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Abstract 

The idea of digital data calculation has become difficult as the prevalence of electronic gadgets 

in daily life has increased. The huge amount of data generated has caused computing to grow 

exponentially, necessitating the use of computational platforms in terms of design effectiveness 

and efficiency. Powerful approaches like machine learning and neural networks has been 

recognized as a suitable technology to deal with the enormous amount of data generated in day-

to-day life. Contemporary computing systems, Von Neumann's architecture has drawback of 

having a constrained data transfer speed between the memory and processing units. This 

bottleneck has a negative impact on the performance of modern artificial intelligence (AI) 

algorithms. Also, it has significantly increased the energy consumption of these systems, 

especially in data-intensive computations. A promising solution to address this bottleneck is to 

integrate processing and memory by performing computations at the location where the data is 

stored. Thus, memory bottlenecks and high costs associated with data movements between 

primary memory and the processor are the challenges witnessed by modern-day computers and 

has led to the need for in-memory processing. Recently, memristor-enabled in-memory 

Processing has gained attraction as a possible solution to the Von Neumann bottleneck. 

Memristor has the inherent ability to store and process the data in the same location. It is a two-

terminal passive  device whose conductance depends on the amount of current that has passed 

through it. It is being proposed as a possible replacement for transistors because of its compact 

size, ultra-high packing density (~40% improvement), low power consumption (one-hundredth 

of transistors), large ON/OFF resistance ratio (105), and high switching speed (~100 ps). The 

most profound application of a memristive crossbar is a vector product accelerator of linear 

time complexity. It has an innate ability to carry out matrix-vector multiplication through 

varying weights, which fosters its usage for implementing machine learning algorithms. Also, 

it is notable to mention that memristive state transitions were made possible by utilizing 

external voltage sources. Importantly, the transitions traverse through intermediate resistive 

states that exist between the extreme resistive limits (ON and OFF states). Interestingly, these 

intermediate states can be explored for memory storage and computational applications. These 

two important aspects of the memristor has been explored and implemented in this work. In 

one of the studies about the fabrication of memristors, the fabrication of Pt/Cu:ZnO/Nb:STO 

based memristor was demonstrated and obtained improved electrical performances such as low 

SET/RESET voltages, high ON/OFF ratio, good data retention, and stability, all these are useful 

for signal processing applications. Thus throughout the thesis, we have used Cu:ZnO 

memristor.  
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In this regard, a systematic investigation has been initiated to design a memristor crossbar-

based architecture to compute the Pearson Correlation Coefficient(PCC) within the memory 

array. Three different applications were demonstrated by computing PCC based on the 

proposed architecture. The first application is computing PCC between noisy and denoised 

Electrocardiogram(ECG) signals. Whereas the second application is face recognition, where 

we compute PCC between face images in the presence of occlusions and varying expressions. 

Finally, the third application is computing PCC between two models of H1N1 disease 

prediction to verify their similarity. Further, an effort is devoted to analyze the effect of device 

variations on these applications. An attempt is also made to perform detailed system-level 

comparisons of the proposed architecture against a Von Neumann architecture.  

Considering the memristor’s approach to use the crossbar for analog matrix multiplications, 

which is more suitable for data-intensive applications, efforts were directed towards creating 

an in-memory processor utilizing memristive crossbar architecture for Bayesian text 

classification. The approach involved utilizing memristive switches to store data required for 

text classification. Text classification is a critical aspect of digital media, including natural 

language processing, sentiment analysis, image labeling, chatbots, spam filtering, and 

translators. To evaluate the efficacy of the proposed circuit, it was tested on two different 

datasets comprising a total of 55,575 texts from Short Message Service (SMS) and Internet 

Movie Database (IMDb) datasets. Exploring the analog computing properties of the memristor, 

the state transition property of the memristor, which exhibits controllable transitions within its 

stable resistive states, is also studied. In this work, for the first time to the best of our 

knowledge, efforts are put into developing Memristive State Machine (MSM) through a 

simulation route for edge detection in an image. The idea of MSM was further extended to 

perform a tunable edge detection system for image processing applications. The obtained edge 

detection was compared with other popular conventional software-based edge detection 

systems such as Canny, Sobel, Prewitt, Log, Zerocross and Roberts. 

As we continue to examine the vector product accelerator application of the memristive 

crossbar array, we demonstrate a memristor-enabled computing in-memory architecture of an 

extensively utilized Binary Particle Swarm Optimization (BPSO) algorithm which has  

applications in diverse sectors. To the best of our knowledge, this is the first study pertaining 

to the implementation of BPSO on the memristor crossbar. Otsu’s function and Kapur’s 

entropy functions are considered the objective functions or the functions left for BPSO to 

optimize. To validate its potential, the commonly used Lena image was segmented and the 

performance of the memristor-crossbar was thoroughly analyzed. Further, this (Otsu and 
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Kapur’s entropy with BPSO) is applied for thresholding four T2- weighted transaxial brain 

Magnetic Resonance Imaging (MRI) scans of the widely used online open-access medical 

image repository by Harvard Medical School. Later the values obtained by memristor 

implementation of BPSO are compared with the values obtained by brute force methods.  

The growing use of image fusion for feature extraction, image segmentation, and object 

recognition in different fields necessitates a need for a faster and more efficient hardware 

architecture. Knowing the benefits of using memristive crossbar arrays in image processing 

applications, our work validates the multi-focus image fusion using a memristive crossbar 

array. In this work, a novel image fusion architecture is proposed using Pt/Cu:ZnO/Nb:STO 

memristor crossbar array to implement an iterative Kernel Principal Component Analysis 

(KPCA) algorithm. To test this algorithm, experiments were carried out using different multi-

focus images as well as Infrared-Visible Images.  A comparison between the software and 

hardware experiments results was drawn using different quantitative metrics like Structural 

Similarity, Entropy, and Correlation Coefficient. The proposed concepts in this thesis, 

including the impact of analog matrix multiplication and state transitions, alternative 

programming paradigms, and the construction of modern low-power and less complex 

memristive circuits, open up a new vista in the field of futuristic electronics and serve as an 

alternative potential to CMOS-based architectures. 
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Chapter 1 

Introduction 

The fact that massive amount of data have been continuously generated at unprecedented and 

ever-increasing scales is clear evidence that we live in a data deluge era. Numerous fields, 

including engineering sciences, social networks, business, biomolecular research, and security, 

collect and analyze large amount of data [1]. Notably, the amount of digital data produced by 

various digital gadgets is increasing at incredible rate. State-of-the-art computing systems 

suffer from the drawbacks of Von Neumann's architecture, which offers a limited rate of data 

transfer between the processing units and the memory. This bottleneck has significantly 

increased the energy consumption of these systems, especially in data-intensive computations. 

An intuitive solution to overcome the memory bottlenecks is to place the processor as close as 

possible to the primary memory [2]. However, such architectures, known as near-memory 

processors, have low data transfer latency and higher data bandwidths. The recent 

advancements in 3D silicon technologies have facilitated the fabrication of near-memory 

computers in which the processor is placed vertically on top of the memory using Through-

Silicon Via (TSV) [3]. Despite its advantages, near-memory computing suffers from several 

drawbacks, such as difficulties in implementing virtual memory, cache coherency, data 

synchronization, memory management, etc. [2].  

An alternative to near-memory computing is in-memory computing, where the computation 

happens within the memory unit [4]. In this architecture, there are no data movements and, as 

a result, do not suffer from the limitations of data latency and bandwidth. Memristor is proven 

to be an effective emerging device for in-memory processing, which is also a potential 

alternative to the CMOS technology. In concern to this, work further concentrates on the 
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various applications of memristor cross bar array and its implementation in signal processing 

applications using machine learning algortithms.  

1.1  Signal Processing  

Signal processing is an interdisciplinary field that involves systems engineering, electrical 

engineering, and applied mathematics. It deals with the analysis of analog and digitized signals 

that represent various physical quantities. A wide range of signals can be analyzed in signal 

processing, including analog and digital signals that reflect physical quantities. These signals 

can be diverse, such as sound, electromagnetic radiation, images and videos, electrical signals 

acquired by different sensors, or waveforms generated by biological, control, or 

telecommunication systems [5]. Digital Signal Processing (DSP) is a critical field that focuses 

on the analysis of digitized and discrete sampled signals. It has significant applications in 

various areas of science and engineering, such as communications, control, computers, and 

economics. The common signals that are most used in all of these areas are image and text [5, 

6]. The advancements in the field of signal and image processing have inspired researchers to 

create and deploy diverse algorithms and mathematical tools in recent times [7]. 

With the growing usage of electronic devices in day-to-day life, the amount of data or signals 

collected and its characteristics are challenging the traditional approaches of signal processing 

technologies as they are massive, unreliable, unstructured, and barely fit the statistical 

assumptions about the underlying system. Thus, the idea of digital data computation has 

become challenging. This has led to an exponential increase in computation which necessitated 

the need for computational platforms in terms of design performance and efficiency [8]. 

1.1.1 Image Processing 

Our aspirations increased dramatically with the development of contemporary technology, 

which knows no limitations. The discipline of digital image processing is currently the subject 
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of extensive research. The rate of research has continuously increased exponentially [9]. Image 

processing, a field of signal processing and a technique that converts an input image into a 

digital platform and processes it in such a way as to enhance the image or to get some helpful 

information out of it. In today’s modern world, it is a vast area of research with many different 

applications such as image morphology, neural networks, color image processing, medical 

image processing, image data compression, image recognition or face recognition, image 

fusion, edge detection, image thresholding pattern recognition, video processing, image 

enhancement or image sharpening, image segmentation, and so on [10], [11].  

1.1.1.1 Face Recognition 

Face recognition is one of the most important and trending applications of image processing. 

Current generation needs automatic face detection since it is crucial to robotics and artificial 

intelligence [10]. The essential phase of computerized face analysis is face detection. The 

output of a face detection system can serve as an input for various other systems, including 

face recognition, face tracking, face authentication, facial expression recognition, and facial 

gesture recognition. These systems are essential components of applications such as personal 

identity and access control, videophone and teleconferencing, forensic investigations, human-

computer interaction, automated surveillance, cosmetology, and various other fields [12]. 

As the human face belongs to a dynamic object, many challenges like pose, occlusion, facial 

expression, existence or nonexistence of structural components, image orientation, and 

imaging conditions are prevalent in automatic face image analysis. Thus to overcome these 

challenges, algorithms with good accuracy and computational platforms with good efficiency 

are the need of the hour [12].  

1.1.1.2 Edge Detection  

Edge detection is a fundamentally important issue in picture analysis. Edge points can be 
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viewed as places on a pixel where the gray level changes suddenly [13].  A border between two 

areas with comparatively unique gray-level characteristics is referred to as an edge so that only 

gray-level discontinuities can be used to detect where two sections merge. Edges are 

prominently useful for image segmentation, registration, and identifying objects in images as 

they define object boundaries [14]. 

 Besides, it has several other applications in the field of computer vision, medicine, artificial 

intelligence, and biometric-based identification systems, which have become an essential part 

of our day-to-day life. Many researchers are striving to find an efficient algorithm or 

computational architecture for edge detection systems [15].  

1.1.1.3 Image Thresholding  

One of the essential initial stages of the image comprehension process, called image 

segmentation, tries to divide an image into areas so that each region groups adjacent pixels 

with comparable characteristics (intensity, color, etc.) [16]. It is crucial as the outcomes of all 

subsequent processes, including feature extraction, classification, and recognition, rely 

significantly on it. Numerous picture segmentation approaches have been documented in the 

literature as a result of extensive studies on the topic. These methods may generally be divided 

into four categories: thresholding, edge base, region growth, and clustering methods. The most 

fundamental technique is Image thresholding [17]. It is a straightforward and effective 

approach to distinguish objects from the background, as gray levels of pixels belonging to the 

object in most image processing applications differ significantly from those of pixels belonging 

to the background [18]. The thresholding operation involves dividing an image into segments 

that can be analyzed based on their shapes, sizes, relative positions, and other characteristics. 

This operation can be classified into two categories: global thresholding and local thresholding. 

Further, they are classified based on the gray levels, histogram, entropy, number of clusters, 

higher-order statistics, and local characteristics of the image [19], [20]. Known for their wide 
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applications and different methods, many algorithms are evolved in recent years, which also 

has led to the challenges of implementing such algorithms without compromising the efficiency 

and computational complexity is the need of the hour.  

1.1.1.4 Image Fusion 

The usage of pictures in different applications is increasing rapidly by the day. In recent years, 

there has been much interest in image fusion. Image fusion is the process of combining multiple 

images to improve the information content in a picture [21]. It is used for object detection and 

has importance in many fields like military, medical, automated industry, etc. Image fusion is 

most important in medical imaging- combining Computed Tomography (CT) scans and MRI 

imaging [22].  Different fusion techniques have been proposed, primarily in remote sensing 

and computer vision (such as night vision). At the same time, hardware implementations have 

also been made to address real-time processing in many application domains. 

Multiple methods can be used to perform image fusion for a broad range of applications that 

involve high data transfer rates. Thus, in order to eliminate the need to transfer data from 

different memory sources, new device opportunities are being explored, including memristors 

for various logic implementations and memory operations [23]. 

1.1.2 Text Classification  

In recent times, text classification issues have received extensive study and have been 

addressed in numerous practical applications. Many academics are currently interested in 

developing applications that make use of text classification techniques, particularly in the 

context of recent advances in Natural Language Processing (NLP) and text mining. It can 

classify new documents into pre-defined classes [24]. Currently, it is a sophisticated process 

involving not only training of models but also numerous additional procedures, for example 

pre-processing data transformation and dimensionality reduction. It is possible to break down  
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vast majority of text classification and document categorization systems into four steps such as 

feature extraction, dimension reduction, classifier selection, and assessments. It continues to 

be a significant research area, with researchers exploring various techniques and their 

combinations in complex systems [25]. 

Thus, recent developments in various signal and image processing fields have inspired 

researchers to design and deploy different algorithms and mathematical tools. However, as the 

era of big data approaches, datasets are becoming increasingly large and complex, making it 

challenging to process them using traditional learning methods. Also, learning from 

conventional datasets were not designed to handle the high volume of data, and as a result, it 

may not work effectively with large and complex datasets [7]. As a result, artificial intelligence 

(AI) techniques have emerged as a solution. In the past decade, machine learning techniques 

have been widely adopted in several large and complex data-intensive fields such as medicine, 

astronomy, biology, and more. These techniques offer potential solutions for extracting 

valuable information from vast amounts of data [1]. 

The challenges witnessed by conventional computing architectures (Von Neumann 

architecture) used today for processing such algorithms with huge volumes of data are memory 

bottlenecks and high costs associated with constant data movements between the memory and 

the processor, creating the need for a system that significantly reduces the memory bottleneck 

and improves the efficiency of the system in terms of power consumption and speed [26].  

1.1.3 Signal Processing using Transistor-based Technology and its Disadvantages 

The majority of signal processing hardware systems currently available use multiplexing to 

consolidate multiple recording channels into one or several processing units to handle complex 

computational tasks [27]. These systems are typically built using silicon-based Complementary 

Metal-Oxide Semiconductor (CMOS) technology and employ the conventional von Neumann 
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architecture, where memory and data computing units are physically separated. Memory 

bottlenecks and high costs associated with data movements between the primary memory and 

the processor are the challenges witnessed by modern-day computers. Typically, these systems 

convert analog signals received into digital signals first and then compress and process them 

in the digital domain using various Application-Specific Integrated Circuits (ASICs) [28]–[31]. 

The implementation of machine learning algorithms and spiking neural networks in hardware 

has been an active research field, and recent publications have shown that it is feasible to apply 

these techniques to industrial applications, such as signal processing of complex data sets [32]–

[34]. Recent advancements in nanotechnology have allowed for low power and high device 

integration, reigniting interest in the development of neural networks in hardware. This has led 

to the development of neuromorphic circuits that incorporate resistive nanoscale devices into 

crossbar topology with CMOS circuitry. BCrossnets is one such example that demonstrates the 

challenges and techniques involved in the design of neuromorphic circuitry using this approach 

[35], [36]. However, the design of such systems is still facing many challenges, such as power 

budget, delay, and scalability, mainly to catch up with the exponentially increasing number of 

data sets. Memristor, proposed by Chua in [37], is a promising element in this area as it may 

overcome the above mentioned inabilities. This inability is reduced by two factors: the small 

size of the memristors concerning their functionality and the ability to connect the memristors 

with crossbars [38]. 

1.1.4 Disadvantages of Transistor-based Non-Volatile Memory Devices 

A Non-Volatile Memory (NVM) is a type of memory that can continue to store data in the 

computing system even when the power source is off [39]. Modern computing systems 

typically use transistor-based memory such as Static Random Access Memory (SRAM), 

Dynamic Random-Access Memory (DRAM), and Flash memory for data storage applications 

[40]. The major drawbacks of these transistor-based memories are, for instance, that SRAM is 
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expensive, non-volatile only while powered, and has a small storage size in terms of megabytes 

(MBs). Although DRAM is cost-effective and highly scalable, it consumes more power, is 

volatile, and has a moderate storage size in gigabytes (GBs). Flash memory or hard disk is non-

volatile and has a storage capacity of more than 100 GB but has poor latency [40]. Most 

essentially, it is vital to note that further miniaturization of the transistors would lead to 

undesirable device performances, such as junction breakdowns and tunneling phenomena. It 

was predicted, by Gordon Moore (in 2015), that Moore's law would conclude within the next 

decade [41]. These primary limitations of the above-mentioned existing data storage 

technologies have created the need for the invention of a novel data storage and computing 

element that has the advantages of above mentioned current technologies, consumes less power 

and area, and has more latency. The necessity for this kind of device, having future scope for 

improvements in their data storage and computational capabilities, has led to the discovery of 

memristors [42].  

1.2  Memristor 

A memristor is a short form of “memory & resistor”. It is a nonlinear two-terminal passive 

electrical component that exhibits a unique property known as memristance. Memristance is 

the ability of the device to remember the history of the current that has flowed through it and 

to adjust its resistance accordingly. This makes the memristor a promising key element for 

next-generation memory and other applications, such as artificial neural networks and analog 

signal processing [43]. It has a smaller device dimensions of < 50% chip area per bit, compared 

to flash memory. It stores data in its resistance value that depends on the applied voltage's 

polarity, magnitude, and frequency, resulting in much simpler read and write cycles [42]. 

Analogous to transistors, they can be miniaturized in their device dimensions and are used in 

analog and digital electronic systems. Unlike transistors, memristors can store analog values in 

the form of device resistance [44], [45]. Memories based on memristors also have other 
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advantages, including very high packing density, zero power dissipation during data retention, 

and fewer components per computation, compared to their transistor counterparts [14].  

 

Fig 1.1: The four relations describing the essential two-terminal passive elements [40]. 

 

The memristor is the fourth fundamental circuit element, which was theoretically formulated 

by Chua [46]; the other three basic circuit elements are the resistor, capacitor, and inductor, 

which are as shown in Fig. 1.1. It is a two-terminal electronic circuit element that exhibits 

controllable resistive state transitions based on the amount of charge that has passed through 

it. Resistance of the memristor, known as memristance, is defined by Chua as the rate of flux 

(ϕ) versus charge (q) passing through it (i.e., M = dϕ/dq) [47].  It is important to mention that 

there exists two types of memristors. If the q and φ relation is such that q is the independent 

variable, then it is charge-controlled. i.e., 

𝜑 = 𝑓(𝑞)                     (1.1) 

Differentiating both sides of the above equation with respect to time t results in, 
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dφ

𝑑𝑡
=

𝑑𝑓(𝑞)

𝑑𝑞

𝑑𝑞

𝑑𝑡
                    (1.2) 

The above equation can be written as: 

𝑣(𝑡) = 𝑀(𝑞)𝑖(𝑡)                    (1.3) 

where 𝑀(𝑞) is memristance in Ω. 

𝑀(𝑞) =𝑑𝑓(𝑞)/𝑑𝑞                    (1.4) 

On the other side, if q and φ are related such that q is expressed in terms of φ, then it is a flux-

controlled memristor [40]. Analogous to the previous case, 

𝑞 = 𝑓(𝜑)                     (1.5) 

dq

𝑑𝑡
=

𝑑𝑓(φ)

𝑑φ

𝑑φ

𝑑𝑡
                     (1.6) 

𝑖(𝑡) = 𝑊(𝜑)𝑣(𝑡)                    (1.7) 

where 𝑊(𝜑) is the conductance of the memristor (or memductance), which has the units of 

Siemen. 

W(φ) =
𝑑𝑓(𝜑)

𝑑𝜑
                    (1.8) 

It is important to note that q and φ are expressed mathematically as the time integral of i(t) and 

v(t), respectively, and need not have any physical interpretations [42]. Observe that Eqn. (1.3) 

and Eqn. (1.4) can be interpreted as Ohm’s law except that the memristance M(q) at any time 

t = t0 depends on the entire history of i(t) from t = −∞ to t = t0. Similarly, the memductance 

W(ϕ) in Eqn. (1.8) depends on the entire history of v(t) from t = −∞ to t = t0. It results from 

Eqn. (1.3) that the charge-controlled memristor defined in Eqn. (1.1) is equivalent to the 

charge-dependent Ohm’s law. Similarly, a flux-controlled memristor corresponds to the flux-
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dependent Ohm’s law [42]. In 2008 a solid-state memristor was developed and implemented 

by Hewlett-Packard (HP) Labs. It was proven that it is a novel nonlinear two-terminal 

nanoscale element with unique properties like memory capacity, a switching characteristic, and 

continuous input and output properties [48].  

1.2.1 Characteristics of Memristor  

A memristor is a device that stores information on how much charge has passed through it, and 

in which direction. This information is encoded in its internal state variable; the resistance of 

the memristor increases if current passes in one direction and decreases otherwise. It is well-

known for its basic structure of two terminals and a non-volatile internal state variable 

resistance [40]. It consists of a transition metal oxide sandwiched between two electrodes, as 

shown in Fig. 1.2 (a) [49]. It has two resistive states; the Low Resistive State (LRS) of the 

memristor represents logic 1, whereas the High Resistive State (HRS) is read as logic 0. When 

the memductance is the least, the device is said to be in HRS, whereas the condition after 

electroforming is the LRS [40, 42]. The most significant feature of a memristor is the pinched 

hysteresis loop in its I-V characteristics. When a variable power source is applied to the 

memristor, the current through it is zero if the applied voltage is zero and vice-versa. When the 

voltage has gradually increased, the device, which is initially in the HRS , will change to LRS  

at the SET voltage. Further, if the voltage is slightly increased or decreased, the device will 

remain in its LRS. In order to RESET the device back to its HRS, one needs to reduce the 

voltage below the threshold value of the device.  

There are two kinds of resistive switching mechanisms, namely, unipolar and bipolar, as shown 

in Fig 1.2 (b) and Fig. 1.2 (c), respectively [49]. In the case of unipolar switching, both set and 

reset mechanisms occur at the same polarity of voltage; whereas in bipolar switching, logic 1 
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and logic 0, are written onto the memristor by passing positive and negative currents, 

respectively [49]. 

Fig 1.2: (a) Structure of a memristor, (b) Unipolar switching, and (c) Bipolar switching [49]. 

 

 

Fig 1.3: The crossbar array consists of perpendicular rows and columns with the memristor 

devices sandwiched at each cross point [14]. 

 

Memristive devices are customarily manufactured in a crossbar array architecture as shown in 

Fig. 1.3. Memristive crossbar array architecture facilitates dense memory of 4F2 (F is the 

feature size) and is less expensive because of the simplicity of the cross bar array manufacturing 

 (a)           (b)

(c)          
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process [40].  The principal advantage of this crossbar array is the simplicity of its structure. 

This architecture is proven to be power efficient, has high-speed computation, and has a long 

retention time of up to ten years [40]. Thus, the memristor continues to show great potential in 

processing in-memory and computational applications. 

In one of the recent studies, the fabrication of Pt/Cu:ZnO/Nb:STO based memristors has been 

demonstrated and obtained improved electrical performances such as low SET/RESET 

voltages, high ON/OFF ratio, good data retention, and stability, which are useful for various 

signal processing applications [50]. Moreover, the Cu:ZnO based memristor is a bipolar 

switching device, which has a stable switching attributed by retention up to 106 s, high 

endurance [50] and Ron/Roff  ratio of ~ 2 X 103 which provides highly varied range for the state 

variable (ranging from 0 to 1).  The fabricated Pt/Cu:ZnO/Nb:STO memristor was mimicked 

by utilizing The Voltage ThrEshold Adapted Memristor (VTEAM) model [51], and circuits 

were simulated using MATLAB Simulink. In the literature, other important models namely ion 

drift, Berkeley and Yakopcic’s models were explored and many challenges were present to 

model fit the device [52]. In order to point out the important features, the ion drift model works 

more aptly on devices that has transition hysteresis for all voltages (eg: TiO2 memristor). 

However, this model is not suitable for ferroelectric or zinc oxide memristors or for our case 

where the ion drift occurs only beyond certain threshold voltage. Similarly, the Berkeley model 

and Yakopcic’s model have been prototyped based on the concept that the current variation 

takes place instantaneously irrespective of its previous state [53]. Unlike aforementioned 

models, the VTEAM model closely mimicked the fabricated device owing to the precisely 

controlled current variation based on applied voltage [54]. Thus as per the above mentioned 

reasons, in each work mentioned in this dissertation, Pt/Cu:ZnO/Nb:STO memristor is used 

and VTEAM model is chosed to behaviourally model the device. Details of the VTEAM 

modelling of memristor is as given below: 
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At any instant of time, a voltage-controlled memristor can be mathematically represented as: 

𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑣)                     (1.9) 

𝑖(𝑡) = 𝐺(𝑤, 𝑣). 𝑣(𝑡)                  (1.10) 

w is the internal state variable of the device. v(t) and i(t) are the voltage across the device and 

the current passing through the device, respectively. G is the conductance of the device. As per 

the VTEAM model, f (w,v) is: 

𝑑𝑤

𝑑𝑡
=

{
 
 

 
 𝑘𝑜𝑓𝑓 (

𝑣(𝑡)

𝑣𝑜𝑓𝑓
− 1)

𝑎𝑜𝑓𝑓

𝑓𝑜𝑓𝑓(𝑤) , 0 < 𝑣𝑜𝑓𝑓 < 𝑣

0 , 𝑣𝑜𝑛 < 𝑣 < 𝑣𝑜𝑓𝑓

𝑘𝑜𝑛 (
𝑣(𝑡)

𝑣𝑜𝑛
− 1)

𝑎𝑜𝑛
𝑓𝑜𝑛(𝑤) , 𝑣 < 𝑣𝑜𝑛 < 0

             (1.11) 

Here, 𝑣𝑜𝑛 and 𝑣𝑜𝑓𝑓are known as the on and off voltages, respectively. The parameters 𝑘𝑜𝑓𝑓, 

𝑘𝑜𝑛, 𝑎𝑜𝑓𝑓  and 𝑎𝑜𝑛 are constants and these are device dependent. 𝑓𝑜𝑓𝑓 and 𝑓𝑜𝑛 are known as the 

window functions, and they are used to ensure that w is bounded such that w ∈ [𝑤𝑜𝑛 , 𝑤𝑜𝑓𝑓]. 

They are rectangular step-functions defined as follows: 

𝑓𝑜𝑓𝑓 = {
1 𝑖𝑓 𝑤 < 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (1.12) 

𝑓𝑜𝑛 = {
1 𝑖𝑓 𝑤 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (1.13) 

For the model described in [53], 

𝑤 =
𝑥

𝐷
                               (1.14) 

Where x is the length of the doped/polarized region and D is the active material thickness. The 

current-voltage relationship for the model is: 

𝑣(𝑡) = 𝑖(𝑡) ∗ (𝑅𝑜𝑛 + (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)(
𝑤−𝑤𝑜𝑛

𝑤𝑜𝑓𝑓−𝑤𝑜𝑛
))               (1.15) 
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As x can take values between 0 and D, 𝑤𝑜𝑛=0 and 𝑤𝑜𝑓𝑓=1. Substituting this in the above 

equation, it can be deduced as: 

𝑣(𝑡) = 𝑖(𝑡) ∗ (𝑅𝑜𝑛 + (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝑤)               (1.16) 

The logic state of a memristor can be changed by applying sufficient voltage across it. To 

change state from 0 to 1, a negative voltage, 𝑣𝑠𝑒𝑡, with magnitude greater than 𝑣𝑜𝑛 is applied 

across the memristor. Similarly, to change the logic state from 0 to 1 a positive voltage, 𝑣𝑟𝑒𝑠𝑒𝑡, 

of magnitude greater than 𝑣𝑜𝑓𝑓 is applied across the memristor. Apart from these binary states, 

the analogue nature of memristors permit multiple states in between the LRS and HRS.  

The memristor crossbar array is a structure comprising of vertical and horizontal metallic wires 

with memristors at the intersection of each vertical and horizontal wire [55], [56], as shown in 

Fig 1.3, where V1, V2…Vm is the input voltage, and I1, I2...In is the output current. The 

memristance of any memristor can be tuned by applying a suitable voltage, 𝑣𝑖, across at the 

ends of the vertical and horizontal wires which have the corresponding memristor at their 

intersection. To ensure that this doesn’t change the memristance of the other memristors in the 

row or column, a voltage of 𝑣𝑖/2 is applied across these memristors such that |𝑣𝑖/2| < |𝑣𝑜𝑓𝑓| (or 

|𝑣𝑜𝑛|) <|𝑣𝑖 |. From Eqn. (1.11), this ensures that dw/dt=0 so the memristance won’t change. One 

of the most important applications of memristor crossbars is the implementation of the matrix 

dot product, and this paves the way for various neuromorphic architectures using this structure. 

For implementing matrix dot product using memristor crossbar, first, the crossbar with 

memconductance of all memristors proportional to the elements of the first matrix is initialized. 

Later, voltages with magnitude in the range (𝑣𝑜𝑛,𝑣𝑜𝑓𝑓) and time pulse width proportional to 

the corresponding element of the other matrix involved for the dot-product are applied. As 

mentioned above, this ensures that their conductance doesn’t change. From Eqn. (1.10), the 
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output currents are obtained and integrated. Mathematically, this is equivalent to the dot 

product as: 

𝑖 = 𝑔𝑖,𝑗 ∗ 𝑣𝑚                                                                                (1.17) 

𝑄 = ∫ 𝑖 𝑑𝑡 = 𝑔𝑖,𝑗 ∗ 𝑣𝑚 ∗ 𝑡𝑖,𝑗   
𝑡𝑖,𝑗
0

                                                    (1.18) 

Where, 𝑔𝑖,𝑗 is the memconductance of the memristor located at the intersection of the 𝑖𝑡ℎ row 

and 𝑗𝑡ℎ column, 𝑣𝑚 is the magnitude of the voltage pulse, 𝑡𝑖,𝑗 is the time pulse voltage width 

applied across the memristor, and Q is the charge obtained from integrating the current. In Eqn. 

(1.18), it is observed that the charge Q is directly proportional to the product 𝑔𝑖,𝑗 ∗ 𝑡𝑖,𝑗. 

1.3 Literature Review 

In 1971, the memristor was theoretically predicted to be a fourth fundamental circuit  

component relating the flux-linkage and charge [46]. Unique properties of memristors, such as 

simple physical structure, high density, non-volatility, high scalability, and low power 

consumption, have promising applications in the areas of non-volatile memory, Very-Large-

Scale Integrated Circuitry (VLSI), artificial neural networks, image processing, and pattern 

recognition. Memristors have wide applications as a discrete device and also as an array devices 

[57], as these memristive devices are customarily manufactured in a crossbar array architecture, 

where intersections between the orthogonally oriented bottom and top lines form one storage 

element at each cross point yielding high scalability and efficiency [40]. The author has 

categorized the appropriate applications of memristors as discrete device and array device 

applications. Among which the crossbar array applications are classified into analog and digital 

applications, further the analog applications of crossbar arrays are classified as neuromorphic 

networks and field-programmable analog arrays, and digital applications as content 

addressable memory, non-volatile memory, and logic circuits [57].  It was demonstrated that 
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memristors perform implication logic, whereas memristive circuits can play the dual role of a 

logic gate and a latch [58], [59]. All the logic gate functionality was successfully implemented 

by utilizing memristive circuits. In addition, it was shown that all Boolean functions were 

implementable with the least number (two) of memristors [60]. 

The important analog applications of memristors are tunable analog circuits, filters, and chaotic 

circuits. Within the tuneable analog circuits, utilization of a memristor resulted in improved 

performance and circuit complexity [44], [61]. Interestingly, employment of a memristor in the 

conventional amplifier circuits led to the enhancement of linearity in tuneable gain amplifiers 

[62], [63]. Most importantly, memristor-based circuits were employed as filters for signal 

processing applications [64], [65]. It is noteworthy to mention that the chaos applications of 

memristor are mainly in random number generation, medical, and communication. It was 

identified the memristors could demonstrate chaos by utilizing Chua’s circuit. This study was 

extended such that chaotic circuits were employed in oscillators resulting in improved 

nonlinearity, signal-to-noise ratio, and frequency of oscillation [66], [67]. It is important to 

mention that memristors have shown tremendous potential to act as operational and computing 

elements. These devices have been utilized in the development of programmable threshold 

comparators [44]. Furthermore, memristor-based circuits have closely mimicked the transfer 

characteristics of operational amplifier circuits [68]. Interestingly, memristors were utilized for 

mathematical operations such as multiplication and division through the employment of a 

memristive crossbar array and its analog characteristics [69], [70]. These analog computation-

based operations are essential in the fields of signal processing and control systems [71]. 

In the present digital era, digital image processing plays the most important role in areas like 

medical imaging and geographical information [72]. On the other hand, Neuromorphic 

computing is one emerging technology post Moore’s law era, where Neuromorphic computing 

systems are highly connected and parallel, consume relatively low power, and process in 
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memory [73]. Artificial intelligence, image processing, and related fields require massively 

parallel computations, and memristors can potentially be used to solve such problems [74]. 

Exploring these applications and knowing the need for memristors in rising applications like 

image processing and neuromorphic computing, our work aims to develop optimal memristor-

based circuits using machine learning algorithms for different Image processing applications. 

Memristive crossbars offer reconfigurable non-volatile resistance states and could remove the 

speed and energy efficiency bottleneck in vector-matrix multiplication, a core computing task 

in signal and image processing [11]. Can Li et al. has demonstrated important applications such 

as signal processing, image compression, and convolutional filtering, which are essential in the 

development of the Internet of Things (IoT) and edge computing [11]. 

In one of the studies [75], the author has proposed memristive cross bar arrays for the storage 

of image and image processing applications. In [76], the author has presented the memristor-

based chaotic circuit for text or image encryption and decryption. Also, the author has shown 

the feasibility and practicality of memristor-based chaotic circuits for encryption and 

decryption from the obtained simulation results. S. Muthulakshmi et al. proposed memristor-

based approximate full adder and subtractor architecture, which is verified for image addition 

and foreground detection, respectively [77]. The authors in [78]  have demonstrated that the 

memristive grid is an efficient tool for achieving image smoothing and edge detection. 

Memristors are being considered for image fusion due to their low energy consumption and 

easy integration [79]. The process of fusion can be done through a pulse-coupled neural 

network, which has other benefits like denoising the image and edge extraction [79]. In [80], 

the author has proposed image edge detection using swarm intelligence and ant colony 

optimization using memristive devices. 

Thus, it can be seen that memristor is a promising key element for image-processing 

applications. 
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1.4 Scope of the Present Investigation  

One of the fundamental problems in science is processing signals. In this era of DSP, the 

increasing size and complexity of data have led to the development of advanced signal-

processing techniques, which are more robust and efficient in handling massive and 

unstructured data. The use of fast computing and algorithmic developments has enabled these 

techniques to be applied in various fields, including image and speech recognition, natural 

language processing, and bioinformatics. Moreover, the emergence of machine learning and 

deep learning techniques which rely heavily on advancements in computing power and 

algorithmic development to process and analyze massive and complex datasets has 

revolutionized the field of signal processing.  These approaches or algorithms involve a lot of 

data transfer during the processing. Present-day computers face the limitations of memory and 

the high costs of moving data between the main memory and the processor. Since the inception 

of using big and complex data files, Von Neumann's architecture's shortcomings have been 

limiting the performance of computing systems. The difference between the two peak 

bandwidths needed by the processor and main memory is main reason for this bottleneck. 

From the extensive literature review, it is evident that memristor-based devices are the need of 

an hour to build high-speed, low cost and low-power-consuming electronic systems. The 

memristor stores and processes data at the same location. One approach is to compute digital 

logic on a memristor crossbar array. The other approach is to use the crossbar for analog matrix 

multiplications. Of these two approaches, the second approach is most suitable for data-

intensive applications as matrix multiplications are the most used operations in these 

applications. It is also seen that image processing and machine learning are one of the most 

significant topics of this digital era, and memristors can be used as an active element in these 

applications in order to build highly efficient systems. On the other hand, marchine learning is  

an advanced technology that emulates the human brain and makes the process faster. Very 
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limited studies are currently available in literature that use machine learning to develop 

advanced signal processing applications on memristive circuits. Thus, it is apparent that the 

implementation of memristive crossbar arrays for advanced signal processing applications 

using machine learning algorithms are vital. Therefore, in order to fulfill all the above-

mentioned requirements, this work aims to design and  implement low complex memristive 

circuits using machine learning algorithms for signal processing applications. 

1.5 Objectives of the Thesis  

The main objective of the proposed research is to implement low-power and less complex 

memristive circuits using machine learning algorithms through a simulation route for realizing 

advance signal processing applications. 

In order to accomplish this, the specific objectives of the work are as follows: 

(1) To implement an innovative memristor crossbar-based architecture, CoCoPIM 

(Computing Correlation Parameter In-Memory), to accelerate Pearson Correlation 

Coefficient computations and further demonstrate different applications based on this 

architecture, such as computing correlation between ECG signals, faces, and H1N1 

models.  

(2) To implement a devoted in-memory processor for Bayesian text classification using 

memristive crossbar architecture, in which memristive switches will be employed to 

store information required for the classification of text.  

(3) To develop an edge detection system for an image processing application exploring the 

possible resistive states within the Memristive State Machine (MSM) of a memristor.  

(4) To investigate a memristor-enabled computing in-memory architecture of the widely 

used Binary Particle Swarm Optimization (BPSO) algorithm for image thresholding.   
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(5) To explore different algorithms for image fusion and to implement that using a 

memristor crossbar array.   

1.6  Thesis Organization  

The entire work has been presented in 7 chapters. 

Chapter 1: This chapter includes an introduction to signal processing and its applications in 

image processing and text classification. An extensive literature survey of metal oxide resistive 

switching devices and how beneficial the use of memristor devices as non-volatile memory is 

carried out. The advantages of using the memristor device for signal processing applications 

has been discussed. In view of the literature survey, the scope and objective of the present work 

have been formulated and presented. 

Chapter 2: In this chapter, CoCoPIM architecheture is proposed for the computation of 

Pearson Correlation Parameter  and computation of similarities between ECG signals, faces, 

and H1N1 models are demonstrated using the proposed architechture. Also, the current-voltage 

characteristics of the memristor and the methodology to store data in it are explained. The 

proposed CoCoPIM’s architecture, data mapping, acceleration steps, and microarchitecture are 

proposed, and its applications are demonstrated. It is concluded with system-level comparisons.  

Chapter 3: In this chapter, a memristor-based Bayesian text classifier for applications in digital 

media is developed, and the methodology is explained in detail. The efficacy of the proposed 

circuit in classifying the texts with high accuracy is determined. Also, the chapter is concluded 

with the experimental results obtained and discussed.  

Chapter 4: This chapter discusses the Memristive State Machine (MSM) developed through a 

simulation route for edge detection systems for image processing applications. The obtained 

edge detections were compared with other popular conventional software-based edge detection 
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systems such as Canny, Sobel, Prewitt, Log, Zerocross and Roberts. Later the efficacy of MSM 

was discussed for future generation’s accurate and faster real-time image processing 

applications. 

Chapter 5 : This chapter introduces a memristor-enabled computing in-memory architecture 

of the widely used Binary Particle Swarm Optimization (BPSO) algorithm is demonstrated. 

Then memristor model and modeling of the crossbar for implementation of BPSO for image 

thresholding are described. Further, the chapter is concluded with an explanation of the results 

for multi-thresholding on standard images as well as the Brain MR images, followed by the 

results with device variations. 

Chapter 6: In this chapter, a novel architecture for image fusion using memristor crossbar 

implementation of an iterative Kernel PCA algorithm is described. Further, to test this 

algorithm, experiments were carried out using different multi-focus images as well as Infrared-

Visible Images. Later the conclusions are drawn based on the results obtained and compared 

between the software implementation and memristor implementation.  

Chapter 7: In this chapter, important findings are summarized, conclusions are drawn, and the 

contribution of the work is mentioned. 
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Chapter-2 

Memristors Enabled Computing Correlation Parameter 

In-Memory System: A Potential Alternative to Von 

Neumann Architecture  

2.1 Introduction 

As discussed in the chapter 1, the Von Neumann bottleneck has been limiting the performance 

of computing systems since the inception of using large and complex data files [81]–[84].  This 

bottleneck arises from the difference between the two peak bandwidths required by the 

processor and main memory. On the one side, the current high-end processors, which contain 

multiple cores on one chip, further increase the bandwidth requirement compared to single-

core processors [85]. On the other side, the continuous transistor scaling led to improvements 

in clock frequency but never improved the memory access speed by the same magnitude. These 

two trends have increased the number of idle processor clock cycles per memory access [84]. 

As a result, the idle clock cycles lead to an increase the energy consumption. To mitigate these 

issues, memristor-enabled in-memory concept is believed to be a viable solution. The 

memristor stores and processes data at the same location. One approach is to compute digital 

logic on a memristor crossbar array [86], [87]. The other approach is to use the crossbar for 

analog matrix multiplications [14]. Of these two approaches, the second approach is most 

suitable for data-intensive applications, as matrix multiplications are the most used operations 

in these applications [88]. 

Pearson correlation coefficient (PCC) is one of the data intensive computation tasks that is 

being used across multiple disciplines. Computing PCC on large amounts of data is 
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computationally expensive [89]. Efforts have been devoted to speed up the PCC, which involve 

a General Processing Unit (GPU) implementation and Intel Xeon Phi cluster implementation 

[89], [90]. GPU implementation (GPU-PCC) computed PCC on a large Functional Magnetic 

Resonance Imaging (fMRI) dataset, while Intel Xeon implementation computes PCC to 

construct gene co-expression networks [89], [90]. GPU-PCC demonstrated 94.62× times 

speedup when compared with the CPU version, whereas Xeon cluster was found to be up to 

218.2× times faster [89], [90]. Though these implementations showed significant speedup due 

to increased parallelization, they are still limited by the von Neumann bottleneck, which drives 

up their energy consumption. Therefore, there is a further need to explore non-Von Neumann 

architectures, which might result in lower energy consumption and also improve in gaining 

higher speed. 

In this chapter, a systematic investigation has been initiated to design a memristor crossbar-

based architecture to compute the PCC within the memory array. The crossbar has been used 

to perform multiplication and difference operations, where the product term in the numerator 

(Nr) and the difference operations in the denominator (Dr) are considered. Three different 

applications were demonstrated by computing PCC. The first application is computing PCC 

between noisy and denoised electrocardiogram (ECG) signals. The second one is face 

recognition, where we compute PCC between face images in the presence of occlusions and 

varying expressions. Finally, the third application is computing PCC between two models of 

H1N1 prediction to verify their similarities. Furthermore, an effort has been paid to analyze the 

effect of device variations on these applications. An attempt has also been made to perform 

detailed system level comparisons of the proposed architecture against a Von Neumann 

machine. 

To compute PCC, the computing correlation parameter in memory (CoCoPIM) offers a few 

advantages when compared with a von Neumann machine. First, apart from alleviating the data 
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transfer bottleneck as mentioned earlier, unlike von Neumann machines, the CoCoPIM 

computes PCC of all the input operands concurrently. This parallel task is beneficial for such 

applications where PCC would be computed multiple times. For example, in face recognition, 

PCC may need to be computed a few times to find a match. However, to perform the same 

task, the input operands also need to be loaded a few times in a von Neumann machine. As the 

operations such as square, square root, multiplication, and division (needed by PCC) require 

multiple cycles to complete on state-of-the art processors [91], [92]. CoCoPIM uses analog 

circuits to implement these operations so that these can be completed in a much shorter time. 

In applications such as ECG signal comparison and H1N1 model comparison, the PCC rather 

needs to be computed only once between two operands. Thus, the first advantage is not 

reflected in this case. However, the second advantage could be beneficial for improving speed 

up and energy savings in these applications. It is noteworthy to mention that most applications 

involve computation of PCC between multiple operands, and therefore both the advantages of 

CoCoPIM can be realized [93]–[96]. 

Although memristor-based Processing-In-Memory (PIM) accelerators such as In-Situ Analog 

Arithmetic in Crossbar (ISAAC), PIM architecture (PRIME), and reconfigurable ReRAM-

based PIM (Re2PIM) have been proposed earlier, their data mapping and peripheral circuitry 

were specifically designed to accelerate deep learning workloads [97]–[100]. Many of the 

intensive arithmetic operations such as division and square root needed to compute PCC are 

not supported by the above-mentioned accelerators as their peripheral circuitry only computes 

operations (say sigmoid function) which are needed by the neural networks. On the other hand, 

CoCoPIM is the first accelerator for PCC which not only includes peripheral circuitry designed 

particularly for optimizing the throughput of these complex arithmetic operations needed to 

compute the PCC but also maps the input operands to exploit the parallelism in computing 

PCC. 
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In the literature, there are three other popular memristor based PIM architectures such as spin-

transfer torque compute in-memory (Stt-CIM), MRAM-based in-memory accelerator 

(MRIMA), and FeFET Cim [101]–[103] which are also available. In this regard, CoCoPIM is 

considered as an application specific architecture, while the other three are programmable 

general-purpose accelerators. These three accelerators can also be integrated on a system on 

chip (SoC) by connecting them to a system bus similar to CoCoPIM. These three accelerators 

implement Boolean operations in memory, whereas CoCoPIM implements matrix 

multiplication in crossbars and complex arithmetic operations in the analog circuits. If one 

implements PCC based on these three accelerators, the overall performance will be degraded. 

CoCoPIM performs complex arithmetic operations using analog circuits asynchronously. 

When these three accelerators are concerned, it will take many instructions across multiple 

cycles as these complex arithmetic operations should be dilapidated into simple Boolean logic 

operations. In addition, the operands for these complex arithmetic operations should be aligned 

within the memory location for these three accelerators to perform their Boolean operations. 

Therefore, as a result, the memory array will have very low data reuse, and given the high write 

latency of memristors, the overall system will experience a huge latency and increase in energy. 

The key highlights of this work are:  

1) PCC Computing In-memory: memristor crossbars were employed to perform matrix 

multiplication to parallelize the proposed applications.  

2) Throughput-optimized Data mapping and Peripheral Circuit design: the inputs to the 

memristor crossbar are mapped in such a way that the PCC can be computed across inputs 

concurrently. Attempts were also made to design the peripheral circuitry to support this 

throughput and minimize static power and area overheads.  

3) Demonstrating three new applications: as mentioned earlier, three different applications, 
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such as implementing ECG signal comparison, face Recognition, and H1N1 model 

comparison, were developed based on the proposed architecture. 

4) Variation Analysis: process variations were included in the simulations, and the efficacy of 

these variations on the mentioned applications were analyzed. 

5) System-level Evaluation: we analyze the energy and delay of the proposed architecture for 

all three applications and compare it against a von Neumann machine to understand its potential 

for future-generation computing applications.  

In the next section, the Pearson Correlation Coefficient parameter and how it is used to compute 

similarities between ECG signals, faces, and H1N1 models is described. In Section 2.3, the 

current-voltage characteristics of the memristor and the methodology to store data in it is 

explained. In Section 2.4, CoCoPIM’s architecture, data mapping, acceleration steps, and 

microarchitecture of CoCoPIM architechture is explained. The applications are demonstrated 

in Section 2.5. The system-level comparisons is presented in Section 2.6. Section 2.7 

summarizes the chapter. 

2.2 Pearson Correlation Coefficient 

The Pearson Correlation Coefficient (PCC) quantifies the similarity between two linearly 

dependent variables [89]. The PCC of two vectors x and y is expressed in Eqn. (2.1): 

                        𝜌𝑥𝑦 = 
∑ (𝑥𝑖−�̅�)
𝑇
𝑖=1 (𝑦𝑖−�̅�)

√∑ (𝑥𝑖−�̅�)
2𝑇

𝑖=1 ∑ (𝑦𝑖−�̅�)
2𝑇

𝑖=1

                                 (2.1) 

where 𝜌𝑥𝑦 is the PCC between two T dimensional variables x and y. If the PCC is between 0.90 

and 1, then both variables will have a perfect linear relationship [104]. However, they will not 

possess a linear relationship if the PCC is kept between 0 and 0.30 [104]. It is noteworthy that 

one may not conclude a confident decision about the relationship if the PCC lies between 0.30 
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and 0.90. PCC has many applications in different fields, such as medical research, financial 

market analysis, biometrics, etc. It is often used to find biomarkers, which are the gene 

expressions present in most cancer patients[94], [98]. In the area of speech-language pathology, 

PCC is used as an automatic speech processing system to compare the patient’s speech and 

dysarthric speech to conclude if the patient suffers from dysarthria or not [95]. Another 

important application of PCC is to verify the efficacy of denoising algorithms. While collecting 

Electrocardiogram (ECG) data, the original signal gets corrupted due to noise from the 

environment. Therefore, there is a need to denoise those noisy signals, and this is accomplished 

using different techniques such as Discrete Wavelet Transform (DWT), Discrete Cosine 

Transform (DCT), etc. After denoising, the PCC is employed to compute the similarity check 

if the denoised signal resembles the original signal [105]. The PCC is also utilized for pattern 

recognition to evaluate the similarity between the neutral faces and  occluded faces [106]. 

When financial markets are concerned, the PCC is used to check the similarity between the 

price of a stock (over a period of time) and the emotions of stock traders recorded (from social 

media) from a certain period before the period of analysis of the stock [107], which is then 

extrapolated to predict the price of the stock later. 

2.3 Implementation Section 

2.3.1 Memristor Modeling and Design Parameters 

In this chapter, as mentioned earlier copper-doped zinc oxide (Cu:ZnO) based memristor was 

employed, and the device fabrications and characterizations are described in [50], [104]. Since 

the developed memristor is voltage controlled and exhibits non-linear current-voltage 

characteristics, the Voltage Threshold Adaptive Memristor (VTEAM) model has been utilized 

to model the device and import it into the simulation environment [53]. The parameters of the 

VTEAM model and their values for modeling the Cu:ZnO device are tabulated in Table 2.1. 
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The memristor’s electrical characteristics deviate from its ideal behavior due to critical process 

variations such as Oxide Thickness Fluctuations (OTFs), Random Discrete Dopants (RDDs), 

and Line Edge Roughnesses (LERs) [48].  

 

 

Oxide thickness is referred by the parameter D in the VTEAM model, and the deviation in 

dopants leads to the variations in high resistive state (HRS), low resistive state (LRS), SET 

voltage, RESET voltage, ion mobility in SET, and ion mobility in RESET. To model OTFs and 

RDDs, a normal distribution of Ron, Roff, kon, koff, von, voff, and D across the devices was 

Table 2.1: VTEAM values for Cu:Zno  

memristor [51] 

Parameter Value 

LRS Resistance (Ron) 1.2 kΩ 

HRS Resistance (Roff) 1.2 MΩ 

Ion Mobility in SET (kon) 250 nm/sec 

Ion Mobility in RESET (koff) 200 nm/sec 

Filament Physical Length (D) 10 nm 

SET voltage (von) 1.35 V 

RESET voltage (voff) -1.20 V 

 

 

Fig. 2.1: Performing matrix multiplication in the crossbar using DAC, S&H, and ADC. 
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introduced, where the standard deviation is 5% of the mean values of these parameters. 

Memristor crossbar arrays have been used to implement matrix multiplications [98], [100]. As 

shown in Fig. 2.1, every Bit Line (BL) of the memristor crossbar is connected to a Digital to 

Analog Converter (DAC), and every Word Line (WL) is connected to a Sample and Hold 

(S&H) circuit. Every BL is connected to every WL by a memristor. If one wants to multiply 

two matrices, then one matrix is initialized in the form of conductance of the memristors while 

the other is supplied as pulse width modulated voltage signals through the DACs. Hence, the 

electronic charge (accumulated in the S&H circuits at the end of every WL) represents the 

multiplication of both matrices.  The LER arises from random uncertainties in the processes of 

lithography and etching [48]. It leads to random deviations in line edge print-images from their 

ideal patterns [108]. Hence, we add a 5% area overhead in our crossbar to account for the 

possible increase in the area due to LERs. However, according to the VTEAM model, the 

electrical characteristic of the memristor is independent of the edge length. Hence, one can 

conclude that LERs affect only the area of a device and not the electrical characteristics of the 

memristor. To analyze the effect of these process variations on CoCoPIM, these variations 

were included in the system-level simulations and reported the deviations observed in the 

proposed applications in Section 2.5.  

2.4 CoCoPIM Architecture 

2.4.1 Architecture 

In this work, the system-on-chip (SoC) contains a processor, CoCoPIM, and main memory 

connected by a system bus, as shown in Fig. 2.2(a). The CoCoPIM is designed to be a Pearson 

Correlation Coefficient (PCC) accelerator with memristor crossbars to store the input operands 

(x and y variables) and compute PCC on them. This memory is visible to the programmer, and 

data can be written into it while programming the application (face recognition, H1N1, or ECG 
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signals). This alleviates the data transfer between the main memory and processor, similar to 

the standard von Neumann machine. At a high level, CoCoPIM contains a switch matrix, a 

memristor crossbar, a switch array, and a peripheral circuit (Fig. 2.2(b)).  

 

The host CPU provides the control signals required by each of these components. On the other 

side, the crossbar is used to perform the matrix multiplications, while the peripheral circuit is 

employed to perform the other arithmetic operations required by the PCC. The peripheral 

circuit block, shown in Fig. 2.2(b), contains multiple blocks called Numerator,  Denominator, 

and ADC (NDA) blocks. Where the NDA block contains circuits that compute and store the 

Numerator (Nr) and Denominator (Dr) of the PCC. The NDA block also contains a division  

and Analog-to-Digital Converter (ADC) to divide the numerator and denominator and then 

ultimately convert it into a digital signal ranging between 0 to 1. It is noteworthy that there are 

64 NDAs inside the peripheral circuit block. The first 63 NDAs are similar, and the 64th NDA 

 

Fig. 2.2: (a) System on Chip Architecture and (b) CoCoPIM architecture. 
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contains a different set of circuits as it needs to drive a current signal to the other 63 NDAs. 

This difference has been explained in Section 2.4.2. The microarchitecture of CoCoPIM is 

shown in Fig. 2.3. From the figure, one can notice that the switch matrix consists of 

transmission gates connected to the Bit Lines (BLs) of the crossbar [81] and controlled by 

signals B1 to B512. These control signals would decide which voltage source (V0 or V1) gets 

connected to the BL.  

 

The duration of these control signals will also determine the pulse width of the voltage applied 

to the BLs of the crossbar. The crossbar receives input voltage signals through the BLs, and 

the output current signals were collected along each Word Line (WL). The NDA block consists 

of multiple circuits (as shown in Fig. 2.4). The main benefit of CoCoPIM over von Neumann 

architectures is its high throughput and latency in PCC computations.  

If  all the complex mathematical operations are to be performed using digital logic circuits, 

then one must add many ADCs to support this high throughput. As usage of ADCs increase 

power and area consumption significantly, it was decided to compute the complex 

 

Fig. 2.3: Proposed CoCoPIM microarchitecture. 
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mathematical operations using analog circuits and subsequently convert the results into digital 

format. The multiplication part of numerator (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) is computed batch wise in Xbar 

outside the NDA block and is given as input to miller capacitance of NDA block through switch 

1(SW1). The output voltage, V2, from the Miller capacitance represents the  ∑ (𝑥𝑖 −
𝑇
𝑖=1

�̅�) (𝑦𝑖 − �̅�) term in the numerator of the PCC. The V2 was found to be in between 0 to 10 V. 

The current I5 is representative of V2 due to the transimpedance amplifier and must be in the 

range of nano amperes before reaching the division circuit (connected to SW3) (shown in Fig 

2.4). The voltage from the miller capacitor was in positive magnitude, however, after passing 

through the inverting amplifier, it changed its sign magnitude into negative. In addition, 

initially, an inverting amplifier has been used, which divides the voltage magnitude by 1000.  

On the other hand, the inverted voltage was passed through a VI converter circuit, which 

converts the input voltage into the current, while dividing its magnitude by 1000. Importantly, 

the output current flows through a 1 kΩ resistor, and the sign-magnitude is negative. Since the 

1kΩ was also attached to a current divider, which further divides the magnitude of current by 

 

Fig. 2.4: Circuits present within each of the 63 NDA blocks.  
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another 1000. Therefore, to adjust this, the voltage was eventually converted into current and 

divided by 1000 thrice to get a current in the range of Nano amperes.  

The denominator was computed using the circuits connected to a switch SW2. The input 

current I6 ranges from -2 to 2 mA. All the circuits which were connected to SW1 are used for 

computing the numerator of the PCC, whereas the ones connected to SW2 are used for 

computing the denominator of the PCC. Once the numerator and denominator were computed, 

they were divided and then converted into binary digits using the ADC. The output current 

from the divide circuit I23 was fed into the ADC. When the SW1 was on, the current flowing 

through it was summed up in the Miller capacitance. A capacitance of 100 nF is required to 

adjust the range of the accumulated charge for further calculations. As 100 nF is not feasible 

to be realized on-chip, a Miller capacitance block was utilized to multiply the 100 pF 

capacitance by the magnitude of 1000 using the 1Ω to 999 Ω non-inverting amplifier 

configuration to achieve 100 nF. The crossbar size was taken as 512 × 512, and its word lines 

(WL) were connected to the switch array. The switch array contains 512 NMOS transistors 

used to connect the WLs of the crossbar to their corresponding NDA blocks. From the 

literature, it was found that one requires a maximum of eight rows of the crossbar to initialize 

one vector (in the present case, a vector is a face image or an ECG signal or an H1N1 model) 

[50], [92], [93]. Therefore, in Fig. 2.3, every eight rows of the crossbar were connected by the 

switch array to one NDA block.  

The current I6 was passed through the absolute circuit to convert it into a positive current. 

Whereas I7 was the output of the absolute circuit, which passes through the 1Ω resistor. It is 

noteworthy to mention that the value of this resistance does not alter the magnitude of I7. It 

was observed that the I7 was the input to the square circuit, and it uses the Translinear (TL) 

principle to exploit transistors in the subthreshold region [109]. In the square circuit shown in 
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Fig. 2.4, one can notice a TL loop has been formed by transistors M1, M2, M3, and M4. The 

TL loop was expressed as follows: 

𝑉𝐺𝑆1 + 𝑉𝐺𝑆2 = 𝑉𝐺𝑆3 + 𝑉𝐺𝑆4                                         (2.2) 

where 𝑉𝐺𝑆1, 𝑉𝐺𝑆2, 𝑉𝐺𝑆3 and 𝑉𝐺𝑆4 are the gate-source voltages of transistors M1, M2, M3 and 

M4 respectively. The drain current (ID) in the subthreshold region of a MOS transistor is 

expressed below: 

𝐼𝐷 = 𝐼𝑜 .
𝑊

𝐿
. 𝑒
𝑉𝐺𝑆

𝑈𝑇
⁄
                                               (2.3) 

where Io is a constant, W and L are the width and length of the transistor, respectively. VGS is 

the gate to source voltage of the transistor, and UT is the thermal voltage. By rearranging Eqn. 

(2.3), the Eqn. (2.4) can be written as: 

    𝑉𝐺𝑆 = (ln I𝐷− ln𝑊/𝐿 − ln 𝐼𝑂)𝑈𝑇                                         (2.4) 

Also, by substituting Eqn. (2.4) in Eqn. (2.2), the Eqn. (2.5) can be obtained as:  

     𝐼8 =
𝐼72

𝐼𝑏𝑖𝑎𝑠
                                                (2.5) 

where I8 is the square of the magnitude of I7. The current I8 contains a bias term in its 

denominator. The proposed circuit was verified, and the obtained characteristics are presented 

in Fig. 2.5. The input current I7, and Ibias is set at 100 nA. The output current is I8, and it 

matches very closely to its expected value. As shown in the Fig. 2.4, a current mirror 

(transistors M8 to M10) was employed to generate current I9, which has the same magnitude 

as I8. In the Miller capacitor, this current (I9) was summed up. A capacitance of 1 nF was 

required to adjust the range of the accumulated charge for further calculations. The output 

voltage of the Miller capacitor was V9. This voltage represents the term ∑ (𝑥𝑖 − �̅�)
2𝑇

𝑖=1  in the 

denominator of the PCC. This must be converted into the current for further use in other 
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arithmetic circuits. In this work, a VI converter circuit was used to convert voltage V9 into 

current I10. 

 

The relation between I10 and V9 is given in Eqn. (2.6) as follows: 

𝑉9 =
𝐼10

1𝐾Ω
                                                       (2.6) 

Once the V10 was converted into the current, it was further scaled up by 1000. The magnitude 

 

Fig. 2.5: Characteristics of the square circuit. (a) The output and expected current, (b) the 

input, and (c) the bias current. 
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of the current was further reduced by using the 1kΩ resistor as the arithmetic circuits later 

require current to be in the nA range. Thereafter, the I10 was fed into a current divider circuit, 

which further fed its output current I11 into switch 4 (SW4). At this point, it was not required 

to further reduce the magnitude of the current I10 in the current divider as it was already in the 

preferred range. 

The TL loop in this circuit is expressed by Eqn. (2.7). 

𝑉𝐺𝑆8 + 𝑉𝐺𝑆9 = 𝑉𝐺𝑆10 + 𝑉𝐺𝑆11                                       (2.7) 

where 𝑉𝐺𝑆8, 𝑉𝐺𝑆9, 𝑉𝐺𝑆10 and 𝑉𝐺𝑆11 are the gate-source voltages of  transistors M8, M9, M10  

 and M11 respectively. By substituting Eqn. (2.3) in Eqn. (2.7), one gets Eqn. (2.8) 

𝐼11 × 𝐼12 =  𝐼13 × 𝐼14                                (2.8) 

From Eqn. (2.8), it can be observed that the currents I11, I12, I13, and I14 are multiplied. In 

this case, I11 is the output current of the current divider circuit, and I12 is the output current 

from NDA 64.The current I13 is considered as a bias current, and I14 is the output current of 

the multiplication circuit, which represents the term ∑ (𝑥𝑖 − �̅�)
2𝑇

𝑖=1 ∑ (𝑦𝑖 − �̅�)
2𝑇

𝑖=1  in the 

denominator. Efforts were put to demonstrate the output performances, and the characteristics 

of this circuit are depicted in Fig. 2.6. In this figure, the bias current I13 has a magnitude of 

100 nA. The output from the multiplication circuit I14 was fed to a current mirror to give the 

output current I15, which has the same magnitude as I14. I15 was an input to the square root 

circuit, which also works on the basis of TL principle [111].  

From Fig. 2.4, one can find that the TL loop for the square root circuit is given by Eqn. (2.9) 

𝑉𝐺𝑆12 + 𝑉𝐺𝑆13 + 𝑉𝐺𝑆14 = 𝑉𝐺𝑆15 + 𝑉𝐺𝑆16 + 𝑉𝐺𝑆17                      (2.9) 

where 𝑉𝐺𝑆12, 𝑉𝐺𝑆13, 𝑉𝐺𝑆14, 𝑉𝐺𝑆15 𝑉𝐺𝑆16 and  𝑉𝐺𝑆17  are the gate-source voltages of transistors 



38 
 

M12, M13, M14, M15, M16 and M17, respectively. After substituting Eqn. (2.3) in Eqn. (2.9), 

one gets Eqn. (2.10) as follows:  

𝐼15 × 𝐼16 × 𝐼17 = 𝐼18 × 𝐼19 × 𝐼19                                                (2.10)    

where I15, I16 (constant), I17 (constant), I18 (constant), and I19 are the currents through the 

transistors M19, M20, M21, M22, M23 and M24, respectively. 

 

Fig. 2.6: Characteristics of the multiplication circuit. (a) The output and expected current, (b) and 

(c) are the inputs, and (d) the bias current. 
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It is essential to mention that in Eqn. (2.10), the I19 has appeared twice, as the same current 

flows through the transistors M23 and M24. Thus, Eqn. (2.10) can be rewritten as Eqn. (2.11) 

as given below:  

𝐼19 = √
𝐼15×𝐼16×𝐼17

𝐼18
                                   (2.11) 

Therefore, Eqn. (2.11) is essentially the square root of I15 and three bias currents. The output 

 

Fig. 2.7: Characteristics of the square root circuit. (a) the output current I19 and the 

expected output current t of inputs (b) I15, (c) I16, (d) I17, and (e) I18. 
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current I19 represents the term√∑ (𝑥𝑖 − �̅�)2
𝑇
𝑖=1 ∑ (𝑦𝑖 − �̅�)2

𝑇
𝑖=1  in the denominator. The results 

from simulations of the square root circuit are shown in Fig. 2.7.  

The input current I15 ranges from 20 to 80 nA and is shown in Fig. 2.7(b). The currents I16, 

I17, and I18, are constant current sources of magnitude 100 nA, 30 nA, -and 30 nA, respectively 

(Figs. 2.7(c)-(e)).  It was understood that I17 and I18 would cancel each other in the division, 

and only I16 and I15 would remain under the root. Therefore, the square root circuit’s output 

was found to be 10 times the square root of I15, as I16 was kept as 100 nA.  

From Fig. 2.7(a), the output current I19 and the expected current overlap each other. The 

currents I6 and I20 represent the numerator and the denominator of the PCC, respectively. 

Hence, they were utilized as inputs to the division circuit. The division circuit was the same as 

the multiplication circuit and its TL and equations representing its characteristic is provided in 

Eqn. (2.12) and Eqn. (2.13), respectively.  

𝑉𝐺𝑆33 + 𝑉𝐺𝑆34 = 𝑉𝐺𝑆35 + 𝑉𝐺𝑆36                                   (2.12) 

𝐼22 =  
𝐼16×𝐼21

𝐼20
                                                          (2.13) 

The output current of the division circuit represents the PCC. It was fed into the ADC to convert 

it into a digital output. The characteristics of the divide circuit are shown in Fig. 2.8. The output 

current and the expected output are plotted as a function of time in Fig. 2.8(a). In CoCoPIM, 

the NDA blocks were designed to restrict the Nr and Dr currents between 10 and 20 nA. To 

verify the functionality of the division circuit, in the simulation, three values 10, 15, and 20 nA 

were considered for I20 (in Fig. 2.8(b)); whereas I6 was found to be varied from 10 to 20 nA 

(in Fig. 2.8(c)), and I21 (in Fig. 2.8(d)) was found to vary as a constant at 10 nA. In Fig. 2.8(a), 

the expected current is given by the formula I21 × I6/I20. For all the three values of I20, one 

can observe that I22 deviates from the expected value by less than 1 nA, and this explains why 
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CoCoPIM’s PCC is very close the PCC computed by software (SW). It is also important to 

discuss the working principle of the circuit when either of the input currents (Nr or Dr) is zero.  

Thus, when the Nr is zero, I22 is also zero as given by the TL principle [110]. On the other 

side, zero output current corresponds to a PCC of zero, which is essentially the expected 

outcome corresponding to the Nr of PCC being zero. Furthermore, when the Dr is zero, the  

 

Fig. 2.8: Characteristics of the DIV: (a) output current I22, and expected 

Output, (b) I20, (c) I6, and (d) I21. 
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output current was in the microamperes range indicating that the result is infinite. Interestingly, 

the Dr can never be zero in any dataset as it is the product of the sum of squares of the mean-

shifted input operands from the dataset. NDA 64 differs from the other 63 NDAs as it is 

required to compute only the ∑ (𝑦
𝑖
− �̅�)

2𝑇
𝑖=1  term in the Dr of the PCC. Hence, from Fig. 2.9, it 

was observed that NDA 64 contains the absolute circuit, square circuit, and Miller capacitance 

similar to other 63 NDAs.  

However, the output of the Miller capacitor must be fed as input to the other 63 NDAs. Thus, 

it was converted into current as in the other 63 NDAs, and then current mirrors with 63 current 

sources so that the output from each of the current sources can be used as an input for the 

multiplication mirrors with 63 current sources so that the output from each of the current 

sources can be used as an input for the multiplication circuit in each of the 63 NDAs.  

2.4.2 Data Encoding and Mapping 

In this work, based on the repeatability, it was restricted to employ an on/off ratio of 100 so 

that the device variations do not lead to the wrong value being read or written into the device. 

 

Fig. 2.9: Circuits present within the NDA 64 block. It contains absolute circuit, square circuit, and 

Miller capacitance. 
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The relation between the data that should be stored within the memristor and the conductance 

of the memristor are given by Eqn. (2.14) and Eqn. (2.15). 

𝑠 =
(𝑎−𝐿𝐿)∗100

(𝑈𝐿−𝐿𝐿)
                                                           (2.14) 

𝑔 =
(𝑠)

(100)
∗ ((𝐺𝑜𝑛 − 𝐺𝑜𝑓𝑓) + 𝐺𝑜𝑓𝑓)                                       (2.15) 

In Eqn. (2.14), a is the data that should be stored in the memristor, UL and LL are the Upper 

Limit and Lower Limit of the data, respectively. s represents the state of the memristor. As 

there are 100 states in the memristor, a 100 was multiplied by the numerator of Eqn. (2.14). 

Hence, Eqn. (2.14) offers basically a linear relation between the state and the data, whereas 

Eqn. (2.15) provides a linear relation between the state and the conductance of the memristor. 

g represents the conductance of the memristor. Using Eqn. (2.14) and Eqn. (2.15), each element 

of the x and y vectors was encoded into the memristor in the form of conductance. After g is 

computed, the write operation was performed using the Switch Matrix. The pulse width of the 

write signal was provided by the CPU as the signals (B1 to B512) to the switch matrix, and the 

value of this signal was calculated according to the VTEAM model [53]. The elements of the 

y variable were encoded as the voltage signals and used for calculating the numerator. The 

relation between the data and the pulse width is given by Eqn. (2.14) and Eqn. (2.16). Using 

Eqn. (2.14), the state (between 0 to 100) corresponding to the data was found, and then the 

pulse width is calculated as follows: 

𝑡 = 𝑠 ∗ 𝑡0                                                         (2.16) 

In Eqn. (2.16), 𝑡0 is a constant value of 10 ns, which is basically the read time of the memristor 

[53]. The PCC should be computed between two T dimensional variables x and y, where x will 

have multiple instances. For example, in the face recognition task, one should compare one test 

image (y) with 15 known images (x1, x2, …, x15). In this application, each of the 15 images was 
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an instance of x. The size of the Analog Switch Array (ASA) imposes a limit on the number of 

rows available per instance of x. As the switch array has a dimension of 8×8, the number of 

rows per instance of x was restricted to 8. As shown in Fig. 2.10, all instances of x were stored 

in the crossbar. For the first instance x1, the elements were stored from the first column to the 

511th column.  In the 512th column, the average of the corresponding instance was stored, and 

the 512th to 1022nd elements of x1 were stored in the second row. In a similar way, the first 511 

elements of x2 were stored in the 9th row, and the 10th row contains the 512th to 1022nd elements 

of x2. On the other side, the entire memristor crossbar was divided into groups of 8 rows each, 

and one instance of x was written in that group. In the last 8 rows (505-512) of the memristor 

crossbar, y was stored. From the literature, it was found that very few applications required a 

T greater than 4088 [50], [89]–[94], [106]. Hence, 8 rows of the memristors were connected to 

one NDA block. If one intends to modify CoCoPIM for T greater than 4088, then more than 

eight rows of the crossbar should be connected to one NDA. This type of connection requires 

a much larger switch array, and we have left this important work to continue as a part of our 

future research.  

2.4.3 Computation Steps 

CoCoPIM computes the PCC in two steps. In the first step, the numerator in Eqn. (2.1) is 

computed, followed by the second step, wherein the denominator in Eqn. (2.1) is computed. 

The numerator in Eqn. (2.1) is expanded, as shown in Eqn. (2.17) below. 

∑ (𝑥𝑖 − �̅�)
𝑇
𝑖=1 (𝑦𝑖 − �̅�) =  ∑ 𝑥𝑖 ∗

𝑇
𝑖=1 (𝑦𝑖 − �̅�) − �̅� ∗ (𝑦𝑖 − �̅�)                 (2.17) 

The first term on the right-hand side of Eqn. (2.17) was obtained by supplying the (𝑦𝑖 − �̅�) the 

term as voltage pulses (Fig. 2.10 (a)) along the first 511 columns of the memristor crossbar, 

while the xi terms are stored in the crossbar. In this case, the pulse width is proportional to the 

magnitude of (𝑦𝑖 − �̅�) and the voltage magnitude is either 0.50 or -0.50, depending on the sign 
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magnitude of (𝑦𝑖 − �̅�). The second term was obtained by supplying a voltage pulse to the 512th 

column, which has a time period proportional to the sum of (𝑦𝑖 − �̅�); where i range from 1 to 

511. The magnitude of this voltage pulse is either 0.50 or -0.50, depending on the sign-

magnitude of the corresponding term (∑ (𝑦𝑖 − �̅�)
𝑇
𝑖=1 ). 

In this regard, the switch array decides which row’s output must be connected to the NDA 

block for further processing. In Fig. 2.10(a), the output from the rows of 1st, 9th, etc., were 

transmitted to the NDA block by the ASA. These outputs are a part of the numerator terms of 

the PCC between y and x1, x2, etc. In the next cycle, the voltage pulses were applied to the 

columns corresponding to elements 512 to 1022 of the y variable.  

 

Fig. 2.10: Data Mapping and Computation in CoCoPIM. (a) Numerator Computation, and (b) 

Denominator computation. 
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In this cycle, the outputs from rows 2nd, 10th, etc., were connected to the NDA block by the 

ASA, and all the other rows’ outputs were avoided. It is noteworthy that when the numerator 

is being computed, the last eight rows, which store the variable y were not considered, and the 

computation of the denominator is shown in Fig. 2.10(b). In Eqn. (2.1), one can observe that 

the denominator has two terms involving (𝑥𝑖 − �̅�) and (𝑦𝑖 − �̅�). Each of these terms requires 

many operations, such as square, sum, square root, and multiplication. However, for these 

operations to be performed, one must first obtain (𝑥𝑖 − �̅�) and (𝑦𝑖 − �̅�) from the memristor 

crossbar. To achieve this, +1V was applied to the ith column, and -1V was employed to the 

512th column. This results in an output of (𝑥𝑖 − �̅�) in the rows of 1st, 9th, etc.,. This operation 

was performed for every column from 1 to 511, and the outputs of the 1st, 9th, etc. rows were 

connected to the NDA block. Thereafter, the same operation was repeated; however, different 

rows’ outputs, such as 2nd, 10th, etc., were linked to the NDA block. This operation was 

continued until all the T terms of (𝑥𝑖 − �̅�) and (𝑦𝑖 − �̅�) were obtained. In this case, the last 8 

rows of the memristor crossbar were connected to get the terms of (𝑦𝑖 − �̅�). 

2.5 Applications 

2.5.1 Face Recognition 

Face Recognition is ubiquitous in modern-day life. It is used to track attendance, identification 

of criminals, prevent fraud voters, fraud detection of visas, etc., [106]. Due to the pervasiveness 

of Face Recognition, a memristor-based solution is adopted to accelerate its progress. In this 

work, the Yale Face dataset was utilized, which has images from 15 subjects recorded in the 

presence of occlusion and varying expressions [93]. One of those 15 subjects is depicted in Fig. 

2.11. Fig. 2.11(a) is the normal image, while Fig. 2.11(b) and Fig. 2.11(c) represent the images 

with occlusion (glass) and facial expression variation (happiness), respectively.  
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The PCC is computed for the variant expression and occlusion-present image with the normal 

image as two separate tasks. In the occlusion task, attempts were made to compute the PCC 

between each of the 15 normal images and each of the 15 occlusion present images. To 

recognize a face correctly, the PCC between a particular occlusion-present image and its 

corresponding normal image should be greater than the PCC between the same occlusion-

 

Fig. 2.11: Images of one of the 15 subjects from the Yale dataset. (a) Normal image, (b) 

Image with Occlusion, and (c) Image with variant expression. 

 

 

Fig. 2.12: Recognition accuracy of the data obtained from Software, CoCoPIM and 

CoCoPIM with variations in the (a) Occlusion task, and (b) Varying expression task. 
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present image and the other normal images. The variant expression task has also been 

implemented using the same condition. 

The normal images are the x variable, which were initialized in CoCoPIM’s crossbar, while the 

images with occlusion are the y variable. Since y can represent only one image, the PCC 

between the 15 occlusion-present images and the 15 normal images were computed in 15 

cycles. In each cycle, y was updated to represent each of the 15 occlusion-present images. 

Similarly, in the variant expression task, y represents the images with varying expression. Each 

normal image contains 1600 pixels, and each instance of x is stored using four rows of the 

crossbar connected to a dedicated NDA through the switch array. The results obtained from 

both these tasks are shown in Fig. 2.12. The PCC computed using standard software 

(MATLAB) is denoted by (standard software) SW along with the ideal CoCoPIM and non-

ideal (including device variations) CoCoPIM PCC results. In Fig. 2.12(a), the occlusion task’s 

PCC is depicted and Fig. 2.12(b) consists of the PCC results from the variant expression task. 

From both these results, one can observe that CoCoPIM follows the SW output very closely 

despite the device variations.  

 

Fig. 2.13: Comparisons of PCC computed using CoCoPIM (ideal), CoCoPIM (non-ideal) 

and the standard software (SW). PCC between a non-occluded non-varying expression 

image with 15 occluded images. 
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To verify whether the PCC originated from CoCoPIM’s ideal and nonideal implementation 

matches with the SW implementation, we have computed 15 PCCs which range from 0 to 1 (in 

Fig. 2.13). The first PCC is between a facial image (without occlusion and varying expression) 

and an image of the same face with occlusion. The 14 other PCCs are between the first image 

and 14 other faces with occlusion. The first PCC is the highest one as its operands have many 

similar features, while the 14 other PCCs are lower than the first one as they have significantly 

different features between their opernads. From Fig. 2.13, one can note that the computed PCC 

ranges from 0 upto 1 and that CoCoPIM’s ideal implementation and nonideal implementation 

are very close to SW implementation. 

2.5.2 ECG Signal Comparison 

The PCC has innumerable uses in the field of biomedical research. One such example is the 

comparison of the original ECG signal and the denoised ECG signal [105]. The original ECG 

signal is noisy and has to be filtered for better diagnosis. Cook et al. [112] reported the PCC 

between 48 original signals and DWT-filtered clean signals, and MIT-BIH database was used 

for original signals. In this work, the original ECG signal is filtered using the same DWT 

method and on the same database to generate clean signal [101]. Thereafter, the PCC between 

the original and clean signals was computed using MATLAB and CoCoPIM. The MIT-BIH 

database consists of 48 ECG signals.  

In CoCoPIM’s crossbar, the original signals are initialized as x variable and the denoised ECG 

signals as y variable. Since y can represent only one signal, the whole task was computed in 48 

cycles. In each cycle, the variable y was loaded with one of the 48 denoised signals. Each ECG 

signal has 3600 values recorded against time. Therefore, each of the 48 instances of x was 

initialized using eight rows of the crossbar. The last eight rows of the crossbar were initialized 

with y. 
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The PCC results obtained using the conventional SW (ideal and nonideal CoCoPIM) are 

depicted in Fig. 2.14. From Fig. 2.14, one can note that the ideal and nonideal CoCoPIM values 

are not significantly deviated as compared with the values obtained from SW. 

2.5.3 H1N1 Model Comparison 

Google Flu Trends (GFT) uses internet search activity to model outpatient Influenza-like 

Illness (ILI) to provide near-real time estimates of influenza activity. GFT estimates have 

exhibited a strong correlation with official influenza (H1N1) surveillance data obtained from 

the U.S. Centre for Disease Control (CDC) and Prevention [112]. In one of the studies [112], 

PCC is used to check how strongly the GFT estimates correlate with the official data. In this 

work, PCC is computed between the GFT model and the CDC ILI data using standard SW and 

CoCoPIM.  

GFT and ILI data contain weekly observations from March to December of 2009 as shown in 

Fig. 2.15. GFT data are initialized in the crossbar as the x variable, while ILI data are initialized 

as the y variable. PCC computed by the SW, ideal CoCoPIM, and nonideal CoCoPIM was 

found to be 0.988, 0.982, and 0.979, respectively.  

 

Fig. 2.14: Comparisons of PCC computed using CoCoPIM (ideal), CoCoPIM (non-ideal) 

and the standard software (SW) for the ECG dataset. 
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In all these three applications, it is noteworthy to mention that the ideal CoCoPIM’s PCC values 

do not deviate significantly from that of nonideal CoCoPIM. This proves that the process 

variations do not significantly affect the accuracy of computation. We believe that this is due 

to the very high ratio of HRS to LRS of our Cu:ZnO device[50]. As the obtained data were 

mapped into a very large range of resistance, the process variations did not lead to coalescing 

of states. The MOSFETs were acquired from the 180-nm Taiwan Semiconductor 

Manufacturing Company (TSMC) library. The memristor has a width (D) of 10 nm which is 

significantly less than the minimum gate length of the CMOS technology node. Hence, we 

believe process variations to be more significant in memristor than in MOSFETs. Thus, only 

memristor’s variations were included as part of nonideal CoCoPIM simulation. 

2.5.4 System-Level Variation Analysis 

The variations in the analog circuit and memristor were included to simulate 100 non-ideal 

instances of CoCoPIM. In this regard, the mean square error (MSE) between the non-ideal and 

software implementations was calculated for the 100 non-ideal instances and their mean values 

were subsequently used in all three applications. The average of the 100 MSEs was found to 

be 0.062, 0.093, and 0.012 for the face recognition, ECG signal comparison, and H1N1 model 

 

Fig. 2.15: Estimations of GFT and ILI for 55 weeks. 
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comparison, respectively. Interestingly, it was observed that when the MSE increases, the size 

of a variable (operand) also follows the same trend. The number of states in our framework has 

been modified to 25 and 50. When 25 states per memristor are concerned, the MSE w.r.t. 100 

states was found to be 0.0095; however, for the 50 states per memristor, it was 0.00042. As a 

matter of fact, one can note that the MSE gets decreased with the increase in the number of 

states per memristor. It was also found that even though the number of states decreases, the 

CoCoPIM’s PCC values are not deviated significantly from the ideal simulations. 

2.6 Results and Discussion 

2.6.1 System Level Analysis 

2.6.1.1 Simulation Environment  

Neurosim is a device-to-algorithm framework that was designed to benchmark memristor 

crossbar array-based architectures[14], [81]. An effort was made to modify the Neurosim to 

evaluate CoCoPIM’s delay and energy consumption for the different applications.  

In this work, the CMOS circuits were designed in SPICE using the 180-nm TSMC process. To 

benchmark CoCoPIM against a von Neumann machine, system simulator (MARSS) and 

multicore power, area, and timing (McPAT) were used [82], [83]. MARSS is a cycle-accurate 

simulator of multicore x86 processors, whereas McPAT is a power, area, and timing modeling 

Table 2.2: Von Neumann machine  

specifications 

Frequency 3.40 GHz 

Processor 4 out-of-order cores 

L1 I/D Caches 64 KB, 8-way, private 

L2 I/D Caches 256 KB, 8-way, private 

Coherence Protocol MESI 

Memory DDR4 - 1600, 4GB 
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framework of multicore and manycore systems. The specifications of the von Neumann 

Machine are tabulated in Table 2.2. 

2.6.1.2 Energy and Delay 

The initial state of the memristor crossbar (within CoCoPIM) contains all memristors 

initialized to HRS. Thereafter, the operands were written into the crossbar. The write latency 

and energy have been included in energy and delay calculations of CoCoPIM followed by 

computations of PCC in the peripheral circuitry.  

The time and energy measurements continue unless the NDA blocks complete in performing 

their respective arithmetic operations. Fig. 2.16 shows comparison of the energy and delay of 

 

Fig. 2.16: (a) Energy of Von Neumann machine normalized to CoCoPIM, and (b) Delay of 

Von Neumann machine normalized to CoCoPIM. 

 

 



54 
 

the baseline von Neumann machine against CoCoPIM.  The energy and delay were normalized 

w.r.t. CoCoPIM. In Fig. 2.16(a) and 2.16(b), the first two tasks face_emo and face_glass are 

the face recognition tasks in the presence of varying emotions and occlusion, respectively. In 

the face_emo task, CoCoPIM was found to be about 66.5× and 52.5× times better than von 

Neumann machine’s energy and delay, respectively. Similarly, in the face_glass task, 

CoCoPIM was found to be about 67× and 52.5× times better than von Neumann machine’s 

energy and delay, respectively. On the other hand, the third task H1N1 computes PCC between 

its two models. In this task, CoCoPIM was found to be about 33.2× and 597× times better than 

von Neumann machine’s energy and delay, respectively.  

Similarly, in the fourth task, CoCoPIM computes the PCC between 48 ECG signals, and it was 

found to be better than von Neumann machine by 41.04× and 143.5× times improvement in 

energy and delay, respectively. Out of these four tasks, although H1N1 has the highest 

advancement in delay, it ends up in providing lowest improvement in energy. This is because 

of the small size of the H1N1 dataset and the higher parallelization of CoCoPIM when 

compared with the von Neumann machine. However, opamps and capacitors also contribute 

significantly to its energy consumption, and therefore it turned out to be the least energy-

efficient than the other tasks.  

2.6.1.3 Area Estimation 

The area estimates of each component of CoCoPIM are presented in Table 2.3.  The numerator 

includes all the circuits connected between (and including) SW1 and SW3 (Fig. 2.4), while the 

denominator includes all the circuits between (and including) SW2 and the division circuits. 

The peripheral circuit consists of the numerator, denominator, and ADCs, which occupy 

615,055 μm2 or about 98% of the total area. In the crossbar’s area, a 5% overhead has been 

considered, arising from the LERs, as mentioned in Section 2.3.  
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2.7   Summary 

In this work, we present a memristor crossbar-based architecture CoCoPIM, which is found to 

be 41.04×, 66.5×, 67×, and 33× times energy efficient against a von Neumann machine in 

computing PCC of ECG signals, Face Recognition, and H1N1 data sets, respectively. It also 

achieved a speedup of 143.5×, 52.5×, 52.5×, and 597× against the same von Neumann machine 

in the respective tasks. It has also been established that CoCoPIM does not deviate significantly 

even in the presence of process variations, which offers to realize a highly reliable computer 

architecture application. The proposed idea can also be extended to a much larger switch array. 

Remarks: Below mentioned paper was published based on this chapter  

 Souvik Kundu, Priyanka B. Ganganaik, Jeffry Louis, Hemanth Chalamalasetty, and 

BVVSN Prabhakar Rao. "Memristors Enabled Computing Correlation Parameter In-

Memory System: A Potential Alternative to Von Neumann Architecture." IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems 30, no. 6 (2022): 755-

768.  

  

Table 2.3: CoCoPIM area 

 estimation 

Component Area(µm2) 

Switch Matrix 2433 

Xbar 4246 

Switch Array 16 

Peripheral Circuit 615055 

Numerator 34965 

Denominator 41440 

ADC 538650 
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Chapter-3 

Memristor-Based In-Memory Processor for High Precision 

Semantic Text Classification  

3.1 Introduction 

The limitations of Von Neumann architecture of currently used computers are discussed in the 

chapters 1 and 2 . This has resulted in the necessity for in-memory computing, in which data 

flows are controlled, so circumventing the drawbacks of Von Neumann architecture. In this 

regard, Memristor is proven to be effective emerging  device for in-memory processing. It has 

found applications in analog computing, neuromorphic circuits, pseudorandom number 

generation, and non-volatile memory. The most profound application of a memristive crossbar 

is a vector product accelerator of linear time complexity  [113], [114]. The same operation in 

a conventional computer is of quadratic time complexity and is a memory-intensive task. The 

efficiency of the memristive crossbar as an in-memory processor is due to its reduced data 

movement and parallel architecture. Despite the advantages of in-memory memristive crossbar 

arrays, there are research works highlighting its computational inaccuracy [115], [116]. The 

most prominent source of error in the crossbar is the analog – to – digital (AD) / digital – to – 

analog (DA) domain conversion. 

In this chapter, the main aim is to develop a memristor-based in-memory processor for 

Bayesian inference, which is employed for high precision semantic text classification. 

Memristive crossbar-based computations are usually performed in the digital domain, and they 

fail to take advantage of the analog computation capabilities of the memristor device. The 

errors from domain conversion were avoided through performing the computation in the analog 

domain. This not only eliminates the need for any AD/DA conversion, but also reduces the 
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errors in processing. A comprehensive study has been developed to investigate the feasibility 

of the proposed approach by designing the crossbar for Bayesian text classification. The 

Bayesian classifier is a simple and robust algorithm used to classify unstructured data [117]. In 

contrast to other classification algorithms, such as K-means, Decision tree, and Random forest, 

the Bayesian classifier gives relatively better results on smaller training datasets [118]. Finally, 

an attempt has been initiated to test the proposed approach's performance on two standard 

datasets [119], [120]. 

The main contributions of this chapter are listed below: 

1) To the best of our knowledge from the available literature, this is the first time to develop 

a memristor-based Bayesian text classifier for applications in digital domain. 

2) To determine the efficacy of the proposed circuit in classifying the texts with high accuracy. 

The rest of the chapter is organized as follows. The proposed model and the implementation 

methodology of the memristor-based Bayesian text classifier system are described in Section 

3.2 and 3.3. In Section 3.4, circuit design and modelling is been detailed. Experimental results 

are provided and discussed in section 3.5. Finally, the chapter is concluded in Section 3.6. 

3.2  Mathematical Analysis of Classifier 

From the literature, it was understood that the Bayes’ theorem is the basic building block for 

the mathematical foundation for Bayesian text classifier [121]. For two events A and B (say), 

the theorem is mathematically stated as follows: 

    𝑝(𝐴|𝐵)   =
𝑝(𝐵|𝐴)×𝑝(𝐴)

𝑝(𝐵)
                   (3.1) 

where 𝑝(𝐴) and 𝑝(𝐵) are the probabilities of occurrences of events A and B, respectively, and 

𝑝(𝐴|𝐵) and 𝑝(𝐵|𝐴) represents conditional probabilities. The 𝑝(𝐴|𝐵) measures the probability 
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of occurrence of event 𝐴 subject to the condition that event 𝐵 has already occurred and vice 

versa. 

Let 𝑇= {𝑡1, 𝑡2, 𝑡3,… . . , 𝑡𝑖} be the set of texts to be categorized and 𝐶 = {𝑐1, 𝑐2, 𝑐3, … . . , 𝑐𝑚} be 

the set of tentative categories for the texts.  Then according to Bayes’ theorem, the probability 

of a text  𝑡𝑖 belonging to a category 𝑐𝑚 is given by the following equation: 

         𝑝(𝑐𝑚 | 𝑡𝑖 )   =   
𝑝(𝑡𝑖 | 𝑐𝑚)×𝑝(𝑐𝑚)

𝑝(𝑡𝑖)
                  (3.2) 

The above is the fundamental equation for our text classifier. 𝑝(𝑐𝑚), 𝑝(𝑡𝑖 | 𝑐𝑚), and 𝑝(𝑐𝑚 | 𝑡𝑖) 

are known as the prior, likelihood, and posterior probabilities, respectively. The category of 

text  𝑡𝑖 represented by 𝐶𝑡𝑖, is determined as per the following equation:  

  𝐶𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚 [
𝑝(𝑡𝑖 | 𝑐𝑚)×𝑝(𝑐𝑚)

𝑝(𝑡𝑖)
]                 (3.3) 

𝑝(𝑡𝑖) is constant for an input text and is independent of the text category. Thus, Eqn. (3.3) can 

be simplified as follows: 

𝐶𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚[𝑝(𝑡𝑖 | 𝑐𝑚) × 𝑝(𝑐𝑚)]                (3.4) 

Assuming the constituent words of the text occur independently of each other [122], if  𝑤𝑛 is 

the 𝑛𝑡ℎ word in the text  𝑡𝑖, and  𝑔𝑛 is the frequency of its occurrence then, 

𝑝(𝑡𝑖  | 𝑐𝑚)  =  ∏ 𝑝(𝑤𝑛| 𝑐𝑚)
𝑔𝑛

𝑛                  (3.5) 

From Eqn. (3.4) and Eqn. (3.5), 

𝐶𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚[∏ [𝑝(𝑤𝑛| 𝑐𝑚)
𝑔𝑛]𝑛 × 𝑝(𝑐𝑚)]               (3.6) 

For text with large word counts, calculation of 𝑃(𝑡𝑖 | 𝑐𝑚) is a tedious task. This calculation is 

simplified by breaking down multiplication into simpler addition by utilizing the logarithmic 

function. As a result, Eqn. (3.6) is modified to Eqn. (3.7) as follows: 
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𝐶𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚[∑ [𝑔𝑛 × 𝑙𝑜𝑔[𝑝(𝑤𝑛 | 𝑐𝑚)]] +  𝑙𝑜𝑔[𝑝(𝑐𝑚)] 𝑛 ]             (3.7) 

3.3 Crossbar Circuit for Sample Binary Dataset 

A comprehensive effort was initiated to study the ability of the proposed circuit to semantically 

classify text data by designing it for dataset 1 and tabulated in Table 3.1. Dataset 1 is a binary 

dataset consisting of 4 texts that have been semantically categorized as negative and positive 

statements. The states of the memristor switches in the designed crossbar were derived from 

this dataset.  

Table 3.1: Sample dataset 1 

Text Category 

These 3 movies are really good !!!! Positive 

The food is too bland. Negative 

The Teaching Assistant for This Course Is Really Good. Positive 

The job is too tedious Negative 

 

The texts in the dataset were first cleaned of characters and words that were irrelevant to the 

classification process [123]. These words, known as stop-words, include commonly used terms 

like this, that, is, etc., again, there, about, with, during, having, out, and very [124]. Numerals 

and punctuations were also removed from the text as they do not help in determining the text 

category. Moreover, there is no semantic difference between a character in its upper and lower 

case, i.e., the character case of the text is immaterial to the process of text classification [125]. 

As a result, we chose to convert all texts in the dataset to small case characters. Dataset 2 given 

in Table 3.2 is the cleaned and normalized version of dataset 1. The prior and posterior 

probabilities required for text classification were calculated from dataset 2.             
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 Table 3.2: Sample dataset 2 

Text Category 

movies really good Positive 

food bland Negative 

teaching assistant course really good Positive 

job tedious Negative 

 

3.3.1 Prior Probability 

The prior probability was calculated as follows: 

       𝑝(𝑐𝑚) =
|𝑐𝑚| 

|𝑇|
                      (3.8) 

where |𝑐𝑚| is the total count of texts belonging to 𝑐𝑚 and |𝑇| is the total count of texts in the 

dataset. In dataset 2, the four texts were equally distributed among the two possible categories. 

As a result, 

𝑝(𝑐𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑝(𝑐𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =  
1

2
                 (3.9) 

3.3.2 Likelihood Probability and Accounting for Words Absent from the Training 

Dataset 

The likelihood probability was calculated as follows: 

𝑝( 𝑤𝑛| 𝑐𝑚) =  
|𝑤𝑛|𝑐𝑚|

|𝑤|𝑐𝑚|
                 (3.10) 

where |𝑤𝑛|𝑐𝑚| represents the total count of 𝑤𝑛 in the texts belonging 𝑐𝑚 and |𝑤| 𝑐𝑚| is the 

total count of words in the texts of 𝑐𝑚. For input texts consisting of words that were absent 

from the training dataset, represented by 𝑤𝑢𝑎, the likelihood probability 𝑝( 𝑤𝑢𝑎| 𝑐𝑚) was zero. 

As a result, the posterior probability in the governing equation of the classifier Eqn. (3.2), also 

diminished to zero and it became difficult to categorize such texts. This issue was addressed 
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by adding a bias 𝐵, to the word counts. Thus, the likelihood probability was modified as 

follows:  

𝑝( 𝑤𝑛| 𝑐𝑚) =
|𝑤𝑛| 𝑐𝑚| +𝐵

|𝑤| 𝑐𝑚|+1+(𝑛×𝐵) 
                (3.11) 

3.4 Implementation Section 

3.4.1 Circuit Design 

As illustrated in Fig. 3.1, the proposed circuit is a crossbar with memristor switches. The 

crossbar consists of 𝑛 + 2 rows and 𝑚 columns, where 𝑛 is the maximum number of distinct 

words present in the training dataset, and 𝑚 is the number of tentative categories for the text. 

For dataset 2, 𝑛 is 10 and 𝑚 is 2.  

 

Fig. 3.1:  Memristor crossbar network developed using dataset 2.  

 

The top 10 rows map to a word and each of the 2 columns map to a possible category. 

Memristors at the intersections of the crossbar are employed to store probabilities required for 

text classification. On one side, the states of the memristors at any of the top 10 rows are 
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determined by the likelihood probability 𝑝(𝑤𝑛| 𝑐𝑚). On the other side, the memristances at the 

bottom-most row are determined by the prior probability 𝑝(𝑐𝑚). Words absent from the training 

dataset are represented by the second last row of the crossbar. The memristors of this row are 

used to store the likelihood probabilities of encountering such words. 

3.4.1.1 Modelling the Circuit 

The crossbar designed for dataset 2 was modelled in MATLAB R2019. The crossbar switches 

are based on our previously fabricated and characterized Pt/Cu:ZnO/Nb:STO memristor [50]. 

The memristor is modelled using the Voltage ThrEshold Adaptive Memristor (VTEAM) 

paradigm [53].  According to the VTEAM model, state transitions are allowed only for voltages 

outside the range of 𝑉𝑜𝑛 and 𝑉𝑜𝑓𝑓, which was -1.2 V and 1.35V, respectively in the present 

case. The constants  𝐾𝑜𝑓𝑓 and 𝐾𝑜𝑛 determining the rate of state transitions were set to a value 

of +40 and -80. These values were chosen such that the current-voltage characteristics of the 

modelled and fabricated memristor commensurate with one another [50]. Exponents  𝛼𝑜𝑛 and 

𝛼𝑜𝑓𝑓 having a numerical value of 3 and 2 were used to introduce device nonlinearities into the 

model. Finally, the modelled memristor was programmed and tuned using pulse width 

modulated signals, as demonstrated in one of the studies [126]. 

3.4.1.2 States of Memristor Switches 

The memristance at the intersection of any of the top 𝑛 + 1 rows and the 𝑚𝑡ℎ column is as 

follows: 

𝑀𝑟,𝑚 =
−1

log(𝑝(𝑤𝑟|𝑐𝑚))
      1 < 𝑟 < 𝑛 + 1              (3.12) 

Where ‘r’ is the row between 1 and n+1th row. Similarly, the memristance at the intersection 

of the bottom-most row and the 𝑚𝑡ℎ column is given by: 
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𝑀𝑛+2,𝑚 =
−1

log(𝑝(𝑐𝑚))
                  (3.13) 

Table 3.3:  Likelihood probability for negative category 

Word Count Bias 
Count 

+ Bias 

Likelihood 

Probability 
Memristance 

Memristance 

× scaling 

factor. 

Assistant 0 1 1 0.0667 0.8504 850.4 

Bland 1 1 2 0.1333 1.1426 1142.6 

Course 0 1 1 0.0667 0.8504 850.4 

Food 1 1 2 0.1333 1.1426 1142.6 

Good 0 1 1 0.0667 0.8504 850.4 

Job 1 1 2 0.1333 1.1426 1142.6 

Movies 0 1 1 0.0667 0.8504 850.4 

Really 0 1 1 0.0667 0.8504 850.4 

Teaching 0 1 1 0.0667 0.8504 850.4 

Tedious 1 1 2 0.1333 1.1426 1142.6 

Any 

unencountered 

words 
0 1 1 0.0667 0.8504 850.4 

 

As expressed in Eqn. (3.12) and Eqn. (3.13), the prior and likelihood probabilities were written 

into the memristive switches in the negative inverse logarithmic form. This ensured that the 

resultant current flowing through the columns of the crossbar was in proportion with the 

posterior probability given by Eqn. (3.2). The range of numerical values that can be stored in 

the memristor is {𝑅𝑜𝑛, 𝑅𝑜𝑓𝑓}. The memristors of our crossbar have a 𝑅𝑜𝑛 and 𝑅𝑜𝑓𝑓 value of 

1.507 × 102  ohm and 1.524 × 105 ohm, respectively [51]. It is noteworthy to mention that 

the memristances calculated in Table 3.3 and Table 3.4 were significantly lower than  𝑅𝑜𝑛, 

therefore the calculated memristances were further scaled by a factor of 1000. 
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Table 3.4:  Likelihood probability for positive category 

Word Count Bias 
Count 

+ Bias 

Likelihood 

Probability 
Memristance 

Memristance 

× scaling 

factor. 

Assistant 1 1 2 0.1053 1.0229 1022.9 

Bland 0 1 1 0.0526 0.7819 781.9 

Course 1 1 2 0.1053 1.0229 1022.9 

Food 0 1 1 0.0526 0.7819 781.9 

Good 2 1 3 0.1579 1.2475 1247.5 

Job 0 1 1 0.0526 0.7819 781.9 

Movies 1 1 2 0.1053 1.0229 1022.9 

Really 2 1 3 0.1579 1.2475 1247.5 

Teaching 1 1 2 0.1053 1.0229 1022.9 

Tedious 0 1 1 0.0526 0.7819 781.9 

Any 

unencountered 

words 
0 1 1 0.0526 0.7819 781.9 

 

 

3.4.1.3 Determining Text Category 

An input text was classified by applying a DC pulse of width 0.01ms to the rows (corresponding 

to the constituent words of the text) and measured the resultant current flowing through the 

columns of the crossbar. The amplitudes of the pulse were multiples of base voltage 𝑉. If 𝑔𝑛 is 

the frequency of the word (𝑤𝑛) in the input text, then the voltage applied to the corresponding 

row in the crossbar was 𝑔𝑛 × 𝑉. For words that were absent from the text,  𝑔𝑛  is considered 

as zero; hence 0 V was applied to the rows representing these words. Furthermore, the voltage 

applied to the row corresponding to 𝑤𝑢𝑎 was 𝑎 × 𝑉, where 𝑎 is the number of words in the 

input text that were not accounted for in the crossbar. The voltage applied at the bottom-most 

row was 𝑉. The base voltage V was chosen such that the applied voltages do not alter the 

already programmed states of the memristor. As described in section 3.3, the applied voltage 
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must lie within the range {-1.2V, 1.35V}. In this work, the V was set to ±0.01 V to ensure that 

for large word counts (say 100), the voltage applied to the rows lie within the allowed range.  

 

Fig. 3.2:  Flowchart summarizing various steps involved in Bayesian text classification.  

 

The magnitude of the resultant current (𝑖𝑚) flowing through the columns of the crossbar was 

in negative proportion to the posterior probability in Eqn. (3.7) is expressed as: 

𝑖𝑚 = ∑ [
𝑔𝑟×𝑉

𝑀𝑟,𝑚
]𝑛

𝑟=1 +
𝑎×𝑉

𝑀𝑛+1,𝑚
  +

𝑉

𝑀𝑛+2,𝑚
               (3.14) 

The negative proportionality between the resultant current and posterior probability was a 

result of the negation operation in Eqn. (3.12) and Eqn. (3.13) and, as a result, the input text 

was classified as per the following equation: 

𝐶𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚 |∑ [
𝑔𝑟×𝑉

𝑀𝑟,𝑚
]𝑛

𝑟=1 +
𝑉

𝑀𝑛+1,𝑚
+

𝑎×𝑉

𝑀𝑛+2,𝑚
|             (3.15) 

Attempts were put to validate the developed crossbar by testing it on the text The job involves 

tedious assignments. Fig. 3.2 summarises the steps involved in the Bayesian classification of 

the text. 
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3.5 Results and Discussions 

The crossbar circuit was further validated on two standard binary datasets (Fig. 3.3). On one 

side, the first dataset comprised of short SMS messages that have been classified as either ham 

or spam [119]. On the other side, the second one consists of positive and negative reviews 

extracted from the IMDb movie database [120] (Fig. 3.4). Voltage signals were applied to rows 

corresponding to the words of the input text.  The resultant current flowing through the columns 

of the crossbar were compared for text categorization. The SMS dataset comprised of 5,575 

texts, 86,519 words, and 15,586 unique words, while the IMDb dataset consisted of 50,000 

texts, 11,557,403 words, and 439,779 unique words. 

 

Fig. 3.3: Memristive crossbar network for text classification.  
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Fig. 3.4: Memristance vs. Row at the crossbar intersections. 

 

Each dataset was divided into two parts: the first part was used for training the circuit, while 

the second part was considered for testing it. In this context, one can define the training ratio, 

𝑒 as follows 

𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑥𝑡𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑥𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
              (3.16) 

The proportion of texts used to train the circuit was 𝑒, and that used to validate  was 1 − 𝑒.  

The accuracy of classification for selected values of 𝑒 was calculated and tabulated in Table 

3.5. As illustrated in Fig. 3.5(a) and Fig. 3.5(c), the crossbar circuit was trained using a small 

part of the dataset (𝑒 <  0.3), which was capable to categorize a relatively larger number of 

texts with high accuracy (>  80%). This is because the Bayesian classifier assumes that the 

words of the text occur independently to each other [122]. As a result, the circuit can better 

learn the relationship between the texts and its corresponding categories.  Fig. 3.5(b) and Fig. 

3.5(d) depict the dependence of the number of rows in the crossbar on the training ratio. As 

expected, it was observed that the number of rows along with the accuracy of classification 

gets increased with the proportion of texts used in training the circuit. 
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Fig. 3.5:  (a) Accuracy vs. Training ratio of classification for SMS dataset. (b) Row count vs. 

training ratio for SMS dataset. (c) Accuracy vs. training ratio of classification for IMDb 

dataset. (d) Row count vs. training ratio for IMDb dataset. 

 

Furthermore, as depicted in Fig. 3.6, it has been observed that performing computations in the 

analog domain results in higher classification accuracy. When computations are performed, the 

classification accuracy in the digital domain plateaus was found to be ~ 95% for the SMS 

dataset and 84% for the IMDb dataset. The plateauing of accuracy can be attributed to errors 

arising from AD/DA domain conversion. A suitable value of the training ratio is 0.75 [127]. 

For this value of 𝑒, the crossbar circuit for the SMS dataset had a dimension of 6545 × 2 and 

a classification accuracy of 97.77 %, while that for the IMDb dataset had a dimension of 

88508 × 2 with an accuracy of 85.95%. 
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Table 3.5:   Result of testing the proposed circuit on standard datasets 

𝒆 
Crossbar Dimension 

𝒓𝒐𝒘𝒔 × 𝒄𝒐𝒍𝒖𝒎𝒏𝒔 

Accuracy 

(%) 

 SMS Dataset IMDb Dataset SMS Dataset IMDb Dataset 

0.1 2025×2 38402×2 94.82 83.86 

0.2 3134×2 51691×2 95.90 84.84 

0.3 3961×2 61027×2 96.26 85.13 

0.4 4627×2 68512×2 96.53 85.29 

0.5 5276×2 74901×2 96.98 85.45 

0.6 5826×2 80657×2 97.13 85.61 

0.7 6331×2 86006×2 97.31 85.83 

0.75 6545× 2 88508×2 97.77 85.94 

0.8 6797×2 90758×2 97.85 86.08 

 

 

Fig. 3.6: (a) Accuracy vs. Training ratio, classification accuracy without digitization and after 

digitization on SMS dataset. (b) Accuracy vs. Training ratio, classification accuracy without 

digitization and after digitization on IMDb dataset. 

 

Efforts were also dedicated to analyze the power, area, and latency of the proposed circuit for 

its practical consideration. It was observed that the average power consumed by SMS data is 

1.4516 × 10−5 watts, while that for classifying IMDb data is 2.3 × 10−3 watts. Both these 

powers were found to be significantly smaller than that of a x86 CPU, which is anywhere 
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between 65-100 watts [128]. The on-chip area of the memristor is given by 4𝐹2, where 𝐹 is 

the feature size [129].  For a feature size of 22 nm, i.e., for 45nm technology node, the average 

area of the crossbar for SMS dataset is 9.577 × 10−3 nm, and that for the IMDb dataset is 

0.138 nm. The latency of the circuit is given by the product of the width of a single input pulse 

and the number of texts to be classified, this is because the voltages are applied to the crossbar 

in a parallel fashion.The latency for the SMS dataset was found to be 55.75 ms, and that for 

the IMDb dataset was 500ms.  

In practice, the crossbars given in Table 3.5 might be hard to fabricate and scale. One can 

overcome this issue by breaking down the crossbars in smaller 𝑛 × 2 arrays and organizing 

them in a tiled structure, as explained in [130]. But unlike in [130], one does not have to face 

difficulties with data dependency between the tiles as the Bayesian classifier functions under 

the assumption that the words of the text occur independently one to another. 

3.6 Summary 

In this work, an attempt has been made to develop a high precision memristive crossbar circuit 

for Bayesian inference, followed by its specific implementation for semantic text classification. 

The errors arising from AD/DA domain conversion was circumvented by realizing that such 

domain conversion is unnecessary, and the associated errors can be avoided by taking 

advantage of memristors analog computational capabilities. The efficacy of the processor was 

tested on two different datasets consisting of a total of 55,575 texts. The circuit was able to 

classify the texts with an average accuracy of 91% while consuming 1000 times less power and 

area of a conventional processor, which open up a new path for developing future generation 

memristor based in-memory computing. In order to provide a contrast of future work, it is 

noteworthy to mention that the crossbar circuit lacks the flexibility of conventional processors, 

which can perform a plethora of tasks. However, with some careful modification to the 
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proposed circuit, one can overcome these limitations and come up with a single crossbar that 

can perform multiple functions such as Boolean computation, image segmentation, and speech 

recognition. Furthermore, there is a need to devise a method for online training of the crossbar, 

which can eliminate the need for a software interface to load information into to memristor 

array. For the widespread adoption of in-memory processors, there is a requirement for smart 

systems that can interface the device with existing computing systems such as DRAM, 

graphical processing units, input-output devices like keyboard, speakers, and microphones. 

Remarks: Below mentioned paper  was published based on this chapter  

 Priyanka B. Ganganaik, Aditya Viswakumar, P. Michael Preetam Raj, BVVSN 

Prabhakar Rao, and Souvik Kundu. "Memristor-based in-memory processor for high 

precision semantic text classification." Computers & Electrical Engineering 92 (2021): 

107160. 
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Chapter-4 

Realization of Memristive State Machine for Smart Edge 

Detector Applications 

4.1 Introduction 

As described in the earlier chapters that the memristor is a resistive switching non-volatile 

memory device that can remember its memristive states, it is worth noting that memristive state 

transitions can be attained by utilising external voltage sources [131]. Importantly, the 

transitions traverse through intermediate resistive states that exist between the extreme resistive 

limits (ON and OFF states). Interestingly, these intermediate states can be exploited for 

memory storage and computational applications [132], [133] . In order to develop different 

states, state machines were implemented based on CMOS digital logic circuits over the past 

few decades. However, these CMOS based circuits are disadvantageous in terms of their 

switching speed, computational complexity, and power consumption [134]. Under these 

circumstances, memristor based circuits render low power and high-speed computations with 

reduced complexity [135].  

Recently there has been renewed interest in utilizing multilevel memristive circuits to 

implement emerging memory architectures [133], [136]–[138] . Since most of the real-time 

signals are analog in nature, a tremendous effort has been devoted to develop analog computing 

[139]. Interestingly, one could further extend the idea of multilevel logic to achieve a large 

number of states through exploiting the analog behaviour of a memristor. It is essential to 

mention that the number of these levels depends on the memristive noise margin [126]. Within 

the memristor, the resistive state transition takes place gradually and leads to several 

intermediate states if the Ron/Roff  ratio is high (~2x103 in the current study). Based on the 
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controllable transitions among these states, memristive state machines (MSMs) need to be 

developed. Realizing MSMs is an innovative approach because these systems can further 

perform necessary computations for artificial human reasoning, edge detection, etc. [140]–

[142]. Unfortunately, this approach has not been exploited yet and the progress in this area has 

been slower as compared to the memristor based other applications such as different 

neuromorphic circuits, synapses, etc. Edge detection, which offers object segmentation in an 

image, has been an essential segment in the image processing area over the past few decades 

[143]. Besides, it has several other applications in the field of computer vision, medicine, 

artificial intelligence, and biometric based identification systems [13], [144]–[146]. 

Convolution and correlation techniques are the most conventional approaches so far to perform 

the edge detection of an image [147], [148]. However, these techniques were disadvantageous 

in terms of execution speed, computational complexity and the number of electronic 

components [149].  

On the other side, fuzzy logic based implementation is advantageous as the computing is 

carried out in analog domain and the need for converters and conventional digital circuitry is 

eradicated [150]. Fuzzy systems were employed for edge detection of an image [15], [151], 

[152]. On one side, these systems produced improved edge detection when compared to any 

non-fuzzy methods [146], which brought about to incomplete edges [78]. On the other hand, 

fuzzy pre-processing lead to enhanced region distinction that further assisted in achieving 

better edge detection [78]. In one of the studues multilayer perceptron based edge detection 

through fuzzy clustering technique is developed [15]. In another study, edge detection was 

investigated, where it was performed and successfully tested with benchmark images [151]. 

However,  these methods are computationally complex and disadvantageous in terms of area, 

power consumption and delay since conventional transistor based computational architectures 

were employed in their architecture[13], [145]. In order to address these issues, researchers 
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have attempted edge detection by utilizing memristors and obtained better performances[146], 

[147]. However, their techniques are valid only for binary images and not suitable for grayscale 

images. Later, memristor based networks were developed for this application on grayscale 

images[148], [149]. In all these techniques, multiple memristors were employed, which 

consume more power and add on delays. Therefore, it will be interesting to develop MSM 

based edge detection in which a single memristor can store all the grayscale intensity values. 

In this work, for the first time to the best of our knowledge,  efforts are put to develop Cu:ZnO 

based MSM through simulation route for edge detection in an image. Initially, the 

Pt/Cu:ZnO/Nb:STO memristor data were incorporated into the simulation (MATLAB and 

Cadence) environment by utilizing the obtained electrical parameters. Once both the simulation 

and experimental current-voltage characteristics and other electrical performances got matched 

[50], [51], MSM circuits were simulated and efforts were devoted to obtain the multiple states 

within a memristor. The idea of MSM was further extended to perform tunable edge detection 

for image processing applications. The obtained edge detections were compared with other 

popular conventional software based edge detections such as Canny, Sobel, and Prewitt [147], 

[148], [153]. It was observed that the proposed MSM based system performed much better 

when compared to all the other above-mentioned systems. Its efficacy was discussed for future 

generation accurate and faster real time image processing applications.  

4.2  Implementation Section 

4.2.1 Device Structure and Simulation Setup  

The VTEAM Simulink model for the switching memristor was based on the state variable 

update, as shown in Fig. 4.1. In this context, different equations were considered for 

computations based on the comparisons between the applied voltage and memristive threshold 

voltages. As per Fig. 4.1, the device equation was employed for  memristive state variable  that 



75 
 

was seen to increase for value above the positive threshold voltage and decrease for a value 

below negative threshold as presented in Eqn. (4.1),  [53]. 

𝑑𝑤(𝑡)

𝑑𝑥
=

{
 
 

 
 𝐾𝑜𝑓𝑓 . ( 

𝑣(𝑡)

 𝑣𝑜𝑓𝑓
− 1)

𝛼𝑜𝑓𝑓

. 𝑓𝑜𝑓𝑓(𝑤), 0 < 𝑣𝑜𝑓𝑓 < 𝑣

0,                                                             𝑣𝑜𝑛 < 𝑣 <    𝑣𝑜𝑓𝑓 

𝐾𝑜𝑛. ( 
𝑣(𝑡)

 𝑣𝑜𝑛
− 1)

𝛼𝑜𝑛
. 𝑓𝑜𝑛(𝑤),                𝑣 < 𝑣𝑜𝑛 < 0

                (4.1) 

where 𝑓𝑜𝑓𝑓 and 𝑓𝑜𝑛 are the window functions [53] with values chosen equal to 1 as per the 

device model. The other parameters and their values corresponding to the fabricated memristor 

are presented in [50], [51]. These parameter values were extracted by fitting the fabricated 

device I-V readings within the memristive equations in order to map the device characteristics.  

 

Fig. 4.1: Flow chart for VTEAM model based memristor.  

 

In the Eqn. (4.1), d is the thickness of the active material (Cu:ZnO), whereas the values of the 
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constants KON, KOFF, αOFF and αON affect the variation of state variable x with respect to time 

[51], [53]. Further, Roff and Ron represent the high resistive and low resistive states of the 

memristor, respectively. Whereas, w represents the weight change of the memristor. The above 

mentioned parameter values were utilized to invoke the fabricated memristor into the MATLAB 

Simulink environment. This simulation based model was utilized to develop the MSM circuits 

in MATLAB Simulink. Further, a system was developed (in the same environment) through 

mapping the grayscale intensities of an image with the corresponding memristive states. This 

conversion was utilized to propose the memristive edge detection system in Simulink 

environment. 

4.3  Results and Discussions 

In order to generate multilevel states, an MSM was developed and is shown in Fig. 4.2. It was 

understood that the memristive state does not change when read with a lower voltage (below 

the threshold value) [54]. Therefore, a 2 V AC voltage was utilized to write, whereas a low DC 

voltage was considered for read operation. In the MSM circuit (Fig. 4.2(a)), these voltage 

sources were connected through a double pole double throw (DPDT) switch such that one input 

was kept at a DC supply of 1.10 V (read mode), while the other input was fixed to an AC supply 

(2 V, 10 kHz). It is essential to mention that one can tune the value of the AC supply in order 

to suit practical applications. The increase in the magnitude of the AC voltage or the reduction 

in the frequency may lead to faster memristive drift rates due to the fact that the large AC 

voltage will cause the ions (within the active layer of memristor) to drift at a faster rate. Further, 

the low frequency will facilitate the memristor to respond to the input signal. The DPDT switch 

was controlled by a signal voltage, which is basically a pulsating voltage source of amplitude 

2 V, pulse width 1 ns and time period 1.2 ns. This allows the memristor connections to switch 

in between read and write operations. During analysis, it was identified that memristance drifts 

with the time duration for which the AC signal was applied. One can write a resistance value 
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through disconnecting AC supply at the corresponding time. For example, among the multiple 

memristive states, 20 MΩ, 60 MΩ, 80 MΩ and 120 MΩ were written onto memristor through 

adjusting the memristance decreasing time durations to 5.624 μs, 5.55 μs, 5.39 μs, and 5.32 μs, 

respectively, as shown in Fig. 4.2(b). 

 

Fig. 4.2: (a) Threshold block for programming one memristor and Schematic of the proposed 

MSM circuit. The controlled memristive state transitions were possible through the 

continuous switching between the read and write cycles. (b) Decrementing memristance 

characteristics of Cu:ZnO based memristor. Different resistance values were written onto 

memristor through controlling the time duration for which the AC signal was supplied. (c) 

Incrementing memristance characteristics. 20 MΩ, 40 MΩ, 100 MΩ and 120 MΩ were 

written onto the memristor through utilizing the proposed switching technique. One can 

adjust the switching time durations in order to write any required value within the possible 

memristive states. 

 

Similarly, the memristance can be increased from Ron to 20 MΩ, 40 MΩ, 100 MΩ and 120 MΩ 

by selecting the switching time durations as 5.24 μs, 5.36 μs, 5.57 μs and 5.59 μs, respectively. 
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Through utilizing these techniques, one could attain controlled switching in between the 

memristive states for MSM applications. In this process, memristance can be programmed to 

any value in between Ron and Roff (in this case only four values are shown). Each memristive 

state (Fig. 4.2) was characterized by the state variable x, where x= w/D, w is width of the region 

contain oxygen vacancies, and D is the length of the active layer in memristance (M). w is seen 

to increase linearly as a function of the memristive state variable as represented in Eqn. (4.2) 

given below [53]: 

𝑀 = 𝑥. 𝑅𝑜𝑛 + (1 − 𝑥). 𝑅𝑜𝑓𝑓                     (4.2)             

From the Fig. 4.2, it can further be depicted that the memristance gets decreased with time and 

one can possess control over the value written in the memristor, through utilizing the DPDT 

switch. The characteristics of the state transitions towards the memristive incremental (Fig. 

4.2(c)) direction were obtained by exchanging the memristor terminal connections in Fig. 4.2. 

 

Fig. 4.3: Mapping Luma values onto memristive multilevel logic states. The 0 to 255 

grayscale levels were mapped to the corresponding memristive states from 0 to 1. 

 

The memristive state was characterized by the state variable x, where Ron (x = 1) corresponds 

to logic 1 and Roff (x = 0) represents logic 0. Further, the grayscale intensities were converted 

into memristive state values (shown in Fig. 4.3). For an 8-bit grayscale image, each pixel 
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possesses a luma measure of L ranging from 0  to 255 [154]. With this in consideration, a pixel 

with luma value L is converted to a fuzzy logic value x= L/255 (if L varies from 0 to 255 then 

x varies from 0 to 1) that is stored in the memristor in terms of its state variable. For this 

purpose, Eqn. (4.3) was employed in order to write this respective fuzzy logic or rather change 

the memristive state according to the state variable x. This memristance value was read back 

using a low DC voltage and the operation was repeated for each iteration.  

It is noteworthy to mention that the white pixel is considered as logic input 1, whereas the black 

one is logic 0. The state value was chosen to be directly proportional to the grayscale intensities 

for scaling into the memristive state domain as depicted in Fig. 4.3. From the Fig. 4.3, it can 

be seen that the memristive state value increases linearly from 0 to 1 as the Luma value varies 

from 0 to 255. Further, the graph follows the relation x = 
𝐿

255
 , where x was chosen to linearly 

increase with L. The main idea of programming memristors is to correlate the memristive state 

variable to the fuzzy logic. The circuit shown in Fig. 4.2(a) was utilized to program the 

memristor. As shown in Fig. 4.2(a) the threshold block employed to program the memristors 

contains each memristor connected across read and write voltage sources. The DPDT switch 

was utilized to shuttle between write and read cycles. Also, memristive write voltages (Vx) 

were determined from the following relation, which corresponds to writing the state values x 

of the memristor as shown in Eqn. (4.3) that was obtained by integrating Eqn. (4.1) for a voltage 

above threshold and solving for V, [53],  

𝑉𝑥 = [( 
𝑥 ×𝐷

 Koff×(𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ)
)
1/αoff

+ 1] . 𝑉𝑜𝑓𝑓                                 (4.3) 

The proposed circuit mainly works based on threshold gates implemented with the help of 

control signals and switches. The threshold block circuit consists of an array of four memristors 

arranged parallelly with each memristor connected across a DPDT switch (as shown in Fig. 

4.2) and each accepting a pixel input. The switch is mainly used to alternate back and forth 
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between the write and read cycles of the device with help of pulse generator that acts as the 

control signal to trigger the system for every cycle. During the write cycle the memristor is 

programmed with the pixel values and afterwards the computation is carried out during the 

read cycle. In order to detect edges, the pixel values input to the threshold block are the values 

of 2X2 window (shown in Fig. 4.4(a)) sampled from the set of pixels in the image. In order to 

further carry out the computation for the entire image with the array of four memristors in 

parallel, this 2X2 window was traversed throughout the image. The pixels were sampled by 

utilizing a memory buffer that starts with the position of 0 row count and 0 column count. This 

buffer was moved rightwards to sample all the columns in a given row and subsequently 

downwards to sample all the rows. With this sampling and processing of all pixels, the edge 

detected output of the complete image was obtained.  

In order to perform edge detection for an image, one has to compare the grayscale intensity 

value of a pixel with its neighbouring pixels. In such case, for each iteration, four nearby pixels 

(P1, P2, P3 and P4) of an image were considered (Fig. 4.4(a)). If-then rules were utilized on 

pixel value to perform the necessary comparison [155]. The if-then cases were: (i) if all the 

four pixels P1, P2, P3 and P4 are black (in the range of {1, 50}) or white (in the range of {200, 

255}) or gray (in the range of {51, 199}), then the output is not an edge. (ii) Else if at least one 

of the pixels is contrast from the other pixels then the output is yielded as an edge. Through 

utilizing these rules and memristor based threshold logic, the proposed schematic of the 

computational flow is shown in Fig. 4.4(b). The circuit was composed of four memristors, 

which accept four inputs (each corresponds to four pixels). To process the input for edge 

detection in an image, our system utilizes memristive threshold logic. In order to have better 

insight on the memristors based threshold logic, one could assume if V and Mem are the voltage 

and memristance, respectively then the output (Y) can be defined as in [54]: 
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𝑌 = {
0 𝑖𝑓 

𝑉

𝑀𝑒𝑚
< 𝐼𝑟𝑒𝑓

1 𝑖𝑓 
𝑉

𝑀𝑒𝑚
> 𝐼𝑟𝑒𝑓

                                                            (4.4) 

where the voltages are inputs, conductance/memristance is the weight, and the current is the 

output that needs to be validated with the threshold value 𝐼𝑟𝑒𝑓. In this system, the output of a 

threshold gate depends on the weighted sum of its inputs. It is considered as high, only when 

this weighted sum is greater than a specified threshold as shown in Eqn. (4.4). From Fig. 4.4, 

one could observe that four memristors constitute a threshold block with each memristor 

circuit. For read and write operations, each of the four memristors have two voltage sources 

connected across it through a DPDT switch that is controlled by a pulse signal, similar to the 

case presented in Fig. 4.2(b). Apart from this, each memristive current was compared with the 

threshold value during read mode. If the current exceeds the threshold value, the output is logic 

1, else it is 0. The four outputs from each of the threshold gates constitute 4-bit output from a 

threshold block for a given set of input pixel values. Individual shades of pixels were obtained 

at the outputs of threshold blocks from which P and Q (logic blocks) were assigned. The final 

OR operation on P and Q yielded the edge detected output. It was understood that memristance 

changes only when the read voltage exceeds the minimum memristive transition voltage i.e., 

1.20 V in this case, which is also SET/RESET voltage for the developed memristor [54].  

In addition, threshold logic computations were accomplished through utilizing a common pulse 

width of 1 ms for write and read operations. For edge detection, once each of the memristor 

was written with a value, the voltage 1.10 V (less than the minimum transition voltage of the 

memristor, i.e., 1.20 V) was chosen to perform read operation (mentioned in Fig. 4.4(b)) which 

does not alter the memristance attained during the write operation. In order to capture black 

shade pixels, we compare the pixel values around the state x = 0.30. The value of 0.30 was 

chosen such that any value of x in the range 0 to 0.30 can be considered as black shaded. 
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Fig 4.4: (a) The essential 2×2 pixel array for computing edge detection. The edges were 

detected based on the differences in intensities between the four neighbouring pixels. (b) 

Schematic of the computational flow through the threshold blocks. The edge detection was 

made possible through utilizing these logic computations. 

 

This approach modulates the contrast of the image, which ultimately enhances edge detection. 

The threshold value for the above case was computed from the current flowing through the 

memristor during a read cycle, when the device is written with value 0.30. To obtain the voltage 

pulse magnitude (𝑉0.30) to write value 0.30, x = w/D was substituted in Eqn. (4.1) and integrated 

as given below: 

[𝐾𝑜𝑓𝑓.( 
 𝑉0.30
 𝑉𝑜𝑓𝑓

−1)

 𝛼𝑜𝑓𝑓

×(𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ)]

𝐷 
= 𝑥 = 0.30                        (4.5)                                                   

𝑉0.30 was obtained by substituting the variables with the parametric values from [51]. This V0.30 

is essential to write a value 0.30 onto the memristor as shown in Eqn. (4.6). It is then substituted 

with parameters pulse width,  𝐾𝑜𝑓𝑓 , 𝛼𝑜𝑓𝑓 and 𝑉𝑜𝑓𝑓 to find the value of  𝑉0.30 as follows: 

𝑉0.30 = [( 
0.30 ×𝐷

 𝐾𝑜𝑓𝑓×(𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ)
)
1/𝛼𝑜𝑓𝑓

+ 1] . 𝑉𝑜𝑓𝑓 = 1.3446 𝑉                   (4.6)                                             

                                                             

The threshold current required to compare pixel values around the value 0.30 is computed as 

follows: 

𝐼0.30 =
𝑉𝑟𝑒𝑎𝑑

𝑀0.30
=

1.1 𝑉

106 𝑀𝛺
= 0.010 𝜇𝐴                            (4.7)  
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where, 𝑀𝑥 = 𝑥. 𝑅𝑂𝑁 + (1 − 𝑥). 𝑅𝑂𝐹𝐹, as given in Eqn. (4.2). It is important to mention that the 

current flowing through the memristor would be greater than the threshold current I0.30  if the 

write voltage (Vwrite) is greater than V0.30. When the memristor was read in this manner, three 

different outputs possibilities exist, viz., (i) when all the pixel values are of black shade, the 

write voltages for all memristors will be less than 1.3446 V. This induces a current in each of 

the threshold gates that is lower than the threshold current during the read cycle. Hence, all the 

four bits of the output from the threshold block are 0 as threshold current is greater than induced 

current. (ii) if at least one pixel is black and at least one pixel has different shade (a gray or 

white, i.e. L/255 > 0.3), then during the read cycle, all the memristors that input dark shade 

pixels with write voltage less than 1.3446 V will have current less than the threshold value.  

Further, the memristor that inputs a brighter pixel with write voltage greater than 1.3446 V will 

have current more than the threshold current value. For this case, among the 4-bits of the output 

from the threshold block, there would be both zeroes and ones, which corresponds to black and 

lighter shade pixels; and (iii) If none of the pixels are black then all the four outputs of the 

threshold block would be 1. If the four-bit output (each threshold block constitutes each bit) 

from this block is considered to be X1, then the final output from the block P is computed such 

that, if all the 4-bits in X1 are same then P is 0, else P is 1. Similarly, in order to capture white 

shade pixels, we compare the pixel values around the state x = 0.70. The value of 0.70 was 

chosen such that any value of x in the range 0.70 to 1 can be considered as white shaded. Here, 

the current induced during the read cycle was considered as the threshold value, when the 

memristor was written with value x = 0.70, where Roff is the initial resistive state. Similar to the 

previous case, the computations corresponding to the value x = 0.70 yielded 𝑉0.70 = 1.3633 𝑉 

and 𝐼0.70 = 0.024 𝜇𝐴, where V0.70 is the voltage required to write value 0.70 onto the memristor 

and 𝐼0.70 is the corresponding threshold current. In this case, during the read operation, three 

conditions were considered similar to the previous case, viz., (i) if all the pixels are darkly 
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shaded (Vwrite < 1.3633 V and x < 0.7) then all four bits of the output from the threshold block 

is 0 as threshold current is greater than the induced current. (ii) If at least onepixel is white 

(Vwrite > 1.3633 V) and at least one pixel has different shade (Vwrite < 1.3633 V and x < 0.7) 

then among the 4-bits of the output from threshold block, there would be both zeroes and ones 

corresponding to darker and white shade pixels. Finally, (iii) if all the pixels are white (Vwrite 

> 1.3633 V and x > 0.7) then all the four outputs of the threshold block would be 1. If the four-

bit output (each threshold block constitutes each bit) from this block is considered to be X2, 

then the final output from the block Q is computed as follows. If all the 4-bits in X2 are same, 

then Q output is 0, else Q is 1, where Q is a single bit output from the first threshold block. 

The pixels that lie neither in the black region, nor in the white region, and has output of 0 

from both the threshold blocks lie in this region. Finally, from the outputs of the threshold 

block, individual pixel shades were obtained. For non-edge region, either all the pixels must 

be white, gray or black. For all the pixels to lie in the same region (black, gray or white) all 

the four bits of the output must be the same for each of the threshold blocks. The final edge 

detected output (Y) is the OR operation between P and Q. If Y = 1 the result is as an edge 

and if Y = 0 then the region is not considered as an edge. The simulations for this memristive 

system for sample sets of pixel values were carried out, and the following edge detection 

results were obtained. As shown in Table 4.1, the 4-bit output X1 contains 1’s for 

corresponding pixel values that are non-black shaded (Luma value > 77), and 0’s for black 

shaded pixels (Luma value < 77). 

Similarly, the four-bit output X2 contains 1’s for corresponding pixel values that are white 

shaded (Luma value > 179) and 0’s for dark (black or gray) shaded pixels (Luma value < 179). 

From X1 and X2, P and Q were obtained and they take value 0 if all the corresponding four-bit 

outputs are same, else value 1 is chosen. The above computation was performed on a 5×5 
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sample image with the variations in P1, P2, P3 and P4 (Table 4.1 and Fig. 4.5) as the 2×2 

window function (Fig. 4.4(a)) traverses throughout the image.  

Table 4.1: Edge detected results for sample pixel inputs 

S.No 
P1 

[0,255] 

P1 

(V) 

P2 

[0,255] 

P2 

(V) 

P3 

[0,255] 

P3 

(V) 

P4 

[0,255] 

P4 

(V) 
X1 P X2 Q Y 

1 154 1.360 136 1.357 129 1.356 136 1.357 1111 0 0000 0 0 

2 136 1.357 142 1.358 136 1.357 135 1.357 1111 0 0000 0 0 

3 142 1.358 138 1.358 135 1.357 146 1.359 1111 0 0000 0 0 

4 138 1.358 138 1.358 146 1.359 228 1.369 1111 0 0001 1 1 

5 129 1.356 136 1.357 140 1.358 144 1.359 1111 0 0000 0 0 

6 136 1.357 135 1.357 144 1.359 144 1.359 1111 0 0000 0 0 

7 135 1.357 146 1.359 144 1.359 252 1.372 1111 0 0001 1 1 

8 146 1.359 228 1.369 252 1.372 217 1.368 1111 0 0111 1 1 

9 140 1.358 144 1.359 132 1.357 128 1.356 1111 0 0000 0 0 

10 144 1.359 144 1.359 128 1.356 243 1.371 1111 0 0001 1 1 

11 144 1.359 252 1.372 243 1.371 239 1.371 1111 0 0111 1 1 

12 252 1.372 217 1.368 239 1.371 202 1.366 1111 0 1111 0 0 

13 132 1.357 128 1.356 163 1.362 2 1.286 1110 1 0000 0 1 

14 128 1.356 243 1.371 2 1.286 231 1.370 1101 1 0101 1 1 

15 243 1.371 239 1.371 231 1.370 231 1.370 1111 0 1111 0 0 

16 239 1.371 202 1.366 231 1.370 246 1.371 1111 0 1111 0 0 

 
 

Each iteration mentioned in the graph (Fig. 4.5) corresponds to each position of the window in 

the image (and a row in Table 4.1). For these corresponding P and Q values, final edge detected 

output was computed. It is noteworthy to mention that the P2 location of the window was 

substituted by an edge, whenever an edge was detected [156]. Further, this algorithm was tested 

for grayscale images with the help of MATLAB code that computes current for given sets of 

pixels and threshold values through utilizing Eqn. (4.4) to Eqn. (4.7).  
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Fig. 4.5: Variation of pixel grayscale intensity with the number of computational iterations 

for pixels P1-P4 shown in (a)-(d). Each iteration corresponds to a 2 × 2 submatrix in the 

sample 5 × 5 image, which traverses throughout the image. 

 

The obtained results for different grayscale images are shown in Fig. 4.6. One could notice that 

all edges were clearly detected and this accurate detection is owing to the fact that our proposed 

techniques enhance the image contrast, which further increases the pixels’ intensity difference 

[78]. Since it deals with the analog signal, no further analog-to-digital conversion is required 

[157], and the proposed system could be used directly for edge detection based on the signals 

it received from the optical sensor. The obtained accuracy can further be enhanced through the 

increase in pixel classification ranges by utilizing a large number of threshold blocks and tuning 

the grayscale values. Real time analog signals are always prone to voltage noise; however, 

circuit systems were designed to make them immune to   external noises. To analyze the noise 

tolerance for our circuit, we obtain the DC noise voltage to cause a logic error of 1% (∆𝑥=0.01). 

While writing or reading logic x = 0.30 or 0.70, the analysis is as shown below.  
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For the case 𝑥 = 0.30 and ∆𝑥 = 0.01: from Eqn. (4.5), the 𝑉𝑁was calculated to be 0.91 mV. 

Similarly for the case 𝑥 = 0.70 and ∆𝑥 = 0.01, the 𝑉𝑁 was 0.80 mV. Therefore the proposed 

circuit design had tolerance to DC noise approximately upto 1 mV, if the tolerance was 

considered to be ∆𝑥 = 0.01. Moreover, the SET/RESET voltages were found to be very low 

∼1.40 V, which offers adoptability for low-power device applications establishing the 

memristor as a reliable part of integrated circuits in terms of aging [53].  

 

Fig. 4.6: (a)-(f) Images indicating edge detection. The proposed algorithm was able to 

successfully detect the edges in given images. 

 

In this regard, it is important to mention that a large variation of memristance in the order of 

100 Ω resulted in a low programming error of less than 1%. Hence, it was understood that the 

wire resistance and variability of the conductance had no significant effect on the performance 

of the proposed system.  
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Fig. 4.7: Edge detection through utilizing (a) Canny’s method, (b) Sobel’s method, (c) 

Prewitt’s method (d) Log method, (e) Roberts method, (f) Zerocross method and (g) our 

proposed method. It can be seen that highest number of edges were detected by the proposed 

method, when compared to the other cases. 

 

The proposed prototype presents edge detection based on identifying the class of pixels (white, 

black or gray) and application of rule based computation. This system could also be extended 

to increase the class of pixels (more than 3 classes white, black and gray) through utilizing 

more than 2 threshold blocks in order to detect edges of variable sharpness. For example, as 

two threshold blocks were able to classify pixels into three categories, three threshold blocks 



89 
 

could be used to classify pixels into four categories and so on depending upon the sharpness of 

the edges one needs to detect.   

Further, in order to quantify the quality of edge detection, the proposed method was compared 

with the existing conventional and popular Canny, Sobel, Prewitt, Log, Roberts and zerocross 

methods (shown in Fig. 4.7) [143], [151], [152]. These algorithms rely on conventional 

hardware implementations for processes like convolution and filtering [148], [158]. From the 

Fig. 4.7, one could observe that a large number of edges were detected in our case when 

compared with the other techniques. 

Table 4.2: Percentage of edges detected in different algorithms 

Algorithm Edges detected 

Canny 8.68% 

Sobel 8.60% 

Prewitt 8.60% 

Log 8.47% 

Roberts 9.82% 

Zerocross 9.73% 

Our proposed work 16.71% 

 

 

Further, the percentages of edges detected by each algorithm are tabulated in Table 4.2. It can 

be observed that the edge detection in our case was 16 %, whereas in the remaining cases, it 

was ~8.60 %. This improvement is due to the dual threshold (0.30 and 0.70, as mentioned 

earlier) approach adapted in our case. The proposed techniques are advantageous in terms of 

computational complexity as there is no necessity for the conventional convolution operation 

utilized in filter based approaches. This is owing to the fact that the convolution operation deals 

with a large amount of data transfer and requires numerous adders, multipliers and other digital 

circuitry [52], [53]. With ever growing demand for edge detection in futuristic complex systems 

and applications, there is a need for an efficient system. In the recent trend there have been 
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works pertaining to accelerate existing methods [159], [160] or seek for an efficient algorithm 

different from the conventional implementations. One such optimal computation algorithm that 

researches have opted is the fuzzy logic [151]. Additionally with the advent of recent non-

volatile Cu:ZnO memristor, the device has attributed to build a simpler system and the current 

work has proven to be a promising alternative for edge detection given its low complexity and 

efficiency.  

Importantly, when compared to the recent work on memristor based state machines [161], the 

proposed MSM is advantageous (87.5% improvement) in terms of number of memristive 

components. It is important to mention that the methods proposed in this work have been 

implemented through utilizing the models of different memristors fabricated using type-2 fuzzy 

logic  in [150], [154], [155]. The main aspect that makes this system stand apart from past 

implementations is that the computations are all carried out in the analog domain and the 

requirement of fuzzifier and de-fuzzifier logics are ruled out with the use of non-volatile 

memory device unlike for the cases of conventional CMOS devices.  

4.4  Summary 

In this work, a large number of stable resistive states were identified in a memristor. Efforts 

were devoted to utilize the transitions between these states for logic computations. Based on 

this understanding, MSM was implemented and it was applied for edge detection of images. 

The detection was performed based on the classification of pixels (white, black or gray) through 

utilizing if-then rules. The approach yielded improvements in terms of storage density and 

computational capabilities. Tune-ability in the features of edge detection was made possible 

through adjusting the threshold memristance within the available memristive states. Since 

memristor is the key element in this network and deals with the analog signal, the proposed 

system operates much faster as compared to other existing approaches with reduced circuitry 

to implement the network since analog-to-digital conversion would not be required. The MSM 
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based edge detection system produced high accuracy in edge detection through increasing the 

pixels’ intensity difference. In order to quantify the role of the proposed system, it was 

compared with other conventional approaches such as Canny, Sobel, and Prewitt’s systems. 

The system proposed in work showed much better performances when compared to the other 

abovementioned systems. Further, the proposed techniques could be extended for multi-

classification of pixels, by utilizing multiple threshold blocks in order to detect edges of 

variable sharpness for futuristic smart image processing applications. Memristors with 

improved parameters such as Ron/Roff   ratio or bandwidth could be researched in order to 

increase the immunity of the device to noise and parasitic effects. 

Remarks: Below mentioned paper was published based on this chapter . 

 Priyanka B. Ganganaik, G. Abhijith, P. Michael Preetam Raj, H. Renuka, BVVSN 

Prabhakar Rao, and Souvik Kundu. "Realization of Memristive State Machine for 

Smart Edge Detector Applications." IETE Journal of Research (2020): 1-11.  
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Chapter-5 

Implementation of  Binary Particle Swarm Optimization 

for Image Thresholding using Memristor Crossbar Array 

5.1 Introduction 

Swarm Intelligence based algorithms are increasingly replacing traditional search algorithms 

with high time complexity. These algorithms are modeled after various natural phenomena 

such as ant colonies, bee hives, bird flocks, fish shoals, animal herds, etc. [162]. Particle Swarm 

Optimization (PSO) [163] is considered as one of the most widely used swarm intelligence 

algorithms, which makes very few approximations about the function that needs to be 

optimized, and they can search a large search space for an optimal solution. No information is 

required about the gradient of the objective function; therefore, even non-differentiable 

functions can be optimized using PSO. PSO has applications in various domains such as multi-

objective function optimization [164], geotechnical engineering [165], solar energy systems 

[166], improving and optimizing neural network performance [167], [168], and image 

segmentation [17], [169], [170].   

On the other hand, image thresholding is one of the fundamental methods for image 

segmentation based on similarity in features within the regions. Among various ways of image 

thresholding for segmentation, the two most successful methods are Otsu’s method and 

Kapur’s Entropy method. Grayscale image pixel intensities are generally saved as 8 (or integral 

multiples of 8) bit integers. Thus, discrete optimal thresholds are desired. The thresholds are 8-

bit integers as pixel intensities range from 0 to 255. As image thresholding involves finding 

optimal thresholds from a discrete search space of thresholds, Binary Particle Swarm 

Optimization (BPSO) [171], a variant of PSO, is better suited for this application. Hence, 
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finding them by employing BPSO would be more prudent when compared to any other 

continuous variant of PSO [172].  

Although swarm intelligence-based algorithms are much faster than conventional search 

algorithms, their speed can further be improved significantly. The performace of these 

computationally intensive algorithms are limited by the drawbacks of  currently used Von 

Neumann architecture-based computing systems as discussed in the earlier chapters. Thus, in 

terms of the demand for in-memory computing systems, memristors have been demonstrated 

to be a possible key component in designing such systems due to their unique physical qualities 

such as low energy consumption, nanoscale size, sub-nanosecond switching speed, and 

extended memory [173]–[176]. Several memristor architectures, primarily memristive crossbar 

arrays, have been employed in neuromorphic circuits such as synapses in spiking neural 

networks [43], applications in chaotic theory [177], and also for implementing machine 

learning algorithms like the Principle Component Analysis [178]. Recently, very few studies 

have tried implementing swarm intelligence-based algorithms using memristors. A memristor 

crossbar-based implementation of Ant colony optimization [179], another widely used swarm 

intelligence-based algorithm, was used in [176], [180] for edge detection. A modified variant 

of Particle Swarm Optimization, CPSO (Chaotic Particle Swarm Optimization), has been used 

to initialize parameters of a neural network [181]. 

BPSO has proven to be a very effective algorithm, especially for optimizing functions having 

their domain defined on discrete search spaces. In this work, BPSO for the image multi-

thresholding problem using a novel Pt/Cu:ZnO/Nb:STO memristor crossbar array is 

implemented. To the best of our knowledge, this is the first study pertaining to the 

implementation of BPSO on the memristor crossbar. Otsu’s Function and Kapur’s Entropy 

Function are considered as the objective functions or the functions left for BPSO to optimize.  

It is hypothesized that results obtained from the implementation of BPSO on the memristor 
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crossbar are at par and very close to the optimal thresholds. Further, this (Otsu and Kapur’s 

entropy with BPSO) is applied for thresholding 4 T2- weighted transaxial brain Magnetic 

Resonance Imaging (MRI) scans of the widely used online open-access medical image 

repository by Harvard Medical School [182].  

This chapter is organized as follows: In section 5.2, Otsu and Kapur’s Entropy Functions are 

elaborated and brief description of the BPSO algorithm is given. In section 5.3 Implementation 

of BPSO using memristor crossbar is described.. In section 5.4, results for multi-thresholding 

on standard as well as the Brain MR images, followed by the results with device variations, are 

explained. Conclusions are given in section 5.5. 

5.2 Objective Functions 

In Swarm intelligence, the functions optimized by the swarm intelligence algorithm (BPSO in 

this case) are known as Objective Functions for the image thresholding problem. Our aim is to 

divide the pixels in an image I into N groups of pixels which has similar gray levels.  It is done 

by finding N-1 optimal intensity thresholds. It is noted here that 𝑡0 corresponds to the minimum 

possible intensity (0 intensity), 𝑡1 to 𝑡𝑁−1 are the N-1 optimal thresholds and 𝑡𝑁 is the maximum 

possible intensity (255 in case of 8-bit gray-scale images). The swarm intelligence algorithm 

assigns all pixels having pixel intensity in the range between threshold 𝑡𝑖 and threshold 𝑡𝑖+1 to 

the gray-level value of 𝐺𝑖 such that i can take integer values between 0 and N. It is 

mathematically represented as follows: 

𝐺𝑖 = {𝑓(𝑥, 𝑦) ∈ 𝐼|𝑡𝑖 ≤ 𝑓(𝑥, 𝑦) < 𝑡𝑖+1}                 (5.1) 

Here, 𝑓(𝑥, 𝑦) is the integer pixel intensity of image I at position (𝑥, 𝑦). So, as seen in Eqn. 

(5.1), all pixels with intensities in the interval [𝑡𝑖, 𝑡𝑖+1-1] are associated with Group 𝐺𝑖 where 

i is an integer between 0 and N-1. To find the optimal thresholds  𝑡1 to 𝑡𝑁−1, Kapur’s Entropy 

function [20] and Otsu’s thresholding function [183] are used. These objective functions take 
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the image grayscale histogram and a set of N-1 thresholds as input. The image grayscale 

histogram is a discrete graph of the number of pixels vs. pixel intensity. The swarm intelligence 

algorithm uses the objective functions to adjust the thresholds for optimal results. 

5.2.1 Kapur’s Entropy Function 

Kapur’s Entropy function is a widely used function for thresholding. It is based on discrete 

entropy, which is the measure of unpredictability or the degree of randomness. In information 

theory, entropy (often referred to as Shannon’s Entropy) is mathematically defined as [184], 

[185]: 

𝐻(𝑋) = −∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔(𝑃(𝑥𝑖)) 
𝑛
𝑖=0                        (5.2) 

Where X is a discrete random variable which can take n discrete values. 𝑥𝑖 corresponds to the 

𝑖𝑡ℎ  value taken by X. P(𝑥𝑖) is the probability of X assuming the value 𝑥𝑖. It is known that for 

a discrete random variable X if the Entropy of X is to be maximized, it has to follow a finite 

uniform Probability Mass Function (PMF), which has the maximum entropy. The swarm 

intelligence algorithm tries to maximize Kapur’s entropy function for the image thresholding 

application so that the modified histogram after thresholding is very close to a discrete uniform 

PMF. Hence, the contrast is maximized for the thresholded image. As it is known that Kapur’s 

Entropy function is a histogram-based thresholding function, let h(j) be the number of pixels 

in the image I with intensity “j”. For a particular pixel intensity j, the probability that a pixel in 

Image I has intensity j is: 

𝑝𝑗 =
ℎ(𝑗)

∑ ℎ(𝑙)
𝐿(𝑚𝑎𝑥)
𝑙=𝐿(𝑚𝑖𝑛)

                            (5.3) 

Where 𝐿(𝑚𝑖𝑛) and 𝐿(𝑚𝑎𝑥) are the minimum and maximum possible intensities in the image 

I. For gray-scale 8-bit images,  𝐿(𝑚𝑖𝑛) is 0, and 𝐿(𝑚𝑎𝑥)  is 255 (28 − 1). The expressions for 

Kapur’s Entropy for multi-thresholding from Eqn. (5.2) and Eqn. (5.3) is given in [18] is  
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as follows:  

𝐻𝑖 = −∑
𝑝𝑗

𝜔𝑙
ln (

𝑝𝑗

𝜔𝑙
) ; 𝜔𝑖 = ∑ 𝑝𝑗

𝑡𝑖+1−1
𝑗=𝑡𝑖

𝑡𝑖+1−1
𝑗=𝑡𝑖

                 (5.4) 

It is noticed that Eqn. (5.4) is similar to Eqn. (5.2) where 
𝑝𝑗

𝜔𝑙
 can be thought of as P(xj) where l 

is an integer between 0 to N-1 and j is a particular pixel intensity. The objective function is 

then just the summation of all the entropies, which is given below: 

𝑓𝐾𝑎𝑝𝑢𝑟(𝐼, 𝒕) = ∑ 𝐻𝑖
𝑁−1
𝑖=0                    (5.5) 

Where threshold  𝒕 = [𝑡1, … 𝑡𝑖, … 𝑡𝑁−1] and I is the image concerned. Our goal is to find optimal 

threshold 𝒕∗ using the swarm intelligence algorithm such that 𝒕∗maximizes the Kapur’s Entropy 

function or in other words, 𝑓𝐾𝑎𝑝𝑢𝑟(𝐼, 𝒕
∗)   is the maximum value of Kapur’s Entropy Function. 

5.2.2 Otsu’s Function 

Otsu’s function is based on the concept of reducing intra-class variance and increasing inter-

class variance. This simply means that in a group or gray level, say 𝐺𝑖, almost all pixels are 

homogenous and almost in the same range; however, for two adjacent groups or gray levels 𝐺𝑖 

and 𝐺𝑖+1, the pixels are drastically different. The within-class or intraclass variance is defined 

as: 

𝜎𝑖 = 𝜔𝑖(𝜇𝑖 − 𝜇𝑇)
2                                                                    (5.6) 

Where 𝜔𝑖 is the normalized probability of the pixel intensities, 𝜇𝑖 is the mean level of each 

class 𝐺𝑖 and 𝜇𝑇 is the mean intensity of the Image I. 𝜇𝑖 is given by: 

𝜇𝑖 =
∑ 𝑗𝑝𝑗
𝑡𝑖+1−1

𝑗=𝑡𝑖

𝜔𝑖
                               (5.7) 

The Otsu function is defined as: 
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𝑓𝑂𝑡𝑠𝑢(𝐼, 𝒕) = ∑ 𝜎𝑖
𝑁−1
𝑖=0                                                                          (5.8) 

Again, the goal of this work here is to find 𝒕∗  such that it maximizes the Otsu’s function. It is 

observed that if brute force method is used, that is, by manually trying out all possible 

unordered pairs of N thresholds, the time complexity would be 𝑂(𝑛𝑁). Although this is an 

effective technique for bi-thresholding, that is when N=1. As N increases, there is a dire need 

for faster techniques, such as swarm intelligence algorithms, to choose the N thresholds. 

5.2.3 Binary Particle Swarm Optimization (BPSO) 

Particle Swarm Optimization is a Swarm Intelligence Algorithm proposed by Kennedy and 

Eberhart in 1995 [18]. It is modeled after the social behavior of a flock of birds or a shoal of 

fish. It is used for optimizing objective functions. The domain on which the objective function 

is defined is referred to as the search space. A swarm of agents or particles are initialized as 

random points in the search space. Each of these particles can be represented by its current 

position, its velocity, and the personal best position the particle has attained till that point of 

time. The position and the velocity have dimensions equal to that of the dimension of the 

domain.  Each particle makes its next move by updating velocity followed by position based 

on the best position attained by any of the particles till that point of time or the global best 

position and its personal best position. The velocity and position are updated in Eqn. (5.9) and 

Eqn. (5.10) respectively as given below: 

𝒗𝒊
𝒕+𝟏 = 𝑊𝒗𝒊

𝒕 + 𝑐1𝒓𝟏. (𝒙𝒈𝒃
𝒕 − 𝒙𝒊

𝒕) + 𝑐2𝒓𝟐. (𝒙𝒊,𝒑𝒃
𝒕 − 𝒙𝒊

𝒕)                          (5.9) 

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊
𝒕+𝟏                  (5.10) 

Where 𝒗𝒊, 𝒙𝒊 and 𝒙𝒊,𝒑𝒃  are the velocity, position, and personal best position reached so far by 

the ‘i’th particle respectively. 𝒙𝒈𝒃 is the global best position of the swarm, and W is a scalar 

often referred to as the momentum weight. The constant scalars c1 and c2 are referred to as the 
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acceleration coefficients. r1 and r2 are two variable vectors of the same dimension as that of 

the search space. Each element of these vectors is between 0 and 1, which is randomly updated 

after every iteration. The personal best and the global best are decided depending on the output 

of a function which inputs the current position vector of a vector and outputs a scalar. This 

function is referred to as the fitness function. This fitness function is usually the objective 

function itself, although they can differ. 

For discrete-valued search spaces, Kennedy and Eberhart came up with a discrete binary 

variant of PSO, the Binary Particle Swarm Optimization (BPSO) [18]. Here the positions of 

the particles are in discrete binary form. The particle velocities, however, are of continuous 

nature. The following is how the particle velocity and position updating in BPSO take place: 

𝒗𝒊
𝒕+𝟏 = 𝑊𝒗𝒊

𝒕 + 𝑐1𝒓𝟏. (𝒙𝒈𝒃
𝒕 − 𝒙𝒊

𝒕) + 𝑐2𝒓𝟐. (𝒙𝒊,𝒑𝒃
𝒕 − 𝒙𝒊

𝒕)                     (5.11) 

For every dimension of the position and velocity vectors,  

𝑥𝑖,𝑑 = {
1, 𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖,𝑑) > 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (5.12) 

Here, r is a random number between 0 to 1 which is updated after every iteration. 𝑥𝑖,𝑑 is the 

position vector and 𝑣𝑖,𝑑 is the velocity vector with respect to the dimension ‘d’. It is noted that 

in Eqn. (5.11) and Eqn. (5.12), the current and personal best positions of the particles, as well 

as the global best position are all discrete binary vectors. That is, all the elements in these 

vectors are either 0 or 1. 

So, to essentially formulate the problem of N-level gray-scale image thresholding, the search 

space can be thought of as an 8xN dimensional binary discrete vector space. As stated earlier, 

each threshold is in the range of 0 to 255. To encode the decimal number in binary space, 8 bits 

for one threshold is needed. So, for N thresholds, an 8xN dimensional vector space is required. 

So, one particle corresponds to an 8xN dimensional vector or N thresholds. At the termination 
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of the algorithm, the global best position, which corresponds to the N thresholds, is considered 

as the optimal solution and the N thresholds corresponding to this global best position are the 

optimal thresholds. In the next section, BPSO using a memristor crossbar is implemented with 

both Kapur’s Entropy Function and Otsu’s Function as the objective function and fitness 

function.  

5.3 Implementation Section  

5.3.1 Implementation of BPSO using Memristor Crossbar 

As matrix multiplications are the key operations in most of the AI-based algorithms, 

implementing them using the memristor crossbar tackles the von Neumann Bottleneck faced 

by these algorithms. BPSO involves many matrix-vector dot products, and the use of memristor 

crossbars can improve the speed of the algorithm.  

Discrete binary particles can be modeled using a memristor crossbar array, as shown in Fig. 

5.1(a). A particle has a discrete binary position corresponding to 8N bits, where N corresponds 

to the number of thresholds. It also has its personal best position, which is also represented 

using 8N bits. A design of a memristor crossbar having (2Ns+1) rows and 8N columns is 

proposed, where Ns is the number of particles. Here, 2 rows correspond to one particle, which 

stores the current position and the personal best position of the particle, respectively. The last 

row is used to store the global best position. Each memristor represents one bit which can be 

logic state 0 if it is at a high resistance state or logic state 1 at a low resistance state. The particle 

positions are initialized randomly. This is done by applying 𝑣𝑠𝑒𝑡 or 𝑣𝑟𝑒𝑠𝑒𝑡 voltages across each 

memristor individually. Reading voltages are considered as 0.5 V and -0.5 V as both lie 

between 𝑣𝑜𝑛 (-1.2V) and 𝑣𝑜𝑓𝑓 (+1.35V). From chapter 4, Eqn. (5.1), w does not change for this 

voltage. Hence, the memristor behaves as an ideal resistor for these reading voltages. For 

BPSO, 2 crossbars are simulated for finding 2 thresholds and 3 thresholds. The optimal 
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parameters for BPSO were decided after multiple runs of the algorithm with varied parameters. 

The proximity of the value of the objective function is taken into consideration at the output 

thresholds to the maximum possible value of the objective function. The following Table 5.1 

summarizes the parameters for BPSO and information about the crossbars: 

Table 5.1:  Parameters for BPSO and information about the crossbars used as suggested in 

the pseudo-code in section 5.2.3 and Eqn. (5.11) 

Parameter N=2 N=3 

Number of particles (Ns) 50 100 

Number of iterations 50 50 

W 1.0 1.0 

c1 2.0 2.0 

c2 2.0 2.0 

Total number of memristors 1,616 4,824 

Dimensions of crossbar 101x16 201x24 

Area of the crossbar 1.309x10-11 m2 3.907x10-11 m2 

 

 

For the memristor model, the read time is 10 ns. As c1 and c2 are 2 each, all the elements of 

c1r1 and c2r2 will be in the range 0 to 2. Positions are modeled as conductances, whereas c1r1 

and c2r2 are modeled as voltage pulses. A voltage pulse of magnitude equal to 0.5 V (read 

voltage) and a random time duration of 10*k ns is applied, where k ∈ {1,200} to the last row 

or the global best position. This, in turn, ensures that all the elements of c1r1 and c2r2 have a 

precision of only 2 significant digits after the decimal point, and each element has a least count 

of  0.01. Ideally, the random numbers should have as much precision as possible, however, 

here, there is a tradeoff as the maximum pulse width increases 10 folds with an increase in the 

number of significant digits after the decimal point, and this slows down the implementation 

drastically. Simultaneously a voltage pulse with magnitude -0.5 V and the same pulse width as 

the one above to the row storing the current position of the particle is applied. Further, a charge 

amplifier is used, which will give a voltage output proportional to the charge or integral of the 
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current at the input of the amplifier. This voltage vector, which is the output of the charge 

amplifiers, corresponds to 𝑐1𝒓𝟏. (𝒙𝒈𝒃
𝒕 − 𝒙𝒊

𝒕) in Eqn. (5.11). This is depicted in Fig. 5.1(b). 

Here, all the random elements of r1 have been considered equal, which are generated newly 

for different particles every iteration.  

 

Fig. 5.1: (a) Memristor Crossbar Array (b) Calculating 𝑐1𝒓𝟏. (𝒙𝒈𝒃
𝒕 − 𝒙𝒊

𝒕) in crossbar (c) 

Calculating 𝑐2𝒓𝟐. (𝒙𝒊,𝒑𝒃
𝒕 − 𝒙𝒊

𝒕) in crossbar. 

 

Now a voltage pulse of 0.5 V magnitude and pulse width is chosen randomly between 10ns 

and 2µs is sent to the second row (the row storing the personal best position), and 

simultaneously, another pulse of the same width but magnitude equal to -0.5V to the first row 

(the row storing the current position). Here, the output of the charge amplifiers corresponds to  

𝑐2𝒓𝟐. (𝒙𝒊,𝒑𝒃
𝒕 − 𝒙𝒊

𝒕) in Eqn. (5.11), and again, all elements of r2 are assumed to be equal, which 

is shown in Fig. 5.1(c).  
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Fig. 5.2: Flowchart summarizing the entire procedure. 

 

Thus, for the 𝑗𝑡ℎ  dimension of the 𝑖𝑡ℎ particle, from Eqn. (5.18) of chapter 1: 

𝑄𝑗 = 𝑣𝑟𝑒𝑎𝑑 ∗ 𝑘 ∗ 𝑡𝑟𝑒𝑎𝑑 ∗ (𝑔𝑔𝑏,𝑗 − 𝑔𝑖,𝑗)               (5.13) 

𝑄𝑗 = 𝑣𝑟𝑒𝑎𝑑 ∗ 𝑘 ∗ 𝑡𝑟𝑒𝑎𝑑 ∗ (𝑔𝑝𝑏_𝑖,𝑗 − 𝑔𝑖,𝑗)               (5.14) 

Here, 𝑄𝑗 is the output voltage at the 𝑗𝑡ℎ column/dimension. 𝑔𝑔𝑏,𝑗 is the 𝑗𝑡ℎ dimension of the 

global position and 𝑔𝑝𝑏_𝑖,𝑗 and 𝑔𝑖,𝑗 are the 𝑗𝑡ℎ component of the personal best and current best 

positions of the 𝑖𝑡ℎ particle, respectively.  
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It is noted here that as 𝑅𝑜𝑛 (of the order 1.2  kΩ) is much lesser than 𝑅𝑜𝑓𝑓 (of the order of 1.2 

MΩ), conductance corresponding to the logic 1 state (𝑔𝑜𝑛=1/ 𝑅𝑜𝑛) is of the order of 1 µΩ−1 

and the conductance corresponding to the logic 0 states (𝑔𝑜𝑓𝑓=1/ 𝑅𝑜𝑓𝑓) is of the order of 1 nΩ−1  

thus, the following approximation is used: 

|𝑔𝑜𝑛 − 𝑔𝑜𝑓𝑓| ≈ |𝑔𝑜𝑛|                (5.15) 

Further, the net velocity is calculated from Eqn. (5.11). This part is done using an 8N bit adder 

circuitry external to the crossbar. The position is updated as shown in Eqn. (5.12) by applying 

𝑉𝑠𝑒𝑡 / 𝑉𝑟𝑒𝑠𝑒𝑡 pulses for sufficient duration of time. This is followed by updating the personal 

best and global best positions by checking the fitness value. As the proposed architecture is a 

coprocessor, the crossbar is strapped onto the CPU using the PCI bus. It is noted here that the 

fitness values for different positions are calculated in the CPU (outside the crossbar). The 

flowchart given in Fig. 5.2 summarizes the entire process.  

5.4 Results and Discussions 

5.4.1 Results and Explanation for Standard Images 

As mentioned in Section 5.3, two memristor crossbar arrays were simulated for 3 gray-level 

thresholding and 4 gray-level thresholding, respectively. The histogram of the normalized 

number of pixels (normalized frequency) vs. pixel intensity was obtained from gray-scale 

images. In this study, the results are explained using the ubiquitous “Lena” Image (225 × 225) 

shown in (Fig. 5.3(a)) and 4 T2- weighted transaxial brain MRI scans shown in (Fig. 5.6(a-d)), 

which were randomly selected from the online open-access medical image repository from  

Harvard Medical School [182].    

Brute-force optimization is used on the Kapur and Otsu Functions, considering unordered pairs 

of 2 and 3 intensity thresholds ranging from 0 to 255. The results for the same are shown in 
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Fig. 5.3(b)-(e). For the 2 threshold-based thresholding, a 101×16 crossbar is initialized with 

𝑉𝑠𝑒𝑡 and 𝑉𝑟𝑒𝑠𝑒𝑡 pulses as suggested in Fig. 5.2. Fifty particles or 50 of the 65,280 possible 

domain points were arbitrarily considered where the number of iterations was 50.  

 

Fig. 5.3: Brute Force Optimization. (a) Gray-scale Lena Image (b) Histogram and Image for 

2-thresholds while optimizing Kapur’s Entropy Function, (c) Histogram and Image for 2-

thresholds while optimizing Otsu’s Function, (d) Histogram and Image for 3-thresholds while 

optimizing Kapur’s Entropy Function, (e) Histogram and Image for 3-thresholds while 

optimizing Otsu’s Function. 

 

Kapur’s entropy function was considered as the objective function as well as the fitness 

function. At the termination of the algorithm, the thresholds corresponding to the global best 

position were considered as the optimal thresholds. The same was repeated considering Otsu’s 

Function as both the objective function and the fitness function. For 3 threshold-based 

thresholding, another crossbar was simulated with dimensions 201×24. In this case, the number 
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of particles was taken as 100 or 100 of the 16,581,120 possible domain points that were 

arbitrarily considered. The number of iterations was again taken as 50. A similar process was 

repeated, taking Kapur’s Entropy Function and Otsu’s Function as both the objective and 

fitness functions.  The results for the same have been depicted in Fig. 5.4(a)-(d). 

 

Fig. 5.4: BPSO Implementation using memristor crossbar. (a) Histogram and Image for 2-

thresholds while optimizing Kapur’s Entropy Function, (b) Histogram and Image for 2-

thresholds while optimizing Otsu’s Function, (c) Histogram and Image for 3-thresholds while 

optimizing Kapur’s Entropy Function, (d) Histogram and Image for 3-thresholds while 

optimizing Otsu’s Function. 

 

To consider device variations, it is assumed that the High impedance (𝑅𝑜𝑓𝑓) and Low 

impedance states (𝑅𝑜𝑛) follow a Gaussian distribution with the mean as the designated values 

and standard deviation equal to 5% of the mean value. For each simulated memristor in both 

the crossbars, 𝑅𝑜𝑛 and 𝑅𝑜𝑓𝑓 were taken randomly from the corresponding distributions, and 

the entire process was repeated for both crossbars. The results for the same are shown in Fig. 

5.5(a)-(d). 
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Fig. 5.5: BPSO crossbar implementation with device variations. (a) Histogram and Image for 

2-thresholds while optimizing Kapur’s Entropy Function, (b) Histogram and Image for 2-

thresholds while optimizing Otsu’s Function, (c) Histogram and Image for 3-thresholds while 

optimizing Kapur’s Entropy Function, (d) Histogram and Image for 3-thresholds while 

optimizing Otsu’s Function. 

 

5.4.2 Biomedical Image Processing using the Proposed Methodology 

Further, one of the conventional Brain MR images is thresholded, which are the essential 

source of detecting any abnormalities in the brain tissues. Multi-thresholding these images help 

enhance them by delineating the cerebrospinal fluid (CSF), white matter, and gray matter. This 

helps unveil some intricacies in the image, thus aiding the diagnosis and leading to better 

treatment. In this section, the results for 4 randomly selected T2-weighted transaxial brain 

slices, each of size 256 x 256 pixels, are discussed, which are shown in Fig. 5.6(a)-(d). Also, 4 

gray-level thresholding (3 thresholds) for the above 4 images is applied. As described in section 

5.1, manual thresholding to see the results for the optimal thresholds maximizing the Kapur’s 

Entropy Function and Otsu’s Function is applied, respectively; results are shown in Fig. 5.6(e)-

(h) and Fig. 5.6(i)-(l).
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Table 5.2: Results for the Lena Image 

Optimizing 

Function 

Number of 

thresholds 

The 

maximum 

value of the 

function 

The optimum 

value reached 

by BPSO 

BPSO 

crossbar 

implementati

on with 5% 

variations  

 Error 

for BPSO 

using the 

crossbar 

Error for 

BPSO 

using 

crossbar 

considering 

the device 

variations 

Optimal 

Thresholds 

Threshol

ds from 

BPSO 

Thresholds 

from 

crossbar 

with 5% 

device 

variations 

Kapur 2 12.426442 12.425018 12.424772 0.011% 0.013% 97, 165 97, 166 96, 164 

Otsu 2 1944.730386 1944.140996 1944.533381 

 

0.030% 0.010% 93, 151 94, 153 93, 150 

Kapur 3 15.422701 

 

15.416080 15.409498 0.043% 0.0860% 115, 149, 

185  

115, 149, 

183 

79, 127, 173 

Otsu 3 2108.857182 

 

2108.176481 2105.876604 0.032% 0.1413% 91, 134, 173 93, 134, 

173 

85,126, 172 

 

From the above Table 5.2, it is observed that the memristor-crossbar-based BPSO is very efficacious as the maximum error obtained was only 

0.1413% when compared to the maximum value of the Kapur and Otsu functions.  
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Fig. 5.6: (a)-(d) Original Gray-scale Brain MR Images. (e)-(h) show the corresponding 4 

gray-level thresholding by optimal values of the Kapur’s Entropy Function for images (a)-(d). 

(i)-(l) show the corresponding 4 gray-level thresholding by optimal values of the Otsu’s 

Function for images (a)-(d). 

 

 

Fig. 5.7: (a)-(d). show 4 gray-level thresholding by BPSO with Kapur’s Entropy Function as 

the objective function. (e)-(h) show 4 gray-level thresholding by BPSO with the Otsu’s 

Function as the objective function. 
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Fig. 5.8: (a)-(d). show 4 gray-level thresholding by BPSO with Kapur’s Entropy Function as 

the objective function with 5% device variations. (e)-(h). show 4 gray-level thresholding by 

BPSO with Otsu’s Function as the objective function with 5% device variations. 

 

Later the crossbar simulated for 3 thresholds is considered; first, Kapur’s Entropy function is 

considered as the objective function (Fig. 5.7(a)-(d)), followed by Otsu’s Function (Fig. 5.7(e)-

(h)). Also, the device variations are considered in the same crossbar, which is best depicted in 

Fig. 5.8(a)-(d) and Fig. 5.8(e)-(h).   

Tables 5.3 and 5.4 recapitulate the quantitative results of the crossbar implementation for brain 

MR image thresholding. Further, these tables give a summary of results from Kapur’s Entropy 

Function as the objective function and Otsu’s Function as the Objective Function. From these 

tables , it is observed that there is a negligible difference between the optimal values and the 

values from BPSO implemented using the memristor crossbar. The error is significantly less 

when the crossbar implementation is compared to the brute force optimization method. It is 

further noticed that there is no significant difference when the device variations are considered; 

thus the system is robust and unsusceptible to the device variations. 
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Table 5.3: Results for Brain Images with Kapur’s Entropy Function as the Objective Function 

Figure Maximum 

value reached 

by the 

Kapur's 

Entropy 

Function 

Optimal 

Thresholds 

(Kapur) 

Value reached 

by crossbar 

implemented 

BPSO (Kapur) 

Thresholds 

from crossbar 

implemented 

BPSO 

Value reached by 

crossbar 

implemented 

BPSO with 5% 

Variations 

Thresholds from 

crossbar 

implemented 

BPSO with 5% 

variations 

% Error 

for 

crossbar 

based 

BPSO 

%Error for 

crossbar based 

BPSO with 5% 

device 

variations 

Brain 

Image 7 (a) 
11.135578 107, 161, 209 11.13170273 112, 162, 209 11.118899 112, 162, 209 0.0348 0.1498 

Brain 

Image 7 (b) 
11.699239 101, 145, 193 11.40804753 106, 150, 189 11.420763 106, 150, 189 2.4890 2.3803 

Brain 

Image 7 (c) 
11.515785 97, 143, 187 11.51223486 91, 143, 187 11.501549 91, 143, 187 0.0308 0.1236 

Brain 

Image 7 (d) 
11.551296 57, 119, 187 11.53687572 61, 119, 188 11.548521 61, 119, 188 0.1248 0.0240 
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Table 5.4: Results for Brain Images with Otsu’s Function as the Objective Function 

Figure Maximum 

value 

reached by 

the Otsu's 

Function 

Optimal 

Thresholds 

(Otsu) 

Value reached 

by crossbar 

implemented 

BPSO (Otsu) 

Thresholds 

from crossbar 

implemented 

BPSO 

Value reached 

by crossbar 

implemented 

BPSO with 5% 

Variations 

Thresholds 

from crossbar 

implemented 

BPSO with 5% 

variations 

% Error for 

crossbar based 

BPSO 

%Error for 

crossbar based 

BPSO with 5% 

device 

variations 

Brain 

Image 7 (a) 
2796.147836 39, 93, 135 2795.908630 40, 94, 133 2794.171627 44, 94, 131 0.0086 0.0707 

Brain 

Image 7 (b) 
3041.200405 41, 103, 161 3041.000195 42, 104, 157 3040.677863 41, 103, 166 0.0066 0.0172 

Brain 

Image 7 (c) 
2954.556065 33, 83, 131 2954.276664 36, 86, 132 2954.276664 36, 86, 131 0.0095 0.0095 

Brain 

Image 7 (d) 
2824.621006 23, 71, 125 2823.774072 26, 76, 125 2824.424199 23, 72, 123 0.02998 0.0070 
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5.5 Summary 

In this work, a novel memristor crossbar-based implementation of the BPSO algorithm was 

delineated using the characteristics of the Pt/Cu:ZnO/Nb:STO memristor. Results from 

memristor crossbar-based implementation agree well with the optimal values with a maximum 

error of only 2.5 %. The performance of the proposed implementation was validated using a 

variety of widely used practical gray-scale images of different sizes. Our results demonstrate 

that the memristor crossbar-based implementation of BPSO is a suitable alternative to the 

conventional CMOS system and lays the foundation for memristive devices to fasten the 

already fast swarm intelligence algorithms. 

Although a lot of work has been proposed for the modeling of neural networks and other 

machine learning algorithms, very few works on other artificial intelligence-based algorithms 

have been proposed using memristor circuitry. There is much scope for research in the 

memristor-based implementation of other AI-based Algorithms like Genetic Algorithms, 

Simulated Annealing, and Swarm Intelligence Algorithms. Multi-thresholding for more than 4 

gray-scale levels can be done at the cost of more memristive devices. The precision of c1r1 

and c2r2 can be increased by fabricating memristors with a much lesser read time. Also, other 

applications of PSO and BPSO, like PSO-based neural network performance optimization, 

optimal filter design, or PSO-based controllers, can be designed using memristors. About 

Image Processing, various other subtypes of image segmentation, like morphological feature 

extraction, can be carried out by changing the objective function. This work can serve as an 

essential guide to all these future works. 

Remarks: Below mentioned paper  was published based on this chapter  

 Priyanka B. Ganganaik, Omkar Mukul Gowaikar, V. Jeffry Louis, Rajesh K. 

Tripathy, Venkateswaran Rajagopalan, B. V. V. S. N. Prabhakar Rao, and Souvik 

Kundu. "Implementation of Binary Particle Swarm Optimization for Image 

Thresholding using Memristor Crossbar Array." In Advances in Electrical and 

Computer Technologies, pp. 915-936. Springer, Singapore, 2022. 
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Chapter-6 

Memristor Based Image Fusion Architecture Using 

Iterative Kernel PCA 

6.1 Introduction 

In the digital era, the use of pictures for classification, object detection, and assistance in fields 

like remote sensing and surveillance is ubiquitous. Thus, the usage of pictures in different 

applications is increasing at a rapid rate day by day. Image fusion aims to maximize information 

from multiple images in one image, which can be used for different tasks like computer 

processing and human-visual perception. This information can be obtained through different 

platforms and contains the essential features from all images fused rather than viewing the 

individual source images [186]. Image fusion also aids in feature extraction, image 

segmentation, and object recognition.   Its applications are very diverse in range, from remote 

sensing applications to medical images. Multi-sensor fusion can be used for military, 

surveillance, and security applications to detect smaller targets hiding in plain sight through 

the fusion of Infrared and Visible Images [187].  Medical Image fusion is gaining popularity 

due to the fusion of Computed Tomography (CT) scan images and Magnetic Resonance 

Imaging (MRI) images which are essential for diagnosis. They are also beneficial in satellite 

imagery.  

To perform image fusion for the widespread range of applications, multiple methods can be 

used. Primary Image Fusion can be performed using a simple averaging filter as well [21]. 

Image fusion can happen at various levels ranging from pixel to region-based image fusion. 

Other methods include Principal Component Analysis, Discrete Wavelet Transform, Intensity 

Hue Saturation, and Pyramid Based transforms [188]. Fusion of images has also been achieved 
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using different neural networks like Pulse Coupled Neural Networks and Generative 

Adversarial Networks [23], [187], [189].  

Image fusion using Principal Component Analysis (PCA) is done by finding the normalized 

eigenvectors, which are multiplied and added to get the fused image [190], [191]. It explains 

the variance-covariance structure of the data through a few linear combinations of the original 

data. PCA is known for its high efficiency in the classification and compression of images 

[190], [192]. It aids in reducing the redundancy of input information and preserves data without 

much loss [193]. However, while PCA has the ability to perform linear transformations, the 

image input may not be correlated linearly. In such cases, the usage of Kernel PCA (KPCA) is 

promoted, as it takes higher-order statistics into account [190], [194]. The number of principal 

components extracted from KPCA helps keep more information when compared to the PCA 

and an improved result [190]. All the calculations are done in another space, F, and all the 

inputs are non-linearly mapped to this space [195]. One drawback of PCA is the size of the 

covariance matrix, leading to an increase in memory complexity [194]. These limitations are 

overcome by a Kernel Hebbian algorithm, an unsupervised learning technique derived from 

the Generalized Hebbian algorithm [194]. It is an iterative and approximative algorithm that 

can estimate the principal components in memory of linear order, extending its usage to larger 

problems.  

The limitations of Von Neumann architectures as disussed in earlier chapters, with regard to 

data transfer rate, is one of the primary issues encountered by the computationally intensive 

machine learning algorithms, where the large sizes of images and other inputs used. Also, with 

the advancements of smaller CMOS transistors, there have been multiple issues faced, 

including scalability, power, and speed issues leading to the Von Neumann Bottleneck, which  

has led to the necessity of processing in-memory [196], [197]. Memristors are being explored 

for various logic implementations and memory operations, which eliminates the need to 
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transfer data from different memory sources. As reported in [55], it has an innate ability to 

carry out matrix-vector multiplication through varying weights, which fosters its usage for 

various machine learning algorithms.  

Memristor also possesses the ability to swiftly perform switching operations, consume less 

power, and retain values  [50], [197]. So far, memristors have been used for medical image 

fusion and multi-focus image fusion using a Pulse Coupled Neural Network [198]  and for 

image compression using the Discrete Cosine Transform [197]. The general Hebbian 

Algorithm has been implemented on the memristor for the task of classification [199]. Keeping 

in mind the crossbar's restraints, the Kernel Hebbian Algorithm was implemented using a 2x9 

memristor crossbar. In this work, Pt/Cu:ZnO/Nb:STO memristor is used to implement Kernel 

Hebbian Algorithm , because of its advantages discussed in section 1.2 of chapter 1 [50].  A 

method to exploit the memristors to perform matrix-vector multiplications is proposed. The 

results of the fusion of multi-focus images and the fusion between Infrared Images and Visible 

Images, implemented through memristor and software, were compared.  

Rest of the chapter is organized as follows. Section 6.2 explains the details of the Kernel 

Hebbian Algorithm (KHA) and its theory. It is followed by the implementation of KHA on the 

memristor in Section 6.3, and the results obtained are given in Section 6.4. The conclusions are 

drawn in Section 6.5.  

6.1.1 Kernal Hebbian Algorithm 

The Generalized Hebbian Algorithm (GHA) is used to find the mutually orthogonal 

eigenvectors using an iterative approach to create a new basis in the directions of maximum 

variance and are also called the principal components of the data set. GHA uses a single-layer 

feedforward neural network of the form y=wx, where w is the weight matrix, x is the input 

data, and y is the output data. The weight matrix is updated over multiple iterations to estimate 
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the components. However, with an increase in the size of the data, the computational 

requirements also scale up. In addition, GHA only considers linear components and is not 

suitable for all data.  

The Kernel Hebbian Algorithm (KHA) is an iterative algorithm to estimate the approximate 

components. It provides a memory-efficient approach to solve the problems faced by PCA and 

the Generalized Hebbian Algorithm.  This algorithm considers higher-order information using 

the kernel that could not have been captured using the linear PCA model. For every pixel in 

each input image, a 3 × 3 kernel is chosen consisting of the neighboring pixels. To consider 

the nonlinearity of these images, they are mapped to a higher-order space using a kernel 

function. This kernel function is used to calculate the dot products of the mapped inputs, x and 

y as follows:  

𝑘(𝒙, 𝒚) =  𝜑(𝑥) ∙ 𝜑(𝑦)                     (6.1) 

It has been proved that if k is a definite positive kernel, there exists a map 𝜑 into a dot product 

space F such that Eqn. (6.1) is true. This space F follows the structure of a Reproducing Kernel 

Hilbert Space (RKHS) [195]. This is important as it is possible to deal with high-dimensional 

RKHS, and the specific value of 𝜑 or F doesn't need to be explicitly mentioned to perform 

kernel-based operations. Commonly used kernel functions include the polynomial kernel of 

degree, d where 𝑘(𝑥, 𝑦) =  (𝑥 ∙  𝑦)𝑑, or the Gaussian kernel where  𝑘(𝑥, 𝑦)  =
 exp (−||𝑥−𝑦||

2
).

2(𝜎)2
  

For each learning problem, there is an optimal kernel that can be used. As this is an 

unsupervised learning problem, the Gaussian Kernel can be used as a default kernel and is an 

infinite-dimensional RKHS [195]. It doesn't have a large memory requirement with the 

increasing size of the covariance matrix, proportional to the size of each image [194]. The 

weight update rule of KHA is derived from the General Hebbian Algorithm and is a linear, 

single-layer neural network of the form 𝑦 = 𝑊𝑥 as shown in [200] where x is the input, y is 
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the output and w is the weight matrix. For Image Fusion, x is the pixel value, and y are the 

principal components.  

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝜂(𝑦(𝑡)𝑥(𝑡)𝑇 − 𝐿𝑇 [𝑦(𝑡)𝑦(𝑡)𝑇]𝑊(𝑡)                (6.2) 

Modifying Eqn. (6.2) to accommodate the Kernel, the network can be represented using 

y(t)=W(t) 𝜑 (x(t)), where 𝜑 (x(t)) are the mapped pixels. From [194], W(t) can be written as: 

𝑊(𝑡) = 𝐴(𝑡)𝜑                                 (6.3) 

Where A(t) are expansion coefficients of the size (𝑟 × 𝑙), where r is the number of eigenvalues, 

and l is the number of pixels. Replacing Eqn. (6.3) in Eqn. (6.2), we get as equation as shown 

below: 

𝐴(𝑡 + 1)𝜑 = 𝐴(𝑡)𝜑 + 𝜂(𝑡)(𝑦(𝑡)𝜑(𝑥(𝑡))𝑇 −  𝐿𝑇 [𝑦(𝑡)𝑦(𝑡)𝑇]𝐴(𝑡)𝜑)             (6.4) 

The mapped data points 𝜑(𝑥(𝑡)) can be depicted using canonical unit vector b(t)= (0,....1,…0) 

as 𝜑(𝑥(𝑡)) = 𝜑𝑇𝑏(𝑡). 

The reduced form from Eqn. (6.4) can be shown as:  

𝐴(𝑡 + 1) = 𝐴(𝑡) + 𝜂(𝑡)(𝑦(𝑡)𝑏(𝑡) − 𝐿𝑇 [𝑦(𝑡)𝑦(𝑡)𝑇]𝐴(𝑡))               (6.5) 

The expanded coefficients are updated over multiple iterations for each pixel in the input 

images until the difference between the iterations is 10-7. Using the updated expansion 

coefficients, the eigenvalues are calculated using the formula given in [201]: 

𝜆 = √
𝑑𝑖𝑎𝑔(𝐴𝐾′(𝐴𝐾′)′)

𝑑𝑖𝑎𝑔(𝐴𝐴′)
                     (6.6) 

The eigenvectors are calculated using expansion coeffiecients A and Gaussian Kernel K as 

shown in [201] as shown below:  

𝑣𝑒𝑐 =
(𝐴𝐾)(𝐴𝐾)′

𝐴𝐴′
                     (6.7) 
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The respective eigenvector is multiplied with the input pixel value from each input image. The 

fused image is formed using:  

𝐹𝑢𝑠𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑖, 𝑗) = 𝑝𝑐𝑎(1,1) ∗ 𝑖𝑚1(𝑖, 𝑗) + 𝑝𝑐𝑎(2,1) ∗ 𝑖𝑚2(𝑖, 𝑗)              (6.8) 

where (i,j) represent the location of the pixel, pca(1,1) and pca(2,1) represent the first and 

second principal components.  

6.2 Implemention Section 

6.2.1 Implementation of Memristor for KHA 

To perform the matrix-vector multiplication for the Kernel Hebbian Algorithm, a (9 × 2) 

memristor crossbar was used and is shown in Fig 6.1. Each column of the crossbar corresponds 

to each input image, and the nine rows represent the neighbouring 3x3 kernel for a specific 

pixel. The memristor weights were initialized randomly to values between 0 and 1 and 

represented the expanded coefficients from Eqn.  (6.5).  

This non-volatile property of the memristor could be exploited to store this weight using the 

formula:  

𝑊𝑖𝑗 =  100 (
2𝑋

𝐷
− 1)                       (6.9) 

A read voltage of 0.5 and -0.5 was considered as both lies between Von (-1.2V) and Voff 

(+1.35V). Then the voltages for each row using voltage sources Vs1-Vs9, within range (Von 

and Voff), are applied with a time pulse width proportional to the value to be multiplied with 

the matrix initialized to the crossbar. KHA updates the values on the memristor using individual 

columns using the Gaussian Kernel calculated in  Eqn. (6.5).  
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Fig. 6.1: The schematic shows the Cu:ZnO Memristive Crossbar Array. The inputs are given 

through a voltage pulse proportional to a single column from the Kernel Matrix, and the 

output charge is collected using the charge Amplifier. 

 

The total charge accumulated in each column can be correlated to the product of the 

multiplication. This can be defined as:  

𝑄 = ∑
𝑣𝑖𝑡0𝑘𝑖

𝑅𝑖𝑗
𝑖                                 (6.10) 

Where the subscript i represents the ith row of the crossbar, ki is the kernel value for rows i and 

vi and, t0 is the corresponding voltage and constant time period, respectively. The resulting 

product of the multiplication across each memristor can be represented as:  

𝑦𝑗 = ∑ 100 [2(

𝑣𝑜𝑡𝑖
𝑄𝑖𝑗

−𝑅𝑂𝑁

𝑅𝑂𝐹𝐹−𝑅𝑂𝑁
) − 1] 𝑘𝑖𝑖                                                           (6.11) 
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The pulse width was modelled dependent on the change in weight (∆g). If this difference was 

positive, an amplitude of +2V was used; otherwise, for a negative difference, a pulse of -2V 

was used. The pulse width can be modelled as: 

     

𝛥𝑡𝑖𝑗 =

((

𝛥𝑤𝑖𝑗
100

+1

2
)𝐷)𝑢(𝛥𝑔𝑖𝑗)

𝐾𝑜𝑓𝑓(
𝑣

𝑣𝑜𝑓𝑓
−1)

𝛼𝑜𝑓𝑓
    +

((

𝛥𝑤𝑖𝑗
100

+1

2
)𝐷)𝑢(−𝛥𝑔𝑖𝑗)

𝐾𝑜𝑛(
𝑣

𝑣𝑜𝑛
−1)

𝛼𝑜𝑛     
            (6.12) 

Pulse Width Modulation can be used to store the pixel intensity, while Eqn. (6.12) is used to 

update the weight of the memristor [202]. Using this dot product of the jth column in the 

Gaussian Kernel Matrix and the expanded coefficients, the new expanded coefficient value is 

updated using the weight update rule in Eqn. (6.5). Furthermore, the multiplication of the 

Kernel matrix and expanded coefficients is carried out on the memristor using the matrix-vector 

multiplication to calculate the final components by diagonalising the resulting product.  

6.3 Results and Discussions 

To examine and compare the proposed algorithm's functionality, a software and hardware 

model was simulated on MATLAB. A memristor crossbar array of 9x2 was randomly 

initialized between 0 and 1 to perform the fusion of two multi-focus images. The results and 

observations presented in this section are based on the fusion of images from the 'Lytro Dataset' 

[203] and other common images used for multi-focus image fusion. The values on the 

memristor were updated using the weight update rule. For each kernel of pixels, it went through 

500 iterations or stopped when the difference in error between the iterations was less than        

10-7
. This updated weight is further used to calculate the two components to calculate the pixel 

weight with respect to the two input images.  This process is repeated for each pixel in the 

image. The results of software and hardware implementation for the multi-focus image fusion 
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are shown in Fig. 6.2 and are followed by a quantitative comparison from Table 6.1. The fusion 

of Infrared and Visible Images is highly beneficial in military applications.  

 

 Fig. 6.2: (a-l) Fusion of multi-focus images. From (Left-Right), the first two images are the 

input images, the third image is the fusion of software, and the fourth image is the result of 

the hardware fusion. 

 

The two images contain different information, and fusion can integrate the textural details from 

visible images and the thermal radiation information from infrared images to differentiate 

targets from the background [204]. The proposed algorithm has been tested on a set of 40 

random images from the TNO dataset. This dataset is available for public use and includes 

multispectral images from different military relevant scenarios.   

6.3.1 Performance Evaluation Metrics 

The quality of the fused image was quantitatively assessed using four different performance 

metrics.  
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1. Mean Structural Similarity Index Measure (MSSIM)- This metric is used to compare the 

similarity of local patterns between the fused image (F) and the two source images (A, B). It  

is the mean of the SSIM between fused image (F), image (A), and image (B) and is calculated 

as shown in the equation below:  

𝑀𝑆𝑆𝐼𝑀(𝐹, 𝐴, 𝐵) =
𝑆𝑆𝐼𝑀(𝐹,𝐴)+𝑆𝑆𝐼𝑀(𝐹,𝐵)

2
                            (6.13) 

 The SSIM value is dependent on the mean and standard deviation of the two images and is 

calculated using the formula:  

𝑆𝑆𝐼𝑀(𝐴, 𝐹) =  
(2𝜇(𝐴)𝜇(𝐹)+𝐶1)(2𝜎(𝐴,𝐹)+𝐶2)

(𝜇(𝐴)2+𝜇(𝐹)2+𝐶1)(𝜎(𝐴)2+𝜎(𝐹)2+𝐶2)
                       (6.14) 

Where  𝜇(𝐴) is the mean of all pixel intensities in image A, 𝜎(𝐴) is the standard deviation of 

image A, and C1, C2 are constants [205].  

2. Correlation Coefficient- The correlation coefficient is used to compare spectral features 

similarity in the input images and the fused image [206]. Images that are highly similar to each 

other have values close to 1.  It is calculated using the formula:  

𝐶𝐶 =
2𝐶𝑟𝑓

𝐶𝑟+𝐶𝑓
                      (6.15) 

Where  𝐶𝑟 = ∑ ∑ 𝐼𝑟(𝑖, 𝑗)
2𝑁

𝑗=1
𝑀
𝑖=1 ,  𝐶𝑓 = ∑ ∑ 𝐼𝑓(𝑖, 𝑗)

2𝑁
𝑗=1

𝑀
𝑖=1 , 𝐶𝑟𝑓 = ∑ ∑ 𝐼𝑟(𝑖, 𝑗)𝐼𝑓(𝑖, 𝑗)

𝑁
𝑗=1

𝑀
𝑖=1 . 

3. Entropy- Entropy is used to calculate the total information content in the fused image [207]. 

A higher value shows that the image has more information content. It is given as follows:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐹) = ∑ 𝑝(𝑓)𝑙𝑜𝑔 𝑝(𝑓)𝑎,𝑓                                       (6.16) 

4. Q0- This metric checks the local quality index to assess the fusion pixel by pixel [208]. It is 

calculated using the formula:  
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Q0(A, F) =
2𝜎𝑎𝑓

𝜎𝑎
2+𝜎𝑓

2 ∙
2𝜇𝑎𝜇𝑓

𝜇𝑎
2+𝜇𝑓

2                                    (6.17) 

Where 𝜎𝑎  is the standard deviation of a, 𝜎𝑎𝑓  is the covariance, 𝜇𝑎   is the mean. To calculate this 

metric with respect to both source images A and B, Q0(A, F) and Q0(B, F) are computed first 

and determined by the mean of these two values.  

From Table 6.1, it is noted that the values of the memristor implementation of the KHA 

algorithm are almost 5% better in terms of MSSIM, 2% better in terms of Correlation 

Coefficient, 4.5% better in terms of Q0. In comparison, the hardware and software 

implementation entropy are almost similar (approximately 0.5%). It is observed from the 

results shown in Fig. 6.3 that the details of the two individual input images are preserved in the 

fused image. Quantitative analysis for the 40 images from TNO dataset was done using the 

metrics SSIM, Correlation Coefficient, Standard Deviation, and Entropy, as shown in Fig 6.4. 

 

 

Table 6.1: Comparison between the results of software and hardware fusion of images using 

quantitative metrics 

Image MSSIM-

Mem 

MSSIM-

SW 

CC-

Mem 

CC-

SW 

Entropy-

Mem 

Entropy-

SW  

Q0-

Mem 

Q0- 

SW 

lytro1 0.883 0.8631  0.96 0.94 6.92 6.92 0.91 0.88 

lytro9 0.741 0.703 0.96 0.95 7.56 7.57 0.79 0.74 

lytro-19 0.8389 0.8173 0.97 0.96 7.04 7.06 0.88 0.86 

lytro-5 0.8627 0.8391 0.98 0.97 7.80 7.80 0.88 0.87 

source14 0.8877 0.8569 0.96 0.94 7.46 7.44 0.91 0.87 

d13 0.8458 0.7856 0.98 0.98 7.48 7.49 0.87 0.80 

source2 0.726 0.5866 0.95 0.89 7.64 7.21 0.64 0.64 

cameraman23 0.8803 0.765 0.98 0.94 7.08 7.06 0.90 0.82 

clock 0.9315 0.9314 0.99 0.99 7.00 6.99 0.95 0.95 

h34 0.8999 0.9009 0.97 0.97 7.04 7.04 0.92 0.92 

Average 0.84968 0.80489 0.97 0.95 7.31 7.26 0.87 0.83 
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Fig. 6.3: (a-p) The fusion of Visible and Infrared Images. From (Left-Right), the first two 

images are the input images, the third is the result of the software implementation, and the 

fourth is the result of the hardware implementation. 

 

Graphs in Fig. 6.4 show the comparison of software and hardware fusion for the 40 images 

fused from the TNO dataset for the quantitative metrics. Comparing the average of the 

memristors and software implementation, it is seen that the values are almost equal to each 

other, and the quality of the image through the Kernel Hebbian Algorithm was chosen as a 

suitable algorithm to be implemented on the memristor crossbar for its simplicity and 

adaptability. Unlike most multilayer neural network algorithms, KHA doesn't require any 

training dataset and can be used for any image.  In one of the recent studies, an adversarial 

learning technique (GAN) was applied to 40 random images from the TNO dataset [187]. 

Comparing our results with the GAN, it can be found that in terms of entropy, the GAN is 2% 

better than KHA; however, in terms of SSIM, KHA was able to improve the results by 15%.    
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Fig. 6.4: (a) Correlation Coefficient, (b) Structural Similarity, (c) Standard deviation, and 

(d)Entropy. 

 

6.4 Summary 

In this chapter, a novel image fusion architecture using a memristor crossbar was proposed. 

This work would be highly beneficial compared to other hardware implementations of image 

fusion due to the minimal memory requirements, flexibility to fuse various images, and its 

ability to process in-memory, proving it to be a viable alternative to conventional CMOS-based 

image fusion architectures. This architecture has proven to give results of comparable quality 

to the software implementation, if not better. The application of this architecture in various 

areas, such as defence, medical, etc., would be highly beneficial to speed up the process of 

image fusion on hardware.  
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Remarks: Below mentioned paper is submitted and under review based on this chapter. 

 Priyanka B. Ganganaik, Plava Kattamuri, and BVVSN Prabhakar Rao "Memristor 

Based Image Fusion Architecture Using Iterative Kernel PCA" submitted to Indian 

Journal of  Engineering and material sciences.  
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Chapter-7 

Conclusions and Future Scope 

7.1 Conclusions 

To overcome the limitations of Von Neumann architecture, the memristor crossbar array is 

delineated using the characteristics of the Pt/Cu:ZnO/Nb:STO memristor, which is used for in-

memory processing as an efficient solution because of its characteristics such as long retention 

time, ability to store and process the data at the same time, less area, less power, and low 

complex systems.  

 In this aspect, a memristor crossbar-based architecture CoCoPIM is presented to 

compute Pearson Correlation Coefficient (PCC) within the memory array. The 

proposed architecture is found to be 41×, 67×, and 33× times energy efficient against a 

Von Neumann machine in computing PCC of Electrocardiogram signals, face 

recognition, and Influenza illness (H1N1) data sets, respectively. It also achieved an 

improved speed of 143.5×, 52.5×, and 597× against the same Von Neumann machine 

in the respective tasks. It has also been established that CoCoPIM does not deviate 

significantly even in the presence of process variations, which offers to realize a highly 

reliable computer architecture application. The proposed idea can also be extended to a 

much larger switch array. 

 An attempt has been made to develop a high-precision memristive crossbar circuit for 

Bayesian inference, followed by its specific implementation for semantic text 

classification by exploring the advantage of memristors' analog computational 

capabilities. The efficacy of the processor was tested on two different datasets 

consisting of 55,575 texts. The circuit was able to classify the texts with an average 
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accuracy of 91% while consuming 1000 times less power and area than a conventional 

processor.   

 Efforts were devoted to investigating the resistive states of a memristor, and the 

transitions between these states for logic computations were utilized. In regard to this, 

MSM was implemented, and it was applied for tunable edge detection of images. In 

order to quantify the role of the proposed system, it was compared with other 

conventional approaches, such as Canny, Sobel, and Prewitt’s systems. It is observed 

that the edge detection in our case was 16 %, whereas in the remaining cases, it was 

~8.60 %. This improvement is due to the dual threshold approach adapted in our case. 

The proposed techniques are advantageous in terms of computational complexity as 

there is no necessity for the conventional convolution operation utilized in filter-based 

approaches, and it also yield improvements in terms of storage density. 

 

 To demonstrate a novel memristor crossbar-based implementation of the BPSO 

algorithm for image thresholding. Results from memristor crossbar-based 

implementation agree well with the optimal values with a maximum error of only 2.5 

%. The performance of the proposed implementation was validated using a variety of 

widely used practical gray-scale images of different sizes. Results obtained also 

demonstrate that the memristor crossbar-based implementation of BPSO is a suitable 

alternative to the conventional CMOS system and lays the foundation for memristive 

devices to fasten the presently fast swarm intelligence algorithms. 

 Furthermore, a novel image fusion architecture using a memristor crossbar was 

proposed. To test the proposed algorithm, experiments were carried out using different 

multi-focus images as well as Infrared-Visible images quantitative metrics. A 

comparison between the conventional Von Neumann architecture and the proposed 

architecture is carried out. It is noted that the values of the memristor implementation 
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of the KHA algorithm are almost 5% better in terms of MSSIM, 2% better in terms of 

Correlation Coefficient, and 4.5% better in terms of Q0. In comparison, the hardware 

and software implementation of entropy are almost similar (approximately 0.5%). An 

adversarial learning technique (GAN) was applied to 40 random images from the TNO 

dataset. Comparing our results with the GAN, it can be found that in terms of entropy, 

the GAN is 2% better than KHA; however, in terms of SSIM, KHA was able to improve 

the results by 15%.    

 Results obtained demonstrate that the memristor crossbar implemented systems are a 

suitable alternative to the conventional CMOS system and lay the foundation for 

memristive devices for signal processing applications using machine learning 

algorithms.  

7.2 Thesis Contributions 

 For the first time, an innovative memristor crossbar-based architecture, CoCoPIM, is 

proposed to accelerate Correlation Coefficient computations. Three different 

applications are implemented based on this architecture, such as computing correlation 

between ECG signals, faces, and H1N1 models. 

 An idea to develop an in-memory processor for Bayesian text classification using 

memristive crossbar architecture, in which memristive switches were employed to store 

information required for the classification of text. 

 The strategy of implementing various image processing algorithms like tunable edge 

detection, image thresholding, and image fusion using a memristor crossbar array, 

which has the potential to overcome the Von Neumann bottleneck. 
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7.3 Future Scope 

 Although a lot of studies has been carried out for the modeling of neural networks and 

other machine learning algorithms, very few studies on different artificial intelligence-

based algorithms have been proposed using memristor circuitry. There is much scope 

for research in the memristor-based implementation of other AI-based Algorithms like 

Genetic Algorithms, Simulated Annealing, and Swarm Intelligence Algorithms. About 

Image Processing, various other subtypes of image segmentation, like morphological 

feature extraction, can be carried out by changing the objective function. It can also be 

used for the classification of EEG signals. Also, Hierarchal temporal memory can be 

implemented for content-based image retrieval using memristor crossbar arrays. 

Furthermore, there is a need to devise a method for online training of the crossbar, 

which can eliminate the need for a software interface to load information into to 

memristor array. For the widespread adoption of in-memory processors, there is a 

requirement for smart systems that can interface the device with existing computing 

systems such as DRAM, graphical processing units, and input-output devices like 

keyboards, speakers, and microphones. This dissertation work can serve as an essential 

guide to all these future works. 
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Appendix 

 

A1. Implementation of Memristor Based Correlation Coefficient Parameter in Memory 

Processing  

MATLAB Code: 

%%ECG correlation Coefficient%% 

%folder acess 

folder = 'C:\Users\Priyanka B G\Desktop\4_2\IMFRA\applications'; 

filePattern = fullfile(folder, '*.mat'); 

srcFiles = dir(filePattern); 

numFiles = length(srcFiles); 

if numFiles == 0 

  message = sprintf('There are no mat files are in folder:\n%s', folder); 

  uiwait(warndlg(message)); 

else 

  fprintf('There are so many files in %s:\n', numFiles, folder); 

  for l = 1 : numFiles 

    fprintf('    %s\n', srcFiles(l).name); 

  end 

end 

mydata = cell(1, numFiles); 

store1 = zeros(48,3600); 

store2 = zeros(48,3600); 

for l = 1:numFiles 

  mydata{l} = load(srcFiles(l).name); 

  mydata1= mydata{l}; 

  a1=mydata1; 

  a11=(a1.val(1,:));  

  a12=a11./100; 

  t=linspace(-1,1,3600); 

an = a12+0.15*randn(size(t)); 

store1(l,:) = an; 
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% store1(1,:) = strcat(num2str(store1(1,:)),','); 

n=0.15*randn(size(t)); 

[cA,cD] = dwt(an,'db8'); 

x = idwt(cA,cD,'db8'); 

yx = wden(x,'sqtwolog','s','mln',3,'db8'); 

store2(l,:) = yx; 

ARx=corr2(an,yx); 

jeff_corr(l) = ARx; 

an = round(an,2); 

yx = round(yx,2); 

an1 = round(abs(an-mean(an)),2); 

an_mean = round(abs(mean(an)),2); 

yx_mean = round(abs(mean(yx)),2); 

            Roff = 120000; 

            Ron = 1200; 

            Gon = 1/Ron; 

            Goff = 1/Roff; 

var = 1 + normrnd(0,0.05); 

Nr1 = an-an_mean; 

Nr1 = (Nr1./100)*(Gon-Goff)*var; 

Nr2 = yx-yx_mean; 

Nr2 = Nr2*8.9e-9*var; 

Mem_Nr = (Nr1)*(Nr2)'*100/((Gon-Goff)*8.9e-9); 

Dr1 = (((an-an_mean)./100*(Gon-Goff)*var).*100/(Gon-Goff)).^2; 

Dr2 = (((yx-yx_mean)./100*(Gon-Goff)*var).*100/(Gon-Goff)).^2; 

Mem_Dr = (sum(Dr1) * sum(Dr2))^0.5; 

jeff_corr_mem(l) = Mem_Nr/Mem_Dr; 

net_time = (sum(an1)/0.99)*100*10e-9 + 3600 *10e-9; 

E_nr = 0; 

    for i = 1:1:511 

            E_nr = E_nr + yx(i)/an1(i);  

    end 
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    W_nr = 48*3600*10e-9*1.5*1.5/(8.25*1e-4); 

    E_nr = E_nr *48*8*10e-9*0.5*0.5/(8.25*1e-4); 

    a2 = an1.^-1; 

    a2 = 4*10e-9*1*1*a2./(8.25*1e-4); 

    E_dr = sum(a2,2); 

    E_net = E_nr + E_dr; 

for i=1:3600  

cr(i,:)=ARx; 

i=i+1 

end 

end 

%%Face Recognition%% 

folder = 'C:\Users\Jeffry Louis\Desktop\DOP3\codes'; 

filePattern = fullfile(folder, '*.pgm'); 

srcFiles = dir(filePattern); 

numFiles = length(srcFiles); 

if numFiles == 0 

message = sprintf('There are no jpg files are in folder:\n%s', folder); 

uiwait(warndlg(message)); 

else 

fprintf('There are %d files in %s:\n', numFiles, folder); 

for k = 1 : numFiles       

fprintf('    %s\n', srcFiles(k).name); 

end 

end 

mydata = cell(1, numFiles); 

for k = 1:numFiles  

mydata{k} = imread(srcFiles(k).name);  

end 

for k = 1:20  

Pic(k) = mydata(k); 

l = k+20; 
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Ref(k) = mydata(l); 

   

end 

 

param_corr = zeros(1,100);    

X = imread('straight_neutral_sunglassesboland_.pgm'); 

X_original   = imread('straight_neutral_openboland_.pgm'); 

param_corr = zeros(1,20); 

U = (randi([0,10],[120,10])); 

delU = zeros(120,10); 

VT =  (randi([0,10],[10,128])); 

V = VT.'; 

imshow(X_original); 

param_corr = corr2(X_original,X); 

Wstore = zeros(120,10,100); 

for k = 1:1:10 

num1  = X*VT.'; 

denom1= U*VT*VT.'; 

num2  = X.'*U; 

denom2= V*U.'*U; 

for i = 1:1:120 

for j = 1:1:10 

U(i,j)= U(i,j)*(num1(i,j)/denom1(i,j)); 

U(i,j) = round(U(i,j),0); 

 [U(i,j)] = Uupdate(delU(i,j),U(i,j)); 

end 

end 

for i = 1:1:128 

for j = 1:1:10    

V(i,j)= V(i,j)*(num2(i,j)/denom2(i,j)); 

V(i,j) = round(V(i,j),0); 

end 
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end 

for i = 1:1:120 

for j = 1:1:10  

U2(i,j) = U(i,j)*U(i,j);  

end 

end 

for i = 1:1:120 

for j = 1:1:10 

U(i,j) = U(i,j)/sqrt(sum(U2(:,j))); 

end 

end 

for i = 1:1:128 

for j = 1:1:10 

V(i,j) = V(i,j)*sqrt(sum(U2(:,j))); 

end 

end  

for a = 1:1:120 

for b=1:1:10 

Wstore(a,b,k) = U(a,b); 

end 

end 

X2 = U*V.'; 

X2 = X2; 

param_corr(1,k) = corr2(X_original,X2); 

end 

Wplot = zeros(1,100); 

for l =1:1:100 

Wplot(1,l) = Wstore(80,6,l); 

end 

function [U1] = Uupdate(delU1,U2) 

U1 = delU1 + U2; 

x  = (U2)*25; 
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dx = (delU1)*25; 

x = x + dx; 

 if (delU1>0)                    

[x] = mem(2,x,dx); 

else 

[x] = mem(-2,x,dx); 

end 

U1 = (x/25); 

% end 

 function [x_new] = mem(v,x_prev,dx) 

Roff    =152000000; 

Ron     =150000; 

voff    =1.35; %Must be postive;   

von     =-1.2; %Must be negative;   

koff    =200; 

kon     =-250; 

aoff    =3; 

aon     =2; 

D       =50e-09; 

xoff    =  D; 

xon     =  0; 

if v>=voff 

dxdt=(koff*((v/voff-1))^aoff);  

%calculating dxdt as per voltage;  

elseif v<=von 

dxdt=(kon*((v/von)-1)^aon); 

 else 

dxdt=0; 

end 

dxdt = koff*(v/voff -1)^aoff; 

dt   = dx/dxdt; 

x_new = x_prev + dxdt*dt; 
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end  

 

%%H1N1 correlation Coefficient%% 

% % % Storing image in variable arrays 

a = zeros(1,44); 

b = zeros(1,44); 

b_abs = zeros(1,44); 

param_corr = zeros(1,1); 

t_nr = zeros(1,1); 

t_dr = zeros(1,1); 

t_total = zeros(1,1); 

Nr_time1 = zeros(1,1); 

Nr_time = zeros(1,1); 

a_G = zeros(1,44); 

E_nr = zeros(1,1); 

E_dr = zeros(1,1); 

E_total = zeros(1,1); 

for N = 1:1:1 

b(1,:) = gt(N,:); 

b = b - round(mean(b)); 

for i = 1:1:1 

    a(i,:) = ili(i,:); 

end 

% % % Storing image in crossbars 

xbar1 = zeros(512,512); 

% 20 because we initialize only the first 20 rows. The rest are not used 

for i = 1:1:1     

    for j = 1:1:512 

            if (j >44) 

                break; 

            else  

                xbar1(i,j) = a(i,j); 



154 
 

            end 

    end 

end 

for i=1:1:1 

    xbar1(i,512) = round(mean(a(i,:))); 

end 

% % % Numerator of correlation coefficient 

Nr = zeros(1,1); 

for i=1:1:1 

    for j=1:1:511 

        if(j > 44) 

            break; 

        else 

            Nr(i,1) = Nr(i,1) + get_prod(xbar1(i,j),b(1,j),1) + get_prod(xbar1(i,512),b(1,j),-1); 

%             Nr(i,1) = Nr(i,1) + xbar1(i,j)*b(1,j) - xbar1(i,512)*b(1,j); 

        end 

    end 

end 

% % % Denominator of correlation coefficient 

Dr = zeros(1,1); 

for i=1:1:1 

    for j=1:1:511 

        if(j > 44) 

            break; 

        else 

            Dr(i,1) = Dr(i,1) + get_square(xbar1(i,j),xbar1(i,512)); 

%             Dr(i,1) = Dr(i,1) + (xbar1(i,j)-xbar1(i,512))^2; 

        end 

    end 

end 

Dr_summed = Dr; 

% Dr = Dr./1600; 
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Dr = Dr.^0.5; 

Dr_after_root = Dr; 

for i=1:1:1 

    Dr(i,1) = Dr(i,1)*std(b)*6.63; 

end 

for i=1:1:1 

param_corr(i,N) = Nr(i,1)/Dr(i,1); 

end 

% % Calculating time 

b_abs = abs(b); 

t_dr(N,1) = 44; 

% % Calculating Nr time 

    for j=1:1:44 

             t_nr(N,1) = t_nr(N,1) + b(1,j); 

    end 

t_total(N,1) = (t_nr(N,1) + t_dr(N,1))*8.9e-9; 

% % Calculating Energy of Nr 

Roff = 120000; 

Ron = 1200; 

Gon = 1/Ron; 

Goff = 1/Roff; 

a_G = (a./258).*(Gon-Goff) + Goff; 

b_abs = b_abs.*8.9e-9; 

for i=1:1:1 

    a_Gtemp = a_G(i,:); 

    E_nr(N,1) = E_nr(N,1) + 0.5*0.5*(a_Gtemp*b_abs')*10e-9; 

%     E_nr(N,1) = E_nr(N,1) + 0.5*0.5*4*(mean(a_Gtemp)*t_nr(N,1)); 

end 

for i=1:1:1 

    a_Gtemp = a_G(i,:); 

    E_dr(N,1) = E_dr(N,1) + 0.5*0.5*(a_Gtemp*b_abs'); 

    E_dr(N,1) = E_dr(N,1) + 0.5*0.5*(4*mean(a_Gtemp)*( 8.9e-9)*511); 
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end 

 E_total = E_nr + E_dr; 

end 

        function Q = get_prod(a,b,v) 

%                  Q = v*a*b; 

            Roff = 120000; 

            Ron = 1200; 

            voff    =1.35; %Must be postive;   

            von     =-1.2; %Must be negative;   

            koff    =200; 

            kon     =-250; 

            aoff    =3; 

            aon     =2; 

            D       =50e-09; 

            xoff    =  D; 

            xon     =  0; 

           var = 1 + normrnd(0,0.05); 

            Roff = var*Roff; 

            Ron = var*Ron; 

            D = var*D; 

            Gon = 1/Ron; 

            Goff = 1/Roff; 

            G1 = (a/100)*(Gon-Goff); 

            v_width = b*8.9e-9; 

            Q1 = v*G1*v_width; 

   % % Peripheral Circuits for Numerator%% 

            Q = Q1*100/((Gon-Goff)*8.9e-9); 

         end 

        function x = get_square(a,b) 

%             x = (a-b)^2; 

            Roff = 120000; 

            Ron = 1200; 
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            voff    =1.35; %Must be postive;   

            von     =-1.2; %Must be negative;   

            koff    =200; 

            kon     =-250; 

            aoff    =3; 

            aon     =2; 

            D       =50e-09; 

            xoff    =  D; 

            xon     =  0; 

            var = 1 + normrnd(0,0.05); 

            Roff = var*Roff; 

            Ron = var*Ron; 

            D = var*D; 

            Gon = 1/Ron; 

            Goff = 1/Roff; 

            G1 = (a/100)*(Gon-Goff) + Goff; 

            G2 = (b/100)*(Gon-Goff) + Goff; 

            I1 = 1*G1; 

            I2 = -1*G2; 

            y = (I1+I2); 

           % % Peripheral Circuits for Denominator%% 

            y = y*100/(Gon-Goff); 

            x = (y)^2; 

            end 

 

%%Memristor crossbar modelling%% 

% % % Storing image in variable arrays 

a = zeros(20,1600); 

b = zeros(1,1600); 

b(1,:) = sno(2,:); 

b = b - round(mean(b)); 

param_corr = zeros(1,20); 
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for i = 1:1:20 

    a(i,:) = round(sho(i,:)/3)*3; 

%     param_corr(1,i) = calc_corr(a,b); 

end 

% % % Storing image in crossbars 

xbar1 = zeros(512,512); 

xbar2 = zeros(512,512); 

xbar3 = zeros(512,512);  

xbar4 = zeros(512,512); 

% 20 because we initialize only the first 20 rows. The rest are not used 

for i = 1:1:20     

    for j = 1:1:512 

       if(j == 512) 

           xbar1(i,j) = round(mean(a(i,:))); 

           xbar2(i,j) = round(mean(a(i,:))); 

           xbar3(i,j) = round(mean(a(i,:))); 

           xbar4(i,j) = round(mean(a(i,:))); 

       else 

           xbar1(i,j) = a(i,j); 

           j2 = 512 + j; 

           xbar2(i,j) = a(i,j2); 

           j3 = 1024 + j; 

           xbar3(i,j) = a(i,j3);  

       end 

    end 

end 

for i = 1:1:20     

    for j = 1:1:512 

        j4 = 1536 + j; 

            if (j4 >1600) 

                break; 

            else 
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                xbar4(i,j) = a(i,j4); 

            end 

    end 

end 

for i=1:1:20 

    xbar4(i,512) = round(mean(a(i,:))); 

end 

% % % Numerator of correlation coefficient 

Nr = zeros(20,1); 

for i=1:1:20 

    for j=1:1:511 

        j2 = 512 + j; 

        j3 = 1024 + j; 

        Nr(i,1) = Nr(i,1) + xbar1(i,j)*b(1,j)  - xbar1(i,512)*b(1,j) + xbar2(i,j)*b(1,j2) - 

xbar2(i,512)*b(1,j2) + xbar3(i,j)*b(1,j3) - xbar3(i,512)*b(1,j3) ; 

    end 

end 

for i=1:1:20 

    for j=1:1:511 

    j4 = 1536 + j; 

        if(j4 > 1600) 

            break; 

        else 

            Nr(i,1) = Nr(i,1) +xbar4(i,j)*b(1,j4) - xbar4(i,512)*b(1,j4); 

        end 

    end 

end 

% % % Denominator of correlation coefficient 

Dr = zeros(20,1); 

for i=1:1:20 

    for j=1:1:511 

        j2 = 512 + j; 
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        j3 = 1024 + j; 

        Dr(i,1) = Dr(i,1) + (xbar1(i,j) - xbar1(i,512))^2 + (xbar2(i,j) - xbar2(i,512))^2 + 

(xbar3(i,j) - xbar3(i,512))^2 ; 

    end 

end 

for i=1:1:20 

    for j=1:1:511 

    j4 = 1536 + j; 

        if(j4 > 1600) 

            break; 

        else 

            Dr(i,1) = Dr(i,1) +(xbar4(i,j) - xbar4(i,512))^2; 

        end 

    end 

end 

 

Dr = Dr./1600; 

Dr = Dr.^0.5; 

for i=1:1:20 

    Dr(i,1) = Dr(i,1)*std(b)*1600; 

end 

param_corr = zeros(20,1); 

for i=1:1:20 

param_corr(i,1) = Nr(i,1)/Dr(i,1); 

end 

function corr = calc_corr(a,b) 

val = 0; 

for i = 1:1:1600 

a1 = a(1,i)-mean2(a); 

b1 = b(1,i)-mean2(b); 

val = val + a1*b1; 

end 
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corr = val/(std(a)*std(b)*1600); 

end 

A2. Implementation of Memristor Based in memory processing for high precisoion text 

classification  

%%Cleaning the text%% 

function text =clean_text(text) 

        text=lower(text); 

    %rempve all words starting with @ 

    text = regexprep(text,"(@)\w*",""); 

    %     remove all words starting with @ 

    text = regexprep(text,"\w*'\w*d",""); 

        %remove all stop words 

    text = remove_stop_words(text); 

end 

%%Classify the text%% 

function [accuracy,row]= classifier(label,text,training_ratio) 

training_label = label(1:int32(end*training_ratio)); 

training_text = text(1:int32(end*training_ratio)); 

test_label = label(int32(end*training_ratio)+1:end); 

test_text = text(int32(end*training_ratio)+1:end); 

disp("Generating Model"); 

model = generate_model_2(training_label,training_text); 

disp("Predicting Categories") 

accuracy = evaluate(model,test_label,test_text); 

row = length (model {2,2}); 

end 

% d= sprintf("Accuracy Of Classification %f",accuracy); 

% disp(d); 

%%Modelling Crossbar  

function current = mem(voltage,memristance) 

Roff = 152426795; 

Ron = 150793; 
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voff = 1.35; 

von     =-1.2;  

koff    =200; 

kon     =-250; 

aoff    =3; 

aon     =2; 

D       =50e-09; 

xoff    =  D; 

xon     =  0;    

dt=0.01; 

% memristance 

if voltage>= voff 

    dwdt=(koff*((voltage/voff-1))^aoff); 

elseif voltage<=von 

    dwdt=(kon*((voltage/von)-1)^aon); 

else 

    dwdt=0; 

end 

x=(memristance-Roff)/(Ron-Roff); 

% x 

w=x*D; 

w =w+(dt*dwdt); 

% % s = sprintf("w = %d",w); 

% disp(s) 

if (w<0) 

    w=0; 

    dwdt=0; 

elseif (w > D)  

    w=D; 

    dwdt=0; 

end 

x = w/D; 
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memristance = Ron*x+Roff*(1-x); 

current = voltage/memristance; 

end 

%%Generation of model 2 using crossbar%% 

function cross_bar = generate_model_2(label,text) 

      categories = unique(label); 

    cross_bar = cell(1,length(categories)); 

    words = []; 

    for i = 1:length(text) 

         d = sprintf("Tokenising %f",i); 

           disp(d); 

        curr_text = text(i); 

        tokens= split(curr_text)'; 

        words = [words tokens]; 

    end 

    words = unique(words); 

    words = [words ,"@ue"]; 

    for i = 1:length(categories) 

        total_word_count =length(words); 

        category = categories(i); 

        bag = containers.Map(words,ones(1,length(words))); 

        train_texts = text(find(label == category)); 

        for j = 1:length(train_texts) 

           d = sprintf("Processing Category %d Training Text %d",i,j); 

           disp(d); 

            temp = train_texts(j); 

            token = split(temp)'; 

            for word = token 

                bag(word)=bag(word)+1; 

                total_word_count = total_word_count+1; 

            end 

        end 
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        cross_bar{1,i}=category; 

        cross_bar{2,i}=bag; 

        cross_bar{3,i}=total_word_count; 

    end 

         for i=1:length(categories) 

        key = string(keys(cross_bar{2,i})); 

        value = string(values(cross_bar{2,i})); 

        value = join(value); 

        value = str2num(value); 

        value = value/cross_bar{3,i}; 

        value = -1./log10(value); 

        value = 1000000*value; 

        cross_bar{2,i} = containers.Map(key,value); 

    end 

    for i = 1:length(categories) 

        category = categories(i); 

        count = sum(label == category); 

        prob = count/length(label); 

        prob = -1/log10(prob); 

        prob=prob*1000000; 

        cross_bar{3,i} = prob; 

end 

%%Evaluation%% 

function [accuracy]= evaluate(model,label,text) 

voltage = 0.01; 

    [x,category_count] = size(model(1,:)); 

    categories = model(1,:); 

    predicted_categories=[]; 

    count =1; 

    for i = text 

        d = sprintf("Evauating Text %d",count); 
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        disp(d); 

        count=count+1; 

        words = split(i)'; 

        calculated_current=[]; 

        for j = 1:category_count 

            current=0; 

            bag = model{2,j}; 

            for word = words 

%                 disp(word) 

                if isKey(bag,word) 

                    current_increment = mem(voltage,bag(word)); 

%                     current_increment = voltage/bag(word); 

                    current = current+current_increment; 

%                     d = sprintf("%s %f ",word,current_increment); 

%                     disp(d);    

                else 

%                     d= sprintf("%s is not key",word) 

%                     disp(d) 

                    current_increment = voltage/bag("@ue"); 

                    current = current+current_increment; 

%                     d = sprintf("%s %f ",word,current_increment); 

%                     disp(d); 

 end  

 end 

current = current + (voltage/model{3,j}); 

calculated_current=[calculated_current current];   

end 

[value,index] = min(calculated_current); 

predicted_categories=[predicted_categories,categories{1,index}]        ; 

end 

accuracy = sum(predicted_categories == label); 

accuracy = accuracy/length(label); 
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accuracy = accuracy*100; 

end 

 

A3. Realization of Memristive State Machine for Smart Edge Detector Applications 

%%Memristor implementation of edge detection%% 

Roff    =152426795; 

Ron     =150792; 

voff    = 1.2%Must be postive; 

von     = -1.35%Must be negative; 

koff    =40; 

kon     =-80;  

aoff    =7; 

aon     =5; 

D       =5e-8; 

xoff    =  D; 

xon     =  0; 

M=zeros(255,1); 

L=zeros(255,1); 

x=zeros(255,1); 

V=zeros(255,1); 

I=zeros(255,1); 

I1=imread('BITS.png'); %read image 

I1=rgb2gray(I1); %convert rgb image to grayscale 

I2=I1; 

[m,n]=size(I1); 

i=0; 

for i=1:255 

 L(i)=i; 

 x(i)=L(i)/255; %compute fuzzy value for each pixel in the rnge 

 V(i)=(((x(i)*D)/(koff*1e-3))^(1/aoff)+1)*voff;  %compute voltage values for each pixel 

value that has a fuzzy value x(i) 

 M(i)=x(i)*150800+(1-x(i))*152426800;  %compute memristance value for corresponding 

state variable x(i) 
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 I(i)=V(i)/M(i); % compute current flowing through the circuit for corresponding voltage and 

memristance 

end 

plot(V,x) 

t3=1.2710e-08;  % threshold current value for reading memristor with voltage pulse that 

induces state x=0.3  

t7= 3.0348e-08;   % threshold current value for reading memristor with voltage pulse that 

induces state x=0.7 

count1=zeros(n,1); 

i=1; 

j=1; 

c11=0; 

c21=0; 

c31=0; 

c41=0; 

P=0; 

Q=0; 

c12=0; 

c22=0; 

c32=0; 

c42=0; 

for i=1:m-1 

   for j=1:n-1 %traverse through all pixels in the image to implemnt threshold block logic 

      if(I(I1(i,j)+1)>t3) %threshold block for x=0.3 that assigns 1 if current is greater than t3 

fore each pixel(four bit output of the threshold block is c11,c21,c31,c41) 

          c11=1; 

      else 

          c11=0;  

      end 

      if(I(I1(i+1,j)+1)>t3) 

          c21=1; 

      else 

          c21=0; 
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      end 

      if(I(I1(i,j+1)+1)>t3) 

          c31=1; 

      else 

          c31=0; 

      end 

      if(I(I1(i+1,j+1)+1)>t3) 

          c41=1; 

      else 

          c41=0; 

      end 

            if(I(I1(i,j)+1)>t7) %threshold block for x=0.7 that assigns 1 if current is greater than 

t7 fore each pixel(four bit output is c12,c22,c32,c42) 

          c12=1; 

      else 

          c12=0;  

      end 

      if(I(I1(i+1,j)+1)>t7) 

          c22=1; 

      else 

          c22=0; 

      end 

      if(I(I1(i,j+1)+1)>t7) 

          c32=1; 

      else 

          c32=0; 

      end 

      if(I(I1(i+1,j+1)+1)>t7) 

          c42=1; 

      else 

          c42=0; 

      end 
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    if(c11==c21 && c11==c31 && c11==c41 && c21==c31 && c21==c41 && c41==c31) 

% assign P=0 if all the four bits of the first threshold block are same 

          P=0; 

      else 

          P=1; 

      end 

            if(c12==c22 && c12==c32 && c12==c42 && c22==c32 && c22==c42 && 

c42==c32)% assign Q=0 if all the four bits of the Second threshold block are same 

          Q=0; 

      else 

          Q=1; 

      end 

        if(P==0 && Q==0) %assign output as an edge or not an edge depending upon P and Q  

          I2(i,j)=uint8(1); 

               else 

          I2(i,j)=uint8(255); 

      end      

   end 

end 

count2=zeros(n,1); 

for  j=1:n-1 

    for i=1:m-1 

       if(I2(i,j)==uint8(255)) 

           count1(j)=count1(j)+1; 

       else 

           count2(j)=count2(j)+1; 

       end    

    end 

end 

count3=zeros(n,1); 

count4=zeros(n,1); 

for  j=1:n-1 

    for i=1:m-1 
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       if(I3(i,j)==1) 

           count4(j)=count4(j)+1; 

       else 

           count3(j)=count3(j)+1; 

       end    

    end 

end 

imshow(I2) 

 

%%Edge Detection%% 

i=1; 

j=1; 

c1=0; 

c2=0; 

c3=0; 

c4=0; 

for i=1:249 

   for j=1:319 

      if(I1(i,j)>170) 

          c1=3; 

      elseif (I1(i,j)<84)     

          c1=1; 

      else 

          c1=2; 

      end 

      if(I1(i+1,j)>170) 

          c2=3; 

      elseif (I1(i,j+1)<84)     

          c2=1; 

      else 

          c2=2; 

      end 
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      if(I1(i,j+1)>170) 

          c3=3; 

      elseif (I1(i,j+1)<84)     

          c3=1; 

      else 

          c3=2; 

      end 

      if(I1(i+1,j+1)>170) 

          c4=3; 

      elseif (I1(i+1,j+1)<84)     

          c4=1; 

      else 

          c4=2; 

      end 

      if(c1==c2 && c1==c3 && c1==c4 && c2==c3 && c2==c4 && c4==c3) 

          I2(i,j)=uint8(1); 

      else 

          I2(i,j)=uint8(200); 

      end 

   end 

end     

acc=0; 

count=0; 

for i=1:249 

    for j=1:319 

        if(I3(i,j)==true && I2(i,j)==uint8(200)||I3(i,j)==false && 

I2(i,j)==uint8(1)||I3(i+1,j+1)==true && I2(i+1,j+1)==uint8(200)||I3(i+1,j+1)==false && 

I2(i+1,j+1)==uint8(1)) 

         count=count+1; 

        end 

    end 

end 

acc=count/79431; 
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A4. Implementation of Binary Particle Swarm Optimization for Image Thresholding 

using Memristive Crossbar Array 

%%Python code for Two threshold Kapur’s Objective Function 

{ 

 "cells": [ 

  { 

   "cell_type": "code", 

   "execution_count": 1, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Importing Libraries\n", 

    "import numpy as np\n", 

    "import matplotlib.pyplot as plt\n", 

    "import random\n", 

    "import cv2\n", 

    "from scipy import ndimage\n", 

    "%matplotlib inline" 

   ] 

  }, 

  { 

   "cell_type": "markdown", 

   "metadata": {}, 

   "source": [ 

    "# Memristor Data:\n", 

    "Roff=152000000\n", 

    "Ron=150000\n", 

    "voff=1.35 (Must be postive);  \n", 

    "von=-1.2 (Must be negative); \n", 

    "koff=200\n", 

    "kon=-250\n", 
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    "aoff=3\n", 

    "aon=2\n", 

    "D=50e-09\n", 

    "HCL=1/Ron\n", 

    "LCL=1/Roff" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 3, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Initializing the values\n", 

    "Roff=152000000\n", 

    "Ron=150000\n", 

    "HCL=1/Ron\n", 

    "LCL=1/Roff" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 4, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Class particle\n", 

    "class particle():\n", 

    "    def __init__(self):\n", 

    "        self.global_best = np.asarray([random.randint(0,1) for i in range(16)])\n", 

    "        self.position = np.asarray([random.randint(0,1) for i in range(16)])\n", 

    "        self.velocity=np.zeros(16)\n", 
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    "        self.personal_best= np.asarray([random.randint(0,1) for i in range(16)])  " 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 71, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Number of particles and iterations\n", 

    "n_p=100\n", 

    "n_iter=100" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 72, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "data": { 

      "text/plain": [ 

       "201" 

      ] 

     }, 

     "execution_count": 72, 

     "metadata": {}, 

     "output_type": "execute_result" 

    } 

   ], 

   "source": [ 

    "#possible values of c1r1 and c2r2 assuming both c1 and c2 are 2\n", 
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    "c1r1=[i/100 for i in range(201)]#21\n", 

    "c2r2=[i/100 for i in range(201)]#21\n", 

    "len(c1r1)" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 73, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "def encoder(ll): #Takes a list of 0s and 1s and converts it to LCL and HCL 

respectively\n", 

    "    ll1=[0 for i in range(len(ll))]\n", 

    "    Roff=152\n", 

    "    Ron=0.15\n", 

    "    HCL=1/Ron\n", 

    "    LCL=1/Roff\n", 

    "    for i in range(len(ll)):\n", 

    "        if(ll[i]==1):\n", 

    "            ll1[i]=HCL\n", 

    "        else:\n", 

    "            ll1[i]=LCL\n", 

    "    return ll1\n", 

    "#Call a write function of V+/- 2 10ns" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 74, 

   "metadata": {}, 

   "outputs": [], 
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   "source": [ 

    "#Memristor crossbar based matrix multiplication\n", 

    "def mem_multiply(P,l1=c1r1,l2=c2r2):\n", 

    "    C1R1=[i*5*0.5 for i in range(len(l1))]\n", 

    "    C2R2=[i*5*0.5 for i in range(len(l2))]\n", 

    "    rand1=random.randint(0,len(C1R1)-1)\n", 

    "    rand2=random.randint(0,len(C2R2)-1)\n", 

    "    c1r1gb=[l1[rand1]*P.global_best[i] for i in range(len(P.global_best))]\n", 

    "    c1r1p=[l1[rand1]*P.position[i] for i in range(len(P.global_best))]\n", 

    "    c2r2pb=[l2[rand2]*P.personal_best[i] for i in range(len(P.global_best))]\n", 

    "    c2r2p=[l2[rand2]*P.position[i] for i in range(len(P.global_best))]\n", 

    "    term_g=[c1r1gb[i]-c1r1p[i] for i in range(len(c1r1p))]\n", 

    "    term_p=[c2r2pb[i]-c2r2p[i] for i in range(len(c2r2p))]\n", 

    "    return term_g,term_p\n", 

    "#     rand1=C1R1[random.randint(0,len(C1R1))]\n", 

    "#     c1r1_gb_p=[rand1*(P.global_best[i]-P.position[i]) for i in range(len(P.position))]  " 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 75, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Decoder Function\n", 

    "def decoder(term_g,term_p,lambda_v=None):\n", 

    "    lis1=np.zeros(16)\n", 

    "    lis2=np.zeros(16)\n", 

    "    term_g=np.asarray(term_g)\n", 

    "    term_p=np.asarray(term_p)\n", 

    "    term_gm=term_g/2.5\n", 

    "    term_pm=term_p/2.5\n", 
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    "    for i in range(16):\n", 

    "        if(abs(term_gm[i])<1.3158):\n", 

    "            lis1[i]=0\n", 

    "        else:\n", 

    "            lis1[i]=term_gm[i]/6.66\n", 

    "        if(abs(term_p[i])<0.0066):\n", 

    "            lis2[i]=0\n", 

    "        else:\n", 

    "            lis2[i]=term_pm[i]/6.66\n", 

    "    return lis1,lis2" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 76, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Binary to decimal converter\n", 

    "def bToD(binary): \n", 

    "\tbinary1 = binary \n", 

    "\tdecimal, iii, ni = 0, 0, 0\n", 

    "\twhile(binary != 0): \n", 

    "\t\tdec = binary % 10\n", 

    "\t\tdecimal = decimal + dec * pow(2, iii) \n", 

    "\t\tbinary = binary//10\n", 

    "\t\tiii += 1\n", 

    "\treturn decimal" 

   ] 

  }, 

  { 

   "cell_type": "code", 
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   "execution_count": 77, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "data": { 

“Image.png”:”/n” 

      "text/plain": [ 

       "<Figure size 432x288 with 1 Axes>" 

      ] 

     }, 

     "metadata": { 

      "needs_background": "light" 

     }, 

     "output_type": "display_data" 

    } 

   ], 

   "source": [ 

    "#Reading and visualizing the image\n", 

    "pict=cv2.imread('B9.png',0)\n", 

    "plt.imshow(pict,cmap='gray',vmin=0,vmax=255)\n", 

    "row,col=pict.shape" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 78, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "name": "stdout", 

     "output_type": "stream", 

     "text": [ 
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      "[4.96185303e-01 0.00000000e+00 8.17871094e-03 0.00000000e+00\n", 

     ] 

    } 

   ], 

   "source": [ 

    "#Image Histogram\n", 

    "p_i=np.zeros(256)\n", 

    "for r in range (row):\n", 

    "    for c in range (col):\n", 

    "        p_i[pict[r][c]]+=1\n", 

    "p_i=p_i/(row*col)\n", 

    "print(p_i)" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 79, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Swarm Initialization\n", 

    "l=[]\n", 

    "for i in range (n_p):\n", 

    "    l.append(particle())" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 80, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 
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    "#Sigmoid Function\n", 

    "def sigmoid(z):\n", 

    "    return 1/(1+np.exp(-z))" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 81, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Takes a list of 0s and 1s and returns the corresponding Decimal Number\n", 

    "def c(x):\n", 

    "    pp=[str(int(x[i1])) for i1 in range (len(x))]\n", 

    "    pp=list(pp)\n", 

    "    if(pp==[str(int(0)) for qr in range(len(pp))]):\n", 

    "        return 0\n", 

    "    while(pp[0]=='0'): \n", 

    "        pp.pop(0)\n", 

    "#     if(len(pp)==0):\n", 

    "#         return 0\n", 

    "    else:\n", 

    "        lan=''\n", 

    "        for i in range(len(pp)):\n", 

    "            lan+=pp[i]\n", 

    "        return bToD(int(lan))" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": null, 

   "metadata": {}, 
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   "outputs": [], 

   "source": [ 

    "#Kapur's Entropy Function for 2 thresholds\n", 

    "def f(a,b,P_list=p_i):\n", 

    "    cp=0\n", 

    "    p1=[]\n", 

    "    p2=[]\n", 

    "    p3=[]\n", 

    "    if(a>b):\n", 

    "        a,b=b,a\n", 

    "        \n", 

    "    for cp in range((len(p_i))):\n", 

    "        if(cp<a):\n", 

    "            p1.append(p_i[cp])\n", 

    "        elif(cp>=a and cp<b):\n", 

    "    #while(cp>=a and cp<len(p_i)):\n", 

    "            p2.append(p_i[cp])\n", 

    "        elif(cp>=b and cp<len(p_i)):\n", 

    "            p3.append(p_i[cp])\n", 

    "    w1=sum(p1)\n", 

    "    w2=sum(p2)\n", 

    "    w3=sum(p3)\n", 

    "    \n", 

    "#     if(p1==0 or p2==0):\n", 

    "#         return 0\n", 

    "    H1=-sum([p1[rr]/w1*np.log(p1[rr]/w1) for rr in range(len(p1)) if p1[rr]!=0])\n", 

    "    H2=-sum([p2[rr]/w2*np.log(p2[rr]/w2) for rr in range(len(p2)) if p2[rr]!=0])\n", 

    "    H3=-sum([p3[rr]/w3*np.log(p3[rr]/w3) for rr in range(len(p3)) if p3[rr]!=0])\n", 

    "    return H1+H2+H3\n", 

    "        " 

   ] 

  }, 
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  { 

   "cell_type": "code", 

   "execution_count": 82, 

   "metadata": {}, 

   "outputs": [], 

   "source": [ 

    "#Initializing W\n", 

    "W=1.0" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 83, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "name": "stdout", 

     "output_type": "stream", 

     "text": [ 

      "[  9.06388134  60.          97.         185.        ]\n", 

     ] 

    } 

   ], 

   "source": [ 

    "tv=np.asarray([f(c(list(map(int,l[k].position[:8]))),c(list(map(int,l[k].position[8:])))) for k 

in range(n_p)])\n", 

    "# tv=[]\n", 

    "# for k1 in range(n_p):c(list(map(int,l[k].position[:8])))\n", 

    "#     cc=c(list(map(int,l[k1].position))\n", 

    "#     tv[k1]=f(cc)\n", 

    "# n_p=10\n", 

    "g_bval=np.zeros(4,)    \n", 
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    "tv1=tv\n", 

    "for i in range(n_iter):\n", 

    "#     tv1=np.asarray([f(c(list(map(int,l[k].position)))) for k in range(n_p)])  

#list(map(int,l[k].position))\n", 

    "    tv1=np.asarray([f(c(list(map(int,l[k].position[:8]))),c(list(map(int,l[k].position[8:])))) 

for k in range(n_p)])\n", 

    "    if(g_bval[0]<max(tv1)):\n", 

    "        \n", 

    "        g_bval[1]=np.argmax(tv1)\n", 

    "        g_bval[0]=max(tv1)\n", 

    "        g_bval[2], g_bval[3] 

=c(l[int(g_bval[1])].position[:8]),c(l[int(g_bval[1])].position[8:])\n", 

    "        global_best=l[int(g_bval[1])].position\n", 

    "    for j in range(n_p):\n", 

    "        if(tv1[j]>tv[j]):\n", 

    "            l[j].best_value=tv1[j]\n", 

    "            l[j].best_position=l[j].position\n", 

    "    print(g_bval)\n", 

    "    tv=tv1\n", 

    "#     print(tv)\n", 

    "# for i in range(100):\n", 

    "# # while(f(c(global_best))<8):   \n", 

    "#     tv1=np.asarray([f(c(list(map(int,l[k].position)))) for k in range(n_p)])  

#list(map(int,l[k].position))\n", 

    "# #     print(tv1)\n", 

    "#     if(g_bval[0]<max(tv1)):\n", 

    "#         g_bval[1]=np.argmax(tv1)\n", 

    "#         g_bval[0]=max(tv1)\n", 

    "#         global_best=l[int(g_bval[1])].position\n", 

    "#     for j in range(n_p):\n", 

    "#         if(tv1[j]>tv[j]):\n", 

    "#             l[j].best_value=tv1[j]\n", 

    "#             l[j].best_position=l[j].position\n", 
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    "# #     if(g_bval[0]!=max(tv1)):\n", 

    "# #         g_bval[1]=np.argmax(tv1)\n", 

    "# #         g_bval[0]=max(tv1)\n", 

    "# #         global_best=l[int(g_bval[1])].position\n", 

    "#     print(g_bval)\n", 

    "#     tv=tv1\n", 

    "    \n", 

    "#     for j in range(n_p):\n", 

    "#         if(tv1[j]>tv[j]):\n", 

    "#             l[j].personal_best=l[j].position\n", 

    "#     global_best=l[np.argmax(tv)].position\n", 

    "#     lis_gb.append(c(global_best))\n", 

    "#     for part in (l):\n", 

    "#         part.global_best=global_best\n", 

    "    \n", 

    "#     tv=tv1\n", 

    "#     lis_max.append(np.mean(tv))\n", 

    "    for ii, j in enumerate(l):\n", 

    "        \n", 

    "        encoder(j.position)\n", 

    "        encoder(j.global_best)\n", 

    "        encoder(j.personal_best)\n", 

    "        tg,tp=mem_multiply(j)\n", 

    "        lll1,lll2=decoder(tg,tp)\n", 

    "        lc1r1=np.asarray(lll1)\n", 

    "        lc2r2=np.asarray(lll2)\n", 

    "        j.velocity=W*np.asarray(j.velocity)+lc1r1+lc2r2\n", 

    "        j.velocity=np.asarray([min(max(-4,j.velocity[tt]),4) for tt in 

range(len(j.velocity))])\n", 

    "        for d in range(8):\n", 

    "            rb=random.random()\n", 

    "            if(rb<sigmoid(j.velocity[d])):\n", 
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    "                j.position[d]=int(0)\n", 

    "            else:\n", 

    "                j.position[d]=int(1)\n", 

    "                \n", 

    "        \n", 

    "        \n", 

    "        \n", 

    "    " 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 88, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "data": { 

“Image.png”:”/n” 

      "text/plain": [ 

       "<Figure size 432x288 with 1 Axes>" 

      ] 

     }, 

     "metadata": { 

      "needs_background": "light" 

     }, 

     "output_type": "display_data" 

    } 

   ], 

   "source": [ 

    "#Resulting Image viewing and Storing\n", 

    "p=pict\n", 

    "final=np.zeros((row,col))\n", 



186 
 

    "a,b=sorted([g_bval[2],g_bval[3]])\n", 

    "for rows in range (row):\n", 

    "    for cols in range (col):   #175.         111.\n", 

    "        if(p[rows][cols]<=a): #10     #96 160\n", 

    "            final[rows][cols]=0\n", 

    "        elif(p[rows][cols]>a and p[rows][cols]<b): #125\n", 

    "            final[rows][cols]=1\n", 

    "        else:\n", 

    "            final[rows][cols]=2\n", 

    "plt.imshow(final,cmap='gray',vmin=0, vmax=2)\n", 

    "# plt.savefig(\"PSO_MEM\\B9K_{}_{}.png\".format(a,b))" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 24, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "data": { 

      "text/plain": [ 

       "9.2103349274696" 

      ] 

     }, 

     "execution_count": 24, 

     "metadata": {}, 

     "output_type": "execute_result" 

    } 

   ], 

   "source": [ 

    "#Brute Force Optimization\n", 

    "mmm=0\n", 
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    "tt1=0\n", 

    "tt2=0\n", 

    "for t1 in range(256):\n", 

    "    for t2 in range (t1,256):\n", 

    "        if(f(t1,t2)>mmm):\n", 

    "            tt1=t1\n", 

    "            tt2=t2\n", 

    "        mmm=max(mmm,f(t1,t2))\n", 

    "mmm" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": 25, 

   "metadata": {}, 

   "outputs": [ 

    { 

     "name": "stdout", 

     "output_type": "stream", 

     "text": [ 

      "119 185\n" 

     ] 

    } 

   ], 

   "source": [ 

    "print(tt1,tt2)" 

   ] 

  }, 

  { 

   "cell_type": "code", 

   "execution_count": null, 

   "metadata": {}, 
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   "outputs": [], 

   "source": [] 

  }, 
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