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Abstract  
 

Cloud computing has become an indispensable component of modern computing 

infrastructure, offering flexible and scalable services to users. However, the rapid growth of 

cloud computing has also led to concerns regarding energy consumption and carbon dioxide 

(CO2) emissions. The energy consumption of cloud data centers has a significant impact on 

CO2 emissions, as majority of electricity generation still relies on fossil fuels. According to a 

report by the International Energy Agency, data centers consumed around 200 TWh of 

electricity in 2018, accounting for around 1% of global electricity consumption [39]. The report 

also notes that data center energy consumption is expected to double by 2030 if no action is 

taken to improve energy efficiency. According to a study by A. Vakilinia and R. Buyya, cloud 

data centers are responsible for a significant portion of global CO2 emissions, with emissions 

expected to reach 3.2 gigatons by 2025 [40].  These trends highlight the need for energy-

efficient cloud data center design and operation to mitigate the impact on the environment. In 

this thesis, we consider methodologies to address CPU and memory energy management 

challenges in cloud computing environments.  

In first part of the thesis related to processor energy management, we present a highly accurate 

performance estimation methodology that accounts for architecture slack in workloads. Our 

work leverages the advanced instrumentation available in POWER8 processor that monitors 

core pipeline activity in relation to off-core memory accesses to build metrics for architecture 

slack characterization for workloads. Using these metrics, we construct a workload classifier 

that classifies workloads as core-bound and memory-bound and propose a performance 

prediction model for change in processor frequency for each class of workload - cPerf and 

mPerf, respectively. We evaluate these models with SPECCPU and PARSEC benchmark suites 

on a POWER8 based OpenPOWER system. We observe that the predicted performance with 

our models have high accuracy (97%) for both CPU and memory intensive benchmarks. We 

validate that the classifier is suitable to accurately classify phase of workloads during execution 

intervals. We propose an algorithm that uses classifier for phase classification and prediction 



models for performance estimation at runtime. We leverage this algorithm and evaluate the 

execution time impacts of CPU and memory classified benchmarks. Overall, our methods based 

on architecture slack as key metric can be adopted by newer DVFS algorithms for phase 

classification and performance estimation at runtime, with a very high accuracy. 

Memory subsystems in cloud computing are also a significant contributor to energy 

consumption. A key research gap is the need for more efficient use of DRAM. DRAM is a key 

component of cloud computing systems, but it also consumes a significant amount of energy.  

In second part of the thesis related to memory energy management, we propose a new power 

mode as Voltage Reduced Self-Refresh (VRSR), which is basically reduced DRAM voltage 

operation in self-refresh. Our simulation results show that there is a maximum of ~12.4% and 

an average of ~4% workload energy savings, with less than 0.7% performance loss across all 

benchmarks, for an aggressive voltage reduction of 150 mV. We perform a detailed study of 

reducing self-refresh energy by reducing the supply voltage. PARSEC benchmarks in Gem5 

full-system mode are used to quantify the merit of self-refresh energy savings at reduced 

voltages for normal, reduced, and extended temperature ranges. The latency impacts of basic 

operations involved in self-refresh operation are evaluated using the 16 nm SPICE model. 

Possible limitations in extending the work to real hardware are also discussed. As a potential 

opportunity to motivate for future implementation, DRAM architectural changes, additional 

low power states and entry/exit flow to exercise reduced voltage operation in self-refresh mode 

are proposed.  
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Chapter 1 
 

Introduction 
 

In this chapter, we provide a brief introduction about processor and memory energy 

management in the context of cloud computing domain. We discuss their significance in 

reducing energy consumption and optimizing performance of systems.  

Processor energy management is a critical aspect of cloud computing. In a cloud computing 

environment, multiple virtual machines run on a single physical server, and managing the 

energy consumption of each processor is crucial to maintain the overall system's efficiency. 

Processor energy management techniques can be classified into two categories: dynamic 

voltage and frequency scaling (DVFS) and workload consolidation. DVFS adjusts the voltage 

and frequency of the processor to match the workload's requirements, while workload 

consolidation consolidates multiple workloads onto a single processor. DVFS can 

significantly reduce energy consumption by lowering the processor's voltage and frequency 

when the workload is low and increasing them when the workload is high. However, it can 

also affect the system's performance if the processor's frequency is reduced too much. 

Workload consolidation, on the other hand, can reduce energy consumption by consolidating 

multiple workloads onto a single processor, but it can also increase the system's response 

time. 

First part of work focus on how architecture slack of workloads can be exploited for accurate 

performance management using DVFS technique. 

Memory energy management is a critical aspect of cloud computing systems, as memory 
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accounts for a significant portion of a system's energy consumption. Dynamic random-access 

memory (DRAM) is the primary type of memory used in modern cloud computing systems, 

and DRAM self-refresh will be effective to maintain data integrity when the DRAM memory 

cells were not accessed. However, DRAM self-refresh also consumes a significant amount of 

energy and managing its energy consumption is crucial for reducing overall system energy 

consumption. 

There are several primary techniques are commonly used to reduce DRAM self-refresh 

energy consumption in cloud computing systems, including: 

Power Gating: Power gating is a technique that shuts off power to unused portions of the 

DRAM chip. This technique can significantly reduce DRAM self-refresh energy consumption 

by reducing power consumption in idle memory areas. 

Temperature-aware Self-refresh: Temperature-aware self-refresh is a technique that adjusts 

the self-refresh rate of the DRAM based on the memory temperature. This technique can 

reduce DRAM self-refresh energy consumption by reducing the number of self-refresh 

operations needed at lower temperatures. 

Adaptive Self-refresh: Adaptive self-refresh is a technique that adjusts the self-refresh rate of 

the DRAM based on the memory's usage patterns. This technique can reduce DRAM self-

refresh energy consumption by reducing the number of unnecessary self-refresh operations. 

Data Compression: Data compression is a technique that reduces the amount of data stored 

in memory by compressing it. This technique can reduce DRAM self-refresh energy 

consumption by reducing the amount of data that needs to be refreshed. 

Second part of work focus on achieving self-refresh energy savings at reduced DRAM 

voltages. 

 

1.1 Processor Energy Management 
 

In recent years, power and thermal issues have become primary design constraints for high-

performance system designs. Restrictions arise from increased transistor densities and clock 
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speeds, hindering the potential performance improvements and escalating expenses in 

development, acquisition, and operations. Consequently, there is a growing emphasis on 

effectively managing energy consumption and heat dissipation in high-performance 

computer systems [9,20,28]. 

Energy and thermal management are important for many reasons. First, to avoid employing 

performance crippling conservative designs to ensure that power and thermal caps are never 

exceeded, high-end systems employ active power and thermal management. Increasingly the 

cost of providing the power and cooling infrastructure for a datacenter or supercomputer 

approaches or exceeds the cost of the machines themselves. In many locations, electric 

utilities are unwilling to provide the additional power needed to add new machines to 

datacenters. Organizations also face external pressures to become “greener”. In the United 

States, both the Environmental Protection Agency and Department of Energy are issuing 

guidelines for energy-efficient systems and data centers [35,36]. An increasing number of 

customers insists that computers be energy-efficient [38], while still expecting performance 

improvements.  

As the goal is to balance high performance with energy efficiency, power management 

becomes a strategic approach that involves leveraging opportunities to operate system 

components at lower power states without compromising performance. "Slack" refers to any 

characteristic that enables a system to operate a certain portion of itself at a lower power 

state while still meeting predefined performance objectives. 

There are three forms of slack present in server computing environments: workload slack, 

user-demand slack, and architecture slack.  

• Workload slack occurs when the workload is waiting on I/O or CPU does not have 

instructions to execute. It can be readily measured by monitoring the number of 

cycles in a given interval that the core is not yielded by the workload or operating 

system.  

• User-demand slack occurs when systems can be run at less than full speed, but 

still achieve user performance requirements. It needs to be explicitly communicated 
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to the system (low-power mode, favor energy savings etc).   

• Architecture slack arises when a workload’s performance is bounded at least 

partially by a resource other than the processor clock frequency, e.g., by limited 

memory bandwidth. In this work, we focus on architecture slack present in server 

computing environments. 

 
In a high-performance server system, it is common to find multiple processors that facilitate 

the simultaneous execution of multiple workloads. In both commercial and technical 

computing environments, one key objective is to maximize processor usage to speed up the 

execution of workloads for effective utilization of hardware resources. Another equally 

important key objective is to minimize energy usage, while maintaining high performance of 

workloads under execution.  

Typically, a server class processor has many cores, and each core can support multiple 

hardware threads (multi-threading) for concurrent execution of workloads. Each process 

running on a hardware thread can have following different performance characteristics 

related to its current operating frequency: compute, memory, or moderate bound. For 

compute-bound processes, performance tracks linearly with processor core frequency and 

therefore limited by CPU speed. In the case of memory-bound processes, performance is 

unaffected by the frequency of the processor core. Instead, it is constrained by factors such as 

memory bandwidth and latency, which are not directly related to the speed of the CPU. 

When a process runs on a hardware thread, it can execute core-bound or memory-intensive 

operations within a specific timeframe, referred to as a "phase." Core-bound operations can 

be completed within the core itself, without needing external resources. On the other hand, 

non-core-bound operations rely on external resources for completion. Typically, core-bound 

operations involve high-latency instructions that have a higher chance of causing processor 

pipeline delays. For example, retrieving data from on-chip L2 and L3 caches can have 

moderately long latencies of 8-60 cycles, while accessing DRAM can result in even longer 

latencies (e.g., 200+ cycles). To enhance performance during such scenarios, instruction-

level parallelism (ILP) allows overlapping execution of multiple instructions using the same 
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circuitry. However, there are cases where an instruction in the pipeline depends on the 

completion of a previous instruction, creating dependencies. Due to this, the core must wait 

until producer instruction is completed and this leads to idle cycles or stalls. There can be 

many such idle scenarios in modern pipelines that support simultaneous multi-threading 

(SMT). SMT refers to the capability of a single physical processor core to execute instructions 

from multiple hardware thread contexts concurrently. This allows the processor core to read 

and execute instructions in parallel, enabling scheduling of multiple applications 

simultaneously on the same core. In one situation, if a core is waiting for the outcome of 

memory access requests from outside the core and is not executing any operations from 

other threads, it is considered idle. In another scenario, if a core is waiting for the result of 

memory access requests from outside the core and not completing any execution threads 

during a cycle, the processor core is deemed idle and non-operational. When a core is both 

idle and waiting for off-core memory access, it indicates that there is available capacity or 

slack within the computer system. The presence of slack results in idle cycles, and if the 

processor is already operating at its maximum frequency, these cycles are essentially lost. 

These unused cycles are known as the "architectural slack" of the processor. To optimize 

performance, frequency reductions can be applied during these cycles without impacting 

overall performance. 

 

1.2 Memory Energy Management 

 
Data centers rank among the largest consumers of electrical power, accounting for around 

200 terawatt-hours (TWh) of electricity consumption, which is nearly 1% of the global 

electricity demand. This substantial energy usage contributes to approximately 0.3% of 

global CO2 emissions [85]. Be it on-premise or in the cloud, demand for servers has been 

skyrocketing due to ever growing computing needs and big data explosion. However, around 

30 percent of servers are either underutilized or completely idle, as per previous research 

performed by the uptime institute [86]. 

Currently, the CPU stands as the most power-intensive element within a server, while 

memory holds the position as the server's second most significant consumer of power [87]. 
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In a server, main memory capacity and bandwidth requirements continue to grow, year over 

year. Modern data intensive applications from emerging areas like cloud computing, artificial 

intelligence, machine learning, augmented reality, geonomics and accelerated computing 

have clearly necessitated high capacity and low latency memory for superior performance. 

Due to its distinct benefits of low latency, high density, and well-established fabrication 

process, DRAM technology remains the favored option for main memory. DRAM energy 

usage makes up approximately 46% of the total energy consumption in a system [57, 88]. 

Specifically, in a multicore processor executing a collection of parallel applications with high 

memory demands, the DRAM core alone consumes roughly 20% of the overall system energy 

[50]. 

A DRAM cell consists of an access transistor and a capacitor, where the capacitor serves as a 

storage unit for data in the form of electrical charge. However, it is important to note that the 

capacitor gradually loses charge over time due to leakage. Refresh is an essential operation to 

ensure data retention in DRAM memories. However, it adversely impacts power dissipation 

and performance. With growing DRAM chip density, refresh power consumption has become 

significant portion of the total device energy [41]. 

Industry standard DRAM devices support auto-refresh and self-refresh modes to perform the 

refresh operation, during active and idle scenarios respectively. Memory controller must 

issue refresh commands periodically interleaved with the core’s read & write data to the 

DRAM device and it is referred to as auto-refresh.  

Once the read and write queues of the controller remain empty for a specific duration, it 

instructs the DRAM to transition into a low power mode. Self-refresh is an energy-saving 

mode that can be achieved without compromising the integrity of the data, making it the 

most power-efficient state. In this mode, the DRAM device performs refresh operation using 

an inbuilt timer, whereas DLL, clocks and IO pins are all turned off to save the background 

power. This mode can be exercised to achieve good energy savings during moderate or long 

idle phases of workloads. 

 
With the growing size of DRAM devices, the power impact of self-refresh becomes 
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increasingly significant. A review of literature reveals that in DDR4x devices (as depicted in 

Figure 1.1), when memory size doubles, such as from 4 Gb to 8 Gb, 8 Gb to 16 Gb, and 16 Gb 

to 32 Gb, there is a corresponding increase in self-refresh current (IDD6) of 50%, 89%, and 

118% respectively [42], [48-50].  

 
 

Figure 1.1: Self-refresh current (IDD6) increase trend in DDR4x devices 

 

Extensive research has been conducted to minimize power consumption during refresh 

operations. Chang et al. [43] conducted a thorough investigation focusing on DDR3L 

DRAMs. Their study primarily involved characterizing the behavior of the DRAM chip when 

operated at reduced voltages below the nominal value. They examined the impact of low 

DRAM supply voltages of 1.2 V and 1.15 V, compared to the nominal value of 1.35 V, across 

various retention times (64 ms, 128 ms, 256 ms, 512 ms, 1024 ms, 1536 ms, and 2048 ms) on 

DDR3L DIMMs at temperatures of 20℃ and 70℃. The study revealed that no weak cells 

were observed when the supply voltage was reduced up to a retention time of 512 ms, which 

is eight times the standard refresh interval of 64 ms. Consequently, the researchers 

concluded that at these temperatures, a reduction in supply voltage does not necessitate any 

modifications to the standard refresh interval. Furthermore, their work demonstrated that 

bit errors resulting from reduced voltage operation could be mitigated by increasing the 

latency of row activation (tRAS), restoration (tRCD), and precharge (tRP) operations.  

Pardeik et al. have proposed to minimize the refresh power consumption by increasing the 

refresh rate and reducing the DRAM supply voltage during long idle scenarios [44].  Their 

work involved power evaluation of 16 GB & 32 GB DDR4 RDIMM modules at different 

refresh rates 2x, 4x, 8x and multiple voltages 1.25 V, 1.2 V, 1.15 V, 1.1 V, 1.05 V, 1 V. Their 
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characterization results revealed a key finding that, on both 16 GB and 32 GB DIMMs, the 

voltage reduction of 200 mV, 1.25 V nominal to 1.05 V yielded significant power savings, 

despite of increased refresh rates. They observed 30%, 28%, 26%, 24% power savings for 

different refresh rates 7.8(1x), 3.9(2x), 1.94(3x), 0.96(4x) respectively, without any data 

integrity errors. 

Byoungchan et al. [60] conducted a study where they observed that DRAM cells in the self-

refresh mode operate in two distinct modes: static (idle) and dynamic (refreshing), and the 

transition between these modes follows a predictable pattern. They proposed a novel 

approach to optimize the leakage current of DRAM cells by aligning the word-line and body 

voltage levels with the cell's state. Their objective was to enhance the power efficiency of 

DRAM, leading to the introduction of two new self-refresh modes: Enhanced Self-Refresh 

(ESR) and Long Latency Self-Refresh (LSR). Through simulations, they demonstrated that 

the retention time of DRAM cells improved by 2.42 times in the ESR mode and 3.58 times in 

the LSR mode. Leveraging the extended retention time, their approach involved applying a 

reduced refresh rate while maintaining improved leakage current. The ESR mode could 

directly replace the original self-refresh mode without requiring modifications to the 

memory controller. It employed a selective word-line bias technique, which necessitated two 

transistors per sub-array to independently control the voltage level of individual sub-arrays. 

On the other hand, the LSR mode represented a new power-saving mode with even higher 

efficiency than the ESR mode. However, due to its distinct exit latency compared to self-

refresh, it required adjustments to the memory controller. In addition to selective word-line 

bias, the LSR mode employed selective body biasing to achieve further power savings.  

Existing literature [43, 44] motivates us to investigate energy savings in self-refresh mode at 

lower DRAM voltages. We observe that the basic idea in [43] explores energy saving 

opportunities with auto-refresh during memory mainline read & write operation, while our 

work is orthogonal that focus on self-refresh mode exercised during long idle times. In 

contrast to [44], we further extend our studies to lower voltage operation at reduced and 

increased self-refresh rates associated with wider temperature ranges, as supported by DDR 
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standards. For lowering DRAM voltage during self-refresh, we consider the implementation 

of varying array voltage (Varray) in step sizes without modifying standard refresh rates, 

which is orthogonal to work [60] that uses selective body bios and selective word-line bios 

controls to attain the increased retention time thereby to lower the refresh rates for energy 

savings. Reducing voltage during self-refresh needs additional latency cycles of tRAS and tRP 

parameters for error free operation [43]. We quantify the performance impact seen by 

workloads with such increased latency cycles.  

In our research, we investigate the necessary modifications to both the DRAM and controller 

to implement the proposed energy-saving feature. We provide a comprehensive description 

of the interaction flow between the controller and DRAM, focusing on the newly suggested 

architectural changes. To maximize the effectiveness of our approach, it can be combined 

with the findings of previous studies, such as [43] and [60]. As a result, we introduce a new 

low power mode for DRAM called "voltage reduced self-refresh operation (VRSR)." 

 

1.3 Background 
 

 
1.3.1 Processor – Architecture slack exploitation for performance 

management 
 

 
While previous research [5,10,18,32,33] extensively explores the utilization of slack and its 

applications, we have identified a gap in leveraging architecture slack for performance 

management. Fields et al. [10] introduce the concept of slack and its exploitation in the design 

of a processor with heterogeneous pipeline implementations. Our work complements theirs 

by developing methods for highly accurate performance prediction. Liang et al. [18] propose a 

cache-miss based prediction model for energy and performance degradation, while 

Spiliopoulos et al. [32] present a slack time-based model. However, these approaches do not 

consider architecture slack. In contrast, Hari et al. [5] propose a method to exploit timing 

slack in embedded applications. Their approach relies on the execution of an application that 

avoids the processor's static critical paths, enabling energy savings by scaling down the 

processor's voltage while maintaining the same frequency until the longest active paths meet 
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the timing constraints. However, this approach requires profiling applications prior to 

execution, resulting in significant overhead. Similarly, Sharanyan et al. [33] propose a 

multicore CPU scheduler that combines traffic sources, latency tolerance, and computational 

resource requirements. They utilize "CPU stall cycles on cache misses" as a key metric to co-

locate threads on the same socket or physical core for improved parallel efficiency. Our work 

aims to bridge the gap by focusing on exploiting architectural slack for performance 

management, providing a novel approach that complements existing research in this area. 

We refer “workload classification” as detecting whether the workload is compute-bound or 

memory-bound. In our current work, we propose a fixed interval-based online “phase 

classification” scheme that uses microarchitecture-dependent metrics (instruction 

throughput and not-busy cycles) obtained from hardware counters. “Performance estimation” 

is a measure of frequency-performance relationship at target frequency with respect to its 

current frequency-performance setting, for a given workload under execution. 

 
1.3.2 Memory – Voltage Reduced Self-Refresh operation 

 

 
JEDEC (Joint Electron Device Engineering Council) supports many features to optimize self-

refresh power (Table 1.1). Low-Power Auto Self Refresh (LPASR) and Temperature 

Compensated Self Refresh (TCSR) are features that adjusts refresh rate depending on the 

ambient temperature in DDR4x and mobile LPDDRx devices respectively.  The Partial Array 

Self Refresh (PASR) feature allows the controller to choose the specific portion of memory 

arrays that need to be refreshed during self-refresh in LPDDRx. By combining the TCSR and 

PASR features, even more significant power savings can be achieved [41]. 

 
Counter Description Technique 

DDR4x Low-Power Auto Self 
Refresh (LPASR) [42] 

Refresh rate is adjusted 
based on temperature 

Low Power DDRx 
(LPDDRx) 

Temperature Compensated 
Self Refresh (TCSR) [47] 

Refresh rate is adjusted 
based on temperature 

LPDDRx Partial Array Self Refresh 
(PASR) [47] 

Refresh operation is limited 
to portion of the memory’s 
array where data is stored 

 
Table 1.1: Power saving features in self-refresh mode 
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The JEDEC standard defines the Deep Power-Down (DPD) mode as the most extreme power-

saving state, where the entire memory array in the device is shut down. In DPD mode, all 

internal voltage generators are halted, resulting in the loss of all data stored in the memory. 

This mode proves beneficial in mobile applications where continuous data retention in DRAM 

is not necessary for most of the time. Additionally, a technique called Deep Self-Refresh 

(DSR) exists, which combines the power-saving advantages of Partial Array Self Refresh 

(PASR) and DPD [51]. While PASR keeps the internal voltage generators of the DRAM in a 

low-power mode, DSR allows the unused banks of memory cells to enter the DPD state. It is 

important to note that although DPD offers even lower energy consumption in self-refresh 

mode compared to PASR, it is not included in the JEDEC standard. In our work, we focus on 

reducing DRAM energy consumption by lowering the DRAM supply voltage in the normal 

self-refresh mode, without the need for additional power-saving modes like DPD or DSR. Our 

work reported has the following key take aways: 

(a) A survey of current techniques to optimize power in self-refresh mode is initially 

presented. The main cause for power consumption in self-refresh is also described. Further, 

voltage is proposed as a potential knob to minimize the power consumption. Some of the 

recent work [43, 44] on comprehensive study & characterization of DRAM data retention 

ability at lower voltages, wide temperature ranges and refresh rates are presented and 

discussed. The self-refresh energy scaling trends in modern devices [42] with respect to wider 

temperature ranges and currently supported adaptive refresh rate techniques are studied in 

detail. Two key aspects are considered in our study of self-refresh energy savings at lower 

voltages and different refresh rates. They are (a) Increasing DRAM row activation (tRAS) and 

precharge (tRP) latencies at reduced voltages to ensure data retention (b) Latency increase in 

tRAS and tRP parameters are quantified using open-source model, after adapting it for 16nm 

DDR4 technology and these new latency values are used in simulation for energy and 

performance study. 

(b) To assess the energy-saving effects of self-refresh at reduced voltages, we employ a set 

of eight PARSEC benchmarks for evaluation purposes. The simulation and measurement 
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setup to quantify the DRAM energy consumption are described in detail. Based on full-system 

simulations, a detailed study of self-refresh energy savings for a set of 6 reduced voltage 

points, from 25 mV through 150 mV with a step size of 25 mV, at normal (1x standard 

refresh), extended (2x refresh) and reduced (0.5x refresh) temperature ranges are performed. 

(c) Increase of row refresh cycle time (tRFC) due to prolonged tRAS and tRP latencies at 

reduced voltage levels is discussed. This increased latency presents an overhead in exit 

latency of VRSR scheme and its impact on workload performance is analyzed. 

(d) Subsequently, simulation results are presented and discussed to evaluate the potential 

energy savings across six reduced voltage points and the corresponding performance impact 

due to exit latency overhead. These discussions encompass all eight PARSEC benchmarks, 

providing insights into the effects of an aggressive voltage reduction of 150 mV. 

(e) Some of the challenges and limitations in expanding our work to get detailed hardware 

measurements are discussed. DRAM architectural changes and additional power modes to 

exercise reduced voltage operation in self-refresh mode are proposed. Based on this proposal, 

the key open areas are presented to motivate researchers for future exploration with a goal to 

realize a full-scale solution.  
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1.4 Motivation 
 

1.4.1 Processor – Performance Aware Energy Management 

 
Dynamic Voltage and Frequency Scaling (DVFS) is a widely recognized and commonly 

utilized technique that enhances the energy efficiency of computing systems by dynamically 

adjusting the voltage and frequency based on the current utilization of processor cores. The 

primary objective of DVFS methodology is to develop a scheduling scheme for the usage of 

processor clock frequency-voltage settings over time, aiming to minimize processor power 

consumption while minimizing any performance degradation. To achieve this, a DVFS 

scheduling algorithm must determine the appropriate timing for adjusting the current 

frequency-voltage setting (scaling point) and identify the optimal new frequency-voltage 

setting (scaling factor). 

In traditional approaches, metrics such as instruction retired and cache miss have been 

utilized for performance management [16, 21, 27]. Many existing DVFS algorithms rely on 

metrics like instructions retired or executed, assuming that an application's performance 

scales proportionally with the processor clock frequency. According to this assumption, 

halving the processor clock frequency would halve the computing system's performance. 

However, in reality, the execution time might only double in worst-case scenarios when the 

processor clock frequency is halved. Consequently, a DVFS scheduling algorithm based on 

this model might prioritize scheduling tasks at a faster processor clock frequency, potentially 

completing them well ahead of their deadlines (leading to a "race to halt" situation). 

Conversely, a slower processor clock frequency could be scheduled, meeting the performance 

deadline while consuming less power. Nevertheless, making decisions about "scaling factor" 

requires accurate runtime prediction of the operational relationship between frequency and 

performance. While cache miss is another common metric used to measure memory 

boundedness, it alone cannot guide frequency scaling decisions while accounting for the 

impact on performance. Hence, there is a clear need for a metric in DVFS that can evaluate 

the actual performance impact of frequency changes based on the runtime conditions.  
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To address this requirement, we conduct an evaluation of the instrumentation features 

available in various processor families to identify the performance monitoring unit (PMU) 

events that can effectively track the relationship between frequency and performance during 

runtime. Through our analysis, we have discovered that the POWER8 core [30] possesses a 

specific counter capable of monitoring the pipelined activity during off-core memory 

accesses, serving as a reliable indicator of architecture slack. In our work, we develop 

methods to exploit architecture slack-based counter in the POWER8 core, as this being the 

first core that offers such a capability. However, next generation POWER9 core also has this 

counter [3]. Therefore, for any related or future exploration, same methods and approaches 

can be extended to POWER9 and any other pipelined architectures (Intel, AMD processors) 

that offer such a capability for measurement of the architecture slack.  

 

1.4.2 Memory – Performance Aware Energy Management 

 
Figure 1.2a shows a DRAM cell arrangement and each cell, has a storage capacitor Cs which 

stores electrical charge. Data in a memory cell is stored as either the presence or absence of 

charge. To access the data, a transistor, represented as T, is used. The word line (WL) 

connects to the transistor's gate and is responsible for accessing the data. On the other hand, 

the bit line (BL) transfers data to or from the storage capacitor (Cs) and is connected to the 

transistor's drain. One plate of Cs is linked to the transistor's source, while the other electrode 

is biased at the cell plate voltage, denoted as Vp. The bit line is typically connected to multiple 

cells organized in a column, while the word line is connected to multiple cells arranged in a 

row. However, bit lines have relatively large parasitic capacitance Cbl since they connect all of 

the transistors in a column.  
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Figure 1.2: DRAM cell and charge access scheme 

 

As illustrated in Figure 1.2b, when the word line is driven high, the charge redistribution occurs, 

and this creates a small difference between bit line voltages. A sense amplifier as shown in Figure 

1.8a, which is associated with each bit line pair is used to detect the small voltage differences that 

occur during charge sharing. These bit lines must be pre charged with Vcc/2 before any read 

operation. 

 

 

 

 

 

 

 

Figure 1.3: Storage node, bit line and charge sharing voltages 

 

As illustrated in Figure 1.3, voltage at storage node (VC) can be either 1 or 0. During word line 

activation (access operation), when a DRAM cell is connected to bit line (BL), it loses majority of its 

charge from Vcc to (Vcc/2 + Vs) when storing ‘1’ or it is charged up from 0 to (Vcc/2 - Vs) when 

storing ‘0’, where Vs is given by equation (1.1). This is due to Cs charge sharing with large bit line 

capacitor Cbl. This generates a small “readout” ∆V which drives the input of the amplifier latch to 

one of the stable points 1 or 0, depending on the sign of ∆V (sense operation). Both access and 

sense operations are combinedly referred as row activation. 

𝑉𝑆 = (𝑉𝑐𝑐/2) / (1 +
𝐶𝑏𝑙

𝐶𝑠
) (1.1) 
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As the word line remains active, write back (restore operation) occurs, Cs is recharged back to Vcc 

level from (Vcc/2 + Vs), when storing ‘1’. Similarly, (BL) ̅ will also charge up from (Vcc/2 - Vs) to 

Vcc and Cs will be discharged from (Vcc/2 - Vs) to 0, when storing ‘0’. As a result, refresh power is 

mostly accounted for cells storing “1” due to recharging of cells from (Vcc/2 + Vs) to Vcc back and 

charging (BL) ̅ capacitance Cbl from (Vcc/2 - Vs) to Vcc level. For stored data ‘1’ and ‘0’, refresh 

power consumed P1 and P2, can be given as per equations (1.2) and (1.3) respectively. 

𝑃1 = 0.5 ∗ (𝐶𝑆) ∗ (
𝑉𝑐𝑐

2
− 𝑉𝑆)

2

 
∗ 𝑓 (1.2) 

 

𝑃2 = 0.5 ∗ (𝐶𝑏𝑙) ∗ (
𝑉𝑐𝑐

2
+ 𝑉𝑆)

2

 
∗ 𝑓 (1.3) 

 

where f = refresh rate and total refresh power, P = P1 + P2. Equations (1.2) & (1.3) clearly show that 

voltage is a potential knob to exercise power reduction during refresh. Self-refresh power also 

increases proportionately with respect to the number of cells to be refreshed.  Therefore, in higher 

density devices, it contributes to a significant fraction of the total energy consumption. 

 
1.5 Organization of the Thesis 

 
This thesis is organized as follows. 

Chapter 1 gave a brief introduction about the importance of processor and memory energy 

management to reduce energy consumption:  

• Specific to processor sub-system, given the dynamic workload nature in cloud 

computing environments, how workload architecture slack can be exploited to 

develop accurate models for performance management. 

• Specific to memory sub-system, given the increasing DRAM energy consumption, the 

motivation towards reducing energy consumption by reducing voltage during self-

refresh mode. 

Chapter 2 summarizes literature survey on the following topics:  

• Architecture slack exploitation for workload classification, phase classification and 

performance estimation.  

• Studies to reduce DRAM refresh power consumption. 

 

 



32 
 

 

Chapter 3 covers the following:  

• Experimental setup comprising hardware platform, SPECCPU 2006 and PARSEC 

benchmarks, tools to measure architecture slack and performance parameters of 

workloads for architecture slack exploitation 

• Experimental setup including GEM5 full system simulator and PARSEC benchmarks 

for measuring DRAM energy consumption at reduced voltages 

Chapter 4 covers the following: 

• Methodology and evaluation of using architecture slack for workload classification of 

benchmarks, development of compute and memory regression models, phase 

classification at runtime, performance evaluation of benchmarks using a custom 

algorithm 

Chapter 5 covers the following: 

• Methodology of latency evaluation of timing parameters at reduced voltage DRAM 

operation using SPICE model, controller & DRAM architectural changes for practical 

implementation, Quantitative evaluation of performance overhead due to voltage 

reduced self-refresh 

Chapter 6 presents the conclusions and the future work. 
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Chapter 2 
 

Literature Survey 
 

2.1 Workload Classification, Phase Classification and 
Performance Estimation 

 
The exploration of architecture slack in server computing environments is a burgeoning field 

with significant implications for performance management and optimization. Our work is 

positioned at the forefront of this research, aiming to develop methods that leverage 

architecture slack for workload classification, phase classification, and performance 

estimation. This endeavor is underscored by the introduction of a novel metric that measures 

architecture slack through core instruction throughput and not-busy cycles. The utility of this 

metric is demonstrated through its application in CPU and memory microbenchmarks, 

SPECCPU 2006, and PARSEC benchmarks on a POWER8 server processor. 

Prior work in the realm of workload classification has predominantly focused on 

distinguishing between compute-bound and memory-bound workloads. Basireddy et al. [2] 

utilized the Memory Reads Per Instruction (MRPI) metric on a heterogeneous multi-core 

platform to classify workloads and optimize energy consumption through voltage-frequency 

settings. Similarly, Robert et al. [27] employed hardware performance counters to gauge CPU 

load influenced by main memory accesses, guiding frequency scaling decisions. Chung-Hsing 

et al. [12] introduced a Dynamic Voltage Scaling (DVS) algorithm, "β-Adaptation," which 

adjusts core frequency based on the MIPS rate, highlighting the importance of instruction 

metrics over CPU cycles for workload requirement determination. These studies [2,12,27] 

underscore the significance of hardware metrics in workload classification but do not address 

architecture slack directly. 

Phase classification [14,15,29,37] and its applications have been well studied in many prior 

works [6,25,34]. In the domain of phase classification, extensive research has been conducted 
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to identify program phases and optimize performance. Srinivasan et al. [34] introduced an 

online program phase classification scheme utilizing a bottleneck type vector (BTV) to 

enhance performance per watt. Chesta et al. [6] proposed a phase detection approach using 

execution vectors (EVs) derived from hardware counters. Rodrigues et al. [25] demonstrated 

the efficacy of combining online phase classification with dynamic core morphing in 

asymmetric multicore processors. These studies [6,25,34] highlight the potential of 

microarchitecture-dependent metrics in phase classification but do not specifically explore 

the role of architecture slack. 

Performance estimation, a critical aspect of performance management, has been well studied 

[1,7,17,24]. Shoaib et al. [1] developed a performance prediction model, DEP+BURST, for 

multithreaded managed applications, significantly reducing performance estimation error. 

Rajamani et al. [24] and Contreras and Martonosi [7] utilized hardware counters for power 

management, while Sang-Jeong et al. [17] employed regression analysis based on CPI and 

memory accesses for runtime performance projection. These studies [1,7,17,24] emphasize 

the importance of hardware counters in performance prediction but do not leverage 

architecture slack for this purpose. 

Our work distinguishes itself by focusing on architecture slack as a novel metric for workload 

classification, phase classification, and performance estimation. By leveraging instruction 

throughput and not-busy cycles, we aim to provide a more nuanced understanding of server 

computing environments. This approach not only builds upon the foundational work of prior 

studies [2,12,27,34,6,25,1,7,17,24] but also introduces a new dimension to performance 

management strategies. Through the characterization of our metric and the development of 

performance estimation models, we contribute to the ongoing discourse on optimizing server 

performance, marking a significant advancement in the field. 

 

2.2 Reducing DRAM Refresh Power Consumption 
 

The quest to reduce DRAM refresh power consumption has been a focal point of numerous 

studies, each contributing unique insights and methodologies to address this challenge. The 

journey begins with the work of Byoungchan et al. [60], who introduced Enhanced Self-
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Refresh (ESR) and Long Latency Self-Refresh (LSR) modes. These modes innovatively 

applied selective voltage levels to DRAM cell transistors based on their activity state, 

optimizing leakage current and significantly improving power efficiency. The ESR mode, 

requiring minimal modifications, and the LSR mode, which achieved greater power reduction 

at the cost of increased latency, laid the groundwork for subsequent research in DRAM power 

efficiency. 

Building on these foundational concepts, RAIDR [61] exploited the variability in DRAM 

retention times [64] by grouping rows into bins with specific refresh rates, thereby enhancing 

system performance and reducing memory energy consumption. In a different study [62], a 

profiling mechanism is used to detect retention failures when the memory module enters 

self-refresh mode. This approach, however, faced challenges due to Variable Retention Time 

(VRT) failures, a problem that Qureshi et al. [65] aimed to address with AVATAR. AVATAR's 

dynamic adjustment of refresh periods sought to mitigate bit errors caused by VRT, though it 

could not guarantee the detection of all failing cells due to data pattern dependence. This 

limitation prompted the development of REAPER [66], which employed testing with multiple 

data patterns to identify failing cells more effectively. 

Das et al. [67] proposed a mechanism that only fully refreshes DRAM cells when necessary, 

using low-latency partial refresh operations to maintain data integrity. This approach, 

validated through real workload memory traces, demonstrated a significant reduction in 

refresh performance overhead, marking a step forward in efficient DRAM management. 

Further innovations came from Liu et al. [68] with the Flikker technique, which 

differentiated between critical and non-critical data for refresh rate adjustments, and the 

DIMMer approach [69], which powered off unused memory capacity to save energy. RAPID 

[70] and CLARA [71] introduced software and hardware solutions, respectively, to optimize 

refresh operations based on retention time variations, highlighting the complexity of 

addressing DRAM refresh power consumption. 

Jung et al. [72] explored power-down mode policies in 3D-DRAMs, demonstrating 

significant energy savings through adaptive refresh periods based on temperature data. This 
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study underscored the potential of temperature-aware refresh strategies in reducing DRAM 

power consumption. 

The literature reveals a consistent theme: the challenge of profiling DRAM cells for retention 

times due to VRT and Data Pattern Dependencies (DPD), as highlighted by Liu et al. [63]. 

These phenomena, which cause cells to exhibit unpredictable retention states, complicate the 

development of efficient refresh strategies. 

In response to these challenges, recent work [73-78] has introduced algorithmic changes, 

new DRAM refresh commands, and device-level refresh mechanisms. These innovations aim 

to improve performance and energy consumption by dynamically adjusting refresh 

operations to the retention characteristics of DRAM cells. For instance, the proposal to 

replace the NMOS transistor in 3T eDRAM with a relay [77] and the introduction of a 

retention-aware refresh technique called elaborate-refresh [78] represent significant 

advancements in DRAM technology. 

In summary, the body of literature on reducing DRAM refresh power consumption highlights 

a progression from initial strategies focusing on selective voltage application and grouping 

based on retention times to more sophisticated hardware and software approaches that 

address the challenges posed by VRT and DPD. These studies collectively underscore the 

critical need for efficient DRAM refresh mechanisms that can adapt to the varying retention 

characteristics of cells, thereby reducing power consumption without compromising system 

performance or data reliability. This evolving landscape of DRAM refresh strategies forms 

the basis of the current problem statement, which seeks to develop more effective refresh 

techniques that dynamically adjust to retention time variability and dependencies. 
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Chapter 3 

Experimental Setup 

 
3.1 Experimental Setup for Architecture Slack Exploitation 

 

 
We have used Amester tool [22,26] to collect run time traces of a workload under 

measurement, on a 1-socket POWER8 hardware platform. Figure 3.1 depicts the 

measurement setup. POWER8 platform used for this work comprises an 8-core processor 

and has 128 GB of main memory.  A measurement system runs Amester (Automated 

Measurement of Systems for Energy and Temperature Reporting) tool and connects to host 

system for data collection. Amester is an out-of-band tool which can collect parameters of 

interest, without impacting the workload performance that runs on host system. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Measurement setup 

 

 

POWER8 processor has a piece of hardware & associated firmware called the On-Chip 

Controller (OCC) [13]. The OCC (On-Chip Controller) is a separate processor integrated on 

the chip alongside the main POWER processor cores. It has its own dedicated 512K SRAM 
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and can access main memory. The OCC firmware operates in a continuous loop with a 

duration of 250 microseconds, constantly gathering system data. It can collect detailed 

information on temperature, performance, power, and utilization, and has the ability to 

control processor frequency and memory bandwidth. We have leveraged the OCC's 

measurement capabilities to collect performance and not-busy stall traces for workload 

analysis, and its frequency control capability to adjust frequencies using a max-min 

performance threshold algorithm. 

To determine the workload boundedness and leverage the Wb to mipsr correlation, we 

employed SPEC CPU2006 [31] and PARSEC [23] benchmarks in our study. The POWER8 

architecture comprises 12 cores, and each core has the capability to handle eight hardware 

threads concurrently (SMT8). 

Our experimental setting was a single core configured in SMT8 mode. Our goal was to study 

architecture slack with diverse set of both serial and parallel benchmarks. We identified 

SPECCPU 2006 as one workload set, as it offered a diverse set of serial benchmarks. We 

found PARSEC as another workload set for multi-threaded workloads, as their programs 

have been parallelized to take advantage of multiprocessor computers with shared memory. 

Together, these benchmarks exhibit a variety of performance sensitivities to changes in CPU 

frequency, which was an essential aspect for our investigation. We acknowledge that 

SPECCPU underwent revisions in 2017, introducing enhanced features, improved 

applications, multi-threading options for select applications, and an optional power 

consumption measurement metric [19]. However, since our study and results are not 

significantly impacted by these features, we opted to continue using SPECCPU 2006. 

3.2 Experimental Setup for Study of Self-Refresh Energy Savings 

 
We utilized a full system model based on GEM5 [52] to simulate a dual-core X86 ISA 

processor model, as presented in Table 3.1. The simulated DDR4 subsystem is connected to 

the controller via a single DDR4-2400 64-bit channel. This subsystem comprises 16 DRAMs, 

with 8 per rank, and each DRAM has an 8-bit interface (×8). Timings and key current values 

are based on the Micron DDR4-2400 8 Gbit datasheet (Micron MT40A2G4) as presented in 
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Table 3.2. To calculate the energy components, we employed the timings and key current 

values based on the Micron DDR4-2400 8 Gbit datasheet (Micron MT40A2G4) [42], which 

were utilized by the DRAMPower tool [53, 54] integrated within gem5. During simulation, 

the commands and timestamps are provided to DRAMPower at runtime. The DRAM 

subsystem consists of 16 banks, and the buffer that holds incoming requests for all banks is 

divided into separate read and write queues. The controller reorders the requests, and its 

scheduling policy follows the principle of First Ready - First Come First Served (FR-FCFS). 

The page policy employed is open adaptive, meaning that a specific bank's page is closed if 

there are no row hits (but row misses occur), and it remains open if there are no requests 

directed to that bank. 

 
Processor X86 ISA, Dual Core, 4GHz, TimingSimpleCPU 
L1 I-Cache 32KB private, 4-way, 64B line, 2 cycle access time 
L1 D-Cache 32KB private, 4-way, 64B line, 2 cycle access time 
L2 D-Cache 128KB shared, 8-way, 64B line, 20 cycle access time 

Memory 
controller 

FR-FCFS, open-adaptive, address mapping RoRaBaCoCh, 128B write buffer, 64B read buffer, 
64B cache line 

Main memory DDR4 1Gbx8 device, 16 banks, 1 Channel, 2 Ranks per channel, 1200 MHz, BL8, Page size 1 KB 

PARSEC blackscholes, bodytrack, dedup, fluidanimate, freqmine, streamcluster, swaptions, x264 

Table 3.1: Simulation setup 

 

 
Current Values 

(mA) 
  Timing Values 

(ns) 
IDD0 48   tCK 0.833 
IDD1 60   tRAS 32 
IDD4R 135   tRCD 14.16 
IDD4W 123   tREFI 7800 
IDD5R 53   tRP 14.16 
IDD3N 43   

  

IDD2N 34   Voltage Values (V) 
IDD3P 37   VDD 1.2 
IDD2P 25   VPP 2.5 
IDD6N 30   

  

IDD6E 35   
  

IDD6R 20   
  

 

Table 3.2: Power and timing parameters based on DDR4-2400 8 
Gbit device [42] 

 

Our intent is to study self-refresh energy savings with realistic workloads. The PARSEC 

benchmarks [23] are selected for this purpose, that generate parse traffic to memory with 

long idle times, thereby exercises the memory device to be in self-refresh mode for most of 

the times. We utilized the staggered power-down strategy implemented in DRAMPower [54]. 

This approach enables the memory controller to transition from active power-down mode to 
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precharge power-down mode and subsequently enter self-refresh mode in a staggered 

manner, reducing the energy consumption of the DRAM. The staggered power-down 

strategy, developed by Jung et al. [55], aims to achieve additional energy savings by 

eliminating unnecessary self-refresh entries [56]. 

In our study, all the active, idle & power-down energy components of the DRAM device are 

measured. All energy components are categorized into 4 groups, as shown in Table 3.3. G4 is 

the self-refresh energy, which is of primary interest for us to investigate energy savings with 

respect to reduced DRAM array voltage at normal (0- 85°C), extended (0- 95°C) and reduced 

(0- 45°C) temperatures in LPASR mode. Array voltage is reduced up to 150 mV at 25 mV 

granularity from 1.20 V nominal (i.e. 1.175 V, 1.150 V, 1.125 V, 1.100 V, 1.075 V, 1.050 V) and 

quantify self-refresh energy savings at three temperature ranges (IDD6N/IDD6E/IDD6N). 

 
Group DRAM energy breakdown 

G1 act/pre IDD0: One bank ACTIVATE-to-PRECHARGE current 
IDD1: One bank ACTIVATE-to-READ-to-
PRECHARGE current 

Read IDD4R: Burst read current 

Write IDD4W: Burst write current 

refresh IDD5R: Distributed refresh current (1X REF) 

G2 actBack IDD3N: Active standby current 

preBack IDD2N: Precharge standby current 

G3 actPowerDown IDD3P: Active power-down current 

prePowerDown IDD2P: Precharge power-down current 

G4 selfRefresh IDD6N: Self refresh current 

 

Table 3.3: DRAM energy components 
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Chapter 4 
 

Architecture Slack Exploitation for 
Phase Classification and 
Performance Estimation 

 
4.1 Workload Classification of Benchmarks 

 
Exploiting slack, when the processor core is busy executing programs, requires a very close 

activity monitoring of execution units. Our goal is to exploit such slack cycles, combined with 

other metrics for workload classification and performance estimation. 

  
Counter Description 

Instruction 
throughput (cIPS) 

Completed instructions per second 
throughput of a core 

 
Stall cycles (cIdle) 

 
Execution pipeline stall cycles (Not Busy) 
with outstanding L3 miss 

 

Table 4.1: Events tracked for Performance Management 
 

 

Table 4.1 lists the counters available in POWER8 that are accessed by our implementations. 

While the Instruction throughput counters are widely available across different processor 

families, the cIdle counter is a novel counter introduced in POWER8 especially for facilitating 

the tracking of idleness in the core when waiting on data from memory. cIPS measures the 

rate of completed ‘millions of instructions per second (MIPS)’ i.e., instruction throughput in a 

core pipeline that is a direct measure of the performance. cIdle measures ‘not busy’ cycles of a 

core, when execution units are not busy, while there is at least one L3 cache miss pending, 

which is a direct measure of the execution pipeline stall cycles. 
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Figure 4.1: Hardware implementation of cIdle counter 

 

The POWER8 core pipeline has both single-cycle and multiple-cycle execution units. Figure 

4.1 illustrates the hardware implementation of the cIdle counter [11]. This counter increases 

during each execution cycle when at least one thread is waiting for off-core memory access 

and no threads are actively working, indicating that at least one processor core is not in use. 

The cIdle counter performs a logical AND operation between the finish signals of single-cycle 

units, the delayed busy signals of multi-cycle units, and the logical OR operation of L3 miss 

signals from all threads. The output signal is activated when all pipelines are not busy, 

meaning there are no finishes from single-cycle units or no delayed busy signals from multi-

cycle units. Accumulating this metric over millions of cycles reveals insights into pipeline 

activity trends during periods of off-core memory access. 

We identify that the instruction throughput (MIPS) and not-busy cycles (stalls) as providing 

measures, which are complementary in nature to understand the fast or slow execution 

behavior of pipeline. With this intuition, we propose to combine these metrics to characterize 

the architecture slack and leverage for workload classification, phase classification and 

performance estimation. 

Workload classification can infer how the performance of a workload is bounded to frequency 

changes. We propose a compounded metric Wb (workload bound) for this classification 

purpose, which basically is “MIPS to Stalls” ratio, as shown in Equation 4.1. It is measured in 

millions of instructions per second to million cycles of idle stalls.  Wb metric is sensitive to 

Logical  
NOR 

Logical 
AND 

Busy signal from 
Multiple  

Cycle Units 

Finish signal 
from Single 
Cycle Units 

L3 miss pending 
for every thread 

Logical 
OR 

Accumulator 

cIdle Counter 
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frequency changes, as measures of both instruction throughput and stall cycles are impacted 

directly by frequency. It is a measure of architecture slack of workloads. 

Performance estimation by a DVFS algorithm require accurate prediction of operational 

relationship between frequency and performance at current and target frequency points 

(frequency sensitivity), at run-time. It is essentially a measure of “architecture slack” present 

in the workloads to indicate how many wasted cycles can be eliminated, by lowering the 

frequency with minimal impact on performance. mipsr (ratio of MIPS between target and 

current frequency) is a direct measure of frequency sensitivity accounting for architecture 

slack, between two frequency points. However, measuring mipsr at runtime, has the 

following drawbacks (a) DVFS algorithms need performance measurement at current and 

target frequency to determine the sensitivity. This necessitates DVFS controller to slew 

frequency from current frequency to target frequency point and (b) It must be calibrated 

periodically to account for phase changes that occurs during runtime. Both (a) and (b) are 

huge overhead for a performance control algorithm. One important motivation of our work is 

to evaluate how Wb can be leveraged as proxy to mipsr, by exploiting the relationship 

between these parameters. This is mainly to address the above-mentioned drawbacks. The 

intuition behind this approach is that both parameters provide similar measure of frequency 

sensitivity accounted for architecture slack of workloads.  

𝑊𝑏  =  ( 
𝑐𝐼𝑃𝑆

𝑐𝐼𝑑𝑙𝑒
)  𝑚𝑖𝑝𝑠/𝑚𝑐𝑦𝑐 (4.1) 

 

Equation 4.1 is based on the following simple intuition. For a compute intensive workload, 

instruction throughput measured by cIPS will be high and not-busy cycles measured by cIdle 

will be low. Such trend will be exactly opposite for a memory-bound workload. Therefore, 

higher bound Wb(high) indicates, more performance impact (more throughput and less 

stalls) which is tightly bounded to frequency change implying a core-bound workload. Lower 

bound Wb(low) indicates, less performance impact (less throughput and more stalls) which is 

loosely bounded to frequency change, implying a memory-bound workload. We have 

validated “Wb” behavior for a 1.5 GHz broader frequency range, from 2 to 3.5 GHz, at 100 
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MHz granularity using four custom micro benchmarks: sqroot, fma, mcopy and mlr. sqroot & 

fma are CPU intensive benchmarks, whereas mcopy & mlr are memory intensive 

benchmarks. 

 

 
 

Figure 4 .2: Wb (MIPS to stalls ratio) for custom core-bound benchmarks 

 

 
 

Figure 4 .3: Detailed Wb trend for sqroot core-bound benchmark 
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Figure 4 .4: Detailed Wb trend for fma core-bound benchmark 

 

 
Figure 4 .5: Wb (MIPS to stalls ratio) for custom memory-bound benchmarks 

 

The behavior of Wb for these four benchmarks, from 2 GHz to 3.5 GHz, is shown in Figures 

4.2 & 4.5. Wb-values shown have been normalized to the peak value which is the value for 

sqroot at 3.5 GHz. Figures 4.3 and 4.4 illustrate the detailed Wb trend along with MIPS and 

Not busy cycles, across the 2 to 3.5 GHz full frequency range for sqroot & fma respectively. It 

is observed that both MIPS & Not busy cycles are impacted at each measurement point of 100 

MHz granularity step size, resulted in overall trend of Wb metric at each frequency point. 

This shows that measure of these two metrics (MIPS, not-busy cycles) is impacted directly by 

frequency and hence Wb inherently accounts for the same. 

In sqroot and fma benchmarks, Wb(high) consistently exceeds 10% across all frequencies, 

indicating a significantly higher instruction throughput than stalls. On the other hand, in 

mload and mlr benchmarks, Wb(low) remains below 0.2%, suggesting a considerably higher 
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occurrence of stalls compared to instruction throughput. This substantial disparity in the 

normalized Wb metric value demonstrates its effectiveness in distinguishing between core-

bound and memory-bound workloads.  

For a given workload set, either one of the bound Wb(high) or Wb(low) can be used as a 

threshold for demarcation. In one scenario, a classification algorithm can classify workloads 

that have Wb above Wb(high) as core-bound workloads and workloads that have Wb below 

Wb(high) as memory-bound workloads. In another scenario, a classification algorithm can 

classify workloads that have Wb below Wb(low) as memory-bound workloads and workloads 

that have Wb above Wb(low) as core-bound workloads. For a given workload or an 

application set, the Wb(high) and Wb(low) bounds can be learnt over time, based on which 

control algorithm can decide, what Wb bound to use for demarcation given the optimization 

targets. In one optimization, Wb(high) can be used a threshold to prioritize core-workloads to 

guide frequency scaling decisions towards faster completion (favor performance). In another 

optimization, Wb(low) can be used as a threshold to prioritize memory-workloads to guide 

frequency scaling decisions towards frequency reduction, with minimal impact in 

performance (favor energy). 

In order to classify workload boundedness and exploit Wb to mipsr correlation, we used SPEC 

CPU2006 [31] and PARSEC [23] benchmarks in this work. There are total of 38 benchmarks 

(29 SPECCPU 2006 and 9 PARSEC). We collected traces of MIPS and stalls for all these 

benchmarks for the entire runtime duration, at 2 GHz and 3.5 GHz frequencies. We computed 

MIPS ratio (mipsr) and Wb at these two frequency points, as shown in Table 4.2. mipsr(norm) 

is the mipsr normalized to frequency ratio. Wb(norm) are measured Wb values normalized 

with current its GHz frequency for 3.5 GHz and 2 GHz frequency bounds. 

For workload classification, we have used lower bound of Wb which is Wb(low) as threshold to 

set memory boundedness as classification criteria. Based on Wb characterization learning with 

custom benchmarks in section 3, we have leveraged Wb(low) as 0.2% of maximum 

boundedness. Considering max Wb at 3.5 GHz for these benchmarks, this threshold translates 

to ~5 (0.2% of 2615). This means, benchmarks with Wb above 5 are determined as core-bound 
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and benchmarks with Wb below 5 are determined as memory-bound. Based on this Wb(low) 

threshold, there are 23 SPEC CPU2006 and 9 PARSEC benchmarks identified as core-bound 

workloads and there are 6 SPEC CPU2006 identified as memory-bound workloads, as shown 

in Table 4.2. 

 

Table 4.2: Parameters mipsr(normalized), Wb(normalized) 
values 

 

 

4.2 Performance Estimation Models 
 

 
For performance prediction, we have developed compute and memory regression models, 

which are shown in figures 4.1 and 4.2 respectively. These models exploit the relationship 

between Wb and mipsr across all benchmarks, at 3.5 GHz and 2 GHz frequency bounds. They 

provide mipsr performance estimate, at target frequency using Wb measured at current 

frequency. These models are developed using the following 19 benchmarks (out of 38 total) 

as training set: (429.mcf, 450.soplex, 433.milc, 410.bwaves, 436.cactusADM, 403.gcc, 

434.zeusmp, 437.leslie3d, 453.povray, 447.dealII, 458.sjeng, 445.gobmk, 435.gromacs, 

454.calculix, 401.bzip2, 400.perlbench, 416.gamess, 444.namd, 456.hmmer). The remaining 

19 benchmarks are used to validate these models (as validation set): (459.GemsFDTD, 

471.omnetpp, 482.sphinx3, 462.libquantum, 481.wrf, 483.xalancbmk, streamcluster, 
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facesim, 473.astar, blackscholes, fluidanimate, 470.lbm, bodytrack, 465.tonto, ferret, 

freqmine, x264, 464.h264ref, vips). 

 

 

 

 

 

 

 

 

 

Figure 4.6: Compute and memory regression models for mipsr estimate at 3.5 
GHz target frequency 

 

 

 

 

 

 

 

 

 

Figure 4.7: Compute and memory regression models for mipsr estimate at 2 
GHz target frequency 
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relationship for core-bound and memory-bound benchmarks at 2 GHz target frequency, 

using 3.5 GHz measurements and their models are shown in Equations 4.4 & 4.5. 

𝑐𝑝𝑒𝑟𝑓(3.5 𝐺𝐻𝑧) ≈ [0.0077 𝑙𝑛(𝑊𝑏@2𝐺𝐻𝑧) + 0.9439] (4.2) 

 

𝑚𝑝𝑒𝑟𝑓(3.5 𝐺𝐻𝑧) ≈ [0.0537 𝑙𝑛(𝑊𝑏@2𝐺𝐻𝑧) + 0.7991] (4.3) 

 

𝑐𝑝𝑒𝑟𝑓(2 𝐺𝐻𝑧) ≈ [0.0072 𝑙𝑛(𝑊𝑏@3.5𝐺𝐻𝑧) + 0.9443] (4.4) 

 

𝑚𝑝𝑒𝑟𝑓(2 𝐺𝐻𝑧) ≈ [0.0523 𝑙𝑛(𝑊𝑏 @3.5𝐺𝐻𝑧) + 0.7971] (4.5) 

 

All 38 benchmarks (including both validation and training sets) are used to validate compute 

and memory regression models for their performance prediction accuracy and detailed 

results are presented later in section 5. 

4.3 Phase Classification at Runtime 
 

Classifying a workload on an interval by interval during runtime, is important to detect its 

boundedness, based on which frequency scaling-factor can be determined for performance 

management. We define this as “phase”, which is essentially the estimate of Wb for a given 

interval of measurement. A phase transition or change can be determined based on Wb value 

transition from high to low (compute to memory) or from low to high (memory to compute).  

For phase classification, we have defined a fixed interval of 1 second. We accumulated Wb 

over this interval and evaluated phase of three benchmarks having distinctive phase 

characteristics: compute bound (400.perlbench), memory bound (471.omnetpp) and mixed 

bound (433.milc). Here mixed bound implies, the compute phases (Wb above Wb(low)) and 

memory phases (Wb below Wb(low)) alternate during runtime. We characterized phase 

behavior for entire duration of the runtime at four different frequency points (3.5/3/2.5/2 

GHz) to verify its consistency across broader operating frequency ranges, as shown in Figure 

4.5. 
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4.4 Performance Evaluation of Benchmarks 
 

Performance estimation is done by DVFS algorithms to support frequency scaling. 

Essentially, it is a measure of frequency-performance relationship at target frequency with 

respect to its current frequency-performance setting, as shown in Equation 4.6.  

𝑚𝑖𝑝𝑠(𝑡𝑎𝑟𝑔𝑒𝑡) = (
𝑓𝑟𝑒𝑞(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑓𝑟𝑒𝑞(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
) ∗ 𝑚𝑖𝑝𝑠(𝑐𝑢𝑟𝑒𝑛𝑡) ∗ (1 − 𝛽) (4.6) 

 
 
 

In Equation 4.6, β refers to the memory boundedness of a workload. For an ideal compute 

bound workload, (β=0), performance will track linearly with frequency. However, for any 

practical workload, performance will track non-linearly, as there will be certain amount of 

memory transactions involved, as shown by mipsr  in Equation 4.7.  

𝑚𝑖𝑝𝑠𝑟  𝛼 
𝑚𝑖𝑝𝑠(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑚𝑖𝑝𝑠(𝑐𝑢𝑟𝑒𝑛𝑡)∗(1− 𝛽)
 (4.7) 

 
 
 

For establishing the relationship between Wb and mipsr, we have developed regression 

models at two extreme frequency points, 2 GHz and 3.5 GHz, using SPECCPU 2006 and 

PARSEC benchmarks suite. It has mix of CPU and memory intensive benchmarks, therefore 

there are two models realized, cPerf and mPerf to estimate mipsr for compute and memory 

bound workloads. These models can give an estimate of mipsr at target frequency, using Wb 

at current frequency. 

We summarize all above stated methods and propose the overall performance management 

scheme as shown in Figure 4.8. It comprises three major steps (a) Workload bound detection 

(b) Workload or phase classification and (c) Performance estimation.  
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Figure 4.8: Performance prediction scheme 

 

We have used this scheme to build accurate performance predictors. In first part of our work, 

we have developed offline regression models to exploit correlation of Wb and mipsr 

parameters, using a subset of benchmark suite (training set). Here offline refers to 

measurement of these parameters for entire runtime of these benchmarks. To assess the 

accuracy of our prediction models, we conducted validation using the remaining benchmarks 

in our dataset. In the second part of our study, we devised an online interval-based approach 

for classifying phases of benchmarks based on their unique characteristics. These phases 

include compute bound, memory bound, and mixed bound workloads. We have verified 

runtime performance prediction accuracy of few benchmarks using cPerf and mPerf models 

with measured performance traces. We have also developed an algorithm to determine 

compute or memory phases at runtime to guide frequency scaling decisions and evaluated 

execution time impact of all benchmarks. 

We implemented a max-min performance-threshold algorithm for performance 

management. We studied the performance impact by comparing execution times of all 

benchmarks, between max-min and "Dynamic Power Saver, Favor Performance (DPS-FP)" 

algorithm in POWER8 [4].  

Max-min algorithm collects MIPS and not-busy cycle traces to compute Wb for the current 

phase interval of 1 second duration. Using computed Wb, it determines the compute or 

memory phase, based on whether Wb is above or below Wb(low) respectively. It then drives 

Workload or phase classifier 
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the frequency to freq(min) for memory phase and freq(max) for compute phase. We have set 

freq(min) threshold to 2 GHz for memory phase to guide towards minimum frequency and 

freq(max) threshold to 3.5 GHz for compute phase to guide towards maximum frequency.  

ALGORITHM 1: MAX-MIN PERFORMANCE THRESHOLD 

Input: All 38 benchmarks, Wb 

Output: Slew frequency to max or min frequency depends on compute or memory phase respectively 

1. Initialization: freq(min)= 2 GHz, freq(max)= 3.5 GHz,  Wb =  Wb(low)(5), Phase duration = 1 sec, interval i = 0; 

2. While (1) do 

3. Collect MIPS and not-busy cycles for for 1 sec intervals (i)  

4. Compute  Wb(i) for every  ith interval 

5. if ( Wb(i) >  Wb(low))  

6. Compute MIPS  using  (Wb(i), cPerf) 

7. Increment i++           /*Next interval*/  

8. Slew to freq(max) for  Wb(i)          /*Increase performance */ 

9. else 

10. if ( Wb(i) <=  Wb(low))  

11. Compute MIPS  using  (Wb(i), mPerf) 

12. Increment i++           /*Next interval*/  

13. Slew to freq(min) for  Wb(i)          /* Eliminate wasteful stall cycles waiting on memory resources*/ 

14. end if 

15. end while 

 

DPS-FP is a DVFS algorithm specifically designed for POWER8 to optimize performance. It 

utilizes MIPS throughput to determine the level of core utilization and adjusts the frequency 

accordingly. When the core is moderately or heavily utilized, the frequency is increased to the 

maximum (3.5 GHz) to maximize performance. On the other hand, if the core is lightly 

utilized or idle, the frequency is lowered to the minimum (2 GHz) to conserve power. 

Table 4.3 shows the comparison of benchmarks execution time between max-min and DPS-

FP algorithms. Column A lists all the core and memory benchmarks. Columns B and C list 

the runtime (seconds) of all benchmarks measured with DPS-FP and max-min algorithms 

respectively. Column D shows the comparison of runtime differences (decrease or increase) 

across all benchmarks. 
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A B C D 

Benchmarks DPS-FP 
Algo 

(default)  

 (2-3.5) GHz 
Min-Max  

Algo 

Runtime 
decrease/ 

increase (%) 

CPU Benchmarks 

Vips 406 405 -0.2% 

x264 465 463 -0.4% 

456.hmmer      487 485 -0.4% 

464.h264ref    1360 1353 -0.5% 

freqmine 969 968 -0.1% 

444.namd      716 714 -0.3% 

Ferret 485 483 -0.4% 

416.gamess    2487 2482 -0.2% 

465.tonto  746 743 -0.4% 

400.perlbench  1025 1020 -0.5% 

401.bzip2      1576 1572 -0.3% 

454.calculix  1066 1063 -0.3% 

435.gromacs   677 676 -0.1% 

445.gobmk      1704 1700 -0.2% 

bodytrack 460 458 -0.4% 

470.lbm       206 205 -0.5% 

blackscholes 331 330 -0.3% 

458.sjeng      2441 2438 -0.1% 

fluidanimate 855 851 -0.5% 

447.dealII    1258 1253 -0.4% 

453.povray    656 654 -0.3% 

473.astar  1204 1199 -0.4% 

Facesim 476 474 -0.4% 

437.leslie3d  149 149 0.0% 

483.xalancbmk  774 771 -0.4% 

streamcluster 530 528 -0.4% 

462.libquantum 188 188 0.0% 

434.zeusmp    775 772 -0.4% 

481.wrf       825 822 -0.4% 

403.gcc        864 861 -0.3% 

482.sphinx3   977 973 -0.4% 

436.cactusADM 290 289 -0.3% 

Memory Benchmarks 

410.bwaves    185 201 8.1% 

471.omnetpp    814 877 7.2% 

433.milc      434 466 6.9% 

450.soplex    516 559 7.8% 

459.GemsFDTD  506 546 7.4% 

429.mcf        475 509 6.6% 

 

Table 4.3: Benchmarks – Performance impact study 

 

4.5 Results and Discussion 
 

MIPS prediction accuracy is a critical metric in evaluating the performance of computer 

processors, particularly in the context of estimating the processor's capability to execute a 

given number of instructions per second at various frequencies. This accuracy is determined 

by comparing the MIPS estimated through computational models, such as cPerf and mPerf, 

against the MIPS actually measured on the hardware for a target frequency, as shown in 

Equation 4.8. The process of estimating MIPS involves specific steps outlined in an 

algorithm, where lines 6 and 11 play a pivotal role in generating the MIPS estimate. 

Essentially, this comparison between estimated and measured MIPS allows for the 

assessment of the precision of the models used in predicting processor performance under 
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different operational conditions. 

The accuracy of MIPS prediction was evaluated through empirical measurements conducted 

on hardware running at frequencies of 2 GHz and 3.5 GHz. These measurements were taken 

over the entire runtime duration of the processor while executing benchmark suites like 

SPEC CPU2006 and PARSEC, which are widely recognized for their ability to simulate real-

world computing environments and workloads. During these tests, both the MIPS and the 

not-busy cycles - periods when the processor is not executing any instructions - were 

meticulously recorded. Furthermore, a metric known as Wb was calculated based on the data 

collected from these measurements. The Wb metric, derived from the measured MIPS and 

not-busy cycle traces at the two specified frequency points, serves as an additional parameter 

in evaluating the processor's efficiency and the accuracy of MIPS predictions, thereby 

providing a comprehensive view of the processor's performance characteristics.  

𝑀𝐼𝑃𝑆 (𝑒𝑟𝑟𝑜𝑟) = (𝑀𝐼𝑃𝑆(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) ~ 𝑀𝐼𝑃𝑆(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) (4.8) 

 

In the realm of computing performance evaluation, the concept of using Wb as a proxy for 

MIPS has been explored with promising results. Specifically, Wb values computed at a base 

frequency of 2 GHz were utilized to forecast MIPS at a higher target frequency of 3.5 GHz. 

This prediction was facilitated by employing specific prediction models, as detailed in 

Equations 4.1 and 4.2 found in section 4.2 of the referenced document. The accuracy of these 

predictions was then assessed by comparing the predicted MIPS values against the actual 

MIPS measurements obtained at the 3.5 GHz frequency. The comparison, illustrated in 

Figure 4.9, revealed that the discrepancy between the predicted and actual MIPS values was 

within a narrow margin of error, not exceeding 3% across various benchmarks. This outcome 

underscores the efficacy of using Wb as a reliable indicator for MIPS rates across different 

frequencies, thereby supporting its potential as a versatile tool in performance evaluation. 

Further extending this methodology, the study also investigated the reverse scenario where 

Wb values computed at the higher frequency of 3.5 GHz were used to predict MIPS at the 

lower target frequency of 2 GHz. This prediction process was guided by another set of 
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prediction models, encapsulated in Equations 4.3 and 4.4, as outlined in the same section 

4.2. The fidelity of these predictions was similarly evaluated by comparing the predicted 

MIPS against the actual MIPS measurements at the 2 GHz frequency, with the findings 

depicted in Figure 4.10. Remarkably, the error margin between the predicted and measured 

MIPS values remained within the 3% threshold across all benchmarks in this scenario as 

well. This consistency in prediction accuracy across both directions of frequency change 

further validates the robustness of Wb as a proxy for MIPS, demonstrating its applicability 

over a broad spectrum of frequencies in computing performance assessments. 

 

Figure 4.9: MIPS predicted (using models) vs measured error at 3.5 GHz 

 

 

Figure 4.10: MIPS predicted (using models) vs measured error at 2 GHz 

 

In the realm of online phase classification, the metric Wb over a one-second duration serves 

as a pivotal unit of measurement for analyzing the runtime phase characteristics of various 
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benchmarks. Specifically, Figure 4.11 delves into the examination of three distinct 

benchmarks—400.perlbench, 471.omnetpp, and 433.milc—across four varying frequencies: 

3.5 GHz, 3 GHz, 2.5 GHz, and 2 GHz. The analysis reveals that 400.perlbench consistently 

maintains a Wb value above the designated low threshold (Wb(low)), indicating its highly 

compute-bound nature throughout its runtime. Conversely, 471.omnetpp demonstrates a Wb 

value significantly below the Wb(low) threshold, categorizing it as highly memory-bound 

during its entire runtime. Meanwhile, 433.milc presents a more complex scenario, with its 

Wb value fluctuating above and below the Wb(low) threshold, thereby showcasing a transient 

behavior with mixed phases of compute and memory-bound characteristics. 

This intricate analysis underscores a crucial observation: the phase classification, as 

determined by the Wb value, remains consistent across different frequency settings, whether 

the value stays above or below the threshold. This consistency in behavior, irrespective of the 

frequency variations, suggests that the utilization of Wb for phase classification is not only 

effective but also versatile, capable of adapting to a broad spectrum of frequency ranges. 

Such a revelation is instrumental in understanding the inherent characteristics of 

benchmarks, enabling a more nuanced approach to optimizing performance across diverse 

computational environments. The ability to accurately classify phases based on Wb values, 

therefore, holds significant promise for enhancing the efficiency and adaptability of 

computing systems, paving the way for more sophisticated performance optimization 

strategies that can cater to the specific demands of various benchmarks. 

The comparison between the max-min threshold algorithm and the conventional DPS-FP 

algorithm offers insightful revelations about their efficacy across different types of 

benchmarks. The max-min threshold algorithm dynamically adjusts the processor frequency 

to 3.5 GHz for compute-intensive phases and to 2 GHz for memory-intensive phases, 

contingent upon Wb surpassing or not surpassing a predefined low threshold (Wb(low)). 

Conversely, the DPS-FP algorithm maintains a frequency of 3.5 GHz for moderate to high 

core utilization scenarios and reduces it to 2 GHz under conditions of minimal core activity 

or idleness. This distinction in frequency management is particularly pronounced in core 
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benchmarks, where the prevalence of compute phases over memory phases for the majority 

of the workload runtime is substantiated by high Wb values as documented in Table 4.2, and 

further illustrated by the high MIPS) and low Not Busy cycles of three core benchmarks 

depicted in Figure 4.12. Despite the high MIPS and Wb leading both algorithms to operate at 

3.5 GHz for most of the workload runtime, the observed runtime difference between the two 

algorithms across all core benchmarks is marginal, at merely 0.5%. 

In contrast, the behavior of these algorithms diverges more significantly in memory 

benchmarks, characterized predominantly by memory phases over compute phases 

throughout the workload runtime. This scenario is corroborated by the low Wb values 

presented in Table 4.2 and the corresponding low MIPS and high Not Busy cycles of three 

memory benchmarks, as demonstrated in Figure 4.13. The DPS-FP algorithm's propensity to 

elevate the frequency to 3.5 GHz even with moderate core activity results in expedited 

execution. However, the max-min threshold algorithm, guided by the Wb value, reduces the 

frequency to 2 GHz, effectively minimizing wasteful cycles that would otherwise be spent in 

stalls awaiting memory resources during memory phases. This frequency adjustment strategy 

by the max-min algorithm leads to a notable performance improvement, with an average 

increase of approximately 7.3% across all memory benchmarks, and a peak increase of about 

8.1% for the 410.bwaves benchmark. 

Further validation of these algorithm’s performance was conducted through the evaluation of 

predicted versus measured runtime performance for both compute-bound (400.perlbench) 

and memory-bound (471.omnetpp) benchmarks within a frequency range of 2-3.5 GHz. The 

comparison, as depicted in Figure 4.14, showcases the close alignment between the predicted 

performance, derived from cPerf and mPerf models, and the actual measured performance, 

with a deviation within a 3% error margin. This congruence underscores the reliability of the 

max-min threshold algorithm in optimizing performance by judiciously managing processor 

frequencies based on the nature of the workload, thereby affirming its potential as a superior 

alternative to the conventional DPS-FP algorithm for certain benchmark categories. 
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Figure 4.11: Runtime phase characteristics of 400.perlbench, 471.omnetpp 
and 433.milc benchmarks 
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Figure 4.12:  MIPS, NotBusy & Wb characteristics of core-benchmarks 

(456.hmmer, 464.h264ref and 416.gamess) 
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Figure 4.13: MIPS, NotBusy & Wb characteristics of memory-benchmarks 
(410.bwaves, 450.soplex and 459.GemsFDTD) 
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Figure 4.14:  MIPS predicted vs measured for 400.perlbench and 
471.omnetpp benchmarks 
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Chapter 5 
 

Voltage Reduced Self Refresh (VRSR) 
for Optimized Energy Savings in 
DRAM Memories 

 

5.1 Impact of Reduced Voltage and Temperature on Self-refresh 
 
 

Refresh essentially requires activation, restore and precharge operations of every row periodically, 

as shown in Figure 5.1. Before every row activation, the bit lines and sense amplifiers of the 

selected bank must be properly precharged. The precharge time (tRP) represents the duration, 

measured in clock cycles, required to end access to an open row of memory and precharge the 

bitline (BL). Row activation necessitates a specific number of clock cycles (tRCD) for data to 

become available at the sense amplifiers, although it has not yet been restored to the DRAM cells. 

Following the activation process, the data restoration operation is completed after a time period of 

tRAS, starting from the beginning of the activation process. Once this process is finished, the 

DRAM device is ready to receive a precharge command. The latency of these three crucial 

operations (tRP, tRCD, and tRAS) depends on factors such as the cell capacitance, bitline 

capacitance, and array voltage [45]. 

 

 

 

 

 

 

Figure 5 .1: Timing parameters associated with refresh operation of a row 
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Commodity DRAM devices necessitate the refreshing of each cell within a specific retention period, 

typically every 32ms or 64ms. The retention time of a cell refers to the duration it can retain 

sufficient charge for the sense amplifiers to detect either '0' or '1', and it is directly influenced by the 

supply voltage of the DRAM array. Lowering the supply voltage reduces the amount of charge 

stored in a cell, resulting in a decreased retention time. In typical DRAM configurations, internal 

voltage generators are utilized to enable operation with a single external power supply voltage 

(VDD), as illustrated in Figure 5.2. The memory array voltage-down converters (Varray) and the 

DRAM control and logic circuitry voltage-down converters (Vccp) generate the necessary voltage 

levels. The memory cell array is subjected to negative back bias voltage (Vbb), bit line precharge 

voltage (Vbl), and cell plate voltage (Vcp). The boosted word line voltage (Vpp) applied to the word 

line driver enhances random row access time. In modern DRAM systems [79], to reduce idle power 

consumption during self-refresh mode, the peripheral circuitry (interface and delay locked loop) is 

deactivated. Furthermore, the memory controller is disconnected, and refresh operations are 

autonomously performed by the internal counter. Consequently, decreasing the supply voltage 

(VDD) solely impacts the reliability, latency, and data retention characteristics of the DRAM array. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Internal voltages in DRAM [46] 

 
The temperature has a significant impact on data retention in DRAM devices [80]. Higher 

temperatures lead to increased leakage current, requiring higher refresh rates to ensure data 
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integrity. On the other hand, at lower temperatures, refresh rates can be reduced to minimize 

power consumption while still maintaining data integrity. JEDEC has introduced the LPASR (Low 

Power Auto Self Refresh) feature to optimize the refresh current based on the temperature range. 

In this mode, the DRAM adjusts its self-refresh rate according to the operating temperature, 

reducing it at low temperatures and increasing it at high temperatures [42]. The DRAM device 

autonomously manages the entry into self-refresh mode within the supported temperature range. 

Figure 5.3 demonstrates that for the normal temperature range of 45°C to 85°C, the device 

maintains a 1X refresh rate. For the extended temperature range of 85°C to 105°C, it maintains a 

2X refresh rate, while for the reduced temperature range of -40°C to 45°C, it maintains a 1/2X 

refresh rate. 

 

 

 

 

 

 

 

 

Figure 5 .3: Refresh rates associated with temperature ranges in LPASR [42] 

 

The self-refresh current at extended and reduced temperatures are denoted as IDD6E and IDD6R 

respectively. Due to increased refresh rate at extended temperature, the IDD6E increases 

significantly. Conversely, due to lower refresh rate at reduced temperature, the IDD6R decreases 

significantly. 
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Figure 5 .4: Self-refresh power trend in DDR4 devices at different capacities 
[42], [8-10] 

 

In this work, an attempt has been made to understand the self-refresh power increase trend and 

how IDD6E, IDD6R vary compared to IDD6, across different capacity devices. For this purpose, 

4/8/16/32 Gb DDR4 devices have been considered. Our study leads to a key observation i.e., as 

device capacity grows (4 Gb to 32 Gb), the IDD6R, IDD6N, IDD6E increase by ~3x, ~6x, ~10x 

respectively, as shown in Figure 5.4. Owing to the fact that, the refresh rate is doubled at high 

temperatures, the increasing trend in IDD6E strongly motivates us to investigate power savings at 

reduced DRAM supply voltages. 

We are the first to present the detailed empirical study of energy savings at reduced voltages across 

different supported temperature ranges, during "self-refresh" mode of operation in DDR4 DRAMs. 

At reduced supply voltages, the internal operations (tRP, tRAS & tRCD) require extra time to 

finish, and this introduces additional latency cycles. In self-refresh mode, these operations are 

managed internally by the DRAM without the involvement of memory controller. Since there is no 

data read from a column involved, tRCD is not of significance for our study. The latency impacts of 

tRAS and tRP operations are measured with the help of SPICE model. For this purpose, the sense 

amplifier design from 45 nm SPICE model [43] is updated appropriately for the 16 nm transistor 

model. With these increased latency values identified for a range of six reduced voltage levels, 

energy savings are quantified at normal (1x standard refresh), extended (2x refresh) and reduced 

(0.5x refresh) temperature ranges, as supported in LPASR modes.  

Eight PARSEC benchmarks as a workload set. To quantify the idle times, we have compared the 
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energy between active and power-down modes which are grouped into G1 and G2 respectively. 

G1 group: 

• Active: At least one bank is operational, meaning there is no power-down mode (cke=1), and 

the internal refresh is not performed automatically (the DRAM controller must schedule 

refresh commands). 

G2 Group: 

• Precharge Power-Down (PDNP) state: In this state, all banks are closed and precharged, 

which occurs when the DRAM is in the IDLE state and cke=0. There is no internal refresh 

operation. 

• Active Power-Down (PDNA) state: In this state, at least one bank is active, indicated by the 

cke=0 signal, while the other banks remain closed and precharged. There is no internal 

refresh operation. 

• Self-Refresh (SREF) state: In this state, all banks are precharged and closed, and the DRAM 

initiates its internal self-timed refresh process. The cke=0 signal is used to trigger this self-

refresh operation. 

 

As shown in Figure 5.5 Energy in power-down modes (G2) dominates significantly over active state 

(G1) and this clearly indicates low traffic generated across benchmarks. Same observation has been 

validated with memory throughput metric, as shown in Figure 5.6. This ensures that PARSEC 

benchmarks generate very low traffic are used as a workload set to exercise long idle times. During 

run time, memory controller will detect idle times present in such low traffic scenarios and 

command DRAM to enter into self-refresh mode. The benchmarks are simulated using Gem5 [52] 

and the IDD6 power pertaining to different temperature ranges at reduced voltages is measured 

using the DRAMPower [54]. 
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Figure 5 .5: Comparison of energy breakdown between active and power-down 
modes 

 

These increased tRAS & tRP latencies also increase row refresh cycle time (tRFC) in self-refresh 

mode and creates a time overhead in the exit latency. As vendors do not disclose their specific 

implementation of self-refresh scheme, the detailed quantitative evaluation of workload 

performance impact due to tRFC refresh overhead is studied with auto-refresh scheme as a 

baseline. Also, given the unavailability of HW setup & lack of voltage control capabilities (DRAM 

array), our current work focus on the simulation to quantify the energy savings. 

 

 

 

 

 

 

 

 

Figure 5 .6: Memory throughput comparison 
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5.2 Latency Evaluation with SPICE Model 
 

In order to study the latency impacts of tRAS and tRP parameters at lower voltages, we have 

used 45 nm open-sourced model [58] as a baseline. As our work is based on DDR4 memory, we 

select 16 nm as a technology for SPICE simulation, mainly for two reasons (a) DDR4 intercept to 

market is based < 20 nm technology node [82] and (b) PTM has model availability for 16 nm 

[59]. We leveraged the same DRAM cell array model from [58] and updated the 16 nm 

technology parameters from PTM [59].  

We have selected a 512x512 array as it is a commonly used configuration in modern DRAM 

chips. The latency of DRAM operations accessing a cell array is significantly influenced by the 

parasitic resistance and capacitance present on the bit lines and word lines [83]. For our analysis, 

we assumed specific values for the cell and bit capacitances, namely 24 fF and 144 fF 

respectively, based on a 45 nm model. To account for scaling trends, we referenced Table 5.1 [81] 

to estimate the values of the storage capacitor (Cs), storage resistor (Rs), bit-line capacitor (Cb), 

and bit-line resistor (Rb) for feature sizes ranging from 40 nm to 20 nm. The changes and 

corresponding values are summarized in Table 5.2. 

 
F, nm 90 70 60 50 40 20 10 

Rs (Ohm) 210 527 928 1840 4380 1.15 x 105 1.37 x 108 
Rb (Ohm) 144 192 228 284 374 932 2600 

Table 5.1: Resistances and capacitances in DRAM [41] 

 

• Rs scales very high from 4380 ohm (40nm) to 115 Kohm (20nm), which is ~27x times. 

We have assumed 150x increase with respect to Cs value of 45 nm, which is 150 Kohm. 

This very high Rs would impact the latency timings, which is quantified in the simulation.  

• Rb scales high from 374 ohm (40nm) to 932 ohm (20nm), which is ~3x times. We have 

assumed 3x time with respect to Rb of 45 nm, which is 30 Kohm. 

• Considering DRAM scaling at traditional pace which is roughly 30% at each node, we 

have assumed Cs and Cb to be 7 fF and 43 fF respectively [51] for 16 nm. These values are 

~70% reductions compared to 45 nm. 
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Feature 16 nm 45 nm 

Storage capacitor (Cs) 24 24 
Storage resistor (Rs) 150000 1000 
Bit-line capacitor (Cb) 43 144 
Bit-line resistor (Rb) 30000 10000 

Table 5.2: Summary of resistance and capacitor changes 

 

We have utilized the 16 nm low-power applications (PTM LP) model from PTM, which 

incorporates high-k/metal gate and stress effects. It is crucial to maintain sufficient storage 

capacitance and ensure satisfactory performance of the cell transistor in order to preserve the 

retention time characteristic of a DRAM cell [84]. For the access transistor in the 16 nm model, 

we have selected moderate dimensions in comparison to the 45 nm model. Specifically, we 

assumed a length of 0.030 um and a width of 0.220 um for the access transistor, representing 

reductions of 35% and 40% respectively when compared to the 45 nm access transistor 

dimensions. Table 5.3 provides a summary of the dimension details for the transistors in the 

DRAM cell. The access transistors are denoted as M7 and M8, while the dimensions of the sense 

amplifier and other transistors remain unchanged. To ensure reliable DRAM operation, the 

following factors are taken into consideration for the bitline measurements to determine the 

minimum values for tRAS and tRP: (a) the ready-to-precharge voltage, assumed to be 95% of 

Varray, and (b) the ready-to-activate voltage, assumed to be within 2% of Varray /2. In our 

revised measurements, we conservatively include the same latency guardband (i.e., 38%) 

employed by manufacturers for the latency value [43]. 

 

16 nm model   45 nm model 
FET 
ID 

Name Length 
(um) 

Width 
(um) 

FET 
ID 

Name Length 
(um) 

Width 
(um) 

M7 nmos16lp 0.030 0.220 M7 nmos45lp 0.085 0.555 
M9 pmos16lp 0.27 0.22 M9 pmos45lp 0.27 0.22 
M11 pmos16hp 0.16 tw M11 pmos45hp 0.16 tw 
M10 pmos16hp 0.16 tw M10 pmos45hp 0.16 tw 
M4 nmos16hp 0.16 prentw M4 nmos45hp 0.16 prentw 
M5 nmos16hp 0.16 prentw M5 nmos45hp 0.16 prentw 
M6 nmos16hp 0.16 prentw M6 nmos45hp 0.16 prentw 
M12 pmos16hp 0.16 pretw M12 pmos45hp 0.16 pretw 
M13 pmos16hp 0.16 pretw M13 pmos45hp 0.16 pretw 
M3 nmos16hp 0.16 ntw M3 nmos45hp 0.16 ntw 
M2 nmos16hp 0.16 ntw M2 nmos45hp 0.16 ntw 
M1 nmos16lp 0.27 0.22 M1 nmos45lp 0.27 0.22 
M8 nmos16lp 0.030 0.220 M8 nmos45lp 0.085 0.555 

Table 5.3: Summary of 45 nm and 16 nm transistor dimensions 
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Table 5.4 lists the latency values obtained from the 16 nm SPICE model, at nominal and reduced 

voltage points. The latency guardband of 38% is added to account for manufacturing process 

variation [43]. 

Voltage Time taken 
(ns) 

GB (38% 
added) 

tRAS tRP tRAS tRP 
1.175 19.95 60.04 27.5 13.9 
1.150 21.22 60.81 29.3 14.9 

1.125 21.50 60.27 29.7 14.2 
1.100 21.86 61.00 30.2 15.2 
1.075 22.18 60.54 30.6 14.5 
1.050 22.50 61.54 31.1 15.9 

 

Table 5.4: Latency values obtained from 16 nm SPICE model 
simulation 

 

5.3 Proposed architectural changes for practical 
implementation 

 
Our current work mainly focuses on simulation aspects to quantify energy savings at reduced 

voltages of self-refresh operation. Validation of the energy savings in real hardware needs a 

capability to reduce voltage only during self-refresh in DRAM. The existing architecture lacks 

this ability and hence it becomes a real limitation for validation. However, as a first step, we 

propose the high-level architecture changes required on DRAM as shown in Figure 5.1, to 

discuss and motivate for basic implementation. 

Our proposed idea requires reduced DRAM array voltage in self-refresh mode to realize 

energy savings. The extent of voltage reduction purely depends on the design, circuit 

architectures and process technologies used in the DRAM manufacturing. Hence, each 

vendor may have a specific voltage point where self-refresh operation can function reliably. 

We denote this optimal reduced voltage point as VID (Voltage ID). 

We propose the scheme as voltage reduced self-refresh (VRSR) mode to be leveraged by the 

memory controller as an extension to deeper low power modes beyond self-refresh, as shown 

in Figure 5.8. A mode register set (MRS) register setting in DRAM can determine the mode 

of self-refresh operation, as shown in Table 5.5. Memory boot initialization flow can program 

mode register set (MSR) to enable or disable VRSR mode of self-refresh operation. If 

disabled, the DRAM will select 1.2 V nominal voltage for self-refresh operation. If enabled, 

the DRAM will select reduced voltage (VID < 1.2 V) for self-refresh operation. 
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MRx[0] Self-refresh mode 

0 Default (@ 1.2 V) 

1 Voltage reduced (@ VID) 

Table 5.5: Mode register setting to select self-refresh mode 

 

We have recommended changes on the DRAM architecture to support this setting of voltage 

and latency parameters, as shown in Figure 5.7. (i) A bit field of a MRS register to determine 

the voltage setting during self-refresh operation (ii) A voltage generator that generates VID 

and it is fed to a multiplexer (iii) A multiplexer that has 1.2 V as one input and VID as 

another input and selects one among them, based on MRS setting (iv) A latency profile 

selector that holds tRAS and tRP to be applied during self-refresh operation, based on MRS 

setting.  

Figure 5.7: Proposed DRAM architecture changes for reduced DRAM voltage 
operation in self-refresh mode 

 

For DRAMs without internal voltage regulator, an external regulator can deliver voltage, 

which can be programmed through the serial interface. For DRAMs with internal voltage 

regulator, the voltage programming can occur with help of MRS register commands along 

with multiplexer, through the host interface. 

MRx[0]=0 enables default mode of self-refresh operation, which is the power-on default 
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setting. For this mode setting, multiplexer will source 1.2 V nominal voltage for Varray. 

Latency profiler will apply default tRAS and tRP parameters corresponding to 1.2 V. 

MRx[0]=1 enables voltage reduced mode of self-refresh operation, which is to be set during 

boot initialization. For this mode setting, multiplexer will source VID for Varray. Latency 

profiler will apply default tRAS and tRP parameters corresponding to VID. 

 

 
Figure 5.8: State diagram of DRAM commands for low-Power modes, 

according to JEDEC (proposed modes are highlighted in grey) 

 

During runtime, the controller will select the VRSR mode by sending the entry command 

(VRSREN). Once the entry command is registered and decoded by DRAM, it will direct the 

multiplexer to source VID for Varray. It will direct the latency profiler to apply tRAS and tRP 

corresponding to VID.  After this, the self-fresh controller must finish refreshes for all rows 

at least once, with the modified voltage & latency profiles. This concludes the VRSRx entry 

operation. Once the exit command is registered and decoded by DRAM, it will direct the 

multiplexer to revert voltage to 1.2 V for Varray. It will also direct the latency profiler to 

revert tRAS and tRP corresponding to 1.2 V. This summarizes the VRSR entry operation.  

While DRAM is in VRSR mode, the performance of the workloads will not be impacted, as 

there are no mainline read & write operations involved. However, during exit of VRSR 

modes, there would be additional latencies associated with restoration of voltage and timing 

settings back to nominal values and this will impact performance. We have quantified the 

performance impact seen by the workloads incurred due to exit latency of VRSR modes, in 

the next section. 
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5.4 Quantitative evaluation of performance overhead due to 
voltage reduced self-refresh 

 
In a DRAM, it is necessary to refresh each row once every 64 ms (tRET) within the normal 

temperature range (< 85 C) according to DDR standards. The time interval between refresh 

requests to a bank is calculated by dividing 64 ms by the number of rows. In the auto-refresh 

scheme, the memory controller sends 8192 refresh commands to a DRAM bank at an interval 

of 7.8 uS (tREFI). The value of tREFI remains constant at 8192, regardless of the number of 

rows per bank, which has increased significantly with higher device densities. As a result, the 

DRAM needs to refresh multiple rows (M) for each request. Each refresh request has a 

duration of the refresh cycle time (tRFC), which includes the time to refresh M rows, 

precharge the bank, and recover the charge pump (tREC). This can be calculated using 

equation (5.1). The refresh cycle time for a single row (tRC) is equal to the row activate time 

(tRAS) plus the row precharge time (tRP). 

 
 

Figure 5.9: Refresh cycle time (tRFC_VR) in VRSR scheme 
 
 

𝑡𝑅𝐹𝐶 = (𝑀 ∗ 𝑡𝑅𝐶) + 𝑡𝑅𝐸𝐶 (5.1) 
 

𝑡𝑅𝐹𝐶_𝑉𝑅 = [൫𝑀 ∗ 𝑡𝑅𝐶_𝑉𝑅൯ + 𝑡𝑅𝐸𝐶] (5.2) 

 

Prior work [71] found that multiple rows in different subarrays, are refreshed in parallel 

when M > 4. Therefore, there is a time compression (tCMPR) achieved through this 

implementation that optimizes the overall refresh time. For quantitative evaluation of the 

refresh overhead due to increased latencies of tRAS and tRP in VRSR scheme, the auto-

refresh scheme is considered as a baseline to derive some key insights and tCMPR. Refresh 
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cycle time (tRFC_VR) due to reduced voltage accounting for tCMPR can be given as per 

equation (5.2), where tRC_VR is the row cycle (tRAS_VR + tRP_VR) at reduced voltage). 

Voltage 
(V) 

tRAS_VR 
(ns) 

tRP_VR 
(ns) 

tRC_VR 
(ns) 

tRFC_VR 
(ns) 

1.175 27.5 13.9 41.4 391 
1.150 29.3 14.9 44.2 414 
1.125 29.7 14.2 43.8 411 
1.100 30.2 15.2 45.3 423 
1.075 30.6 14.5 45.2 421 
1.050 31.1 15.9 47.0 436 

Table 5.6: Refresh cycle time for reduced voltages 

 

For DDR4-1600 (17-17-17) device used in our evaluation, tRFC calculated is 430 ns, given 

tRAS and tRP to be 32 ns and 13.75 ns respectively [42] and tREC is considered to be 60 ns. 

However, actual tRFC is 350 ns as per the device datasheet [42]. It shows that the parallel 

refresh scheme compresses the overall time by 18%, compared to serial refresh. Table 5.6 

shows the increased refresh cycle time (tRFC_VR) due to reduced voltage level as per 

equation (5.2). 

 
Figure 5.10: Exit timing latency of VRSR (tXS_VR) with reference to self-refresh [42] 

 

The increased delay in tRFC_VR adds time overhead (tOVHD) in the overall refresh cycle. It 

is due to additional latency cycles in row refresh time (tRC_VR) of M rows at reduced voltage 

compared to refresh time at 1.2V nominal voltage (tRC), as shown in equation (5.3). 

𝑡𝑂𝑉𝐻𝐷 = ൫𝑀 ∗ (𝑡𝑅𝐶_𝑉𝑅 
− 𝑡𝑅𝐶)൯ ∗ 𝑡𝐶𝑀𝑃𝑅 (5.3) 

 

Vendors do not provide detailed information about the specific implementation of their auto-

refresh or self-refresh schemes. Figure 5.9 illustrates the analysis of performance overhead 

for the VRSR scheme, comparing it to the auto-refresh protocol and timing specifications. 
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Auto-refresh operations can impact regular memory operations and result in performance 

degradation. On the other hand, with self-refresh, the DRAM internally handles refresh 

operations without requiring any intervention from the memory controller. 

Voltage 
(V) 

tXS_VR 
(ns) 

1.175 406 
1.150 429 
1.125 426 
1.100 438 
1.075 436 
1.050 451 

 

Table 5.7: Refresh cycle time and exit latency for reduced voltages 

 

VRSR is a variant of self-refresh, but with reduced voltage level and increased timing 

latencies (tRC_VR) to allow row activation and pre-charge operations to complete at such 

reduced voltage. As there are no read & write operations involved, the overhead (tOVHD) 

due to these increased latencies will not have impact any performance impact. However, 

tOVHD will have impact on the exit latency. 

The impact of VRSR on exit latency is evaluated by comparing it to the baseline of self-

refresh exit latency, as shown in Figure 5.10. In order to enter self-refresh mode, the memory 

controller must ensure that the device is idle with all banks in the precharge state and tRP 

satisfied. Once the self-refresh entry command (SRE) is issued, the device remains in self-

refresh mode as long as CKE is held low, with a minimum pulse width of tCKESR. To exit 

self-refresh mode, a sequence of events must occur. First, the clock must be stable before 

CKE is raised back to HIGH. Once the self-refresh exit command (SRX) is registered, the 

timing delay of tXS must be satisfied. When using self-refresh mode, there is a possibility of 

missing an internally timed refresh event when CKE is raised for exit. After exiting self-

refresh mode, the device requires a minimum of one additional REFRESH command before 

it can be put back into self-refresh mode. Therefore, the exit latency, tXS, is defined as "tRFC 

+ 10 ns" according to [42]. In the case of VRSR, the device requires 2 tVCHNG transitions to 

reduce voltage before the refresh begins, and then revert the voltage back to nominal (1.2V) 

once the refresh is complete. Therefore, the required exit latency for VRSR is determined by 

the equation (5.4). 
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𝑡𝑋𝑆_𝑉𝑅 = 𝑡𝑅𝐹𝐶_𝑉𝑅 
+ 2 𝑡𝑉𝐶𝐻𝑁𝐺 + 10 𝑛𝑠 (5.4) 

 

tVCHNG requires Varray to be switched at the output of the multiplexer as shown in Figure 

5.1 and is considered as 2.5 ns. Table 5.7 shows the exit latency for reduced voltage level 

calculated as per the equation (5.4).  

We have evaluated the performance (execution time of benchmarks) impact due to increased 

tXS_VR latency at lowest voltage (1.050 V) baselined to nominal voltage (1.2 V) in section IV. 

5.1 Results and Discussion 
 

 
Figure 5.11: DRAM energy breakdown for PARSEC benchmarks 

 

 
Figure 5.12: Self-refresh energy (%) contribution to total energy 
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Figure 5.13: Self-refresh energy at reduced voltages and different temperature ranges 

 

 
Figure 5.14: Self-refresh energy savings with voltage reduction 

 

 
Figure 5.15: Maximum benchmark energy savings 

 

Table 5.8: Execution time increase of benchmarks at reduced 
voltage (1.050 V) compared to nominal voltage (1.2 V) 

 

The analysis of energy consumption across various benchmarks reveals a nuanced landscape 

of self-refresh energy (G4) usage in relation to other energy components (G1/G2/G3). This 
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differentiation is crucial for understanding the energy dynamics within DRAM operations. 

Specifically, the benchmark named streamcluster exhibits the lowest G4 consumption at 198 

millijoules (mJ), contributing minimally to its total energy footprint of 20,782 mJ. 

Conversely, swaptions demonstrates a stark contrast with a G4 consumption of 8,231 mJ, 

nearly matching its total energy usage of 8,280 mJ. This stark variance in G4 consumption 

across benchmarks is visually represented in Figure 5.11, providing a clear comparative 

analysis. 

Benchmarks IDD6R IDD6N IDD6E 
streamcluster 17 25 29 
x264 88 115 128 
bodytrack 196 274 313 
blackscholes 49 68 78 
fluidanimate 190 273 314 
Dedup 698 1003 1155 
freqmine 1268 1894 2207 
swaptions 686 1029 1200 

Table 5.9: Maximum self-refresh energy savings (mJ) at 150 mV 
voltage reduction 

 

Delving deeper into the energy consumption patterns, Figure 5.12 offers a graphical representation 

of the G4 to total DRAM energy ratio for each benchmark. The data points range significantly, with 

streamcluster at the lower end, contributing only 0.6% to its total energy, and swaptions at the 

upper end, with a staggering 99.4% contribution. This wide spectrum of G4 consumption ratios 

underscores the potential for energy savings across diverse workload scenarios when implementing 

reduced voltage strategies, as proposed in our approach. 

Figure 5.13 further explores the energy savings landscape by showcasing the normalized self-

refresh consumption savings across three distinct temperature ranges (IDDR/IDD6N/IDD6E) for 

each benchmark at five reduced voltage points, cumulatively amounting to a 150 mV reduction 

from a nominal 1.2 V, in 25 mV increments. This figure not only highlights the absolute energy 

values at 1.2 V and 1.05 V but also elucidates the consumption patterns across temperature ranges, 

attributing the highest, moderate, and lowest energy consumption to IDD6E, IDD6N, and IDDR, 

respectively. The adaptive refresh rate requirement, which varies with operating temperature, is a 

key factor influencing these patterns. Specifically, IDD6E exhibits 12% to 17% higher consumption 

at elevated temperatures, while IDD6R demonstrates 23% to 33% lower consumption at reduced 

temperatures, compared to IDD6N. 
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The efficacy of voltage reduction as a strategy for energy savings is quantitatively assessed in Figure 

5.14, which illustrates the percentage of G4 savings achieved at various reduced voltages, 

benchmarked against the G4 consumption at a nominal 1.2 V. The findings indicate that even a 

minimal reduction of 25 mV can yield a 2.1% savings, with the savings potential escalating to 12.5% 

at a 150 mV reduction. 

Expanding on the theme of energy savings, Figure 5.15 categorizes the benchmarks based on their 

maximum G4 savings at an aggressive 150 mV voltage reduction, relative to the energy 

consumption at 1.2 V. The benchmarks are segmented into three groups based on their savings 

potential: low (below 1%), moderate (between 1% and 4%), and high (9% and 12%). This 

segmentation reveals an average G4 savings of 3.5%, 4.0%, and 4.2% for IDD6R, IDD6N, and 

IDD6E, respectively, across all benchmarks. 

The performance implications of voltage reduction are meticulously documented in Table 5.8, 

which compares the execution times of benchmarks at the lowest voltage of 1.050 V against the 

nominal voltage of 1.2 V. The performance impact is remarkably minimal, with swaptions 

experiencing a negligible increase of 0.02%, and x264 facing the highest impact of 0.66%. This 

uniform performance stability, within a 0.7% range for a substantial 150 mV reduction, coupled 

with the observed energy savings, highlights the feasibility of achieving significant energy efficiency 

with minimal performance trade-offs, particularly for benchmarks like freqmine and swaptions. 

Lastly, Table 5.9 consolidates the absolute G4 energy savings across all benchmarks, reinforcing 

the conclusion that workloads with a substantial proportion of self-refresh energy consumption 

stand to benefit markedly from reduced voltage strategies, thereby achieving considerable energy 

savings. This analysis not only underscores the potential for energy efficiency improvements but 

also emphasizes the importance of tailored voltage reduction strategies to optimize both energy 

savings and performance across diverse workload scenarios. 
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Chapter 6 
 

Conclusion and Future Work 
 

6.1 Architecture Slack Exploitation for Phase Classification and 
Performance Estimation 

 

 
In this work, we contributed to the following: 

(a) We proposed a novel metric to measure architecture slack of workloads and evaluated 

its application for workload classification over a broader frequency range of 3.5 GHz, using 

micro benchmarks. 

(b) We developed performance estimation models based on this metric and evaluated their 

prediction accuracy, using SPECCPU 2006 and PARSEC benchmarks, at 2 GHz and 3.5 GHz 

frequency bounds. It is promising to observe the prediction accuracy is 97% for all 

benchmarks. We realize that the performance models were regression based which needed 

offline profiling of benchmarks. We used 19 benchmarks for training the models. These 

models provided very high prediction accuracy for 19 remaining benchmarks (unseen 

workloads) and this highly encourages to explore further on realizing accurate online 

estimation models. As memory phases of workloads possesses significant architecture slack, 

they can be aggressively exploited for energy savings. It also depends on how much user-

demand slack is available to be exploited i.e., a user or software workload manager to specify 

a performance floor as a percentage of the workload’s performance at the maximum 

processor frequency. With the exception of extremely memory-bound applications, the 

absence of user-demand slack disallows exploitation of architecture slack.  

(c) We also expanded application of this metric for online phase classification of 

benchmarks having different phase characteristics. 

(d) We developed an algorithm to guide dynamic frequency scaling decisions during 
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execution and evaluated runtime impacts of all benchmarks.  

In summary, we have developed methods based on architecture slack as key metric, which 

can be adopted by newer DVFS algorithms for phase classification and performance 

estimation at runtime. We acknowledge that there is a need for further research and 

development in the area of online prediction models and algorithms that can effectively 

utilize architecture slack while considering user-demand slack requirements. In our future 

exploration, we plan to evaluate performance management along with energy saving benefits, 

with HPC and server workloads. 
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6.2 Voltage Reduced Self Refresh (VRSR) for Optimized Energy 

Savings in DRAM Memories 
 

This paper provided a first detailed study of self-refresh energy savings at reduced voltages. 

Self-refresh energy savings was quantified with 8 PARSEC benchmarks using DDR4 DRAMs, at 

six reduced voltage points (up to 150 mV reduction from 1.2 V nominal) and different refresh 

rates pertaining to broader temperature ranges. The latency increase of row activation and 

precharge operations was evaluated using 16 nm model. We measured execution time of 

benchmarks and evaluated the performance impact due to additional latencies, at lowest 

setting of 1.05 V baselined to 1.2 V nominal voltage. 

We used Gem full-system simulations for measurements of energy savings and performance. 

Our simulation results demonstrated that there is a maximum of ~12.4% workload energy 

savings realized with one benchmark and an average of ~4% workload energy savings across all 

benchmarks, for an aggressive voltage reduction of 150 mV. This finding revealed that the 

workload energy savings clearly depends on two key factors. First is the extent of voltage 

reduction and second is the proportion of self-refresh energy to the total energy for a given 

workload. It also revealed that that the performance increase due to increased row activation 

and precharge latencies, was well within 1% for the lowest setpoint at 1.05 V (150 mV 

reduction), across all benchmarks.  

Finally, some key limitations in extending our work to real hardware have also been discussed. 

Further to motivate researchers in order to realize a full-scale solution in future, we proposed 

DRAM architectural changes and additional power modes to exercise reduced voltage operation 

in self-refresh mode. Combining both, we introduced this new DRAM lower power mode as 

Voltage Reduced Self-Refresh (VRSR) operation and the simulation results demonstrated 

significant energy savings with the proposed approach. 
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