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Abstract

In recent decades, the study of various aspects of topological dynamical systems has been

a major research focus. In order to provide a more detailed and in-depth explanation

of their long-term behaviour scenario, researchers have used a variety of mathematical

techniques to discuss and explain it. However, some spaces are yet to be thoroughly

explored, and there is a need to understand their dynamics in depth. As a result, the

purpose of this thesis is to look into some related problems in order to find an accurate

explanation of the dynamics of these systems.

Before discussing about the investigated problems, some preliminaries and basic defini-

tions are discussed in Chapter-1. In Chapter-2, we describe the sets of periodic points

of automorphisms of a one dimensional solenoid, considering it as the inverse limit of a

sequence of maps on the unit circle. Later, we study the periodic points for a class of

automorphisms on certain higher dimensional solenoids that are inverse limits of sequences

of maps on n-dimensional torus. Chapter-3 extends the previous work about the periodic

points characterization of automorphisms of some solenoids, whose duals are subgroups

of algebraic number fields. Chapter-4 aims to investigate the dynamical properties like

periodicity, topological mixing, topological transitivity, distality and proximality of real

projective transformations from a topological viewpoint. Then, Chapter-5 interprets a

non-autonomous dynamical system (NDS) as a discrete switch dynamical system (SDS)

and describes how the dynamics of a non-autonomous dynamical system can be better

understood using the notion of switch.

Keywords: Topological Dynamics; Solenoids; Inverse Limits; Periodic Points; Pontryagin

Dual; Algebraic Dynamics; Adeles; Projective Transformations; Topological Transitivity;

Topological Mixing; Distality; Discrete Switch Dynamical Systems; Non-Autonomous

Discrete Dynamical System.



Contents

Certificate i

Acknowledgements iii

Abstract iv

Contents v

List of Symbols vii

1 Introduction 1

1.1 Topological Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Dyadic Solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 One-dimensional Solenoids as Inverse Limits . . . . . . . . . . . . 8

1.2.3 Higher dimensional Solenoids as Inverse Limits . . . . . . . . . . . 9

1.2.4 Solenoids in terms of Adeles . . . . . . . . . . . . . . . . . . . . . 9

1.3 Projective Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Discrete Switch Dynamical Systems . . . . . . . . . . . . . . . . . . . . . 11

2 Solenoids as Inverse Limits 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 One Dimensional Solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 n-dimensional solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Future Scope and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Solenoids in terms of Adeles 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Future Scope and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 33

v



4 Dynamics of Real Projective Transformations 34

4.1 Projective Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Transitivity and Mixing . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Distality and Proximality . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Future Scope and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Discrete Switch Dynamical Systems 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Switching rotations on S1 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Future Scope and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 60

References 61

List of Articles/Talks/Conferences 66

Biography 69



List of Symbols

R : real numbers

Q : rationals

Z : integers

N : positive integers

N0 : non-negative integers

GLn(R) : set of all invertible n× n matrices with real entries

fk(x) : f ◦ f ◦ ... ◦ f(x) (k times) for k ∈ N and f 0(x) = x

P (f) : {x ∈ X : x is a periodic point of f}

Per(f) : {n ∈ N : f has a periodic point of least period n}

Fix(f) : set of all fixed points of f

ω(x) : set of all ω−limit points of x

S1 : unit circle i.e. {(x, y) ∈ R2 : x2 + y2 = 1} or R/Z

D2 : solid unit disk i.e. {(x, y) ∈ R2 : x2 + y2 ≤ 1}

Tn : n−dimensional torus i.e. Rn/Zn

Σ : solenoid

Σ̂ : Pontryagin dual of Σ

lim
←
k

(Xk, fk) : inverse limit of the sequence of maps (fk)

P : set of prime numbers

Qp : p−adic rationals

Zp : p−adic integers

Z∗p : {x ∈ Zp : |x|p = 1}

PQ : set of places of Q

QA : ring of adeles of Q

vii



K : algebraic number field

PK : set of places of K

PK
f : set of all finite places of K

PK
∞ : set of all infinite places of K

Kv : completion of K with respect to the place v

ℜv : {x ∈ Kv : |x|v ≤ 1}

ℜ∗v : {x ∈ ℜv : |x|v = 1}

KA : ring of adeles of K

Pn(R) : n−dimensional projective space



Chapter 1

Introduction

For many important classes of dynamical systems, it turns out that the family

of their sets of periods, is elegantly describable and in fact is often totally

unexpected. There is a lot of variety in the answers and the methods used to

arrive at them. - [29] V. Kannan, Sets of periods of dynamical systems, Indian Journal

of Pure and Applied Mathematics 41 (1) (2010), 225-240.

1
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This thesis titled Study of Dynamics of Automorphisms on Solenoids and other

Compact Groups has been focused on investigating the dynamics of the automorphisms

of compact groups. We will be mainly considering two classes of compact groups, namely

the solenoids and real projective spaces. Later we also discuss various dynamical notions

about discrete switch dynamical systems.

In this introductory chapter, we start with a section covering various basic notions of

topological dynamics followed by sections on solenoids, projective transformations and

discrete switch dynamical systems.

1.1 Topological Dynamics

Topological Dynamics is a branch of dynamical system theory that investigates the

qualitative and asymptotic properties of dynamical systems from the standpoint of general

topology. The theory of dynamical systems is essentially the study of eventual behavior of

evolving systems.

By definition, a topological discrete dynamical system (briefly, a dynamical system) is a pair

(X, f), where X is a topological space and f is a continuous self map of X. The trajectory

of x ∈ X is defined as the sequence (x, f(x), f 2(x), f 3(x), ...), where fk(x) = f ◦f ◦ ...◦f(x)

(k times) for k ∈ N and f 0(x) = x. The forward orbit of x is defined as the set {fk(x) : k is

a non-negative integer}. The study of dynamics is primarily concerned with the behavior

of trajectories in the long run.

A point x ∈ X is said to be periodic with a period n if there is an n ∈ N such that

fn(x) = x. The smallest such value of “n” for which x becomes a periodic point is known

as the least period of x. A point is defined as a fixed point when f(x) = x (period one

point). The problems of characterizing the sets of periods and periodic points of a family

of dynamical systems have been well-studied in the literature. To put formally, we define

the problem in the following manner:

If F is a family of self maps on a space X, then give a characterization of the collections:

{Per(f) : f ∈ F} where, Per(f) = {n ∈ N : f has a periodic point of least period n}, and
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{P (f) : f ∈ F} where , P (f) = {x ∈ X : x is a periodic point of f}.

The sets of periods and periodic points of a family of dynamical systems are well studied

in literature. See for instance, [4], [10], [11], [15], [22], [47] and [48].

If x is a periodic point, then it is easy to see that, x is a limit point of its trajectory. For

a general element we have the following notion of ω-limit point.

Definition. A point y ∈ X is said to be an ω-limit point of a point x ∈ X if there is a

sequence of natural numbers (nk) → ∞ (as k → ∞) such that (fnk(x)) → y. The ω−limit

set of x is the set of all ω−limit points of x, denoted by ω(x).

A point x ∈ X approaches arbitrarily close to each of its ω-limit points. If it approaches

arbitrarily close to itself, it is called a recurrent point. The precise definition is as follows.

Definition. A point x is called recurrent if x ∈ ω(x). Equivalently, (fnk(x)) → x for some

sequence of natural numbers (nk) → ∞.

All the above notions are about the trajectories of a single point. We now consider the

kind of dynamics that can happen between two different points. A pair of points is said

to be proximal, if their trajectories come arbitrarily close to each other and those which

are not proximal are called distal.

Definition. Let X be a compact Hausdorff space and f : X → X be a homeomorphism.

x, y ∈ X are said to be proximal if the closure {(fn(x), fn(y)) : n ∈ Z} of the full orbit

of (x, y) under f × f intersects the diagonal ∆ = {(z, z) ∈ X ×X : z ∈ X}. Points which

are not proximal are called distal points.

If (X, d) is a compact metric space, then x, y ∈ X are proximal if there is a sequence (nk)

in Z such that (d(fnk(x), fnk(y))) → 0 as k → ∞. Equivalently, x, y ∈ X are distal if

there is an ϵ > 0 such that d(fn(x), fn(y)) > ϵ for all n ∈ Z.

A peculiar behaviour a pair of points can exhibit is that they come arbitrarily close to

each other and still maintain a minimum positive distance at infinitely many times. This

behavior leads to the concept of scrambledness.

Definition. A subset Y ⊆ X is said to be scrambled if for any two distinct points x and y

in Y , lim inf d(fn(x), fn(y)) = 0 and lim sup d(fn(x), fn(y)) > 0.
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A subset A ⊆ X is said to be forward f − invariant if f(A) ⊆ A. If a subset A ⊆ X

is forward f − invariant, then the dynamics can be restricted to A. Thus we have the

following definition.

Definition. Let X be a compact space. A closed, non-empty, forward f−invariant subset

Y ⊆ X is called a subsystem of (X, f). A subsystem is a minimal system if it contains no

proper subsystem.

Note that a subsystem Y is minimal if and only if the forward orbit of every point in Y is

dense in Y .

Definition. A system is said to be transitive if it has a dense forward orbit.

The word transitive looks more intuitive, owing to the following equivalent notion. If X is

a locally compact Hausdorff space and if for any two non-empty open sets U and V of X,

there is n ∈ N such that fn(U) ∩ V ̸= φ then f is topologically transitive (See [12]).

We now mention two stronger notions of transitivity. For a system (X, f), if (X, fn) is

transitive for every n ∈ N, then (X, f) is called totally transitive. Another stronger version

of transitivity is that, if for any two non-empty open sets U and V , there is n ∈ N such

that fk(U) ∩ V ̸= φ for every k ≥ n, then (X, f) is called topologically mixing.

Coming to the equivalence of systems, we have the following notion called topological

conjugacy, defined as follows.

Definition. If (X, f) and (Y, g) are two dynamical systems and ϕ : X → Y is a surjective

continuous map such that ϕ ◦ f = g ◦ ϕ, then ϕ is called a topological semiconjugacy from

f to g and (Y, g) is called a factor of (X, f). If ϕ is a homeomorphism, then ϕ is called a

topological conjugacy (or briefly a conjugacy); in this case (X, f) and (Y, g) are said to be

topologically conjugate (or briefly conjugate).

1.2 Solenoids

The solenoid was first known to topologists and it was first introduced by L. Vietoris

in 1927 and was also later introduced as an example in dynamical systems by Stephen
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Smale in 1967. It was then picked up by R.F. Williams who developed the theory of

one-dimensional expanding attractors in 1967 and 1974.

A solenoid can be formally defined with the following approaches, in the light of topological

as well as algebraic notions (see [32], [46]).

1. A solenoid is defined as a compact connected finite dimensional abelian group.

2. Solenoids are also described using inverse limits. For an integer n > 1, let πn : Rn →

Tn be the homomorphism defined as πn((x1, x2, ..., xn)) = (x1 (mod 1), x2 (mod 1), ..

.., xn (mod 1)), where T = R/Z is the unit circle. Let M = (Mk)
∞
k=1 = (M1,M2, ...)

be a sequence of n×n matrices with integer entries and non-zero determinant. Then,

the n−dimensional solenoid
∑

M is defined as
∑

M = {(xk) ∈ (Tn)N0 : πn(Mkxk) =

xk−1 for every k ∈ N}.

3. An n−dimensional solenoid Σ is an abelian group whose Pontryagin dual Σ̂ (group

of all characters of Σ) is an (additive) subgroup of Qn and contains Zn. If Σ̂ = Zn,

then Σ is the n−dimensional torus and on the other hand when Σ̂ = Qn, we call it

a full solenoid.

4. The book [26] defines a solenoidal group in the following way. Let G be a topological

group. If G contains a dense cyclic subgroup, then G is said to be monothetic. Let

τ be a continuous homomorphism of R into G. Then τ(R) is called a one-parameter

subgroup of G. If G contains a dense one-parameter subgroup, then G is said to be

solenoidal.

5. The book [46] discusses about the dynamical systems defined with the help of

R−modules, where R = Z[u±1], i.e., the ring of Laurent polynomials in the variable

u with coefficients from Z. It is proven that the dual of the R−module, R/(f), where

(f) is a prime ideal in R, is isomorphic to a k−dimensional solenoid, provided that

there is an n ∈ Z such that unf(u) = c0 + c1u+ ...+ cku
k with |c0ck| > 1. Evidently,

if α is an automorphism of a compact group X, then the dynamics of α, when

viewed as a Z-action on X provides us with an R-module. If this R-module is R/P,

where P is a prime ideal, then X is a solenoid if and only if P = {f ∈ R|f(c) = 0},
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for some c ∈ Q− {0}. Furthermore, the Z-action on X is transformed into the shift

action on a subgroup of TZ.

In this thesis, our aim is to describe the sets of periodic points of solenoidal automorphisms.

In the process, we first describe a solenoid in suitable terms, for instance as an inverse limit

in Chapter 2 and in terms of adeles in Chapter 3 and then describe the sets of periodic

points of certain automorphisms on them. Since we work with only these two notions,

we will elaborate on these aspects in this section and also mention few main results that

we prove in subsequent chapters. The statements of most of these results involve some

notations that are defined in the respective chapters but we do not define them here again

for brevity. Before all these, we start with a particular one-dimensional solenoid, namely

the dyadic solenoid which is easy to visualize and also becomes a prototype for other

solenoids.

1.2.1 Dyadic Solenoids

Image Source: [12]

We will consider the unit circle S1 as the quotient space [0, 1]/ ∼, where 0 and 1 are

identified. Let D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1} describe the solid unit disk. Consider
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the solid torus : T = S1 ×D2 = {(ϕ, x, y)| 0 ≤ ϕ < 1, x2 + y2 ≤ 1}. Fix a real λ ∈
(
0, 1

2

)
.

Define F : T → T such that F (ϕ, x, y) =
(
2ϕ (mod 1) , λx+ 1

2
cos 2πϕ, λy + 1

2
sin 2πϕ

)
.

The map stretches the solid torus and then wraps the stretched torus inside the original.

Cross-section 

 

 

 

Image Source : Internet

The map F stretches the solid torus by a factor of 2 in the S1-direction and contracts by

a factor of λ in the D2-direction. The map F wraps the image (stretched torus) twice

inside the original torus T and the image F n+1(T ) is contained inside int(F n(T )). The

intersection of a non-empty, nested sequence of compact sets is non-empty and compact

and so we obtain the set S = ∩∞n=0 F
n(T ) known as the dyadic solenoid.

Image Source : Wikipedia
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1.2.2 One-dimensional Solenoids as Inverse Limits

The dyadic solenoid defined above can also be viewed as a special subspace of a countable

product of circles. To understand this, we first define the notion of an inverse limit.

Definition. Let Xk be a topological space for each k ∈ N0 and fk : Xk → Xk−1 be a

continuous map for each k ∈ N. Then the subspace of
∞∏
k=0

Xk defined as lim
←
k

(Xk, fk) =

{(xk) ∈
∞∏
k=0

Xk : xk−1 = fk(xk),∀k ∈ N} is called the inverse limit of the sequence of maps

(fk).

Now, the dyadic solenoid is the inverse limit
∞∏
k=0

Xk, where each Xk is S1 and each fk is

given by fk(x) = 2x (mod 1). In a similar manner, a general one-dimensional solenoid is

obtained by defining fk to be the multiplication with an integer larger than one. Hence,

we have the following definition.

Definition. Let A = (ak)
∞
k=1 be a sequence of positive integers such that ak ≥ 2 for every

k ∈ N. The solenoid corresponding to the sequence A, denoted by ΣA, is defined as

ΣA = {(xk) ∈ (S1)(N0) : xk−1 = akxk (mod 1) for every k ∈ N}.

We now list our main results, namely the description of periodic points (Theorem 2.6) and

the number of periodic points (Theorem 2.8) of an automorphism of a one dimensional

solenoid.

Theorem. Let ϕ be an automorphism of a one dimensional solenoid ΣA induced by α
β
, where

A = (βbk), each bk being co-prime to β. For each l ∈ N, define Ul =
⋂
p∈P

(
1

p
ep,lZp ∩Q ∩ S1

)
,

where pep,l = 1
|αl−βl|p . If γk,l : Ul → Ul is the map defined as γk,l(x) = βbkx(mod 1) for

each k ∈ N and l ∈ N, then P (ϕ) =
∞⋃
l=1

lim
←
k

(Ul, γk,l).

Theorem. Let ϕ be an automorphism of a one dimensional solenoid ΣA induced by α
β
and

for every l ∈ N, let ep,l = 1
|αl−βl|p . Then the number of periodic points of ϕ with a period l

is
∏

p/∈D(S)
∞

pep,l .
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1.2.3 Higher dimensional Solenoids as Inverse Limits

For a positive integer n > 1, let πn : Rn → Tn be the homomorphism defined as

πn((x1, x2, ..., xn)) = (x1 (mod 1), x2 (mod 1), ..., xn (mod 1)). Let M = (Mk)
∞
k=1 =

(M1,M2, ...) be a sequence of n×n matrices with integer entries and non-zero determinant.

Then, the n−dimensional solenoid
∑

M is defined as
∑

M = {(xk) ∈ (Tn)N0 : πn(Mkxk) =

xk−1 for every k ∈ N}. In other words,
∑

M = lim
←
k

(Tn, δk), where δk : Tn → Tn is defined

as δk(x) = πn(Mkx).

If ϕ is an automorphism of
∑

M , then there is a matrix L ∈ GL(n,Q) such that ϕ((xk)) =

(πn(Lxk)), for each xk ∈ Tn. We say that ϕ is induced by the matrix L. Now, consider

n sequences of positive integers A1 = (a11, a
1
2, ...), A2 = (a21, a

2
2, ...), ...... An = (an1 , a

n
2 , ...).

Then define the sequence M = (Mk) of matrices as Mk = diag[a1k, a
2
k, ..., a

n
k ]. These

sequences of positive integers and matrices give rise to n one-dimensional solenoids and

an n−dimensional solenoid.

We state the following main result (Theorem 2.11) about its periodic points.

Theorem. For each l ∈ N, define Vl =
∏n

i=1

( ⋂
p∈P

(
1

p
ep,l,iZp ∩Q ∩ S1

))
, where pep,l,i =

1
|αl

i−βl
i|p
. If δk,l : Vl → Vl is the map defined as δk,l(x) = πn(Mkx) for each k ∈ N and l ∈ N,

then P (ϕ) =
∞⋃
l=1

lim
←
k

(Vl, δk,l).

1.2.4 Solenoids in terms of Adeles

The work of characterizing the sets of periodic points for automorphisms on one-dimensional

solenoids in terms of adeles was completed by Sharan and Raja in [22]. A one dimensional

solenoid was described as a quotient of QA, the ring of adeles and then the set of periodic

points were described based on that.

The characterization was entirely based on description of subgroups of Q as given by [5].

Here, given a subgroup S of Q, for every x ∈ S and for every prime number p, we associate

a non-negative integer or the symbol ∞, called as the p-height of x in S, and denoted by

h
(S)
p (x). These prime heights play a very crucial role in describing the solenoids in the

above mentioned paper [22].
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However, these results cannot be extended to higher dimensional solenoids, due to a simple

reason that there is no such description available for subgroups of Qn. In fact, [31] implies

that there is probably “no reasonably simple classification” of these groups.

In this thesis, we overcome this hurdle by considering the adeles of an algebraic number

field K, instead of Q as done above; this may be justified in the following way. In the

earlier case, since the dual Σ̂ of a one dimensional solenoid Σ is a subgroup of Q, we have

Σ(∼= ̂̂
Σ) is a quotient of Q̂ which is in turn a quotient of QA. In case of higher dimensional

solenoids Σ, we have Σ̂ to be a subgroup of Qn and we consider Qn as n-dimensional

vector space over Q. Since this general case cannot be considered on the same lines, we

considered those cases where Σ̂ is a subgroup of K, where K is a finite algebraic extension

of Q (not just a vector space over Q), which is in other words, called an algebraic number

field.

We now state our main results Theorem 3.5 and Theorem 3.7, leaving most of the details

about notations to Chapter 3. In the following statements, PQ denotes the set of all

places of Q and D is a particular subset of PQ. KA denotes the ring of adeles of K and

i : K → KA is the diagonal inclusion map and finally V = i(K) +
∏

p∈PQ
Up, where

Up =

 (0) for p ∈ D ∪ {∞}

{x ∈
∏

v|p Kv : |x(j)|p ≤ n
(j)
p for every j} for p /∈ D ∪ {∞}

,

where x(1), x(2), · · · , x(n) are Qp−coordinates of x.

Theorem. Σ is isomorphic to KA/V .

For a fixed element (d) = (d(1), d(2), · · · , d(n)) ∈ Qn satisfying certain conditions, we get

an automorphism Md of KA under which V is an invariant subgroup and thus inducing an

automorphism Md on Σ. The following Theorem 3.7 describes the set of periodic points

of Md.

Theorem. The set of periodic points ofMd, where d
(j) ̸= ±1 for every 1 ≤ j ≤ n, is given by

P (Md) =
i(K)+

∏′
Kv

V
, where

∏′
Kv =

{
x ∈ KA : for every 1 ≤ j ≤ n, x

(j)
p = 0 whenever

p ∈ D ∪ {∞} and |x(j)p |p ≤ n
(j)
p for all but finitely many p /∈ D ∪ {∞}

}
.
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1.3 Projective Transformations

The dynamical system that we consider in Chapter 4 is
(
Pn(R), T̃

)
, where Pn(R) and

T̃ are defined as follows. For x, y ∈ Rn+1 \ {0̄}, if there exists a non-zero λ ∈ R such

that x = λy, then define x ∼ y. The quotient space Rn+1 \ {0̄} /∼, denoted by Pn(R)

is called the n-dimensional real projective space. The quotient map is denoted by π

and for an x ∈ Rn+1 \ {0̄} , π(x) is also denoted as [x]. It is well known that Pn(R) is

compact and connected. Given a linear map T ∈ GLn+1(R), its associated projective

transformation denoted by T̃ , is defined as T̃ (π(x)) = π(Tx), for every x ∈ Rn+1 \ {0̄}. It

can be easily observed that
(
Pn(R), T̃

)
is a factor of (Rn+1 \ {0̄} , T ). We use the metric

d([x], [y]) = min
{∥∥∥ x
||x|| −

y
||y||

∥∥∥ ,∥∥∥ x
||x|| +

y
||y||

∥∥∥} which induces the topology of Pn(R); where

||x|| is the Euclidean norm of x.

Our main goal here is to understand the various dynamical aspects of projective trans-

formations. There has been an extensive literature in this area. See for instance [18],

[23] and [35]. In the present work, we consider periodicity, transitivity, mixing, distality

and proximality. A characterization of sets of least periods of these transformations is

obtained in Theorem 4.4. On the other hand, the sets of periodic points can be found

easily; this was also discussed in the introduction of the Chapter 4.

Regarding transitivity, we use the results of Herzog [25] who proved that Rn does not

admit linear operators with hypercyclic vectors unless n ∈ {0, 1, 2}. We first prove that

the existence of a supercyclic vector for T is equivalent to the transitivity of T̃ , thus

proving that Pn(R) admits a transitive projective transformation only in the case n = 1.

However, we also prove that Pn(R) does not admit a mixing projective transformation

for any n ∈ N. Coming to distality, we prove that isometries are the only projective

transformations that are distal.

1.4 Discrete Switch Dynamical Systems

The concept of a discrete switch dynamical system (SDS) is an interpretation of the idea

of non-autonomous discrete dynamical system (NDS) in a way that it makes more easy to
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understand the dynamics. The theory of NDS started with the paper [34]. By definition,

an NDS is a topological space X along with a sequence (fn)
∞
n=1 of continuous self maps on

X and the orbit of a point x ∈ X is given by (xn)
∞
n=0, where xn = fn(xn−1) for n ≥ 1 and

x0 = x. Note that this coincides with the usual dynamical system (X, f), if each fn = f .

Following this paper, several people have studied dynamical properties like entropy and

stability in general for NDS.

On the other hand, a similar notion exists in literature for continuous dynamical system

with the name switch continuous dynamical system. In this thesis, we adopt this notion

of switch to discrete dynamical systems, thus giving rise to the discrete switch dynamical

system (SDS). Though SDS is similar to NDS, this new way of looking at this makes it

more easy to understand the underlying dynamics. We also study some properties that

are not verified for NDS like transitivity and recurrence. To the best of our knowledge,

the literature on NDS is more focused on sensitivity properties like entropy and chaos.

In Chapter 5, we introduce the definition of SDS and various dynamical notions in this

new setup. This will be followed by some results in periodicity, transitivity and recurrent

points. We then have a section on switching rotations on the unit circle. We also gave

some examples to show the significance of the idea of SDS. We do not claim that there

are non-trivial results in this chapter as many of the notions are already explored for

NDS. However, this study was made to get an insight into how facts about NDS can be

explained using the idea of switch.



Chapter 2

Solenoids as Inverse Limits

* The work in this chapter is covered by the following publication:

Sharan Gopal, Faiz Imam, Periodic points of solenoidal automorphisms in terms of

inverse limits, Applied General Topology, Vol. 22, No. 2, 321-330 (2021). (Published

by Universitat Politècnica de València)
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In this chapter, we describe the sets of periodic points of automorphisms of a one

dimensional solenoid Σ, considering it as the inverse limit, lim
←
k

(S1, γk) of a sequence (γk)

of maps on the circle S1, where Z ⫋ Σ̂ ⊆ Q. Later, in section 2.3, we discuss the periodic

points for a class of automorphisms on certain higher dimensional solenoids that are

inverse limits of sequences of maps on n-dimensional torus, Tn with n > 1.

In all these cases, we show that the set of periodic points of a given period is the inverse

limit of the same maps (that define the solenoid) restricted to a subgroup of Tn.

2.1 Introduction

Solenoids are extensively studied in literature. Some of the papers consider solenoids as

inverse limits of certain maps on Tn. The paper [53] shows that an ergodic automorphism

of a solenoid is measure theoretically isomorphic to a Bernoulli shift.

A shift space is the dynamical system (Xm, σ), for a positive integer m > 1, where

Xm is the set of infinite two-sided sequences of symbols from the set of {1, 2, · · · ,m}

and the shift map σ : Xm → Xm is defined as σ(x)i = xi+1. The set Cn1,n2,··· ,nk
j1,j2,··· ,jk =

{x = (xl) : xni
= ji, i = 1, 2, · · · , k}, where n1 < n2 < · · · < nk are indices in Z and ji ∈

{1, 2, · · · ,m} is called a cylinder. Now, let A be an m×m matrix with non negative entries

such that all the rows of A are same, say (q1, q2, · · · , qm) and q1 + q2 + · · ·+ qm = 1. For a

cylinder Cn
j of length one in Xm, define P (C

n
j ) = qj and let P (Cn,n+1,n+2,··· ,n+k

j0,j1,j2,··· ,jk ) =
∏k

i=0 qji .

It can then be extended to a shift invariant measure defined on the completion of the

Borel sigma-algebra generated by cylinders. The shift space with this measure is called a

Bernoulli shift.

The papers [1], [7] and [41] discuss about the structure of a solenoid, whereas [32] describes

the structure of group of automorphisms of a solenoid. [2] and [19] calculate the entropy

and the zeta function respectively, for an automorphism of a solenoid. The papers [16]

and [17] consider the flows on higher dimensional solenoids. We use results from [16] to

describe the sets of periodic points of some automorphisms on certain higher dimensional

solenoids.
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There are articles on counting the number of periodic points of a dynamical system;

this forms a crucial part in defining the zeta function. The number of periodic points

of any given period for some continuous homomorphisms of a one dimensional solenoid

was discussed in [42]. Our description of periodic points of one dimensional solenoidal

automorphisms is in accordance with this result.

2.2 One Dimensional Solenoids

As seen in the introduction, a topological group Σ is an n−dimensional solenoid if and

only if its Pontryagin dual Σ̂ is (isomorphic to) a subgroup of the discrete additive group

Qn and contains Zn; so Zn ≤ Σ̂ ≤ Qn. We now recall the definition of a one-dimensional

solenoid as an inverse limit as this forms the central part of this chapter.

Definition 2.1. Let A = (ak)
∞
k=1 be a sequence of positive integers such that ak ≥ 2 for

every k ∈ N. The solenoid corresponding to the sequence A, denoted by ΣA, is defined as

ΣA = {(xk) ∈ (S1)(N0) : xk−1 = akxk (mod 1) for every k ∈ N}.

In other words, the one dimensional solenoid ΣA is the inverse limit, lim
←
k

(S1, γk), where

γk : S
1 → S1 is defined as γk(x) = akx (mod 1).

Definition 2.1 has been taken from the article [41]. The dyadic solenoid described earlier

in 1.2.1 is an example of the above definition, viewed as the inverse limit
∞∏
k=0

Xk, where

each Xk is S1 and each fk is given by fk(x) = 2x (mod 1).

The descriptions of a one dimensional solenoid as an inverse limit and as the dual group

of a subgroup of Q are very closely related. The dual of a one dimensional solenoid ΣA,

where A = (ak) is isomorphic to the subgroup of Q generated by { 1
a1a2···ak

: k ∈ N}. Thus,

a one dimensional solenoid is a topological group whose dual is a subgroup of rationals

and strictly contains integers : Z ⫋ Σ̂ ⊆ Q.

Now, a subgroup of Q is characterized by a sequence, called the height sequence, indexed

by prime numbers and with values in N0 ∪ {∞}. We will now discuss about this sequence
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and establish a relation between the terms of this sequence and the integers ak’s. One

may refer to [5] for more details about the structure of subgroups of Q.

Let S ⊆ Q and x ∈ S. For a p ∈ P , the p−height of x with respect to S, denoted by

h
(S)
p (x) is defined as the largest non-negative integer n, if it exists, such that x

pn
∈ S;

otherwise, define h
(S)
p (x) = ∞. Thus, we have a sequence (h

(S)
p (x)), p ranging over prime

numbers in the usual order, with values in N0 ∪ {∞}. We call such sequences as height

sequences. If (up) and (vp) are two height sequences such that up = vp for all but finitely

many primes and up = ∞ ⇔ vp = ∞, then they are said to be equivalent. If S is a

subgroup of Q, then there is a unique height sequence (up to equivalence) associated to

all non-zero elements of S. Also, two subgroups of Q are isomorphic if and only if their

associated height sequences are equivalent.

Given a subgroup S of Q, for every p ∈ P , we assign an element n
(S)
p of N0 ∪ {∞}

as follows. Let Qp and Zp denote the field of p−adic numbers and the ring of p−adic

integers respectively and |u|p denote the p−adic norm of u ∈ Qp. Then define n
(S)
p =

sup{h(S)p (x) : x ∈ S ∩ Z∗p}, where Z∗p is the multiplicative group {x ∈ Zp : |x|p = 1}. Now,

the information whether n
(S)
p is finite or not, for a given p, is going to play a crucial role in

our discussion. So, we define D
(S)
∞ = {p ∈ P : n

(S)
p = ∞}. We will use the notations n

(S)
p

and D
(S)
∞ , as defined here, throughout this chapter. We now have the following relation

between (n
(S)
p ) and A, where S is the dual of ΣA.

Proposition 2.2. Let ΣA be a one dimensional solenoid and S = Σ̂A, where A = (ak).

Let p ∈ P and np = n
(S)
p . Then,

1. p ∈ D
(S)
∞ if and only if for every j ∈ N, there exists a k ∈ N such that pj|a1a2 · · · ak.

2. If p /∈ D
(S)
∞ , then np is the largest integer such that pnp |a1a2 · · · ak for some k.

Proof. 1. Suppose p ∈ D
(S)
∞ . Since np = ∞, for any j ∈ N, there exists an x ∈

S ∩ Z∗p with h
(S)
p (x) > j. Now, x ∈ Z∗p implies that x = a

b
, where a, b ∈ Z

and (a, p) = (b, p) = 1. Also, h
(S)
p (x) > j implies that x

pj
= a

pjb
∈ S. But,

S =
{

i
a1a2···ak

: i ∈ Z, k ∈ N
}
. Thus, a

pjb
= i

a1a2···ak
for some i ∈ Z and k ∈ N. Then,

we have aa1a2 · · · ak = ipjb implying that pj|a1a2 · · · ak.
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For the converse, let j ∈ N. Then, there exists a k ∈ N such that a1a2 · · · ak = pji

for some i ∈ N. This implies that 1
pj

= i
a1a2···ak

∈ S and thus h
(S)
p (1) ≥ j. Since j is

chosen arbitrarily and 1 ∈ S ∩ Z∗p, we get, np = ∞ i.e., p ∈ D
(S)
∞ .

2. Suppose p /∈ D
(S)
∞ . Then, np = max{h(S)p (x) : x ∈ S ∩ Z∗p}. Say np = h

(S)
p (x0)

for some x0 ∈ S ∩ Z∗p i.e., x0

pnp ∈ S. Let x0 = u0

v0
, for some u0, v0 ∈ Z. Then

(u0, p) = (v0, p) = 1. Now, x0

pnp ∈ S implies that u0

pnpv0
= i

a1a2···ak
for some i ∈ Z and

k ∈ N i.e, u0a1a2 · · · ak = ipnpv0 and hence pnp|a1a2 · · · ak.

If possible, let l > np such that pl|a1a2 · · · aj for some j. But then, a1a2 · · · aj = pli′

for some i′ ∈ N implying that 1
pl
= i′

a1a2···aj ∈ S and thus h
(S)
p (1) ≥ l > np which is a

contradiction. Therefore, np is the largest integer such that pnp |a1a2 · · · ak for some

k.

The following corollary follows from the above proposition.

Corollary 2.3. Let ΣA, S and D
(S)
∞ be defined as above. Then, for a p ∈ P , p ∈ D

(S)
∞ if

and only if p divides infinitely many ak’s.

If f is an automorphism of a one dimensional solenoid Σ, then its dual is an automorphism

of a subgroup of Q and thus, it is multiplication by a non-zero rational number, say α
β
and

for any (xk) ∈ Σ, f((xk)) = (α
β
xk(mod 1)). We say that f is induced by α

β
. It is known that

f is ergodic if and only if α
β
≠ ±1. Further, we can assume that A = (βbk), where each bk

is a positive integer coprime to β. In this case, we can write f((xk)) = (αb1x1, αb2x2, ...)

for each (xk) ∈ Σ(βbk). See [53] for all these details about automorphisms.

We now state and prove our main results, namely the description of periodic points

(Theorem 2.6) and the number of periodic points (Theorem 2.8) of an automorphism of a

one dimensional solenoid. Before that, the following proposition describes the elements

of a one dimensional solenoid with rational coordinates, in terms of the prime factors of

ak’s and the succeeding proposition shows that a periodic point should have only rational

coordinates.
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Proposition 2.4. Let ΣA be a one dimensional solenoid where A = (ak) and (xk) =

(uk

vk
) ∈ ΣA ∩QN0, where uk, vk ∈ Z such that (uk, vk) = 1. For a p ∈ P , denote |vk|p = 1

pck
,

for every k ≥ 0 and let |ak|p = 1
pdk
, for every k ≥ 1. If h is the least integer such that

ch > 0, then ck = ch + dh+1 + dh+2 + · · ·+ dk, for every k > h.

Proof. It follows from the definition of a one dimensional solenoid that uh

vh
= ah+1ah+2 · · ·

· · · ak uk

vk
+ j for some j ∈ Z. Since ch > 0, it follows that (uh, p) = (uk, p) = 1. Then, we

can find positive integers a′h+1, a
′
h+2, · · · , a′k, v′k and v′h, each of which is coprime to p, such

that

uh

pchv
′
h

=
pdh+1+dh+2+···dka

′
h+1a

′
h+2···a

′
kuk

pckv
′
k

+ j

⇒ pckv
′

kuh = pch+dh+1+···dkv
′

ha
′

h+1 · · · a
′

kuk + jpck+chv
′

kv
′

h

⇒ pck
(
v

′

kuh − pchjv
′

kv
′

h

)
= pch+dh+1+···dkv

′

ha
′

h+1 · · · a
′

kuk

Now, since ch > 0, p does not divide
(
v

′

kuh − pchjv
′

kv
′

h

)
. Thus, ck = ch + dh+1 + · · · dk for

every k > h.

Proposition 2.5. Let ΣA be a one dimensional solenoid and S = Σ̂A, where A = (ak). If

(xk) is periodic in (ΣA, ϕ), where ϕ is an automorphism of ΣA induced by α
β
, then xk ∈ Q

for every k ∈ N0. Further, for any p ∈ D
(S)
∞ , we have |xk|p ≤ 1 for every k ∈ N0.

Proof. Say ϕl ((xk)) = (xk) for some l ∈ N. Then, for any k ∈ N0,
αl

βlxk = xk + jk for

some jk ∈ Z and thus xk ∈ Q. Let xk = uk

vk
, where uk, vk ∈ Z and (uk, vk) = 1. Then,

(αl − βl)uk = βlvkjk for every k ≥ 0. For a prime number p, let us now denote |vk|p = 1
pck
,

for every k ≥ 0 and |ak|p = 1
pdk
, for every k ≥ 1.

Let p ∈ D
(S)
∞ . Then, by Corollary 2.3, p|ak for infinitely many k and thus dk > 0

for infinitely many k. Suppose there exists an r ∈ N0 such that p|vr. Then, cr > 0

and (αl − βl)ur = βlvrjr implies that pcr |(αl − βl). Now from Proposition 2.4, cr+k =

ch+dh+1+ · · ·+dr +dr+1+ · · ·+dr+k, where h is the least integer such that ch > 0. Then,

h ≤ r and cr+k = cr + dr+1 + dr+2 + · · ·+ dr+k.

Again, since (αl − βl)ur+k = αlvr+kjr+k for every k ≥ 0, we get pcr+dr+1+···+dr+k |(αl − βl).

This is a contradiction, as infinitely many of dr+1, dr+2, · · · are non-zero. Hence, p ̸ | vk for

any k. Therefore, |xk|p ≤ 1 for every k ≥ 0.
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In the following theorem about the set of periodic points of the dynamical system(Σ(ak),
α
β
),

we assume that ak = βbk, where each bk is a positive integer coprime to β. As noted

already, there is no loss of generality in assuming this (see [53]).

Theorem 2.6. Let ϕ be an automorphism of a one dimensional solenoid ΣA induced

by α
β
, where A = (βbk), each bk being co-prime to β. For each l ∈ N, define Ul =⋂

p∈P

(
1

p
ep,lZp ∩Q ∩ S1

)
, where pep,l = 1

|αl−βl|p . If γk,l : Ul → Ul is the map defined as

γk,l(x) = βbkx(mod 1) for each k ∈ N and l ∈ N, then P (ϕ) =
∞⋃
l=1

lim
←
k

(Ul, γk,l).

Proof. Let (xk) be a periodic point with a period l. Then, xk ∈ Q for every k ≥ 0;

say xk = uk

vk
, where uk, vk ∈ Z such that (uk, vk) = 1. Again, for every prime p, let

|vk|p = 1
pck
, for every k ≥ 0. Now, ϕl ((xk)) = (xk) implies that (αl − βl)uk = nlvkjk

for some jk ∈ Z. Since pck |vk, it follows that pck |(αl − βl) and thus ck ≤ ep,l. We can

now write xk = 1
p
ep,l .

p
ep,l−ck .uk

v
′
k

, for some v
′

k ∈ Z such that (v
′

k, p) = 1. It then follows

that xk ∈ 1
p
ep,lZp, because |p

ep,l−ck .uk

v
′
k

|p ≤ 1

p
ep,l−ck

≤ 1. Since p was chosen arbitrarily, we

conclude that xk ∈ Ul, for every k ≥ 0.

On the other hand, let (xk) ∈ lim
←
k

(Ul, γk,l) for some l ∈ N. Say xk = uk

vk
, where uk, vk ∈ Z

such that (uk, vk) = 1. Write vk =
∏
p|vk

pcp , for some cp ∈ N. Then, for any p|vk, |xk|p = pcp .

Also, |xk|p ≤ pep,l , for any p ∈ P . Thus, cp ≤ ep,l and hence vk|(αl − βl). Therefore,

αl−βl

vk
∈ Z, for every k. Then, ϕl((xk)) − (xk) =

(
(αl − βl)bk+1bk+2...bk+lxk+l

)
= (0)

implying that (xk) is periodic.

Remark 2.7. The set of periodic points of period l is equal to lim
←
k

(Ul, γk,l). Here Ul is a

subgroup of S1 and the map γk,l is the restriction of γk to Ul, where γk is a map on S1

such that Σ(nbk) = lim
←
k

(S1, γk).

The following theorem about the number of periodic points, which follows from the above

description, is in accordance with a similar result in [42].

Theorem 2.8. Let ϕ be an automorphism of a one dimensional solenoid ΣA induced by

α
β
and for every l ∈ N, let ep,l = 1

|αl−βl|p . Then the number of periodic points of ϕ with a

period l is
∏

p/∈D(S)
∞

pep,l .
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Proof. Since αl − βl ∈ Z, ep,l is positive only for finitely many primes. Thus, there is a

finite subset F of P \D(S)
∞ such that for a p /∈ D

(S)
∞ , ep,l ̸= 0 if and only if p ∈ F .

Therefore
∏

p/∈D(S)
∞

pep,l =
∏
p∈F

pep,l .

We first claim that (xk) is periodic with a period l if and only if for every k ∈ N0, xk = uk

vk
,

where uk, vk ∈ Z, 0 ≤ uk < vk and vk =
∏
p∈F

pfp,k with 0 ≤ fp,k ≤ ep,l.

If ϕl ((xk)) = (xk), then for every k ∈ N0, xk ∈ 1
p
ep,lZp ∩Q, for every p ∈ P . Let xk =

uk

vk

for some uk, vk ∈ Z such that (uk, vk) = 1. Now, xk ∈ 1
p
ep,lZp implies that |xk|p ≤ pep,l ,

for every p. From Proposition 2.5, if p ∈ D
(S)
∞ , then p ̸ | vk. Also, for a prime p not in

F , ep,l = 0 implies that p ̸ | vk. Thus, the prime factorisation of vk =
∏
p∈F

pfp,k for some

0 ≤ fp,k ≤ ep,l. Since xk ∈ [0, 1), we conclude that 0 ≤ uk < vk.

Conversely, if xk =
uk

vk
, where uk and vk satisfy the given conditions, then |xk|p ≤ 1, for

p /∈ F and |xk|p ≤ pfp,k for p ∈ F . In any case |xk|p ≤ pep,l and thus xk ∈ Ul. Hence the

claim follows.

For a p ∈ F , let |ak|p = 1
pdk

, for every k ∈ N. As this dk depends on p we will denote

dk = d
(p)
k . Again, there are at most finitely many k ∈ N for which d

(p)
k > 0, as F ⊆ P \D(S)

∞ ;

let these positive integers be denoted by d
(p)
k1
, d

(p)
k2
, ..., d

(p)
kα(p)

, where α(p) ∈ N0. Further,

assume that k1 < k2 < ... < kα(p). Let K = max{kα(p) : p ∈ F}, if kα(p) > 0 for at least

some p ∈ F ; otherwise, define K = 0. Then, d
(p)
k = 0 for every k > K and for every p ∈ F .

Let (xk) ∈ ΣA be periodic; say xk = uk

vk
, where uk, vk ∈ Z such that (uk, vk) = 1. We have

xK = uK

vK
, where 0 ≤ uK < vK and vK =

∏
p∈F

pfp,K with 0 ≤ fp,K ≤ ep,l. For any k < K,

the value of xk is uniquely determined by xK , as xk = ak+1ak+2...aKxK (mod 1).

Now, let k > K. It follows from Proposition 2.4 that vk = vK .

Also, xK = aK+1...akxk (mod 1) i.e., uK

vK
= aK+1...ak

uk

vk
+ j for some j ∈ Z. By denoting

aK+1...ak = gk and using the fact that vk = vK , we have
uK

vK
= gk

uk

vK
+ j. Since d

(p)
k = 0 for

any k > K and every p ∈ F , it follows that p ̸ | gk for any p ∈ F . Having defined uK

vK
, the

distinct possible values for uk

vK
are uk

vK
= uK

gkvK
− j

gk
, where j ∈ {0, 1, ..., gk − 1}. Consider

two such values, say
u
(1)
k

vK
= uK

gkvK
− j1

gk
and

u
(2)
k

vK
= uK

gkvK
− j2

gk
for some j1, j2 ∈ {0, 1, ...gk − 1}.

Then,
u
(1)
k −u

(2)
k

vK
= j2−j1

gk
and thus gk

(
u
(1)
k − u

(2)
k

)
= vK (j2 − j1). Now, if j1 ̸= j2, then
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|j2− j1| < gk and thus gk ̸ | (j2− j1). But then, there will be a prime p such that p | gk and

p | vK . On one hand, p | gk implies that p /∈ F . On the other hand, p | vK implies that

p | ml − nl and also p /∈ D
(S)
∞ , which means that p ∈ F leading to a contradiction. Hence,

j1 = j2 i.e., u
(1)
k = u

(2)
k . Thus, there is only one possible value for xk. Thus, a periodic

point (xk) is uniquely determined by the coordinate xK . Now, since 0 ≤ fp,K ≤ ep,l, the

possible values of xK are j∏
p∈F

p
ep,l , where 0 ≤ j <

∏
p∈F

pep,l . Thus, the theorem follows.

2.3 n-dimensional solenoids

We now extend our result about periodic points to some automorphisms of certain higher

dimensional solenoids. Though this seems to be a small class, the reason for considering

it is that the result follows immediately from what we have shown for one dimensional

case. The higher dimensional solenoids that we are going to consider are isomorphic

to products of one dimensional solenoids, as described in [16]. We mention here some

notations, definitions and results from this paper that are needed to discuss our result.

For a positive integer n > 1, let πn : Rn → Tn be the homomorphism defined as

πn((x1, x2, ..., xn)) = (x1 (mod 1), x2 (mod 1), ..., xn (mod 1)). Let M = (Mk)
∞
k=1 =

(M1,M2, ...) be a sequence of n×n matrices with integer entries and non-zero determinant.

Then, the n−dimensional solenoid
∑

M is defined as
∑

M = {(xk) ∈ (Tn)N0 : πn(Mkxk) =

xk−1 for every k ∈ N}. In other words,
∑

M = lim
←
k

(Tn, δk), where δk : Tn → Tn is defined

as δk(x) = πn(Mkx).

If ϕ is an automorphism of
∑

M , then there is a matrix L ∈ GL(n,Q) such that ϕ((xk)) =

(πn(Lxk)). We say that ϕ is induced by the matrix L. Now, consider n sequences of

positive integers A1 = (a11, a
1
2, ...), A2 = (a21, a

2
2, ...), ...... An = (an1 , a

n
2 , ...). Then define the

sequence M = (Mk) of matrices as Mk = diag[a1k, a
2
k, ..., a

n
k ]. These sequences of positive

integers and matrices give rise to n one-dimensional solenoids and an n−dimensional

solenoid. The following lemma from [16] gives a connection between these.

Lemma 2.9. The map η :
∏n

i=1

∑
Ai

→
∑

M given by η((x1k)
∞
k=1, (x

2
k)
∞
k=1, ..., (x

n
k)
∞
k=1)

= ((x11, x
2
1, ..., x

n
1 ), (x

1
2, x

2
2, ..., x

n
2 ), ..., (x

1
k, x

2
k, ..., x

n
k), ...) is a topological isomorphism.
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We reserve these symbols Ai, i = 1, 2, ..., n for the sequences of positive integers and

Mk, k ∈ N for the corresponding diagonal matrices as described above. Now, let ϕ be

an automorphism of
∑

M induced by a diagonal matrix, say D = diag[α1

β1
, α2

β2
, ..., αn

βn
].

Then for each i, αi

βi
induces an automorphism of the one dimensional solenoid

∑
Ai
,

say ψi. Again, by following [53], we assume that Ai = (βib
i
k) for some suitable se-

quence (bik) of positive integers. Then, the map ψ : ((x1k)
∞
k=1, (x

2
k)
∞
k=1, ..., (x

n
k)
∞
k=1) 7→

(ψ1((x
1
k)
∞
k=1), ψ2((x

2
k)
∞
k=1), ..., ψn((x

n
k)
∞
k=1)) is an automorphism of

∏n
i=1

∑
Ai
. It is easy to

see that η ◦ ψ = ϕ ◦ η. Thus, we have the following proposition.

Proposition 2.10. (
∏n

i=1

∑
Ai
, ψ) is conjugate to (

∑
M , ϕ).

We now state and prove a theorem regarding the periodic points.

Theorem 2.11. For each l ∈ N, define Vl =
∏n

i=1

( ⋂
p∈P

(
1

p
ep,l,iZp ∩Q ∩ S1

))
, where

pep,l,i = 1
|αl

i−βl
i|p
. If δk,l : Vl → Vl is the map defined as δk,l(x) = πn(Mkx) for each k ∈ N

and l ∈ N, then P (ϕ) =
∞⋃
l=1

lim
←
k

(Vl, δk,l), where ϕ is the automorphism of
∑

M induced by

a diagonal matrix, defined as above.

Proof. Let Pl(ϕ) and Pl(ψ) be the sets of periodic points of ϕ and ψ respectively, with

a period l ∈ N. Since η is a conjugacy from (
∏n

i=1

∑
Ai
, ψ) to (

∑
M , ϕ), it follows that

Pl(ϕ) = η (Pl(ψ)). But Pl(ψ) =
∏n

i=1 Pl(ψi), where ψi is the automorphism of
∑

Ai

induced by αi

βi
. Thus by Theorem 2.6,

Pl(ψ) =
∏n

i=1

{
(xik)

∞
k=1 ∈

∑
Ai

: xik ∈ Q and |xik|p ≤ 1
p
ep,l,i for every p ∈ P

}
.

Then, Pl(ϕ) =
{
((x1k, x

2
k, · · ·xnk))

∞
k=1 ∈

∑
M : xik ∈ Q and |xik|p ≤ 1

p
ep,l,i for every p ∈ P

}
=

lim
←
k

(Vl, δk,l). Thus, P (ϕ) =
∞⋃
l=1

lim
←
k

(Vl, δk,l).

Remark 2.12. The set of periodic points of ϕ with a period l is equal to lim
←
k

(Vl, δk,l). Here,

Vl is a subgroup of Tn and δk,l is the restriction of δk to Vl, where each δk is a map on Tn

such that
∑

M = lim
←
k

(Tn, δk).



Chapter 2. Solenoids as Inverse Limits 23

2.4 Future Scope and Conclusion

The periodic points of an automorphism of a one dimensional solenoid are described in

Section 2.2 of this chapter. There are papers that discuss the number of periodic points or

in general the zeta function of such automorphisms, whereas this chapter gives an explicit

description of these points. Then, we have extended this result to certain automorphisms

of higher dimensional solenoids also. Hence, the present description in terms of inverse

limits may be helpful in the open problem of periodic point characterization for the more

general case of an n−dimensional arbitrary solenoid Σ, which is an abelian group whose

Pontryagin dual Σ̂ is an (additive) subgroup of Qn and contains Zn.
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* The work in this chapter is covered by the following article:

Faiz Imam, Sharan Gopal, Periodic points of solenoidal automorphisms in terms of

adeles, (In Communication).
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This chapter is about the characterization of periodic points of automorphisms of some

solenoids, whose duals are subgroups of algebraic number fields. We use a concept

from algebraic number theory namely adeles, to describe a solenoid and the periodic

points of its automorphisms. The work done in this chapter is consistent with previous

characterizations of other types of solenoids.

In the upcoming section, we define the key terms used in this chapter and discuss the

prior characterizations of specific solenoids and the periodic points of their automorphisms.

The main results are then stated and proved in the subsequent section. The first theorem

describes a solenoid using adeles, and then the second theorem characterizes the set of

periodic points of some automorphisms on it.

As mentioned in the introduction to the previous chapter, solenoids are considered by

several people in literature. Regarding their algebraic structure, solenoids are discussed in

[32], [33], [46], etc. Richard Miles [42] found the zeta function for solenoidal automorphisms

independently using algebraic techniques. In this chapter, we study solenoids using adeles,

a number theoretic concept. We rely on [30] and [52] for terminology and a variety of

results about adeles.

3.1 Introduction

A finite extension of the field of rational numbers Q is defined as an algebraic number

field K. In other words, the dimension of K as a vector space over Q is finite.

Definition 3.1. A map ρ : K → R is defined as a valuation if it satisfies the following

properties for all x, y ∈ K:

(1) ρ(x) ≥ 0 and ρ(x) = 0 ⇔ x = 0,

(2) ρ(x.y) = ρ(x)ρ(y),

(3) ρ(x+ y) ≤ ρ(x) + ρ(y).

If a valuation satisfies the stronger property ρ(x+ y) ≤ max(ρ(x), ρ(y)), for all x and y,

then ρ is called a non-Archimedian valuation, and otherwise an Archimedian valuation.

Two valuations ρ1 and ρ2 are defined to be equivalent if there exists a positive real number
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s such that ρ1(r) = ρ2(r)
s for every r ∈ K. Moreover, if ρ1 is equivalent to ρ2, then either

both of them are Archimedian or both of them are non-Archimedian. An equivalence

class of valuations of K is called a place of K and the set of all places of K is denoted

by PK. A place is called finite if it contains a non-Archimedian valuation and infinite

otherwise. The collection of finite places will be denoted by PK
f whereas PK

∞ denotes the

set of infinite places. It may be noted that PK
∞ is a finite set for any K.

For each v ∈ PK, Kv denotes the completion of K with respect to v and ℜv = {x ∈ Kv

: |x|v ≤ 1}. ℜv is always a compact subset of Kv and when v ∈ PK
f , ℜv is an open,

unique maximal compact subring of Kv. We also consider ℜ∗v := {x ∈ ℜv : |x|v = 1}

in our discussion. The adele ring of K, denoted by KA is then defined as KA ={
(xv) ∈

∏
v∈PK Kv/ xv ∈ ℜv for all but finitely many v ∈ PK

f

}
.

For the field Q, every finite valuation is equivalent to a p−adic valuation where p is a

rational prime and an infinite valuation is equivalent to the usual absolute value. Thus we

can view PQ = {p : p is a rational prime}∪ {∞}, where | |∞ is the usual absolute value.

Now, if K is an algebraic number field, then for each p ∈ PQ, there exists finitely many

v ∈ PK such that v lies above p (denoted as v|p), i.e. v restricted to Q is equal to p.

If Σ is a one-dimensional solenoid, then we have Z ⫋ Σ̂ ⊆ Q. As discussed in the previous

chapter, for any subgroup of rationals, there is a unique height sequence (up to the

equivalence relation) corresponding to all the non-zero elements of the subgroup. Also, two

corresponding height sequences are equivalent if and only if there exists an isomorphism

between these two subgroups.

In [22]1, the solenoid Σ and the set of periodic points of an automorphism are described

using QA in the following way. In these statements, hp(x) denotes h
(S)
p (x) for brevity.

Theorem 3.2 (Sharan, Raja; 2017). Let Σ be a one-dimensional solenoid.

Let np := sup{hp(x) : x ∈ Σ̂ ∩ Z∗p} and D∞ = {p ∈ P : np = ∞}.

Then Σ = QA
i(Q)+L

, where L =
∏

p≤∞ Up and Up =

 (0) if p ∈ D∞ ∪ {∞}

pnpZp if p /∈ D∞ ∪ {∞}
,

where i : Q → QA is the diagonal inclusion given by a constant adele sequence.

1Both the theorems mentioned here are the corrigendum version of results from the article [22]. A
simple observation that the collection D(defined in [22]) is in fact the set of all primes P , was inadvertently
missed in that paper.
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Theorem 3.3 (Sharan, Raja; 2017). Let Σ, L and D∞ be defined as above. If α is an

ergodic automorphism of Σ, then P (α) = i(Q)+
∏′ Qp

i(Q)+L
, where

∏′Qp := {x ∈ QA : xp = 0 for

every p ∈ D∞ ∪ {∞} and xp ∈ pnpZp for all but finitely many p in P \D∞}.

In this chapter, we consider solenoids of any arbitrary dimension n whose duals are

additive subgroups of algebraic number fields. In the rest of this chapter, we denote a

solenoid by Σ and an algebraic number field by K. Now consider KA, the ring of adeles of

K. For any p ∈ PQ, Zp can be considered as a subring of QA by identifying c ∈ Zp with

x ∈ QA, where xp = c and xq = 0 for q ̸= p. Similarly,
∏

v|p Kv can be considered as a

subring of KA by identifying
∏

v|p av ∈
∏

v|p Kv with b ∈ KA, where bv = av for v|p and

bw = 0 otherwise. From Lemma 6.101 of [30], it follows that there is an isomorphism (of

topological groups) α : KA → (QA)
n such that α

(∏
v|p ℜv

)
is equal to (Zp)

n for almost

all finite p. We further assume that α
(∏

v|p ℜv

)
= (Zp)

n for all the finite places.

We write α(x) =
(
x(1), x(2), · · · , x(n)

)
∈ (QA)

n, for each x ∈ KA and write x(j) =(
x
(j)
p

)
p∈PQ

, for each x(j) ∈ QA. For every r ∈ K, we write β(r) =
(
r(1), r(2), · · · , r(n)

)
∈ Qn

where r =
∑n

i=1 r
(i)αi and {α1, α2, · · · , αn} is a Q-basis for K. Then, β is an isomorphism

from K to Qn. We further assume that β(Σ̂) is a Zn-module and also Zn ⊆ β(Σ̂).

For a = (av)v∈PK ∈ KA, let ap =
∏

v|p av ∈
∏

v|p Kv, for every p ∈ PQ. We know that∏
v|p Kv is a vector space over Qp. It follows from Lemma 6.69 and 6.101 of [30] that the

Qp-coordinates of ap are same as
(
a
(1)
p , a

(2)
p , · · · , a(n)p

)
, where

(
a(1), a(2), · · · , a(n)

)
= α(a)

and a(j) =
(
a
(j)
q

)
q∈PQ

.

3.2 Main Results

Consider the map η : QA → Q̂ given by η(x) = ηx, where ηx : Q → S1 is defined as

ηx(r) = e−2πix∞r ·
∏

p<∞
e2πi{xpr}p and x = (xp)p∈PQ . It is known that this map η is a

surjective homomorphism. Now, consider the map ξ : (QA)
n → Q̂n given by ξ(x̄) = ξx̄,

where ξx̄ : Qn → S1 is defined as ξx̄(r̄) = ηx(1)(r(1)) · ηx(2)(r(2)) · · · ηx(n)(r(n)), where

x̄ = (x(1), x(2), · · · , x(n)) ∈ (QA)
n and r̄ = (r(1), r(2), · · · , r(n)) ∈ Qn. Observe that ξ is
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a homomorphism. Note that ξ(x̄)(r̄) = e
−2πi

n∑
j=1

x
(j)
∞ r(j)

·
∏

p<∞
e
2πi

n∑
j=1
{x(j)

p r(j)}p
. Now, define

ω : KA → Q̂n as ω(a) = ωa, where ωa = ξ ◦ α(a); in other words, if a ∈ KA and

α(a) = (a(1), a(2), · · · , a(n)), then ωa(r̄) = e
−2πi

n∑
j=1

a
(j)
∞ r(j)

·
∏

p<∞
e
2πi

n∑
j=1
{a(j)p r(j)}p

. Since ξ and

α are homomorphisms, ω is also a homomorphism. Finally, define ψ : KA → K̂ as ψ(a) =

ψa, for every a ∈ KA, where ψa : K → S1 is given by ψa(r) = ωa ◦ β(r), for every r ∈ K.

Note that if α(a) = (a(1), a(2), · · · , a(n)) ∈ (QA)
n and β(r) = (r(1), r(2), · · · , r(n)) ∈ Qn,

then ψa(r) = wa ◦ β(r)

= wa(r
(1), r(2), . . . , r(n))

= ξα(a)(r
(1), r(2), . . . , r(n))

= ξ(a(1),a(2),...,a(n))(r
(1), r(2), . . . , r(n))

= e
−2πi

n∑
j=1

a
(j)
∞ r(j)

·
∏
p<∞

e
2πi

n∑
j=1
{a(j)p r(j)}p

.

Note that ψ is a homomorphism.

Proposition 3.4. ψ is a surjective homomorphism that is trivial on i(K).

Proof : Let χ ∈ K̂. For each 1 ≤ j ≤ n, define η(j) : Q → S1 as η(j)(b) =

χ
(
β−1(0, · · · , b, · · · , 0)

)
where b is in jth position. Then η(j) ∈ Q̂ and hence there

exists x(j) = (x
(j)
p ) ∈ QA, such that η(j) = ηx(j) .

Then, for every r ∈ K,

ψ
(
α−1
(
x(1), x(2), · · · , x(n)

))(
r
)

= ξ(x(1),x(2),··· ,x(n))

(
r(1), r(2), · · · , r(n)

)
= ηx(1)

(
r(1)
)
.ηx(2)

(
r(2)
)
· · · ηx(n)

(
r(n)
)

= χ

(
β−1
(
r(1), 0, 0, · · · , 0

))
.χ

(
β−1
(
0, r(2), 0, 0, · · · , 0

))
· · ·χ

(
β−1
(
0, 0, · · · , 0, r(n)

))
= χ

(
β−1
(
r(1), 0, 0, · · · , 0

)
+ β−1

(
0, r(2), 0, 0, · · · , 0

)
+ · · ·+ β−1

(
0, 0, · · · , 0, r(n)

))
= χ

(
β−1
(
r(1), r(2), · · · , r(n)

))
= χ

(
r
)
.

Hence, ψ is surjective.
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We now claim that ψ is trivial on i(K). If a = (av) ∈ i(K), then there exists an

x ∈ K such that av = x for every v ∈ PK. Now, āp = (x, x, · · · , x) ∈
∏

v|p Kv and

the Qp−coordinates of āp are a
(1)
p , a

(2)
p , · · · , a(n)p . Since āp is same for all values of p,

each sequence (a
(j)
p )p∈PQ is a constant sequence and thus a(j) ∈ i(Q). Say (a

(1)
p ) =

(δ(1)), (a
(2)
p ) = (δ(2)) , · · · , (a

(n)
p ) = (δ(n)), where δ(j) ∈ Q. Then, for any r ∈ K with

β(r) = (r(1), r(2), · · · , r(n)) ∈ Qn, we have ψ(a)(r) = ξ((δ(1)),(δ(2)),··· ,(δ(n)))(r
(1), r(2), · · ·

· · · , r(n)) =
n∏

j=1

η(δ(j))(r
(j)). But, η(δ(j))(r

(j)) = e−2πiδ
(j)r(j) .

∏
p<∞

e2πi{δ
(j)r(j)} = 1, for every j.

Therefore, ψ(a) = 1, for every a ∈ i(K). Hence the claim. □

Since Σ̂ is a subgroup of K, we have
̂̂
Σ = K̂/ann(Σ̂) and thus, Σ = K̂/ann(Σ̂) (it is

well known that if H is a subgroup of G, then Ĥ = Ĝ/ann(H), where ann(H) is the

annihilator of H defined by ann(H) = {g ∈ Ĝ / g(h) = 0, for all h ∈ H}). Define

ψ′ : KA → Σ as ψ′ = π ◦ ψ, where π : K̂ → Σ is the quotient map. Since π and ψ are

surjective, ψ′ is surjective. We will now find Ker ψ
′
and thus obtain Σ as a quotient of KA.

For every p ∈ PQ
f and 1 ≤ j ≤ n, define m

(j)
p = sup{|r(j)|p : r ∈ Σ̂}, where

β(r) =
(
r(1), r(2), · · · , r(n)

)
. Since Zn ⊂ β(Σ̂), we have r = β−1 (0, · · · , p, · · · , 0) ∈

Σ̂ and thus |r(j)|p = |p|p = 1
p
≠ 0 concluding thatm

(j)
p ̸= 0. Let n

(j)
p =


1

m
(j)
p

if m
(j)
p <∞

0 if m
(j)
p = ∞

and

D = {p ∈ PQ
f : m

(j)
p = ∞ for every 1 ≤ j ≤ n}. Now, define a subgroup Up of

∏
v|p Kv for

every p ∈ PQ as Up =

 (0) for p ∈ D ∪ {∞}

{x ∈
∏

v|p Kv : |x(j)|p ≤ n
(j)
p for every j} for p /∈ D ∪ {∞}

,

where x(1), x(2), · · · , x(n) are Qp−coordinates of x. Finally, define V = i(K) +
∏

p∈PQ
Up.

Note that D is similar to the set D∞ of [22].

Theorem 3.5. Σ is isomorphic to KA/V .

Proof : We prove that Ker ψ′ = V so that the required result follows. If a ∈ V ,

then ψ′(a) = π(ψ(a)); so we need to prove that ψ(a) ∈ ann(Σ̂), that is ψ(a)(r) =

1 for every r ∈ Σ̂. Now, a ∈ V implies that a = (δ) + l where (δ) ∈ i(K) and l ∈
∏
Up.

So, we have the equality ψ(a) = ψ(δ).ψ(l) = ψ(l). Further, if p ∈ D ∪ {∞}, then

l̄p = 0, where l̄p =
∏

v|p lv ∈
∏

v|p Kv which implies that l
(j)
p = 0 for all 1 ≤ j ≤ n. So,

ψ(l)(r) =
∏

p/∈D∪{∞}
e2πi

∑n
j=1{l

(j)
p r(j)}p , for all r ∈ Σ̂.
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Even for a p /∈ D ∪ {∞}, l̄p ∈ Up

⇒ |l(j)p |p ≤ n(j)
p =

1

m
(j)
p

or |l(j)p |p = 0, for every 1 ≤ j ≤ n

⇒ |l(j)p r(j)|p ≤ |l(j)p ||r(j)|p ≤
1

m
(j)
p

.m(j)
p = 1 or |l(j)p r(j)|p = 0, for every r ∈ Σ̂ and 1 ≤ j ≤ n.

⇒ |l(j)p r(j)|p ≤ 1, for all r ∈ Σ̂ and 1 ≤ j ≤ n.

⇒ {l(j)p r(j)}p = 0, for all r ∈ Σ̂ and 1 ≤ j ≤ n.

⇒ e−2πi
∑n

j=1{l
(j)
p r(j)}p = 1

Hence, ψ(a)(r) = ψ(l)(r) = 1, for every r ∈ Σ̂. Therefore, V ⊂ Ker(ψ′).

For the converse, let a ∈ Ker(ψ′). Following Proposition 6 of Chapter V in [52],

we can write a = (δ) + l, where (δ) ∈ i(K), lv ∈ ℜv for every v ∈ PK and l
(j)
∞ ∈

[0, 1) for all 1 ≤ j ≤ n. So, it is enough to prove that l ∈
∏
Up, or equivalently

l̄p ∈ Up, where l̄p =
∏
v|p
lv ∈

∏
v|p

Kv. Again, ψ(a) = ψ(l). Note that for any p < ∞,

l̄p ∈
∏
v|p

ℜv implies that l
(j)
p ∈ Zp for all 1 ≤ j ≤ n and thus {l(j)p }p = 0 for all 1 ≤ j ≤ n.

Choose r ∈ K for each 1 ≤ j ≤ n, such that r(j) = 1 and r(i) = 0 for i ̸= j. Since Zn ⊂ β(Σ̂),

it follows that r ∈ Σ̂ and ψ(l)(r) = e−2πil
(j)
∞ . Now, since ψ(a) ∈ ann(Σ̂), we have

e−2πil
(j)
∞ = 1 implying that l

(j)
∞ = 0. Hence, ψ(l)(r) =

∏
p<∞

e−2πi
∑n

j=1{l
(j)
p r(j)}p , for all 1 ≤

j ≤ n and for every r ∈ Σ̂.

Fix a j ∈ {1, 2, · · · , n}. Suppose m(j)
p = ∞. Therefore, for arbitrary k ∈ N, we can choose

r ∈ Σ̂ such that |r(j)|p > pk. Choose δ ∈ K such that δ = (δ(1), δ(2), · · · , δ(n)) ∈ Zn,

where |δ(j)|p = 1, |δ(j)r(j)|q ≤ 1 for all q ̸= p and δ(m)r(m) ∈ Z for all m ̸= j. Since

β(Σ̂) is a Zn−module, the element t = β−1(r(1)δ(1), r(2)δ(2), · · · , r(n)δ(n)) ∈ Σ̂. Say β(t) =

(t(1), t(2), · · · , t(n)). Then, |t(j)|p = |r(j)|p > pk, |t(j)|q ≤ 1 for every q ̸= p and |t(m)|q =

|r(m)δ(m)|q ≤ 1 for every q and for every m ̸= j. Therefore, ψ(l)(t) = e−2πi{l
(j)
p r(j)}p . So,

ψ(l)(t) = 1, implies {l(j)p r(j)}p = 0, giving us the inequality |l(j)p |p ≤ 1
|r(j)|p

< 1
pk
. Since k is

arbitrary, it follows that l
(j)
p = 0.



Chapter 3. Solenoids in terms of Adeles 31

Now, consider the case m
(j)
p < ∞. If possible, suppose |l(j)p |p > n

(j)
p = 1

m
(j)
p

. So we have

m
(j)
p > 1

|l(j)p |p
and thus there exists r ∈ Σ̂ such that 1

|l(j)p |p
< |r(j)|p ≤ m

(j)
p which gives

|l(j)r(j)|p > 1. As done above, choose δ ∈ K such that |δ(j)r(j)|p = |r(j)|p, also |δ(j)r(j)|q ≤

1 for every q ̸= p and δ(m)r(m) ∈ Z for every m ̸= j. Then, t = β−1
(
δ(1)r(1), δ(2)r(2), · · ·

· · · , δ(n)r(n)
)
∈ Σ̂ with |l(j)p t(j)|p = |l(j)p δ(j)r(j)|p = |l(j)p r(j)|p > 1, |l(j)q t(j)|q ≤ 1 for every q ̸=

p and |l(m)
q t(m)|q = |l(m)

q δ(m)r(m)|q ≤ 1 for every q and for every m ̸= j. This implies that

ψ(l)(t) = e−2πi{l
(j)
p t(j)}p ̸= 1 giving us a contradiction. Hence |l(j)p |p ≤ η

(j)
p .

Finally, for any p ∈ D, m
(j)
p = ∞ for every j implies that l

(j)
p = 0 and thus l̄p ∈ Up. Even

for p /∈ D, either l
(j)
p = 0 or |l(j)p |p ≤ η

(j)
p and again l̄p ∈ Up. So, for every prime p, l̄p ∈ Up

and thus a ∈ V. □

We now describe the periodic points of some automorphisms of Σ. Fix an element d =

(d(1), d(2), · · · , d(n)) ∈ Qn such that for every j, |d(j)| ̸= 0 and |d(j)|p = 1 for p /∈ D ∪ {∞}.

Define a map Md : KA → KA as α−1 ◦md ◦ α, where md : (QA)
n → (QA)

n is given by

md(a
(1), a(2), · · · , a(n)) = ((d(1)a

(1)
p )p, (d

(2)a
(2)
p )p, · · · , (d(n)a(n)p )p). Note that (d(j)a(j)p)p =

(d(j)a
(j)
∞ , d(j)a

(j)
2 , d(j)a

(j)
3 , · · · ). It can be observed easily that md is an isomorphism and

thus Md is an automorphism of KA.

Proposition 3.6. Md(V ) = V .

Proof : Let (δ) + l ∈ V, where (δ) ∈ i(K) and l =
(
l̄p
)
∈
∏
Up. Then, α

(
(δ)
)
=(

(δ(1)), (δ(2)), · · · , (δ(n))
)
, where δ(j) ∈ Q. Then, Md

(
(δ)
)
= α−1 ◦md ◦ α

(
(δ)
)
= α−1 ◦

md

(
(δ(1)), (δ(2)), · · · , (δ(n))

)
= α−1

(
(d(1)δ(1)), (d(2)δ(2)), · · · , (d(n)δ(n))

)
∈ i(K).

Now,Md(l) = α−1◦md◦α
(
(l)
)
= α−1◦md(l

(1), l(2), · · · , l(n)) = α−1((d(1)l
(1)
p ), (d(2)l

(2)
p ), , · · ·

· · · , (d(n)l(n)p )). For p ∈ D ∪ {∞}, we have l
(1)
p = l

(2)
p = · · · = l

(n)
p = 0 and thus

d(1)l
(1)
p = d(2)l

(2)
p = · · · = d(n)l

(n)
p = 0. On the other hand, p /∈ D ∪ {∞} implies that

|l(j)p |p ≤ n
(j)
p ; so, |d(j)l(j)p |p = |l(j)p |p ≤ n

(j)
p . Therefore, Md(l) ∈

∏
Up and thus Md(V ) ⊂ V.

Similarly, M−1
d ((δ) + l) = α−1(( δ

(1)

d(1)
), ( δ

(2)

d(2)
), · · · , ( δ(n)

d(n) )p) + α−1((
l
(1)
p

d(1)
), (

l
(2)
p

d(2)
), · · · , ( l

(n)
p

d(n) )p) ∈

i(K) +
∏
Up for every (δ) ∈ i(K) and l =

(
l̄p
)
∈
∏
Up. □

Since Md is an automorphism of KA and V is an Md−invariant subgroup of KA, Md

induces an automorphism of Σ, say Md.
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Theorem 3.7. The set of periodic points of Md, where d
(j) ̸= ±1 for every 1 ≤ j ≤ n, is

given by P (Md) =
i(K)+

∏′
Kv

V
, where

∏′
Kv =

{
x ∈ KA : for every 1 ≤ j ≤ n, x

(j)
p = 0

whenever p ∈ D ∪ {∞} and |x(j)p |p ≤ n
(j)
p for all but finitely many p /∈ D ∪ {∞}

}
.

Proof : Let ā = a+ V be periodic in Σ. Then, mk
d ◦α(a)−α(a) ∈ α(V ). Say, mk

d ◦α(a)−

α(a) = α((δ) + l), where δ ∈ K and l̄p ∈
∏
Up. Now, (δ) ∈ i(K) implies that α((δ)) =

(δ(1), δ(2), · · · , δ(n)), where (δ(j)) ∈ i(Q). Also, l̄p ∈ Up implies that for every 1 ≤

j ≤ n, l
(j)
p = 0 for p ∈ D ∪ {∞} and |l(j)p |p ≤ n

(j)
p for p /∈ D ∪ {∞}. Now, for any

p ∈ PQ, (d(j)
k
a
(j)
p )p − (a

(j)
p )p = (δ(j))p + (l

(j)
p )p for all 1 ≤ j ≤ n and for every k ∈ N

implies that (d(j)
k − 1)a

(j)
p = δ(j) + l

(j)
p and thus a

(j)
p = δ(j)

d(j)
k−1

+
l
(j)
p

d(j)
k−1

. Now, for all 1 ≤

j ≤ n, | l
(j)
p

d(j)
k−1

|p ≤ |l(j)p | for all but finitely many primes p, since d(j)
k − 1 ∈ Q. Therefore,

α(a) =
(
(a

(1)
p ), (a

(2)
p ), · · · , (a(n)p )

)
=
(
( δ(1)

d(1)
k−1

), ( δ(2)

d(2)
k−1

), · · · , ( δ(n)

d(n)k−1
)
)
+
(
(

l
(1)
p

d(1)
k−1

), (
l
(2)
p

d(2)
k−1

), · · ·

· · · , ( l
(n)
p

d(n)k−1
)
)
∈ α(i(K)) + α(

∏ ′Kv) and thus a ∈ i(K) +
∏′Kv.

For the converse, let π(x) ∈ i(K)+
∏′ Kv

V
; then, x = (δ) + l, where (δ) ∈ i(K) and l ∈∏′Kv. To prove that π(x) is periodic, we need to find a k ∈ N such that mk

d ◦ α(x) −

α(x) ∈ α(V ). Note that, for any k ∈ N, ((d(1)k − 1)x(1), (d(2)
k − 1)x(2), · · · , (d(n)k −

1)x(n)) =
(
((d(1)

k−1)δ(1)), ((d(2)
k−1)δ(2)), · · · , ((d(n)k−1)δ(n))

)
+
(
((d(1)

k−1)l
(1)
p )p, ((d

(2)k−

1)l
(2)
p )p, · · · , ((d(n)

k − 1)l
(n)
p )p

)
. So, it remains to prove that

(
((d(1)

k − 1)l
(1)
p )p, ((d

(2)k −

1)l
(2)
p )p, · · · , ((d(n)

k − 1)l
(n)
p )p

)
∈ α(

∏
Up) for some k ∈ N. However, if p ∈ D ∪ {∞},

then (d(j)
k − 1)l

(j)
p = 0 for all 1 ≤ j ≤ n and for any k ∈ N. Now, let G = {p /∈

D ∪ {∞}| |l(j)p |p > n
(j)
p for some 1 ≤ j ≤ n}. Then, G is a finite set; say G =

{p1, p2, · · · , pM}. Also, |d(j)k − 1|p ≤ max{|d(j)k |p, |1|p} ≤ 1 for every k ∈ N. So, if p /∈ G,

then |(d(j)k − 1)l
(j)
p |p ≤ |l(j)p |p ≤ n

(j)
p for every 1 ≤ j ≤ n. So, it remains to find a k ∈ N

such that |(d(j)k − 1)l
(j)
p |p ≤ n

(j)
p for all 1 ≤ j ≤ n and for every p ∈ G.

For any p ∈ G, since p /∈ D, we have |d(j)|p = 1 and thus d(j) is a unit in Zp for every 1 ≤

j ≤ n. Fix a j ∈ {1, 2, · · · , n}. The element d(j) = (d(j), d(j), · · · , d(j)) ∈
∏M

i=1 Z∗pi ,

which is a compact multiplicative group. On the other hand, the set {(d(j))
N
|N ∈ N}

is a semigroup and hence its closure is a subgroup of
∏M

i=1 Z∗pi , which implies that

(1, 1, · · · , 1) ∈ {(d(j))
N
|N ∈ N}. Thus, ((d(j))Ny) converges to 1 in Z∗pi , for a subsequence

(Ny) of positive integers, for all 1 ≤ i ≤ M ; so choose N (j) such that |(d(j))N − 1|p <
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n
(j)
p

|l(j)p |p
for every N ≥ N (j). Then, for all 1 ≤ j ≤ n and for k = max{N (1), N (2), · · · , N (n)},

we have |((d(j))k − 1)l
(j)
p |p < n

(j)
p . □

3.3 Future Scope and Conclusion

This chapter describes the periodic points of automorphisms on n-dimensional solenoids

whose duals are subgroups of algebraic number fields. Using the concept of adeles, it gives

a description of such solenoids as well as a characterization of the periodic points of their

automorphisms. This work is a development of the previous work done in [21] and [22].

We conclude this chapter by posing the same (open) problem as mentioned in the previous

chapter for the more general case of any arbitrary solenoid Σ, where Zn ⊆ Σ̂ ⊆ Qn. There

is another class of dynamical systems, namely S−integer dynamical systems that can be

considered as generalization of solenoidal automorphisms. We hope that the algebraic

techniques that we have used to study solenoids can be extended to S−integer dynamical

systems also.



Chapter 4

Dynamics of Real Projective

Transformations

* The work in this chapter is covered by the following article:

Faiz Imam, Pabitra Narayan Mandal, Sharan Gopal, Periodicity, Transitivity and

Distality of Real Projective Transformations, (In Communication).
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This chapter investigates the dynamical properties of real projective transformations

from a topological viewpoint. We study properties like periodicity, topological mixing,

topological transitivity, distality and proximality. Regarding periodicity, we give a complete

characterisation of the sets of least periods. We show that projective transformations are

not topologically mixing and that it is only the isometries among them that are distal.

The literature on the dynamics of projective transformations is extensive. See for example

[18], [23] and [35]. In the present article, we investigate some dynamical properties of

projective transformations. In the next section, we define these properties followed by

related known results in some cases and then our main results. We refer to [12] for most

of the definitions.

4.1 Projective Transformations

Our dynamical system is
(
Pn(R), T̃

)
, for an n ∈ N, where Pn(R) and T̃ are defined as

follows. For x, y ∈ Rn+1 \ {0̄}, if there exists a non-zero λ ∈ R such that x = λy, then

define x ∼ y. Then the quotient space Rn+1 \ {0̄} /∼, denoted by Pn(R) is called the

n-dimensional real projective space. Under this equivalence relation, the antipodal points

are identified. The quotient map is denoted by π and for an x ∈ Rn+1 \ {0̄} , π(x) is

also denoted as [x]. It is well known that Pn(R) is compact and connected. Besides,

note that any open subset of Rn+1 \ {0̄} is open in Rn+1 as well. Given a linear map

T ∈ GLn+1(R), its associated projective transformation denoted by T̃ , is defined as

T̃ (π(x)) = π(Tx), for every x ∈ Rn+1 \ {0̄}. It can be easily observed that
(
Pn(R), T̃

)
is

a factor of (Rn+1 \ {0̄} , T ).

Before proceeding to the results, we will now define a metric d on Pn(R). A metric on

Pn(R) may be already well known but we will define a metric that is convenient for our

calculations and show that it does induce the topology of Pn(R). We finally mention some

notations and terms that we are going to use. The cardinality of any set A is denoted by

|A|. T denotes an invertible linear transformation of Rn+1 and T̃ , its associated projective

transformation on Pn(R) for any non-negative integer n. We also identify T with the

matrix associated to it. By an eigenvector of T , we mean an eigenvector corresponding to
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a real eigenvalue, unless otherwise mentioned. We use ||x|| to denote the Euclidean norm

of x ∈ Rn for any n ∈ N.

Definition 4.1. For any [x], [y] ∈ Pn(R),

define d([x], [y]) = min
{∥∥∥ x
||x|| −

y
||y||

∥∥∥ , ∥∥∥ x
||x|| +

y
||y||

∥∥∥}.
Proposition 4.2. d is a metric on Pn(R).

Proof. If d([x], [y]) = 0, then either x
||x|| =

y
||y|| or

x
||x|| = − y

||y|| and in either case [x] = [y].

Also, if [x] = [y], then x = λy for some non-zero λ ∈ R and thus x
||x|| = ± y

||y|| ; hence

d([x], [y]) = 0. Obviously, for any [x], [y] ∈ Pn(R), we have d([x], [y]) = d([y], [x]). So, it

remains to verify the triangle inequality. For any [x], [y], [z] ∈ Pn(R), since there are two

possibilities for each of the values of d([x], [y]) and d([y], [z]), we have four possibilities for

the sum d([x], [y])+d([y], [z]). It can be easily verified that each of them is atleast the value

of either
∥∥∥ x
||x|| −

z
||z||

∥∥∥ , or ∥∥∥ x
||x|| +

z
||z||

∥∥∥ and hence d([x], [z]) ≤ d([x], [y]) + d([y], [z]).

Proposition 4.3. d induces the topology of Pn(R).

Proof. To avoid ambiguity, we refer to the topology of Pn(R) as the quotient topology, as it

is a quotient space of Rn+1 \ {0̄} and the topology induced by d as metric topology. Let U

be an open set in Pn(R) with respect to the quotient topology and [x] ∈ U . Then π−1(U)

is open in Rn+1 \ {0̄} and {λx | λ ∈ R \ {0}} ⊂ π−1(U); in particular, x
||x|| ∈ π−1(U).

Choose an ϵ > 0 such that the Euclidean open ball BE(
x
||x|| , ϵ) centered at x

||x|| with radius

ϵ is contained in π−1(U). Now, consider Bd ([x], ϵ), the open ball in Pn(R), centered at [x]

and radius ϵ with respect to the metric d. If [y] ∈ Bd([x], ϵ), then either
∥∥∥ x
||x|| −

y
||y||

∥∥∥ < ϵ

or
∥∥∥ x
||x|| +

y
||y||

∥∥∥ < ϵ. Then y
||y|| ∈ Bd(

x
||x|| , ϵ) ⊂ π−1(U) or − y

||y|| ∈ Bd(
x
||x|| , ϵ) ⊂ π−1(U) and

in either case [y] ∈ U . Hence U is open in metric topology.

Conversely, consider Bd ([x], ϵ), the open ball in Pn(R) centered at [x] with radius ϵ.

Now, π−1 (Bd([x], ϵ) = ϕ−1
(
BE(

x
||x|| , ϵ)

)
∪ ϕ−1

(
BE(

−x
||x|| , ϵ)

)
, where ϕ : Rn+1 \ {0̄} → Sn

is the map given by ϕ(z) = z
||z|| . Since ϕ is continuous, the set π−1 (Bd ([x], ϵ)) is open in

Rn+1 \ {0̄} and thus Bd ([x], ϵ) is open in the quotient topology.
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4.2 Main Results

4.2.1 Periodicity

In this section, we are concerned with the characterization of the sets of periodic points

and the sets of least periods of projective transformations. The set P (T̃ ) can be easily

found as described in one of the following paragraphs and Per(T̃ ) is described in Theorem

4.4. Beside these characterisations, an another well studied notion is a dynamical invariant,

called the zeta function. If the number of fixed points of fk, denoted by |Fix(fk)| is finite

for every k ∈ N in a dynamical system (X, f), we define the zeta function ζf(z) of f as

the formal power series ζf(z) = exp(
∑∞

k=1
1
k
|Fix(fk)|zk). The dynamical zeta function

for a projective transformation was found in [23].

We will now describe the periodic points of
(
Pn(R), T̃

)
. If v ∈ Rn+1 \{0̄} is an eigenvector

of T with eigenvalue λ, then T̃ ([v]) = [Tv] = [λv] = [v], and therefore [v] is a fixed point.

Conversely, if [v] is a periodic point with period k, it is a fixed point of T̃ k, and therefore

[T kv] = [v], i.e. T kv = λ′v for some scalar λ′ ∈ R \ {0}. As a result, v is an eigenvector of

T k. To summarize, [v] is periodic if and only if v is an eigenvector of T k for some k ∈ N.

We now state and prove our theorem about the sets of least periods. We introduce the

following notation to make the statement of theorem simpler. For an n ∈ N, ℑn ={
A ⊂ N | |A| ≤ n

2

}
, if n is even and ℑn =

{
A ⊂ N | 1 ∈ A and |A| ≤ n+1

2

}
, if n is odd.

Theorem 4.4. {Per(T̃ ) | T̃ is a projective transformation on Pn(R)} = ℑn, for any

n ∈ N.

Proof. If [x] is a periodic point of T̃ with least period k, then x is an eigenvector of

T k. Also, T l(x) = λx for some non-zero λ ∈ R will imply that T̃ l([x]) = [x]. Hence,

k ∈ Per(T̃ ) if and only if T k has an eigenvector x such that x is not an eigenvector of T l

for any l < k.

If µ ∈ C is a complex eigenvalue of T and µk ∈ R for some k ∈ N, then denote by kµ to be

the least positive integer such that µkµ ∈ R. Note that kµ = 1 if and only if µ ∈ R. By the

above argument, it follows that kµ ∈ Per(T̃ ). Conversely, if k ∈ Per(T̃ ), then T kx = λx
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for some non-zero λ ∈ R. It is very well known that k
√
λ is a complex eigenvalue of T and

hence k = kµ, where µ = k
√
λ. Therefore, Per(T̃ ) = {kµ | µ is a complex eigenvalue of T}.

Since T has atmost n
2
or n−1

2
complex eigenvalues which are not conjugates of each other,

depending on whether n is even or odd respectively, we have |Per(T̃ ) |≤ n
2
, when n is even

and |Per(T̃ )| ≤ n+1
2
, when n is odd. In case n is odd, T has at least one real eigenvalue;

so 1 ∈ Per(T̃ ). Hence Per(T̃ ) ∈ ℑn.

Conversely, for any A ∈ ℑn, say A \ {1} = {m1,m2, · · · ,ml} ⊂ N. Define µj = e
i π
mj ,

where 1 ≤ j ≤ l. Let Rθ =

 cos θ sin θ

− sin θ cos θ

 and T be the block diagonal matrix with

the diagonal blocks as R π
m1
, R π

m2
, · · · , R π

ml
if l = n

2
and R π

m1
, R π

m2
, · · · , R π

ml
, In−2l if l <

n
2
,

where In−2l is the identity matrix of size n− 2l. Then, the set of eigenvalues of T is

{µ1, µ1, µ2, µ2, · · · , µl, µl} ∪ U , where U = ϕ or U = {1}. Note that mj = kµj
and hence

Per(T̃ ) \ {1} = {kµ | µ is a non-real eigenvalue of T} = {mj|1 ≤ j ≤ l}. Therefore,

Per(T̃ ) = A.

4.2.2 Transitivity and Mixing

In this section, we will consider topological transitivity and topological mixing. A

dynamical system (X, f) is said to be topologically transitive if it has an element whose

forward orbit is dense in X. Equivalently, a continuous self map f on a locally compact

Hausdorff topological space X is topologically transitive, if for any pair of non-empty

open sets U and V in X, there exists a non-negative integer n for which T n(U) ∩ V ̸= ϕ.

In addition, if there exists an integer N > 0 with T n(U) ∩ V ≠ ϕ for every n ≥ N , then

(X, f) is called topologically mixing. In the contrapositive sense, no topological transitivity

ensures no topological mixing. Note that a factor of a mixing system is also mixing (see

[12]).

There are several papers in literature on these aspects also, particularly [25] and [40] are

related to the current problem. In fact, the author in [40] hinted that the methods in

that paper may help in discussing topological transitivity for projective transformations.

Though the paper [25] does not mention the term transitivity explicitly, the concept of
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supercyclic vectors discussed in it is closely related to the topological transitivity of a

projective transformation. We will be using that here and hence quote the necessary

results. Let X be a real Banach space and B(X) be the set of linear continuous mappings

from X onto itself. A vector x ∈ X is called a supercyclic vector of T ∈ B(X) if

{λT k(x) | λ ∈ R and k ∈ N0} = X. It is proved in Theorem 1 of [25] that there exist

operators in B(X) having supercyclic vectors if and only if dim X ∈ {0, 1, 2} or dim

X = ∞. We now state and prove our result about the relation between the existence of

supercyclic vectors for T and the transitivity of T̃ .

Proposition 4.5. Let T ∈ GLn+1(R). T has a supercyclic vector if and only if T̃ is

transitive on Pn(R).

Proof. Assume that T̃ has a supercyclic vector, say x i.e., {λT k(x)|λ ∈ R and k ∈ N0} =

Rn+1. Let U be a non-empty open set in Pn(R). Then, π−1(U) is open in Rn+1 \ {0̄}. So,

λT k(x) ∈ π−1(U) for some λ ∈ R and for some k ∈ N0. Thus, T̃
k([x]) ∈ U .

For the converse, let [x] ∈ Pn(R) whose forward orbit is dense in Pn(R) and let V be a

non-empty open set in Rn+1. Choose y ∈ V and an Euclidean ball B1 = BE(y, ϵ) such

that B1 ⊂ V . Define W = {tz|t ∈ R \ {0}, z ∈ B1}. The map ϕt : Rn+1 → Rn+1 for

any t ̸= 0, defined by ϕt(u) = 1
t
u is continuous and thus the set Wt := {tz|z ∈ B1},

being the pre-image of B1 under ϕt is open. Since W = ∪t̸=0Wt, W is open. Also, W is

saturated with respect to the map π i.e if π−1([u]) ∩W ̸= ϕ for some [u] ∈ Pn(R) then

π−1([u]) ⊂ W . Hence, π(W ) is open in Pn(R). Then, T̃ k([x]) ∈ π(W ) for some k, implying

that λT k(x) ∈ W for every non-zero λ ∈ R; in particular T k(x) ∈ W and thus T k(x) = tz

for some non-zero t ∈ R and z ∈ B1. It then follows that 1
t
T k(x) = z ∈ B1 ⊂ V and hence

{λT k(x)| λ ∈ R and k ∈ N0} is dense in Rn+1.

Corollary 4.6. Pn(R) admits a transitive projective transformation if and only if n = 1.

The proof of the corollary follows from Theorem 1 of [25] and the above Proposition 4.5.

Since every topologically mixing system is topologically transitive, it is enough to check

the existence of topological mixing maps only on P1(R). We prove in Theorem 4.7 that

there exist no projective transformations on P1(R) that are topologically mixing; hence
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Pn(R) does not admit a topologically mixing projective transformation for any n ∈ N.

However, Example 4.1 is of some interest, because it is a continous map of P1(R) which is

mixing; but is not a projective transformation i.e., not induced by a linear transformation

of R2.

Theorem 4.7. P1(R) does not admit a topologically mixing projective transformation.

Proof. Let T ∈ GL2(R). We can assume that T is equal to one of the following matrices:

(i)

a 0

0 b

 , where a and b are distinct real eigenvalues of T.

(ii)

a 0

0 a

 or

a 1

0 a

 , where a is a real eigenvalue of T.

(iii) aRθ where a ∈ R \ {0} and Rθ =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 for some θ ∈ R.

Case (i): When T =

a 0

0 b

, let U ′ = {(x, y) ∈ R2 | x > 0 and y > 0} and consider

the open set U = π(U ′) in P1(R). If ab > 0, then for any [(x, y)] ∈ U, T̃ k([(x, y)]) =[
(akx, bky)

]
∈ U for every k ∈ N. If V = π(V ′), where V ′ = {(x, y) ∈ R2 | x < 0 and

y > 0}, then V is a non-empty open set such that T̃ k(U) ∩ V = ϕ for every k ∈ N. Thus

T̃ is not mixing. If ab < 0, then for any even k, T̃ k([(x, y)]) ∈ U and thus again T̃ is not

mixing.

Case (ii): If T =

a 0

0 a

 then T̃ ([x]) = [ax] = [x], i.e. T̃ is the identity map and

hence not mixing. If T =

a 1

0 a

 then T̃ k([(x, y)]) =
[
(akx+ nak−1y, aky)

]
. Consider

the open sets U = π(U ′) and V = π(V ′), where U ′ = {(x, y) | x > 0 and y > 0} and

V ′ = {(x, y) | x < 0 and y > 0}. If a > 0, then T̃ k(U) ∩ V = ϕ, for any k ∈ N and if

a < 0, then T̃ k(U) ∩ V = ϕ for large enough odd values of k. Hence T̃ is not mixing.

Case (iii): In this case, T̃ is an isometry and hence it is not mixing.

Since every topologically mixing transformation is topologically transitive, the following

corollary follows from Corollary 4.6 and Theorem 4.7.
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Corollary 4.8. Pn(R) does not admit a topologically mixing projective transformation for

any n ∈ N.

Though there are no projective transformations on P1(R) that are mixing, we can still

have a mixing continuous map, as shown in the following example.

Example 4.1. Consider the expanding endomorphism E3 : S
1 → S1 given by E3(e

iθ) =

ei3θ. Since E3 is mixing in S1 (refer to [12]), Ẽ3 being a factor of E3 is also mixing.

4.2.3 Distality and Proximality

We finally consider distality and proximality which are asymptotic dynamical attributes

based on the distance between comparable positions on pairs of orbits. They are also

dichotomic in nature. Let X be a compact Hausdorff topological space with a homeo-

morphism f : X → X and x, y be any two points of X. We define the diagonal set in

X ×X as ∆ = {(z, z) ∈ X ×X : z ∈ X} and the orbit of (x, y) under f × f is denoted

by O(x, y). A pair of points x, y ∈ X are called proximal if their orbit closure i.e. O(x, y)

has a non-empty intersection with the diagonal set ∆, else they are known as distal. A

homeomorphism on a space X is called distal if any two distinct points x, y ∈ X are distal.

If d is a metric on X, then x, y ∈ X are proximal if and only if there exists a sequence nk

of integers such that d(fnk(x), fnk(y)) goes to zero as k tends to infinity. Note that an

isometry is distal. We will also need the fact that a factor of a distal homeomorphism of a

compact Hausdorff space is also distal (See Corollary 2.7.7, [12]).

Let T be an invertible linear transformation on Rn+1. If T̃ is an isometry on Pn(R), then it

is obviously distal. We now prove in the following theorem that T̃ is not distal in all other

cases. We continue to assume that T ∈ GLn+1(R) and also use the following notations in

the next theorem and its proof. A denotes an arbitary matrix of an appropriate order, I2

stands for the identity matrix of order 2× 2.

Theorem 4.9. T̃ is distal on Pn(R) if and only if T̃ is an isometry.
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Proof. An isometry is obviously distal; so, we now assume that T̃ is distal and show

that it is an isometry. We first claim that T is of the form T =
⊕k

l=1 αlTl, where each

αl ∈ R, |αi| = |αj| for any i, j ∈ {1, 2, · · · , k} and each Tl is an isometry of either R or R2.

In case T is not of this form, we can assume that T is equal to one of the following :

(i)


J I2 O

O J · · ·

O O A

, where J = α.Rθ for some α ∈ R \ {0} and θ ∈ R.

(ii)


λ 1 O

0 λ · · ·

O O A

, where λ ∈ R \ {0}.

(iii)


a 0 · · ·

0 b · · ·

O O A

, where a, b ∈ R \ {0}, with |a| ≠ |b|.

(iv)


J1 O · · ·

O J2 · · ·

O O A

, where each Ji = αi.Rθi , θi ∈ R and αi ∈ R\{0} such that |α1| ≠ |α2|.

(v)


λ O · · ·

O J · · ·

O O A

, where λ ∈ R \ {0}, J = α.Rθ such that α ∈ R \ {0}, θ ∈ R and

|λ| ≠ |α|.

In the first case, where T =


J I2 O

O J · · ·

O O A

, consider an element (x, y, 0, · · · , 0) ∈ Rn+1,

such that x, y ∈ R2 \ {(0, 0)}.

Note that T n (x, y, 0, · · · , 0) =
(
αnRn

θx+ nαn−1Rn−1
θ y, αnRn

θ y, 0, · · · , 0
)

and T n

(
R−1

θ y

∥R−1
θ y∥ , 0, · · · , 0

)
=

(
αnRn

θR
−1
θ y

∥R−1
θ y∥ , 0, · · · , 0

)
. Then,

T̃ n [(x, y, 0, · · · , 0)] =
[(

α
n
Rn

θ x+Rn−1
θ y√

∥α
n
Rn

θ x+Rn−1
θ y∥2

+∥α
n
Rn

θ y∥
2 ,

αRn
θ y√

∥αRn
θ x+nRn−1

θ y∥2
+∥αRn

θ y∥
2 , 0, · · · , 0

)]

and T̃ n

[(
R−1

θ y

∥R−1
θ y∥ , 0, · · · , 0

)]
=

[(
Rn−1

θ y

∥Rn−1
θ y∥ , 0, · · · , 0

)]
.
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Note that, as n→ ∞,∥∥∥∥∥∥
α
n
Rn

θx+Rn−1
θ y√∥∥α

n
Rn

θx+Rn−1
θ y

∥∥2 + ∥∥α
n
Rn

θ y
∥∥2 − Rn−1

θ y∥∥Rn−1
θ y

∥∥
∥∥∥∥∥∥→ 0

and

∥∥∥∥∥∥ αRn
θ y√∥∥αRn

θx+ nRn−1
θ y

∥∥2 + ∥αRn
θ y∥

2

∥∥∥∥∥∥→ 0.

Hence, d

(
T̃ n [(x, y, 0, · · · , 0)] , T̃ n

[(
R−1

θ y

∥R−1
θ y∥ , 0, · · · , 0

)])
→ 0 and therefore T̃ is not

distal.

For the second case, where T =


λ 1 O

O λ · · ·

O O A

, let (x, y, 0, · · · , 0) ∈ Rn+1, such that

x, y ∈ R \ {0}. Then, T̃ n [(x, y, 0, · · · , 0)] =
[
(λx+ny, λy, 0,··· ,0)√

(λx+ny)2+(λy)2

]
and T̃ n

[(
y
∥y∥ , 0, 0, · · · , 0

)]
= [(1, 0, 0, · · · , 0)].

Now,

∥∥∥∥T̃ n [(x, y, 0, · · · , 0)]− T̃ n

[(
y

∥y∥
, 0, 0, · · · , 0

)]∥∥∥∥
=

√√√√( λx+ ny√
(λx+ ny)2 + (λy)2

− 1

)2

+

(
λy√

(λx+ ny)2 + (λy)2

)2

→ 0 as n→ ∞.

Hence, T̃ is not distal in this case also.

In the remaining cases, T is of the form T =
⊕k

l=1 αlTl, where each Tl is an isometry of

either R or R2 and |αi| ≠ |αj| for some i and j. Without loss of generality, we assume

that i < j and |αi| < |αj|. Let ηl be the projection of Rn+1 on to the domain of Tl for

each l ∈ {1, 2, · · · , k}; note that the range of each ηl is either either R or R2.
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Take two elements x, x′ ∈ Rn+1 such that ηl(x) = 0 for every l /∈ {i, j}, ηl(x′) = 0 for every

l ̸= j, ηi(x) ̸= 0 ̸= ηj(x) and finally ηj(x
′) = ηj(x). Say ηi(x) = xi and ηj(x) = ηj(x

′) = xj .

Then, T̃ n([x]) =

(0, · · · , 0, αn
i T

n
i xi, 0, · · · , 0, αn

j T
n
j xj, 0, · · · , 0

)√
∥αn

i T
n
i xi∥

2 +
∥∥αn

j T
n
j xj
∥∥2


and T̃ n([x′]) =

[(
0, · · · , 0,

T n
j xj∥∥T n
j xj
∥∥ , 0, · · · , 0

)]
.

Note that, as n→ ∞,

∥∥∥∥ αn
i T

n
i xi√

∥αn
i T

n
i xi∥2

+∥αn
j T

n
j xj∥2

∥∥∥∥→ 0 and

∥∥∥∥ αn
j T

n
j xj√

∥αn
i T

n
i xi∥2

+∥αn
j T

n
j xj∥2 −

Tn
j xj

∥Tn
j xj∥

∥∥∥∥
→ 0.

Hence d(T̃ n([x]), T̃ n([x′])) → 0 and thus T̃ is not distal.

Therefore, T =
⊕k

l=1 αlTl, where each αl ∈ R, each Tl is an isometry of either R or R2

and |αi| = |αj| = |α| (say) for every i, j ∈ {1, 2, · · · , k}. If x = (x1, x2, · · · , xk) and

y = (y1, y2, · · · , yk) are in Rn+1, with ∥x∥ = ∥y∥ = 1 and xl, yl belong to the domain of Tl

for each l, then Tx
∥Tx∥ =

1
|α| (α1T1x1, α2T2x2, · · · , αkTkxk)

and Ty
∥Ty∥ =

1
|α| (α1T1y1, α2T2y2, · · · , αkTkyk).

Thus ,

∥∥∥∥ Tx

∥Tx∥
± Ty

∥Ty∥

∥∥∥∥
=

1

|α|
∥α1T1 (x1 ± y1) , α2T2 (x1 ± y2) , · · · , αkTk (xk ± yk)∥

=
1

|α|

√
|α1|2 ∥x1 ± y1∥2 + |α2|2 ∥x2 ± y2∥2 + · · ·+ |αk|2 ∥xk ± yk∥2

= ∥x± y∥ .

Hence d
(
T̃ [x] , T̃ [y]

)
= d([x], [y]) and therefore T̃ is an isometry.
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4.3 Future Scope and Conclusion

This chapter explores some dynamical properties namely periodicity, topological mixing,

topological transitivity, distality and proximality of real projective transformations. A

complete characterisation of the sets of least periods was obtained. It was also shown that

only P1(R) admits a transitive projective transformation whereas projective transforma-

tions on Pn(R), for any n ∈ N are not mixing. Finally it is proved that the isometries are

the only projective transformation that are distal. This work may be further extended

to a general normed vector space V (over field F ) of infinite dimension, where a similar

coordinate wise λ-multiple equivalence relation exists between two infinite sequences

(x) = (xn) and (y) = (yn) ∈ V \ (0), i.e. (x) ∼ (y), if there exists a non-zero λ ∈ F such

that xi = λyi,∀i ∈ N.



Chapter 5

Discrete Switch Dynamical Systems

* The work presented in this chapter is based on the following article :

Faiz Imam, Sharan Gopal, Topological Aspects of Discrete Switch Dynamical Systems,

accepted for publication in The Australian Journal of Mathematical Analysis and Appli-

cations.
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The notion of non-autonomous discrete dynamical systems (NDS) is well studied in the

literature. On the other hand, a similar idea exists in literature for continuous dynamical

systems with the name continuous switch dynamical systems. In this chapter, we interpret

an NDS as a switch system and describe how the dynamics of an NDS can be better

understood using the notion of switch. We do not claim that there are non-trivial results

in this chapter as many of the notions are already explored for NDS. However, this study

was made to get an insight into how facts about NDS can be explained using the idea of

switch.

A continuous dynamical system on a topological space X, is the action of the group

{f t : t ∈ R} (or the semigroup {f t : t ∈ R and t ≥ 0}) on X, where each f t is a self

map on X such that f 0 is the identity map and f t+s = f t ◦ f s, for every t, s ∈ R. Now,

instead of considering this one-parameter family of maps, if we have more than one such

family, say {f t
i : t ∈ R}, i ∈ {1, 2, ..., k} and consider the action of different families at

different instances of time, then we obtain a new notion of dynamics, called a continuous

switch dynamical system. This idea of “action of different functions at different instances”

is explained more precisely using a “switch function”, which will be discussed more in

the following paragraphs. In a usual dynamical system on X obtained by the action of

{f t : t ∈ R}, the trajectory of a point x ∈ X is {f t(x) : t ∈ R}, whereas in the switch

system as described above, the trajectory of x would be (xt), where xt = f t
σ(t)(x), where

σ(t) is the switch function, which will be defined elaborately in the terminology section.

In this chapter, we define an analogous switch system for discrete dynamical systems.

Before we formally define discrete switch dynamical systems in the next section, continuous

switch systems will be discussed in detail. Most of the terminology and ideas discussed

about switch dynamical systems are from [36]. Then follows a discussion about an another

similar notion, namely free semigroup action.

5.1 Introduction

A continuous dynamical system arises naturally from the first order autonomous system of

ordinary differential equations. Consider the following autonomous system of differential
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equations,

ẋ(t) = h(x), t ∈ R,

x(0) = x0,
(5.1)

where h : Rn → Rn is a continuously differentiable map (C1-map) with ||Dh(x)||∞ <∞,

here D is the derivative operator.

From Picard’s theorem, it follows that system (5.1) has a unique solution for any x0 ∈ Rn,

say ϕ(t, x0), defined for every t ∈ R. Moreover, we have ϕ(0, x0) = x0 and ϕ(t+ s, x0) =

ϕ(t, ϕ(s, x0)). Thus, we have a one-parameter family of maps {f t : t ∈ R} with f t(x) =

ϕ(t, x) such that f 0 is the identity and f t+s = f t ◦ f s for every t, s ∈ R.

We now introduce the concept of continuous switch dynamical system using an example.

Let hi : Rn → Rn be a C1-map with bounded derivative for each i ∈ {1, 2, ..., k}. Consider

the initial value problems

d

dt
x(i)(t) = hi(x

(i)), t ∈ R,

x(i)(0) = x0.

(5.2)

As we mentioned earlier, for each i ∈ {1, 2, ..., k}, the solution map ϕi(t, x0) of (5.2) is a

continuous dynamical system.

Let σ : R → {1, 2, ..., k} be a piecewise constant function i.e., σ has finitely many dis-

continuities in any bounded interval and on the interval between any two consecutive

discontinuities, σ is constant. The function σ is called a switch function and its disconti-

nuities are called switches. For each i ∈ {1, 2, ..., k}, let Ji = σ−1(i), which is a union of

intervals, the endpoints of each of which are the consecutive switches of σ. Note that R is

the disjoint union of Ji’s.

Now, consider the following system.

ẋ(t) = hσ(t)(x), t ∈ R,

x(0) = x0.
(5.3)
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By a solution ϕ(t, x0) of this system (5.3), we mean ϕ(t, x0) = ϕi(t, x0), where i ∈

{1, 2, ..., k} is the unique index such that t ∈ Ji and ϕi(t, x0) is the solution of (5.2) for

the respective value of i. These solutions of (5.3) corresponding to all values of x0 give

rise to a continuous switch dynamical system in the following way.

For each i ∈ {1, 2, ..., k}, consider the one-parameter family of functions, Fi = {f t
i : t ∈ R},

where f t
i (x) = ϕi(t, x). The triplet (Rn, {F1,F2, ...,Fk}, σ) is called a continuous switch

dynamical system. The trajectory of a point x ∈ Rn in this system is given by (xt)t∈R,

where xt = f t
σ(t)(x). Continuous switch dynamical systems are studied by many people in

literature with main focus on stability (see, for instance [3], [20], [24] and [36]).

We extend this idea to discrete systems. Consider (X,F, σ) with F = {f1, f2, ..., fk} being

a collection of continuous self maps on a topological space X and σ : N → {1, 2, ..., k},

any function. In this case, the trajectory of a point x ∈ X, which is denoted by (xn)n∈N0 ,

is defined as x0 = x, and xn = fσ(n)(xn−1), for every n ≥ 1. There is an analogous idea of

dynamics, namely the action of the free semigroup generated by a family {f1, f2, ..., fk} of

self maps on X. Semigroup actions are well studied in literature; see, for example, [6], [8],

[9], [13], [14], [37], [38], [39], [45], [50], [51]. We now briefly introduce semigroup actions.

Consider a topological space X and a family {f1, f2, ..., fk} of continuous self maps

on X. Let G be the free semigroup generated by these maps i.e., a typical element

of G is fi1 ◦ fi2 ◦ ...fin (hereafter written simply as fi1fi2 ...fin) for some n ∈ N and

ij ∈ {1, 2, ..., k} for each j. For a concise notation, we consider the sequence space∑
k := {(wn)n∈N0 : wn ∈ {1, .., k}}. A trajectory of a point x ∈ X is defined as the

sequence (fn
w(x))n∈N0 , where w = (wn)n∈N0 ∈

∑
k and fn

w(x) := fwn−1fwn−2 ...fw0(x). It is

easy to see that a point x ∈ X has many different trajectories. In fact, every w ∈
∑

k

gives a trajectory of x. In fact, many notions of topological dynamics are introduced

and studied for these semigroup actions. For instance, entropy is studied in [6], [9], [13],

[37], [39], [50], [51]. Rodrigues et al. [45] introduced the specification property whereas

Bahabadi [6] introduced the shadowing and average shadowing properties for semigroup

actions. Carbalho et al. [14] study the action of semigroups generated by expanding maps.

There is a recent paper by Huihui and Ma [28] which introduced the notions of weakly
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mixing and total transitivity for free semigroup actions. In fact, the well studied theory of

iterated functions systems (IFS) is also a particular form of semigroup actions.

The discrete switch dynamical systems that we are interested to study now are more rigid

than the free semigroup actions, in particular IFS, in the following sense. In a discrete

switch dynamical system, every point will have a unique trajectory, whereas there are

several trajectories for a point in a free semigroup action. In fact, in a free semigroup

action, every w ∈
∑

k acts as a switch function. Thus, the dynamics of a switch system

are entirely different from the dynamics in a free semigroup action.

Throughout this chapter, in most of the instances, a discrete switch dynamical system

will be referred to as a switch system whereas a discrete dynamical system will be called

a usual system. This chapter is organized as follows. In the next section, we introduce

the terminology required to study switch dynamical systems. We prove some results on

transitivity, periodicity and recurrent points in Section 5.3. Then, in Section 5.4, we study

switch systems of circle rotations. Here again, we discuss the periodicity of these switching

rotations on the circle. Finally, the chapter is concluded with Section 5.5 with discussions

on significance of switch systems.

5.2 Terminology

We now develop terminology for switch systems. Most of the concepts defined here for

switch systems are generalizations of the corresponding notions in usual systems. However,

there are instances, where a switch system (X,F, σ) has a particular property with no

usual individual system (X, f) for f ∈ F has it. For instance, Example 5.1 gives a switch

system (X, {f1, f2}, σ) with X = [0, 2] ∪ [4, 6], in which the point x = 1 is recurrent but it

is recurrent neither in (X, f1) nor in (X, f2). We now begin with definitions of a switch

system and the trajectory of a point in it.

Definition 5.1. Let X be a topological space, F = {f1, f2, ..., fk} be a family of continuous

self maps on X and σ : N → {1, 2, ..., k} be any map. The triplet (X,F, σ) is called a

topological discrete switch dynamical system. For each point x in X, the trajectory (xn)n≥0
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of x is defined as x0 = x and xn = fσ(n)(xn−1) for every n ∈ N. The map σ is called the

switch function or simply as a switch of the system (X,F, σ).

In a usual system (X, f), the trajectory of a point x ∈ X is defined as (fn(x))n∈N0 i.e, the

nth term in the trajectory of x is given by fn(x). In a switch system, the nth term of the

trajectory of x is given by xn = f(σ(n))f(σ(n−1))...f(σ(1))(x) i.e., the switch σ specifies which

function to apply at the nth time.

Assumptions:

1. We assume that, in all the switch systems that are considered in this chapter, the

switch σ is surjective and σ−1(i) is an infinite set for every i ∈ {1, 2, ..., k}, i.e., each

fi in F occurs infinitely many times in every trajectory.

2. As a convention, we define σ(0) = 0 and fσ(0)(x) = x, for every x ∈ X.

Definition 5.2. A switch function σ is said to be a periodic function with a period u, if

σ(nu+ l) = σ(l) for every 1 ≤ l ≤ u and for every n ∈ N.

We will now define various dynamical notions for switch systems.

Definition 5.3. Let (X,F, σ) be a switch system.

1. A point x ∈ X is called a periodic point if there is an m ∈ N such that xnm+l = xl

for every 0 ≤ l < m and for every n ∈ N. The least such m is called the least period

of x.

2. A point x ∈ X is called a fixed point if xn = x for every n ∈ N.

3. Let x ∈ X. An element y ∈ X is called an ω-limit point of x if there is a sequence

(nm) of positive integers such that (nm) → ∞ and (xnm) → y. The set of all ω-limit

points of x is denoted by ω(x). Further, if x ∈ ω(x), then x is called a recurrent

point.

4. (X,F, σ) is called topologically transitive, if there is an x ∈ X such that {xn : n ∈ N0} =

X.
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5. A subset V ⊆ X is called invariant, if for every x ∈ V , xn ∈ V for every n ∈ N.

6. A closed non-empty invariant subset V of X is called a minimal set, if V does not

contain a proper closed, non-empty and invariant set. If X itself is a minimal set,

then (X,F, σ) is a called a minimal switch system.

We now define the notion of topological conjugacy. In usual dynamical systems, (X, f)

is said to be topologically conjugate to (Y, g) if there is a homeomorphism h : X → Y

such that h ◦ f = g ◦ h. It follows that for every term (fn(x)) in the trajectory of a point

x ∈ X, we have h(fn(x)) = gn(h(x)). However, for switch systems, we need to ensure

this as a part of the definition. After the following definition, we will simply use the

words conjugacy and conjugate instead of topological conjugacy and topologically conjugate

respectively.

Definition 5.4. Let (X,F1, σ1) and (Y,F2, σ2) be two switch dynamical systems. If there

is a homeomorphism h : X → Y such that for any x ∈ X, h(xn) = (h(x))n for every n ∈ N,

where (xn) and ((h(x))n) are the trajectories of x and h(x) in (X,F1, σ1) and (Y,F2, σ2)

respectively, then h is called a topological conjugacy from (X,F1, σ1) to (Y,F2, σ2). In

such a case, the two switch systems are said to be topologically conjugate.

5.3 Main Results

In this section, we state and prove some results about the periodicity, transitivity and

ω-limit points. The following theorem gives a sufficient condition for existence of periodic

points in a switch system. In a usual system (X, f), for a point x ∈ X, if fm(x) = x for

some m ∈ N, then x is a periodic point, but in a switch system (X,F, σ), xm = x does

not imply that x is periodic. However, if σ is a periodic function with the same integer m

as a period, then we prove in the following theorem that x is a periodic point.

Theorem 5.5. Let (X,F, σ) be a switch dynamical system, where σ is a periodic function

with a period m ∈ N. If x ∈ X such that xm = x, then x is periodic in (X,F, σ).

Proof. It is enough to prove that xn = xn(mod m) for every n ∈ N. If m = 1, then

σ(n) = σ(1) for every n ∈ N i.e., σ is a constant function. Then F consists of only one
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function, say f and we have a usual dynamical system (X, f). Then x1 = x is same as

saying that f(x) = x and hence x is periodic (in fact, a fixed point).

Now, consider the case where m > 1. It is obvious that x1 = x1(mod m). Suppose that

xn = xn(mod m) for some n ∈ N. We now claim that xn+1 = xn+1(mod m). We have

n = rm + l for some 0 ≤ l < m, so that xn = xl. Then, n + 1 = rm + l + 1 would

imply that σ(n + 1) = σ(l + 1) and thus, xn+1 = fσ(n+1)(xn) = fσ(l+1)(xl) = xl+1. If

0 ≤ l ≤ m − 2, then l + 1 = n + 1(mod m) and thus we have xn+1 = xn+1(mod m). In

case l = m− 1, we have xn+1 = xl+1 = xm. Since it is given that xm = x, it follows that

xn+1 = x = x0 = xn+1(mod m). Hence, by induction, we conclude that x is periodic in

(X,F, σ).

In the following proposition, we characterize the fixed points of a switch system (X,F, σ)

in terms of fixed points of the usual individual systems, (X, fi), where F = {f1, f2, ..., fk}.

Proposition 5.6. Let (X,F, σ) be a switch system, where F = {f1, f2, ..., fk}. An element

x ∈ X is a fixed point in (X,F, σ) if and only if x is a fixed point in (X, fi) for every

1 ≤ i ≤ k.

Proof. Suppose x is a fixed point in (X, fi) for each i. Then x1 = fσ(1)(x) = x. Further,

if xn = x for some n ∈ N, then xn+1 = fσ(n+1)(xn) = fσ(n+1)(x) = x. Thus, by induction,

xn = x for every n ∈ N and hence x is a fixed point in (X,F, σ).

Now, assume that x is a fixed point in (X,F, σ). Fix an fi ∈ F for some 1 ≤ i ≤ k.

We know that σ−1(i) is an infinite subset of N. Choose an r ∈ σ−1(i). Then, using the

hypothesis that xn = x for every n ∈ N, we get fi(x) = fσ(r)(x) = fσ(r)(xr−1) = xr = x.

Thus, x is a fixed point of fi.

In the literature, a usual dynamical system is said to be topologically transitive, if it has

a dense forward orbit. Notice that we have adopted the same definition for topological

transitivity to switch systems. Under certain mild conditions on a usual dynamical system

(X, f), it can be proved that, if for any two non-empty open sets U and V in X, there

exists x ∈ U with fn(x) ∈ V for some n ∈ N, then (X, f) is topologically transitive (See
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[12], Proposition 2.2.1). Here we prove a similar result for switch systems assuming the

same conditions. The proof given here uses the ideas, similar to those used in proving the

above mentioned result for usual dynamical systems in [12].

Theorem 5.7. Let X be a second countable locally compact Hausdorff space. If for any

two non-empty open sets U and V in X, there exists an x ∈ U such that xn ∈ V for some

n ∈ N, then (X,F, σ) is topologically transitive.

Proof. Fix an open set V in X. Define V ′ =
∞⋃
n=1

f−1σ(1)f
−1
σ(2)...f

−1
σ(n)(V ).

If U is any non-empty open set in X, then it is given that there is an x ∈ U with xn ∈ V

for some n ∈ N. Now, xn ∈ V implies that fσ(n)(fσ(n−1)(...(fσ(1)(x))...)) ∈ V and thus

x ∈ V ′ ∩ U . Since this is true for any non-empty open set U , it follows that V ′ is dense in

X.

Choose a countable basis for X, say {Vi : i ∈ N}. For each Vi,

define V ′i =
∞⋃
n=1

f−1σ(1)f
−1
σ(2)...f

−1
σ(n)(Vi). It follows from the above discussion that V ′i is dense

in X for each i. Thus, the set Y =
∞⋂
i=1

V ′i is intersection of countably many open dense

sets in X. Since X is locally compact and Hausdorff, it is a Baire space. Therefore Y ̸= ∅.

Now, choose y ∈ Y . Then y ∈ V ′i for each i ∈ N. This implies that y ∈ f−1σ(1)f
−1
σ(2)...f

−1
σ(n)(Vi)

and thus yn ∈ Vi for some n ∈ N. Thus, {yn : n ∈ N0} ∩ Vi ≠ ∅ for each i ∈ N. Since

{Vi : i ∈ N} is a basis for X, we get {yn : n ∈ N0} = X. Thus, (X,F, σ) is transitive.

In a usual system (X, f), the converse of the above theorem is also true. Because, if U

and V are any two non empty open sets in X and the orbit of a point x ∈ X is dense in

X, then fm(x) ∈ U and fn(x) ∈ V for some m,n ∈ N. Without loss of generality, we can

assume that m < n; in that case, fn−m(U)∩ V ̸= ∅. However, this argument doesn’t work

for a switch system. Hence, we ask the question, if the converse of the above theorem is

true for a switch system.

We now turn our attention towards the study of recurrent points and ω-limit points. The

following example shows that a point x ∈ X can be a recurrent point in (X,F, σ) without

being a recurrent point in any individual usual system (X, fi) for i ∈ {1, 2, ..., k}. In other
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words, ωF(x) ̸⊂
k⋃

i=1

ωfi(x), where ωF(x) and ωfi(x) are the ω− limit sets of x in (X,F, σ)

and (X, fi) respectively.

Example 5.1. Let X = [0, 2] ∪ [4, 6]. Define f1, f2 : X → X as

f1(x) =

 x+ 4, if x ∈ [0, 2],

x−4
2

+ 4, if x ∈ [4, 6],
and f2(x) =

 x
2
, if x ∈ [0, 2],

x− 4, if x ∈ [4, 6].

Consider the switch system (X,F, σ), where F = {f1, f2} and σ : N → {1, 2}, defined as

σ(n) =

 1, if n is odd ,

2, if n is even .

Let x = 1. Then the trajectory of x is given by

xn =

 1, if n = 0 or n is even,

5, if n is odd.
.

Thus, (xn2m) → 1 and hence, x = 1 is a recurrent point in (X,F, σ). However, x = 1 is a

recurrent point neither in (X, f1) nor in (X, f2), because ωf1(1) = {4} and ωf2(1) = {0}.

However, we can ensure that, if y ∈ ω(x) in (X,F, σ), then y ∈ R(fi) for some i ∈

{1, 2, ..., k}, where R(fi) is the range of fi. This is proved in the following theorem.

Theorem 5.8. If y ∈ ω(x) in (X,F, σ), then y ∈ R(fi) for some i ∈ {1, 2, ..., k}, where

R(fi) is the range of fi.

Proof. By definition, for every m ∈ N, there is an nm ∈ N such that xnm ∈ B(y, 1
m
) and

(nm) → ∞. In other words, fσ(nm)(xnm−1) ∈ B(y, 1
m
) and thus R(fσ(nm)) ∩ B(y, 1

m
) ̸= ∅

for every m ∈ N. Since σ can take only finitely many values, there is an i ∈ {1, 2, ..., k}

such that σ(nm) = i for infinitely many m. We now claim that y ∈ R(fi). For any ϵ > 0,

there is an N ∈ N such that B(y, 1
N
) ⊆ B(y, ϵ). Since σ(nm) = i for infinitely many m,

there is a K ∈ N such that K > N and σ(nK) = i. Then B(y, 1
K
) ⊆ B(y, ϵ) and thus

R(fi) ∩B(y, ϵ) = R(fσ(nK)) ∩B(y, ϵ) ⊃ R(fσ(nK)) ∩B(y, 1
K
) ̸= ∅. Hence the claim.



Chapter 5. Discrete Switch Dynamical Systems 56

The following example is another instance to show the difference between usual and switch

dynamical systems. Here, the switch systems (X,F1, σ1) and (Y,F2, σ2) are conjugate but

the map f2 ∈ F1 is not conjugate to any of the maps in F2 = {g1, g2}.

Example 5.2. Let X = Y = R. Define maps f1, f2, g1 and g2 on R as follows

f1(x) =

 x+ 1, if x ≥ 0

1− x, if x < 0
, f2(x) =

 x+ 4, if x ≥ 0

4, if x < 0

g1(x) =

 x+ 1
2
, if x ≥ 0

1
2
− x, if x < 0

, g2(x) =

 x+ 2, if x ≥ 0

2− x, if x < 0
.

Consider the switch systems (X,F1, σ1) and (Y,F2, σ2), where F1 = {f1, f2}, F2 = {g1, g2}

and σ1(n) = σ2(n) =

 1, if n is odd

2, if n is even
. Let us denote σ = σ1 = σ2.

Now, define h : X → Y as h(x) = x
2
. We now show that h is a conjugacy from (X,F1, σ1)

to (Y,F2, σ2).

For any x ∈ X, note that

h(f1(x)) = g1(h(x)) =

 x
2
+ 1

2
, if x ≥ 0

1
2
− x

2
, if x < 0

(5.4)

and

h(f2(f1(x))) = g2(g1(h(x))) =

 x
2
+ 5

2
, if x ≥ 0

5
2
− x

2
, if x < 0

(5.5)

We now prove that h(xn) = (h(x))n for every n ∈ N using induction. The above calculations

show that the statement is true for n = 1 and n = 2. Assume now that h(xk) = (h(x))k

for every k ≤ n.

If n is even, then

h(xn+1) = h(fσ(n+1)(xn))

= h(f1(xn))

= g1(h(xn))

= g1((h(x))n)

= gσ(n+1)((h(x))n)

= (h(x))n+1.
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If n is odd, then

h(xn+1) = h(fσ(n+1)(xn))

= h(fσ(n+1) ◦ fσ(n)(xn−1))

= h(f2 ◦ f1(xn−1))

= g2 ◦ g1(h(xn−1))

= g2 ◦ g1((h(x))n−1)

= gσ(n+1) ◦ gσ(n)((h(x))n−1)

= (h(x))n+1.

Hence, h is a conjugacy from (X,F1, σ1) to (Y,F2, σ2).

However, f2 is not conjugate to any of the maps g1 and g2. For, if αi : (X, f2) → (Y, gi),

i=1,2 is a conjugacy, then f2(−1) = f2(−2) = f2(−3) = 4 would imply that gi(αi(−1)) =

gi(αi(−2)) = gi(αi(−3)) = αi(4), which is a contradiction because a point in Y has atmost

two pre-images under any of the maps g1 and g2.

However, it can be observed that if h is a conjugacy from (X,F1, σ1) to (Y,F2, σ2), then for

any x ∈ X, h ◦ fσ1(1)(x) = h(x1) = (h(x))1 = gσ2(1) ◦ h(x). Thus, (X, fσ1(1)) and (Y, gσ2(1))

are conjugate. Hence, we have the following proposition.

Proposition 5.9. If (X,F1, σ1) and (Y,F2, σ2) are two conjugate switch systems, then

(X, fσ1(1)) and (Y, gσ2(1)) are conjugate (usual) dynamical systems.

The following theorem can be easily proved using the definition of conjugacy. So, we state

it without giving an explicit proof.

Theorem 5.10. Let h be a conjugacy from (X,F1, σ1) to (Y,F2, σ2) and let x ∈ X. Then,

(i) x is periodic if and only if h(x) is periodic.

(ii) x is recurrent if and only if h(x) is recurrent.

(iii) (X,F1, σ1) is transitive if and only if (Y,F2, σ2) is transitive.

(iii) (X,F1, σ1) is minimal if and only if (Y,F2, σ2) is minimal.

Finally, we have the following theorem, which ensures the existence of a minimal set

in a switch system on a compact space. The same is true for a usual system also (see
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Proposition 2.1.2, [12]). In fact, the proof given in [12] for usual systems, also holds for

the following theorem. So, we simply state the theorem and omit the proof.

Theorem 5.11. Let (X,F, σ) be a switch system. If X is compact, then X contains a

minimal set.

5.4 Switching rotations on S1

This section deals with a switch dynamical system (X,F, σ), where X = S1 and F is a

family of rotations on S1. We consider the circle S1 as [0, 1]/∼, where only the end points

0 and 1 are identified under the equivalence relation ∼. In a usual dynamical system

(S1, Rα), where Rα denotes the rotation x 7→ x+ α(mod 1), the set of periodic points is

either empty or the entire space S1, depending upon whether α is irrational or rational

respectively. We prove a similar result for switch system of rotations also.

Theorem 5.12. Let k ∈ N and for each 1 ≤ i ≤ k, let αi ∈ R and define fi : S
1 → S1

as fi(x) = x + αi(mod 1). Let F = {f1, f2, ..., fk} and σ be any switch function. Then

in the switch system (S1,F, σ), the set of periodic points, P (F) is either empty or S1. If

P (F) = S1, then σ is a periodic function and there exists ri ∈ Z for each 1 ≤ i ≤ k such

that
k∑

i=1

riαi ∈ Z.

Proof. Suppose P (F) ̸= ∅ and x ∈ S1 is periodic with period m ∈ N. Then xnm+l = xl for

every 0 ≤ l < m and n ∈ N. In particular, xnm = x0 for every n ∈ N. This is the same as

x0 +
nm∑
i=1

ασ(i)(mod 1) = x0 and then it follows that

nm∑
i=1

ασ(i) ∈ Z (5.6)

for every n ∈ N.

Proceeding along the same lines, for any 0 ≤ l < m, we have xnm+l = xl, or

(x0 +
nm∑
i=1

ασ(i) +
nm+l∑

i=nm+1

ασ(i))(mod 1) = (x0 +
l∑

i=1

ασ(i))(mod 1).

Hence we have
nm+l∑

i=nm+1

ασ(i) −
l∑

i=1

ασ(i) ∈ Z, or
l∑

i=1

(ασ(nm+i) − ασ(i)) ∈ Z.
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Since this is true for any 0 ≤ l < m, it is easy to show by induction that ασ(nm+l)−ασ(l) ∈ Z,

for every 0 ≤ l < m. This implies that fσ(nm+l) = fσ(l) and thus ασ(nm+l) = ασ(l) for every

0 ≤ l < m. Therefore, σ is a periodic function with a period m.

In view of (5.6), we obtain
nm∑
i=1

ασ(i) ∈ Z for every n ∈ N. Moreover, it follows that, for

any y ∈ S1, n ∈ N and 0 ≤ l < m,

ynm+l = (y0 +
nm∑
i=1

ασ(i) +
nm+l∑

i=nm+1

ασ(i))(mod 1)

= (y0 +
nm+l∑

i=nm+1

ασ(i)(mod 1))

= (y0 +
l∑

i=1

ασ(i))(mod 1)

= yl.

The last equality follows because, σ is periodic.

Thus, y is periodic and hence P (F) = S1.

Finally, the expression
nm∑
i=1

ασ(i) ∈ Z can be written as
k∑

i=1

riαi ∈ Z, by making some

rearrangements and also taking some ri’s to be 0, if necessary.

Theorem 5.13. Let F be a family of rotations on S1 as described in the above theorem. If

σ is a periodic function, then (S1,F, σ) is either minimal or every point in it is a periodic

point.

Proof. Let σ(nm+ l) = σ(l) for every n ∈ N and for every 1 ≤ l ≤ m and x ∈ S1. Then,

for any n ∈ N, xnm = x0 + nβ, where β =
m∑
i=1

ασ(i).

If β ∈ Q, then qβ ∈ Z for some q ∈ N and thus xqm = x0. Since qm is also a period for σ,

it follows from Theorem 5.5, that x is a periodic point. Thus, by Theorem 5.12, every

point in S1 is periodic.

If β ∈ R \ Q, then {x0 + nβ(mod1) : n ∈ N} = S1 and thus {xn : n ∈ N} = S1. Hence,

(S1,F, σ) is a minimal system.
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5.5 Future Scope and Conclusion

In this chapter, we have introduced the notion of a discrete switch dynamical system.

The terminology for switch systems is developed analogous to the theory of topological

dynamics. In a usual system (X, f), the trajectory of a point x ∈ X is determined by only

one function f , whereas in a system (X,F, σ), all the maps f1, f2, ..., fk ∈ F determine the

trajectory and σ plays a major role by specifying the function that has to be applied at

a given instant of time. After explaining the origin of the idea of a switch system, we

related it to the continuous switch systems and the free semigroup actions. Then, we have

introduced various notions which are natural generalizations of the corresponding notions

in usual systems. This is followed by a section on proving certain results on periodicity,

transitivity and ω-limit points and then a section devoted to the rotation maps on S1.

Though the idea of a switch system and the further notions that are introduced in this

chapter are generalizations of notions in a usual system, there are several differences

between them. It is evident from Example 5.1 that there can be striking differences

between the trajectories followed by a point in a switch system and a usual system. This

variety makes the study of switch systems more interesting and significant. There are

various other dynamical notions which have not been covered in this chapter. They can

be studied in light of this setup.
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