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Abstract

Stringent regulations imposed throughout the globe due to growing environmental issues,
reducing energy consumption and associated carbon emissions (CEM) have become one of
the essential requirements of manufacturing industries. Machine tools plays a significant
role in manufacturing industries, are unfortunately responsible for huge energy
consumption, and associated CEM. Establishing an accurate energy consumption and CEM
model for machine tools is a prerequisite for realising the implementation of energy-
efficient and low CEM approaches such as energy-efficient process planning and
scheduling. The power characteristics of a machine tool is complex and vary continuously,
making it challenging to develop a single energy consumption model for the entire process.
The energy consumption of the machine tool can be divided into different energy modules;
startup, standby, spindle acceleration, idle, tool change, air-cutting, coolant pump, cutting
tool rapid positioning and cutting. The cutting energy consumption module can be further
subdivided into the Constant Power Consumption (CPC) machining process e.g. turning
and Variable Power Consumption (VPC) machining process e.g. end facing and grooving.
Predicting the energy consumption and associated CEM of a machine tool for machining
cylindrical parts remains challenging for industrial applications because the previous
energy prediction models are typically developed with the CPC machining processes only.
In industry, the length and diameter are reduced to obtain the final dimensions of a
cylindrical part. Typically, external turning operation is used to reduce the diameter of the
part i.e. CPC machining process and facing is conducted to reduce the length of the part i.e.
VPC machining process. The cutting power characteristics of the VPC machining processes
are more complex and dynamic due to change in one of the process parameters (e.g. cutting

speed during end facing) than the CPC machining (e.g. turning).
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Furthermore, majority of studies considered the energy consumed for a particular period of
a machining process. However, machining of a cylindrical part includes spindle
acceleration periods, standby periods, idle periods, air-cut periods, tool changing periods,
and cutting periods, due to which existing models are incapable to assess energy
consumption and corresponding CEM accurately in industries for machining of cylindrical
parts. This study modelled the energy consumption and associated CEM of machine tools

for machining cylindrical parts.

An empirical model is developed to predict the energy consumption of the VPC
machining process i.e. end facing. The experiments were performed on a LMW-Smarturn
CNC lathe machine tool in the dry and wet environment to obtain the fitting coefficients of
the developed model. The validation experiments confirm the accuracy of the developed

model is more than 96%.

The developed model is further used as an input for the formulation of a multi-objective
optimization model to select the optimal parameters leading towards minimum energy
consumption and maximum material removal rate (productivity). The optimization results
shows that the productivity improves to 99.97% with only a 10.08% increase in the energy
consumption on common optimal parameters compared to optimal parameters with mono

optimization of energy consumption.

The energy consumption models of the previously mentioned different energy modules
were established, and the developed model of the VPC machining process was integrated
to evaluate the energy consumption of machine tools for machining cylindrical parts.
Experiments are conducted in the dry and wet environment to obtain the fitting coefficients
of the developed models for different energy modules. The validation test results show that

the developed model's accuracy is more than 97%.

The developed energy consumption model of the machine tool is used to establish an

empirical model to quantify their carbon emissions for the machining of cylindrical parts.
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The CEM of a machine tool for machining a cylindrical part were segregated into CEM
from electrical energy consumption, material consumption, cutting tool wear, coolant
consumption and from the disposal of machining waste materials (i.e. chips). In which the
CEM due to machine tool electrical energy consumption was calculated using the
previously developed machine tool energy consumption model for machining cylindrical
parts. CEM models for the remaining factors (material consumption, cutting tool wear,
coolant consumption and chip disposal) were developed and integrated to quantify the total
CEM of the machine tool for machining cylindrical parts. The developed model was
applied to a cylindrical part with three different process plans to investigate the effect of

process parameters on CEM.

Soft computing techniques have become increasingly popular for modelling in various
engineering applications due to their ability to make accurate predictions, work with
inherent complexity, and capture non-linear behaviour between input and output
parameters. Three soft computing techniques, multi-gene genetic programming (MGGP),
least square-support vector machine (LS-SVM) and fuzzy logic, are applied to model a
machine tool's energy efficiency, power factor and associated CEM. The experiments were
performed to obtain the data required for development of models. The coefficients of
determination (R?) and five error indices were used to evaluate and compare the accuracy
of the developed models. The models' comparative performance evaluation reveals that the
LS-SVM consistently outperforms the other models i.e. MGGP and fuzzy logic. Further, A
multi-objective optimization model has been developed to determine the optimal process
parameters for power factor, product quality, productivity and CEM of machine tools using
GRA coupled with Taguchi technique, considering the impact of weight assigning methods.
The optimization results obtained with different weight assigning methods have been
compared with the equal weight’s results and verified using the confirmation experimental

tests.
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Chapter 1:

Introduction

1.1. Introduction

The impact of global warming is growing severely due to significant increase in greenhouse
gas (GHG) emissions and reflected in intensifying heatwaves, threats to biodiversity,
melting glaciers and rising sea levels, raising concerns about life's sustainability and future
existence. The focus of reducing GHG emissions is receiving widespread attention from
climate change experts to combat global warming and its adverse effects on the ecosystem,
which has been periodically alerted by the Intergovernmental Panel on Climate Change
(IPCC, 2014, 2007, 2001; Pye et al., 2021). Energy consumption accounts for more than
70% of global GHG emissions (Panagiotopoulou et al., 2022). The industrial sector is one
of the major drivers of economic development (U.S. EIA, 2016) and the primary
contributor to the global energy demand i.e. nearly half of global energy demand (U.S. EIA,
2019, 2017), resulting in one of the main causes of GHG emissions (Brillinger et al., 2021).
Manufacturing is an imperative part of the industrial sector (Zhao et al., 2017), and
developing countries have made substantial efforts and initiatives to expand the
manufacturing industries to achieve higher economic growth (Garg et al., 2016).
Manufacturing in the industrial sector accounts for 37% of the world’s energy consumption
(Diaz-Elsayed et al., 2015) and 38% of the direct and indirect GHGs emissions (Sealy et
al., 2016). Machining is a vital process for transforming raw materials into finished
products in manufacturing industries. Computer Numerical Control (CNC) machine tools
play an imperative role in the manufacturing industry and consumes a significant amount
of energy in machining processes e.g. turning, milling and drilling (Kant and Sangwan,
2014; Lv et al., 2016; Tuo et al., 2018). The energy efficiency of machine tools is low i.e.

around 30% (He et al., 2012), and the electrical energy spent by the machine tools during
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Introduction

their deployment in machining processes is accountable for more than 99% of their
environmental impacts (Li et al., 2011). For instance, in one year, a machine tool emits
carbon dioxide (COz), one of the prominent GHGs, equivalent to 61 sports utility vehicles
(Liu et al., 2015). Machine tools are enlisted as one of the critical products in the European
Union's Eco-design directive 2009/125/EC to meet the carbon emission standard (Tuo et
al., 2018). The use of electrical energy by a machine tool in a machining process generates
a significant quantity of CEM (Panagiotopoulou et al., 2022). Hence, machine tools have a
high potential to save energy consumption and to reduce associated CEM. Therefore,
reducing the energy consumption of the machine tools is one of the major challenges for
the industries to meet sustainable manufacturing (Diaz-Elsayed et al., 2015; Hu et al., 2017;

Xiao et al., 2019).

Process parameter optimization of machine tools in existing production lines is one of
the most effective strategies to reduce energy consumption and associated carbon emissions
(Bagaber and Yusoff, 2019; Campatelli et al., 2014; Duflou et al., 2012; Hu et al., 2020;
Jiang et al., 2022; Warsi et al., 2018). This strategy can be broadly classified into two
categories: modelling of machine tool’s energy consumption (Edem et al., 2017; Jia et al.,
2016; Liu et al., 2015, 2020; Zhou et al., 2017), and optimization of machining process
parameters (Alswat and Mativenga, 2020; Bilga et al., 2016; Kumar et al., 2017). The first
approach focuses on establishing accurate models to describe a machine tool's energy
consumption and associated CEM process, whereas the second is involved in determining
the optimal process parameters that minimise energy consumption and associated CEM.
Establishing an accurate energy consumption model for machine tools is a necessary
prerequisite for realising energy-efficient cutting parameter optimization (Hu et al., 2020;

Jia et al., 2016). The lack of an accurate and realistic energy consumption model has
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hindered the implementation of energy-efficient approaches such as energy-efficient

process planning and scheduling (Lv et al., 2018; Wang et al., 2015).

The power characteristics of a machine tool are complex and dynamic and developing
a single energy consumption model for the entire process is challenging. The power profile
of a machine tool during machining of a cylindrical part is shown in Figure 1.1 and is
considered a basis to describe their energy consumption. The energy consumption (Etotar)
can be decomposed into different modules: startup energy (Estartup), Standby energy
(Estandby), spindle acceleration energy (Eacc), idle energy (Eiae), tool change energy (Ex),
air-cutting energy (Eair), coolant pump energy (Ecool), cutting tool rapid positioning energy

(Erapid) and cutting energy (Ecut).

Etotal = Estartup + Estandby + Eacc + Erapid + Eidle + Etc + Eair + Ecool + Ecut (1)

In Eq. (1), Ecut is the cutting module energy consumption i.e. during which material is
removed from the cylindrical part. The cutting energy for machining a cylindrical part can
be further divided into cutting energy of the Constant Power Consumption (CPC)
machining process (Ecut cec) €.g. turning and cutting energy of the Variable Power

Consumption (VPC) machining process (Ecut vec) €.g. end facing, and can be expressed as:

= Ecut_CPC + Ecut_VPC (2)

cut

By substituting Eq. (2) in Eq. (1), the total energy consumption of a machine tool for

machining of a cylindrical part can be expressed as:

Etotal = Estartup + Estandby + Eacc + Erapid + Eidle + Etc + Eair + Ecool + Ecut_CPC + Ecut_VPC (3)
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Figure 1.1. A typical power profile of a machine tool during machining of a cylindrical part.
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The previously reported energy consumption models are significant but still lack to
evaluate a machine tool's energy consumption for machining a cylindrical part in industrial
applications. In industry, the length and diameter of a cylindrical part are reduced to obtain
the final dimensions of a product. Typically, external turning operation is used to reduce
the diameter of the part i.e. CPC machining process and end facing operation is conducted
to reduce the length of the part i.e. VPC machining process. The energy evaluation models
reported in the literature for machine tools were developed based on CPC machining
processes only, while the machining of a cylindrical part includes the CPC and VPC both
machining processes to manufacture the final product, which result in inaccurate estimation
of the machine tool’s energy consumption and associated CEM. Furthermore, majority of
studies considered the energy consumed for a particular period of a machining process.
However, machining of a cylindrical part includes spindle acceleration periods, standby
periods, idle periods, air-cut periods, tool changing periods, and cutting periods, due to
which existing models are incapable to assess energy consumption and associated CEM

accurately in industries for machining of cylindrical parts.

Significant studies reported in the literature for the modelling of energy consumption
of machine tools focus only on CPC machining processes e.g. turning, drilling and milling.
The energy modelling for the VPC machining processes (e.g. end facing, grooving and
chamfering) is very limited. In the CPC machining process, the process parameters i.e.
cutting speed, feed rate and cutting depth remain constant. Consequently, the machining
power also remains constant for the given process time. Whereas in the VPC machining
process, at least one of the process parameters (for example cutting speed in end facing)
changes over time. Hence, the cutting power is dynamically changing, and its
characteristics become more complex than the CPC machining process. Jia et al. (2016)

study is the only significant work reported in the literature for the VPC machining process.
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Furthermore, in the literature, little attention received by the spindle acceleration energy
consumption modelling because the regularity of the spindle acceleration power is
complicated, its computing model parameters are difficult to acquire, and its time duration
is generally considered to be very short. Therefore, limited existing research (Huang et al.,
2016; Lv et al., 2017; Zhang et al., 2022) about the spindle acceleration, and limited
researcher (Liu et al., 2015; Zhong et al., 2016) considered it for modelling the energy
consumption of machine tools or even neglects the spindle acceleration process entirely.
These approaches can lead to considerable errors of up to 78% with regard to machine tools

that frequently activate their main spindle system in a running state (Huang et al., 2016).

Further, process parameters such as spindle speed, cutting depth, and feed rate have a
significant impact on carbon emissions in machining processes (Li et al., 2015). The
changes in process parameters have a significant impact on the energy consumption of a
machining process (Newman et al., 2012). Previous research has shown that appropriate
selection of the process parameters can result in carbon emission reduction up to 40% (Zhao
et al., 2021). Therefore, with the increasing global adoption of carbon neutralization
policies (carbon tax and carbon labelling) and increased manufacturer competitiveness, the
machining process and machine tools should be optimized to minimize carbon emissions

and maximize efficient energy utilization, productivity and product quality.

Altogether, modelling and optimization approaches are pre-requisite for the selection
of optimum process parameters leading to minimum energy consumption and associated
carbon emissions of machine tools. An accurate energy consumption model is beneficial to
predict the energy requirement of a particular product in its initial development stage and
to identify the most energy-efficient and low carbon emission process parameters using

optimization techniques (Bhushan, 2013; Li et al., 2013; Sato et al., 2018).
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1.2.  Research Motivation

India is the world's third-largest producer and consumer of electricity followed by China
and USA (U.S. EIA, 2017), with a national electric grid installed capacity of 382.73 GW
(Shameem P et al., 2022). Indian industrial sector accounted for more than half of the total
national energy demand followed by transport, domestic (National Statistics Office, 2022,
2020). The industrial sector accounts for about 56% of total energy consumption (Bal et
al., 2022; National Statistics Office, 2020), where more than 60% of industrial energy
consumption is contributed by the manufacturing industries (Soni et al., 2017). India has
the third-highest CO2 emissions in the world, one of the most prominent GHG (Li et al.,
2015). It is ranked at fifth place in list of CO2 emitting countries since 2000, with CO>
emissions rising from 866 million metric tonnes (Mmt) to 2315 Mmt between 2000 and
2019 (U.S. Energy Information Adm, 2022). As part of the Paris Agreement, India
committed to reducing its GHG emissions intensity by 33-35% by 2030 compared to 2005
levels (IEA, 2021). The Government of India have established national goal for a 45%
reduction in carbon intensity of gross domestic product by 2030 and a Net Zero target by
2070 (Pradhan and Ghosh, 2022).

India has emerged as the sixth largest manufacturing economy in the world, and it is
expected that manufacturing will further boost in India due to government thrust on “Make
in India” plan. India is the 13" largest manufacturer of machine tools in the world as per
the Indian Machine Tool Manufacturer’s Association (IMTMA). The Indian market for
machine tools reached 120.36 billion in 2020-21, with domestic production of machine
tools worth 66.02 billion (IMTMA, 2022). An accurate and realistic energy consumption
model can facilitate the implementation of energy-efficient approaches such as energy-

efficient process planning in manufacturing industries
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1.3.  Objective of the Study

The objective of the present study is to model the energy consumption and associated CEM
of machine tools for machining cylindrical parts, and to optimize the process parameters
for machine tools to minimize carbon emissions and maximize efficient energy utilization,

productivity, and product quality. The detailed objectives are as follows:

Development of a model for Variable Power Consumption (VPC) machining

processes - A case of end facing

e Selection of process parameters for the VPC machining process — A case of end
facing

e Development of a model to predict the energy consumption of machine tools for
machining cylindrical parts.

e Development of a model to quantify the carbon emission of machine tools for
machining cylindrical parts.

e Prediction of energy efficiency, power factor and associated carbon emission of
machine tools using soft computing techniques

e Multi-objective optimization of machining process performance indicators

considering the impact of weight assignment methods

1.4.  Methodology

The different phases of the adopted methodology to achieve the objectives are as follows:

Phase-1: An empirical model has been developed to determine the energy consumption of
the VPC machining process (i.e. end facing) of the machine tool. The fitting coefficients of
the model have been determined by conducting experiments on a LMW-CNC lathe
machine tool under dry and wet environments. Validation experiments have been

performed to confirm the prediction accuracy of the developed model.
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Phase-11: The model in phase-I is further used as an input for the formulation of a multi-
objective optimization model to select the optimal parameters leading towards minimum
energy consumption and maximum material removal rate (productivity). The Grey
Relational Analysis coupled with Taguchi technique have been used to determine the
common optimal level of process parameters on which energy consumption and material

removal rate are optimized simultaneously.

Phase-111: An empirical model has been developed to predict the energy consumption of
machine tools for machining cylindrical parts by dividing the energy consumption of
machine tool into different energy modules: start-up, standby, spindle acceleration, idle,
rapid positioning, air-cutting, and cutting. The cutting energy consumption module is
further separated in the VPC and CPC machining process. The energy consumption models
of the different energy modules were established, and the developed model of the VPC in
phase-I was integrated to evaluate the energy consumption of machine tools for machining
cylindrical parts. The fitting coefficients of each energy module have been determined by
conducting experiments in dry and wet environment. Validation experiments have been

carried out to ensure the proposed model's prediction accuracy.

Phase-1V: An empirical model has been developed to quantify the CEM of machine tools
for machining cylindrical parts. The CEM of a machine tool for machining a cylindrical
part have been decomposed into CEM due to electrical energy consumption, material
consumption, cutting tool wear, coolant consumption and the disposal of machining waste
materials (i.e. chips). The CEM due to machine tool electrical energy consumption has been
calculated using the previously developed model in phase -1ll. The developed model has
been applied on a cylindrical part with three different process plans to validate the

developed model for practical implementation in industry.
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Phase-V: Soft computing-based models have been developed to predict the energy
efficiency, power factor and associated CEM of machine tools. Three soft computing
techniques; multi-gene genetic programming (MGGP), least square-support vector
machine (LS-SVM) and fuzzy logic have been used to develop the predictive models. The
experiments were performed to obtain the data required for development of models. The
performance of the developed models have been evaluated based on coefficient of
determination and five error indices. The models have been validated using the hypothesis

testing i.e. mean paired t-test and variance of F-test.

Phase-VI: A multi-objective optimization model has been developed to determine the
optimal parameters for power factor, carbon-emission, productivity, and product quality
using GRA coupled with Taguchi technique, considering the impact of weight assigning
methods. The optimization results obtained with different weight assigning methods have
been compared with the equal weight’s results and verified using the confirmation

experimental tests.

1.5.  Significance of the Study

An accurate energy consumption and associated CEM model can facilitate the
implementation of energy-efficient approaches such as energy-efficient process planning
in manufacturing industries. This study developed accurate and industry applicable models
which can be utilized by the process planners to identify the most energy-efficient based
process plan before actual machining of a cylindrical part on a machine tool. Evaluating
each option to ascertain the energy consumption is not practicable and necessitates a large
number of lengthy trials, which increases costs and time. Further, provides optimal process
parameters to minimize carbon emissions and maximize efficient energy utilization,

productivity and product quality. The developed energy consumption model is capable to
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predict the energy consumption of machine tool and associated CEM accurately for
industrial applications. The developed model can assist in mitigating machine tool
environmental impacts and facilitates the exploration of low energy efficiency and high
CEM machining process.

Further, this study could be beneficial for mass production, where the different factors,
such as machine tools, workpiece materials, and cutting tools, remain constant. Machine
tools have a complex and dynamic structure due to the diverse and complex interaction of
various materials, process parameters, and cutting tools, which directly impact their
behaviour analysis. However, in mass production systems, the factor of diversification

could be reduced, and the presented approach may be practically possible.

1.6.  Organization of the Thesis

The thesis is organized in nine chapters. Chapter 1 provided the introduction of the present
thesis. A review of literature related to energy consumption modelling and optimization
process parameters of machine tools is presented in Chapter 2. The available models and
optimization methods are analysed to identify research gaps, and the study's objectives is
identified based on the existing knowledge and research gaps. In Chapter 3, an empirical
modelling to predict the energy consumption of the variable-power consumption machining
process i.e. end facing is presented. In Chapter 4, the empirical model developed in
previous chapter 3 is used as an input for the formulation of a multi-objective optimization
model to select the optimal parameters leading towards minimum energy consumption and
maximum material removal rate (productivity). In Chapter 5, the modelling of energy
consumption of machine tools for machining cylindrical parts is presented. The energy
consumption of a machine tool is divided into different energy modules and their models
are established. The energy consumption models of the different energy modules and the

developed model of the VPC machining process in Chapter 3 is integrated to evaluate the
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energy consumption of machine tools for machining cylindrical parts. In Chapter 6, the
modelling to quantify carbon emissions of machine tools for machining cylindrical parts is
presented. The causes of carbon emissions from machine tools for machining cylindrical
parts are classified into various factors, and corresponding models are developed, and
integrated to quantify the carbon emissions of machine tools for machining cylindrical
parts. In Chapter 7, the application of soft computing techniques for the modelling of
machine tool’s performance indicators is presented. Three soft computing techniques are
used to develop models and their performances are evaluated on five error indices. In
Chapter 8, the multi-objective optimization for low carbon emission and high efficiency
in terms of carbon emission and power factor, surface roughness, and material removal rate
is developed. This chapter also investigates the impact of the response weighting methods
on the optimization results. Finally, Chapter 9 summarises the modelling and optimization

efforts, the limitations of the present work, and the direction of future research.
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Chapter 2

Literature Review

2.1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has repeatedly cautioned about
the severe effect of rising temperature on ecosystem (IPCC, 2014, 2007, 2001; Pye et al.,
2021). Therefore, the notion of net-zero greenhouse gas (GHG) emissions is attracting a lot
of interest from climate change researchers in order to prevent global warming and its
negative consequences on ecosystems. The use of fossil fuels (coal, oil, and natural gas) to
meet global energy demand is the leading source the GHGs. Fossil fuels are expected to
rise to 35.4 Gigatons in 2035 (Campatelli et al., 2015), and despite increased usage of
renewable energy, fossil fuels will remain the largest source of primary energy in 2050
(U.S. EIA, 2021). Figure 2.1 illustrates a historical perspective of global and Indian carbon

dioxide (one of the primary GHGS) emissions.
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Figure 2.1 lllustrates a historical perspective of global and Indian carbon dioxide

emissions.
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According to the US Energy Information Administration, global energy demand will
double by 2050 compared to 2020 (U.S. EIA, 2021), with the industrial sector serving as
the primary energy user in several countries worldwide (U.S. EIA, 2017, 2016). Figure 2.2
illustrates the total and industrial energy consumption historical trends (a) Global scenario

(b) Indian scenario.
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Manufacturing is a vital part of the industrial sector and among the most important
activities for the growth of the economy, but it also accounts for more than 30% of global
total energy consumption (Diaz-Elsayed et al., 2015; Xie et al., 2021) and 36% of GHG
emissions (Sealy et al., 2016; Sihag and Sangwan, 2020). Machining is vital for
transforming raw materials into finished products in manufacturing industries. Machine
tools are one of the most common equipment and machinery used to manufacture
components, with sales of $144.6 billion in 2018 and an expected $174 billion in 2023
(Triebe et al., 2021). The machine tools e.g. lathe, milling and drilling, are commonly used
in discreet part manufacturing and consume a significant amount of the total energy demand
of the manufacturing industry i.e. 90% (Liu et al., 2020; Lv et al., 2016; Triebe et al., 2021;
Tuo et al., 2018) with low energy efficiency (Ji et al., 2020; Xie et al., 2021). For instance,
in one year, a machine tool emits CO> equivalent to 61 sports utility vehicles (Liu et al.,
2015). The machine tools' average energy efficiency was approximately 30% (Liu et al.,
2015; Xie et al., 2021), and in one of the investigations, Gutowski et al. (2006) reported the
machine tool's energy efficiency less than 15%. Several prior studies have found that the
energy utilisation phase of machine tools is responsible for almost 99% of their
environmental impacts (Xie et al., 2016). The low energy efficiency and high energy
consumption of machine tools signify a lot of scope for energy savings and reduced
environmental effect. As a result, the administrative authorities, academician and industry
professionals are becoming increasingly interested in promoting the energy efficiency of
machine tools. For example, in Eco-design directive 2009/125/EC, the European
Commission listed machine tools as one of the key products in its 2020 vision, a 37%
reduction in United Kingdom’s carbon emissions by 2020 compared to 1990 (Schudeleit et
al., 2016; Xie et al., 2021). Hence, Machine tools have a high potential to save energy

consumption and reduce GHG emissions. Therefore, reducing the energy consumption of
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the machine tool is one of the major challenges for the industries to meet sustainable

manufacturing (Diaz-Elsayed et al., 2015; Hu et al., 2017; Xiao et al., 2019).

As previously stated that the potential strategies for reducing energy consumption and
carbon emissions in the manufacturing sector can be achieved either by development of
energy-efficient machine tools or by optimizing existing machine tools and machining
processes (Jiang et al., 2022; Warsi et al., 2018). Given the large amount of existing
machine tools in use, the first strategies require solid economic provisions for technological
development and can only be implemented by replacing existing production lines. The
second approach can be implemented with relative ease and lesser resources. Parameter
optimization of existing machining processes and machine tools can be applied to existing
production lines with relative ease and with minimal resources (Bagaber and Yusoff, 2019;
Hu et al., 2020). Previous research has shown that by selecting the optimal process
parameters, energy consumption and associated CEM can be reduced by up to 40% (Chen
et al., 2021; H. Zhang et al., 2017). As a result, process parameters play a crucial role in
machining, and selecting the correct parameters is critical for energy-efficient machining
(Zhou et al., 2019). A survey of the available literature reveals several advances in this area.
First group of researchers attempts to address this issue by modelling and assessing the
energy consumption of CNC machine tools, processes, and systems. Second group of rising
number of authors are focusing on evaluating the CEM of machining operations. The third
group is involved with process optimization. The current literature review is divided into
two sections. The modelling of energy consumption and CEM for the machining process
and machine tools is presented in the first section: Section 2.2. The second section: Section

2.3, focuses on the advancement of optimization in the literature.
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2.2. Modelling of Energy Consumption and Carbon Emissions of Machine Tools

Modelling and optimization approaches are prerequisites for selecting optimum process
parameters, leading to minimum energy consumption in a machining process. The energy
consumption model is beneficial for predicting the energy requirement of a particular
product in its initial development stage and identifying the most energy-efficient process

parameters (Bhushan, 2013; Li et al., 2013; Sato et al., 2018).

Change in Process parameters have a significant impact on energy consumption and the
associated CEM of machine tools (Newman et al., 2012). Unreasonable cutting parameters
can result in increased energy consumption and associated carbon emissions. Previous
research has shown that the appropriate selection of process parameters can reduce energy

consumption and associated carbon emissions by up to 40% (Zhao et al., 2021).

2.2.1. Energy consumption modelling

Various empirical models are proposed by authors in the literature as a function of process
parameters to assess the energy consumption of the machining process. The significant
studies are discussed in the following paragraphs:

Early studies on machining process energy consumption attempted to develop models
for predicting the tool tip-work interface energy consumption, i.e. the energy required to
remove material from the workpiece in the form of chips. Researchers (Bayoumi et al.,
1994; Chetan et al., 2018; Dautzenberg et al., 1981; HA et al., 2004; Munoz and Sheng,
1995; Pawade et al., 2009; Shao et al., 2004; Wang et al., 2016) established theoretical
energy consumption model based on metal plastic deformation analysis. Dautzenberg et al.
(1981) model is one of the primary models for estimating the energy consumption for the
material removal in a machining process. He divided the cutting zone into primary and

secondary shear zones and developed the following model:
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Where E.,, E, and Eg represents the cutting energy, cutting energy of primary shear zone

cut !

and cutting energy of secondary shear zone. z,¢,7,,n,a,, f,V,and F, represents the shear

stress, shear angle, strain hardening exponent, width of cut, feed rate, cutting velocity and
friction force respectively. Bayoumi et al. (1994) developed a model for specific cutting
energy (SCE) consumption as a function of process parameters as shown in Eq. (2). He
reported that the chip's friction, flank wear, and thickness have a significant impact on

cutting power consumption.
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Where SCE,, represents the effective SCE. K 4 ,Kps Koot Keerr . Fo T.6,015 2,

neff
represents the effective average pressure, effective average friction, effective flank
pressure, effective flank friction, cutting force, feed rate, cutting helix angle, width of the
flank wear land and radial engagement angle respectively. Munoz and Sheng (1995)
developed a cutting energy consumption model as shown in Eqg. (3). The model
incorporates the effect of lubrication and tool wear and is applicable for both orthogonal

and oblique machining.

cos( S —y)xcosn, xCOSA+cos(p+ [ —y rx MRV
Ecutting :[ ( ) ( )]X( j (3)

cos(p+B-7) sing x cosA

Where, 5, v, n,, 4, @ represents the normal friction angle, normal rake angle, shear

flow angle, oblique angle and shear plane angles in radian respectively. 7 represents the

workpiece flow stress in N/mm?. Shao et al. (2004) quantifies cutting power while taking
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tool wear and the influence of the cutting environment into account during the face milling

process and proposed the following model:

[K xh™x f, x(cos(g, ) - cos(g, +))+uxH x\Exy/]
2

(4)
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Where P is the average power consumption in Watt; a,, ¢, f,,h, H, K, VB, Z, 7
@, and y represents the axial depth of cut in mm, chip thickness constants in mm, feed

rate in mm/tooth, chip thickness in mm, Brinell hardness in N/mm?, cutting force constants
in MN/m, average flank wear in mm, number of teeth, coefficient of friction, angle of
approach in rad and immersion angle in rad. HA et al. (2004) developed a SCE model for
the orthogonal cutting of a metal matrix composite material as stated in Eq. (5). He divided
the cutting energy into primary and secondary shear zone energy and the energy required

to debond the particle from the matrix.

SEC=E, +E, +E, (5)

E,, E, and E, represent the specific energies for plastic deformation in the primary zone,

secondary shear zone and specific energy for debonding the particle from the matrix
respectively. Pawade et al. (2009) divided the specific shearing energy (Es;) consumption
at tool-work interface into specific cutting energy of primary shear zone (E),) and specific

cutting energy for ploughing (Ej,,,) and established the following model:

6  Fg,c08l.V,
EST = Epsz + Esplo = n +1+ Pa fV (6)

Where 5, ¢, n, K., a,, f,V, and V, are flow stress, shearing strain, strain hardening

exponent, ploughing force component, width of cut, feed, cutting velocity and shear
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velocity respectively. Wang et al. (2016) divided the cutting energy of the tooltip into three

parts: the energy of the primary shear zone (E, ), the energy required to overcome frictional
forces (E; ), and the kinetic energy of the flowing chip (E, ) and proposed the following
model:

7, x A xV, xsin 8 Jr,o><V2><Sin2(p

(7)
a. xa, xcos(p+ B —y,) 2xcos’ ((P—%)

E=E,+E, +E =IZT><(;/,7,T)d}/+

V is the cutting speed, V, is the chip sliding speed along the tool rake face, V, is the chip

shearing speed along the primary deformation zone, a_ is the undeformed chip thickness,

a,, Is the cutting width parallel to cutting edge, Z average shear stress, S is the width of

the adiabatic shear band, L is the upper boundary displacement of the adiabatic shear band,

a s the tool rake angle, ¢ is the shear angle between shear plane and shear strain and S

is the friction angle.

The models mentioned so far were significant, but they only account for the tooltip
energy consumption of the machine tool. Filippi and Ippolito (1981) investigated the
energy consumption of ten different machine tools. They found that although the energy
needed for material removal was significant in each machine tool, the total energy demand
of a machine tool was predominant. Gutowski et al. (2006) model is one of the primary
studies addressing the total power consumption of a machine tool, as shown in Eqg. (8). He
proposed an empirical model as a functional relationship between power consumption and

material removal rate (MRR).

P

total

=P, +kxMRR (8)
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Where P

total

and P, are the total power and idle power in kW respectively. k represents the
constant in kJ/cm3. Li and Kara (2011) modified the Gutowski et al. (2006) equation and
proposed a specific energy consumption (specific energy is the energy consumed in
removing per unit volume of material) model as written in Eq. (9).

Cl

SEC=C, +
MRR

9)

Where SEC represents the specific energy consumption. C, and C, are machine tool-

specific coefficients. Li et al. (2013) segregated the idle power into standby power and
spindle rotation power and proposed a modified power consumption and SEC model, as

shown below.

P

total

=P

standby

+k, xn+b+k, x MRR

SEC= Ptotal _k + kl'n + k2

_k (10)
MRR MRR MRR

Where n is spindle rotation per minute, k, is machining process-specific constant,

k, =P

standby

+b, k,and b are specific coefficients of the spindle motor. However, the

models (Gutowski et al., 2006; Li et al., 2013; Li and Kara, 2011) could not include the
effect of the input parameters on power consumption. Zhou et al. (2017) proposed a
modified model that includes MRR, spindle rotation and the machining parameters, as

shown in Eq. (11).

Pt =C1' +Cé ><n+C; x N xv?5 xdccé xaec%
P, C C,xn Cyxn% xv&xd% xa

SEC = total  _ 1 + 2>< + 3 f ae (11)
MRR MRR MRR MRR

21|Page



Literature Review

Where ¢, ~c, are fitting constants, v, is feed rate in mm/min, d_ is cutting depth in mm
and a, is the width of cut in mm. Guo et al. (2012) revealed that the workpiece's diameter
also significantly influences the energy consumption of the turning process. He pointed out
that to maintain a particular cutting speed during the turning process, the diameter of the
workpiece affects the spindle speed. Therefore, Guo et al. (2012) incorporated workpiece
diameter into the SEC model, as shown in Eq. (12).

Cl

v, x foxd,

SEC = +C, xVve x f* xd® x Dy (12)

Where ¢, ~c, are fitting coefficients and D, is workpiece diameter in mm, f, is feed rate

in mm/rev and v, is cutting speed in m/min.

Balogun et al. (2015) investigated the influence of the chip thickness, tool wear, cutter
nose radius and cutting environment on the specific cutting energy (SCE) consumption and
developed an energy consumption model for the machining process by dividing the entire
energy requirement into basic energy, ready energy, and cutting energy as shown in Eq.
(13). He reported that the machining parameters significantly influence the SCE and indeed

the total energy consumption of machine tools.

Etotal = (Pbasic ~ tbasic ) + ( I:)ready = tready ) + (k x Q ~ tcutting ) (13)

and P

Where E,,, is total energy consumption; P, Yeady

are the power consumption in the

asic

basic and ready state respectively; .., and t are the time of ready and cutting state;

cutting
k is the specific cutting energy coefficient (J/mm?®) and Q is the MRR (mm?3/s). Edem and

Balogun (2018) investigated the effect of cutting edge radius on the SCE and surface

roughness and stated that energy efficiency can be enhanced by machining parts with
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smaller cutting-edge radius inserts. Warsi et al. (2018) studied the SCE and SEC for high-
speed machining and developed energy consumption maps indicating high and low specific

energy consumption zones.

Other strategies for modelling the energy consumption of machine tools include
disaggregating the machine tool's energy consumption into energy-consuming elements
such as the spindle, feed axis, coolant pump, tool change system, and components that use
constant energy. He et al. (2012) evaluated the total energy consumption of a machine tool
by dividing it into fixed energy, coolant energy, feed energy, spindle energy and cutting

energy and proposed the following model:

Etotal = Espindle + Efeed + Etool + Ecool + Efix (14)

Where E,_, is the total energy consumption; E Etesr Ewo» Eoo @nd Ey, are the

total spindle ! fix
energy consumption of spindle, feed table, tool indexing, coolant spray, and the basic
energy consumption respectively. Yoon et al. (2014) proposed a model of total energy
consumption by dividing it into basic energy, spindle rotational energy, worktable feed
energy and cutting energy. He stated that tool wears significantly impacts cutting power

consumption, which he incorporated into the energy consumption model shown in Eg. (15).

B =1{ (N F,3,)+(F,,n, F,3,)xVB (1)} dt (15)

Where f; (n, f.a, ) is a second order function of process parameters: spindle speed (n), feed

rate (f) and depth of cut (ap) and \E(t) is the function of tool flank wear.

Balogun and Mativenga (2013) introduced a new state called ‘Ready state’ between the

‘Basic (idle) state’ and ‘Cutting state’ of a machine tool and evaluated the energy
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consumption as shown in Eg. (16). In the ready state, the spindle reaches the target speed
for the required cutting speed, and the feed drives bring the tool and workpiece to the

cutting position.

E

total tc "tc air “air cool

=E,+E +Pt {INTG%)+1}+Pt +(MN +C + Py +kv)t, (16)

Where E, and E, represents the basic state and ready state energy consumption

respectively. P and P

air cool

represents the air cut and coolant pump power consumption in
Watt respectively.t, t,, t, and t,, represents the cutting, basic, ready and air cut state time

in s respectively. k is the SCE in kd/cm®, m is the coefficient, N is the spindle speed in
rev/min and v is the MRR in cm®/s. Edem and Mativenga (2017) predicted total energy
consumption by modelling the energy demand of different CNC machine tool numerical

codes, as shown in below Eq. (17).

tc
Etotal = Eb + Ptcttc |:INT (?j +1:| + I:)spindle_runtspindle_run + Pctc + Pfeedtfeed + Pcooltcool (17)

Where Pfeed = I:)601/(502/603_ feed + I:)GOO_feed(approach) + PGOO_feed(retract) ' Edem and Matlvenga

(2016) incorporated the weight of the feed drive and workpiece into the energy
consumption model and improved the practical applicability of the energy model in actual

machining. The proposed model is shown in Eq. (18).
By =Py xty (@xW, +bxW )t +Fy xv, xt, (18)

Where, P, is idle power consumption in Watt, W is total weight including weight of the

feed axis, vice and workpiece, P; and P, are power consumption of x and y feed axis
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respectively in Watt, F, and v, is feed force and feed axes velocity respectively, t, and
t. are the total cycle time and actual cutting time respectively. Kim et al. (2015) studied
and analysed machine tool energy consumption by monitoring six machine tools and

observed that cutting energy can be separated from total energy consumption. He divided

the total power consumption into idle (P, ), coolant (P, ), spindle (Py;.,. ), feed (P, )

and cutting (P, ) energy consumption and proposed the following model:

ut

Pae = Cy
Pooot = Cie
Potat = Paie + Peoot + Pspindle T Preea + Pt Pegingle = Co, RPM +C, (19)
Prees = Co, -Feedrate +C,
P =Co, MRR+C,_
Where C,, C,, C, C, andC, are the coefficients. Lv et al. (2016) investigated the

energy consumption of seven machine tools including CNC lathes and milling. He
developed parametric models for the non-cutting status: standby, coolant spraying, spindle
rotation and feed axes and cutting status, as shown in Eq. (20). He reported that the cutting

power is almost independent of the machine tool.

Ps = Csln + Cso

P =Cuf +Cy, fr2
Power models = (20)

— X Yryhr
I:)C_turn - CT apT f v

_ X YmysNv AU
I:)C_mill - CM apM fZMV MaeM

Where P, and P, represent the spindle and feed power consumption respectively in Watt.

and P

c_mill

C,, C,, C,, and C,, are the coefficients. P,

C_turn

are the turning and milling

power consumption respectively in Watt. a_ is the depth of cut in mm, f_is feed rate in
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mm/rev., v is the cutting speed m/min and n is the spindle speed in rev/min. C,, x, y;
and n, are coefficients of the turning power model and ,C, , x,,, y, . h, and u,, are

coefficients of the milling power model.

Some researchers (Diaz et al., 2010; Huang et al., 2016; Liu et al., 2015; Mori et al.,
2011) (Lv et al., 2017) investigated machine tools' transient states to enhance the energy
consumption models' accuracy. The transient state is the process of transitioning between
two steady states (Jia et al., 2017). Diaz et al. (2010) was one of the earliest studies to look
into the transient state of machine tools (acceleration of the spindle and feed axis) and
proposed a total energy consumption (E,,,, ) model for machining tools, as shown in Eq.

(21). He includes the fixed energy consumption ( E_.., ), transient state energy consumption

(Eyay ) @nd steady-state energy consumption ( E,,q, )-

Etotal = Econst + +Etram + Esteady + Ecut (21)

Where E,, =kd .a,.z°.f".n°, inwhich a_ isthe width of cut, z is the number of flutes,

b and k are fitting coefficients. Avram and Xirouchakis (2011) incorporated the spindle
and feed axis acceleration and proposed the equation below for the one pass of the milling

process. He estimated energy consumption using torque and angular velocity.

= j dt + jPSYdt+ _[Pdet+ j ,undt+TRdt (22)

t f 4

P

aYy

is Y axes feed acceleration power in Watt, P,, is Y axes feed study state power in
Watt, P,, is Y axes power during deceleration in Watt, P, is spindle power to cut material

in Watt, P is spindle idle steady-state power in Watt. Mori et al. (2011) proposed a total
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power consumption model that quantified different power consumption related to basic

operations, material-cutting and spindle’s steady and transient rotation shown as:

P

total

:Plx(T1+T2)+ P,xT, + P, xT, (23)

Where P

1!

P, and P, are the constant, cutting and feeding power consumption in Watt
respectively; T,, T, and T, are the cycle time of the non-cutting state, cutting state, position

the work and accelerate the spindle respectively. Liu et al. (2015) investigated the energy
consumption of the main driving system of a machine tool and developed the energy
consumption model as shown in Eq. (24). He segregated the machining process into three
periods: startup, idle and cutting. He developed empirical models for the energy
consumption of the startup and idle periods as a function of spindle speed and used a cutting

parameter-based exponential model for the cutting power.

2
Qs Qu Qc tcj ((XZZ] XPC )+

Eu :jz_;(;(lxn?+)(2xnj +Zg)+jz_;,(Puj Xtuj)+§ J.ov ((1+Oclj)><P)+P

c uj

dt| (24)

Where n is the spindle speed in rpm; P and t power consumption and time; subscript S,

U and C denote startup, unload (idle) and cutting, respectively; Q, Q, and Q, represents
the number of startup periods, idle periods, and cutting periods respectively; «, and «, are

the constants.

Researchers (Huang et al., 2016; Lv et al., 2017) highlight that spindle acceleration is
one of machine tools' major energy-intensive transient states. Huang et al. (2016) analyzed
the power characteristics of one primary energy-intensive machine tool module, spindle

acceleration, and developed an energy consumption model as shown in Eq. (25). He
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categorized the spindle acceleration power profile into three curves: linear, thermite and

cubical.

S|

Eqpinate, =1 Pay, At +Py, dt+[P, dt (25)

St3p,

Where B, , P, and R, arethe power corresponding to the linear curve, thermite curve

and cubic curve function respectively. Lv et al. (2017) investigated the spindle acceleration
power characteristics and proposed an inertial-based energy prediction model for the

spindle acceleration energy consumption ( E, ), as shown below.

tsa
Egy = |, Puadlt (26)

Where P, = P, x(n)+Ts, xw,,. P, and P, represents the spindle acceleration and
spindle rotation power in Watt. t,, represent the time period of spindle acceleration in s.

T,, is the acceleration torque in N-m, w,, is the angular speed of the spindle motor in rad/s.

Energy efficiency research on machining systems has received attention to minimise
energy consumption and increase energy efficiency. Liu et al. (2017) established an energy

efficiency (7..) evaluation model for the machine tool using the machine tool's primary

data, spindle speed, and input power data, as presented in Eq (27).

\/cfsf (s, +1)° +4C,8,2 (C;S; +1)(Pugs — Prcw ) —C:5 (68 +1)

enc,i ~ 'enc,u

Nee = 27

2¢,,Ct (¢5 +1)

Where P and P

cne,u cne,i

are the idle power consumption and input power consumption in
Watt respectively, c, and s are the basic coefficient of the motor, ¢, and s; are the basic

coefficient of frequency inverter; c, and s, are the basic coefficient of the machine tool.
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Xie et al. (2021) proposed a torque and angular velocity-based energy efficiency
monitoring methodology for machine tools, as shown in Eq. (28). He split the energy
consumption of machine tools into idle and cutting modules to develop the energy

efficiency model.

=g W) xw, + g (W) + A (W), — 1o (W) x w,
Tee 2P, < F'(w,)

(28)

Where P, is the input power of the machine tool. w; is the angular velocity of the spindle.

I, (w,) is the idle current of spindle motor at the given angular velocity. I  is the

S

equivalent current of the spindle system. g'(w,) and f (w,) represent the coefficients of

the current increment model of the machine tool in the cutting state. Da Costa et al. (2022)
highlighted the significance of the conventional lathe machine tools in the micro-scale
manufacturing industries and proposed an energy efficiency model:

ﬁ (29)

Tee = P,

Where P. and Lg,are the input electric power and idle loss power respectively.

Some researchers adopted specific approaches to model the energy consumption of
machine tools, such as treating machine tools as thermodynamic systems (Imani Asrai et
al., 2018) and Therblig-based modelling (Lv et al., 2014). Imani Asrai et al. (2018)
evaluated the energy consumption of a milling process by considering the machine tool as
a thermodynamic system and developed the energy consumption model as:

C+(A xf+B xf?+D;xf°)+(Axs+B xs?+C xs*+D, xs")+
P

total

30
(E+F xf+F xs+G,xs”+G, x f*)x(MRR))+(K x(MRR?)) .

29|Page



Literature Review

Where f and S are feed rate and spindle speed respectively; A, ~D,, A~D, E, F,,

F,, G, and G, are the constants. Lv et al. (2014) developed a Therblig-based energy

model to evaluate the total power demand of a machine tool, as shown in Eq. (31). He used
parametric-base empirical models to estimate the power consumption related to different

Therbligs.

P

total

=P, +R +FRpy +Fg +Fp + P + PR (31)

cut

Where Py, P, Py s Pirs Pp, P @and P, are the power of therblig of standby operation,

lightening, coolant spraying, spindle rotation, feed, tool selection, and cutting. He et al.
(2016) established parametric process models for the machine tool's different movements
(spindle rotation, feed drive motions and material cutting) and then integrated them with
standby and coolant power consumption to evaluate the total energy consumption of the
machine tool. Afterwards, the developed model was coupled with CAM file software to
predict energy consumption for machining a part. Rief et al. (2017) classified machining
energy consumption into four categories: basic energy demand of the machine tool, energy
required in material removal (cutting energy), energy consumption in coolant systems, and

energy required in tool manufacturing and proposed total energy consumption model.

In recent years, studies (Luan et al., 2019; Zhou et al., 2022) have focused on machine
tools' non-cutting status energy consumption. Luan et al. (2019) focused on the non-cutting
status energy consumption of machine tools, including spindle power consumption and

feed power (x,y,z-up and z-down) and proposed the following parametric models:
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2
Ch+C,n°+C, (0<n<n)
2
b _ Cn+C,n°+C, (n,<n<n,)
SR T
2
Cn+Cn°+C, (n_,<n<n.)
2 3 n
P, =C,v, +b, Vi —b, Vi +.....+ b V;

2 3 n
P P; =C,v; +b,vi —b, v +.....+ DbV}

non-cutting =

(32)
P; =C,v; +b,vi —b, Vi +.....+b v}

2 3
P Cz—uprz—up + blz—upvfz—up _bZZ—uprz—up +
z-up — b n
""" + nz—upvfz—up
C, oV +B, oV doun — D V2 o +
z—down * fz—down z—down " fz—down 2z—down " fz—down
Pz—down =
b vl
ot nz—down * fz—down

Where n is the spindle speed, v, is the feed rate and C represents the

x/y/z—upand/z—down
corresponding fitting coefficient. Zhou et al. (2022) investigated machine tool non-cutting
power consumption: standby and auxiliary power. He presented empirical models for
machine tools' weak and strong current demands. The models for the standby power

consumption (P, ) are shown in Eq. (33).

tan dby

P I:)control + Pscreen + Pfan (Weak current |00p) (33)
sundy I:::ontrol + I:)screen + Pfan + I:)Iub +Pspcoo| (Strong current |00p)
Where P o Pareens Prans Pup @nd Py, represents the power consumed by the control

system, display system, fan device, basic lubrication device and the spindle forced cooling

device respectively. For auxiliary power (P, ):

Paux = I:)Iight Il + Pspray_cool I2 + I:?[ool_chamge I3 + I:)chip_removel + Pspray_airls (34)
Where I:)Iight ! Pspray_cool’ Ptool_change’ I?:hip_remove and I:)spray_air represents the pOWGr Of Ilghtmg

device, the cutting fluid injection device, the tool changing device, the chip removal device,

and the blowing cleaning or blowing cooling device respectively; i ~i; = 0or1(0

represents turn off status of the device; 1 represent turn on status of the device)
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Furthermore, several researchers (Bhinge et al., 2017; Brillinger et al., 2021; Garg et
al., 2016, 2015; Pan et al., 2021) used artificial intelligence-based algorithms to assess the
energy consumption of machine tools. Garg et al. (2016) applied soft computing
approaches such as genetic programming (GP), support vector regression (SVR), and
Multi-adaptive regression splines (MARS) to develop tool life and power consumption
models. He evaluated the model's performance using various statistical indicators and
found that the GP outperformed SVR and MARS. In another study. In another work, Garg
et al. (2015) used complexity-based multi-gene GP to model the energy consumption of the
milling process. Garg and Lam (2015) proposed an ensemble-based-Multi Gene GP (EN-
MGGP) to model the surface roughness, tool life and power consumption. Literature shows
that an increasing number of authors employed soft computing for modelling in different
engineering applications (Abd and Abd, 2017; Garg et al., 2016, 2014; Gupta, 2010; Igbal
and Dar, 2011; Liman et al., 2021; Naseri et al., 2017; Shafiullah et al., 2019; Su et al.,

2021; Tseng et al., 2016; Vukman et al., 2020; Zhang and Zhang, 2016).

Pan et al. (2021) used a generative adversarial imputation networks-based data-driven

approach to model the energy consumption of the machine tool as:

Egw = [(Py +P, +P

cut

+P,)dt (35)

total

Where P

st

R P

cut

and P, is the power of standby power, unload power, cutting power,

and additional loss; t is the cutting time. Bhinge et al. (2017) developed a generalized

energy prediction model for a machine tool based on Gaussian process regression, as shown

in Eq. (36).
qu{ > }yq(XiTDq)xli (36)
(xi,yi)qu
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Where E, is the total energy consumption, x' and y' are the input and output features
respectively, |' is the length of the cut, ¢ is the type of machining process and , (x‘ T Dq)

is the mean energy density function. Brillinger et al. (2021) developed a machine learning-

based energy prediction model for a CNC machining process as follows:

Etotal = ZZP'J At (37)

i=1 j=1
Where E,q is the total energy consumption, P, is the power consumption, N and m
are the numerical control instruction and consecutive measurements results respectively.

Liu et al. (2020) developed a dynamic energy consumption model for the feed axes of

machine tools using the bond graph approach, as shown in Eq. (38).

E(t)=] 5% P (38)

m, x I
Zhang et al. (2022) employed a similar approach to model spindle energy consumption, as

shown below.

E(t)= jw.dt (39)

0 |8
where E(t) is the system (i.e. feed axis and spindle) energy consumption in J. Se
represent the effort source. p,, and p, represents the generalized momentum of the feed
axis and spindle respectively, m, is the conversion constant of the ball screw nut pair. 1,

and |, represents the inertial elements of the feed axis and spindle respectively.

A summary of energy consumption evaluation models of machine tools, along with

their strengths and limitations, are presented in Table 2.1.
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Table 2.1 A summary of machine tool energy consumption evaluation models

Author (s) Model Strength (s) Limitation (s)
Dautzenberg £ EAE - (oot tan(¢+y0)”*l a x f xVC)+ . One of the primary models Only evaluates the
etal. (1981) ot P s J3 P e to evaluate the material energy consumption of
Where E,,, E, and E, represents the cutting energy, cutting energy of removal energy material removal
primary shear zone and cutting energy of secondary shear zone. consumption (tooltip).
7,0,7,,n,8,, f,V.and F, represents the shear stress, shear angle, strain
hardening exponent, width of cut, feed rate, cutting velocity and friction
force respectively
Bayoumi et SCE. _ K (|: +GK o ) . K %Ky % COSE, ¥ 1, Investigated the influence Only evaluates the
al. (1994) eff sinég, f (1—005%) of cutting speed, feed rate specific cutting energy
and flank wear land width of material removal
Where SCE represents the effective SCE. nSCE. (tooltip).
Kie Kot » Koot » Kot » o T.6,,1¢ 0, represents the effective average

pressure, effective average friction, effective flank pressure, effective
flank friction, cutting force, feed rate, cutting helix angle, width of the
flank wear land and radial engagement angle respectively
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Munoz and
Sheng (1995)

Shao et al.
(2004)

E

I cos( B — y)x cosn, x
cosA +cos(p+ B —y)

cutting =

|5=Z><n><D><ap><

K,VB, Z, i, ¢ and y represents the axial depth of cut in mm, chip

cos(p+B—7)

Kxh™xf,

uxH X\EX(//

( rx MRV
X

sing x cosA

_ ><(cos((pin )-

cos (@, +v

|

Where, g, 7, n,, 4, ¢ represents the normal friction angle, normal

rake angle, shear flow angle, oblique angle and shear plane angles in

radian respectively. 7 represent the workpiece flow stress in N/mm?

J* |

2

Where P is the average power consumption in Watt; a,, ¢, f,,h, H,

thickness constants in mm, feed rate in mm/tooth, chip thickness in mm,

Incorporates  lubrication
and tool wear effects and
the model applicable to
both  orthogonal and

oblique machining

Considered the effects of
tool wear and cutting
environment on the tooltip

power consumption

Only evaluates the
energy consumption of
material removal

(tooltip).

Only evaluates the

tooltip power

consumption
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HA et al.
(2004)

Pawade et al.
(2009)

Wang et al.
(2016)

Brinell hardness in N/mm?, cutting force constants in MN/m, average

approach in rad and immersion angle in rad

SEC=E, +E, +E,

E,, E, and E, are specific energy for plastic deformation in primary

zone, in the secondary shear zone and specific energy for debonding the

particle from the matrix

Eq = E, +Eypo = —

. Fs,COSEV,

splo

n+1

Where 6, £, n, Fg, a,, f,V, and V, are flow stress, shearing strain,

strain hardening exponent, ploughing force component, width of cut,

ae fVC

flank wear in mm, number of teeth, coefficient of friction, angle of

feed, cutting velocity and shear velocity respectively

E=E,+E; +E

7, x A xV_ xsin B

pxV?%xsin® o

= I;rx(y,y,T)dy+

V is the cutting speed, V. is the chip sliding speed along the tool rake

face, V, is the chip shearing speed along the primary deformation zone,

8. xa, xCOS(p+ /3~ 7,)

2xcos’ (p—7,)

Evaluates the tooltip power
consumption of orthogonal
cutting of a metal matrix

composite material

Evaluates the specific

shearing energy
consumption of material

removal

Only evaluates the
power consumption of
material removal

(tooltip).

Only evaluates the

specific shearing
energy consumption of

the tooltip interface

Tooltip material

removal energy
consumption modelled

only
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Gutowski et
al. (2006)

Kara and Li

(2011)

a, is the undeformed chip thickness, a, is the cutting width parallel to

the cutting edge, Z average shear stress, S is the width of the adiabatic

shear band, L is the upper boundary displacement of the adiabatic shear

band, « is the tool rake angle, ¢ is the shear angle between the shear
plane and shear strain £ is the friction angle

P=P +kxMRR

Where P and P are the total power and idle power in kW respectively,

and k is a constant in kJ/cm?®

Cl

SEC=C, +
MRR

An exergy-based empirical
model between energy
consumption and MRR,;
one of the primary models
to evaluate the total energy
consumption of  the

machine tool

An empirical model to

evaluate  the energy

Different combinations
can yield similar MRR;
thus, the model cannot

incorporate the effect of
changes in the
combination of

parameters on power
consumption.  Spindle
acceleration power,
feed axis power, and

VPC were not

considered
Because different
combinations of
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Diaz et al.
(2010)

Avram and
Xirouchakis
(2011)

Where SEC is specific energy consumption, C, and C, are machine consumption to take away

tool-specific coefficients.

E[ = ECOnSt ++E

Where E,, =kd,.a,.z°.f".n°, inwhich a_ is the width of cut, z is

the number of flutes, b and k are fitting coefficients.

E per pass = TPaY dt + TPSY dt + ]S.PdY dt + TPr

t

trant

+E

4

steady

+ ECUt

t

f

un

dt+ ]S.Pcdt

4

a unit volume of part
material;  provides a
combined indicator of
energy consumption and

productivity i.e. SEC

One of the earliest studies
to look into the transient
state of machine tools
(acceleration of the spindle
and feed axis)

Investigated and
considered transient state

energy consumption

parameters can produce
equivalent MRR, the
model is unable to
account for the
influence of changing
the combination of
parameters on power.
The spindle
acceleration power,
feed axis power, and
VPC machining are not

considered.
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P

v 18 Y axes feed acceleration power in Watt, P, is 'Y axes feed

study state power in Watt, P,, is Y axes power during deceleration in
Watt, P, is spindle power to cut material in Watt, P, is spindle idle

run

steady-state power in Watt

Mori et al. P.=P ><(T1 +T, ) +P, xT, + P, xT, Evaluate total energy VPC machining not
2011 ) o consumption of  the considered
(201) Where B, is the total power consumption in Watt, B, P, and P, are P

machine tool;

the constant, cutting and feeding power consumption respectively; T, ) )
g gp P P Yo 11 synchronized spindle

T, and T, are th le time of the non-cuttin in . )
, and T are the cycle time of the non-cutting state, cutting state, acceleration/deceleration

ition th rk an lerate the spindle r ivel . .
position the work and accelerate the spindle respectively with the feed system during
rapid traverse to reduce
power consumption
Guo etal. SEC = ++(c2 XV 5 xdE x DF )
(2012) (ve x . xd), incorporating the effect of feed axis power, and

A model capable of Spindle acceleration,

Where c;~ce, D,, f and v, are fitting coefficients, part diameter inmm, spindle  speed, cutting VPC machining not
feed rate in mm/rev, and cutting velocity in m/min respectively parameters, and  part considered
diameter on power
consumption
He et al. Eviar = Epingie + Etees + Eiool + Ecool + Eix Evaluate total energy Spindle acceleration
(2012) consumption based upon and VPC machining not
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Where E,, is the total energy consumption; E; ., Eey Eor Eq the €nergy demand of considered

respective Numeric

and E, are the energy consumption of spindle, feed table, tool

fix
: : . _ ) Control  execution  of
indexing, coolant spray, and the basic energy consumption respectively.

machine tool
Lietal. SEC -k + k,xn N k, The idle power was divided Different combinations
(2013) ° MRR  MRR into standby power and can yield similar MRR;

Where N is spindle rotation per minute, Kk, is machining process- spindle rotation power and thus, the model cannot

specific constant, k, = Py, +b, k; and b are specific coefficients of Provided insight into the incorporate the effect of

effect of n on the SEC changes in the

the spindle motor; P,

wandoy 1S Standby power consumption

combination of
parameters on power
consumption.  Spindle
acceleration power,
feed axis power, and

VPC machining not

considered
Balogun and t (Balogun and Mativenga, Spindle  acceleration
_ Ew = Ep +E, + Pt | INT| = |+1 |+ Pt +(MN +C+P, ., +kv)t, _
Mativenga T 2013)Introduced a new energy  consumption
(2013) Where E, and E, represents the basic state and ready state energy state called ‘Ready state’ not considered

. . between the ‘Basic (idle)
consumption respectively. P, and P.

cool

represents the air cut and
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Lv et al.
(2014)

Yoon et al.
(2014)

Balogun et al.
(2015)

coolant pump power consumption in Watt respectively.t, t,, t, and

t,, represents the cutting, basic, ready and air cut state time in s

respectively. k is the SCE in kJ/cm®, m is the coefficient, N is the
spindle speed in rev/min and v is the MRR in cm®/s
P

total

=R, +P +FRpy + P + P + B +F

cut

Where P, is total power consumption; Py, P, Py, Py Py P

and P

cut

coolant spraying, spindle rotation, feed, tool selection, and cutting

Etotal :I{ fl(n’ f,ap)+(f2,n, f,ap)X\E(t)}dt
Where f; (n, f ,ap) is a second order function of process parameters:

spindle speed (n), feed rate (f) and depth of cut (ap) and \E(t) is the

function of tool flank wear

= (Pbasic X tbasic ) + ( Pready X tready ) + (k X Q X tcutting )

and P

ready

E

total

Where E,, is total energy consumption; B,

asic

are the power of therblig of standby operation, lightening,

are the power

state’ and ‘Cutting state’ of

a machine tool.

Therblig-based total power
evaluation of machine tool,;
provided insights of energy
consumption of different
operations during

machining

Capable to encompasses
the influence of process
parameters and tool wear
influence on the machine

tool’s energy consumption

Evaluate total energy

consumption of  the
Provided

machine tool;

Spindle  acceleration,
feed axis power, and
VPC machining are not

considered

The spindle
acceleration and VPC
machining are not

taken into account

The spindle
acceleration, feed axis
power, and VPC
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Liu et al.
(2015)

total —

Q

Z(;(lxnf + 2, XN, +;(3)+Z(Puj xtuj)+

j=1

T2 (e @2 (102 xR ) 2, ot

o, are the constants

consumption in the basic and ready state respectively; t

are the time of ready and cutting state; k is the specific cutting energy
coefficient (J/mm?®) and Q is the MRR (mm®/s)

E.w is the total energy; N is the spindle speed in rpm; P and t power
consumption and time; subscript S, U and C denote startup, unload

(idle) and cutting, respectively; Q,, Q, and Q, denotes the number of

startup periods, idle periods, and cutting periods respectively; ¢, and

insight into the energy
consumption of machine
tools by introducing an
intermediate 'ready state’

between the basic and

cutting states of the
machine tool
Modelled the energy

consumption for the main

drive  system  (spindle
system) of the machine
tool; incorporated spindle

startup in the model

machining not taken

into account.

Modelled only the
energy consumption of
the spindle system and
unable to account the
VPC machining
process energy

consumption
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Kim et al.
(2015)

Lv et al.
(2016)

Edem and
Mativenga
(2016)

I:)idle = C1i
F)Cool = C1c
I:)Total = F)Idle + I:>Cool + F)Spindle + PFeed + Pcut; PSPimﬂe = COS -RPM + C]s

Preed = Co, -Feedrate +C,
P.. =Co MRR+C,_

cut

Where C, , C, , C, C, and C, are the coefficients

P

total

=P +P +P

cut

Where P, is the total power consumption, P,, P,and P, are the

cut
power consumption of spindle rotation, feed axis, and cutting

respectively

By = Py xt,, (axW, +bxW t, +F, xv, xt,
Where, P, is idle power consumption in Watt, W is total weight
including weight of the feed axis, vice and workpiece, P; and va are

power consumption of x and y feed axis respectively, F, and v, is

Monitored six different
machine  tools energy
consumption in different
states and observed that
cutting energy can be
separated from total energy
consumption

Evaluate total  power
consumption of machine
tool and provide insights
into the energy
consumption in different
motions of the machine
tool

Incorporated the weight of
the feed drive and
workpiece into the energy

consumption model

Does not consider
spindle  acceleration
and VPC machining

energy consumption

Spindle  acceleration
and VPC machining not
considered

Spindle  acceleration
energy  consumption

not considered
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Huang et al.

(2016)

Lv et al.
(2017)

Liu et al.
(2017)

feed force and feed axes velocity respectively, t., and t_ are the total

cycle time and actual cutting time respectively

E e, =1 Py, 0t + [Py, dt+1P; dt

Where Pstlns, PSt2ns

sty

and P,; are the power corresponding to the linear

curve, thermite curve, and cubic curve function respectively.

Eqy = [ Pt where Py, = Py o(n) + T W,

P, and P represents the spindle acceleration and spindle rotation

power in Watt. t;, represent the time period of spindle acceleration in s.

T

S

spindle motor in rad/s.

. 1S the acceleration torque in N-mw,, is the angular speed of the

\/cfsf (cs +1)°

+46, 5,7 (€S +1)(Pocs — Pacw ) — G5 (G5 +1)

n. = enci — Tencu
= 2,5, (S +1)
Where P, , and P, ; is the idle power consumption and input power

cosnumption in Watt respectively, ¢, and s are basic coefficient of

Modelled

acceleration

spindle
energy
consumption and provided
insights on its power
characteristics

Investigated the spindle
acceleration power
characteristics and
proposed an inertial-based

energy consumption model

Established an energy
efficiency model for the
machine tool using the

machine tool's primary
data, spindle speed, and

input power data

Modelled the energy

consumption of only

one component
(spindle) of the
machine tool.

Only one component
(the spindle) of the
machine tool's energy

consumption was
modelled.

Spindle  acceleration
and VPC  energy

consumption are not

considered
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Zhou et al.
(2017)

Edem and
Mativenga
(2017)

Bhinge et al.

(2017)

the motor, ¢, and s, are the basic coefficient of frequency inverter;

c, and s, are the basic coefficient of the machine tool.

Cl' C'an C;xnc"‘><Vfciv5><df'6><af7
= + +
" MRR MRR MRR

Where ¢, ~c,, v, d. and a, are the fitting coefficients, feed rate in

mm/min, cutting depth in mm, and the width of cut in mm respectively

t
_ Eb + Ptcttc |:INT [T_Cj +1j| + F)spindle_runtspindle_run +

total

Pt, + Pyt

eed " fee

d + Poal

cool “cool

Where Pfeed = G01/G02/G03_ feed + PGOO_feed(approach) + PGOO_feed(retract)

E, = z ,uq(XiTDq)xli
{(xi,yi)qu}

Where Ej is the total energy consumption, x' and y' are the input and
output features respectively, I is the length of the cut, q is the type of

machining process and g, (xi T Dq) is the mean energy density function

A model

incorporating the effect of

capable of
cutting parameters and
spindle speed on power
consumption

Code
modelling of CNC machine

Numerical based

tools

An energy prediction
model based on machine

learning.

Spindle  acceleration,
feed axis power, and
VPC machining are not
considered
Spindle  acceleration
energy consumption is

not considered

Model  development
requires high-speed
power meters and

complex computational

calculations.
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Imani Asrai
et al. (2018)

Luan et al.
(2019)

_C+(Af x f+B, x f>+D, ><f3)+
(A xs+B, xs* +C, xs*+ D, xs" )+

total —

(Kx(MRRz))

Where f and S are feed rate and spindle speed respectively; A, ~ D,

A ~D, E, F, F, G, and G; are the constants

C,n+C,n* +C,
C,n+C,n° +C,

O<n<n)

P - (n,<n<n,)

2
Cn+Cn°+C, (n.,<n<n.)
— 2 3 n
P, =CV, +b,vi —b, v{ +.....+D V]

— 2 3 n
Pi =C,v; +b Vi —b, Vi +.....+Db, Vi

2 3
P = C:z—upvfz—up + blz—upvfz—up o bZZ—uprz—up toont b

z-up nz—u

2 3
Cz—downvfz—down + blz—downvfz—down - b22—downvfz—down

n
+bnz—downvfz—down

Where n is the spindle speed, v, is the feed rate and C

P =

z—down

represents the corresponding fitting coefficient

(E+F xf+F x5+G, xs*+G, x {2)x(MRR))+

n
prz—up

+.oo

x/ylz—upand/z—down

A mechanistic model by
considering machine tools
as a thermodynamic
system. Incorporated the
impact of the machining
parameters on the power

consumption

Focused on the non-cutting
status energy consumption

of machine tools

Spindle  acceleration
and VPC machining not

considered

Non-cutting condition
energy  consumption
was only investigated,
The

acceleration

spindle
energy
consumption was not
considered. Unable to
evaluate energy
consumption for a part

machining
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Liu et al.
(2020)

Pan et al.
(2021)

Xie et al.
(2021)

Brillinger et
al. (2021)

Se
E(t) :fml;lpmdt where E(t) is the system energy consumption in
X X 16

W . Sg and p,, are the effort source and comprehensive momentum of

the bond diagram model, m_ is the conversion constant of ball screw

X

nut pair and 1,4 is Bond graph element of worktable mass

Egw = [(P +P, +P

cut

+P, )dt

total

Where E,, is the total energy consumption; P.

st?

P, P

cut

and P, is the

power of standby power, unload power, cutting power, and additional

loss; t is the cutting time.

g W) xw, g (W) + 4T () x (1, — o (w,)) x w,
o 2P x f'(w,)

Where | is equivalent current of the spindle system, |, is equivalent

idle current of the spindle motor,

S

is the angular velocity of the

spindle motor, P, is the input power of machine tool, f'(e,) and

in

g’(a)s) are representing the coefficients

Etotal = ZZPIJ At

i=1 j=1

A bond graph-based energy
consumption evaluation of
tool

machine dynamic

features is proposed.

A data-driven artificial
intelligence model that can
compensate for missing
data and estimate machine

tool energy consumption.

Torque and  angular
velocity-based energy
efficiency monitoring

methodology for machine

tools

An

model based on machine

energy  prediction

Modelled the energy
consumption of only
one component (feed
axis) of the machine

tool.

A complex and time-

consuming method

Only idle state and
cutting state are
considered for

evaluating the energy

consumption

High-sampling data and

complicated
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Where Eiyiq is the total energy consumption, B; is the power learning techniques computational

consumption, N and M are the numerical control instruction and calculations are

consecutive measurements results respectively required to develop the
model. Unable to
incorporate the power
characteristics of
spindle  acceleration,

and VPC machining

Da Costa et P. — L, ) ) ) Developed energy Power characteristics
Nee = ————, Where P; and L, are the input electric power and idle o

al. (2022) Pe efficiency  model  for curves for each gear

loss power respectively conventional lathe and combination of the

highlighted their headstock are required

significance in the micro- to calculate the EE.

scale manufacturing Spindle  acceleration

industries and the VPC machining

process are not

considered
Zhou et al. o [ Peantrot * Prcreen + Pran (weak current loop)  The non-cutting status Unable to predict the
(2022) sy P 4P + P+ Py Py ool (strong current loop) energy consumption of energy consumption for
- . . . - machine tools was studied part machinin
Paux = I:)Iight Il + I:)spray_cool I2 + I:>tool_change IS + I:)chip_remove I4 + Pspray_airls p g
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Py P P,

standby * ' control ? screen !

P

fan !

P, and P

oo TEPTESENtS the power  in detail
consumed by the standby, control system, display system, fan device,
basic lubrication device and the spindle forced cooling device

R P P, P and P,

light * " spray _cool * " tool _change ! " chip_remove spray _air

respectively. P,

ux ?
represents the power consumption of auxiliary, lighting device, the
cutting fluid injection device, the tool changing device, the chip removal

device, and the blowing cleaning or blowing cooling device respectively

in Watt.
Alswat and Easic + Ereacy _state + Ecuting + Ecompressor + The model encompasses VPC machining not
Mativenga ol (Em“ng + Ecrips T Ecuting_ rria + ELubricaﬁon_O”J the machining process's considered
(2022) Where Eg.» Ereasy e Ecompresor @0 Eging @re the direct energy  direct and indirect

consumptions and represents the basic, ready state, compressor and (émbodied) energy

cutting energy consumption respectively. Ey o, Ecuns Eouting pug 0N oUMmPUON.

and E, icaion o are the embodied energy consumptions and represents

the energy consumed in the cutting tools, chips recycling, cutting fluid

and lubricant oil production respectively.
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2.2.2. Carbon emissions modelling

Due to growing environmental issues and stringent carbon emission regulations imposed
throughout the globe, low carbon emission has become one of the essential requirements of
manufacturing industries. Literature reveals that a growing number of other authors are
focusing on assessing the CEM of machining processes. Li et al. (2015) presented an analytical
approach for calculating the CEM produced by a CNC-based machining process. This study
investigated the contribution of the electrical energy, cutting fluid, cutting tool wear, material
utilization and chip disposal to the overall CEM of the machining process. Zhou et al. (2018a)
developed a cutting power model considering the tool wear to calculate the carbon emission of
a machining process, and the scope of this research is confined to assessing carbon emissions
from electrical energy use only. Zhou et al. (2018b) developed a carbon emission-Process Bill
of Material based approach to quantify CEM for a part machining process. They found that
process parameters such as cutting speed, feed rate, and depth of cut significantly impact the
CEM of a machining process. Deng et al. (2020) established a carbon efficiency index to
evaluate the CEM of machining processes. The carbon efficiency index was determined as the
ratio of CEM from material removal to CEM from the entire machining process. Sihag and
Sangwan (2019) presented a Therblig-based method for reducing CEM during machining. They

developed a value stream map for evaluating the machining process energy and CEM.

Although the existing energy consumption and carbon emission models reported in Section
2.1.1 and 2.1.2 are significant but still lack to accurately evaluate the energy consumption and

associated CEM of a CNC-based machining process for industrial applications.

2.3. Optimization of Process Parameters for Various Responses
Optimization is one of the practical approaches to obtaining the optimum process parameters

for the targeted response. Numerous studies have identified process parameter optimization as
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a realistic approach for significantly improving machining performance (Sihag and Sangwan,
2020). Previous research has shown that an appropriate selection of the process parameters can
result in energy consumption and associated carbon emission reduction of up to 40% (Zhao et
al., 2021). Multi-objective optimization emerged as a practical approach for setting optimal
cutting parameters where multiple responses need to be optimized simultaneously (Bagaber
and Yusoff, 2017). Previously, process parameters were optimised for cost, productivity, and
product quality. However, in recent years, due to increasing GHG emissions, energy-related
performance responses such as power consumption, energy consumption, and associated CEM
responses have been optimised for the machining process (Camposeco-Negrete, 2015) (Nguyen

et al., 2020), and the significant studies are discussed below.

Hanafi et al. (2012) optimized the cutting parameters to minimize surface roughness and
cutting power for turning a composite material using carbide inserts. He achieved multi-
objective optimization by Grey relational analysis (GRA) coupled with the Taguchi technique.
He assigned equal weights to the responses: surface roughness and cutting power. Lu et al.
(2009) optimized the cutting parameters to minimize tool wear and maximize the material
removal rate (MRR) for end milling. He applied GRA for multi-objective optimization and
assigned the weights of the responses based on the Principal Component Analysis (PCA).
Bhushan (2013) developed the Response Surface Methodology (RSM) based models and
optimized the cutting parameters to minimize power consumption and maximize tool life for
turning an aluminium-based composite material using carbide inserts. He assigned random
weights to responses in the multi-objective optimization. Yan and Li (2013) optimized the
surface roughness, MRR, and cutting energy consumption using GRA coupled with RSM. He
proposed a new method based on grey relational coefficients to decide the weights of the
responses. Wang et al. (2014) developed a multi-objective optimization model for process cost,

energy consumption and surface roughness for a turning process using a non-segregated genetic
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algorithm and reported that the cutting parameters significantly influenced the energy
consumption of the turning process. He did not report the response weight assigning criteria.
Kant and Sangwan (2014) developed a multi-objective optimization model for power
consumption and surface roughness using GRA coupled with RSM. He used PCA to decide the
weight of the responses and found that feed rate was the most influencing cutting parameter.
Gok (2015) compared the results of two multi-objective optimization techniques: Fuzzy-
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and GRA, for
optimizing surface roughness and cutting forces during the turning process. He applied equal
weights to both responses, and both techniques produced similar results. Mia and Dhar (2017)
used the Taguchi technique to optimize surface roughness and cutting temperature while
considering hardness as an input parameter. The optimization results revealed that hardness
was both responses’ most influential input parameter. Deng et al. (2017) optimized cutting-
specific energy consumption and processing time to reduce the energy consumption of the
milling process. He developed a multi-objective optimization model using a quantum genetic
algorithm and assigned equal weights to the responses. Bagaber and Yusoff (2017) developed
an RSM-based multi-objective optimization model for responses: power consumption, surface
roughness and tool wear during turning stainless steel in a dry environment using uncoated
carbide inserts, while assigning equal weights to each response. In another study, Bagaber and
Yusoff (2018) studied the turning of Stainless Steel grade 316 using carbon boron nitride
cutting edges under a dry cutting environment. He optimized the cutting parameters for power
consumption and surface quality via multi-objective optimization using RSM, in which equal
weights were assigned to each response. Mia (2018) developed a RSM-based model of surface
roughness and specific cutting energy during machining AISI 4140 steel and then used the
Taguchi approach to optimize the process parameters. Bagaber and Yusoff (2019) developed a

RSM and non-segregated genetic algorithm based on a multi-objective optimization model to
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optimize machining cost and total energy consumption during the turning of stainless steel AlSI
316 using uncoated carbide inserts under the dry and wet cutting environment. Sivaiah and
Chakradhar (2019) used GRA and TOPSIS coupled with Taguchi technique to optimize the
process parameters for product quality, tool life, and productivity for turning of 17-4 PH
stainless steel. Meral et al. (2019) optimized surface roughness, thrust force, and drilling torque
for a proposed drill design. The optimal levels of the process parameters were obtained using
GRA coupled with Taguchi method. Li et al. (2022) modelled the energy consumption of
machine tools considering tool wear. He developed a multi-objective model using a Teaching
learning-based technique for energy consumption, productivity and surface quality. Feng et al.
(2022) optimized the cutting parameters for energy consumption, machining time and surface

roughness to improve energy efficiency using a genetic algorithm.

With growing environmental issues and stringent carbon emission regulations, low carbon
emission has become one of the essential requirements of manufacturing industries. Due to this
growing number of authors are considering CEM as machining performance in multi-objective
optimization. C. Zhang et al. (2017) developed regression-based models for surface roughness,
MRR and carbon emissions and performed multi-objective optimization using a genetic
algorithm. H. Zhang et al. (2017) developed cutting parameter-based empirical models and
performed multi-objective optimization to improve energy efficiency and reduce energy
consumption and carbon emission. They adopted equal weights for the processing time and
energy consumption and the weight of carbon emissions equivalent to the total weight of the
processing time and energy consumption. Zhou et al. (2019) developed a multi-objective
optimization model for the carbon emissions, processing time and machining cost, considering
their equal relative importance using the Game theory coupled with a genetic algorithm. Li et
al. (2018) optimized the toolpath to improve energy efficiency, reducing energy consumption

and carbon emission considering the cutter-workpiece interaction. They used the linear
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weighted summation method for transforming multiple responses into a single objective. Khan
etal. (2021) modelled product quality, energy consumption, cost and CEM for a turning process
and optimized via multi-objective optimization using the particle swarm optimization
technique. Jiang et al. (2022) developed a genetic algorithm coupled with a TOPSIS-based
multi-objective optimization model to minimize processing cost and carbon emissions for a
turning process. The optimization results revealed that a monotonous cost reduction and a
decline in carbon emissions can be achieved by increasing cutting depth and feed rate. I¢ et al.
(2022) developed goal programming coupled with the TOPSIS model to optimise carbon
emission and processing time for a turning process. The optimization results show that the

cutting speed was the most influencing parameter for carbon emission.

Table 2.2 Summarises the literature survey on various responses and weight assigning

methods considered in multi-objective optimization.

Table 2.2. Summary of the literature survey

Weight assigning

Author (s) Response (s)

method (s)
Singh and Kumar (2006) R,, Ty, F. and P, Equal weight
Aggarwal et al. (2008) P Mono-optimization
Hanafi et al. (2012) R, and P, Equal weights
Bhushan (2013) P, and Ty, Arbitrarily assigned
Kuram et al. (2013) SEC, Ty, and R, Not available
Camposeco-Negrete (2013) P, E and R, Mono-optimization
Yan and Li (2013) R,, MRR and E WGRA
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Kant and Sangwan (2014) P and R, PCA
Wang et al. (2014) R, E. and Cost Not available
Gok (2015) F, and R, Equal weight
Camposeco-Negrete (2015) STEC and R, Equal weights
R,, P, T, and
Pusavec et al. (2015) Mono-optimization

chip breakability index

Bilga et al. (2016) E., EE and PF Mono-optimization
Park et al. (2016) SCE, EE Entropy method
Mia and Dhar (2017) R,and T Mono-optimization
E.EE, PF, R, Equal weight, AHP
Kumar et al. (2017)
MRR and R, and Entropy method
Deng et al. (2017) SCEand T, Equal weight
Bagaber and Yusoff (2017) P,R,and T, Equal weight
H. Zhang et al. (2017) CEM, E and T, Equal weight
Bagaber and Yusoff (2018) P and R, Equal weight
Mia (2018) SCEand R, Equal weight
Lietal. (2018) CEM, EE and E Equal weight
Bagaber and Yusoff (2019) E, R, and Cost Equal weight
Mia et al. (2019) Fe, Temp» Ray SCE and MRR  Equal weight
Sivaiah and Chakradhar (2019)  R,, T, and MRR Equal weight
Zhou et al. (2019) CEM, T, and Cost Equal weight
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Nguyen et al. (2020) PF, E and R, PCA

Hu et al. (2020) E Mono-optimization
Wang et al. (2021) R, Tpo. and P Not available
Khan et al. (2021) R,, E, Costand CEM Entropy method
Jiang et al. (2022) CEM and Cost Not available

Feng et al. (2022) E, Too and R, Not available

Li et al. (2022) SECand R, Equal weight

F.: Cutting force, P: power consumption, R,: Surface roughness E: energy consumption,

SCE: specific cutting energy, SEC: Specific energy consumption, MRR: material removal rate,
CEM: carbon emission, T, : tool life, T, : tool wear, T, : cutting temperature, T :

wear * temp * proc *

processing time

Although, as shown in Table 2.1, the summarized studies reported in the literature survey
are significant, but limited authors optimized the cutting parameters for low carbon emission
Only two studies (Kumar et al., 2017; Nguyen et al., 2020) considered PF as a performance
indicator (response) for machine tools during multi-objective optimization. In addition, most

authors assigned equal weights to responses in multi-objective optimization.

2.4.  Gaps in Existing Literature

The reviewed literature included energy consumption and associated CEM modelling of
machine tools and optimization of process parameters for various responses. The literature
reveals that a huge amount of energy is consumed by machine tools in the manufacturing sector,
and researchers have reported different techniques and results to reduce the energy
consumption of machine tools. The following research gaps have been identified in the

reviewed literature:
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1)

(2)

The reported energy consumption models and modelling approaches are significant but
focus only on constant-power consumption machining processes e.g. turning, drilling
and milling. The energy modelling for variable-power consumption (VPC) machining
processes (e.g. end facing, grooving and chamfering) is very limited. Only a single
significant study (Jia et al., 2016) reported in the literature on the VPC machining
processes, and the modelling of the VPC machining process remains relatively
unexplored.

Significant studies on the machining process optimisation reported in the
literature focused only on CPC machining process optimisation, and multi-objective
optimization for the VPC machining process is rarely reported. The only available study
in the literature for the VPC machining process optimization is Hu et al. (2020), which
only optimizes energy consumption and has limited scope for establishing optimal
process parameters when productivity needs to be simultaneously maximized.

Further, it has been well established in the literature that not only process
parameters, but tool geometry also influences the energy consumption of machine tools.
Several researchers investigated (Garg et al., 2016; Kumar et al., 2017; Kuram, 2017;
Ma et al., 2014; Parida and Maity, 2017) the influence of tool nose radius on the power
consumption and found that the tool nose radius has a significant influence on the power
consumption of the machine tool. The studies reported in the literature are significant,
but they focused only on CPC machining process and the literature shows that no work
have been reported related to the VPC machining process considering the cutting tool
nose radius.

Modelling of energy consumption for machine tools is the foundation and prerequisite
for optimising the machining process for selecting optimum process parameters leading

to minimum energy consumption and associated CEM. Although the existing carbon
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emission models are significant, still lack to evaluate the total energy consumption of a
machine tool and associated CEM during the machining of a cylindrical part for
industrial applications. The existing energy consumption evaluation models only
consider CPC machining processes, whereas cylindrical part machining includes both
CPC and VPC machining processes to manufacture the final product, which result in
inaccurate quantification of the energy consumption and associated CEM for machining
a cylindrical part. Furthermore, most studies considered the energy consumed for a
particular period of a machining process. Therefore, it is vital to develop an industrially
applicable model and fill this knowledge gap in order to accurately evaluate machine
tools' total energy consumption and associated CEM for machining cylindrical parts
and to develop energy-efficient and low-emission machining strategies.

(3) Soft computing techniques have been increasingly popular in recent years for modelling
in a variety of engineering applications due to their reliable predictability, ability to
work with the inherent complexity and to capture non-linear behaviour between input
and output parameters. Literature shows that an increasing number of authors applied
soft computing for modelling in different engineering applications. The literature
survey indicates that soft computing techniques such as GP, SVM, and fuzzy logic are
widely used for modelling in a variety of engineering applications and manufacturing
processes. However, there appears to be an abundance of literature on the modelling of
various process responses such as energy consumption, productivity and surface quality
(Bhinge et al., 2017; Garg et al., 2016, 2015; Gupta, 2010; Pan et al., 2021), but to the
best of the author's knowledge, none of the literature reported modelling of energy
efficiency, power factor and carbon emissions using soft computing techniques for

machine tools.
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(4) The PF is an important indicator of efficient electrical energy utilization of the machine
tool's electrical system. There are no studies reported on parametric modelling of PF for
machine tools in the reviewed literature, and few researchers (Kumar et al., 2017;
Nguyen et al., 2020) optimised the cutting parameters while considering the PF as one
of the machining process responses during multi-objective optimization. The multi-
objective optimization of PF with CEM as a machining process response is not
explicitly investigated. In addition, most authors assigned equal weights to responses
in multi-objective optimization in the reviewed literature. The selection of the weight
of responses could provide a better solution to determine the optimal cutting parameter
for a machining process. Therefore, weights of the responses can be decided based on
qualitative and quantitative techniques. Therefore, the impact of weighting methods on
multi-objective optimization results should be explored. Kumar et al. (2017) is the only
significant work reported so far that used two alternative weight assigning methods in
addition to equal weigh methods for multi-objective optimization of the machining

process.
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Chapter 3:
Modelling of Variable Power Consumption Machining Processes — A Case of

End Facing

In this chapter, an empirical model is developed to predict the cutting energy consumption
of the variable-power consumption machining process i.e. end facing. The fitting
coefficients of the model are determined by conducting experiments on a LMW-CNC lathe
machine tool under dry and wet environments. The validation experiments confirm that the
accuracy of the developed model is more than 96%. Further, the predicted power profiles
were in good agreement with the measured power profiles, which shows that the developed
model satisfactorily encompasses the influences of the process parameters on the cutting

power consumption.

3.1.  Introduction

A review of the existing literature presented in Chapter 2 reveals that the reported energy
consumption modelling approaches are significant but focus only on constant-power
consumption (CPC) machining processes e.g. turning, drilling and milling. The energy
modelling for variable-power consumption (VPC) machining processes (e.g. end facing,
grooving and chamfering) is very limited. Figure 3.1 shows the power profile for the CPC
machining process and VPC machining process. In the CPC machining process, the process
parameters i.e. cutting speed (v,), feed rate (f,-) and cutting depth (d.) remain constant.
Consequently, the machining power also remains constant for the given process time.
Whereas in the VPC machining process, at least one of the process parameters (for example
v, in end facing) changes over time. Hence, the cutting power is dynamically changing,
and its characteristics become more complex. Jia et al. (2016) study is the only significant

work reported in the literature for the VPC machining process. He investigated the power
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characteristics for the end facing of ASTM 1045 steel workpiece using carbide inserts and
proposed an energy consumption model without considering cutting tool nose radius. Over
the years, several studies have analyzed the influence of cutting tool geometry and process
parameters on the cutting power, surface roughness, and tool life during CPC machining

processes.
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Figure 3.1 Power profile of constant-power consumption and variable-power consumption

machining process

It has been well established that not only process parameters but tool geometry also
influence the cutting energy (Kuram, 2017). Ma et al. (2014) had investigated the influence

of nose radius and process parameters on cutting energy consumption and energy efficiency
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during machining of AISI 4140. He reported that the nose radius is one of the significant
parameters for cutting energy consumption. Kuram (2017) investigated the effect of nose
radius during milling of AISI 304 for surface roughness and cutting force. He reported that
the cutting force decreases with an increase in the nose radius significantly. Kumar et al.
(2017) found that tool nose radius is the most significant factor during the turning of EN
353 alloy. Similarly, Garg et al. (2016) and Parida and Maity (2017) had found the nose
radius to be one of the significant parameters during their work. The above discussion (Garg
et al., 2016; Kumar et al., 2017; Kuram, 2017; Ma et al., 2014; Parida and Maity, 2017)
concludes that the nose radius has a significant influence on the power consumption of a
machining process. The above literature shows that no work has been reported for the
development of an empirical model for the VPC machining process considering the cutting
tool nose radius as a process parameter during the end facing of Al 6061. In the present
work, an empirical model is developed to predict the cutting energy consumption for the
VPC machining process considering the cutting parameters and tool geometry. The fitting
coefficients of the developed model are obtained by conducting end facing experiments on
an Aluminum Al 6061 workpiece in a dry and wet environment. The cutting speed, feed
rate, cutting depth and tool nose radius are chosen as the process parameters. Establishing
an accurate and practical energy prediction model for machining a workpiece is the
foundation for reduction of energy consumption of machine tools. The proposed model can
be used to select the cutting parameters for a VPC machining process and to develop an

energy consumption model of machine tools for machining cylindrical parts.

3.2.  Modelling Methodology
The total power consumed by a machine tool during the machining process can be
segregated into two categories: air-cut power (P,;-) and cutting power (P.) as shown in

Figure 3.1. The air cutting power is the power consumed without machining and keeping
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all the other process parameters constant. The balance between the total power and the air-
cutting power is the power required to cut the material from a workpiece as chips and is
generally known as cutting power. The contribution of air-cut power is equal in the CPC
machining process and the VPC machining process. The main difference between the
constant-power machining process and the variable-power machining process is due to the
cutting power only. The cutting power for CPC machining can be expressed as the

exponential function of process parameters (Lv et al., 2019, 2016; Xie et al., 2016).
P = Cueffdy (1)

Where C, isaconstantand a,  and y are coefficients of cutting speed, feed rate and cutting
depth respectively. In the CPC machining process, the process parameters i.e. v, f, and
d. remain constant and consequently, the machining power also remains constant for the
given process time. Whereas in the VPC machining process, at least one of the process
parameters (for example v, in end facing) changes with time and the cutting power change
dynamically. Thus, to obtain the cutting power, the VPC machining process can be divided

into N sub-intervals for the given machining time as shown in Figure 3.2.

In Figure 3.2, the more the value of N, each sub-interval will be very small and can be
considered as equivalent to the CPC machining process. Based on Eq. (1), the cutting power

for it" subinterval can be expressed as:
P., = Cp.v0f P d.Y )

Where v,, is the average cutting speed in m/min of it" sub-interval; fr;» average feed rate

in mm/rev of i*" sub-interval; d.; is average cutting depth in mm of it" sub-interval.
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Subsequently, the P, for the whole process of VPC can be expressed as:

P =3I Cpueffrfde] ©)

Power consumption (W)

\

Time (t) Tc

Figure 3.2 Schematic profile of variable power consumption divided into N sub-interval-

A case of end facing.

Where N is the number of sub-intervals. At is the duration of each subinterval in second
and can be written as At = T./N, T, is the total machining time in second. Eqg. (3) as a

function of time can be expressed as follows:
P. = Cpue(0)*f; ()P dc(8)Y (4)

However, the cutting power model as shown in Eq. (4) incorporated the influence of process
parameters on the cutting power but unable to include the influences of nose radius (r).
Several researchers (Garg et al., 2016; Kumar et al., 2017; Kuram, 2017; Ma et al., 2014;

Parida and Maity, 2017) have reported that the cutting tool nose radius is one of the
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important tool geometry that significantly influences the cutting power. This indicates that
the nose radius should be included in the cutting power model. The cutter nose radius does
not change during the machining process and the cutting power model stated in Eq. (4) can

be expressed as:
P. = Cpue ()£ ()P d () r? (5)

The cutting power model as stated in Eq. (5) incorporated different cutting parameters as a
function of time and can be adopted for different VPC processes viz. end facing,
chamfering, taper turning and grooving etc. Since, depending on the type of VPC
machining process, a mathematical formula for the changing parameters can be obtained
as a function of time using which the related power consumption model can be derived. In
the present study, end facing is considered and the corresponding model is developed.
The end facing machining process encompasses three stages: cutting tool entering, fully
cutting and cutting tool exit. In the cutting tool entering-stage, the feed rate remains
constant while cutting speed and depth of cut changes and satisfied the following relations

(Jiaetal., 2016):

d.(t) =d¢.t/ten (6)
2fr 2fr 2

ve(t) = %(DO B ( 60n t)) = VUmax ~ 60(7;:0 t (7)

Where v, = Do js the maximum initial cutting speed in m/min and n is spindle speed

1000

in rev/min and t is time in seconds. t,,, is the cutting tool entering time in seconds and can

be calculated using Eq. (8).

dc.cotk
ten = % (8)

60
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Where &, is the main cutting-edge angle of the cutting tool in degree. Based on Egs. (5),

(6) and (7), the cutting power for the tool entering-stage can be expressed as:

P = i~ 2220”17 ) o 0

In the fully cutting stage, the cutter is completely engaged in the workpiece and the
depth of cut does not change with further advancement of the tool. The cutting tool
continuously moves in the direction of the center of the workpiece and results in a gradual
reduction in cutting speed as stated in Eq. (7), while the depth of cut and feed rate are
constant. Based on Egs. (5) and (7), the cutting power during the fully cutting-stage can be

expressed as:

2fnn

Pc cut = C (Umax - 60000 t)a dera (10)

In the cutting tool exit-stage, the feed rate remains constant while the cutting speed and
depth of cut change. Cutting speed satisfied the relation stated in Eq. (7) and the cutting

depth satisfied the following relations:
t

d.(t) =d;— (dc-a) (11)

Where t,, is the cutting tool exit time in seconds. Based on equations (5), (7) and (11), the

cutting power for the cutting tool exit-stage can be expressed as:

Peex = Gy (vmax = 2225 t) " £ (de = (dei)) 70 (12)

According to Eqg. (9), (10) and (12), the cutting power during end facing can be calculated

as.
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PC =
( 2f,in? \% . t\ s
Cp (Umax — 6(:Wt) f;, (dc t_) r-, 0<st< ten
2frmn?
X C (vmax 6(;000 t)afrﬁdy 8 ten St <len + tous (13)
2f,mn? O\ t \Y
\CP (Umax - 6(:000 t) f;ﬂﬁ (dc - (dc a ) T.(S' ten =t< len + teur T+ lex

Where t.,; iIs the fully cutting-stage time in seconds. The cutting energy consumption
corresponding to the different stages (i.e. entering, fully cutting and exit) can be calculated

using Eqg. (14), (15) and (16) respectively.

ten Zfr”nz * B e\ é
f Cp ( Vmax = o000 t) fr (dcte_n) rodt (14)
tenttcu 2frmn? @
Ecut = ften ' C ( Vmax — ﬁ t) ﬂﬁdzr6dt (15)
tenttouttlex 2fr t V)"
Eex - ften+tcutt Cp (vmax 60(?:0 ) ﬁ ( (dc a)) Tsdt (16)

Hence, the total cutting energy during end facing can be expressed as:

Ec = Een + Ecyur + Eex

ten tenttcut tentteutttex
E. = j P endt + j P, dt + J P, ox dt
0 t

en tentteut

= 17 (s =20 8 (2 7 27 s

2frmn? ) fPdlride + frentieutten o) (max_Zfrnn ) 1 (de (dCé))yradt

60000 tentteut 60000

(17)
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In end facing machining process, the cutting tool entering and exit period are generally
of short duration. Even in the exit stage, the cutting speed is nearly zero. Further, as can be
seen in Eq. (8) that the cutter entering time is highly dependent on the tool geometry.
According to our pilot experiments, it was found that the cutter entering time was less than
1% of total end facing time and corresponding energy consumption was less than <10J. The
inclusion of energy consumption related to the cutter's entering phase and exit phase
unnecessarily complicates the calculations and can be ignored without compromising
model accuracy. Thus, the end facing cutting power Eq. (13) and corresponding energy

consumption Eq. (17) can be reduced as:

2f,mn? N\
P=0 (vmax - 60(7;(:10 t) f;ﬂﬁd]c/ra (18)
T, 2f,mn® \¢
Ec = J3° Cy (Vimax — 22 t) fPalrdt (19)

Where T, = top + teyr + tox-

3.3.  Experimental Planning

The experimental setup and the methodology followed in this study are shown in Figure
3.3. A LMW-Smarturn CNC Lathe in a dry and wet environment was used to perform the
end facing experiments. Aluminium of grade Al 6061 was taken as workpiece material.
Aluminium has wide utilization in the manufacturing industry due to its good mechanical
and corrosive resistance properties. Further, aluminium has good sustainable assessment
due to its abundant availability, ease of reuse and recycling with less adverse environmental
impacts (Camposeco-Negrete and de Dios Calderon-Najera, 2019; Warsi et al., 2018).
Sandvik carbide inserts of different nose radius of ISO designation: CNMG 120404,
CNMG 120408 and CNMG 120412 were selected as cutting tools with tool holder PCLNR

2020 K 12. The technical details of the machine tool are provided in Table 3.1.
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Results of validation test experiments
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Figure 3.3 Experimental setup and adopted methodology.
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Table 3.1 Specifications of the machine tool

Specification Data

Manufacturer/model LMW Ltd./ Smarturn CNC lathe
Machine dimensions (LxBxH) 2275 mmx 1640 mmx 1620 mm
Spindle motor power rating 5.5 kKW (Fanuc (36i)

Max. spindle speed 4500 revolution/min

Controller type Fanuc oi-TF

Maximum turning diameter 200 mm

Swing over bed/carriage 480 mm/260 mm

Maximum turning length 262 mm

Turret (No. of tool station) 8

In end facing, cutting speed is varying continuously during machining and depends
upon workpiece diameter (D,) and spindle speed (n). Therefore, n, f,, d. and r were
selected as machining process parameters and the diameter of the workpiece was kept
constant. The considered parameters are tabulated with their levels in Table 3.2. The levels
of the process parameters were customized based on machine tool considerations, cutting
tool supplier’s recommendations and data available in the literature (Bharathi Raja and
Baskar, 2011; Camposeco-Negrete, 2015; Lv et al., 2018). Taguchi’s Lg orthogonal array
was used to design the experimental plan. Lo is the most recommended orthogonal array
for a combination of four process parameters at three levels to reduce the experimental cost
and time (Sadat-Shojai et al., 2012). The power drawn by the CNC machine tool was
directly measured from the main power bus using the Fluke 435 series 11 Power Analyzer
as shown in Figure 3.3. The power analyzer was connected to the 3-phase main power bus

supply using three current probes and three voltage probes embedded with alligator clips.
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The power analyzer was set to record the power readings at the interval of every 0.25

seconds.

Table 3.2 Machining process parameters and their considered levels

n fr d. r
Variables
(rev/min) (mm/rev) (mm) (mm)
I 1600 0.08 1.0 0.4
3 ] 2000 0.12 1.4 0.8
3
I 2400 0.16 1.8 1.2

The measured total power (P;), air cut power (P,;-) and corresponding calculated

cutting power (Total cutting power—Air cutting power) for experiment number seven under

dry environment is summarized in Table 3.3.

Table 3.3 Power consumption experimental data for experiment number seven under dry

environment

t Ve Pr Pair Fe
S. No

(second) (m/min) (W) (W) (W)
7-1 0.25 447.64 3330 2070 1260
7-2 0.50 435.58 3320 2070 1250
7-3 0.75 423.52 3300 2070 1230
7-4 1.00 411.47 3300 2070 1230
7-5 1.25 399.41 3270 2070 1200
7-6 1.50 387.35 3240 2070 1170
-7 1.75 375.29 3210 2070 1140
7-8 2.00 363.24 3180 2070 1110
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7-9 2.25 351.18 3150 2070 1080
7-10 2.50 339.12 3120 2070 1050
7-11 2.75 327.06 3090 2070 1020
7-12 3.00 315.00 3060 2070 990
7-13 3.25 302.95 3000 2070 930
7-14 3.50 290.89 2970 2070 900
7-15 3.75 278.83 2940 2070 870
7-34 8.50 49.74 2280 2070 210
7-35 8.75 37.68 2220 2070 150
7-36 9.00 25.62 2190 2070 120
7-37 9.25 13.56 2160 2070 90
7-38 9.50 1.51 2070 2070 0

D, = 61 mm, n = 2400 rev/min, f, = 0.08 mm/rev,d, =1.8 mmand r = 1.2 mm

Similarly, the data of the remaining eight experiments were compiled for further
calculations. Further, the regression analysis was performed for all nine experimental data
sets to determine the fitting coefficients of the model developed in Eq. (19). The values of
fitting coefficients obtained after performing regression analysis are provided in Table 3.4.
The p-values for the fitting coefficients of process parameters are less than 0.05, which
reveals that all the process parameters are statistically significant. The R? and Adjusted
(Adj.) R? values shown in Table 3.4 are more than 91% which shows that the cutting power
model has an adequate prediction accuracy for P. under various combinations of v, f,., d.

and r.
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Table 3.4 Regression analysis results for the developed model

Cutting
Fitting Std. t- p- Regression
environ Values
coefficients Error value value Statistics
ment
Cp 99.5115 0.0603 33.1466 0.0000 R? 0.9167
a 0.7641 0.0159 47.9120 0.0000 Adj.R* 0.9155
Std.
B 1.1385 0.0514 22.1449 0.0000 0.1046
Dry Error
Observ
y 1.1145 0.0618 18.0454 0.0000 281
ations
o) -0.2331 0.0324 -7.1939 0.0000
Cp 345943 0.0521 29.5625 0.0000 R? 0.9448
a 0.8232 0.0136  60.7491 0.0000 Adj.R? 0.9440
Std.
B 0.8387 0.0433 19.3655 0.0000 0.0886
Wet Error
Observ
y 1.3399 0.0522 25.6470 0.0000 283
ations
o) -0.2516  0.0276 -9.1238  0.0000

By substituting the values of coefficients listed in Table 3.4 into Eg. (18), the cutting

power consumption for end facing under dry environment can be calculated as:

2f,in \O76*1 | 1385 ;11145..-02331
Peary = 9951 (Vimax — t) [R5 gLiesyo (20)

60000
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Further, Analysis of variance (ANOVA) was used to analyze the statistical significance
of the developed model. The ANOVA results for the cutting power model based on Eq.

(18) under a dry environment are summarized in Table 3.5.

Table 3.5 ANOVA for the developed model

Cutting environment DF SS MS F Significance P

Regression 4 33.2375 8.3094 759.7037  0.0000
Dry Residual 276 3.0188  0.0109

Total 280 36.2563

Regression 4 37.3921 9.3480 1189.6267 0.0000
Wet Residual 278 2.1845 0.0079

Total 282 39.5766

DF: Degree of freedom, SS: Sum of squares, MS: Mean of square

The p-value for regression in Table 3.5 is less than 0.05 at a 95% confidence interval, which
shows that the cutting power model is statistically significant. Similarly, the large F value
759.7037 of regression in Table 3.5 reveals a strong relationship between the process
parameters and cutting power. Hence, based on Eq. (19), the cutting energy consumption

of the end facing process under a dry environment (Ecdry) can be calculated as follows:

0.7641

T, 2fymn? _
ECdry = foc99.51 (vmax — 60(7;:10 t) fr1'1385 d}'1145r 02331 4¢ (21)

Similarly, fitting coefficients of the cutting power model under a wet cutting
environment were determined. By substituting the values of coefficients listed in Table 3.4
into Eq. (18), the cutting power consumption for end facing under a wet environment can

be calculated as:
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0.8232

2f,mn? .
Pc,.. = 34.59 (vmax - 60:;10 t) 08387 1.3399,.-0.2516 22)

The regression analysis and ANOVA result for cutting power model under wet
environment based on Eqg. (18) are also summarized in Table 3.4 and Table 3.5 respectively
and it is found that the developed model is statistically significant in the wet environment
also. Hence, based on Eq. (19), the cutting energy consumption of the end facing in a wet

environment can be calculated as follows:

0.8232

Tc 2fymn? B
Ec,,, = fo 34.59 (Umax - L t) 08387 113399).-0.2516 ¢ (23)

The developed model for cutting energy consumption of end facing process under dry and
wet environment are summarized in Table 3.6. Once the fitting coefficients are obtained,
the cutting power profile of end facing operation could be predicted using Eq. (20) and Eq.
(22) under dry and wet environments respectively for the different combinations of the
process parameters. The predicted power profiles using the developed model and the

corresponding measured power profile are shown in Figure 3.4.

Table 3.6 Cutting energy consumption model for end facing process under dry and wet

environment

Cutting energy consumption model

For a dry environment

T, 2f 2 0.7641
99.51 (v — T_t> f1:1385 11145
jo M 60000 r c

For a wet environment

T'_O'2331dt

T, 2f.mn? 0.8232
34.59 (v 2 t> f0.8387 (d1-3399,--0.2516 4
jo 60000 r ¢
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Further, the corresponding cutting energy consumption can be calculated using Eq. (21)

and Eq. (23) under dry and wet environments respectively.
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2500 || 3000 v
gzsoo -
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Figure 3.4 Predicted power profile using developed model vs measured power profile: (a)
Dry cutting environment, n = 1600 rev/min, D, = 61 mm, f,, =0.12 mm/rev, d. =1.4 mm
and r = 1.2 (b) Wet cutting environment, n = 2000 rev/min,D, =61 mm, f, =0.08

mm/rev, d. =1.4 mmand r = 0.8 mm.

3.4.  Validation of the Model

Four experiments were conducted to validate the energy consumption prediction capability
of the developed model. The combination of process parameters used for validation are
shown in Table 3.7 and were kept different from the combination at which the fitting

coefficients of the model were obtained.

The cutting energy consumption for each validation experiment was predicted using the
developed model as listed in Table 3.6 for a dry and wet environment and the results are

summarized in Table 3.8.
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Table 3.7 Process parameters of validation experiments

Process parameters

Cutting Test D,
n f;, dc r
environment No. (mm)
(rev/min) (mm/rev) (mm) (mm)
61 1600 0.08 1.4 0.8
Dry
61 2000 0.08 1.8 1.2
i 61 1600 0.12 1 0.8
Wet
v 61 2400 0.08 1 0.4

Table 3.8 Prediction accuracy of the cutting energy consumption for validation

experiments

Cutting energy consumption (/)

Cutting Test Accuracy
Predicted Measured
environment No. (%)
(Ec_Pred) (Ec_Meas)
I 5542.50 5482.50 99.91
Dry
I 6324.98 6563.80 96.36
i 3599.19 3720.00 96.75
Wet
v 4258.07 4166.30 97.80

Accuracy (%) = (1 —

Ec_Pred _Ec_Meas

Ec_Meas

) X 100

As shown in Table 3.8, the prediction accuracy of the developed model is more than

96% for each validation test and hence it can be effectively utilized for predicting the

cutting energy consumption of end facing process. Further, the power profiles of the

predicted power consumption based on the developed cutting power models (Eg. (20) for

dry environment and Eq. (22) for wet environment) for each validation test are plotted in

Figure 3.5 against the corresponding actual measured power profile. As shown in Figure
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3.5, the predicted power profiles of the validation experiments are in good agreement with
the measured power profiles in both dry and wet environments. It shows that the developed

model adequately encompasses the effects of the process parameters on the power profile.

Dry environment Dry environment
3000 r 4000 r
— 7 <3000 F
; 2000 N s _[\.m‘-\
s 52000 k
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S 1000 ) 2
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Time (second) Time (second)
(a) Test-I (b) Test-I1
Wet environment Wet environment
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gzooo J\ §3000 m
g S 2000 |
S 1000 r 2
Measured  <eeee-- Predicted e 1000 r Measured eeseees Predicted
0 L. Power . Power _ Power . Power
5 8§ 10 13 15 0

5 8 10 13 15
Time (second)

Time (second)

(c) Test-1lI (d) Test-1V
Figure 3.5 Predicted power profile using developed model vs measured power profile of
the validation tests: (a) Test-1: Dry cutting environment, n = 1600 rev/min, D, = 61 mm,
fr = 0.08 mm/rev, d. =1.4 mm and r = 0.8 mm; (b) Test-11: Dry cutting environment,
n = 2000 rev/min,D, = 61 mm, f,. = 0.08 mm/rev, d. =1.8 mm and r = 1.2 mm; (c)
Test-111: Wet cutting environment D, = 61 mm, n = 1600 rev/min, f,. = 0.12 mm/rev,
d. =1.0 mm and r = 0.8 mm; (d) Test-1V: Wet cutting environment, D, = 61 mm, n =

2400 rev/min, f,. =0.08 mm/rev, d, = 1.0 mm and r = 0.4 mm.

The proposed model can be applied to optimize cutting parameters for a VPC

machining process and to develop energy consumption model of machine tools for
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machining cylindrical parts. Predicting the energy consumption of machine tools for
machining cylindrical parts remains challenging because the previous energy prediction
models are typically developed with CPC machining processes. The machining of a
workpiece includes the non-cutting process and cutting process (CPC and VPC machining
process). By integrating the proposed model with the energy models of the non-cutting
process and CPC machining process, an energy consumption model of machine tools for

machining cylindrical parts can be established.

In industries, an accurate and practical energy consumption prediction model can be
used during the initial design phase of a workpiece to estimate the energy consumption in
their machining which can provide an opportunity to identify the most sustainable cutting
parameters. In the process planning phase, there are several possibilities of different
combinations of the process parameters by which a component can be machined. However,
it is not reasonable to experiment with each alternative to evaluate their energy
performance. Under such circumstances, the proposed model can be useful to identify the

most sustainable and clean process plans.

3.5,  Summary

An accurate and realistic energy consumption model is essential to estimate the energy
needed for the machining of a product beforehand in its initial development stage and can
provide an opportunity to identify the most sustainable and cleaner process parameters. In
this chapter, a cutting energy consumption model for the VPC machining process i.e., end
facing is developed. The cutting speed, feed rate, cutting depth and cutting tool nose radius
were chosen as process parameters. The fitting coefficients of the model were determined
by conducting experiments on Al 6061 workpiece using carbide inserts under dry and wet

environments. The p-values for the fitting coefficients of process parameters were found
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less than 0.05 and hence all the considered process parameters are statistically significant.
The R? values for dry and wet environments were found more than 91% and 94%
respectively, which shows that the developed model has acceptable accuracy for predicting
the cutting power under various combinations of process parameters. Four validation
experiments confirm the prediction capability of the developed model. The validation
experiments confirm that the accuracy of the developed model is more than 96%. Further,
the predicted power profiles of the end facing were in good agreement with the measured
power profiles, which shows that the developed model satisfactorily encompasses the

influences of the process parameters on the cutting power consumption.
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Chapter 4:
Optimization of Variable Power Consumption Machining Processes — A Case of

End Facing

In this chapter, the empirical model developed in Chapter 3 is used as an input for the
formulation of a multi-objective optimization model of cutting energy consumption and
average-material removal rate. First, the optimal parameters are determined by mono-
objective optimization using the Taguchi technique. Second, Grey relational analysis
(GRA) coupled with Taguchi method is used to determine the optimal parameters to
minimize the power consumption and maximize the average-material removal rate

simultaneously.

4.1.  Introduction

According to the previous studies reported in the literature, machine tools have an average
energy efficiency of less than 30% (Liu et al., 2017). Energy-efficient machine tools can
be developed, or existing machining processes can be optimized, to reduce the amount of
electrical energy consumed by machining processes (Warsi et al., 2018). The development
of energy-efficient machine tools requires solid economic provisions for technology
development and can be implemented only by replacing the existing machine tools (Warsi
et al., 2018). Optimizing existing machining processes is one of the most effective
strategies to increase energy efficiency, and it can be applied on existing production lines
with relative ease and with minimal resources (Bagaber and Yusoff, 2019; Hu et al., 2020).
Cutting parameters are critical variables in the machining process, and manufacturers have
a range of options for selecting them based on the workpiece's cutting requirements and the
machining conditions (Chen et al., 2021). Earlier studies have shown that by selecting the
appropriate process parameters, tools, and tool paths, energy savings of up to 40% can be
achieved (Chen et al., 2021; Zhang et al., 2017). This shows that the change in the process
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parameters significantly influences the energy consumption of a machining process
(Newman et al., 2012). As a result, process parameters play a key role in metal cutting, and
selecting the correct parameters is critical for energy-efficient machining (Zhou et al.,

2019).

However, one group of researchers appears to be completely focused on modelling
(Aramcharoen and Mativenga, 2014; Edem et al., 2017; Jia et al., 2016; Liu et al., 2015,
2020; Zhou et al., 2017), while the other appears to be solely focused on optimization
(Alswat and Mativenga, 2020; Bilga et al., 2016; Kumar et al., 2017), as a result, industry
deployment of energy-saving solutions is impeded. Further, the use of experimental design
approaches to determine optimum process parameters necessitates a large number of
lengthy trials, which increases costs and time (Zerti et al., 2019). During the process
planning, many alternative combinations of process parameters can be used to manufacture
a workpiece by machining process. Evaluating each option to ascertain the machining
energy consumption is not practicable. In these scenarios, an existing predictive model can
be utilized to compute energy consumption based on process plans (Jia et al., 2016; Liu et
al., 2015). As a result, there is a need to focus on the optimization of process parameters
using pre-developed energy models (Chen et al., 2021). To bridge this gap, in the present
chapter empirical model developed in Chapter 3 is integrated to the optimization approach
to select the process parameters to tradeoff between the cutting energy consumption and
average-MRR (MRR) for the variable power consumption machining process. The
integrated approach will reduce the cost required for the time-consuming measurement

procedures and advanced laboratory setup.
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4.2. Research Gap

The work presented in the literature shows that many notable research on machining
process optimization has been published, however, they primarily focus on constant-power
consumption (CPC) machining processes like turning, drilling and milling, and
optimization for the variable-power consumption (VPC) machining process is limited. As
already discussed in Chapter 3 that, the machining process parameters: cutting velocity
(v.), feed (f;-) and depth of cut (d.) remain constant in the CPC machining process, and as
a result, the cutting power remains unchanged. Whereas at least one of the machining
parameters in the VPC machining process changes with time. As a result, the cutting power

varies and its characteristics become more complicated.

To the best of the authors' knowledge, Hu et al. (2020) is the only work reported on
VPC machining process optimization in which process parameters: spindle speed, feed rate
and cutting depth were optimized for energy consumption during the end facing of ASTM
1045 steel workpiece using carbide inserts. The cutting energy is affected by a number of
factors, including cutting parameters as well as cutter nose radius (Kumar et al., 2017;
Kuram, 2017; Ma et al., 2014; Parida and Maity, 2017). Hu et al. (2020) study optimized
only energy consumption without taking into account the cutter nose radius and has limited
scope for establishing optimal process parameters, when there is a need to simultaneously
maximize productivity. To bridge this gap, in this chapter, the cutting energy consumption
model for the VPC machining process (i.e. end facing) developed in previous Chapter 3
as a function of cutting parameters and nose radius is used as an input to optimize the
cutting energy consumption and productivity (material removal rate) simultaneously. The
common optimal parameters were determined by analyzing mono-objective optimization
and multi-objective optimization. Firstly, the optimal parameters for the individual

performance characteristics were determined by mono-objective optimization based on the
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Taguchi technique. Then, GRA coupled with Taguchi is used for multi-objective
optimization to determine the common optimal parameters for cutting energy consumption
and average-material removal rate. The adopted methodology of the present study is shown

in Figure 4.1.

4.3.  Optimization for VPC Machining Process- A Case of End Facing

Manufacturing industries are under intense pressure to lower the energy usage of the metal
cutting processes without sacrificing productivity, owing to the fast-rising worldwide
market and environmental issues. Therefore, two performance characteristics: cutting
energy consumption and average-material removal rate as an indicator of productivity, are
simultaneously optimized for the selection of optimal process parameters during the end
facing of an aluminium workpiece using carbide inserts. The optimization is performed in
two stages: mono-objective optimization and multi-objective optimization. Spindle speed
(n), feed per revolution (f;.), cutting depth (d.) and cutter nose radius (r) are considered as

the process parameters.

The various combinations of the considered process parameters were obtained
according to Taguchi’s Loz orthogonal array and are shown in Table 4.1. Furthermore, in
this chapter, instead of performing the experiments on these combinations of process
parameters, the cutting energy consumption in this chapter is determined using empirical
model developed in Chapter 3 to follow the integrated modelling and optimization
approach for the VPC machining process. It will reduce the cost required for the time-
consuming measurement procedures and advanced laboratory setup. The cutting energy

consumption in a dry cutting environment (Ecdry) for the various combinations of the

process parameters based on L7 orthogonal array was computed using Eq. (1).
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B 2 n?

E., = :99.5115(\/max .

t] f7d7rodt 1)

Where «, [, y and & are0.7641, 1.1385, 1.1145 and -0.2331 for dry cutting environment

and 0.08382, 0.8387, 1.3399 and -0.2516 for wet cutting environment respectively. The

cutting energy consumption in a dry cutting environment (Ecdry) for the various

combinations of the process parameters based on L7 orthogonal array was computed using
Eq. (1). The calculated values are listed in Table 4.1. Due to variable cutting speed, the
material removal rate is changing continuously during the end facing machining process,

and therefore the MRR is adopted as productivity and calculated using Eq. (2).

MRR (M) = 224 5 1000 @)

sec / ~ 4000.T,

Where D is the diameter of the workpiece in mm and T, is the end facing time in seconds.
The calculated MRR for different combinations of process parameters according to the L7
orthogonal array are listed in Table 4.1. The Taguchi method was used for mono
optimization of the performance characteristics: E. ary and MRR, and the GRA coupled
with Taguchi technique is used for multi-objective optimization. The mono and multi-

objective optimizations are discussed in the subsequent sections.

Table 4.1 L,7 orthogonal array and corresponding values of the performance characteristics

Process parameters Performance characteristics
Exp.

n £ d, r Ecay, MRR
No.

(rev/min) (mm/rev) (mm)  (mm) ) (mm?d/sec)
1 1600 0.08 1.0 0.4 4471.75 204.31
2 1600 0.08 1.4 0.8 5535.63 286.03
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4.3.1. Mono-objective optimization using Taguchi method

The Taguchi method was introduced by Genichi Taguchi uses the signal-to-noise ratio (SN)
principle that ensures minimization in variation and improvement of the mean for the given
set of data (Oztiirk et al., 2019). The SN ratio is the ratio of predictable signal values with
unpredicted noise values (Meral et al., 2019). Therefore, the process parameter level
corresponding to the highest S/N ratio is considered as the optimal level for the observed
performance characteristics (Sivaiah and Chakradhar, 2019). Primarily, three types of
principles as stated in Egs. (3), (4), and (5) are applied in the Taguchi technique to compute
the SN ratio and a particular principle is applied to calculate the SN ratio depending on the

nature of the performance characteristics or aim of the study (Meral et al., 2019).

Larger is the better principle:
S 1 1
—=—log=(>— 3
N ey &) ®)
Smaller is the better principle:
S 1
— = -10log=(Xy?) 4)
N q

Nominal is the better principle:

S 1(y
—=10log=| = 5
o) K

Where y is the outcome of the dependent variable (MRR or ECdry); y is the average of y;

o} is the variance of ; and g is the total number of experimental runs (i.e. 27).
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In this chapter, the objective is to maximizing the MRR and minimising the cutting

energy consumption, Egs. (3) and (4) are used to determine the corresponding SN ratios

respectively. The calculated values are listed in Table 4.2.

Table 4.2. The calculated values of the SN ratios

Process parameters SN ratios
Exp.

n fr d. r
no. Ec,,, MRR

(rev/min) (mm/rev) (mm) (mm)
1 1600 0.08 1.0 0.4 -73.0096 -13.7942
2 1600 0.08 1.4 0.8 -74.8633 -10.8717
3 1600 0.08 1.8 1.2 -76.4752 -8.6888
4 1600 0.12 1.0 0.8 -72.0916 -10.2724
5 1600 0.12 1.4 1.2 -74.5279 -7.3498
6 1600 0.12 1.8 0.4 -79.1850 -5.1670
7 1600 0.16 1.0 1.2 -71.6191 -71.7736
8 1600 0.16 1.4 0.4 -77.1006 -4.8511
9 1600 0.16 1.8 0.8 -78.1300 -2.6682
10 2000 0.08 1.0 0.4 -72.5500 -11.8560
11 2000 0.08 1.4 0.8 -74.4038 -8.9335
12 2000 0.08 1.8 1.2 -76.0157 -6.7506
13 2000 0.12 1.0 0.8 -71.6344 -8.3342
14 2000 0.12 1.4 1.2 -74.0706 -5.4116
15 2000 0.12 1.8 0.4 -78.7278 -3.2288
16 2000 0.16 1.0 1.2 -71.1596 -5.8354
17 2000 0.16 1.4 0.4 -76.6411 -2.9129
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Further, the main effect plot of SN ratios are used to analyze the influence of the process

parameters on the performance characteristics and are shown in Figure 4.2 and Figure 4.3

for E; dry and MRR respectively.

Figure 4.2 Main effect plot of SN ratios for cutting energy consumption.
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The level of the process parameter with the highest SN ratio indicates its optimal level.
Accordingly, as shown in Figure 4.2, the highest value of spindle speed and nose radius i.e.
ns = 2400 rev/min and r; = 1.2 mm, and the lowest value of the feed rate and cutting depth

i.e. fr, = 0.08 mm/rev and d., = 1.0 mm are the optimum combination to achieve

minimum cutting energy consumption.

Main Effects Plot for S/N ratios of average-MRR

Data Means
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Figure 4.3 Main effect plot of SN ratios for average-material removal rate.

The energy consumption reduces as the angular speed of the spindle increases, because the
machining time is decreased. Increases in feed rate and cutting depth results in a larger
undeformed chip region, requiring more force and power to remove the material, resulting
in increased energy consumption. A similar trend for the feed rate and cutting depth was
reported by Kant and Sangwan (2014). Furthermore, increasing the nose radius results in
smoother cutting, which minimizes vibrations and improves the SN ratios. These findings

are consistent with previously published research Bilga et al. (2016) and Kuram (2017).

For maximum material removal rate (MRR), as shown in Figure 4.3, the highest values

of the spindle speed, feed rate, cutting depth and nose radius i.e. n; = 2400 rev/min of,
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fr; = 0.16 mmirev, d., = 1.8 mm and r3 = 1.2 mm with the maximum values of

corresponding SN ratio are the optimal combination of the cutting parameters. Higher
cutting depths and feed rates produce a larger undeformed chip zone, resulting in more
material removal. The high angular speed accelerates the material removal. The nose radius
forthe MRR's SN ratio is theoretically insignificant and therefore changes in the nose radius
do not affect it. However, the nose radius of the cutter, which produces the desired result,

should be used.

The combinations of the optimal levels of the process parameter for cutting energy
consumption i.e. n, fr,,d.,, 5 and for average-material removal rate i.e. ns, f,,,d¢,, 73
achieved after Taguchi analysis are different from the L27 orthogonal array i.e. Table 4.1.
Hence, MRR at their optimum cutting parameters is calculated using Eq. (2) and found to
be 1119.20 mm®/sec. Eq. (1) is used to compute the cutting energy consumption at their
optimum process parameters and the validation experiment was conducted on the optimal
process parameters to obtain the cutting energy consumption. The experiment was repeated
three times, and the average value of the three measurements was adopted. The results are

shown in Table 4.3.

Table 4.3 Optimal parameters by mono-objective optimization

Performance Characteristics Optimal parameters Comparison

N3, fryr de, T3 Measured Predicted Error (%)

Ec,,, 2400,0.08,1.0,1.2 30625] 314488] 2.7

Nevertheless, the Taguchi method has shown effective in achieving mono-objective
optimization, but the optimal level of cutting parameters differs based on the performance
characteristic e.g. the higher level of cutting parameters is desirable for material removal

rate while in the case of cutting energy consumption, the lower values of feed rate and
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cutting depth are desirable. Thus, energy consumption increases when the MRR's optimal
parameters are satisfied, while the MRR decreases when the energy consumption’s optimal
parameters are fulfilled. For example, the MRR value decreases by 72.61% (from 1119.20
mm?3/sec to 306.46 mm®/sec) at the optimum parameters of energy consumption. Thus, to
obtain the common optimal levels of the cutting parameters, the GRA coupled with the

Taguchi method was adopted and the details are discussed in Section 4.3.2.

4.3.2. Multi-objective optimization using GRA based Taguchi method

The major limitation of mono optimization is that it improves a particular performance
characteristic while ignoring the other necessary contradictory performance characteristics
and determining local optimal parameters (Bagaber and Yusoff, 2018). Although the
Taguchi method is one of the popular methods for mono optimization, it is inefficient for a
system where multiple performance characteristics have to be optimized simultaneously.
Therefore, Grey Relational Analysis (GRA) was used to obtain the cumulative performance
index (CPI) of the performance characteristics: cutting energy consumption and MRR.

Further, Taguchi method was used to optimize the CPI.

The following steps are commonly used to calculate the CPI for multi-objective

optimization using GRA (Kant and Sangwan, 2014; Meral et al., 2019):
Step 1: Normalization

The performance characteristics are normalized to bring them on a common comparable
scale because the range and units of the performance characteristics may differ from each
other. Depending on the nature of the performance characteristics, one of the criteria:
“Larger 1s the better”; “Smaller is the better” and “Nominal is the better” may be used for

their normalization. The present study aims to minimize cutting energy consumption and
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maximize MRR, and therefore, "smaller is the better" and “larger is the better" criteria

respectively as stated in Eqs. (6) and (7) were used for their normalization.

Smaller the better criteria:

Max x; () - X, (q)

*(q) — 6
%(a) Max x, (q)—Min x, (q) ©)
Larger is the better criteria:

. X (q)-Minx_ (q
Xp (q) — Y p ( ) p ( ) (7)

ax X, (q)—Minx, (q)

Where, x,(q) is the normalized value/sequence of the performance characteristics, x,(q)
is the actual (predicted/calculated) value of the performance characteristics, Max x,, (q) and
Min x,(q) are the maximum and minimum values of the actual data. The calculated

normalized values of cutting energy consumption and MRR based on Egs. (6) and (7)

respectively are summarized in Table 4.4.
Step 2: Grey Relational Coefficient

Grey Relational Coefficient (GRC) reveals the relationship between ideal and normalized
performance characteristics values and can be calculated as follows:

Amin + é/Amax

CRE (q) ) Aop (q) + é/Amax

(8)

Where ¢ is the distinguish coefficient and its value is found in the range of 0 to 1. In the
present study, it is taken 0.5 as recommended in the literature by Hanafi et al. (2012) and
Kant and Sangwan (2014). A,,(q) represents the deviation from the target value and can

be calculated as follows:
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X, (a) - x; (a)|

Agp (q):

Where x,(q) is the ideal sequence and x;, (q) is the current sequence. The calculated GRCs

using Eq. (8) are listed in Table 4.4.
Step 3: Grey Relational Grades

GRG is the weighted sum of each GRC and can be calculated by multiplying each GRC
and its assigned weight. The CPI is essentially the GRG for each experimental run, and it
will be used in place of the GRG in the rest of the paper. The equal weights were assigned

to both the performance characteristics and Eq. (9) is used to calculate the CPI.
p
CPI; = Y[ W*GRC; | ©)
j=0

Where p is the total number of performance characteristics. w; is the assigned weight to the
performance characteristic such that $_, w; = 1. Table 4.4 shows the calculated CPIs for

each of the experimental runs.

Table 4.4 The computed values of normalized sequence, deviational sequence, Grey

Relational Coefficient, and Cumulative Performance Index

Normalized Deviational Grey Relational ~ Cumulative

Exp.
sequences sequences Coefficient Performance Index

No.

ECdry MRR ECdry MRR ECdry MRR Size Ranking

1 0.8210 0.0000 0.1790 1.0000 0.7364 0.3333 0.5349 14

2 0.6325 0.0909 0.3675 0.9091 0.5763 0.3548 0.4656 21

3 04324 0.1818 0.5676 0.8182 0.4683 0.3793 0.4238 26

4 0.9005 0.1136 0.0995 0.8864 0.8340 0.3607 0.5973 7
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5 0.6696 0.2500 0.3304 0.7500 0.6021 0.4000 0.5011 16

6 0.0000 0.3864 1.0000 0.6136 0.3333 0.4490 0.3912 27

7 0.9382 0.2273 0.0618 0.7727 0.8901 0.3929 0.6415 5

8 0.3442 0.4091 0.6558 0.5909 0.4326 0.4583 0.4455 24

9 0.1845 0.5909 0.8155 0.4091 0.3801 0.5500 0.4650 22

10 0.8618 0.0568 0.1382 0.9432 0.7835 0.3465 0.5650 10

11 0.6830 0.1705 0.3170 0.8295 0.6120 0.3761 0.4940 19

12 04933 0.2841 0.5067 0.7159 0.4967 0.4112 0.4539 23

13 0.9370 0.1989 0.0630 0.8011 0.8882 0.3843 0.6362 6

14 0.7180 0.3693 0.2820 0.6307 0.6394 0.4422 0.5408 13

15 0.0827 0.5398 09173 0.4602 0.3528 0.5207 0.4368 25

16 0.9730 0.3409 0.0270 0.6591 0.9488 0.4314 0.6901 3

17 0.4096 0.5682 0.5904 0.4318 0.4586 0.5366 0.4976 17

18 0.2582 0.7955 0.7418 0.2045 0.4026 0.7097 0.5562 12

19 0.8935 0.1136 0.1065 0.8864 0.8244 0.3607 0.5925 38

20 0.7222 0.2500 0.2778 0.7500 0.6428 0.4000 0.5214 15

21 0.5404 0.3864 0.4596 0.6136 0.5211 0.4490 0.4850 20

22 0.9655 0.2841 0.0345 0.7159 0.9355 0.4112 0.6734 4

23 0.7557 0.4886 0.2443 0.5114 0.6718 0.4944 05831 9

24 0.1472 0.6932 0.8528 0.3068 0.3696 0.6197 0.4947 18

25*  1.0000 0.4545 0.0000 0.5455 1.0000 0.4783 0.7391 1

26 0.4603 0.7273 0.5397 0.2727 0.4809 0.6471 0.5640 11

27 0.3152 1.0000 0.6848 0.0000 0.4220 1.0000 0.7110 2

* Represents the optimum level of the process parameters
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Step 4: Cumulative Performance Index ranking

The high CPI value indicates that the selected performance characteristics are improved
simultaneously and that their performance is better when they act together (Mia et al.,
2019). Hence, a rank of 1 represents the optimal combination of process parameters.
Experiment number 25 is ranked first in Table 4.4, and the corresponding values of the
process parameters are: 2400 rev/min of spindle angular speed, 0.16 mm/rev of feed rate,

1.0 mm of cutting depth, and 1.2 mm nose radius are found to be optimal parameters for

simultaneous better performance of E., and MRR.

Cdry

The main effect plot of CPI is plotted using the Taguchi technique to analyze the
influence of each level of the process parameter, and the results are shown in Figure 4.4

and Table 4.5.

Table 4.5 Responses table for means of the CPI

Process
n fr dC r
parameters
I 0.4962 0.5040 0.6300* 0.5024
?; | 0.5412 0.5394 0.5126 0.5689
(¢D)
|
i 0.5960* 0.5900* 0.4908 0.5621*
Delta 0.0998 0.0860 0.1392 0.0665
Rank 2 3 1 4

* Represents the optimum level of the process parameters

The larger the CPI, the better is the corresponding performance characteristics (Kant
and Sangwan, 2014). Hence, the level of the process parameter corresponding to the highest
mean is adopted as their optimal level for the CPI. Thus, as shown in Figure 4.4 and Table

4.5, level 3 of spindle speed (i.e. 2400 rev/min), level 3 of feed rate (0.16 mm/rev), and
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level 1 of cutting depth (1.0 mm) are adopted as optimal parameters for CPI. It can be seen
in Table 4.5 and Figure 4.4, that the difference in the mean of level 2 and level 3 for the
nose radius is insignificant. However, the cutter nose radius that provides the intended

outcome can be used. As shown in Eq. (1), keeping other parameters constant, a higher

nose radius reduces cutting energy consumption and does not affect the MRR . Therefore,

level 3 i.e. 1.2 mm was adopted as the optimal level of nose radius for the CPI.

Main Effects Plot for Means of cumulative perfromance index (CPI)
Data Means
0.62

f dc r
0.60
0.58
0.56
0.54
0.52
0.50
12 0.16 1.0 14 18 04 08 12

1600 2000 2400 0.08 0.

n
0.64

Mean of Means

Figure 4.4. Main effect plot for means of Cumulative Performance Index (CPI)

For each process parameter, delta is calculated which is the difference between the highest

and lowest average CPI values. The delta value indicates the relative effect of each factor

on the CPlI, the higher the value, the greater the effect. As shown in Table 4.5, the d, was

found to be the most influential parameter on the CPI followed by n, f. and r. Further,
analysis of variance (ANOVA) was used to test the statistical significance of the process

parameters on the CPI at a 95% confidence level, as shown in Table 4.6.

As shown in Table 4.6, the p-values for each parameter (v., f,, d. and r) is less than

0.05 which shows that each process parameter is statistically significant for the CPI. The
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large F-values (F > 4) indicates the strong relationship between the process parameters and
the CPI. The percentage contribution of ANOVA analysis validated the effect of the process

parameters on the CPI found with the Taguchi technique as shown in Table 4.5.

Table 4.6 ANOVA for Cumulative Performance Index.

Parameters DF SS MS F-Value p-Value PC
Model 4 0.181 0.045 24.280  0.000 81.53

n 1 0.181 0.045 24.280  0.000* 20.17

fr 1 0.045 0.045 24.030  0.000* 14.96

d, 1 0.033 0.033 17.830 0.000* 39.20

r 1 0.087 0.087 46.700 0.000* 7.19
Error 22 0.016 0.016 8.570 0.008 18.47
Total 26 0.041 0.002 100.00

* Represent the significant process parameters; DF: degree of freedom; SS: sum of squares;
MS: mean of squares; PC: percentage contribution

The cutting depth was found to be the highest contributor for CPI with a value of 39.20%,
and the percentage contribution of spindle speed, feed rate, and nose radius was found to
be 20.17%, 14.96%, and 7.19% respectively. The validation experiments were conducted
on the optimal level of the process parameters i.e. ns, fy,, d.,, 73 predicted using the
integrated modelling and optimization approach i.e. GRA coupled with Taguchi, and the

corresponding measured and predicted values of the cutting energy consumption are shown

in Table 4.7.

The experiments on optimal process parameters were repeated three times, and the
mean value was adopted. Table 4.7 shows that energy consumption values predicted by the

integrated modelling and optimization approach are close to the experimental values.

99|Page



Optimization of Variable Power Consumption Machining Processes

Table 4.7 Optimized process parameters with multi-objective optimization based on GRA

coupled with Taguchi method.

Performance Characteristics

Optimized process parameters MRR Ec,,,

(mm?/sec) )
N3, fry A, 13 Measured  Predicted  Error (%)
2400, 0.16,1.0,1.2 612.93 3349.2 3461.76 3.36

4.4.  Discussion

The results of mono-objective and multi-objective optimization are summarized in Table
4.8. It is evident that in multi-objective optimization studies, improvements in a
performance characteristic may cause the deterioration of other performance characteristics

(Camposeco-Negrete, 2015; Kumar et al., 2017; Yan and Li, 2013).

Table 4.8 Summary of optimizations results and their comparison

Optimization approach MRR (mm®/sec) E.,, (J)
Mono-objective optimization of E_,, 306.46 3144.88
Mono-objective optimization of MRR 1119.20 6664.71
multi-objective optimization 612.93 3461.76
Change as compared to mono-objective 99.97% 10.08%
optimization of E_,, (improved) (deteriorate)
Change as compared to mono-objective -45.24% -48.06%
optimization of MRR (deteriorate) (improved)

+ve change represents an improvement in MRR and —ve change represents an

improvementin E
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In Table 4.8, a deterioration in both Ecdry and MRR was observed at the common

optimum parameters compared to their corresponding mono-objective optimization.
However, multi-objective optimization, on the other hand, provides a common optimal

level of process parameters, at which E, dry and MRR are optimized simultaneously,
providing better-compromised decisions. For example, When the MRR and Ecqpy values

on common optimal parameters are compared to their values at optimal parameters with

mono optimization of Ecgry the MRR improves to 99.97%, while cutting energy
consumption only increases by 10.08%. When the MRR and Ecdry values on common

optimal parameters are compared to their values on optimal parameters with mono

optimization of MRR, the Ecdry improves to 45.24% while the MRR decreases to 48.06%.

4.5. Summary

In this chapter, an integrated modelling and optimization approach was used to select the
optimal process parameters for a VPC machining process to trade-off between productivity
and cutting energy consumption. The empirical model was used to determine the values of
cutting energy consumption without conducting actual experiments and is integrated to the
optimization model. The integrated approach reduced the cost required for the time-
consuming measurement procedures and advanced laboratory setup. Multi-objective
optimization i.e. GRA coupled with Taguchi was used to determine the common optimal
level of process parameters on which cutting energy consumption and average-material
removal rate are optimized simultaneously, resulting in better-compromised decisions. On

the common optimal process parameters i.e. ns, f;.,, d.,, 15 the values of the cutting energy

consumption and average- material removal rate are found to be 3461.76 J and 612.93
mm?/sec respectively. The validation experiments were performed on the optimal level of

process parameters obtained through mono and multi-objective optimization, and the error

101|Page



Optimization of Variable Power Consumption Machining Processes

in each case was limited to 4% only. Further, ANOVA revealed that all process parameters
have statistical significance where the cutting depth was found to be most influencing
process parameter followed by spindle speed, feed rate, and cutter nose radius respectively.
The results obtained by ANOVA analysis validated the effect of process parameters found

with the integrated modelling and optimization approach.

Further, the proposed approach could be beneficial for mass production, where the
different factors, such as machine tools, workpiece materials, and cutting tools, remain
constant. Machine tools have a complex and dynamic structure due to the diverse and
complex interaction of various materials, process parameters, and cutting tools. However,
in mass production systems, factor of diversification could reduce, and the projected
approach may be practically possible. This approach can be used in other machining and
industrial processes for energy-efficient process planning and can assist industries in

achieving high-level sustainable performance.
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Chapter 5:

Modelling the Energy Consumption of Machine Tools

In this chapter, energy consumption of a machine tool is divided into different energy
modules: start-up, standby, spindle acceleration, idle, rapid positioning, air-cutting,
Constant Power Consumption (CPC) machining process and Variable Power Consumption
(VPC) machining process. Energy consumption models for each module were developed
and integrated to establish the energy consumption for a machine tool. The fitting
coefficients of the model are determined by conducting experiments under dry and wet
environments. The validation experiments confirm that the accuracy of the developed

model is 97%.

5.1.  Introduction

Computer Numerical Control (CNC) machine tools play an imperative role in the
manufacturing industry and consumes a significant amount of energy in machining
processes e.g. turning, milling and drilling (Kant and Sangwan, 2014; Lv et al., 2016; Tuo
et al., 2018). As previously mentioned that the machine tools have an average energy
efficiency of less than 30% (Yan He et al., 2012). The European Commission has enlisted
machine tools as one of the vital products to reduce electric energy consumption in the
manufacturing processes (Schudeleit et al., 2016). Therefore, reducing the energy
consumption of the machine tools is one of the major challenges for the industries to meet
sustainable manufacturing (Diaz-Elsayed et al., 2015; Hu et al., 2017; Xiao et al., 2019).
Establishing an accurate energy consumption model for machine tools is the basis for
reducing energy consumption. The lack of an accurate and realistic energy consumption
model has hindered the implementation of energy-efficient approaches such as energy-

efficient process planning and scheduling (Lv et al., 2018; Wang et al., 2015).
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A review of the existing literature presented in Chapter 2 reveals several advancements
in this direction. Several models have been proposed in the literature to assess the energy
consumption of machine tools in machining processes. The reported studies are significant
but still lack to evaluate the energy consumption of machine tools for machining cylindrical
part in industrial applications. In industry, the length and diameter are reduced to obtain the
final dimensions of a cylindrical part. Typically, external turning operation is used to reduce
the diameter of the part i.e. Constant-Power Consumption (CPC) machining process and
end facing operation is conducted to reduce the length of the part i.e. Variable-Power
Consumption (VPC) machining process. As previously discussed in Chapter 3, the cutting
power characteristic of the VPC machining process (e.g. end facing) is complicated and
dynamic due to one of the changing input process parameters (e.g. cutting velocity in end
facing) during machining than the CPC machining process (e.g. turning). The existing
energy consumption models only consider CPC machining processes, whereas cylindrical
part machining includes both CPC and VPC machining processes to manufacture the final
product, which result in inaccurate quantification of the energy consumption. To overcome
the above-mentioned research gaps, in this chapter, an energy consumption prediction
model of machine tools for machining cylindrical parts is established. The energy
consumption of a machine tool is separated into different energy modules: start-up,
standby, spindle acceleration, idle, rapid positioning, air-cutting, and cutting. The cutting
energy consumption module is further subdivided into the CPC machining process and
VPC machining process. Energy consumption models are developed for each module and
are integrated to establish the energy consumption model of the machine tool. Experiments
under no-load i.e. non-cutting and cutting were conducted on a LMW-Smarturn CNC lathe

machine tool to acquire the fitting coefficients of the developed models for different
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modules. Four experiments were performed to validate the prediction accuracy of the

developed model.

5.2.  Energy Consumption Modelling Methodology

The power profile of a machine tool during machining of a cylindrical part is shown in
Figure 5.1 and is considered a basis to describe their energy consumption. As shown in
Figure 5.1, the power varies continuously, and it is challenging to develop a single energy
consumption model for the entire process. The total energy consumption (Etwta) can be
decomposed into different modules: startup energy (Estartup), Standby energy (Estandby),
spindle acceleration energy (Eacc), idle energy (Eidie), tool change energy (Ex), air-cutting
energy (Eair), coolant pump energy (Ecoor), cutting tool rapid positioning energy (Erapid) and

cutting energy (Ecut).

- . 1
Etotal Estartup M Estandby + Eacc * Erapld |dIe * E + E rt Ecool * Ecut (1)

Specific models can be obtained for each module based on the power characteristics, and
their definite integration can evaluate the respective energy consumption. Thus, Eg. (1) can

be expressed as:

“"P (t)dt+ S‘dP dt+j"‘°°P t)dt+ ”’dP

startup standby acc rapid ( )dt +

Etotal = (2)
j(;"'ePidledH j “P_dt + j P dt+ j ~'p_,dt+ j““‘P dt

air cut

Where Pstartup (t), Pstandby, Pacc (t), Prapid (t), Pidie, Ptc, Pair, Pcool and Pyt are the startup power
at an instant t, standby power, spindle acceleration power at an instant t, rapid power at an
instant t, idle power, tool change power, air-cut power, coolant pump power, and cutting
power respectively. tsyp, tstd, tacc, trpd, tidle, ttc, tair, tcool and teut are the periods of different
modules: startup, standby, spindle acceleration, rapid positioning, idle, tool change, air-cut,

coolant, and cutting respectively.
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Figure 5.1. A typical power profile of a machine tool during machining of a cylindrical part.
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In Eq. (1), Ecu is the cutting module energy consumption i.e. during which material is
removed from the cylindrical part. However, as previously mentioned, the cutting energy
for machining a cylindrical part can be further divided into cutting energy of the CPC
machining process (Ecut cpc) and cutting energy of the VPC machining process (Ecut vec)

and can be expressed as:

Ecut = Ecut_CPC + Ecut_VPC

cut cpc typc
E j‘ IDcutdt j cut _ CPCdt +IO IDcut_VF’C (t)dt (3)

Where Pcyt cpc is the power consumption in the CPC machining process and Peyt vec (t) is

the power consumption at an instant t in the VPC machining process. 1, =t +1pc,

where tcec and tvec are the time of the CPC machining and VPC machining process
respectively. By substituting Eq. (3) in Eq. (2), the total energy consumption of a machine

tool for machining of a cylindrical part can be expressed as:

stp std acc rpd tidle
Pstartup ( )dt I:)standby dt J. Pacc dt + J- Prapld )dt + jO I:)idle (t) dt + (4)
total - air cool t\/PC
0 Ptc dt J. P dt + I P dt _[ cut CPC Pcut _VPC ( )dt

air cool

The energy demand estimation for the aforementioned different energy modules is

presented in the following subsections.

5.2.1 Start-up energy consumption

Start-up energy provides power to cooling systems, hydraulic systems, control panels, and
display devices for a short duration. It is constant for a machine tool and does not depends
on the process parameters as shown in Figure 5.1. It can be calculated by the definite

integral of power with respect to time. Hence, the start-up energy can be calculated as:
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Estartup = J-Z:m Pstartup (t) dt )
5.2.2 Standby energy consumption

Standby power is a fixed power required by a machine tool once the start-up power spike
stabilizes. In the standby state, the various systems such as the cooling systems, hydraulic
systems, control panel and visualizing components are in an active state and confirm the
normal operative condition of the machine tool (Y He et al., 2012). This power is steady
and does not depend on the process parameters, although standby time depends on the type
of machine tool, part/tool holding device, and proficiency of the operator. The standby
power can be experimentally measured, and the standby energy consumption can be

computed as:

tstd
Estandby = IO Pstandby dt = Pstandby X tstd (6)

5.2.3 Spindle acceleration energy consumption

The spindle system typically includes a spindle motor, frequency converter, speed sensor,
and mechanical transmission gear/pulley arrangements. A significant power spike occurs
during spindle acceleration because the spindle system needs the power to endure the
substantial standing inertia of the spindle motor and transmission system in order to run the
spindle at the desired speed. The energy spent during spindle acceleration is a function of
power, as illustrated in Figure 5.1, and can be estimated using the definite integral of power
with the function of time. So, the spindle acceleration energy can be computed as:

Eacc = J.tacc Pacc (t) dt (7)

0

The laws governing the power characteristics of spindle acceleration are complex and
difficult to determine. However, for a given spindle speed acceleration, energy
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consumption is constant, this indicates that there is a functional relationship between
spindle acceleration energy and spindle speed (Liu et al., 2015). Hence, the spindle
acceleration energy consumption for several selected angular speeds can be recorded, and
based on these data its regression model in terms of angular speed can be developed as

shown in Eq. (8).
E... =X XN +X,xN+X, (8)

Where x1, X2 and xs are fitting coefficients, n is spindle angular velocity in rev/min.

5.2.4 Coolant pump energy consumption

Coolant pump power is a fixed power required by a machine tool once the coolant pump
motor is turned on for the wet cutting environment. This power is steady and does not
depend on the process parameters and is generally mentioned in the technical specifications
of the machine tools or can be experimentally measured and the corresponding energy

consumption can be calculated as:
tcool
Ecool = _[0 I:)cool X dt = I:)cool ><tcool (9)

5.2.5 Tool change energy consumption

CNC lathe machine tools are equipped with an automatic tool changing rotary tool post
which is mainly driven by an electric motor. The tool change procedure is regulated by the
electromagnetic reversing valve and sequencing valve, which comprises indexing, raising,
and locking the tool post (Zhou et al., 2022). Although the procedure of automatically
changing tools is complex, the time required is very short. The tool changing power can be

measured experimentally, and the energy demand is calculated as follows:

™
Etc = '[0 Ptcdt = Ptc Xt (10)
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5.2.6 Idle, air-cut, and rapid positioning energy consumption

In the idle module the spindle runs at a specific speed and the machine is in functioning
readiness as shown in Figure 5.1. The idle power contains the standby power and spindle
power; and for a given spindle angular speed, the value Pjqie is constant (Liu et al., 2015).
Therefore, the idle power can be logged for several selected spindle angular speeds, and
based on this data its regression model as a function of spindle angular speed can be

developed as stated in Eq. (11).
Pae = Y X1° +Y, XN+, (11)

Where y1, y2 and ys are fitting coefficients.

For a given idle period (tia), the idle energy can be calculated as:

tige
Eige :j Paiedt = Py Xt (12)

0

Air-cutting power (Pair) includes idle power and feeding power when the cutting tool is
not engaged in cutting the part. The air cutting module is intended for the safe entry of the
cutter for the cutting operation i.e. approach length for the cutter. Air cutting power is the
power consumption in the absence of actual machining, in which process parameters such
as feed rate and tool path are kept the same as those followed during the actual machining

and can be expressed as:

P

air — Pidle + Pf (13)

Where P, is feed power. For the given air-cut period (tair), the air-cut energy can be

calculated as:
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tailr
E. = -[0 Pair dt = Pair xtair (14)

air

In Eq. (14), P can be the z-axis feed power (Ps) or x-axis feed power (Ps) depending on
the machining process e.g. Px, in the turning process and Ps in end facing. For each feed
axes, the feed power can be recorded for several selected feed rates and a linear regression
model in terms of a feed rate can be developed (Lee et al., 2016). The feed axis power

consumption can be expressed as:
Pf = Co X fr +C1 (15)

Where ¢, and c; are fitting constants.

Rapid positioning involves the cutting tool moving quickly along a single axis or
multiple axes to take the position needed for the subsequent cutting operation. Rapid
positioning is a non-productive activity accomplished with the maximum possible feed rate
of the machine tool. CNC machine axis generally has a very high rapid positioning
acceleration, which makes the duration very short (Jia et al., 2017). Although it can result
in high power peaks (corresponding to the maximum feed rate), the feeding axis decelerates
for precise positioning before reaching the maximum feed rate, resulting in lower energy
demand. Therefore, short-time power peaks are produced during the rapid positioning,
which does not significantly affect the machine tool's total power consumption. Thus, in
the present study, the power consumption during rapid positioning was adopted as

equivalent to idle power.

5.2.7 Cutting energy consumption
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The power required to remove the material from the part in the form of chips is called the
material-removal power (Pm). The power demand of a machine tool during the cutting

module is the sum of Pige, Pt, and Pm and can be expressed as:
Pt =Pae + P +F, (16)

In Eq. (16), the material-removal power can be calculated as (Deng et al., 2017):

P, =(1+L)xPRy (17)
Where Py is the theoretical cutting power and L. is the power loss constant.

VC
Pcut = Fc X& (18)

Where, Fc is the main cutting force in N. Empirically Fc can be represented as (Jia et al.,

2016):
F. =k xCp x V™ x f'% xd " (19)

Based on Egs. (17) ~ (19), the Pm can be expressed as:

Nee+1

Py = (L+ L) xks xC, X[V%o ) £ (20)

The above empirical formula shown in Eq. (20) can be expressed as:

P =CxVv®xf/xd’ (21)

C.
Where C = (1+L, )xk. — a=ng +1 f=y, and 7 =X .
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In a CPC machining process, the process parameters (vc, fr and dc) remain unchanged
and thus, the material removal power should be constant for the given process time, and

hence, based on Eq. (21), the P for CPC machining process (Pm_crc) can be expressed as:

Pm_cpc = Cep X V(¥ X frﬂc xdle (22)

Where Ccp is a constant and ¢, ,BC, and ), are exponents (i.e. coefficients) of cutting

velocity, feed rate and cutting depth respectively in Pm_cec model. Several authors (Ma et
al., 2014; Parida and Maity, 2017) have reported that the cutting tool nose radius is one of
the vital tool geometry that significantly influences the cutting power. This signifies that
the cutting power model should incorporate the nose radius, and the cutting power model

in Eq. (22) can be written as

P orc = Cep XVJ° x frﬂc x4/t x r% (23)

m

Where 5c is the exponent for tool nose radius. The material-removal power can be

measured for several combinations of the process parameters in the cutting experiments
and can be used to determine the fitting coefficients of Eq. (23). The corresponding energy

consumption can be expressed as:

fepe ac c (] I
Em_cpc :J.O Put_CPCdt =Cep XV X frﬂ x A7 X1 xtepe (24)

¢

In the present study, turning is considered as a CPC machining process and based on Eq.

(16), the total cutting energy can be evaluated as:

tepe tepe tepe
Eout_cpc = .[o Pyedt + .[o P, dt "‘j Pt_cpcdt

0

Eoue_cpc = (Paie Xtepe) + ( P, Xtepc ) +(Cop x Vg x £/ xdF X% xtep.) (25)
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Whereas, as previously mentioned in Chapter 3, at least one of the machining
parameters in the VPC machining process changes with time. As a result, the cutting power
varies, and its characteristics become more complicated. The power consumption of the
VPC machining process can be broken down into S sub-intervals. Each sub-interval will
become a CPC machining process as the number of sub-intervals increases (Chapter 3).
The material-removal power model of the VPC machining process can incorporates various
time-dependent cutting parameters and can be used for a variety of VPC machining
processes such as end facing, chamfering and grooving. Based on the kind of VPC
machining process, a mathematical formula for time-dependent changing process
parameters can be established and utilized to develop the VPC machining process model.
In this study, the VPC machining process i.e. end facing is considered and the model was

developed in previous Chapter 3: Eq. (18) as stated in the following equation:

2x f xxn? “
P =C VA [l SAGEARLIN, (VT fA sd xr®
m_VPC PX( max L 60000 ]X J X r X c X

(26)

Where Cvp is a constant and @, ., 7. and O, are exponents of cutting velocity, feed

rate, cutting depth and tool nose radius respectively in Pm vec model. The material-
removal energy (E, vec) can be calculated as:

typc
Em_vpc :J‘ I:)m_vpc dt (27)

0

Based on Eg. (16), the total cutting energy during the end facing VPC machining process
can be evaluated as:

tpc
0

tpc bpc
Eeut_vec = jo Paedt + _[ Py dt + '[0 Pt _vpc
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Pate X tpe + Ppy X type +

Ecut_VPC = typc 2x fr X 7T X n2 “ A s (28)
J‘O CVPX Viax — W xt Xfr xdgxr dt

5.2.8 Energy consumption of machine tool for machining a cylindrical part

The summation of the energy consumption of each module contributes to the total energy
consumption of a machine tool for machining a cylindrical part. Hence, based on Eq. (4)
and Egs (5), (6), (8), (9), (10), (12), (14), (25) and (28), the energy consumption of a

machine tool for machining a cylindrical part can be written as:

Qslp Qstd
Z j=1 Estartup + Z j=1 ( Pstandby X tstd ) +

Qace Qidle Qe Qair
Z(Xl X n2 +X2 ><rH'X3)'i'Z:(Pidle ><tidle)-i_Z(Ptc ><ttc)_|_2(l:)air ><1:air)-i'
j=1 j=1 j=1 j=1

QCPC

Qoo o, B Ve O
= ZJ:J_ (Pcool ><tcool) + Z(Pidle ><tCPC + sz ><tCPC + CCM ><Vc X fr X dc xr ><tCPC)
j=1

Pae Xtype + Py XType +
Q\/PC

+ 2 - '
=i J.;VPC [CVP >{vmaX _[%qu x f A xdl xr® Jdt

total

(29)

Where Qstp, Qstd, Qace, Qidle, Qte, Qair, Qeool, Qcpc and Qvec represents the quantity of:
standby, spindle acceleration, idle, tool change, air-cut, coolant ON, CPC cutting, and VPC

cutting modules respectively.

5.3. Experimental Scheme

Experiments were conducted on an LMW-Smarturn CNC lathe machine tool in the dry and
wet environment to obtain the fitting constants of the different modules of the energy
consumption model as stated in Eqg. (29). The machine tool's technical specifications are

listed in Table 5.1. The cutting inserts manufactured by the Sandvik of ISO designation
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CNMG 120408 were used for performing the cutting operations and were mounted on a
tool holder of ISO designation PCLNR 2020 K 12. Aluminum of grade Al 6061 was chosen
as the part material due to its wide range of applications in the manufacturing industries.
The Fluke 435 series |1 Power Analyzer was used to measure the power consumed by the
CNC machine tool straight from the main supply bus. Three current sensors and three
voltage sensors integrated with alligator clamps were used to link the power analyzer to the

CNC machine tool's 3-phase main power bus supply.

Table 5.1 The machine tool's technical specifications.

Specification

Data

Manufacturer/type

Machine sizes (LxBxH)

Power rating of the spindle motor
x/z axes motor power rating
Coolant pump motor power rating
Max. spindle angular velocity
Type of Controller

Maximum diameter to be turned
Swing over bed/carriage
Maximum length to be turned
Maximum travel range:

X-axis

z-axis

Rapid traverse (x/z axes)
Turret/tool indexing head

(No. of tool station)

Tool shank size

LMW Ltd./ Smarturn CNC lathe
2275 mmx 1640 mmx 1620 mm
5.5 kW (Fanuc B6i)

1.2 kW (Fanuc BiSc8)

0.3 kW

4500 rev/min

Fanuc oi-TF

200 mm

480 mm/260 mm

262 mm

105 mm

320 mm
10000 mm/min

20 x 20
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Figure 5.2 depicts the experimental setup and approach used in this investigation. The
cutting parameters: speed (vc), feed rate (fr), cutting depth (dc) and tool nose radius (r) were
selected as process parameters for the CPC machining process of cutting energy module

i.e. turning process, and are provided in Table 5.2.

Table 5.2 Process parameters and their related levels for the turning process

Ve fr de r
Process parameters
(m/min) (mm/rev) (mm) (mm)
I 144 0.10 0.5 0.4
5 I 184 0.15 1.0 0.8
hr
" 224 0.20 15 1.2

In the VPC machining process of cutting energy module i.e. end facing, the vc change
continuously until the tool reaches to the center of the part and therefore instead of v,
spindle angular speed (n) was selected with feed rate (fr) and cutting depth (dc) as process
parameters. The detailed information on the design of experiments, experimental setup,
power consumption measurement and related peripheral conditions for obtaining the fitting
coefficients of VPC machining process i.e. end facing model shown in Eqg. (28) have been
discussed in Chapter 3. Machine tool constraints and cutting tool supplier guidelines were
used to adopt the values of the process parameters. The design of experiments was prepared
based on Taguchi's Lo orthogonal array and shown in Table 5.3. To reduce the experimental
cost and time, the Lo orthogonal array is mainly chosen for a combination of four process

parameters at three levels.
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Power profile of a machine
tool during machining a
cylindrical part
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wachining cylindrical part

Cutting tool and Cylidrical part

Figure 5.2. Experimental setup and adopted methodology.
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Table 5.3 Taguchi's Lo orthogonal array for the turning process experiments

Process parameters

Experiment

Ve fr dc r
No.

(m/min) (mm/rev) (mm) (mm)
1 144 0.10 0.5 0.4
2 144 0.15 1.0 1.2
3 144 0.20 1.5 0.8
4 184 0.10 1.0 0.8
5 184 0.15 1.5 0.4
6 184 0.20 0.5 1.2
7 224 0.10 1.5 1.2
8 224 0.15 0.5 0.8
9 224 0.20 1.0 0.4

5.4.  Determining the Fitting Coefficients of Different Energy Modules

The fitting coefficients of different energy modules were determined by applying
regression analysis to the experimental data. The corresponding computations of energy
consumption for each module are discussed below.

The start-up energy and standby power of the LMW-Smarturn were measured three
times and found to be 21.12 kJ and 0.75 kW respectively. According to the machine tool
technical specification in Table 5.1, the coolant pump power consumption is 0.3 kW, which
was confirmed by measurement. Further, experiments were performed at intervals of 100
rpm for several spindle speeds to measure spindle acceleration and idle energy
consumption. This database was used to determine the fitting coefficients of the spindle

acceleration energy consumption module and idle power module. The experimental results
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of spindle acceleration energy consumption and idle power consumption are summarized

in Figure 5.3 and Figure 5.4 respectively.

35000 -
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20000 -
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10000 -

Spindle acceleration energy
consumption (J)
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Spindle speed (rev/min)

Figure 5.3. Spindle acceleration energy consumption at intervals of 100 rpm.
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Figure 5.4. Idle power consumption at intervals of 100 rpm.

According to Section 5.2.3, measured spindle acceleration energy data was used to

determine the fitting coefficient of Eq. (8), and corresponding spindle acceleration energy

consumption can be computed using the following equation.

E... (J)=(0.0017xn?)+(0.6112x n)+589.93 (30)
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According to Section 5.2.6, measured idle power data was used to determine the fitting
coefficient of Eq. (11), and corresponding idle power can be estimated using the following

equation.

Pae (W) =(-3.3x10"° xn* )+ (0.6035x n) + 786.95 (31)

Further, to determine the fitting coefficients of the feed axes power models: z-axis and
X-axis; x-axis up and x-axis down, the feed power under no-load condition for each feed
axis is measured at an interval of 500 mm/min for the range of 500-5000 mm/min. The
experimental results are provided in Table 5.4. In the LMW-Smarturn machine tool, the x-
axis feed drive is at an inclination, and therefore the feed power is measured for both

directions: up (considered as +ve ) and down (considered as —ve) separately.

Table 5.4 Experimental results of feed axes power under no-load condition.

Feed
(mm/min) 5 10 15 20 25 30 35 40 45 50

(x100)

P (W)

z-axis 40 40 40 40 40 70 70 70 100 100
x-axis (down) 20 20 20 20 20 20 50 50 50 50

X-axis (up) 40 40 70 70 100 100 130 130 160 190

The measured feed power data of Table 5.4 was further used to determine the fitting
coefficients of Eqg. (15) and the corresponding feed power can be calculated using the

following equations:
For Z-axis feed drive:

P, (W)=(0.0149 x f, )+20.00 (32)
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For x-axis (up) feed drive:
P,. (W) = (0.0324>< f ) +14.00 (33)
For x-axis (down) feed drive:

P

fx—

(W) =(0.0087x f,)+8.00 (34)

According to Section 5.2.6, based on Eg. (13) and Eq. (32), the air-cut power can be

calculated as:

al

P =((-3.3x10° xn*)+(0.6035x ) +786.95) + P, (35)

The cutting experiments of the turning process for different combinations of process
parameters were performed according to Table 5.3 to acquire the fitting coefficients of the
material removal power model of the turning process. The measured total power (Ptotar), air
cut power (Pair) and corresponding calculated material removal power (Ptota— Pair) under a

dry cutting environment are listed in Table 5.5.

According to Section 5.2.7, based on experimental data shown in Table 5.5, the fitting
coefficients of the material-removal power model for turning, as stated in Eq. (23), were
determined. The values of the fitting coefficients were: Ccm = 0.3071, a, = 0.3844, . =
0.6520, y, = 0.9268 and 6. = -0.2184. By substituting the values of the coefficients into

Eg. (23), the material-removal power can be calculated using Eq. (36).
Pm_cpc (kW) — 03071>< Vé).3844 > fr0.6520 > d3.9268 > r—0.2184 (36)

As stated in Eq. (25) and based on Egs. (31), (32) and (36), the total cutting energy

consumption during the turning process can be evaluated as:

122 |Page



Modelling the Energy Consumption of Machine Tools

(~3.3x10°° xn? +0.6035 % n + 786.95) |
Xlepe +
1000

Ecut_CPC (k‘J ) =

(0.0149x f, +20.00)
X1tepe + (37)

1000

0.3844 0.6520 0.9268 -0.2184
(O.3071>< v, x f, xd, xTr )x tepc

Similarly, fitting coefficients for the material removal power during the turning processes
in a wet environment can be obtained, and the corresponding total cutting energy can be

calculated.

Table 5.5 Cutting power data for turning experiments.

Exp. Ve fr dc r Protal Pair Pm_cpc
No. (m/min) (mm/rev) (mm)  (mm) (kW) (kW) (kW)
1 144 0.10 0.5 0.4 1.800 1.490 0.310
2 144 0.15 1.0 1.2 2.100 1.500 0.600
3 144 0.20 1.5 0.8 2.640 1.510 1.130
4 184 0.10 1.0 0.8 1.950 1.490 0.460
5 184 0.15 1.5 04 2.670 1.500 1.170
6 184 0.20 0.5 1.2 1.890 1.510 0.380
7 224 0.10 1.5 1.2 2.310 1.490 0.820
8 224 0.15 0.5 0.8 1.920 1.500 0.420
9 224 0.20 1.0 0.4 2.550 1.510 1.040

Ptotar: Total power consumption, Pair: air cut power consumption

The fitting coefficients of the VPC machining process (end facing) model shown in Eq.

(26) were determined in a previous Chapter 3 for the same workpiece and cutting tool
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combination (i.e. aluminium Al 6061 and carbide inserts). The VPC machining process

model for end facing can be expressed as:

2 0.7641
Pm_VPC (kW) =99.51x107° x (Vmax — h&)#oxn X tJ X frl'1385 X dcl‘1145 x 0281 (38)

As stated in Eg. (28) and based on Egs. (31), (34) and (38), the total cutting energy during

the end facing can be evaluated as:

Ecut_VPC (k‘J ) =

(—3.3><10*5 xn? +0.6035x N + 786.95)
Xpe +

1000

(0.0087 x f, +8.00)
1000

] Xtpe + (39)

0 60000

9 0.7641
jtvpc [99.51><103 (Vmax _ 2% fr X7XN xtJ % fr1,1385 % dc1.1145 % r—o.2331 dt

Since, in this study, the turning and end facing experiments were performed with the
same cutting tool and no tool change occurred, hence the tool change energy consumption
was not considered. In total, based on Eqg. (29) and Egs. (30), (31), (35), (37) and (39), the
total energy consumption prediction model of a machine tool for the machining of a

cylindrical part can be expressed as:
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Etotal (k‘]) =
% Qu %[ ((0.0027n”) +(0.6112xn) + 589.93)
21.125+ ) (0.75xt
JZ_; +JZ_;( X std)+ = 1000 +
Estar—up Estandby =

acc

Quge —3.3x107° xn*)+(0.6035x n) + 786.95
(( ’ ’ ) ( ’ ) ) Xtidle +Z?Z1(Ptc><ttc)+

= 1000 e
Em
Emm
Qi —3.3x10° xn?)+(0.6035xn)+786.95)+ P
((( ) ( ) ) f ) Xtair + ZQC_OOI(PCOOI ><tcool ) +
= 1000 3=t .

cool

Emr

(—3.3><10_5 xn% +0.6035x N+ 786.95) (0.0149 x f, + 20.00)
Qcpc X CPC CPC
+

1000 1000

+(O.3071>< Ve x fre xdle xr )Xtcpc

ECPC

[(3.3x105 xNn? +0.6035x n + 786.95)} ((0.0087 xf + 8.00)
X lypc

1000 1000 J “hec ¥

=1 2 Qym
J.tvpc 99.51x107°| v —Mxt x £ xd? xr® |dt
0 60000

Evpc i
(40)
Whereas the values of the fitting coefficients corresponding to the cutting environment are

summarized in Table 5.6.
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Table 5.6 Fitting coefficients of total energy consumption model.

Cutting Fitting coefficients

environment

Cem = 0.3071, o, = 0.3844, 5. = 0.6520, y, = 0.9268, 6. = -0.2184
Dry
Cey = 99.5115, a,, = 0.7641, B, = 1.1385, y,, = 1.1145, §,, = -0.2331

Cey = 0.1479, a, = 0.5676, 5. = 0.7407, y, = 1.0308, 6§, = -0.0208
Wet
Coy = 34.5943, a, = 0.8232, 5, = 0.8387, y,, = 1.3399, §,, = -0.2516

5.5.  Validation of the Proposed Model

In order to verify the proposed model's prediction accuracy, four validation experiments
were performed; two in the dry environment and two in the wet environment. The initial
blank size of the cylindrical part to perform validation experiments is shown in Figure 5.5.
To prove the practical applicability of the developed model, a cylindrical part was chosen
which incorporates both turning i.e. CPC machining and end facing VPC machining
processes. Furthermore, the levels of the process parameters used for validation
experiments were kept different from the levels used to acquire the fitting coefficients of

the models and are listed in Table 5.7.

Portion to betheld in the
maching tool

50

*All dimensions are in mm

Figure 5.5. The orthographic drawing of the cylindrical part.
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The operational details of each module, process parameters, process time, and
corresponding energy consumption for validation Test-I are shown in Table 5.8. The
machine tool is in standby mode (sequence number 2 of Table 5.8) during the setup of the
cylindrical part in the chuck, and the energy consumption for a setup time of 5 seconds can

be calculated using Eq. (6) as follows.

Q=1

Estandby = z Pstandby x tstd =750x5=3750J (41)
j=1

Table 5.7 Process parameters for the validation experiments.

Test  Cutting D n Ve fr de r Length

No. environment (mm) (rev/min) (m/min) (mm/rev) (mm) (mm) (mm)

I 50.0 800 125.60 0.05 0.6 08 50
Dry

I 49.0 1200 184.63 0.10 1.8 08 50

i 47.0 800 118.06  0.05 0.6 08 50
Wet

vV 475 1200 178.98 0.10 1.8 08 50

The spindle acceleration energy consumption ( Eacc) for angular speed of 800 rev/min

(sequence number 3 of Table 5.8) can be calculated using Eg. (30).

Qage =1
E.e = . Eqe =(0.0017x800°) +(0.6112x800) +589.93 = 2166.89 J (42)

j=1

The idle power (Pime) at a spindle speed of 800 rev/min can be calculated using the Eq.

(31):

Pye = (~3.3x10°° x800% ) + (0.6035x 800) + 786.95 = 1248.63 W
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Table 5.8 Summary of the validation process for Test-1 on LMW-Smarturn CNC lathe

Time

Parameters Energy
Seq. o ©)
No. Description Module L* n fr de
(mm) (rev/ (mm (mm)
min)  /rev)
1 Start-up Start-up - - - - - Estartup
2 Setup of the Standby - - - - 5 Estandby
part in
the chuck
3 Spindle Spindle - 800 - - - Eacc
powered acceleration
4 Idle Idle - 800 - - 1 Eidlex
5 Rapid Idle 250 800 - - 15 Eidle2
Positioning
of
cutting tool
6 Cutter Air-cut 2 800 0.05 - 3 Eair1
approach for
end facing
7 End facing VPC 25 800 0.05 0.6 37.5 Ecut_vec
cutting
8 Rapid Idle 27 800 - - 0.2 Eidles
Positioning
of
cutting tool
9 Cutter Air-cut 2 800 0.05 - 3 Eair2
approach for
end facing
10 Turning CPC 50 800 0.05 0.6 75 Ecut_crc
cutting

*L is the distance travelled in the respective operation.
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As shown in Table 5.8, there are three idle modules (sequence numbers 4, 5, and 8 of Table
5.8) and the corresponding energy consumptions can be calculated using Eg. (12) as

follows:

Qigle =3
Ege = O Pacliye = (1248.63x1) + (1248.63x1.5) + (1248.63x0.2)= 3371300 (43)
1

j=

As shown in Table 5.8, there are two air-cut modules (sequence numbers 6 and 9 of

Table 5.8) i.e. end facing ( Eam) and turning (Eair2)- The corresponding energy consumption

can be calculated using Eq. (14) and Eq. (35) as follows:

Qair =2

Eo= > Pty =Eun +E

air air air
j=1

air 2

(((~3-3x10° x8007 + 0,605 x800-+ 786.95) + (0.0087 x40+ 8.00))x3) +
E. =

air

(((—3.3x10-5 x8007 +0.6035x 800 + 786.95) +(0.0149 x 40+ 20.00))><3)

E.. =3770.93+3807.67 =7578.61J (44)

The cutting energy consumption of the end-facing operation (sequence number 7 of

Table 5.8) can be computed using Eqg. (39).

(1248.63 x37.50) + ((0.0087 x 40 +8.00x 37.50) ) +

Sl 2x0.05x 7x800) )"
Eet vec = Z 3750| 99.51x| 125.60 — : a xt % 0. 0511385
= 60000

dt

XO. 61.1145 > 0'8—0.2331

E,y we =48308.18 ] (45)
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The cutting energy consumption of the turning operation (sequence number 10 of Table

5.8) can be computed using Eq. (37).

Qpe-1 (1248.63 x 75) +((0.0149 x 40 + 20.00) x75) +

E
= |((307.12x125.60"%* x 0,05 x 0.6°% x 0.8%) x75)

cut_CPC —

Es oo = 108884.37 (46)

Finally, as shown in Eq. (40), the total energy consumption (Emm) for machining a

cylindrical part can be determined by aggregating the energy consumption of the different

modules i.e. Eq. (41), (42), (43), (44), (45), and (46).

Etotal = Z Estart—up + Z Estandby + Z Eacc + Z EidIe + Z Eair + Z Ecut_CMRR + Z Ecut_VMRR
E,., =195684.24 ]

The same methodology was followed to determine the total energy consumption of the
remaining validation experiments. The total computed energy consumption and
corresponding measured total energy consumption of each validation test are summarized
in Table 5.9. The prediction accuracy of each validation experiment is calculated using the

following Eq. (47).

total neas

Accuracy (%) = [1—

an _an
tot Ipred totaleas ‘Jxloo (47)

Where Etotalpred represents the total computed energy consumption of the machine tool of

each validation test and Em,meas represents the corresponding actual measured total energy

consumption.
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Table 5.9 shows that the proposed model's prediction accuracy is more than 97% in
each test process, hence the model can be effectively applied to predict the energy
consumption of a machine tool beforehand. Accurate prediction of the energy consumption
of a machine tool before actual machining is important information for a process planner.
Based on this data, the process planner can evaluate several processes plans and identify

the most energy-efficient ones.

Table 5.9 Summary of validation test results.

Cutting Total energy consumption (J ) Accuracy
Test No.
environment S ol (%)
I 195684.24 193220 98.72
Dry
I 119243.21 116204 97.38
" 223671.88 222780 99.60
Wet
v 130474.22 126480 96.84

5.6.  Summary

This chapter presents a novel approach to model the energy consumption of a machine tool
for the machining of cylindrical parts in dry and wet environment. The energy consumption
is divided into different energy modules: start-up, standby, spindle acceleration, idle, rapid
positioning, air-cutting, and cutting. The developed model overcomes the limitations of
existing energy consumption models for accurate estimation of cutting energy consumption
by incorporating separate energy modules for the VPC machining process and CPC
machining process. The fitting coefficients of each energy module were obtained by
conducting experiments on a LMW-Smarturn CNC lathe machine tool and integrated to
establish the energy consumption model. The validation experiments were carried out in

the dry and wet environment to ensure the proposed model's prediction accuracy. The
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validation results show that the developed model's accuracy was 97% in each test. Based
on the elementary information of machine tools, sequence of operations and the part
drawing, the developed model can be used by the process planners to identify the most
energy-efficient based process plan before actual machining of a cylindrical part.
Moreover, accurate and practical energy consumption models of machine tools can bring
many advantages to the manufacturing industry, ranging from sustainable process planning

to energy monitoring of machine tools.

The proposed model can be utilized for development of an empirical model to quantify

carbon emissions for machining of cylindrical parts.
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Chapter 6:

Modelling the Carbon Emissions of Machine tools

In this chapter, an empirical model is developed to quantify the carbon emissions (CEM)
of machine tools for machining cylindrical parts. The CEM associated with a cylindrical
part machining are decomposed into CEM from electrical energy consumption, material
consumption, cutting tool wear, coolant consumption and from the disposal of machining
waste materials. The corresponding CEM models are developed and are integrated to
quantify the total CEM of the machine tool for machining cylindrical parts. Finally, the
developed model is applied on a cylindrical part with three different process plans to

validate the developed model for practical implementation in industry.

6.1. Introduction
Establishing an accurate carbon emissions (CEM) model of machine tool as a function of
process parameters is the basis for implementing energy-efficient and low carbon emission

process planning and scheduling (Lv et al., 2018; Wang et al., 2015).

A review of the currently available literature presented in Chapter 2 demonstrates the
substantial advancements in this area. One group of researchers attempts to solve this
problem by modelling and evaluating the energy consumption of CNC machine tools,
processes, and systems. As a result of growing environmental issues and stringent carbon
emission regulations imposed throughout the globe, a growing number of another group of
authors are focusing on assessing the CEM of machining processes. Although the existing
carbon emission quantification approaches discussed in Chapter 2 are significant but still
lacks to accurately evaluate the CEM of a CNC-based machining process for industrial
applications. As highlighted in Chapter 5, In industry, the length and diameter are reduced

to obtain the final dimensions of a cylindrical part. Typically, external turning operation is
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used to reduce the diameter of the part i.e. Constant-Power Consumption (CPC) machining
process and end facing operation is conducted to reduce the length of the part i.e. Variable-
Power Consumption (VPC) machining process. The existing CEM models only consider
CPC machining processes, whereas cylindrical part machining includes both CPC and VPC
machining processes to manufacture the final product, which result in inaccurate
quantification of the CEM. Furthermore, majority of studies considered the energy
consumed for a particular period of a machining process. However, machining of a
cylindrical part includes spindle acceleration periods, standby periods, idle periods, air-cut
periods, tool changing periods, and cutting periods (CPC and VPC machining process), due
to which existing models are incapable to assess CEM accurately in industries for

machining of cylindrical parts.

To overcome the above-mentioned research gaps, the objective of this Chapter is to
develop an empirical model that accurately quantifies the CEM of a cylindrical part before
it is machined. A detailed description of the entire machining process breakdown to
quantify the source of CEM is presented in the next section. The CEM associated with a
cylindrical part machining are decomposed into CEM from electrical energy consumption,
material consumption, cutting tool wear, coolant consumption and from the disposal of
machining waste materials. The corresponding CEM models are developed and are
integrated to quantify the total CEM of the machine tool for machining cylindrical parts.
Finally, the developed model is applied on a cylindrical part with three different process

plans, in which the influence of process parameters on CEM is analyzed.

6.2.  Carbon Emission Modelling
This chapter aims to accurately estimate carbon emissions for machining a cylindrical part

on a CNC machine tool. Carbon dioxide (CO>) is the most significant contributor to
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greenhouse gases. The amount of CO» produced during the machining process is referred
to as carbon emissions (Panagiotopoulou et al., 2022). It is expressed in kilogrammes of
CO. equivalent. During the CNC machine tool-based machining process, numerous factors
(direct and indirect) contribute to CEM. For example, CEM is not directly produced by the
use of electrical energy on a machine tool, rather, it is produced due to generation of
electricity in power plants utilizing fossil fuels (Li et al., 2015). Therefore, in the present
study, the extended system boundaries of a machining process recommended in the
literature (Dahmus and Gutowski, 2004; Yi et al., 2015) are adopted to account for the
indirect causes of CEM. Accordingly, the CEM of a machining process as shown in Figure
6.1 include (a) CEM due to the generation of electricity consumed in a machining process,
(b) CEM due to the production of raw materials, tooling and coolants consumed in a
machining process and (c) CEM due to the disposal of wastes (chips, scrap cutting tools
and scrap coolant) produced in a machining process, Thus, the total carbon emission

(CEMotar) for a machining process can be expressed as (Li et al., 2015; Zhang et al., 2017):

CEM,yy = CEM,, +CEM,, +CEM,,, +CEM,, +CEM,,, )

total elec

Where CEMeiec is the carbon emissions due to electrical energy consumption of the machine
tool, CEMcooi is the carbon emissions due to the coolant consumption, CEMogl is the carbon
emissions due to the tool wear, CEMn is the carbon emissions due to the material
consumption which include the emissions due to the raw material production and
transportation; and CEMchip IS the carbon emissions due to post-processing of chips for

material recovery.
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Figure 6.1 CEM from a CNC based machining process.
6.2.1. Quantification of CEMelec

The CEM due to the electrical energy consumption can be quantified using the following

equation:

CE'\/Ielec (kgcoz) = CEFeIec X Etotal (2)

Where CEFeiec is the CEM factor for the machine tool's electrical energy consumption
which depends on how the electricity is generated and it differs from nation to nation. Etotal

is the total electrical energy of the machine tool during the machining process.
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The detailed procedure for modelling the total electrical energy consumption for
machining a cylindrical part considering various energy modules: start-up, standby, spindle
acceleration, idle, rapid positioning, air-cutting, and cutting (CPC machining process and
VPC machining process) is presented in Chapter 5. Energy consumption models are
developed for each module in Chapter 5 and are integrated to establish the total energy

consumption model of the machine tool as shown in Eqg. (3).

Qstp Qstd
Z j=1 Estartup + Z j=1 (Pstandby X tstd ) +
Qacc Qidle th Qair

Z(Xl an +X2 ><n+x3)—|—Z(Pidle Xtidle)+2(|3tc Xttc)+Z(Pair Xtair)+

= = = =
Qcrc

Qcool a, B Ve R
= ZJ:1 (Pooot X tooor) + Z(Pidle Xtepe + Py Xtepe +Coy x Voo x 75 xd e xr xtepe )
=

total

Paie Xtype + Py X type +
Q/PC

+Z tipc 2x f xmxn? "
= xlv —| =" Axt| x fA xd? xr® |dt
j=1 IO CVP [ max ( 60000 J ] r c

3)

Where Pstartup (t), Pstandby, Pacc (t), Prapid (t), Pidle, Ptc, Pair and Peoor are the startup power at
an instant t, standby power, spindle acceleration power at an instant t, rapid power at an
instant t, idle power, tool change power, air-cut power and coolant pump power
respectively. Pcut cpc is the power consumption in the CPC machining process and Pcut vec
(t) is the power consumption at an instant t in the VPC machining process. tstp, tstd, tacc, trpd,

tide, ttc, tair, teoor and teut (t,, =tepe +1pc ) are the periods of different modules: startup,

aut
standby, spindle acceleration, rapid positioning, idle, tool change, air-cut, coolant, and
cutting respectively. tcec and tvpc are the time of the CPC machining and VPC machining
process respectively. xi, X2 and xs are fitting coefficients, n is spindle angular velocity in

rev/min. y1, y2 and ys are fitting coefficients. Py, and P are the z-axis and x-axis feed power
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respectively. Ccp is a constant and o, ., and y. are exponents (i.e. coefficients) of
cutting velocity, feed rate and cutting depth respectively in Pm_cpc model. Cyp is a constant
and «,, f., 7. and o, are exponents of cutting velocity, feed rate, cutting depth and tool
nose radius respectively in Pm vec model. Qstp, Qstd, Qace, Qidle, Qte, Qair, Qcool, Qcpc and

Qvrc represents the quantity of: standby, spindle acceleration, idle, tool change, air-cut,

coolant ON, CPC cutting, and VPC cutting modules respectively.

By substituting the Eqg. (3) in Eqg. (2), the CEMeec due to the electrical energy

consumption can be expressed as:

CEM elec (kgCOZ) =
ZJQ:; Estartup + ZJQj ( Pstandby X tstd ) +
Qace Qide Qe Qair
Z(X:L X n2 + X2 XN+ X3)+ Z(Pidle Xtidle)+ Z(Ptc Xttc)+ Z(Pair Xtair)+
j=1 j=1 j=1 j=1
, 4
CEI:elec X Z?C:z (Pcool ><tcool ) + ( )

Qcpe

aC ﬁC ;/C 6(2
Z(Pidle Xtepe + Py Xtepe +Coy x Voo x £ xd e xr® xtepe ) +
-1

Pae Xtype + Py Xtype +
Q\/F‘C

vpc 2x f n2 -
2 q{v_(_ﬂ]tj e o

60000

6.2.2. Quantification of CEM

cool

The carbon emissions due to the coolant consumption comprises the CEM from the
manufacture of pure mineral oil (CEMoii) and CEM from the disposal of cutting fluid waste
(CEMuwc). The carbon emissions due to the coolant consumption can be calculated using the

following equation (Sihag and Sangwan, 2019):
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t
CEM,,,, (kgCO,) = -2 x (CEM

cool

+CEM,, ) (5)

oil

Vv, +V
Where CEM ; =CEF,, x(V,, +V,;) and CEM,, = CEF,, x —= ; 2 Thus Eq. (51) can be

re-written as:

CEM

cool

t .
(kgCO,) = "> x (CEF(,“ X (Vip +Vaq ) + CEF, X (V—'” ;Va" D (6)

cool

Where CEFi is the CEM factor to account for the manufacturing of coolant, CEF is the
CEM factor for the disposal of the used coolant. Vin is the initial volume of the coolant, Vag
is the additional volume of the coolant, § is the coolant's predetermined concentration, tcool

is the average time of coolant replacement and tproc is the time for which coolant is used.
6.2.3. Quantification of CEM

tool

The CEM due to the cutting tool wear can be calculated using the following Eq. (7):

CEM

t
(kgcoz) = . X CEI:tool X Wtool (7)

life

tool

Where CEFo is the CEM factor for cutting tool wear, wiool IS the weight of the cutting
tool, and Tiite is the tool life in minutes. In this study, The tool life is estimated based on
Taylor’s extended tool life equation, where the tool life is expressed as a function of cutting

speed (v¢), feed rate (fr ) and cutting depth (dc) (Bonilla Hernandez et al., 2016).

mo APy £0 _
SxTxd! x 1=K ®)

Eqg. (8) can be rewritten as:
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K m
T"fe:[v xdP x fq)
c c r (9)

Based on Eq. (7) and Eq. (9), CEMal can be calculated as:

tool

1
Py fd m
CEM,, (kgCO,) = ;_0 x [%} x CEF,, xW,, (10)

Where K, n, p and q are tool life constants that depend upon cutting conditions and tool-

part combinations.

6.2.4. Quantification of CEM,, and CEM

chip

The carbon emissions due to the material consumption and the post-processing of chips can

be calculated using the following equations:
CEM,, (kgCO,) =CEF, xQ,, (12)

CEM,,, (kgCO,) = CEF,. xQ, (12)

chip

Where CEFn and CEFchip are the CEM factor for material consumption and chips post-
processing (i.e. recycling of chips), and Qm is the mass of material (i.e. chips) removed

during the cutting time t.. Qm can be determined as:

Q, (kg) = MRRxt, x -2 (13)

10°

Where MRR is the material removal rate in mm?®/sec and p is the material's density in
gm/cm3. The material removal rate (MRR) in the CPC machining (turning) process can be

calculated using the following expression:
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3
mm ):vcxfrxdcxlooo (14)

MRR
e [ sec 60

Due to variable cutting speed, the MRR is changing continuously during the VPC
machining (end facing) process, and therefore the average-MRR is calculated as (Jia et al.,

2016):

7 x D% xd,

4xtype (1)

MRRpc (mm?® /sec) =

Where D is the diameter of the part in mm, and tvec is the end facing time in seconds. By
substituting the expressions of corresponding MRR in Egs. (13), the mass of the removed

material for the CPC machining and VPC machining can be expressed as:

Q.. (ko) =T E I g B Y X P (16)
Q. (k9) =%tv <L )
The Qm can be calculated as follows:

Qn = 2T Qe + 257 Qe

Q, = z?:c (% Xtepe X ﬁ} +Z?§° (%thd‘: X tpe X %J (18)

By substituting the Eq. (18) of Qm in Egs. (11) and (12), the carbon emissions due to the

material consumption and post-processing of chips respectively can be expressed as:
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Qcre VCXerdc Yo
S [ e g )

CEM (kgCOZ) =CEF, x , (29)
ZQ\/PC zxD xdcxtv P
U Axt, "¢ 100
Qerc | Ve X fr x dc
D e e .y
] 60 1000
CEM (kgCO ) CEF (20)

Chlp e [ 77 D2 % dc P
Z i Xtype X 5
= At 10

As stated in Eqg. (1) and based on Egs. (4), (6), (10), (19) and (20), the total CEM during
the machining of a cylindrical workpiece can be expressed as:

_CEMtotaI =
QaC
Qstp
j:t Estartup+z _1( standbyxtstd] ;(@xn2+x2xn+x3j+
Qgle Qe Qi (
Jl(Pidlextidle) JZ;( tc Xttc)—i_JZ_%(Palrxtalr)—}_ZJcoo cool cool)+
Qepc 4
CEF,, x| & [Pidle cpc + Py, Xtepe +Cep xVEe x ff xdie xro Xtcpc} N
Pate *Wpc Py Xtypc +
Qy
Q/PC X v B 2)( erﬂXnZ Xt
& I‘VPC max 7| 60000 dt
X frﬂ\l ng’v X r@
CEMeIec
3 Sooo toroo | CEF X (Vi +Viq |+ CEFug x VintVag |||,
)= tcool oil 4
CEMcool
1
Quoot| Te Ve xdP x £4™
thzll GOX[Cf(r CEI:tool Weoor | +
CEMtOOl
Qepc| Ve x fr xdc Qpc| 7xD?xd; P
Zj_l 60 ‘lerc X 1000]+Z At e Xpc X 106 xCERy, + (21)
CEM,,
Qepe | Ve x fr xdg Qpc| 7xD%xd P
g |~ g0 <lepc X 1000]"'2 > 4><f\/7c Wpc X106 xCEFip
CEMchip
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6.3.  Experimental Planning and Determining the Fitting Coefficients of the Models
Figure 6.2 depicts the experimental setup and overview of the adopted methodology in

the present Chapter.

The detailed information on the experimental setup, machine tool, power consumption
measurement equipment, experiment design, and related peripheral conditions are shown
in Chapter 5, Section 5.3. The fitting coefficients of the energy consumption model for
machining a cylindrical part shown in Eq. (26) were determined in a previous Chapter 5,
Section 5.4 for the same workpiece and cutting tool combination (i.e. aluminium Al 6061
and carbide inserts). As shown in Eq. (40) of Chapter 5, the total energy consumption
prediction model of a machine tool for the machining of a cylindrical part can be expressed

as shown in Eq. (22).

After determining the coefficients of various models, the various CEM factors and other
essential parameters such as the weight of the cutting tool and tool life constant need to be
defined first. Because the various CEM factors and basic data are closely related to
machining conditions e.g. CEMeiec depends on how the electricity is generated and varying
from nation to nation. This study is conducted in India, therefore, the CEM factor for
electrical energy consumption (CEFeiec) for the Indian electricity mix is taken to be 1.41 kg
CO2/kWh from the literature (Sihag and Sangwan, 2019). Generally, water-soluble mineral
oil with a 5% concentration (5 per cent mineral oil and remaining water) was used as the
cutting fluid for the wet cutting environment, and the value of the CEFoii (kgCO2/m?) and
CEFuc (kgCO2/md) are considered as 500 and 200 respectively (Yi et al., 2015). The value
CEMuool is taken to be 29.6 kgCO./kg from the literature (Li et al., 2015; Zhang et al., 2017)
for the carbide inserts, and the weight of the Sandvik cutting inserts (Wtor) used in the

present study is 9.1g.
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Figure 6.2. Experimental setup and adopted methodology.
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total (k‘]) -
% % %[ ((0.0017x 1)+ (0.6112x )+ 589.93)
;21'125+ ;(0.75><tstd )+ ; 1000 +

Estar—up Estandby

Qur[ [ ((~33x10° xn?)+ (0.6035x n) + 786.95

QKC
1000 xt idle +Z ( ttc) +

(-3:3x107° xn?) +(0.6035x n) + 786.95) + P, |
Xtair +

1000 N

cool tcool )

Z Qcool
&

~3.3x107° xn? +0.6035x n + 786. 95)
XLepe +
1000

e | ((0.0149x f, +20.00)
& 1000 -

+(0.3071x vEe x £ xde x 1% )xtgpe

(-3.3x10® xn” +0.6035x n + 786.95) (0.0087 x f, +8.00)
X
Qe 1000 P 1000 e

60000

-1 2\ i
j‘“‘[gg 51x10" ( Mxtj x fA xdw xr"VJdt

(22)

The values of the constants of the tool life can be determined experimentally or adopted
from the data handbook. In the present study, the values are taken to be K =250, m=0.35

, p=0.15, and q=0.60 from the literature and data handbook (Drozda and Wick, 1983;
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Ghosh, 1991). The material of the cylindrical part is aluminium and the values of CEM

factors CEFm and CEFchip for aluminium material is taken 16.13 kgCO./kg and 0.256

kgCOz2/kg respectively from the literature (Li et al., 2015). Finally, the CEMota for

machining a cylindrical part can be expressed as:

CEM

total —

Qstp

221 125 + Z(o T5xtyy ) +

Estar—up

Q| ((0:0017xn?)+(0.6112xn) +589.93)

1000 *

AN

IE

Estand by

((—3.3x10-5 xn?)+(0.6035x n)+786.95j

1000 Xtige [T Z?:cl(ﬁc xte) +

[((—3.3><10’5 1) +(0.6035n) + 786.95 + P, J

[(—3.3x10—5 X1 +0.6035x n+786.95)} [(0.0149>< f, +2o.oo)]
Xlepe + Xlepe

{(—3.3x105 «n? +0.6035x n+786.95)}
X PC +

2 W )
J.tvpc[99 51x10~ 3[ 2><fr><7z><n><t] X frﬂ" xdZv xr Jdt

1000 xt air +ZJCOOI cool Xtcoo|)+ x1.41 +

1000 1000
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1000 1000
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The values of the fitting coefficients for the cutting power models corresponding to the
cutting environment can be seen in Table 5.6 of Chapter 5. The various CEM factors and

calculation parameters are summarized in Table 6.1.

Table 6.1 Carbon emission factors and parameters used in the present study

Vin Vad o teool CEFil CEFwc
(m?3) (m®) (%) (month) (kgCO2/m3)  (kgCO2/m?)
12.5 x 10° 5.5 x 103 5% 3 500 200
CEFeIec CEFtOOI CEFm CEFchip

(kgCOL/kWh)  (kgCO2kg) (kgCOa/kg)  (kgCO2/kg)

1.41 29.6 16.13 0.256

6.4. Case Study

To validate the developed model and for practical implementation in industry, the
developed model is applied on a cylindrical part with three different process plans. The
range of process parameters for each process plan is shown in Table 6.2, and the same

workpiece as shown in Figure 5.5 of Chapter 5 is adopted for the case study.

Table 6.2 Process parameters.

Process D n Ve fr dc r Length
Plan No. (mm)  (rev/min) (m/min)  (mm/rev)  (mm) (mm) (mm)

I 50 800 125.60 0.05 0.6 0.8 50

I 50 1200 188.40 0.10 0.8 0.8 50

Il 50 1600 251.20 0.15 1.2 0.8 50

The use of coolant definitely enhances the tool life but potentially causes major

environmental concerns such as coolant waste and work-related illnesses. According to
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literature (Li et al., 2015), wet cutting produces 30% higher CEM than dry machining at
the same process parameters. Therefore, the cutting experiments were performed in a dry
environment, and the CEM from coolant consumption (CEMcol) is not calculated for

estimating the total CEM.

According to the developed carbon emission model shown in Eqg. (23), the

quantification of CEMtotal fOr process plan-1 (PP-1) is discussed as follows:

6.4.1. Calculation of CEMeiec

The electrical energy consumption according to the PP-I can be evaluated using Eq. (22).
The detailed calculation can be seen in Section 5.5 of Chapter 5. The corresponding CEM
due to electrical energy consumption can be calculated using Eq. (23). The values of the

CEFeiec is adopted 1.41 kgCO2/kWh (Sihag and Sangwan, 2019) as shown in Table 6.1.

_195.6842

elec

CEM x1.41=0.0766 kgCO> (24)

0x60

6.4.2. Calculations of CEMiool

The CEM due to the cutting tool wear can be calculated using Eq. (10). The value of CEFool
is 29.6 kgCO2/kg (Li et al., 2015; Zhang et al., 2017) and wtool for the Sandvik CNMG 12
04 08 inserts is 9.1 g. The values of exponents of tool life Eq. (55), K, m, p and g are 250,
0.35, 0.15 and 0.60 respectively (Drozda and Wick, 1983; Ghosh, 1991). The CEMzoo for

the PP-1 can be calculated as:

1
0.15 0.60 \0.35
cem, - 1125, (125:60<0.6"x0.05 £ 296x9.1
60 250
CEM,,,, =0.3340kgCO> (25)
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6.4.3. Calculation of CEMm and CEMchip

CEMm and CEMchip is calculated by first determining the mass of the removed material with

Eq (64), Where the density of the aluminium p is 2.7 gm/cm®. Qn for PP-I can be

calculated as:

60 *1000 Axt

C

2
o =(125.60><0.05><0.6X75 2.7 j+[3.14><50 ><0.6X37_5><%J

Q, =0.0286 kg

In the present study, the values of CEM factors CEFn and CEFchip for an aluminium
part are 16.13 kgCO2/kg and 0.256 kgCO2/kg respectively (Li et al., 2015). By substituting

the Qm in Egs. (19) and (20), the carbon emissions CEMm and CEMchip respectively can be

calculated:
CEM,, =16.13x0.0286 = 0.4615 kgCO2 (26)
CEM,,, =0.256x0.0286 = 0.0073 kgCO:2 27)

6.4.4. Calculation of total carbon emission
Finally, the total carbon emission for machining of a cylindrical part according to the PP-I
can be determined by aggregating the various CEM i.e. Egs. (24), (25), (26) and (27) as

shown in Eqg. (1):

CEM,,, =CEM,, +CEM, +CEM_+CEM

total elec chip

CEM, . =0.8712 kg

total

Following the same procedure, the CEMwtal for machining a cylindrical part based on

the other process plans can be determined and summarised in Table 6.3.
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Table 6.3 The CEMotal related to different process plans

Carbon emission Process plan number

(kgCO2) [ T 1l
CEM,,, 0.0766 0.0409 0.0328
CEM,,, 0.3340 1.3076 3.5698
CEM 0.4615 0.6113 0.9231
CEM 0.0073 0.0097 0.0146
CEM 0.8795 1.9694 4.5403

total

6.5.  Discussion

As shown in Table 6.3, the CEM of the machining process varied significantly with the
different process plans, indicating that process parameters have a significant impact on the
CEM of the machining process. Thus, the proper selection of the process parameters is
critical in view of the low CEM. The various carbon emissions (CEMelec, CEMtool, CEMn
and CEMchip) related to each process plan are shown in Figure 6.3. With changes in the
process parameters, the different CEMs also show substantial variation, as shown in Figure
6.3 (a), (b), (c) and (d). It can be seen in Figure 6.3 (a) that CEM due to electrical energy
consumption decreases at the high values of the process parameters, such as an increase in
spindle speed and feed rate. It is evident that the faster the feed rate and spindle speed, the
shorter the processing time resulting in low Etotal and CEMelec. These results are consistent
with a similar CEM trend reported in the literature (Li et al., 2015). On the other hand, as
shown in Figure 6.3 (b), CEM due to the cutting tool shows significant growth with higher
process parameter values. Given that higher cutting speeds shorten tool life and cutting
experiments were performed in dry environments, higher cutting speeds and feed rates

caused high temperature at the work-tool interface and increased abrasion resulting in
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increased tool wear and CEMiool. As shown in Figure 6.3 (c) and Figure 6.3 (d), carbon
emissions from material consumption and chip post-processing increased as cutting depth
is increased. These carbon emissions are determined by the quantity of material removed
during the machining process. The greater the cutting depth, the more mass is taken from

the part, resulting in higher mass and related CEMs: CEMm and CEMchip.

As shown in Table 6.3, it is significant to highlight that CEM due to material
consumption and chip disposal is solely dependent on the depth of the cut, where CEMn is
a substantial contributor to total CEM. Therefore, the process plan from the case study was
replicated in a similar manner while keeping the same cutting depth of 1.2 mm to
investigate the impact of process parameters on CEM due to energy consumption and

cutting tool, and the results are summarised in Table 6.4.

Table 6.4 The CEMiotal associated with the different process plans for 1.2 mm depth of cut.

Carbon emission Process plan number

(kgCO2) | 1 I
CEMelec 0.0822 0.0433 0.0328
CEMiool 0.4496 1.5662 3.5698
CEMn 0.9231 0.9231 0.9231
CEMchip 0.0146 0.0146 0.0146
CEMotal 1.4695 2.5472 4.5403
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Figure 6.3. Carbon emissions related to different process plans (a) due to electrical energy (CEMeiec) (b) due to tool (CEMioal) () due to material
(CEMm) and (d) due to chip (CEMchip).
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Since the cutting depth is constant in all process plans, the amount of material removed
remains constant regardless of cutting speed or feed rate; thus, the corresponding CEM due
to material consumption and chip disposal remains unchanged across all process plans.
Meanwhile, changes in cutting speed and feed rate have a significant impact on the CEM
associated with electrical energy consumption and the cutting tool. The CEMeec and

CEMuoo related to repeated set of process plan are shown in Figure 6.4.

So, even if the volume of material removal and associated CEM, i.e. CEMn and
CEMchip, are the same, a change in the other process parameters have a significant impact
on the total CEM. The case study with different process plans is depicted to show the

correlation of carbon emissions and process parameters.

The developed model fully accounts the effect of process parameters on CEM, and
improves the transparency of the CEM of the machining process and facilitates the
exploration of low energy efficiency and high CEM machining process. The proposed
model is not only useful for identifying low-CEM process parameters, but can also be
applied in multi-objective optimization to trade-off with other important machining process

indicators such as productivity and product quality.

The proposed model can accurately quantify carbon emissions for machining of a
cylindrical part based on process parameters and CEM factors. The current model is capable
to quantify carbon emissions for industrial applications because it can include the multiple
energy consumption modules, CPC-machining process and VPC-machining process that

commonly occurred throughout the machining of the cylindrical work part in an industry.
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Figure 6.4. Carbon emissions related to repeated process plans for 1.2 mm depth of cut (a)
CEMeIec and (b) CEMtool.

6.6. Summary
The focus of this chapter is to develop an empirical model to quantify CEM for machining
of acylindrical part. The CEM associated with a cylindrical part machining are decomposed

into CEM from electrical energy consumption, material consumption, cutting tool wear,
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coolant consumption and from the disposal of machining waste materials. Electrical energy
consumption of a machine tool is further decomposed into different energy modules:
startup, standby, spindle acceleration, idle, rapid positioning, air-cutting, and cutting for
accurate quantification of CEM. The cutting energy consumption module of machine tool
is further decomposed into the CPC and VPC machining processes. The developed model
is applied on a cylindrical part with three different process plans, in which the influence of
process parameters on CEM is analyzed. To validate the developed model and for practical
implementation in industry, the developed model is applied on a cylindrical part with three
different process plans. It is shown that the CEM of the machining process varied
significantly with the different process plans, indicating that process parameters have a
significant impact on the CEM of the machining process. The proposed model can
accurately quantify carbon emissions for machining of a cylindrical part based on process
parameters and CEM factors. The current model is capable to quantify carbon emissions
accurately for industrial applications because it can include the multiple energy
consumption modules that commonly occurs during the machining of the cylindrical work
parts in an industry. The proposed model can be utilized in the manufacturing industry to
quantify carbon emissions based on different process parameters before machining a

cylindrical part to achieve low carbon manufacturing process planning and scheduling.
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Chapter 7:
Prediction of Energy Efficiency, Power Factor and associated Carbon Emissions

Using Soft Computing Techniques

In the present chapter, three soft computing techniques, multi-gene genetic programming
(MGGP), least square-support vector machine (LS-SVM) and fuzzy logic, are applied to
model a machine tool's energy efficiency (EE), power factor (PF) and associated carbon
emission (CEM). The performance of the models was evaluated on six statistical indicators
and hypothesis testing were conducted to validate the goodness of fit of the developed
models. The developed models can be used to eliminate the need for advanced costly
laboratory set-up and time-consuming measurement procedures required for performing

experiments.

7.1.  Introduction

Low-carbon emission of machine tools, which aims to reduce carbon intensity and improve
process efficiency, has evolved as an emerging issue that has encouraged a lot of research
into accurate prediction of energy-related performance characteristics such as energy
efficiency (EE), power factor (PF) and associated carbon emission (CEM) of machine
tools. Establishing an accurate CEM model for machine tools as a function of process
parameters is the basis for implementing energy-efficient and low-carbon emission process
planning and scheduling (Lv et al., 2018). The lack of accurate and realistic energy
consumption models has hindered the implementation of energy-efficient approaches (Lv

et al., 2018; Wang et al., 2015).

In practice, EE and PF are the two significant indicators of a machine tool's effective
electrical energy utilization. The modelling of EE of machine tools is useful for

implementing low carbon emission measures. According to literature review on energy-

156 |Page



Prediction of Energy Efficiency, Power Factor and associated Carbon Emissions Using
Soft Computing Techniques

saving strategies and technologies toward greener machine tools, EE should be accurately
modelled for the future market (Arriaza et al., 2017; Bilga et al., 2016; Kumar et al., 2017).
The PF is an important indicator of efficient electrical energy utilization of the machine
tool's electrical system (Behrendt et al., 2012). The PF is the ratio of active power to
apparent power (O’Driscoll and O’Donnell, 2013). The main machine tool components,
such as electric motors, feed drives, coolant pumps, etc., are powered by inductive loads
that accumulate to a low PF. Low PF reduces the distribution capacity of the electrical
power grid by increasing current flow and lowering the voltage. If PF value falls below a
certain level, electrical boards impose penalties (Behrendt et al., 2012). The accumulation
of inductive load of machine tool components is one of the leading causes of power losses
and low PF. Machine tools have variable drive systems and can be operated at variable
loads, resulting in inductive load and corresponding PF changes. This implicate that the
change in process parameters have significant influence on the PF (Bilga et al., 2016).
Process parameters are known to have a considerable impact on the energy consumption of
a machining process (Newman et al., 2012), and hence influence the CEM, EE and PF
implicitly or explicitly. Therefore, reliable and accurate estimations of CEM, EE and PF
based on process parameters can significantly enhance efforts to achieve sustainable
manufacturing at the early design stage of product development. Accurate predicting
models of these performance characteristics can be useful for process planners to select the
appropriate process parameters in the early process planning phase without conducting the
actual experiments. To select the process parameters for the machine tools, the formulation
of a mathematical model representing the relationship between the outputs (EE, PF and

CEM) and inputs is essential.

Conventional modelling tools, such as response surface methodology (RSM) and

physics-based models, have limitations when it comes to capturing the non-linear
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behaviour between performance characteristics and process parameters (Garg et al., 2016;
Kant and Sangwan, 2015). RSM requires the form of polynomial functions to be defined
first, which can affect the accuracy of the approximation model (Garg et al., 2016). The
physics-based models were built on overly simplistic assumptions, rendering them
incapable of predicting accurate results (Dirikolu and Childs, 2000). Further, the complex
and stochastic nature of the machining process make it challenging to estimate the
coefficient of a physics-based model (Kant and Sangwan, 2015). Therefore, soft computing
techniques have been increasingly popular in recent years for modelling in a variety of
engineering applications due to their reliable predictability, ability to work with the inherent
complexity and to capture non-linear behaviour between input and output parameters. As
previously stated in the literature review Chapter 2 that an increasing number of authors
employed soft computing for modelling in different engineering applications (Abd and
Abd, 2017; Garg et al., 2016, 2014; Naseri et al., 2017; Rajabi et al., 2022; Shafiullah et

al., 2019; Tseng et al., 2016; Zhang and Zhang, 2016).

The literature indicates that soft computing techniques such as GP (Garg et al., 2016,
2015), SVM (Su et al., 2021) , and fuzzy logic (Igbal and Dar, 2011; Liman et al., 2021,
Vukman et al., 2020) are widely used for modelling in a variety of engineering applications
and manufacturing processes, showing their ability to manage complex input-output
behaviour. However, there appears to be an abundance of literature on the modelling of
various process responses such as energy consumption, productivity and surface quality
(Bhinge et al., 2017; Garg et al., 2016, 2015; Gupta, 2010; Pan et al., 2021), but to the best
of the author's knowledge, none of the literature reported modelling of EE, PF and CEM
using soft computing techniques for machine tools. In this chapter, three soft computing
techniqgues MGGP, LS-SVM, and fuzzy logic were applied to model the EE, PF and

associated total carbon emission (CEM;) of a machine tool. The experiments were
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performed on a CNC lathe machine tool to capture the data required for development of
models. Coefficients of determination and five error indices were used to evaluate and
compare the accuracy of the developed models. Further, hypothesis testing i.e. mean paired

t-test and variance of F-test were used to calculate the goodness of fit of the models.

7.2.  An Overview of the Soft Computing Techniques
A brief description of three soft computing methods viz. MGGP, LS-SVM, and Fuzzy logic

are presented as follows.

7.2.1. Multi gene genetic programming (MGGP)

The approximate optimal solution in a high-dimensional search space can be found using
evolutionary algorithms e.g. genetic programming, which are frequently used in modelling
processes of complex nature (Garg et al., 2014). Genetic programming is governed by the
Darwinian theories of natural selection, evolvement, and the survival of the best (Orove et
al., 2015). Genetic programming has been improved with multi-gene genetic programming
(MGGP) (Gandomi and Atefi, 2020). Unlike GP, MGGP initiates with a population of
multi-tree alternatives derived by a random vector of trees. Following that, using a potential
Pareto tournament, a predetermined proportion of the population is opted to be a parent
based on the statistical fitness parameters i.e. coefficient of determination of each
alternative (Gandomi and Atefi, 2020). After which, the next generation is formed based
on the mutation and cross-over of the selected solutions. This evolution is recurrent until a
user-defined termination criterion is achieved. If any population member fails to meet the
threshold evaluation criteria, individuals are subjected to genetic operations in order to
create a new population. These actions are widely recognized as crossover, mutation, and
replication. The iterative process doesn't come to an end until the predefined termination

criteria are satisfied. Most members of a population are formed by crossover and mutation.
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A crossover is the swap of arbitrary branches of two individual expressions. In a mutation,
randomly a branch is selected and changed by another randomly generated branch. The
flowchart of the proposed MGGP method is shown in Figure 7.1 and parametrical multi-

gene model expression is shown in Eq. (1):

y =C, +C *treel+ C,*tree2.....+ C,*tree, (1)

[Experimental data obtained from Design of Experiment]

v v

[ Training data set ] [Testing data set]

v

Random generation
of initial population

\ 4
Select the best model]

Termination
criteria

Development of new generation Model evaluation
using genetic operators on the test data set

Crossover

Replication

End

Evolution of
new population

o i i ]

Figure 7.1. The flowchart of the proposed MGGP method.

Where C, represent the bias or offset term, z represents the quantity of genes and C; ~C,
represents the relative importance (weights) associated to each gene. The elements of the

terminal and functional sets combine to form trees. The number, composition, and structure
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of these trees change randomly during a run using the training data, depending on user-
defined constraints. The MGGP model is linear in terms of bias and weights but not in
terms of tree elements. The maximum depth of trees should be defined to keep the overall
model's complexity under control and to develop relatively compact models (Hoang et al.,
2017). In genetic programming, a population member is a hierarchically arranged tree that

consists of members of a functional set.

7.2.2. Least square-support vector machines (LS-SVM)

Support Vector Machine is a supervised machine learning technique for creating a function
from training data. The training data is a set of pairs that includes input objects and selected
outputs. The output can be a continuous value or a classification of the input objects (Kant
and Sangwan, 2015). After observing a finite number of training data samples, the SVM
creates a ‘decision maker’ system to predict the value of the function for any valid input
point (Gupta, 2010). When SVM is used to solve regression problems, it is referred to as
support vector regression (SVR). The structure of the SVM is shown in Figure 7.2, which

comprises input variables, support vectors, kernels, and output variables (Garg et al., 2018).

Support vectors (S S,...S4) Kernel Functions (Kry Kr,...Kry,)
@_’ Kry (X,S1)
S2 Krz (X,S2)

Ny Output

value
83 Kr3 (X,Sg)
Bias (b)

Kry (X,S4)

Figure 7.2. Line Diagram for LS-SVM (Garg et al., 2018).
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The SVR does not use statistical assumptions, model structure and error dependence
and so does not require any model structural assumptions. The SVM model is built on the
principle of structural risk minimization. The SVM initially transforms the original input
space into a higher-dimensional feature space. For such transformations, a non-linear
hyperspace function is used. In order to learn non-linear relationships with linear machine
learning, a collection of non-linear features must be selected, and the data must be
expressed in a new representation. In a feature space, non-linear regression problems can

be transformed into linear regression problems.

The SVM model is provided with a set of training data (r) to learn the input-output
relationship function f(x). The training data is provided in pairs {(x;,y;)}i=, x; € R"
where x; and y; are the input and output variables respectively. The SVM function can be

established as shown in Eq. (2) (Gupta, 2010; Kant and Sangwan, 2015).

f(xw)=>" we (x)=wx+b )

Where ¢;(x) is features, w is the weight and b is the bias. Thus, a linear regression

hyperplane f(x,w) = w’x + b can be estimated by minimizing the function as follows:

Rz%w2+C(iZ;:‘yi—f(xi,w)Lj (3)

Where C is the cost function, ¢ is the insensitive loss function and satisfies the following

relation:

(4)

‘Y.—f(x,,w)g{o’ if |y, - (x,w)|<e

v, = £ (%.w)| -2, otherwise

The trade-off between the weight vector (w) and approximation error is controlled by the

cost function.
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7.2.3. Fuzzy logic

Fuzzy logic was introduced by Zadeh (1975) and applied in decision-making processes to
translate linguistic variables to quantitative variables. Fuzzy logic works with parameter
ranges rather than individual data points, therefore it can accurately predict results for all
data points within the parameter ranges (Garud et al., 2021). Fuzzy sets, membership
functions, linguistic variables, and fuzzy rules are the four elements of fuzzy logic (Tseng
etal., 2016). Figure 7.3 shows the basic structure of a fuzzy logic model for four inputs and

single output parameters.

Input-1

Fuzzy interface

Interface
module

Input-2

Fuzzification Defuzzification

> (o)

Input parameters

Input-3

&
Rules

{ Membership function J

Input-4

Figure 7.3. A typical outline for a fuzzy logic model with four inputs and one output.

A fuzzy set is a collection of objects without clear-cut or predefined boundaries between
things that are or are not group members (Shemshadi et al., 2011) boundaries do not exist
in fuzzy sets. The degree to which an object belongs to the fuzzy set ranges from 0 to 1,
with O representing 0% membership and 1 representing 100% participation (Tseng et al.,
2016). This value is known as the membership value of that particular parameter. Each
input/output parameter's whole range is divided into several smaller ranges. The variation
of each small range is represented by the appropriate elementary curve which is called the

membership function. The membership function is a curve that specifies each point's
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membership value. It refers to the degree of trueness and are generally represented
graphically. There are many different types of membership functions available including
triangular, Gaussian, trapezoidal, and sinusoidal. The number of membership functions and
the limits of each membership function is determined by the behaviour of the imported
input-output data. Linguistic variables can be defined qualitatively or quantitatively using
the membership function. This is how human factors are taken into account by fuzzy logic.
The linguistic variables' values are usually "slow", "fast," and "hard”. The fuzzy model's
governing rulesets are known as fuzzy rules. The “IF-Then” statement and “AND,” “OR,”
or “NOR” Booleans are used in rules to correlate input and output parameters. It correlates
the circumstances that must be applied to a linguistic variable in order to achieve the
intended result. The rules primarily establish a connection between the input and output

parameters.

7.3.  Experimental Planning and Calculations

The turning experiments were conducted on a LMW-Smarturn CNC lathe machine tool
under a dry environment in the interest of environment conscious production using carbide
inserts of 1SO designations CNMG 12 04 04, CNMG 12 04 08, and CNMG 12 04 12. The
cutting inserts were mounted on the tool holder of ISO designation PCLNR 2020 K 12.
The workpiece material was aluminium Al 6061 alloy. The main process parameters that
can be easily managed on the shop floor are used as input process parameters: cutting speed
(vc), feed rate (fr), depth of cut (dc) and cutting tool nose radius (r). The Taguchi Loz
orthogonal array was used to design the experimental run. The level of process parameters
and combinations according to the Loz orthogonal array are summarized in Table 7.1. The
Fluke 435 series Il Power Analyzer was used to measure the power drawn by the CNC

machine tool from the main power bus, as shown in Figure 7.4.
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Figure 7.4. Experimental setup and outline of the study.
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Table 7.1 Process parameters and their considered levels.

Process parameters v, (M/min) f (mm/rev) d. (mm)  r (mm)
I 144 0.10 0.50 0.4
é ] 184 0.15 1.00 0.8
— 1 224 0.20 1.50 1.2
1* 144 0.10 0.50 0.4
2 144 0.10 1.00 0.8
3 144 0.10 1.50 1.2
4 144 0.15 0.50 0.8
5 144 0.15 1.00 1.2
6* 144 0.15 1.50 0.4
7 144 0.20 0.50 1.2
8 144 0.20 1.00 0.4
9 144 0.20 1.50 0.8
10 184 0.10 0.50 0.4
11* 184 0.10 1.00 0.8
12 184 0.10 1.50 1.2
§ 13 184 0.15 0.50 0.8
g’ 14 184 0.15 1.00 1.2
H 15 184 0.15 150 0.4
o 16* 184 0.20 0.50 1.2
17 184 0.20 1.00 0.4
18 184 0.20 1.50 0.8
19 224 0.10 0.50 0.4
20 224 0.10 1.00 0.8
21* 224 0.10 1.50 1.2
22 224 0.15 0.50 0.8
23 224 0.15 1.00 1.2
24 224 0.15 1.50 0.4
25 224 0.20 0.50 1.2
26* 224 0.20 1.00 0.4
27 224 0.20 1.50 0.8

* Represents the test's experimental run
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Three current probes and three voltage probes embedded with alligator clips were used to
connect the power analyser to the 3-phase main power bus supply. The power analyser was
pre-set to capture the readings every 0.25 seconds for each experiment and the average of
all reading were adopted for calculations.

The total power consumption (P,,.4;) Was measured with actual cutting operations, and
the cutting power was calculated by subtracting the air-cutting power (Pg;,-). The P, is the
amount of power used without machining while all other process parameters remain
constant. The total energy consumption (E;,:4;) and cutting energy consumption (E,;) was
calculated by multiplying the machining time and corresponding power consumption Py, ;4;
and P,;, respectively. Subsequently, the EE of a machining process was calculated using

Eq. (5).

EE (%) = 22 % 100 (5)

total

The calculated values of the EE corresponding to the experimental runs are summarized

in Figure 7.5.
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Figure 7.5. The summary of the experimental results for EE.
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The PF for each experimental run was directly acquired from the power analyser and

Is summarized in Figure 7.6.
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Figure 7.6. The summary of the experimental results for PF.

As previously mentioned in Chapter 6, in a dry machining process, the carbon
emissions are caused due to various factors such as the carbon emissions due to electrical
energy consumption of machine tool (CEM,;,.), the carbon emission due to cutting tool
wear (CEM,,,,;), the carbon emission due to material consumption (C EM,,,) (which include
the emissions due to the raw material production and transportation), and the emissions due

to post-processing of chips (CEM_y;,,) for material recovery (Zhang et al., 2017). The total

carbon emission (CE M,) can be expressed as (Li et al., 2015; Zhang et al., 2017):

CEM, = CEM,,, +CEM,,, +CEM,, +CEM_,, (6)

elec

The detailed description and calculation procedure for each CEM: CEM,;.., CEM;,;,

CEM,, and CEM_p,;, are provided in Chapter 6, Section 6.2. The various CEFs and other

related factors presented in Chapter 6 were used for the calculation of CEM in the current

work because the experiments were performed for the same workpiece and cutting tool
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combination i.e. aluminium Al 6061 and carbide inserts. The calculated values of the CEM;

corresponding to the experimental runs are summarized in Figure 7.7.
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Total carbon emission (kgCO2)

Experimental runs

Figure 7.7. The summary of the experimental results for CEM.

7.4.  Parameter Settings for Implementing Soft Computing Techniques

Experimental data is commonly divided into two groups prior to the application of soft
computing techniques. The model is trained using the training data set, and its performance
is evaluated using the testing data set. Zhang et al. (1998) recommended that the ratio of
training and testing samples could be given as percent, such as 90%:10%, 85%:15% and
80%:20% with a total of 100% for the combined ratio. In the present study, an 80:20 ratio
was chosen as the preferred ratio. The ratio of the training and testing data set was kept
same for all methods: MGGP, LS-SVM, and fuzzy logic so that the models were trained
and tested on identical experimental runs and their performance could be evaluated on a
common scale. The similar approaches were reported in the literature (Bhattacharya et al.,
2021; Garg et al., 2016; Garg and Lam, 2016; Rajabi et al., 2022; Sukonna et al., 2022).
Accordingly, the 21 experimental runs were used to train the models, and the model
performance was tested on the remaining six. As shown in Table 7.1, experimental runs

with mixed levels of process parameters from the lower, middle, and higher ranges were
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used in training and testing to incorporate the overall effect of the process parameters while
training and evaluating the models. The following section discusses the parameter settings

for the considered soft computing techniques implementation.

7.4.1. Parameter settings for implementing MGGP

The parameter settings include population size, generations, the terminal set of input design
variables, and the functional set. There are no set rules for determining the initial settings
for MGGP implementation. The initial settings are usually made using information from
the literature, the nature/complexity of the data to be analysed, and a trial-and-error

technique (Garg et al., 2014).

The number of models produced in a generation is referred as the population size. The
number of generations refers to how many iterations an algorithm goes through before the
termination requirement is met. In this study, the population size and number of generations
are set at 100 and 150, respectively. The terminal set consists of the four input processing
parameters (S, fr, dc and Ny). The probability of crossover, mutation, and mutation rate was
adopted at standard levels of 85%, 10%, and 5%, respectively (Garg et al., 2016, 2014).
The functional set includes non-linear functions such as tanh, sin, cos, exp, and log, as well
as arithmetic operators like addition, subtraction, and multiplication. The summary of
parameter settings used for the MGGP model is tabulated in Table 7.2. The experimental

data shown in Figures 7.5, 7.6 and 7.7 are used as input to develop the MGGP models.

An open-source platform GPTIPS 2.0 (https://sites.google.com/site/gptips4matlab/)

written in MATLAB based on multi-gene GP was applied to develop the model.
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Table 7.2 Parameter settings of MGGP

Parameters Allocation
Population size 100
Maximum Generations 150
Number of input variables 4

Size of tournament 6
Maximum number of genes to be 8
combined

Maximum depth of a gene 4

Functional set elements

Terminal set elements
Cross-over Probability

Mutation Probability

tanh, sin, cos, exp, plog and arithmetic
operators:  addition,  subtraction  and
multiplication

X1, X5, X3 and x,

0.85

0.1

Based on parameter settings shown in Table 7.2, the best selected MGGP models of

EE, PF and CE M, are written in Egs. (7), (8), and (9) respectively.

EE =

8.54% log (abs (tanh(r))) ~16.86

0.104xv, +79.9x f, —2.47xcos (v, xr*)—24.3xcos(d, +cos(f,))-
3.9xtanh(cos(v, xr))—1.1xcos(log (abs(v, ))x log (abs( f, )))+
20.4x tanh (r* x sin( f, ) —8.54x cos log (abs(v, ))) -

()

(0.0301xd,) ~1.63( f, —r)—0.00682 x log(abs(d, +r))+
PF =| 0.0247 xlog(abs(d, ))+1.39x exp(sin (exp(, ))) + 8)
13.2xsin(r)—13.0x tanh(r)+ (0.352x f, xr)—2.08
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0.0251xv, —11.7x f, +0.0568x r —0.277 xlog (abs(d, )) +
CEM, =| 11.2xsin(1.51x f, ) +3.88xtanh (exp (cos (d, )))— )
0.0523xsin(S)—0.013x v, xcos(d, )+0.013x f, xcos(d, )—6.37

7.4.2. Parameter settings for implementing LS-SVM

The kernel function is an important parameter in the development of the LS-SVM model
since it has a significant impact on the model's generalization ability. The Radial Basis
Function (RBF) kernel shown in Eq. (10) was utilised in this work, which is one of the most
widely used and capable of faster computing (Garg et al., 2016).

2

K(xy)= e{;jz} (10)

The Least Squares Support Vector Machines (LS-SVM) toolbox developed in MATLAB
is used for the LS-SVM modelling of the PF, CEM and EE. The values of the cost function
(C) and sigma parameters (o2) were calculated using a hybrid method of simulated
annealing and a grid search technique. The grid search technique uses cross-validation to
fine-tune the model parameters. The optimal € and o2 values for the LS-SVM model of
EE are found to be 9.2149E5 and 690.97 respectively. The LS-SVM model of PF is found
to have optimal values of C and o2 of 8.7329E5 and 4241.67 respectively, and for the CEM;

LS-SVM model, 9.5091E6 and 551.55 respectively are the optimal values for C and o2.

7.4.3. Parameter settings for implementing fuzzy logic

The primary idea behind fuzzy logic is to reliably classify input-output variables into fuzzy
sets in order to account for flaws and vagueness in data structures and human knowledge
without the need for complex mathematical models (Tseng et al., 2016). The fuzzy logic
approach utilizes rule-based algorithms to predict the outcome, and the rules are defined by

the relationship of the input-output parameters. In the present study, there are four input
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parameters (s, f,, d. and N,.) and three output parameters (EE, PF and CEMy). A non-linear
functional relationship is established by fuzzy predictor (f: EE, PF and CEM ) as expressed

in Eq. (11), Eq. (12) and Eq. (13) respectively.

fov, f.,d,r, D — EE, (11)
frv, f,d.,r, D — PF,, (12)
fov, f.,d,r, D —CEM, (13)

Where EEg,;, PF,., and CEM, ., are the fuzzy outputs and subset of EE, PF and CEM¢

respectively. The graphical representation of one of the fuzzy predictors for PF is shown

in Figure 7.8.
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Figure 7.8. Fuzzy predictors for PF.

Following that, the membership functions of these input variables are discussed. The
selection of the shape of the membership function is significant for the model's accuracy,
and according to Igbal and Dar (2011), a triangle shape is one of the better choices for the
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membership function and was chosen in this study. The fuzzy sets for the input variables

and output variables are shown in Figure 7.9 and Figure 7.10 respectively.
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Figure 7.9. The fuzzy set for input variables: (a) cutting speed, (b) feed rate, (c) depth of

cut, and (d) nose radius.
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Figure 7.10. Fuzzy set for output variables: (a) EE (b) PF and (c) CEM:..
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The abbreviations of the derivations of the membership functions used in Figure 7.9

and Figure 7.10 are provided in Table 7.3.

Table 7.3 Descriptions of the derivations used in Figure 7.9 and Figure 7.10.

Process parameters (input variable) Performance characteristics (output
variable)

Abbreviation Description Abbreviation Description

sl Slow EEP Exceptionally Extreme poor

me Medium EP Extreme poor

fa Fast VP Very poor

sm Small P poor

md Medium LP Lightly poor

la Large LH Lightly high

sh Shallow H High

mn Medium VH Very higher

de Deep EVH Extreme very higher

lo Low EEH Extreme extreme high

mm Medium EUH Extreme ultimate high

hi High EENH extreme enormously high

Next, the fuzzy rules were decided. The interdependency of the input and output

variables is dictated by fuzzy rules, allowing for proper selection using fuzzy logic. The

number of rules depends upon the partition of the fuzzy input parameters i.e. process

parameters. In the present case four process parameters with three levels, theoretically,

there should be 3% i.e. 81 rules.
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Table 7.4 The 21 fuzzy rules used in the prediction module.

Rule No. U, fr d, r EE PF CEM;
1 sl sm mn  mdm VP VP EP

2 sl sm de hi LH P VP

3 sl md sh mdm EEP EEP EEP
4 sl md mn  hi LP P EP

5 sl la sh hi EP EP EP

6 sl la mn lo LH P VP

7 sl la de mdm EVH H P

8 me sm sh lo EEP EEP VP

9 me sm de hi LP VP LP
10 me md sh mdm EP EEP VP
11 me md mn i P EP LP
12 me md de lo EEH LH H

13 me la mn lo VH LP LH
14 me la de mdm EUH VH VH
15 fa sm sh lo EEP EEP P

16 fa sm mn  mdm LP EP H

17 fa md sh mdm EP EEP LH
18 fa md mn  hi H P EVH
19 fa md de lo EUH H EUH
20 fa la sh hi P EP H

21 fa la de mdm EENH H EENH

However, 27 experiments were carried out according to the design of the experiments,

and they were separated into training i.e. 21 and testing i.e. 6 data sets. Hence 21
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experimental runs adopted for fuzzy rules and are listed in Table 7.4. Further, the centroid

approach was used for defuzzification.

7.5.  Results and Discussion
Figures 7.11, 7.12, and 7.13 show the results obtained using the three models (MGGP, LS-

SVM, and fuzzy logic) for EE, PF and CEM; respectively with corresponding experimental

values, for the training and test data sets.
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Figure 7.11. Models’ predicted vs experimental values for EE (a) Training (b) Testing.
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Figure 7.12. Models’ predicted vs experimental values for PF (a) Training (b) Testing.
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Figure 7.13. Models’ predicted vs experimental values for CEM¢ (a) Training (b) Testing.

The predicted EE and corresponding experimental values by each model for the training
and test data set are shown in Figure 7.11 (a) and Figure 7.11 (b) respectively. It can be
seen in Figure 7.11 (a) and Figure 7.11 (b) that each model's predicted values of the EE on
training as well as testing data set are in proximity with the corresponding experimental

values. Figures 7.12 (a) and 7.12 (b) depict the models' predicted vs experimental values of
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the PF on training and testing data set respectively. It can be revealed from Figure 7.12 (a)
and Figure 7.12 (b) that the predicted PF values on each model's training and testing data
set are close to the corresponding experimental values. Figures 7.13 (a) and 7.13 (b) shows
the predicted CEM; and experimental values for the training and testing data sets,
respectively and indicates that the developed models efficiently predicted the CEM:; values

for both the training and test data sets.

The aforementioned results indicate that all three models perform well in both the
training and test data sets for each performance characteristics (EE, PF and CEMy). The
performance of the three models is evaluated using various statistical indicators in the next

section.

7.5.1. Performance evaluation of the models
The performance of the three methods (MGGP, LS-SVM, and fuzzy logic) on training and
test data is evaluated using the following six statistical indicators. These indices are

mathematically expressed below.

Z?:l(Ai_A—l) (Mi_ﬁl) (14)

Coefficient of determination (R?) =
B A S, 0P

S (M—A;)?

Root mean square error (RMSE) = ~ (15)
Mean absolute error (MAE) = ZiaIMiAd (16)
Sum of squared error (SSE) = ¥\1-,(M; — A;)? a7
Mean square error (MSE) = M (18)
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M;—A;
A

Relative percentage error RPE (%) = | | x 100 (29)

I

Where M; is the model predicted value, and A4; is the experimental values and n is the

sample size.

The scatter plots on training and testing data sets of the three models (MGGP, LS-SVM,
and fuzzy logic) related to performance characteristics EE, PF and CEM; are shown in
Figures 7.14, 7.15 and 7.16 respectively. It can be revealed from Figures 7.14, 7.15 and
7.16 that the three models were efficiently learned from the training data samples, resulting
in all models with a high coefficient of determinations and small error values for the three
responses. The similar trend for the scatter plots were reported in the literature by Garg and
Lam (2015) and Sukonna et al. (2022). As shown in Figures 7.14, 7.15 and 7.16, the
coefficients of determination of the MGGP, LS-SVM and fuzzy logic models of three
performance characteristics (EE, PF and CEM;) were found to be in the range of 94% to
99% in training and 84-94% in testing. In all cases, R? values are greater than 84%,
signifying a strong relationship between the experimental and predicted values. The similar
range of R? values were reported by Garg and Lam (2015) and Garg et al. (2014). The value
of the coefficient of determination on the test data set for LS-SVM model are found to be
89.69%, 84.61% and 94.80% for EE, PF and CEM; respectively indicates that for each
performance characteristic, the LS-SVM model performed better than the other two models

(MGGP and fuzzy logic).

The calculated values of R?, RSME, MAE, SSE and MSE based on Egs. (14), (15), (16),
(17), and (18) respectively are summarized in Table 7.5. As shown in Table 7.5, one of the
important error indicators RSME is low and acceptable for three models of each
performance characteristic. The values of the statistical metrics shown in Table 7.5 are in
line with the results reported in the literature by Garg et al. (2015) and Sukonna et al.
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(2022). When the RSME values of the models are compared, the LS-SVM outperforms the
MGGP and fuzzy logic with the values of 3.2417, 0.0090 and 0.1934, and for the EE, PF
and CEM; respectively. Furthermore, as shown in Table 7.5, three models (MGGP, LS-
SVM, and fuzzy logic) of each performance characteristic have satisfactory and low values
for various error indices such as MAE, SSE, MSE and MAPE. The MAE, SSE, MSE and
MAPE values obtained in this study are within the range reported by Garg and Lam (2016)
and Bhattacharya et al. (2021). Based on the comparison of these error indices, the LS-
SVM model of each performance characteristic performs better than the corresponding
MGGP and fuzzy logic model. As shown in Table 7.5, the LS-SVM model related to three
performance characteristics have the lowest values of the various error indicators MAE,

SSE, MSE and MAPE.

Table 7.5. Summary of different statistical indicators of the models on testing data set.

Parameters
Model

R? RSME  MAE SSE MSE MAPE

LS-SVM 0.8969 3.2417* 2.5423* 6.31E+01* 1.05E+01* 8.4353*
EE  Fuzzy logic 0.9362* 7.8155 5.8185 3.66E+02 6.11E+01  17.6188

MGGP 0.8375 55815 4.4715 187E+02 3.12E+01  16.4563

LS-SVM 0.8461* 0.0090* 0.0074* 4.83E-04* 8.044E-05* 1.0344*
PF  Fuzzylogic 0.8242 0.0115 0.0100 8.00E-04  1.33E-04 1.3899

MGGP 0.8265 0.0094 0.0075 5.25E-04  8.75E-05 1.0427

LS-SVM 0.9480* 0.1934* 0.1259* 2.24E-01* 3.74E-02* 6.4983*
CEM, Fuzzylogic 0.9354 0.2442 0.2014 3.58E-01  5.96E-02 20.8617

MGGP 0.9234 0.2673 0.2098 4.29E-01  7.14E-02 21.5267

* Represent the best performing value
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Figure 7.14. The statistical fit of the models in the testing phase for EE (a) MGGP (b) LS-
SVM and (c) Fuzzy logic.
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Figure 7.15. The statistical fit of the models in the testing phase for PF (a) MGGP (b) LS-

SVM and (c) Fuzzy logic.
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Figure 7.16. The statistical fit of the models in the testing phase for CEM: (a) MGGP (b)

LS-SVM and (c) Fuzzy logic.
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The relative percentage error (RPE) of the developed three models (MGGP, LS-SVM,
and fuzzy logic) of each performance characteristic was calculated using Eq. (19) for the
training and testing data sets, and are shown in Figures 7.17, 7.18 and 7.19 for EE, PF and
CEM; respectively. The RPE values are in agreement to the results reported by Garg et al.
(2016) and Garg and Lam (2015), indicating that the three models made reliable predictions

with acceptable errors.
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Figure 7.17. The relative error between experimental and predicted EE values for three

models (a) Training (b) Testing.
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Figure 7.18. The relative error between experimental and predicted PF values for three
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Figure 7.19. The relative error between experimental and predicted CEM:; values for three

models (a) Training (b) Testing.

The descriptive statistical analysis of the relative error of three models (MGGP, LS-
SVM, and fuzzy logic) for the three performance characteristics (EE, PF and CEM:;) on
testing data set are reported in Table 7.6. The descriptive data includes the various statistical
parameters namely mean, standard error (Std Error), median, standard deviation (Std dev),
range, minimum error (Min), maximum error (Max), and sum of error (Sum) for the three

models on the testing data set.

The descriptive statistics results shown in Table 7.6 on the test data samples are
comparable to the descriptive statistics reported in the literature by Garg et al. (2016), Garg
et al. (2015) and Garg and Lam (2015), showing that all models accurately predicted the
performance characteristics. The descriptive statistics results shown in Table 7.6 also
endorse that the LS-SVM models perform better than the other two MGGP and fuzzy logic
with the best values of various descriptive statistical parameters: mean, Std error, median,
Std dev, range, minimum error, maximum error and sum of error. In total, the comparison
of coefficient of determination, different error values, and descriptive statistics of RPE of
the three models for three performance characteristics, shows that the LS-SVM model

outperformed the other two models (MGGP and fuzzy logic).
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Table 7.6. Descriptive statistics of the relative error for three models on the testing data

set.

Model Mean Std Median Std Range Min. Max. Sum

error dev

LS-SVM  0.084* 0.024* 0.072* 0.059* 0.158* 0.019* 0.178* 0.506*
EE Fuzzy logic 0.176 0.058 0.125 0.142 0.384 0.025 0.409 1.057

MGGP 0.165 0.056 0.141 0.136 0.334 0.029 0.364 0.987

LS-SVvM  0.010* 0.003* 0.011 0.008* 0.016* 0.002 0.018* 0.062*
PF Fuzzy logic 0.014 0.004 0.014 0.009 0.029 0.000* 0.029 0.083

MGGP 0.010 0.004 o0.007* 0.009 0.022 0.007 0.029 0.063

LS-SVM  0.065* 0.027* 0.051* 0.065* 0.178* 0.009* 0.187* 0.390*
CEM; Fuzzy logic 0.209 0.083 0.127 0.203 0.495 0.024 0.519 1.252

MGGP 0.215 0.128 0.098 0.312 0.812 0.028 0.840 1.292

* Represent the best performing value

7.5.2. Validation of the model
The statistical fitness of the three models (MGGP, LS-SVM, and fuzzy logic) for the three
performance characteristics EE, PF and CEMy) was validated using two hypothesis tests

viz. mean paired t-test and variance F-test using the Eq. (32) and Eq. (33) respectively.

= (M+4)
J(zm+et/ma)

(32)

F=4 (33)

Where M and A represent the sample mean of predicted and experimental data set.
respectively. s; and s, represent the standard deviation of predicted and experimental data

set respectively. n; and n, represent the sample size of predicted and experimental data set
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I.e. n, experimental runs in the present case. The calculated hypothesis tests results are

shown in Table 7.7.

Table 7.7 Hypothesis test results of three models for each performance characteristic

Model LS-SVM Fuzzy logic MGGP
Energy efficiency (EE)

Mean paired t test 0.9367 0.8499 0.1790
Variance F test 0.4818 0.1634 0.4806

Power factor (PF)
Mean paired t test 0.9730 0.8136 0.9330

Variance F test 0.4648 0.4227 0.4032

Carbon emission (CEMy)
Mean paired t test 0.9517 0.9791 0.8132

Variance F test 0.4913 0.3538 0.3759

The p values of the three models for the t-test and F-test were found to be more than
0.05, indicate that there is not enough evidence to conclude that the actual and predicted
values from these models differ. In conclusion, from a modelling standpoint, all three

models exhibit statistically acceptable goodness of fit for each performance characteristic.

In Industry, process planners select appropriate process parameters in design stage itself
to manufacture the final product. Evaluating each option to ascertain EE, PF and CEM is
not realistic, because it requires a large number of lengthy experiments, which increases
time and costs. The developed models can be utilized by the process planners to identify
the most energy efficient and low CEM based process plan before actual machining of a

part on a machine tool.
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7.6. Summary

In this chapter, three soft computing techniques (MGGP, LS-SVM, and fuzzy logic) were
used to predict EE, PF and associated CEM of a machine tool because these techniques are
known for their ability to incorporate the nonlinear complicated relationship between input
parameters and machining performances. Each model's predicted values on the training and
test data sets were found to be close to their respective experimental values, showing that
the models were trained efficiently from the training data samples and predicted
satisfactorily. A set of statistical indicators was used to evaluate and compare the
performance of the developed models (MGGP, LS-SVM, and fuzzy logic) for each
performance characteristic, including coefficient of determination, root mean square error,
mean absolute error, sum of square error, mean square error and relative percentage error.
The results of statistical indicators revealed that all models (MGGP, LS-SVM, and fuzzy
logic) of each performance characteristic have appropriate coefficients of determination
with satisfactory and low values of various errors. The comparative results indicated that
LS-SVM outperformed the other two models (MGGP and fuzzy logic). The superiority of
LS-SVM models for each performance characteristic over the other two models (MGGP
and fuzzy logic) was also validated by descriptive statistics findings for the relative error
on the testing data set. Further, the goodness of fit of the three models was validated by the

hypothesis testing (mean paired t-test and variance of F-test).

The proposed models are important because the measurements of energy-efficiency-
related performance characteristics necessitate an advanced laboratory set-up (specialized
equipment), which is costly, and measurement procedures are time-consuming and cannot
be used on a regular basis for any machining process. Accurate and reliable predictions
from soft computing-based models can be used directly as an input parameter for energy-

efficient process planning in practice.

191|Page



Chapter 8:
Multi-Objective Optimization of Power Factor, Carbon Emissions, Productivity

and Product Quality

The present chapter aims to optimize the sustainability responses: power factor, carbon
emissions, material removal rate (i.e. productivity) and surface roughness (i.e. product
quality) considering the impact of weight assignment methods on optimization results. In
addition to equal weight method, four methods were used to assign the weight of the
responses: Principal Component Analysis (PCA), entropy weights, Weighted Grey
Relational Analysis (WGRA), and Analytical Hierarchy Process (AHP). The Grey
Relational Analysis (GRA) coupled with Taguchi technique is used for the multi-objective
optimization. The multiple responses were converted into a multi-objective combined index
(MOCI) related to different weight assigning methods using the GRA technique and their
corresponding optimal cutting parameters were determined using the Taguchi technique.
The MOCIs at the optimum cutting parameters improved as compared to the MOCIs at the
optimum cutting parameters with equal weight method, indicating that weight assignment

methods are better for optimising responses than equal weight method.

8.1.  Introduction

The Intergovernmental Panel on Climate Change (IPCC) report periodically warns to
reduce greenhouse gas (GHG) emissions to limit average global temperature rise to below
2°C (IPCC, 2014, 2007, 2001; Pye et al., 2021), where carbon dioxide (CO,) is one of the
most prominent GHGs (Li et al., 2015). As the world's third largest carbon emission
country, India has established a national goal for a 45% reduction in the carbon intensity of
gross domestic product by 2030 and a Net Zero target by 2070 (Pradhan and Ghosh, 2022).
The industrial sector is the most energy-intensive and accounts for about 56% of total
energy consumption in India (Bal et al., 2022; National Statistics Office, 2020), where more
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than 60% of industrial energy consumption is contributed by the manufacturing industries

(Soni et al., 2017).

As previously stated that the potential strategies for reducing energy consumption and
carbon emissions in the manufacturing sector include can be achieved either by
development of energy-efficient machine tools or by optimizing existing machine tools and
machining processes (Jiang et al., 2022; Warsi et al., 2018). Given the large amount of
existing machine tools in use, the first strategies require solid economic provisions for
technological development and can only be implemented by replacing existing production
lines. The second approach can be implemented with relative ease and lesser resources.
Parameter optimization of existing machining processes and machine tools can be applied
to existing production lines with relative ease and with minimal resources (Bagaber and
Yusoff, 2019; Hu et al., 2020). Since changes in cutting parameters have a significant
impact on the energy consumption of a machining process (Newman et al., 2012),
unreasonable cutting parameters can result in an increase in energy consumption and
associated carbon emissions. Previous research has shown that appropriate selection of the
cutting parameters can result in carbon emission reduction up to 40% (Zhao et al., 2021).
An increasing number of researchers focus on reducing energy consumption and carbon
emissions. Moreover, focusing solely on environmental performance may impede other
critical performance indicators such as productivity and product quality of machining
processes. Therefore, with the increasing global adoption of carbon neutralization policies
(carbon tax and carbon labelling) and increased manufacturer competitiveness, the
machining process must achieve low carbon emissions with efficient energy utilization

without compromising productivity and product quality.
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Multi-objective optimization is a practical approach for setting optimal cutting
parameters where multiple responses need to be optimized simultaneously (Bagaber and
Yusoff, 2017). As presented in the Chapter 2 Literature review, extensive research has been
published on the trade-off/multi-objective optimization of machining process performances
such as energy consumption, cutting force, productivity, and product quality (Nguyen et
al., 2020). In practice, the power factor (PF) is an important measure of an electric system's
efficient electrical energy utilization (Behrendt et al., 2012). The power factor is the ratio
of active power to apparent power (O’Driscoll and O’Donnell, 2013). The main machine
tool components, such as electric motors, feed drives, coolant pumps, etc., are powered by
inductive loads that accumulate to a low PF. Low PF reduces the distribution capacity of
the electrical power grid by increasing current flow and lowering the voltage. If it falls
below a certain level, electrical boards impose penalties. This chapter proposes an
optimization method for low carbon emission and high efficiency from the perspectives of

carbon emission, power factor, surface quality and productivity of the machining process.

The literature review presented in Chapter 2 revealed that several authors have recently
focused on optimizing cutting parameters in machining processes while considering energy
consumption, productivity, and product quality. With growing environmental issues and
stringent carbon emission regulations, low carbon emission has become one of the essential
requirements of manufacturing industries. Due to this increasing number of authors are

considering CEM as machining performance in multi-objective optimization.

The existing literature survey (Chapter 2, Table 2.1) shows that limited authors
optimized the cutting parameters for low carbon emission, and only two studies (Kumar et
al., 2017; Nguyen et al., 2020) considered PF as a machining response in multi-objective

optimization. As explained previously, PF is an important indicator of the energy efficiency
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of an electrical system, such as a machine tool. PF values range from 0 to 1, and higher
values are desirable to avoid penalties imposed by electrical boards for their low values
(Behrendt et al., 2012). As a result, capacitor banks are now used to maintain a certain level
of PF in order to avoid such penalties (O’Driscoll and O’Donnell, 2013). Several studies
(ElI-Moniem et al., 2014; Mather and Maksimovié¢, 2011; Mitwalli et al., 1996) on PF
correction equipment (i.e. rectifiers) have been published in the literature. However, the
expense of buying and installing this equipment adds to the financial strain on the
manufacturing sector. The accumulation of inductive load of machine tool components is
one of the leading causes of power losses and low PF. Machine tools have variable drive
systems and can be operated at variable loads, resulting in inductive load and corresponding
PF changes. However, there appears to be an abundance of literature on the optimization
of machining responses such as energy consumption, productivity and surface quality but
only handful of studies on PF optimization. Behrendt et al. (2012) study only emphasized
the significance of PF. He underlined the significance of PF as an indicator of energy
efficiency of machine tool, and reported that five of the six machine tools studied had less
than 70% PF. To the best of the author's knowledge, only Nguyen et al. (2020) and Kumar
etal. (2017) considered PF as a machining process response in multi-objective optimization

but ignored the productivity and carbon emission respectively.

In addition, Table 2.1 of Chapter 2 shows that in most multi-objective optimization,
equal importance (weight) are assigned to the responses. The selection of the weight of
responses can provide a better solution to determine the optimal cutting parameter for a
machining process (Nguyen et al., 2020). The relative weight of the responses should be
decided based on the machining process requirement. The weights of the performance

characteristics can be decided based on qualitative techniques and quantitative techniques

195|Page



Multi-Objective Optimization of Power Factor, Carbon Emissions, Productivity
and Product Quality

e.g. qualitative technique: AHP (Gurumurthy and Kodali, 2012); quantitative techniques:
PCA (Kant and Sangwan, 2014), WGRA (Yan and Li, 2013) and entropy method (Bhuyan
and Routara, 2015; Sivasankar and Jeyapaul, 2012). Kumar et al. (2017) is the only
significant study reported so far that used two different weight assigning methods in

addition to equal weigh methods for multi-objective optimization of the machining process.

For fulfilling the existing above-mentioned research gaps to achieve low carbon
emissions without compromising the productivity and product quality of a machining
process, this chapter proposes a multi-objective optimization for low carbon emission in
terms of carbon emission and power factor, surface roughness, and material removal rate.
Here PF is the indicator of the energy efficiency of machine tool, carbon emissions (CEMt)
is one of the foremost GHGs, material removal rate (MRR) represents the productivity of
the machining process, and surface roughness (Ra) signifies the surface quality of the

machined product.

Furthermore, in this chapter, the optimization results of the equal weight method
compared with four different methods for allocating response weights, including
quantitative methods i.e. PCA, entropy weights, WGRA and qualitative method i.e. AHP.
The multiple responses were transformed into a multi-objective combined index (MOCI)
related to different weight assigning methods using the GRA method. The corresponding

optimal cutting parameters were determined using the Taguchi technique.

8.2.  Experimental Planning
Figure 8.1 shows the outline and adopted the methodology of the proposed multi-objective
optimization. The turning experiments were performed on a LMW-Smarturn CNC lathe

machine on an aluminium workpiece Al6061 under a dry cutting environment.
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Figure 8.1. Outline of the proposed work and adopted methodology.
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The technical specifications of the machine tool can be seen in Table 5.1 of Chapter 5.
Sandvik carbide inserts of different nose radii of designation: CNMG 120404, 08, 12 were
selected as cutting tools with tool holder of ISO designation PCLNR 2020 K12. The cutting
parameters for the turning process were cutting speed (v¢), cutting depth (dc), feed rate (fr),
and cutting tool nose radius (r). The levels of the cutting parameters were chosen based on
machine tool relevant factors, cutting tool supplier recommendations, and relevant
information found in the literature (Bharathi Raja and Baskar, 2011; Camposeco-Negrete,
2015; Lv et al., 2018). The level of the cutting parameters and their combinations according

to the Taguchi L7 (3%) orthogonal array are provided in Table 8.1.

The PF and total power drawn by the CNC machine tool were measured directly with
the help of the Fluke 435 series Il Power Analyzer and provided in Table 8.1. As shown in
Figure 8.1, the power analyzer was connected to the CNC machine tool's 3-phase main
power bus supply via three current probes and three voltage probes embedded with alligator

clips. The power consumption readings were taken every 0.25 seconds.

The surface roughness (Ra) was measured with the help of Mitutoyo’s Surftest SJ-411
as a surface quality indicator of the machined workpieces. The Ra was measured at three
equal angles on the workpiece's periphery, and the average values were used in the
calculations. The material removal rate (MRR) in the turning process can be calculated

using the following expression:

1)

MRR(mm?’J: v, x f. xd_ x1000

Sec 60

In a dry machining process, the carbon emissions are caused due to various factors: carbon
emissions due to electrical energy consumption of machine tool (CEMeic), the carbon

emission due to cutting tool wear (CEMwo), the carbon emission due to material
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consumption (CEMm), include the emissions due to the raw material production and
transportation, and the emissions due to post-processing of chips (CEMchip) for material
recovery (Zhang et al., 2017). The total carbon emission (CEM:;) can be expressed as (Li et

al., 2015; Zhang et al., 2017):

CEM, = CEM,, +CEM,,, +CEM,, +CEM,, )

elec

The detailed description and calculation procedure for each CEM: CEMgee, CEMyyo,
CEM,, and CEM_p;,, are provided in Chapter 6, Section 6.2. The various CEFs and other
related factors presented in Chapter 6 were used for the calculation of CEM in the current
work because the experiments were performed for the same workpiece and cutting tool
combination i.e. aluminium Al 6061 and carbide inserts. The calculated values of the CEM:

corresponding to the experimental runs are summarized in Figure 8.1.

Table 8.1. PF, MRR, Ra and CEM: under the different combinations of cutting parameters

based on Taguchi L2z orthogonal array.

Exp. Ve fr de r MRR Ra CEM;
PF

No. (m/min) (mm/rev) (mm) (mm) (mm3sec) (um) (kgCOy)
1 144 0.10 050 04 0.71 120.00 1.353 0.4148
2 144 0.10 1.00 0.8 0.73 240.00 0.777 0.6290
3 144 0.10 150 1.2 0.74 360.00 0.524 0.8174
4 144 0.15 050 038 0.71 180.00 0.992 0.5060
5 144 0.15 1.00 1.2 0.74 360.00 0.927 0.7533
6 144 0.15 150 04 0.76  540.00 2.210 0.9667
7 144 0.20 050 1.2 0.72 240.00 1.070 0.5908
8 144 0.20 1.00 04 0.74 480.00 3.229 0.8683
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9 144 0.20 150 038 0.77 720.00 2.203 1.1035
10 184 0.10 050 04 0.71 153.33 1.176 0.7729
11 184 0.10 1.00 038 0.72 306.67 0.681 1.1361
12 184 0.10 150 1.2 0.73 460.00 0.505 1.4446
13 184 0.15 050 0.8 0.71 230.00 0.798 0.9712
14 184 0.15 1.00 12 0.72 460.00 0.551 1.4041
15 184 0.15 150 04 0.76  690.00 1.970 1.7668
16 184 0.20 050 1.2 0.70 306.67 1.087 1.1525
17 184 0.20 1.00 04 0.75 613.33 3.395 1.6508
18 184 0.20 150 038 0.78 920.00 1.864 2.0584
19 224 0.10 050 04 0.70 186.67 1.314 1.2441
20 224 0.10 1.00 038 0.72 373.33 0.523 1.7910
21 224 0.10 150 1.2 0.74 560.00 0.376 2.2434
22 224 0.15 050 0.8 0.71 280.00 0.898 1.5904
23 224 0.15 1.00 12 0.74 560.00 0.616 2.2586
24 224 0.15 150 04 0.77 840.00 2.288 2.8015
25 224 0.20 050 1.2 0.72 373.33 1.387 1.9065
26 224 0.20 1.00 04 0.75 746.67 3.588 2.6851
27 224 0.20 150 038 0.77 1120.00 2.396 3.3080

8.3.  Multi-Objective Optimization using Different Weight Assigning Methods

The GRA method was used to combine the various responses into a single multi-objective
combined index (MOCI) related to different weight assigning methods i.e. equal weight
method, AHP, PCA, entropy weights, and WGRA. The obtained MOCI were then analysed
further using a Taguchi signal to noise (SN) ratio-based approach to determine the optimum
cutting parameters. Taguchi evaluates the MOCI on cutting parameters using the SN ratio.
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In the Taguchi method, three types of principles (larger is better, smaller is better, and
nominal is better) are available to calculate the SN ratios and can be used depending on the
nature of the objective or aim of the study (Mia, 2018). In the present study, the
maximization of MOCI was desirable; therefore, Eq. (3) for ‘Larger is the better’ principle

can be used to calculate the SN ratios.

SN ratio = —Iogl(Z[izj 3)
q y

Where y is the experimental outcomes of the dependent variable and q is the total number
of experimental runs. The general procedure/stages used for multi-objective optimization
using GRA coupled with Taguchi are discussed below.(Hanafi et al., 2012; Kant and

Sangwan, 2014).

Stage-I: Selection of the machining process responses

Machining processes can be evaluated based on several performance
characteristics/responses and thus, depending on the study's aim, responses are selected and
optimized simultaneously.

Stage I1: Pre-processing of data

The performance of the machining process can be evaluated based on several responses
that can be measured in different units e.g. power consumption in watts and product quality
in microns. The experimental sequence is thus transformed into comparable sequences
ranging from 0 to 1 by normalization. The following three equations are used in the GRA

for normalization depending on the characteristics of the response.

_ Max Xo (q)_ Xp (q)
Max x, (q)—Min x, (q)

‘Smaller the better’: X; (q)

(4)
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X, (q) —Minx; (q)

‘L h ’: - =
arger the better X, (q) Max X, (q)— Min X, (CI)

(®)

‘Xp (CI)— I:)v

Max.{Max x,(q)-D,, D, —Min xp(q)} ©

“Specific desired value’: X (q) =

Where x,(q) is the normalized sequence, x,(q) is the actual (experimental) sequence, D,
is the targeted value of the performance, Max x, (q) is the maximum value in the sequence,
Min x,(q) is the minimum value in the sequence, p is the number of responses (1,2,3...

number of responses), and g is the number of experimental runs (1, 2, . . ., number of

experimental runs).

After normalising the responses sequence, the corresponding Grey Relational

Coefficients (GRC) are calculated using the following equation;

Amin + é/A

GRC(q)= max 7
( ) Aop (q)+é/Amax
. « mini mini maxi maxi
Where A, (q)z‘xp (q)_xp (Q)‘, A :TTAOp (q)’ A :TTAOp( )

4,,(q) is the absolute difference between the ideal x;, (q) and the current x,(q) sequence

and called a deviational sequence. ¢ is the distinguish coefficient and can attain a value in

the range of 0 to 1, and in the present study, it is considered 0.5.

Stage-111: Weight calculations of responses

In multi-objective optimization, the relative importance (i.e. weight) of the responses is
determined in such a way that such that 257:1 w; = 1, p is the number of responses and w;
is the allocated weight of the j" response. The detailed calculation for each weight

assigning method is discussed below.
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(a) Equal weight
In the equal weight method, each response is given the same weight. The weight of each

response can be calculated using Eg. (8).

w, =1/p, j=123....p (8)

(b) Principal Component Analysis (PCA)

PCA is a well-known method for analysing multivariate data. PCA converts higher-
dimensional space information into lower-dimensional space information (Monfreda,
2012). Furthermore, the weights obtained through the PCA method are independent of the
decision-makers choices/preferences. The general methodology adopted for the PCA

analysis is discussed below.

Firstly, an original multiple quality characteristics matrix [G],x, is developed as

expressed in Eq. (9). The elements of this matrix gi(j) represent the GRC corresponding to
each response, where i = 1,2,3, ...number of experiments (q)) and j = 1,2,3, ... number of

responses p.

0.() 92 - - o(p)
9, (1) 9,(2) . . 9,(p)

G=| . S 9)
_gq“(l) gq'@) . gq'('p)_

The correlation coefficient matrix (Rijj) is then computed using Eq (10).

R, =( Cov(g, (). 8 (')J, j=12,3,...p,and 1 =1,2,3,....p (10)
Ggi(J)XGgi(l)

203|Page



Multi-Objective Optimization of Power Factor, Carbon Emissions, Productivity
and Product Quality

Where Cov (g;(j), g;(1)) is the covariance of sequence g;(j) and g;(1), og;(j) is the
standard deviation of sequence g;(j) and ag;(j) is the standard deviation of the sequence
gi(D). Following that, as shown in Eq. (11), eigenvalues and eigenvectors are calculated

using correlation coefficient arrays.
(R=A]1,)Vy =0 (11)

Where 4, is the eigenvalues and X' _ Ax=p k=123, ....p, Vg =

[ar ayz woeveevee akq]T are the eigenvectors corresponding to the eigenvalues 4. Thirdly,

the Principal Components are computed using Eqg. (12).

Zy = Zp:gq (i). Vi, (12)

Where Zpl represents the first Principal Component, Zp2 the second, and so on. The
contribution of the response to the Principal Component can calculate as the square of their
eigenvector. Accordingly, in the present study, the square of the eigen vector of the first
Principal Component was adopted as the weight of the related response and can be

calculated using Eq. (13)

Wi :(Zﬁl)i /Zipzl(zsl)i (13)

(c) Entropy weight

Entropy analysis explains the interaction between factors and responses and accordingly
suggests the relative importance (weight) of the responses (Shemshadi et al., 2011).
Entropy analysis uses probability theory to measure information uncertainty. The entropy
weight method does not incorporate the decision-maker’s choices/priorities to evaluate the

relative weight of the responses. The following section discusses the generalised
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methodology used to determine the weight of the responses using the entropy method

(Kumar et al., 2017).

The experimental results are used as elements of the Decision Matrix [DC];x,, Where
g represents the number of experimental runs and p represents the number of responses.
The elements dj; represent the values of the responses for each experimental run, where i =
1,2,3,...qandj = 1,2,3, ....p. As shown in Eq. (14), in the decision matrix, rows equal the

number of experimental runs and columns equal the number of responses.

d; d, d;, . . d
d21 d22 2j oo 2p
d, d, d. .. . d

DC: il i2 ij ip (14)
_dql d, d; - - dqp_

It is not necessary to measure every response on the same scale. Eq. (14) is used to
convert the responses to a comparable scale of dimensionless values ranging from 0 to 1.
The normalization is based on the characteristics of the response such as whether
maximisation or minimization is preferable. In Eg. (15), the maximum criterion refers to
the responses which need to be maximized. The minimum criterion is related to the

responses which are preferred with lower values.

0 for maximum criteria
Max (d; ).

J

"M =1 Mini (d

d

) (15)
/i -for minimum criteria

ij

The probability of occurrence (POj;) of the criterion is calculated by using equation (16).
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NM,
PO, = ——— (16)
1 q
i:lNMiJ

The entropy index (El;) of the j" criterion is calculated using equation (17).

El; =-PY_" PO;log(PO; ) (17)

1
09e(q)

Where P = . is a constant having value in the range of 0 < El; <1 and p are the

total number of experimental runs. The degree of divergence (DIV;) of the average

information confined by each response is calculated using Eq. (18).
DIV, =[1-El| (18)
Finally, the entropy weights (EW;) of the j™ response can be calculated using Eq. (19).

DIV,
Ew, = ——— (19)
J p
" DIV,

(d) Weighted Grey Relational Analysis (WGRA)

Yan and Li (2013) proposed the WGRA method wherein, the degree to which controllable
parameters (i.e., input parameters) affect the responses determines their relative importance

(weight). The general methodology to calculate the WGRA weights is discussed below.

Firstly, the average values of the GRC (average GRC) of the performance
characteristics are calculated at each level of the cutting parameters e.g. the average GRC
of the performance characteristics for level 1 of the cutting speed can be calculated using
the GRC values of the experimental runs 1-9. Similarly, the average GRC of all
performance characteristics for each level of the cutting parameters can be calculated. The

degree of influence of each response is quantitatively calculated by the sum-average of the
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GRC ranges (maximum-minimum) as shown in Eq. (20). The ratio of quantitative value
(i.e. GRC ranges) for each response is the basis for their relative importance i.e. weight.

The WGRA weights can be calculated using Eqg. (21).

Ry = maximum{Ki,jyl, Kijz ,...Ki'j’k} —minimum{Ki’jyl, Ki,j,Zl"'Ki,j,k} (20)

Zj:lRi,i

=it (21)

Z iilz s, =1Ri 3|

Where i = 1,2,3,.....p, j =1,2,3,....s, k = 1,2,3,....q. p is the number of responses, s
is the number of input parameters (cutting parameters), g is the number of experiments, K
is the mean GRC for each input parameter at each level of each response, and w; is the

weight of each response.

(e) Analytic Hierarchy Process (AHP)

AHP categorises the decision maker's preferences to determine the responses' relative
importance (i.e. weight). The decision-maker specifies the relative importance of the
responses in a pairwise matrix that define relative priorities among the responses. The
relative importance is determined using Saaty's nine-point preference scale (Saaty, 2008),
as shown in Table 8.2. The relative importance of the performance characteristics is
determined using this pairwise matrix. The AHP weight method's standard procedure is

discussed below (Saaty, 2008).

Table 8.2 Nine-point scale of the relative importance, Saaty (2008).

Intensity of importance Meaning Description

1 Equally important Indifferent
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2 Slightly important
3 Moderately important
A little better
4 Moderately plus important
5 Strongly important
Better
6 Strongly plus important
7 Very strongly important
Much better
8 Very very strongly important
9 Extremely important Absolutely much better

Assume there are p responses (Rp), which are used as elements (r;;, i & j = 1,2,3 .....p)
of a pairwise matrix [Rp]pxp’ as shown in Eq (22). The pairwise matrix is structured to
compare the performance characteristics Rj to R;j mutually. The matrix elements are
determined by comparing the responses in each row (R, Ry, .... Rp) to the responses in the
column (Ry, Ry, ... Ry) using Saaty's (Saaty, 2008) nine-point scale shown in Table 8.2.
Where for i = j, r;; = 1, because a response is equally important for itself. The other half

elements in the matrix for i # j are determined by comparing the responses. The other half

of the elements are essentially the reciprocal of their corresponding element such that r;; =
1/7;;. After constructing the pairwise matrix, Eq. (23) calculates the geometric mean of

each row.

Response (j) R, R, R; R; R,
()
R, 1 712 T1j --- --- T1p
R, 21 1 723 - - T2p
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R Ti1 Ti2 1 - - T3p
Rpxp =
R; --- --- --- --- --- ---
Rp T'p1 T'pz T'p3 === === 1
(22)

M, =TT }:’ (23)

The responses' relative importance (i.e. weight) is determined by dividing the geometric
mean of the corresponding row of the comparison matrix by the sum of the geometric mean

of all the rows as shown in Eq. (24).

p
w; =GM, / > GM, (24)

i=1

The consistency of the decision-makers should be tested before finalising the relative
weights using AHP. The estimated weights of the responses are used to calculate the

consistency index (CI) using Eqg. (25).

Cl = Foax = P (25)

Where A,,., represent the maximum Eigen value of the matrix and p is the number of
responses. Eq. (26) was used to calculate the consistency ratio (CR).

Kl

CR=—
RI

(26)
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RI is the random index value shown in Table 8.3. A value of CR < 0.10 indicates the
consistency of the decision-maker in assigning the relative importance of the responses in

the pairwise matrix i.e. Eq. (22).

Table 8.3. Random Index (RI) values (Saaty, 2008).

Number of responses 1 2 3 4 5 6 7 8 9 10

Random Index 0.00 0.00 0.58 090 112 124 132 141 145 1.49

Stage-1V: Calculation of the MOCls

The MOCI is the weighted sum of the GRCs of responses for each experimental run. The

MOCI can be calculated using Eq. (27).
P

MOCI =" w; *GRC, | (27)
j=0

Stage-V: The responses are simultaneously optimised and perform better when the MOCI

value is high (Mia, 2018).

8.4.  Results and Discussion

8.4.1. Calculation of MOCI related to different weight methods

Four responses are chosen for simultaneous optimization in stage I: PF, MRR, Ra and CEM:.
PF and MRR are beneficial with ‘larger the better’ characteristics; therefore, their

normalized sequences were obtained using Eg. (5).
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Table 8.4 Normalized values, Deviational sequence and GRC of the responses

Normalized sequences Deviational sequences Grey Relational Coefficients

PF MRR Ra CEM: PF MRR Ra CEM: PF MRR Ra CEM;

0.1250 0.0000 0.6958 1.0000 0.8750 1.0000 0.3042 0.0000 0.3636 0.3333 0.6218 1.0000

0.3750 0.1200 0.8752 0.9259 0.6250 0.8800 0.1248 0.0741 0.4444 0.3623 0.8002 0.8710

0.5000 0.2400 0.9539 0.8608 0.5000 0.7600 0.0461 0.1392 0.5000 0.3968 0.9156 0.7823

0.1250 0.0600 0.8082 0.9685 0.8750 0.9400 0.1918 0.0315 0.3636 0.3472 0.7228 0.9407

0.5000 0.2400 0.8285 0.8830 0.5000 0.7600 0.1715 0.1170 0.5000 0.3968 0.7446 0.8104

0.7500 0.4200 0.4290 0.8092 0.2500 0.5800 0.5710 0.1908 0.6667 0.4630 0.4669 0.7238

0.2500 0.1200 0.7839 0.9392 0.7500 0.8800 0.2161 0.0608 0.4000 0.3623 0.6983 0.8915

0.5000 0.3600 0.1118 0.8432 0.5000 0.6400 0.8882 0.1568 0.5000 0.4386 0.3602 0.7613

0.8750 0.6000 0.4312 0.7620 0.1250 0.4000 0.5688 0.2380 0.8000 0.5556 0.4678 0.6775

0.1250 0.0833 0.7509 0.8762 0.8750 0.9667 0.2491 0.1238 0.3636 0.3409 0.6675 0.8015

0.2500 0.1867 0.9050 0.7507 0.7500 0.8133 0.0950 0.2493 0.4000 0.3807 0.8404 0.6673

0.3750 0.3400 0.9598 0.6441 0.6250 0.6600 0.0402 0.3559 0.4444 0.4310 0.9256 0.5842
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0.1250 0.1100 0.8686 0.8077 0.8750 0.8900 0.1314 0.1923 0.3636 0.3597 0.7919 0.7222

0.2500 0.3400 0.9455 0.6581 0.7500 0.6600 0.0545 0.3419 0.4000 0.4310 0.9017 0.5939

0.7500 0.5700 0.5037 0.5327 0.2500 0.4300 0.4963 0.4673 0.6667 0.5376 0.5019 0.5169

0.0000 0.1867 0.7786 0.7450 1.0000 0.8133 0.2214 0.2550 0.3333 0.3807 0.6931 0.6623

0.6250 0.4933 0.0601 0.5728 0.3750 0.5067 0.9399 0.4272 0.5714 0.4967 0.3472 0.5393

1.0000 0.8000 0.5367 0.4319 0.0000 0.2000 0.4633 0.5681 1.0000 0.7143 0.5191 0.4681

0.0000 0.0667 0.7080 0.7133 1.0000 0.9333 0.2920 0.2867 0.3333 0.3488 0.6313 0.6356

0.2500 0.2533 0.9542 0.5243 0.7500 0.7467 0.0458 0.4757 0.4000 0.4011 0.9161 0.5125

0.5000 0.4400 1.0000 0.3680 0.5000 0.5600 0.0000 0.6320 0.5000 0.4717 1.0000 0.4417

0.1250 0.1600 0.8375 0.5937 0.8750 0.8400 0.1625 0.4063 0.3636 0.3731 0.7547 0.5517

0.5000 0.4400 0.9253 0.3627 0.5000 0.5600 0.0747 0.6373 0.5000 0.4717 0.8700 0.4396

0.8750 0.7200 0.4047 0.1751 0.1250 0.2800 0.5953 0.8249 0.8000 0.6410 0.4565 0.3774

0.2500 0.2533 0.6852 0.4844 0.7500 0.7467 0.3148 0.5156 0.4000 0.4011 0.6137 0.4923

0.6250 0.6267 0.0000 0.2153 0.3750 0.3733 1.0000 0.7847 0.5714 0.5725 0.3333 0.3892

0.8750 1.0000 0.3711 0.0000 0.1250 0.0000 0.6289 1.0000 0.8000 1.0000 0.4429 0.3333
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Ra and CEM: are advantageous with ‘Smaller the better’ characteristics; therefore, their
normalized sequences were calculated using Eq. (4). The calculated normalized values of
the responses are provided in Table 8.4. The GRC for each experimental run and response
was calculated using Eq. (7) according to stage I1, and the results are tabulated in Table 8.4.
The following are the calculation of the weights of the responses using the various methods

presented in stage I11.

According to the equal weight approach, equal importance (weight) is assigned to each
response which can be calculated using Eq. (8). The GRCs in Table 8.4 were chosen as
elements, i.e. g;(j) of the matrix [G],«,, to calculate the weight of the response using the
PCA method, as stated in Eq (10). Eqg. (11) was then used to compute the correlational
coefficient matrix (R;;). Following that, Egs. (12) and (13) were used to compute the
eigenvalues and Principal Components and are tabulated in Table 8.5 and Table 8.6
respectively. The Eigen analysis of the correlation coefficient matrix Rjj is shown in Table
8.5. The Principal Components' contributions can be calculated as the square of their
respective eigenvectors. Therefore, the square of the first Principal Component's

eigenvector in Table 8.6 was adopted as the weight of the corresponding response.

The matrix DC was created for entropy weights according to Eq. (14) where g = 27
(number of experimental runs) and p = 4 (number of responses). The DC matrix elements
are the responses' experimental outcomes shown in Table 8.1. The maximization of PF
and MRR is beneficial. Therefore, their normalized sequences were calculated using the
‘maximum criterion’ of Eq. (15). Minimization of Ra and CEM is advantageous. Therefore,

their normalized sequences were calculated using the ‘minimum criterion’ of Eq. (15).
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Table 8.5 Eigen analysis of the correlation coefficient matrix Rj

Eigenvalue 2.6422 0.845 0.3786 0.1342
Proportion (%) 0.6610 0.2110 0.0950 0.0340
Cumulative 0.6610 0.8720 0.9660 1.0000

Table 8.6 Eigen vectors for principal components and corresponding weights

Responses Zp1 Zyo Zp3 Zps PCA weights
PF -0.5550 0.1130 -0.5840 0.5820 0.3080
MRR -0.5790 -0.1250 -0.2400 -0.7690 0.3352
Ra 0.4020 -0.7390 -0.5400 -0.0140 0.1616
CEM 0.4410 0.6520 -0.5570 -0.2640 0.1945

The obtained normalized matrix (NMj;) is shown in Table 8.7. Following that, Egs. (16),

(17) and (18) were used to calculate the Elj, DIV; and Ew; respectively and are tabulated in

Table 8.7.

Table 8.7. NMjj, PQij, Elj, DIVj and corresponding entropy weights (Ew;)

NMij POj

PF MRR Ra CEM PF MRR Ra CEM
0.9103  0.1071  0.2779  1.0000 0.0358 0.0097  0.0267  0.0969
09359 0.2143 0.4839 0.6594 0.0368 0.0193  0.0464  0.0639
0.9487  0.3214  0.7176  0.5074 0.0373 0.0290 0.0688  0.0492
0.9103  0.1607 0.3790  0.8196 0.0358 0.0145 0.0364  0.0794
0.9487  0.3214  0.4056  0.5506 0.0373 0.0290 0.0389  0.0534
09744  0.4821  0.1701  0.4290 0.0383 0.0435 0.0163  0.0416
0.9231  0.2143 0.3514  0.7021 0.0363 0.0193  0.0337  0.0680
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0.9487 0.4286 0.1164 04777 0.0373 0.0386  0.0112  0.0463

0.9872 0.6429 0.1707 0.3759 0.0388 0.0580 0.0164  0.0364

0.9103  0.1369 0.3197 0.5366 0.0358 0.0123  0.0307  0.0520

0.9231 0.2738 0.5521 0.3651 0.0363 0.0247  0.0530  0.0354

0.9359 0.4107 0.7446 0.2871 0.0368 0.0370 0.0714  0.0278

0.9103 0.2054  0.4712 0.4271 0.0358 0.0185 0.0452  0.0414

0.9231 0.4107 0.6824  0.2954 0.0363 0.0370  0.0655  0.0286

0.9744  0.6161 0.1909 0.2348 0.0383 0.0556  0.0183  0.0227

0.8974  0.2738 0.3459 0.3599 0.0353 0.0247  0.0332  0.0349

0.9615  0.5476 0.1108 0.2513 0.0378 0.0494  0.0106  0.0243

1.0000 0.8214  0.2017 0.2015 0.0394 0.0741  0.0194 0.0195

0.8974  0.1667 0.2861 0.3334 0.0353 0.0150 0.0275  0.0323

0.9231 0.3333 0.7189 0.2316 0.0363 0.0301  0.0690  0.0224

0.9487 0.5000 1.0000 0.1849 0.0373 0.0451  0.0959  0.0179

0.9103  0.2500 0.4187 0.2608 0.0358 0.0225  0.0402  0.0253

0.9487 0.5000 0.6104  0.1836 0.0373 0.0451 0.0586  0.0178

0.9872 0.7500 0.1643 0.1480 0.0388 0.0676  0.0158  0.0143

0.9231 0.3333 0.2711 0.2175 0.0363 0.0301 0.0260  0.0211

0.9615  0.6667 0.1048 0.1545 0.0378 0.0601  0.0101  0.0150

0.9872 1.0000 0.1569 0.1254 0.0388 0.0902 0.0151 0.0121

Elj 09999 0.9573 0.9475  0.9565
DIVj 0.0001 0.0427 0.0525  0.0435

Ew; 0.0011 0.3077 03782  0.3130

For WGRA, the average GRC of each response for each cutting parameter is calculated
and summarized in Table 8.8.
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Table 8.8 The average value of GRC of each parameter at their every level and corresponding WGRA weights

Cutting  PF MRR Ra CEM;
parameter

Ve fr dc r Ve fr dc r Ve fr dc r Ve fr dc r
Level
1 0.5043 0.4166 0.3650 0.5374 0.4062 0.3852 0.3608 0.4636 0.6442 0.8132 0.6883 0.4874 0.8287 0.6996 0.7442 0.6383
2 0.5048 0.5138 0.4764 0.5484 0.4525 0.4468 0.4391 0.4993 0.6876 0.6901 0.6793 0.6951 0.6173 0.6307 0.6205 0.6382
3 0.5187 0.5974 0.6864 0.4420 0.5201 0.5469 0.5790 0.4159 0.6687 0.4973 0.6329 0.8181 0.4637 0.5794 0.5450 0.6331
Range 0.0144 0.1807 0.3214 0.1064 0.1139 0.1617 0.2182 0.0834 0.0434 0.3159 0.0554 0.3307 0.3650 0.1201 0.1992 0.0052
Sum of

0.6230 0.5772 0.7454 0.6895
ranges
WGRA

0.2364 0.2190 0.2829 0.2617
weights
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In the present study, the values of p, s and q are 4 (number of responses), 3 (number of
cutting parameters) and 27 (number of experimental runs) respectively. Egs. (20) and (21)
were used to calculate the ranges and WGRA weights respectively, and the results are

tabulated in Table 8.8.

The pairwise matrix is now prepared as stated in Eq. (22) and is shown in Table 8.9 to
calculate the weights using AHP. The AHP weights can be calculated using Eq. (24) and

are tabulated in Table 8.10.

Table 8.9 Pairwise matrix of responses

Responses PF MRR Ra CEM;
PF 1 1 2 1/3
MRR 1 1 1 17
Ra 1/2 1 1 1/9
CEM; 3 7 9 1

Table 8.10 AHP weights

Responses Geometric mean Eigen vector (AHP weights)
PF 0.9036 0.1582
MRR 0.6148 0.1076
Ra 0.4855 0.0850
CEM; 3.7078 0.6492

The consistency with which the decision-makers assigned the relative weights to the
responses in the pairwise matrix is then verified. The value of 4,,,,, and Cl (Eq. 25) were

found to be 4.0899 and 0.02996 respectively. The value of CR was calculated using Eq. 26
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and found to be 0.0333 (< 0.10). The CR value for the present pairwise matrix is less than
0.10, which confirms the decision-makers consistency in assigning the relative importance
of the responses in the pairwise matrix. The calculated weights of the responses related to

different weight methods are summarized in Table 8.11.

Table 8.11 Calculated weights with different weight methods

Response PF MRR Ra CEM;
Weight method Weight

Equal 0.2500 0.2500 0.2500 0.2500
PCA 0.3080 0.3352 0.1616 0.1945
Entropy 0.0011 0.3077 0.3782 0.3130
WGRA 0.2364 0.2190 0.2829 0.2617
AHP 0.1582 0.1076 0.0850 0.6492

Following that, Eg. (27) and Eqg. (3) were used to calculate the MOCI and their
corresponding SN ratios related to different weight methods respectively, and the results

are tabulated in Table 8.12.

8.4.2. Analysis of variance (ANOVA)

ANOVA analysis is used to analyze the effects and significance of the cutting parameters
on the means of MOCI. The ANOVA determines “how much” variation and “which” factor
has caused it, using F-statistics, P value (for significance level 5 %), source, degrees of
freedom, sum of squares, mean squares, and percentage contribution. F-values, p-values,
and percentage contribution (PC) were calculated for linear terms, square terms, and their

two-way interactions.
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Table 8.12 MOCI with different weights and their SN ratios.

Exp. Equal weight PCA weight Entropy weight WGRA weight AHP weight

run MOCI SN Ratio MOCI SN Ratio MOCI SN Ratio MOCI SN Ratio MOCI SN Ratio
1 0.5797 -4.7362 0.5187 -5.7014 0.6511 -3.7264 0.5965 -4.4873 0.7954 -1.9881
2 0.6195 -4.1593 0.5571 -5.0818 0.6873 -3.2576 0.6387 -3.8940 0.7427 -2.5832
3 0.6487 -3.7594 0.5871 -4.6251 0.7138 -2.9283 0.6688 -3.4938 0.7075 -3.0060
4 0.5936 -4.5306 0.5282 -5.5448 0.6750 -3.4133 0.6126 -4.2562 0.7670 -2.3044
5 0.6129 -4.2518 0.5650 -4.9596 0.6579 -3.6368 0.6278 -4.0438 0.7111 -2.9608
6 0.5801 -4.7303 0.5768 -4.7800 0.5463 -5.2512 0.5805 -4.7242 0.6649 -3.5455
7 0.5880 -4.6120 0.5309 -5.4997 0.6551 -3.6740 0.6047 -4.3687 0.7404 -2.6109
8 0.5150 -5.7636 0.5073 -5.8945 0.5100 -5.8483 0.5154 -5.7575 0.6511 -3.7266
9 0.6252 -4.0795 0.6400 -3.8761 0.5608 -5.0240 0.6204 -4.1461 0.6659 -3.5317
10 0.5434 -5.2977 0.4900 -6.1952 0.6087 -4.3126 0.5592 -5.0487 0.6713 -3.4618
11 0.5721 -4.8506 0.5164 -5.7399 0.6443 -3.8182 0.5903 -4.5788 0.6089 -4.3096
12 0.5963 -4.4904 0.5446 -5.2785 0.6661 -3.5298 0.6142 -4.2341 0.5746 -4.8127
13 0.5594 -5.0460 0.5010 -6.0027 0.6367 -3.9218 0.5778 -4.7652 0.6324 -3.9802
14 0.5817 -4.7066 0.5289 -5.5320 0.6600 -3.6090 0.5994 -4.4450 0.5718 -4.8545
15 0.5558 -5.1021 0.5672 -4.9250 0.5178 -5.7175 0.5526 -5.1518 0.5415 -5.3273
16 0.5174 -5.7242 0.4711 -6.5375 0.5870 -4.6278 0.5316 -5.4891 0.5825 -4.6935
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17 0.4887 -6.2200 0.5035 -5.9597 0.4536 -6.8671 0.4832 -6.3170 0.5234 -5.6226
18 0.6754 -3.4092 0.7224 -2.8244 0.5637 -4.9791 0.6622 -3.5802 0.5831 -4.6853
19 0.4873 -6.2447 0.4452 -7.0279 0.5454 -5.2654 0.5001 -6.0188 0.5565 -5.0900
20 0.5574 -5.0764 0.5054 -5.9276 0.6308 -4.0028 0.5757 -4.7967 0.5170 -5.7303
21 0.6033 -4.3887 0.5596 -5.0417 0.6621 -3.5809 0.6200 -4.1526 0.5016 -5.9929
22 0.5108 -5.8352 0.4664 -6.6257 0.5733 -4.8319 0.5255 -5.5879 0.5200 -5.6804
23 0.5703 -4.8775 0.5382 -5.3805 0.6123 -4.2602 0.5827 -4.6917 0.4892 -6.2100
24 0.5687 -4.9019 0.6085 -4.3150 0.4889 -6.2160 0.5574 -5.0762 0.4793 -6.3871
25 0.4768 -6.4339 0.4526 -6.8860 0.5100 -5.8478 0.4848 -6.2882 0.4782 -6.4076
26 0.4666 -6.6207 0.4975 -6.0640 0.4247 -7.4390 0.4566 -6.8086 0.4330 -7.2700
27 0.6441 -3.8215 0.7181 -2.8767 0.5804 -4.7256 0.6207 -4.1425 0.4882 -6.2275
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The regression mean square to the mean square error ratio is defined as the F-value. A
cutting parameter with an F-value greater than 4 significantly affects the response (Kant
and Sangwan, 2014). The p-value shows the statistical significance of the cutting
parameters for the results at a given confidence level (Kant and Sangwan, 2014). The
significance (confidence) level in this analysis is set to 0.05. Thus, the p-value should be
less than 0.05; otherwise, the contribution of the corresponding cutting parameter to the
response is statistically insignificant. The results of ANOVA for means of MOCI related to

different weight methods are provided in Table 8.13.

Table 8.13 ANOVA for the means of MOCI related to the different weight methods

Weight
Source  DF AdjSS AdjMS F-Value P-Value PC (%)
method

Ve 1 0013 0013 51210 0.000* 21.131
£ 1 0002 0002 9970  0.008* 4.113
d, 1 0013 0013 54230  0000% 22.378
r 1 0013 0013 54180  0.000% 22.358
verv, 1 0000 0000 0350 0566  0.144
fxf 1 0.000 0000 0280  0.602  0.117

Equal d,+d, 1 0002 0002 6190  0.027* 2.556
rer 1 0003 0003 11.370  0.005* 4.694
verf 1 0000 0000 1170 0298  0.484
vexd. 1 0.005 0005 20.840  0.001*  8.600
verr 1 0.000 0000 0750  0.404  0.307
ford, 1 0.004 0004 18150  0.001* 7.488
frr 1 0.000 0000 0640 0438  0.264
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Error 13 0.003  0.000 5.365
Total 26 0.076 100.000
R? = 95.79% Adj. R? = 91.58%

2 1 0.003 0.003  8.790 0.011* 3.280
fr 1 0.006 0.006 18.570 0.001* 6.931
d; 1 0.041 0.041 133.640 0.000*  49.892
T 1 0.005 0.005 17.970 0.001* 6.708
vexv, 1 0.000 0.000 0.760 0399  0.284
fr * fr 1 0.000 0.000  0.000 0.955  0.001
do.xd, 1 0.002 0.002 7.260 0.018* 2.711
T*T 1 0.003 0.003 8.670 0.011* 3.236

PCA
vexf, 1 0.002 0.002  5.560 0.035*  2.075
vexd, 1 0.007 0.007 23.930 0.000* 8.935
Ve *T 1 0.001 0.001 1.790 0.203 0.670
fr *d, 1 0.008 0.008 26.420 0.000*  9.862
frxr 1 0.000 0.000  1.500 0.243  0.560
Error 13 0.004  0.000 4.853
Total 26 0.123 100.000

R? = 96.77% Adj. R? = 93.54%

U, 1 0.022 0.022 68450  0.000* 17.328
fr 1 0.052 0.052  160.680 0.000* 40.674

Entropy d. 1 0.001 0.001 3.130 0.100 0.794
T 1 0.037 0.037 114.440 0.000* 28.971
vexv, 1 0.000 0.000 0.010 0.941  0.002
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fxf 1 0.000 0000 0380 0546  0.098
d xd, 1 0001 0001 2260 0157 0571
rer 1 0003 0003 9170  0.010% 2.321
verf 1 0.000 0000 0000  0.961  0.001
verd, 1 0.006 0006 17.930  0.001* 4.537
verr 1 0000 0000 0010 0921  0.002
ford, 1 0002 0002 5170  0.041* 1.309
forr 1 0.000 0000 0400 0539  0.101
Error 13 0.004  0.000 3.291
Total 26 0.148 100.000
RZ =97.17% Adj. R? = 94.34%
Ve 1 0016 0016 66.140  0.000% 24.776
£ 1 0.008 0008 33160  0.000% 12.423
d, 1 0.008 0008 33580 0.000% 12.580
r 1 0017 0017 69.410  0.000*  26.002
verv, 1 0.000 0000 0170  0.684  0.065
fxf 1 0.000 0000 0600 0452  0.225
WGRA d.*d, 1 0001 0001 5340  0.038* 2.000
rer 1 0.003 0003 11.880  0.001* 4.450
verfo 1 0000 0000 0300 0591  0.114
vexd. 1 0.004 0004 18140  0.001* 6.796
vexr 1 0000 0000 0430 0524 0.161
foxd, 1 0.004 0004 14390 0.002* 5.389
foxr 1 0000 0000 0400 0538  0.150
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Error 13 0.003  0.000 4.869
Total 26 0.080 100.000
R? = 95.98% Adj. R? = 91.95%

v, 1 0.218 0.218 2746.670 0.000* 86.410
fr 1 0.016 0.016 195.900 0.000* 6.163
d; 1 0.007 0.007 84.620 0.000*  2.662
T 1 0.001 0.001 16.540 0.001*  0.520
vexv, 1 0.002 0.002 25350  0.000* 0.797
fr * fr 1 0.000 0.000 1.040 0.326  0.033
do.xd, 1 0.002 0.002 29.170 0.000*  0.917
T*T 1 0.001 0.001 6.960 0.021* 0.219
AHP
vexf, 1 0.000 0.000 0.160 0.692  0.005
vexd, 1 0.003 0.003 33,580  0.000* 1.056
Ve *T 1 0.000 0.000 2.360 0.148 0.074
fr *d, 1 0.002 0.002 21.940 0.000*  0.690
fr*T 1 0.000 0.000 1.410 0.257  0.044
Error 13 0.001  0.000 0.409
Total 26 0.266 100.000
R? =99.61% Adj. R? = 99.21%

*Significant parameters

P-value < 0.05 and F-value > 4 for linear terms in Table 8.13 related to different weight

methods, shows that the selected cutting parameters have significant impacts on the MOCI

and better statistical fitness of the experimental results. Further, in each case, the coefficient

of determination (i.e. R?) is more than 95% which confirms the statistical significance of

the experimental data for MOCI related to different weight methods. The percentage
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contribution (PC) of each parameter for MOCI related to different weight methods are

summarized in Table 8.14.

Table 8.14 Summary of the percentage contribution of cutting parameter for MOCI related

to the different weight methods

Method Cutting parameters percentage contribution

Ve fr d. r
Equal weight 21.13 411 22.38 22.36
PCA weight 3.28 6.93 49.89 6.71
Entropy weight 17.33 40.67 0.79 28.97
WGRA weight 24.78 12.58 12.42 26.00
AHP weight 86.41 6.16 2.66 0.52

8.4.3. Taguchi analysis

The SN ratios of MOCI related to different weight methods are summarized in Table 8.12.
Genichi Taguchi developed the Taguchi method. It used the signal-to-noise ratio principle
that minimises variation and improves the mean for the given set of data (Oztirk et al.,
2019). The SN ratio is the ratio of expected signal values with unexpected noise values
(Meral et al., 2019). Therefore, the cutting parameter level corresponding to the highest SN
ratio is considered as the optimal level for the corresponding response (Sivaiah and

Chakradhar, 2019).

Accordingly, the optimum cutting parameters with different weight methods (equal,
PCA, entropy, WGRA and AHP) and their corresponding SN ratios and MOCIs are

provided in Table 8.15. The optimal levels of cutting parameters are different for MOClIs
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belonging to different weight methods, and only they are the same for equal and WGRA

weight methods.

Table 8.15 Optimal cutting parameters with different weight methods

Weight method

Cutting

Equal PCA Entropy WGRA AHP
parameter

Optimal level of cutting parameter
Ve 144 144 144 144 144
fr 0.10 0.20 0.10 0.10 0.10
de 15 1.50 0.50 1.50 0.50
r 0.8 0.8 1.2 0.8 0.8
MOCI 0.6253 0.6400 0.7464 0.6419 0.8047
SN ratio -4.0777 -3.8761  -2.5405 -3.8501 -1.8879

Further, the main effect plot of SN ratios are used to analyze the influence of the cutting
parameters on the responses and are shown in Figure 8.2, Figure 8.3, Figure 8.4, Figure 8.5
and Figure 8.6 for the MOCI related to equal, PCA, entropy, WGRA and AHP methods

respectively.

The MOCI related to equal (Figure 8.2), PCA (Figure 8.3), entropy (Figure 8.4), WGRA
(Figure 8.5) and AHP (Figure 8.6) are deteriorating with an increase in cutting speed.
Figures 8.2, 8.4, 8.5 and 8.6 shows that the MOCI related to equal, entropy, WGRA and
AHP decreases as the feed rate increases, whereas MOCI related to PCA shows the reverse
trend as shown in Figure 8.3. The MOCI related to equal weight method as shown in (Figure
8.2), PCA (Figure 8.3) and WGRA (Figure 8.5) shows improvement with an increase in
the depth of cut. The MOCI related to AHP (Figure 8.6) shows deterioration with an

increase in the depth of cut, while MOCI related to entropy (Figure 8.4) shows decrement
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with the decrease in depth of cut with level-1 to level-2 and improves with a further increase
from level-2 to level-3. The MOCI corresponding to equal weight (Figure 8.2), PCA
(Figure 8.3), WGRA (Figure 8.5) and AHP (Figure 8.6) increases with a change in nose
radius from level-1 to level-2, and when nose radius advances from level-2 to level-3, it
shows a decrement. Whereas the MOCI related to entropy (Figure 8.4) weight improves
with an increase in nose radius.

Main Effects Plot for SN ratios of MOCI with equal weight method
Data Means

Ve fr
-4.2

dc r
-4.4
-4.6
-4.8
5.0
5.2
50 1.00 150 04 0.8 12

Mean of SN ratios

5.4

-5.6
144 184 224 0.10 0.15 020 0.

Signal-to-noise: Larger is better

Figure 8.2. Main effect plot for SN ratios of MOCI with equal weight method.
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Main Effects Plot for SN ratios of MOCI with PCA weights
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Figure 8.3. Main effect plot for SN ratios of MOCI with PCA.

Main Effects Plot for SN ratios of MOCI with entropy weights
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Figure 8.4. Main effect plot for SN ratios of MOCI with entropy weight method.
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Main Effects Plot for SN ratios of MOCI with WGRA weights
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Figure 8.5. Main effect plot for SN ratios of MOCI with WGRA.

Main Effects Plot for SN ratios of MOCI with AHP weights
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Figure 8.6. Main effect plot for SN ratios of MOCI with AHP.

8.4.4. Validation of optimization results and comparative analysis
The combination of optimal levels of cutting parameters for MOCI related to equal weight

method, WGRA weights, entropy weights, and AHP weights differ from the L7 orthogonal
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array as shown in Table 8.1. Therefore, Experiments were performed at optimal cutting
parameters of MOCI related to different weight methods to obtain the corresponding values
of the responses. The experiments were repeated three times, and the average was adopted.
The results are tabulated in Table 8.16. Eq. (28) can be used to predict the values of the
MOCI related to different weight methods on optimal cutting parameters (Sivaiah and

Chakradhar, 2019).

7predicted =Vm T E’o ~Vm (28)
i=1

¥m 1S the average of MOCIs or SN ratios value, y, is the mean of MOCI or SN ratio at
optimal levels, and s is the total number of the cutting parameters. The experimental values
of MOCI and SN ratios on optimal cutting parameters related to different weight methods

and their predicted values are compared in Table 8.16.

Table 8.16 Predicted and measured values of the SN ratios and MOCI on optimum cutting

parameters related to different weight methods.

Measured Predicted Difference in %
Weight method

MOCI SN Ratio MOCI SN Ratio MOCI SN Ratio
Equal 0.6253 -4.0777 0.6764 -3.2719 -8.16 19.76
PCA 0.6400 -3.8761 0.6762 -3.3690 -5.65 13.08
Entropy 0.7464 -2.5405 0.7345 -2.4650 1.59 2.97
WGRA 0.6419 -3.8501 0.6878 -3.1090 -7.14 19.25
AHP 0.8047 -1.8879 0.7991 -1.7201 0.69 8.89

The comparative analysis in Table 8.16 shows that the experimental and predicted values

of the SN ratios and MOCI are very close, with no significant difference. In addition, the
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MOCIs for PCA, entropy weights, WGRA, and AHP are compared to the MOCI for equal

weight method in Table 8.17.

Table 8.17 Improvement in MOCI related to different weight methods compared to equal
weight method.
Method Equal PCA Entropy WGRA  AHP
MOCI at optimum

. 0.6253 0.6400 0.7464 0.6419  0.8047
cutting parameters

Percentage improvement in
MOCI compared - 2.35 19.36 2.66 28.67
to the equal weight

Compared to the MOCI using equal weight method, the MOCIs related to PCA, entropy
weights, WGRA, and AHP show an improvement of 2.35 %, 19.36 %, 2.66 %, and 28.67
% on corresponding optimal cutting parameters. The larger the MOCI, the better the
corresponding responses (Kant and Sangwan, 2014; Meral et al., 2019). A higher value of
MOCI shows a better performance of the responses simultaneously (Meral et al., 2019).
Therefore, the improvement in the MOCIs suggests that using different weight methods

rather than equal weight method would result in better optimisation results.

Table 8.18 summarizes the values of the responses (PF, MRR, Ra and CEM:;) on the
optimal cutting parameters related to the different weight methods and their deviations from

the values at the optimal cutting parameters using equal weight method.

The weights of the responses using the WGRA method were nearly the same as those
using the equal weight method (Table 8.11), and thus their optimal cutting parameters are
found to be the same (Table 8.15). Therefore, with equal and WGRA weights, the responses

have the same values.
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Table 8.18. Summary of optimized values of responses with equal weight method versus

other weight assigning methods.

MRR Ra CEM;
Performance characteristics PF
(mm3/sec) (um)  (kgCO2)
Values of responses on optimal cutting
0.74  360.00 0.778 0.7658
parameters with equal weight method
At optimal cutting parameters 0.77 720.00 2,203 1.1035
Deviation compared to optimal
PCA
cutting parameters with equal weight 4.05 100.00 183.16 44.10
method (%)
At optimal cutting parameters 0.72  120.00 0.534 0.4823
Deviation compared to optimal
Entropy
cutting parameters with equal weight -2.70 -66.67 -31.35 -37.02
method (%)
At optimal cutting parameters 0.74 360.00 0.778 0.7658
Deviation compared to optimal
WGRA
cutting parameters with equal weight 0.00 0.00 0.00 0.00
method (%)
At optimal cutting parameters 0.72 120 0.641 0.4528
Deviation compared to optimal
AHP
cutting parameters with equal weight -2.70 -66.67 -17.57 -40.87

method (%)

+ change shows improvement in PF and MRR; — change shows improvement in Ra and

CEM;
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As shown in Table 8.11, PF and MRR were assigned higher weights in PCA than equal
weight method and the highest weights among all weight methods. This is also reflected in
their percentage improvement of 4.05% and 100% respectively as shown in Table 8.18 on
the optimal cutting parameters using PCA when compared to the optimal cutting

parameters with equal weight method.

The entropy method assigned a higher weight to Ra than equal weight method, as shown
in Table 8.11, which is the highest weight for R among all weight assigning methods. As
a result, the percentage improvement in Ra of 31.35 (Table 8.18) on the optimal cutting
parameters using entropy weights was observed to be the highest when compared to the
optimal cutting parameters using equal weight method.

A similar phenomenon was observed for the response CEM; to which a higher weight was
given in AHP than the equal weight (Table 8.11) and is the highest weight for CEM; among
all weight assigning methods. When the value of CEM on optimal cutting parameters with
AHP was compared to the value on optimal cutting parameters with equal weight method,

the highest reduction in CEM; was found to be 40.87 %, as shown in Table 7.18.

In the preceding discussion and as shown in Table 8.18, based on the weight assigning
method, given weights to the responses change the optimal cutting parameters, and the
responses exhibit improvement or degradation in accordance with those changes when

compared to the optimal cutting parameters using equal weight method.

As shown in Table 8.18, PF and MRR show an improvement of 4.05% and 100%
respectively on optimal cutting parameters using PCA as compared to the equal weight

method, whereas the responses Ra and CEM: deteriorate by 183.16% and 44.10%
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respectively. The decline in R, and CEM; is due to their lower given weightage of 16.16%

and 19.45% respectively, as shown in Table 8.11.

As shown in Table 8.18, on the optimal cutting parameters with entropy weights, the
responses PF and MRR show a decrement of 2.70% and 66.67% respectively when
compared to the optimal cutting parameters using equal weight method, while Ra and CEM
improved by 31.35% and 37.02% respectively. The improvement in R, and CEM is found
because of their larger weights of 37.82% and 31.30% respectively with the entropy weight

method, as shown in Table 8.11.

Table 8.18 shows that the PF and MRR at the optimal cutting parameters with AHP
decreased by 2.70% and 66.67%, respectively when compared with the optimum cutting
parameters using equal weight, while the R, and CEM showed an improvement of 17.57%
and 40.87% respectively. The changes in the optimized values of the response related to
different weight methods as compared to their optimized values with equal weight method

are summarized in Table 8.19.

Table 8.19. Summary of the changes in the optimized values of the response related to

different weight methods as compared to their optimized values with equal weight method.

Responses
Weight method

PF MRR Ra CEM;
PCA Improved”  Improved"  Deteriorate! Deteriorate'"
Entropy Deteriorate’™ Deteriorate' Improved"' Improved"
WGRA No change No change  Nochange No change
AHP Deteriorate' Deteriorate’ Improved" Improved"

L1l Itand IV shows the ranking of the response based on their percentage change
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As shown in Table 8.18, when entropy and AHP are used instead of equal weight
method, the values of Ra and CEM; improve significantly, and this improvement is more
significant than using WGRA and PCA weights. In addition, when comparing the
optimization results produced by AHP weights and entropy weights, AHP bring better

CEM: reduction while entropy weights give better Ra.

An improvement in the performance of one response during the optimization of
multiple responses can even lead to a deterioration in another response (Camposeco-
Negrete, 2015; Yan and Li, 2013), which is primarily driven by the weight assigned to the
response (Kumar et al., 2017). Therefore, the weights assigned to the responses are critical
and should be adopted based on qualitative or quantitative techniques, not be fixed

arbitrarily like equal weight method.

Further, the improvement in the MOCISs related to different weight methods compared
to the MOCI using equal weight shows that the system is better optimized with different
wight methods than the equal weight method in which the AHP method shows the greatest
improvement. Further, in the present case, the comparative analysis shows that the AHP
method can be a suitable alternative for determining the weights of the responses. This

method also provides flexibility if a particular response needs to be focused.

8.5.  Summary

This chapter includes key machining process responses: power factor (PF), productivity
(MRR), product quality (Ra) and carbon emission (CEM:) for multi-objective optimization
to achieve sustainable and cleaner machining, where PF is one of the indicators of the
effective use of electricity and has rarely optimized with CEM:; in the literature. In this

chapter, the optimization results with different weight methods (i.e. PCA, entropy, WGRA
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and AHP) were compared with the optimization results with equal weight method. The
optimal level of cutting parameters was found to be different for MOCIs related to different
weight methods. The optimization results were validated by the Taguchi method in which
the experimental and predicted values of SN ratio and MOCI are found to be close to each
other. The MOCIs on optimal cutting parameters related to the PCA weights, entropy
weights, WGRA weights and AHP weights are compared with the MOCI related to equal
weight and found to be improved by 2.35%, 19.36%, 2.66% and 28.67% respectively. The
improvement in MOCI reflects the improved performance of the response on the optimal
cutting parameters obtained through different weight methods compared to the equal
weight method indicating that these methods have a significant impact on multi-objective

optimization.

Further, in the present case, the AHP weight method can be a suitable alternative for
determining the weights of the responses. Since the MOCI shows highest improvement of
28.67% with AHP compared to the equal weight. In comparison to the equal weight
method, with AHP weights, the surface quality of the machined components can be
improved by 17.61% with low carbon emission around 40.87%. However, PF shows a

nominal deterioration of 4.05% and MRR decreased by 66.67%.
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Chapter 9:

Conclusions

Machine tools plays a significant role in manufacturing industries and are unfortunately
responsible for huge energy consumption and associated greenhouse gas emissions.
Machine tools have a complex and dynamic structure due to the diverse and complex
interaction of various materials, process parameters, and cutting tools, which directly
impact their behaviour analysis. Developing an accurate industry-applicable energy
consumption model of machine tools is still challenging. This study provides modelling of
energy consumption and associated carbon emission (CEM) of machine tools for
machining cylindrical parts. This study demonstrates the application of soft computing
techniques to model the performance indicators of machine tools. Further, process
parameters are optimised for low carbon emissions and efficient energy utilisation without

compromising productivity and product quality.

In Chapter 2, more than 100 research articles including modelling approaches of the
energy consumption of machine tools and optimization of process parameters are reviewed.
The literature reveals several advances in this area. One group of researchers attempts to
address this issue by modelling and assessing the energy consumption and CEM of CNC
machine tools, processes, and systems, and a large number of authors are focusing on

optimization of machining processes.

The early studies on machining process energy consumption focused on modelling the
tooltip-work interface energy consumption i.e. material removal energy consumption.
Literature shows that the energy required for material removal was significant, but the total
energy demand of a machine tool is predominant. In numerous studies the energy

consumption of machine tools segregated at their component level such as energy
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consumed by spindle, feed axis, coolant pump, tool change system. Some authors modelled
the energy consumption of machine tool by dividing into energy consumed in different
states such as standby, idle, air-cut and cutting. Some researchers investigated machine
tools' transient states: spindle and feed acceleration, and incorporated them to evaluate the
total energy consumption of machine tools to improve the accuracy of energy consumption
models. The review revealed that in recent years artificial intelligence-based algorithms are
widely employed to assess the energy consumption of machine tools, and a growing
number of other authors are focusing on assessing the CEM of machining processes.
Finally, the literature review is summarised, highlighting the strengths and limitations of
existing modelling approaches. It shows that the existing energy consumption evaluation
models only consider constant power consumption (CPC) machining processes, whereas
cylindrical part machining includes both CPC and variable power consumption (VPC)
machining processes to manufacture the final product, which result in inaccurate
quantification of the energy consumption and associated CEM for machining a cylindrical

part.

Further, literature survey on optimization of machining processes in terms of process
performance and weight assigning methods is presented. The literature review revealed that
the limited authors optimized the cutting parameters for low carbon emission, and rarely
for the power factors and VPC machining process in multi-objective optimization. The
majority of authors assigned equal weights to responses in multi-objective optimization.
Therefore, the process parameters should be optimized for CEM, PF and for the VPC
machining processes. The impact of weighting methods on multi-objective optimization

results should be investigated.

In Chapter 3, an empirical model for evaluating the cutting energy consumption of the

VPC machining process i.e., end facing is presented. The statistical analysis shows that the
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considered process parameters (cutting speed, feed rate, cutting depth and cutting tool nose
radius) are statistically significant. The developed model adequately predicts cutting power
under various process parameters, with a coefficient of determination values greater than
91% in both dry and wet environments. The validation experiments confirm the prediction
accuracy of the developed model is more than 96%. Further, the predicted power profiles
of the end facing found to be in good agreement with the measured power profiles,
indicating that the developed model satisfactorily encompasses the influences of the

process parameters on the cutting power consumption.

The proposed model can be employed to optimize cutting parameters for a VPC
machining process and to develop a total energy consumption model for a machining
process. Predicting the total energy consumption of a machine tool in workpiece machining
remains challenging because the previous energy prediction models are typically developed

with CPC machining processes.

In Chapter 4, an integrated modelling and optimization approach is presented to
optimize process parameters for a VPC-machining process to trade-off between
productivity and cutting energy consumption. The empirical model developed in Chapter 3
is employed to determine the values of cutting energy consumption without conducting
actual experiments and is integrated to the optimization model. The presented integrated
approach reduced the cost required for the time-consuming measurement procedures and
advanced laboratory setup. The multi-objective optimization model is developed using
Grey Relational Analysis coupled with Taguchi to select the common optimal level of
process parameters on which cutting energy consumption and average-material removal
rate are optimized simultaneously, resulting in better-compromised decisions. The
validation experiments are performed on the optimization results, and the error in each case

found to be 4% only. The analysis of variance (ANOVA) revealed that all process
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parameters have statistical significance where the cutting depth was found to be the most
influencing process parameter with a value of percentage contribution of 45.39% followed
by the spindle speed, feed rate, and nose radius with the values of percentage contribution
of 20.24%, 15.12%, and 10.82% respectively. The results obtained by ANOVA analysis
validated the effect of process parameters found with the integrated modelling and

optimization approach.

In Chapter 5, a novel approach to model the energy consumption of a machine tool for
the machining of cylindrical parts in dry and wet environment is presented. The developed
model overcomes the limitations of existing energy consumption models to evaluate the
total energy consumption of a machine tool during the machining of a cylindrical part for
industrial applications. The energy evaluation models reported in the literature for machine
tools were developed based on CPC machining processes only, while the machining of a
cylindrical part includes the CPC and VPC both processes to manufacture the final product.
The validation results confirm that the developed model's accuracy is more than 97%.
Hence the model can be effectively employed to predict the total energy consumption of a
machine tool beforehand. which is an important information for a process planner in a
manufacturing industry. Based on this data, the process planner can evaluate several

processes plans and identify the most energy-efficient ones.

In Chapter 6, an empirical model to quantify CEM for machining of a cylindrical part
is presented. The model is developed with extended system boundaries to incorporate the
direct and indirect associated CEM for machining a cylindrical part on a CNC machine
tool. The developed model capable to encompasses the CEM from electrical energy
consumption, material consumption, cutting tool wear, coolant consumption and from the
disposal of machining waste materials for a CNC based machining of a cylindrical part.

The case study with different process plans is depicted the correlation of carbon emissions
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and process parameters. The case studies shows that the presented model is capable to
quantify carbon emissions for industrial applications as it can able to incorporated the
multiple energy consumption modules, CPC-machining process and VPC-machining
process. The developed model fully accounts the effect of process parameters on CEM, and
improves the transparency of the CEM of the machining process and facilitates the
exploration of low energy efficiency and high CEM machining process. The proposed
model is not only useful for identifying low-CEM process parameters, but can also be
applied in multi-objective optimization to trade-off with other important machining process

indicators such as productivity and product quality.

In Chapter 7, soft computing-based modelling of machine tools' effective electrical
energy utilisation and associated CEM performance indicators are presented. Three soft
computing techniques, multi-gene genetic programming (MGGP), least square-support
vector machine (LS-SVM) and fuzzy logic, are used to develop the model a machine tool's
EE, PF and associated CEM. The performance of the models was evaluated on different
statistical error indices and coefficient of determination. The performance evaluation
results show that the LS-SVM model consistently outperforms the corresponding MGGP
and fuzzy logic models for each performance: PF, EE, and CEM. The hypothesis testing

(mean paired t-test and F-test variance) validated the three models' goodness of fit.

The soft computing-based models are capable of incorporating non-linear complicated
relationships between cutting parameters and machining performance, and providing
reliable and realistic prediction models to achieve energy-efficient manufacturing and
reduced carbon footprints. The developed models can be used to eliminate the need for
advanced costly laboratory set-up and time-consuming measurement procedures required

for performing experiments.
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In chapter 8, a multi-objective optimization model is developed to select optimal
parameters to optimize power factor (PF), productivity (MRR), product quality (Ra) and
carbon emission (CEMy). The optimization model is developed using GRA coupled with
the Taguchi technique and determined optimal cutting parameters for better performance
of the considered responses. This study optimizes power factor, carbon emissions, material
removal rate and surface roughness as indicators of efficient electrical energy use, leading
GHG, productivity and product quality, respectively. This study compares the influence of
response weight assigning methods i.e. Principal Component Analysis (PCA), entropy
weights, Weighted Grey Relational Analysis (WGRA) and Analytical Hierarchy Process
(AHP). on optimization results (i.e. optimal parameters) to equal weights of responses. The
results revealed that the optimal parameters significantly changed with change in their
weight in multi-objective optimization. The responses are better optimized with the weight
assigning methods than the equal weights, indicating that these methods are significant for
the multi-objective optimization. The optimization results were validated by the Taguchi
method in which the experimental and predicted values are found to be close to each other.
In the present study, the AHP weight method is found to be suitable alternative for
determining the weights of the responses. Since the MOCI shows highest improvement of

28.67% with AHP compared to the equal weight.

Major Contributions of the Thesis
e Development of an empirical model for variable power consumption machining
processes
e Development of an integrated modelling and optimization approach for the
selection of process parameters for variable power consumption machining

processes.
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e Development of empirical model to quantify energy consumption and associated
carbon emission of machine tools for machining cylindrical parts

e Development of MGGP, LS-SVM, and fuzzy logic-based model for energy
efficiency, power factor and associated CEM of a machine tool.

e Development of multi-objective optimization model to optimize sustainability
performance indicators of machine tools using GRA coupled with Taguchi

considering the impact of weight assignment methods

Limitations and future scope of the research

The developed model’s performance is found to be better while predicting the total energy
consumption of machine tool for machine a cylindrical part. However, there are some

limitations that must be pointed out for further improvement.

The present study assumes that the spindle speed is constant during the end facing.
However, in CNC machine tools, the spindle speed can be adjusted to maintain a given
cutting speed irrespective to the change in the diameter of the part. Modelling of VPC
machining process specifically for CNC lathe with variable spindle speed can be further
explored as an independent research topic. In this study, the impact of part weight on the
spindle acceleration and idle energy consumption was ignored because the weight and
volume of the part to be machined on the turning centre is low as compared to the work
holding device. If the part weight is significant, further investigation is required. The
spindle acceleration energy consumption model is established in this work when the spindle
accelerates from zero to a higher speed. The modelling aspect of spindle acceleration
energy from non-zero speed to desired speed is not considered in this study and can be

explored for the servo motor-based spindle system in the future.
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Further, in future, the proposed energy consumption and associated carbon emission
model for machining a cylindrical part can be integrated with multi-objective optimization
model to trade-off with other important process indicators such as productivity and product
quality. This work modelled and optimized the energy consumption and associated carbon
emission of a CNC machine tool for machining aluminium part and can be extended to

include the advanced materials such as super alloys and composites.
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Appendix-A: Variable Power Consumption Experimental data

Variable Power Consumption experimental data under dry environment

Exp. n Tc v, fr d, r P, P,i, P,
No. (rev/min) (s)  (m/min) (mm/rev) (mm) (mm) W) (W) (W)

1600 1.00 285.03 0.08 1.0 04 2280 1740 540
1600 1.25  279.67 0.08 1.0 04 2280 1740 540
1600 150 27431 0.08 1.0 04 2280 1740 540
1600 1.75  268.95 0.08 1.0 04 2250 1740 510
1600 2.00 263.59 0.08 1.0 04 2220 1740 480
1600 2.25  258.23 0.08 1.0 04 2250 1740 510
1600 250  252.87 0.08 1.0 04 2250 1740 510
1600 2.75 24752 0.08 1.0 04 2250 1740 510
1600 3.00 242.16 0.08 1.0 04 2220 1740 480
1600 3.25 236.80 0.08 1.0 04 2190 1740 450
1600 3.50 231.44 0.08 1.0 04 2190 1740 450
1600 3.75  226.08 0.08 1.0 04 2190 1740 450
1600 400 220.72 0.08 1.0 0.4 2190 1740 450
1600 425 215.36 0.08 1.0 0.4 2190 1740 450
1 1600 450 210.00 0.08 1.0 04 2160 1740 420
1600 475 204.64 0.08 1.0 04 2160 1740 420
1600 5.00 199.29 0.08 1.0 0.4 2130 1740 390
1600 5.25 193.93 0.08 1.0 0.4 2160 1740 420
1600 5.50  188.57 0.08 1.0 04 2130 1740 390
1600 5.75 183.21 0.08 1.0 04 2130 1740 390
1600 6.00 177.85 0.08 1.0 0.4 2100 1740 360
1600 6.25 172.49 0.08 1.0 0.4 2130 1740 390
1600 6.50 167.13 0.08 1.0 0.4 2100 1740 360
1600 6.75 161.77 0.08 1.0 04 2100 1740 360
1600 7.00 156.41 0.08 1.0 04 2100 1740 360
1600 7.25 151.05 0.08 1.0 0.4 2070 1740 330
1600 7.50 145.70 0.08 1.0 0.4 2070 1740 330
1600 7.75 140.34 0.08 1.0 04 2070 1740 330
1600 8.00 134.98 0.08 1.0 04 2040 1740 300
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Appendix-A: Variable Power Consumption Experimental data

1600 8.25 129.62 0.08 1.0 04 2040 1740 300
1600 8.50 124.26 0.08 1.0 04 2040 1740 300
1600 8.75 118.90 0.08 1.0 0.4 2040 1740 300
1600 9.00 11354 0.08 1.0 0.4 2040 1740 300
1600 9.25 108.18 0.08 1.0 0.4 2040 1740 300
1600 9.50 102.82 0.08 1.0 04 2040 1740 300
1600 9.75 97.47 0.08 1.0 0.4 2040 1740 300
1600 10.00 92.11 0.08 1.0 04 2010 1740 270
1600 10.25 86.75 0.08 1.0 04 2010 1740 270
1600 10.50 81.39 0.08 1.0 04 2010 1740 270
1600 10.75  76.03 0.08 1.0 0.4 2010 1740 270
1600 11.00 70.67 0.08 1.0 0.4 1950 1740 210
1600 1125 6531 0.08 1.0 04 1920 1740 180
1600 1150 59.95 0.08 1.0 04 1920 1740 180
1600 11.75  54.59 0.08 1.0 0.4 1890 1740 150
1600 12.00 49.24 0.08 1.0 04 1860 1740 120
1600 1225 43.88 0.08 1.0 04 1860 1740 120
1600 1250  38.52 0.08 1.0 04 1860 1740 120
1600 12.75 33.16 0.08 1.0 04 1830 1740 90
1600 13.00 27.80 0.08 1.0 04 1830 1740 90
1600 1325 2244 0.08 1.0 0.4 1800 1740 60
1600 1350 17.08 0.08 1.0 04 1770 1740 30
1600 0.50  290.39 0.12 1.4 1.2 2670 1800 870
1600 0.75  282.35 0.12 1.4 1.2 2670 1800 870
1600 1.00 27431 0.12 14 1.2 2670 1800 870
1600 1.25  266.27 0.12 1.4 1.2 2640 1800 840
1600 150 258.23 0.12 1.4 1.2 2610 1800 810
2 1600 1.75  250.20 0.12 1.4 1.2 2610 1800 810
1600 200 24216 0.12 1.4 1.2 2580 1800 780
1600 225 23412 0.12 1.4 1.2 2550 1800 750
1600 250 226.08 0.12 1.4 1.2 2550 1800 750
1600 2.75 218.04 0.12 1.4 1.2 2520 1800 720
1600 3.00 210.00 0.12 1.4 1.2 2490 1800 690
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1600 3.25 201.96 0.12 14 1.2 2490 1800 690
1600 3.50 193.93 0.12 1.4 1.2 2460 1800 660
1600 3.75 185.89 0.12 1.4 1.2 2430 1800 630
1600 400 177.85 0.12 1.4 1.2 2430 1800 630
1600 425 169.81 0.12 14 1.2 2400 1800 600
1600 450 161.77 0.12 14 1.2 2400 1800 600
1600 475  153.73 0.12 1.4 1.2 2370 1800 570
1600 5.00 145.70 0.12 1.4 1.2 2370 1800 570
1600 5.25 137.66 0.12 14 1.2 2340 1800 540
1600 5.50 129.62 0.12 1.4 1.2 2340 1800 540
1600 5.75 121.58 0.12 1.4 1.2 2310 1800 510
1600 6.00 11354 0.12 14 1.2 2310 1800 510
1600 6.25 105.50 0.12 1.4 1.2 2280 1800 480
1600 6.50 97.47 0.12 1.4 1.2 2250 1800 450
1600 6.75 89.43 0.12 1.4 1.2 2220 1800 420
1600 7.00 81.39 0.12 14 1.2 2190 1800 390
1600 7.25 73.35 0.12 1.4 1.2 2160 1800 360
1600 7.50 65.31 0.12 14 1.2 2130 1800 330
1600 7.75 57.27 0.12 1.4 1.2 2100 1800 300
1600 8.00 49.24 0.12 1.4 1.2 2040 1800 240
1600 8.25 41.20 0.12 14 1.2 2010 1800 210
1600 8.50 33.16 0.12 14 1.2 1980 1800 180
1600 8.75 25.12 0.12 1.4 1.2 1920 1800 120
1600 9.00 17.08 0.12 1.4 1.2 1890 1800 90
1600 9.25 9.04 0.12 14 1.2 1830 1800 30

1600 1.00 263.59 0.16 1.8 0.8 3360 1740 1620
1600 1.25  252.87 0.16 1.8 0.8 3360 1740 1620
1600 150 242.16 0.16 1.8 0.8 3210 1740 1470
1600 1.75 23144 0.16 1.8 0.8 3210 1740 1470
1600 200 220.72 0.16 1.8 0.8 3150 1740 1410
1600 2.25 210.00 0.16 1.8 0.8 3120 1740 1380
1600 250  199.29 0.16 1.8 0.8 3030 1740 1290
1600 2.75 188.57 0.16 1.8 0.8 3000 1740 1260
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1600 3.00 177.85 0.16 1.8 0.8 3000 1740 1260
1600 3.25 167.13 0.16 1.8 0.8 2910 1740 1170
1600 3.50 156.41 0.16 1.8 0.8 2850 1740 1110
1600 3.75 145.70 0.16 1.8 0.8 2820 1740 1080
1600 400 134.98 0.16 1.8 08 2760 1740 1020
1600 425 124.26 0.16 1.8 0.8 2670 1740 930
1600 450 113.54 0.16 1.8 0.8 2610 1740 870
1600 475  102.82 0.16 1.8 0.8 2610 1740 870
1600 5.00 92.11 0.16 1.8 0.8 2490 1740 750
1600 5.25 81.39 0.16 1.8 0.8 2430 1740 690
1600 5.50 70.67 0.16 1.8 0.8 2370 1740 630
1600 5.75 59.95 0.16 1.8 0.8 2330 1740 590
1600 6.00 49.24 0.16 1.8 0.8 2300 1740 560
1600 6.25 38.52 0.16 1.8 0.8 2200 1740 460
1600 6.50 27.80 0.16 1.8 0.8 2180 1740 440
1600 6.75 17.08 0.16 1.8 0.8 2120 1740 380
1600 7.00 6.36 0.16 1.8 0.8 2050 1740 310
2000 0.75  357.96 0.08 14 0.8 2640 1860 780
2000 1.00 349.59 0.08 1.4 0.8 2610 1860 750
2000 125 34121 0.08 1.4 0.8 2610 1860 750
2000 1.50 332.84 0.08 14 0.8 2610 1860 750
2000 1.75 32447 0.08 14 0.8 2580 1860 720
2000 2.00 316.09 0.08 1.4 0.8 2550 1860 690
2000 225 307.72 0.08 1.4 0.8 2550 1860 690
2000 250  299.35 0.08 14 0.8 2520 1860 660
) 2000 2.75  290.97 0.08 1.4 0.8 2520 1860 660
2000 3.00 282.60 0.08 1.4 0.8 2490 1860 630
2000 3.25 274.23 0.08 1.4 0.8 2490 1860 630
2000 3.50  265.85 0.08 1.4 0.8 2460 1860 600
2000 3.75  257.48 0.08 1.4 0.8 2460 1860 600
2000 400 249.11 0.08 1.4 0.8 2430 1860 570
2000 425  240.73 0.08 1.4 0.8 2400 1860 540
2000 450 232.36 0.08 1.4 0.8 2400 1860 540
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2000 475  223.99 0.08 14 0.8 2370 1860 510
2000 5.00 21561 0.08 1.4 0.8 2370 1860 510
2000 5.25 207.24 0.08 1.4 0.8 2340 1860 480
2000 5.50  198.87 0.08 1.4 0.8 2310 1860 450
2000 5.75  190.49 0.08 14 0.8 2310 1860 450
2000 6.00 182.12 0.08 14 0.8 2280 1860 420
2000 6.25 173.75 0.08 1.4 0.8 2250 1860 390
2000 6.50  165.37 0.08 1.4 0.8 2250 1860 390
2000 6.75 157.00 0.08 14 0.8 2220 1860 360
2000 7.00 148.63 0.08 1.4 0.8 2220 1860 360
2000 7.25  140.25 0.08 1.4 0.8 2190 1860 330
2000 7.50 131.88 0.08 1.4 0.8 2190 1860 330
2000 7.75 12351 0.08 1.4 0.8 2160 1860 300
2000 8.00 115.13 0.08 1.4 0.8 2130 1860 270
2000 8.25 106.76 0.08 1.4 0.8 2130 1860 270
2000 8.50 98.39 0.08 1.4 0.8 2100 1860 240
2000 8.75 90.01 0.08 1.4 0.8 2070 1860 210
2000 9.00 81.64 0.08 14 0.8 2070 1860 210
2000 9.25 73.27 0.08 1.4 0.8 2040 1860 180
2000 9.50 64.89 0.08 1.4 0.8 2040 1860 180
2000 9.75 56.52 0.08 14 0.8 2040 1860 180
2000 10.00  48.15 0.08 14 0.8 1980 1860 120
2000 10.25  39.77 0.08 1.4 0.8 1950 1860 90
2000 10.50 31.40 0.08 1.4 0.8 1920 1860 60
2000 10.75  23.038 0.08 14 0.8 1890 1860 30
2000 11.00 14.65 0.08 1.4 0.8 1880 1860 20
2000 11.25 6.28 0.08 1.4 0.8 1870 1860 10

2000 0.75  345.40 0.12 1.8 0.4 3690 1860 1830
2000 1.00 332.84 0.12 1.8 0.4 3690 1860 1830
2000 1.25 320.28 0.12 1.8 0.4 3600 1860 1740
2000 150 307.72 0.12 1.8 0.4 3540 1860 1680
2000 1.75  295.16 0.12 1.8 0.4 3480 1860 1620
2000 200 282.60 0.12 1.8 0.4 3510 1860 1650
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2000 225 270.04 0.12 1.8 0.4 3390 1860 1530
2000 250  257.48 0.12 1.8 0.4 3450 1860 1590
2000 2.75 24492 0.12 1.8 04 3450 1860 1590
2000 3.00 232.36 0.12 1.8 0.4 3300 1860 1440
2000 3.25 219.80 0.12 1.8 04 3270 1860 1410
2000 3.50 207.24 0.12 1.8 04 3120 1860 1260
2000 3.75 194.68 0.12 1.8 04 3030 1860 1170
2000 400 182.12 0.12 1.8 04 3010 1860 1150
2000 425 169.56 0.12 1.8 0.4 3000 1860 1140
2000 450 157.00 0.12 1.8 04 2850 1860 990
2000 475  144.44 0.12 1.8 0.4 2760 1860 900
2000 5.00 131.88 0.12 1.8 0.4 2700 1860 840
2000 5.25 119.32 0.12 1.8 04 2670 1860 810
2000 5.50 106.76 0.12 1.8 04 2580 1860 720
2000 5.75 94.20 0.12 1.8 0.4 2520 1860 660
2000 6.00 81.64 0.12 1.8 0.4 2430 1860 570
2000 6.25 69.08 0.12 1.8 0.4 2400 1860 540
2000 6.50 56.52 0.12 1.8 04 2310 1860 450
2000 6.75  43.96 0.12 1.8 04 2220 1860 360
2000 7.00 31.40 0.12 1.8 0.4 2130 1860 270
2000 7.25 18.84 0.12 1.8 04 2050 1860 190
2000 7.50 6.28 0.12 1.8 0.4 1900 1860 40
2000 0.50 349.59 0.16 1.0 1.2 2820 1890 930
2000 0.75 332.84 0.16 1.0 1.2 2790 1890 900
2000 1.00 316.09 0.16 1.0 1.2 2760 1890 870
2000 1.25 299.35 0.16 1.0 1.2 2730 1890 840
2000 150 282.60 0.16 1.0 1.2 2700 1890 810
6 2000 1.75  265.85 0.16 1.0 1.2 2670 1890 780
2000 200 24911 0.16 1.0 1.2 2610 1890 720
2000 225 232.36 0.16 1.0 1.2 2580 1890 690
2000 250 21561 0.16 1.0 1.2 2520 1890 630
2000 2.75  198.87 0.16 1.0 1.2 2490 1890 600
2000 3.00 182.12 0.16 1.0 1.2 2490 1890 600
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2000 3.25  165.37 0.16 1.0 1.2 2430 1890 540
2000 3.50 148.63 0.16 1.0 1.2 2370 1890 480
2000 3.75 131.88 0.16 1.0 1.2 2370 1890 480
2000 400 115.13 0.16 1.0 1.2 2340 1890 450
2000 4.25 98.39 0.16 1.0 1.2 2280 1890 390
2000 4.50 81.64 0.16 1.0 1.2 2250 1890 360
2000 4.75 64.89 0.16 1.0 1.2 2190 1890 300
2000 5.00 48.15 0.16 1.0 1.2 2160 1890 270
2000 5.25 31.40 0.16 1.0 1.2 2070 1890 180
2000 5.50 14.65 0.16 1.0 1.2 1980 1890 90

2400 0.75  423.52 0.08 1.8 1.2 3300 2070 1230
2400 1.00 41147 0.08 1.8 1.2 3300 2070 1230
2400 1.25 39941 0.08 1.8 1.2 3270 2070 1200
2400 150 387.35 0.08 1.8 1.2 3240 2070 1170
2400 1.75  375.29 0.08 1.8 1.2 3210 2070 1140
2400 200 363.24 0.08 1.8 1.2 3180 2070 1110
2400 225 351.18 0.08 1.8 1.2 3150 2070 1080
2400 250 339.12 0.08 1.8 1.2 3120 2070 1050
2400 2.75  327.06 0.08 1.8 1.2 3090 2070 1020
2400 3.00 315.00 0.08 1.8 1.2 3060 2070 990
2400 3.25 302.95 0.08 1.8 1.2 3000 2070 930
2400 3.50  290.89 0.08 1.8 1.2 2970 2070 900
2400 3.75  278.83 0.08 1.8 1.2 2940 2070 870
2400 400 266.77 0.08 1.8 1.2 2940 2070 870
2400 425 254.72 0.08 1.8 1.2 2910 2070 840
2400 450 242.66 0.08 1.8 1.2 2850 2070 780
2400 475  230.60 0.08 1.8 1.2 2820 2070 750
2400 5.00 21854 0.08 1.8 1.2 2790 2070 720
2400 5.25 206.49 0.08 1.8 1.2 2760 2070 690
2400 5.50 194.43 0.08 1.8 1.2 2730 2070 660
2400 5.75  182.37 0.08 1.8 1.2 2670 2070 600
2400 6.00 170.31 0.08 1.8 1.2 2650 2070 580
2400 6.25 158.26 0.08 1.8 1.2 2630 2070 560
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2400 6.50 146.20 0.08 1.8 1.2 2600 2070 530
2400 6.75 134.14 0.08 1.8 1.2 2580 2070 510
2400 7.00 122.08 0.08 1.8 1.2 2570 2070 500
2400 7.25 110.03 0.08 1.8 1.2 2540 2070 470
2400 7.50 97.97 0.08 1.8 1.2 2510 2070 440
2400 7.75 85.91 0.08 1.8 1.2 2490 2070 420
2400 8.00 73.85 0.08 1.8 1.2 2450 2070 380
2400 8.25 61.80 0.08 1.8 1.2 2310 2070 240
2400 8.50 49.74 0.08 1.8 1.2 2280 2070 210
2400 8.75 37.68 0.08 1.8 1.2 2220 2070 150
2400 9.00 25.62 0.08 1.8 1.2 2190 2070 120
2400 9.25 13.56 0.08 1.8 1.2 2160 2070 90
2400 0.50 423.52 0.12 1.0 0.8 3030 1980 1050
2400 0.75  405.44 0.12 1.0 0.8 2970 1980 990
2400 1.00 387.35 0.12 1.0 0.8 2940 1980 960
2400 1.25 369.26 0.12 1.0 0.8 2880 1980 900
2400 150 351.18 0.12 1.0 0.8 2940 1980 960
2400 1.75  333.09 0.12 1.0 0.8 2850 1980 870
2400 2.00 315.00 0.12 1.0 0.8 2760 1980 780
2400 2.25  296.92 0.12 1.0 0.8 2730 1980 750
2400 250 278.83 0.12 1.0 0.8 2670 1980 690
2400 2.75  260.75 0.12 1.0 0.8 2640 1980 660
8 2400 3.00 242.66 0.12 1.0 0.8 2610 1980 630
2400 3.25 22457 0.12 1.0 0.8 2550 1980 570
2400 3.50 206.49 0.12 1.0 0.8 2490 1980 510
2400 3.75 188.40 0.12 1.0 0.8 2460 1980 480
2400 400 17031 0.12 1.0 0.8 2410 1980 430
2400 425 152.23 0.12 1.0 0.8 2400 1980 420
2400 450 134.14 0.12 1.0 0.8 2390 1980 410
2400 475 116.05 0.12 1.0 0.8 2370 1980 390
2400 5.00 97.97 0.12 1.0 0.8 2340 1980 360
2400 5.25 79.88 0.12 1.0 0.8 2310 1980 330
2400 5.50 61.80 0.12 1.0 0.8 2220 1980 240
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2400 5.75 43.71 0.12 1.0 0.8 2160 1980 180
2400 6.00 25.62 0.12 1.0 0.8 2130 1980 150
2400 6.25 7.54 0.12 1.0 0.8 2100 1980 120

2400 0.50  411.47 0.16 1.4 0.4 3990 2040 1950
2400 0.75 387.35 0.16 14 0.4 3990 2040 1950
2400 1.00 363.24 0.16 1.4 0.4 3900 2040 1860
2400 1.25 339.12 0.16 1.4 04 3780 2040 1740
2400 1.50 315.00 0.16 14 0.4 3660 2040 1620
2400 1.75  290.89 0.16 1.4 0.4 3510 2040 1470
2400 2.00 266.77 0.16 1.4 0.4 3420 2040 1380
2400 2.25 242.66 0.16 1.4 0.4 3330 2040 1290
2400 250 21854 0.16 1.4 04 3210 2040 1170
2400 2.75 194.43 0.16 1.4 0.4 3090 2040 1050
2400 3.00 170.31 0.16 1.4 04 2970 2040 930
2400 3.25 146.20 0.16 1.4 0.4 2880 2040 840
2400 3.50 122.08 0.16 1.4 04 2760 2040 720
2400 3.75 97.97 0.16 1.4 0.4 2640 2040 600
2400 4.00 73.85 0.16 14 04 2520 2040 480
2400 4.25 49.74 0.16 1.4 0.4 2460 2040 420
2400 4.50 25.62 0.16 1.4 0.4 2430 2040 390
2400 4.75 1.51 0.16 14 04 2220 2040 180
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Variable Power Consumption experimental data under wet environment

Exp. n Tc v, fr d, r P, Pgir P,
No. (rev/min) (s) (m/min) (mm/rev) (mm) (mm) W) (W) (W)
1600 1.25 279.67 0.08 1.0 0.4 2640 2130 510
1600 1.50 274.31 0.08 1.0 0.4 2670 2130 540
1600 1.75 268.95 0.08 1.0 04 2670 2130 540
1600 2.00 263.59 0.08 1.0 0.4 2670 2130 540
1600 2.25 258.23 0.08 1.0 0.4 2670 2130 540
1600 2.50 252.87 0.08 1.0 04 2670 2130 540
1600 2.75 247.52 0.08 1.0 0.4 2640 2130 510
1600 3.00 242.16 0.08 1.0 0.4 2640 2130 510
1600 3.25 236.80 0.08 1.0 04 2640 2130 510
1600 3.50 231.44 0.08 1.0 0.4 2640 2130 510
1600 3.75 226.08 0.08 1.0 0.4 2610 2130 480
1600 4.00 220.72 0.08 1.0 0.4 2610 2130 480
1600 4.25 215.36 0.08 1.0 0.4 2580 2130 450
1600 4.50 210.00 0.08 1.0 0.4 2580 2130 450
1600 4.75 204.64 0.08 1.0 0.4 2580 2130 450
' 1600 5.00 199.29 0.08 1.0 0.4 2580 2130 450
1600 5.25 193.93 0.08 1.0 0.4 2580 2130 450
1600 5.50 188.57 0.08 1.0 0.4 2550 2130 420
1600 5.75 183.21 0.08 1.0 0.4 2550 2130 420
1600 6.00 177.85 0.08 1.0 0.4 2520 2130 390
1600 6.25 172.49 0.08 1.0 04 2520 2130 390
1600 6.50 167.13 0.08 1.0 04 2520 2130 390
1600 6.75 161.77 0.08 1.0 0.4 2490 2130 360
1600 7.00 156.41 0.08 1.0 0.4 2490 2130 360
1600 7.25 151.05 0.08 1.0 0.4 2490 2130 360
1600 7.50 145.70 0.08 1.0 0.4 2460 2130 330
1600 7.75 140.34 0.08 1.0 0.4 2460 2130 330
1600 8.00 134.98 0.08 1.0 0.4 2460 2130 330
1600 8.25 129.62 0.08 1.0 0.4 2460 2130 330
1600 8.50 124.26 0.08 1.0 0.4 2430 2130 300
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1600 8.75 118.90 0.08 1.0 04 2430 2130 300
1600 9.00 113.54 0.08 1.0 04 2430 2130 300
1600 9.25 108.18 0.08 1.0 0.4 2400 2130 270
1600 9.50 102.82 0.08 1.0 04 2370 2130 240
1600 9.75 97.47 0.08 1.0 04 2400 2130 270
1600 10.00 92.11 0.08 1.0 04 2400 2130 270
1600 10.25 86.75 0.08 1.0 04 2370 2130 240
1600 10.50 81.39 0.08 1.0 0.4 2340 2130 210
1600 10.75 76.03 0.08 1.0 04 2340 2130 210
1600 11.00 70.67 0.08 1.0 04 2310 2130 180
1600 11.25 65.31 0.08 1.0 04 2310 2130 180
1600 11.50 59.95 0.08 1.0 04 2280 2130 150
1600 11.75 54.59 0.08 1.0 04 2280 2130 150
1600 12.00 49.24 0.08 1.0 04 2280 2130 150
1600 12.25 43.88 0.08 1.0 04 2250 2130 120
1600 12.50 38.52 0.08 1.0 04 2220 2130 90
1600 12.75 33.16 0.08 1.0 04 2190 2130 60
1600 13.00 27.80 0.08 1.0 04 2190 2130 60
1600 13.25 22.44 0.08 1.0 04 2160 2130 30
1600 13.50 17.08 0.08 1.0 04 2150 2130 20
1600 13.75 11.72 0.08 1.0 04 2140 2130 10

1600 0.25 298.43 0.12 14 1.2 2460 2100 360
1600 0.50 290.39 0.12 1.4 1.2 2910 2100 810
1600 0.75 282.35 0.12 1.4 1.2 2940 2100 840
1600 1.00 274.31 0.12 14 1.2 2940 2100 840
1600 1.25 266.27 0.12 1.4 1.2 2940 2100 840
1600 1.50 258.23 0.12 1.4 1.2 2910 2100 810
1600 1.75 250.20 0.12 1.4 1.2 2910 2100 810
1600 2.00 242.16 0.12 1.4 1.2 2880 2100 780
1600 2.25 234.12 0.12 1.4 1.2 2880 2100 780
1600 2.50 226.08 0.12 1.4 1.2 2850 2100 750
1600 2.75 218.04 0.12 1.4 1.2 2790 2100 690
1600 3.00 210.00 0.12 1.4 1.2 2790 2100 690
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1600 3.25 201.96 0.12 14 1.2 2790 2100 690
1600 3.50 193.93 0.12 14 1.2 2730 2100 630
1600 3.75 185.89 0.12 1.4 1.2 2700 2100 600
1600 4.00 177.85 0.12 1.4 1.2 2700 2100 600
1600 4.25 169.81 0.12 14 1.2 2/00 2100 600
1600 4.50 161.77 0.12 14 1.2 2670 2100 570
1600 4.75 153.73 0.12 1.4 1.2 2670 2100 570
1600 5.00 145.70 0.12 1.4 1.2 2640 2100 540
1600 5.25 137.66 0.12 14 1.2 2640 2100 540
1600 5.50 129.62 0.12 1.4 1.2 2610 2100 510
1600 5.75 121.58 0.12 1.4 1.2 2610 2100 510
1600 6.00 113.54 0.12 14 1.2 2580 2100 480
1600 6.25 105.50 0.12 1.4 1.2 2580 2100 480
1600 6.50 97.47 0.12 1.4 1.2 2550 2100 450
1600 6.75 89.43 0.12 1.4 1.2 2520 2100 420
1600 7.00 81.39 0.12 14 1.2 2490 2100 390
1600 7.25 73.35 0.12 1.4 1.2 2490 2100 390
1600 7.50 65.31 0.12 14 1.2 2430 2100 330
1600 7.75 57.27 0.12 1.4 1.2 2400 2100 300
1600 8.00 49.24 0.12 1.4 1.2 2370 2100 270
1600 8.25 41.20 0.12 14 1.2 2310 2100 210
1600 8.50 33.16 0.12 14 1.2 2250 2100 150
1600 8.75 25.12 0.12 1.4 1.2 2190 2100 90
1600 9.00 17.08 0.12 1.4 1.2 2160 2100 60
1600 9.25 9.04 0.12 14 1.2 2130 2100 30

1600 0.50 285.03 0.16 1.8 0.8 3570 2100 1470
1600 0.75 274.31 0.16 1.8 0.8 3570 2100 1470
1600 1.00 263.59 0.16 1.8 0.8 3570 2100 1470
1600 1.25 252.87 0.16 1.8 0.8 3510 2100 1410
1600 1.50 242.16 0.16 1.8 0.8 3450 2100 1350
1600 1.75 231.44 0.16 1.8 0.8 3450 2100 1350
1600 2.00 220.72 0.16 1.8 0.8 3360 2100 1260
1600 2.25 210.00 0.16 1.8 0.8 3330 2100 1230
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1600 2.50 199.29 0.16 1.8 0.8 3300 2100 1200
1600 2.75 188.57 0.16 1.8 0.8 3280 2100 1180
1600 3.00 177.85 0.16 1.8 0.8 3250 2100 1150
1600 3.25 167.13 0.16 1.8 0.8 3180 2100 1080
1600 3.50 156.41 0.16 1.8 0.8 3150 2100 1050
1600 3.75 145.70 0.16 1.8 0.8 3030 2100 930
1600 4.00 134.98 0.16 1.8 0.8 3030 2100 930
1600 4.25 124.26 0.16 1.8 0.8 2910 2100 810
1600 4.50 113.54 0.16 1.8 0.8 2850 2100 750
1600 4.75 102.82 0.16 1.8 0.8 2790 2100 690
1600 5.00 92.11 0.16 1.8 0.8 2730 2100 630
1600 5.25 81.39 0.16 1.8 0.8 2670 2100 570
1600 5.50 70.67 0.16 1.8 0.8 2610 2100 510
1600 5.75 59.95 0.16 1.8 0.8 2550 2100 450
1600 6.00 49.24 0.16 1.8 0.8 2490 2100 390
1600 6.25 38.52 0.16 1.8 0.8 2400 2100 300
1600 6.50 27.80 0.16 1.8 0.8 2340 2100 240
1600 6.75 17.08 0.16 1.8 0.8 2280 2100 180
1600 7.00 6.36 0.16 1.8 0.8 2160 2100 60

2000 0.50 366.33 0.08 1.4 0.8 3060 2220 840
2000 0.75 357.96 0.08 14 0.8 3030 2220 810
2000 1.00 349.59 0.08 14 0.8 3030 2220 810
2000 1.25 341.21 0.08 1.4 0.8 3030 2220 810
2000 1.50 332.84 0.08 1.4 0.8 3000 2220 780
2000 1.75 324.47 0.08 14 0.8 3000 2220 780
2000 2.00 316.09 0.08 1.4 0.8 3000 2220 780
2000 2.25 307.72 0.08 1.4 0.8 2970 2220 750
2000 2.50 299.35 0.08 1.4 0.8 2970 2220 750
2000 2.75 290.97 0.08 1.4 0.8 2940 2220 720
2000 3.00 282.60 0.08 1.4 0.8 2910 2220 690
2000 3.25 274.23 0.08 1.4 0.8 2910 2220 690
2000 3.50 265.85 0.08 1.4 0.8 2880 2220 660
2000 3.75 257.48 0.08 1.4 0.8 2850 2220 630
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2000 4.00 249.11 0.08 14 0.8 2850 2220 630
2000 4.25 240.73 0.08 14 0.8 2820 2220 600
2000 4.50 232.36 0.08 1.4 0.8 2790 2220 570
2000 4.75 223.99 0.08 1.4 08 2790 2220 570
2000 5.00 215.61 0.08 14 08 2790 2220 570
2000 5.25 207.24 0.08 14 0.8 2760 2220 540
2000 5.50 198.87 0.08 1.4 0.8 2730 2220 510
2000 5.75 190.49 0.08 1.4 0.8 2700 2220 480
2000 6.00 182.12 0.08 14 0.8 2700 2220 480
2000 6.25 173.75 0.08 1.4 0.8 2670 2220 450
2000 6.50 165.37 0.08 1.4 0.8 2670 2220 450
2000 6.75 157.00 0.08 1.4 0.8 2640 2220 420
2000 7.00 148.63 0.08 1.4 0.8 2610 2220 390
2000 7.25 140.25 0.08 1.4 0.8 2610 2220 390
2000 7.50 131.88 0.08 1.4 0.8 2580 2220 360
2000 7.75 123.51 0.08 1.4 0.8 2580 2220 360
2000 8.00 115.13 0.08 1.4 0.8 2550 2220 330
2000 8.25 106.76 0.08 14 0.8 2550 2220 330
2000 8.50 98.39 0.08 1.4 0.8 2520 2220 300
2000 8.75 90.01 0.08 1.4 0.8 2520 2220 300
2000 9.00 81.64 0.08 14 0.8 2520 2220 300
2000 9.25 73.27 0.08 14 0.8 2460 2220 240
2000 9.50 64.89 0.08 1.4 0.8 2430 2220 210
2000 9.75 56.52 0.08 1.4 0.8 2400 2220 180
2000 10.00 48.15 0.08 14 0.8 2370 2220 150
2000 10.25 39.77 0.08 1.4 0.8 2340 2220 120
2000 10.50 31.40 0.08 1.4 08 2310 2220 90
2000 10.75 23.03 0.08 1.4 08 2280 2220 60
2000 11.00 14.65 0.08 1.4 08 2250 2220 30

2000 1.00 332.84 0.12 1.8 0.4 4050 2220 1830
2000 1.25 320.28 0.12 1.8 04 3990 2220 1770
2000 1.50 307.72 0.12 1.8 0.4 4020 2220 1800
2000 1.75 295.16 0.12 1.8 0.4 3900 2220 1680

279 |Page



Appendix-A: Variable Power Consumption Experimental data

2000 2.00 282.60 0.12 1.8 04 3840 2220 1620
2000 2.25 270.04 0.12 1.8 04 3810 2220 1590
2000 2.50 257.48 0.12 1.8 04 3750 2220 1530
2000 2.75 244.92 0.12 1.8 04 3660 2220 1440
2000 3.00 232.36 0.12 1.8 04 3600 2220 1380
2000 3.25 219.80 0.12 1.8 04 3540 2220 1320
2000 3.50 207.24 0.12 1.8 0.4 3480 2220 1260
2000 3.75 194.68 0.12 1.8 0.4 3450 2220 1230
2000 4.00 182.12 0.12 1.8 04 3360 2220 1140
2000 4.25 169.56 0.12 1.8 04 3330 2220 1110
2000 4.50 157.00 0.12 1.8 04 3270 2220 1050
2000 4.75 144.44 0.12 1.8 04 3210 2220 990
2000 5.00 131.88 0.12 1.8 04 3180 2220 960
2000 5.25 119.32 0.12 1.8 04 3090 2220 870
2000 5.50 106.76 0.12 1.8 0.4 3060 2220 840
2000 5.75 94.20 0.12 1.8 04 2970 2220 750
2000 6.00 81.64 0.12 1.8 04 2910 2220 690
2000 6.25 69.08 0.12 1.8 04 2850 2220 630
2000 6.50 56.52 0.12 1.8 04 2760 2220 540
2000 6.75 43.96 0.12 1.8 04 2670 2220 450
2000 7.00 31.40 0.12 1.8 04 2580 2220 360
2000 7.25 18.84 0.12 1.8 04 2490 2220 270
2000 7.50 6.28 0.12 1.8 04 2370 2220 150

2000 0.50 349.59 0.16 1.0 12 3120 2220 900
2000 0.75 332.84 0.16 1.0 1.2 3090 2220 870
2000 1.00 316.09 0.16 1.0 1.2 3090 2220 870
2000 1.25 299.35 0.16 1.0 1.2 3000 2220 780
2000 1.50 282.60 0.16 1.0 1.2 2940 2220 720
2000 1.75 265.85 0.16 1.0 1.2 2940 2220 720
2000 2.00 249.11 0.16 1.0 1.2 2880 2220 660
2000 2.25 232.36 0.16 1.0 1.2 2880 2220 660
2000 2.50 215.61 0.16 1.0 1.2 2820 2220 600
2000 2.75 198.87 0.16 1.0 1.2 2790 2220 570
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2000 3.00 182.12 0.16 1.0 1.2 2760 2220 540
2000 3.25 165.37 0.16 1.0 1.2 2760 2220 540
2000 3.50 148.63 0.16 1.0 12 2760 2220 540
2000 3.75 131.88 0.16 1.0 12 2730 2220 510
2000 4.00 115.13 0.16 1.0 1.2 2640 2220 420
2000 4.25 98.39 0.16 1.0 1.2 2610 2220 390
2000 4.50 81.64 0.16 1.0 1.2 2580 2220 360
2000 4.75 64.89 0.16 1.0 1.2 2520 2220 300
2000 5.00 48.15 0.16 1.0 1.2 2490 2220 270
2000 5.25 31.40 0.16 1.0 1.2 2370 2220 150
2000 5.50 14.65 0.16 1.0 1.2 2250 2220 30

2400 0.75 423.52 0.08 1.8 1.2 3630 2400 1230
2400 1.00 411.47 0.08 1.8 1.2 3630 2400 1230
2400 1.25 399.41 0.08 1.8 1.2 3600 2400 1200
2400 1.50 387.35 0.08 1.8 1.2 3570 2400 1170
2400 1.75 375.29 0.08 1.8 1.2 3540 2400 1140
2400 2.00 363.24 0.08 1.8 1.2 3510 2400 1110
2400 2.25 351.18 0.08 1.8 1.2 3480 2400 1080
2400 2.50 339.12 0.08 1.8 1.2 3450 2400 1050
2400 2.75 327.06 0.08 1.8 1.2 3420 2400 1020
2400 3.00 315.00 0.08 1.8 1.2 3390 2400 990
2400 3.25 302.95 0.08 1.8 1.2 3360 2400 960
2400 3.50 290.89 0.08 1.8 1.2 3330 2400 930
2400 3.75 278.83 0.08 1.8 1.2 3300 2400 900
2400 4.00 266.77 0.08 1.8 1.2 3270 2400 870
2400 4.25 254.72 0.08 1.8 1.2 3240 2400 840
2400 4.50 242.66 0.08 1.8 1.2 3180 2400 780
2400 4.75 230.60 0.08 1.8 1.2 3180 2400 780
2400 5.00 218.54 0.08 1.8 1.2 3150 2400 750
2400 5.25 206.49 0.08 1.8 1.2 3090 2400 690
2400 5.50 194.43 0.08 1.8 1.2 3060 2400 660
2400 5.75 182.37 0.08 1.8 1.2 3030 2400 630
2400 6.00 170.31 0.08 1.8 1.2 3000 2400 600
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2400 6.25 158.26 0.08 1.8 1.2 2970 2400 570
2400 6.50 146.20 0.08 1.8 1.2 2940 2400 540
2400 6.75 134.14 0.08 1.8 1.2 2910 2400 510
2400 7.00 122.08 0.08 1.8 1.2 2880 2400 480
2400 7.25 110.03 0.08 1.8 1.2 2910 2400 510
2400 7.50 97.97 0.08 1.8 1.2 2850 2400 450
2400 7.75 85.91 0.08 1.8 1.2 2820 2400 420
2400 8.00 73.85 0.08 1.8 1.2 2790 2400 390
2400 8.25 61.80 0.08 1.8 1.2 2730 2400 330
2400 8.50 49.74 0.08 1.8 1.2 2670 2400 270
2400 8.75 37.68 0.08 1.8 1.2 2640 2400 240
2400 9.00 25.62 0.08 1.8 1.2 2580 2400 180
2400 9.25 13.56 0.08 1.8 1.2 2490 2400 90
2400 9.50 1.51 0.08 1.8 1.2 2430 2400 30

2400 0.50 423.52 0.12 1.0 0.8 3240 2400 840
2400 0.75 405.44 0.12 1.0 0.8 3240 2400 840
2400 1.00 387.35 0.12 1.0 0.8 3210 2400 810
2400 1.25 369.26 0.12 1.0 0.8 3180 2400 780
2400 1.50 351.18 0.12 1.0 0.8 3150 2400 750
2400 1.75 333.09 0.12 1.0 0.8 3120 2400 720
2400 2.00 315.00 0.12 1.0 0.8 3090 2400 690
2400 2.25 296.92 0.12 1.0 0.8 3060 2400 660
2400 2.50 278.83 0.12 1.0 0.8 3000 2400 600
2400 2.75 260.75 0.12 1.0 0.8 2970 2400 570
2400 3.00 242.66 0.12 1.0 0.8 2940 2400 540
2400 3.25 224.57 0.12 1.0 0.8 2910 2400 510
2400 3.50 206.49 0.12 1.0 0.8 2850 2400 450
2400 3.75 188.40 0.12 1.0 0.8 2850 2400 450
2400 4.00 170.31 0.12 1.0 0.8 2820 2400 420
2400 4.25 152.23 0.12 1.0 0.8 2790 2400 390
2400 4.50 134.14 0.12 1.0 0.8 2760 2400 360
2400 4.75 116.05 0.12 1.0 0.8 2730 2400 330
2400 5.00 97.97 0.12 1.0 0.8 2700 2400 300
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2400 5.25 79.88 0.12 1.0 0.8 2670 2400 270
2400 5.50 61.80 0.12 1.0 0.8 2610 2400 210
2400 5.75 43.71 0.12 1.0 0.8 2550 2400 150
2400 6.00 25.62 0.12 1.0 0.8 2520 2400 120
2400 6.25 7.54 0.12 1.0 0.8 2430 2400 30

2400 0.50 411.47 0.16 1.4 0.4 4350 2400 1950
2400 0.75 387.35 0.16 1.4 0.4 4320 2400 1920
2400 1.00 363.24 0.16 14 04 4230 2400 1830
2400 1.25 339.12 0.16 14 04 4170 2400 1770
2400 1.50 315.00 0.16 14 0.4 4080 2400 1680
2400 1.75 290.89 0.16 14 0.4 3960 2400 1560
2400 2.00 266.77 0.16 1.4 0.4 3870 2400 1470
2400 2.25 242.66 0.16 1.4 04 3780 2400 1380
9 2400 2.50 218.54 0.16 14 0.4 3690 2400 1290
2400 2.75 194.43 0.16 1.4 0.4 3540 2400 1140
2400 3.00 170.31 0.16 1.4 0.4 3450 2400 1050
2400 3.25 146.20 0.16 1.4 04 3360 2400 960
2400 3.50 122.08 0.16 1.4 04 3210 2400 810
2400 3.75 97.97 0.16 1.4 0.4 3060 2400 660
2400 4.00 73.85 0.16 14 04 2970 2400 570
2400 4.25 49.74 0.16 14 0.4 2880 2400 480
2400 4.50 25.62 0.16 1.4 0.4 2700 2400 300
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