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Abstract 

 

There was a time when biometrics was looked upon as the science of the future. It has 

featured prominently in various science fiction movies as an advanced security measure 

used to safeguard important documents, buildings etc. With the help of fast paced 

technological innovation, today, this is not far from reality. Biometrics is increasingly 

being used for secure authentication of individuals and making its presence felt in our lives. 

It uses an individual’s physical or behavioral traits to identify them. The decision of which 

biometric is to be used for a particular application is a complex function of the people’s 

security needs, ease of use and size of the enterprise. People can now see biometrics-based 

security checks at airports that use iris and hand geometry-based authentication and at 

ATMs using fingerprint and hand veins for authentication. The stage is now set for the use 

of biometric recognition in commercially viable civilian applications. A biometric 

authentication is basically a pattern recognition problem which makes a personal 

identification decision on specific physiological or behavioral features.  An easy-to-capture 

biometric modality that could work well with a commodity camera is palm-print. It has 

coarse lines which can be easily detected using a low-resolution camera and it is easy to 

present due to the free mobility of our palm. Besides these, palm-print exhibit unique 

attribute such as color, clarity, position, continuity, length and variation in thickness which 

can be characterized as palm features and computed in the presence of wrinkles, ridges and 

creases of human palm. On most surveys, hand (palm-print) as a biometric modality rate 

high on user acceptance. For these reasons, palm-print would be an ideal choice for person 

recognition. 

A number of algorithms have been proposed to extract efficient and accurate features. The 

performance of existing techniques for palm-print authentication falls considerably, when 

the camera is not aligned with the surface of the palm.  
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Palm-print variations such as scale, rotation, and illumination also create immense concern 

in developing efficient palm-print recognition method. Therefor considering all these 

variations, extracting robust palm-print features is vital for efficient palm-print recognition 

systems. The extracted significant palm-print features must be discriminative for dissimilar 

subjects and invariant to different palm-print variations. 

In this thesis, we address some of the challenges of palm-print recognition such as variation 

in scale, rotation, and illumination by enhancing the representation of texture descriptors. 

Primarily, a palm-print recognition algorithm is developed using Gabor filter with kernel-

based full space Fisher Discriminant Analysis (FDA) and neural network to improve the 

performance of existing texture descriptors. Gabor filter was designed using the parameter 

estimation and a kernel-based FDA is applied for dimension reduction. Proposed method 

yields a high recognition rate of 98.34% and least equal error rate of 0.051% on PolyU 

database. Further, energy featured were extracted by replacing Gabor filter bank by a single 

optimal Gabor filter. A two-stage hybrid Particle Swam Optimization (PSO) with artificial 

neural network is applied to optimize the filter parameters. The proposed method attains 

better fitness results and prevent premature convergence. The method obtains 98.79% 

recognition rate.  

Further, palm-print recognition algorithm, using Local Binary Pattern (LBP) based 

methods is proposed to improve the performance of existing texture descriptors. In Multi 

Scale Edge Angles LBP (MSEALBP) we combine edge operator and multi-scale uniform 

patterns, which extracts texture patterns at different angular space and spatial resolution. 

This makes the extracted uniform patterns less sensitive to the pixel level values. The 

method yields an Equal Error Rate (EER) of 0.2% and classification accuracy of 98.52% 

on PolyU database. Additionally, two robust operators for multi feature representation are 

designed. The descriptors represent the palm-images in a rotation and illumination 

invariant way. The proposed method makes the learned multi features discriminative and 

complementary in an unsupervised manner. We evaluated the performance using CASIA, 

IIT-Delhi, Tongji and REST contactless palm-print databases.  
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At the end a secure and cancellable palm-print biometric recognition system is proposed. 

The suggested method combines Convolution Neural Network (CNN) and feature 

transform structure for mapping palm-prints to random base-n codes. SHA-3 is used for 

storage of templates, which is non-invertible, and hence, there's no scope for an intrusion. 

The good separability between genuine and impostor dataset generates uncorrelated 

transformed templates. The proficiency of the proposed approach has been tested on 

PolyU, CASIA and IIT-Delhi palm-print datasets. The evaluations and experiments show 

high GAR of 99.05% with an EER of 0.62% irrespective of the base and length of labels. 

Hence, any enterprise can choose the specified bit length for a tunable level of security. 
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Chapter 1 

Introduction 

 

1.1. Biometric 

 

The advancement of the information society has increased the demand for secure identity 

systems in a wide range of applications, including financial transactions, forensics, border 

control, computer security, and law enforcement. Human authentication has traditionally 

relied on knowledge-based systems (passwords, PIN) and token-based schemes (ID 

cards, passports). Despite the widespread usage of such validation procedures in society, 

these identity systems do not offer adequate security against identity fraud [1]. 

Biometrics is an alternative method for accurate and trustworthy authentication in a 

highly networked society. In next-generation technologies, human factors are becoming 

increasingly crucial, necessitating the adoption of biometric technology for person 

validation. Biometrics is the science of using behavioural (gait, keystroke, signature, etc.) 

and physiological (face, ear, finger, palm-print, DNA etc.) attributes to validate an 

individual's identity [2]. The special attributes on which the biometric recognition system 

is developed are known as modalities or identifiers. The images of the various biometric 

traits are shown in Figure 1.1. A trait can be used as a biometric characteristic if it 

satisfies the following properties [3]: 

• Uniqueness: It establishes the extent to which a biometric system can distinguish 

a user from a set of users. 
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• Universality: Each individual has a unique biometric trait. 

• Circumvention: It has to do with the system's capacity to endure fraud. 

• Performance: It specifies the required resources' acceptable recognition 

accuracy, reliability, and stability. 

• Acceptability: It specifies the level of acceptance of a specific biometric 

characteristic in everyday life. 

• Permanence: It means that a personal trait must remain consistent in the database 

for a sufficient period. 

• Collectability: It refers to how easily a person's trait may be acquired, quantified, 

and processed.  

The comparison of various traits in terms of different properties is listed in Table 

1.1. 

            Figure 1.1: Representation of different biometric traits. 



3 

 

P
ro

p
er

ti
es

 

C
o

ll
ec

ta
b

il
it

y
 

H
ig

h
 

M
ed

iu
m

 

M
ed

iu
m

 

M
ed

iu
m

 

M
ed

iu
m

 

H
ig

h
 

M
ed

iu
m

 

M
ed

iu
m

 

L
o

w
 

P
er

m
a

n
en

ce
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

L
o

w
 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

A
cc

ep
ta

b
il

it
y
 

H
ig

h
 

M
ed

iu
m

 

L
o

w
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

L
o

w
 

P
er

fo
rm

a
n

ce
 

L
o

w
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

L
o

w
 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

C
ir

cu
m

v
en

ti
o

n
 

H
ig

h
 

M
ed

iu
m

 

L
o

w
 

M
ed

iu
m

 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

L
o

w
 

L
o

w
 

U
n

iv
er

sa
li

ty
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

M
ed

iu
m

 

M
ed

iu
m

 

L
o

w
 

M
ed

iu
m

 

M
ed

iu
m

 

H
ig

h
 

U
n

iq
u

en
es

s 

L
o

w
 

 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

L
o

w
 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

B
io

m
et

ri
c 

T
ra

it
 

F
a

ce
 

F
in

g
er

p
ri

n
t 

Ir
is

 

E
a

r 

P
a

lm
-p

ri
n

t 

S
ig

n
a

tu
re

 

V
o

ic
e 

V
ei

n
 P

a
tt

er
n

 

D
N

A
 

 

T
ab

le
 1

.1
: 

C
o

m
p

ar
is

o
n

 o
f 

b
io

m
et

ri
c 

tr
ai

ts
 [

3
].

 



4 

 

 

Biometric system components are image processing, pattern recognition, and statics. In 

image processing, image enhancement techniques are employed to increase the quality of 

the acquired images. Pattern recognition employs feature extraction algorithms. The 

statics parameter includes the final choice and thresholding. Figure 1.2 shows the general 

framework of a biometric system.  

Biometric authentication systems generally have two modes of operation [4]: 

• Enrollment mode: During this mode, a sensor captures a biometric trait and 

stores it in the templates database. To make authentication easier, these templates 

are labelled with the user's identity. The block diagram of the different 

components of enrollment mode can be seen in Figure 1.3. 

 

 

 

• Authentication mode: Authentication mode is further classified in two categories 

such as identification mode and verification mode. 

1) Identification mode: Identification mode attempts to identify unknown 

individual by comparing the captured biometric to a database, i.e., one to 

many. Figure 1.4 illustrates the different components of identification mode. 

Figure 1.2: General framework of a biometric system. 
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Figure 1.3: Block diagram of the different components of enrollment mode. 

 

 

Figure 1.4: Block diagram of the different components of identification mode. 

 

 

Figure 1.5: Block diagram of the different components of verification mode. 
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2) Verification mode: In verification mode, the biometric system verifies a 

person's stated identity by comparing it to the stored dataset. Figure 1.5 

illustrates the different components of verification mode. 

 

1.2. Performance measures 

 

The performance of biometric system has become a major issue because of the massive 

development in their use in our daily lives. Researchers have proposed a number of 

evaluation measures for performance measurement of biometric systems. Accurate 

feature extraction is the key to raising the effectiveness of a biometric system; 

performance is not just reliant on the biometric algorithm. Many genuine and imposter 

attempts have been made to collect information of false acceptance and false rejections 

during the measuring performance of a biometric system. Genuine attempts are efforts by 

an individual to compare with his/her stored template, whereas imposter attempts are 

attempts to match with the biometric template with another person. Genuine attempts are 

used to count false acceptances, whereas imposter attempts are used to count false 

rejections. The following are the performance measures: 

• False Acceptance Rate (FAR): FAR is the proportion of imposter samples that 

are mistakenly identified as that of the claimed identity. It is the ratio of false 

acceptance to the number of imposter attempts. The cost of a system is frequently 

measured in terms of FAR. A high FAR tends to make a system highly accessible, 

but it also makes it completely vulnerable because it allows imposters to use it 

[4]. FAR is defined as given in equation (1.1), 

 

𝐹𝐴𝑅 =
𝐹𝐴

𝐼𝐴
                                                                           (1.1) 

 

𝐹𝐴 stands for false acceptance and 𝐼𝐴 is number of imposter attempts.  
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• False Rejection Rate (FRR): The term "false rejection rate" refers to the 

incorrect recognition of a genuine user as an imposter.  FRR is a commonly used 

metric for determining the security of an authentication process. A system with a 

high FRR is totally secure, but it is inconvenient for legitimate users. For 

improved performance of a biometric system, one must be minimal 

FAR/ FRR and the other should be reasonable FAR/FRR [1]. 

FRR is defined as given in equation (1.2), 

 

𝐹𝑅𝑅 =
𝐹𝑅

𝐺𝐴
                                                                              (1.2) 

 

Where 𝐹𝑅 stands false rejection and 𝐺𝐴 is number of genuine attempts. 

 

• Equal Error Rate (EER): EER is the error rate at which both the false 

acceptance and false rejection rates are equal. EER should be kept to a minimum. 

EER should ideally be zero. It is commonly used to compare the performance of 

different biometric systems. 

 

• Cumulative Match Characteristic (CMC): The curve depicts the identification 

rate as a component of rank. 

 

• Genuine Acceptance Rate (GAR): GAR is the number of genuine samples that 

are accepted appropriately. It assesses the reliability of biometric systems. GAR is 

defined as given in equation (1.3), 

 

𝐺𝐴𝑅 = 1 − 𝐹𝑅𝑅                                                                (1.3) 

 

• The Receiver Operating Characteristics (ROC) Curve: ROC graphically 

depict the plot of FAR versus FRR according to various threshold levels. As a 
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result, the trade-off between FAR and FRR translates into a security-versus-

convenience trade-off. The area under the ROC curve is a metric for assessing the 

performance of a system. 

 

• Verification Rate: It evaluates how well the biometric system performs when 

operating in verification mode. It measures how quickly trustworthy users are 

accurately confirmed. 

 

• Identification Rate: It shows how well a biometric system performs in 

identification mode. It denotes how frequently an already-enrolled user is 

successfully matched with the real user. 

 

• Decidability index (𝒅): The decidability index is a measure of the degree of 

separation between genuine and imposter populations [5]. It is defined as given in 

equation (1.4),  

 

𝑑 =
|𝜇𝑔 + 𝜇𝑖|

√
𝜎𝑔

2+𝜎𝑖
2

2

                                                                            (1.4) 

 

Where, 𝜇𝑔 and 𝜇𝑖 are mean of genuine and imposter respectively.  𝜎𝑔 and 𝜎𝑖 are 

variance of genuine and imposter respectively. 

 

• Sensitivity: The percentage of true positives that are correctly identified is used to 

determine sensitivity. The ability of the test to identify positive outcome is 

relevant. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑝 (𝑡𝑝 + 𝑓𝑛)⁄                                                             (1.5) 
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• Specificity: The degree of negatives that are correctly recognized serves as the 

basis for the specificity evaluation. It has to do with how well the test can identify 

unfavorable outcomes. 

 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛 (𝑡𝑛 + 𝑓𝑝)⁄                                                                 (1.6) 

 

• Accuracy: The proportion of total 𝑡𝑝 and 𝑡𝑛 to total data determines how accurate 

the suggested method is. Accuracy is defined as given in equation (1.7), 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝 + 𝑡𝑛 (𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)                                              ⁄ (1.7) 

 

Here, 𝑡𝑛 is true negative, 𝑡𝑝 is true positive, 𝑓𝑝 is false positive, and 𝑓𝑛 is false negative.  

In the literature, various biometric frameworks have already been introduced, among 

them, systems that use biometric traits like fingerprints, iris, face, voice, signature and 

palm-prints are the most common [6-10].  

Face recognition is quite possibly the most adaptable biometric methodology, working in 

any event, when subject is uninformed of being scanned. Face biometric has been 

restricted by the issues related with appearances, posture and light [8]. Iris as a biometric 

is widely used, however its image capturing is difficult and expensive [9]. Fingerprint as 

a biometric is broadly utilized because of its simple and inexpensive data capturing. 

Fingerprint verification has been restricted by the troubles, for example, that manual 

workers and aged individuals fail to give adequate quality fingerprints [7]. In recent 

years, palm-print that may be a giant space of hand proves to be smart answer for varied 

identification issues. 

 

1.3 Palm-print as biometric 

 

Recently, research in hand biometrics has shifted to examining the value of palm-prints in 

real-world contexts such as smartphones, ATMs, and notebooks [11, 12]. 
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Users prefer biometric systems that rely on palm-print features because they are 

straightforward and nonintrusive to gather [13]. The characteristics of a human palm are 

rather unique and consistent. The palm-prints of monozygotic twins differ significantly. 

Even a low-resolution camera can retrieve biometric features of the palm-print easily 

because to its larger field of vision. Around the world, the Biolink APIS [14] has been 

employed in forensic case studies and law enforcement. Palm-print research using with a 

image resolution of 400 dpi or above is adequate for forensic and legal applications [15].  

Low-resolution images are those with a resolution of less than 150 dpi and are better 

suited to civil and commercial uses [16, 17]. As seen in Figure 1.6, high resolution 

images have significant ridges, minutia, and singular features, whereas low resolution 

images have primary lines, texture, and wrinkles. Palm print has rich features as 

discussed below: 

• Geometry features: The width, length, and area of a palm are primarily 

determined by its shape. A low-resolution and low-quality image can be used to 

extract these features. 

 

• Line features: The heart line, head line, and life line are the most notable 

principle lines. The placement and shape of these lines are crucial physiological 

 Figure 1.6: Sample images (a) High resolution image, (b) Low resolution image. 
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criteria for identifying and verifying individuals since they show less fluctuation 

over time. 

 

• Wrinkle features: The minor creases/wrinkles of the inner palm are finer and 

more uneven than the main lines. These features are classified as coarse wrinkles 

and fine wrinkles. 

 

• Delta points: Delta point characteristics are extracted from high resolution 

images and are positioned in the centre of a delta-like section in the palm. The 

finger-root region and the outer portion of the palm are the most common 

locations for these. 

 

• Minutia points: Minutiae features similar to the finger print type feature 

displayed in Figure1.6(a), which is employed as a critical measure in individual 

verification/identification. Only high-quality, fine-resolution images have been 

used to create these palm features. 

As shown in Figure 1.7, a traditional palm-print identification system consists of the 

following sections: image acquisition, pre-processing, feature extraction, database, and 

classifier.  

 

 
Figure 1.7: Block diagram of palm-print recognition system. 
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The palm-print acquisition part includes a scanner/camera that collects palm-print 

samples of various characteristics for later recognition. The extraction of Region Of 

Interest (ROI), which extracts only important sample properties using standard coordinate 

methods, is at the heart of the pre-processing stage. Effective features can be extracted 

from high-quality ROI samples for feature extraction. Based on a specified classifier, the 

matching method adopted the extracted features to those stored in the database. Fusion is 

applied in case of multimodal biometrics where; more than one biometric modality 

features are extracted. 

 

1.4 A review of earlier work 

 

Numerous advancements have been reported in various factors of palm print recognition, 

and researchers have presented a number of useful views to improve its performance [18, 

19]. Various palm-print recognition methods have indeed been presented in the recent 

past, and they can be categorized broadly into the following categories [14]: 

 

• Holistic based methods 

• Structural based methods 

• Hybrid methods 

• Deep learning-based methods 

 

1.4.1 Holistic based methods 

The holistic method tries to process the entire palm-print image. They are divided into 

two types: (1) Subspace-based and (2) Representation-based methods. 

1) Subspace-based methods: Subspace-based methods are suggested to treat a 

palm-print image as a high-dimensional vector and map it to a lower-
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dimensional vector.  These methods don't require any knowledge of palm 

prints beforehand. The subspace's coefficients are regarded as features. PCA 

was suggested by Lu et al. [20] as a method of preserving spatial structure 

data for palm-print recognition. A group of orthogonal basis vectors are 

discovered. It explains the key differences between the training images. Only 

pair-wise linear correlations between pixels may be distinguished using PCA.  

Sang et al. [21] proposed a palmprint recognition method based on two-

dimensional PCA (2DPCA). The PolyU database was used in the trials, along 

with a distance classifier. Especially for short training data, the 2DPCA 

technique outperforms PCA in terms of recognition accuracy and processing 

efficiency. In parallel, other application systems have conducted research on 

threshold selection.  

Pan and Ruan [22] propose a Gabor feature-based (2DPCA) for palmprint 

recognition. Initially, Gabor features are retrieved from the data at various 

scales and orientations. The feature space is then dimensionally reduced in 

both the row and column directions using (2DPCA). Finally, classification is 

done using distance measure and the 𝑘 nearest classifier. The approach is 

unaffected by illumination and rotation. Experimental findings show that the 

proposed strategy is efficient in terms of the both speed and efficiency. 

Wang et al. [23] proposed a palmprint recognition method based on sparse 

representation. 2DPCA is used to extract features from the palm-print image 

in order to obtain training samples, which will help with sparse representation. 

Due to its greater data dimension, the 2DPCA approach not only overcomes 

the PCA method's inability to perform complex calculations, but also keeps 

the original image's data structure in order to provide superior features. The 

classification is achieved by representation coefficient and sparse 

concentration. The method reduces the spatial and temporal complexity 

because of the sparsity of the representation coefficient. The experimental 
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findings on the PolyU multispectral database demonstrate that the method's 

rate of recognition is notably higher than that of the conventional method.  

Wu et al. [24] proposed a palmprint recognition method i.e., Fisherpalms.  In 

order to more effectively distinguish between the palm-prints from the various 

palms. Fisher's linear discriminant has been used to projected palm-prints 

from the high-dimensional initial palmprint space to a notably lower 

dimensional space. The proposed technique has shown high accuracy results, 

and it operates quickly enough to detect palm prints in real-time.  

Du et al. [25] fuses bidirectional 2D linear discriminant analysis (2DLDA) 

with Gabor filters. Applying horizontal and vertical 2DLDA will first let you 

extract two different types of features from Gabor-based images. A distance-

based adaptive technique is created to combine these two types of features. 

Experimental results on the PolyU database show that the suggested approach 

produces several desired results that use the Gabor-palms of a slightly higher 

dimension, which means minimal computing cost. 

Independent component analysis (ICA) method for palmprint identification is 

presented by Lu et al. [26]. ICA representation is capable of capturing both 

the structure and key elements of the palm-print images. In addition, the palm-

prints have a variety of features that can be classified as multi-scale features, 

including texture, wrinkles, primary lines, and minutiae points. Therefore, it 

makes sense for us to combine the ICA and multi-resolution analysis to 

represent the features of a palm-print. The outcomes of the experiment 

demonstrate that the integrated approach is more effective than the ICA 

algorithm.  

Hu et al. [27] proposed 2D locality preserve projection (2DLPP) for palm-

print representation and recognition. The primary advantage of 2DLPP over 

LPP is that the former's image representation bases have significantly lower 

dimensionality than the latter, resulting in a more accurate approximation of 
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the original images and the potential to avoid the drawbacks of the latter's 

PCA+LPP algorithm. The efficiency of the suggested strategy is demonstrated 

by experimental findings on images of PolyU palm-prints. The proposed 

technique here is thought to encourage the employment of LPP based methods 

on a much larger scale. The Fisher discriminant analysis (FDA) approach was 

first put forth by Fukunaga in 1990 [28]. Whereas if sample in a class create a 

few distinct groups or clusters, FDA typically produces unsatisfactory results. 

To address the problem of FDA, Sugiyama [29] presented a linear 

supervised technique called local FDA. The FDA and LPP structures are 

integrated in this method. Computing a general eigenvalue problem makes it 

simple to handle the LFDA arrangement. When there are only a few marked 

samples available, LFDA performance can suffer.  

Wang and Ruan [30] proposed Kernel FDA (KFDA) to represent palmprint 

features. PCA and FLDA are not vulnerable to rising order statistics of data 

and only consider the 2-order statistics of palmprint image pixels. In process 

of extracting higher order interactions between palm-print images for 

prospective recognition, KFDA is utilized. The experimental findings show 

that KFDA performs better than eigenpalms and fisherpalms, particularly 

when employing a limited amount of training data. 

  

2) Representation based methods: The query image is projected in this method 

as a weighted sum of all training images. Bidirectional representation method-

based pattern classification (BRBPC) was used by Cui et al. [31] to identify 

palm-prints. The BRBPC approach takes into account not only using training 

data to describe the test sample but also presenting the test sample to training 

examples. Experimentation on PolyU multispectral database and 2D and 3D 

palmprint databases show that the proposed method works better than the 

conventional palm-print recognition algorithms.   
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In the Sparse representation-based classification (SRC) approach of 

collaborative representation, training images are used directly as a sparse 

representation dictionary [32]. This method offers great accuracy and a good 

capacity to discriminate. Performance is significantly influenced by the 

quality of training data. SRC seeks out significant inter-class differences, 

which misclassifies the new test sample. 

Li [33] proposed kernel trick based sparse representation (KSR) algorithm for 

palmprint recognition. The algorithm can capture elements in palm-print 

images that are nonlinearly similar. KSR has a strong ability to improve the 

performance of sparse coding and effectively decrease feature quantization 

error. Fast sparse coding (FSC) is employed to speed up the sparse coding 

process. The FSC model has a faster rate of convergence than the current SC 

model. It solves the 𝐿1 −regularized least squares issue and the 

𝐿2 −constrained least squares problem iteratively. KSR can be successfully 

done by using the Gauss kernel function and taking into account various 

feature dimensions.  

1.4.2 Structural based methods  

The structural or local feature approaches rely on the extraction of the stable palm-print 

features such as palm lines and texture. These approaches can be further divided into 

three sub-categories: (1) Line-based, (2) Coding based, and (3) Texture based methods. 

1) Line based methods: Line based methods extract line information from 

palm-print images [34, 35]. These line features are either matched directly 

or represented in other formats.  

A set of line detectors for palm-print lines was developed by Wu et al. 

[36]. One of the two parameters determines how smooth the lines are, 

while the other determines how wide they are. Corresponding direction 
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detectors identify the lines in various directions, which are subsequently 

combined into one edge image. The Hausdorff distance is used to match 

the lines.  

Canny edge operator is used by Wu et al. [37] to retrieve line information 

of palm images. In order to represent the edge points in four separate 

directions, four membership functions are fed with the edge points and 

their corresponding orientations. Euclidean distance is also calculated for 

matching. 

To obtain the slope of the palm-prints, Diaz et al. [38] adopt Sobel masks 

and the morphologic operator as two distinct feature extractors. 

A palm-line extraction method with both global and local filtering was 

proposed by Wang and Ruan [39]. To extract rough palm lines and 

determine approximative orientations, steerable filters are first applied. 

Additionally, steerable filters in nearby regions retrieve palm lines and re-

join damaged palm lines. 

Huang et al. [40] suggest a cutting-edge principle line-based palm-print 

verification method. The primary lines are efficiently and successfully 

extracted using the modified finite Radon transform. A matching method 

based on pixel-to-area comparison is created to determine how similar two 

palmprints are, and it has demonstrated good stability for minor palmprint 

rotations and translations. 

Without employing edge detection, Zia et al. [41] suggested a new 

strategy to retrieve principal lines in two stages. Preprocessing procedures 

are part of the first stage, followed by morphological operations and the 

removal of unwanted components in the second stage. 

 

2) Coding based methods: Coding based methods improve and extract the 

phase and directional aspects of palm-prints by using a set of filters. 
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Zhang et al. [42] proposed Palm Code that extracts the phase information 

from the palm-print using Gabor filter. Bitwise hamming distance has 

been used to compare Palm Codes after the phase has been quantified in 

bits. Because palm-print identification performance of the system is 

affected by the high correlation of palm code aspects, originality of palm 

codes may be further degraded. 

Kong et al. [43] proposed Fusion Code based technique that addresses the 

Palm Code's correlation issue. Multiple circular Gabor filtering with 

different angle is used in this technique to retrieve the phase information 

from palm-print images. The features are combined further to create a 

separate feature vector known as the Fusion Code.  The final decision is 

made using a dynamic threshold rather than a fixed threshold. 

A method for extracting palm features using competitive coding with 

angular matching is proposed by Kong and Zhang et al. [44]. Using 

several Gabor filters, competitive coding extracts orientation data from 

palm lines. A feature vector called Competitive Code contains the 

orientation data. The respective Competitive Codes are compared using 

additional angular matching. 

Sun et al. [45] proposed a palmprint representation method i.e., orthogonal 

line ordinal features. The method determines line-like image patches that 

are orthogonal in orientation and provide one bit feature codes on a 

qualitative level. Numerous ordinal feature codes are used to represent a 

palm-print pattern. The method improves accuracy and reduces the equal 

error rate by 42% while halving the complexity of feature extraction. 

Jia et al. [46] proposed robust line orientation code for palm-print 

verification.   Initially, a modified finite Radon transform (MFRAT) is 

employed to more correctly retrieve the orientation feature and address the 

sub-sampling issue. Furthermore, we build a larger training set to address 
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the issue of huge rotations brought on by faulty preprocessing. Finally, a 

matching technique based on pixel-to-area comparison that is more error 

tolerant has been developed. The presented method has a greater 

recognition performance and a lower response time according to 

experimental data from the PolyU database. 

To represent various orientations for a small location, Guo et al. [47] 

presented a feature extraction method called binary orientation co-

occurrence vector (BOCV). The regional orientation features can be better 

described by the BOCV, and it is more resistant to image rotation. The 

suggested BOCV beats the Comp Code, POC, and RLOC by significantly 

reducing the EER, according to experimental findings on the public 

palmprint database. 

By appropriately adding fragile bits information, Zhang et al. [48] expand 

BOCV to E-BOCV. When compared to other cutting-edge palmprint 

verification techniques, experiments show that E-BOCV can reach the best 

verification accuracy. The study exploring on the fragile bits of coding-

based palmprint recognition methods.  

Fei et al. [49] suggested a method based on double half-orientation 

for palmprint recognition. The method defines a bank of half-Gabor filters 

for retrieval of a palm-print in half-orientation. The double half-

orientations could quite accurately define the overall directional feature of 

a palm-print as compared to the single dominant orientation. Extensive 

testing is done on three distinct types of palm-print databases, and the 

findings demonstrates that the suggested method performs superior to the 

existing methods.   

Fei et al. [50] proposed double-orientation code (DOC) with nonlinear 

angular matching for palm-print recognition.  The orientation component 

of palmprints is represented by DOC. Angular matching assesses whether 
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similar the DOCs seem to be. In compared to earlier approaches, 

experiments using palmprint databases show that the suggested method 

performs excellently. 

A discriminative and robust competitive code-based technique for palm-

print authentication was proposed by Xu et al. [51]. The technique 

represents palmprint images with a more precise dominant orientation. In 

addition, we suggest weighting the orientation data of a nearby region to 

enhance the discriminative and stable dominant orientation code's 

accuracy and stability. The efficiency of the suggested strategy has been 

tested using palm-print datasets and a noisy dataset. 

A double-layer direction extraction approach for palm-print recognition 

was proposed by Fei et al. [52]. Initially, the apparent direction is 

extracted from a palmprint's surface layer. The inherent orientation 

information from the energies single map of the apparent orientation is 

then further exploited. Finally, the apparent and latent direction 

components are combined for palmprint recognition with the 

multiplication and addition techniques.  For the recognition of noisy 

palmprint images, the latent energy orientation feature in particular 

exhibits a promising performance.  

 

3) Texture based methods: Many different types of images largely depend 

on texture. Due to large texture patterns and ambiguous imaging 

conditions, retrieving discriminative yet robust texture characteristics is 

challenging [53, 54]. 

Line Directional Pattern (LDP), a novel texture descriptor that is 

presented, acts in gradient space as opposed to intensity space, is 

comparable to the LBP approach in that it functions in intensity space 
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[55]. Local line directional pattern (LLDP) [56], a texture descriptor that 

constructs feature vectors in the local line geometry space, is defined. 

Hong et al. [57] proposed a hierarchical approach based on Block 

dominant orientation code (BDOC) and Block-based histogram of oriented 

gradient (BHOG) for multispectral palm-print recognition.  In the 

suggested approach several features gathered from various bands are 

fused to increase recognition precision. Additionally, it can further 

enhance the state-of-the-art performance attained by certain approaches 

that are based on the PolyU multispectral database. 

For robust palm-print recognition, Hong et al. [58] presented weighted 

histogram of oriented gradient for locally selected pattern (WHOG-LSP). 

It is used to the structure layer of images of blurred palm-prints to extract 

some strong features. The low performance concerns with translational 

and rotational in palm-print recognition can be solved using these derived 

characteristics. Finally, the suggested recognition method compares the 

similarities of palm-print features using the normalized correlation 

coefficient (NCC). The performance and real-time validation of the 

proposed recognition method have been validated by extensive trials on 

the PolyU and the blurred PolyU palmprint databases. 

Li and Kim [59] presented the local micro-structure tetra pattern (LMTrP) 

as a local descriptor for palm-print recognition. The descriptor uses the 

direction of local descriptors in a similar way to how thickness does. To 

changes in translation, rotation, and blurriness, the technique is least 

susceptible. 

Personal authentication frequently uses the Local binary pattern (LBP), a 

potent local image descriptor that extracts uniform patterns [60]. 

For palm-print recognition, Tamrakar and Khanna [61] proposed uniform 

LBP (ULBP).  It provides a consistent appearance with little 
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discontinuities.  The images are categorized as occluded or non-occluded 

based on the assumption of average entropy. The technique is adaptable 

enough to manage occlusion up to 36%.  

To derive the directional response of the palm-print, Michael et al. [62] 

used a gradient operator. To retrieve the textural representation of the 

palm pattern in various directions, the LBP is used. Further, matching is 

done by the Modified probabilistic neural network (MPNN). 

A feature extraction approach was given by Mu et al. [63] employing 

shiftable Complex directional filter bank (CDFB) transform, uniform LBP, 

and Fisher linear discriminant analysis (FLDA). The shiftable CDFB 

transform, which produces sub-band coefficients controlled by the 

uniform LBP, decomposes the palm-prints. Additionally, the LBP 

mapping sub-blocks are performed using statistical histograms. Finally, 

the histogram feature representation is used to train the FLDA classifier 

for palm-print authentication. 

The hierarchical multiscale local binary pattern (HM-LBP), a unique 

collaborative representation paradigm for palm-print identification, was 

put out by Guo et al. [64]. It is possible to extract useful information from 

non-uniform patterns. The feature dimension is minimized using principal 

component analysis. A collaborative classification with HM-LBP is then 

provided in order to effectively employ the discriminating information. 

The suggested methodology is validated on the PolyU database to 

demonstrate its viability and performance. The outcomes demonstrate that 

the algorithm works better in terms of recognition accuracy than current 

methods. This approach allows for the reduction of illumination, rotation, 

and grey scale. 

Zhang et al. [65] proposed a palm-print recognition method by combining 

weighted adaptive center symmetric LBP (WACS-LBP) and weighted 
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sparse representation-based classification (WSRC). One of the main 

rationales of this method is that it reasonably makes the classification 

problem become a simpler one with fewer classes. In the proposed 

method, five parameters are decided empirically by the cross-validation 

strategy. The method is limited by parameter selection. The descriptor 

based on edge gradient will give preferable recognition performance 

because the edge gradient is more consistent than the pixel intensity. 

Hence, the edge gradient will give better outcomes over unique LBP for 

face and expression acknowledgment [66]. 

Tarhouni et al. [67] proposed a variant of LBP constructed from Pascal’s 

coefficients and referred to as a multiscale local binary pattern.   Multiple 

characteristic subsets were created via random sampling. The method 

integrates oriented gradient pyramid histograms and LBP, in which the 

characteristics are concatenated for classification. Extensive tests on the 

PolyU database demonstrate the suggested approach's superiority to state-

of-the-art methods. 

The combination of ULBP with sparse representation was presented by 

Wang et al. [68]. The results of the studies show that the suggested 

method is effectively robust to rotation and noise, and that the total 

recognition rate has clearly increased. The recognition rate has increased 

by 8.8% and 6.8%, respectively, as compared to the conventional PCA 

and 2DPCA approaches. 

Zhang et al. [69] proposed a combination of hierarchical multi-scale 

complete local binary pattern (HMS-CLBP) and weighted sparse 

representation-based classification (WSRC). The optimization problem 

based on the 𝑙1 norm is then solved to implement the sparse 

decomposition of test samples, and the palmprints are identified by the 
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minimum residuals. The suggested approach has good rotation, 

illumination, and inherits the benefits of WSRC and CLBP. 

 

1.4.3 Hybrid methods: In this approach, both holistic and structural features are used 

to represent palm-print image.  

Kumar and Zhang [70] integrate texture, line, and appearance-based features for 

palm-print recognition. The work also compares the abilities of the PCA, line 

detector, and Gabor filter. The distance measure used to calculate the matching 

distance, which is the matching criteria, has a significant impact on the 

performance. The suggested use of several palm-print representations, especially 

when using a peg-free, non-contact imaging setup, yields favorable results and 

shows the strength of the method.  

For contactless palm-print identification, Morales et al. [71] recommend 

combining Scale invariant feature transform (SIFT) with Orthogonal line ordinal 

feature (OLOF). The weighted sum method was used to create the integrated 

similarity score of SIFT and OLOF characteristics. 

A nonlinear rank-level fusion technique to personal recognition is suggested by 

Kumar and Shekhar [72]. The comparative analysis of rank-level fusion 

techniques, which can be helpful in combining multibiometric fusion, is also 

investigated in the present study. The detailed experimental findings given in this 

work further imply that the suggested nonlinear rank-level technique surpasses the 

rank-level combination approaches. 

 

1.4.4 Deep learning-based methods: Recent advances in biometric approaches have 

shown promise for deep learning-based systems. These techniques are capable of 

accurate contactless image identification and information extraction from 

voluminous data [73–75].  
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Svoboda et al. [76] suggested palm-print recognition with a CNNs architecture. 

Get a superior genuine/impostor score distribution separation than past methods 

with less training data because the network's training process uses a novel loss 

function connected to the d-prime index. On publicly available palm-print 

datasets from IIT-Delhi and CASIA, our method produces cutting-edge results 

without the need for time-consuming parameter tuning.  

An introduction study for the verification of new-borns is presented by 

Ramachandra et al. [77]. In two separate sessions, collected a fresh library of 

contactless palm-print images from 50 new-borns. The data for the first session is 

recorded between 6 and 8 hours after the birth, while the data for the second 

session is recorded between 28 and 36 hours. By adjusting the pre-trained 

AlexNet architecture, further suggest a fresh approach based on transfer learning 

that would boost verification precision. 

Genovese et al. [78] proposed a novel CNN i.e., PalmNet for contactless palm-

print recognition. The technique uses PCA and Gabor responses to tune palm-

print specific filters without the need for class labels during training. 

PalmNet uses Gabor filters in a CNN to extract highly discriminative palmprint 

features.  The findings of experiments on databases of contactless palm-prints 

obtained with various devices. The achieved recognition accuracy was better than 

that of the existing approaches. 

Minaee and Wang [79] presents a deep scattering network for palm-print 

recognition. The layout and filters of a scattering network are predetermined 

wavelet transforms. The features in the first layer of the scattering transform are 

comparable to SIFT descriptors.   PCA is used to minimize the dimensions of the 

scattering features.   Finally, two distinct classifiers, multi-class SVM and 

a distance classifier are used to perform the recognition.  The proposed approach 

was tested on palm-print datasets and achieved higher accuracy rates. 
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For multispectral palm-print recognition, Meraoumia et al. [80] developed a novel 

feature extraction technique named PCANet deep learning. Research was done 

using the PolyU and CASIA databases.  

Dian and Dongmei [81] propose a CNN based palm-print recognition approach.   

Initially, the improved fuzzy enhancement technique is used to pre-process palm-

print images. After that, feature extraction is done using AlexNet's eight-layer 

network structure. Finally, compare the characteristic to the hausdorff distance. In 

comparison to the existing approaches, the proposed method obtains the best EER 

of 0.044 % on three publicly accessible databases under various conditions. 

A contactless palm-print recognition system relying on the CNN approach is 

presented by Jalali et al. [82]. Because discriminant features are created by 

consecutive layers of the CNN method, the correction and alignment operations of 

the samples to same fixed orientation and spatial position are partially eliminated. 

Multi-scale instead of using the usual, subjective and time-consuming selection 

approach, the feature selection process is carried out using a self-taught learning 

procedure. The approach is unaffected by translation, rotational 

changes, stretching, and deformation.  

Using CNN and transfer learning, Izadpanahkakhk et al. [83] suggested a palm-

print verification model. A feature extractor is first employed, which is a pre-

trained CNN architecture. The application of a machine learning classifier 

continues. The model proved competitive with existing hand-crafted descriptors. 

For the PolyU palm-print database, an intersection over union (IoU) score of 93% 

and an EER of 0.0125 % were attained. 

 

1.5 Security aspects of palm-print biometric 

 

The EU general data protection regulation (2016/679) has characterized biometric 

information as sensitive information [84]. Therefore, the security of biometric templates 
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is a fundamental and vital issue [85]. The biometric framework offers different 

preferences over the customary framework, yet the biometric framework itself is 

vulnerable to numerous identity threats [86, 87]. 

Similar to other biometric modalities, the increasing use of palm-print recognition has 

raised privacy concerns significantly [88, 89]. Biometric template protection can be 

categories into two classes (a) biometric cryptosystems, and (b) cancelable biometrics.  

In these days, cryptography is one of the best ways to improve the biometric security. 

Biometric cryptosystems can be categories as key-generation and key binding scheme 

[91]. In key-generation the secret is generated directly from the biometric feature and in 

key-binding the secret is secured using biometric feature.  

Juels and Wattenberg [92] proposed a fuzzy commitment scheme that is capable of 

protecting biometric data. The fuzzy commitment schemes suffer from drawbacks such as 

impracticable assumptions, restricted length of keys and restricted error correcting 

capability. To overcome the limitations of fuzzy commitment schemes a new approach 

called fuzzy vault schemes [93] have been investigated in the past. Fuzzy vault algorithm 

i.e., a traditional algorithm in key-binding strategy that can connect the fuzziness of 

biological features with the accuracy of key algorithm. The fundamental issues in the 

fuzzy vault are lack of reusability and cross-match attack.  

Dodis et al. [94] proposed more generalized framework i.e., fuzzy extractors and 

demonstrate that secure sketches imply fuzzy extractors. They also give different 

enhancements and expansions to previous schemes. Fuzzy extractors only concern about 

the strength of the secret key extracted. They cannot straightforwardly guarantee that 

privacy is preserved. In recent years, cancelable biometrics has become an active research 

area as it provides good recognition accuracy and strong security [95, 96]. The concept of 

cancelable biometrics was proposed by Ratha et al. [97] to ensure the security and 

privacy of the biometric templates. It refers to the irreversible transform.  

Connie et al. [98] proposed PamHashing which addresses the non-revocable biometric 

issue. The method uses a set of pseudo-random keys to attain a unique code i.e., 
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palmhash which can be stored in portable devices (tokens, smartcards) for verification. In 

addition, PalmHashing offers several advantages such as zero EER occurrences and 

isolated genuine-imposter populations. The security and secrecy of the transmitted 

templates is enhanced by using encryption and data hiding techniques.  

Khan et al. [99] presents a novel content based chaotic secure hidden transmission 

scheme. Biometric images are used to generate secret keys and these are used as the 

initial condition of the chaotic map. Each transaction session has different secret keys to 

protect from the attacks. For the encryption, two chaotic maps are integrated that further 

resolve the finite word length effect. The method also enhances the system’s resistance 

against attacks. But the templates are not cancelable during verification stage.  

Umer et al. [100] suggested a feature learning approach to generate cancelable iris 

templates. The method extended the existing BioHashing scheme in two token scenarios 

such as subject-specific and subject independent.  

Jin et al. [101] proposed an Index-of-Max (IoM) hashing based on ranking-based locality 

sensitive for biometric template protection. The hashing is more robust against biometric 

feature variation as it is insensitive to the feature magnitude. The magnitude-

independence trait makes the hash codes being scale-invariant, which is critical for 

matching and feature alignment. In [102] a dual-key-binding cancelable cryptosystem 

was developed to improve the security needs of palm-print biometrics. Dual-key-binding 

scrambling not only has more robustness to resist against chosen plain text attack, but 

also enhances the secure requirement of non-invertibility. 

Liu et al. [103] generates cancelable palm-print templates by using the chaotic high speed 

stream cipher. The palm-print features having multiple orientations are encoded in a 

phase coding scheme. The method fails to satisfy irreversibility property. To balance the 

conflict between security and verification performance cancelable palm-print coding 

schemes are proposed in [104]. The method also reduces computational complexity and 

storage cost, by extending the coding framework from one dimension to two dimensions. 
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The irreversible projections (2DHash and 2DPhasor) projections ensured the 

irreversibility.  

Teoh et al. [105] proposed BioHashes that are straightforwardly revoked and reissued 

(via refreshed password or reissued token) if compromised. BioHashing furthermore 

enhances recognition effectiveness by using the random multi-space quantization of 

biometric and external random inputs. 

Sadhya and Raman [106] proposed a cancelable IrisCode i.e., Locality sampled code 

(LSC) based on the concept of Locality sensitive hashing (LSH). The method provides 

security guarantees and also gives satisfactory system performance. Recently, Bloom 

filter have also been extensively researched for biometric template protection. Bloom 

filter is extensively used in database and network applications.  

Bringer et al. [107, 108] develop Bloom filter-based iris biometric template protection 

scheme. They performed a brute force attack for each block of the code words 

successfully and analyzed the unlinkability and irreversibility of the biometric template 

[109]. Therefore, some randomized bloom filter biometric template protection schemes 

have emerged [110, 111]. Rathgeb et al. [112] proposed an adaptive Bloom filter to 

generate cancelable iris templates. Bloom filter-based representations of iris-codes enable 

an efficient alignment-invariant biometric comparison. Although the original bloom filter 

scheme claimed of satisfying the irreversibility, but the scheme was shown to be 

vulnerable to cross-matching attacks. In recent past, random projection is extensively 

used for generating revocable biometric templates to ensure the security of the biometric 

data [113-115]. These methods use many-to-one mapping to protect the biometric 

templates. The original feature vector is projected into a newer feature vector which 

having lower dimensions. With the help of user-specific key, the projection is guided to 

ensure the security [116].  

To overcome the issue of changing quality of biometric sample a sector based random 

projection method is proposed by Pillai et al. [117]. When the random projection is 

applied to the entire iris image, then the low-quality region tends to corrupt the data of 
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the good-quality region. The negative impact of the low-quality region is confined locally 

by partitioning the sample into numerous areas and applying random projection to every 

area separately.  

Pillai et al. [118] presents random projection and sparse representation-based method for 

iris recognition. Random projection along with random permutation is utilized to 

empower revocability, while sparse representation is utilized for image selection. Jin et 

al. [119] proposed a two-dimensional random projection method called minutia vicinity 

decomposition (MVD) for generating cancelable fingerprint templates. Trivedi et al. 

[120] generates the non-invertible fingerprint templates by utilizing Delaunay 

triangulation. The extracted minutia features are secured through arbitrary binary string 

(key). The generated template is revocable and another template can be made simply by 

changing the random binary string (key).  

Block remapping and image warping strategies are used to produce cancelable iris 

templates [121]. The iris image is separated into arbitrary squares and exposed to random 

permutation. The method can restore the 60% of the original template when the 

permutation key and stolen template are accessible [122]. The method achieved a 

comparable performance in contrast to the existing methods. Li et al. [123] proposed 

cancelable palm-print template based on randomized cuckoo hashing and minHash. 

Initially, palm-print features are extracted by utilizing anisotropic filter and further 

secured by randomized cuckoo hashing. To additionally improve the unlinkability, 

minHash is applied to the transformed template. The method achieved a comparable 

performance in contrast to the existing methods. 

1.6 Research Gap identified 

With increase in use of digital mode for regular needs like financial transaction, 

important file and personal information, access to interface devices is critical issue. Palm 

print biometric access makes it more safe and spoofing proof.  

Following research gaps were identified for the research work: 
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1) The majority of the research that has been published in the literature has made use 

of contact-based palm-print databases. The contactless database includes posture, 

translation, and scale variations, making palm-print detection more 

understandable and reliable. Therefore, there is potential for employing 

contactless palm-print databases to improve performance metrics. 

2) The majority of texture descriptors are concerned with encoding local intensity 

variations between a center pixel and its sample points. Also, they can't explain 

the intensity ordering between adjacent sample points. They can't detect long-

range pixel relationships outside of a compact region. The issue of learning robust 

and discriminative characteristics for palm-print recognition remains a fascinating 

and demanding topic. 

3) The majority of research for designing biometric systems has been done in the 

field of single feature extraction (subspace based, coding based, structural based 

and hybrid based) techniques. The key elements of a palm-print image are 

precisely described by multiple feature vectors, which can offer more feature-

specific details for joint feature learning. Therefore, a multiple feature extraction 

approach can be more helpful in improvising the system accuracy.  

4) The biometric framework offers numerous advantages over the customary 

framework, yet the biometric framework itself is vulnerable to numerous identity 

threats. The increasing use of palm-print recognition has raised privacy concerns 

significantly. Therefore, the security of palm-print templates is a fundamental and 

vital issue. 

 

1.7  Objective of the work 

1) A comparative study and analysis of various feature extraction and classification 

techniques of palm print authentication on various databases. 

2) Design of robust feature extraction algorithm for palm-print recognition. 
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3) Design of robust multiple feature extraction algorithm based on texture 

description. 

4) Designing of a robust palm-print security framework. 

 

1.8   Outline of the Thesis 

The thesis is organized in the following manner: 

Chapter 1: This chapter introduces the fundamentals of the biometrics, and palm-print 

specifically. This chapter also includes a comprehensive overview of the related literature 

that has already been published. The evaluation takes into account several approaches, 

including holistic, structural, hybrid, and deep learning-based methods. 

Chapter 2:  This chapter discusses the design of Gabor filter and explains the texture 

feature extraction methods using the Gabor filter. The first section elaborates on the 

construction of the Gabor filter for palm-print recognition using a kernel-based full space 

FDA. To further illustrate the effectiveness of the Gabor filter with kernel-based full 

space FDA technique, the experiment is conducted on contact-based palm-print datasets.  

In the next section, the design of Gabor filter with neural network is explained. 

Furthermore, the experiments performed on contactless palm-print databases are 

described. 

Chapter 3: In this chapter, the first section explains the implementation of the proposed 

multi scale edge angles LBP (MSEALBP). Initially, Sobel gradient operator in both 

vertical and horizontal directions produce directional angle images and then passed 

through multi-scale LBP to produce uniform patterns of palm-prints. Further, uniform 

images are divided into non-overlapping blocks of size 5×5 pixels. Finally, the feature 

vector is fed as an input into the ANN. Next section elaborates the implementation of 

LBP with multi feature learning for palm-print recognition. Two complementary robust 
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operators, one with dominating directional pattern (DP) and the other with the texture 

patterns (TP), extract multi feature information simultaneously. Further, we learn feature 

mapping to project the multi data into hash codes. Furthermore, the experiments 

performed on contactless palm-print databases are described. 

Chapter 4: In this chapter, we discuss the implementation of a non-invertible palmprint 

template for secure authentication. Proposed CNN and transformation scheme in a single 

mechanism is explained further. Experimental results on palm-print databases are 

described and consequently generated ROC curves are discussed. 

Chapter 5: In this chapter, we provide a comparative examination of our different 

proposed methods such as Gabor filter with kernel-based full space FDA, Gabor filter 

with neural network, MSEALBP, LBP with multi feature learning, and non-invertible 

template, and CNN and transformation method. Two independent experiments are 

performed. The first compares the recognition performance on contact-based methods. 

The second experiment discusses the efficacy of the proposed methods on contactless 

databases. Finally, discusses the main findings of the thesis work and the direction to 

future work.  



 

34 

 

  

 

Chapter 2 

Structure based Palm-print recognition: Gabor filter-based 

approach  

 

2.1  Introduction 

 

Palm-print biometric has many special benefits like stable and unique features, fewer 

distortions and straightforward self-positioning. Additionally, it may also get high 

recognition rate (RR) with fast processing speed [12]. 

Texture as an important feature of palm-print was obtained by wavelet and transform 

methods [42]. The Gabor filter has been perceived as a useful tool in computer vision and 

image processing applications. It is capable of providing a precise depiction of most 

spatial qualities of basic receptive fields [124].  

Li et al. [125] uses morphological operator and Gabor filter with different orientations for 

texture extraction. The technique is a decent answer for turn variety in palm images. To 

recover the phase information of palm-prints using the Gabor filter, Zhang et al. [42] used 

palm code. The resulting features are highly correlated that may reduce the individuality 

of palm codes. The bitwise Hamming distance is used for comparing two palm codes. 

Zhang et al. [126] proposed a Gabor filters-based double-orientation code and nonlinear 

matching method for palm-print recognition. Lunk et al. [49] proposed palm-print 

recognition approach based on Gabor filter. To extricate the half-direction a bank of half-

Gabor channels is characterized. 
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2.2  Gabor filter  

In the biometric literature, Gabor filter is successfully applied to exploit biometric 

modalities like iris [127], face [128], fingerprints [129] and palm-prints [20]. A circular 

2D Gabor filter is a Gaussian modulated by complex oriented sinusoidal function which 

capture the spatial and frequency information simultaneously [124].  

Circular 2D Gabor filter is expressed as follows: 

 

                           𝐺𝜎,𝜇, 𝜙(𝑥, 𝑦) = 𝑔𝑢𝜎(𝑥, y). 𝑒𝑥𝑝[2𝜋𝑗𝜇(𝑥 𝑐𝑜𝑠 𝜙 + 𝑦 𝑠𝑖𝑛 𝜙)]                                    (2.1) 

 

Where, 𝑔𝑢𝜎(𝑥, y) is Gaussian function defined as 𝑔𝑢𝜎(𝑥, y) =
1

2𝜋𝜎2
𝑒𝑥𝑝[−(𝑥2 + 𝑦2)/2𝜎2], 

𝑗 = √−1, 𝜎 is standard deviation, 𝜇  is frequency and 𝜙 is the orientation [0°˗180°]. The 

complex form of Gabor filter 𝐺𝜎,𝜇, 𝜙(𝑥, 𝑦) can be decomposed in terms of real part 

𝑅𝜎,𝜇, 𝜙(𝑥, y) and imaginary part 𝐼𝜎,𝜇, 𝜙(𝑥, y) as given in Eq. (2.2) -(2.4). 

 

 
                            𝐺𝜎,𝜇, 𝜙(𝑥, 𝑦) = 𝑅𝜎,𝜇, 𝜙(𝑥, y) + 𝑗𝐼𝜎,𝜇, 𝜙(𝑥, y)                                                             (2.2) 

 

 
                            𝑅𝜎,𝜇, 𝜙 = 𝑔𝑢𝜎(𝑥, y). 𝑐𝑜𝑠[2𝜋𝜇(𝑥 𝑐𝑜𝑠 𝜙 + 𝑦 𝑠𝑖𝑛𝜙)]                                                (2.3) 

 

 
                             𝐼𝜎,𝜇, 𝜙 = 𝑔𝑢𝜎(𝑥, y). 𝑠𝑖𝑛[2𝜋𝜇(𝑥 𝑐𝑜𝑠 𝜙 + 𝑦 𝑠𝑖𝑛 𝜙)]                                                (2.4) 

 

To make the illumination response insensitive, the DC component of the Gabor filter is 

removed as given in Eq. (2.5), 

 

                   𝐺𝜎,𝜇,𝜙(𝑥, y) = 𝐺𝜎,𝜇,𝜙(𝑥, y) −
∑ ∑ 𝐺𝜎,𝜇,𝜙(𝑖, j)

𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘

(2𝑘 + 1)2
                                                 (2.5) 
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Finally, Gabor transform with robust illumination is defined as  

 

 

                               𝑂(𝑥, y; 𝜎, 𝜇, 𝜙) = 𝐼(𝑥, y) ⊗ 𝐺𝜎,𝜇,𝜙(𝑥, y)                                                              (2.6) 

 

Where, 𝑘 scales the magnitude of Gaussian envelope and (2𝑘 + 1)2 denotes the size of 

the Gabor filter. 𝐼(𝑥, y) is the ROI and symbol ⊗ is convolution operator. 

 

2.3  Motivation  

1. Gabor filter gives high recognition performance at the expense of speed and 

memory [130]. Therefore, dimensionality reduction methods can be utilized to 

obtain a low-dimensional illustration of high-dimensional data samples. 

2. It is significant to develop the contactless palm-print recognition algorithm, as it 

is effectively adequate in real-world applications because of its high ease of use. 

3. To combine the traditional methods with the deep learning seems to be a 

fascinating and significant direction for developing the robust algorithm for both 

contact-based and contactless palm-print recognition.  

 

2.4  Database 

The performance of palm-print biometrics is estimated using certain publicly accessible 

databases. The databases were captured using different heterogeneous devices and 

acquisition procedures which are briefly explained as follows: 

2.4.1 PolyU palm-print database [132] 

In the PolyU database, there are 386 different palms represented by a total of 7,752 

grayscale palm-prints from 193 participants. It is a contact-based palm-print database.  
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In two separate sessions, 16 images of each individual with 256 grey levels and a 75dpi 

resolution were collected. Before 2003, researchers explored employing digital cameras, 

scanners, and hand-drawn drawings to gather information about palm-prints. These 

devices collect palm-prints, but the quality of the images they produce is very 

inconsistent and not satisfactory. As a result, a large-scale palm-print database was 

created and a real-time palm-print capturing device was developed.  

2.4.2 CASIA palm-print image database [133]  

This database includes the left and right palms of 312 distinct participants who were 

captured using a self-made device. There are 5,502 palm-print images in the 8-bit JPEG 

format. This database is kept on a device without pegs. As a result, several postures and 

palm positions are used to capture the images. The database is publicly available for the 

users.  

2.4.3 IIT-Delhi touchless palm-print database [134] 

This database includes 3,290 palm-prints that were gathered from 235 students of Indian 

Institute of Technology Delhi. It is a large touchless database that was set up in 2007.  

Seven images of each subject, taken with varied hand poses on the left and right hands, 

are collected. Each image has a bitmap format and is 800×600 pixels.   The database also 

provides access to 150×150 pixel automatically cropped images.    Pose, translation, and 

scale variations in this database allow more dependable and user-friendly palm-print 

identification. The database is publicly available for the users. 

2.4.4 PolyU multispectral palm-print database [135] 

This multispectral palm-print database contains 6,000 palms from 250 volunteers for one 

illumination. In the 20–60 year age range, there are 195 men and 55 women. The samples 



38 

 

 

 

are collected over the duration of two distinct sessions, with an average time gap of 

roughly nine days between them. Each volunteer provides 24 palm images for each 

illumination. A more discriminating set of data was obtained using this database. The 

correlation between various spectral bands is used to strengthen the antispoof capacity. 

2.4.5 REgim Sfax Tunisia (REST) database [136] 

 It measures 2048×1536 and contains 1945 images.   The images are taken indoors with 

natural light and a digital camera [124]. This database was collected by research groups 

in intelligent machines of Sfax university. The hand repeatedly shifted in position and 

orientation.  358 persons, ages ranging from 6 to 70.  

2.4.6 Tongji database [137] 

It measures 800×600 and contains 6,000 images. 600 Tongji university students between 

the ages of 20-50. Each user had to put his or her hand within an enclosure to complete 

the acquisition process. The hand may move within a rather narrow area while not being 

in contact with any surfaces. The hand orientation and illumination patterns are roughly 

the same across all samples. Compared to the restrictions used to establish the CASIA 

and IIT-D databases, the acquisition criteria were less restricted. 

2.5  Palm-print recognition using Gabor filter with kernel-based full 

space FDA method 

For palm-print recognition, the Gabor filter is a popular texture-based technique that 

offers good recognition performance at the cost of speed and memory. As a result, DR 

methods are used to produce low-dimensional representations of high-dimensional data 

samples. These methods preserve the ‘inherent information’ contained in the original 

data. The previous decades have seen the rapid improvement in DR methods [138, 139]. 
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The most notable DR methods are principal component analysis (PCA) [140] and Fisher 

discriminant analysis (FDA) [141] due to their simplicity and proficiency. In supervised 

learning scenarios, FDA is a well-known method for DR [28]. It has been observed that 

PCA and FDA only examine the global Euclidean structure of data, so they cannot oblige 

to the data with complex nonlinear structures. Hence, some kernel-based nonlinear 

strategies have been proposed, for example, kernel FDA (KFDA) [142], kernel PCA 

(KPCA) [143] and eigenspectrum-based regularised KDA algorithm (ER-KDA) [144]. 

These methods do not explicitly study the local structure of the data, which is vital for 

classification [145].  

2.5.1 Proposed methodology 

This section elaborates the proposed palm-print recognition framework as illustrated in 

Figure 2.1. Initially, the pre-processing is applied that gives a stable and aligned region of 

interest (ROI) image. The work also describes quality estimation and enhancement 

module which improvise the recognition results. After making the quality estimation the 

features are extracted by utilizing Gabor filter with five scales and eight different 

orientations. To make full use of the discriminant information in the full space of the 

within-class scatter a kernel-based full space FDA method is proposed. The method uses 

the discriminant information in the null space and non-null space of the within-class 

scatter for better recognition performance. The feature vector dimension is reduced which 

further reduces the computational complexity of the proposed approach. Finally, 

matching is finished by normalized Hamming distance (NHD).  

1) Pre-processing: Pre-processing is an important step that updates the general 

quality and contrast of the image. Palm-print, i.e., the deformable area that causes 

unsure extending and reflections. So, it is utilized to lessen the impacts of these 

factors and also extract aligned and stable ROI. It is the area of hand that contains 
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significant features of palm-prints. ROI extraction is a step-by-step process as 

illustrates in Figure 2.2. Initially, the hand image is converted into binary format 

(0 or 1). As discussed in [146], the bearings of the five fingertips and four finger 

valleys are gotten by following the restriction of the palm using the binary image. 

The use of finger valleys and the centroid makes the image rotation invariant. 

 

 

 

 

• Quality analysis: The bad or poor-quality images yield spurious or false 

features which diminishes the performance of the biometric framework. 

The blurred principal lines, edges and wrinkles reduce the characteristics 

of palm-print images. The orientation level (OL) of ridges and ridge 

density (RD) parameters are figured for the quality estimation. The 

Figure 2.1: Work flow representation of the proposed method. 
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algorithm restores a scalar value 1 for good quality images and 0 for bad 

quality images. The fusion of individual quality attributes produces an 

aggregate quality score. The resulting quality score is represented as scalar 

value (1 or 0). If the quality score is greater than the threshold value, 

images are considered in the good quality category otherwise considered 

in the class of bad quality. Further, good quality images are fed to the next 

module. The bad quality images are recovered consistently till the 

satisfying quality level is accomplished. After that, support vector 

machine (SVM) is trained by palm-prints (having individual quality 

levels).  

            The image quality is defined as: 

 

                                                      𝑖𝑚𝑎𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑓(𝑂𝐿, 𝑅𝐷)                                                           (2.7) 

           

                        Where 𝑓 is a function of OL and RD. 

 

Orientation level:  OL is an important parameter which requires directional features for 

evaluating the image quality [147]. The covariance matrix (C) is processed for an 

image block. From the covariance matrix, greatest two eigenvalues ( 1e , 2e ) are 

selected to compute the OL as given in equation (2.8): 

 

                                                     𝑂𝐿 = 1 −
𝑒2
𝑒1
                                                                            (2.8) 

The bad quality ROI (low contrast and effected by noise) shows a low OL. In 

contrast, a good quality ROI having unambiguous straight lines separated by small 

wrinkles shows a high OL.   
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Ridge density: It is the measure of ridge blocks existing in the good quality palm-

prints. The acquired OL info has been used to categories the given ridge block into 

good and bad classes. Higher number of ridge blocks improves the image quality. A 

sum of 2,100 images taken from the palm-print databases are utilized to train the 

SVM classifier. The two quality classes (good and bad) and two quality parameters 

(OL and RD) are used as input to train the SVM. When the classifier obtains a new 

test image than the quality parameters (OL, RD) are normalized to (0, 1). Further, the 

result is passed to the SVM which gives the quality class comparing to the ROIs.  

 

 

 

 

 

Finally, contrast limited histogram equalization (CLAHE) is applied as an 

enhancement module, which produces robust features against the image 

quality. 

Figure 2.2: ROI location approach, (a) original image (b) filtered image (c) binary image (d) 

locating finger valleys and fingertips (e) ROI area using the maxima and minima (f) 

extracted ROI. 
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2) Feature extraction: In the pre-processing step, the size of ROI is normalized to 

128×128 pixels. After that, the ROI is segmented into 8×8 non-overlapping sub- 

blocks, which conclude Gabor parameters independently. The literature 

demonstrated that Gabor filter provides the accurate recognition when filter 

parameters (orientation, variance, center frequency) are suitably chosen [145]. 

Therefore, this work proposes ROI image segmentation into mm non-

overlapping sub-blocks and then determines optimal Gabor parameters. The small 

value of ' m ' can introduces noise in some smooth areas and larger value of 'm' 

may enhance the anti-noise capability of the block. The block cannot reflect the 

detailed variation of the image if we select too large value of 'm'.  

• Estimation of orientation: The orientation is an intrinsic property of a 

Gabor filter and represented as ′𝜙′. The orientation analysis is done to 

compute the local direction at every block of ROI image. The direction 

operators is represented by local direction pattern (LDPs) with eight 

different orientations (
𝑛𝜋

8
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, 1, 2, … ,7). The displacement range 

(most local orientation determined) is restricted within a mask pattern of 

3×3 pixels. The designed LDP generates eight features which represents 

the different direction characteristics more closely. These features are 

generated by summing up the pixel intensities of corresponding blocks. 

Lastly, the maximum value of the direction intensity is selected as the 

optimal direction in each block. Each pixel of an image is considered as 

the center of mask pattern. The direction intensity corresponding to each 

pixel is denoted as 𝐷𝑝, where 𝑝 = 1, 2, … ,8. 

The feature value is computed as given in Eq. (2.9), 
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                                                             𝐷𝑝(𝑖, 𝑗) = ∑ ∑ |𝑃(𝑖 + 𝑢, 𝑗 + 𝑣) ∗ 𝐿𝑝(𝑢, 𝑣)|

1

𝑣=−1

1

𝑢=−1

          (2.9) 

 

                                                      𝐷𝑝 = ∑ ∑ |𝐷𝑝(𝑖, 𝑗)|
𝑛
𝑖=1

𝑚
𝑗=1                                              (2.10)  

 

                       where, m and n  are the height and width of the block respectively, ( )jiP ,    

                       is the pixel value, and 𝐷𝑝 denotes local patterns.  

 

• Estimation of standard deviation: The standard deviation (𝜎) is associated 

with the breadth of the Gaussian that modulates the Gabor filter. A smaller 

value of (𝜎) gives more ridge features, but the result has greater noise. In 

distinction, Gabor filter is a lot of sturdies to noise once employing a 

larger value of 𝜎 , however the filter can lose ridge details [145]. Within 

the proposed methodology, the value of 𝜎 is decided by measure the native 

region variance of the ROI image 𝑉(𝐼(𝑖, 𝑗)). We decide a distinct value of 

𝜎 by measure the degree of ridge detail altogether sub-regions. In the 

proposed method, the optimal value of standard deviation is 

22 and  2, ,1 . The image deviation is defined as follows:  

 

                                                             𝑀(𝐼(𝑖, 𝑗)) =
∑ ∑ 𝐼(𝑖, 𝑗)𝑛

𝑗=1
𝑚
𝑖=1

𝑚 × 𝑛
                                                 (2.11) 

 

 

                                                  𝑉(𝐼(𝑖, 𝑗)) =
√∑ ∑ (𝐼(𝑖, 𝑗) − 𝐸(𝐼(𝑖, 𝑗)))

2
𝑛
𝑗=1

𝑚
𝑖=1

𝑚× 𝑛
                            (2.12) 

 

 

Where, 𝑀(𝐼(𝑖, 𝑗)) and  𝑉(𝐼(𝑖, 𝑗)) is the mean value and image deviation of sub-

blocks respectively. 
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• Estimation of frequency: So as to discover appropriate frequency, each 

block of the ROI image is isolated according to standard deviation value 

(𝜎 = 1, √2,  2√2). Further, the subsequent qualities (0, 0.12 and 0.8) are 

doled out to every frequency block. The assessment of central frequency 

(𝜇) is finished utilizing the standard deviation esteem as given in Eq. 

(2.13), 

                                  𝜇 = {

0,    𝑖𝑓  𝜎 = 1

0.12,   𝑖𝑓  𝜎 = √2

0.8,  if 𝜎 = 2√2

                                                        (2.13) 

 

For a local window, having a size 𝑢 × 𝑢 for 𝑢 = 2𝑘 + 1, the real part 

(𝐺𝑅𝜎,𝜇,𝜙(𝑥, 𝑦)) and imaginary part (𝐺𝐼𝜎,𝜇,𝜙(𝑥, 𝑦)) of the image were 

registered by discrete convolution.  

 

 
Figure 2.3: Gabor filter response with eight different orientations. 
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Each sub-square will be convolved with Gabor channel until the entire 

ROI picture was navigated [130]. 

 

                                        𝐺𝑅𝜎,𝜇,𝜙(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘

⋅ 𝑅𝜎,𝜇,𝜙(𝑥, 𝑦)                        (2.14) 

                                        𝐺𝐼𝜎,𝜇,𝜙(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘

⋅ 𝐼𝜎,𝜇,𝜙(𝑥, 𝑦)                           (2.15) 

 

In the proposed approach we design a Gabor filter having 5 scales and 8 

orientations in order to extract more effective features. So, the bank of 40 

(scale=5, orientation=8) Gabor filter is used to filter the images. Figure 2.3 shows 

the Gabor filter response with eight different orientations. Finally, feature vector 

𝑋 = {𝑋1, 𝑋2, . . . , X𝑁} is constructed by the individual Gabor matrices of training 

samples.  

 

3) Dimensionality Reduction: In the proposed approach, kernel-based FDA method 

is employed for dimensionality reduction [148]. In the proposed method, the size 

of ROI is 128×128 pixel and the dimension of Gabor feature is (𝐻 ×𝑊 ×𝑚 × 𝑛).  

In order to reduce the dimension of Gabor features (high-dimensional), a down 

sampling scheme is applied and the Gabor coefficients are normalized (mean=0, 

variance=1).  

Suppose a down sampling factor is 𝑑 and further a Gabor feature set (𝑓𝑑) is 

computed by concatenating all the individual coefficients 𝑓𝑎,𝑏
𝑑 . 

 

                              𝑓𝑑 = ((𝑓0, 0
𝑑 )

𝑡
, (𝑓0, 1

𝑑 )
𝑡
, . . .(𝑓2, 3

𝑑 )
𝑡
)
𝑡
                                                  (2.16) 
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The full space includes both the null space and non-null space. The proposed 

method has the ability of fully using the discriminant information in the full 

space of the within-class scatter as discussed below.   

Initially take the Gabor feature set (𝑋) and non-linear projection 𝜑(. ). 

The Kernel matrix (𝑘𝑚) is computed as given in equation (2.17): 

 

                                                      𝑘𝑚(𝑎𝑖, 𝑎𝑗) = 𝑒𝑥𝑝 (−
∥ 𝑎𝑖 , 𝑎𝑗 ∥

2

𝜎2
)                                                  (2.17) 

             Now, we compute the non-null space (𝜑) step by step:  

Initially an eigenvector (𝐸𝑡) is computed with respect to (𝜙𝑡
𝜙
)
𝑇
𝜙𝑡
𝜙

, which 

produces (𝜙𝑡
𝜙
)
𝑇
𝐸𝑡. 

After that, we compute the projection of the training samples 𝑋𝜙 on non-null 

space (𝜑) 

                                                                            𝑍 = (𝜙𝑡
𝜙
𝐸𝑡)

𝑇
𝑋𝜙                                                         (2.18) 

             Z can be represented as 𝑍 = 𝐸𝑡
𝑇 . (𝑘𝑚 −

1

𝑁
. 𝐼𝑁×𝑁. 𝑘𝑚). 

The following two matrix are computed:  

(a) between-class scatter matrix (𝑠𝑐𝑏
𝜙
)  

(b) within-class scatter matrix (𝑠𝑐𝑤
𝜙
) 

The null space (𝜓) and non-null space (𝜓1) is composed of the eigenvectors 

(𝐸𝑠𝑤) and 𝐸1𝑠𝑤 respectively. Now, the optimal discriminant vectors is computed 

according to the Fisher criterion as given below:  

Now a total scatter matrix (𝑠𝑐𝑡
𝜙
) is computed form the feature space as given 

below 
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 𝑠𝑐𝑡
𝜙
= ∑ ∑ (𝜙(𝑎)𝑗

𝑖 − 𝑣𝜙)(𝜙(𝑎)𝑗
𝑖 − 𝑣𝜙)

𝑛𝑖
𝑗=1

𝑐
𝑖=1

𝑇
= 𝜙𝑡

𝜙
(𝜙𝑡

𝜙
)
𝑇

 

          

Where 𝜙𝑡
𝜙
= 𝑠𝑝𝑎𝑛{(𝜙(𝑎)1

1 − 𝑣𝜙), . . . , (𝜙(𝑎)𝑛1
𝑐 − 𝑣𝜙)} 

We can represent (𝜙𝑡
𝜙
)
𝑇
𝜙𝑡
𝜙

 as given below 

 

                      (𝜙𝑡
𝜙
)
𝑇
𝜙𝑡
𝜙
=
1

𝑁
(𝑘𝑚 −

1

𝑁
(𝑘𝑚. 𝐼𝑁×𝑁 + 𝐼𝑁×𝑁 . 𝑘𝑚 +

1

𝑁2
. 𝐼𝑁×𝑁 . 𝑘𝑚. 𝐼𝑁×𝑁))      (2.19) 

 (𝜓1) is composed of the eigenvectors (𝐸𝑠𝑤) and 𝐸1𝑠𝑤 respectively.  

Now, the optimal discriminant vectors is computed according to the Fisher criterion as 

given below:  

   Initially project (𝑠𝑐𝑏
𝜙
) and (𝑠𝑐𝑤

𝜙
) into the non-null space (𝜓1) 

𝑠𝑐𝑏
𝜙
= 𝐸𝑠𝑤

𝑇 𝑆𝑏
𝜑
𝐸𝑠𝑤 and  𝑠𝑐𝑤

𝜙
= 𝐸𝑠𝑤

𝑇 𝑆𝑤
𝜑
𝐸𝑠𝑤. 

In the null space (𝜓), project (𝑠𝑐𝑏
𝜙
) 

𝑠𝑐𝑏
𝜙
= (𝐸𝑠𝑤

1 )𝑇𝑆𝑏
𝜑
𝐸𝑠𝑤
1  

 Further, we compute the Eigen vectors 𝐸𝑤𝑏 and 𝐸𝑠𝑏 corresponding the largest Eigen 

value 𝑙 and 𝑡 respectively. 

𝑠𝑐𝑤
𝜙
−1

𝑠𝑐𝑏
𝜙
𝑋 = 𝜆𝑋 

𝑠𝑐𝑏
𝜙
𝑋 = 𝜆𝑋 

Finally, the optimal discriminant vectors are computed as in the non-null space and null 

space respectively. 𝐸1 = 𝐸𝑠𝑤𝐸𝑤𝑏 and 𝐸2 = 𝐸𝑠𝑤
1 𝐸𝑠𝑏. The final optimal discriminant 

projection matrix is generated by combining the optimal vectors 𝐸1 and 𝐸2 as  
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𝐸 = [𝐸1, 𝐸2]
𝑇                                                                          (2.20) 

Finally, the feature vector 𝑌 is extracted as 𝑌 = 𝐸𝑍. After dimensionality reduction the 

matching is performed. The normalized bitwise Hamming distance was utilized that 

produces invariant matching to translation and rotation [149]. 

The NHD is as given in equation (2.21), 

 

              𝐻𝐷𝑛 =
∑ ∑ [𝑃(𝑖+𝑔,𝑗+ℎ)⊗𝑄(𝑖,𝑗)]

𝑚𝑖𝑛(𝐿,𝐿+ℎ)
𝑗=𝑚𝑎𝑥(1,1+ℎ)

𝑚𝑖𝑛(𝐿,𝐿+ℎ)
𝑖=𝑚𝑎𝑥(1,1+𝑔)

2𝐻(𝑔)𝐻(ℎ)
          (2.21)    

𝑃 is the stored ROI and 𝑄 is the tested ROI. Symbol ⊗ denotes Boolean 𝑋𝑂𝑅 operator. 𝑔 

is offset (maximum) in horizontal direction, ℎ is offset (maximum) in vertical direction.  

 

2.5.2 Experimental results and discussion  

 

Three palm-print databases, PolyU, IIT-Delhi and CASIA were utilized to evaluate the 

performance of the proposed framework. During the experiment, five images from each 

subject are randomly selected for training and the remaining images are used for testing. 

Figure 2.4 shows the sample hand images of PolyU database.  

 

 

 

 

 

 

      

 

Figure 2.4: Hand images from PolyU palm-print database.      
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Figure 2.5: Hand images from IIT-Delhi palm-print database. 

 

 

 

 

 

 

                      

 

          

Figure 2.6: Hand images from CASIA palm-print database. 

 

 

Figure 2.7: ROI images of PolyU palm-print database. 
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Figure 2.8: ROI images of IIT-Delhi palm-print database. 

        

 

 

Figure 2.9: ROI images of CASIA palm-print database. 

 

Figure 2.5 and Figure 2.6 shows the sample hand images of IIT-Delhi and CASIA palm-

print databases respectively. The subsequent ROIs are cropped and resized to 128 × 128 

pixels. Figure 2.7 shows the sample ROI images of PolyU database. Figure 2.8 and 

Figure 2.9 shows the sample ROI images of IIT-Delhi and CASIA databases respectively.  

The experiments are conducted on Dell Precision Tower 5810 by using MATLAB 

(R2018a), CPU as Intel Xeon Processor and two 2 GB Nvidia Quadro K620 GPUs, 

Windows 10 (operating system 64 bit).  
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The kernel function used in FDA along with their parameter values is listed in Table 2.1 

for identification experiment. The parameters of the kernel function are selected 

empirically. The recognition performance when adopting kernel function as (a) 

polynomial kernel, (b) cosine kernel, and (c) RBF kernel is listed in Table 2.1. The 

recognition rate with the RBF kernel yields the best performance. The highest recognition 

rate is 98.34% on PolyU database. The RBF kernel yields best performance on all three 

palm-print datasets. The results with and without image enhancement and quality 

estimation are listed in Table 2.2, that shows the effect of pre-processing module on 

recognition results.  

Table 2.1: Recognition results with different kernel functions. 

 

Table 2.2: Comparative results with and without quality estimation. 

 

Database 

Recognition Rate 

Without Quality estimation With Quality estimation 

PolyU 94.23% 98.34% 

IIT-Delhi 87.56% 90.19% 

CASIA 90.12% 96.43% 

 

1) Comparison with the existing DR methods: The proposed method is 

compared with state-of-art methods such as PCA, 2DPCA, MFA, and FDA 

with their variants (KFDA, LFDA) on three palm-print databases. The 

proposed method achieves best performance with five training samples as 

listed in Table 2.3, 2.4, and 2.5.  

Kernel Polynomial RBF Cosine 

Function 𝑘𝑚(𝑎, 𝑎𝑖) = [𝑞(𝑎. 𝑎𝑖) + 𝑐]
𝑣 𝑘𝑚(𝑎, 𝑎𝑖) = 𝑒𝑥𝑝(−𝛾|𝑎 − 𝑎𝑖|

2) 𝑘𝑚(𝑎, 𝑏) = [𝑞(𝑎 . 𝑏) + 𝑐]𝑣 

Parameters 𝑞 = 1 × 10−3,𝑐 = 1, 𝑣 = 2 𝛾 = 1 × 10−4 𝑞 = 1 × 10−3, 𝑐 = 1, 𝑣 = 2 

Recognition 

Rate 

 

PolyU 90% 98.34% 93.04% 

IIT-Delhi 80.11% 90.19% 85.43% 

CASIA 81.23% 96.43% 91.02% 



53 

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

The proposed method gives percentage recognition rate of 98.34%, 90.19% and 

96.43% on PolyU, IIT-Delhi and CASIA databases respectively. KFDA method 

also gives comparable performance in terms of recognition rate of 96.44%, 

89.74% and 94.21% on PolyU, IIT-Delhi and CASIA databases respectively. The 

comparative analysis of ROC curve of the proposed method with other FDA 

variants, for example, FDA and KFDA on PolyU and IIT-Delhi databases are 

shown in Figure 2.10. 

 

2) Comparison with the existing methods: The proposed method is compared 

with some existing methods as shown in Table 2.6. The least EER esteem is 

0.051% for PolyU database. The EERs of 0.312% and 0.264% for IIT-Delhi 

Methods Number of training samples per class 

2-Train 3-Train 4-Train 5-Train 

PCA [20] 83.34 89.87 93.98 95.12 

2DPCA [22] 85.25 90.78 94.09 95.56 

MFA [25] 79.77 82.89 88.80 92.34 

FDA [28] 80.01 84.54 90.32 93.04 

KFDA [30] 81.33 89.00 94.12 96.44 

LFDA [29] 80.10 84.13 90.00 94.08 

Proposed 89.34 93.45 96.11 98.34 

Methods Number of training samples per class 

2-Train 3-Train 4-Train 5-Train 

PCA [20] 78.01 80.73 87.08 89.07 

2DPCA[22] 80.28 84.11 88.58 89.17 

MFA [25] 75.89 78.90 84.01 86.31 

FDA [28] 77.32 79.50 86.00 87.33 

KFDA [30] 79.31 81.03 88.24 89.74 

LFDA [29] 77.00 78.93 85.21 87.85 

Proposed 80.34 86.31 88.98 90.19 

  Table 2.3: Comparisons of recognition rate (%) for different state-of-art methods on PolyU database. 

 

Table 2.4: Comparisons of recognition rate (%) for different state-of-art methods on IIT-Delhi database. 
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and CASIA palm-print information base separately, which are far better than 

all other existing methodologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Comparison with the texture-based methods: The proposed method is 

compared with the state-of-the-art methods (LBP, LDP, ELDP, LDN, and 

LLDP) on different palm-print databases as listed in Table 2.7. The least 

EER value is 0.051% for PolyU palm-print database. The EERs of 0.312% 

Figure 2.10: ROC curve comparison performance of proposed one with FDA variants on various 

databases (a) PolyU database (b) IIT-Delhi database. 
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and 0.264 % for IIT-Delhi and CASIA palm-print database respectively, which 

are far superior to all other existing strategies. 

 
 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

                     

                             

 

 

 

 

 

 

Methods Number of training samples per class 

2-Train 3-Train 4-Train 5-Train 

PCA [20] 80.01 84.19 92.10 94.21 

2DPCA [22] 82.45 90.23 93.25 94.82 

MFA [25] 76.00 80.90 89.18 90.13 

FDA [28] 79.41 81.31 91.11 91.31 

KFDA [30] 81.89 82.45 93.21 94.21 

LFDA [29] 80.00 80.17 92.67 91.67 

Proposed 85.22 91.12 93.98 96.43 

Method Criteria 

(%) 

Database 

PolyU IIT-Delhi CASIA 

LBP [53] EER 6.36 10.94 11.78 

LDP [55] EER 5.43 10.01 8.34 

ELDP [60] EER 4.78 9.82 5.34 

LDN [59] EER 1.701 6.24 5.02 

LLDP [56] EER 0.163 4.13 5.78 

Proposed EER 0.051 0.312 0.264 

Method Criteria Database 

PolyU IIT-Delhi CASIA 

Block-wise Scale Invariant Feature Transform 

BSIFT-2D2PCA [150] 

EER 

CRR 

2.09% 

97.27% 

3.012% 

96.29% 

2.423% 

98.88% 

TCCM-2D2PCA [150] EER 

CRR 

2.70% 

96.09% 

3.24% 

95.74% 

2.14% 

96.09% 

Discrete Orthogonal S-Transform (DOST) 

[151] 

EER 0.12% 0.93% 0.97% 

Vese–Osher (VO) decomposition model [58] EER 0.1071% 0.921% - 

Comp Code [44] EER - 1.5235% 0.385% 

Orthogonal line ordinal features (OLOF) [45] EER - 1.5407% 0.4652% 

Proposed EER 0.051% 0.312% 0.264% 

Table 2.5: Comparisons of recognition rate (%) for different state-of-art methods on CASIA database. 

                                        Table 2.6: Comparative results. 

            Table 2.7: Comparative performance of different methods. 
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4) Computational efficiency: The total execution time is roughly 1s, which is 

speedy enough for real time application. The total time includes the feature 

extraction time and matching time. The time comparison of the proposed 

method with certain existing strategies on PolyU database is given in Figure 

2.11.  The less time (ms) consumed by proposed method is due to smaller 

dimension of Gabor feature vector.  

 

 

 

 

 

2.6   Palm-print recognition, designed using Gabor filter with neural 

network 

Artificial neural network (ANNs) are statistical information models that are inspired by 

the construction and effective parts of natural neural networks. ANNs are progressively 

Figure 2.11: Comparison of Computational complexity.  
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alluring, effective, and productive in accomplishing pattern recognition in numerous 

issues because of its great simulation capacity [152, 153]. There are various applications 

of ANNs, for example, biometrics (finger impression, iris, gait, voice, face recognition), 

speech recognition, handwritten (computerized and word acknowledgment) [154], 

deciphering DNA successions, crime detection, clinical finding, and so on. The basic 

ANN structure comprises of data sources (inputs), hidden and output layers that are made 

out of neuron components and their inter links [155] as shown in Figure 2.12. The 

training of the model is performed with sufficient number of input and output information 

utilizing an optimization algorithm. ANNs can be utilized to show complex high 

dimensional issues easily when appropriate design and activation function is used. The 

output of the model is determined by a weighted normal of the contributions through a 

sigmoid function [156]. 

 

                                                                   𝑓(𝑥) =  w𝑜  + ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                             (2.22)  

 

𝐴(𝑥) =
1

1 + 𝑒−𝑥
                                                              (2.23) 

 

The weights between the neuron links that depend on the distinction among forecasted 

and real outputs are changed during the training procedure. The calculations in ANN can 

be parallelized with the incorporation of hidden layers and all the while keeping up with 

the capacity to appreciate complex constructions [157, 158].  

It is seen that the deep-learning methods can achieve comparable performance than the 

conventional palm-print recognition methods, which give us guidance for examining the 

deep learning-based palm-print recognition frameworks. Afterward, the best way to 

combine the traditional methods with the deep learning seems to be a fascinating and 

significant direction of contactless palm-print recognition. The contactless palm-print 
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recognition is effectively adequate in real-world applications because of its high ease of 

use. In this way, it is significant to additionally develop the contactless palm-print 

recognition to boost the performance.  

 

 

 

 

2.6.1 Feature extraction 

In this work, Gabor energy is calculated that involves the response of symmetric Gabor 

response 𝑅𝜎, 𝜇, 𝜑,𝜋
2 (𝑥, 𝑦) and anti-symmetric Gabor response 𝑅𝜎, 𝜇, 𝜑,𝜋/2

2 (𝑥, 𝑦).  

The Gabor energy is computed as given in Eq. (2.24)  

 

𝐺𝜎, 𝜇, 𝜑
𝐸 (𝑥, y) = √𝑅𝜎, 𝜇, 𝜑,𝜋/2

2 (𝑥, 𝑦) + 𝑅𝜎, 𝜇, 𝜑,𝜋
2 (𝑥, 𝑦)                             (2.24) 

 

Figure 2.13(c) shows the symmetric Gabor response 𝑅𝜎, 𝜇, 𝜑,𝜋
2 (𝑥, 𝑦) having 5 scales and 8 

orientations to a sample ROI image in Figure 2.13(a). The anti-symmetric Gabor 

response 𝑅𝜎, 𝜇, 𝜑,𝜋/2
2 (𝑥, 𝑦) with the same scale and orientation for the same input ROI 

                                                     Figure 2.12: Representation of ANN [155]. 
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image (Figure 2.13(a)) is shown in Figure 2.14(c). The Gabor energy representation 

calculated (in Eq. (2.24)) is shown in Figure 2.15. 

Wang et al. [159] suggested different methods of utilizing PSO with other search 

algorithms. Every particle possesses a velocity and it can be categorized as a swarm 

component, an inertial component and a cognitive component. The updated velocity is 

computed as given in Eq. (2.25), 

𝑢(𝑡 + 1) = 𝑤(𝑡) ∗ 𝑢(𝑡) + 𝑎1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏(𝑡) − 𝑥(𝑡)) + 𝑎2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏(𝑡) − 𝑥(𝑡))                      (2.25) 

The particle position is given as 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑢(𝑡 + 1)                                                                       (2.26) 

Where, 𝑎1 and 𝑎2 are accelerating coefficients. The cognitive component and global 

components are enhanced by augmenting the estimation of 𝑎1 and 𝑎2 respectively.  

Further these accelerating coefficients boost the investigation of the search space that 

lead the particle towards the convergence.  The cognitive element is ensuring exploitation 

of the positions of the particle’s best configuration (𝑝𝑏(𝑡)). The global elements are 

determined using the global best (𝑔𝑏(𝑡)) position among the population. 𝑟𝑎𝑛𝑑1 and 

𝑟𝑎𝑛𝑑2 are two random numbers in [0, 1].  

The particles are moved around their own best position when we select large 𝑎1 and small 

𝑎2 [160]. Over the iterations, the best solutions were obtained when 𝑎1 and 𝑎2 are linearly 

decreased and linearly increased respectively [161, 162].  

 

𝑎1 = 𝑎1𝑖 + 𝑎1𝑓 ∗ (
𝑡

𝑡𝑚
) − 𝑎1𝑖 ∗ (

𝑡

𝑡𝑚
)                                                        (2.27) 

 

 

𝑎2 = 𝑎2𝑖 + 𝑎2𝑓 ∗ (
𝑡

𝑡𝑚
) − 𝑎2𝑖 ∗ (

𝑡

𝑡𝑚
)                                                        (2.28) 
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𝑎1𝑖 and 𝑎1𝑓 are the initial and final values of the accelerating coefficient (𝑎1).  𝑎2𝑖 and 𝑎2𝑓 

are the initial and final values of the accelerating coefficient (𝑎2). 𝑡𝑚 is maximum 

number of iterations. 

 

 

 

 

 

 

Figure 2.13: Response of Gabor filter (a) sample ROI image, (b) symmetric Gabor filter with 5 scale and 8 

orientations, (c) response of the symmetric Gabor filter bank to ROI image in (a). 

Figure 2.14: Response of Gabor filter (a) sample ROI image, (b) anti-symmetric Gabor filter with 5 scale and 8 

orientations, (c) response of the anti-symmetric Gabor filter bank to ROI image in (a). 
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The acceleration rate is bounded as given in Eq. (2.29), 

 

|𝑎𝑘(𝑔𝑏 + 1) − 𝑎𝑘(𝑔𝑏)| ≤ 𝛼                                                                     (2.29)
 

 

Where, 𝛼 is the acceleration rate taken in [0.05, 0.1]. In order to bound the sum of the two 

boundaries we take the interval of [3, 4].  Assuming the total is bigger than 4, both 𝑎1 and 

𝑎2 are standardized as given in Eq. (2.30),  

 

𝑎𝑘 =
𝑎𝑘

(𝑎1 + 𝑎2)
∗ 4       𝑘 = 1, 2                                                              (2.30) 

 

 

The inertia weight 𝑤(𝑡) deals with the involvement of the previous velocity [163]. By 

changing 𝑤(𝑡) dynamically, the global and local search abilities are progressively 

changed.  

The inertia weight is characterized as given in Eq. (2.31)   

 

𝑊(𝑓) =
1

1 + 1. 5−2.6𝑓
∈ [0.4, 0.9]    ∀𝑓 ∈ [0, 1]                                       (2.31) 

 
 

                             Figure 2.15: Gabor energy feature representation of a sample ROI image. 
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𝑠𝑘 =
1

𝑃𝑠 − 1
∑ √∑(𝑥𝑖

𝑙 − 𝑥𝑗
𝑙)
2

𝑑

𝑙=1

𝑃𝑠

𝑗=1, j≠𝑖

                                                             (2.32) 

 

Here, 𝑠𝑘 is the mean distance measured using Euclidian metric. 𝑑 and 𝑃𝑠 are the number 

of dimensions and population size respectively. 𝑓 is evolutionary factor as given in Eq. 

(2.33) 

𝑓 =
𝑠𝑔𝑏 − 𝑠𝑚𝑖𝑛

   𝑠𝑚𝑎𝑥 −  𝑠𝑚𝑖𝑛                   
∈ [0, 1]                                                   (2.33) 

 

The value of evolutionary factor is larger in exploration state and turns out to be smaller 

in the convergence state. The maximal and minimal distances (𝑠𝑚𝑎𝑥 𝑎𝑛𝑑 𝑠𝑚𝑖𝑛) are 

determined by comparing all 𝑠𝑘 values. 𝑠𝑘 of the globally best particle is represented as 

𝑠𝑔𝑏. The global best position (𝑔𝑏) is the best particle position among all particles. Figure 

2.16 shows the flowchart of the proposed hybrid PSO. As the probability condition is 

satisfied then the two arbitrary particles are chosen and updated as given, 

 

𝑃1(𝑡 + 1) = 𝑃2(𝑡) + 𝜛 ∗ (𝑃1(𝑡) − 𝑃2(𝑡))                                        (2.34) 

 

𝑃2(𝑡 + 1) = 𝑃1(𝑡) + 𝜛 ∗ (𝑃2(𝑡) − 𝑃1(𝑡))                                         (2.35) 

 

Here, 𝜛 is the crossover operator in [0, 1]d.  

Further, the condition of mutation probability is explored, if it is satisfied then, at that 

point, mutation operator changes every particle according to the Eq. (2.36), 

 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝜁                                                                (2.36) 
 

 

Here, 𝜁 is a constant and defined as 𝜁 =0.1 ∗ (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑜𝑚𝑎𝑖𝑛 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑜𝑚𝑎𝑖𝑛). 
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Figure 2.16: Flowchart of the proposed hybrid PSO. 
 

 

It ought to be noticed that the mutation and crossover operators are changed in 

comparison of [164, 74] to acquire better outcomes over the traditional algorithms.  
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The PSO suffers from trapping in local minima and premature convergence. The 

convergence property of PSO can be utilized to achieve faster convergence in ANN 

models [165].   

The proposed work integrated PSO and back propagation to achieve faster convergence 

towards optimum. In this model the derivative term obtained through back propagation is 

relate to the velocity of each particle. The proposed approach proficiently works on the 

balance among exploration and exploitation. 

The updated velocity and position of the HPSO-ANN approach is given as  

 

𝑢(𝑡 + 1) = 𝑤(𝑡) ∗ 𝑢(𝑡) + 𝑎1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏(𝑡) − 𝑥(𝑡)) + 𝑎2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏(𝑡) − 𝑥(𝑡)) − 𝛼𝛥w        (2.37)  

 

 
𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑢(𝑡 + 1)                                                          (2.38) 

 

 

Here, 𝛥w is Back propagation component. The idea of moving averages of the slopes that 

upgrades the viability of the BP term as given in Eq. (2.37). Figure 2.17 shows the 

change in velocity for the PSO and the proposed HPSO-ANN.  

The update rule is defined as 

 

𝑦𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡                                                         (2.39) 
 

𝑒𝑡 = 𝛽2 ∗ 𝑒𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2                                                         (2.40) 

 

Eq. (2.40) can be written as a function of the gradients at all previous time steps as 

 
 

𝑒𝑡 = (1 − 𝛽2)∑𝛽2
𝑡−𝑗

𝑡

𝑗=1

∗ 𝑔𝑗
2                                                              (2.41) 

 

𝑦𝑡𝑐 =
𝑒𝑡

(1 − 𝜂𝑡1)
                                                                                (2.42) 

 



65 

 

 

 

𝑒𝑡𝑐 =
𝑠𝑡

(1 − 𝜂𝑡2)
                                                                                 (2.43) 

 

𝛥w=Δ𝑤𝑡−1 − 𝛿
𝑦𝑡𝑐

√𝑒𝑡𝑐 + 𝜀
                                                                   (2.44)

 

Where, 𝑦 and 𝑒 are moving averages, 𝑔 is gradient on current batch, 𝛽1 and 𝛽2 are hyper-

parameters of the algorithm, 𝛿 determine the learning rate and 𝜀 is a constant having 

value 10-8.  

 

 

 

 

2.6.2 Experimental results and discussion 

The recognition performance of the proposed method is evaluated by considering four 

contactless palm-print databases such as CASIA, IIT-Delhi, REST, and Tongji. Figure 

2.18 and Figure 2.19 shows the sample hand images of REST and Tongji databases.  The 

subsequent ROIs are cropped and resized to 128×128 pixels. The training and testing 

Figure 2.17: Formation of velocity vector (a) PSO [74] (b) Proposed HPSO with artificial neural network.  
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subsets are selected randomly and each contained around half of the subjects in the 

database. The subjects in training and testing subsets are disjoint. 

 

 

 

 

1) Test functions: The population distribution characteristics in a PSO process is 

explored on standard benchmark functions [136] as listed in Table 2.8. 

Algorithm 
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Function is unimodal that have one global optimum without any local 

optimum. The search algorithm converges fast and refines the response for 

high accuracy in unimodal space. 

Table 2.8: Benchmark test functions. 
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 Function is multimodal having one global minimum with several local minima. The 

number of local minima increases exponentially with the issue measurement [166]. The 

“threshold” esteem (in Table 2.8) to ensure whether a solution would be acceptable or 

Function Formula Optimum 
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Figure 2.18: Sample hand images of REST Palm-print database. 

 

Table 2.9: Shifted optimal test function. 
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not. The search behaviour of the hybrid PSO has been tested on the sphere function (in 

Table 2.8). To evaluate the performance of the proposed method, unimodal and 

multimodal shifted optimal test functions are generated as listed in Table 2.9.  The 

benchmark functions ought to be minimized which makes particles ready to move to the 

nearby position of the global optimum. The population distribution of PSO is observed 

using sphere function.  

 

                   Figure 2.19: Sample hand images of Tongji Palm-print database. 

 

 

1) Population distribution: Figure 2.20 shows the population distribution 

observed at various stages. The population in initial iteration is conveyed all 

through the search space without a control center as shown in Figure 2.20(a). 

The PSO learning behaviour where particles round to the position of the best 

particle is shown in Figure 2.20(b). The population converges to the best 

particle after 80 iterations. The elitist learning impacts the performance by 

aiding the multitude jump out of the neighborhood optima. Observational 

review shows that value of 𝛼 is [0.1 1.0] result in good performance on most 
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of the test functions.  During the experiments, 𝛿  (Eq. 2.44) taken in [0.05, 

0.1].  

 

2) Evaluation procedure: The accuracy of the proposed framework is assessed 

in both the verification and identification modes. For the verification mode, 

two biometric templates are compared to compute the Euclidean distance. The 

strategy was applied to the test subset and surveyed the recognition 

performance.  The performance measures recognition rate, sensitivity, 

specificity and accuracy are considered for evaluating the accuracy of 

biometric frameworks [19]. CMC curves depicts the identification rate as a 

component of rank are also used.  

 

 

 

 

The strategies in the writing that needn't bother with a training stage were 

assessed through a similar evaluation procedure. For this, we partition the 

database using a comparable cross validation procedure. 

 

Figure 2.20: Population distribution observed at various stages in a hybrid PSO process   for 

Sphere function. 
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3) Comparative analysis: The recognition rate of the proposed method and 

state-of-art methods such as Gabor with different scale and orientations, point 

grouping Gabor and deep learning-based methods as listed in Table 2.10. The 

proposed method achieves highest recognition rate of 98.79% and 98.21% on 

Tongji and CASIA databases respectively. The performance measures 

sensitivity, specificity and accuracy of the present work is compared with 

state-of-art methods texture based and deep learning-based methods (AlexNet, 

VGG-16 and VGG-19) are listed in Tables 2.11 to 2.14. Tables 2.11 and 2.12 

listed the performance of different methods on CASIA and IIT-Delhi 

databases respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the similar manner, the performance of different methods on Tongji and REST 

databases are listed in Tables 2.13 and 2.14 respectively. 

Database Method 

Gabor 

(3×5) 

Gabor 

(5×8) 

PG-Gabor  AlexNet VGG-16 VGG-19 Proposed 

CASIA 89.20 95.89 96.36 98.01 97.50 97.39 98.21 

IIT-Delhi 86.78 92.89 93.02 95.29 93.24 94.45 97.01 

Tongji 91.89 94.87 95.56 98.04 97.05 96.09 98.79 

REST 59.45 61.78 69.23 79.05 70.50 78.45 94.25 

Method 

Measures 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Gabor (3×5) 82.37 84.36 89.23 

Gabor (5×8) 89.13 92.14 91.89 

PG-Gabor 89.50 91.50 93.52 

AlexNet 90.48 95.67 96.23 

VGG-16 91.34 94.52 94.74 

VGG-19 90.50 92.50 94.20 

Proposed 97.01 98.25 97.58 

 Table 2.10: Recognition rate (%) for different methods. 

                                              Table 2.11: Performance of different methods on CASIA database. 
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As shown, the proposed method accomplished the best results on completely 

thought to be contactless palm-print databases.  Specifically, accomplished the 

highest classification accuracy among the reported methods. Figure 2.21 shows 

the convergence plot of various methods PSO, Genetic Search Algorithm (GSA) 

Method Measures 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Gabor (3×5) 79.34 81.36 81.78 

Gabor (5×8) 81.13 84.11 85.03 

PG-Gabor 85.09 88.54 90.21 

AlexNet 88.81 91.64 94.39 

VGG-16 90.34 92.03 92.64 

VGG-19 89.50 90.58 92.24 

Proposed 95.11 97.56 95.83 

Method Measures 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Gabor (3×5) 85.76 87.78 92.33 

Gabor (5×8) 89.78 94.56 93.92 

PG-Gabor 91.54 93.11 93.89 

AlexNet 92.86 96.78 97.31 

VGG-16 91.34 94.89 95.84 

VGG-19 90.81 93.58 94.89 

Proposed 98.11 98.91 98.18 

Method Measures 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Gabor (3×5) 68.17 70.11 71.13 

Gabor (5×8) 69.31 72.41 73.91 

PG-Gabor 81.07 83.51 85.51 

AlexNet 86.41 88.64 92.13 

VGG-16 89.31 89.12 89.74 

VGG-19 88.51 89.56 91.14 

Proposed 92.11 94.15 93.81 

                                      Table 2.12: Performance of different methods on IIT-Delhi database. 

                      Table 2.13: Performance of different methods on Tongji database. 

                                Table 2.14: Performance of different methods on REST database. 
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and the hybrid PSO. The method converges with 100 iterations to find the global 

optimum. The proposed method exhibits uniform accuracy for all considered 

databases. Proposed technique achieved an accuracy of 98.18%, sensitivity of 

98.11% and specificity of 98.91% because of its capacity to adjust the particular 

attributes of all databases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: Convergence plot of the proposed Hybrid PSO. 

Figure 2.22: CMC curves for the considered databases: (a) CASIA, (b) REST. 
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Gabor with 3 scale and 8 orientations achieved an accuracy of 92.33% where the 

Gabor filter with 5 scales with the same orientations achieved an accuracy of 

93.92%. The CMC curves shown in Figure 2.22 and Figure 2.23 affirm the better 

accuracy of the proposed method contrasted with the methods in the writing for 

all considered databases. The response time of the proposed method is compared 

                                             Figure 2.24: Response time (seconds). 

             Figure 2.23: CMC curves for the considered databases: (a) Tongji, (b) IIT-Delhi. 
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with Gabor filter-based method as shown in Figure 2.24. The figure clearly indicates that 

the proposed method takes less time for palm-print recognition. 

 

 

2.7 Conclusion 

In this Chapter, we developed palm-print recognition methods using two different Gabor 

filter-based methods namely Gabor filter with kernel-based full space FDA and Gabor 

filter with neural network to improve the performance of existing texture descriptors. 

Firstly, we implemented Gabor filter designed using the parameter estimation. Then, a 

kernel-based FDA is applied for dimension reduction of the high-dimensional Gabor 

features.  It reduces the computational complexity and feature dimensions. The method 

yields a high RR of 98.34% and least EER of 0.051% on PolyU database.  

Secondly, we design a contactless palm-print recognition method based on the integration 

of the texture descriptor and evolutionary algorithms.  Gabor filter bank is replaced by a 

single optimal Gabor filter and energy features are extracted. A two-stage hybrid PSO 

with artificial neural network is applied to optimize the filter parameters.  The method 

can attain better fitness results and prevent premature convergence. The remarkable 

results of 98.79% recognition rate were obtained. Experimental results shows that the 

proposed method, significantly outperforms the state-of-art methods.  
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Chapter 3 

Structure based Palm-print recognition: Local binary pattern-

based approach  

 

3.1  Introduction 

 

The use of palm-prints for user access and human authentication has increased in the last 

decade due to its unique and stable characteristics along with rich feature set (large area). 

In recent past, numbers of algorithms, to extract efficient and accurate features have been 

proposed. The palm-print features are extracted using coding-based methods including 

palm code [38], fusion code [43], ordinal code [45], and competitive code [44]. It has 

been found that using coding-based methods makes it difficult to fully exploit the scale 

attributes of palm-prints. The existing literature has demonstrated that the orientations of 

palm lines hold more steady and discriminative features contrasting with magnitude 

features. Jia et al. [167] proposed histogram of oriented lines (HOL), a variant of 

histogram of oriented gradients (HOG). Mokni et al. [168] proposed a feature extraction 

method that extracts the line and geometric features. Texture based approach extract 

texture features of given palm images. Texture features are not extracted uniformly, due 

to the variations in scale, orientation or other visual appearance. In the previous chapter 

Gabor filter-based methods gives satisfactory results but cannot be exploited the specific 

attributes of the palm-prints for example orientation and scale features, which restricts the 

palm-print recognition performance. 
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LBP is a powerful local image descriptor, which extract uniform patterns, is widely 

used in personal authentication [60]. 

Using a local distribution of uniform patterns, such as uniform LBP (ULBP), the 

palmprint recognition method in [61] was developed. Line and wrinkle-like 

characteristics, a type of homogeneous pattern, can be found in the texture of the 

palm. It describes a pattern with a consistent appearance and little discontinuities. The 

PolyU 2D, CASIA, and palmprint databases are used in experiments.  

Liao et al. [169] suggest a novel feature extraction method for texture classification. 

The features are less susceptible to histogram equalization and robust to image 

rotation. It is characterized by two feature sets: (a) dominant local binary patterns 

(DLBP) in a texture image and (b) additional features retrieved from circularly 

symmetric Gabor filter outputs. The dominant local binary pattern technique captures 

relevant textural information by using the most typically occurring patterns. Gabor-

based features strive to provide extra global texture data to the DLBP features. The 

experiments are conducted Outex, Meastex, CUReT and Brodatz texture image 

datasets. The suggested method offers the maximum classification accuracy under 

various image circumstances.  

Guo et al. [64] proposed the hierarchical multiscale local binary pattern (HM-LBP), a 

novel collaborative representation model for palm-print recognition. Non-uniform 

patterns can be used to extract useful information. Principal component analysis is 

used to minimise the feature dimension. Then, to properly use the discriminating 

information, a collaborative classification with HM-LBP is given. To prove its 

practicality and performance, the suggested algorithm is tested on PolyU database. 

The results show that the algorithm outperforms existing approaches in terms of 

recognition accuracy. Gray scale, rotation, and illumination can all be reduced to use 

this technique.  

A modified LBP and weighted SRC combination were suggested as a solution for 

coarse-to-fine palmprint recognition [65]. By using WACS-LBP, the invariant feature 
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vector of the local weighted histogram is extracted. The proposed method is therefore 

resistant to noise, variations in light, and rotation.   On the PolyU and CASIA, the 

proposed method is evaluated and contrasted with the current methods. The choice of 

parameters imposes restrictions on the procedure. Due to the edge gradient's higher 

level of consistency compared to pixel intensity, it will perform better to recognize 

objects using a descriptor based on edge gradient. Therefore, for recognizing faces 

and expressions, edge gradient will perform better than unique LBP [66]. According 

to the literature, the approaches covered above were unable to simultaneously exploit 

discriminant scale characteristics and discriminant orientation features. 

Considering the improvement presented by the LBP [60, 65, 69] in extracting palm-

print features with good recognition performance, this chapter details the theory of 

LBP to explore the multiscale edge-oriented palm-print features. Here, we developed 

a new descriptor named multi-scale edge angles LBP (MSEALBP) for palm-print 

recognition. Sobel vertical and horizontal edges of the ROIs have been used to 

produce the edge angle images. Then, a local binary pattern having multiple scales 

(MSLBP) is employed to the Sobel edge angle images. The resulting characteristics 

are formed into non-overlapping blocks and statistical calculations are implemented 

to form a texture vector. The method uses an optimal technique that improves the 

accuracy of the classifier by tuning the network parameters. The extracted texture 

features are applied as an input to the artificial neural network (ANN). Levenberg–

Marquardt is employed to develop an optimized network. The ANN structure is 

optimized to find out network parameters. The method has great generalization 

capacity and less training cost. In addition, new information can be added whenever 

without the need to re-train the whole network. PolyU [132], IIT-Delhi [134] and 

CASIA [133] palm-print databases are considered to validate the performance of our 

method. Comparative experiments were carried out to exhibit the accuracy of the 

proposed approach. Its high discrimination capacity and effortlessness in calculation 

have made it truly appropriate for online recognition framework. 
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3.2  Local binary pattern (LBP) 

Ojala et al. [60] originally proposed the standard LBP as a texture descriptor that 

measures neighbourhood evaluation in texture analysis finds microtextons in a 

surrounding area. Figure 3.1 shows an example of LBP code. By comparing nearby 

pixels with the pixel in the center of them, a binary pattern is created [62].  

The following is the definition of the LBP operator: 

 

𝐿𝐵𝑃𝑅,𝑃(𝑥𝐶) = ∑2𝑛𝑆(𝑥𝑅,𝑃,𝑛 − 𝑥𝑐)

𝑃−1

𝑛=0

                                              (3.1) 

 

 

𝑆(𝑥) = {
1, 𝑥 ≥ 0
0,        𝑥 < 0

                                                                         (3.2) 

 

Where, 𝑥𝑐 is the gray value of the central pixel, 𝑥𝑅,𝑃,𝑛 is the value of its 𝑃𝑡ℎ neighbor,  

𝑃 is the number of associated neighbors, while 𝑅 is the neighborhood's radius.  

LBP is limited by some inherent problems such as gray-scale and rotation variant, 

non-directional patterns, and sensitive to certain texture patterns.      

 

 

 

 

A gray-scale and rotation invariant texture operator based on LBP i.e. Multi-scale LBP 

was proposed to enhance the LBP features [170]. It uses circular neighborhood pixels 

Figure 3.1:  Example of LBP [62] computation for a 3×3 window. 
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having dissimilar spatial sampling 𝑃 and different radius value 𝑅. Figure 3.2 shows LBP 

with different (𝑃, 𝑅) sets.  

The MSLBP is computed as given in Equation (3.3) 

𝐿𝐵𝑃𝑃,𝑅
𝑀𝑆 = ∑𝑆(𝑔𝑝 − 𝑔𝑐) × 2

𝑝

𝑃−1

𝑃=0

                                                        (3.3) 

                                                            

The multi-scale LBP is sensitive to certain pattern of texture features and also produce 

non-directional patterns. 

 

 

 

 

 

Certain LBP patterns were discovered to form the basic textural microstructures, and 

these patterns named as uniform patterns.  

𝑈(𝐿𝐵𝑃𝑅,𝑃) =   ∑|𝑆(𝑥𝑅,𝑃,𝑛 − 𝑥𝑐) − 𝑆(𝑥𝑅,𝑃,𝑚𝑜𝑑(𝑛+1,𝑃) − 𝑥𝑐)|

𝑃−1

𝑛=0

               (3.4)  

By organizing uniform patterns into 𝑝 + 1 different categories, Ojala et al. [170] 

presented a rotation invariant uniform descriptor as follows:  

Figure 3.2:  Representation of LBP with different (P, R) sets [170] (a) (P=8, R=1), (b) (P=8, R=2), (c) 

(P=16, R=2),(d)(P=24, R=3). 
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𝐿𝐵𝑃𝑅,𝑃
𝑅𝐼𝑈2 = {

 ∑ 𝑆(𝑥𝑅,𝑃,𝑛 − 𝑥𝑐),

𝑃−1

𝑛=0

      𝑖𝑓   𝑈(𝐿𝐵𝑃𝑅,𝑃) ≤ 2

𝑃 + 1,        𝑒𝑙𝑠𝑒                          

                                         (3.5) 

 
 

To improve the discriminative power of LBP, Guo et al. [171] developed Completed LBP 

(CLBP). The central pixel has the following encoding: 

 

  𝑑𝑃 = 𝑥𝑅,𝑃 − 𝑥𝑐                                                                   (3.6) 
 

𝜒𝑝 = 𝑠(𝑥𝑅,𝑃 − 𝑥𝑐) 

 

                                                                          𝐴𝑃 = |𝑑𝑃| 
 

𝐴𝑃 = |𝑥𝑅,𝑃 − 𝑥𝑐| 

 

𝐶𝐿𝐵𝑃𝑅,𝑃 = ∑2𝑛𝑆(𝐴𝑃 − 𝑢)

𝑃−1

𝑛=0

                                                   (3.7) 

 

𝐶𝐿𝐵𝑃_𝐶𝑅,𝑃 = 𝑆(𝑥𝑐 , 𝐶𝐹)                                                              (3.8) 

 

Where, 𝑑𝑃 characterizes the image local structure at central point, 𝐴𝑃 is the magnitude 

component. 𝑢 is a threshold and here set as the mean value of  𝐴𝑃 from the whole 

image.  

3.3 Motivation 

1. The texture descriptor discussed are unable to successfully exploit the advantages 

provided by discriminant orientation features and the discriminant scale features 

simultaneously. 

2. The majority of texture descriptors are concerned with encoding local intensity 

variations between a center pixel and its sample points. They can't explain the 

intensity ordering between adjacent sample points. Also they can't detect long-
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range pixel relationships outside of a compact region. The issue of learning robust 

and discriminative characteristics for palm-print recognition remains a fascinating 

and demanding topic. 

3.4 Implementation of proposed approach using multi scale edge angles 

LBP (MSEALBP) 

This section elaborates the proposed multi-scale palm-print recognition process. The 

block diagram of the proposed scheme is shown in Figure 3.3. The first step is 

preprocessing, which extracts aligned and stable ROI from input palm-print images. 

The resulting ROI images are filtered with Sobel gradient operator in both vertical 

and horizontal directions to produce directional angle images. The directional angle 

images are, then passed through multi-scale LBP to produce uniform patterns of 

palm-prints. The uniform images are divided into non-overlapping blocks of size 5×5 

pixels. Then, coefficient of variation (CV) value of each block is computed. Further, 

the CV values of each block are concatenated to form a 1-D vector for a palm-print. 

Then, the resulting vector is feed as an input into the ANN [32]. PSO is utilized to 

find out network parameters. 

 

 

 

Figure 3.3:  The block diagram of the proposed scheme. 
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3.4.1 Proposed Multi-scale edge angles LBP (MSEALBP) 

Multi-scale edge angles LBP is proposed to extract effective features of palm-

prints. It produces uniform patterns as well as gray-scale and rotation invariant 

texture information. Due to the utilization of phase information, it produces less 

sensitive directional patterns to the pixel level values. Firstly, the ROI image is 

filtered with gradient operator mask such as Robert, Prewitt and Sobel in both 

horizontal and vertical directions. The magnitude and phase information can be 

computed by fusing horizontal and vertical operators as given in equation (3.9) 

and (3.10). 

|𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2                                                                    (3.9) 

                                     
 

  𝜃 = 𝑎 𝑡𝑎𝑛 2 (𝐺𝑦, 𝐺𝑥)                                                          (3.10) 

                                                                                     

 

where |𝐺| is the gradient magnitude, 𝜃 represents angle direction and 𝑎𝑡𝑎𝑛2 

represents the 4-quadrant inverse as discussed in [172]. 

The gradients of certain patterns are described more effectively with less 

sensitivity to the pixel values by angle features than magnitude features. The 

magnitude can be effected by noise, brightness and range problems [173]. Also, 

the directional information produced by the magnitude calculation is not robust as 

in angle calculation [174]. Hence, the angle direction of the Sobel operator can be 

designed to achieve consistent performance. Figure 3.4 shows Sobel horizontal 

operator and Sobel vertical operator. The experimental results proves that the 

angle direction gives better results as compared to the magnitude. Figure 3.5 

shows the resulting sample images of the proposed MSEALBP. 
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Equation (3.3) has been modified to calculate proposed MSEALBP on the edge 

angle direction as follows:  

 

𝐿𝐵𝑃𝑃,𝑅
𝑀𝑆𝐸𝐴 = ∑𝑆(𝑔𝑡𝑝 − 𝑔𝑡𝑐) × 2

𝑝,

𝑃−1

𝑃=0

 𝑆(𝑔𝑡𝑝 − 𝑔𝑡𝑐) = {
1, 𝑔𝑡𝑝 ≥ 𝑔𝑡𝑐
0,        𝑔𝑡𝑝 < 𝑔𝑡𝑐

     (3.11)  

 

where, 𝑔𝑡𝑝 and 𝑔𝑡𝑐 are the 𝑝𝑡ℎ neighbor pixel value and the center pixel value of 

each sub-block after applying Sobel angle direction images respectively.  

The proficiency of the proposed approach is evaluated by using different values of 

𝑃 and R  of palm-print patterns. Before, the blocking operation, the pixels of the 

ROI image are allocated with the values of MSEALBP of each palm-print. The 

extracted images will be divided into non-overlapping blocks. Equation (3.12-

3.14) are used to compute Coefficient of variation values of each block.  

 

𝑀𝑏𝑙 =
1

𝑛
∑𝑏𝑙𝑖

𝑛

𝑖=1

                                                                            (3.12) 

                                                                                       
 

Figure 3.4:  Sobel operator mask [174] (a) horizontal operator, (b) vertical operator. 
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𝑆𝑇𝐷𝑏𝑙 = √
1

𝑛 − 1
∑(𝑏𝑙𝑖 −𝑀𝑏𝑙)

2

𝑛

𝑖=1

                                          (3.13) 

                 
     

𝐶𝑉𝑏𝑙 =
𝑆𝑇𝐷𝑏𝑙
𝑀𝑏𝑙

                                                                           (3.14) 

 

Where 𝑛 is the number of pixels in each block, 𝑏𝑙 is the block size here it is 5×5 

pixels, 𝑀𝑏𝑙 refers to average of block pixels, 𝑖 is the pointer of pixels in a block, 

𝑆𝑇𝐷𝑏𝑙 is standard deviation and 𝐶𝑉𝑏𝑙 is the coefficient of variation. The CV values 

of palm-prints will be concatenated to form a 1-D vector for further classification 

stage. The 1-D feature vector is feed as an input to the classification algorithm.  

 

 

 

Figure 3.5:   Multi-scale edge angle LBP operator results: Each row shows a palm-print; from the 

Top; PolyU palm-print, IIT-Delhi hand im-age, CASIA palm-print databases respectively. Each 

column depicts; from the left: original palm images, the ROI extracted images, horizontal edge 

images, vertical edge images, Multi-scale LBP of the angle images respectively 

 

Within the customary classifiers, network structure is taken into account to be fixed and 

known to be as un-optimized network structure [175]. The accuracy of a fixed network 

structure depends on the network parameters: (a) number of hidden layers (𝐻𝐿𝑛), (b) 
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number of neurons in each hidden layer (𝑁𝐻𝐿𝑛).  These parameters are not defined 

properly, which results poor accuracy for some categories [176].  This work uses an 

optimization technique that improves the accuracy of the classifier by tuning the network 

parameters.  Levenberg–Marquardt [177] is employed to develop an optimized network. 

The ANN structure is optimized to find out number of hidden layers and number of 

neurons in each hidden layer. The PSO optimization technique is used and then palm-

print classification is carried.  

In this work, PSO is effectively employed to get optimal values of (𝐻𝐿𝑛) and (𝑁𝐻𝐿𝑛) of 

the neural structure to maximize the fitness function (accuracy). The updated velocity of 

the PSO is computed from Eq. (2.25) and the updated particle position is computed from 

Eq. (2.26).  

The inertia weight 𝑤(𝑡) manages the contribution of the previous velocity. During the 

experiment, 60% samples are used to minimize the error function by adjusting weight 

vector and reaming samples are used for testing. 

The steps of the ANN with PSO are given as follows: 
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3.4.2 Experimental results and discussion 

The proposed framework is validated on three different large-scale publicly 

accessible palm print databases viz.  (a) PolyU palm-print, (b) CASIA palm-print 

and (c) IIT-Delhi palm-print.                                                                                                         

The sample hand images of PolyU and CASIA databases are shown in Figure 3.6 

and Figure 3.7 respectively. In Figure 3.8 sample hand images of IIT- Delhi 

database is depicted. In the experimental setup of proposed method, primarily 

60% images are used for training and remaining images are used for testing for all 

the three databases. There is no overlap in training and testing samples.   

 

               Figure 3.6: Hand images (PolyU database). 

 

                Figure 3.7: Hand images (CASIA database). 
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The ROI extracted images of PolyU and CASIA databases are shown in Figure 

3.9 and Figure 3.10 respectively. Figure 3.11 shows the sample ROI images of 

IIT-Delhi database.  

Various edge analysis techniques such as Roberts, Prewitt and Sobel have been 

examined on the three palm-print databases to decide the gradient operator for 

filtering the ROIs. The summary of parameters used in the proposed method is 

listed in Table 3.1.  

 

 

                  Figure 3.8: Hand images (IIT-Delhi database). 

 

 

 

 

 

 

 

 

 

Figure 3.9: ROI images (PolyU database). 
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After extracting the ROI using preprocessing, Sobel horizontal and vertical edges 

operator are applied on the ROI images to compute the magnitude and angle.  

As the mask weights of Sobel operator is higher than the Robert and Prewitt it 

discloses the key palm-print features in better fashion [62]. Table 3.2 shows the 

comparison of EER for magnitude and angle of different edge detection methods. 

The EER for the PolyU database was diminished from 2.79% using the magnitude 

to 0.26% with the angle and for IIT-Delhi database from 4.01% to 3.25%.   

Also, EER was decreased from 5.11% using the magnitude to 2.76% with the 

angle for CASIA database. The performance of angle in terms of EER is better 

than magnitude as magnitude is easily effected by the illumination, imagining 

contrast and camera gain of an image. Furthermore, Sobel angular approach 

utilizes the ratio of the outputs of vertical and horizontal operators, resulting in 

producing effective information by angle patterns in comparisons to magnitude 

patterns. The results of Sobel are better than Prewitt, because Sobel is less 

effected by image contrast in comparisons to Prewitt. The EER for PolyU 

database was diminished from 1.31% using the magnitude to 1.05% with the 

angle for the Prewitt operator. Prewitt and Sobel operations utilize both horizontal 

and vertical edges, while Robert considered only diagonal edges.  

 

 

 

 

 

 

 

 

 

             

                    Figure 3.10: ROI images (CASIA database). 
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                   Figure 3.11: ROI images (IIT-Delhi database). 

 

The EER for PolyU database was increased from 1.53% using magnitude to 2.19 

% with the angle and from 8.19% to 9.28% for the IIT-Delhi database for Robert 

operator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Value 

Population Size, 
s

p  30 

accelerating coefficients 𝑎1 = 1.5, 𝑎2 = 2 

inertia weight w  𝑤𝑚𝑖𝑛 = 0.4,𝑤𝑚𝑎𝑥 = 0.9 

Number of maximum iterations (𝐼𝑚𝑎𝑥) 500 

number of hidden layers (𝐻𝐿𝑛) 5 

number of neurons in each hidden layer (𝑁𝐻𝐿𝑛) 21, 7, 10, 3, 30 

Range of (𝐻𝐿𝑛) (𝐻𝐿𝑛)𝑚𝑖𝑛 = 1, (𝐻𝐿𝑛)𝑚𝑎𝑥 = 10 

Range of (𝑁𝐻𝐿𝑛) (𝑁𝐻𝐿𝑛)𝑚𝑖𝑛 = 1, (𝑁𝐻𝐿𝑛)𝑚𝑎𝑥 = 50 
 

                     Table 3.1: Summary of the parameters of the optimized neural network. 

 

 

 

          Table 3.2: Comparison of EER for magnitude and angle of different edge detection methods. 

 
 

Database 

EER 

Roberts Prewitt Sobel 

Magnitude Angle Magnitude Angle Magnitude Angle 

PolyU database 1.53 % 2.19% 1.31% 1.05% 2.79% 0.26% 

CASIA   Database 8.45% 8.34% 3.98% 7.45% 5.11% 2.76% 

IIT-Delhi database 8.19 % 9.28% 4.18% 4.17% 4.01% 3.25% 
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Multi-scale LBP (MSLBP) as discussed in section 3.4.1 is applied on the resulting 

Sobel edge angle images to obtain the uniform patterns of palm-prints. The 

MSLBP is tested for different values of neighbor Pixel (P) and Radius (R) on 

PolyU, CASIA and IIT-Delhi palm-print databases for Robert, Prewitt and Sobel 

operators as listed in Table 3.3, 3.4 and 3.5 respectively. The best recognition 

performance in terms of EER is achieved using the Sobel angles LBP with a 

multi-scale parameter of P=8 and R=2 for all three palm-print databases.  The 

percentage EER achieved for P=8, R=2 is 0.26%, 2.76% and 3.25% on PolyU, 

CASIA and IIT-Delhi databases respectively. As the number of neighboring 

pixels (P) relates to the amount of processed information, increasing its value will 

increase the redundant information processed. Similarly, increasing the value of 

radius (R) greater than 2 will cause a loss of the micro texture information while 

decreasing the value of R less than 1 will incorporate the miniature surfaces and 

the implanted noise also.  

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

                

 

Parameters 

 

 

EER 

Roberts Prewitt Sobel 

Magnitude Angle Magnitude Angle Magnitude Angle 

P=8 R=1 1.98% 2.78% 2.01% 1.67% 3.02% 1.01% 

R=2 1.53 % 2.19% 1.31% 1.05% 2.79% 0.26% 

P=16 R=2 1.88% 2.95% 2.56% 2.01% 2.99% 1.11% 

R=3 2.88% 3.67% 4.12% 3.09% 4.37% 2.59% 

P=24 R=3 3.78% 4% 4.79% 3.74% 4.99% 3.58% 

 

Parameters 

 

 

EER 

Roberts Prewitt Sobel 

Magnitude Angle Magnitude Angle Magnitude Angle 

P=8 R=1 8.89% 9.88% 4.01% 8.63% 6.09% 4.78% 

R=2 8.45% 8.34% 3.98% 7.45% 5.11% 2.76% 

P=16 R=2 8.81% 9.95% 4.68% 9.01% 5.45% 4.51% 

R=3 9.08% 10.67% 6.02% 9.78% 7.37% 5.09% 

P=24 R=3 10.78% 10.87% 9.79% 9.94% 7.46% 7.76% 

           Table 3.3: Comparison of EER for different values of neighbor pixels (P) and radius (R) of  

           various edge detection methods on PolyU database. 

Table 3.4 Comparison of EER for different values of neighbor pixels (P) and radius (R) of  

various edge detection methods on CASIA database. 
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To obtain CV, the resulting uniform images obtained from MS-LBP are divided 

into N×N non-overlapping blocks. The performance of the proposed framework is 

analyzed over the different block size of 3×3, 5×5, 7×7, 9×9, 11×11, 13×13and 

15×15 on all three palm-print database as shown in Figure 3.12. 

 

 

 

 

The best recognition performance is achieved for the block size of 5×5, as from 

the experiment it is observed that by changing impeding size to more than or not 

exactly the reasonable size, raises the error rate. The best EER value is obtained 

with a block size of 5×5 is 0.26 % and 2.76% and 3.25% for PolyU, CASIA and 

IIT-Delhi palm-print databases respectively.  

 

Parameters 

 

 

EER 

Roberts Prewitt Sobel 

Magnitude Angle Magnitude Angle Magnitude Angle 

P=8 R=1 8.77% 9.08% 5.96% 5.06% 5.02% 4.01% 

R=2 8.19 % 9.28% 4.18% 4.17% 4.01% 3.25% 

P=16 R=2 8.56% 9.95% 5.98% 5.69% 4.93% 4.89% 

R=3 9.11% 10.01% 7.78% 7.09% 6.30% 5.09% 

P=24 R=3 10.14% 10.99% 9.23% 7.23% 6.99% 6.58% 

                        Figure 3.12: EER (%) of proposed method for different block sizes. 

Table 3.5 Comparison of EER for different values of neighbor pixels (P) and radius (R) of  

various edge detection methods on IIT-Delhi database. 
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Table 3.6 shows the performance of the suggested neural network structure in 

terms of accuracy, sensitivity and specificity. The method yields an accuracy of 

98.52%, specificity of 98.60% and sensitivity of 92.50% for P=8, and R=2. In the 

similar manner, CASIA and IIT-Delhi databases generates an accuracy of 97.85% 

and 95.32% respectively.  

The CMC curves are created by collecting the viable ANN yield esteems from the 

summation layer and remapping these qualities as per the ANN characterizations 

[178]. Comparison of CMC curve of the proposed method with other methods 

such as LBP, LDP, DGLBP, HOL, VGG-16 and VGG-19 on PolyU palm-print 

databases is shown in Figure 3.13. For CASIA and IIT-Delhi database, the 

comparative CMC curve are shown in Figure 3.14 and 3.15 respectively. The 

method is compared with the existing methods discussed in literature and yields 

better performance in terms of EER and accuracy. Table 3.7 listed the percentage 

EER comparison of the proposed method with existing method. Directional 

gradient LBP (DGLBP) proposed by Michael et al. [62] gives an EER of 1.52%, 

6.45% and 8.34% on PolyU, CASIA and IIT-Delhi databases respectively. Neural 

network-based method VGG-16 and VGG-19 yields EER of 5.14% and 5.29% 

respectively. 

 

                   Table 3.6: Performance of LBP with different (P, R) sets. 

 

 

 

 

 

 

 

 

 

Database Parameter 

(P=8, R=1) (P=8, R=2) (P=16, R=2) (P=16, R=3) (P=24, R=3) 

PolyU  Specificity (%) 94.52 98.60 91.50 91.89 92.14 

Accuracy (%) 94.74 98.52 93.32 90.34 91.89 

Sensitivity (%) 91.34 92.50 89.50 86.37 89.13 

CASIA Specificity (%) 96.00 98.73 95.71 93.45 87.15 

Accuracy (%) 93.68 97.85 92.31 89.56 83.76 

Sensitivity (%) 90.48 94.14 89.86 85.24 80.13 

IIT-Delhi Specificity (%) 95.62 96.88 95.34 89.02 89.29 

Accuracy (%) 93.62 95.32 92.12 86.29 88.12 

Sensitivity (%) 88.84 89.75 89.13 82.14 84.12 
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The best recognition performance is observed for the proposed method with percentage 

EER as 0.26%, 2.76% and 3.25% on PolyU, CASIA and IIT-Delhi databases 

respectively. The proposed method drives better results as it produces uniform patterns 

and rotation invariant texture information, which enhances the performance. 

 

Figure 3.13: CMC curve comparison performance of different methods with proposed 

one on PolyU database.  

Figure 3.14: CMC curve comparison performance of different methods with proposed 

one on CASIA database. 
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A comparative analysis of the proposed framework with the state-of-art methods is 

tabulated in terms of accuracy is listed in Table 3.8. Tarawneh et al. [179] proposed 

neural network-based methods that yields an accuracy of 98.12% for VGG-16 and 

98.02% for VGG-19. The accuracy of the proposed classifier is 98.52% for PolyU 

database, 97.85% for CASIA database and 95.32% for IIT-Delhi database.  

Reference Method EER (%) 

PolyU IIT-Delhi CASIA 

Wang et al. [189] Local binary pattern (LBP) 2.12 10.79 4.37 

Jabid et al. [190] Local directional pattern (LDP) 3.45 11.87 4.84 

Michael et al. [62] Directional gradient LBP (DGLBP) 1.52 8.34 6.45 

Jia et al. [167] HOL 3.98 6.70 4.62 

Tarawneh et al. 

[179] 

VGG-16 

VGG-19 

5.14 

5.29 

7.44 

7.75 

7.86 

7.84 

Proposed Multi-scale Sobel Angles LBP with (P=8, R=1) 

Multi-scale Sobel Angles LBP with (P=8, R=2) 

Multi-scale Sobel Angles LBP with (P=16, R=2) 

Multi-scale Sobel Angles LBP with (P=16, R=3) 

Multi-scale Sobel Angles LBP with (P=24, R=3) 

1.01 

0.2 

1.11 

2.59 

3.58 

4.01 

3.25 

4.89 

5.09 

6.58 

4.78 

2.76 

4.51 

5.09 

7.76 

            Table 3.7: EER (%) of the proposed method compared with existing methods. 

Figure 3.15: CMC curve comparison performance of different methods with proposed 

one on IIT-Delhi database.  
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The descriptor based on edge gradient will give preferable recognition performance 

because the edge gradient is more consistent than the pixel intensity. The edge 

gradient will give better outcomes over unique LBP for face and expression 

acknowledgment [177]. Hence, the performance of the proposed method is better in 

terms of EER is 0.26% and accuracy of 98.52% on the PolyU database.  

 

 

 

 

 

 

 

 

 

3.5 Implementation of proposed approach using LBP and multi 

feature learning 

The contactless database includes posture, translation, and scale variations, making 

palm-print detection more understandable and reliable [180]. Because of the COVID-

19 outbreak, most contact-based biometric recognition systems have become 

inconvenient due to hygiene concerns. Contactless palm-print recognition 

frameworks enable persons to achieve high accuracy through less obligatory and 

extremely useable ways that do not require the palm to make touch with a surface. In 

existing literature, various methods have been proposed for palm-print recognition 

[59]. Texture is an essential characteristic of many kinds of images.  

Reference Method Accuracy (%) 

PolyU IIT-Delhi CASIA 

Wang et al. [189] Local binary pattern (LBP) 96.65 92.81 95.67 

Jabid et al. [190] Local directional pattern (LDP) 93.78 85.16 94.09 

Michael et al. [62] Directional gradient LBP (DGLBP) 97.41 94.04 95.29 

Jia et al. [167] HOL 96.11 92.90 96.01 

Tarawneh et al. 

[179] 

VGG-16 

VGG-19 

98.00 

98.02 

93.64 

94.45 

96.61 

96.57 

 

Proposed 

Multi-scale Sobel Angles LBP with (P=8, R=1) 

Multi-scale Sobel Angles LBP with (P=8, R=2) 

Multi-scale Sobel Angles LBP with (P=16, R=2) 

Multi-scale Sobel Angles LBP with (P=16, R=3) 

Multi-scale Sobel Angles LBP with (P=24, R=3) 

94.74 

98.52 

93.32 

90.34 

91.89 

93.62 

95.32 

92.12 

86.29 

88.12 

93.68 

97.85 

92.31 

89.56 

83.76 

         Table 3.8: Accuracy (%) of the proposed method compared with existing methods. 
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Retrieving discriminative yet stable texture features is difficult due to extensive 

texture patterns and uncertain imaging circumstances [10, 53, 54, 60]. The majority of 

texture descriptors are concerned with encoding local intensity variations between a 

center pixel and its sample points. They can't explain the intensity ordering between 

adjacent sample points. They can't detect long-range pixel relationships outside of a 

compact region. The issue of learning robust and discriminative characteristics for 

palm-print recognition remains a fascinating and demanding topic. The method has 

been evaluated on four contactless palm-print databases with images of varying 

quality and resolution.  

3.5.1 Proposed multi feature learning  

Here, we developed an encoding scheme of multi-view feature learning based on 

robust texture description. Two complementary robust operators, one with 

dominating directional pattern (DP) and the other with the texture patterns (TP), 

extract multi-view information simultaneously. The DP and TP are combined via 

central pixel encoding to construct data vectors. Further, we learn feature 

mapping to project the multi-view data into hash codes. The pipeline of the 

proposed framework is illustrated in Figure 3.16. 

1) Directional Patterns (DP): Our operator is primarily concerned with 

ranking approaches that are insensitive to monotonic photometric 

modifications. For each central pixel, the proposed operator uses 

neighbourhood ordinal data to describe the intensity connections between 

nearby sample locations [181, 89]. Figure 3.17 shows the proposed 

descriptor. 

• Dominant direction encoding: Given an image 𝐹  having a 

central pixel 𝑥, calculate the average grey values of local image 
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regions in the vicinity of the central pixel and nearby sample 

points: 

𝜂𝑅,𝑃 = 𝜆(𝐵𝑃,𝑅,𝑚)                                                 (3.15) 

 

Further, the nearby sample points are rotated in relation to their 

dominating direction. The location of the sample point well with 

highest grey difference nearer to the center pixel is regarded the 

dominant direction [182].  

 

 
Figure 3.16: Representation of the proposed methodology. 
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𝜂𝑐 = 𝜆(𝐵𝑐,𝑚)                                                        (3.16) 

 

(𝜂0,𝑅
′ , . . . , 𝜂𝑃−1,𝑅

′ ) ∶= (𝜂𝜑,𝑅, . . . 𝜂𝑃−1,𝑅 , 𝜂0,𝑅, … , 𝜂𝜑−1,𝑅)            (3.17) 

 

• Encoded features: Upon establishing the dominant direction, the 

sampling sequence is rotated in a circle till the point labeled by 𝜑  

is presented from the first position: 

 

𝜑 = max
0≤𝑃<𝑃−1

|𝜂𝑃,𝑅 − 𝜂𝑐|                                        (3.18) 

 

 

The points in the rotational sample sequence are then evenly 

divided into numerous groups. Each group points are evenly spread 

around the circle. To achieve lower dimensions of coded 

characteristics, we reduce the number of points for each group to 

four, makes a total of 𝑙 = 𝑃 4⁄  categories for each sample sequence. 

 

𝜂𝑖
′ =

{
 
 

 
 (𝜂0,𝑅

′ , 𝜂𝑙,𝑅
′ , 𝜂2𝑙,𝑅

′ , 𝜂3𝑙,𝑅
′ ),              𝑖 = 1

(𝜂1,𝑅
′ , 𝜂𝑙+1,𝑅

′ , 𝜂2𝑙+1,𝑅
′ , 𝜂3𝑙+1,𝑅

′ ),

⋮

𝑖 = 2
⋮

(𝜂𝑙−1,𝑅
′ , 𝜂2𝑙−1,𝑅

′ , 𝜂3𝑙−1,𝑅
′ , 𝜂𝑃−1,𝑅

′ ), 𝑖 = 𝑙

                                (3.19) 

 

Furthermore, in each group, we preserve the intensity order 

connections between surrounding sampling points: 

 

𝐸𝑃,𝑅,𝑖 = 𝑓(𝛽(𝜂𝑖
′))                                                     (3.20) 
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2) Texture Patterns (TP): To illustrate long-range interactions, the 

suggested operator is conceptually linked to non-local neural networks 

[183]. The global restrictions [184, 185] are used by the suggested 

operator. The difference is that in TP, non-local image redundancy is used 

to produce numerous new global image data [186]. Initially, for a given 

image we arrange the gray values from all central pixels (𝑥) in increasing 

order and then divide the ordered pixels into (𝑄)  regular intervals [187]. 

Then, for each interval, calculate an anchor: 

 

(𝜂𝑐1
′ , … , 𝜂𝑐𝐾

′ ) ∶= 𝑠𝑜𝑟𝑡(𝜂𝑐1, … , 𝜂𝑐𝐾)                                    (3.21) 
 

𝑔𝐼𝑡 =
1

⌊
𝐾

𝑄
⌋

∑ 𝜂𝑐𝑘
′

𝑡⌊
𝐾

𝑄
⌋

𝑘=(𝑡−1)⌊
𝐾

𝑄
⌋+1

                                                     (3.22) 

Furthermore, we use an extended 𝑟𝑖𝑢2 to represent the intensity variations 

between nearby data samples and each anchor: 

       Figure 3.17: Representation of the proposed descriptor. 
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𝑈(𝑇𝑃𝑃,𝑅) =   |𝑆 (𝜂𝑃−1,𝑅 − tIg
) − 𝑆 (𝜂0,𝑅 − tIg

)| + ∑ |𝑆 (𝜂𝑃,𝑅 − tIg
) −𝑃−1

𝑝=1

𝑆 (𝜂𝑃−1,𝑅 − tIg
)|                                                                                                    (3.23)   

 

𝑇𝑃𝑃,𝑅,𝑡
𝑟𝑖𝑢2 =

{
 
 
 

 
 
 ∑𝑠(𝜂𝑃,𝑅 − 𝑔𝐼𝑡),

𝑃−1

𝑝=0

𝑈(𝑇𝑃) ≤ 2

𝑃 + 1, 𝑈(𝑇𝑃) = 4
𝑃 + 2, 𝑈(𝑇𝑃) = 6
𝑃 + 3, 𝑈(𝑇𝑃) = 8
𝑃 + 4, 𝑈(𝑇𝑃) = 10
𝑃 + 5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                         (3.24) 

 

Now, we transform the grey values into binary values using center 

operator as discussed in [171]: 

 

𝐶𝑃,𝑅 = 𝑆(𝜂𝑐 , 𝑐𝐹)                                                (3.25) 

 

Then, for each central pixel, we adopt joint feature encodes that construct 

two different types of texture data: 

 

𝐷1 = 𝐷𝑃𝑃,𝑅,𝑖 + 𝐶𝑃,𝑅 × 𝑃                                  (3.26) 

 

𝐷2 = 𝑇𝑃𝑃,𝑅,𝑗 + 𝐶𝑃,𝑅 × (𝑃 + 6)                        (3.27) 

 

The 𝐷1 is the dominant directional vector and 𝐷2 is the texture vector. The 

multi feature vector includes both 𝐷1 and 𝐷2 vectors.  
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3) Multi feature learning: We aim to learn the most discriminative features 

from the 𝐷1 and 𝐷2. The respective steps are given as follows: 

Step1: let xp,i
y
ϵUdy×1 is the 𝑦𝑡ℎ feature vector of the pth pixel of the ith 

palm-print sample. xp,i
D1 is the directional vector and xp,i

D2  is texture vector. 

The proposed multi-view feature learning aims to learn S hash functions to 

map the feature vectors as given in equation (3.28) 

 

𝑎𝑝,𝑖
𝑦
=
𝑠𝑔𝑛((𝑀𝑦)𝑇𝑥𝑝,𝑖

𝑦
) + 1𝑆×1

2
                                         (3.28) 

 

here,  𝑀𝑦 = [𝑀1
𝑦
, 𝑀2

𝑦
 , 𝑀3

𝑦
, … ,𝑀𝑘

𝑦
 ] is the projection matrix. 𝑠𝑔𝑛(𝑥) is sign 

function. 1𝑆×1 is a vector of element 1. 

Step 2: Now, we define the objective function as   

 

min 𝐽(𝑀𝑦)

𝑀𝑦 = ∑ (𝜇𝑦)𝜆𝑌=2
𝑦=1 (∑ ∑ ‖𝑏𝑝,𝑖 − (

1

2
)
𝑆×1

− (𝑀𝑦)𝑇𝑎𝑝,𝑖
𝑦
𝑥𝑝,𝑖
𝑦
‖
2

𝑁
𝑖=1

𝑃
𝑝=1 −

𝜎1∑ ∑ ‖𝑎𝑝,𝑖
𝑦
−

1

𝑁
∑ 𝑎𝑝,𝑖

𝑦𝑁
𝑖=1 ‖

2
𝑁
𝑖=1

𝑃
𝑝=1 ) − 𝜎2∑ ∑ ‖𝑎𝑝,𝑖

1 − 𝑎𝑝,𝑖
2 ‖

2𝑁
𝑖=1

𝑃
𝑝=1            (3.29)  

 

Here, 𝑏𝑝,𝑖 is binary code vector, 𝑁 is number of training images. 𝜇𝑦 is 

weight of the 𝑦𝑡ℎ multi-view data, 𝜆 is the control parameter for weight. 𝜎1 

and 𝜎2 are the control parameter to balance the conditions of objective 

function.  (𝑀𝑦)𝑇𝑀𝑦 = 𝐼. 𝐼 is an identity matrix. 

Now, we can simplify the objective function as follows: 

 

𝐽(𝑀𝑦) = ∑ (𝜇𝑦)𝜆𝑌=2
𝑦=1 ∑ ‖𝑏𝑝 − (

1

2
) − (𝑀𝑦)𝑇𝑋𝑝

𝑦
‖
2

𝑃
𝑝=1 − 𝜎1∑ ‖(𝑀𝑦)𝑇𝑋𝑝

𝑦
−𝑃

𝑝=1

(𝑀𝑦)𝑇𝐸𝑝
𝑦
‖
2
− 𝜎2∑ ‖(𝑀1)𝑇𝑋𝑝

1 − (𝑀2)𝑇𝑋𝑝
2‖

2
                                              (3.30)𝑃

𝑝=1   
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Here, 𝑋𝑝
𝑦
= [𝑥𝑝,1

𝑦
, 𝑥𝑝,2
𝑦
, 𝑥𝑝,3
𝑦
, … , 𝑥𝑝,𝑁

𝑦
], 𝑏𝑝 = [𝑏𝑝,1, 𝑏𝑝,2, 𝑏𝑝,3, … , 𝑏𝑝,𝑁] and 𝐸𝑝

𝑦
=

[𝑒𝑝,1
𝑦
, 𝑒𝑝,2
𝑦
, 𝑒𝑝,3
𝑦
, … , 𝑒𝑝,𝑁

𝑦
]. 

To obtain the optimal solution of Equation (3.29), we update the variables 

𝑏𝑝,𝑀
𝑦 and  𝜇𝑦. 

a. Update 𝑏𝑝 and fix 𝑀𝑦 and  𝜇𝑦. The objective function can be reduced 

as 

𝐽(𝑏𝑝) = ∑∑(𝜇𝑦)𝜆 ‖𝑏𝑝 − (
1

2
) − (𝑀𝑦)𝑇𝑋𝑝

𝑦
‖
2

𝑦=2

𝑦=1

𝑃

𝑝=1

                      (3.31) 

 

= ∑∑𝑡𝑟 (𝑏𝑝𝑏𝑝
𝑇 − 2(

1

2
+ (𝑀𝑦)𝑇𝑋𝑝

𝑦
) 𝑏𝑝

𝑇 + (
1

2
+ (𝑀𝑦)𝑇𝑋𝑝

𝑦
) (
1

2
+ (𝑀𝑦)𝑇𝑋𝑝

𝑦
)
𝑇

)

𝑌

𝑦=1

𝑃

𝑝=1

        (3.32) 

By taking 
𝜕𝐽

𝜕𝑏𝑝
= 0, we calculate 𝑏𝑝 as 

𝑏𝑝 =
1

2
+

1

∑ (𝜇𝑦)𝜆𝑌
𝑦=1

∑(𝜇𝑦)𝜆
𝑌

𝑦=1

(𝑀𝑦)𝑇𝑋𝑝
𝑦

 

 

By using Equation (3.29), we can obtain  𝑏𝑝 as 

 

𝑏𝑝 =
(𝑠𝑔𝑛∑ (𝜇𝑦)𝜆𝑌

𝑦=1 ((𝑀𝑦)𝑇𝑋𝑝
𝑦
) + 1)

2
                            (3.33) 

 

b. Update 𝜇𝑦  and fix 𝑀𝑦 and 𝑏𝑝.  The objective function can be reduced 

as 

𝐽( 𝜇𝑦) = ∑ (𝜇𝑦)𝜆 ∑ ‖𝑏𝑝 − (
1

2
) − (𝑀𝑦)𝑇𝑋𝑝

𝑦
‖
2
−𝑃

𝑝=1
𝑌
𝑦=1

𝜎1∑ ‖(𝑀𝑦)𝑇𝑋𝑝
𝑦
− (𝑀𝑦)𝑇𝐸𝑝

𝑦
‖
2𝑃

𝑝=1                                                                  (3.34)   

 

Here, ∑ µ𝑦 = 1.𝑌
𝑦=1   

After simplifying,  𝜇𝑦 can be obtained as 
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 𝜇𝑦 =
(∑ ‖𝑏𝑝−(

1

2
)−(𝑀𝑦)𝑇𝑋𝑝

𝑦
‖
2
−𝜎1∑ ‖(𝑀𝑦)𝑇𝑋𝑝

𝑦
−(𝑀𝑦)𝑇𝐸𝑝

𝑦
‖
2

𝑃
𝑝=1

𝑃
𝑝=1 )

1
1−𝑟⁄

∑ (∑ ‖𝑏𝑝−(
1

2
)−(𝑀𝑦)𝑇𝑋𝑝

𝑦
‖
2
−𝜎1∑ ‖(𝑀𝑦)𝑇𝑋𝑝

𝑦
−(𝑀𝑦)𝑇𝐸𝑝

𝑦
‖
2

𝑃
𝑝=1

𝑃
𝑝=1 )

1
1−𝑟⁄

𝑁𝑦
𝑦=1

    (3.35)  

 

c. Update 𝑀𝑦and fix µ𝑦 and 𝑏𝑝.  The objective function can be reduced as 

 

𝐽( 𝑀𝑦) = ∑ (𝜇𝑦)𝜆(𝐺𝑦) −𝑌
𝑦=1 (𝜎1)(𝜉) − (𝜎1)(𝜛)                                       (3.36)  

 

Here, 𝐺𝑦 = ∑ 𝑡𝑟𝑃
𝑝=1 (𝑏𝑝 − (

1

2
) (𝑏𝑝 − (

1

2
))
𝑇

− 2(𝑏𝑝 − (
1

2
)) (𝑋𝑝

𝑦
)
𝑇
 𝑀𝑦 +

( 𝑀𝑦)𝑇𝑋𝑝
𝑦
(𝑋𝑝

𝑦
)
𝑇
 𝑀𝑦) , 

 𝜉 = ∑ 𝑡𝑟 (( 𝑀𝑦)𝑇𝑋𝑝
𝑦
(𝑋𝑝

𝑦
)
𝑇
 𝑀𝑦 + ( 𝑀𝑦)𝑇(𝐸𝑝

𝑦
)
𝑇
𝐸𝑝
𝑦
 𝑀𝑦 −𝑃

𝑝=1

2 ( 𝑀𝑦)𝑇𝑋𝑝
𝑦
(𝐸𝑝

𝑦
)
𝑇
 𝑀𝑦)  

and 𝜛 = ∑ 𝑡𝑟𝑃
𝑝=1 (( 𝑀1)𝑇𝑋𝑝

1(𝑋𝑝
1)
𝑇
 𝑀1 + ( 𝑀2)𝑇𝑋𝑝

2(𝑋𝑝
2)
𝑇
 𝑀2 −

2( 𝑀1)𝑇𝑋𝑝
1(𝑋𝑝

2)
𝑇
 𝑀2) 

Finally, a nearest-neighborhood classifier is used to classify the data using 

the chi-square distance measure, as described in [188]. 

3.5.2 Experimental results and discussion 

The experiments are conducted on four contactless palm-print databases, namely 

CASIA database, IIT-Delhi database, REST database, and Tongji database.   

1) Parameter selection: There are various factors and critical components in the 

proposed method that will influence recognition performance. To acquire the 

robust characteristics, we evaluate the following sets of (𝑃, 𝑅): (8, 1), (16, 2), 

and (24, 3). The effect of sample radius on recognition performance is shown 

in Figure 3.18, we see those higher values of sampling radius such as (𝑅 =

3, 4, 5) gives higher accuracy results. When 𝑅 is too large, however, 
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classification performance degrades (by comparing  𝑅 = 7 and 𝑅 = 8). We 

analyzed different values of number of anchors as 𝑄1 = 1;𝑄2 = 2; 𝑄3 =

3; 𝑄4 = 4; 𝑄5 = 5.  For texture pattern, number of anchors is selected in the 

range of [3, 5], which achieves higher recognition performance as depicted in 

Figure 3.19. The size of the image patch is 3×3 during the experiment. The 

multi feature learning contains the two important parameters 𝜎1 and 𝜎2. The 

multi feature learning with different values of 𝜎1 and 𝜎2 from a set of [0, 

0.001, 0.01, 0.1, 1, 10, 100] is taken for the experiment 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Performance comparison of sampling radius. 

Figure 3.19: Performance comparison with number of anchors. 
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It is observed that 𝜎1 close to 1 achieves better performance. Whereas larger 

value of   𝜎2 achieves better performance. In the proposed work, we 

empirically tuned 𝜎1 = 1 and 𝜎2 = 100 respectively. The train and test sets 

were picked at random and each contained around half of the persons in the 

database. During training and testing, subsets of subjects are disconnected.  

2) Comparative results: We compare and contrast the proposed multi feature 

learning with existing methods LBP, CLBP, FRLD, and HM-LBP in terms of 

several evaluation measures. 

• Results on CASIA database: In terms of accuracy, precision, recall, 

F-measure, specificity, and FPR, Table 3.9 compares the proposed 

and existing methods: LBP, CLBP, FRLD, and HM-LBP. The 

precision of the proposed method is 16.46%, 21.19%, 5%, and 

0.89% higher than the LBP, CLBP, FRLD and HM-LBP, 

respectively. The recall of the proposed method is 10.77%, 

18.11%, 3.8%, and 1.11% higher than the LBP, CLBP, FRLD and 

HM-LBP, respectively. The F- measure of the proposed method is 

6.23%, 17.01%, 8.49%, and 6.62% higher than the LBP, CLBP, 

FRLD and HM-LBP, respectively.  

 

 

 

 

 

 

 

 

 

Method 

 

Measures (%) 

Accuracy Precision Recall F-measure Specificity FPR 

LBP 68.91 80.54 87.34 90 90.89 9.6 

CLBP 82.74 75.81 80 79.22 93.26 8.45 

FRLD 90.73 92 94.31 87.74 91.55 7.75 

HM-LBP 97.62 96.41 97 89.61 91.38 6.64 

Proposed 99.16 97 98.11 96.23 95.34 4.02 

          Table 3.9: Results of proposed and existing methods on CASIA database. 
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The specificity of the proposed method is 4.45%, 2.08%, 3.79%, 

and 3.96% higher than the LBP, CLBP, FRLD and HM-LBP, 

respectively. The FPR of the proposed method is 4.02% which is 

lower than the LBP, CLBP, FRLD and HM-LBP, respectively.  

• Results on IIT-D database: Table 3.10 compares the performance 

of the proposed method to that of existing methods for the IIT-D 

database. The accuracy of the proposed method is 30.86%, 

24.72%, 7.62%, and 3.22% higher than the LBP, CLBP, FRLD 

and HM-LBP, respectively. The precision of the proposed method 

is 25.5%, 29.8%, 3.34%, and 5.11% higher than the LBP, CLBP, 

FRLD and HM-LBP, respectively. The recall of the proposed 

method is 24.36%, 28%, 3.22%, and 5% higher than the LBP, 

CLBP, FRLD and HM-LBP, respectively. The F-measure of the 

proposed method is 13.26%, 10.93%, 5.79%, and 0.64% higher 

than the LBP, CLBP, FRLD and HM-LBP, respectively. The 

specificity of the proposed method is 6.73%, 5.06%, 1.22%, and 

3.14% higher than the LBP, CLBP, FRLD and HM-LBP, 

respectively. The FPR of the proposed method is 5.07% which is 

lower than the LBP, CLBP, FRLD and HM-LBP, respectively.  

 

 

 

 

 

 

 

• Results on Tongji database: Table 3.11 describes the 

performance of the proposed method on the Tongji palm-print 

Method 

 

Measures (%) 

Accuracy Precision Recall F-measure Specificity FPR 

LBP 68.11 69.84 72.64 83 89.14 9.64 

CLBP 74.25 65.54 69 85.33 90.81 8.79 

FRLD 91.35 92 93.78 90.47 94.65 8.56 

HM-LBP 95.75 90.23 92 95.62 92.73 6.79 

Proposed 98.97 95.34 97 96.26 95.87 5.07 

                  Table 3.10: Results of proposed and existing methods on IIT-D database. 
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database. The accuracy of the proposed method is 16.39%, 8.54%, 

3.01%, and 0.91% higher than the LBP, CLBP, FRLD and HM-

LBP, respectively. The precision of the proposed method is 

16.39%, 8.54%, 3.01%, and 0.91% higher than the LBP, CLBP, 

FRLD and HM-LBP, respectively. The recall of the proposed 

method is 23.09%, 6.37%, 1.58%, and 3.09% higher than the LBP, 

CLBP, FRLD and HM-LBP, respectively. The F-measure of the 

proposed method is 16.89%, 3.48%, 1.44%, and 0.53% higher than 

the LBP, CLBP, FRLD and HM-LBP, respectively. The specificity 

of the proposed method is 2.14%, 4.29%, 3.56%, and 1.85% higher 

than the LBP, CLBP, FRLD and HM-LBP, respectively. The FPR 

of the proposed method is 4.18% which is lower than the LBP, 

CLBP, FRLD and HM-LBP, respectively.  

• Results on REST database: Table 3.12 compares the 

performance of the proposed method to that of existing methods 

for the REST database. The accuracy of the proposed method is 

30.22%, 25.55%, 7.56%, and 4.61% higher than the LBP, CLBP, 

FRLD and HM-LBP, respectively. The precision of the proposed 

method is 27.11%, 33.22%, 3.5%, and 6.11% higher than the LBP, 

CLBP, FRLD and HM-LBP, respectively. The recall of the 

proposed method is 25.66%, 28.77%, 3%, and 4.84% higher than 

the LBP, CLBP, FRLD and HM-LBP, respectively. The F-measure 

of the proposed method is 8.25%, 7.52%, 4.89%, and 0.62% higher 

than the LBP, CLBP, FRLD and HM-LBP, respectively. The 

specificity of the proposed method is 1%, 1.83%, 1.1%, and 3% 

higher than the LBP, CLBP, FRLD and HM-LBP, respectively. 

The FPR of the proposed method is 5.87% which is lower than the 

LBP, CLBP, FRLD and HM-LBP, respectively. The accuracy of 
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the proposed method is 99.16%, 98.97%, 99.29%, and 98% for 

CASIA, IIT-D, Tongji and REST, respectively. It demonstrates 

that the suggested method achieves higher average accuracy than 

current methods. The precision of the proposed method is 97%, 

95.34%, 99.09%, and 95.11% for CASIA, IIT-D, Tongji and 

REST, respectively. The recall of the proposed method is 98.11%, 

97%, 98.11%, and 96% for CASIA, IIT-D, Tongji and REST, 

respectively. F-measure and specificity of the proposed method is 

96.23% and 95.34%, 96.26 and 95.87%, 96% and 95.45, and 

94.52% and 94% for CASIA, IIT-D, Tongji and REST, 

respectively.  

 

 

 

Method 

 

Measures (%) 

Accuracy Precision Recall F-measure Specificity FPR 

LBP 82.90 76 81.22 79 93.31 8.98 

CLBP 90.75 92.72 94.63 87.67 91.16 7.62 

FRLD 96.28 97.51 96.67 89.17 91.89 6.81 

HM-LBP 98.38 96 97.58 95 93.60 5.82 

Proposed 99.29 99.09 98.11 96 95.45 4.18 

 

 

Method 

 

Measures (%) 

Accuracy Precision Recall F-measure Specificity FPR 

LBP 67.78 68 70.34 86.27 93 9.8 

CLBP 72.45 61.89 67.23 87 92.17 8.94 

FRLD 90.44 91.56 93 89.63 92.90 8.01 

HM-LBP 93.39 89 91.16 93.90 91 7.34 

Proposed 98 95.11 96 94.52 94 5.87 

 

 

                            Table 3.11: Results of proposed and existing methods on Tongji database. 

                                           Table 3.12:  Results of proposed and existing methods on REST database. 
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It demonstrates that the suggested method achieves higher average F-measure and 

specificity than current methods. The FPR of the proposed method is 4.02%, 5.07%, 

4.18%, and 5.87% for CASIA, IIT-D, Tongji and REST, respectively. The suggested 

method's FPR is lower than those of the existing methods LBP, CLBP, FRLD, and HM-

LBP. 

 

3.6 Conclusion 

In this Chapter, we developed palm-print recognition methods using two different LBP 

based methods namely multi scale edge angles LBP (MSEALBP) and LBP with multi 

feature learning to improve the performance of existing texture descriptors. While 

implementing MSEALBP we combine edge operator and multi-scale uniform patterns, 

which extracts texture patterns at different angular space and spatial resolution. Thus, 

making the extracted uniform patterns less sensitive to the pixel level values. Further, an 

optimal artificial neural network structure is developed for classification, which helps in 

maintaining the higher classification accuracy by significantly reducing the 

computational complexity. The method yields an EER of 0.2% and classification 

accuracy of 98.52% on PolyU database.  

In the second method, we designed two robust operators for multi feature representation. 

The descriptors represent the palm-images in a rotation and illumination invariant way. 

The proposed method employs two criterions to make the learned multi-view feature 

discriminative and complementary in an unsupervised manner. We evaluated the 

performance using CASIA, IIT-Delhi, Tongji and REST contactless palm-print 

databases. The comparison is performed against LBP, CLBP, FRLD and HM-LBP 

methods.  
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Chapter 4 

 Information security and protection of Palm-print templates  

 

4.1  Introduction 

 

The progress in information society, extended the need of secure identity systems. In 

modern information society, biometric recognition has been acquired a lot of public 

consideration as it is secure and convenient [1]. The ISO/IEC 24745 standard proposed 

primary security necessities of Biometric Template Protection (BTP) techniques in 2011 

[191]. The BTP techniques stores some kind of transformed information as opposed to 

the original biometric template to offer the essential security level. Palm-print recognition 

is increasingly being used, and like other biometric modalities, this has greatly increased 

privacy concerns [90]. 

To preserve the confidentiality of the biometric data, random projection has recently been 

widely employed to create revocable biometric templates [115]. These methods safeguard 

the biometric templates using many-to-one mapping. The original feature vector is 

projected into a subsequent feature vector with less dimensions. A user-specific key is 

used to direct the projection and maintain security. 

An effective approach for creating a cancelable biometric based on sectored random 

projections was presented [117]. If an existing pattern is copied, then system can create a 

new one, keep the original recognition performance, and avoid the extraction of relevant 

information from changed patterns. The technology is resistant to degradations brought 

on by eyelids and eyelashes and also addresses some of the shortcomings of current 
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techniques. The wide variety of abnormalities that can occur during acquisition can be 

resolved by random projections and sparse representations. In order to increase security 

and privacy, it provides techniques to generate cancellable iris templates [118]. It was 

suggested to secure a minutiae-based fingerprint template using a two-dimensional 

random projected MVD [119]. A set of fingerprint minutiae is first created, and this 

minutiae vicinity is then utilized to build MVD features. The template that has been 

stored is protected by cancellable biometric methods based on non-invertible 

transformation. Using these methods, unauthorized access to the system is prevented and 

the original fingerprint data cannot be recreated from the corrupted template [120].  

Uhl proposed block remapping and image warping strategies to produce cancelable iris 

templates [121]. Secure iris images are processed using the non-reversible image domain 

transformation prior to feature extraction.  

Jenisch and Uhl [122] uses block permutation and remapping of the iris texture as a 

strategy for template protection. The effects of two alternative situations on the system's 

security are examined.  Multiple templates with the same biometric feature are 

presumably available to an attacker. When both the permutation key and the original 

template are available, the method can recover 60% of the original template. Based on 

randomized cuckoo hashing and minHash, a cancellable palm-print template was used 

[123].  

In the above literature, the transformation techniques are vulnerable to token-stolen 

scenario if the token is compromised. Most of the transformation techniques are 

confirmed for a specific modality and not defined their performance for other modalities.  

This chapter addresses the requirement for a secure and cancelable biometric template 

generation as an illustration to palm-print biometry. Here, we developed a secure and 

revocable biometric recognition framework. A cancelable and tunable security is planned 

by victimization random base-n codes to shield the authentication system from brute 

force attacks. PolyU, IIT-Delhi and CASIA palm-print databases are considered to 
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validate the performance of our method. Comparative experiments were carried out to 

exhibit the accuracy of the proposed approach. 

 

4.2  Implementation of proposed approach 

A palm-print recognition methodology is proposed which achieves high level of security 

and accuracy, using no pre-assumptions in terms of variations in illumination, pose and 

the type of security attack. Aiming to exploit the benefits of CNN and transformation 

scheme in a single mechanism is proposed as illustrated in Figure 4.1. Initially pre-

processing is done in order to get stable and aligned ROIs. After that, CNN is used as a 

feature extraction module which takes ROIs as input image. The extracted features are 

classified into classes by the fully connected layers. The last layer can be used as features 

(bottle neck features (BNFs) with any generic classifier [192]. CNN having penultimate 

layer which, generates generic descriptor. Researchers have shown that these descriptors 

are very efficient for classification [193]. Further, the generated feature vector is 

transformed into a new feature vector.  

Standard biometric systems store original biometric information that may be susceptible 

to data theft and data extortion and can becoming an issue of security. So, random base-n 

codes are used to ensure security. The codes are not correlated with the original biometric 

sample and used as output labels (for classification). Further, secure hash algorithm 

(SHA-3) is applied to hash (random codes) and kept as a template. Hashing is non-

invertible transformation. It is used as classification labels which, ensures secure storage 

of codes. Initially an input (test sample) is fed to the trained model which further 

computes a hash code. To authenticate the user, the hash code compared with the stored 

database codes. The noninvertible property of Hash codes eliminates the probability of 

extracting the original biometric sample. Random codes with different set are used as 

labels which introduces cancellability in the proposed approach. 
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4.2.1 Convolutional Neural Networks (CNN) 

CNNs are multi-layer neural networks. Like customary neural systems, they are made out 

of a few loads and inclinations that are learned according to the ideal planning of sources 

of info and yields [194]. A CNN is a start to finish non-direct framework that can be 

prepared to gain significant level portrayals straightforwardly from raw images [195, 

196]. The principle segments of the CNN design are convolution, pooling furthermore, 

completely associated layers.  

The input could be a ROI extracted grayscale image 𝐼. A weight matrix 𝑊 ∈ 𝑅𝑚×𝑚×𝑐×𝑘 is 

convolved with input 𝐼. The weight matrix spans across a tiny low patch of size (𝑚 × 𝑚) 

Figure 4.1: The representation of the proposed authentication system. 
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with a stride 𝑠, wherever 𝑚 ≤ 𝑚𝑖𝑛(𝑏, ℎ). The weight sharing is used to model correlations 

within the input 𝐼. Further, 𝑘 feature maps are generated by weight matrix.  

The convolution operation is given as follows: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝜎 (∑ 𝑊 × 𝐼 + 𝐵

𝑐

)                                                        (4.1) 

 

Where image with a matrix 𝐼 ∈ 𝑅𝑏×ℎ×𝑐, 𝑏 is input breadth, ℎ is height and 𝑐 is number of 

channels. The output matrix is calculated as 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ 𝑅((𝑏−𝑚)/𝑠)×((ℎ−𝑚)/𝑠)×𝑘, 𝐵 refers bias 

and 𝜎 is a non-linearity operation. 

Further, a pooling operation is performed to retain necessary info whereas reducing 

spatial resolution. The max-pooling operation preserved the utmost price of spatial 

neighbourhood (like 2×2 window). So, pooling operation helps in removing variability 

that exists because of illumination, noise, rotation and pose. It additionally helps to scale 

back the computation for later layers by reducing the matrix dimensions. The proposed 

CNN consists of 4 stacks of convolution and pooling layers followed by a completely 

connected layer. The proposed CNN design is summarized in Table 4.1. Throughout 

training, the last layer is related to a multiclass cross-entropy loss perform as conferred 

within the given Eq. (4.2): 

𝑙𝑜𝑠𝑠 = − ∑ 𝑥𝑝𝑟,𝑡 𝑙𝑜𝑔(𝑝𝑝𝑟,𝑡)

𝑁

𝑛=1

                                                                (4.2) 

 

Where 𝑁 is number of training samples, 𝑝𝑟  is predicted user id, 𝑝 is predicted 

probability, 𝑡 is actual target user id and 𝑥   is binary indicator (0 or 1), determining 

whether prediction is the same as target.  

The CNN parameters are trained victimization Adam optimiser [197] that takes into 

consideration advantages of Adagrad [198] by computing adaptive learning rates and 

RMSpropoptimiser [199] by shrewd decaying average of past square gradients 
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𝜃𝑝+1 = 𝜃𝑝 − 𝛥
𝑚𝑝

√𝑣𝑝+∈
                                                                       (4.3) 

 

where 𝜃𝑝+1is parameter value (updated), 𝜃𝑝 is previous parameter value, 𝑚𝑝 is mean, 𝛥 is 

step size, 𝑣𝑝 is variance, and ∈ is small number (say 10-9 to prevent division-by-zero).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layers Parameters 

Convolution Patch size: 7×7 

depth: 16 

Batch normalization >ReLU activation momentum: 0.9 

epsilon: 0.001 

maxpooling patch size: 2 × 2 

depth: 16 

regularisation dropout: 0.2 

L2 beta: 0.5 

convolution patch size: 5 × 5 

depth: 32 

batch normalisation > ReLU activation momentum: 0.9 

epsilon: 0.001 

max pooling patch size: 2 × 2 

depth: 32 

regularisation Dropout 

L2 beta: 0.5 

convolution patch size: 3 × 3 

depth: 64 

batch normalisation > ReLU activation momentum: 0.9 

epsilon: 0.001 

max Pooling patch size: 2 × 2 

depth: 64 

regularisation dropout: 0.2 

L2 beta: 0.5 

convolution patch size: 1 × 1 

depth: 128 

batch normalisation > ReLU activation momentum: 0.9 

epsilon: 0.001 

max pooling patch size: 2 × 2 

depth: 256 

regularisation dropout: 0.2 

L2 beta: 0.5 

fully connected layer number of neurons: 

512 

fully connected layer number of neurons: 80 

regularisation dropout: 0.2 

L2 beta: 0.5 

fully connected layer number of neurons: 

100 

                                 Table 4.1 Summary of CNN architecture. 
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The algorithm has a preference of flat minima in error hyper plane that avoid native 

minima and therefore achieving higher generalization [200]. So, it is economical across 

deep learning tasks. To avoid dropout, overfitting and 𝐿2 regularization square measure 

applied to each convolutional and absolutely connected layers [201]. Thus, nodes co-

adaptation and over-dependence on massive weights is prevented. Additionally, using 

batch social control [202] ensures that variance shift is least, rising consistency and 

reproducibility of the proposed work.  

 

4.2.2 Feature transform scheme 

Suppose the extracted feature vector 𝑏 is derived from the feature extraction process 

conducted on an input ROI image. Now the extracted features are transformed by using 

random slope method.  

Initially 𝑏 feature vector is generated using random grid (𝑞) and basic OR operation as 

given in Eq. (4.4)  

 
𝑠 = 𝑏 + 𝑞                                                                                  (4.4) 

 

The user-specific random key is generated with a dimension similar to the original 

feature vector 𝑏. The 𝑞 contains the random integral value in the range of [-255 to 255]. 

The feature vector 𝑠 is divided in two equal parts as given below 

𝑎 = 𝑠(1: 𝑓/2) and 𝑏 = 𝑠(𝑓/2 + 1: 𝑓) 

Now these values are used to define the feature points (𝑝) 

(𝑥𝑖 = 𝑎(𝑖), 𝑦𝑖 = 𝑏(𝑖) ) 

Now, we generate a user specific key 𝜉 having randomly distributed non-integral values. 

The dimension of 𝜉 is 1 × 𝑓 and further divide in 𝜉0 and 𝜉1 in order to define mapping for 

the random point 𝑟𝑝𝑖. Where (𝑥𝑖 = (𝑖), 𝑎𝑛𝑑 𝑦𝑖 = 𝑏(𝑖) ). 

The basic line equation is given as 𝑦 = 𝑔𝑥 + 𝑟, where 𝑔 stands for slope or gradient and 𝑟 

is the intercept made by the line. The slope and intercept [203] of all the lines passing 
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through the feature points (𝑝) and random point 𝑟𝑝𝑖 are calculated and normalized as 

given in Eq. (4.5) and (4.6) 

 

𝑁𝐺𝑖 =
𝐺𝑖 − 𝑚𝑖𝑛(𝐺)

𝑚𝑎𝑥(𝐺) − 𝑚𝑖𝑛(𝐺)
                                                              (4.5) 

 

 

𝑁𝑅𝑖 =
𝑅𝑖 − 𝑚𝑖𝑛(𝑅)

𝑚𝑎𝑥(𝑅) − 𝑚𝑖𝑛(𝑅)
                                                              (4.6) 

 

 

Where 𝐺 = {𝑔𝑖} and 𝑅 = {𝑟𝑖}. 𝑔𝑖 is the slope of the line and 𝐺 is the slope vector.  𝑟𝑖 is the 

intercept of the lines and 𝑅 is the intercept vector. 

The transformed template is computed as given in Eq. (4.7), 

 
𝑇𝑏𝑖 = 𝑁𝐺𝑖 + 𝑁𝑅𝑖                                                                              (4.7) 

 

Hence, the transformed feature 𝑇𝑏 is used for storing and matching process. The user can 

utilize vector 𝑞 and 𝜉 in token form. At every authentication, users’ biometric is 

transformed using the same vectors. If compromised, new transformed template can be 

generated by changing the keys. Also, the dimension of transformed features reduces by 

50%. 

4.2.3 Random code generation 

The base-n codes (length of m) that are randomly generated and used as labels for various 

users. As an example, binary (base-2) uses solely 2 symbols (0 and 1), ternary (base-3) 

uses 3 symbols (0, 1 and 2) and a couple of then on. Random generation of codes ensures 

no alikeness to the original biometric sample. Therefore, associate degree persona non 

grata would need to brute-force all attainable codes i.e., 𝑚𝑛 attacks that is 

computationally not possible provided (𝑚 > 𝑡), a manually chosen threshold. 

For an n-ary code entropy is defined as given in Eq. (4.8), 
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𝐻 = − ∑ 𝑝𝑖

𝑛

𝑖

𝑙𝑜𝑔𝑛 p𝑖
                                                                     (4.8) 

 

where 𝐻 denotes entropy, 𝑝𝑖 is occurrence probability of symbol 𝑖, here 𝑝𝑖 > 0. 

According to Eq. (4.8), the utmost entropy of associate degree 𝑛-ary code, every image 𝑖 

have occurrence probability of 1/𝑛. Completely different base-n codes are used as 

classification labels so as to evaluate the performance of the proposed scheme. The work 

is additionally evaluated for various code lengths. The range of experimentations was 

chosen as 𝑛 ∈ (2,9) and 𝑚 ∈ 2(7, 10) to evaluate the impact of code length on recognition 

accuracy. 

4.2.4 Cryptographic Hash 

The random codes are hashed using secure hash algorithm to protect the palm-print 

template [204]. In the proposed work, SHA-3 [205] is employed as a result of it's the new 

customary for sturdy security. A user is verified by matching hash digest of his take a 

look at biometric sample with the hash digest guide. The proposed methodology uses 

SHA3-256 with the permutation perform of the sponge construction [206, 207]. The 

parameters bit rate, output size and capacity are 1088, 256 and 512 respectively. 

4.2.5 Matching 

The transformed feature vector 𝑇𝑏𝑇and 𝑇𝑏𝑄 obtained from the template and query images 

respectively. The similarity score [208] is calculated as given in Eq. (4.9) 

 

𝑆(𝑇𝑏𝑇 , Tb𝑄) = 1 −
‖𝑇𝑏𝑇 − 𝑇𝑏𝑄‖22

‖𝑇𝑏𝑇‖22 + ‖𝑇𝑏𝑄‖22
                                                  (4.9) 

 

Where ‖. ‖2 denotes the 2-norm. The similarity score is either 0 or 1. ‘0’ indicates the 

completely different feature vectors, while ‘1’ indicates similar feature vectors.  
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4.3  Experimental results and discussion 

Three palm-print databases PolyU, CASIA and IIT-Delhi were utilized to evaluate the 

performance of the proposed framework. Figure 4.2 shows the sample hand images of 

PolyU database. Figure 4.3 and Figure 4.4 shows the sample hand images of IIT-Delhi 

and CASIA palm-print databases respectively. The subsequent ROIs are cropped and 

resized to 128 × 128 pixels.  

 

 

 

 

 

 

 

  

                                               

 

 

Figure 4.2: Sample hand images from PolyU database. 

 

Figure 4.3: Sample hand images from IIT-Delhi database. 

   Figure 4.4: Sample hand images from CASIA database. 
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                               Figure 4.5: Sample ROIs from PolyU database. 

            Figure 4.6: Sample ROIs from CASIA database. 

             Figure 4.7: Sample ROIs from IIT-Delhi database. 
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Figure 4.5 and Figure 4.6 shows the sample ROI images of PolyU and IIT-Delhi 

databases respectively. Figure 4.7 shows the sample ROI images of CASIA database. The 

performance of the proposed method is evaluated using GAR, EER and Decidability 

Index (d). False Non-Match Rate (FNMR) and False Match Rate (FMR) are defined as 

given in Eq. (4.10) and (4.11), 

 

𝐹𝑁𝑀𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
                                                               (4.10) 

 

𝐹𝑀𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                    (4.11) 

 

 

Where, 𝐹𝑃 and 𝐹𝑁 are number of false positives and number of false negatives 

respectively. 𝑇𝑁 and 𝑇𝑃 are number of true negatives and number of true positives. EER 

is defined as the point at which FMR equals FNMR. 

The decidability index (d) is a measure of the degree of separation between genuine and 

imposter populations [80]. It is defined as  

 

𝑑 =
|𝜇𝑔 + 𝜇𝑖|

√
𝜎𝑔

2+𝜎𝑖
2

2

                                                                 (4.12) 

 

Where, 𝜇𝑔 and 𝜇𝑖 are mean of genuine and imposter respectively.  𝜎𝑔 and 𝜎𝑖 are variance 

of genuine and imposter respectively. 

 

4.3.1 Comparative results 

The recognition preformation in terms of the EER (%) and GAR (%) with different code 

lengths (256 and 1024) is listed in Table 4.2 on three palm-print databases. The proposed 

strategy accomplishes up to 0.62% average EER and 99.05% GAR on PolyU database 

with a code length of 1024.  
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Database Length (m) GAR (%) EER (%) 

PolyU 256 98.12 0.71 

1024 99.05 0.62 

CASIA 256 97.11 0.78 

1024 98.99 0.70 

IIT-Delhi 256 95.21 1.21 

1024 97.11 1.01 

    Table 4.2 Recognition preformation in terms of the EER (%) and GAR (%) with different code lengths.   

Figure 4.8 ROC curve on PolyU database (a) for code length 256 and (b) for code length 1024. 
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The CASIA database gives an EER of 0.70% whereas IIT-Delhi database yields EER of 

1.01%. The GAR is 98.99% and 97.11% for CASIA and IIT-Delhi databases 

respectively. The ROC curves are appeared in Figure 4.8, 4.9 and 4.10 displaying 

execution of methodology relating to the different lengths of random codes (256 and 

1024). Each curve in a sub-figure compares to a ROC curve for an alternate length of the 

arbitrary code. Table 4.3 listed genuine and imposter distribution along with EER and 

decidability index values on three palm-print databases.  

 

 

 
       Figure 4.9: ROC Curve on CASIA database (a) for code length 256 and (b) for code length 1024.  
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Database Genuine Imposter EER 

(%) 

decidability index (d) 

mean variance mean variance 

PolyU 0.901 0.315 0.264 0.061 0.62 29.32 

CASIA 0.801 0.082 0.398 0.070 0.70 26.98 

IIT-Delhi 0.613 0.019 0.401 0.080 1.01 25.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Table 4.3 Genuine and imposter distribution along with EER and decidability index. 

 

 

Figure 4.10 ROC Curve on IIT-Delhi database (a) for code length 256 and (b) for code length 1024. 
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The mean and variances for genuine and impostor are reported and further observed that 

the separability between genuine and impostor is good. The higher value of decidability 

index (d>25) indicates high separability and supports low error rates as a result. The 

proposed approach gives decidability index of 29.32% and 26.98% on PolyU and CASIA 

databases respectively.  

A comparative investigation of the proposed system with some of the state-of-art 

methods have been explored. Some feature transformation schemes base on random 

projection such as Gray Salting [5], Palmhash [104], BioConvolving [210], RPM 

(Random permutation maxout transform) [209] are listed in Table 4.4. The proposed 

scheme outperforms than gray salting and BioPhasor. The strategy additionally gives 

preferred outcomes over BioConvolving and permutation-based RPM methods. The 

proposed scheme achieves an EER of 0.62%. Figure 4.11 represent the appropriation of 

EER values as box plots (utilizing least, lower quartile, middle, upper quartile and 

greatest). The comparative inter quartile areas over all code lengths shows that EER 

esteems are steady concerning code length and base. This permits the verification 

framework to deftly pick a security level.  

4.3.2 Security analysis 

Revocability is the basic requirement for cancelable biometrics [115]. The first image of 

each palm-print in PolyU database is used to create 60 transformed templates and 

assigning different random grids (𝑞) and different user-specific key (𝜉). The first 

template is matched with the rest of the templates. Mean and variance of the genuine and 

imposter are listed in Table 4.3.  It is demonstrated that the separability between genuine 

and impostor is good and generates uncorrelated transformed templates.  

Hill climbing attacks comprise of an application that sends artificially created particulars 

layouts to the matcher and, as indicated by the match score, arbitrarily adjusts the formats 

until the decision threshold is exceeded. This weakness of the standard biometric system 

is self-addressed in this work by mistreatment indiscriminately generated base-n codes 
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(length of 𝑚) as labels for various users. Further, SHA-3 is used to hash the codes for 

secured storage.  The stored hash digests are non–invertible and bear no alikeness to 

input biometric information, an intruder would have to be compelled to brute-force all 

potential codes, i.e., 𝑚𝑛 attacks, that is computationally not possible provided (𝑚 > 𝑡), a 

manually chosen threshold. 

 

 

 

 

 

 

 

 

 

 For instance, if a code of length 256 is employed for authentication associate aggressor 

would have to be compelled to brute force 2256 codes that is unworkable.  

 

 

 

Reference Method EER (%) 

Zuo et al. [5] Gray Salting 1.02 

Leng and Zhang [104] Biophasor 1.30 

Maiorana et al. [210] BioConvolving 5.95 

Leng and Zhang [104]  Palmhash 2.70 

Cho and Teoh [209] RPM (Random permutation maxout transform) 2.91 

Proposed Transformation scheme and secure hash algorithm 0.62 

                 Table 4.4: Comparison of EER (%) with state-of-art methods. 

                                         Figure 4.11: EER values across different base-n codes. 



128 

 

4.4  Conclusion 

In this Chapter, we developed a secure and cancellable palm-print biometric recognition 

system. The combined CNN and feature transform structure is employed for mapping 

palm-prints to random base-n codes.  We design CNN to extract features from ROIs. 

Random slope takes feature vectors extracted by CNN as information samples. The 

transformation scheme can be considered as reliable and competitive template 

transformation techniques. SHA-3 is used for storage of templates that's non-invertible, 

and hence, there's no scope for an intrusion. The good separability between genuine and 

impostor generates uncorrelated transformed templates. The proficiency of the proposed 

approach has been tested on PolyU, CASIA and IIT-Delhi palm-print datasets. The 

evaluations and experiments show high GAR of 99.05% with an EER of 0.62% 

irrespective of the base and length of labels. Hence, any enterprise can choose the 

specified bit length for a tunable level of security.  
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Chapter 5 

Conclusion, Future scope and Comparison of Proposed 

methods  

 

5.1  Introduction 

 

Palm prints are widely accepted as a biometric, hence researchers have invested a lot of 

time and energy into researching palm print recognition techniques in the scope of image 

processing, computer vision, and pattern recognition. Unrestricted conditions make palm-

print identification a very difficult problem to solve. 

This thesis presents five novel feature extraction techniques for palm print recognition 

that address issues with scale, rotation, and illumination. This work uses a number of 

databases, including PolyU, CASIA, IIT-Delhi, REST, and Tongji palm-print databases, 

to test the effectiveness of the proposed and developed methods. 

 

5.2  Comprehensive Study of Different Proposed Methods 

In this chapter, we present a comparative analysis of many proposed approaches, 

including the Gabor filter with kernel-based full space FDA method (Gabor+KFSFDA), 

the Gabor filter with neural network (Gabor+NN), the MSEALBP, the LBP and multi 

feature learning (LBP+Feature Learning), and the deep learning-based method 

(CNN+Feature Transform). In this regard, experiments are conducted on five palm-print 

databases. The subsequent ROIs are cropped and resized to 128×128 pixels. The training 
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and testing subsets are selected randomly and each contained around half of the subjects 

in the database. The subjects in training and testing subsets are disjoint. Table 5.1 depicts 

the comparative results of these methods on IIT-Delhi database. The highest recognition 

rate of 98.24% is achieved using MSEALBP. The least EER is achieved 0.0312% using 

Gabor+ KFSFDA method. Figure 5.1 depicts the CMC curves of proposed methods on 

IIT-Delhi database. Table 5.2 depicts the comparative results of proposed methods on 

CASIA database. The least EER esteem is 0.264% using Gabor+KFSFDA method. 

 

Table 5.1: Performance comparison of different proposed methods for IIT-Delhi database.  

 

 

 

 

 

 

 

             Figure 5.1: CMC curve for IIT-Delhi database. 

 

Table 5.2: Performance comparison of different proposed methods for CASIA database. 

 

 

 

 

 

 

Methods Recognition Rate (%) EER (%) 

Gabor+KFSFDA 98.34 0.312 

MSEALBP 98.24 1.25 

CNN+Feature Transform 97.87 2.89 

Methods EER (%) 

Gabor+KFSFDA method 0.264 

MSEALBP 2.76 

CNN+Feature Transform 0.70 
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The performance measures sensitivity, specificity and accuracy of the proposed methods 

on CASIA database is listed in Table 5.3. The accuracy of 99.16% is obtained using 

LBP+Feature Learning. The remarkable sensitivity of 97.01% using Gabor+NN. The 

highest specificity of 98.73% is obtained using MSEALBP. Figure 5.2 depicts the CMC 

curves of proposed methods on CASIA database. 

 

 

 

Table 5.3: Performance measures of different proposed methods for CASIA database.  

 

 

 

 

 

 

 

 
 

Figure 5.2: CMC curve for CASIA database. 

 

The comparative results on PolyU database are listed in Table 5.4. The least EER esteem 

is 0.051% using Gabor+KFSFDA method.  

Methods Measures 

Accuracy  

(%) 

Sensitivity  

(%) 

Specificity 

(%) 

Gabor+NN 97.58 97.01 98.25 

MSEALBP 97.85 94.14 98.73 

LBP+Feature Learning 99.16 97 95.34 
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The performance measures sensitivity, specificity and accuracy of the proposed methods 

on Tongji database is listed in Table 5.5. 

 

Table 5.4: Performance comparison of Different proposed methods for PolyU database.  

 

 

 

 

 

The highest accuracy and sensitivity of 99.29% and 99.09% is obtained using 

LBP+Feature Learning. The specificity of 98.91% is achieved using Gabor+NN.  Figure 

5.3 depicts the CMC curves of proposed methods on Tongji database. 

  
Table 5.5: Performance comparison of Different proposed methods for Tongji database. 

  

 

 

 

 

 

 

        Figure 5.3: CMC curve for Tongji database. 

 

Methods EER (%) 

Gabor+KFSFDA method 0.051 

MSEALBP 0.2 

CNN+Feature Transform 0.62 

Methods Measures 

Accuracy  

(%) 

Sensitivity  

(%) 

Specificity 

(%) 

Gabor filter with neural network 98.18 98.11 98.91 

LBP and multi-view feature learning 99.29 99.09 95.45 
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5.3 Conclusion 

 

Initially, palm-print recognition methods using two different Gabor filter designs namely 

Gabor+KFSFDA and Gabor+NN are proposed to enhance the performance of existing 

structural based methods. In the first method, the construction of the Gabor filter for 

palm-print recognition using a kernel-based full space FDA is proposed. To further 

illustrate the effectiveness of the Gabor filter with kernel-based full space FDA 

technique, the experiment is conducted on PolyU, CASIA, and IIT-Delhi palm-print 

datasets. The recognition rates, demonstrated that the Gabor+KFSFDA outperformed the 

conventional KFDA and FDA methods.  

In the second method, we proposed to utilize the NN for palm-print recognition process. 

The experiments conducted on IIT-Delhi, CASIA, Tongji, and REST contactless palm-

print databases. Experimental results show that the proposed method, significantly 

outperforms the state-of-art methods. 

In the third method, a palm-print recognition method using two different LBP designs 

namely MSEALBP and LBP+Feature Learning are proposed to enhance the performance 

of existing structural based methods. In the first method, multi scale edge angles LBP 

(MSEALBP) using edge operators is proposed. Initially, Sobel gradient operator in both 

vertical and horizontal directions produce directional angle images and then passed 

through multi-scale LBP to produce uniform patterns of palm-prints. Further, uniform 

images are divided into non-overlapping blocks of size 5×5 pixels. Finally, the feature 

vector is feed as an input into the ANN. The experiments conducted on PolyU, IIT-Delhi, 

and CASIA palm-print databases. The recognition results, demonstrated that the 

MSEALBP outperformed the conventional LBP, LDP and DGLBP methods.  

The fourth method addresses the requirement for a secure and cancelable biometric 

template generation as an illustration to palm-print biometry. We developed a secure and 

revocable biometric recognition framework. The combined CNN and feature transform 

structure is employed for mapping palm-prints to random base-n codes. We design CNN 
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to extract features from ROIs. Random slope takes feature vectors extracted by CNN as 

information samples. The transformation scheme can be considered as reliable and 

competitive template transformation techniques. SHA-3 is used for storage of templates 

that's non-invertible, and hence, there's no scope for an intrusion. The good separability 

between genuine and impostor generates uncorrelated transformed templates. The 

proficiency of the proposed approach has been tested on PolyU, CASIA and IIT-Delhi 

palm-print datasets. The proposed methodology is analyzed to be competent against 

attacks. Experimental results show that the proposed method, significantly outperforms 

the state-of-art methods. 

 

5.4 Future work 

Based on the work presented in thesis the directions for the future work could be 

• Development of a multi-feature biometric system to form a feature vector by 

fusing more than one biometric feature of the same subject. Its real time 

implementation can be explored. 

• Real-time implementation of a biometric system using palm-print features by 

processor. 

• Design and development of model for next generation devices. 

• Mobile devices have hardware limitation due to weight, storage capacity, and 

power consumption constraints. Multimodal biometric authentication for mobile 

devices with limited database would be a challenging task. This can be explored 

and implemented in future.  
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