
Mathematical Modeling, Prediction and
Design Optimization of Wave Energy

Converter Devices

Thesis

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

VIPIN V

ID No. 2019PHXF0066H

Under the Supervision of

Prof. Santanu Koley

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2024

http://www.bits-pilani.ac.in/


BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled “Mathematical Modeling, Prediction and Design Optimiza-

tion of Wave Energy Converter Devices” submitted by VIPIN V, ID No. 2019PHXF0066H in

partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY embodies

original work done by him under my supervision.

Supervisor

PROF. SANTANU KOLEY

Associate Professor,

BITS-Pilani, Hyderabad Campus

Date: 14.06.2024

i



To

my grandfather Raman V and grandmother Janaki V

&

my father Kumaran V

&

my mother Vinitha V

and teachers

for their endless love, support and encouragement



Acknowledgements

Undertaking this research work has been a truly life-changing experience for me and it would

not have been possible to do without the support and guidance that I have received from many

people.

With immense pleasure and profound sense of gratitude, I take this opportunity to express my

sincere indebtedness to my supervisor Prof. Santanu Koley. He has been a pillar of strength

for me. His affectionate nature and patience throughout the duration of the research work is

something I shall cherish throughout my life. It has been a humbling experience and a wonderful

honor to be his student. I could not have imagined having a better advisor and mentor for my

Ph.D.

I would also like to extend my gratitude to my DAC members, Prof. Jonnalagadda Jagan

Mohan and Prof. T S L Radhika, for their helpful questions, comments, and constant

feedback during this research work.

My sincere thanks to the present Head of the Department, Prof. Pradyumn Kumar Sahoo

and former Head of the Department Prof. Dipak K Satpathi, DRC convener, Prof. Sharan

Gopal, and each faculty member of the Department of Mathematics, BITS-Pilani, Hyderabad

Campus, for their help, support, and encouragement to carry out my research work.

With a deep sense of gratitude, I express my sincere indebtedness to Prof. Trilochan Sahoo,

Professor, Dept. of Ocean Engineering and Naval Architecture, IIT Kharagpur, and Prof V.

Sree Hari Rao, Director and Principal Research Scientist, Foundation for Scientific Research

and Technological Innovation, Hyderabad for their precious suggestions and guidance during my

research work.

I wish to thank Prof. Dipak Kumar Satpathi for teaching me Statistics and Optimization.

Also, I wish to thank my teachers Mr. Devadas and Mr. Vinod for their support and

encouragement.

I would also like to convey my gratitude to my co-authors Prof. V V Haragopal, Prof.

Dipak Kumar Satpathi, Dr. Kshma Trivedi and Dr. Kottala Panduranga for their

contributions and support during my research work.

I express my sincere thanks to the Council of Scientific and Industrial Research (CSIR), India

for providing necessary financial support through CSIR junior research fellowship and Senior

research fellowships (File No: 09/1026(0030)/2019-EMR-I).

I gratefully acknowledge BITS-Pilani, Hyderabad Campus, for providing me with the necessary

facilities to carry out my research work.



I would also like to convey special thanks to my friends Kshma, Amya, Santanu, Kailash,

Anjali, Aleena, Faiz, Karthik, Vinod, Amar, Rahul, Amal, Nithin, Sayooj, Ambily, Sreeja, Akhil,

Sandeep, Tincy, Shanuz, Cheri, Ashitha, Reetha, Jose, Uma, Sruthi, and Vaishnavi who were

with me in both happy and difficult moments during my PhD life.

A special thanks to all my department research scholars for their endless help, companionship,

and for making my life more enjoyable and happier in these years.

Most importantly, I would like to thank my father, mother, brother, and sister-in-law, and all

my family members for their love, care, and support for my personal life. A very special thanks

to my brother Senthil for always supporting me.

Above all, I sincerely pray to my dear Lord Sree Ram and Mahavishnu for their blessings and

kindness on me during every phase of my entire life.



Abstract

The thesis focuses on the power generation performance and optimization of the design parame-

ters of piezoelectric and oscillating water column wave energy converter devices. The linear water

wave theory is used to formulate the physical problem associated with the power generation.

Machine learning models and multivariate statistical methods are employed for the optimization

of the parameters related to wave energy converter devices. The performance of the devices

is studied under both the regular and irregular wave climates in the frequency domain. Also,

the time-dependent piezoelectric plate deflection and the free surface displacement around the

piezoelectric plate are studied under the time domain analysis. The physical problem associated

with the power generation by the devices contains undulated seabed topography. In this regard,

one of the best methods to solve such a problem is the boundary element method. However, the

problems with degenerate boundaries have rank deficiency difficulties in the influence matrices

when using the boundary element method. So, the dual boundary element method is also used

to address this rank deficiency issue. The piezoelectric wave energy converter device is capable

of generating electricity to run low-energy electronics. The resonances in the power generation

by the piezoelectric wave energy converter device occur for certain incident wave frequencies.

However, ocean waves consist of a wider range of frequencies, and therefore, we have studied

the hydrodynamics of an oscillating water column wave energy converter device, which will

work efficiently for a wider range of incident wave frequencies and can also generate higher

power. Further, the prediction and optimization of the wave energy converter devices are studied

using machine learning models, interpretable machine learning approaches, and a multivariate

statistical method, namely the response surface methodology. The accuracy of a machine learning

model is widely recognized to be closely linked to the sampling technique employed. The Latin

hypercube sampling methodology is used to construct the most stratified input database for

building machine learning models. A deep learning model, namely the multilayer perceptron

model, and a tree ensemble model, namely the XGBoost model, are employed to predict the

power generation associated with the wave energy converter devices. The importance of features

and interaction effects has been studied through interpretable machine learning techniques.

Finally, the ranges of design parameters associated with the wave energy energy converter devices

are determined.

Keywords: Piezoelectric plate; Oscillating water column device; Wave power; Optimization;

Machine learning; Deep learning; Interpretable machine learning.
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1.3 Illustration of the piezoelectric bimorph (Renzi [3]). . . . . . . . . . . . . . . . . 9

1.4 The working principle of OWC caisson device subjected to wave crest and wave
trough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Schematic diagram of water wave propagation problem . . . . . . . . . . . . . . . 19

1.6 Schematic of the vertical cross-section of the piezoelectric device. . . . . . . . . . 24

1.7 Schematic diagram of the vertical cross-section of the OWC device. . . . . . . . . 26

1.8 Cross-section of the domain Ω bounded by Γ . . . . . . . . . . . . . . . . . . . . 30

1.9 Discretization of the boundary using constant elements. . . . . . . . . . . . . . . 31

1.10 Domain consists of non-degenerate boundary ΓS and degenerate boundary ΓD. . 33

1.11 The forward propagation network architecture. . . . . . . . . . . . . . . . . . . . 42

2.1 Schematic diagram of the physical problem. . . . . . . . . . . . . . . . . . . . . . 54

2.2 Pext vs. T0. Lines represent the solutions obtained by the present boundary
element method and symbols represent the solutions provided in Buriani and
Renzi [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h when the
PWEC plate edge conditions are fixed. . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h when the
PWEC plate edge conditions are fixed.. . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Pext vs. T1 for various values of (a) m , and (b) a1/h when the PWEC plate edge
conditions are fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h when the
PWEC device having fixed rear edge and free front edge. . . . . . . . . . . . . . 65

2.7 (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h when the
PWEC device having fixed rear edge and free front edge. . . . . . . . . . . . . . 65

2.8 Pext vs. T1 for various values of (a) number of ripples m, and (b) ripple amplitude
a1/h of the sinusoidal seabed when the PWEC device having fixed rear edge and
free front edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.9 (a) Pext as a function of T1 for various values of mooring stiffness q (Nm−1), and
(b) contour plot of Pext as a function of T1 and q (Nm −1). . . . . . . . . . . . . . 67

2.10 Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h. . . . . . . . 67

2.11 (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h. . . . . . 68

2.12 Comparison of Pext for fixed and moored lee edges when the front edge is (a)
fixed, (b) free, or (c) moored. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Schematic diagram of the physical problem. . . . . . . . . . . . . . . . . . . . . . 74



3.2 Validation of Pext vs T1. Here a1/h = 0 and l/h = 2 . . . . . . . . . . . . . . . . 79

3.3 Variation of Pext vs T1 for different (a) l/h, (b) d/h, (c) a1/h, and (d) m. . . . . 80

3.4 Free surface displacement ζc(x, t) at various times (a) t = 1s, (b)t = 10s, (c)
t = 20s, and (d)t = 30s, (e) t = 40 s, (f) t = 50s. . . . . . . . . . . . . . . . . . . 81

3.5 Free surface displacement and plate deflection ζp(x, t) at various times (a) t = 1s,
(b) t = 10s, (c) t = 20s, and (d) t = 30s, (e) t = 40s, (f) t = 50s . . . . . . . . . . 82

3.6 Scatter plot of the input features (a) l/h and (b) d/h for training the ANN model,
and the input features (c) l/h and (d) d/h for the optimization of the PWEC
device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Variation of (a) Pext vs. l/h, (b) Pext vs. d/h. . . . . . . . . . . . . . . . . . . . . 86

3.8 (a) ANN model: MSE of training and validation errors w.r.t. Epocs, (b) predicted
vs true values for the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 (a) Top fifty predicted values of the mean Pext by the PWEC device, (b) plate
length of the corresponding sample number as seen in (a), (c) submergence depth
of the corresponding sample number as seen in (a). . . . . . . . . . . . . . . . . . 87

4.1 Schematic of LIMPET OWC wave energy converter device. . . . . . . . . . . . . 92

4.2 σp as a function of ∧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Surface plot of Pann (Wm−1) as a function of (a) r/h and y0/h, and (b) N and D.100

4.4 Scatter plots of the input features (a) submergence depth y0/h, (b) chamber
length r/h, (c) turbine rotor diameter D, and (d) turbine rotational speed N for
training, validation and testing the model. . . . . . . . . . . . . . . . . . . . . . . 102

4.5 (a) Training and validation loss of the ANN model based on the MAE metric, and
(b) comparison between the true values and predicted values using the MLP model.104

4.6 (a) Training and validation error of the XGBoost model, (b) true values and the
predicted values of the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 First-order ALE plots of (a) y0/h, (b) r/h, (c) D, (d) N . . . . . . . . . . . . . 112

4.8 Second-order ALE plots of (a) y0/h and r/h, (b) y0/h and D. . . . . . . . . . . . 113

4.9 Second-order ALE plots of (a) y0/h and N , (b) r/h and D. . . . . . . . . . . . . 113

4.10 Second-order ALE plots of (a) r/h and N (b) D and N . . . . . . . . . . . . . . . 114

5.1 Schematic diagram of the physical problem. . . . . . . . . . . . . . . . . . . . . . 120

5.2 Latin Hypercube samples of (a) PWEC plate length (l1/h), (b) submergence
depth of the PWEC device (d1/h), (c) gap between the OWC-PWEC devices
(gp/h), (d) OWC front wall draft (d2/h), and (e) radius of the OWC device (r/h). 127

5.3 (a) XGBoost model: RMSE of training and validation errors w.r.t. iterations, (b)
predicted vs true values for the test set. . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Shapely values of (a) train set (b) test set. . . . . . . . . . . . . . . . . . . . . . . 135

5.5 ALE plot of (a) l1/h, (b) d1/h, (c) d2/h, (d) gp/h, and (e) r/h. . . . . . . . . . 137

5.6 ALE plot of (a) l1/h and d1/h, (b) l1/h and gp/h, (c) l1/h and d2/h, (d) l1/h and
r/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 Two-dimensional ALE plot of (a) d1/h and gp/h, (b) d1/h and d2/h, (c) d1/h
and r/h, (d) gp/h and d2/h, (e) gp/h and r/h, (f) d2/h and r/h. . . . . . . . . . 139



List of Symbols

x, y: Cartesian coordinates

u, v: Velocity components

k0: Wavenumber associated with incident wave

ω: Angular frequency

λ: Wavelength associated with incident wave

∇2:

(
=

∂2

∂x2
+

∂2

∂z2

)
Laplacian operator

δij : Kronecker delta

A: Amplitude of the incident wave

g: Acceleration due to gravity

G (x, z;x0, z0): Fundamental solution

(x0, z0): Source point

(x, z): Field point

Hij , Gij : Influence coefficients

ρ: Density of the fluid

ρp: Density of the plate

E: Young’s modulus

Φ: Velocity potential (function of both space and time)

φ: Spatial velocity potential

φI : Incident velocity potential

φS : Scattered velocity potential

φR: Radiated velocity potential

h: Water depth

ξ : Plate deflection

ζ : Free surface elevation

∂/∂n : Normal derivative
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Chapter 1

Introduction

1.1 Preamble

In the current scenario, two of the significant challenges that the energy sector is facing are the

increasing need for energy and cutting down on greenhouse gas emissions (Li et al. [5], Keleş

and Bilgen [6]). In this regard, renewable energy serves as a suitable substitute for conventional

energy sources. Renewable energy harvesting is environment friendly, and sources such as solar,

wind, and wave energy are abundant and sufficient to ensure energy security. Further, it reduces

greenhouse gases and plays a crucial role in environmental protection. Many nations consider

renewable energy a vital part of the latest energy technologies. They have set high goals for using

more renewable energy in their current and future plans (Sen and Ganguly [7]). He et al. [8]

proposed a significant shift in the energy policy to improve renewable energy production in China

and also describes how renewable energy research and development and, consequently, renewable

energy production will significantly enhance the country’s economic growth. Right now, global

energy harvesting has drastically changed, moving away from fossil fuels to cleaner energy

sources. Ultimately, they aim for a future where most of our energy comes from sustainable

renewable sources (Holechek et al. [9]). The use of renewable energy, including bio-fuels and

all traded renewable energy except for hydroelectric power, showed continuous growth. This

surge constituted over 40% of the total global growth in primary energy during the previous

year, which is larger than any other energy source. Consequently, renewable energy expanded

its portion within the overall energy composition from 4.5% in 2018 to 5% in 2019 (BP [10]).

Out of these renewable energy sources, wave energy is one the most promising ones because of

its high energy density, i.e., about 2–3 kW/m2. In contrast, solar and wind energy typically

ranges from 0.1− 0.5 kW/m2. Moreover, the availability of wave energy is irrespective of any

seasonal variation. The exploitable wave energy capacity is estimated at around 1.8 terawatts

(TW). However, assessing this potential requires the consideration of multiple factors. These

1
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Figure 1.1: Global annual mean wave power estimation in kWm−1 spanning 10 years period
(Image is taken from López et al. [2]).

include distance to the coastline, effects on coastal alignment, and protected zones such as areas

occupied by shipping lanes, fishing zones, pipelines, cables, or unsuitable seabed morphology

and water depth. Still, with careful evaluation of the suitable regions to produce wave energy,

about 500 GW of easily exploitable potential emerges, focusing on areas with high energy density

above 30 kW/m. Like exposed west coasts globally, certain regions hold the most promise for

wave energy due to long-period swell waves generated by distant weather systems. These areas,

including the Atlantic coasts of Europe, North America, Australia, South America, and Africa,

possess significant exploitable energy, often independent of local wind conditions. Global annual

mean wave power estimation in kWm−1 spanning 10 years period is provided in Fig. 1.1 (López

et al. [2]). They offer a valuable energy source during periods of limited wind or solar power,

highlighting their potential for wave energy utilization (Ocean [11]).

The ocean wave contains kinetic and gravitational potential energy, and the total energy of ocean

waves is relevant to two factors, namely, the wave height and wave period. Moreover, the power

carried by ocean waves is usually expressed in watts per meter of the incident wavefront, and it

is proportional to the square of wave height and period. From an engineering perspective, the

wave characteristics are mainly based on four physical quantities: wave height, wave direction,

wave period, and phase lag. Further, various physical phenomena related to these parameters

are listed as (i) refraction, (ii) diffraction, (iii) reflection, (iv) shoaling and breaking, and (v)

friction and large-scale vortex formation and shedding, etc.

The wave structure interaction problems associated with the wave energy converter devices are

extensively studied using the eigenfunction expansion method. However, a significant drawback

of this method is that it is applicable only if the boundary of the physical problem is in a regular

shape, such as circular, rectangular, etc. But in most cases, the boundary of the physical problem
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associated with the wave structure interaction may not be regular in nature. One of the realistic

examples of the same is the ocean bottom boundary. In reality, the seabed may be undulated in

nature. So, one of the best methods to solve such a problem is by making use of the boundary

element method (BEM). It is possible to model any irregularly shaped boundaries with respective

boundary conditions in BEM. Further, the wave structure interaction problems can be studied

using either the finite difference or finite element methods. But in this case, the whole region of

the physical domain is to be discretized, and it will significantly increase the computational and

time complexity. Hence, the boundary element method is one of the most suitable numerical

approaches to solve the physical problems associated with wave structure interactions. It is

noteworthy that for problems with degenerate boundaries, the aforementioned BEM has rank

deficiency difficulties with influence matrices. Dual BEM is widely used to address this rank

deficiency issue.

The focus of this thesis is to mathematically model and optimize the parameters of two of the

efficient wave energy converter devices, namely the piezoelectric wave energy converter device

and the oscillating water column wave energy converter device. The boundary element method

and the dual boundary element method are employed to solve the boundary value problems

associated with the power generated by the wave energy converter devices. Moreover, machine

learning and deep learning models are carefully chosen based on the complexity of the problem

to ensure accurate prediction of the power output by the wave energy converter devices. Further,

interpretable machine learning approaches and the response surface methodology are employed

to optimize the parameters associated with the wave energy converter devices. The problem

associated with the power generation by the PWEC device is studied under the regular incident

wave climate. Meanwhile, the problems associated with the power generation of the OWC

device are studied under both regular and irregular wave climates. As the seabed need not be

regular in nature, the problems associated with the PWEC plate are studied in the presence

of the undulated seabed. The time domain analysis of the plate deflection and the free surface

displacement are also investigated. It is well known that the samples associated with the machine

learning model have great importance in improving the accuracy and generalization ability of the

model. So, when the sample does not represent the whole data, the predicted models may lead

to wrong conclusions. Hence, to get stratified samples, the Latin hypercube sampling technique

is used for data accumulation to train, validate, and test the predictive models. The multilayer

perceptron model and the XGBoost models are obtained to be the most suitable predictive

models to fit the data associated with the power generation of the wave energy converters.

Further, the importance of features and the interaction effects are also studied using interpretable

machine-learning approaches. Finally, using these predictive models, along with the interpretable

machine learning models, and using the multivariate statistical method, namely the response

surface methodology, the design parameters of the wave energy converter devices are optimized
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accurately. The findings of various mathematical modeling results are validated with known

results available in the literature.

An extensive review of the literature on piezoelectric plates and OWC devices is presented in the

following sections. Additionally, a concise description of predictive models and related concepts

is provided. Furthermore, a brief overview of the parameter optimization techniques using

interpretable machine learning models and the statistical approaches are described. Moreover,

detailed descriptions of the governing equation and boundary conditions associated with the linear

water wave theory in a homogeneous fluid medium are provided. In addition, comprehensive

explanations of the constant and dual boundary element approaches.

1.2 State of the art

In this section, a comprehensive literature review is provided to gain a more profound under-

standing of the current status of literature associated with the hydrodynamics of wave energy

converter devices and the various techniques to optimize the power they generate. Further,

a detailed literature review is presented associated with the current improvements in artifi-

cial intelligence techniques and the use of machine learning techniques to optimize the power

generated by the wave energy converter devices. Moreover, we will go through the literature

associated with various multivariate statistical optimization techniques. The challenges that

arise to comprehend the wave-structure interaction problems involve the understanding of the

wave properties, dynamics that arise on the air-water interface, and behavior of the rigid/im-

permeable/porous/flexible structures interacting with the fluid. Following Newton’s initial

contributions, French mathematicians Laplace, Lagrange, Poisson, and Cauchy made significant

theoretical developments in the linear theory of water waves during the eighteenth and early

nineteenth centuries. Meanwhile, in Germany, Gerstner studied nonlinear waves, while the

Weber brothers conducted meticulous experiments on water waves. Between the 1837 and

1847 period, the research works by the British mathematicians Russell, Green, Kelland, Airy,

and Earnshaw led to substantial advancements in the field of water waves, which provided the

groundwork for the research conducted by Stokes (Craik [12]) at a later stage. Focusing primarily

on shallow water waves, Airy conducted pivotal investigations in 1845. Stokes, in 1847, expanded

these first-order wave theories to higher-order wave theories, which laid the groundwork for

Boussinesq’s formulation of long-wave theories in 1872. Following this, Michell and McCowan, in

1893 and 1894, explored the constraints on wave heights concerning the angle of the propagating

waves and the wavelength (De [13]). Subsequently, Lamb [14], Mei [15], Dean and Dalrymple

[16], Linton and McIver [17], and other related scholars provided profound insights into the

propagation of water wave phenomena through their eloquently articulated works (Craik [12]).

Presently, a dynamic field of study concerning the interaction of water waves with marine
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structures is closely linked to the exploration of untapped ocean wave energy. In this regard, an

extensive survey of literature pertaining to different categories of wave energy converter devices

is presented. The concept of wave energy harvesting started in the late 1800s. Early inventors,

like Pierre-Simon Girard in 1799, had ideas for using waves to pump water for farming. Isidoro

Cabanyes, a Spanish engineer in 1895, got a patent for a device that used floating parts to

move water and make electricity. Even though these early ideas were mostly written on paper

and didn’t transform these ideas into real prototypes, they set the base for future wave energy

inventions. However, the origin of OWC wave energy converter technology dates back to 1965

when a floating OWC device prototype was developed in Japan (Antonio [18]). Subsequent to

this milestone, OWC devices were built across various global sites using different technologies

such as “HydroAir” in USA, “SEAREV” in Portugal, “FO3” in Norway, oscillating cascade

power system (OCPS) in USA, etc. ( López et al. [2])

1.2.1 Classification of wave energy converter devices

The wave energy converter devices can be classified based on (i) the working principle, (ii) device

size and directional wave characteristics, and (iii) location. A brief review of these classifications

is provided in the following.

1.2.1.1 Working principle

Based on the working principle, the wave energy converter devices are classified into the following

four categories (see Fig. 1.2).

� Pressure differential: Devices categorized in this class can be segmented into two

distinct groups: Archimedes effect converters and oscillating water columns (OWCs). The

former is typically located in close proximity to the shoreline, firmly attached to the

seabed, and functions by harnessing the pressure fluctuations between the wave crests and

troughs. When a wave crest passes over the device, it compresses the internal air, causing

a downward motion. Conversely, when a trough is over the device, reduced water pressure

leads to the upward motion of the device. An example of this mechanism is demonstrated

in the 250 kW Archimedes wave swing (AWS) (Polinder et al. [19]). On the other hand,

the OWCs operate on a similar principle and are commonly positioned along the shoreline

or in its vicinity. Due to the presence of a semi-submerged chamber, the wave motion

alters the water level within the chamber, thereby impacting the volume of the enclosed

air. This airflow is subsequently propelled through a turbine, which can work under the

bidirectional nature of the airflow. An example of the prototype using this technology is

the shore-fixed Limpet 500 kW power plant (Belfast [20]).
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� Floating Devices: These devices rely on a buoyant structure that responds to wave

motion. The potential oscillating motion can occur vertically, horizontally, in pitch, or

through a combination of these movements. Examples are the searaser WEC (Liu et al.

[21]) as single floating structure,and wave star as multiple floating structure (Marquis et al.

[22])

� Overtopping devices: These converters operate on the principle that waves interact

with a structure, leading to an enhancement in its potential energy, kinetic energy, or

a combination of both. Overtopping systems facilitate the movement of water over the

structure, which typically behaves as a reservoir positioned above sea level, followed by

the redirection of this water back into the sea through turbines. An example of such

a converter is the wave dragon, with power output ranges between 4 MW to 10 MW,

contingent upon the energetic characteristics of the wave environment at the specific

deployment site (Kofoed et al. [23]).

� Oscillating wave surge/Impact devices: These converters are flexible constructions

strategically situated perpendicular to the wave direction. This arrangement enables the

deflector to oscillate in a reciprocating motion, influenced by the impact of the waves.

Sarkar et al. [24] studied the power generation of such a system.

Figure 1.2: Classification of wave energy converter devices (López et al. [2]).
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1.2.1.2 Size of the device and direction of the incoming wave

The WECs can be classified based on the size of the device and direction of the incoming wave

as follows

� Attenuator: These particular wave energy converters (WECs) are extended structures,

considerably longer than the wavelength, and are positioned in alignment with the wave

direction. Their primary function involves reducing the amplitude of the waves they en-

counter. Attenuators are constructed from a sequence of cylindrical sections interconnected

by flexible hinged joints, enabling these sections to pivot independently of each other

(López et al. [2]).

� Point absorber: Compared to the wavelength, the dimensions of these devices are

considerably smaller. Distinguished from other counterparts, the point absorber efficiently

gathers energy from all directions through its versatile movements. These mechanisms

harness the power generated by the bobbing or pitching motions of the device, converting

the vertical oscillations of the waves into either rotary or oscillatory movements, thereby

producing electricity (Al Shami et al. [25]).

� Terminator: The dimension of these devices are similar to the Attenuators. However, they

are positioned perpendicular to the primary wave propagation direction and essentially

function to interrupt or cease the wave action.

1.2.1.3 Location

Three distinct types of converters are categorized based on the distance from the coastline to

the deployment location of the wave energy converters (WECs).

� Onshore devices: These converters are situated along the shoreline and can be installed

in various ways, such as above the sea in shallow waters, incorporated into structures

like breakwaters, dams, or fixed onto cliffs. Their primary advantage lies in the ease of

maintenance and installation due to the accessibility of most shoreline locations. Addi-

tionally, they do not necessitate mooring systems or extensive sea cables to link the WEC

to the grid. However, shoreline locations typically experience lower wave energy due to

interactions of ocean waves with the seabed, and the scarcity of suitable land sites poses

deployment challenges (Falcao [26], Drew et al. [27], Czech and Bauer [28]).

� Nearshore devices: These converters are typically deployed within a short distance from

the shoreline in locations having moderate water depths ranging from 10 to 25 meters.

They are commonly placed directly on the seabed, eliminating the need for moorings.
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However, the structure must withstand the stress induced when waves pass over it. In

certain cases, these converters are also designed as floating structures. (Falcao [26], Drew

et al. [27], Czech and Bauer [28]).

� Offshore devices: These converters are situated in deep waters, typically beyond 40 meters

from the shoreline, and built as floating or submerged structures anchored to the seabed.

The advantage behind the deployment of offshore devices is to harness a considerably higher

amount of wave energy available in the open sea. However, their location in the open sea

poses challenges concerning the reliability and resilience of the device, demanding robust

structures capable of withstanding substantial wave loads. Additionally, the complexity

and cost associated with the maintenance of these converters pose significant challenges.

Also, They require lengthy and expensive sea cables to transmit the generated electricity

to the grid (Falcao [26], Drew et al. [27], Czech and Bauer [28]).

1.2.2 Piezoelectric wave energy converter device

The marine energy sector is still untapped mainly because of the significant challenges due to

the substantial maintenance costs and the complex deployment procedures associated with wave

energy converters (WECs), mainly due to their substantial size. Consequently, the focus has

shifted toward developing WECs equipped with flexible structures, aiming to tackle a few of

the challenges. In this regard, a promising solution can be to make use of the piezoelectric

materials attached to the structures that interact with the water waves. Typically, a piezoelectric

WEC device primarily comprises a flexible substrate with piezoelectric material bonded to

its sides. If the piezoelectric material coats only one side of the flexible plate, it is termed

an unimorph piezoelectric device. Conversely, if both sides of the plate are coated with a

piezoelectric material, then it’s called a biomorph piezoelectric plate (see Fig. 1.3). These flexible

plates are theoretically modeled using the Euler–Bernoulli beam theory (Renzi [3]). Despite

generating electricity typically in the range of watts to kilowatts, piezoelectric wave energy

converter devices prove adequate to power low-energy electronics such as LEDs, wireless routers,

PCs, ocean buoys, and sensors. The merits of these devices extend to their environmentally

friendly nature, cost-effectiveness in manufacturing, minimal maintenance requirements, and ease

of design. Integrating piezoelectric plates into diverse offshore structures, such as oil platforms,

windmills, and sea-crossing bridges, not only facilitates electricity generation but also serves

as a means to mitigate ocean wave energy, safeguarding offshore structures from wave-induced

loads. The working principle of the PWEC device is the sensor effect. The relatively high kinetic

energy of ocean waves can be used to apply external stresses on the piezoelectric material, and

consequently, a charge difference occurs in the PWEC material, and useful electric energy will

be generated. In conclusion, piezoelectric wave energy converter devices represent one of the

simplest and most innovative technologies for harnessing electricity from ocean waves.
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Figure 1.3: Illustration of the piezoelectric bimorph (Renzi [3]).

1.2.3 Oscillating water column wave energy converter device

Seabed 

Wells turbine 

Air Out 

Air In 

WW

Seabed

Incident waves 

OWC chamber 

Figure 1.4: The working principle of OWC caisson device subjected to wave crest and wave
trough.

Among the various technologies available for harnessing ocean wave energy, the OWC device

offers distinct advantages over other wave energy converter technologies. The OWC device

comprises a partially submerged chamber and a Power Take-Off (PTO) system using a Wells

turbine positioned atop the chamber. As waves traverse through the partially submerged

collector chamber, the trapped air above the water column experiences oscillations due to the
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hydrodynamic pressures associated with the continuous impact of wave crests and troughs (see

Fig. 1.4). When a wave crest enters the OWC device, the water level in the chamber rises,

compressing the air column and activating the Power take-off (PTO) system, which generates

pneumatic power. Conversely, as the wave trough descends, the water level inside the OWC

chamber falls, creating a vacuum that draws air into the chamber. The turbine in the PTO

system will rotate again in the same direction to generate wave power. OWC devices exhibit

exceptional performance as the OWC device can work effectively for a wider range of incident

wave frequencies (even low as typically around 0.1 Hz (Evans and Porter [29])). These devices

offer multiple advantages, such as no moving parts submerged in the ocean and their adaptability

for installation along shorelines or nearshore breakwaters, resulting in reduced construction and

maintenance expenses ( Heath [30]).

1.2.4 Hydrodynamics of the piezoelectric wave energy converter device

The use of piezoelectric materials to harvest wave energy through vibrations presents an innovative

solution to address the limitations of conventional wave energy converters, particularly the

challenge of deploying large-sized devices. A few of the essential advantages of using piezoelectric

wave energy converter devices are that these are environmentally friendly, have low manufacturing

and less maintenance costs involved, and are easy to design (see Safaei et al. [31], and Farrok

et al. [32]). The concept of using piezoelectric wave energy converter devices in ocean waves is

completely new and started in the last decade. Xie et al. [33] proposed a mathematical model of

a piezoelectric energy harvester to convert ocean wave energy into electricity. In this model, a

cantilever beam attached to bimorph piezoelectric layers is used, and the transverse wave motion

of the water particles is used to vibrate the piezoelectric device. The results demonstrated

that the generated electricity significantly depends on the thickness of the cantilever beam,

water depth, incident wave height, and the ratio of the incident wavelength to the water depth.

Further, Xie and Wu [34] used the aforementioned technique of energy conversion using a vertical

piezoelectric device and the longitudinal wave motion of water particles. Wu et al. [35] developed

a buoy-type piezoelectric energy harvester by attaching several piezoelectric coupled cantilevers

to a buoy, which utilizes the transverse motion of the wave to convert the wave energy into

electricity using piezoelectric patches. Renzi [3] developed a fully coupled hydroelectromechanical

model for the flexible piezoelectric wave energy converter device. In this study, a submerged

flexible plate bonded with piezoelectric layers on both sides is used to generate electricity

from the elastic displacement of the flexible plate floating in ocean waves. It was shown that

the short-crested flexural gravity waves generated more power than the long-crested flexural

gravity waves. Moreover, these short-crested wave components are predominantly responsible

for the occurrence of resonant peaks in the power output from the device. Xie and Wang

[36] introduced a buoy-type composite PWEC device consisting of a vibrator, slider, and a



Chapter 1. Introduction 11

heaving buoy and proposed that this system can absorb more wave energy when the size of the

composite piezoelectric buoy becomes larger, and the relative speed between the vibrator and

slider becomes higher. Zhang et al. [37] studied the performance of a cantilevered piezoelectric

wave energy harvester having a variable cross-section in nearshore areas. It is concluded that

with appropriate cantilever height and incident wave characteristics, nearly 2.5 times electric

power can be generated with a cantilevered piezoelectric harvester having a variable cross-section

as compared to the traditional harvester having a uniform cross-section. Mutsuda et al. [38]

proposed a flexible piezoelectric wave energy harvester consisting of an elastic substrate and a

piezoelectric paint. The study was carried out for both the unimorph and bimorph actuator

patterns. Further, the authors studied the influence of key parameters such as the wave steepness,

aspect ratio, thickness of the piezoelectric paint, and submergence depth of the harvester on

the electricity generation for various incident wave characteristics. Zhou et al. [39] studied the

nonlinear mechanism of power generation by PWEC device with different stoppers. To model

the problem, a set of coupled nonlinear governing equations was established with the appropriate

nonlinear term incorporated to describe the produced impact force by the stoppers. Further, the

study demonstrated that the stoppers in the device change the dynamic behavior of the system,

which enhances the device’s energy-harvesting performance. Chen et al. [40] designed a PWEC

device consisting of a buoy that is excited by the ocean waves, and subsequently, this excitation is

converted into higher frequency mechanical motion and deforms a piezoelectric film. One major

advantage of this PWEC device is that it can work effectively for incident waves having lower

frequencies. Zheng et al. [41] studied the performance of a breakwater-integrated submerged

flexible PWEC device. The associated physical problem was handled for a solution using the

eigenfunction expansion method. The study revealed that the edge conditions, plate width, and

submergence depth of the plate are the most significant factors in determining the efficiency of

the PWEC device. Moreover, the change in width/draft of the breakwater has limited influence

on the wave power absorption by the PWEC device. Ucar [42] investigated the performance

of piezoelectric patch-based energy harvesting in which the patches are embedded into marine

boats. This study concluded that the patches close to the boat’s bow generate higher electricity

due to the higher strain. Qi et al. [43] proposed a piezoelectric-electromagnetic wave energy

harvester integrated on sea-crossing bridges. By virtue of piezoelectric and electromagnetic

effects, the piezoelectric and electromagnetic modules harness energy from vibrations caused by

the ocean waves. Recently, Michele et al. [44] proposed a theoretical model to study the working

mechanism of a floating flexible circular plate connected to the seabed through multiple power

take-off(PTO) mechanisms. It was shown that this proposed WEC device could work efficiently

for a wider range of incident wave frequencies.
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1.2.5 Hydrodynamics of the oscillating water column wave energy converter

device

Among the wave energy converting devices, the oscillating water column (OWC) device is notably

recognized as one of the most efficient techniques. The mathematical modeling of wave energy

converters started in 1965. Since then, numerous theoretical and technological advances have

been achieved in order to create an efficient OWC device. In the modeling of wave energy

converters, the wave climate has significant importance. In the real sea, waves typically lack

regular single-frequency patterns and instead exhibit irregularities in direction, frequency, phase,

and amplitude. The actual ocean surface involves the superposition of regular waves of varying

frequencies (Goda [45]). Therefore, it is very important to analyze the performance of the OWC

device on regular as well as irregular/random waves.

Evans and Porter [29] adopted the Galerkin method to investigate the performance of a conven-

tional OWC device. This article provided the general expressions for various factors relevant

to the device performance, such as radiation susceptance, radiation conductance, and volume

flux inside the chamber, and these physical quantities were analyzed for various values of shape

parameters associated with the device. De O Falcão and Rodrigues [1] Formulated a stochastic

approach to assess the efficiency of an OWC device. The method involved representing random

incident waves through an energy spectrum and gauging the wave climate’s intensity using sea

states. Findings revealed that adjusting the turbine’s rotational speed significantly increased

energy production compared to employing a control valve system. Josset and Clément [46] used

the random phase method to synthesize various sea states from the Pierson–Moskowitz spectrum

and performed a time-domain analysis to study the efficiency of the OWC wave power plant

for each sea state. It was observed that the productivity of the power plant depends on the

turbine characteristics. Gouaud et al. [47] performed the model test to investigate the working

mechanism of OWC devices in the presence of underwater mounds under the influence of regular

and irregular incident waves. The study revealed that the capture width ratio of the device

was significantly influenced by the energy flux at the OWC entrance. He et al. [48] studied the

hydrodynamic efficiency of a floating breakwater-integrated OWC device experimentally. In this

study, a comparison between the symmetric chamber breakwater and the asymmetric chamber of

breakwater shows that the asymmetric chamber significantly enhances the heave response, but it

has less influence on the surge and pitch responses. Ning et al. [49] used a higher-order boundary

element method to investigate the working mechanism of an OWC device placed over the sloping

seabed. In this research, it was noticed that the performance of the device is affected by various

parameters such as the structural and bottom configuration of the device, turbine damping

coefficient, and nonlinearity of the incident waves. Sheng and Lewis [50] studied the effect of

air compressibility on the hydrodynamic performance and power capture factor of floating and

fixed-type OWC devices. In this study, the following results are concluded: (i) for fixed OWC
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devices, air compressibility significantly reduces the power conversion in the long-wave regime,

and a reverse trend is observed in the short-wave regime; (ii) large air compressibility plays a key

role in reducing the performance of a floating OWC device. Vyzikas et al. [51] studied the effect

of structural configuration on the performance of the OWC device positioned over the undulated

seabed employing the model test. It was found that the performance of a U-shaped OWC device

is better compared to the other conventional OWC devices. In addition, the U-shaped OWC

device placed over the sloping bottom has a higher efficiency than the other suggested models.

Within the limits of linear water wave theory, Rezanejad et al. [52] analyzed the performance

of an OWC device placed over a step bottom in regular and random sea waves. Further, the

results associated with the efficiency of the OWC device are obtained using the model tests. It

was reported that the efficiency and performance of the OWC device depend strongly on the

incident wave period and damping characteristics of the turbine compared to the incident wave

height. Further, the durability of the OWC device depends on the draft of the OWC device.

Strati et al. [53], Spanos et al. [54] and Malara and Arena [55] investigated the dynamics of a

U-shaped OWC device using a non-linear stochastic and semi-analytical approach, respectively.

These studies demonstrated that the shape parameters have a strong impact on the average

power delivered by the device. Jalón and Brennan [56] developed a physics-based simulation

model to investigate the efficiency and structural durability of a fixed OWC device in random

sea waves. Wang and Zhang [57] explored the hydrodynamic efficiency of an OWC device having

surging front lip-wall and back lip-wall in the context of potential flow theory. It was concluded

that the efficiency of the OWC device having a surging front wall increases with an increase

in the submergence depth of the device. It was reported that the moderate chamber width is

more desirable to optimize the efficiency, and the surging seaside wall of the device effectively

diminishes the sloshing effect inside the device chamber. Mayon et al. [58] analyzed the impact

of parabolic reflecting breakwater on the hydrodynamic efficiency of an OWC device having a

cylindrical cross-section. The study demonstrated that the cylindrical OWC device placed at the

parabolic focal point is able to capture more incoming wave energy than the open sea conditions.

1.2.6 Machine learning models to predict the power generation

In recent years, machine learning algorithms have aided in solving domain-specific problems in

various fields including medicine, remote sensing and geographical information systems, various

engineering fields such as civil engineering, petroleum engineering, etc. (Butcher et al. [59],

Kourou et al. [60], Mohajane et al. [61], Hegde and Rokseth [62], Otchere et al. [63]). The above

works clearly demonstrate the machine learning model’s remarkable adaptability in learning and

predicting data across diverse scientific and industrial domains. Moreover, these models exhibit

effectiveness in capturing the complex behavior inherent in highly non-linear data associated

with wave interaction problems (Sarkar et al. [64], Zhu et al. [65]). As the wave energy converter
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devices show highly non-linear behavior on the power generation, leveraging the machine learning

models would be the best choice to study the underlying patterns of the shape parameters to

maximize the power generation. Sarkar et al. [64] studied the layout optimization of an array of

wave energy converters. A combination of the Gaussian process upper confidence bound with a

pure exploration algorithm and a genetic algorithm is used to predict the performance of WECs.

The study efficiently explores and concentrates on crucial areas of interest in the optimization

problem and ultimately attains the optimal layouts of WECs for improved performance. Li

et al. [66] introduced a deep machine learning algorithm, namely the multi-layer artificial neural

network for short-term wave force forecasting. The primary application of this model was to

enable real-time latching control actions on a heaving point absorber. The study demonstrated

a significant increase in average energy absorption when utilizing the controller and studying the

future wave force. Zou et al. [67] presented a pioneering method centered on deep reinforcement

learning (DRL) control. The efficacy of this approach was assessed through the application of a

point absorber WEC. The implemented DRL control exhibited proficiency in optimizing energy

production. Nevertheless, it is noteworthy to understand the main limitation of this work is the

computational cost associated with the training process. However, among the remarkable ML

systems, neural network methods stand out due to their capacity to learn, retain knowledge,

establish associations among non-linear data, and accurately predict future data. According

to a recent observation by Borisov et al. [68], ensemble models based on decision trees with

boosting often exhibit superior performance when compared to deep learning models across

diverse supervised machine learning tasks. Wu et al. [69] studied the classification performance

of the XGBoost and MLP models on many large-scale public datasets. It is found that in all the

data sets, the tree ensemble model XGBoost outperforms the MLP model. Nguyen et al. [70]

developed the XGBoost model and ANN model to study the seismic drift response and obtained

the important factors associated with the seismic drift. Here in this study, the R2 value of the

XGboost model is 0.987, and for the ANN model, it is only 0.962, showing the outperformance

of the XGBoost model over the ANN model. Liu et al. [71] utilized the random forest algorithm

to predict and quantify parameter interaction effects and dynamics of the parameters of a

battery. All conclusions drawn rely on the use of interpretable ML methodologies. El Bilali

et al. [72] used the XGBoost model and the deep neural network model to predict the daily

pan evaporation. The interpretable ML approaches, namely the SHAP and LIME, are used to

interpret the developed ML models.

1.2.7 Optimization of the parameters of wave energy converter devices

Identifying the proper combination of the input parameters is essential to maximize the power

generation by the WECs. Various machine learning-based approaches and pure statistical-based

approaches are available in the literature. George et al. [73] employed the eigenfunction expansion
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method to model a U-shaped OWC device and optimized the parameters of the WEC device using

a complete machine-learning approach by developing an artificial neural network model. Sarkar

et al. [64] utilized the Quasi-Newton method employing the Broyden-Fletcher-Goldfarb-Shanno

algorithm, a genetic algorithm, and the Monte Carlo method to optimize the WEC layouts within

a scalable wave farm. Halder et al. [74] focused on enhancing the torque and efficiency of a Wells

turbine rotor, employing a surrogate coupled genetic algorithm and k-means clustering. Trivedi

and Koley [75] employed the Taguchi method to optimize the resonance frequency, bandwidth,

and shape parameters of the hybrid OWC and PWEC devices. Recently, Li and Wang [76]

developed a fully coupled wave-to-wire wave energy converter device that converts the vibration

energy from the heave motion to electricity using a marine monitoring buoy. The optimization of

the parameters of the buoy is carried out using the Taguchi method. Rezaei et al. [77] proposed a

two-dimensional optimization procedure using the design of experiments and the response surface

methodology (RSM) to optimize the parameters of a 2B-PA wave energy converter(WEC) in the

laboratory scale. Ghaheri et al. [78] proposed a two-step optimization approach combining the

Taguchi method and Response Surface Methodology (RSM) to efficiently minimize the number

of simulations and computational expenses while ensuring a satisfactory level of accuracy. The

initial step employed in the Taguchi method is to identify the important parameters associated

with maximum power generation. Subsequently, the response surface methodology (RSM) is

employed to achieve highly accurate optimized parameters. It is observed that in most of the

literature, the Taguchi method is employed for preliminary screening of the optimization process,

and the RSM is used for detailed and accurate parameter optimization.

1.3 Motivation and outline of the thesis

The objectives of the present work are provided as follows:

� Developing a BEM-based numerical model to study the surface gravity waves’ interaction

with the PWEC and OWC devices.

� To study the performance of the PWEC device in regular water waves placed over the

undulated seabed.

� To identify suitable machine learning-based predictive models that can predict the power

generation of the WEC devices accurately.

� To optimize the parameters of the stand-alone PWEC device and the PWEC device

attached with a breakwater in regular wave climate.

� To optimize the parameters of the standalone OWC device in irregular wave climate and

hybrid OWC-PWEC wave energy converter devices under the regular incident wave.
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The content of the thesis is divided into six chapters depending on the physical problems and

objectives of the study. Chapter 1 is introductory in nature. In Chapter 2, the mathematical

modeling associated with the performance of a piezoelectric wave energy converter (PWEC)

device integrated with an impermeable breakwater placed over an undulated seabed is studied

under the regular incident wave climate. In Chapter 3, the power absorption by a submerged

standalone piezoelectric wave energy converter (PWEC) is studied in the frequency domain,

and the time-dependent displacements of the free surface and the PWEC plate deflection are

discussed. Further, the prediction of the power generation by the device and the optimization of

the device parameters are studied using an artificial neural network model, namely the multilayer

perceptron model. In Chapters 4 and 5, the mathematical modeling of a standalone OWC device

and a hybrid OWC-PWEC device and the optimization of the device parameters to maximize

power generation are studied. Chapter 6 summarizes the total work presented in the thesis and

also provides the future research scope.

Chapter 1 provides a basic introduction, a detailed literature review, the motivation behind the

present work, and the thesis outline. Further, Chapter 1 contains the mathematical preliminaries

of the water wave propagation, OWC and PWEC device boundary conditions, the development

of the machine learning and deep learning models, the interpretable machine learning approaches,

various activation functions, their importance, and the statistical optimization techniques.

In Chapter 2, the mathematical modeling associated with the performance of a piezoelectric

wave energy converter (PWEC) device integrated with an impermeable breakwater placed over

an undulated seabed is studied under the regular incident wave climate. In real oceans, the

seabed is undulated in nature. Hence, the significance of the undulated seabed on the wave

scattering and, consequently, on the performance of the PWEC devices is studied extensively.

Hence, in this study, the seabed is assumed to be undulated in nature, and the associated seabed

profile is taken as the sinusoidal type. The influence of the number of ripples and the ripple

amplitude on the performance of the PWEC devices is analyzed. Three different boundary edge

conditions of the PWEC plate, such as the fixed, free, and mooring edge conditions, are taken,

and a detailed analysis is provided to show the effect of edge conditions on the power generation

by the PWEC devices. Major emphasis is given to analyze the effect of submergence depth and

length of the PWEC plate on the performance of the PWEC devices.

In Chapter 2, the piezoelectric device is attached to a breakwater; however, it is essential to check

the performance of the piezoelectric device when placed standalone in ocean waves. Further,

the study in Chapter 2 is restricted to the frequency domain, and it’s always preferable to see

the free surface elevations and plate deflections in the time domain. With these points under

consideration, in Chapter 3, the power absorption by a submerged standalone piezoelectric wave

energy converter (PWEC) without attaching the same with an existing breakwater is studied in

the frequency domain, and the time-dependent displacement of the free surface and the PWEC
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plate deflection is discussed. Further, the prediction of power generation by the device and

the optimization of the device parameters are studied using an artificial neural network model,

namely the multilayer perceptron model. The problem is studied initially for the case when the

PWEC plate is situated over an undulated seabed. However, in the parameters optimization

process, the seabed is considered uniform in nature as the effect of bottom undulation is negligible.

The boundary element method (BEM) is used to solve the frequency domain problem. Further,

the Fourier transform is utilized to convert the frequency domain results into the time domain.

In time domain analysis, emphasis is given to analyze the plate deflection and the free surface

displacement. The input database for the ANN model building is generated using the Latin

hypercube sampling method (LHS), and the corresponding target variable is calculated using

the BEM-based numerical tool. After the ANN model building, the optimization of the design

parameters of the PWEC device is carried out using a database containing 3000 sample points

generated randomly using the LHS method. These generated input samples will be passed

through the developed ANN model, and the predicted response variable provides a range for the

geometric parameters associated with the PWEC device to optimize the power generation.

The PWEC device discussed in Chapter 3 is capable of generating electricity to run low-energy

electronics such as LEDs, wireless routers, PCs, ocean buoys, and sensors. Further, the resonances

in power generation occur for certain values of incident wave frequencies. However, ocean waves

consist of a wider range of frequencies, and therefore, it’s necessary to design a wave energy

converter device that will work efficiently for a wider range of incident wave frequencies and also

can generate higher power. In this regard, the OWC device can serve the purpose. In the 4th

chapter, optimization of various parameters associated with a quarter circular shape OWC-WEC

device is provided. An artificial neural network model, namely the MLP model, is developed to

precisely predict the power generation and consequently to find the optimized parameters of

the OWC device, which maximizes the power generation by leveraging the results obtained by

the XGBoost model. The XGBoost model is developed to find the various regions of the input

space in which the maximum power generation occurs. These specific high-yield regions are

identified by studying the effect of each parameter with respect to the response variable using

interpretable machine-learning techniques. Initially, the hydrodynamics problem associated with

the power generated by the OWC device is solved using the dual BEM. The training, validation,

and testing datasets are constructed using the solution of the numerical technique and Latin

hypercube sampling technique. The XGBoost model is only used in this chapter to find the

first-order local effect and the interaction effect between the parameters and, consequently, to

find the high-yield regions. From each region, a big dataset is generated with 20 levels for each

variable and then passed through the MLP model to predict the power generation. Consequently,

the samples with maximum prediction are identified and verified the prediction by calculating

the true value of the input sample.
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In Chapters 2-4, the hydrodynamic performance of the standalone piezoelectric plate and OWC

device are studied. However, there is one major shortcoming of standalone wave energy converter

devices such as the standalone wave energy converter devices which are unable to absorb a

significant amount of incident wave energy. By keeping this in mind, in Chapter 5, the hybrid

wave energy converter device consists of a piezoelectric plate, and the OWC device is proposed.

This hybrid device can broaden the range of the resonating frequencies in power generation.

In the 5th chapter, the prediction, inference, and optimization of the design parameters of the

hybrid OWC-PWEC device are studied. Firstly, the hydrodynamic problem associated with the

interaction of ocean waves with the hybrid WEC device is carried out using the BEM. The input

database for the model building is generated using the Latin hypercube sampling technique,

and the response variable is calculated using the developed BEM. The present study identifies a

suitable ML model from the five different models, namely: MLP (Rumelhart et al. [79], Nguyen

and Widrow [80], Werbos [81], Goodfellow et al. [82]), RF (Breiman [83]), XGBoost (Chen and

Guestrin [84]), LightGBM (Ke et al. [85]) and CatBoost (Prokhorenkova et al. [86]) models.

The most suitable model is selected based on the smallest variance analyzed using a 10-fold

cross-validation and the R2 value obtained using the test datasets. Optimizing hyperparameters

prior to training an ML model can significantly enhance both the model’s performance and

computational efficiency. This process helps in preventing overfitting or underfitting, thereby

further refining the model’s capabilities. A random search algorithm is implemented to optimize

the hyperparameters of the MLP model, and the tree ensemble model’s hyperparameters are

optimized using the genetic algorithm. The predictive model with minimum error scores and

maximum R2 values is then used to optimize the parameters of the hybrid OWC-PWEC device

with the support of interpretable machine-learning approaches. As a preliminary analysis to

understand the relationship between the input attributes and the target variable, the Sperman’s

correlation coefficient is used. The feature importance of the input parameters is studied using

the interpretable ML approach, namely the Shapley values. Further, the direct effect of each of

the parameters on the response variable is studied using the 1st-order ALE plot, and similarly,

the interaction effect is studied using the second-order ALE plots. Using these ALE plots, the

specific regions of the input space that maximize the power generation are identified. Finally,

the optimization of the input parameters to maximize the power generation by the hybrid

OWC-PWEC device is carried out using the method of design of the experiment and the response

surface methodology using the L8 orthogonal array. Finally, the optimal range of parameters of

the OWC-PWEC device and the specific values of the input parameters that maximize the total

power generation are provided.

Finally, Chapter 6 summarizes the thesis work and discusses future research directions. This

chapter highlights the major contributions of the present works. In the next section, the governing

equations and boundary conditions associated with the hydrodynamics of PWEC and OWC

devices are provided.
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1.4 Mathematical modeling of wave-structure interaction prob-

lems

1.4.1 Basic equations for linear water wave theory

This section explores the derivations of mathematical equations associated with the linear water

waves theory. A two-dimensional Cartesian coordinate framework (x, z) is considered in which

x-axis coincides with the direction of the incident wave propagation the z-axis is positive in the

vertically upward direction (see Fig. 1.5). The fluid is considered homogeneous, and the fluid

motion is incompressible, inviscid, and irrotational in nature. Under these assumptions, the

gradient of the velocity potential Φ(x, z, t) satisfies

q = ∇Φ, (1.1)

where q = (u,w) reresents the fluid velocity vector. Under these settings, the equation associated

with the conservation of mass principle finally modified into the following form

∂2Φ

∂x2
+
∂2Φ

∂z2
= 0. (1.2)

The free surface boundary condition arises by combining the kinematic and dynamic boundary

Figure 1.5: Schematic diagram of water wave propagation problem

conditions. The kinematic free surface boundary condition (KFBC) is derived under the

assumption that there is no gap between the air and water interface along the free surface. On

the other hand, the dynamic free surface boundary condition (DFBC) comes from the Bernoulli

equation. Let the free surface of the water be represented as F (x, z, t) = z − ζ̃(x, t) = 0, where

ζ̃(x, t) represents the free surface about the horizontal line z = 0. The KFBC condition implies
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that the total derivative of the function F must be zero at the free surface. Therefore we get

DF

Dt
= 0, on z = ζ̃(x, t),

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
. (1.3)

Re-arranging Eq. (1.3) in terms of Φ(x, z, t) and applying the Taylor series to Eq. (1.3) about

the mean free surface z = 0 yields(
∂Φ

∂z
− ∂ζ̃

∂t
− ∂Φ

∂x

∂ζ̃

∂x

)∣∣∣∣
z=ζ̃

=

(
∂Φ

∂z
− ∂ζ̃

∂t
− ∂Φ

∂x

∂ζ̃

∂x

)∣∣∣∣
z=0

+ ζ̃
∂

∂z

(
∂Φ

∂z
− ∂ζ̃

∂t
− ∂Φ

∂x

∂ζ̃

∂x

)∣∣∣∣
z=0

+ . . . = 0.

(1.4)

The amplitude of the incident wave is considered to be significantly smaller as compared to the

incident wavelength, i.e., ζ̃ << 1. Moreover, within the framework of linearized water wave

theory, it is assumed that the fluid particle velocity, surface displacement ζ̃(x, t), and their

derivatives are all smaller quantities. Consequently, the product and square terms involving

ζ̃(x, t) and Φ are considerably small. Therefore, neglecting the smaller terms yields the linearized

Kinematic Free Surface Boundary Condition (KFBC) at the mean free surface z = 0 as the

following
∂Φ

∂z
=
∂ζ̃

∂t
on z = 0. (1.5)

The Bernoulli equation on the free surface z = ζ̃ is given by

∂Φ

∂t
+

1

2
(u2 + w2) +

P

ρ
+ gz = 0, on z = ζ̃(x, t), (1.6)

where P is the pressure applied on the free surface z = ζ̃, ρ is the fluid density, and g is the

gravitational acceleration. The pressure P along the interface is considered constant and without

the loss of generality it can be taken as zero. Thus, the Bernoulli’s equation (1.6) at the interface

is rewritten as
∂Φ

∂t
+

1

2
(u2 + w2) + gζ̃ = 0, on z = ζ̃(x, t). (1.7)

Implementing the Taylor series on Eq. (1.7) about z = 0 yields(
∂Φ

∂t
+

1

2
(u2 + w2) + gζ̃

) ∣∣∣∣
z=ζ̃(x,t)

=

(
∂Φ

∂t
+

1

2
(u2 + w2) + gζ̃

) ∣∣∣∣
z=0

+ ζ̃
∂

∂z

(
∂Φ

∂t
+

1

2
(u2 + w2) + gζ̃

) ∣∣∣∣
z=0

+ . . . = 0.

(1.8)

Retaining the leading order terms as discussed in Eq. (1.4), the DFBC conditions is written as

∂Φ

∂t
+ gζ̃ = 0, on z = 0. (1.9)
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On combining Eqs. (1.5) and (1.9), the linearized boundary condition on the mean free surface

is written as
∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, on z = 0. (1.10)

The seabed is considered rigid and impermeable in the present work and therefore, the seabed

condition on the uniform seabed profile z = −h is provided as

∂Φ

∂n
= 0, on z = −h. (1.11)

Here, ∂/∂n denotes the normal derivative. under the assumption that the fluid motion follows a

simple harmonic pattern in time t with angular frequency ω, we get

Φ(x, z, t) = <
{
φ(x, z)e−iωt

}
, ζ̃(x, t) = <

{
ζ̃(x)e−iωt

}
, (1.12)

Here, φ(x, z) and ζ̃(x) represent the spatial components of the velocity potential and the free

surface elevation, respectively. Substituting Eq. (1.12) into Eqs. (1.2), (1.10), and (1.11), we get

the following governing equation and boundary conditions

∇2φ(x, z) = 0, in the fluid regions, (1.13)

∂φ

∂z
− ω2

g
φ = 0, on z = 0, (1.14)

∂φ

∂n
= 0, at z = −h. (1.15)

The aforementioned boundary value problem (BVP) possess a unique solution if the following

Sommerfield radiation conditions or the far-field BCs are implemented (Schot [87])

φ(x, z) ∼
(
A0e

ik0x +B0e
−ik0x

) cosh k0(z + h)

cosh k0h
, as x→ ±∞, (1.16)

where the unknown coefficients A0 and B0 has to be determined. In Equation (1.16), the wave

number k0 represents the real positive root of the dispersion relation ω2 = gk tanh kh. Further,

the vertical eigenfunction ψ0(z) =
cosh k0(z + h)

cosh k0h
satisfies the following property:

∫ 0

−h
ψ2

0(k0, z) dz =
2k0h+ sinh(2k0h)

4k0 cosh2 k0h
, (1.17)

The value k0h = 2πh/λ is commonly termed to as the depth-to-wavelength ratio. For long

and shallow water waves, the dimensionless wave number follows k0h << 1, while k0h >> 1 is

considered for short and deep water waves. Accordingly, the corresponding modified dispersion

relations are expressed as ω2 = gk2h (when k0h << 1) and ω2 = gk (when k0h >> 1). Two

important parameters associated with the propagation of water waves are the phase velocity and

group velocity. The phase velocity, also known as wave celerity c for a plane progressive wave,
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represents the rate at which the waveform propagates and is defined as

c =
λ

T
=

ω

k0
=

√
g

k0
tanh kh. (1.18)

When two progressive waves of identical wave height travel in the same direction with slightly

varying wave frequencies and wave numbers, the resulting profile undergoes modulation by a

wave envelope. This envelope moves with a velocity denoted as cg, known as the group velocity.

The group velocity cg is determined as

cg =
dω

dk0
=

ω

2k0

(
1 +

2k0h

sinh(2k0h)

)
. (1.19)

In the case of potential flow theory, the governing equation for wave-structure interaction problems

is typically the Laplace equation. Consequently, investigating fundamental characteristics related

to the Laplace equation holds significance. Consider a function φ that satisfies the Laplace

equation ∇2φ = 0 in a domain Ω bounded by ∂Ω; three types of boundary conditions can be

specified on the boundary.

φ|∂Ω = f(x), (Dirichlet), (1.20)

∂φ

∂n

∣∣∣∣
∂Ω

= g(x), (Neumann), (1.21)

aφ+ b
∂φ

∂n

∣∣∣∣
∂Ω

= h(x), (Robin BC). (1.22)

The manifestation of φ on the surface provides the Cauchy data for the partial differential

equation. Solving the PDE under these conditions constitutes a Cauchy problem for the PDE.

According to Hadamard, the Cauchy problem is considered well-posed if it satisfies the following

conditions: (i) a solution exists, (ii) the solution is unique, and (iii) the solution varies continuously

based on the auxiliary data. For a smooth domain Ω, the uniqueness theorem (Folland [88]) is

provided as the following

� The Dirichlet problem has at most one solution.

� If u is a solution of the Neumann problem, then any other solution is of the form v = u+ c,

for any c ∈ R.

� If a ≥ 0, then the Robin problem has at most one solution.

1.4.2 Basic equations and edge conditions for floating flexible plate type

structures

This subsection illustrates the governing equation as well as the associated boundary conditions

of a flexible, thin elastic plate by considering the thickness of the plate is very small compared
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to the plate length and width. The theories described in the following are solely based on the

classical plate theory or the Kirchhoff plate theory. This theory serves as a simplification of the

Euler-Bernoulli thin plate theory. The deflection of the flexible elastic plate under the action of

ocean waves can be written in the form ξ̃(x, z, t) = <{ξ(x, z)e−iωt} with ξ(x, z) being a spatial

component of the plate deflection. The governing equation of the plate deflection ξ(x, z, t) of

an isotropic homogeneous thin elastic plate which deforms slightly in the presence of in-plane

compressive forces Nx and Nz along the x and z-directions is given by (see Sahoo [89] for details)

EI

(
∂2ξ

∂x2
+
∂2ξ

∂z2

)2

−Nx
∂2ξ

∂x2
−Nz

∂2ξ

∂z2
+mp

∂2ξ

∂t2
= F(x, z, t). (1.23)

In Eq. (1.23), EI represents the flexural rigidity of the plate, with E being Young’s modulus.

The plate’s inertia I is determined as I = d3
p/12(1− ν2), wherein dp signifies the plate’s thickness,

and ν represents the Poisson ratio. Furthermore, F denotes the force acting upon the structure.

mp = ρpdp represents the uniform mass per unit area of the plate with ρp being the plate’s

density. For uniform compressive force, we choose Nx = Nz = Q . Similarly, in the scenario of a

floating membrane structure, Nx = Nz = −T is utilized to depict the uniform tensile force.

Depending on the specific nature of the physical problem, a set of edge conditions must be specified

at the two edges of the flexible structures. The fixed edge condition, free edge condition, and

mooring edge conditions are used in this thesis to study the variation in the plate characteristics.

For the case of fixed edges, the vanishing of plate deflection and the slope of the deflection near

both the edges of the plate yield (see Mohapatra et al. [90])

ξ = 0,
∂ξ

∂x
= 0. (1.24)

For the case of free edges, the vanishing of the bending moment and shear force near the edges

of the plate are represented as

∂2ξ

∂x2
+ ν

∂2ξ

∂z2
= 0, EI

{
∂3ξ

∂x3
+ (2− ν)

∂3ξ

∂x∂z2

}
+Q∂ξ

∂x
= 0. (1.25)

On the other hand, if the ends of the plate are connected with the mooring chains, the following

edge conditions will be considered

∂2ξ

∂x2
+ ν

∂2ξ

∂z2
= 0, EI

{
∂3ξ

∂x3
+ (2− ν)

∂3ξ

∂x∂z2

}
+Q∂ξ

∂x
= qm

∂ξ

∂x
, (1.26)

where qm is the stiffness constant of the mooring chains (see Sahoo [89]). Here, Q represents the

uniform compressive force.
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1.4.3 Basic equations and boundary conditions associated with the piezoelec-

tric wave energy converter device

Figure 1.6: Schematic of the vertical cross-section of the piezoelectric device.

A flexible floating structure fabricated of bio-compatible soft and flexible piezoelectric materials

can generate electricity when mechanical vibrations deform the structure. The piezoelectric

wave energy converter device (PWEC) consists of a submerged elastic plate having layers of

piezoelectric materials on both sides of the plate, which can extract energy from the ocean

waves due to the variations of tension along the plate. Here, the PWEC system is considered

to be homogeneous; the stresses, strains, and voltage are continuous along the plate. Hence,

the wave energy converter can be modeled as a uniform composite plate based on the Kirchhoff

plate theory. The hydroelectromechanical-coupled dynamics associated with the piezoelectric

wave energy converter device are considered in the context of linear water wave theory for

the sake of mathematical modeling of the piezoelectric plate. In the presence of a submerged

floating piezoelectric plate, the fluid domain is divided into two regions Rj (j = 1, 2) where

R2 = {b < x < b+ l,−d < z < 0} and R1 = {−l1 < x < r,−H(x) < z < 0} \R2 (see Fig. 1.6).

The velocity potentials Φj(x, z, t) = <
{
φj(x, z)e

−iωt
}

associated with regions Rj for j = 1, 2

satisfy the Laplace equation (1.13) along with the following boundary conditions. The boundary

condition at the mean free surface z = 0 is given by
∂φ1

∂n
−Kφ1 = 0, on Γf1 ∪ Γf3,

∂φ2

∂n
−Kφ2 = 0, on Γf2.

(1.27)

Now, the boundary condition on the rigid and impermeable bottom Γ2 is given by

∂φ1

∂n
= 0, on Γb. (1.28)
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The continuity of pressure and normal velocities along the two fictitious boundaries Γi1 and Γi2

positioned at x = b+ l and x = b, respectively are given by

φ1 = φ2, and
∂φ1

∂n
= −∂φ2

∂n
on Γi1 ∪ Γi2. (1.29)

The dynamic boundary condition on the piezoelectric plate Γp = {b < x < b+ l, z = −d} is given

by

gχ

[
1 +

β2ϕω

i + ϕω

]
∂4ξ

∂x4
− ω2γξ = iω (φ1 − φ2) , on Γp, (1.30)

where the expressions for χ, β, ϕ, and γ are given as

χ =
B

ρg
, β =

θ√
BC

, ϕ =
C

V
, γ =

Ib
ρ
, (1.31)

where B, θ, C and V represent the flexural rigidity of the PWEC plate, piezoelectric coupling

factor, electrical surface capacitance, and surface conductance, respectively. Further, Ib represents

the surface density of the bimorph. Now, the linearized kinematic boundary condition on the

plate Γp is given by
∂φ1

∂n
=
∂φ2

∂n
= −iωξ, on Γp. (1.32)

For the plate having fixed edges, vanishing of plate displacement and the slope of the displacement

near both the edges of the plate yield

ξ = 0,
∂ξ

∂x
= 0, at x = b, b+ l, z = −d. (1.33)

Similarly, when the plate edges are free, the edge conditions are given by

∂2ξ

∂x2
= 0,

∂3ξ

∂x3
= 0, at x = b, b+ l, z = −d. (1.34)

Further, the edge conditions of a plate which is moored to the seabed is given by

∂2ξ

∂x2
= 0, ρgχ

[
1 +

β2ϕω

i + ϕω

]
∂3ξ

∂x3
= qξ, at x = b, b+ l, (1.35)

where q represents mooring stiffness.

1.4.4 Governing equation and boundary conditions associated with the mod-

eling of oscillating water column wave energy converter device

The oscillating water column (OWC) device consists of an open-ended, hollow structure with a

downward-facing open end that is partially submerged to trap air above the internal free surface

(see Fig. 1.7). The power take-off (PTO) system of the OWC device consists of a Wells turbine

positioned at the top wall of the chamber to prevent it from coming into direct contact with
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Figure 1.7: Schematic diagram of the vertical cross-section of the OWC device.

salt water. In the presence of the ocean waves, the internal free surface oscillates with the same

angular frequency ω as the incident wave, and consequently establishing a uniform pressure

distribution over the internal free surface Γ4. The fluid motion is characterized by the velocity

potential Φ(x, z, t), which satisfies Eq. (1.2). The linearized free surface condition is represented

as

∂Φ

∂t
+ gζ̃ =


−P (t)

ρ
, on Γ4

0, on Γ8.

(1.36)

Here, P (t) is termed as uniformly distributed pressure acting on the internal free surface Γ4.

Further, the boundary conditions on the rigid and impenetrable boundaries are provided as the

following
∂Φ

∂n
= 0, on Γ2 ∪ Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7. (1.37)

With the assumption that the motion of the fluid is simple harmonic in time t with angular

frequency ω, the velocity potential Φ(x, z, t) and the pressure P (t) are written asΦ(x, z, t) = <
{
φ(x, z)e−iωt

}
,

P (t) = <
{
pe−iωt

}
,

(1.38)
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Substituting the expressions (1.38) into Eq. (1.36), and using (1.5) and (1.9), we get

∂φ

∂z
−Kφ =


iωp

ρg
, on Γ4,

0, on Γ8,

(1.39)

where K = ω2/g. In addition, implementing (1.38) into Eq. (1.37), we obtain

∂φ

∂n
= 0, on Γ2 ∪ Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7. (1.40)

In the presence of the OWC device, the velocity potential φ can be decomposed into the scattered

and radiated velocity potentials, and therefore, the total velocity potential can be written as

φ = φS +

(
iωp

ρg

)
φR, (1.41)

where φS and φR represent the scattered and radiated velocity potentials, respectively. Further-

more, the scattered velocity potential φS is expressed as the sum of incident velocity potential

φI and diffracted velocity potential φD. During the interaction of water waves with the OWC

device, the incoming waves are reflected by the rigid wall boundaries of the OWC device. As a

result, the scattered velocity potential appears. Further, the radiated velocity potential appears

due to the oscillation of the water column within the OWC device chamber. Here, φS,R satisfy

the Eqs. (1.13), (1.39) and (1.40). It is to be noted that substituting the expression (1.41) into

Eq. (1.39), we get 
∂φS

∂z
−KφS = 0, on Γ4 ∪ Γ8,

∂φR

∂z
−KφR =

1, on Γ4,

0, on Γ8.

(1.42)

Finally, the far-field boundary conditions on Γ1 are given byφS(x, z) = eik0xψ0(k0, z) +AS0 e
−ik0xf0(k0, z), as x→ −∞,

φR(x, z) = AR0 e
−ik0xψ0(k0, z), as x→ −∞,

(1.43)

with AS0 and AR0 being the coefficients associated with the reflected and radiated wave amplitudes,

respectively, as x → −∞. In Eq. (1.43), the expression for vertical eigenfunction ψ0(k0, z) is

given by ψ0(k0, z) = −
(

igA

ω

)
cosh k0(h+ z)

cosh(k0h)
with A represents the incident wave amplitude.



Chapter 1. Introduction 28

1.5 Fundamentals of integral equations

An integral equation generally involves the unknown function appearing under one or more

integral signs. An integral equation can be written in its most general form as

α(x)h(x) = f(x) + λ

∫
a

K(x, t)h(t)dt, (1.44)

where the upper limit of the integration is either a fixed number or a variable. The functions

α(x), f(x) and K(x, t)(kernel) are known functions, while h(x) is an unknown function that

has to be determined. Here, λ is a non-zero real or complex parameter. The classifications for

integral equations are as follows

� Fredholm integral equations : The integral equation is known as a Fredholm integral

equation if the upper limit of integration in Eq. (1.44) is a constant (say b).

– In Eq. (1.44), if α(x) = 0 then the integral equation is termed as the Fredholm

integral equation of first kind and the associated form is given as

f(x) + λ

b∫
a

K(x, t)h(t)dt = 0.

– In Eq. (1.44), if α(x) = 1 then the integral equation is termed as the Fredholm

integral equation of second kind and the associated form is given as

h(x) = f(x) + λ

b∫
a

K(x, t)h(t)dt.

In the aforementioned forms, if f(x) = 0, it is called the homogeneous Fredholm

integral equation of second kind. Thus, the homogeneous form is written as

h(x) = λ

b∫
a

K(x, t)h(t)dt.

� Volterra integral equations : The homogeneous, first, and second types of Volterra

integral equations are defined in the same way as Fredholm integral equations with the

upper limti b is replaced by x.
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– In Eq. (1.44), if α(x) = 0 then then the integral equation is termed as the Volterra

integral equation of first kind and the form is given by

f(x) + λ

x∫
a

K(x, t)h(t)dt = 0.

– In Eq. (1.44), if α(x) = 1 then the integral equation is termed as the Volterra integral

equation of second kind and the form is given by

h(x) = f(x) + λ

x∫
a

K(x, t)h(t)dt.

In the aforementioned forms of the integral equations, if f(x) = 0, it is called as the

homogeneous Volterra integral equation of second kind. Thus,

h(x) = λ

x∫
a

K(x, t)h(t)dt.

� Singular integral equations : The integral equation is said to be singular when either

the upper or lower limit of integration becomes infinite, or when the kernel approaches

infinity at one or more points within the range of integration.

1.6 Boundary element method (BEM)

This section provides a brief overview of the boundary element method (BEM) for solving the

two-dimensional Laplace equation (see Brebbia et al. [91] for details). The BEM is a widely used

numerical tool for solving boundary and initial value problems that appeared in computational

mechanics. To transform the boundary value problem into integral equations, the free space

Green’s function or the fundamental solution of the underlying differential operator is required.

1.6.1 Fundamental solution of the Laplace equation and Green’s second

identity

The free-space Green’s function associated with the two-dimensional Laplace equation is given

by (see Ang [92] for details)

G(x, s) =
1

2π
ln r̃, r̃ = |x− s|. (1.45)
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For any two scalar functions f and g which are continuous in the domain Ω having boundary Γ,

the Green’s second identity is provided as∫
Ω

(
f∇2g − g∇2f

)
dΩ =

∫
Γ

(
f
∂g

∂n
− g∂f

∂n

)
dΓ, (1.46)

where ∇2 is the two-dimensional Laplacian operator.

Figure 1.8: Cross-section of the domain Ω bounded by Γ

1.6.2 Formulation of the boundary integral equations

Applying the Green’s second identity on the velocity potential φ(x) and the free space Green’s

function G(x, s) over the domain Ω bounded by Γ (see Fig. 1.8), we get the following boundary

integral equation (see Ang [92], Brebbia et al. [91] for more details)

c(s)φ (s) =

∫
Γ

(
φ
∂G

∂n
−G∂φ

∂n

)
dΓ, (1.47)

where

c(s) =


0, if s /∈ D ∪ Γ,

1

2
, if s ∈ Γ, (Γ− smooth),

α

2π
, if s ∈ Γ, (Γ− non-smooth).

(1.48)

Here, α is the aperture angle. The subsequent section will illustrate briefly the discretization

of the aforementioned integral equation to convert the same into a system of linear algebraic

equations. It is to be noted that the constant element approach is used in the present work.
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1.6.3 Discretization of boundary integral equations using constant element

approach

In the first step of BEM, the surface boundary is discretized into a finite number of segments

(termed as boundary elements). Thus, we can write the total surface boundary Γ as (see Fig.

1.9)

Γ =
N⋃
i=1

Γi, (1.49)

In the present approach, the values of φ and its normal derivative ∂φ/∂n are considered as

Figure 1.9: Discretization of the boundary using constant elements.

constants over each boundary element, and these values are considered at the midpoint (node)

on each boundary element (see Ang [93], Brebbia et al. [91], for more details). For smooth

boundaries, c(s) = 1/2. Under these assumptions, the discretized form of Eq. (1.47) for ith

boundary element is written as

− 1

2
φi +

N∑
j=1

∫
Γj

(
φ
∂G

∂n

)
dΓ =

N∑
j=1

∫
Γj

(
G
∂φ

∂n

)
dΓ. (1.50)

Since φ and ∂φ/∂n are constants over each boundary element, Eq. (1.50) is re-written as

− 1

2
φi +

N∑
j=1

φj

(∫
Γj

∂G

∂n
dΓ

)
=

N∑
j=1

∂φj
∂n

∫
Γj

GdΓ. (1.51)

Now, Eq. (1.51) contains the terms that involve the integral over the fundamental solutions and

its normal derivative. These terms are known as the influence coefficients and are written as the

following

Hij = −1

2
δij +

∫
Γj

∂G

∂n
dΓ, Gij =

∫
Γj

GdΓ. (1.52)
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The evaluation of these influence coefficients are provided in the following section.

1.6.4 Evaluation of influence coefficients

The line integral appears in Eq. (1.52) can be evaluated analytically for i = j as the following

(see Brebbia et al. [91] for details)∫
Γj

G dΓ =
lj
2π

[
ln

(
lj
2

)
− 1

]
, (1.53)

with lj being the length of jth boundary element, and∫
Γj

∂G

∂n
dΓ = 0. (1.54)

On the other hand, for i 6= j case, the standard Gauss–Legendre quadrature formula is used

to evaluate the influence coefficients (see Brebbia et al. [91] for details). Now, Eq. (1.51) is

re-written as
N∑
j=1

Hijφj =
N∑
j=1

Gij
∂φj
∂n

. (1.55)

In order to generate the number of equations equal to the number of unknowns N , the point

collocation method is used in which the singular point (s) runs over each node i = 1, 2, · · · , N .

In matrix form, Eq. (1.55) can be written as


H11 H12 H13 . . . H1N

H21 H22 H23 . . . H2N

. . . . . . . . . . . . . .

HN1 HN2 HN3 . . . HNN




φ1

φ2

...

φN

 =


G11 G12 G13 . . . G1N

G21 G22 G23 . . . G2N

...
...

...
. . .

...

GN1 GN2 GN3 . . . GNN





∂φ1

∂n
∂φ2

∂n
...

∂φN
∂n


. (1.56)

In order to solve the linear system of equations, it is required to shuffle the columns of the matrix

in an appropriate manner. Once all the unknown quantities are shifted to the left-hand side, one

can write the system (1.56) as

[A]{X} = {Y }, (1.57)

where X is a vector consisting of the unknowns φ and ∂φ/∂n. This system of equations is solved

to determine the required unknowns φ and ∂φ/∂n.

The BEM is an efficacious tool to solve the boundary and initial value problems and has the

advantage of reducing the unknowns by order one. For problems with degenerate boundaries,

the aforementioned BEM has rank deficiency difficulties with influence matrices. Dual BEM is
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widely used to address the aforementioned rank deficiency issues. A brief procedure of the dual

BEM is provided in the following section.

1.7 Dual boundary element method (DBEM)

In DBEM, the BVP is converted into a system of integral equations using the appropriate Green’s

function. Applying Green’s third identity to the velocity potentials φ(x) and the free-space

Green’s function G (x, s) over the domain Ω bounded by Γ, the following boundary integral

equation is derived

φ(x) =

∫
Γ

[
φ(s)V (x, s)−G (x, s)

∂φ (s)

∂ns

]
dΓ(s), x ∈ Ω, (1.58)

where

V (x, s) ≡ ∂G (x, s)

∂ns
. (1.59)

In Eq. (1.59), the free-space Green’s function G (x, s) remains same as given in Eq. (1.45).

Figure 1.10: Domain consists of non-degenerate boundary ΓS and degenerate boundary ΓD.

Now, the normal derivative of Eq. (1.58) results into

∂φ(x)

∂nx
=

∫
Γ

[
N (x, s)φ(s)−M (x, s)

∂φ(s)

∂ns

]
dΓ(s), x ∈ Ω, (1.60)

where

M (x, s) ≡ ∂G (x, s)

∂nx
, N (x, s) ≡ ∂2G (x, s)

∂nx∂ns
. (1.61)

When the field point x ∈ Γ, Eqs. (1.58) and (1.60) can be written as

1

2
φ(x) = CPV

∫
Γ
V (x, s)φ(s)dΓ(s)−RPV

∫
Γ
G (x, s)

∂φ(s)

∂ns
dΓ(s), x ∈ Γ, (1.62)

1

2

∂φ(x)

∂nx
= HPV

∫
Γ
N (x, s)φ(s)dΓ(s)− CPV

∫
Γ
M (x, s)

∂φ(s)

∂ns
dΓ(s), x ∈ Γ. (1.63)
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Here, RPV , CPV , and HPV are termed as the Riemann principal value, Cauchy principal

value, and Hadamard principal value, respectively. In Eqs. (1.62) and (1.63), the total boundary

Γ can be written as Γ = ΓS + Γ+
D + Γ−D with ΓS represents the non-degenerate boundary, and

Γ+
D and Γ−D are the degenerate boundaries (see Fig. 1.10). Now, for x ∈ ΓS , Eqs. (1.62) and

(1.63) reduced into the following forms (see Trivedi et al. [94] and Chen et al. [95] for details)

1

2
φ(x) = CPV

∫
ΓS

V (x, s)φ(s)dΓ(s)−RPV
∫

ΓS

G (x, s)
∂φ(s)

∂ns
dΓ(s)

+

∫
Γ+
D

V (x, s) ∆φ(s)dΓ(s)−
∫

Γ+
D

G (x, s)
∑ ∂φ(s)

∂ns
dΓ(s), (1.64)

1

2

∂φ(x)

∂nx
= HPV

∫
ΓS

N (x, s)φ(s)dΓ(s)− CPV
∫

ΓS

M (x, s)
∂φ(s)

∂ns
dΓ(s)

+

∫
Γ+
D

N (x, s) ∆φ(s)dΓ(s)−
∫

Γ+
D

M (x, s)
∑ ∂φ(s)

∂ns
dΓ(s), (1.65)

where

∆φ(s) ≡ φ
(
s+
)
− φ

(
s−
)
, (1.66)∑ ∂φ(s)

∂n
≡ ∂φ (s+)

∂n
+
∂φ (s−)

∂n
. (1.67)

For x ∈ Γ+
D, Eqs. (1.62) and (1.63) are reduced into the following forms

1

2

∑
φ(x) = CPV

∫
Γ+
D

V (x, s) ∆φ(s)dΓ(s)−RPV
∫

Γ+
D

G (x, s)
∑ ∂φ(s)

∂ns
dΓ(s)

+

∫
ΓS

V (x, s)φ(s)dΓ(s)−
∫

ΓS

G (x, s)
∂φ(s)

∂ns
dΓ(s), (1.68)

1

2
∆
∂φ(x)

∂nx
= HPV

∫
Γ+
D

N (x, s) ∆φ(s)dΓ(s)− CPV
∫

Γ+
D

M (x, s)
∑ ∂φ(s)

∂ns
dΓ(s)

+

∫
ΓS

N (x, s)φ(s)dΓ(s)−
∫

ΓS

M (x, s)
∂φ(s)

∂ns
dΓ(s), (1.69)

where

∑
φ(s) ≡ φ

(
s+
)

+ φ
(
s−
)
, (1.70)

∆
∂φ

∂n
(s) ≡ ∂φ

∂n

(
s+
)
− ∂φ

∂n

(
s−
)
. (1.71)

It is to be noted that in Eqs. (1.66)-(1.67) and (1.70)-(1.71), the number of unknowns on the

degenerate boundaries is double as compared to the unknowns on the non-degenerate boundaries.

Therefore, the integral equation (1.60) is necessary to obtain unique solutions. By discretizing
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the boundaries Γ of the domain using the constant boundary element method and varying the

field point x over each boundary element, we get the following system of equations (see Chen

et al. [96])

[
Ṽij

]
{φj} = [Gij ]

{(
∂φ

∂n

)
j

}
, (1.72)

[Nij ] {φj} =
[
M̃ij

]{(∂φ
∂n

)
j

}
, (1.73)

where the influence coefficients Gij , Ṽij , M̃ij and Nij are given by

Gij = RPV

∫
Γj

G (xi, sj) dΓ (sj) , (1.74)

Ṽij = −1

2
δij + CPV

∫
Γj

V (xi, sj) dΓ (sj) , (1.75)

M̃ij =
1

2
δij + CPV

∫
Γj

M (xi, sj) dΓ (sj) , (1.76)

Nij = HPV

∫
Γj

N (xi, sj) dΓ (sj) . (1.77)

When the field point xi and the source point sj lies on the different boundary element, the well-

known Gauss-Legendre quadrature is used to evaluate the aforementioned influence coefficients.

On the other hand, when the field point xi and the source point sj lies on the same boundary

element, singularity occurs, and special treatment is required to evaluate the influence coefficients.

Now, two different approaches GV +MN and MN +GV are available to solve the unknowns.

In the present work, GV +MN approach is adopted. In this approach, the following system of

equations is obtained (Chen et al. [95])
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+
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∂φ

∂n

]
j
Γ
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. (1.78)

The system of equations (1.78) is solved using boundary conditions as provided in the given

problem to get the unknowns φ and ∂φ/∂n over each boundary element.
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1.8 Artificial neural networks

1.8.1 Background

Artificial Neural Networks (ANNs) are computational modeling tools that have gained widespread

recognition across various fields for tackling complex real-world problems. These networks can

be characterized as architecture consisting of densely connected adaptive elementary processing

units known as artificial neurons. These neurons exhibit the capability to conduct highly parallel

computations, facilitating effective data processing and knowledge representation (Basheer and

Hajmeer [97]). Extensive research has been conducted on this deep learning paradigm. The

historical roots of Artificial Neural Networks (ANNs) trace back to pioneering studies (Hubel

and Wiesel [98, 99, 100]) which unveiled that the brain is composed of specialized cells known as

neurons interconnected within a network. Every individual brain cell operates through electrical

signals. It consists of multiple inputs, referred to as dendrites, a central region known as the

soma, and an output termed as the axon, which interacts with the dendrites of the neighboring

cells. These connections are commonly referred to as synapses. The strength and nature of

these connections, such as stimulating or inhibiting, are regulated by chemical messengers called

neurotransmitters. The neuron exhibits activity by producing electrical impulses, often termed as

spikes, along its axon when the cumulative impact of its inputs exceeds a specific threshold. The

efficacy of synaptic connections is observed to enhance when they receive sustained stimulation

from incoming electrical signals originating from other interconnected neurons (Bruner [101], Hebb

[102], Rochester et al. [103]). This concept inspired the investigation into the development of

artificial networks that replicate the functionalities and learning capabilities of the human brain.

The motivation behind developing the ANN model is to leverage the functionalities of biological

systems for addressing complex real-world issues. A few of the significant advantages of the ANN

models are massively parallel computations, handling nonlinearity, and the ability to handle

fuzzy information (Basheer and Hajmeer [97]).

1.8.2 The multilayer perceptron model

The multilayer perceptron is the well-known and most frequently used type of neural network.

The multilayer perceptron is characterized by a neuron model, a network architecture, associated

objective function, and training algorithms. These four concepts are briefly described in the

following.

� Neuron model: A neuron serves as the fundamental building block in a neural network

model, and a neuron model is a mathematical representation capturing the behavior of

an individual neuron within a biological nervous system. In the multilayer perceptron, a
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neuron model is known as the perceptron. Within this model, the neuron receives input

information as numerical data. Subsequently, this information is combined with a set of

model parameters to generate a numerical output value, i.e., each neuron in an MLP model

is a function that receives input from the previous layer. It multiplies with the associated

weight, and a bias associated with the layer will be added to it.

� Network architecture: Like the model of a biological nervous system comprising

interconnected biological neurons, an artificial neural network is constructed by arranging

artificial neurons in a network architecture. This architectural arrangement contains a

specific number of layers, each consisting of a specific number of neurons, their arrangement,

and the connections between them. These architectures are commonly represented as

directed graphs, where nodes represent neurons and edges illustrate their connections. The

label on each edge signifies the neuron’s model parameter, specifically the weights. The

architecture of the MLP consists of three important layers: an input layer, multiple hidden

layers, and an output layer. The input layer receives the inputs from the database, and

the output layer will produce the outputs or the prediction values. The number of hidden

layers and the number of neurons in each of the hidden layers define the depth of the

model.

� Objective function: It defines the task that the neural network performs and offers a

measure of the output quality the network needs to acquire. The selection of an appropriate

objective function depends upon the specific application.

� Training algorithm: The training algorithm type defines how the adjustment of model

parameters, such as weights and biases in the neural network, is done.

1.8.3 The elements of a perceptron model

Let the input dataset is defined as X =
{
X(i) | i = 1, 2, · · · ,M

}
. Then the two fundamental com-

ponents of a perceptron model that convert a single input sample X(i) =
{
x

(i)
j | j = 1, 2, · · · , n

}
into a solitary output p̂ are the model parameters and the activation function associated with

the neuron. Here, n represents the total number of input features, and M denotes the number

of samples.

� Model Parameters: The model parameters consist of a bias b ∈ < associated with the

neuron and a set of weights W = {Wj | j = 1, 2, · · · , n}, Wj ∈ <, i.e., there exists a weight

associated with each input element and the neuron. These model parameters enable the

training of a neuron model for specific tasks.

� Activation Function: The activation function, denoted as G receives the cumula-

tive input function and produce the output p̂. Here, the form of the cumulative input
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function, which is the inner product of the weights {Wj | j = 1, 2, · · · , n} and the input{
X(i) | i = 1, 2, · · · ,M

}
and also consists of the bias term, is given by

n∑
j=1

Wjx
(i)
j + b, (1.79)

where Wj , x
(i)
j ∈ < for j = 1, 2, . . . , n and for any i = 1, 2, · · · ,M .

1.8.4 Activation function

The role of the activation function within a perceptron model is to determine the model’s output

based on the cumulative input it receives. This cumulative input obtained by the perceptron is a

linear combination of the model parameters weights and biases, i.e., it is a polynomial of degree

one. Hence, if the activation function is not employed in the cumulative input, in situations

where the data is nonlinear in nature, the model will not be able to identify the underlying

pattern of the data, so the prediction accuracy will decrease significantly. It is known that most

of the real-world problems exhibit nonlinear characteristics. So, applying an external nonlinear

function to the cumulative input becomes necessary to enhance the model’s performance. This

underscores the importance of the activation function. Notably, all activation functions are

inherently nonlinear. Consequently, as the linear cumulative input passes through the activation

function, the input undergoes a transformation from a linear function to a nonlinear one. This

transformation is essential in predictive models to effectively capture nonlinear data relationships.

The activation functions used here are described below.

� Rectified linear unit (ReLU): The rectified linear unit (ReLU) activation function is

defined as

G (x) = max(0, x). (1.80)

The derivative of the function can be written as

G ′(x) =

1, if x > 0,

0, if x ≤ 0.
(1.81)

ReLu is the activation function used by many neural network practitioners because of

its superior training performance, and it reduces the computational complexity of the

hyperbolic tangent, logistic sigmoid, etc. (Glorot et al. [104], LeCun et al. [105]). As

observed, the derivative of the ReLU function is unity for positive values and becomes

zero otherwise. It solves one of the potential issues of vanishing gradients during model

training’s backpropagation phase for positive values of the cumulative input (Maas et al.

[106]). However, a critical drawback associated with the ReLU activation function is the
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occurrence of the “Dead State” (Nguyen et al. [107]). This refers to a scenario where

multiple neurons receive negative cumulative input, causing all these neurons to become

inactive. This can substantially diminish the overall performance of the model. Another

concern associated with the ReLU activation function is the potential for the output to

explode significantly due to the activation function’s range varying from zero to infinity.

� Exponential linear unit (ELU): The exponential linear unit (ELU) (Dubey et al. [108])

activation function is defined as

G (x) = max(0, x) + min(0, α(ex − 1)), α ≈ 1.6732. (1.82)

The derivative of the function can be written as

G ′(x) =

1 if x > 0,

αex if x ≤ 0.
(1.83)

The ELU function is exactly the same as the ReLU function for positive cumulative

inputs. However, in instances where the cumulative input to the neuron is negative, the

ELU function generates a negative output determined by an exponential operation. This

divergence from ReLU, which produces a zero output for negative inputs, prevents the issue

of uni-directional weight updates. Introducing an exponential operation for negative inputs

creates a gradient on the negative side of ELU. Its existence ensures continuous learning

and prevents the neuron from entering an inactive state. Consequently, this approach aids

in addressing both the problems associated with vanishing gradients and dead state nodes

(Nguyen et al. [107]).

� Scaled exponential linear Unit (SELU): The scaled exponential linear Unit (SELU)

(Klambauer et al. [109]) activation function is defined as

G (x) = γ(max(0, x) + min(0, α(ex − 1))). (1.84)

Here, setting γ ≈ 1.0507, α ≈ 1.6732 helps the output function to follow the normal

distribution. The derivative of the function can be written as

G ′(x) =

γ, if x > 0,

γαex, if x ≤ 0.
(1.85)

When both the input and output distributions of each layer within a neural network

conform to a standard normal distribution characterized by a mean of 0 and a standard

deviation of 1, it presents a notable advantage in accelerating the training process by

promoting rapid convergence. Motivated by this concept, the SELU activation function is
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developed to transform the output function to follow a normal distribution. Nevertheless,

the application of SELU activation necessitates certain prerequisites (Nguyen et al. [107]),

such as

– the neural network architecture should solely comprises a series of dense layers.

– all intermediary layers must employ the SELU activation function.

– standardization of input features is essential.

– initialization of the weights in hidden layers must follow the LeCun normal initializa-

tion.

– the network structure must adhere to a sequential design.

In summary, SELU avoids the problem of vanishing gradients and dead state nodes.

Also, by scaling both the inputs and outputs, this activation function will increase the

convergence rate.

� Gaussian error linear unit (GELU): The gaussian error linear unit (GELU) (Hendrycks

and Gimpel [110]) activation function is defined as

G (x) =
x

2

[
1 + erf

(
x√
2

)]
. (1.86)

We can approximate the GELU with

G (x) =
x

2

[
1 + tanh

[√
2/π

(
x+ 0.044715x3

)]]
. (1.87)

The derivative of the function can be written as

G ′(x) =
1

2

(
1 + tanh

(√
2

π

(
x+ 0.044715x3

)))

+
x

2
(cos−1)2

(√
2

π

(
x+ 0.044715x3

))√ 2

π

(
1 + 0.134145x2

)
.

(1.88)

The GELU activation function is introduced to combine the properties of dropout regular-

ization (Srivastava et al. [111]), zoneout regularization (Krueger et al. [112]), and ReLUs.

It takes inspiration from ReLU and dropout to find the neuron’s output by multiplying

inputs deterministically by zero or one. Additionally, zoneout (a regularization technique

in RNNs) stochastically forces some hidden units to maintain their previous values. We

combine these functions by multiplying the input by either zero or one. However, the

values determining whether it’s zero or one are randomly decided and are also based on

the input.
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Hence, the output of a neuron model with cumulative input as given in Eq. (1.79) is given by

G

 n∑
j=1

Wjx
(i)
j + b

 . (1.89)

The single perceptron model demonstrates its ability to handle basic learning tasks, notably

tasks like binary classification (McCulloch and Pitts [113], Elizondo [114]). However, addressing

more complicated non-linear problems can be handled by a neural network comprising multiple

interconnected perceptron models.

1.8.5 Forward propagation algorithm

The feed-forward architecture of an MLP model with dense hidden layers is considered. Here,

neurons in the feed-forward neural network are grouped into a sequence of `
′

number of layers

so that neurons in any layer are connected only to neurons in the next layer. The input layer

consists of n external inputs representing the number of features in the dataset and is not

counted as a layer of neurons. Further, the `th hidden layer comprises n[`] neurons, and the

output layer is composed of the number of neurons, which is the same as the number of target

features. Communication proceeds layer by layer from the input layer via the hidden layers

up to the output layer. The output of the MLP model is the output provided by the output

layer. Specifically, let the training dataset is denoted as X =
{
X(i) | i = 1, 2, · · · ,M

}
with

the corresponding target values being denoted by P =
{
p(i) | i = 1, 2, · · · ,M

}
. In this context,

M denotes the number of training samples. Each input sample X(i), consists of n features,

represented as X(i) =
{
x

(i)
j | j = 1, 2, · · · , n

}
. Then, for the ith sample from the kth neuron in

the first layer, the cumulative input denoted by z
[1](i)
k and the output denoted by a

[1](i)
k can be

calculated as follows

z
[1](i)
k =

n[1]∑
j=1

W
[1]T

k,j x
(i)
j + b

[1]
k , (1.90)

a
[1](i)
k = G [1]

(
z

[1](i)
k

)
. (1.91)

In a similar manner, the cumulative input and the output of the ith sample from kth neuron in

the `th hidden layer can be computed as follows

z
[`](i)
k =

n[`−1]∑
j=1

W
[`]T

k,j a
[`−1](i)
j + b

[`]
k , (1.92)

a
[l](i)
k = G [`]

(
z

[`](i)
k

)
. (1.93)
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Finally, the cumulative input and the output of the ith sample in the output layer z
[`
′
](i)

1 and p̂(i)

in the output layer can be computed as

z
[`
′
](i)

1 =

n[`
′
−1]∑

j=1

W
[`
′
]T

1,j a
[`
′−1](i)

j + b
[`
′
]

1 , (1.94)

p̂(i) = G [`
′
]

(
z

[`
′
](i)

1

)
, (1.95)

where W
[`]
k,j signifies the weight associated to the connection between the jth neuron in the

(`− 1)th layer and the kth neuron in the `th layer. Additionally, z
[`](i)
k and a

[`](i)
k represent the

cumulative input and the output of the ith sample from kth neuron in the `th layer. These outputs

are determined by applying the activation function g[`], which is specifically associated with the

`th layer.The predicted output of the model is denoted by P̂ =
{
p̂(i) | i = 1, 2, · · · ,M

}
obtained

from the MLP model involves adjusting the weight and bias factors, denoted as W =

`
′⋃

`=1

W [`] and

B =

`
′⋃

`=1

n[`]⋃
k=1

b
[`]
k . Here, W [`] represents a matrix of dimension [n[`], n[`−1]], where n[`] corresponds

to the number of neurons in the `th layer, and n[`−1] represents the number of neurons in the

(`− 1)th layer. Additionally, b
[`]
k is a constant bias term associated with the kth neuron in the `th

layer. The geometric representation of the forward propagation network architecture is shown in

Fig. 1.11.

Figure 1.11: The forward propagation network architecture.
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1.8.6 Back-propagation algorithm

During the training of the neural network model, the forward propagation will proceed up to

the determination of the cost function of the model L (.). In the back-propagation phase, the

information will pass from the loss function backward to find the gradients of L (.) with respect

to the weights and the biases. The aim is to find a set of weights and biases that ensure that

for each input vector, the output produced by the network p̂ is the same as the true output p .

If there is a fixed, finite set of input-output samples, the total error in the performance of the

network with a particular set of weights and biases can be computed by comparing the actual

and predicted output for every sample. Let L be the loss function, and the weights and biases

associated with the prediction of the ith sample using the back-propagation algorithm can be

calculated by applying the chain rule as follows.

∂L (i)

∂z
[`′ ](i)

k

=
∂L (i)

∂p̂(i)
.
∂p̂(i)

∂z
[`′ ](i)

k

. (1.96)

Similarly,
∂L (i)

∂W [`′ ](i)
and

∂L (i)

∂b[`
′ ](i)

can be computed using the following chain rule

∂L (i)

∂W [`′ ](i)
=

∂L (i)

∂z
[`′ ](i)

k

.
∂z

[`
′
](i)

k

∂W [`′ ](i)
, (1.97)

∂L (i)

∂b[`
′ ](i)

=
∂L (i)

∂z
[`′ ](i)

k

.
∂z

[`
′
](i)

k

∂b[`
′ ](i)

. (1.98)

Similarly, we can compute the gradient of the weights and bias for all the layers. The updated

weights and bias to reduce the loss function are given by

W [`
′
](i) = W [`

′
](i) − α ∂L (i)

∂W [`′ ](i)
, (1.99)

b[`
′
](i) = b[`

′
](i) − α ∂L (i)

∂b[`
′ ](i)

. (1.100)

Now, using the updated weights and biases, the next epoch will be carried out, and it will

continue till the first layer. Here, α denotes the learning rate.

1.8.7 Optimization algorithms

In this section, two of the widely used neural network model optimizers are discussed briefly.

� Adam optimizer: Adam is a stochastic optimization algorithm to optimize the model

parameters of the neural network tool. Let α be the step size, β1, and β2 ∈ [0, 1) be the
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exponential decay rates for the moment estimates. Let L (θ) be the stochastic objective

function with parameter θ. Here, θ can be either weight (w) or bias (b) with θ0 being the

initial parameter vector. Initialize the first-moment vectors m0 = 0 and the second-moment

vectors v0 = 0. Let t = 0 be the initial time step. The algorithm of the Adam optimizer

involves the iteration of the following steps with respect to t until θ will converge to the

optimal value θt (Kingma and Ba [115])

t← t+ 1

gt ←
∂Lt(θt−1)

∂θ
mt ← β1mt−1 + (1− β1) gt

vt ← β2vt−1 + (1− β2) g2
t

mCorrected
t ← mt

1− βt1
vCorrectedt ← vt

1− βt2
θt ← θt−1 − α

mCorrected
t√

vCorrectedt + ε

Here, gt represents the gradients w.r.t. the stochastic objective function at timestep t.

Further, mt and vt are the updated biased first and second-moment estimates, respectively,

at timestep t. Moreover, mCorrected
t and vCorrectedt are the bias-corrected first and second-

moment estimates, respectively.

� Nadam optimizer: Nadam is developed by incorporating Nesterov momentum into the

Adam optimizer. Let α1, α2, · · · , αT , and β1, β2, · · · , βT be the learning rate and decay

factor for each time step. Here, γ and ε be the hyperparameters with default values 0.999

and 1e−8 (see Dozat [116] for details). Initialize the first-moment vectors m0 = 0 and the

second-moment vectors v0 = 0. Let t = 0 be the initial time step. The Nadam optimizer

algorithm involves the iteration of the following steps with respect to t until θ will converge

to the optimal value θt (Dozat [116])

t← t+ 1

gt ←
∂Lt(θt−1)

∂θt−1
,

mt ← βtmt−1 + (1− βt) gt
vt ← γvt−1 + (1− γ) g2

t

mCorrected
t ←

(
βt+1mt

1−Πt+1
i=1βi

)
+

(
(1− βt)gt
1−Πt

i=1βi

)
vCorrectedt ← γvt

1− γt

θt ← θt−1 − αt
mCorrected
t√

vCorrectedt + ε
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The parameters gt, mt, vt, m
Corrected
t and vCorrectedt involved in the Nadam algorithm are

same as defined before.

1.9 Extreme gradient boosting and interpretable machine learn-

ing approaches

In this section, a widely accepted ML model, namely the extreme gradient boosting (XGBoost),

and two of the interpretable machine learning approaches, namely the accumulated local effects

(ALE) and Shapley additive explanations (SHAP), are explained briefly. The XGBoost model is

implemented in our study to predict the power generated by the WECs, and the ALE values are

used to find the specific regions of the input space that maximize power generation. Further, the

shapely values are used to analyze the importance of the feature.

1.9.1 Extreme gradient boosting (XGBoost)

As mentioned by Borisov et al. [68], the tree ensemble models consistently outperform the

deep learning models across various supervised learning tasks. Consequently, a tree-based

ensemble model, specifically extreme gradient boosting (XGBoost), is studied to investigate

the complex non-linear data associated with the power generated by the WEC devices. The

first gradient-boosting(GB) algorithm based on the decision tree was proposed by Friedman

[117]. The XGBoost model is an advanced adaption of the GB algorithm proposed by Chen and

Guestrin [84] with several improvements such as parallel and distributed computing, tree pruning,

handling missing values, feature importance, handling categorical features, efficient handling of

large datasets, etc. The working mechanism behind the better accuracy of the XGBoost model

is that a new week learner/ decision tree will be added to reduce the residual of the previous

iteration. Such a greedy approach consistently makes optimal decisions at each step of the

learning process (Chen and Guestrin [84]). However, due to the complexity of the XGBoost

model, it is more prone to overfitting. The L1 and L2 regularization terms are incorporated into

the loss function to avoid such overfittings (El Bilali et al. [72]).

Consider the training database
{(
X(1), p(1)

)
,
(
X(2), p(2)

)
, ...,

(
X(M), p(M)

)}
comprising M

samples and n features. The XGBoost model develops a predictive function F (X), which

predicts P̂ for any new input X. Let K denote the number of weak learners sequentially added

to the model, representing the number of iterations in the XGBoost model. The final prediction

F (X) is derived by aggregating the predictions from all weak learners in the ensemble of trees
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through summation as described in the following (see El Bilali et al. [72]).

p̂(i) = F
(
X(i)

)
=

K∑
k=1

fk

(
X(i)

)
, fk ∈ F , (1.101)

where F =
{
f(X) = wq(x)

}
,
(
q : Rn → T,w ∈ RT

)
representing the space of regression trees.

Here, q denotes the structure of each tree that maps a sample to the corresponding leaf node,

with T being the number of leaves in the tree. Further, f corresponds to an independent tree

structure q with leaf weights w (Chen and Guestrin [84]). Let p̂
(i)
k represent the prediction for

the ith example at the kth iteration, and let L denote a differentiable convex loss function that

quantifies the variation between the true response p(i) and the prediction p̂(i). The cost function

is defined as

M∑
i=1

L
(
p̂(i), p(i)

)
. After incorporating L1 and L2 regularization, the objective

function is provided as (Chen and Guestrin [84])

L (F ) =
M∑
i=1

L
(
p̂(i), p(i)

)
+

K∑
k=1

R(fk), where R(f) = αT +
1

2
λ ||w||2. (1.102)

In this context, R(f) signifies the L1 and L2 regularization term incorporated to reduce overfitting

by penalizing the complexity of the XGBoost model. Moreover, α and λ denote the weights

associated with the L1 and L2 regularizations. After adding fk to the loss function, the kth

iteration of the objective function can be expressed as (employing Taylor’s formula Chen and

Guestrin [84])

Lk =

M∑
i=1

[
g(i)fk

(
x(i)
)

+
1

2
h(i)f2

k

(
x(i)
)]

+R (fk) , (1.103)

where g(i) =
∂L

(
p(i), p̂k−1

)
∂p̂k−1

, (1.104)

h(i) =
∂2L

(
p(i), p̂k−1

)
∂p̂2

k−1

. (1.105)

Now, the optimized weight of the jth leaf node is calculated as (see Chen and Guestrin [84])

wj = −

∑
i∈Ij

g(i)

∑
i∈Ij

h(i) + λ
, (1.106)
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where Ij =
{
i : q

(
X(i)

)
= j
}

signifies the instance set of the jth leaf. The optimal score of the

tree structure q is calculated as (see Chen and Guestrin [84])

L̃k(q) = −1

2

T∑
j=1

∑
i∈Ij

g(i)

2

∑
i∈Ij

h(i) + λ
+ αT. (1.107)

The XGBoost model adopts a greedy algorithm that commences from a solitary leaf and

progressively incorporates branches into the tree. The evaluation of the split candidate is carried

out using the following formula (see El Bilali et al. [72])

Lsplit =
1

2



∑
i∈IL

g(i)

2

∑
i∈IL

h(i) + λ
+

∑
i∈IR

g(i)

2

∑
i∈IR

h(i) + λ
−

(∑
i∈I

g(i)

)2

∑
i∈I

h(i) + λ


− α, (1.108)

where IL and IR represent the sets of instances in the left and right nodes after splitting the

root node denoted as I = IL ∪ IR.

1.9.2 Accumulated local effects(ALE)

Accumulated Local Effects is an interpretable machine learning approach used to interpret

the predictions of complex machine learning models. ALE plots summarize variations in the

prediction of an ML model by averaging and aggregating the predicted values across a defined

grid. To measure local effects, features are segmented into multiple intervals, and the uncentered

effect of a feature is calculated by (see Liu et al. [71])

̂̃
f j,ALE (Xj) =

aj(Xj)∑
a=1

1

Mj(a)

∑
ı:x

(ı)
j ∈mj(a)

[
f
(
za,j , X

(ı)
\j

)
− f

(
za−1,j , X

(ı)
\j

)]
, (1.109)

where za,j signifies the boundary value of the ath interval for the jth feature. Additionally, Mj(a)

represents the count of mj(a), which contains the sample points in the ath interval. Furthermore,

Xj and X\j refer to the jth feature and the features excluding the jth feature, respectively. The

centered ALE estimator is derived as (see Liu et al. [71])

f̂j,ALE (Xj) =
̂̃
f j,ALE (Xj)−

1

M

M∑
ı=1

̂̃
f j,ALE(x

(ı)
j ). (1.110)
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This centered ALE estimator ensures the mean effect of the response variable is zero. Similarly,

the ALE estimator can analyze the interaction effect between two parameters. To compute the

second-order ALE involving the jth and lth features, the sample range of the ALE plots will be

divided into A2 rectangular cells. Here, a and b represent indices correspond to the grids for the

jth and lth features, respectively. The uncentered interaction effect of the features, considering

two features at a time, is determined using the following formula (see Liu et al. [71])

ĥ{j,l},ALE (Xj , Xl) =

aj(Xj)∑
a=1

bl(Xl)∑
b=1

1

M{j,l}(a, b)
×

∑
ı : x

(ı)
{j,l} ∈ m{j,l}(a, b)

4{j,l}f

(
A, a, b;x

(ı)
{j,l}

)
.

(1.111)

Here, 4{j,l}f

(
A, a, b;x

(ı)
{j,l}

)
represents the second-order finite difference of f

(
Xj , Xl, x

(ı)
{j,l}

)
for

(Xj , Xl) across cell (χa−1,j , χa,j ]× (χb−1,l, χb,l]. Then the second-order ALE is obtained as (see

Liu et al. [71])

̂̃
f{j,l},ALE(Xj , Xl) = ĥ{j,l},ALE (Xj , Xl)

−
aj(Xj)∑
a=1

1

Mj(a)

a∑
b=1

M{j,l}(a, b)
{
ĥ{j,l},ALE (χa,j , χb,l)− ĥ{j,l},ALE (χa−1,j , χb,l)

}

−
al(Xj)∑
b=1

1

Ml(b)

b∑
a=1

M{j,l}(a, b)
{
ĥ{j,l},ALE (χa,j , χb,l)− ĥ{j,l},ALE (χa,j , χb−1,l)

}
.

(1.112)

Now, The centered second-order ALE effects are derived as (see Apley and Zhu [118])

f̂{j,l},ALE (Xj , Xl) =
̂̃
f{j,l},ALE (Xj , Xl)−

1

M

A∑
a=1

A∑
b=1

M{j,l}(a, b)
̂̃
f{j,l},ALE (χa,j , χb,l) . (1.113)

1.9.3 Shapley additive explanations (SHAP)

In this section, we will provide an overview of the Shapley values associated with an ML model

F that can predict the response variable for any input vector X(i), for i = 1, · · · ,M , where M

is the number of samples. The Shapley values will provide the explanation for an individual

prediction F (X(i)) using the formula (see Heskes et al. [119])

F (X(i)) = F0 +
n∑
k=1

ϕk, (1.114)

where ϕk is the contribution of the feature k to the predictive model F . The baseline F0 is the

expected value of F (X) under the observed data distribution P(X). Now, the contribution of
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the feature k for a given permutation of features π is given by (see Heskes et al. [119])

ϕk(π) = ν ({j : j �π k})− ν ({j : j ≺π k}) , (1.115)

where j ≺π k refers to the features j precedes k in the permutation π.

ν(S) = E
[
F (X) | XS = X

(i)
S

]
,

=

∫
f
(
XS̄ , X

(i)
S

)
P
(
XS̄ |

(
XS = X

(i)
S

))
dXS̄ ,

(1.116)

where S is the chosen column to predict the response variable from the set of input variables,

and S̄ denotes its complement columns. Now, associating uniform distribution for all the

permutations, we get

ϕk =
∑

S⊆N\k

|S|!(n− |S| − 1)!

n!
[ν(S ∪ k)− ν(S)] . (1.117)

1.10 k-fold cross-validation

Consider the task of estimating the test error associated with a specific statistical or machine-

learning model based on a set of observations. A straightforward method for this purpose is to

employ the validation set approach. This technique involves randomly partitioning the available

observations into two subsets, a training set and a validation set, also known as a hold-out set.

The model is trained using the training set, and the trained model is then utilized to predict the

responses for the observations in the validation set. The resulting error rate on the validation

set is commonly evaluated using metrics such as MSE, MAE, or MAPE. These metrics provide

an estimation of the test error rate. K− fold cross-validation is a highly effective approach for

ML model validation. In this method, the set of observations is randomly divided into k number

of groups or folds of roughly equal size. One fold is designated as the validation set, and the

machine learning model is trained on the remaining k − 1 folds. Assuming MSE is the chosen

error metric, the mean squared error (MSEi for i ≤ k) is computed on the observations in the

ith validation fold. This process is iterated k times with each iteration using a different group of

observations as the validation set. Consequently, k estimates of the test errors MSE1, MSE2,

· · · , MSEk are obtained. The k-fold cross-validation estimate is determined by averaging these

values as given by (James et al. [120])

CV(k) =
1

k

k∑
i=1

MSEi. (1.118)
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In practice, typically, k-fold CV is used for k = 5 or k = 10. The advantages of the k-fold

cross-validation are that it requires less computational cost and provides reliable and accurate

estimates (Wong and Yeh [121]).

1.11 Response surface methodology (RSM)

Response surface methodology is a multivariate statistical optimization technique consisting of a

class of mathematical and statistical tools. This methodology relies on fitting empirical models

to the experimental data obtained through experimental design. To achieve this goal, linear or

square polynomial functions are utilized to describe the system studied. These functions explore

the experimental conditions for optimizing the system (Bezerra et al. [122]). The important

stages of implementation of the RSM optimization technique are as follows:

� choosing significant independent variables by conducting screening studies and defining

the experimental region in accordance with the objective of the study.

� the selection of the experimental design and the execution of experiments in accordance

with the chosen experimental matrix.

� mathematical and statistical analysis of the collected experimental data by fitting a

polynomial function.

� the evaluation of the model’s fitness.

� confirming the need and feasibility of making a shift in the parameters toward the optimal

region.

� obtain the optimum values for each input variable.

In the stage of finding a model that fits the relationship between the predictors and the response

using a polynomial function, low-order models such as first or second-order models are often

preferred (Bezerra et al. [122]). A first-order model is represented as

p = B0 + B1x1 + B2x2 + · · ·+ Bnxn + ε. (1.119)

The second-order model can be represented as

p = B0 +

n∑
j=1

Bjxj +

n∑
j=1

Bjjx
2
j +

∑∑
i<j

Bijxixj + ε. (1.120)

These simplified low-order models serve as an approximation to the actual system. The assump-

tion is that they will exhibit similar behavior to the real system, at least within a small region
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in the input space. The RSM proceeds sequentially, where at each step, we move in a direction

to improve the objective of maximizing or minimizing the response variable. In this procedure,

we try to move as efficiently as possible toward an optimal value of the response variable using a

step size and a scale defined by the experimenter (Myers et al. [123]). This procedure is repeated

several times, following the path of steepest ascent/steepest descent until no more improvements

are found in a local neighborhood.
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2.1 General introduction

A piezoelectric wave energy converter (PWEC) device integrated with an impermeable breakwater

placed over an undulated seabed is considered. The PWEC device is composed of a single

submerged flexible plate with piezoelectric layers attached to both the faces of the flexible plate.

Due to the piezoelectric effect, this piezoelectric plate generates electricity when excited by the

incident waves. A detailed analysis is done to investigate the effect of PWEC plate submergence

depth, plate length, plate edge conditions, incident wave period, bottom ripples amplitude, and

ripples number on the power generation by the PWEC device. It is seen that the PWEC device

edge conditions, submergence depth, and plate length play a significant role in the resonating

pattern associated with the wave power generation curve. The results demonstrate that the

PWEC device having moderate plate length and with free and moored type front edges generates

a higher amount of wave power for a wider range of incident wave frequencies.

2.2 Mathematical formulation

In the present problem, the performance of a breakwater integrated piezoelectric wave energy

converter (PWEC) device is studied. The schematic diagram of the vertical cross-section of

the physical problem is provided in Fig. 2.1. To model the hydrodynamics associated with the

PWEC device, a two-dimensional Cartesian coordinate system is considered with the direction of

wave propagation coinciding with the x-axis and the z-axis pointing vertically upwards from the

mean free surface. It is assumed that regular ocean waves of amplitude A and angular frequency

ω impinge perpendicularly on the breakwater integrated PWEC device. Here, A/λ << 1 is

considered with λ being the incident wavelength so that the small-amplitude wave theory is

applicable for the present study. The piezoelectric device consists of three layers in which the

middle layer is made up of a flexible substrate, and piezoelectric layers are bonded on both sides

of the flexible substrate (see Renzi [3] for details). Due to the piezoelectric effect, the elastic

motion of the PWEC device is converted into electricity. The PWEC device of length l is placed

at a submergence depth d from the mean free surface z = 0 and occupies the region b ≤ x ≤ b+ l

along the x-axis. The lee edge of the PWEC device is attached to a rigid and impermeable front

wall of the breakwater, and for the same, fixed and moored plate edge conditions are considered

at x = b+ l, z = −d. Further, the front edge of the PWEC device is considered as fixed, free, or

moored type. It is to be noted that for the fixed edge of the plate at the seaside, a floating buoy

can be used. The bottom topography of the physical problem consists of two parts: an undulated

seabed represented by z = −h(x) and occupies the region 0 ≤ x ≤ L = (b+ l), and a uniform

seabed region −l1 < x < 0 along the x-axis. To solve the associated boundary value problem

using the boundary element method, an auxiliary boundary Γc1 is constructed at x = −l1. This

auxiliary boundary Γc1 is situated sufficiently far away from the PWEC device and undulated
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bottom so that the effect of local wave modes vanishes on the auxiliary boundary Γc1. For

the sake of mathematical modeling, the entire domain of the physical problem is divided into

two regions R1 and R2, as shown in Fig. 2.1. The water flow is assumed to be incompressible,

inviscid, and irrotational in nature, along with the motion being harmonic in time with the

angular frequency ω. These aforementioned assumptions make certain the existence of the

velocity potentials of the following form

Φj(x, z, t) = <
{
φj(x, z)e

−iωt
}
, for j = 1, 2, (2.1)

where Φj represent the velocity potentials for the regions Rj for j = 1, 2. Further, the spatial

velocity potentials φj for j = 1, 2 satisfy(
∂2

∂x2
+

∂2

∂z2

)
φj = 0. (2.2)

Further, the boundary conditions on the mean free surfaces Γf1 = {b < x < b+ l, z = 0} and

Γf2 = {−l1 < x < b, z = 0} are given by

∂φj
∂z

= Kφj , on Γfj , for j = 1, 2, (2.3)

where K = ω2/g with g represents the acceleration due to gravity. The seabed is considered to

Figure 2.1: Schematic diagram of the physical problem.

be rigid and impermeable in nature. Therefore, the bottom boundary condition on Γb is given by

∂φ1

∂n
= 0, on z = −H(x), (2.4)
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where ∂/∂n represents the normal derivative and H(x) represents the bottom topography

H(x) =

h, x < 0,

h(x), 0 < x < L.
(2.5)

Here, h(x) represents the undulated seabed as mentioned earlier. The boundary conditions on

the rigid and impermeable breakwater wall Γc2 and Γc3 are given by
∂φ1

∂n
= 0, on Γc2,

∂φ2

∂n
= 0, on Γc3.

(2.6)

The plate deflection ξ(x, t) is assumed to be time harmonic in nature and takes the form

ξ(x, t) = <
{
ξ(x)e−iωt

}
. Now, the kinematic boundary condition on Γp (see Zheng et al. [41]) is

given by
∂φ1

∂n
= −∂φ2

∂n
= −iωξ, on b < x < b+ l, z = −d. (2.7)

The dynamic boundary condition on the piezoelectric plate surface Γp is given by

gχ

[
1 +

β2ϕω

i + ϕω

]
∂4ξ

∂x4
−ω2γξ = iω(φ1(x,−d−)−φ2(x,−d+)), on b < x < b+l, z = −d. (2.8)

Here, the parameters used in Eq. (2.8) are given by

χ =
B

ρg
, β =

θ√
BC

, ϕ =
C

V
, γ =

Ib
ρ
, (2.9)

where B, θ, C and V represent the flexural rigidity of the PWEC plate, piezoelectric coupling

factor, electrical surface capacitance, and surface conductance, respectively. Further, ρ is the

water density, and Ib represents the surface density of the PWEC device. The details of the

aforementioned parameters range and physical significance are available in Renzi [3] and Zheng

et al. [41]. Now, we need to provide the appropriate plate edge conditions. When the plate edges

are fixed, the edge conditions of the plate are given by

ξ = 0,
∂ξ

∂x
= 0, at x = b, b+ l. (2.10)

Similarly, when the plate edges are free, the edge conditions are given by

∂2ξ

∂x2
= 0,

∂3ξ

∂x3
= 0, at x = b, b+ l. (2.11)

Further, the edge conditions of a plate which is moored to the seabed is given by

∂2ξ

∂x2
= 0, ρgχ

[
1 +

β2ϕω

i + ϕω

]
∂3ξ

∂x3
= qξ, at x = b, b+ l, (2.12)
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where q represents mooring stiffness. The continuity of pressure and normal velocity along the

auxiliary boundary Γi1 are given by

φ1 = φ2,
∂φ1

∂n
= −∂φ2

∂n
, on Γi1. (2.13)

Finally, the far-field boundary condition on Γc1 is given by

∂(φ1 − φI)
∂x

+ ik0(φ1 − φI) = 0, (2.14)

where φI(x, z) = eik0xf1(k0, z) represents the incident wave potential. Here, f1(k0, z) =(
−igA

ω

)
cosh(k0(z + h))

cosh(k0h)
with k0 being the positive root of the dispersion relation K =

k0 tanh(k0h).

2.3 Method of solution

In this section, the boundary element method-based solution technique is applied to solve the

physical problem formulated in Section 2. Firstly, the boundary value problem formulated in

Section 2 is converted into a system of integral equations. These integral equations are derived

in terms of the velocity potentials and their normal derivatives using Green’s second identity

along with the free space Green’s function and using the boundary conditions derived in Section

2. The Green’s identity is given by

1

2
φ(x0, z0) =

∫
Γ

(
φ(x, z)

∂G(x, z;x0, z0)

∂n
−G(x, z;x0, z0)

∂φ(x, z)

∂n

)
dΓ(x, z). (2.15)

The form of the free space Green’s function G(x, z;x0, z0) used in Eq. (2.15) is given by

G(x, z;x0, z0) =
1

2π
ln(r), where r =

√
(x− x0)2 + (z − z0)2, (2.16)

with (x, z) and (x0, z0) being the field and source points respectively. For the present problem,

G(x, z;x0, z0) satisfies

∆2G(x, z;x0, z0) = δ(x− x0)δ(z − z0), ∆2 ≡
(
∂2

∂x2
+

∂2

∂z2

)
. (2.17)

Furthermore, the normal derivatives of the Green’s function is given by

∂G

∂n
=

1

2πr

∂r

∂n
=

1

2πr

(
nx
∂r

∂x
+ nz

∂r

∂z

)
, (2.18)

where nx and nz are the components of the unit normal vector along the x and z- directions,

respectively. Now, applying the boundary conditions as in Eqs. (2.3)-(2.7), (2.13)-(2.14), and
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the Green’s function G(x, z;x0, z0) into Eq. (2.15), we obtain the following integral equations

corresponding to each of the regions R1 and R2

−1

2
φ1 +

∫
Γc1

φ1

(
∂G

∂n
− ik0G

)
dΓ +

∫
Γb

φ1
∂G

∂n
dΓ +

∫
Γp

(
φ1
∂G

∂n
+ iωξG

)
dΓ

+

∫
Γc2

φ1
∂G

∂n
dΓ +

∫
Γi1

(
φ2
∂G

∂n
+G

∂φ2

∂n

)
dΓ +

∫
Γf2

φ1

(
∂G

∂n
−KG

)
dΓ

−
∫

Γc1

G

(
∂φI

∂n
− ik0φ

I

)
dΓ = 0,

(2.19)

−1

2
φ2 +

∫
Γi1

(
φ2
∂G

∂n
−G∂φ2

∂n

)
dΓ +

∫
Γp

(
φ2
∂G

∂n
− iωξG

)
dΓ +

∫
Γc3

φ2
∂G

∂n
dΓ

+

∫
Γf1

φ2

(
∂G

∂n
−KG

)
dΓ = 0.

(2.20)

Now, the boundary element method is applied to convert the integral equations as in Eqs. (2.19)

- (2.20) into a system of linear algebraic equations under the assumption that φ and ∂φ/∂n are

constants over each of the boundary elements (see Koley et al. [124] for details). The discretized

forms of of the integral equations Eqs. (2.19) and (2.20) are given by

Nc1∑
j=1

φ1j (Hij − ik0Gij)

∣∣∣∣
Γc1

+

Nb∑
j=1

φ1jHij

∣∣∣∣
Γb

+

Nc2∑
j=1

φ1jHij

∣∣∣∣
Γc2

+

Np∑
j=1

(φ1jHij + iωξjGij)

∣∣∣∣
Γp

+

Ni1∑
j=1

(
φ2jHij +Gij

∂φ2j

∂n

) ∣∣∣∣
Γi1

+

Nf2∑
j=1

φ1j (Hij −KGij)
∣∣∣∣
Γf2

−
Nc1∑
j=1

Gij

(
∂φIj
∂n
− ik0φ

I
j

)∣∣∣∣
Γc1

= 0,

(2.21)

Ni1∑
j=1

(
φ2jHij −Gij

∂φ2j

∂n

) ∣∣∣∣
Γi1

+

Np∑
j=1

(φ2jHij − iωξjGij)

∣∣∣∣
Γp

+

Nc3∑
j=1

(φ2jHij)

∣∣∣∣
Γc3

+

Nf1∑
j=1

φ2j (Hij −KGij)
∣∣∣∣
Γf1

= 0,

(2.22)

where

Hij =
1

2
δij +

∫
Γj

∂G

∂n
dΓ, Gij =

∫
Γj

GdΓ (2.23)

are the influence coefficients and can be evaluated numerically using the Gauss-Legendre

quadrature formulae when the field point (x, z) and the source point (x0, z0) lies in different

boundary element. Whereas in the case of the field point (x, z) and the source point (x0, z0) lies

in the same boundary element, the singularity occurs. In this case, the influence coefficients

need to be solved analytically (see Koley and Sahoo [125], Brebbia and Dominguez [126]) for

details). The method of point collocation is used to make the number of equations equal to the

number of unknowns. The system of equations (2.21)-(2.22) are rewritten in the matrix form as
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the following

[φ1] ([H]− ik0[G])

∣∣∣∣
Γc1

+ [φ1][H]

∣∣∣∣
Γb

+ [φ1][H]

∣∣∣∣
Γc2

+ ([φ1][H] + iω[ξ][G])

∣∣∣∣
Γp

+ [φ1]([H]−K[G])

∣∣∣∣
Γf2

+

(
[φ2][H] + [G]

[
∂φ2

∂n

]) ∣∣∣∣
Γi1

− [G]

([
∂φI
∂n

]
− ik0[φI ]

) ∣∣∣∣
Γc1

= 0,

(2.24)

(
[φ2][H]− [G]

[
∂φ2

∂n

]) ∣∣∣∣
Γi1

+ ([φ2][H]− iω[ξ][G]])

∣∣∣∣
Γp

+ ([φ2][H])

∣∣∣∣
Γc3

+ [φ2] ([H]−K[G])

∣∣∣∣
Γf1

= 0.

(2.25)

Since, the plate deflection ξ is an unknown parameter in Eqs. (2.24) and (2.25), the system

of equations (2.24) and (2.25) are not possible to solve at this point. For the same, using the

central-difference formula, the plate dynamic boundary condition Eq. (2.8) is discretized and

written in the following form(
ξj+2 − 4ξj+1 + 6ξj − 4ξj−1 + ξj−2

∆4

)
+Aξj = B

(
φj1 − φ

j
2

)
, (2.26)

where A = −γω2/Π and B = iω/Π with Π = gχ

[
1 +

β2ϕω

i + ϕω

]
. Now, Eqs. (2.24)-(2.26) are

solved together to get the unknowns φ, ∂φ/∂n and ξ over the corresponding boundaries of the

domain.

2.4 Results and discussions

In this section, the computational results associated with the power generated by the PWEC

device Pext are plotted and discussed for various values of wave and structural parameters.

Coding is performed in MATLAB software for numerical computations and the generation of

graphs. Further, the sensitivity analysis is carried out to optimize the performance of the PWEC

device for various edge conditions of the piezoelectric plate, including the fixed edge, free edge,

and mooring edge conditions. In addition, the performance of the PWEC device is analyzed for

variation in the length and submergence depth of the PWEC device, the number of ripples, and

the amplitude of ripples of the undulated seabed. The shape of the undulated seabed is taken as

the following

h(x) = h− a1 sin

(
2mπx

L

)
, 0 < x < L. (2.27)

The parameter values associated with the PWEC device, incident wave and the undulated

seabed are taken as follows: h = 10 m, l/h = 2.0, d/h = 0.1, χ/h4 = 4.78 × 10−7, β = 0.24,

ϕ =
√
h/g, γ/h = 1.258 × 10−3, m = 5, a1/h = 0.32, q = 103 N/m and T1 = T0

√
g/h unless
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otherwise mentioned. In all the subsequent figures, power generated by the PWEC device is

plotted as a function of non-dimensional incident wave period T1. For free surface gravity waves,

the range of the typical wave period is 1− 25sec (Mei et al. [127]). While considering the real sea

spectrum, for example, in the case of Bretschneider Spectrum (Koley [128]), sea states 3 and 4

are moderate in nature and occur mostly in the marine environment (see Goda [45]) for details).

For sea states 3 and 4, most probable wave periods lie within the range 7.5− 8.75sec. Therefore,

we have considered the incident wave periods in the range of 4− 9sec approximately to cover a

wide range of incident wave frequencies under moderate wave climate in the nearshore regions.

The wave power generated by the PWEC device is obtained as (see Zheng et al. [41] for details)

Pext =
ω2ρg

2

β2χϕ

1 + ω2ϕ2

∫ b+l

b
|∂2
xξ|2dx. (2.28)

Another form of the power generated by the PWEC device is provided in the following. The

power generated by the PWEC device can be derived based on the Green’s theorem (see Zheng

et al. [41] for details)

Pext =
iρω

4

∫ 0

−h

(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

) ∣∣∣∣
x=−l1

dz. (2.29)

To derive the expression of Pext using Eq. (2.29), the far-field boundary condition as in Eq.

(2.14) is rewritten as the following

φ1(x, z) = φI(x, z) +Rc φ
I(−x, z), (2.30)

where Rc is the complex coefficient associated with the reflected waves. Now, by substituting

the expression of φ1(x, z) as in Eq. (2.30) into Eq. (2.29), the power generated by the PWEC

device Pext (Wm−1) is expressed as the following

Pext =
ρg2A2 [sinh(k0h) cosh(k0h) + k0h]

4ω cosh2(k0h)

(
1− |Rc|2

)
. (2.31)

2.4.1 Model validation

Before proceeding with various results and discussions, the present computational results need to

be validated with standard results available in the literature. In Fig. 2.2, the power generated by

the PWEC device Pext (Wm−1) is plotted as a function of incident wave period T0 for the case

when the PWEC is moored on the breakwater. The remaining parameters are same as provided

in Buriani and Renzi [4] (see Fig. 4 of Buriani and Renzi [4]). From Fig. 2.2, it is seen that the

present computed results are matched well with the results provided by Buriani and Renzi [4].
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Figure 2.2: Pext vs. T0. Lines represent the solutions obtained by the present boundary
element method and symbols represent the solutions provided in Buriani and Renzi [4].

2.4.2 Numerical convergence

In this subsection, the numerical convergence of the boundary element method-based results

is discussed with respect to the variation in submergence depth of the PWEC plate. The

convergence of the boundary element method depends on the panel size (see Wang and Meylan

[129] for details). The panel size is proportional to the wavelength of the incident wave, and

therefore, the panel size is inversely proportional to the wavenumber k0. So, the panel size Ps

can be expressed in the form

Ps =
1

κk0
, (2.32)

where the proportionality constant κ is determined from the numerical convergence study. In

Table 2.1, the variation of the reflection coefficient |Rc| is plotted for various non-dimensional

incident wave period T1 and submergence depth d/h of the PWEC plate. From Table 2.1, it

is concluded that the numerical results obtained using BEM converges well for κ ≥ 50. In the

following results, the graphs are plotted by taking the panel size κ = 50.

2.4.3 PWEC device with fixed edges

In this subsection, the performance of the PWEC device is analyzed for various wave, structural

and seabed parameters when the front edge of the plate is attached to a floating buoy and the

lee edge of the plate is attached to the rigid and impermeable front wall of the breakwater such

that the fixed edge conditions are valid on both edges (see Eq. (2.10)).

In Fig. 2.3(a), the variation of the wave power generated by the PWEC device Pext is plotted

as a function of incident wave period T1 for various values of submergence depth d/h of the

PWEC plate. It is clearly seen from Fig. 2.3(a) that a number of distinct peaks occur in the
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Table 2.1: Reflection coefficient |Rc| in presence of PWEC plate when both the edges are fixed
in nature.

T1 κ d/h = 0.1 d/h = 0.2 d/h = 0.3 d/h = 0.4

5 30 0.98425 0.98364 0.98728 0.98845
40 0.98429 0.98369 0.98610 0.98850
50 0.98435 0.98371 0.98604 0.98859
60 0.98438 0.98372 0.98602 0.98858

6 30 0.99668 0.98002 0.99882 0.99929
40 0.99670 0.99815 0.99884 0.99931
50 0.99671 0.99816 0.99885 0.99932
60 0.99671 0.99816 0.99885 0.99932

7 30 0.98019 0.98035 0.98083 0.99847
40 0.98023 0.98039 0.98087 0.98132
50 0.98027 0.98042 0.98091 0.98136
60 0.98028 0.98043 0.98092 0.98138
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Figure 2.3: (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h when the
PWEC plate edge conditions are fixed.

Pext curve irrespective of the variation in the submergence depth d/h. This can be explained

from Eq. (2.28). See, the mean extracted power Pext depends on the square of the plate

curvature. Consequently, the short-crested component of the hydroelastic wave significantly

affects the power generation Pext of the PWEC device (see Renzi [3] for details). Therefore, the

above-mentioned resonating peaks in power generated by the PWEC device Pext occur due to

the matching between the wavelengths of the natural plate vibration and the wavelength of the

short-crested component of the hydroelastic wave. Moreover, it is seen that the height of the

resonating peaks in the power generation Pext curve increases as the submergence depth d/h of



Chapter 2. Mathematical modeling of a breakwater-integrated piezoelectric plate 62

4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 P
e
x
t (

W
m

-1
)

10
4

 l/h=1.0

 l/h=2.0

 l/h=3.0

 l/h=4.0

(a)

4 5 6 7 8 9

1

1.5

2

2.5

3

3.5

4

 l
/h

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
10

4

(b)

Figure 2.4: (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h when the
PWEC plate edge conditions are fixed..
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Figure 2.5: Pext vs. T1 for various values of (a) m , and (b) a1/h when the PWEC plate edge
conditions are fixed.

the PWEC decreases. A similar observation is found in Zheng et al. [41]. The reason behind

this phenomenon is that the wave energy concentration is more near to the free surface. Further,

it is observed that certain shifts in the positions of the resonating peaks in the power generation

Pext curve occur due to the change in submergence depth d/h of the plate. This phase shift

occurs due to the complex coefficient in the fourth-order equation of the plate (see Eq. (2.8)).

To demonstrate the effect of incident wave period T1 and plate submergence depth d/h on the

power generation Pext, a contour plot of Pext as functions of T1 and d/h is provided in Fig.

2.3(b). It is seen that the resonances in the power generation Pext occur for moderate values of

incident wave period T1 when the PWEC is situated near to the mean free surface z = 0.

Fig. 2.4(a) depicts the variation in the power generation by the PWEC device Pext as a function

of incident wave period T1 for various values of the PWEC plate length l/h. It is clearly seen
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that the number of peaks associated with the resonances of the power generation Pext curve

increases with an increase in plate length l/h of the PWEC device. The reason behind these

resonating peaks is that the frequencies associated with the natural vibration of the PWEC

plate (having fixed edges) becomes lower as the PWEC plate length increases. Consequently, the

possibility of matching between the natural frequency of the PWEC plate and the frequency of

the hydroelastic wave. The short-crested component of the flexural waves travelling on the plate

is responsible for the resonant behaviour of the PWEC device. It is to be noted that the resonant

periods are directly proportional to the density ratio and the length of the PWEC plate, and

inversely proportional to its stiffness. Therefore, such parameters could be optimized to make

the device resonate with the most energetic sea states in a given ocean waves. As mentioned in

Renzi (2016), for ϕ = 0, the approximated expression for the resonant periods of the system is

given by

Tp ≈ 16

√
r l

(p+ 0.5)5π3χρg2
, p = 1, 2, · · · . (2.33)

where r =
ρ l

ρ0d0 + 2ρpdp
with ρ0, ρp and ρ being the densities of the substrate, piezoelectric

layers, and fluid, respectively. Further, d0 and dp represent the thicknesses of the substrate

and the piezoelectric layers, respectively. The bimorph piezoelectric plate is characterised by

d0 = 0.01m, dp = 1.1× 10−4 m, ρ0 = 1250 Kg/m3, ρp = 1780 Kg/m3. Because of the presence

of dissipation owing to both radiation damping and wave energy extraction, the resonant period

in the present scenario will slightly change than the obtained value as mentioned in the earlier

equation. The resonant period (s), approximated value (s) and the corresponding eigen value

associated with the resonating peaks are provided in the following Table. 2.2. The eigen values

responsible for the resonating periods are obtained from the Strum-Liouville problem associated

with the plate equation when the external force and the short circuit conditions are zero. The

eigenvalues are

µ = µp ≈
(
p+

1

2

)
π

2
, p = 1, 2, 3, ...

To demonstrate the effect of incident wave period T1 and PWEC plate length l/h on the power

generation Pext, a contour plot of Pext as functions of T1 and l/h is provided in Fig. 2.4(b). It is

observed that for certain combinations of plate length l/h and incident wave period T1, the power

generation by the PWEC device Pext becomes higher. To obtain the appropriate combinations of

T1 and l/h which can generate more wave power Pext, a quadratic polynomial regression model

is used to fit the set of points where the power generation is more than 13000Wm−1. In the

present case, the following relation is obtained

l/h = 0.0985 T 2
1 − 0.9669 T1 + 4.0787. (2.34)

Eq. (2.34) depicts that the PWEC device having length 2.0 ≤ l/h ≤ 2.5 is capable of generating
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Table 2.2: Resonant period (s) approximated value (s) and corresponding eigenvalues

l/h Resonant period (s) Approximated value (s) Eigen values

l/h = 2 8 7.61 p=12
6.5 6.28 p=13
5.4 5.25 p=14
4.6 4.44 p=15

l/h = 3 8.1 7.69 p=13
6.6 6.43 p=14
5.6 5.44 p=15
4.9 4.65 p=16
4.5 4.02 p=17

l/h = 4 8.3 8.8 p=13
6.8 7.43 p=14
6.2 6.3 p=15
5.2 5.37 p=16
4.7 4.64 p=17
4 4.04 p=18

maximum power Pext for a wide range of incident wave periods T1. This observation is also seen

in Fig 2.4(b).

The effects of the parameters associated with the undulated seabed, i.e., the number of ripples m

and the ripple amplitude a1/h of the sinusoidally varying seabed (as in Eq. (2.27)) on the power

generation Pext by the PWEC device is shown in Figs. 2.5(a) and 2.5(b). It is seen from both

the figures that the resonances in the power generation Pext curve occur for the same incident

wave period T1 irrespective of variation in the number of ripples m and the ripple amplitude

a1/h. This is due to the fact that the natural frequency for the PWEC plate vibration does not

change due to the variations of the undulated bed. Further, due to the presence of the plate near

the free surface, a major amount of wave energy is absorbed by the plate, and so the bottom

impact on the wave propagation is reduced significantly.

2.4.4 PWEC device having fixed rear edge and free front edge

In this subsection, the performance of the PWEC device is analyzed for various wave, structural,

and seabed parameters when the front edge is free, and the rear edge is fixed on the breakwater

(see Eqs. (2.10) - (2.11)).
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Figure 2.6: Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h when the
PWEC device having fixed rear edge and free front edge.
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Figure 2.7: (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h when the
PWEC device having fixed rear edge and free front edge.

In Fig. 2.6(a), the variation of the wave power generated by the PWEC device Pext is plotted as

a function of incident wave period T1 for various values of submergence depth d/h of the PWEC

plate. It is clearly seen from Fig. 2.6(a) that a number of resonating peaks occur for different

values of incident wave periods T1. Moreover, it is also seen that for each of the depth parameter

values d/h, all the resonating peaks occur within a small neighborhood of the same wave period

T1. In addition, Fig. 2.6(a) demonstrates that the amplitude of the resonating peaks is more

when the submergence depth d/h of the PWEC plate is less, i.e., when the PWEC plate is

placed near to the free surface. The reason for the same is already mentioned in Fig. 2.3(a).

A comparison between Figs. 2.6(a) and 2.3(a) reveals that the wave power generated by the

PWEC device Pext is more when the front edge of the PWEC plate is free as compared to the

case when the front edge is fixed for a wider range of incident wave period T1 and submergence
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Figure 2.8: Pext vs. T1 for various values of (a) number of ripples m, and (b) ripple amplitude
a1/h of the sinusoidal seabed when the PWEC device having fixed rear edge and free front edge.

depth d/h. This particular result is clearly visible while comparing Figs. 2.6(b) with 2.3(b).

Further, it is seen that the number of resonances is more when the PWEC plate is positioned

near to the free surface in the case when the front edge of the plate is free as compared to the

fixed edge.

Fig. 2.7(a) depicts the variation in the power generation by the PWEC device Pext as a function

of incident wave period T1 for various values of the PWEC plate length l/h. It is observed that

the number of resonating peaks increases, whereas the amplitude of the resonating peaks reduces

gradually as the PWEC plate length l/h increases. The reason for this phenomenon is already

mentioned in the discussion of Fig. 2.4(a). A comparison between Figs. 2.7 and 2.4 reveals that

the resonating peaks occur more for smaller plate length when the front edge of the PWEC is

free. Whereas, for a plate having a fixed front edge, the resonance in power generation Pext

occurs for moderate and smaller values of PWEC plate length l/h. To analyze the effect of

PWEC plate length l/h and incident wave period T1 on the resonances in power generation Pext,

a quadratic polynomial regression model is adopted, and the same is obtained as the following

l/h = −0.0859 T 2
1 + 0.6855 T1 + 0.4572. (2.35)

Eq. (2.35) depicts that the PWEC device having a length in the range of 1.2 ≤ l/h ≤ 2.0 is

suitable to generate maximum power Pext by the PWEC device having a free front edge and

fixed rear edge.

The effect of the sinusoidally varying bottom undulation (as in Eq. (2.27)) on the power

generation by the PWEC device Pext is demonstrated in Figs. 2.8(a) and 2.8(b). Fig. 2.8(a)

shows that the power generation by the PWEC device Pext doesn’t vary much due to the variation

in the number of ripples m of the seabed except at positions where resonances occur. The reason
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behind the same is that a major amount of incoming wave energy is absorbed by the PWEC

plate, which is placed above the undulated bottom and nearer to the free surface. On the other

hand, in Fig. 2.8(b), it is seen that the amplitude of the undulated seabed has a significant effect

on the power generation Pext by the PWEC device.
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Figure 2.9: (a) Pext as a function of T1 for various values of mooring stiffness q (Nm−1), and
(b) contour plot of Pext as a function of T1 and q (Nm −1).
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Figure 2.10: Pext vs. T1, and (b) contour plot of Pext as a function of T1 and d/h.

2.4.5 PWEC device having fixed rear edge and moored front edge

In Fig. 2.9(a), the variation of the wave power generated by the PWEC device Pext is plotted

as a function of incident wave period T1 for various values of the stiffness parameter q of the

mooring line attached to the front edge of the PWEC device. It is to be noted that the stiffness

parameter q = 0 corresponds to the free edge boundary conditions of the PWEC plate. It

is observed that certain shifts in the resonating peaks occur due to the variation in mooring
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Figure 2.11: (a) Pext vs. T1, and (b) contour plot of Pext as a function of T1 and l/h.

stiffness parameter q. This happens as the natural vibration of the PWEC plate will change

due to the variation in the mooring stiffness, and consequently, resonating peaks in the power

generation Pext curve occur for different values of incident wave period T1. These shifts in the

resonating peaks are clearly seen in Fig. 2.9(b). It is also seen that for 5.5 < T1 < 6.5, the wave

power generated by the PWEC device Pext initially increases as the mooring stiffness q takes

higher values, and then after a threshold value of the mooring stiffness q, the variation on the

power generation by the PWEC device Pext is significantly less.

In Fig. 2.10(a), the variation of the wave power generated by the PWEC device Pext is plotted

as a function of incident wave period T1 for various values of submergence depth d/h of the

PWEC plate. The overall pattern of the power generation curve Pext as seen in Fig. 2.10(a) is

similar in nature to that of Figs. 2.3(a) and 2.6(a). A comparison among Figs. 2.10(a), 2.3(a)

and 2.6(a) reveals that the amplitude of resonating peaks Pext is higher for PWEC plate having

fixed front edge as compared to free and moored front edges of the PWEC plate. In Fig. 2.10(b),

the contour plot of power generation Pext by the PWEC device is plotted as functions of incident

wave period T1 and submergence depth d/h of the PWEC plate. A comparison among Figs.

2.10(b), 2.3(b) and 2.6(b) depicts that the PWEC plate having free front edge generates higher

amount of wave power Pext for a wider range of incident wave periods T1 and submergence depth

d/h as compared to PWEC plate having fixed and moored edges.

In Fig. 2.11(a), the variation of the wave power generated by the PWEC device Pext is plotted

as a function of incident wave period T1 for various values of PWEC plate length l/h. It is

observed that the overall pattern of the resonances associated with the power generation Pext

by the PWEC device is similar in nature to that of Figs. 2.4(a) and 2.7(a). It is clearly seen

that the number of resonating peaks for the PWEC plate having moored and fixed front edges

is more as compared to the PWEC plate having free front edges. This happens due to the
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reason that for the PWEC plate having free and moored front edges (having moderate mooring

stiffness), the natural vibration frequency is less as compared to the PWEC plate having fixed

edges. To analyze the effect of the PWEC plate length l/h and incident wave period T1 on the

resonances of power generation Pext by the PWEC device, a quadratic polynomial regression

model is adopted, and the same is obtained as the following

l/h = 0.0252 T 2
1 − 0.4735 T1 + 3.7201. (2.36)

Eq. (2.36) depicts that the PWEC device having a smaller length is suitable to generate more

wave power Pext on those locations having smaller incident wave periods T1. Further, Eq. (2.34)

shows that PWEC device having length l/h in range 1.5 ≤ l/h ≤ 2.3 is suitable to generate

maximum power Pext for a wider range of incident wave period.

It is to be noted that the effect of the sinusoidally varying bottom undulation on the power

generation by the PWEC device Pext when the front edge is moored is similar in nature to that

of Figs. 2.5 and 2.8. For this reason, the details are deferred here.

2.4.6 Effect of plate lee edge conditions on the power generation

Figs. 2.12(a)-2.12(c) show the variation of the wave power generated by the PWEC device Pext

for the fixed and moored lee edge conditions when the front edge of the plate is fixed, free, or

moored type. From these figures, it is clearly observed that the overall wave power generated

by the PWEC device Pext is significantly higher when the lee side of the PWEC plate is fixed

in nature as compared to the mooring edge condition. Further, it is seen that the number of

resonating peaks as well as the associated amplitudes of the peaks is higher for PWEC plate

having fixed lee edge as compared to moored lee edge. A comparison among Figs. 2.12(a)-2.12(c)

reveals that the PWEC plate having a free front edge can generate a higher amount of wave

power Pext for a wider range of incident wave period T1 as compared to PWEC plate having

fixed and moored front edges.

It is to be noted that the proposed PWEC device can be used in sea crossing bridges, oil

platforms, windmills, etc. to power electricity to run low-power electronic devices such as

LED lights, wind velocity and direction sensors, stress-strain sensors, vibration sensors, and

temperature sensor, etc. (Qi et al. [43]). The traditional way to power these devices were either

to use a long-distance electric line or to use batteries. These long-distance electric lines cause

huge electric power loss and are far costlier than the proposed PWEC device. The battery power

method causes environmental problems due to electromechanical pollution. The study in this

work depicts that the power generated by the PWEC device is maximum if the edges are fixed

in nature. Hence, in practice, it is possible to install the PWEC device integrated with the
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Figure 2.12: Comparison of Pext for fixed and moored lee edges when the front edge is (a)
fixed, (b) free, or (c) moored.

pilers of the offshore structures using fixed edge boundary conditions. Further, the engineers

can also integrate multiple PWEC devices at the same pilers of the offshore structures without

hitting each other. It is to be noted that the electric power generated by the PWEC device is

irregular, and therefore, it must be regulated and stabilized. The rectifying circuit can be made

of diodes with low power and high precision, and a capacitor can be used for voltage regulation

(see Qi et al. [43] for details). Finally, the rectified and stabilized electric power generated by

the PWEC device can be used to power low-power electronic devices as mentioned earlier.

The drawbacks of using PWEC devices to generate electricity are the following. The narrow

bandwidth of the highest resonating peaks for the power generated by the PWEC device depicts

that the energy generation is irregular. Hence, the power generated by the PWEC device should

be stabilized by an external rectifying circuit before putting the energy on the grid. Further, the

PWEC device can convert only around 10% of the available ocean energy into useful electric

energy (see Wang [130]). While comparing the power generated by the PWEC device with other
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wave energy converter devices, the PWEC device generated less electric power than other wave

energy converter devices because of the energy transduction principle (see Ahamed et al. [131]).

2.5 Conclusions

In this study, the performance of a submerged PWEC device attached to an impermeable vertical

breakwater placed over an undulated seabed is analyzed for various parameters associated with

the incident waves, PWEC plate, and undulated seabed. Major emphasis is given to analyze

the effect of PWEC plate submergence depth, plate length, plate edge conditions, incident wave

period, bottom ripple amplitude, and ripple number on the power generation by the PWEC

device. Major conclusions obtained from the present study are summarized in the following:

� The results demonstrated that the overall wave power generated by the PWEC device is

significantly higher when the lee side of the PWEC plate is fixed in nature as compared to

moored edge condition. Further, the number of resonating peaks and associated amplitudes

are also higher for the PWEC device with a fixed type lee edge.

� The maximum peak in the wave power generation curve is observed for PWEC devices

with fixed-type front edges. In contrast, it is seen that the PWEC device with free and

moored type front edges generates moderate wave power for a wider range of incident wave

periods.

� As the length of the PWEC device increases, the number of resonating peaks in the wave

power generation curve increases gradually. Further, it is also observed that the PWEC

device having moderate length can generate maximum wave power for a wider range of

incident wave periods.

� As the submergence depth of the PWEC device increases, the wave power generated by

the PWEC device decreases gradually, irrespective of the PWEC device edge conditions.

� The power generated by the PWEC device doesn’t vary much due to the variation in the

number of ripples and ripple amplitude of the seabed except at positions where resonances

occur.

In summary, it is concluded that the plate edge conditions and various parameters associated

with the PWEC device can be optimized to generate maximum wave power for a wider range of

incident wave frequencies. The present study will be extended for irregular and multi-directional

incident waves in the near future.
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3.1 General introduction

In this chapter, the power absorption by a submerged piezoelectric wave energy converter (PWEC)

in the frequency domain and the time-dependent displacement of the free surface and the PWEC

plate deflection are discussed. Further, the prediction of power generation by the device and

the optimization of the device parameters using an artificial neural network model, namely the

multilayer perceptron model, are discussed. The problem is studied initially for the case when

PWEC plate is situated over an undulated seabed. However, in the parameters optimization

process, the seabed is considered uniform in nature as the effect of bottom undulation is negligible.

Here, the PWEC plate is considered standalone without attaching the same with an existing

breakwater. The boundary element method (BEM) is used to solve the frequency domain

problem. Further, the Fourier transform is utilized to convert the frequency domain results into

time domain. In time domain analysis, emphasis is given to analyze the the plate deflection and

the free surface displacement. The input database for the ANN model building is generated using

the latin hypercube sampling method (LHS), and the corresponding target variable is calculated

using the BEM-based numerical tool. After the ANN model building, the optimization of the

design parameters of the PWEC device is carried out using a database containing 3000 sample

points generated randomly using the LHS method. These generated input samples will be passed

through the developed ANN model, and the predicted response variable provides a range for the

geometric parameters associated with the PWEC device to optimize the power generation.

3.2 Mathematical formulation

In the present problem, the performance of a piezoelectric wave energy converter (PWEC)

device placed over an undulated seabed with fixed edge conditions on both the edges of the

PWEC plate is studied in both the frequency domain as well as in the time domain. The

schematic diagram depicting the vertical cross-section of the physical problem is given in Fig. 3.1.

To model the hydrodynamics associated with the PWEC device, a two-dimensional Cartesian

coordinate system is considered with the direction of wave propagation coinciding with the

x-axis and the z-axis pointing vertically upwards from the mean free surface. It is assumed that

the regular ocean waves of amplitude A and angular frequency ω impinge on the PWEC plate.

Here, A/λ << 1 is considered with λ being the incident wavelength so that the small-amplitude

wave theory is applicable for the present study. The PWEC device of length l is placed at a

submergence depth d from the mean free surface z = 0 and occupies the region b ≤ x ≤ b+ l along

the x-axis. The PWEC plate is floating over an undulated finitely extended seabed represented

by z = −H(x). To solve the associated boundary value problem using the boundary element

method, two auxiliary boundaries Γc1 and Γc2 are considered at x = −l1 and x = r, respectively.

These auxiliary boundaries Γc1 and Γc2 are situated sufficiently far away from the PWEC device
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and the undulated bottom so that the effect of local wave modes vanishes on the auxiliary

boundaries. Moreover, another two auxiliary boundaries Γi1 and Γi2 are considered at x = b+ 1

and x = b, respectively. Consequently, the physical domain is divided into two regions Rj for

j = 1, 2 with R2 = {b < x < b+ l,−d < z < 0} and R1 = {−l1 < x < r,−H(x) < z < 0} \R2 as

shown in Fig. 3.1. The water flow is assumed to be incompressible, inviscid, and irrotational

in nature, along with the motion being harmonic in time with the angular frequency ω. These

aforementioned assumptions provide certainty about the existence of the velocity potentials of

the following form

Φj(x, z, t) = <
{
φj(x, z)e

−iωt
}
, for j = 1, 2, (3.1)

where Φj represent the velocity potentials for the regions Rj for j = 1, 2. Further, the spatial

velocity potentials φj for j = 1, 2 satisfy(
∂2

∂x2
+

∂2

∂z2

)
φj = 0. (3.2)

The boundary conditions on the mean free surfaces Γf1 = {b+ l < x < r, z = 0}, Γf2 =

{b < x < b+ l, z = 0} and Γf3 = {−l1 < x < b, z = 0} are given by

∂φj
∂z

= Kφj , on Γfj , for j = 1, 2, 3, (3.3)

where K = ω2/g with g represents the acceleration due to gravity. The seabed is considered to

Figure 3.1: Schematic diagram of the physical problem.

be rigid and impermeable in nature. Therefore, the bottom boundary condition on Γb is given by

∂φ1

∂n
= 0, on z = −H(x), (3.4)
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where ∂/∂n represents the normal derivative and H(x) represents the bottom topography

H(x) =

h, x < 0 ∪ x > L,

h(x), 0 < x < L.
(3.5)

Here, h(x) represents the undulated sinusoidal seabed. A uniform seabed is considered for the

optimization of the design parameters of the PWEC device. The bottom topography in this

case can be defined as

H(x) = h, −l1 < x < r. (3.6)

The plate deflection ξ(x, t) is assumed to be time harmonic in nature and takes the form

ξ(x, t) = <
{
ξ(x)e−iωt

}
. Now, the kinematic boundary condition on Γp is same as given in Eq.

(2.7). The dynamic boundary condition on the piezoelectric plate surface Γp is given by Eqs.

(2.8) and Eq. (2.9). Now, we need to provide the appropriate plate edge conditions. As the

plate edges are assumed to be fixed, the edge conditions of the plate are given by

ξ = 0,
∂ξ

∂x
= 0, at x = b, b+ l. (3.7)

The continuity of pressure and normal velocity along the auxiliary boundary Γi1 and Γi2 are

given by

φ1 = φ2,
∂φ1

∂n
= −∂φ2

∂n
, on Γi1 ∪ Γi2. (3.8)

Finally, the far-field boundary conditions on Γc1 and Γc2 arM given by
∂(φ1 − φI)

∂x
+ ik0(φ1 − φI) = 0, on Γc1,

∂φ1

∂x
− ik0φ1 = 0, on Γc2,

(3.9)

where φI(x, z) = eik0xf1(k0, z) represents the incident wave potential. Here, f1(k0, z) =(
−igA

ω

)
cosh(k0(z + h))

cosh(k0h)
with k0 being the positive root of the dispersion relation K =

gk0 tanh(k0h).

3.3 Numerical method of solution

In this section, the boundary element method-based solution technique is applied to solve the

physical problem formulated in Section 2. Firstly, the boundary value problem formulated in

Section 2 is converted into a system of integral equations. These integral equations are derived

in terms of the velocity potentials and their normal derivatives using the Green’s second identity

along with the free space Green’s function and using the boundary conditions derived in Section
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2. The Green’s identity is given by

1

2
φ(x0, z0) =

∫
Γ

(
φ(x, z)

∂G(x, z;x0, z0)

∂n
−G(x, z;x0, z0)

∂φ(x, z)

∂n

)
dΓ(x, z). (3.10)

The form of the free space Green’s function G(x, z;x0, z0) used in Eq. (3.10) is given by

G(x, z;x0, z0) =
1

2π
ln(r), where r =

√
(x− x0)2 + (z − z0)2, (3.11)

with (x, z) and (x0, z0) being the field and source points respectively. For the present problem,

G(x, z;x0, z0) satisfies

∆2G(x, z;x0, z0) = δ(x− x0)δ(z − z0), ∆2 ≡
(
∂2

∂x2
+

∂2

∂z2

)
. (3.12)

Furthermore, the normal derivatives of the Green’s function is given by

∂G

∂n
=

1

2πr

∂r

∂n
=

1

2πr

(
nx
∂r

∂x
+ nz

∂r

∂z

)
, (3.13)

where nx and nz are the components of the unit normal vector along the x and z- directions,

respectively. Now, applying the boundary conditions as in Eqs. (3.3)-(3.9), and the Green’s

function G(x, z;x0, z0) defined in Eq. (3.11) into (3.10), we obtain the following integral equations

corresponding to each of the regions R1 and R2

−1

2
φ1 +

∫
Γc1

φ1

(
∂G

∂n
− ik0G

)
dΓ +

∫
Γb

φ1
∂G

∂n
dΓ +

∫
Γc2

φ1

(
∂G

∂n
− ik0G

)
dΓ

+

∫
Γf1

φ1

(
∂G

∂n
−KG

)
dΓ +

∫
Γi1

(
φ1
∂G

∂n
−G∂φ1

∂n

)
dΓ +

∫
Γp

(
φ1
∂G

∂n
+ iωξG

)
dΓ

+

∫
Γi2

(
φ1
∂G

∂n
−G∂φ1

∂n

)
dΓ +

∫
Γf3

φ1

(
∂G

∂n
−KG

)
dΓ−

∫
Γc1

G

(
∂φI

∂n
− ik0φ

I

)
dΓ = 0,

(3.14)

−1

2
φ2 +

∫
Γi2

(
φ1
∂G

∂n
+G

∂φ1

∂n

)
dΓ +

∫
Γp

(
φ2
∂G

∂n
− iωξG

)
dΓ

+

∫
Γi1

(
φ1
∂G

∂n
+G

∂φ1

∂n

)
dΓ +

∫
Γf2

φ2

(
∂G

∂n
−KG

)
dΓ = 0.

(3.15)

Now, the boundary element method is used to solve the integral equations as in Eqs. (3.14) -

(3.15) into a system of linear algebraic equations under the assumption that φ and ∂φ/∂n are

constants over each of the boundary elements (see Koley et al. [124] for details). The discretized
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forms of the integral equations Eqs. (3.14) and (3.15) are given by

Nc1∑
j=1

φ1j (Hij − ik0Gij)

∣∣∣∣
Γc1

+

Nb∑
j=1

φ1jHij

∣∣∣∣
Γb

+

Nc2∑
j=1

φ1j (Hij − ik0Gij)

∣∣∣∣
Γc2

+

Nf1∑
j=1

φ1j (Hij −KGij)
∣∣∣∣
Γf1

+

Ni1∑
j=1

(
φ1jHij −Gij

∂φ1j

∂n

) ∣∣∣∣
Γi1

+

Np∑
j=1

(φ1jHij + iωξjGij)

∣∣∣∣
Γp

+

Ni2∑
j=1

(
φ1jHij −Gij

∂φ1j

∂n

) ∣∣∣∣
Γi2

+

Nf3∑
j=1

φ1j (Hij −KGij)
∣∣∣∣
Γf3

−
Nc1∑
j=1

Gij

(
∂φIj
∂n
− ik0φ

I
j

)∣∣∣∣
Γc1

= 0,

(3.16)

Ni2∑
j=1

(
φ1jHij +Gij

∂φ1j

∂n

) ∣∣∣∣
Γi2

+

Np∑
j=1

(φ2jHij iωξjGij)

∣∣∣∣
Γp

+

Ni1∑
j=1

(
φ1jHij +Gij

∂φ1j

∂n

) ∣∣∣∣
Γi1

+

Nf2∑
j=1

φ2j (Hij −KGij)
∣∣∣∣
Γf2

= 0,

(3.17)

where

Hij =
1

2
δij +

∫
Γj

∂G

∂n
dΓ, Gij =

∫
Γj

GdΓ, (3.18)

are the influence coefficients and can be evaluated numerically using the Gauss-Legendre

quadrature formulae when the field point (x, z) and the source point (x0, z0) lies in different

boundary elements. When the field point (x, z) and the source point (x0, z0) lies on the same

boundary element, the influence coefficients need to be solved analytically (see (Koley and Sahoo

[125] for details). The system of equations (3.16)-(3.17) are converted into the matrix form using

the point collocation method and the matrix form is given as

[φ1] ([H]− ik0[G])

∣∣∣∣
Γc1

+ [φ1][H]

∣∣∣∣
Γb

+ [φ1] ([H]− ik0[G])

∣∣∣∣
Γc2

+ [φ1]([H]−K[G])

∣∣∣∣
Γf1

+

(
[φ1][H]− [G]

[
∂φ1

∂n

]) ∣∣∣∣
Γi1

+ ([φ1][H] + iω[ξ][G])

∣∣∣∣
Γp

+

(
[φ1][H]− [G]

[
∂φ1

∂n

]) ∣∣∣∣
Γi2

+ [φ1]([H]−K[G])

∣∣∣∣
Γf3

− [G]

([
∂φI

∂n

]
− ik0[φI ]

) ∣∣∣∣
Γc1

= 0,

(3.19)

(
[φ1][H] + [G]

[
∂φ1

∂n

]) ∣∣∣∣
Γi2

+ ([φ2][H]− iω[ξ][G]])

∣∣∣∣
Γp

+

(
[φ1][H] + [G]

[
∂φ1

∂n

]) ∣∣∣∣
Γi1

+ [φ2] ([H]−K[G])

∣∣∣∣
Γf2

= 0.

(3.20)

Since, the plate deflection ξ is an unknown quantity to be determined in Eqs. (3.19) and (3.20),

the system of equations (3.19) and (3.20) can not be solved at this point. To solve the same, the

central-difference formula is applied over the plate dynamic boundary condition and written in

the form provided in (2.26). Now, Eqs. (3.19) and (3.20) are solved simultaneously to determine
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the unknowns φ, ∂φ/∂n and ξ over the corresponding boundaries of the domain.

3.4 Results, discussions and Model validation

In this section, the numerical results associated with the power generated by the PWEC device

Pext are plotted and discussed for various values of wave and structural parameters. The

performance of the PWEC device is analyzed for variation in the length and submergence depth

of the PWEC device, the amplitude and number of ripples of the sinusoidal seabed. The the

undulated seabed take the following shape

h(x) = h− a1 sin

(
2mπx

L

)
, 0 < x < L. (3.21)

The parameter associated with the PWEC device, incident wave and the sinusoidal seabed are

taken as follows: h = 10m, l/h = 3.0, g = 9.81m/s2, d/h = 0.2, χ/h4 = 4.78× 10−7, β = 0.21,

ϕ =
√
h/g, γ/h = 1.258 × 10−3, m = 5, a1/h = 0.32 unless otherwise mentioned. The wave

power generated by the PWEC device is obtained as (see Zheng et al. [41] for details)

Pext =
ω2ρg

2

β2χϕ

1 + ω2ϕ2

∫ b+l

b
|∂2
xξ|2dx. (3.22)

The power generated by the PWEC device can be calculated in another way which is stated in

the following. Using the Green’s second identity on the velocity potential and its derivative, we

get (see Zheng et al. [41] for details)

Pext =
iρω

4

∫ 0

−h

[(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

) ∣∣∣∣
x=−l1

−
(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

) ∣∣∣∣
x=r

]
dz. (3.23)

To derive the expression of Pext using Eq. (3.23), the far-field boundary condition as in Eq. (3.9)

is rewritten as the following

φ1(x, z) =

φI(x, z) +Rc φ
I(−x, z), Γc1,

Tc φ
I(x, z), Γc2,

(3.24)

where Rc and Tc are the complex coefficients associated with the reflected and transmitted waves.

Now, by substituting the expression of φ1(x, z) as in Eq. (3.24) into Eq. (3.23), the power

generated by the PWEC device Pext (Wm−1) is expressed as the following

Pext =
ρg2A2

8ω

(
2k0h+ sinh(2k0h)

cosh2(k0h)

)[
1− |Rc|2 − |Tc|2

]
. (3.25)
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Figure 3.2: Validation of Pext vs T1. Here a1/h = 0 and l/h = 2

Before proceeding with various results, the present computational results need to be validated

with standard results available in the literature. In Fig. 3.2, the power generation Pext is plotted

as a function of the non-dimensional incident wave period T1 for the case when there is no

breakwater placed at the lee side of the PWEC plate which is floating over the uniform seabed,

and both the edges of the PWEC plate are fixed in nature. Under the aforementioned conditions,

the present results are compared with the analytical results provided in Renzi [3] (see Fig. 7 of

Renzi [3]). From Fig. 3.2, it is seen that the present computed results are matched well with the

results provided by Renzi [3].

3.5 Performance of the PWEC device in frequency domain

Figs. 3.3(a)- 3.3(d) depict the variation of the power generated by the PWEC device Pext as a

function of incident wave period T1 for different (a) plate length (l/h), (b) submergence depth

(d/h), (c) amplitude of the bottom undulation (a1/h), and (d) number of ripples in the undulated

seabed (m). Fig. 3.3(a) illustrates that as the plate length increases, the number of resonating

peaks also increases. This occurs due to the inherent low-frequency vibrations of long plates,

enhancing the alignment of frequencies with the hydroelastic wave and the PWEC plate. It is

important to highlight that the amplitude of the peaks is more pronounced for moderate plate

lengths. Additionally, in the shortwave regime, there is a greater number of peaks and higher

associated amplitudes compared to the intermediate and long-wave regimes. Consequently, it

can be observed that plates with moderate lengths in the shortwave regime exhibit the highest

power generation. Fig. 3.3(b) depicts that the amplitude of the resonating peaks increases as the

submergence depth of the plate decreases. This might be due to an accumulation of wave energy

at the free surface. It is also noticed that the resonance occurs around the same values of the

incident wave period irrespective of the variations in submergence depth. Fig. 3.3(c) illustrates
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Figure 3.3: Variation of Pext vs T1 for different (a) l/h, (b) d/h, (c) a1/h, and (d) m.

the increase in amplitude of the peaks as the ripple amplitude decreases within the shortwave

regime. Conversely, in the long and intermediate-wave regimes, an opposite trend is evident for

certain values of incident wave period. Additionally, it is observed that resonance takes place

at a same wave period, regardless of variations in ripple amplitude. From Fig. 3.3(d), it is

observed that the amplitude of the resonating peak is higher with a moderate number of ripples

in both the shortwave and intermediate wave regimes. Moreover, there is minimal change in

power absorption within the long-wave regime. Additionally, it is noteworthy that, irrespective

of the changes in the number of seabed ripples, resonances consistently occur around the same

wave period.
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Figure 3.4: Free surface displacement ζc(x, t) at various times (a) t = 1s, (b)t = 10s, (c)
t = 20s, and (d)t = 30s, (e) t = 40 s, (f) t = 50s.
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Figure 3.5: Free surface displacement and plate deflection ζp(x, t) at various times (a) t = 1s,
(b) t = 10s, (c) t = 20s, and (d) t = 30s, (e) t = 40s, (f) t = 50s
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3.6 Time dependent free surface elevation and plate deflection

The study of the free surface displacement in the time domain provides more realistic results

than in the frequency domain. This study illustrates the deflection of the PWEC plate and

the free surface displacement of the incident and transmitted waves, which demonstrate the

capability of power generation by the PWEC device. The free surface displacement in time

domain ζc(x, t) and the plate deflection ξ(x, t) are obtained as

ζc(x, t) = ζ(x, t), for {−l1 < x < b, z = 0} ∪ {b < x < b+ l, z = 0} ∪ {b+ l < x < r, z = 0} ,
(3.26)

ζp(x, t) =

ζ(x, t), for {−l1 < x < b, z = 0} ∪ {b+ l < x < r, z = 0},

ξ(x, t), for {b < x < b+ l, z = −d} ,
(3.27)

where

ζ(x, t) = <
{∫ ∞
−∞

f̃(ω)ζ(x, ω)e−iωtdω

}
, (3.28)

ξ(x, t) = <
{∫ ∞
−∞

f̃(ω)ξ(x, ω)e−iωtdω

}
. (3.29)

Here f̃(ω) represents the Fourier transform corresponding to the incident wave pulse. Moreover,

ξ(x, ω) and ζ(x, ω) denote the plate deflection and free surface elevation in the frequency domain.

It is to be noted that in Eq. (3.27), ζp(x, t) consists of the free surface elevation ζ(x, t) on

both the left and right sides of the plate region to compare the free surface elevation of the

incoming and transmitted waves with the PWEC plate deflection ξ(x, t). It is assumed that

the incoming wave packets follows Gaussian distribution whose Fourier transform is of the form

f̃(ω) =

√
b

π
e−b(ω−ω0)2 , with b being the standard deviation and ω0 being the mean frequency of

the incident wave. Using the boundary condition (3.3), the free surface elevation ζ and the plate

deflection ξ used in Eq. (3.29) can be expressed as (Zheng et al. [41])

ζ =
iω

g
φ

∣∣∣∣
z=0

, (3.30)

ξ =
i

ω
∂zφ

∣∣∣∣
z=−d

. (3.31)

Fig. 3.4 demonstrates the free surface elevation for the open water regions (blue lines) and for

the region above the PWEC plate (red lines). The free surface displacement is given for different

instants of time (a) t = 1s, (b) t = 10s, (c) t = 20s, and (d) t = 30s, (e) t = 40s, and (f) t = 50s.

Here, all figures demonstrate the scattering of waves around the plate. In a similar way, Fig.

3.5 demonstrates the free surface elevation for the open water regions (blue lines) and the plate
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deflection (red lines). It is clear from in Figs. 3.4 and 3.5 that the plate deflection is governed by

short crested waves which are generated due to weakly damped waves created by the interface

between the incoming wave and the PWEC plate. These short crested weakly damped waves

play a major role in power generation by the PWEC device. Since the wave energy is linearly

varies with the square of the wave amplitude, this reduction of the wave amplitude in the plate’s

occupied regime and in the transmitted regions clearly depicts the power absorption by the

PWEC plate. A comparison between Figs. 3.4 and 3.5 explains that the PWEC plate can collect

and retain the wave energy for a longer duration. A similar observation was reported by Renzi

[3], Zheng et al. [41].

3.7 Optimization of the design parameters of the PWEC device

The design of the PWEC device is optimized by choosing the appropriate values of the physical

parameters associated with the PWEC plate. The creation of the database for the input features

and the values of the target variable, namely the power generation, exploratory data analysis,

construction of the ANN model, and training and testing of the models, are explained in the

following subsections.

3.7.1 Design of the database

The database for the model building is created using the boundary element method, mentioned

in the previous section. The input features of the model are PWEC plate length l/h and

submergence depth d/h. The output feature is the power generated by the PWEC device Pext.

The parameters such as the water depth and wave height are considered to be fixed, and the

power generation is calculated as the average Pext for the wave period varies from 4-9 sec. A good

sampling method always gives a more generalized sample distribution and it will enhance the

accuracy of the model. In this study, the Latin Hypercube Sampling (LHS) methodology is used

for sampling to generate random sample points. The sampling range for the device parameters

is 0 ≤ l/h ≤ 5 and 0 ≤ d/h ≤ 0.4. The important property of LHS methodology is that it will

increase the stratification of the input features, which will improve the uniformity of the samples.

For the training purpose, we randomly selected 40 data points for l/h and 10 data points selected

for d/h. The scatter plot for the same is given in Figs. 3.6(a) and 3.6(b). The training dataset

is generated by finding the power generated by the PWEC device for different combinations

of l/h and d/h for wave periods varying from 4s to 9s. The average of the power generation

with respect to the wave periods is considered the power generated by the PWEC device for

the associated design parameters. The training dataset contains 400 different combinations of

the input values, and the corresponding average power generated for the wave periods varies

from 4s to 9s. After training the model to optimize the design of the PWEC device, we again
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generate a dataset with 100 random samples for the PWEC plate length and 30 random samples

for submergence depth. Hence, we get 3000 random input values and the corresponding power

generated by the PWEC device. The scatter plot of the input dataset for optimization is shown

in the Figs. 3.6(c) and 3.6(d).
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Figure 3.6: Scatter plot of the input features (a) l/h and (b) d/h for training the ANN model,
and the input features (c) l/h and (d) d/h for the optimization of the PWEC device.

3.7.2 Exploratory data analysis

In this section, the correlation between the input features and the target variable will be

investigated. The descriptive statistics of the database for model building is provided in Tab.

3.1. It is clearly seen from Fig. 3.7(a) that the power generated by the PWEC device (Pext)

is quadratically related to the length of the PWEC device (l/h), i.e., the power generated by

the PWEC device is less for a PWEC plate of smaller length and the power generated by the

PWEC device (Pext) increases according to an increase in the PWEC plate length and then

started decreasing after a stage. Whereas, a linear relationship is observed between the power
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Figure 3.7: Variation of (a) Pext vs. l/h, (b) Pext vs. d/h.

Table 3.1: Descriptive statistics of database for model building

l/h d/h Pext (Wm−1)

count 400 400 400
mean 2.78 0.19 383.84
std 1.30 0.10 192.47
min 0.29 0.03 61.23
25% 1.69 0.11 240.83
50% 2.79 0.19 340.20
75% 3.89 0.27 512.16
90% 4.59 0.35 668.49
95% 4.79 0.35 735.91
99% 4.99 0.35 856.46
max 4.99 0.35 878.22

generated by the PWEC device and the submergence depth of the PWEC device as shown in

Fig. 3.7(b). i.e., the power generated by the PWEC device (Pext) decreases gradually as the

submergence depth of the PWEC device (d/h) increases.

3.7.3 Development of the ANN model and optimization

A supervised machine learning model, namely the ANN model, is developed to predict the best

suitable values of the parameters to maximize Pext by the PWEC device. The input layer of

the ANN model contains two neurons representing two input features, and similarly, the output

layer contains a single neuron representing the output feature. The hidden layers contain four

layers containing 128, 64, 64, and 32 neurons, respectively. The accuracy of the model is verified

by the mean absolute error matrix and by the R2 value (for further details, see George et al.

[73]). Fig. 3.8(a) shows a good agreement between the training accuracy and the validation

accuracy. Fig. 3.8(b) shows the true value and the predicted values of the power generated by
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Figure 3.8: (a) ANN model: MSE of training and validation errors w.r.t. Epocs, (b) predicted
vs true values for the test set.
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Figure 3.9: (a) Top fifty predicted values of the mean Pext by the PWEC device, (b) plate length
of the corresponding sample number as seen in (a), (c) submergence depth of the corresponding

sample number as seen in (a).
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the PWEC device. The R2 value for the model is obtained to be 0.94, which means that the

model is able to predict the output feature with an accuracy of 94%. Using the developed ANN

model, the prediction of the power generated by the PWEC device for the large dataset having

3000 samples can be made with less computational cost and also not time-consuming. Fig. 3.9(a)

shows bar plots for the top 50 predicted values of the power generated by the PWEC device with

respect to the sample number for the large dataset. Out of these 50 samples, the highest five

values are represented by the red bars. The mean power generated by the PWEC is highest for

the sample numbers 49, 50, 51, 52, and 53. The power generation for these samples lies in the

interval [840Wm−1, 866Wm−1], the corresponding PWEC plate length, and the submergence

depth with respect to the sample number are shown in Figs. 3.9(b) and 3.9(c). From Fig. 3.9(b),

it is clearly seen that the highest five predicted values for the mean power generated by the

PWEC device occur when the plate length varies in the range 2.7 ≤ l/h ≤ 2.9. From Fig. 3.9(c),

it is observed that all the 47 out of the 50 highest values are obtained for the least submerged

depth considered for the modeling. It clearly indicates that the optimum power generated by the

PWEC device Pext is obtained for the PWEC plate placed with minimum submergence depth

(d/h), and the length of the PWEC plate l/h should be in between 2.7 and 2.9.

3.8 Conclusions

The present work investigates the power generation, the time-dependent free surface displacement

and the PWEC plate deflection, and the optimization of the parameters of a submerged PWEC

device floating over a sinusoidal seabed, under the linear wave-structure interaction theory. The

BEM-based numerical method is used to solve the BVP associated with the hydrodynamics of the

PWEC device. Various parameters related to the performance of the PWEC device are analyzed.

Prediction of the power generated by the PWEC device and optimization of the parameters of

the submerged PWEC device to maximize the Pext by the PWEC device are studied using a

supervised machine learning algorithm, namely the ANN model. From the current investigation,

the following findings are obtained

� The number of resonating peaks increases with an increase in plate length (l/h), and the

amplitude of the resonating peak is higher for the moderate values of the plate length

(l/h).

� The amplitude of the resonating peak increases as the submergence depth of the plate

decreases. Furthermore, regardless of differences in submergence depth, ripple amplitude,

or number of ripples in the seabed, the resonance occurs around the same values of the

incident wave period.
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� The amplitude of the resonating peaks increases as the ripple amplitude decreases in the

shortwave regime. On the other hand, an opposite trend is observed for the intermediate

and longwave regimes for certain values of the incident wave period.

� The decrease in the amplitude of the free surface displacement in the transmitted wave

from the incident wave pack is due to the power generation by the PWEC device via the

interaction of the incident wave pack. Further, the results represent the power-holding

behavior of the PWEC device for a longer duration.

� It is also observed that the power extraction curve attains its maximum when the amplitude

of the bottom undulation is negligible. Hence, in the parameter optimization phase, we

considered a uniform seabed.

� For maximum power generation by the PWEC plate, the optimum geometric value for l/h

is 2.7 ≤ l/h ≤ 2.9 and minimum submergence depth is considered for d/h (the value of

d/h is 0.012 chosen in the present study). The mean power generation for this range lies

in the interval [840Wm−1, 866Wm−1].
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Optimization of parameters of the

OWC wave energy converter device

using MLP and XGBoost models

* The work, in this chapter, is covered by the following publication:

Vipin, V., Trivedi, K., Koley, S. (2023). Optimization of parameters of the OWC wave energy

converter device using MLP and XGBoost models. Results in Physics, 55, 107163.
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4.1 General introduction

In the present work, we have studied the performance of a breakwater-integrated quarter-circle-

shaped front wall OWC device under the influence of irregular incident waves. Firstly, the

boundary value problem associated with the hydrodynamics of OWC device is handled for a

solution using the dual boundary element method (DBEM). To examine the complex relationships

between all input features and the target variable in a time-efficient manner, supervised machine

learning models are developed. Here, two different models: (i) multilayer perceptron (MLP)

model based on an artificial neural network, and (ii) a tree ensemble model, namely the XGBoost

model are developed. The submergence depth of the front wall of the OWC device, chamber

length, rotational speed, and diameter of the turbine blade are considered as input attributes,

and the average annual power generated by the OWC device is considered as the output attribute.

The MLP model is employed to optimize these input parameters, leveraging the insights provided

by the XGBoost model to maximize the annual average power generation. From the dual

BEM based numerical results, and using the Latin hypercube sampling technique, 3750 samples

were generated to train, validate, and test the machine learning models. Using the XGBoost

model with the support of accumulated local effect plots, we find four specific regions of the

input space in which the annual average power extraction will be maximum. Hereafter, an

extended input database is generated with twenty equally spaced levels for each parameter

and the dataset is passed through the developed MLP model to find the optimized values of

the parameters of the OWC device which maximizes the power generation. It is obtained that

the maximum power generation is attained for y0/h = −0.65, r/h = 3, 2.8 ≤ D ≤ 3 and

{70 ≤ N ≤ 80 ∪ 105 ≤ N ≤ 116}.

4.2 Mathematical formulation

This section deals with the mathematical modeling of the quarter circle-shaped front wall of the

OWC device in the Cartesian coordinate system in two-dimensions. In this specific instance,

the x−axis is taken along the horizontal direction, whilst the z−axis extends vertically upward

direction. The schematic representation of the present problem is illustrated in Fig. 4.1. The

quarter circle-shaped front wall of the device intersects the mean free surface level z = 0 at

x = L− b. The OWC device is integrated with the trapezoidal breakwater. The trapezoidal-

shaped breakwater is situated over the bottom foundation with bottom height bh. Further, the

front wall of the OWC device is considered to be thin, and the submergence depth of the tip

of the front wall is symbolized as a. Γ2 is a representation of the bottom boundary and the

front wall of the breakwater within the OWC device chamber. Further, due to the presence of

the OWC device, the mean free surface is divided into two parts, namely internal free surface

Γ3 (i.e., free surface within the OWC chamber) and external free surface Γ5 (i.e., free surface
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outside of the OWC chamber). In addition, Γ4 is termed as an impenetrable fixed front wall of

the OWC device, which is submerged in the water. To close the domain, an auxiliary boundary

Γ1 is taken at x = −l. For the modeling purpose, the water and the related motion are assumed

to be inviscid, incompressible, and irrotational in nature. Further, the water waves are assumed

to be time-harmonic in nature with the circular frequency ω. These assumptions ensure the

existence of the velocity potential of the form Φ(x, y, z, t) = Re{φ(x, z)e−iωt}. Therefore, φ(x, z)

satisfies the Laplace equation (see Vipin et al. [132, 133])
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Figure 4.1: Schematic of LIMPET OWC wave energy converter device.

(
∂2

∂x2
+

∂2

∂z2

)
φ(x, z) = 0. (4.1)

The boundary condition at the mean free surface z = 0 is given by Trivedi and Koley [75]

∂φ

∂n
−Kφ =


iωp

ρg
, on Γ3,

0, on Γ5,

(4.2)

where K = ω2/g with g being the gravitational acceleration and ∂/∂n represents the normal

derivative. Now, the boundary condition on the rigid and impervious boundaries Γ2 ∪Γ4 is given

by (Trivedi and Koley [134], Vipin and Koley [135])

∂φ

∂n
= 0, on Γ2 ∪ Γ4. (4.3)

In the presence of the OWC device, the total velocity potential φ is decomposed into two parts

as follows (Trivedi and Koley [136])

φ = φS +

(
iωp

ρg

)
φR, (4.4)
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where φS and φR represent the scattered and radiated velocity potentials, respectively. Further,

the scattered velocity potential φS can be decomposed into incident potential φI and diffracted

potential φD. Now, φS and φR satisfy Eqs. (4.1)-(4.3) and the modified form of Eq. (4.2) can

be written as

∂φS,R

∂n
−KφS,R =

δ, on Γ3,

0, on Γ5,
(4.5)

where δ = 1 for the radiation potential φR, and δ = 0 for the scattered potential φS . Finally, the

far-field boundary conditions are given by (Rodŕıguez et al. [137], Trivedi and Koley [138])φS(x, z) = eik0xf0(k0, z) +AS0 e
−ik0xf0(k0, z), as x→ −∞,

φR(x, z) = AR0 e
−ik0xf0(k0, z), as x→ −∞,

(4.6)

where f0(k0, z) =

(
− igA

ω

)
cosh k0(h+ z)

cosh(k0h)
with k0 satisfies the dispersion relation ω2 = gk tanh(kh).

To handle the boundary value problem, the boundary element method is used. In boundary

element method, the computaitional domain should be closed. To close the computational

domain, an auxiliary boundary Γ1 is located sufficiently far away from the OWC device at

x = −l. As a result, the far-field boundary conditions (4.6) hold on Γ1. The modified form of

the far-field boundary conditions (4.6) are expressed as
∂(φS − φI)

∂n
− ik0(φS − φI) = 0, on Γ1,

∂φR

∂n
− ik0φ

R = 0, on Γ1,

(4.7)

with φI(x, z) = eik0xf0(k0, z) being the incident wave velocity potential.

4.3 Solution methodology based on dual boundary element

method

In the present section, the dual boundary element method (DBEM) is used to handle the BVP

(boundary value problem) provided in Section 4.2. In this solution methodology, the BVP is

converted into a system of integral equations using the appropriate Green’s function. Applying

Green’s third identity on the velocity potentials φS,R(x) and the free-space Green’s function

G (x, s) over the domain Ω bounded by Γ, the following integral equation is obtained as (Trivedi

et al. [94])

φS,R(x) =

∫
Γ

[
φS,R(s)V (x, s)−G (x, s)

∂φS,R (s)

∂ns

]
dΓ(s), x ∈ Ω, (4.8)
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where

V (x, s) ≡ ∂G (x, s)

∂ns
, x = (x, z) , s = (x0, z0) . (4.9)

It is to be mentioned that the free-space Green’s function as in (4.8) satisfies the governing

equation (
∂2

∂x2
+

∂2

∂z2

)
G (x, s) = δ (x− s) , (4.10)

and takes the form (Koley [128], Koley and Sahoo [139])

G (x, s) =
1

2π
ln r, (4.11)

where δ (x− s) is the Dirac-delta function, and r is defined as the distance between the field

point x = (x, z) and the source point s = (x0, z0). Further, the normal derivative of Eq. (4.8)

results into

∂φS,R(x)

∂nx
=

∫
Γ

[
N (x, s)φS,R(s)−M (x, s)

∂φS,R(s)

∂ns

]
dΓ(s), x ∈ Ω, (4.12)

where

M (x, s) ≡ ∂G (x, s)

∂nx
, N (x, s) ≡ ∂2G (x, s)

∂nx∂ns
. (4.13)

When the field point x ∈ Γ, Eqs. (4.8) and (4.12) can be written as

1

2
φS,R(x) = CPV

∫
Γ
V (x, s)φS,R(s)dΓ(s)−RPV

∫
Γ
G (x, s)

∂φS,R(s)

∂ns
dΓ(s), x ∈ Γ, (4.14)

1

2

∂φS,R(x)

∂nx
= HPV

∫
Γ
N (x, s)φS,R(s)dΓ(s)− CPV

∫
Γ
M (x, s)

∂φS,R(s)

∂ns
dΓ(s), x ∈ Γ. (4.15)

Here, RPV , CPV and HPV are termed as the Riemann principal value, Cauchy principal value

and Hadamard principal value, respectively. In Eqs. (4.14) and (4.15), the total boundary Γ

can be written as Γ = Γs + Γ+
4 + Γ−4 with Γs represent the non-degenerate boundary, and Γ+

4

and Γ−4 are the degenerate boundaries. Further, the non-degenerate boundary Γs is composed

of Γs = Γ1 + Γ2 + Γ3 + Γ5. Now, for x ∈ Γs, Eqs. (4.14) and (4.15) reduced into the following

forms Trivedi et al. [94], Chen et al. [95]

1

2
φS,R(x) = CPV

∫
Γs

V (x, s)φS,R(s)dΓ(s)−RPV
∫

Γs

G (x, s)
∂φS,R(s)

∂ns
dΓ(s)

+

∫
Γ+
4

V (x, s) ∆φS,R(s)dΓ(s)−
∫

Γ+
4

G (x, s)
∑ ∂φS,R(s)

∂ns
dΓ(s), (4.16)

1

2

∂φS,R(x)

∂nx
= HPV

∫
Γs

N (x, s)φS,R(s)dΓ(s)− CPV
∫

Γs

M (x, s)
∂φS,R(s)

∂ns
dΓ(s)

+

∫
Γ+
4

N (x, s) ∆φS,R(s)dΓ(s)−
∫

Γ+
4

M (x, s)
∑ ∂φS,R(s)

∂ns
dΓ(s), (4.17)
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where

∆φS,R(s) ≡ φS,R
(
s+
)
− φS,R

(
s−
)
, (4.18)∑ ∂φS,R(s)

∂n
≡ ∂φS,R (s+)

∂n
+
∂φS,R (s−)

∂n
. (4.19)

For x ∈ Γ+
4 , Eqs. (4.14) and (4.15) are reduced into the following forms

1

2

∑
φS,R(x) = CPV

∫
Γ+
4

V (x, s) ∆φS,R(s)dΓ(s)−RPV
∫

Γ+
4

G (x, s)
∑ ∂φS,R(s)

∂ns
dΓ(s)

+

∫
Γs

V (x, s)φS,R(s)dΓ(s)−
∫

Γs

G (x, s)
∂φS,R(s)

∂ns
dΓ(s),(4.20)

1

2
∆
∂φS,R(x)

∂nx
= HPV

∫
Γ+
4

N (x, s) ∆φS,R(s)dΓ(s)− CPV
∫

Γ+
4

M (x, s)
∑ ∂φS,R(s)

∂ns
dΓ(s)

+

∫
Γs

N (x, s)φS,R(s)dΓ(s)−
∫

Γs

M (x, s)
∂φS,R(s)

∂ns
dΓ(s),(4.21)

where

∑
φS,R(s) ≡ φS,R

(
s+
)

+ φS,R
(
s−
)
, (4.22)

∆
∂φS,R

∂n
(s) ≡ ∂φS,R

∂n

(
s+
)
− ∂φS,R

∂n

(
s−
)
. (4.23)

It is to be noted that in Eqs. (4.18)-(4.19) and (4.22)-(4.23), the number of unknowns on the

degenerate boundaries is double as compared to the unknowns on the non-degenerate boundaries.

Therefore, the integral equation (4.12) is necessary to obtain unique solutions. By discretizing

the boundaries Γ of the domain using the constant boundary element method and varying the

field point x over each boundary element, we get the following system of equations (see Trivedi

et al. [94], Chen et al. [96])

[
Ṽij

]{
φS,Rj

}
= [Gij ]

{(
∂φS,R

∂n

)
j

}
, (4.24)

[Nij ]
{
φS,Rj

}
=
[
M̃ij

]{(∂φS,R
∂n

)
j

}
, (4.25)
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where the influence coefficients Gij , Ṽij , M̃ij and Nij are given by

Gij = RPV

∫
Γj

G (xi, sj) dΓ (sj) , (4.26)

Ṽij = −1

2
δij + CPV

∫
Γj

V (xi, sj) dΓ (sj) , (4.27)

M̃ij =
1

2
δij + CPV

∫
Γj

M (xi, sj) dΓ (sj) , (4.28)

Nij = HPV

∫
Γj

N (xi, sj) dΓ (sj) . (4.29)

When the field point xi and the source point sj lies on the different boundary element, the well-

known Gauss-Legendre quadrature is used to evaluate the aforementioned influence coefficients.

On the other hand, when the field point xi and the source point sj lies on the same boundary

element, singularity occurs, and special treatment is required to evaluate the influence coefficients.

Now, two different approaches GV +MN and MN +GV are available to solve the unknowns.

In the present study, GV +MN approach is adopted. In this approach, the following system of

equations is obtained (Chen et al. [95])


ViΓs jΓs

ViΓs jΓ+
4

ViΓs jΓ−
4

Vi
Γ

+
4
jΓs

Vi
Γ

+
4
j
Γ

+
4

Vi
Γ

+
4
j
Γ
−
4

Ni
Γ

+
4
jΓs

Ni
Γ

+
4
j
Γ

+
4

Ni
Γ

+
4
j
Γ
−
4




φS,RjΓs

φS,Rj
Γ

+
4

φS,Rj
Γ
−
4


=


GiΓs jΓs

GiΓs jΓ+
4

GiΓs jΓ−
4

Gi
Γ

+
4
jΓs

Gi
Γ

+
4
j
Γ

+
4

Gi
Γ

+
4
j
Γ
−
4

Mi
Γ

+
4
jΓs

Mi
Γ

+
4
j
Γ

+
4

Mi
Γ

+
4
j
Γ
−
4





[
∂φS,R

∂n

]
jΓs[

∂φS,R

∂n

]
j
Γ

+
4[

∂φS,R

∂n

]
j
Γ
−
4


. (4.30)

Using boundary conditions (4.2)-(4.7), the system of equations (4.30) is solved to get the

unknowns φS,R and ∂φS,R/∂n over each boundary elements.

4.4 Hydrodynamic performance of the OWC device in the pres-

ence of irregular incident waves

This section yields the expressions corresponding to the hydrodynamic performance of the OWC

device in the presence of irregular incident waves. Since the mathematical model is based on the

linear water wave theory and the free surface elevation is assumed to be a Gaussian random

process, the scattered volume flow rate Qs(t) = <{qse−iωt} and instantaneous pressure across

the turbine P (t) = <{pe−iωt} are also Gaussian processes. Therefore, the probability density

function of instantaneous pressure is given by

f(p) =
1√

2πσp
exp

(
−P 2

2σ2
p

)
(4.31)
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where the expression for σp is

σ2
p =

∫ ∞
0

SI(ω)

∣∣∣∣ p(ω)

Ai(ω)

∣∣∣∣2 dω, Ai(ω) =
√

2SI(ωavi )∆ωi, (4.32)

Now, the power available to the wave energy converter is

Pavg =
ṁP

ρa
= ∧σ2

P (4.33)

where ∧ = KaD
ρaN

, ρa and ṁ are termed as air density and mass flow rate of air across the Wells

turbine. Here, N and D represent the rotational speed and turbine rotor diameter of the Wells

turbine, respectively, and Ka = 0.375. Therfore,The average power output by the OWC device

can be expressed as

Pavg = ∧
∫ ∞

0
SI(ω)

∣∣∣∣ p(ω)

Ai(ω)

∣∣∣∣2 dω, Ai(ω) =
√

2SI(ωavi )∆ωi, (4.34)

where p is the instantaneous pressure across the turbine and ∧ is the turbine daming coefficient.

Furthermore, Ai is the incident wave amplitude for each regular wave component and the form

of incident wave spectrum is provided as

SI(ω) = 131.5H2
sT
−4
e ω−5 exp

(
T−4
e ω−4

)
. (4.35)

Here, Hs and Te are symbolized as significant wave height and significant time period, respectively.

Further, the average incident wave energy flux for the irregular waves is written as (De O Falcão

and Rodrigues [1], Trivedi and Koley [140])

Pinc = ρgLw

∫ ∞
0

SI(ω)Cgdω. (4.36)

Here, Lw is the chamber width of the OWC device. Subsequently, the annual-averaged power

output by the OWC device is provided as( Trivedi and Koley [140])

Pann = ∧
∫ ∞

0
SI,ann(ω)

∣∣∣∣ p(ω)

Ai(ω)

∣∣∣∣2 dω, (4.37)

where SI,ann is symbolized as annual spectral density, and its expression is provided as

SI,ann =

9∑
j=1

SIjψj . (4.38)

Here, ψj is termed as frequency of occurence related to the set of nine sea states represent the

local wave climate at the OWC plant site Pico, Azores, Portugal. The details for the same are

provided in De O Falcão and Rodrigues [1].
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4.5 Results

The present section yields the various results associated with the hydrodynamic performances

of quarter circle-shaped OWC devices in a detailed manner. The parameters corresponding to

the incident wave and the OWC device are considered as follows: h = 8m, Lw = 12m, ρ = 1025

kg/m3, g = 9.81m/s2, L/h = 2.0, l/h = 3.0, r/h = 2.5, y0/h = −0.72 bh/h = 0.1, θ = 45◦,

V0 = 1050 m3, γ = 1.4, ρa = 1.25 kg/m3 and pa = 1.013× 105Pa unless otherwise mentioned.

4.5.1 Validation
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Figure 4.2: σp as a function of ∧.

Table 4.1: Comparison of annual-averaged efficiency εann obtained by the present solution
technique and the results provided in De O Falcão and Rodrigues [1].

∧ εann (De O Falcão and Rodrigues [1]) εann (present solutions) Percentage errors

0.005 0.57065 0.57017 0.084%

0.01 0.68611 0.68623 0.017%

0.015 0.66253 0.66201 0.078%

0.02 0.60781 0.60793 0.019%

0.025 0.55287 0.55264 0.041%

0.03 0.50144 0.50134 0.019%

Fig. 4.2 demonstrates the comparison between the present solutions and the results provided

in De O Falcão and Rodrigues [1] for the variation of chamber pressure standard deviation σp

as a function of turbine damping coefficient ∧ for a rectangular shape OWC device. The input

parameters are taken the same as provided in De O Falcão and Rodrigues [1]. This comparison
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demonstrates that the present computational results match well with the results provided by

De O Falcão and Rodrigues [1]. For further validation in tabulated form, Tab. 4.1 compares the

annual-averaged efficiency εann obtained by the present solutions and the results provided in

De O Falcão and Rodrigues [1] for different values of turbine damping coefficient ∧. It’s observed

from Tab. 4.1 that the percentage errors are less than 0.1%, and this demonstrates the accuracy

of the present solutions.

4.5.2 Results associated with the DBEM methodology

Various results associated with the quarter circle-shaped front wall OWC device are already

available in Trivedi and Koley [140], and therefore, the same are excluded here just to avoid

mere repetitions. Since in the subsequent MLP model and XGBoost model, the optimization of

annual averaged power generated by the OWC device as a function of submergence depth of the

front wall of the OWC device, chamber length, rotational speed, and diameter of the turbine

blade will be demonstrated, the surface plot for the same are provided in the following.

To get combined effects of r/h and y0/h on the annual average power extraction Pann by the

OWC device, a surface plot for Pann as a function of r/h and y0/h is demonstrated in Fig. 4.3(a).

It is found that for fixed values of y0/h, the annual average power extraction Pann by the OWC

device increases with an increase in r/h. However, there is no change noticed for higher values

of r/h. Further, for fixed values of r/h, the annual average power extraction Pann by the OWC

device increases with an increase in y0/h except for very higher values of y0/h. It is due to

the fact that less amount of water can actually enter into the OWC chamber for very higher

values of submergence depth y0/h. In summary, it can be concluded that the annual average

power extraction Pann by the OWC device is achieved for the OWC device with 2.5 < r/h < 3.0

and −0.7 < y0/h < −0.5. On the other hand, to analyze the combined effects of turbine rotor

diameter D and rotational speed N on the annual average power extraction Pann by the OWC

device, a surface plot of Pann as a function of N and D is illustrated in Fig. 4.3(b). It is observed

that for lower values of rotational speed N , annual average power extraction Pann by the OWC

device decreases as the rotor diameter D increases. However, for higher values of rotational

speed N , the annual average power extraction Pann by the OWC device increases as the rotor

diameter D increases. Similarly, for lower values of D, annual average power extraction Pann by

the OWC device decreases with an increase in N . Further, for higher values of D, the annual

average power extraction Pann by the OWC device initially increases with an increase in N

and attains a maximum. Hereafter, the annual average power extraction Pann by the OWC

device decreases for further increase in N . These results indicate that the annual average power

extraction Pann by the OWC device can be enhanced with the suitable combinations of turbine

rotor diameter 2 ≤ D ≤ 3.5 and rotational speed 70 ≤ N ≤ 135.
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(a)

(b)

Figure 4.3: Surface plot of Pann (Wm−1) as a function of (a) r/h and y0/h, and (b) N and D.

Utilizing MLP model and XGBoost model for device parameters optimization offers several

advantages over traditional optimization methods. Unlike surface plots as provided in Fig. 4.3,

which restricts the study of only two independent parameters at a time. The XGBoost model

allows for the examination of complex relationships between all input features and the target

variable in a time-efficient manner and MLP can be used for accurate prediction. The MLP

models and XGBoost models effectively handling non-linear functions, making them well-suited

for intricate optimization problems. They possess the ability to generalize learned knowledge,

adapt to new data, and efficiently explore large design spaces.

4.6 Model building

In this section, we focus on optimizing the design attributes of the OWC device to maximize its

annual average power extraction, denoted as Pann. To accomplish this, we utilize a sequential

ANN model known as the multi-layer perceptron model with the support of the XGBoost model.
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The MLP model will effectively predict the annual average power generated by the oscillating

water column wave energy converter device, and the XGBoost model will explain the dynamic

effect as well as the interaction effect between various parameters of the device. The subsequent

subsections provide detailed explanations of how the dataset is constructed for the architecture

of the multi-layer perceptron model and the XGBoost model used for the optimization process.

4.6.1 Construction of the database

The training, validation, and testing database for the model are built using the dual boundary

element method, as explained in Section 3. The model takes four input features into account:

the submergence depth of the front wall of the device (y0/h), chamber length (r/h), turbine

rotor diameter (D), and turbine rotational speed (N). On the other hand, the output feature

of the model is the annual average power extraction (Pann) achieved by the OWC device. The

power generation of the OWC device is calculated based on the average annual power generation,

as mentioned earlier.

Table 4.2: Descriptive statistics of database for model building

y0/h r/h N(rad/s) D(m) Pann(Wm−1)

count 3750.00 3750.00 3750.00 3750.00 3750.00
mean -0.41 2.00 124.98 2.50 56102.52
std 0.23 0.58 43.04 0.57 13263.71
min -0.78 1.03 54.89 1.56 20478.18
25% -0.61 1.48 89.65 2.03 46089.84
50% -0.41 2.02 124.96 2.52 56421.47
75% -0.22 2.49 160.38 3.01 66583.05
90% -0.11 2.76 182.20 3.25 74301.41
95% -0.05 2.89 193.31 3.42 77662.63
99% -0.02 2.95 197.19 3.44 81363.70
max -0.02 2.95 197.19 3.44 82602.98

The accuracy of a machine learning model is widely recognized to be closely linked to the

sampling technique employed. When a sampling technique generates a well-stratified sample,

it significantly enhances the model’s accuracy. In this study, we employ the Latin Hypercube

Sampling (LHS) methodology to construct the most stratified input database possible. The

database is designed by selecting 30 random samples from each input feature, considering specific

ranges: −0.8 ≤ y0/h ≤ −0.01, 1 ≤ r/h ≤ 3, 50 ≤ N ≤ 200, and 1.5 ≤ D ≤ 3.5 as seen in Fig.

4.4. The significance of these ranges for the input features is explained in Trivedi and Koley

[140]. The descriptive statistics of the database for model building is given in Tab. 4.2. As we

are considering 30 random samples for each parameter, we theoretically have the potential to

generate a total of 304 different input examples. However, due to the high computational cost

of handling such an extensive dataset, the focus is only on a well-stratified subset consisting
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Figure 4.4: Scatter plots of the input features (a) submergence depth y0/h, (b) chamber length
r/h, (c) turbine rotor diameter D, and (d) turbine rotational speed N for training, validation

and testing the model.

of precisely 3750 samples. To create this set of input data combinations, the 30 samples for

each variable are partitioned into sets of five, with a six-value interval within a specific feature.

Consequently, we will have a total of six sets, each containing five unique samples for every

parameter value. Subsequently, the database is formed by generating 54 distinct samples from

each of these six sets. Hence, the training, validation, and test datasets are derived from the

pool of 3750 unique input combinations and their corresponding response variable, i.e., annual

average power extraction (Pann) obtained from the OWC device.

4.6.2 Development of the ANN Model

A multi-layer perceptron (MLP) is a type of artificial neural network (ANN) that consists

of multiple layers of interconnected nodes, known as artificial neurons or perceptrons. The

architecture of the MLP consists of three important layers: an input layer, multiple hidden layers,
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and an output layer. The input layer receives the inputs from the database, and the output

layer will produce the outputs or the prediction values. The number of hidden layers and the

number of neurons in each of the hidden layer defines the depth of the model. Each neuron in a

MLP model is a function that receives input from the previous layer, and it multiplies with the

associated weight, and a bias associated with the layer will be added to it. The cumulative input

of the neuron will pass through an activation function to introduce non-linearity in the model

and will produce the output. To get better prediction performance, four different activation

functions are tested in the present study, and the same is provided in Tab. 4.3 (see Kim et al.

[141]). The error matrices used in this study is provided in Tab. 4.4. Here, the measured value

Table 4.3: Activation function definition

Function Definition

Rectified linear unit (ReLU) g(x) = max(0, x)
Exponential linear Unit (ELU) g(x) = max(0, x) + min(0, α(ex − 1)), α ≈ 1.6732

Scaled exponential linear Unit (SELU) g(x) = γ(max(0, x) + min(0, α(ex − 1))), γ ≈ 1.0507

Gaussian Error Linear Unit (GELU) g(x) =
x

2

[
1 + erf

(
x√
2

)]

and the estimated value are denoted by p(m) and p̂(m), respectively. Further, M denotes the

number of observations. Further, the performance of the model is calculated using the coefficient

Table 4.4: Error Matrices

Function Definition

Mean absolute error (MAE)
1

M

M∑
m=1

|p̂(m) − p(m)|

Mean absolute percentage error (MAPE)
1

M

m=M∑
m=1

|p̂(m) − p(m)|
p(m)

× 100%

Root mean square error (RMSE)

√√√√√ M∑
m=1

(p̂(m) − p(m))2

M

of determination (Rahman et al. [142]) as provided in the following expression

R2 = 1−

M∑
m=1

(
p̂(m) − p(m)

)2

M∑
m=1

(
p̂(m) − p(m)

)2
.

(4.39)

Here, p(m) represents the average value of p(m). Now, to construct the training database, we

employ the Latin Hypercube Sampling (LHS) technique. Using this LHS technique, the generated



Chapter 4. Optimization of parameters of the OWC wave energy converter device 104

0 50 100 150

Epoch

0

2000

4000

6000

8000

10000

12000

14000

M
A

E

Training Error

Validation Error

(a) (b)

Figure 4.5: (a) Training and validation loss of the ANN model based on the MAE metric, and
(b) comparison between the true values and predicted values using the MLP model.

Table 4.5: Decision variables of random search algorithm for MLP model.

Number of hidden layer { 5, 6, 7, 8, 9, 10 }
Number neurons in each hidden layer { 16, 32, 64, 128, 256, 512, 1024}
Activation function in each of the hidden layer { ReLU, GELU, ELU, SELU }
Optimization function of the MLP model { SGD, RMSPROP, ADAGRAD, ADADELTA, ADAM,

ADAMAX, NADAM}

Table 4.6: Error scores and R2 value of the MLP Model

Train MAPE Test MAPE Train MAE Test MAE Train RMSE Test RMSE R2 - Test set

0.41% 0.44% 216.35 224.98 280.95 309.81 0.9995

input dataset is denoted as X =
{
X(i) | i = 1, 2, · · · ,M

}
. The corresponding output P ={

p(i) | i = 1, 2, · · · ,M
}

for the training database is then obtained by applying the input dataset

to the model developed in Section 3. In this context, M denotes the number of training samples.

Each input sample X(i), consists of n features, represented as X(i) =
{
x

(i)
j | j = 1, 2, · · · , n

}
.

Here, n represents the total number of input features. Moreover, the MLP model architecture

includes `
′

number of hidden layers with the `th layer comprises of n[`] neurons. The output

of the ith sample from the kth neuron in the first layer, denoted by a
[1](i)
k , can be calculated as

follows

a
[1](i)
k = g[1]

 n∑
j=1

W
[1]T

k,j x
(i)
j + b

[1]
k

 . (4.40)
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In a similar manner, the output of the ith sample from kth neuron in the `th hidden layer can be

computed as follows:

a
[`](i)
k = g[`]

n[`−1]∑
j=1

W
[`]T

k,j a
[`−1](i)
j + b

[`]
k

 . (4.41)

Finally, the output of the ith sample p̂(i) in the output layer can be computed as:

p̂(i) = g[`
′
]

n[`
′
−1]∑

j=1

W
[`
′
]T

k,j a
[`
′−1](i)

j + b
[`
′
]

k

 , (4.42)

where W
[`]
k,j signifies the weight associated to the connection between the jth neuron in the

(`− 1)th layer and the kth neuron in the `th layer. Additionally, a
[`](i)
k represents the output of

the ith sample from kth neuron in the `th layer. These outputs are determined by applying the

activation function g[`], which is specifically associated with the `th layer. The minimization of

the MAE between the actual output P obtained by applying the dual boundary element method

developed in Section 3 and the predicted output P̂ =
{
p̂(i) | i = 1, 2, · · · ,M

}
obtained from

the MLP model involves adjusting the weight and bias factors, denoted as W =
`
′⋃

`=1

W [`] and

B =
`
′⋃

`=1

n[`]⋃
k=1

b
[`]
k . Here, W [`] represents a matrix of dimension [n[`], n[`−1]], where n[`] corresponds

to the number of neurons in the `th layer, and n[`−1] represents the number of neurons in the

(`− 1)th layer. Additionally, b
[`]
k is a constant bias term associated with the kth neuron in the

`th layer.

The primary objective of the MLP model is to minimize the discrepancy between the actual

output P and the predicted output P̂ . To improve the accuracy and generalization ability of the

MLP model, the parameters of the neural network model are optimized using a random search

algorithm (Bergstra and Bengio [143]), and the chosen parameter values for the optimization

process are provided in Tab. 4.5 (see Kingma and Ba [144], Zeiler [145]).

The input layer of the ANN model comprises four neurons representing the four input features.

On the other hand, the output layer of the ANN model consists of a single neuron, which

effectively captures the output feature, i.e., the annual average power extraction (Pann) achieved

by the OWC device. After the optimization of the parameters of the ANN model, the number of

hidden layers is obtained to be five, which consists of the number of neurons as 256, 128, 128, 64,

and 32, respectively. Moreover, the “NADAM” optimizer is found to be the best optimizer for

the training datasets associated with the annual average power extraction (Pann) achieved by the

OWC device. To introduce non-linearity in the model, the GELU activation function is found to

be the most suitable for each of the hidden layers. In the pre-processing stage, the total dataset
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comprising 3750 data points is partitioned into a training, validating, and testing set. Using this

dataset comprising of 3750 samples, the ANN model undergoes training with 60% of the data

and validation using 20%. Post-training, the ANN model is tested on the remaining 20% of the

dataset. Due to the diverse scales of the input features, the numerical values are standardized in

the pre-processing stage. The standardization process involves transforming the input features

using the formula (x− x)/σ(x), where x represents the mean and σ(x) signifies the standard

deviation of the respective input feature. By adhering to this standardized approach, the model

will proficiently capture the unique characteristics of the input data, leading to more precise

predictions.

To evaluate the performance of the developed ANN model, the MAE metric is chosen from

the set of error matrices considered in Tab. 4.4. Fig. 4.5(a) shows the training error and the

validation error of the ANN model over the course of 150 epochs. Notably, as the number of

epochs increases, the training error steadily decreases until it reaches a threshold value, beyond

which its variation becomes minimal. Further, the gap between the training and validation

errors remains insignificantly small. This observation demonstrates that the model exhibits an

optimal fit to the training data. The quantified values of the training and the testing errors for

MAPE, MAE, and RMSE are provided in Tab. 4.6. The results demonstrated that the MAE

and RMSE values are significantly smaller as compared to the response variable, which varies

from about 20, 000 to 80, 000. This can be easily verified from the MAPE value, which is less

than 0.5% for both the training and testing sets. Here, the R2 value for the test set is found to

be 0.9995, which signifies that the present model effectively captures 99.95% of the variation in

the target variable based on the input variables. This can be clearly observed from Fig. 4.5(b),

which represents the actual value and the predicted value of the test set. The aforementioned

results demonstrate that this model can be used for the prediction of the annual average power

extraction (Pann) for a new set of input parameter values and can be achieved with minimal

computational effort.

In the domain of supervised machine learning models, tree ensemble models are widely rec-

ognized for their inherent explainability. Among these, XGBoost models are assumed to be

self-interpretable machine learning models, and this XGBoost model can be used for both

regression and classification problems (El Bilali et al. [72]). The XGBoost model can be used to

find particular regions consisting of different combinations of input features, which can result

in maximum power generation by the device. This can be achieved by employing interpretable

machine-learning techniques such as ALE (Accumulated Local Effect) plots (Apley and Zhu

[118]), Shapley values (Lundberg and Lee [146]), etc. Hereafter, an extended input dataset will

be generated associated with each of the selected regions, and by using the developed MLP

model, the corresponding response variable will be obtained. Consequently, the optimal values

of the parameters will be obtained, which maximize the annual average power extraction (Pann).

The framework of the above-mentioned XGBoost model will be discussed in the next section.
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4.6.3 Development of the XGBoost model

Extreme Gradient Boosting (XGBoost) is an efficient and scalable implementation of a gradient

boosting framework (see Chen et al. [147]). XGBoost models have several advantages, such

as sparsity awareness and support parallel processing. Further, to avoid overfitting due to the

model complexity, the L1 and L2 regularization terms are incorporated into the loss function

(El Bilali et al. [72]). Additionally, the XGBoost algorithm employs an exact greedy approach,

consistently making optimal decisions at each step of the learning process (Chen and Guestrin

[84]).

For a given training set with M samples
{(
X(1), p(1)

)
,
(
X(2), p(2)

)
, ...,

(
X(M), p(M)

)}
with n

number of features, the aim of the XGBoost model is to construct a predictive function F (X)

that estimate P̂ for a new input X. Let K be the number of iterations or the number of ensemble

trees in the model. The final prediction F (X) is achieved through summing the predictions

made by all weak learners in the ensemble and is given by (see El Bilali et al. [72])

p̂(i) = F
(
X(i)

)
=

K∑
k=1

fk

(
X(i)

)
, fk ∈ F , (4.43)

where F =
{
f(X) = wq(x)

}
,
(
q : Rn → T,w ∈ RT

)
is the space of regression trees and q is the

structure of each tree that maps a sample to the corresponding leaf node. Here, T is the number

of leaves in the tree, and f corresponds to an independent tree structure q and leaf weights w

(Chen and Guestrin [84]).

Let p̂
(i)
k be the prediction of the ith example at the kth iteration, and let L be a differentiable

convex loss function that measures the difference between the target p(i) and the prediction p̂(i),

the cost function is considered to be
M∑
i=1

L
(
p̂(i), p(i)

)
. Then, the regularized objective function

is provided as (Chen and Guestrin [84])

L (F ) =
M∑
i=1

L
(
p̂(i), p(i)

)
+

K∑
k=1

R(fk), where R(f) = αT +
1

2
λ ||w||2. (4.44)

Here, R(f) is the regularization term, which penalizes the model complexity. Moreover, α and

λ are the L1 and L2 regularization weights, respectively. Using the Taylor’s formula, the kth

iteration of the objective function after adding fk to the loss function is given by (Chen and
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Guestrin [84])

Lk =
M∑
i=1

[
g(i)fk

(
x(i)
)

+
1

2
h(i)f2

k

(
x(i)
)]

+R (fk) , (4.45)

where g(i) =
∂L
(
p(i), p̂k−1

)
∂p̂k−1

, (4.46)

h(i) =
∂2L

(
p(i), p̂k−1

)
∂p̂2

k−1

. (4.47)

Now, optimal weights of the jth leaf node is computed as (see Chen and Guestrin [84])

wj = −

∑
i∈Ij

g(i)

∑
i∈Ij

h(i) + λ
, (4.48)

where Ij =
{
i : q

(
X(i)

)
= j
}

signifies the instance set of jth leaf. The optimal score of the tree

structure q is calculated by (see Chen and Guestrin [84])

L̃k(q) = −1

2

T∑
j=1

∑
i∈Ij

g(i)

2

∑
i∈Ij

h(i) + λ
+ αT (4.49)

The XGBoost model follows a greedy algorithm that starts from a single leaf and iteratively

adds branches to the tree. The splitting of the leaf node is carried out using the formula (see

El Bilali et al. [72]).

Lsplit =
1

2



∑
i∈IL

g(i)

2

∑
i∈IL

h(i) + λ
+

∑
i∈IR

g(i)

2

∑
i∈IR

h(i) + λ
−

(∑
i∈I

g(i)

)2

∑
i∈I

h(i) + λ


− α, (4.50)

where IL and IR are the instance sets of left and right nodes after the split with I = IL ∪ IR.

Prior to the model training, it is essential to optimize the hyperparameters of the XGBoost

model based on the dataset’s complexity. A genetic algorithm(GA) based optimization technique

is used with the support of the TPOTRegressor library. The decision variables, their range of

values for the optimization, and the corresponding optimized values are provided in Tab. 4.7.

Fig. 4.6(a) shows the reduction in the training and validation errors of the XGBoost model with

an increase number of iterations. A good agreement between the training set and the validation

set shows that the model is able to capture the variation of the response variable from the input
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features. Fig. 4.6(b) shows the scattering of the observed and the predicted values of the XGB

model for the test set. Here it is seen that the observed and the predicted values lie on the

X = Y line, showing the accuracy of the predicted model.

Table 4.7: Decision variables of GA for XGBoost model and the corresponding optimized
values

Hyperparameters Range of Values Optimized value

Max depth {3, 4, · · ·, 20} 5
Learning rate {0.001 , 0.0061, · · ·, 0.2 } 0.19
Max bin {10, 30, · · ·, 190} 110
Number of leaves {2,3,4, · · ·, 50} 27
Bagging fraction {0.6, 0.7, 0.8, 0.9} 0.9
Bagging freq {1, 2, · · ·, 10} 1
α {0.0, 0.1, 0.5, 1.0} 0.5
λ {0.0, 0.1, 0.5, 1.0} 1
Min samples leaf {1, 2, · · ·, 20} 12
Min samples split {1, 2, · · ·, 20} 8
Number of estimators {10, 30, · · ·, 230} 190
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Figure 4.6: (a) Training and validation error of the XGBoost model, (b) true values and the
predicted values of the test set.

Table 4.8: Error scores and R2 value of the XGBoost Model

Train MAPE Test MAPE Train MAE Test MAE Train RMSE Test RMSE R2 - Test set

0.24% 0.86% 131.50 435.62 179.32 592.90 0.9978

The Train MAPE, Test MAPE, Train MAE, Test MAE, Train RMSE, Test RMSE, and R2

values of the XGBoost model are given in Table 4.8. A comparative analysis of error scores

between the XGBoost and the proposed MLP model indicates a slight tendency of the XGBoost

model to overfit the training data. This is evident as the training error of the XGBoost model

across all error metrics is notably lower than that of the MLP model, while the testing error is
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comparatively higher. In light of these observations, it becomes evident that the MLP model

stands to be the more suitable choice for accurate predictions regarding the annual-averaged

power output of the OWC device. However, it’s worth noting that despite the slight overfitting

exhibited by the XGBoost model over the MLP model, it still demonstrates an ability to capture

the underlying patterns associated with the variation in the annual averaged power output. This

is evident from the model’s training and testing errors, which are less than 1% and a substantial

R2 value of 0.9978. So, in the next section, the XGBoost model will be employed to identify

the regions where the power generation has the potential to reach its peak. Within each of

these high-yield regions, an expanded dataset will be generated. Subsequently, this augmented

dataset will be applied to the developed ANN model to get the predicted annual average power

generation. Subsequently, the optimized input values will be obtained, which maximize the

response variable.

4.7 Optimization of the parameters of the OWC Device

4.7.1 Accumulated local effects(ALE)

In the present work, MLP and XGBoost models are developed to predict the annual average

power extraction (Pann) achieved by the OWC device. On many occasions, understanding

the prediction mechanism of the developed model is very informative to the application of

the model. Besides, it could also benefit the engineers who design and deploy the device in

the ocean to analyze how each of the parameters specifically affects the performance of the

device and how much is the interaction effect between any pairs of parameters of the device.

The results illustrated in the above section show that both the MLP model and XGBoost

model predict the annual average power generation precisely, with a slight superiority in the

case of the MLP model over the XGBoost model. But, as a black box model, explaining the

prediction mechanisms, such as how the features would dynamically affect the prediction using

the MLP model, is difficult (Maśıs [148]). However, the importance of tree ensemble models

is that their prediction mechanisms can be explained with the support of human-interpretable

machine learning techniques such as the accumulated local effect (ALE). In this subsection, the

accumulated local effect (ALE) will be explored based on the developed XGBoost model to

obtain information regarding how the variation of the input parameters would dynamically affect

the annual average power (Pann) generated by the OWC device.

The key of ALE is to simplify a complicated prediction function f to a function with only a few

factors. ALE plots have the capacity to average prediction variations and aggregate them across

a specified grid. To quantify local effects, the features are partitioned into multiple intervals,
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and the uncentered effect of a feature will be obtained by (see Liu et al. [71]).

̂̃
f j,ALE (Xj) =

aj(Xj)∑
a=1

1

Mj(a)

∑
ı:x

(ı)
j ∈mj(a)

[
f
(
za,j , X

(ı)
\j

)
− f

(
za−1,j , X

(ı)
\j

)]
, (4.51)

where za,j represents the boundary value of the ath interval for the jth feature. Further, Mj(a)

denotes the cardinality of mj(a) which consists of the sample points in the ath interval. Moreover,

Xj and X\j stand for jth feature and features other than the jth feature. The centered ALE

estimator is obtained by (see Liu et al. [71])

f̂j,ALE (Xj) =
̂̃
f j,ALE (Xj)−

1

M

M∑
ı=1

̂̃
f j,ALE(x

(ı)
j ) (4.52)

This centered ALE estimator will make the mean effect of the response variable zero. Similarly,

the ALE estimator can be used to study the interaction effect of two parameters. To calculate the

second-order ALE of the jth and lth feature, the sample range of the ALE plots will be divided

into A2 rectangular cells with a and b denotes the indices into grids corresponding to thejth and

lth features, respectively. The uncentered interaction effect of the features by considering two

features at a time will be obtained using the following formula (see Liu et al. [71])

ĥ{j,l},ALE (Xj , Xl) =

aj(Xj)∑
a=1

bl(Xl)∑
b=1

1

M{j,l}(a, b)
×

∑
ı : x

(ı)
{j,l} ∈ m{j,l}(a, b)

4{j,l}f

(
A, a, b;x

(ı)
{j,l}

)
.

(4.53)

Here, 4{j,l}f

(
A, a, b;x

(ı)
{j,l}

)
represents the second-order finite difference of f

(
Xj , Xl, x

(ı)
{j,l}

)
for

(Xj , Xl) across cell (χa−1,j , χa,j ]× (χb−1,l, χb,l]. Then the second-order ALE is obtained as (see

Liu et al. [71])

̂̃
f{j,l},ALE(Xj , Xl) = ĥ{j,l},ALE (Xj , Xl)

−
aj(Xj)∑
a=1

1

Mj(a)

a∑
b=1

M{j,l}(a, b)
{
ĥ{j,l},ALE (χa,j , χb,l)− ĥ{j,l},ALE (χa−1,j , χb,l)

}

−
al(Xj)∑
b=1

1

Ml(b)

b∑
a=1

M{j,l}(a, b)
{
ĥ{j,l},ALE (χa,j , χb,l)− ĥ{j,l},ALE (χa,j , χb−1,l)

}
(4.54)

Now, the centered second-order ALE effects is obtained by (see Apley and Zhu [118])

f̂{j,l},ALE (Xj , Xl) =
̂̃
f{j,l},ALE (Xj , Xl)−

1

M

A∑
a=1

A∑
b=1

M{j,l}(a, b)
̂̃
f{j,l},ALE (χa,j , χb,l) . (4.55)
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(a) (b)

(c) (d)

Figure 4.7: First-order ALE plots of (a) y0/h, (b) r/h, (c) D, (d) N

4.7.2 Results and discussions

In the present section, we will optimize the structural parameters associated with the OWC

device and turbine. This optimization process involves identifying specific regions of the input

space where annual average power extraction (Pann) will attain its maximum. These regions

will be identified using the XGBoost model and the interpretable machine-learning approaches

namely the Accumulated Local Effect (ALE) Plots, discussed in the previous subsection. After

finding the regions for which maximum annual average power generation occurs, twenty samples

are selected from each parameter from the selected regions and input into the pre-trained MLP

model. This allows us to predict the maximum power generation within each identified region.
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(a) (b)

Figure 4.8: Second-order ALE plots of (a) y0/h and r/h, (b) y0/h and D.

(a) (b)

Figure 4.9: Second-order ALE plots of (a) y0/h and N , (b) r/h and D.

Subsequently, we obtain the optimized parameter values for the OWC device, along with the

corresponding maximum annual average power extraction (Pann) achieved by the OWC device.

Fig. 4.7 shows the first-order Accumulated Local Effect (ALE) plots, which illustrate how the

annual average power extraction (Pann) varies with respect to individual parameters of the OWC

device. In the ALE plot, the y = 0 line indicates that the corresponding parameter values
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(a) (b)

Figure 4.10: Second-order ALE plots of (a) r/h and N (b) D and N .

maintain the expected value of the response variable, i.e., the annual average power extraction

(Pann). For y > 0, the corresponding parameter values increase the response variable from its

expected value, and similarly, for y < 0, the response variable decreases from its expected value.

Figs. 4.7(a)- 4.7(d) show the impact of the parameters y0/h, r/h, D, and N , respectively on the

annual average power extraction (Pann).

Fig. 4.7(a) illustrates the influence of the parameter y0/h on the annual average power extraction

(Pann) by the OWC device. The graph clearly shows that the highest ALE (Accumulated Local

Effect) value is achieved when y0/h is at its maximum. As y0/h decreases to −0.45, the ALE

score gradually increases and attains the expected value of Pann. Notably, the power output

(Pann) never surpasses the baseline score again, and Pann increases as y0/h decreases gradually.

A similar trend can also be seen in Fig. 4.7(d), which illustrates the influence of the parameter

N on the annual average power extraction (Pann) by the OWC device. The results demonstrated

that higher ALE values are attained for 60 < N < 100, and Pann reduces as well as reaches

its baseline as N ≈ 130. Hereafter, the ALE value reduces gradually. Figs. 4.7(b) and 4.7(c)

illustrate the influence of the parameters r/h and D, respectively on the annual average power

extraction (Pann) by the OWC device. An opposite trend is seen in the ALE values for both the

parameters r/h and D. The ALE values are minimal as r/h and D are minimal, and then, the

ALE value increases as r/h and D increase gradually.

Figs. 4.8 - 4.10 represents the second-order Accumulated Local Effect (ALE) plots, which visually

demonstrate the interaction between two individual parameters on the annual average power

extracted by the OWC device (Pann). It is to be noted that the second-order ALE will illustrate
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only the interaction effect but not the main effect (Liu et al. [71]). In Figs. 4.8(a), 4.8(b) and

4.9(a) depicts the interaction between y0/h with r/h, D and N , respectively. Fig. 4.8(a) depicts

that the ALE score is above the baseline value of the response variable in three of the regions

y0/h < −0.65 with 1.2 < r/h < 2.2, y0/h > −0.45 with r/h > 2.4 and −0.6 < y0/h < −0.2 with

r/h < 1.3. Now, by observing the interaction effect between y0/h and D as shown in 4.8(b),

the ALE score is above the baseline in two of the regions −0.55 < y0/h < −0.25 with D > 2.6

and y0/h < −0.65 with 1.5 < D < 2.25. Fig. 4.9(a) demonstrates the interaction between y0/h

and N . It is seen from Fig. 4.9(a) that the ALE score is above the baseline of the response

variable in three regions, −0.65 < y0/h < −0.15 with N < 100, y0/h < −0.65 with N > 100

and in the region y0/h > −0.3 with N > 160. From these three figures, it is also observed that

the variation in the interaction effect between y0/h and r/h is comparatively higher than the

interaction effect between y0/h and D, and y0/h and N as the range of ALE values is higher.

Figs. 4.9(b) and 4.10(a) depict the interaction between r/h with D and N , respectively, on the

annual average power extracted by the OWC device (Pann). From Fig. 4.9(b), it is seen that the

ALE score for the interaction effect is above the expected value of the response variable only for

the region r/h < 1.4 with D < 2.0. Whereas, from Fig. 4.10(a), it is seen that the interaction

effect of r/h and N is significant in two of the regions, r/h < 2 with N > 120 and on the region

r/h > 2 with N < 100. Fig.4.10(b) depicts the interaction effect of D and N , and it is seen that

the ALE score is maximum if both the parameter values are minimal or if both the parameters

are higher.

Now, for the optimization of the parameters of the OWC device, four regions were found by

identifying the regions with the highest first-order and second-order ALE scores of the parameters.

The four regions are listed below.

R1 = {−0.65 ≤ y0/h ≤ −0.2 ∪ 2 ≤ r/h ≤ 3 ∪ 50 ≤ N ≤ 100 ∪ 2.5 ≤ D ≤ 3.5} (4.56)

R2 = {−0.65 ≤ y0/h ≤ −0.2 ∪ 2 ≤ r/h ≤ 3 ∪ 100 ≤ N ≤ 200 ∪ 2.5 ≤ D ≤ 3.5} (4.57)

R3 = {−0.8 ≤ y0/h ≤ −0.6 ∪ 1 ≤ r/h ≤ 2.2 ∪ 100 ≤ N ≤ 200 ∪ 1.5 ≤ D ≤ 2.5} (4.58)

R4 = {−0.8 ≤ y0/h ≤ −0.6 ∪ 1 ≤ r/h ≤ 2.2 ∪ 50 ≤ N ≤ 100 ∪ 1.5 ≤ D ≤ 2.5} (4.59)

Now, from each region, we select twenty equally spaced points for all the parameters and

then pass them through the developed MLP model. Then, the top three combinations of the

parameters for which the highest predicted response by the MLP model is chosen from all four

regions Rj , j = 1, 2, 3, 4. Also the actual values of the response variable associated with these

three combinations are also calculated from the numerical model developed in Section 3. All

the results are listed in Tab. 4.9. From Tab. 4.9, it can be seen that the maximum annual

average power extraction by the OWC device occurs when y0/h = −0.65 and r/h = 3. Also,

from the first and second regions, it is seen that the optimized range of values of the turbine

rotor diameter is 2.8 ≤ D ≤ 3. Further, the results reveal that the two particular ranges of values
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of the turbine rotational speed N , which maximizes the power extraction, are 70 ≤ N ≤ 80

and 105 ≤ N ≤ 116. Hence, the optimized turbine rotational speed of the OWC device that

maximizes the power generation is {70 ≤ N ≤ 80 ∪ 105 ≤ N ≤ 116}. These ranges of optimized

parameter values are significantly shorter than the ranges provided in Trivedi and Koley [140].

Table 4.9: Optimum design of the OWC device

(y0/h, r/h, N , D) p̂ (Wm−1) p (Wm−1)

R1 (−0.65, 3, 77.34, 3.00) 82580 82662
(−0.65, 3, 71.05, 2.85) 82549 82637
(−0.65, 3, 72.54, 2.96) 82522 82655

R2 (−0.65, 3, 105.26, 3.00) 82549 82634
(−0.65, 3, 115.78, 2.96) 82532 82658
(−0.65, 3, 110.52, 2.80) 82529 82650

R3 (−0.75, 2.2, 105.26, 1.71) 79906 79198
(−0.8, 2.2, 115.78, 1.86) 79595 79070
(−0.75, 2.2, 110.52, 1.76) 79583 79858

R4 (−0.75, 2.2, 55.26, 1.76) 78024 77766
(−0.75, 2.2, 57.89, 1.86) 77994 77739
(−0.75, 2.2, 52.63, 1.71) 77925 77257

4.8 Conclusions

In this study, we have analyzed the performance of a breakwater-integrated quarter-circle-shaped

front wall OWC device under the influence of irregular incident waves. By employing the dual

BEM, we effectively addressed the associated boundary value problem. We also provided detailed

derivations of the physical parameters relevant to the power extraction by the OWC device. To

shorten the ranges of parameters for maximum power extraction obtained from the numerical

results, we employed a supervised machine learning approach based on the ANN model called

the MLP model with the support of the tree ensemble model XGBoost. Both the MLP model

and the XGBoost model were trained, validated, and tested using 3750 input data points in a

60 : 20 : 20 ratio. The optimized MLP architecture consists of five hidden layers comprising of

256, 128, 128, 64, and 32 neurons, respectively, with the “GELU” activation function on each of

the hidden layers and the best optimization function is obtained to be “nadam”. On the other

hand, the architecture of the XGBoost model is also optimized using the genetic algorithm. By

utilizing the XGBoost model, we have identified four distinct regions of the input space where the

maximum annual average power extraction occurs. These high-yield areas have been determined

by studying the highest first-order and second-order ALE scores of the input parameters. Further,

in each of the regions, twenty equally spaced samples are selected for all the parameters and then

passed through the developed MLP model. Then, the top three combinations of the parameters
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for which the highest predicted annual average power extraction are chosen for all four regions.

Further, the true values of the response variable are also calculated from the dual BEM-based

numerical model. The current investigation results in the subsequent findings:

� The annual average power extraction by the OWC device can be accurated predicted using

both the MLP and XGBoost models with R2 values are obtained to be 0.9995 and 0.9978,

respectively.

� The numerical results obtained using the dual BEM demonstrate that the annual average

power extraction (Pann) by the OWC device achieves maximum for the following ranges of

OWC device and turbine parameters: 2.5 < r/h < 3.0, −0.7 < y0/h < −0.5, 2 ≤ D ≤ 3.5

and 70 ≤ N ≤ 135.

� From the developed optimization approach employing XGBoost model, interpretable

ML approaches and MLP model, it is found that the maximum annual average power

extraction by the OWC device occurs when y0/h = −0.65, r/h = 3, 2.8 ≤ D ≤ 3 and

{70 ≤ N ≤ 80 ∪ 105 ≤ N ≤ 116}. Cleraly, the results obtained from the optimization

approach by employing ML significantly shortens the optimal range of input parameters

obtained from the numerical technique.

These present methodologies for the parameter optimization associated with the OWC devices

can be broadened to other wave energy converter devices such as the piezoelectric wave energy

converter devices and oyster wave energy converters, etc. Further improvement of the present

study can be achieved by employing additional interpretable machine-learning approaches such as

Shapely additive explanations (SHAP), Sobol-based sensitivity analysis, and local interpretable

Model-agnostic explanations. These approaches can be used to interpret the models including

deep neural network, and support Vector Regression.
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Water Column-Piezoelectric WEC

Device

* The work, in this chapter, is covered by the following communicated article:
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of Hybrid Oscillating Water Column-Piezoelectric Wave Energy Converter Device us-

ing Machine Learning Models.(Communicated in Engineering Applications of Artificial

Intelligence)
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5.1 General introduction

The current study focuses on the optimization of the geometric parameters of a hybrid WEC

device, comprising of a piezoelectric plate and an oscillating water column WEC. Firstly,

the BEM-based numerical technique is used to solve the hydrodynamic problem associated

with the total power generated by the hybrid WEC device. To generate the database for

the ML-based model building, the input samples are generated using the Latin hypercube

sampling technique, and the corresponding values of the target variable are calculated from

the solution of the BEM. To optimize the device parameters, an appropriate ML model is

identified from four tree ensemble models and a deep learning model, namely random forest(RF),

extreme gradient boosting(XGBoost), light gradient boosting machine(LightGBM), categorical

boosting(CatBoost), and multilayer perceptron(MLP). Spearman’s correlation coefficient is

employed to assess the correlation strength between the input attributes and the target variable,

and subsequently, we leverage an interpretable ML approach, specifically SHAP values, to analyze

the importance of features in the database. Further, using the extreme gradient boosting model

along with the interpretable ML approaches, we find the specific regions of the input space that

yield maximum power generation. Further, the response surface methodology is used to find the

exact parameters of the hybrid WEC device, which maximizes the total power generated by the

hybrid WEC device. It is found that the maximum power generation is attained for l1/h = 0.21,

d1/h = −0.08, gp/h = 0.06, d2/h = −0.19, and r/h = 0.63, respectively.

5.2 Mathematical formulation

This section addresses the mathematical formulation associated with a hybrid WEC device,

comprising a PWEC plate and a quarter-circle-shaped OWC device, within the framework of

potential flow theory. The schematic representation of the physical problem is provided in Fig.

5.1. The analysis is conducted in the two-dimensional cartesian coordinate system (x, z), with

the x-axis extending along the mean free surface and the positive z-axis oriented vertically

upward. The thin piezoelectric plate, with a length of l1, is immersed in water at z = −d1. The

OWC device is situated near the lee side of the piezoelectric plate, with a gap length denoted

as gp. The immersion depth of the draft of the OWC device is symbolized as d2, and the

thickness of the front wall is denoted as d. Additionally, b denotes the distance from the origin

to the PWEC plate along the x-axis, the length of the OWC chamber is labeled as c, and the

OWC device’s back wall is situated at x = R. According to the geometric shape of the devices,

the total free surface is divided into four regions, (i) Γ4 = {(x, z) : R− c < x < R; z = 0},
(ii) Γ8 = {(x, z) : b+ l1 < x < R− c− d; z = 0}, (iii) Γ13 = {(x, z) : −L < x < b; z = 0}, (iv)

Γ12 = {(x, z) : b < x < b+ l1; z = 0}. Here, Γ4 represents the internal free surface, Γ12 represents

the surface above the PWEC plate, and Γ8∪Γ13 represents the open free surface area. Furthermore,



Chapter 5. Modeling, Prediction, and Optimization of Hybrid device 120

the OWC device is positioned over the uniform seabed at z = −h, and the bottom bed is rigid

and impenetrable. The submerged boundaries of the OWC device’s front wall are represented by

Γ5∪Γ6∪Γ7. The existence of PWEC and OWC devices leads to the subdivision of the domain of

physical problem into two distinct regions Rj (j = 1, 2) with R2 = {b < x < b+ l1,−d1 < z < 0}
and R1 = {−L < x < R,−h < z < 0} \R2 . To numerically solve the BVP, the BEM is employed.

The computational domain of the physical problem must be closed to apply the BEM method.

Thus, an additional fictitious boundary denoted as Γ1 is considered at x = −L. Moreover,

another two fictitious boundaries Γ11 and Γ9 are located at x = b and x = b+ l1, respectively.

In the context of modeling, the fluid is presumed to adhere to potential flow theory (Babarit

[149]) and the motion is assumed to be simple harmonic in time with angular frequency denoted

as ω. Consequently, the total velocity potentials are of the form Φj(x, z, t) = <{φj(x, z)e−iωt}
and satisfy the Laplace equation

Figure 5.1: Schematic diagram of the physical problem.

∇2φj(x, z) = 0, for j = 1, 2, ∇2 ≡
(
∂2

∂x2
+

∂2

∂z2

)
. (5.1)

The free surface boundary condition in the linearized form at z = 0 is given by
∂φ1

∂n
−Kφ1 =


iωp

ρg
, on Γ4,

0, on Γ8 ∪ Γ13,

∂φ2

∂n
−Kφ2 = 0, on Γ12,

(5.2)
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where K = ω2/g. The vanishing of the normal velocity on the rigid and impervious bottom

z = −h yields
∂φ1

∂n
= 0, on Γ2. (5.3)

The back wall as well as the front wall of the OWC device are considered impenetrable, and so

the boundary conditions are defined as follows

∂φ1

∂n
= 0, on Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7. (5.4)

Since the boundaries at x = b and x = b+ l1 from z = 0 to z = −d are auxiliary in nature, we

can define the continuity of pressure as well as normal velocities throughout Γ9 ∪ Γ11. So, the

boundary conditions are given by

φ1 = φ2, and
∂φ1

∂n
= −∂φ2

∂n
on Γ9 ∪ Γ11. (5.5)

It is assumed that the PWEC plate undergoes uniform motion along the longitudinal direction.

Hence, the displacement of the PWEC device is represented as ξ̃(x, t) = <{ξ(x)e−iωt}, where

ξ(x) denotes the complex amplitude of deflection. The dynamic boundary condition on the

PWEC plate on Γ10 is given by

gχ

[
1 +

β2ϕω

i + ϕω

]
∂4ξ

∂x4
− ω2γξ = iω(φ1(x,−d−)− φ2(x,−d+)), on b < x < b+ l1, z = −d.

(5.6)

Here, the parameters used in Eq. (2.8) are given by

χ =
B

ρg
, β =

θ√
BC

, ϕ =
C

V
, γ =

Ib
ρ
, (5.7)

In this context, the electric surface capacitance, flexural rigidity of the PWEC device, the surface

conductance, surface density of the PWEC plate bimorph, and the piezoelectric coupling factor

are represented by C, B, G, Ib, and θ. The kinematic boundary condition on the PWEC device

on Γ10 is given by

∂φ1

∂n
= −∂φ2

∂n
= −iωξ, on z = −d1, b < x < b+ l1. (5.8)

For the fixed boundary edge condition of the PWEC plate, the slope of the deflection as well as

the deflection of the PWEC plate will vanish. The same boundary conditions are given below

ξ = 0,
∂ξ

∂n
= 0, at x = b, b+ l1, z = −d1. (5.9)
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It is worth noting that the plate deflection ξ and the total velocity potentials φj (j = 1, 2) involve

the radiated and scattered potentials. As a result, the plate deflection and the total velocity

potentials can be expressed as (Evans and Porter [29])

φj = φSj +

(
iωp

ρg

)
φRj , (j = 1, 2), ξ = ξS +

(
iωp

ρg

)
ξR. (5.10)

Here, φSj and φRj are referred to as the velocity potentials associated with the scattering and

radiation phenomena, respectively for regions Rj (j = 1, 2) (Koley and Trivedi [150] and Evans

and Porter [29]). Further, ξS and ξR are symbolized as the plate deflection corresponds to the

scattered and radiated waves, respectively. Now, φS,R1 satisfies the Eqs. (5.1)-(5.8), and φS,R2

satisfies Eqs. (5.1)-(5.2), (5.5)-(5.8). In contrast, ξS,R satisfies the Eqs. (5.6)-(5.9). It is to be

stated that in regions R1 and R2, all the boundary conditions remain unchanged as expressed

above except Eq. (5.2) in the region R1. Here, Eq. (5.2) is modified as

∂φS1
∂n
−KφS1 = 0, on Γ4 ∪ Γ8 ∪ Γ13,

∂φR1
∂n
−KφR1 =

1, on Γ4,

0, on Γ8 ∪ Γ13.
(5.11)

The radiation boundary conditions on Γ1 are provided as
∂(φS1 − φI)

∂n
− ik0(φS1 − φI) = 0, on Γ1,

∂φR1
∂n
− ik0φ

R
1 = 0, on Γ1.

(5.12)

Here, φI is the incident wave potential and takes the form φI = eik0xf0(k0, z) with f0(k0, z) =(
−igA

ω

)
cosh k0(z + h)

cosh(k0h)
. It is to be noted that k0 satisfies the dispersion relation ω2 =

gk0 tanh(k0h).

5.3 Solution methodology based on the boundary element method

In this section, the detailed boundary integral equation formulation, the discretization of the

integral equations, and the associated numerical solution technique are provided.

Employing “Green’s second identity” to the φS,Rj (x, z) (j = 1, 2), and the “free space Green’s

function” G(x, z;x0, z0) over the domain Ω bounded by Γ ( Katsikadelis [151]), we obtain

ε(x0, z0) φS,Rj (x0, z0) =

∫
Γ

[
φS,Rj (x, z)

∂G

∂n
(x, z;x0, z0)−G(x, z;x0, z0)

∂φS,Rj
∂n

(x, z)

]
dΓ(x, z), for j = 1, 2.

(5.13)
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The free-term coefficient is given as

ε(x0, z0) =


1, (x0, z0) ∈ Ω,

1
2 , (x0, z0) ∈ Γ(smooth ),

0, (x0, z0) /∈ Ω ∪ Γ.

(5.14)

It is to be noted that the free space Green’s function G(x, z;x0, z0) satisfies the governing

equation (Katsikadelis [151] and Behera et al. [152])(
∂2

∂x2
+

∂2

∂z2

)
G(x, z;x0, z0) = δ(x− ς)δ(z − η), (5.15)

and takes the form

G(x, z, x0, z0) =
1

2π
ln(r), r =

√
(x− x0)2 + (z − z0)2. (5.16)

Employing the boundary conditions (5.3)-(5.5), (5.8), (5.11)-(5.12) into Eq. (5.13), the integral

equation related to the φS1 in R1 can be expressed as

−1

2
φS1 +

∫
Γ1

(
∂G

∂n
− ik0G

)
φS1 dΓ +

∫
Γ2∪Γ3∪Γ5∪Γ6∪Γ7

∂G

∂n
φS1 dΓ +

∫
Γ4

(
∂G

∂n
−KG

)
φS1 dΓ

+

∫
Γ8∪Γ13

(
∂G

∂n
−KG

)
φS1 dΓ +

∫
Γ9∪Γ11

(
φS1
∂G

∂n
−G∂φ

S
1

∂n

)
dΓ

+

∫
Γ10

φS1
∂G

∂n
dΓ + iω

∫
Γ10

GξSdΓ =

∫
Γ1

(
∂φI

∂n
− ik0φ

I

)
GdΓ.

(5.17)

In a similar manner, implementing the boundary conditions (5.2), (5.5), and (5.8) into Eq. (5.13),

the integral equation corresponding to the φS2 in R2 takes the form as

−1

2
φS2 +

∫
Γ11∪Γ9

(
φS1
∂G

∂n
+G

∂φS1
∂n

)
dΓ +

∫
Γ10

φS2
∂G

∂n
dΓ− iω

∫
Γ10

GξSdΓ

+

∫
Γ12

(
∂G

∂n
−KG

)
φS2 dΓ = 0.

(5.18)

In addition, utilizing the boundary conditions (5.3)-(5.5), (5.8), (5.11)-(5.12) into Eq. (5.13),

the subsequent integral equation is obtained for the φR1 in R1 as

−1

2
φR1 +

∫
Γ1

(
∂G

∂n
− ik0G

)
φR1 dΓ +

∫
Γ2∪Γ3∪Γ5∪Γ6∪Γ7

∂G

∂n
φR1 dΓ +

∫
Γ4

(
∂G

∂n
−KG

)
φR1 dΓ

+

∫
Γ8∪Γ13

(
∂G

∂n
−KG

)
φR1 dΓ +

∫
Γ9∪Γ11

(
φR1

∂G

∂n
−G∂φ

R
1

∂n

)
dΓ

+

∫
Γ10

φR1
∂G

∂n
dΓ + iω

∫
Γ10

GξSdΓ =

∫
Γ4

GdΓ.

(5.19)
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Similarly, implementing the boundary conditions (5.2), (5.5), and (5.8) into Eq. (5.13), the

integral equation related to the φR2 in R2 is provided as

−1

2
φR2 +

∫
Γ11∪Γ9

(
φR1

∂G

∂n
+G

∂φR1
∂n

)
dΓ +

∫
Γ10

φR2
∂G

∂n
dΓ− iω

∫
Γ10

GξRdΓ

+

∫
Γ12

(
∂G

∂n
−KG

)
φR2 dΓ = 0.

(5.20)

The BEM-based numerical approach is used to solve Eqs. (5.17)-(5.20). For the same, the

boundaries of Rj for j = 1, 2 are discretized and assumed that the values of φS,Rj and ∂φS,Rj /∂n

are constants over each boundary element of the discretization (see Katsikadelis [151]). In this

context, the system of integral Eqs. (5.17)-(5.20) can be represented as

N1∑
j=1

(Hij − ik0Gij)φ
S
1j

∣∣
Γ1

+

N2+N3+N5+N6+N7∑
j=1

Hijφ
S
1j

∣∣
Γ2∪Γ3∪Γ5∪Γ6∪Γ7

+

N4+N8+N13∑
j=1

(Hij −KGij)φS1j
∣∣
Γ4∪Γ8∪Γ13

+

N9+N11∑
j=1

(
φS1jHij −Gij

∂φS1j
∂n

)∣∣∣∣∣
Γ9∪Γ11

+

N10∑
j=1

φS1jHij

∣∣
Γ10

+ iω

N10∑
j=1

Gijξ
S
j

∣∣
Γ10

+

N11∑
j=1

(
φS1jHij −Gij

∂φS1j
∂n

)∣∣∣∣∣
Γ11

+

N13∑
j=1

(Hij −KGij)φS1j
∣∣
Γ13

=

N1∑
j=1

(
∂φIj
∂n
− ik0φ

I
j

)
Gij

∣∣∣∣∣
Γ1

,

(5.21)

N11+N9∑
j=1

(
Hijφ

S
1j +Gij

∂φS1j
∂n

)∣∣∣∣∣
Γ11∪Γ9

+

N10∑
j=1

φS2jHij

∣∣
Γ10
− iω

N10∑
j=1

Gijξ
S
j

∣∣
Γ10

+

N9∑
j=1

(
Hijφ

S
1j +Gij

∂φS1j
∂n

)∣∣∣∣∣
Γ9

+

N12∑
j=1

(Hij −KGij)φS2j
∣∣
Γ12

= 0,

(5.22)

N1∑
j=1

(Hij − ik0Gij)φ
R
1j

∣∣
Γ1

+

N2+N3+N5+N6+N7∑
j=1

Hijφ
R
1j

∣∣
Γ2∪Γ3∪Γ5∪Γ6∪Γ7

+

N4+N8+N13∑
j=1

(Hij −KGij)φR1j
∣∣
Γ4∪Γ8∪Γ13

+

N9+N11∑
j=1

(
φR1jHij −Gij

∂φR1j
∂n

)∣∣∣∣∣
Γ9∪Γ11

+

N10∑
j=1

φR1jHij

∣∣
Γ10

+ iω

N10∑
j=1

Gijξ
R
j

∣∣
Γ10

=

N4∑
j=1

Gij |Γ4
,

(5.23)

N11+N9∑
j=1

(
Hijφ

R
1j +Gij

∂φR1j
∂n

)∣∣∣∣∣
Γ11∪Γ9

+

N10∑
j=1

φR2jHij

∣∣
Γ10
− iω

N10∑
j=1

Gijξ
R
j

∣∣
Γ10

+

N12∑
j=1

(Hij −KGij)φR2j
∣∣
Γ12

= 0,

(5.24)
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where

Hij = −1

2
δij +

∫
Γj

∂G

∂n
dΓ, Gij =

∫
Γj

GdΓ, (5.25)

are denoted as influence coefficients. The calculations to obtain the influence coefficients are

explained in Vipin and Koley [135]. It is to be noted that Eqs. (5.21)-(5.24) contain the

unknowns ξS,Rj . To handle this, the central difference formula is utilized to discretize the plate

dynamic boundary condition (5.6) as mentioned below(
ξS,Rj+2 − 4ξS,Rj+1 + 6ξS,Rj − 4ξS,Rj−1 + ξS,Rj−2

∆4
j

)
+ PξS,Rj = Q

(
φS,R1j − φ

S,R
2j

)
. (5.26)

Here, P =
−ω2γ

gχ

(
1 +

β2ϕω

i + ϕω

) , and Q =
iω

gχ

(
1 +

β2ϕω

i + ϕω

) . Similarly, the plate edge conditions

given in Eq. (5.9) are represented as

ξS,Rj = 0, ξS,Rj−1 = ξS,Rj+1. (5.27)

Now, Eqs. (5.21)-(5.24), and (5.26)-(5.27) are handled simultaneously to determine the unknown

velocity potentials, their normal derivatives, and plate deflections over the boundary elements of

the respective boundaries (Koley [153]).

5.4 Parameters corresponding to the wave energy converters

5.4.1 Wave power extraction by the OWC device

The mean power generated, denoted as POWC , by the OWC device per unit length of the pressure

distribution is calculated as follows

POWC =
1

2
<{pq} . (5.28)

Here, pressure across the turbine and the volume flux are denoted as p and q, respectively.

Considering a linear relationship between the volume flux and the pressure across the turbine,

we derive the subsequent relation as

q = ∧p, (5.29)

where ∧ is a parameter related to the turbine characteristics. Consequently, the POWC per unit

length of the pressure distribution is expressed as follows

POWC =
1

2

∧|qS |2(
∧+ B̃

)2
+ Ã2

. (5.30)
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Here, qS is symbolized as the volume flux related to the scattered potential. The descriptive

derivations are given in Koley and Trivedi [150] and Trivedi and Koley [140].

5.4.2 Wave power extraction by the PWEC device

Wave power extraction by the PWEC device is provided as (Zheng et al. [41] for details)

PPlate =
ω2ρg

2

β2χϕ

1 + ω2ϕ2

∫ b+l1

b

∣∣∣∣∂2ξ

∂x2

∣∣∣∣2 dx. (5.31)

Further, ξ can be written in terms of the ξS and ξR. Now, utilizing Eq. (5.10) in Eq. (5.31), we

obtain

PPlate =
ω2ρg

2

β2χϕ

1 + ω2ϕ2

∫ b+l1

b

∣∣∣∣ ∂2

∂x2

(
ξS +

(
iωp

ρg

)
ξR
)∣∣∣∣2 dx, (5.32)

where
∂2ξS

∂x2
and

∂2ξR

∂x2
are calculated using the “central difference formulae”.

5.4.3 Wave power extraction by the hybrid WEC device

The total wave power extracted PTotal by the hybrid WEC device is the addition of power

extracted by the OWC device POWC and the power generated by the PWEC plate PPlate and

so can be calculated as

PTotal = POWC + PPlate. (5.33)

The run time for the aforementioned BEM-based computations is higher due to the presence

of a number of boundaries in the domain where appropriate discretization needs to be done.

Also, computations of influence coefficients are time-consuming in nature. Consequently, for

multi-parameter optimization, the aforementioned computations are not suitable due to the

requirement of very long computational time. Further, as the PTotal by the hybrid OWC-PWEC

device exhibits a highly non-linear pattern w.r.t. the input parameters, conventional optimization

techniques alone cannot predict the response variables accurately for the optimization of the

parameters. To get rid of this problem, often ML tools are used, which provide a substantial

reduction in the computational time and also maintain the accuracy of the computation (Li et al.

[154]). In view of these computational advantages, one of the most suitable ML models is chosen

for the further study associated with the optimization of the WEC device’s parameters from

a set of five different ML models, namely, the MLP, XGBoost, RF, LightGBM, and CatBoost

models. The details for the same are provided in the following sections.
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Figure 5.2: Latin Hypercube samples of (a) PWEC plate length (l1/h), (b) submergence depth
of the PWEC device (d1/h), (c) gap between the OWC-PWEC devices (gp/h), (d) OWC front

wall draft (d2/h), and (e) radius of the OWC device (r/h).
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5.5 Development of the database for machine learning models

In this section, the dataset for the ML model building is developed using the LHS technique

and the BEM-based numerical solution derived in Sections 5.3 and 5.4. The model takes into

account five input features: PWEC plate length (l1/h), submergence depth of the PWEC device

(d1/h), OWC front wall draft (d2/h), the radius of the OWC device (r/h), and the gap between

the OWC and PWEC devices (gp/h). The target attribute of the model is the PTotal by the

hybrid OWC-PWEC device. It is to be noted that for the OWC device, the center of the quarter

circle lies within the breakwater. The radius of the circle is taken as r/h and the center of the

circle is taken as (0, d2/h). It is clear from the Fig. 5.1 that the chamber length c/h increases

when r/h takes higher values and vice versa. Further, the constant parameter values used for

the numerical computation are h = 8m, ρ = 1025 kg/m3, g = 9.81 m/s2, χ/h4 = 4.78× 10−7,

β = 0.24, ϕ =
√
h/g, γ/h = 1.258× 10−3.

It is crucial to train and validate the model using a sample that thoroughly represents the

domain of the problem being studied to achieve accurate predictions of the response variable

on test datasets through ML models. The choice of sampling technique employed in data

collection for the study holds significant importance in this regard. In this work, we utilize the

LHS technique to construct a highly representative input dataset. For training purposes, seven

samples are chosen at random for each input feature within defined intervals: 0.1 ≤ l1/h ≤ 4,

−0.4 ≤ d1/h ≤ −0.05, 0.05 ≤ gp/h ≤ 1, −0.6 ≤ d2/h ≤ −0.1, and 0.5 ≤ r/h ≤ 4, as illustrated

in Fig. 5.2. Consequently, the database consists of 16807 input samples and their corresponding

power generated by the hybrid OWC-PWEC device. The explanation for the chosen intervals of

the input features is detailed in Trivedi and Koley [75]. The descriptive statistics of the database

for model building is provided in Tab. 5.1.

Table 5.1: Descriptive statistics of database for model building

l1/h d1/h gp/h d2/h r/h PTotal(Wm−1)

count 16807 16807 16807 16807 16807 16807
mean 2.24 -0.21 0.55 -0.39 2.30 1794.75
std 0.98 0.10 0.27 0.12 1.09 974.43
min 0.63 -0.36 0.16 -0.56 0.63 151.57
25% 1.40 -0.31 0.29 -0.52 1.17 1131.71
50% 2.38 -0.21 0.53 -0.40 2.44 1507.01
75% 3.17 -0.10 0.85 -0.29 3.30 2112.53
90% 3.73 -0.07 0.97 -0.20 3.94 3232.30
95% 3.73 -0.07 0.97 -0.20 3.94 3952.20
99% 3.73 -0.07 0.97 -0.20 3.94 5063.75
max 3.73 -0.07 0.97 -0.20 3.94 6440.21
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5.6 Model Selection

In this study, we utilize tree ensemble models such as random forest (RF) (Breiman [83]), extreme

gradient boosting (Chen and Guestrin [84]), light gradient boosting machine ( LightGBM) (Ke

et al. [85]), categorical boosting(CatBoost) (Prokhorenkova et al. [86]), and a deep learning

model namely the multilayer perceptron (Rumelhart et al. [79], Nguyen and Widrow [80], Werbos

[81], Goodfellow et al. [82]) to predict the PTotal by the Hybrid OWC-PWEC device. We then

determine the model that accurately predicts the target variable from the input variables of

the hybrid OWC-PWEC device. The motivation behind the power generation prediction is to

eventually optimize the device input parameters to maximize the total power generation PTotal.

5.6.1 Extreme gradient boosting (XGBoost)

As mentioned by Borisov et al. [68], the tree ensemble models outperform deep learning models

in many supervised learning tasks. Therefore, an ensemble model based on trees, specifically

XGBoost, is developed to analyze the highly non-linear data of PTotal by the hybrid OWC-PWEC

device. The first gradient-boosting(GB) algorithm based on the decision tree was proposed by

Breiman [83]. The XGBoost model is an advanced implementation of the GB algorithm proposed

by Chen and Guestrin [84] with several improvements such as parallel and distributed computing,

tree pruning, handling missing values, feature importance, handling categorical features, efficient

handling of large datasets, etc. The working mechanism behind the better accuracy of the

XGBoost model is that a new week learner/ decision tree will be added to reduce the residual

of the previous iteration. Adopting such a greedy strategy enables the consistent making of

optimal decisions throughout each stage of the learning process (Chen and Guestrin [84]). Yet,

the complexity inherent in the XGBoost model increases its susceptibility to overfitting. To

counteract this, the loss function integrates L1 and L2 regularization terms (El Bilali et al. [72])

to mitigate overfitting concerns.

It is to be noted that the detailed procedure associated with the XGBoost model is avail-

able in Vipin et al. [155]. However, the same is provided here for better readability. Let{(
X(1), p(1)

)
,
(
X(2), p(2)

)
, ...,

(
X(M), p(M)

)}
be the training database with M samples and

each X(i) contain n number of features. The XGBoost model develops a predictive function F (X)

that estimates P̂ for any new input X. Let K be the number of week learners added sequentially

into the model, i.e., K represents the number of iterations in the XGBoost model. The final

prediction F (X) is obtained by combining the predictions generated by all weak learners in the

ensemble of trees through summation and is given by (El Bilali et al. [72])

p̂(i) = F
(
X(i)

)
=

K∑
k=1

fk

(
X(i)

)
, fk ∈ F . (5.34)
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Here, the space of regression trees, denoted as F =
{
f(X) = wq(x)

}
, where

(
q : Rn → T,w ∈ RT

)
,

represents the structure of each tree mapping a sample to the corresponding leaf node. Here,

T stands for the number of leaves in the tree, and f represents an independent tree structure

q along with leaf weights w (Chen and Guestrin [84]). Suppose, p̂
(i)
k represents the prediction

for the ith instance during the kth iteration. Let L be a differentiable convex loss function that

measures the dissimilarity between the actual response p(i) and the predicted response p̂(i). The

cost function is defined as

M∑
i=1

L
(
p̂(i), p(i)

)
. After incorporating L1 and L2 regularization into

the loss function, the objective function takes the form (Chen and Guestrin [84])

L (F ) =
M∑
i=1

L
(
p̂(i), p(i)

)
+

K∑
k=1

R(fk), where R(f) = αT +
1

2
λ ||w||2. (5.35)

In this context, R(f) represents the L1 and L2 regularization terms designed to reduce the

overfitting by penalizing the complexity of the XGBoost model. Additionally, α and λ denote the

weights associated with the L1 and L2 regularizations. The kth iteration of the objective function,

after adding the kth week learner fk to the loss function and employing Taylor’s formula, we will

get

Lk =

M∑
i=1

[
g(i)fk

(
x(i)
)

+
1

2
h(i)f2

k

(
x(i)
)]

+R (fk) , (5.36)

where g(i) =
∂L
(
p(i), p̂k−1

)
∂p̂k−1

, (5.37)

h(i) =
∂2L

(
p(i), p̂k−1

)
∂p̂2

k−1

. (5.38)

Now, optimized weight of the jth leaf node is calculated as (see Chen and Guestrin [84])

wj = −

∑
i∈Ij

g(i)

∑
i∈Ij

h(i) + λ
, (5.39)

where Ij =
{
i : q

(
X(i)

)
= j
}

signifies the instance set of jth leaf. The formula for calculating

the optimal score of the tree structure q and the evaluation of the split candidate are given in

Vipin et al. [155].

During the development of a ML model, optimizing the tuning parameters of the model is

crucial for maximizing accuracy and enhancing overall performance before commencing the

model training. To achieve this, the GA is employed using the TPOTRegressor library. Tab.

5.2 presents the tuning parameters, their respective ranges for optimization, and the resulting

optimized values. Fig. 5.3(a) visually depicts the training and validation errors observed in the
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XGBoost model with respect to the number of iterations. The convergence of the training and

validation sets indicates the model’s ability to capture the variance in the target variable within

an independent set (James et al. [120]). Also, this agreement shows the correct level of flexibility

of the model (James et al. [120]). Additionally, Fig. 5.3(b) demonstrates the distribution of

observed versus predicted values generated by the XGBoost model for the test set. Notably,

the observed and predicted values align closely along the straight line as seen in Fig. 5.3(b),

highlighting the accuracy of the predictive model. Additionally, the error matrices utilized in

this work is provided in Tab. 4.4. The model’s performance is calculated using the R2 score

given by (Rahman et al. [142]).

R2 = 1−

M∑
m=1

(
p̂(m) − p(m)

)2

M∑
m=1

(
p̂(m) − p(m)

)2
. (5.40)
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Figure 5.3: (a) XGBoost model: RMSE of training and validation errors w.r.t. iterations, (b)
predicted vs true values for the test set.

Table 5.2: XGBoost tuning parameters and optimized values.

Hyperparameters Range of values Optimized value

Max depth {3, 4, · · · , 15} 8
Learning rate {0.001, 0.0061, · · · , 0.2} 0.2
α {0.0, 0.1,· · · , 1.0} 0.2
λ {0.0, 0.1, · · · , 1.0} 0.2
Min child weight {1, 2, · · · , 10} 2
Number of estimators {10, 30, · · · , 150} 120
Subsample {0.0, 0.1, · · · , 1.0} 1.0
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5.6.2 Cross validation and model comparison

The 10-fold cross-validation score of the XGBoost model for the error matrices and the R-squared

(R2) score of the test set are provided in Tab. 5.3. The error scores in Tabs. 5.3- 5.4 shows that

the XGBoost model outperforms all other four models. Further, the R2 value of the XGBoost

model is 0.9959 and all other models giving lower R2 values. Hence, it can be concluded that the

XGBoost model is the most accurate ML model to study the PTotal by the hybrid OWC-PWEC

device. After choosing the appropriate ML model to predict the power generated by the hybrid

OWC-PWEC device, our task is now to optimize the parameters of the WEC devices, i.e.,

we need to find specific regions of the input parameters space that optimize PTotal by the

hybrid OWC-PWEC device. The advantage of the interpretable ML approaches can be utilized

effectively in this scenario. Hence, two of the interpretable machine-learning approaches are used

and discussed in the next subsection.

Table 5.3: 10-fold cross-validation of the XGBoost model

Fold Train MAPE Test MAPE Train MAE Test MAE Train RMSE Test RMSE R2

1 0.0175 0.027 25.77 42.02 36.91 60.79 0.9959
2 0.0172 0.029 25.53 43.27 36.59 60.37 0.9960
3 0.0167 0.026 24.60 42.05 35.18 61.66 0.9957
4 0.0177 0.028 26.12 44.64 37.62 65.08 0.9955
5 0.0172 0.027 25.70 42.98 36.67 62.04 0.9958
6 0.0170 0.026 25.38 41.75 36.21 57.74 0.9968
7 0.0172 0.028 25.45 44.19 36.14 63.42 0.9959
8 0.0175 0.028 26.00 45.63 37.43 67.99 0.9951
9 0.0176 0.027 25.99 42.65 36.69 59.74 0.9961
10 0.0175 0.026 26.03 41.34 36.98 59.75 0.9961

Average 0.017 0.027 25.66 43.05 36.64 61.86 0.9959

Table 5.4: Comparison of the average of the 10-fold cross-validation error scores and R2 value

Model Train MAPE Test MAPE Train MAE Test MAE Train RMSE Test RMSE R2

MLP 0.129 0.134 369.08 370.17 136.17 147.56 0.9759
RF 0.050 0.060 80.64 96.17 118.72 140.92 0.9789

LightGBM 0.059 0.068 93.14 95.14 127.73 137.36 0.9827
CatBoost 0.031 0.035 45.45 58.48 60.64 79.17 0.9933

5.7 Interpretable machine learning approaches

5.7.1 Accumulated local effects (ALE)

In this subsection, a brief overview of the accumulated local effect (ALE) using the ML model

is provided to understand how changes in input parameters influence the PTotal by the hybrid

OWC-PWEC device. The objective of ALE is to simplify a complicated prediction function f

and provides the variations in the prediction by averaging and accumulating it across defined
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intervals of the input space. To assess the local impacts, attributes are divided into a defined

number of intervals, and the uncentered impact of a particular attribute is computed according

to the following methodology (Liu et al. [71])

̂̃
f j,ALE (Xj) =

aj(Xj)∑
a=1

1

Mj(a)

∑
ı:x

(ı)
j ∈mj(a)

[
f
(
za,j , X

(ı)
\j

)
− f

(
za−1,j , X

(ı)
\j

)]
. (5.41)

In this context, za,j signifies the boundary value corresponding to the ath interval associated

with the jth attribute. Additionally, Mj(a) represents the count of mj(a), which contains the

sample points within the ath interval. Furthermore, Xj and X\j refer to the jth feature and the

features excluding the jth feature, respectively. The centered ALE estimator is derived as (see

Liu et al. [71])

f̂j,ALE (Xj) =
̂̃
f j,ALE (Xj)−

1

M

M∑
ı=1

̂̃
f j,ALE(x

(ı)
j ). (5.42)

The centered ALE estimator guarantees a response variable with a zero mean effect. Furthermore,

it has the capability to analyze the interaction effect between two attributes of the model. A

detailed explanation to calculate the two-dimensional ALE is given in Vipin et al. [155].

5.7.2 Shapley additive explanation (SHAP)

In this section, we will provide an overview of the shapley values associated with a ML model F

that can predict the response variable for any input vector X(i), for i = 1, · · · ,M , where M is

the number of samples. The goal of Shapley values is to give the explanation for an individual

prediction F (X(i)) using the formula (see Heskes et al. [119])

F (X(i)) = F0 +
n∑
k=1

ϕk, (5.43)

where ϕk is the contribution of the feature k to the predictive model F . The baseline F0 is the

expected value E[F (X)] under the observed data distribution P(X). Now, the contribution of

the feature k for a given permutation of features π is given by (see Heskes et al. [119])

ϕk(π) = ν ({j : j �π k})− ν ({j : j ≺π k}) , (5.44)

where j ≺π k refers to the features j precedes k in the permutation π.

ν(S) = E
[
F (X) | XS = X

(i)
S

]
=

∫
f
(
XS̄ , X

(i)
S

)
P
(
XS̄ |

(
XS = X

(i)
S

))
dXS̄ ,

(5.45)
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where S is the chosen column to predict the response variable from the set of input variables,

and S̄ denotes its complement columns. Now, by considering a uniform distribution for all the

permutations, we get

ϕk =
∑

S⊆N\k

|S|!(n− |S| − 1)!

n!
[ν(S ∪ k)− ν(S)] . (5.46)

5.8 Results and discussions

It is a common culture in a data analytic study to explore the strength of the association between

the input attributes and the target variable as a preliminary investigation (Puth et al. [156]).

Pearson’s product-moment correlation coefficient will provide only the linear relationship between

the attributes (Puth et al. [156]), and the attributes are assumed to follow normal distribution

(Whitlock and Schluter [157]). Specifically, it is developed to work with continuous data attributes

but not nominal or ordinal-type attributes. In such a scenario, two non-parametric measures of

association in common use are ‘Spearman’s rank order correlation coefficient’ rS and ‘Kendall’s

rank correlation coefficient’ τ (Puth et al. [156]). A higher absolute value of Spearman’s or

Kendall’s correlation coefficient indicates a monotonic relation between the attributes. Further,

we have considered only seven levels for each attribute, and the input samples are the combination

of these seven levels of data. In such a scenario, Spearman’s rank correlation coefficient will

return the accurate correlation (Puth et al. [156]). The ‘Spearman’s correlation coefficient’ can

be calculated by

rS = 1− 6
∑
d2
i

n(n2 − 1)
, (5.47)

where di denotes the difference between the two ranks of each sample and n denotes the number of

samples. The Spearman’s correlation coefficient and the significance of the correlation coefficient

in terms of the P -values are provided in Tab. 5.5. It shows that Spermann’s correlation coefficient

is significant for l1/h, d1/h, d2/h, and r/h. Further, l1/h and r/h exhibit the largest negative

monotonic correlation with the response variable PTotal, while the d1/h and d2/h demonstrate

weaker positive monotonic correlation.

Table 5.5: Spearman’s correlation coefficient and corresponding P -values

Parameter Spearman’s correlation P -value

l1/h −0.325 < 0.001
d1/h 0.101 < 0.001
gp/h −0.005 ≈ 0.636
d2/h 0.105 < 0.001
r/h −0.327 < 0.001



Chapter 5. Modeling, Prediction, and Optimization of Hybrid device 135

(a) (b)

Figure 5.4: Shapely values of (a) train set (b) test set.

Fig. 5.4 depicts the feature importance calculated using the Shapely values, which assigns a

value to every single entry in the input database using Eq. (5.46) and can be accumulated to a

feature in a predictive model, indicating its contribution to the final prediction (Ferraro et al.

[158]). The bars are sorted based on the feature importance, with the most important feature

is placed at the top. Figs. 5.4(a) and 5.4(b) depict the Shapley values for both the training

and test datasets. The SHAP interpretation approach will assign a Shapely value for each data

point in the dataset that represents the dots in Figs. 5.4(a) and 5.4(b) (Ferraro et al. [158]).

Each horizontal line corresponds to the variation in the Shapely values for a particular feature.

The blue points in the figure represent the lower values of the feature, and the higher values

are represented in red color. The first horizontal line in Fig. 5.4 represents the feature l1/h,

which depicts that l1/h is the most significant input parameter in the study. The Shapely values

are notably higher when l1/h is small, indicating that its contribution to the response variable

PTotal is significant in the lower range of l1/h. For moderate values of l1/h, the Shapely values

are negative and minimal in nature, suggesting that PTotal for inputs in this range of l1/h is

below the expected values of PTotal. Further, for higher values of l1/h, the Shapely values again

increase, but it’s clearly less than the Shapely values associated with the lower values of l1/h.

The next horizontal line corresponding to r/h in Fig. 5.4 shows a similar trend, indicating

that higher r/h values are associated with lower PTotal values. However, there seems to be a

contradiction as maximum power generation occurs when both l1/h and r/h are small. This

calls for a further study of the trade-off between the values of these parameters l1/h and r/h.

The fourth horizontal line in Fig. 5.4(b) represents gp/h, showing a considerable impact on

the model output for moderate values of gp/h. As gp/h values are moderate in nature, PTotal

hovers above its baseline. Further investigation is needed to better understand the relationship

between gp/h and PTotal because the Shapely values associated with the lower values and higher

values of gp/h are highly scattered in nature. The following two horizontal lines in Fig. 5.4(a)

represent d1/h and d2/h, both showing a gradual increase in PTotal as the parameter values

increase. However, Spearman’s correlation coefficient in Tab. 5.5 is not significantly higher for

these parameters, indicating that the underlying nature of their effect on PTotal is not entirely

clear and have to be studied further. Overall, the SHAP summary plot provides valuable insights
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into the impact of different parameters on the total power generation (PTotal), revealing trends

and areas that require deeper examination for a comprehensive understanding of the feature

impact. One important observation to be noted is that the Shapely value distribution for the

training set and the test set are identical in nature. The Shapely value for a feature is calculated

as the mean of the absolute values of the individual Shapely values associated with each value

within the feature. Here, the Shapely values for the features l1/h, r/h, gp/h, d1/h, and d2/h

associated with the training set are 560.67, 239.38, 135.77, 135.12, and 87.76, respectively. For

test set, it is 563.93, 238.60, 135.18, 136.72 and 87.38, respectively. This implies that the model’s

interpretability of feature importance and the influence of input samples on predictions remain

consistent across both datasets. Such consistency suggests that the ML model has the ability to

generalize well to an independent dataset within the same domain. It is to be noted that the

Shapely value of the features gp/h and d2/h are very close to each others in both the training

set and test set. This is the reason behind the interchange of orders in gp/h and d2/h that can

be seen in Fig. 5.4.

So far, we have studied the importance of the input features and its impact on the target

variable. Next, we aim to identify particular regions within the input space where the PTotal

reaches its peak. This identification process will be facilitated using the XGBoost model and an

interpretable ML technique, specifically through the utilization of ALE plots. Fig. 5.5 shows the

ALE plots, providing visual insights into the variations in PTotal by the hybrid OWC-PWEC

device concerning each individual attributes. In the ALE plot, the Y -coordinate represents the

ALE value of the corresponding value associated with the feature on the X-coordinate. The

line y = 0 signifies the expected value of the PTotal by the hybrid OWC-PWEC device. Figs.

5.5(a) - 5.5(e) illustrate the individual effects of the parameters l1/h, d1/h, d2/h, gp/h, and

r/h on the PTotal by the hybrid OWC-PWEC device. In Fig. 5.5(a), the graph depicts the

impact of the parameter l1/h on the PTotal by the hybrid OWC-PWEC device in terms of ALE

value. It is evident from the plot that the maximum ALE value is attained when l1/h is at its

minimum. Additionally, it reveals that the effect of l1/h is maximum and stable in the range

0.5 ≤ l1/h ≤ 1.2. As l1/h increases to ≈ 1.7, the ALE value gradually decreases and approaches

towards the baseline of the total power output PTotal. Notably, PTotal never surpasses the baseline

again. However, once the ALE value reaches its minimum within the range 2.0 < l1/h < 2.5,

PTotal starts to rise slowly and approaches the baseline level again when l1/h exceeds 3.5. This

trend of PTotal with respect to l1/h can also be seen in Tab. 5.5 that Spearmen’s correlation

coefficient is most negative for l1/h. Fig. 5.5(b) shows the impact of the parameter d1/h on the

PTotal by the OWC-PWEC device. As d1/h is at its minimum, the ALE value is at its lowest

and gradually rises and reaching the baseline score of the target variable PTotal at approximately

d1/h ≈ −0.18. The graph clearly demonstrates a sudden increase in PTotal as d1/h increases

from −0.2. The sharp elevation in PTotal as d1/h reaches its maximum is attributed to the

heightened concentration of wave power near the free surface. Fig. 5.5(c) demonstrates the
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Figure 5.5: ALE plot of (a) l1/h, (b) d1/h, (c) d2/h, (d) gp/h, and (e) r/h.

impact of the parameter d2/h on PTotal which is similar to Fig. 5.5(b), specifically an increase

in the value of d2/h corresponds to a simultaneous rise in the ALE value. However, a notable

difference is observed that the ALE values are started increase from the minimal values of d2/h

and reaches the baseline of PTotal at approximately d2/h ≈ −0.47. As the PTotal increases and
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(a) (b)
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Figure 5.6: ALE plot of (a) l1/h and d1/h, (b) l1/h and gp/h, (c) l1/h and d2/h, (d) l1/h and
r/h.

reaches to a threshold range at approximately d1/h ≈ −0.42, the variation in PTotal saturates

hereafter. It is to be noted that the maximum value of the ALE value does not align with

the maximum value of d2/h. Instead, it occurs at approximately d2/h ≈ −3.0 and thereafter,

a slight reduction in PTotal is observed. Furthermore, it is noteworthy that the variation in

the ALE value is much higher for d1/h compared to d2/h which clearly indicates that d1/h is

the more influential parameter on the variation of PTotal than d2/h. In Fig. 5.5(d), the graph

illustrates how the parameter gp/h affects the PTotal by the hybrid OWC-PWEC device. The

plot demonstrates that within the interval 0.32 < gp/h < 0.75, PTotal consistently exceeds the

baseline. Furthermore, it is noteworthy that the ALE value reaches its optimum within the

range 0.6 < gp/h < 0.65. Hence, careful consideration should be made to the relative positioning

of the PWEC and OWC devices to ensure the maximum total power generation PTotal. Fig.

5.5(e) demonstrates the impact of r/h on the PTotal the hybrid OWC-PWEC device. Similar to

Fig. 5.5(a), we observe a comparable trend where the ALE value attains its maximum when r/h

is minimal. As r/h increases and reaches 1.75, PTotal reduces to its baseline value. Furthermore,
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Figure 5.7: Two-dimensional ALE plot of (a) d1/h and gp/h, (b) d1/h and d2/h, (c) d1/h and
r/h, (d) gp/h and d2/h, (e) gp/h and r/h, (f) d2/h and r/h.
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with a further increase in r/h, the ALE value decreases as well, reaching to a threshold value

at r/h ≈ 2.25, and then maintaining the ALE value. Upon observing both Fig. 5.5(a) and Fig.

5.5(e), it becomes apparent that the maximum power generation occurs when both l1/h and

r/h are minimal, leading to some confusion. Further investigation and analysis of the trade-off

between l1/h and r/h will be conducted to gain deeper insights into their combined effects on

PTotal by the hybrid OWC-PWEC device.

Figs. 5.6(a)-(d) and 5.7(a)-(f) depict the two-dimensional ALE plots, providing a visual rep-

resentation of the interplay between pairs of individual attributes on the PTotal by the hybrid

OWC-PWEC WEC device. Figs. 5.6(a)-5.6(d) show the interaction effect of l1/h with d1/h,

gp/h, d2/h and r/h, repectively. In Fig. 5.6(a), it is evident that the ALE value surpasses a

significant threshold for the response variable within three distinct regions: l1/h < 1.5 with

d1/h > −0.15, 1.5 < l1/h < 2.7 with d1/h < −0.2, and l1/h > 3 with d1/h > −0.15. Turning to

the interaction between l1/h and gp/h, as illustrated in Fig. 5.6(b), the ALE value exceeds the

baseline value within two regions: l1/h < 1.7 with gp/h < 0.3, and l1/h > 2.7 with gp/h > 0.3.

Fig. 5.6(c) demonstrates that the maximum power output is obtained when both the input

parameters are either minimum or both the input parameters are maximum. Here, the high

yield regions are l1/h < 2.5 with d2/h < −0.4, and l1/h > 2.5 with d2/h > −0.4. From Fig.

5.6(d), a positive linear correlation between the attributes l1/h and r/h is observed as the

interaction effect is maximum along the principal diagonal points in the figure. A significant

interaction effect is observed in the regions l1/h < 2 with 1 < r/h < 2 and l1/h > 3.3 with

r/h < 1.2. Figs. 5.7(a)-5.7(c) show the interaction between d1/h with gp/h, d2/h and r/h,

respectively. Fig. 5.7(a) shows that the only region with significant interaction is d1/h > −0.15

with 0.2 < gp/h < 0.6. Since the variation in the ALE value in Fig. 5.7(b) is very less, it suggests

that the interaction between the parameters d1/h and d2/h is insignificant. Turning attention

to the interaction effect between d1/h and r/h in Fig. 5.7(c), it is observed that PTotal surpasses

its average solely in the region where r/h < 1.7 and d1/h > −0.15. Figs. 5.7(d) and 5.7(e)

illustrate the interaction involving gp/h with d2/h and r/h. Specifically, Fig. 5.7(d) indicates

positive ALE values in two regions: firstly, for gp/h < 0.6 and d2/h < −0.4, and secondly, for

gp/h > 0.65 and d2/h > −0.35. Whereas in Fig. 5.7(e), there is only one region gp/h > 0.7

with 2.0 < r/h < 2.7 in which the ALE value is significant. Finally, Fig. 5.7(f) depicts the

interaction between d2/h and r/h. It is seen that there are two significant regions in which

the power generation is above its expected value, which are d2/h > −0.4 with r/h < 1.5 and

d2/h < −0.45 with 2.0 < r/h < 2.8.

Now, to optimize the parameters associated with the hybrid WEC device, three distinct regions

within the input space are determined by identifying those areas exhibiting the optimal ALE
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values. All the three regions are given below

R1 = {0.1 ≤ l1/h ≤ 1.5 ∪ −0.15 ≤ d1/h ≤ −0.05 ∪ 0.05 ≤ gp/h ≤ 0.3}

∪ {−0.4 ≤ d2/h ≤ −0.1 ∪ 0.5 ≤ r/h ≤ 1.75} ,

R2 = {0.1 ≤ l1/h ≤ 1.5 ∪ −0.15 ≤ d1/h ≤ −0.05 ∪ 0.35 ≤ gp/h ≤ 0.7}

∪ {−0.55 ≤ d2/h ≤ −0.4 ∪ 0.5 ≤ r/h ≤ 1.75} ,

R3 = {0.1 ≤ l1/h ≤ 1.5 ∪ −0.15 ≤ d1/h ≤ −0.05 ∪ 0.65 ≤ gp/h ≤ 1}

∪ {−0.4 ≤ d2/h ≤ −0.1 ∪ 0.5 ≤ r/h ≤ 1.75} .

(5.48)

We will now use the RSM to find the exact input parameters that maximize PTotal by the Hybrid

WEC device.

5.9 Optimization based on response surface methodology (RSM)

Table 5.6: L8 orthogonal array

Experiment Attributes

l1/h d1/h gp/h d2/h r/h

1 - - - - -
2 - - - + +
3 - + + - -
4 - + + + +
5 + - + - +
6 + - + + -
7 + + - - +
8 + + - + -

Table 5.7: Initial lower and upper sample values of the parameters to construct L8 orthogonal
array

R1 R2 R3

Lower Upper Lower Upper Lower Upper

0.5 1 0.5 1 0.5 1
-0.12 -0.08 -0.12 -0.08 -0.12 -0.08
0.1 0.2 0.4 0.6 0.75 0.9
-0.3 -0.2 -0.5 -0.45 -0.3 -0.2
0.8 1.5 0.8 1.5 0.8 1.5

This section outlines a comprehensive optimization process to maximize PTotal by analyzing

the impact of input attributes associated with the hybrid OWC-PWEC device. The statistical

procedure, namely the response surface methodology(RSM) (Myers et al. [123]) and the method
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Table 5.8: Optimal parameter range, sign of the regression coefficient, T Score and P -Value
for R1.

Term Lower Upper Sign of the Coefficient T Score P -Value

Intercept +ve 4.24 0.05
l1/h 0.21 0.23 +ve 3.13 0.09
d1/h -0.08 -0.05 −ve -1.71 0.23
gp/h 0.06 0.09 −ve -1.67 0.18
d2/h -0.19 -0.11 −ve -5.26 0.10
r/h 0.63 1.05 −ve -3.83 0.07

Max PTotal 7912

Table 5.9: Optimal parameter range, sign of the regression coefficient, T Score and P -Value
for R2.

Term Lower Upper Sign of the Coefficient T Score P -Value

Intercept +ve 3.38 0.07
l1/h 0.45 0.55 −ve -1.15 0.36
d1/h -0.09 -0.07 −ve -0.73 0.54
gp/h 0.36 0.44 +ve 0.28 0.80
d2/h -0.50 -0.41 +ve 3.54 0.07
r/h 0.72 0.88 +ve 0.14 0.90

Max PTotal 6013

Table 5.10: Optimal parameter range, sign of the regression coefficient, T Score and P -Value
for R3.

Term Lower Upper Sign of the Coefficient T Score P -Value

Intercept +ve 2.15 0.16
l1/h 0.45 0.55 −ve -1.32 0.31
d1/h -0.12 -0.08 −ve -0.70 0.55
gp/h 0.75 0.09 −ve -0.32 0.77
d2/h -0.3 -0.2 −ve -1.54 0.26
r/h 0.8 1.5 +ve 3.15 0.08

Max PTotal 4559

of design of experiments are employed to find the specific combinations of the parameters

which maximize PTotal. We have used the L8 orthogonal array with two levels for each of the

parameters for the design of experiments as shown in Tab. 5.6. In this table, ‘-’ and ‘+’ represent

the lower value and the upper value of the samples, respectively. In the optimization process,

the initial step involves selecting two samples from each attribute within the identified regions

Rj , j = 1, 2, 3 as derived from the ALE plots associated with the XGBoost model. The initial

samples for the optimization of parameters in each of the regions is given in Tab. 5.7. Following

this, an augmented L8 orthogonal table combined with the response variable will be passed

through a linear regression model. This aids in determining the directional adjustments needed
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for each parameter based on the coefficients and their P -values associated with the student

t-test. The student t-test is employed to assess the statistical significance of the coefficients

in the linear regression model. The P -values serve to evaluate the significance of the change

in the input values of the parameters concerning the response variable. The hypothesis test

we have considered is H0: the regression coefficient is equal to zero against the alternative

hypothesis Ha: the regression coefficient is not equal to zero with a significance level of 0.05.

The adjusted parameter values that maximize the PTotal will be used as the design parameters

for the L8 orthogonal matrix in the next iteration. The optimal parameter range, sign of the

regression coefficient, T Score, and P -Value for the optimal L8 matrix for each of the three

regions Rj , j = 1, 2, 3 are given in Tabs. 5.8-5.10. The optimal table is obtained by repeating

the optimization procedure discussed above until the significance of the regression coefficient

of all the attributes with respect to the P -value associated with the t test is greater than the

significance level of 0.05. From Tabs. 5.8-5.10, it is seen that the P -value associated with the

parameters of the WEC device is greater than 0.05. Hence, it is to be decided that there is no

evidence to reject the H0. This leads to the conclusion that the change in the PTotal with respect

to the samples of the parameters used in the associated L8 orthogonal matrix is insignificant.

Further, it is obtained from the associated L8 orthogonal matrix that the PTotal is higher in

the first region R1. It is obtained from Tab. 5.8 that the optimal range of the parameters

obtained from the RSM is 0.21 ≤ l1/h ≤ 0.23, −0.08 ≤ d1/h ≤ −0.05, 0.06 ≤ gp/h ≤ 0.09,

−0.19 ≤ d2/h ≤ −0.11, and 0.63 ≤ r/h ≤ 1.05 and the optimal combination of the attributes

associated with the hybrid OWC-PWEC device is l1/h = 0.21, d1/h = −0.08, gp/h = 0.06,

d2/h = −0.19, and r/h = 0.63, and the associated optimal PTotal is obtained to be 7912 (see Tab.

5.12). The importance of the optimization technique employed in this study can be analyzed

by comparing the optimal PTotal obtained from the optimization process with the descriptive

statistics of the response variable used in the model building (see Tab. 5.11). From the L8

orthogonal matrix associated with the optimal parameters given in Tab. 5.8, it is evident that

each combination of input parameters yields a PTotal that is higher than the maximum value

of the PTotal in the parent dataset (dataset used for training, testing, and validation purpose).

This underscores the effectiveness of the optimization technique, which integrates an ML model

and interpretable ML approaches with a conventional optimization method (specifically, the

Response Surface Methodology (RSM)).

Table 5.11: Descriptive statistics of the response variable from the dataset developed in Sec.
5.5. All the units are considered as Wm−1.

Count Mean Std Min 50% 90% 95% 99% Max

16807 1794 974 151 1507 3232 3952 5063 6440
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Table 5.12: L8 orthogonal matrix associated with the optimal parameters for R1

l1/h d1/h gp/h d2/h r/h PTotal(Wm−1)

0.21 −0.08 0.06 −0.19 0.63 7912
0.21 −0.08 0.06 −0.11 1.05 7149
0.21 −0.05 0.09 −0.19 0.63 7725
0.21 −0.05 0.09 −0.11 1.05 7241
0.23 −0.08 0.09 −0.19 1.05 7469
0.23 −0.08 0.09 −0.11 0.63 7821
0.23 −0.05 0.06 −0.19 1.05 7488
0.23 −0.05 0.06 −0.11 0.63 7873

5.10 Summary and concluding remarks

The present study investigates the mathematical modeling, prediction, and optimization of

a hybrid WEC device consisting of PWEC and OWC devices. The hydrodynamic problem

associated with the total power generation by the WEC device is handled using the BEM-

based numerical approach. The database for the ML model building is generated using the

LHS technique. After identifying the appropriate ML model to predict the PTotal, we employ

Spearman’s correlation coefficient to assess the correlation strength between the input attributes

and the target variable. Subsequently, we leverage an interpretable ML approach, specifically

Shapely values, to analyze the importance of features in the database. The optimization of the

PTotal by the hybrid OWC-PWEC device is carried out using the developed XGBoost model,

an interpretable ML approach (namely, the accumulated local effect), and using a conventional

optimization technique, namely the response surface methodology. The current investigation

results in the subsequent findings:

� The total power generated by the hybrid OWC-PWEC device can be accurately predicted

using the proposed XGBoost model with a comparatively smaller error in the test set as

MAPE: 0.02%, MAE: 43.05 Wm−1, RMSE: 61.86Wm−1. Further, the R2 value is obtained

to be 0.9959.

� The feature importance is identified using the XGBoost model and the Shapley values.

The most important feature in predicting the PTotal is l1/h, and the subsequent important

parameters in feature wise are r/h, d1/h, gp/h, and d2/h, respectively.

� The optimal region of the input space is identified using the XGBoost model, the ALE

plots, and the response surface methodology. The optimal range is obtained as 0.21 ≤
l1/h ≤ 0.23, −0.08 ≤ d1/h ≤ −0.05, 0.06 ≤ gp/h ≤ 0.09, −0.19 ≤ d2/h ≤ −0.11, and

0.63 ≤ r/h ≤ 1.05.
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� The exact combination of parameter values which maximizes the PTotal is obtained to be

l1/h = 0.21, d1/h = −0.08, gp/h = 0.06, d2/h = −0.19, and r/h = 0.63, with a maximum

PTotal = 7912 Wm−1.

In summary, it is concluded that optimizing the shape parameters of the OWC and PWEC

devices and deploying the two devices within the specified gap length can substantially improve

the performance of the hybrid OWC-PWEC device.



Chapter 6

Summary and future work

This chapter summarizes the results and findings obtained in the thesis, the limitations of models

used in the present research, applications, and the scope of possible extensions of the present

study and future investigations.

6.1 Conclusions

The purpose of the thesis is to develop a BEM-based numerical model to study the surface

gravity waves interaction with the PWEC and OWC devices to study the performance of

the WEC devices. The PWEC device is studied in regular water waves and placed over the

undulated seabed, and the OWC device is studied for both the regular and irregular wave

climates. Further, we identified suitable machine learning tools based on the maximum accuracy

score and minimum error matrix scores for predicting the power generated by the WEC devices.

Optimization of the standalone PWEC device parameters in regular wave climate is carried

out using the deep learning model, namely the multilayer perceptron model. Moreover, the

optimization of the parameters of the standalone OWC device in irregular wave climate and

hybrid OWC-PWEC wave energy converter devices under the regular incident wave is carried

out using a hybrid optimization approach including machine learning models, interpretable

machine learning approaches and using the multivariate statistical optimization method namely

the response surface methodology. The salient conclusions and contributions of the present study

are the following:

� Chapter 1 presents an in-depth literature review and the mathematical foundation con-

cerning the wave structure interaction problems associated with the piezoelectric plate

and oscillating water column wave energy converter devices. A detailed derivation of the

boundary conditions of the physical problem is provided under the assumption of linear

146
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wave-structure interaction theory. This thesis employs a numerical solution approach

based on the Boundary Element Method to address the hydrodynamics of power gen-

eration by the OWC and PWEC devices. The chapter also reviews the background of

BEM numerical techniques, specifically focusing on constant and dual boundary elements.

Further, a detailed description of the training procedure of the artificial neural network

and XGBoost models, interpretable machine learning approaches, and the multivariate

statistical optimization technique, namely the response surface methodology, are provided.

� In Chapter 2, a piezoelectric wave energy converter (PWEC) device integrated with an

impermeable breakwater placed over an undulated seabed is considered. The PWEC

device is composed of a single submerged flexible plate with piezoelectric layers attached

to both the faces of the flexible plate. Due to the piezoelectric effect, this piezoelectric

plate generates electricity when excited by the incident waves. A detailed analysis is

done to investigate the effect of PWEC plate submergence depth, plate length, plate edge

conditions, incident wave period, bottom ripple amplitude, and ripple number on the

power generation by the PWEC device. It is seen that the PWEC device edge conditions,

submergence depth, and plate length play a significant role in the resonating pattern

associated with the wave power generation curve. The results demonstrate that the PWEC

device having moderate plate length and with free and moored type front edges generates

a higher amount of wave power for a wider range of incident wave frequencies.

� In Chapter 2, we have studied the hydrodynamic performance of the PWEC device attached

to an impermeable breakwater in the frequency domain. It is to be noted that the study of

the plate deflection in the time domain provides more realistic results than in the frequency

domain. Hence, it is important to study the performance of a standalone PWEC device in

frequency as well as in the time domain.

� In Chapter 3, the power absorption by a submerged piezoelectric wave energy converter

(PWEC) in the frequency domain and the time-dependent displacement of the free surface

and the PWEC plate deflection are discussed. Further, the prediction of the power

generation by the device and the optimization of the device parameters using an artificial

neural network model, namely the multilayer perceptron model, are discussed. The problem

is studied initially for the case when PWEC plate is situated over an undulated seabed.

However, in the parameters optimization process, the seabed is considered uniform in

nature as the effect of bottom undulation is negligible. Here, the PWEC plate is considered

standalone without attaching the same with an existing breakwater. The boundary element

method (BEM) is used to solve the frequency domain problem. Further, the Fourier

transform is utilized to convert the frequency domain results into time domain. In time

domain analysis, emphasis is given to analyze the the plate deflection and the free surface

displacement. The input database for the ANN model building is generated using the latin



Chapter 6. Summary and future work 148

hypercube sampling method (LHS), and the corresponding target variable is calculated

using the BEM-based numerical tool. After the ANN model building, the optimization

of the design parameters of the PWEC device is carried out using a database containing

3000 sample points generated randomly using the LHS method. These generated input

samples will be passed through the developed ANN model, and the predicted response

variable provides a range for the geometric parameters associated with the PWEC device

to optimize the power generation.

� The PWEC device discussed in Chapter 3 is capable of generating electricity to run

low-energy electronics such as LEDs, wireless routers, PCs, ocean buoys, and sensors.

Further, the resonances in power generation occurs for certain values of the incident wave

frequencies. However, ocean waves consists of a wider range of frequencies and therefore,

its necessary to design a wave energy converter device which will work efficiently for a

wider range of incident wave frequencies and also can generate higher power. In this regard,

OWC device can serve the purpose.

� In Chapter 4, we studied the performance of a breakwater-integrated quarter-circle-shaped

front wall OWC device under the influence of irregular incident waves. Firstly, the

boundary value problem associated with the hydrodynamics of OWC device is handled

for a solution using the dual boundary element method (BEM). To examine the complex

relationships between all input features and the target variable in a time-efficient manner,

supervised machine learning models are developed. Here, two different models: (i) multilayer

perceptron (MLP) model based on an artificial neural network, and (ii) a tree ensemble

model, namely the XGBoost model are developed. The submergence depth of the front

wall of the OWC device, chamber length, rotational speed, and diameter of the turbine

blade are considered as input attributes, and the average annual power generated by

the OWC device is considered as the output attribute. The MLP model is employed to

optimize these input parameters, leveraging the insights provided by the XGBoost model

to maximize the annual average power generation. From the dual BEM based numerical

results, and using the Latin hypercube sampling technique, 3750 samples were generated to

train, validate, and test the machine learning models. Using the XGBoost model with the

support of accumulated local effect plots, we find four specific regions of the input space

in which the annual average power extraction will be maximum. Hereafter, an extended

input database is generated with twenty equally spaced levels for each parameter and the

dataset is passed through the developed MLP model to find the optimized values of the

parameters of the OWC device which maximizes the power generation. It is obtained that

the maximum power generation is attained for y0/h = −0.65, r/h = 3, 2.8 ≤ D ≤ 3 and

{70 ≤ N ≤ 80 ∪ 105 ≤ N ≤ 116}.
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� In Chapters 2-4, the hydrodynamic performance of the standalone piezoelectric plate and

OWC device are studied However, there is one major shortcoming of the standalone wave

energy converter devices, such as the standalone wave energy converter devices are unable

to absorb a significant amount of incident wave energy. Hence, in the next chapter, we will

study the performance of a hybrid OWC-PWEC device.

� In Chapter 5, we focused on the optimization of the geometric parameters of a hybrid wave

energy converter device comprising a piezoelectric plate and an oscillating water column

device. Firstly, the boundary element method-based numerical technique is used to solve

the hydrodynamic problem associated with the total power generated by the hybrid device.

To create the database for the machine learning model building, the input samples are

generated using the Latin hypercube sampling technique, and the corresponding values of

the target variable are calculated from the solution of the boundary element method. To

optimize the device parameters, an appropriate machine learning model is identified from

four tree ensemble models and a deep learning model, namely random forest(RF), extreme

gradient boosting(XGBoost), light gradient boosting machine(LightGBM), categorical

boosting(CatBoost), and multilayer perceptron(MLP). Spearman’s correlation coefficient

is employed to assess the correlation strength between the input attributes and the

target variable, and subsequently, we leverage an interpretable machine learning approach,

specifically Shapely values, to analyze the importance of features in the database. Further,

using the extreme gradient boosting model along with the interpretable machine learning

approaches, we identify the particular areas within the input space that result in optimal

power generation. Moreover, the response surface methodology is applied to determine the

precise parameters values of the hybrid device, aiming to optimize the total power output

extracted by the hybrid device. It is found that the optimal power extraction is attained

for l1/h = 0.21, d1/h = −0.08, gp/h = 0.06, d2/h = −0.19, and r/h = 0.63, respectively.

Chapters 2-5 are highly advantageous for the engineers and scientists to develop and

design efficient piezoelectric and oscillating water column wave energy converter devices.

These devices operate effectively when subjected to regular and irregular incident waves.

Additionally, the numerical tool employed in this study based on the boundary element

method has the potential for extension to analyze a diverse array of challenges related

to wave-structure interaction. These challenges are prevalent in coastal and offshore

engineering, as well as in interconnected fields of mathematical physics. The current

solution methodology is robust and adept at managing complex structural shapes and

configurations in an easy manner. Als,o the employed ML models will significantly reduce

the time complexity and enhance the accuracy of the optimization of the design parameters

associated with the wave energy converter devices.
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6.2 Major research developments and findings

Chapter 2 illustrates the performance of a submerged PWEC device attached to an impermeable

vertical breakwater placed over an undulated seabed and the device performance is analyzed

for various parameters associated with the incident waves, PWEC plate, and undulated seabed.

Major emphasis is given to analyze the effect of PWEC plate submergence depth, plate length,

plate edge conditions, incident wave period, bottom ripple amplitude, and ripple number on the

power generation by the PWEC device. The results demonstrated that the overall wave power

generated by the PWEC device is significantly higher when the lee side of the PWEC plate is

fixed in nature as compared to the moored edge condition. Further, the number of resonating

peaks and associated amplitudes are also higher for the PWEC device with a fixed type lee

edge. The maximum resonating peak on the wave power generation curve is observed for PWEC

devices with fixed-type front edges. In contrast, it is seen that the PWEC device with free and

moored type front edges generates moderate wave power for a wider range of incident wave

periods. As the length of the PWEC device increases, the number of resonating peaks in the wave

power generation curve increases gradually. Further, it is also observed that the PWEC device

having moderate length can generate maximum wave power for a wider range of incident wave

periods. As the submergence depth of the PWEC device increases, the wave power generated by

the PWEC device decreases gradually irrespective of the PWEC device edge conditions. The

power generated by the PWEC device doesn’t vary much due to the variation in the number

of ripples and ripple amplitude of the seabed except at positions where resonances occur. In

summary, it is concluded that the plate edge conditions and various parameters associated with

the PWEC device can be optimized to generate maximum wave power for a wider range of

incident wave frequencies.

Chapter 3 investigates the power generation, the time-dependent free surface displacement and

the PWEC plate deflection, and the optimization of the parameters of a submerged PWEC

device floating over a sinusoidal seabed under the linear wave-structure interaction theory. The

BEM-based numerical method is used to solve the BVP associated with the hydrodynamics of

the PWEC device. Various parameters related to the performance of the PWEC device are

analyzed. The prediction of the power generated by the PWEC device and optimization of the

parameters of the submerged PWEC device to maximize the Pext by the PWEC device are

studied using a supervised machine learning algorithm, namely the ANN model. The results

demonstrated that the number of resonating peaks increases with an increase in plate length

(l/h), and the amplitude of the resonating peak is higher for the moderate values of the plate

length (l/h). Further, the amplitude of the resonating peak increases as the submergence depth

of the plate decreases. It is noteworthy that, regardless of differences in submergence depth,

ripple amplitude, or number of ripples in the seabed, the resonance occurs around the same

values of the incident wave period. The amplitude of the resonating peaks increases as the ripple



Chapter 6. Summary and future work 151

amplitude decreases in the shortwave regime. On the other hand, an opposite trend is observed

for the intermediate and longwave regimes for certain values of the incident wave period. The

decrease in the amplitude of the free surface displacement in the transmitted wave from the

incident wave pack is due to the power generation by the PWEC device via the interaction of

the incident wave pack. Further, the results represent the power-holding behavior of the PWEC

device for a longer duration. It is also observed that the power extraction curve attains its

maximum when the amplitude of the bottom undulation is negligible. Hence, in the parameter

optimization phase, we considered a uniform seabed. For maximum power generation by the

PWEC plate, the optimum geometric value for l/h is 2.7 ≤ l/h ≤ 2.9 and minimum submergence

depth is considered for d/h (the value of d/h is 0.012 chosen in the present study). The mean

power generation for this range lies in the interval [840Wm−1, 866Wm−1].

In Chapter 4, the performance of a breakwater-integrated quarter-circle-shaped front wall OWC

device is studied under the influence of irregular incident waves. By employing the dual BEM,

we effectively addressed the associated boundary value problem. We also provided detailed

derivations of the physical parameters relevant to the power extraction by the OWC device. The

numerical results obtained using the dual BEM demonstrate that the annual average power

extraction (Pann) by the OWC device achieves maximum for the following ranges of OWC device

and turbine parameters: 2.5 < r/h < 3.0, −0.7 < y0/h < −0.5, 2 ≤ D ≤ 3.5 and 70 ≤ N ≤ 135.

To shorten these ranges of parameters for maximum power extraction, we employed a supervised

machine learning approach based on the ANN model called the MLP model with the support of

the tree ensemble model namely, the XGBoost model. Both the MLP model and the XGBoost

model were trained, validated, and tested using 3750 input data points in a 60 : 20 : 20 ratio.

The optimized MLP architecture consists of five hidden layers comprising of 256, 128, 128,

64, and 32 neurons, respectively, with the “GELU” activation function on each of the hidden

layers and the best optimization function is obtained to be “nadam”. On the other hand, the

architecture of the XGBoost model is also optimized using the genetic algorithm. The R2

values of the MLP and XGBoost models are obtained to be 0.9995 and 0.9978, respectively. By

utilizing the XGBoost model, we have identified four distinct regions of the input space where

the maximum annual average power extraction occurs. These high-yield regions of the input

space have been determined by studying the highest first-order and second-order ALE scores

of the input parameters. Further, in each of the regions, twenty equally spaced samples are

selected for all the parameters and then passed through the developed MLP model. Then, the

top three combinations of the parameters for which the highest predicted annual average power

extraction are chosen for all four regions. Further, the true values of the response variable are

also calculated from the dual BEM-based numerical model. It is found that the maximum annual

average power extraction by the OWC device occurs when y0/h = −0.65, r/h = 3, 2.8 ≤ D ≤ 3

and {70 ≤ N ≤ 80 ∪ 105 ≤ N ≤ 116}.
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In Chapter 5, the mathematical modeling, prediction, and optimization of a hybrid WEC device

consisting of PWEC and OWC devices is studied extensively. The hydrodynamic problem

associated with the total power generation by the WEC device is handled using the BEM-

based numerical approach. The database for the ML model building is generated using the

LHS technique. After identifying the appropriate ML model to predict the PTotal, we employ

Spearman’s correlation coefficient to assess the correlation strength between the input attributes

and the target variable. Subsequently, we leverage an interpretable ML approach, specifically

Shapely values, to analyze the importance of features in the database. The optimization of

the PTotal by the hybrid OWC-PWEC device is carried out using the developed XGBoost

model, an interpretable ML approach (namely, the accumulated local effect), and using a

conventional optimization technique, namely the response surface methodology. The current

investigation results in the findings: The total power generated by the hybrid OWC-PWEC

device can be accurately predicted using the proposed XGBoost model with a comparatively

smaller error in the test set as MAPE: 0.02%, MAE: 43.05, RMSE: 61.86. Further, the R2

value is obtained to be 0.9959. The feature importance is identified using the XGBoost model

and the Shapley values. The most important feature in predicting the PTotal is l1/h, and the

subsequent important parameters in feature wise are r/h, d1/h, gp/h, and d2/h, respectively.

The optimal region of the input space is identified using the XGBoost model, the ALE plots,

and the response surface methodology. The optimal range is obtained as 0.21 ≤ l1/h ≤ 0.23,

−0.08 ≤ d1/h ≤ −0.05, 0.06 ≤ gp/h ≤ 0.09, −0.19 ≤ d2/h ≤ −0.11, and 0.63 ≤ r/h ≤ 1.05. The

exact combination of parameter values which maximizes the PTotal is obtained to be l1/h = 0.21,

d1/h = −0.08, gp/h = 0.06, d2/h = −0.19, and r/h = 0.63, with a maximum PTotal 7912 Wm−1.

In summary, it is determined that optimizing the shape parameters of the OWC and PWEC

devices and deploying the two devices within the specified gap length can substantially improve

the performance of the hybrid OWC-PWEC device.

6.3 Applications

The applications of the study conducted in the research work are as follows

� The analysis conducted in this thesis work is useful for the engineers and scientists working

on the research and development, and working on the deployment stage of wave energy

converter devices.

� From the qualitative and quantitative results of Chapters 1− 2, the engineers will gain a

comprehensive understanding of the performance of the PWEC device when it is attached

to impermeable rigid structures like offshore installations, the pillars of the bridge in the

oceans, etc., or when it is deploying standalone.
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� Conducting full-scale experiments to assess the efficacy of wave energy converter devices

is both expensive and time-consuming. In this context, the numerical results presented

in this thesis can significantly alleviate the need for engineers and scientists to perform a

large number of experimental analyses, drawing upon the background knowledge provided.

� The machine learning and statistical approaches developed for the prediction and opti-

mization of wave energy converter devices are immensely helpful to the coastal and ocean

engineers to design the shapes and structural configurations of wave energy converter

devices in real sea conditions. Further, the optimized values of the design parameters and

associated power output by WEC devices provide a good estimate of the results apriori

to the model tests. The interpretable machine learning models is useful for finding the

feature importance and consequently can be used for dimensionality reduction.

6.4 Scope of possible extensions for the future work

A few of the possible extension of the current research work is provided below

� The performance of the PWEC device is studied only in the regular wave climate. This

study will be extended to multidirectional and irregular wave climates.

� The current physical problems will be expanded to address the performance of an array of

wave energy converter devices with diverse configurations within a wave farm.

� The time domain analysis provided here is merely an introductory analysis of the time-

dependent plate deflection and the free surface displacement. This study will be extensively

extended to analyze the non-linear behaviors of plate deflection. Further, the study can

be extended to estimate the cumulative wave power that can be generated by the wave

energy converter device for a specific period of time under suitable wave properties.

� The boundary value problems associated with the power generated by the PWEC device

are models using linear wave theory. This can be extended to higher-order water wave

theories to obtain better realistic results. Further, the accuracy of the results can be

improved by using the higher-order boundary element methods.

� To reduce the computational time and increase the accuracy, a new machine learning model

based on the attention mechanism can be developed to accurately predict and consequently

to get more accurate optimized input parameters.
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[148] S. Maśıs, Interpretable Machine Learning with Python: Learn to build interpretable high-

performance models with hands-on real-world examples. Packt Publishing Ltd, Birmingham,

2021.

[149] A. Babarit, Ocean wave energy conversion. Elsevier, Oxford, 2018.

[150] S. Koley and K. Trivedi, “Mathematical modeling of oscillating water column wave energy

converter devices over the undulated sea bed,” Engineering Analysis with Boundary

Elements, vol. 117, pp. 26–40, 2020.

[151] J. T. Katsikadelis, The boundary element method for engineers and scientists: theory and

applications. Academic Press, London, 2016.

http://arxiv.org/abs/1212.5701


References 166

[152] H. Behera, R. Kaligatla, and T. Sahoo, “Wave trapping by porous barrier in the presence

of step type bottom,” Wave Motion, vol. 57, pp. 219–230, 2015.

[153] S. Koley, “Water wave scattering by floating flexible porous plate over variable bathymetry

regions,” Ocean Engineering, vol. 214, p. 107686, 2020.

[154] Y. Li, G. Lei, G. Bramerdorfer, S. Peng, X. Sun, and J. Zhu, “Machine learning for

design optimization of electromagnetic devices: Recent developments and future directions,”

Applied Sciences, vol. 11, no. 4, p. 1627, 2021.

[155] V. Vipin, K. Trivedi, and S. Koley, “Optimization of parameters of the OWC wave energy

converter device using MLP and XGBoost models,” Results in Physics, vol. 55, p. 107163,

2023.
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