictive value & 

false discovery rate plot. 
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Figure 4.12. Result of KNN (a) confusion matrix (b) positive predictive value & false discovery 

rate plot  

 

 Figure 4.13. Result of SVM (a) confusion matrix (b) positive predictive value & false discovery 

rate plot  
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Umbrajkaar et al. [23] carried out misalignment fault classification by employing vibration data 

alone. They used machine learning algorithms like SVM and ANN for segregation of faults. They 

extracted features from time-frequency domain and features ranking was done by using ReliefF 

algorithm.  The accuracy of fault classification using ANN was 94.17% and using SVM was 

97.72%. The proposed method outperforms the results obtained employing SVM, ANN by using 

vibration data alone. It is also found that generally the diagnosis of misalignment is carried out 

through vibration measurements. Especially, the presence of a strong 2x peak is usually accepted. 

But both angular and parallel misalignment fault shows the peak at 2x, so, it will be difficult to 

identify the correct form of misalignment. Apart from this, there are some other rotor-bearing 

faults, which lead to major 2x vibrations. Therefore, distinguishing misalignment by using 

vibration signals alone is a difficult activity [15, 24]. The proposed method of sensor data fusion 

of vibro-acoustic type outperforms the fault classification using only vibrational data. From the 

results obtained above, it is confirmed that the sensor fusion enhances the accuracy of fault 

classification.  

To check the efficacy of the proposed method, it is compared with fault classification using 

vibrational data and acoustic data separately for the same dataset. The results obtained using sensor 

data fusion are superior to the fault classification using individual sensor data. A below table shows 

the comparison among these methods with accuracy of fault classification. 

Table 4.3 Summary Table for Case II 
Machine Learning 

algorithm 

Vibration data Acoustic data Vibro-acoustic data 

(Sensor fused data) 

Naive Bayes 88.9% 66.7% 61.1% 

Ensemble boosted tress 50% 50% 50% 

Logistic regression 61.1% 55.6% 94.4% 

KNN 50% 50% 83.3% 

SVM 88.9% 72.2% 100% 

 

Figure 4.14 shows the accuracy per feature addition in order of ANOVA's ranking for case 2. It is 

found that SVM results are most consistent among all algorithms.  From Figure 4.14, it is observed 

that in some cases for some selected features logistic regression outperform SVM. SVM does not 

perform at the stated 100% accuracy, 100% of the time. 500+ repetitions are common in machine 

learning; it is likely the other ML Algorithms explored had lower performance due to limited data 

samples. SVM performed excellently with few data samples.  The accuracy of other algorithms is 

less compared to SVM. 
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Figure 4.14. Feature Vs Testing accuracy plot for case II 

In KNN, During the learning phase, the algorithm does not learn anything, the training data is not 

used to construct any discriminative features. So, it is sensitive to the scale of the data and 

irrelevant features. Ensemble boosted tree is prone to overfitting the data. There was no significant 

improvement in it, the classification accuracy was almost unaltered. While in case of Naive bayes 

the features offered are self-contained and have no effect on one another, which is not the case in 

reality. The features are dependent on the presence or quantity of another, which the Naive Bayes 

classifier simply ignores. The assumption of linearity between the dependent and independent 

variables is a key flaw in Logistic Regression. 

Figure 4.15 is a scatter plot, shows the prediction accuracy of SVM, kurtosis from acoustic signal 

is used to plot the graph. The saffron colour dot indicates it is grouped into parallel fault and blue 

dot indicates the angular fault. The misclassification indicated by crossed sign. From figure 4.15 

it is observed that, all faults are grouped accurately in to parallel and angular classes. It depicts 

that SVM gives 100% accurate results. It indicates the parabolic plot for SVM, and all faults are 

grouped into respective class.  
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Figure 4.15. Predictions model for SVM 

 

4.3.3.3 Case 3: With Load Condition (6.7N) 

Figure 4.16 shows confusion matrix result for case 3 with the load of 6.7N with same speed 

and defect severity conditions used in case 1 and case 2. The classification accuracy for this 

loading condition is given in Table 4.4. It is found that results are consistent with previous case 

results and SVM gave 100% accurate results with the fifteen features out of total thirty-seven 

features. Logistic regression also able to segregate the fault with 94.4% accuracy while 

ensemble boosted trees performed poor for binary fault classification. Ensemble boosted trees 

algorithm failed to identify parallel type fault (refer figure 4.16).  
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Figure 4.16. Confusion matrix result with a load of 6.7N for a) Naive Bayes b) Ensemble 

boosted trees c) Logistic regression d) KNN e) SVM 

 

Table 4.4 Result Summary with a load of 6.7N 
 

Machine Learning 

algorithm 

Vibration data Acoustic data Vibro-acoustic 

data 

(Sensor fused 

data) 

Naive Bayes 71.4% 66% 66.7 

Ensemble boosted 

tress 

50% 46.4% 44.4 

Logistic regression 88.9% 74.6% 94.4 

KNN 76.4% 72% 89.4 

SVM 89.4% 74.2% 100% 

 

4.4 Parallel, Angular, and Combined Misalignment Fault Classification 

This is the first attempt to use vibro-acoustic sensor data fusion to segregate all 3 modes of 

misalignment fault under different operating conditions. 27 tests are performed, 9 tests for each 

failure mode. One of the innovative aspects of this experimental investigation is the use of the 

acoustic sensor in the parallel and combined misalignment classification. This study attempts 

to establish an even higher accuracy than the 98% percent accuracy reported by considering 
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combined misaligned case as well. Figure 3.1 shows the experimental set up used to perform 

the experiments. Initial alignment is done by using reverse dial indicator to remove previously 

existing misalignment if any. Figure 4.18 shows the reverse dial indicator. 

Three defect conditions (Parallel, angular, and combined misalignment) are considered at three 

levels of severity. Three different speed levels: 1020, 1860 and 2580 rpm at constant loading 

(13.4N) condition is considered for this study. The amount of misalignment considered during 

investigation is presented in Table 4.5, these values are decided based on literature review. 

 

 

 

 

Figure 4.17. Reverse Dial Indicator 

 

Table 4.5 Defects Dimension. 
Defect type Unit Levels 

-1 0 1 

Parallel mm 0.3 0.5 0.7 

Angular degree 0.1 0.2 0.3 

Combined  0.3 mm and 0.1 degree 0.5 mm and 0.2 degree 0.7 mm and 0.3 degree 

 

4.4.1 Data Acquisition and Signal Processing 

The eight channels multi-analyser (OROS-OR35, NVGATE software) is used to filter and 

analyse the recorded vibration and acoustic signals from MFS. While data was being collected 

from each signal, the sampling rate was 25.6KHz, and the sample durations were synchronized 

between the vibration and acoustic sensors. The signal acquisition is done for 10 seconds, and 

the acquired signals are passed through the analyser’s built-in anti-aliasing filter. Time domain 

features namely skewness, crest factor, impulse factor, mean, clearance factor, shape factor, 

SINAD (signal to noise and distortion ratio), kurtosis, SNR (signal to noise ratio), standard 

deviation, RMS (root mean square), peak value, THD (Total harmonic distortion) are extracted 

from vibrational signal in X (radial), Z (axial) directions and acoustic signal data using matlab. 
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From vibrational and acoustic data, a total of 39-time domain features is extracted. After 

extraction of the features, feature level fusion is carried out and ranking of the features is 

performed using t test, 26 features out of 39 features are used based on their importance. Not 

all the features were sensitive towards the fault classification; hence manually varied the 

number of features and its effect on fault classification is observed. It is found that only 26 

features were sensitive towards fault classification. It is also observed that addition of more 

features, resulted into decrease in fault classification accuracy. Table 4.6 shows the feature 

ranking using t test. In Table 4.6, Vib represents vibrational data and Aco represents acoustic 

data.  

Table 4.6. Feature Ranking 

Ranking Features t test 

score 

One–way 

ANOVA 

 Ranking Features t test score 

One–way 

ANOVA 

1 
X_Vib/Data_THD 4.5046 

21 X_ 

Vib/Data_ImpulseFactor 
0.3261 

2 Z_ Vib 

/Data_ClearanceFactor 
1.9230 

22 X_ Vib 

/Data_ClearanceFactor 
0.3222 

3 Z_ Vib 

/Data_ImpulseFactor 
1.8942 

23 
X_ Vib /Data_Mean 0.2937 

4 Z_Vib /Data_CrestFactor 1.8328 24 Aco_ Vib /Data_RMS 0.2422 

5 Aco_ Vib /Data_Skewness 1.2597 25 Aco_ Vib /Data_Std 0.2422 

6 
Z_ Vib /Data_Kurtosis 1.2322 

26 X_ Vib 

/Data_ShapeFactor 
0.2184 

7 Aco_ Vib 

/Data_CrestFactor 
1.2080 

27 
Z_ Vib /Data_PeakValue 0.1810 

8 Aco_ Vib 

/Data_ImpulseFactor 
1.1108 

28 
X_ Vib /Data_SINAD 0.1491 

9 Aco_ Vib 

/Data_ClearanceFactor 
1.0632 

29 
X_ Vib /Data_SNR 0.1485 

10 Z_ Vib /Data_Mean 1.0230 30 Z_ Vib /Data_SNR 0.1171 

11 Z_ Vib /Data_ShapeFactor 1.0108 31 Z_ Vib /Data_SINAD 0.1126 

12 X_ Vib /Data_Skewness 0.7895 32 X_ Vib /Data_Kurtosis 0.0619 

13 Aco_ Vib /Data_SINAD 0.6792 33 Z_Vib /Data_RMS 0.0568 

14 Aco_ Vib 

/Data_ShapeFactor 
0.6636 

34 
Z_ Vib /Data_Std 0.0568 

15 
Aco_ Vib /Data_SNR 0.6580 

35 Aco_ Vib 

/Data_PeakValue 
0.0331 

16 Aco_Vib /Data_Kurtosis 0.5996 36 Z_ Vib /Data_Skewness 0.0152 

17 Aco_ Vib /Data_THD 0.4150 37 X_ Vib /Data_Std 0.0031 

18 Z_ Vib/Data_THD 0.4036 38 X_ Vib /Data_RMS 0.0031 

19 Aco_ Vib /Data_Mean 0.3365 39 X_ Vib /Data_PeakValue 0.0031 

20 X_ Vib /Data_CrestFactor 0.3343    

 

 

First 26 Features are selected from total 39 features to train algorithms. Out of 26 features, 

seven features are from x directional vibration data, seven from z directional data and twelve 

from acoustic sensor data are selected. It is observed that the features derived from Z directional 
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vibrational data rank higher than other features, because axial vibration plays an important role 

in the detection of misalignment faults. The selected features are imported into classification 

learner platform of matlab. In classification learner app, the cross-validation model was 

selected. The complete data was split into 5 folds. Initially 4 folds (F1, F2, F3 and F4) were 

employed for training (80% of data) and 1-fold (F5) was used for testing (20% of data). Then 

in next step it takes F1, F2, F3 and F5 for training and then uses F4 for testing. This way, it 

uses all data for training. The results presented are of test set which includes nine parallel, nine 

angular and nine combined fault cases. This method suits best for small number of datasets.  

4.4.2. Results and Discussion 

In this section fault classification results of KNN, SVM and ensemble subspace classifier are 

discussed. To verify the accuracy of each algorithm for proper fault classification, confusion 

matrix, receiver operating characteristic (ROC) curve and the model prediction graphs are 

plotted.  

Figure 4.18. shows the result of KNN. KNN classified the angular misalignment type perfectly, 

it is indicated in green colour but failed to classify the parallel and combined misalignment 

fault cases. Out of 9 combined fault cases, 8 classified accurately while 1 of the combined fault 

cases is classified as parallel, which is shown in pink colour in the column of parallel fault. 

This algorithm failed to identify parallel fault type, 3 of the 9 parallel faults misclassified as 

angular. 

In confusion matrix, we can plot some subplots like True Positive and False Negative 

Rates plot and Positive Predictive Values and False Discovery Rates plot. Figure 4.18 (b) 

indicates the True Positive and False Negative Rates plot for KNN. In the last two columns on 

the right display summaries per true class. KNN classified the angular misalignment type 

perfectly so true positive rate is 100% and false negative rate is zero. While in case of parallel, 

3 faults misclassified as angular, so true positive rate is 67% and false positive rate is 33%. In 

case of combined it is 89% true positive and 11% false negative.   

Figure 4.18 (c) indicates the positive predictive values and false discovery rates plot. Below 

the table, the matrix displays summary rows. Positive predictive values for properly predicted 

points in each class are given in green, and false discovery rates for erroneously predicted 

points in each class are indicated in pink below. It is observed that none of the fault is 

misclassified as combined so positive prediction value is 100% and false discovery rate is 0. 

While the algorithm failed to segregate between parallel and angular, so false discovery rates 

are associated with angular and parallel fault cases and are 25% and 14% respectively.  
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Figure 4.18 (d) indicates the ROC curve which indicates true positive vs. false positive rate 

plot. The marker (dot in saffron color) on the plot indicates the output of the classifier currently 

selected. A right angle to the top left of the plot is a perfect outcome with no misclassified 

points. The region under the curve is an indicator of the classifier's overall efficiency. Larger 

area under curve values suggests better performance of the classifier. Here angular is positive 

class and other (parallel and combined) faults are negative classes. With a false positive rate of 

0.17, the current classifier wrongly allocates 17% of observations to the positive class. A true 

positive rate of 1 show that the current classifier properly classifies 100% of the observations 

as positive. The accuracy of fault classification achieved using KNN is 85.2%. 

 

Figure 4.18. Result of KNN (a) Confusion matrix (b) True Positive Rates and False Negative 

Rates graph (c) Positive Predictive Values and False Discovery Rates graph (d) ROC curve. 

 

Figure 4.19. shows the result of SVM, the fault classification accuracy achieved using SVM is 

96.3%. SVM classified angular and parallel fault class accurately, only one of the combined 
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fault classes misclassified as angular. The algorithm was able to isolate the angular and parallel 

fault types. True positive rate for angular and parallel is 100%. None of class wrongly classified 

as combined or parallel so false discovery rate for combined and parallel is zero. Even though 

all angular faults classified accurately, the positive prediction value for angular is 90% and 

false discovery rate is 10%, because along with angular faults, one of the combined faults also 

identified as angular. The ROC plot shows the AUC is 1.0, it means, all angular faults are 

accurately categorized but there was false positive rate was 0.06 because of combined fault 

grouped into angular.  

 
Figure 4.19. Result of SVM (a) confusion matrix (b) True Positive Rates and False Negative 

Rates graph (c) Positive Predictive Values and False Discovery Rates graph (d) ROC curve. 

 

Figure 4.20. shows result for ensemble sub space discriminant algorithm. The correct fault 

classification accuracy is 100%. This algorithm classified the faults in parallel, angular, and 
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combined misalignment classes perfectly. In figure 4.20 (a) diagonal entries in green colour 

shows that each fault classified into accurate group. True positive rate (figure 4.20 b) is 100% 

for each case. False negative rate is zero. False discovery rate (figure 4.20 c) for predicted class 

is zero means none of the fault is misclassified, so positive prediction value is 100% for each 

class. The AUC is 100% and co-ordinates of predicted class is 0, 1. Which indicates that false 

positive rate is zero and predicted positive rate is 100% for each fault type.  

 

Figure 4.20. Result of Ensemble sub space discriminant (a) confusion matrix (b) True 

Positive Rates and False Negative Rates (c) Positive Predictive Values and False Discovery 

Rates graph (d) ROC curve. 

The efficacy of the proposed method can be verified by the result summery table (Table 4.7), 

it shows the fault classification comparison between the individual vibrational data, acoustic 

data, and feature level sensor data fusion technique. The results indicate that the proposed 

method outperforms fault classification using vibration signal and acoustic signal separately. 
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Figure 9 depicts the accuracy per feature addition in order of ANOVA ranking. Ensemble 

subspace discriminant algorithm results are found to be the most consistent among all. 

Table 4.7 Summary Table 

Machine Learning 

algorithm 

Vibration data Acoustic data Vibro-acoustic data 

(Sensor fused data) 

KNN 76.6% 72.4% 85.2% 

SVM 86.8% 78.4% 96.3% 

Ensemble subspace 

discriminant 

90.6% 80.4% 100% 

 

 
Figure 4.21. Feature Vs Testing accuracy plot 

 

There could be several reasons why the load factor has no discernible impact on the accuracy 

of the SVM when using fused data: 

➢ Insensitivity to Load Variations: The fault patterns or characteristics being analyzed 

through the fused data may be relatively insensitive to changes in the load factor.  

➢ Feature Independence: The selected features for fault classification from the fused 

data may be inherently independent of the load factor. These features might capture 

fault-specific information that remains consistent across different load conditions.  

➢ Robust Fusion Technique: The data fusion technique employed in this study may 

be robust in handling load variations and extracting fault-related information. The 

fusion process could effectively combine vibration and acoustic data, emphasizing 

fault-specific features while mitigating the impact of load-induced variations. 
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4.5. Conclusion  

This study employs vibro-acoustic sensor data fusion method to detect various forms of 

misalignment under different operating conditions. Different load, speed and fault severity 

conditions are considered for the investigation, which may reproduce the actual conditions 

under which this fault occurs. The following conclusions can be drawn from the present 

investigation. 

The following conclusions can be drawn from the binary fault classification. 

• Results showed that fault classification accuracy is improved with sensor fusion 

technique compared to individual sensor data. The SVM outperforms the other 

algorithms towards the binary misalignment fault classification.  

• As the study aims to check the performance of different algorithms with limited dataset, 

it is found that SVM gave accurate results. The results obtained from logistic regression 

and KNN for binary fault classification were 94.4% and 83.3% respectively. The other 

algorithm performance might have been affected by the dataset limitation, generally all 

ML algorithms uses 500+ repetitions.  

• The accuracy obtained using SVM is 100%, the obtained results are better than the fault 

classification accuracy obtained by Umbrajkaar et al. They reported classification 

accuracy using SVM (97.72%) by employing the vibration data alone. So, the proposed 

method, vibro-acoustic sensor data fusion works best for misalignment fault 

classification.  

• The addition of case 3 with load of 6.7N, supports the conclusion drawn and strongly 

encourages the application of the stated method in practical use scenario. 

• The proposed methodology of fault classification works effectively for varying loading 

conditions. 

• The results also proved the significance of acoustic signal data in misalignment fault 

classification. So, the acoustic sensor, which is non-contact type, can be used in the 

place where installing accelerometer is difficult.   

• It is also observed that the axial vibrations which are generally ignored in bearing 

analysis play a remarkable role in misalignment fault classification. This outcome is 

well associated with the well-established conclusion about the role of axial vibration in 

the detection of misalignment faults.  
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• The application of acoustic signal in angular fault detection has been reported but the 

use of acoustic sensor in parallel misalignment classification is also one of the novel 

features of our experimental investigation. 

A significant amount of work related to misalignment fault diagnosis has been reported till 

now; but limited research is reported on the parallel, angular, and combined fault classification 

in case of misalignment. From the present study, the following conclusions can be drawn. 

• Ensemble sub space discriminant algorithm gives 100% accurate results when all three 

forms of misalignment are considered.    

• One of the objectives of this work is comparing the performance of various algorithms 

with a limited dataset, it is observed that ensemble subspace discriminant produced the 

most accurate results when compared to the other algorithms presented in the article. 

KNN and SVM yielded results of 85.2 percent and 96.3 percent, respectively. 

• It is observed from feature ranking table; axial vibration plays an vital role in 

misalignment fault classification.  

• The 26 features are selected to train the different algorithms, out of 26, 12 features are 

from acoustic signal, which forms 46.15% of features used. This indicates that acoustic 

signal played a important role for fault classification. The results proved the 

significance of acoustic signal data in misalignment fault classification. So, the acoustic 

sensor, which is non-contact type, can be used in the places where installing 

accelerometer is difficult.  

• The application of acoustic signal in angular fault detection has been reported [20] but 

the use of acoustic sensor in parallel and combined misalignment classification is also 

one of the novel features of our experimental investigation. 
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Chapter 5 

RUL PREDICTION OF TAPER ROLLER BEARING UNDER 

INDUSTRIAL SETTINGS

 

5.1 Introduction 

The requirements for system stability, efficacy, and security have been continuously growing 

in recent years as various systems continue to evolve in terms of complexity and integration. 

The identification of current health status according to the characteristics offered by monitoring 

big data is of major significance for the implementation of system health management in view 

of industrial big data trends. It is essential to efficiently monitor and assess a system's health 

condition and accurately anticipate its Remaining Useful Life (RUL) based on the monitoring 

data to reduce the probability of system failures and lower the cost of operation and 

maintenance.  

A single sensor was used in most earlier investigations on system RUL prediction. However, 

in actual system operation, relying on a single sensor output is frequently insufficient to fully 

describe the system's probable degradation mechanism. Numerous stochastic elements, such 

as the system's complicated structure and the dynamic operating environment, contribute to the 

accuracy and unreliability of RUL prediction results[1]. It is frequently required to 

simultaneously monitor the system using several sensors to thoroughly evaluate the health state 

of the system and precisely anticipate its RUL[2]. From the perspective of fusion content, RUL 

prediction approaches based on multi-sensor information fusion are essentially divided into 

three categories: data fusion [3], decision fusion[4], and model fusion [5]. Multiple signals are 

combined using techniques that apply a data fusion approach to define the system's deteriorated 

properties for RUL predictions [6]. To assess the degradation performance of an engine, Ren 

first combined data from numerous sensors into a composite health indicator. Ren then used a 

linear Wiener process to simulate the degradation of the composite health indicator and 

estimated the lifetime of the engine[7]. However, it should be mentioned that the effectiveness 

of data-level fusion is highly related to the quality of the raw data [8], [9]. Multiple degraded 

data are used in decision fusion approaches to run RUL prediction modelling separately. 

Additionally, they use evidence reasoning and rule-based fusion methods to arrive at the final 

RUL[10]. They combined the translated data with the field data using the evidence reasoning 

algorithm, producing extremely reliable result. It should be noticed that the designed decision 

function impacts how well decision-level fusion performs [11] and that there is no exact 
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correlation between monitoring data and probable health states [12]. A multidimensional 

stochastic process degradation model or a Copula function stochastic correlation model is 

constructed using the model fusion approach using data from several sensors to forecast RUL 

[12]. Peng et al. [13] proposed a multivariate Wiener process to forecast the RUL of a multi-

sensor fusion. A binary degradation model was developed by Fang et al. [14] based on the 

Wiener process and the Copula function; in this model, the Wiener process was used to describe 

the edge distribution of each degraded data and the Copula function was used to explain the 

correlations between degraded data. For the linear Wiener process, Wei et al. [5] suggested a 

centralized multi-sensor life prediction fusion model. They claimed that the accuracy of the 

projected results of the fusion model was higher than that of the results of a single sensor. 

In the present chapter, the RUL estimation of a taper roller bearing is performed. The data is 

collected at NBC Bearing Jaipur, under actual industrial settings. The test setup allows 5 

milliradians of misalignment to accommodate shaft deflection under severe accelerated tests. 

All the test bearings developed natural failure, and the data collection was run to failure. A 

total of 3 bearings data is used for the analysis. Two new approaches have been proposed in 

this chapter as two case studies. In both cases, data fusion is carried out to train the discussed 

algorithms. In Case I, features are extracted using wavelet scattering of time series data and 

prediction is done by employing xgboost regression. The results are also compared with 

wavelet scattering-LSTM approach. While in case II, time domain features are extracted, HI is 

selected based on feature ranking and nonlinear autoregressive network with exogenous inputs 

neural network (NARX-NN) is used for prediction. 

5.2 Theoretical Background 

5.2.1 Wavelet Scattering Transform (WST) 

A popular technique for time-frequency analysis is the wavelet transform, which has the benefit 

of remaining stable and multi-scale in the presence of local deformation. It can efficiently 

extract local features from signals, but it is dynamic and is prone to leaving out important signal 

features. The wavelet scattering transform (WST), presented by Mallat [15], is a superior time-

frequency analysis method based on the wavelet transform. The process is just an iterative 

combination of a deep convolution network made up of low-pass filter averaging, a complex 

wavelet transforms, and modulus operation [16]. It overcomes the disadvantage of changing 

over time with the added benefits of translation invariance, local deformation stability, and rich 

feature information representation. For any given time-domain signal, x, the operation of WST 

can be described as follows: 
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1. At first, x is convolved with the dilated mother wavelet ψ, which has the center 

frequency of λ, to calculate the WST. This operation can be expressed as x ∗ ψλ. Here, 

the average of the convolved signal, which oscillates at a scale of 2j, is zero. 

2. After that, a nonlinear operator, such as a modulus, is applied to the convolved signal 

to eliminate these oscillations (i.e., |x ∗ ψλ|). This procedure is used to make up for the 

information lost due to down sampling by doubling the frequency of the given signal. 

3. Finally, a low-pass filter ϕ is applied to the resultant absolute convolved signal, which 

is equivalent to |x ∗ ψλ| ∗ ϕ. 

Therefore, for any scale (1 ≤ j ≤ J), the first-order scattering coefficients are calculated as the 

average absolute amplitudes of wavelet coefficients over a half-overlapping time window 

having the size 2j. This can be written as (5.1) 

                                                        𝑆1𝑥(𝑡, 𝜆1) =  |X ∗  𝜓𝜆1|  ∗  ϕ                                    (5.1) 

The invariance ability will undoubtedly decrease when the high-frequency components are 

restored as a result of the aforementioned approach. By repeating the discussed steps on               

|x ∗ ψλ|, the scattering coefficients for the second order can be calculated as (5.2) 

                                  𝑆1𝑥(𝑡, 𝜆1, 𝜆1,) =  ||X ∗  𝜓𝜆1|  ∗  𝜓𝜆2|  ∗  ϕ                                        (5.2) 

The wavelet scattering coefficients for higher orders, where m ≥ 2, can be computed by 

iterating the mentioned process. This can be expressed as (5.3): 

                      𝑆1𝑥(𝑡, 𝜆1, 𝜆2,…𝜆𝑚) =  ||| X ∗  𝜓𝜆1| ∗  𝜓𝜆2| … 𝜓𝜆𝑚|  ∗  ϕ                               (5.3) 

The resultant scattering coefficients can be found by accumulating all of the coefficient sets of 

the scattering transform generated from the 0th to mth order, as shown in (5.4) 

                                               𝑆𝑥 =  {𝑆0𝑥, 𝑆1𝑥, … . 𝑆𝑚𝑥}                                                        (5.4) 

The basic steps of computing the wavelet scattering coefficients up to level 2 are illustrated in 

Figure 5.1. Here, the final feature matrix will be found by accumulating all the features from 

levels S0X, S1X, and S2X. 
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Figure 5.1 The schematic diagram of the feature extraction procedure with the second-order 

WST. 

The zero-order scattering coefficients, denoted by the symbol SOX, assess the local translation 

invariance of the input signal. Each stage's averaging operation results in the loss of the high-

frequency components of the convolved signal, while the subsequent stage's convolution with 

the wavelet allows for their recovery. The WST approach is stable due to time warp 

deformation, energy conversion, and contraction, making it suitable for various classification 

and regression tasks and robust in noisy environments.  

As a result of implementing the low-pass filter, ϕ, the network is invariant to translations up to 

a certain invariance scale. The resultant features from Sx inherit properties of wavelet 

transforms, which makes them stable against local deformations. This also allows the scattering 

decomposition to detect subtle changes in bearing signals’ amplitudes under different 

conditions and makes the regression task easier. Therefore, the wavelet scattering network can 

be used as an effective way to create robust representations of different bearing conditions that 

minimize the differences under the same condition and maintain enough discriminability to 

distinguish among different bearing conditions and its predictions. Wavelet scattering networks 

and CNNs have a similar structural design, but there are two key differences: the filters are 

predetermined rather than learnt, and the features are not just the results of the final convolution 

layer but also the sum of all the layers. According to earlier studies, the first two levels of the 

scattering coefficient contain nearly 99% of the energy, with the energy rapidly decreasing as 

the layer levels increase. 
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5.2.2 Theory of NARX network 

NARX neural network is another class of ANNs which are suitable to model nonlinear systems 

and time series[17]. The NARX network is a dynamic neural network that contains recurrent 

feedbacks to the input layer from a number of network layers[18]. Equation 5.5 can be used to 

represent NARX mathematically. 

                   𝑦(𝑛 + 1) =   𝑓[𝑦(𝑛), … 𝑦(𝑛 − 𝑑𝑦); 𝑢(𝑛), … 𝑢(𝑛 − 𝑑𝑢)]                                 (5.5) 

where y(n), u(n) € R are the input and output of the model at discrete time step n respectively, 

and 𝑑𝑢 ≤ 1 is the input and 𝑑𝑦 ≤ 1,  𝑑𝑦 ≤  𝑑𝑢 is the output delay[19]. With one time series 

operating as both the input and the output for the NARX architecture depicted in Figure 5.2, 

the general NARX network equation is represented below (5.6). 

𝑦(𝑛 + 1) = 𝑓0[𝑏0 + ∑ 𝑊ℎ𝑜. 𝑓ℎ (𝑏ℎ + ∑ 𝑊𝑖ℎ. 𝑢(𝑛 − 𝑖) +  ∑ 𝑊𝑗ℎ. 𝑦(𝑛 − 𝑗) 
𝑑𝑦
𝑗=0  𝑑𝑢

𝑖=0 )𝑁ℎ
ℎ=1 ]      (5.6) 

 

Figure 5.2 The architecture of NARX neural network[19]. 

W is the weight of the connections between the input units and the hidden units. NARX network 

can be used in multi-time series input and multi-time series output applications. NARX 

network is trained by Levenberg–Marquardt method. A NARX network's usual structure is 

made up of feedback connections from the output neuron. The NARX network is a feedforward 
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time delay neural network (TDNN) without delayed feedback loops when used for a univariate 

time-series prediction. In this case, the output memory order of the NARX neural network is 

reduced to zero. 

5.3 Experimental Set up 

Figure 5.3 indicates the experimental setup used in the investigation. Figure 5.4 shows the 

mounting of sensor on bearing housing. The test setup used is from NBC bearing testing 

premises, Jaipur. The taper roller bearing (model: 30205, NBC make) is used for the testing. 

From bearing model nomenclature, 3 indicates type of bearing i.e., taper, 02 is the diametric 

series which defines the thickness and 05*5 is the bore diameter. A tri-axial sensor is used to 

capture the vibrations. Figure 5.5 shows the schematic of the setup and loading condition for 

the test.  Fa is the axial force and Fr is the radial force. As seen in figure 5.5, 2 support bearings 

and 2 test bearings are used in the study. Support bearings are designated as S1 and S2, while 

test bearings are designated as #1 and #2. Support bearings are used because the test conditions 

are high load severe accelerated test. ISO VG68 oil is used for lubrication. The lubrication oil 

supply was 1 litre/min. 1.8 tons of radial load is applied on each bearing and 0.58-ton load is 

applied in axial direction from both sides as depicted in figure 5.5. The speed was set to 4000 

rpm. The oil temperature was recorded to be 70 degrees. The setup has 1 milli radians inherent 

misalignment to accommodate the deflection of shaft and to avoid unbalance issue.  

 

Figure 5.3 Experimental Setup. 
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Figure 5.4 Sensor Mounting and Bearing Housing. 

 

 
Figure 5.5 Set-up. 
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Figure 5.6 Test bearing: Taper roller bearing (NBC make). 

Table 5.1 Specifications of the Test Bearing 

Sr.no. Parameter Specification 

1 Type of product Taper Roller Bearing 

2 Inside diameter (d) (mm) 25 

3 Outside diameter (D) (mm) 52 

4 Width (mm) 16.25 

5 Bearing weight (kg) 0.148 

6 Model no. 30205 (NBC Bearing) 

 

5.4 Proposed Methodology 

A framework for RUL prediction of taper roller bearing of NBC bearing, Jaipur with the 

vibrational signal is illustrated in Figure 5.7. The fault developed naturally in the bearing. The 

bearing data for three-axis is collected. The overall method is split into multiple phases, 

including data collection, processing of the vibrational signal data in time domain and 

frequency domain, and then resampling it, calculating the scattering coefficient using WST, 

training the ensemble ML classifiers (xgboost) and evaluating the model performance. The 

vibrations are captured and recorded using a tri-axial accelerometer and ONOSOKI data 

acquisition system. The data was captured from healthy to failure condition. With every regular 

interval of 10 mins, 1 second data was recorded with the sampling frequency of 20KHz. The 

vibrations are recorded in 2 radial and 1 axial direction. Taper roller bearing supports axial as 

well as radial forces. So, unlike ball bearing, we need axial vibrations captured as well. The 

captured signal is preprocessed, and then noise was removed using filters. The performance of 

the xgboost algorithm is tested using R2 error. 
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Figure 5.7 Flowchart of the proposed method for case I: wavelet scattering xgboost 

approach. 

 

Figure 5.8 Flowchart of the proposed method for case II time domain-based HI and NARX. 
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In proposed case II, the time domain and feature domain features are extracted. The extracted 

features are ranked based on their monotonicity and Trendability. The best feature is selected 

as designated as HI. The HI and age of bearing is given as input to the NARX neural network 

and bearing life percentage as output. The algorithm is trained on given input and output 

vectors. The algorithm performs iterations until it gets an optimal network with the best 

performance of performance indicator. Then training validation accuracy is checked and the 

best model is selected. If the error is high, then more hidden layers will be added and the 

algorithm continues iterations until it gets best model. Once the model is selected then it is 

tested on a test dataset and prediction is made. Finally, a comparison is made between proposed 

methods. The data used for the present study is collected in industry and in actual industrial 

settings.  

5.5 Results and Discussion 

5.5.1 Wavelet Scattering-xgboost Approach  

In the present investigation, data level fusion is carried out. The vibration signals in 2 radial 

and 1 axial direction are concatenated. 70% of the data is used for training and 30% of the data 

is used for testing. Signal processing is carried out and features in time domain and frequency 

domain are extracted. To increase the feature set, resampling of features is performed using 

windowing function. The window length is set as 10 for resampling. After features are 

resampled, wavelet scattering is performed. It is a knowledge-based method with a convolution 

neural network-like topology. It offers real-valued signal features with low variance, which are 

typically required for prediction applications. These signals maintain information at high 

frequencies and are resistant to signal deformation. To create low-variance representations of 

time series, wavelet scattering propagates data through several wavelet transforms, 

nonlinearities, and averaging. Without sacrificing class discriminability, wavelet time 

scattering produces signal representations insensitive to input signal shifts. Matlab 2020 

version is used for the analysis. All three bearings had an outer race defect.  

With a Q factor of [8 1], a two-layer scattering network (m = 2) is used. The 0th channel is the 

initial signal, while the subsequent channels produce the final scattering coefficients. The 

original signal is represented by the 0th channel, via which the wavelet scattering coefficients 

are obtained. In comparison to other scattering orders, the zeroth order wavelet scattering 

coefficients' modulus contains the majority of the signal energy and is the most accurate 

approximation of the original signal. Additionally, the amount of scattering has an impact on 

the signal's energy. Therefore, the energy of the high scattering coefficients will be smaller. It 
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is possible to think of a wavelet as a band-pass filter, and its dilated version as a dilated band 

filter. In contrast to the wavelet, which catches high-frequency components and greater signal 

details, the scaling function or low-pass filter only records the lower signal details. Therefore, 

at each level, the signal's finer features are retrieved. The difference between the raw receiver 

signal strength indicator (RSSI) of a single measurement at a reference points (RP) and its 

zeroth order scalogram is depicted in Figure 5.12. AP stands for access points. 

 

Figure 5.9 RSSI repartition. 

 

 

                      (a)                                                                        (b) 

Figure 5.10 Time series bearing data, (a) 0th and (b) 1st order scattering coefficients of the 

outer race faulty conditions. 

Figure 5.10 represents the 0th and 1st order scattering coefficients of an RSSI measurement. The 

result of the scattering transform is a vector of 10 elements. The entire scattering process begins 

with the input signal being convolved with a dilated wavelet as stated in Equation 5.1. The 

modulus of this wavelet is then convolved with the averaging function to produce the first 

scattering order. To generate the scattering coefficients modulus of first order, the modulus of 

this convolution result is computed, and the result is averaged using the low-pass filter. 
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The morlet wavelet is utilized for wavelet decomposition, and the invariance scale value is set 

to 0.5 s. Figure 5.11 displays the fundamental wavelet and the generated two-layer wavelet 

scattering network with Q1 = 8 and Q2 = 1. In terms of the invariance scale and wavelet octave 

resolution, this architecture preserved the most signal information for prediction when 

compared to other configurations. 

 

                      (a)                                                                        (b) 

Figure 5.11 (a) (b) Frequency response of the first and second filter banks with eight and one 

wavelets per octave respectively. 

 

                      (a)                                                                        (b) 

Figure 5.12 (a) Scattering coefficients scattergram for filter bank 1 (b) Scattering 

coefficients scattergram for filter bank 2. 

Figure 5.12 (a), (b) indicates scattering coefficients scattergram for filter bank 1 and filter bank 

2 respectively. It clearly depicts that the fault has occurred in the bearing. The input signal in 

the case of the scalogram coefficients and the lowpass filtering of the input signal using the 

scaling function in the case of the scattering coefficients, respectively, correspond to the zeroth 
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filter bank if filter bank is equal to 1. Figure 5.10 (b) shows the visualization of Equation 5.1 

and represents the first order scattering coefficients. Figure 5.11 shows the analysing frequency 

interval of wavelet scattering, which is 2–10000 Hz, the half of maximum sampling rate, 

obvious features are seen in the plot. 

These scattering coefficient matrix and age of bearing forms an input vector for the xgboost 

prediction and output vector is percentage of life, which is calculated in R2 error.  Finding a 

single health indicator that often varies monotonically over time to represent a bearing's health 

is typically challenging. Finding a failure threshold value for the indicator is quite difficult, 

even if we can discover such an indicator. However, it is true that the health of the bearing 

degrades over time, and we can assume that the genuine inherent health condition index rises 

monotonically over time without losing generality. We can try to find a measure that has a 

monotonic mapping connection with the genuine inherent health condition index since it is 

difficult to discern the true inherent health condition index based on the measurements of 

condition monitoring that have been obtained. Generally, the classical feature extraction 

techniques are sensitive to the noisy component of the signal and need more time for training. 

The present data is collected at actual industrial settings, where the number of machines 

surrounds and adds to the noise. For such challenging data, developing a single health indicator 

is difficult as the noise affects the performance of the health indicator. The proposed method 

gives very stable health indicator in time frequency domain. The R2 error on the test data for 

bearing 1-3 is shown in figure 5.13. There is a good fit between actual and predicted values. 

Here actual values are plotted from the industrial experimental data (run to failure data). The 

proposed wavelet scattering in combination with xgboost regression tracks the degradation of 

bearings correctly with an accuracy of 99.14, 98.48 and 99.44% respectively for B1-B3. When 

test set was combined (B1-B3) then accuracy with xgboost is reported as 97%. The proposed 

method is also compared with time domain features in combination with xgboost. The R2 error 

for time domain features-xgboost combination is found to be 0.78.  LSTM is also employed 

for prediction of RUL by using wavelet scattering features and R2 error reported is 0.98.   
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(a) 

 

(b) 

 

(c) 

Figure 5.13 Case I RUL prediction of NBC bearing (a) Bearing 1 (b) Bearing 2 (c) Bearing 

3. 
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5.5.2 Time Domain Feature Based HI-NARX Approach  

In the proposed case II, time domain and frequency domain features are extracted from the 

captured vibrational signal and features are ranked as per their importance on the basic of 

monotonicity and trendability. RMS is the top feature among all feature sets. Then RMS is set 

as HI for further analysis. HI along with the age of bearing is given as input to NARX network 

(shown in figure 5.14) for the prediction. A total of 3 nets are used for non-linear autoregressive 

neural networks. To estimate the future value of the life-percentage or RUL, NARX-NN uses 

the measurement results from previous inspection points as training data. The validation set is 

constructed using a data division approach. The best model is selected using an independent 

test set, which eliminates the chance of inaccuracies resulting from overfitting in the ANN. The 

training algorithm used for the NARX network is the well-known Levenberg–Marquardt (LM) 

algorithm. The network performance is assessed based on the mean square error (MSE). 

This analysis is completed entirely in the MATLAB [21] software environment. The NARX-

NN must first be trained before being put into use. The NARX-inputs NN's consist of the HI 

and age of the bearing, and its output is the life percentage of the bearing. The equipment's life 

% in relation to its lifetime is a good measure of the state of the bearings. The choice of output 

as the life percentage makes sense because a machine's health condition deteriorates with age. 

There is no need to establish a threshold for RUL assessment because the bearing will entirely 

fail when the life percentage hits 100%. Note that the network target will be set to T/100 if the 

life percentage of a bearing is T%[20]. The NARX-NN is trained using bearings B1–B3 and 

bearing B1 is used for testing in order to confirm the efficacy of the suggested strategy. The 

data is originally divided randomly into two sets of 70% each for training and validation, and 

30% for the test set. Table 1 shows the MSEs between the actual and predicted life percentages 

across the whole lifetime of the bearings. The actual life from experiments is reported as 5640, 

6810 and 4990 minutes for B1, B2 and B3 respectively.  

Table 5.2 MSEs Between the Actual and Predicted Life Percentages 

Details Case I Case II Case III 

Training bearings B1, B2, B3 B1, B2, B3 B1, B2, B3 

Testing bearings B1 B2 B3 

MSE  0.0182 0.0281 0.0217 

Test Bearing actual life 5640 minutes 6810 minutes 4990 minutes 
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If the hidden layer's hidden neurons are sufficient, two-layer (i.e., one-hidden-layer) feed-

forward neural networks can fit any input-output relationship. The term "hidden layer" refers 

to layers that are not output layers. Here a single hidden layer with ten neurons has been used. 

More neurons and possibly more layers are often needed to solve more challenging issues. 

Because the network hasn't yet been set up to match our input and goal data, the input and 

output both have sizes of 0(refer figure 5.14 a). When the network is taught, this value will 

change to 1 (figure 5.14 b, c).  

 

(a)                                                        (b)                                                     (c) 

Figure 5.14 NARX net view  

Figure 5.15 indicates the training summary; data division is performed randomly. As long as 

the network keeps getting better on the validation set, training continues. The test set offers a 

wholly impartial evaluation of network accuracy. The neural network is being trained, and the 

training algorithms are displayed by the neural network training tool. The criteria that ended 

training will be marked in green, and it also shows the training condition while training. A total 

of 6 validation checks are used. The gradient value decreases, initially it was 5.68e+06 then 

after 258 epochs it reached to 1e-07. This shows how the loss function is reduced over the 

training epochs. Performance value is the RMSE value, at beginning it is reported as 3.08e+06 
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then it approaches to zero. Levenberg-marquardt algorithm is used for training. Training state 

information is given in figure 5.16. We can see that gradient value is decreasing as the number 

of epochs are increasing. Val fail is close to 0.  

 

Figure 5.15 Training summery  

 

Figure 5.16 Training state information  
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The training set, the validation set, and the test set are the three categories into which the feature 

vectors are split throughout the training phase. When network adaptation stops getting better, 

the training is stopped using the validation data and the weights and biases are adjusted. The 

training process is unaffected by the test data, which is used to measure network performance 

impartially. Both the MSE for the training set and the validation set decrease in the early stages 

of the training process, but after a certain point, the MSE for the validation set begins to rise. 

This suggests that training should end since the network has begun to overfit the training data. 

Early stopping is the term used to describe this generalization process. The overfitting issue 

causes the network to perform well with the validation dataset but poorly with the test data set. 

The network that yields the lowest test MSE is, therefore, the best network in this study. 

Performance for every training, validation, and test set is displayed in figure 5.17. The network 

that performed the best on the validation set is the final network. 

 

Figure 5.17 Performance of the network.  
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Figure 5.18 NARX performance for vibrational data 

Figure 5.18 shows the optimal network's learning curves. For each of the training, validation, 

and independent test datasets. Figure 5.18 further shows that a higher value of regression i.e 

R=1 is reached. The actual network outputs are presented in relation to the corresponding target 

values in the regression plot. The linear fit to this output-target relationship should nearly 

intersect the bottom-left and top-right corners of the plot if the network has successfully learned 

to fit the data. If this is not the case, it would be advisable to continue training or to train a 

network with more hidden neurons.  

A precise calculation of RUL throughout the end phases becomes increasingly important to 

prevent the unexpected failure of bearings because it is obvious that damage during the later 

stages of bearing life accumulates at a much faster pace than it does during the early ones. It 

can be observed from Figure 5.19 that the predicted RUL and the actual RUL has the best 
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agreement. The predicted RUL does, however, become very closer to the actual RUL as the 

bearing ages, improving prediction accuracy. An underestimated RUL value enables sufficient 

time to carry out the necessary maintenance procedures by giving an early warning of the 

bearing failure. 

 

Figure 5.19 RUL prediction result  

 

Figure 5.20 Error histogram  
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Another measure of how well the neural network has fit data is the error histogram. Figure 5.20 

shows how the error sizes are distributed. Typically, most errors are near zero, this indicates 

the data fit is good.  

 

Figure 5.21 Combined performance plot for training, validation, and testing set 

 

Figure 5.22 Autocorrelation error plot 
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combined performance plot for training, validation, and testing set is shown in figure 5.21. The 

NARX has performded excellently with all training, validation and testing sets. From figure 

5.22, it is seen that the autocorrelation of error is close to zero. This depicts the algorithm has 

performed well with the data. Testing results for bearing 2 and bearing 3 is given in figure 5.23. 

It is observed that NARX has performed well with bearing 2 and bearing 3 as well with the 

MSE of 0.0281 and 0.0217 respectively.  

 

Figure 5.23 (a, b) Validation and testing results for bearing 2 (c, d) validation and testing 

results for bearing 3. 

5.6 Conclusion 

The following conclusions can be drawn from the present investigation. 

1. The experimental outcomes indicate that the predictions achieved by the proposed 

methods become accurate in all stages of bearing life. 
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2. The data used in the present investigation is own, generated in the NBC bearing Jaipur, 

India in actual industrial settings.  

3. The experimental results demonstrate that WST-based features, when used with 

xgboost regression, achieve 99.14% prediction accuracy. 

4. The efficiency and the accuracy of the proposed HI-NARX model with a group of 

bearings working under high load and speed combinations is better than WST-xgboost 

regression results. The reported RMSE is 0.0182 with R=1. 

5. In the present study inherent misalignment of 1 milli radians is considered for the RUL 

prediction under accelerated testing conditions.  

6. It is challenging to develop a single health indicator and set up the threshold value for 

industrial data. For which again testing against noise is tedious. So, the suggested 

approach is more reliable as the data acquisition is carried out in actual industrial 

settings under noisy environment.  

7. Resampling of features using windowing helps to improve the results. 
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Chapter 6 

OVERALL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

6.1 Overall Conclusions 

The overall thesis conclusion is presented as a methodology for fault diagnosis of a misaligned 

rotor system and prediction of the remaining useful life of rolling element bearing.  The scheme 

is developed based on the work carried out in individual chapters of this thesis.  The fault-

diagnosis approach incorporates statistical analysis employing response surface methodology, 

classification of various misalignment defects using sensor fusion (Vibro-Acoustic), and 

evaluation of the remaining useful life of the taper roller bearing of the NBC bearing dataset.  

The following conclusions are drawn from individual chapters presented in the thesis. 

1. The conditions considered in the present investigation mimic the actual conditions 

under which such type of fault is generated. So, it helps to understand the important 

parameters for system vibrations in a misaligned rotor system. Response surface study 

showed that the change in load value does not affect vibration amplitude significantly 

in the case of horizontal and vertical directions, while significant variation in RMS 

value is observed in the axial direction in both parallel and angular misalignment. This 

observation can play a vital role in identifying misalignment when there are multiple 

faults simultaneously present in the system. Axial vibrations, which are often 

overlooked in bearing analysis, play a significant role in locating misalignment faults. 

This result is consistent with previous research on the function of axial vibration in 

the detection of misalignment defects. In the same experiment variation in load and 

its effect on RMS value in horizontal and vertical directions are also recorded but it 

is observed that there is no significant change in RMS value. These results 

differentiate the misalignment from other defects. 

2. Defect size variation has NO significant impact on the vibration response in horizontal 

and vertical directions; the change in RMS value is very small, while in the case of axial 

direction, a slight increase in RMS value with respect to defect severity is observed. It 

is observed that a significant increase in RMS value with an increase in speed in both 

types of misalignments. 

3. Results obtained using an acoustic sensor are well aligned with the RSM finding using 

vibrational data. So, an acoustic sensor which is a non-contact type can be effectively 

used at the places where installation of the accelerometer is not possible. 
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4. One of the objectives of this research work is to carry out misalignment fault 

classification using the limited dataset by comparing the performance of various 

algorithms. It is observed that the ensemble subspace discriminant algorithm gave 

100% accurate results when compared to the other algorithms presented in the article. 

KNN and SVM yielded results of 85.2% and 96.3%, respectively. Acoustic signal 

features played an important role in fault classification. The results proved the 

significance of acoustic signal data in misalignment fault classification.  

5. From the present analysis it is found that vibroacoustic sensor data fusion is one of the 

promising techniques for developing a suitable diagnosis scheme and correct 

identification of misalignment fault type. The results were compared with vibration 

analysis and acoustic analysis separately. The vibroacoustic sensor data fusion 

overperformed the vibration analysis and acoustic analysis which gives an accuracy of 

89.4% and 74.2% respectively. 

6. The wavelet scattering-xgboost regression method and time domain features-based HI 

with NARX neural network as a predictor are proposed in this study for RUL prediction 

of taper roller bearing. The data used in the present investigation is own, generated in 

the NBC bearing Jaipur India under actual industrial settings.  

7. The experimental results demonstrate that wavelet scattering-based features when used 

with xgboost regression, have a prediction accuracy of 99.14%. The efficiency and the 

accuracy of another proposed approach of the time domain feature-based HI-NARX 

model are also better. The reported RMSE is 0.0182 with R=1. 

8. In the present study, inherent misalignment of 1 milli radians is considered for the 

RUL prediction under accelerated testing conditions.  

6.2 Novelty of Work 

• The application of acoustic signals in angular fault detection has been reported but the 

use of acoustic sensors in parallel and combined misalignment classification is one of 

the novel features of our experimental investigation. 

• This is one of the primary research reports on the RSM study of misaligned rotor 

systems using vibrational data and acoustic data. 

• This is the first attempt to carry out the investigation on remaining useful life estimation 

for rolling element bearing under actual industrial data.  

• Use of vibroacoustic feature level fusion for misalignment fault classification. 
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• Sensor data fusion for the prediction of remaining useful life prediction of taper roller 

bearings. The proposed methods give good results in RUL prediction. The data also 

includes the random noise, while capturing it in actual industrial settings.  

6.3 Future scope 

• To address the issue of reliable fault diagnosis of specific faults, the multiple sensor 

fusion approach should be improved with more sophisticated machine learning, deep 

learning algorithms, and signal processing techniques. There must be sufficient testing 

with various types of sensors (vibration, acoustic, temperature, motor current signature 

analysis) in this area. This enables researchers to comprehend a sensor's prediction 

ability and select the best sensor for a given diagnosis. 

• Misalignment fault quantification needs to be performed. The present study can be able 

to segregate different types of misalignment faults but cannot quantify the amount of 

misalignment present in the system.  

• No attempt has been reported on the single rotor system with multiple misalignment 

faults at multiple locations. There is no literature found on the modeling and 

experimental work of such a system. Model-based analysis has enormous potential for 

fault presence detection and accurate measurement of faults in the system. However, it 

is time-consuming and complex. The combination of a technique with others can help 

improve the diagnosis of faults. Therefore, a combined approach may better achieve 

the correct diagnosis and prognosis of rotor system faults. 

• Sensor data fusion needs to be explored for the prediction of the remaining useful life 

of bearings. It might help to develop a more reliable prediction scheme. More research 

needs to be performed on transfer learning techniques.  

• Digital twin-driven degradation assessment and RUL prediction of bearings. 

• Explainable AI (XAI) should be explored to understand the feature selection by deep 

neural networks.  
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Appendix 

Table 1. Statistical features in the time domain 

Sr. no. Time domain feature Equation 

1 Mean 

𝑋𝑚 =  
1

𝑁
∑ 𝑥𝑛

𝑁

𝑛=1

 

2 Standard deviation 

𝑋𝑠𝑑 = √
∑ (𝑋(𝑛) − 𝑋𝑚)2𝑁

𝑛=1

𝑁 − 1
 

3 Root Mean Square (RMS) 

𝑋𝑟𝑚𝑠 = √
∑ (𝑋(𝑛))2𝑁

𝑛=1

𝑁
 

4 Root amplitude 

𝑋𝑟𝑜𝑜𝑡 = (√
∑ √|𝑋(𝑛)|𝑁

𝑛=1

𝑁
)

2

 

5 Peak 𝑋𝑝𝑒𝑎𝑘 = max|𝑋(𝑛)| 

6 Skewness 
𝑋𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  

∑ (𝑋(𝑛) − 𝑋𝑚)3𝑁
𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
3  

7 Kurtosis 
𝑋𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  

∑ (𝑋(𝑛) − 𝑋𝑚)4𝑁
𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
4  

8 Crest factor 
𝑋𝑐𝑟𝑒𝑠𝑡 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
 

9 Clearance factor 
𝑋𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑜𝑜𝑡
 

10 Shape factor 
𝑋𝑠ℎ𝑎𝑝𝑒 =  

𝑋𝑟𝑚𝑠

1
𝑁

∑ |𝑋(𝑛)|𝑁
𝑛=1

 

11 Impulse factor 
𝑋𝑖𝑚𝑝𝑢𝑙𝑠𝑒 =  

𝑋𝑝𝑒𝑎𝑘

1
𝑁

∑ |𝑋(𝑛)|𝑁
𝑛=1

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Coefficients Estimate and Standard Error Matrix for Parallel Misalignment. 

Factor Coefficient Estimate Standard Error 

Horizontal 

Direction 

Vertical 

Direction 

Axial 

Direction 

Horizontal 

Direction 

Vertical 

Direction 

Axial 

Direction 

Intercept 2.49 0.5057 10.15 0.0102 0.0103 0.3658 

Speed (A) 0.6809 -0.2227 3.78 0.0047 0.0048 0.1693 

Load (B) -0.0863 -0.0033 0.8617 0.0047 0.0048 0.1693 

Defect (C) 0.0232 -0.0029 -0.1953 0.0047 0.0048 0.1693 

AB -0.0334 -0.0033 -0.2528 0.0058 0.0058 0.2074 

AC 0.0054 -0.0023 -0.1307 0.0058 0.0058 0.2074 

BC -0.0076 0.0004 0.0418 0.0058 0.0058 0.2074 

A² -0.2931 0.0730 0.2948 0.0082 0.0083 0.2933 

B² -0.0757 -0.0087 2.85 0.0082 0.0083 0.2933 

C² 0.0032 0.0047 -0.2696 0.0082 0.0083 0.2933 

 

 


