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Abstract

The study of graphs associated with algebraic structures is a well-studied research

area and has attracted considerable attention of various researchers. Indeed, re-

search in this direction aims to expose the relationship between algebra and graph

theory. This thesis aims to understand the connections between the algebraic

structures (rings or semigroups) and their associated graphs. The center of at-

tention of this thesis is to explore the cozero-divisor graphs, upper ideal-relation

graphs, left ideal-relation graphs of rings and intersection ideal graphs, inclusion

ideal graphs of semigroups.

The cozero-divisor graph �0(R) of the ring R has been studied extensively in

the literature. To contribute further on cozero-divisor graphs, this thesis provides

a closed-form formula to compute the Wiener index of the cozero-divisor graph of

an arbitrary commutative ring with unity. As an application, the Wiener index

of the cozero-divisor graph of various classes of rings, namely: reduced ring, ring

of integers modulo n, the product of the rings of integers modulo n, has been

determined. Moreover, the Laplacian spectrum, Laplacian spectral radius, ver-

tex connectivity and algebraic connectivity of the �0(Zn) have been investigated.

This thesis has introduced and studied the upper ideal-relation �U(R) of a ring

R. Moving forward, the topological graph-theoretic properties of �U(R) such as

planarity, outerplanarity, toroidality, bitoroidality and projective planar etc., have

also been explored. All non-local commutative rings are determined precisely such

v



vi Abstract

that �U(R) has genus (and crosscap) at most two. Algebraic properties of the

rings R have been investigated if the graph �U(R) is perfect, bipartite, Eulerian,

complete, and vice-versa. Other than the forbidden graph classes of �U(R), this

thesis also established various graph-theoretic properties, namely: the metric di-

mension, the strong metric dimension, vertex connectivity, Hamiltonicity, of the

upper ideal-relation graph of certain rings.

Other part of the thesis is devoted to the study of the intersection ideal graph

�(S) and the inclusion ideal graph In(S) of a semigroup S. After ascertaining

the connectedness of �(S) and In(S), the semigroups S, such that the diameter

of �(S) is two, have been characterized in terms of their ideals. It is ascertained

that if S is a completely simple semigroup, then �(S) is weakly perfect. For an

arbitrary semigroup S, an upper bound of the chromatic number of �(S) has

been obtained. Further, various graph invariants of In(S) including perfectness,

planarity, girth etc. are discussed. Moreover, a necessary and su�cient condition

on a semigroup S with nminimal left ideals such that the clique number of In(S) is

n, is determined. For a completely simple semigroup S with n minimal left ideals,

this thesis reveals graph-theoretic invariants including the independence number,

matching number and the Wiener index of In(S). The information on ideals of

S such that its associated graph In(S) is bipartite, triangulated, edge-transitive,

retract of a Cayley graph etc., has been exposed.

Additionally, all the automorphisms of these graphs (except cozero-divisor

graph) associated to certain class of rings and semigroups have been investigated.
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Introduction

Algebraic graph theory is a branch of mathematics which provides connections

between algebra and graph theory. Other sub-branch of algebraic graph theory

is the spectral graph theory which emphasizes on the study of spectra of matri-

ces (adjacency matrix or Laplacian matrix) associated with graphs. One of the

broad research problem in graph theory is the study of graphs associated with

algebraic structures. In past few decades, this problem has been investigated by

researchers in three aspects: (i) study of graph-theoretic invariants (ii) classifi-

cation of algebraic structures using its associated graph-theoretic invariants (iii)

interconnections between algebraic structures and their associated graphs.

The study of graphs associated with algebraic structures is a large research

area and has attracted considerable attention of various researchers. In this direc-

tion, widely studied graphs are Cayley graphs of groups and zero-divisor graphs

of rings. Initially, the Cayley graphs were introduced as a generic theoretical

tool to anaylze the symmetric interconnection networks. Moreover, the symme-

try of Cayley graphs of groups provide various applications (see Cooperman et al.

[1990]). Commuting graph of a group plays an important role to classify finite

simple groups (cf. Aschbacher [2000]). Besides this, Beck [1988] introduced the

notion of the zero-divisor graph associated with commutative ring. This graph

best illustrates the properties of the set of zero-divisors of a commutative ring.

Ganesan [1964] examines the structure of ring and demonstrates when it has a
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2 Introduction

finite number of zero-divisors. Anderson and Livingston [1999] discusses an al-

ternative proof of the theorem given by Ganesan [1964]. It was proved that the

ring R is finite or an integral domain if and only if the set of vertices of zero-

divisor graph is finite. The zero-divisor graph of a commutative ring is also used

as a input model in frequency assignment problem (cf. Radha and Rilwan [2021]).

Frequency assignment problem is mathematical optimization techniques used in

wireless communication. Moreover, random intersection graphs have several appli-

cations, including secure wireless communication, social networks, cryptanalysis,

circuit design, recommender systems, and clustering (cf. Zhao et al. [2015]). Mo-

tivated by certain applications of graphs associated with the algebraic structures,

numerous authors defined and studied various graphs related to algebraic objects.

To name a few: cozero-divisor graphs (Afkhami and Khashyarmanesh [2011]),

co-maximal graphs (Sharma and Bhatwadekar [1995]), ideal-relation graphs (Ma

and Wong [2016]), intersection graphs (Bosák [1964]) and inclusion ideal graph

(Akbari, Habibi, Majidinya and Manaviyat [2014]). This directs us to investigate

the interconnections between algebraic structures (rings and semigroups) and their

associated graphs. This thesis aims to study the cozero-divisor graphs, upper ideal-

relation graphs, left ideal-relation graphs associated to rings and the intersection

ideal graphs, inclusion ideal graphs of semigroups.

The notion of dual of zero-divisor graph is referred as the cozero-divisor graph

and it is introduced by Afkhami and Khashyarmanesh [2011]. They studied the

basic graph-theoretic properties including completeness, girth, clique number etc.

of the cozero-divisor graphs of rings and also discussed the relation between the

zero-divisor graph and the cozero-divisor graph. Afkhami and Khashyarmanesh

[2012] characterize all commutative non-local rings whose cozero-divisor graphs

are forest, star, double-star, or unicyclic. Moreover, the basic properties of the

complement of the cozero-divisor graph have been investigated. Afkhami and
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Khashyarmanesh [2013] studied the relation between the cozero-divisor graph and

the co-maximal graph of commutative rings. They have shown that if the vertex

set of the co-maximal graph is the set of all non-zero non-unit elements of the

ring R, then the co-maximal graph is a spanning subgraph of the cozero-divisor

graph of ring R. Akbari and Khojasteh [2013] studied the independence number,

domination number, and the maximum degree of the cozero-divisor graph and

classified the rings when these parameters are finite. The diameter of the cozero-

divisor graph of polynomial rings and rings of power series have been studied by

Akbari, Alizadeh and Khojasteh [2014]. They have characterized the commutative

ring whose cozero-divisor graph is forest. Further, Akbari and Khojasteh [2014]

generalized the result of Afkhami and Khashyarmanesh [2012] and classified all

commutative rings whose cozero-divisor graphs are unicyclic and obtained the

girth of the cozero-divisor graph of a ring R. Further, they characterized all

commutative rings whose cozero-divisor graph has maximum degree 3. Afkhami

[2014] extended the cozero-divisor graph to the non-commutative ring and studied

the cozero-divisor graph of matrix rings. Kavitha and Kala [2017] determined

all non-local finite commutative rings whose cozero-divisor graph has genus one.

Later, Paknejad and Erfanian [2017] characterized all Artinian rings with claw-

free or triangle-free cozero-divisor graphs. They also investigated all Artinian

rings whose cozero-divisor graphs are C4-free. Mallika and Kala [2017] classified

all finite non-local commutative rings whose cozero-divisor graph has crosscap

at most two. They also characterized all finite non-local commutative rings for

which the cozero-divisor graph has outerplanarity index two. Bakhtyiari et al.

[2020] studied the chromatic number and the clique number of the cozero-divisor

graph of commutative von Neumann regular ring. Moreover, they proved that

the cozero-divisor graph of von Neumann regular ring with finite clique number

is perfect. Barati and Afkhami [2020] provided the full characterization of the
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cozero-divisor graph concerning their planar and outerplanar indices. Recently,

Nikandish et al. [2021] have calculated the metric dimension and the strong metric

dimension of the cozero-divisor graphs of non-local commutative rings. Moreover,

they discussed the metric dimension of the cozero-divisor graph of an Artinian ring

whose maximal ideals are principal.

Ideals play a vital role in the development of algebraic structures (rings and

semigroups). Thus, it would be interesting to study graphs associated with the

ideals of algebraic structures. The graphs associated to ideals, viz. inclusion

ideal graphs (Akbari, Habibi, Majidinya and Manaviyat [2015]), intersection ideal

graphs (Chakrabarty et al. [2009]), ideal-relation graphs (Ma and Wong [2016]),

co-maximal ideal graphs (Ye and Wu [2012]) etc., of rings have been studied in the

literature. Motivated by the study of graphs associated to ideals, in this thesis,

we define and study the upper ideal-relation graph of rings.

Frucht [1939] proved that all groups can be viewed as the automorphism group

of a connected graph. The symmetries of a graph are described by its automor-

phism group. In general, automorphism groups are important for studying sizeable

graphs since these symmetries allow to simplify and understand the behavior of a

graph. However, the determination of the full automorphism group is a challenging

problem in algebraic graph theory. The automorphisms of the zero-divisor graphs

over the matrix rings attracted a lot of attention by various researchers (see, Ma

et al. [2016]; Ou et al. [2020]; Wang [2016]; Wong et al. [2014]; Zhou et al. [2017b]).

Also, Xu et al. [2022] determined all the automorphisms of the intersection graph

of ideals over matrix rings. Automorphisms of the total graph over matrix rings

are also characterized (see, Wang et al. [2020]; Zhou et al. [2017a]). Further, Wang

et al. [2017] characterized the automorphisms of the co-maximal ideal graph over

matrix ring. Ma and Wong [2016] introduced the ideal-relation graph and discuss

all the automorphisms of ideal-relation graph on n⇥ n upper triangular matrices
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over a finite field Fq.

The intersection graph of a semigroup was introduced by Bosák [1964]. The

intersection subsemigroup graph �(S) of a semigroup S is a simple undirected graph

whose vertex set is the collection of proper subsemigroups of S and two distinct

vertices A and B are adjacent if and only if A \B 6= ;. Bosák [1964] proved that

if S is a nondenumerable semigroup or a periodic semigroup with more than two

elements, then the graph �(S) is connected. Bosák then raised the following open

problem: Does there exists a semigroup with more than two elements whose graph

is disconnected? Lin [1969], answered the problem posed by Bosák, in a negative

manner and proved that every semigroup with more than two elements has a

connected graph. Also, Ponděliček [1967] proved that the diameter of a semigroup

with more than two elements does not exceed three. Inspired by the work of

Bosák [1964], the intersection graph of groups was studied by Csákány and Pollák

[1969] and then they proved that there is an edge between two proper subgroups

if they have at least two elements common. Further, Zelinka [1975] continued

this work for finite abelian groups. Shen [2010] characterized all finite groups

whose intersection graphs are disconnected. The groups whose intersection graphs

of normal subgroups are connected, complete, forests or bipartite are classified

by Jafari and Rad [2013]. Tamizh Chelvam and Sattanathan [2012] continued

the seminal paper of Csákány and Pollák to introduce the subgroup intersection

graph of a finite group G. Further, Ma [2016] proved that the diameter of the

intersection graph of a finite non-abelian simple group has an upper bound 28.

Chakrabarty et al. [2009] introduced the notion of intersection ideal graph of rings.

The intersection ideal graph �(R) of a ring R is an undirected simple graph whose

vertex set is the collection of non-trivial left ideals of R and two distinct vertices I

and J are adjacent if and only if I \ J 6= {0}. They characterized the rings R for

which the graph �(R) is connected and obtained several necessary and su�cient
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conditions on a ring R such that �(R) is complete. Jafari and Rad [2010] studied

the planarity of the intersection ideal graphs �(R) of a commutative ring R with

unity. The domination number of �(R) has been obtained by Jafari and Rad

[2011]. Akbari et al. [2013] classified all the rings whose intersection graphs of

ideals are not connected and also determined all rings whose clique number is

finite. Rad et al. [2014] discussed the intersection graphs of ideals of the direct

product of rings. Das [2017] characterized the positive integer n for which the

intersection graph of ideals of Zn is perfect. Moreover, we refer the reader to

Alraqad [2022] and references therein for the graded case. For some more research

work on the intersection graph, we refer readers to Ahmadi and Taeri [2016];

Akbari, Heydari and Maghasedi [2015]; Akbari and Nikandish [2014]; Haghi and

Ashrafi [2017]; Kayacan [2018]; Kayacan and Yaraneri [2015]; Laison and Qing

[2010]; Rad and Jafari [2011]; Shahsavari and Khosravi [2017]; Xu et al. [2022] and

references therein.

Akbari, Habibi, Majidinya and Manaviyat [2014] have introduced the notion

of inclusion ideal graph associated with ring structure. The inclusion ideal graph

In(R) of a ring R is an undirected simple graph whose vertex set is the collection

of non-trivial left ideals of R and two distinct non-trivial left ideals I and J are

adjacent if and only if either I ⇢ J or J ⇢ I. Further, Akbari, Habibi, Majidinya

and Manaviyat [2015] have studied various graph invariants including connected-

ness, perfectness, diameter and the girth of In(R). It was shown that In(R) is

disconnected if and only if R ⇠= M2(D) or D1 ⇥D2, for some division rings, D,D1

and D2. The subspace inclusion graph In(V) associated with vector space V has

been studied by Das [2016]. The subspace inclusion graph on a finite-dimensional

vector space V is undirected simple graph whose vertices are all non-trivial proper

subspaces of V and two distinct non-trivial proper subspaces W1 and W2 are ad-

jacent if and only if W1 ⇢ W2 or W2 ⇢ W1. Das [2016] has studied the diameter,
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girth, clique number and chromatic number of In(V). Moreover, other graph in-

variants, namely: perfectness and planarity of In(V), have been studied by Das

[2018]. Also, for a 3-dimensional vector space it was shown that In(V) is bipartite,

vertex transitive, edge transitive and has a perfect matching. Wong et al. [2018]

have proved the following conjectures proposed by Das: If V is a 3-dimensional

vector space over a finite field Fq with q elements, then

(1) the domination number of In(V) is 2q.

(2) In(V) is distance regular.

The problem to determine the independence number of vector space V when the

base field is finite is solved by Ma and Wang [2018]. Further, the automorphism

group of In(V) was obtained by Wang and Wong [2019]. Analogously, the sub-

group inclusion graph of a group G, denoted by In(G), has been studied by Devi

and Rajkumar [2016]. They classified the finite groups whose inclusion graph is

complete, bipartite, tree, star, path, cycle, disconnected and claw-free. Ou et al.

[2019] determined the diameter of In(G) when G is nilpotent group and character-

ized the independent dominating sets as well as automorphism group of In(Zn).

Motivated with the research work presented earlier, in this thesis, we study

the cozero-divisor graphs, upper ideal-relation graphs, left ideal-relation graphs

of rings and intersection ideal graphs, inclusion ideal graphs of semigroups. The

thesis has been arranged in the following chapters.

Chapter 1: Background

Chapter 2: The Cozero-divisor Graph of a Commutative Ring

Chapter 3: The Upper Ideal-Relation Graphs of Rings

Chapter 4: The Left Ideal-Relation Graph over Full Matrix Ring

Chapter 5: Graphs on Semigroups

Chapter 6: Conclusion and Future Research Work



8 Introduction

Chapter 1: This chapter contains all the basic definitions, results and notations

which are required to understand the subsequent chapters of the thesis.

Chapter 2: The cozero-divisor graph �0(R) associated to a commutative ring R has

been explored by numerous researchers. In this chapter, we consider the Wiener

index of �0(R), which is one of the important topological graph indices and it has

various applications. In this connection, we derive a closed-form formula of the

Wiener index of �0(R) of a finite commutative ring R (see Theorem 2.1.5). Using

this, we also obtained the Wiener index of cozero-divisor graph of few classes of

commutative rings, namely: product of the ring of integers modulo n (cf. Theorem

2.1.7), reduced ring (cf. Theorem 2.1.10) and ring of integers modulo n (see

Theorem 2.1.20). We study the Laplacian spectrum of �0(Zn). We investigate

the Laplacian spectral radius, algebraic connectivity of �0(Zn) and characterized

the values of n for which the Laplacian spectral radius is equal to the order of

�0(Zn) (see Proposition 2.3.3). Moreover, the values of n for which the algebraic

connectivity and the vertex connectivity of �0(Zn) coincide are also described (see

Theorem 2.3.6).

The content of this chapter (Subsection 2.1.3, Section 2.3 and Section 2.2) is

published in journal “AKCE International Journal of Graphs and Combinatorics”,

Taylor & Francis. The remaining results of this chapter has been submitted for

publication.

Chapter 3: In this chapter, we define and study the notion of upper ideal-relation

graph �U(R) associated to a ring R. In order to investigate the algebraic properties

of a ring R and the graph-theoretic properties of �U(R), first we obtained the girth,

minimum degree and the independence number of �U(R). We classify all the finite

rings R such that the graph �U(R) is Eulerian (see Theorem 3.1.15). We provide

a necessary and su�cient condition on R, in terms of the cardinality of their
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principal ideals, such that the graph �U(R) is bipartite (cf. Theorem 3.1.4), planar

(cf. Theorem 3.1.7) and outerplanar, respectively. We also obtained the metric

and the strong metric dimension of the graph �U(R). We discuss the perfectness of

�U(R) (cf. Theorem 3.3.6). We also investigated the topological aspects of �U(R).

In this connection, we classify all the non-local commutative rings R for which

�U(R) has genus at most 2 (see Theorems 3.4.6 and 3.4.7). Also, we determine

precisely all the non-local commutative rings for which �U(R) has crosscap at

most 2 (cf. Theorems 3.4.9 and 3.4.10). Along with this, we characterize all the

non-local commutative rings whose upper ideal-relation graphs are split graphs,

threshold graphs and cographs, respectively. Moreover, we have studied the upper

ideal-relation graph of the ring Zn. In this direction, we classify all the values of n

for which the graph �U(Zn) is Hamiltonian (see Theorem 3.6.3). We determine the

vertex connectivity (cf. Theorem 3.6.5) and automorphism group (see Theorem

3.6.9) of �U(Zn). We also investigated the Laplacian and the normalized Laplacian

spectrum of the upper ideal-relation graph of the ring Zn. Two research papers

containing the results of this chapter are submitted for publication.

Chapter 4: The automorphisms of graphs associated with rings attracted a lot of

attention of researchers. In order to reveal the significant structure of ideal-relation

graph on full matrix ring , we study the left ideal-relation graph of full matrix ring.

In this chapter, we obtained all the automorphisms of left ideal-relation graph over

full matrix ring. The content of this chapter is submitted for publication.

Chapter 5: In this chapter, we discuss the graph associated with ideals of semi-

groups, namely: the intersection ideal graph and the inclusion ideal graph of semi-

groups. First, we investigate the connectedness of �(S) (cf. Theorems 5.1.1 and

5.1.3). We classify the semigroups S in terms of their ideals such that the di-

ameter of �(S) is two (see Theorem 5.1.7). We obtain the domination number,
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independence number, girth and the strong metric dimension of �(S). We have

also investigated the completeness, planarity and perfectness of �(S). We show

that if S is a completely simple semigroup, then �(S) is weakly perfect. Moreover,

for an arbitrary semigroup S, we give an upper bound of the chromatic number

of �(S) (cf. Theorem 5.1.20). Finally, if S is the union of n minimal left ideals,

then we obtain the metric dimension (see Theorem 5.1.25) and the automorphism

group of �(S) (cf. Theorem 5.1.28).

The results on �(S) of this chapter are published in the journal “Quasigroups

and Related Systems”.

Besides this, we study the algebraic properties of the semigroup S and graph-

theoretic properties of the inclusion ideal graph In(S), in particular, when S is

a completely simple semigroup. After ascertaining the connectedness of In(S),

we show that the diameter of In(S) is at most 3, if it is connected (see Theorem

5.2.4). We also obtain a necessary and su�cient condition of S such that the

clique number of In(S) is n, where n is the number of minimal left ideals of S

(cf. Theorem 5.2.10). Further, various graph invariants of In(S), viz. perfectness,

planarity, girth etc., are discussed. For a completely simple semigroup S, we

investigate various properties of In(S) including its independence number (see

Theorem 5.2.24) and the matching number (see Theorem 5.2.26). Finally, for a

completely simple semigroup S with n(� 3) minimal left ideals, we prove that the

automorphism group Aut(In(S)) ⇠= Sn ⇥ Z2 (cf. Theorem 5.2.34).

The content of the inclusion ideal graph In(S) is accepted for publication in

the journal “Algebra Colloquium”.

Chapter 6: This chapter summarises the thesis and concludes with future research

problems.



Chapter 1

Background

In this chapter, we recall necessary definitions and results, which we need for

the upcoming chapters. In Section 1.1, we provide fundamental definitions and

results related to the theory of semigroups. In Section 1.2, we recall necessary

results and definitions of ring theory. Also, we prove the required results related

to semigroups and rings used in the thesis. Section 1.3 is devoted to the concepts

of graph theory. Also, we recall some basic results on graphs which will be used

in the thesis. This chapter also fixes various notations used throughout the thesis.

1.1 Semigroups

In this section, we recall necessary definitions and results of semigroup theory from

Cli↵ord and Preston [1961] and Howie [1995].

A semigroup is a non-empty set S together with an associative binary operation

on S. We say S to be a monoid if it contains an identity element. A subsemigroup

of a semigroup is a subset that is also a semigroup under the same operation. A

1
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semigroup S is said to be regular if for each a 2 S there exists x 2 S such that

axa = a. If a semigroup S with at least two elements contains an element 0 such

that for all x 2 S, 0x = x0 = 0, then 0 2 S is called the zero element of S and in

this case, S is known as a semigroup with zero. If S does not contain zero, then

we say that S is a semigroup without zero. If A and B are subsets of a semigroup

S, then define AB = {ab : a 2 A, b 2 B}. A non-empty subset I of S is said to

be a left ideal if SI ✓ I, a right ideal if IS ✓ I, and a (two-sided) ideal of S if

SIS ✓ I i.e. it is both left and right ideal. A left [right, two-sided] ideal is called

0-minimal if it is minimal within the non-zero left [right, two-sided] ideals. The

union of two left [right] ideals of S is again a left [right] ideal of S. A left ideal I

of S is maximal if it is not contained in any non-trivial left ideal of S. If S has a

unique maximal left ideal, it contains every non-trivial left ideal of S. A left ideal

I is minimal if it does not properly contain any non-zero left ideal of S. If S has

a minimal left ideal, then every non-trivial left ideal contains at least one minimal

left ideal. If A is any left ideal of S other than minimal left ideal I, then either

I ⇢ A or I \ A = ;. Thus, we have the following remark.

Remark 1.1.1. Any two distinct minimal left ideals of a semigroup S are disjoint.

The following lemma is useful in the sequel.

Lemma 1.1.2. If the semigroup S = I1 [ I2, where I1 and I2 are minimal left

ideals of S, then I1 and I2 are maximal left ideals.

Proof. Suppose that S = I1 [ I2, where I1 and I2 are minimal left ideals of S. If

there exists a left ideal Ik of S such that I1 ( Ik, then there exists y 2 Ik such

that y /2 I1. Since S = I1 [ I2, we obtain y 2 I2. It follows that I2 = Sy ⇢ Ik.

Thus, S = I1 [ I2 ✓ Ik. Consequently, Ik = S and so I1 is a maximal left ideal.

Similarly, for I2 ( Ik, we obtain Ik = S. Therefore, I1 and I2 are maximal left

ideals.
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Example 1.1.3. (i) LetX be a non-empty set and TX be the set of all mappings

on X. Then TX forms a semigroup under the composition of mappings called

full transformation semigroup.

(ii) The set I(X) of partial injective mappings on X forms a semigroup under the

composition of relations, and it is known as symmetric inverse semigroup.

(iii) Given a finite group G and a natural number n, write [n] = {1, 2, . . . , n} and

Bn(G) = ([n]⇥G⇥ [n]) [ {0}. Define a binary operation ‘·’ on Bn(G) by

(i, a, j) · (k, b, l) =

8
<

:
(i, ab, l) if j = k;

0 if j 6= k

and, for all ↵ 2 Bn(G),↵ · 0 = 0 · ↵ = 0, is known as Brandt semigroup.

When G = {e} is the trivial group, the Brandt semigroup Bn(G) is denoted

by Bn. Instead of writing the identity element e 2 G in the triplets of

elements of Bn, we use the following description in the definition of Bn. For

any integer n � 1, let [n] = {1, 2, . . . , n}. The semigroup (Bn, ·), where

Bn = ([n]⇥ [n]) [ {0} and the operation ‘·’ is given by

(i, j) · (k, l) =

8
<

:
(i, l) if j = k;

0 if j 6= k;

and, ↵ · 0 = 0 · ↵ = 0 for all ↵ 2 Bn.

By S
1, we shall mean the monoid obtained from S by adjoining an identity

element ( if S does not have such an element). The most fundamental tools in

understanding a semigroup are its Green relations. J. A. Green introduced Green’s

relations in 1951 that characterize the elements of S in terms of their principal

ideals. These relations are defined as

(i) x L y if and only if S1
x = S

1
y.



4 Background

(ii) x R y if and only if xS1 = yS
1.

(iii) x J y if and only if S1
xS

1 = S
1
yS

1.

(iv) x H y if and only if x L y and x R y.

(v) x D y if and only if x L z and z R y for some z 2 S.

Note that the L- class (R-class, J -class, H-class, D-class) containing the element

a is denoted by La(Ra, Ja, Ha, Da).

Remark 1.1.4. The non-zero elements of a minimal left ideal of S are in the same

L-class.

Lemma 1.1.5. A left ideal K of S is maximal if and only if S \K is an L-class.

Proof. First suppose that S \ K is an L�class. Let, if possible, K is not the

maximal left ideal of S. Then there exists a non-trivial left ideal K 0 of S such

that K ( K
0. There exists a 2 K

0 but a /2 K. Thus, La = S \K. Consequently,

La ⇢ K
0 gives S = K

0, a contradiction. Conversely, suppose that K is a maximal

left ideal of S. For each a 2 S \ K, the maximality of K implies K [ S
1
a = S.

Consequently, a L b for every a, b 2 S\K. Thus S\K is contained in some L�class

and this L�class is disjoint from K. It follows that S \K is an L�class.

A semigroup S without zero is said to be simple if it has no proper ideals. A

semigroup S with zero is called 0-simple if

(i) {0} and S are its only ideals;

(ii) S
2
6= {0}.

An element a of a semigroup S is idempotent if a
2 = a. Let E be the set of

idempotents of a semigroup S. If e, f 2 E , we define e  f to mean ef = fe = e.

Recall that a semigroup S is called completely simple if S is simple and contains a
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primitive idempotent. By primitive idempotent, we mean an idempotent which is

minimal within the set of all idempotents under the relation . Let G be a group

and let I,⇤ be non-empty sets. Let P = (p�i) be a ⇤ ⇥ I matrix with entries in

G
0(= G[ {0}), and suppose P is regular , in the sense that no row or column of P

consists entirely of zeros. Let S = M0[G, I,⇤, P ] = (I ⇥G⇥ ⇤) [ {0}, and define

a composition on S by

(i, a,�)(j, b, µ) =

8
<

:
(i, ap�jb, µ) if p�j 6= 0

0 if p�j = 0
(1.1)

(i, a,�)0 = 0(i, a,�) = 0.

Theorem 1.1.6 ([Howie, 1995, Theorem 3.2.3]). Let S be a semigroup. Then

S is a completely 0-simple semigroup if and only if S ⇠= M0[G, I,⇤, P ] for some

non-empty index sets I, ⇤, regular matrix P and a group G.

Lemma 1.1.7. Let S be the union of n minimal left ideals. Then each non-trivial

left ideal of S is the union of some of these minimal left ideals.

Proof. Let I1, I2, . . . , In be n minimal left ideals of S such that S = I1[I2[· · ·[In.

LetK be a non-trivial left ideal of S. Then there exists at least one element x1 2 K.

It follows that x1 2 Ii1 , for some i1 2 [n]. By the minimality of Ii1 , we obtain

Ii1 = Sx1 ✓ K. If K = Ii1 , then we are done. Otherwise, there exists x2 2 K

such that x2 2 Ii2 , for some i2 2 [n] \ {i1}. Similar to the above argument, we

get Ii2 ✓ K. Therefore, (Ii1 [ Ii2) ✓ K. If Ii1 [ Ii2 = K, then there is nothing to

prove. Otherwise, there exists x3 2 K such that x3 2 Ii3 , for some i3 2 [n]\{i1, i2}.

Consequently, Ii3 ✓ K. If Ii1 [ Ii2 [ Ii3 = K, then we are done. On continuing in

this way, we get the desired result.

Lemma 1.1.8 ([Cli↵ord and Preston, 1961, Corollary 2.49]). A completely simple

semigroup is the union of its minimal left [right] ideals.
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In view of Lemma 1.1.8, we have the following corollary of Lemma 1.1.7.

Corollary 1.1.9. Let S be a completely simple semigroup with n minimal left

ideals. Then any non-trivial left ideal of S is the union of some of these minimal

left ideals.

1.2 Rings

In this section, we present the necessary definitions and results of ring theory. For

more details, we refer the reader to Atiyah and Macdonald [2016].

Definition 1.2.1. Let R be a non-empty set with two binary operations + and

·, respectively. Then R is called a ring with respect to + and ·, if the following

properties hold.

(i) (R,+) is an abelian group;

(ii) (R, ·) is a semigroup;

(iii) · distributes over +, that is,

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a 8a, b, c 2 R.

A ring is usually denoted by (R,+, ·), and often it is written as R when the

operations are understood.

Example 1.2.2. (i) The set Zn = {0, 1, . . . , n � 1} forms a commutative ring

with unity under addition and multiplication integers modulo n.

(ii) The set Mn(Fq) of n⇥ n matrices with entries in Fq under the usual matrix

addition and multiplication forms a ring.
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(iii) Let R1, R2 be rings. Then R1 ⇥ R2 forms a ring under componentwise +

and ·, respectively.

R
⇤ denotes the set of all non-zero elements of R. If there exists an element

1 2 R such that x · 1 = 1 = 1 · x for all x 2 R, then R is said to be a ring with

unity. The ring R is said to be commutative if x · y = y · x, for all x, y 2 R. An

element x 2 R is said to be a unit element of a ring if there exists an element

y 2 R such that xy = 1. The set U(R) represents the set of all unit elements of

R. An element x of R is called a zero-divisor if there exists a non-zero element

y 2 R such that xy = 0. The set of all zero-divisors of a ring R is denoted by

Z(R) and the set of all non-zero zero-divisors is denoted by Z(R)⇤. An element

x is nilpotent if xk = 0 for some k 2 N. A commutative ring with unity in which

every non-zero element has a multiplicative inverse is said to be a field. Let Fq

denotes the field having q elements. A ring R is reduced if it contains no non-

zero nilpotent element. A non-empty subset T of a ring R is a subring of R if

a � b 2 T and ab 2 T for all a, b 2 T . A subring I of R is said to be a left ideal

if rx 2 I for every x 2 I and r 2 R. A subring I is said to be a right ideal of

R if xr 2 I for every x 2 I and r 2 R. For x 2 R, Rx = {rx : r 2 R} denotes

the principal left ideal and xR = {xr : r 2 R} denotes the principal right ideal,

generated by the element x. A subring I of a ring R is said to be two-sided ideal

or simply an ideal of R if it is left ideal as well as right ideal of R. An ideal I is

said to be a principal ideal of R if I is generated by some element x 2 R, that

is, I = RxR = (x) = {r1xr2 : r1, r2 2 R}. For a commutative ring, the left and

right ideals coincide. An ideal I of a ring R is called a proper ideal if I 6= {0} and

I 6= R. An ideal M( 6= R) of a ring R is said to be a maximal ideal if whenever K

is an ideal of R such that M ⇢ K ⇢ R then either R = K or M = K. An ideal

of a ring R is said to be a maximal principal ideal if it is maximal among all the

principal ideals of R. The following information of the ring Zn is useful for the
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latter use.

Remark 1.2.3. Every element of a finite commutative ring R is either a zero-

divisor or a unit. Thus, the number of non-zero zero-divisors in Zn is n��(n)� 1

and |U(Zn)| = �(n), where � is the Euler’s totient function

An integer d such that 1 < d < n is called a proper divisor of n if d|n. The set

⌧(n) denotes the number of positive divisors of n. The greatest common divisor

of two elements a and b is denoted by gcd(a, b).

Remark 1.2.4. Let d1, d2, . . . , dk be the distinct proper divisors of n. For 1  i 

k, define

Adi = {x 2 Zn : gcd(x, n) = di}.

The ideals (x) = (y) = (di) if and only if x, y 2 Adi .

Lemma 1.2.5 (Young [2015]). |Adi | = �( n
di
) for 1  i  k.

Proof. Consider the set X = {x 2 Zn : gcd(x, n) = 1} and X
0 = {x 2 Zn :

gcd(x, n) 6= 1}. Let x( 6= 0) 2 X
0. Then x 2 Adi , for some divisor di of n. Also,

Adi \ Adj = ;, for any distinct proper divisors di and dj of n. Thus, for n > 2,

note that X 0
\ {0} =

Sk
i=1 Adi . Let xi 2 Adi for some divisor di, where 1  i  k.

It follows that gcd(xi, n) = di which implies that xi = cdi for some c. Therefore,

gcd(cdi, n) = di so that gcd(c, n
di
) = 1. Consequently, any element of the set Adi

of the form cdi, where 1  c 
n
di
, and gcd(c, n

di
) = 1. Therefore, the number of

elements in the set Adi is �(
n
di
), for 1  i  k.

A ring R is said to satisfy the ascending chain condition of ideals if, for every

chain of ideals I1 ✓ I2 ✓ I3 ✓ · · · , there exists a positive integer m such that

Ik = Im for all k  m and R satisfies the descending chain condition of ideals if,

for every chain of ideals I1 ◆ I2 ◆ I3 ◆ · · · , there exists a positive integer m such



1.2 Rings 9

that Ik = Im for all k � m. A ring R is said to be Noetherian if it satisfies the

ascending chain condition of ideals. A ring R is said to be Artinian if it satisfies

the descending chain condition of ideals. A ring R is called local if it has a unique

maximal ideal M and we abbreviate this by (R,M). Also, recall that a reduced

Artin local ring is always a field. The following remarks are useful in the sequel.

Remark 1.2.6. Let R be a finite local ring and p be a prime number. Then

|R| = p
↵ for some positive integer ↵.

The classification of the finite non-isomorphic local rings of order up to 8 is

given in the Table 1.1.

Order type of rings

2 Z2

3 Z3

4 F4, Z4,
Z2[x]
(x2)

5 Z5

7 Z7

8 F8, Z8,
Z2[x]
(x3) ,

Z2[x,y]
(x2,xy,y2) ,

Z4[x]
(2x,x2) ,

Z4[x]
(2x,x2�2)

Table 1.1: Non-isomorphic local rings with unity

The following theorem describes the structure of finite commutative rings with

unity.

Theorem 1.2.7. If R is a finite commutative ring, then R ⇠= R1 ⇥R2 ⇥ · · ·⇥Rn,

where each Ri is a local ring.

Corollary 1.2.8. Let R be a commutative reduced ring. Then

R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ Fn,

where each Fi is a field.
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1.3 Graphs

This section comprises the preliminary definitions and results of graphs which we

need for the later discussion. For more details, one can refer to West [1996]. In

this thesis, we consider simple graphs, that is, without multiple edges or loops. A

graph � is a pair � = (V,E), where V = V (�) and E = E(�) are the set of vertices

and edges of the graph �, respectively. We say that two di↵erent vertices u and v

are adjacent , denoted by u ⇠ v or (u, v), if there is an edge between u and v. We

write u ⌧ v, if there is no edge between u and v. A path in a graph is a sequence

of distinct vertices with the property that each vertex in the sequence is adjacent

to the next vertex of it. A path graph on n vertices is denoted by Pn. A graph

� is said to be connected if there is a path between every pair of vertex. A cycle

is a path that begins and ends on the same vertex. The length of a cycle is the

number of edges in it. A cycle of length n is denoted by Cn. A tree is a connected

graph with no cycles. A cycle is said to be a Hamiltonian cycle if it covers all

the vertices. A graph � is said to be Hamiltonian if it contains a Hamiltonian

cycle. The girth of � is the length of its shortest cycle and is denoted by g(�). A

connected graph � is Eulerian if � has a closed trail (walk with no repeated edge)

containing all the edges of a graph.

Theorem 1.3.1 ([West, 1996, Theorem 1.2.26]). A connected graph � is Eulerian

if and only if the degree of every vertex is even.

The distance between two vertices u and v in � is the number of edges in a

shortest path connecting them, and it is denoted by d(u, v). If there is no path

between u and v, we say that the distance between u and v is infinity and we write

as d(u, v) = 1. The Wiener index W (�) of a connected graph � is defined as the
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sum of all distances between every pair of vertices in the graph, that is,

W (�) =
1

2

X

u2V (�)

X

v2V (�)

d(u, v)

The diameter of a connected graph �, written as diam(�), is the maximum of

the distances between vertices. If the graph consists of a single vertex, then its

diameter is 0. The degree of the vertex v in � is the number of edges incident to v

and it is denoted by deg(v). The smallest degree among the vertices of � is called

the minimum degree of �, and it is denoted by �(�). A graph � is regular if degree

of every vertex is same. A graph � is said to be biregular whose vertices have two

distinct degrees. The set N�(x) or N(x) of all the vertices adjacent to x in � is

said to be the neighbourhood of x. Additionally, we denote N [x] = N(x) [ {x}.

A subgraph �0 of � is the graph such that V (�0) ✓ V (�) and E(�0) ✓ E(�). If

X ✓ V (�), then the subgraph of � induced by X, denoted by �(X), is the graph

with vertex set X and two vertices of �(X) are adjacent if and only if they are

adjacent in �. A subgraph �0 is said to be a spanning subgraph of � if V (�0) = V (�)

and E(�0) ✓ E(�). A graph � is said to be complete if every two distinct vertices

are adjacent. The complete graph on n vertices is denoted by Kn. A graph � is

said to be a complete bipartite graph if the vertex V (�) can be partitioned into

two disjoint unions of non-empty sets A and B, such that two distinct vertices are

adjacent if and only if they belong to di↵erent sets. Moreover, if |A| = m and

|B| = n, then we denote it by Km,n.

A subset X of V (�) is said to be independent if no two vertices of X are adja-

cent. The independence number of � is the cardinality of the largest independent

set, and it is denoted by ↵(�). The chromatic number of �, denoted by �(�), is

the smallest number of colors needed to color the vertices of � such that no two

adjacent vertices share the same color. A clique in � is a set of pairwise adjacent
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vertices. The clique number of � is the size of maximum clique in � and it is de-

noted by !(�). It is well known that !(�)  �(�). A graph � is weakly perfect if

!(�) = �(�). A graph � is perfect if !(�0) = �(�0) for every induced subgraph �0

of �. Recall that the complement � of � is a graph with same vertex set as � and

distinct vertices u, v are adjacent in � if they are not adjacent in �. A subgraph

�0 of � is called hole if �0 is a cycle as an induced subgraph, and �0 is called an

antihole of � if �0 is a hole in �.

Theorem 1.3.2 (Chudnovsky et al. [2006]). A finite graph � is perfect if and only

if it does not contain a hole or antihole of odd length, at least 5.

A subset D of V (�) is said to be a dominating set if any vertex in V (�) \D is

adjacent to at least one vertex inD. IfD contains only one vertex, then that vertex

is called the dominating vertex. The domination number �(�) of � is the minimum

size of a dominating set in �. A graph � is said to be triangulated if every vertex

of � is a vertex of a triangle. A vertex (edge) cutset in a connected graph � is a set

of vertices (edges) whose deletion increases the number of connected components

of �. The vertex connectivity (edge connectivity) of a connected graph � is the

minimum size of a vertex (edge) cutset and it is denoted by (�) (0(�)). It is well

known that (�)  
0(�)  �(�). An edge cover of � is a subset L of E(�) such

that every vertex of � is incident to some edge of L. The minimum cardinality

of an edge cover in � is called the edge covering number. A vertex cover of �

is a subset Q of V (�) containing at least one endpoint of every edge of �. The

minimum cardinality of a vertex cover in � is called the vertex covering number. A

matching of the graph � is a set of edges with no share endpoints. The maximum

cardinality of a matching in � is called the matching number of �. It is denoted

by ↵0(�).

In a graph �, a vertex z resolves a pair of distinct vertices x and y if d(x, z) 6=

d(y, z). A resolving set of � is a subset R ✓ V (�) such that every pair of distinct
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vertices of � is resolved by some vertex in R. The metric dimension of �, denoted

by �(�), is the minimum cardinality of a resolving set of �. Note that the twin

vertices in a graph correspond to vertices sharing the same neighbourhood.

Lemma 1.3.3. If U is twin-set in a connected graph � of order n with |U | = l � 2,

then every resolving set for � contains at least l � 1 vertices of U .

Lemma 1.3.4 ([Chartrand et al., 2000, Theorem 1]). For positive integers d and

m with d < m, define f(m, d) as the least positive integer k such that k+ d
k
� m.

Then for a connected graph � of order m � 2 and diameter d, the metric dimension

�(�) � f(m, d).

For vertices u and v in a graph �, we say that z strongly resolves u and v if

there exists a shortest path from z to u containing v, or a shortest path from z to

v containing u. A subset U of V (�) is a strong resolving set of � if every pair of

vertices of � is strongly resolved by some vertex of U . The least cardinality of a

strong resolving set of � is called the strong metric dimension of � and is denoted

by sdim(�). For vertices u and v in a graph �, we write u ⌘ v if N [u] = N [v].

Notice that ⌘ is an equivalence relation on V (�). We denote bv by the ⌘-class

containing a vertex v of �. Consider a graph b� whose vertex set is the set of all

⌘-classes, and vertices bu and bv are adjacent if u and v are adjacent in �. This

graph is well-defined because in �, w ⇠ v for all w 2 bu if and only if u ⇠ v. We

observe that b� is isomorphic to the subgraph R� of � induced by a set of vertices

consisting of exactly one element from each ⌘-class.

Theorem 1.3.5 ([Ma et al., 2018, Theorem 2.2]). For any graph � with diameter

at most 2, we have sdim(�) = |V (�)|� !(b�).

A graph � is a split graph if the vertex set is the disjoint union of two sets A

and B, where A induces a complete subgraph and B is an independent set.
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Lemma 1.3.6 (Foldes and Hammer [1977]). A graph � is a split graph if and only

if it does not have an induced subgraph isomorphic to one of the three forbidden

graphs, C4, C5 or 2K2.

A graph � is said to be a cograph if it has no induced subgraph isomorphic to

P4. A threshold graph is the graph which does not contain an induced subgraph

isomorphic to P4, C4 or 2K2. Every threshold graph is a cograph as well as a split

graph. A cactus graph is a connected graph where any two simple cycles have

at most one vertex in common. A connected graph is said to be unicyclic if it

contains exactly one cycle. A graph � is outerplanar if it can be embedded in the

plane such that all vertices lie on the outer face. A graph � is planar if it can be

drawn on a plane without edge crossing. It is well known that every outerplanar

graph is a planar graph. In a graph � the subdivision of an edge is the deletion of

the edge (u, v) from � and the addition of two edges (u, w) and (w, v) along with

a new vertex w. A graph obtained from � by a sequence of edge subdivisions is

called a subdivision of �. Two graphs are said to be homeomorphic if both can be

obtained from the same graph by subdivisions of edges. Now we have the following

known results related to outerplanar and planar graphs.

Theorem 1.3.7 (West [1996]). A graph � is outerplanar if and only if it does not

contain a subdivision of K4 or K2,3.

Theorem 1.3.8 (West [1996]). A graph � is planar if and only if it does not

contain a subdivision of K5 or K3,3.

Recall that a chord in a graph � is an edge joining two non-adjacent vertices in a

cycle of �. A cycle is said to be primitive if it has no chord. A graph � satisfies the

primitive cycle property (PCP) if any two primitive cycles intersect in at most one

edge. The free rank of graph �, denoted by frank(�), is the number of primitive
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cycles in �. The cycle rank rank(�) of � is the number |E(�)|� |V (�)|+C, where

C is the number of connected components of �.

A compact connected topological space such that each point has a neighbour-

hood homeomorphic to an open disc in R2 is called a surface. An embedding of a

graph � on a surface S is 2�cell embedding if each component of S� � is homeo-

morphic to an open disc in R2. A 2�cell embedding is said to be triangular if all

the faces have boundaries consisting of exactly three edges. Let Sg denote the ori-

entable surface with g handles, where g is a non-negative integer. The genus of a

graph �, denoted by g(�), is the minimum integer g such that � can be embedded

in Sg that is the graph � can be drawn into a surface Sg without edge crossing.

Note that the graphs with genus zero are planar graphs and those with genus one

are toroidal graphs. The following results are useful in the sequel.

Proposition 1.3.9 ([White, 1984, Ringel and Youngs]). Let n � 3 be a positive

integer. Then g(Kn) =
l
(n�3)(n�4)

12

m
.

Lemma 1.3.10 ([White, 1984, Theorem 5.14]). Let � be a connected graph, with

a 2-cell embedding in Sg. Then v � e + f = 2 � 2g, where v, e and f are the

number of vertices, edges and faces embedded in Sg, respectively and g is the genus

of surface of graph embedded.

Lemma 1.3.11 (White [2001]). The genus of a connected graph � is the sum of

the genera of its blocks.

Let Nk denote the non-orientable surface formed by the connected sum of k

projective planes, that is, Nk is a non-orientable surface with k crosscap. The

crosscap of a graph �, denoted by cr(�), is the minimum non-negative integer k

such that � can be embedded in Nk. For instance, a graph � is planar if cr(�) = 0

and the � is projective if cr(�) = 1. The following results are useful to determine

the crosscap of a graph.
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Proposition 1.3.12 ([Mohar and Thomassen, 2001, Ringel and Youngs]). Let n

be a positive integer. Then

cr(Kn) =

8
><

>:

l
(n�3)(n�4)

6

m
, if n � 3

3, if n = 7.

Lemma 1.3.13 ([Mohar and Thomassen, 2001, Lemma 3.1.4]). Let � : �! Nk be

a 2-cell embedding of a connected graph � to the non-orientable surface Nk. Then

v � e+ f = 2� k, where v, e and f are the number of vertices, edges and faces of

�(�) respectively, and k is the crosscap of Nk.

Definition 1.3.14 (White [2001]). A graph � is orientably simple if the manifold

number ⇥(�) 6= 2� cr(�), where ⇥(�) = max{2� 2g(�), 2� cr(�)}.

Lemma 1.3.15 (White [2001]). Let � be a graph with blocks �1,�2, . . . ,�k. Then

cr(�) =

8
>><

>>:

1� k +
kP

i=1
cr(�i), if � is orientably simple

2k �

kP
i=1
⇥(�i), otherwise.

We shall use the following remark explicitly without referring to it.

Remark 1.3.16. For a simple graph �, every face has at least three boundary

edges, and every edge is a boundary of two faces, that is, 2e � 3f . Moreover, the

equality holds if and only if � has a triangular embedding.

A homomorphism of graph � to a graph �0 is a mapping f from V (�) to V (�0)

with the property that if u ⇠ v, then uf ⇠ vf for all u, v 2 V (�). A retraction

is a homomorphism f from a graph � to a subgraph �0 of � such that vf = v

for each vertex v of �0. In this case, the subgraph �0 is called a retract of �. An

isomorphism of a simple graphs � and �0 is a bijection f : V (�) 7! V (�0) such that

u ⇠ v in � if and only if uf ⇠ vf in �0. Graphs � and �0 are isomorphic, if there

is an isomorphism between them and we write it as � ⇠= �0. An automorphism of
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a graph � is a permutation f on V (�) with the property that, for any vertices u

and v, we have uf ⇠ vf if and only if u ⇠ v. The set Aut(�) of all the graph

automorphisms of a graph � forms a group with respect to the composition of

mappings. A graph � is vertex transitive if for every two vertices u and v there

exists a graph automorphism f such that uf = v. For a subset X, S|X| denotes

the symmetric group of degree |X|.

Let �1 and �2 be two graphs. The union �1[�2 is the graph with V (�1[�2) =

V (�1) [ V (�2) and E(�1 [ �2) = E(�1) [ E(�2). The join �1 _ �2 of �1 and �2

is the graph obtained from the union of �1 and �2 by adding new edges from

each vertex of �1 to every vertex of �2. Let � be a graph on k vertices and

V (�) = {u1, u2, . . . , uk}. Suppose that �1,�2, . . . ,�k are k pairwise disjoint graphs.

Then the generalised join graph �[�1,�2, . . . ,�k] of �1,�2, . . . ,�k is the graph

formed by replacing each vertex ui of � by �i and then joining each vertex of �i

to every vertex of �j whenever ui ⇠ uj in � (cf. Schwenk [1974]). For a finite

simple undirected graph � with vertex set V (�) = {u1, u2, . . . , uk}, the adjacency

matrix A(�) is defined as the k⇥k matrix whose (i, j)th entry is 1 if ui ⇠ uj and 0

otherwise. The adjacency eigenvalues are the eigenvalues of the matrix A(�). We

denote the diagonal matrix by D(�) = diag(d1, d2, . . . , dk), where di is the degree

of the vertex ui of �. The Laplacian matrix L(�) of � is the matrix D(�)�A(�).

The matrix L(�) is symmetric and positive semidefinite, so its eigenvalues are real

and non-negative. Furthermore, the sum of each row (column) of L(�) is zero.

The eigenvalues of L(�) are called the Laplacian eigenvalues of � and are taken

as �1(�) � �2(�) � · · · � �n(�) = 0. The second smallest Laplacian eigenvalue

of L(�), denoted by µ(�), is called the algebraic connectivity of �. The largest

Laplacian eigenvalue �(�) of L(�) is called the Laplacian spectral radius of �.

Now let �1(�),�2(�), . . . ,�r(�) be the distinct eigenvalues of � with multiplicities

µ1, µ2, . . . , µr, respectively. The Laplacian spectrum of �, that is, the spectrum of
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L(�), is represented as

�(L(�)) =

0

@�1(�) �2(�) · · · �r(�)

µ1 µ2 · · · µr

1

A.

Sometime we write �(L(�) as �L(�) also. The following results are useful in the

sequel.

Theorem 1.3.17 (Cardoso et al. [2013]). Let � be a graph on k vertices hav-

ing V (�) = {u1, u2, . . . , uk} and let �1,�2, . . . ,�k be k pairwise disjoint graphs on

n1, n2, . . . , nk vertices, respectively. Then the Laplacian spectrum of �[�1,�2, . . . ,�k]

is given by

�L(�[�1,�2, · · · ,�k]) =
k[

i=1

(Di + (�L(�i) \ {0}))
[
�(L(�)) (1.2)

where

Di =

8
>><

>>:

P
uj⇠ui

nj if N�(ui) 6= ;;

0 otherwise

L(�) =

2

6666664

D1 �p1,2 · · · �p1,k

�p2,1 D2 · · · �p2,k

· · · · · · · · · · · ·

�pk,1 �pk,2 · · · Dk

3

7777775
(1.3)

such that

pi,j =

8
><

>:

p
ninj if ui ⇠ uj in �

0 otherwise.

in (1.2), (�L(�i) \ {0})) means that one copy of the eigenvalue 0 is removed from

the multiset �L(�i), and Di + (�L(�i) \ {0})) means Di is added to each element

of (�L(�i) \ {0})).
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Let � be a weighted graph by assigning the weight ni = |V (�i)| to the vertex

ui of � and i varies from 1 to k. Consider L(�) = (li,j) to be a k⇥k matrix, where

li,j =

8
>>>>><

>>>>>:

�nj if i 6= j and ui ⇠ uj;

P
ui⇠ur

nr if i = j;

0 otherwise.

The matrix L(�) is called the vertex weighted Laplacian matrix of �, which is

a zero row sum matrix but not a symmetric matrix in general. Though the k ⇥ k

matrix L(�) defined in Theorem 1.3.17, is a symmetric matrix, it need not be a

zero row sum matrix. Since the matrices L(�) and L(�) are similar, we have the

following remark.

Remark 1.3.18. �(L(�)) = �(L(�)).

The normalized Laplacian introduced by Chung [1997] and it is defined as

L(�) = D(�)
�1
2 L(�)D(�)

�1
2 . The following results are useful in the sequel.

Theorem 1.3.19 (Mohar [1991]). Let �1 _ �2 denotes the join of two graphs �1

and �2. Then the characteristic polynomial of the L(�1 _ �2) is

µ(�1 _ �2, x) =
x(x�n1�n2)
(x�n1)(x�n2)

µ(�1, x� n2)µ(�2, x� n1),

where n1, n2 are the orders of graph �1 and �2, respectively.

Theorem 1.3.20 (Mohar [1991]). Let � be the disjoint union of graphs �1,�2, . . . ,�k.

Then the characteristic polynomial of the L(�) is

µ(�, x) =
kY

i=1

µ(�i, x).

The proof of the following lemma is straightforward.

Lemma 1.3.21. The adjacency eigenvalues of the complete graph Kn are n � 1

and �1 with multiplicities 1 and n� 1, respectively.
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Lemma 1.3.22 (Rather et al. [2022]). Let � be a graph of order n and let �i be the

ri regular graph on ni vertices, having adjacency eigenvalues �i1 = ri � �i2 � . . . �

�ini, where i = 1, 2, . . . , n. Then the normalized Laplacian eigenvalues of the graph

�[�1,�2, . . .�n] consists of the eigenvalues 1 �
1

ri + ↵i
�ik(�i), for i = 1, 2, . . . , n

and k = 2, 3, . . . , ni, where ↵i =
P

vj2N�(vi)
ni is the sum of the orders of the graphs

�j, j 6= i, which correspond to the neighbours of the vertex vi 2 �. The remaining

n eigenvalues are the eigenvalues of the matrix
2

6666666664

↵1

↵1 + r1

�n2a12p
(r1 + ↵1)(r2 + ↵2)

· · ·
�nna1np

(r1 + ↵1)(rn + ↵n)
�n1a21p

(r2 + ↵2)(r1 + ↵1)

↵2

↵2 + r2
· · ·

�nna2np
(r2 + ↵2)(rn + ↵n)

...
...

. . .
...

�n1an1p
(rn + ↵n)(r1 + ↵1)

�n2an2p
(rn + ↵n)(r2 + ↵2)

· · ·
↵n

↵n + rn

3

7777777775

where,

aij =

8
><

>:

1, vi ⇠ vj

0, otherwise.



Chapter 2

The Cozero-divisor Graph of a

Commutative Ring

Afkhami and Khashyarmanesh [2011] introduced the cozero-divisor graph of a

commutative ring. Let R be a commutative ring with unity. The cozero-divisor

graph of a ring R, denoted by �0(R), is a simple undirected graph whose vertices

are the set of all non-zero, non-unit elements of R, and two distinct vertices x

and y are adjacent if and only if x /2 Ry and y /2 Rx, where Rx is the ideal

generated by the element x of R. They explored the interrelation between the

algebraic properties of the ring R and graph-theoretic properties of �0(R). The

relation between the cozero-divisor and zero-divisor graphs are also discussed in

Afkhami and Khashyarmanesh [2011]. Then Afkhami and Khashyarmanesh [2012]

investigated the complement of the cozero-divisor graph and characterised all com-

mutative rings R whose �0(R) is unicyclic, star, double-star or forest. Akbari and

Khojasteh [2013] proved that if the independence number ↵(�0(R)) is finite, then

the ring R is Artinian if and only if R is Noetherian. They also showed that if the

maximum degree of �0(R), for a commutative ring R, is finite, then the ring R is

21
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finite. Akbari, Alizadeh and Khojasteh [2014] showed that diam(�0(R[x])) = 2, for

every commutative ring R. Particularly, they proved that if R is a commutative

non-local ring, then diam(�0(R[[x]]))  3. Recently, Bakhtyiari et al. [2020] dis-

cussed the perfectness of �0(R), when R is a von Neumann regular ring. They also

gave an explicit formula for the clique number of the graph �0(R). Nikandish et al.

[2021] obtained the metric and strong metric dimension �0(R), for some classes of

ring R.

This chapter seeks to present some more insight to the study of the cozero-divisor

graph �0(R) of a commutative ring R. In this connection, first we obtain a closed-

form formula of the Wiener index of the cozero-divisor graph �0(R) of a finite

commutative ring R in Section 2.1. As an application, we determine the Wiener

index of �0(R) when R is either the product of the rings of integers modulo n (see

Subsection 2.1.1) or a reduced ring (see Subsection 2.1.2). Subsection 2.1.3 deals

with the computation of Wiener index of �0(Zn) independently. We also derive a

SageMath code to compute the Wiener index of these class of rings in Subsection

2.1.4. In Section 2.2, we study the Laplacian spectrum of �0(Zn). We show that

the graph �0(Zpq) is Laplacian integral. Further, we obtain the Laplacian spectrum

of �0(Zn) for n = p
n1q

n2 , where n1, n2 2 N and p, q are distinct primes. Section 2.3

deals with the investigation of the Laplacian spectral radius and algebraic connec-

tivity of �0(Zn). We characterized the values of n for which the Laplacian spectral

radius is equal to the order of �0(Zn). Moreover, the values of n for which the al-

gebraic connectivity and vertex connectivity of �0(Zn) coincide are also described.

The content (Subsection 2.1.3, Section 2.3 and Section 2.2) of this chapter is pub-

lished in the journal “AKCE International Journal of Graphs and Combinatorics”.

However, the results of Section 2.1 (except Subsection 2.1.3) is submitted for the

publication.
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2.1 The Wiener Index of �0(R)

The purpose of this section is to provide a closed-form formula of the Wiener index

of the cozero-divisor graph of a finite commutative ring (see Theorem 2.1.5). Let

R be a finite commutative ring with unity. Define a relation ⌘ on V (�0(R)) such

that x ⌘ y if and only if (x) = (y). Note that the relation ⌘ is an equivalence

relation. Let x1, x2, . . . , xk be the representatives of the equivalence classes of

X1, X2, . . . , Xk, respectively, under the relation ⌘. We begin with the following

lemma.

Lemma 2.1.1. A vertex of Xi is adjacent to a vertex of Xj if and only if (xi) *

(xj) and (xj) * (xi).

Proof. Suppose a 2 Xi and b 2 Xj. Then (a) = (xi) and (b) = (xj) in R. If a ⇠ b

in �0(R), then (a) 6⇢ (b) and (b) 6⇢ (a). It follows that (xi) 6⇢ (xj) and (xj) 6⇢ (xi).

The converse holds by the definition of �0(R).

Corollary 2.1.2. (i) For i 2 {1, 2, . . . , k}, the induced subgraph �0(Xi) of �0(R)

is isomorphic to K |Xi|.

(ii) For distinct i, j 2 {1, 2, . . . , k}, a vertex of Xi is adjacent to either all or

none of the vertices of Xj.

Define a subgraph ⌥0(R) (or ⌥0) induced by the set {x1, x2, . . . , xk} of represen-

tatives of the respective equivalence classes X1, X2, . . . , Xk of elements of V (�0(R))

under the relation ⌘.

Lemma 2.1.3. The graph ⌥0(R), with more than one vertex, is connected if and

only if the cozero-divisor graph �0(R) is connected. Moreover, for a connected

graph �0(R) and a, b 2 V (�0(R)), we have

d�0(R)(a, b) =

8
><

>:

2 if a, b 2 Xi, for some i

d⌥0(R)(xi, xj) if a 2 Xi, b 2 Xj and i 6= j.
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Proof. First, suppose that ⌥0(R) is connected. Let a, b be two arbitrary vertices

of �0(R). We may now suppose that a 2 Xi and b 2 Xj. If i = j, then a ⌧ b

in �0(R). Since ⌥0(R) is connected, we have xt 2 Xt such that xi ⇠ xt in �0(R).

Consequently, a ⇠ xt ⇠ b in �0(R) and d�0(R)(a, b) = 2. If a ⇠ b, then there is

nothing to prove. Let a ⌧ b in �0(R). Connectedness of ⌥0(R) implies that there

exists a path xi ⇠ xi1 ⇠ xi2 ⇠ · · · ⇠ xit ⇠ xj, where i 6= j. It follows that

a ⇠ xi1 ⇠ xi2 ⇠ · · · ⇠ xit ⇠ b in �0(R) and d�0(R)(a, b) = d⌥0(R)(xi, xj). Therefore,

�0(R) is connected. The converse is straightforward.

In view of Corollary 2.1.2, we have the following proposition.

Proposition 2.1.4. Let �0
i be the subgraph induced by the set Xi in �0(R). Then

�0(R) = ⌥0[�0
1,�

0
2, . . . ,�

0
k].

Let R be a finite commutative ring with unity. As a consequence of Lemma

2.1.3 and Proposition 2.1.4, we have the following theorem.

Theorem 2.1.5. The Wiener index of the cozero-divisor graph �0(R) of a finite

commutative ring with unity is given by

W (�0(R)) = 2
X✓

|Xi|

2

◆
+

X

i 6=j
1i<jk

|Xi||Xj|d⌥0(R)(xi, xj),

where, xi is a representative of the equivalence class Xi under the relation ⌘.

In the subsequent subsections, we use Theorem 2.1.5 to derive the Wiener index

of the cozero-divisor graph �0(R) for various class of rings.

2.1.1 The Wiener Index of �0(Zp
m1
1

⇥ Zp
m2
2

⇥ · · ·⇥ Zp
mk
k
)

First note that �0(Z4) is a graph with one vertex only. Moreover, for a prime p,

the cozero-divisor graph �0(Zp) is a graph without any vertices and for ↵ � 2,
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the cozero-divisor graph of Zp↵ , where p
↵
6= 4, is a graph with p

↵�1
� 1 vertices

without any edges. Consequently, in this subsection, we obtain the Wiener index

of the cozero-divisor graph �0(R), when R ⇠= Zn1 ⇥ Zn2 ⇥ · · · ⇥ Znk
or R ⇠=

Zp
m1
1

⇥ Zp
m2
2

⇥ · · ·⇥ Zp
mk
k

, except Zp↵ , where ↵ � 1.

Define the relation ⌘ on the elements of Zp
mi
i

such that x ⌘ y if and only if

(x) = (y). Note that ⌘ equivalence relation on Zp
mi
i
. Let X

0
i , X

1
i , . . . , X

mi
i be

the corresponding equivalence classes ⌘, where X
0
i = {0}, X1

i = U(Zp
mi
i
) and

X
j
i = Apij�1 for 2  j  mi. Now we have

|X
j
i | =

8
>>>>><

>>>>>:

1 if j = 0,

p
mi
i � p

mi�1
i if j = 1,

p
mi�j+1
i � p

mi�j
i if 2  j  mi.

Let x = (x1, x2, . . . , xr, . . . , xk) and y = (y1, y2, . . . , yr, . . . , yk) 2 R. Notice

that (x) = (y) if and only if (xi) = (yi) for each i. It follows that the equivalence

classes of the ring R is of the form X
j1
1 ⇥X

j2
2 ⇥ · · ·⇥X

jk
k . Consequently,

|X
j1
1 ⇥X

j2
2 ⇥ · · ·⇥X

jk
k | =

Qk
i=1 |X

ji
i |.

Lemma 2.1.6. Let R ⇠= Zn1 ⇥Zn2 ⇥ · · ·⇥Znk
and let x = (x1, x2, . . . , xr, . . . , xk),

y = (y1, y2, . . . , yr, . . . , yk) 2 V (�0(R)). Define Sr = {{x, y} : xr, yr 2 Z(Znr)
⇤ and (xr) ✓

(yr), xi = 0, yi 2 U(Zni) for each i 6= r}. Then

d�0(R)(x, y) =

8
>>>>><

>>>>>:

1 if x ⇠ y,

2 if x ⌧ y and {x, y} /2 Sr for all r,

3 if {x, y} 2 Sr for some r.

Proof. To prove the result, we discuss the following cases.

Case-1. xi 2 Z(Zni)
⇤ for each i 2 [k]. If x ⇠ y in �0(R), then d(x, y) = 1.

Otherwise, either (x) ✓ (y) or (y) ✓ (x). Suppose that yi 2 Z(Zni)
⇤, for each
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i 2 [k]. Then for z = (1, 0, . . . , 0) 2 R, we obtain x ⇠ z ⇠ y in �0(R). It

follows that d(x, y) = 2. Now assume that yi 2 Z(Zni) for each i 2 [k] and

yj = 0 for some j 2 [k]. If x ⌧ y in �0(R), then (yi) ✓ (xi) for each i. Choose

z = (z1, z2, . . . , zk) 2 R such that zi = 0 whenever yi 2 Z(Zni)
⇤ and zj 2 U(Znj)

whenever yj = 0, for some i, j 2 [k]. Consequently, x ⇠ z ⇠ y in �0(R). It

follows that d(x, y) = 2. If yi 2 U(Zni) and yj = 0, for some i, j 2 [k], then note

that d(x, y) = 1. Now, let yi 2 U(Zni) and yj 2 Z(Zni)
⇤, for some i, j 2 [k]. If

x ⌧ y in �0(R), then (xi) ( (yi) for each i 2 [k]. Choose z = (z1, z2, . . . , zk) 2 R

such that zi = 0 whenever yi 2 U(Zni) and zj 2 U(Znj) whenever yj 2 Z(Znj)
⇤.

It follows that x ⇠ z ⇠ y in �0(R) and so d(x, y) = 2. Further, assume that

yi 2 U(Zni), yj 2 Z(Znj)
⇤ and yl = 0 for some i, j, l 2 [k]. Then x ⇠ y in �0(R)

and so d(x, y) = 1.

Case-2. xi 2 U(Zni) and xj = 0 for some i, j 2 [k]. Suppose yi 2 U(Zni) and

yj = 0 for some i, j 2 [k]. If x ⇠ y in �0(R), then d(x, y) = 1. Otherwise, choose

z = (z1, z2, . . . , zk) 2 R such that

zi =

8
><

>:

1 when both xi = yi = 0,

0 otherwise.

It follows that d(x, y) = 2. Further, suppose that yi 2 Z(Zni) for each i 2 [k] and

yj = 0 for some j 2 [k]. If x ⌧ y in �0(R), then choose z = (z1, z2, . . . , zk) such that

zi 2 U(Zni) whenever yi = 0 and zj = 0 whenever yj 2 Z(Znj)
⇤. Consequently,

d(x, y) = 2. Suppose that yi 2 Z(Zni)
⇤ and yj 2 U(Znj) for some i, j 2 [k]. If

x ⇠ y in �0(R), then d(x, y) = 1. Otherwise, consider z = (z1, z2, . . . , zk) 2 R such

that

zi =

8
><

>:

0 if yi 2 U(Zni),

1 if yi 2 Z(Zni)
⇤
.
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Note that x ⇠ z ⇠ y in �0(R). It follows that d(x, y) = 2. Assume that yi 2

U(Zni), yj 2 Z(Znj)
⇤ and yl = 0 for some i, j, l 2 [k]. If x ⌧ y in �0(R), then

choose z = (z1, z2, . . . , zk) 2 R such that zi 2 U(Zni) whenever xi = 0 and zj = 0

whenever xj 2 U(Znj), for some i, j 2 [k]. Consequently, d(x, y) = 2.

Case-3. xi 2 Z(Zni) for each i 2 [k] and xj = 0 for some j 2 [k]. Suppose

yi 2 Z(Zni) for each i 2 [k] and yj = 0 for some j 2 [k]. If x ⇠ y in �0(R),

then d(x, y) = 1. Let x ⌧ y in �0(R). Then choose z = (z1, z2, . . . , zk) 2 R

such that zi = 0, whenever xi 2 Z(Zni)
⇤, and zj = 1, whenever xj = 0 for some

i, j 2 [k]. It follows that x ⇠ z ⇠ y and so d(x, y) = 2. Next, assume that

yi 2 Z(Zni)
⇤
, yj 2 U(Znj) and yl = 0 for some i, j, l 2 [k]. If x ⌧ y in �0(R),

then choose z = (z1, z2, . . . , zk) such that zi = 1 when xi = 0, and zj = 0 when

xj 2 Z(Znj)
⇤ for some i, j 2 [k]. Consequently, we have x ⇠ z ⇠ y in �0(R).

It implies that d(x, y) = 2. Further, assume that yi 2 U(Zni) and yj 2 Z(Znj)
⇤

for some i, j 2 [k]. Let x ⌧ y in �0(R). Suppose that there exists r 2 [k]

such that xr 2 Z(Znr)
⇤ and xi = 0 for each i 2 [k] \ {r}. Also, yi 2 U(Zni)

and yr 2 Z(Znr)
⇤ for each i 2 [k] \ {r}. Then (xr) ( (yr). If there exists

a = (a1, a2, . . . , ar, . . . , ak) such that a ⇠ y, then (yr) ( (ar). It follows that

(xr) ( (yr) ( (ar). Consequently, a ⌧ x in �0(R). Therefore, d(x, y) > 2.

Consider z = (z1, z2, . . . , zk) and z
0 = (z01, z

0
2, . . . , z

0
k) 2 R such that

zi =

8
><

>:

1 if xi = 0,

0 if xi 2 Z(Zni)
⇤

and

z
0
i =

8
><

>:

0 if yi 2 U(Zni),

1 if yi 2 Z(Zni)
⇤
.

It follows that x ⇠ z ⇠ z
0
⇠ y in �0(R). Therefore, d(x, y) = 3. Next, we claim that

if there exist t and r 2 [k] such that xt 2 Z(Znt)
⇤
, xr 2 Z(Znr)

⇤ then d(x, y)  2.
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If x ⇠ y in �0(R), then d(x, y) = 1. Next, assume that x ⌧ y in �0(R). Since

x ⌧ y, we have (x) ( (y). If there exists i1 2 [k] such that xi1 , yi1 2 Z(Zni1
)⇤,

then take r = i1. Now consider z = (z1, z2, . . . , zk) 2 R such that zt = 0, zr = 1

and, for i 6= {t, r} whenever yi 2 U(Zni) take zi = 0 and, whenever yi 2 Z(Zni)
⇤

then choose zi = 1. It follows that x ⇠ z ⇠ y in �0(R). Therefore, d(x, y)  2.

Case-4. xi 2 Z(Zni)
⇤ and xj 2 U(Znj) for some i, j 2 [k]. Let yi 2 Z(Zni)

⇤

and yj 2 U(Znj) for some i, j 2 [k]. If x ⇠ y in �0(R), then d(x, y) = 1. Let

x ⌧ y in �0(R). Then choose z = (z1, z2, . . . , zk) 2 R such that zi = 0 whenever

xi 2 U(Zni), and zj = 1 whenever xj 2 Z(Znj)
⇤ for some i, j 2 [k]. It follows that

d(x, y) = 2. Next, let yi 2 Z(Zni)
⇤
, yj 2 U(Znj) and yl = 0 for some i, j 2 [k].

If x ⌧ y in �0(R), then choose z = (z1, z2, . . . , zk) such that zi = 1 whenever

xi 2 Z(Zni)
⇤, and zj = 0 whenever xj 2 U(Znj) for some i, j 2 [k]. Therefore,

d(x, y) = 2.

Case-5. xi 2 Z(Zni)
⇤
, xj 2 U(Znj) and xl = 0 for some i, j, l 2 [k]. Assume that

yi 2 Z(Zni)
⇤
, yj 2 U(Znj) and yl = 0 for some i, j, l 2 [k]. If x ⇠ y in �0(R), then

d(x, y) = 1. Otherwise, choose z = (z1, z2, . . . , zk) 2 R as follows

zi =

8
><

>:

0 if xi 2 Z(Zni)
⇤ and xi 2 U(Zni),

1 if xi = 0.

Then x ⇠ z ⇠ y in �0(R). It follows that d(x, y) = 2.

In view of Lemma 2.1.6, now we calculate the Wiener index of �0(R), where

R ⇠= Zp
m1
1

⇥Zp
m2
2

⇥ · · ·⇥Zp
mk
k

. Let x = (xj1
1 , x

j2
2 , . . . , x

jk
k ) and y = (yl11 , y

l2
2 , . . . , y

lk
k )

be the representatives of two distinct equivalence classes X
j1
1 ⇥ X

j2
2 ⇥ · · · ⇥ X

jk
k

and X
l1
1 ⇥X

l2
2 ⇥ · · ·⇥X

lk
k , respectively.

Theorem 2.1.7. The Wiener index of the cozero-divisor graph �0(R), where R ⇠=
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Zp
m1
1

⇥ Zp
m2
2

⇥ · · ·⇥ Zp
mk
k

, is given below:

W (�0(R)) = 2
X

(x
j1
1 ,x

j2
2 ,...x

jk
k )2⌥0

✓Qk
i=1
ji�1

(pmi�ji+1
i � p

mi�ji
i )

2

◆

+
X

x⇠y

0

B@
kY

i=1
ji�1

(pmi�ji+1
i � p

mi�ji
i )

1

CA

0

B@
kY

i=1
ji�1

(pmi�li+1
i � p

mi�li
i )

1

CA

+ 2
X

x⌧y
{x,y}/2Sr

0

B@
kY

i=1
ji�1

(pmi�ji+1
i � p

mi�ji
i )

1

CA

0

B@
kY

i=1
ji�1

(pmi�li+1
i � p

mi�li
i )

1

CA

+ 3
X

{x,y}2Sr

0

B@
kY

i=1
ji�1

(pmi�ji+1
i � p

ni�ji
i )

1

CA

0

B@
kY

i=1
ji�1

(pmi�li+1
i � p

mi�li
i )

1

CA .

In the following example, we compute the Wiener index of the �0(R), for a

specific ring R.

Example 2.1.8. Let R ⇠= Z2⇥Z4⇥Z9. Then |X
0
1 | = 1, |X0

2 | = 1, |X0
3 | = 1, |X1

1 | =

1, |X1
2 | = 2, |X1

3 | = 6, |X2
1 | = 0, |X2

2 | = 1 and |X
2
3 | = 2. Let Y1 = X

0
1 ⇥X

0
2 ⇥X

1
3 ,

Y2 = X
0
1 ⇥X

0
2 ⇥X

2
3 , Y3 = X

0
1 ⇥X

1
2 ⇥X

0
3 , Y4 = X

0
1 ⇥X

2
2 ⇥X

0
3 , Y5 = X

0
1 ⇥X

1
2 ⇥X

1
3 ,

Y6 = X
0
1 ⇥X

2
2 ⇥X

1
3 , Y7 = X

0
1 ⇥X

1
2 ⇥X

2
3 , Y8 = X

0
1 ⇥X

2
2 ⇥X

2
3 , Y9 = X

1
1 ⇥X

0
2 ⇥X

0
3 ,

Y10 = X
1
1⇥X

0
2⇥X

1
3 , Y11 = X

1
1⇥X

0
2⇥X

2
3 , Y12 = X

1
1⇥X

1
2⇥X

0
3 , Y13 = X

1
1⇥X

1
2⇥X

2
3 ,

Y14 = X
1
1 ⇥X

2
2 ⇥X

0
3 , Y15 = X

1
1 ⇥X

2
2 ⇥X

1
3 and Y16 = X

1
1 ⇥X

2
2 ⇥X

2
3 . Then S3 =

{{Y2, Y13}}, S2 = {{Y4, Y15}} and the pair of sets whose elements are at distance

two {{Y1, Y2}, {Y1, Y5}, {Y1, Y6}, {Y1, Y10}, {Y1, Y15}, {Y2, Y5}, {Y2, Y6}, {Y2, Y7},

{Y2, Y8}, {Y2, Y10}, {Y2, Y11}, {Y2, Y15}, {Y2, Y16}, {Y3, Y4}, {Y3, Y5}, {Y3, Y7},

{Y3, Y12}, {Y3, Y13}, {Y4, Y5}, {Y4, Y6}, {Y4, Y7}, {Y4, Y8}, {Y4, Y12}, {Y4, Y13},

{Y4, Y14}, {Y4, Y16}, {Y5, Y6}, {Y5, Y7}, {Y5, Y8}, {Y6, Y8}, {Y6, Y15}, {Y7, Y8}, {Y7, Y13},

{Y8, Y13}, {Y8, Y15}, {Y8, Y16}, {Y9, Y10}, {Y9, Y11}, {Y9, Y12}, {Y9, Y13}, {Y9, Y14}, {Y9, Y15},

{Y9, Y16}, {Y10, Y11}, {Y10, Y15}, {Y11, Y13}, {Y11, Y15}, {Y11, Y16}, {Y12, Y13}, {Y12, Y14},

{Y13, Y14}, {Y13, Y16}, {Y14, Y15}, {Y14, Y16}, {Y15, Y16}}.
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Thus, the Wiener index of the cozero-divisor graph of the ring Z2 ⇥Z4 ⇥Z9 is

W (�0(Z2 ⇥ Z4 ⇥ Z9)) = 2⇥
1

2
[30 + 2 + 2 + 0 + 132 + 30 + 12 + 2 + 0 + 30 + 2 + 2

+ 12 + 0 + 30 + 2] + [6(2 + 1 + 4 + 2 + 1 + 2 + 2 + 4 + 1 + 2)

+ 2(2 + 1 + 1 + 2 + 1) + 2(6 + 2 + 1 + 6 + 2 + 1 + 6 + 2)

+ (1 + 6 + 2) + 12(1 + 6 + 2 + 2 + 4 + 1 + 6 + 2) + 6(4 + 1 + 6

+ 2 + 2 + 4 + 1 + 2) + 4(1 + 6 + 2 + 2 + 1 + 6 + 2) + 2(1 + 6+

2 + 2 + 1) + (0) + 6(2 + 4 + 1 + 2) + 2(2 + 1) + 2(6 + 2) + 4(6)

+ (0)] + 2[6(2 + 12 + 6 + 6 + 6) + 2(12 + 6 + 4 + 2 + 6 + 2

+ 6 + 2) + 2(1 + 12 + 4 + 2 + 4) + (12 + 6 + 4 + 2 + 2 + 4

+ 1 + 2) + 12(6 + 4 + 2) + 6(2 + 6) + 4(2 + 4) + 2(4 + 6 + 2)

+ (6 + 2 + 2 + 4 + 1 + 6 + 2) + 6(2 + 6) + 2(4 + 6 + 2)

+ 2(4 + 1) + 4(1 + 2) + (6 + 2) + 6(2)] + 3[(2⇥ 4) + (1⇥ 6)]

= 2611.

2.1.2 The Wiener Index of Cozero-divisor Graph of Re-

duced ring

In this subsection, we obtain the Wiener index of the cozero-divisor graph of a finite

commutative reduced ring. Let R be a reduced ring i.e. R ⇠= Fq1 ⇥ Fq2 ⇥ · · ·⇥ Fqk

with k � 2. Notice that, for x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) 2 R such

that (x) = (y), we have xi = 0 if and only if yi = 0 for each i. For i1, i2, . . . , ir 2 [k],

define

X{i1,i2,...,ir} = {(x1, x2, . . . , xk) 2 R : only xi1 , xi2 , . . . , xir are non-zero}.

Note that the sets XA, where A is a non-empty proper subset of [k], are the

equivalence classes under the relation ⌘. We write xA by the representative of

equivalence class XA. Now we obtain the possible distances between the vertices

of ⌥0(R).
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Lemma 2.1.9. For the distinct vertices xA and xB of ⌥0(R), we have

d⌥0(R)(xA, xB) =

8
><

>:

1 if A * B and B * A

2 otherwise.

Proof. First assume that A * B and B * A. Then (xA) * (xB) and (xB) * (xA).

It follows that d⌥0(xA, xB) = 1. Now without loss of generality let A ( B. Then

there exists i 2 [k] such that i /2 B and so i /2 A. Then by Lemma 2.1.1, we have

xA ⇠ x{i} ⇠ xB. Thus, d⌥0(xA, xB) = 2.

For distinct A,B ( [k], we define

D1 = {{A,B} : A * B} and D2 = {{A,B} : A ( B}.

Using Theorem 2.1.5 and the sets D1 and D2, we obtain the Wiener index of the

cozero-divisor �0(R) of a reduced ring R in the following theorem.

Theorem 2.1.10. The Wiener index of the cozero-divisor graph of a finite com-

mutative reduced ring R ⇠= Fq1 ⇥ Fq2 ⇥ · · ·⇥ Fqk , k � 2, is given by

W (�0(R)) = 2
X

A⇢[k]

✓Q
i2A (qi � 1)

2

◆
+

X

{A,B}2D1

 
Y

i2A

(qi � 1)

! 
Y

j2B

(qj � 1)

!

+ 2
X

{A,B}2D2

 
Y

i2A

(qi � 1)

! 
Y

j2B

(qj � 1)

!
.

Proof. The proof follows from Lemma 2.1.9.

Now we provide few examples to compute the Wiener index of the cozero-

divisor graph of some finite reduced rings.

Example 2.1.11. Let R = Zpq
⇠= Zp ⇥Zq, where p, q are distinct prime numbers.

Then we have two distinct equivalence classes, X{1} = {(a, 0) : a 2 Zp \ {0}}

and X{2} = {(0, b) : b 2 Zq \ {0}}, of the equivalence relation ⌘. Moreover,

D1 = {{{1}, {2}}} and D2 = ;. Note that |X{1}| = p � 1 and |X{2}| = q � 1.

Consequently, by Theorem 2.1.10, we get
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W (�0(Zpq)) = (p�1)(p�2)+(q�1)(q�2)+(p�1)(q�1) = p
2+q

2
�4p�4q+pq+5.

Example 2.1.12. Let R = Zpqr
⇠= Zp ⇥ Zq ⇥ Zr, where p, q, r are distinct prime

numbers. For a 2 Zp \ {0}, b 2 Zq \ {0} and c 2 Zq \ {0}, we have the equiva-

lence classes : X{1} = {(a, 0, 0)}, X{2} = {(0, b, 0)}, X{3} = {(0, 0, c)}, X{1,2} =

{(a, b, 0)}, X{1,3} = {(a, 0, c)}, X{2,3} = {(0, b, c)}. Moreover,

D1 =
�
{{1}, {2}}, {{1}, {3}}, {{2}, {3}}, {{1, 2}, {1, 3}}, {{1, 2}, {2, 3}},

{{1, 3}, {2, 3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}
 
and

D2 =
�
{{1}, {1, 2}}, {{1}, {1, 3}}, {{2}, {1, 2}}, {{2}, {2, 3}}, {{3}, {1, 3}},

{{3}, {2, 3}}
 
.

Also, |X{1}| = (p� 1), |X{2}| = (q � 1), |X{3}| = (r � 1), |X{1,2}| = (p� 1)(q � 1),

|X{1,3}| = (p� 1)(r � 1), |X{2,3}| = (q � 1)(r � 1). Then, by Theorem 2.1.10, the

Wiener index of �0(R) is given by

W (�0(Zpqr)) = 2

✓
p� 1

2

◆
+ 2

✓
q � 1

2

◆
+ 2

✓
r � 1

2

◆
+ 2

✓
(p� 1)(q � 1)

2

◆

+ 2

✓
(p� 1)(r � 1)

2

◆
+ 2

✓
(q � 1)(r � 1)

2

◆
+ (p� 1)(q � 1)

+ (p� 1)(r � 1) + (q � 1)(r � 1) + (p� 1)(q � 1)(p� 1)(r � 1)

+ (p� 1)(q � 1)(q � 1)(r � 1) + (p� 1)(r � 1)(q � 1)(r � 1)

+ (p� 1)(q � 1)(r � 1) + (q � 1)(p� 1)(r � 1) + (r � 1)(p� 1)(q � 1)

+ 2(p� 1) [(p� 1)(q � 1)] + 2(p� 1) [(p� 1)(r � 1)]

+ 2(q � 1) [(p� 1)(q � 1)] + 2(q � 1) [(q � 1)(r � 1)]

+ 2(r � 1) [(p� 1)(r � 1)] + 2(r � 1) [(q � 1)(r � 1)] .

simplifying this expression, we get

W (�0(Zpqr)) = pqr(p+ q + r � 3) + p
2
q
2 + p

2
r
2 + q

2
r
2
� p

2(q + r)� q
2(p+ r)�

r
2(p+ q)� 2(pq + pr + qr) + 4(p+ q + r)� 3.
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2.1.3 The Wiener Index of �0(Zn)

In this subsection, we obtain the Wiener index of the cozero-divisor graph of the

ring Zn for arbitrary n 2 N. The Wiener index of the cozero-divisor graph of Zn

can be deduced from the Subsection 2.1.1. But we prefer to give the independent

proof for the ring Zn because it provides us a di↵erent approach as well as some

more insight of the structure of �0(Zn) to study various aspects of �0(Zn) in the

subsequent sections.

We begin with the structure of the cozero-divisor graph �0(Zn). In view of

Remark 1.2.4, we have the following result.

Remark 2.1.13. The sets Ad1 ,Ad2 , . . . ,Adk forms a partition of the vertex set of

the graph �0(Zn). Thus, V (�0(Zn)) = Ad1 [Ad2 [ · · · [Adk .

Lemma 2.1.14. Let x 2 Adi, y 2 Adj , where i, j 2 {1, 2, . . . , ⌧(n) � 2}. Then

x ⇠ y in �0(Zn) if and only if di - dj and dj - di.

Proof. First note that in Zn, x 2 (y) if and only if y | x. Let x 2 Adi and y 2 Adj

be two distinct vertices of �0(Zn). Suppose that x ⇠ y in �0(Zn). Then x /2 (y)

and y /2 (x). If di | dj, then dj 2 (di) = (x). It follows that (y) = (dj) ✓ (x) and

so y 2 (x), which is not possible. Similarly, if dj | di, then we get x 2 (y), again

a contradiction. Thus, neither di | dj nor dj | di. Conversely, if di - dj and dj - di
then we obtain x /2 (y) and y /2 (x). It follows that x ⇠ y. The result holds.

For distinct vertices x, y of Adi , by Remark 1.2.4, clearly x 2 (y) and y 2 (x). It

follows that x ⌧ y in �0(Zn). Using Lemma 1.2.5, we have the following corollary.

Corollary 2.1.15. The following statements hold:

(i) For i 2 {1, 2, . . . , ⌧(n) � 2}, the induced subgraph �0(Adi) of �0(Zn) is iso-

morphic to K�( n
di

).
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(ii) For i, j 2 {1, 2, . . . , ⌧(n)� 2} and i 6= j, a vertex of Adi is adjacent to either

all or none of the vertices of Adj .

Thus, the partition Ad1 ,Ad2 , . . . ,Ad⌧(n)�2
of V (�0(Zn)) is an equitable partition

in such a way that every vertex of the Adi has equal number of neighbors in Adj

for every i, j 2 {1, 2, . . . , ⌧(n)� 2}.

We define ⌥0
n by the simple undirected graph whose vertex set is the set of all

proper divisors d1, d2, . . . , dk of n and two distinct vertices di and dj are adjacent

if and only if di - dj and dj - di.

Lemma 2.1.16. For a prime p, the graph ⌥0
n is connected if and only if n 6= p

t,

where t � 3.

Proof. Suppose that ⌥0
n is a connected graph and V (⌥0

n) = {d1, d2, . . . , dk}. If

n = p
t for t � 3, then V (⌥0

pt) = {p, p
2
, . . . , p

t�1
}. The definition of ⌥0

n gives that

⌥0
pt is a null graph on t � 1 vertices. Thus, ⌥0

n is not connected; a contradiction.

Conversely, suppose that n 6= p
t, where t � 3. If n = p

t for t 2 {1, 2}, then

there is nothing to prove because ⌥0
p is an empty graph whereas ⌥0

p2 is a graph

with one vertex only. We may now suppose that n = p
n1
1 p

n2
2 · · · p

nm
m , where pi’s

are distinct primes and m � 2. Now let d, d
0
2 V (⌥0

n). If d - d0 and d
0 - d, then

d ⇠ d
0. Without loss of generality, assume that d | d

0 with d = p
�1
1 p

�2
2 · · · p

�m
m and

d
0 = p

↵1
1 p

↵2
2 · · · p

↵m
m . Note that ↵i, �i 2 N [ {0} such that �i  ↵i. Since d

0 is a

proper divisor of n there exists r 2 {1, 2, . . . ,m}, where ↵r  nr, such that pnr
r - d0

and d
0 - pnr

r . Clearly, pnr
r - d. If d - pnr

r , then d ⇠ p
nr
r ⇠ d

0. If d | p
nr
r , then there

exists s 2 {1, 2, . . . ,m} \ {r} such that d - ps and ps - d. Also, pnr
r - ps and ps - pnr

r .

It follows that d0 ⇠ p
nr
r ⇠ ps ⇠ d. Hence, the graph ⌥0

n is connected.

Lemma 2.1.17. �0(Zn) = ⌥0
n[�

0(Ad1),�
0(Ad2), . . . ,�

0(Adk)], where d1, d2, . . . , dk

are all the proper divisors of n.
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Proof. Replace the vertex di of ⌥0
n by �0(Adi) for 1  i  k. Consequently, the

result can be obtained by using Lemma 2.1.14.

Lemma 2.1.18. For a prime p, we have �0(Zn) is connected if and only if either

n = 4 or n 6= p
t, where t � 2.

Proof. Suppose that �0(Zn) is a connected graph and n 6= 4. If possible, let n = p
t

for t � 2, then note that V (�0(Zn)) = �0(Ap)[�0(Ap2)[· · ·[�0(Apt�1) and so x ⌧ y

for any x, y 2 V (�0(Zn)) (see Lemma 2.1.14 and Corollary 2.1.15). Consequently,

�0(Zn) is a null graph; a contradiction. Thus, n 6= p
t, where t � 2. Converse

follows by the proof of Lemma 2.1.16 and Lemma 2.1.17.

Example 2.1.19. The cozero-divisor graph �0(Z30) is shown in Figure 2.1

A2
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2

4
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1416

22
26

28

5

25
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24
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20

Figure 2.1: The graph �0(Z30)
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2 3

6

5

10

15

Figure 2.2: The graph ⌥0
30

By Lemma 2.1.17, note that �0(Z30) = ⌥0
30[�

0(A2),�0(A3),�0(A5),�0(A6),�0(A10),

�0(A15)], where ⌥0
30 is shown in Figure 2.2 and �0(A2) = K8, �0(A3) = K4 =

�0(A6), �0(A5) = K2 = �0(A10), �0(A15) = K1.

Theorem 2.1.20. For 1  i  ⌧(n) � 2, let di’s be the proper divisors of n. If

n = p1p2 · · · pk, where pi’s are distinct primes and 2  k 2 N, then

W (�0(Zn)) =
2k�2X

i=1

�(
n

di
)

✓
�(

n

di
)� 1

◆
+

1

2

X

di-dj
dj -di

�(
n

di
)�(

n

dj
) + 2

X

di|dj
i 6=j

�(
n

di
)�(

n

dj
).

Proof. To determine the Wiener index of �0(Zn), we first obtain the distances

between the vertices of each Adi and two distinct Adi ’s, respectively. For a proper

divisor di of n, let x, y 2 Adi . Since �
0(Zn) is connected, by Corollary 2.1.15, there

exists a proper divisor dr of n such that x ⇠ z for each x 2 Adi and z 2 Adr .

Consequently, d(x, y) = 2 for any two distinct x, y 2 Adi . Now we obtain the

distances between the vertices of any two distinct Adi ’s through the following

cases.

Case-1. Neither di | dj nor dj | di. By Lemma 2.1.14, d(x, y) = 1 for every

x 2 Adi and y 2 Adj .

Case-2. di | dj. For x 2 Adi and y 2 Adj we have x ⌧ y. Without loss of
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generality, assume that dj = p1p2 · · · pmdi, where 1  m  k � 2. Since dj is a

proper divisor of n there exists a prime p such that p - dj. Consequently, p - di. It

follows that for x 2 Adi and y 2 Adj there exists a z 2 Ap such that x ⇠ z ⇠ y.

Thus, d(x, y) = 2 for each x 2 Adi and y 2 Adj .

Thus, in view of all the possible distances between the vertices of �0(Zn), we

get

W (�0(Zn)) =
1

2

X

u2V (�0(Zn))

X

v2V (�0(Zn))

d(u, v)

=
1

2

2

664
2k�2X

i=1

2|Adi | (|Adi |� 1) +
X

di-dj
dj -di

|Adi ||Adj |

3

775 + 2
X

di|dj
i 6=j

|Adi ||Adj |

=
2k�2X

i=1

�(
n

di
)

✓
�(

n

di
)� 1

◆
+

1

2

X

di-dj
dj -di

�(
n

di
)�(

n

dj
) + 2

X

di|dj
i 6=j

�(
n

di
)�(

n

dj
).

Corollary 2.1.21. If n = pq, where p, q are distinct primes, then

W (�0(Zn)) = (p� 1)(q � 1) + (p� 1)(p� 2) + (q � 1)(q � 2).

Theorem 2.1.22. Let n = p
n1
1 p

n2
2 · · · p

nr
r · · · p

nk
k with k � 2, where pi’s are distinct

primes and let D = {d1, d2, . . . , d⌧(n)�2} be the set of all proper divisors of n. For

di | dj, define

A = {(di, dj) 2 D ⇥D | di 6= p
s
r};

B = {(di, dj) 2 D ⇥D | di = p
s
r and

n

dj
6= p

t
r};

C = {(di, dj) 2 D ⇥D | di = p
s
r and

n

dj
= p

t
r}.
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Then

W (�0(Zn)) =
⌧(n)�2X

i=1

�(
n

di
)

✓
�(

n

di
)� 1

◆
+

1

2

X

di-dj
dj -di

�(
n

di
)�(

n

dj
)

+ 2
X

(di,dj)2A

�(
n

di
)�(

n

dj
) + 2

X

(di,dj)2B

�(
n

di
)�(

n

dj
) + 3

X

(di,dj)2C

�(
n

di
)�(

n

dj
).

Proof. In view of Remark 2.1.13, first we obtain all the possible distances between

the vertices of Adi and Adj , where di and dj are proper divisors of n. If i = j, then

by the proof of Theorem 2.1.20, we get d(x, y) = 2 for any two distinct x, y 2 Adi .

Now suppose that i 6= j. If di - dj and dj - di, then by Lemma 2.1.14, we get

d(x, y) = 1 for every x 2 Adi and y 2 Adj . If di | dj, then we obtain the possible

distances through the following cases.

Case-1. (di, dj) 2 A. Since di | dj, we have x ⌧ y for any x 2 Adi and y 2 Adj .

Note that di 6= p
s
r implies that di = p

�1
1 p

�2
2 · · · p

�m
m for some �i’s 2 N [ {0} and

m � 2. Consequently, dj = p
↵1
1 p

↵2
2 · · · p

↵m
m for some ↵i’s 2 N [ {0}. Since dj is a

proper divisor of n there exists l 2 {1, 2, . . . , k} such that pnl
l - dj. Also, pnl

l - di.

Further, m � 2 follows that di - pnl
l and dj - pnl

l . Now for any x 2 Adi , y 2 Adj

there exists a z 2 Ap
nl
l

such that x ⇠ z ⇠ y. Thus d(x, y) = 2 for every x 2 Adi

and y 2 Adj .

Case-2. di = p
s
r for some r 2 {1, 2, . . . , k} and 1  s  nr. Suppose x 2 Adi and

y 2 Adj . Then we obtain d(x, y) in the following subcases:

Subcase-2.1. (di, dj) 2 B. Suppose dj = p
↵1
1 p

↵2
2 · · · p

↵r
r · · · p

↵k
k . Since

n

dj
6= p

t
r

there exists a prime pm 2 {p1, p2, . . . , pk} \ {pr} and ↵m  nm such that pnm
m - dj.

Consequently, pnm
m - di. Moreover, di - pnm

m and dj - pnm
m . Thus, for every x 2 Adi

and y 2 Adj , we get x ⇠ z ⇠ y for some z 2 Apnm
m

. Hence, d(x, y) = 2 for each

x 2 Adi and y 2 Adj .

Subcase-2.2. (di, dj) 2 C. Then dj = p
n1
1 p

n2
2 · · · p

↵r
r · · · p

nk
k , where nr � ↵r =

t � 1. Since di | dj, for each x 2 Adi and y 2 Adj , we have d(x, y) � 2 (cf. Lemma
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2.1.14). First, we show that d(x, y) > 2 for any x 2 Adi and y 2 Adj . In this

connection, it is su�cient to prove that for any proper divisor d of n, we have

either d | dj or di | d. Suppose that d - dj. Then d = p
�1
1 p

�2
2 · · · p

�r
r · · · p

�k
k together

with �r > ↵r. Since p
s
r = di | dj, we get s  ↵r < �r. Consequently, di | d.

Since n = p
n1
1 p

n2
2 · · · p

nr
r · · · p

nk
k with k � 2, there exists a prime q 6= pr such

that q | n. Clearly, q - di and di - q. Also, pnr
r - q and q - pnr

r . Since ↵r < nr,

we obtain dj - pnr
r and p

nr
r - dj. Thus, in view of Lemma 2.1.14, for any x 2 Adi

and y 2 Adj , there exist z 2 Aq and w 2 Apnr
r

such that x ⇠ z ⇠ w ⇠ y. Hence,

d(x, y) = 3 for every x 2 Adi and y 2 Adj . In view of the cases and arguments

discussed in this proof, we have

W (�0(Zn)) =
1

2

X

u2V (�0(Zn))

X

v2V (�0(Zn)

d(u, v)

=
1

2

2

664

⌧(n)�2X

i=1

2|Adi | (|Adi |� 1) +
X

di-dj
dj -di

|Adi ||Adj |

3

775 + 2
X

(di,dj)2A

|Adi ||Adj |

+ 2
X

(di,dj)2B

|Adi ||Adj | + 3
X

(di,dj)2C

|Adi ||Adj |

=
⌧(n)�2X

i=1

�(
n

di
)

✓
�(

n

di
)� 1

◆
+

1

2

X

di-dj
dj -di

�(
n

di
)�(

n

dj
) + 2

X

(di,dj)2A

�(
n

di
)�(

n

dj
)

+ 2
X

(di,dj)2B

�(
n

di
)�(

n

dj
) + 3

X

(di,dj)2C

�(
n

di
)�(

n

dj
).

Based on all the possible distances obtained in this subsection, the following

proposition is easy to observe.
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Proposition 2.1.23. The diameter of �0(Zn) is given below:

diam(�0(Zn)) =

8
>>>>><

>>>>>:

0 n = 4,

2 n = p1p2 · · · pk, k � 2

3 otherwise.

Now we conclude this subsection with an illustration of Theorem 2.1.22 for the

ring Z72.

Example 2.1.24. Consider n = 23 · 32 = 72. Then the number of proper divisor

⌧(n) of n is
Qk

i=1(ni + 1) � 2 = 10. Therefore, D = {2, 22, 23, 3, 32, 2 · 3, 22 ·

3, 23 · 3, 2 · 32, 22 · 32}. Let d1 = 2, d2 = 22, d3 = 23, d4 = 3, d5 = 32, d6 =

2 · 3, d7 = 22 · 3, d8 = 23 · 3, d9 = 2 · 32, d10 = 22 · 32. By Lemma 1.2.5, we

obtain |Ad1 | = 12, |Ad2 | = 6, |Ad3 | = 6, |Ad4 | = 8, |Ad5 | = 4, |Ad6 | = 4, |Ad7 | =

2, |Ad8 | = 2, |Ad9 | = 2, |Ad10 | = 1. Now

1

2

10X

i=1

2|Adi | (|Adi |� 1) = [132 + 30 + 30 + 56 + 12 + 12 + 2 + 2 + 2 + 0] = 278

and

1

2

P
di-dj
dj -di

|Adi ||Adj | = [96 + 48 + 48 + 24 + 24 + 12 + 48 + 24 + 24 + 12 + 12

+6 + 16 + 8 + 8 + 4 + 4 + 2] = 420

The sets A, B and C defined in Theorem 2.1.22 are

A = {(d6, d7), (d6, d8), (d6, d9), (d6, d10), (d7, d8), (d7, d10), (d9, d10)};

B = {(d1, d2), (d1, d3), (d1, d6), (d1, d7), (d1, d8), (d2, d3), (d2, d7), (d2, d8), (d3, d8),

(d4, d5), (d4, d6), (d4, d7), (d4, d9), (d4, d10), (d5, d9), (d5, d10)};

C = {(d1, d9), (d1, d10), (d2, d10), (d4, d8)}.
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Consequently,

2
X

(di,dj)2A

|Adi ||Adj | = 2[8 + 8 + 8 + 4 + 4 + 2 + 2] = 72

2
X

(di,dj)2B

|Adi ||Adj | = 2[72 + 72 + 48 + 24 + 24 + 36 + 12 + 12 + 12 + 32 + 32

+ 16 + 16 + 8 + 8 + 4] = 856

3
X

(di,dj)2C

|Adi ||Adj | = 3[24 + 12 + 6 + 16] = 174

Hence, the Wiener index of �0(Z72) is given by

W (�(Z72)) =
1

2

2

664

⌧(n)�2X

i=1

2|Adi |
�
|Adj |� 1

�
+

X

di-dj
dj -di

|Adi ||Adj |

3

775 + 2
X

(di,dj)2A

|Adi ||Adj |

+ 2
X

(di,dj)2B

|Adi ||Adj | + 3
X

(di,dj)2C

|Adi ||Adj |

= 278 + 420 + 72 + 856 + 174 = 1800.

2.1.4 SageMath Code

In this subsection, we produce a SAGE code to compute the Wiener index of the

cozero-divisor graph of ring classes considered in this chapter. On providing the

value of integer n, the following SAGE code computes the Wiener index of the

graph �0(Zn).

c o z e r o d i v i s o r g r aph=Graph ( )

E=[ ]

n=72

for i in range (n ) :

for j in range (n ) :

p=gcd ( i , n )
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q=gcd ( j , n )

i f (p%q!=0 and q%p !=0) :

E . append ( ( i , j ) )

c o z e r o d i v i s o r g r aph . add edges (E)

i f (E==[ ] ) :

V=[ ]

for i in range (1 , n ) :

i f ( gcd ( i , n ) !=1 ) :

V. append ( i )

c o z e r o d i v i s o r g r aph . add v e r t i c e s (V)

W=co z e r o d i v i s o r g r aph . w iener index ( ) ;

i f (W==oo ) :

print ( ”Wiener Index undef ined f o r Nul l Graph” )

else :

print ( ”Wiener Index : ” , W)

Using the given code, in the Table 2.1, we obtain the Wiener index of �0(Zn)

for some values of n.

n 100 500 1000 1500 2000 2500

W (�0(Zn)) 2954 77174 306202 930248 1222530 1946274

Table 2.1: Wiener index of �0(Zn)

Let R be a reduced ring i.e. R ⇠= Fq1 ⇥ Fq2 ⇥ · · · ⇥ Fqn , where Fqi is a field

with qi elements. The following code determines the Wiener index of �0(R) on

providing the values of the field size qi (1  i  n).

f i e l d o r d e r s =[3 ,5 ,7 ]

P=Subsets (range ( len ( f i e l d o r d e r s ) ) ) [ 1 : −1 ]
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P=[Set ( i ) for i in P]

D1=[ ]

D2=[ ]

for i in P:

for j in P:

i f (not ( i . i s s u b s e t ( j ) or j . i s s u b s e t ( i ) ) and P. index ( i ) > P. index ( j ) ) :

D1 . append ( [ i , j ] )

i f ( i . i s s u b s e t ( j ) and i != j ) :

D2 . append ( [ i , j ] )

pa r t i a l sum=0

for i in P:

sum pp=1

for j in i :

sum pp ∗= f i e l d o r d e r s [ j ]−1

par t i a l sum +=((sum pp ∗( sum pp−1))/2)

D1 sum=0

for i in D1 :

D1 pp=1

for j in i [ 0 ] :

D1 pp ∗= f i e l d o r d e r s [ j ]−1

for k in i [ 1 ] :

D1 pp ∗= f i e l d o r d e r s [ k]−1

D1 sum += D1 pp

D2 sum=0

for i in D2 :

D2 pp=1

for j in i [ 0 ] :

D2 pp ∗= f i e l d o r d e r s [ j ]−1

for k in i [ 1 ] :

D2 pp ∗= f i e l d o r d e r s [ k]−1

D2 sum += D2 pp

W = 2∗ par t i a l sum + D1 sum + 2∗D2 sum

print ( ”Wiener Index : ” , W)

Using the given code, in the following tables, we obtain the Wiener index

of the cozero-divisor graphs of the reduced rings Fq1 ⇥ Fq2 (see Table 2.2) and
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Fq1 ⇥ Fq2 ⇥ Fq3 (see Table 2.3), respectively.

(q1, q2) (9, 25) (49, 81) (101, 121) (125, 139) (163, 169) (289, 343)

W (�0(Fq1 ⇥ Fq2)) 800 12416 36180 51270 81354 297774

Table 2.2: Wiener index of �0(Fq1 ⇥ Fq2)

(q1, q2, q3) (7, 8, 13) (9, 25, 49) (53, 64, 81) (83, 101, 121) (125, 131, 169) (289, 343, 361)

W (�0(Fq1 ⇥ Fq2 ⇥ Fq3 )) 35196 2500400 108637254 620456582 2355211790 71251552134

Table 2.3: Wiener index of �0(Fq1 ⇥ Fq2 ⇥ Fq3)

Let R ⇠= Zp
m1
1

⇥ Zp
m2
2

⇥ · · · ⇥ Zp
mk
k

. Then the following SAGE code gives the

value of W (�0(R)) after providing the values of pmi
i (1  i  k), where each pi is a

prime number.

orde r s = [ 2 , 4 , 9 ]

A = ca r t e s i an p roduc t ( [ range ( i ) for i in orde r s ] ) . l i s t ( )

un i t s = [{ i for i in range (1 , j ) i f gcd ( i , j ) == 1} for j in orde r s ]

def contQ ( l s t 1 , l s t 2 ) :

f l a g = True

for i in range ( len ( o rde r s ) ) :

p=gcd ( l s t 1 [ i ] , o rde r s [ i ] )

q=gcd ( l s t 2 [ i ] , o rde r s [ i ] )

i f (not ( l s t 1 [ i ]==0 or { l s t 2 [ i ] } . i s s u b s e t ( un i t s [ i ] ) or p%q==0)):

f l a g = False

return f l a g

E=[ ]

for i in A:

for j in A:

i f (not ( contQ ( i , j ) or contQ ( j , i ) )and A. index ( i ) > A. index ( j ) ) :

E . append ( [ i , j ] )
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G = Graph ( )

G. add edges (E)

W=G. wiener index ( )

print ( ”Wiener Index : ” , W)

Using the given code, we obtain the Wiener index of the cozero-divisor graph

of the ring R ⇠= Zp
m1
1

⇥ Zp
m2
2

⇥ · · ·⇥ Zp
mk
k

(see Table 2.4).

R W (�0(R))

Z4 ⇥ Z9 420

Z9 ⇥ Z25 8808

Z16 ⇥ Z25 48870

Z27 ⇥ Z49 268022

Z2 ⇥ Z4 ⇥ Z4 521

Z5 ⇥ Z7 ⇥ Z11 14948

Z8 ⇥ Z9 ⇥ Z16 167769

Z4 ⇥ Z9 ⇥ Z25 327394

Z2 ⇥ Z4 ⇥ Z9 ⇥ Z9 232937

Z3 ⇥ Z4 ⇥ Z8 ⇥ Z8 333963

Table 2.4: Wiener index of �0(R)

2.2 Laplacian Spectrum of �0(Zn)

In this section, we investigated the Laplacian spectrum of the �0(Zn) for various

n. Consider d1, d2, . . . , dk as all the proper divisors of n. For 1  i  k, we give

the weight �( n
di
) = |Adi | to the vertex di of the graph ⌥0

n. Define the integer

Ddj =
P

di2N⌥0
n
(dj)

�( n
di
)
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The k ⇥ k weighted Laplacian matrix L(⌥0
n) of ⌥0

n defined in Theorem 1.3.17 is

given by

L(⌥0
n) =

2

6666664

Dd1 �l1,2 · · · �l1,k

�l2,1 Dd2 · · · �l2,k

· · · · · · · · · · · ·

�lk,1 �lk,2 · · · Ddk

3

7777775
(2.1)

where

li,j =

8
><

>:

�( n
dj
) if di ⇠ dj in ⌥0

n;

0 otherwise.

Theorem 2.2.1. The Laplacian spectrum of �0(Zn) is given by

�L(�0(Zn)) =
kS

i=1
(Ddi + (�L(�0(Adi)) \ {0}))

S
�(L(⌥0

n)),

where Ddi + (�L(�0(Adi)) \ {0}) represents that Ddi is added to each element of

the multiset (�L(�0(Adi)) \ {0}).

Proof. By Lemma 2.1.17, �0(Zn) = ⌥0
n[�

0(Ad1),�
0(Ad2), . . . ,�

0(Adk)]. Consequently,

by Theorem 1.3.17 and Remark 1.3.18, the result holds.

If n = p
t, where t > 1, then the graph �0(Zn) is a null graph. Let n 6= p

t

for any t 2 N. Then by Lemma 2.1.16, ⌥0
n is connected graph so that Ddi > 0.

By Theorem 2.2.1, out of n � �(n) � 1 Laplacian eigenvalues of �0(Zn) note that

n � �(n) � 1 � k eigenvalues are non-zero integers. The remaining k Laplacian

eigenvalues of �0(Zn) are the roots of the characteristic equation of the matrix

L(⌥0
n) given in equation (2.1).

Lemma 2.2.2. Let n = pq be a product of two distinct primes. Then the Laplacian

spectrum of �0(Zn) is given by
0

@0 p+ q � 2 p� 1 q � 1

1 1 q � 2 p� 2

1

A .
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Proof. By Lemma 2.1.17, we have �0(Zpq) = ⌥0
pq[�

0(Ap),�0(Aq)], where ⌥0
pq = K2,

�0(Ap) = K�(q) and �0(Aq) = K�(p) (cf. Lemma 1.2.5 and Corollary 2.1.15).

Consequently, by Theorem 2.2.1, the Laplacian spectrum of �0(Zpq) is

�L(�
0(Zpq)) = (Dp + (�L(�

0(Ap)) \ {0}))
[

(Dq + (�L(�
0(Aq)) \ {0}))

[
�(L(⌥0

pq))

=

0

@p� 1 q � 1

q � 2 p� 2

1

A
[
�(L(⌥0

pq)).

Then the matrix

L(⌥0
pq) =

2

4 p� 1 �(p� 1)

�(q � 1) q � 1

3

5

has eigenvalues p+ q � 2 and 0. Thus, we have the result.

Notation 2.2.3. (�i)[µi] denotes the eigenvalue �i of L(�0(Zn)) with multiplicity µi.

Lemma 2.2.4. For distinct primes p and q, if n = p
2
q then the Laplacian eigen-

values of �0(Zn) consists of the set

n
(p2 � p)[(p�1)(q�1)�1]

, (pq � p)[p
2�p�1]

, (p2 � 1)[q�2]
, (q � 1)[p�2]

o

and the remaining eigenvalues are the roots of the characteristic polynomial

x
4
� {(p� 1)(2p+ 1) + (p+ 1)(q� 1)}x3 + {p(p� 1)2(p+ 1) + (p� 1)(p+ 1)2(q�

1) + p(q � 1)2 + (p� 1)2(q � 1)}x2
� p(p� 1)(q � 1){(p� 1)(p+ 1) + p(q � 1)}x.

Proof. First note that ⌥0
p2q is the path graph given by p ⇠ q ⇠ p

2
⇠ pq. By

Lemma 2.1.17,

�0(Zp2q) = ⌥
0
p2q[�

0(Ap),�
0(Aq),�

0(Ap2),�
0(Apq)],

where �0(Ap) = K�(pq), �0(Aq) = K�(p2), �0(Ap2) = K�(q) and �0(Apq) = K�(p).

It follows that Dp = �(p2) = p
2
� p and Dq = �(pq) + �(q) = p(q � 1), Dp2 =
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�(p2) + �(p) = p
2
� 1 and Dpq = �(q) = q � 1. Therefore, by Theorem 2.2.1, the

Laplacian spectrum of �0(Zp2q) is

�L(�
0(Zp2q)) = (Dp + (�L(�

0(Ap)) \ {0}))
[

(Dq + (�L(�
0(Aq)) \ {0}))

[
(Dp2 + (�L(�

0(Ap2)) \ {0}))
[

(Dpq + (�L(�
0(Apq)) \ {0}))

[
�(L(⌥0

p2q))

=

0

@ p
2
� p pq � p p

2
� 1 q � 1

(p� 1)(q � 1)� 1 p
2
� p� 1 q � 2 p� 2

1

A
[
�(L(⌥0

p2q)).

Thus, the remaining Laplacian eigenvalues can be obtained by the characteristic

polynomial (given in the statement) of the matrix

L(⌥0
p2q) =

2

6666664

p
2
� p �p

2 + p 0 0

�(p� 1)(q � 1) p(q � 1) �(q � 1) 0

0 �p
2 + p p

2
� 1 �p+ 1

0 0 �q + 1 q � 1

3

7777775
.

Lemma 2.2.5. For distinct primes p and q, if n = p
n1q then the Laplacian eigen-

values of �0(Zn) consists of the set

{(�(pn1))[�(p
n1�1q)�1]

, (�(pn1) + �(pn1�1))[�(p
n1�2q)�1]

,

✓
2P

i=0
�(pn1�i)

◆[�(pn1�3q)�1]

, . . . ,

✓
n1�1P
i=0

�(pn1�i)

◆[�(pn1�n1q)�1]

,

✓
n1P
i=1

�(pn1�i
q)

◆[�(pn1 )�1]

,

✓
n1P
i=2

�(pn1�i
q)

◆[�(pn1�1)�1]

, . . . , (�(q))[�(p)�1]
}.

and the remaining eigenvalues are the eigenvalues of the matrix given in equa-

tion (2.1).

Proof. Note that {p, p2, . . . , pn1 , q, pq, p
2
q, . . . , p

n1�1
q} is the vertex set of the graph

⌥0
pn1q. By Lemma 2.1.17, note that �0(Zpn1q) equals to
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⌥0
pn1q[�

0(Ap),�0(Ap2), . . . ,�0(Apn1 ),�0(Aq),�0(Apq),�0(Ap2q), . . . ,�0(Apn1�1q)],

where �0(Ap) = K�(pn1�1q), �
0(Ap2) = K�(pn1�2q), . . ., �

0(Apn1 ) = K�(q), �0(Aq) =

K�(pn1 ), �0(Apq) = K�(pn1�1), . . ., �
0(Apn1�1q) = K�(p). It follows that Dp = �(pn1),

Dp2 = �(pn1) + �(pn1�1), . . ., Dpn1 =
n1�1P
i=0

�(pn1�i), Dq =
n1P
i=1

�(pn1�i
q), Dpq =

n1P
i=2

�(pn1�i
q), . . ., Dpn1�1q = �(q). Consequently, by Theorem 2.2.1, the Laplacian

spectrum of �0(Zpn1q) is

�L(�
0(Zpn1q)) = (Dp + (�L(�

0(Ap)) \ {0}))
[

(Dp2 + (�L(�
0(Ap2)) \ {0}))

[
· · ·

[
(Dpn1 + (�L(�

0(Apn1 )) \ {0}))
[

(Dq + (�L(�
0(Aq)) \ {0}))

[
(Dpq + (�L(�

0(Apq)) \ {0}))
[

· · ·

[
(Dpn1�1q

+ (�L(�
0(Apn1�1q)) \ {0}))

[
�(L(⌥0

pn1q)).

=

0

B@
�(pn1) · · ·

n1�1P
i=0

�(pn1�i)
n1P
i=1

�(pn1�i
q)

n1P
i=2

�(pn1�i
q) · · · �(q)

�(pn1�1
q)� 1 · · · �(pn1�n1q)� 1 �(pn1)� 1 �(pn1)� 1 · · · �(p)� 1

1

CA

S
�(L(⌥0

pn1q)).

Thus, the remaining 2n1 Laplacian eigenvalues are the eigenvalues of the ma-

trix L(⌥0
pn1q) =2

666666666666664

�(pn1 ) 0 0 · · · 0 · · · · · · 0 ��(pn1 )

0
1P

i=0
�(pn1�i) 0 · · · · · · 0 · · · ��(pn1�1) ��(pn1 )

...
...

...
...

...
...

...
...

...

0 0 0 · · ·
n1�1P
i=0

�(pn1�i) ��(p) ��(p2) · · · ��(pn1 )

0 0 0 · · · ��(q) �(q) 0 · · · 0

0 · · · · · · ��(pq) ��(q) 0 �(pq) + �(q) · · · 0

...
...

...
...

...
...

...
...

...

��(pn1�1q) ��(pn1�2q) · · · · · · ��(q) 0 0 · · ·
n1P
i=1

�(pn1�iq)

3

777777777777775

where matrix L(⌥0
pn1q) is obtained by indexing the rows and columns as p, p2, . . . , pn1 ,

p
n1�1

q, . . . , pq, q.

Theorem 2.2.6. If n = p
n1q

n2, where p and q are distinct primes, then the set of
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Laplacian eigenvalues of �0(Zn) consists of

✓
n2P
i=1

�(pn1q
n2�i)

◆[�(pn1�1qn2 )�1]

,

✓
n2P
i=1

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i)

◆[�(pn1�2qn2 )�1]

,

✓
n2P
i=1

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i) +

n2P
i=1

�(pn1�2
q
n2�i)

◆[�(pn1�3qn2 )�1]

,

...✓
n2P
i=1

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i) + · · ·+

n2P
i=1

�(pqn2�i)

◆[�(qn2 )�1]

,

✓
n1P
i=1

�(pn1�i
q
n2)

◆[�(pn1qn2�1)�1]

,

✓
n1P
i=1

�(pn1�i
q
n2) +

n1P
i=1

�(pn1�i
q
n2�1)

◆[�(pn1qn2�2)�1]

,

✓
n1P
i=1

�(pn1�i
q
n2) +

n1P
i=1

�(pn1�i
q
n2�1) +

n1P
i=1

�(pn1�i
q
n2�2)

◆[�(pn1qn2�3)�1]

,

...✓
n1P
i=1

�(pn1�i
q
n2) +

n1P
i=1

�(pn1�i
q
n2�1) + · · ·+

n1P
i=1

�(pn1�i
q)

◆[�(pn1 )�1]

,

✓
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=2

�(pn1q
n2�i)

◆[�(pn1�1qn2�1)�1]

,

✓
n1P
i=3

�(pn1�i
q
n2) +

n2P
i=2

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i)

◆[�(pn1�2qn2�1)�1]

,

...✓
n2P
i=2

�(pn1q
n2�i) +

n1P
i=1

�(pn1�i
q
n2�2) +

n1P
i=1

�(pn1�i
q
n2�3) + · · ·+

n1�1P
i=1

�(pn1�i)

◆[�(qn2�1)�1]

,

✓
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=3

�(pn1q
n2�i) +

n1P
i=2

�(pn1�i
q
n2�1)

◆[�(pn1�1qn2�2)�1]

,

...✓
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=1

�(pn1�2
q
n2�i) +

n2P
i=1

�(pn1�3
q
n2�i) + · · ·+

n2�1P
i=1

�(qn2�i)

◆[�(pn1�1)�1]

,

...✓
n2�1P
i=1

�(qn2�i) + �(qn2)

◆[�(p)�1]

and the remaining (n1 + 1)(n2 + 1) � 2 eigenvalues are given by the zeros of the

characteristic polynomial of the matrix given in equation (2.1).

Proof. The set of proper divisors of n = p
n1q

n2 is
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{p, p
2
, . . . , p

n1 , q, q
2
, . . . , q

n2 , pq, p
2
q, . . . , p

n1q, pq
2
, p

2
q
2
, . . . , p

n1q
2
,

. . . , pq
n2 , p

2
q
n2 , . . . , p

n1�1
q
n2}.

By the definition of ⌥0
n, note that

• p
i
⇠ q

j for all i, j.

• p
i
⇠ p

i1q
j1 for i > i1 and j1 > 0.

• q
j
⇠ p

i
q
j1 for j > j1 and i > 0.

• If either i1 > i2, j1 < j2 or j1 > j2, i1 < i2, then p
i1q

j1 ⇠ p
i2q

j2 .

In view of Lemma 2.1.17,

�0(Zpn1qn2 ) = ⌥0
pn1qn2 [�

0(Ap),�0(Ap2), . . . ,�0(Apn1 ),�0(Aq),

�0(Aq2), . . . ,�0(Aqn2 ),�0(Apq),�0(Ap2q), . . . ,�0(Apn1q), . . . ,�0(Apqn2 ), . . . ,�0(Apn1�1qn2 )].

Therefore, by Lemma 1.2.5 and Corollary 2.1.15, we get

�0(Api) = K�(pn1�iqn2 ), where 1  i  n1,

�0(Aqj) = K�(pn1qn2�j) where 1  j  n2,

�0(Apiqj) = K�(pn1�iqn2�j).

Consequently, we have

Dp =
n2P
i=1

�(pn1q
n2�i), Dp2 =

n2P
i=1

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i),

...

Dpn1 =
n2P
i=1

�(pn1q
n2�i) +

n2P
i=1

�(pn1�1
q
n2�i) + · · ·+

n2P
i=1

�(pqn2�i),

Dq =
n1P
i=1

�(pn1�i
q
n2),

...

Dqn2 =
n1P
i=1

�(pn1�i
q
n2) +

n1P
i=1

�(pn1�i
q
n2�1) + · · ·+

n1P
i=1

�(pn1�i
q),

Dpq =
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=2

�(pn1q
n2�i),
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...

Dpn1q =
n2P
i=2

�(pn1q
n2�i) +

n1P
i=1

�(pn1�i
q
n2�2) +

n1P
i=1

�(pn1�i
q
n2�3) + · · ·+

n1�1P
i=1

�(pn1�i),

Dpq2 =
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=3

�(pn1q
n2�i) +

n1P
i=2

�(pn1�i
q
n2�1),

...

Dpqn2 =
n1P
i=2

�(pn1�i
q
n2) +

n2P
i=1

�(pn1�2
q
n2�i) +

n2P
i=1

�(pn1�3
q
n2�i) + · · ·+

n2�1P
i=1

�(qn2�i),

...

Dpn1�1qn2 =
n2�1P
i=1

�(qn2�i) + �(qn2).

Therefore, by Theorem 2.2.1, the Laplacian spectrum of �0(Zpn1qn2 ) is

�L(�
0(Zpn1qn2 )) = (Dp + (�L(�

0(Ap)) \ {0}))
[

(Dp2 + (�L(�
0(Ap2)) \ {0}))

[

· · ·

[
(Dpn1 + (�L(�

0(Apn1 )) \ {0}))
[

(Dq + (�L(�
0(Aq)) \ {0}))

[
(Dq2 + (�L(�

0(Aq2)) \ {0}))
[

· · ·

[
(Dqn2 + (�L(�

0(Aqn2 )) \ {0}))
[

(Dpq + (�L(�
0(Apq)) \ {0}))

[
· · ·

[
(Dpn1q + (�L(�

0(Apn1q)) \ {0}))
[

· · ·

[
(Dpqn2 + (�L(�

0(Apqn2 )) \ {0}))
[

· · ·

[
(Dpn1�1qn2

+ (�L(�
0(Apn1�1qn2 )) \ {0}))

[
�(L(⌥0

pn1qn2 )).

The remaining (n1 + 1)(n2 + 1)� 2 eigenvalues are the zeros of the characteristic

polynomial of the matrix L(⌥0
pn1qn2 ) given in equation (2.1).

2.3 Laplacian Spectral Radius and Algebraic Con-

nectivity

In this section, we study the algebraic connectivity and the Laplacian spectral

radius of �0(Zn). We classify all those values of n for which the Laplacian spectral

radius of �0(Zn) is equal to the order of �0(Zn). Moreover, the values of n for which

the algebraic connectivity and the vertex connectivity coincide are also described.
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The following theorem follows from the relation �(�) = |V (�)|�µ(�) and the fact

� is disconnected if and only if � is the join of two graphs.

Theorem 2.3.1 (Fiedler [1973]). If � is a graph on m vertices, then �(�)  m.

Further, equality holds if and only if � is disconnected if and only if � is the join

of two graphs.

In view of Theorem 2.3.1, first we characterize the values of n for which the

complement of �0(Zn) is disconnected.

Proposition 2.3.2. The graph �0(Zn) is disconnected if and only if n is a product

of two distinct primes.

Proof. Let p and q be two distinct primes. If n = pq, then by Remark 2.1.13 we

get V (�0(Zn)) = Ap [Aq such that Ap \Aq = ;. In fact, �0(Zn) = K�(q),�(p) is a

complete bipartite graph. Consequently, �0(Zn) is a disconnected graph.

Conversely, suppose �0(Zn) is disconnected. Clearly, for n = p there is nothing

to prove. If n = p
↵ for some 1 < ↵ 2 N, then �0(Zp↵) is a null graph. Consequently,

�0(Zp↵) is a complete graph which is not possible. If possible, let n 6= pq. Let d1

and d2 be the proper divisors of n and let x 2 Ad1 , y 2 Ad2 . If d1 = d2, then clearly

x ⇠ y in �0(Zn). If d1 6= d2 such that either d1 | d2 or d2 | d1, then x ⇠ y in �0(Zn)

(cf. Lemma 2.1.14 ). If d1 6= d2 and neither d1 | d2 nor d2 | d1, then there exist two

primes p1 and p2 such that p1 | d1 and p2 | d2. Consequently, x ⇠ z1 ⇠ z2 ⇠ z3 ⇠ y

in �0(Zn) for some z1 2 Ap1 , z2 2 Ap1p2 and z3 2 Ap2 . Thus, �0(Zn) is connected;

a contradiction. Hence, n must be a product of two distinct primes.

Since |V (�0(Zn))| = n � �(n) � 1, by using the Proposition 2.3.2 in Theorem

2.3.1, we have the following proposition.

Proposition 2.3.3. �(�0(Zn)) = |V (�0(Zn))| if and only if n is a product of two

distinct primes. Moreover, if n = pq then �(�0(Zn)) = p+ q � 2.
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Now we classify all those values of n for which the algebraic connectivity and

the vertex connectivity of �0(Zn) are equal. The following theorem is useful in this

study.

Theorem 2.3.4 (Kirkland et al. [2002]). Let � be a non-complete connected graph

on m vertices. Then (�) = µ(�) if and only if � can be written as �1 _�2, where

�1 is a disconnected graph on m�(�) vertices and �2 is a graph on (�) vertices

with µ(�2) � 2(�)�m.

Lemma 2.3.5. For distinct primes p and q, if n = pq where p < q then (�0(Zn)) =

�(�0(Zn)) = p� 1.

Proof. For n = pq, �0(Zn) is a complete bipartite graph with partition sets Ap and

Aq. Hence, (�0(Zn)) = �(�0(Zn)) = min{|Ap|, |Aq|} = p� 1

Theorem 2.3.6. For the graph �0(Zn), we have µ(�0(Zn))  (�0(Zn)). The

equality holds if and only if n is a product of two distinct primes.

Proof. By Kirkland et al. [2002], for any graph � which is not complete, we have

µ(�)  (�). If n = 4 then there is nothing to prove because �0(Z4) is the graph

of one vertex only. If n 6= 4, then �0(Zn) is not a complete graph. Consequently,

µ(�0(Zn))  (�0(Zn)).

If n is not a product of two distinct primes, then by Proposition 2.3.2 and

by Theorem 2.3.1, �0(Zn) can not be written as the join of two graphs. Thus,

by Theorem 2.3.4, we obtain µ(�0(Zn)) < (�0(Zn)). If n = pq, where p and q

are distinct primes such that p < q, then by Theorem 2.3.1, Proposition 2.3.2,

Theorem 2.3.4 and Lemma 2.3.5, we obtain µ(�0(Zn)) = (�0(Zn)) = p� 1.



Chapter 3

The Upper Ideal-Relation Graphs

of Rings

Ma and Wong [2016] introduced the ideal-relation graph of the ring R is a directed

graph whose vertex set is R and there is an edge from a vertex x to a distinct

vertex y if and only if (x) ⇢ (y). Analogously, the undirected ideal-relation graph

of the ring R is the simple graph whose vertex set is R and two distinct vertices

x and y are adjacent if and only if either (x) ⇢ (y) or (y) ⇢ (x), that is the

principal ideals (x) and (y) are comparable in the poset of principal ideals of

R. So it is natural to define a graph on a ring R such that its vertices x and

y are adjacent if and only if (x) and (y) have an upper bound in the poset of

the principal ideals of R. In view of this, we define upper ideal-relation graph

associated with the ring R. The upper ideal-relation graph �U(R) of the ring R

is the simple undirected graph whose vertex set is the set of all non-unit elements

of R and two distinct vertices x and y are adjacent if and only if there exists a

non-unit element z 2 R such that the ideals (x) and (y) contained in the ideal

(z). In this chapter, we investigate the algebraic properties of ring R and the

55
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graph-theoretic properties of �U(R). In Section 3.1, we obtain the girth, minimum

degree and the independence number of �U(R). We give a necessary and su�cient

condition on R, in terms of the cardinality of their principal ideals, such that the

graph �U(R) is bipartite, planar and outerplanar, respectively. We also discuss

all the finite rings R such that the graph �U(R) is Eulerian. For reduced rings,

we obtain the metric and the strong metric dimension of the graph �U(R) (cf.

Section 3.2). For a non-local commutative ring R ⇠= R1 ⇥ R2 ⇥ · · ·⇥ Rn (n � 3),

where each Ri is a local ring with maximal ideal Mi, in Section 3.3, we prove that

the graph �U(R) is perfect if and only if n 2 {3, 4} and each Mi is a principal

ideal. Section 3.4 classifies all the non-local commutative rings R for which �U(R)

has genus at most 2. Also, we determine precisely all the non-local commutative

rings for which �U(R) has crosscap at most 2. In Section 3.5, we classify all the

non-local commutative rings whose upper ideal-relation graphs are split graphs,

threshold graphs and cographs, respectively. In Section 3.6, we determine the

vertex connectivity, automorphism group, Laplacian and the normalized Laplacian

spectrum of the upper ideal-relation graph of the ring Zn. We classify all the values

of n for which the graph �U(Zn) is Hamiltonian.

The content of this chapter excluding Section 3.4 and Section 3.5 is submitted

for publication. Whereas the results of Section 3.4 and Section 3.5 are submitted

for publication.

3.1 Invariants of �U(R)

In this section, we study the algebraic properties of R as well as graph-theoretic

properties of the upper ideal-relation graph �U(R). We obtain the girth, minimum

degree, independence number of �U(R). We obtain a necessary and su�cient

condition on R, in terms of the cardinality of their principal ideals, such that the
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graph �U(R) is bipartite, planar and outerplanar, respectively. In order to study

the basic properties of �U(R), the following remark is useful in the sequel.

Remark 3.1.1. Let F1 and F2 be fields such that R ⇠= F1 ⇥ F2. Then we have

�U(F1 ⇥ F2) ⇠= K1 _ (K|F1|�1

S
K|F2|�1).

For x, y 2 V (�U(R)), note that x ⇠ 0 ⇠ y. It follows that the graph is

connected and hence diam(�U(R))  2.

Theorem 3.1.2. The upper ideal-relation graph �U(R) contains a cycle if and

only if |(x)| � 3 for some x 2 V (�U(R)). Moreover, g(�U(R)) 2 {3,1}.

Proof. Assume that �U(R) contains a cycle. Let if possible, |(x)|  2 for each

non-unit element x of R. Then being a star graph, �U(R) is an acyclic graph, a

contradiction. Conversely, assume that there exists a non-unit element x of R such

that |(x)| � 3. Consequently, the elements x, 0, x0 of the ideal (x) form a cycle

x ⇠ x
0
⇠ 0 ⇠ x of length three in �U(R). Thus, the result holds.

Corollary 3.1.3. The girth of �U(Zn) is given below:

g(�U(Zn)) =

8
><

>:

1 if n = 1, 4, or p

3 otherwise

Theorem 3.1.4. For the graph �U(R), the following conditions are equivalent:

(i) �U(R) is a bipartite graph.

(ii) �U(R) is a tree.

(iii) |(x)|  2 for all x 2 V (�U(R)).

(iv) �U(R) is a star graph.
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Proof. (i) ) (ii). Suppose that �U(R) is a bipartite graph. It follows that it does

not contain a cycle of odd length. By Theorem 3.1.2, �U(R) does not contain a

cycle of length three. Consequently, �U(R) is an acyclic graph and so is a tree.

(ii) ) (iii). �U(R) is a tree. If there exists a non-unit element x of R such

that |(x)| � 3, then by Theorem 3.1.2,�U(R) contains a cycle, a contradiction.

Therefore, |(x)|  2 for every x 2 V (�U(R)).

(iii) ) (iv). Let |(x)|  2, for all x 2 V (�U(R)). Then for the non-zero non-

unit elements x1, x2 of R note that x1 ⌧ x2. Also, 0 ⇠ x for every x 2 V (�U(R)).

Therefore, �U(R) is a star graph.

(iv) ) (i). Being a star graph, �U(R) is a complete bipartite which is isomor-

phic to K1,|R\U(R)|�1.

Theorem 3.1.5. The upper ideal-relation graph �U(R) is complete if and only if

R has a unique maximal principal ideal.

Proof. Suppose that �U(R) is a complete graph. On contrary, suppose that R

has at least two maximal principal ideals, namely (x1) and (x2). Then x1 ⌧ x2

in �U(R), a contradiction. Conversely, suppose that R has a unique maximal

principal ideal, (x1). Then for x, y 2 V (�U(R)), note that both (x) and (y) is

contained in (x1). It follows that x ⇠ y in �U(R) and so �U(R) is a complete

graph.

Corollary 3.1.6. The graph �U(Zn) is complete if and only if n is a prime power.

Theorem 3.1.7. The upper ideal-relation graph �U(R) is planar if and only if

|(x)|  4 for all non-unit element x of R.

Proof. Suppose that �U(R) is a planar graph. If there exists a non-unit element

x of R such that |(x)| � 5, then the elements of (x) induces a complete subgraph

which is isomorphic to K5; a contradiction. Conversely, suppose that |(x)|  4 for
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all x 2 R \ U(R). First let |(x1)| = 2 and |(x2)| = 3 for some non-unit elements

x1, x2 of R. Then note that x1 ⌧ x2 in �U(R). Otherwise, there exists a non-unit

element z 2 R such that |(z)| � 5, a contradiction. Similarly, if |(x1)| 2 {3, 4} and

|(x2)| 2 {3, 4}, then x1 ⌧ x2 in �U(R). Next, let (x1) 6= (x2) and |(x1)| = |(x2)| = 2

for some x1, x2 2 R \ U(R). If x1 ⇠ x2, then x1, x2 2 (x) for some x 2 R \ U(R).

By hypothesis, we obtain |(x)|  4, which is not possible. Therefore, x1 ⌧ x2.

Thus, �U(R) is a planar graph.

Corollary 3.1.8. The graph �U(Zn) is planar if and only if n = 4, 6, 8, 9 or p.

In the similar lines of the proof of Theorem 3.1.7, we have the following theorem.

Theorem 3.1.9. The upper ideal-relation graph �U(R) is outerplanar if and only

if |(x)|  3 for all non-unit element x of R.

Corollary 3.1.10. The graph �U(Zn) is outerplanar if and only if n = 4, 6, 9 or

p.

Theorem 3.1.11. The minimum degree of the graph �U(R) is m� 1, where m is

the cardinality of smallest maximal principal ideal of the ring R.

Proof. Let x 2 V (�U(R)). Then x is contained in some maximal principal ideal

(z). Since (z) induces a clique of size |z| � 1, we get deg(x) � |z| � 1. Let

(y) be a maximal principal ideal of the smallest size m. Then deg(y) = m � 1.

Consequently, deg(x) � |(z)|� 1 � m� 1. Thus, the minimum degree of �U(R) is

m� 1.

Corollary 3.1.12. Let n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m such that p1 < p2 < · · · < pm. Then

the minimum degree of �U(Zn) is
n

pm
� 1.

Theorem 3.1.13. The independence number of the graph �U(R) is |Max(R)|,

where Max(R) is the set of all maximal principal ideals of the ring R.
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Proof. Note that (x1), (x2) 2 Max(R), we get x1 ⌧ x2 in �U(R). It follows that

↵(�U(R)) � |Max(R)|. Let I be an arbitrary independent set of �U(R) and let

x 2 I. Then x 2 (z) for some (z) 2 Max(R). Also the subgraph induced by (z)

forms a clique. Consequently, I can not contain any element of (z) other than x.

It implies that |I|  |Max(R)|. Thus, the result holds.

Corollary 3.1.14. The independence number of �U(Zn) is the number of distinct

prime factors of n.

Define a relation x ' y if and only if (x) = (y). It is easy to observe that '

is an equivalence relation and [x] is an equivalence class containing x. Note that

V (�U(R)) =
S

x2R\U(R)

[x].

Theorem 3.1.15. The graph �U(R) is Eulerian if and only if |R| and |R \U(R)|

is odd.

Proof. First suppose that �U(R) is Eulerian. Since 0 is adjacent with every element

of �U(R) we obtain deg(0) = |R \U(R)|� 1. By Theorem 1.3.1, |R \U(R)| is odd.

Let (x) be maximal principal ideal of R. Then deg(x) = |(x)|� 1. Since �U(R) is

Eulerian, we get |(x)| is odd. Consequently, for any y 2 V (�U(R)), we get o(y) is

always odd in the group (R,+). It follows that |R| is odd.

Conversely, suppose that |R| and |R \ U(R)| is odd. Clearly, deg(0) = |R \

U(R)| � 1 which is an even number. Let x 6= 0 2 V (�U(R)). Then x 2 [y]

for some y 2 R \ U(R). Note that each equivalence class under the relation

', defined above, forms a clique. Moreover, if x1 ⇠ y1, where x1 2 [z1] and

y1 2 [z2], then x
0
⇠ y

0 for each x
0
2 [z1] and y

0
2 [z2]. Consequently, deg(x) =

(|[x]|� 1) + |[x1]|+ · · ·+ |[xm]|+ 1. Since |R| is odd, each equivalence class of the

relation ' is of even size. Hence, deg(x) is even and so �U(R) is Eulerian.

Theorem 3.1.16. Let R be a principal ideal ring having n maximal ideals M1,M2,

. . . ,Mn of R such that |M1| � |M2| � · · · � |Mn|. Then !(�U(R)) = |M1|.
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Proof. We prove the result by applying induction on n. Let n = 2. Suppose that

M1,M2 are maximal ideals ofR with |M1| � |M2|. First we cover all the elements

of M1 by using |M1| colors. Next, if x 2 M2\M1, then these can be colored using

the colors used in the coloring of the set M1 \M2 as |M2 \M1|  |M1 \M2|.

It follows that �(�U(R))  |M1|. Also, note that all the elements of M1 forms

a clique of size |M1|. Therefore, !(�U(R)) = |M1|. Now, assume that n � 3.

Clearly, !(�U(R)) � |M1|. Let if possible, !(�U(R)) > |M1|. Then there exists a

set T of V (�U(R)) such that |M1| < |T | and all the elements of T forms a clique.

If T contains any element of Mn \ [
n�1
i=1 Mi, then T ✓ Mn; a contradiction.

Therefore, T ✓ [
n�1
i=1 Mi. Suppose that J = \

n�1
i=1 Mi so that J 6= 0. Further,

assume that R̄ = R/J . Notice that all the elements of T̄ forms a clique in R̄.

Since R̄ is a ring with n � 1 maximal ideals, by induction hypothesis, we have

!(�U(R̄)) = |M̄1| � |T̄ |. It follows that |T |  |M1|; a contradiction. Thus,

!(�U(R)) = |M1|.

Corollary 3.1.17. Let n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m such that p1 < p2 < · · · < pm. Then

!(�U(Zn)) =
n

p1
.

3.2 Metric and Strong Metric Dimension of �U(R)

In this section, we obtain the metric and the strong metric dimension of �U(R) of

the reduced ring R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ Fn, where n � 2. For i1, i2, . . . , ik 2 [n], we

define

\Ai1i2···ik = {(a1, a2, . . . , an) : only ai1 , ai2 , . . . , aikare non-zero}.

For instance, if R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ F5, then

dA234 = {(0, a2, a3, a4, 0) : a2 2 F
⇤
2 , a3 2 F

⇤
3 , a4 2 F

⇤
4 }.

We begin with the following remark.
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Remark 3.2.1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in V (�U(R)) with

(x) = (y). Then xi = 0 if and only if yi = 0 for each i.

Lemma 3.2.2. Let R ⇠= F1 ⇥ F2 ⇥ · · · ⇥ Fn such that n � 3. Then for x1, x2 2

V (�U(R)), we have (x1) = (x2) if and only if N [x1] = N [x2].

Proof. First suppose that (x1) = (x2). If x 2 N [x1], then there exists a non-unit

element z 2 R such that (x) ✓ (z) and (x1) ✓ (z). Since (x1) = (x2), we get x ⇠ x2

in �U(R) and so x 2 N [x2]. Thus, N [x1] ✓ N [x2]. Similarly, N [x2] ✓ N [x1]. To

prove the converse, let if possible (x1) 6= (x2), where x1 = (a1, a2, . . . , an), x2 =

(b1, b2, . . . , bn). Since (x1) 6= (x2), by Remark 3.2.1, there exists j 2 [n] such that

aj = 0 but bj 6= 0. Now choose z = (z1, . . . , zj�1, 0, zj+1, . . . , zn) 2 V (�U(R)) such

that zi 6= 0 whenever bi = 0. Note that x1 ⇠ z but x2 ⌧ z in �U(R). Therefore,

N [x1] 6= N [x2]. Thus, the result holds.

Define a relation ⌘ on V (�U(R)) such that x ⌘ y if and only if N [x] = N [y].

Note that ⌘ is an equivalence relation. For R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ Fn, where n � 3,

note that V (�U(R)) has 2n � 1 equivalence classes, viz. cA0,
cAi1 , . . . ,

\Ai1i2···in�1 .

Notice that |cA0| = 1 and | \Ai1i2···ik | � 2, whenever Fi 6= Z2 for each i.

Theorem 3.2.3. Let R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ Fn, where n � 2. Then

sdim(�U(R)) =

8
><

>:

|F1|+ |F2|� 3; if n = 2

|R \ U(R)|� 2n�1; if n � 3.

Proof. By Remark 3.1.1, we have �U(F1 ⇥ F2) = K1 _ (K|F1|�1 [K|F2|�1). Notice

that the reduced graph R�U (R) is isomorphic to a path graph on three vertices.

Therefore, !(R�U (R)) = 2. By Theorem 1.3.5, we get sdim(�U(F1 ⇥ F2)) = |F1|+

|F2| � 3. Next, we assume that R ⇠= F1 ⇥ F2 ⇥ · · · ⇥ Fn such that n � 3. First

suppose that n is odd. Note that the set

C = cA0 [ (
S

i12[n]
cAi1) [ (

S
i1,i22[n]

dAi1i2) [ · · · [ (
S

ir2[n]
1rbn

2 c
\Ai1i2···ibn

2 c)
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forms a clique in �U(R). To determine the strong metric dimension of �U(R), we

need to find !(R�U (R)). Further, by considering exactly one representative of each

equivalence class from C, we obtain !(R�U (R)) � n
C0 + n

C1 + · · ·+ n
Cbn

2 c = 2n�1.

Now suppose that n is even. Consider the set

C1 = cA0 [ (
S

i12[n]
cAi1) [ (

S
i1,i22[n]

dAi1i2) [ · · · [ (
S

ir2[n]
1rn

2�1

\Ai1i2···in
2 �1

).

Note that C1 forms a clique of �U(R), whereas the set

C2 = {(a1, a2, . . . , an) : only ai1 , ai2 , . . . , ain
2
are non-zero}

does not form a clique of �U(R). Now choose the set C3 = {(b1, b2, . . . , bn) 2

C2 : only bj1 , bj2 , . . . , bjn
2
are non-zero , where j1, j2, . . . , jn

2
2 [n]\{i1, i2, . . . , in2 }}.

Notice that the set C3 forms a clique in �U(R). Also, observe that the set C1[C3

forms a clique of the graph �U(R). Consequently, !(R�U (R)) � 2n�1. To complete

the proof, we show that �(R�U (R))  2n�1. Let x 2 \Ai1i2···ik and y 2 \Aj1j2···jn�k
,

where i1, i2, . . . , ik 2 [n] \ {j1, j2, . . . , jn�k}. Then note that x ⌧ y in �U(R).

Consequently, we can color such vertices with the same color. Therefore, we can

color all the vertices of R�U (R) with 2n�1 colors. Thus, �(R�U (R))  2n�1 and so

!(R�U (R)) = 2n�1. Theorem 1.3.5 yields sdim(�U(R)) = |R \ U(R)|� 2n�1.

Corollary 3.2.4. Let n � 2 be a positive integer and R ⇠=
Qn

i=1 Z2. Then

sdim(�U(R)) = 2n�1
� 1.

Corollary 3.2.5. Let n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m , where m � 2. Then

sdim(�U(Zn)) = n� �(n)� 2m�1.

Theorem 3.2.6. Let n � 2 be a positive integer and R ⇠=
Qn

i=1 Z2. Then the

metric dimension of �U(R) is given below:

�(�U(R)) =

8
><

>:

1; n = 2

n; Otherwise.
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Proof. For n = 2, we have �U(R) ⇠= K1 _ (K1 [ K1) (see Remark 3.1.1). Now

suppose that n � 3. Clearly, |V (�U(R))| = 2n � 1. By Lemma 1.3.4, we get

n = f(2n � 1, 2)  �(�U(R)). To prove the result, we show that there exists a

resolving set of size n. Consider the set

R = {(0, 1, 1, . . . , 1), (1, 0, 1, 1, . . . , 1), (1, 1, 0, 1, . . . , 1), . . . , (1, 1, . . . , 1, 0)}.

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) 2 V (�U(R)). If one of x and y belongs

to R, then there is nothing to prove. We may now suppose that x, y /2 R. Since

x, y 2 Z2 ⇥ Z2 ⇥ · · ·⇥ Z2, we have (x) 6= (y). If x ⌧ y in �U(R), then there exists

i 2 [n] such that xi = 0 but yi 6= 0. Now choose z = (z1, z2, . . . , zn) 2 R such that

only zi = 0. Note that z ⇠ x but z ⌧ y in �U(R). It follows that d(x, z) 6= d(y, z).

We may now suppose that x ⇠ y in �U(R). Without loss of generality, assume

that (x) ⇢ (y). Then there exists i 2 [n] such that xi = 0 but yi 6= 0. Choose

z = (z1, z2, . . . , zn) 2 R such that only zi = 0. It follows that x ⇠ z but y ⌧ z in

�U(R). It follows that d(x, z) 6= d(y, z). If (x) 6⇢ (y) and (y) 6⇢ (x), then one can

find z 2 R such that x 2 (z) but y 62 (z). Consequently, d(x, z) 6= d(y, z). Thus,

R is a resolving set. Hence, �(�U(R)) = n.

Theorem 3.2.7. Let R ⇠= F1 ⇥ F2 ⇥ · · ·⇥ Fn (n � 2), where each Fi 6= Z2. Then

�(�U(R)) = |R \ U(R)|� 2n + 2.

Proof. Let R ⇠= F1⇥F2⇥ · · ·⇥Fn, where n � 2. For each i1, i2, . . . , in�1 2 [n], note

that �U(R) has 2n � 1 equivalence classes, namely cA0,
cAi1 , . . . ,

\Ai1i2···in�1 under

the relation ⌘. Let T be an arbitrary resolving set. Then by Lemma 1.3.3, T

contains at least | \Ai1i2···ik |� 1 elements from each equivalence class \Ai1i2···ik , where

i1, i2, . . . , ik 2 [n] and 1  k  n � 1. It follows that |T | � |R \ U(R)| � 2n + 2.

Let R be a set containing exactly | \Ai1i2···ik | � 1 elements from \Ai1i2···ik , where

i1, i2, . . . , ik 2 [n] and 1  k  n � 1. Note that |R| = |R \ U(R)| � 2n + 2. Now

we show that R is a resolving set. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
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be arbitrary vertices of �U(R). If one of x and y belongs to R, then there is

nothing to prove. We may now suppose that x, y /2 R. It follows that (x) 6= (y).

Then either x ⌧ y or x ⇠ y in �U(R). If x ⌧ y in �U(R), then there exists

z 2 R such that (z) = (x). It follows that d(x, z) 6= d(y, z). Now let x ⇠ y in

�U(R). Then by the similar argument used in the proof of Theorem 3.2.6, there

exists a z 2 R such that d(x, z) 6= d(y, z). Hence, R is a resolving set and so

�(�U(R)) = |R \ U(R)|� 2n + 2.

Corollary 3.2.8. Let n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m , m � 2. Then the metric dimension,

�(�U(Zn)) = n� �(n)� 2m + 1.

3.3 Perfectness of �U(R)

Let R ⇠= R1 ⇥ R2 ⇥ · · ·⇥ Rn be a finite commutative ring with unity, where each

Ri is a local ring with maximal ideal Mi. In this section, we have investigated

the perfectness of �U(R). We write xi = (ai1, ai2, . . . , ain) 2 R, where aij 2 Rj

(1  j  n). We begin with the following lemma.

Lemma 3.3.1. Let R be a non-local commutative ring such that R ⇠= R1 ⇥ R2 ⇥

· · ·⇥Rn, where n � 5. Then �U(R) is not a perfect graph.

Proof. Let n � 5. Consider the setX = {(1, 0, 1, 1, 0, 1, 1, . . . , 1), (1, 0, 0, 1, 1, . . . , 1),

(1, 1, 0, 0, 1, 1, . . . , 1), (0, 1, 1, 0, 1, 1, . . . , 1), (0, 1, 1, 1, 0, 1, 1, . . . , 1)}. Note that

�U(X) ⇠= C5. Hence, by Theorem 1.3.2, �U(R) is not a perfect graph.

Lemma 3.3.2. Let (Ri,Mi) be a local commutative ring and let R ⇠= R1 ⇥ R2 ⇥

· · ·⇥ Rn, where n � 3. If �U(R) is a perfect graph, then n 2 {3, 4} and each Mi

is a principal ideal of Ri.

Proof. Suppose that the graph �U(R) is perfect. Then by Lemma 3.3.1, we have

n 2 {3, 4}. Let R ⇠= R1 ⇥ R2 ⇥ R3. Suppose that one of Mi is not a principal
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ideal of Ri. Without loss of generality, assume that the maximal ideal M1 of R1

is not principal. Then R1 has at least two principal maximal ideals (a1) and (a2).

Then notice that �U(R) contains an induced cycle C : (a1, 0, 1) ⇠ (a2, 1, 0) ⇠

(1, 0, 1) ⇠ (0, 1, 1) ⇠ (1, 1, 0) ⇠ (a1, 0, 1) of length five, which is a contradiction

(see Theorem 1.3.2). Further, let n = 4, that is, R ⇠= R1 ⇥ R2 ⇥ R3 ⇥ R4.

Let if possible, Mi is not a principal maximal ideal for some i. Without loss

of generality, assume that M1 is not principal. Then there exists at least two

principal maximal ideals, viz. (a1) and (a2), of R1. The subgraph induced by the

set X = {(a1, 0, 1, 1), (a2, 0, 1, 1), (a2, 1, 0, 1), (1, 1, 0, 0), (a1, 1, 1, 0)} is isomorphic

to C5 in �U(R); again a contradiction. Therefore, each Mi is principal. Thus the

result holds.

Lemma 3.3.3. Let (Ri,Mi) be a local ring and let R ⇠= R1 ⇥R2 ⇥ · · ·⇥Rn such

that each Mi is principal. Let xi = (ai1, ai2, . . . , ain) and yl = (bl1, bl2, . . . , bln).

Then xi ⌧ yl in �U(R) if and only if both aij, blj /2 Z(Rj), for each j, 1  j  n.

Proof. If both aij, blj 2 Z(Rj), then the ideals (aij) and (blj) is contained in Mj =

(mj). Note that the ideals (xi) and (yl) is contained in the principal ideal generated

by (1, 1, . . . , 1,mj, 1, , 1, . . . , 1). Thus, xi ⇠ yl; a contradiction.

Conversely, assume that both aij, blj /2 Z(Rj) for each j. If aij 2 Z(Rj), then

blj 2 Rj \ Z(Rj) = U(Rj). It follows that there does not exists zj 2 Z(Rj) such

that (aij), (blj) ✓ (zj) for each j. Therefore, xi ⌧ yl in �U(R).

Proposition 3.3.4. Let (Ri,Mi) be a local ring and R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn,

where n  4 and each Mi is principal. Then �U(R) does not contain any induced

cycle of odd length greater than three.

Proof. The result is straightforward for n = 1 (cf. Theorem 3.1.5). We first prove

the result for n = 4 that is R ⇠= R1 ⇥ R2 ⇥ R3 ⇥ R4. Let if possible, �U(R)

contains an induced cycle C : x1 ⇠ x2 ⇠ x3 ⇠ · · · ⇠ xk ⇠ x1, where k � 5 is an
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odd integer. For 2  i  k � 1, note that xi�1 ⇠ xi ⇠ xi+1 but xi ⌧ xt where

t /2 {i � 1, i + 1}. Consider xi = (ai1, ai2, ai3, ai4) 2 R. Since x1 ⌧ x3, by Lemma

3.3.3, both a11, a31 /2 Z(R1). Without loss of generality, assume that a11 2 U(R1).

Since x1 is a non-unit element of R, we have a1j 2 Z(Rj) for some j 2 {2, 3, 4}.

Without loss of generality, assume that a12 2 Z(R2). By Lemma 3.3.3, we get

a32 2 U(R2). Since x1 ⌧ x3, we get both a13, a33 /2 Z(R3). Now we have the

following cases:

Case-1. a13 2 U(R3). First suppose that a14 2 U(R4). Since xk ⇠ x1 ⇠ x2, we

get ak2, a22 2 Z(R2). It follows that x2 ⇠ xk in �U(R), which is not possible. We

may now suppose that a14 2 Z(R4). By Lemma 3.3.3, we obtain a34, a44 2 U(R4).

Since x3 is a non-unit element of R we have either a31 2 Z(R1) or a33 2 Z(R3). Let

a31 2 Z(R1). If a33 2 U(R3), then a21, a41 2 Z(R1). It follows that x2 ⇠ x4, which

is not possible. Therefore, a33 2 Z(R3). Since x3 ⌧ x5, we obtain that a51 2 U(R1)

and a53 2 U(R3). Consequently, x4 ⌧ x5; a contradiction. Thus, a31 2 U(R1) and

so a33 2 Z(R3). Since x2 ⇠ x3 ⇠ x4, we must have a23, a43 2 Z(R3). It follows

that x2 ⇠ x4. Thus, the case a13 2 U(R3) is not possible.

Case-2. a33 2 U(R3). Since x1 ⌧ x4, we have a43 2 U(R3). Since x3 is a non-unit

element of R we have either a31 2 Z(R1) or a34 2 Z(R4). Let a31 2 Z(R1). If a34 2

U(R4), then both a21, a41 2 Z(R1) so that x2 ⇠ x4; a contradiction. Therefore,

a34 2 Z(R4). Since x3 ⌧ x5, we must have a51 2 U(R1) and a54 2 U(R4). It

follows that x4 ⌧ x5 in �U(R); again a contradiction. Therefore, a31 2 U(R1)

and a34 2 Z(R4). Consequently, x2 ⇠ x4; a contradiction. Therefore, the case

a33 2 U(R3) is not possible.

Thus, there does not exists an induced cycle of odd length greater than three.

The proof is similar when R ⇠= R1 ⇥R2 ⇥R3 or R ⇠= R1 ⇥R2.

Proposition 3.3.5. Let (Ri,Mi) be a local ring and R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn,

where n  4 and each Mi is principal. Then �U(R) does not contain any induced
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cycle of odd length greater than three.

Proof. The result is straightforward for n = 1 (cf. Theorem 3.1.5). Now, let

R ⇠= R1 ⇥ R2 ⇥ R3 ⇥ R4. On contrary, suppose that �U(R) contains an induced

cycle of odd length greater than three, namely C : y1 ⇠ y2 ⇠ y3 ⇠ · · · ⇠ yk ⇠ y1

and k � 5. Let yi = (bi1, bi2, bi3, bi4) 2 R. Since y1 ⇠ y2 in �U(R), by Lemma

3.3.3, both b11, b21 /2 Z(R1). Without loss of generality, assume that b11 2 U(R1).

Since y1 is a non-unit element of R, we have b1j 2 Z(Rj), for some j 2 {2, 3, 4}.

Without loss of generality, assume that b12 2 Z(R2). By Lemma 3.3.3, we get

b22 2 U(R2). Since y1 ⇠ y2 in �U(R), we get both b13, b23 /2 Z(R3). Now we have

the following cases:

Case-1. b13 2 U(R3). Let b14 2 U(R4). Since y1 ⌧ y3 and y1 ⌧ y4 in �U(R), we

get b32, b42 2 Z(R2). It follows that y3 ⌧ y4, which is not possible. We may now

suppose that b14 2 Z(R4). It follows that b24, bk4 2 U(R4). Since y2 is a non-unit

element of R, we have either b21 2 Z(R1) or b23 2 Z(R3). Let b21 2 Z(R1). If

b23 2 U(R3), then bk1, b(k�1)1 2 Z(R1). It follows that yk ⌧ yk�1 in �U(R), which

is not possible. Therefore, b23 2 Z(R3). Since y2 ⇠ y3, we obtain that b31 2 U(R1)

and b33 2 U(R3). The adjacency of y1 with yk follows that bk2 2 U(R2) and

bk4 2 U(R4). It follows that y3 ⇠ yk in �U(R); a contradiction. Therefore,

b21 /2 Z(R1). We may now suppose that b23 2 Z(R3). Since y2 ⌧ yk and y2 ⌧ yk�1

in �U(R), we have bk3, b(k�1)3 2 Z(R3). It follows that yk ⌧ yk�1. Thus, the case

b13 2 U(R3) is not possible.

Case-2. b23 2 U(R3). First suppose that b24 2 U(R4). Since y2 is a non-unit

element of R, we have b21 2 Z(R1). Note that y2 ⌧ yk and y2 ⌧ yk�1 in �U(R)

so that bk1, b(k�1)1 2 Z(R1). It follows that yk ⌧ yk�1; a contradiction. Therefore,

b24 2 Z(R4). Since y1 ⇠ y2 ⇠ y3 in �U(R), we have b14, b34 2 U(R4). First

suppose that b21 2 U(R1). Since y2 ⌧ yk and y2 ⌧ yk�1 in �U(R), we have

bk4, b(k�1)4 2 Z(R4). It follows that yk ⌧ yk�1; a contradiction. We may now
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suppose that b21 2 Z(R1). It follows that b31 2 U(R1). Since y3 is a non-unit

element of R, we have either b32 2 Z(R2) or b33 2 Z(R3).

Let b32 2 Z(R2). The adjacency of y3 with y4 implies that b42 2 U(R2). If

b33 2 U(R3), then bk2, b12 2 Z(R2). It follows that y1 ⌧ yk in �U(R), which is

not possible. Therefore, b33 2 Z(R3). Since y3 ⇠ y4, we have b42 2 U(R2) and

b43 2 U(R3). Since y4 is a non-unit element of R, we have either b41 2 Z(R1)

or b44 2 Z(R4). If b41 2 Z(R1) and b44 2 U(R4), then y1 ⇠ y4; a contradiction.

Therefore, b44 2 Z(R4). The adjacency of y4 with y5 follows that b51 2 U(R1) and

b54 2 U(R4). It follows that y2 ⇠ y5 in �U(R); a contradiction. Thus, b41 2 U(R1).

Consequently, b44 2 Z(R4). Since y2 ⌧ y4 and y1 ⌧ y4, we have b14, b24 2 Z(R4). It

follows that y1 ⌧ y2 in �U(R); a contradiction. Therefore, this case is not possible.

Thus, �U(R) does not contain an induced cycle of odd length greater than

three. The proof is similar when R ⇠= R1 ⇥R2 ⇥R3 or R ⇠= R1 ⇥R2.

By combining Lemma 3.3.2, and Propositions 3.3.4, 3.3.5, we get the following

theorem.

Theorem 3.3.6. Let (Ri,Mi) be a local ring and R ⇠= R1 ⇥R2 ⇥ · · ·⇥Rn, where

n � 3. Then the graph �U(R) is perfect if and only if n 2 {3, 4} and each ideal

Mi of Ri is principal.

In view of Proposition 3.3.4 and Proposition 3.3.5, we have the following lemma.

Lemma 3.3.7. Let (Ri,Mi) be a local ring and R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where

n 2 {1, 2} and each Mi is principal. Then �U(R) is a perfect graph.

Corollary 3.3.8. The graph �U(Zn) is perfect if and only if n = p
n1
1 p

n2
2 p

n3
3 p

n4
4 ,

where pi’s are distinct prime numbers and ni 2 N [ {0}.

Proposition 3.3.9. Let R ⇠= R1⇥R2 such that R1, R2 are local rings with maximal

ideals M1 and M2, respectively. If both M1,M2 are not principal, then �U(R) is

not a perfect graph.
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Proof. Suppose both M1 and M2 are not principal ideals of R1 and R2, respec-

tively. Then R1 has at least two principal maximal ideals (a1) and (a2). Similarly,

R2 contains at least two principal maximal ideals (b1) and (b2). Observe that the

set

X = {(a1, b1), (a2, b2), (1, b1), (a1, b2), (a2, b1)}

induces C5 in �U(R). Therefore, �U(R) is not a perfect graph.

Based on our computation for various local rings of small order we propose the

following conjecture.

Conjecture: Let R ⇠= R1 ⇥R2 such that R1, R2 are local rings with maximal

ideals M1 and M2, respectively. Then �U(R) is a perfect graph if and only if

either M1 or M2 is principal.

3.4 Embedding of �U(R) on Surfaces

In this section, we study the topological properties of �U(R) including planar,

projective planar, toroidal, bitoroidal, etc. We begin with the investigation of an

embedding of �U(R) on a plane.

3.4.1 Planarity of �U(R)

In this subsection, we classify all the non-local commutative rings for which the

graph �U(R) is outerplanar and planar, respectively. We begin with the following

lemma.

Lemma 3.4.1. Let R be a non-local commutative ring such that R ⇠= R1 ⇥ R2 ⇥

· · ·⇥Rn for n � 4. Then the graph �U(R) is not planar.
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Proof. Consider the setX = {(0, 0, · · · , 0), (1, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, 0, 1, 0, · · · , 0),

(0, 0, 0, 1, 0, · · · , 0)}. Note that �U(X) ⇠= K5. Therefore, by Theorem 1.3.8, �U(R)

is not a planar graph.

Theorem 3.4.2. Let R be a non-local commutative ring. Then �U(R) is outer-

planar if and only if R is isomorphic to one of the following 3 rings:

Z2 ⇥ Z2, Z2 ⇥ Z3, Z3 ⇥ Z3.

Proof. Let R be a non-local ring. Then R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where each Ri

is a local ring and n � 2. Let �U(R) be an outerplanar graph. By Lemma 3.4.1,

we must have n  3. Suppose that R ⇠= R1 ⇥ R2 ⇥ R3. If |Ri| = 2 for every

i 2 {1, 2, 3}, then for the set X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} note that

�U(X) ⇠= K4, which is not possible. We may now suppose that R ⇠= R1 ⇥R2. Let

|Ri| � 4 for some i 2 {1, 2}. Without loss of generality, assume that |R1| = 4 such

that R1 = {0, a1, a2, a3}. Then for X
0 = {(0, 0), (a1, 0), (a2, 0), (a3, 0)}, we have

�U(X 0) ⇠= K4; again a contradiction. Consequently, R ⇠= R1 ⇥ R2 with |Ri|  3

for i 2 {1, 2}. Converse holds by Theorem 1.3.7 and Remark 3.1.1.

Theorem 3.4.3. Let R be a non-local commutative ring. Then �U(R) is a planar

graph if and only if R is isomorphic to one of the following 9 rings:

Z2 ⇥ Z2 ⇥ Z2, Z2 ⇥ Z4, Z2 ⇥
Z2[x]
(x2) , Z2 ⇥ F4, Z2 ⇥ Z2, Z2 ⇥ Z3, Z3 ⇥ Z3, Z3 ⇥ F4,

F4 ⇥ F4.

Proof. Suppose that �U(R) is a planar graph. In the similar lines of the proof

of Theorem 3.4.2, we have either R ⇠= R1 ⇥ R2 ⇥ R3 or R ⇠= R1 ⇥ R2. Let

R ⇠= R1 ⇥ R2 ⇥ R3 such that |Ri| � 3 for some i 2 {1, 2, 3}. Without loss of

generality, assume that |R1| � 3 with a1, a2 2 R
⇤
1. For the set

X = {(0, 0, 0), (a1, 0, 0), (a2, 0, 0), (0, 1, 0), (0, 0, 1)},
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we have �U(X) ⇠= K5; a contradiction. Thus, R ⇠= Z2 ⇥ Z2 ⇥ Z2 in this case.

We may now suppose that R ⇠= R1 ⇥ R2. If |Ri| � 5 for some i 2 {1, 2} and

a1, a2, a3, a4 2 R
⇤
i , then for X

0 = {(0, 0), (a1, 0), (a2, 0), (a3, 0), (a4, 0)} note that

�U(X 0) ⇠= K5 which is not possible. Thus, for R ⇠= R1⇥R2 we must have |Ri|  4.

Further, if R2 is not a field of cardinality four, then either R2
⇠= Z4 or R2

⇠= Z2[x]
(x2)

(cf. Table 1.1). Then there exists z 2 Z(R2)⇤ and so |R1| 6= 3, 4. Otherwise, the set

Y = {(0, 0), (a1, 0), (a2, 0), (0, z), (a1, z)}, where a1, a2 2 R
⇤
1, induces a subgraph

�U(Y ) which is isomorphic to K5. Consequently, R is isomorphic to one of the

rings: Z2 ⇥ Z4, Z2 ⇥
Z2[x]
(x2) , Z2 ⇥ F4, Z3 ⇥ F4, F4 ⇥ F4, Z2 ⇥ Z2, Z2 ⇥ Z3, Z3 ⇥ Z3.

Conversely, if R is isomorphic to one of the given rings then by Figures 3.1, 3.2

Theorem 1.3.8 and Remark 3.1.1, �U(R) is planar.

(1, 0, 0)

(1, 1, 0)

(0, 0, 0)

(1, 0, 1)

(0, 1, 1)

(0, 1, 0)

(0, 0, 1)

Figure 3.1: Planar drawing of �U(Z2 ⇥ Z2 ⇥ Z2)

(0, 0)

(1, 0)
(1, 2)

(0,1)
(0, 3)

(0, 2)

(a) (b)

(0, 0)

(0, x+ (x2))

(1, 0)
(1, x+ (x2))

(0, 1 + x+ (x2)) (0, 1 + (x2))

Figure 3.2: Planar drawing of (a) �U(Z2 ⇥ Z4) and (b) �U(Z2 ⇥
Z2[x]
(x2) )
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A graph � which satisfies the PCP property is said to be a ring graph if

rank(�) = frank(�) and � does not contain a subdivision of K4 as a subgraph.

In the similar lines of the proof of Theorem 3.4.2 and using Remark 3.1.1, we have

the following proposition.

Proposition 3.4.4. Let R be a non-local commutative ring. Then �U(R) is a ring

graph if and only if R is isomorphic to one of the following 3 rings:

Z2 ⇥ Z2, Z2 ⇥ Z3, Z3 ⇥ Z3.

3.4.2 Genus of �U(R)

In this subsection, we classify all the non-local commutative rings such that �U(R)

has genus at most 2.

Lemma 3.4.5. Let R be a non-local commutative ring such that R ⇠= R1 ⇥ R2 ⇥

· · ·⇥Rn for n � 4. Then g(�U(R)) > 1.

Proof. Let n � 4. Then note that the vertices x1 = (0, 0, . . . , 0), x2 = (1, 0, . . . , 0),

x3 = (0, 1, 0, . . . , 0), x4 = (0, 0, 1, 0, . . . , 0), x5 = (0, 0, 0, 1, 0, . . . , 0),

x6 = (1, 1, 0, 0, . . . , 0), x7 = (1, 0, 1, 0, . . . , 0), x8 = (1, 0, 0, 1, 0, . . . , 0) induces a

subgraph of �U(R) which is isomorphic to K8. By Proposition 1.3.9, we have

g(�U(R)) > 1.

Theorem 3.4.6. Let R be a non-local commutative ring. Then the genus of �U(R)

is 1 if and only if R is isomorphic to one of the following 8 rings:

Z2 ⇥ Z7, Z3 ⇥ Z7, F4 ⇥ Z7, Z2 ⇥ Z5, Z3 ⇥ Z5, F4 ⇥ Z5, Z3 ⇥ Z4, Z3 ⇥
Z2[x]
(x2) .

Proof. LetR be a non-local ring. ThenR ⇠= R1⇥R2⇥· · ·⇥Rn, where eachRi is a lo-

cal ring and n � 2. First suppose that g(�U(R)) = 1. By Lemma 3.4.5, we get n 

3. We claim that n 6= 3. Let, if possible n = 3, that is R ⇠= R1⇥R2⇥R3. If |Ri| � 3
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for each i, with a1, a2 2 R
⇤
1, b1, b2 2 R

⇤
2 and c1, c2 2 R

⇤
3, then the subgraph induced

byX = {(0, 0, 0), (a1, 0, 0), (0, b1, 0), (a2, 0, 0), (0, b2, 0), (a1, b1, 0), (a1, b2, 0), (a2, b1, 0)}

is isomorphic to K8; a contradiction (cf. Proposition 1.3.9). Consequently, R ⇠=

R1 ⇥ R2 ⇥ R3 such that |Ri|  2 for some i. Without loss of generality, assume

that |R1| = 2 and |R2| = |R3| = 3. Note that for the set

Y = {(0, 0, 0), (0, b1, 0), (0, b2, 0), (0, 0, c1), (0, b1, c1), (0, b2, c1), (0, 0, c2), (0, b1, c2)},

we obtain �U(Y ) ⇠= K8; again a contradiction. Therefore, we may now suppose

that |R1| = 2 = |R2| and |R3|  3. For |R3| = 3, we have v = 10, e = 31. By

Lemma 1.3.10, we get f = 21. It follows that 2e < 3f ; a contradiction. Thus,

R ⇠= R1 ⇥R2 ⇥R3 such that |Ri| = 2 for every i. By Figure 3.1, �U(R) is planar.

This completes our claim and so R ⇠= R1⇥R2. Now first note that either |R1| � 8

or |R2| � 8 then there exists an induced subgraph which is isomorphic to K8; a

contradiction. It follows that R ⇠= R1 ⇥ R2 with |Ri|  7 for i = 1, 2. Now we

classify the ring R such that �U(R) has genus 1 through the following cases.

Case-1. |R2| = 7. If |R1| = 7, then note that in �U(R), v = 13, e = 42 and f = 29.

It follows that 2e < 3f ; a contradiction. We may now suppose that |R1| = 5. By

Proposition 1.3.9, Lemma 1.3.11 and Remark 3.1.1, we get g(�U(R)) > 1 which is

not possible. Thus, |R1|  4. If R1 is not a field of cardinality four, then either

R1
⇠= Z4 or R1

⇠= Z2[x]
(x2) (see Table 1.1). Consequently, there exists exactly one zero-

divisor z 2 Z(R1)⇤. Then for the set X
0 = {(0, 0), (0, 1), . . . , (0, 6), (z, 0), (z, 1)},

we get �U(X 0) ⇠= K9; a contradiction. Thus, in this case R is isomorphic to one of

the three rings: Z2 ⇥ Z7, Z3 ⇥ Z7, F4 ⇥ Z7.

Case-2. |R2| = 5. If |R1| = 5, then by Proposition 1.3.9, Lemma 1.3.11 and

Remark 3.1.1, we get g(�U(R)) 6= 1; a contradiction. We may now suppose that

R1 is not a field of cardinality four. Then note that the set

{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (z, 0), (z, 1), (z, 2), (z, 3)}, where z 2 Z(R1)⇤,
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induces a subgraph which is isomorphic to K9; again a contradiction. Conse-

quently, R is isomorphic to one of the following 3 rings: Z2⇥Z5, Z3⇥Z5, F4⇥Z5.

Case-3. |R2| = 4. Suppose that |R1| = 4. If both R1, R2 are fields, then by

Theorem 3.4.3, �U(R1 ⇥R2) is planar and so g(�U(R)) = 0 which is not possible.

Thus, either R1 or R2 is not a field. Without loss of generality, assume that

R1 is not a field. By the argument used in Case-1, and by choosing X
00 =

{(0, 0), (0, 1), (0, b1), (0, b2), (z, 0), (z, 1), (z, b1), (z, b2)}, where z 2 Z(R1)⇤, b1, b2 2

R
⇤
2, note that �U(X 00) ⇠= K8. Consequently, |R1|  3. Let |R1|  3 and R2 be

a field. Then by Theorem 3.4.3, �U(R) is a planar graph; a contradiction. If

R2 is not a field and |R1| = 2, then again by Theorem 3.4.3, g(�U(R)) = 0; a

contradiction. Thus, R is isomorphic to Z3 ⇥ Z4 or Z3 ⇥
Z2[x]
(x2) .

Case-4. |R2|  3. If |R1| 2 {2, 3}, then by Theorem 3.4.3, g(�U(R)) = 0; a

contradiction.

Conversely, if R is isomorphic to Z3 ⇥ Z4 or Z3 ⇥
Z2[x]
(x2) , then by Figure 3.3, we

have g(�U(R)) = 1. If R is isomorphic to one of the remaining 6 given rings, then

by Proposition 1.3.9, Lemma 1.3.11 and Remark 3.1.1, we get g(�U(R)) = 1.

(0, 0) (0,0)

(1,0) (1, 0)

(0, 2)

(2,0)

(2, 2)

(0,1)

(0, 3)

(1,2)

(a) (b)

(2, 0)

(0, x+ (x2))

(1, x+ (x2))

(2, x+ (x2))

(0, 1 + (x2))

(0, 1 + x+ (x2))

Figure 3.3: Embedding of (a) �U(Z3 ⇥ Z4) and (b) �U(Z3 ⇥
Z2[x]
(x2) ) in S1

Theorem 3.4.7. Let R be a non-local commutative ring. Then g(�U(R)) = 2 if

and only if R is isomorphic to one of the following 9 rings:
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Z2 ⇥ Z2 ⇥ Z3, Z2 ⇥ F8, Z3 ⇥ F8, F4 ⇥ F8, Z7 ⇥ Z7, Z5 ⇥ Z7, Z5 ⇥ Z5, F4 ⇥ Z4,

F4 ⇥
Z2[x]
(x2) .

Proof. Let R be a non-local ring. Then R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where each

Ri is a local ring and n � 2. First assume that g(�U(R)) = 2. If n � 5, then

note that the vertices x1 = (0, 0, . . . , 0), x2 = (1, 0, . . . , 0), x3 = (0, 1, 0, . . . , 0),

x4 = (0, 0, 1, 0, . . . , 0), x5 = (0, 0, 0, 1, 0, . . . , 0), x6 = (0, 0, 0, 0, 1, 0, . . . , 0), x7 =

(1, 1, 0, 0, . . . , 0), x8 = (1, 0, 1, 0, . . . , 0), x9 = (1, 0, 0, 1, 0, . . . , 0) induces a subgraph

isomorphic toK9; a contradiction. We may now suppose that n = 4. If |Ri| = 2 for

every i 2 {1, 2, 3, 4}, then note that v = 15, e = 80. Further, by Lemma 1.3.10, we

get f = 63. It follows that 2e < 3f in �U(R), which is not possible. Therefore, n 

3. Let n = 3 that is R ⇠= R1⇥R2⇥R3. If |Ri| � 4, for each i, with a1, a2, a3 2 R
⇤
1,

b1, b2, b3 2 R
⇤
2 and c1, c2, c3 2 R

⇤
3, then the subgraph of �U(R) induced by the set

X = {(0, 0, 0), (a1, 0, 0), (0, b1, 0), (0, 0, c1), (a2, 0, 0), (0, b2, 0), (0, 0, c2), (a3, 0, 0),

(0, b3, 0)} is isomorphic to K9; a contradiction. Without loss of generality, suppose

that |R1|  3 and |R2| = 4 = |R3|. For X 0 = {(0, 0, 0), (a1, 0, 0), (0, b1, 0), (0, 0, c1),

(a2, 0, 0), (0, b2, 0), (0, 0, c2), (0, b3, 0), (0, 0, c3)}, we get �U(X 0) ⇠= K9; again a con-

tradiction. Therefore, |Ri|  3 for i = 1, 2 and |R3| = 4. We may now suppose that

|R1| = 2 = |R2| and R3 is a field of size 4. Then v = 13, e = 54 and Lemma 1.3.10

follows that f = 39 which is not possible. Consequently, |Ri|  3 for each i 2

{1, 2, 3}. Next, let |R1| = |R2| = |R3| = 3. Then the subgraph induced by the ver-

tices (0, 0, 0), (a1, 0, 0), (0, b1, 0), (a2, 0, 0), (0, b2, 0), (a1, b1, 0), (a1, b2, 0), (a2, b1, 0) and

(a2, b2, 0) is isomorphic to K9; a contradiction. Therefore, we may now suppose

that |R1| = 2 and |R2| = 3 = |R3|. Consider the set Y = {(0, 0, 0), (0, 0, c1), (0, b1, 0),

(0, 0, c2), (0, b2, 0), (0, b1, c1), (0, b2, c1), (0, b1, c2), (0, b2, c2)}. Note that �U(Y ) ⇠=

K9; a contradiction. If |Ri| = 2, for each i 2 {1, 2, 3}, then �U(R) is a planar

graph (cf. Theorem 3.4.3). Consequently, R is isomorphic to the ring Z2⇥Z2⇥Z3.

Now let R ⇠= R1 ⇥ R2. If either |R1| � 9 or |R2| � 9, then there exists
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an induced subgraph of �U(R) which is isomorphic to K9; a contradiction. It

follows that the cardinality of each Ri is at most 8. Now we characterize the rings

R ⇠= R1 ⇥R2 such that �U(R) has genus 2 through the following cases.

Case-1. |R2| = 8. Suppose that |R1| = 8. If both R1, R2 are fields, then v = 15,

e = 56 and Lemma 1.3.10 gives f = 39; a contradiction. If R1 is not a field,

then the existence of K9 as an induced subgraph of �U(R) gives g(�U(R)) > 2; a

contradiction. Consequently, |R1| 6= 8.

Subcase-1.1. R2 is not a field. Then R2 is isomorphic to one of the following

rings: Z8,
Z2[x]
(x3) ,

Z2[x,y]
(x2,xy,y2) ,

Z4[x]
(2x,x2) ,

Z4[x]
(2x,x2�2) (cf. Table 1.1). First suppose that R2 is

isomorphic to Z8 or Z2[x]
(x3) . If |R1| 2 {3, 4, 5, 7}, then we can easily get K9 as an

induced subgraph of �U(R); a contradiction. If |R1| = 2, then note that �U(R) has

12 vertices, 50 edges and 36 faces (cf. Lemma 1.3.10); a contradiction to Remark

1.3.16.

Now suppose thatR2 is isomorphic to one of the following 3 rings: Z2[x,y]
(x2,xy,y2) ,

Z4[x]
(2x,x2) ,

Z4[x]
(2x,x2�2) . If |R1| 2 {5, 7}, then �U(R) has an induced subgraph isomorphic to K9; a

contradiction. Next, let R1 be not a field of size 4 and z 2 Z(R1)⇤. Then note that

the set {(0, 0), (0, b1), . . . , (0, b7), (z, 0)}, where b1, b2, . . . , b7 2 R
⇤
2, induces a sub-

graph which is isomorphic to K9; a contradiction. Let R1 be a field of size 4. Then

�U(R) has 20 vertices, 97 edges and so Lemma 1.3.10 gives 75 faces; a contradic-

tion (cf. Remark 1.3.16). If |R1| = 3, then v = 16, e = 64 and by Lemma 1.3.10 we

get f = 46; a contradiction. If |R1| = 2, then note that �U(R) has 12 vertices and

41 edges. Let u1, u2, u3, u4 2 U(R2) and z1, z2, z3 2 Z(R2)⇤. Note that V (�U(R)) =

{(0, 0), (0, u1), (0, u2), (0, u3), (0, u4), (0, z1), (0, z2), (0, z3), (1, 0), (1, z1), (1, z2), (1, z3)}.

Let fi be the number of faces of size i in an embedding of �U(R). Since g(�U(R)) =

2, we have f = 27 (cf. Lemma 1.3.10). Note that f4+2f5 = 2e�3f = 1. It follows

that any embedding of �U(R) in S2 has 26 triangular faces and one quadrilateral

face. Now consider the set
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X = {(0, 0), (0, u1), (0, u2), (0, u3), (0, u4), (0, z1), (0, z2), (0, z3)},

we get �U(X) ⇠= K8. Consequently, any embedding of �U(X) has either one

pentagonal, 17 triangular faces or two quadrilateral, 16 triangular faces. Suppose

�U(X) has one pentagonal, 17 triangular faces in an embedding on S2. If we insert

the set Y = {(1, 0), (1, z1), (1, z2), (1, z3)} of vertices and their respective edges to

the embedding of �U(X), then �U(Y ) must be embedded in the pentagonal face.

Consequently, any embedding of �U(R) on S2 leads to an edge crossing. Similarly,

the insertion of �U(Y ) in an embedding of �U(X), when it has two quadrilateral

and 16 triangular faces, yields to an edge crossing. Therefore, g(�U(R)) > 2; a

contradiction and so this subcase is not possible.

Subcase-1.2. R2 be a field of size 8. If |R1| 2 {5, 7}, then by Lemma 1.3.11

and Remark 3.1.1, we obtain g(�U(R)) 6= 2; a contradiction. If |R1| = 4 such

that R1 is not a field, then there exists a z 2 Z(R1)⇤. Consequently, for the

set Y
0 = {(0, 0), (0, 1), · · · , (0, 7), (z, 0)}, we have �U(Y 0) ⇠= K9; a contradiction.

Thus, R is isomorphic to one of the following 3 rings: Z2 ⇥ F8, Z3 ⇥ F8, F4 ⇥ F8.

Case-2. |R2| 2 {5, 7}. IfR1 is a field and |R1|  4, then by Theorem 3.4.6, we have

g(�U(R)) = 1. If R1 is not a field of size 4, then for z 2 Z(R1)⇤ note that �U(A) ⇠=

K9, where A = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (z, 0), (z, 1), (z, 2), (z, 3)}. Conse-

quently, R is isomorphic to one of the following 3 rings: Z7 ⇥Z7,Z5 ⇥Z7,Z5 ⇥Z5.

Case-3. |R2| = 4. Assume that |R1| = 4. If both R1, R2 are fields, then �U(R1 ⇥

R2) is planar ( cf. Theorem 3.4.3); a contradiction. We may now suppose that

both R1 and R2 are not fields. Then note that �U(R) has 12 vertices, 50 edges

and so 36 faces (cf. Remark 1.3.16); a contradiction. Note that |R1| 62 {2, 3} (cf.

Theorem 3.4.3 and Theorem 3.4.6). Thus, |R1| = 4 and both R1 and R2 can not

be fields. Consequently, either R ⇠= F4 ⇥ Z4 or R ⇠= F4 ⇥
Z2[x]
(x2) .

Case-4. |R2|  3. If |R1|  3, then �U(R) is a planar graph (cf. Theorem 3.4.3).

Conversely, suppose that R ⇠= Z2 ⇥ Z2 ⇥ Z3. By Figure 3.4, g(�U(R)) =
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2. If either R ⇠= F4 ⇥ Z4, or R ⇠= F4 ⇥
Z2[x]
(x2) , then �U(R) ⇠= K2 _ (K2

S
K6).

Consequently, g(�U(R)) = 2 (cf. Proposition 1.3.9 and Lemma 1.3.11). Further,

if R is isomorphic to one of the remaining 6 rings, then by Lemma 1.3.11 and

Remark 3.1.1, we obtain g(�U(R)) = 2.

(0,0,0) (0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)

(1,0,0)

(1,0,1)

(1,0,1)

(0,0,1) (0,0,1)

(0,1,1)(0,1,1)

(0,1,0)

(0,1,0)

(0,1,2)

(0,1,2)

(0,0,2) (0,0,2)

(1,0,2) (1,0,2)

(1,1,0)

Figure 3.4: Embedding of �U(Z2 ⇥ Z2 ⇥ Z3) in S2

3.4.3 Crosscap of �U(R)

In this subsection, we characterize all the non-local commutative rings R such that

�U(R) has crosscap at most 2. We begin with the following lemma.

Lemma 3.4.8. Let R be a non-local commutative ring such that R ⇠= R1 ⇥ R2 ⇥

· · ·⇥Rn, for n � 4. Then cr(�U(R) > 2.

Proof. Let n � 4. Then note that the vertices x1 = (0, 0, . . . , 0), x2 = (1, 0, . . . , 0),

x3 = (0, 1, 0, . . . , 0), x4 = (0, 0, 1, 0, . . . , 0), x5 = (1, 1, 0, 0, . . . , 0), x6 = (1, 0, 1, 0, . . . , 0),

x7 = (0, 1, 1, 0, . . . , 0), x8 = (1, 1, 1, 0, . . . , 0) induces a subgraph of �U(R) which is

isomorphic to K8. Therefore, by Proposition 1.3.12, we get cr(�U(R)) > 2.
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Theorem 3.4.9. Let R be a non-local commutative ring. Then the crosscap of

�U(R) is 1 if and only if R is isomorphic to one of the following 5 rings:

Z2 ⇥ Z5, Z3 ⇥ Z5, F4 ⇥ Z5, Z3 ⇥ Z4, Z3 ⇥
Z2[x]
(x2) .

Proof. Let R be a non-local ring. Then R ⇠= R1⇥R2⇥ · · ·⇥Rn, where each Ri is a

local ring and n � 2. Suppose that cr(�U(R)) = 1. In view of Lemma 3.4.8, either

R ⇠= R1⇥R2⇥R3 or R ⇠= R1⇥R2. First assume that R ⇠= R1⇥R2⇥R3. Suppose

that for each i 2 {1, 2, 3}, |Ri| = 3 with a1, a2 2 R
⇤
1, b1, b2 2 R

⇤
2 and c1, c2 2 R

⇤
3.

Then for the set X = {(0, 0, 0), (a1, 0, 0), (0, b1, 0), (a2, 0, 0), (a1, b1, 0), (0, b2, 0),

(a1, b2, 0)}, we get �U(X) ⇠= K7; a contradiction. Without loss of generality,

assume that |R1| = 2 and |R2| = 3 = |R3|. Then the set

X
0 = {(0, 0, 0), (0, 0, c1), (0, b1, 0), (0, 0, c2), (0, b1, c1), (0, b2, 0), (0, b2, c1)}

induces K7 as a subgraph of �U(R), which is not possible. Thus, we have |R1| =

2 = |R2| and |R3| = 3. It implies that �U(R) has 10 vertices, 31 edges and then

Lemma 1.3.13 follows that f = 22; a contradiction to Remark 1.3.16. Therefore,

|Ri| = 2 for each i and so R ⇠= Z2⇥Z2⇥Z2, which is not possible (see Figure 3.1).

Consequently, R ⇠= R1 ⇥R2. If either |R1| � 7 or |R2| � 7, then we can easily get

K7 as an induced subgraph of �U(R). By Proposition 1.3.12, cr(�U(R)) 6= 1; a

contradiction. In view of Remark 1.2.6, we classify R through the following cases.

Case-1. |R2| = 5. Note that |R1| 6= 5 (cf. Remark 3.1.1 and Lemma 1.3.15).

Therefore, |R1|  4. Further, if R1 is not a field of size 4, then there exists a

z 2 Z(R1)⇤. The set X
00 = {(0, 0), (0, 1), . . . , (0, 4), (z, 0), (z, 1)} induces K7 as a

subgraph of �U(R); again a contradiction. Thus, R is isomorphic to one of the

following three rings: Z2 ⇥ Z5, Z3 ⇥ Z5, F4 ⇥ Z5.

Case-2. |R2| = 4. Let |R1| = 4. If both R1, R2 are fields, then �U(R) is a planar

graph ( cf. Theorem 3.4.3). Without loss of generality, assume that R1 is not a

field. Then for z 2 Z(R1)⇤, note that the set
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Y = {(0, 0), (0, b1), (0, b2), (0, b3), (z, 0), (z, b1), (z, b2)}

induces K7 as a subgraph of �U(R); a contradiction. Therefore, |R1| 6= 4. Further,

suppose that |R1| 2 {2, 3} and R2 is a field. Then by Theorem 3.4.3, �U(R) is

planar. Next, if |R1| = 2 and R2 is not a field, then by Theorem 3.4.3, cr(�U(R)) =

0; again a contradiction. Thus, either R ⇠= Z3 ⇥ Z4 or R ⇠= Z3 ⇥
Z2[x]
(x2) .

By Theorem 3.4.3, note that |Ri|  3 is not possible. Conversely, if R ⇠= F4⇥Z5,

then from Figure 3.5, cr(�U(R)) = 1. For R ⇠= Z2 ⇥ Z5, we get �U(Z2 ⇥ Z5) ⇠=

�U(X), where X = V (�U(F4 ⇥ Z5)) � {(2, 0), (3, 0)}. It follows that cr(�U(Z2 ⇥

Z5)) = 1. Similarly, cr(�U(Z3 ⇥ Z5)) = 1 because �U(Z3 ⇥ Z5) ⇠= �U(Y ) for

Y = V (�U(F4 ⇥ Z5))� {(3, 0)}. Finally, if either R ⇠= Z3 ⇥ Z4 or R ⇠= Z3 ⇥
Z2[x]
(x2) ,

then by Figure 3.6, cr(�U(R)) = 1.

(0, 2)

(0, 0)

(0, 1)

(0,3)

(0, 4)

(1, 0)

(2,0)

(3, 0)

Figure 3.5: Embedding of �U(F4 ⇥ Z5) in N1

Theorem 3.4.10. Let R be a non-local commutative ring. Then cr(�U(R)) = 2

if and only if R is isomorphic to the ring Z5 ⇥ Z5.

Proof. Let cr(�U(R)) = 2 and R be a non-local commutative ring. Then R ⇠=

R1 ⇥R2 ⇥ · · ·⇥Rn, where n � 2 and each Ri is a local ring. By Lemma 3.4.8, we

get n  3. First suppose that n = 3, that is R ⇠= R1 ⇥ R2 ⇥ R3. If |R1| = |R2| =
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(0,0)

(0, 1)

(2, 2)

(1, 0)

(2, 0)

(1, 2)

(0, 2)

(0, 3)

(1, 0)

(0, 0)

(2, 0)

(a) (b)

(2, x+ (x2))

(1, x+ (x2))

(0, x+ (x2))

(0, 1 + x+ (x2))

(0, 1 + (x2))

Figure 3.6: Embedding of (a) �U(Z3 ⇥ Z4) and (b) �U(Z3 ⇥
Z2[x]
(x2) ) in N1

|R3| = 3, then the set {(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)}

induces K7 as a subgraph of �U(R); a contradiction. Without loss of generality,

assume that |R1| = 2 and |R2| = 3 = |R3|. For the set

X = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2)},

we get �U(X) ⇠= K7; a contradiction. We may now suppose that |R1| = 2 = |R2|

and |R3| = 3. Note that v = 10, e = 31 and so Lemma 1.3.13 gives f = 21; a

contradiction to the Remark 1.3.16. Consequently, |Ri| = 2, for each i 2 {1, 2, 3}.

This is also not possible (cf. Figure 3.1). Thus, R ⇠= R1 ⇥ R2. If either |R1| � 7

or |R2| � 7, then we can easily get K7 as an induced subgraph of �U(R). By

Proposition 1.3.12, we get cr(�U(R)) 6= 2; a contradiction. Therefore, by Remark

1.2.6, |Ri|  5 for each i = 1, 2. Now we have the following cases:

Case-1. |R2| = 5. Let R1 be a field such that |R1| 2 {2, 3, 4}. Then by Theorem

3.4.9, we get cr(�U(R)) = 1. If R1 is not a field of size 4, then by the Case-1 of

Theorem 3.4.9, we get a contradiction. Therefore, R ⇠= Z5 ⇥ Z5.

Case-2. |R2| = 4. Suppose that |R1| 2 {2, 3, 4}. If both R1 and R2 are fields,

then �U(R) is a planar graph (cf. Theorem 3.4.3). Now suppose that R2 is not
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a field with z 2 Z(R2)⇤. If |R1| 2 {2, 3}, then by Theorem 3.4.3 and Theorem

3.4.9, we have cr(�U(R)) 6= 2; a contradiction. If |R1| = 4, then the set Y =

{(0, 0), (b1, 0), (b2, 0),

(b3, 0), (0, z), . . . , (b2, z)}, where b1, b2, b3 2 R
⇤
1, induces K7 as a subgraph of �U(R).

Thus, this case is not possible.

In view of above cases and by Theorem 3.4.3, note that the case |R2|  3 is

not possible. Conversely if R ⇠= Z5⇥Z5, then by Remark 3.1.1 and Lemma 1.3.15,

we obtain cr(�U(R)) = 2.

3.5 Forbidden Subgraphs of �U(R)

In this section, we classify all the non-local commutative rings whose upper ideal

relation graphs are split graphs, threshold graphs, cographs, cactus graphs and

unicyclic graphs.

Theorem 3.5.1. Let R be a non-local commutative ring. Then �U(R) is a split

graph if and only if R is isomorphic to Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Fq.

Proof. First suppose that �U(R) is a split graph. Since R is a non-local commu-

tative ring, we have R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where each Ri is a local ring and

n � 2. If n � 4, then �U(R) has a subgraph induced by u1 = (1, 1, 0, 1, . . . , 1),

u2 = (0, 1, 0, 1, . . . , 1) and v1 = (1, 0, 1, 1, . . . , 1), v2 = (1, 0, 1, 0, 1, . . . , 1) which is

isomorphic to 2K2; a contradiction. Thus, either R ⇠= R1⇥R2⇥R3 or R ⇠= R1⇥R2.

Let a1, a2 2 U(R1), b1, b2 2 U(R2) and c1, c2 2 U(R3). First suppose that

R ⇠= R1⇥R2⇥R3. If |Ri| � 3 for every i 2 {1, 2, 3}, then notice that u1 = (a1, 0, c1),

u2 = (a2, 0, c2) and v1 = (0, b1, c1), v2 = (0, b2, c2) induces a subgraph of �U(R)

which is isomorphic to 2K2. Without loss of generality, assume that |R1| = 2 and

|R2| = 3 = |R3|. Then for the set X = {(0, b1, c1), (0, b2, c2)(1, b1, 0), (1, b2, 0)} we
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have �U(X) ⇠= 2K2; a contradiction. Therefore, both R2 and R3 can not have car-

dinality three. We may now suppose that |R1| = 2 = |R2| and |R3| = 3. The set

X
0 = {(0, 1, c1), (0, 1, c2), (1, 0, c1), (1, 0, c2)} induces 2K2 as a subgraph of �U(R)

which is not possible. Consequently, R ⇠= Z2 ⇥ Z2 ⇥ Z2.

Now, suppose that R ⇠= R1 ⇥ R2. If |R1| � 3 and |R2| � 3, then the set

of vertices {(a1, 0), (a2, 0), (0, b1), (0, b2)} induces a subgraph isomorphic to 2K2;

a contradiction. Without loss of generality, assume that |R1| = 2 and |R2| � 3.

If R2 is not a field, then there exists z 2 Z(R2)⇤. Consequently, the subgraph

induced by X
00 = {(0, b1), (0, b2), (1, 0), (1, z)} is isomorphic to 2K2, which is not

possible. Thus, R ⇠= Z2 ⇥ Fq.

Conversely, suppose that R ⇠= Z2 ⇥ Z2 ⇥ Z2. Note that V (�U(R)) = V1 [ V2,

where V1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} is an independent set and V2 = {(0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1)} forms a complete subgraph of �U(R). Moreover, V1 \ V2 = ;.

Thus, by definition, �U(R) is a split graph. If R ⇠= Z2 ⇥ Fq, then note that

V (�U(R)) = V1 [ V2, where V1 = {(1, 0)} and V2 = {(0, b) : b 2 Fq}. Conse-

quently, the result holds.

Theorem 3.5.2. Let R be a non-local commutative ring. Then �U(R) is a thresh-

old graph if and only if R is isomorphic to the ring Z2 ⇥ Fq.

Proof. Since R is a non-local commutative ring, we have R ⇠= R1 ⇥R2 ⇥ · · ·⇥Rn,

where each Ri is a local ring and n � 2. Suppose that �U(R) is a threshold graph.

Then �U(R) is a split graph also. By Theorem 3.5.1, either R ⇠= Z2 ⇥ Z2 ⇥ Z2 or

R ⇠= Z2 ⇥ Fq. If R ⇠= Z2 ⇥Z2 ⇥Z2, then there exists an induced subgraph �U(X),

where X = {(1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1)}, which is isomorphic to P4 which is

not possible. Consequently, R ⇠= Z2 ⇥ Fq.

Conversely, if R ⇠= Z2 ⇥ Fq, then �U(R) ⇠= K1 _ (K1 [ K|Fq |�1) (cf. Remark

3.1.1). It follows that �U(R) is a threshold graph.
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Theorem 3.5.3. Let R be a non-local commutative ring such that R ⇠= R1⇥R2⇥

· · · ⇥ Rn, (n � 2) and each (Ri,Mi) is a local ring. Then �U(R) is a cograph if

and only if R ⇠= R1 ⇥R2 and M1,M2 are the maximal principal ideals.

Proof. First suppose that �U(R) is a cograph. If n � 3, consider the set

X = {(1, 0, 1, . . . , 1), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 1, . . . , 1)}.

Notice that �U(X) ⇠= P4; a contradiction. Thus, R ⇠= R1 ⇥ R2, where (R1,M1)

and (R2,M2) are local rings. Now we show that both the ideals M1 and M2 are

maximal principal. Without loss of generality, assume that M1 is not a maximal

principal ideal. Then R1 has at least two maximal principal ideals, namely: (x1)

and (x2). For instance, for some y 2 R1, if (y) is the only maximal principal ideal

of R1 then R1 \ U(R1) = M1 ✓ (y). Consequently, M1 = (y); a contradiction.

Further, note that x1 ⌧ x2 in �U(R1). Moreover, (x1, 1) ⇠ (x1, 0) ⇠ (x2, 0) ⇠

(x2, 1) is an induced subgraph which is isomorphic to P4; a contradiction. Thus,

both M1 and M2 must be the maximal principal ideals of R1 and R2, respectively.

Conversely, suppose that R ⇠= R1 ⇥ R2 and Mi is the principal ideals of Ri.

To prove �U(R) is a cograph, consider the sets

V1 = {(z1, z2) : z1 2 M1, z2 2 M2};

V2 = {(z1, u2) : z1 2 M1, u2 2 R2 \M2};

V3 = {(u1, z2) : u1 2 R1 \M1, z2 2 M2}.

Observe that V1, V2 and V3 forms a partition of V (�U(R)). Since M1 is the

principal ideal and M1 = V (�U(R1)), we obtain �U(R1) ⇠= K|M1|. Similarly,

�U(R2) ⇠= K|M2|. Consequently, �U(Vi) ⇠= K|Vi| for each i 2 {1, 2, 3}. Let

x = (z1, z2) 2 V1. If y = (t1, t2) 2 V2, then note that (x), (y) ✓ ((z, t2)),

where M1 = (z). It follows that x ⇠ y in �U(R1 ⇥ R2). Similarly, x ⇠ y for

every y 2 V3. Consequently, x ⇠ y for every y 2 V (�U(R1 ⇥ R2)). Further,
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note that for each x 2 V2 and y 2 V3, we have x ⌧ y in �U(R1 ⇥ R2). Thus,

�U(R) ⇠= K|V1| _ (K|V2|
S
K|V3|). Hence, �U(R) is a cograph.

Theorem 3.5.4. Let R be a non-local commutative ring. Then �U(R) is a cactus

graph if and only if R is isomorphic to one of the following 3 rings: Z2 ⇥ Z2,

Z2 ⇥ Z3, Z3 ⇥ Z3.

Proof. Let R be a non-local ring. Then R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where each Ri

is a local ring and n � 2. First suppose that �U(R) is a cactus graph. For n � 3,

the graph �U(R) has two cycles (infact, triangles)

C1 : (1, 0, . . . , 0) ⇠ (1, 1, 0, . . . , 0) ⇠ (0, 1, 0, . . . , 0) ⇠ (1, 0, . . . , 0); and

C2 : (0, 1, 0, . . . , 0) ⇠ (0, 0, 1, . . . , 0) ⇠ (1, 0, . . . , 0) ⇠ (0, 1, 0, . . . , 0),

which has a common edge (1, 0, . . . , 0) ⇠ (0, 1, 0, . . . , 0); a contradiction. Thus,

R ⇠= R1⇥R2. Without loss of generality, assume that |R1| � 4 with a1, a2, a3 2 R
⇤
1.

Then the cycles C1 : (a1, 0) ⇠ (0, 0) ⇠ (a2, 0) ⇠ (a1, 0) and C2 : (0, 0) ⇠ (a3, 0) ⇠

(a1, 0) ⇠ (0, 0) has a common edge. Therefore, |Ri|  3 for every i 2 {1, 2}. Thus,

the result holds. Converse follows from Remark 3.1.1.

Theorem 3.5.5. Let R be a non-local commutative ring. Then �U(R) is unicyclic

if and only if R is isomorphic to the ring Z2 ⇥ Z3.

Proof. Let R be a non-local ring. Then R ⇠= R1 ⇥ R2 ⇥ · · · ⇥ Rn, where each Ri

is a local ring and n � 2. First suppose that �U(R) is a unicyclic graph. If n � 3,

then �U(R) has two cycles C1 and C2, where

C1 : (1, 0, . . . , 0) ⇠ (0, 1, 0, . . . , 0) ⇠ (0, 0, 1, 0, . . . , 0) ⇠ (1, 0, . . . , 0); and

C2 : (1, 0, . . . , 0) ⇠ (1, 0, 1, . . . , 0) ⇠ (0, 0, 1, 0, . . . , 0) ⇠ (1, 0, . . . , 0).

Therefore, R ⇠= R1 ⇥ R2. Now suppose that |Ri| � 3 for each i = 1, 2 with

a1, a2 2 R
⇤
1 and b1, b2 2 R

⇤
2. Note that for the sets X1 = {(a1, 0), (0, 0), (a2, 0)} and

X2 = {(0, 0), (0, b1), (0, b2)}, we get �U(Xi) ⇠= C3, where i 2 {1, 2}; a contradiction
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to the fact that �U(R) has a unique cycle. We may now suppose that R ⇠= R1⇥R2

with |Ri|  2 for some i. Without loss of generality, assume that |R1| = 2. If

|R2| � 4 and b1, b2, b3 2 R
⇤
2, then for the set Y1 = {(0, 0), (0, b1), (0, b2)} and

Y2 = {(0, 0), (0, b3), (0, b2)}, we get �U(Yi) ⇠= C3 for i 2 {1, 2}; a contradiction.

Consequently, |R1| = 2 and |R2|  3. If |R2| = 2, then clearly �U(R) does not

have cycle (cf. Remark 3.1.1). Thus, |R2| = 3 and so R ⇠= Z2 ⇥ Z3. Converse is

straightforward from Remark 3.1.1.

3.6 The Upper Ideal-Relation Graph of the Ring

Zn

In this section, we study the upper ideal-relation graph of the ring Zn. We obtain

the vertex connectivity and the automorphism group of �U(Zn). Moreover, we

classify all the values of n such that �U(Zn) is Hamiltonian. Finally, we obtain the

spectrum of �U(Zn) for n = p
↵
q
�, where ↵, � are non-negative integers and p, q

are prime numbers. First, we discuss about the structure of the graph �U(Zn).

Note that the setsAd1 ,Ad2 , . . . ,Adk andAn(= {0}) form a partition of V (�U(Zn))

(see Remark 1.2.4).

Lemma 3.6.1. Let x 2 Adi and y 2 Adj , where 1  i, j  k. Then x ⇠ y in

�U(Zn) if and only if there exists a proper divisor d of n such that d|x and d|y.

Proof. First suppose that x ⇠ y. Then x, y 2 (z) for some z 2 V (�U(Zn)).

It follows that z 2 Ad for some proper divisor d of n. Therefore, x, y 2 (d).

Consequently, d|x and d|y. Conversely, assume that d|x and d|y. It implies that

x, y 2 (d). Consequently, x ⇠ y.

Corollary 3.6.2. For every x, y 2 Adi, we have x ⇠ y in �U(Zn).
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Theorem 3.6.3. For distinct primes p and q, the graph �U(Zn) is Hamiltonian if

and only if n 6= 4 and n 6= pq.

Proof. First suppose that the graph �U(Zn) is Hamiltonian. Let n = pq. Note

that Zpq
⇠= K1 _ (Kq�1 [Kp�1), which is not a Hamiltonian graph. For n = 4, we

have �U(Z4) ⇠= K2 and therefore �U(Z4) is not a Hamiltonian graph. Conversely,

assume that n 6= 4 and n 6= pq. If n = p, then V (�U(Zn)) = {0}, which is

trivially a Hamiltonian graph. If n = p
r, where r � 2, then �U(Zpr) ⇠= Kpr�1 .

Since n 6= 4, we have �U(Zpr) is a complete graph of at least three vertices. Thus

�U(Zpr) is Hamiltonian. We may now suppose that n = p
↵1
1 p

↵2
2 p

↵3
3 · · · p

↵m
m , where

m � 2. Note that (p1), (p2), . . . , (pm) are m distinct maximal ideals of Zn and

the subgraph of �U(Zn) induced by each of these ideals forms a clique in �U(Zn).

Further, note that for any two distinct maximal ideals (pi) and (pj), we have

(pi) ⇠ pipj ⇠ (pj). One can construct a Hamiltonian cycle using the adjacency

0 ⇠ (p1) ⇠ p1p2 ⇠ (p2) ⇠ · · · ⇠ pm�1pm ⇠ (pm). Hence, the graph �U(Zn) is

Hamiltonian.

Now we obtain the vertex connectivity of �U(Zn). By Corollary 3.1.6, we have

(�U(Zp↵)) = p
↵�1

� 1. If n = p
↵
q
�, then note that

�U(Zn) ⇠= K|(pq)| _ (K|(p)\(pq)| [K|(q)\(pq)|).

It follows that (�U(Zn)) = |(pq)| = p
↵�1

q
��1. For distinct primes divisors

p1, p2, . . . , pr of n, we define the set

(p1p2 · · · pr)
[ = {up

↵1
1 p

↵2
2 · · · p

↵r
r : u 2 U(Zn) and ↵i > 0 for each i 2 {1, 2, . . . , r}}.

Lemma 3.6.4. Let n = p
n1
1 p

n2
2 · · · p

nr�1
r�1 p

nr
r p

nr+1
r+1 · · · p

nm
m , where pi’s are distinct

primes and r  m� 2. If pk < pt with k, t /2 {1, 2, . . . , r}, then |(p1p2 · · · prpt)[| 

|(p1p2 · · · prpk)[|.
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Proof. Let x = up
↵1
1 p

↵2
2 · · · p

↵r
r p

↵t
t and y = up

↵1
1 p

↵2
2 · · · p

↵r
r p

↵t
k such that x < n.

Then note that the map  : (p1p2 · · · prpt)[ ! (p1p2 · · · prpk)[ defined by  (x) = y

is a one-one map. Thus, the result holds.

Theorem 3.6.5. For m � 3, let n = p
n1
1 p

n2
2 · · · p

nm
m , where pi’s are distinct primes

and p1 < p2 < · · · < pm. Then the set

T = (p1pm) [ (p2pm) [ · · · [ (pm�1pm)

is a cut set of �U(Zn). Moreover, the vertex connectivity of �U(Zn) is |T |.

Proof. To prove, T is a cut set of �U(Zn), we show that the subgraph induced by

V (�U(Zn)) \ T is disconnected. Let x 2 (pm) \ T and y 2 (pr) \ T , where r 6= m.

Assume that x ⇠ y. Then there exists a proper divisor d of n such that d|x and

d|y. Consequently, d 2 (prpm) ✓ T . It follows that x, y 2 T ; a contradiction.

Thus, x 2 (pm) \ T is not adjacent to any y 2 (pr) \ T , where r 6= m. Therefore,

there is no path between x and y in �U(Zn). Hence, T is a cut set. To obtain

the vertex connectivity of �U(Zn), we show that T is a minimum cut set. In this

connection, we show that there are at least |T | vertex disjoint paths between x and

y in �U(Zn) (see [West, 1996, Theorem 4.2.21]). We discuss the following cases.

Case-1. x, y 2 (pi). Since the subgraph induced by (pi) forms a complete

subgraph; we get |(pi)| � 1 vertex disjoint paths between x and y. Note that

T ⇢ (pm) and for each pi, we have |(pi)| � |(pm)|. Consequently, there exist at

least |T | vertex disjoint paths between x and y.

Case-2. x 2 (pi), y 2 (pj) such that pi > pj and i 6= m. Then for any prime

divisor pr(r 6= i, j,m) of n, we get the paths x ⇠ u ⇠ v ⇠ w ⇠ y, where u 2 (pipr)[,

v 2 (prpm)[, w 2 (prpj)[. By Lemma 3.6.4, |(pipr)[|, |(prpj)[| > |(prpm)[|, we

obtain at least |(prpm)[| vertex disjoint paths between x and y. Analogously, for

z 2 (pipm)[, z0 2 (pjpm)[, we get the paths x ⇠ z ⇠ z
0
⇠ y between x and y in

�U(Zn). Note that we have |(pipm)[| vertex disjoint paths between x and y. In
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addition to these paths, we also have x ⇠ z ⇠ y, where z 2 (pipj)[. It follows

that we have at least |(pjpm)[| vertex disjoint paths because |(pipj)[| > |(pjpm)[|.

Consequently, we get at least
Pm�1

i1=1 |(pi1pm)
[
| vertex disjoint paths between x and

y in �U(Zn). Similarly, we have following additional vertex disjoint paths between

x and y

x ⇠ u ⇠ v ⇠ w ⇠ y, where u 2 (piprpr0)
[
, v 2 (prpr0pm)

[
, u 2 (prpr0pj)

[

x ⇠ z ⇠ z
0
⇠ y, where z 2 (piprpm)

[
, z

0
2 (pjprpm)

[

x ⇠ z
00
⇠ y, where z

00
2 (piprpj)

[

x ⇠ z
000
⇠ y, where z

000
2 (pipjpm)

[
.

Consequently, we get at least
P

i1<i2
|(pi1pi2pm)

[
| vertex disjoint paths between x

and y. On continuing in this way, we shall get at least

l =
Pm�1

i1=1 |(pi1pm)
[
|+
P

i1<i2
|(pi1pi2pm)

[
|+· · ·+

P
i1<i2<···<im�2

|(pi1pi2 · · · pim�2pm)
[
|

+|(pi1pi2 · · · pm�1pm)[|

vertex disjoint paths between x and y. Also note that |T | = l. Thus, we have at

least |T | vertex disjoint paths between x and y in �U(Zn).

Case-3: x 2 (pi), y 2 (pm) and i 6= m. Then, for any prime divisor pr(r 6= i,m)

of n, we get the following vertex disjoint paths

x ⇠ u ⇠ v ⇠ y, where u 2 (pipr)
[
, v 2 (prpm)

[

x ⇠ z ⇠ y, where z 2 (pipm)
[
.

Consequently, we get at least
Pm�1

i1=1 |(pi1pm)
[
| vertex disjoint path between x and

y. Now in the similar lines of the Case-2, we shall get at least l = |T | vertex

disjoint paths between x and y. Thus, the result follows.
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3.6.1 Automorphism Group of �U(Zn)

In this subsection, we obtain the automorphism group Aut(�U(Zn)) of the ring

Zn. For n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m , consider the following sets

Xp1 =
n1[

i=1

Api1
, Xp2 =

n2[

i=1

Api2
, . . . , Xpm =

nm[

i=1

Apim ,

Xp1p2 =
n1[

i=1

 
n2[

j=1

Api1p
j
2

!
, . . . , Xp↵p� =

n↵[

i=1

 n�[

j=1

Api↵p
j
�

!
,

...

Xpi1pi2 ···pik =

ni1[

j1=1

ni2[

j2=1

· · ·

nik[

jk=1

A
p
j1
i1
p
j2
i2
···pjkik

, k < m

...

Xp1p2···pm =
n1[

i1=1

n2[

i2=1

· · ·

nm[

im=1

A
p
i1
1 p

i2
2 ···pimm

.

Lemma 3.6.6. Let x 2 Xr. Then x 2 (r).

Proof. Without loss of generality, let r = p1p2 · · · pk. Then x 2 Ap
↵1
1 p

↵2
2 ···p↵k

k
, where

1  ↵i  ni. It follows that (x) = (p↵1
1 p

↵2
2 · · · p

↵k
k ). Thus, the result holds.

Lemma 3.6.7. Let x, y 2 V (�U(Zn)). Then x, y 2 Xr if and only if N [x] = N [y].

Proof. Let x, y 2 Xr. Then by Lemma 3.6.1 and Corollary 3.6.2, x ⇠ y. Now

suppose z ⇠ x for some z 2 V (�U(Zn)). By Lemma 3.6.1, there exists a prime

divisor p of n such that p|x and p|z. It follows that x, z 2 (p). Since x 2 Xr, by

Lemma 3.6.6, we have p|r. Consequently, we get y 2 (p). It implies that y ⇠ z.

Conversely, let N [x] = N [y]. For any prime divisor p of n, note that if p|x then

p|y and vice-versa. Now suppose x 2 Xr and y 2 Xr0 with r 6= r
0. Then, without

loss of generality, there exists a prime divisor q of n such that q|r but q - r0; a

contradiction.
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Corollary 3.6.8. Let x, y 2 Xr. Then deg(x) = deg(y).

Theorem 3.6.9. Let n = p
n1
1 p

n2
2 p

n3
3 · · · p

nm
m . Then

Aut(�U(Zn)) ⇠= S|Xp1 | ⇥ S|Xp2 | ⇥ · · ·⇥ S|Xp1p2···pm |.

Proof. By Lemma 3.6.7, the vertices of each partition set Xr have same adjacency

with the other vertices of �U(Zn). Thus, for each r, the vertices of Xr can be

permuted among themselves.

Now we show that a vertex of Xr cannot be mapped to a vertex of Xr0 (r 6= r
0)

under an automorphism f of �U(Zn). Let x 2 Xr and y 2 Xr0 with r 6= r
0. Suppose

f(x) = y. Let pi1 , pi2 , . . . , pik be the prime divisors of n which divides either x or

y but not both. Let pi = max{pi1 , pi2 , . . . , pik}. Without loss of generality assume

that pi divides x but not y. Thus, we have x ⇠ pi. We know that deg(pi) =
n
pi
� 1.

Let f(pi) = t. Since f is an automorphism, we get t ⇠ y and deg(t) = n
pi
� 1.

It implies that t 2 (pi). Consequently, we get y 2 (pi) and pi|y; a contradiction.

Hence, the result holds.

3.6.2 The Laplacian Spectrum of �U(Zn)

In this subsection, we find the Laplacian spectra of �U(Zn) for n = p
↵
q
�, where

p, q are distinct primes. By Corollary 3.1.6, the Laplacian eigenvalues of �U(Zp↵)

are 0 and p
↵�1 with multiplicity 1 and p

↵�1
� 1, respectively.

Theorem 3.6.10. Let n = p
↵
q
�. Then the Laplacian spectrum of �U(Zn) is given

by 0

@0 t t(p+ q � 1) tq tp

1 1 t t(q � 1)� 1 t(p� 1)� 1

1

A

where t = p
↵�1

q
��1.

Proof. Let n = p
↵
q
�. Then the proper divisors of n are of the form p

i
q
j, where

0  i  ↵, 0  j  �. Note that
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V (�U (Zn)) = (Ap
S

Ap2
S

· · ·
S

Ap↵ )
S
(Aq

S
Aq2

S
· · ·

S
Aq� )

S
(

�S
j=1

Apqj )
S
(

�S
j=1

Ap2qj1 )

S
· · ·

S
(
��1S
j=1

Ap↵qj ).

Let x1 2 Api1 , x2 2 Api2 and y1 2 Aqj1 , y2 2 Aqj2 . Then by Lemma 3.6.1, we

get x1 ⇠ x2 and y1 ⇠ y2 in �U(Zn). Also, note that for x 2 Api and y 2 Aqj , we

have x ⌧ y. Further, for any x 2 Apiqj and y 2 Api [ Aqj such that 1  i  ↵,

1  j  � with i+ j 6= ↵ + �, we have x ⇠ y in �U(Zn) (cf. Lemma 3.6.1). Also,

for any proper divisor piqj (i, j 6= 0) of n, we obtain x ⇠ y in �U(Zn). Next, we

have

↵X

i=1

|Api | = |Ap|+ |Ap2 |+ · · ·+ |Ap↵ |

= �(p↵�1
q
�) + �(p↵�2

q
�) + · · ·+ �(q�)

= p
↵�1

q
��1(q � 1) = t(q � 1)

Similarly, we obtain

�P
j=1

|Aqj | = p
↵�1

q
��1(p� 1) = t(p� 1)

Also, we have 0 ⇠ x, for each x 2 �U(Zn). Note that the graph

�U(Zn) ⇠= Kt _ (Kt(q�1) [Kt(p�1)).

By Theorem 1.3.20, the characteristic polynomial of the Laplacian matrix of

Kt(q�1) [Kt(p�1) is

µ(Kt(q�1) [Kt(p�1), x) = x(x� t(q � 1))t(q�1)�1
⇥ x(x� t(p� 1))t(p�1)�1.

Consequently, by Theorem 1.3.19, the characteristic polynomial of the Laplacian

matrix of Kt _ (Kt(q�1) [Kt(p�1)) is

x(x� (t(p+ q � 1))t ⇥ (x� tq)t(q�1)�1
⇥ (x� t)(x� tp)t(p�1)�1.
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Therefore, the Laplacian eigenvalues of �U(Zn) are 0, t, t(p + q � 1), tq, and

tp with multiplicities 1, 1, t, t(q � 1)� 1 and t(p� 1)� 1, respectively. Thus, the

result holds.

3.6.3 The Normalized Laplacian Spectrum of �U(Zn)

In this subsection, we investigate the normalized Laplacian eigenvalues of the graph

�U(Zn) for n = p
↵
q
�. Note that �U(Zp↵q�) = P3[K|M1|, K|M2|, K|M3|], where M1 =

(p) \ (pq), M2 = (pq) and M3 = (q) \ (pq). Also, |M1| =
↵P

i=1
|Api | = p

↵�1
q
�
�

p
↵�1

q
��1, |M2| = p

↵�1
q
��1 and |M3| =

�P
j=1

|Aqj | = p
↵
q
��1

� p
↵�1

q
��1.

Example 3.6.11. Let p be a prime and ↵ be a positive integer. Then �U(Zp↵) ⇠=

Kp↵�1 . Therefore, the normalized Laplacian spectrum of �U(Zp↵) is

0

@0 p↵�1

p↵�1�1

1 p
↵�1

� 1

1

A.

Example 3.6.12. If n = p
2
q, then �U(Zn) ⇠= P3[Kpq�p, Kp, Kp2�p]. By Lemma

1.3.21 and Lemma 1.3.22, the eigenvalues of �U(Zn) are
pq

pq�1 ,
p(p+q�1)

p(p+q�1)�1 and p2

p2�1

with multiplicities pq � p� 1, p� 1 and p
2
� p� 1, respectively. The remaining 3

eigenvalues are the eigenvalues of the matrix
2

666666664

p
pq�1

�pp
(pq�1)(p(p+q�1)�1)

0

�p(q�1)
p

(pq�1)(p(p+q�1)�1)

p(p+q�2)
p(p+q�1)�1

�p(p�1)
p

(p2�1)(p(p+q�1)�1)

0 �pp
(p2�1)(p(p+q�1)�1)

p
p2�1

3

777777775

.

Theorem 3.6.13. The normalized Laplacian eigenvalues of �U(Zp↵q�) consists of

the eigenvalues
|M1|+ |M2|

|M1|+ |M2|� 1
with multiplicity |M1|�1,

|M1|+ |M2|+ |M3|

|M1|+ |M2|+ |M3|� 1

with multiplicity |M2|� 1 and
|M2|+ |M3|

|M2|+ |M3|� 1
with multiplicity |M3|� 1 and the

remaining 3 eigenvalues are the eigenvalues of the matrix
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2

66664

|M2|
|M1| + |M2| � 1

�|M2|p
(|M1| + |M2| � 1)(|M1| + |M2| + |M3| � 1)

0

�|M1|p
(|M1| + |M2| + |M3| � 1)(|M1| + |M2| � 1)

|M1| + |M3|
|M1| + |M2| + |M3| � 1

�|M3|p
(|M1| + |M2| + |M3| � 1)(|M2| + |M3| � 1)

0
�|M2|p

(|M2| + |M3| � 1)(|M1| + |M2| + |M3| � 1)

|M2|
|M2| + |M3| � 1

3

77775

where, |M1| = p
↵�1

q
�
� p

↵�1
q
��1

, |M2| = p
↵�1

q
��1 and |M3| = p

↵
q
��1

�

p
↵�1

q
��1.

Proof. Note that �U(Zp↵q�) = �[�1,�2,�3], where � = P3, �1 = K|M1|,�2 = K|M2|

and �3 = K|M3|. In view of Lemma 1.3.22, we have ri = |Mi|�1 for each i = 1, 2, 3.

By Lemma 1.3.21, for 1  i  3, the adjacency spectrum of K|Mi| is given by
0

@|Mi|� 1 �1

1 |Mi|� 1

1

A.

Let {v1, v2, v3} is the vertex set of P3 corresponding to the graph �1,�2,�3. Since

�U(Zn) ⇠= K|M2| _ (K|M1| [K|M3|), we have

↵1 =
X

vj2N�(v1)

ni = |�2| = |M2|,

↵2 =
X

vj2N�(v2)

ni = |�1|+ |�3| = |M1|+ |M3|,

↵3 =
X

vj2N�(v3)

ni = |�2| = |M2|.

Now by Lemma 1.3.22, the normalized Laplacian eigenvalues of �U(Zp↵q�) are

given by 1 �
1

ri + ↵i
�ik(�i), for i = 1, 2, 3 and k = 2, 3, · · · , ni. Since �ik = �1,

where i = 1, 2, 3 and 2  k  ni, by Lemma 1.3.22, the normalized Laplacian

eigenvalues of �U(Zn) are

|M1|+ |M2|

|M1|+ |M2|� 1
, 1 +

1

|M1|+ |M2|+ |M3|� 1
and

|M2|+ |M3|

|M2|+ |M3|� 1

with multiplicities |M1|� 1, |M2|� 1 and |M3|� 1, respectively. Since a12 = a21 =

a23 = a32 = 1, a13 = a31 = 0, ↵1 = |M2|, ↵2 = |M1| + |M3|, ↵3 = |M2| and
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r1 = |M1| � 1, r2 = |M2| � 1, r3 = |M3| � 1, by Lemma 1.3.22 the remaining 3

eigenvalues are the eigenvalues of the following matrix

2

66664

|M2|
|M1| + |M2| � 1

�|M2|p
(|M1| + |M2| � 1)(|M1| + |M2| + |M3| � 1)

0

�|M1|p
(|M1| + |M2| + |M3| � 1)(|M1| + |M2| � 1)

|M1| + |M3|
|M1| + |M2| + |M3| � 1

�|M3|p
(|M1| + |M2| + |M3| � 1)(|M2| + |M3| � 1)

0
�|M2|p

(|M2| + |M3| � 1)(|M1| + |M2| + |M3| � 1)

|M2|
|M2| + |M3| � 1

3

77775
.



Chapter 4

The Left Ideal-Relation Graph

over Full Matrix Ring

Graph automorphism describes the symmetry of a graph. In general, graph auto-

morphism groups are essential for studying sizeable graphs since these symmetries

allow one to simplify and understand the behaviour of a graph. However, deter-

mining the full automorphism group is a challenging problem in algebraic graph

theory. Ma and Wong [2016] introduced the ideal-relation graph of the ring R,

denoted by
�!
�i(R), which is a directed graph whose vertex set is R and there is

an edge from a vertex x to a distinct vertex y if and only if the ideal generated

by x is properly contained in the ideal generated by y. All the automorphisms

of
�!
�i(R), where R is the ring of all n ⇥ n upper triangular matrices over a finite

field Fq, were obtained by Ma and Wong [2016]. Motivated by this work and to

reveal the significant structure of ideal-relation graph on full matrix ring, in this

chapter, we define and study the left ideal-relation graph of the full matrix ring.

Analogously, it can be defined for arbitrary rings. The left ideal-relation graph
�!
�L(Mn(Fq)), where Mn(Fq) is the ring of all n ⇥ n matrices over a finite field Fq,

97
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is a directed simple graph whose vertex set consists of all the elements of Mn(Fq)

and there is a directed edge from a vertex X to Y if and only if the left ideal

generated by X is properly contained in the left ideal generated by Y . In this

chapter, all the automorphisms of
�!
�L(R) are characterized, where R is the ring of

all n ⇥ n matrices over a finite field Fq. The content of this chapter is submitted

for publication.

We denote M
⇤
n(Fq) by the set of all invertible matrices over finite field Fq. Let

E be the n⇥ n identity matrix. We write Es,t by the n⇥ n matrix which has 1 at

(s, t)- position and 0 elsewhere. The matrix E(i, j) denotes the matrix obtained by

interchanging i
th and j

th columns of the identity matrix E and E(i(a)) denotes the

matrix obtained by multiplying i
th column of the identity matrix E by a 2 Fq. Let

Er be the matrix
Pr

i=0 Ei,i in Mn(Fq). For X 2 Mn(Fq), we write by IX (or [X])

the left ideal generated by X. Also, by SX , we mean the subspace of Fn
q spanned

by row vectors of X 2 Mn(Fq). Let � be a directed graph with vertex set V (�)

and u, v 2 V (�). Moreover, Ni(v) = {u | u ! v} and No(v)) = {u | v ! u}. The

in-degree di(v) of v is the number of vertices in Ni(v). Analogusly, the out-degree

do(v) of v can be defined as the number of vertices in No(v).

4.1 Automorphisms of the left-ideal relation graph

of Mn(Fq)

In this section, we obtain the automorphisms of the left ideal-relation graph of

ideals over Mn(Fq) (see Theorem 4.1.11 and Theorem 4.1.31). Before character-

izing all the automorphisms of
�!
�L(Mn(Fq)), we introduce two kinds of standard

automorphisms for
�!
�L(Mn(Fq)). Using them, the automorphisms of

�!
�L(Mn(Fq))

can be characterized.



4.1 Automorphisms of the left-ideal relation graph of Mn(Fq) 99

Lemma 4.1.1. For P 2 M
⇤
n(Fq), the map 'P : Mn(Fq) ! Mn(Fq) defined by

'P (X) = XP for each X 2 Mn(Fq), is an automorphism of
�!
�L(Mn(Fq)).

Proof. Invertibility of P proves that 'P is one-one. Since Mn(Fq) is finite, we get

'P is onto also. For X ! Y , we have [X] ⇢ [Y ]. Let Z 2 [XP ]. Then Z = WXP

for some W 2 Mn(Fq). Consequently, ZP�1
2 [Y ] and ZP

�1 = V Y for some

V 2 Mn(Fq). This implies Z = V Y P so that Z 2 [Y P ]. Therefore, [XP ] ✓ [Y P ].

Since [X] ⇢ [Y ] there exists L 2 [Y ] but L /2 [X]. Then L = UY for some

U 2 Mn(Fq). Consequently, LP = UY P follows that LP 2 [Y P ]. If LP 2 [XP ],

then there exists N 2 Mn(Fq) such that LP = NXP . It follows that L = NX and

so L 2 [X], a contradiction. Thus, [XP ] ⇢ [Y P ] and 'P (X) ! 'P (Y ). Hence,

'P is an automorphism of
�!
�L(Mn(Fq)).

For P 2 M
⇤
n(Fq), we define [X]P = IXP = {AP | A 2 [X]}. Notice that

['P (X)] = IXP and IXP = IXP . We recall some necessary lemmas for latter use.

Lemma 4.1.2 ([Wang et al., 2017, Lemma 2.2]). Let I be a left ideal of Mn(Fq).

Then there exists X 2 Mn(Fq) such that I = [X].

Lemma 4.1.3 ([Wang et al., 2017, Lemma 2.2]). Let I be a left ideal of Mn(Fq).

Then there exists P 2 M
⇤
n(Fq) such that I = IErP , where 0  r  n and E0 = 0.

Lemma 4.1.4 ([Xu et al., 2022, Lemma 3.3]). Let X, Y 2 Mn(Fq). Then SX = SY

if and only if IX = IY .

Lemma 4.1.5. Let X, Y 2 Mn(Fq). Then SX ⇢ SY if and only if IX ⇢ IY .

Proof. First assume that SX ⇢ SY . Let A 2 IX . Then there exists B 2 Mn(Fq)

such that A = BX. Note that

0

BBBBBB@

X
0
1

X
0
2

:

X
0
n

1

CCCCCCA
= B

0

BBBBBB@

X1

X2

:

Xn

1

CCCCCCA
whereXi andX

0
i are row vectors
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of the matrix X and A, respectively. It follows that X
0
i 2 SX . Since SX ⇢ SY , we

get X
0
i 2 SY . Consequently, there exists B

0
2 Mn(Fq) such that B

0
Y =

0

BBBBBB@

X
0
1

X
0
2

:

X
0
n

1

CCCCCCA
. It

implies that B
0
Y = BX so that BX 2 IY . Therefore, IX ✓ IY . If IX = IY , then

by Lemma 4.1.4, we have SX = SY , a contradiction. Thus, IX ⇢ IY . Conversely,

let IX ⇢ IY . Consider a 2 SX such that a =
Pn

i=1 ciXi, where Xi is the i
th row of

matrix X and ci 2 Fq. It follows that

[c1 c2 · · · cn]X = a

Since IX ⇢ IY so that X 2 IY . It follows that

0

@c

0

1

AX =

0

@a

0

1

A 2 IY . Therefore,

there exists d 2 Fn
q we have

0

@d

0

1

AY =

0

@a

0

1

A. Therefore, a 2 SY so that SX ✓ SY .

If SX = SY , then by Lemma 4.1.4 IX = IY , again a contradiction. Hence, SX ⇢

SY .

Let ⌦ be the set of r linearly independent vectors belongs to Fn
q and let E⌦ be

the matrix such that it’s first |⌦| rows are from the set ⌦ and rest all rows are

zero vectors. Let us denote I⌦ as the left ideal generated by E⌦ and let I be a left

ideal of Mn(Fq). By Lemma 4.1.2, we have, I = IX for some X 2 Mn(Fq). Let ⌦

be the set of maximal linearly independent row vectors of X. Then SX = SE⌦ so

that IX = IE⌦ and I = I⌦. From the above discussion, it is easy to observe the

following lemma.

Lemma 4.1.6. Let I be a left ideal of Mn(Fq). Then there exists a set ⌦ ✓ Fn
q of

linearly independent row vectors such that I = I⌦.

For 1  i  n, let Eei be the matrix such that its first row is ei 2 Fn
q and rest

all rows are zero vectors. Let X 2 Mn(Fq). Then by Lemma 4.1.6, there exists
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⌦ ✓ Fn
q such that IX = I⌦. From this we get that rank(X) = rank(E⌦) = |⌦|.

Define Ea to be the matrix with its first row as a 2 Fn
q and rest all rows are

zero vectors. Clearly rank(Ea) = 1. Let I be a left ideal of Mn(Fq). Then

X 2 I and a 2 Fq, define aX = (aE) · X 2 I. Then I becomes a vector

space so the dimension of I is well defined. We claim that dim(I) = n · rank(I),

where rank(I) = rank(X) such that IX = I. It follows that I = [ErP ], where

P 2 M
⇤
n(Fq). Therefore, by Lemma 4.1.2, we have rank(I) = rank(ErP ) = r.

Notice that IEr is a vector space with bases as {Ei,j | 1  i  n and 1  j  r}.

Thus, dim(IEr) = nr = n · rank(I) and vector space I ⇠= IEr as I = 'P (Er). By

Lemma 4.1.1, we get that 'P is bijective and one can verify that 'P is a linear

transformation. Thus, dim(I) = dim(IEr) = n · rank(I).

Lemma 4.1.7. Let X, Y 2 Mn(Fq) such that rank(X) < rank(Y ). Then di(X) <

di(Y ) and do(X) > do(Y ). Moreover,

(i) di(X) = di(Y ) if and only if rank(X) = rank(Y )

(ii) do(X) = do(Y ) if and only if rank(X) = rank(Y ).

Proof. (i) If rank(X) = s and rank(Y ) = t, then s < t. Assume that [X] = [EsA]

and [Y ] = [EtB], where A,B 2 M
⇤
n(Fq). It follows that di(X) = di(EsA) so that

di(X) = di(Es) because 'A(Es) = EsA. Similarly, we have di(Y ) = di(Et). Next,

we need to prove that di(Es) < di(Et). Since Es 2 Ni(Et) and Es /2 Ni(Es),

we get Ni(Es) ⇢ Ni(Et). Then di(Es) < di(Et) implies that di(X) < di(Y ).

Further, assume that di(X) = di(Y ). From the above discussion, if we assume

that rank(X) 6= rank(Y ), then di(X) 6= di(Y ), a contradiction. Thus, rank(X) =

rank(Y ). Now let rank(X) = rank(Y ) = r. This implies that di(X) = di(Er) =

di(Y ).

(ii) The proof is similar to Part (i), hence we omit the details.
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Corollary 4.1.8. Let  2 Aut(
�!
�L(Mn(Fq))) and X 2 Mn(Fq). Then

rank( (X)) = rank(X).

First we obtain all the automorphisms of the graph
�!
�L(M2(Fq)). For X 2

M2(Fq), we have rank(X) 2 {0, 1, 2}. Further, note that rank(X) = 0 if and only

if [X] = [0]. Also, rank(X) = 2 if and only if [X] = M2(Fq).

Let Ri = {X 2 M2(Fq) : rank(X) = i}. The proof of the following lemma is

straightforward.

Lemma 4.1.9. For X, Y 2 M2(Fq), X ! Y if and only if rank(X) < rank(Y ).

Define the set of mappings

� = {⇢ : M2(Fq) ! M2(Fq) | ⇢ permutes vertices of Ri for each i = 0, 1, 2}.

For each X, Y 2 Ri, observe that Ni(X) = Ni(Y ) and No(X) = No(Y ). Thus, we

get the following lemma.

Lemma 4.1.10. If ↵ 2 �, then ↵ 2 Aut(
�!
�L(M2(Fq))).

Proof. Clearly, ↵ is a bijective map. Let X ! Y , where X, Y 2 M2(Fq). Then by

Lemma 4.1.9, we have rank(X) < rank(Y ). By Corollary 4.1.8, rank(↵(X)) =

rank(X) and rank(↵(Y )) = rank(Y ). Lemma 4.1.9 gives rank(↵(X)) < rank(↵(Y ))

so that ↵(X) ! ↵(Y ). Thus, ↵ 2 Aut(
�!
�L(M2(Fq))).

The following theorem determines all the automorphisms of
�!
�L(M2(Fq)).

Theorem 4.1.11. If  2 Aut(
�!
�L(M2(Fq))), then  2 �.

Proof. Since rank( (X)) = rank(X) (cf. Corollary 4.1.8), there exists a map

↵1 2 � such that ↵1(X) =  (X). It follows that  2 �. Thus, the result

holds.

In the remaining chapter, we assume that n � 3.
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Lemma 4.1.12. Let  2 Aut(
�!
�L(Mn(Fq))). Then there exist P 2 M

⇤
n(Fq) such

that [('P · )(Ee1)] = [Ee1 ].

Proof. Since rank(Ee1) = 1, we get rank( (Ee1)) = 1. Asume that [ (Ee1)] =

[Ea], where 0 6= a 2 Fn
q . Let ak be the first non-zero element in row vector a.

Define

P = (E �
P

i 6=k a
�1
k aiEk,i)E(k(a�1

k ))E(1, k).

Note that P 2 M
⇤
n(Fq). Moreover, [ (Ee1)]P = [Ea]P implies that [ (Ee1)P ] =

[EaP ]. Therefore, [('P · )(Ee1)] =

0

@e1

0

1

A
�
and hence, [('P · )(Ee1)] = [Ee1 ].

Lemma 4.1.13. Let  2 Aut(
�!
�L(Mn(Fq))) such that [Eek ] = [ (Eek)], for each

k, where 1  k  i. Then [Ei] = [ (Ei)].

Proof. The result holds for i = 1 because Ee1 = E1. If i � 2, then [Eek ] ⇢ [Ei].

This implies that Eek ! Ei and so  (Eek) !  (Ei). Thus, [ (Eek)] ⇢ [ (Ei)]

gives [Eek ] ⇢ [ (Ei)]. It follows that
Pi

k=1[Eek ] ✓ [ (Ei)]. Therefore, [Ei] ✓

[ (Ei)]. Since dim([Ei]) = dim([ (Ei)]) = n · i, we get [Ei] = [ (Ei)].

Lemma 4.1.14. Let  2 Aut(
�!
�L(Mn(Fq))) such that [Eek ] = [ (Eek)] and 1 

k  i � 1. Then there exists P 2 M
⇤
n(Fq) such that [('P ·  )(Ees)] = [Ees ], for

each s, where 1  s  i.

Proof. Let [ (Eei)] = [Ea], where a( 6= 0) 2 Fn
q . Note that [Eei ] is not a proper

subset of [Ei�1]. Consequently, [ (Eei)] is not a proper subset of [ (Ei�1]. By

Lemma 4.1.13, we have [Ei�1] = [ (Ei�1)]. It follows that [ (Eei)] is not a proper

subset of [Ei�1]. There exists al( 6= 0) 2 Fq such that i  l  n, we define

P = (E �
P

j 6=l a
�1
l ajEl,j)E(l(a�1

l ))E(i, l).
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Note that P 2 M
⇤
n(Fq). Moreover, [ (Eei)]P = [Ea]P and [ (Eei)P ] = [EaP ].

Therefore, [('P · )(Eei)] =

0

@ei

0

1

A
�
so that [('P · )(Eei)] = [Eei ]. For 1  k < i,

[ (Eek)]P = [Eek ]P , we have [ (Eek)P ] = [EekP ]. Therefore, [('P ·  )(Eek)] =

['P (Eek)] gives ['P (Eek)] = [Eek ]. Thus, [('P ·  )(Eek)] = [Eek ], where 1  k 

i� 1. Hence, [('P · )(Ees)] = [Ees ], where 1  s  i.

In view of the above lemmas, we have the following corollary.

Corollary 4.1.15. Let  2 Aut(
�!
�L(Mn(Fq))). Then there exists P 2 M

⇤
n(Fq)

such that [('P · )(Eek)] = [Eek ], for all k = 1, 2, . . . , n.

Proof. In view of Lemma 4.1.12, there exists P1 2 M
⇤
n(Fq) such that [('P1 ·

 )(Ee1)] = [Ee1 ]. Then by Lemma 4.1.14, we get P2 2 M
⇤
n(Fq) such that [('P2 ·

'P1 ·  )(Eek)] = [Eek ], where k = 1, 2. On continuing in this way there exists

P1, P2, · · · , Pn such that [('Pn ·· · ·'P2 ·'P1 · )(Eek)] = [Eek ], where k = 1, 2, . . . , n.

On taking P = P1P2 · · ·Pn 2 M
⇤
n(Fq), we get the result.

Let � = {e1, e2, . . . , en} be the set of all unit vectors of Fn
q .

Lemma 4.1.16. Let � ✓ �. If  2 Aut(
�!
�L(Mn(Fq))) such that [ (Eek)] = [Eek ]

for all k = 1, 2, . . . , n. Then [ (E�)] = [E�].

Proof. If |�| = 1, then E� = Eek . We may now suppose that |�| � 2. For each

ek 2 � note that [Eek ] ⇢ [E�] and so [ (Eek)] ⇢ [ (E�)]. Consequently, we obtain

[Eek ] ⇢ [ (E�)]. Let I(�) = {i | ei 2 �}. Then we have
P

k2I(�)[Eek ] ✓ [ (E�)].

This implies that [E�] ✓ [ (E�)]. Since dim([E�]) = dim([ (E�)]) = n · |�|, we get

[E�] = [ (E�)].

For any X 2 Mn(Fq) such that rank(X) = 1, we have [X] = [Ea], where

a 2 Fn
q . Note that such representation of [X] is not unique and there can be some

other b 2 Fn
q such that [X] = [Eb]. But if we impose a condition on a that its first
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non-zero element is 1, then we get a unique a 2 Fn
q such that [X] = [Ea]. In next

few lemmas, we consider rank 1 matrices of Mn(Fq).

Lemma 4.1.17. Let  2 Aut(
�!
�L(Mn(Fq))) such that [ (Eek)] = [Eek ], for each

Eek , where k = 1, 2, . . . , n and let X 2 Mn(Fq) such that rank(X) = 1. Suppose

that [X] = [Ea] and [ (X)] = [Eb], where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) 2

Fn
q . Then al = 0 if and only if bl = 0 for all l, where 1  l  n.

Proof. First suppose that al = 0. For each Y 2 [Ea], note that the l
th column

of Y is zero vector. Let us denote �\{el} by �l. Then [Ea] ⇢ [E�l
] implies

that [ (X)] ⇢ [ (E�l
)]. Consequently, [Eb] ⇢ [ (E�l

)]. By Lemma 4.1.16, we

obtain [E�l
] = [ (E�l

)]. Therefore, [Eb] ⇢ [E�l
] which yields bl = 0. Conversely,

assume that bl = 0. This implies that [Eb] ⇢ [E�l
]. Next, on contrary suppose

that al 6= 0. It follows that [Ea] 6⇢ [E�l
]. Consequently, [ (X)] 6⇢ [ (E�l

)] and so

[Eb] 6⇢ [ (E�l
)]. By Lemma 4.1.16, we get [Eb] 6⇢ [E�l

], a contradiction.

Lemma 4.1.18. Let  2 Aut(
�!
�L(Mn(Fq))) such that [ (Eek)] = [Eek ], for each

Eek , where k = 1, 2, . . . , n. Suppose that ai = (ai1, ai2, . . . , ain) and bi = (bi1, bi2, . . . , bin),

where i = 1, 2 with [Xi] = [Eai ] and [ (Xi)] = [Ebi ]. Then b1sb2k = b1kb2s if and

only if a1sa2k = a1ka2s, where 1  s < k  n.

Proof. If a1sa2ka1ka2s = 0, then b1sb2kb1kb2s = 0 (cf. Lemma 4.1.17). Thus, in this

case b1sb2k = b1kb2s if and only if a1sa2k = a1ka2s for 1  s < k  n. We may now

suppose that a1sa2ka1ka2s 6= 0. By Lemma 4.1.17, we get b1sb2kb1kb2s 6= 0. Now,

consider the sets

↵ = {e1, e2, . . . , es�1, a1ses + a1kek, es+1, . . . , ek�1, ek+1, . . . , en}, and

� = {e1, e2, . . . , es�1, b1ses + b1kek, es+1, . . . , ek�1, ek+1, . . . , en}

Note that [Ea1 ] ⇢ [E↵]. It follows that [ (X1)] ⇢ [ (E↵)] and so [Eb1 ] ⇢

[E↵]. Note that [E�\{es,ek}] ⇢ [E↵] so that [E�\{es,ek}] ⇢ [ (E↵)]. Consequently,
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[E�\{es,ek}] + [Eb1 ] ✓ [ (E↵)]. Since dim([E�\{es,ek}] + [Eb1 ]) = dim([ (E↵)]) =

n(n�1), we have [E�\{es,ek}] + [Eb1 ] = [ (E↵)]. Notice that [E�\{es,ek}] + [Eb1 ] =

[E�]. Thus, [E�] = [ (E↵)].

If a1sa2k = a1ka2s, then [Ea2 ] ⇢ [E↵]. Consequently, [Eb2 ] ⇢ [E�]. Therefore,

b1sb2k = b1kb2s. Conversely, suppose that b1sb2k = b1kb2s. It follows that [Eb2 ] ⇢

[E�]. On contrary suppose a1sa2k 6= a1ka2s. This implies that [Ea2 ] 6⇢ [E↵].

Consequently, [X2] 6⇢ [E↵] gives [Eb2 ] 6⇢ [E�], a contradiction.

Lemma 4.1.19. Let  2 Aut(
�!
�L(Mn(Fq))). Then there exists P 2 M

⇤
n(Fq) such

that [('P · )(E1)] = [E1], where E1 =

0

@1

0

1

A with 1 = (1, 1, . . . , 1) 2 Fn
q . Moreover,

[('P · )(Eek)] = [Eek ], for all k = 1, 2, . . . , n.

Proof. In view of Corollary 4.1.15, there exists a matrix P1 2 M
⇤
n(Fq) such that

[('P1 ·  )(Eek)] = [Eek ]. Let [('P1 ·  )(E1)] = [Ea], where a 2 Fn
q . Then by

Lemma 4.1.17, al 6= 0 for each 1  l  n. Now, consider P2 2 M
⇤
n(Fq) such

that P2 = diag(a�1
1 , a

�1
2 , . . . , a

�1
n ). Since [('P1 ·  )(E1)]P2 = [Ea]P2, we get

[('P1 ·  )(E1)P2] = [EaP2]. It implies that [('P2 · 'P1 ·  )(E1)] = [E1] so that

[('P1P2 ·  )(E1)] = [E1]. Let P = P1P2 2 M
⇤
n(Fq). Then [('P ·  )(E1)] = [E1].

Also, [('P1P2 · )(Eek)] = ['P2(Eek)] = [Eek ]. Thus, [('P · )(Eek)] = [Eek ], where

1  k  n.

Lemma 4.1.20. Let  2 Aut(
�!
�L(Mn(Fq))) such that [ (E1)] = [E1] and [ (Eek)] =

[Eek ], for each Eek , where 1  k  n. Suppose X 2 Mn(Fq) such that [X] = [Ea]

and [ (X)] = [Eb], where a, b 2 Fn
q . Then as = ak if and only if bs = bk for

1  s < k  n.

Proof. On applying Lemma 4.1.18, by taking X1 = X and X2 = E1, the result

holds.
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Remark 4.1.21. Let 2 Aut(
�!
�L(Mn(Fq))) such that [ (E1)] = [E1] and [ (Eek)] =

[Eek ], where 1  k  n. Let X 2 Mn(Fq) such that [X] = [E↵] for ↵ = (e1 + ae2),

where a 2 Fq. Further, assume that [ (X)] = [E�], where � = e1 + a
0
e2 and

a
0
2 Fq. Note that a0 depends upon a. Hence, we can define a mapping ⌥ on Fq

such that ⌥(a) = a
0. Notice that ⌥ is a one -one map on a finite field Fq and so ⌥

is a bijective map on Fq. Moreover, by Lemma 4.1.17 and Lemma 4.1.18, we get

⌥(0) = 0 and ⌥(1) = 1.

Lemma 4.1.22. Let  2 Aut(
�!
�L(Mn(Fq))) such that [ (E1)] = [E1] and [ (Eek)] =

[Eek ], for each Eek , where 1  k  n. Suppose that ⌥ is a map as defined in Re-

mark 4.1.21. Then the following holds:

(i) If [X] = [E{e1+aek}], then [ (X)] = [E{e1+⌥(a)ek}] for 2  k  n and a 2 Fq.

(ii) If [X] = [E{e1+a2e2+···+anen}], then [ (X)] = [E{e1+⌥(a2)e2+···+⌥(an)en}], for

ai 2 Fq.

(iii) If [X] = [E{ei+ai+1ei+1+···+anen}], where X 2 Mn(Fq), then

[ (X)] = [E{ei+⌥(ai+1)ei+1+···+⌥(an)en}].

Proof. (i) For k = 2, the result holds (cf. Remark 4.1.21). We now sup-

pose that k � 3. Let Y 2 Mn(Fq) such that [Y ] = [E{e1+ae2+aek}] and

[ (Y )] = [E{e1+a0e2+a00ek}]. By Lemma 4.1.20, we get a
0 = a

00 so [ (Y )] =

[E{e1+a0e2+a0ek}]. Let [Z] = [E{e1+ae2}]. Then [ (Z)] = [E{e1+⌥(a)e2}]. By

Lemma 4.1.18, and using [Y ], [Z], we have a
0 = ⌥(a). Thus, [ (Y )] =

[E{e1+⌥(a)e2+⌥(a)ek}]. If [ (X)] = [E{e1+dek}], then using [X], [Y ] and Lemma

4.1.18, we get d = ⌥(a).

(ii) Suppose that [ (X)] = [E{e1+c2e2+···+cnen}]. Let Yk 2 Mn(Fq) such that

[Yk] = [E{e1+akek}]. By Part (i), we get [ (Yk)] = [E{e1+⌥(ak)ek}]. Now by

using [Yk], [X] and Lemma 4.1.18, we have ck = ⌥(ak) for each 2  k  n.
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(iii) Let Y, Z 2 Mn(Fq) such that [Y ] = [E{e1+a2e2+···+anen}] and [Z] =

[E{e1+ei+ai+1ei+1+···+anen}]. Then by Part (ii), we get [ (Y )] = [E{e1+⌥(a2)e2+···+⌥(an)en}]

and [ (Z)] = [E{e1+ei+⌥(ai+1)ei+1+···+⌥(an)en}]. If [ (X)] = [E{ei+di+1ei+1+···+dnen}],

then using [X] and [Z] in Lemma 4.1.18, we get dj = ⌥(aj), where i < j  n.

The result holds.

Lemma 4.1.23. Let  2 Aut(
�!
�L(Mn(Fq))) such that [ (E1)] = [E1] and [ (Eek)] =

[Eek ], for each Eek , where 1  k  n. Let ⌥ be a map defined in Remark 4.1.21.

Then ⌥ is field automorphism of Fq.

Proof. Since ⌥ is a bijective map on Fq (see Remark 4.1.21). Next, we prove

that ⌥(a + b) = ⌥(a) + ⌥(b) and, ⌥(ab) = ⌥(a)⌥(b). Let a, b 2 Fq. If ab =

0, then clearly ⌥(a)⌥(b) = 0 = ⌥(ab). We may now assume that ab 6= 0.

It follows that ⌥(a)⌥(b) 6= 0. First we claim that ⌥(a�1) = ⌥(a)�1. Let

X1, X2 2 Mn(Fq) such that [X1] = [E{e1+ae2+e3}] and [X2] = [E{e2+a�1e3}]. Then

[ (X1)] = [E{e1+⌥(a)e2+e3}] and [ (X2)] = [E{e2+⌥(a�1)e3}]. Therefore, by Lemma

4.1.18 and by using [X1], [X2], we obtain ⌥(a)⌥(a�1) = 1. This proves our

claim. Now suppose that X3, X4 2 Mn(Fq) such that [X3] = [E{e1+abe2+e3}]

and [X4] = [E{e1+be2+a�1e3}]. It follows that [ (X3)] = [E{e1+⌥(ab)e2+e3}] and

[ (X4)] = [E{e1+⌥(b)e2+⌥(a�1)e3}]. On applying Lemma 4.1.18 together with [X3]

and [X4], we obtain ⌥(ab)⌥(a�1) = ⌥(b). Consequently, ⌥(ab) = ⌥(a)⌥(b).

Let Y1, Y2 2 Mn(Fq) such that [Y1] = [E{e1+ae3}] and [Y2] = [E{e2+be3}]. Then

[ (Y1)] = [E{e1+⌥(a)e3}] and [ (Y2)] = [E{e2+⌥(b)e3}]. Since [Y1] ⇢ [E{e1+ae3,e2+be3}]

and [Y2] ⇢ [E{e1+ae3,e2+be3}], we have [E{e1+⌥(a)e3}] ⇢ [ (E{e1+ae3,e2+be3})] and

[E{e2+⌥(b)e3}] ⇢ [ (E{e1+ae3,e2+be3})]. It follows that [E{e1+⌥(a)e3}] + [E{e2+⌥(b)e3}] ✓

[ (E{e1+ae3,e2+be3})]. Since

dim([E{e1+⌥(a)e3}] + [E{e2+⌥(b)e3}]) = dim([ (E{e1+ae3,e2+be3})])= 2n
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so [E{e1+⌥(a)e3}] + [E{e2+⌥(b)e3}] = [ (E{e1+ae3,e2+be3})]. Assume that Y3 2 Mn(Fq)

with [Y3] = [E{e1+e2+(a+b)e3}]. Therefore, [Y3] ⇢ [E{e1+ae3,e2+be3}] implies that

[ (Y3)] ⇢ [ (E{e1+ae3,e2+be3})]. It follows that [E{e1+e2+⌥(a+b)e3}] ⇢ [ (E{e1+ae3,e2+be3})]

and so [E{e1+e2+⌥(a+b)e3}] ⇢ [E{e1+⌥(a)e3}]+[E{e2+⌥(b)e3}]. Consequently, ⌥(a+b) =

⌥(a) +⌥(b). Thus, ⌥ is field automorphism of Fq.

Next, we define a relation ⌘E on Mn(Fq) such that X ⌘E Y if and only if

[X] = [Y ]. Note that ⌘E is an equivalence relation on Mn(Fq). Let R be a

complete set of distinct representative element of ⌘E and for X = (xij)n⇥n 2 R,

we write cl(X) to denote the class of X.

Lemma 4.1.24. The map ⌥E : R ! R with ⌥E(X) = Y , where ⌥E(X) =

(⌥xij)n⇥n 2 cl(Y ), is an automorphism of
�!
�L(R).

Proof. Let X = (xij)n⇥n and Y = (yij)n⇥n belongs to R such that ⌥E(X) =

⌥E(Y ) = Z, where ⌥E(X) = (⌥xij)n⇥n and ⌥E(Y ) = (⌥yij)n⇥n 2 cl(Z). Since ⌥

is a bijective map over Fq, we have [X] = [Y ]. It follows that cl(X) = cl(Y ) and

so that X = Y in R. Being a one-one map on the finite set R, we get ⌥E is a

bijection.

Next, letX ! Y in
�!
�L(R), whereX, Y 2 R. It follows that [X] ⇢ [Y ]. Assume

that ⌥E(X) = (⌥xij)n⇥n = Z1 and ⌥E(Y ) = Z2. Let A 2 [⌥E(X)]. Then there

exist T 0
2 R such that A 2 cl(T 0). Since ⌥E is a bijective map so that there exists

T 2 R with ⌥E(T ) = (⌥tij)n⇥n = T
0. Since [(⌥tij)n⇥n] = [T 0] ✓ [⌥E(X)], we get

⌥(T ) = ⌥(C1)⌥(X). Consequently, T 2 [X] ⇢ [Y ]. There exists C2 2 Mn(Fq)

such that T = C2Y . It follows that ⌥(T ) = ⌥(C2)⌥(Y ). Now [⌥(T )] = [A] implies

that A 2 [⌥E(Y )]. Therefore, [⌥E(X)] ✓ [⌥E(Y )]. Further, assume that there

exists B 2 [Y ] but B 62 [X]. Then B = C
0
Y . Consequently, ⌥E(Z 00) 2 [⌥E(Y )],

for some Z
00
2 R such that B 2 cl(Z 00). If ⌥E(Z 00) 2 [⌥E(X)], then Z

00
2 [X], so

that B 2 [X]; a contradiction. Consequently, ⌥E(X) ! ⌥E(Y ). Thus, ⌥E is an
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automorphism of
�!
�L(R).

Now extend ⌥E to ⌥0 on Mn(Fq) in the following remark.

Remark 4.1.25. Define a permutation ⌥0 : Mn(Fq) ! Mn(Fq) such that

⌥0(A) = B () ⌥E(X1) = X2

whereA 2 cl(X1), B 2 cl(X2). Observe that⌥0 is an automorphism of
�!
�L(Mn(Fq)).

Lemma 4.1.26. Let X, Y 2 Mn(Fq). If [X] = [Y ], then [⌥0(X)] = [⌥0(Y )].

Proof. Let [X] = [Y ]. Then X, Y 2 cl(X1) for X1 2 R. If ⌥E(X1) = Z, then by

Remark 4.1.25, ⌥0(X) = Z1 and ⌥0(Y ) = Z2, where X, Y 2 cl(X1) and Z1, Z2 2

cl(Z). Thus, [⌥0(X)] = [⌥0(Y )].

Lemma 4.1.27. Let  E 2 Aut(
�!
�L(R)) such that  E(E1) = E1 and  E(Eek) =

Eek , for each Eek , where k = 1, 2, . . . , n. Then (⌥�1
E  E)(X) = X for each X 2 R,

where ⌥E is a map defined in Lemma 4.1.24.

Proof. In view of Corollary 4.1.8, the result holds for X = 0. Next, let X 2

R such that rank(X) = 1. Then [X] = [Ea] for some 0 6= a 2 Fn
q , where

a = (ei + ai+1ei+1 + · · · + anen) and 1  i  n. By Lemma 4.1.22, we ob-

tain  E(X) = E{ei+⌥(ai+1)ei+1+···+⌥(an)en}. By Lemma 4.1.26, we have (⌥E
�1

·

 E)(X) = ⌥�1(E{ei+⌥(ai+1)ei+1+···+⌥(an)en}). It follows that (⌥E
�1

·  E)(X) =

E{ei+ai+1ei+1+···+anen}. Therefore, (⌥E
�1

·  E)(X) = X. Further, let rank(X) �

2. By Lemma 4.1.3, there exists P 2 M
⇤
n(Fq) such that [X] = [ErP ], where

rank(X) = r. Since [EeiP ] ⇢ [ErP ], where 1  i  r, we get [(⌥E
�1
· E)(EeiP )] ⇢

[(⌥�1
E · E)(X)]. Note that rank(EeiP ) = 1 gives [EeiP ] ⇢ [(⌥E

�1
· E)(X)]. It fol-

lows that
Pr

i=1[EeiP ] ✓ [(⌥E
�1

· E)(X)] and so [ErP ] ✓ [(⌥E
�1

· E)(X)]. Since

dim([ErP ]) = dim([(⌥E
�1

·  E)(X)]) = nr, we have [ErP ] = [(⌥E
�1

·  E)(X)].

Therefore, [X] = [(⌥�1
E ·  E)(X)] for X 2 Mn(Fq). Hence, (⌥�1

E ·  E)(X) = X,

for each X 2 R.
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Remark 4.1.28. Let 2 Aut(
�!
�L(Mn(Fq))) such that [ (E1)] = [E1] and [ (Eek)] =

[Eek ], for each Eek , where 1  k  n. Further, let ⌥0 be a map defined in Re-

mark 4.1.25. Then by Lemma 4.1.27, for each X 2 R we get (⌥�1
E  E)(X) = X.

Consequently, we obtain (⌥0�1 )(A) = B, where A 2 cl( E(X)) and B 2 cl(X).

Let �E be an identity map on R i.e. for each X 2 R, �E(X) = X. Now we

extend �E to a permutation � onMn(Fq) such that �(A) = B, where A,B 2 cl(X).

Lemma 4.1.29. The map � is an automorphism of
�!
�L(Mn(Fq)).

Proof. By the definition, � is a bijection on Mn(Fq). Let X, Y 2 Mn(Fq) such

that X ! Y . Then [X] ⇢ [Y ]. Since [�(X)] = [X] and [�(Y )] = [Y ] implies that

[�(X)] ⇢ [�(Y )]. It follows that �(X) ! �(Y ). Thus, � is an automorphism of
�!
�L(Mn(Fq)).

Theorem 4.1.30. Let n � 3 and  E 2 Aut(
�!
�L(R)). Then there exist P 2

M
⇤
n(Fq), a field automorphism ⌥E (defined in Lemma 4.1.24) and �E (defined

above) such that  E = 'P
��R ·⌥E · �E.

Proof. By Lemma 4.1.14, there exist P 2 M
⇤
n(Fq) such that ('P�1

��R ·  E)(E1) =

E1 and ('P�1
��R · E)(Eek) = Eek , where k = 1, 2, . . . , n. In view of Lemma 4.1.27,

there exist ⌥E such that X = (⌥E
�1

· 'P�1
��R ·  E)(X) for all X 2 R. Thus,

⌥E
�1

· 'P�1
��R · E = �E. Hence,  E = 'P

��R ·⌥E · �E.

Theorem 4.1.31. Let  2 Aut(
�!
�L(Mn(Fq))), where n � 3. Then there exist P 2

M
⇤
n(Fq), a field automorphism ⌥0 (defined in Remark 4.1.25) and a permutation

� (defined above) such that  = 'P ·⌥0
· �.

Proof. The proof follows from Lemma 4.1.14, Lemma 4.1.27 and Theorem 4.1.30.
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Chapter 5

Graphs on Semigroups

The intersection graph of a semigroup was introduced by Bosák [1964]. The in-

tersection subsemigroup graph �(S) of semigroup S is a simple undirected graph

whose vertex set is the collection of proper subsemigroups of S and two distinct

vertices A and B are adjacent if and only if A \ B 6= ;. Inspired by the work of

Bosák [1964], Csákány and Pollák [1969] studied the intersection graphs of groups

and proved that there is an edge between two proper subgroups if they have at

least two elements in common. The intersection graph on cyclic subgroups of a

group has been studied by Haghi and Ashrafi [2017]. Chakrabarty et al. [2009]

introduced the notion of the intersection ideal graph of rings. The intersection

ideal graph �(R) of a ring R is an undirected simple graph whose vertex set is

the collection of non-trivial left ideals of R and two distinct vertices I and J are

adjacent if and only if I \ J 6= {0}. They characterized the rings R for which the

graph �(R) is connected and obtained several necessary and su�cient conditions

on a ring R such that �(R) is complete. Jafari and Rad [2010] studied the pla-

narity of the intersection ideal graphs �(R) of a commutative ring R with unity.

Akbari et al. [2013] classified all rings whose intersection graphs of ideals are not

113
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connected and also determined all rings whose clique number is finite. The inter-

section ideal graphs of semigroups can be defined analogously. The intersection

ideal graph �(S) of a semigroup S is an undirected simple graph whose vertex set

consists of non-trivial left ideals of S and two distinct non-trivial left ideals I and

J are adjacent if and only if their intersection is nontrivial.

Akbari, Habibi, Majidinya and Manaviyat [2014] have introduced the notion

of inclusion ideal graph associated with the ring structure. The inclusion ideal

graph In(R) of a ring R is an undirected simple graph whose vertex set is the

collection of non-trivial left ideals of R and two distinct non-trivial left ideals

I and J are adjacent if and only if either I ⇢ J or J ⇢ I. Further, Akbari,

Habibi, Majidinya and Manaviyat [2015] have studied various graph invariants

including connectedness, perfectness, diameter, girth etc. of In(R). We consider

the inclusion ideal graph associated with semigroups. The inclusion ideal graph

In(S) of a semigroup S is an undirected simple graph whose vertex set is non-

trivial left ideals of S and two distinct non-trivial left ideals I and J of S are

adjacent if and only if I ⇢ J or J ⇢ I.

This chapter aims to study the intersection ideal graph �(S) of a semigroup

S and its spanning subgraph In(S). In Section 5.1, we investigate the connect-

edness of �(S). We classify the semigroups S in terms of their ideals such that

the diameter of �(S) is two. We obtain the domination number, independence

number, girth and the strong metric dimension of �(S). We have also investigated

the completeness, planarity and perfectness of �(S). We show that if S is a com-

pletely simple semigroup, then �(S) is weakly perfect. Moreover, we give an upper

bound of the chromatic number of �(S). Finally, if S is the union of n minimal

left ideals, then we obtain the metric dimension and the automorphism group of

�(S). In Section 5.2, we study the inclusion ideal graph In(S) of a semigroup

which is a spanning subgraph of �(S). In this connection, we show that �(S)
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is disconnected if and only if In(S) is disconnected. For an arbitrary semigroup

S, we investigate the perfectness, girth, planarity of In(S). Moreover, various

graph invariants including the dominance number, clique number, independence

number and autmorphism group of the inclusion ideal graph of a completely sim-

ple semigroup S is obatined. We also prove that the graph In(S) has a perfect

matching.

The content of Section 5.1 is published in the journal “Quasigroups and Related

Systems” and the content of Section 5.2 is accepted for publication in the journal

“Algebra Colloquium”.

5.1 The Intersection Ideal Graph of a Semigroup

In this section, we study the connectedness of intersection ideal graph �(S). We

show that if �(S) is connected, then the diameter of �(S) is at most two (see

Theorem 5.1.4). Further, we classify the semigroups S in terms of their ideals such

that the diameter of �(S) is two (see Theorem 5.1.7). We obtain the domination

number, independence number, girth and the strong metric dimension of �(S).

We have also investigated the completeness, planarity and perfectness of �(S).

We show that if S is a completely simple semigroup, then �(S) is weakly perfect.

Moreover, we give an upper bound of the chromatic number of �(S). Finally, if S

is the union of n minimal left ideals, then we obtain the metric dimension and the

automorphism group of �(S).

5.1.1 Connectivity of the Intersection Ideal Graph

In this subsection, we investigate the connectedness of �(S). We show that

diam(�(S))  2 if it is connected. Also, we classify the semigroups, in terms

of their left ideals, such that the diameter of �(S) is two.
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Theorem 5.1.1. The intersection ideal graph �(S) is disconnected if and only if

S contains at least two minimal left ideals and every non-trivial left ideal of S is

minimal as well as maximal.

Proof. First suppose that �(S) is not connected. Then S has at least two non-

trivial left ideals I1 and I2. Without loss of generality, assume that I1 2 C1 and

I2 2 C2, where C1 and C2 are distinct components of �(S). If I1 is not minimal,

then there exists at least one non-trivial left ideal Ik of S such that Ik ⇢ I1 so that

their intersection is nontrivial. Therefore, I1 ⇠ Ik. Now if the intersection of I2

and Ik is non-trivial then I1 ⇠ Ik ⇠ I2, a contradiction. Therefore the intersection

of I2 and Ik is trivial. If I2 [ Ik 6= S, then I1 ⇠ (I2 [ Ik) ⇠ I2, a contradiction.

Thus, Ik [ I2 = S. It follows that I1 ⇠ I2, again a contradiction. Thus, I1 is

minimal. Similarly, we get I2 is minimal.

Further assume that I1 is not maximal. Then there exists a non-trivial left ideal

Ik of S such that I1 ⇢ Ik so that I1 ⇠ Ik. If I1 [ I2 6= S, then I1 ⇠ I1 [ I2 ⇠ I2,

a contradiction to the fact that �(S) is disconnected. It follows that I1 [ I2 = S

so that the intersection of Ik and I2 is nontrivial. Thus we have I1 ⇠ Ik ⇠ I2,

a contradiction. Hence, I1 is maximal. Similarly, we observe that I2 is maximal.

The converse follows from the Remark 1.1.1.

Corollary 5.1.2. If the graph �(S) is disconnected, then it is a null graph (i.e. it

has no edge).

Theorem 5.1.3. The intersection ideal graph �(S) is disconnected if and only if

S is the union of exactly two minimal left ideals.

Proof. Suppose first that �(S) is disconnected. Then by Theorem 5.1.1, each non-

trivial left ideal of S is minimal. Suppose S has at least three minimal left ideals,

namely I1, I2 and I3. Then I1 [ I2 is a non-trivial left ideal of S which is not

minimal. Consequently, by Theorem 5.1.1, we get a contradiction of the fact that
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�(S) is disconnected. Thus, S has exactly two minimal left ideals. If S 6= I1 [ I2,

then I1 [ I2 is a non-trivial left ideal which is not minimal, a contradiction ( cf.

Theorem 5.1.1). Thus, S = I1 [ I2.

Converse part follows from Theorem 5.1.1 and Lemma 1.1.2.

Theorem 5.1.4. If the intersection ideal graph �(S) is connected, then diam(�(S))

 2.

Proof. Let I1, I2 be two non-trivial left ideals of S. If I1 ⇠ I2, then d(I1, I2) = 1. If

I1 ⌧ I2 i.e. I1 \ I2 is trivial, then in the following cases we show that d(I1, I2) 2.

Case-1. I1 [ I2 6= S. Then I1 ⇠ (I1 [ I2) ⇠ I2 so that d(I1, I2) = 2.

Case-2. I1 [ I2 = S. Since �(S) is a connected graph, there exists a non-trivial

left ideal Ik of S such that either I1 \ Ik is non-trivial or I2 \ Ik is nontrivial. Now

we have the following subcases.

Subcase 1. I1 6⇢ Ik and Ik 6⇢ I1. Since I1 6⇢ Ik it follows that there exists

x 2 Ik but x /2 I1 so that x 2 I2. Consequently, I2 \ Ik is nontrivial. Therefore,

we get a path I1 ⇠ Ik ⇠ I2 of length two. Thus, d(I1, I2) = 2.

Subcase 2. Ik ⇢ I1. There exists x 2 I1 but x /2 Ik. If I2 [ Ik = S, then

x 2 I2. Thus, we get I1\I2 is nontrivial, a contradiction. Consequently, I2[Ik 6= S.

Further, we get a path I1 ⇠ (I2 [ Ik) ⇠ I2 of length two. Thus, d(I1, I2) = 2.

Subcase 3. I1 ⇢ Ik. Since I1 [ I2 = S we get Ik [ I2 = S. Further, the

intersection of Ik and I2 is nontrivial. Consequently, I1 ⇠ Ik ⇠ I2 gives a path of

length two between I1 and I2. Thus, d(I1, I2) = 2. Hence, diam(�(S))  2.

Lemma 5.1.5. Let S be a semigroup having minimal left ideals. Then �(S) is

complete if and only if S has a unique minimal left ideal.

Proof. Suppose that S contains a unique minimal left ideal I1. Note that every

non-trivial left ideal of S contains at least one minimal left ideal. Since I1 is unique
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then it must contained in every non-trivial left ideals of S. Thus, the graph �(S)

is complete.

Conversely, suppose that �(S) is a complete graph. On the contrary, if S

has at least two minimal left ideals I1 and I2, then I1 ⌧ I2 by Remark 1.1.1, a

contradiction to the fact that �(S) is complete. Thus S has a unique minimal left

ideal.

Lemma 5.1.6. The graph �(S) is regular if and only if either �(S) is null or a

complete graph.

Proof. First suppose that �(S) is not a null graph. Suppose S has at least two

minimal left ideals I1 and I2. Since �(S) is not a null graph, we get I1 and I1 [ I2

form non-trivial left ideals of S and I1 ⇠ (I1 [ I2). If J is any non-trivial left ideal

of S such that J ⇠ I1, then J ⇠ (I1 [ I2). It follows that every non-trivial left

ideal of S which is adjacent with I1 is also adjacent with I1 [ I2 and I2 ⇠ (I1 [ I2)

but I2 ⌧ I1 implies that deg(I1) < deg(I1 [ I2), a contradiction. Therefore, �(S)

is a complete graph.

Next we classify the semigroups such that the diameter of the intersection ideal

graph �(S) is two.

Theorem 5.1.7. Let S be a semigroup having minimal left ideals. Then for a

connected graph �(S), we have diam(�(S)) = 2 if and only if S has at least two

minimal left ideals.

Proof. Suppose that diam(�(S)) = 2. Assume that I1 is the only minimal left

ideal of S. Since I1 is a unique minimal left ideal, we have I1 ⇢ K, for any

non-trivial left ideal K of S. Therefore, for any non-trivial left ideals J and K,

we have I1 ⇢ (J \ K). Consequently, d(J,K) = 1 for any J,K 2 V (�(S)).

Therefore, S has at least two minimal left ideals. Conversely, suppose that S has
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at least two minimal left ideals I1 and I2. Then by Remark 1.1.1, we have I1 ⌧ I2.

Consequently, by Theorem 5.1.4, d(I1, I2) = 2. Thus, diam(�(S)) = 2.

5.1.2 Invariants of �(S)

In this subsection, first we obtain the girth of �(S). Then we discuss planarity and

perfectness of �(S). Also, we classify the semigroup S such that �(S) is bipartite,

star graph and tree, respectively. Further, we investigate the other graph invariants

viz. clique number, independence number and strong metric dimension of �(S).

Theorem 5.1.8. Let S be a semigroup such that �(S) contains a cycle. Then

g(�(S)) = 3.

Proof. If �(S) is disconnected or a tree, then clearly g(�(S)) = 1. Suppose that

the semigroup S has n minimal left ideals. Now we prove the result by observing

the following cases.

Case-1. n = 0. If S has no non-trivial left ideals, then there is nothing to

prove. Otherwise, there exists a chain of non-trivial left ideals of S such that

I1 � I2 � · · · � Ik � · · · . Thus, g(�(S)) = 3.

Case-2. n = 1. Suppose that I1 is the only minimal left ideal of S. Since I1 is a

unique minimal left ideal, we obtain I1 ⇢ K, for any non-trivial left ideal K of S.

Therefore, for any non-trivial left ideals I and J , we get I1 ⇢ (I \J) 6= ;. If S has

at least three non-trivial left ideals, then g(�(S)) = 3. Otherwise, g(�(S)) = 1.

Case-3. n = 2. Let I1, I2 be two minimal left ideals of S. If I1 [ I2 = S, then by

Theorem 5.1.3 and Corollary 5.1.2, g(�(S)) = 1. If I1 [ I2 6= S, then J = I1 [ I2

is a non-trivial left ideal of S. Suppose I1, I2 and J are the only non-trivial left

ideals of S. Then I1 ⇠ J ⇠ I2 and so g(�(S)) = 1. Further, assume that S has a

non-trivial left ideal K other than I1, I2 and J . Since I1, I2 are minimal left ideals

of S, we have either I1 ⇢ K or I2 ⇢ K. Without loss of generality, assume that
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I1 ⇢ K. Then I1 ⇠ K ⇠ J ⇠ I1. It follows that g(�(S)) = 3.

Case-4. n � 3. Let I1, I2, I3 be the minimal left ideals of S. Then we have a cycle

(I1 [ I2) ⇠ (I2 [ I3) ⇠ (I1 [ I3) ⇠ (I1 [ I2) of length 3. Thus, g(�(S)) = 3.

Let Min(S) (Max(S)) be the set of all minimal (maximal) left ideals of S. By

a non-trivial left ideal Ii1i2···ik , we mean Ii1 [ Ii2 [ · · · [ Iik , where Ii1 , Ii2 , . . . , Iik

2 Min(S).

Theorem 5.1.9. Let �(S) be the intersection ideal graph of S. Then the following

statements hold:

(i) If �(S) is planar, then |Min(S)|  3.

(ii) Let S be a semigroup such that it is a union of n minimal left ideals. Then

�(S) is planar if and only if n  3.

Proof. (i) Suppose that |Min(S)| = 4 with Min(S) = {I1, I2, I3, I4}. Then note

that the subgraph induced by the vertices I1, I12, I123, I14 and I124 is isomorphic to

K5. Thus, �(S) is nonplanar.

(ii) The proof for �(S) is nonplanar for n � 4 follows from part (i). If n = 2,

then by Corollary 5.1.2 and Theorem 5.1.3, �(S) is planar. For n = 3, �(S) is

planar as shown in Figure 5.1.

I1 I2

I3

I12

I13
I23

Figure 5.1: Planar drawing of �(S) for S = I123.

Theorem 5.1.10. Let �(S) be the intersection ideal graph of S. Then the following

statements hold:
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(i) If �(S) is a perfect graph, then |Min(S)|  4.

(ii) Let S be the union of n minimal left ideals. Then �(S) is perfect if and only

if n  4.

Proof. (i) Suppose that |Min(S)| = 5 with Min(S) = {I1, I2, I3, I4, I5}. Note that

I12 ⇠ I23 ⇠ I34 ⇠ I45 ⇠ I15 ⇠ I12 induces a cycle of length 5. Then by Theorem

1.3.2, �(S) is not perfect.

(ii) The proof for �(S) is not a perfect graph for n � 5 follows from part (i).

If n = 2, then by Corollary 5.1.2 and Theorem 5.1.1, �(S) is disconnected. Thus,

being a null graph, �(S) is perfect. For n 2 {3, 4}, we show that �(S) does not

contain a hole or an antihole of odd length at least five (cf. Theorem 1.3.2). If

n = 3, then �(S) is perfect as shown in Figure 5.1. If n = 4, then from Figure 5.2,

note that �(S) does not contain a hole or an antihole of odd length at least five.

I1

I2
I3

I4

I12

I13

I14

I23

I24

I34

I123

I234

I124

I134

Figure 5.2: The intersection graph �(S) for S = I1234.
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Theorem 5.1.11. Let S be a semigroup having minimal left ideals such that

V (�(S)) > 1. Then the following conditions are equivalent:

(i) �(S) is a star graph.

(ii) �(S) is a tree.

(iii) �(S) is bipartite.

(iv) Either S has exactly three non-trivial left ideals I1, I2 and I12 such that I1 and

I2 are minimal or S has two non-trivial left ideals I1, I2 such that I1 ⇢ I2.

Proof. We prove (ii), (iii) ) (iv). The proof of remaining parts is straightforward.

Suppose �(S) is a tree. Then clearly |Min(S)|  2. Otherwise, for minimal left

ideals I1, I2, I3 we have I12 ⇠ I13 ⇠ I23 ⇠ I12 a cycle, a contradiction. Suppose

that |Min(S)| = 1. Let I1 be the unique minimal left ideal of S. Consequently,

I1 is contained in all the other non-trivial left ideals of S. If S has at least three

non-trivial left ideals, then we get a cycle, a contradiction. Thus |V (�(S))| = 2.

Now we assume that |Min(S)| = 2. Let I1, I2 be two minimal left ideals of S. Let

S = I12. Then by Corollary 5.1.2 and Theorem 5.1.3, �(S) is disconnected so is

not a tree. Thus S 6= I12. Then J = I12 is a non-trivial left ideal of S. Suppose S

has a non-trivial left ideal K other than I1, I2 and J . Without loss of generality,

assume that I1 ⇢ K then we get a cycle I1 ⇠ I12 ⇠ K ⇠ I1, a contradiction. Thus,

for S 6= I12, we have V (�(S)) = {I1, I2, I12}. (iii) ) (iv). If �(S) is bipartite,

then we have |Min(S)|  2. In the similar lines of the work discussed above, (iv)

holds.

Theorem 5.1.12. If S is the union of n minimal left ideals, then �(�(S)) = 2.

Otherwise, �(�(S)) = 1.

Proof. Suppose that S is the union of n minimal left ideals, that is, S = I12···n.

Note that there is no dominating vertex in �(S) so that �(�(S)) � 2. Now we



5.1 The Intersection Ideal Graph of a Semigroup 123

show that D = {I1, I23···n} is a dominating set. Since S is the union of n minimal

left ideals so any non-trivial left ideal of S is the union of some of these minimal

left ideals (cf. Lemma 1.1.7). Let J 2 V (�(S)) \D be any non-trivial left ideal of

S. Then J is a union of k minimal left ideals of S, where 1  k  n�1. If I1 ⇢ J ,

then we are done. Otherwise, J must be the union of I2, I3, . . . , In. It follows that

the intersection of J and I23···n is nontrivial. Consequently, J ⇠ I23···n. Thus, D

is a dominating set. Further, suppose that S 6= I12···n. It follows that J = I12···n

is a non-trivial left ideal of S. It is well known that every non-trivial left ideal of

S contains at least one minimal left ideal. Consequently, for any non-trivial left

ideal K of S, we have J \K is nontrivial. Thus, J is a dominating vertex. Hence,

�(�(S)) = 1. This completes the proof.

Theorem 5.1.13. Let S be a semigroup with n minimal left ideals. Then the

independence number of �(S) is n.

Proof. Let Min(S) = {Ii1 : i1 2 [n]} be the set of all minimal left ideals of S.

Then, by Remark 1.1.1, Min(S) is an independent set of �(S). It follows that

↵(�(S)) � n. Now we prove that for any arbitrary independent set U , we have

|U |  n. Assume that I 2 V (�(S)) such that I 2 U . Since every non-trivial left

ideal contains at least one minimal left ideal. Without loss of generality, assume

that Ii1i2···ik ✓ I for some i1, i2, . . . , ik 2 [n]. Then note that |U |  n � k + 1.

Otherwise, there exist at least two non-trivial left ideals which are adjacent, a

contradiction. Consequently, we have |U |  n. Thus, ↵(�(S)) = n.

Lemma 5.1.14. Let S be a semigroup with n (� 3) minimal left ideals. Then

there exists a clique in �(S) of size n.

Proof. Let I1, I2, . . . , In be n minimal left ideals. Consider the set

C = {Ii1i2···in�1 : i1, i2, . . . , in�1 2 [n]}.
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Clearly, |C| = n. Notice that for any J,K 2 C, we have J \ K is non-trivial so

that J ⇠ K. Thus, C becomes a clique of size n.

Theorem 5.1.15. Let S be a semigroup with n(> 1) minimal left ideals. Then

!(�(S)) = n if and only if one of the following holds:

(i) S is the union of exactly three minimal left ideals.

(ii) S has only two minimal left ideals I1, I2 and a unique maximal left ideal I12.

Proof. First suppose that !(�(S)) = n. Assume that S has n(� 4) minimal left

ideals, namely I1, I2, . . . , In. Then C = {Ii1i2···in�1 , Ii1i2 : i1, i2, . . . , in 2 [n]} forms

a clique of size greater than n of �(S). It follows that !(�(S)) > n. If n = 3 and

assume that S 6= I123, then C = {I12, I13, I23, I123} forms a clique of size four of

�(S). It follows that S = I123. For n = 2, we have either S = I12 or S 6= I12. For

S = I12, by Corollary 5.1.2 and by Theorem 5.1.3, �(S) is disconnected. Thus,

!(�(S)) < n. Thus S 6= I12. If S has a non-trivial left ideal K /2 {I1, I2, I12},

then we get a clique of size three. Therefore, I12 is a unique maximal left ideal.

Converse follows trivially.

Lemma 5.1.16. If �(S) is connected, then Max(S) forms a clique of �(S).

Proof. We prove the result by showing that if J,K 2 Max(S) then J ⇠ K. Let

J ⌧ K. The maximality of J and K follows that J [K = S. By Lemma 1.1.5,

S\J and S\K are L�classes of S. It follows that J and K are only non-trivial left

ideals of S. Thus, being a null graph �(S) is disconnected, a contradiction.

Theorem 5.1.17. If K is a maximal left ideal of S such that deg(K) is finite,

then �(�(S)) < 1.

Proof. Let J be an arbitrary non-trivial left ideal of S such that J ⌧ K. Note

that J is the minimal left ideal of S. On the contrary, suppose that J is not a
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minimal left ideal of S. Then there exists a non-trivial left ideal J 0 of S such that

J
0
⇢ J . Since K is the maximal left ideal of S, we get J

0
[ K = S. It follows

that the intersection of J and K is non-trivial, a contradiction. By Remark 1.1.1,

we can color all the vertices which are not adjacent with K with one color. Since

deg(K) is finite, we have �(�(S)) < 1.

Proposition 5.1.18. If S is the union of n minimal left ideals, then !(�(S)) =

�(�(S)) = 2n�1
� 1. Moreover, �(S) is weakly perfect.

Proof. First note that S has 2n � 2 non-trivial left ideals and every non-trivial

left ideal of S is of the form Ii1i2···ik and 1  k  n � 1 (cf. Lemma 1.1.7). If

n is odd, then consider C = {Ij1j2···jt : dn
2 e  t  n � 1}. Note that C forms

a clique of size 2n�1
� 1. We may now suppose that n is even. Consider C1 =

{Ij1j2···jt :
n
2 +1  t  n� 1}. Notice that C1 forms a clique. Further, observe that

C
0
= {Ii1i2···in

2
: i1, i2, . . . , in2 2 [n]} do not form a clique because for j1, j2, . . . , jn

2
2

[n] \ {i1, i2, . . . , in2
}, we get Ii1i2···in

2
⌧ Ij1j2···jn

2
. However, C

00
= {Ii1i2···in

2
2 C

0
\

{Ij1j2···jn
2
} : j1, j2, . . . , jn

2
/2 {i1, i2, . . . , in2

}} forms a clique of size |C0 |
2 . Further note

that the set C1[C
00
also forms a clique of size 2n�1

� 1. Thus, !(�(S)) � 2n�1
� 1.

To complete the proof, we show that �(�(S))  2n�1
� 1. For I = Ii1i2···ik and

J = Ij1j2···jn�k
, where i1, i2, . . . , ik 2 [n] \ {j1, j2, . . . , jn�k} we have I \ J is trivial.

Consequently, we can color these vertices with same color so that we can cover all

the vertices with 2n�1
� 1 colors. Thus �(�(S))  2n�1

� 1. Hence !(�(S)) =

�(�(S)) = 2n�1
� 1.

Corollary 5.1.19. Let S be a completely simple semigroup. Then the graph �(S)

is weakly perfect.

In order to find an upper bound of the chromatic number of �(S), where S is
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an arbitrary semigroup, first we define

X1 = {I 2 V (�(S)) : Ii1i2···in ✓ I},

X2 = {I 2 V (�(S)) : I ⇢ Ii1i2···in and I 6= Ii1i2···in},

X3 = V (�(S)) \ (X1 [X2).

Let M̂in(I) be the set of all minimal left ideals contained in I . Further define

a relation ⇢ on X3 such that

J ⇢ K () M̂in(J) = M̂in(K).

Note that ⇢ is an equivalence relation.

Theorem 5.1.20. Let S be a semigroup with n minimal left ideals such that

�(�(S)) is finite. Then

�(�(S))  |X1|+ (2n�1
� 1) + (2n�1

� 1)m,

where m = max{|C(I)| : C(I) is an equivalence class of ⇢}.

Proof. Note that for any I, J 2 X1, we have I ⇠ J . Since every non-trivial left

ideal contains at least one minimal left ideal, consequently each element of X1 is a

dominating vertex of �(S). Therefore, we need at least |X1| colors in any coloring

of �(S). By proof of Proposition 5.1.18, we can color all the vertices of X2 with

at least 2n�1
� 1 colors so that we need at least 2n�1

� 1 + |X1| colors to color

X1 [X2.

To prove our result, we need to show that the vertices of X3 can be colored

by using (2n�1
� 1)m colors. Now let J,K 2 X3 such that Ii1i2···ik ⇢ J and

Ij1j2···jt ⇢ K. Note that J \ K is non-trivial if and only if Ii1i2···ik \ Ij1j2···jt is

nontrivial. It follows that J ⇠ K in �(S) if and only if either Ii1i2···ik = Ij1j2···jt or

Ii1i2···ik ⇠ Ij1j2···jt .

Note that the equivalence class of I 2 X3 under ⇢ is
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C(I) = {J 2 X3 : M̂in(I) = M̂in(J)}.

Since �(�(S)) < 1 we get |C(I)| < 1. Consequently, |C(I)|  m. Observe that

C(I) forms a clique, we require maximumm colors to color each class under ⇢. Note

that J 2 C(J) and K 2 C(K) such that J ⇠ K if and only if Ii1i2···ik ⇠ Ij1j2···jt

in �(S). Consequently, we can color the vertices in X3 by using (2n�1
� 1)m

colors.

Theorem 5.1.21. Let S be a semigroup with n minimal left ideals. Then

sdim(�(S)) =

8
><

>:

2n�1
� 1; if S is a union of n minimal left ideals;

|X1|+ |X3|+ 2n�1
� 2; Otherwise.

Proof. Let I, J 2 V (�(S)) such that Ii1i2···ik ✓ I and Ij1j2···jt ✓ J . Then I ⇠ J

if and only if either Ii1i2···ik = Ij1j2···jt or Ii1i2···ik ⇠ Ij1j2···jt . Define a relation ⇢1

on V (�(S)) such that I ⇢1 J if and only if M̂in(I) = M̂in(J). Clearly, ⇢1 is an

equivalence relation on V (�(S)). Let N [Ii1i2···ik ] = {I 2 V (�(S)) : M̂in(I) =

Ii1i2···ik} be equivalence class containing Ii1i2···ik . If S 6= Ii1i2···in , then by Theo-

rem 1.3.5, we have R�(S) whose vertex set V (R�(S)) = {Ii1i2···ik : i1, i2, . . . , ik 2

[n] and 1  k  n}. By using Proposition 5.1.18, note that !(R�(S)) = 2n�1.

Then sdim(�(S)) = |X1|+ |X3|+ 2n�1
� 2. Next, if S = Ii1i2···in , then V (R�(S)) =

{Ii1i2···ik : i1, i2, . . . , ik 2 [n] and 1  k  n� 1}. By using Proposition 5.1.18, note

that !(R�(S)) = 2n�1
� 1. Then sdim(�(S)) = 2n�1

� 1.

In the rest of the subsection, we consider a class of those semigroups which are

the union of n minimal left ideals. In particular, completely simple semigroups

belongs to this class. In what follows, the semigroup S is assumed to be the union

of n minimal left ideals Ii1 , Ii2 , . . . , Iin i.e. S = Ii1i2···in .

Theorem 5.1.22. Let S be the union of n minimal left ideals. Then �(S) is a

graph of order 2n � 2.
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Proof. In view of Corollary 1.1.9, the vertices of �(S) are either minimal left ideals

or union of minimal left ideals. In addition to n minimal left ideals, we have
�
n
2

�

+
�
n
3

�
+ · · ·+

�
n

n�1

�
non-trivial left ideals as a union of minimal left ideals. Thus,

we obtain
�
n
1

�
+
�
n
2

�
+
�
n
3

�
+ · · ·+

�
n

n�1

�
= 2n� 2 non-trivial left ideals of S. Hence,

|V (�(S)))| = 2n � 2.

Lemma 5.1.23. Let S be the union of n minimal left ideals and let K = Ii1i2···ik be

a non-trivial left ideal of S. Then deg(K) = (2k�2)+(2n�k
�2)+(2n�k

�1)(2k�2).

Proof. Let J be a non-trivial left ideal of S such that J ⇠ K. Clearly, J \K is a

non-trivial left ideal. We have the following cases:

Case-1. J 6⇢ K and K 6⇢ J . Since J ⇠ K and K = Ii1i2···ik , we obtain the number

of non-trivial left ideals such that J 6⇢ K and K 6⇢ J is

=

 
n�kX

i=1

✓
n� k

i

◆! 
k�1X

i=1

✓
k

i

◆!
= (2n�k

� 1)(2k � 2).

Case-2. J ⇢ K. By the proof of Theorem 5.1.22, we have
�
k
1

�
+
�
k
2

�
+

�
k
3

�
+

· · ·+
�

k
k�1

�
= 2k � 2 non-trivial left ideals which are properly contained in K.

Case-3. K ⇢ J . Let J = Ii1i2···ikik+1ik+2···is such that ik+1, ik+2, . . . , is 2 [n] \

{i1, i2, . . . , ik} and 1  s  n � k � 1. Consequently, we have
Pn�k�1

i=1

�
n�k
i

�
=

2n�k
� 2 non-trivial left ideals which properly contains K. Thus, from the above

cases we have the result.

Corollary 5.1.24. If S is the union of n minimal left ideals, then the graph �(S)

is Eulerian for n � 3.

Theorem 5.1.25. If S is the union of n minimal left ideals, then the metric

dimension of �(S) is given below:

�(�(S)) =

8
><

>:

2 if n = 3;

n if n � 4.
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Proof. For n = 3, it is easy to observe that {Ii1 , Ii2} forms a minimum resolving

set. If n � 4, then by Lemma 1.1.7, we have |V (�(S))| = 2n � 2. In view of

Lemma 1.3.4, we get

n = f(2n � 2, 2)  �(�(S)).

It is easy to observe that for k = n � 1, we have 2k + k 6� 2n � 2. Therefore, the

least positive integer k is n for which k+2k � 2n�2. Thus n  �(�(S)). To obtain

upper bound of �(�(S)), let J = Ii1i2···ik and K = Ij1j2···jt be distinct arbitrary

vertices �(S). Since J 6= K, there exists at least Iis 2 Min(S) such that Iis ⇠ J and

Iis ⌧ K. It follows that d(J, Iis) 6= d(K, Iis). Thus Min(S) = {Ii1 : i1 2 [n]} forms

a resolving set for �(S) of size n. It follows that �(�(S))  n. This completes our

proof.

Now we obtain the automorphism group of �(S), when S is the union of n

minimal left ideal.

Lemma 5.1.26. For � 2 Sn, let �� : V (�(S)) ! V (�(S)) defined by ��(Ii1i2···ik) =

I�(i1)�(i2)···�(ik). Then �� 2 Aut(�(S)).

Proof. It is easy to verify that �� is a permutation on V (�(S)). Now we show that

the map �� preserves adjacency. Let Ii1i2···it and Ij1j2···jk be arbitrary vertices of

�(S) such that Ii1i2···it ⇠ Ij1j2···jk . Then Ii1i2···it \ Ij1j2···jk 6= ;. Now

Ii1i2···it ⇠ Ij1j2···jk () I�(i1)�(i2)···�(it) ⇠ I�(j1)�(j2)···�(jk)

() ��(Ii1i2···it) ⇠ ��(Ij1j2···jk).

Thus, �� 2 Aut(�(S)).

Proposition 5.1.27. For each f 2 Aut(�(S)), we have f = �� for some � 2 Sn.

Proof. In view of Lemma 5.1.23 and Lemma 5.1.26, suppose that f(Ii1) = Ij1 ,

f(Ii2) = Ij2 , . . ., f(Iin) = Ijn . Consider � 2 Sn such that �(i1) = j1, �(i2) =
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j2, . . . , �(in) = jn. Then ��(Ii1i2···ik) = I�(i1)�(i2)···�(ik) = Ij1j2···jk (cf. Lemma

5.1.26). Clearly, Ii1 ⇠ Ii1i2···ik , Ii2 ⇠ Ii1i2···ik , . . ., Iik ⇠ Ii1i2···ik . Also note

that Iit \ Ii1i2···ik is trivial for it 2 {ik+1, ik+2, . . . , in} where ik+1, ik+2, . . . , in 2

[n]\{i1, i2, . . . , ik}. It follows that Iik+1
⌧ Ii1i2···ik , Iik+2

⌧ Ii1i2···ik , . . ., Iin ⌧ Ii1i2···ik .

Thus, f(Ii1) ⇠ f(Ii1i2···ik), f(Ii2) ⇠ f(Ii1i2···ik), . . ., f(Iik) ⇠ f(Ii1i2···ik) and

f(Iik+1
) ⌧ f(Ii1i2···ik), f(Iik+2

) ⌧ f(Ii1i2···ik), . . ., f(Iin) ⌧ f(Ii1i2···ik). Conse-

quently, Ij1 ⇢ f(Ii1i2···ik), Ij2 ⇢ f(Ii1i2···ik), . . ., Ijk ⇢ f(Ii1i2···ik) and Ijk+1
6⇢

f(Ii1i2···ik), Ijk+2
6⇢ f(Ii1i2···ik), . . ., Ijn 6⇢ f(Ii1i2···ik). It follows that f(Ii1i2···ik) =

Ij1j2···jk = ��(Ii1i2···ik). Thus, f = ��.

Theorem 5.1.28. Let S be the union of n minimal left ideals. Then for n � 2,

we have Aut(�(S)) ⇠= Sn. Moreover, |Aut(�(S))| = n!.

Proof. In view of Lemma 5.1.26 and by Proposition 5.1.27, note that the underly-

ing set of the automorphism group of �(S) is Aut(�(S)) = {�� : � 2 Sn}, where

Sn is a symmetric group of degree n. The groups Aut(�(S)) and Sn are isomorphic

under the assignment �� 7! �. Since all the elements in Aut(�(S)) are distinct,

we have |Aut(�(S))| = n!.

5.2 The Inclusion Ideal Graph of a Semigroup

In this section, we discuss the inclusion ideal graph of In(S). The inclusion ideal

graph In(S) of a semigroup S is an undirected simple graph whose vertex set

is non-trivial left ideals of S and two distinct non-trivial left ideals I and J are

adjacent if and only if I ⇢ J or J ⇢ I. Note that In(S) is a spanning subgraph

of �(S). We study an interplay between algebraic properties of the semigroup S

and graph-theoretic properties of In(S). We also investigate the connectedness of

In(S). We show that the diameter of In(S) is at most 3, if it is connected. We

also obtain a necessary and su�cient condition of S such that the clique number
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of In(S) is n, where n is the number of minimal left ideals of S. Further, various

graph invariants of In(S), viz. perfectness, planarity, girth etc., are discussed.

For a completely simple semigroup S, we investigate various properties of In(S),

including its independence number and matching number. Finally, we obtain the

automorphism group of In(S).

5.2.1 Graph-theoretic Properties of In(S)

In this subsection, we study the algebraic properties of S as well as graph-theoretic

properties of the inclusion ideal graph In(S). First we investigate the connected-

ness of In(S). We show that the intersection ideal graph �(S) is disconnected if

and only if In(S) is disconnected. We also prove that diam(In(S))  3 if it is

connected. Moreover, the clique number, planarity, perfectness and the girth of

In(S) are investigated.

Theorem 5.2.1. The inclusion ideal graph In(S) is disconnected if and only if

S contains at least two minimal left ideals and every non-trivial left ideals of S is

minimal as well as maximal.

Proof. Suppose that the graph In(S) is disconnected. Without loss of generality,

we may assume that there exist at least two non-trivial left ideals I1, I2 of S such

that I1 2 C1 and I2 2 C2, where C1 and C2 are two distinct components of In(S).

Let if possible, I1 is not minimal. Then there exists a non-trivial left ideal Ik of S

such that Ik ⇢ I1. Now, we have the following cases.

Case-1. Ik [ I2 6= S. Then we have I1 ⇠ Ik ⇠ (Ik [ I2) ⇠ I2, a contradiction.

Case-2. Ik [ I2 = S. Then clearly I1 [ I2 = S. Let x 2 I1 but x /2 Ik. Thus,

x 2 I2 so that x 2 I1\ I2. We get I1 ⇠ (I1\ I2) ⇠ I2, again a contradiction. Thus,

I1 is minimal. Similarly, we obtain I2 is minimal.
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Further, on contrary suppose that I1 is not maximal. Then there exists a non-

trivial left ideal Ik of S such that I1 ⇢ Ik. Now we get a contradiction in the

following possible cases.

Case-1. I1 [ I2 6= S. Then I1 ⇠ (I1 [ I2) ⇠ I2 gives a contradiction.

Case-2. I1[I2 = S. Then clearly Ik[I2 = S so that there exists x 2 Ik\I2. Thus,

we have I1 ⇠ Ik ⇠ (Ik \ I2) ⇠ I2, again a contradiction. Hence, I1 is maximal.

Similarly, one can observe that the left ideal I2 is maximal.

The converse follows from Remark 1.1.1.

Corollary 5.2.2. If the graph In(S) is disconnected, then it is a null graph (i.e.

it has no edge).

Theorem 5.2.3. The graph In(S) is disconnected if and only if S is the union of

exactly two minimal left ideals.

Proof. The proof follows from the proof of Theorems 5.1.3, 5.2.1 and Lemma

1.1.2.

Theorem 5.2.4. If In(S) is a connected graph, then diam(In(S))  3.

Proof. Let I1, I2 be two non-trivial left ideals of S. Let I1 ⇠ I2. Then d(I1, I2) =

1. If I1 ⌧ I2, then in the following cases we show that d(I1, I2) 3.

Case-1. I1 [ I2 6= S. Then I1 ⇠ (I1 [ I2) ⇠ I2 so that d(I1, I2) = 2.

Case-2. I1 [ I2 = S. If I1 \ I2 6= ;, then I1 ⇠ (I1 \ I2) ⇠ I2 gives d(I1, I2)= 2.

We may now suppose that I1 \ I2 = ;. Since In(S) is a connected graph, there

exists a non-trivial left ideal Ik of S such that either Ik ⇢ I1 or I1 ⇢ Ik. If Ik ⇢ I1,

then there exists x 2 I1 but x /2 Ik. If Ik [ I2 = S, then x 2 I2. Thus, we get

I1 \ I2 6= ;, a contradiction. Consequently, I2 [ Ik 6= S. Further, we get a path

I1 ⇠ Ik ⇠ (I2 [ Ik) ⇠ I2 of length 3. Thus, d(I1, I2) = 3. Now if I1 ⇢ Ik then note

that Ik \ I2 6= ;. Consequently, we get I1 ⇠ Ik ⇠ (Ik \ I2) ⇠ I2 between I1 and I2.

Hence, diam(In(S))  3.
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Lemma 5.2.5. Let I and I
0 be two distinct left ideals of S such that both I and

I
0 are the union of k minimal left ideals of S. Then I ⌧ I

0 in In(S).

Proof. On contrary suppose that I ⇠ I
0. Without loss of generality assume that

I ⇢ I
0. Since I and I

0 are the union of k minimal left ideals of S and I ⇢ I
0, by

Remark 1.1.1 we get I = I
0, a contradiction.

Lemma 5.2.6. If In(S) has a cycle of length 4 or 5, then In(S) has a triangle.

Proof. Suppose first that In(S) has a cycle of length 5 such that C : I1 ⇠ I2 ⇠

I3 ⇠ I4 ⇠ I5 ⇠ I1. From the adjacency of ideals in C, note that there exists a

chain Ii ⇢ Ij ⇢ Ik in S. Thus In(S) has a triangle.

Now we suppose that there exists a cycle C : I1 ⇠ I2 ⇠ I3 ⇠ I4 ⇠ I1 of length

4 in In(S). Assume that I1 ⌧ I3 and I2 ⌧ I4. Since I1 ⇠ I2 we have either I1 ⇢ I2

or I2 ⇢ I1. If I1 ⇢ I2, then I3 ⇢ I2 and I3 ⇢ I4. It follows that I1 [ I3 ✓ I2

and I3 ✓ I2 \ I4. Consequently, we obtain either I2 ⇠ (I1 [ I3) ⇠ I3 ⇠ I2 or

I2 ⇠ (I2 \ I4) ⇠ I3 ⇠ I2. Thus, In(S) has a triangle. If I2 ⇢ I1, then I2 ⇢ I3 and

I4 ⇢ I3. It follows that I2 ✓ I1\ I3 and I2[ I4 ✓ I3. Further, we get a cycle either

I2 ⇠ I1 ⇠ (I1 \ I3) ⇠ I2 or I2 ⇠ (I2 [ I4) ⇠ I3 ⇠ I2. Hence, we have the result.

In the following theorem, we determine the girth of In(S).

Theorem 5.2.7. For a semigroup S, we have g(In(S)) 2 {3, 6,1}.

Proof. If In(S) is disconnected or a tree, then clearly g(In(S)) = 1. Suppose

that S has n minimal left ideals. Now we prove the result through following cases.

Case-1. n = 0. If S has no non-trivial left ideal, then there is nothing to

prove. Otherwise there exists a chain of non-trivial left ideals of S such that

I1 � I2 � · · · � Ik � · · · . Thus, g(In(S)) = 3.

Case-2. n = 1. Suppose that I1 is the only minimal left ideal of S. Since I1 is

unique minimal left ideal, it is contained in all other non-trivial left ideals of S.
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If any two non minimal left ideals are adjacent, then g(In(S)) = 3. Otherwise,

being a star graph, g(In(S)) = 1.

Case-3. n = 2. Let I1, I2 be two minimal left ideals of S. If I1 [ I2 = S, then by

Theorem 5.2.1 and Corollary 5.2.2, g(In(S)) = 1. If I1[ I2 6= S, then J = I1[ I2

is a non-trivial left ideal of S. If S has only these three, namely I1, I2 and J , left

ideals, then we obtain I1 ⇠ J ⇠ I2. Therefore, g(In(S)) = 1. Now suppose that

S has a non-trivial left ideal K other than I1, I2 and J . Now we have the following

subcases.

Subcase-1. Both I1, I2 contained in K. Then I1[ I2 = J ⇢ K. Consequently,

I1 ⇠ J ⇠ K ⇠ I1 so that g(In(S)) = 3.

Subcase-2. Either I1 ⇢ K or I2 ⇢ K. Without loss of generality, assume that

I1 ⇢ K. If there exists a non-trivial left ideal K 0 of S such that K ⇢ K
0, then

I1 ⇠ K ⇠ K
0
⇠ I1 follows that g(In(S)) = 3. Otherwise, K is a maximal left

ideal of S. Consequently, I2[K = S. If J is not maximal, then by Subcase-1 we

get g(In(S)) = 3. We may now suppose that J is also a maximal left ideal of S.

Now we claim that V (In(S)) = {I1, I2, J,K}. Let, if possible J
0
2 V (In(S)) but

J
0
/2 {I1, I2, J,K}. Since J is maximal, for any a 2 K \ I1, we have Sa = K. Since

J
0 is a non-trivial left ideal of S, there exists an element b 2 J

0 so that b is either

in I2 or in K. If b /2 I2, then b 2 K. Consequently, K ⇢ J
0, a contradiction to the

maximality of K. Now suppose that b 2 I2. By the minimality of I2, we obtain

I2 ⇢ J
0. Since I2 6= J

0, there exists an element c 2 J
0 but c /2 I2. Consequently,

I2 [K = S. Thus, c 2 K so that K ⇢ J
0. It follows that I2 [K = S ⇢ J

0 and

so J
0 = S. Thus, we get V (In(S)) = {I1, I2, J,K} such that K ⇠ I1 ⇠ J ⇠ I2.

Therefore, g(In(S)) = 1.

Case-4. n = 3. Let I1, I2, I3 be the minimal left ideals of S. If I1 [ I2 [ I3 6= S,

then we have I1 ⇢ (I1 [ I2) ⇢ (I1 [ I2 [ I3). It follows that, g(In(S)) = 3.

Further, suppose that I1 [ I2 [ I3 = S. Then all the non-trivial left ideals of S are
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I1, I2, I3, I1 [ I2, I1 [ I3 and I2 [ I3. Infact In(S) ⇠= C6. Thus, g(In(S)) = 6.

Case-5. n � 4. Then for minimal left ideals I1, I2 and I3, we get a triangle

I1 ⇠ (I1 [ I2) ⇠ (I1 [ I2 [ I3) ⇠ I1 so that g(In(S)) = 3.

Hence, from above cases, we have g(In(S)) 2 {3, 6,1}.

Theorem 5.2.8. Let S be a semigroup with finite number of left ideals. Then the

graph In(S) is perfect.

Proof. In view of Theorem 1.3.2, we show that In(S) does not contain a hole or

an antihole of odd length at least five. On contrary, assume that In(S) contains

a hole C : I1 ⇠ I2 ⇠ I3 ⇠ · · · ⇠ I2n+1 ⇠ I1, where n � 2. Since I1 ⇠ I2, we have

either I1 ⇢ I2 or I2 ⇢ I1. Without loss of generality, suppose that I1 ⇢ I2. Then

clearly I3 ⇢ I2. Otherwise I1 ⇠ I3, a contradiction. Further for 2  i  n note

that I2i�1 ⇢ I2i. Since I2n ⇠ I2n+1, we have either I2n ⇢ I2n+1 or I2n+1 ⇢ I2n.

But I2n ⇢ I2n+1 is not possible because I2n�1 ⇢ I2n follows that I2n�1 ⇠ I2n+1, a

contradiction. Also I2n+1 ⇠ I1 will give I2n+1 ⇢ I1. Consequently, from I1 ⇢ I2 we

obtain I2n+1 ⇢ I2. Thus, I2n+1 ⇠ I2, a contradiction.

Next, suppose that In(S) contains an antihole C of length at least five. Then

C: I1 ⇠ I2 ⇠ I3 ⇠ · · · ⇠ I2n+1 ⇠ I1, where n � 2, is a hole in In(S). Since I1 ⇠ I3

in In(S), we have either I1 ⇢ I3 or I3 ⇢ I1. Without loss of generality, assume

that I1 ⇢ I3. Then, for 4  j  2n, note that I1 ⇢ Ij. Moreover, I2 ⇢ Ij for

4  j  2n + 1. Since I3 ⇠ I5 in In(S) we have either I3 ⇢ I5 or I5 ⇢ I3. If

I5 ⇢ I3, then I2 ⇢ I3 as I2 ⇢ I5. Thus, I2 ⇠ I3 in In(S) which is not possible.

Consequently, I3 ⇢ I5. Also, it is easy to observe that I3 ⇢ I2n+1. Since I1 ⇢ I3 we

have I1 ⇢ I2n+1 so that I1 ⇠ I2n+1 in In(S), a contradiction. Thus, In(S) does

not contain an antihole of length at least five.

Let S be a semigroup with nminimal left ideals. Now we classify the semigroups

S for which !(In(S)) is n.
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Lemma 5.2.9. Let S be a semigroup such that S = Ii1i2···in. Then !(In(S)) =

n� 1.

Proof. Let S has n minimal left ideals, namely Ii1 , Ii2 , . . . , Iin . Note that C =

{Ii1 , Ii1i2 , . . . , Ii1i2···in�1} be a clique of size n� 1 in In(S). Let C [ {J} be a clique

in In(S), where J = Ii1i2···ik for some k, 1  k  n � 1. Then J is adjacent

with every element of C, a contradiction (see Lemma 5.2.5). Consequently, C is

a maximal clique in In(S). Now if C 0 be a clique of size n, then there exist two

non-trivial left ideals in C
0 which are union of k minimal left ideals, for some k,

where 1  k  n � 1. By Lemma 5.2.5, a contradiction for C
0 to be a clique in

In(S). Hence, !(In(S)) = n� 1.

Theorem 5.2.10. Let S be a semigroup with n minimal left ideals. Then !(In(S)) =

n if and only if Ii1i2···in is a maximal left ideal.

Proof. Suppose that !(In(S)) = n. Clearly, by Lemma 5.2.9, we have S 6=

Ii1i2···in .Let if possible, Ii1i2···in is not a maximal left ideal of S. Then there ex-

ists a non-trivial left ideal K of S such that Ii1i2···in ⇢ K. Note that C =

{Ii1 , Ii1i2 , . . . , Ii1i2···in�1 , Ii1i2···in , K} forms a clique of size n + 1. Consequently,

!(In(S)) 6= n, a contradiction. Thus, Ii1i2···in is a maximal left ideal of S.

Conversely, suppose that Ii1i2···in is a maximal left ideal of S. Then by Lemma

1.1.5, S \ Ii1i2···in is an L-class. Thus, for each a 2 S \ Ii1i2···in , we get either

S
1
a = S or S

1
a is a non-trivial left ideal of S. First suppose that S

1
a = S.

Therefore, for any non-trivial left ideal I of S, note that if for some a 2 S \

Ii1i2···in such that a 2 I, then I = S, a contradiction. Thus, every non-trivial

left ideal I of S is either a minimal left ideal or a union of minimal left ideals.

Consequently, in the similar lines of the proof of Lemma 5.2.9, we get a clique

C = {Ii1 , Ii1i2 , . . . , Ii1i2···in�1 , Ii1i2···in} of maximum size n so that !(In(S)) = n.

We may now suppose that for each a 2 S \ Ii1i2···in , we have S
1
a = I is a

non-trivial left ideal of S. Assume that J is any non-trivial left ideal of S such
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that a 2 J for some a 2 S \ Ii1i2···in . Then S \ Ii1i2···in ⇢ I ✓ J . Consequently,

all the vertices of In(S) are minimal left ideals, union of minimal left ideals and

of the form (S \ Ii1i2···in) [ Ij1j2···jk . Note that Ii1 ⇠ (S \ Ii1i2···in) [ Ij1j2···jk implies

i1 2 {j1, j2, . . . , jk} and (S \ Ii1i2···in) [ Is1s2···sk ⇠ (S \ Ii1i2···in) [ It1t2···tp implies

Is1s2···sk ⇠ It1t2···tp . Suppose that K is of the form (S \ Ii1i2···in)[ Ij1ji2···jk . Let C be

an arbitrary clique such that K 2 C. Note that C = {Ij1 , Ij1j2 , . . . , Ij1j2···jk , K,K [

Ijk+1
, . . . , K [ Ijk+1jk+2···jn�k�1

} is a clique of size n. If C [ {K
0
} is a clique of size

n + 1, then either K
0 = Ij1j2···jt or K

0 = (S \ Ii1i2···in) [ Ij1j2···js . Then K
0 is not

adjacent with at least one vertex of C, a contradiction of the fact that C[{K
0
} is a

clique. Consequently, C is a maximal clique in In(S). Further, suppose that C do

not contain any non-trivial left ideal of the form (S \ Ii1i2···in)[ Ij1j2···jk . Note that

C = {Ii1 , Ii1i2 , . . . , Ii1i2···in�1 , Ii1i2···in} is a maximal clique of size n. Now suppose

that C 0 is an arbitrary clique of size at least n+1. Then by the adjacency of vertices

in In(S) mentioned above and in Lemma 5.2.5, there exist at least two vertices U

and U
0 such that U ⌧ U

0. Thus, !(In(S)) = n and the proof is complete.

Theorem 5.2.11. For the graph In(S), we have the following results:

(i) If In(S) is a planar graph, then |Min(S)|  4.

(ii) Let S be the union of n minimal left ideals. Then In(S) is a planar graph if

and only if n  4.

Proof. (i) Suppose that |Min(S)| = 5 with Min(S) = {I1, I2, I3, I4, I5}. Then, from

the graph given in Figure 5.3, note that In(S) contains a subdivision of complete

bipartite K3,3 as a subgraph.

For |Min(S)| � 6, note that I1 ⇢ I12 ⇢ I123 ⇢ I1234 ⇢ I12345 be a chain of

non-trivial left ideals of S. Consequently, In(S) contains a subgraph isomorphic

to K5. Thus, by Kurwatowski theorem (cf. Theorem 1.3.8), In(S) is nonplanar.
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I1 I2 I3

I12 I13 I14

I123

I134

I1234

I124

Figure 5.3: Subgraph of In(S) homeomorphic to K3,3

(ii) The proof for In(S) is nonplanar for n � 5 follows from part (i). By

Corollary 5.2.2 and Theorem 5.2.3, In(S) is planar for n = 2. For n = 3, note

that In(S) ⇠= C6 so that In(S) is planar. For n = 4, the planarity of In(S) can

be seen from Figure 5.4

I1

I2

I3

I4

I12

I13

I14

I23

I24

I34

I123

I234

I124

I134

Figure 5.4: Planar drawing of In(S)
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5.2.2 The Inclusion Ideal Graph of Completely Simple Semi-

group

In this subsection, we study various graph invariants including the dominance

number, clique number, independence number of the inclusion ideal graph of a

completely simple semigroup S. We also prove that the graph In(S) has a perfect

matching (cf. Theorem 5.2.26). In what follows, for n 2 N, we denote [n] =

{1, 2, . . . , n}. Recall that, for a completely simple semigroup having n minimal

left ideals, we write a non-trivial left ideal Ii1i2···ik = Ii1 [ Ii2 [ Ii3 [ · · · [ Iik such

that i1, i2, . . . , ik 2 [n] and 1  k  n � 1, where Ii1 , Ii2 , . . . , Iik are minimal left

ideals of S.

Lemma 5.2.12. Let S be a completely simple semigroup with n minimal left ideals.

Then In(S) is disconnected for n = 2, and connected for n � 3. Moreover, if

In(S) is connected, then diam(In(S)) = 3.

Proof. By Corollary 1.1.9 and Theorem 5.2.3, In(S) is disconnected for n = 2. For

n � 3, as a consequence of Theorem 5.2.3, In(S) is connected. Let I1, I234···n be

two non-trivial left ideals. Then there exists a shortest path I1 ⇠ I12 ⇠ I2 ⇠ I234···n

such that d(I1, I234···n) = 3. By Theorem 5.2.4, diam(In(S)) = 3.

The following theorem can be obtained from Theorem 5.1.22

Theorem 5.2.13. Let S be a completely simple semigroup with n minimal left

ideals. Then In(S) is a graph of order 2n � 2.

The following lemma gives the degree of each vertex of In(S).

Lemma 5.2.14. Let S be a completely simple semigroup with n minimal left ideals

and let K = Ii1i2···ik be a non-trivial left ideal of S. Then deg(K) = (2k � 2) +

(2n�k
� 2).
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Proof. The proof follows from Case-2 and Case-3 of Lemma 5.1.23.

Corollary 5.2.15. Let S be a completely simple semigroup with n minimal left

ideals. Then the graph In(S) is Eulerian for n � 3.

Theorem 5.2.16. Let S be a completely simple semigroup with n(� 3) minimal

left ideals. Then the Wiener index W (In(S)) = 2(4n � 3n) + 2n � 4.

Proof. Let I = Ii1i2···ik be an arbitrary non-trivial left ideal of S, where 1  k 

n � 1. In view of Lemma 5.2.14, we get deg(I) = (2k � 2) + (2n�k
� 2). Now

suppose that J is a non-trivial left ideal of S such that J ⌧ I. Then we have the

following cases.

Case-1. J = Ij1j2···jn�k
such that j1, j2, . . . , jn�k 2 [n] \ {i1, i2, . . . , ik}. Then by

the proof of Lemma 5.2.12, we have d(I, J) = 3.

Case-2. J 6= Ij1j2···jn�k
then I \ J is a non-trivial left ideal of S. It follows that

d(I, J) = 2. Hence,

W (I) = 2n�k + 2k � 4 + 3 + 2(2n � 2� (2n�k + 2k � 4)� 1)

= 2n+1
� 2n�k

� 2k + 3.

Therefore,

W (In(S)) = (2n � 2)(2n+1
� 2n�k

� 2k + 3)

= 2(4n � 3n) + 2n � 4.

Theorem 5.2.17. Let S be a completely simple semigroup with n minimal left

ideals. Then

g(In(S)) =

8
>>>>><

>>>>>:

1 if n = 2

6 if n = 3

3 otherwise.
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Proof. If n = 2, then by Theorem 5.2.3 and Corollary 5.2.2, the graph In(S) is

disconnected. It follows that g(In(S)) = 1. If n = 3, then by Corollary 1.1.9,

In(S) ⇠= C6. Consequently, g(In(S)) = 6. For n � 4, we have at least I1, I2, I3, I4

minimal left ideals of S so that we obtain a cycle I1 ⇠ (I1[I2) ⇠ (I1[I2[I3) ⇠ I1

of length 3. Thus, g(In(S)) = 3.

Theorem 5.2.18. Let S be a completely simple semigroup with n minimal left

ideals. Then

(i) In(S) is a bipartite graph if and only if n = 3.

(ii) the dominance number of In(S) is 2.

(iii) for n � 4, In(S) is triangulated.

(iv) the clique number of In(S) is n� 1.

Proof. (i) If n = 3, then by Corollary 1.1.9, In(S) ⇠= C6 which is a bipartite graph.

Conversely, suppose that In(S) is a bipartite graph. Let if possible, n = 2. Then

by Corollary 1.1.9 and Theorem 5.2.3, In(S) is disconnected, a contradiction for

In(S) to be bipartite. Suppose n � 4 and I1, I2, I3 are the minimal left ideals of

S. Since I1 ⇢ I12 ⇢ I123, we get a cycle I1 ⇠ I12 ⇠ I123 ⇠ I1 of odd length. Thus,

In(S) is not a bipartite graph, a contradiction.

(ii) Since there is no dominating vertex in In(S), we have �(In(S)) � 2. To

prove the result we show that there exists a dominating set of size two in In(S).

We claim that the set D = {I1, I234···n} is a dominating set. Let J = Ii1i2···ik ,

where i1, i2, . . . , ik 2 [n] and 1  k  n � 1 be a non-trivial left ideal of S such

that J 2 V (In(S))\D. If some is = 1, then I1 ⇠ J . Otherwise, for 1  k  n�2,

J ⇠ I234···n. Thus, D is a dominating set of size two.

(iii) We show that any vertex of In(S) is a vertex of a triangle. Let J = Ii1i2···ik ,

where i1, i2, . . . , ik 2 [n] and 1  k < n. If k = 1, then J = Ii1 ⇠ Ii1i2 ⇠ Ii1i2i3 ⇠ J



142 Graphs on Semigroups

gives a triangle. If k = 2, then we have J = Ii1i2 ⇠ Ii1i2i3 ⇠ Ii1 ⇠ J . Consequently,

we get a triangle. If k � 3, then note that J = Ii1i2i3···ik ⇠ Ii1 ⇠ Ii1i2 ⇠ J is a

triangle. Hence, In(S) is triangulated.

(iv) The result follows from Lemma 5.2.9.

In view of Theorem 5.2.8, we have the following corollary of Theorem 5.2.18.

Corollary 5.2.19. Let S be a completely simple semigroup with n minimal left

ideals. Then �(In(S)) = n� 1.

Theorem 5.2.20. Let S be a completely simple semigroup with n minimal left

ideals. Then the graph In(S) is edge transitive if and only if n 2 {2, 3}.

Proof. It is well known that edge transitive graphs are either vertex transitive or

bipartite. For n � 4, by Lemma 5.2.14, In(S) is not a regular graph so is not

vertex transitive. Also for n � 4, g(In(S)) = 3, hence In(S) is not a bipartite

graph. Thus, In(S) is not an edge transitive graph. Conversely, suppose that

n 2 {2, 3}. If n = 2, then by Corollary 5.2.2 and Theorem 5.2.3, In(S) is edge

transitive. By Corollary 1.1.9, In(S) ⇠= C6, for n = 3, which is an edge transitive

graph.

Now we determine the independence number of the graph In(S).

Remark 5.2.21. It is well known that

(i)
�
n
1

�

�
n
2

�

�
n
3

�
· · · 

�
n
p

�
�
�

n
p+1

�
�
�

n
p+2

�
· · · �

�
n

n�1

�
, if n = 2p

(ii)
�
n
1

�

�
n
2

�

�
n
3

�
· · · 

�
n
p

�
=
�

n
p+1

�
�
�

n
p+2

�
· · · �

�
n

n�1

�
, if n = 2p+ 1.

Lemma 5.2.22 ([West, 1996, Theorem 3.1.11]). (Hall’s theorem) Let � be a finite

bipartite graph with bipartite sets X and Y . For a set X
0 of vertices in X, let

N�(X 0) denote the neighbourhood of X
0 in �, i.e. the set of all vertices in Y
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adjacent to some elements of X 0. There is a matching that entirely covers X if

and only if every subset X 0 of X : |X
0
|  |N�(X 0)|.

Define Tk = {Ii1i2···ik : i1, i2, . . . , ik 2 [n]} and Mk (where k = 1, 2, . . . , n � 2)

be the induced bipartite subgraph of In(S) with vertex set Tk and Tk+1.

Lemma 5.2.23. Let n = 2p or n = 2p + 1. If 1  k  p � 1, then Mk has

a matching that covers all the vertices of Tk. If p  k  n � 2, then Mk has a

matching that covers all the vertices of Tk+1.

Proof. First suppose 1  k  p � 1. Then by Lemma 5.2.5, Mk is a bipartite

graph with vertex set Tk and Tk+1. By Remark 5.2.21, we have

|Tk| =
�
n
k

�

�

n
k+1

�
= |Tk+1|.

By Lemma 5.2.14, observe that Mk is a biregular graph in which all vertices in Tk

(respectively, in Tk+1) have the same vertex degree. Therefore, for any J 2 Tk and

J
0
2 Tk+1, we have

�
n�k
1

� �
n
k

�
= degMk

(J) · |Tk| = degMk
(J 0) · |Tk+1| =

�
k+1
k

� �
n

k+1

�
.

where degMk
(J) and degMk

(J 0) is the degree of J and J
0 in the induced subgraph

Mk of In(S). Thus, degMk
(J) � degMk

(J 0). Let T be any arbitrary subset of Tk

and consider the induced subgraph of Mk with vertex set T and NMk
(T ). The

number of edges of this graph is |T | · degMk
(L)  |NMk

(T )| · degMk
(L0), where L

and L
0 are vertices of T and NMk

(T ), respectively. Thus, we have |T |  |NMk
(T )|.

Then by Lemma 5.2.22, Mk has a matching that covers all the vertices of Tk.

The proof for p  k  n� 2, is similar. Hence, omitted.

Theorem 5.2.24. Let S be a completely simple semigroup with n minimal left

ideals, where n = 2p or n = 2p+ 1. Then ↵(In(S)) =
�
n
p

�
.
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Proof. Let n = 2p or n = 2p + 1. By Lemma 5.2.5, note that Tp forms an

independent set of In(S). Consequently, ↵(In(S)) � |Tp| =
�
n
p

�
. Let U be an

arbitrary independent set of In(S). We need to show that |U|  |Tp|.

If 1  k  p� 1, by Lemma 5.2.23, consider Qk to be a fixed matching of Mk

that covers all the vertices of Tk. Assume that �k is a mapping from Tk to Tk+1

which sends a vertex J 2 Tk to a vertex J
0 of Tk+1 such that (J, J 0) is an edge in

Qk. Since Qk is a matching of Mk, we get �k is a one-one map for any k. Now,

consider U1 to be U and recursively define U2, U3, . . ., Uk, . . ., Up for 2  k  p as

follows:

U2 = (U1 \ (U1 \ T1)) [ �1(U1 \ T1)

U3 = (U2 \ (U2 \ T2)) [ �2(U2 \ T2)
...

Uk = (Uk�1 \ (Uk�1 \ Tk�1)) [ �k�1(Uk�1 \ Tk�1)
...

Up = (Up�1 \ (Up�1 \ Tp�1)) [ �p�1(Up�1 \ Tp�1).

Observe that Uk\ (T1[T2[ · · ·[Tk�1) = ;, for any 2  k  p. First we show that

Uk is an independent set and |Uk| = |U|. To do this we proceed by induction on k,

where k = 1, 2, . . . , p. Clearly, for k = 1, U1 is an independent set and |U1| = |U|

and assume for Uk�1 i.e., Uk�1 is an independent set and |Uk�1| = |U|. Now, we

prove it for Uk. First we show that |Uk| = |U|. For this purpose we prove that

�k�1(Uk�1 \ Tk�1) and (Uk�1 \ (Uk�1 \ Tk�1)) have no common vertices. Assume

that there exists J 2 (Uk�1 \ (Uk�1 \ Tk�1)) \ �k�1(Uk�1 \ Tk�1). Then there is

J
0
2 (Uk�1 \ Tk�1) such that (J 0

, J) 2 Qk�1 and J
0
⇢ J . Since J ⇠ J

0 in Uk�1, we

get a contradiction. Hence,

(Uk�1 \ (Uk�1 \ Tk�1)) \ �k�1(Uk�1 \ Tk�1) = ;.

Thus, |Uk| = |Uk�1| = |U|. Now if Uk is not an independent set then for any
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vertex J 2 �k�1(Uk�1 \ Tk�1) and J
0
2 (Uk�1 \ (Uk�1 \ Tk�1)), J ⇠ J

0 and J ⇢ J
0.

Since Qk is matching, then there exists J 00
2 Uk�1 \ Tk�1 such that �k�1(J 00) = J

and J
00
⇢ J . Consequently, J 00

⇠ J
0 in Uk�1, a contradiction. Thus, Uk is an

independent set.

For p  k  n � 2. By Lemma 5.2.23, consider Q0
k to be a fixed matching of

Mk that covers all the vertices of Tk+1. Assume that �0
k is a mapping from Tk+1 to

Tk which sends a vertex J 2 Tk+1 to a vertex J
0 of Tk such that (J, J 0) is an edge

in Q
0
k. As Q

0
k is a matching of Mk, so �0

k is one-one map for any k. Now, consider

Vn�1 to be Up and analogously define Vn�2, Vn�3, . . ., Vp for p  k  n � 2 as

follows:

Vn�2 = (Vn�1 \ (Vn�1 \ Tn�1)) [ �0
n�1(Vn�1 \ Tn�1)

...

Vk = (Vk�1 \ (Vk�1 \ Tk�1)) [ �0
k�1(Vk�1 \ Tk�1)

...

Vp = (Vp�1 \ (Vp�1 \ Tp�1)) [ �0
p�1(Vp�1 \ Tp�1).

Note that, Vk \ (Tn�1 [Tn�2 [ · · ·[Tk+1) = ;, for any p  k  n� 2. Similarly, as

shown above we can prove that Vk is an independent set and |Vk| = |Vn�1| = |Up| =

|U| for k = n� 2, n� 3, . . . , p. Since Vp ✓ Tp, we have |Vp|  |Tp|. Consequently,

we have |U|  |Tp| =
�
n
p

�
. Hence, ↵(In(S)) =

�
n
p

�
.

Corollary 5.2.25. Let S be a completely simple semigroup with n minimal left

ideals, where n = 2p or n = 2p+1. Then the vertex covering number is (2n � 2)�
�
n
p

�
.

Theorem 5.2.26. Let S be a completely simple semigroup with n minimal left

ideals. Then In(S) has a perfect matching.

Proof. In view of Theorem 5.2.13, it is su�cient to provide a matching of size

2n�1
� 1. We have the following cases.
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Case-1. n = 2p+ 1. By Lemma 5.2.5, note that the set of edges

M = {(Ii1i2···ik , Ij1j2···jn�k) : i1, i2, . . . , ik, j1, j2, . . . , jn�k 2 [n]}

forms a matching and 2|M | = |V (In(S))|. Thus, |M | = |V (In(S))|
2 . Consequently,

In(S) has a perfect matching.

Case-2. n = 2p. Consider

T1 = {Ii1 : i1 2 [n]}

T2 = {Ii1i2 : i1, i2 2 [n]}
...

Tk = {Ii1i2···ik : i1, i2, . . . , ik 2 [n]}
...

Tn�1 = {Ii1i2···in�1 : i1, i2, . . . , in�1 2 [n]}

Note that T1, T2, . . . , Tn�1 forms a partition of V (In(S)). Consider the following

injective maps

�1 : T1 \ {I1} ! T2

�2 : T2 \ im(�1) ! T3

...

�n�2 : Tn�2 \ im(�n�3) ! Tn�1 \ {I12···(n�1)}.

under the assignment J 7! J
0 such that (J, J 0) is an edge in In(S). The set

M = {(I1, I12···(n�1))} [ {(↵1,�1(↵1)) : ↵1 2 dom(�1)} [ {(↵2,�2(↵2)) : ↵2 2

dom(�2)} [ {(↵3,�3(↵3)) : ↵3 2 dom(�3)} [ · · · [ {(↵n�2,�n�2(↵n�2)) : ↵n�2 2

dom(�n�2)} forms a matching and no edge in M share same end vertices. In

the above, by im(�i) and dom(�i), we mean the image set and domain of �i

respectively. Further, note that 2|M | = |V (In(S))|. Thus, |M | = |V (In(S))|
2 .

Consequently, In(S) has a perfect matching.
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Corollary 5.2.27. Let S be a completely simple semigroup with n minimal left

ideals. Then the edge covering number is 2n�1
� 1.

5.2.3 The Automorphism Group of In(S)

In order to study algebraic properties of In(S), we obtain the automorphism

group of In(S), where S is completely simple semigroup. For a completely simple

semigroup S having two minimal left ideals, In(S) is disconnected (cf. Theorem

5.2.3). It follows that Aut(In(S)) ⇠= Z2. Now in the remaining subsection, we

find the automorphism group of the inclusion ideal graph of completely simple

semigroup having at least three minimal left ideals. In view of Lemma 5.2.14, we

have the following remark.

Remark 5.2.28. In In(S), we have deg(Ii1i2···ik) = deg(Ij1j2···jn�k
) = deg(Ij1j2···jk).

Lemma 5.2.29. For � 2 Sn, let �� : V (In(S)) ! V (In(S)) defined by ��(Ii1i2···ik) =

I�(i1)�(i2)···�(ik). Then �� 2 Aut(In(S)).

Proof. Let Ii1i2···it and Ij1j2···jk be arbitrary vertices of In(S) such that Ii1i2···it ⇠

Ij1j2···jk . Without loss of generality, assume that Ii1i2···it ⇢ Ij1j2···jk . This implies

that Ii1 , Ii2 , . . . , Iit ⇢ Ij1j2···jk . Now

Ii1i2···it ⇠ Ij1j2···jk () I�(i1)�(i2)···�(it) ⇠ I�(j1)�(j2)···�(jk)

() ��(Ii1i2···it) ⇠ ��(Ij1j2···jk).

Thus, �� 2 Aut(In(S)).

Lemma 5.2.30. Let f 2 Aut(In(S)) such that f(Iis) = Ij1j2···jn�1 for some is 2

[n]. Then f(Ii1i2···ik) = Ii
0
1i

0
2···i

0
n�k

for all Ii1i2···ik 2 V (In(S)).

Proof. Suppose f(Iis) = Ij1j2···jn�1 . Since Ij1 ⇠ Ij1j2···jn�1 , Ij2 ⇠ Ij1j2···jn�1 , . . .,

Ijn�1 ⇠ Ij1j2···jn�1 . It follows that f(Ij1) ⇠ f(Ij1j2···jn�1), f(Ij2) ⇠ f(Ij1j2···jn�1),
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. . ., f(Ijn�1) ⇠ f(Ij1j2···jn�1). By Lemma 5.2.14 and Remark 5.2.28, we get either

f(Ij1) = Ij` or f(Ij1) = Ij
0
1j

0
2···j

0
n�1

. First suppose that f(Ij1) = Ij` . Then by Remark

5.2.28, either f(Ij1j2···jn�1) = Iip or f(Ij1j2···jn�1) = I`1`2···`n�1 . For f(Ij1j2···jn�1) = Iip

since Ij1 ⇠ Ij1j2···jn�1 , we get Ij` = f(Ij1) ⇠ f(Ij1j2···jn�1) = Iip , a contradiction (see

Lemma 5.2.5). Consequently, f(Ij1j2···jn�1) = I`1`2···`n�1 . Now if Iis ⇠ Ij1j2···jn�1 ,

then Ij1j2···jn�1 = f(Iis) ⇠ f(Ij1j2···jn�1) = I`1`2···`n�1 , which is not possible. If Iis ⌧

Ij1j2···jn�1 and Iis 6= Ij` , then Ij1 ⌧ Iis implies that f(Ij1) ⌧ f(Iis). Consequently,

Ij` ⌧ Ij1j2···jn�1 , a contradiction because j` 2 {j1, j2, . . . , jn�1}. We may now

suppose that Ij` = Iis . Since Ij2 ⇠ Ij1j2···jn�1 , it follows that f(Ij2) ⇠ f(Ij1j2···jn�1).

If f(Ij2) = Iit , then Ij2 ⌧ Iis yields f(Ij2) ⌧ f(Iis), which is not possible as

it 2 {j1, j2, . . . , jn�1}. Now let f(Ij2) = Ii
0
1i

0
2···i

0
n�1

. Since Ij1 ⌧ Ij2 , we have f(Ij1) ⌧

f(Ij2). It follows that Iis ⌧ Ii
0
1i

0
2···i

0
n�1

as j1, j2, . . . , jn�1 2 [n] \ {is}. This implies

that j1, j2, . . . , jn�1 2 {i
0
1, i

0
2, . . . , i

0
n�1}. Thus f(Iis) = f(Ij2), a contradiction.

Therefore, for any j1 2 [n], f(Ij1) = Ij
0
1j

0
2···j

0
n�1

, where j
0
1, j

0
2, . . . , j

0
n�1 2 [n].

Next we show that f(Ii1i2···ik) = Ii
0
1i

0
2···i

0
n�k

for 1 < k  n�1. Since Ii1 ⇠ Ii1i2···ik ,

Ii2 ⇠ Ii1i2···ik , . . ., Iik ⇠ Ii1i2···ik we get f(Ii1) ⇠ f(Ii1i2···ik), f(Ii2) ⇠ f(Ii1i2···ik),

. . ., f(Iik) ⇠ f(Ii1i2···ik). Then either f(Ii1) ⇢ f(Ii1i2···ik) or f(Ii1i2···ik) ⇢ f(Ii1).

Since f(Ii1) = Ij1j2···jn�1 , for some j1, j2, . . . , jn�1 2 [n], it follows that f(Ii1) 6⇢

f(Ii1i2···ik). Consequently, we get f(Ii1i2···ik) ⇢ f(Ii1). Thus, there exists I`1 6⇢

f(Ii1) such that I`1 6⇢ f(Ii1i2···ik). Similarly, one can get f(Ii1i2···ik) ⇢ f(Ii2),

f(Ii1i2···ik) ⇢ f(Ii3), . . ., f(Ii1i2···ik) ⇢ f(Iik). Consequently, there exist I`2 6⇢ f(Ii2),

I`3 6⇢ f(Ii3), . . ., I`k 6⇢ f(Iik) such that I`2 , I`3 , . . . , I`k 6⇢ f(Ii1i2···ik). Therefore,

I`1`2···`k 6⇢ f(Ii1i2···ik). Clearly, there exist ik+1, ik+2, . . . , in�k /2 {i1, i2, . . . , ik} such

that Iik+1
, Iik+2

, . . . , Iin�k
⌧ Ii1i2···ik . It follows that f(Iik+1

) ⌧ f(Ii1i2···ik), f(Iik+2
) ⌧

f(Ii1i2···ik), . . ., f(Iin�k
) ⌧ f(Ii1i2···ik) so that f(Ii1i2···ik) 6⇢ f(Iik+1

), f(Ii1i2···ik) 6⇢

f(Iik+2
), . . ., f(Ii1i2···ik) 6⇢ f(Iin�k

). Thus, there exists Ii01 6⇢ f(Iik+1
) such that Ii01 ⇢

f(Ii1i2···ik). Similarly, there exist Ii
0
2
⇢ f(Ii1i2···ik), Ii03 ⇢ f(Ii1i2···ik), . . ., Ii0n�k

⇢
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f(Ii1i2···ik) such that Ii
0
2
, Ii

0
3
, . . . , Ii

0
n�k

⇢ f(Ii1i2···ik). It follows that Ii
0
1i

0
2···i

0
n�k

⇢

f(Ii1i2···ik) and I`1`2···`k 6⇢ f(Ii1i2···ik). Thus, f(Ii1i2···ik) = Ii
0
1i

0
2···i

0
n�k

.

Lemma 5.2.31. Let ↵ : V (In(S)) ! V (In(S)) be a mapping defined by

↵(Ii1i2···ik) = Ii
0
1i

0
2···i

0
n�k

such that i
0
1, i

0
2, . . . , i

0
n�k 2 [n] \ {i1, i2, . . . , ik}. Then

↵ 2 Aut(In(S)).

Proof. It is straightforward to verify that ↵ is one-one and onto map on V (In(S)).

For any Ij1j2···jt , Ij01j
0
2···j

0
s
2 V (In(S)), suppose that Ij1j2···jt ⇠ Ij

0
1j

0
2···j

0
s
. Without loss

of generality, assume that Ij1j2···jt ⇢ Ij
0
1j

0
2···j

0
s
. Thus, j1, j2, . . . , jt 2 {j

0
1, j

0
2, . . . , j

0
s}.

Let ↵(Ij1j2···jt) = Il1l2···ln�t , where j1, j2, . . . , jt 2 [n]\{l1, l2, . . . , ln�t} and ↵(Ij01j
0
2···j

0
s
) =

Il
0
1l

0
2···l

0
n�s

, where j
0
1, j2

0
, . . . , j

0
s 2 [n] \ {l

0
1, l

0
2, . . . , l

0
n�s}. Since l1, l2, . . . , ln�t 2 [n] \

{j1, j2, . . . , jt} and l
0
1, l

0
2, . . . , l

0
n�s 2 [n]\{j

0
1, j2

0
, . . . , j

0
s}, implies that {l

0
1, l

0
2, . . . , l

0
n�s} ⇢

{l1, l2, . . . , ln�t}. It follows that Il01l
0
2···l

0
n�s

⇢ Il1l2···ln�t . Consequently, ↵(Ij01j
0
2···j

0
s
) ⇢

↵(Ij1j2···jt). Thus, Ij1j2···jt ⇠ Ij
0
1j

0
2···j

0
s
implies that ↵(Ij1j2···jt) ⇠ ↵(Ij01j

0
2···j

0
s
). Now,

suppose that ↵(Ij1j2···jt) ⇠ ↵(Ij01j
0
2···j

0
s
). Without loss of generality, assume that

↵(Ij1j2···jt) ⇢ ↵(Ij01j
0
2···j

0
s
). Similar to the argument discussed above, we obtain

that if ↵(Ij1j2···jt) ⇢ ↵(Ij01j
0
2···j

0
s
), then Ij

0
1j

0
2···j

0
s
⇢ Ij1j2···jt . Thus, ↵ is an automor-

phism.

Remark 5.2.32. For �� and ↵, defined in Lemma 5.2.29 and 5.2.31, we have

�� � ↵ = ↵ � ��.

Proposition 5.2.33. For each f 2 Aut(In(S)), we have either f = �� or f =

�� � ↵ for some � 2 Sn.

Proof. In view of Remark 5.2.28 and Lemma 5.2.30, we prove the result through

the following cases.

Case-1. f(Ii1) = Ij1 , f(Ii2) = Ij2 , . . ., f(Iin) = Ijn . Consider � 2 Sn such that

�(i1) = j1, �(i2) = j2, . . . , �(in) = jn. Then ��(Ii1i2···ik) = I�(i1)�(i2)···�(ik) = Ij1j2···jk
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(cf. Lemma 5.2.29). Clearly, Ii1 ⇠ Ii1i2···ik , Ii2 ⇠ Ii1i2···ik , . . ., Iik ⇠ Ii1i2···ik . Also

note that for ik+1, ik+2, . . . , in 2 [n]\{i1, i2, . . . , ik}, we have Iik+1
⌧ Ii1i2···ik , Iik+2

⌧

Ii1i2···ik , . . ., Iin ⌧ Ii1i2···ik . Therefore, f(Ii1) ⇠ f(Ii1i2···ik), f(Ii2) ⇠ f(Ii1i2···ik), . . .,

f(Iik) ⇠ f(Ii1i2···ik) and f(Iik+1
) ⌧ f(Ii1i2···ik), f(Iik+2

) ⌧ f(Ii1i2···ik), . . ., f(Iin) ⌧

f(Ii1i2···ik). Consequently, Ij1 ⇢ f(Ii1i2···ik), Ij2 ⇢ f(Ii1i2···ik), . . ., Ijk ⇢ f(Ii1i2···ik)

and Ijk+1
6⇢ f(Ii1i2···ik), Ijk+2

6⇢ f(Ii1i2···ik), . . ., Ijn 6⇢ f(Ii1i2···ik). It follows that

f(Ii1i2···ik) = Ij1j2···jk = ��(Ii1i2···ik). Thus, f = ��.

Case-2. f(Ii1) = Ij1j2···jn�1 , f(Ii2) = Ij
0
1j

0
2···j

0
n�1

, . . ., f(Iin) = I`1`2···`n�1 . Assume

that Ii01 6⇢ f(Ii1), Ii02 6⇢ f(Ii2), . . ., Ii0n 6⇢ f(Iin). Since Ii1 ⇠ Ii1i2···ik , Ii2 ⇠ Ii1i2···ik ,

. . ., Iik ⇠ Ii1i2···ik , we obtain f(Ii1) ⇠ f(Ii1i2···ik), f(Ii2) ⇠ f(Ii1i2···ik), . . ., f(Iik) ⇠

f(Ii1i2···ik). Consequently, Ii01 6⇢ f(Ii1i2···ik), Ii02 6⇢ f(Ii1i2···ik), . . ., Ii0k
6⇢ f(Ii1i2···ik).

It follows that Ii01i
0
2···i

0
k
6⇢ f(Ii1i2···ik). For ik+1, ik+2, . . . , in 2 [n] \ {i1, i2, . . . , ik}, we

have Iik+1
⌧ Ii1i2···ik , Iik+2

⌧ Ii1i2···ik , . . ., Iin ⌧ Ii1i2···ik so that f(Iik+1
) ⌧ f(Ii1i2···ik),

f(Iik+2
) ⌧ f(Ii1i2···ik), . . ., f(Iin) ⌧ f(Ii1i2···ik). This implies that Ii0k+1

⇢ f(Ii1i2···ik),

Ii
0
k+2

⇢ f(Ii1i2···ik), . . ., Ii0n ⇢ f(Ii1i2···ik). As a result, Ii0k+1i
0
k+2···i

0
n
⇢ f(Ii1i2···ik) and

Ii
0
1i

0
2···i

0
k
6⇢ f(Ii1i2···ik). Thus, f(Ii1i2···ik) = Ii

0
k+1i

0
k+2···i

0
n
. Define �(i1) = i

0
1, �(i2) = i

0
2,

. . ., �(in) = i
0
n. Now, (�� � ↵)(Ii1i2···ik) = ��(Iik+1ik+2···in) = I�(ik+1)�(ik+2)···�(in) =

Ii
0
k+1i

0
k+2···i

0
n
= f(Ii1i2···ik). Hence f = �� � ↵.

Theorem 5.2.34. Let S be a completely simple semigroup with n minimal left

ideals. Then for n � 3, we have Aut(In(S)) ⇠= Sn⇥Z2. Moreover, |Aut(In(S))| =

2(n!).

Proof. In view of Lemmas 5.2.5, 5.2.30 and by Proposition 5.2.33, note that the

underlying set of the automorphism group of In(S) is Aut(In(S)) = {�� : � 2

Sn} [ {�� � ↵ : � 2 Sn}, where Sn is a symmetric group of degree n. The

groups Aut(In(S)) and Sn ⇥Z2 are isomorphic under the assignment �� 7! (�, 0̄)

and �� � ↵ 7! (�, 1̄). Since all the elements in Aut(In(S)) are distinct, we have

|Aut(In(S))| = 2(n!).
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Theorem 5.2.35. Let S be a completely simple semigroup with n minimal left

ideals. Then the graph In(S) is vertex transitive if and only if n 2 {2, 3}.

Proof. Suppose that n � 4. By Remark 5.2.28, there exist at least two vertices

whose degree is not equal. Thus, In(S) is not a regular graph and so is not a

vertex transitive graph. Conversely, suppose that n 2 {2, 3}. If n = 2, then we

have V (In(S)) = {I1, I2}. Then by Lemma 5.2.29, In(S) is vertex transitive.

If n = 3, then we have V (In(S)) = {I1, I2, I3, I12, I13, I23}. Let J and J
0 be two

non-trivial left ideals of S. If both J and J
0 are minimal (or non minimal), then by

Theorem 5.2.34, there exist a graph automorphism �� such that ��(J) = J
0. Now

suppose that one of them is minimal. Without loss of generality, assume that J is

minimal and J
0 is not a minimal left ideal of S. Then again by Theorem 5.2.34,

there exist a graph automorphism ���↵ for some � 2 Sn such that (���↵)(J) = J
0.

Thus, In(S) is vertex transitive.

Since every connected vertex transitive graph is a retract of Cayley graph (cf.

Godsil and Royle [2001]), by Theorem 5.2.3 and 5.2.35, we have the following

corollary.

Corollary 5.2.36. Let S be a completely simple semigroup with 3 minimal left

ideals. Then the graph In(S) is a retract of Cayley graph.
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Chapter 6

Conclusion and Future Research

Work

6.1 Contribution of the Thesis

In this thesis, we consider certain algebraic graphs, namely the cozero-divisor

graphs, upper ideal-relation graphs, left ideal-relation graphs of rings and inter-

section ideal graphs, inclusion ideal graphs of semigroups. In this chapter, we

summarize the main findings of the research work presented in the earlier chapters

along with the possible extensions and future scope. The contribution of the thesis

are highlighted below.

In Chapter 2, we derived a closed-form formula of the Wiener index of the

cozero-divisor graph of a finite commutative ring R. As applications, we calculated

the Wiener index of �0(R), when either R is the product of ring of integers modulo

n or a reduced ring. We also provided a SageMath code to compute the Wiener

index of the cozero-divisor graph of these class of rings including the ring Zn of

153
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integers modulo n. Moreover, we investigated the Laplacian spectrum of �0(Zn).

We proved that the graph �0(Zpq) is Laplacian integral. Further, we obtained

the Laplacian spectrum of �0(Zn) for n = p
n1q

n2 , where n1, n2 2 N and p, q are

distinct primes. In order to study the Laplacian spectral radius and algebraic

connectivity of �0(Zn), we characterized the values of n for which the Laplacian

spectral radius is equal to the order of �0(Zn). In addition to this, the values of

n for which the algebraic connectivity and vertex connectivity of �0(Zn) coincide

are also described.

In Chapter 3, we define the upper ideal-relation �U(R) of a ring R. We

obtained the girth, minimum degree and the independence number of �U(R). We

provided a necessary and su�cient condition on R, in terms of the cardinality of

their principal ideals, such that the graph �U(R) is bipartite, planar and outerpla-

nar, respectively. For a non-local commutative ring R ⇠= R1⇥R2⇥ · · ·⇥Rn, where

Ri is a local ring with maximal ideal Mi and n � 3, we proved that the graph

�U(R) is perfect if and only if n 2 {3, 4} and each Mi is a principal ideal. We also

discussed all the finite rings R such that the graph �U(R) is Eulerian. Moreover,

we obtained the metric dimension and strong metric dimension of �U(R), when R

is a reduced ring. Finally, the vertex connectivity, automorphism group, Laplacian

and the normalized Laplacian spectrum of �U(Zn) are determined. We character-

ized all the values of n for which the graph �U(Zn) is Hamiltonian. Besides this,

we explored the topological aspects of �U(R). In order to study topological prop-

erties of �U(R), all the non-local commutative rings R for which �U(R) has genus

at most 2 are classified. We precisely characterized all the non-local commutative

rings for which the crosscap of �U(R) is at most 2. We obtained all the non-local

commutative rings whose upper ideal-relation graphs are split graphs, threshold

graphs and cographs, respectively.

In Chapter 4, we define and study the left ideal-relation graph
�!
�L(R) of the
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full matrix ring. We obtained all the automorphisms of
�!
�L(R), where R is the ring

of all n⇥ n matrices over a finite field Fq.

In Chapter 5, we have investigated the intersection ideal graph �(S) and

spanning subgraph of �(S). Indeed, the inclusion ideal graph In(S) of a semigroup

S is a spanning subgraph of �(S). First, we established the connectedness of

�(S). We proved that if �(S) is connected, then the diameter of �(S) is at most

two. Further, the semigroups S in terms of their ideals are classified such that

the diameter of �(S) is two. We obtained the domination number, independence

number, girth and the strong metric dimension of �(S). We have also investigated

the completeness, planarity and perfectness of �(S). We show that if S is a

completely simple semigroup, then �(S) is weakly perfect. Moreover, we obtained

an upper bound of the chromatic number of �(S). If S is the union of n minimal

left ideals, then the metric dimension and the automorphism group of �(S) are

also determined.

We study algebraic properties of the semigroup S and graph-theoretic proper-

ties of the inclusion ideal graph In(S). We also investigated the connectedness of

In(S). We showed that the diameter of In(S) is at most 3 if it is connected. We

also obtained a necessary and su�cient condition of S such that the clique number

of In(S) is n, where n is the number of minimal left ideals of S. Further, various

graph invariants of In(S), viz. perfectness, planarity, girth etc., are discussed.

For a completely simple semigroup S, we studied various properties of In(S), in-

cluding its independence number and matching number. Finally, we obtained the

automorphism group of In(S).

The work embedded in the thesis has its own limitations. During the investi-

gation of graphs associated with semigroups, we noticed that the research problem

“Classification of semigroups such that its associated graph satisfy certain prop-

erty viz. metric dimension, chromatic number, planar etc.” is not easy to handle.
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Moreover, the investigation of graphs associated with semigroups becomes limited

because complete classification of finite semigroups of the given cardinality is not

known. We also observed that the study of upper ideal-relation graph associated

with local rings is not easy to handle.

6.2 Scope for Future Research

We conclude this thesis with some research problems which can be addressed in

the future.

• Investigation of the automorphisms of the cozero-divisor graphs of some

classes of rings.

• Classification of all the commutative rings whose cozero-divisor graph has

genus two.

• Classification of commuative local rings whose upper ideal-relation graph is

perfect. Also, prove the necessary and su�cient condition on R ⇠= R1 ⇥ R2,

where R1, R2 are local rings such that the graph �U(R) is perfect.

• Characterization of local rings R such that the graph �U(R) is of genus (or

crosscap) at most two.

• Determine the independence number, chromatic number, automorphism group

of the inclusion ideal graph In(S), when S is not the union of n minimal

left ideals.

• Classify the semigroup S when the diameter of the inclusion ideal graph

In(S) is three.
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• Investigation of the metric dimension, fixing number, determining sets and

determining number of the inclusion ideal graph of a completely simple semi-

group.

• Investigation of the topological aspects, viz., embedding on a orientable or

non-orientable surfaces, of the intersection ideal graph of semigroup.

• Classify all the semigroups S such that the In(S) and �(S) are equal.
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