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Abstract

Blood microcirculation is a crucial process which is vital for oxygenation of tissues and
healthy functioning of the cardiovascular system. Maintaining organs’ healthy functioning
depends on the efficient intricate system of microvessels responsible for transporting oxy-
gen and nutrients to tissues while simultaneously collecting waste. Therefore, it is essential
to investigate and understand the mechanisms regulating microcirculation to discover new
treatments and improve clinical outcomes. Recent developments in imaging technology al-
lowed to capture exquisitely detailed pictures of microvascular blood flow. However, it can
be difficult to interpret these pictures and extract quantitative data on blood flow velocity,
flow rate, and other critical characteristics. To better diagnose and track the progress of mi-
crocirculatory disorders, quantitative data can be extracted through mathematical analysis.
Researchers can simulate many scenarios using mathematical models to determine the most
important factors affecting blood flow. The potential of the mathematical study of blood mi-
crocirculation through microvessels to improve our knowledge of complicated physiological
processes and disease states has gained significant attention in recent years. Mathematical
models can also be used to simulate the effects of various drugs on microcirculation and
identify the most effective treatment strategies. The limits of existing diagnostic and treat-
ment methods can be uncovered by mathematical analysis, which can inspire the discovery
of more effective treatments. The potential applications of this field of research are vast
and far-reaching, making it an area of significant interest and importance to researchers and
clinicians alike.

The thesis is aimed at investigating the blood microcirculation through suitable mathe-
matical approach and structured into seven chapters, each serving a specific purpose. Chap-
ter 1 provides an introduction to the research topic of blood microcirculation in the human
cardiovascular system. It begins by highlighting the need to study blood microcirculation,
as it is critical in maintaining tissue oxygenation and overall cardiovascular health. The
next section of the chapter conducts a thorough literature survey to recognize research gaps
that should be addressed. This method ensures that the research is well-focused and rele-
vant by establishing clear research objectives for the proposed study. The methodology is
discussed in detail to help readers understand the approach that will be followed. Chapter
1 set the foundation for the research by establishing the need for studying blood microcir-
culation, identifying research gaps, establishing research objectives, outlining the research
methodology, and introducing fundamental concepts critical for understanding the research
findings.

The microcirculation through microvessels separates the blood into a core fluid rich in
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erythrocytes surrounded by plasma fluid devoid of cells. Throughout the thesis, the two-
fluid model has been employed to depict blood flow in microvessels accurately. Chapters
2 and 3 represent the cell-free plasma layer as a Newtonian fluid and the core fluid as a
micropolar fluid in which blood particles like RBCs, WBCs, and platelets are suspended,
respectively, to account for the micro-structure of erythrocytes. In addition, the thixotropic
behavior of blood is investigated by modeling it as a two-fluid, having a Newtonian fluid
with constant viscosity modeling the plasma surrounding and the central region having a
viscoelastic Herschel-Bulkley fluid with variable viscosity throughout Chapters 4-6.

The objective of Chapter 2 is to examine the influence of the microrotation of erythro-
cytes, external magnatic field and heat transfer on mechanical quantities of blood microcir-
culation through the microvessel with thin endothelial glycocalyx-layered microvessels. A
Brinkman formulation governs the flow through the thin glycocalyx layer adjacent to the
microvessel wall. The heat transfer through EGL and its applications to physiological as-
pects have also been studied. The equations governing the various flow characteristics are
solved analytically. In addition, Fahraus effect and hematocrit have been investigated. Two
boundary conditions have been formulated, representing the termination of erythrocyte spin
and no occurrence of couple stress at the micropolar-plasma interface. Compared to the no-
spin condition, the relatively strong influence of the no-couple stress condition on Fahraus
effect, flow characteristics, and hematocrit has been observed. Graphical interpretations of
the different parametric influences on blood microcirculation have been studied with both
boundary conditions.

Chapter 3 considers blood microcirculation under the identical scenario of Chapter 2
with absorbing vessel walls and aims to extend the study to examine the mechanism of
the solute dispersion phenomenon. A jump in stress is witnessed at the plasma fluid-EGL
interface, which is depicted as an interfacial condition derived by Ochoa-Tapia and Whitaker
[1]. Sankarasubramanian and Gill’s [2] approach has been employed to acquire asymptotic
expressions for the solute dispersion coefficients and mean concentration with the help of
analytical temperature and velocity profile. To comprehend certain clinical features of blood
microcirculation, the effect of erythrocyte spinning, coupling number, EGL thickness and
permeability, thermal conductivity, radiation parameter, and Hartmann number on the solute
dispersion coefficients and mean concentration interpreted graphically.

A theoretical attempt has been made in Chapter 4 to examine the impact of the heat
transfer aspect on the flow characteristics of temperature-dependent viscous blood microcir-
culation through endothelial glycocalyx layered microvessels. The velocity profile through
the core of the microvessel is obtained analytically with a linear approximation of the

Reynolds viscosity model. The Brinkman-Forchheimer equation governs blood flow through
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the endothelium glycocalyx layer to encompass the permeability spectrum. The perturba-
tion technique is employed to solve the Brinkman-Forchheimer governing equation analyt-
ically. Singular and regular perturbation problems are encountered for small Darcy num-
bers (SDN) and large Darcy numbers (LDN), respectively. Analytical solutions acquired
for hemodynamical characteristics and exercised for the graphical interpretations regarding
the simultaneous impact of Forchheimer number, permeability, viscosity, Grashof number,
thermal conductivity, and Richardson number have been discussed in detail. The study ob-
served the addition in resistance proportional to the thickness of the EGL adjacent to the
microvessel wall. The study concludes the impact of temperature on flow characteristics
and comprehends the importance of studying temperature-dependent viscosity models for
devising clinical procedures involving temperature variations.

Delivering drugs to the targeted location or transporting nutrients to needy organs in-
volves the dispersion of solutes through blood microcirculation. The process is believed
to be influenced by the varying characteristics of viscosity, heat transfer, and other related
factors. The change in temperature during clinical procedures can affect blood viscosity;
hence, examining its impact on the drug deliverance process becomes intriguing. Chapter
5 is motivated toward examining the dispersion of solutes in blood microcirculation through
microvessels influenced by temperature-sensitive viscosity and heat transfer. Sankarasubra-
manian and Gill [2] procedure is exercised to derive asymptotic expressions for coefficients
of diffusion and mean concentration influenced by heat transfer and temperature-sensitive
viscosity. The fluid model is reduced to its specific cases to validate obtained results regard-
ing the solute dispersion process influenced by temperature-sensitive viscosity. In addition,
the dispersion process is accelerated with the dominance of thermal buoyancy forces. The
graphical analysis shed light on the solute dispersion process’s sensitivity regarding heat
transfer and temperature-sensitive viscosity.

The focus of Chapter 6 is to study the hydrodynamic characteristics of blood microcir-
culation through a microvessel having EGL adjacent to the absorbing wall with a sophis-
ticated mathematical model. The endothelial glycocalyx layer affects the hydrodynamical
properties of plasma in microcirculation due to the absorption of plasma proteins and carbo-
hydrate accumulation ([3], [4]). The equations governing the mathematical model delineat-
ing blood microcirculation through microvessel having EGL adjacent to the absorbing wall.
Sankarasubramanian and Gill [2] procedure is exercised to obtain asymptotically solve the
solute dispersion process. A comparison has been drawn between the generalized model
and its reduced specific fluid models for the solute dispersion process. The graphical study
interprets the sensitivity of the solute dispersion coefficients regarding EGL thickness, EGL



X1v

porosity, plasma layer thickness, and wall absorbing capacity. EGL adjacent to the mi-
crovessel wall decreases both convective and axial dispersion in the case of a wall with high
reactivity. One notable observation is that a decrease in the porosity of EGL adjacent to the
microvessel wall leads to a decrease in the average solute concentration.

Chapter 7 serves as a critical component of the thesis by comprehensively summarizing
the key research findings, highlighting the most noteworthy results with physical signif-
icance and practical applications. This chapter aims to offer readers a clear and concise
understanding of the research, drawing attention to the most relevant and essential aspects.
By identifying the research’s strengths and weaknesses, readers can better understand the
reliability and validity of the findings. By outlining potential challenges and opportunities
for further development, the chapter provides a road map for future scope and improvements
to the completed research work. By synthesizing all this information in one place, the chap-
ter helps to ensure that the research can be effectively translated into practical applications

and future research.
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Qu Angular velocity

Oy, Oy Mean radiation absorption coefficients of micropolar and

Newtonian fluids, respectively
O, ON Electrical conductivities of micropolar and Newtonian

fluids, respectively

(o]} Ratio of electrical conductivities

r Material constant

Ol Roots of transcendental Eq.

Ky Rotational viscosity

Om Parameter (couple stress)

UR Viscosity ratio (i.e. ty/ )

Subscripts

H Symbolizes for Herschel-Bulkley fluid (for wy, 0y, Ty, On, Ku, Un, PH, PH)

M Micropolar fluid in velocity profile (for way, Oy, Tar, Oz, Kary Ut P, PM)
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Chapter 1

Introduction

gilhe cardiovascular diseases triggered by an abnormal blood circulation in arteries ac-
count for the majority of untimely deaths in developed countries. The improvement in such
scenario requires a deep understanding of blood circulation in human cardiovascular system

for advancement of clinical diagnosis and treatment procedures.

The systematic conception of
blood circulation in the human car-
diovascular system based on evi-
dence provided by William Har-
vey, opens the window of oppor-
tunity for future scholars to study
modern physiology. Blood trav-
els through a systematic circula-
tory route as shown in Figure 1.1
and reach to specific organs in the
body [5]. While in circulation
through capillary bed, blood per-
forms two essential operations of
transport and exchange. Each cell
of the human body has particular
immunological and nutritional re-
quirements, which are taken care
by blood in continuous motion.

The capillary bed (Figure 1.2:(a))
Figure 1.1: Systematic Blood Circulatory Route [5] is a unique interweaving structure
of microvessels (capillaries) being

200£250 um long and having a diameter of 8um to 10um (Figure 1.2:(b)). At the capillary
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bed, the cells attain direct access to blood. Throughout the body, capillaries function as
part of a capillary bed, a network of 10-100 capillaries. Thin-walled exchange microves-
sels, known as capillaries (Figure 1.2:(c)), primarily facilitate the exchange of substances
between the blood and interstitial fluid. Throughout the body, capillaries function as part of
a capillary bed, a network of 10-100 capillaries. Capillaries are present close to nearly all
cells throughout the body, although their density depends upon the metabolic demands of
the specific tissue they supply. Tissues with high metabolic demands, such as muscles, the
brain, the liver, the kidneys, and the nervous system, possess abundant capillary networks to
facilitate the delivery of oxygen and nutrients (Figure 1.2:(d)). Compared to the diameter of

red blood cells, the diameter of such microvessels is either smaller or approximately equal.

(b) [6]

(a) [5]

(c) [S]
(a) [7]

Figure 1.2: Blood microcirculation (a) Capillary bed, (b) Diameter of capillary, (c)Red
blood cells passing through capillaries and (e) Oxygen transport phenomena in capillary
Vital organs of the human body, like the brain, lungs, and kidneys, are equipped with a
highly dense network of microvessels to deal with the tremendous requirement of nutrient

exchange. Therefore, studying the mechanical aspects of micro-circulation in microvessels
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is of immense importance to understanding the mechanism of life-threatening diseases and
inventing or improving the clinical diagnosis and treatment procedure.

The branch of fluid dynamics examining the mechanical aspect of physiological flow is
known as bio-mechanics. Bio-mechanics can empower researchers with laws of physics to
express the fluid flow in terms of a mathematical expressions and the effects of mechanical
parameters on the behaviour of fluid flow could be analyzed through these expressions. In
mathematics, there are customarily two approaches namely analytical and numerical to solve
a problem governing the real life phenomenon. The solution gained through analytical ap-
proach is exact and guarantee the accurate prediction regarding qualitative behaviour of real
life phenomenon in contrast to the solution achieved through numerical approach. However,
in practice numerical techniques are exercised for practical purposes as most of the time to
get analytical solution is either impossible or quite difficult. In 1828, Jean Poiseuille’s work
[8] marked the beginning of the study of mechanics of the blood flow and contributed to the
circulation through small vessels. Blood circulation through microvessels is termed by Fung
[9] as micro-circulation. The current chapter accommodates the documentation of required
concepts with a detailed literature review to identify the gap in existing research work, es-
tablish objectives for the proposed work and devise a methodology to achieve established
objectives.

1.1 The Microcirculation

1.1.1 Blood Components in Microcirculation

Figure 1.3: Blood Components [10]

The term "microcirculation” describes the process by which the body’s tissues receive and
release oxygen, nutrients, and wastes via the body’s tiny blood vessels (such as arterioles,
capillaries, and venules). Several different components of microcirculatory blood are re-

sponsible for keeping tissues healthy and functioning correctly.
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1. The most numerous blood cells, which are about 99% of the cellular components of
blood, known as red blood cells (RBCs), transport oxygen from the lungs to the body’s
tissues and remove carbon dioxide. About 40 —45% of the total blood volume com-
prises RBCs. In the microcirculation, the proportion of RBCs may be slightly lower
due to their larger size than other blood components, making it difficult for them to
pass through narrow capillaries. RBCs must be highly deformable to pass through the
tight confines of microcapillaries on their way to the tissues. RBCs emit vasodilators
and vasoconstrictors, which help to control blood flow and blood pressure, respec-

tively.

2. White blood cells (WBCs) are part of the immune system and defend the body against
infections and foreign substances. WBCs comprise a small percentage of the total
blood volume, typically less than 1%. WBCs can move through the walls of blood

vessels and into surrounding tissues to fight infections.

3. Platelets, which are cellular fragments in the form of a disc, contribute to blood coag-
ulation. Platelets are also present in small numbers in the microcirculation, typically
less than 1% of the total blood volume. They can bind to injured blood vessel walls

in the microcirculation and secrete clotting factors to avoid excessive bleeding.

4. Plasma, the blood’s liquid component containing the remaining 1% of the cellular
components, comprises proteins, electrolytes, hormones, and nutrients. Plasma aids
in the transportation of nutrients, waste materials, and other substances throughout the
body and plays a part in regulating blood pressure and pH balance. Plasma comprises

approximately 55 — 60% of the total blood volume.

Vasoactive chemicals like nitric oxide and endothelin are released, and smooth muscle cells
in the walls of arterioles contract and relax to control blood flow in the microcirculation. Red
blood cells (RBCs) can influence blood flow via rheological factors, including viscosity
and shear stress. The microcirculation system relies heavily on the blood and its many

components to function and stay healthy.

1.1.2 Structure of Microvessels in Microcirculation

Microcirculation includes small blood vessels such as arterioles, capillaries, and venules,
which have distinct structural features that allow them to perform their specialized func-
tions in exchanging gases, nutrients, and waste products between the blood and surrounding

tissues. Here is a brief description of the structure of these microvessels:
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1.1.2.1 Arterioles

Arterioles are small blood vessels that connect larger arteries to capillaries. They have a
muscular wall composed of smooth muscle cells, which can contract or relax to regulate
blood flow to the capillaries. Arterioles also have a layer of endothelial cells lining their

inner surface, which provides a barrier between blood and the surrounding tissue.

1.1.2.2 Capillaries

() (b)

(©
Figure 1.4: Capillary structure and types (a) Continuous (b) Fenestrated (c) Sinusoid. [5]

Capillaries are the smallest and most numerous blood vessels in the body. They consist
of a single layer of endothelial cells, which are highly permeable to gases and nutrients.
Capillaries have a very small diameter, typically between 8um to 10um, which allow them
to exchange substances with surrounding tissues through diffusion. Some capillaries also
have pores or fenestrations in their endothelial layer, which allow larger molecules to pass
through. The human body consists of three distinct types of capillaries: continuous capillar-
ies, fenestrated capillaries, and sinusoids. The majority of capillaries present in the brain,
lungs, skeletal and smooth muscle, and connective tissues are classified as continuous capil-

laries. Fenestrated capillaries can be observed within various anatomical structures, choroid
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plexuses of the ventricles in the brain, including the kidneys, villi of the small intestine, cil-
iary processes of the eyes, and endocrine glands. The presence of sinusoids can be observed
in the , anterior pituitary, spleen and parathyroid glands. A brief description of the structure

of capillaries is discussed here

* Capillaries are composed of a single layer of endothelial cells, which line the inner
surface of the vessel wall. These cells are flattened and elongated, creating a thin
barrier between the blood and surrounding tissues. Endothelial cells are connected by
tight junctions, which restrict the movement of larger molecules and cells between the

blood and surrounding tissues.

* The endothelial cells are supported by a thin basement membrane, which is com-
posed of a meshwork of collagen and glycoproteins. The basement membrane pro-

vides mechanical support and helps to maintain the integrity of the capillary wall.

* Pericytes are specialized cells that are located in close proximity to the endothelial
cells. They wrap around the capillary wall and are thought to play a role in regulating
blood flow and capillary permeability. Pericytes can also differentiate into other cell

types, such as smooth muscle cells or fibroblasts.

* Small gaps, called intercellular clefts, are present between adjacent endothelial cells.
These gaps allow for the exchange of small molecules, such as oxygen, carbon diox-

ide, and nutrients, between the blood and surrounding tissues.

The structure of capillaries is highly responsible to facilitate the exchange of substances
between the blood and surrounding tissues. The thin layer of endothelial cells, supported
by a basement membrane and pericytes, allows for a high degree of permeability, while
tight junctions and intercellular clefts help to regulate the movement of larger molecules

and cells.

1.1.2.3 Venules

Venules are small blood vessels that connect capillaries to larger veins. They have a similar
structure to arterioles, with a muscular wall composed of smooth muscle cells and a layer
of endothelial cells. Venules can also serve as sites for leukocyte migration, as they have a
wider diameter than capillaries and a more porous endothelial layer.

Overall, the microvessels involved in microcirculation have distinct structural features
that allow them to perform their specialized functions in exchanging substances between the

blood and surrounding tissues. Arterioles can regulate blood flow to the capillaries, while
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capillaries provide a highly permeable barrier for exchange, and venules serve as a site for

leukocyte migration.

1.2 The Mechanical Aspects of Microcirculation

The long-neglected field of the mechanics of microcirculation has, in the last few years,
begun to be subjected to more rigorous analysis through the application of the unifying
principles of physics. To examine the mechanism of microcirculation, one must know the

mechanical aspects affecting it. Some significant aspects are noted here.

(a) The micro structure of blood components affecting circulation and the adequate way

to accommodate these interference in a mathematical frame work.

(b) The porous structure of permeable microvessel wall catering the transport and ex-

change process.

(c) The resistance or assistance provided through external factors such as radiation and

magnetic field.

(d) The examination of solute dispersion process in microcirculation.

In order to examine the mechanism of microcirculation of blood, one must consider the

blood as a fluid either Newtonian or non-Newtonian.

1.2.1 Newtonian Fluid

When the shear rates reach approximately 100/sec and the arteries are larger than 1 mm in
diameter, blood demonstrates the characteristics of a Newtonian fluid, where the viscosity
coefficient represents the constant proportionality between the strain rate and shear stress.
Newtonian fluids are those that abide by Newton’s law of viscosity, which can be mathe-
matically expressed by stating that shear stress remains constantly proportional in relation
to the strain rate. Py

Wy = fiv 5 (1.1)
where Ty, Wy, Uy, %L?N denotes the shear stress, axial velocity, viscosity coefficient, and

strain rate of unidirectional Newtonian fluid flow in a tube, respectively.

1.2.2 Non-Newtonian Fluid

Non-Newtonian behavior describes that fluid’s viscosity and flow behavior is affected by

elements other than the shear rate, for example blood’s viscosity is affected by the blood’s



8 Chapter 1. Introduction

composition, the presence of cells and proteins, and the features of the blood arteries through
which the blood flows. Blood exhibits non-Newtonian behavior at the low shear rates typical
of capillaries and other blood channels with diameters below 1 mm. This indicates that the
shear stress and strain rate are not linearly related. The shear stress is the force per unit area
that drives the fluid, and the strain rate is the rate at which the fluid deforms under stress. As
the shear rate varies, so does the blood’s viscosity.

Additionally, blood is thixotropic, which means its viscosity decreases with time under a
constant stress or shear rate. This quality facilitates oxygen and nutrition delivery to tissues
via the circulatory system by facilitating blood flow via capillaries and other tiny blood
vessels. Blood can also show shear thinning behavior, where its viscosity reduces with an
increasing shear rate. The presence of red blood cells, which may align and create structures
that decrease flow resistance at high shear rates, is responsible for this behavior.

Research and clinical applications in biomedicine rely heavily on our knowledge of
blood’s non-Newtonian properties, including designing artificial organs, creating drug deliv-
ery devices, and investigating the mechanics of blood flow in conditions like hypertension
and thrombosis. Let us take a look at two of the most well-known non-Newtonian fluid

models in order to better understand the peculiar behaviour of blood.

1.2.2.1 Micropolar Fluid

In our circulatory system, blood is a composition of erythrocytes and plasma with nutrients
and other fiber tissues, so the shape and size of the fluid molecules play a vital role in mi-
crocirculation through microvessels. The classical Navier-Stokes equations fails to examine
the impact of fluid particles’ substructure on circulation. Ariman [11] emphasized the in-
clusion of the deformable structure of blood in the form of microrotation and validated this
micropolar model of blood by comparing it with the experimental work of Bugliarello and
Hayden [12]. A detailed description of microcontinuum fluids with their applications for
real and ideal fluid flow was also provided by him ([13], [14]). Eringen [15] introduced
the fundamental theory of simple microfluids with molecules exhibiting micro-rotation, and
he derived fluid motion equations governing a new class of viscous microfluids. He [16]
extended his work for a class of micropolar fluid, which is a subclass of microfluids, and
the molecules of these fluids have micro-motion and spin inertia. The micropolar fluid sup-
ports the couple stress and body couples only. Physically the micropolar fluid exhibits the
independent rotation of molecules with its local vorticity. The constitutive equation for the

motion of the micropolar fluid is derived by Eringen as follows.
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V.ov=0, (1.2a)
pv=pF—Vp+ (U, +K)Av+ KV X 0, (1.2b)
pJ - =pL+(0+B)VV-0+yA0+ 1,V X v—2K,0, (1.2¢)

Burton [17] characterized the blood as a suspension of cells containing hydrocarbon and
other molecules. Due to their flexible nature, RBCs can pass through relatively smaller
capillaries. Fung [18] analyzed the viscous properties due to the flexible nature of RBCs.
Devanathan [19] and Mekheimer [20] utilized the single fluid model of micropolar fluid
through circular tubes with and without constrictions to analyze the effect of the micro-
structure of molecules through fluid flow. Srinivasacharya and Shiferaw [21] investigated
the flow of micropolar fluid with hall and ionic effects flowing through a circular pipe under
the influence of an external magnetic field of uniform strength. Khanukaeva et al. ([22]-
[23]) analyzed the flow of micropolar fluid through a membrane with a porous layer using
a cell model technique in which the flow is parallel and perpendicular to the axis of the
cylindrical cell. Siddheshwar and Manjunath [24] discussed the impact of the shape and
size of the fluid particles on the unsteady solute dispersion process in micropolar fluid flow

through a tube with heterogeneous chemical reaction.

1.2.2.2 Herschel-Bulkley Fluid

Among the various relations used to characterize the behavior of viscous fluids, the Herschel-
Bulkley model, also known as the yield power law model, is particularly useful for describ-
ing the behavior of fluids that display yield stress and for which the shear stress tends to
behave like a power law at high shear rate. Since it generalizes the Bingham and power-
law models, this one is frequently used to characterize the rheological behavior of non-
Newtonian fluids [25]. The expression governing the Herschel-Bulkley fluid is given by
[26]

1
SO ow n -
Ty =T+ [uH (—%)1 L if Ty > 7T, (1.3a)
owy e
=0, if W<, (1.3b)

where Ty, Ty, WH, Ha, aai?b’, n are the shear stress, yield stress, axial velocity, viscosity
coefficient, strain rate, and fluid behaviour parameter of Herschel-Bulkley fluid, respec-

tively. Both shear-thinning and shear-thickening fluid behaviours are reflected in the flow by
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fluid behaviour parameter n. The Herschel-Bulkley fluid has two parameters: the Herschel-
Bulkley fluid behaviour parameter n and the yield-stress Ty, and for particular values of these
two parameters, the model reduces to the Newtonian and various non-Newtonian models,

making it more realistic than other non-Newtonian models.

1.2.3 Two-Fluid Model

With experimental evidence and theoretical study, Bugliarello and Sevilla [27] established
the multi-phase nature of blood in microcirculation through microvessels. Blood flow is
partitioned into the core fluid exhibiting non-Newtonian behavior due to the suspension of
cells (RBCs, WBCs, and platelets) encompassed by a thin layer of cell-free plasma near
the microvessel wall. Thus for the realistic situation of the bloodstreams in microvessels,
the two-fluid models are found significantly appropriate as it presumes the non-Newtonian
behavior for all the erythrocytes occupying the core region of the blood vessels and the
surrounding thin layer of plasma near the wall as Newtonian fluid [28].

Adopting blood as a two-fluid model, several studies ([29], [30], [31], [32], [33], [34],
[35]) examined the diverse aspect of microcirculation through microvessels with or with-
out constrictions and analyzed the impact of plasma layer thickness, plasma layer viscosity,
constriction height, and non-Newtonian nature of blood in core region fluid on hemody-
namical quantities such as flow rate and flow impedance. Following the presumptions of the
two-fluid model, Debnath et al. [36] examined the solute dispersion for the periodic flow of
blood through absorbing microvessels. Inspired by the two-fluid model, Rana and Murthy
[37] considered blood flow as a flow of Casson fluid in the central region surrounded by a
flow of Newtonian fluid in a peripheral region near the boundary and discussed the effect of
plasma layer thickness, periodicity, pressure gradient amplitude, Schmidt number and wall
reaction on the dispersion process in the circulation of blood through small blood vessels by

taking the two-fluid model approach.

1.2.4 Viscosity of Blood

The term "blood viscosity" describes how thick and sticky blood is, which hinders its capac-
ity to flow through blood arteries. The quantity and makeup of various blood components,
such as RBCs, WBCs, plasma proteins, and platelets, primarily determine blood viscosity.
Red blood cells, the most abundant cells in the blood, play a significant role in blood viscos-
ity. They deliver oxygen to cells and eliminate waste products from the body. Their size and
shape affect the fact that how easily red blood cells are carried through blood arteries. When
people are healthy, their red blood cells adapt and alter their form to fit through small blood
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arteries. However, if there are an excessively high number of red blood cells, as occurs in
sickle cell disease, they might clump together and make the blood more viscous.

Blood viscosity is also affected by plasma proteins like fibrinogen and globulins. These
proteins function in coagulation and immune system reactions. When present in high con-
centrations, these proteins can raise blood viscosity and impede the normal flow of blood
through the body’s blood vessels. Tiny blood cells called platelets are vital to the clotting
process. Blood clots are formed when platelets clump together after an injury to a blood
artery. Platelets are necessary for clotting, but excess can increase blood viscosity. Dehy-
dration, excessive red blood cells, elevated plasma protein levels, and other diseases and
medical situations all contribute to thicker blood. Polycythemia vera is one such condition;
it is an uncommon blood ailment with too many red blood cells in the body. People at high
risk for cardiovascular disease or stroke should have their blood viscosity monitored regu-
larly. Aspirin and other blood-thinning drugs may be used in conjunction with a healthy diet
and regular exercise to treat high blood pressure.

Blood viscosity being a key characteristic, is solely addressed as a function of shear rate
in many studies. However, there are a number of additional physical variables impacting
blood viscosity that must be taken into account due to the complexity of blood as a whole
(consisting of cells, plasma, and other nutrients). Among these factors are hematocrit, body

temperature, illness severity, and the RBCs’ biological age [26].

1.2.4.1 Variable Nature of Blood Viscosity

Because viscosity is such a significant physical property of the blood, research into its vary-
ing nature is essential. According to Lih [38], the temperature, hematocrit, concentration,
and vessel width all have a role in determining blood’s viscosity. He also noticed that when
blood passes through a tube with a smaller diameter and a low shear rate, the blood’s viscos-
ity may change. Several writers ([39], [40], [41], [42], [43], [44], [45], [46]) have taken this
into account by examining the effect of altering viscosity. They discovered that the variable
nature of viscosity is crucial to fluid flow in conduits of decreasing diameter.

Taking into account the blood in the core area as Newtonian or non-Newtonian fluids,
numerous authors ([47], [48], [28]) have studied the effect of hematocrit-dependent viscosity
on TFM of blood flow through the tube with or without constrictions. Tiwari and Chauhan
([28], [49], [50], [51]) explored the impact of position-dependent viscosity when discussing
the TFM of blood flow in blood capillaries with a constriction or a porous patch near the
tube wall. They demonstrated that flow variability and hematocrit are both affected by the

presence of a glycocalyx layer and the non-constant character of viscosity.
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1.2.5 Heat Transfer Aspect

In the modern era, cancer and other malignant tumors have become increasingly common
as a result of environmental factors like increased pollution and the widespread use of toxic
chemicals, so scientists have been working hard to find a way to eradicate them through a
combination of experimental findings and mathematical modeling. In hyperthermia, where
heat transport is involved, even a 2°C or 3°C temperature difference can profoundly affect
the body’s internal fluid dynamics. In addition, laser treatment, cryosurgery, and other meth-
ods aid in destroying active cancer cells. When body temperature rises, it causes harm to
otherwise healthy tissue. Nevertheless, the therapeutic process, including the modest tem-
perature shift, may be helpful in treating ailments like cancer or malignant tumors [44].
Radiation has been produced and directed toward the front lines of the contaminated region
via the heat transfer aspect. The treatment’s efficacy is evaluated by how well the absorbed
energy warms the region around the infection without harming the surrounding healthy tis-
sue. Heat (hyperthermia), radiation (laser therapy), and cold (cryosurgery) are all used to
cure various diseases by destroying abnormal tissues and malignant cells without harming
the healthy ones.

In addition to the discussed perspective, it has been shown that blood flow is closely
related to the delivery of oxygen and nutrients to the organ. Increased circulation promotes
body heat, which in turn increases the organ’s delivery of oxygen and nutrients [52]. When
a muscle receives enough oxygen, the repair process moves forward faster than when oxy-
gen levels are low. Physiotherapy’s ability to improve circulation to a sick body part is a
significant benefit of the discipline. Ogulu and Abbey [53] considered the porous media
within the artery to explore the impact of heat transmission during the treatment method
for a malignant tumor or cancer. Using a heat transfer methodology and the Boussinesq
approximation under the assumption of low electrical conductivity, Prakash and Ogulu [54]
analyzed the oscillating flow of a power-law fluid through a constricted tube. They eluci-
dated this method’s application to deep heat muscle therapy. Chamkha [55] investigated the
non-Darcian flow of an electrically conducting and heat-generating / absorbing fluid via a
channel in a homogeneous porous media using hydromagnetic mixed convection. The free
and mixed convection of a micropolar fluid moving in a vertical channel with asymmetric
heating on the wall was studied by Chamkha et al. ([56],[57]), who provided both an ana-
lytical and numerical solution to this problem. Heat transfer was later shown to be crucial
in medical therapy during surgery after several authors ([46],[58]) conducted studies on the
flow of viscoelastic/non-viscoelastic fluids via constricted/porous conduits. Selimefendigi
et al. [59] used numerical simulation to examine the effects of varying cylinder diameters

on the mixed convection in a cavity containing nanofluid and porous layers.
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1.2.6 Endothelial Glycocalyx Layer (EGL)

Glycocalyx refers to the thin gel-like coating that covers endothelial cells and protects the
circulatory system from damage. Proteoglycans and glycosaminoglycans are found in the
endothelial glycocalyx layer (EGL), a membrane-bound form of the EGL. By accumulating
protein from the blood, the EGL becomes thicker, creating more friction for the blood to
flow in microvessels. Due to its profound effect on circulatory parameters, the formation
of atheromatous plaques in the artery wall as a result of the transport process taking place
in arteries impelled researchers to analyze the phenomenon mathematically. It has been
hypothesized that atherosclerotic plaques can be explained by the movement of a soluble
substance through the blood vessel’s porous layers. In order to fully understand how flow
variables and transport phenomena in blood microcirculation are affected by an endothelial
glycocalyx layer adjacent to vessel walls, it is essential to consider the influence of mechan-
ical characteristics of it.

The increased arterial permeability caused by the thinning of EGL is the primary precipi-
tating factor in the development of cardiovascular disease. In addition to decreasing porosity
and slowing plasma flow in microvessels, the layer of macromolecules along the vessel walls
may further increase flow resistance ([60]-[61]). Secomb et al. [3] conducted experiments
to determine the existence of endothelial glycocalyx layer in the capillary, which plays a
part in the increase in flow resistance and decrease in hematocrit. Based on the mechanical

properties of endothelial glycocalyx layer, it can be depicted as a porous medium.

1.2.7 Flow through Porous Medium

Hill [62] concluded that the stability of a fluid’s Poiseuille flow through a Darcy porous
layer and a Brinkman layer is affected by the depth of the layer and the ratio of the porous
layer’s thickness to the fluid layer’s thickness. To investigate the dynamical properties of the
multi-phase flow in a cylindrical tube with porous boundaries, Sacheti et al. [63] used the
Brinkman formulation for a porous medium to do a parametric analysis of bubble motion in
the creeping flow of two immiscible fluids. The shear stress jump condition, first described
by Ochoa-Tapia and Whitaker [1], involves a sudden change in shear stress at the fluid-
porous interface. To better understand and analyse many physical and biological processes,
several researchers have formalised the flow through porous media using the stress jump
condition. Deo et al. [64] assumed the stress jump interfacial condition between the fluid
and the endothelial glycocalyx layer (EGL) and used a cell model approach to calculate the
hydrodynamic permeability of a population of porous cylinders surrounding an impermeable

core.
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The cyclic Newtonian fluid flow through a tube having a circular cross-section was stud-
ied by Tiwari and Deo [65] using the Brinkman equation and observed a phase lag be-
tween the flow characteristic and the pressure gradient. Blood flow with the two-fluid model
through a porous multilayered blood artery has been studied by researchers ([66], [67], [68]).
The vascular wall was thought to consist of a porous Darcy layer and a thinner Brinkman
layer. For three-layer model of blood flow via a blood artery, Tiwari and Chauhan ([49],[50],
[51]) presented the work for a thin porous region close to a wall. Researchers looked at how
hematocrit, flow factors, and the Fahraeus effect were affected by blood’s porous layer, its
varying viscosity, its periodicity, and its non-Newtonian nature. Accurately estimating the
flow quantities is more important in the medical sciences, and they discovered that a thin

porous layer near a wall and fluctuating viscosity have influence on this.

1.2.8 Solute Dispersion

The objective of investigating the physical mechanism underlying solute dispersion in fluid
flow is to gain a comprehensive understanding of the processes involved in the mixing and
transportation of soluble substances within fluids. Due to wide range of applications in
chemical engineering, physiological fluid dynamics, and the medical sciences, ([69], [70],
[71], [72], [73]) the process has become one of the most intriguing subject for researchers.
In recent development, many authors explored areas such as application of mass trans-
port in environmental dispersion into a wetland [74], drug delivery for the effective cancer
chemotherapy [75] and petroleum technology for the diffusion of surfactant into a matrix
[76].

In circulatory systems, solute dispersion explains the mixing or transporting substances
such as medications, nutrients, contaminants, plasma proteins, and metabolic materials into
the blood circulation and respiratory flow. Life-threatening diseases like cancer have clin-
ical management procedures in which medications (carrier particles) are administered into
our physiological system via injection or capsule. In the case of capsule delivery, the car-
rier particles are directed to the site of infection, making solute dispersion research relevant.
The indicator dilution method determines cardiac output in a living organism. Introducing
the dye in the blood capillaries along the blood flow and then measuring its concentration
at some downstream point is a benefit of this procedure. In addition to the uses mentioned
above, we can witness the function of diffusion in artificial surgical devices and get insight
into artificial aids like hemodialyzers and annular oxygenators [77]. As a result, the disper-
sion theory may be used to estimate the pace at which drugs will diffuse throughout living

organisms.
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Taylor [78] was the first to initiate the investigation of solute dispersion in a fluid that
is in motion through a straight circular tube, and it was his observation that the solvent is
spread by a process that involves molecular diffusion and velocity along the direction of
flow occurring simultaneously, that laid the groundwork for further research. Concentration
analysis offers a fresh perspective from which to calculate diffusion coefficients. Taylor’s
idea was expanded by Aris [79], who also abolished the limits placed on some parameters
in the aforementioned theory. He proposed a novel method, the “method of moments" for
studying the diffusion of a solvent in a uniformly cross-sectioned circular tube. The afore-
mentioned method of dispersion analysis was only applicable over long periods of time, and
hence it was of little use in studying the diffusion process during shorter periods of time. By
conducting an analytical investigation of the unsteady diffusion equation, Gill and Sankara-
subramanian [80] were able to circumvent this restriction. The authors presented a “series
expansion method" for reliably obtaining an analytical solution to the convective diffusion

process, valid for any time period.

1.3 Mathematical Expressions Governing the Microcircu-

lation

The physical laws of mass conservation, momentum conservation, and energy conservation
must be met by blood when it is in circulation. The governing mathematical expressions for

such laws are illustrated here.

1.3.1 Law of Mass Conservation

The continuity equation, or law of mass conservation is a fundamental principle in fluid
dynamics, states that the mass of a blood remains constant as it moves through a vessel. If
there is no net gain or loss of fluid inside a system, then the mass of fluid remain constant at

any point of time in the system. The mathematical expression for the law is given by

% _

where p, w denotes the density and velocity of fluid, respectively. By solving the continuity
equation, one can ensure that there are no sudden shifts in pressure or velocity that might

cause harm to the system.
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1.3.2 Law of Momentum Conservation

The law of momentum conservation in fluid flow is a fundamental principle that underlies
much of our understanding of how fluids behave in motion and has wide-ranging applica-
tions in science and engineering. The law asserts that the mass and speed of fluid in a closed
system remain unchanged until acted upon by some external force. In microcirculation such
forces are blood viscosity, blood pressure and gravitational force. The principal can be
mathematically stated as

D . ~
pD—‘:’-I-Vp:anw—i—pF, (1.5)

where l%, V2 and F denote the total/material derivative, the Laplacian operator and the
external body force respectively. p, p, 1 and w express the fluid density, pressure, the
kinematic viscosity and velocity respectively.

When a solution is obtained for the law of momentum conservation in fluid flow, it
signifies that the velocity, pressure, and other fluid properties have been determined at each
point in the fluid domain under consideration. This solution provides valuable insights into
the fluid flow behavior, such as the distribution of velocity and pressure in the fluid domain,
the flow rate, the forces acting on the fluid, and so on. Furthermore, a solution to the law
of momentum conservation can be used to predict how a fluid will behave under different

conditions.

1.3.3 Law of Energy Conservation

When a fluid is moving in a closed system, its total energy does not change as long as no
external work is done on it by things like the body and surface forces, thermal conduction,
and heat sources like chemical reactions, according to the law of energy conservation, also
known as Bernoulli’s principle. Throughout the flow, there is no change in the fluid’s total
kinetic, potential, and pressure energies at any one location. This principle can be expressed
mathematically as Bernoulli’s equation.
DT ~_,~ dQ
Cy—— —KV*T=—= 1.6

p v Dt at 9 ( )
where T, K symbolize the temperature and the thermal conductivity of the fluid respectively.
At constant volume C, denotes the specific.The external source or sink generates or absorbs

heat, which is repesented here by 6
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As the fluid flows through the system, the solution may compute the changes in energy
and utilise that data to infer the fluid’s behaviour at various locations. In order to compre-

hend and foretell the actions of fluids in motion, its solution is crucial.

1.3.4 Law of Advection-Diffusion

When a scalar quantity such as the concentration of a chemical species or the temperature
is being transported through a fluid, the advection-diffusion equation is used to characterise
this process. The equation incorporates both advection and diffusion into the transport pro-
cess. Transport of a scalar quantity can occur by either a fluid’s bulk motion (advection)
or random molecule motion (diffusion). The concentration equation is a partial differential
equation that unifies these processes.

%—(;JFV-(VV E) :V-(ﬁ,,Né), (1.7)
where w is the velocity of the fluid, C is the local concentration of the solute, 5," 1s coeffi-
cient of molecular diffusion assumed to be constant, and V is a gradient operator.

Change in concentration over time is represented by the first term on the left side of the
equation (1.7). Advection of the scalar quantity due to fluid motion is represented by the
second term. The first term on the right side of the equation (1.7) reflects the scalar amount

diffusing as a result of random molecule motion.

1.3.5 Momentum Equation in Porous Medium

1.3.5.1 Brinkman Equation

Brinkman [81] modified Darcy’s law and states that the flow rate of a fluid through a porous
medium is proportional to the pressure gradient in the medium. Brinkman [81] expanded
his research to include the permeability of the porous zone with micro-sized holes. Darcy’s
law does not account for the effects of fluid viscosity or boundary effects. The Brinkman
equation incorporates these effects by adding an effective viscosity term and a gradient of
velocity term to Darcy’s law. The resulting equation is

aw op U~ 9~

—=—|=—+=w Ve (w 1.8
Py = (52w ) V@), 18)
where p denotes the fluid density, p denotes the pressure, w is the velocity, [ expresses

blood viscosity, ug expresses effective blood viscosity and k represents the permeability
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constant for the porous medium. When the medium is neither homogenous or isotropic, or

when the fluid viscosity is large, this model outperforms Darcy’s law.

1.3.5.2 The Brinkman-Forchheimer Equation

The Brinkman-Forchheimer equation is an extension of Darcy’s law, which describes the
flow of a fluid through a porous medium in the absence of any fluid inertia. The Brinkman-
Forchheimer equation accounts for both viscous and inertial effects, making it more accurate
for modeling flow in porous media under higher flow rates.
The Brinkman-Forchheimer equation can be written as follows

oW

d N . Cp . -
Por=" (_,, ! EW) T HEVA(R) — o p[WIW, (1.9)

dz  k Vk
where p denotes the fluid density, p denotes the pressure, w is the velocity, [ expresses
blood viscosity, g expresses effective blood viscosity, k represents the permeability con-

stant for the porous medium and Cr denotes the inertial coefficient.

1.4 Boundary Conditions

Boundary conditions are of significant importance in the mathematical modelling of various
processes. Using the assumptions established while modeling the physiological process they
are used to solve the governing equations by analyzing the behavior of the solutions. The
following boundary conditions may describe the more realistic and complex circumstances

involved in blood microcirculation:

1. Velocity or shear stress and angular velocity are assumed to be finite at the microvessel
axis [82].

2. Velocity profile, shear stress, temperature profile and concentration profile are as-

sumed to be continuous at the interfaces|[83].

3. The stress jump condition of tangential stress to take momentum transfer in an account

is held at the fluid-porous interface [1].
4. There is no slip and no-couple stress assumed at the microvessel wall [82].
5. The microvessel wall is considered isothermal for temperature

6. Solute dispersion process is studied under the assumption of solute absorption at the

vessel wall.
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All the boundary and interface conditions described above are formulated mathematically

in the respective chapters.

1.5 Mathematical Methods

To understand the microcirculation and predict the behavior of blood in microcirculation,
the governing equations must be solved. The solution can aid to develop or improve clinical
treatments and medical devices. It is not always easy to obtain exact analytical solution of
the governing equations of fluid flow. Here discussed mathematical techniques are therefore

utmost interest to us.

“The essence of mathematics is not to make simple things complicated,

but to make complicated things simple."’

— Stan Gudder

1.5.1 Perturbation Technique

The perturbation theory devised as an adequate technique for handling the complex calcula-
tions, in an attempt to understand the motion of celestial bodies. In academia, perturbation
can be interpreted as a slight variation from an established state. A group of analytical meth-
ods embodied in perturbation theory can facilitate an approximate solution to a complex
problem just utilising the well known analytical solution of a nearly related uncomplicated
problem. The technique consist a crucial step which splits the problem into slowly varying
solvable and rapidly varying perturbing components.

Perturbation techniques are based on a Taylor series expansion of the mechanical trans-
formation involving a relatively small dimensionless parameter. To understand this thech-
nique, let’s consider any real life phenomena which is mathematically governed by a bound-

ary value problem in the form of

Flw()] =0,

B N (1.10)
Blw()] =0 on 3.

When the above expression models the real life phenomenon quite nearly, it often becomes
impossible or too dificult to obtain the exact analytical solution of (1.10). In these scenario,

let’s consider the non-dimensional form involving the relatively small parameter say “€” of
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(1.10).

Flw(r);e] =0,

(1.11)
Blw(r);e] =0 on d6 (0<e<<]1).

The technique begins with the decomposition of the problem F[w(r);€] = 0 into two parts
as
Siw(r)] +Pw(r);€] =0, (1.12)

where S[w(r)] denotes the nearly related uncomplicated problem whose exact analytical
solution let’s say “wg(r)” can be easily obtained and P[w(r);€] is a perturbing component
of the problem. In perturbation theory, the solution of (1.11) is expressed as a power series

in a perterbed parameter € as
w(r) =wo(r)+ Z €"wy(r). (1.13)
n=1

The first term is the known exact analytical solution to the related simple problem S[w(r)].
One can obtain an approximate perturbation solution’” of (1.11) by truncating (1.13) as suc-

cessive terms in the series expansion with higher powers of € usually become smaller.
N
w(r) mwo(r)+ Y € wa(r) +O(eV ). (1.14)
n=1

The series (1.14) is known as asymptotic series and such solution is known as asymptotic
series solution. Customarily, only the first three terms, the solution to the known problem,

the first and second order perturbation correction have been kept for practicality i.e.,
w(r) = wo(r) +ewi(r) + €*wi (r) + O(€?). (1.15)

1.5.1.1 Regular Perturbation

A perturbation problem is regular when the perturbed component with nonzero small € and
the unperturbed component for vanishing € share significant qualitative similarity. If the
power series (1.14) in € converges uniformly as € approaches zero, the problem (1.11) is
called a regular perturbation problem.

In this case, the approximate perturbed solution can be obtained by expanding the governing
equations as a series in €, collecting terms with equal powers of € and solve them in turn as

far as the solution is required.
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As the perturbation parameter approaches the limit value, the approximate solution to a

regular perturbed problem converge to the analytical solution of the unperturbed problem.

1.5.1.2 Singular Perturbation

Singular perturbation problem is qualitatively different from it’s unperturbed problem. For
a singular perturbation problem, the power series (1.14) in € does not converge uniformly.
Different time scales and length parameters affects the solutions of differential equations
arising in singular perturbation problems. Broadly, singular perturbation problems can be
classified into two types: Boundary layer problems and multiple-scale problems.

Boundary layer problems are of particular interest to us as it arises in Chapter 6 and can
be handled adequately by matched asymptotic expansion method. The domain of singular
perturbation problem can be segregated in two or more parts. There exist a large primary
sub domain in which the problem could be treated as regular perturbation problem and the
approximate solution can be achieved through an asymptotic series (1.14). In Other small
subdomains known as boundary layers, an asymptotic series (1.14) could not approximate
the solution. Boundary layers appears at narrow zones near the boundary of domain.

The approximate solution obtained through (1.14) for primary domain is only valid out side
boundary layers and therefore known as outer solution and denoted by w°.

Matched Asymptotic Expansions

In continuum mechanics, necessity of solution for classical problems gave rise to the con-
ception of matched asymptotic expansions. As mentioned, boundary layers are narrow do-
mains and hence required to be stretched or magnified to investigate it’s behaviour which
can help to draw the uniform solution for a singularly perturbed problem. The stretching

parameter can be introduced as

£= , (1.16)

where a is the point where boundary layer arising and & is the scale of magnification re-
quired. Utilising stretching parameter into the boundary value problem (1.11), it transforms

into

Flw(§):€] =0,

B[w(&€);€] =0 on 98. (1.17)

Now the approximate solution for (1.17) can be obtained by a new asymptotic series expan-
sion other than (1.14). This solution is considered an inner solution and denoted by w'(&)
as it is only valid inside the boundary layer.

Here, the primary domain and boundary layers may not be separated exclusively and may
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overlap. Therefore, the approximate solution of primary domain and boundary layers can
not be combined directly. Instead, a suitable matching condition is enforced to generate
a composite solution. Prandtl’s boundary layer theory is very renowned in practice and
therefore Prandtl’s matching condition is usually employed to obtain the composite solution
which is uniformly convergent for singularly perturbed problem.

Prandtl’s matching condition
Woverlap = (Wi)o = (W0>i- (1.18)

Composite Solution

W(r> ~ Wi +w’ — Woverlap- (1.19)

In (1.18), (w')? is the limiting value of the inner solution from outside of the boundary layer,
(w°)! is the limiting value of the outer solution from outside of the primary domain i.e., from
inside the boundary layers and w4, denotes the solution in the overlapping area between
the primary domain and boundary layers.

The detailed procedure for acquiring the solution for singular perturbation problems with
different matching conditions has been discussed substantially by Bush [84] and Nayfeh
[85].

1.5.2 Technique of Eigenfunction Expansion

It could be really intriguing in complicated scenarios when solving the non-homogeneous
boundary value problem with homogeneous boundary conditions is difficult, to obtain a so-
lution with help of eigenfunctions of a related homogeneous problem. The non-homogeneous
second-order partial differential equations with homogeneous boundary conditions is of par-
ticular interest and therefore a concise description about the technique of eigenfunction ex-
pansion employed for solving the same is demonstrated here.

Consider the BVP in the form,

% <A(r)dv2—5r)> + (B(r) = AC(r))w(r) = Liw(r)] — AC(r)w(r) = F(r), (1.20)

together with the boundary conditions

dw(r)
dr

dw(r)

7 at r=1. (1.21)

at r=0, and byw(r)=0b;

ayw(r) =ay

where A denotes the provided constant and the function F(r) is provided for r € [0, 1].The

functions A(r), B(r), C(r) and %(rr) appearing in (1.20) are believed to be continuous for
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re[0,1]and A(r) > 0, C(r) > 0 and Liw(r)] = £ (A( P2+ Br)w(r).
The homogeneous problem corresponding to (1.20) is given by

Liw(r)]— AC(r)w(r) =0, (1.22)

Introducing the eigenvalues of (1.22) with the similar boundary conditions (1.21) as Aj <
Ay < A3 <--- <Ay, <...and the corresponding orthogonal eigenfunctions be v, v, v, . . .,
Wi, - ... The series solution of the non-homogeneous differential equation (1.20) with cor-
responding homogeneous boundary conditions (1.21) can be denoted as w = y(r) in the

form

(o]

Z Y (1.23)

where

s WYy
Jo rir)dr

. om=1,23,... (1.24)

However, (1.24) is not of any help to calculate b,, as y(r) is not known. b,, must be
obtained in a way such that (1.20) and (1.21) are satisfied. One must observe that each
Win(r) satisfy boundary conditions (1.21) and hence y(r) given by (1.23) always satisfy
boundary conditions (1.21). Therefore y(r) only requires to satisfy (1.21)

Lly(r)] = AC(r)y(r) + F(r), (1.25)

To obtain b,,, substitute the series expansion given by (1.24) into (1.26). The left side of
(1.26) becomes

(1.26)

One can rewrite the non-homogeneous term in (1.25) as C(r)[F (r)/C(r)]. If F(r)/C(r) and
it’s derivative are piecewise continuous 0 < r < 1 then in the open interval 0 < r < 1 it can

be expanded in a convergent series as

() Z Cn W (r (1.27)
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where, using (1.25) with y(r) replaced by F(r)/C(r),

c,,,_fo Cl) gt ¥m(r)d " _ S F()vn Ynlr)dr o5 (1.28)

fo r‘l/m( )dr fo rya(r)dr

Upon substituting for y(r), L{y(r)], and F(r) in (1.25) from (1.23), (1.26), and (1.27),
respectively, one obtains

(o)

i bumA,, C Z ml//m )

m=1 m

Mx

Cm W (r)- (1.29)
1

After collecting terms and cancelling the common nonzero factor C(r) we have
Z (A — N)by — i) Wi (r) = 0. (1.30)

One can observe that the coefficient of y,,(r) must be zero for each m if (1.30) is to hold for

each r in the interval 0 < r < 1. Therefore
(A= A)bm—cm =0, m=1,2,3,.... (1.31)
If A is not equal to any eigenvalue of the (1.23) then
Cm

m (Am—A)’ m 9 737 9 ( 3)

and

wlr) = w(r) = i (AC vl

3 (r) Yo (r)dr ’). 133
P vy i (139

The technique of the eigenfunction expansion elucidated here has been utilised in (1.5.3)
to obtain the solution of the equations governing solute dispersion. Boyce et al. [86] have

illustrated theory in great details by explaining it’s application to solve different problems.
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1.5.3 Solution Technique for Solute Dispersion Problem

Following the solution method given in Sankarasubramanian and Gill [2], the solution ex-
pression for the dimensionless form of the convective diffusion equation (1.7) in cylindrical

coordinate system with help of appropriate boundary conditions is formulated as
M
C= Zgz (t:r) =5 (1.34a)

where g; (I =0,1,2,...) are the function of time and radial distance. The cross-sectional

average concentration Cy of the soluble matter is defined as
1
Cy = 2/ Crdr. (1.34b)
0

The equation (1.7) is multiplied by 2r throughout and integrating with respect to r from
(r=0) to (r=1), the governing equation (1.7) can be rewritten by introducing the definition

of cross-sectional average concentration

dICy 0 ([ aC 1 9°Cy
al +28_Z (/ rw(r,t)C(t,z,r)dr)—ZE(t,z,l)—ﬁa—Zz—O (135)

Introducing Eq. (1.34a) into Eq. (1.35), the mean concentration is given as

Cy d'Cy
— =Y M)(t)—+— 1.36
ot l;) l() aZl ) ( a)
where
8-1=0,
on agl (1.36b)
My(t) — Pe2+2/ g (L rw(r)dr =22 (1,1) =0, 1=0,1,2,...
and 0y, denotes Kronecker delta
0 l
O = { 1’ 17_&2’ (1.36¢)

As observed by Gill and Sankarsubramanian [80], the higher order coefficients possess very
small magnitude for very large time in the solute dispersion process and the good approxima-
tion could be achieved without involving any terms above the second order term. Therefore,

it has been decided to terminate the series expansion (1.36a) at second order term.
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Wall absorption attributes to the reduction of solute concentration in the system, which
produces the negative sign and nonzero flux at wall for the exchange coefficient M (t). M, (t)
delineates the convection of solute caused by the velocity of the fluid flow and known as the
convection coefficient. M;(t) denotes the dispersion coefficient and represents the disper-
sion process as the simultaneous outcome of the velocity driven convection and molecular

diffusion process at a time. The resulting mean concentration is derived as

dCy 9%Cy dCy
5 ZMz(I)a—Zz +M(t )8— +Mo(t)Cy, (1.37a)
where
o dg B
M) = 55 +2 | rgl 1t rw(n)dr=2=2(1,1) =0, 1=0,1.2,.... (1.37b)

To solve the above equations (1.37a) and (1.37b), we need to find out the diffusion co-
efficients (M;(¢), [ = 0,1,2) with help of the suitable initial and boundary conditions. For
this, the corresponding unknown functions g;(z,7), [ =0, 1,2 must be determined in order to
compute the expression for mean concentration from the equation (1.37a). Introducing Eqs.
(1.34a) and (1.37a) into the Eq. (1.7). On comparing the coefficient of I Cy (k=0,1,2),

P Zk )
the system of differential equations for the function g; are outlined as

@ 18<8gk

1 k
% ror FW) —w(r)gk—1+ 5582~ Y Mg, k=0,1,2, (1.38)

2
Pe =

where g_1 =g, =0.
The initial and boundary conditions for g; and Cjs can be derived from the boundary condi-

tions

1
Cu(0,2) =2%(z) /0 X (r)rdr, (1.39a)
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which gives

gi(0,r) =0, k=12, (1.39b)
X(r
80(0,r) = ————— ) , (1.39¢)
2f0 X(r)rdr
gk(t,0) = finite, k=0,1,2, (1.39d)
d
%(r,l):—[)’gk(t,l), k=0,1,2, (1.3%)
1 ]
/ gr(t,r)rdr = §5k0, k=0,1,2, (1.391)
0
and
aC,
Cu(t,z) = a—éw(t,z) =0, as z — oo, (1.39¢)

where 8y is mentioned in Eq. (1.36¢). In the present study, we are interested to analyze
the behavior of the diffusion coefficient as well as mean concentration of the solute at large

time (i.e. t — ).

1.5.3.1 Estimation for the Function g(t,r) and Exchange Coefficient My(t)

The equation for go(z,7) in terms of exchange coefficient My(¢) from equation (1.38) may
be written as

0 10 [/ 0
5y (?) ~8oMo. (140

The suitable initial (IC) and boundary conditions (BCs) for the function gy (¢, r) are evaluated
from equations (1.39¢), (1.39d) — (1.39¢) by substituting k = 0 and an additional condition
can be obtained from (1.39g)

I 1
/ go(t,r)rdr = 5 (1.40b)
0

The equation (1.40a) for the function g¢ in terms of exchange coefficient M is independent
of the fluid velocity. Using the eigenfunction expansion method discussed earlier in (1.5.2)
[86], the solution of the non-homogeneous BVPs given in Eq. (1.40a) for go(¢,r) satisfying
the initial and boundary conditions (1.39¢), (1.39d) — (1.39¢) and an additional condition
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(1.40D) is in form

= Ao (oyr)e %!
colt,r) = 0 Akfo(Gr)e T (1.41a)
t

- 2Y5 (3—’;) Ji(og)e %

where Oc,is are roots of the transcendental equation in terms of Bessel functions Jy,J; de-
scribed below
oy (0g) = BJo(ax), k=0,1,2,... (1.41b)

and the expansion coefficient A} s are obtained from the initial condition as

2 rl
X (r)Jo(0ur)d
A= Gido X () O(Of"r) k=0.12,.. (141c)
(0 + B2)J5 (o) fo X (r)dr

The exchange coefficient My(¢) is obtained form the Eq. (1.37b) using equation (1.39¢)

):?fAkO!le(ak)e_akzt

dgo
My(t) =2—=(t,1) = —=2Bgo(t,1) = .
0 0 ZBO (lé—i) Jl(ak)ef(xkt

ar

(1.42)

The solution expression for the exchange coefficient M is precisely same as obtained in the
previous studies ([2], [87], [88], [89]) as its computation does not include fluid velocity. So,
the analysis of exchange coefficient is discarded in the present study as the expression of
My (t) remains invariant for fluid flow involving constant or variable viscosity model.

In the limiting case as r — oo, the aforementioned equations (1.41a) and (1.42) give the
limiting value in the form of asymptotic representation for the function gy and exchange

coefficient M as below,

lim Mo(r) = Mo() = —ag, (1.43a)
: R o ¢
Zlgggo(t,r) = go(oo,r) = 2JI(OCO)JO(OLOF), (1.43b)

where o is the first root (least in magnitude) of the Eq. (1.41b).

1.5.3.2 Asymptotic Representation of Diffusion Coefficients (M, (t))

As per the above discussion, the function gg and the solution expression for the exchange
coefficient My(z) are independent of flow velocity, however the function gi(z,r) and the
diffusion coefficients (My(t), k = 1,2) depend on the flow velocity of the fluid. So, in this
case, steady flow of two-fluid model using heat transfer approach is considered to obtain the

diffusion coefficients. The asymptotic expression for the function g;s are obtained from the
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equation (1.38)

1d [ dg 1
— N M 1.44
rdr< dr )+0‘ogk w(r)gk—1 P28k 2+IZ1 181-1 (1.44a)

where k = 1,2, g_ = 0 and the diffusion coefficients (My, k = 1,2) are given by

0 d

M =212 g" 2/ rw(r)ge_1( (1.44b)
Pe

The boundary conditions (BCs) with an additional condition on f,,(r) are described below

from Egs. (1.39)

d
g¢(0) = finite, “TE(1) = —Bgi(1), k=12,
r (1.45)

1
/ grrdr=0, k=1,2.
0
By following the solution strategy of the work of Sankarasubramanian and Gill [2], the
diffusion coefficients (My, k = 1,2) are delineated in terms of the functions (g, k = 1,2)

fO rJo(Qor) (gk 2(r) w(r)gr_1(r) —I;illMlgkl(r)> dr
— k=1,2

M, = k=12 (1.46)
fol rgo(r)J(OLor)dr

The convection coefficient (M;) from Eq. (1.46) is obtained by using the limiting value of

known function g for large time and it is delineated by

M, — — Jo w(r)go(r)rJo(agr)dr —20

1
2
fo] go(r)rdo(aor)dr B (a§+ﬁ2)13(a0)/0 w(r)rly(oor)dr. (1.47)

The expression for the function g; can be obtained from (1.44a) by putting k = 1 and it is
delineated by

1a’(dg1

= M 1.4
rdr\' g )+0‘081 w(r)go+ M go, (1.48)

along with the following boundary conditions for g;

§1(0) = fnite, (1) = —pgy 1),

1
/ g1rdr = 0.
0

(1.49)
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Using Egs. (1.47) in (1.48), the solution for g; satisfying the boundary conditions (1.49) is
given by

gi(r) =Y BiJo(oyr), (1.50a)
k=0

where the expansion coefficient By is evaluated in terms of B, (n = 1,2,...).

- w , Ji(o)
By = B , (1.50b)
RVAC™) kZ] oy

Introducing equations (1.500) into (1.50a), the function g; can be rewritten as

oy  Ji(on)

=Y B |Jologr)— Jo(owr) |, (1.50¢)
8= L k[o( k) i) o o(aor)
where Bjs are given by
20 1
T aw ey /0 (w(r) + My )go(r)rdo(ur)dr. (1.50d)
0 — % )0 0

The expression for dispersion coefficient (M, ) is obtained using the equations (1.50¢), (1.50d)
and (1.46) and it is delineated by

L Aogdi (o) lwr A N
Vo= s T e Jy O Ma (e (15D

1.5.3.3 Solution for Mean Concentration (Cyy)

The solution expression of the Eq. (1.37a) with help of the diffusion coefficients (1.42),(1.47),(1.51)

and boundary conditions (1.39a), (1.39g) for solute mean concentration (Cy) is derived as

_ 4
CM(t7Z> - 2P€\/7'L'_TExp (77 4T) ) (152)
where
ne) = [ Mo&)de. (1.53)
t
a(t,2) =2+ /0 My (E)dE, (1.53b)

T(t) = /0 Mo (E)dE. (1.53¢)
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The Eqgs. (1.53a) — (1.53¢) can be approximated for large time #(r > 0.5) as below [2]

T(t) ~ Mot, (1.54a)
21(t,z) ~ z+Mit, (1.54b)
E(t) ~ Mot. (1.54¢)

The exchange M, convective M| and dispersion coefficient M, are independent of radial

non-uniformities with initial solute distribution (d).

‘“ It is unworthy of excellent men to lose hours like slaves in the labour of
calculation which could safely be relegated to anyone else if machines were

used."

— Gottfried Leibniz

MATHEMATICA 10.0.2 is employed where ever required for countering complex calcula-

tions arising throughout the proposed research work.

1.6 Gaps in Existing Research

To the best of our understanding and belief, following a literature review, it is evident that
the following aspects of the microcirculation of blood through microvessels have yet to be

extensively investigated.

* The two-fluid model investigating the impact of the microstructure of blood on the
flow and drug deliverance process in microcirculation has yet to be thoroughly stud-
ied.

* The two-fluid model with or without varying viscosity model has not been investigated

much for the flow through a porous layered straight or curved tube.

* The theoretical study on a two-fluid model with Hematocrit-dependent viscosity ap-

proaches has yet to be addressed for flow-through microvessels.

* The heat transfer aspect of a two-phase fluid model with temperature-dependent vis-
cosity for blood has yet to be explored deeply in blood flow modeling through mi-

crovessels.

* Analysis of the non-Newtonian fluid flow approach through the conduit with a non-

circular cross-section has received little consideration.
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* Analysing solute dispersion in two-fluid flow of blood in micro circulation using the

appropriate dispersion model has received less consideration.

1.7 Research Objectives

Based on literature survey and identified research gaps, objectives of the thesis work are,

* To conduct mathematical analysis regarding the impact of the microstructure of blood

microcirculation by adopting an adequate mathematical model.

* To constitute a mathematical model accountable for temperature or Hematocrit de-
pendent viscosity of blood and examine the impact of variable viscosity on microcir-

culation.

* To explore the heat transfer and solute dispersion aspect to gain theoretical under-
standing for the drug deliverance process and pave ways for devising new clinical

procedures involving temperature variation.

1.8 Thesis Organisation

The thesis organizes the research effort into seven chapters. Chapter 1 highlights the need
to study blood microcirculation in the human cardiovascular system and conduct a litera-
ture review to identify existing research gaps to establish objectives for the proposed work.
The methodology to achieve research goals is devised, and fundamental concepts of Bio-
mechanics, blood microcirculation, and mathematical approaches have been introduced.

The objective of Chapter 2 is to examine the influence of the microrotation of erythro-
cytes, external magnatic field and heat transfer on mechanical quantities of blood micro-
circulation through the microvessel with thin endothelial glycocalyx-layered microvessels.
Graphical interpretations of the different parametric influences on blood microcirculation
have been studied with both conditions at interface. Compared to the no-spin condition, the
relatively strong influence of the no-couple stress condition on Fahraus effect, flow charac-
teristics, and hematocrit has been observed.

Chapter 3 considers blood microcirculation under the identical scenario of Chapter 2
with absorbing vessel walls and aims to extend the study to examine the mechanism of the
solute dispersion phenomenon. To comprehend certain clinical features of blood micro-
circulation, the effect of erythrocyte spinning, coupling number, EGL thickness and per-
meability, thermal conductivity, radiation parameter, and Hartmann number on the solute

dispersion coefficients and mean concentration interpreted graphically.
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A theoretical attempt has been made in Chapter 4 to examine the impact of the heat
transfer aspect on the flow characteristics of temperature-dependent viscous blood microcir-
culation through endothelial glycocalyx layered microvessels. The Brinkman-Forchheimer
equation governs blood flow through the endothelium glycocalyx layer to encompass the
permeability spectrum. The perturbation technique is employed to solve the Brinkman-
Forchheimer governing equation analytically. Singular and regular perturbation problems
are encountered for small Darcy numbers (SDN) and large Darcy numbers (LDN), respec-
tively. The study concludes the impact of temperature on flow characteristics and com-
prehends the importance of studying temperature-dependent viscosity models for devising
clinical procedures involving temperature variations.

Delivering drugs to the targeted location or transporting nutrients to needy organs in-
volves the dispersion of solutes through blood microcirculation. The process is believed
to be influenced by the varying characteristics of viscosity, heat transfer, and other related
factors. Chapter 5 is motivated toward examining the dispersion of solutes in blood mi-
crocirculation through microvessels influenced by temperature-sensitive viscosity and heat
transfer. The graphical analysis shed light on the solute dispersion process’s sensitivity re-
garding heat transfer and temperature-sensitive viscosity. In addition, the dispersion process
is accelerated with the dominance of thermal buoyancy forces.

The focus of Chapter 6 is to study the hydrodynamic characteristics of blood microcircu-
lation through a microvessel having EGL adjacent to the absorbing wall with a sophisticated
mathematical model. A comparison has been drawn between the generalized model and its
reduced specific fluid models for the solute dispersion process. The graphical study in-
terprets the sensitivity of the solute dispersion coefficients regarding EGL thickness, EGL
porosity, plasma layer thickness, and wall absorbing capacity. EGL adjacent to the mi-
crovessel wall decreases both convective and axial dispersion in the case of a wall with high
reactivity. One notable observation is that a decrease in the porosity of EGL adjacent to the
microvessel wall leads to a decrease in the average solute concentration.

The thesis is summarised in Chapter 7, which highlights the noteworthy findings with
physical significance and application. The advantages and limitations of the study are cov-
ered to make it more relevant for clinical application. In addition, the chapter recommends
directions for future study and ways to strengthen the current work so that it may be used

more effectively in clinical practice.






Chapter 2

Influence of Erythrocyte Microstructure and EGL

on Microcirculation under Heat Transfer Aspect

The behavior of the physiological fluids and their physical mechanism are very crucial
to understand the circulatory system in the human beings, which may help to classify the
diseases, affecting the flow of fluids through vascular systems. With the help of mathemat-
ical modeling in fluid mechanics or medical sciences, several authors made efforts in the
form of various interdisciplinary works to resolve or minimize the effect of diseases during
the flow of fluid through vessels. Nowadays, cancer is one of the most dangerous diseases
which is uncontrolled under the normal situations and its treatment involves the heat transfer
approach. Besides this, another disease leading to circulatory disorder is the atherosclero-
sis, which may arise due to accumulation of fatty plaques of cholesterol, carbohydrates,
fibrous tissues or macromolecules inside the arterial wall. The study of the blood flow
through microvessels (arterioles, venules and capillaries) plays significantly different roles
in comparison to the larger blood vessels. We hope that the present study may be helpful in
understanding the several kinds of effect on the flow of blood through the blood vessels with
a porous layer near the wall. The accumulation of fatty plaques inside the arterial wall at
a specific place reduces the area of the flow through blood vessels in which enhanced flow
impedance occurs due to the presence of fatty plaques of cholesterol known as stenosis.
Many investigators ([90], [91]) studied the impact of constriction/catheterization on steady
flow of Newtonian or non-Newtonian fluid through constricted/catheterized artery. A pe-
riodic nature of viscoelastic fluids flowing through constricted tube has been done by the
several researchers in their studies ([92], [93]).

All the above studies performed the analysis of viscoelastic/non-Newtonian fluids flow-
ing through conduit but the emphasis has not been given to the fluid particles and their struc-

tures.Recently, Khanukaeva et al. ([22], [23]) analyzed the flow of micropolar fluid through

IThis work has published as A. Tiwari, P.D. Shah, and S.S. Chauhan," Analytical study of Micropolar
fluid flow through porous layered microvessels with heat transfer approach", Eur. Phys. J. Plus 135
(2020) 209.
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a membrane with porous layer using cell model technique in which the flow is parallel and
perpendicular to the axis of cylindrical cell. They formulated the governing equations for
two different interface conditions namely, no-spin (NS) and no-couple stress (NCS) repre-
senting the zero and non-zero micro-rotational (angular) velocity at the interface.

All the above studies involve the impermeable nature of blood vessels but under different
circumstances such as deposition of carbohydrates, fibrous tissues or micro-molecules inside
the lumen obstruct the flow and further leads to the diseases like polycythemia and another
microangiopathic disease. The development of atheromatous plaques in the arterial wall
due to transport process occurring in arteries created the curiosity of researchers to math-
ematically analyze the same owing to its severe impact on circulation. The transportation
of the fluid material through porous layered blood vessels has been used to understand the
formation and development of atheromatous plaques. Although a large number of studies
reveal an easier flow among vessel wall tissues for large blood vessels having an endothelial
lining of macromolecules with low permeability but the same need not be true for small
blood vessels. The study of blood flow through the porous medium has been a compelling
topic for researchers and has wide practical situations in the areas of engineering and med-
ical field. Darcy [94] gave an empirical method to formulate the mathematical equation of
fluid flow through porous media in terms of permeability but this law was restricted for low
permeability only. Brinkman [95] described the flow through porous mass by modifying the
Darcy’s equation and found a relation between the permeability of the porous media, par-
ticle size and density. Brinkman [96] extended his work to the permeability of the porous
region with closely packed porous particles (micro-pores). Ochoa-Tapia and Whitaker ([1],
[97]) introduced the discontinuity in shear stress at fluid-porous interface also known as the
stress jump condition. The flow of Casson fluid through a porous tube was discussed by
Dash et al. [98] under the constant as well as radially varying permeability assumptions.

The theoretical study of the hydrodynamic mixed convection of Newtonian fluid flow
through vertical conduit with asymmetric and symmetric heating wall was done by Chamkha
[99] under the presence or absence of heat absorption or generation impacts. He reported
an analytical solution of velocity and temperature profiles for different three thermal bound-
ary conditions on both the walls in the presence of uniform magnetic field in transverse
direction of the fluid flow. The steady and transient laminar hydrodynamic flows and heat
generation/absorption aspects through porous channels in the presence of a transverse mag-
netic field were discussed by Chamkha ([55], [100]) in which the induced magnetic field
and Hall effect of hydromagnetic flow are assumed to be neglected due to very small mag-
netic Reynolds number. He [101] extended his work for double-diffusive convective flow

through uniform porous medium channel with the assumption of temperature-dependent
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heat source and sink within the enclosure of the boundaries of the channel. Srinivasacharya
and Shiferaw [21] analyzed the impact of Hall and ionic effect on the flow of micropo-
lar fluid through a circular tube and concluded that a rising Hall and ion-slip parameter
contributes to enhancement in hemodynamical quantities such as linear and angular veloc-
ity, rate of fluid flow and flow impedance. The impact of heat transfer and the isothermal
permeable nature of walls on unsteady oscillatory flow of two-immiscible fluids through
horizontal channel was discussed by Umavathi ef al. [102] and they found a decrement in
velocity and temperature profile with increasing viscosity ratio however a growth in the
above quantities is observed with rising frequency parameter. Ponalagusamy and Selvi
[103] analyzed the combined effect of heat transfer and magnetic field on two-layer model
of blood flow through a constricted tube by considering blood as Newtonian fluid in both
the regions (core as well as plasma regions). Recently, Kumar et al. [104] discussed the
two-fluid (micropolar-viscous) model of laminar flow through a vertical channel and ana-
lyzed the impact of micropolar fluid and heat transfer parameters on flow variables. The
heat generation or absorption effects on the flow of two-immiscible fluids through porous or
nonporous channel was discussed by Chamkha [105] due to presence of uniform magnetic
field in the transverse direction of the flow pattern. The impact of porous medium and heat
transfer parameters on the generalized plain Couette and unsteady oscillatory viscous fluid
flow through composite porous medium channels with different temperatures at the walls
were analyzed by Umavathi et al. ([106],[107]).

The two-phase flow representing the fluid-particle natural convection has wide appli-
cations in many physical and biological problems including the particle suspension model
for blood flow. This motivated many researchers to work on application based problems
using this approach. The steady and unsteady hydromagnetic fluid-particle flow through
conduits with heat generation or absorption aspects were discussed analytically by several
authors ([108]-[109]). Going through the aforementioned works and to the best of the au-
thor’s knowledge, a lacunae in the existing research has been observed which may be useful
in understanding the mechanical aspect of physiological systems. So far no attempt has been
made in analyzing the effect of such a layer on flow variables using micropolar fluid model
of blood flow. Besides this, the impact of zero and non-zero spins of the microlevel particles
on the flow variables, hematocrit and Fahreus effect under the dominance of thermal buoy-
ancy forces has not yet been analyzed which may be important for therapeutic treatment of
certain diseases involving radiation.

The present study aims to analyze the impact of glycocalyx layer near the wall and two
different formulations (no-spin and no-couple stress conditions at the interface representing

the zero and non-zero microrotational velocity at the interface) on three-layered model of
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blood flow through porous layered tubes by taking micropolar fluid as a core region fluid.
The motivation for taking micropolar fluid in this study is to analyze the impact of microlevel
properties of the fluid like coupling, micro-scale parameters and an additional parameter ¢y,
on flow variables, hematocrit and Fahreus effects. Besides the microlevel parameters, the
effect of heat transfer and porous layer parameters on the above quantities is also analyzed
graphically and compared with the previous works of single and two-fluid model without

porous region near the tube walls.

2.1 Problem Formulation

The physical model concerns an axially symmetric, laminar, incompressible, steady and

fully developed flow of blood through a heated circular blood vessel as shown in Figure2.1.
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Figure 2.1: The schematic diagram of the microvessel model description for two-fluid
model incorporating a thin endothelial glycocalyx layer adjacent to the microvessel wall

R ,§2,§3 are the radii of the central, intermediate and porous regions of blood vessel, re-
spectively. The flow of blood is taken as two-fluid model. It is assumed that blood in the
core region is micropolar fluid and in the plasma region, it is Newtonian fluid. An exter-
nal magnetic field B of a uniform strength |§| —Bis applied in the transverse direction of
the flow. The induced magnetic field and Hall effect of hydromagnetic flow are assumed
to be neglected due to very small magnetic Reynolds number. The wall of blood vessel is
composed by a thin Brinkman layer. We shall use the cylindrical polar coordinate system
(7, q; ,Z), where 7, 7 are the radial and axial coordinates, respectively and the origin is situated
on the vessel axis. The microrotational vector of the micropolar fluid in the core is given
by (0, (NZM,O). The flow in all the regions is assumed to be driven by the constant pressure

gradient (—%—’ZN’ = ps). The boundary condition for temperature on the wall is isothermal
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condition.
The governing equations for the above problem will be:
Region-I,ie. 0 <7 < ﬁl

aWM
T =0, (2.1a)

5’PM
== 0~ (2.1b)

_OPm Byt Ru) O (L0Ww | 2Ku0(Qum) o mo o5 sd Ty o,
07 7 or ar r or
2.1¢)
d (10 _ [ dwy
()LM+CM)(ar< ar(rQM))) —ZKM( o +2.QM> 0, (2.1d)
= (PTy 10Ty Jgu

KM( 7 7 a'f)_ o7 O (2.1¢)

where Py, pM,wM7QM,KM,TM are the density, pressure, axial velocity, angular Velocr[y,

thermal conductivity and temperature of blood in core region, respectively; Ly, 7LM, CM and

Ky are the viscosities of the micropolar fluid, respectively; Gy, is an electrical conductivity;

B is an uniform magnetic field; T.. is an ambient temperature and g is the gravitational force.
Region- I, i.e. kv] <r< k;

9N _ (2.2a)
or
dpn BN O [(Own\ oo s =
—a—z +—= = 55 <I’7) — onB WN+gpNy(TN— Too) =0, (2.2b)
_ (T 19T\  ddn
KN( = tF 87) “or O (2.2¢)

where Py, PN, W, ﬁN,EN, Ty, Oy are the density, pressure, axial velocity, viscosity, thermal
conductivity, temperature and electrical conductivity of blood in plasma region, respectively.
Region- III, i.e. 132 <r< E?,

IPp _
> = (2.3a)
a:po uE d awB ‘lN,LNl:VVB ~ =~ e~ ~ .
BET (’ o7 )_ 7 OnB s+ gpnY(T — I) =0, (2.3b)
_ (9T 1073\ s
A ( oy a7> “or (2.3¢)
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where pp,wg, lE, T are the pressure, velocity, effective viscosity of porous layer, tempera-
ture of blood in porous region, respectively and k is the permeability constant. Many of the
earlier works used the Brinkman model assuming that the fluid viscosity and the Brinkman
viscosity (i.e. effective viscosity tg) to be same however in the present model, the fluid
viscosity and the Brinkman viscosity are different.

Here, the radiative heat fluxes in the core and plasma regions for micropolar and New-

tonian fluids may respectively be expressed as ([53], [103])

dam

—= = 40, (Tyy — T..), (2.4a)
O _ gy (i - ). (2.4b)
a0, IS

= 4y (T~ T..), (2:4¢)

where ), and o the mean absorption coefficients for micropolar and Newtonian fluid,
respectively which are much less than unity.
The pressure gradient is taken as constant for all the regions ([91], [28], [49])

dpm _ Ipn _ 9pp

where g is the characteristic pressure gradient and py is the non-dimensional pressure gra-
dient along the axis of the vessel.
To solve the above system of Egs. (2.1) —(2.5), the following non-dimensional variables

are introduced:

~M’R% ~N§3 D, §3 6N§2§2 H?
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where po, 09, Ko, 0, g are the density ratio, electrical conductivity ratio, thermal conduc-
tivity ratio, mean heat absorption ratio, viscosity ratio, respectively; Wy is the average veloc-

ity; Gr is the Grashof number; A; is the viscosity ratio parameter and fw is the temperature
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at wall.

Using the above non-dimensional variables (2.6), the governing Egs. (2.1) — (2.5) in
non-dimensional form will become:

Region-I,i.e. 0 <r <Ry

8WM

o (2.70)
on o, (2.7b)
ar
4Ps(1 - )NR+_8_ < —a ) +— ” ar <7‘—ar ) —(1 _N)HIWM+T9M =0,
2.7¢)
d /10 [ Py N B
or (rar (r or ) _2n2(1 “N) (WM+2CI>M)) =0 (2.7d)
82GM 189M leK() B
or2 ' r or ch O =0, (2.7¢)

where N = @?ﬁ is known as coupling parameter which demonstrates the rotational effects

H?
of micropolar particles; n = ’}"Z +}€"2”’ is a micro-scale parameter (particle size); H1 = “RGO 18
M3

. 4R . L o
a magnetic number; N 12 = %N i is the radiation parameter and the angular velocity is taken

as Qu — dg)y.

Region-II,i.e. Ry <r <R,

Iy (2.82)
or
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Region-IIl,i.e. Ry <r <1
P _¢ (2.92)
or
A2 9 (0 1
ap+ L2 (OB (L H? ) w4 Grég =0, (2.9b)
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0?6 106
7 £ N?6p = 0. 2.
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The dimensionless boundary conditions are given as follows:



Chapter 2. Influence of Erythrocyte Microstructure and EGL on Microcirculation
under Heat Transfer Aspect

. The conditions for velocity, angular velocity and temperature on the axis have been

considered as

aWM 86M
or i an or

0 at r=0. (2.10a)

. Continuity of velocity at micropolar-Newtonian fluid interface and Newtonian fluid-

porous interface i.e.

wy =wny at r=Rj, (2.10b)

wy =wp at r=R,. (2.10c)

. Continuity of shear stresses at micropolar and Newtonian fluid interface, i.e.

! awM N o 8WN .
A=N) ar T ml) =te—gm at r="Ru. (2.10d)

. No spin condition at the micropolar-Newtonian fluid interface, i.e.

Qu(r)=0, at r=Ry. (2.10e)

The physical interpretation of the above condition represents the zero angular velocity
at the micropolar-Newtonian interface i.e. the movement of the molecules without

micro-rotation.

. No couple stress condition at micropolar-Newtonian fluid interface, i.e

2Q
34(’”) ML) =0, at r=R), (2.10f)
r r
where ¢y = % is an additional parameter that demonstrates the constraints on
M T 5M

viscosity coefficient can vary in the interval [—1, 1] ([22]). The parameter @, is intro-
duced as the non-symmetric couple stress tensor do not reduce the dimensional form
of the boundary conditions (2.10d) and (2.10f) in terms of microlevel parameters
N and n. The situation A/{M = ZM is of great significance as it makes the boundary
condition (2.10f) and hence the solution of the problem independent of the flexibility
parameter IM and EM- The physical interpretation of the above condition represents
the non-zero angular velocity at the micropolar-Newtonian interface i.e. the move-

ment of the molecules with non-zero micro-rotation.
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6. Continuity of temperature at micropolar-Newtonian fluid interface and Newtonian

fluid-porous interface i.e.

90 90

Oy =0y, 2 g, =N at r=R, (2.10g)
ar ar
96y 06

Oy =0p, N_"" a r=R,. (2.10h)
ar or

7. The stress jump condition of tangential stress at Newtonian fluid and porous interface

([1], [97]), i.e.

1 aWB aWN . BS . .
o, ar 5. —\/I;WB at r=R,, (2.101)

where (o, is the porosity parameter and fg is stress jump parameter.

8. Isothermal condition for temperature and no-slip condition for velocity at the wall,

1.e.
wg=0, 6g=1 at r=1. (2.109)

The rate of fluid flow Q; in non-dimensional form is given by ([91], [28], [49])

1
Q, = 8/0 rw(r)dr,

R R 1
=8 (/ erdr+/ rwydr + rder) . 2.11)
0 Ry R

The frictional resistance A per unit length of the tube is given by ([91], [28], [49])

Ps
As = —. (2.12)

t0s
The fraction of volume occupied by red blood cells (RBCs) and total volume of the blood is
defined as hematocrit (Ht) i.e. volume concentration of RBCs in whole blood ([47], [49],

[511)

ip— o Cor)wu(r)dr

(2.13)
f(f Srw(r)dr
where C,(r) is the concentration profile of the RBCs
Co(r) = 25 (RE =) H(Ry = P)H(r), (2.14)

T op2
Rl
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where H (r) is Heaviside unit function and ¢, is constant in concentration relation.

The ratio of tube hematocrit Hr to discharge hematocrit Hp is defined as Fahraus effect
Fe which is expressed as below ([3], [49])

CHr W

Fe=—= ,
HD Wrbc

(2.15)

where W is the average velocity flowing through the tube and W,,,. is the velocity of the red
blood cells (RBCs).

2.2 Solution of the Problem

The momentum and energy equations (2.7) — (2.9) are solved subject to the boundary
and interface conditions Eq. (2.10) for the velocity and temperature distributions. The
transformed governing equations under the assumptions mentioned in problem formula-
tion section are coupled system of linear ordinary differential equations. Solving the Eqs.
(2.7) — (2.9), we get the following:

The temperature and velocity profiles for micropolar fluid are obtained as below

Oy = CIJ()(NzI’) + CzY()(Nzr), (2.16a)
4
1

N (,uRGrC1> (N%(I—N)n2+N) (( Jo(Nar) ) (2.16b)

0o n? a? +N32) (0 +N3)

and angular velocity Qyy is obtained using the expressions (2.16a) — (2.16b) of axial veloc-

ity and temperature profile

n*(1—N) ydwy  d(D*wy) 1 dwy
QM_Z—NZ((1_N>Hl dr dr )_E dr
n?(1—=N)\ [ urGr(1—N)CiN,
() (),

1 1
o (,, (o7 +33) (@ +M3)
(C\GrugNoJy (Nor) (Hin*(N — 1)* (n®N3 (N — 1) = N)
+n*(N—1)* (03 (af +N3) + aiN3)) —n*N3 (N — 1)N +N?)
+ oy (Hin*(N—1)* + ain*(N — 1) = N?) (G31y (ray ) — CaKy (rayy) )



2.3. Results and Discussion 45

+ap (Hin*(N —1)* + agn*(N — 1) = N?) (CsIy (ren) — CoKi (ran))),  (2.16¢)

. . . N2K,
where D? = %% (r%) is a differential operator and N, = (1)620' The parameters o and o
0

are defined in this form

N

(2.17)
2ol — NH{
12 n2
The temperature and velocity profiles for Newtonian fluid are obtained as below
9N:C7J0(N1r)—|—CgY0(N1r), (2.18a)
Gr 4ps
WN = CQIO(HI") +C1()K()(H7') + W(C7JO(N1 I") + CSY()(N] 7')) + m (218b)
The temperature and velocity profiles for Brinkman region are obtained as below
93:CllJo(Nll’)—{-Cleo(Nlr), (2.19a)
4
wp = C1310(H2r) + C14K0(H2r) + %
H2 A1
b O (o (NiF) + CiaYo(Nir)) (2.19b)
% r r)), .
llz(H22+N12) 1140(V1 12240(/V1

where H = - (¢ +H?). Using the boundary conditions (2.10a) — (2.10,), the constants
1
C1 — Cy4 are evaluated through MATHEMATICA 10.0.2 but the due to large expressions,

these are not mentioned here.

2.3 Results and Discussion

The present study is the first attempt to perform a comparative analysis between no-couple
stress and no-spin formulation of three-layered fluid flow through a tube with a glycoca-
lyx (porous) layer near wall by taking micropolar fluid in the core region. The selection
of micropolar fluid play an important role to understand circulation process of fluid in mi-
crovessels with the microrotation property of the fluid molecules. The present model re-
duces to two-fluid model (Newtonian fluid in core as well as the plasma regions) for N — 0.
The effect of various parameters like radiation parameter, coupling number, Hartmann num-
ber, thermal conductivity, Grashof number, viscosity ratio and microrotation parameter of

the fluid particles on flow variables, hematocrit and Fahraus effect are depicted pictorially
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and compared with previous studies. We have fixed the values of following parameters
0o =0y =po=cy=1,Bs=0.5k=5,h=0.05 throughout the analysis.
The range of values of various parameters is taken from the previous studies to perform

the graphical analysis is given in Table 2.1.

Parametric values
Parameters Values Resources
Absorption ratio o 1.00 [103]
Coupling parameter N 0<N<I1 [22], [68], [21]
Density ratio pg 0.92-1.00 [34], [103]
Grashof number Gr 0.5-17 [41], [45],
[103]
Hartmann number H 0.1-4.0 [68], [21],
[103]
Micro-scale parameter n [0,00) [22], [23]
Parameter ¢, 1<y <1 [22], [23]
Plasma layer thickness & 0.015-0.05 [110], [28],
[49]
Radiation parameter Ny 2-15 [53], [103]
Steady pressure gradient pj 1-10 [91], [28], [49]
Stress jump parameter g —1<Bs<1 [49], [51], [68]
Thermal conductivity ratio Ky 0.4-1.0 [103], [104]
Viscosity ratio Ug 0.5-1.0 [68], [103]
Viscosity ratio parameter 4, 1.0-1.6 [49], [51]

Table 2.1: The range of parameters appropriate for flow through narrow tubes with their

resources

2.3.1 Velocity Profile

The velocity profile w with radial distance r for different thermal conductivity ratio Ky is
depicted in Figure 2.2:(a) representing a slight dominance of no-couple stress (NCS) for-
mulation over no-spin condition (NS). This can be explained from the fact that a reduced

angular velocity at the interface for no-spin formulation leads to reduction in linear (axial)
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velocity. This observation is in agreement with the previous work of Khanukaeva et al. [22]
although in that case the basic model was different. Rising velocity due to growth in con-
ductivity ratio Ky is validating the finding of Ponalagusamy and Selvi [103] for Newtonian
fluid as coupling parameter N is taken very small.
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Figure 2.2: Impact of conductivity ratio Ky on velocity profile w varying with radial
distance r under (a) the different interface conditions (¢y; = 0.5) and (b) TFM with and
without porous walls. (H = ug =0.5,n=02,N=0.1,p; = 1,N; =2,Gr =A; = 1.5)

A noteworthy observation is that rising conductivity ratio Ky leads to slightly higher
difference between the two formulations (no-spin and no-couple stress conditions) which
may be acredited to the dependence of microrotation vector on thermal conductivity. A
comparative analysis of velocity profile between tubes with and without porous layer near
the wall for no-spin condition is depicted in Figure 2.2:(b). The difference in fluid velocities
in tubes with and without porous region near the wall slightly widen with the increase in

thermal conductivity ratio Kj.
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Figure 2.3: Impact of Grashof number Gr on velocity profile w varying with radial dis-
tance r under (a) the different interface conditions (¢y; = 0.5) and (b) TFM with and
without porous walls. (H =ug =0.5,n=02,N=0.1,p;, = 1,N; =2,Ky =0.6,4; = 1.5)
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The effect of thermal buoyancy and viscous forces on the velocity profile for two dif-
ferent interface boundary conditions (no-spin and no-couple stress) has been done in Figure
2.3:(a). The graphical analysis reveals that the difference in the fluid velocity for the two
formulations slightly increases with the dominance of the thermal buoyancy forces showing
that heat transfer aspect also affects the microlevel effects. A similar observation has been
made in Figure 2.3:(b) depicting widening of difference in velocity profile for fluid flow
in tubes with and without PW under the dominance of the thermal buoyancy forces (with

increase in Grashof number Gr) over viscous forces.
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Figure 2.4: Velocity profile w varying with radial distance r influenced by (a) coupling
number N (n = 0.2) and (b) micro-scale parameter n (N =0.3). (H = ug = 0.5,p; =
1,Ny =2,Ko=0.6,A; = Gr=1.5)

A rising coupling number N leads to significant decay in axial (linear) velocity w de-
picted in Figure 2.4:(a) which signifies that a dominance of microlevel parameters leads to
significant reduction in axial velocity w. The effect of micro-scale parameter n on the axial
velocity w for flow in tubes with and without PW under no-spin condition reveals a sig-
nificant decay in the fluid velocity with growing micro-scale parameter n (Figure 2.4:(b)).
Besides this, it also reveals the diminishing difference in fluid velocity for flow through
tubes with and without PW. The conclusion suggests a relatively larger fluid velocity in
tubes without glycocalyx layer and for relatively lesser micro-scale parameter n (smaller
particle size).

Figure 2.5:(a) represents the profile of angular velocity ), for both the formulations
under different thermal conductivity ratio Ky. Vanishing of the angular velocity ), at the
interface (micropolar-Newtonian fluid interface) leads to a relatively smaller value of angu-
lar velocity for no-spin condition in comparison to the values of no-couple stress condition.
It is perceived that the larger values of Ky affect the angular velocity more significantly for

no-couple stress formulation in comparison to the no-spin condition. Another observation is
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that for no-spin condition, the effects of K are at its peak in the middle while for no-couple

stress condition, this effect continuously increased till the interface.
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Figure 2.5: Angular velocity Qs varying with radial distance r influenced by (a) conduc-
tivity ratio Ko (¢ps = 0.01,Gr = 1.5) and (b) Grashof number Gr (¢y = 0.5,Ky = 0.6).
(H=ur=05n=02,p,=1,Ny=2,N=0.1,A; = .5)

Figure 2.5:(b) reveals that the dominance of thermal buoyancy forces over the viscous
forces leads to slight increase in angular velocity for no-spin condition. However, the same
leads to significant growth in angular velocity for no-couple stress condition. Therefore
Figures 2.5:(a) and 2.5:(b) reveal that the heat transfer aspect significantly affects the angular
velocity for no-couple stress formulation in comparison to no-spin condition. In comparison
to axial velocity profiles, we observe a relatively significant difference in the angular velocity
between two formulations owing to the involvement of angular velocity €2, in formulating
the condition at the interface. For a different model an almost similar observation was
concluded by Khanukaeva et al. [22].
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Figure 2.6: Angular velocity €, varying with radial distance r influenced by (a) radia-
tion parameter N; (n = 0.2,Ky = 0.3,Gr = 0.5) and (b) micro-scale parameter n (N; =

2.0,Ko=0.6,Gr=1.5). (H=pg =0.5,N=0.2,p, = 1,4 = 1.5, ¢, = 0.1)



Chapter 2. Influence of Erythrocyte Microstructure and EGL on Microcirculation
under Heat Transfer Aspect

Rise in radiation parameter N leads to growth in angular velocity Q,, for both the for-
mulations as depicted in Figure 2.6:(a). A noteworthy observation is that beyond a specific
value (N; = 3.0), the radiation parameter N; significantly increases the angular velocity.
This reveals that the larger the rate at which the heat conduction is transferred to the ther-
mal radiation, the more change will take place in angular velocity and the same leads to
changes in micro-scale properties of the fluid motion. The effect of micro-scale parameter
n on angular velocity ,; is shown in Figure 2.6:(b) which clearly indicates that smaller the
particle size (micro-scale parameter n = 0.1), the larger will be angular velocity for both the

formulations. This effect gradually reduces upon increase in the particle size.

2.3.2 Flow Rate

Figure 2.7:(a) depicts a decreasing flow rate Q; with Hartmann number H for both the for-
mulations under different thermal conductivity ratio Ky. This observation is in agreement
with the results of Jaiswal and Yadav [68]. A new observation is that this decay rate is
slightly higher for no-couple stress formulation owing to higher linear velocity for no-couple
stress condition. The difference in the flow rate Q; for both the formulations is significantly
reduced for large Hartmann number (i.e. higher magnetic field). A comparative analysis of
flow rate Qg variation with Hartmann number H for flow through tubes with and without
PW reveals a significantly higher flow rate for the latter case. Besides this, the decay rate is

also slightly higher for the flow through tube without PW as evident from the Figure 2.7:(b).
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Figure 2.7: Impact of conductivity ratio Ky on flow rate Q; varying with Hartmann num-
ber H under (a) different interface conditions (¢, = 1.0) and (b) TFM with and without
PW. (ug =0.5,n=5,p; = 1,N; =2,N =0.1,A; = Gr = 1.5)

A comparison between two-fluid model with and without porous region near the tube
wall and single-fluid model without PW is being pictorially depicted in Figure 2.8:(a). The
flow rate Q; increases with the Grashof number Gr for flow through tubes with and without
PW as evident from the Figure 2.8:(a). It is perceived that the growth rate of Qj is higher for
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flow through tube without PW; however, this value as well as the growth rate significantly
decays with rise in the coupling parameter N. This decay can be justified from the fact that
a rising coupling parameter N leads to higher coefficient of microrotational viscosities and

hence microlevel effects which further slows down the fluid flow.

8+ TFM without PW (NS) = SFM without PW (NS) Pid No Couple Stress e
-- N=0001 | = N=0.001 e 0F - o1 LT
-- N=0200 || - N=0.200 - _ Pt
- SISISin=0'3
- - N=0400 || - N=0.400
A ---n=05

No Spin Condition

g 4 n=0.1
........... ipepiyiie n=0.3
e — — N=0200 ) :fg?
............. — N=0.400 “
2 4 6 8 10 12 14 2 4 6 8 10
Gr ps
(a) (b)

Figure 2.8: Flow rate Q, influenced by (a) Grashof number Gr for different values of
coupling parameter N (n = 0.2, p; = 1) and (b) pressure gradient p; for different values
of micro-scale parameter n (N = 0.4,Gr = 1.5). (H = ug = ¢y = 0.5,Kp = 0.6,N; =

2,A =1.5)
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Figure 2.9: Flow rate Q; varying with parameter ¢, influenced by radiation parameter N,
and viscosity ratio parameter A;. (Ug =H =0.5,p;,=1,Ko=0.6,Gr=1.5,N=n=0.2)

This observation clearly shows that the microlevel effects significantly affect the effect
of thermal buoyancy forces on the flow rate. The present study is reduced to SFM without
PW for plasma layer thickness (2 = 0). This specific case is used to validate our study
with previous works ([56]-[57]). Variation of the flow rate QO with the pressure gradient
ps for both the formulations under varying micro-scale parameter n is depicted in Figure
2.8:(b). It is perceived that the flow rate linearly increases with the pressure gradient p; but
the growth rate consistently decays with increase in the micro-scale parameter owing to an
increased particle size which results in lowering the flow rate. A novel observation is that

the difference in no-couple stress and no-spin formulations significantly widens at higher
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pressure gradient and lower particle size (n = 0.1). Besides this, the growth rate for Qy is
significantly higher for no-couple stress condition in comparison to no-spin condition.

Figure 2.9 reveals that flow rate uniformly increases with parameter @), for different vis-
cosity ratio parameter A; and radiation parameter Ny which is in agreement with a different
model of Khanukaeva et al. [22].

2.3.3 Flow Resistance

The decay of flow resistance A; with decreasing Hartmann number H and increasing ther-
mal conductivity ratio Ky is in agreement with previously established results ([68], [21]) as

evident from the Figure 2.10:(a).
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Figure 2.10: Impact of Hartmann number H on flow resistance A, varying with conduc-
tivity ratio Ky under (a) two different interface conditions and (b) TFM with and without
PW. (Ug = ¢y = 0.5, ps=1,n=N=0.2,Gr= A = 1.5,N; = 2)

A novel observation is that the decay rate of flow resistance A; with Kj is slightly higher
for no-spin condition in comparison to no-couple stress condition. From Figure 2.10:(b), a
similar observation is reported in comparative analysis of variation of A; with Kj between
flow through tubes with and without porous region near the tube walls under no-spin con-
dition. It is evident that for flow through tube with PW, the flow resistance Ag as well as its
decay rate with Kj is higher.

A comparison between two-fluid model with and without porous region near the tube
wall and single-fluid model without PW is being graphically demonstrated in Figure 2.11:(a).
A rising coupling parameter (i.e. microlevel effects) leads to significant increase in flow
resistance A, as evident from the Figure 2.11:(a) however, this growth rate significantly
reduces with the dominance of thermal buoyancy forces over viscous forces. The above
observation concludes that a rising coupling parameter N leads to rise in coefficient of mi-
crorotation viscosity which further enhances the obstruction against the flow but it is seen

that this effect is significantly reduced in case of enhancement in temperature.
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Figure 2.11: Flow resistance A, influenced by (a) coupling parameter (0.001 <N < 0.99)
for different values of Grashof number Gr (n = 0.2,Ky = 0.6,N; = 2) and (b) radiation
parameter N; for different values of micro-scale parameter n (N = 0.3,Gr = 0.5,Ky =
0.4). (g =H = ¢y =0.5,p; = 1,4 = 1.5)

The present study is reduced to SFM without PW for plasma layer thickness (& = 0).
This specific case is used to validate our study with previous works ([56]-[57]). From Figure
2.11:(b), a comparative analysis of A; with radiation parameter N; for both the formulations
reveals a significant decay in flow resistance with increasing radiation parameter N;. While
a slight change in A, is reported for no-spin condition under the increasing micro-scale
parameters, this change is significant for no-couple stress condition. It is evident that the
micro-scale parameter is more effective in no-couple stress formulation due to presence of

flexibility parameter in the solution.

2.3.4 Hematocrit (Ht)

Effect of Hartmann number H, conductivity ratio K for both the formulations (no-spin and
no-couple stress conditions) and for flow through tubes with and without PW have been
depicted in Figure 2.12. A rising Hartmann number H leads to decay in the hematocrit Ht
with a slightly higher decay rate for no-couple stress condition and this decay rate further
reduces for higher K. For all possible values of Ky, the hematocrit Ht is slightly higher
for no-couple stress formulation (Figure 2.12:(a)). It is also reported by analysing Figure
2.12:(b) that flow through tube with PW has significantly higher hematocrit Ht in compari-
son to flow through tube without PW which may be accredited to a reduced flow resistance
As and hence smooth flow through tubes. A reduced decay rate for Ht is reported for higher
Ko in both cases.
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Figure 2.12: Impact of conductivity ratio Ky on hematocrit Ht varying with Hartmann
number H under (a) different interface conditions (¢, = 1.0) and (b) TFM with and
without PW. (ug =0.5,n=5,p;,=c, = 1,N; =2,N =0.1,A; = Gr =1.5)

A slight growth followed by an almost steady plot for Hr is reported in Figure 2.13:(a)
with increasing Grashof number Gr showing that the Ht is almost independent of the ther-
mal buoyancy forces when it significantly dominates the viscous forces (higher Grashof
number Gr). This observation is same for flow through tubes with and without PW. It is also
observed that a rising coupling parameter N affects the Ht more significantly in flow through
tube without PW in comparison to flow through tube with PW. A similar observation is re-
ported for hematocrit variation with thermal buoyancy forces under different micro-scale
parameter. As evident from the Figure 2.13:(b), the hematocrit assumes higher values for
flow through tube with porous region near the tube wall in comparison to the flow through
the tube without porous region near the tube wall. A rising micro-scale parameter leads to

decay in hematocrit for larger particle size.
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Figure 2.13: Hematocrit Ht varying with Grashof number Gr influenced by (a) coupling
parameter N (n = 0.2) and (b) micro-scale parameter n (N = 0.3). (H = ug =0.5,¢, =
Ps = 1,N1 = 2,K0 :0.6711 = 15)

A rising viscosity ratio parameter A; leads to rise in hematocrit Ht which is in good

agreement with our previous work [49] for viscoelastic fluid (Figure 2.14:(a)).An increase
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in the viscosity ratio Uz (= Ly /) leads to a significant rise in Ht which is more signif-
icant for high porosity glycocalyx layer. This can be justified due to a relative increase in
Newtonian viscosity causing reduced plasma flow and hence a higher RBCs concentration.
Besides this, a rising radiation parameter N; leads to rise in hematocrit Ht. This can be
justified as the rising radiation parameter N leads to higher transfer rate from heat energy to
radiation leading to reduced temperature profile which further reduces the effect of thermal
buoyancy forces leading to a decay in flow rate and hence growth in concentration. This
rising concentration of RBCs leads to growth in hematocrit Ht. From the Figure 2.14:(b),
an almost similar observation is reported for variation of Ht with radiation parameter N; for

both the formulations.
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Figure 2.14: Hematocrit Ht varying with radiation parameter N; influenced by (a) vis-
cosity ratio parameter A; and viscosity ratio tg and (b) between two interface conditions
(ug =0.8). (H=0.5,¢, =ps=¢y=1,Kp =0.35,Gr=15,N=0.1,n=0.2)

2.3.5 Fahraus Effect (Fe)
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Figure 2.15: Impact of Grashof number Gr on Fahraus effect Fe varying with Hartmann
number H between (a)two interface conditions and (b) TFM with and without PW. (ur =
0.5,1’1 = 5,ps = (PM = l,Ko = 0.6,)(4 = 1.5,N = O.I,Nl = 2)
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A significant growth in Fahraus effect Fe is reported in Figure 2.15:(a) for rising Hartmann
number H owing to decay in the hematocrit and hence RBCs concentration in the core
region. A noteworthy observation is that a rising Grashof number Gr leads to decay in Fe in
both the formulations. A similar observation is reported in Figure 2.15:(b) for comparative
analysis of Fahraus effect between flow through tubes with and without porous region near
the tube walls. An existence of a porous layer near the wall causes obstruction in flow
of plasma leading towards enhanced RBCs concentration and hence the hematocrit which

further reduces the Fahraus effect Fe.

0910
No Spin Condition | { [T e L
— - N=0.001 N=0.200 N=0400 1 b T e
0.9065 0.909 | === TS e
0.9060 0908 With P;V-:I\-I;)- -----------------------------------
v 0 ) il e Without PW (NS) o
= N=0.001" "_~_"N=0.001
—— N=0.200
--- N=0.200
0907} No
N=0400 ' —-- N=0.400
0.9055
No Couple Stress - 0.906
--- N=0.001 --- N=0.200 --- N=0.400
0.9050
04 0.5 0.6 0.7 08 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ko Ko
(@) (b)

Figure 2.16: Impact of coupling parameter N on Fahraeus effect Fe varying with conduc-
tivity ratio Ky between (a) two interface conditions and (b) TFM with and without PW.
(H=ur=05n=02,p;=0y =1, =Gr=1.5,N, =2)

A rising conductivity ratio K leads to decay in the Fahraus effect Fe for both the formula-

tions as evident from the Figure 2.16:(a).
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Figure 2.17: Fahrzus effect Fe varying with radiation parameter N; for different values
of micro-scale parameter n between TFM with and without PW. (ug = H = 0.5, p, =
1,Ko=0.4,Gr=2A =1.5,N=0.2)
The difference in both the formulations widen as the coupling parameter N increases
leading to dominance of microlevel effects for small Ky. A similar observation is reported in

Figure 2.16:(b) revealing a relatively strong effect of microlevel parameters on the Fahraeus
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effect for the flow through tube without PW in comparison to the flow through tube with
PW.

Decay in the Fahraus effect with the radiation parameter N; is shown in the Figure 2.17
for the flow through tubes with and without porous region near the tube wall. It is evident
that the transformation of heat energy into the radiation at a larger rate leads to decay in Fe.
Besides this, a rise in micro-scale parameter (particle size) leads to growth in Fe however

further increasing particle size has an insignificant impact on the Fahraeus effect Fe.

2.4 Conclusions

The present study is a novel approach to examine a comparative analysis between two differ-
ent formulations (no-spin and no-couple stress conditions) on the flow of micropolar fluid
through a glycocalyx layered microvessel under the heat transfer approach. No-spin and
no-couple stress conditions represent the zero and non-zero angular velocities at the inter-
face (micropolar-Newtonian fluid interface i.e. R1). The dependencies of the hemodynami-
cal quantities, hematocrit and Fahreeus effect on the microlevel properties of the micopolar
fluid, porous layer, heat transfer parameters are analyzed and compared with flow through
tubes with and without porous walls for two different formulations (no-spin and no-couple
stress conditions). Throughout the whole discussions, the following main outcomes as con-

clusions have been made:

1. A slight dominance of no-couple stress formulation over the no-spin condition on the
hemodynamical quantities such as axial and angular velocity, flow rate and hematocrit
is observed; however, no-spin formulation dominates the no-couple stress condition

on the flow resistance and Fahraus effect for the fixed values of the other parameters.

2. Most of the important flow variables are significantly affected by the microlevel pa-
rameters, which includes a significant reduction in velocity, flow rate and hematocrit

while the same leads to growth in flow resistance and Fahraus effect.

3. A novel observation is that the heat transfer parameters such as Grashof number, ther-
mal conductivity ratio and radiation parameter significantly affect the hematocrit and

Fahraeus effect.

4. A reduction in volume concentration of RBCs in whole blood (hematocrit) is observed
with rising magnetic field for both the formulations and also found that the hematocrit
is slightly lower for no-spin condition; however, a significant growth in Fahraeus effect

is reported with increase in magnetic field.
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5. Arelatively thick plasma (increasing viscosity ratio tg) leads to higher hematocrit Ht

and slightly lesser effect of radiation parameter N; on hematocrit Hz.

The present study is a theoretical attempt to conclude a significant impact of heat trans-
fer parameters, porous layer parameters and two different formulations on flow quantities,
hematocrit and Fahraeus effect, which need to be experimentally verified. The outcomes
can be used for the treatment of the various diseases like cancer or malignant tumor in the

medical sciences, which involve temperature variation or applying magnetic field.



Chapter 3

Solute Dispersion into Microcirculation Influenced
by EGL, Erythrocyte Structure and Heat Trans-
fer Aspect

3.1 Introduction

The wall of the blood vessel plays a major barrier in the transportation of materials between
blood and tissues in the circulation through microvessels (arterioles, venules, and capillar-
ies). The study of the mass transport in the microcirculation is the primary concern with a
physiological mechanism involving the transportation of metabolites and catabolites across
the wall of the capillary tube. The physical behavior of mass transportation involves smooth
exchange of metabolism, respiratory gases, nutrients, and catabolites through vessel walls
during the diffusion process. Large numbers of practical situations of heat and mass transfer
involve interphase mass transport such as open tube chromatography, thermal pollution in
natural streams, etc. Sankarasubramanian and Gill [2] studied the theory of the exchange-
able interphase mass transportation due to the first-order reactive wall to analyze the solute
dispersion process in a tube by using the “generalized dispersion model". The inclusion
of the first-order boundary reaction leads to the rise of a new term “exchange coefficient”
reflecting the inter-phase mass transportation.

All the above investigations concerned the effect of various hemodynamical parameters
on Newtonian fluid flow through larger diameter tube, but due to different circumstances
like shape and size of the blood vessels, blood behaves like non-Newtonian fluids. Adopt-
ing the presumption of wall reactions (reversible or irreversible boundary reactions), several
authors ([87], [88], [89]) analyzed the impact of first-order wall reaction on solute disper-

sion in a non-Newtonian fluid flow through circular vessels. Recently, Rana and Murthy

>This work has been published as P.D. Shah, A. Tiwari and S.S. Chauhan,"Solute dispersion in
Micropolar-Newtonian fluid flowing through porous layered tubes with absorbing walls", International
Communications in Heat and Mass Transfer 119 (2020) 104724.
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([111], [112]) studied the longitudinal dispersion of a solute in non-Newtonian (Casson and
Herschel-Bulkley) fluids flowing through small blood vessels with absorbing wall and the
flow was driven by the periodic pressure gradient. They observed the effect of various pa-
rameters like the Womersley parameter, wall absorption parameter, Herschel-Bulkley fluid
(HB) parameter, and amplitude of the periodic pressure gradient on the whole dispersion
process. Roy et al. [113] employed the homogenization method to study the average of
mass transport phenomenon by considering nonlinear chemical decay within the bulk flow
for reversible/irreversible reactions at the annular tube wall.

While dispersion can be applied to understand the transportation of drugs to tissues,
various clinical treatments involve a slight rise in temperature or use of radiation and it is
an interesting problem to mathematically analyze its impact on circulation or transport of
nutrients to our tissues. In recent times, due to rising pollution and significantly increasing
toxic materials in our surroundings, the human being is severely suffering from cancer or
malignant tumor and the researchers made an effort to treat such kind of diseases through
mathematical modeling with experimental experience. The heat transfer aspect has been
used to generate the radiation into the forefront of the infected area. The absorbed energy
leads to a rise in the temperature around the infected area without damaging any healthy
tissues. Chamkha et al. ([56], [57]) presented numerical and analytical solutions of the
fully developed laminar free and mixed convection of a micropolar fluid in a vertical chan-
nel with asymmetrical distribution of temperature at the wall. Many authors ([114], [41],
[45]) covered the heat transfer aspect in their studies on the flow of fluid through conduits
with constriction. Misra et al. [115] calculated the flow of blood through blood vessels dur-
ing electromagnetic hyperthermia and therapeutic procedure for cancer or malignant tumor.
Mekheimer and Abd Elmaboud [42] analyzed the combined effect of heat transfer and mag-
netic field on the circulation of Newtonian fluid flowing through the vertical annulus and the
governing equations were solved under the assumptions of long wavelength approximations
and zero Reynolds number. The steady and unsteady laminar MHD flows and heat genera-
tion/absorption aspects through homogeneous porous channels were discussed by Chamkha
([55], [100]) in which the induced magnetic field and Hall effect of hydromagnetic flow are
assumed to be neglected due to very small magnetic Reynolds number.

Many authors also covered the other aspects of Soret and Dufour effects, natural or
mixed convection on heat and mass transfer in flow through tubes or channels. In the pres-
ence or absence of heat generation or absorption and first-order chemical reaction effects,
an analytical study of steady and oscillatory flow was carried out by Modather et al. [116]
and Magyari and Chamkha [117], for the combined aspects of heat and mass transfer by

natural convection of micropolar, viscous fluid flow near a continuously moving vertical
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permeable infinitely long surface. To motivate future experimental work, a numerical in-
vestigation was undertaken by Chamkha and Rashad [118], which examined the transfer of
heat and mass by mixed convection flow of MHD under the influence of first-order chemi-
cal reaction, magnetic field, Soret, and Dufour effects over a rotating vertical cone. In the
presence of heat generation or absorption and natural convection effects, Chamkha [105]
obtained an analytical solution of the steady, hydromagnetic, fully developed flow of two
viscous immiscible fluids through a vertical impermeable channel filled with or without the
homogeneous porous medium. Ponalagusamy and Selvi [103] analyzed the combined effect
of heat transfer and magnetic field on a two-layer model of blood flow through a constricted
tube by considering blood as Newtonian fluid in both the regions (core as well as plasma
regions). Ghalambaz et al. [119] pioneered the study investigating the suspension and heat
transfer behavior of NEPCM nanoparticles and concluded that they circulate with free con-
vection in the cavity. Shashikumar ez al. [120] explored the influence of nanoparticles shape
on the flow of viscous fluid through microchannel under the impact of magnetism and ra-
diation while considering convection and partial slipping at the boundary. Ayoubloo et al.
[121] analyzed the unsteady flow of free convection behavior of non-Newtonian power-law
fluid through a co-axial cylindrical pipe with a thin layer of homogeneous porous medium
adjacent to the inner cylindrical tube.

The transportation of the solvent material of drugs or toxins in a two-fluid model of
blood flowing through porous layered small blood vessels has been studied in the present
work. Two-fluid model for blood flow through small blood vessels has been taken in which
the central region is occupied by the micropolar fluid and a plasma layer surrounded over
the central region occupied is by Newtonian fluid. A thin porous layer near the wall of the
blood vessel is considered, which is governed by the Brinkman equation and the transporta-
tion of lipoprotein through the intimal of vessel wall tissue has been analyzed. The heat
transfer approach has also been considered due to more realistic phenomena for the com-
plex physiological system of the human body. Analytical expressions for axial velocities
and microrotational velocity for micropolar fluid and temperature profiles have been ob-
tained in terms of Bessel functions and the concentration equation for the solute is solved by
the series expansion method of Sankarasubramanian and Gill [2]. The effect of numerous
parameters on diffusion coefficients and mean concentration are depicted graphically and

compared with the previous works.
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3.2 Problem Formulation

Steady, incompressible blood flowing through the blood vessel is assumed to be axially sym-
metric, laminar, and fully developed as shown in Figure 3.1. As the study suggests ([27],
[28]), for a more realistic representation of the blood flow in a microvessel, the two-fluid
approach is employed. In the present study, microscopic effects due to local behavior and
micro-motion of the suspended blood particles like RBCs, WBCs, and platelets are taken
into account by assuming blood as a micropolar fluid in the core region and the nature of
cell-free blood plasma is exhibited as Newtonian fluid in the peripheral region. The pe-
ripheral layer of plasma is divided into two regions (intermediate and porous regions) and
both regions are occupied by Newtonian fluid. A thin Brinkman layer mathematically repli-
cates the mechanical aspects of an endothelial glycocalyx layer near the wall. Considering
magnetic Reynolds numbers to be very small, there exists a negligible Hall Effect of MHD
flow and weak induced magnetic field, hence both should be neglected ([55], [100]). The
cylindrical polar coordinate system with origin on the vessel axis has been adopted. Vector
representation for the micro-rotation of the blood particles thorough the core is denoted by
(0, ﬁM, 0). The pressure gradient advancing the flow through both regions is assumed to be
constant [49]. The exchange of heat at the boundary has not been taken into consideration
(isothermal condition). The existence of clinical procedures under the external magnetic
field compels to apply the uniform magnetic field |§ | = B on the flow by an external source
in the transverse direction in the present work [122]. Following the above hypothesis, the
governing equations for the above problem are described below:
Region-I,i.e.,0 <7< ﬁl

owy
o 0, (3.1a)
opm
oF OL (3.1b)
_OPu | (Wt Ku) 0 (GO%m\ | 2k ) 5 mop | s 3T - T) =0,
d7 r or or r or
(3.1¢)
= - 0 (10  _~ - [ dwy ~ B
(Aar + Cur) (8_7 (?yf(rQM))) — 2Ky (W—FZQM) =0, (3.1d)
- (0%Ty 10Ty \ 9qu
KM( 072 +? 87>_ o7 —0, (3.16)

where Py, Pv, W, KNlM, I?M, TM, oy are the density, pressure, axial velocity, angular velocity,

thermal conductivity, temperature and electrical conductivity of blood in the core region,
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respectively; Uy, Ay, Cr and Ky are the viscosities of the micropolar fluid, respectively; T
is an ambient temperature, g is the gravitational force and B is a uniform magnetic field.
Region- 11, i.e., ﬁl <r< ﬁz

dwy
-7 Y (3.2a)
aiiv =0, (3.2b)
or
&ﬁN ﬁN d N&WN ~ =~ e~ ~ .
"oz + T or <r 9 ) —onB wy +gpnY(Ty — T..) = 0, (3.2¢)
~ (d*Ty 19Ty\ 9gn
KN( a2 T F ar) “or 0 (32d)

where Py, P, W, lin, Kn, Ty, O are the density, pressure, axial velocity, viscosity, thermal
conductivity, temperature and electrical conductivity of blood in the plasma region, respec-
tively.

Brinkman [95] formulation has been used to model the flow through porous media.
Region- 111, i.e., ﬁz <r< §3

g
o7 0, (3.3a)
aLNB =0, (3.3b)
ar
s HE d (-9WE\ BNWE  ~ m x|
97 + T or <r 97 ) p onB“wg +gpnY(Ts — 1) =0, (3.3¢)
= (9*Ts 10T\ 9gs
K ( a7 T 87) B (3-3d)

where pg,wg, UE, T are the pressure, velocity, effective viscosity of porous layer, tempera-
ture of blood in porous region, respectively and k is the permeability constant.
The radiative heat fluxes in the core and plasma regions for micropolar and Newtonian

fluids may respectively be expressed as ([114], [103])

1 _ 4ig Ty - 7o), (3.40)
X _ gy (T - .. (3.4b)
BVt o

% — 403 (Tp — To), (3.4c)

where 0, and oy are the mean radiation absorption coefficients for micropolar and New-
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tonian fluids, respectively which are much less than unity.

The pressure gradient is taken as constant for all the regions ([28], [122])

dpm _dpy _ dpp
aZ - az - afzv - CIOPs;

(3.5

where ¢ is the characteristic pressure gradient and p; is the pressure gradient for steady

flow.
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Figure 3.1: The schematic diagram of the three-layered liquid model for having a thin
endothelial glycocalyx layer adjacent to the absorbing microvessel wall

The physical sketch of the three-layered liquid model with absorbing walls is presented
in Figure 3.1, where ﬁl ,§2,§3 are the radii of the central, intermediate and porous regions
of blood vessel, respectively. As depicted in Figure 3.1, micropolar fluid exhibiting micro-
rotational behavior of the cell, a dense fragment of blood that flows through the central
passage of the vessel denoted by Region-I. The endothelial glycocalyx layer at the vessel
wall is replicated as the porous layer at the boundary of the cylindrical tube and identified
as Region-III. The cell-free fragment of blood functions as Newtonian fluid and known as
plasma that flows through both Region-II and Region-III.

To solve the above system of Egs. (3.1) —(3.5), the following non-dimensional variables

are introduced:
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where po, 0y, Ko, 0, Ur are the density ratio, electrical conductivity ratio, thermal conduc-
tivity ratio, mean heat absorption ratio, viscosity ratio respectively; Wy is the characteristic
velocity, Gr is the Grashof number, A, is the viscosity ratio parameter and T, is the temper-
ature at wall.

Using the above non-dimensional variables (3.6), the governing equations in the non-
dimensional form will become for different regions

Region-I,i.e.,0 <r <R

d
M _ ), (3.7a)
Jz
d
P _ ), (3.7b)
ar
Gr(1—-N
4py(1 = N)ug + D*wyy +2ND*®y— (1 — N)Hiwy + %OM =0, (3.7¢)
0
d [ ., N
2 (p 2®y) ) =0 3.7d
8r( M 2n%(1—N) (war +2P) (3.7d)
NZK,
D*Oy+ 26y =0, (3.7¢)
20
where D? = %% (r%) is a differential operator, N = @?FLM is known as coupling parameter
which demonstrates the rotation effects of micropolar particles, n> = ’}LMHL% is a micropolar
M3
P22
(micro-scale) parameter, le =L ’;Hz i1s a magnetic number, le = % s the radiation
0 KN
Ity

parameter and the angular velocity is taken as Qy = =5 2.
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Region- I, i.e., Ry <r <R,

I _ . (3.82)
dz
0
9PN _ ), (3.8b)
or
4ps+D*wy —H*wy +Gréy =0, (3.8¢)
D?Oy +Ni6y =0, (3.8d)
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0
VB _, (3.92)
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0
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The dimensionless boundary conditions are given as follows:
1. The conditions for velocity, angular velocity, and temperature on the axis have been
considered as

aWM 86M
=0, Q=0 and
or ) M ne o,

=0 at r=0. (3.10a)

2. Continuity of velocities and temperatures at the micropolar-Newtonian fluid interface

and Newtonian fluid-porous interface, i.e.,

wy =wy at r=Rj, (3.10b)
i1 = O, il =K089N at r=Ry, (3.10¢)
ar or
wy =wp at r=R,, (3.10d)
0 0
Oy = 63, ﬂ = ﬁ at r=R,. (3.10e)
or ar

3. Continuity of shear stresses at the micropolar and Newtonian fluid interface, i.e.,

1 8wM N B aWN B
(1-N) or +(1_N)QM(’)—“RW at r=R;. (3.10f)
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4. No-spin condition at the micropolar-Newtonian fluid interface, i.e.,

Qu(r)=0, at r=Ry. (3.10g)

5. No-couple stress condition on the micropolar-Newtonian fluid interface, i.e.,

2Q
mlr) _ ey () =0, at r=Ry, (3.10h)
ar r
where ¢y = % is an additional parameter which reflects the constrains on vis-
M T oM

cosity coefficient and it can vary in the interval [—1; 1] ([22], [122]).

6. The momentum transfer condition at Newtonian fluid and porous interface which is

known as stress-jump condition of tangential stress [1], i.e.,

1 aWB 8wN . BS o 1
oc_pW_W_\/lsz at r=R», (3.101)

where ¢, is the porosity parameter and fs is the stress-jump parameter.

7. Isothermal and no-slip condition at the tube wall, i.e.,

wp=0, Op=1 at r=1. (3.109)

3.3 Solution of the Problem

Analytical expressions for velocity, micro-rotational velocity, and temperature profiles are
obtained by solving the Egs. (3.7) — (3.9), we get the followings:
Region- I,i.e.,0 <r <Ry

Oy = E1J0(N2r) —|—E2Y0(N2r), (3.11a)
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+ay (H2A(N —1)2+ a3n®(N — 1) — N?) (s (azr) — EgK, (azr))), G.11c)

N?K, . .
where N, = (‘XZO and a; and a» are defined in this form

0

N
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where Hy = % (% + H?). The constants E — E14 appeared in the solutions (3.11) — (3.14)
1

of the given equations are evaluated analytically through MATHEMATICA 10.0 software

using the given boundary conditions (3.10). The complete expressions for velocities for

different regions are not mentioned in the manuscript due to very large expressions.

3.4 Concentration Solution

3.4.1 Governing Equations

Let us consider the inoculation of the unsteady solute dispersion into the flowing stream of
blood flow depicted here as a two-fluid (micropolar-Newtonian) model through a vessel of
radius R3 with a thin porous layer near the absorbing walls. The solvent material in a blood
vessel with reactive walls is delineated in Figure 3.1. The occurrence of the first-order irre-
versible catalytic reaction let the solvent material to be absorbed continuously with the rate

of absorption proportional to the concentration of solute at the outer wall.
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The dimensional form of the unsteady convective diffusion equation is written below de-
scribes the concentration C of the solvent material in the unidirectional steady, incompress-
ible blood flow which assumed to be axially symmetric, laminar and fully developed through

the narrow blood vessel.

oC __9dC ~ (19 (_9C\ o9*C

w is the axial velocity of the fluid in blood vessel and, C is the local concentration of the

solute, and 5," is coefficient of molecular diffusion assumed to be constant.

3.4.2 Initial and Boundary Conditions

3.4.2.1 Initial Condition (IC)

A uniform distribution of the solute is assumed at the beginning (i.e., # = 0) and the distri-

bution of the concentration at the beginning of the diffusion process is reported as below.

C(0,z,r) = w(2)X(r), (3.16a)

with
_ 0(z)

v(z) = TPy’ (3.16b)

and
1 O0<r<d
X(r)= ’ - 3.16
(r) {0, d<r<l, ( ©)

where 9 (z) is Dirac delta function.

3.4.2.2 Boundary Conditions (BCs)

The boundary conditions (BCs) signifying a first-order heterogeneous irreversible reaction

at the tube wall and a finite concentration in the system at any instant of time are given by

JC
5, (1:21) = =BC(.z 1), (3.17a)
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e
© 0z
C(t,z,0) = finite, (3.17¢)

C(t,oo,r) (t,00,r) =0, (3.17b)

where f is the non-dimensional wall reactive (absorption) parameter or first-order reaction
rate representing the rate of loss on the tube wall. It is obvious that as the wall absorption

parameter 3 — 0, the results should approach for the case of no reactant flux at the tube wall

[2].

3.4.3 Diffusion Coefficients and Mean Concentration

The solution of the equation (3.15) with the help of the initial and boundary conditions
(3.16) — (3.17) has been obtained using Sankarasubramanian and Gill [2] approach to finally
obtain the diffusion coefficients and mean concentration. The solution expression for the

exchange coefficient M(z) is obtained as

B Y5 Axoudi (o)e” %"

o= Yo (%) Jl(ock)e—%?f’

(3.18a)

which is exactly the same as derived in the previous works ([2], [87], [88], [89]) as its
computation does not include fluid velocity.

The expression for convection coefficient (M) is obtained as

2
—2ocO

(a5 +B*)J5

1
M, = (Oco)/o w(r)rJ3 (aor)dr. (3.18b)

The expression for the dispersion coefficient (M) is given by

L Ao (o) !
YT R (g 1 )R o) Jy 0w+ M) (o (3.18¢)

The expression for the mean concentration (Cy) of the solute is obtained as

1 2

The detailed description of the solution method and derivation of the diffusion coefficients
as well as mean concentration has been provided in Chapter 1 (1.5.3). All the integrations

involved in the expressions of convective coefficient (—M) ), dispersion coefficient (M;) and
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mean concentration (Cyy) are evaluated in MATHEMATICA 10.0.2 software using numeri-

cal integration.

3.5 Results and Discussion

An analytical treatment of solute dispersion in a micropolar-Newtonian fluid flowing through
porous layered microvessels with absorbing walls has been performed in the present study

by considering the heat transfer aspect of the flow. = The selection of micropolar fluid

Values of parameters
Parameters Values Resources
Absorption ratio ¢ 1.00 [103], [122]
Coupling parameter N 0<N<I1 [68], [22], [21]
Densities ratio pg 0.92-1.00 [36], [103],
[37]
Grashof number Gr 0.5-17 [103], [41],
[45]
Hartmann number H 0.1-4.0 [103], [68],
[21]
Micropolar parameter n [0,00) [22], [122]
Parameter ¢, 1<y <1 [22], [122]
Plasma layer thickness & 0.015-0.05 [28], [49]
Permeability k (0,0) [65], [49], [S1]
Radiation parameter N, 2-15 [114], [103]
Steady pressure gradient p; 1-10 [28], [49]
Stess-jump parameter Sy —1<Bs<1 [49], [51], [68]
Thermal conductivity ratio Ky 0.4-1.0 [103], [122]
Viscosity ratio Ug 0.5-1.0 [36], [103]
Viscosity ratio parameter A; 1.0-1.6 [49], [51]
Wall absorption parameter 3 0.01-100 [87], [111],
[112]

Table 3.1: The range of parameters appropriate for flow through narrow tubes with their
resources

plays an important role to understand the impact of micro-level effects on the solute dis-
persion process in fluid flowing through microvessels. The core region of the blood ves-

sel is occupied by micropolar fluid and the intermediate and porous regions of the blood
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vessel are occupied by Newtonian fluid. The plasma region consists of the intermedi-
ate and porous regions. The range of the core, intermediate and porous regions radii are
0<r<Ry, Ry <r<Ryand R, < r <1, respectively. The thickness of core and plasma
regions are taken as hj and h, respectively and h; +h = 1. The thickness of the interme-
diate region (R; < r < Ry) is taken as 25% of the whole plasma layer width ([3], [62],
[49]). Therefore, the typical estimates for core, intermediate and porous regions radii are
Ri=1—-h Ry=1— % and 1, respectively. The effect of various parameters like radiation
parameter, coupling number, Hartmann number, thermal conductivity, Grashof number and
micro-rotation of the fluid particles on the diffusion coefficients and mean concentration are
depicted pictorially and compared with the previous studies. The values have been fixed for
the parameters 6y = 0y = po = 1 and the Peclet number Pe = 10°.

The range of values of various parameters are taken from the previous studies to perform

the graphical analysis which is given in Table 3.1.

3.5.1 Convective Coefficient (IM;)
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Figure 3.2: Convective coefficient (—M;) with Hartmann number H (a) for different

values of plasma layer thickness i (A; = 1.0) and (b) between flow through tubes with

and without porous walls (4} = 1.6,h = 0.05). (Bs = ug = 0.5,k =n=>5,Ky =0.6,N =

0.1,ps = ¢y = 1,N; =2,Gr = 1.5, 8 = 100)

A comparative analysis of variation of convective coefficient with Hartmann number
H for varying peripheral layer thickness 4 is depicted in Figure 3.2:(a) for no-spin (NS)
and no-couple stress (NCS) formulations at the fluid-fluid interface. A decay in convective
coefficient (—M)) is observed for rising Hartmann number owing to reduced velocity pro-
file which is in agreement with the previous results [122]. An increase in peripheral layer
thickness leads to a rise in convective coefficient which can be accredited to a relatively
smoother flow in the tube [37]. A relatively higher convective coefficient is reported for

NCS formulation in comparison to no-spin condition at the fluid-fluid interface. This can
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be explained from work [122] of a relatively higher velocity profile for NCS formulation.
Figure 3.2:(b) reveals a significantly higher difference in convective coefficient between no-
spin and no-couple stress formulations as well as between two-fluid model (TFM) of blood
flowing through tubes with and without porous region near the tube walls for low Hartmann
number. This difference reduces with increasing Hartmann number.

The dominance of thermal buoyancy forces over the viscous forces leads to a rise in the
convective coefficient for both the formulations (NS and NCS) as depicted in Figure 3.3:(a).
However, a decay in porosity near the tube wall leads to decay in the convective coefficient.
The above variation can be accredited to the change taking place in velocity profile due to
rising Grashof number Gr and viscosity ratio parameter A ([123], [124]). A similar analysis
of variation of convective coefficient with Grashof number for flow through tubes with and

without porous region near the tube walls is depicted in Figure 3.3:(b).

35
. No Couple Stress P
30f - -- With PW

- — - Without PW

No Couple Stress .

No Spin

—— With PW
05 — Without PW 1
2 4 6 8 10 12 14
Gr
(a) (b)

Figure 3.3: Convective coefficient (—M ) varying with Grashof number Gr (a) influenced
by viscosity ratio parameter A; (N = 0.2,Ky = 0.4) and (b) between flow through tubes
with and without porous walls (1; = 1.6,N =0.1,Kyp =0.6). (Bs =H = ug =0.5,p, =
oy =1,Ny =2,k=n=5h=0.05, = 100)

Here also convective coefficient is higher for flow-through tubes without a porous re-
gion near the vessel wall (PW) and for NCS formulation. The growth rate of variation of
convective coefficient with Grashof number is higher for higher porosity near the tube wall
(for infinitely large permeability, the porous region reduces to the fluid region and hence
observed a relatively larger M, for this case).

Figure 3.4:(a) reveals a nonlinear growth in convective coefficient with a rising ther-
mal conductivity ratio Ky. The growth rate is slightly higher for NCS formulation relative
to NS condition and further increases for higher wall absorption (8 = 100). A consistent
increase in convective coefficient with increasing B is in agreement with previous studies
([871, [37]). From Figure 3.4:(b), a decay in convective coefficient with rising coupling num-

ber N shows that a stronger micro-rotational effect significantly affects the solute dispersion
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in flow through tubes. It is further observed that a higher viscosity ratio (ug) (relatively more
obstruction in flow through the peripheral region) leads to growth in convective coefficient

and this difference slightly reduces with the dominance of micro-rotational effects.

1.4
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09 p=001 = ---p=001 -7 — ur=05 - = g=0.8 (N=0.001) -7
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Ko Ko
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Figure 3.4: Convective coefficient (—M) varying with conductivity ratio Ky influenced
by (a) wall absorption parameter § (N = 0.2, ug = 0.5) and (b) coupling number N and
viscosity ratio ug (B =100). (Bs=H =0.5,Gr=1.5,p;=A =9y =1,N; =2,k=n=
5,h =10.05)

Linear growth in —M; with pressure gradient py is observed owing to an increase in
velocity as depicted in Figure 3.5:(a) which is in agreement with the previous works ([49],
[122]). A rising radiation parameter N leads to growth in —M; for both the formulations
(NS and NCS) which may be accredited to a slightly enhanced flow rate [122]. This further
signifies that solute dispersion in flow through tubes is significantly affected with the rate
at which the heat energy is transformed into the radiation and this growth is significant for

radiation parameter (N; > 2.5).
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Figure 3.5: Impact of radiation parameter N; on convective coefficient (—M;) varying
with pressure gradient p; under (a) different conditions (NS and NCS) and (b) between
flow through tubes with and without porous walls. (B8s = H = ug = 0.5,A1 = Gr =
1.5,Kp=0.4,0py =1,N=0.1,k=n=5,h=0.05,8 = 100)
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Figure 3.5:(b) reveals a greater impact of radiation parameter Nj on the convective coef-
ficient in case of flow through tubes without PW in comparison to flow through tubes with
PW. The gap between growth rate of —M; between NS and NCS in (Figure 3.5:(a)) and flow
through tubes without PW compared to with PW (Figure 3.5:(b)) widens with increment in

pressure gradient p;.
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Figure 3.6: Impact of micro-scale parameter n on convective coefficient (—M,) varying
with viscosity ratio parameter A;. (Bs = H = ¢y = ug = 0.5,h = 0.05,N = 0.4,Ky =
0.6,ps = 1,N; =2,Gr=1.5,k =5, =0.01)

The effect of micro-scale parameter (particle size n) on the convective coefficient is
shown in Figure 3.6. It is observed that an increase in micro-scale parameter leads to decay
in the convective coefficient although its variation pattern with viscosity ratio parameter
A1 remains unchanged. It is also perceived that for no-couple stress condition, the decay
in —M; with particle size n is significantly reduced for large particle size; however, this
variation shows slight reduction for no-spin formulation.

A rising permeability leads to smoother flow and hence a slight increase in convective
coefficient is witnessed from Table 3.2:(a). Further, an increase in parameter ¢y, leads to
a slight increase in convective coefficient owing to enhancement in flow rate [122]. An
increasing value of the stress-jump parameter g contributes to a slight decay in the con-
vective coefficient as shown in Table 3.2:(b) for both the formulations (NS and NCS). The
justification of this observation is that an increase in the stress-jump parameter s leads to
a relatively higher shear stress of porous region in comparison to clear fluid (non-porous)

region leading to reduced flow rate [49] and hence reduced convection.
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k NoSpin ¢y=-10 o¢y=-05 ¢y=00 ¢yy=05 ¢yy=1.0
0.5 0.8945 0.8946 0.8946 0.8946 0.8947 0.9853
1.0 0.8947 0.8948 0.8948 0.8948 0.8949 0.9854
3.0 0.8949 0.8949 0.8949 0.8950 0.8951 0.9856
5.0 0.8949 0.8950 0.8950 0.8950 0.8951 0.9857
7.0 0.8950 0.8950 0.8950 0.8951 0.8951 0.9857
9.0 0.8950 0.8950 0.8951 0.8951 0.8952 0.9857

(a)

Bs | NoSpin ¢y=-1.0 ¢y=-05 ¢y=00 ¢y=05 ¢y=10
0.9 |0.8955  0.8955 0.8955 0.8955  0.8956  0.9862
0.6 |0.8953  0.8954 0.8954 0.8954  0.8955  0.9861
03 |0.8952  0.8953 0.8953 0.8953  0.8954  0.9860
00 |0.8951  0.8952 0.8952 0.8952  0.8953  0.9859
03 |0.8950  0.8951 0.8951 0.8951  0.8952  0.9858
0.6 |0.8949  0.8950 0.8950 0.8950  0.8951  0.9856
09 |0.8948  0.8948 0.8949 0.8949  0.8950  0.9855
(b)

Table 3.2: Convective coefficient (—M) varying with (a) permeability k (Bs = 0.5) and
(b) stress-jump parameter 35 (k = 5) for different values of no-couple stress parameter
Oy. (H=05n=5h=0.05A, =Gr=15,u, =0.8,Kp=0.6,p, =1,N =0.1,N; =
2, B = 100)
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3.5.2 Dispersion Coefficient (M;)

The impact of Hartmann number H and varying peripheral layer thickness 4 on the variation
of dispersion coefficient M, is depicted in Figure 3.7:(a) for no-spin (NS) and no-couple

stress (NCS) formulations at the fluid-fluid interface.

&01~~~:~\ No Couple Stress |1 3.0 No Couple Stress |
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Figure 3.7: Axial dispersion coefficient (M, — 1/Pe?) varying with Hartmann number H
(a) for different values of plasma layer thickness 4 and (b) between flow through tubes
with and without porous walls (h = 0.05). (Bs = ug = 0.5,k =n=15,Ky = 0.6,N =
0.1,B=ps=0y=1,N=2,Gr=2 = 1.5)

A rising Hartmann number H leads to decay in axial dispersion M, with a slightly lesser
decay rate for the no-spin condition in comparison to no-couple stress formulation. A slight
increase in peripheral layer thickness leads to decay in dispersion coefficient M, which is
in agreement with the previous study [37]. Figure 3.7:(b) reveals a significantly higher
difference in dispersion coefficient between no-spin and no-couple stress formulations as
well as between TFM of blood flow through tubes with and without porous region near the
tube walls for low Hartmann number. This difference reduces with increasing Hartmann
number ([125], [126], [127], [128] [129]).

The dominance of thermal buoyancy forces over the viscous forces contributes to en-
hancement in dispersion coefficient for both the formulations (NS and NCS) as shown in
Figure 3.8:(a). An increasing nature of the dispersion coefficient with Grashof number is
almost negligibly affected by the variation in the porosity of the porous layer near the tube
wall. This observation is the same for both the formulations. A similar analysis of varia-
tion of dispersion coefficient with Grashof number for flow through tubes with and without
porous region near the tube walls is depicted in Figure 3.8:(b). Here also, dispersion coef-
ficient is higher for flow through tubes with PW and for NCS formulation. The growth rate
of variation of dispersion coefficient with Grashof number is higher for lower porosity near

the tube wall (for infinitely large permeability, the porous region reduces to the fluid region
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and hence observed a relatively larger M, for this case). The gap between growth rate of the

dispersion coefficient between NS and NCS widens with increment in Grashof number.
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Figure 3.8: Axial dispersion coefficient (M, — 1/Pe?) varying with Grashof number Gr
(a) for different values of viscosity ratio parameter A; and (b) between flow through tubes
with and without porous walls (A} = 1.6). (Bs = H = ug = 0.5,Kop = 0.6,N = 0.1, p; =
by =1,Ny=2,k=n=5h=0058=0.01)
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Figure 3.9: Axial dispersion coefficient (M, — 1/Pe?) varying with pressure gradient p
(a) for different values of radiation parameter N; and (b) between flow through tubes with
and without porous walls. (s = H = ug = 0.5,Kp =0.4,N =0.1,Gr =1, = 1.5, =
oy = 1,k=n=5h=0.05)

Linear growth in dispersion coefficient M, with pressure gradient p; is observed owing

to an increase in velocity which is in agreement with the previous works ([49], [122]) as

depicted in Figure 3.9:(a). A rising radiation parameter N; contributes to growth in M>

for both the formulations (NS and NCS) which may be accredited to a slightly enhanced

flow rate [122]. This further signifies that the solute dispersion in flow through tubes is

significantly affected with the rate at which the heat energy is transformed into the radiation

and this growth is significant for radiation parameter (N; > 2.5). The gap between growth

rate of the dispersion coefficient between NS and NCS widens with increment in pressure

gradient p,. Figure 3.9:(b) suggests a slightly reduced dispersion coefficient for flow through
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tubes without PW. It is also observed that the growth rate of M, with a pressure gradient is
slightly higher for flow through tubes with PW.

3.5.3 Mean Concentration (Cyy)

A comparative analysis of mean concentration Cy; for both the formulations (NS and NCS)
under varying wall absorption parameter f3 is discussed in Figure 3.10. For both the for-
mulations, the mean concentration significantly reduces with an increase in 8 which is in
agreement with the previous studies ([87], [89]). Also for low wall absorption (8 = 0.01),
the mean concentration is slightly higher for no-spin condition owing to relatively low ve-
locity profile. However the behavior changes for moderate and higher values of § (1,100)
i.e. for moderately and highly absorbing walls despite the larger velocity profile, the mean
concentration for NCS formulation is slightly higher. Figure 3.10:(b) reveals that the diffu-
sion process is more dominant for no-spin condition near the point of injection. However,

as we move away from the point of injection, the same is dominated by NCS formulation.
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Figure 3.10: Effect of wall absorption parameter 3 on mean concentration Cy; varying
with (a) time 7 (z = 0.35) and (b) axial distance z (t = 0.5). (Bs = H = ug = 0.5,Kp =
0.6,Gr=15A=p;=¢y=1,N;=2,k=n=5h=0.05,N=0.1)

An increase in Hartmann number H leads to decay in mean concentration Cys for both
the formulations (NS and NCS) as evident from Figure 3.11:(a). However, an increase in
peripheral layer thickness A leads to significant growth in the peak of the mean concentration
Cy. It is also observed that for both the formulations, the mean concentration Cy; curve
widen with the increase in Hartmann number H and decrease in plasma layer thickness
h indicating that these two parameters lead to a slight increase in the time elapsed in the
diffusion process. Besides this, the comparative analysis shows that for no-couple stress
formulation, the diffusion process begins and ends relatively earlier in comparison to the

no-spin formulation at the interface. From Figure 3.11:(b), the variation of Cj; along the
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axial distance for both the formulations shows that near the point of injection, a rise in

Hartmann number H leads to growth in Cy,.
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Figure 3.11: Impact of Hartmann number H and plasma layer thickness 2 on mean
concentration Cy, varying with (a) time ¢ (z = 0.5) and (b) axial distance z ( = 0.5).
(Bs=ur=0.5,Kp=0.6,Gr=154 =B =ps=¢p=1,Ny =2,k=n=5N=0.1)
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Figure 3.12: Impact of Grashof number Gr and viscosity ratio parameter A; on mean
concentration Cy, varying with (a) time ¢ (z = 0.5) and (b) axial distance z (t = 0.5).
(Bs =g =H =0.5,Ky=0.6,h=0.05,8=p; =y =1,N; =2,k=n=5,N=0.1)
However, an increase in peripheral layer thickness /4 leads to growth in the peak of Cy
but as we move away from the point of injection (larger axial distance z) the variation in
Cy for varying H and h changes which are in agreement with the Figure 3.11:(a). From
Figure 3.12:(a), a comparative analysis of time variation of mean concentration for both the
formulations under varying Grashof number Gr and viscosity ratio parameter A; suggests
a significant delay in dispersion process and lower peak in Cy; for no-spin formulation in
comparison to no-couple stress formulation. However, the variation of Cj; along the axial

distance shows an almost negligible difference in Cy; for both the formulations (NS and
NCS).
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Figure 3.13: Mean concentration Cy, varying with time ¢ for (a) different conditions (No-
spin and no-couple stress) and (b) different models (TFM of blood flow through tubes

with and without PW). (Bs=H = ug =2z=0.5,h=0.05,A, =Gr=1.5¢9y =B =ps; =

ILNy=2,N=0.1,k=n=5)
A rising thermal conductivity ratio Ky leads to growth in the mean concentration for both

the formulations (NS and NCS) although the same leads to a slightly early appearance in the

peak of the Cys as evident from Figure 3.13:(a). A comparative analysis of the time profile
of Cy for dispersion in tubes with and without porous region near the tube wall for no-spin
formulation suggests a slightly reduced time for dispersion process for the later case. This
observation can be accredited to a relatively smoother flow in tubes without PW. Besides

this, the peak of Cj; assumes relatively higher values for dispersion in flow through tubes

without porous region near the tube wall.
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Figure 3.14: Impact of coupling number N and viscosity ratio fig on mean concentration
Cy varying with (a) time 7 (z =0.5) and (b) axial distance z (r =0.5). (Bs=H =0.5,Kp =
0.6,h=0.05,A1 =Gr=15,=p;=1,Ni =2,k=n=5)
The time profile of the mean concentration under varying coupling number N shows a
decay in the peak of the value of Cy; as well as a significant delay in the completion of the
solute dispersion process which is evident from the widening of the profile curve (Figure
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3.14:(a)). These observations are the same for dispersion in tubes with and without PW.
An increase in viscosity ratio ug (i.e. relatively higher viscosity of Newtonian fluid or fluid
in the peripheral region) results in a significant reduction in time to complete the diffusion
process. From Figure 3.14:(b), the effect of coupling number N on the variation of mean
concentration along axial distance for dispersion in tubes with and without porous region
near the tube wall reveals a slight increase in Cys for higher coupling number near the point
of injection but this behavior changes as we move away from the point of injection (higher

axial distance z). An increase in viscosity ratio yg results in slight widening of the mean
concentration curve.
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Figure 3.15: Effect of radiation parameter N; on mean concentration Cy; with (a) time
t (z=10.5) and (b) axial distance z (t =0.5). (Bs =ur =H =0.5,Kp = 0.4,4) = Gr =
1.5,h=0.05,B=p, =y =1,N=0.1,k=n=>5)

An increase in radiation parameter N leads to significantly reduced time for completion
of the diffusion process (Figure 3.15:(a)). This can be justified from the fact that a larger
rate of transformation of heat energy to the thermal radiation leads to an increase in flow
rate [122] and hence results in reduced time for the completion of the diffusion process.
Variation of the mean concentration along the axial distance for different radiation parameter
N reveals that near the point of injection, an increasing N; leads to a slow dispersion process
with reduced peak of the mean concentration and a