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Abstract 

Soft sensors are data-driven intelligent software programs which use statistical and/or 

artificial intelligence techniques to estimate the primary variables (product/effluent quality) 

from the knowledge of secondary variables (temperature, pressure, level and flow rates etc.). 

However, performances of conventional soft sensors degrade with time due to 

gradual/abrupt changes in process conditions, ambient conditions and/or feedstock quality. 

This leads to performance deterioration of the soft sensor which is deployed for estimation. 

In order to tackle the issue of time varying process conditions, the soft sensor model must 

have adaptation capability to maintain the prediction accuracy it is initially designed for. 

Prediction of primary quality variables in real time with adaptive nature for time varying 

process conditions is a critical task in process industries.  

This work focuses on the design of adaptive soft sensors using recursive just-in-time 

learning (JITL) mechanism. In the JITL mechanism, at each prediction instance, a small 

subset of data (relevant dataset) are taken from a large database. Optimum relevant dataset 

size is determined by rigorous grid search method in this work. Samples of relevant dataset 

are chosen based on their similarity with a particular input sample (query data). Three types 

of similarity computation methods are investigated in this work: similarity based on 

Euclidean distance, similarity based on a combination of Euclidean distance & angle and 

similarity based on Mahalanobis distance.  The relevant dataset is used to develop a local 

model that is used for output prediction for a particular query data. Various linear and 

nonlinear local models used for development of adaptive soft sensors are: locally weighted 

regression (LWR), multiple linear regression (MLR), partial least squares regression (PLS), 

support vector regression (SVR) and generalized regression neural network (GRNN). In 
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case of non-linear local modeling, effect of hyper parameters on model prediction accuracy 

and average model computation time per query sample are also investigated. The prediction 

accuracy is further improved by incorporating a bias update strategy in the adaptation 

framework. Further, after every prediction, the database of the JITL model is recursively 

updated. Finally, the recursive-JITL based adaptive soft sensors are also compared with only 

recursive adaptive model and sliding window based adaptive model.   

The adaptive soft sensors are designed using three datasets from various processes in 

petroleum refinery, as mentioned below: 

 Case study 1: Prediction of heavy naphtha initial boiling point (IBP) and end boiling 

point (EBP) in naphtha splitting unit.  

 Case study 2: Prediction of butane concentration in the bottom stream of debutanizer 

column.  

 Case study 3: Prediction of hydrogen sulfide (H2S) and sulfur dioxide (SO2) in the tail 

gas of sulfur recovery unit (SRU).  

The designed model shows better accuracy as compared with other adaptive models 

reported in the literature. The important contributions of this research work are briefly 

mentioned below. 

1. Adaptive soft sensor is developed for prediction of initial and end boiling point of 

heavy naphtha. As of now, for naphtha boiling point estimation, only steady state soft 

sensors are reported in the literature to the best of Author's knowledge.  

2. Use of GRNN as a local modeling strategy in the JITL based adaptation framework is 

a novel contribution of this work.  
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3. Recursive Just-in-Time Learning algorithm is a unified approach by combining 

recursive and just-in-time learning frameworks based on nonlinear models (SVR and 

GRNN) for quality estimation.  

4. In JITL approach, extensive investigation on effect of different similarity index, 

computation time on model prediction accuracy are compared and reported.  

Keywords: Adaptive soft sensor, just-in-time learning, locally weighted regression, multiple 

linear regression, partial least squares regression, support vector regression, generalized 

regression neural network 



vii 
 

Table of contents 

 
Certificate i 

Acknowledgements ii 

Abstract iv 

Table of contents vii 

List of figures ix 

List of tables xi 

Notations xii 

  

1. Introduction 1-9 
1.1 Motivation 1 

1.2 Basics of soft sensors 2 

1.3 Limitations of conventional soft sensors 5 

1.4 Adaptive soft sensors and their various design approaches 6 

1.5 Motivation for the present work and Research objectives 7 

1.6 Organization of thesis 8 

  

2. Literature review 10-27 
2.1 Just-in-Time learning based approach  11 

2.2 Recursive based approach  17 

2.3 Moving/Sliding window based approach 20 

2.4 Gaps in existing research 25 

2.5 Scope of the present work 26 

  

3. Methodology 28-62 
3.1 Adaptationtechniques used in this work 29 

3.1.1 Just-in-Time learning (JITL) approach  29 

3.1.2 Recursive approach  34 

3.1.3 Moving/sliding window approach 36 

3.2 Local modeling strategy 39 

3.2.1 Linear models 39 

3.2.1.1 Multiple linear regression 39 

3.2.1.2 Locally weighted regression 40 

3.2.1.3 Partial least square regression 40 

3.2.2 Non-linear models 41 

3.2.2.1 Support vector regression (SVR) 41 

3.2.2.2 Generalized regression neural network (GRNN) 48 

3.3 Integration of non-linear local models in the recursive Just-in-Time 

learning framework 

55 

3.4 Performance improvement of adaptive models with bias update 58 

  

4. Case studies – Industrial Applications 63-79 
4.1 Naphtha splitter section 64 

4.1.1 Initial and end boiling point of heavy naphtha 64 



viii 
 

4.2 Debutanizer column  68 

4.2.1 Butane concentration prediction in the column bottom stream 69 

4.3 Sulfur recovery unit  74 

4.3.1 SO2 and H2S concentration prediction in tail gas 74 

  

5. Results and Discussion 80-115 
5.1 Details of datasets for adaptive soft sensor development 80 

5.2 Naphtha splitter section: Prediction of initial and end boiling point of 

heavy naphtha 

80 

5.2.1 Effect of RDS for linear models 82 

5.2.2 Effect of RDS and spread parameter on performance of JITL-GRNN  85 

5.2.3 Effect of RDS and loss function on performance of JITL-SVR 87 

5.3 Debutanizer column: Prediction of butane concentration at the column 

bottom 

89 

5.3.1 Effect of RDS and spread parameter on performance of JITL-GRNN 89 

5.4 Sulfur recovery unit: Prediction of H2S and SO2 concentration in tail gas 91 

5.4.1 Effect of RDS and spread parameter on performance of JITL-GRNN 91 

5.5 Analysis of model accuracy and determination of model computation time 94 

5.5.1 Prediction accuracy for initial and end boiling point of heavy 

naphtha 

94 

5.5.2 Prediction accuracy for Butane concentration at the column bottom 102 

5.5.3  Prediction accuracy for H2S and SO2 concentration in tail gas 105 

5.5.4  4-plot analysis of the best performing models 109 

5.5.5  Comparison of predictive performance with other models 113 

  

6. Concluding remarks 116-125 
6.1 Summary of proposed implementation 116 

6.2 Significant observations and findings 118 

6.2.1 General observations 118 

6.2.2 Soft sensors for Naphtha splitter section 119 

6.2.3 Soft sensors for Debutanizer column 121 

6.2.4 Soft sensors for Sulfur recovery unit 122 

6.3 Major contributions 123 

6.4 Future scope of this research work 124 

  

References 126 

List of publications 146 

Biographies 147 

 
 

 

 

 

 

 



ix 
 

List of Figures 
 

Figure 

No. 

Caption Page 

No. 
1.1 Conventional soft sensors 3 

1.2 Soft sensor with adaptation mechanism 7 

3.1 Flow chart of recursive Just-in-Time learning technique 31 

3.2 Flowchart of recursive approach 35 

3.3 Flowchart of sliding window approach 37 

3.4 Representation of  -insensitive loss function in SVR model 44 

3.5 Generalized regression neural network 50 

3.6 JITL flowchart for nonlinear models 56 

3.7 JITL-GRNN architecture 57 

3.8 Recursive Just-in-Time Learning technique with bias update 60 

3.9 Recursive technique with bias update 61 

3.10 Sliding window technique with bias update 62 

4.1 Process flow diagram - Naphtha splitter section 65 

4.2 Process flow diagram - LPG splitter unit 71 

4.3 Process flow diagram - Debutanizer column 72 

4.4 Process flow diagram - Sulfur recovery unit 77 

5.1 Effect of RDS on prediction accuracy of linear local models using just-in-

time learning frameworks for heavy naphtha (a) Initial boiling point; (b) End 

boiling point 

83 

5.2  Prediction accuracy as a function of relevant data set size and spread value 

by JITL-GRNN (a) Initial boiling point (b) End boiling point 

86 

5.3 Effect of loss function ( ) on prediction accuracy of JITL-SVR (at RDS-50) 

for (a) Initial boiling point; (b) End boiling point 

88 

5.4 Model prediction accuracy of JITL-GRNN for two similarity indexes in 

debutanizer column (a) distance based (b) angle & distance based 

90 

5.5 Model prediction accuracy of H2S prediction using JITL-GRNN for two 

similarity indexes (a) distance based (b) angle & distance based 

92 

5.6 Model prediction accuracy of SO2 prediction using JITL-GRNN for two 

similarity indexes (a) distance based (b) angle & distance based 

93 

5.7 Actual and predicted values of naphtha IBP by various adaptive soft sensors 100 

5.8 Actual and predicted values of naphtha EBP by various adaptive soft sensors 101 

5.9 Actual and predicted values of butane concentration in debutanizer column 

by various adaptive soft sensors 

104 

5.10 Actual and predicted values of H2S concentration in tail gas of sulfur 

recovery unit by various adaptive soft sensors  

107 

5.11 Actual and predicted valued of SO2 concentration in tail gas of sulfur 

recovery unit by various adaptive soft sensors 

108 



x 
 

Figure 

No. 

Caption Page 

No. 
5.12 JITL-SVR: ISDA model validation for IBP prediction 110 

5.13 JITL-SVR: ISDA model validation for EBP prediction 111 

5.14 JITL-GRNN model validation for prediction of butane concentration 111 

5.15 JITL-GRNN model validation for prediction of H2S concentration 112 

5.16 JITL-GRNN model validation for prediction of SO2 concentration 112 

 

  



xi 
 

List of Tables 

Table 

 No. 
Caption 

Page 

No. 
1.1 Survey of soft sensor applications 4 

1.2 Problems associated with soft sensor applications 5 

3.1 
GRNN spread parameter values computed (recursive and sliding 

window) using analytical method 
54 

4.1 
Description of input and output variables taken for model 

development in naphtha splitter unit 
67 

4.2 Literature review for soft sensing of naphtha fuel properties 67 

4.3 
Description of input and output process variables taken for model 

development in debutanizer column 
73 

4.4 
Literature review of soft sensing of butane concentration in 

debutanizer column 
73 

4.5 
Description of input and output process variables taken for model 

development in sulfur recovery unit 
76 

4.6 
Literature review of soft sensing of tail gas composition in sulfur 

recovery unit 
79 

5.1 Details of five datasets used for adaptive model development   81 

5.2 
Performance results using adaptive model for naphtha initial boiling 

point prediction 
98 

5.3 
Performance results using adaptive model for naphtha end boiling 

point prediction 
99 

5.4 Performance results using adaptive model for debutanizer column 104 

5.5 Performance results using adaptive model for prediction of H2S 107 

5.6 Performance results using adaptive model for prediction of SO2 108 

5.7 
Performance comparison of  JITL-GRNN model with existing 

models in literature for debutanizer column 
114 

5.8 
Performance comparison of JITL-GRNN model with existing 

models in literature for sulfur recovery unit 
115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

Notations 

 
Abbreviations 

A & D Angle and Euclidean distance 

AI Artificial Intelligence 

ASTM American Society for Testing and Materials 

BC Butane Content 

CC Correlation Coefficient 

CDU Crude Distillation Unit 

D Euclidean distance 

DC Debutanizer Column 

EBP End Boiling Point 

EN ISO International Organization for Standardization adopted by European Union 

GPR Gaussian Process Regression 

GRNN Generalized Regression Neural Network 

    Hydrogen sulfide 

IBP Initial Boiling Point 

ISDA Iterative Single Data Algorithm 

JITL Just-in-Time Learning 

LPG Liquefied Petroleum Gas 

LWR Locally Weighted Regression 

MAE Mean Absolute Error 

MD Mahalanobis distance 

MLR Multiple Linear Regression   

MW Moving Window 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PLS Partial Least Squares regression 

R Recursive 

RDS Relevant Dataset 

RMSE Root Mean Square Error 

SMO Sequential Minimal Optimization 

SRU Sulfur Recovery Unit 

SVM Support Vector Machines 

SVR Support Vector Regression 

SW Sliding Window 

    Sulfur dioxide 

  

Mathematical operators 

  Bias value or constant in SVR model 

  Regularization constant or penalizing factor in SVR model 

  Euclidean distance between query sample and each sample of the database 

    Error matrix in PLS model 

        Joint probability density function in GRNN model 



xiii 
 

  Bandwidth of kernel function 

   Activation function in GRNN model 

  Kernel function 

   SVR model optimization function ( -insensitive loss function) 

   Mahalanobis distance between query sample and database sample 

   Loading matrix of input variables in PLS model 

   Loading vectors of output variables in PLS model 

  Correlation coefficient 

     Empirical risk in SVR model 

     Regression risk in SVR model 

   Similarity index 

  Time instance 

  Window length in sliding window 

   Weighting function 

  Weighting matrix 

  Input object 

   Input query object 

  Actual output 

 ̅ Mean value of output 

 ̂ Predicted output 

  

Greek symbols 
  

 ,    Lagrangian multipliers in SVR model 

  Regression coefficients of linear models 

  Error bound or loss function parameter in SVR model 

  Forgetting factor in recursive approach 

  Weighting parameter in JITL approach 

  Spread parameter in GRNN model 

  Relevant dataset 

      Nonlinear function in SVR model 

  
    Positive slack variables in SVR model 

 
 

 

 
 



1 
 

Chapter - 1 

Introduction 

 

1.1  Motivation 

A system is defined as a confined state of any chemical processes that can be described 

in terms of variables, which can be divided into primary and/or secondary variables. 

Secondary variables e.g. temperature, pressure, level, flow-rate etc. can be directly and 

easily measured with physical sensors or instruments. Conversely, primary variable e.g., 

product quality cannot be measured or difficult to measure in real time using external 

sensing devices.  

Accurate real time information of primary variable is still an intricate step in many 

process industries. However, this is essential for achieving maximum productivity with 

enhanced safety. Quality of products (or effluent) is often determined by infrequent manual 

(offline laboratory) analysis. Though in some cases hardware sensors are available for 

continuous monitoring (e.g. gas chromatograph for continuous online measurement of 

composition), these instruments suffer from regular maintenance issues (mechanical failure, 

drift etc.,) and significant time delay.  

The practical difficulties associated with delay in measurements and unreliable real time 

information of output variables due to drifts, fouling or accidental damage of process 

analyzers often causes deviation of output from its desired value. These aforementioned 

reasons make it difficult to achieve real time product quality control and often results in 

formation of off-grade products (Bhartiya & Whiteley, 2001). On the other hand, improved 

digitization of process industries has assisted in collection and storage of process variable 

information in the form of plant historical databases. These past historical plant data can be 
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utilized in developing soft or virtual sensors (Facco et al. 2009; Gonzaga et al. 2009) which 

in turn will ensure improved product quality. 

1.2 Basics of soft sensors 

The term soft sensor is a combination of the words ‘software’ and 'sensor'. Soft sensor 

is alternatively termed as inferential sensor or virtual sensor and is the most promising 

alternative to hardware sensor. Usually, the difficult-to-measure primary variable is a 

function of many easy-to-measure secondary variables. Therefore, it is highly possible to 

estimate the primary variable from the information of secondary variables, by developing a 

relationship between them (Kadlec et al. 2011; Jiang et al. 2020).  

Soft sensors develop a relationship between input and output by making predictive 

process model for real-time estimation of primary variable with the help of statistical or 

artificial intelligence (AI) techniques through the information retrieved from real process 

(collected from industry) secondary (as input) and primary (as output) variables, which 

significantly reduces the measurement delay, installation and maintenance costs.  

There are two different approaches for designing soft sensors: phenomenological/model 

based and data-driven approaches. The model-driven or phenomenological technique or 

physical modeling based on first principle models are often not possible for highly 

complicated or poorly understood processes. On the other hand, the advancement in data 

storage facilities has led to numerous process variables being monitored and stored in the 

plant database. The vast industrial data can be retrieved back and can be used for better 

monitoring, optimization and control of chemical processes. The data-driven based models 

provide the viable option for quality monitoring by detection and analysis of vast amounts of 

operating data. Soft sensor design for estimation of key product properties will be a 
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significant step forward in effective implementation of Industry 4.0 concept in process 

industries.  

 

Figure 1.1: Conventional soft sensors 

 

General scheme for development of soft sensor includes different steps such as data 

acquisition and identification, pre-processing, model selection, training, maintenance before 

deploying soft sensor into real-time estimation (Kadlec et al. 2009; Kadlec et al. 2011; Jiang 

et al. 2020). After acquisition of data, data preprocessing may be required prior to model 

development because industrial data may have the undesired characteristics such as missing 

values, collinearity, outliers, drifting, sampling rates and delays (Kadlec et al. 2009; Pani & 

Mohanta, 2011). The final model is developed based on either statistical or artificial 

intelligence (AI) techniques. The statistical methods may be simple linear regression, 

multiple linear regressions, principal component analysis, partial least squares (Abdi, 2003), 

kernel principal component analysis and Gaussian process regression etc. and AI techniques 
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include artificial neural network, neuro-fuzzy systems and support vector machines (Kadlec 

et al. 2011, Pani & Mohanta, 2011). Steps for conventional soft sensor development and 

online implementation is schematically explained in Figure 1.1.  

In the past two decades, soft sensors have been reported for various process industries 

such as cement (Pani & Mohanta 2016), refinery (Shokri et al. 2015; Singh et al. 2019; 

Morey et al. 2019; Jalanko et al. 2021), polymer (Gonzaga et al. 2009; Kaneko & Funatsu, 

2011a), metals (Radhakrishnan & Mohamed, 2000; Mitra & Ghivari, 2006; Kano & 

Nakagawa 2008; Inapakurthi et al. 2020), fermentation (Liu et al. 2012; Seo et al. 2021), 

rubber (Godoy et al. 2011) and pharmaceutics (Bosca & Fissore, 2011). Implementation of 

soft sensors in real life applications have also been reported in processes such as Bayer's 

process (Cregan et al. 2017), copper floatation regrind circuit (Napier & Aldrich, 2017), 

shaft furnace roasting system in mineral processing (Wu & Chai, 2010) and energy 

efficiency in buildings (Mattera et al. 2018).  

Table 1.1: Survey of soft sensor applications in Japanese chemical & petroleum 

refining industries (Kano & Ogawa, 2010) 

Process 
Methods 

Phys. MRA PLS O.L. ANN JIT Grey Total 

Distillation 20 256 41 6 0 5 3 331 

Reaction 5 32 43 0 0 5 1 86 

Polymerization 0 4 8 0 3 0 5 20 

Others 0 1 1 0 0 0 0 2 

Total 25 293 93 6 3 10 9 439 

Phys. – Physical model; MRA – Multiple Regression Analysis; PLS – Partial Least Squares 

Regression; O.L. – Other Linear regression; ANN – Artificial Neural Networks; JIT – Just-

in-Time model; Grey – Grey box model or hybrid model between physical model and 

statistical model 
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Table 1.1 presents a survey of soft sensor applications in Japanese chemical & 

petroleum refining industries (Kano & Ogawa, 2010). It can be observed from this survey 

that MRA and PLS models have found more number of applications than other modeling 

techniques. Use of non-linear techniques such as neural networks are very few in soft sensor 

applications. This contrast reveals the gap between theoretical and practical usage of soft 

sensors based on neural networks in process industries.  

1.3 Limitations of conventional soft sensors 

During the last decade of twentieth century and the initial years of twenty first century, 

most of the research works were based on design of first generation soft sensors. These are 

steady state soft sensors, which accept instrument values and predict the output at the same 

instant. They are applicable only for quality monitoring, when process conditions do not 

show any significant change.  

Table 1.2: Problems associated with soft sensor applications (Kano & Ogawa, 2010) 

Accuracy deterioration due to changes in process characteristics 29% 

Burden (time/cost) of data acquisition 22% 

Burden of modeling itself 14% 

Burden of data preprocessing 7% 

Inadequate accuracy since installation 7% 

Inadequate accuracy due to change in operating conditions 7% 

Difficulty in evaluating reliability 7% 

Unjustifiable cost performance 7% 

 

Table 1.2 summarizes the various problems associated with soft sensor applications in 

Japanese chemical & petroleum refining industries (Kano & Ogawa, 2010). The table 

clearly indicates that accuracy degradation due to changes in process characteristics and 



6 
 

changes in operating conditions account for more than 35% of all problems. This is because 

prediction performance of conventional soft sensors deteriorates under time varying process 

states, feed properties, environmental conditions (change of operating parameters), climatic 

conditions, catalyst deactivation due to aging and mechanical aging). In order to address 

these problems, the soft sensor after online implementation should have adaptation 

capability in order to address the time varying conditions.  

1.4 Adaptive soft sensors and their various design approaches 

The design of inferential sensors, having adaptation capability is the key to ensure good 

prediction accuracy for a longer period of time after online implementation. Therefore, 

presently, the attention is more towards the development of adaptive soft sensors.  

Selected adaptive techniques reported in literature are recursive (Mu et al. 2006; Ahmed 

et al. 2009; Poerio & Brown, 2018), moving/sliding window (Liu et al. 2010; Ni et al. 2012; 

Kaneko & Funatsu, 2015; Liu et al. 2018; Kneale & Brown, 2018), just-in-time learning 

(Cheng & Chiu, 2004; 2005; Fujiwara et al. 2009; Liu, 2017), time difference (Kaneko & 

Funatsu, 2011a; 2011b; 2015; Xiong et al. 2017) and ensemble (Kaneko & Funatsu, 2016; 

Shao & Tian 2017; Kanno & Kaneko, 2020; Shi & Xiong, 2020) methods. Figure 1.2 shows 

the pictorial representation of online adaptation mechanism by the soft sensor.  
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Figure 1.2: Soft sensor with adaptation mechanism (Chen et al. 2014) 

 

1.5 Motivation for the present work and Research objectives 

The prime focus of the proposed work is to design soft sensors with adaptation 

capability using data-driven techniques. During the design of adaptive soft sensors, it is 

planned to investigate the different aspects of adaptation mechanism and different modeling 

strategies as mentioned in Section 1.4.  

Research objectives 

⮚ To design adaptive soft sensors for industrial processes using various adaptive 

frameworks.  

⮚ To investigate the effect of various hyper-parameters on predictive performance of 

developed adaptive schemes. 
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⮚ To statistically evaluate the predictive performance of the designed soft sensors by 

various error metrics and residual analysis.  

1.6 Organization of thesis 

In this work, extensive investigation on the JITL based adaptation technique is 

performed followed by comparison of the JITL based soft sensor with two other commonly 

used adaptive soft sensors i.e. recursive and sliding window based soft sensors. Detailed 

literature review on use of these adaptive techniques for quality monitoring in various 

industrial processes along with its scope is presented in Chapter 2.  

The different adaptation techniques also require a certain local modeling strategy 

(global models). These global models may be linear or non-linear. The different linear local 

modeling strategies explored in this work include multiple linear regression, locally 

weighted regression and partial least square regression. The non-linear modeling strategies 

investigated are support vector regression and generalized regression neural network. In 

Chapter 3, the underlying theoretical details of the aforementioned local models and the 

three adaptive approaches investigated for soft sensor development are presented.  

Various adaptation techniques presented in Chapter 3 are applied for quality monitoring 

in three types of processes used in petroleum refining industry. The first case study involves 

estimation of initial and end boiling point of heavy naphtha in naphtha splitter unit. The 

second case study is to estimate the butane concentration in the bottom product coming from 

the debutanizer column used in the LPG recovery unit. The third case study involves 

effluent monitoring instead of product quality monitoring. This application involves 

estimation of H2S and SO2 concentrations in the tail gas which is emitted to the atmosphere 

from a sulphur recovery unit of petroleum refinery. Process description of all these three 
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industrial processes (naphtha splitter unit, debutanizer column and sulfur recovery unit) 

along with details of the process variables are presented in Chapter 4.  

In Chapter 5, three types of statistical performance indices which help to corroborate the 

performance of all developed models, significance of model computation time and four plot 

analysis are briefly discussed. Then, the results of all the developed models using adaptive 

approaches for the respective industrial processes are tabulated and critically analyzed using 

prediction performance plots (Actual and Predicted). Finally, the model with best prediction 

performance is further validated using 4-plot analysis. 

Concluding remarks and future scope are presented in Chapter 6. 
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Chapter - 2 

Literature Review 

 

From 2000-2022, there are extensive applications of soft sensors for quality monitoring 

during steady state operation. The significant list of literature based on 1st generation soft 

sensors found in applications such as splitter composition in crude distillation unit/ 

debutanizer (Park & Han, 2000; Dam & Saraf, 2006; Ujevic et al. 2011; Rogina et al. 2011, 

Napoli & Xibilia, 2011, Pani et al. 2016, Bidar et al. 2017), desulphurization unit (Fortuna et 

al. 2003; 2007; Shokri et al. 2016), clinker quality in cement (Pani et al. 2013, Pani & 

Mohanta, 2016), pharmaceuticals (Bosca & Fissore, 2011), chemicals in water system 

(Bowden et al. 2006; Heddam et al. 2011; Zhu et al. 2017), bioreactors (Kulkarni et al. 2004; 

Desai et al. 2006), concentration and purity in industrial sugar crystallization process 

(Damour et al. 2010), product quality in polymerization (Gonzaga et al. 2009; Nogueira et 

al. 2017), rubber quality (Godoy et al. 2011), metallurgical industry (Jia et al. 2011; Li et al. 

2013) and mineral processing industry (Mitra & Ghivari, 2006; Ko et al. 2011; Napier & 

Aldrich, 2017; Inapakurthi et al. 2020).  

However, when there is a deviation in steady state operation, these kinds of soft sensors 

fail to give accurate predictions (Kadlec et al. 2011). Changes in process conditions in an 

industry may arise due to different drifts, start-up/shut-down activities, grade changeover, 

change in input efficiency because of fouling, scaling on the walls of the pipelines (Kadlec 

& Gabrys 2011; Zhou et al. 2012). Therefore, there is a need for development of soft sensors 

which adapt to the changes in process conditions. Adaptive soft sensors take care of all 

process deviations by taking recent data points with exclusion of old ones. Moreover, it 
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helps to update the model parameters periodically according to the current process state by 

instance selection (moving window), instance weighting in the form of covariance matrix 

(recursive), locally weighted (just-in-time learning), time difference and ensemble methods.  

A brief review of adaptive soft sensors reported in the literature in the past decade is 

presented here.  

2.1 Just-in-Time learning based approach 

Different types of local modeling approaches in the JITL framework are reported in the 

literature for soft sensor development. 

Cheng & Chiu (2004) proposed an autoregressive exogenous model in just-in-time 

learning approach to predict the output in van de Vusse reactor and non-isothermal reactor 

with first order reaction. They incorporated combined angle and distance similarity measure 

in identifying the relevant dataset used for model development. Further, in the extended 

work reported by Cheng & Chiu (2005), the finite impulse response local model is 

integrated with principal component analysis for nonlinear static / dynamic systems. 

Fujiwara et al. (2009) developed correlation based just-in-time learning model for 

investigation of reactant concentration (catalyst deactivation) in continuous stirred tank 

reactor system and estimating aroma concentration in cracked gasoline fractionator of the 

ethylene production process. They proposed correlation based similarity measure using 𝑄 

and 𝑇2 statistics. They found that the performance of correlation based just-in-time learning 

model is better than recursive partial least squares model. 

An adaptive soft sensor based on three combinations of just-in-time learning approach 

along with partial least squares, support vector regression and least squares support vector 

regression was presented by Ge and Song (2010), to address the issues like change of 
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process conditions and nonlinearity. They found that the prediction performance of the least 

square support vector regression based adaptive model is efficient over other methods in the 

debutanizer column.  

Chen et al. (2011) developed adaptive local kernel-based learning scheme to predict the 

end point of crude oil in fluidized catalytic cracking unit. Adaptive weighted least square 

support vector regression is employed as a local model. In their work, new similarity 

measure based on supervised locality preserving projection technique to utilize both input 

and output information to select the relevant samples. Also, iterative and recursive selection 

of trade-off parameters for the local model was incorporated.   

Kadlec & Gabrys (2011) developed a two level adaptive local-learning based nonlinear 

soft sensor model to predict the activity of catalysts in a polymerization reactor. The 

drawbacks such as lack of adaptive nature, forgetting factors for parameter selection, length 

of adaptation window, storage and access to past data set were addressed by model 

adaptation at two levels by splitting global data into local partitions by k-means algorithm at 

first level and adapts performance mapping to update combination weights by sample-by-

sample, to avoid storing of historical data at second level. 

Liu et al. (2012) proposed a just-in-time learning soft sensor based on least square 

support vector regression model to estimate the concentration of active biomass and 

recombinant protein in streptokinase fed-batch fermentation process. They incorporated 

cumulative similarity factor criterion to determine the relevant dataset reasonably. Fast leave 

one out cross validation method is deployed to online optimization of parameters for least 

square support vector regression model. 
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To predict the melt index in multi-grade polyethylene process, Liu & Chen (2013) 

developed a just-in-time learning approach based on least square support vector regression. 

Probabilistic analysis is used to identify the steady state grade in which the mode/state of 

query belongs to the polymer process. After identifying the particular cluster, the models 

were built and estimate the melt index. For transitional modes, the proposed adaptive 

approach was used to predict the melt index.    

Xie et al. (2013) proposed just-in-time learning approach based on non-Gaussian 

regression model to estimate the tail gas composition of SRU. Support vector data 

description is used to extract the independent components to calculate the 𝐷 statistic. A new 

similarity measure was proposed by merging 𝐷 statistic with 𝑇2 statistics. This model is 

suitable for non-Gaussian processes.  

Fan et al. (2014) designed partial least square just-in-time learning soft sensor to predict 

the butane concentration in debutanizer column. They incorporated gaussian mixture model 

based similarity measure for extraction of relevant data features to characterize the time 

varying and non-gaussian behavior of industrial processes.   

Adaptive soft sensor based on kernel partial least square regression using multiphase 

just-in-time learning approach is developed by Jin et al. (2014) to predict the substrate 

concentration in industrial fed-batch chlortetracycline fermentation process. Bayesian 

inference strategy is used to select the phase samples for the particular query with maximum 

probability. In addition to that, hybrid similarity measure and database updating scheme also 

proposed in their work to enhance the predictive performance of the model.      

Yuan et al. (2014) proposed an adaptive soft sensor just-in-time learning based locally 

weighted kernel principal component regression to define the high product quality, which is 
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validated using the debutanizer column process. They were trying to provide solutions to 

both nonlinear and time-variant problems, in which the root mean square errors for locally 

weighted kernel principal component regression is less compared to other combinations of 

models.  

Chen et al. (2014) developed a recursive locally weighted partial least square regression 

approach to predict the final boiling point of diesel using Near infrared spectroscopy dataset 

collected from refinery process. They incorporated both space and time weight component 

in prioritizing samples for the incoming query sample. Information present in the database 

can be updated by moving window fashion.  Nonlinearity and time varying issues are 

addressed in their work by merging recursive algorithm with JITL frameworks.   

In order to tackle the regression problem, a supervised extraction method called 

supervised local and non-local structure preserving projections incorporated in just-in-time 

learning method was introduced by Shao et al. (2015) by considering both input and output 

data in sample dataset. This model was introduced in sulphur recovery unit to understand the 

discriminating and database monitoring abilities over local and non-local structure 

preserving projections.  

Min & Luo (2016) designed a soft sensor by combining just-in-time learning and 

AdaBoost regression learner for calibration of output in pH neutralization process. Here, 

moving window learner is required to run the calibration method. This approach works well, 

when the feedback output values are unavailable, while the developed model is calibrated 

using re-estimated output values.  

Hybrid just-in-time learning soft sensor based on back propagation neural network was 

proposed in Chen et al. (2017) to estimate the carbon efficiency in iron ore sintering process. 



15 
 

In their work, comprehensive carbon residue is taken as the measure of carbon efficiency. 

Initially, genetic algorithm-fuzzy C means clustering algorithm is used to extract the current 

feature parameters from the key frames obtained through discharge end of complex 

environment. Multi-task learning- Back propagation neural network is the offline learning 

sub-model which initially optimizes the initial weights and biases required for the online 

just-in-time learning back propagation neural network sub-model to estimate the output.    

Yuan et al. (2017) proposed weighted gaussian regression model, in which the locally 

weighted gaussian model is built using the relevant samples for the particular query sample 

collected based on the joint density of inputs and outputs. The outputs were estimated by a 

probabilistic approach taking conditional distribution to reduce the prediction uncertainty. 

Yeo et al. (2019) developed ensemble locally weighted independent component kernel 

partial least square regression to deal with nonlinear and non-Gaussian processes. The 

developed model is used to predict the concentration of total cyclin in eukaryotic cell cycle 

regulation and product concentration in continuous stirred tank reactor.  

Kanno & Kaneko (2020) proposed an adaptive soft sensor based on ensemble just-in-

time learning approach using a gaussian process dynamic model to predict the butane 

content in the debutanizer column and tail gas composition in the sulfur recovery unit. They 

found that the proposed approach provides better prediction than dynamic just-in-time 

learning gaussian process regression, dynamic locally weighted partial least squares 

regression and dynamic locally weighted principal component regression. For every query 

sample, factors such as process dynamics, autocorrelation, non-linearity, noise and changes 

in hyper parameters are taken into consideration for prediction of desired output by this 

approach.  
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Zhang et al. (2020) proposed a double-level locally weighted extreme learning machine 

model with two similarity indexes (mutual information at the first level and Euclidean 

distance at the second level) to predict the butane content in the debutanizer column. They 

found that the performance of the proposed model provides better performance than locally 

weighted, just-in-time learning and conventional extreme learning machine models. 

Yamada & Kaneko (2021) proposed an adaptive soft sensor based on genetic algorithm 

based process variable and dynamics selection integrated with locally weighted partial least 

squares to predict the butane content in the debutanizer column and tail gas composition in 

the sulfur recovery unit. This work helps to improve the predictive capability of adaptive 

soft sensors in the presence of multiple process states. They incorporated selection of 

optimal process variables and time delay of output variables to construct a dynamic soft 

sensor. 

Combination of moving window and just-in-time learning in transfer learning frame is 

developed by Alakent (2021a) to estimate the butane concentration in debutanizer column 

and tail gas composition in SRU. In their work, kernel ridge regression is used as predictive 

model for development of task transferred just-in-time learning approach. This model helps 

to combat heterogeneous concept drift phenomena occurring in process industries. 

Alakent (2021b) proposed an adaptive soft sensor based on Lasso estimator by 

combining task transferred just-in-time learning with a moving window learner in a 

transductive learning setting to predict the butane concentration in debutanizer column, tail 

gas composition in SRU, fluoride concentration in waste water treatment plant, melt index in 

sequential reactor multi-grade polyethylene production process and concentration of lighter 

end products from fluidized catalytic cracking unit.     
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Abdolkarimi et al. (2022) proposed a double level similarity criterion and support 

vector machine and co-evolutionary particle swarm optimization method to predict the 

research octane number, benzene volume percentage and reid vapour pressure for indicating 

gasoline quality in isomerization reaction. Moreover, they compared the performance of 

proposed model with double locally weighted extreme learning machine, support vector 

regression and response surface methodology.  

2.2 Recursive based approach 

Mu et al. (2006) proposed recursive partial least squares soft sensor with dual updating 

strategy for prediction of average crystal size of a purified terephthalic acid purification 

process. They update both process model and model output offset simultaneously for each 

sample, thereby the performance of recursive partial least squares with dual updating 

strategy is found to be better than dynamic partial least squares model.   

Ahmed et al. (2009) developed recursive partial least squares soft sensor for prediction 

of melt index during grade change operations in high density polyethylene plant. In their 

work, they proposed two schemes 1 and 2. Scheme 1 approach is analogous to the work 

proposed by Mu et al. (2006), with dual updating strategy to minimize the prediction error. 

To maximize prediction power and minimize time taken by the model, scheme 2 was 

developed to prevent the predictive model from unnecessary update by incorporating 

threshold criterion.    

Xianghua et al. (2009) proposed a recursive partial least squares soft sensor for online 

estimation of para-xylene concentration at the reactor outlet in an industrial isomerization 

unit.  Transformation of ortho-xylene, meta-xylene and ethylbenzene to para-xylene is the 

main process occurring in the refinery. The performance of recursive partial least squares 
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and regular partial least squares were compared and found that the recursive partial least 

squares possess better estimation and tracking capability. 

Jia et al. (2011) designed a hybrid soft sensor by combining simplified first principle 

model with recursive partial least square regression model to predict the raffinate 

concentrations of copper extraction process in cobalt hydrometallurgy. In their work, they 

address the problem of time variant feature of copper extraction process. They employed 

model rectification strategy using bias update procedure in adaptive soft sensor to correct the 

final output.  

Ni et al. (2011) proposed recursive gaussian process regression along with 

autoregressive with exogenous inputs model for prediction of melt flow rate in 

polypropylene polymerization process. They incorporated dynamics in the model and the 

bias for dynamic model can be updated by bias updating scheme to improve the prediction 

accuracy. They found that the predictive performance of this approach better than the 

recursive gaussian process regression (static) and gaussian process regression models.  

To address the issues of forgetting factor and sensitivity of variable scaling in recursive 

partial least squares algorithm, Ni et al. (2012b) proposed localized and adaptive recursive 

partial least squares model. In their work, they incorporated two levels of local adaptation 

(local model and local time regions) and three levels of adaptive strategies (mean and 

variance, forgetting factor and time regions) in the structure of recursive partial least squares 

algorithm to predict the catalyst activity in polymerization process, reactor temperature in 

gas phase polyethylene process and melt flow rate in polypropylene polymerization process.  

Galcia et al. (2012) proposed a recursive reduced order dynamic partial least square 

regression model to predict the Kappa number in industrial Kamyr pulp digester. This model 
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helps to address the frequent process changes in pulp digester. Online data scaling procedure 

was incorporated in their work and finally the effectiveness of this soft sensor was 

demonstrated in closed loop study.  

For effective tracking of process dynamics, Ni et al. (2014) proposed new localized 

adaptive soft sensor, the extension of the previous model localized and adaptive recursive 

partial least square regression to predict the melt flow rate in polypropylene polymerization 

process, catalyst activity in polymerization process and reactant concentration in continuous 

stirred tank reactor. For online prediction, moving window fashion is introduced in local 

learning framework instead of forgetting factor. In addition to that, the need for choosing the 

weighting factor in advance manner is avoided by introducing the averaged bias updating 

strategy.  

A soft sensor model by combining recursive fixed-memory principal component analysis 

and least squares support vector machines was reported in Qiao & Chai (2012) to guide the 

calciner temperature setting which relates the final quality (percentage of calcium oxide, ferric 

oxide and particle size) of products by decomposition rate in raw meal calcination process.  

Matias et al. (2015) proposed an online sequential extreme learning machine based on a 

recursive partial least squares soft sensor to predict the butane content of the debutanizer 

column. In their work, they improved the existing model online sequential extreme learning 

machine based on recursive least squares to recursive partial least squares to mitigate the ill-

conditioned problem associated with the estimation of output weights in hidden layer 

neurons due to the presence of redundant input variables.    

Shao & Tian (2015) proposed an adaptive soft sensor based on selective ensemble of 

local partial least squares model by combining local learning and selective ensemble 

learning (through bayesian inference) strategy for prediction of residual acid gas (H2S and 
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SO2) concentration from tail gas in industrial sulfur recovery unit. Finally, they compared 

root mean square errors and mean absolute deviation for a selective ensemble of local partial 

least squares models with other models such as recursive PLS, locally weighted PLS, 

moving window PLS, localized adaptive soft sensor and found that proposed model provides 

significant results over other available models.  

Shao & Tian (2017) used new distance to model criterion in semi-supervised selective 

ensemble learning strategy as adaptive soft sensing technique to solve the constraints for 

processing number of labeled samples, non-linearity and limitation of k-nearest neighbor 

method in case studies such as debutanizer column and sulfur recovery unit with high 

performance of prediction.  

2.3 Moving/Sliding window based approach 

Ni et al. (2012a) proposed a moving window gaussian process regression soft sensor 

incorporated with bias update and dual preprocessing step (for noise) using Savitzky-Golay 

filter for prediction of catalyst activity in multi-tube polymerization reactor and melt flow 

rate in polypropylene polymerization process.  

Abusnina & Kudenko (2013) proposed an adaptive soft sensor based on moving 

window gaussian process regression to predict the catalyst activity in multi-tube 

polymerization reactor. Moreover, the proposed approach provides better performance than 

moving window partial least squares regression. Reduced training subset were retrieved 

based on maximal information coefficient criterion from the pool of input variables. They 

used four different validation measures to interpret the prediction accuracy of developed 

models: mean square error, mean relative standard error, relative variance tracking precision 

and Theil’s inequality coefficient.  
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Kaneko & Funatsu (2013) discussed characteristics of adaptive soft sensors (moving 

window, time difference and just-in-time learning approaches based on partial least squares 

model) on the basis of the degradation phenomena due to state shifting in industrial 

distillation unit.  Adaptive models were subjected to predict the concentration of bottom 

product having lower boiling point in distillation unit.    

A non-linear adaptive principal component analysis was developed by Salah et al. 

(2015) to detect the breakout phenomenon in continuous casting process. The adaptive 

version (sliding window and recursive technique) of principal component analysis deals with 

evaluating and updating the model parameters for improving the prediction accuracy. This 

work claimed that adaptive principal component analysis has better prediction capability as 

compared with traditional principal component analysis, neural network and support vector 

regression models.  

Yuan et al. (2016) proposed probabilistic just-in-time learning soft sensor by adopting 

variational Bayesian principal component analysis with symmetric Kullback-Leibler 

divergence as similarity measure to predict the butane concentration in debutanizer column. 

However, they tested the prediction performance of the developed model using different 

missing ratio of output values and finally compared with deterministic just-in-time learning 

model.  

Yao & Ge (2017a) designed selectively integrated moving window weighted supervised 

latent factor analysis method to estimate the oxygen content in the furnace of primary 

reformer (hydrogen manufacturing unit in Ammonia synthesis process). The proposed 

model helps to address the degradation of soft sensor due to process nonlinearity and state 

shifting issues. 
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In order to encounter process characteristics drifts such as state shifting and non-

linearity, Yao and Ge (2017b) proposed a high performance adaptive soft sensor with 

moving window based weighted supervised latent factor analysis. They took samples from 

the primary reformer unit in the hydrogen manufacturing unit (from raw methane) of the 

urea synthesis process and considered the similarity between the training and query data 

samples for improving model adaptation capability, which further decreases the computation 

time for retrieving samples from the database. 

Xiong et al. (2017) developed combined moving window and time difference approach 

based on gaussian process regression model to handle the time delay and drifts in 

debutanizer column. They incorporated fuzzy curve analysis to solve the time delay 

mismatch in the output prediction, thereby retrieving the reliable estimation from the soft 

sensor.  

Kneale & Brown (2018) proposed an adaptive soft sensor based on recursive partial 

least squares, moving window partial least squares, moving window random forest 

regression, mean moving window and random forest partial least squares regression 

ensemble to predict the butane content in debutanizer column and tail gas composition in 

sulfur recovery unit. They found that the random forest partial least square regression 

ensemble is more robust against other models with lowest prediction errors. This can find 

application in chemical processes which lack historical databases or frequently changing 

process states. 

Liu et al. (2018) proposed a soft sensor based on an adaptive framework such as moving 

window, time difference and locally weighted regression using Bayesian network to predict 
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the butane content of the debutanizer column. The proposed model has the capability to 

handle model degradation due to drifts or state shifting and missing values. 

Strategy for selective use of adaptive models was designed by Yuge et al. (2018) for 

estimation of tail gas composition in SRU. In their work, moving window and just-in-time 

learning frameworks based on partial least square regression and random forest model was 

taken in to consideration. Initially, process state indexes (mean distance, mean square error, 

𝑇2 and 𝑄 statistics) were calibrated and then prediction efficiencies (mean absolute error, 

root mean square error) for each model were calculated. Finally, the soft sensor with best 

predictive performance is selected based on the prediction efficiency and deployed for 

prediction of output.   

Chen et al. (2019) proposed a dynamic adaptive soft sensor based on ensemble 

regularized local finite impulse response model, in which multiple local domains was 

created to ensure that the prediction depends upon the optimal window belonging to the 

same process states. The coefficients for the proposed model were determined using stable 

kernel based regularized least squares. This work helps to predict the tail gas composition of 

the sulfur recovery unit and measurement of arc current in the ladle furnace transformer 

during the smelting process. 

Urhan & Alakent (2020) proposed a soft sensor based on integrative moving window 

and just-in-time learning adaptive approach using relevance vector machine model to predict 

the butane content in the debutanizer column.  

Alakent (2020a) proposed an adaptive soft sensor based on Lasso (least absolute 

shrinkage and selection operator) estimator combining just-in-time learning and moving 

window using a transductive inference to predict the butane content in debutanizer column, 
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tail gas composition in sulfur recovery unit and melt index in sequential reactor multi grade 

polyethylene production process.  

Alakent (2020b) proposed an adaptive soft sensor based on Lasso (least absolute 

shrinkage and selection operator) estimator combining task transferred just-in-time learning 

with a transductive moving window learner to predict the butane content in debutanizer 

column, tail gas composition in sulfur recovery unit, fluoride concentration in wastewater 

treatment plant, melt index in sequential reactor multi grade polyethylene production 

process and concentration of gasoline, light diesel oil and liquefied petroleum gas in 

fluidized catalytic cracking unit.  

Li et al. (2021) developed variable exponentially weighted moving window partial least 

square regression algorithm to estimate the emission of 𝑁𝑂𝑥 concentrations in flue gas of 

coal fired power plants. This model helps to overcome the difficulties associated with 

moving window approach such as selection of window size and forgetting factor without 

prior process knowledge.  

Yamakage & Kaneko (2022) proposed an adaptive soft sensor based on Bayesian 

optimization approach to predict the butane content in the debutanizer column and tail gas 

composition in the sulfur recovery unit. The adaptive mechanisms deployed in their work 

were moving window, just-in-time learning and time difference based on partial least 

squares, locally weighted partial least squares, elastic net, least absolute shrinkage and 

selection operator, support vector regression and gaussian process regression. The proposed 

approach automatically optimizes the types of adaptive mechanism (along with hyper 

parameters) and its regression methods (along with hyper parameters), which provides the 

high predictive capability of adaptive soft sensor combination for the given process.  
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2.4 Gaps in existing research 

 Literature survey of adaptive soft sensors proposed so far reveals few limitations exist 

in the available research work. The aim and scope is identified based on the available gaps 

and they are examined in this research work.  

Gaps in identified process 

Petroleum Refinery involves highly complex multicomponent distillation process, 

where petroleum is fractionated into several lighter and heavier ends. Naphtha is the lighter 

end liquid distillate, which is the main feedstock for various petrochemical products such as 

ethylene and propylene, hydrogen production etc. It acts as a solvent for elastomer, diluent 

in paints and varnishes. In literature, very few predictive model is available to estimate the 

initial and end boiling point of naphtha. The available predictive models are mainly 

constructed based on conventional methods. Adaptive model for estimation of quality 

variables is rarely reported in literature.  

Gaps in methodology 

There have been several local modeling strategies in adaptive soft sensor development 

were proposed so far. Neural networks are rarely used as a local modeling strategy. 

Nevertheless, generalized regression neural networks is still yet to be explored in literature. 

Also, linear (PLS) were explored in all adaptive frameworks. Very few nonlinear models 

(GPR) were explored in one or more adaptive frameworks. Moreover, availability of unified 

approach (two or more adaptive frameworks) is available for only linear (PLS) model. For 

nonlinear models, unified approach is still not explored.  
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2.5  Scope of the present work 
 

The focus of this research work is development of adaptive soft sensor for quality 

estimation in refinery applications. Three processes are identified where there is a 

requirement for online monitoring of product quality.  

First, naphtha splitter unit in crude distillation unit, where end boiling point of splitter 

bottom fraction should not exceed 2040C because the rate of deactivation of platinum 

catalyst increases while processing through catalytic reforming units. Also, the initial boiling 

point of splitter boiling point of splitter bottom fraction should maintain between 750-1000C, 

such that it prevents the formation of precursors for undesirable benzene above this range in 

catalytic reforming units (Ujević et al. 2011). Therefore, real time estimation of these 

parameters will be of great assistance in maintenance of naphtha quality. 

In debutanizer column, to achieve better performance of the process, the main objective 

is to minimize the butane content (𝐶4) in the column bottom stream. Butane concentration is 

indirectly measured by online gas chromatograph, which is located at the top of the de-

isopentanizer column to quantify the butane content in the bottom output flow of the 

debutanizer column. Further, there is a significant time delay in assessing the butane content 

of the process stream through gas chromatograph. Measuring cycle of gas chromatograph is 

15 minutes. The location of analyzer is far away such that the time delay of the range 30-75 

minutes is needed to obtain the real time concentration values of butane. Real time 

estimation of butane concentration in 𝐶5 is required for better control of debutanizer column. 

Acid gases are the main causes for the formation of acid rain. The presence of H2S in air 

prevents the cells of human body from breathing phenomena. Acid gas stream is major 

source of sulphur composed of H2S and SO2, from gas sweetening and sour water stripping 
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process. Elemental sulphur which is highly valuable in the commercial market, is produced 

as by-product by oxidation of H2S in desulphurization or gas sweetening unit, which is 

known as Claus process. In this process, multi-stage thermal step followed by catalytic step 

to increase the overall sulphur yield is performed at high temperature, results in gaseous 

elemental sulphur. In this work, soft sensors were developed to measure the concentrations 

of acid gases (H2S and SO2) in the tail stream of sulfur recovery unit. They were designed to 

predict the tail gas composition at real time in SRU, using suitable set of input/output 

measurements of the process. 
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Chapter - 3 

Methodology 

 

In this chapter, the difference between global models and local models is briefly 

discussed. Then, adaptive frameworks that are developed in this research work, description 

about local models that are taken for adaptive soft sensor development and integration of 

local model in the adaptive frameworks are discussed.   

Conventional data-driven modeling methods primarily focused on global modeling 

strategy (principal component regression, partial least squares regression, support vector 

regression, neural networks etc.). There are difficulties in specifying model structure 

associated with complex optimization problems for developing robust global models using 

large datasets. Moreover, there is a serious deterioration in the global model prediction of 

quality variables, when the process parameters move away from the nominal operating 

condition (Park & Han, 2000). On the other hand, local modeling strategy approximate the 

complex process system using simple models valid for a particular operating regimes. 

Adaptive soft sensor comprises of two parts: external adaptive framework (database 

technology) and internal local predictive model (Cheng & Chiu, 2004). External adaptive 

framework helps to identify the samples from the space of predictor variables which are 

highly pertinent to current process dynamics in the system. Next, the local predictive model 

is used to estimate the regression surface for the current query in the space. Integration of 

external adaptive framework with local predictive model is the core idea that comes from 

the combination of local modeling strategy and database technology.  
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3.1  Adaptation techniques used in this work 

Industrial processes exhibit time varying behavior due to change in process 

characteristics. The process states variation exhibited by chemical processes cannot be 

captured by static model. To avoid those limitations, online adaptation of the soft sensors to 

time varying process condition is required to accurate estimation of primary quality 

variables.  

3.1.1 Just-in-Time learning (JITL) approach 

Just-in-Time learning is developed as an alternative hybrid (local and global) modeling 

approach which helps to adapt to the changing process environment. It is otherwise referred 

to as model-on-demand, instance-based learning, locally weighted model or lazy learning 

approach (Aha et al. 1991; Cybenko, 1996; Atkeson et al. 1997; Birattari et al. 1998; Braun 

et al. 2001). In the JITL approach, a certain number of input-output data values are stored in 

a database. Adaptive model for output is developed by using a fraction of this database 

which are the closest neighborhood values of the incoming query data. The neighborhood is 

selected based on a weighting procedure. Similarity index criterion is applied to compute the 

distance of the query data from each data sample present in the database. Higher weights are 

assigned to data points which are close to the query sample. The most similar samples 

chosen from the database form the relevant data set (RDS) for the particular query data and 

a local input-output model is developed from this RDS. This local model is used to predict 

the output for the query data. At the next sampling instance, a new local model is developed 

following this procedure.  

The step by step guide for implementation of JITL technique is presented below. 
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1. Initially, the search for closest neighborhood points for the incoming query data is 

initiated in the database when the estimation of output is requested for an incoming 

query data measured from process stream.  

2. After the search is over, a vector of closest neighborhood (for the incoming query 

point) samples is created by sorting each object of the database in descending order 

from the query data, based on the similarity index. Higher weights are assigned to 

data points which are closer to the query. Consequently, the farther ones acquire 

lower weight. Then, the weighted least squares were used to build a local function. 

Herewith, the effect of outlier in the incoming query data from the real plant data 

can be minimized by using weighting method (Park and Han, 2000).  

3. In this work, we have used three different approaches for assessing similarity: 

Euclidean distance, Mahalanobis distance and angle combined with Euclidean 

distance. The method for finding the similarity index using each of these three 

approaches is presented below. 

Euclidean distance: The Euclidean distance is computed according to Equation 3.1. 

                                           𝒅 (𝒙𝒒, 𝒙𝒊) =  ‖𝒙𝒒 − 𝒙𝒊‖𝟐                                        (3.1) 

Equation 3.1 represents Euclidean norm, which is applied to compute distance 

between an object of the database 𝑥𝑖 and query data 𝑥𝑞. 

Mahalanobis distance: The expression for Mahalanobis distance is represented as:  

                                    𝑴𝒅𝟐 = (𝒙𝒒 − 𝒙𝒊) 𝑺
−𝟏 (𝒙𝒒 − 𝒙𝒊)

𝑻                                      (3.2) 

𝑀𝑑2 - Squared Mahalanobis distance; 𝑆−1 – Variance-Covariance matrix of training 

database samples; 𝑥𝑖 – Training database samples; 𝑥𝑞 - Query sample. 
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Figure 3.1: Flow chart of recursive Just-in-Time learning technique 
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After sorting each object of the database in descending order, a similarity index 

vector is created. The initial step in getting a similarity index involves computation 

of the weighting function corresponding to each distance according to Equation 3.3 

given below. 

                                                       𝒘𝒊 = √𝑲 (𝒅(𝒙𝒒, 𝒙𝒊)/𝒉)                                      (3.3) 

𝑤𝑖  – weighting function; 𝑑 or 𝑀𝑑 – distance between query sample and each sample 

of the database; 𝐾 – Kernel function; ℎ – Bandwidth of kernel function.  

Commonly used kernel functions for weighting purposes are linear, Gaussian (or 

radial basis function) and polynomial. Among these, the Gaussian function maps 

nonlinear complex features effectively so as to minimize the residual error due to 

under-fitting problems by bias addition (Wang et al. 2016). 

                                                                   𝑲 (𝒅) =  𝒆−𝒅
𝟐
                                        (3.4) 

Where, 𝑑2(𝑥𝑞 , 𝑥𝑖) = (𝑥𝑞 − 𝑥𝑖)
𝑇 (𝑥𝑞 − 𝑥𝑖) ; 𝑖 =  1, 2, … 𝑛 

It may be noted that, when the distance from the query point to neighborhood 

point decreases, the weight function, 𝑤𝑖 increases. Based on this, the similarity index 

(𝑆𝑖) is computed between query data and its neighborhood in the database. 

                                                                        𝑺𝒊 = √𝒆
−𝒅𝟐 (𝒙𝒒,𝒙𝒊)                                   (3.5) 

Angle combined with Euclidean distance: In this procedure, the above steps 

(Equations 3.9, 3.10 and 3.11) are repeated and subsequently, the similarity index for 

combined angle and distance method is computed as per Equation 3.6. 

                                    𝑺𝒊 =  𝝀 √𝒆
−𝒅𝟐 (𝒙𝒒,𝒙𝒊)  + (𝟏 −  𝝀)𝒄𝒐𝒔 (𝜽𝒊)                                 (3.6) 

Here, 𝜆 is the weight parameter constrained between 0 and 1; 𝜃𝑖  is the angle between 

∆𝑥𝑞 and ∆𝑥𝑖 which are defined as:    ∆𝑥𝑞 = 𝑥𝑞 − 𝑥𝑞−1  and ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 
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                                    𝜽𝒊 = 𝒄𝒐𝒔
−𝟏  [((∆𝒙𝒒. ∆𝒙𝒊)/(|∆𝒙𝒒||∆𝒙𝒊|)]                                   (3.7) 

If  𝑆𝑖  approaches 1, then the selected closest neighborhood resembles query data. 

The cosine function, 𝑐𝑜𝑠 (𝜃𝑖) should be greater than or equal to zero. Only positive 

cosine function is subjected to further calculation. If the cosine function is less than 

zero (negative), then the corresponding neighborhood in the database is discarded 

and cannot be used in subsequent calculations. Negative cosine function indicates 

that the neighborhood and query data are dissimilar. If the value of 𝜆 approaches 

zero, Equation 3.6 becomes distance only method. If 𝜆 = 1, then it becomes the 

weighting based on cosine function only. So, the value of 𝜆 should be constrained 

between 0 and 1 (Cheng & Chiu, 2004; 2005).  

4. Similarity index computed by any of the aforementioned techniques is sorted in 

descending order and converted into a diagonal matrix. Then the diagonal matrix 

(weighting matrix, 𝑊) is multiplied with the database samples to generate training 

data for local model development. For generalization, the weighting matrix for all 

the proposed methods in this work is taken as 1. 

5. The local model is then used to predict the output by simulating the local model 

with the query data. The local model is discarded after prediction of output for a 

particular query sample and for the next query sample a new local model is 

constructed.  

In addition to method of similarity index computation and size of relevant data set, 

choice of local model also plays a key role in model's prediction accuracy. Figure 3.1 

represents the flowchart for JITL technique.  
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3.1.2   Recursive approach 

     Recursive algorithm is developed from old model using past run dataset and includes 

new incoming data from the process stream (Qin, 1998). In recursive algorithm, adaptation 

to current process states can be done using model update. In model update strategy, the 

original training model can be updated, which is the classical approach. To account for 

change in process states using recursive algorithm, the dataset for modeling continuously 

updated with incoming query sample and their estimated output as shown below. 

                                          𝒙𝒏𝒆𝒘 = [
𝒙𝑫

𝑻

𝒙𝒒
𝑻] ;  𝒚𝒏𝒆𝒘 = [

𝒚𝑫
𝑻

𝒚̂𝑻
]                              (3.8) 

Where, 𝑥𝐷 − Training inputs; 𝑥𝑞 − Query data; 𝑦𝐷 − Training outputs; 𝑦̂ − Estimated 

output. 

     Forgetting factor is usually chosen as 0 <  𝜆𝑛  ≤  1. In this work, 𝜆𝑛 is fixed at 0.9. 

Whenever, both query and predicted output for the respective query are available, the 

database samples get updated until the next query and output is defined. Weight matrix (𝛽) 

is used to down-weighting the oldest sample from the training database. Weight matrix 

holds forgetting factor (𝜆𝑛) as diagonal elements, which assigns higher weight to the current 

sample and lower weight to the past instant samples. Forgetting factor reflects the changing 

rate of regression coefficients/parameters for every instance of query sample (Ciochina et 

al., 2009).                                         𝛽 = 𝑑𝑖𝑎𝑔 (𝜆1 , 𝜆2 , … . 𝜆𝑝)       with  𝑝 =  𝑛 ×  𝑚 

After simplification, it becomes  

                                                   𝜷 = 𝒅𝒊𝒂𝒈 (𝟏… . 𝝀𝒑
𝒏−𝟏)                                       (3.9) 

Where, 𝑛 = number of rows; 𝑚 = number of columns in training database;  
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     By multiplying with weight matrix, the computational load of output estimation reduces 

significantly for every incoming query sample. In this way, the model adapts with current 

process events and partially retains the past events of process. Addition of forgetting factor 

helps proposed model to adapt the process characteristics very rapidly, which is explained 

as:   

   𝒙𝒏𝒆𝒘 = [
𝜷𝒙𝑫

𝑻

𝒙𝒒
𝑻 ] ;  𝒚𝒏𝒆𝒘 = [

𝜷𝒚𝑫
𝑻

𝒚̂𝑻
]                                     (3.10) 

 

 

Figure 3.2: Flowchart of recursive approach 

    

  In R-GRNN algorithm, initially a generalized regression neural network model is 

developed from the available input-output dataset and the determination of spread parameter 

is discussed in Section 3.2.2.2. This model is used for predicting the output for the incoming 
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query sample along with simultaneous update of database using current query and its output. 

The step-by-step approach for design of R-GRNN is presented below followed by the 

algorithm proposed in literature (Mu et al. 2006; Ahmed et al. 2009).  

a. Initially, the initial training (database) data are formulated.  

b. Then, the GRNN architecture is trained by defining the hyper-parametric values 

based on the entire training data. 

c. Once the model is available, prediction of output is performed for the incoming 

process sample (query).  

d. After prediction, current query sample is included in the training database.  

e. Then, GRNN is retrained with the updated training dataset (database). 

f. Steps b-e are repeated for the entire incoming data sample to be predicted.  

3.1.3 Moving/sliding window approach 

     Moving/sliding window approach is a sequence based or time-stamp based adaptive 

learning algorithm, where the learning of the model depends on the information contained in 

the set of observations stored in the particular window. Moving/sliding window approach 

takes either the current window or window chosen by the user, yet recursive algorithm takes 

the entire training dataset for further estimation. Updating of hyper-parametric values is 

common in both approaches.  

 Moving/sliding window algorithm has the flexibility to change either the window size or 

step size to achieve the model performance. This approach encompasses inclusion of 

incoming query along with its predicted output and excludes the oldest sample from the 

database. Moving/sliding window is used to model non-linear process systems. In the past, 

several linear systems (Principal component regression, Partial least squares regression) and 
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non-linear systems (Gaussian process regression) based on moving window approach were 

modeled without increasing the size of data matrix (Ni et al., 2012; Jaffel et al. 2016).  

 

 

Figure 3.3: Flowchart of sliding window approach 

          Moving/sliding window framework helps to update the mean and variance online and 

keep the past sample information in a window to track the characteristics of dynamic 

process (Ni et al., 2012). Slightly different from the above approach, this article focuses on 

‘one step ahead’ prediction feature of sliding window approach, which involves concurrent 

up-dating and down-dating of database samples (Jaffel et al., 2016).  

     For window length of 𝑤 and at time 𝑡, the initial training data matrix 𝑥𝐷,𝑡 is     
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                      𝒙𝑫,𝒕 = (

𝒙𝒕
𝒙𝒕+𝟏
⋮

𝒙𝒕+𝒘−𝟏

) ∈  ℝ𝒘 × 𝒎   ;       𝒚𝑫,𝒕 = (

𝒚𝒕
𝒚𝒕+𝟏
⋮

𝒚𝒕+𝒘−𝟏

) ∈  ℝ𝒘 × 𝟏             (3.11) 

Down-dating strategy: This strategy helps to down-date the past information i.e., oldest 

sample from the first row and entire column of the training database. The resultant database 

excludes the past information for every successive training, thereby adapts to the current 

process states.  

At time 𝑡 + 1, new query sample is available along with its predicted output 

with/without bias update. Old data sample in the time sequence is removed from the initial 

training data matrix, 𝑥𝐷,𝑡  

 

                𝒙𝑫,𝒕+𝟏 = (

𝒙𝒕+𝟏
𝒙𝒕+𝟐
⋮

𝒙𝒕+𝒘−𝟏

) ∈  ℝ𝒘−𝟏 × 𝒎  ;    𝒚𝑫,𝒕 = (

𝒚𝒕+𝟏
𝒚𝒕+𝟐
⋮

𝒚𝒕+𝒘−𝟏

) ∈  ℝ𝒘−𝟏 × 𝟏             (3.12) 

Updating strategy: This strategy consists of adding new incoming query sample (𝑥𝑞) to the 

last row and entire column of the database. Thereby, a new sample from the process stream, 

which carries the current process characteristics to be sequentially updated.  

After new query sample, 𝑥𝑞 or 𝑥𝐷,𝑡+𝑤  is added to the above matrix, the transformed 

training data matrix, 𝑥𝐷,𝑡+1 becomes,  

               𝒙𝑫,𝒕+𝟏 = 

(

 
 

𝒙𝒕+𝟏
𝒙𝒕+𝟐
⋮

𝒙𝒕+𝒘−𝟏
𝒙𝒕+𝒘 )

 
 
∈  ℝ𝒘 × 𝒎  ;    𝒚𝑫,𝒕 = 

(

 
 

𝒚𝒕+𝟏
𝒚𝒕+𝟐
⋮

𝒚𝒕+𝒘−𝟏
𝒚𝒕+𝒘 )

 
 
∈  ℝ𝒘 × 𝟏             (3.13) 

     In this way, GRNN is implemented in the SW framework for prediction of outputs. The 

step by step procedure for developing SW-GRNN model is presented below: 
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a. Initially, the historical data are used to train the neural network model based on the 

defined hyper-parametric values.  

b. Once the sample from the process stream is measured online, the developed neural 

network model is subjected to estimation of final output. After the prediction, the 

window of training database slides down to include the newly predicted input/output 

sample and exclude the oldest sample.  

c. Then the existing model is retrained based on the current window of the historical 

sample. The algorithm is repeated until the entire test sample in the dataset is 

predicted. 

3.2 Local modeling strategy 

3.2.1 Linear models  

In this section, we discuss about various linear models that are used for adaptive soft 

sensor development. 

3.2.1.1 Multiple linear regression 

Dependent variable is the linear combination of all independent variables along with its 

unknown parameters (𝛽0, 𝛽1, 𝛽2) and linear coefficients are computed to minimize the 

prediction error within the training dataset. The expression for multiple linear regression 

with ‘𝑘’ regressor variables can be described as: 

                             𝒚̂ =  𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 +⋯+ 𝜷𝒌𝒙𝒌 +  𝝐                                           (3.14) 

Where, 𝑦̂ is a predicted output or dependent variable; 𝑥 is an independent variables; 𝛽𝑗 (𝑗 =

0, 1, 2, …𝑘) - regression coefficients (expected change in response with respect to unit 

change in 𝑥𝑗, such that the remaining independent variables are held constant.  
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The described model represents the hyperplane in 𝑘-dimensional space of regressor 

variables {𝑥𝑗}. Direct calculation of vector, 𝛽 by taking inverse of 𝑥 is not possible. 𝑥 is not 

a square matrix and ill-conditioned? Linear coefficient is formulated as:   

                                     𝜷 = (𝒙𝑻 𝑾 𝒙)−𝟏 𝒙𝑻 𝑾 𝒚                                                            (3.15) 

Where, 𝑊 – Weighting Matrix (as mentioned in Section 3.1.1) 

Also, in addition to first order model described in Equation 3.14, interaction term can 

also be incorporated to accompany combined effect of variables (interaction) in the 

developed model (Montgomery, 2017).  

3.2.1.2 Locally weighted regression 

Locally weighted regression is a memory based approach which performs regression 

with the nearby data using weighting concept by taking training criteria for local model or 

data used for modeling. It is derived from standard regression procedures with least square 

training criterion in which the local models are linear with the unknown parameters 

(Atkeson et al. 1997). 

For locally weighted regression, the coefficient is calculated using:  

                              𝜷 = (𝒁𝑻 𝒁 )−𝟏𝒁𝑻 𝝊                                                                (3.16) 

Where, 𝑥 and 𝑦 were relevant dataset and its corresponding output data matrices, 𝑊 – 

Weighting Matrix; 𝛽 – Model parameter; 𝑍 = 𝑊 𝑥;  𝜐 = 𝑊 𝑦. 

3.2.1.3 Partial least square regression 

PLS is widely used as a soft sensor in many applications, because of its ability to tackle 

collinearity in the datasets. It finds components from predictor variables, 𝑥, which are 

relevant to that of dependent variables, 𝑦. 
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Consider the input and output variables as 𝑥𝑖 = {𝑥1, 𝑥2, … 𝑥𝑚}
𝑇 and 𝑦𝑖 = {𝑦1, 𝑦2, … 𝑦𝑛}

𝑇 

such that 𝑋 ∈  ℝ𝑘×𝑚 ; 𝑌 ∈  ℝ𝑘×𝑛 where, 𝑘 – number of samples. Every samples in the 

matrix are mean centered and scaled appropriately (Qin, 1998; Abdi, 2003). 

In PLS, both 𝑋 and 𝑌, decomposed simultaneously into  

𝑿 = 𝑻𝑷𝑻 + 𝑬                                                                (3.17) 

𝒀 =  𝑻𝑸𝑻 + 𝑭                                                               (3.18) 

with 𝑇𝑇𝑇 = 𝐼 (Identity matrix) 

Where, 𝑇 – latent variable (score) matrix; 𝑃 – loading matrix of 𝑋; 𝑄 – loading matrix of 𝑌; 

𝐸 & 𝐹 – error matrix 

The regression coefficients using PLS models is calculated as: 

          𝜷 = 𝑾𝒑𝒍𝒔 (𝑷𝑳
𝑻 𝑾𝒑𝒍𝒔)

−𝟏 𝒒𝑳
𝑻                                                     (3.19) 

Where, 𝑊𝑝𝑙𝑠 – Weight matrix (for PLS model); 𝑃𝐿– Loading matrix of input variables; 𝑞𝐿 – 

Loading vectors for output variables. 

3.2.2 Nonlinear models 

3.2.2.1 Support vector regression 

Support vector regression (SVR) models have become attractive alternatives to neural 

network models for nonlinear processes. For solving convex quadratic optimization 

problems, SVR model develops linear relationship with output by projecting the predictor 

variables nonlinearly into the higher dimensional feature space, 𝑭 (Cortes & Vapnik 1995; 

Vapnik 1999; Herceg et al. 2019).  

Support vector regression is a regressor form of support vector machines, used to 

develop nonlinear models by applying kernel trick along with support vector machines. 

Using kernel functions (linear, polynomial, radial basis functions), the input vectors are 
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mapped in the higher dimensional feature space, 𝑭. All kernel functions must obey the 

mercer theorem. In conventional statistical/machine learning techniques, risk minimization 

approach is employed to enhance the performance of developed models. Two types of risk 

minimization approaches are followed: structural risk minimization and empirical risk 

minimization. SVR follows the structural risk minimization approach, where the prediction 

error and model complexity are simultaneously kept minimal. However, empirical risk 

minimization concept focused only on minimizing the training prediction error.  

Consider a linear estimation function to solve nonlinear regression problems:      

                                                       𝒇(𝒙) = (𝒘.𝝋 (𝒙)) + 𝒃                                                 (3.20) 

Where, 𝑤 – weight parameter; 𝜑 (𝑥) – feature function; 𝑏 – bias value or constant; 

(𝑤. 𝜑 (𝑥)) – dot product in the feature space, 𝑭 such that Φ:𝑥 → 𝑭, 𝑤 ∈ 𝑭  

In SVR, nonlinear problem in the lower dimensional input space (𝑥) is transformed into 

linear regression problem in the high dimensional feature space, 𝑭. The formulation of SVR 

comprises of empirical risk and complexity term ‖𝑤‖2 , which minimizes the regularized 

risk function that is represented as Equation 3.21 to avoid overfitting phenomenon.  

                                        𝑹𝒓𝒆𝒈[𝒇] =  𝑹𝒆𝒎𝒑[𝒇] + 
𝟏

𝟐
‖𝒘‖𝟐                                    (3.21) 

Where, 𝑅𝑟𝑒𝑔 – regression risk; ‖∙‖ - Euclidean norm; 𝑅𝑒𝑚𝑝- empirical risk 

Regularization term, 
1

2
‖𝑤‖2 provides the trade-off between model complexity and 

performance without compromising the generalization capability of developed model. The 

complexity of linear function can be controlled by keeping the value of 𝑤, as small. 

Regularized risk function is similar to cost function along with standard decay term 

employed for developing artificial neural network model possessing generalization 

capability.  
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Cost functions which are employed to formulate the SVR model are Laplacian, Huber’s, 

Gaussian and 𝜀-insensitive; in which 𝜀-insensitive is mostly preferred. 

               𝑳𝜺 (𝒇(𝒙) − 𝒚) =  {
|𝒇(𝒙) − 𝒚| −  𝜺         𝒇𝒐𝒓         |𝒇(𝒙) − 𝒚|  ≥   𝜺

𝟎                                            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                 (3.22) 

Where, 𝜀 – precision parameter or tube radius located around the regression function, 𝑓(𝑥). 

The region which is enclosed inside the tube is known as ε-insensitive zone, where the 

loss function assumed to be zero value. Moreover, if the loss function within this region 

found to be smaller than 𝜀, predictions error assumed to be negligible. Slack variables 

(𝜉𝑖  and 𝜉𝑖
∗) are used to measure the deviation (𝑦𝑖 − (𝑓𝑥𝑖)) from the boundaries of the tube 

(𝜀-insensitive zone). Empirical risk minimization using symmetric loss function can be 

expressed by adding the slack variables (𝜉𝑖  and 𝜉𝑖
∗) 𝑖 = 1…𝑝 together with set of linear 

constraints in regression risk function.  

Primary form of support vector machine with L1 soft-margin formulation can be written as 

optimization problem using 𝜀-insensitive loss function along with regularization constant, C: 

                                    𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆:      
𝟏

𝟐
‖𝒘‖𝟐 + 𝑪 ∑ (𝝃𝒊 + 𝝃𝒊

∗)
𝒑
𝒊=𝟏                                      (3.23) 

      

                                Subject to, 

                                                 {

(𝒘 .  𝚽(𝒙𝒊)) + 𝒃 − 𝒚𝒊  ≤  𝜺 + 𝝃𝒊
∗

𝒚𝒊 − (𝒘 .  𝚽(𝒙𝒊)) − 𝒃 ≤  𝜺 + 𝝃𝒊
∗

𝝃𝒊, 𝝃𝒊
∗  ≥ 𝟎   𝒇𝒐𝒓   𝒊 = 𝟏,… . . 𝒑

}                              (3.24) 

Here, 𝐶 is known as regularization constant or penalizing factor, which controls the 

tradeoff between model complexity and training errors. The significance of penalizing 

constant is to define the tolerance limit in which the error propagates beyond ±𝜀-insensitive 

region. If the magnitude of 𝐶 is large, SVR minimizes the empirical risk alone regardless of 
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model complexity. For low 𝐶 value, it gives rise to more generalization of fitting model by 

assigning insignificant weightage to training data points.  

 

 

Figure 3.4: Pictorial representation of 𝜺-insensitive loss function 

in SVR model (Desai et al. 2006) 

SVR optimizes the position of the tube (𝜀-insensitive) around the data points by 

performing structural risk minimization as shown in Figure 3.4. 𝑓(𝑥), represents the fitted 

function using training data points. Using optimization criterion, the outputs of the 

respective training points are penalized, which are lies 𝜀 distance away from the fitted 
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function, 𝑓(𝑥). The excess positive and negative deviations from 𝜀-insensitive is mentioned 

in the form of slack variables 𝜉𝑖 and 𝜉𝑖
∗ respectively. Beyond the [𝜀, −𝜀] insensitive range, 

slack variables have non-zero values. By minimizing [𝜉𝑖, 𝜉𝑖
∗] and ‖𝑤‖2 value, the training 

set errors and model over-complexity of SVR model was reduced significantly. This also 

avoids overfitting or under fitting phenomena, when the function 𝑓(𝑥) is fitted using 

training dataset (Desai et al. 2006).     

The regularized risk function defined in Equation 3.21 can be minimized by the 

function holding finite number of parameters has the form: 

                               𝒇(𝒙, 𝜶, 𝜶∗) =  ∑ (𝜶𝒊 − 𝜶𝒊
∗)(𝚽 (𝒙𝒊) .𝚽(𝒙)) + 𝒃 

𝒑
𝒊=𝟏                          (3.25) 

Where, 𝛼𝑖
∗, 𝛼𝑖 – Lagrangian multipliers related to input vectors;  𝛼𝑖

∗, 𝛼𝑖  ≥ 0 with 𝛼𝑖
∗𝛼𝑖 = 0; 

(Φ (𝑥𝑖) .Φ(𝑥)) - inner product of two elements of Hilbert space 

To find the value of lagrangian multipliers or coefficients 𝛼𝑖
∗ and 𝛼𝑖, it is necessary to 

solve the quadratic optimization problem based on Karush-Kuhn-Tucker conditions: 

Maximize the function 

𝑹(𝜶∗, 𝜶) =  −𝜺∑(𝜶𝒊
∗

𝒑

𝒊=𝟏

+ 𝜶𝒊)

+ ∑𝒚𝒊 (𝜶𝒊
∗ − 𝜶𝒊) −

𝟏

𝟐
∑(𝜶𝒊

∗ − 𝜶𝒊)(𝜶𝒋
∗ − 𝜶𝒋) (𝚽(𝒙𝒊),𝚽(𝒙𝒋))

𝒑

𝒊,𝒋=𝟏

𝒑

𝒊=𝟏

 

                                                                                                                                           (3.26) 

Subject to constraints 

                                 ∑ (𝜶𝒊
∗ − 𝜶𝒊)

𝒑
𝒊=𝟏 = 𝟎,       𝟎 ≤ 𝜶𝒊, 𝜶𝒊

∗ ≤ 𝑪,       𝒊 = 𝟏,…𝒑.                  (3.27) 

Where, 𝑥𝑖 – support vectors 
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To evaluate the inner product, (Φ(𝑥𝑖), Φ(𝑥𝑗)) in Hilbert space, the following 

expression is deployed.  

According to Hilbert space theory,  

For a symmetric function, 𝐾 (𝑢, 𝑣), the expression can be written as: 

                                        𝑲 (𝒖, 𝒗) =  ∑ 𝜶𝒌𝝓𝒌(𝒖)𝝓𝒌(𝒗)
∞
𝒌=𝟏                                             (3.28) 

having positive coefficients 𝛼𝑘 > 0. 

Further, 𝐾 (𝑢, 𝑣) is the inner product in the feature space 𝜙, and the required conditions 

should be valid for any nonzero function, 𝑔 in the Hilbert space (Vapnik et al. 1996).  

                                          ∫𝑲(𝒖, 𝒗)𝒈(𝒖)𝒈(𝒗)𝒅𝒖𝒅𝒗 > 0                                             (3.29) 

 

After simplification, Equation 3.29 can be written as, 

                                    𝒇(𝒙, 𝜶𝒊, 𝜶𝒊
∗) =  ∑ (𝜶𝒊

∗ − 𝜶𝒊)𝑲(𝒙, 𝒙𝒊) + 𝒃
𝒑
𝒊=𝟏                                  (3.30) 

Where, 𝐾(𝑥, 𝑥𝑖) – Kernel of support vectors; 𝐾(𝑥, 𝑥𝑖) - inner product of (Φ(𝑥𝑖),Φ(𝑥𝑗)) 

The coefficients 𝛼𝑖
∗ and 𝛼𝑖 can be found by solving the quadratic optimization problem, 

Maximize the function 

𝑹(𝜶∗, 𝜶) =  −𝜺∑(𝜶𝒊
∗

𝒑

𝒊=𝟏

+ 𝜶𝒊) + ∑𝒚𝒊 (𝜶𝒊
∗ − 𝜶𝒊) −

𝟏

𝟐
∑(𝜶𝒊

∗ − 𝜶𝒊)(𝜶𝒋
∗ − 𝜶𝒋) 𝑲(𝒙𝒊, 𝒙𝒋)

𝒑

𝒊,𝒋=𝟏

𝒑

𝒊=𝟏

 

                                                                                                                                           (3.31) 

Subject to constraints 

                              ∑ (𝜶𝒊
∗ − 𝜶𝒊)

𝒑
𝒊=𝟏 = 𝟎,       𝟎 ≤ 𝜶𝒊, 𝜶𝒊

∗ ≤ 𝑪,       𝒊 = 𝟏,…𝒑.                     (3.32) 

Bias parameter, 𝑏 can be found as 

                                    𝒃 =  { 
 𝒚𝒊 − 𝒇(𝒙𝒊)𝒃=𝟎 −  𝜺       𝒇𝒐𝒓     𝜶𝒊 𝝐 (𝟎, 𝑪)

 𝒚𝒊 − 𝒇(𝒙𝒊)𝒃=𝟎 +  𝜺      𝒇𝒐𝒓     𝜶𝒊
∗ 𝝐 (𝟎, 𝑪)

                         (3.33) 
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Lagrangian multipliers (𝛼𝑖 and 𝛼𝑖
∗) are forces tend to push the regression function 

(𝑓(𝑥𝑖)) towards the desired output, 𝑦𝑖. Each training data has a strong association with a pair 

of lagrangian multipliers (𝛼𝑖 and 𝛼𝑖
∗). Some regression coefficients(𝛼𝑖 − 𝛼𝑖

∗) possess non-

zero values, in which training data with non-zero coefficients are called support vectors 

(|𝑓(𝑥𝑖) − 𝑦𝑖| ≥ 𝜀).  

Support vectors are crucial points for determining the SVR approximated function. 

These vectors are represented as points as shown in Figure 3.1 on the surface and outside of 

𝜀-insensitive tube. If the number of support vectors are smaller, more generalized 

approximate function is obtained. Also, prediction of new unknown output from the 

obtained function requires less computation. Moreover, regression function approximates 

the data points which are present inside the 𝜀-insensitive tube. There is no influence in the 

solution of regression task, when the regression coefficients (𝛼𝑖 − 𝛼𝑖
∗) of training data 

points possess zero value. The tube width parameter 𝜀, is inversely proportional to the 

number of support vectors used to build the regression function. The decrease in the value of 

𝜀, leads to increase in support vectors associated with poor generalization and over- fitting 

of training data points due to complex model. However, better generalization of model 

associated with high training set error resulted due to large magnitude of 𝜀. 

In SVR, two optimization approaches sequential minimal optimization (SMO) 

algorithm and iterative single data algorithm (ISDA) are used to solve large quadratic 

programming problems.  SMO (Platt 1999; Smola & Schölkopf, 2004) is based on the rule 

of second-order iterative selection algorithm that uses two Lagrangian multipliers as a 

reference to solve optimization problems faster than the existing quadratic programming in 

SVR. ISDA (Kecman et al. 2005) works by classical Gauss-Seidel iterative algorithm 
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updating the single Lagrangian multiplier every-time for a huge dataset to converge rapidly. 

Here, the selection of optimum value of loss function (𝜀) for modeling applications is very 

important to select the best performing models with reasonable prediction (Shokri et al. 

2015; Yan et al. 2004).  

3.2.2.2 Generalized regression neural network 

Local models used in the adaptive framework can be based on linear or nonlinear 

techniques. Since most industrial processes are inherently nonlinear in nature, it is highly 

desirable to develop robust nonlinear local models which can cope with high-dimensional 

and nonlinear data. The various nonlinear local models reported in the adaptive framework 

include: support vector regression, least square support vector regression (Ge & Song, 

2010), kernel principal component regression (Yuan et al, 2014), Gaussian process 

regression (Shi & Xiong, 2020) and back propagation neural networks (Chen et al. 2017). 

These techniques require optimum values of various hyper-parameters to approximate the 

given system. In case of support vector regression, kernel parameter, regularization 

parameter, error bound; for Gaussian process regression, signal variance, noise variance, 

length scale (Shi & Xiong, 2018) and for kernel PCR, the kernel type and parameters are to 

be specified (Pani, 2021). Similarly, use of back-propagation neural networks requires 

knowledge of number of hidden layers, number of neurons in hidden layers, weights, and 

transfer function for hidden and output layer prior to model development (Chen et al. 2017; 

Singh et al. 2019).  

Generalized Regression neural network (GRNN) is another special case of probabilistic 

learning algorithms with single pass and parallel memory structure in the family of neural 

networks. GRNN was originally proposed by Specht (1991) for prediction and control of 
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processes by understanding the plant dynamics. Unlike other aforementioned nonlinear 

techniques, GRNN trains itself in a shorter duration and requires the least number of hyper-

parametric values (i.e. spread parameter) to be specified. There has been only limited 

application of GRNN technique for predictive modeling of quality parameters in industries. 

A hybrid integrated Principal component analysis based GRNN approach was proposed by 

Kulkarni et al. (2004) for nonlinear fed-batch fermentation process involving biosynthesis of 

penicillin and protein synthesis. The technique of GRNN is further applied in prediction of 

ethane content in Ethane-Ethylene distillation column, butane content in Debutanizer 

column, tail gas composition in Sulphur recovery unit, prediction of chlorine residuals in 

water distribution system, rate of coagulation dosage in drinking water treatment plant, 

particle size in cement mill and cement clinker quality (Singh et al. 2019; Bowden et al. 

2006; Heddam et al. 2011; Pani et al. 2012; 2013). Review presented above indicates some 

application of GRNN for industrial quality monitoring. However, all these applications are 

steady state models. 

GRNN uses theory of non-linear regression for defining the control function so as to 

reduce the residual squared error for estimation of output (Specht, 1991; Kulkarni et al. 

2004). It also provides better prediction by mapping the non-linear systems with less number 

of training samples. GRNN monitors and estimates the relationship between sparse variables 

in multidimensional space. This parallel architecture can be effectively used in real time 

estimation and control of process by learning the dynamics of systems.  
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Figure 3.5: Generalized Regression Neural Network (Pani et al. 2013) 

The neural architecture of GRNN comprises four distinct layers which are input layer, 

pattern layer, summation layer and output layer. 

        The GRNN function (conditional mean) can be described as: 

                                   𝑬[𝒚|𝒙] =  
∫ 𝒚 𝒇(𝒙,𝒚)𝒅𝒚
∞
−∞

∫ 𝒇(𝒙,𝒚)𝒅𝒚
∞
−∞

                      (3.34) 

Here, 𝑥 and 𝑦 are input and output vectors. 𝐸[𝑦|𝑥] is output expected for the given input, 

𝑓(𝑥, 𝑦) is the joint continuous probability density function of 𝑥 and 𝑦.  

𝒇 ̂(𝒙, 𝒚) =  
𝟏

𝟐𝝅(𝒑+𝟏) 𝟐⁄  𝝈(𝒑+𝟏)
 ×  

𝟏

𝒏
 ∑ 𝒆𝒙𝒑 [−

 (𝒙− 𝒖𝒊)
𝑻 (𝒙− 𝒖𝒊)

𝟐𝝈𝟐
] ×  𝒆𝒙𝒑 [−

(𝒚−𝒚𝒊)
𝟐

𝟐𝝈𝟐
]  𝒏

𝒊=𝟏             (3.35) 

The joint probability density function 𝑓 (𝑥, 𝑦) can be estimated through the 

observations 𝑥 and 𝑦. The function 𝑓(𝑥, 𝑦) which is a probability function estimator, is 

found from the sample values 𝑢𝑖 and 𝑦𝑖 from the pool of observations 𝑥 and 𝑦 in a random 

manner. This estimator is also known as non-parametric Parzen window estimator. 

Substitution of probability function estimator in conditional mean provides desired 
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conditional mean of 𝑦𝑖 for a given 𝑥. Here, 𝑛 represents number of sample observations 

while 𝑝 corresponds to dimensions of variable 𝑥.  

The exponential form of activation function (Gaussian radial basis function, ℎ𝑖) found 

in pattern layer can be written as: 

                                                                  𝒉𝒊 = 𝒆
−𝑰𝒋
𝟐 𝟐𝝈𝟐⁄

                    (3.36) 

The distance can be found by pattern neurons through square of difference across all 

weights. This can be clearly described by net input for 𝑗th pattern neuron,  

                                                           𝑰𝒋 = ∑ (𝒘𝒊𝒋 − 𝒖𝒋)
𝟐𝒏

𝒊=𝟏                                      (3.37) 

The function value can be described optimally as: 

                                                         𝒚𝒋 =
𝑺𝑫

𝑺𝑺
=
∑ 𝒉𝒊𝒘𝒊𝒋
𝒏
𝒊=𝟏

∑ 𝒉𝒊
𝒏
𝒊=𝟏

                                       (3.38) 

                                                     𝒚𝒋 = 
∑ 𝐞𝐱𝐩  (−

𝑫𝒊
𝟐

𝟐𝝈𝟐
𝒏
𝒊=𝟏 ) 𝒘𝒊𝒋

∑ 𝐞𝐱𝐩  (−
𝑫𝒊
𝟐

𝟐𝝈𝟐
𝒏
𝒊=𝟏 )

                                       (3.39) 

                                                 𝑫𝒊
𝟐 = (𝒙 − 𝒖𝒊)

𝑻 (𝒙 − 𝒖𝒊)                                               (3.40) 

                                          𝒚𝒋 = 
∑ 𝐞𝐱𝐩 (−

(𝒙−𝒖𝒊)
𝑻
 (𝒙− 𝒖𝒊)

𝟐𝝈𝟐
) 𝒘𝒊𝒋

𝒏
𝒊=𝟏

∑ 𝐞𝐱𝐩 (−
(𝒙−𝒖𝒊)

𝑻
 (𝒙− 𝒖𝒊)

𝟐𝝈𝟐
) 𝒏

𝒊=𝟏

                           (3.41) 

Here, 𝑤𝑖𝑗 is the target weight or output corresponds to labeled training samples (𝑥 and 

𝑦). All the neurons in the pattern layer were linked with each of the neurons in two 

summation layer which are represented as 𝑆 and 𝐷. The output layer divides the output from 

𝑆-summation layer to the output from 𝐷-summation layer to estimate the quality variable for 

the given input vector. The constant 𝜎 is known as smoothing function or spread parameter, 

helps to control the size of perceptive region. The successful design of GRNN depends upon 

the choice of selecting the distinct spread parameter (Specht, 1991; Kisi, 2006).  
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With aforementioned discussion, the procedure for implementing GRNN model is 

summarized as: 

GRNN training procedure (Pani et al. 2012) 

Step 1: Set – Input, Target and Spread values 

Step 2: Design Feed forward neural network (Input: 1, Hidden: 1, Output: 1) 

Step 3: Set –   

No. of input layer nodes = No. of input variables;  

No. of output layer nodes = No. of target variables;  

No. of hidden layer nodes = No. of observations used for training the network 

Step 4: Set –  

Weight of input to hidden layer nodes (W1) = Actual input values 

Weight of hidden to output layer nodes (W2) = Actual target values 

 

Step 5: Net input = Euclidean distance (W1 and Input values) 

Step 6: Hidden layer output = Exponential of net input  

Step 7: Final output = Hidden layer output * W2 

Selection of spread parameter or kernel width (𝜎) is crucial for successful design of 

GRNN model. Once the training data is available with labeled samples, GRNN maps 

arbitrary function by proper selection of spread parameter. The GRNN architecture has an 

inherent advantage of both statistical and machine learning scheme. It is based upon kernel 

regression and radial basis function neural network. The final regression part estimates the 

final output by minimizing the mean squared error between predicted and observed data. 

The estimation error tends to be zero, when large number of training data is taken for model 

development (Specht, 1991). GRNN has been used as a steady state quality monitoring soft 

sensor with reasonable estimation accuracy. Therefore, applying GRNN model with 
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continuous online model adaptation capability for adaptive soft sensor design is rarely 

investigated.  

Selection of spread parameter for GRNN in adaptive soft sensor development  

Selection of spread parameter or kernel width (𝜎) is crucial for successful design of 

GRNN model. The optimized kernel width (standard deviation) can either be found through 

cross-validation technique (grid search) by developing models through range of spread 

values (Pani & Mohanta, 2015), circuit training (Feng et al. 2017; 2019) or hold or leave one 

out method (Specht, 1991). In this work, we implemented grid search approach using fine 

grid mesh to search the optimum kernel width. The range of spread values for search 

operation is chosen as below: 

                 Range of grid search (for JITL-D and JITL-A&D),  

                                                       𝝈 = [0.001, 0.01, 0.1, 1, 5, 10]                                   (3.42) 

      The methods of trial and error, leave one out, cross validation etc. are difficult to 

implement when the model parameter value is expected to change continuously during 

online use. Therefore, theoretical decision method proposed by Cherkassky and Ma (2004) 

is applied in this work to compute spread parameters for recursive and sliding window 

GRNN models.    

According to this method, the analytical approach for computing 𝜎 is given as:                                                                      

𝝈𝒅 ~ (𝟎. 𝟏 –  𝟎. 𝟓)                                                      (3.43) 

Here, 𝑑 is the number of input variables. For effective use of the above relation, 𝜎𝑑   was 

equated separately to 0.1 to 0.5 and from each equation, a kernel value was computed 

resulting in 5 kernel values for each dataset. Finally the values obtained were averaged to 
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obtain a unique 𝜎 value for a particular dataset. The results for 𝜎 computation of the three 

industrial datasets are shown in Table 3.1.  

Table 3.1: GRNN spread parameter values computed (recursive and sliding 

window) using analytical method based on Cherkassky and Ma (2004) 

   

 
0.1 0.2 0.3 0.4 0.5 Mean 

Crude 

distillation 

unit (𝑑 = 6) 

0.6813 0.7647 0.8182 0.8584 0.8909 0.8027 

Debutanizer 

column  

(𝑑 = 7) 

0.7197 0.7946 0.8420 0.8773 0.9057 0.8279 

Sulfur 

recovery unit 

(𝑑 = 5) 

0.6310 0.7248 0.7860 0.8326 0.8706 0.7690 

 

Once the training data is available with labeled samples, GRNN maps arbitrary function 

by proper selection of spread parameter. The GRNN architecture has an inherent advantage 

of both statistical and machine learning scheme. It is based upon kernel regression and radial 

basis function neural network. The final regression part estimates the final output by 

minimizing the mean squared error between predicted and observed data. The estimation 

error tends to be zero, when large number of training data is taken for model development 

(Specht, 1991). GRNN has been used as a steady state quality monitoring soft sensor with 

reasonable estimation accuracy. Therefore, applying GRNN model for adaptive soft sensor 

design is yet to be explored in applications of process industries. 

  

𝝈𝒅 
Process 
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3.3 Integration of non-linear local models in the recursive Just-in-Time 

learning framework 

In JITL technique, the database may be fixed or may be continuously updated. In most 

of the reported techniques the database is either fixed or continuously updated by including 

the query sample without any removal of data from database. In the former, the prediction 

accuracy may drop due to the neighborhood selection based on the past process states, while 

the current process states yet not updated in the database. However, in the later, this leads to 

an increase in database size with time and consequently, the computation time for each 

sample will increase with time (this is because, initially, distance of the query sample from 

each sample of the database has to be computed).  

It is very important that the data having good information must be included and those 

with poor information must be excluded from the database (Kaneko & Funatsu, 2014). In 

this work, a database update technique is adopted where, the latest query data is included in 

the database and one sample already present in the database having the least similarity with 

query data, is removed. By following this recursive computation approach, the database size 

is fixed while ensuring continuous update of the database at each sampling instance. In the 

proposed integrated recursive approach, the entire database (training set) is taken for 

similarity calculation for each query objects which is slightly different from integrated 

moving window approach. However, the latter takes only the small window (decided by 

user) of database samples for similarity calculation. The database is updated only if the 

prediction error is less than or equal to the threshold limit, d which is considered here as 

0.01. 
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Figure 3.6: JITL flowchart for nonlinear models 
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Figure 3.7: JITL-GRNN architecture 

 The mechanism of recursive JITL algorithm with non-linear local modeling strategy 

(SVR or GRNN) adopted in this work is presented in Figure 3.7. The SVR local model is 

optimized with SMO or ISDA algorithm. Hyper parameter of GRNN local model is 

determined by grid search method or analytical method. Pictorial representation of GRNN 

model embedded with just-in-time learning frameworks in revealed in Figure 3.8.   
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3.4 Performance improvement of adaptive models using bias update   

In addition to use of non-linear local models and recursive database update, the 

discrepancy in the value of the primary variables obtained from laboratory and predicted 

through soft sensors during the model update process is also considered for better accuracy.  

 In the actual industrial scenario, where the output quality is monitored by offline 

laboratory analysis, there is substantial time interval between two consecutive quality data 

obtained from laboratory. Major causes for this time delay are analysis time taken by the 

offline or online analyzers, uncertainty in time of sampling, instrument failure and analyzers 

under repair/maintenance. New query samples will arrive for quality estimation in the 

subsequent mean time before the arrival of the feedback for the old sample which is already 

been processed. Due to this, model update also gets delayed. In order to address this 

practical industrial constraint, a bias update procedure is proposed in this work to get timely 

update of the current model using the predicted output. Error between predicted and actual 

values at a particular instance is called as bias at that instance.  

The bias updating procedure encompasses addition of bias from the immediate previous 

instance (when the laboratory data was available) to the predicted output of the current 

instance. During the time interval of two consecutive laboratory information, the bias value 

is constant until, when next laboratory result arrives for update. 

  Let 𝑦̂(𝑘) is the predicted output value of the adaptive model at 𝑘th instant. Then 

according to bias update procedure, the final corrected output value at 𝑘th instant is 

calculated as:  

                                             𝒚𝒄(𝒌) =  𝒚̂(𝒌) + 𝒃𝒊𝒂𝒔(𝒌)                          (3.44) 
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An offset bias smoother is added for correcting the predicted output with respective to 

laboratory values. However, the initial value of bias is taken as zero. The weighting factor, 

𝜔 is user adjusted parameter which depends on the individual process system (Mu et al., 

2006; Ahmed et al., 2009; Jia et al. 2011). 

                       𝒃𝒊𝒂𝒔(𝒌) = 𝝎𝒃𝒊𝒂𝒔𝟎(𝒌) + (𝟏 − 𝝎)𝒃𝒊𝒂𝒔(𝒌 − 𝒊)                         (3.45) 

                                 𝒃𝒊𝒂𝒔𝟎(𝒌) = 𝒚𝟎(𝒌 − 𝒊) − 𝒚̂(𝒌 − 𝒊)                          (3.46) 

Where, 𝑏𝑖𝑎𝑠0(𝑘) is the current offset bias; 𝑏𝑖𝑎𝑠 (𝑘 − 𝑖) provides the difference at (𝑘 − 2) 

instant; 𝜔 – bias weighting factor (range: 0.1-0.9); 𝑦0 – Observed output from laboratory; 

𝑦̂ – Predicted output from developed model.  

     The final corrected output value, 𝑦𝑐   is calculated as: 

                                                     𝒚𝒄(𝒌) =  𝒚̂(𝒌) + 𝒃𝒊𝒂𝒔(𝒌)                          (3.47) 

Usually, the range of bias weighting factor (𝜔) is chosen between 0.1 and 0.9. Lower 

the value of 𝜔 corresponds to small weight to current bias followed by higher weight to bias 

corresponds to previous instant and vice versa. 

In this work, adaptive updating strategy for database is adopted to improve the model 

performance and reduce the computational load. Confidence limit, 𝑑 is introduced in the 

algorithm to update the database adaptively only if it crosses the certain threshold value. If 

the squared prediction error between predicted and actual output higher than the confidence 

limit, then the database gets updated with actual output value obtained from laboratory 

analysis. Otherwise, the predicted output is subjected along with respective query for update 

of training database. The confidence limit, 𝑑 is described as: 

                 𝒅 =  
𝒗

𝟐𝒎
 𝝌𝟐                         (3.48) 
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Here, 𝑣 - variance of output in training database (for sliding window model – samples taken 

in window); 𝑚 – output mean; 𝜒2 = 
(𝑦̂−𝑦𝑜)

2

𝑦𝑜
 

          Figures 3.8 to 3.10 illustrate the mechanism of bias update in the recursive JITL, 

recursive and sliding window framework respectively.  

 

 
Figure 3.8: Recursive Just-in-Time Learning technique with bias update 
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Figure 3.9: Recursive technique with bias update 
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Figure 3.10: Sliding window technique with bias update 
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Chapter - 4 

Case studies – Industrial Applications 

Petroleum (also known as crude oil), a fossil fuel with complex hydrocarbons, forms a 

chief source of energy. The per-capita consumption of conventional petroleum and 

petroleum related products increases steadily with significant drop in exploration of oil wells 

simultaneously shows an alarming trend, which tends towards major energy crisis. It is 

indispensable for process industry as well as individual, to safeguard the energy resources 

for the future generation. Reduction in usage of energy resources forms the basis for the 

efficient and optimized control of industrial processes. The other agenda for process control 

is to avoid process variations and customer complaints of products. Models were used to 

design controllers, that are implemented to control the chemical processes.  

Petroleum undergoes three different stages (upstream, midstream and downstream) of 

process before approaching the end usage of consumers. The upstream process includes 

dewatering, desalting and desulphurization units. The mid-stream stage comprises multi-

component fractionation, hydro cracking, reforming and hydro treating. Finally, the 

downstream process includes petrochemical complexes such as formation of fertilizers, 

polymers, dyes and pigments. To meet the product specification and be customer compliant 

with reduced off-specification products and maximum profit, it is crucial to monitor and 

control the quality of products in petroleum refinery. Measurement of product quality 

through laboratory analysis is a time consuming process. Use of soft sensor will facilitate 

real time monitoring of product quality.  
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In this work, adaptive soft sensors are developed for monitoring quality parameters in 

three processes of refinery (as mentioned earlier in Chapter 1). The three processes along 

with the quality parameters to be monitored are presented in the following sections. 

4.1 Naphtha splitter section 

Raw naphtha is a mid-stream liquid distillate, fractionated from atmospheric distillation 

unit. It is a mixture of alkanes, cycloalkanes and aromatics with carbon atoms range from 5 

to 11 and majorly used as a solvent for elastomers, diluents for paints and varnishes, 

hydrogen production and blended with gasoline to form high octane fuels (Duchene et al., 

2020). For different crude asset (Paraffinic, Naphthenic or Aromatic), the boiling range of 

fractional cut varies based on composition.  

4.1.1 Initial boiling point and end boiling point prediction of heavy naphtha  

Initial boiling point (IBP) and End boiling point (EBP) are the two key indicators for 

naphtha quality which is obtained from laboratory analysis with significant time delay. 

Laboratory analysis based on EN ISO 3405 and ASTM D86 standards, provides the boiling 

range characteristics of different petroleum products under various conditions at 

atmospheric pressure. Moreover, online sensors e.g. gas chromatographs possess 

measurement delay. The sampling time varies from few minutes to several hours. In this 

case, the laboratory assays are conducted twice a day (Ujević et al., 2011). It is mandatory to 

maintain the quality of refinery products in which the properties of naphtha to be 

continuously monitored and controlled. Hence, there is a strong need for online monitoring 

of naphtha boiling point. In the absence of availability of any hardware sensor for the same, 

soft sensor can be a viable alternative. 
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Figure 4.1: Process flow diagram - Naphtha splitter section 
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The naphtha splitter unit presented in Figure 4.1, forms a small portion of mid-stream 

crude fractionation process, which consists of atmospheric distillation column and stripping 

unit with a preheater at the bottom section and condensing system at the top overhead 

section. The un-stabilized naphtha (C3-C9) is subjected to a stabilizer unit, separating 

liquefied petroleum gas (C3, C4) in the top and stabilized naphtha at the bottom. The 

stabilized naphtha (C4-C9) is then fed to the stripping unit which then further separates light 

naphtha (C5 < 850C) and heavy naphtha (C5 > 850-1900C). The temperature reading 

measured for the condensate first drop at the outlet of the condenser is initial boiling point 

and the upper temperature limit observed during the test is found as end boiling point.  

It is noted that the end boiling point of the splitter bottom fraction should not exceed 

2040C because the rate of deactivation of platinum catalyst increases while processing 

through catalytic reforming units. Also, the initial boiling point of splitter boiling point of 

splitter bottom fraction should maintain between 750-1000C, such that it prevents the 

formation of precursors for undesirable benzene above this range in catalytic reforming units 

(Ujević et al. 2011). Therefore, real time estimation of these parameters will be of great 

assistance in maintenance of naphtha quality. The variables of interest in this work are initial 

boiling point and end boiling point of naphtha.  

The model output can be described as: 

IBP:                𝒚𝟏(𝒌)  =  𝒇 [𝒙𝟏(𝒌), 𝒙𝟐(𝒌), 𝒙𝟑(𝒌), 𝒙𝟒(𝒌), 𝒙𝟓(𝒌), 𝒙𝟔(𝒌)]                    (4.1) 

EBP:                 𝒚𝟐(𝒌)  =  𝒈 [𝒙𝟏(𝒌), 𝒙𝟐(𝒌), 𝒙𝟑(𝒌), 𝒙𝟒(𝒌), 𝒙𝟓(𝒌), 𝒙𝟔(𝒌)]                  (4.2) 

The input and output variables of naphtha splitter dataset used for model development is 

mentioned in Table 4.1: 
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Table 4.1: Description of input and output variables taken 

for model development in naphtha splitter unit 

Process Naphtha splitter unit 

 

 

Inputs 

𝑥1, Column top temperature (0C) 

𝑥2, Splitter top pressure (kg/cm2) 

𝑥3, Splitter top temperature (0C) 

𝑥4, Reflux rate (m3/h) 

𝑥5, Splitter inlet temperature (0C) 

𝑥6, Splitter bottom temperature (0C) 

Outputs Initial (𝑦1) & End (𝑦2) boiling point of 

heavy naphtha in splitter bottom (0C) 

  

Table 4.2: Literature review for soft sensing of naphtha fuel properties 

Author (s) Year Output Methods used 

Dam & Saraf 2006 
IBP and EBP of 

heavy naphtha 

Genetic Algorithm-Artificial 

Neural Networks 

Angelov & 

Zhou 
2007 

Naphtha 95% 

cut point 

Extended evolving Takagi-

Sugeno fuzzy model 

Yan 2008 
Naphtha 25% 

cut point 

Modified nonlinear 

generalized ridge regression 

Yan 2010 
Naphtha dry 

point 

Hybrid artificial neural 

networks 

Ujević et al. 2011 
IBP and EBP of 

heavy naphtha 

Multiple linear regression, 

Multilayer perceptron and 

Radial basis function neural 

networks 

Wang et al. 2013 
Naphtha dry 

point 

Backpropagation learning 

technique combining 

correlation pruning 

algorithm with multiple 

linear regression model 

Shang et al. 2015 
Naphtha 100% 

cut point 

Dynamic partial least square 

regression 

Torgashov et 

al. 

 

2018 

Desired cut 2 

(mixture of 

naphtha and 

gasoline) 

Static linear regression and 

dynamic finite impulse 

response model 
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Few literatures are available to predict the quality variables in naphtha splitter unit 

using conventional soft sensors: Estimation of initial and final boiling point of heavy 

naphtha using genetic algorithm in artificial neural networks (Dam & Saraf 2006). An online 

estimator based on extended evolving Takagi-Sugeno fuzzy model (Macias-Hernandez et al. 

2007) was developed to estimate heavy naphtha 95% cut point. A modified nonlinear 

generalized ridge regression and differential evolution (Yan, 2008) based online virtual 

estimator for measuring naphtha 25% cut point at the top of atmospheric distillation unit. 

Hybrid artificial neural network (Yan, 2010) based soft sensing system was implemented for 

real-time prediction of naphtha dry point in preflash tower column of Crude Distillation Unit 

(CDU). Prediction of initial and final boiling point of heavy naphtha in the CDU splitter 

column using multiple linear regression, multilayer perceptron neural networks and radial 

basis function neural networks (Ujević et al. 2011).  

Hybrid approach based on backpropagation learning technique combining correlation 

pruning algorithm with multiple linear regression model (Wang et al. 2013) for estimation of 

naphtha dry point in preflash tower of CDU. An improved dynamic partial least square 

regression (Shang et al. 2015a; Shang et al. 2015c) soft sensor for prediction of naphtha 

100% cut point in the top product and 95% cut point of heavy diesel in CDU. The final 

boiling point temperature of desired cut 2 (mixture of naphtha and gasoline) in CDU was 

estimated using static linear regression and dynamic finite impulse response model 

(Torgashov et al. 2018) by applying constrained optimization approach. 

4.2. Debutanizer column 

Refining of petroleum to different cuts (products) is a complex process. The main 

processes in refinery are atmospheric distillation column, vacuum distillation column, 
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reforming, cracking, hydro-treating and coking. Refining process considered in this work 

comprises desulfurization and naphtha splitter plant.  

4.2.1 Butane concentration prediction in the column bottom stream 

Debutanizer column is a kind of multi-component distillation unit and considers as an 

integral part of the refinery, used to remove lighter fractions from atmospheric or vacuum 

distillation, cracking and coking units. In general, it separates liquefied petroleum gas (LPG) 

as overhead and stabilized naphtha as the bottom product from un-stabilized naphtha. Here, 

the purpose of debutanizer column is to proper fractionation of incoming feed to distillate 

and bottom ends, maximization of stabilized gasoline content in overheads, which is used as 

feed for LPG splitter and minimization of butane content in the bottom which is used as feed 

for naphtha splitter. The main equipment of debutanizer column is heat exchanger, overhead 

condenser, bottom reboiler, heat reflux pump, feed pump to the LPG splitter and reflux 

accumulator. To monitor the product quality, hardware sensors were implemented to 

measure the secondary variables in the plant. All the secondary variables measured are 

relevance to describe the product quality of described process. The variables which are 

highly relevant to debutanizer column, which is explained in Fortuna et al. (2005; 2007) 

includes: top pressure, reflux flow rate, flow to LPG splitter column, top temperature, 6th 

tray temperature, bottom temperature 1 and bottom temperature 2.  

In this process, the butane content of debutanizer column is not detected on the bottom 

flow rather, the measurements through gas chromatography was done on the overheads of 

de-isopentanizer column (𝑖𝐶5 flow to stock). The concentration of butane in 𝑖𝐶5 depends on 

the operating condition of debutanizer column. Assumptions is made that the concentration 

of butane detected in 𝑖𝐶5 flow is same as the butane concentration from bottom of 
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debutanizer column. Butane concentration is indirectly measured by gas chromatography in 

the bottom output flow of the debutanizer column. Measuring cycle of gas chromatograph is 

15 minutes. The location of analyzer is far away such that the time delay of the range 30-75 

minutes is needed to obtain the real time concentration values of butane. Real time 

estimation of butane concentration in 𝐶5 is required for better control of debutanizer column. 

It is noted that input and output variables for the debutanizer column available in Fortuna et 

al. (2005) only to predict the butane concentration in the bottom flow. 

To achieve better performance of the process, the main objective is to minimize the 

butane content (𝐶4) in the column bottom stream. Butane content, determined by either 

laboratory analysis or online gas chromatograph. The time for laboratory analysis varies 

from a few minutes to several hours (one per shift). In the process flowchart, the online gas 

chromatograph is located at the top of the de-isopentanizer column to quantify the butane 

content. Further, there is a significant time delay in assessing the butane content of the 

process stream through gas chromatograph. Hence, there is a need for a real time quality 

estimator in the bottom flow, which predicts the butane content instantaneously in the 

process stream by overcoming the time delay problem associated with hardware sensors.  

Figure 4.2 represents the schematic process flow diagram of the debutanizer column. 

The data for debutanizer column is taken from Fortuna et al. (2007). The datasets comprise 

of 2394 samples (1197 as database samples and 1197 as query objects), of which 7 inputs 

and 1 output is considered for model development. For model development, a total of seven 

input variables and one output variable were considered (Table 4.2). Here, the bottom 

temperature 1 and 2 are the same, which are measured at either side of the debutanizer 

column.  
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Figure 4.2: Process flow diagram - LPG splitter unit 
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Figure 4.3: Process flow diagram - Debutanizer column 
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Table 4.3: Description of input and output variables taken 

for model development in debutanizer column 

Process Debutanizer column 

 

 

 

Inputs 

𝑥1, Top tray temperature (0𝐶) 

𝑥2, Top pressure (𝑘𝑔/𝑐𝑚2) 

𝑥3, Reflux flow rate (𝑚3/ℎ) 

𝑥4, Flow to next process (𝑚3/ℎ) 

𝑥5, Sixth tray temperature (0𝐶) 

𝑥6, Bottom tray temperature 1 (0𝐶) 

𝑥7, Bottom tray temperature 2 (0𝐶) 

    Outputs 
Butane content (𝐶4) in debutanizer 

column bottom (in %), 𝑦 

 

The model output can be designed as: 

Butane:      𝒚(𝒌)  =  𝒇 [𝒙𝟏(𝒌), 𝒙𝟐(𝒌), 𝒙𝟑(𝒌), 𝒙𝟒(𝒌), 𝒙𝟓(𝒌), 𝒙𝟔(𝒌), 𝒙𝟕(𝒌)]                       (4.3)                

To predict the butane content in debutanizer column using soft sensors, few literatures 

are available which are mentioned in Table 4.4. 

Table 4.4: Literature review of soft sensing of butane 

concentration in debutanizer column 

Author Year Model 

Ge & Song 2011 Semi-supervised Principal Component Regression  

Ge 2014 Active Learning Principal Component Regression 

Yuan et al. 2014 Locally Weighted Kernel Principal Component Regression 

Fan et al. 2014 Gaussian Mixture Model - Just-in-Time Learning 

Ge et al. 2014 Mixture Semi-supervised Principal Component Regression 

Matias et al. 2015 
Online Sequential Extreme Learning Machine based on 

Recursive Partial Least Squares 

Zhu et al. 2015 
Mixture Robust Supervised Probabilistic Principal 

Component Analysis 

Pani et al. 2016 Back Propagation Neural Network 

Xiong et al. 2017 
Local Time-delay Reconstruction based Moving Window 

Time Difference Gaussian Process Regression 

Bidar et al. 2017 State Dependent Parameter Auto-regressive with 
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Exogenous Variable Model 

Yuan et al. 2017 
Probabilistic Just-in-Time Learning 

Deterministic Just-in-Time Learning 

Yuan et al. 2017 
Locally Weighted Partial Least Squares Regression 

Weighted Gaussian Regression 

Shao & Tian 2017 
Semi-supervised Selective Ensemble Learning based on 

Distance to Model 

Liu et al. 2018 
Locally Weighted - Bayesian Network 

Bayesian Network with Time Difference 

Kneale & 

Brown 
2018 

Random Forest - Partial Least Squares Regression 

Ensemble 

Yuan et al. 2018 Variable-wise Weighted Stacked Auto-encoder 

Siddharth et 

al. 
2019 Adaptive Neuro-Fuzzy Inference System  

Singh et al. 2019 Generalized Regression Neural Network 

Shi & Xiong 2020 
Ensemble Semi-supervised Learning Gaussian Process 

Regression 

Yuan et al. 2020 Hybrid Variable-wise Weighted Stacked Auto-encoder 

Urhan & 

Alakent 
2020 

Adaptive Moving Window and Just-in-Time learning 

Ensemble 

Alakent 2020 
Just-in-Time learning based on Online Weighted Euclidean 

Distance 

Alakent 2020 
Moving Window and Just-in-Time learning using 

transductive inference 

 

4.3. Sulfur recovery unit  

Sulfur and its associated compounds are inevitable (inorganic) constituents of petroleum 

found in earth’s crust. Even if it presents in minor quantities, its toxic effluent on the 

environment and as a catalytic poison in downstream operations is found to be a major 

concern. Sulfur is removed in the form of elemental sulfur from its constituents as a by-

product through desulphurization or gas sweetening process, a typical mid-stream unit.  

4.3.1 SO2 and H2S concentration prediction in tail gas  

Sulfur recovery unit is an integral part of refinery processes. Acid gases comprise two 

kinds of gases: Mono ethanol amine (MEA) gas and Sour water stripping (SWS) gas. MEA 

gas rich in 𝐻2𝑆, while SWS gas consists of 𝐻2𝑆 and 𝑁𝐻3 coming from the plant. MEA gas 
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is fed in main combustion chamber and adequate air flow for combustion is supplied 

(Air_MEA). SWS gas is fed in secondary combustion chamber and the respective air flow is 

supplied (Air_SWS). Separate chamber is provided for combustion of SWS gas with excess 

air supply. This will prevent the formation of ammonium salts in the system, which will give 

rise to the formation of nitrogen and nitrogen oxides. 

      The following reactions that occur in this SRU process (Claus process): 

H2S combustion reaction in reaction furnace:    

          𝟑𝑯𝟐𝑺 +  
𝟏

𝟐
𝑶𝟐 → 𝑺𝑶𝟐 + 𝟐𝑯𝟐𝑺 + 𝑯𝟐𝑶                                     (4.4) 

The products from the outlet of reaction furnace is further transformed in the 

downstream catalytic convertors:         

      𝑺𝑶𝟐 + 𝟐𝑯𝟐𝑺 → 𝑺𝒙 + 𝟐𝑯𝟐𝑶                                             (4.5)                                        

Combustion of 𝑁𝐻3 in SWS gas occurs in reaction furnace:  

                            𝟒𝑵𝑯𝟑 + 𝟑𝑶𝟐 → 𝟐𝑵𝟐 + 𝟔𝑯𝟐𝑶                                                       (4.6) 

𝐻2𝑆 is converted into pure elemental sulfur when acid gases are burnt in reactors by 

partial oxidation with air. Here, water vapor and elemental sulphur is formed by reaction in 

high temperature thermal convertors. Liquid sulfur (70%) is generated by cooling down the 

gaseous combustion products through water condenser coming from furnace and it is 

collected in catch basins. The fraction of gas comes out of the condenser is sent to first 

catalytic reactor and again cooled down through first condenser. The output of condenser is 

subjected to second catalytic reactor and second condenser to obtain 90% pure sulfur. 

Unconverted gas which is less than 5%, is fed to the maxi sulfur plant. Residual 𝐻2𝑆 and 

𝑆𝑂2 is coming out as tail gas, final gas stream from SRU. 
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Table 4.5: Description of input and output variables taken 

for model development in sulfur recovery unit 

Process Sulfur recovery unit 

Inputs 

𝑥1, MEA gas flow (𝑚3/ℎ) 

𝑥2, Primary air flow (𝑚3/ℎ) 

𝑥3 Secondary air flow (𝑚3/ℎ) 

𝑥4, Gas flow in SWS zone (𝑚3/ℎ) 

𝑥5, Air flow in SWS zone (𝑚3/ℎ) 

Outputs 𝐻2𝑆 (𝑦1) & 𝑆𝑂2 (𝑦2) composition in tail gas (𝑚𝑜𝑙𝑒𝑠/𝑚3) 

 

In SRU, the typical process comprises acid gas and tail gas. Acid gas is the combination 

of two gasses from different process streams which are mono ethanol amine (MEA) gas 

from gas washing plants and SWS gas from sour water stripping (SWS) plant. MEA gas rich 

in hydrogen sulfide (𝐻2𝑆) while, SWS gas rich in hydrogen sulfide (𝐻2𝑆) and ammonia 

(𝑁𝐻3). 𝐻2𝑆 is converted into pure sulfur by burning acid gas along with air in the furnace 

(thermal convertor) through partial oxidation reaction. The liquid sulfur is generated by 

cooling down the exit gaseous products. Further, the liquid sulfur is subjected to high 

temperature catalytic converters loaded with aluminum or titanium as catalyst, to separate 

water vapor from sulfur. Finally, the unconverted acid gas is sent to the Maxi-sulfur plant 

for further conversion. The exit final gas stream from the Maxi-sulfur unit contains residual 

𝐻2𝑆 and 𝑆𝑂2, which is known as tail gas. Figure 4.3 represents the typical flow sheet of the 

SRU process.   
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Figure 4.4: Process flow diagram - Sulfur recovery unit 
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If the input SWS gas flow to the secondary combustion chamber is low, MEA gas 

(MEA_Spilling) was added along with SWS gas to keep the flow constant. An adequate air 

flow is supplied for proper combustion. To ensure correct stoichiometric ratio in the tail gas 

composition, air flows combustion chambers are manually controlled by plant operators. In 

closed loop operation, control of air flow (Air_MEA_2) is taken based on the analysis of tail 

gas composition. However, when the analyzer is under maintenance purposes, the control 

loop becomes functionless which leads to decrease in performance of SRU. The quantity of 

air supply is the most critical parameter for the conversion of H2S, which decides the tail gas 

composition. The conversion of SO2 increases when excess air flow is supplied to the reaction 

chamber, in contrast low air flow tends to support opposite reaction. 

To improve the sulfur recovery process by monitoring the performance of extraction 

process ([H2S]-2[SO2]) and controlling the air to feed ratio in the combustion chamber, an 

online analyzer is adopted to measure the concentration of H2S and SO2 in the tail gas of 

each sulfur line. Absence of pollutants in the tail gas or correct stoichiometric ratio of 

reactants in reaction (2) indicates that the [H2S]-2[SO2] difference in tail gas is zero. This 

optimum condition indicates that sulfur compounds in the catalytic convertors should be 

removed completely. Moreover, hardware sensors are frequently taken off for maintenance 

due to the damage caused by the H2S and SO2 gases. 

The entire dataset comprises 10081 inputs and output values. Five inputs and two output 

variables were considered for soft sensor development, which is mentioned in Table 4.3. 

Here, 5040 observations were taken as database samples, and remaining 5041 as query data 

samples. 

The model output can be designed as: 
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𝑯𝟐𝑺:                  𝒚𝟏(𝒌)  =  𝒇 [𝒙𝟏(𝒌), 𝒙𝟐(𝒌), 𝒙𝟑(𝒌), 𝒙𝟒(𝒌), 𝒙𝟓(𝒌)]                (4.7) 

𝑺𝑶𝟐:                   𝒚𝟐(𝒌)  =  𝒇 [𝒙𝟏(𝒌), 𝒙𝟐(𝒌), 𝒙𝟑(𝒌), 𝒙𝟒(𝒌), 𝒙𝟓(𝒌)]                (4.8) 

Several literatures which are focused on estimation of tail gas composition in SRU are:  

Table 4.6: Literature review of soft sensing of tail gas composition in SRU 

Author Year Model 

Fortuna et al. 2003 Non-linear Least Square Fitting 

Ge & Song 2010 Relevant Vector Machine 

Ge & Song 2011 Semi-supervised Principal component regression 

Shao et al. 2015 

Supervised Local and Non-local Structure Preserving 

Projections Locally Weighted Regression Just-in-Time 

learning 

Shao & Tian 2015 Selective Ensemble of Local Partial Least Squares 

Shang et al. 2015 Correlation based Slow Feature Regression 

Graziani & Xibilia 2017 
Multilayer Perceptron 

Deep Boltzmann Machine 

Jain et al. 2017 

Principal Component Regression 

Support Vector Regression 

Least Squares Support Vector Regression 

Shao & Tian 2017 
Semi-supervised Selective Ensemble Learning based on 

Distance to Model 

Xiong et al. 2017 
Local Time-delay Reconstruction based Moving Window 

Time Difference Gaussian Process Regression 

Morey et al. 2018 

Gaussian Process Regression with Marginal Log likelihood 

Maximization 

Adaptive Neuro Fuzzy Inference System 

Shi & Xiong 2018 Active Learning Gaussian Process Regression 

Kneale & Brown 2018 Random Forest - Partial Least Squares Regression Ensemble 

Moghadam et al. 2018 
Time Varying Parameter - Dynamic Auto-regressive with 

Exogenous Variable model 

Zheng &  Funatsu 2018 Partial Constrained Least Squares 

Singh et al. 2019 Generalized Regression Neural Network 

Yuan et al. 2020 Stacked Isomorphic Auto-encoder 

Yuan et al. 2020 Stacked Enhanced Auto-encoder 

Urhan & Alakent 2020 
Adaptive Moving Window and Just-in-Time learning 

Ensemble 

Alakent 2020 
Just-in-Time learning based on Online Weighted Euclidean 

Distance 

Alakent 2020 
Moving Window and Just-in-Time learning using 

transductive inference 

Patane & Xibilia 2021 Echo-state Networks – Intrinsic Plasticity 

 



80 
 

Chapter - 5 

Results and Discussion 

In this chapter, the details of five datasets used for adaptive soft sensor development are 

described. Then, the effect of various hyper parameters on model performance for the 

industrial processes are discussed in sub-sections. Finally, performance results of developed 

model using statistical performance index along with model computation time are mentioned 

in tabular form and the best performing model for the respective industrial cases are further 

validated using 4-plot analysis.  

5.1 Details of datasets for adaptive soft sensor development 

In the naphtha splitting unit, six input variables are considered for prediction of IBP and 

EBP. The input-output data are collected from Ujević et al. (2011). Input-output data for 

debutanizer column and sulphur recovery unit are available online (Fortuna, L., Graziani, S., 

Rizzo, A., & Xibilia, M. G. (2007). Springer Science & Business Media - Accessible online 

at https://storage.googleapis.com/sgw-extras/zip/2007/978-1-84628-480-9.zip). Datasets for 

each process is split into two sets: database and query dataset. The number of samples of 

each dataset and the dimension are presented in Table 5.1. 

5.2 Naphtha splitter section: Prediction of Initial and end boiling point of 

heavy naphtha 

In this section, the effect of RDS for linear models, effect of spread parameter for 

JITL-GRNN and the effect of loss function for JITL-SVR models are discussed for 

prediction of IBP and EBP of heavy naphtha. 
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Table 5.1: Details of five datasets used for adaptive model development 

Process 
Output 

variable 

Input 

data 

Output 

data 
Total data 

Database 

data 

Query 

data 

Naphtha 

splitting unit 

IBP 210 × 6 210 × 1 210 × 7 151 × 7 59 × 6 

EBP 209 × 6 209 × 1 209 × 7 151 × 7 58 × 6 

Debutanizer 

column 

Butane 

content 
2394 × 7 2394 × 1 2394 × 8 1197 × 8 1197 × 7 

Sulfur recovery 

unit 

H2S 10081 × 5 10081 × 1 10081 × 6 5041 × 6 5040 × 5 

SO2 10081 × 5 10081 × 1 10081 × 6 5041 × 6 5040 × 5 
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5.2.1 Effect of relevant dataset for linear models 

An open issue in JITL based approach is to determine the optimum size of relevant dataset. 

In order to determine the optimum size, local linear models (MLR, LWR, PLS) were 

developed based on different number of relevant dataset size ranging from 10 to 150 and the 

prediction results for 59 objects (58 for EBP) of query data were determined. The 

dependency of model prediction accuracy on the relevant dataset size is shown in Figure 5.1.  

In Figures 5.1 (a) & (b), PLS (3) and PLS (4) corresponds to the PLS local models 

with three and four latent variables respectively (It may be recalled that the number of actual 

input variables is six). A common perception is: the more the size of the data used for 

modeling, the better will be the model performance. This may be true in steady state soft 

sensor design where one model developed from a set of offline data is subsequently used for 

predicting outputs for all unknown inputs. However, this concept may not be always true in 

case of adaptive soft sensor design using local modeling concept where a model is built to 

predict output for just one set of input. A deep in performance around RDS 30 in Figure 5.1 

(b) indicates existence of some optimum RDS size.  

Both Figures 5.1 (a) & 5.1 (b) shows that there is negligible improvement in 

prediction accuracy beyond a dataset size of 50. Therefore, for linear models, the optimum 

relevant dataset size was decided to be 50 (𝑘 = 50; Figure 5.1). Further, for any dataset size, 

performance of JITL-LWR is found to be better than that of JITL-MLR, JITL-PLS (3) and 

JITL-PLS (4). Also, performance values for IBP prediction are better than that for EBP 

prediction. 
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Figure 5.1: Effect of relevant dataset on prediction accuracy using linear local 

models (a) Initial boiling point; (b) End boiling point 

(b) 

(a) 
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In addition to the linear local models (MLR, LWR and PLS), three non-linear local 

model was also developed: generalized regression neural network (GRNN), support vector 

regression with sequential minimal optimization (SMO) and support vector regression with 

iterative single data algorithm optimization (ISDA) model. These adaptive soft sensors are 

mentioned as: JITL-GRNN, JITL-SVR: SMO and JITL-SVR: ISDA. It may be noted that 

though, the results for non-linear local model based soft sensor are only presented for RDS 

size of 50, models with different RDS size were developed and tested. Usually, model 

accuracy improves when the dataset size used for modeling increases as shown in Figure 

5.1.  

In this work, the local models are developed from the relevant dataset. Performance 

of linear local models in fact improves as the relevant dataset size increases and remained 

constant after some optimum size of 50 (as shown in Figure 5.1). Irrespective of linear or 

non-linear local model, it was observed that at low size of RDS, the accuracy improves with 

increase in size of RDS. However, at higher values of RDS size, the accuracy shows 

negligible improvement with increase in RDS size. Low RDS size results in under fitting 

(low accuracy) and higher RDS size leads to increase in computation load. For real 

applications, it will be difficult to select different relevant dataset size and/or constituent 

model parametric values along with computation complications. For better model 

generalization, an optimum relevant dataset size of 50 is taken at which all models have 

maximum or close to maximum accuracy. 
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5.2.2 Effect of RDS and spread parameter (𝝈) on performance of JITL-GRNN  

In GRNN, the input – output relation is expressed as a probability density function 

determined from the relevant data set. Industrial modeling applications using GRNN can be 

found in Pani & Mohanta (2016).  

A crucial issue in GRNN modeling is the optimum value of spread parameter to be 

used. Spread parameter is typically a variance or smoothing function helps to generalize the 

neural network architecture. The larger value of spread value (𝜎) tends to force estimated 

density population to follow smooth gaussian fit and capable of generalizing the system. 

Conversely, the smaller value of σ corresponds to less generalization and non-gaussian fit.  

The optimum value was determined by developing GRNN models with different spread 

values at the optimum relevant dataset size of 50 and testing the prediction performance on 

the query data values. The effect of spread parameter on prediction accuracy is presented in 

Figures 5.2 (a) & 5.2 (b).  Figures 5.2 (a) and 5.2 (b) shows some interesting results for 

GRNN. It can be noticed that for any size of RDS, the accuracy first increases, with increase 

in spread value, reaches a maximum at a spread value of 1 (minimum MAE and maximum 

CC) and then decreases. This trend resulted in determining the optimum spread value as 1.  

Another notable observation is that the accuracy deteriorates as the relevant dataset size 

increases. This is contrary to the phenomenon observed in linear models where accuracy 

increases with increase in dataset size and after a certain size remains almost constant. For 

highest accuracy of GRNN model, the relevant dataset size was taken as 10. 
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Figure 5.2: Prediction accuracy (CC) as a function of various relevant dataset 

size and spread value by JITL-GRNN (a) IBP; (b) EBP 

(b) 

(a) 



87 
 

5.2.3 Effect of RDS and loss function (𝜺) on performance of JITL-SVR  

Selection of optimum value of loss function (𝜀) for modeling applications is very 

important to select the best performing models with reasonable prediction (Shokri et al., 

2015; Yan et al., 2004). There is no unanimous formula for determination of hyper 

parameter values (loss function in this case). There is a range of methods starting from grid 

search to different evolutionary techniques (such as genetic algorithm, ant colony 

optimization, particle swarm optimization etc.) used by researchers to determine the hyper 

parameter values resulting in best prediction accuracy. One such interesting work was 

observed in Shokri et al. (2014), who proposed a soft optimization technique based on 

hybrid metaheuristic approach, which preset the hyper-parameter settings in advance before 

model development.  

Grid search method is rigorous and cumbersome but yields reasonably better optimum 

values like other proposed techniques in literature because the model is tested over a wide 

possible range of values (Pani & Mohanta, 2014). Therefore, in this work the grid search 

method is adopted to determine the optimum loss function value. For both JITL-SVR: SMO 

and JITL-SVR: ISDA, the prediction performance was tested for 𝜀 value ranging from 0.001 

to 1.5 for both IBP and EBP. The precise results are presented in Figure 5.3. Other results 

showing effects of 𝜀 and relevant dataset size on mean absolute error are provided 

subsequently. At 50 RDS, the mean error reached minimum value and started to climb 

higher by increasing the epsilon (𝜀) value. The CC value starts decreasing while increasing 

the loss function value after 0.05 for IBP prediction. For EBP prediction, model 

performances start to degrade beyond an 𝜀 value of 0.9. Therefore, the optimum 𝜀 value was 

found to be 0.05 for IBP and 0.9 for EBP in JITL (Refer Figure 5.3). Further, the best result 
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of JITL-SVR model was found to be better than other JITL (MLR, LWR, PLS and GRNN) 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: CC vs loss function (𝜺) at RDS-50 (Just-in-Time Learning support 

vector regression) for (a) IBP; (b) EBP 
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5.3 Debutanizer column 

In adaptive just-in-time learning model, two approaches are followed to compute the 

similarity index: (1) Euclidean distance (2) Combined angle and Euclidean distance for 

debutanizer column. In case of combined angle and distance method, the weighting factor λ 

is a user specified parameter. Low value of λ gives more importance to angle only similarity 

index. On the other hand, high λ value indicates more importance to distance only method. 

For use of angle and distance method, a value of 0.5 was used for the weighting parameter 

which attributes equal weightage to both distance and angle.  

5.3.1 Effect of RDS and spread parameter on the performance of JITL-GRNN 

Figures 5.4 (a) & (b) represent the model accuracy variation of JITL-GRNN model for 

the two similarity index computation approaches. Each figure is a plot of model accuracy 

(CC) versus GRNN spread parameter σ for different sizes of RDS. It may be noted that, in 

Figure 5.4 (a), distance based similarity criterion is used and in Figure 5.4 (b) combined 

angle & distance similarity index is used. 

To search for optimum kernel width of GRNN model, we implemented a grid search 

approach using fine grid mesh (Trial and Error approach). The optimum kernel width is 

decided as the one which results in either lowest RMSE value and/or highest CC value. The 

ranges of spread values for search operation are mentioned earlier. It can be observed in 

Figure 5.4 (a) (distance based similarity criterion) and Figure 5.4 (b) (Angle & Distance 

based similarity criterion), that the accuracy parameter CC reaches a maximum around σ = 

0.01 irrespective of the relevant dataset size. Further, the performance of JITL-GRNN model 

at RDS 10 achieves better performance than other RDS values.  
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Figure 5.4: Model prediction accuracy of JITL-GRNN for two similarity indexes 

in debutanizer column (a) distance based (b) angle & distance based 
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One may wonder why the performance decreases when we are taking more values for 

modeling. This may be due to the reason that as we increase the size of RDS used for local 

model development, we are including more samples with decreasing relevance with the 

query sample. Therefore, based on these observations, the optimum value of σ and RDS are 

chosen as 0.01 and 10 respectively for debutanizer column.  

5.4 Sulphur recovery unit 

Two approaches (Distance and Combined angle & distance) are followed to compute 

the similarity index in adaptive just-in-time learning model for SRU. In combined angle and 

distance method, the value of λ = 0.5 was taken to accommodate equal weightage to both 

distance and angle. 

5.4.1 Effect of RDS and spread parameter on the performance of JITL-GRNN 

A plot of model accuracy (CC) versus GRNN spread parameter (𝜎) for different sizes of 

RDS is illustrated in Figure 5.5 & Figure 5.6. It may be noted that, in Figure 5.5 (a) & 

Figure 5.6 (a), distance based similarity criterion is used and in Figure 5.5 (b) & Figure 5.6 

(b) combined angle & distance similarity index is used. Grid search approach was 

implemented using fine grid mesh to search for optimum kernel width. 

The optimum kernel width is decided as the one which results in either lowest RMSE 

value and/or highest CC value. The ranges of spread values for search operation are 

mentioned earlier. It can be observed in Figure 5.5 (a) & Figure 5.6 (a) (distance based 

similarity criterion) and Figure 5.5 (b) & Figure 5.6 (b) (Angle & Distance based similarity 

criterion), that the accuracy parameter CC reaches a maximum around 𝜎 = 0.01 irrespective 

of the relevant dataset size. Further, the performance of JITL-GRNN model at RDS 10 

achieves better performance than other RDS values.  
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Figure 5.5: Model prediction accuracy of H2S prediction using JITL-GRNN 
for two similarity indexes (a) distance based (b) angle & distance based 
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Figure 5.6: Model prediction accuracy of SO2 prediction using JITL-GRNN for 

two similarity indexes (a) distance based (b) angle & distance based 
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Increasing the size of RDS contributes to detrimental effect in model performance. 

Therefore, based on these observations, the optimum value of σ and RDS are chosen as 0.01 

and 10 respectively for both tail gas compositions of SRU.  

5.5 Analysis of model accuracy and determination of model computation 

time  

In this section, the performances of various developed adaptive models for the three 

industrial case studies are analyzed using three statistical performance index and model 

computation time. Best models for the respective industrial case study is further validated 

using 4-plot analysis. Comparison of developed models with existing models in literature are 

mentioned in Table 5.7 & Table 5.8. The program for recursive, sliding window, just-in-

time (JIT) architecture and simulation of all the models were developed on MATLAB® 

software (R2018b). 

Statistical performance index and model computation time 

The predictive performance of adaptive models for three industrial processes were 

evaluated by computation of three statistical parameters: correlation coefficient (CC), root 

mean square error (RMSE) and mean absolute error (MAE). Correlation coefficient provides 

information about the linear dependency of actual and predicted value. It ranges between -1 

to +1 with negative and positive values indicating negative and positive correlation 

respectively. Zero (0) signifies no correlation and 1 implies perfect positive correlation 

between predicted and actual values. 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 explain the deviation of predicted 

output from actual output. 
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The following formulas are used to compute the three parameters.  

                                                  𝑪𝑪 =  
∑(𝒚− 𝒚̅) (𝒚̂− 𝒚̅̂)

√∑(𝒚− 𝒚̅)𝟐  ∑(𝒚̂− 𝒚̅̂)𝟐
                                                    (5.1) 

                                      𝑹𝑴𝑺𝑬 =  √
∑ (𝒚− 𝒚̂)𝟐𝒏

𝒊=𝟏

𝒏
                                                      (5.2)  

                                      𝑴𝑨𝑬 =
𝟏

𝒏
 ∑ |𝒚 − 𝒚̂|𝒏

𝒊=𝟏                                                     (5.3) 

y - Actual observed value; 𝑦̂ - Model predicted value; 𝑦̅ - Observed mean; 𝑦̅̂ - Predicted 

mean; 𝑛 - Total number of observations taken for output estimation.  

Significance of model computation time 

In static soft sensors, the model parameters are determined during offline model 

development and the parameters remain same during their online use. However, in adaptive 

soft sensors, the model parameters are computed for each query data object. Therefore, for a 

static soft sensor, the model computation time involves the time for simulation of the already 

developed model when an input data set is supplied to the soft sensor. In adaptive soft 

sensors (such as recursive and sliding window), computation time includes time required for 

model parameter computation and model simulation for each incoming input vector. Further, 

in case of JITL based adaptive soft sensor, the computation time involves computation of 

similarity of the query sample with each sample of the dataset, preparation of the relevant 

dataset, development of the local model (model identification) and finally simulation of the 

developed model with the query sample. Unless properly designed, a model possessing good 

accuracy may not be useful due to computational complexity. Therefore, an important issue 

for adaptive soft sensors is the model computation time. The computation time was 

determined using MATLAB® ‘𝑡𝑖𝑚𝑒𝑖𝑡’ function. Here, the computation time for every 
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model was found in triplicates and the average of those triplicates was used for comparisons 

to minimize the computational error.  

The computer configuration used in this research work is mentioned below:  

Specification for software and hardware used in this study are:  

Operating system (OS): Windows 10 (64 bit), CPU: 3.40 GHz Intel Core TM-i7-4770 CPU 

processor, 32.0 Gigabyte (GB) of Random Access Memory (RAM) and 932GB solid-state 

drive (SSD) storage.  

5.5.1 Prediction accuracy for Initial and end boiling point of heavy naphtha 

The models for IBP and EBP are developed separately. 59 objects (58 objects for EBP) 

were extracted from the available 210 objects (209 objects for EBP soft sensor) and used for 

query data. The remaining 151 objects are used as a database.  

Recursive and sliding window model were developed using GRNN model with fixed 

spread parameter (𝜎 = 0.8027) for both IBP and EBP. For recursive and sliding window 

approach, spread parameter is decided based on Cherkassky & Ma (2004) method of 

selection. The results for the respective approaches were mentioned in Table 5.2 & Table 

5.3. The variations in computation time are between 0.008 and 0.0087 s. If we consider three 

places after decimal, then the effect of dataset size on computation time is insignificant. The 

effect is in the order of 10-4 s. This computation time is acceptable for online 

implementation of the algorithm because the online sensors monitoring the secondary 

variables are expected to have sampling time higher than this computation time. Hence it 

can be concluded that a relevant dataset size of 50 can be used in subsequent nonlinear 

model development.  
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Average computation time for the JITL soft sensors based on non-linear local models 

(JITL-SVR: SMO and JITL-SVR: ISDA) are determined for a relevant dataset size of 50. 

The average computation time required for the JITL-SVR: SMO model varies from 0.0125 

to 0.0148 s and 0.0124 to 0.0153 s in JITL-SVR: ISDA model. The average computation 

time required to predict the required output for non-linear local model based JITL soft 

sensor is higher than that based on linear local models (This may be due to nonlinear 

relationships between model parameters and predictor variables involved in case of non-

linear models).  

The average computation time in case of any model for both IBP and EBP are very 

close to each other. Further, computation time for non-linear models is higher than that for 

linear local models. This may be due to the fact that higher degree of complexity is involved 

in development of the non-linear local model at each sampling instance. Though, the 

computation time was slightly higher, it is still well below the hardware sensor sampling rate 

which makes it suitable for online implementation. Therefore, the choice of whether to go 

for linear or non-linear local model is left to the user to decide. Both models are 

computationally acceptable. Both models almost give the same performance for IBP as well. 

However, in addition to IBP, if we also want reasonable accuracy for EBP prediction, then 

nonlinear local model is to be preferred. Considering model accuracy and model 

computation time (Refer Table 5.2 & Table 5.3) as the criteria for model selection it can be 

concluded that JITL-SVR: ISDA has the best prediction accuracy for both naphtha IBP and 

EBP prediction. Figures 5.7 & 5.8 represent the performance of all developed models for 

IBP and EBP estimation. 



98 
 

 

 

Table 5.2: Performance results using adaptive model for naphtha IBP prediction 

Adaptive 

approach 
Local model CC 

MAE, 
0C 

RMSE, 
0C 

Average 

computation time, s 

Recursive§ 
GRNN 

0.2093 6.66 8.03 0.043 

Sliding window§ 0.4143 5.38 7.06 0.043 

Just-in-Time 

learning 

LWR 0.8610 2.45 3.32 0.008 

MLR 0.8594 2.44 3.35 0.008 

PLS (3) 0.8453 2.70 3.46 0.008 

PLS (4) 0.8465 2.55 3.45 0.008 

GRNN (D) 0.6471 3.91 4.94 0.031 

GRNN (A&D) 0.6841 3.87 4.84 0.029 

GRNN (MD)§ 0.1493 6.44 7.97 0.085 

SVR: SMO 0.8535 2.68 3.37 0.012 

SVR: ISDA 0.8646 2.58 3.27 0.012 
               § - With bias update 
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Table 5.3: Performance results using adaptive model for naphtha EBP prediction 

Adaptive 

approach 
Local model CC 

MAE, 
0C 

RMSE, 
0C 

Average 

computation time, s 

Recursive§ 
GRNN 

0.0336 4.80 6.66 0.043 

Sliding window§ 0.2049 6.27 7.83 0.041 

Just-in-Time 

learning 

LWR 0.6089 3.44 4.30 0.008 

MLR 0.6585 3.38 4.19 0.008 

PLS (3) 0.6228 3.47 4.24 0.008 

PLS (4) 0.6027 3.45 4.35 0.008 

GRNN (D) 0.5781 3.39 4.21 0.031 

GRNN (A&D) 0.6529 2.96 3.82 0.029 

GRNN (MD)§ 0.0542 4.71 6.58 0.088 

SVR: SMO 0.6986 3.15 3.81 0.013 

SVR: ISDA 0.7256 2.87 3.59 0.012 
                   § - With bias update 
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Figure 5.7: Actual Vs predicted values of naphtha IBP by various adaptive soft sensors 
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Figure 5.8: Actual Vs predicted values of naphtha EBP by various adaptive soft sensors 
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5.5.2 Prediction accuracy for Butane concentration prediction in the bottom stream 

In case of the debutanizer column, the butane content is estimated by developing three 

adaptive models (using recursive, sliding window and just-in-time learning) with datasets 

(Refer Table 5.4). In adaptive just-in-time learning model two approaches are followed to 

compute the similarity index: (1) Euclidean distance (2) Combined angle and Euclidean 

distance. Based on two similarity index, two distinct soft sensors were developed based on 

JITL and performance results were mentioned in Table 5.4.   

Table 5.4 provides the results achieved through three adaptive approaches. Recursive and 

sliding window approach were developed using GRNN model by keeping the fixed spread 

parameter value (𝜎 = 0.8279).  

Figure 5.9 presents the prediction performance of various proposed model against actual 

values for debutanizer column. The respective figure validates the results shown in Tables 

5.4 and show closeness of estimation through various adaptive models. 

Next, with σ and RDS values fixed at 0.01 and 10, we present the comparison of two 

similarity index calculation techniques: Combined angle and distance method Vs distance 

method in Table 5.4. It is clearly observed in Table 5.4 that, combined angle and distance 

similarity index method performed better than the distance method in debutanizer column. 

Model performance index CC, increased by more than 12% (for debutanizer column) while 

using angle + distance criterion over distance only criterion for similarity measurement. 

Also, performance of recursive and sliding window approaches are presented along with 

just-in-time learning approach. In adaptive soft sensors, computation time includes time 

required for training the model and simulation of model for each incoming input vector. For 

JITL approach, this involves computation of similarity of the query sample with each 
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sample of the dataset, preparation of the relevant dataset, development of the trained 

network (model identification) and finally simulation of the developed model with the query 

sample. However, just-in-time learning with Mahalanobis distance approach provides better 

prediction accuracy than other just-in-time learning approaches. Further, the average 

computation time for just-in-time learning approach is also mentioned along with other two 

adaptive frameworks.  
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Table 5.4: Performance results using adaptive model for debutanizer column 

Adaptive 

approach 
Local model CC MAE RMSE 

Average 

computation 

time, s 

Recursive§ 
GRNN 

0.9950 0.0117 0.0175 0.05 

Sliding window§ 0.9982 0.0085 0.0120 0.04 

Just-in-Time 

learning 

GRNN (D) 0.8768 0.0383 0.0873 0.08 

GRNN (A & D) 0.9894 0.0139 0.0256 0.08 

GRNN (MD)§ 0.9947 0.0121 0.0180 0.23 
                           § - With bias update 

 

Figure 5.9: Prediction of butane concentration using various adaptive models developed 
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5.5.3 Prediction accuracy for H2S and SO2 concentration in tail gas 

In SRU, two outputs (H2S and SO2) are estimated by the three adaptive models 

developed in this work: recursive, sliding window and just-in-time learning approaches 

based on generalized regression neural network model. For recursive and sliding window 

approach fixed spread parameter (𝜎 = 0.7690) value is taken during execution.  

In Table 5.5 & Table 5.6, we present the comparison of all adaptive models developed 

for prediction of tail gas composition in SRU. Figures 5.10 & 5.11 presents the prediction 

performance of various proposed model against actual values for prediction of H2S and SO2 

in tail gas of SRU. The figures 5.10 & 5.11 validates the results shown in Table 5.5 & Table 

5.6 and reveal closeness of estimation with actual values through various adaptive models.  

It is clearly observed in Table that, just-in-time learning with Mahalanobis distance 

approach performed better than the other just-in-time learning approaches in SRU. Model 

performance index CC, increased by more than 36% (for SRU) while using Mahalanobis 

distance criterion over distance only criterion for similarity measurement. Moreover, sliding 

window approach performs better than other two approaches (recursive and just-in-time 

learning) for prediction of H2S and SO2 in the tail gas of SRU as shown in Table 5.5 & 

Table 5.6. Moreover, the applicability domain for sliding window is less (it takes samples 

within the particular window as specified by the user) as compared to recursive or just-in-

time learning approaches. 

Average computation time per query data (incoming sample) for the all approaches is 

mentioned along with the prediction results in the respective case studies. The computation 

time of SRU is higher than CDU and debutanizer column. This can be understood by 

referring to Table 5.2 - Table 5.6. The database size for CDU is 151 and debutanizer column 
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is 1197 whereas for SRU, this is 5040. Therefore, for SRU, the computation of vector will 

require more time because, this involves calculation of similarity of the query data with each 

sample of the database (particularly JITL) and simulation of models developed.  
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Table 5.5: Performance results using adaptive model for prediction of H2S 

Adaptive 

approach 
Local model CC MAE RMSE 

Average 

computation time, s 

Recursive§ 
GRNN 

0.9445 0.0059 0.0170 0.14 

Sliding window§ 0.9449 0.0065 0.0175 0.04 

Just-in-Time 

learning 

GRNN (D) 0.7555 0.0176 0.0364 0.22 

GRNN (A & D) 0.9388 0.0064 0.0180 0.26 

GRNN (MD)§ 0.9438 0.0062 0.0171 1.12 

              § - With bias update 

 

 Figure 5.10: Prediction of H2S concentration in tail gas of SRU using various adaptive models developed 
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Table 5.6: Performance results using adaptive model for prediction of SO2 

Adaptive 

approach 
Local model CC MAE RMSE 

Average 

computation time, s 

Recursive§ 
GRNN 

0.9600 0.0070 0.0147 0.13 

Sliding window§ 0.9613 0.0077 0.0150 0.04 

Just-in-Time 

learning 

GRNN (D) 0.6959 0.0255 0.0393 0.22 

GRNN (A & D) 0.9495 0.0080 0.0165 0.26 

GRNN (MD)§ 0.9584 0.0078 0.0150 1.13 

                § - With bias update 

 

 

Figure 5.11: Prediction of SO2 concentration in tail gas of SRU using various adaptive models developed 
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However, for online implementation purposes, computation times of the proposed 

algorithm shown in performance results (which are fractions of a second) are acceptable 

because the online sensors monitoring the secondary variables are expected to have 

sampling time higher than this computation time (usually in the order of seconds). 

Moreover, for online implementation of adaptive JITL based soft sensor, one may choose to 

store less number of samples in the database which will result in less model computation 

time. As analogous to JITL, recursive algorithm holds similar patterns for all industrial 

processes. Rather, sliding window model requires less average model computation time, 

which is almost fraction of seconds for all the cases. This is due to the few number of 

samples within the window is taken for model development and estimation.  

5.5.4 4-plot analysis for the best performing model 

Four plots are used for residual analysis to identify the distribution of penalty for 

predicted variables over the observed output. It includes run sequence plot, lag plot, 

histogram and normal probability plot. Run sequence plot provides the information about 

residual trend around the mean while propagating through the time ordered observations. 

The trend may be increasing, decreasing or constant variance trend. The ideal trend observed 

to be constant variance trend, as the error variance seems no process drift as moving though 

the large number of time varying observations. Lag plot shows the graph of sequence of 

observations against the one time lagged sequence of observations. This provides the 

information about the spread of error variance around the mean. It is also observed to be 

random in nature and therefore not dependent on time. Histogram represents, how the error 

variance is normally distributed around the mean. The assumption of normal distribution is 

found to be true, when the histogram shape is symmetric and bell shaped. The normal 
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probability plot shows the distribution of error variance in sequential dispositions against the 

probability percentile, which is normally distributed. The linear graph indicates that the 

residual is normally distributed.  

The residual analysis of JITL-SVR: ISDA soft sensor for crude distillation unit, SW-

GRNN soft sensor for debutanizer column and SRU is carried out by four-plot analysis 

technique (Fortuna et al., 2007; Pani & Mohanta, 2016).  

The results of JITL-SVR: ISDA for CDU are shown in the following Figures 5.12 & 

5.13. 

 

        Figure 5.12: JITL-SVR: ISDA model validation for IBP prediction 
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        Figure 5.13: JITL-SVR: ISDA model validation for EBP prediction 

Figure 5.14 provides four plot analysis of JITL-GRNN (MD) for debutanizer column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: JITL-GRNN model validation for prediction of butane concentration 
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Figure 5.15 & Figure 5.16 provide four plot analysis of JITL-GRNN (MD) for prediction of 

H2S and SO2 in the tail gas of SRU. 

 

Figure 5.15: JITL-GRNN model validation for prediction of H2S concentration 

 

Figure 5.16: JITL-GRNN model validation for prediction of SO2 concentration 
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5.5.5 Comparison of predictive performance with other models  

There is a scope for comparison of different modeling techniques reported in literature 

by various researchers on same benchmark datasets. A number of different modeling 

approaches are reported in the literature (Table 5.7 & Table 5.8) for the two benchmark 

datasets of debutanizer column and SRU.  
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Table 5.7: Performance comparison of JITL-GRNN (MD) model with  

reported models in literature for debutanizer column 

 

Debutanizer column Butane content 

Author (s) Year Model CC RMSE MAE 

Fortuna et al. 2007 Neural network model (Multi-layer perceptron) 0.9409   

Ge & Song 2010 
Least Square Support Vector Regression – Just-in-

Time Learning 
0.9132 0.1418a  

Fan et al. 2014 Gaussian Mixture Model - Just-in-Time Learning  0.125b  

Matias et al. 2015 
Online Sequential Extreme Learning Machine 

based on Recursive Partial Least Squares 
  0.4898b   

Pani et al. 2016 Back Propagation Neural Network 0.856 0.076 0.055 

Bidar et al. 2017 
State Dependent Parameter Auto-regressive with 

Exogenous Variable Model 
0.9975 0.0101 0.0109 

Yuan et al. 2016 
Probabilistic Just-in-Time Learning  0.0624  

Deterministic Just-in-Time Learning  0.0944  

Yuan et al. 2017 
Locally Weighted Partial Least Squares Regression 0.9205c  0.0621   

Weighted Gaussian Regression 0.9071c 0.0669   

Siddharth et al. 2019 Adaptive Neuro-Fuzzy Inference System  0.8829 0.0672 0.05 

Singh et al. 2019 Generalized Regression Neural Network 0.834 0.082 0.059 

Urhan & Alakent 2020 
Adaptive Moving Window and Just-in-Time 

learning Ensemble 
0.9940c 0.0234 0.0132 

Alakent 2020 
Just-in-Time Learning based on Online Weighted 

Euclidean Distance 
0.9737c 0.0409  

Alakent 2020 
Moving Window and Just-in-Time Learning using 

transductive inference 
0.9970c 0.0149  

This work 2022 
Recursive JITL-GRNN (A&D)    

Recursive JITL-GRNN (MD) 0.9947 0.0180 0.0121 
a Data available in graphical form (Approximate); b

 Data given in MSE (Converted to RMSE); c Data given in R2 (Converted to R)  
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Table 5.8: Performance comparison of JITL-GRNN (MD) model with  

reported models in literature for sulfur recovery unit 

 

Sulfur recovery unit H2S SO2 

Author (s) Year Model CC RMSE MAE CC RMSE MAE 

Fortuna et al. 2003 Non-linear Least Square Fitting 0.848 0.0283a  0.905 0.02a  

Shao et al. 2015 

Supervised Local and Non-

local Structure Preserving 

Projections Locally Weighted 

Regression Just-in-Time 

learning 

 0.0093 0.091  0.0101 0.089 

Shang et al. 2015b 
Correlation based Slow Feature 

Regression 
0.6561 0.03 0.017 0.8721 0.0258 0.0206 

Graziani & 

Xibilia 
2017 

Multilayer Perceptron  1.33      

Deep Boltzmann Machine  1.20      

Jain et al. 2017 

Principal Component 

Regression  
0.017 0.019 

 
0.0247 0.026 

Support Vector Regression 
 

0.021 0.015 
 

0.035 0.025 

Least Squares Support Vector 

Regression  
0.056 0.045 

 
0.12 0.095 

Moghadam et 

al. 
2018 

Time Varying Parameter - 

Dynamic Auto-regressive with 

Exogenous Variable model 

0.9507 0.0158 0.0024 0.9648 0.0138 0.0018 

Morey et al. 2018 

Gaussian Process Regression 

with Marginal Log likelihood 

Maximization 

0.718 0.035 0.017 0.66 0.043 0.025 

Adaptive Neuro-Fuzzy 

Inference System  
0.271 0.027 0.019 0.314 0.036 0.027 

Singh et al. 2019 
Generalized Regression Neural 

Network b 
0.631 0.024 0.018 0.631 0.024 0.018 

This work 2022 
Recursive JITL-GRNN (A&D)       

Recursive JITL-GRNN (MD) 0.9438 0.0171 0.0062 0.9584 0.0150 0.0078 
 a

 Data given in MSE (Converted to RMSE); b Data given in mean of statistical indexes between two outputs  
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Chapter - 6 

Conclusions 

Prediction of primary quality variables in real time with adaptation capability for 

varying process conditions is a critical task in process industries. Due to inherent complexities 

associated with various chemical processes, developing first principle model for prediction of 

primary quality variables is highly challenging task. Empirical models are developed from 

actual input-output data collected from various industries. Moreover, there have been few 

applications of adaptive soft sensing techniques in chemical processes such as refineries etc., 

Therefore, the prime focus of our research work is to develop adaptive soft sensing techniques 

for continuous monitoring in various processes of refinery. 

This section summarizes the work carried out along with its significant findings during 

the course of research. Finally, future scope of this research work is also mentioned.   

6.1  Summary of proposed implementation  

Refineries is a highly complex process which involves fractionation of petroleum (from 

higher end to lighter end products). Estimation of primary quality variables requires time 

consuming laboratory analysis and is a tedious one. Real time prediction of primary variables 

using predictive model is mandatory for tight control of product quality. Moreover, the 

available soft sensors (predictive model) are conventional in nature. During time varying 

conditions (such as process state changes, catalyst deterioration etc.,) conventional soft sensor 

fails to predict the quality variables. In order to cope up with time varying conditions, adaptive 

soft sensors were placed in operation. Adaptive models developed in this work include 

recursive, sliding window and just-in-time learning approaches. The developed adaptive 
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models were tested using three industrial datasets: Naphtha splitter unit, Debutanizer column 

and Sulfur recovery unit. 

Naphtha splitter unit 

For naphtha splitter unit, the dataset for prediction of IBP and EBP of heavy naphtha are 

collected from Ujević et al. (2011). Totally 210 data objects for IBP and 209 data objects for 

EBP with six inputs and two outputs are taken. For IBP, 151 for database and 59 for query 

data objects are taken and for EBP, 151 for database and 58 for query objects are taken. Three 

types of adaptive models were developed using this datasets: Recursive (GRNN), Sliding 

window (GRNN), Just-in-Time Learning-D (LWR, MLR, PLS-3, PLS-4, GRNN, SVR: SMO 

and SVR: ISDA), Just-in-time Learning-A&D (GRNN) and Just-in-time Learning-MD 

(GRNN).  

Debutanizer column 

For debutanizer column, the benchmark datasets are taken from Fortuna et al. (2007). 

Totally 2394 data objects were collected with seven inputs and one output. For estimation of 

butane concentration, 1197 objects for database and 1197 for query objects are taken. Three 

types of adaptive models were developed: Recursive (GRNN), Sliding window (GRNN), Just-

in-Time Learning (GRNN-D, GRNN-A&D, GRNN-MD). 

Sulfur recovery unit 

Likewise, for sulfur recovery unit, the benchmark datasets are taken from Fortuna et al. 

(2007). Totally 10081 data objects were collected with five inputs and two outputs. For 

estimation of H2S and SO2 concentration, 5040 for database and 5041 for query objects are 
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taken. Three types of adaptive models were developed: Recursive (GRNN), Sliding window 

(GRNN), Just-in-Time Learning (GRNN-D, GRNN-A&D, GRNN-MD). 

Performance analysis of all developed models was carried out by estimating the model 

outputs of various industrial processes considered. The performance analysis was carried out 

using three distinct statistical performance indices: Correlation coefficient (CC or R), Mean 

absolute error (MAE) and Root mean square error (RMSE). Along with this, average model 

computation time was determined for single query objects of every model developed by 

considering implementation purpose. The best desired model is selected based on the 

prediction accuracy in terms of performance indices values for all the three industrial 

processes. Four plot analysis is carried out for the best performing model in each industrial 

case study. 

6.2  Significant observations and findings  

In this section, the significant findings of this research work is presented. This comprises 

of four sub-sections, which are general observations followed by respective observations and 

findings related to Naphtha splitter section, DC and SRU.  

6.2.1 General observations 

1. For all three industrial case studies, three types of adaptive models were developed 

based on recursive, sliding window and just-in-time learning approaches. Size of the 

datasets was different for various industrial cases.  

2. For all case studies, recursive, sliding window model and just-in-time learning 

(Mahalanobis distance) are developed based on GRNN (with fixed spread parameter) 

alone. Also, just-in-time learning based on GRNN model (spread parameter 
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calculated using grid search technique) was developed using two types of similarity 

index (distance and combined angle & distance).  

3. Model performance was analyzed using three performance indices: correlation 

coefficient, mean absolute error and root mean square error. Along with this, average 

model computation time per query object was calculated using the same software 

function.  

4. During model evaluation, the correlation coefficient index was given higher 

preference than mean absolute error and root mean square error for selection of the 

best model. 

5. Residual analysis is carried out for best performance model using four plot analysis. 

6.2.2 Soft sensing of naphtha splitter section 

1. Initial and end boiling points of heavy naphtha are important process parameters 

which need to be maintained at specified values for ensuring better process 

performance in subsequent stages of petroleum refineries. Hence, adaptive soft 

sensors have huge scope of relevance to ensure quality of naphtha in fractionation 

process.  

2. In this case study, recursive, sliding window and just-in-time learning concept is 

applied to develop adaptive soft sensors for online monitoring of heavy naphtha IBP 

and EBP. During the course of model development various aspects of JITL modeling 

are investigated. These include effect of various hyper parameters on model 

performance, effect of relevant dataset size on model performance and model 

computation time. 
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3. Using recursive and sliding window approaches, the correlation coefficient is 

obtained as 0.2093 and 0.4143 with model computation time of 1.4841 s and 1.3038 

s respectively.  

4. In just-in-time learning approach, both linear and non-linear local models are 

designed. The best correlation coefficient values by any linear model is 0.86 for IBP 

and 0.66 for EBP (JITL-MLR) with a model computation time of 0.0083 s. The 

correlation coefficient values for JITL-SVR: ISDA are 0.86 for IBP and 0.73 for EBP 

with a model computation time of 0.012 s. The improvement in IBP prediction was 

insignificant. However, there is an improvement of more than 10% for EBP prediction 

in case of the proposed nonlinear JITL model.  

5. After performance analysis of various models using just-in-time learning approach, it 

was observed that support vector regression model produced better prediction 

accuracy than multiple linear regression, partial least squares regression and locally 

weighted regression models.  

6. Further, just-in-time learning based SVR model provides better accuracy than 

recursive and sliding window based GRNN models.   

7. The performance was further validated using residual errors by four plot analysis. The 

criteria chosen for good modeling are, better generalization capability and low 

computational time. An error margin of about ± 30C temperature is achieved by the 

JITL-SVR: ISDA model for prediction of IBP and EBP.  

8. Reasonably low computation time of model simulation indicates that the proposed 

JITL-SVR model can be implemented online as adaptive soft sensor for continuous 

estimation of naphtha quality. 



121 
 

6.2.3 Soft sensing of DC 

1. Prediction of butane content in the bottom of debutanizer column helps to operate the 

column in an economically profitable way. Hence, adaptive soft sensors have huge 

scope of relevance to ensure product quality such that the butane should not escape 

from the bottom of the debutanizer column.  

2. Adaptive models such as recursive, sliding window, just-in-time learning approaches 

based on GRNN were developed for online monitoring of butane content in 

debutanizer column. In this research work, investigation of effect of similarity index 

and relevant dataset size on model performance and model computation time are 

included.  

3. The best correlation coefficient value by just-in-time learning model based on 

Mahalanobis distance method is 0.9947 for butane content prediction with a model 

computation time of 0.23 s. The improvement in prediction of butane content based 

on Mahalanobis distance method is significant as compared to Euclidean distance 

(>12%) method. 

4. Further, there is an improvement in the predictive performance while using recursive 

and sliding window approaches in which the correlation coefficients of 0.9950 and 

0.9982 are achieved with average model computation time of 0.05 s and 0.04 s 

respectively. 

5. After performance analysis, it was observed that JITL-GRNN-MD has better 

prediction accuracy than JITL (distance only, combined angle and distance method) 

approaches. The performance is further compared with other existing models 
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proposed in literature (Refer Table 5.7 in Section 5.5.3), which shows that the 

proposed model is having better prediction accuracy like other models.  

6. Reasonably low computation time of model simulation indicates that the JITL-

GRNN-MD model can be implemented online as adaptive soft sensor for estimation 

of butane content in debutanizer column. 

6.2.4 Soft sensing of SRU 

1. Estimation of H2S and SO2 concentrations in the tail gas of sulfur recovery unit is 

mandatory as the sulfur acts as major cause for environmental pollution (i.e., acid 

rain) and is found to be of major concern. Sulfur is removed in the form of elemental 

sulfur from its constituents as a by-product through desulfurization or gas sweetening 

process.  

2. Adaptive models such as recursive, sliding window, just-in-time learning approaches 

based on GRNN were developed for online monitoring of H2S and SO2 concentrations 

in the tail gas of sulfur recovery unit. The present research includes investigation of 

effect of similarity index and relevant dataset size on model performance and model 

computation time.  

3. The best correlation coefficient values by just-in-time learning model Mahalanobis 

distance method for sulfur recovery unit are 0.9438 for H2S and 0.9584 for SO2 with 

a model computation time of 1.12 s for H2S and 1.13 s for SO2. The improvement in 

prediction of tail gas composition (>36%) based on Mahalanobis distance method is 

significant as compared to Euclidean distance method.  

4. Further, there is a slight improvement in the predictive performance while using 

recursive and sliding window approaches in which the correlation coefficients of 
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0.9445 and 0.9449 are achieved with average model computation time of 0.14 s and 

0.04 s for H2S respectively. Likewise, the correlation coefficient achieved by 

recursive and sliding window approaches for SO2 are 0.9600 and 0.9613 with average 

model computation time of 0.13 s and 0.04 s respectively.  

5. After performance analysis, it was observed that JITL-GRNN-MD has better 

prediction accuracy than other JITL (distance only, combined angle and distance 

method) approaches. The performance is further compared with other existing models 

proposed in literature (Refer Table 5.8 in Section 5.5.3), which shows that the 

proposed model is having better prediction accuracy like other models.  

6. Reasonably low computation time of model simulation indicates that the JITL-

GRNN-MD model can be implemented online as adaptive soft sensor for estimation 

of H2S and SO2 concentrations in tail gas of SRU. 

6.3  Major contributions 

1. As of now, for naphtha boiling point estimation, only steady state soft sensors are 

reported in the literature. In this work, adaptive soft sensors are developed for 

prediction of initial and end boiling point of heavy naphtha.  

2. There are some adaptive models reported in DC and SRU process. However, use of 

GRNN in the adaptation framework is a novel contribution of this work. Also, new 

adaptive soft sensor based on GRNN as local modeling strategy for estimation of 

quality variables in all three case studies (NS, DC and SRU) 

3. In addition to above mentioned algorithm, recursive and sliding window approaches 

(based on Generalized regression neural networks) are other newly developed 



124 
 

algorithms associated with this research work and has the potential to implemented in 

nonlinear continuous processes for quality estimation.   

4. Recursive Just-in-Time Learning algorithm is a unified approach by combining 

recursive and just-in-time learning frameworks based on nonlinear models (SVR and 

GRNN) for quality estimation is not available in the literature. However, unified 

approach based on linear model (PLS) for estimation of final boiling point of diesel oil 

by Chen et al. (2014) is so far reported.  

5. In JITL approach, extensive investigation on effect of different similarity index, 

computation time on model prediction accuracy is not reported in the literature. In this 

work, three similarity measures (D, A&D and MD) incorporated in the JITL 

frameworks are compared and reported.  

6. The algorithm for all three adaptive soft sensors are incorporated with bias-update 

procedure to enhance the predictive accuracy. 

6.4  Future scope of research 

In this section, we discuss the future scope of this research work in industrial processes. 

1. There is a scope of developing new adaptive model, that has the capability to include 

time delayed values (dynamic model) into the model architecture, which has the 

capability to improve the predictive performance, as well as more robust to handle 

process disturbances. 

2. Also, the model can be tested with various process shifts (drifting phenomena) 

occurring in industrial processes and test its predictive performance. 
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3. There is a huge scope in exploration of hybrid modeling technique by integration of 

multiple global models (as ensembles) in adaptive frameworks in various chemical 

processes. 

4. Most of the non-linear models require different hyper parameters (loss function in 

SVR, spread parameter in GRNN etc.) to be optimally determined. In this work, 

rigorous grid search and analytical formula were used for determination of hyper 

parameter values. Application of various evolutionary optimization techniques in the 

adaptation framework can be explored for optimum hyper parameter computation. 

5. Applications of combining adaptive approach with deep learning neural network 

(reinforcement learning) model in prediction of quality variables are yet to be 

explored in chemical processes. 
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