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Abstract

One of the most fundamental ecological connections that exist in nature is the prey-predator
relationship. The survival of the species and the balance of ecosystems depend on this inter-
action. The prey-predator interaction is crucial to ecology for various reasons, some of which
are described herein. Population Control: predators help in population control by reducing
the number of prey species. Without predators, prey species populations could increase out
of control, resulting in overgrazing, deforestation, and other detrimental effects on the ecosys-
tem. Food Web: a crucial part of the food web is the link between prey and predator. The
absence of a predator can have a cascading effect on the ecosystem as a whole. Co-evolution:
a struggle for survival between prey and predators. To avoid being eaten, prey species develop
defence mechanisms like camouflage, while predators develop tactics to counter these defence
mechanisms. Both species’ evolution is driven by this process, resulting in the emergence of
sophisticated structures and behaviours.

One of nature’s most well-known examples of the predator-prey dynamic is the link between
phytoplankton and zooplankton. Growing phytoplankton populations also enhance zooplank-
ton populations because they give them more food. As a result of zooplankton eating more
phytoplankton, their abundance declines. As zooplankton populations increase, so does their
need for food, which eventually causes a fall in zooplankton populations due to a lack of food.
In turn, this enables phytoplankton to recover and grow once more. Since both groups depend
on one another for existence, this interaction is essential to preserving the equilibrium of aquatic
ecosystems. The marine and freshwater food chains would be significantly impacted if either
population were to go extinct, devastatingly impacting the entire ecosystem.

Many environmental factors can impact the prey-predator relationship in different scenar-
ios. Some of these are; fear induced by the predator in prey, the antipredator behaviour shown
by prey against a predator in response to the induced fear, additional food to predator, the toxic
chemicals released by dense phytoplanktons, carry-over effects of the induced fear, the presence
of seasonality in the physical parameters, different types of time lags. All the above-mentioned
ecological components play a significant role in deciding the dynamics of a prey-predator sys-
tem, particularly in a phytoplankton-zooplankton system. Considering all these assertions, we
have proposed and investigated some prey-predator models as an ordinary differential equation
with or without time delays, incorporating several physical parameters. We have analysed the
dynamics of these models using the stability theories of non-delayed and delayed models, bifur-
cation theory, chaos theory, and theory used to deal with seasonal models. Extensive numerical
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simulations are done to validate theoretical results. We divide this thesis into six chapters,
whose abstracts are given below.

In Chapter 1, we have presented a brief introduction about the problems on which we have
worked. It consists of some biological preliminaries, functional response with its major types,
mathematical definitions and tools which are used frequently throughout this thesis. A quick
overview to the bifurcation theory, delay differential equations, and non-autonomous differen-
tial equations is also included in this chapter.

Recent studies demonstrate that the density of prey population is not only affected by direct
killing by the predator, but the fear in prey caused by predator also reduces it by cutting down
the reproduction rate of prey community, and prey shows anti-predator behavior in response to
this fear. Taking these facts in account, in Chapter 2, we propose a prey-predator model with
fear in prey due to predator and anti-predator behavior by prey against the predator with fear
response delay and gestation delay. It is assumed that the predator consumes prey via simplified
Holling type IV functional response. We evaluate the equilibrium points and study the local and
global stability behavior of the system around them. It is observed that our system undergoes
Hopf-bifurcation with respect to the fear parameter. Moreover, the system shows the attribute
of bi-stability involving two stable equilibriums. Further, we study the dynamics of the delayed
system by incorporating fear response delay and gestation delay. We observe that the delayed
system suffers Hopf-bifurcation with respect to both delays. Using the normal form method
and center manifold theory, the direction and stability of Hopf-bifurcation are studied. Chaotic
behavior for delayed system is observed for large values of fear response delay.

Phytoplankton-zooplankton dynamical interactions have significant effects on terrestrial as
well as aquatic animals. Both these planktons collectively form the base for various food chains
operating under the water. Phytoplankton acts as a prime food for zooplankton, where fish and
large marine animals consume both these planktons. Thus, phytoplankton-zooplankton inter-
action is a topic of high interest among the interrelationships related to marine habitats. In
Chapter 3, we attempt to study the dynamics of a three-dimensional system with three types
of plankton; non-toxic phytoplankton, toxic producing phytoplankton, and zooplankton. We
assume that both non-toxic and toxic phytoplankton are consumed by zooplankton via Bed-
dington–DeAngelis and general Holling type IV responses, respectively. We also incorpo-
rate gestation delay and toxic liberation delay in zooplankton’s interactions with non-toxic and
toxic-phytoplanktons correspondingly. Firstly, we have studied the well-posedness of the sys-
tem. Then we analyze all the possible equilibrium points, their local and global asymptotic
behaviour. Further, we assessed the conditions for the occurrence of Hopf-bifurcation and tran-
scritical bifurcation. Using the normal form method and center manifold theorem, the condi-
tions for stability and direction of Hopf-bifurcation are also studied. Various time-series, phase
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portraits, and bifurcation diagrams are plotted to confirm our theoretical findings. From the nu-
merical simulation, we observe that a limited increase in inhibitory effect of toxic phytoplank-
ton against zooplankton can support zooplankton’s growth, and rising predator’s interference
can also boost zooplankton expansion in contrast to nature of Holling type IV and Bedding-
ton–DeAngelis responses, respectively. Next, we notice that on variation of toxic liberation
delay, the delayed system switches its stability multiple times, and becomes chaotic. Further,
we draw Poincare section and evaluate maximum Lyapunov exponent in order to verify the
delayed system’s chaotic nature.

In Chapter 2 we studied the prey-predator model with fear in prey due to predator and
anti-predator behavior and in Chapter 3 we studied the dynamics of a three-dimensional sys-
tem with three types of plankton; non-toxic phytoplankton, toxic producing phytoplankton,
and zooplankton. Now, in Chapter 4, we propose to explore the dynamics of a phytoplankton-
zooplankton-fish system, with fear-induced birth rate reduction in the middle predator by the
top predator and an additional food source for the top predator fish. Phytoplankton-zooplankton
and zooplankton-fish interactions are handled using Holling type IV and II responses, respec-
tively. Firstly, we prove the well-posedness of the system, followed by results related to the
existence of possible equilibrium points. Conditions under which a different number of inte-
rior equilibria exist are also derived. We also show this existence numerically by varying the
intrinsic growth rate of phytoplankton species which demonstrates model’s vibrant nature from
mathematical point of view. Further, we did the local and global stability analysis around the
above equilibrium points, the transversality conditions for the occurrence of Hopf bifurcation
and transcritical bifurcation are established. We observe numerically that for low levels of fear,
the system behaves chaotically, and as we increase the fear parameter, the solution approaches
to a stable equilibrium by the route of period halving. The chaotic behavior of the system
at low levels of fear can also be controlled by increasing the quality of additional food. To
corroborate our findings, we constructed several phase portraits, time-series graphs, one and
two-parametric bifurcation diagrams. Computation of largest Lyapunov exponent and sketch
of Poincare map verify the chaotic character of the proposed system. On varying the parametric
values, the system exhibits phenomena like, multistability and the enrichment paradox which
are the basic qualities of non-linear models.

Due to induced fear of predation, there can be a reduced reproduction rate of zooplank-
ton species, and the effect of this non-lethal interconnection can be carried over to subsequent
seasons or generations. In the Chapter 5, we tend to analyse the role of fish-induced fear in
zooplankton with its carry-over effects (COEs) and a corresponding discrete delay (COE de-
lay) in a phytoplankton-zooplankton-fish population model. We use Holling type IV and II
functional responses to model the phytoplankton-zooplankton and zooplankton-fish interplay,
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respectively. In the well-posedness of the present biological system, firstly, we evaluate an in-
variant set in which the solutions of the model remain bounded. Then we prove its persistence
under some ecologically well-behaved conditions. Next, we establish the conditions under
which the different feasible equilibrium points exist; the existence of various interior equilibria
is also set up here. To study the system’s dynamical behavior, local and global stability anal-
yses for the equilibria mentioned above are also discussed. Further, the theoretical conditions
for Hopf and transcritical bifurcations in non-delayed and delayed models are determined. Im-
pacts of non-lethal parameters, fear, and its carry-over effects, on the population densities are
studied analytically and supported numerically. For intermediate values of COEs parameter,
we notice that the system behaves chaotically, and decreasing (or increasing) it to low (or high)
values, solution converges to interior equilibrium point through period-halving. Calculation of
the largest Lyapunov exponent and drawing of Poincar’e map validate the chaotic nature of the
system. The chaos for medium values of COEs parameter can also be controlled by decreasing
the fear parameter. Next, we numerically validate the theoretical result for transcritical bifur-
cation. We also note that our system shows the phenomenon of enrichment of paradox, and the
attribute of multistability. In the delayed model, we observe that increasing delay can eliminate
chaotic oscillations through amplitude death phenomenon.

The environmental toxins released by different external sources also affect the phytoplankton-
zooplankton dynamics. In Chapter 6, we proposed a model to explore the kinetics of a nutrient-
phytoplankton-zooplankton-environmental toxins (NPZT) system. The defence mechanism of
phytoplankton against zooplankton is reflected through modified Holling type IV response,
whereas the consumption of nutrients by phytoplankton is outlined by Holling type II response.
The external toxins are assumed to have the capability of reducing the birth rate of phytoplank-
ton species after coming into contact with their cells. To make our model more pragmatic, sea-
sonal variation in the parameters is also taken into account. Firstly, we do the analysis related
to the autonomous model (non-seasonal) like; its boundedness, existence of equilibrium points,
their stability analysis, and occurrence of Hopf-bifurcation. Further, for the non-autonomous
model (seasonal), we analyze the existence of positive periodic solution, its global stability.
Through numerical simulations, we observe that for the non-seasonal model, increasing the
rate of suppressing phytoplankton’s growth by environmental toxin, and rate at which environ-
mental toxin is added to system make it unstable through Hopf-bifurcation. These oscillations
can be removed by raising phytoplankton’s inhibitory effect against zooplankton, and this in-
crement also leads to the extinction of the zooplankton population, making zooplankton free
equilibrium a stable one. Both models, non-seasonal as well as seasonal manifest different types
of multistability, and this is an exciting character associated with non-linear models. We also
note that the inclusion of seasonality in our system promotes the coexistence of all populations.
Further, through numerical simulations, we show that making some of the parameters seasonal
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can cause the emergence of chaos in the system. To verify chaos, we sketch the Poincaré map
and evaluate the maximum Lyapunov exponent. The seasonal model also shows the switching
of stability through different periodic and chaotic windows on varying the maximum intrinsic
growth rate for phytoplankton, and contact rate between environmental toxin and phytoplank-
ton. To substantiate our results, we picture several time-series graphs, basins of attraction,
one and two-parametric bifurcation diagrams. Thus we expect that the present work can assist
biologists and mathematicians in studying nutrient-plankton systems in a more detailed and
realistic manner. This study can also help researchers in the estimation of non-seasonal as well
as seasonal parameters while studying these types of complex non-linear models.
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Chapter 1

Introduction

1.1 General introduction and literature review

The dynamics of an ecosystem, which provides information about the population increase
within that specific ecological community, is a crucial component of an ecosystem. The basis
for ecological research is the investigation of prey-predator interactions. Because they offer a
framework for comprehending how populations of predators and prey interact with one another
and their environment, these models are crucial to ecology. A system of ordinary differen-
tial equations or delay differential equations, which are often nonlinear and can exhibit a wide
range of behaviours, such as oscillations, bifurcations, and chaos, can be used to model the dy-
namics of the populations. Strategies for managing pest populations are also developed using
prey-predator models. Prey-predator models can assist in the understanding of the effects of
pesticide use on both predator and prey populations, as well as the development of more envi-
ronmentally sustainable pest management methods. Investigating this connection enables us to
reveal numerous ecological phenomena. The rate of progress for these individuals depends on
a number of factors, including age, weather conditions, the carrying capacity of the infrastruc-
ture, and how each specie interacts with the others. This motivates us to research the variables
that influence system complexity. First of all, Malthus [1] is credited with having done it. His
theory was largely built around the idea that population growth is exponential since it is propor-
tional to the current population. Due to the fact that each habitat has a finite capacity to support
its inhabitants, this assumption became the main point of criticism for his hypothesis. After
that, Verhulst [2] proposed the logistic growth model in which he incorporated the intraspecific
interactions between the members of the population. Population dynamics made significant
progress in Lotka’s later publication, Elements of Physical Biology [3]. He presented the prey-
predator model as a set of two non-linear differential equations that describe the interaction of
two species. The work of Lotka was then expanded upon by Volterra in his book [4]. The prey-
predator model’s beginnings and early studies are briefly discussed in [5]. Every element of
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living things exhibits prey-predator interactions, which motivates us to investigate their many
subsets. This system became a focal point of ecological research as a result of the inspiration.
Several academicians have conducted extensive research in this area, which include [6, 7, 8, 9,
10].

How the predator consumes the prey is a crucial issue in a prey-predator system. Since
a change in how they interact might alter the system’s dynamics as a whole. We can study
the dynamics of the model more realistically by using the term "Functional response," which
provides the predator’s per capita eating rate on prey. There are many different kinds of func-
tional responses and a significant amount of study has been done employing them, Holling type
II in [11], Holling type III in [12], Holling type IV in [13], Beddington-DeAngelis in [14],
Crowley-Martin in [15, 16], Hassell-Varley in [17], Leslie–Gower in [18].

Every biological phenomenon includes a time delay. Ecology, population biology, and
epidemiology are just a few of the many disciplines in that delay differential equations (DDEs)
have applications. DDEs can be used to demonstrate the impact of delay in an ecological model.
The nature of delayed models is significantly more realistic. Comparatively speaking, a delay
differential equation exhibits substantially more complicated behaviour. By including temporal
delays into ecological models using delay differential equations, it is possible to portray biolog-
ical events more accurately and realistically. These models can aid in our comprehension of the
dynamics of ecological systems and help us anticipate how they will respond to environmental
change. One of the key properties of DDEs is their propensity to exhibit complicated dynamics,
such as oscillations, chaos, and bifurcations. These dynamics might be the result of the inter-
play between the time delay and the other model parameters. There are different kinds of delay
that can be used in a prey-predator model to make it more sound, like; gestation delay[15],
negative-feedback delay [19], maturation delay [20, 21]. A comprehensive detail about delay
differential equations is present in the literature [22]. Gakkhar and Singh [23] investigated the
complex kinetics of a prey-predator system with Holling type II response with the inclusion
of multiple delays. They explored the existence of periodic solution through Hopf bifurcation
and the chaotic dynamics of the delayed system. Banerjee and Takeuchi [21] studied a stage
structured prey-predator model with maturation delay. They argued that although the inclusion
of delay in most of the prey-predator models make them unstable, but they showed how the in-
troduction of a delay in their model made it stable. They evaluated the conditions for oscillatory
and stable coexistence of prey and predator in presence of weak as well strong Allee effect.

The steady states of dynamical systems undergo both qualitative and quantitative changes,
which are explained by the bifurcation theory. The primary types of local bifurcations are Hopf,
transcritical, saddle-node, Bogdanov-Takens, Bautin bifurcation whereas homoclinic, and hete-
roclinic are global bifurcations [24]. The solutions of chaotic systems are particularly sensitive
to the initial population densities, for instance, and the chaos theory reveals many new elements
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of a chaotic system and explains its different unusual behaviours. The fundamental difficulties
in managing a chaotic system are the rapid changes in population densities of participating
species that might occur as a result of chaos in a dynamical model. This makes it exceedingly
difficult to predict how the chaotic model will behave. Hastings et al. [25] provided fine detail
regarding chaos theory and its elements, such as a weird attractor, Poincar’e map, Lyapunov
exponents, etc. Many methods [26] , including the determination of the Lyapunov exponent,
the power spectral density, the fractal dimension of the map, and the recurrence plot, are used
to demonstrate the presence of chaos in a system.

Since it is essential for both the predator and the prey to survive, induced fear is a critical
part of the predator-prey relationship. Prey animals frequently experience fear-induced reac-
tions, which aid them in spotting and avoiding predators while aiding predators in effectively
pursuing and catching their prey. The role of induced fear in the predator-prey relationship has
been the subject of various research. Lima and Dill [27] investigated the effect of predator-
induced fear on the foraging behavior of prey. Their study discovered that when prey animals
perceive the presence of a predator or the threat of an approaching attack, they alter their for-
aging behaviour. Caro [28] examined the role of coloration in predator-prey relationships. Ac-
cording to this study, many prey species have evolved colours that resemble their surroundings,
making them less detectable to predators. The bright and noticeable coloration of some prey
species, on the other hand, has developed to serve as a warning to predators of their unappealing
or poisonous nature. Furthermore, a study by Kats and Dill [29] shows that chemical signals
play an important role in predator-prey interactions. According to their work, prey species
can recognize chemical signals given off by predators and modify their behaviour accordingly.
For instance, a predator’s scent may compel prey to cease foraging, seek cover, or freeze, de-
creasing their visibility to the predator. Wang et al. [30] worked on a prey-predator model in
which they modelled the induced fear in the form of a mathematical function, having certain
properties. Their mathematical studies demonstrate that strong anti-predator responses or high
levels of fear can stabilise the predator-prey system by eliminating the possibility of periodic
solutions. An analysis of a plankton-fish system with fish-induced fear and zooplankton refuge
was conducted by Kaur et al. [31]. They demonstrated that raising fear can inhibit periodic os-
cillations, which stops planktonic blooms. An interested reader can find numerous publications
[32, 33, 34, 35] to examine the prey-predator system involving the predator-induced fear effect.

A significant element that might affect the dynamics of prey-predator systems is the acces-
sibility of additional food sources. Predators in many habitats can eat a variety of food sources
in addition to their primary prey. The population dynamics of predator and prey can be affected
by this additional food, which can also change the intensity of interactions between them. The
impact of predation on the main prey can be reduced in prey-predator systems as a result of
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additional food. Predators may consume less of the primary prey when they have access to ad-
ditional food sources, which can result in increased prey population densities. Gosh et al. [36]
studied additional food’s impact for predator on the prey-predator dynamics with prey refuge.
They show that high quantity and high quality of additional food help to sustain oscillatory co-
existence of species. They noted that predator extinction in ecological systems with high prey
refuge can be avoided by the supply of additional food to them. Srinivasu et al. [37] investi-
gated the effects of providing additional food on the system’s dynamics in terms of biological
pest management. They discovered that by varying the quantity and quality of this food, they
could control the prey population and eradicate it. They observed that providing additional food
could alleviate oscillations in the system or create them if they are absent. Nazmul et al. [38]
analyzed the combined effects of fear, additional food, and refuge in a prey–predator system
with Crowly–Martin type functional response. They found that the existence of prey refuges
and increased food for predators are known to have possible effects on maintaining prey and
predator in their respective habitats. However, the fear of predators significantly impacts the
densities of prey and predator populations. When increasing either the prey’s growth rate or
the predator’s growth rate due to other food, the system first experiences a supercritical Hopf-
bifurcation and, subsequently, a subcritical Hopf-bifurcation. After a certain point, increasing
the quality or amount of additional food leads to the extinction of prey species and a sharp
increase in predators.

The phrase "carry-over effect" was introduced due to repeated clinical studies; carry-over
effects result from an individual’s background and prior experiences and might affect their cur-
rent performance [39]. When the previous habitat lost due to a lethal or non-lethal factor was of
low quality, the carry-over effect has a positive influence on the population, but it might have the
opposite effect when the lost habitat was of high quality. As a result, the change in population
will rely on (i), which demographic factors generate strong carry-over effects throughout this
period, and (ii) not just the quantity but also the quality of lost habitat. There is experimental
proof that the carry-over effects can manifest in a single season in amphibians, insects, marine
invertebrates, and other organisms [40, 41, 42]. Consequently, there is a growing trend to in-
clude carry-over effects in mathematical modeling and empirical research, as evidenced by the
publications [43, 44, 45]. Hence, incorporating carry-over effects into a population model can
aid in understanding the potential connection between the cost of reproduction and trade-offs
in life histories.

Non-autonomous prey-predator models are mathematical models that describe the dynam-
ics of a prey-predator system where the physical parameters involved in this model depend
on time-varying factors such as seasonal changes, weather conditions, or human interventions.
Non-autonomous prey-predator models are useful in understanding the complex interactions
between predator and prey populations in real-world ecosystems, and in predicting the effects
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of environmental changes or human interventions on these populations. A model becomes diffi-
cult when seasonality is incorporated, so we recommend reading some of the papers [46, 47] to
discover the methods for investigating the permanence, presence of periodic solutions, and their
global attractivity. Mandal et al. [48], using the methods described in [46, 47, 35], investigated
how phytoplankton and zooplankton interacted with the presence of environmental contami-
nants and seasonality. They investigated both seasonal and non-seasonal models. With relation
to various parameters, they conducted sensitivity and bifurcation analyses. Also, they looked
at the related slow-fast model, which revealed the existence of bursting oscillations. Saswati et

al. [49] worked on a eco-epidemiological model with virally infected toxic phytoplankton and
zooplankton with the inclusion of a time lag for viral replication. They considered replication
of free viruses as seasonally forced and observed the chaotic behavoiur of this seasonal system
which reflects the arise of harmful blooms. Mondal et al. [50] explored the roles of refuge, fear,
and hunting cooperation on a prey-predator system’s dynamics, while harvesting the predator
population at non-linear rate. They analyzed the non-seasonal and seasonal model analytically
as well as numerically. They observed that if the non-seasonal system is unstable, then the
seasonal variation of the growth rate of prey can induces higher periodic oscillations whereas
when it is stable then one and two periodic solutions are induced.

1.2 Objectives of the thesis

The goal of this thesis is to address several issues involving biological populations subject to
ecological stability and to investigate numerous traits that substantially impact the ecosystem’s
stability. With the above literature review, we identified some gaps which we state as objectives
of this thesis.

(i) To study the stability switching and chaos in a multiple delayed prey-predator model with
fear effect and anti-predator behavior.

(ii) To study the chaos control in a multiple delayed phytoplankton-zooplankton model with
group defence and predator’s interference.

(iii) To study a phytoplankton-zooplankton-fish model with chaos control: In the presence of
fear effect and an additional food.

(iv) To study the chaotic dynamics of a plankton-fish system with fear and its carry over
effects in the presence of a discrete delay.

(v) To study the seasonal effects of environmental toxin on nutrient-plankton system.
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1.3 Biological preliminaries

1.3.1 Phytoplankton

The foundation of the marine food chain is made up of microscopic, free-floating aquatic plants
called phytoplankton. Almost all bodies of water, including rivers, ponds, lakes, and oceans,
contain these species. Around half of the world’s oxygen is produced by phytoplankton, which
also significantly affects climate change on earth [51]. Being photosynthetic organisms, phyto-
plankton uses light and nutrients to produce energy and expand. Although certain species can
form colonies, they are mainly single-celled. From small coccolithophores to bigger diatoms
and dinoflagellates, phytoplankton comes in a variety of sizes and shapes. Because they serve
as the main food supply for zooplankton, which in turn feeds larger species like fish, whales,
and seabirds, phytoplankton are essential to the marine food web. Marine ecosystems can be
significantly impacted by the quantity and health of phytoplankton communities, and shifts
in these populations can point to broader environmental changes. Despite being tiny, phyto-
plankton play a crucial role in maintaining the health of the earth. They assist in preserving
atmospheric oxygen levels and controlling the climate on a global scale. Therefore, it is cru-
cial for our comprehension of the earth’s ecosystems and the effects of climate change that we
comprehend and monitor these organisms.

1.3.2 Zooplankton

An assortment of tiny creatures known as zooplankton can be found in lakes, rivers, and oceans.
These are small organisms that drift with the currents of the ocean. Since they serve as predator
for phytoplnakton so they are crucial components of aquatic food webs. Zooplankton includes
a wide range of organisms, from little ones like protozoa and rotifers to bigger ones like crabs
and jellyfish. They are important to aquatic environments despite their modest size because
they serve as the main food supply for many fish and other aquatic species. Holoplankton
and meroplankton are the two primary categories of zooplankton. Meroplankton only spend a
portion of their life cycle in the water column, whereas holoplankton spend their full life cycle
there. An essential part of the global carbon cycle is played by zooplankton. They eat a lot
of organic material and aid in moving nutrients from the surface to deeper waters, where other
creatures can use them. Zooplankton, despite their diminutive size, are essential to aquatic
ecosystems. They play a crucial role in preserving the health of our oceans, lakes, and rivers
by sustaining the base of the food chain and assisting in the transportation of nutrients.
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1.3.3 Species

A group of organisms that have similar traits and may breed with one another to create fertile
offspring is referred to as a species in biology. The study of biology, ecology, and evolution all
revolve around the concept of species, which is essential to understanding the variety of life on
Earth. Several criteria, including as morphology, genetics, behaviour, and ecological habitat,
have been employed to describe species as they have developed over time. The biological
species concept, which defines a species as a collection of organisms that can interbreed and
produce healthy offspring under natural conditions but are reproductively isolated from other
groups, is currently the most frequently recognised definition of a species.

1.3.4 Food chain

A food chain is a sequence of living creatures that illustrates the flow of nutrients and energy as
one organism consumes another. Plants are at the bottom of a conventional food chain, where
they are devoured by herbivores, which in turn eaten by carnivores. By converting dead plants
and animals into nutrients that can be utilised by other organisms, decomposers like fungus
and bacteria play a significant part in the food chain. The term "trophic level" refers to each
level of the food chain and denotes a distinct phase in the movement of nutrients and energy.
Understanding food chains is crucial for comprehending the links and functions of many species
in an ecosystem.

1.3.5 Ecosystem

A community of living things that interact with one another and their surroundings, such as
plants, animals, and microorganisms, is referred to as an ecosystem. Abiotic and biotic ele-
ments make up an ecosystem’s two main parts. The non-living components of an ecosystem
are known as abiotic variables, and examples include temperature, water, air, soil, and sunlight.
These elements greatly influence how the environment is shaped and which animals may coex-
ist there. The living components of an ecosystem, such as all the plants, animals, and bacteria,
are known as biotic factors. These creatures work together and with the abiotic elements to cre-
ate intricate webs of interconnected communities. An ecosystem’s health and efficiency depend
on both biotic and abiotic components. The ecology as a whole may be significantly impacted
by changes to either component.
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1.4 Functional response

The relationship between a predator’s rate of prey intake and the quantity of prey present in a
certain environment is referred to as a functional response. The sort of functional response ex-
hibited by a predator is influenced by a number of variables, including handling time, encounter
rate, search efficiency, the predator’s feeding habits, prey escape ability, prey habitat’s structure
and the surrounding environment. Predicting the dynamics of prey-predator systems and the
effects of predation on prey populations requires an understanding of functional response.

Holling [52] discussed four types of functional responses, known as Holling type I, II, III,
and IV . The Type I functional response presupposes that the intake rate increases linearly with
food density. The linear rise is based on the supposition that the consumer’s processing time for
food items is minimal or that eating does not interfere with the food search. Mathematically,
this response can be written as

F1(x) = mx,

where, m is the maximum attack rate. This functional response is also known as the law of mass
action. Holling type II (or Michaelis-Menten) response is reflected by an asymptotic curve,
in which the rate of consumption (number of prey per predator) increases and approaches a
maximum value asymptotically. The mathematical form for this response is

F2(x) =
mx

1+hmx
,

where, m is the maximum attack rate and h is handling time taken by predator per prey. In
this response rate of consumption increases rapidly when prey quantity is abundant and finally
attains its maximum saturated value, after which it becomes constant. Holling type III response
is sigmoid in which the consumption rate is similar to Holling type II at high prey density but
is low when the prey population size is small. Its sigmoid nature is due to the generalist nature
of predator who may switch from one food to another when the first one is not abundant. The
type III response can be written in the following form

F3(x) =
mx2

1+hmx2 .

Andrew [53] proposed a response of the type

F4(x) =
mx

x2 +αx+β
,
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which is equivalent to Holling type II response at low prey population concentration and in-
volves an inhibitory effect at high prey population. A situation in a prey-predator interaction
can arise when prey species form a group against the predator species as an act of anti-predator
behaviour. The phytoplankton-zooplankton interaction [54] is a particular example of this in
which highly dense phytoplankton starts releasing the toxic chemicals against zooplankton,
due to which zooplankton avoids the areas of these highly dense phytoplankton, reducing their
consumption. Mathematically, this response can be presented as

F5(x) =
mx

x2

j + x+β
,

where, j gives the tolerance or predator’s immunity from, the prey. Here, m is the maximum
attack rate, and β is half saturation constant without inhibitory effect. This response, when
j → ∞, gets reduced to Holling type II response [55]. This functional response reflects the
group defence mechanism of prey against the predator, which results in a reduction in predation
when prey populations are high.

All above mentioned responses are only prey dependent but Arditi and Ginzburg [56] argues
that the consumption rate may decrease as the predator population rises. They proposed the
ratio dependent function which depends upon both the densities of prey as well of predator,
and be represented in the from of f (x

y). Beddington [57] gave functional response (known as
Beddington-DeAnelis response) of the form

F6(x) =
mx

1+mhx+by
,

where m is the maximum attack rate, h is handling time, and b can be interpreted as magnitude
of interference among predators.

1.5 Definitions and mathematical preliminaries

In most of cases, the physical or ecological phenomena can be described by the ordinary dif-
ferential equations of the form

dy
dt

= f (y), y(t0) = y0, (1.1)

where y = (y1,y2, ...yn), f = ( f1, f2, ... fn), the enough smoothness of f ensures the existence
and uniqueness of solution of (1.1) whereas t belongs to an interval containing t0 such that
y(t0) = y0 and dy(t)

dt = f (y(t)).

Definition 1.5.1. The solution y(t, t0,y0) of (1.1) is called a stable solution if for every ε > 0 ∃ a

δ > 0 and t1 such that for each solution ȳ(t) = y(t, t0, ȳ0) of (1.1), the inequality ||ȳ0− y0||< δ
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implies ||ȳ(t)− y(t)|| < ε ∀t > t1. In a simple manner, we can say that a solution y(t, t0,y0) is

said to be locally stable if any other solution started in some δ− nbh. of y0 continue to stay in

ε− nbh. of y(t) after a certain amount of time.

Definition 1.5.2. The solution y(t, t0,y0) of (1.1) is called a asymptotic stable solution if ∃ a

δ > 0 such that for each solution ȳ(t) = y(t, t0, ȳ0) of (1.1), the inequality ||ȳ0−y0||< δ implies

||ȳ(t)− y(t)|| → 0 as t → ∞. In a simple manner, we can say that a solution y(t, t0,y0) is said

to be a locally asymptotic stable solution if any other solution started in some δ− nbh. of y0

converges to y(t) as time approaches to infinity.

Definition 1.5.3. The solution of (1.1) is called unstable if it not stable.

Definition 1.5.4. A point ŷ ∈ Rn is called an equilibrium point or stationary point or steady

state of (1.1) if f (ŷ) = 0. This equilibrium is known as hyperbolic equilibrium point if none of

the eigenvalue of D f (ŷ) (Jacobian of f evaluated at ŷ) have zero real part.

Definition 1.5.5. A steady state ŷ of (1.1) is known as source (unstable) or sink (stable) if all

the corresponding eigenvalues of D f (ŷ) have positive or negative real parts, respectively. It is

called a saddle point if it is hyperbolic and D f (ŷ) has at least one eigenvalue with negative and

one with positive real part.

Definition 1.5.6. A steady state ŷ of (1.1) is said to be globally asymptotically stable if any

solution started from a bounded domain converges to ŷ.

Definition 1.5.7. A closed solution curve of (1.1) is called as a periodic orbit or cycle if it is

not a steady state. The stability or asymptotic stability or instability of this periodic orbit can

be employed from Definition 1.5.2.

Definition 1.5.8. The trajectory or orbit φ(t0) of (1.1) is defined as

φ(t0) = {y ∈ Rn : y = y(t, t0,y0), t ∈ R}

where y(t,y0) is any solution of (1.1) defined ∀t ∈ R such that y(t0) = y0.

Definition 1.5.9. [24] A point q ∈ E (subset of Rn such that f ∈C1(E)) is called a ω− limit

point of φ if ∃ a sequence {tn}, tn→ ∞ as n→ ∞ such that

lim
n→∞

φ(tn,y0) = q.

In a similar manner, a point p ∈ E is called an α-limit point of φ if ∃ a sequence {tn}, tn→−∞

as n→ ∞ such that

lim
n→∞

φ(tn,y0) = p.
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The collection of all ω-limit points of a orbit Γ is known as ω-limit set of orbit Γ , and the

collection of all α-limit points of a orbit Γ is known as α-limit set of orbit Γ.

Definition 1.5.10. [24] A periodic solution Γ of (1.1) is known as limit cycle if it is either ω or

α-limit set of some another orbit. If a periodic orbit Γ is ω-limit set of every orbit in some nbh.

of Γ then it known as a stable limit cycle whereas if it α-limit set of every orbit in some nbh.

of Γ then it is known as an unstable limit cycle. If Γ is α-limit set of one orbit other than itself

and ω-limit set of another orbit other than itself then is known as a semi-stable limit cycle

Definition 1.5.11. The collection of all points y0 ∈Rn is known as basin (or region) of attraction

for an attractor Â (it can be a steady state or periodic solution) of (1.1) if

lim
t→∞

y(t,y0) = Â.

For studying the non-autonomous model (Chapter 6) , we need some more definitions and
results which are given below.

Definition 1.5.12. A non-negative bounded solution y(t) of a non-autonomous model is said to

be globally attractive (or globally asymptotically stable) if any another solution ỹ(t) satisfy

lim
t→∞
|y(t)− ỹ(t)|= 0.

Definition 1.5.13. [58] Let D ⊂ RN be a bounded open subset and H : D→ RN be a C1(D)

map, furthermore H ′(x) be its Jacobian, and detH ′(x) be the the determinant of this Jacobian.

If z /∈ H(∂D), then the Brouwer degree is defined by

deg(H,D,z) := ∑
x∈H−1(z)

sign detH ′(x).

Definition 1.5.14. [59] Let X ,Y are two Banach spaces and an operator H : X → Y is said to

be a Fredholm operator if dimension of its kernal and codimension of its image are finite. The

index of this Fredholm operator is given by

indexH = dim KerH− codim ImH.

Lemma 1.5.1. [60] If function h is a non-negative, uniform continuous and integrable on [0,∞),

then limt→∞ h(t) = 0.

For the existence of periodic solutions of a non-autonomous model, we use continuation theo-
rem from coincidence degree theory by Gains and Mawhin [61]. Let U and V are two normed
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vector spaces, F : DomU ⊂U → V is a linear map, and W : U → V is a continuous map. If
F is a Fredholm operator of index zero i.e., dim KerF = codim ImF < ∞ and there exist con-
tinuous projection S : U →U and R : V →V such that ImS = KerF , ImF = KerR = Im(I−R)

then F |DomF ∩KerS : (I−P)X → ImF is invertible. Let F−1
S be the inverse of of F . Let Ω

is an open bounded subset of U such that RW (Ω) is bounded and F−1
S (I−R)W : Ω→ U is

compact then W is said to be F-compact on Ω. Let ImR is isomorphic to KerF , so there exists
an isomorphism K : ImR→ KerF.

Lemma 1.5.2. [61] Let F be a Fredholm operator with index zero whereas W be a F-compact

on Ω. If

1. for each ρ ∈ (0,1), each solution y of Fy = ρWy is such that y /∈ ∂Ω,

2. RWy 6= 0 for every y ∈ ∂Ω∩KerF,

3. the Brouwer degree deg(KRW,Ω∩KerF,0) 6= 0,

then the equation Fy =Wy has at least one solution in DomF ∩Ω.

1.6 The mathematical tools employed in the analysis

1. Linearization of a non-linear system
The local nature of the system (1.1) in the nbh. of a hyperbolic equilibrium ŷ is deter-
mined by the nature of the linear system

dz
dt

= Az,

where A = D f (ŷ) (Jacobian of f evaluated at ŷ), and z = y− ŷ.

2. Local stability
The local stability of of a hyperbolic equilibrium ŷ depends upon sign of real parts of the
eigenvalues of D f (ŷ), and we determine the nature of signs by using Hurwitz’s Theorem
[62], given below.

Theorem 1.6.1. A necessary and sufficient condition for all the solutions of the equation

(1.2)

λ
n +B1λ

n−1 +B2λ
n−2 + ...Bn = 0, (1.2)
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with real coefficients, to have negative real parts, is the positivity of all principle diago-

nals of minors of the Hurwitz matrix

Hn =


B1 1 0 0 0 0 . . . 0
B3 B2 B1 1 0 0 . . . 0
B5 B4 B3 B2 B1 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 Bn

 .

We can observe that the entries in Hn on principal diagonal are the coefficients of (1.2),

and the alternating columns of Hn consist either the coefficients with only even or with

only odd indices. Thus, Hn = (Ai j), where Ai j = B2i−k, with missing coefficients being

replaced with zero.

The conditions for negative real parts of the solutions of (1.2) for some values of n = 2, 3
and 4 are given below, however the use of this theorem become impractical for large n.

n = 2; B1 > 0, B2 > 0,

n = 3; B1 > 0, B3 > 0, B1B2 > B3,

n = 4; B1 > 0, B2 > 0, B3 > 0, B4 > 0, B1B2B3 > B2
3 +B2

1B4.

3. Global stability
In the last segment, we discussed about the local stability of the system around a steady
state of a dynamical system. Now, we will discuss the procedure to investigate the global
stability of this steady state, and establish the sufficient conditions for it by choosing a
suitable Lyapunov’s function which is a positive definite function. We consider a system

dy
dt

= f (y),y(t0) = y0, (1.3)

where f ∈C1(Rn) to ensure the existence-uniqueness of solution of (1.3), Sµ = {y ∈ Rn :
||y||< µ}, and ŷ is the steady state.
To provide the sufficient criteria for global stability, we have some significant results.

Theorem 1.6.2. If there is a positive definite (about ŷ) function V (y) such that dV
dt ≤ 0 on

Sµ then ŷ is stable.

Theorem 1.6.3. If there is a positive definite (about ŷ) function V (y) such that dV
dt < 0 on

Sµ then ŷ is asymptotically stable.
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Theorem 1.6.4. If there is a scalar function V (y) such that V (ŷ) = 0 and dV
dt > 0 on Sµ

and in every nbh. M of ŷ, M ⊂ Sµ , there is y0 with V (y0)> 0 then ŷ is unstable.

4. Now, we state an important theorem which provides a sufficient condition for the non-
existence of any periodic solution of a planner dynamical system

Theorem 1.6.5. Consider a planner dynamical system

dy1

dt
= F1(y1,y2),

dy2

dt
= F2(y1,y2), (1.4)

where F1 and F2 are continuously differentiable functions on a simple connected domain
D, and B is smooth function on D. If

∇.(BF1,BF2) =
∂BF
∂y1

+
∂BF2

∂y2

have one sign throughout D, then there is no periodic solution of (1.4) in D.

5. Numerical simulation
In each chapter of this thesis, numerical simulation experiments are conducted to prove
the theoretical findings in that particular chapter. We have used MALTLAB/ MATHE-
MATICA to perform tedious calculations and to draw different types of time-series graph,
phase-portraits, basins of attraction, and bifurcation diagrams.

1.7 Bifurcation theory

Let us consider a system
dy
dt

= f (y,ν), (1.5)

then the qualitative behaviour of system (1.5) may change on varying the value of parameter
ν ∈ R around its critical value ν0. This qualitative change may accompanied by number of
change of steady states or stability of a steady state corresponding to (1.5) . On basis of this,
there are several kinds of bifurcations given below.

(i) Saddle-node
In this bifurcation, on varying the critical (bifurcation) parameter, two steady states, out
which one is sink and one is saddle, come together to collide and annihilate each other at
ν = ν0.
Let y = y0 be the corresponding hyperbolic equilibrium at ν = ν0 with p and q be the
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eigenvectors corresponding to zero eigenvalue of A = D f (y0,ν0) and AT . Then the
transversality conditions from Sotomayor’s theorem [24] for saddle-node bifurcation are

qT fν(y0,ν0) 6= 0, qT [D2 f (y0,ν0)(p, p)] 6= 0. (1.6)

An example of dynamical system for this bifurcation is

dy
dt

= ν− y2.

(ii) Transcritical bifurcation
In this bifurcation, two steady states interchange their stability as we vary the bifurcation
parameter ν . At this critical value, the steady state y = y0 becomes hyperbolic, and if the
conditions (1.6) are replaced with

qT fν(y0,ν0) 6= 0,

qT [D fν(y0,ν0)p] 6= 0,

qT [D2 f (y0,ν0)(p, p)] 6= 0,

(1.7)

then system (1.5) suffers transcritical bifurcation at the steady state y = y0 at ν = ν0. An
example for this bifurcation is

dy
dt

= νy− y2.

(iii) Pitchfork bifurcation
In this bifurcation, system (1.5) transits from one stable (or unstable) steady state to three
steady states, out of which two newly arose steady states are stable (or unstable) and the
already existing steady state become unstable (or stable). If conditions (1.6) are replaced
with

qT fν(y0,ν0) 6= 0,

qT [D fν(y0,ν0)p] 6= 0,

qT [D2 f (y0,ν0)(p, p)] 6= 0,

qT [D3 f (y0,ν0)(p, p, p)] 6= 0,

(1.8)

then then system (1.5) suffers picthfork bifurcation at the steady state y = y0 at ν = ν0.
An example for this bifurcation is

dy
dt

= νy− y3.
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(iv) Hopf bifurcation
In last bifurcations, at the critical value ν = ν0, one eigenvalue of D f (y0,ν0) become
zero but in Hopf bifurcation D f (y0,ν0) has a pair of purely imaginary eigenvalues with
no other eigenvalue have zero real part. As the eigenvalue passes through the imaginary
axis on varying ν there is occurrence of supercritical or subcritical Hopf bifurcation at
ν = ν0. In supercritical case, the steady state which is going under bifurcation, is stable
earlier and on varying ν , it becomes unstable at bifurcation point and there is arise of a
stable limit cycle around it. In subcritical case, the steady state is unstable before going
under bifurcation and after it, the steady state become stable and there is arise of unstable
limit cycle around.
A general planner system

dY1

dt
= f1(Y1,Y2,ν),

dY2

dt
= f2(Y1,Y2,ν) (1.9)

which undergoes Hopf bifurcation about the steady state S∗ = (Y ∗1 ,Y
∗
2 ) at ν = ν0 can be

written in the form of (1.10) by using the using the transformation y1 = Y1−Y ∗1 , y2 =

Y2−Y ∗2 and the Taylor’s series expansion.

dy1

dt
= a10y1 +a01y2 + ∑

i+ j≥2
ai jyi

1y j
2,

dy2

dt
= b10y1 +b01y2 + ∑

i+ j≥2
bi jyi

1y j
2,

(1.10)

where ai j =
1

i! j!
∂ i+ j f1
∂Y i

1Y j
1

∣∣∣∣
(S∗,ν=ν0)

, bi j =
1

i! j!
∂ i+ j f2
∂Y i

1Y j
1

∣∣∣∣
(S∗,ν=ν0)

.

The fisrt Lyapunov coefficient l1 [24] for (1.10) is given by

l1 =−
3π

2a01Θ
3
2

{[
a10b10

(
a2

11 +a11b02 +a02b11

)
+a10a01

(
b2

11 +a20b11 +a11b02

)
+b2

10 (a11a02 +2a02b02)−2a10b10
(
b2

02−a20a02
)
−2a10a01

(
a2

20−b20b02
)

−a2
01 (2a20b20 +b11b20)+

(
a01b10−2a2

10
)
(b11b02−a11a20)

]
−
(
a10

2 +a01b10
)[

3(b10b03−a01a30)

+2a10 (a21 +b12)+(b10a12−a01b21)
]}∣∣∣∣

(y0;ν=ν0)

(1.11)
with Θ = (a10b01−a01b10)|(y0;ν=ν0).

Theorem 1.7.1. If l1 6= 0 then system (1.10) suffers Hopf bifurcation at S∗ for ν = ν0; if
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l1 < 0 then a stable limit cycle arises from S∗ as vary ν and if l1 > 0 then there is arise

of an unstable limit cycle. The case when we have l1 < 0, there is supercritical Hopf

bifurcation and when l1 > 0 then we have subcritical Hopf bifurcation.

1.8 Delay differential equation

A differential equation with delays in the dependent variable is known as a delay differential
equation (DDE). In other words, the dependent variable’s rate of change at any given moment
depends both on its current value and its values in the past. DDEs are employed in a variety of
fields, including physics, ecology, and finance.

The general form of a delay differential equation [63] is given by

dy
dt

= f (t,y(t),y(τ1(t,y(t))),y(τ2(t,y(t))), ...,y(τm(t,y(t)))) (1.12)

where 0≤ τi(t,y(t))≤ t.

There are mainly three types of delays [63] as given below.

(i) Time dependent delay
If the delays can be written in the from t− τi(t) with τi(t)> 0, then delays are called as
time dependent delay.

(ii) State dependent delay
If the delays can be written in the form t− τi(x(t)) with τi(t)> 0, then delays are called
as time dependent delay.

(iii) Generalized delays
The form of the delays represented in (1.12) are called generalized delay

For more details related to examples of above types of delays and numerical solutions of these
one can refer to [63].

1.9 Non-autonomous differential equations

Any differential equation whose coefficients or functions explicitly depend on the indepen-
dent variable is said to be a non-autonomous differential equation. Thus, the solution’s be-
haviour may change over time since the equation is not time-invariant. There are numerous
uses for non-autonomous differential equations in physics, biology, and engineering. For in-
stance, in physics, systems where the coefficients or functions depend on time, such as in the
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case of a forced oscillator, can be modelled using non-autonomous differential equations. Non-
autonomous differential equations can be used in biology to simulate population growth and
decline when the birth and death rates are time-dependent. Non-autonomous differential equa-
tions in engineering can be used to simulate control systems where the system’s input changes
over time.
A system of non-autonomous differential equation [62] can be expresses as

dy
dt

= f (t,y), (1.13)

where f ∈C[I×Sµ ,Rn], I = [t0,∞), and Sµ = {y ∈ Rn : ||y||< µ}. The theory related to non-
autonomous differential equations which we have used, is discussed in chapter 6.

1.10 Basic ecological models

1. Malthusian model
In this model, Malthusian [1] assumed that the rate of change in density (say X) of species
is directly proportional to population’s growth rate. Mathematically this model can writ-
ten as

dX
dt

= aX , X(0) = X0,

where a is the growth rate. The solution of above differential is given by X(t)=X0 exp(at).

Thus the solution of above system grows exponentially for a > 0. The main limitation of
this model is that it reflects the limitless growth of the population which is not possible
in realistic conditions.

2. Logistic growth model
The logistic growth model was given by Pierre Verhulst [2] in which he accounts the fact
that the increase in population density may be limited due the interference among the
members of population. Mathematically, the logistic growth model is described as

dX
dt

= aX

(
1− X

K

)
, X(0) = X0,

where K is the carrying capacity of the habitat in which population is living. The solution
of this logistic growth model is given by

X(t) =
KX0eat

(K−X0)+X0eat ,
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and from this solution we can observe that as t→ ∞ then X(t)→ K.

3. Lotka-Volterra model
The Lotka-Volterra model, also known as the predator-prey model, is a mathematical
framework used to study the dynamics of two interacting species. Volterra [4] then ex-
panded upon the work of Lotka in his book. Two differential equations; one for the
population of the predator species and the other for the population of the prey species
form the basis of the model. As a result of their interactions with one another and their
environment, these equations characterise the rate of change of each species’ population
through time. The model assumes that the prey species has an endless supply of food
and that the predator species only consumes the prey species. It also presupposes that
interactions between species are only local and that each species’ population growth rate
is constrained by its own density.

Let X1(t) and X2(t) denote the population densities prey and predator, respectively. Then
the prey-predator model proposed by Lotka and Volterra is given by

dX1

dt
= aX1−bX1X2,

dX2

dt
= cbX1X2−dX2,

(1.14)

with a,b,c,d > 0 and X1(0) ≥ 0,X2(0) ≥ 0. In (1.14), a is the growth rate of prey, b is
predator’s attack rate on prey, c is conversion efficiency of predator on prey and d is death
rate of predator.
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Chapter 2

Stability switching and chaos in a multiple delayed
prey-predator model with fear effect and anti-predator
behavior1

2.1 Introduction

An essential aspect of an ecosystem is its dynamics which gives the idea about the growth of
population living in that particular ecological community. The momentum of progress for these
inhabitants relies on various components like the carrying capacity of supporting infrastructure,
the interrelationship of one with others, age, atmospheric conditions, etc. This inspires us to
study the factors which affect the complexity of the system. Firstly, it was done by Malthus [1].
He discussed the major causes and their cures about the fast-growing population of England.
His theory was mainly based upon the idea that the rate of population is proportional to the
present population which means the population grows exponentially. This assumption became
the main element of criticism for his conjecture as each habitat has a limited potential to sustain
its denizens. After that, the logistic growth model was proposed by Verhulst[2]. He incorpo-
rated the intraspecific interactions among the population’s individuals and made the model more
realistic. On later Lotka’s Elements of Physical Biology[3] was a major advancement in pop-
ulation dynamics. He introduced the interaction of two species in the form of a system of two
non-linear differential equations, known as the prey-predator model. Then Volterra extended
Lotka’s work in his book [4]. Brief detail about the origin and initial work on the prey-predator
model is described in [5]. Prey-predator interactions can be seen in every aspect of living organ-
isms, which provokes us to explore its various segments. This inspiration brought enormous
attention to this system and made it a major area of ecological research. A lot of study has
been done by several researchers [6, 7, 8, 9, 10] in this domain. In a prey-predator system,

1A considerable part of this chapter is published in Mathematics and Computers in Simulation, 188(2021)
164–192.
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how predator consumes the prey is a very important factor to deal with because a change in
the way of interaction between them can change the whole dynamics of the system. The term
‘Functional response’, which gives the predator’s per capita feeding rate on prey, is a crucial
component that helps us to investigate the kinetics of the model in a more realistic way. There
are numerous types of functional responses and a massive amount of work has been done using
them by many researchers, Holling type-II in [11], Holling type-III in [12], Holling type-IV
in [13], Beddington-DeAngelis in [14], Crowley-Martin in [15, 16], Hassell-Varley in [17],
Leslie–Gower in[18].

In the phase of evolution of prey-predator model our prolonged perspective was that, the
prey is affected by predator only through direct hunting, but there is another significant medium
of influencing the prey population, which is the fear of the predator. There is a considerable
impact of this fright on the attitude of prey. Because of this worry of being killed, sometimes
prey has to shift their locality to such a site that does not support them to spend their lives in
a good manner. This fear does not allow prey to roam freely in their own territory, which cut
down the prey population’s mating rate, leading to their abatement. Pandey et al. [64] studied
the three species food chain model in which the growth of middle predator is reduced due to
fear of top predator and growth rate of prey is decreased by the fear of middle predator and
the interaction between the species are dealt with Holling type II functional response. Recently
Das & Samanta [65] has studied the impact of fear on prey when additional food is provided
to predator with a stochastic prey-predator model and deduced the conditions for annihilation
and perseverance for the system. The analysis of the impact of fear of predator on prey is
done by many researchers, [66, 67, 68, 15]. Wang et al. [30] modeled the prey-predator
interaction in which they examined the relationships between fear effect and other parameters
and demonstrated that the direction of Hopf-bifurcation changes by varying the value of fear. In
recent times, Pandey et al. [69] proposed and analyzed a prey-predator model with fear effect
and delay. They found that for gradual increase of delay, the dynamics of the system switches
more than once. Authors also observed node-cycle bi-stability behavior between the positive
equilibrium and stable limit cycle of the delayed system.

At any place on the earth, when one species attacks another for its consumption, then the
attacked one has a natural tendency to protect itself and this temperament of rescuing is called
anti-predator behavior by prey against the predator. There is a great number of activities per-
formed by prey in the anti-predator behavior like camouflage, imitation of some harmful breed,
escape instead of direct encounter, use of noxious chemicals in the form of chemical defence,
changing body color etc. So, the efforts of a defence vary species to species of prey. A good
elaboration about anti-predator behavior possessed by prey is provided in [70]. Ives et al. [71]
proposed a prey-predator model showing that more efficient anti-predator behavior increases
the prey population density by reducing the per capita predation rate. They excluded such
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anti-predator behaviors, which can affect prey population in an adverse way. A fine job on
anti-predator behavior is done by Matsuda et al. [72]. They have formulated a model con-
sisting of two predators sharing common prey and have investigated both the short-term and
long-term effects of anti-predator behavior on predators by varying their densities. Recently,
Liu & Zhang [73] have investigated the prey-predator model with anti-predator behavior with
the incorporation of delay and diffusion with the help of partial differential equations.

Most of the biological proceedings come with time delays. The effects of factors involved
in these processes are not visible instantly. They take some time to manifest themselves and
this time is known as the time delay. The models consisting of time delays are investigated with
the help of delay differential equations, which are more complex than the ordinary differential
equations. Volterra [4] introduced delayed prey-predator models in form of integrodifferential
equations and these delays are known as distributed delays. Discrete delays are derived from
distributed delays by taking kernal as delta function. There are several types of discrete delays
like maturation delay, which is time taken by the immature individual to become mature, ges-
tation delay, which is time taken by the predator to reproduce after consuming the prey. Fear
of predator has a negative impact on reproduction rate of prey in many ways but this impact in
not seen instantly. The effect of this fear on growth of prey takes some time to become visible,
so fear response delay is the amount of time after which the density of prey population starts
getting change due to fear of the predator. Such delay in fear response has not been observed in
the literature. The majority of studies show that delays are capable of destabilizing the system.
Chakraborty & Haldar [74] derived conditions for global stability and bifurcation of a prey-
predator model with stage structure. Chen et al. [18] explored the prey-predator model with
prey refuge and Leslie-Gower functional response. They inferred the threshold value for the
refuge parameter, before which increasing its value increases the predator’s density and beyond
which it decreases the predator’s density. There are many studies [75, 23, 76, 77, 78, 79, 80]
with more than one delays in which they have estimated the critical value of delays for the
occurrence of bifurcation. Nakaoka et al. [81] worked on pure-delay-type systems which are
prey-predator model without instantaneous intraspecific competitions and showed that this de-
layed system is globally asymptotically stable for small values of delays and system has chaotic
behavior as the value of delay for interaspecific competition among predators is increased to a
large number.

Therefore, we figure out that the interaction between prey and predator does not only results
in direct killing of prey, but there is an adverse effect of the fear induced by the predator on
prey, and they respond to this fear by showing certain kinds of anti-predator behaviors towards
the predator.

To the best of author’s knowledge, an interaction between prey and predator with (i) effect
of fear in prey, (ii) anti-predator behavior by prey against predator, (iii) simplified Holling type
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IV functional response, (iv) fear response delay in prey, (v) gestation delay in predator has
not been studied. Hence, this encourages us to investigate the prey-predator model’s kinetics
by incorporating the fear effect, anti-predator behavior in response to this fear with the fear
response and gestation delay. In Section 2.2, we formulate both the models, non-delayed and
delayed. In Section 2.3, we perform analysis for the non-delayed model and drive conditions for
stability and Hopf-bifurcation. Then local stability and Hopf-bifurcation of the delayed model
is discussed in Section 2.4. In Section 2.5, we determine the direction and stability of Hopf-
bifurcation using the normal form method and center manifold theory. Section 2.6 is dedicated
to numerical simulations supporting our theoretical findings in previous sections. Then we end
this chapter with its conclusions and significances.

In this chapter, our study is restricted to such anti-predators behaviors (or their respective
extent) which do not have any negative effect on the prey population and assumes that anti-
predator behavior only increases the prey population by decreasing the per capita feeding rate.

2.2 Mathematical model

We consider two-dimensional autonomous system of differential equations which gives the
interaction between prey and predator. Let x(t) and y(t) be the population densities of prey and
predator respectively at time t. The model has been developed under the following assumptions.

1. The prey population grows logistically in the absence of predation so, the per capita
growth rate of the prey population is

dx
dt

= rx− r0x− r1x2. (2.1)

2. Most of the researchers have worked on the prey-predator model on the assumption that
the predator effects prey only by direct killing, but in the previous section, we saw that
the fear of predator also affects the growth of prey individuals. So, this fear diminishes
the reproduction rate of the prey community. Due to this reason, its legitimate to include
the fear term in our model to make it sounder. so, the expression (2.1) can be modified to
get

dx
dt

=
rx

1+ ky
− r0x− r1x2. (2.2)

3. Since most of the biological processes involve delay because the effect of any factor
involved in that process takes some time to become visible. So, the effect of fear on the
prey population is also not instantaneous, and there is a delay in effecting the growth of
prey species. Hence, here we introduce a delay τ1 known as fear response delay. Now
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expression (2.2) can further be modified to

dx
dt

=
rx

1+ ky(t− τ1)
− r0x− r1x2.

4. We consider that the interaction between prey and predator species is followed by mod-
ified Holling type IV functional response which is simpler version of Monod-Haldane
functional response. This is only prey dependent functional response and it is given by

f (x,y) =
αx

ax2 +b
.

5. As explained earlier, there is some delay in biological processes. So, there is a time lag
between consuming the prey and reproducing the progeny by the predator. Hence it is
reasonable to incorporate a delay say τ2 known as gestation delay, which is the time gap
between the consumption of the prey and reproduction of its progeny. It is assumed that
the rate of change of predator species depends upon the number of prey and predators
present at the time (t− τ2) and delay τ2 is considered only in numeric response.

6. Due to the fear of predator, prey shows different kinds of anti-predator behaviors and try
to save themselves by fleeing, covering itself, etc. Sometimes prey befool the predator
by the technique of diversion display in which prey divert their attention to protect their
vital areas. For example, lizards are capable of twitching their tails, which have lives. So,
lizards use this skill to make way for escape. But in case of an encounter, prey exhibit
different type of behaviors like retaliation, chemical defence, use of morphological struc-
tures, etc., and a good detail about these behaviors is provided in [70]. So, it is important
to introduce this behavior in our model.

Under all the above assumptions, the interaction between prey and predator species is modeled
by the following system of DDEs:

dx
dt

=
rx

1+ ky(t− τ1)
− r0x− r1x2− αxy

ax2 +b
,

dy
dt

=
cαx(t− τ2)y(t− τ2)

ax2(t− τ2)+b
−δ0y−δ1y2−ηxy,

(2.3)

subjected to non-negative conditions x(s) = φ1(s) ≥ 0, y(s) = φ2(s) ≥ 0, s ∈ [−τ,0], τ =

max{τ1,τ2} and φi(s) ∈ C([−τ,0])→ R+),(i = 1,2), where τ1 and τ2 denotes fear response
and gestation time delay respectively.
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System (2.3) takes the following form in the absence of both the delays

dx
dt

=
rx

1+ ky
− r0x− r1x2− αxy

ax2 +b
,

dy
dt

=
cαxy

ax2 +b
−δ0y−δ1y2−ηxy.

(2.4)

The biological meaning and dimension of the variables and parameters used in system (2.3)
and (2.4) are described in the Table 2.1.

Variable/Parameter Biological meaning
x Prey density
y Predator density
r Birth rate of prey population
r0 Death rate of prey population
r1 Coefficient of intraspecfic interference among prey individuals
α Attack rate
k Cost of fear
a Inverse measure of inhibitory effect
b Half-saturation constant
c Conversion effeciency of y on x
δ0 Death rate of predator population
δ1 Coefficient of intraspecfic interference among predator individuals
η Rate of anti-predator behavior of prey to the predator
τ1 Fear response delay in prey
τ2 Gestation delay in predator

Table 2.1: List of variables and parameters with their biological meaning, used in sys-
tem (2.3) and (2.4) (for more details on the dimensions of parameters, one can refer to
[82])

2.3 Dynamics of Non-delayed Model

Here we shall analyze the properties like positivity, persistence and boundedness for the solu-
tion of system (2.4) which is followed by the investigation of local and global behavior of the
system around existing equilibrium points.

2.3.1 Positivity, permanence and boundedness of the solution

The model (2.4) can be written as

dx
dt

= xφ1(x,y),
dy
dt

= yφ2(x,y),
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where

φ1(x,y) =
r

1+ ky
− r0− r1x− αy

ax2 +b
, φ2(x,y) =

cαx
ax2 +b

−δ0−δ1y−ηx.

This implies

x(t) = x(0)e
∫ t

0 φ1(x(τ),y(τ)dτ ≥ 0,

y(t) = y(0)e
∫ t

0 φ2(x(τ),y(τ)dτ ≥ 0.

So, the solution (x(t),y(t)) with positive initial condition (x(0),y(0)) ∈ R2
+ will be positive for

the whole future time.

Lemma 2.3.1. The set Ω = {(x,y) : 0≤ x≤ r
r1
,0≤ cx+ y≤ cr2

δ ∗r1
} is a region of attraction for

all solutions intiating in the positive quadrant, where δ ∗ = min{r0,δ0}.

Proof. The first equation of the system (2.4) signifies

dx
dt
≤ (r− r0)x− r1x2,

which gives
limsup

t→∞

x(t)≤ r
r1
.

Now let M(t) = cx(t)+ y(t), which gives

dM
dt

= c
dx
dt

+
dy
dt

=
crx

1+ ky
− cr0x− cr1x2−δ0y−δ1y2−ηxy≤ cr2

r1
−δ

∗M,

where δ ∗ = min{r0,δ0}.
Thus,

limsup
t→∞

M(t)≤ cr2

δ ∗r1
.

Hence, the solutions of (2.4) are bounded. It can be noted that if x > r
r1

and M > cr2

δ ∗r1
then

dx
dt < 0 and dM

dt < 0, hence Ω is an invariant set.

Theorem 2.3.2. Let the following inequalities hold true:

r > (1+ kya)
(
r0 +

α

b
ya
)
, η <

1
xa

( cαxb

ax2
a +b

−δ0

)
.

Then model (2.4) is uniformly persistence, where xa,xb and ya are defined in the proof.
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Proof. Uniform persistence or permanence of a system signifies that all the species which are
present initially, will remain for the whole future time and none of them will go for extinction.
System (2.4) is said to be uniformly persistence if there exists positive constants L1 and L2 such
that each positive solution X(t) = (x(t),y(t)) with positive initial conditions satisfies

L1 ≤ liminf
t→∞

X(t)≤ limsup
t→∞

X(t)≤ L2.

Using Lemma 2.3.1, we define

xa =
r
r1
, ya =

cr2

δ ∗r1
.

Keeping above in view, we define

L2 = max{xa,ya},

which follows that
limsup

t→∞

X(t)≤ L2.

Above equation shows that for any arbitrary ε > 0 ∃ a T > 0 such that ∀ t ≥ T , the following
holds:

x < xa + ε, y < ya + ε.

Now from the first equation of the model (2.4), for all t ≥ T , we can write

dx
dt
≥ rx

1+ k(ya + ε)
− r0x− r1x2− αx(ya + ε)

b

=

[
r

1+ k(ya + ε)
− r0−

α(ya + ε)

b

]
x− r1x2,

this implies

liminf
t→∞

x(t)≥ 1
r1

[
r

1+ k(ya + ε)
− r0−

α(ya + ε)

b

]
,

which is true for arbitrary ε > 0, thus

liminf
t→∞

x(t)≥ 1
r1

[
r

1+ kya
− r0−

αya

b

]
=: xb,

so, the prey population is persistent under the condition:

r > (1+ kya)
(
r0 +

α

b
ya
)
.
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Now from the second equation of model (2.4), we can write

dy
dt
≥ cαxby

a(xa + ε)2 +b
−δ0y−η(xa + ε)y−δ1y2

=

[
cαxb

a(xa + ε)2 +b
−δ0−η(xa + ε)

]
y−δ1y2,

which follows that

liminf
t→∞

y(t)≥ 1
δ1

[
cαxb

a(xa + ε)2 +b
−δ0−η(xa + ε)

]
,

which is true for every ε > 0, so

liminf
t→∞

y(t)≥ 1
δ1

[
cαxb

ax2
a +b

−δ0−ηxa

]
=: yb.

So, the condition for the predator population to be persistent is

η <
1
xa

( cαxb

ax2
a +b

−δ0

)
.

Let L1 = min{xb,yb}, hence the theorem follows.

Remark 2.3.1. Above investigation shows that the prey population will not go for extinction if

the birth rate of prey population is greater then a threshold value and the predator population

remains persistent if the rate of anti-predator behavior of prey to predator is less then some

threshold value.

2.3.2 Existence of equilibrium points

An equilibrium point is a steady state solution for a dynamical system. It is investigated that
system (2.4) has three equilibria named as E0(0,0), E1(x1,0) and E∗(x∗,y∗). The equilibrium
E0(0,0) exists trivially and E1(x1,0) exists if r > r0, where x1 =

r−r0
r1

. Now we shall show the
existence of the interior equilibrium E∗(x∗,y∗).

• Existence of interior equilibrium E∗(x∗,y∗): Here x∗, y∗ are the positive solutions of
the algebraic equations:

r
1+ ky

− r0− r1x− αy
ax2 +b

= 0, (2.5)

cαx
ax2 +b

−δ0−δ1y−ηx = 0. (2.6)
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For equation (2.5) we have the following outcomes:

1. Let y = 0, which implies x = 1
r1
(r− r0) =: x1 > 0 as r > r0.

2. When x = 0, then we get

αky2 +(α + r0bk)y−b(r− r0) = 0. (2.7)

So, equation (2.7) has unique positive root y1 given by

y1 =
−r0bk+

√
(r0bk)2 +4αk(r− r0)

2αk
.

3. Now it is easy to prove that

dy
dx

=
−r1 +

2αaxy
(ax2+b)2

rk
(1+ky)2 +

α

(ax2+b)

,

and dy
dx < 0 if

δ
∗b2r3

1 > 2αacr3 implies
dy
dx

< 0 if r < r1

(
δ ∗b2

2αac

) 1
3

, (2.8)

where δ ∗ = min{r0,δ0}.

From above investigation we conclude that equation (2.5) passes through the points (x1,0),(0,y1)

and y is a decreasing function of x under condition (2.8).
For equation (2.6) we can figure out the following outcomes:

1. Let x = 0, which implies y =−δ0
δ1

=: y2 < 0.

2. If y = 0, then we get
P3x3 +P2x2 +P1x+P0 = 0, (2.9)

where P0 = δ0b, P1 = ηb− cα, P2 = δ0a and P3 = ηa. Now by using Descartes’ rule of
sign and discriminant for a cubic equation for equation (2.9) we can easily note that equa-
tion (2.9) has exactly two positive roots named as x2 and x′2 when both of the following
conditions hold simultaneously:

ηb− cα < 0, 18P3P2P1P0−4P3
2 P0 +P2

2 P2
1 −4P3P3

1 −27P2
3 P2

0 > 0, (2.10)

and without loss of generality we assume that x2 < x′2.
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3. Now it is easy to see that

dy
dx

=
cα(b−ax2)

δ1(ax2 +b)2 ,
d2y
dx2

∣∣∣
x=
√

b
a

< 0.

From above analyses for equation (2.6) we conclude that equation (2.6) passes through the
points (0,y2),(x2,0) and (x′2,0). At x =

√
b
a equation (2.6) has unique global maximum in

positive quadrant such that x =
√

b
a lies between x2 and x′2. Assuming the following condition:

x2 <
1
r1
(r− r0)< x′2, (2.11)

we can conclude that the system of equations (2.5) and (2.6) has unique positive point of in-
tersection if the conditions (2.8),(2.10) and (2.11) hold simultaneously. Thus we can state the
following theorem.

Theorem 2.3.3. The system (2.4) has a unique interior equilibrium point if conditions (2.8),(2.10)

and (2.11) hold concurrently.

Remark 2.3.2. Ecologically, we can say that the interior equilibrium exists if the prey pop-

ulation’s birth rate is less than some threshold value and carrying capacity for the same

lies between two positive values at which y-nullcline intersects the x-axis, with the condi-

tion (2.10). To see the existence of unique interior equilibrium, we take a set of parameters;

r = 3, r0 = 0.9, r1 = 5, k = 1, α = 1, c = 0.63, δ0 = 0.1, δ1 = 0.2, η = 0.2, a = 0.5, b = 1.2,

for which all the conditions in Theorem 2.3.3 hold. Therefore, for this set of parameters the

non-delayed system has a unique interior equilibrium point which is depicted in Fig. 2.1.

0 x
0

y

prey nullcline
predator nullcline

y
1

E*

x
2 x

1
x'

2

Fig. 2.1: Existence of unique interior equilibrium.
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Remark 2.3.3. Fig. 2.2 shows that how the number of interior equilibrium points changes as

the rate of anti-predator behavior of prey to predator varies. In Table 2.2. we have given the

number and nature for the equilibrium points shown in Fig. 2.2.

η Number of equilibrium points Equilibrium point Nature
1.458 2 (0.39724929, 0.28323503) unstable focus

(0.45801734, 0.29012915) saddle point
1.46106707 1 (0.42608974, 0.28639905) saddle point
1.462 0 - -

Table 2.2: Number and nature of interior equilibrium points for three different values of
η .
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Fig. 2.2: Phase portraits depicting the change in number of interior equilibriums for
r1=0.01, k=1.5, with remaining all the parameters same as in (2.33).

2.3.3 Stability analysis

Local stability behavior of an equilibrium point corresponding to a dynamical system is deter-
mined by calculating the variational matrix corresponding to that system and further evaluating
it around that point.
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• It is easy to see that the equilibrium point E0(0,0) is a saddle point with stable manifold
locally in the y-direction and unstable manifold in the x-direction.

• The variational matrix evaluated at E1(x1,0) is given by

J|E1 =

−(r− r0) −rk( r−r0
r1

)− α(r−r0)r1
a(r−r0)2+br2

1

0 cα(r−r0)r1
a(r−r0)2+br2

1
−δ0−η( r−r0

r1
)

 .
Hence, it follows that

1. E1(x1,0) is locally asymptotically stable if cα(r−r0)r1
a(r−r0)2+br2

1
< δ0 +η( r−r0

r1
).

2. E1(x1,0)is a saddle point with stable manifold locally along the x-direction and with
unstable manifold along y-direction if cα(r−r0)r1

a(r−r0)2+br2
1
> δ0 +η( r−r0

r1
).

• The variational matrix evaluated at E∗(x∗,y∗) is given by

J|E∗ =

 2αax∗2y∗

(ax∗2+b)2 − r1x∗ − rx∗k
(1+ky∗)2 − αx∗

(ax∗2+b)

−cαy∗(ax∗2−b)
(ax∗2+b)2 −ηy∗ −δ1y∗

 .
The characteristic equation corresponding to the above variational matrix is

λ
2 +A1λ +A2 = 0, (2.12)

where A1 and A2 are given by
A1 = r1x∗+δ1y∗− 2αax∗2y∗

(ax∗2+b)2 ,

A2 =
(

r1x∗− 2αax∗2y∗

(ax∗2+b)2

)
δ1y∗−

[(
rx∗k

(1+ky∗)2 +
αx∗

(ax∗2+b)

)(
cαy∗(ax∗2−b)
(ax∗2+b)2 +ηy∗

)]
.

Now using the Routh-Hurwitz criteria we can say that both the eigenvalues of J|E∗ have
negative real part if and only if A1 > 0 and A2 > 0.
Hence, we have the following theorem.

Theorem 2.3.4. The system (2.4) is locally asymptotically stable around the interior equilib-

rium point E∗(x∗,y∗) in the xy-plane if and only if

A1 > 0, A2 > 0. (2.13)

Now it is easy to see that (2.13) holds if

r1 >
2αax∗y∗

(ax∗2 +b)2 , η <
cα(b−ax∗2)
(ax∗2 +b)2 . (2.14)
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Remark 2.3.4. The interior equilibrium point E∗(x∗,y∗) is locally asymptotically stable in xy-

plane if (2.14) holds.

In the next theorem, we are able to show the occurence of Hopf-bifurcation under certain con-
ditions.

Theorem 2.3.5. For k = k∗ = G
y and A2 > 0, where G =

(
r

r0+2r1x∗+αy∗(b−ax∗2)
(ax∗2+b)2

+δ1y∗
− 1

)
, sys-

tem (2.4) undergoes Hopf-bifurcation around the interior equilibrium point E∗(x∗,y∗) provided

G > 0.

Proof. For k = k∗, which is defined above, trace(J|E∗) = 0, det(J|E∗) > 0 which means that
the Jacobian J|E∗ has a pair of purely imaginary eigenvalues and

[
d
dk(trace(J|E∗))

]
k=k∗

=

− rk∗y∗

(1+k∗y∗)2 < 0.
So, by Kot [55] (Theorem(Hopf) on page 129), the system (2.4) goes under Hopf-bifurcation
around E∗.
Then we conclude that

• If A1 < 0, A2 > 0 then k < k∗ and E∗ is unstable.

• If A1 > 0, A2 > 0 then k > k∗ and the interior equilibrium E∗ is locally asymptotically
stable.

Now we evaluate a sufficient condition for the global stability of unique interior equilibrium
E∗(x∗,y∗) and for this we assume a pre-condition that Theorem 2.3.3 holds.

Theorem 2.3.6. The system (2.4) is globally asymptotically stable around the point E∗(x∗,y∗)

if the following inequalities hold:

br2
1(ax∗2 +b)> αay∗(r+ r1x∗),

c

[
rk

1+ ky∗
+

η

c
+aαx∗

(
r+ r1x∗

r1(ax∗2 +b)

)]2

< 4δ1

[
r1−

αay∗(r+ r1x∗)
br1(ax∗2 +b)

]
.

(2.15)

Proof. Choose a Lyapunov function around the equilibrium point E∗(x∗,y∗) defined as

V (x,y) =
(

x− x∗− x∗− ln
x
x∗

)
+ l1

(
y− y∗− y∗− ln

y
y∗

)
,
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where l1 > 0 is a positive constant to be chosen on later stage. Now on differentiating V with
respect to time along the solutions of system (2.4) we get

dV
dt

= (x− x∗)
dx
dt

+ l1(y− y∗)
dy
dt

.

After doing some algebraic manipulations, we can get

dV
dt

=−

(
r1−

αay∗(x+ x∗)
(ax2 +b)(ax∗2 +b)

)
(x− x∗)2 +

(
− rk

(1+ ky)(1+ ky∗)
− α

(ax2 +b)

+
cl1α

(ax2 +b)
−η l1−

acl1αx∗(x+ x∗)
(ax2 +b)(ax∗2 +b)

)
(x− x∗)(y− y∗)− l1δ1(y− y∗)2.

Now choosing l1 = 1
c , we get

dV
dt

=−

(
r1−

αay∗(x+ x∗)
(ax2 +b)(ax∗2 +b)

)
(x− x∗)2

+

(
− rk

(1+ ky)(1+ ky∗)
− η

c
− aαx∗(x+ x∗)

(ax2 +b)(ax∗2 +b)

)
(x− x∗)(y− y∗)− δ1

c
(y− y∗)2,

which implies that dV
dt is negative definite under the stated conditions . Therefore, system

(2.4) is globally asymptotically stable around E∗ under the conditions given by (2.15).

2.3.4 Non-existence and existence of periodic orbit

Here, we shall figure out certain conditions for existence and non-existence of periodic orbit
for system (2.4).

Theorem 2.3.7. If δ ∗r2
1

cr2 + r1δ1
r > 2αar

r1b2 , then the system (2.4) has no periodic solution in the

interior of positive quadrant of the xy-plane.

Proof. Let
h1(x,y) =

rx
1+ ky

− r0x− r1x2− αxy
ax2 +b

,

h2(x,y) =
cαxy

ax2 +b
−δ0y−δ1y2−ηxy.

In the interior of positive quadrant of xy-plane, consider a continuously differentiable function
given as

H(x,y) =
1
xy
.
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So,

∇ =
∂ (h1H)

∂x
+

∂ (h2H)

∂y

=−r1

y
+

2αax
(ax2 +b)2 −

δ1

x
.

Now ∇ < 0, if

r1

y
+

δ1

x
>

2αax
(ax2 +b)2 ,

holds, i.e. if the minimum of L.H.S. is greater than the maximum of R.H.S.. Therefore, y and
x are replaced by y = ya = cr2

δ ∗r1
, x = xa = r

r1
(their respective maximum values) in L.H.S. of

above inequality. As, x
(ax2+b)2 <

xa
b2 =

r
r1b2 . So, we replace x

(ax2+b)2 by r
r1b2 in R.H.S. of of above

inequality. Therefore, ∇ < 0 if δ ∗r2
1

cr2 + r1δ1
r −

2αar
r1b2 > 0. Thus, by Dulac-Bendixson criterion, we

can conclude that system (2.4) does not have periodic orbit under this assumption.

Theorem 2.3.8. Assume cα(r−r0)r1
a(r−r0)2+br2

1
> δ0 +η( r−r0

r1
) and in equation (2.12) if

A2 < 0. (2.16)

or

A1 < 0, A2 > 0. (2.17)

hold, then the system (2.4) has a periodic solution.

Proof. From Lemma 2.3.1, we get that int(Ω) is an invariant set and from equations (2.16) and
(2.17) implies that E∗ is an unstable equilibrium point and as cα(r−r0)r1

a(r−r0)2+br2
1
> δ0+η( r−r0

r1
), so E1

is a saddle point. Therefore, positive limit set does not contain any equilibrium point. Hence,
by using Poincarè– Bendixson theorem it implies that system has a periodic solution.

Remark 2.3.5. It may be pointed out here that due to mathematical complexity, it is not easy

to check the independency of the conditions obtained in Theorem 2.3.7 and Theorem 2.3.8.

However, both the theorems (Dulac-Bendixson criterion and Poincarè– Bendixson theorem)

assures that conditions in Theorems 2.3.7 and 2.3.8 can not hold simultaneously.



2.4. Properties of delayed Model 37

2.4 Properties of delayed Model

2.4.1 Local stability and Hopf-bifurcation

System (2.3) can be expressed as

dU
dt

= F(U(t),U(t− τ1),U(t− τ2)),

where U(t) = [x(t),y(t)]T , U(t− τ1) = [x(t− τ1),y(t− τ1)]
T and U(t− τ2) = [x(t− τ2),y(t−

τ2)]
T .

Assume x̄(t) = x(t)− x∗ and ȳ(t) = y(t)− y∗. After this, the linearized system (2.3) around the
interior equilibrium E∗(x∗,y∗) is

dW
dt

= A′W (t)+B′W (t− τ1)+C′W (t− τ2),

where

A′ =

(
∂F
∂U

)
E∗
, B′ =

(
∂F

∂U(t− τ1)

)
E∗
, C′ =

(
∂F

∂U(t− τ2)

)
E∗
,

and W (t) = [x̄(t), ȳ(t)]T . The Jacobian matrix of the system (2.3) at E∗ is given by

J = A′+B′e−λτ1 +C′e−λτ2.

After a little calculation, we get

J =

[
a1 a2 +a3e−λτ1

−ηy∗+a4e−λτ2 a5 +a6−a5e−λτ2

]
,

where

a1 =−r1x∗+
2αax∗2y∗

(ax∗2 +b)2 , a2 =−
αx∗

(ax∗2 +b)
, a3 =−

rx∗k
(1+ ky∗)2 , a4 =−

cαy∗(ax∗2−b)
(ax∗2 +b)2 ,

a5 =−
cαx∗

(ax∗2 +b)
, a6 =−δ1y∗.

Corresponding characteristic equation of above variational matrix is

λ
2 +b1λ +b2 + e−λτ1b3 + e−λτ2(b4λ +b5)+ e−λ (τ1+τ2)b6 = 0, (2.18)
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where

b1 =−(a1 +a5 +a6), b2 = a1(a5 +a6)+a2ηy∗, b3 = a3ηy∗, b4 = a5, b5 =−a1a5−a2a4,

b6 =−a3a4.

Now equation (2.18) takes different forms when we take both τ1 and τ2 zero, one of τ1 and
τ2 is zero, when both τ1 and τ2 are non-zero.

Case 1: τ1 = τ2 = 0. Then (2.18) becomes

λ
2 +(b1 +b4)λ +(b2 +b3 +b5 +b6) = 0. (2.19)

This characteristic equation (2.19) is same as that of the characteristic equation (2.12) for the
non-delayed system (2.4) which we have studied before.
(H1) : (b1 +b4)> 0, (b2 +b3 +b5 +b6)> 0.
All the zeros of equation (2.19) have negative real parts if and only if (H1) holds.
Case(2): τ1 = 0, τ2 > 0. The equation (2.18) becomes

λ
2 +b1λ +(b2 +b3)+ e−λτ2(b4λ +(b5 +b6)) = 0. (2.20)

Assume iω(ω > 0) be a zero of the equation (2.20), then we get

−ω
2 +b1iω +(b2 +b3)+(cos(ωτ2)− isin(ωτ2))(b4iω +(b5 +b6)) = 0. (2.21)

After equating real and imaginary parts on both sides of above equation we get

b4ωsin(ωτ2)+(b5 +b6)cos(ωτ2) = ω
2− (b2 +b3),

(b5 +b6)sin(ωτ2)−b4ωcos(ωτ2) = b1ω,
(2.22)

which gives
z2 + p1z+q1 = 0, (2.23)

and let f (z) = z2+ p1z+q1, where z = ω2, p1 = b2
1−b2

4−2(b2+b3), q1 = (b2+b3)
2− (b5+

b6)
2.

(H2) : p1 > 0, q1 > 0.

• If assumption (H2) is true, equation (2.23) has no positive roots which means such ω

does not exists. Hence, E∗ is asymptotically stable for all τ2 > 0 if hypotheses (H1) and
(H2) hold.
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(H3) : q1 < 0. Then equation (2.23) has unique positive root w2
0. On substituting w2

0 in equation
(2.22), we get

b4ω0sin(ω0τ2)+(b5 +b6)cos(ω0τ2) = ω
2
0 − (b2 +b3),

(b5 +b6)sin(ω0τ2)−b4ω0cos(ω0τ2) = b1ω0,

which gives

τ2 j =
1

ω0
cos−1

[
(ω2

0 − (b2 +b3))(b5 +b6)−b1b4ω2
0

(b5 +b6)2 +b2
4ω2

0

]
+

2π j
ω0

, j = 0,1,2... . (2.24)

(H4) : p1 > 0, q1 > 0, p2
1 > 4q1.

If (H1) and (H4) holds, then equation (2.23) possess two positive roots ω2
+ and ω2

−. Substituting
ω2
± in (2.22) we get

τ
±
2k
=

1
ω±

cos−1

[
(ω2
±− (b2 +b3))(b5 +b6)−b1b4ω2

±
(b5 +b6)2 +b2

4ω2
±

]
+

2πk
ω±

, k = 0,1,2... .

Let λ (τ2 j) = iω0 be a root of equation (2.20). Then a little calculation leads to

Re

[
dλ

dτ2

]−1

λ=iω0, τ2=τ2 j

=
f ′(ω2

0 )

b2
4ω2

0 +(b5 +b6)2 .

(H51) : f ′(ω2
0 )> 0.

As sign of
[

d
dτ2

(Re(λ ))
]

λ=iω0, τ2=τ2 j

is same as sign of
[
Re( dλ

dτ2
)
]

λ=iω0, τ2=τ2 j

.

Hence
[

d
dτ2

(Re(λ ))
]

λ=iω0, τ2=τ2 j

> 0 under assumption (H51).

Similarly if λ (τ±2k
) = iω± are the roots of (2.20).

(H52) : f ′(ω2
+)> 0 (rep. f ′(ω2

−)< 0) holds, then

[ d
dτ2

(Re(λ ))
]

λ=iω+, τ2=τ
+
2k

> 0,
[ d

dτ2
(Re(λ ))

]
λ=iω−, τ2=τ

−
2k

< 0.

Now we can summarize above analysis in the following theorem.

Theorem 2.4.1. For system (2.3), with τ1 = 0 and τ2 > 0, we can make following conclusions:

1. If (H1) and (H2) hold then the equilibrium E∗ is locally asymptotically stable for all

τ2 > 0.

2. If (H1) fails and (H2) holds then E∗ is unstable for all τ2 > 0.
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3. If (H1), (H3) and (H51) hold then E∗ is locally asymptotically stable for τ2 < τ20 and

unstable for τ2 > τ20 and system (2.3) undergoes Hopf-bifurcation at τ2 = τ20 .

4. If (H1), (H4), (H52) hold then equilibrium point E∗ is locally asymptotically stable

when τ2 ∈ [0,τ+20
)∪ (τ−20

,τ+21
)∪ ...∪ (τ−2n−1

,∞) and when τ2 ∈ (τ+20
,τ−20

)∪ (τ+21
,τ−21

)∪ ...∪
(τ+2n

,∞), E∗ is unstable. Moreover system (2.3) undergoes Hopf-bifurcation at E∗ when

τ2 = τ
±
2k
, k = 0,1,2... .

Case(3): τ1 > 0, τ2 = 0.

Theorem 2.4.2. For, τ1 > 0 and τ2 = 0, the equilibrium point E∗(x∗,y∗) is locally asymptot-

ically stable for τ1 < τ10 and unstable when τ1 > τ10 . Furthermore, system (2.3) undergoes

Hopf-bifurcation at τ1 = τ10 given by

τ10 =
1

ω10
cos−1

[
ω2

10− (b2 +b5)

(b3 +b6)

]
,

where ω10 is the root of corresponding characteristic equation.

Proof. It is similar as in case(2).

Case(4): τ1 > 0, τ2 > 0. we assume that in (2.18) τ2 is in stable interval (0,τ20) and τ1 is
considered as a parameter. Let λ = iω1(ω1 > 0) is a zero of (2.18). Then substituting λ = iω1

in (2.18) and after separating real and imaginary parts we get

−ω1
2 +b2 +b5cos(ω1τ2)+b4ω1sin(ω1τ2) =−b3cos(ω1τ1)−b6cos(ω1τ1)cos(ω1τ2)

+b6sin(ω1τ1)sin(ω1τ2),

b1ω1 +b4ω1cos(ω1τ2)−b5sin(ω1τ2) =b3sin(ω1τ1)+b6sin(ω1τ1)cos(ω1τ2)

+b6cos(ω1τ1)sin(ω1τ2).
(2.25)

Now eliminating τ1 from (2.25) leads to a transcendental equation:

H(ω1) = ω
4
1 +ω

3
1 (−2b4sin(ω1τ2))+ω

2
1 (b

2
4 +b2

1−2b2 +2(b1b4−b5)cos(ω1τ2))

+ω1(2(b2b4−b1b5)sin(ω1τ2))+b2
2 +b2

5−b2
3−b2

6 +2(b2b5−b3b6)cos(ω1τ2) = 0.
(2.26)

Being a transcendental equation of (2.26) it is not easy to predict the nature of its roots.
So, we assume that it has finite positive roots ω

(1)
1 ,ω

(2)
1 ,ω

(3)
1 , ...,ω

(m)
1 and for fixed ω

(i)
1 (i =

1,2,3, ...,m), there exists a sequence {τ(r)1i
|r = 1,2,3, ...} satisfying (2.25). So, (2.25) can be

written as
−F1cos(ω i

1τ
(r)
1i

)+F2sin(ω i
1τ

(r)
1i

) = F3,

F1sin(ω i
1τ

(r)
1i

)+F2cos(ω i
1τ

(r)
1i

) = F4,
(2.27)
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where,

F1 = b3 +b6cos(ω(i)
1 τ2), F2 = b6sin(ω(i)

1 τ2),

F3 =−ω
(i)
1

2
+b2 +b5cos(ω(i)

1 τ2)+b4ω
(i)
1 sin(ω(i)

1 τ2),

F4 = b1ω
(i)
1 +b4ω

(i)
1 cos(ω(i)

1 τ2)−b5sin(ω(i)
1 τ2).

Then from (2.27), the critical value of τ
(r)
1i

for each ω
(i)
1 is

τ
(r)
1i

=
1

ω
(i)
1

sin−1

[
F2F3 +F1F4

F2
1 +F2

2

]
+

2πr

ω
(i)
1

, i = 1,2,3, ...,m, r = 0,1,2, ... . (2.28)

Assume τ∗1 = min{τ(0)1i
, i = 1,2, ...,m} and ω∗1 be the corresponding root of (2.18) with τ2 ∈

[0,τ20 ].

For verifying the transversality condition, substitute λ (τ1) = ξ (τ1)+ iω(τ1) in (2.18) and dif-
ferentiating the same with respect to τ1. Substituting τ1 = τ∗1 , ω = ω∗1 , ξ = 0 we obtain

P1

[ dξ

dτ1

]
τ1=τ∗1 , ω=ω∗

−P2

[dω

dτ1

]
τ1=τ∗1 , ω=ω∗

= Q1,

P2

[ dξ

dτ1

]
τ1=τ∗1 , ω=ω∗

+P1

[dω

dτ1

]
τ1=τ∗1 , ω=ω∗

= Q2,

(2.29)

which implies [ dξ

dτ1

]
τ1=τ∗1 , ω=ω∗

=
P1Q1 +P2Q2

P2
1 +P2

2
, (2.30)

where,

P1 = b1−b3τ
∗
1 cos(ω∗1 τ

∗
1 )+b4cos(ω∗1 τ2)−b6τ

∗
1 [cos(ω∗1 (τ

∗
1 + τ2))],

P2 = 2ω
∗
1 +b3τ

∗
1 sin(ω∗1 τ

∗
1 )−b4sin(ω∗1 τ2)+b6τ

∗
1 [sin(ω∗1 (τ

∗
1 + τ2))],

Q1 = b3ω
∗
1 sin(ω∗1 τ

∗
1 +b6ω

∗
1 [sin(ω∗1 (τ

∗
1 + τ2))],

Q2 = b3ω
∗
1 cos(ω∗1 τ

∗
1 +b6ω

∗
1 [cos(ω∗1 (τ

∗
1 + τ2))].

(H6) : P1Q1 +P2Q2 6= 0.

Theorem 2.4.3. For system (2.3), let (H1), (H6) hold with τ2 in the stable interval [0,τ20).

Then the equilibrium E∗ is locally asymptotically stable when τ1 ∈ (0,τ∗1 ). Furthermore (2.3)

undergoes Hopf-bifurcation at E∗ when τ1 = τ∗1 .
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Case 5: τ1 > 0, τ2 > 0 with τ1 lies in the stable interval (0,τ10) and τ2 is treated as parameter.
Then under an analysis similar to Case 4, we can note the following theorem.

Theorem 2.4.4. For (2.3), when τ1 is in stable interval [0,τ10) and τ2 is taken as parameter

then same analysis can be done as in above Theorem 2.4.3 to get such τ∗2 such that E∗ is locally

asymptotically in the interval (0,τ∗2 ). Moreover (2.3) undergoes Hopf-bifurcation when τ2 = τ∗2
and it is given as

τ
∗
2 =

1
ω∗2

cos−1

[
E1E3 +E2E4

E2
1 +E2

2

]
+

2πn
ω∗2

, n = 0,1,2, ... ,

where, E1 = b5++b6cos(ω∗2 τ1), E2 = b4ω∗2−b6sin(ω∗2 τ1), E3 =ω∗2
2−b2−b3cos(ω∗2 τ1), E4 =

b3sin(ω∗2 τ1)−b1ω∗2 and iω∗2 is the root of Eq. (2.18).

2.5 Direction and Stability of Hopf-bifurcation

In previous section we have determined different conditions under which system (2.3) under-
goes Hopf-bifurcation for different combinations of fear response delay τ1 and gestation delay
τ2. Now, in this section we will determine the direction and stability of of bifurcated solutions
of system (2.3) with respect to τ1 = τ∗1 and τ2 = τ2

′ ∈ (0,τ20) by using normal form method
and center manifold theorem introduced by Hassard et al. [83].
Without loss of generality, we assume that τ2

′ < τ∗1 and let
x1(t) = x(t)− x∗, y1(t) = y(t)− y∗ and still denote x1(t), y1(t) by x(t), y(t).

Let τ1 = τ∗1 +µ, µ ∈ R. Then at µ = 0 system (2.3) undergoes Hopf-bifurcation. Rescaling the
time delay t→ (t/τ1), system (2.3) can be rewritten as

U̇ = (τ∗1 +µ)
(

P′U(t)+R′U
(
t− τ2

′

τ∗1

)
+Q′U(t−1)+ f (x,y)

)
, (2.31)

where

U(t) = (x(t),y(t))T , P′ =

[
a1 a2

−ny∗ a5 +a6

]
, Q′ =

[
0 a3

0 0

]
, R′ =

[
0 0
a4 −a5

]
,

f (x,y) =

[
f1

f2

]
.
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The non-linear term f1 and f2 are given by

f1 = e1x2(t)+ e2y2(t−1)+ e3x(t)y(t)+ e4x(t)y(t−1)+ p1x3(t)+ p2y3(t−1)+ p3x2(t)y(t)

+ p4x(t)y2(t−1)...,

f2 = g1y2(t)+g2x2(t− τ2
′

τ∗1

)
+g3x(t)y(t)+g4x

(
t− τ2

′

τ∗1

)
y
(
t− τ2

′

τ∗1

)
+h1x2(t− τ2

′

τ∗1

)
y
(
t− τ2

′

τ∗1

)
...,

where

e1 =−2r1 +
2αax∗y∗(3b−ax∗2)

(ax∗2 +b)3 , e2 =
2rk2x∗

(1+ ky∗)3 , e3 =
α(b−ax∗2)
(ax∗2 +b)2 , e4 =−

rk
(1+ ky∗)2 ,

p1 =−
6aαy∗(a2x∗4−6abx∗2 +b2)

(ax∗2 +b)4 , p2 =−
brk3x∗

(1+ ky∗)4 , p3 =
2αa(3b−ax∗2)
(ax∗2 +b)3 , p4 =

2rk2

(1+ ky∗)3 ,

g1 =−2δ1, g2 =−
2cαax∗y∗(3b−ax∗2)

(ax∗2 +b)3 , g3 =−η , g4 =
cα(b−ax∗2)
(ax∗2 +b)2 ,

h1 =−
2cαax∗(3b−ax∗2)

(ax∗2 +b)3 .

The delayed system can be written in the functional form

Lµ(φ) = (τ∗1 +µ)
(

P′φ(0)+R′φ
(
− τ2

′

τ∗1

)
+Q′φ(−1)

)
.

Using Riez representation theorem, ∃ a 2×2 matrix η ′(θ , µ), θ ∈ [−1,0], whose elements are
of bounded variation functions such that

Lµ(φ) =
∫ 0

−1
dη
′(θ , µ)φ(θ)

for φ ∈C([−1,0],R2). In fact, we can choose

η
′(θ , µ) =



(τ∗1 +µ)(P′+R′+Q′), θ = 0

(τ∗1 +µ)(Q′+R′), θ ∈
[
− τ ′2

τ∗1
,0
)

(τ∗1 +µ), θ ∈
[
−1, − τ ′2

τ∗1

)
0, θ =−1.
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For φ ∈C1([−1,0],R2), define

A(µ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1,0]∫ 0

−1 dη ′(ξ , µ)φ(ξ ), θ = 0,

and

R(µ)φ =

0, θ ∈ [−1,0]

h(µ,φ), θ = 0,

where

h(µ,φ) = (τ∗1 +µ)

[
h1

h2

]
, φ = (φ1,φ2)

T ∈C([−1,0],R2),

h1 = e1φ1
2(0)+ e2φ2

2(−1)+ e3φ1(0)φ2(0)+ e4φ1(0)φ2(−1)+ p1φ1
3(0)

+ p2φ2
3(−1)+ p3φ1

2(0)φ2(0)+ p4φ1(0)φ2
2(−1)...,

h2 = g1φ2
2(0)+g2φ1

2(− τ2
′

τ∗1

)
+g3φ1(0)φ2(0)+g4φ1

(
− τ2

′

τ∗1

)
φ2
(
− τ2

′

τ∗1

)
+h1φ1

2(− τ2
′

τ∗1

)
φ2
(
− τ2

′

τ∗1

)
... .

Then system (2.3) is equivalent to following form

U̇t = A(µ)Ut +R(µ)Ut ,

where U̇t =U(t +θ) for θ ∈ [−1,0].
For φ ∈C([−1,0],R2), ψ ∈C1([−1,0],(R2)∗), define

A∗ψ(s) =


dψ(s)

ds , s ∈ (0,1]∫ 0
−1 ψ(−ξ )dη ′(ξ ,0), θ = 0,

and a bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0))−

∫ 0
−1
∫

θ

ξ=0 ψ(ξ −θ)dη ′(θ)φ(ξ )dξ ,

where η ′(θ) = η ′(θ ,0), A = A(0) and A∗ are adjoint operators.

We know that ±iω∗1 τ∗1 are the eigenvalues of A(0) and therefore they are also the eigenvalues
of A∗ and q(θ) = (1,ρ)T eiτ∗1 ω∗1 θ (θ ∈ [−1,0]) and q∗(s) = D(1,ρ∗)eiτ∗1 ω∗1 s(s ∈ [−1,0]) are the
eigenvectors of A(0) and A∗ corresponding to eigenvalues iω∗τ∗1 and −iω∗τ∗1 and〈

q∗(s), q(θ)
〉
= 1,

〈
q∗(s), q(θ̄)

〉
= 1,
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ρ =
iω∗1−a1

a2+a3e−iω∗1 τ∗1
, ρ∗ =− iω∗1+a1

−ηy∗+a4e

−iω∗1 τ ′2
τ∗1

,

D =
[
1+ρ∗ρ +a3ρτ∗1 e−iω∗1 τ∗1 +a4τ ′2ρ∗e−iω∗1 τ ′2−a5τ ′2ρ∗ρe−iω∗1 τ ′2

]−1
.

Following the algorithms explained in [83] and using computation process similar to that in
[84] , to obtain the properties of Hopf-bifurcation, we get

g20 =−τ
∗
1 D
[
2rkρe−iω∗1 τ∗1 − rW (1)

20 (0)+2r1 +
2ρα

b
− 2ρρ∗cα

b
e−2iω∗1 τ ′2 +2ρ∗ρ2

δ1 +2ρρ∗η
]

g11 =−τ
∗
1 D
[
rkρeiω∗1 τ∗1 + rkρe−iω∗1 τ∗1 − rW (1)

11 (0)+2r1 +
αρ

b
+

αρ

b
− ρρ∗cα

b
− ρρ∗cα

b

+2ρρρ∗δ1 +ρρ∗η +ρρ∗η
]
,

g02 = τ
∗
1 D
[
2rkρeiω∗1 τ∗1 − rW (1)

02 (0)+2r1 +
2αρ

b
− 2cαρ∗ρe2iω∗1 τ ′2

b
+2ρ2 ρ∗δ1 +2ρρ∗η

]
g21 =−τ

∗
1 D

[
r
{

2kW (2)
11 (−1)+ kW (2)

20 (−1)+ kρeiω∗1 τ∗1 +2W (1)
11 (0)kρe−iω∗1 τ∗1

}
+ r1

{
4W (1)

11 (0)

+2W (1)
20 (0)

}
+α

{2
b

W (2)
11 (0)+

1
b

W (2)
20 (0)+

1
b

W (1)
20 (0)ρ +

2
b

W (1)
11 (0)ρ

}
+ρ∗cα

{
− 2

b
W (2)

11
(−τ ′2

τ∗1

)
e−iω∗1 τ ′2− 1

b
W (2)

20
(−τ ′2

τ∗1

)
eiω∗1 τ ′2− 1

b
W (1)

20
(−τ ′2

τ∗1

)
ρeiω∗1 τ ′2

− 2
b

W (1)
11
(−τ ′2

τ∗1

)
ρe−iω∗1 τ ′2

}
−ρ∗δ1

{
−4W (2)

11 (0)ρ−2W (2)
20 (0)ρ

}
−ρ∗η

{
−2W (2)

11 (0)

−W (2)
20 (0)−ρW (1)

20 (0)−2ρW (1)
11 (0)

}]
,

where

W20(θ) =
ig20

ω∗1 τ∗1
q(0)eiω∗1 τ∗1 θ +

iḡ02

3ω∗1 τ∗1
q̄(0)e−iω∗1 τ∗1 θ +M1e2iω∗1 τ∗1 θ ,

W02(θ) =−
ig02

3ω∗1 τ∗1
q(0)eiω∗1 τ∗1 θ − iḡ20

ω∗1 τ∗1
q̄(0)e−iω∗1 τ∗1 θ +M2e−2iω∗1 τ∗1 θ ,

W11(θ) =−
ig11

ω∗1 τ∗1
q(0)eiω∗1 τ∗1 θ +

iḡ11

ω∗1 τ∗1
q̄(0)e−iω∗1 τ∗1 θ +M3,

M1 = (M(1)
1 ,M(2)

1 )T ∈ R2, M2 = (M(1)
2 ,M(2)

2 )T ∈ R2, M3 = (M(1)
3 ,M(2)

3 )T ∈ R2 are constant
vectors, computed as:

M1 = 2

[
2iω∗1 −a1 −a2−a3e−2iω∗1 τ∗1

ηy∗−a4e−2iω∗1 τ ′2 2iω∗1 −a5−a6 +a5e−2iω∗1 τ ′2

]−1[
−r+ r1 +αρ

−cαρe−2iω∗1 τ ′2 +δ1ρ2 +ηρ

]
,
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M2 = 2

[
−2iω∗1 −a1 −a2−a3e2iω∗1 τ∗1

ηy∗−a4e2iω∗1 τ ′2 −2iω∗1 −a5−a6 +a5e2iω∗1 τ ′2

]−1[
−r+ r1 +αρ̄

−cαρ̄e2iω∗1 τ ′2 +δ1ρ̄2 +ηρ̄

]
,

M3 = 2

[
−a1 −a2−a3

ηy∗−a4 −a5−a6 +a5

]−1[
−r+ r1 +

1
2α(ρ + ρ̄)

−1
2cα(ρ + ρ̄)+δ1ρρ̄ + 1

2η(ρ + ρ̄)

]
.

Consequently, gi j can be expressed by the parameters and delay τ∗1 and τ ′2. Thus, we can get:

c1(0) =
i

2ω∗1 τ∗1

(
g20g11−2|g11|2−

|g02|2

3

)
+

g21

2
, µ2 =−

Re(c1(0))
Re(λ ′(τ∗1 ))

, β2 = 2Re(c1(0)),

T2 =−
Im(c1(0))+µ2Im((λ ′(τ∗1 )))

ω∗1 τ∗1
.

Above expressions give description of the bifurcating periodic solutions in the center manifold
of system (2.3) at critical value τ1 = τ∗1 which can be stated as the following theorem:

Theorem 2.5.1.

1. µ2 gives the direction of Hopf-bifurcation. If µ2 > 0(< 0), the Hopf-bifurcation is super-
critical(subcritical).

2. β2 gives the stability of bifurcated periodic solution. If β2 > 0(β2 < 0) then the bifurcated
periodic solutions are unstable (stable).

3. T2 gives the period of bifurcated solution, the period increases(decreases) if T2 > 0(< 0).

2.6 Numerical Simulation

In this section we carry out numerical simulation by using MATLAB R2019a. All the calcula-
tions are done by taking eight digits after decimal. For numerical simulation, the chosen sets of
parameters are given below:

r = 3, r0 = 0.7, r1 = 0.5, k = 3, α = 0.5, c = 0.4, δ0 = 0.45, δ1 = 0.025, η = 0.01, a = 0.07,

b = 0.09.
(2.32)

r = 3, r0 = 0.7, r1 = 0.5, k = 1, α = 0.5, c = 0.4, δ0 = 0.2, δ1 = 0.025, η = 0.01, a = 0.07,

b = 0.09.
(2.33)

For the parameters, we have taken in the above (2.32), the non-delayed system (2.4) has three
equilibria points, the points, the eigenvalues of the variational matrix evaluated at them and
their nature is described in Table 2.3.
From this table we can see that E0 and E1 both are saddle points and the the variational matrix at
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Equilibrium point Eigenvalues Nature
E0(0,0) (2.300,-0.4500) saddle point
E1(4.6,0) (-2.300,0.08953971) saddle point
E∗(0.21295807,0.19946731) -0.019263081 ± 0.86676509i locally asmptotically stable

Table 2.3: Equilibrium points and the corresponding eigenvalues (which define the na-
ture of these points).

E∗ has complex conjugate eigenvalues with negative real parts, i.e. E∗ is locally asymptotically
stable equilibrium point which validates the result given by Remark 2.3.4 for the above chosen
parameters.
The cost of fear k is an important parameter to study because system (2.4) undergoes Hopf-
bifurcation with respect to this parameter. For the parameters chosen in (2.32) and using The-
orem 2.3.5, the critical value of k is k = k∗ = 0.68660621. For k > k∗, the non-delayed system
is stable and undergoes Hopf-bifurcation at k = k∗ and is unstable for k < k∗. Fig. 2.3 gives
an interpretation for k = 3 > k∗ in which E∗ is asymptotically stable. Fig. 2.3(a) describes
how the curves for prey and predator population initially oscillate for some time, and then the
oscillations keep damping after that the curves rest to their steady states.
The same behavior can be observed in Fig. 2.3(b) in which solution starting from an initial
point converge to the equilibrium point E∗ after a time showing the asymptotic stable behavior
of E∗. An illustration for the unstable behavior of E∗ is provided in Fig. 2.4(a) with undamped
oscillations in time series plot and a stable limit cycle in Fig. 2.4(b) in which any solution
starting from inside (red) or outside (black) approaches to this periodic solution for a particular
value of k = 0.3 under its critical value k∗.
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Fig. 2.3: For k = 3 > k∗, (a) time series plot for x and y, (b) phase portrait in xy-plane
showing the asymptotic stability of E∗ with all the parameters same as in (2.32).
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Fig. 2.4: Existence of limit cycle and instability of E∗ for k = 0.3 < k∗ with all the pa-
rameters same as in (2.32).

As it is very difficult to analyse the different types of anti-predator behaviors individually,
exhibited by the prey in response to fear induced by the predator, so we try to evaluate the
effect of k on η (which represents the cumulative effect of these behaviors). As the cost of
fear increases, the prey is expected to enhance its efficiency of anti-predator behavior. That
is, anti-predator behavior should be proportional to the cost of fear. The same trend has been
observed in our model which is demonstrated in Fig. 2.5.
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Fig. 2.5: kη-graph for x∗ = 0.21295807.

A dynamical system exhibit the characteristic of bi-stability when the system has two locally
asymptotically stable equilibrium points. Due to this property of the system, the whole set of
region of attraction for all solutions gets divided into two separate regions of attraction corre-
sponding to both equilibrium points, and these regions of attraction are separated by a curve,
known as separatrix. Our system (2.4) also possesses this attribute of bi-stability and set Ω

is divided into two sets separated by a closed curve, demonstrated in Fig. 2.6. The respec-
tive locally asymptotically equilibrium points are E1(4.6,0), E∗(0.14595837,0.22291377) (for
k = 1, α = 0.7, c= 0.8,η = 3, with remaining all the parameters same as in (2.32)). The region
of attraction for E∗ is the portion inside the closed curve, as shown in the figure, and if we start
the solution inside this closed region, the solution tends to E∗. The region of attraction for E1 is
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the part of the set Ω excluding the area covered by the closed trajectory, and solution initiated
in this region will approach E1.
Now we simulate the system (2.4) for different values of α keeping all the parameters same as
in (2.32). Fig. 2.7 illustrates that as we increase the attack rate of predator on prey, x settles
down to lower equilibrium value which is the actual expected behavior of prey species with
an increment in attack rate by predator. With increase of α the equilibrium value for y should
increase as the predator starts killing prey with a greater rate, but a different character than the
conventional one is shown by the time series plot of y as we increase α , value of steady-state
solution for y falls off. The fact behind this particular nature exhibited by the predator species
is that as the predator starts hunting the prey with a higher value of attack rate, the population
density of prey starts shrinking, due to which the availability of prey to predator reduces which
also adds a competition among the predator species to access the food. Thus reduction in the
accessible food and increase in the struggle among predators leads to decrement in the equilib-
rium value of y.
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Fig. 2.6: Phase portrait diagram showing the property of bi-stabilty for k = 1, α =
0.7, c = 0.8, η = 3, with remaining all the parameters same as in (2.32).
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Fig. 2.7: Behavior of x and y with time t for different values of α with all other parame-
ters same as in (2.32)
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Now we perform simulation for validating the results that we got for delayed model (2.3) in
section 4. For this we will use the same set of parameters given in (2.32). The introduction
of the fear response and gestation time delay does not effect the equilibrium point. Therefore
E∗(0.21295807,0.19946731) is the interior equilibrium point for system (2.4). The simulation
examples for the different cases discussed in section 4 are given as the cases below:
Case 1 : When τ1 = τ2 = 0, system (2.3) reduces to system (2.4) and the simulation for this are
given in Figs. 2.3 and 2.4.
In the delayed system, the stable equilibrium E∗ co-exists with a stable limit cycle. This prop-
erty of delayed system can be seen in all the following cases.
Case 2 : τ1 = 0 and τ2 > 0.
For the parameters in (2.32), conditions (H1) and (H3) are satisfied so, taking j = 0 in Eq.(2.24)
, we get

ω0 = 0.85634590 and τ20 = 0.05231278.
For above ω0, τ20 ,the condition (H51) is also satisfied, so the transversality condition is also
satisfied. Therefore, from Theorem 2.4.1, E∗ is locally asymptotically stable for τ2 < τ20 which
is verified by the time series plot given in Fig. 2.8 where we have taken τ2 = 0.03 < τ20 . From
phase portrait diagram in Fig. 2.8, we can see the existence of an unstable limit cycle around
E∗ and which is further surrounded by a stable limit cycle. For τ2 > τ20, E∗ is an unstable
equilibrium enclosed by a stable limit cycle, which is illustrated by time series graph and phase
portrait diagram given in Fig. 2.9. So, we can observe that as we decrease τ2 > τ20 to τ2 < τ20 ,
an unstable equilibrium bifurcates into a stable equilibrium and an unstable limit cycle i.e. E∗

suffers subcritical Hopf-bifurcation w.r.t. delay τ2. We also have presented this whole scenario
by a bifurcation diagram for species x in Fig. 2.10.
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Fig. 2.8: Local stability of E∗ with multiple limit cycles for τ1 = 0 and τ2 = 0.03 , with
all the parameters same as in (2.32).
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Fig. 2.9: Time series plot of x,y and phase portrait diagram in xy-plane showing unstable
nature of E∗ when τ1 = 0, τ2 = 0.07 > τ20 with all the parameters same as in (2.32).
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Fig. 2.10: Bifurcation diagram for x with τ1 = 0, τ2 > 0 and all the parameters from
(2.32).

Case 3 : τ1 > 0, τ2 = 0.
To study the switching of stability twice for the delayed system around E∗ as we vary τ1 we
perform simulation with respect to parameters given in (2.33) in this case.
With the change in value of parameters, there is change in interior equilibrium point. The new
equilibrium point is E∗(0.09430142,0.28704906) which is locally asymptotically stable. Using
(2.33) and E∗(0.09430142,0.28704906) in Theorem 2.4.2 we get ω

(1)
10 = 0.65403249, ω

(2)
10 =

0.46755180 and τ
(1)
10

= 0.30872245, τ
(2)
10

= 6.41837400 are the critical values of τ1 correspond-

ing to ω
(1)
10 , ω

(2)
10 .
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Fig. 2.11: Time series plot and phase portrait diagram showing the local stability of E∗

being enclosed by an unstable and a stable limit cycle for τ2 = 0, τ1 = 0.1 < τ
(1)
10

and the
parameters chosen in (2.33).
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Fig. 2.12: Unstable nature of E∗ shown by the continuous oscillations in time series
evolution of x,y (a) and stable limit cycle (b) for τ2 = 0, τ
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< τ1 = 3 < τ
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with all the
parameters same as in (2.33).

For the parameters chosen in (2.33), when τ1 ∈ (0,τ(1)10
), the equilibrium point E∗ remains lo-

cally asymptotically stable inside an unstable limit cycle which is further wrapped by a stable
limit cycle (Fig. 2.11(b). The system remains unstable for τ1 ∈ (τ

(1)
10

,τ
(2)
10

) (Fig. 2.12). There-

fore, we can say that the delayed system undergoes subcritical Hopf-bifurcation at τ1 = τ
(1)
10

as we move from right to left on τ1 axis. Now, as we increase τ1, E∗ becomes locally asymp-
totically stable, and an unstable limit cycle comes into existence at τ1 = τ

(2)
10

via subcritical

Hopf-bifurcation. For τ1 > τ
(2)
10

, a stable limit cycle is also present around the unstable one
(Fig. 2.13(a). The entire dynamics of the delayed system for this case is presented by a bifur-
cation diagram in Fig. 2.14, for prey species. From this figure, we can observe that the delayed
system switches its stability twice around E∗ through Hopf-bifurcation as we vary τ1 keeping
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τ2 = 0. It is interesting to point out that the two solutions trajectories with different initial con-
ditions cannot intersect each other in the case of ODEs, while they may intersect each other
in the case of DDEs [85, 86]. In Fig. 2.13, two trajectories ate plotted with different initial
conditions in the presence of τ1. Thus, both the trajectories are intersecting.
Case 4 : τ1 > 0, τ2 > 0. With τ2 = 0.03 ∈ (0,τ20) = (0,0.05231278) and all the parameters in
(2.32), τ1 as parameter, our simulation yields

ω∗1 =0.86054924 and τ∗1 = 0.05542075.
Using all these three ω∗, τ∗1 , τ2 in Eq. (2.30) we get

[
dξ

dτ1

]
τ1=τ∗1 , ω=ω∗

= 0.14750804 6= 0 .

So, the transversality condition is satisfied. Therefore the conditions required to hold Theorem
2.4.2 are satisfied.
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Fig. 2.13: Time series plot (a) and phase portrait diagram (b) showing the local stability
of E∗ being enclosed by an unstable and a stable limit cycle for τ
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< τ1 = 8, keeping
parameters fixed from (2.33).
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Fig. 2.14: Bifurcation diagram for τ2 = 0, τ1 > 0 and all the parameters same as in
(2.33).
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Fig. 2.15: For all the parameters same as in (2.32) and τ2 = 0.03, τ1 = 0.02< τ∗1 , steady-
state solution E∗ is locally asymptotically stable.

The system (2.3) is locally asymptotically stable around E∗ for τ1 ∈ (0,τ∗1 ) = (0,0.05542075)
with τ2 = 0.03 and is unstable for τ1 > τ1∗. Fig. 2.15 gives a simulation example showing E∗

is locally asymptotically stable when τ2 = 0.03, τ1 = 0.02 < τ∗1 . Fig. 2.16 depicts that E∗ is
unstable for τ2 = 0.03, τ1 = 0.06> τ∗1 with endless oscillations in Fig. 2.16(a) and a stable limit
cycle in Fig. 2.16(b). Hence, we can say that system becomes locally asymptotically stable
around E∗ via subcritical Hopf-bifurcation at τ1 = τ∗1 as we decrease τ1 keeping τ2 constant.
Numerical simulation yields

c1(0)= 0.48740465−1.71282661i, µ2 =−3.30443830, β2 = 0.97480930, T2 = 35.28436282,

so, from Theorem 2.5.1, we note that the Hopf-bifurcation is subcritical in nature and the bi-
furcated periodic solutions are unstable, where period of bifurcated solution increases.

Delayed system (2.3) shows chaotic behavior for higher values of fear response delay. We
have analysed the delayed system for τ1 ∈ [10,30] keeping τ2 = 0. The chaotic nature of the
solutions can be seen from time series plots for both prey and predator in Fig. 2.17 and the
chaotic attractor in Fig. 2.18 for τ1 = 27. For prey species, we have plotted the bifurcation
diagram in Fig. 2.19(a), exhibiting the chaotic character of the system for large values of τ1.
From this figure (2.19(a), we can observe that as we increase delay τ1, firstly the delayed system
becomes chaotic and then enters into a periodic window. This periodic nature of the delayed
system is again repeated on further increase of τ1. Then the more increment in this delay push
the system in chaotic regime again. This irregular nature of delayed system with respect to
fear response delay is confirmed by the corresponding maximum Lyapunov exponent in Fig.
2.19(b). It become positive for τ1 = 24 and falls to negative values on increasing τ1 which
represent the periodic behavior of the delayed system in the course of increasing τ1. Then it
again become positive on increasing τ1 showing the chaotic behaviour of delayed system (2.3).
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Sensitivity to initial condition is basic property of chaotic system. For a chaotic system, if we
perturb the initial condition by a small value, the behavior of the solution trajectory varies to a
large extent. The same trend can be seen in our system when we change the initial condition
for x, 0.2 to 0.201, keeping same for y, a major change in solution trajectory of both x and y is
observed, shown in Fig. 2.20.
For parameters in (2.32), we have simulated a stability diagram in Fig. 2.21 in τ1τ2-plane in
which the mustered colored area gives the stability region for delayed system where the white
colored area gives the unstability region for the same. It may be noted here that Fig. 2.21 has
been drawn using case (4) from the local stability and Hopf-bifurcation. Taking τ2 from its

stable interval each time, τ1 is evaluated from τ∗1 = 1
ω∗1

sin−1

[
F2F3+F1F4

F2
1 +F2

2

]
. It is observed that for

equidistant points of τ2, corresponding points of τ1 are almost equidistant. Thus, the bifurcation
curve in Fig. 2.21 appears to be almost linear.
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Fig. 2.16: The interior equilibrium E∗ is unstable when τ2 = 0.03, τ1 = 0.06 > τ∗1 with
existence of stable periodic solution with all the parameters same as in (2.32).

0 200 400 600 800 1000 1200 1400

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

(a)

0 200 400 600 800 1000 1200 1400

t

0

0.5

1

1.5

2

2.5

3

y

(b)
Fig. 2.17: Time series plot for x and y when τ1 = 27 and parameters chosen in (32).
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Fig. 2.19: Bifurcation diagram (a) and corresponding Maximum Lyapunov exponent (b)
for prey population for fear response delay.

0 500 1000 1500

t

0

1

2

3

4

5

6

x

with initial point (0.2,0.3)
with initial point (0.201,0.3)

(a)

0 500 1000 1500

t

0

0.5

1

1.5

2

2.5

3

y

with initial point (0.2, 0.3)
with initial point (0.201,0.3)

(b)
Fig. 2.20: Sensitive solutions to initial condition for τ1 = 27 for parameters in (2.32).
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From this whole discussion, we can observe that our system may exhibits the properties of
Hopf-bifurcation, bi-stability, multiple stability switching and chaos which manifests the dy-
namical richness of the system.

2.7 Conclusion

In this work, we proposed a prey-predator model with the impact of fear in prey, provoked by
the predator, and to respond to this fear, the behavior known as anti-predator exhibited by prey
towards the predator is also considered. Prey population grows logistically, and predator con-
sume them with simplified Holling type IV functional response. Since the effect of fear in prey
due to the predator is not instantaneous, so to make the model more precise, we incorporated
the fear response delay. Further, the gestation delay is introduced for the predator in our model.
Firstly, we proved the well-posedness of our model by showing the positivity, boundedness, and
persistence for the non-delayed model (2.4). Population densities of both prey and predator are
bounded in the compact set Ω in the non-negative plane. This fact agrees with the limited bear-
ing capacity of the ecosystem. The system is uniformly persistence if the birth-rate of the prey
population is greater than a threshold value, while the rate of anti-predator behavior is less than
a threshold value. Then we noted that the system has three points of equilibria, E0, E1, and
E∗. The positive equilibrium point E∗ exists under conditions (2.8), (2.10) and (2.11). The rate
of anti-predator behavior is an important parameter. In Fig. 2.2, we can see that the number
of interior equilibrium points changes as the value of rate of anti-predator behavior varies. In
stability analysis, we observed that E0 is a saddle point, further the condition for asymptotic sta-
bility for E1 is derived by evaluating the variational matrix about E1. The interior equilibrium
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E∗ is stable under condition (2.14). Then we studied the conditions for occurrence of Hopf-
bifurcation with respect to cost of fear. Further, we deduce the criteria for the global stability
of the system by choosing a suitable Lyapunov function. Using Dulac-Bendixson criterion and
Poincarè-Bendixon theorem we obtained the conditions for existence and non-existence of pe-
riodic solution. Then we studied the relationship between cost of fear and rate of anti-predator
behavior which is depicted in Fig. 2.5. Further non-delayed system showed the property of
bi-stability, in which both E∗, E1 are stable equilibrium points, depicted in Fig. 2.6.
In the dynamical behavior of delayed model (2.3), we examined local stability behavior of the
system and properties of Hopf-bifurcation. Using fear response delay and gestation delay as the
bifurcation parameters, we discussed Hopf-bifurcation. In all the possible cases, we derived the
critical values for respective bifurcation parameters. We noted that, the system suffers subcriti-
cal Hopf-bifurcation respect to both delays. In Case 3, the delayed system switches its stability
twice as we vary τ1. Further, we analyzed the direction and stability of Hopf-bifurcation us-
ing the normal form method and center manifold theory. Further, chaotic behavior of delayed
system is observed for large values of fear response delay and which is supported by the bi-
furcation diagram and positiveness of maximum Lyapunov exponent. Moreover, we performed
numerical simulation with respect to parameters in (2.32), (2.33), supporting our analytical re-
sults. In Fig. 2.21, we have drawn the regions of stability and unstability for delayed system in
τ1τ2-plane.
We hope that this work will help to understand the dynamics of prey-predator system with ef-
fect of fear in prey due to predator and anti-predator behavior in response to this fear including
fear response delay and gestation delay.
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Chapter 3

Chaos control in a multiple delayed phytoplankton-
zooplankton model with group defence and preda-
tor’s interference1

3.1 Introduction

Phytoplankton-zooplankton interactions significantly contribute to the various dynamical pro-
ceedings happening in the ecosystem, which makes it a prominent topic of research. This
interplay is a particular kind of prey-predator interaction which means that theories developed
to deal with prey-predator relationships can be utilized to study such specific type of dynamics.
Classically, Edwards and Brindley [87] studied an NPZ (nutrient-phytoplankton-zooplankton)
model, which was mainly focussed on determining the parameter ranges to observe bifurcation
and oscillatory behavior of the system. They also determined some parametric values for which
the system has multiple attractors. Edwards [88] in the continuation of work [87], studied two
plankton systems having concentrations of nutrient, phytoplankton, zooplankton, and detritus.
In this extended work, he added detritus to the earlier NPZ model for simulating remineral-
ization more realistically. In the first model, zooplankton is assumed to consume only phyto-
plankton whereas in second one, it can have phytoplankton and detritus both. They noticed that
dynamics of NPZ system is not too much effected by addition of detritus when zooplankton
is not allowed to graze on it (first model) but dynamics of the system changes substantially
when zooplankton is allowed to consume detritus as well (second model). There are many
more papers [89, 90, 91] in the literature in which explorers have investigated mathematical
models involving phytoplankton-zooplankton species. Pal et al. [92] analysed an NPZ model
in which the Monod–Haldane type response reflects the bloom formation by toxic phytoplank-
ton. They observed that system also shows chaotic behavior for a set of chosen parameters.

1A considerable part of this chapter is published in Chaos, 31, 083101 (2021)
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Zhang and Wang [93] considered an NPZ model in an aquatic environment in which they ana-
lytically verified classical and discontinuous Hopf-bifurcations for the proposed model. They
also obtained bistability between a stable equilibrium point and a stable limit cycle (subcrit-
ical Hopf-bifurcation). The occurrence of saddle-node bifurcation is also endorsed with the
help of numerical simulation in this paper. Upadhyay et al. [94] studied a spatial four com-
ponent model (nutrient-phytoplankton-zooplankton-fish) with Holling type IV response. They
established the conditions for local stability, global stability, instability for both spatial and non-
spatial situations. They also investigated the effect of critical wavelength which drives system
to instability and also got very much complex Turing patterns with the help of simulation.

As some of the zooplankton can identify toxic and non-toxic phytoplankton[95, 96], thus
splitting phytoplankton into two categories: toxic producing phytoplankton (TPP) and non-
toxic phytoplankton (NTP) can help us to analyse the dynamical behavior of plankton systems
more precisely. One can see some papers [97, 98, 99] in which authors have divided phyto-
plankton into TPP and NTP and observed that this classification can help us to get more rich
and realistic dynamical findings. Chowdhury et al. [100] studied a four-dimensional model
with migratory consumption of zooplankton on TPP and NTP. They divided zooplankton into
two groups, out of which one was consuming TPP and the other one NTP. They explored this
system with different combinations of toxin inhibition and migratory parameters. They also ob-
served that this nomadic grazing of zooplankton has a crucial impact on the system’s stability
and oscillatory bahavior. Banerjee and Venturino [101] extended the work of Pal et al. [92] and
dealt with a three-dimensional PZ system by dividing phytoplankton into NTP-TPP groups to
detect the poisoning effect of TPP on zooplankton explicitly. They derived stability conditions
for various feasible equilibria. They also proved the persistence of the proposed model using
the classical results given by Freedman and Waltman [102].

Another variable that can make dynamical systems more rational and play a vital role in
their dynamics is the time delay. Incorporating a time delay in an ordinary differential equation
transform it into a delay differential equation. Time delay can be added in a dynamical sys-
tem in many terms like maturation time, gestation time, traveling, incubation, feedback time,
etc. Inclusion of time delay may result in the generation of fluctuations around the stable equi-
librium and sometimes it can also lead to chaos [103, 104, 105, 106]. Gakkhar and Singh
[23] worked on prey-predator model with two discrete dalays. They noted that addition of de-
lays lead to formation of periodic solutions and occurrence of chaos through Hopf-bifurcation.
Rahim and Imran [107] dealt with a PZ model with two delays. The first delay in this paper cor-
responds to gestation time, whereas the second delay signifies the time required by TPP to get
mature before producing noxious chemicals. They observed the multiple switching of stability
around the interior equilibrium due to Hopf-bifurcatin with the increase of delay. Misra et al.

[108] explored a 4D-model (nutrient-algae density-detritus density-applied efforts) to review



3.1. Introduction 61

the applied efforts to control the algae and detritus from a lake to curtail the occurrence of algae
blooms. Two delays: first for converting detritus into nutrients whereas second in applying
the control efforts are also incorporated by them. Multiple switching of stability due to Hopf-
bifurcation is too observed using both delays as control parameters. They found that that high
accumulation of nutrients magnifies the occurrence of blooms, and so the applied efforts play a
crucial role in reducing the concentration of algae bloom. Kumar and Dubey [15] analysed the
effect of fear induced by the predator in prey with prey refuge and gestation delay. They ob-
served that this fear effect could lead to Hopf-bifurcation in the system. Chaotic oscillations are
also observed in their delayed model for high values of gestation delay via Hopf-bifurcation.

The kinetics of a dynamical system is very much dependent on the mode of interaction
between interacting species. Predator’s functional response to prey plays a crucial role in the
prey-predator concept. Some prey species can use the approach of group formation as their de-
fense against predators to protect themselves. This technique is one of the types of anti-predator
behaviors endorsed by prey species against the predators [70]. In dynamical systems, this par-
ticular behavior of prey species is described by Holling type IV response (Monod–Haldane
type response). Liu and Huang [109] investigated a prey-predator model with Monod–Haldane
type response where both the species are subjected to harvesting. They examined how har-
vesting can affect equilibria, their stability and bifurcations related to the proposed system.
Thakur and Ojha [54] studied a plankton-fish model with the assumption of phytoplankton as
a prey, zooplankton the middle predator whereas fish species acting as the top predator. In this
model, both planktons are assumed to exhibit defense skills against their respective predator via
Monod–Haldane type response. They also incorporated time delay in middle predator and ob-
served that increasing time delay leads to double Hopf-bifurcation. Predators can also interfere
with each other for a available or favourite food. Beddington–DeAngelis response [110] is one
of the responses which depends upon both the populations of prey, predator and manifest preda-
tor’s interference. This response becomes free of predator’s interference at high prey density
as it becomes independent of predator density at this point. Upadhyay et al. [111] examined
a reaction-diffusion model for a phytoplankton-zooplankton-fish system in which zooplankton
grazes phytoplankton by Beddington–DeAngelis response and fish consumes zooplankton by
Holiing type III response. They found that interference among zooplankton species, the spa-
tial heterogeneity, and the rate of fish predation play important roles in the governance of the
aquatic system’s spatiotemporal kinetics. The other point observed by them is that diffusion
drives instability to this marine system, whereas fish predation can behave like a regularizing
factor.

This chapter extends the work of Banerjee and Venturino [101] by replacing linear and sim-
plified Holling type IV responses by Beddington–DeAngelis and generalized Holling type IV
responses, respectively. We also have incorporated two discrete delays to explore the system



62
Chapter 3. Chaos control in a multiple delayed phytoplankton-zooplankton model with group

defence and predator’s interference

more practically. The main objective of this work is to investigate the interactions of two popu-
lations of phytoplankton (NTP and TPP) on zooplankton explicitly in presence of two different
kinds of delays. This chapter is organised as fellows: Section 3.2 corresponds for the formula-
tion of mathematical model. In Section 3.3, we have analysed the dynamics of the non-delayed
model, like the well-posedness of the model, the existence of various equilibria and their sta-
bility analysis, the persistence of the model, and bifurcation analysis. Assessments related to
the delayed model are done in Section 3.4, which includes local stability analysis, direction
and stability of Hopf-bifurcation. In Section 3.5, we have performed numerical simulations to
assist our theoretical findings.

3.2 Model formulation

Classifying phytoplankton into two groups, namely, non-toxic phytoplankton (NTP) and toxic
producing phytoplankton (TPP) can produce complex dynamical outcomes in a PZ system.
Thus we categorize phytoplankton into two sub-populations: toxic and non-toxic, and propose
a 3-dimensional dynamical model with these two phytoplankton strains and zooplankton as a
generalist predator. Let p1, p2 are the population densities of non-toxic and toxic phytoplank-
ton, respectively whereas z is the population density of zooplankton species, feeding on these
two phytoplankton. Formulation of the model is based upon the following assumptions:

1. Both phytoplankton are assumed to grow logistically with ri, Ki as the intrinsic growth
rates of ith species and carrying capacities of the environment for ith species, respec-
tively, in the absence of each other and the zooplankton species. They also possess a
inter-species competition for the available resources, where γi j is the rate of inter-species
competition of jth species over ith species (i 6= j = 1,2).
Thus we can have

d p1

dt
= r1 p1

(
1− p1

K1

)
− γ12 p1 p2,

d p2

dt
= r2 p2

(
1− p2

K2

)
− γ21 p1 p2.

2. As some of the zooplankton species have the capability of differentiating between NTP
and TPP, but they can also progress toward the toxic one in the deficiency of non-toxic
fee [95, 96]. Thus the NTP may act as a favourite food for zooplankton, so we assume
that the zooplankton can compete with each other for this non-toxic resource. Accord-
ingly, the interplay between NTP and zooplankton is dealt with Beddington–DeAngelis
type response that has the characteristic of interference among the predator species dur-
ing foraging, and which is given by, f (p1,z) =

m1 p1
α+p1+β z . Here, m1 is the consumption

rate of zooplankton over NTP, β is the coefficient of intra-specific competition among
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zooplankton for this non-toxic food and α is half-saturation constant. As NTP is zoo-
plankton’s favourite food so in its absence, zooplankton die with death rate of δ0. With
all these assumptions and c1 as the conversion efficiency of zooplankton over NTP, we
have

d p1

dt
= r1 p1

(
1− p1

K1

)
− γ12 p1 p2−

m1 p1z
α + p1 +β z

,
dz
dt

=
c1m1 p1z

α + p1 +β z
−δ0z.

3. In the deficiency of NTP, the rise in the consumption of TPP magnifies the decrement of
zooplankton due to its negative (poisoning) effect. As a result, an excessive amount of
zooplankton gets killed, which reduces the further consumption of toxic phytoplankton.
Such lesser ingestion will decrease the further negative effect of toxic phytoplankton on
zooplankton’s growth. We use Holling type IV response to handle this kind of interaction
which takes care of the fact that zooplankton avoids highly dense toxic phytoplankton. It
is also known as a group defense mechanism by toxic phytoplankton against zooplankton,
and this is given by, g(p2) =

m2 p2
ap22+bp2+c . Here, m2 is the predation rate of zooplankton

over TPP, a measures the inhibitory effect of TPP against zooplankton and c is half satu-
ration constant. Thus with conversion efficiency c2 of zooplankton over TPP, we have

d p2

dt
= r2 p2

(
1− p2

K2

)
− γ21 p1 p2−

m2 p2z
ap22 +bp2 + c

,

dz
dt

=
c1m1 p1z

α + p1 +β z
− c2m2 p2z

ap22 +bp2 + c
−δ0z.

Thus, the proposed mathematical model is given by:

d p1

dt
= r1 p1

(
1− p1

K1

)
− γ12 p1 p2−

m1 p1z
α + p1 +β z

=: F1(p1, p2,z),

d p2

dt
= r2 p2

(
1− p2

K2

)
− γ21 p1 p2−

m2 p2z
ap22 +bp2 + c

=: F2(p1, p2,z),

dz
dt

=
c1m1 p1z

α + p1 +β z
− c2m2 p2z

ap22 +bp2 + c
−δ0z =: F3(p1, p2,z).

(3.1)

A schematic diagram for the kinetical interactions presented in model (3.1) is depicted in
Fig. 3.1.

4. The effects of these functional responses are not instantaneous. So, for more realistic and
rich dynamics, we use two types of delays. Here, τ1 is the gestation period for zooplank-
ton after the predation of non-toxic phytoplankton. The process of toxin liberation by
TPP is also followed by a time lag τ2, which is the time taken by toxic producing phyto-
plankton’s cells to get mature and release toxins; this delay is known as toxic liberation
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delay [112]. Therefore, incorporating this two delays, model (3.1) becomes:

d p1

dt
= r1 p1

(
1− p1

K1

)
− γ12 p1 p2−

m1 p1z
α + p1 +β z

,

d p2

dt
= r2 p2

(
1− p2

K2

)
− γ21 p1 p2−

m2 p2z
ap22 +bp2 + c

,

dz
dt

=
c1m1 p1(t− τ1)z(t− τ1)

α + p1(t− τ1)+β z(t− τ1)
− c2m2 p2(t− τ2)z(t− τ2)

ap2(t− τ2)
2 +bp2(t− τ2)+ c

−δ0z,

(3.2)

and for biological feasibility, we assume p1(s) = φ1(s) ≥ 0, p2(s) = φ2(s) ≥ 0, y(s) =

φ3(s)≥ 0, s∈ [−τ,0], τ = max{τ1,τ2} and φ j(s)∈C([−τ,0])→ R+,( j = 1,2,3), where
C denotes the Banach space of continuous functions. All the parameters in (3.1) and (3.2)
are assumed to be positive.

Fig. 3.1: Schematic diagram of kinetical interactions among NTP, TPP and zooplankton
species, for the non-delayed model.

3.3 Dynamics of non-delayed model

In this section, we firstly prove the biological well-posedness of model (3.1) by proving the ex-
istence, uniqueness, positivity and boundedness of its solution. Then it is followed by finding its
all feasible stationary points. Next, we investigate local and global stability behavior of model
(3.1) around these points. Further, the theorems related to Hopf and transcritical bifurcations
are presented.

3.3.1 Existence, positivity and boundedness of solution

As we can see that (F1,F2,F3) is Lipschitz continuous for any bounded subset of R3
+. Thus

for any set of initial values (p1(0), p2(0), z(0))inR3
+, model (3.1) has a unique solution on
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bounded subsets of R3
+.

From model (3.1), we can have

p1(t) = p1(0)exp
[∫ t

0

{
r1

(
1− p1(κ)

K1

)
− γ12 p2(κ)− m1z(κ)

α+p1(κ)+β z(κ)

}
dκ

]
,

p2(t) = p2(0)exp
[∫ t

0

{
r2

(
1− p2(κ)

K2

)
− γ21 p1(κ)− m2z(κ)

ap2(κ)
2+bp2(κ)+c

}
dκ

]
,

z(t) = z(0)exp
[∫ t

0

{
c1m1 p1(κ)

α+p1(κ)+β z(κ) −
c2m1 p2(κ)

ap2(κ)
2+bp2(κ)+c

−δ0

}
dκ

]
.

Hence, any solution starting inside the positive octant of p1 p2z-space, remains positive for the
whole future time. Now, we present a theorem to determine the invariant set for solutions of
the non-delayed system.

Theorem 3.3.1. All the solutions of system (3.1) initiating in R3
+ remain enclosed inside the

region

ϒ =
{
(p1, p2, z) ∈ R3

+ : 0 ≤ p1 ≤ K1, 0 ≤ p2 ≤ K2, 0 ≤ p1 +
1
c1

z ≤ 2r1K1
δ1

}
, where δ1 =

min{r1, δ0}.

Proof. From the first equation of model (3.1), we can easily observe

d p1

dt
≤ r1 p1

(
1− p1

K1

)
which implies limsup

t→∞

p1(t)≤ K1.

Similarly,
limsup

t→∞

p2(t)≤ K2.

Now, let W (t) = p1 +
1
c1

z, then we have
dW
dt = d p1

dt + 1
c1

dz
dt

= r1 p1

(
1− p1

K1

)
− γ12 p1 p2− c2m2 p2z

c1(ap22+bp2+c) −
δ0z
c1

≤ 2r1K1−δ1W (t).

Thus limsup
t→∞

W (t)≤ 2r1K1
δ1

, where δ1 = min{r1,δ0}. Therefore, all the solutions of model (3.1),

starting inside R3
+ are confined to the region ϒ.

3.3.2 Feasible biomass equilibria with their stability analysis

Now, we establish the existence of various equilibrium points associated with model (3.1). These
steady states can be named as: E0(0,0,0), E1(K1,0,0), E2(0,K2,0), E3(p̂1, p̂2,0), E4(p̄1,0, z̄)
and E∗(p∗1, p∗2,z

∗). The equilibrium points E0, E1, E2 are the trivial steady states. Now, we
need to drive the conditions under which the remaining equilibrium points exists.
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• For the existence of E3(p̂1, p̂2,0) :
Here, p̂1 and p̂2 are solutions of set of equations given by:

r1 p̂1 + γ12K1 p̂2 = r1K1, (3.3)

γ21K2 p̂1 + r2 p̂2 = r2K2. (3.4)

Solving (3.3) and (3.4), we obtain p̂1 =
r2K1(r1−γ12K2)

∆
, p̂2 =

r1K2(r2−γ21K1)
∆

,
where ∆ = r1r2− γ12γ21K1K2.
Therefore, both p̂1, p̂2 exist positively and so is the equilibrium E3(p̂1, p̂2,0) if any one
of the following conditions holds:

(i) r1 > γ12K2 and r2 > γ21K1.

(ii) r1 < γ12K2 and r2 < γ21K1

• For the existence of E4(p̄1,0, z̄) :
Here, p̄1 and z̄ are solutions of the eqs. (3.5) and (3.6) given by :

r1

(
1− p̄1

K1

)
=

m1z̄
α + p̄1 +β z̄

, (3.5)

c1m1 p̄1

α + p̄1 +β z̄
= δ0. (3.6)

From (3.6), we obtain

z̄ =
(c1m1−δ0)p̄1−δ0α

δ0β
, (3.7)

which exists positively if
(c1m1−δ0)p̄1 > δ0α. (3.8)

Now, using this z̄ into (3.5), we get a quadratic polynomial in p̄1 given by

p̄2
1(−r1c1m1β )+ p̄1(k1m1(r1c1β − (c1m1−δ0)))+m1K1αδ0 = 0. (3.9)

Hence, it can be seen that, (3.9) has a positive root p̄1. By putting this p̄1 in (3.7), we can
get z̄ to receive E4(p̄1,0, z̄). Therefore, E4 exists under condition (3.8).

• Existence of interior equilibrium E∗(p∗1, p∗2,z
∗):

Interior equilibrium E∗(p∗1, p∗2,z
∗) is the solution of the set of algebraic equations given

below:
r1

(
1−

p∗1
K1

)
− γ12 p∗2−

m1z∗

α + p∗1 +β z∗
= 0, (3.10)
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r2

(
1−

p∗2
K2

)
− γ21 p∗1−

m2z∗

ap∗2
2 +bp∗2 + c

= 0, (3.11)

c1m1 p∗1
α + p∗1 +β z∗

−
c2m1 p∗2

ap∗2
2 +bp∗2 + c

−δ0 = 0. (3.12)

From (3.12), we get

z∗ =
1
β

(c1m1 p∗1
M

−α− p∗1
)
=: G, (3.13)

which is positive when (c1m1

M
−1
)

p∗1−α > 0, (3.14)

where M =
c2m2 p∗2

ap∗2
2+bp∗2+c

+δ0.
Using z∗ from (3.13) in (3.10), we get :

g1(p∗1, p∗2) = r1

(
1−

p∗1
K1

)
− γ12 p∗2−

m1G
α + p∗1 +βG

= 0. (3.15)

In (3.15), we have the following:

1. When p∗1→ 0 which gives p∗2→ ∞.

2. When p∗2 = 0, we obtain

p∗1
2

(
− r1c1

δ0K1

)
+ p∗1

(
r1c1

δ0
− c1m1

βδ0
+1

)
+

α

β
= 0. (3.16)

So, (3.16) has a positive root p1µ .

3. From (3.15), d p∗1
d p∗2

=−
g1 p∗2
g1 p∗1

< 0, if

g1 p∗2
> 0 and g1 p∗1

> 0

or

g1 p∗2
< 0 and g1 p∗1

< 0.

(3.17)

Now using (3.13) in (3.11), we get

g2(p∗1, p∗2) = r2

(
1−

p∗2
K2

)
− γ21 p∗1−

m2G
ap∗2

2 +bp∗2 + c
= 0 (3.18)

In (3.18), we have the following:
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1. When p∗1 = 0, then we get

p∗2
3(−αβ r2)+ p∗2

2(β (αK2−br2))+ p∗2(β r2(bK2− c))+K2(β r2 +αm2) = 0.
(3.19)

So, (3.19) has a positive root p2µ .

2. When p∗2 = 0, then (3.18) has a positive root, p1ν =
r2+

m2α

cβ

γ21+
m2
cβ

(
c1m1

δ0
−1)

> 0,if

c1m1 > δ0. (3.20)

3. From (3.18), d p∗1
d p∗2

=−
g2 p∗2
g2 p∗1

< 0, if

g2 p∗2
> 0 and g2 p∗1

> 0

or

g2 p∗2
< 0 and g2 p∗1

< 0

(3.21)

Therefore, nullclines (3.15) and (3.18) has a unique point of intersection (p∗1, p∗2), when
(3.14), (3.17), (3.20) and (3.21) hold with the inequality p1µ < p1ν . Then by putting p∗1
and p∗2 in (3.13), we obtain z∗ and it establishes the existence of E∗(p∗1, p∗2,z

∗).

Theorem 3.3.2. The non-delayed system has a unique interior equilibrium if in addition to

conditions: (3.14), (3.17), (3.20) and (3.21), the inequality p1µ < p1ν holds.

0 p
1

0

p 2

p
1
-nullcline

p
2
-nullcline

Intrerior equilibrium
(7.3873, 19.6397)   

p
1

p
1

p
2

Fig. 3.2: p1-nullcline and p2-nullcline satisfies all conditions stated in Theorem 3.3.2,
and hence intersect at a unique point for parameters given in Remark 3.3.1.

Remark 3.3.1. To show the existence of unique interior equilibrium numerically, we take a

set of parameters; r1 = 3, K1 = 30, γ12 = 0.1, m1 = 0.48, α = 10, β = 0.1, r2 = 1.2, K2 =

40, γ21 = 0.08, a= 0.02, b= 0.01, c= 50, m2 = 0.1, c1 = 0.28, c2 = 0.4, δ0 = 0.04. For these

parametric values, all conditions stated in Theorem 3.3.2 hold. For better visualization we have
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plotted interior equilibrium (7.3873,19.6397,11.4803) in the p1 p2-plane which is depicted in

Fig. 3.2.

Now, for local stability analysis, firstly we linearise the non-linear system (3.1) around the
desired equilibrium by evaluating the variational matrix at the same and then we check the
sign of real part of every eigenvalue corresponding to that matrix. For an equilibrium point
E(p1, p2,z), the general variational matrix corresponding to model (3.1) is given by:

J|E =

 j11 j12 j13

j21 j22 j23

j31 j32 j33

 ,
where,
j11 = r1− 2r1 p1

K1
− γ12 p2 +

m1z(α+β z)
(α+p1+β z)2 , j12 =−γ12 p1, j13 =−m1 p1(α+p1)

(α+p1+β z)2 ,

j21 =−γ21 p2, j22 = r2− 2r2 p2
K2
− γ21 p1−

m2z(−ap2
2+c)

(ap2
2+bp2+c)2 , j23 =− m2 p2

ap2
2+bp2+c

,

j31 =
c1m1z(α+β z)
(α+p1+β z)2 , j32 =−

c2m2z(−ap2
2+c)

(ap2
2+bp2+c)2 , j33 =

c1m1 p1(α+p1)
(α+p1+β z)2 − c2m2 p2

ap2
2+bp2+c

−δ0.

• We can be easily observe that E0 is always a saddle point with two dimensional unstable
manifold and one dimensional stable manifold.

• The Jacobian matrix evaluated about E1(K1,0,0) is

J|E1 =

−r1 −γ12K1 − m1K1
α+K1

0 r2− γ21K1 0
0 0 c1m1K1

α+K1
−δ0

 .
So, eigenvalues of above matrix are−r1, r2−γ21K1 and c1m1K1

α+K1
−δ0. Therefore there can

be the following sub-cases:

1. E1 is a saddle point with dim(W s(E1)) = 1 and dim(W u(E1)) = 2, if r2 > γ21K1 and
c1m1K1
α+K1

> δ0.

2. E1 is a saddle point with dim(W s(E1)) = 2 and dim(W u(E1)) = 1, if r2 < γ21K1 and
c1m1K1
α+K1

> δ0 or r2 > γ21K1 and c1m1K1
α+K1

< δ0.

3. E1 is a locally asymptotically stable equilibrium point with dim(W s(E1)) = 3, if
r2 < γ21K1 and c1m1K1

α+K1
< δ0.
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• The Jacobian matrix corresponding to E2 is

J|E2 =


r1− γ12K2 0 0
−γ21K2 −r2 − m2K2

ap2
2+bp2+c

0 0 − c2m2K2
ap2

2+bp2+c
−δ0

 .
Eigenvalues of above matrix, J|E2 are r1− γ12K2, −r2 and − c2m2K2

ap2
2+bp2+c

−δ0.

So,

1. E2 is a saddle point with dim(W s(E2)) = 2 and dim(W u(E2)) = 1 if r1 > γ12K2.

2. Model (3.1) is locally asymptotically stable in the vicinity of E2 if r1 < γ12K2

• Assuming the existence of E3(p̂1, p̂2,0), the corresponding variational matrix is

J|E3 =


− r1 p̂1

K1
−γ12 p̂1 − m1 p̂1

α+p̂1

−γ21 p̂2 − r2 p̂2
K2

− m2 p̂2
ap̂2

2+bp̂2+c

0 0 c1m1 p̂1
α+p̂1

− c2m2 p̂2
ap̂2

2+bp̂2+c
−δ0

 .
One of the eigenvalues of J|E3 is c1m1 p̂1

α+p̂1
− c2m2 p̂2

ap̂2
2+bp̂2+c

− δ0 and other two are the roots of
the equation

Γ
2 +B1Γ+B2 = 0, (3.22)

where, B1 = r1 p̂1
K1

+ r1 p̂2
K2

and B2 = p̂1 p̂2
( r1r2

K1K2
− γ12γ21

)
. Both the zeros of (3.22) have

negative real parts iff B2 > 0. So, we have the following theorem:

Theorem 3.3.3. Sufficient conditions for system (3.1) to be locally asymptotically stable

in the neighbourhood of E3 are

(i) c1m1 p̂1
α+p̂1

< c2m2K2
ap̂2

2+bp̂2+c
+δ0,

(ii) r1r2
K1K2

> γ12γ21.

• Variational matrix about E4(p̄1,0, z̄) (assumed to be exist under condition (3.8)) is:

J|E4 =


− r1 p̄1

K1
+ m1 p̄1z̄

(α+p̄1+β z̄)2 −γ12 p̄1 −m1 p̄1(α+p̄1)
(α+p̄1+β z̄)2

0 r2− γ21 p̄1− m2z̄
c 0

c1m1z̄(α+β z̄)
(α+p̄1+β z̄)2 −c2m2z̄

c − βc1m1 p̄1z̄
(α+p̄1+β z̄)2

 .
It is easy to see that one eigenvalue of J|E4 is r2− γ21 p̄1− m2z̄

c , where other are the roots
of equation given below:

Λ
2 +C1Λ+C2 = 0, (3.23)
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where, C1 =
r1 p̄1
K1
− m1 p̄1z̄

(α+p̄1+β z̄)2 +
βc1m1 p̄1z̄

(α+p̄1+β z̄)2 ,

and C2 =
( r1 p̄1

K1
− m1 p̄1z̄

(α+p̄1+β z̄)2

)(
βc1m1 p̄1z̄

(α+p̄1+β z̄)2

)
+
(

m1 p̄1(α+p̄1)
(α+p̄1+β z̄)2

)(
c1m1z̄(α+β z̄)
(α+p̄1+β z̄)2

)
.

Roots of (3.23) have negative real parts iff C1 > 0, C2 > 0. Therefore, we state the
following theorem

Theorem 3.3.4. Equilibrium point E4(p̄1,0, z̄) is locally asymptotically if r1 >
m1K1z̄

(α+p̄1+β z̄)2

and r2 < γ21 p̄1 +
m2z̄

c .

Remark 3.3.2. From Theorem 3.3.4, we can observe that toxic-phytoplankton free equi-

librium is locally asymptotically stable if intrinsic growth rates of non-toxic and toxic

producing phytoplankton are greater and lesser than some respective threshold values.

• For investigation of local stability analysis around the coexistence equilibrium E∗(p∗1, p∗2,z
∗),

the evaluated variational matrix is:

J|E∗ =

e11 e12 e13

e21 e22 e23

e31 e32 e33

 ,
where,
e11 =−

r1 p∗1
K1

+
m1 p∗1z∗

(α+p∗1+β z∗)2 , e12 =−γ12 p∗1, e13 =−
m1 p∗1(α+p∗1)
(α+p∗1+β z∗)2 ,

e21 =−γ21 p∗2, e22 =−
r2 p∗2
K2

+
m2z∗(2ap2∗2+bp∗2)
(ap∗2

2+bp∗2+c)2 , e23 =−
m2 p∗2

ap∗2
2+bp∗2+c

,

e31 =
c1m1z∗(α+β z∗)
(α+p∗1+β z∗)2 , e32 =−c2m2z∗(−ap2∗2+c)

(ap2∗2+bp∗2+c)2 , e33 =−
βc1m1 p∗1z∗

(α+p∗1+β z∗)2 .

Characteristic equation for above Jacobian is given by

Π
3 +E1Π

2 +E2Π+E3 = 0, (3.24)

where,
E1 =−tr(J|E∗),
E2 = (e22e33− e23e32)+(e11e33− e13e31)+(e11e22− e12e21),

E3 = −det(J|E∗). All three roots of (3.24) have negative real parts iff E1 > 0 ,E3 > 0 and
E1E2 > E3. Thus, we have the following theorem:

Theorem 3.3.5. The non-delayed model is locally asymptotically stable in the vicinity of coex-

istence equilibrium E∗(p∗1, p∗2,z
∗) if E1 > 0 ,E3 > 0 and E1E2 > E3.

Now, we drive the conditions under which the non-delayed model is globally asymptotically
stable around the interior equilibrium E∗(p∗1, p∗2,z

∗).
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Theorem 3.3.6. For non-delayed system (3.1), interior equilibrium E∗(p∗1, p∗2,z
∗), whenever it

exists, is globally asymptotically stable in accordance with the conditions:

(i) r1
K1

> m1z∗
α(α+p∗1+β z∗) ,

(ii) r2
K2

>
m2z∗(a(K2+p∗2)+b)

c(ap∗2
2+bp∗2+c)

,

(iii)(γ12 + γ21)
2 < 2

(
r1
K1
− m1z∗

α(α+p∗1+β z∗)

)(
r2
K2
− m2z∗(a(K2+p∗2)+b)

c(ap∗2
2+bp∗2+c)

)
,

(iv)m2
2

(
1
c +

l1c2
ap∗2

2+bp∗2+c

(
1− ap2m p∗2

aK2
2+bK2+c

))2

< 2
(

r2
K2
− m2z∗(a(K2+p∗2)+b)

c(ap∗2
2+bp∗2+c)

)(
β p∗1l1c1m1

(α+K1+βZM)(α+p∗1+β z∗)

)
,

where p2m = K2
r2

(
r2−

(
γ21K1 +

m2ZM
c

))
, ZM = 2c1r1K1

δ1
and l1 is defined in the proof.

Proof. We choose a relevant Lyapunov function V about E∗ defined as

V (p1, p2,z) =
(

p1− p∗1− p∗1 ln
p1

p∗1

)
+

(
p2− p∗2− p∗2 ln

p2

p∗2

)
+ l1

(
z− z∗− z∗ ln

z
z∗

)
,

where l1 is a positive constant which we pick as per our comfort. Now, on differentiating V

with respect to time along the solutions of (3.1) and with some algebraic exploitation, we get

dV
dt

=

(
− r1

K1
+

m1z∗

(α + p1 +β z)(α + p∗1 +β z∗)

)
(p1− p∗1)

2

+

(
− r2

K2
+

m2z∗(a(p2 + p∗2)+b)
(ap22 +bp2 + c)(ap∗2

2 +bp∗2 + c)

)
(p2− p∗2)

2−
β p∗1l1c1m1

(α + p1 +β z)(α + p∗1 +β z∗)
(z− z∗)2

− (γ12 + γ21)(p1− p∗1)(p2− p∗2)+
m2

ap22 +bp2 + c

(
−1+

l1c2(ap2 p∗2− c)
ap∗2

2 +bp∗2 + c

)
(p2− p∗2)(z− z∗)

+
m1

(α + p1 +β z)(α + p∗1 +β z∗)

(
− (α + p∗1)+ l1c1(α +β z∗)

)
(p1− p∗1)(z− z∗).

Taking l1 =
α+p∗1

c1(α+β z∗) , we obtain

dV
dt

=−V11(p1− p∗1)
2 +V12(p1− p∗1)(p2− p∗2)−

1
2

V22(p2− p∗2)
2

− 1
2

V22(p2− p∗2)
2 +V23(p2− p∗2)(z− z∗)−V33(z− z∗)2,
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where,

V11 =

(
r1

K1
− m1z∗

(α + p1 +β z)(α + p∗1 +β z∗)

)
, V22 =

(
r2

K2
−

m2z∗(a(p2 + p∗2)+b)
(ap22 +bp2 + c)(ap∗2

2 +bp∗2 + c)

)
,

V33 =
β p∗1l1c1m1

(α + p1 +β z)(α + p∗1 +β z∗)
, V12 =−(γ12 + γ21),

V23 =
m2

ap22 +bp2 + c

(
−1+

l1c2(ap2 p∗2− c)
ap∗2

2 +bp∗2 + c

)
.

Hence, by Sylvester’s criterion, dV
dt is a negative definite function under the assumptions

given by (i),(ii),(iii) and (iv). Therefore, model (3.1) is globally asymptotically stable under
these hypothesis.

3.3.3 Persistence conditions

A dynamical system is said to be persistent as long as every component of this system persists
if it is present initially. In other words, a differential system is persistent from a geometric
view if its every solution is bounded far from the coordinate planes. In this subsection, we
determine the conditions under which the interior equilibrium E∗(p∗1, p∗2,z

∗) of system (3.1)
persists. Firstly we divide system (3.1) into two subsystems and determine the conditions
for the non-existence of any periodic orbit about the corresponding coexistence equilibrium
for each subsystem. Then these results will be used to prove the persistence of coexistence
equilibrium E∗. The two subsystems are: a competitive subsystem having toxic and non-toxic
phytoplankton, and a prey-predator subsystem with non-toxic phytoplankton and zooplankton.

The competitive subsystem is given by

d p1

dt
= r1 p1

(
1− p1

K1

)
− γ12 p1 p2 = h1(p1, p2),

d p2

dt
= r2 p2

(
1− p2

K2

)
− γ21 p1 p2 = h2(p1, p2).

(3.25)

Now, we define a continuous differentiable function H1 =
1

p1 p2
in the interior of positive quad-

rant of the p1 p2-plane. Then we have

∇1 =
∂

∂ p1
(h1H1)+

∂

∂ p2
(h2H1) =−

r1

p2K1
− r2

p1K2
< 0.



74
Chapter 3. Chaos control in a multiple delayed phytoplankton-zooplankton model with group

defence and predator’s interference

Thus using Bendixson’s-Dulac’s negative criterion [55], we deduce that competitive model
(3.25) does not have any closed solution around its coexistence equilibrium.

Similarly, the prey-predator submodel is given by

d p1

dt
= r1 p1

(
1− p1

K1

)
− m1 p1z

α + p1 +β z
= h3(p1,z),

dz
dt

=
c1m1 p1z

α + p1 +β z
−δ0z = h4(p1,z).

(3.26)

Non-existence of any periodic solution around the above prey-predator subsystem’s coexistence
equilibrium can be proved by choosing H2 =

α+p1+β z
p1z in the interior of positive quadrant of the

p1z-plane. Indeed

∇2 =
∂

∂ p1
(h3H2)+

∂

∂ z
(h4H2) =

r1

z
− r1

zK1
(α +β z)− 2r1 p1

zK1
− δ0β

p1
.

Thus ∇2 < 0 if K1 < α. Therefore, the coexistence equilibrium of prey-predator subsystem
(3.26) is not enclosed by any periodic orbit if K1 < α. We will use this condition to establish
the persistence of E∗.
Now, the persistence of interior equilibrium E∗ of model (3.1) is proved by using the method
proposed by Freedman and Waltman [102]. In accordance with Theorem 2.1 [102], both
E1(K1,0,0) and E2(0,K2,0) must be hyperbolic saddle points. Now, E1 is a hyperbolic sad-
dle point if one or both conditions r2 > γ21K1 and c1m1K1

α+K1
> δ0 hold. Axial equilibrium E2 is a

hyperbolic saddle point whenever r1 > γ12K2.

As per further conditions of this theorem, both planner equilibriums E3(p̂1, p̂2,0) and E4

(p̄1,0, z̄) must be unique and unstable in the positive direction orthogonal to p1 p2 and p1z-
planes, respectively, if they exist. From subsection 3.3.2, we can see that both of these equi-
libriums are unique if they are feasible. Equilibrium E3 is unstable along z-axis if c1m1 p̂1

α+p̂1
>

c2m2 p̂2
ap̂2

2+bp̂2+c
+ δ0 is satisfied whereas E4 is unstable along p2-axis if r2 > γ21 p̄1 +

m2z̄
c holds.

Therefore, in addition to the condition K1 < α if these conditions are also satisfied then the
coexistence equilibrium E∗ persists.

3.3.4 Bifurcation exploration

Here, we provide a theorem related to Hopf-bifurcation analysis for non-delayed model (3.1).

Theorem 3.3.7. For occurrence of Hopf-bifurcation for system (3.1) around E∗ at α = αh f ,

the necessary and sufficient conditions are that the following inequalities hold true:

1. E1(α
h f )> 0, E3(α

h f )> 0.

2. E1(α
h f )E2(α

h f )−E3(α
h f ) = 0.



3.3. Dynamics of non-delayed model 75

3. d
dα

(Re(Π))α=αh f 6= 0 or dR
dα
6= 0, where, R = E1E2−E3.

Proof. At α = αh f , E1E2−E3 = 0 and the characteristic equation (3.24) becomes

(Π+E1)(Π
2 +E2) = 0, (3.27)

from which we get Π1,2 =±i
√

E2, a pair of purely imaginary roots and Π3 =−E1, a negative
real root.
On differentiating equation (3.24) w.r.t α , we obtain

dΠ

dα
=− Ė1Π2 + Ė2Π+ Ė3

3Π2 +2E1Π+E2
,

implies

dΠ

dα

∣∣∣∣
Π=i
√

E2

=
−Ė1E2 +E3 + iĖ2

√
E2

2Ė2−2iE1
√

E2

=
1
2

(
(Ė3− Ė1E2)+ iĖ2

√
E2
)
(E2 + iE1

√
E2)

E2
2 +E2

1 E2
.

Thus

dΠ

dα

∣∣∣∣
Π=i
√

E2

=−1
2

dR/dα

(E2
1 +E2)

+ i
(√E2Ė2

2E2
−

E1
√

E2
dR
dα

2E2(E2
1 +E2)

)
,

Consequently,
d

dα
(Re(Π))α=αh f =−

1
2

dR/dα

(E2
1 +E2)

∣∣∣∣
α=αh f

6= 0.

Thus, d
dα

(Re(Π))α=αh f 6= 0 if dR
dα
6= 0. This completes the theorem.

Remark 3.3.3. Hopf-bifurcation analysis with respect to any other parameter will be similar

to as given for α in above Theorem (3.3.7).

Now, we present a theorem regarding the transcritical bifurcation which involves zooplankton
free equilibrium E3 and the interior equilibrium E∗, using δ0 as the bifurcation parameter.

Theorem 3.3.8. Through a transcritical bifurcation, zooplankton free equilibrium E3 changes

its nature by becoming stable from unstable and the interior equilibrium E∗ disappears, when

δ0 passes across its threshold value, δ tc
0 .

Proof. For proving our assertion, we use Sotomayor’s theorem [24]. At δ0 = δ tc
0 = c1m1 p̂1

α+p̂1
−

c2m2 p̂2
ap̂2

2+bp̂2+c
, E3 becomes a non-hyperbolic equilibrium point. Let v = [v1,v2,v3]

T and w =
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[w1,w2,w3]
T are the eigenvectors corresponding to zero eigenvalue of J|(E3:δ tc

0 ) and JT |(E3:δ tc
0 ),

respectively. Here, v1 = a12a23−a13a22
a22a11−a12a21

, v2 = a13a21−a23a11
a22a11−a12a21

, v3 = 1 and w = [0,0,1]T , where ai j

for i, j = 1,2,3 is an entry of J|(E3:δ tc
0 ).

Here, we define Y (p1, p2,z) = [F1,F2,F3]
T . Then Yδ0 = [0,0,−z]T , and by Sotomayor’s theo-

rem, the transversality conditions are:
wTYδ0(E3 : δ tc

0 ) = 0,

wT [DYδ0(E3 : δ tc
0 )]v =−1 6= 0,

wT [D2Y (E3 : δ tc
0 )(v,v)] = 2

(
− βc1m1 p̂1

(α+p̂1)2 +
αv1

(α+p̂1)2 +
c2m2(ap̂2

2−c)v2
(ap̂2

2+bp̂2+c)2

)
.

So, if
(
− βc1m1 p̂1

(α+p̂1)2 +
αv1

(α+p̂1)2 +
c2m2(ap̂2

2−c)v2
(ap̂2

2+bp̂2+c)2

)
6= 0, then system (3.1) goes through a transcritical

bifurcation at δ0 = δ tc
0 .

3.4 Dynamics of delayed model

In this section, we shall investigate the kinetics of the delayed model.

3.4.1 Local stability analysis and Hopf-bifurcation

Now, we will examine local stability behavior of delayed system (3.2) around the interior equi-
librium E∗ and determine the criterion for occurrence of Hopf-bifurcation, using delay terms
as the control parameters. For this, let’s assume p1(t) = p̃1(t)+ p∗1, p2(t) = p̃2(t)+ p∗2 and
z(t) = z̃(t)+ z∗. Therefore, the linearised form of system (3.2) is

dW
dt

= AW (t)+BW (t− τ1)+CW (t− τ2), (3.28)

where

A =

 a1 −γ12 p∗1 a2

−γ21 p∗2 a3 a4

0 0 −δ0

 , B =

 0 0 0
0 0 0
a5 0 a6

 , C =

0 0 0
0 0 0
0 a7 a8

 and

a1 =−
r1 p∗1
K1

+
m1 p∗1z∗

(α+p∗1+β z∗)2 , a2 =−
m1 p∗1(α+p∗1)
(α+p∗1+β z∗)2 , a3 =−

r2 p∗2
K2

+
m2z∗(2ap2∗2+bp∗2)
(ap∗2

2+bp∗2+c)2 , a4 =−
m2 p∗2

ap∗2
2+bp∗2+c

a5 =
c1m1z∗(α+β z∗)
(α+p∗1+β z∗)2 , a6 =

c1m1 p∗1(α+p∗1)
(α+p∗1+β z∗)2 , a7 =−

c2m2z∗(−ap∗2
2+c)

(ap∗2
2+bp∗2+c)2 , a8 =−

c2m2 p∗2
ap∗2

2+bp∗2+c
,

and W (t) = [p̃1(t), p̃1(t), z̃(t)]T .
Thus, Jacobian matrix for the delayed system at E∗ is given by

J = A+Be−λτ1 +Ce−λτ2.
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So, the characteristic equation of above Jacobian matrix is

λ
3 +b1λ

2 +b2λ +b3 + e−λτ1(b4λ
2 +b5λ +b6)+ e−λτ2(b7λ

2 +b8λ +b9) = 0, (3.29)

where
b1 =−(a1+a3−δ0), b2 =(a1a3−γ12γ21 p∗1 p∗2−δ0(a1+a3)), b3 = δ0(a1a3−γ12γ21 p∗1 p∗2), b4 =

−a6,

b5 = a6(a1 + a3)− a2a5, b6 = a3(a2a5 − a1a6) + γ12 p∗1(a6γ21 p∗2 + a4a5), b7 = −a8, b8 =

a8(a1 +a3)−a4a7,

b9 = a1(a4a7−a3a8)+a8γ12γ21 p∗1 p∗2 +a2a7γ21 p∗2.

Now, we discuss the following cases:
Case I: τ1 = τ2 = 0.
In this case, (3.29) reduces to (3.24), so the stability conditions for this are provided in Theorem
3.3.5.
Case II: τ1 > 0, τ2 = 0.
Substituting τ2 = 0 in (3.29), we have

λ
3 +(b1 +b7)λ

2 +(b2 +b8)λ +(b3 +b9)+ e−λτ1(b4λ
2 +b5λ +b6) = 0. (3.30)

For Hopf-bifurcation, let λ = iω(ω > 0) be the root of (3.30). Using this we get

(−b4ω
2 +b6)cosωτ1 +b5ω sinωτ1 = (b1 +b7)ω

2− (b3 +b9),

b5ω cosωτ1 +(b4ω
2−b6)sinωτ1 = ω

3− (b2 +b8)ω.
(3.31)

Now, on squaring and adding above equations in (3.31), τ1 gets eliminate and we get a 6th-
degree equation in ω :

ω
6 +q1ω

4 +q2ω
2 +q3 = 0, (3.32)

where q1 = (b1 + b7)
2 − 2(b2 + b8)− b2

4, q2 = (b2 + b8)
2 − 2(b1 + b7)(b3 + b9) + 2b4b6 −

b2
5, q3 = (b3 +b9)

2−b2
6.

Taking ω2 = n1 in (3.32), we have a cubic equation:

R(n1) = n3
1 +q1n2

1 +q2n1 +q3 = 0. (3.33)
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If we assume that (b3 + b9)
2 < b2

6, then R(0) < 0 and R(∞) > 0. So, (3.33) has at least one
positive root. Therefore ω1 (say) is a root of (3.32). Substituting this ω1 in (3.31), we get

τ1i =
1

ω1
arccos

[
D1ω4

1 +D2ω2
1 +D3

D4ω4
1 +D5ω2

1 +D6

]
+

2iπ
ω1

, i = 0,1,2,3..., (3.34)

where
D1 = b5−b4(b1 +b7), D2 = b6(b1 +b7)+b4(b3 +b9)−b5(b2 +b8), D3 =−b6(b3 +b9),

D4 = b2
4, D5 = b2

5−2b4b6, D6 = b2
6.

To establish transversality condition, put λ = ξ + iω in (3.30) and on separating real and imag-
inary parts, we get

ξ
3−3ξ ω

2 +(b1 +b7)(ξ
2−ω

2)+ξ (b2 +b8)+(b3 +b9)

+e−ξ τ1 cosωτ1(b4(ξ
2−ω

2)+b5ξ +b6)+ e−ξ τ1 sinωτ1(2b4ξ ω +b5ω) = 0,
(3.35)

and

−ω
3 +3ξ

2
ω +2ξ ω(b1 +b7)+ω(b2 +b8)

+e−ξ τ1 cosωτ1(2b4ξ ω +b5ω)− e−ξ τ1 sinωτ1(b4(ξ
2−ω

2)+b5ξ +b6) = 0.
(3.36)

Differentiating (3.35) and (3.36) with respect to τ1 and replacing ξ = 0, τ1 = τ10 and ω = ω1,
yields

P1

[
d[Re(λ (τ1))]

dτ1

]
+P2

[
d[Im(λ (τ1))]

dτ1

]
= R1,

−P2

[
d[Re(λ (τ1))]

dτ1

]
+P1

[
d[Im(λ (τ1))]

dτ1

]
= R2,

(3.37)

where
P1 = [−3ω2 +(b2 +b8)+(b5 +(b4ω2−b6)τ1)cosωτ1 +(2ωb4−b5ωτ1)sinωτ1]τ1=τ10 , ω=ω1

,

P2 = [−2ω(b1 +b7)+(b5 +(b4ω2−b6)τ1)sinωτ1)+(−2ωb4 +b5ωτ1)cosωτ1]τ1=τ10 , ω=ω1
,

R1 = [ω(b6−b4ω2)sinωτ1−b5ω2 cosωτ1]τ1=τ10 , ω=ω1
,

R2 = [ω(b6−b4ω2)cosωτ1 +b5ω2 sinωτ1]τ1=τ10 , ω=ω1
.

Solving system (3.37), we get

[
d[Re(λ (τ1))]

dτ1

]
= R1P1−R2P2

P2
1 +P2

2
. Hence tranversality condition for

Hopf-bifurcation is satisfied at τ1 = τ10 if R1P1−R2P2 > 0.

Theorem 3.4.1. For system (3.2), suppose (b3 + b9)
2 < b2

6 and R1P1−R2P2 > 0 hold, then

there exists a τ1 = τ10 such that the interior equilibrium E∗ is locally asymptotically stable

when τ1 < τ10 and is unstable for τ1 > τ10 . Moreover, the delayed system undergoes Hopf-

bifurcation around E∗ at τ1 = τ10 .
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Case III: τ1 = 0, τ2 > 0.
Under an analysis similar to case II, we get

τ2i =
1

ω2
arccos

[
D′1ω4

2 +D′2ω2
2 +D′3

D′4ω4
2 +D′5ω2

2 +D′6

]
+

2iπ
ω2

, i = 0,1,2,3..., (3.38)

where
D′1 = b8−b7(b1 +b4), D′2 = b9(b1 +b4)+b7(b3 +b6)−b8(b2 +b5),

D′3 =−b9(b3 +b6), D′4 = b2
7, D′5 = b2

8−2b7b9; D′6 = b2
9.

Derivation of transversality condition is similar to case II, and its given by[
d[Re(λ (τ2))]

dτ2

]
= R3P3−R4P4

P2
3 +P2

4
> 0,

where
P3 = [−3ω2 +(b2 +b5)+(b8 +(b7ω2−b9)τ2)cosωτ2 +(2ωb7−b8ωτ2)sinωτ2]τ2=τ20 , ω=ω2

,

P4 = [−2ω(b1 +b4)+(b8 +(b7ω2−b9)τ2)sinωτ2)+(−2ωb7 +b8ωτ2)cosωτ2]τ2=τ20 , ω=ω2
,

R3 = [ω(b9−b7ω2)sinωτ2−b8ω2 cosωτ2]τ2=τ20 , ω=ω2
,

R4 = [ω(b9−b7ω2)cosωτ2 +b8ω2 sinωτ2]τ2=τ20 , ω=ω2
.

Hence, we have the following theorem regarding this case.

Theorem 3.4.2. For delayed system, if (b3 + b6)
2 < b2

9 and R3P3−R4P4 > 0 hold, then there

exists a τ2 = τ20 such that the interior equilibrium E∗ is locally asymptotically stable when

τ2 < τ20 and is unstable for τ2 > τ20 . Furthermore, system (3.2) undergoes Hopf-bifurcation

around E∗ at τ2 = τ20 .

Case IV: τ1 > 0, τ2 ∈ (0,τ20).

Consider (3.29), with τ2 as fixed in its stable interval (0,τ20) and τ1 as the varying parameter.
Substituting λ = iω(ω > 0) in (3.29). Separating real and imaginary parts we get

(−b4ω
2 +b6)cosωτ1 +b5ω sinωτ1 = b1ω

2−b3 +(b7ω
2−b9)cosωτ2−b8ω sinωτ2,

b5ω cosωτ1 +(b4ω
2−b6)sinωτ1 = ω

3−b2ω−b8ω cosωτ2− (b7ω
2−b9)sinωτ2.

(3.39)
Squaring and adding the equations in above system gives:

ω
6 + f1ω

5 + f2ω
4 + f3ω

3 + f4ω
2 + f5ω + f6 = 0, (3.40)

where
f1 =−2b7 sinωτ2,

f2 = b2
1 +b2

7−b2
4−2b2 +2(b1b7−b8)cosωτ2,

f3 = (−2b1b8 +2b2b7 +2b9)sinωτ2,

f4 = b2
2 +b2

8−b2
5−2b1b3−2b7b9 +2b4b6−2(b1b9 +b3b7−b2b8)cosωτ2,
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f5 = 2(b3b8−b2b9)sinωτ2,

f6 = b2
3 +b2

9−b2
6 +2b3b9 cosωτ2.

If we assume, b2
3 +b2

9 +2b3b9 < b2
6 then (3.40) has at least one positive root ω∗1 (say). So from

(3.39), we get

τ
∗
1i
=

1
ω∗1

arcsin

[
F4E12 +F5E11

E2
11 +E2

12

]
+

2iπ
ω∗1

, i = 0,1,2,3..., (3.41)

where
E11 = b5ω∗1 ,

E12 = b4ω∗1
2−b6,

F4 = ω∗1
3−b2ω∗1 −b8ω∗1 cos(ω∗1 τ2)− (b7ω∗1

2−b9)sin(ω∗1 τ2),

F5 = b1ω∗1
2−b3 +(b7ω∗1

2−b9)cos(ω∗1 τ2)−b8ω∗1 sin(ω∗1 τ2).

To examine the transvesality condition for Hopf-bifurcation, we have to show

[
d[Re(λ (τ1))]

dτ1

]
=

R5P5−R6P6
P2

5 +P2
6

> 0,
where
P5 =

[
−3ω2 +b2 +(b5 +(b4ω2−b6)τ1)cosωτ1 +(2ωb4−b5ωτ1)sinωτ1+

cosωτ2[(b7ω2−b9)τ2 +b8]+ sinωτ2[2ωb7−b8ωτ2]
]

τ1=τ∗1 , τ2=τ20 , ω=ω∗1
,

P6 =
[
−2ωb1 +(b5 +(b4ω2−b6)τ1)sinωτ1 +(−2ωb4 +b5ωτ1)cosωτ1+

sinωτ2[(b7ω2−b9)τ2 +b8]+ cosωτ2[−2ωb7 +b8ωτ2]
]

τ1=τ∗1 , τ2=τ20 , ω=ω∗1
,

R5 = [ω(b6−b4ω2)sinωτ1−b5ω2 cosωτ1]τ1=τ∗1 , ω=ω∗1
,

R6 = [ω(b6−b4ω2)cosωτ1 +b5ω2 sinωτ1]τ1=τ∗1 , ω=ω∗1
.

Therefore, we state the following theorem:

Theorem 3.4.3. For system (3.2), with τ2 ∈ (0,τ20) if b2
3+b2

9+2b3b9 < b2
6 and R5P5−R6P6 > 0

hold, then then there exists a τ1 = τ∗10
such that the delayed system is asymptotically stable

around E∗ for τ1 < τ∗10
and is unstable for τ1 > τ∗10

. Moreover, the delayed system experiences

Hopf-bifurcation at τ1 = τ∗10
.

Case V: τ2 > 0, τ1 ∈ (0,τ10).

Analysis for this case is similar to the last case. So, we omit it.

3.4.2 Direction and stability of Hopf-bifurcation

In last subsection, we have determined the conditions for emergence of Hopf-bifurcation from
the interior equilibrium for delayed system (3.2). Now, we identify the direction, stability and
period of bifurcating periodic solutions at τ1 = τ∗10

and τ2 = τ∗2 ∈ (0,τ2). For this, propose we
use normal form and centre manifold theory [83].
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Let
x1 = p1− p∗1, x2 = p1− p∗1, x3 = z− z∗,

and still denote x1, x2, x3 by p1, p2, z, respectively. Let µ = τ1− τ∗10
∈ R and on rescaling

t→ ( t
τ1
), system (3.2) is written as

ẋ(t) = Lµ + f (µ,xt), (3.42)

where x(t) = [p1(t), p2(t),z(t)]T ∈ R3,

Lµ(φ) = (τ∗10
+µ)

(
Aφ(0)+Cφ

(−τ∗2
τ1

)
+Bφ(−1)

)
, for φ ∈C([−1,0],R3),

and

f (µ,φ) =


− r1

K1
φ 2

1 (0)− γ12φ1(0)φ2(0)− m1φ1(0)φ3(0)
α+φ1(0)+βφ3(0)

− r2
K2

φ 2
2 (0)− γ21φ1(0)φ2(0)− m2φ2(0)φ3(0)

aφ2
2(0)+bφ2(0)+c

c1m1φ1(−1)φ3(−1)
α+φ1(−1)+βφ3(−1) −

c2m2φ2

(
−τ∗2
τ1

)
φ3

(
−τ∗2
τ1

)
aφ2

2
(
−τ∗2
τ1

)
+bφ2

(
−τ∗2
τ1

)
+c

 .
Here, without going into detailed calculations, we directly mention the results which are derived
using the computational process similar as given by Song and Wei [84]. The standard results
are

c1(0) =
i

2ω∗1 τ∗10

(
g20g11−2|g11|2−

|g02|2

3

)
+

g21

2
, µ2 =−

Re(c1(0))
Re(λ ′(τ∗10

))
,

β2 = 2Re(c1(0)), T2 =−
Im(c1(0))+µ2Im((λ ′(τ∗10

)))

ω∗1 τ∗10

,
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where, the computed coefficients g20, g11, g02, g21 are given as

g20 = 2τ
∗
10

M

[(
− r1

K1
− γ12σ2−

m1σ3

α

)
+σ∗2

(
− r2

K2
σ

2
2 − γ21σ2−

m2σ2σ3

c

)
+σ∗3

(c1m1σ3

α
e−2iω∗1 τ∗10

− c2m2σ2σ3

c
e−2iω∗1 τ∗2

)]
,

g11 = 2τ
∗
10

M

[(
− r1

K1
− γ12Re{σ2}−

m1

α
Re{σ3}

)
+σ∗2

(
− r2

k2
|σ2|2− γ21Re{σ2}−

m2

c
Re{σ2σ3}

)
+σ∗3

(c1m1

α
Re{σ3}−

c2m2

c
Re{σ2σ3}

)]

g02 = 2τ
∗
10

M

[(
− r1

K1
− γ12σ2−

m1σ3

α

)
+σ∗2

(
− r2

K2
σ2

2− γ21σ2−
m2σ2σ3

c

)
+σ∗3

(c1m1σ3

α
e2iω∗1 τ∗10 − c2m2σ2σ3

c
e2iω∗1 τ∗2

)]
,

g21 = 2τ
∗
10

M

[{
− r1

K1

(
W (1)

20 (0)+2W (1)
11 (0)

)
− γ12

(
W (2)

11 (0)+W (1)
11 (0)σ2 +

1
2
(W (2)

20 (0)+W (1)
20 (0)σ2)

)
−m1

( 1
α
(W (3)

11 (0)+W (1)
11 (0)σ3)+

1
2α

(W (3)
20 (0)+W (1)

20 (0)σ3)

+
1

α2 (σ3(1+βσ3)+σ3(1+βσ3)+σ3(1+βσ3))
)}

+σ∗2

{
− r2

K2
(σ2W (2)

11 (0))+σ2W (2)
20 (0))− γ21(W

(2)
11 (0)+σ2W (1)

11 (0)+
1
2
(W (2)

20 (0)+σ2W (1)
20 (0)))

−m2
(1

c
(W (3)

11 (0)+σ3W (2)
11 (0))+

1
2c

(σ2W (3)
20 (0)+σ3W (2)

20 (0))− 2b
c2 (2|σ2|2σ3 + σ̄3σ

2
2 )
)}

+σ∗3

{
c1m1

(
e−iω∗1 τ∗10

α

(
W (3)

11 (−1)+σ3W (1)
11 (−1)

)
+

e−iω∗1 τ∗10

2α

(
W (3)

20 (−1)+W (1)
20 (−1)σ3

)
+

e−iω∗1 τ∗10

α2

(
σ3(1+βσ3)+σ3(1+βσ3)+σ3(1+βσ3)

))
− c2m2

(
e−iω∗1 τ∗2

c

(
W (3)

11

(
τ∗2
τ∗10

)
+W (2)

11

(
τ∗2
τ∗10

)
σ3

)
+

e−iω∗1 τ∗2

2c

(
σ2W (3)

20

(
τ∗2
τ∗10

)
+σ3W (2)

20

(
τ∗2
τ∗10

))
− 2be−iω∗1 τ∗2

c2

(
2|σ2|2σ3 + σ̄3σ

2
2

))}]
.

Here
W20(θ) =

ig20
ω∗1 τ∗10

q(0)eiω∗1 τ∗10
θ
+ iḡ02

3ω∗1 τ∗10
q̄(0)e−iω∗1 τ∗10

θ
+E1e2iω∗1 τ∗10

θ
,
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W11(θ) =− ig11
ω∗1 τ∗10

q(0)eiω∗1 τ∗10
θ
+ iḡ11

ω∗1 τ∗10
q̄(0)e−iω∗1 τ∗10

θ
+E2,

where the constant vectors E1 = [E(1)
1 ,E(2)

1 ,E(3)
1 ]T ∈ R3 and E2 = [E(1)

2 ,E(2)
2 ,E(3)

2 ]T ∈ R3 are
computed as

E1 = 2

 2iω∗1 −a1 γ12 p∗1 −a2

γ21 p∗2 2iω∗1 −a3 −a4

−a5e2iω∗1 τ∗10 −a7e2iω∗1 τ∗2 2iω∗1 −a6e2iω∗1 τ∗10 −a8e2iω∗1 τ∗2 +δ0


−1

×


r1
K1

+ γ12σ2 +
m1σ3

α

r2
K2

σ2
2 + γ21σ2 +

m2σ2σ3
c

−c1m1σ3e
−2iω∗1 τ∗10

α
+ c2m2σ2σ3e−2iω∗1 τ∗2

c

 ,

E2 = 2

 −a1 γ12 p∗1 −a2

γ21 p∗2 −a3 −a4

−a5 −a7 −a6−a8 +δ0


−1

r1
K1

+ γ12Re{σ2}+ m1
α

Re{σ3}
r2
K2
|σ2|2 + γ21Re{σ2}+ m2

c Re{σ2σ3}
−c1m1Re{σ3}

α
+ c2m2Re{σ2σ3}

c

 .
In above calculation, the components σ2, σ3, σ∗2 , σ∗3 and M are given as

σ2 =
(−iω∗1 +a1)a4 +a2γ21 p∗2
(−iω∗1 +a3)a2 +a4γ12 p∗1

, σ3 =
(−iω∗1 +a1)(iω∗1 −a3)+ γ12γ21 p∗1 p∗2

−a2(iω∗1 −a3)+a4γ12 p∗1
,

σ
∗
2 =

a7e−iω∗1 τ∗2/τ∗10 (iω∗1 +a1)+a5γ12 p∗1eiω∗1 τ∗10

a7γ21 p∗2eiω∗1 τ∗2/τ∗10 +a5eiω∗1 τ∗10 (iω∗1 +a3)
,σ∗3 =

γ12γ21 p∗1 p∗2− (iω∗1 +a1)(iω∗1 +a3)

a7γ21 p∗2eiω∗1 τ∗2/τ∗10 +a5eiω∗1 τ∗10 (iω∗1 +a3)
,

1
M

= 1+σ∗2 σ2 +σ∗3 σ3 + τ
∗
2 (σ

∗
3 (a7σ2 +a8σ3)e−iω∗1 τ∗2 )+ τ

∗
10
(σ∗3 (a5 +a6σ3)e

−iω∗1 τ∗10 ).

Above terms provides the description of bifurcating periodic solution in the center manifold of
the system (3.2) at τ1 = τ∗10

which is stated in the following theorem.

Theorem 3.4.4. 1. µ2 gives the direction of Hopf-bifurcation. If µ2 > 0(< 0), the Hopf-

bifurcation is supercritical(subcritical).

2. β2 gives the stability of bifurcated periodic solution. If β2 > 0(β2 < 0) then the bifurcated

periodic solutions are unstable (stable).

3. T2 gives the period of bifurcated solution, the period increases(decreases) if T2 > 0(< 0).
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3.5 Numerical simulation

Here, we carry out numerical simulation and try to understand the dynamics of models (3.1) and
(3.2) via plotting various bifurcation diagrams, time-series and phase portraits under different
situations. For this intent, we chose the following set of parametric values:

r1 = 2, K1 = 30, γ12 = 0.005, m1 = 0.6, α = 10, β = 0.1, r2 = 3, K2 = 40, γ21 = 0.01,

a = 0.02, b = 0.1, c = 30, m2 = 0.3, c1 = 0.5, c2 = 0.3, δ0 = 0.04.
(3.43)

3.5.1 For non-delayed model

For (3.43), in Table 3.1, we have given all the feasible equilibrium points. In the second and
third columns of this table, we have provided the dimensions of corresponding stable and un-
stable manifolds for the same set of parameters, wherein the fourth column, nature of each
critical point is described. For these parameters, every equilibrium point except the coexistent
one, is unstable. In Fig. 3.3(a), we observe that all the species oscillate for a finite time and
then settle down to their respective steady states. In fact, the interior equilibrium is globally
asymptotically stable in the interior of positive octant of the p1 p2z-space. Starting from various
points (Fig. 3.3(b)), all solutions approach E∗, which shows the attribute of global stability
for interior equilibrium. The intrinsic growth rate (r1) of non-toxic phytoplankton plays a vital
role in the dynamics of the system because the survival of non-toxic phytoplankton as well as
zooplankton depends upon this parameter. Another important point about this parameter is that
the non-delayed system switches its stability twice in the vicinity of E∗ when we vary r1. For
r1 ∈ (0.3,0.6811), E∗ is a stable focus and system converges to it. At rh f1

1 = 0.6811, system
encounter Hopf-bifurcation to become unstable and system converges to a stable limit cycle
(for r1 ∈ (0.6811,1.5258)). At rh f2

1 = 1.5258 system undergoes Hopf-bifurcation to become
stable again. In Fig. 3.4, we have taken three values of r1, as indicated. For r1 = 0.35 < rh f1

1 ,
interior equilibrium E∗ is stable (red trajectory in Fig. 3.4). For rh f1

1 < r1 = 1 < rh f2
1 , solution

converges to a limit cycle attractor (green trajectory in Fig. 3.4) and if we choose r1 = 2 > rh f2
1 ,

system converges again to E∗ (blue trajectory in Fig. 3.4). In all three cases, solution starts
from same initial point. For r1 > rh f2

1 , E∗ remains stable.
Non-delayed system suffers Hopf-bifurcation in the neighbourhood of E∗, when we very

a. For a < ah f = 0.0323, E∗ is a spiral sink and for a > ah f , E∗ acts as a spiral source. So,
a stable limit cycle bifurcates from E∗ (for a > ah f ). Our claim is depicted by Fig. 3.5(a) in
which solutions started from same initial point with two different values of a (a = 0.025 and
a = 0.05) converges to E∗ and a limit cycle attractor (red and green trajectories, respectively).
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Death rate of zooplankton (δ0) is also an important parameter to deal because for δ0 < δ
h f
0 =

0.0288, E∗ is an unstable focus with dim(W s(E)) = 1 and dim(W u(E)) = 2. At δ0 = δ
h f
0 ,

system (3.1) suffers Hopf-bifurcation to become stable. On further increase of this death rate,
interior equilibrium (E∗) and zooplankton free equilibrium (E3) go for transcritical bifurcation
at δ0 = δ tc

0 = 0.1651. This leads to disappearance of E∗ and change in the stability of E3.
As a result of this transcritical bifurcation E3 becomes a stable node from a saddle point. To
understand this scenario, we have given a phase portrait diagram Fig. 3.5(b) in which we drew
three solution with same initial conditions and three different values of δ0. For δ0 = 0.01 <

δ
h f
0 (red trajectory) solution converges to a stable limit cycle and at δ0 = 0.04 > δ

h f
0 solution

converges to E∗ (green trajectory). Then after transcritical bifurcation, for δ0 = 0.3 > δ tc
0 ,

solution converges to E3 (blue trajectory).

Equilibrium point (E) dim(W s(E)) dim(W u(E)) Nature

E0(0,0,0) 1 2 saddle point
E1(K1,0,0) 1 2 saddle point
E2(0,K2,0) 2 1 saddle point
E3(27.2727,36.3636,0) 2 1 saddle point
E4(2.3818,0,54.8170) 0 3 unstable focus
E∗(6.8696,35.7267,49.6050) 3 0 stable focus

Table 3.1: Equilibrium points with dimension of their stable and unstable manifolds and
the corresponding nature of points.
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Fig. 3.3: Global stability of E∗ shown by time-series in Fig. (a) and phase portrait in
Fig. (b), for all parameters from (3.43).
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Fig. 3.4: Three solutions with different values of r1 converging to different attractors
showing the phenomena of double Hopf-bifurcation with all other parameters same as in
(3.43).
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Fig. 3.5: 3D-phase portrait diagrams showing Hopf-bifurcation with respect to a and
Hopf-bifurcation followed by transcritical bifurcation with respect to δ0 in Figs. (a) and
(b), respectively, and distribution of existence and stability regions for E∗ and E3 in the
aδ0-plane in Fig. (c), keeping all other parameters same as in (3.43).
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As we have seen that both the parameters, a and δ0 perform a crucial role in kinetics of
non-delayed system, so further, we have analyzed the system varying both these parameters
simultaneously and have drawn two parametric bifurcation diagram in Fig. 3.5(c). We have
divided aδ0-domain in three regions named as: R1, R2 and R3. In region R1, both equilibriums
are feasible and unstable. As we crosses the Hopf-bifurcation curve (denoted by blue solid
curve), E∗ becomes a stable focus, where E3 remains unstable, in region R2. Then after crossing
the transcritical curve (denoted by olive dotted curve), E∗ disappears (become biologically
infeasible), and E3 becomes a stable node, in the region R3. All these happenings are outlined
in Table 3.2.
Moreover, the non-delayed system undergoes Hopf-bifurcation for β . So, as the interference
among zooplankton for non-toxic phytoplankton increases, the system becomes stable in the
vicinity of coexistence equilibrium. In Fig. 3.6, we have plotted two solutions with the same
initial point with different levels of interference. For β = 0.05 < β h f = 0.0826, E∗ is unstable
(blue coloured solution). At β = β h f , a stable focus E∗ bifurcates from the stable limit cycle.
We have plotted a solution with β = 0.09 > β h f (black coloured) which converges to E∗.

Region feasible equilibria Nature (respectively)

R1 E∗ and E3 unstable focus and unstable node
R2 E∗ and E3 stable focus and unstable node
R3 E3 stable node

Table 3.2: Regions defined with reference to two-parametric bifurcation diagram given
in Fig. 3.5(c).

Fig. 3.6: System going under Hopf-bifurcation with respect to β , all other parameters
same as in (3.43).
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For more detailed behaviour of the non-delayed model with respect to variation in different
physical parameters, we present various bifurcation diagrams. In Fig. 3.7(a), we have plotted a
concurrent bifurcation diagram for all three species in a single frame. We can see that system
(3.1) changes its stability twice in the neighbourhood E∗ via Hopf-bifurcation. At r1 = rh f1

1 and
r1 = rh f2

1 , system go for Hopf-bifurcation and switch its stability multiple times. The region of
r1 ∈ (rh f1

1 , rh f2
1 ) represents the existence of stable limit cycle. In this bifurcation diagram, we

can also observe that as we increase r1, there is a fine rise in the value of z. This rise shows
how the zooplankton’s growth is dependent on TPP’s growth. Also, increasing r1 enhance the
rate of competition of NTP against TPP which decrease p2. This decrement in p2 also adds an
increment to z, thus amplifying r1 provides a boost to zooplankton population.

Now, from Table 3.3 we can observe the trend for values of interior equilibrium point when
we increase the parameter a. We can observe that as initially a is increased, there is a rise
in the value of p∗2 due to a decrement in consumption of TPP by zooplankton. As the con-
sumption of this toxic producing phytoplankton is decreased, z∗ increases. As zooplankton
completely depends on non-toxic phytoplankton, this increasing zooplankton population en-
hances the grazing pressure on this non-toxic source, which reduces p∗1. But the further rise
in a (a > 0.0206) leads to a fall in z∗ due to the continuous dropping of NTP density. Thus
we can see how the initial rise in a supports zooplankton’s growth, but its continuous increase
leads to a decline in the zooplankton population. This whole trend also validates the modelling
of proposed system. We have also drawn bifurcation diagram (Fig. 3.7(b)) for a, showing that
species are going under Hopf-bifurcation when we increase a. So, we can say that increase in
the inhibitory effect of TPP beyond a limit makes the system unstable.

In Fig. 3.7(c), we can see that as the interference among zooplankton for non-toxic ph-
toplankton decreases, non-delayed system becomes unstable via Hopf-bifurcation at β = β h f .
So, an increased interference among zooplankton makes the system stable. An interesting be-
havior of the non-delayed system can be seen from this bifurcation diagram for parameter β .
As we increase β , z is expected to decrease, but from this bifurcation diagram, we can see that
z increases as we increase β . This behavior can be explained as: on increasing β , the con-
sumption rate of zooplankton species on NTP decreases, which increases p1. As zooplankton
is entirely dependent on NTP for its survival, this rise in p1 finally leads to an increment in z.
Also, this increased value of p1 boosts the pressure of competition over TPP for the available
resources, which results in a partial decrement in p2 which is also evident from this Fig. 3.7(c).

Next bifurcation diagram in Fig. 3.8, presents the process of Hopf-bifurcation as well as
transcritical bifurcation, when we use death rate of zooplankton (δ0) as the control parameter.
Figs. 3.8(a), 3.8(b) and 3.8(c) correspond to bifurcation diagrams for p1, p2 and z, respectively.
For δ0 < δ

h f
0 non-delayed system remains unstable and at δ0 = δ

h f
0 , system becomes stable in

the vicinity of E∗. For δ
h f
0 < δ0 < δ tc

0 , E∗ and E3 remain stable and unstable, respectively and
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at δ0 = δ tc
0 , both equilibria exchange their stability via transcritical bifurcation.
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Fig. 3.7: Bifurcation diagrams using r1, a and β as control parameters in Figs. (a), (b)
and (c), respectively, keeping all other parameters fixed as given by (3.43).

3.5.2 For delayed model

Now we analyse the behavior of delayed system (3.2) in the neighborhood of interior equilib-
rium and use the set of parameters given in (3.43) to provide suitable examples for validating
the results proved in Section 3.4. As E∗ is independent of both delays so E∗ will remain same
in all the following cases as given in Table 3.1.
Case II: Using theoretical part of case II from Section 3.4 and after doing some calculations,
we get: ω1 = 0.2513, τ10 = 0.7117 and

[
d[Re(λ (τ1))]

dτ1

]
= 0.0286 > 0. Therefore from Theorem

3.4.1 it follows that system (3.2) suffers Hopf-bifurcation at τ1 = τ10 = 0.7117. Moreover the
delayed system is asymptotically stable for τ1 < τ10 and becomes unstable for τ1 > τ10 , which
further gives rise to a stable limit cycle. In Fig. 3.9(a), we have presented the time-series plot for
all three species and from which we can observe that after oscillating for a finite time, species
settle down to their corresponding stationary values for τ1 = 0.3 < τ10 . The same behavior is
reflected by the 3D-phase portrait diagram in Fig. 3.9(b). In Fig. 3.9(c), we present time-series
plot in which we can see that solution curves oscillate around E∗ and converge to a stable limit
cycle. The 3D-phase portrait diagram (Fig. 3.9(d)) in which two solutions (red and blue) start-
ing from outside and inside respectively tend to the limit cycle which exhibits unstable nature
of delayed system around E∗ and stable nature of this periodic orbit for τ1 = 1 > τ10 . We have
also plotted bifurcation diagrams (Figs. 3.9(e), 3.9(f), 3.9(g)) for p1, p2 and z species, taking
τ1 as the varying parameter.
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a p∗1 p∗2 z∗

0.001 10.7492 33.0397 47.5264
0.005 9.5972 33.7491 48.5570
0.01 8.4543 34.5324 49.2391
0.02 6.8696 35.1880 49.5288
0.0205 6.8086 35.7749 49.6053
0.03 5.8725 36.5313 49.4773
0.04 5.2089 37.0858 49.2339
0.06 4.3995 37.7801 48.7608
0.08 3.9319 38.1894 48.3972

Table 3.3: Numerical values of p∗1, p∗2 and z∗ for different values of a, with remaining
parameters from (3.43).
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Fig. 3.8: Figs. (a), (b) and (c) depicts Hopf-bifurcation followed by transcritical bifurca-
tion for NTP, TPP and zooplankton, using δ0 as the bifurcation parameter for all parame-
ters from (3.43).

Case III: In this case, the delayed system is stable around E∗ for τ2 < τ20 = 4.6359, which
is depicted in Fig. 3.10(a) for τ2 = 3. Then the system suffers Hopf-bifurcation to become
unstable at τ2 = τ20 . This unstable nature of system (3.2) about E∗ is shown by a stable limit
cycle in Fig. 3.10(b) for τ2 = 5. In this figure, we have two solution trajectories, which are
stared from outside (red coloured) and inside (blue coloured) the limit cycle. Both the solu-
tions converge to limit cycle, which shows the stable nature of this periodic solution. Next, as
we increase τ2, system switches its stability at τ2 = 20.6438, 26.6692, 48.2304 and 48.7086.
This whole process of switching can be seen through the bifurcation diagram for species p1,
presented in Fig. 3.11(b). When the delayed system becomes unstable at τ2 = 26.6692, on a
further increase of delay, the system goes through period-doubling, and we have a stable limit
cycle of period-2, which is illustrated in Fig. 3.10(c) for τ2 = 35.
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Fig. 3.9: Keeping τ2 = 0 and parameters form (3.43), for τ1 = 0.3 < τ10 , time-series
and phase portrait diagram for system (3.2) are drawn in Figs. (a) and (b), respectively.
Similarly unstable nature of the delayed system is portrayed in Figs. (c) and (d) for
τ1 = 1 > τ10 . Figs. (e), (f) and (g) represent bifurcation diagrams for NTP, TPP and
zooplankton, respectively, using τ1 as the control parameter.

From the bifurcation diagram (Fig. 3.11(b)), we can see that after becoming unstable
(at τ2 = 48.7026) from stable (at τ2 = 48.2304), system remains chaotic for 53.4458 < τ2 <

61.6255, until it again becomes periodic with period-3. For an example of this, we have pre-
sented a stable limit cycle of period-3 in Fig. 3.10(d) for τ2 = 65. The further increase in
delay pushes the system into a highly chaotic regime. To manifest the delayed system’s chaotic
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nature, we have given a time-series graph and a phase portrait diagram for τ2 = 100 in Figs.
3.10(e) and 3.10(f), respectively.

As sensitivity to initial conditions is an important indication of chaos in a dynamical sys-
tem. Therefore for exhibiting this dependence on initial conditions, in Fig. 3.11(a), time-series
plots with two different starting points (5,35,45) and (5.03,35.03,45.03) respectively are drawn
for all three species. From these time-series graphs, we can observe that a small change in ini-
tial points has significantly changed the solution trajectories, illustrating the delayed system’s
chaotic nature. We have also drawn the maximum Lyapunov exponent for the delayed system
on varying τ2 in Fig. 3.11(c). The positiveness of maximum Lyapunov exponent confirms the
chaotic nature of the delayed system. We have also sketched Poincare map in the p1 p2-plane
for the solution of delayed system corresponding to τ2 = 5, 35, 65 and 100 in Figs. 3.12(a),
3.12(b), 3.12(c) and 3.12(d), respectively. The first three diagrams in Fig. 3.12 represent stable
limit cycles of period-1,2,3, whereas the last one reflects the delayed system’s chaotic nature.

Remark 3.5.1. Fig. 3.13 shows that the chaos which emerges for high values of toxic liberation

delay can be controlled by increasing the value of parameter a. In Fig. 3.13(a), we have a

chaotic attractor for a = 0.02 and when we increase a, this chaotic attractor switches to a

stable limit cycle (for a = 0.1 in Fig. 3.13(b)). Thus increasing the inhibitory effect of toxic-

phytoplankton against zooplankton can help to control the chaos.

(a) (b)

(c) (d)
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Fig. 3.10: In Figs. (a) and (b), we have depicted stable equilibrium and a stable limit
cycle for τ2 = 3 and τ2 = 5, respectively. Figs. (c) and (d) depict stable limit cycles of
period-2 and period-3 for τ2 = 35 and τ2 = 65, respectively. Whereas, in Figs. (e) and
(f), we have shown the chaotic nature of the delayed system for τ2 = 100 using time-
series graph and phase portrait diagram. In all these sub-figures τ1 = 0, with parameters
from (3.43).
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Fig. 3.11: Fig. (a) depicts the sensitivity of solutions for two different initial condi-
tions for τ1 = 0 and τ2 = 100. In Fig. (b), a bifurcation diagram for species p1 is given,
whereas Fig. (c) describes the evaluation of maximum Lyapunov exponent for all param-
eters from (3.43).

Case IV: In this case τ1 is taken as parameter and we fix τ2 = 3 ∈ (0,τ20). From simulation
we get: τ∗1 = 0.3553. Therefore the delayed system undergoes Hopf-bifurcation at τ1 = τ∗1 =

0.3553, keeping τ2 = 3∈ (0,τ20). For τ1 = 0.1< τ∗1 , stable nature of delayed system is depicted
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in Fig. 3.14(a). Whereas the presence of limit cycle attractor (Fig. 3.14(b)) around E∗ for
τ1 = 0.6 > τ∗1 shows unstable nature of this system. For parametric values given in (3.43), we
have µ2 = 0.0997 > 0, β = −0.0067 < 0 and T2 = 0.0815 > 0. Thus from Theorem 3.4.4,
the Hopf-bifurcation is supercritical, the bifurcated periodic solutions are stable, and solution’s
period increases as we increase τ1.

In Fig. 3.15, we have plotted a two parameter bifurcation diagram in the τ1τ2 plane. Stable
and unstable regions are filled with different colours as shown in the figure.
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Fig. 3.12: Figs. (a), (b), (c) and (d) represent Poincare maps for the delayed system in
the p1 p2-plane for τ2 = 5, τ2 = 35, τ2 = 65 and τ2 = 100 respectively keeping τ1 = 0
with all other parameters from (3.43).

(a) (b)
Fig. 3.13: Phase space diagram for τ1 = 0, τ2 = 100 with a = 0.02 (Fig. (a)) and a = 0.1
(Fig. (b)) with all other parameters from (3.43).
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(a) (b)
Fig. 3.14: Stable (Fig. (a)) and unstable (Fig. (b)) nature of delayed system (3.2) around
E∗ for τ1 = 0.1 < τ∗1 and τ1 = 0.6 > τ∗1 respectively, keeping τ2 = 3 ∈ (0,τ20) for all
parameters from (3.43).
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Fig. 3.15: Bifurcation diagram of interior equilibrium E∗ for the delayed system in the
τ1τ2 plane. Both the stable and unstable regions are separated by the Hopf-bifurcation
curve keeping parameters from (3.43).

3.6 Discussion and conclusion

Banerjee and Venturino [101] worked on a phytoplankton-zooplankton system by splitting phy-
toplankton into two populations, namely, non-toxic phytoplankton (NTP) and toxic producing
phytoplankton (TPP) using modified Holling type IV response. Now extending this work, we
proposed a phytoplankton-zooplankton system by dividing phytoplankton into these two above-
stated classes. We pick generalised Holling type IV and Beddington–DeAngelis responses to
deal with zooplankton’s interactions with TPP and NTP, respectively. Here, Holling type IV
response is used to reflect the defense technique of TPP against zooplankton, and to outline
the zooplankton’s interference for its favourite food (NTP), we use Beddington–DeAngelis
response. We have also incorporated two delays, accountable for time lags in reproducing
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progeny and producing the toxic chemicals, correspondingly. Both the phytoplanktons are as-
sumed to grow logistically in the absence of any inter-species competition and zooplankton.
Firstly, the proposed model’s well-posedness is established by proving the existence, unique-
ness, positivity, and boundedness of its solution. Next, we examine the feasibility of various
equilibria under certain conditions, and after that, local and global stability analysis is done
around these equilibrium points. We also prove the persistence of the non-delayed model by
using the standard results for persistence given by Freedman and Waltman [102].

We observe that the non-delayed system is globally stable around the interior equilibrium
for a set of parameters mentioned in the text. Non-delayed model (3.1) also experiences Hopf-
bifurcation and transcritical bifurcation for several parameters. The system switches its stability
twice in respect of r1 via Hopf-bifurcation. The parameter a shows a fascinating behavior
when we vary it: an initial rise in its value encourages zooplankton species’ growth due to
less ingestion of the toxic food. This rise in zooplankton’s population leads to a fall in NTP
population because of its increased grazing pressure on NTP. Thus the further increase in a

causes a reduction in the zooplankton population as it is completely depend upon NTP for its
living. This whole trend is observable from Table 3.3. Therefore, we can say that increasing
this parameter magnifies TPP population due to the expected nature of Holling type IV response
but increasing it up to a limit (a < 0.0206) can boost zooplankton’s growth as well. The death
rate of zooplankton species helps to control the periodic oscillations by making the system
asymptotically stable around E∗. The further increase in δ0 causes the extinction of zooplankton
species and the disappearance of E∗ with changing E3 to a stable equilibrium via a transcritical
bifurcation. The effect of both a and δ0 is depicted in a two-parametric bifurcation diagram in
the aδ0-plane in Fig. 3.5(c). Predator’s interference parameter β also plays a crucial role in
the dynamics of the system. We observe that increment in this interference helps zooplankton
species to amplify their population density instead of abating it, and this change in β also helps
to control the periodic oscillations.

Further, we investigate the system’s kinetics by adding two discrete delays; one is τ1, which
accounts for gestation delay, and the second one is τ2, which measures the time lag due to time
taken by TPP’s cells for getting mature enough to release toxic chemicals. Our main concern
is to review the effects of these delays on the system’s stability around E∗. We studied all the
possible cases for both these delays and noticed that both the delays are capable of destabilising
the system by producing periodic solutions via Hopf-bifurcation. From the numerical simula-
tion, we perceive that increasing the delay τ2 can put delayed system into a chaotic region.
Raising this delay also helps to control the chaos and again can make the system chaotic on
further increment. In this situation, the delayed system’s solutions become very sensitive to
initial conditions as depicted in Fig. 3.11(a). For confirmation of chaos, we have also evaluated
maximum Lyapunov exponent and drew Poincare map (or first return map) in Figs. 3.11(c) and
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3.12(d) respectively. Further, we observe that this chaotic behavior can be controlled by in-
creasing the inhibitory effect of TPP as demonstrated in Fig. 3.13. From the above discussion,
we can conclude that dividing phytoplankton into groups of NTP and TPP can yield vibrant dy-
namics for the plankton systems. The crucial roles played by parameters a and β also represent
the advantage of chosen functional responses, and incorporation of delays is also making the
system’s dynamics more richer. Thus, the proposed work can help ecologists to understand the
progress of plankton systems more broadly and practically than the existing studies.
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Chapter 4

A phytoplankton-zooplankton-fish model with chaos
control: In the presence of fear effect and an addi-
tional food1

4.1 Introduction

The fish population in a PZF (phytoplankton-zooplankton-fish) system can potentially influ-
ence zooplankton species by causing fear of being eaten. Literature survey suggests that many
planktonic rotifers, copepods, and cladocerans can notice the presence of planktivorous fish
through chemical essences released by either of these fishes or by wounded or consumed prey
[113, 114], and this fright can affect their lifestyle. There are many field experiments conducted
by various researchers recommending the inclusion of cost of fear in a prey-predator model [27,
68, 115]. Thus, incorporating this fear factor into a model is crucial to study its kinetics more
practically and realistically. Inspired by this, Wang et al. [30] formulated a predator-prey model
involving this fear affecting the prey reproduction. They noticed that high levels of fear can help
to stabilize the system by eliminating the periodic oscillations, and enhancing this fear can also
alter the direction of Hopf bifurcation which means that fear can cause multi-stability in this
interaction. Pandey et al. [64] worked on a tri-trophic food-chain system in which growth of
basal prey is curtailed due to fear of middle predator and growth of intermediate predator is
suppressed by the fear of the top predator. In their numerical work, they observed that the fear
in primary prey can yield bistability by generating an unstable limit cycle that can further be
replaced by a stable equilibrium or a stable limit cycle by introducing fear in the middle preda-
tor. They also observed that chaos in the system can also be controlled through fear. Recently,
Kaur et al. [31] studied a PZF-system with fear of fish on zooplankton and zooplankton refuge
in which they perceived that the fear of top predator does not affect prey too much but harms

1A considerable part of this chapter is published in Chaos, 32, 013114 (2022).
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fish population. They also proposed different intervals of fear and zooplankton refuge for co-
existence and sustainability of interior equilibrium. For more interesting results related to the
fear effect, one can refer to the papers [116, 117].

Srinivasu et al. [37] studied the impacts of providing additional food on the system’s dy-
namics regarding biological pest control. They found that on the variation of quantity and
quality of this food, they could not only regulate the prey but also could control and wipe out
predator population. They also remarked that oscillations in the system could be eliminated
or produced if they are not present, by the supply of additional food. Prasad et al. [118]
dealt with a prey-predator model, predator having additional food and mutual interference, and
they integrated this predator’s interference in the corresponding system with the help of Bed-
dington–DeAngelis type response [57]. They observed that prey’s extinction can be prevented
through distraction caused by high mutual interference among the predators and access to high
quantity and quality of secondary food. Following this, Sahoo and Poria [119] investigated a
three-dimensional prey-predator system with top predator along with the availability of addi-
tional food. They showed the existence of limit point, Hopf point, and branch point for the
suitable provision of supplemental food. In their model, they presented several one and two
parametric bifurcation diagrams, and also controlled the chaotic dynamics of the system with
the supply of additional food. We can also refer to some papers [36, 120] for more information
related to this aspect of feed provided to predator population.

Bifurcation is defined as a change in the qualitative nature of a dynamical system as a result
of a change in the system’s parameters. Bifurcations can be classified into two types: local
and global. Local type bifurcations include Hopf bifurcation, saddle-node, and transcritical,
whereas global bifurcations include homoclinic, hetroclinic, and Bogdanov-Takens [55, 24].
Hopf bifurcation is a very basic and significant type of bifurcation that can occurs in both
non-delayed and delayed models of biological and physical systems. A detailed introduction
to Hopf bifurcation and its applications is provided by Marsden and McCracken [121]. In a
dynamical system, the appearance of chaos is a very appealing event for ecologists as it gives
rise to management challenges related to species because it may result in oscillations that can
cause extinction or an abrupt increase of a species. Basic stuff related to chaos like the meaning
of chaos, chaotic attractor, Lyapunov exponents, characteristics of chaos, approaches to detect
chaos in ecological systems are well explained by Hastings et al. [25]. Meng et al. [122]
examined the effect of periodicity and seasonality on a PZ-system in which complex behaviors,
for example, chaos, quasi-periodic dynamics, intermittent chaos, and periodic resonance, are
found. They observed that the addition of periodic forcing to the original system, which is
globally stable, can make it chaotic. Jana [26] worked on a discrete prey-predator system with
prey refuge, in which a combination of the intrinsic growth rate of prey species and prey refuge
exhibit complex and exciting qualities. He confirmed chaos with several techniques: calculation
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of Lyapunov exponent, recurrence plot and power spectral density, and fractal dimension of the
map. Controlling chaos in a kinetical system is again a crucial topic of interest; several methods
to control the chaos, in which a chaotic attractor is converted into a stationary point or a limit
cycle, are discussed in the available literature [123, 124, 125].

The predation scheme of prey has a significant impact on the dynamics of a prey-predator
relationship. There are several kinds of responses, prey-dependent: Holling type I, II, III, IV,
ratio-dependent: Leslie-Gower, Beddington-Deangelis, Crowley-Martain, each of which has a
different biological and mathematical implications. Holling type II response is one the basic re-
sponses, in which response reaches to a stage of saturation because of predator’s handling time
for prey species [55]. In marine habitats, sometimes there is a massive growth in phytoplankton
species leading to the formation of harmful algal blooms, which results in the emission of toxic
chemicals against zooplankton [126]. Thus zooplankton avoids this heavily grown phytoplank-
ton, and this kind of special relationship between these two populations can be handled using
Holling type IV response, which also represents the group defense technique of prey population
against predator population [101, 127].

In this chapter, we intend to work on a three-dimensional PZF-system, in which PZ and
ZF interactions are tackled through modified Holling type IV and Holling type II responses,
respectively. We also incorporate the terms related to fear induced in zooplankton by fish, and
additional food provided to fish. The structure of this chapter is given as: in Section 4.2, we
have explained the complete formulation of the mathematical model. Section 4.3 is entirely
devoted to the proposed model’s dynamical analysis, which comprises well-posedness, equi-
librium analysis, stability evaluation, and bifurcation assessment related to the model. Next,
in Section 4.4, we have done an extensive numerical simulation to delineate some interesting
findings associated with our system. Finally, Section 4.5 summarises the results of the proposed
work.

4.2 Establishment of model

We consider an aquatic system to study the kinetical interactions of a 3D model consisting of
three populations: phytoplankton, zooplankton, and planktivorous fish (i.e., PZF-system) in
the presence of fear effect and additional food. Let P, Z and F be the population densities of
phytoplankton, zooplankton, and planktivorous fish species, respectively at any time t. Formu-
lation of the mathematical model, which will help us to understand the dynamics of this PZF−
system, is based upon the following assumptions:

1. Both the species: phytoplankton and zooplankton are assumed to be grow logistically in
the absence of each other and fish population. Let r1, r2 be intrinsic growth rates and
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k1, k2 are carrying capacities of the habitat for phytoplankton and zooplankton species,
respectively. Here, r2 = r− d1 and k2 =

r−d1
d2

, where r, d1 and d2 are birth rate, natural
mortality rate and coefficient of intraspecific interference for zooplankton species. Thus
we have

dP
dt

= r1P
(

1− P
k1

)
,

dZ
dt

= rZ−d1Z−d2Z2.

2. The increasing density of phytoplankton species may lead to the formation of harmful
algal blooms, which some-times liberate toxic chemicals. We assume that zooplankton
species avoid these highly dense phytoplankton, so the interaction between phytoplank-
ton and zooplankton is dealt with modified Holling type IV response [101, 55], which
is given by f1(P) = P

αP2+β
. Here, α gives the inhibitory effect of phytoplankton against

zooplankton, and β is a half saturation constant. Such response serves the motive of this
desired avoidance, and is also recognized as a group defence mechanism of prey against
predator. Let a1 be the predation rate of zooplankton over phytoplankton. As the con-
sumed biomass cannot be converted completely into zooplankton, thus we take b1 = c1a1,
where c1 ∈ (0,1) is the conversion efficiency of zooplankton over phytoplankton and b1

is the net gain of zooplankton over phytoplankton (here b1 < a1). Therefore, the dynam-
ics of phytoplankton-zooplankton system can be governed by the following system of
ordinary differential equations

dP
dt

= r1P
(

1− P
k1

)
− a1PZ

αP2 +β
,

dZ
dt

= rZ−d1Z−d2Z2 +
b1PZ

αP2 +β
.

3. Fish can induce fear in zooplankton species, due to which sometimes zooplankton have
to shift their locality to such a place which may not suitably support their livelihood
and can reduce the birth rate of zooplankton species [114, 128]. We assume that due
to this induced fear, the birth rate of zooplankton species is diminished by the factor
g(F,k) = 1

1+kF (proposed by Wang et al. [30]), where k denotes the level of fear in
zooplankton population. This function g(F,k) has the following properties [30, 129]:

• g(0,k) = g(F,0) = 1,

• limF→∞ g(F,k) = limk→∞ g(F,k) = 0,

• ∂g
∂F < 0, ∂g

∂k < 0.

We assume that fish predates zooplankton via Holling type II response, f2(F) = a2F
γ+F ,

where a2 and γ stands for consumption rate of fish over zooplanktoon and half saturation
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constant, respectively. Therefore, we can have

dZ
dt

=
rZ

1+ kF
−d1Z−d2Z2 +

b1PZ
αP2 +β

− a2ZF
γ +Z

,
dF
dt

=
b2ZF
γ +Z

−mF,

where b2 = c2a2, is net gain of fish over zooplankton, c2 ∈ (0,1) is conversion efficiency
of fish species over zooplankton species and m stands for mortality rate of fish population.

4. To reduce the grazing pressure of fish over zooplankton, we provide additional food to
the fish population with its biomass density A. Let h1 and h2 are the handling time of top
predator fish per unit of zooplankton and per unit quantity of additional food, respectively.
Now, δ = h2

h1
denotes the quality of this additional food, so if δ > 1 then additional food is

of superior quality as compared to zooplankton species. If e1 and e2 are the abilities of top
predator to detect intermediate and additional food, respectively then we define η = e2

e1
,

and the term ηA denotes the effectual additional food biomass [37]. For more details
about additional food, one can refer to different papers [118, 119]. Now, we incorporate
this additional food in our model to get

dZ
dt

=
rZ

1+ kF
−d1Z−d2Z2 +

b1PZ
αP2 +β

− a2ZF
γ +δηA+Z

,
dF
dt

=
b2(Z +ηA)F
γ +δηA+Z

−mF.

Thus in this food chain model, phytoplankton, zooplankton, and fish serve as prey, middle
predator, and top predator, respectively. The model which we plan to study is given by:

dP
dt

= r1P
(

1− P
k1

)
− a1PZ

αP2 +β
=: G1(P,Z,F),

dZ
dt

=
rZ

1+ kF
−d1Z−d2Z2 +

b1PZ
αP2 +β

− a2ZF
γ +δηA+Z

=: G2(P,Z,F)

dF
dt

=
b2(Z +ηA)F
γ +δηA+Z

−mF =: G3(P,Z,F),

(4.1)
for biological feasibility, all parameters in (4.1) are taken to be positive, and P(0)> 0,Z(0)>
0,F(0) > 0, whereas the significance and default values of parameters are provided in Table
4.1.

Remark 4.2.1. For survivability of zooplankton, we assume that its birth rate is always greater

than its death rate i.e., r > d1, throughout this chapter.
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4.3 Dynamical evaluation

4.3.1 Positivity and boundedness

As we are dealing with a biological system, so solutions of our model (4.1) should be positive
and bounded. The boundedness of solutions signifies that none of the populations grows indef-
initely. The character of boundedness is an essential part of well behavior of the system due to
confined resources.

From (4.1), (G1,G2,G3) is Lipschitz continuous for any bounded domain of R3
+, which

implies that for any set of positive initial conditions, system (4.1) has a unique solution on
every restricted subset of R3

+. By the method of successive approximation, model (4.1) can be
rewritten as:
P(t) = P(0)exp(G11), Z(t) = Z(0)exp(G22) and F(t) = F(0)exp(G33),

where

G11 =
∫ t

0

{
r1

(
1− P(s)

k1

)
− a1Z(s)

αP2(s)+β

}
ds,

G22 =
∫ t

0

{
r

1+ kF(s)
−d1−d2Z(s)+

b1P(s)
αP2(s)+β

− a2F(s)
γ +δηA+Z(s)

}
ds,

G33 =
∫ t

0

{
b2(Z(s)+ηA)
γ +δηA+Z(s)

−m
}

ds.

Therefore, any solution with positive initial conditions will remain inside the positive octant
of PZF−space hereafter.

Theorem 4.3.1. All the solutions of model (4.1) which initiates in R3
+ are uniformly bounded.

The whole dynamics of the system proceeds in a set which is compact and invariant with respect

to model (4.1), and is defined as: ∑ = {(P,Z,F) ∈ R3
+ : 0 ≤ P ≤ k1, Z + a2F

b2
≤ fmax

θ
}, where

fmax =
1

4d2
(r+ b1

2
√

αβ
)2 and θ = min{d1,m− b2ηA

γ+δηA}, where m > b2ηA
γ+δηA .

Proof. As dP
dt = r1P

(
1− P

k1

)
− a1PZ

αP2+β
which implies dP

dt ≤ r1P
(

1− P
k1

)
, thus limsup

t→∞

P(t)≤ k1.

Let W = Z + a2
b2

F, then dW
dt = dZ

dt +
a2
b2

dF
dt . Using (4.1), we get

dW
dt = rZ

1+kF −d1Z−d2Z2 + b1PZ
αP2+β

+ a2ηAF
γ+δηA+Z −

ma2F
b2

.

As f1(P) = P
αP2+β

has global maxima at P =
√

β

α
such that f1(

√
β

α
) = 1

2
√

αβ
. Using this

property of f1, we have
dW
dt ≤ (r+ b1

2
√

αβ
)Z−d2Z2−d1Z− a2

b2
(m− b2ηA

γ+δηA)F .

Now, define f = (r+ b1

2
√

αβ
)Z− d2Z2, then f attains its maxima at Z = 1

2d2
(r+ b1

2
√

αβ
) such

that
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f
(

1
2d2

(r+ b1

2
√

αβ
)
)
= fmax =

1
4d2

(r+ b1

2
√

αβ
)2.

Thus, dW
dt ≤ fmax−θ(Z + a2

b2
F(t)) = fmax−θW , where θ = min{d1,m− b2ηA

γ+δηA}.
Therefore, limsup

t→∞

W (t) = limsup
t→∞

(Z(t)+ a2
b2

F(t))≤ fmax
θ

.

Hence, all the populations involved in the system continue to be bounded for the whole future
time.

Remark 4.3.1. Proof of Theorem 4.3.1 shows that property of f1(p) = P
αP2+β

, to attain its

global maxima i.e., group defence mechanism of phytoplankton against zooplankton helps to

keep the solution of system (4.1) uniformly bounded.

Parameters Significance Values References

r1 Intrinsic growth rate of phytoplankton 1.5 [130]–[131]
k1 Carrying capacity of habitat for phytoplankton 40 [130]–[132]
a1 Predation rate of zooplankton over phytoplankton 0.9 [34]
α Inhibitory effect of phytoplankton against zooplankton 0.03 [130]
β Half-saturation constant during the intake of phytoplankton by zooplankton 11.5 [130]
r Birth rate of zooplankton 1.1 assumed
k Level of fear induced in zooplankton by fish 1 [117]
d1 Natural mortality rate of zooplankton 0.05 [130]
d2 Measure of intraspecific interference in zooplankton species 0.02 [133]
b1 Net gain of zooplankton over phytoplankton 0.8 [34]
a2 Predation rate of fish over zooplankton 0.5 [130]
A Additional food biomass density 0.7 assumed
η Ratio of abilities of fish to detect additional food and zooplankton 0.3 assumed
δ Additional food’s quality 1 [119]
b2 Net gain of fish over zooplankton 0.4 [130]
m Natural mortality rate of fish 0.08 [130]
γ Half-saturation constant during the intake of zooplankton by fish 25 [130]–[54]

Table 4.1: Biological descriptions and default values of the parameters involved in
model (4.1).

4.3.2 Equilibrium analysis

Model (4.1) has six nonnegative equilibria, written below:

1. The three equilibria: zero equilibrium E0(0,0,0), zooplankton-fish free equilibrium E1(k1,0,0),
and phytoplankton-fish free equilibrium E2(0, r−d1

d2
,0) exist trivially.

2. The fish free equilibrium E3(P1,Z1,0) is the solution of the set of equations given below:
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r1

(
1− P1

k1

)
− a1Z1

αP2
1 +β

= 0, (4.2)

r−d1−d2Z1 +
b1P1

αP2
1 +β

= 0. (4.3)

From, (4.2), we have

Z1 =
r1

a1k1
(k1−P1)(αP2

1 +β )> 0. (4.4)

Using (4.4) in (4.3), we get a five degree equation:

q15P5
1 +q14P4

1 +q13P3
1 +q12P2

1 +q11P1 +q10 = 0, (4.5)

where

q15 = d2r1α
2 (> 0),

q14 =−d2r1α
2k1 (< 0),

q13 = 2αβd2r1 (> 0),

q12 = k1α(a1(r−d1)−2d2r1β ),

q11 = d2r1β
2 +a1b1k1 (> 0),

q10 = βk1(a1(r−d1)−d2r1β ).

Thus using Descartes’ rule of signs, we have the following possibilities for fish free
equilibrium:

• At most two or zero equilibria if r−d1 >
2d2r1β

a1
.

• At most four, two or zero equilibria if d2r1β

a1
< r−d1 <

2d2r1β

a1
.

• At most five, three or unique equilibria if r−d1 <
d2r1β

a1
.

3. The phytoplankton free equilibrium E4(0,Z2,F2) is the solution of the set of algebraic
equations given below:

r
1+ kF2

−d1−d2Z2−
a2F2

γ +δηA+Z2
= 0, (4.6)

b2(Z2 +ηA)
γ +δηA+Z2

−m = 0. (4.7)
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From (4.7), we get

Z2 =
mγ +ηA(mδ −b2)

b2−m
, (4.8)

which is positive if 1 < b2
m <

(
γ

ηA +δ

)
or 0 <

(
γ

ηA +δ

)
< b2

m < 1 holds.
Using (4.8) in (4.6), we have

q22F2
2 +q21F2 +q20 = 0, (4.9)

where

q22 = a2k (> 0),

q21 = [a2 + k[d1 +d2Z2][γ +δηA+Z2]] (> 0),

q20 =−[γ +δηA+Z2][r− [d1 +d2Z2]] (< 0).

As r−d1
d2

(carrying capacity for zooplankton species) > Z2 which means q20 < 0, thus us-
ing Descartes’ rule of signs, we can observe (4.9) has a unique positive root. Thus phy-
toplankton free equilibrium exists (infact uniquely) if the condition 1 < b2

m <
(

γ

ηA + δ

)
or 0 <

(
γ

ηA +δ

)
< b2

m < 1 holds.

4. The interior equilibrium E∗(P∗,Z∗,F∗) is the solution of set of equations:

r1

(
1− P∗

k1

)
− a1Z∗

αP∗2 +β
= 0, (4.10)

r
1+ kF∗

−d1−d2Z∗+
b1P∗

αP∗2 +β
− a2F∗

γ +δηA+Z∗
= 0, (4.11)

b2(Z∗+ηA)
γ +δηA+Z∗

−m = 0. (4.12)

From (4.12), we get

Z∗ =
mγ +ηA(mδ −b2)

b2−m
, (4.13)

which exists positively if

1 <
b2

m
<
(

γ

ηA
+δ

)
or 0 <

(
γ

ηA
+δ

)
<

b2

m
< 1 holds. (4.14)

Now, from (4.10), we get a cubic equation in P∗:

f (P∗) = A3P∗3 +A2P∗2 +A1P∗+A0 = 0, (4.15)



108
Chapter 4. A phytoplankton-zooplankton-fish model with chaos control: In the presence of

fear effect and an additional food

where

A3 =−r1α (< 0),

A2 = r1k1α (> 0),

A1 =−r1β (< 0),

A0 = k1[r1β −a1Z∗].

In (4.15), f (P∗) can have none, one, two or three positive roots depending upon the
following conditions:

• no positive root if A0 < 0 and ∆ < 0,

• unique positive root if A0 > 0 and ∆ < 0,

• two distinct positive root if A0 < 0 and ∆ > 0,

• three distinct positive root if A0 > 0 and ∆ > 0,

with ∆ = 18A3A2A1A0−4A3
2A0 +A2

2A2
1−4A3A3

1−27A2
3A2

0.

Using these P∗ and Z∗ in (4.11), we have:

B2F∗2 +B1F∗+B0 = 0, (4.16)

where

B2 = a2k (> 0),

B1 = (a2 + k(d1 +d2Z∗−C)(γ +δηA+Z∗)),

B0 =−(γ +δηA+Z∗)(r−d1−d2Z∗+C) (< 0),

C =
b1P∗

αP∗2 +β
.

As r−d1
d2

> Z∗ which implies B0 < 0, thus (4.16) has a unique positive root.

Theorem 4.3.2. System (4.1) has none, one, two or three interior equilibrium(s) accord-

ingly with the following conditions:

(a) No interior equilibrium if A0 < 0 and ∆ < 0.

(b) A unique interior equilibrium if conditions A0 > 0 and ∆ < 0 hold with (4.14).

(c) Two distinct interior equilibria if conditions A0 < 0 and ∆ > 0 hold with (4.14).

(d) Three distinct interior equilibria if conditions A0 > 0 and ∆ > 0 hold with (4.14).
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0

0

(a) r1 = 0.6,A0 < 0,∆ < 0.

0

0

(b) r1 = 1.15,A0 < 0,∆ < 0.

0

0

(c) r1 = 1,A0 < 0,∆ > 0.

0

0

(d) r1 = 1.1,A0 > 0,∆ > 0
Fig. 4.1: Different number of roots of f (P∗) given by (4.15), on changing r1, with b1 =
0.4, β = 5, and remaining parameters from Table 4.1.

Fig. 4.2: For b1 = 0.4, r1 ∈ [0.5,1.5], β ∈ [4,5.5] and the other parameters from Table
4.1, black: no interior equilibrium, blue: unique interior equilibrium, green: two distinct
interior equilibria, red: three distinct interior equilibria. In this figure, cyan colour rep-
resents the curve ∆ = 0 whereas yellow colour represents the curve A0 = 0, both these
curves demonstrate the transition from one region to another region.



110
Chapter 4. A phytoplankton-zooplankton-fish model with chaos control: In the presence of

fear effect and an additional food

Remark 4.3.2. Here we draw P∗− vs− f (P∗) graphs (Fig. 4.1), in which we observe that on

varying r1 = 0.6, 1.15, 1 or 1.1, f (P∗) has no, one, two or three positive roots, respectively.

These roots are indicated by red dots in these figures, and for the chosen parameters, condition

(4.14) is also satisfied. Using Theorem 4.3.2, we have also drawn a bi-parametric existence

diagram in r1β -plane in Fig. 4.2 representing different number of interior equilibrium point(s)

for different combinations of r1 and β values.

4.3.3 Stability assessment

Here, we analyse the local and global stability behavior of the system around the desired equi-
librium. For local stability analysis around an equilibrium, we determine the conditions under
which signs of real parts of the eigenvalues of the Jacobian matrix corresponding to same equi-
librium are negative. From Theorem 4.3.1, we have m > b2ηA

γ+δηA , keeping these, we present the
nature of system (4.1) around each equilibrium as follows:

1. The zero equilibrium E0 is always a saddle point.

2. The equilibrium E1(k1,0,0) is always a saddle point with two dimensional stable mani-
fold and one dimensional unstable manifold.

3. The Jacobian matrix for axial equilibrium E2(0, r−d1
d2

,0) is

J|E2 =

e211 0 0
e221 e222 e223

0 0 e233

 ,
where

e211 = r1−
a1(r−d1)

d2β
, e221 =

b1(r−d1)

d2β
, e222 =−(r−d1),

e223 =−
rk(r−d1)

d2
− a2(r−d1)

(r−d1)+d2(γ +δηA)
,e233 = b2

(
(r−d1)+d2ηA

(r−d1)+d2(γ +δηA)

)
−m.

Thus, the eigenvalues of J|E2 are e211 = r1− a1(r−d1)
d2β

, e222 =−(r−d1) and

e233 = b2

(
(r−d1)+d2ηA

(r−d1)+d2(γ+δηA)

)
−m. The equilibrium E2(0, r−d1

d2
,0) is locally asymptoti-

cally stable if r−d1
d2

> r1β

a1
and m > b2

(
(r−d1)+d2ηA

(r−d1)+d2(γ+δηA)

)
otherwise a saddle point. This

means E2 is stable if the carrying capacity of zooplankton species and death rate of fish
species are greater than some respective threshold values
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4. The Jacobian matrix for the fish free equilibrium E3(P1,Z1,0) is

J|E3 =

e311 e312 0
e321 e322 e323

0 0 e333

 ,
where

e311 =−
r1P1

k1
+

2αa1P1
2Z1

(αP1
2 +β )2

, e312 =−
a1P1

αP1
2 +β

, e321 =
b1Z1(β −αP1

2)

(αP1
2 +β )2

,

e322 =−d1Z1,e323 =−rkZ1−
a2Z1

γ +δηA+Z1
,e333 =

b2(Z1 +ηA)
γ +δηA+Z1

−m.

One of three eigenvalues of J|E3 is e333 = b2(Z1+ηA)
γ+δηA+Z1

−m and rest two are the roots of
equation given by

Π
2 +C1Π+C2 = 0,

where C1 = −(e311 + e322) =
(

r1P1
k1

+ d1Z1−
2αaP2

1 Z1
(αP2

1 +β )2

)
and C2 = e311e322− e312e321 =

d1Z1

(
r1P1
k1
− 2αaP2

1 Z1
(αP2

1 +β )2

)
+

a1b1P1Z1(β−αP2
1 )

(αP2
1 +β )3 . Thus we have the following theorem.

Theorem 4.3.3. The fish free equilibrium E3(P1,Z1,0) is locally asymptotically stable if

conditions C1 > 0, C2 > 0 and m > b2(Z1+ηA)
Z1+γ+δηA hold together.

To study the existence of fish free equilibrium points, we draw a curve in rP∗-plane in
Fig. 4.3. From this figure, we can notice that, for a chosen set of parameters we can
get zero, one or three fish free equilibrium points depending on the value of r. In this
figure, a green dot indicate the sink whereas a black dot indicate the saddle point, thus
the characteristic of multistability between two fish free equilibria is also illustrated by
the same figure.
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Fig. 4.3: This figure depicts the non-existence and existence of one or three positive
roots of (4.5) and their stability; green dot as a sink and black dot as a saddle point with
r ∈ [1.1,2.1], d2 = 0.1, m = 0.18 and remaining parameters from Table 4.1.

5. The Jacobian matrix for the phytoplankton free equilibrium E4(0,Z2,F2) is

J|E4 =

e411 0 0
e421 e422 e423

0 e432 0

 ,
where

e411 = r1−
a1Z2

β
, e421 =

b1Z2

β
, e422 =−d1Z2 +

a2Z2F2

(γ +δηA+Z2)2 ,

e423 =−
rkZ2

(1+ kF2)2 −
a2Z2

γ +δηA+Z2
,e432 =

b2F2(γ +ηA(δ −1))
(γ +δηA+Z2)2 .

Again, it is easy to observe that one of the eigenvalues of J|E4 is e411 = r1− a1Z2
β

whereas
other two are roots of equation:

Θ
2 +D1Θ+D2 = 0,

where D1 =−e422 = d1Z2− a2Z2F2
(γ+δηA+Z2)2 and D2 =−e432e423 =

(
b2F2(γ+ηA(δ−1))
(γ+δηA+Z2)2

)(
rkZ2

(1+kF2)2 +

a2Z2F2
γ+δηA+Z2

)
. Next, we present the theorem establishing stability criterion for E4.

Theorem 4.3.4. The Phytoplankton free equilibrium E4(0,Z2,F2) is locally asymptoti-

cally stable if the conditions r1 <
a1Z2

β
, d1 >

a2F2
(γ+δηA+Z2)2 and ηA > γ

1−δ
hold simultane-

ously.
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6. The Jacobian matrix evaluated at E∗(P∗,Z∗,F∗) is given as:

J|E∗ =

e11 e12 0
e21 e22 e23

0 e32 0

 ,
where
e11 =− r1P∗

k1
+ 2αa1P∗2Z∗

(αP∗2+β )2 , e12 =− a1P∗

αP∗2+β
, e21 =

b1Z∗(β−αP∗2)

(αP∗2+β )2 , e22 =−d1Z∗+ a2Z∗F∗

(γ+δηA+Z∗)2 ,

e23 =− rkZ∗
(1+kF∗)2 − a2Z∗

γ+δηA+Z∗ , e32 =
b2F∗(γ+ηA(δ−1))
(γ+δηA+Z∗)2 . The characteristic equation of J|E∗

is (where O is an eigenvalue of the Jacobian matrix):

O3 +U1O
2 +U2O +U3 = 0, (4.17)

where
U1 =−(e11 + e22), U2 = e11e22− e23e32− e12e21, U3 = e11e23e32.

Now, from Routh-Hurwitz criterion [134], we can state the following theorem.

Theorem 4.3.5. The interior equilibrium E∗(P∗,Z∗,F∗) is locally asymptotically stable

if the inequalities U1 > 0, U3 > 0 and U1U2 >U3. hold.

To study the global stability behavior of E∗, we first assume the existence of unique positive
equilibrium E∗(P∗,Z∗,F∗). Thus we assume that hypothesis (b) of Theorem 4.3.2 holds. In the
next theorem, we are able to find sufficient condition for the global stability of E∗.

Theorem 4.3.6. The interior equilibrium E∗(P∗,Z∗,F∗) is globally asymptotically stable if

M
[b1P∗

β
+

a2

γ +δηA

(
Z∗+ηA

)]
+

ma2F∗

b2
+

r1b1

a1k1

(k1 +P∗

2

)2
+

r2

k2

(k2 +Z∗

2

)2
<

r1b1P∗

a1
+ r2Z∗+

b1NZ∗

α2M+β
+

a2F∗(N +ηA)
γ +δηA+M

,

(4.18)

where M and N are defined the in proof.

Proof. We proof this theorem by constructing an appropriate Lyapunov function. We take a
function L(P,Z,F) which is positive definite about E∗(P∗,Z∗,F∗) and is defined as:

L =
b1

a1

(
P−P∗−P∗ ln

( P
P∗
))

+
(

Z−Z∗−Z∗ ln
( Z

Z∗
))

+
a2

b2

(
F−F∗−F∗ ln

( P
P∗
))

.
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Thus,

dL
dt

=
b1

a1

[
r1(P−P∗)

(
1− P

k1

)
− a1(P−P∗)Z

αP2 +β

]
+
[r(Z−Z∗)

1+ kF
−d1(Z−Z∗)−d2Z(Z−Z∗)

+
b1P(Z−Z∗)

αP2 +β
− a2F(Z−Z∗)

γ +δηA+Z

]
+

a2

b2

[b2(Z +ηA)(F−F∗)
γ +δηA+Z

−m(F−F∗)
]

dL
dt
≤ b1

a1

[
r1(P−P∗)

(
1− P

k1

)
− a1(P−P∗)Z

αP2 +β

]
+
[ r2

k2
(Z−Z∗)(k2−Z∗)+

b1P(Z−Z∗)
αP2 +β

− a2F(Z−Z∗)
γ +δηA+Z

]
+

a2

b2

[b2(Z +ηA)(F−F∗)
γ +δηA+Z

−m(F−F∗)
]

=
r1b1

a1k1
(Pk1−P2− k1P∗+PP∗)+

b1P∗

αP2 +β
+

r2

k2
(Zk2−Z2− k2Z∗+ZZ∗)− b1Z∗P

αP2 +β

+
a2Z∗F

γ +δηA+Z
− a2F∗(Z +ηA)

γ +δηA+Z
+

a2ηAF
γ +δηA+Z

− ma2F,
b2

+
ma2F∗

b2
.

where r2 = r−d1 and k2 =
r−d1

d2
. From Theorem 4.3.1, we define ZM = fmax

θ
, FM = b2

a2

fmax
θ

and

using these we get, Pm := k1
r1

(
r1− a1ZM

β

)
,

Zm := 1
d2

(
r

1+kFM
−d1− a2FM

γ+δηA

)
.

Now, with some algebraic calculation, we have

dL
dt
≤− r1b1

a1k1

(
P− k1 +P∗

2

)2
+

r1b1

a1k1

(k1 +P∗

2

)2
− r1b1P∗

a1
+

b1P∗M
β
− r2

k2

(
Z− k2 +Z∗

2

)2

+
r2

k2

(k2 +Z∗

2

)2
− r2Z∗− b1Z∗N

αM2 +β
+

a2Z∗M
γ +δηA

− a2F∗(N +ηA)
γ +δηA+M

+
a2ηAM
γ +δηA

− ma2F
b2

+
ma2F∗

b2

where M = max{k1,ZM,FM} and N = min{Pm,Zm}.
Therefore, dL

dt < 0 if condition (4.18) is satisfied. Thus L is a suitable Lyapunov function inside
the positive octant of PZF-space. Hence, E∗ is globally asymptotically stable under condition
(4.18).

4.3.4 Bifurcation analysis

(A) Hopf bifurcation
Here, we study the analytical existence of Hopf bifurcation with respect to level of fear k,
induced in zooplankton by fish as the possible bifurcation parameter, keeping other parameters
fixed.
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The critical value of k, let k∗, is defined by

U1(k∗)U2(k∗)−U3(k∗) = 0. (4.19)

Using (4.19), (4.17) becomes (O+U1)(O
2+U2) = 0 at k = k∗. This equation has three roots, a

pair of two purely imaginary roots O1,2 =±i
√

U2 and a negative root O3 =−U1, which assures
the existence of Hopf bifurcation.

For transversality condition, let k be a point in an open interval (k−ε,k+ε) such that these
roots become function of k, say O1,2 = ν(k)± iξ (k). As ν(k)+ iξ (k) is root of (4.17), and
substituting this in (4.17) and on separating real and imaginary parts, we can have

ν
3−3νξ

2 +U1(ν
2−ξ

2)+U2ν +U3 = 0, (4.20)

3ν
2
ξ −ξ

3 +2U1νξ +U2ξ = 0. (4.21)

For Hopf bifurcation, ξ (k) 6= 0, so from (4.21), we have ξ 2 = 3ν2 + 2U1ν +U2. Substituting
this in (4.20), we get

8ν
3 +8U1ν

2 +2ν(U2
1 +U2)+U1U2−U3 = 0. (4.22)

On differentiating (4.22) with respect to k and recalling that ν(k∗) = 0, we have[
dν

dk

]
k=k∗

=− 1
2(U2

1 +U2)

[
U2

dU1

dk
+U1

dU2

dk
− dU3

dk

]
k=k∗

.

Thus the transversality condition for occurrence of Hopf bifurcation with respect to parameter
k at its critical value k = k∗ is(

U2
dU1

dk
+U1

dU2

dk
− dU3

dk

)
k=k∗
6= 0. (4.23)

Therefore, the following result states the existence of Hopf bifurcation.

Theorem 4.3.7. For the occurrence of Hopf bifurcation around E∗ at k = k∗, the necessary and

sufficient conditions are:

1. U1(k∗)U2(k∗)−U3(k∗) = 0,

2.
(

U2
dU1
dk +U1

dU2
dk −

dU3
dk

)
k=k∗
6= 0.

(B) Transcritical bifurcation
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Theorem 4.3.8. The transcritical bifurcation at r1 = r[c]1 = a1Z2
β

produces a stable coexistence

equilibrium E∗(P∗,Z∗,F∗) from the phytoplankton free equilibrium E4(0,Z2,F2), and this bi-

furcation causes E4 to lose its stability at this critical value of r1.

Proof. For proving the above statement, we will use the transversality conditions of Sotomayer’s
theorem [24]. For r1 = r[c]1 = a1Z2

β
, E4 turns into a non-hyperbolic equilibrium point. Let

v1 =
[
− e1

e2
,0,1

]T
and v2 = [1,0,0]T serves as the eigenvectors for zero eigenvalue of J|

(E4:r[c]1 )

and JT |
(E4:r[c]1 )

, respectively, where e1 = − rkZ2
(1+kF2)2 − a2Z2F2

γ+δηA+Z2
, e2 =

b1Z2
β

, and J|E4 stands for
Jacobian evaluated at E4.

Now, we define Y (P,Z,F) = [G1,G2,G3]
T , so Yr1 =

[
P(1− P

k1
),0,0

]T
. The transversality

conditions for transcritical bifurcation are:
vT

2 Yr1(E4 : r[c]1 ) = 0,

vT
2 [DYr1(E4 : r[c]1 )]v1 = 1 6= 0,

vT
2 [D

2Y (E4 : r[c]1 )(v1,v1)] =− 2r1β 2

k1b2
1Z2

2

(
rkZ2

(1+kF2)2 +
a2Z2F2

γ+δηA+Z2

)2

6= 0.

Thus all the sufficient conditions of Sotomayer’s theorem are satisfied, hence system (4.1)
undergoes transcritical bifurcation at r1 = r[c]1 = a1Z2

β
.

4.4 Numerical simulation

Fig. 4.4: Global stability of E∗ depicted through a 3D-phase portrait, with parameters
fixed from Table 4.1.

In this section, we perform the numerical simulation to support our theoretical findings and to
observe different kinds of dynamical perspectives associated with model (4.1). We use MAT-
LAB 2019b to draw all the figures in this manuscript, and solver ode45 to solve our system
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numerically. Our main goal is to analyse the kinetics of this phytoplankton- zooplankton-fish
system in the presence of fear-induced in zooplankton due to fish population with additional
food to fish. With this aim, we choose a set of parametric values given in Table 4.1. For
these values of parameters, all the possible equilibria and the further details related to them
are provided in Table 4.2. From this table, we can observe that all the equilibrium points ex-
cept the interior one are saddle points for the chosen parametric values. Infact E∗ is globally
asymptotically stable which is illustrated in Fig.4.4.

Equilibrium Eigenvalues Stability behavior

E0(0,0,0) (1.5000,1.0500,-0.0767) saddle point
E1(40,0,0) (-1.5000,1.5878,-0.0767) saddle point
E2(0,52.5000,0) (-2.6087,-1.0500,0.1913) saddle point
E4(0,6.0400,3.7621) (1.0273,−0.0546±0.1097i) saddle point
E∗(37.2742,6.0400,26.8392) (−1.2636,−0.0059±0.1682i) stable spiral

Table 4.2: Feasible Equilibria for model (4.1) with there eigenvalues and stability be-
havior for parameters from Table 4.1.

Fear’s role in the system’s dynamics and the maintenance of population coexistence
The level of fear, i.e., k, is a vital parameter to study. There are two important aspects related
to k which we want to study. First, up to what extent it affects the densities of species in the
interior equilibrium, and secondly, how it can affect the stability behavior of the system.

Talking about the impact on equilibrium point, from (4.13) and (4.15) we can observe that
phytoplankton and zooplankton coordinates of E∗ are independent of k. Thus they do not
vary on increasing or decreasing the level of fear, whereas from (4.16), we can see that fish
coordinate of E∗ is dependent on the value of k. To observe this variation in F∗ with respect to
k, from (4.16), we have

F∗ = −(a2+k(d1+d2Z∗−C)(γ+δηA+Z∗))+
√

(a2+k(d1+d2Z∗−C)(γ+δηA+Z∗))2+4a2k(γ+δηA+Z∗)(r−d1−d2Z∗+C)
2a2k .

(4.24)
Now on differentiating F∗ with respect k, we get

dF∗
dk = 1

2a2k2

(
a2 + k(d1 +d2Z∗−C)(γ +δηA+Z∗)−

√
(a2 + k(d1 +d2Z∗−C)(γ +δηA+Z∗))2 +4a2k(γ +δηA+Z∗)(r−d1−d2Z∗+C)

)

+ 1
2a2k

(
− (d1 +d2Z∗−C)(γ +δηA+Z∗)+ (a2+k(d1+d2Z∗−C)(γ+δηA+Z∗))(d1+d2Z∗−C)(γ+δηA+Z∗)+2a2(γ+δηA+Z∗)(r−d1−d2Z∗+C)√

(a2+k(d1+d2Z∗−C)(γ+δηA+Z∗))2+4a2k(γ+δηA+Z∗)(r−d1−d2Z∗+C)

)
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From above expression it is easy to see that

lim
k→∞

dF∗

dk
= 0.

Now, again from (4.24), we can get

lim
k→∞

F∗ = Fs =−
(d1 +d2Z∗−C)(γ +δηA+Z∗)

a2
,

thus we can say that as k → ∞, fish population decreases to a saturated value Fs. For the
chosen set of parameters in Table 4.1, dF∗

dk < 0 and Fs = 24.3697, the decreasing slope and this
saturation can be observed from Fig. 4.5. So we can say that increasing the level of fear has
a negative effect on the fear-inducing fish population upto a certain extent. This observation
also agrees with the existing studies [135, 120], in which fear induced by predator species does
not affect prey coordinate of the coexistence equilibrium but harms the fear-inducing predator
itself. From a biological point of view, we can say that rise in fear can curtail the foraging ability
of the zooplankton population, which decreases its predation, leading to a reduction in the fish
population’s density making it to reach Fs. Thus after this saturation, coexistence equilibrium
remains stable and constant.
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Fig. 4.5: Variation in F∗ with k, with remaining parameters fixed from Table 4.1.

Now, we discuss the effect of change in fear on the stability behavior of the system. For
lower levels of fear, system (4.1) has periodic and even chaotic solution. On increasing k,
the system encounters a periodic window, after which it again becomes chaotic. This type of
attitude is again repeated on a further increment of the fear parameter until it becomes stable
via period-4,2,1 solutions. To demonstrate this route from chaos to stability, we have portrayed
some time-series and phase-portrait diagrams in Fig. 4.6. The chaotic nature of the system is
depicted by a time-series graph and a 3D-chaotic attractor in Fig. 4.6(a) for k = 0.05, from
which we can note that solution of the system is unpredictable, and we can not forecast its
future behavior. On increasing k, this chaotic solution becomes a solution of period-4 and
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then of period-2, the solutions of period-4, period-2 for k = 0.135, k = 0.145 are illustrated in
Figs. 4.6(b) and 4.6(c), respectively. On continue rise in k, the solution becomes of period-1,
and finally, for k = k∗ > 0.3175, the interior equilibrium E∗ becomes a stable focus via Hopf

bifurcation. At k = k∗ = 0.3175, U1(k∗)U2(k∗)−U3(k∗) = 0 and
(

U2
dU1
dk +U1

dU2
dk −

dU3
dk

)
=

0.4664 6= 0, thus both conditions of Hopf bifurcation stated in Theorem 4.3.7 hold. Both kinds
of behaviors are pictured for k = 0.25 and 0.6 in Figs. 4.6(d) and 4.6(e), respectively. Thus we
can say that raising the fear level can helps to control the chaos in system (4.1). System’s whole
dynamics on varying k is evident from the bifurcation diagrams given in Figs. 4.7(a), 4.7(b)
and 4.7(c). From these figures it may be noted that when solution tends to stable equilibrium
point asymptotically, in this case Pmax and Pmin are same, in-fact Pmax = Pmin =stady state value
of P. When system is unstable and we have a stable limit cycle of period-1, then Pmax is the
highest peak of the solution after removal of transient part whereas Pmin is the lowest peak of
the solution. In similar manner, we can define Pmax and Pmin for period-2 and so on. As we
know, the solution of a chaotic system is very sensitive to the initial condition, so to check
this sensitivity for our model, we have drawn two solutions with initial conditions (2,1,1) and
(2.0001,1,1) for k = 0.01 in Fig. 4.8(a). From this figure, we can observe that these nearly
started solutions diverge from each other as time progresses. We have also calculated largest
Lyapunov exponent to confirm the choatic nature of the system, depicted in Fig. 4.8(b) whose
positive values validate the chaotic nature of the system. With k = 0.01, a Poincar’e map (see,
Fig 4.8(c)) for model (4.1) has also been drawn in ZF–plane (P = 20), in which the scattered
points endorse its chaotic attitude.
Impact of additional food on the system’s kinetics
To begin, we show that raising the quality of additional food can manage chaotic behavior of
model (4.1). Then we look at how the increase in quality affects the densities of the populations
participating in this interaction.
(A) Role of quality of additional food
The quality of additional food is another important factor to consider. Because our system
exhibited chaotic behavior at low levels of fear, we will now discover that we can manage this
chaos by raising additional food’s quality δ . This chaos control is demonstrated for a specific
value of k, which is k = 0.01, with A = 5 and other parameters are fixed as given in Table
4.1. The transformation from a chaotic system to stable one on increasing δ is depicted by the
bifurcation diagrams provided in Fig. 4.9. This figure shows that as we improve the additional
food quality δ , the chaotic solution transforms into a solution of finite period due to which
the size of the attractor decreases and the height of oscillations declines and finally solution
becomes stable. From these figures, we can observe that this control of chaos also follows a
very interesting route via periodic solutions of periods-8,4,2,1.



120
Chapter 4. A phytoplankton-zooplankton-fish model with chaos control: In the presence of

fear effect and an additional food

3000 5000Time
0

40

P

3000 5000Time
0

35

Z

3000 5000Time
20

80

F

(a) k = 0.05

4000 5000Time
5

40

P

4000 5000Time
0

30

Z

4000 5000Time
15

65

F

(b) k = 0.135

4000 5000Time
10

40

P

4000 5000Time
0

30

Z

4000 5000Time
15

65

F

(c) k = 0.145

4000 5000Time
32

40

P

4000 5000Time
1

14

Z

4000 5000Time
20

45

F

(d) k = 0.25

0 1000Time
5

40

P

0 1000Time
0

30

Z

0 1000Time
10

45

F

(e) k = 0.6

Fig. 4.6: Stability temperament of the system for various values of k, with remaining
parameters from Table 4.1.
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After getting into a stable position, we try to understand how the population densities are
affected by varying the quality of food provided from outside. From (4.13), we know that

Z∗ =
mγ +ηA(mδ −b2)

b2−m
which implies

dZ∗

dδ
=

mηAδ

b2−m
> 0 if b2 > m.

(a) (b)

(c)
Fig. 4.7: Figs. (a), (b) and (c) show the bifurcation diagram for Pmax, Zmax and Fmax,
respectively for k ∈ [0.01,0.2], remaining parameters same as in Table 4.1.

Due to complexity of (4.15) and (4.16), it is not easy to obtain analytical conditions, de-
scribing the shift in P∗ and F∗ on the variation of δ , so we examine this change numerically,
which is evident from Table 4.3. Biologically speaking, as we increase δ , fish population den-
sity intensifies correspondingly, and from Section 4.2, we know that the handling time of fish
for additional food is directly proportional to the quality of this food. Thus improving δ , in-
creases the amount of time which fish population spends in handling this supplementary food,
because of which the stress on the zooplankton population decreases, and their density also
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gets a boost. As middle predator’s density magnifies, there is a decline in prey’s (phytoplank-
ton) density due to the increased pressure of grazing on them. Parameters A and η has similar
effects on the dynamics of system (4.1) as of δ , thus we omit the simulation results related to
them.

δ P∗ Z∗ F∗

19 34.0318 11.5000 108.6650
20 33.7636 11.8750 110.4952
21 33.4872 12.2500 112.2862
26 31.9537 14.1250 120.7209
30 30.4714 15.6250 126.9861

Table 4.3: Trend of species on increasing δ with k = 0.01, A = 5, and rest of the param-
eters from Table 4.1.
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Fig. 4.8: For k = 0.01, Fig. (a) depicts the sensitivity of solutions with respect to two
different sets of initial conditions. Fig. (b) represents the evaluation of largest Lyapunov
exponent whereas Fig. (c) portrays Poincar’e map in ZF–plane (P = 20) with k = 0.01,
remaining parameters same as in Table 4.1.

Role of intrinsic growth rate of phytoplankton in the dynamics of system (4.1)
From Theorem 4.3.4, phytoplankton free equilibrium E4 becomes stable, i.e., phytoplankton
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goes to extinction if inequalities r1 <
a1Z2

β
, d1 >

a2F2
(γ+δηA+Z2)2 and ηA > γ

1−δ
hold. For param-

eters fixed from Table 4.1, the critical value of r1 for extinction of phytoplankton species is
r1 = r[c]1 = a1Z2

β
= 0.4726 whereas other two conditions are already satisfied. We have plotted a

time evolution graph for r1 = 0.3 in Fig. 4.10(a) from which we can notice that phytoplankton
species go to annihilation for r1 < r[c]1 . For 0 < r1 < r[c]1 , E4 is a stable focus and as we increase
r1, at r1 = r[c]1 , E4 becomes a non-hyperbolic equilibrium, and a stable interior equilibrium E∗

is generated via a transcritical bifurcation. At this critical value of r1, both the equilibria E4

and E∗ exchange their stability. To depict this transcritical bifurcation, we have portrayed two
solutions with same initial point (denoted with green circle) and different values of r1 in Fig.
4.10(b). From this figure, we can observe that for r1 = 0.3 < r[c]1 , solution tends to E4 and for
r1 = 0.5 > r[c]1 , trajectory goes to E∗. A bifurcation diagram for phytoplankton species, depict-
ing this transcritical bifurcation is also presented in Fig. 4.10(c). From this figure, we can see
that a stable coexistence equilibrium E∗ is generated via this bifurcation.

Bistability
From Subsection 4.3.2, we know that for r1 = 1, b1 = 0.4 and β = 5, keeping other parameters
fixed from Table 4.1, our system has two interior equilibrium points E∗1(34.7169,6.0400,14.7717)
and E∗2(7.5121,6.0400,20.5718) with (−0.6885+0.0000i,−0.0112±0.1307i,) and (0.0278+
0.0000i,0.0690± 0.4268i,) as eigenvalues of their respective Jacobians. For the same set
of parameters, phytoplankton free equilibrium E4(0,6.040,3.7621) with (−0.0872+ 0.0000i,

−0.0545± 0.1096i,) as eigenvalues of the corresponding Jacobian is also a locally asymp-
totically stable equilibrium. Thus E∗1 and E4 are two locally asymptotically stable equilibria in
PFZ-space, which implies that our system has the characteristic of bistability which is depicted
in Fig. 4.11(a). We have also drawn basins of attraction for E∗1 and E4 in Fig. 4.11(b), red dots
and blue dots are the initial conditions from which the started solution converge to E∗1 and E4,
respectively.

For r1 = 1.1, the system has three interior equilibria, E∗1(35.3469,6.0400,14.5479), E∗2(4.1204,
6.0400,12.9506) and E∗3(0.5326,6.0400,4.4950) with (−0.7904+0.0000i,−0.0158±0.1312i),

(0.0047 + 0.0000i,−0.0082± 0.5024i) and (−0.0026 + 0.0000i,−0.0576± 0.2411i) as the
eigenvalues of their respective Jacobian matrices. Thus E∗1 and E∗3 are two stable focus in
PZF-space having their corresponding basins of attractions. This quality of multistability for
the system is portrayed in Fig. 4.12(a), and their associated regions of attraction are outlined in
Fig. 4.12(b).
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(a) (b)

(c)
Fig. 4.9: Figs. (a), (b) and (c) represent Pmax, Zmax and Fmax, depicting the control of
chaos and reducing the system into a stable one on a low level of fear, i.e., k = 0.01 by
increasing the quality of additional food (δ ) with A = 5, and rest of the parameters fixed
from Table 4.1.

Paradox of enrichment
The term “Paradox of enrichment" was firstly given by Michael Rosenzweig [136], which
means that increasing the amount of available food to prey can destabilize the system. The
term “Paradox” is used because increase in the input food is unbalancing the system’s dynam-
ics instead of making it more stable, and one can look some studies related to this here [137,
138, 139]. In our model, as we enhance the carrying capacity (k1) of phytoplankton species,
system is becoming chaotic, thus k1 is the parameter which we use in terms of enrichment.
We can visualize this paradox through bifurcation diagrams presented in Figs. 4.13(a), 4.13(b)
and 4.13(c) for species P,Z and F , respectively. Here, in our model this phenomenon has been
observed due to system complexity. There are several evidences of this paradox in the literature
[55] where increasing the carrying capacity of the system makes it chaotic. There are several
factors in ecology to explain/resolve this issue, like, prey toxicity, prey defense, unpalatabil-
ity of prey, etc. In our model, we can resolve this phenomenon (system becomes stable from
chaotic behavior) by increasing some model parameters, like, level of fear in zooplankton by
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fish (k), additional food quality (δ ), etc.
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Fig. 4.10: Fig. (a) depicts extinction of phytoplankton population for r1 = 0.3, Figs. (b)
and (c) illustrate the occurrence of transcritical bifurcation with respect to r1 through a
phase portrait diagram and a bifurcation diagram, respectively, with others parameters
from Table 4.1

.

Two-parametric analysis
Two-parametric study for a system gives better insights of its dynamics as compared to one-
parametric, and as fear level k, additional food’s biomass density A, and quality δ are important
parameters associated with the proposed model. Thus to study the behavior of model (4.1) in
more depth, we draw two-parametric bifurcation diagrams (Fig. 4.14) by varying two of these
each time and keeping other parameters fixed. In this analysis, we divide the system’s nature
into four categories: other periodic and chaotic solutions, period-4 solution, period-2 solution
and locally asymptotically stable, which depicts the shifting of system’s nature from chaotic
to stable one via period halving. In Fig. 4.14(a), we drew the bifurcation diagram for k ∈
[0.03,0.034], δ ∈ [6,10.5] with A = 5. The dual-parametric diagram for k ∈ [0.12,0.23], A ∈
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[4,5.5], keeping δ = 12, is presented in Fig. 4.14(b), whereas for k = 0.01, δA-bifurcation
diagram for δ ∈ [5,9], A ∈ [7,14], is given in Fig. 4.14(c), in all these combinations remaining
parameters are kept fixed from Table 4.1.

(a) (b) Basins of attraction for E∗1 and E4.
Fig. 4.11: (a) Solution in blue color with initial conditions (17.83,9.168,10.42), and
solution in red color with initial conditions (17.83,8.726,10.42) tend to E4 and E∗1 , re-
spectively. (b) This figure represents the basins of attraction (red region for E∗1 and blue
region for E4 ) for P(0) = [0.1,40], Z(0) = [0.1,15], F(0) = [2,18], with r = 1, b1 = 0.4
and β = 5, and remaining parameters from Table 4.1.

(a) (b) Basins of attraction for E∗1 and E∗3 .
Fig. 4.12: (a) This phase portrait illustrates bistability between two stable focus, E∗1 and
E∗3 , whereas Fig. (b) manifests basins of attraction for these two equilibria (cyan region
for E∗1 and magenta region for E∗3 ) for P(0) = [1,40], Z(0) = [1,8], F(0) = [2,20], with
r = 1.1, b1 = 0.4 and β = 5, and other parameters from Table 4.1.

(a) (b)
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(c)
Fig. 4.13: For r1 = 0.5 and remaining parameters from Table 4.1, Figs. (a), (b) and (c)
represent Pmax, Zmax and Fmax which depict the phenomenon of paradox of enrichment
for k1 ∈ [42,50].

(a) (b)

(c)
Fig. 4.14: Fig. (a) represents two-parametric bifurcation diagram in kδ -plane,with
A = 5, Fig. (b) represents two-parametric bifurcation diagram in kA-plane, with δ = 12
and Fig. (c) portrays two-parametric bifurcation diagram in δA-plane, with k = 0.01.
In all three subfigures remaining parameters are from Table 4.1. Here magenta: lo-
cally asymptotically stable, green: period-1 limit cycle, cyan: period-2 limit cycle, blue:
period-4 limit cycle, and black: other periodic and chaotic solutions.
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4.5 Concluding remarks

There are many articles [132, 130, 131] in the literature in which authors have dealt with PZF
systems and have obtained exciting results, but a less attention is paid to PZF models in which
fish induces fear in zooplankton. In recent times, Kaur et al. [31] have analysed a PZF model
with inclusion of fear effect and prey refuge. They handled the PZ and ZF interaction through
Holling type II response. Extending this work, we proposed to work on a Phytoplankton-
zooplankton-fish system with fear in zooplankton due to fish and additional food to fish. The
respective interactions are addressed through Holling type IV and II responses, where Holling
type IV response presents zooplankton’s avoidance towards highly grown phytoplankton popu-
lation. This property of Holling type IV response (in form of attaining its global maxima), helps
to prove the boundedness of our system, which is an essential component of well-posedness for
any dynamical model.

Further, we establish the conditions under which the possible equilibrium points exist; req-
uisites for the existence of multiple interior equilibria are also discussed in this subsection 4.3.2.
Moreover, for a chosen set of parameters, we draw a bi-parametric existence diagram that de-
picts different regions corresponding to a different number of positive equilibria in a r1β -plane
(Fig. 4.2). Next, the local and global stability are investigated for these feasible equilibrium
points. After this, the transversality conditions for the occurrence of Hopf bifurcation and tran-
scritical bifurcation are determined in subsection 4.3.4.

In the numerical simulation, for a set of parameters, we depict the global stability of a
unique coexistence equilibrium (Fig. 4.4) by starting several solutions with distinct initial
points, converging to the aforementioned equilibrium. Next, we drive an expression for sat-
uration value of F∗ (fish coordinate of E∗) when k→ ∞, which represent that as fear increases
to infinity, fish population decrease and eventually reach a value after which the coexistence
equilibrium remains constant and stable. Regarding the change in behavior as we very the level
of fear k, we present various time-series, phase portraits, and bifurcation diagrams in the or-
der of increasing k (Figs. 4.6–4.7), delineating transformation from chaotic to stable through
periodic dichotomy. For low values of k, the system is unstable (chaotic or periodic), chaotic
nature of the system is evident from Figs. 4.8(a), 4.8(b),4.8(c). Chaos at low levels of fear
can also be controlled through increasing the additional food quality δ , illustrated via bifur-
cation diagrams in Fig. 4.9. An interesting change in species density is observed (Table 4.3);
when we raise δ , the handling time of fish for this additional source increases, which boosts
zooplankton’s density. This growing middle predator population intensifies its grazing pressure
on the primary prey (phytoplankton), decreasing its population density. Therefore, increasing
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δ has positive effects on the zooplankton and fish population but negatively impacts the phy-
toplankton population. The extinction of phytoplankton for its intrinsic growth rate less than
a threshold value, and emergence of E∗ through E4 by virtue of transcritical bifurcation are
sketched in Figs. 4.10(a), and 4.10(b)– 4.10(c), respectively.

The attribute of multistability in dynamical systems is a significant character as it provides
better understanding about the coexistence of multiple stable equilibria and critical combina-
tions of initial conditions of the solutions converging to them. In Fig. 4.11, our system shows
this character between a planner and a positive steady state, and Fig. 4.12, depicts bistability
between two positive steady states. In both cases, we have drawn phase portraits to manifest
bistability and their respective basins of attractions. Using the carrying capacity of phytoplank-
ton k1 as the control parameter, the proposed model also exhibits the paradox of enrichment.
When k1 increases while the other parameters remain constant, the system becomes chaotic
rather than turning more stable. We’ve also created bi-parametric bifurcation diagrams to in-
vestigate the system’s dynamics in more better way.

On comparing our work with the study done by Kaur et al. [31], we can notice that for lower
values of the fear parameter, their system has a periodic-1 solution. In contrast, our system
behaves chaotically, and when we increase this parameter, our system becomes stable through
period-halving, making the system’s dynamics more elegant. The incorporation of additional
food also has interesting impacts on the kinetics of the proposed model, like it can control the
chaos and help to maintain the system’s coexistence. The present study also shows the attribute
of multistability, which is not present in their research. The presence of different number of
interior equilibria under different analytical conditions also depicts the vigorous nature of the
proposed model. This whole discourse outlines the vibrant dynamics of the proposed model;
thus, we expect that the submitted work can assist ecologists in examining the interplay of the
plankton-fish system with an inclusive and practical approach.
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Chapter 5

Chaotic dynamics of a plankton-fish system with fear
and its carry over effects in the presence of a dis-
crete delay1

5.1 Introduction

The main goal of theoretical ecology and population biology is to know the various underlying
dynamical mechanisms that govern prey-predator relationships. Plankton can be categorized
mainly into two groups; phytoplankton and zooplankton. Phytoplankton plays a vital role in
maintaining global climate by producing and absorbing large amounts of oxygen and carbon
dioxide, respectively [140]. Zooplankton is heterotrophic plankton that predate on phytoplank-
ton. Phytoplankton-zooplankton (PZ) interactions act as the base for most food chains oper-
ating in the marine ecosystem. In this tri-trophic PZF(Phytoplankton-zooplankton-fish) food
chain, fish acts as the top predator, and zooplankton behaves as the middle predator, whereas
phytoplankton serves as the basal prey.

Predator-prey relation is not only affected by the means of direct consumption but the fright
of being killed modifies prey’s conventional lifestyle [141]. In response to this fear, many anti-
predator behaviors like, a dropped feeding rate [142], shifting to a suboptimal quality habitat
[143], reduced mating rate [144] are shown by prey. For an example; due to some danger of
predation, sometimes birds leave their nests as an antipredator behavior, which curtail their
reproduction rate and affect the whole population [145]. Recent experiments [68] on song
sparrows Melospiza Melodia, shows that their reproduction can be reduced by 40% due to
fright of predation instead of direct killing. Inspired form this Wang et al. [30] modeled a
prey-predator system with the inclusion of fear-caused birth rate contraction. They investigated
the relationship between fear parameter and other biological parameters. Kaur et al. [31]
analysed a plankton-fish system with fish induced fear and zooplankton refuge. They showed

1A considerable part of this chapter is published in Chaos, Solitions & Fractals, 160, 112245 (2022)
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that increasing fear can eliminate periodic oscillations, ceasing planktonic blooms. There are
many papers [117, 32, 33, 34, 35], to which an interested reader can refer to study the prey-
predator system involving predator-induced fear effect.

The terminology “carry-over effect” emerged from the frequent clinical investigations; carry-
over effects come from individual’s past experiences, history, and can decide their present per-
formance [39]. According to Norris [43], carry-over effect has positive impacts on population
when the previous habitat lost due to some lethal or non-lethal factor is of low quality, and it
can be opposite when the lost habitat is of good quality. Thus the change in population will de-
pends upon (i) which demographic components in which period cause stiff carry-over effects,
(ii) not only the amount, but also the quality of habitat which is lost. There are experimental
evidences [40, 41, 42] that the carry-over effects can occur in a single seasons in amphibians,
insects, marine invertebrates, etc. Thus there is an increasing trend of incorporating carry-over
effects in mathematical modeling and empirical research [43, 44, 45]. Therefore, integration of
carry-over effects in a population model can help to understand the potential link between cost
of reproduction and life-history trade-offs.

The kinetics of a prey-predator population model is significantly dependent upon the mode
of interaction between them, i.e., the predator’s functional response over its prey. Holling type I,
II, III, and IV functional responses rely only on prey’s density, whereas Beddington–DeAngelis,
Leslie–Gower, and Crowley-Martain responses depend upon the densities of both prey and
predator populations. Holling type II functional response [55] is most widely used functional
response in studying the prey-predator interrelationship. In this response, the predation rate
becomes constant at high prey density because of satiation in the predator population. At high
prey density, phytoplankton species start emitting toxic chemicals as their defense against the
zooplankton population. Hence, we use Holling type IV functional response to deal with this
type of interaction between these two populations [101, 127].

Bifurcation theory explains the qualitative as well as quantitative changes in the steady
states of a dynamical systems. Hopf, transcritical, saddle-node are the main types of local
bifurcations whereas Bogdanov–Takens, homoclinic and heteroclinic are global bifurcations
[24]. Chaos theory discloses many new aspects of a chaotic system and explains its various
strange behaviours, for an example, the solutions of chaotic system are very sensitive to initial
population densities. Due to chaos in a dynamical model, sometimes there are abrupt changes
in the population densities of participating species which are the main challenges in handling a
chaotic system. Due to this, forecasting the behaviour of the chaotic model becomes very tough.
A fine detail about chaos theory and its components like a strange attractor, Poincar’e map,
Lyapunov exponents, etc., are provided by Hastings et al. [25]. We can confirm the occurrence
of chaos in a system by using various techniques: calculation of Lyapunov exponent, power
spectral density, fractal dimension of the map and recurrence plot [26].
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As biological processes are associated with time lag, thus time delay has a vital role in the
formulation and dynamics of their mathematical models. Adding the time delay in a differential
equation makes it delay differential equation. A comprehensive detail about delay differential
equations is present in the literature [22]. There are several kinds of delay like; gestation time,
maturation time, traveling, feedback time, incubation, fear response delay etc. Most of the time
existence of a delay in a dynamical model can destablize it and can even make chaotic [126,
117]. But sometimes addition of delay in an unstable system can suppress the oscillations and
can make its stable. Sasmal and Gosh [146] investigated the impact of dispersal in a two patch
prey-predator system in which prey disperse between patches with constant dispersing rate.
They observed that delay induced dispersal can eliminate the oscillations by amplitude death.
There are more evidences [147, 148] present in the literature in which delay can stabilize the
system through amplitude death.

In this chapter, we utilize the work of Sasmal and Takeuchi [149] to introduce the fear of
predation and its carry-over effects in a three-dimensional PZF-population model. To deal with
PZ and ZF interactions, we choose simplified Holling type IV with Holling type II as mode
of interactions, respectively. A discrete delay, carry-over delay (COE delay), corresponding
to carry-over effects, is also incorporated in the model to make it more pragmatic. The main
objectives of our investigation are to respond to the following question:

1. How the parameters related to these non-lethal effects will affect the stability nature of
the system ?

2. What will be the impact of variation of these parameters on the population densities of
the species involved in these interactions ?

3. In what manner the COE delay will change the dynamics of the system ?

The Rest of the chapter is organized as follows: In Section 5.2, we described the complete
formulation of the population model with all the significant parameters involved. In Section
5.3, we gave a thorough study of the equilibrium existence and stability analysis, and we also
outlined the bifurcation analysis at the end of this section. In Section 5.4, we analysed the
delayed system and developed its theoretical results. Next, in Section 5.5, we did extensive
simulation work to manifest the main findings of our work. In Section 5.6, we discuss the
central results of our work and provide some possible future directions.

5.2 Model development

We study a three-dimensional aquatic system with three species: phytoplankton as prey, zoo-
plankton as middle predator, and planktivorous fish as top predator. The densities of these
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species are denoted by P,Z, and F , respectively, in the order mentioned above. The establish-
ment of the proposed model is based upon the following presumptions:

1. Phytoplankton population is assumed to grow logistically with r and k as its intrinsic
growth rate and carrying capacity. Zooplankton population is assumed as specialist
predator which wholly depends upon phytoplankton population for its survival. As the
density of phytoplankton population increases then it takes the form of harmful algal
blooms (HAB), and start to liberate noxious chemicals. Thus zooplankton population
reduce the intake of phytoplankton on their dense increment, and we handle this kind
of interplay between these two species by using modified Holling type IV functional
response, H1(P) = P

γP2+α
[101]. Thus the PZ-interaction is given by

dP
dt

= rP
(

1− P
k

)
− c1PZ

γP2 +α
,

dZ
dt

=
c2PZ

γP2 +α
−d1Z.

2. Predator induces fear in prey which impacts prey’s growth rate due to shift of locality
or increment in cost of vigilance and high anti-predator attitude [68, 30]. The fear of
predators also has some carry-over effects (COEs), affecting the birth rate of prey species
[42]. Planktivorous fish also induce fear in zooplankton population with its carry-over
effects impacting zooplankton’s growth rate [114, 128, 150, 31]. Thus we use a function
in our model to describe the role of both fear and its COEs in zooplankton-fish interaction
which is given by f (c,w,Z,F) = 1+cZ

1+cZ+wF [149], where c is COE parameter due to fear,
denoted by the parameter w. Here, f has following properties related to fear [30].

• f (c,0,Z,F) = f (c,w,Z,0) = 1,

• limw→∞ f (c,w,Z,F) = limF→∞ f (c,w,Z,F) = 0,

• ∂ f
∂w < 0, ∂ f

∂F < 0.

The properties related to COEs are listed below [149].

• ∂

∂c f (c,w,Z,F) = wZF
(1+cZ+wF)2 > 0, which shows the positive impact of COEs due to

learnings from previous seasons or experiences.

• ∂

∂Z f (c,w,Z,F) = cwF
(1+cZ+wF)2 > 0, as density of zooplankton population increases,

their cost of vigilance decreases, increasing their reproduction.

• limc→∞ f (c,w,Z,F) = limZ→∞ f (c,w,Z,F) = 1, which implies if COE or zooplank-
ton’s density is very large then there is no decrement in reproduction.



5.2. Model development 135

Thus the ZF-interaction is given by

dZ
dt

=
c2PZ

γP2 +α
.

1+ cZ
1+ cZ +wF

− c3ZF
Z +β

−d1Z,

dF
dt

=
c4ZF
Z +β

−d2F,

whereas interplay between zooplankton and fish population is dealt using Holling type II
functional response.
Therefore the complete non-delayed PZF-model on which we intend to work is:

dP
dt

= rP
(

1− P
k

)
− c1PZ

γP2 +α
=: M1(P,Z,F),

dZ
dt

=
c2PZ

γP2 +α
.

1+ cZ
1+ cZ +wF

− c3ZF
Z +β

−d1Z =: M2(P,Z,F),

dF
dt

=
c4ZF
Z +β

−d2F =: M3(P,Z,F),

(5.1)

with P(0)≥ 0, Z(0)≥ 0, F(0)≥ 0.

3. Carry over effects are those events which take place in one season and their impacts
become visible in the following season or generations [43]. The COEs, due to fear, are
also not immediate, and these effects of the induced fear on the prey population will
surely involve some delay. Thus. in our system, using a carry over effect delay (COE
delay) is biologically very significant and realistic. Now we incorporate a delay τ (COE
delay) in system (5.1) to get

dP
dt

= rP
(

1− P
k

)
− c1PZ

γP2 +α
,

dZ
dt

=
c2PZ

γP2 +α
.

1+ cZ(t− τ)

1+ cZ(t− τ)+wF
− c3ZF

Z +β
−d1Z,

dF
dt

=
c4ZF
Z +β

−d2F,

(5.2)

and for biological reasons, we assume P(s) = Ψ1(s) ≥ 0, Z(s) = Ψ2(s) ≥ 0, F(s) =

Ψ3(s)≥ 0, s∈ [−τ,0], and Ψ j(s)∈C([−τ,0])→R+,( j = 1,2,3), where C is the Banach
space consisting of continuous functions. All the parameters used in systems (5.1) and
(5.2) are positive and their meanings are given in Table 5.1.

Remark 5.2.1. The per-capita growth rate of zooplankton species can be written as:

PGR :=
c2P

γP2 +α
.

1+ cZ
1+ cZ +wF

− c3F
Z +β

−d1.
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Using the above expression for PGR of zooplankton, we depicts the simultaneous effects of fear

and its carry-over effects on PGR in Fig. 5.1. From this figure, we can observe that increment

in w decrease the PGR whereas increment in c increase it. Thus we can say that in the present

chapter, the carry-over effect of induced fear is modeled in a way that it has only a positive

influence on the prey population’s per capita growth rate. This positive impact signifies the

learnings and evolution through which the prey population passes while living in challenging

conditions due to the fear of predation.

Fig. 5.1: This figure depicts the effect of fear and its carry-over effects on zooplankton’s
per-capita growth rate.

Parameters Meaning Default values References

r Maximum intrinsic growth rate of phytoplankton 1.5 [149]
k Carrying capacity of supporting environment for phytoplankton 30 [127]
c1 Rate at which zooplankton attack phytoplankton 0.9 [34]
γ Phytoplankton’s inhibitory effect against zooplankton 0.007 Selected
α Constant of half-saturation when zooplankton consume phytoplankton 10 [130]
c2 (≤ c1) Zooplankton’s net gain over phytoplankton 0.8 [151]
c COE parameter 0.01 [149]
w Fear parameter 1 [149]
c3 Rate at which fish attacks zooplankton 0.7 [151]
β Constant of half-saturation when fish consume zooplankton 51 Selected
d1 Natural mortality rate of zooplankton 0.07 [131]
c4 (≤ c3) Fish’s net gain over zooplankton 0.6 [152]
d2 Natural mortality rate of Fish 0.08 [131]

Table 5.1: Biological significance and values for parameters which are used in system
(5.1) and (5.2)

.
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5.3 Dynamics of non-delayed model

5.3.1 Preliminaries

In this subsection, we provide the preliminaries like uniform boundedness and persistence of
the non-delayed model to prove its well-posedness.

5.3.1.1 Uniform boundedness

Theorem 5.3.1. All the solutions (P(t),Z(t),F(t)) of the model (5.1) starting in R3
+ remain

uniformly bounded in the set Σ = {(P,Z,F) ∈ R3
+ : 0 ≤ P + Z + F ≤ (r+ν)2k

4rν
}, where ν =

min{d1,d2}.

Proof. For any P≥ 0, Z ≥ 0 and F ≥ 0, we have

dP
dt

∣∣∣∣
P=0

= 0,
dZ
dt

∣∣∣∣
Z=0

= 0 and
dF
dt

∣∣∣∣
F=0

= 0,

which means that P = 0, Z = 0 and F = 0 are invariant manifolds, correspondingly. Thus we
can conclude that the population model (5.1) is positively invariant in R3

+.
Now we find the invariant set in which our system remains bounded, and for this, we define a
function

W (t) = P(t)+Z(t)+F(t).

Then the derivative of this equation along solutions of (5.1) gives

dW
dt

=
dP
dt

+
dZ
dt

+
dF
dt

= rP
(

1− P
k

)
− c1PZ

γP2 +α
+

c2PZ
γP2 +α

.
1+ cZ

1+ cZ +wF
− c3ZF

Z +β
−d1Z +

c4ZF
Z +β

−d2F

≤ rP
(

1− P
k

)
+

PZ
γP2 +α

(−c1 + c2)+
ZF

Z +β
(−c3 + c4)−d1Z−d2F

≤ rP
(

1− P
k

)
−d1Z−d2F.

Now
dW
dt +νW ≤ rP

(
1− P

k

)
+νP.

This implies dW
dt +νW ≤ (r+ν)2k

4r , where ν = min{d1,d2}.
Thus limsup

t→∞

W (t) ≤ (r+ν)2k
4rν

= M(say), therefore all solutions of (5.1), initiating inside the
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positive octant of R3
+ are confined within the region Σ = {(P,Z,F) ∈ R3

+ : 0 ≤ P+ Z +F ≤
(r+ν)2k

4rν
}.

5.3.1.2 Persistence

A biological system’s persistence means that any species involved in its dynamics and with
positive starting population density will survive and will not extinct for an extended period of
time. In terms of mathematics, this means that solutions to this system that starts inside the
positive octant are limited away from the coordinate planes.

Theorem 5.3.2. System (5.1) is persistent if r > c1M
α

, Pm > (γM2+α)(1+(c+w)M)
c2

(c3M
β

+ d1) and

Zm > d2(M+β )
c4

, where Pm, Zm are defined in the proof.

Proof. From Theorem 5.3.1, we know that limsup
t→∞

(P(t) + Z(t) +F(t)) ≤ M, thus for some

ε1 > 0 ∃ t1 > 0 such that ∀ t > t1, we have P(t)< M+ ε1, Z(t)< M+ ε1, F(t)< M+ ε1.

Now from system (5.1) we have

dP
dt

= rP
(

1− P
k

)
− c1PZ

γP2 +α

≥ P
((

r− c1(M+ ε1)

α

)
− rP

k

)
,

this implies liminf
t→∞

P(t)≥ k
r

(
r− c1(M+ε1)

α

)
, which is true for some arbitrary ε1 > 0.

So, liminf
t→∞

P(t)≥ k
r

(
r− c1M

α

)
=: Pm. Thus phytoplankton species is persistent if r > c1M

α
.

Again, from (5.1)

dZ
dt

=
c2PZ

γP2 +α
.

1+ cZ
1+ cZ +wF

− c3ZF
Z +β

−d1Z

≥ Z
(

c2Pm

γ(M+ ε1)2 +α
.

1+ cZ
1+(c+w)(M+ ε1)

− c3(M+ ε1)

β
−d1

)
≥ Z

(
c2Pm

(γ(M+ ε1)2 +α)(1+(c+w)(M+ ε1))
− c3(M+ ε1)

β
−d1−Z

)
.

This implies liminf
t→∞

Z(t) ≥ c2Pm
(γ(M+ε1)2+α)(1+(c+w)(M+ε1))

− c3(M+ε1)
β

− d1, which is true for any
arbitrary ε1 > 0.
Thus liminf

t→∞
Z(t) ≥ c2Pm

(γM2+α)(1+(c+w)M)
− c3M

β
− d1 =: Zm. Hence, zooplankton population is

persistent under the condition: Pm > (γM2+α)(1+(c+w)M)
c2

(c3M
β

+d1).
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In similar manner, liminf
t→∞

F(t) ≥ c4Zm
M+β
− d2 =: Fm, which is positive if Zm > d2(M+β )

c4
. Hence,

the theorem is proved.

Remark 5.3.1. From the above Theorem 5.3.2, we can notice that the phytoplankton population

persists if r is greater than some critical value. Persistence of zooplankton and fish population

depends on the minimum values of phytoplankton and zooplankton, respectively (i.e., their

respective prey). Thus we can say that the established conditions for the persistence of the

population model are ecologically well behaved.

5.3.2 Feasible equilibria and their stability analysis

5.3.2.1 Equilibrium feasibility

Model (5.1) can have at most four types of non-negative equilibrium points, which are stated
below.

(i) The zero equilibrium E0(0,0,0) and zooplankton-fish free equilibrium E1(k,0,0) both
exist trivially.

(ii) There can be two fish free equilibrium points E21 = (P21,Z21,0) and E22 = (P22,Z22,0)

where P21 =
c2+
√

c2
2−4αγd2

1
2γd1

, Z21 = r
(

1− P21
k

)
γP2

21+α

c1
and P22 =

c2−
√

c2
2−4αγd2

1
2γd1

, Z22 =

r
(

1− P22
k

)
γP2

22+α

c1
. Thus fish free equilibrium exists if P21 < k, P22 < k and c2

d1
> 2
√

αγ .

(iii) For coexistence equilibrium E∗(P∗,Z∗,F∗), we note the following:
Z∗ is given by

Z∗ =
d2β

c4−d2
,

which is positive if

c4 > d2. (5.3)

Phytoplankton coordinate P∗ of E∗ is the positive root of the cubic equation

g(P) = Ω3P3 +Ω2P2 +Ω1P+Ω0 = 0, (5.4)



140
Chapter 5. Chaotic dynamics of a plankton-fish system with fear and its carry over effects in

the presence of a discrete delay

where

Ω3 = rγ (> 0),

Ω2 =−rγk (< 0),

Ω1 = rα (> 0),

Ω0 = k(c1Z∗− rα).

Thus (5.4) can have no, unique or multiple positive roots depending on the signs of Ω0

and Φ, where
Φ = 18Ω3Ω2Ω1Ω0−4Ω3

2Ω0 +Ω2
2Ω2

1−4Ω3Ω3
1−27Ω2

3Ω2
0.

Fish coordinate F∗ of E∗ is the positive root of quadratic equation given by

Λ2F2 +Λ1F +Λ0 = 0, (5.5)

where

Λ2 = c3w (> 0),

Λ1 = c3(1+ cZ∗)+d1w(Z∗+β ) (> 0),

Λ0 = (1+ cZ∗)(Z∗+β )(d1−
c2P∗

γP∗2 +α
).

So, (5.5) has a unique positive root if Λ0 < 0, i.e., d1 < c2P∗

γP∗2+α
which implies that for

the survival of fish population, the mortality rate of zooplankton population must be less
than its numeric response over phytoplankton population. This shows the dependence of
top predator over basal prey through the middle predator.

We note that for each P∗, there will be a corresponding unique F∗ (for Λ0 < 0). Using
this fact, we present a theorem for existence of interior equilibrium.

Theorem 5.3.3. The non-delayed system (5.1) can have various coexistence equilibria

depending upon following conditions:

(a) No coexistence equilibrium if Ω0 > 0 and Φ < 0.

(b) Unique coexistence equilibrium (P∗11,Z
∗,F∗11) if Ω0 < 0, Φ < 0 and d1 <

c2P∗11
γP∗11

2+α
.

(c) Two coexistence equilibrium (P∗21,Z
∗,F∗21) and (P∗22,Z

∗,F∗22) if Ω0 > 0, Φ > 0 and

d1 < min{ c2P∗21
γP∗21

2+α
,

c2P∗22
γP∗22

2+α
}.

(d) Three coexistence equilibrium (P∗31,Z
∗,F∗31),(P

∗
32,Z

∗,F∗32) and (P∗33,Z
∗,F∗33) if Ω0 <

0, Φ > 0 and d1 < min{ c2P∗31
γP∗31

2+α
,

c2P∗32
γP∗32

2+α
,

c2P∗33
γP∗33

2+α
}.
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5.3.2.2 Local stability assessment

In local stability analysis around a particular equilibrium point of a system, we evaluate the Ja-
cobian at that point and determine the stability by checking the signs of real part of eigenvalues
of this matrix. For system (5.1), local stability investigation is given below.

1. Eigenvalues of J|E0 (Jacobian evaluated at E0) are r, −d1 and −d2, thus E0 is a saddle
point.

2. Eigenvalues of J|E1 are −r, c2k
γk2+α

− d1 and −d2, so E1 is locally asymptotically stable

d1 >
c2k

γk2+α
otherwise a saddle point. Thus if E1 is locally asymptotically stable, then E∗

can not exist.

3. Here, we present a theorem which describes the local asymptotic stability behavior of
fish free equilibrium points.

Theorem 5.3.4. The fish free equilibrium E22 = (P22,Z22,0) is locally asymptotically

stable if the conditions d2 > c4Z22
Z22+β

, r
k > 2c1γP22Z22

(γP2
22+α)2 and P22 <

√
α

γ
hold whereas E21 =

(P21,Z21,0) is always a saddle point whenever it exists.

Proof. The Jacobian matrix evaluated at fish free equilibrium E2i, i = 1,2, is given by:

J|E2i =


− rP2i

k +
2c1γP2

2iZ2i

(γP2
2i+α)2

−c1P2i
γP2

2i+α
0

c2Z2i(−γP2
2i+α)

(γP2
2i+α)2 0 −c2wP2iZ2i

γP2
2i+α

− c3Z∗
Z2i+β

0 0 c4Z2i
Z2i+β

−d2

 .

One eigenvalue of J|E2i is c4Z2i
Z2i+β

−d2 and other two are the roots of equation

Γ
2 +A1Γ+A2 = 0, (5.6)

where A1 =
rP2i

k −
2c1γP2

2iZ2i

(γP2
2i+α)2 , A2 =

c1c2P2iZ2i(−γP2
2i+α)

(γP2
2i+α)3 . Using Routh-Hurwitz criterion [134],

(5.6) has roots with negative real parts if A1 > 0 and A2 > 0. However, A2 > 0 is not pos-
sible in case of E21. Because in this case, A2 > 0 implies P2

21 < α

γ
which means that

(c2
2− 4αγd2

1)+ c2

√
c2

2−4αγd2
1 < 0, which is not true. Hence, E21 is always a saddle

point (A2 is negative in this case) whenever it exists while E22 is locally asymptotically
stable if d2 > c4Z22

Z22+β
, r

k > 2c1γP22Z22
(γP2

22+α)2 and P22 <
√

α

γ
. This completes the proof of this

theorem.
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4. Now we present the conditions for asymptotic stability of interior equilibrium points. As
we do not have the explicit expressions for different interior equilibria thus, we deduce
the stability conditions for a general interior equilibrium point E∗(P∗,Z∗,F∗).

Theorem 5.3.5. Coexistence equilibrium E∗ is locally asymptotically stable if the con-

ditions σ2 > 0, σ0 > 0 and σ2σ1 > σ0 hold, where σ0, σ1 and σ2 are defined in the

proof.

Proof. Jacobian matrix corresponding to E∗(P∗,Z∗,F∗) is given by

JE∗ =

a11 a12 0
a21 a22 a23

0 a32 0

 ,
where a11 =− rP∗

k + 2c1γP∗2Z∗

(γP∗2+α)2 , a12 =
−c1P∗

γP∗2+α
, a21 =

c2Z∗(−γP∗2+α)

(γP∗2+α)2 . 1+cZ∗
1+cZ∗+wF∗ ,

a22 =
c2P∗

γP∗2+α
. wcZ∗F∗
(1+cZ∗+wF∗)2 +

c3Z∗F∗

(Z∗+β )2 , a23 =−c2wP∗Z∗

γP∗2+α
. 1+cZ∗

1+cZ∗+wF∗ −
c3Z∗

Z∗+β
, a32 =

c4βF∗

(Z∗+β )2 .

The characteristic equation for JE∗ is

ϒ
3 +σ2ϒ

2 +σ1ϒ+σ0 = 0, (5.7)

where σ2 =−(a11 +a22), σ1 = a11a22−a23a32−a12a21 and σ0 = a11a23a32.

From Routh-Hurwitz criterion, roots of (5.7) have negative real parts iff σ2 > 0, σ0 > 0
and σ2σ1 > σ0. Thus, E∗ is locally asymptotically stable if the conditions mentioned in
the statement of this theorem hold.

5.3.2.3 Global stability analysis

For global stability of coexistence equilibrium, first we suppose that condition in Theorem 5.3.3
(b) is satisfied so that model (5.1) has a unique positive equilibrium E∗(P∗,Z∗,F∗). Thus we
state the following theorem.

Theorem 5.3.6. The unique coexistence equilibrium E∗(P∗,Z∗,F∗) is globally asymptotically

stable if the condition:

M
(

c1P∗

α
+

c3Z∗

β

)
+

r(k+P∗)2

4k
+d1Z∗+d2F∗ <

(c1− c2)ZmPm

γM2 +α
+

(c3− c4)ZmFm

M+β
+

c2PmZ∗

(γM2 +α)(1+(c+w)M)
+

c4ZmF∗

M+β

holds.
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Proof. For proving above theorem, we choose a Lyapunov function:

U =
(

P−P∗−P∗ ln
( P

P∗
))

+
(

Z−Z∗−Z∗ ln
( Z

Z∗
))

+
(

F−F∗−F∗ ln
( F

F∗
))

.

Now on differentiating U with respect to solution of (5.1), we get

dU
dt

=
r
k
(P−P∗)(k−P)− c1Z(P−P∗)

γP2 +α
+

c2P(Z−Z∗)
γP2 +α

.
1+ cZ

1+ cZ +wF
− c3F(Z−Z∗)

Z +β
−d1(Z−Z∗)

+
c4Z(F−F∗)

Z +β
−d2(F−F∗)

≤ r
k
(kP−P2− kP∗−PP∗)− c1ZP

γP2 +α
+

c1ZP∗

γP2 +α
+

c2PZ
γP2 +α

− c2PZ∗

(γP2 +α)(1+ cZ +wF)

− c3FZ
Z +β

+
c3FZ∗

Z +β
+d1Z∗+

c4ZF
Z +β

− c4ZF∗

Z +β
+d2F∗

≤− r
k

(
P− k+P∗

2

)2

+
r(k+P∗)2

4k
+

c1MP∗

α
+

c3MZ∗

β
− (c1− c2)ZmPm

γM2 +α
− (c3− c4)ZmFm

M+β

− c2PmZ∗

(γM2 +α)(1+(c+w)M)
− c4ZmF∗

M+β
−d1Zm−d2Fm +d1Z∗+d2F∗.

Thus dU
dt < 0 if the condition:

M
(

c1P∗

α
+

c3Z∗

β

)
+

r(k+P∗)2

4k
+d1Z∗+d2F∗ <

(c1− c2)ZmPm

γM2 +α
+

(c3− c4)ZmFm

M+β
+

c2PmZ∗

(γM2 +α)(1+(c+w)M)
+

c4ZmF∗

M+β

holds. Therefore, the non-delayed system is globally asymptotically stable if the claimed con-
dition is true.

5.3.3 Bifurcation analysis

5.3.3.1 Hopf bifurcation

Theorem 5.3.7. Non-delayed model (5.1) undergoes Hopf bifurcation around E∗ at c = cH if

the following conditions are fulfilled:

1. σ2(cH)σ1(cH)−σ0(cH) = 0,

2.
(

σ2
dσ1
dc +σ1

dσ2
dc −

dσ0
dc

)
c=cH

6= 0.

Proof. Here, we discuss about the Hopf-bifurcation of non-delayed model (5.1), with respect
to COEs parameter c by keeping rest of the parameters fixed.
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At critical value of c = cH , we have

σ2(cH)σ1(cH)−σ0(cH) = 0. (5.8)

At this critical value, the characteristic equation of JE∗ , (5.7) can be written as (ϒ2 +σ1)(ϒ+

σ2) = 0. For occurrence of Hopf bifurcation at this critical value, this equation must has a
pair of purely imaginary complex roots for which we assume that σ1 > 0 at c = cH [121].
Using Routh-Hurwitz conditions, we know that σ2 > 0 thus (5.7) has two purely imaginary
complex roots ϒ1,2 = ±i

√
σ1 and a negative real root ϒ3 = −σ2 at c = cH . For evaluating

transversality condition, we assume that the roots ϒ1,2 becomes the function of c such that
ϒ1,2 = η1(c)± iη2(c). On substituting η1 + iη2 in (5.7), and separating real, imaginary parts,
we get

η
3
1 −3η1η

2
2 +σ2(η

2
1 −η

2
2 )+σ1η1 +σ0 = 0, (5.9)

3η
2
1 η2−η

3
2 +2σ2η1η2 +σ1η2 = 0. (5.10)

As η2(c) 6= 0 for Hopf bifurcation, thus using (5.10), we have η2
2 = 3η2

1 + 2σ2η1 +σ1 and
using this value of η2

2 in (5.9), we get

8η
3
1 +8σ2η

2
1 +2η1(σ

2
2 +σ1)+σ2σ1−σ0 = 0. (5.11)

On differentiating (5.11), and using η1 = 0, we get[
dη1

dc

]
c=cH

=− 1
2(σ2

2 +σ1)

[
σ1

dσ2

dc
+σ2

dσ1

dc
− dσ0

dc

]
c=cH

.

So, the transversality condition is[
σ1

dσ2

dc
+σ2

dσ1

dc
− dσ0

dc

]
c=cH

6= 0, (5.12)

which completes the proof.

5.3.3.2 Transcritical bifurcation

Theorem 5.3.8. Fish free equilibrium E22 becomes stable through transcritical bifurcation at

d2 = dtc
2 = c4Z22

Z22+β
. After this critical value of d2, fish species goes to extinct because of which

the interior equilibrium vanishes.

Proof. At d2 = dtc
2 = c4Z22

Z22+β
, one of the eigenvalue of J|E22 becomes zero. Let w1 =

[
−
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e23
e21

, e23e11
e12e21

,1
]T

and w2 = [0,0,1]T are the eigenvectors corresponding to zero eigenvalue of

J|(E22:dtc
2 ) and JT |(E22:dtc

2 ), respectively, where ei j, i, j = 1,2,3 are the entries of J|(E22:dtc
2 ). Now

let Q(P,Z,F) = [M1,M2,M3]
T , and using Sotomayer’s theorem [24], the transversality condi-

tions for transcritical bifurcation are:

• wT
2 Qd2(E22 : dtc

2 ) = 0,

• wT
2 [DQd2(E22 : dtc

2 )]w1 =−1 6= 0,

• wT
2 [D

2Q(E22 : dtc
2 )(w1,w1)] =

2e11e23
e12e21

. c4
(Z22+β )2 6= 0.

Therefor, all the conditions of Sotomayer’s theorem are satisfied, hence system (5.1) will un-
dergo transcritical bifurcation at d2 = dtc

2 = c4Z22
Z22+β

.

5.4 Dynamics of delayed model

5.4.1 Local stability investigation and Hopf bifurcation

Here we discuss about local stability behavior of delayed model (5.2) about the coexistence
equilibrium E∗(P∗,Z∗,F∗) and evaluate the critical value of bifurcation parameter, COE delay,
τ . Now let us define P(t) = P̄(t)+P∗, Z(t) = Z̄(t)+Z∗ and F(t) = F̄(t)+F∗. Thus the linear
form of the delayed system is

dW
dt

= R1W (t)+R2W (t− τ), (5.13)

where

R1 =

 j11 j12 0
j14 j15 j16

0 j18 j19

 , R2 =

0 0 0
0 j25 0
0 0 0

 ,
where
j11 =− rP∗

k + 2c1γP∗2Z∗

(γP∗2+α)2 , j12 =
−c1P∗

γP∗2+α
, j14 =

c2Z∗(−γP∗2+α)

(γP∗2+α)2 . 1+cZ∗
1+cZ∗+wF∗ , j15 =

c2P∗

γP∗2+α
. 1+cZ∗

1+cZ∗+wF∗−
c3βF∗

(Z∗+β )2 −d1,

j16 =−c2wP∗Z∗

γP∗2+α
. 1+cZ∗
(1+cZ∗+wF∗)2− c3Z∗

Z∗+β
, j18 =

c4βF∗

(Z∗+β )2 , j19 =
c4Z∗

Z∗+β
−d2, j25 =

c2P∗Z∗

γP∗2+α
. wcF∗
(1+cZ∗+wF∗)2 ,

and W (t) = (P̄(t), Z̄(t), F̄(t))T .
The variational matrix for model (5.2) at E∗ is

J = R1 +R2e−λτ .
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Thus the characteristic equation for J is

λ
3 +q1λ

2 +q2λ +q3 + e−λτ(q4λ
2 +q5λ +q6) = 0, (5.14)

where
q1 = −( j11 + j15 + j19), q2 = j15 j19 + j11 j19 + j11 j15− j12 j14− j16 j18, q3 = − j11 j15 j19 +

j12 j14 j19 + j11 j16 j18, q4 =− j25, q5 = j25( j19 + j11), q6 =− j11 j25 j19.

Now we can have the following cases:
Case I: When τ = 0, system (5.2) reduces to system (5.1), whose stability conditions are given
in subsection 5.3.2.
Case II: When τ 6= 0, on substituting λ = iω in (5.14), we get

q5ω cosωτ +(q4ω
2−q6)sinωτ = ω

3−q2ω

(−q4ω
2 +q6)cosωτ +q5ω sinωτ = q1ω

2−q3,
(5.15)

After squaring and adding the equations in (5.15), we have:

ω
6 +(q2

1−2q2−q2
4)ω

4 +(q2
2−2q1q3 +2q4q6−q2

5)ω
2 +q2

3−q2
6 = 0. (5.16)

It is easy to observe that (5.16) is having at least one positive root ω if q2
3−q2

6 < 0, substituting
this ω in (5.15), we get

τn =
1
ω
.arccos

[
F1E11−F2E12

E2
11 +E2

12

]
+

2nπ

ω
, n = 0,1,2,3..., (5.17)

where
E11 = q5ω, E12 = q4ω2−q6, F1 = ω3−q2ω, F2 = q1ω2−q3.

For transversality condition, put λ = ξ + iω in (5.14) and after separating real and imaginary
parts, we get

ξ
3−3ξ ω

2 +q1(ξ
2−ω

2)+q2ξ +q3 + e−ξ τ0 cosωτ0(q4(ξ
2−ω

2)+q5ξ +q6)

+ e−ξ τ0 sinωτ0(2q4ξ ω +q5ω) = 0,
(5.18)

and
−ω

3 +3ξ
2
ω +2q1ξ ω +q2ω + e−ξ τ0 cosωτ0(2q4ξ ω +q5ω)

− e−ξ τ0 sinωτ0(q4(ξ
2−ω

2)+q5ξ +q6) = 0.
(5.19)
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Differentiating (5.18) and (5.19) with respect to τ and putting ξ = 0 provides

Q1

[
d[Re(λ (τ0))]

dτ0

]
+Q2

[
d[Im(λ (τ0))]

dτ0

]
= R1,

−Q2

[
d[Re(λ (τ0))]

dτ0

]
+Q1

[
d[Im(λ (τ0))]

dτ0

]
= R2,

(5.20)

where
Q1 = [−3ω2 +q2 +(q5 +(q4ω2−q6)τ0)cosωτ0 +(2ωq4−q5ωτ0)sinωτ0],

Q2 = [−2ωq1 +(q5 +(q4ω2−q6)τ0)sinωτ0)+(−2ωq4 +b5ωτ0)cosωτ0],

R1 = [ω(q6−q4ω2)sinωτ0−q5ω2 cosωτ0],

R2 = [ω(q6−q4ω2)cosωτ0 +q5ω2 sinωτ0].

From equation (5.20), we get

[
d[Re(λ (τ0))]

dτ0

]
= R1Q1−R2Q2

Q2
1+Q2

2
. Thus the tranversality condition for

occurrence of Hopf-bifurcation holds if R1Q1−R2Q2 6= 0. Thus, we can state the following
theorem.

Theorem 5.4.1. The delayed system is unstable (or stable) for τ < τ0 and becomes stable (or

unstable) through Hopf bifurcation at τ = τ0 if the conditions q2
3 < q2

6 and R1Q1−R2Q2 < 0
(or R1Q1−R2Q2 > 0) hold simultaneously.

5.5 Numerical work

For the purpose of numerical simulation, we have used MATLAB R2019b to draw all the figures
in this manuscript. We perform the simulation experiments with the values of parameters which
are provided in Table 5.1. With this set of values, the possible equilibrium points and their
nature, are described in Table 5.2. From this table we can notice that for this set of parameters
E0, E1 both are saddle points, the fish free equilibrium E22 is saddle point whereas a unique
interior equilibrium E∗ is locally asymptotically stable.

Equilibrium Eigenvalues of corresponding Jacobian Nature of equilibrium

E0(0,0,0) (1.5000,-0.0700,-0.0800) Saddle point
E1(30,0,0) (-1.5000,1.4024,-0.0800) Saddle point
E22(0.8755,16.1890,0) (0.0646,−0.0211±0.3184i) Saddle point
E∗(18.6398,7.8462,7.2199) (−0.6300,−0.0292±0.1283i) LAS

Table 5.2: Possible equilibria, eigenvalues of corresponding Jacobians and nature of
these equilibria for parameters from Table 5.1, where LAS stands for locally asymptoti-
cally stable.
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Now we discuss the existence of multiple interior equilibria of the non-delayed system. For
a set of parameters (values are given in the figure for this specific demonstration), (5.4) can
have a different number of positive roots. From Fig. 5.2(a) we can see that for a particular pair
of r and γ , g(P) does not have a positive root, while on the variation of these two parameters,
it can have one, two, or three positive roots which are evident from Figs. 5.2(b), 5.2(c) and
5.2(d), respectively. We also draw the bi-parametric existence diagram for interior equilibria
in rγ-plane using Theorem 5.3.3 in Fig. 5.2(e). This Theorem divides the above plane into
four different regions represented by; yellow, blue, magenta, and cyan colors accordingly with
no coexistence equilibrium, one coexistence equilibrium, two coexistence equilibria, and three
coexistence equilibria. The Fig. 5.2(f) portrays the number of interior equilibrium (particularly
P coordinate of E∗) with their stability: green colored equilibrium is sink; red colored equilib-
rium is source whereas black colored equilibrium is saddle point. This attribute of change in
the number of interior equilibrium points on variation of r and γ demonstrates their significance
in the dynamics of the model. We also portrait the global stability for the unique coexistence
equilibrium in Fig. 5.3 for the set of parameters given in Table 5.1, in which many solutions
with different initial set of conditions (marked with black dots) approaches it (marked with red
dot) as time passes.

-5 0 5 10 15 20
-30

-20

-10

0

10

20

30

(a) r = 0.93, γ = 0.015.
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(d) r = 1, γ = 0.02.
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(e) Bi-parametric existence diagram for no or
multiple interior equilibrium points, where
yellow, blue, magenta and cyan depicts no,
one, two or three interior equilibrium points,
respectively.

(f) r vs P∗ for γ = 0.016.

Fig. 5.2: Figs. (a), (b), (c) and (d) show the non-existence and existence of multiple
positive roots of g(P), Fig. (e) depicts various regions in rγ-plane for different num-
ber of interior equilibrium points whereas Fig. (f) shows number of interior equilibrium
with their stability; green denotes sink; red denotes source; black denotes saddle, for
γ = 0.016, k = 28, α = 3.5, β = 22.7, c4 = 0.57 and values of remaining parameters
from Table 5.1.

Fig. 5.3: Global stability of unique coexistence equilibrium E∗ for the parameters given
in Table 5.1.

From subsection 5.3.2, it is clear that phytoplankton and zooplankton coordinates (P∗ and
Z∗) at interior equilibrium are independent from COE parameter c whereas fish population
density varies as we change c. Thus from (5.5), we get
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F∗ =
−(c3(1+cZ∗)+d1w(Z∗+β ))+

√
(c3(1+cZ∗)+d1w(Z∗+β ))2−4c3w(1+cZ∗)(Z∗+β )(d1−

c2P∗

γP∗2+α
)

2c3w ,

(5.21)
and from (5.21) we can easily get

dF∗
dc = 1

2c3w

(
− c3Z∗+

2(c3(1+cZ∗)+d1w(Z∗+β ))c3Z∗−4c3wZ∗(Z∗+β )(d1−
c2P∗

γP∗2+α
)

2
√
(c3(1+cZ∗)+d1w(Z∗+β ))2−4c3w(1+cZ∗)(Z∗+β )(d1−

c2P∗

γP∗2+α
)

)
,

(5.22)
which implies

lim
c→∞

dF∗

dc
= 0.

This implies that when parameter c tends to infinity, F∗ saturates and this saturated value is
given by the equation given below (obtained from (5.5))

lim
c→∞

F∗ =−
−Z∗(Z∗+β )(d1− c2P∗

γP∗2+α
)

c3Z∗
> 0. (5.23)

For the set of parameters mentioned in Table 5.1, we have presented the above remark related to
c in Fig. 5.4(a). This growth in fish population on the increasing parameter c can be explained;
we have noticed from the formulation of our model in Section 5.2 that the carry-over effects
have positive impacts on the zooplankton’s PGR. Thus rising c, the per-capita growth rate of
zooplankton species increases correspondingly (Fig. 5.1). As zooplankton’s PGR grows, its
predator fish density also amplifies in its response which is exhibited in Fig. 5.4(a).

In case of fear effect, again both phytoplankton and zooplankton coordinates of E∗ are
independent of fear parameter w. From equation (5.5), we have

lim
w→∞

(
c3wF∗2 +[c3(1+ cZ∗)+(d1w(Z∗+β )]F∗+(1+ cZ∗)(Z∗+β )(d1−

c2P∗

γP∗2 +α
)

)
= 0,

which implies

lim
w→∞

(
c3F∗2 +(d1(Z∗+β ))F∗

)
= 0,

thus we get
lim

w→∞
F∗ = 0.

This extinction of fish species on increasing fear parameter is manifested in Fig. 5.4(b). Speak-
ing biologically, due to increased fear of fish population, zooplankton species restrict their
foraging space, which can be seen as their antipredator behavior in response to this non-lethal
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effect of fish. This reduction in foraging also decreases zooplankton’s predation, which corre-
spondingly curtails fish population density. As the fish population is a specialist predator in the
proposed model, thus increasing fear up to a high value leads to their extinction. The behavior
of fish population on variation of both c and w simultaneously is depicted in Fig. 5.4(c). From
the surface in this figure, we can observe that on increasing c, F∗ increases and on increasing
w, F∗ decreases. These trends in fear inducing population on increasing COE parameter and
fear parameters which we have observed in our investigation agree with the results presented in
studie [149, 153].

About the change in stability nature of the non-delayed system as we vary c, we have pre-
sented several phase portraits in Fig. 5.5. From these figures, we can notice that the system
is stable for small and large values of c, whereas we have periodic or chaotic oscillations for
its intermediate values. The whole dynamics on the variation of c is also illustrated by plot-
ting the bifurcation diagram for phytoplankton population in Fig. 5.6(a). For a better view,
we have drawn the bifurcation diagrams for c ∈ [0.08,11], and the stable nature of the model
for lower and higher values of c are depicted by the phase portraits in Figs. 5.5(a) and 5.5(f),

respectively. At c= cH ≈ 0.1064,
(

σ2
dσ1
dc +σ1

dσ2
dc −

dσ0
dc

)
c=cH
≈ 0.0032 6= 0. This implies that

the conditions for Hopf bifurcation (Theorem 5.3.7) are fulfilled, thus system (5.1) undergoes
Hopf-bifurcation at c = cH ≈ 0.1064. From the bifurcation diagram, we can observe that for
intermediate values of c, non-delayed system is chaotic which implies that its dynamics is very
sensitive to initial conditions. These chaotic as well as periodic oscillations can be eradicated
for lower and higher values of c. This implies that, for these values of c the population den-
sities are not sensitive to their respective initial conditions and their asymptotic nature can be
predicted. The amplitude of oscillations decreases as we move from chaotic regime to periodic
regime, and it further decreases as we shift from a higher periodic solution to a lower periodic
solution. For confirmation of the chaotic nature of the non-delayed system, we have plotted
maximum Lyapunov exponent vs c graph in Fig. 5.6(b). The positive values of maximum Lya-
punov exponent in this graph validates the bifurcation diagram presented in Fig. 5.6(a). We
have also done the sensitivity analysis by starting two solutions (Fig. 5.7(a)) closely to each
other. We observe that as time passes, these two solutions deviate from each other, showing the
system’s chaotic behavior. A Poincar’e map having scattered sampling points in Fig. 5.7(b),
also confirms the non-delayed system’s chaotic nature for c = 4.5.
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Fig. 5.4: Figs. (a) shows that F∗ increases on increasing c and saturates when c is large
i.e., F∗→ 94.9495 as c→∞, and in Fig. (b), fish species goes to extinction when w→∞,
whereas Fig. (c) gives the trend of F∗ in cwF∗-space, with other parameters from Table
5.1.

(a) c = 0.08 (b) c = 1 (c) c = 4.5
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(d) c = 6 (e) c = 11 (f) c = 30
Fig. 5.5: Different phase portraits depicting the dynamics of the non-delayed system
from stable to chaotic and again to stable on increasing the parameter c, with remaining
parameters from Table 5.1.
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Fig. 5.6: Fig. (a) outlines the behavior of the non-delayed system by plotting P vs c
graph whereas Fig. (b) gives maximum Lyapunov exponent on variation of c, with other
parameters from Table 5.1.

The phase portrait given in Fig. 5.5(c) represents the chaotic behavior of the non-delayed
system for c = 4.5. This chaotic behavior of the model can be controlled by decreasing the
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fear parameter w, which is evident from the bifurcation diagrams given in Fig. 5.8. From these
bifurcation figures, we can observe that on abating w, the chaotic oscillations are reduced to the
period-8 solution, which further reduces to period-4, period-2, period-1 and finally converge to
interior equilibrium.

In an ecological system, increasing the amount of available food for prey population, i.e.,
carrying capacity, sometimes can give rise to periodic oscillations, and this phenomenon of
making the system unstable on increasing the carrying capacity is known as the paradox of
enrichment [136]. There are many evidences for the occurrence of this phenomenon in the
literature [55, 137]. Due to complexity, our current system also have this behavior, which is
apparent from Fig. 5.9. From this figure, we can observe that the model is stable for initial
values of k, but after a threshold value, it becomes unstable with a rise of period-1 solutions. In
our system, we try to fix this issue by adjusting the parameter γ , which denotes phytoplankton’s
inhibitory effect against zooplankton due to its toxic effect (Fig.5.10(a)). From this figure, we
can note that non-delayed population model (5.1) will be stable with a combination of values
of k and γ from the cyan region and unstable from the black area. Thus, we can resolve this
paradox in our system by decreasing γ . In a similar manner, we can eliminate the periodic
oscillations by decreasing the parameter r (Fig. 5.10(b)).

Non-delayed model (5.1), undergoes transcritical bifurcation with respect to d2. At d2 =

dtc
2 = 0.1447, γ = 0.2525 and remaining parameters from Table 5.1, fish free equilibrium E22

becomes stable through transcritical bifurcation. For showing this character, we have presented
a phase portrait diagram (Fig. 5.11(a)) in which system is unstable for d2 = 0.11 then it become
stable around interior equilibrium at d2 = 0.13 and on its further increase fish free equilibrium
becomes stable (d2 = 0.145 > dtc

2 ). These three solutions with three different values of d2 have
same initial point. A bi-parametric bifurcation diagram in γd2-plane is also drawn to observe
this transition in Fig. 5.11(b).

4500 4600 4700 4800 4900 5000
0

5

10

15

20

25

30 (IC:10.001,10,10)
(IC:10,10,10)

4500 4600 4700 4800 4900 5000
0

5

10

15

20

25 (IC:10.001,10,10)
(IC:10,10,10)

4500 4600 4700 4800 4900 5000
20

25

30

35

40

45
(IC:10.001,10,10)
(IC:10,10,10)

(a)



5.5. Numerical work 155

2 4 6 8 10 12 14 16
24

26

28

30

32

34

36

38

40

(b)
Fig. 5.7: Sensitivity of two different solutions corresponding to two different initial con-
ditions is shown by Fig. (a) whereas Fig. (b) depicts Poincar’e map at c = 4.5 in PF-
plane with Z = 15, and remaining parameters from Table 5.1.

Multistability is an attractive attribute of non-linear systems, in which it can have a number
of coexisting stable attractors with the same set of parameters. The character of multistablity
increases the flexibility of the corresponding model. Our non-delayed model (5.1) also shows
this character, with a set of parameters (provided with figure), the system manifests bistability
between a stable limit cycle and an interior equilibrium which is portrayed in Fig. 5.12(a). Both
of the attractors have their respective regions of attraction; we have drawn these regions which
are also known as basins of attraction, in Fig. 5.12(b). In this figure (Fig. 5.12(b)), red dots
denote the initial conditions from where the solution will tend to the stable limit cycle, whereas
green dots represent those initial conditions from which the solution will converge to stable
interior equilibrium.

(a) (b)
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(c)
Fig. 5.8: Figs. (a), (b) and (c) show the bifurcation diagram for P, Z and F , respectively
for w ∈ [0.1,1], c = 4.5, and values of remaining parameters from Table 5.1.

(a) (b)

(c)
Fig. 5.9: Figs. (a), (b) and (c) demonstrate the phenomena of enrichment of paradox for
system (5.1), with γ = 0.02 and values of remaining parameters from Table 5.1

.
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(a) (b)
Fig. 5.10: This figure gives biparametric bifurcation diagrams in kγ−plane (Fig. (a)),
and kr−plane (Fig. (b)). In both the figures, the cyan-colored dot represents the combi-
nation for the stable interior equilibrium, and black for period-1 oscillations, with other
parameters same as in Table 5.1.

(a) (b)
Fig. 5.11: With γ = 0.02525 and values of remaining parameters from Table 5.1, Fig.
(a) shows stable limit cycle, stable interior equilibrium point, and stable fish free equi-
librium for d2 = 0.11,0.13, and 0.145, respectively. In Fig. (b) black, magenta, and blue
dots represent the combinations of γ and d2 parameters for stable limit cycle, stable inte-
rior equilibrium, and stable fish free equilibrium, respectively.

In the analysis related to delayed model, our main concern is to investigate the change in
system’s attitude when we introduce COE delay, τ , in the non-delayed system. For this objec-
tive we use c = 4.5 and the remaining parameters from Table 5.1. For these set of parameters,
the non-delayed system is chaotic in nature which is illustrated in Fig. 5.5(c). Now we introduce
the delay in the non-delayed model, and for a starting range of τ , system remains chaotic and
on further increase of τ system’s solution turn into periodic one after which it becomes chaotic
once again. Now as we further increase τ , delayed system’s solution becomes of finite pe-
riod from infinite and finally becomes stable through period halving bifurcation (Figs. 5.13(a),
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5.13(b), 5.13(c)). This happening of Hopf bifurcation and the change of system’s behavior from
unstable to stable with respect to delay τ is due to amplitude death (AD) phenomenon. Here,
amplitude death is a situation when oscillations are eliminated when individual oscillators are
coupled and return to the steady state of the system [148]. This whole event can also be verified
from the analysis done in subsection 5.4.1. For the delayed model, using c = 4.5 and the other
parameters from Table 5.1 in (5.16) and (5.17), we have the followings:

ω = 0.1689, τ0 = 4.9880, and R1Q1−R2Q2 =−0.0180 < 0.

As R1Q1−R2Q2 < 0 which implies

[
d[Re(λ (τ0))]

dτ0

]
< 0, so at the critical value of τ = τ0, the

sign of real part of λ becomes negative from positive, i.e, system becomes stable after Hopf
bifurcation when τ crosses its critical value. Therefore, delay induced carry-over effect can
stablize our plankton-fish population model for the parameters in Table 5.1.

Like of c, the fear parameter w can also play an important role in the dynamics of the
delayed model. Thus to see the combined effect of w and c on τ = τ0, we draw a Hopf surface
in cwτ0-space (Fig. 5.14). It is clear from this figure that the critical value of τ is high for
combinations of greater and lower values of w and c, respectively, whereas it is low in the
opposite situation.

(a) (b)
Fig. 5.12: The phase portrait in Fig. (a) exhibits bistability whereas Fig. (b) represent
their respective basins of attraction for the interior equilibrium and the stable limit
cycle (red region for stable limit cycle; green region for interior equilibrium) with
P(0) ∈ [1,10], Z(0) ∈ [1,5], F(0) ∈ [0.3,0.8], for r = 1.03, k = 28, γ = 0.016, α =
3.5, w = 20, β = 22.7, c4 = 0.57 and remaining parametric values from Table 5.1.
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(a)

(b) (c)
Fig. 5.13: Figs. (a), (b) and (c) show the bifurcation diagram for P, Z and F , respec-
tively w.r.t COE time delay τ which demonstrate transformation of chaotic system into a
stable one by increasing delay τ , with c = 4.5 and keeping other parameters same as in
Table 5.1.

Fig. 5.14: Hopf surface in cwτ0-space, with other parameters same as in Table 5.1.

5.6 Conclusion

One of the fundamental goals of evolutionary biology is to understand the factors that influence
or determine the survival and evolution of ecological species. In the literature, scientists have
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mostly focused on the direct effects of predator species on prey populations in a prey-predator
relationship. However, several recent studies [30, 117] have contributed to the inclusion of the
predator’s non-lethal influence, the induction of fear in prey-species. These non-lethal impacts
are also carried over to subsequent seasons or generations [39]. In the marine ecosystem, fish
generate fear in the zooplankton population in a PZF-system [114], but little attention has been
paid to this form of interaction. Thus in the present chapter, we attempted to investigate the
effects of fear and their carry-over effects in a PZF-system with a discrete delay.

Firstly we introduced the non-delayed and delayed PZF-population model by incorporating
both the parameters related to fear and its carry-over effects with all the required assumptions.
The respective PZ and ZF interplay are assumed to follow simplified Holling type IV and II
functional responses. Next, in dynamical analysis, we first established the well-posedness of
the non-delayed model by determining an invariant set in which the system’s solution remains
bounded. We also specified the conditions under which the system is persistent. Then we de-
termined the analytical prerequisites under which the fish-free equilibrium point and a different
number of coexistence equilibria exist. The presence of various interior equilibrium points is
portrayed in Figs. 5.2(a), 5.2(b), 5.2(c) and 5.2(d). A bi-parametric existence diagram is also
presented for these equilibrium points in Fig. 5.2(e) in rγ-plane. In stability analysis, we ob-
tained the conditions under which the respective equilibrium points are locally asymptotically
stable; this is followed by the global stability analysis of unique interior equilibrium. Further,
we determine the conditions of Hopf and transcritical bifurcation with respect to c and d2 pa-
rameters, respectively, for the non-delayed population model. Here our main objective is to
investigate the individual and simultaneous effects of carry-over effect (c) and fear (w) parame-
ters on the dynamics of the system. The phytoplankton and zooplankton coordinates of interior
equilibrium are are independent of c and w parameters. For parameter c, we have proved theo-
retically that the fish species saturates to a finite positive value. The rise of F∗ to this saturation
is depicted in Fig. 5.4(a), and this growth in F∗ is because of the boost in zooplankton’s PGR.
Unlikely c, increasing w declines F∗ and causes its extinction, when we intensify w to a large
value (Fig. 5.4(b)). The coexistent impact of both c and w is outlined in Fig. 5.4(c) through
a three-dimension surface in cwF∗-space. For observing the change in the non-delayed popu-
lation model’s stability nature on the variation of c, we have presented several phase portrait
diagrams in Fig. 5.5. From these phase portraits and the bifurcation diagram given in Figs.
5.5 and 5.6(a), respectively, we can notice that the non-delayed model switches its stability
twice and goes through several periodic and chaotic windows before becoming stable. For
confirmation of this chaos, we plotted the maximum Lyapunov exponent, did the sensitivity
analysis concerning two different initial conditions, and also drew a Poincar’e map in Figs.
5.6(b), 5.7(a) and 5.7(b), respectively. The chaos in model (5.1), for intermediate values of c

can be controlled by decreasing the fear parameter w, an example of this is demonstrated in
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Fig. 5.8 for c = 4.5.
Our non-delayed system exhibits the character of enrichment of paradox (Fig. 5.9) which

can be further resolved by adjusting the parameter γ or r (Fig. 5.10). Population model (5.1)
suffered transcritical bifurcation with respect to parameter d2. For demonstrating this quality of
the system, we drew a phase portrait diagram and a bi-parameteric bifurcation diagram in Fig.
5.11. For a given set of parameters, our non-delayed population model showed multistability
between a periodic attractor and a fixed point attractor (Fig. 5.12). Because multistability makes
our model more flexible, this feature makes the dynamics of our model more interesting. As the
carry-over effects are not immediate and are associated with a lag. Thus we added a COE delay
τ in the non-delayed model to make it more practical and reasonable. In most of the studies [20,
130, 117], addition of delay in a model makes it unstable (periodic or chaotic) but sometimes
existence of delay in an oscillatory system can make it stable by AD (amplitude death) [148].
In our model , delay τ helps to control the chaos by making it stable through AD phenomenon
(Fig. 5.13). We have calculated the value of τ analytically at which the delayed system would
become stable from unstable through Hopf bifurcation when it crosses this critical value. Both
the parameters w and c are important parameters related to critical value of τ , thus for showing
their combined impact on τ0, we drew a Hopf surface in cwτ0-space in Fig. 5.14.

In the present chapter, we modeled the fear of fish in zooplankton species and its carry-over
effects with a discrete delay in a PZF-population system. Although these non-lethal effects
can also affect the death rate of prey (zooplankton) species but as the experimental evidence
is not available yet for this assertion, we have not considered it. In our study, the carry-over
effect parameter is modeled in such a way ( f (c,w,Z,F)) that it always benefits the prey species,
but it is not always accurate in real life. Thus, in future work, it will be exciting to formulate
f (c,w,Z,F) in such a way that can have negative or both positive and negative impacts on prey
species’ growth rate. The AD (amplitude death) phenomenon has not been studied in previous
plankton-fish systems, thus we can say that this finding can also have useful implication in
biological systems. Therefore, this whole discussion pictures the vigorous and noteworthy
kinetics of the presented PZF-system, and we anticipate that this research will assist ecologists
and biologists in formulating and investigating PZF-models in a more detailed and practical
manner.
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Chapter 6

A non-autonomous approach to study the impact of
environmental toxins on nutrient-plankton system1

The study of population biology unfolds various mechanisms which operate behind the inter-
actions among the participating species. Research areas related to population biology assist
us in a significant manner to understand the biological world and various processes related to
it. Plankton interplay resides at the bottom of marine food webs. These plankton’s interrela-
tionships are the particular types of predator-prey interactions. Planktons are basically of two
types; one is phytoplankton which is responsible for generating a massive segment of oxygen
present on earth [51], second is zooplankton which acts as a predator for the former plankton.
The concentration level of nutrients (phosphorous, nitrogen, zinc, etc.) in an aquatic habitat
has a crucial impact on phytoplankton’s growth [154]. External supply and the decomposi-
tion of dead phytoplankton are the primary sources of these nutrients. Thus we can notice that
nutrient-plankton kinetics is one of the basic dynamical processes in an aquatic medium which
impacts the whole marine ecosystem.

These oceanic sources also influence the human beings as they harvests various things from
these for their benefits. But as the human population is growing, they have started contam-
inating these aquatic habitats by dumping waste from different sources which may consist of
industrial as well as household waste. Tchounwou et al. [155] studied the stage-wise movement
of heavy metals (Arsenic, Cadmium, etc.) means; their environmental occurrence, generation
and use, possibility to human exposure which is followed by the ways through which their
toxicity affects on humen beings at molecular level. Dubey and Hussain [156] studied the im-
pact of environmental pollution on two species models (namely, cooperation, competition, and
prey-predator) in which both the populations have distinct organismal toxic concentrations. For
all three models, they evaluated the criteria for local stability, instability, and global stability.
They also examined the stability of system in presence of diffusion. Rana et al.[157] examined

1A considerable part of this chapter is published in Applied Mathematics and Computation, 458, 128236
(2023)
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the impact of nanoparticles on a phytoplankton-zooplankton system. They assumed that when
the nanoparticles of heavy metal come into the contact with cells of phytoplankton, they attach
to their cells and enter into them which curtails phytoplankton’s growth rate. They obtained
threshold values for important parameters related to their model to get a stable kinetics. Sea-
sonality in a biological system makes it a non-autonomous model as the seasonal parameters
involved in its kinetics become the function of time. Inclusion of seasonality in a model makes
it complex, and we suggest some papers [46, 47] for learning the techniques to study the per-
manence, periodic solution’s existence, and its global attractivity. Following [157], Mandal et
al. [48] studied phyroplankton-zooplankton interplay in the presence of environmental toxins
and seasonality. They studied both the non-seasonal and seasonal models using the procedures
given in [46, 47, 35]. They did the sensitivity and bifurcation analysis in respect to various
parameters. They also studied the corresponding slow-fast model, which showed the presence
of bursting oscillations.

Now, we explain the assumptions using which we formulate our system. Let’s consider
an aquatic ecosystem in which N is the concentration of nutrients whereas P,Z and T be the
densities of phytoplankton, zooplankton and environmental toxins, respectively.

1. We consider that nutrients are continuously supplied to our system from outside at a
constant rate and are also leached at the same time at a rate that is proportional to the
nutrient’s concentration. The dead biomass of phytoplankton also contributes to increas-
ing nutrient concentration [158]. Nutrient concentration decreases due to their uptake by
phytoplankton through Holling type II response [159], H1(N) = N

l1+N . The phytoplank-
ton population is assumed to have additional food sources like bacteria and detritus, due
to which it grows logistically. Thus we have the following equations.

dN
dt

= N0−aN− mNP
l1 +N

+δP,
dP
dt

= uP
(

1− P
K

)
+

m1NP
l1 +N

.

2. We suppose that the zooplankton population depends on phytoplankton wholly, making
zooplankton a specialist predator. The increasing density of the phytoplankton population
leads to the formation of harmful algal blooms, which emit toxic chemicals, harming
the zooplankton population. We assume that the zooplankton population can decrease
the consumption of highly toxic phytoplankton following the modified Holling type IV
interaction, H2(P) = P

αP2+l2
[151]. The density of the zooplankton population is assumed

to be reduced by their natural mortality and crowding effect. Using these assumption, the
rate of change in P and Z are given by following equations.

dP
dt

= uP
(

1− P
K

)
+

m1NP
l1 +N

− cPZ
αP2 + l2

,
dZ
dt

=
c1PZ

αP2 + l2
−d1Z−d2Z2.
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3. The environmental toxins (T ) are added to the system with a constant supply rate, and
are supposed to deplete naturally [160]. The particles of these toxins come in the touch
of phytoplankton’s cell membrane and reduces their growth and their capability of pho-
tosynthesis. To reflect this reduction in growth rate of phytoplankton, we use a function,
g(T,P) = u

1+ f f1PT , as the phytoplankton’s intrinsic growth rate [157]. Incorporating this
affect of toxins on phytoplankton population, their interaction is represented by the equa-
tions given below.

dP
dt

=
uP

1+ f f1PT

(
1− P

K

)
+

m1NP
l1 +N

− cPZ
αP2 + l2

,
dT
dt

= A− f PT −dT.

Therefore, the autonomous model which we want to study is given by:

dN
dt

= N0−aN− mNP
l1 +N

+δP =: M1(N,P,Z,T ),

dP
dt

=
uP

1+ f f1PT

(
1− P

K

)
+

m1NP
l1 +N

− cPZ
αP2 + l2

=: M2(N,P,Z,T ),

dZ
dt

=
c1PZ

αP2 + l2
−d1Z−d2Z2 =: M3(N,P,Z,T ),

dT
dt

= A− f PT −dT =: M4(N,P,Z,T ),

(6.1)

with N(0)≥ 0,P(0)≥ 0,Z(0)≥ 0,T (0)≥ 0.

In literature, most prey-predator models deal with the deterministic and unvarying environment.
But most of the biological interactions proceed in highly unsteady conditions due to which
physical variables like; birth rate, death rate, habitat’s carrying capacity, coefficient of com-
petition, etc., which are associated with these interactions, change significantly. Considering
environmental fluctuations, our model becomes a non-autonomous model, in which physical
parameters are periodic due to seasonal reasons. So taking seasonality into account, model
(6.1) becomes the following model.

dN(t)
dt

= N0(t)−a(t)N(t)− m(t)N(t)P(t)
l1(t)+N(t)

+δ (t)P(t),

dP(t)
dt

=
u(t)P(t)

1+ f (t) f1(t)P(t)T (t)

(
1− P(t)

K(t)

)
+

m1(t)N(t)P(t)
l1(t)+N(t)

− c(t)P(t)Z(t)
α(t)P2(t)+ l2(t)

,

dZ(t)
dt

=
c1(t)P(t)Z(t)

α(t)P2(t)+ l2(t)
−d1(t)Z(t)−d2(t)Z2(t),

dT (t)
dt

= A(t)− f (t)P(t)T (t)−d(t)T (t).

(6.2)
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Parameters Meaning Default values References
N0 Supply rate of nutrients to the system 0.3 [161]
a Leaching rate of nutrients 0.03 [161, 162]
m Rate at which nutrients are absorbed by phytoplankton 0.8 [162]
m1(≤ m) Net gain of phytoplankton over nutrients intake 0.4 [162]
l1 Half-saturation constant for phytoplankton-nutrients interaction 15 Assumed
f Contact rate between environmental toxin and phytoplankton 4 Assumed
f1 Rate at which phytoplankton’s growth is suppressed by environmental toxin 1 [157]
c Rate which phytoplankton is attacked by zooplankton 0.4 Assumed
c1(≤ c) Maximum gain of zooplankton over phytoplankton 0.3 [163]
α Phytoplankton’s inhibitory effect against zooplankton 0.1 Assumed
l2 Half-saturation constant for phytoplankton-zooplankton interaction 1 [164]
u Maximum intrinsic growth rate for phytoplankton 2.5 [131]
K Environmental carrying capacity for phytoplankton 20 [47]
A Rate at which environmental toxin is added to system 7 [165]
d Natural depletion rate of environmental toxin 0.05 [165]
δ Rate at which phytoplankton’s dead biomass gets recycled into nutrients 0.01 Assumed
d1 Death rate of zooplankton 0.12 [162, 166]
d2 Rate of intraspecific interference among zooplankton individuals 0.0015 [166]

Table 6.1: Biological signification and parameters’ values which are employed in sys-
tems (6.1) and (6.2).

In the present chapter, we attempt to extend the model proposed by Mandal et al. [48] in which
they investigated the impact of environmental toxins on phytoplankton-zooplankton interrela-
tionship with seasonal effects. As nutrients are one of the significant feeds used by phytoplank-
ton, and as in the modeling part, we have considered that the dead biomass of phytoplankton
also contributes to nutrients back. Thus, we incorporate nutrient-phytoplankton interaction into
our model to apprehend the system’s dynamics in more depth. Including group defence of
phytoplankton against its predator zooplankton in the form of Holling type IV response is the
second main advancement in our model formulation. Therefore, this study investigates a 4-
dimensional NPZT -model in both modes: non-seasonal as well as seasonal. We examine the
dynamics of a non-seasonal system by varying some crucial parameters like f1 and A. Both
non-seasonal and seasonal models show the attribute of multistability. We also observe that
including seasonality makes our system chaotic, and we provide some parametric adjustments
to control it. All these features are well explained and depicted with the help of numerical
simulations in the respective sections of this text.

This chapter is mainly organized in the following scheme: Section 6.1 provides the main
results of autonomous model (6.1), which comprises equilibrium existence and their stability
behavior and bifurcation assessment. In Section 6.2, we drive the conditions for permanence,
existence, and global stability of periodic solutions for the non-autonomous model. Section 6.3
gives an extensive numerical simulation to support our theoretical results of the last sections.
Lastly, Section 6.4 discusses the principal findings of our present work.
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6.1 Main results for autonomous model (6.1)

Here, we discuss the dynamical features of model (6.1). It is easy to note that the RHS of (6.1) is
Lipschitz continuous on a bounded subset of R4

+. Thus for every (N(0),P(0),Z(0),T (0))∈R4
+,

the current model has a unique solution.
Next, we shall determine a sub-domain of R4

+ in which the solutions of system (6.1) will be
uniformly bounded.

Theorem 6.1.1. Each solution (N(t),P(t),Z(t),T (t)) of system (6.1) with a non-negative initial

condition is uniformly bounded within a set given by

M =

{
(N,P,Z,T ) : 0≤ N +P+Z ≤ R1,0≤ T ≤ R2

}
,

where R1 and R2 are defined in the proof of this theorem.

Proof. From (6.1), it is easy to get

dN(t)
dt

∣∣∣∣
N=0

= N0 > 0,
dP(t)

dt

∣∣∣∣
P=0

= 0,
dZ(t)

dt

∣∣∣∣
Z=0

= 0,
dT (t)

dt

∣∣∣∣
T=0

= A > 0,

which means that N = 0,P = 0,Z = 0,T = 0 are positive invariant manifolds. So, any solution
initiating inside the positive orthant of NPZT -space will not leave it.
For determining the set in which solution of (6.1) remains bounded, firstly, we define a variable
L = N +P+Z, and for a random σ > 0, on using first three equations of system (6.1), we get

dL
dt

+σL≤ N0− (a−σ)N +(δ +σ)P+uP
(

1− P
K

)
− (d1−σ)Z.

Now, the function F(P) = (δ +σ)P+uP
(

1− P
K

)
has its global maximum Fmax =

(u+δ+σ)2K
4u

at P = (u+δ+σ)K
2u . Using this property of F and choosing σ ≤ min{a,d1}, we obtain

dL
dt

+σL≤ N0 +
(u+δ +σ)2K

4u
= M.

Then by using standard differential inequalities, we get

L(t)≤ M
σ

+ e−σt
(

L(0)−M
σ

)
≤ max

{
M
σ
,L(0)

}
= R1.

In a similar way, from the fourth equation of model (6.1), we have

T (t)≤ A
d
+ e−dt

(
T (0)− A

d

)
≤ max

{
A
d
,T (0)

}
= R2.
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Hence, we can say that all the solutions of system (6.1) are bounded above.

6.1.1 Equilibrium assessment

System (6.1) have the following three feasible equilibria.

1. The phytoplankton-zooplankton free equilibrium is E1(
N0
a ,0,0, A

d ) and it exists trivially.

2. The zooplankton free equilibrium is E2(N̄, P̄,0, T̄ ), where N̄ is the positive root of

aN̄2 +(al1 +mP̄−N0−δ P̄)N̄− l1(δ P̄+N0) = 0, (6.3)

T̄ =
A

d + f P̄
,

and P̄ is the positive root of the equation

Q(P̄) =
u

1+ f f1T̄ P̄

(
1− P̄

K

)
+

m1N̄
l1 + N̄

= 0. (6.4)

Now, Q(K) = m1N̄
l1+N̄ > 0, where N̄ is the positive root of (6.3) for P̄ = K, and we can note

that P̄→ ∞ =⇒ Q(P̄)→−∞. Thus we can say that Q(P̄) will have at least one zero in
(K,∞), which establishes the existence of E2.

3. For the coexistence equilibrium E∗(N∗,P∗,Z∗,T ∗), we have

N∗ =
(N0 +δP∗−mP∗−al1)+

√
(N0 +δP∗−mP∗−al1)2 +4al1(N0 +δP∗)

2a
=U1(P∗),

T ∗ =
A

d + f P∗
=U2(P∗),

Z∗ =
(

u
1+ f f1P∗U2(P∗)

(
1− P∗

K

)
+

m1U1(P∗)
l1 +U1(P∗)

)
(l2 +αP∗2)

c
=U3(P∗),

and P∗ is the positive root of equation

U(P) =
c1P

αP2 + l2
−d1−d2U3(P) = 0. (6.5)

As it is not easy to check the behaviour of (6.5) analytically, thus we plot U(p) in Fig.
6.1 with the set of parameters given in Table 6.1. From this figure, it can be noticed that
(6.5) has a unique root for these parameters.
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Fig. 6.1: Existence of unique root of U(P) = 0 with parameters from Table 6.1.

6.1.2 Stability analysis

For local stability analysis of model (6.1) about the possible equilibria, we present the following
theorem.

Theorem 6.1.2.

1. The phytoplankton-zooplankton free equilibrium, E1(
N0
a ,0,0, A

d ) is always a saddle point.

2. The zooplankton free equilibrium, E2(N̄, P̄,0, T̄ ) is stable if

c1P̄
αP̄2 + l2

< d1,A1 > 0,A3 > 0,A1A2−A3 > 0, (6.6)

where Ai(i = 1,2,3) are specified in proof.

3. The coexistence equilibrium, E∗(N∗,P∗,Z∗,T ∗) (if exists) is locally asymptotically stable

iff

B1 > 0,B2 > 0,B3 > 0,B4 > 0,B3(B1B2−B3)−B2
1B4 > 0, (6.7)

where Bi(i = 1,2,3) are specified in proof.
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Proof. The variational matrix for system (6.1) is given as J = [Jpq]4×4, where

J11 =−a− mPl1
(l1 +N)2 ,J12 =−

mN
l1 +N

+δ ,J13 = 0,J14 = 0,J21 =
m1Pl1

(l1 +N)2

J22 =
u

1+ f f1PT

(
1− P

K

)
− uP

K(1+ f f1PT )
−uP

(
1− P

K

) f f1T
(1+ f f1PT )2 +

m1N
l1 +N

+
cZ(αP2− l2)
(αP2 + l2)2

J23 =−
cP

αP2 + l2
,J24 =−uP

(
1− P

K

) f f1P
(1+ f f1PT )2 ,J31 = 0,J32 =

c1Z(l2−αP2)

(αP2 + l2)2

J33 =
c1P

αP2 + l2
−d1−2d2Z,J34 = 0,

J41 = 0,J42 =− f T,J43 = 0,J44 =− f P−d.

1. Eigenvalues of variational matrix JE1 are −a,u+ m1N0
al1+N0

,−d1 and −d. Thus the presence
of a positive eigenvalue of JE1 makes E1 as a saddle point.

2. The characteristic equation of JE2 = [cpq]4×4 is

(λ − c33)(λ
3 +A1λ

2 +A2λ +A3) = 0, (6.8)

where

A1 =−(c11 + c22 + c44),A2 = c11c22− c12c21 + c11c44 + c22c44− c24c42,

A3 = c11c24c42− c11c22c44 + c12c21c44

with the entries cpq given by

c11 =−a− mP̄l1
(l1 + N̄)2 ,c12 =−

mN̄
l1 + N̄

+δ ,c13 = c14 = 0,c21 =
m1P̄l1

(l1 + N̄)2 ,

c22 =−
uP̄

K(1+ f f1P̄T̄ )
−uP̄

(
1− P̄

K

) f f1T̄
(1+ f f1P̄T̄ )2 ,c23 =−

cP̄
αP̄2 + l2

,

c24 =−uP̄
(

1− P̄
K

) f f1P̄
(1+ f f1P̄T̄ )2 ,c31 = c32 = 0,c33 =

c1P̄
αP̄2 + l2

−d1,

c34 = c41 = 0,c42 =− f T̄ ,c43 = 0,c44 =− f P̄−d.

Using Routh-Hurwitz criterion on (6.8), E2 is stable iff conditions given in (6.6) holds.
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3. For interior equilibrium E∗, the entries of the variation matrix JE∗ = [apq]4×4 are given as

a11 =−a− mP∗l1
(l1 +N∗)2 ,a12 =−

mN∗

l1 +N∗
+δ ,a13 = a14 = 0,a21 =

m1P∗l1
(l1 +N∗)2 ,

a22 =−
uP∗

K(1+ f f1P∗T ∗)
−uP∗

(
1− P∗

K

) f f1T ∗

(1+ f f1P∗T ∗)2 +
2αcZ∗P∗2

(αP∗2 + l2)2
,

a23 =−
cP∗

αP∗2 + l2
,a24 =−uP∗

(
1− P∗

K

) f f1P∗

(1+ f f1P∗T ∗)2 ,a31 = 0,a32 =
c1Z∗(l2−αP∗2)
(αP∗2 + l2)2

,

a33 =−d2Z∗,a34 = a41 = 0,a42 =− f T ∗,a43 = 0,a44 =− f P∗−d.

The characteristic equation for [apq]4×4 is

λ
4 +B1λ

3 +B2λ
2 +B3λ +B4 = 0, (6.9)

where

B1 =−(a11 +a22 +a33 +a44),

B2 = a11(a33 +a44)+a22(a11 +a33)+a44(a22 +a33)−a12a21−a23a32−a24a42,

B3 = (a23a32−a22a33)(a11 +a44)+a24a42(a11 +a33)+a12a21(a33 +a44)−a11a44(a22 +a33),

B4 =−a44(a11a23a32 +a12a21a33)+a11a33(a22a44−a24a42).

Thus using Routh-Hurwitz criterion, E∗ is stable if conditions given in (6.7) are satisfied.

6.1.3 Occurrence of Hopf bifurcation

Here, we prove the existence of Hopf bifurcation about the interior equilibrium E∗, choosing
the rate at which environmental toxin is added to system, A, as the bifurcation parameter with
keeping all other parameters fixed. For this, we have the following theorem.

Theorem 6.1.3.
The interior equilibrium E∗(N∗,P∗,Z∗,T ∗) goes through Hopf bifurcation as the parameter A

passes its critical value Ah. Let Γ : (0,∞)→ R be the following continuously differentiable

function of A

Γ(A) = B1(A)B2(A)B3(A)−B2
3(A)−B4(A)B2

1(A).

The system (6.1) suffers Hopf bifurcation if the following conditions are satisfied

1. Γ(Ah) = 0,
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2. B1(Ah)> 0,B2(Ah)> 0,B3(Ah)> 0,B4(Ah)> 0,

3. [B2
1(B1B4−B′2B3)− (B1B2−2B3)(B1B′3−B′1B3)]|(Ah) 6= 0.

Proof. From Γ(Ah) = 0, (6.9) can be reduced to(
λ

2 +
B3(Ah)

B1(Ah)

)(
λ

2 +B1(Ah)λ +
B1(Ah)B4(Ah)

B3(Ah)

)
= 0. (6.10)

Let λ ′i s, i = 1−4 are the roots of above equation, and λ1,λ2 are its purely imaginary roots for
A = Ah. Then we have

λ3 +λ4 =−B1(Ah), (6.11)

χ
2
0 +λ3λ4 = B2(Ah), (6.12)

χ
2
0 (λ3 +λ4) =−B3(Ah), (6.13)

χ
2
0 λ3λ4 = B4(Ah), (6.14)

where χ0 = img(λ1(Ah)) =

√
B3(Ah)
B1(Ah)

(using (6.11) and (6.13)). Now, there are two cases for

the nature of λ3 and λ4. In first case, if both are complex conjugate, then from (6.11), we have
2Re(λ3) = −B1(Ah); in second case, if both are real, then from (6.14), both must be of same
sign, and using this fact in (6.11), we infer that both should be negative. Thus in both the cases,
we get Re(λ3)< 0 and Re(λ4)< 0.
To conclude the proof, we discuss the transversality condition. let λ1,2 = ξ (A)± iη(A) is the
general form of of λ1 and λ2 in an ε− neighborhood of Ah. Substitution of λ = ξ (A)± iη(A)

into (6.9) and calculation of derivative with respect to A give us

L1(A)ξ ′(A)−L2(A)η ′(A)+L3(A) = 0, (6.15)

L2(A)ξ ′(A)+L1(A)η ′(A)+L4(A) = 0, (6.16)

where

L1(A) = 4ξ
3−12ξ η

2 +3(ξ 2−η
2)B1(A)+2ξ B2(A)+B3(A),

L2(A) = 12ξ
2
η−4η

3 +6ξ ηB1(A)+2ηB2(A),

L3(A) = ξ
3B′1(A)−3ξ η

2B′1(A)+(ξ 2−η
2)B′2(A)+ξ B′3(A)+B′4(A),

L4(A) = 3ξ
2
ηB′1(A)−η

3B′1(A)+2ξ ηB′2(A)+ηB′3(A).
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At A = Ah, we get

L1(Ah) =−2B3(Ah),L2(Ah) = 2

√
B3(Ah)

B1(Ah)

(
B2(Ah)− 2B3(Ah)

B1(Ah)

)
,

L3(Ah) = B′4(A
h)−

B′2(A
h)B3(Ah)

B1(Ah)
,L4(Ah) =

√
B3(Ah)

B1(Ah)

(
B′3(A

h)−
B′1(A

h)B3(Ah)

B1(Ah)

)
.

Solving (6.15) and (6.16) for ξ ′, we get

d
dA

(Reλi(A))|A=Ah =−
L2(Ah)L4(Ah)+L1(Ah)L3(Ah)

L2
1(A

h)+L2
2(A

h)
,

=
B2

1(B1B′4−B′2B3)− (B1B2−2B3)(B1B′3−B′1B3)

2B3
1B3 +2(B1B2−2B3)2

∣∣∣∣
A=Ah

6= 0,

which defines the transversality condition for Hopf bifurcation for system (6.1). Thus if the
conditions provided in the statement of theorem hold, then the non-seasonal model undergoes
Hopf bifurcation, hence the proof.

6.2 Main results for non-autonomous model

For the study of seasonal model (6.2), all the parameters in this model are assumed to be
positive, continuous and bounded. If f (t) is a continuous function of period ω , then we denote

f g = sup
t∈R

f (t), f l = inf
t∈R

f (t).

6.2.1 Permanence of non-autonomous system

Here, we determine an invariant set for system (6.2) and the positivity of infimums of all four
populations of our model directly promotes its permanence.

Theorem 6.2.1. Both the positive and non-negative cones of R4 are positively invariant for

system (6.2). Let m0
j > 0, j = 1,2,3,4. Then

Θε =
{
(N,P,Z,T ) ∈ R4|mε

1 < N(t)< Mε
1 ,m

ε
2 < P(t)< Mε

2 ,m
ε
3 < Z(t)< Mε

3 ,m
ε
4 < T (t)< Mε

4
}

is an eventually bounded region for system (6.2), where ε > 0 is enough small with

Mε
1 =

Ng
0 +δ gMε

2
al , Mε

2 =
Kg

ul (u
g +mg

1)+ ε, Mε
3 =

cg
1Mε

2

dl
2ll

2
, Mε

4 =
Ag

dl + ε,
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mε
1 =

Nl
0

αg +
muMε

2
ll
1

, mε
2 =

Kl

ug

(
ul

(1+ f g f g
1 Mε

2 Mε
4 )
−

cgMε
3

ll
2

)
− ε,

mε
3 =

1
dg

2

(
cl

1mε
2

αgMε
2

2 + lg
2

−dg
1

)
, mε

4 =
Al

f gMε
2 +dg .

Proof. It is easy to prove the positivity of system (6.2) thus we omit it. Now, the solution for
the equation

x′(t) = g(t,s)x(t)(b− x(t)), b 6= 0 is x(t) =
bx(0)exp

{∫ t
0 bg(s,x(s))ds

}
x(0)

[
exp
{∫ t

0 bg(s,x(s))ds
}
−1
]
+b

.

From the second equation of (6.2), we get

dP
dt
≤ u(t)P(t)

(
1− P(t)

K(t)

)
+m1P(t),

which implies
dP
dt
≤ ul

Kg P(t)
(

Kg

ul (u
g +mg

1)−P(t)
)
.

Thus

P(t)≤
M0

2P(0)exp((ug +mg
1)t)

P(0)[exp((ug +mg
1)t)−1]+M0

2
≤

Mε
2 P(0)exp((ug +mg

1)t)
P(0)[exp((ug +mg

1)t)−1]+Mε
2
≤Mε

2 .

From the first equation of (6.2)

dN
dt
≤ N0(t)−a(t)N(t)+δ (t)Mε

2 ,

≤ Ng
0 +δ

gMε
2 −alN(t).

Thus

N(t)≤
Ng

0 +δ gMε
2

al = Mε
1 .

From the third equation of (6.2), we get

dZ
dt
≤ c1(t)P(t)Z(t)

l2(t)
−d2(t)Z2(t),

which implies
dZ
dt
≤ dl

2Z(t)
[

cg
1Mε

2

dl
2ll

2
−Z(t)

]
.
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Therefore, it follows

Z(t)≤
Mε

3 Z(0)exp
(

cg
1Mε

2
ll
2

)
t

Z0

[
exp
(

cg
1Mε

2
ll
2

)
t−1

]
+Mε

3

≤Mε
3 .

Now, from fourth equation of (6.2), we get

dT
dt
≤ Ag−dlT (t).

Hence, it gives

T (t)≤ Ag

dl ≤
Ag

dl + ε = Mε
4 .

In the similar manner, from the first equation of (6.2)

dN
dt
≥ Nl

0−
(

α
g +

mgMε
2

ll
1

)
N(t).

Hence, it gives

N(t)≥
Nl

0

αg +
mgMε

2
ll
1

= mε
1.

Now, again from the second equation of (6.2)

dP
dt
≥
(

ul

1+ f g f g
1 Mε

2 Mε
4
−

cgMε
3

ll
2

)
P(t)− ugP(t)2

Kl ,

which yields
dP
dt
≥ ug

Kl P(t)
(

ulKl

ug(1+ f g f g
1 Mε

2 Mε
4 )
−

KlcgMε
3

ugll
2
−P(t)

)
.

Thus

P(t)≥
m0

2P(0)exp
(ugm0

1t
Kl

)
P0

[
exp
(ugm0

2t
Kl

)
−1
]
+m0

2

≥ m0
2 ≥ mε

2.

Now, from the third equation

dZ
dt
≥ dg

2Z(t)
((

cl
1mε

2Z(t)

αgMε
2

2 + lg
2

−dg
1

)
1
dg

2
−Z(t)

)
,

which gives

Z(t)≥
mε

3Z(0)exp(dg
2mε

3t)
Z(0)[exp(dg

2mε
3t)−1]+mε

3
≥ mε

3.
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Lastly, doing the same type of calculation, we can get

T (t)≥ Al

f gMε
2 +dg = mε

4.

Hence, Θε is a positively invariant for system (6.2) and the theorem follows.

6.2.2 Periodic solution’s existence

In this subsection, we establish the existence of a periodic solution for our system (6.2) using
Lemma (1.5.2).

Theorem 6.2.2. Model (6.2) has at least one positive ω-periodic solution if the operator equa-

tion

RWy = 0 (6.17)

has finite real valued solutions (y∗1r
,y∗2r

,y∗3r
,y∗4r

), r = 1,2, ...,n such that

n

∑
r=1

sign det(RW )′(y∗1r
,y∗2r

,y∗3r
,y∗4r

) 6= 0,

where the operators R and W are provided in proof.

Proof. Let N(t) = ey1(t), P(t) = ey2(t), Z(t) = ey3(t), T (t) = ey4(t), then from (6.2), we get

dy1(t)
dt

= N0(t)e−y1(t)−a(t)− m(t)ey2(t)

l1(t)+ ey1(t)
+δ (t)e−y1(t)+y2(t),

dy2(t)
dt

=
u(t)

1+ f (t) f1(t)ey2(t)+y4(t)

(
1− ey2(t)

K(t)

)
+

m1(t)ey1(t)

l1(t)+ ey1(t)
− c(t)ey3(t)

αe2y2(t)+ l2(t)
,

dy3(t)
dt

=
c1(t)ey2(t)

α(t)e2y2(t)+ l2(t)
−d1(t)−d2(t)ey3(t),

dy4(t)
dt

= A(t)e−y4(t)− f (t)ey2(t)−d(t).

(6.18)

Now, if system (6.18) possess a ω-periodic solution (y1(t),y2(t),y3(t),y4(t)), then (6.2) will
have (ey1(t),ey2(t),ey3(t),ey4(t)) as its positive ω-periodic solution. We take U = V in Lemma
1.5.2 and define

U =V =
{
(y1,y2,y3,y4) ∈C(R,R4)| y j(t +ω) = y j(t), j = 1,2,3,4, t ∈ R

}
,
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with ‖(y1,y2,y3,y4)‖= ∑
4
j=1 maxt∈[0,ω] |y j(t)|. Thus U and V are Banach space with ‖.‖.

Let

F


y1

y2

y3

y4

=


y′1
y′2
y′3
y′4

 , S


y1

y2

y3

y4

= R


y1

y2

y3

y4

=


1
ω

∫
ω

0 y1(t)dt
1
ω

∫
ω

0 y2(t)dt
1
ω

∫
ω

0 y3(t)dt
1
ω

∫
ω

0 y4(t)dt

 ,

W


y1

y2

y3

y4

=



N0(t)e−y1(t)−a(t)− m(t)ey2(t)

l1(t)+ey1(t)
+δ (t)e−y1(t)+y2(t)

u(t)
1+ f (t) f1(t)ey2(t)+y4(t)

(
1− ey2(t)

K(t)

)
+ m1(t)ey1(t)

l1(t)+ey1(t)
− c(t)ey3(t)

αe2y2(t)+l2(t)

c1(t)ey2(t)

α(t)e2y2(t)+l2(t)
−d1(t)−d2(t)ey3(t)

A(t)e−y4(t)− f (t)ey2(t)−d(t)


,


y1

y2

y3

y4

 ∈U.

Thus system (6.18) is equivalent to the equation Fy = Wy, y ∈ R4. Then we require to verify
the conditions mentioned in Lemma 1.5.2 for the equation Fy = Wy to get the existence of a
ω-periodic solution for system (6.18). Next, it is easy note that

KerF =
{
(y1,y2,y3,y4) ∈U | (y1,y2,y3,y4) = (c1,c2,c3,c4) ∈ R4} ,

ImF =

{
(y1,y2,y3,y4) ∈U |

∫
ω

0
y j(t)dt = 0, j = 1,2,3,4

}
,

and dim KerF = codim ImF = 4. Therefore, F is a Fredholm mapping of index zero. Mappings
S and R are such projections with ImS = KerF, ImF = KerR = Im(I−R). The inverse F−1

S of
F is of the form F−1

S : ImF → DomF ∩KerS, and is given by

F−1
S


y1

y2

y3

y4

=


∫ t

0 y1(s)ds− 1
ω

∫
ω

0
∫ t

0 y1(s)dsdt∫ t
0 y2(s)ds− 1

ω

∫
ω

0
∫ t

0 y2(s)dsdt∫ t
0 y3(s)ds− 1

ω

∫
ω

0
∫ t

0 y3(s)dsdt∫ t
0 y4(s)ds− 1

ω

∫
ω

0
∫ t

0 y4(s)dsdt

 .

As RW and F−1
S (I−R)W are continuous thus we can easily check that RW (Ω) is bounded and

F−1
S (I−R)W (Ω) is compact, i.e., W is F-compact on Ω.

From Theorem 6.2.1, we have

mε
1 < N(t)< Mε

1 , mε
2 < P(t)< Mε

2 , mε
3 < Z(t)< Mε

3 , mε
4 < T (t)< Mε

4 ,
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then for the operator equation Fy = ρWy where ρ ∈ (0,1), we have

max
t∈[0,ω]

|y1(t)| ≤max{| ln(mε
1)|, | ln(Mε

1 )|}= D1, max
t∈[0,ω]

|y2(t)| ≤max{| ln(mε
2)|, | ln(Mε

2 )|}= D2,

max
t∈[0,ω]

|y3(t)| ≤max{| ln(mε
3)|, | ln(Mε

3 )|}= D3, max
t∈[0,ω]

|y4(t)| ≤max{| ln(mε
4)|, | ln(Mε

4 )|}= D4.

Now, let D = D1 +D2 +D3 +D4 +D5, where D5 > 0 is enough large in such a way that each
solution (y∗1,y

∗
2,y
∗
3,y
∗
4) of the following equations

1
ω

∫
ω

0

(
N0(t)e−y1−a(t)− m(t)ey2

l1(t)+ ey1
+δ (t)e−y1+y2

)
dt = 0,

1
ω

∫
ω

0

(
u(t)

1+ f (t) f1(t)ey2+y4

(
1− ey2

K(t)

)
+

m1(t)ey1

l1(t)+ ey1
− c(t)ey3

αe2y2 + l2(t)

)
dt = 0,

1
ω

∫
ω

0

(
c1(t)ey2

α(t)e2y2 + l2(t)
−d1(t)−d2(t)ey3

)
dt = 0,

1
ω

∫
ω

0

(
A(t)e−y4− f (t)ey2−d(t)

)
dt = 0,

(6.19)

satisfies ‖(y1,y2,y3,y4)‖< D.
Define Ω = {(y1,y2,y3,y4)

T ∈ U | ‖(y1,y2,y3,y4)‖ < D}. Then for this defined Ω, the first
condition of Lemma 1.5.2 is satisfied.

Let (y1,y2,y3,y4)
T ∈ Ω∩KerF = ∂Ω∩R4, a constant vector with ‖(y1,y2,y3,y4)‖ = D,

then

RW


y1

y2

y3

y4

=



1
ω

∫
ω

0

(
N0(t)e−y1−a(t)− m(t)ey2

l1(t)+ey1 +δ (t)e−y1+y2

)
dt

1
ω

∫
ω

0

(
u(t)

1+ f (t) f1(t)ey2+y4

(
1− ey2

K(t)

)
+ m1(t)ey1

l1(t)+ey1 −
c(t)ey3

αe2y2+l2(t)

)
dt

1
ω

∫
ω

0

(
c1(t)ey2

α(t)e2y2+l2(t)
−d1(t)−d2(t)ey3

)
dt

1
ω

∫
ω

0

(
A(t)e−y4− f (t)ey2−d(t)

)
dt


6=


0
0
0
0

 .

Hence, the second condition of Lemma 1.5.2 is fulfilled.
Defining a homomorphism

K : ImR→ KerF, (y1,y2,y3,y4)
T → (y1,y2,y3,y4)

T ,
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we get
deg(KRW,∂Ω∩KerF,0) = deg(RW,∂Ω∩KerF,0).

Here, we assume that RWy = 0 has finite real valued solutions (y∗1r
,y∗2r

,y∗3r
,y∗4r

), r = 1,2, ...,n
such that

n

∑
r=1

sign det(RW )′(y∗1r
,y∗2r

,y∗3r
,y∗4r

) 6= 0, (6.20)

so under the assumption in (6.20), we have

deg(KRW,∂Ω∩KerF,0) 6= 0.

Hence, all the conditions of Lemma (1.5.2) are verified. Thus Fy = Wy possess at least one
solution in DomF ∩Ω i.e., system (6.18) has at least one ω-periodic solution (y∗1,y

∗
2,y
∗
3,y
∗
4) ∈

DomF ∩Ω. Therefore, (x∗1,x
∗
2,x
∗
3,x
∗
4) = (ey∗1,ey∗2,ey∗3,ey∗4) is a strictly positive ω-periodic solu-

tion of model (6.2).

6.2.3 Solution’s global attractivity

Now we evaluate the conditions under which the periodic solution of system (6.2) is globally
attractive.

Theorem 6.2.3. Let (N(t),P(t),Z(t),T (t)) be a positive ω-periodic solution for system (6.2).

Then this solution is globally stable if

Ji > 0, i = 1,2,3,4 (6.21)

where J ′
i s are defined in proof.

Proof. Let (N(t),P(t),Z(t),T (t)) and (N∗(t),P∗(t),Z∗(t),T ∗(t)) are two positive ω-periodic
solutions with positive initial conditions for the non-autonomous system. Define

V1(t) = | lnN(t)− lnN∗(t)|,V2(t) = | lnP(t)− lnP∗(t)|,

V3(t) = | lnZ(t)− lnZ∗(t)|,V4(t) = | lnT (t)− lnT ∗(t)|.

After calculating the right (Dini’s) derivatives of Vi(t) along system (6.2), we obtain

D+V1(t) = sign(N(t)−N∗(t))

(
˙N(t)

N(t)
− Ṅ∗(t)

N∗(t)

)
(6.22)

≤

{
− N0(t)

N(t)N∗(t)
− δ (t)P(t)

N(t)N∗(t)
+

m(t)P(t)
(l1(t)+N(t))(l1(t)+N∗(t))

}
|N(t)−N∗(t)|
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+

{
δ (t)

N∗(t)
+

m(t)
l1(t)+N∗(t)

}
|P(t)−P∗(t)|;

D+V2(t) = sign(P(t)−P∗(t))

(
Ṗ
P
− Ṗ∗(t)

P∗(t)

)

≤ m1(t)l1(t)
(l1(t)+N(t))(l1(t)+N∗(t))

|N(t)−N∗(t)|

+

{
− u(t) f (t) f1(t)T (t)

(1+ f (t) f1(t)P(t)T (t))(1+ f (t) f1(t)P∗(t)T ∗(t))
− u(t)

K(t)(1+ f (t) f1(t)P∗(t)T ∗(t))

+
u(t) f (t) f1(t)P(t)T (t)

K(t)(1+ f (t) f1(t)P(t)T (t))(1+ f (t) f1(t)P∗(t)T ∗(t))
+

c(t)α(t)Z(t)(P(t)+P∗(t))
(α(t)P2(t)+ l2(t))(α(t)P∗2(t)+ l2(t))

}
|P(t)−P∗(t)|

+
c(t)

α(t)P∗2(t)+ l2(t))
|Z(t)−Z∗(t)|

+

{
u(t) f (t) f1(t)P∗(t)

(1+ f (t) f1(t)P(t)T (t)(1+ f ∗(t) f ∗1 (t)P
∗(t)T ∗(t))

(
1+

P(t)
K(t)

)}
|T (t)−T ∗(t)|;

D+V3(t) = sign(Z(t)−Z∗(t))

(
Ż
Z
− Ż∗(t)

Z∗(t)

)

≤ c1(t)(α(t)P(t)P∗(t)− l2(t))
(α(t)P2(t)+ l2(t))(α(t)P∗2(t)+ l2(t))

|P(t)−P∗(t)|−d2(t)|Z(t)−Z∗(t)|;

D+V4(t) = sign(T (t)−T ∗(t))

(
Ṫ
T
− Ṫ ∗(t)

T ∗(t)

)

≤ f (t)|P(t)−P∗(t)|− A(t)
T (t)
|T (t)−T ∗(t)|.

Let
V (t) =V1(t)+V2(t)+V3(t)+V4(t).

The using the above inequalities involving V1(t),V2(t),V2(t),V2(t), the Dini derivative of V (t)

is evaluated as,

D+V (t)≤−

{
N0(t)

N(t)N∗(t)
+

δ (t)P(t)
N(t)N∗(t)

− m(t)P(t)
(l1(t)+N(t))(l1(t)+N∗(t))

− m1(t)l1(t)
(l1(t)+N(t))(l1(t)+N∗(t))

}
|N(t)−N∗(t)|

−

{
− δ (t)

N∗(t)
− m(t)

l1(t)+N∗(t)
+

u(t) f (t) f1(t)T (t)
(1+ f (t) f1(t)P(t)T (t))(1+ f (t) f1(t)P∗(t)T ∗(t))

+
u(t)

K(t)(1+ f (t) f1(t)P∗(t)T ∗(t))

− u(t) f (t) f1(t)P(t)T (t)
K(t)(1+ f (t) f1(t)P(t)T (t))(1+ f (t) f1(t)P∗(t)T ∗(t))

− c(t)α(t)Z(t)(P(t)+P∗(t))
(α(t)P2(t)+ l2(t))(α(t)P∗2(t)+ l2(t))

− c1(t)(α(t)P(t)P∗(t)− l2(t))
(α(t)P2(t)+ l2(t))(α(t)P∗2(t)+ l2(t))

− f (t)

}
|P(t)−P∗(t)|
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−

{
− c(t)

α(t)P∗2(t)+ l2(t))
+d2(t)

}
|Z(t)−Z∗(t)|

−

{
− u(t) f (t) f1(t)P∗(t)

(1+ f (t) f1(t)P(t)T (t)(1+ f ∗(t) f ∗1 (t)P
∗(t)T ∗(t))

(
1+

P(t)
K(t)

)
+

A(t)
T (t)

}
|T (t)−T ∗(t)|.

Then using Theorem 6.2.1, we get

D+V (t)≤−

{
N0(t)
(Mε

1 )
2 +

δ (t)P(t)
(Mε

1 )
2 −

m(t)Mε
2

(l1(t)+mε
1)

2 −
m1(t)l1(t)

(l1(t)+Mε
1 )

2

}
|N(t)−N∗(t)|

−

{
− δ (t)

mε
1
− m(t)

l1(t)+mε
1
+

u(t) f (t) f1(t)mε
4

(1+ f (t) f1(t)Mε
2 Mε

4 )
2 +

u(t)
K(t)(1+ f (t) f1(t)Mε

2 Mε
4 )

−
u(t) f (t) f1(t)Mε

2 Mε
4

K(t)(1+ f (t) f1(t)mε
2mε

4)
2 −

2c(t)α(t)Mε
3 Mε

2

(α(t)mε
2

2 + l2(t))2
−

c1(t)(α(t)Mε
2

2− l2(t))
(α(t)mε

2 + l2(t))2 − f (t)

}
|P(t)−P∗(t)|

−

{
− c(t)

α(t)Mε
2

2(t)+ l2(t))
+d2(t)

}
|Z(t)−Z∗(t)|

−

{
−

u(t) f (t) f1(t)Mε
2

(1+ f (t) f1(t)mε
2mε

4)
2

(
1+

Mε
2

K(t)

)
+

A(t)
Mε

4

}
|T (t)−T ∗(t)|.

Thus

D+V (t)≤−J1|N(t)−N∗(t)|−J2|P(t)−P∗(t)|−J3|Z(t)−Z∗(t)|−J4|T (t)−T ∗(t)|,
(6.23)

where

J1 =
N0(t)
(Mε

1 )
2 +

δ (t)P(t)
(Mε

1 )
2 −

m(t)Mε
2

(l1(t)+mε
1)

2 −
m1(t)l1(t)

(l1(t)+Mε
1 )

2 ,

J2 =−
δ (t)
mε

1
− m(t)

l1(t)+mε
1
+

u(t) f (t) f1(t)mε
4

(1+ f (t) f1(t)Mε
2 Mε

4 )
2 +

u(t)
K(t)(1+ f (t) f1(t)Mε

2 Mε
4 )
−

u(t) f (t) f1(t)Mε
2 Mε

4
K(t)(1+ f (t) f1(t)mε

2mε
4)

2 ,

−
2c(t)α(t)Mε

3 Mε
2

(α(t)mε
2

2 + l2(t))2
−

c1(t)(α(t)Mε
2

2− l2(t))
(α(t)mε

2 + l2(t))2 − f (t),

J3 =−
c(t)

α(t)Mε
2

2(t)+ l2(t))
+d2(t),

J4 =−
u(t) f (t) f1(t)Mε

2
(1+ f (t) f1(t)mε

2mε
4)

2

(
1+

Mε
2

K(t)

)
+

A(t)
Mε

4
.

So under the conditions given in (6.21), V (t) is non-increasing on the interval [0,∞), integrating
(6.23), we get

V (t)+J1

∫ t

0
|N(s)−N∗(s)|ds+J2

∫ t

0
|P(s)−P∗(s)|ds+J3

∫ t

0
|Z(s)−Z∗(s)|ds+J4

∫ t

0
|T (s)−T ∗(s)|ds<∞.

(6.24)

Using lemma 1.5.1, we have

lim
t→∞
|N(t)−N∗(t)|= 0, lim

t→∞
|P(t)−P∗(t)|= 0,
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lim
t→∞
|Z(t)−Z∗(t)|= 0, lim

t→∞
|T (t)−T ∗(t)|= 0.

Hence, the positive ω-periodic solution of the seasonal system (6.2) is globally stable (attrac-
tive).

6.3 Numerical simulation

In this section, we review the dynamical behaviour of systems (6.1) and (6.2) with help of nu-
merical simulations. For this, we use the parameters’ values from various literature sources,
mentioned in Table 6.1.

Non-seasonal model
For the parameters given in Table 6.1, the unique interior equilibrium (shown in Fig. 6.1) is
globally asymptotically stable which is evident from the Fig. 6.2 in which a number of solutions
in NPZ-space starting from different initial conditions converge to it (violet coloured dot).

Fig. 6.2: Global Stability of interior equilibrium with parameters from Table 6.1.

Now we see the effect of the rate at which phytoplankton’s growth is suppressed by environ-
mental toxin f1 on the kinetics of the system (6.1). For this we vary f1 in the interval [2.5,4]
with u = 2 and other parameters same as in Table 6.1. Based on the bifurcation diagrams spec-
ified in Fig. 6.3, we can notice that the system exhibits steady-state kinetics for lower values
of f1 in the taken interval. As we increase f1 beyond its critical value, namely f h

1 = 3.2525,
our system’s solution becomes periodic through Hopf bifurcation and yields a stable limit cy-
cle. Along with the change in the system’s dynamical behavior on changing f1, observing the
variation in population densities is also important. For this purpose, we have given the trend
of N,P,Z and T on varying f1 in Table 6.2, keeping it in its stable range. From this table,
we can note that phytoplankton population density decreases as we increase parameter f1. As
zooplankton is the specialist predator of phytoplankton, its density also decreases but at a rapid
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rate. Due to the reducing density of phytoplankton, the intake of nutrients decreases, due to
which their concentration increases, and similarly, increment in T can also be explained.

To study the change in the dynamical behavior of the system with respect to parameter A,
we have plotted the bifurcation diagrams for all four participants (N,P,Z,T ) in Fig. 6.4 for
A ∈ [6,8]. From these diagrams, we perceive that the system tends to coexistence equilibrium
for the lower addition rate of environmental toxins. As A crosses A = Ah = 6.8525, there is
a rise of the stable limit cycle attractor. The trend of change in the N,P,Z,T on varying A

is reflected in Table 6.3. From these table, it is easy to notice that as the supply rate of toxins
increases, T increases due to which there is depletion in phytoplankton population density. Due
to which there is corresponding increment and decrement in N and Z, respectively.

(a) (b)

(c) (d)
Fig. 6.3: Bifurcation diagrams for model (6.1) using f1 as the bifurcation parameter for
u = 2 and other parameters as in Table 6.1.

(a) (b)
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(c) (d)
Fig. 6.4: Bifurcation diagrams for model (6.1) using A as the bifurcation parameter for
u = 0.8 and other parameters as in Table 6.1.

f1 N P Z T

2.5 6.7468 0.4097 0.5924 4.1447
2.7 6.7474 0.4096 0.5730 4.1457
2.9 6.7480 0.4095 0.5561 4.1466
3.1 6.7484 0.4094 0.5413 4.1473

Table 6.2: Trend of N,P,Z,T on variation of
f1 with u = 2 and other parameters as in Table
6.1.

A N P Z T

6 6.7464 0.4098 0.6074 3.5519
6.2 6.7466 0.4097 0.5993 3.6707
6.4 6.7469 0.4096 0.5917 3.7895
6.6 6.7471 0.4095 0.5845 3.9082

Table 6.3: Trend of N,P,Z,T on variation of A
with u = 0.8 and other parameters as in Table
6.1.

(a) Stable limit cycle for α = 0.18. (b) Stable E2 for α = 0.2.
Fig. 6.5: This figure depicts the eradication of oscillation and attaing stability by equi-
librium E2 on increasing α , with f1 = 4, u = 2 and other parameters as in Table 6.1.

Phytoplankton’s inhibitory effect (α) against zooplankton is also one of the important pa-
rameters to be studied. The periodic oscillations for higher values of f1 (Fig. 6.3) are eliminated
and zooplankton free equilibrium E2 becomes stable on increasing α . For Fig. 6.5(a), we keep
f1 = 4, α = 0.18 and remaining parameters same as of Fig. 6.3 for which system have a
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periodic solution. As we increase α to 0.2, the oscillations are wiped out, and the solution ap-
proaches the zooplankton free equilibrium. Accordingly, we can say that a rise in the inhibitory
effect may result in the extinction of both the zooplankton population and periodic fluctuations.
Thus the defence mechanism of phytoplankton can help to control the plankton blooms by
removing the periodic oscillations in the non-seasonal model. This deliberates the benefit of
using Holling type IV response for handling the phytoplankton-zooplankton interaction.

Multistability is a substantial property of a non-linear model, which makes it flexible in
an asymptotic way because a multistable system has more than one stable attractor. Due to
this, different solutions with different initial conditions tend to their respective attractors. Our
autonomous population model (6.1) also shows this character with three different stable attrac-
tors; stable interior equilibrium, stable limit cycle, and stable zooplankton free equilibrium.
In Figs. 6.6(a)-6.6(c), we have portrayed the time-series graphs of zooplankton population
from solutions with three different initial conditions (given in respective time-graphs). We can
notice from these figures that as we change the initial conditions, the asymptotic destination
changes correspondingly. In a 4-dimensional system, drawing the basin of attraction is not fea-
sible, thus for our system (6.1), we keep the nutrient coordinate of initial condition as constant
(N(0) = 10), and draw the basin by varying the remaining coordinates in Fig. 6.6(d).
Seasonal model
Now we do the simulations for analysing the behaviour of seasonally forced model (6.2). For
simulation purpose, the following parameters are assumed to have sinusoidal form while other
parameters are time-independent.

u(t) = u+u0 sin(wt), f (t) = f + f0 sin(wt), δ (t) = δ +δ0 sin(wt),

where u0 (0 < u0 < u), f0 (0 < f0 < f ), and δ0 (0 < δ0 < δ ) control the intensity related to
seasonal forcing, and the values of these u0, f0, δ0 are assumed to be zero until mentioned in
the text.

Now, we analyse the impact of adding seasonal forces in the non-seasonal model (6.1).
For the parameters provided in Table 6.1, the interior equilibrium for model (6.1) is globally
asymptotically stable (Fig. 6.2). As we introduce the seasonality by taking w = 0.1, u0 = 0.3,
for model (6.2), there is a rise of a positive periodic solution (Fig. 6.6) which is globally
attractive in nature as three solutions started from different initial conditions converge to it.
From Fig. 6.6(c), we can see that the solution of autonomous system with IC: [10, 4, 1.45, 1] is
non-permanent as the zooplankton population extincts. But as we introduce the seasonality in
this system by taking ω = 0.1, u0 = 0.1 and keeping all other parameters fixed as in Fig. 6.6(c),
solution of this non-autonomous system with the same initial condition becomes permanent
(Fig. 6.7(b)). Thus we can see that how the inclusion of seasonality in our system changes its
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dynamics.

0 1 2

104

0.7

1.1

1.6

(a) IC: [10, 0.4, 1.6, 1].

0 2500 5000
0

2.25

4.5

(b) IC: [10, 0.8, 1.6, 1].

0 1500 3000
0

5

10

15

(c) IC: [10, 4, 1.45, 1].

(d) Basins of attraction keeping N(0) = 10.

Fig. 6.6: In Figs. (a), (b), and (c), the solution started from three respective different
initial conditions tend to stable interior equilibrium, stable limit cycle, and zooplankton
free equilibrium. For the Basins of attraction in Fig. (d), green, red, and blue dots refers
to initial conditions (P(0) ∈ (0.1,4.5),Z(0) ∈ (1,1.6),T (0) ∈ (0.1,1)) from where the
solution approaches interior equilibrium, limit cycle, and zooplankton free equilibrium,
respectively, with f = 1.267, α = 0.1333 and keeping other parametric values fixed
from Table 6.1.

0 1250 2500
6.5

7

7.5

0 1250 2500
0.2

0.45

0.7
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0 1250 2500

1.1

1.6

0 1250 2500
2

5

8

Fig. 6.6: This figure demonstrate the global stability of the periodic solution of system
(6.2) for w = 0.1, u0 = 0.3, and all other parameters from Table 6.1.

(a) Autonomous system is non-
permanent.

(b) Non-autonomous system is
permanent.

Fig. 6.7: With IC: [10, 4, 1.45, 1], in (a) solution of autonomous system is non-
permanent whereas in (b) taking ω = 0.1, u0 = 0.1, solution of non-autonomous system
is permanent.

Now, we further examine our seasonal model by changing the parameters and study some
crucial qualities like; chaos and multistability, which are related to seasonal models [167]. For
a particular set of parameters (provided in the respective figure), seasonal model (6.2) behaves
chaotically. When a dynamical system becomes chaotic, predicting the future behavior of its
solution is not feasible, as it becomes sensitive to initial conditions. Thus to corroborate the
chaotic nature of this system, we perform sensitivity analysis by initiating two solutions from
two different but closed initial conditions ([1, 1, 1, 1] and [1.001,1.001,1.001,1.001]) shown in
Figs. 6.8(a)-6.8(d). From these figures, we can notice that these two closely started solutions
diverge from each other as time passes which endorses the system’s chaotic character. We have
also drawn a 3-dimensional Poincare map (Fig. 6.8(e)) in PZT -space keeping N = 5.5, and the
scattered distribution of points (magenta coloured) in this figure verifies the chaotic essence of
our model.
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Fig. 6.8: Figs. (a)-(d) show the sensitivity of solution of non-autonomous model (6.2)
with respect to initial conditions. Fig. (e) depicts Poincare map in PZT -space at N = 5.5,
with parameters from Table 6.1 except w = 0.1,u0 = 1.3, f0 = 0.9,δ0 = 0.001, f1 =
4,α = 0.12, l1 = 17.

As stated earlier, multistability is an appealing character in non-linear models. Our seasonal
model (6.2) also exhibit this quality. From Fig. 6.9, we can see that for a set of parameters,
model has the attribute of tristability between a limit cycle (L1 which is around zooplankton
free equilibrium), another stable limit cycle (L2 around the interior equilibrium), and a chaotic
attractor. In Fig. 6.9(a)-6.9(c), we have plotted time-series graphs for nutrient coordinate of
three solutions started from three different initial conditions. Basins of attraction for all three
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attractors (L1, L2, chaotic attractor) are also sketched in Fig. 6.9(d), in which green, blue, red
dots represent the initial conditions in NPZ-space from where solution goes to L1, L2, chaotic
attractor, respectively.

Taking u0 = 2, δ0 = 0.005, and remaining parameters same as in Fig. 6.9, now our seasonal
model shows tristability between period-1,2 and 4 limit cycles. To present this multistability,
we provide time-series graphs of nutrient coordinate of the solution with three different ini-
tial conditions (mentioned in Fig. 6.10(a)-6.10(c)), from where the solution tend to different
respective attractor. Again, we have have plotted the basins of attraction for these attractors
in Fig. 6.10(d). If we compare the basin diagrams in Figs. 6.9(d) and 6.10(d) with basin di-
agram presented in Fig. 6.6(d), we can note that these basins of attraction are very complex
and are scattered in a random way in the chosen domain. This behavior reflects the arise of
complexity in the dynamics of the system due to addition of seasonal forces. We can observe
that the presence of seasonal forcing in parameter δ contributes in manifesting the complex
kind of multistablity and chaotic nature in the seasonal model. This reflects the significance of
incorporating the nutrient-plankton dynamics in our system.

As the intrinsic growth rate (u) is an important seasonal parameter, thus we try to see the be-
havior of the seasonal model (6.2) on changing u in a particular range. In Fig. 6.11(a)-6.11(d),
we have drawn the bifurcation diagrams for all the four populations of our model. From the fig-
ure, we can observe that the system switches its nature multiple times. From a chaotic regime,
it reaches to periodic region while passing through multiple chaotic and periodic windows. We
have also calculated the maximum lyapunov exponent (Fig. 6.11(e)) for the same range of u

and keeping other parameters fix as for drawing the bifurcation diagrams. We see from Fig.
6.11(e) that the positive values of maximum lyapunov exponent validates the chaotic nature of
non-autonomous system for this particular set of parameters. Thus one can say that the chaotic
nature of this system can be controlled by varying u in a particular domain. In similar manner,
we have drawn bifurcation diagram for varying f ∈ (3.2,4) in Fig. 6.12. From these figures,
we can see that for the rightmost part of the interval f ∈ (3.2,4); there is a single peak for each
value of f , which shows the existence of the period-1 limit cycle, i.e., the control of chaos.
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Fig. 6.9: In Figs. (a), (b), (c), the solution started from three different initial conditions
([5, 15, 1, 1], [5, 5, 5, 1], [5, 5, 1, 1]) tend to a stable limit cycle (L1), another stable
limit cycle (L2), a chaotic attractor, respectively. For the Basins of attraction in Fig. (d),
green, blue, red dots refers to initial conditions (N(0) ∈ (0.1,3.5),P(0) ∈ (5,20),Z(0) ∈
(1,1.5)) from where the solution approaches L1 L2, and the chaotic attractor, respec-
tively, with parameters from Table 6.1 except w= 0.1,u0 = 1.3, f0 = 0.9,δ0 = 0.001, f1 =
4,α = 0.12, l1 = 17.

From the bifurcation diagrams presented in Figs. 6.11 and 6.12, we noticed how the ki-
netics of a system become complex after the introduction of seasonality. To view the complex
dynamics of our seasonal model in more depth, we have sketched a bi-parametric bifurcation
diagram in the u f -plane (Fig. 6.13). The combinations of u and f in this plane are divided
into seven types, depicted with different respective colors, which are presented in the color bar
given in the figure. Each color describes a periodic solution with a particular period. For ex-
ample, the blue combination of u and f gives a solution of period-1, red gives period-2, and so
on, whereas all the solutions in this figure are initiated from [1,1,1,1]. This complex dynamics
represented in this figure also agree with results delineated by Hossain et al. [167].
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Fig. 6.10: In Figs. (a), (b), (c), the solution started from three different initial conditions
([15, 5, 5, 5], [1, 5, 5, 5], [1, 1, 1, 5]) tend to periodic-1, periodic-2, and periodic-4 limit
cycle, respectively. For the Basins of attraction in Fig. (d), green, blue, red dots refers to
initial conditions (N(0) ∈ (10,15),P(0) ∈ (1,5),Z(0) ∈ (1,5)) from where the solution
approaches periodic-1, periodic-2, and periodic-4 limit cycle, respectively, with parame-
ters from Table 6.1 except, w = 0.1,u0 = 2, f0 = 0.9,δ0 = 0.005,u = 4,N0 = 0.5, f1 =
4,α = 0.12, l1 = 17.
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Fig. 6.11: Figs. (a)-(d) shows bifurcation diagrams for all four populations of model
(6.2) whereas Fig. (e) gives the maximum Lyapunov exponent, with all other parameters
from Table 6.1, except w = 0.1,u0 = 1.3, f1 = 4,α = 0.12, l1 = 17.
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(c) (d)
Fig. 6.12: Bifurcation diagrams for all four populations of model (6.2), with all other
parameters from Table 6.1, except w = 0.1,u0 = 1.3,u = 2.2, f1 = 4,α = 0.12, l1 = 17.

Fig. 6.13: Bi-parametric bifurcation diagram in u f -plane, with w = 0.1,u0 = 1.3, f1 =
4,α = 0.12, l1 = 17 and rest of parameters from Table 6.1.

6.4 Discussion and conclusions

The main purpose of mathematical modeling in evolutionary biology is to formulate the eco-
logical interactions in the form of mathematical equations. In most of the works present in
literature, authors have ignored the seasonality of the physical parameters involved in predator-
prey interrelationships. However, recent works [46, 47] have incorporated this effect and de-
veloped the techniques to deal with such complex non-autonomous models. Inspired from
these, we aspire to study a seasonal NPZT -model with group defence of phytoplankton against
zooplankton.

Initialy we explained the formulation of our both autonomous and non-autonomous models
with necessary assumptions. We assumed that phytoplankton absorb nutrients through Holling
type II response whereas zooplankton consume phytoplankton via Holling type IV response.
Firstly, we provided the analysis for system (6.1) and then for system (6.2). We established
uniqueness and boundedness results for the autonomous model. Existence of equilibrium points
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and stability analysis of the system around these feasible equilibria are investigated next. Fur-
ther, we drived the condition for Hopf-bifurcation with respect to parameter A. In Section 6.2,
we did the mathematical analysis regarding to the non-autonomous model. This comprises
of driving the conditions for its permanence, existence of oscillatory solution, and its global
stability.

Next, through numerical simulation, we saw that system (6.1) undergoes Hopf bifurcation
for parameters f1 and A. We observed that as long as both these parameters are less than some
threshold values, the system remained stable and after which there is the rise of oscillations.
We also examined the trend of change in N,P,Z,T as we vary f1 and A (see Tables 6.2 and 6.3).
Phytoplankton’s inhibitory effect parameter (α) plays an observable role in the dynamics of
model (6.1). As we raised α , the oscillation present in the system (Fig. 6.5(a)) are eliminated
and zooplankton population went to extinction (Fig. 6.5(b)). Thus we can say that the defence
system of phytoplankton against zooplankton is capable of wiping the oscillations present in
the system and the zooplankton population. Our autonomous system (6.1) also showed the
characteristic of multistability (Fig. 6.6) between three attractors; stable interior equilibrium, a
stable limit cycle, and stable zooplankton free equilibrium. Further, we incorporated seasonality
in model (6.1) to get model (6.2). In Fig. (6.6), we demonstrated the existence and global
stability of periodic solution for non-autonomous system (6.2). The incarnation of seasonality
in the autonomous system made it permanent (Fig. 6.7). Thus we can say that the seasonality
promoted the coexistence of species in our system. For a particular set of parameters, system
(6.2) manifested chaotic nature. To confirm the chaotic nature of this system, we have done
the sensitivity analysis (Figs. 6.8(a)-6.8(d)). The sprinkled sampling points in the Poincare
map (Fig. 6.8(e)) also support the presence of the chaotic attractor. Moreover, system (6.2)
also exhibited multistability in complex ways. From Fig. 6.9, we can observe that the seasonal
model is multistable with three types of attractors; a stable limit cycle (L1), another stable
limit cycle (L2) and a chaotic attractor. Although, with some change in parameters it became
multistable with; a period-1 limit cycle, a period-2 limit cycle and a period-4 limit cycle (Fig.
6.10). There is also switching in the stability (Fig. 6.11(a)-6.11(d)) when we vary the seasonal
parameter u. We also calculated the maximum Lyapunov exponent (Fig. 6.11(e)) to verify the
chaos and switching of stability which is pictured in the above bifurcation diagrams for u. The
seasonal system showed a similar behaviour when we varied f (Fig. 6.12).

As we have extended the work of Mandal et al. [48], so we compare the model formula-
tion and the results of this chapter with their work. In their research paper, they assume that
zooplankton consume phytoplankton via Holling type II response and the reduction in zoo-
plankton density due to toxicity of phytoplankton is governed by a function, P2

µ+P2 (Holling
type III response), where µ is half-saturation constant for the toxin release by phytoplankton.
According to this assumption, even the low population density of phytoplankton contributes to
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reducing the zooplankton density, although phytoplankton does not release toxic chemicals at
low density. Thus to improve their model, we assume that zooplankton consumes phytoplank-
ton via Holling type IV response. In this response, there is no decrement in functional response
at the low density of phytoplankton. However, the response value decreases at high phyto-
plankton density, which abates zooplankton’s density. Thus the response taken to deal with the
phytoplankton-zooplankton interaction in the current work reflects the toxin-releasing mecha-
nism of dense phytoplankton in a more realistic manner than the previous one. As nutrients
play a vital role in plankton dynamics so to depict this role and make our model more compre-
hensive and realistic, we incorporated the nutrient-phytoplankton interaction in it. Therefore,
we can observe that the current model is a more realistic and extensive version of the model
given by [48].

One of the novel results in the non-seasonal model is that the defence mechanism of phy-
toplankton is capable of removing the oscillations present in the system, which can help in
controlling the plankton blooms. Further, when we introduce seasonality in the non-seasonal
model, chaos emerges for a set of parameters, making it more interesting to study. The non-
seasonal, as well as seasonal models show different kinds of multistability, which demonstrate
the noteworthy nature of the proposed work. To substantiate the results, we have also provided
extensive numerical simulation work by drawing time series graphs, 1-D and 2-D bifurcation di-
agrams, basins of attraction, Poincare map, etc. All the above features, which are not discussed
in previous study, make the present work more rigorous and reliable. This entire discussion
captures the vibrant nature of the proposed work; as a result, it is anticipated that the work
that has been put together will be able to help researchers to explore aquatic non-autonomous
systems in more depth.
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Conclusions

Mathematical modeling is an important tool for studying ecological interactions as it allows
researchers to simulate and explore complex ecological systems in a quantitative manner. By
using mathematical models, ecologists can develop a deeper understanding of how different
species interact with one another and how they are influenced by various environmental factors.
One of the primary benefits of mathematical modeling is that it allows researchers to make pre-
dictions about the behavior of ecological systems under different scenarios. By constructing
models that reflect different aspects of ecological systems, researchers can explore the conse-
quences of different assumptions and test the predictions of different ecological theories. In
this thesis, we have attempted to study prey-predator (particularly phyoplankton-zooplankton)
interactions with the inclusion of various physical parameters using the ordinary differential
and delay differential equations.

In each model, we first proved the well-posedness of that model by demonstrating the pos-
itivity and boundedness of its solution. Then the existence of all possible equilibrium points
is established, followed by their local and global stability analysis. Then we discussed all the
possible bifurcations with respect to significant parameters involved in that particular model.
Next, in the case of the delayed model, we did the local stability analysis for this. We did an
extensive numerical simulation for each model to reflect its corresponding theoretical findings.
In the numerical simulation, we drew various time-series graphs, different types of phase por-
traits, and bifurcation diagrams for non-chaotic as well as for chaotic systems; different kinds
of basins of attractions are also drawn in case of multistabilities.

In Chapter 2, we put forth a prey-predator model that takes into account the influence of
prey fear that the predator causes, as well as the prey’s anti-predator behaviour in response to
this fear. We observed that the rate of anti-predator behavior is an important parameter because
the number of interior equilibrium points changes as the value of rate of anti-predator behavior
varies. We studied the relationship between cost of fear and rate of anti-predator behavior. The
non-delayed system in this chapter showed the property of bi-stability between two equilibrium
points. We further noticed that, the delayed system suffered subcritical Hopf-bifurcation respect
to both delays and underwent chaotic regime for high values of fear response delay.

In Chapter 3, categorising phytoplankton into the two groups of NTP and TPP, we investi-
gated a phytoplankton-zooplankton system. To deal with zooplankton’s interactions with TPP
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and NTP, we choose generalised Holling type IV and Beddington-DeAngelis responses, re-
spectively. When we change the TPP’s inhibitory impact on zooplankton, it exhibits an unusual
behaviour: an initial increase in its value promotes the proliferation of zooplankton species be-
cause less of the poisonous food is consumed. Because of the increased grazing pressure that
zooplankton puts on NTP, this increase in zooplankton’s population causes a decline in NTP
population. However, as the zooplankton population depends entirely on NTP for survival, a
further rise in this inhibitory impact results in a decrease in the population. The non-delayed
system experienced Hopf and transcritical bifurcations with respect to different parameters.
The interference parameter of the predator is also crucial to the system’s dynamics. We no-
tice that an increase in this interference causes zooplankton species’ population densities to
increase rather than decrease and this shift also helps regulate the periodic oscillations. By
including two discrete delays, one to account for gestational delay and the other to assess the
temporal lag caused by the TPP’s cells maturing before they can release harmful chemicals, we
further analyse the system’s kinetics. A chaotic regime can be reached by increasing the second
delay in a delayed system.

Chapter 4 is dedicated to a phytoplankton-zooplankton-fish system with increased fish food
and anxiety of zooplankton due to fish. Holling type IV and type II responses handle the cor-
responding interactions. We observed that as fear rises to infinity, the fish population decreases
until it reaches a point at which the coexistence equilibrium remains constant. Increasing the
additional food quality can also help manage chaos at low levels of fear. This system demon-
strated the relationship of multistability between a positive and a planner equilibrium and dis-
played the paradox of enrichment while using phytoplankton carrying capacity as the control
parameter.

In Chapter 5, by combining both the characteristics linked to fear and its carry-over effects
with all the necessary assumptions, we worked on the non-delayed and delayed PZF-population
models. Simplified Holling type IV and II functional responses are postulated to govern the
corresponding PZ and ZF interaction. We have theoretically demonstrated that the fish species
saturates to a limited positive value for the carry-over effect parameter. The increase in zoo-
plankton’s PGR is the reason for the rise in the fish population. The non-delayed model flips
its stability twice and passes through several periodic and chaotic windows before stabilizing,
as seen by the variation of the COE parameter. Our non-delayed system exhibits the character
of enrichment of paradox suffered and transcritical bifurcation. Because there is a latency and
the carry-over effects are not immediate. We introduced a COE delay to make the non-delayed
model more realistic and applicable. Most studies find that adding delay to a model makes it
chaotic or periodic. However, there are rare cases when the presence of delay in an oscillatory
system can render it stable by AD (amplitude death). In our approach, delay aids in chaos
control by stabilizing it through the AD phenomenon.
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In Chapter 6, we studied a seasonal NPZT -model with group defence of phytoplankton
against zooplankton. We assumed that phytoplankton absorbs nutrients through the Holling
type II response, whereas zooplankton consumes phytoplankton via Holling type IV response.
We did a thorough analysis of the autonomous as well as non-autonomous models. Phytoplank-
ton’s inhibitory effect parameter played an observable role in the dynamics of the autonomous
model. When this parameter increases, the oscillation in the system was eliminated, and the
zooplankton population become extinct. Thus, the defence system of phytoplankton against
zooplankton can wipe out the oscillations present in the system and the zooplankton popula-
tion. Our autonomous system also showed the characteristic of multistability between three
attractors; stable interior equilibrium, a stable limit cycle, and stable zooplankton-free equilib-
rium. The incarnation of seasonality in the autonomous system made it permanent. Thus we
can say that seasonality promoted the coexistence of species in our system. For a particular
set of parameters, a non-autonomous system manifested chaotic nature. The non-autonomous
system exhibited multistability between different attractors. We noticed that our model is very
complex and comprehensive as we have included the nutrient-phytoplankton interaction. We
also showed that the seasonality in our model makes it permanent. Due to seasonality, the emer-
gence of chaos in our model made it more interesting to study. Our model also demonstrated
different kinds of multistability.

Future Directions

In this thesis, we worked on some ecological model by incorporating several important physical
parameters. We investigated the complex kinetics of these models and have obtained significant
outcomes. Future developments of our work can go in the following directions.

• In this thesis, we have worked on different kinds of local bifurcation, which are of
codimension-1 basically; in the future, higher codimension and global bifurcations can
also be explored.

• In this thesis, we have worked on temporal models, and in the future, this work be ex-
tended in spatial-temporal direction also.

• In the future more biological factors like; the Allee effect and predator taxis can be in-
corporated into the models. The predator taxis will make us learn new tools related to
functional analysis.
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