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Abstract

This thesis embarks on a journey to uncover the enigmas of fractional calculus, addressing

its theoretical intricacies and practical implications. The examination will focus on the

historical evolution, beginning with the pioneering works of Euler and Leibniz that laid

the groundwork for traditional calculus and tracing the development of fractional calculus

through Liouville, Riemann, and beyond contributions. Additionally, we will explore

the mathematical properties and fundamental theorems underlying fractional calculus,

shedding light on its unique characteristics that set it apart from integer-order calculus.

Fractional-order mathematical modeling has emerged as a powerful tool for describing

complex systems with non-integer dynamics, finding applications across a wide range

of scientific disciplines. This doctoral thesis delves into the realm of fractional-order

mathematical modeling, exploring its theoretical underpinnings, computational methods,

and diverse applications.

Moreover, the thesis will delve into a rich array of applications, showcasing how frac-

tional calculus has been harnessed to solve complex problems in fields such as sociology,

economics, and epidemiology. The thesis begins by providing a comprehensive overview

of the fundamentals of fractional calculus, elucidating the significance of fractional deriva-

tives and integrals in capturing memory and hereditary effects in real-world systems. The

subsequent segment will identify gaps in existing research to formulate the overarching

objective of the thesis. The core of the thesis revolves around the applications of fractional-

order mathematical modeling in diverse domains of socioeconomic and epidemiology and

explores the efficacy of fractional-order models in capturing complex behaviors that elude

traditional integer-order models.

Firstly, this thesis extensively explores the multifaceted dynamics of criminal behavior

in the twenty-first century. Criminologists have conducted an exhaustive study covering

biological, psychological, sociological, and economic aspects to comprehend the intricate

factors that shape criminal conduct. A notable observation reveals that offspring of

criminal parents exhibit a twofold likelihood of acquiring criminal convictions compared



to their counterparts from non-criminal families. Integer-order mathematical models

cannot determine the high degree of accuracy necessary to explain the transmission

process. In light of this challenge, fractional calculus emerges as a potent analytical

tool capable of surpassing the limitations of integer-order models. Fractional calculus

depicts and manages the retention and transmission nuances inherent in diverse materials.

Consequently, fractional differential equations emerge as the novel approach employed to

address the inherent complexities within this realm. By harnessing the power of fractional

calculus, Chapter 2, Chapter 3, and Chapter 4 contribute to a more nuanced understanding

of criminal behavior transmission processes, shedding light on the intricate interplay of

factors that contribute to the persistence of criminal tendencies across generations.

Due to the alarming increase in the categories of crimes committed and the number of

criminal activities around the globe, there is an urgent need to revise the current policies

and models adopted by judicial institutions. Most mathematical models do not account

for the offender’s criminal history, which is essential for controlling crime transmission

within the specified time frame. In addition, a substantial number of perpetrators have

not been imprisoned due to external factors and policies. To address these societal

problems, Chapter 2 proposes a fractional-order crime transmission model by clustering

the extant population into four distinct groups. These groups consist of law-abiding

citizens, criminally active individuals who have not been incarcerated, prisoners, and

released prisoners. In addition, the proposed model is extended to the delayed model by

incorporating the time-delay coefficient to account for the time gap between the offender’s

offense and their conviction. Until a certain point, the endemic equilibrium of the delayed

model is locally asymptotically stable, after which bifurcation occurs.

Various studies present different mathematical models of ordinary and fractional

differential equations to reduce delinquent behavior and encourage prosocial growth.

However, these models do not consider the non-linear transmission rate, which depicts

reality better than the linear transmission rate, as the relationship between non-criminals

and criminals is not linear, according to the National Crime Records Bureau, Government

of India. In light of this, a novel fractional-order mathematical crime propagation model
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with a non-linear Beddington-DeAngelis transmission rate is proposed in Chapter 3 that

divides the entire population into three clusters. The present study also compares the crime

transmission models for various transmission rates, followed by an analytical investigation.

In addition, this research investigates the incidence of transcritical bifurcation at the

criminal-free equilibrium point. In summary, the finding of this research suggests that as

the order of derivative increases, the population approaches equilibrium more swiftly, and

criminals decline with time for the different orders of derivative.

Everyone is affected by crime in some manner and criminal activity spreads through

peer influence and is contagious. Several mathematical models for predicting crime

transmission have been proposed in various studies. However, these models do not

account for an individual’s logistic development, which is required to describe criminal

behavior changes. As a result, Chapter 4 presents a fractional-order mathematical model

of crime transmission that considers the logistic growth of law-abiding people. Numerical

simulations have been performed to validate the analytical findings, further supporting

our qualitative conclusions and establishing the role of different crucial parameters and

variables used in the proposed model. The model with logistic growth outperforms the

exponential model to capture reality. The results reveal that offenders survive as long as

the coefficient of law enforcement remains below a specific threshold value. The criminals

start vanishing once this value is achieved.

Another application of fractional calculus, the impact of social media on academics

in sociology, is examined in Chapter 5. Due to covid pandemic and lockdown, usage

of the social platform has increased not only for entertainment purposes but also for

academic purposes. As a result, students are at significant risk of developing social media

addiction, so techniques to control social media addiction transmission throughout society

are required. There are several positive and negative ways in which social media affects

the academic performance of a student. Hence, there is a pressing need to modify existing

regulations and approaches. Most of the earlier systems did not include the impact of

social media addiction on academics as well as memory/past history. The most common

causes of social media addiction are chronic stress, trauma, mental illness, and a family
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history of addiction. So, a fractional-order mathematical model is required to overcome

this issue and show how memory affects the influence of the social network on students.

Hence, Chapter 5 offers a fractional-order mathematical model to analyze the impact of

social media on academics to solve the aforementioned societal concerns. This model is

analyzed qualitatively and quantitatively and has obtained two equilibrium points. Based

on an evaluation of the threshold value, the social web free equilibrium point is globally

asymptotically stable whenever the threshold value is less than one. Addicted equilibrium

points exist when the threshold value is more than one. Finally, numerical simulations

have been performed to examine changes in population dynamics and validate analytical

predictions. The primary aim of this chapter is to optimize the utilization of social media

to contribute to a more promising future for students by optimizing the order of derivative.

Addressing one of the significant economic challenges, namely unemployment, in-

volves the application of fractional differential equations. The global impact of high

unemployment rates has significant economic and social consequences. To overcome this,

various skill development programs are initiated by governments of developing countries.

But the problem of unemployment is still increasing day by day. So, there is a press-

ing necessity to revise the current policies and models. The past history of a region or

country has a significant impact on its current unemployment situation. The historical con-

text profoundly affects current unemployment, considering factors like economic cycles,

government policies, education, and technological advancements. Policymakers should

acknowledge this history to address challenges effectively. Therefore, Chapter 6 proposes

a fractional-order mathematical model that examines the impact of various skill develop-

ment programs for youths. The primary goal of this research is to examine the impact of

training programs aimed at enhancing the abilities of unemployed individuals, with the

ultimate goal of reducing the overall unemployment rate. This chapter also explores the

possibility of transcritical bifurcation and investigates the impact of skill development on

the unemployment rate. The numerical simulations are conducted to validate our analytical

findings, further supporting our qualitative conclusions. These simulations help illustrate

the unemployment dynamics and confirm the stability and behavior of the equilibrium
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points predicted by the mathematical model.

The application of fractional calculus in epidemiology is discussed in Chapter 7.

Despite modern medical developments, infectious diseases continue to impact millions

worldwide. Malaria, for instance, is a significant cause of mortality and suffering in devel-

oped and developing countries. The most challenging hurdle for scientists to control this

disease is the parasite’s propensity to develop resistance to novel medicines and treatment

approaches, as mosquitoes have memory and hereditary properties. Therefore, Chapter

7 presents a novel fractional-order model of malaria transmission that integrates drug

resistance development and therapy as a preventative measure. In addition, sensitivity

analysis has been performed to demonstrate the variation of findings for the different

parameters. The research has broad implications for healthcare, including the need to

achieve high treatment and immunity development rates while minimizing the emergence

of drug resistance due to treatment failure. In summary, this research sheds light on this

terrible pandemic’s nature by assessing the impact of treatment rates and resistance levels.

In Chapter 8, the research endeavors are synthesized, offering a thorough overview of

pivotal discoveries and emphasizing prospects for forthcoming investigations.

In summary, this thesis contributes to the advancement of fractional-order mathemat-

ical modeling by providing a comprehensive exploration of its theoretical foundations,

numerical methodologies, and applications across diverse scientific disciplines. The in-

sights gained from this research have the potential to reshape how complex systems are

understood, analyzed, and controlled, leading to advancements in science that capitalize

on the rich dynamics captured by fractional-order models.

Keywords: Fractional calculus, Mathematical modeling, Caputo derivative, Crime trans-

mission, Social media users, Unemployment, Malaria, Drug resistance, Equilibrium points,

Stability, Bifurcation, Routh-Hurwitz Criteria, Lyapunov function.
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Chapter 1

Introduction

The art of proposing a question must be held of higher value than solving it.

— Georg Cantor

Exploring certain mathematical concepts from a slightly different perspective can often

unveil concealed insights. Take, for instance, the concepts of continuity and differentia-

bility of a real-valued function f : R → R, both rooted in limit notions, albeit defined

differently. However, the latter concept divulges more intricate geometric aspects of a

function than the former. This sort of abstraction not only fuels curiosity but also serves

to simplify complex details and widen the spectrum of its applications. An illustrative

example is the prime number theorem, a renowned theorem in number theory. Surpris-

ingly, its initial proof ventures into the terrain of complex analysis. This exemplifies how

extending a mathematical concept can breathe fresh life into it and offer novel perspectives

to tackle a broader array of problems. Going back to the historical exchange between

Leibniz and L’Hopital, a pivotal question was posed: “Can the framework of derivatives,

traditionally reserved for integer orders, be expanded to encompass non-integer orders?”

This inquiry ignited the intellectual curiosity of luminaries like Euler, Laplace, Fourier,

Lacroix, Lagrange, Abel, Riemann, and Liouville, culminating in the formulation of the

theory of fractional integrals and derivatives [1–3]. This theory addresses the question’s

profound implications, unraveling the potential of derivatives with fractional orders.

The inspiration for this thesis arises from the increasingly recognized potency of frac-
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Chapter 1. Introduction

tional calculus in modeling and comprehending intricate systems [1, 3–7]. This exhaustive

investigation endeavors to delve into the fundamental tenets, theoretical foundation, and

diverse applications of fractional calculus across a variety of domains. This dissertation in-

vestigates the mathematical properties and fundamental theorems distinguishing fractional

calculus from its integer-order counterpart. Furthermore, this thesis explores a number

of applications, highlighting how fractional calculus has been utilized to solve complex

socio-economic and epidemiological problems. An introductory chapter introduces key

concepts, such as fractional calculus, mathematical modeling, and fractional-order mathe-

matical modeling in various domains, such as crime transmission, unemployment, social

media addiction, and Malaria transmission. In addition, this chapter provides the necessary

definitions, theorems, and evaluation parameters for developing and analyzing proposed

models.

1.1 Fractional Calculus
In the field of mathematical analysis, the foundations of classical calculus have played a

significant role in advancing science and engineering by providing a solid mathematical

framework for modeling and comprehending a wide range of natural phenomena. As the

complexities of real-world systems become more apparent, it becomes clear that traditional

calculus has limitations in capturing and elucidating the complex dynamics demonstrated

by various processes. In response to these challenges, fractional calculus has emerged as a

compelling extension of classical calculus, offering a novel perspective for characterizing

and analyzing systems characterized by memory, long-range dependencies, and behaviors

that extend beyond local interactions.

Fractional calculus, an applied mathematical discipline, focuses on manipulating

derivatives and integrals with varying degrees. While the inception of fractional derivatives

dates back more than three centuries, the advancement of fractional calculus in its initial

stages could have been much better due to the lack of geometric interpretation and practical

use cases. Fractional derivatives of order η can be interpreted as a generalization of integer-

order derivatives to non-integer values. They describe how a function changes with

2



1.1. Fractional Calculus

respect to the fractional order. A fractional derivative can be thought of as a process that

extracts information about the local slope or curvature of a curve at a point in a more

flexible manner compared to integer-order derivatives. For example, a first-order fractional

derivative (η = 1) represents the slope of a curve, but a fractional derivative with η ∈ (0, 1)

may capture intermediate information about the curve’s steepness (Figure 1.1).

Figure 1.1: Fractional derivative of sin t and t2 for different order of derivative.

Fractional derivatives offer a broader perspective on a system’s dynamics compared to

integer-order derivatives, capturing global evolution rather than just local characteristics

and providing more accurate models for real-world phenomena demonstrated by Diethelm

and Ford [8]. The relation between stress σ(t) and strain ε(t) in a material under the

influence of external forces:

σ(t) = α
d

dt
ε(t) (1.1.1)

is Newton’s law for a viscous liquid, with α the viscosity of the material and

σ(t) = Eε(t) (1.1.2)

is Hooke’s law for an elastic solid, with E the modulus of elasticity. We can rewrite

σ(t) = ν
dη

dtα
ε(t) (1.1.3)
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Chapter 1. Introduction

with η = 0 for elastic solids and η = 1 for a viscous liquid.

However, in practical situations, viscoelastic materials exhibit behavior lying between

an elastic solid and a viscous liquid. In such cases, it can be useful to make sense of the

operator
dη

dtη
for 0 ≤ η ≤ 1.

In its current phase, fractional calculus serves as a dynamic field where novel dimen-

sions of fractional modeling and its practical applications emerge annually [4, 5, 9, 10].

Fractional calculus is expanding its scope even further, encompassing the intricate dynam-

ics of the real world. This momentum has prompted the exploration and testing of fresh

ideas using authentic data sets.

Fractional derivatives are excellent tools for describing the memory and hereditary

properties of various materials and processes [11]. Memory plays a vital role in real life and

we believe in learn from the past to welcome the new era, while in integer-order derivative

models, such effects are neglected. The beauty of this field is that fractional derivatives

(and integrals) do not have a local (or point) property [12–14]. Recently, it has been

applied to successfully modeling certain physical phenomena. A number of papers in the

literature have recently reported on the applications of fractional calculus [4–6, 10, 14, 15].

However, we are only just getting started with this highly capable instrument in many

fields of research. Many models are still to be introduced, discussed and applied to real-

world applications in various branches of science and engineering where non-locality

or memory plays a crucial role. Although researchers have already reported extremely

excellent results in several seminal monographs and review articles, there are still a large

number of non-local phenomena unexplored and waiting to be discovered [1, 3, 6, 7, 15].

Various definitions have emerged for the differentiation and integration of arbitrary orders,

each imbued with its unique attributes. Our primary objective revolves around harnessing

these inherent characteristics to formulate novel algorithms and applying them to practical

challenges. However, to define fractional operators, certain fundamental functions are

essential to enhance the comprehension of these operators. Among these fundamental

functions, two commonly employed ones are the Gamma and Mittag-Leffler functions,

which are defined as follows:
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1.1. Fractional Calculus

1.1.1 Gamma Function

The gamma function, denoted by Γ(z), is a mathematical function that extends the concept

of factorial to real and complex numbers. It was introduced by the Swiss mathematician

Leonhard Euler in the 18th century and has since found numerous applications in mathe-

matics, physics, engineering, and other scientific disciplines.

The gamma function, Γ (z) is the meromorphic function on C with simple poles at

z = 0,−1,−2,−3, . . . defined by

Γ(z) =
e−γz

z

∞∏
n=1

1 +
z

n

−1

ez/n such that Γ(1) = 1. (1.1.4)

If Re z > 0, then the Gamma function can also defined as:

Γ(z) =

∫ ∞

0

e−ttz−1dt. (1.1.5)

One of the vital properties of the Gamma function is:

Γ(z + 1) = zΓ(z) for z ̸= 0,−1,−2, . . .. So, for n = 1, 2, 3, 4, . . . Γ(n+ 1) = n!.

1.1.2 Mittag-Leffler Function

G. M. Mittag Leffler developed the Mittag-Leffler function, which occurs naturally in the

solution of fractional differential equations [16]. The one parameter generalization of the

exponential function, ez is denoted by

Eη(z) =
∞∑
k=0

zk

Γ(ηk + 1)
, where η > 0. (1.1.6)

The two-parameter Mittag-Leffler function was introduced by Agarwal [17] and defined as

Eη,γ(z) =
∞∑
k=0

zk

Γ(ηk + γ)
where η > 0 and γ > 0. (1.1.7)
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Laplace transform of the Mittag-Leffler function is [18]

L(tγ−1Eη,γ(zt
η)) =

sη−γ

sη − z
. (1.1.8)

The value of the Mittag-Leffler function depends on the parameter η and the argument z.

When η is between 0 and 1, and z is negative, the Mittag-Leffler function is completely

monotone and bounded by one [19, 20].

Numerous definitions for fractional operators have been proposed; however, the exten-

sively accepted definition can be summarized as follows:

1.1.3 Grünwald-Letnikov Fractional Derivative

The Grünwald–Letnikov derivative is named after its developers, Karl Grünwald and Igor

Letnikov, who independently contributed to its development. The Grünwald–Letnikov

derivative is a way of extending the concept of derivative to non-integer orders [21]. It is

defined as a limit of a finite difference approximation of the derivative, using a binomial

coefficient to weight the terms. It is one of the simplest and oldest methods of fractional

calculus and functions to be k times differentiable for Grünwald–Letnikov derivative. The

generalized version of fractional integral and derivatives for any arbitrary real or even

complex number η is

GLDηf(t) = lim
h→0

kh=t−a

h−η

k∑
r=0

(−1)r
(
η

r

)
f(t− rh) (1.1.9)

where
(
η
r

)
=

Γ(η + 1)

Γ(η − r + 1).Γ(r + 1)
and suppose that k → ∞ as h→ 0 [7].

The derivatives of an integer order η and the η fold integral of the continuous function

f(t) are particular cases of eq. (1.1.9), which represents the derivative of order m if η = m

and the m-fold integral if η = −m. This formula is based on recursively applying the

standard definition of the derivative to get higher-order derivatives and then replacing the

integer order with a real number.
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1.1. Fractional Calculus

1.1.4 Riemann-Liouville Fractional Integral

Let η > 0 and functions f is piecewise continuous on (0,∞) and integrable on any finite

subinterval of [0,∞). Then for t > t0 and t, t0 ∈ R,

RLD−ηf(t) =
1

Γ(η)

∫ t

t0

(t− ξ)η−1f(ξ) dξ (1.1.10)

is known as the Riemann-Liouville fractional integral of order η [1]. The above eq. (1.1.10)

is Riemann fractional integration if t0 = 0 and Liouville fractional integration if t0 = −∞.

1.1.5 Riemann-Liouville Fractional Derivative

Suppose that η > 0, t > t0. Then for k ∈ N,

RLDηf(t) =


1

Γ(k − η)

dk

dtk

∫ t

t0

f(ξ)

(t− ξ)η+1−k
dξ, k − 1 < η < k

dk

dtk
f(t), η = k

(1.1.11)

is known as the Riemann-Liouville fractional derivative of order η [1, 2]. The aforemen-

tioned definition contradicts the classical derivative of the constant, as the non-integer

derivative of a constant is non-zero. In 1967, Caputo suggested that the Riemann-Liouville

concept of fractional derivative be amended to address this deficiency.

1.1.6 Caputo Fractional Derivative

Suppose that η > 0, t > t0. Then for k ∈ N,

CDηf(t) =
dηf(t)

dtη
=


1

Γ(k − η)

∫ t

t0

f (k)(ξ)

(t− ξ)η+1−k
dξ, k − 1 < η < k

dk

dtk
f(t), η = k

(1.1.12)

is known as the Caputo fractional derivative of order η [22].
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The Caputo fractional derivative necessitates that a function be n times differentiable,

whereas the Riemann-Liouville derivative demands that a function be piecewise continuous.

Consequently, functions that exhibit discontinuities, such as ECG signals or earthquake

waves, cannot be differentiated using the Caputo derivative. The Caputo derivative is

especially helpful for dealing with real-world phenomena since it permits standard initial

and boundary conditions and the derivative of a constant is also zero [1]. Assuming that

the Laplace transform F (s) of the function f(t) exists for n is an integer, then the Laplace

transform of the Caputo fractional derivative is [3]

L
(
dηf(t)

dtη

)
= sηF (s)−

n∑
k=1

sη−kf (k−1)(0) where n− 1 < η ≤ n. (1.1.13)

Due to the practical applicability, Caputo fractional derivative is used throughout in

this thesis.

1.1.7 Memory Property of Fractional Differentiation

Any integer-order derivative considers the only instantaneous rate of change, which is a

local property. For example, the first-order derivative is written as

df(t)

dt
= lim

∆t→0

f(t)− f(t−∆t)

∆t
, t > 0. (1.1.14)

Due to the utilization of only two specific data points, this definition describes the short-

term memory aspect of the system. Conversely, in the context of the Caputo fractional

operator, the variable t encompasses all values from the system’s inception. Consequently,

the expression for the fractional-order derivative portrays the historical trajectory of the

function under consideration. As the fractional derivative incorporates the entirety of

preceding function values f(t), its application to depicting a system’s memory attribute

captures the phenomenon of long-term memory. The memory of a dynamic system

follows a power-law relationship. This relationship characterizes the current state of the

system at time t and assigns a weight to past states at time tj . The weight attributed to
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these prior states is directly proportional to (t − tj)
α−1, where α falls within the range

0 < α < 1 and denotes the order of the derivative. This power-law memory system can be

mathematically described through a fractional-order differential equation. The non-local

nature of the fractional operator renders it suitable for incorporation into mathematical

models influenced by past occurrences. In numerous mathematical transmission models,

fractional operators are preferred due to the substantial influence of prior events on future

occurrences. Our primary objective revolves around harnessing these distinctive qualities

to forge novel mathematical models and deploy them to address real-world issues.

1.2 Mathematical Modeling
Mathematical modeling is an effective and adaptable method that allows us to describe,

analyze, and predict real-world phenomena by employing mathematical principles and

techniques. It acts as a link between theoretical concepts and empirical observations,

enabling us to gain insight into the behavior of complex systems and make informed

decisions [23, 24]. It empowers us to make informed decisions, solve complex problems,

and gain deeper insights into the intricate workings of the natural and man-made systems

that surround us.

At its core, mathematical modeling involves creating a simplified representation of a

real-world situation using mathematical equations, relationships, and symbols. These mod-

els can take various forms, such as differential equations, algebraic equations, stochastic

processes, or even computational simulations [25, 26]. The process of developing a mathe-

matical model involves determining the relevant variables, parameters, and interactions of

the system. It provides an organized structure for examining various circumstances and

comprehending the underlying mechanisms that govern system behavior. By manipulating

the model’s variables and parameters, researchers and analysts can simulate different con-

ditions and predict the system’s behavior. This predictive capability is indispensable for

making well-informed decisions, optimizing processes, and comprehending the potential

outcomes of various actions.

Mathematical modeling finds applications in a wide range of fields, including physics,
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engineering, biology, economics, social sciences, environmental science, and more [4,

27–29]. For instance, in physics, mathematical models describe celestial bodies’ motion,

fluids’ behavior, and particles’ interactions. In economics, models can help predict market

trends, evaluate policy impacts, and analyze financial risks. In biology, models aid in

understanding population dynamics, disease spread, and evolutionary processes.

1.3 Fractional-Order Mathematical Modeling
A fractional-order mathematical model is a specialized form of mathematical model that

includes fractional calculus, a branch of mathematics that focuses on derivatives and

integrals of non-integer orders. In contrast to traditional integer-order calculus, which

uses whole numbers for differentiation and integration, fractional calculus extends these

operations to non-integer orders, permitting a more flexible and detailed description

of complex systems and phenomena. Models of fractional order have implications in

numerous fields, including physics, engineering, biology, and economics. They provide

a distinct perspective that encompasses complex behaviors and phenomena that are not

adequately modeled by integer-order models [30]. In many cases, these models can provide

a more accurate and realistic description of real-world processes.

The fractional-order derivatives and integrals introduce memory effects and non-local

behavior into the model, which can be especially useful for systems with long-range

interactions, anomalous diffusion, and complex dynamics [6, 12, 13]. Fractional-order

models have been applied to phenomena such as diffusion processes in porous media,

viscoelastic materials, electrochemical systems, signal processing, and even in modeling

the behavior of certain biological systems. Despite their potential benefits, fractional-order

mathematical models also have some challenges [6]. The non-local nature of fractional

calculus can make the models more complex to analyze and solve, and obtaining accurate

data for model validation may be difficult in some cases [31,32]. Applications of fractional-

order mathematical models extend to diverse fields, encompassing socio-economic realms

by including crime transmission, the excessive use of social media, the unemployment

problem, and epidemiological contexts, and can be elucidated as follows:

10



1.3. Fractional-Order Mathematical Modeling

1.3.1 Crime Transmission Modeling

Crime is one of the illicit ways to subjudice civilized human society. This has been an

age-old problem, and it is very important to address this problem carefully. Mainly, crime

can be defined as an unlawful act that is accounted for by a state or authority. Two of the

pathbreaking research on criminal behavior, Wilson and Kelling’s “broken window theory,”

introduced in 1982, discusses the implications of urban disorder signals [33]. The broken

window theory interlinks the implications of unattended and mischievous bypassers to

unwatched broken window [34]. Due to its unsophisticated and malleable structure, many

scientists and mathematicians have widely accessed this criminologist theory to analyze

labyrinthine criminal systems.

The American scientist Alfred Blumstein [35–37] suggested various methodologies

in different crime-related fields such as prison population, criminal careers, deterrence,

and drug enforcement to eradicate the spread of crime. Blumstein’s [37, 38] criminology

models were introduced in the late 20th century to restrain criminal activity. Subsequently,

based on Blumstein’s works, numerous researchers analyzed the chances of offenders

being incarcerated, the magnitude and proceedings of offenders’ retribution, and the impact

of crime in society [39]. Becker’s [40, 41] works help to investigate the cost of crimes

committed by comparing them with similar criminal activities. The crime economics

remained even after several extensions were made to the works of Becker. These extensions

were explicitly based on the probability of being fined and captured [42,43]. These models

led to solicitation to evaluate maximum enforcement and solve drawbacks in Becker’s

model. In the same decade as Becker’s studies, an alternate branch of crime literature

showed how criminal activities and their forms become profitable whenever a group is

engaged in similar work, leading to multiple equilibria [44–46]. From an evolutionary

standpoint, Quinteros [47] investigated the dynamics and stability of the economics of

crime and punishment games. Crokidakis [48] studied the police action and the risk

perception regarding crimes that led to increased ownership of legal guns. Helbing et

al. [49] focused on models of crowd disasters, crime, terrorism, war, and disease spreading
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to show that conventional recipes, such as deterrence strategies, are often not effective and

sufficient to contain them. Freeman et al. [50] focused on the rate of violence in a small

location as well as the amount of money involved.

On the contrary, many of the policies designed by policymakers were criticized due to

their ineffective implementation. Subsequent studies analyzed the equilibrium of crime

models to eradicate and control crime spreading in society. By taking numerous paradigms,

a game-theoretical approach was modeled in the field of criminology [51–55]. Snowdrift

game is hired to thrust fines on non-abiding citizens [56]. An evolutionary game-based

methodology was designed to assess the long-term impact on prisoners and recidivists [57].

As the most important and frequently used subclasses of evolutionary games, Sendina et

al. [58] focused on social dilemmas and the prisoner dilemma game especially.

Criminologists looked at various reasons in the twenty-first century to understand

why an individual would commit crimes. Throughout history, individuals have sought

to understand why a person will commit crimes in biological, psychological, social, and

economic aspects. In the transmission phase, the future condition is strongly linked to the

criminal history of a person. To reduce crime dissemination, the history and experience of

the judiciary are also very relevant [59]. A criminal conviction is more likely in children

of criminal parents compared to non-criminal parents [60, 61]. Further, to strengthen the

proper functioning of jurisdictional agencies, several mathematical models were introduced.

The previous experiments were conceived as a preliminary investigation based on the

ordinary differential equation (integer-order) compartmental crime models.

In 2021, Pritam et al. [10] used fractional-order differential equations to develop a

crime propagation model to include the history of crime. In 1978-2005, an analysis of the

impact of unemployment on criminal incentives and opportunities found a clear correlation

between unemployment rates and property crimes such as robbery, larceny, and motor

vehicle theft [62]. A shortage of work has driven many people into illegal activity, with

unemployment rates increasing from 7 percent before the lockdown to 27.11 percent in

April of 2020 [63, 64]. Much like infectious diseases, crime exhibits a spreading pattern.

As per data from the National Crime Records Bureau of the Government of India, the
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number of criminals is on the rise. The crime rate per lakh population has been consistently

increasing from 1981 to 2020 (Figure 1.2).

Figure 1.2: Crime rate per lakh population in India.

As a result, there is a high risk of transmission of crime and it is very important to

develop tools to control crime transmission in society. Therefore, this thesis develops

fractional-order mathematical models to reduce crime transmission.

1.3.2 Modeling the Excessive Use of Social Media

Each facility carries its own set of merits and drawbacks. Social media usage is consistent

across various age groups, encompassing teenagers, adults, and the elderly. Nevertheless,

there are instances where this social interaction transforms from a routine activity into a

habit, eventually evolving into an addiction. Users find themselves ensnared in the virtual

realm, which can detrimentally impact their real-life contentment in terms of relationships

and individual aspirations.

Several studies found the educational group is concerned that Orbit Showtime Net-

work is systematically lowering the confidence of the student in educational systems,

which not only impacts their success but may also result in dropouts [65–67]. Ishaku

et al. [68] analyzed the impact of the social web on academic and anti-behavioral out-

comes in students and found the role of social networks on academic achievement and
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organizational performance. The findings suggest that different forms of the social web

have an unfavorable impact on educational outcomes while having a favorable effect on

anti-behavioral outcomes. Beqiri et al. [69] investigated the influence of social media

platforms and revealed that social network has an effect on students and is beneficial in

terms of connectivity and interactivity. Mbodila et al. [70] studied the impact of social sites

on the development of a student, focusing on the extent of interaction and communication

between them when using Facebook and revealed that Facebook usually affects student

teamwork and interaction. Mwadime performed a study on the adverse effect of online

social networking on the academic achievement of the student [71]. According to the

findings, social media harms students’ academic success. The positive and negative effects

of social networking sites on the habits of students were also examined by Gok [72].

Therefore, social media has a significant impact on the academics of students in both

positive and negative ways.

Due to the COVID pandemic and lockdown, usage of social platforms increased not

only for entertainment purposes but also for academic purposes. As a result, students are at

significant risk of developing social media addiction, so techniques to control social media

addiction transmission throughout society are required. Common factors contributing

to social media addiction include chronic stress, trauma, mental health disorders, and a

family history of addictive behaviors. Most of the earlier models overlooked the influence

of social media addiction on academic performance and personal history. To address this

issue and illustrate how memory impacts the influence of social networks on students, a

fractional-order mathematical model becomes necessary. Hence, this thesis proposes a

fractional-order social media model to depict the dynamics of interactions between social

media-addicted students and individuals with less involvement or non-users.

1.3.3 Unemployment Modeling

Unemployment is a pressing global issue that affects individuals, communities, and entire

economies. It refers to the situation where individuals willing and able to work cannot

secure enough employment opportunities based on their skills. The consequences of high
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unemployment rates are far-reaching, encompassing economic, social, and psychological

aspects [73]. Youth unemployment is a critical global issue and a significant indicator of a

country’s economic situation. In impoverished nations, the lack of job opportunities for

young individuals is often attributed to their inadequate experience and the incompatibility

between their skills and the market demands [74, 75].

Figure 1.3: Youth unemployment: the labor force ages 15-24 without work but available
for and seeking employment (Data Source: World Bank).

Notably, the introduction of mathematical models describing the unemployment prob-

lem can be attributed to Misra and Singh in 2011 [76]. In 2015, Pathan and Bhathawala [77]

conducted a study investigating the influence of self-employment on the unemployment

rate. Another study by Daud and Ghozali [78] in the same year developed a mathemat-

ical model incorporating two classes: employed and unemployed individuals. Building

upon their previous work, Pathan and Bhathawala [29] expanded their model in 2016 by

incorporating four classes: unemployed individuals, employed individuals, new migrant

workers, and newly vacant positions. In 2017, Misra and Singh [79] further explored

the unemployment problem by considering the influence of skill development programs

provided by academic institutions. Additionally, Ashi et al. [80] examined the impact of
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government assistance on reducing the unemployment rate in a study conducted in 2022.

These studies contribute to understanding unemployment dynamics and provide insights

into potential strategies and interventions to address this issue. According to Gir-Alana et

al. [81], the unemployment rate in Turkey demonstrates long memory characteristics. The

enduring nature of unemployment rates, public perceptions, past policy interventions, and

the utilization of historical data for predictive analysis all underscore the significance of

accounting for the impact of prior events and trends in the examination and mitigation of

unemployment.

Numerous mathematical models of unemployment problem exist of integer-order

derivative and these models failed to account for the non-local nature of time or dynamic

memory. Even though history substantially affects unemployment, there is no study of

unemployment problems with fractional differential equations. Considering the increasing

youth unemployment rate (Figure 1.3), it is crucial to examine the youth unemployment

problem comprehensively. Therefore, this thesis developes a fractional-order mathematical

model to analyze the effect of skill development programs on youth employment.

1.3.4 Epidemic Modeling

Epidemic modeling is a crucial field in epidemiology and public health that involves

understanding the spread and dynamics of infectious diseases within populations. Over

the years, extensive research has been conducted to develop models that can accurately

predict, analyze, and control disease outbreaks. In this thesis, we delve into the dynamics

of malaria transmission.

Malaria has become more prevalent in recent years due to climate change or global

warming, which is expected to have unanticipated repercussions for the disease’s preva-

lence. The life cycles of both the vector and the parasite are affected by temperature

fluctuations [82]. Mathematical models have been used for more than a century to give a

clear framework for analyzing human malaria transmission patterns [83–88]. Sir Ronald

Ross discovered the malaria parasite’s life cycle in mosquitoes while working for the Indian

Medical Service in the 1890s. He was one of the first to publish a series of studies utilizing

16



1.3. Fractional-Order Mathematical Modeling

mathematical functions to research malaria transmission in the early 1900s [89–91]. Due

to changing environmental and socio-economic circumstances, the conditions are still

expanding and threaten to become a serious cause of mortality and disability. Hence,

existing models must be critically evaluated and explored.

Drug resistance refers to an organism’s ability to adapt and survive when exposed

to a drug that would typically be lethal. It occurs due to random genetic alterations that

confer the organism with the capability to withstand treatment [92]. The emergence

and spread of drug-resistant malaria have prompted extensive research efforts aimed at

developing innovative strategies to combat this disease [93]. In the context of disease

transmission and drug resistance, the future state is intricately linked to the preceding

(current as well as past) state due to hereditary factors. Integer-order models lack memory

properties. Therefore, this thesis introduces a novel compartmental model for malaria

transmission. This model incorporates memory effects between human-to-mosquito and

mosquito-to-human transmissions, allowing for a more comprehensive analysis.

The examination of the literature has revealed the presence of the following research

gaps in various real-life applications of socio-economic and epidemiology problems:

• The fractional-order modeling of crime transmission has not taken into account

factors like the duration required to capture and reinforce criminals, non-linear

transmission rates, and the logistic growth rate of non-criminal individuals.

• A fractional-order model addressing the impact of social media on academic out-

comes has yet to be explored in research.

• A fractional-order model that examines the influence of skill development programs

on youth employment has not been explored through research endeavors.

• The impact of drug resistance, a critical element in the control of malaria transmis-

sion, has yet to be investigated in fractional-order modeling.

The process of constructing a fractional-order mathematical model involves defining

fractional-order derivatives or integrals that capture the specific features of the system.
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This may also require specialized mathematical techniques and algorithms for solving

and analyzing the resulting fractional differential equations, which are defined in the next

section.

1.4 Preliminaries

1.4.1 Existence and Uniqueness Theorem

This theorem is employed to demonstrate the existence and uniqueness of solutions for

fractional-order differential equations.

Theorem 1.4.1. [1] Consider the fractional differential equation

dηf(t)

dtη
= y(t, x), t > t0

with 0 < η ≤ 1 and y : [t0,∞]× Ω → Rn,Ω ∈ Rn. Then, a unique solution of the above

equation on [t0,∞]× Ω exists provided y(t, x) obeys the local Lipschitz condition with

respect to x.

1.4.2 Generalized Mean Value Theorem

The generalized mean value theorem serves as a powerful tool for understanding the

intricate relationships between function properties and their derivatives, providing deeper

insights into the underlying geometry and behavior of functions. This theorem is utilized

to establish that solutions for fractional-order differential equations are non-negative.

Theorem 1.4.2. [94] Let f(t) ∈ C[a, b] and
dηf(t)

dtη
∈ C[a, b] for 0 < η ≤ 1, then

f(t) = f(a) +
1

Γ(η)

dηf(ϵ)

dtη
(t− a)η with 0 ≤ ϵ ≤ t, ∀ t ∈ (a, b].

Lemma 1.4.1. [94] If f(t) ∈ C[0, b] and
dηf(t)

dtη
∈ C[0, b] for 0 < η ≤ 1. It is clear that if

•
dηf(t)

dtη
≥ 0 ∀ t ∈ (0, b], then f(t) is non-decreasing
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•
dηf(t)

dtη
≤ 0 ∀ t ∈ (0, b], then f(t) is non-increasing.

1.4.3 Equilibrium Points

Equilibrium points, also referred to as steady-state or fixed points, play a pivotal role

in the analysis of dynamical systems. These points denote states where the system’s

behavior remains constant over time, characterized by the derivatives of the system being

zero. Equilibrium points are of utmost importance in the study of dynamic systems, often

representing stable states or special solutions. They can be broadly categorized into two

types:

1. Stable Equilibrium Points: At a stable equilibrium point, the system returns to the

equilibrium state when perturbed slightly. In other words, if the system starts near a

stable equilibrium, it tends to remain in proximity to that point. Stable equilibrium

points are frequently associated with attracting behavior.

2. Unstable Equilibrium Points: At an unstable equilibrium point, the system diverges

from the equilibrium state when perturbed slightly. If the system commences near

an unstable equilibrium, it moves away from that point. Unstable equilibrium points

are commonly associated with repelling behavior.

Understanding the behavior of a system in the vicinity of its equilibrium points is vital for

comprehending its stability and long-term dynamics. Stability analysis entails investigating

how the system reacts to perturbations around these points and often holds a central role

in fields such as physics, engineering, biology, and economics.

1.4.4 Descartes’ Rule of Signs

Descartes’ rule of signs is a mathematical principle used to determine the number of

positive and negative roots of a polynomial equation or equilibrium points. It provides a

way to estimate the number of real roots without explicitly solving the equation. The rule is

named after René Descartes, a French mathematician and philosopher [95]. The rule states

that if a polynomial equation in one variable with real coefficients, the number of positive
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roots of the equation is either equal to the number of sign changes in the coefficients or

less than that by an even number [96].

1.4.5 Local Stability

Local stability analysis provides a focused understanding of a system’s behavior by

examining how small perturbations or deviations from equilibrium points influence its

trajectories in the immediate vicinity. The Routh-Hurwitz criteria is a mathematical

tool used to determine the local stability of a system by examining the coefficients of

its characteristic polynomial. It provides a systematic way to assess stability without

explicitly solving the characteristic equation or finding the roots. The criteria are based

on constructing a special table called the Routh array, which uses the coefficients of the

characteristic polynomial. The Routh array allows us to evaluate the signs of certain

determinants, known as the principal minors, which provide information about the stability

of the system [97–99]. For fractional-order systems, the stability analysis of equilibrium

points is complex and difficult due to the non-local property of fractional calculus. In this,

we check the stability of an equilibrium point in its neighborhood.

Theorem 1.4.3. (Matignon Criteria) Assume that our model can be represented in the

following form
dηX(t)

dtη
= F (X(t)) ,

whereX(t) = (x1(t);x2(t); ...;xn(t))
T ;F (X(t)) = (f1; f2; ...; fn)

T andE∗ = (x∗1;x
∗
2; ...;x

∗
n)

T

is the equilibrium point. For the fractional-order system, the equilibrium points of the

system are asymptotically stable if all the eigenvalues at the equilibrium E∗ satisfy the

following condition:

|arg(eig(J))| = |arg(λj)| >
π

2
α

where j = 1, 2, .....n and J is the Jacobian matrix of the system evaluated at the equilibria

E∗ [100].

Theorem 1.4.4. (Routh-Hurwitz Criteria) Let the characteristic polynomial of the Jacobin

20



1.4. Preliminaries

matrix of the form:

P (s) = sn + a1s
n−1 + . . .+ an−1s+ an

The Routh-Hurwitz criteria involve constructing a table based on the coefficients of the

polynomial. Routh-Hurwitz matrix is composed as follows.

Hn =



a1 1 0 0 0 0 · · · 0

a3 a2 a1 1 0 0 · · · 0

a5 a4 a3 a2 a1 1 · · · 0
...

...
...

...
...

... . . . ...

0 0 0 0 0 0 · · · a1


The principal diagonal minors of the Hurwitz matrix are given by the formulas:

∆1 = a1,

∆2 = a1a2 − a3,

∆3 =

∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 1

a3 a4 a5

∣∣∣∣∣∣∣∣∣ ,
...

The roots of the auxiliary equation have negative real parts if and only if all the principal

diagonal minors of the Hurwitz matrix are positive. For the most common systems of the

n = 2, 3, 4, 5, the following stability criteria is obtained:

• n = 2 : a1 > 0, a2 > 0,

• n = 3 : a1 > 0, a3 > 0, a1a2 > a3,

• n = 4 : a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a21a4,
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• n = 5 : ai > 0 for i = 1, 2, 3, 4, 5, a1a2a3 > a23 + a21a4,

(a1a4 − a5)(a1a2a3 − a23 − a21a4) > a4(a1a2 − a3)
2.

1.4.6 Global Stability

Global stability analysis takes a wide-angle view of a system’s behavior, exploring whether

the system, no matter where it starts, eventually settles into a stable state. A Lyapunov

function is a real-valued function used to analyze the global stability of a dynamical system.

It is required to be continuous, positive definite, and have a derivative that indicates stability

(non-increasing or strictly decreasing) along the system trajectories. Lyapunov functions

are used to assess the stability and convergence properties of dynamical systems without

explicitly solving the system’s equations [101, 102].

Theorem 1.4.5. Let a fractional-order non-autonomous dynamical system have an equilib-

rium point E∗ contained in domain χ ⊂ Rn. Then for any function U : [0,∞)× χ→ R

continuously differentiable along with the conditions U1(x) ≤ U(t, x(t)) ≤ U2(x) and
dη

dtη
U(t, x(t)) ≤ −U3(x), where U1(x), U2(x) and U3(x) are continuous positive definite

functions on the domain χ for every η ∈ (0, 1), the fractional non-autonomous dynamical

system is uniformly asymptotically stable [101, 103].

1.4.7 Bifurcation Theory

When a variation in a parameter brings about a change in the fundamental behavior of the

equilibrium states in a dynamic system, this occurrence is referred to as a bifurcation. The

term “qualitative behavior” in this context encompasses two key aspects:

• The count of equilibrium states.

• The stability of these equilibrium states.

Several specific types of bifurcations exist, including:

• Hopf Bifurcation

• Saddle-Node Bifurcation
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• Transcritical Bifurcation

• Pitchfork Bifurcation

Now, the following theorems are used to show the bifurcation type for the system. So-

tomayor’s theorem is employed to derive the conditions for the existence of saddle-node

and transcritical bifurcations and the Center Manifold Theorem is particularly useful for

understanding the behavior of systems that exhibit both stable and unstable modes around

an equilibrium [104, 105].

Theorem 1.4.6. (Sotomayor’s Theorem) [106–108] Let f(x0;H0) = 0 and matrix A =

Df(x0;H0) has an eigenvalue 0 with eigenvectors v and w forA and AT respectively. If

the requirements listed below are fulfilled,

• ∇1 = wTfH(x0, H0) = 0,

• ∇2 = wT [DfH(x0, H0)v] ̸= 0,

• ∇3 = wT [D2f(x0, H0)(v, v)] ̸= 0

then the system undergoes a transcritical bifurcation at the equilibrium point x0 as the

parameter H varies through the bifurcation value H = H0.

Theorem 1.4.7. (Center Manifold Theorem) [104, 105]. Assume A = Dxf(0, 0) =

∂fi
∂xj

(0, 0) is the linearization matrix around the equilibrium 0 with φ evaluated at 0. Zero

is a simple eigenvalue of A and all other eigenvalues of A have negative real parts. Matrix

A has a non-negative right eigenvector w and a left eigenvector v corresponding to the

zero eigenvalue. Let fk be the kth component of f , and define:

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).
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If a < 0 and b > 0 and φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and

locally asymptotically stable.

1.4.8 Numerical Simulation

Numerical simulation is a computational technique used to model and analyze real-world

phenomena or systems by simulating their behavior using mathematical models and

algorithms. There are several methods to solve fractional differential equations (FDEs),

like Euler method, fractional finite difference method, Laplace transform method, Adams-

Bashforth-Moulton predictor-corrector and many more. The Euler method is a simple and

widely used method for solving ordinary differential equations (ODEs). However, it is less

suitable for FDEs because it is purely explicit and does not account for non-local fractional

derivatives. Fractional finite difference methods directly discretize fractional derivatives,

making them well-suited for FDEs. However, they can be computationally expensive,

especially for large systems, and may require fine grids for accuracy. Laplace transform

methods can be used for linear FDEs. They involve transforming the FDE into an algebraic

equation, making the solution more straightforward. However, they are limited to linear

problems.

The Adams-Bashforth-Moulton predictor-corrector approach is selected for solving

systems of FDEs because it provides a balanced combination of accuracy and stabil-

ity [109]. The explicit prediction step is followed by an implicit correction step, allowing

for the handling of non-local fractional derivatives and the potential presence of stiffness

in the equations. This method is versatile and can be adapted to a wide range of FDE

problems, making it a valuable tool for researchers and engineers working in various fields.

This approach combines explicit prediction (Adams-Bashforth) and implicit correction

(Adams-Moulton) to provide an accurate and stable solution for systems of FDEs. Here’s

a description of the Adams-Bashforth-Moulton predictor-corrector approach for solving

systems of FDEs:
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1. Adams-Bashforth Predictor

In the predictor step, the Adams-Bashforth method is used to estimate the values

of the dependent variables at the next time step based on their current values and

derivatives. This is an explicit method that provides a preliminary prediction. For

a system of FDEs, the Adams-Bashforth predictor of order k uses the previous k

values of the system to predict the next values. For example, for a first-order FDE

with a fractional derivative of order η, the Adams-Bashforth predictor might be

expressed as:

x
(p)
n+1 = xn + hηf(xn) (1.4.1)

Here, x(p)n+1 is the predicted value, xn is the current value, h is the time step, η is the

fractional order, and f(xn) is the derivative with order η.

2. Adams-Moulton Corrector

In the corrector step, the Adams-Moulton method is applied to refine the predictions

made in the predictor step. The Adams-Moulton method is implicit and involves

solving an equation to improve the prediction. For a system of FDEs, the Adams-

Moulton corrector of order k uses the current and k predicted values to calculate

the corrected values. It involves solving an equation to improve the estimate. The

Adams-Moulton corrector may be written as:

x
(c)
n+1 = xn + hη

[
1

Γ(1− η)
f(x

(p)
n+1)−

1

Γ(1− η)
f(xn)

]
(1.4.2)

Here, x(c)n+1 is the corrected value and Γ(·) represents the gamma function.

1.5 Thesis Objectives
The primary objective of the thesis is to investigate the application of fractional calculus

in various domains, including socio-economics and epidemiology, to address a recognized

research gap. The subsequent objectives have been outlined in order to achieve the primary

objective:
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• To study the dynamics of crime transmission using fractional-order differential equa-

tions with parameters like time delay to capture criminals, non-linear transmission

rate, and logistic growth of non-criminals.

• Investigate the impacts of substantial social media usage on academic achievement

through the application of fractional-order differential equations.

• To explore the effects of skill development programs on youth employment using

fractional differential equations.

• Apply fractional calculus approaches to analyze the dynamics of malaria infection

for different drug resistance levels in the human and mosquito populations.

The first objective is addressed in Chapters 2–4, the second is discussed in Chapter 5, the

third objective is addressed in Chapter 6, and the last objective is addressed in Chapter 7.

1.6 Thesis Contribution
The inception of this thesis stems from the growing recognition of the profound impact of

fractional calculus on the modeling and comprehension of intricate systems characterized

by substantial memory effects. This thesis attempts to bring unique insights into these

under-researched areas and contribute to the progress of knowledge across different

disciplines through detailed analysis, mathematical modeling, and empirical inquiry. The

primary contributions of this thesis can be outlined as follows:

1. Crime Transmission Modeling: This research substantially advances crime trans-

mission modeling through fractional calculus. By incorporating previously over-

looked factors, such as the time required for apprehending and reinforcing criminals,

non-linear transmission rates, and the logistic growth rate of non-criminal entities,

the established fractional-order model provides a more accurate representation of

the complex dynamics of criminal activities. This contribution not only enhances

our understanding of crime propagation but also provides a basis for more informed

policy-making and intervention strategies to curb criminal behaviors. According
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to this research, a more robust and more effective legal system, coupled with im-

proved living conditions and economic opportunities, can dramatically reduce the

number of crimes. Though it is expected that the criminal population will decrease

as the parameter law enforcement increases, a threshold value of law enforcement is

obtained.

2. Impact of Social Media on Academic Outcomes: Through the innovative appli-

cation of fractional-order modeling, this study pioneers a new approach to under-

standing the influence of social media on academic outcomes. This thesis presents

a non-linear fractional-order model designed to investigate the impact of social

media on academic performance. This innovative model accounts for both high and

low-performing student classes, offering a more intricate and holistic viewpoint of

the interplay between academic outcomes and social media usage. Through the

integration of fractional calculus with non-linearity, this study pushes the bound-

aries of our comprehension of this complex relationship, setting a new standard for

insight in this field. The model’s predictions can aid educators, policymakers, and

individuals in comprehending the implications of excessive social media use on

academic performance, facilitating informed decisions and interventions.

3. Skill Development Programs and Youth Employment: This research recognizes

the substantial economic and societal repercussions resulting from elevated unem-

ployment rates worldwide. To tackle this challenge, governments of developing

countries have initiated various skill development programs. Despite these efforts,

unemployment remains a persistent issue. The thesis steps in to reassess the existing

policies and models, proposing an innovative approach to shed light on this persis-

tent concern. This study introduces a groundbreaking fractional-order mathematical

model as a response to the ongoing issue of unemployment. The proposed model

serves as a unique framework for evaluating the effectiveness of diverse skill devel-

opment programs targeting youth. Through the incorporation of fractional-order

differential equations, this model captures the intricate dynamics underlying unem-
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ployment trends, offering a more comprehensive analysis compared to traditional

integer-order models. This research takes a proactive stance by aiming to reduce

the overall unemployment rate through the implementation of skill development

programs. By assessing the outcomes of training interventions designed to empower

unemployed individuals, the thesis contributes to inform decision-making regarding

policy adjustments and program enhancements. Ultimately, the study aims to be a

catalyst for positive change in combating unemployment challenges.

4. Drug Resistance in Malaria Transmission: In a world of advancing medical

technologies, infectious diseases persistently affect countless lives globally. This

thesis responds to the persistent challenges posed by infectious diseases, particularly

focusing on malaria’s impact and the development of drug resistance. Through the

introduction of a novel compartmental model with memory and fractional calculus,

the research strives to provide a more accurate representation of disease dynamics

and the potential effects of therapeutic measures. By exploring equilibrium points

and stability, the study contributes to the broader field of infectious disease modeling

and offers insights into potential strategies for disease control and prevention. The

early detection of drug resistance levels in individuals can aid in reducing malaria

transmission by administering appropriate drug treatments. Hence, malaria tests

should include an evaluation of drug resistance levels.

In summary, the main contribution of this thesis is to initiate the applications of fractional

calculus in real-life problems, where memory/history plays an important role, which was

overlooked in earlier models. This thesis contributes to the academic landscape through its

innovative application of fractional-order modeling to diverse fields. By bridging existing

research gaps, it provides a deeper understanding of complex systems and facilitates the

development of informed strategies and policies across crime transmission, social media’s

influence on academics, skill development and youth employment, and the control of drug-

resistant malaria. Through meticulous analysis, mathematical modeling, and empirical

investigations, this research offers valuable insights that advance knowledge and guide
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decision-making in multiple disciplines.

1.7 Thesis Organization
After elucidating the primary objective and contributions of the thesis, this section presents

a concise overview of the chapter-wise road map. The thesis encompasses a total of eight

chapters. The ensuing three chapters, specifically Chapters 2–4, are dedicated to crime

transmission modeling and Chapter 5 address the impact of social media on academics.

Moving forward, Chapter 6 delves into the realm of the youth unemployment problem,

while Chapter 7 takes on the intricate subject of different drug resistance classes within

malaria diseases. Each chapter starts by introducing a model, which is then thoroughly

explained to understand its characteristics and then demonstrates the existence and unique-

ness of the solution of the proposed model, followed by determining the equilibrium

point, stability of the equilibrium point, and numerical simulation for validating theoretical

findings.

Chapter 2 delves into fractional-order crime transmission modeling. The focus lies on

the time required for apprehending and reinforcing criminals. Policies for law enforcement

officers are devised and the well-posedness, equilibrium points, stability, and numerical

simulations are meticulously examined.

Chapter 3 addressing the spread of crime through social contact and this chapter

presents a fractional-order mathematical model with a non-linear transmission rate. It

encompasses susceptible individuals, criminals, and prisoners, incorporating a non-linear

transmission rate influenced by social backgrounds.

Chapter 4 contrasts exponential and logistic growth models within the context of

crime dynamics. By modifying incarceration and criminal release, the equilibrium is

studied to understand criminal behavior’s societal impact. The chapter contributes to

effective strategies in crime prevention through the examination of stability across various

derivative orders.

Chapter 5 shifts focus to the educational arena, utilizing a non-linear fractional-order

model to assess the influence of social networking sites on student academic achievement.
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Chapter 6 probes the interplay between skill development programs and the youth un-

employment problem. A fractional-order model is devised, emphasizing the enhancement

of unemployed individuals’ abilities. This chapter examines equilibrium points, stability,

and numerical simulations to glean insights into unemployment dynamics.

Chapter 7 addressing the pressing issue of drug resistance in malaria transmission.

This chapter presents a novel compartmental model of malaria transmission with memory

between human-to-mosquito and mosquito-to-human that integrates drug resistance devel-

opment and therapy as a preventative measure.

The final chapter offers a summary of the entire research journey. It encapsulates the

overarching findings, contributions, and implications of the study. Moreover, it outlines

potential avenues for future research and development in the explored domains.
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Chapter 2

Mathematical Modeling of Crime

Transmission

“Crime is a reaction, not a simple action.”

— Criss Jami

A crime is a harmful act committed towards society against the wishes of the resident

government territory, which is punished by a fine, imprisonment, or death upon convic-

tion. Most governments worldwide have recommended numerous ways and predictive

methodologies to combat crime, particularly crime perpetrated against diverse genders,

castes, religions, and faiths. The advancement of crime in society adversely impacts

various socio-economic parameters [110]. The copious forms of crime include fraud,

theft, smuggling, human trafficking, and other abuse. Drunks, prostitutes, panhandlers,

and loiterers are more likely to perpetrate crime than carefully and orderly patrolled ones.

Although many factors determine the mechanisms of crime dissemination in society, there

is no denying that crime spreads like an infectious disease in society (as the interaction of

criminally active individuals can adversely affect other’s actions).

Criminologists looked at various reasons in the twenty-first century to understand

why an individual would commit crimes. Throughout history, individuals have sought

to understand why a person will commit crimes in biological, psychological, social, and

economic aspects. Greed, anger, jealousy, retribution, or vanity may contribute to a crime
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being committed. Some individuals tend to commit an organized crime. In the transmission

phase, the future condition is strongly linked to the criminal history of a person. To reduce

crime dissemination, the history and experience of the judiciary are also very relevant [59].

Children with criminal parents have a twofold increased probability of acquiring a criminal

conviction compared to those with non-criminal parents [60]. Further, to strengthen

the proper functioning of jurisdictional agencies, several mathematical models were

introduced. The previous experiments were conceived as a preliminary investigation based

on the ordinary differential equation (integer-order) compartmental crime models. In

India, the scarcity of employment opportunities has compelled a significant number of

individuals to resort to illegal activities, with unemployment rates soaring from 7 percent

before the lockdown to 27.11 percent in April 2020 [63, 64]. As a result, there is a high

risk of transmission of crime, and it is very important to develop tools to control crime

transmission in society.

This chapter is an attempt to develop a mathematical model of the nonlinear fractional-

order differential equation for analyzing the dynamics of the propagation of crime. It is

assumed that with proper law enforcement and subsequent treatment, the crime can be

optimized. Subsequently, citizens will transform from offenders to people who have been

rehabilitated. It is further believed that individuals from the recovered class will transfer

to the criminal population or non-criminal population as certain offenders do not change

their minds even after therapy. It takes time for criminals to be caught and reinforced. This

will happen as it takes time to judge whether someone is a criminal or not. As a result, the

proposed fractional-order model is upgraded with the model of capturing offenders with a

delay.

2.1 Description of Crime Propagation Model
A crime propagation model shown in Figure 2.1 which is proposed by categorizing the

existing population into four clusters. These clusters include law-abiding citizens (non-

criminals (S)), criminally active individuals (who have not been imprisoned (C)), prisoners

(P ), and prisoners who completed the prison tenure (recovered (R)).
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Non-criminal individuals are recruited into the community at rates of A and (1− ϵ)ξ,

where A is the birth or immigration rate of individuals, ξ is the rate at which individuals

move from R to either C or S and (1 − ϵ) is the fraction related to the movement of

individual people from R to S.
  

 𝑺 

𝑷 𝑹 

𝑪 𝛼𝑆𝐶 

𝑝𝑙𝐶 

𝛿𝑃 
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𝜚𝑅 𝜚𝑃 

Figure 2.1: Schematic diagram of the proposed crime transmission model.

The non-criminal population is decreased at the rates of α and ϱ, where ϱ is the natural

death rate and α is the transmission rate from S to C as non-criminals becoming criminals

due to the interaction of criminal and non-criminal population. The criminal population

increased at the rates of α, ϵξ and decreased at the rates of l, ϱ where ϵ the is fraction

related to the movement of individual people from R to C and l is law enforcement rate

and counseling for criminals. The prisoners increased at the rate pl and decreased at the

rates δ, ϱ, where p is the fraction contributing to the migration of population from C to P

due to enforcement laws and δ is the rate at which individuals moves from P to R after

completed the prison tenure. The recovered population increased at the rates (1− p)l, δ

and decreased at the rates ξ and ϱ.

A fractional order mathematical model, subject to non-negative initial conditions, is

proposed as follows, by considering the above facts/assumptions:
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dηS(t)

dtη
= Aη − αηS(t)C(t) + (1− ϵ)ξηR(t)− ϱηS(t)

dηC(t)

dtη
= αηS(t)C(t)− lηC(t) + ϵξηR(t)− ϱηC(t)

dηP (t)

dtη
= plηC(t)− δηP (t)− ϱηP (t)

dηR(t)

dtη
= (1− p)lηC(t) + δηP (t)− ξηR(t)− ϱηR(t)

(2.1.1)

where η ∈ (0, 1] is the order of derivative in the crime transmission model. Here,

S(t), C(t), P (t), R(t) and their Caputo fractional derivative are continuous at t ≥ 0. The

human population is in fractional time with dimension t−η in the LHS of the system. As

mortality rate, birth rate, etc., always have dimension t−1, every constant has power η in

the RHS of the system to keep the system dimensionally balanced.

Table 2.1: Parameter description for proposed crime transmission model.

Parameter Description
A Recruitment rate in non-criminal class
α Rate of crime indulgment
ξ Rate of moving back to society (criminal or non-criminal class)
δ Rate of release from prison
l Rate of law-enforcement for criminal
ϱ Natural death rate
p Fraction contributing to the migration of population from C to P
ϵ Fraction contributing to the migration of population from R to C

2.2 Dynamics of the Proposed Model
This section demonstrates that the given system has a unique, bounded, and positive

solution in Ω ∀ t ≥ 0, where

Ω =

{
(S,C, P,R) ∈ R4

+ : 0 ≤ S + C + P +R ≤ Aη

ϱη

}
. (2.2.1)

Let N(t) = S(t) + C(t) + P (t) +R(t)

dηN(t)

dtη
=
dηS(t)

dtη
+
dηC(t)

dtη
+
dηP (t)

dtη
+
dηR(t)

dtη
(2.2.2)
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dηN(t)

dtη
= Aη − ϱηN(t) (2.2.3)

By taking Laplace transformation (from eq. (1.1.13)),

N(s) =
Aηs−1 + sη−1N(0)

sη + ϱη
. (2.2.4)

Now, by taking inverse Laplace transformation (from eq. (1.1.8)),

N(t) =
Aη

ϱη
[1− Eη(−ϱηtη)] +N(0)Eη(−ϱηtη) (2.2.5)

where Eη is Mittag-Leffler function defined in eq. (1.1.6).

If 0 < η ≤ 1, then 0 ≤ Eη,1(−ϱηtη) ≤ 1 =⇒ N(t) ≤ Aη

ϱη
. (2.2.6)

2.2.1 Ensuring Existence and Uniqueness

Theorem 2.2.1. Along with non-negative initial conditions, the crime propagation model

has a unique and bounded solution for t ≥ 0.

Proof. Now let,

dηS(t)

dtη
= Aη − αηS(t)C(t) + (1− ϵ)ξηR(t)− ϱηS(t) = f1(t, S, C, P,R)

dηC(t)

dtη
= αηS(t)C(t)− lηC(t) + ϵξηR(t)− ϱηC(t) = f2(t, S, C, P,R)

dηP (t)

dtη
= plηC(t)− δηP (t)− ϱηP (t) = f3(t, S, C, P,R)

dηR(t)

dtη
= (1− p)lηC(t) + δηP (t)− ξηR(t)− ϱηR(t) = f4(t, S, C, P,R)

(2.2.7)

where fi(t, S, C, P,R) for i = 1, 2, 3, 4 are continuous and bounded for t ≥ 0 as

S(t), C(t), P (t), R(t) are bounded by eq. (2.2.6). Here fi(t, S, C, P,R) for i = 1, 2, 3, 4

are continuous and bounded and satisfies the Lipschitz condition. Then, from the exis-

tence and uniqueness theorem (Theorem 1.4.1), the solution of the proposed model for
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t ∈ (0,∞) is not only exists but also unique and bounded.

2.2.2 Validation of Non-Negative Solutions

As the solution of a system of eq. (2.1.1) gives non-criminal population (S), criminal

population (C), prisoners (P ), and recovered population (R), and the number of indi-

viduals can not be negative in real life. So, the non-negativity of solution is proved

in this section. To show (S,C, P,R) ≥ 0, let us assume that there exists some t0

where the condition fails. Let t0 = inf{t > 0|(S(t), C(t), P (t), R(t)) /∈ (R+
0 )

4}. Since

(S(t0), C(t0), P (t0), R(t0)) ∈ (R+
0 )

4 then one of S(t0), C(t0), P (t0), R(t0) is zero. Then,

dηS(t)

dtη

∣∣∣∣∣
S(t0)=0

=Aη + (1− ϵ)ξηR(t0)

dηC(t)

dtη

∣∣∣∣∣
C(t0)=0

=ϵξηR(t0)

dηP (t)

dtη

∣∣∣∣∣
P (t0)=0

=plηC(t0)

dηR(t)

dtη

∣∣∣∣∣
R(t0)=0

=(1− p)lηC(t0) + δηP (t0).

(2.2.8)

=⇒ dηS(t)

dtη
≥ 0,

dηC(t)

dtη
≥ 0,

dηP (t)

dtη
≥ 0,

dηR(t)

dtη
≥ 0. (2.2.9)

Now, from eq. (2.2.6) and generalized mean value theorem (Theorem 1.4.2), the solution of

proposed model is non-negative and Ω =

{
(S,C, P,R) ∈ R4

+ : 0 ≤ S + C + P +R ≤ Aη

ϱη

}
is positively invariant region.

2.3 Equilibrium Points and Criminal Generation Number

2.3.1 Crime Free Equilibrium

A crime-free equilibrium refers to a hypothetical state and often difficult to attain in practice.

The crime-free equilibrium point (E0) is the steady-state solution determined when there is
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no criminal population, i.e., (C(t) = 0), and it is given by E0 =

(
Aη

ϱη
, 0, 0, 0

)
. However,

it’s important to note that achieving a completely crime-free society is often considered

idealistic and challenging, as some level of crime may always persist.

2.3.2 Criminal Generation Number

The criminal generation number, denoted Cg, is defined as “the estimated number of

secondary cases created by a criminally active person in a fully non-criminal population

[111].” If a criminal generates fewer than one new criminal individual, on average, during

their period of criminal activity, the crime will not propagate. Conversely, if each criminally

active person, on average, gives rise to more than one new criminal, the crime will

proliferate throughout the population. To determine the criminal generation number, next-

generation matrix approach [111] is employed at crime-free equilibrium. Assume Ψi(t)

denotes the rate of introduction of novel criminals in the ith compartment, ψ+
i (t) denotes

the rate of migration of individuals into the ith compartment by all other means, and ψ−
i (t)

denotes the rate of transfer of individuals out of the ith compartment. It is also possible to

write the proposed model (2.1.1) as

[
dηS(t)

dtη
,
dηC(t)

dtη
,
dηP (t)

dtη
,
dηR(t)

dtη

]T
= Ψ(t)− ψ(t) (2.3.1)

where ψi(t) = ψ−
i (t)− ψ+

i (t) and matrices Ψ(t), ψ−(t), ψ+(t) are given by

Ψ(t) =


0

αηS(t)C(t)

0

0

 ,

ψ+(t) =


Aη + (1− ϵ)ξηR(t)

ϵξηR(t)

plηC(t)

(1− p)lηC(t) + δηP (t)

 , ψ−(t) =


αηS(t)C(t) + ϱηS(t)

(ϱη + lη)C(t)

(ϱη + δη)P (t)

(ϱη + ξη)R(t)

 .
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The Jacobian matrix of Ψ(t) and ψ(t) at E0 is given by

Ψ∗ =



0 0 0 0

0
αηAη

ϱη
0 0

0 0 0 0

0 0 0 0


, ψ∗ =


ϱη

αηAη

ϱη
0 −(1− ϵ)ξη

0 ϱη + lη 0 −ϵξη

0 −plη ϱη + δη 0

0 −(1− p)lη −δη ϱη + ξη


.

The spectral radius of Ψ∗ψ∗−1 is equal to Cg, where,

Cg =
Aηαη(ϱη + ξη)(ϱη + δη)

ϱη[(ϱη + δη){ϱ2η + ϱη(ξη + lη) + ξηlη(1− ϵ)}+ pϵϱηξηlη]
. (2.3.2)

Here, when the population is deemed free of criminality, Cg determines the number of

secondary offenders that a single criminal has made in his continuing criminal life.

2.3.3 Crime Persistence/Endemic Equilibrium

A crime-persistence equilibrium describes a state or condition where crime remains at a

stable, persistent level over time. In a crime persistence equilibrium, the community expe-

riences consistent and unchanging crime rates over an extended period. This implies that

despite efforts to reduce or control crime, it remains resilient and does not decrease signifi-

cantly. The equilibrium point E∗ = (S∗, C∗, P ∗, R∗) is steady state solution determined

when C > 0. Now, set the RHS of equations in the proposed models to zero,

Aη − αηS(t)C(t) + (1− ϵ)ξηR(t)− ϱηS(t) = 0,

αηS(t)C(t)− lηC(t) + ϵξηR(t)− ϱηC(t) = 0,

plηC(t)− δηP (t)− ϱηP (t) = 0,

(1− p)lηC(t) + δηP (t)− ξηR(t)− ϱηR(t) = 0.

(2.3.3)

On solving these equations, we have,

P ∗ =
plηC∗

ϱη + δη
, R∗ =

δηP ∗ + (1− p)lηC∗

ϱη + ξη
, S∗ =

Aη + (1− ϵ)ξηR∗

αηC∗ + ϱη
, (2.3.4)
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C∗ =
(Cg − 1)[ϱη((ϱη + δη)[ϱ2η + ϱη(ξη + lη) + ξηlη(1− ϵ)] + ϵξηpϱηlη)]

αηϱη[ϱ2η + ϱη(lη + ξη + δη) + ξηδη + lηδη + pξηlη]
. (2.3.5)

The above expressionC∗ is non-negative forCg ≥ 1. Therefore, theE∗ = (S∗, C∗, P ∗, R∗)

equilibrium point occurs if Cg > 1.

2.4 Stability Analysis of Crime Propagation Model

Theorem 2.4.1. If Cg < 1, equilibrium point E0 =

(
Aη

ϱη
, 0, 0, 0

)
is globally asymptoti-

cally stable, else it is unstable.

Proof. The Jacobian matrix of eq. (2.1.1) at crime-free equilibrium pointE0 =

(
Aη

ϱη
, 0, 0, 0

)
is given by

J0 =


−ϱη −αηAη

ϱη
0 (1− ϵ)ξη

0 αηAη

ϱη
− ϱη − lη 0 ϵξη

0 plη −ϱη − δη 0

0 (1− p)lη δη −ϱη − ξη

 . (2.4.1)

Here, one of the eigenvalues is −ϱη, which is negative. Now, for the rest of the eigenvalues

J1 =


αηAη

ϱη
− ϱη − lη 0 ϵξη

plη −ϱη − δη 0

(1− p)lη δη −ϱη − ξη

 . (2.4.2)

The characteristic equation corresponding to matrix J1 is:

λ3 +B1λ
2 +B2λ+B3 = 0 (2.4.3)

where
B1 = −

(
αηAη

ϱη
− ϱη − lη

)
+ 2ϱη + δη + ξη

B2 = (δη + ϱη)(ξη + ϱη)− (
αηAη

ϱη
− ϱη − lη)(2ϱη + ξη + δη)− (1− p)ϵlηξη
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B3 = (1− Cg)[(ϱ
η + δη){ϱ2η + ϱη(ξη + lη) + ξηlη(1− ϵ)}+ pϵϱηξηlη].

To show E0 =

(
Aη

ϱη
, 0, 0, 0

)
is locally asymptotically stable Routh-Hurwitz criteria

(Theorem 1.4.4) is employed. So, B3 > 0 whenever Cg < 1. From eq. (2.3.2),

αηAη

ϱη
− ϱη − lη ≤ ϵξηlηϱη(p− 1)− ϵξηlηδη ≤ 0 for Cg < 1

=⇒ B1 > 0 for Cg < 1.

All the eigenvalues will have negative real parts whenever B1B2−B3 > 0. Hence, the sys-

tem is stable for equilibrium point E0 =
(

Aη

ϱη
, 0, 0, 0

)
whenever Cg < 1. (S,C, P,R) →(

Aη

ϱη
, 0, 0, 0

)
as t → ∞. So, the crime-free equilibrium point is globally asymptotically

stable for Cg < 1 whenever B1B2 −B3 > 0. This stability condition suggests that, under

certain conditions on parameters represented by Cg, the system tends to evolve towards

and settle at crime free equilibria regardless of its initial state and the system approaches

E0 in a continuous manner.

Theorem 2.4.2. The endemic equilibrium point E∗ = (S∗, C∗, P ∗, R∗) exists and is

locally asymptotically stable if Cg > 1.

Proof. The Jacobian matrix of the given model (2.1.1) at nontrivial equilibrium point

E∗ = (S∗, C∗, P ∗, R∗) is obtained as follows:

J∗ =


−(αηC∗ + ϱη) −αηS∗ 0 (1− ϵ)ξη

αηC∗ αηS∗ − ϱη − lη 0 ϵξη

0 plη −ϱη − δη 0

0 (1− p)lη δη −ϱη − ξη

 (2.4.4)

The characteristic equation corresponding to J∗ is

λ4 +D1λ
3 +D2λ

2 +D3λ+D4 = 0, (2.4.5)

where
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2.5. Delayed Model

D1 =4ϱη + δη + ξη + lη + C∗αη − S∗αη

D2 =6ϱ2η + 3ϱη[δη + ξη + lη + C∗αη − S∗αη] + δηξη + (δη + ξη)(C∗αη − S∗αη)+

lη[δη + ξη + C∗αη − (1− p)ϵξη]

D3 =4ϱ3η + 3ϱ2η[δη + ξη + lη + C∗αη − S∗αη] + 2ϱη[δηξη + (δη + ξη)(C∗αη − S∗αη)+

lη(δη + ξη + C∗αη − (1− p)ϵξη)] + αηδηξη(C∗ − S∗) + lη[(1− ϵ)δηξη+

C∗αη(δη + ξηp)]

D4 =ϱ
4η + ϱ3η[δη + ξη + lη + C∗αη − S∗αη] + ϱ2η[δηξη + (δη + ξη)(C∗αη − S∗αη)+

lη(δη + ξη + C∗αη − (1− p)ϵξη)] + αηϱηδηξη(C∗ − S∗)+

ϱηlη[(1− ϵ)δηξη + C∗αη(δηξη + p)].

The characteristic equation will have complex roots with negative real parts if the following

conditions are met (from eq. (1.4.4)).

D1 > 0; D4 > 0; D1D2 −D3 > 0; D1D2D3 −D2
3 −D4D

2
1 > 0. (2.4.6)

As a result, if the above conditions are met, E∗ is locally asymptotically stable.

The condition Cg > 1 serves as a critical threshold. If the criminal generation number

exceeds 1, it signifies that the endemic equilibrium point is locally stable. This suggests

that the system, influenced by the transmission dynamics and parameters represented by

Cg, tends to persist in a stable manner at E∗. The model settle at crime endemic equilibria

regardless of its initial state and the system approaches E∗ in a continuous manner.

2.5 Delayed Model

A fractional-order delayed differential model is proposed to investigate the time gap be-

tween an individual’s crime and their conviction. As we know, it takes time for criminals

to be caught and reinforced. This happens as it takes time to judge whether he/she is a

criminal or not. This is reflected in the class C by considering delay τ . The mathematical

model subject to initial condition in C([−τ, 0], R4
+) is as follows:
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Chapter 2. Mathematical Modeling of Crime Transmission

dηS(t)

dtη
= Aη − αηS(t)C(t) + (1− ϵ)ξηR(t)− ϱηS(t)

dηC(t)

dtη
= αηS(t)C(t)− lηC(t− τ) + ϵξηR(t)− ϱηC(t)

dηP (t)

dtη
= plηC(t− τ)− δηP (t)− ϱηP (t)

dηR(t)

dtη
= (1− p)lηC(t− τ) + δηP (t)− ξηR(t)− ϱηR(t)

(2.5.1)

where η ∈ (0, 1] is the order of derivative in the crime transmission model.

2.6 Stability Analysis of Delayed Model

E∗ = (S∗, C∗, P ∗, R∗) is the endemic equilibrium point of eq. (2.5.1) and S∗, C∗, P ∗, R∗

eq. (2.3.4) and eq. (2.3.3). The stability changing for the incremental rise in time delay is

explored here. The characteristic equation of the system (2.5.1) at the equilibrium point

E∗ = (S∗, C∗, P ∗, R∗) is given by,

∣∣Jτ0 + e−λτJτ1 − λI
∣∣ = 0. (2.6.1)

Jτ0 =


−(αηC∗ + ϱη) −αηS∗ 0 (1− ϵ)ξη

αηC∗ αηS∗ − ϱη 0 ϵξη

0 0 −ϱη − δη 0

0 0 δη −ϱη − ξη

 , (2.6.2)

Jτ1 =


0 0 0 0

0 −lη 0 0

0 plη 0 0

0 (1− p)lη 0 0

 . (2.6.3)

After solving, we get

λ4 + C1λ
3 + C2λ

2 + C3λ+ C4 + e−λτ [C5λ
3 + C6λ

2 + C7λ+ C8] = 0, (2.6.4)

where
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2.6. Stability Analysis of Delayed Model

C1 =4ϱη + δη + ξη + C∗αη − S∗αη

C2 =6ϱ2η + 3ϱη[δη + ξη + C∗αη − S∗αη] + δηξη + (δη + ξη)(C∗αη − S∗αη)

C3 =4ϱ3η + 3ϱ2η[δη + ξη + C∗αη − S∗αη] + 2ϱη[δηξη + (δη + ξη)(C∗αη − S∗αη)]+

αηδηξη(C∗ − S∗)

C4 =ϱ
4η + ϱ3η[δη + ξη + C∗αη − S∗αη] + ϱ2η[δηξη + (δη + ξη)(C∗αη − S∗αη)]+

αηϱηδηξη(C∗ − S∗)

C5 =l
η, C6 = 3ϱηlη + lη[δη + ξη + C∗αη − (1− p)ϵξη]

C7 =3ϱ2ηlη + 2ϱηlη[δη + ξη + C∗αη − (1− p)ϵξη] + lη[(1− ϵ)δηξη + C∗αη(δη + ξηp)]

C8 =ϱ
3ηlη + ϱ2ηlη[δη + ξη + C∗αη − (1− p)ϵξη] + ϱηlη[(1− ϵ)δηξη + C∗αη(δη + ξηp)].

It is acknowledged that there are infinitely many complex roots to the transcendental

equation. In the presence of time delay (τ ), it is very difficult to identify the signs of the

roots. Therefore, we start our study by establishing the time delay (τ ) is zero, then derive

conditions of stability when τ > 0. The eq. (2.6.4) becomes eq. (2.4.5) at τ = 0 and

condition of stability for eq. (2.4.5) already discussed.

Theorem 2.6.1. The equilibrium point E∗ = (S∗, C∗, P ∗, R∗) of system (2.5.1) is locally

asymptotically stable for τ = 0 iff condition (2.4.6) satisfied.

The characteristic equation (2.6.4) will have an infinite number of roots if τ > 0.

A necessary condition for a change in the stability of E∗ is that there should be purely

imaginary solutions to the eq. (2.6.4). Let iω0 be the root of the eq. (2.6.4) than we

obtained,

ω4
0 − C2ω

2
0 + C4 = [C6ω

2
0 − C8] cos(ω0τ) + [C5ω

3
0 − C7ω0] sin(ω0τ) (2.6.5)

C1ω
3
0 − C3ω0 = [C6ω

2
0 − C8] sin(ω0τ)− [C5ω

3
0 − C7ω0] cos(ω0τ) (2.6.6)

Squaring and adding the above two equations,

ω8
0 +N1ω

6
0 +N2ω

4
0 +N3ω

2
0 +N4 = 0 (2.6.7)
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where

N1 =C
2
1 − 2C2 − C2

5 ,

N2 =C
2
2 + 2C4 − 2C1C3 − C2

6 + 2C7C5,

N3 =C
2
3 − 2C2C4 + 2C6C8 − C2

7 ,

N4 =C
2
4 − C2

8

(2.6.8)

If N4 < 0;, then at least one positive root of the eq. (2.6.7) and two purely imaginary roots

iω0 of the eq. (2.6.6) exists. τ is obtained by using the eq. (2.6.5),

τk =
1

ω0

cos−1

[
(C6ω

2
0 − C8)(ω

4
0 − C2ω

2
0 + C4)− ω0(C5ω

3
0 − C7ω0)(C1ω

2
0 − C3)

(C6ω2
0 − C8)2 + (C5ω3

0 − C7ω0)2

]
+
2kπ

ω0

(2.6.9)

Now, by differentiating the eq. (2.6.4) with respect to τ ,

(
dλ

dτ

)−1

=
4λ3 + 3C1λ

2 + 2C2λ+ C3

−λ(λ4 + C1λ3 + C2λ2 + C3λ+ C4)
+

3C5λ
2 + 2C6λ+ C7

λ(C5λ3 + C6λ2 + C7λ+ C8)
− τ

λ
(2.6.10)

Let us consider[
Re

(
dλ

dτ

)−1
]
λ=iω0

=

{
Re

(
4λ3 + 3C1λ

2 + 2C2λ+ C3

−λ(λ4 + C1λ3 + C2λ2 + C3λ+ C4)

)}
λ=iω0

+

{
Re

(
3C5λ

2 + 2C6λ+ C7

λ(C5λ3 + C6λ2 + C7λ+ C8)
− τ

λ

)}
λ=iω0

= {H1 +H2},where

(2.6.11)

H1 =
4ω3

0 + ω6
0(3C

2
1 − 2C2) + ω4

0(4B4 − 2C3C1 + 2C2
2) + ω2

0(C
2
3 − 2C2C4)

(C3ω2
0 − C1ω4

0)
2 + (C1ω3

0 − C4ω0 − ω2
0)

2

H2 =
ω4
0(C

2
5 − 2C2

6 + 3C5C7) + ω2
0(2C6C8 − C7C5)− 3ω6

0C
2
5

(C5ω4
0 − C7ω2

0)
2 + (C8ω0 − C6ω3

0)
2

If H1, H2 are positive then

[
Re

(
dλ

dτ

)−1
]
τ=τ∗

=

[
Re

(
dλ

dτ

)−1
]
λ=iω0

> 0
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so, there is a branch of periodic solutions bifurcating from the equilibrium point E∗ =

(S∗, C∗, P ∗, R∗) near τ = τ ∗.

Theorem 2.6.2. Suppose that H1, H2 are positive for system (2.5.1), the endemic equi-

librium E∗ = (S∗, C∗, P ∗, R∗) is locally asymptotically stable for τ ∈ [0, τ ∗) and un-

stable when τ > τ ∗ and displays a Hopf bifurcation at the equilibrium point E∗ =

(S∗, C∗, P ∗, R∗) when τ = τ ∗.

2.7 Numerical Validation Through Simulation
This section presents the numerical results to illustrate the dynamic behavior of crime

transmission and to validate the analytical findings for different orders of differentiation

and different values of time delay.
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Figure 2.2: Variations of Non-Criminal population S, Criminal population C, Prisoners P ,
and Recovered population R with time without delay for different order η which shows
criminal population C is decreasing with time when order decreases.
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Table 2.1 describes the parameters used and Table 2.2 shows the initial conditions and

the set of parameters used for validation, which are retrieved from [51, 112].

Table 2.2: Parameter value for crime transmission model.

Parameter A α ξ δ l ϱ p ϵ
Value 0.5 0.0005 0.1 0.01 0.045 0.00422 0.6 0.3

Population S C P R
Initial Values 50 20 10 5

Table 2.3: Variation of delay with order of derivative.

η 0.7 0.8 0.9 1
τ 29.95 29.5 27.9 25.5

In Figure 2.2, numerical simulations show that the endemic equilibrium points for

the proposed fractional-order crime transmission model are asymptotically stable for

η = 1, 0.9, 0.8, 0.7 and for η < 0.7 populations become negative. Trajectories of all the

populations, irrespective of the order chosen, justify the stability of the proposed model.

If Cg > 1, society cannot be crime-free, but crime declines and becomes stable after

a particular time, irrespective of the order of derivative. Also, the criminal population

decreases as the order of derivative decreases. From Figure 2.2, it can be noticed that each

population converges faster to its equilibrium as η is increased.
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Figure 2.3: The fractional-order delayed crime model is unstable for time delay τ ≥ τ1 =
25.5 and stable for chosen time delay τ = 24.5, η = 1.
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Figure 2.4: The fractional-order delayed crime model is unstable for time delay τ ≥ τ0.9 =
27.9 and stable for chosen time delay τ = 27.5, η = 0.9.
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Figure 2.5: The fractional-order delayed crime model is unstable for time delay τ ≥ τ0.8 =
29.5 and stable for chosen time delay τ = 29, η = 0.8.
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Figure 2.6: The fractional-order delayed crime model is unstable for time delay τ ≥ τ0.7 =
29.95 and stable for chosen time delay τ = 28.9, η = 0.7.
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The Figures 2.3 to 2.6 illustrates the behavior of delayed crime model (2.5.1) for η =

0.7, 0.8, 0.9, 1. The graphs present the dynamics of each population for η = 0.7, 0.8, 0.9, 1

with time delay and it is clear that the system becomes unstable for τ ≥ τη. The values of

the delay coefficient for various values of η are shown in Table 2.3. Clearly, the Figures 2.3

to 2.6 show that the delay decreases as the order of derivative increases, indicating that the

model’s stability region expands. Hence, the finding reveals that law enforcement officers

can have 30 weeks to apprehend criminals and ensure their convictions. In contrast, the

time frame for the integer-order model is constrained to approximately 25 weeks.
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2.8. Summary and Conclusions

According to Figure 2.7, the criminal generation number increases as order (η) in-

creases up to a certain value of η, after that, it starts decreasing. As density (the rate of

indulgement (l)) increases, the criminal generation number increases, which means the

criminal population increases with the rate of indulgement. Again, from Figure 2.7, crime

transmission reduces as law enforcement increases for different values of the order of

derivative (η). Although there is a need for a higher rate of law enforcement, the graph

shows the optimal value of law enforcement lies near 0.1 irrespective of the order of

differentiation, which means it will lead to crime-free equilibrium for l > 0.1.

2.8 Summary and Conclusions
There is great scope to enhance the existing law to capture the crime prevalent in the

current society. Hence, to address this, a fractional-order crime propagation mathematical

model for analyzing the dynamics of the propagation of crime by considering the criminal

history is proposed. From this work, it is evident that the criminal generation number

increases as the order of derivative (η) increases up to a certain value of η. Though it is

expected that the criminal population will decrease as the parameter l increases, we have

obtained a threshold value of l. The major findings of the present research are listed below:

• The delayed model suggests that once the delay reaches a certain threshold, the

model would oscillate periodically. If the order of derivative increases from 0 to 1,

the delay decreases, indicating that the stability region expands for the fractional-

order model.

• According to this model, law enforcement officers are provided approximately 30

weeks to apprehend criminals and secure their convictions, whereas, in the case of

the integer order model, the time frame is around 25 weeks. Hence, the fractional-

order model allows law enforcement officers additional time, which is beneficial in

securing a criminal’s conviction, as 25 weeks to apprehend criminals and secure

their convictions is practically not possible (Department of Justice, United States;

National Center for State Courts, United States).
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• As law enforcement increases, the criminal population declines, but until a certain

point is reached, there is no longer any discernible impact on the spread of crime.

Moreover, the optimal value of law enforcement lies near 0.1, as not much variation

is seen in the behavior of criminal generation number beyond 0.1. If the law

enforcement rate increases beyond 0.1, the adverse impact on the country’s economy

will be more pronounced than the benefits derived from a reduction in the crime

rate.

• Incorporating memory using a fractional-order derivative in the crime transmission

model results in fewer criminal generation number as the derivative order decreases.

This correlation arises because the memory property diminishes as the derivative

order decreases from 1. Consequently, it is observed that crime transmission reduced

by decreasing the memory.

In order to effectively diminish crime, policymakers should concentrate on initiatives

directed at shielding children from exposure to criminal influences and enhancing their

living conditions. Establishing an environment where criminals cannot freely share their

experiences becomes crucial to minimizing the transmission of criminal behavior. Hence,

the proposed model accelerates to achieve a crime-free society by considering memory

and hereditary property as a crucial parameters.

The substantial part of this chapter has been published in the following publications:

• K. Bansal, S. Arora, K. S. Pritam, T. Mathur, and S. Agarwal (2022), “ Dynamics of

crime transmission using fractional-order differential equations.” Fractals, 30(01),

2250012.

• K. Bansal, T. Mathur, N. S. S. Singh, and S. Agarwal (2022), “Analysis of ille-

gal drug transmission model using fractional delay differential equations.” AIMS

Mathematics, 7(10), 18173-18193.
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Chapter 3

Crime Propagation Model With

Non-Linear Transmission Rate

“The growth of crime is like a cancer that, unchecked, will eventually destroy society.”

- E.F. Schumacher

Crime is one of the most significant challenges throughout all societies [113, 114]. Crime

is an aberrant activity that deviates from established standards and ideals. The social

structure of the organization has a significant impact on the propagation of crime within a

community. It is a well-known fact that crime spreads across society like an infectious

illness, even though a variety of factors may impact this dynamic [51, 115]. Mathematical

modeling is a crucial tool for comprehending how infectious diseases propagate and are

controlled [116–118]. The transmission rate is the primary consideration in modeling

techniques when assessing the spread of any disease [119, 120]. There are different types

of transmission rates, such as linear and non-linear. Initially, a huge population would not

be feasible for the bilinear transmission rate (linear), βSI , where β is the infection rate,

S stands for susceptible people, and I stands for infected people [121–123]. As we may

deduce from the word SI , it is unrealistic to presume that an increase in the susceptible

population will directly result in a proportional rise in the number of individuals infected

per unit of time. The National Crime Records Bureau, Government of India, also reports

that the relationship between non-criminals and criminals is not linear (see Figure 1.2).
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As a result, the non-linear transmission rate can depict reality in a better way than the

linear transmission rate. Therefore, modifying the conventional linear transmission rate is

necessary to understand the infection dynamics among a vast population.

Several mathematical models with a bilinear transmission rate for the prevention of

crime transmission based on ordinary differential equations and fractional differential

equations have already been proposed [10, 35–37, 47, 50–54, 124–126]. Several authors

proposed various kinds of non-linear transmission rates in epidemiology [121, 127–130].

In 1978 Anderson and May [128] first proposed the saturated transmission rate αSI
1+βS

and

saturation factor β has an impact on epidemic control. Li et al. [131] suggested a SIR

model with a non-linear transmission rate αSI
1+γI

and saturation factor γ is inhibition effect

(treatment of infected population). The number of influencing contacts between infectious

and susceptible people may saturate at high infectious levels due to the crowding of

infected people at this transmission rate. Baba et al. [132] proposed a tuberculosis model

using saturated incidence rate and established the significance of the inhibitory effect.

Xiao et al. [133] suggested that the number of effective interactions between infective

and susceptible persons falls at high infective levels due to the quarantine of infective

individuals or protective measures taken by susceptible individuals by utilizing the non-

monotone non-linear incidence rate. Ruan et al. [134] also studied the dynamical behavior

of an epidemic model with a non-linear incidence rate. A non-linear Beddington DeAngelis

transmission rate, αSI
1+βS+γI

, was independently developed by Beddington and DeAngelis

in 1975 [135, 136]. The Beddington-DeAngelis transmission rate is a generalization of

linear and some non-linear transmission rates. This chapter presents a mathematical crime

propagation model with a Beddington-DeAngelis non-linear transmission rate contributing

to a better understanding of crime transmission.

This chapter seeks to develop a fractional-order mathematical model with a non-linear

transmission rate for evaluating the dynamics of crime spread. The population comprises

non-criminals, criminals, and prisoners. This concept’s main assumption is that crime may

spread through social contact, which is impacted by social background. Contrary to reality,

the bilinear transmission rate implies that criminals increased as non-criminals increased.
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Therefore, the present study compares the various crime transmission model with different

transmission rates.

3.1 Establishment of Crime Propagation Model

Criminal activity is still rising despite the frequent implementation of several appropriate

measures (police deployment, penalty, jail, recidivism, and other laws and regulations). As

a result, we must put forth a model that can help explain, anticipate, and further restrain

illicit proliferation by deploying appropriate security officers and enforcing laws on the

criminal behavior of the population.

 

S 
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𝑃 

 

𝛼𝑆𝐶

1 + 𝛽 𝑆 + 𝛾 𝐶
 

ϱS ϱC ϱP 

lC 

δ1P 

A   

Figure 3.1: Crime propagation model for non-linear transmission rate.

Consider that the population is divided into three categories: Non-Criminals (S),

Criminals (C), and Prisoners (P ). Figure 3.1 depicts the suggested model’s flow diagram.

Let the non-criminals be recruited with the rate A, and each class’s population experiences

a natural death rate of ϱ. Because of the interplay of the criminal and non-criminal popula-

tions, the non-criminal population is decreasing at a rate of α as non-criminals become

criminals. Criminals move to the prisoners class due to law enforcement with the rate l,

and prisoners move to the non-criminals class after completing the required time in prison

with the rate δ1. With the aforementioned facts in mind and non-negative initial conditions,

the proposed mathematical model is represented by the following dimensionally balanced

fractional differential equations:
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dηS(t)

dtη
= Aη − αηS(t)C(t)

1 + βS(t) + γC(t)
+ δη1P (t)− ϱηS(t)

dηC(t)

dtη
=

αηS(t)C(t)

1 + βS(t) + γC(t)
− lηC(t)− ϱηC(t)

dηP (t)

dtη
= lηC(t)− ϱηP (t)− δη1P (t)

(3.1.1)

where S(0) > 0, C(0) > 0, P (0) > 0, and η is order of derivative . In the proposed

model incidence rate is

f(S,C) =
αηS(t)C(t)

1 + βS(t) + γC(t)

here, α stands for the transmission rate, β for the inhibition effect (preventive measures

taken by non-criminal individuals), and γ for the inhibition effect (treatment of criminals).

It’s vital to note that the incidence rate proposed in this study may be categorized as:

• If β = 0; γ = 0, then f(S,C) = αηSC represents linear (bilinear) incidence rate.

• If γ = 0; β ̸= 0, then the saturation incidence rate for the non-criminal people is

f(S,C) =
αηS(t)C(t)

1 + βS(t)
. The prevention strategy employed to curb an epidemic’s

spread results in the inhibitory impact β induced by the saturation factor.

• If β = 0; γ ̸= 0, then the saturation incidence rate for the criminal individuals

f(S,C) =
αηS(t)C(t)

1 + γC(t)
. In this scenario, the interaction between criminal and

non-criminal people may saturate at high infection levels due to the crowding of

criminals or the preventive measures adopted by non-criminal individuals.

3.2 Basic Properties of Proposed Model
This section demonstrates that the solution of the proposed model uniquely exists as well

as is non-negative and bounded.

3.2.1 Invariant Region

The set Ω is invariant if, for all the initial conditions are in Ω, the solution of the proposed

model remains in Ω. As a consequence, a positively invariant set will have positive
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solutions.

The dynamics of the fractional-order crime propagation model (3.1.1) are explored in a

feasible region Ω ∈ R3
+, where

Ω =

{
(S,C, P ) ∈ R3

+ : S + C + P ≤ Aη

ϱη

}
. (3.2.1)

Theorem 3.2.1. The region Ω ∈ R3
+ is the positively invariant region with non-negative

initial conditions for the proposed crime transmission model.

Proof. Let N(t) = S(t) + C(t) + P (t). Then,

dηN(t)

dtη
=
dηS(t)

dtη
+
dηC(t)

dtη
+
dηP (t)

dtη

= Aη − ϱηN(t).

(3.2.2)

Using the Laplace transformation (from eq. (1.1.13)):

N(s) =

Aη

s
+ sη−1N(0)

sη + ϱη
. (3.2.3)

Now, using inverse Laplace transformation (from eq. (1.1.8):

N(t) =
Aη

ϱη
[1− Eη,1(−ϱηtη)] +N(0)Eη,1(−ϱηtη), (3.2.4)

where Eη,1is Mittag-Leffler function defined in eq. (1.1.7).

If 0 < η ≤ 1, then 0 ≤ Eη,1(−ϱηtη) ≤ 1 =⇒ N(t) ≤ Aη

ϱη
. (3.2.5)

dηS(t)

dtη

∣∣∣∣∣
S(t0)=0

=AηN + δη1P ≥ 0, (3.2.6)

dηC(t)

dtη

∣∣∣∣∣
C(t0)=0

=0 ≥ 0, (3.2.7)
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dηP (t)

dtη

∣∣∣∣∣
P (t0)=0

=δη1C ≥ 0. (3.2.8)

Now, from the generalized mean value theorem (Theorem 1.4.2), the solution of the

proposed model is non-negative and lies in Ω. As a result, the region Ω is the positively

invariant region, attracting all the solutions.

3.2.2 Existence and Uniqueness

Theorem 3.2.2. Along with non-negative initial conditions, the crime propagation model

has a unique and bounded solution for t ≥ 0.

Proof. RHS of proposed model eq. (3.1.1) is continuous, bounded from eq. (3.2.5) and

satisfy Lipschitz conditions. So, according to the existence and uniqueness theorem

(Theorem 1.4.1), the solution of the proposed model (3.1.1) not only exists but is also

unique and bounded.

3.3 Dynamical Evaluation of Crime Propagation Model
This section presents the equilibrium points and the criminal generation number. Setting

the right-hand sides of each equation in the proposed models to zero allows us to find

equilibrium points.

3.3.1 Criminal-free Equilibria

A criminal-free equilibrium point (trivial equilibrium point) exists if the criminals become

zero, i.e.,

E1 =

(
Aη

ϱη
, 0, 0

)
.

3.3.2 Criminal Generation Number

The criminal generation number, denoted Cg, is defined as “the anticipated count of

subsequent cases produced by an individual engaged in criminal activity within a com-

pletely non-criminal community [111].” To determine the criminal generation number, the
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next-generation matrix approach [111] is utilized at criminal-free equilibrium. Let

dηX

dtη
= F(X)− V(X), (3.3.1)

where X = [S C P ],

V(X) represents the matrix of terms used for movement in and out of a class, and

F(X) represents the matrix of terms used for new infections.

F =

(
∂F
∂X

)
E1

, V =

(
∂V
∂X

)
E1

.

F =


0 0 0

0
αηAη

ϱη + βAη
0

0 0 0

 , V =


ϱη

αηAη

ϱη + βAη
−δη1

0 ϱη + lη 0

0 −lη δη1 + ϱη

 .

The spectral radius of FV −1 is equal to Cg, where,

Cg =
Aηαη

(ϱη + lη)(ϱη + Aηβ)
. (3.3.2)

3.3.3 Crime Persistence Equilibria

The concept of a crime persistence equilibrium refers to a situation where crime remains

at a relatively stable and persistent level over time within a community or society. The

crime persistence equilibrium point (endemic equilibrium point) exists if criminals become

non-zero, i.e., E2 = (S∗, C∗, P ∗). Now set the RHS of equations in the proposed models

to zero,

Aη − αηS(t)C(t)

1 + βS(t) + γC(t)
+ δη1P (t)− ϱηS(t) =0,

αηS(t)C(t)

1 + βS(t) + γC(t)
− lηC(t)− ϱηC(t) =0,

lηC(t)− ϱηP (t)− δη1P (t) =0.

(3.3.3)
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On solving these equations, we have,

C∗ =
(ϱη + lη)(ϱη + δη1)(A

ηβ + ϱη)(Cg − 1)

ϱηγ(ϱη + δη1)(ϱ
η + lη) + ϱη(ϱη + δη1 + lη)(αη − β(ϱη + lη))

.

Let Cg > 1,
Aηαη

(ϱη + lη)(ϱη + Aηβ)
> 1 =⇒ Aηαη > (ϱη + lη)(ϱη + Aηβ)

=⇒ αη − (ϱη + lη)β > 0 if Cg > 1

P ∗ =
lηC∗

ϱη + δη1
, S∗ =

(1 + γC∗)(ϱη + lη)

αη − (ϱη + lη)β
.

Hence, crime persistence equilibrium exits if Cg > 1. It’s important to understand that

achieving a persistent level of crime is not a desirable or intentionally sought-after goal

for any society. While some communities may face persistent crime challenges due to

complex social and economic factors, the ultimate goal remains to reduce and eliminate

criminal activity rather than maintain it at a persistent level.

3.4 Stability Analysis of Proposed Model

Theorem 3.4.1. The criminal-free equilibrium point E1 =

(
Aη

ϱη
, 0, 0

)
of the proposed

crime transmission model is stable if Cg < 1.

Proof. The Jacobian matrix at E1 is

JE1 =


−ϱη − αηAη

ϱη + βAη
δη1

0
αηAη

ϱη + βAη
− ϱη − lη 0

0 lη −ϱη − δη1

 .

Clearly, the two eigenvalues are −ϱη,−ϱη − δη1 are negative. if

αηAη

ϱη + βAη
− ϱη − lη < 0 if Cg < 1

So, using Routh–Hurwitz conditions (Theorem 1.4.4), E1 is stable.
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Theorem 3.4.2. The criminal-free equilibrium E1 =

(
Aη

ϱη
, 0, 0

)
of the proposed crime

transmission model is globally asymptotically stable if Cg ≤ 1.

Proof. Let L denote the Lyapunov function described as

L =
1

1 + βS0

(
S − S0 − S0 ln

S

S0

)
+ C + P, where S0 =

Aη

ϱη
.

Now, the ηth derivative of Lyapunov function L is given by [137]:

dηL

dtη
≤ 1

1 + βS0

(
S − S0

S

)
dηS

dtη
+
dηC

dtη
+
dηP

dtη
,

dηL

dtη
≤ −(S − S0)

2ϱη

S(1 + βS0)
+ (ϱη + lη)C(Cg − 1)

Then, clearly
dηL

dtη
< 0 if Cg ≤ 1.

Theorem 3.4.3. The crime persistence equilibrium point E2 = (S∗, C∗, P ∗) of the pro-

posed crime transmission model exists and is locally asymptotically stable if Cg > 1 with

some condition.

Proof. The Jacobian matrix at E2 is:

JE2 =


− (1 + γC∗)αηC∗

(1 + βS∗ + γC∗)2
− ϱη − (1 + βS∗)αηS∗

(1 + βS∗ + γC∗)2
δη1

(1 + γC∗)αηC∗

(1 + βS∗ + γC∗)2
(1 + βS∗)αηS∗

(1 + βS∗ + γC∗)2
− lη − ϱη 0

0 lη −ϱη − δη1

 .

The characteristic equation for JE2 is

λ3 +Q1λ
2 +Q2λ+Q3 = 0. (3.4.1)

The root of the characteristic equation has negative real parts if Q1 > 0; Q3 > 0; Q1Q2 >

Q3 [138]. As a result, if the prerequisites are satisfied, E2 = (S∗, C∗, P ∗) is locally

asymptotically stable.

63



Chapter 3. Crime Propagation Model With Non-Linear Transmission Rate

3.5 Bifurcation Analysis
This section explores the behavior of the crime transmission model when the crime

generation number is 1. A sudden qualitative shift in the system’s behavior occurs when

the parameter values of the system gradually change. When the equivalence Aηαη =

(ϱη + lη)(ϱη + Aηβ) is met, the two fixed points E1 and E2 seem to collide and change

stability, giving the impression that the system is going through a transcritical bifurcation

as seen in Figure 3.2.
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Figure 3.2: Bifurcation diagram demonstrates E1 is stable for Cg < 1 and unstable for
Cg > 1, E2 exists and stable for Cg > 1.

Theorem 3.5.1. The proposed model shows transcritical bifurcation at Aηαη = (ϱη +

lη)(ϱη + Aηβ).

Proof. We observe that the Jacobian matrix for the proposed model derived at Cg = 1

and α∗ = αη =
(ϱη + lη)(ϱη + Aηβ)

Aη
has a simple zero eigenvalue. Since the stability

behavior of equilibrium points at Cg = 1 cannot be correctly predicted by linearization,

we resort it using the center manifold theorem (Theorem 1.4.7).
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Let J be Jacobian matrix at Cg = 1

J =


−ϱη −ϱη − lη δη1

0 0 0

0 lη −ϱη − δη1

 .

It is simple to confirm that one of the eigenvalues is 0 as det(J) = 0. If W and U are the

respective eigenvectors for the zero eigenvalues of the matrices J, JT , defined as

W =


0

1

0

 , V =


− l

η + ϱη + δη1
lη

ϱη + δη1
lη

1


Then from center manifold theorem (Theorem 1.4.6), the bifurcation constants a1 and b1

are

a1 =
∑
i,j,k

wkvivj

(
∂2fk
∂xi∂xj

)
E1

, b1 =
∑
k,i

wkvi

(
∂2fk
∂xi∂α∗

)
E1

.

Let S = x1, C = x2, P = x3(
∂2f2
∂x1∂x2

)
E1

=
α∗

(1 + βS0)2
,

(
∂2f2
∂x22

)
E1

=
−2α∗γS0

(1 + βS0)2
,

(
∂2f2

∂x2∂α∗

)
E1

=
S0

(1 + βS0)2
.

Hence a1 < 0, b1 > 0. Therefore, from Theorem 1.4.6, the criminal-free equilibrium point

changes from stable to unstable when Cg = 1, and as Cg passes one, a positive equilibrium

occurs. As a result, at Cg = 1, the proposed model (3.1.1) experiences transcritical

bifurcation.

The significance of transcritical bifurcation in crime modeling lies in its capacity

to expose the sensitivity of crime with the variation in parameter α. This phenomenon

can result in substantial shifts in equilibrium points, influencing solution stability and

carrying policy implications. Identifying transcritical bifurcation serves as a crucial tool

for recognizing patterns, aiding policymakers in making informed decisions, and crafting

effective policies to address crime by considering the crime transmission rate α.
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3.6 Numerical Illustration

The numerical simulation validates the analytical findings for various orders of derivative

and illustrates the dynamic nature of the crime propagation model. The predictor-corrector

approach of Adams-Bashforth-Moulton is used to solve the proposed model [109]. Table

3.1 displays the variables and parameters used for the evaluation, which are considered

from several published articles such as Pritam et al. [10], Bansal et al. [125], and Parto-

haghighi et al. [126].
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Figure 3.3: Time series plot for the dynamics of non-criminals, criminals, and prisoners
for the different order of derivatives.

According to Figure 3.3, the steady states are asymptotically stable for η = 0.8, 0.9,

and 1. As η increases, the population approaches its equilibrium more swiftly, as seen in

Figure 3.3. The trajectory of non-criminals, criminals, and prisoners shows the stability of
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the crime propagation model for the different orders of derivative. In Figure 3.3, criminals

decrease with time due to law enforcement, and the non-criminals increase and attain

a steady state for the different order of derivative. Furthermore, prisoners first increase

with time due to law enforcement and then start decreasing as prisoners move to the

non-criminal class.

Table 3.1: Parameter description and values for crime propagation.

Parameter Description value
A Recruitment rate 7
β Inhibition effect (preventive measures by susceptible individuals) 0.002
γ Crowding effect 0.5
ϱ Natural death rate 0.02
δ1 Rate from which prisoners move to non-criminal class 0.03
l Law enforcement rate 0.1
α Transmission rate from non-criminal to criminal class 0.003
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Figure 3.4: Effect of α on non-criminals and criminals for the different order of derivative.

Figure 3.4 shows the effect of α ( transmission rate from non-criminal to criminal

class) on non-criminals and criminals; non-criminals decrease and criminals increase

with the increase in α for the different order of derivative. As we decreases the order

of derivative for different value of α, non-criminals decreases and criminals showing

increasing behaviour, which depict reality as shown in Figure 1.2.
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Figure 3.5: Effect of β on non-criminals and criminals for the different order of derivative.
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Figure 3.6: Effect of γ on non-criminals and criminals for the different order of derivative.

0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

300

350

Figure 3.7: Effect of the different transmission rates (linear and non-linear) on non-
criminals and criminals for integer order.
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Similarly, Figure 3.5 and Figure 3.6 show the effect of β (prevention taken by non-

criminals) and γ (crowding effect of criminals) on non-criminals and criminals respectively,

non-criminals increases, and criminals decreases with increase in β and γ.

Figures 3.7–3.9 demonstrate the effect of different (linear, non-linear) transmission

rates for the different orders of derivative. The following observations are made:

• When α = 0, there is no transmission from the non-criminal class to the criminal

class and hence, non-criminal increases and criminal decreases for the different

order of derivative.

• When β = 0, γ ̸= 0, non-criminal increases and criminal decreases with time for

the different order of derivative due to prevention is taken by non-criminals.

• When γ = 0, β ̸= 0, non-criminal initially decreases, then increases and converges

to the equilibrium point. In contrast, crime initially increases then starts decreasing

due to the crowding effect for the different order of derivative.

• When γ = β = 0, the non-linear transmission rate becomes linear, and there is a

sharp increase in criminals.
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Figure 3.8: Effect of different transmission rates (linear and non-linear) on non-criminals
and criminals for order of derivative η = 0.9.
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Figure 3.9: Effect of different transmission rates (linear and non-linear) on non-criminals
and criminals for order of derivative η = 0.8.

On comparing the Figure 3.3 and Figures 3.7–3.9, the Beddington-DeAngelis non-linear

transmission rate is better than the other discussed cases to reduce crime transmission due

to the lower number of criminals under this rate..
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Figure 3.10: Relationship of criminal generation number (Cg) with the order of derivative
(η) and law enforcement (l).

Figure 3.10 shows the relationship of criminal generation number (Cg) with order of

derivative (η) and law-enforcement (l). Criminal generation number increases with the

order of derivative and decreases with law enforcement. Crime transmission reduces as the

order of the derivative decreases, indicating that a fractional-order model is more efficient

to reduce crime transmission than an integer-order model. Furthermore, the best-fit value
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for the order of derivative is close to zero as the value of Cg is 1 near the order of derivative

0.2. In spite of the fact that it is expected that the criminal population will decrease as the

extent of law enforcement increases, there is not much effect on crime transmission after a

threshold value, irrespective of the order of derivative.

3.7 Summary and Conclusions
This research proposes a novel fractional-order crime propagation mathematical model

with Beddington-DeAngelis (non-linear) transmission rate and compares the proposed

model with various transmission rates. The proposed model’s solution not only exists but

is also unique, bounded, and non-negative. Furthermore, the model has two non-negative

equilibrium points: the criminal-free equilibrium and the crime persistence equilibrium.

The crime transmission will persist if there is consistently more than one newly criminally

active person generated from each criminal. The major findings of the present research are

listed below:

• The Beddington-DeAngelis transmission rate is a generalization of linear and

some non-linear transmission rates and the findings suggest that the Beddington-

DeAngelis non-linear transmission rate is better than the other discussed cases as by

considering inhibition effect (β) criminal generation number can decreases more

rapidly.

• The criminal generation number (Cg) increases with the order of derivative (η), i.e.,

crime transmission rate decreases as the order of the derivative decreases, indicating

that a fractional-order model is more efficient to reduce crime transmission rate than

an integer-order model.

• The best-fit value for the order of the derivative is ∼0.2 to reduce crime transmission.

In the fractional order model, it is found that when the various rates, including

transmission rate, crowding effect, and inhibition effect, are raised to the power of

0.2, can control crime transmission more effectively.
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• As memory is integrated through a fractional-order derivative in the crime transmis-

sion model, a decrease in the derivative order leads to a reduction in the number of

generated criminals. Therefore, a decrease in memory has been observed to result in

a decrease in the transmission of crime.

The identification of parameters such as α, β, and γ play a pivotal role in pattern

recognition, assisting policymakers in informed decision-making and the formulation of

effective crime-addressing policies. Policymakers should strengthen law enforcement,

promote community policing, and implement deterrent programs to enhance the inhibition

effect. Addressing the crowding effect caused by high population density requires thought-

ful urban planning and community design. Measures such as improving public spaces, and

fostering community engagement contribute to creating environments less conducive to

unnoticed or unchallenged criminal activities.

The findings of this chapter are published in the following referred publication:

• K. Bansal, T. Mathur, and S. Agarwal (2023), “Fractional-order crime propagation

model with non-linear transmission rate.” Chaos, Solitons & Fractals, 169, 113321.
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Chapter 4

Crime Modeling: A Comparison

Between Logistic and Exponential

Growth

“Society prepares the crime; the criminal commits it.”

- Henry Thomas Buckle

Exponential growth mathematical model describes the rapid and unrestricted increase in

the size or quantity of a population or phenomenon over time. In this model, the rate of

growth is proportional to the current population size. The exponential growth is typically

expressed as: N(t) = N0 · ert, where N(t) is the population size at time t, N0 is the initial

population size at t = 0, r is the growth rate (a positive constant). Exponential growth

assumes continuous and unbounded growth, and the population size increases without

limits. It does not account for factors like limited resources or competition, which are

more realistically addressed by the logistic growth model.

The logistic growth model is a modification of the exponential growth model that takes

into account limitations on population growth. It assumes that as a population grows, it

encounters constraints such as limited resources, competition, or environmental factors

that slow down its growth rate and eventually reach a carrying capacity (K), which is the

maximum sustainable population size for a given environment. The logistic growth is
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typically expressed as: N(t) =
K

1 +
K −N0

N0

e−rt

, where K is the carrying capacity, the

maximum population size the environment can support. In the logistic growth model, the

population initially grows rapidly (exponential phase) but then slows down as it approaches

the carrying capacity (K). As the population size approaches K, the growth rate decreases

until it levels off, resulting in a stable population size. The logistic growth model is more

applicable to real-world populations and natural resources because it considers limiting

factors that prevent unbounded growth.

According to the logistic growth theory, the population per capita growth rate drops

when population size approaches the carrying capacity, a limit imposed by limited natural

resources. The crime transmission model in previous chapter are exponential growth

models. As a result, to overcome this feature of crime propagation models and reflect

the significance of memory in crime propagation, a fractional mathematical model with

logistic growth is required. This study analyzes the fractional crime propagation model

that may be applied to dynamic processes to represent the spread of illicit activities from

one criminal to another. In the current judicial system, a mathematical crime propagation

model that integrates memory inheritance benefits the prevention of actual crimes and the

formation of policies [59]. This crime propagation model differs from previous models

discussed in Chapter 2 and Chapter 3 due to its inclusion logistic growth.

In this chapter, a comparison is drawn between various growth models, including

exponential and logistic models, and the equilibrium points of the introduced fractional-

order models are deduced. Furthermore, there are two equilibrium points, crime-free

equilibrium and crime persistence equilibrium, for the exponential growth model, and

three equilibrium points: crime-free equilibrium, crime-free axial equilibrium, and crime

persistence equilibrium for the logistic growth model. By modifying critical components

like incarceration and criminal release, the equilibrium may be utilized to examine the

impact of criminal behavior in the community. The proposed model may help jurisdictional

authorities and partners more effectively stop the spread of crime by isolation of criminals

from non-criminals.
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4.1 Overview of Crime Propagation Models

Even though various reasonable attempts (police deployment, punishment, incarceration,

recidivism, and other rules and regulations) are made regularly at a given place, criminal

activities are still on the rise. As a result, we need to propose a model that can assist in

explaining, anticipating, and further curbing illegal proliferation by deploying suitable

security personnel and enforcement laws. Due to the existence of two perspectives, law-

abiding citizens and offenders, we may easily recognize disagreements, injustices, various

forms of conflicts, and their results. Mathematical modeling is a crucial tool to address

the issue of how the coexistence of two mindsets affects crime in a given region. These

two mindsets will refer to two populations in this paper: the offender population (C) and

the non-criminal population (S). Therefore, while taking into account the aforementioned

factors, the proposed model is as follows:

4.1.1 Exponential Growth Model

The dynamics of C and S are given by the following system of fractional differential

equations:

dηS(t)

dtη
= µηS(t)− αηS(t)(C(t)− hC(t)) + lηC(t)

dηC(t)

dtη
= αηS(t)(C(t)− hC(t))− lηC(t)− ϱηC(t)

(4.1.1)

where η is the order of derivative and S(0) > 0, C(0) > 0 as the initial sizes of the popula-

tions S and C, respectively. Here, all variables µ, α, ϱ, h, l are positive. The notation µηS

denotes that, in the absence of an offender, a rise in S is directly proportionate to its natural

growth rate µ and each parameter raised to power η (order of derivative) to dimensionally

balance the model. αηS(C−hC) denotes a decline in S due to the conversion and isolation

rates. Here, α denotes the rate at which the non-criminal population transforms into the

offender’s population due to interaction, and h denotes the rate at which offenders are

imprisoned or selected out of the general population to prevent interactions (isolation rate).
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The offender transforms into the non-criminal population due to law enforcement (l). ϱηC

is the decrease in the offenders due to the natural mortality rate of C.

4.1.2 Logistic Growth Model

Exponential growth does not happen in the real world. A population may increase

exponentially for a brief period, but ultimately, it will reach its resource limit. The logistic

growth hypothesis states that the population growth rate per person decreases as population

size approaches the carrying capacity, a constraint imposed by the availability of natural

resources. Hence, the temporal dynamics of C and S with logistic growth are given by the

following system of fractional differential equations:

dηS(t)

dtη
= µη

(
1− S(t)

K

)
S(t)− αηS(t)(C(t)− hC(t)) + lηC(t)

dηC(t)

dtη
= αηS(t)(C(t)− hC(t))− lηC(t)− ϱηC(t)

(4.1.2)

where K represents the carrying capacity of law-abiding citizens in the absence of the

offender population. The rate of growth reduces to zero when S approaches K.

4.2 Analysis of the Proposed Models

4.2.1 Equilibrium Points

By setting the right-hand sides of each equation in the proposed model to zero, we can

determine the equilibrium points.

Exponential Growth Model
There are two equilibrium points for the exponential growth model (4.1.1):

• A crime-free steady state exists if offenders become zero, i.e., E1 = (0, 0). It is

the starting point of any civilization. It’s important to note that achieving and

maintaining a crime-free equilibrium is an ideal scenario and is not often fully

realized in practice.

• Crime persistence steady state exists if both non-criminals and offenders become
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non-zero, i.e.,

E2 = (S∗, C∗) =

(
ϱη + lη

αηH
,
µη(ϱη + lη)

αηHϱη

)
, where (1− h) = H.

A crime persistence equilibrium point describes a scenario where a community

experiences a consistent and enduring level of criminal activity over time. This

equilibrium point is characterized by stable crime rates, recurring criminal behavior,

and resilient social factors, making it challenging to reduce crime significantly

despite intervention efforts.

Logistic Growth Model
There are three equilibrium points for the logistic growth model (4.1.2):

• A crime-free steady state exists if offenders become zero, i.e., L1 = (0, 0).

• Crime-free axial equilibrium exists if only offenders become zero, i.e., L2 = (K, 0).

An equilibrium point in which non-criminals exist, while criminals are nonexistent

(zero), represents a state in which the community or society has achieved a condi-

tion of zero criminal activity. In this equilibrium, the population consists only of

individuals who do not engage in criminal behavior, resulting in a crime-free state.

It signifies a highly desirable situation where law and order prevail, and crime has

been effectively eliminated. It’s important to note that achieving and maintaining

this equilibrium is an ideal scenario and is not often fully realized in practice.

• Crime persistence steady state exists if both population non-criminals and offenders

become non-zero, i.e.,

L3 = (S∗, C∗) =

(
ϱη + lη

αηH
,
µη(ϱη + lη)

Kα2ηH2ϱη
(KHαη − ϱη − lη)

)
,

where (1− h) = H, L3 would exist if KHαη > ϱη + lη.

Achieving a persistent level of crime is not a desirable or intentionally sought-after

goal for any society.
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4.2.2 Stability Analysis

Exponential Growth Model
Theorem 4.2.1. The crime-free equilibrium point E1 = (0, 0) of the system (4.1.1) is

unstable (saddle point).

Proof. The Jacobian matrix at E1 is

JE1 =

 µη lη

0 −ϱη − lη

 .
Clearly, the two eigenvalues are µη,−ϱη− lη and one is positive. So, using Routh–Hurwitz

conditions (Theorem 1.4.4), E1 is unstable.

Theorem 4.2.2. The crime persistence equilibrium point E2 of the system (4.1.1) is locally

asymptotically stable.

Proof. The Jacobian matrix at E2 is

JE2 =

 µη − αηC∗H −αηS∗H + lη

αηC∗H αηS∗H − ϱη − lη

 =

 µη − αηC∗H −αηS∗H + lη

αηC∗H 0

 .
Hence, the characteristic equation can be written as λ2 + P1λ+ P2 = 0 where

P1 = -trace(JE2), P2 = det(JE2). Clearly,

P1 = −(µη − αηC∗H) = −
(
µη − αηµ

η(ϱη + lη)

αηHϱη
H

)
=
µηlη

ϱη
> 0,

P2 = αηC∗H(αηS∗H0− lη) = µη(ϱη + lη) > 0.

So, using Routh–Hurwitz conditions (Theorem 1.4.4), E2 is stable.

Logistic Growth Model
Theorem 4.2.3. The crime-free equilibrium point L1 = (0, 0) of the system (4.1.2) is

unstable (saddle point).
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Proof. The proof is trivial and similar to Theorem 4.2.1.

Theorem 4.2.4. The crime-free axial equilibrium point L2 = (K, 0) of the system (4.1.2)

is locally asymptotically stable when KHαη < ϱη + lη.

Proof. The Jacobian matrix at L2 is

JL2 =

 −µη −αηKH + lη

0 αηKH − ϱη − lη

 .
Clearly, the two eigenvalues are −µη, αηKH−ϱη−lη. So, using Routh–Hurwitz conditions

(Theorem 1.4.4) L2 is stable iff αηKH − ϱη − lη < 0 =⇒ KHαη < ϱη + lη.

Theorem 4.2.5. The crime persistence equilibrium point L3 of the system (4.1.2) is locally

asymptotically stable when KHαη > ϱη + lη.

Proof. The Jacobian matrix at L3 is

JL3 =

 µη − 2µηS∗

K
− αηC∗H −αηS∗H + lη

αηC∗H αηS∗H − ϱη − lη



=

 − l
ηC∗

S∗ − µηS∗

K
−αηS∗H + lη

αηC∗H 0

 .
Hence, the characteristic equation can be written as

λ2 + P1λ+ P2 = 0 where P1 = -trace(JL3), P2 = det(JL3)

Clearly,

P1 = −
(
− l

ηC∗

S∗ − µηS∗

K

)
> 0 if KHαη > ϱη + lη,

P2 = αηC∗H(αηS∗H − lη) =
µη(ϱη + lη)

KαηH
(KHαη − ϱη − lη) > 0 if KHαη > ϱη + lη.

So, using Routh–Hurwitz conditions (Theorem 1.4.4) L3 is stable if KHαη > ϱη+lη.
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4.2.3 Validation Through Phase Portrait

Now, let the following set of parameters taken from previously published articles such

as Pritam et al. [10], Bansal et al. [125], and Partohaghighi et al. [126] to validate our

analytical result for different values of h:

µ = 1.3, α = 0.4, l = 0.2, ϱ = 1.9, K = 10.

h = 0.6 =⇒ KHαη < ϱη + lη

h = 0.3 =⇒ KHαη > ϱη + lη

for different order of derivative i.e. η = 0.85, 0.9, 0.95, and 1. The proposed fractional

order models have two and three equilibrium points for exponential growth and logistic

growth, respectively. The stability analysis of equilibrium points with different orders

of derivative (η = 0.85, 0.9, 0.95, and 1) satisfying conditions KHαη < ϱη + lη and

KHαη > ϱη + lη for the both proposed models shown in Figures 4.1–4.4 respectively.

For both proposed models, the trivial equilibrium point is always unstable for different

orders of derivatives.

The crime-persistence equilibrium is unconditionally stable for the exponential growth

model (Figures 4.1(a)–4.4(a)) while for the logistic growth model, this equilibrium point

exists and is stable if KHαη > ϱη + lη (Figures 4.1(b)–4.4(b)). Also, the crime-free axial

equilibrium point exists for only the logistic growth model and stable if KHαη < ϱη + lη

(Figures 4.1(b)–4.4(b)). The stability analysis of equilibrium points with different orders

of derivative (η = 0.85, 0.9, 0.95, and 1) for both proposed models is shown in Tables

4.1–4.8 for KHαη < ϱη + lη, and KHαη > ϱη + lη.

Table 4.1: Stability analysis for h = 0.6,
KHαη < ϱη + lη; η = 0.85.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (10.787,7.813) Stable Spiral
Logistic (0,0) Saddle Point
model (10,0) Stable Node

(10.787,-0.615) Saddle Point

Table 4.2: Stability analysis for h = 0.3,
KHαη > ϱη + lη; η = 0.85.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (6.164,4.465) Stable Spiral
Logistic (0,0) Saddle Point
model (6.164,1.713) Stable Spiral

( 10,0) Saddle Point
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C

C

C

C

(a) Phase portrait for exponential growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and
KHαη > ϱη + lη respectively.

C

C C

C

(b) Phase portrait for logistic growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and KHαη >
ϱη + lη respectively.

Figure 4.1: Phase portrait for stability analysis of the proposed models with an order of
derivative 0.85.

Table 4.3: Stability analysis for h = 0.6,
KHαη < ϱη + lη; η = 0.9.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (11.501,8.174) Stable Spiral

Logistic (0,0) Saddle Point
model (10,0) Stable Node

(11.501,-1.227) Saddle Point

Table 4.4: Stability analysis for h = 0.3,
KHαη > ϱη + lη; η = 0.9.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (6.572,4.671) Stable Spiral

Logistic (0,0) Saddle Point
model (6.572,1.601) Stable Spiral

(10,0) Saddle Point
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C

C C

C

(a) Phase portrait for exponential growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and
KHαη > ϱη + lη respectively.

C

C C

C

(b) Phase portrait for logistic growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and KHαη >
ϱη + lη respectively.

Figure 4.2: Phase portrait for stability analysis of the proposed models with an order of
derivative 0.9.

Table 4.5: Stability analysis for h = 0.6,
KHαη < ϱη + lη; η = 0.95.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (12.279,8.562) Stable Spiral

Logistic (0,0) Saddle Point
model (10,0) Stable Node

(12.279,-1.951) Saddle Point

Table 4.6: Stability analysis for h = 0.3,
KHαη > ϱη + lη; η = 0.95.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (7.017,4.893) Stable Spiral

Logistic (0,0) Saddle Point
model (7.017,1.46) Stable Spiral

(10,0) Saddle Point

84



4.2. Analysis of the Proposed Models

C

C C

C

(a) Phase portrait for exponential growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and
KHαη > ϱη + lη respectively.

C

C

C

C

(b) Phase portrait for logistic growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and KHαη >
ϱη + lη respectively.

Figure 4.3: Phase portrait for stability analysis of the proposed models with an order of
derivative 0.95.

Table 4.7: Stability analysis for h = 0.6,
KHαη < ϱη + lη; η = 1.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (13.125,8.98) Stable Spiral

Logistic (0,0) Saddle Point
model (10,0) Stable Node

(13.125,-2.806) Saddle Point

Table 4.8: Stability analysis for h = 0.3,
KHαη > ϱη + lη; η = 1.

Equilibrium Stability
point

Exponential (0,0) Saddle Point
model (7.5,1.283) Stable Spiral

Logistic (0,0) Saddle Point
model (7.5,1.283) Stable Spiral

(10,0) Saddle Point
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C

C

C

C

(a) Phase portrait for exponential growth for two sets of parameters satisfying conditions KHαη < ϱη + lη

and KHαη > ϱη + lη respectively.

C

C C

C

(b) Phase portrait for logistic growth for two sets of parameters satisfying conditions KHαη < ϱη + lη and
KHαη > ϱη + lη respectively.

Figure 4.4: Phase portrait for stability analysis of the proposed models with an order of
derivative 1.

4.3 Transcritical Bifurcation

In the exponential growth model, there are two equilibrium points. The trivial equilibrium

is always unstable, whereas the crime persistence equilibrium is globally stable. But

in the logistic growth model, when KHαη > ϱη + lη, we can observe that the logistic

growth model has three equilibrium points. The trivial equilibrium and crime-free axial

equilibrium are unstable saddle points, while crime persistence equilibrium is a stable

node. However, L2 turns out to be stable, whereas L3 appears to be unstable when
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KHαη < ϱη + lη. Consequently, when the system’s parameter values gradually change

and satisfy the equivalence KHαη = ϱη + lη, a sudden qualitative shift in its behavior

takes place. This shift causes the two fixed points, L2 and L3, to appear as if they are

colliding and undergoing a change in stability, resembling a transcritical bifurcation.

Theorem 4.3.1. The proposed logistic growth model (4.1.2) shows transcritical bifurcation

at KHαη = ϱη + lη.

Proof. To verify the transversality condition necessary for the occurrence of a transcritical

bifurcation, we employ Sotomayor’s theorem (Theorem 1.4.6). One of the eigenvalues

is λ = 0 since det(JL2) = λ1λ2 = 0. Assuming that v and w represent the eigenvectors

corresponding to the zero eigenvalues of matrices JL2 and JT
L2

respectively, defined as

v =

 −ϱη

µη

1

 , w =

 0

1

 .
The proposed model (4.1.2) is given by:

f =

 µη
(
1− S

K

)
S − αηS(C − hC) + lηC

αηS(C − hC)− lηC − ϱηC

 , fH =

 αηSCH

αηSCH

 .
At E2 = (K, 0), fH = 0 =⇒ ∇1 = wTfH(x0, H0) = 0. Now,

DfH =

 αηC αηS

−αηC −αηS

 ,

[D2f(x0, H0)(v, v)] =

 −2ϱ2η

µηK
+

−2αηHϱη

µη

−2αηHϱη

µη

 .
Hence,

∇2 = wT [DfH(x0, H0)v] = −αηK ̸= 0

∇3 = wT [D2f(x0, H0)(v, v)] =
−2αηHϱη

µη
̸= 0.
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The system meets all three requirements for transcritical bifurcation. Transcritical bifurca-

tion at H0 is thus demonstrated. It provides insights into the coexistence of stable crime

states, the sensitivity to parameter variations, and the potential for abrupt shifts in criminal

activity. This understanding can inform crime prevention strategies, law enforcement

efforts, and policy decisions to better address and manage crime in a given area.

4.4 Validation Through Numerical Simulation
The analytical findings for different orders of derivatives and growth models are supported

by the numerical data presented in this section.

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

35

X 332.953

Y 13.125

X 268.438

Y 12.28
X 392.859

Y 11.5031
X 220.047

Y 10.7926

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

X 438.938

Y 8.98026
X 232.719

Y 8.56116

X 375.578

Y 8.17172

X 296.078

Y 7.80819

(a) Time series plot for the dynamics of non-criminals and offenders for exponential growth.
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(b) Time series plot for the dynamics of non-criminals and offenders for logistic growth.

Figure 4.5: Dynamics of non-criminals and criminals for the set of parameters satisfying
KHαη < ϱη + lη for different order of derivative.
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To solve the proposed model, the Adams-Bashforth-Moulton predictor-corrector

method is employed [109]. Figure 4.5(a) and Figure 4.6(a) show that the crime per-

sistence equilibrium point for the proposed exponential growth model is asymptotically

stable unconditionally for different derivative orders (η). It is also observed that the of-

fender population decreases with the derivative order, and the equilibrium point is achieved

faster in the fractional-order model compared to the integer-order model.
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(a) Time series plot for the dynamics of non-criminals and offenders for exponential growth.
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(b) Time series plot for the dynamics of non-criminals and offenders for logistic growth.

Figure 4.6: Dynamics of non-criminals and criminals for the set of parameters satisfying
KHαη > ϱη + lη for the different order of derivative.

The study also demonstrates that the logistic growth model’s offenders ultimately

reach zero when KHαη < ϱη + lη (Figure 4.5(b)). The axial crime equilibrium exists

and is stable when KHαη < ϱη + lη for the logistic growth model only. This is because
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the population of offenders who are dying (ϱ) and becoming non-criminals (l) is greater

than those who can become offenders (α). Due to increased resource availability and

law enforcement development, the maximum population of non-criminals who turn into

offenders is reduced, and offenders are more likely to convert to non-criminals, resulting

in a society free from crime. The crime persistence equilibrium exists and is stable when

KHαη > ϱη+lη for the logistic growth model. This is because the population of offenders

who are dying (d) and becoming non-criminals (l) is smaller than those who can become

offenders (α). WhenKHαη > ϱη+ lη (Figure 4.6(b)), the incoming flux into the offenders

is larger than the outgoing flux from the offenders at a particular time. The natural growth

factor would first cause the non-criminal population to rise and reach its peak. There is

a net gain in the offender population when the non-criminal population is at its highest

point because the conversion of non-criminals into offenders rises, reaches its maximal,

and outperforms the decline in the offender population caused by deaths and conversion to

non-criminality.

4.5 Results and Discussion
This research investigated an exploiter-victim model system using the predator-prey

interaction system. It is a fairly simple model, and more complex ones may be developed

by incorporating a variety of real-world possibilities. Offenders stand for the predator

type, whereas non-criminals represent the prey type. The exponential growth model (4.1.1)

shows that the offender and non-criminal population can exist simultaneously as the trivial

equilibrium point is unstable (saddle point). Furthermore, any slight modification to the

system does not lead to a significant change while both populations are at a positive

level (Figures 4.1(a)–4.6(a)). Additionally, as the number of non-criminals rises, the

population of offenders also increases for exponential growth (Tables 4.1–4.8). It is also

observed that the offender population decreases as the order of derivatives decreases.

Hence, the fractional-order exponential model demonstrates that offenders increase with

non-criminals and decrease with the order of derivatives.

According to this study, in the logistic model, as the order of derivatives increases, the
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non-criminal population increases, and the offender population declines. In the integer-

order model, the non-criminal population is maximized while the offender population

is minimized, which is beneficial to society. However, according to the National Crime

Records Bureau, Government of India, the criminal population is increasing as the crime

rate per lakh population rises from 1981 to 2020 (Figure 1.2). As a result, the fractional-

order logistic model reflects reality as compared to the integer-order model.

According to the analysis of the logistic growth model (4.1.2), the criminally inclined

community can either cohabit with the law-abiding citizens (Figure 4.6(b)) or go extinct

(Figure 4.5(b)). Whether the offender coheres with the law-abiding citizens or decreases

to zero depends on isolation term h and law enforcement l. Our findings reveal that the

offender increases when both h and l are decreased. However, the offender rapidly declines

and wipes out when either of these two hits a threshold number. At the threshold values of

h and l, the investigated logistic growth model exhibits bifurcation centered on an internal

equilibrium point L3. Therefore, the findings suggest that constructing a stronger and more

effective legal system or providing better living circumstances that isolates the criminals

from non-criminals can significantly lower the number of criminal acts. A community

may not always be able to increase law enforcement and offer the necessary resources

simultaneously. This research demonstrates that a society may be free from crime even if

only one of the requirements is satisfied.

4.6 Summary and Conclusions
A fractional-order crime transmission mathematical model with logistic growth and isola-

tion rate is developed in this work, which considers essential links and behavioral changes

among the population. This study compares the exponential and logistic growth models. In

an exponential growth model, there are only two equilibrium points, while in the logistic

growth model, there are three equilibrium points. Crime-free axial equilibrium exists only

in logistic growth and is stable when KHαη < ϱη + lη otherwise unstable. For the logistic

growth model, the integer-order model maximizes the population of law-abiding people

while minimizing the population of criminals, which is advantageous for society but not
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practically possible. Hence, the fractional-order logistic model depicts reality in a better

way than integer-order models. We discover that the offender population increases when

both h and l are decreased. However, the criminal population rapidly declines and is wiped

out when either of these two hits a threshold number. Numerical simulations were used

to validate the theoretical conclusions. Finally, this study demonstrated the importance

of having a trustworthy subset of law enforcement in society to lower crime. Below, we

summarize the key points of this chapter:

• A fractional-order mathematical model of crime transmission is proposed by includ-

ing the logistic growth and isolation rate and this study compares the exponential

and logistic growth crime transmission models for different order of derivatives.

• Analytical findings are validated by phase portraits and numerical simulations for

different order of derivatives.

• The incidence of transcritical bifurcation is investigated including law enforcement

and the finding reveals that the fractional-order logistic models better reflect reality

than integer-order models.

Based on this research, a stronger and more efficient legal system, in conjunction with

enhanced living conditions that can isolates criminals and noncriminals has the potential

to significantly decrease the incidence of crimes. It’s important to note that a community

might not always have the capacity to simultaneously bolster law enforcement and provide

the necessary resources. Hence, this chapter demonstrates that a society can achieve a

crime-free environment even if only one of these conditions is fulfilled.

This chapter has been communicated as follows:

• K. Bansal and T. Mathur, “Fractional-order crime propagation model: A comparison

between logistic and exponential growth.” (Communicated)
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Chapter 5

Impact of Social Media on Academics

“We don’t have a choice on whether we do social media;

the question is how well we do it.”

- Erik Qualman

India is the world’s third-largest internet user, and social media has become a playground

for the young generation. Social media’s popularity has grown exponentially over the

past few decades. Social networking services such as Twitter and Facebook have become

popular in recent years [27]. Social media can both, positively and negatively impact

academics [139]. On the positive side, it can facilitate collaboration, information sharing,

educational resources, exposure to diverse perspectives, and networking among students

and researchers. It can also serve as a platform for educational content and discussions.

However, the negative aspects include distractions, reduced focus, and the potential for

misinformation [140]. Excessive use of social media might lead to decreased study time

and even impact mental well-being [141, 142]. It’s important for individuals to find a

balance that enhances their academic pursuits while minimizing the drawbacks of social

media. In some cases, students are more obsessed with social media or social networks than

with the classroom teaching, due to which students affect their academic performance. The

unfavorable consequences of using social networking sites overbalance the opportunities.

Any facility comes with its own set of benefits and drawbacks. However, as the individual

becomes immersed in the digital world, social networking becomes an addiction, and
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this enthusiasm costs real-life happiness in terms of relationships and personal ambitions.

In summary, social media can be a valuable tool for academics, but its usage should be

approached with caution. Students and researchers need to be mindful of the potential

distractions and negative effects, and make deliberate efforts to strike a balance between

online engagement and their academic pursuits.

Due to covid pandemic and lockdown, usage of social platforms increases not only

for entertainment purposes but also for academic purposes. As a result, students are at

significant risk of developing social media addiction, so techniques to control social media

addiction transmission throughout society are required. Early exposure, traumatic events,

positive and negative memories, peer influence, and past behavioral patterns can shape

addiction tendencies. Positive reinforcement, emotional attachment, and memories of

social connections can make it difficult to disengage from social media. Understanding

these historical factors is essential for addressing and managing social media addiction

effectively. As a preliminary investigation, all prior experiments have used integer-order

compartmental structures [143–148]. Furthermore, fractional-order derivatives outperform

integer-order derivatives in several applications of sciences where memory plays an

important role [4, 125, 149–152].

As a result, in 2021, Kongson et al. [5] proposed a nonlinear fractional social media

addiction model utilizing Atangana Baleanu Caputo derivative. However, the above

mentioned studies did not include the impact of social media addiction on academics as

well as memory/past history. The most common causes of social media addiction are

chronic stress, trauma, mental illness, and a family history of addiction. As a result, a

fractional-order mathematical model is required to overcome this issue and show how

memory affects the influence of the social network on students. Hence, a fractional-

order social media model is suggested in this study to represent the interaction of social

media-addicted students with less involved or non-user individuals.

5.1 Development of Mathematical Model
This section proposes a model that involves the following assumptions:
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• There are two groups of students: non-users of the social web and users of the

social web. Students who are users of the social web can be less involved or active

users. As a result, we categorize the overall student population N into five distinct

categories:

– X : Non-users of the social web,

– SL : Less involved users (less active),

– SA : Active users,

– LP : Users performing low,

– HP : Users performing high.

 
 

𝑋 𝑆𝐿 𝑆𝐴 
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𝑁
 

𝑑̃𝑋 

Figure 5.1: Schematic diagram of the proposed model.
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• Since the overall likelihood is one, suppose the possibility of students in the non-

users compartment is 1−mp, the possibility of students being in the less involved

compartment is np, and the possibility of students being in the active compartment

of the social web be (m− n)p.

• As we classified the students in terms of social web users, all three groups should

have a recruitment rate. Students will be recruited at the rates of (1 −mp)Ã for

X(t), npÃ for SL(t), and (m− n)pÃ for SA(t) where Ã is recruitment rate.

• Users who do not use the social web interact with less involved or active users and

eventually develop an interest in using it, leading them to join as less involved users

with the rate of transmission
β̃X(t)[SL(t) + SA(t)]

N(t)
.

A student who joins the social web nowadays is not perceived as an obsessive person

and is assigned to the compartment of less involved pupils.

• Students in the less involved compartment switch to the active compartment at

a rate of θ̃1SL(t), whereas active social media users switch to the less involved

compartment at a rate of δ̃SA(t).

• Students in the less involved compartment may perform high or low at the rate

qτ̃1SL(t), (1 − q)τ̃2SL(t) respectively, with the likelihood of students performing

high and low is q and (1− q), respectively.

• Additionally, students in the active compartment can perform either high or low

at the rate rα̃1SA(t), (1 − r)α̃2SA(t) respectively, with the likelihood of students

performing high and low is r and (1− r) respectively.

• Students with poor grades may opt to move to a less involved class at a rate of

θ̃2LP (t) if not removed. Students who perform low may die naturally at a rate of d̃

or be removed at a rate of ρ̃2LP (t), whereas students who perform high graduate at

a rate of ρ̃1HP (t) or die naturally at a rate of d̃.
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5.1.1 Model Equations

This section establishes a mathematical model, which is a system of nonlinear fractional or-

der differential equations with non-negative initial conditions, based on above assumptions

and Figure 5.1:

dηX(t)

dtη
= (1−mp)Ãη −

β̃ηX(t)[SL(t) + SA(t)]

N(t)
− d̃ηX(t)

dηSL(t)

dtη
= npÃη +

β̃ηX(t)[SL(t) + SA(t)]

N(t)
+ θ̃η2LP (t) + δ̃ηSA(t)

− (d̃η + θ̃η1 + qτ̃ η1 + (1− q)τ̃ η2 )SL(t)

dηSA(t)

dtη
= (m− n)pÃη + θ̃η1SL(t)− (d̃η + rα̃η

1 + (1− r)α̃η
2 + δ̃η)SA(t)

dηHP (t)

dtη
= qτ̃ η1SL(t) + rα̃η

1SA(t)− ρ̃η1HP (t)− d̃ηHP (t)

dηLP (t)

dtη
= (1− q)τ̃ η2SL(t) + (1− r)α̃η

2SA(t)− (ρ̃η2 + d̃η + θ̃η2)LP (t).

(5.1.1)

X(0) = X0, SL(0) = SL0, SA(0) = SA0, HP (0) = HP0, LP = LP0. (5.1.2)

Here N(t) = X(t) +SL(t) +SA(t) +HP (t) +LP (t) and η ∈ (0, 1] is order of derivative.

Parameters raised to power η to balance the dimension of system.

5.2 Dynamical Behaviour of Proposed Model
This section demonstrates the existence and uniqueness of the solution and then also prove

that the solution is non-negative and bounded.

5.2.1 Existence and Uniqueness of Solution

Theorem 5.2.1. There is a unique solution Φ(t) = [X(t), SL(t), SA(t), HP (t), LP (t)] for

the initial value problem given by eq. (5.1.1) along initial conditions (5.1.2) on t ≥ 0.

Furthermore, all solutions are bounded.

Proof. Let

Dηy(t) = A1y(t) + γA2y(t) + A3 = f(t, y(t)) (5.2.1)
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where

y(t) = [X(t), SL(t), SA(t), HP (t), LP (t)]
T ,

γ =
SL + SA

N
≤ 1,

A1 =



−d̃η 0 0 0 0

0 −(θ̃η1 + d̃η + qτ̃ η1 ) δ̃η 0 θ̃η2

−(1− q)τ̃ η2

0 θ̃η1 −(d̃η + rα̃η
1) 0 0

−(1− r)α̃η
2 + δ̃η

0 qτ̃ η1 rα̃η
1 −ρ̃η1 − d̃η 0

0 (1− q)τ̃ η2 (1− r)α̃η
2 0 −ρ̃η2 − d̃η − θ̃η2



A2 =



−β̃η 0 0 0 0

β̃η 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, A3 =



(1−mp)Ãη

npÃη

(m− n)pÃη

0

0


.

Eq. (5.2.1) represents the system of eq. (5.1.1) of the proposed model.

||Dηy(t)|| = ||f(t, y(t))|| = ||A1y(t) + γA2y(t) + A3||

≤ ||A1||.||y(t)||+ ||A2||.||y(t)||+ ||A3||

= (||A1||+ ||A2||)||y(t)||+ ||A3||.

(5.2.2)

Now as,

N(t) = X(t) + SL(t) + SA(t) +HP (t) + LP (t),

dηN(t)

dtη
=
dηX(t)

dtη
+
dηSL(t)

dtη
+
dηSA(t)

dtη
+
dηHP (t)

dtη
+
dηLP (t)

dtη
,

dηN(t)

dtη
= Ãη + d̃ηN(t)− ρ̃η1HP − ρ̃η2LP ,

≤ Ãη + d̃ηN(t).

(5.2.3)
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By taking Laplace transformation (from eq. (1.1.13)),

N(s) =

Ãη

s
+ sη−1N(0)

sη + d̃η
. (5.2.4)

Now, by taking inverse Laplace transformation (from eq. (1.1.8)),

N(t) =
Ãη

d̃η
[1− Eη(−d̃ηtη)] +N(0)Eη(−d̃ηtη) (5.2.5)

where Eη is Mittag-Leffler function defined in eq. (1.1.6) and 0 ≤ Eη(−d̃ηtη) ≤ 1.

=⇒ N(t) ≤ Ãη

d̃η
(5.2.6)

According to existence and uniqueness theorem (Theorem 1.4.1) the solution on

t ∈ (0,∞) of the proposed model (5.1.1) not only exists but also unique and bounded.

5.2.2 Non-Negative Solution

From 1st equation of proposed model (5.1.1),

dηX(t)

dtη
≥ −

(
β̃ηSL(t) + SA(t)

N(t)
+ d̃η

)
X(t)

=⇒ X(t) ≥ X(0)Eη[−(β̃ηγ + d̃η)tη] (5.2.7)

=⇒ X(t) ≥ 0. (5.2.8)

Similarly,

SL(t) ≥ 0, SA(t) ≥ 0, HP (t) ≥ 0, LP (t) ≥ 0. (5.2.9)

5.2.3 Identifying the Invariant Set

The set Ω is an invariant set, if the initial conditions are in Ω, the solution of model always

remains in Ω. As a consequence, a positively invariant set will have positive solutions.

Hence, from eq. (5.2.6)–eq. (5.2.9)
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Ω =

{
(X,SL, SA, HP , LP ) ∈ R4

+ : 0 ≤ X + SL + SA +HP + LP ≤ Ãη

dη

}
is a positively invariant region.

5.3 Assessment of Equilibrium Points and Reproduction

Number

There are two equilibrium points exist for the proposed model eq. (5.1.1):

• Social Web Free equilibrium: When there are no social web users (less involved

users and active users).

• Endemic Equilibrium: When the number of social web users are not zero.

5.3.1 Social Web Free Equilibrium

The social web free equilibrium point exists when less involved and active users are

zero. Students who sought admission to an educational institution were either denied

admission, or got an acceptance letter but had not enrolled/were still registering, or had

registered but had yet to begin utilizing social media for academic reasons. As a result,

E0 =

(
Ãη

d̃η
, 0, 0, 0, 0

)
.

5.3.2 Reproduction Number

The reproduction number, denoted R0, is defined as “the estimated number of secondary

cases created by an infective person in a fully susceptible population [111].” The proposed

model has two infected groups (less involved users (SL), active users (SA)) and a force of

infection β̃ηSL(t) + SA(t)

N(t)
. To determine the reproduction number the next-generation

matrix approach is employed at social web free equilibrium.

dηZ

dtη
= F(Z;Y )− V(Z;Y )
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dηY

dtη
= W(Z;Y )

F(Z;Y ) : New infection rates (flows from Y to Z)

V(Z;Y ) : All other rates (not new infection).

F =

(
∂F
∂X

)
E0

, V =

(
∂V
∂X

)
E0

F =

 β̃η β̃η

0 0

 , V =

 θ̃η1 + d̃η + qτ̃ η1 + (1− q)τ̃ η2 −δ̃η

−θ̃η1 d̃η + rα̃η
1 + (1− r)α̃η

2 + δ̃η


Let B1 = θ̃η1 + d̃η + qτ̃ η1 + (1− q)τ̃ η2 , B2 = d̃η + rα̃η

1 + (1− r)α̃η
2 + δ̃η

The spectral radius of FV −1 is equal to R0, and

R0 =
β̃η(B2 + θ̃η1)

B1B2 − δ̃ηθ̃η1
.

R0 =
β̃η[d̃η + rα̃η

1 + (1− r)α̃η
2 + δ̃η + θ̃η1 ]

(θ̃η1 + d̃η + qτ̃ η1 + (1− q)τ̃ η2 )(d̃
η + rα̃η

1 + (1− r)α̃η
2 + δ̃η)− δ̃ηθ̃η1

. (5.3.1)

5.3.3 Endemic Equilibrium Point

Theorem 5.3.1. The positive endemic equilibrium exists and is unique if R0 > 1.

Proof. Let E∗ = (X∗, S∗
L, S

∗
A, H

∗
P , L

∗
P ) be the endemic equilibrium point of model (5.1.1)

then E∗ satisfies eq. (5.1.1), N∗ = X∗ + S∗
L + S∗

A +H∗
P + L∗

P , and γ∗ =
β̃η[S∗

A + S∗
L]

N∗

Thus from eq. (5.1.1), we have

X∗ =
(1−mp)Ãη

d̃η + γ∗
, H∗

P =
qτ̃ η1S

∗
L + rα̃η

1S
∗
A

ρ̃η1 + d̃η
, L∗

P =
(1− q)τ̃ η2S

∗
L + (1− r)α̃η

2S
∗
A

ρ̃η2 + d̃η + θ̃η2

S∗
L =

γ∗A+B(γ∗ + d̃η)

(γ∗ + d̃η)Q
, S∗

A =
γ∗D + E(γ∗ + d̃η)

(γ∗ + d̃η)Q

where A = B2B8(1−mp)Ãη, B = [nB2B8 + (m− n)(θ̃η2B7 + δ̃ηB8)]pÃ
η,

D = B8θ̃
η
1(1−mp)Ãη, E = [nθ̃η1B8 + (m− n)(B1B8 − θ̃η2B6)]pÃ

η,
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Q = B1B2B8 − δ̃ηθ̃η1B8 − θ̃η1 θ̃
η
2B7 − θ̃η2B2B6

and

B3 = qτ̃ η1 , B4 = rα̃η
1, B5 = ρ̃η1 + d̃η, B6 = (1 − q)τ̃ η2 , B7 = (1 − r)α̃η

2, B8 =

ρ̃η2 + d̃η + θ̃η2 .

Now, let F = A+B and G = D + E,

then

S∗
L =

γ∗F +Bd̃η

(γ∗ + d̃η)Q
, S∗

A =
γ∗G+ Ed̃η

(γ∗ + d̃η)Q
, H∗

P =
γ∗FB3 + γ∗GB4 + (BB3 + EB4)d̃

(γ∗ + d̃η)QB5

L∗
P =

γ∗FB6 + γ∗GB7 + (BB6 + EB7)d̃

(γ∗ + d̃η)QB8

, N∗ =
γ∗A0 + T

(γ∗ + d̃η)B5B8Q

where

A0 = B5B8F +B5B8G+B3B8F +B4B8G+B5B6F +B5B7F,

T = B5B8Q(1−mp)Ãη+B5B8Bd̃
η+B5B8Ed̃

η+B8(BB3+EB4)d̃
η+B5(BB6+EB7)d̃

η

We have,

γ∗2A0 + γ∗A1 − A2 = 0, (5.3.2)

where

A1 = T −B5B8β̃
η(F +G), A2 =

β̃ηd̃ηB5B8(B + E)(B1B2 − δ̃ηθ̃η1)

β̃η(B2 − θ̃η1)− (B1B2 − δ̃ηθ̃η1)
(R0 − 1).

According to Descartes rule of signs this polynomial has exactly one positive root if

R0 > 1.

5.4 Stability Analysis of Proposed Model

Theorem 5.4.1. The social web free equilibrium point E0 =
(

Ãη

d̃η
, 0, 0, 0, 0

)
of the system

(5.1.1) is globally asymptotically stable under some restriction on parameters when

R0 < 1; otherwise it is unstable.
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Proof. Jacobian matrix at E0 is

JE0 =



−d̃η −β̃η −β̃η 0 0

0 β̃η − (θ̃η1 + d̃η + qτ̃ η1 ) β̃η + δ̃η 0 θ̃η2

−(1− q)τ̃ η2

0 θ̃η1 −(d̃η + rα̃η
1) 0 0

−(1− r)α̃η
2 + δ̃η

0 qτ̃ η1 rα̃η
1 −ρ̃η1 − d̃η 0

0 (1− q)τ̃ η2 (1− r)α̃η
2 0 −ρ̃η2 − d̃η − θ̃η2


.

Clearly, two eigen-values are −d̃η,−ρ̃η1 − d̃η lie in 2nd quadrant.

To examine the stability of the system, it is necessary to assess the remaining eigenvalues.

To accomplish this, we take into account the following:

JE0 =



β̃η − (θ̃η1 + d̃η) β̃η + δ̃η θ̃η2

−(qτ̃ η1 + (1− q)τ̃ η2 )

θ̃η1 −(d̃η + rα̃η
1) 0

−((1− r)α̃η
2 + δ̃η)

(1− q)τ̃ η2 (1− r)α̃η
2 −ρ̃η2 − d̃η − θ̃η2


.

The characteristic equation of above matrix is given by

λ3 + C1λ
2 + C2λ+ C3 = 0

where C1 = −β̃η + θ̃η1 + d̃
η + qτ̃ η1 +(1− q)τ̃ η2 + d̃

η + rα̃η
1 +(1− r)α̃η

2 + δ̃
η + ρ̃η2 + d̃

η + θ̃η2

For

R0 =
β̃η(B2 + θ̃η1)

B1B2 − δ̃ηθ̃η1
< 1 =⇒ β̃η −B1 < 0.

=⇒ C1 = −β̃η +B1 +B2 + ρ̃η2 + d̃η + θ̃η2 > 0 whenever R0 < 1

C2 = B2(ρ̃
η
2+d̃

η+θ̃η2)−(β̃η−B1)(ρ̃
η
2+d̃

η+θ̃η2)−(1−q)τ̃ η2 θ̃
η
2−(β̃η−B1)B2−θ̃η1(β̃η+δ̃η)
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= (B2 − (β̃η −B1))(ρ̃
η
2 + d̃η + θ̃η2)− (1− q)τ̃ η2 θ̃

η
2 +B1B2 − δ̃ηθ̃η1(1−R0)

C3 = (B1B2 − δ̃ηθ̃η1)(1−R0)((ρ̃
η
2 + d̃η + θ̃η2)− θ̃η2 [(1− q)τ̃ η2B2 + (1− r)α̃η

2 θ̃
η
1 ]

By using Routh-Hurwitz criteria (Theorem 1.4.4), if C1, C3, C1C2 − C3 are greater than

zero; then the eigenvalues will have negative real parts. Therefore, the proposed model

(5.1.1) is stable if R0 < 1. Here (SL(t), SA(t), HP (t), LP (t)) → (0, 0, 0, 0) as t→ ∞, so,

(X(t), SL(t), SA(t), HP (t), LP (t)) →
(

Ãη

d̃η
, 0, 0, 0, 0

)
as t → ∞. Hence, E0 is globally

asymptotically stable for R0 < 1 if C1, C3, C1C2 − C3 are greater than zero.

Theorem 5.4.2. The E∗ = (X∗, S∗
L, S

∗
A, H

∗
P , L

∗
P ) is locally asymptotically stable if R0 >

1.

Proof. The characteristic equation corresponding to the Jacobian matrix of the proposed

model at E∗ = (X∗, S∗
L, S

∗
A, H

∗
P , L

∗
P ) is

D4 +D3λ+D2λ
2 +D1λ

3 + λ4 = 0 (5.4.1)

The characteristics equation will have complex roots with negative real parts ifD1, D4, D1D2−

D3, D1D2D3−D2
3−D4D

2
1 are greater than zero. As a consequence,E∗ = (X∗, S∗

L, S
∗
A, H

∗
P , L

∗
P )

is locally asymptotically stable if the preceding conditions are satisfied.

5.5 Dataset and Methodology
The COVID-19 pandemic has accelerated and magnified the role of social media in

our lives, affecting both the positive and negative aspects of our interactions with these

platforms. While social media can serve as a valuable tool for connection and information-

sharing, it’s important to be mindful of the potential for addictive behaviors and to find a

healthy balance between online and offline activities. Despite the substantial advantages

social media brings to academia, it is prudent to adopt a careful approach. In this regard,

the primary aim of this study is to optimize the utilization of social media to contribute to

a more promising future for students in real-life situations. For this, to collect data, Google
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Forms circulated as a questionnaire to students of various institutions in Punjab, Haryana,

and Rajasthan states in India namely, BITS Pilani, Pilani campus; Chaudhary Devi Lal

College; Galgotia College of Engineering and Technology; Amity University; Maharshi

Dayanand University; Guru Jambheshwar University of Science and Technology; and

Banasthali Vidyapith.

Table 5.1: Initial value for different categories of social media users.

Population X SL SA HP LP

Initial Values 200 100 50 80 50

Table 5.2: Parameter description and values for social media addiction.

Parameter Description Value
Ã Recruitment rate 500
β̃ Rate at which people switch from the non-users to less involved users 0.7
θ̃1 Rate from which people switch from less involved users to active users 0.1
δ̃ Rate from which people switch from active users to less involved users 0.1
τ̃1 Rate of performing high by less involved users 0.68
τ̃2 Rate of performing low by less involved users 0.32
α̃1 Rate of performing high by active users 0.78
α̃2 Rate of performing low by active web users 0.28
θ̃2 Rate at which low-performing students are switched to less involved users 0.4
ρ̃η1 Graduation rate as a consequence of outstanding results 0.5
ρ̃η2 withdrawal rate as a consequence of poor performance 0.3
d̃ Natural death rate 0.019
mp Possibility of students being in the non-users compartment 0.6
np Possibility of students being in the less involved compartment 0.2

Students in higher education are chosen since they are more likely to use smartphones

and computers. According to the findings, the most popular reason for using social

media is to keep in touch with friends, immediately followed by reasons like socializing

with more people, enjoying oneself, professional issues, and many more. As a result

of the COVID-19 pandemic, the bulk of time spent on social media networking sites is

approximately three hours each day for academic objectives. Consequently, within the

scope of this current research, students who allocate up to three hours to social media
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are categorized as non-users of social platforms. Those who spend between three to five

hours on social media are considered less active users, while those who invest more than

five hours are regarded as active social media users. Students achieving a 60% and above

are classified as high-performing students, while those falling below this threshold are

categorized as low-performing students. Subsequently, the collected data is employed

to compute various parameters for further analysis. The initial conditions and values of

parameters used for verification are shown in Tables 5.1–5.2.

5.6 Numerical Experiment
The numerical simulation supports the analytical results for different derivative orders and

illustrates the relevance of the threshold value (R0).
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Figure 5.2: Variations of Non-Users X , Less-Involved users SL, Active Users SA, Users
performing high HP , and Users performing low LP with time for the different order of
derivatives, 0.25, 0.5, 0.75, and 1 respectively.
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These simulations also help us to understand better how different groups of individuals

interact. The predictor-corrector approach of Adams-Bashforth-Moulton is used to solve

the proposed model [109].
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(c) Reproduction number is increasing with the
order of derivative, i.e., active users increase
with the order of derivative.

Figure 5.3: Relation of reproduction no. (R0) with rate of performing high by active users
(α̃1), users performing high by less active users (τ̃1), and order of derivative (η).

Figure 5.2 shows that the social web free and endemic steady state of the proposed

model is asymptotically stable for various values of the order of derivative (η). Trajectories

of all the compartments decrease for orders less than equal to 0.5 and show increasing

behavior for orders greater than 0.5. From Figure 5.2, Figure 5.4, and Figure 5.5, it can be

shown that as η increases, each population converges faster to its equilibrium. If R0 > 1,
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the society cannot be social media-free, but it can reduce its usage and become stable over

a certain period, irrespective of the order of derivative.

(a) For η = 0.25, SL, SA decreasing with time to
attain the stable state.

(b) For η = 0.5, SL, SA decreasing with time to
attain the stable state.

(c) For η = 0.75, SL, SA increasing with time to
attain the stable state.

(d) For η = 1, SL, SA, increases with time to attain
the stable state.

Figure 5.4: Variation of Less active users (SL), Active users (SA), with different order of
derivative 0.25, 0.5, 0.75, and 1 respectively.

Figure 5.3(a) shows that the socially addicted population SA decreases as the repro-

duction number decreases with time when the rate of performing high by active users

increases. Figure 5.3(b) shows that the socially addicted population SA is decreasing with

time when the rate of performing high by less active web users increases. Figure 5.3(c)

shows that the socially addicted population SA is decreasing with time as the reproduction

number decreases when order decreases from 1 to 0. Hence, the reproduction number

decreases with the rate of high-performance users increasing irrespective of the order of
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derivative and validates the stability of the fractional-order model.

(a) For η = 0.25, HP , LP decreasing with time to
attain the stable state.

(b) For η = 0.5, HP , LP decreasing with time to
attain the stable state.

(c) For η = 0.75, HP , LP increasing with time to
attain the stable state.

(d) For η = 1, HP , LP increasing with time to
attain the stable state.

Figure 5.5: Variation of Users performing high (HP ), Users performing low (LP ) with
different order of derivative 0.25, 0.5, 0.75, and 1 respectively.

For the set of parameters given in Tables 5.1–5.2, it is found that for the order of

derivative (η) less than 0.5, the reproduction number (R0) is less than 1. The solution of

the suggested model converges to social web free equilibrium point η ≤ 0.5 indicating for

η ≤ 0.5 social media addiction converse to zero. The rate of performing high increases

as the order of derivative decreases. As the derivative order decreases, the reproduction

number also decreases. When reducing the derivative order from 1, the system exhibits

an increased memory effect, leading to decrease in social media addiction. This suggests

that the fractional order model outperforms the integer order model. The social web
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free equilibrium point does not exist in reality, and the primary objective is to use social

networking sites for students’ benefit. Hence, the optimal value of the order of derivative

lies in the neighborhood of 0.5, where the reproduction number is one (Figure 5.3(c)).

5.7 Conclusion
The nonlinear fractional differential equations are proposed to describe the impact of

social networking sites on student academic achievement. The social web free and

endemic equilibrium point exists for the proposed model. The reproduction number R0

differentiates the social web free and socially addicted equilibrium points. According

to the study, the social web free steady state is locally asymptotically stable when the

reproduction number is less than one and unstable otherwise. The significant findings of

the present research are listed below:

• The model proposed in this chapter differs from previous models as the social web-

free equilibrium point is not beneficiary for society. The primary objective of this

chapter is to show the existence and stability of endemic equilibria.

• All population trajectories demonstrate decreasing behavior for the order of deriva-

tive less than or equal to 0.5 and increasing behavior for orders greater than 0.5. The

primary aim of this study is to optimize the utilization of social media to contribute

to a more promising future for students in real-life situations. Hence, the optimal

value for the order of the derivative is ∼0.5 to optimize the utilization of social

media.

• As memory is integrated through a fractional-order derivative, a decrease in the

derivative order leads to a reduction in the reproduction number. This highlights the

significance of memory and demonstrates the high efficiency of a fractional-order

model over an integer-order model.

• The reproduction number diminishes as the prevalence of high-performance users

rises. Consequently, the frequency of high-performance occurrences increases as
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5.7. Conclusion

the derivative order decreases to incorporate memory.

Implementing educational programs with the aim of informing students about the impact

of social media on academic performance and fostering a perspective that sees social

media as a tool for academic enhancement, rather than a distraction, can significantly

enhance students’ academic achievements.

The findings of this chapter are published in the following referred publication:

• K. Bansal, T. Mathur, T. Mathur, S. Agarwal, and R.D. Sharma, “Impact of social

media on academics: A fractional order mathematical model.” International Journal

of Modelling and Simulation.
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Chapter 6

Impact of Skills Development on Youth

Unemployment

“Addressing unemployment requires a holistic approach that integrates

education, skills development, and job creation.”

- Nelson Mandela

Unemployment is a pressing global issue that affects individuals, communities, and

entire world economies. It refers to the situation where individuals willing and able

to work cannot secure enough employment opportunities based on their skills. The

consequences of high unemployment rates are far-reaching, encompassing economic,

social, and psychological aspects [73]. The social impact of unemployment is profound.

It can lead to social exclusion, a loss of self-esteem, and a sense of hopelessness among

the unemployed population [153]. The lack of job opportunities can exacerbate inequality

and social divisions, as certain groups, such as youth and marginalized communities, are

disproportionately affected. Additionally, unemployment can lead to increased crime rates

and social unrest, posing significant challenges to the overall stability and well-being of

societies [154–156]. Addressing the unemployment problem requires a comprehensive

understanding of its causes, dynamics, and potential solutions.

Youth unemployment is a critical global issue and a significant indicator of a country’s

economic situation. In impoverished nations, the lack of job opportunities for young indi-
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viduals is often attributed to their inadequate experience and the incompatibility between

their skills and the market demands [74,75]. Consequently, several governments, including

India, have taken steps to address this challenge through initiatives focused on skills devel-

opment for the unemployed [155]. One notable program is the “Pradhan Mantri Kaushal

Vikas Yojana (PMKVY)” or the “Skill India” program. This program aims to provide

skill training to a large number of Indian youth to make them job-ready and enhance their

employability. It offers a wide range of skill development courses and certifications across

various industries and sectors. Furthermore, the World Bank Group has been striving to

make sure that people have opportunities for high-quality education and training through

collaboration with several nations and development partners. Simultaneously, they also

support employers in identifying and accessing the required skills. Overall, addressing

unemployment and bridging the skills gap is crucial for promoting economic growth

and reducing the disparities in job availability. Governments, international organizations,

and development partners are actively involved in initiatives to equip individuals with

the necessary skills for employment and facilitate cooperation between job seekers and

employers.

Unemployment is influenced by a multitude of causative factors, including economic

conditions, labor market dynamics, government policies, education levels, technological

changes, and more. Mathematical models can incorporate these factors to provide insights

into the drivers of unemployment. Mathematical modeling provides a valuable tool for ana-

lyzing and predicting the behavior of unemployment rates and evaluating the effectiveness

of various policy interventions. By formulating mathematical models that capture the com-

plexities of the unemployment problem, researchers and policymakers can gain insights

into the underlying mechanisms, identify key factors influencing unemployment dynamics,

and explore strategies to mitigate its adverse effects. Recently several researchers have

focused on mathematical modeling of the unemployment problem [29,76,78–80,156–163].

Notably, the introduction of mathematical models describing the unemployment problem

can be attributed to Misra and Singh in 2011 [76]. In 2015, Pathan and Bhathawala [77]

investigated the influence of self-employment on the unemployment rate. Another study
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by Daud and Ghozali [78] in the same year developed a mathematical model incorporating

two classes: employed and unemployed individuals. Building upon their previous work,

Pathan and Bhathawala [29] expanded their model in 2016 by incorporating four classes:

unemployed individuals, employed individuals, new migrant workers, and newly vacant

positions. In 2017, Misra and Singh [79] further explored the unemployment problem by

considering the influence of skill development programs provided by academic institutions.

In 2018, another study highlighted the importance of creating more job opportunities

through increased employment rates and reduced diminution rates to address unemploy-

ment effectively [157]. Additionally, Ashi et al. [80] examined the impact of government

assistance on reducing the unemployment rate in a study conducted in 2022. These studies

contribute to understanding unemployment dynamics and provide insights into poten-

tial strategies and interventions to address this issue. By utilizing mathematical models,

researchers have shed light on various factors influencing unemployment and proposed

measures to mitigate its impact.

According to Gir-Alana et al. [81] the unemployment rate in Turkey demonstrates long

memory characteristics. Specifically, the non-agricultural and rural unemployment exhibit

long memory, indicating a non-locality of time or dynamic memory. The persistence of

unemployment rates, public perceptions and expectations, previous policy interventions,

and the use of historical data for forecasting demonstrate the importance of considering

the influence of past events and trends when studying and addressing unemployment. The

past history of a region or country has a significant impact on its current unemployment

situation. Factors such as economic cycles, structural changes, government policies,

education, demographics, historical events, technological advancements, globalization, and

social and cultural factors influence the current state of unemployment. Understanding this

historical context is vital for policymakers and economists when addressing unemployment

challenges and promoting job creation. It highlights the need for policies that consider the

long-term consequences of past events and trends on the labor market. Hence, fractional

order derivatives provide a more suitable approach for modeling unemployment compared

to integer-order derivative models. While several unemployment models have been
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developed over the years using integer-order derivatives, these models failed to account for

the non-local nature of time or dynamic memory [76, 79, 80, 157, 158]. The authors of the

aforementioned studies predominantly relied on traditional integer-order derivatives, which

often fail to capture the persistence and inherent characteristics of real-world dynamic

events. Therefore, embracing fractional order derivatives and modeling techniques is

imperative to better capture the complexities and dynamic memory of unemployment,

ultimately leading to more precise depictions and predictions of real-world dynamics.

Considering the increasing youth unemployment rate (Figure 1.3), it is crucial to exam-

ine the youth unemployment problem comprehensively. This chapter aims to understand

the impact of fractional order derivatives on modeling unemployment and explore the ef-

fect of the skill development program. In summary, modeling socio-economic phenomena

like unemployment provides valuable insights into the underlying dynamics and allows

policymakers to devise appropriate policy implications. By leveraging mathematical and

statistical models, researchers and policymakers can gain a deeper understanding of the

causes and consequences of unemployment, identify effective interventions, and work

towards creating a more prosperous and inclusive society.

6.1 Mathematical Model Formulation of Unemployment
This section proposes the unemployment model that involves the following assumptions:

• The overall population consists of three distinct categories: individuals without

employment (U), skilled individuals who are currently unemployed (SU), and

those who are employed (E). It’s important to note that not all members of the

unemployed group possess the necessary qualifications and skill set to secure a job.

• The proportion of unemployed individuals motivated to enhance their skills is

directly related to the size of the unemployed population moving to the SU class.

• There is a possibility that certain individuals who are currently unemployed may

transition into employment. The rate at which individuals move from unemployment
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to employment depends on the number of unemployed and available job vacancies

(V ).
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Figure 6.1: Schematic diagram of the proposed model.

• The rate of employment for skilled individuals who are unemployed is significantly

higher than the rate for unskilled individuals.

• Various factors can influence the number of employed individuals. Some employers

may terminate or lay off employees, while others may resign voluntarily. In either

case, these individuals will transition from being employed to becoming part of the

unemployed population.

• It is assumed that the rate at which individuals migrate or pass away is directly

proportional to the size of the population. The creation of vacancies solely occurs

due to employed individuals retiring, passing away, or migrating.

Figure 6.1 is a flowchart that is used to analyze how people move with the social hierarchy

of the human population, and the following set of dimensionally balanced fractional
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differential equations characterizes the corresponding model:

dηU

dtη
= Àη − κ̀η1UV + β̀ηE − σ̀ηU − d̀η1U

dηSU

dtη
= −κ̀η2SUV + σ̀ηU − d̀η1SU

dηE

dtη
= κ̀η1UV + κ̀η2UV − β̀ηE − d̀η2E

dηV

dtη
= d̀η2E − δ̀ηV

(6.1.1)

where À, σ̀, κ̀1, κ̀2, β̀, d̀1, d̀2, δ̀, and η are positive constants that are defined as follows:

• À : The rate at which the number of unemployed individuals is increasing.

• σ̀ : The rate at which the number of unemployed individuals transitions into skilled-

unemployed individuals.

• κ̀1 : The rate at which the number of unemployed individuals transitions into

employment class.

• κ̀2 : The rate at which the number of skilled unemployed individuals transitioning

into employment class.

• β̀ : The rate at which employed individuals are resigning, being fired, or dismissed

from their jobs.

• d̀1 : The rate at which unemployed individuals migrate or pass away.

• d̀2 : The rate at which employed individuals migrate, retire, or pass away.

• δ̀ : The rate at which available vacancies decrease due to insufficient government

funds (Diminution rate).

• η : Order of derivative.
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6.2 Qualitative Properties of Proposed Model

This section analyzes the fundamental properties of the proposed model, including its

existence, uniqueness, non-negativity, and boundedness of solution.

6.2.1 Invariant Region

The behavior of the proposed unemployment model (6.1.1) is examined in the region

Ω ∈ R4
+, where

Ω =

{
(U, SU , E, V ) ∈ R4

+ : U + SU + E + V ≤ Àη

λη

(
1 +

d̀η2

δ̀η

)}

and λ = min(d̀1, d̀2).

Theorem 6.2.1. The region Ω ∈ R4
+ is the positively invariant region for the unemployment

model.

Proof. Let N(t) = U(t) + SU(t) + E(t) represent the entire population at any given

instant. Then,

dηN(t)

dtη
=
dηU(t)

dtη
+
dηSU(t)

dtη
+
dηE(t)

dtη

≤ Àη − ληN(t), where λ = min(d̀1, d̀2).

(6.2.1)

By taking Laplace’s transformation (from eq. (1.1.13)),

N(s) =

Àη

s
+ sη−1N(0)

sη + λη
. (6.2.2)

Now, by taking the inverse Laplace transformation (from eq. (1.1.8)),

N(t) ≤ Àη

λη
[1− Eη(−ληtη)] +N(0)Eη(−ληtη). (6.2.3)
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Similarly,

V (t) ≤ d̀η2À
η

δ̀ηλη
[1− Eη(−δ̀ηtη)] + V (0)Eη(−δ̀ηtη).

Eη is Mittage -Leffler function defined in eq. (1.1.6) and 0 ≤ Eη(−δ̀ηtη) ≤ 1

=⇒ U + SU + E + V ≤ Àη

λη

(
1 +

d̀η2

δ̀η

)
. (6.2.4)

To demonstrate that the solution of the suggested model (6.1.1) is non-negative, we have:

dηU(t)

dtη

∣∣∣∣∣
U(t0)=0

=Àη + β̀ηE ≥ 0,

dηSU(t)

dtη

∣∣∣∣∣
SU (t0)=0

=σ̀ηU ≥ 0,

dηE(t)

dtη

∣∣∣∣∣
E(t0)=0

=κ̀η1UV + κ̀η2UV ≥ 0,

dηV (t)

dtη

∣∣∣∣∣
V (t0)=0

=d̀η2E.

(6.2.5)

Now from Generalized mean value theorem (Theorem 1.4.2) the solution of the unemploy-

ment model (6.1.1) is non-negative. As Ω contains the positive solution to the proposed

model assuming non-negative initial conditions, Ω is the positively invariant region.

6.2.2 Existence and Uniqueness

Theorem 6.2.2. There exists a unique solution along with the given initial conditions of

the proposed model (6.1.1) on t ≥ 0.

Proof. The right-hand side of the proposed model (6.1.1) is continuous, bounded according

to eq. (6.2.4) and satisfies the Lipschitz condition. So, from existence and uniqueness

theorem (Theorem 1.4.1), it is established that the solution of model (6.1.1) with given

initial conditions, not only exists but is also unique for t > 0.
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6.3 Analysis of Equilibrium Points
This section calculates the equilibrium points and threshold parameter (Reproduction

number) for the proposed model. The equilibrium point is calculated by taking the right-

hand side of the proposed model equal to zero. The proposed model have the following

two equilibrium points:

• Employment-free equilibrium: This equilibrium exists when there is no employed

person and no vacancy.

So, E = 0, V = 0. Therefore, employment-free equilibrium point is given by

Q0 =

(
Àη

σ̀η + d̀η1
,

σ̀ηÀη

d̀η1(σ̀
η + d̀η1)

, 0, 0

)
.

• Employment-persistence equilibrium: This equilibrium exists when the employed

person and vacancy are not zero and is given by Q∗ = (U∗, S∗
U , E

∗, V ∗).

Here,

E∗ =
δ̀ηV ∗

d̀η2
, S∗

U =
σ̀η δ̀η(β̀η + d̀η2)

d̀η2(κ̀
η
1d̀

η
1 + κ̀η1κ̀

η
2V

∗ + κ̀η2σ̀
η)
, U∗ =

δ̀η(β̀η + d̀η2)(d̀
η
1 + κ̀η2V

∗)

d̀η2(κ̀
η
1d̀

η
1 + κ̀η1κ̀

η
2V

∗ + κ̀η2σ̀
η)

and to find V ∗ substitute E∗ and U∗ in
dηU(t)

dtη
of model (6.1.1) which reflect in the

quadratic equation as:

P1V
∗2 + P2V

∗ + P3 = 0, (6.3.1)

where, P1 = κ̀η1κ̀
η
2d̀

η
2 δ̀

η > 0, P2 = κ̀η1κ̀
η
2À

ηd̀η2 + d̀η2 δ̀
η(d̀η1κ̀

η
1 + σ̀ηκ̀η2) + (d̀η2 + β̀η)δ̀ηd̀η1κ̀

η
2,

P3 = d̀η1 δ̀
η(d̀η1 + σ̀η)(d̀η2 + β̀η)(1−R) < 0 iff R > 1 and

R =
Àηd̀η2(κ̀

η
1d̀

η
1 + κ̀η2σ̀

η)

δ̀ηd̀η1(d̀
η
2 + β̀η)(d̀η1 + σ̀η)

(6.3.2)

is calculated by next generation matrix approach [111]. Now, by taking three possibilities

into account to examine the values of V ∗ (it is important to note that P1 is always greater
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than zero and κ̀2 is greater than κ̀1 as assumed in the model):

1. If R > 1, then P3 < 0. According to Descartes’ rule of signs proposed model has

only one positive equilibrium.

2. If R < 1, then P3 > 0 and

I if P2 < 0, then according to Descartes’ rule of signs proposed model has two

positive equilibrium.

II if P2 > 0, then the proposed model has no positive equilibrium.

3. If R = 1, then P3 = 0 and

I if P2 < 0, then according to Descartes’ rule of signs proposed model has one

positive equilibrium.

II if P2 > 0, then the proposed model has no positive equilibrium.

However, It is important to note the existence of the employment-persistence equilibrium

point in part (I) of the last two cases is not established as

R ≤ 1 =⇒ d̀η2À
η ≤ δ̀ηd̀η1(d̀

η
2 + β̀η)(d̀η1 + σ̀η)

(κ̀η1d̀
η
1 + κ̀η2σ̀

η)
,

P2 ≤ 0 =⇒ d̀η2À
η ≤ δ̀ηd̀η1(κ̀

η
1d̀

η
1 + κ̀η2σ̀

η) + d̀η1 δ̀
ησ̀η(d̀η2 + β̀η)

κ̀η1κ̀
η
2

,

=⇒ δ̀ηd̀η2(d̀
η
1κ̀

η
1 + κ̀η2σ̀

η)2 + κ̀η2 δ̀
ηd̀η1σ̀

η(d̀η2 + β̀η)(κ̀η2 − κ̀η1) < 0,

this deviates from our presumptions that κ̀2 is greater than κ̀1, and all parameters are

positive. Consequently, when R is greater than 1, the proposed model (6.1.1) has only one

employment-persistence equilibrium point.

6.4 Stability Analysis of Unemployment Model
This section explores the stability of the employment-free and employment-persistence

equilibrium points locally and globally. The linearization approach employ to analyze the
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local stability, while the Lyapunov function is utilized to assess the global stability of these

equilibrium points.

Theorem 6.4.1. The employment-free equilibrium pointQ0 =

(
Àη

σ̀η + d̀η1
,

σ̀ηÀη

d̀η1(σ̀
η + d̀η1)

, 0, 0

)
of the proposed model (6.1.1) is locally and globally asymptotically stable when R < 1.

Proof. The Jacobian matrix of the proposed model at Q0 is

JQ0 =



−(σ̀η + d̀η1) 0 β̀η −κ̀η1Àη

d̀η1 + σ̀η

σ̀η −d̀η1 0
−κ̀η2Àησ̀η

d̀η1(d̀
η
1 + σ̀η)

0 0 −(d̀η2 + β̀η)
Àη(κ̀η1d̀

η
1 + κ̀η2σ̀

η

d̀η1(d̀
η
1 + σ̀η)

0 0 d̀η2 −δ̀η


.

Clearly, two eigen-values are −d̀η1 and −(σ̀η + d̀η1) which are lie in 2nd quadrant. Next, let

us consider the following to examine the remaining eigenvalues:

J2×2 =

 −(d̀η2 + β̀η)
Àη(κ̀η1d̀

η
1 + κ̀η2σ̀

η

d̀η1(d̀
η
1 + σ̀η)

d̀η2 −δ̀η

 .
The characteristic equation for the aforementioned matrix is expressed as follows:

λ2 + A1λ+ A2 = 0 (6.4.1)

where A1 = d̀η2 + β̀η + δ̀η > 0 and A2 = (d̀η2 + β̀η)δ̀η(1−R) > 0 for R < 1.

By using Routh-Hurwitz criteria, if A1, A2 are greater than zero, then the eigenvalues

will have negative real parts. Since Ω is a positively invariant set for the proposed model

(6.1.1), Q0 is globally asymptotically stable, as

(U, SU , E, V ) → Q0 =

(
Àη

σ̀η + d̀η1
,

σ̀ηÀη

d̀η1(σ̀
η + d̀η1)

, 0, 0

)
when t→ ∞.
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Therefore, the proposed model (6.1.1) is locally and globally asymptotically stable if

R < 1.

Theorem 6.4.2. The employment-persistence equilibrium point Q∗ = (U∗, S∗
U , E

∗, V ∗) of

the proposed model (6.1.1) is locally asymptotically stable when R > 1; otherwise, it is

unstable.

Proof. The Jacobian matrix of the proposed model at Q∗ is

JQ∗ =


−(κ̀η1V

∗ + σ̀η + d̀η1) 0 β̀η −κ̀η1U∗

σ̀η −(κ̀η2V
∗ + d̀η1) 0 −κ̀η2S∗

U

κ̀η1V
∗ κ̀η2V

∗ −(β̀η + d̀η2) κ̀e1taV
∗ + κ̀η2S

∗
U

0 0 d̀η2 −δ̀η

 .

The characteristic equation of JQ∗ is given by

λ4 +B1λ
3 +B2λ

2 +B3λ+B4 = 0, (6.4.2)

where

B1 = (κ̀η1 + κ̀η2)V
∗ + 2d̀η1 + σ̀η + d̀η2 + β̀η + δ̀η,

B2 = (κ̀η1V
∗+ d̀η1+ σ̀

η)(κ̀η2V
∗+ d̀η1)+ κ̀

η
1V

∗(d̀η2+ δ̀
η)+(d̀η2+ β̀

η+ δ̀η)(κ̀η2V
∗+2d̀η1+ σ̀

η),

B3 = d̀η2κ̀
η
2S

∗
UV

∗(κ̀η2 − κ̀η1)+ (d̀η2 + δ̀
η)(κ̀η1V

∗+ d̀η1 + σ̀
η)(κ̀η2V

∗+ d̀η1)+ β̀
ηd̀η1(κ̀

η
2V

∗+ d̀η1 +

σ̀η) + κ̀η1 δ̀
ηd̀η2V

∗,

B4 = d̀η2κ̀
η
2d̀

η
1S

∗
UV

∗(κ̀η2 − κ̀η1) + d̀η2 δ̀
ηV ∗(κ̀η1d̀

η
1 + κ̀η1κ̀

η
2V

∗ + κ̀η2σ̀).

Here, B1 > 0, B3 > 0,, B4 > 0, and B3(B1B2 − B3)− B2
1B4 > 0 provided that R > 1

and κ̀2 > κ̀1. Consequently, all eigenvalues possess a negative real part, indicating that the

positive equilibrium point Q∗ exhibits local asymptotic stability.

Theorem 6.4.3. The employment-persistence equilibrium point Q∗ = (U∗, S∗
U , E

∗, V ∗) of

the proposed model (6.1.1) is globally asymptotically stable for d̀2 = d̀1.

Proof. Consider the positive semi-definite Lyapunov function denoted as L, which is
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defined as follows:

L =
1

2
[U(t)− U∗ + SU − S∗

U + E(t)− E∗]2 . (6.4.3)

Now, the ηth derivative of the Lyapunov function L can be expressed as [137]:

dηL

dtη
= [U(t)− U∗ + SU − S∗

U + E(t)− E∗] [Àη − d̀η1(U + SU)− d̀η2E]. (6.4.4)

dηL

dtη
= [U(t)− U∗ + SU − S∗

U + E(t)− E∗]
[
−d̀η1(U(t)− U∗ + SU − S∗

U)− d̀η2(E(t)− E∗)
]
.

Then, clearly
dηL

dtη
= −d̀η1 [U(t)− U∗ + SU − S∗

U + E(t)− E∗]2 ≤ 0 if d̀2 = d̀1. Hence,

the employment-persistence equilibrium point Q∗ = (U∗, S∗
U , E

∗, V ∗) of the proposed

model (6.1.1) is globally asymptotically stable for d̀2 = d̀1.

6.5 Transcritical Bifurcation Analysis

This section investigates how the unemployment model behaves when the reproduction

number R is 1. The proposed model (6.1.1) exhibits two equilibrium point: employment-

free Q0 and employment-persistence Q∗. When R is less than 1, the employment-free

equilibrium is asymptotically stable, but it is no longer stable when R is more than 1. On

the other hand, the employment-persistence equilibrium point occurs and is asymptotically

stable for R values greater than 1. It is worth noting that the theoretical existence of Q∗

persists even for R < 1, although it may not have positive coordinates.

A qualitative change in the system’s behavior happens when parameter values are

gradually altered. The following equivalences demonstrate this change:

Àηd̀η2(κ̀
η
1d̀

η
1 + κ̀η2σ̀

η) = δ̀ηd̀η1(d̀
η
2 + β̀η)(d̀η1 + σ̀η). (6.5.1)

At this point, the two fixed points Q0 and Q∗ appear to collide and undergo a change in

stability. This phenomenon resembles a transcritical bifurcation, as depicted in Figure

6.2. The impact of transcritical bifurcation is characterized by its ability to reveal how
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sensitive the labor market is to parameter changes. It can lead to significant shifts in equi-

librium points, affect the stability of solutions, and has policy implications. Recognizing

transcritical bifurcation can serve as an early warning regarding no. of job vacancy and

skilled unemployed individuals for policymakers, helping them make informed decisions

and design effective labor market policies.
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Figure 6.2: Bifurcation diagram demonstrates stability of equilibrium point for R < 1 and
R > 1.

6.6 Numerical Simulation
Numerical simulation is utilized to demonstrate the dynamic nature of the unemployment

model, validating the analytical findings across different orders of derivatives. The model

is solved by employing the Adams-Bashforth-Moulton predictor-corrector technique [109].

Table 6.1 presents the variables and parameters employed for the numerical solution of the

proposed model [80].
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Table 6.1: Description of variables and parameters of unemployment.

Parameter κ̀1 κ̀2 À d̀1 σ̀ d̀2 β̀ δ̀
Value 8.64× 10−6 1.728× 10−5 3000 0.048 0.1 0.05 0.01 0.1125
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Figure 6.3: Variations of the Unemployed (U ), Skilled Unemployed (SU ), and Employed
individual (E) for various order of derivative (η), which shows the path of all the classes
irrespective of the order of derivative validates the stability of the model.

Figure 6.3 illustrates the asymptotic stability of the steady states for values of η equal

to 0.8, 0.9, 0.95, and 1. The trajectory of all categories confirms the stability of the

proposed model across different derivative orders. Figure 6.3 is plotted using the values

provided in Table 6.1, with an initial R value greater than 1. The trajectories converge

towards an employment-persistence equilibrium point. Over time, the number of employed

individuals initially decreases and then starts to increase, while the unemployed and skilled

unemployed populations exhibit different trends, initially increasing and then decreasing.

As the order of derivative decreases, the employed population decreases and converges to

129



Chapter 6. Impact of Skills Development on Youth Unemployment

a specific point, while the unemployed and skilled unemployed populations increase and

also converge to a specific point.
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Figure 6.4: Variations of the Unemployed (U ), Skilled Unemployed (SU ), and Employed
individual (E) for the different initial conditions and various order of derivative (η), which
shows the path of all classes irrespective of the order of derivative validates the stability of
the model.

From Figure 6.4, it is clear that unemployment rate increasing trend for order of

derivative 0.5 and decreasing trend for integer-order derivative. Hence, the unemployed

individuals increases as order of derivative decreases. It is also observed that, in reality,

the unemployed population increases with time (Figure 1.3), indicating that the fractional

order model can better capture the reality. The convergence of all population trajectories

towards the employment persistence equilibrium point across various initial conditions

and derivative orders indicates the stability of the equilibrium point when R > 1 (Figure

6.4).
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6.7 Sensitivity Analysis
To effectively address the issue of unemployment, it is essential to comprehensively

understand the relative significance of the numerous factors contributing to unemployment.

The reproduction number denoted as R, is directly associated with various variables

and parameters. Sensitivity analyses are often necessary to assess the stability of the

parameter values employed in model predictions. To evaluate the suitability of each

parameter elasticity is utilized, which represents the partial derivative of R. The results of

a sensitivity analysis conducted on the threshold parameter R are summarized in Table

6.2.

 

𝑑2
̀  `

Figure 6.5: Relation of R with d̀2 and σ̀ for different order of derivative.

 

𝑑1̀  `

Figure 6.6: Relation of R with d̀1 and β̀ for different order of derivative.
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Table 6.2: Sensitivity analysis results for the threshold parameter R.

Parameter κ̀1 κ̀2 A d̀1 σ̀ d̀2 β̀ η δ̀

Sensitivity index sign 154 315 0.22 -15.7 87.655 22.34 –11.7 13.09 -59.57
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(a) Unemployment rate decreases with σ̀.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5

1.6

1.7

1.8

1.9

2

2.1

`

(b) Reproduction number increases with σ̀.
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(c) Reproduction number increases with order
of derivative.

Figure 6.7: Relation of unemployment rate with R, σ̀ and η i.e. unemployment rate
decreases with R and η.

The relationship between R and its parameters can be summarized as follows: R is

directly proportional to κ̀1, κ̀2, and Λ̀, and inversely proportional to β̀. Hence, an increase

in κ̀1, κ̀2, or Λ̀ leads to an increase in R, while an increase in β̀ results in a decrease in

R. Additionally, when considering the effects of other parameters, it is observed that R

increases with d̀2 and σ̀ for different orders of derivatives (Figure 6.5). On the other hand,

R decreases with d̀1 and β̀ (Figure 6.6). These relationships demonstrate that changes

in d̀2 and σ̀ positively impact R, while variations in d̀1 and β̀ have a negative effect on
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R. From Figure 6.7, it is also observed that unemployment decreases with increase in R

and η and the most sensitive parameters are κ̀1, σ̀ and κ̀2 i.e. enhancing individual skill

development and addressing job vacancies have more positive impact on employment than

other parameters.

6.7.1 Impact of Order of Derivative

The findings depicted in Figure 6.7 indicate a clear relationship between the unemployment

rate
(

U+SU

U+SU+E

)
and the parameter σ̀: as σ̀ increases, the unemployment rate decreases.

Additionally, a positive correlation exists between theR and σ̀, meaning that as σ̀ increases,

the R also increases. Consequently, it is observed that the unemployment rate decreases as

the R increases.
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Figure 6.8: Variations of the Unemployed (U ), Skilled Unemployed (SU ), and Employed
individual (E) for various order of derivative (η), which shows the path of all the classes
irrespective of the order of derivative validates the stability of the model.
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Moreover, considering the impact of the derivative order, it is evident that as the

order of derivative increases, the R also increases. Consequently, the unemployment rate

decreases with increasing order of derivative. An increase in the R can be attributed

to higher orders of derivative. As the parameter η increases, so does R, resulting in a

subsequent decrease in the unemployment rate. By observing Figure 6.3 and Figure 6.8, it

becomes evident that the order of derivative significantly influences the unemployment

rate. Specifically, the unemployment rate decreases as the order of derivative increases.

However, in reality, the unemployment rate is observed to be increasing. Moreover,

according to the model, the unemployment rate increases for the order of derivatives less

than 0.5. Here, the objective is to minimize the unemployment rate by considering real-life

situations. In this context, the optimum value of the order of derivative is ∼0.5.

6.7.2 Effects of Skill Enhancement

The rise in the reproduction numberR is partly influenced by a higher rate σ̀ of unemployed

individuals with improved skills. As σ̀ rises, so does R, resulting in a subsequent decrease

in the unemployment rate. However, providing skill development opportunities for all

unemployed individuals can pose financial challenges, particularly for governments in

impoverished countries. These governments often have competing economic priorities,

such as addressing education and healthcare needs. Therefore, the objective of this section

is to determine the threshold parameter for σ̀, representing the minimum value required for

skill development programs to have a substantial impact on decreasing the unemployment

rate. This analysis will help to assess the government’s capacity for sustaining effective

support in training programs. Let’s denote the rate of employment of individuals with

developed skills as κ̀2 = bκ̀1, where b > 1 as κ̀2 > κ̀1.

R(σ̀) =
Àηd̀η2(κ̀

η
1d̀

η
1 + κ̀η2σ̀

η)

δ̀ηd̀η1(d̀
η
2 + β̀η)(d̀η1 + σ̀η)

=
(d̀η1 + bσ̀η)R0

d̀η1 + σ̀η
, where R0 =

Àηd̀η2κ̀
η
1

δ̀ηd̀η1(d̀
η
2 + β̀η)

.

(6.7.1)

It is evident that if σ̀ > 0, then R0 < R(σ̀) < R∞, where limσ̀→∞R(σ̀) = bR0 = R∞.

Additionally, when σ̀ = 0, we have R(σ̀) = R0. By setting R(σ̀) = 1, the threshold rate
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σ̀c is calculated by using the following formula: σ̀c =
d̀η1(1−R0)

R∞ − 1
.

It’s important to note that σ̀c will be greater than 0 if R0 < 1 < R∞. In this scenario,

two cases can arise:

• When σ̀ < σ̀c, it is observed that R0 < R(σ̀) < 1 < R∞. In this scenario, the

employment persistence equilibrium does not exist, and the employment-free steady

state is asymptotically stable.

• When σ̀ > σ̀c, it is observed that R0 < 1 < R(σ̀) < R∞. In this scenario, the

equilibrium for the employment-free state is unstable. As a result, we may draw

the conclusion that in this situation, the unemployment rate can be significantly

decreased.

These findings indicate that when σ̀ exceeds the threshold σ̀c, the impact on reducing

unemployment becomes more pronounced (Figure 6.6).

6.8 Summary
This chapter proposes a fractional-order mathematical model that focuses on the issue of

youth unemployment in resource-limited countries. The primary objective of this research

is to investigate the influence of fractional order derivatives on unemployment modeling.

Additionally, this research examine the impact of a skill development program for different

order of derivative on mitigating the issue of unemployment. The existence and uniqueness

of the model are demonstrated. The threshold parameter R is calculated to analyze the

effect of the skill development program on unemployment. The equilibrium points of

the model, namely the employment-free and employment-persistence equilibrium points,

are determined, and their stability is analyzed. The research investigates how changes in

the model’s parameters impact individual behavior. The key findings of this chapter are

outlined below:

• The reproduction number (R) displays an ascending pattern in tandem with the order

of the derivative (η). As a result, a reduction in the derivative order corresponds to
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an escalation in unemployment. Nevertheless, empirical evidence, as illustrated in

Figure 1.3, contradicts this expectation by demonstrating an increasing unemploy-

ment rate. On the other hand, the proposed model posits that the unemployment

rate rises when the order of derivatives is less than or equal to 0.5. This suggests

that a fractional-order model is more adept at reflecting reality and surpasses the

capabilities of an integer-order model.

• The findings suggest that when the skill development rate (σ̀) surpasses a critical

threshold value, denoted as σ̀c, representing the minimum level required for skill

development programs to substantially influence the reduction of unemployment,

the impact of decreasing unemployment becomes more pronounced. As σ̀ continues

to increase, there is a noticeable decline in the unemployed population. This analysis

proves valuable in assessing the government’s capacity to sustain effective support

for training programs.

• The system’s memory is integrated through a fractional order, and in the context of

real-world scenarios, an optimal value for η that significantly reduces unemployment

is ∼0.5.

• The parameters most sensitive to change are κ̀1, σ̀, and κ̀2. This implies that working

for skill development programs and addressing job vacancies have a more substantial

positive impact on employment compared to other parameters.

These findings contribute to a better understanding of unemployment dynamics in resource-

limited countries and provide insights into effective strategies for reducing unemployment

rates through skill development programs like develop programs that focus on identifying

skills anticipated to be in demand in the future job market.

This chapter has been communicated as follows:

• K. Bansal, and T. Mathur, “Impact of skills development on youth unemployment: A

fractional order mathematical model.” (Communicated)
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Chapter 7

Analysis of the Drug Resistance Level

for Malaria Disease

“Malaria is not a disease of the past. It still kills a child every 30 seconds.”

- Ray Chambers, United Nations Special Envoy for Malaria

Malaria is a febrile disease caused by plasmodium parasites, which is transmitted to

humans from infected female Anopheles mosquito bites. The five parasite species that

cause human malaria are P. falciparum, P. malariae, P. ovale, P. vivax, and P. knowlesi,

particularly P. falciparum and P. vivax being the most deadly [164,165]. Malaria symptoms,

such as fever, headache, and chills, develop 10–15 days after the infective mosquito bite

and may be mild and difficult to identify from other infections [166]. If this disease from

P. falciparum is left untreated, it can cause significant illness and death in as little as 24

hours [167,168]. By 2020, malaria has reached nearly half of the world’s population [169].

Infants, children, pregnant women, HIV/AIDS patients, and others with weakened immune

systems who travel to malaria-endemic areas are at a higher risk of catching malaria [170].

According to the recent world malaria report, 241 million malaria cases were registered

in 2020, an additional 14 million over the previous year. Malaria-related casualties were

reported at 627,000 in 2020, with an increase of 69,000 from 2019 [169, 170]. Malaria has

become more prevalent in recent years due to climate change or global warming, which is

expected to have unanticipated repercussions for the disease’s prevalence. The life cycles
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of both the vector and the parasite are affected by temperature fluctuations [82]. Due to

changing environmental and socioeconomic circumstances, the conditions are still expand-

ing and threaten to become a serious cause of mortality and disability. Consequently, there

is a significant need to revise the prevailing malaria transmission control strategies and

model.

The rise and spread of drug resistant1 P. falciparum and P. vivax hinder worldwide

attempts to eradicate malaria. The most often recommended treatment for the P. falciparum

and P. vivax parasite is chloroquine [172, 173]. Chloroquine-resistant P. falciparum ap-

peared independently in three to four areas in Southeast Asia, Oceania, and South America

in the late 1950s and early 1960s. Resistance to chloroquine has subsequently spread to

almost every region where falciparum malaria is transmitted [174]. In 1989, Australians

living in or visiting Papua New Guinea were first infected with chloroquine-resistant

P. vivax malaria. In Southeast Asia, Ethiopia, and Madagascar, chloroquine resistance

in P. vivax has been identified. According to one of the WHO publications, P. vivax

chloroquine resistance has been documented in all WHO regions. Chloroquine resistance

was found in 28 countries, including India [28]. A widespread resistance scenario might

result in an annual excess of 22 million treatment failures, 116,000 fatalities, and expenses,

including an estimated USD 130 million to adjust treatment policy [175]. As a result of

the emergence and spread of drug-resistant malaria, many scientists have concentrated

their efforts on discovering new strategies to combat the disease [93]. Discoveries in drugs

and vaccines are constantly being incorporated into research. Furthermore, educating the

general population on the need for correct medicine use can help to reduce the frequency

with which resistance develops [176].

Combination therapy is successful as the parasite is unlikely to develop resistance to

two or more medications simultaneously. Combination treatment, on the other hand, is

1Drug resistance is the ability of an organism to change so that it can stay alive after being exposed to a
drug that would usually kill it. A random genetic alteration causes drug resistance, allowing the organism to
endure treatment [92]. An organism may undergo a spontaneous mutation during replication. If the mutation
renders the treatment ineffective, the mutated microorganisms continue to reproduce and live while their
non-mutated counterparts die during treatment [171].
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more costly, which can nullify much of its effectiveness [177]. The frontline treatments for

P. falciparum malaria are artemisinin combination therapies (ACTs) [177]. Even though

these therapies are effective in many parts of the world, there is a great fear that malaria

parasites are acquiring broad resistance to this critical medication once again.

While malaria is not directly contagious from person to person like the common

cold or the flu, there are situations where the parasite can be transmitted through blood

transfusions or the sharing of needles among drug users. However, the primary mode

of transmission is through the bite of infected mosquitoes. Hence, several mathematical

models have been used for more than a century to analyze the human malaria transmis-

sion patterns [83–88]. Sir Ronald Ross discovered the malaria parasite’s life cycle in

mosquitoes while working for the Indian Medical Service in 1890. In the early 1900s,

he published some of the earliest research papers using mathematical functions to study

the spread of malaria [89–91]. Memory and genetic traits are present in the majority of

biological systems. Memory in biological systems is not only shown by the ability to

incorporate new information from the past but also by the immune response of immune

cells [178]. For disease transmission, the drug resistance level future state is highly related

to the previous (present) state due to heredity property, and the classical (Ordinary dif-

ferential equation) models don’t have memory properties as it consider only two points t

and t−∆t. The malaria transmission in a region can be influenced by the historical back-

ground, as both humans and mosquitoes carry inherited traits that are shaped by biological

factors. This influence encompasses aspects such as acquired immunity, relapses, mosquito

populations, resistance, environmental changes, historical control efforts, imported cases,

and sociopolitical factors. Understanding this historical context is vital for designing

effective malaria control and elimination strategies. It helps policymakers consider the

legacy of past efforts and challenges in their current actions against the disease. Preventing

mosquito bites and controlling mosquito populations are essential strategies for malaria

prevention. As a result, various fractional-order mathematical models are analyzed to

control malaria transmission [15, 179–183]. However, the above studies do not consider

the drug resistance effect, which is a crucial factor in controlling malaria transmission.
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In light of this, a novel compartmental fractional-order model is proposed and analyzed

that integrates the different drug resistance levels and therapy as a preventative measure of

malaria transmission with memory between human-to-mosquito and mosquito-to-human.

These Drug resistance levels are given by WHO and can be defined as:

• R-I Resistance: Recrudescence after parasite clearance (at least two consecutive

days with no detectable asexual parasites within seven days of therapy initiation).

• R-II Resistance: Asexual parasitemia is cleared more than 75% within 48 hours.

• R-III Resistance: Asexual parasitemia is cleared less than 75% within 48 hours.

7.1 Mathematical Model Development
Although malaria incidence changes based on variables like rainfall and temperature, for

modeling reasons, we consider that infections are transmitted consistently throughout the

year. Drug resistance, which may be broken down into three distinct types, is the central

focus of the present study. Mutations in the parasite’s DNA or natural selection in response

to repeated, sublethal doses of the medicine may contribute to developing drug resistance.

One possible cause of drug resistance is ineffective therapy.
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Figure 7.1: Schematic diagram of the proposed model.
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7.1. Mathematical Model Development

Hence, a fractional-order mathematical model for analyzing drug resistance levels in

malaria transmission by categorizing the human population into five sub classes and the

mosquito population into two sub classes is presented. Each of the seven classes in this

paradigm interacts with the other. Humans and mosquitoes are the two most prominent

types of populations. The mosquito population is divided into two categories, Suscep-

tible (Sm) and Infected (Ih). The human population is further divided into five groups:

Susceptible (Sh), Infected (Ih), and Resistance classes R-I, R-II, R-III are RI
h, R

II
h , R

III
h

respectively.

Those who have never been infected with malaria or completely recovered without

remaining immunity from a prior infection are susceptible. All people who have ever

had malaria symptoms, which are brought on by the reproduction of parasites within red

blood cells, belong to the infected group. Individuals who have attempted therapy without

seeing positive outcomes are said to be resistant. Level of drug resistance is measured by

a reduction in asexual parasitemia. Figure 7.1 is a flowchart that is used to analyze how

people move with the social hierarchy of the human population, and the following set of

fractional differential equations (7.1.1) characterizes the corresponding model:

dηSh

dtη
= Aη

h − βη
1ShIm + αη

1Ih + αη
2R

I
h + αη

3R
II
h + αη

4R
III
h − dηhSh

dηIh
dtη

= βη
1ShIm − αη

1Ih − θη1Ih − θη4Ih − θη5Ih − dηhIh

dηRI
h

dtη
= θη1Ih − θη2R

I
h − αη

2R
I
h − dηhR

I
h

dηRII
h

dtη
= θη2R

I
h + θη4Ih − θη3R

II
h − αη

3R
II
h − dηhR

II
h

dηRIII
h

dtη
= θη3R

II
h + θη5Ih − αη

4R
III
h − dηhR

III
h

dηSm

dtη
= Aη

m − βη
2SmIh − dηmSm

dηIm
dtη

= βη
2SmIh − dηmIm.

(7.1.1)

Susceptible human and mosquito populations are constantly recruiting at a rate of

Ah and Am, respectively. Infected mosquito bites malaria-prone susceptible people and
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susceptible people become infected with the rate β1. Susceptible mosquitoes become

infected after biting an infected person with the rate β2. Now, the infected population

transfers to the different drug resistance class, i.e.,RI
h, R

II
h , R

III
h according to the reduction

in asexual parasitemia with rates θ1, θ4, θ5 respectively. People with drug resistance of

level R-I can transfer to class RII
h with the rate θ2 and people with drug resistance of

level R-II at any moment can transfer to class RIII
h with the rate θ3. All classes of

the infected population (Ih, RI
h, R

II
h , R

III
h ) get treatment and become susceptible with

rate α1, α2, α3, α4 respectively. dh and dm are the natural mortality rate of the human

and mosquitoes population. Each parameter is raised to power η to balance the model

dimensionally, and η is the order of derivative.

7.2 Dynamical Evaluation of Proposed Model

This section analyzes the basic properties of the proposed model’s solution, like existence

and uniqueness, non-negative, and boundedness.

7.2.1 Defining the Invariant Region

The behavior of the proposed fractional-order model (7.1.1) is explored in a feasible region

Ω ∈ R7
+, where

Ω =

{
(Sh, Ih, R

I
h, R

II
h , R

III
h , Sm, Im) ∈ R7

+ : Sh + Ih +RI
h +RII

h +RIII
h + Sm + Im ≤ Aη

h

dηh
+
Aη

m

dηm

}
.

Theorem 7.2.1. The region Ω ∈ R7
+ is the positively invariant region for the proposed

fractional-order model.

Proof. Let Nh(t) = Sh(t) + Ih(t) +RI
h(t) +RII

h (t) +RIII
h (t) represent the entire human

population at any given instant. Then,

dηNh(t)

dtη
=
dηSh

dtη
+
dηIh
dtη

+
dηRI

h

dtη
+
dηRII

h

dtη
+
dηRIII

h

dtη

= Aη
h − dηhN(t).

(7.2.1)
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By taking Laplace’s transformation (from eq. (1.1.13)),

Nh(s) =

Aη
h

s
+ sη−1N(0)

sη + dηh
(7.2.2)

Now, by taking the inverse Laplace transformation (from eq. (1.1.8)),

Nh(t) =
Aη

h

dηh
[1− Eη(−dηht

η)] +N(0)Eη(−dηht
η). (7.2.3)

Similarly, let Nm(t) = Sm(t) + Im(t) represent the entire mosquito population at any

given instant. Then,

Nm(t) =
Aη

m

dηm
[1− Eη(−dηmtη)] +N(0)Eη(−dηmtη) (7.2.4)

where Eη is Mittage-Leffler function defined in eq. (1.1.6) and 0 ≤ Eη(−dηhtη) ≤ 1.

=⇒ Nh(t) +Nm(t) ≤
Aη

h

dηh
+
Aη

m

dηm
. (7.2.5)

To demonstrate that the solution of the suggested model (7.1.1) is non-negative, we have:

dηSh(t)

dtη

∣∣∣∣∣
Sh(t0)=0

=Aη
h + αη

1Ih + αη
2R

I
h + αη

3R
II
h + αη

4R
III
h ≥ 0,

dηIh(t)

dtη

∣∣∣∣∣
Ih(t0)=0

=βη
1ShIm ≥ 0,

dηRI
h(t)

dtη

∣∣∣∣∣
RI

h(t0)=0

=θη1Ih ≥ 0,

dηRII
h (t)

dtη

∣∣∣∣∣
RII

h (t0)=0

=θη2R
I
h + θη4Ih ≥ 0,

dηRIII
h (t)

dtη

∣∣∣∣∣
RIII

h (t0)=0

=θη3R
II
h + θη5Ih ≥ 0,
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dηSm(t)

dtη

∣∣∣∣∣
Sh(t0)=0

=Aη
m ≥ 0,

dηIm(t)

dtη

∣∣∣∣∣
Ih(t0)=0

=βη
2SmIh ≥ 0.

Now from Generalized mean value theorem (Theorem 1.4.2) the solution of the proposed

model (7.1.1) is non-negative. As Ω contains the positive solution to the proposed model

assuming non-negative initial conditions, Ω is the positively invariant area that attracts all

solutions.

7.2.2 Existence and Uniqueness

Theorem 7.2.2. There exists a unique solution of the proposed model (7.1.1) along with

the given initial conditions on t ≥ 0.

Proof. RHS of the proposed model eq. (7.1.1) is continuous, bounded from eq. (7.2.5)

and satisfies Lipschitz condition. From existence and uniqueness theorem (Theorem 1.4.1)

the solution of the model (7.1.1) along with given initial conditions for t > 0 not only

exists but is also unique.

7.3 Feasible Equilibrium Points and Stability Analysis
This section calculates the equilibrium points and threshold parameter (Reproduction

number) to control malaria disease transmission.

7.3.1 Equilibrium Points

The proposed model’s equilibrium point is calculated by taking the right-hand side of the

proposed model equal to zero.

• Diseases-free equilibrium: This equilibrium exists when no infected human and

mosquito population exists in society.

So, Ih = 0, Im = 0. Therefore, diseases free equilibrium point is given by

E0 =

(
Aη

h

dηh
, 0, 0, 0, 0,

Aη
m

dηm
, 0

)
.
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• Endemic equilibrium: This equilibrium exists when the infected human and mosquito

populations are not zero and is given by

Ee = (Se
h, I

e
h, R

I
h

e
, RII

h

e
, RIII

h

e
, Se

m, I
e
m)

where,

RI
h

e
=

θη1I
e
h

αη
2 + θη2 + dηh

,

RII
h

e
=
θη2R

I
h
e
+ θη4I

e
h

θη3 + αη
3 + dηh

=
[θη2θ

η
1 + (αη

2 + θη2 + dηh)θ
η
4 ]I

e
h

(αη
2 + θη2 + dηh)(θ

η
3 + αη

3 + dηh)
,

RIII
h

e
=
θη3R

II
h

e
+ θη5I

e
h

αη
4 + dηh

=
[θη3θ

η
2θ

η
1 + (αη

2 + θη2 + dηh)[θ
η
3θ

η
4 + (θη3 + αη

3 + dηh)θ
η
5 ]] I

e
h

(αη
2 + θη2 + dηh)(θ

η
3 + αη

3 + dηh)(α
η
4 + dηh)

,

Sm
e =

Aη
m

βη
2I

e
h + dηm

,

Iem =
βη
2S

e
mI

e
h

dηm
=
βη
2I

e
h

dηm

(
Aη

m

βη
2I

e
h + dηm

)
,

Se
h =

Aη
h + αη

1I
e
h + αη

2R
I
h
e
+ αη

3R
II
h

e
+ αη

4R
III
h

e

βη
1I

e
m + dηh

Ieh =
βη
1S

e
hI

e
m

αη
1 + θη1 + θη4 + θη5 + dηh

=
dηhd

2η
m [R0 − 1]

dηhd
η
mβ

η
2 + βη

1β
η
2A

η
mZ

,

where

Z = [(αη
2 + θη2 + dηh)(θ

η
3 + αη

3 + dηh)d
η
h(θ

η
5 + (αη

4 + dηh)) + (αη
2 + θη2 + dηh)θ

η
4d

η
h(θ

η
3 +

αη
4 + dηh) + (αη

4 + dηh)θ
η
1d

η
h(θ

η
3 + αη

3 + dηh + θη2) + θη1θ
η
2d

η
hθ

η
3 ]/(α

η
2 + θη2 + dηh)(θ

η
3 +

αη
3 + dηh)(α

η
4 + dηh), and

R0 =
βη
1β

η
2A

η
mA

η
h

(αη
1 + θη1 + θη4 + θη5 + dηh)d

2η
md

η
h

.

When R0 = 1 endemic equilibrium point become the disease-free equilibrium, and

if R0 < 1, infected human become negative, due to which all population becomes

negative. As the population cannot be negative, endemic equilibrium exists if

R0 > 1.
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7.3.2 Stability Analysis of Proposed Model

Theorem 7.3.1. The diseases-free equilibrium point
(
Aη

h

dηh
, 0, 0, 0, 0,

Aη
m

dηm
, 0

)
of the system

(7.1.1) is locally and globally asymptotically stable when R0 < 1; otherwise, it is unstable.

Proof. The Jacobian matrix of the proposed model is JE0



−βη
1Im − dηh αη

1 αη
2 αη

3 αη
4 0 −βη

1Sh

βη
1Im −αη

1 − θη1 − θη4 0 0 0 0 βη
1Sh

−θη5 − dηh

0 θη1 −αη
2 − θη2 − dηh 0 0 0 0

0 θη4 θη2 −θη3 − αη
3 − dηh 0 0 0

0 θη5 0 θη3 −αη
4 − dηh 0 0

0 −βη
2Sm 0 0 0 −dηm 0

0 βη
2Sm 0 0 0 0 −dηm



.

The Jacobian matrix of the proposed model at E0 is JE0



−dηh αη
1 αη

2 αη
3 αη

4 0 −βη
1
Aη

h

dηh

0 −αη
1 − θη1 − θη4 0 0 0 0 βη

1
Aη

h

dηh

−θη5 − dηh

0 θη1 −αη
2 − θη2 − dηh 0 0 0 0

0 θη4 θη2 −θη3 − αη
3 − dηh 0 0 0

0 θη5 0 θη3 −αη
4 − dηh 0 0

0 −βη
2
Aη

m

dηm
0 0 0 −dηm 0

0 βη
2
Aη

m

dηm
0 0 0 0 −dηm



.

Clearly, five eigen-values are −dηh,−dηm,−α
η
4 − dηh,−θ

η
3 −αη

3 − dηh,−α
η
2 − θη2 − dηh which

are in 2nd quadrant. Now, to check the stability of the proposed model let us assume that

JE0 =

 −αη
1 − θη1 − θη4 − θη5 − dηh βη

1

Aη
h

dηh

βη
2

Aη
m

dηm
−dηm

 . The characteristics equation of the above
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matrix is given by

λ2 + A1λ+ A2 = 0 (7.3.1)

where A1 = αη
1 + θη1 + θη4 + θη5 + dηh + dηm > 0 and

A2 = (αη
1 + θη1 + θη4 + θη5 + dηh)d

η
m − βη

1β
η
2

Aη
h

dηh

Aη
m

dηm
.

A2 = (αη
1 + θη1 + θη4 + θη5 + dηh)d

η
m

[
1− βη

1β
η
2A

η
hA

η
m

(αη
1 + θη1 + θη4 + θη5 + dηh)d

η
hd

2η
m

]
.

A2 = (αη
1 + θη1 + θη4 + θη5 + dηh)d

η
m [1−R0] .

By using Routh-Hurwitz criteria (Theorem 1.4.4), if A1, A2 are greater than zero, then the

eigenvalues will have negative real parts. Since Ω is a positively invariant set for the pro-

posed model, E0 is globally asymptotically stable, as (Sh, Ih, R
I
h, R

II
h , R

III
h , Sm, Im) →

E0 =
(

Aη
h

dηh
, 0, 0, 0, 0, A

η
m

dηm
, 0
)

when t → ∞. Therefore, the proposed model (7.1.1) is

locally and globally asymptotically stable if R0 < 1.

Theorem 7.3.2. The endemic equilibrium point Ee = (Se
h, I

e
h, R

I
h
e
, RII

h
e
, RIII

h
e
, Se

m, I
e
m)

of the system (7.1.1) is locally asymptotically stable whenR0 > 1; otherwise, it is unstable.

Proof. The Jacobian matrix of the proposed model is JEe



−βη
1I

e
m − dηh αη

1 αη
2 αη

3 αη
4 0 −βη

1S
e
h

βη
1I

e
m −αη

1 − θη1 − θη4 0 0 0 0 βη
1S

e
h

−θη5 − dηh

0 θη1 −αη
2 − θη2 − dηh 0 0 0 0

0 θη4 θη2 −θη3 − αη
3 − dηh 0 0 0

0 θη5 0 θη3 −αη
4 − dηh 0 0

0 −βη
2S

e
m 0 0 0 −dηm 0

0 βη
2S

e
m 0 0 0 0 −dηm



.

One eigen value is −dηm, then for remaining eigen values we have JEe:
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

−βη
1I

e
m − dηh αη

1 αη
2 αη

3 αη
4 −βη

1S
e
h

βη
1I

e
m −αη

1 − θη1 − θη4 0 0 0 βη
1S

e
h

−θη5 − dηh

0 θη1 −αη
2 − θη2 − dηh 0 0 0

0 θη4 θη2 −θη3 − αη
3 − dηh 0 0

0 θη5 0 θη3 −αη
4 − dηh 0

0 βη
2S

e
m 0 0 0 −dηm


.

The characteristic equation of JEe is given by

λ6 +B1λ
5 +B2λ

4 +B3λ
3 +B4λ

2 +B5λ+B6 (7.3.2)

The Hurwitz determinants, Hi, where i = 1, 2...6, must all be positive for the Routh-

Hurwitz criteria to satisfy the necessary and sufficient requirements for the local asymptotic

stability of the equilibrium point Ee [99]. For a polynomial of degree six, these conditions

are provided:

H1 = B1 > 0, H2 = B1B2 −B3 > 0, H3 = B3(B1B2 −B3)−B1(B1B4 −B5) > 0,

H4 = B6B
2
1B2 −B2

1B
2
4 −B1B

2
2B5 +B1B2B3B4 −B6B1B3 + 2B1B4B5 +B2B3B5 −

B2
3B4 −B2

5 > 0,

H5 = −B3
1B

2
6 + 2B2

1B2B5B6 + B2
1B3B4B6 − B2

1B
2
4B5 − B1B

2
2B

2
5 − B1B2B

2
3B6 +

B1B2B3B4B5 − 3B1B3B5B6 + 2B1B4B
2
5 +B2B3B

2
5 +B3

3B6 −B2
3B4B5 −B3

5 > 0,

H6 = B6H5 > 0.

7.4 Sensitivity Analysis
To establish the most effective means of reducing human malaria-related mortality and

morbidity, it is crucial to have a firm grasp of the relative importance of the many factors

contributing to the disease’s transmission and prevalence. The rate of initial disease

transmission, R0, is directly linked to the different variables and parameters. The present

research investigates how changing the model’s parameters affects the behavior of many
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individuals. The threshold parameter R0 in the model is shown to have an impact on

disease spread. To assess the appropriateness of each parameter, the elasticity is utilized,

which is a partial derivative of R0. If the partial derivative is positive, then R0 will increase

when the parameter is increased. If the partial derivative is negative, R0 will decrease

when the parameter increases. Table 7.1 summarises the findings of a sensitivity analysis

performed on the value of the threshold parameter R0. Preventing mosquito bites and

controlling mosquito populations are more sensitive strategies for malaria prevention.

Table 7.1: Sensitivity analysis results for the threshold parameter R0.

Parameter β1 β2 Ah Am α1 θ1 θ4 θ5 dh dm
Sensitivity index 14.39 2.48 0.09 0.01 -0.23 -0.27 -0.49 -0.78 -0.24 -0.16

Table 7.2: Description of variables and parameters for malaria diseases.

Parameter Description Value
Ah Recruitment rate of human population 5.5333
Am Recruitment rate of mosquito population 39
β1 Rate at which people switch from the susceptible to infected 0.0038
β2 Rate at which mosquito switch from the Sh to Ih 0.022
α1 Rate that humans in Ih class acquire partial immunity and switch to Sh 0.0055
α2 Rate that humans in RI

h class acquire partial immunity and switch to Sh 0.05
α3 Rate that humans in RII

h class acquire partial immunity and switch to Sh 0.055
α4 Rate that humans inRIII

h class acquire partial immunity and switch to Sh 0.05
θ1 Rate from which people switch from Ih to RI

h 0.2
θ2 Rate from which people switch from RI

h to RII
h 0.01

θ3 Rate from which people switch from RII
h to RIII

h 0.02
θ4 Rate from which people switch from Ih to RII

h 0.01
θ5 Rate from which people switch from Ih to RIII

h 0.001
dh Mortality rate of human population 0.016
dm Mortality rate of mosquito population 0.83

7.5 Numerical Validation Through Simulation
The dynamic aspect of the malaria drug resistance model is shown by numerical data,

validating the analytical conclusions for different orders of derivatives. The suggested

model is solved using the Adams-Bashforth-Moulton predictor-corrector method [109].
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Table 7.2 displays the variables and parameters used for the evaluation [184]. For the

set of parameters listed in Table 7.2; R0 is 6.78, 5.94, 5.19, 4.52 for η = 1, 0.9, 0.8, 0.7,

respectively.
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Figure 7.2: Variations of the Susceptible (Sh), Infected (Ih), Resistance classes
RI

h, R
II
h , R

III
h of human for the different order of derivative (η), which shows the path of

all the classes irrespective of the order of derivative validates the stability of the model.
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According to Figure 7.2 and Figure 7.3, the steady states are asymptotically stable for

η = 0.7, 0.8, 0.9, and 1. The trajectory of all categories, Susceptible (Sm) and Infected

(Im) mosquitoes, and Susceptible (Sh), Infected (Ih), Resistance classes R-I, R-II, R-III are

RI
h, R

II
h , R

III
h of human shows the stability of the drug resistance model for the different

orders of derivatives. Figure 7.2 and Figure 7.3 plotted for the values given in Table 7.2,

having R0 > 1, and trajectories converges to endemic equilibrium point. Each category of

human population increases with time, but the mosquito population shows different trends,

like susceptible mosquito decreases with time and infected mosquito increases with time.

As the order of derivatives decreases, each population decreases and converges to a point.
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Figure 7.3: Variations of the Susceptible (Sm), Infected (Im) mosquitoes for the different
order of derivative (η), which shows the path of all the classes irrespective of the order of
derivative validates the stability of the model.

Table 7.3: Different set of parameters.

Parameter β1 β2 α1 α2 α3 α4

value (For R0 < 1) 0.0005 0.022 0.0055 0.05 0.055 0.05

value (For R0 > 1) 0.0008 0.022 0.0055 0.05 0.055 0.05
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(a) Relation of Sh with Ih (b) Relation of RI
h, RII

h and RI
h

(c) Relation of Sm with Im

Figure 7.4: Relation between the different classes of the proposed model for the set of
parameters listed in Table 7.2.

Figure 7.4 shows the relation between the different classes of the proposed model.

Figure 7.4(a) shows that the infected human population increases with the susceptible

human population but with different ratios for the different order of derivative, and this

ratio decreases with the order of derivative. Figure 7.4(b) shows the relationship between

different drug resistance classes; RI
h increases with time and RII

h and RIII
h first decreases

then start increasing with RI
h. Figure 7.4(c) shows that the number of infected mosquitoes

increases and the susceptible mosquito population decrease with time.

In this chapter, two sets of parameters, one having R0 < 1 and another having R0 > 1

are assumed and shown in Table 7.3. Figure 7.5 and Figure 7.8 are for R0 < 1, and the
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trajectories converge to disease-free equilibrium. Figure 7.6 and Figure 7.9 are for R0 > 1,

and the trajectories converge to endemic equilibrium.
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Figure 7.5: Variations of the Susceptible (Sh), Infected (Ih), Resistance classes
RI

h, R
II
h , R

III
h of human for the different order of derivative (η), which shows the path of

all the classes irrespective of the order of derivative validates the stability of the model.
For the parameters listed in Table 7.3 (R0 < 1), R0 is 0.8918, 0.8653, 0.8368, 0.8063 for
η = 1, 0.9, 0.8, 0.7, respectively.
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Figure 7.6: Variations of the Susceptible (Sh), Infected (Ih), Resistance classes
RI

h, R
II
h , R

III
h of human for different values of the order of derivative (η), which shows the

path of all classes irrespective of the order of derivative validates the stability of the model.
For the parameters listed in Table 7.3 (R0 > 1), R0 is 1.4268, 1.3523, 1.2774, 1.2023 for
η = 1, 0.9, 0.8, 0.7, respectively.

156



7.5. Numerical Validation Through Simulation

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

Figure 7.7: Variations of the Susceptible (Sh), Infected (Ih), Resistance classes
RI

h, R
II
h , R

III
h of human for the different initial conditions and order of derivative (η),

which shows the path of all classes irrespective of the order of derivative validates
the stability of the model. For the parameters listed in Table 7.3 (R0 > 1), R0 is
1.4268, 1.3523, 1.2774, 1.2023 for η = 1, 0.9, 0.8, 0.7, respectively.
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Figure 7.8: Variations of the Susceptible (Sm), Infected (Im) mosquitoes for the parameters
listed in Table 7.3 (R0 < 1), R0 is 0.8918, 0.8653, 0.8368, 0.8063 for η = 1, 0.9, 0.8, 0.7,
respectively.
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Figure 7.9: Variations of the Susceptible (Sm), Infected (Im) mosquitoes for the parameters
listed in Table 7.3 (R0 > 1), R0 is 1.4268, 1.3523, 1.2774, 1.2023 for η = 1, 0.9, 0.8, 0.7,
respectively.
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Figure 7.10: Variations of the Susceptible (Sm), Infected (Im) mosquitoes for the different
initial conditions and order of derivative (η).
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7.6. Summary

In Figure 7.6 susceptible human population first increases with time and then starts

decreasing for a different order of derivative, and the infected human population first

decreases with time and then starts increasing. All drug resistance classes first decrease

and then start increasing and converge to a specific point. Figure 7.7 and Figure 7.10

show the global stability of the endemic equilibrium point for R0 > 1. For different

initial conditions and orders of derivatives, all populations’ paths converge to the endemic

equilibrium point.

7.6 Summary
The dynamics of malaria infection for different drug resistance levels in the human and

mosquito populations are investigated in this research. The mosquito population thought to

be the major cause of this kind of illness, influences how far it spreads. This study presents

a novel compartmental model of malaria transmission with memory between human-to-

mosquito and mosquito-to-human that integrates drug resistance development and therapy

as a preventative measure. The threshold parameter R0 is calculated to analyze the impact

on disease spread. The diseases- free and endemic equilibrium points are calculated, and

their stability at each equilibrium point is worked out. The findings also suggest that

if a doctor knows the level of drug resistance at an early stage then the transmission of

malaria can be reduced by providing adequate drug to the patient (as R0 decreases as

θ1, θ4, θ5 increases). Moreover, several graphs have shown global asymptotic stability by

significantly altering the initial condition. The key findings of this chapter are outlined

below:

• The research investigates how changing model parameters affects the behavior

of individuals within the population, shedding light on the dynamics of malaria

transmission. Key preventive measures for malaria prevention include preventing

mosquito bites and controlling mosquito populations as these parameters are more

sensitive in spread of malaria.

• As the order of the derivative decreases from one, influenced by the memory ef-
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fect within the system, there is an observed decrease in the reproduction number,

resulting in a reduction in malaria transmission. India has a vision of achieving

a malaria-free status by 2027 and complete elimination by 2030. Therefore, if

the parameters utilized in the proposed model are raised to the power of less than

0.7 could significantly support India’s goal of eradicating malaria as level of drug

resistance decreases as order of derivative decreases from 1 to 0.7 (Figure 7.2).

• The results indicate that early identification of drug resistance levels in individuals

can assist in decreasing malaria transmission through the administration of suitable

drug treatments. Therefore, malaria tests should encompass an assessment of drug

resistance levels as well.

This chapter has been communicated as follows:

• K. Bansal, and T. Mathur, “Analysis of the drug resistance level of malaria disease:

A fractional-order model.” (Communicated)
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Chapter 8

Conclusions and Future Scope

This thesis elucidates diverse implementations of fractional-order differential equations

within the realms of socio-economic studies and epidemiology. Employing fractional

operators, this research precisely characterizes the propagation of crime, the influences of

social media, unemployment dynamics, and malaria spread. Notably, the memory attribute

of fractional derivatives proves instrumental in effectively capturing the intricacies of

these domains, enabling the modeling and scrutiny of intricate systems manifesting long-

term inter-dependencies and nonlinear tendencies. After comparing the results with the

existing literature, a comparative analysis provides evidence of the superiority of the

findings compared to previous efforts. The following section comprehensively describes

the deduced conclusions for each application, coupled with a contemplation of the future

prospects engendered by this research undertaking.

8.1 Conclusions

8.1.1 Crime Transmission Modeling

Unlike existing crime transmission modeling, the proposed fractional order models help to

investigate the duration required to capture and reinforce criminals, non-linear transmission

rates, isolation rate of criminals from non-criminals and the logistic growth rate of non-
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criminal individuals.

The inclusion of the delay coefficient (τ) in the fractional-order crime transmission

mathematical model serves the specific purpose of exploring the temporal interval between

an individual’s engagement in criminal activity and the legal process leading to their con-

viction. The outcomes derived from the delayed model present a compelling insight: when

the delay surpasses a predetermined threshold, the model undergoes periodic oscillations.

Notably, under this framework, law enforcement officers are granted an approximately

30-week window for the apprehension of criminals and the securing of their convictions.

In contrast, the integer order model imposes a more stringent temporal constraint, limiting

this interval to approximately 25 week. Additionally, a noteworthy phenomenon arises

with the escalation of the derivative order from 0 to 1, characterized by a reduction in the

delay. Hence, the fractional-order model allows law enforcement officers additional time,

which proves beneficial in securing the conviction of a criminal as in real life scenario,

simple and straightforward matters may be resolved relatively quickly, possibly within a

month. This leads to an expansion of the model’s stability region in the fractional-order

domain.

Utilizing the Beddington-DeAngelis non-linear transmission rate, a versatile frame-

work encompassing both linear and specific non-linear counterparts, uncovers profound

insights. The results strongly affirm its superior effectiveness in curtailing crime transmis-

sion when contrasted with alternative methods. Notably, a significant trend emerges: as

the derivative order decreases memory is incorporated in system and crime transmission

experiences a marked reduction. This phenomenon underscores the enhanced efficiency

of a fractional-order model in quelling crime transmission, surpassing the capabilities

of conventional integer-order models. In the pursuit of an optimal solution, the quest

leads to the discovery of the best-fit derivative order value, which converges at approx-

imately 0.2. This parameter proves pivotal in the endeavor to reduce crime. Within the

realm of fractional-order models, the strategic exponentiation of various factors, including

transmission rate, crowding effect, and inhibition effect, to the power of 0.2 emerges as

a formidable approach, significantly bolstering their effectiveness in combatting crime
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transmission.

The introduction of a fractional-order mathematical model for crime transmission,

incorporating logistic growth and isolation rates, sets the stage for a critical examination.

Based on this research, a stronger and more efficient legal system, in conjunction with

enhanced living conditions that can isolates criminals and noncriminals has the potential

to significantly decrease the incidence of crimes. It’s important to note that a community

might not always have the capacity to simultaneously bolster law enforcement and provide

the necessary resources. However, this study demonstrates that a society can achieve a

crime-free environment even if only one of these conditions is fulfilled. Additionally, it is

imperative to note that with an increase in law enforcement efforts, there is a corresponding

decline in the criminal population. However, until a specific threshold is reached, there is

no discernible impact on the spread of criminal activities. The optimal value for the level

of law enforcement is situated near 0.1, as the variation in criminal generation remains

relatively unchanged beyond this point.

The strategy proposed here accelerates establishing a crime-free society by considering

crucial criteria.

8.1.2 Modeling of Excessive Use of Social Media

The proposed mathematical framework introduces nonlinear fractional differential equa-

tions to elucidate the influence of social networking platforms on the academic performance

of students. Within this framework, equilibrium points representing states of both social

web-free and endemic conditions are identified, with the distinction being governed by

the reproduction number, denoted as R0. This model apart from its predecessors is its

deviation from the notion of a socially web-free equilibrium point as a societal benefit.

Instead, the primary focus is placed on achieving endemic equilibria, which can more

accurately depict real-world dynamics. A significant trend emerges in the behavior of

population trajectories. When the derivative order is less than or equal to 0.5, all trajecto-

ries exhibit a declining pattern. However, for orders exceeding 0.5, an increasing trend is

observed. The core objective of the study is optimizing the utilization of social media to
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enhance the prospects of students in practical scenarios. Consequently, the optimal value

for the derivative order is estimated at around 0.5, signifying its role in mitigating social

media addiction. Intriguingly, the reproduction number R0 exhibits an upward trend in

conjunction with η. This trend indicates that a decrease in η corresponds to a reduction in

social media addiction, showcasing the heightened efficiency of the fractional-order model

when compared to the integer-order model.

8.1.3 Youth Unemployment Modeling

This thesis introduces a fractional-order mathematical model designed to address the

pressing issue of youth unemployment in resource-limited nations. The primary aim

is to scrutinize the impact of fractional-order derivatives on unemployment modeling.

Furthermore, the investigation delves into the effectiveness of skill development programs

across varying orders of derivatives in alleviating the unemployment challenge. The results

further unveil a critical threshold, denoted as σ̀c, in the skill development rate (σ̀). Beyond

this threshold, which represents the minimum requirement for skill development programs

to notably impact unemployment reduction, the effect becomes more pronounced. With

increasing σ̀, the population of the unemployed experiences a decline. This analysis holds

significant relevance in evaluating the government’s ability to sustain effective support for

training programs. In light of the practical context, the research identifies an optimal value

for η approximately 0.5 as the key to effectively curbing unemployment. This insight

carries substantial implications for policy making and program implementation in the realm

of youth unemployment. A notable finding is the upward trajectory of the reproduction

number (R) in conjunction with the order of derivative (η). An increase in the order of

derivative corresponds to an decrease in unemployment. However, empirical observations

from real-world data, as depicted in Figure 1.3, contradict this trend by revealing a surge

in unemployment rates. The model, in turn, suggests that unemployment increases when

the order of derivatives is less than or equal to 0.5. This finding underscores the superior

capacity of a fractional-order model to align with real-world scenarios, outperforming its

integer-order counterpart.
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These findings enhance our understanding of unemployment in resource-limited na-

tions. They provide valuable insights into reducing unemployment rates, especially

through skill development programs. This understanding helps policymakers and organi-

zations design more effective programs to address unemployment challenges and improve

workforce employability, which is crucial in competitive job markets. Ultimately, these

findings inform the development and implementation of policies and initiatives to combat

unemployment and enhance economic prospects in resource-limited regions.

8.1.4 Malaria Transmission Modeling

The dynamics of malaria infection for different drug resistance levels in the human and

mosquito populations are investigated. The mosquito population thought to be the major

cause of this kind of illness, influences how far it spreads. The thesis introduces an

innovative compartmental model for malaria transmission, incorporating memory effects

between humans and mosquitoes. This model accounts for drug resistance development

and therapy as preventive measures. The threshold parameter, known as R0, is computed

to evaluate its impact on the spread of the disease. This study investigates how altering the

model’s parameters affects the behavior of individuals within the population, shedding

light on the intricate dynamics of malaria transmission. Essential preventive measures

for malaria include measures such as preventing mosquito bites and managing mosquito

populations. As the derivative order decreases from one, influenced by the system’s

memory effect, there is an observable decrease in the reproduction number. This reduction

correlates with a decrease in malaria transmission. India has set an ambitious goal of

achieving a malaria-free status by 2027 and complete elimination by 2030. In this context,

modifying the model’s parameters raised to power 0.7 and below could significantly

support India’s mission to eradicate malaria. The results emphasize the importance of

early identification of drug resistance levels in individuals. This identification can aid

in reducing malaria transmission by ensuring the administration of appropriate drug

treatments. Consequently, malaria tests should incorporate an evaluation of drug resistance

levels to enhance the effectiveness of prevention and control efforts.
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8.2 Future Scope
In the future, the proposed models can be extended to higher dimensions by considering

several other factors affecting the spread of crime, malaria and many more. The optimal

value of the fractional order of derivative can be obtained using different algorithms. The

simulation results can be validated with real-life criminal data of different regions.

• Additional influences such as the impact of fear, the Allee effect, diverse growth rates,

the variability of carrying capacity, criminal competition, and different treatment

rates can all be incorporated into the crime propagation model. Artificial intelligence

(AI) can play a pivotal role in predictive policing, using historical data to forecast

crime trends and allocate resources more efficiently. Hence, Advanced AI algorithms

can incorporate to analyze patterns in criminal behavior, aiding in the development

of more accurate criminal profiles and early intervention strategies.

• Factors such as varying growth rates, the adaptable carrying capacity, and the

engagement of professional individuals with social media can all be taken into

account within the framework of a model for social media addiction.

• Additional factors including various growth rates, fluctuations in carrying capacity,

diminution rate, and migration factor can all be integrated into the unemployment

model.

• The malaria transmission model can be enhanced by including additional factors

such as the Allee effect, various growth rates, fluctuations in carrying capacity, and

diverse treatment rates.

Comprehensively, the optimal value for the fractional order model by employing

heuristic optimization algorithms like Particle Swarm Optimization, Genetic Algorithms,

and Quantum Optimization, which can lead to faster convergence. Additionally, we have

the opportunity to relax constraints on parameters, allowing for an expansion of the number

of stages. This opens the door to constructing higher-dimensional fractional-order models.
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As a result, fractional calculus will continue to evolve as a potent tool for modeling

and analyzing complex systems across various fields. Its applications are an ongoing

exploration, with the potential to uncover new avenues for research and development.
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[6] I. Petráš and J. Terpák, “Fractional calculus as a simple tool for modeling and

analysis of long memory process in industry,” Mathematics, vol. 7, no. 6, p. 511,

2019.

170



[7] B. Ross, Fractional calculus and its applications: proceedings of the international

conference held at the University of New Haven, June 1974, vol. 457. Springer,

2006.

[8] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal

of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.

[9] S. Arora, T. Mathur, and K. Tiwari, “A fractional-order model to study the dynam-

ics of the spread of crime,” Journal of Computational and Applied Mathematics,

vol. 426, p. 115102, 2023.

[10] K. S. Pritam, Sugandha, T. Mathur, and S. Agarwal, “Underlying dynamics of crime

transmission with memory,” Chaos, Solitons & Fractals, vol. 146, p. 110838, 2021.

[11] M. Du, Z. Wang, and H. Hu, “Measuring memory with the order of fractional

derivative,” Scientific Reports, vol. 3, no. 1, pp. 1–3, 2013.

[12] J.-L. Wang and H.-F. Li, “Surpassing the fractional derivative: Concept of the

memory-dependent derivative,” Computers & Mathematics with Applications,

vol. 62, no. 3, pp. 1562–1567, 2011.

[13] Y. Wei, Y. Chen, S. Cheng, and Y. Wang, “A note on short memory principle

of fractional calculus,” Fractional Calculus and Applied Analysis, vol. 20, no. 6,

p. 1382, 2017.
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