
QoS in Next-Gen Networks: Investigating
Resource Management in Network Slicing

and Co-Existence with Wi-Fi

Thesis

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Saibharath S

ID No. 2017PHXF0100H

Under the Supervision of

Dr. Sudeepta Mishra

and

Under the Co-Supervision of

Dr. Chittaranjan Hota

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2023

https://www.bits-pilani.ac.in


BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

Certificate

This is to certify that the thesis entitled, “QoS in Next-Gen Networks: Investigating Re-

source Management in Network Slicing and Co-Existence with Wi-Fi” and submitted

by Saibharath S ID No. 2017PHXF0100H for the award of Ph.D. degree of the institute

embodies the original work done by him under our supervision.

Supervisor

Dr. Sudeepta Mishra

Asst. Professor,

Dept. of CSE,

Indian Institute of Technology Ropar.

Date: 18-10-2023

Co-Supervisor

Dr. Chittaranjan Hota

Senior Professor,

Dept. of CS&IS,

BITS-Pilani, Hyderabad Campus.

Date: 18-10-2023

i

https://www.bits-pilani.ac.in


Declaration of Authorship

I, Saibharath S, declare that this Thesis titled, ‘QoS in Next-Gen Networks: Investigating

Resource Management in Network Slicing and Co-Existence with Wi-Fi’ and the work presented

in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at this

University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date: 18-10-2023

ii



Acknowledgements

I express my deep gratitude and heartfelt thankfulness to my supervisors, Dr. Sudeepta Mishra

and Dr. Chittaranjan Hota. Their valuable advice, direction, and continuous encouragement

acted as an endless source of motivation throughout the entire course of my thesis work.

I am grateful to my DAC members, Prof. G.Geethakumari and Dr. Paresh Saxena, for their

insightful observations and recommendations to significantly enhance this research.

I am thankful to Prof. N L Bhanumurthy, Head of the Department of Computer Science and

Information Systems, for all the essential support during my thesis work.

I am thankful to Prof. Tathagata Ray, Departmental Research Committee Convenor, for his

encouragement and support.

I express my gratitude to Prof. G. Sundar (Director, BITS Pilani, Hyderabad Campus). I would

also like to thank Prof. Venkata Vamsi Krishna Venuganti (Associate Dean, Academic-Graduate

Studies and Research Division) and his team’s steady support during my Ph.D. work.

I thank my colleagues Gourish Goudar and Anirudh Kasturi for their backing and motivation. I

express my sincere gratitude to my parents, brother, in-laws, wife, and kid for their enduring

support.

iii



Abstract

Next-generation networks such as 5G and beyond offer faster connection speeds and lower latency,

enabling more advanced applications, enhanced reliability, and more efficient spectrum usage.

However, several important sub-problems need to be addressed to fully realize their potential.

The primary focus of this thesis is on network slicing, which provides customized Quality of

Service (QoS) requirements to different use cases. Resource allocation strategies and slicing

processes are critical to adapting to varying levels of QoS requirements. In this regard, we

propose a solution that employs multiple attribute decision-making with analytical hierarchy

processing to maximize stakeholder objectives such as operating efficiency, network performance,

and timeliness in QoS-based resource allocation [1]. Additionally, we utilize enhanced Dinic

algorithms to compute the maximum possible flows in the network.

Mobile network operators must support varied use cases such as mission-critical traffic, low

latency, and ultra-reliable augmented reality. Hence, traffic classification at the Base Station

(BS), Radio Access Networks (RAN) partitioning, and application-aware routing are required to

meet QoS and Service Level Agreements (SLAs). We study joint QoS and energy savings-based

resource allocation strategies [2] and scheduling in network slicing. Prioritizing traffic requests

are achieved through standard ML regressors such as gradient boost and random forest. We also

investigate QoS-based task offloading at edge servers in network slicing [3]. Another important

aspect of 5G is deploying multiple small cells in the micro infrastructure to densify the network.

To achieve this, we propose a Swap-based Load Balancing (SLB) with the biasing method

that minimizes the load imbalance between access points and maximizes the signal strength

of the connected devices. Our results show that the SLB with biasing method reduces the

load imbalance by a factor of 22.24% compared to other state-of-the-art algorithms, improving

both load imbalance in access points and signal quality among users [4]. Next we examine

application-aware routing, which involves identifying, measuring, monitoring, and mapping the

application traffic QoS requirements to a specific data path in an SLA class. These routines are

applied as add-ons to existing standard routing algorithms, and we study their benefits in terms

of bandwidth, latency, and jitter.

Lastly, fair co-existence with Wi-Fi would be necessary for 5G to expand the network spectrum

capacity in the unlicensed spectrum. In this regard, we investigate the effects of Wi-Fi selfish

users on the cellular network and propose counteraction strategies and network configurations

to attain fair co-existence. We deep dive into these side effects in the Duty cycle and Listen-

Before-Talk Medium Access Control (MAC) based approaches. Overall, our work deep-dives

into QoS aspects in network slicing and resource management to achieve stakeholder objectives.

We discuss our proposed solution and its implication in QoS-driven resource allocation, load

balancing at the base station, task offloading at edge servers, and co-existence with Wi-Fi.
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Chapter 1

Introduction

The next generation of wireless communication technologies is a transformative advancement

in the world of mobile communication, promising faster data speeds, lower latency, and higher

connectivity than ever before. As more and more devices become connected to the internet and

consume large amounts of data, the importance of ensuring Quality of Service (QoS) becomes

increasingly critical [5].

In this chapter, we begin by studying the QoS specifications and the history of QoS from

the initial releases. Then, the chapter delves into the need for QoS investigation in 5G, the

fifth-generation technology standard for cellular networks.

We then investigate the two prominent use cases for 5G technologies: network slicing and

5G-Wi-Fi co-existence in the unlicensed spectrum. Network slicing involves creating multiple

logical and virtualized networks over a common multi-domain infrastructure based on custom

QoS requirements. The chapter discusses important concepts such as network slicing, resource

allocation, RAN partitioning, and scheduling to meet custom QoS requirements. In 5G-Wi-Fi co-

existence, both technologies must coexist fairly in the unlicensed spectrum to avoid interference

and ensure optimal performance for both.

Next, this chapter explores the role of QoS while load balancing in the 5G micro infrastructure.

Due to the concentration of mobile devices around specific Access Points (APs), these APs can

become hotspots, leading to intermittent connectivity issues. This chapter highlights the need

for proper load balancing and device association to avoid these issues and ensure a seamless

experience. Additionally, investigating QoS attributes, such as signal strength during the

association process, is necessary to support optimal performance.

1
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Then, the chapter explores the implications of application-aware routing to support QoS and

Service Level Agreements (SLAs). This involves routing traffic based on the specific requirements

of each application or user to ensure the desired level of service is provided. The chapter

highlights the importance of considering system requirements in application-aware routing to

support QoS and SLAs.

Finally, the chapter provides a comprehensive overview of the problem statement addressed in

this thesis. We detail our overall contributions and provide a Chapter-wise thesis outline of our

work.

1.1 QoS Specifications

The concept of QoS earmarked from the 3GPP Release 1997 (R97) [6] and has evolved in R99

[7], R4, and R5/6 [8]. Through the QoS profile suite, we can delineate the elements of QoS.

A Quality of Service (QoS) profile suite is a predefined collection of performance and

service level profiles within a network or system. These profiles specify parameters

like bandwidth, latency, and priority levels, tailored to meet specific application or

service requirements, ensuring consistent and efficient network resource allocation.

An aggregated base station QoS profile suite comprises attributes such as traffic class, guaranteed

bit rate, maximum bit rate, residual bit error ratio, transfer delay, delivery order, source statistics

descriptor and signalling overhead, and allocation and retention priority [9].

1.1.1 QoS Support in 4G

The 4G architecture consists of the Core Network (CN), Evolved Universal Terrestrial Radio

Access Networks (E-UTRAN), and Mobile Equipment (ME). The concept of QoS in 4G is

based on bearer services. Bearer service is a transmission path from the radio interface through

the network infrastructure. These are allocated dynamically or through subscription-based

mechanisms. The QoS features in 4G [10],[11] are described below:

Access Class Bearing (ACB): This feature helps in terminal class prioritization, especially

when the network is overloaded or in emergencies. It constitutes Access Classes (AC) ranging
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between 0 and 15. AC 0-9 is for all terminals. When the network is massively overloaded, the

regular access classes are either barred or set with a particular blocking probability.

Allocation and Retention Policy (ARP): ARP governs the pre-emption capability of traffic

flows and pre-emption vulnerability prediction. ARP is a constituent in the subscribed QoS

profile for the default bearer.

QoS Class Identifier (QCI): QCI ranging from 1-254 is used to prioritize scheduling and to

queue admitted values. These inbuilt fields help us to track the priorities. However, standardiza-

tion is in progress, and there is a need for a special service layer that can understand different

user behaviour like mission-critical users and enterprise business users [12].

1.1.2 QoXphere - QoS Management model

QoXphere, a QoS management model, constitutes various layers:

i) Intrinsic layer - key performance parameters contribute towards Key Performance Indicators

(KPIs) are identified to evaluate the Network Performance (NP) for different Classes of Service

(CoS).

ii) In the Perceived layer, the Key Quality Indicator (KQI) is identified based on the problem

set. The quality perceived by the users is measured through the QoE by comparing the required,

offered, and delivered QoS to the customers.

iii) Assessed QoS provides the key risk indicators, user satisfaction level, SLAs, and attrition

rate of users through churn probability.

iv) The Business layer concentrates on Key Business Objectives (KBO) such as revenue and

margin, average revenue per user, and operational efficiency.

An enhancement to QoXphere [13], a global QoS management model, has been proposed to

enhance the next-generation networks. It involves a case study involving Wi-Fi technology using

probes in universities, residential areas, and commercial buildings. Basic ML techniques [14] are

ideated for removing anomalies through unsupervised learning and inferring relevant KQI for

users through inductive supervised learning.
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1.1.3 Differentiated Services and QoS Class Identifier

The S1 Application Protocol (S1AP ) provides signalling [15] between E-UTRAN and Evolved

Packed Core (EPC). Attributes like QCI, allocation and retention priority, and the pre-emption

vulnerability function are present in s1ap messages. During E-UTRAN Radio Access Bearer

(E-RAB) setup or modification, packets include necessary QoS parameters. These packets are

sent by the Mobility Management Entity (MME) and used by the Evolved Node B (eNodeB) to

assign resources for one or several E-RABs.

The 3rd Generation Partnership Project (3GPP) has prompted cellular networks to enable

QoS-based architecture. This work [16] provides mapping recommendations from Quality Class

Identifier (QCI) to Differentiated services (DiffServ) and vice versa. However, the approach is

partially incompatible due to the following reasons:

• QCI cannot be strictly mapped to Diffserv as one-to-one mapping is lacking. Diffserv

doesn’t support all the features supported by QCI, and hence a group of QCI is mapped

through a poor approximation.

• In the QCI structure, multiple dimensions cross one another. For example, IP Multimedia

Subsystem (IMS) signalling (QCI-5) with high priority and low tolerance levels [16], but

being Non-Guaranteed Bit Rate (GBR) belongs to the signalling category. Conversation

voice (QCI-1) has a lower priority and high tolerance than IMS signalling yet benefits from

a GBR, which leads to inconsistency among them.

• QCI represents flows in terms of multi-dimensional needs. The multi-dimensional logic is

different between QCI and Diffserv.

Subsequently, for providing end-to-end capabilities, we need unified traffic classes represented

through acceptable delay, throughput, jitter, etc.

1.2 Need for QoS Investigation in Next-Gen Technologies

5G has introduced state-of-the-art technology suites and a mindful culmination of prospective

techniques and tools from the prior generation of cellular networks. 5G is crucial in automated

vehicles and the Internet of Things (IoT).
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The researchers have already established that 5G supports minimum viable services such as a)

Extreme Mobile BroadBand (xMBB), b) Massive Machine Type Communications (M-MTC),

and c) Ultra-Reliable Machine Type Communications (U-MTC) [17]. On the other hand, the

authors [18] cite that although power infrastructure and sophisticated technologies were available

in the previous generation, the network was purposed sub-optimally, which they attribute to

orthogonal business requirements. The quality of Experience (QoE) of end-users often conflicts,

leading to reduced user satisfaction and substandard Quality of Business (QoBiZ).

5G adopts various designs and solutions from physical to application layers to accomplish

these service requirements and manage these challenges. Some prominent technologies in the

physical layer in 5G are Massive Multiple-Input Multiple-Output (MIMO), mmWave MIMO,

and Non-Orthogonal Multiple Access (NOMA). Similarly, the transport and core networks

need to be programmable, intelligent, powered by Artificial Intelligence and Machine Learning

(ML) techniques, provide virtualization, and enable cloud technology. The Software Defined

Networking (SDN) principles in transport and application layers, mmWave backhaul with

multiband boosters, and mmWave long-haul could play a crucial role.

The 5G network consists of three central units [19]: a) RAN is built through millimetre-wave and

massive MIMO to increase bandwidth and reduce latency, b) Core network relies on software

solutions, virtualization, and cloud adoption, c) SDN-enabled transport network for better traffic

engineering, cloud integration, network intelligence, and monitoring. Backhaul transportation

could be either wired or through wireless channels by employing mmWave MIMO technologies.

The authors [20] consider the 5G mobile platform to be a conglomeration of various wireless Radio

Access Technologies (RATs), encompassing multiple radio access and wireless technologies. Hence,

the authors regard that the design solutions for interoperability and seamless Quality of Service

(QoS) experience for end-users while handling the explosive growth of mobile traffic volumes need

to be examined. Similarly, the 5G core and transport network has widespread softwarization

and seeks end-to-end path optimization that targets the application’s QoS requirements and

Service Level Agreements (SLAs).

1.2.1 Importance of QoS-based Scheduling in 5G

There are multi-fold reasons why QoS-based scheduling in 5G [21],[22] should be investigated

further,
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- We know that 5G provides ubiquitous connectivity, ultra-low latency, better reliability, and

high data rates. Scheduling becomes paramount to afford such high QoS guarantees and

satisfy the SLAs.

- 5G builds a platform for different wireless technologies to collaborate. This environment deals

with a collection of multiple RATs with diverse implementations. Hence, network packet

scheduling needs to consider the architecture variability across technologies.

- Scheduling would play a crucial role in dealing with Ultra-Reliable Low Latency Commu-

nications (URLLC) and carrier aggregation in automated vehicles and the Internet of

Things.

- The 5G platform supports xMBB, M-MTC, and U-MTC communications. It also provides

mission-critical services such as push to talk feature in the military.

- 5G services are orchestrated through different deployment models like Network slicing, Cloud

Radio access networks, etc.,

To realize seamless communication and QoS guarantees, radio access technologies, resource

allocation, and network packet scheduling would have to perform a significant part and hence,

needs to be analyzed.

1.3 Network Slicing

Full-fledged digital transformation radically changes how services are delivered in the Fifth

Generation of cellular networks. The potential of cloud computing, software-defined networking,

and network function virtualization with existing network infrastructure is powering and merchan-

dising 5G toward advanced and unexplored products and services for commercial establishments.

For achieving these use cases in a scalable, elastic, and cost-efficient manner, Network Slicing

(NS) [23],[24] is increasingly becoming popular.

On top of the common physical network infrastructure, multiple virtual network links are created,

and these are assigned to slices to cater to the SLA and QoS requirements of the end-users.

A Network Slice (NS) is an independent, end-to-end logical network. It could comprise the

user device, last-mile connectivity, core network, and transport layers. NS is a formation of

automated virtual logical networks over physical substrate networks to provide customers with

specific services.
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Network slicing is a technique in modern networking, particularly in 5G and beyond,

where a single physical network is divided into multiple virtual networks, or ”slices.”

Each slice is isolated and customized to meet specific performance, security, and

resource requirements, catering to diverse services and applications on the same

infrastructure [25].

1.3.1 Driver for Network Slicing

The variety of use cases serviced by a network expanded with 4G has even more inflated in 5G

[26]. The use case could be mobile broadband, fixed wireless, or machine-type communications.

These are the drivers for NS to support customized offerings with flexibility, reduced risk, and

operating cost efficiency. Diverse QoS can be supported by each offering in isolation and helps

the network operators to monetize it appropriately.

NS offers multi-dimensional capabilities: i) Network as a Service (NaaS) is a cloud computing

service model that provides users access to a virtualized network infrastructure. As an end-user

customer, NS should enable NaaS to meet SLAs. ii) As a system user, the user strives for better

resource management, which NS realizes through traffic steering and resource partitioning. iii)

As a business-management stakeholder, NS via automation and isolation should render operating

efficiency and reduced Time To Market (TTM) [27].

1.3.2 Network Slicing Architecture

The architecture for commercial setup shown in Fig. 1.1 is organized through the four layers. a)

Shared Infrastructure Layer - The lowest layer which provides the network hardware infrastructure.

b) Slices: For instance, presence of Core and RAN logical networks, c) Management and

Orchestration Layer - provides slice provisioning, analytics, and 3 M’s (Manage, Monitor, and

Metrics Evaluation), and d) Top layer exposes NaaS, customized offerings, and services to the

consumer [28]. Here, the control plane describes how the packets must be handled in the data

plane. To run virtual networks on top of the shared infrastructure, we have an extra optional

layer to create slices and operate as a transparent proxy controller between the physical switches

and logical controllers. The different layers should work end-to-end and have inherent challenges.

Let’s review the types of slices and challenges in the sub-sections below.
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Figure 1.1: Network Slicing Architecture [2]

1.3.3 Radio Access Network and Core Network slices

RAN allocates the radio resources in the network. Radio resources are limited. Hence, we need a

slicing policy that helps share, reserve, and isolate the resources between slices. RAN’s primary

functions include resource management, observability, and interconnecting with the core network

slices. RAN has to provide slice-aware allocation [29] while connecting to core network nodes. It

should also support the concept of slice identifiers in 4G and 5G. RAN slicing builds on top of

dynamic radio resource partitioning and works in conjunction with existing QoS principles. The

idea is to start today and evolve tomorrow from existing infrastructure, such as 4G, to 5G.

The core network’s slices are flexible and powered by Network Functions Virtualization (NFV)

and SDN technologies. It can provide both isolation and share network functions across slices.

5GC extends the capability of current EPC in 4G [30], and it unlearns its shortcomings, making

it a scalable, flexible, and powerful framework to control slices.
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1.3.4 Empowering Network Slicing with Automation

With billions of connected devices with varied network requirements, manual maintenance and

upgrade of NS policies can introduce bugs. Automation can mitigate these risks, which is highly

recommended for building and maintaining large-scale systems [31]. The upgrades can be smooth,

and slices can be delivered on-demand with agility through the orchestration and automation in

5G. It can be built through model-driven orchestration using templates. Automation can help in

the authorization of customers to slices and assurance.

1.3.5 Network Slicing Example

NS brings in new business opportunities [32]. Let’s consider a residential area with net-enabled

smart homes. The residents will be using mobile broadband connectivity through their smart-

phones. Each residence would possess fixed wireless access, which the individuals would share.

Entertainment systems like TeleVision (TV) and gaming require high-speed fixed-wired broad-

band. Home security systems and detectors need low latency and highly reliable machine-type

communications. Slice(s) can handle the above different network services for a residential area

or town. The network slice can prioritize critical services and high-priority traffic flows during

peak load and congestion.

Another example is a slice that can be designed for a specific commercial service, such as

extreme mobile broadband service. It can also be drafted for a scenario composed of co-existing

multiple diverse network services. For example, a smart, well-connected metro-operated bus

would have i) commuters, who could use fixed wireless access for their mobile-internet usage,

ii) embedded devices like Closed Circuit Televisions (CCTVs), for monitoring the surrounding

environment, and these require medium bandwidth for real-time video streaming capabilities,

iii) the automated transit teller machines, which notify passengers in the current and next bus

stops, require the bus stops to be Global Positioning System (GPS) enabled and support low

latency transactions for accuracy, and iv) the communication between remote control centre,

automated vehicle driving system or manual bus operator, and alarms for emergency purposes

are mission-critical in nature. NS puts forward a structure, operation, and revenue model in the

above business case studies for enterprises.

The notable challenges [33] in Network slicing are as follows.

a) Formal assurance in the allocation of slices.
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b) Consistently and concurrently meeting SLAs in NS.

c) Seamless automation and end-to-end management of slices.

d) Isolation, observability, and integration of RAN, Network, and Transport slices.

1.4 Co-existence of Wi-Fi and 5G in the unlicensed spectrum

In the licensed spectrum [34], many small cells close to each other are deployed in dense networks.

These cells are activated based on the high traffic demands in a specific period. However,

deploying such a large number of small cells increases the total cost of operation.

5G can operate in the unlicensed spectrum to expand its network capacity. The 5G New

Radio-Unlicensed (NR-U) could advance the private networks and alleviate spectrum constraints

to deliver better performance. This unlicensed spectrum provides more uplink and downlink

allocation, bandwidth, and frequency bands in 5G to satisfy its ultra-dense and scalability

requirements.

5G NR-U can provide both license-assisted and standalone use of unlicensed spectrum, sometimes

referred to as Anchored and Standalone NR-U, respectively.

These features have unlocked new opportunities for the industrial IoT and this greenfield

spectrum provide flexible ways to apply in indoor and outdoor environments. Furthermore,

critical use cases like Time Sensitive Networking and industrial IoT can use synchronized sharing,

multi transmission-reception points (TRP) with coordinated multipoint communications (CoMP)

deployed with NR-U in controlled settings.

NR-U with synchronized sharing can reduce latency and improve fairness to all access technologies

within the same spectrum. The anchored and standalone NR-Us will help MNO to deliver better

performance [35].

Wi-Fi is a prominent wireless technology operating in these unlicensed bands. The provisioning

of unlicensed spectrum at 5GHz can be utilized by both cellular and Wi-Fi users, leading to

better coverage and more frequency bands for operators. Wi-Fi Cellular Co-existence is another

promising deployment scenario. However, it has its own challenges.

Due to the proximity of cellular and Wi-Fi spectrum channels, utilization of both Wi-Fi and NR

can cause interference during operation. The co-existence of 5G New Radio (NR) and Wi-Fi
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devices in these bands lack the means of communication for negotiation and coordination among

them.

Listen-Before-Talk (LBT) and Duty-Cycling (DC) are two standard Medium Access Control

(MAC) mechanisms that are applied to enable co-existence. Due to a lack of coordination,

network utilization could become unfair with the existence of selfish devices. The selfish users

could maximize their throughput and affect other Wi-Fi and NR users consecutively.

1.5 Need for Load Balancing at the base station in 5G micro

infrastructure

5G uses a millimetre wave (mmWave) spectrum to satisfy the ultra-high bandwidth demands in

urban areas. However, mmWave suffers from a low range. So, the operators tend to densify their

networks with small cells to provide ubiquitous connectivity and reliable coverage. Some of these

small cells, such as micro or picocells, could handle the bulk of wireless network traffic while

other cells remain idle. As time progresses, more mobile devices throng towards the overloaded

micro or pico cells, thus creating hotspots. It leads to experiencing intermittent, unstable

connectivity and high packet jitter in these small cells. We could re-associate some wireless

devices connected from overloaded to the reachable underutilized cells in the vicinity to overcome

this effect. Despite being obvious to suggest, load balancing involves several challenges when,

where, and how to perform re-association because choosing the wrong movement might hurt

network performance. In this work, we aim to reduce load imbalance through traffic distribution

and potentially enhance the micro and picocell’s performance and client experience.

The load on the micro or picocell quantifies its usage in a 5G network. It is defined through

several metrics in the literature. The primitive one is the number of devices connected to the

cell. By default, devices connect to the AP, which offers the best Received Signal Strength

Indicator (RSSI). An alternative to signal strength is channel utilization, which indicates the

residual bandwidth. The other choice is throughput measurement between the 5G cells and the

devices described by the number of packets transmitted in a timeslot.

Reactive Load Balancing (LB) methodologies are preferred as they minimize the re-association

among small cells. Broadly, LB is classified into the below approaches,
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• Admission Control: Devices on arrival are admitted based on the utilization and remaining

capacity.

• Association Management: LB decisions are primarily controlled through the 5G APs and

higher management planes.

• Transmission Range control: The cell’s transmission ranges are usually artificially re-

configured, causing a weakened signal beyond the selective serving distance [36]. Un-

intentionally, it could block a device if it doesn’t find another cell and end up as an

orphan.

• Association Control: A device-centric approach where the mobile terminal collects and

chooses from macro, micro, or picocells based on the metrics.

1.6 Application-Aware Routing

There is a need to holistically examine and monitor the QoS performance of the network and its

devices through different layers to meet stakeholder objectives. The application-aware routing is

a method to administer the network from an application point of view. Here, the prime focus is

applying QoS constraints and the maximization of relevant utility functions in SLAs.

Application-aware routing [37] tracks network and path characteristics along the data plane and

utilizes the gathered information to compute the traffic’s optimal data paths.

The characteristics comprise QoS parameters such as latency, bandwidth, packet loss, jitter,

and link load. We have several benefits in applying application-aware routing to the network

ecosystem [38] [39], such as:

• Apart from the standard route prefix and link-state information applied in conventional

traffic, the network traffic path should support the various levels of latency, bandwidth,

and other QoS parameters described in an application SLA.

• Dynamic load balancing based on the monitored load of links leads to reduced network

costs.

• Application-aware routing could increase the performance of the application without

upgrading hardware and software components.
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1.7 Problem Description

With high-end requirements and growing traffic consumption from mobile devices, we have

identified the following problem statements, which are paramount for providing a seamless

experience, optimal network utilization, and QoS for customers.

- 5G would conglomerate multiple tiers and RATs [20]. There is a need for traffic classification

algorithms [12] and identifying the right set of attributes for segregating the packets in 5G

for improved differentiated services and to meet the QoS requirements.

- It is essential to achieve network requirements in terms of QoS and SLA agreements and as well

be energy-efficient. There is a necessity to investigate the joint objective of Energy savings

and QoS in the communication networks [20]. Scheduling and resource allocation of traffic

for tailored offerings in network slices must be investigated across RAN, transport, and

core network layers. The significance has increased with the need to support differentiated

services such as mission-critical use cases in 5G.

- 5G micro infrastructure comprising micro and picocells would be pivotal in densifying the

network to provide ample coverage. However, a disproportional association of mobile

devices with these small cells would cause hotspots and load imbalance. A few micro

or picocells suffer from network congestion in such a network. While many others are

underutilized, experience lower throughput, and operate below the potential network

capacity. To mitigate this drawback, a concrete load balancing policy eliminating hotspots

and network congestion and offering better signal strength for mobiles would be essential.

- There is a need for a robust methodology to facilitate the tracking of QoS performance and meet

multi-objective QoS metrics. Hence, the application-aware routing should be investigated,

where meeting SLA boundaries needs to be monitored. Similarly, task offloading to Multi-

access Edge Computing servers in RAN slices needs to be studied under the purview of

QoS.

- 5G operates in the unlicensed spectrum to expand its network capacity. When co-existing with

a Wi-Fi network, a fair co-existence is essential. However, the presence of selfish nodes

could impact the network. It is crucial to investigate standard MAC-based mechanisms

such as Listen-Before-Talk and Duty-Cycling on the effect of these selfish users on fair

co-existence and QoS of the mobile devices across technologies. The study needs to be
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Figure 1.2: Challenges and problems being investigated in this work

detailed to cover different network configurations. Possible counteraction mechanisms need

to be explored to avert impact on the users.

The challenges being investigated and the corresponding chapters are summarized in Fig. 1.2.

1.8 Contributions

A flow chart to visually describe the technical work and proposed techniques to address the

problem are summarized in Fig. 1.3.

Our principal contributions to this research work are:

- For resource allocation of network elements to the slice, we proposed an approach that

is influenced by Multiple Attribute Decision Making (MADM), Analytical Hierarchy

Processing (AHP) for slice assignment and enhanced Dinic’s Maximum Flow Method to

find maximum possible virtual paths for allocations [1].
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Figure 1.3: Proposed QoS Investigation - Methods and Techniques

- A wholesome study of viable QoS attributes for traffic classification and priority class derivation

is exemplified. As far as we can say, no other existing work has covered the QoS aspects

at this depth and breadth. We illustrate an applied class-based probabilistic priority

scheduling through traffic classification results from the wide-ranging QoS attributes [2].

- A customized collective application of the Virtual Backbone (VB) for route path creation and

Cognitive cycles (CC) for re-configuration to bring in greater energy efficiency in slices [2].

- To improve load balancing at access points and signal strength issues in micro infrastructure,

we propose an extreme Swap-based Load Balancing (SLB) algorithm between APs, which

minimizes the load imbalance at cell edges. SLB with biasing delivers both lesser load

imbalance in APs and signal quality amongst users [4].
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- Task offloading results in the remote execution of tasks, thereby reducing the load on the

lower-capacity end-user devices and mobile instruments. We propose an ensemble method

for QoS-based task assignment to edge servers in network slices in an SDN setup. An

enhanced weighted Borda scoring is presented to categorize the task into its priority

class. We present a probabilistic, priority-driven Kafka-topic consumer which schedules

the offloaded tasks in the edge containers [3].

- We detail the methodology for tracking, measuring, mapping, and monitoring QoS metrics to

achieve application-aware routing.

- Fair co-existence of Wi-Fi and 5G is necessary. We study the side effects of selfish users through

channel sensing and acquisition time under different network configurations and medium

access mechanisms such as duty cycle and Listen-Before-Talk. We analyze the impact of

QoS through metrics such as throughput due to selfishness. We explore counteraction

mechanisms in the co-existence setup to overcome selfishness, which was earlier adopted in

the Wi-Fi-only network. Lastly, we recommend network configurations and counteraction

mechanisms that promote co-existence and shield legitimate users.

1.9 Thesis Outline

The chapter mapping and the QoS attributes being investigated and optimized are represented

in Fig. 1.4.

Chapter 2 discusses a literature survey of QoS-based resource allocation and scheduling. We go

through the related works on network slicing and how it tries to accomplish tailored offerings

for the customers and meet their SLAs. We discuss the existing load-balancing methodologies

that devices associate with access points. We also discuss the existing literature on QoS-centric

task offloading and application-aware routing methodologies. We iterate the study in another

deployment scenario of a 5G-Wi-Fi coexisting network on fair co-existence.

Chapter 3 focuses on traffic categorization and resource allocation in network slicing.

Firstly, the core parameters of Quality of Experience (QoE) to end-user systems, Network

Performance, and Operating efficiency are carefully investigated while placing network virtual

functions and determining the nodes, links, and resources for assignment across RAN, transport,

and core networks.
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Figure 1.4: Chapter-wise Investigation and Optimization of QoS attributes

Secondly, it details QoS attributes from S1AP and Internet Protocol (IP). Virtual Backbone

with Cognitive Cycles (CC) based approaches are proposed for route allocation in network slices

targeting joint QoS and energy efficiency. Standard ML regression algorithms determine the

priority used for class-based priority scheduling of packets at RAN.

Chapter 4 presents our work on swap-based load balancing. Here, we first detail the standard

one-way traffic distribution, which is based on the signal strength of devices and the load of

the access point through the biasing factor. Then, we formalize our proposed two-way extreme
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load balancing, which targets minimizing the load imbalance factor and enhancing the Channel

Quality Index (CQI) and Signal-to-Noise Ratio (SNR) metrics of users. We validate our work

through a dataset from an Irish mobile operator and discuss the performance gain over other

candidate approaches.

Chapter 5 studies task offloading to Multi-access Edge Computing servers in RAN slices. We

present an ensemble categorization and probabilistic prioritized task execution at edge servers.

Mininet, Flowvisor, and SDN controllers such as Beacon and POX constitute the SDN setup.

The offloaded tasks are categorized and placed at relevant Kafka topics and executed through

docker containers.

Chapter 6 examines application-aware routing, which is enabled by measuring, mapping, and

allocating paths while meeting SLA boundaries. Firstly, we estimate the key QoS parameters

such as latency, packet loss, and jitter of the data path, and we also compute the notional value of

the above metrics. The second step is to map each data route against the SLA class definition of

users. Finally, we suggest a heuristic QoS KPI-driven path forwarding scheme through SDN. We

exemplify the approach through the QoS framework constituting SDN controllers to direct the

forwarding plane, special-purpose network slice controller and management unit, and virtualized

portable NFV modules to monitor metrics and suggest path allocation.

Chapter 7 discusses Listen Before Talk and Duty Cycle-based medium-access-control approaches

for Wi-Fi and 5G Co-existence, respectively. First, we brief about the potential of 5G transmission

co-existing with that of Wi-Fi in the unlicensed spectrum. We also study and quantify the effects

of selfish users on the QoS of other legitimate users, preferred counteraction methodologies, and

network deployment configuration.

Chapter 8 summarizes the work, iterates the specific contributions, and presents future work.

♦



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we first thoroughly review resource allocation in NS and the use of cognitive

cycles in resource management. We also study energy-efficient resource management of QoS

and EE to achieve optimal resource utilization, power savings, and customer satisfaction. We

also dive into traffic classification and identify the gaps in the existing research during resource

allocation and management stages. We then study related work in load balancing of mobile

devices across access points and the impact on their QoS. The existing works on task offloading

and application-aware routing are discussed. Finally, we deep-dive into the co-existence of the

cellular network with Wi-Fi.

2.2 Resource Allocation in Network Slicing

The NS problem is examined as a min-cost feasible slice embedding [40] problem. The slice may

consist of several Virtual Network Functions (VNF) like user and control planes, Base Band

Unit, and edge caching. The NS problem is formulated through the Virtual Network Embedding

(VNE) Problem, which minimizes the resource utilization cost. The basic NS problem, much

similar to VNE, is viewed as the optimal placement of VNFs at resource nodes and link capacity

reservations for their interconnections with the extra link and node capacity constraints.

VNE can be viewed as the allocation of virtual resources, and it can be divided into sub-problems:

VNoM (Virtual Node Mapping) and VLiM (Virtual Link Mapping) where these virtual nodes

19
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and links are mapped to the underneath physical network. VNE problem deals with how these

virtual resources can be realized on the substrate resources [41].

VNE problem is best described through three parameters: static vs. dynamic, centralized vs.

distributed, and concise vs. redundant. The VNE problem description is a combination of

options from the above classes. In a static, centralized, and concise environment, the system

doesn’t have to consider backup nodes or edges as part of its solution. It is computed in a

centralized way in an offline mode.

The VNE problem can be reduced to a multi-way separator problem, which is NP-hard. When

given a virtual node mapping, allocating multiple virtual links optimally to physical links is

NP-Hard as it reduces to an unsplittable flow problem. Hence, heuristic and meta-heuristic

solutions can be devised. As an extension to VNE, the NS problem is NP-hard [40], and heuristic

approaches are suggested to achieve near-optimal solutions.

In the NS problem, a business infrastructure service request may arrive dynamically. The online

mode of path computation for VNE is studied in [42]. This work investigates persistent requests

with uniform demand. It proposes a deterministic competitive algorithm for requests involving

routing and processing, where the accrued benefit to the network operators is maximized. The

major contributions are to introduce a new service model of parking a request in standby mode,

and it provides a worse-case lower bound in servicing such requests.

Telecom networks use and analyze many QoS parameters to consider network performance [43].

Caching at cell edges with limited capacity constraints is studied under the umbrella of vertical

RAN Slicing [44]. The limited storage caching is treated as a bi-convex problem, and it studies

the slice coordination issues. The problem considers cache storage and backhaul capacity in its

solution model, and it proposes centralized and distributed cost-minimization algorithms. These

existing works solely focus on the benefit function, which defines the total cost-benefit to the

network operator under a segment of capacity and node processing-related constraints.

Network slicing provides a dedicated virtual network over the common physical infrastructure.

Traffic modelling is scheming into different categories by using the physical parameters of

measured traffic. Source-Traffic modelling using the Poisson process coupled with the Markov

model is discussed in [45]. So far, there is a limited research effort in traffic aggregation, and

there is a need to handle aggregation for each slice independently.



Chapter 2. Literature Review 21

The basic NS problem is constructed as assigning optimal virtual links over the underlying

infrastructure is reduced to a multi-commodity flow optimization problem. This work defines

the basic NS problem as a VNE problem with location requirements. However, a study on the

NS problem that considers different types of slices or the QoS management aspects [40] is not

presented to the best of our knowledge.

Authors formulate NS as a bi-convex optimization problem [44], and they examine RAN vertical

slicing and coordination issues. Minimization of the overall cost incurred is considered, and

a heuristic-based solution for near-global convergence is devised. However, the work mainly

focusses on the use of cache slicing, and non-trivial aspects such as RAN, core, and transport

network node assignments are overlooked.

In our work, we deep-dive into resource allocation strategies in Network slicing. First, we propose

a resource allocation algorithm in slicing through enhanced Dinic maximum flow, multiple

attribute decision-making, and analytical hierarchical processing. We study and maximize

stakeholder objectives such as operational efficiency, timeliness, and network performance in

Chapter 3.

2.2.1 Energy Efficient Resource Management

Energy awareness is important for any application and network deployment. An initial work, a

basic energy-aware wireless scheduling system, is proposed in [46], which formulates the average

energy per packet using an M/M/1 model.

Conventional EE approaches [20] could fold into these categories: a) Energy harvesting techniques

extract energy from the surrounding environment like solar, wind, and mechanical vibrations.

b) Dynamic Power Savings defines the ideal way to save power is to switch off the transceivers

whenever there is no need to transmit or receive, and c) Relay and Cooperative (RC) Transmissions

deploy multiple relay nodes. Hence, there are multiple channels for communication between

source and destination [47]. Finding an optimal relay placement strategy within the 5G RAN

systems that can achieve radio interference, spectral efficiency, and EE management goals remains

an unsolved research area.

The list of challenges identified are i) When designing Dynamic Power Savings (DPS) for heavily

loaded 5G RAN systems and maintaining a wide range of QoS requirements remains an area for
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further exploration. ii) Retaining high QoS performance in RC communications while preserving

better throughput and reduced latency is an open area in RC communications.

Hybrid approaches that address EE are:

i) Joint Cell Association and Power Control (JCAPC) - A combination of cell association can

be fused with prioritized power control schemes depending on the desired objective. Diverse

transmit powers of BSs can lead to uneven distribution of load. Channel access-aware user

association scheme can boost spectral efficiency in downlink transmissions and load balancing

among BSs [48].

ii) Bio-Inspired Resource Interference Resource Management (RIRM) Based Techniques - The

behaviour of biological organisms are modelled in radio interfaces to construct an algorithm that

maximizes energy-aware throughput as networks profit. Profitability is characterized through

attainable bio-behaviors with preferences in allocation with the objective of energy and spectrum

efficiency of the entire RAN subsystem [49].

iii) Integrated Spectrum and Energy Harvesting Techniques - Nodes are equipped with Energy

Harvesting Cognitive Radio (EHCR) modules. It provides the devices and networks with the

ability to harvest energy and sense spectrum simultaneously. EHCR can convert ambient energy

into electricity at the same time, probe and use primary channels [50].

Cluster-based protocols and virtual backbone tree-based routing methods are applied in Wireless

Sensor Networks (WSNs). These are energy-efficient routing algorithms deployed to improve

the lifetime of WSNs. The routed messages to the target node are routed via backbone tree

nodes. The tree nodes are selected based on the fitness factor of the nodes. The fitness factor is

composed of the energy of the node, distance with the upstream parent node, and angle of its

communication. Our approach derives inspiration from the fitness factor and tree nodes from

the WSN backbone routing for energy efficiency [51].

2.2.2 QoS & Energy Efficient Resource Allocation

Maximizing the energy efficiency while guaranteeing the QoS requirements between the user and

RAN are studied in [52]. It applies a weighted Tchebycheff method for converting Multi-Objective

Optimization (MOOP) into Single Objective Optimization (SOOP). SOOP constitutes several

quasiconvex fractional functions (QFFs), and the proposed iterative algorithm aims to minimize
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the maximum of QFFs. EE for every user is maximized, however, w.r.t QoS, this work is based

on bandwidth allocation only.

The EARTH energy model is applied for the virtual base stations [53]. When there are no

incoming messages in the queue, the node goes to sleeping mode. The average power consumption

is studied as a function of active processing time and idle sleeping time. In our work, we apply

the EARTH model. Our work also uses the Dynamic Power Savings technique. However, only

the provisioned nodes remain active as decided by the scheduling algorithm. Scheduling rules

allocate routing paths as per QoS requirements and meet the demand of current traffic with

a buffer to accommodate a potential sparse increase in the load. The paths and nodes are

dynamically activated by CCs, which carry out performance monitoring. CC plays a major

role in shuffling and changes to the network assignments. It can assess overall load, QoS and

proactively satisfy the demands of EE, QoS, resource utilization, and operational efficiency.

2.2.3 QoS attributes in scheduling

Many existing QoS-based scheduling research works have focussed on a single objective, such

as bandwidth or latency. We have put related works and the parameters the authors are

improving in Table 2.1. For example, authors [54] focus on bearer services for guaranteed and

non-guaranteed bit rates. Similarly, a priority based Scheduling to provide Differentiated QoS is

proposed based on the delay factor [55]. A scheduling framework is discussed to guarantee a

packet delay below the QCI’s PDB [56].

While many others consider QoS-based scheduling as multi-objective optimization. However,

these works have not identified the relevant attributes extensively. For example, the proposed

multi-traffic scheduling only aims at minimizing delay, packet loss, and improving data rate [59].

For NS, based on QoS for static and dynamic allocation are studied under throughput and delay

[40]. For real-time connections, the authors guarantee data rate with waiting delay violation

probability [60]. In 5G and beyond, it would be a collective platform of wireless technologies.

Hence, there is a need for a comprehensive study and analysis of QoS attributes for scheduling.
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Table 2.1: Existing works in QoS and Energy Efficiency

Related
work

QoS Energy-Efficiency Other Objectives

Guanding Yu
et al. [52]

Investigates bandwidth alloca-
tion only

Energy efficiency is max-
imized through Tcheby-
cheff method

✗

K. Suganthi
et al. [57]

✗
Randomized virtual back-
bone tree for the reduction
in rapid energy depletion

Theoretical derivation on
probabilistic bounds for
connected nodes to the
backbone are computed.

Siddique et al.
[48]

✗
Cell association fused with
prioritized power control
schemes

Achieves load balancing
and spectral efficiency

Olwal et al.
[49]

Only throughput metric con-
sidered

Maximizes energy-aware
throughput as networks
profit

Spectral efficiency
achieved through bio-
inspired algorithms

Liu et al. [50] ✗
Use of Energy harvesting
Cognitive Radio methods

Spectral efficiency, to con-
vert ambient energy into
electricity

[58],[55],[56]
Singular objective such as
GBR / non-GBR [58], and de-
lay [55][56] are studied

✗
Scheduling framework pro-
posed

H. Wu et al.
[59]

Multiple QoS attributes such
as delay, packet loss, and im-
proving data rate studied

✗
Downlink traffic studied
through genetic algorithm

2.2.4 Cognitive Cycles in resource management

Despite the evolution of the cellular network, a lack of intelligence and autonomous capabilities

persist as a stumbling block to deploying, supporting, and scaling next-gen apps. Cognitive

Radio (CR) explores the use of underutilized licensed channels by secondary users. CC enables

a node to learn, gain knowledge from prior experience, and act to adapt to the dynamic network

conditions [61]. Q-Learning [62] based CC model helps the BS to expand or shrink its coverage.

Thereby, traffic offloading decisions are empowered through CC.

Cognitive cycles (CC) are a set of cascading recurring patterns. Each CC senses the

current situation and interprets it about ongoing goals. Then, it selects an internal

or external action in response.

2.2.5 IP and Cellular Traffic Classification

Traditional techniques to perform Traffic Classification are Payload inspection, statistical, and

behavioural methods. Currently, ML is gaining traction in this field [63]. Network traffic
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classification can provide troubleshooting capabilities, build security policies, and manage QoS

to guarantee overall user satisfaction. Authors have used multiple ML algorithms not limited

to Bayesian-based classifiers, neural networks, decision trees, and clustering-based techniques

like expectation-maximization and K-means based approaches. In our work, the features are

identified and selected in a well-detailed and fine-grained manner. We also focus on a unified

approach for prioritization in the end-to-end QoS management between cellular networks and

the Internet.

Traffic classification based on priority queue is discussed in the Data Traffic Model for 5G Slicing.

It aggregates M2M data through the Packet Data Convergence Protocol (PDCP). Based on QCI

values, it aggregates data at the Radio Network in the PDCP layer. Extended labelled mobile

network data constituting three levels of traffic identification is discussed in [64]. It uses flow

statistic levels to classify the packets, and the accuracy of such methods is below par. Hence, to

segregate the users and their network packets, traffic classification algorithms need to be studied

for 5G [12].

2.2.6 RAN partitioning and isolation

Radio resource partitioning is a systematic process that happens every allocation window T. Let

mi,j,k ∈ M is binary, indicates if Physical Resource Block j (PRBj) is allocated to kth slice.

Here, i ∈ {1, 2, ..., T} in the time domain and j ∈ {1, 2, ...F} in the frequency domain.

The overall resource partitioning problem is about maximizing
∑T

i=1

∑F
j=1

∑K
k=1mi,j,k | mi,j,k ∈

{0, 1}, where slice k could request a set of contiguous locations, virtual Resource Blocks (vRBs),

or granular virtual transport block size.

Partitioning of RAN can be achieved by arranging RF carriers into time and frequency resource

grids. The physical resource splitting technique divides the frequency band into different

subcarriers. The isolation at the logical level delimits the capacity of logical components referred

to as PRBs. Differentiated services, prioritization, and Sub Carrier Spacing (SCS) can be

accommodated in PRBs.

Isolation of slices is achieved in infrastructure and management levels. In the former, RAN

partitioning, splitting transport domains through Multiprotocol Label Switching (MPLS) or

Virtual Local Area Network (VLAN) tagging, and Virtual Network Functions(VNFs) in the data

centre across different or shared compute nodes provide end-to-end isolation. Virtual Machines
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(VM) or Docker containers across availability zones provide hard isolation and reliability in the

data centre. Similarly, Flex ethernet with Time-Sensitive Networking and MPLS-Transport

Engineering in the network layer provides a balanced approach between hard and soft isolation

in the transport domain.

In the latter, the management and orchestration are through multitenancy. Each tenant should

have an exclusive administration of end-to-end slices through network domain controllers. The

provider manager administers the shared part, where tenant managers operate functions running

inside a specific NS. Currently, Virtualized Infrastructure Manager (VIM) and NFV orchestrator

by NFV Management and Orchestration (MANO) enable multitenancy.

The work highlights [65] the need for slices to operate independently and isolate performance,

dependability, and security between them. For example, congestion in one NS instance shouldn’t

affect the KPIs of other slices. Similarly, faults originating in an NS instance don’t impact

another.

The authors [66] highlight the importance of resource partitioning and apply a heuristic two-

dimensional knapsack optimization solution for maximizing the unallocated sequential resource

blocks and admission of slices. The RAN and CN domains provide Network Slice Subnet

Instances (NSSI), combined through backhaul links to form an NS instance. Here, domain

controllers such as SDN controllers or Multi-Protocol Label Switching (MPLS) management

carry out slice subnet management for E2E operation.

Various radio resource management schemes under spectral and EE, minimal interference, and

hybrid models have been discussed [20]. However, QoS challenges like explosive growth in traffic

volumes need to be addressed holistically. Some constraining gaps in QoS are as follows:

i) 5G RAN systems would conglomerate multiple tiers and RATs [20]. 5G system needs optimally

designed resource allocation, scheduling, and load balancing. The design should consider the

distribution of UEs, network slicing, and traffic patterns. Also, with explosive growth, it

is essential to segregate the packets in 5G through traffic classification algorithms and QoS

attributes to prioritize channel allocation and packet scheduling.

ii) MC user needs higher availability and resilience. In [22], the authors have focused on the

end-to-end reliability of mission-critical traffic. It studies the co-existence of mission-critical

and best-effort traffic. The work admits that there is a considerable design consideration in

supporting 5G mission-critical traffic.



Chapter 2. Literature Review 27

The thesis delves into QoS profile attributes from S1AP and IP protocol in Chapter 3. We

apply standard traffic regression algorithms to compute the priority of s1ap requests while

scheduling. Virtual backbone and cognitive cycles techniques are used to create a joint QoS and

energy-efficient resource allocation and scheduling in network slicing. RAN partitioning and

isolation are studied extensively.

2.3 Load Balancing and the Impact on QoS of mobile devices

The presence of network hotspots can cause unstable connectivity and jitter issues to the mobile

devices connected to the overloaded AP. The problem of load balancing is extensively studied in

the literature. Dynamic LB is considered a stochastic optimal control problem and indicates

Least Relative Load Routing (LRLR) as asymptotically optimal for a homogenous load [67].

Farzi et al. [68] study a zone-based load balancing for HetNets comprising macro and small

cells. The authors propose the transfer of devices from overloaded to underloaded cells through a

Cournot game, where the optimal load distribution of each cell is the Nash Equilibrium Solution

(NES).

Jie Cui et al. [69] aim to select the best response time for devices considering the overall usage

threshold in data and control plane during load balancing. Sahoo et al. [70] propose load

balancing for Multi-Controller SDN in IoT through the multi-criteria decision-making method

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) considering the overall

latency, bandwidth, and processing load.

Bejerano [71] study max-min fair bandwidth allocation and ensuring fairness for the device users

based on load balancing and association control. The devices don’t greedily associate with AP

based on their best RSSI. It proposes an approximation-based algorithm for greedy users and

weighted demand users.

Attiah [72] presents a reinforcement learning framework for optimizing neighbour cell relational

parameters to balance the traffic between different cells better. However, this research doesn’t

consider the user mobility and scale of the LTE network.

The authors [73] explore load balancing between commercial eNodeB and Wi-Fi AP, and

parameters such as spectral efficiency, SINR, available capacity, etc., are discussed. Gen Liang

et al. [74] identify access selection and traffic distribution as indispensable for the overall system
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performance improvement. They strive to minimize transmission delays and distribute the

traffic flow of users to achieve an optimal transmission rate in Heterogeneous Wireless Networks

(HWNs).

Garcia [75] categorizes APs into fair, gull (overloaded), and willing (underloaded). It utilizes the

channel utilization method and the Available Admission Capacity (AAC) metric. AP in gull

condition sends SOS to other n− 1 APs. Willing APs respond with a new AAC, and the gull AP

selects the optimal AP for transferring the device. However, for n APs, it suffers a high message

overhead of O(n2) for each migration. Also, when altering the transmission range, unpredictable

station transfers may lead to orphaned devices.

Kawada et al. [76], propose a trigger-based dynamic load balancing technique. AP selection

algorithm minimizes the highest AP usage by re-distributing the load from the highest bottleneck

AP. However, load balancing all the overloaded APs may not be possible in fluctuating traffic.

Yun [77] proposes a cell breathing technique with a centralized agent that evaluates the average

load. The overloaded APs contract their perceived transmission range, and the underloaded

APs enhance their beacon strength. The average load of a global network will often mislead LB

decisions. Ye et al. [78] apply a biased load as a function of the signal-to-noise plus interference

ratio on the underloaded APs to promote fair resource utilization.

Asakura et al.[79] examine dynamic traffic distribution between the APs, where the traffic flow

consists of an active and backup flow. A VPN server keeps track of all the APs and switches

the path between primary and secondary sub-flows based on congestion and RSSI. In [80], SDN

controllers have a global vision of the network, and they implement a round-robin load balancing

strategy among the access nodes.

5G micro infrastructure constitutes several small cells deployed in ultra-dense areas. So, load

balancing at access points is vital for better utilization and avoiding hotspots. There is a need for

an in-depth study of QoS attributes such as the Signal-to-Interference-plus-Noise Ratio (SINR)

and CQI of mobile devices. There is a need for tuning the standard load balancing algorithms

and performing optimization to minimize load imbalance that would promote better traffic

distribution and analysis without affecting the QoS of devices are paramount.

In this thesis, we propose and investigate swap-based load balancing with the biasing technique

in Chapter 4, which will converge load imbalance at the access point towards zero and ensure

good signal strength of the connected mobile devices during traffic distribution.
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2.4 Task Offloading techniques

LTE Spectrum is approaching Shannon’s capacity, and the cellular traffic from indoor locations

with negligible mobility is rising rapidly. Better traffic planning and utilization can be achieved

when we consider the nature of mobility patterns. Mostly, the current offloading techniques are

based on localized BS control, and it leads to heavy control signalling. Decoupling data and

control plane while offloading can lead to effective throughput usage.

Cartmell et al. [81], have come up with a Converged Gateway (CGW) component that enables

the Selective Internet Protocol Traffic Offload (SIPTO) function. This work applies policy-

based SIPTO, which relieves the core network from the additional load, and this component

intermediates directly between eNodeB and the application server. Once the packet reaches

Local SIPTO, through CGW, it performs packet inspection and identifies flows for offloading.

Then, the packet is translated via the Network Address Translation unit and forwarded to the

application server on the public internet. Through this methodology, we are diverting the flows

from entering the core networks. Here, the SIPTO is refraining from decoupled control and data

streams. Additionally, inherent dependence on localized control leads to high signalling overhead

and sub-optimal offloading.

Elgendi et al. [82], propose a 3-tier offloading model for managing and operating dense networks.

The authors contribute to User Rate-Perceived (URP) algorithm, Femotcell IP Access (FIPA),

and Selective Local Controller Traffic Offload (SLCTO) techniques. URP monitors the user

traffic flows and decides whether to offload or maintain the existing connection. FIPA introduces

additional femtocells to the existing network infrastructure, and the traffic flows are migrated to

these cells. The 3-tier offloading model constitutes physical, control, and management layers.

The physical layer consists of network infrastructure, and the control layer controls the physical

layer’s equipment through its Local Controller (LC) APIs. This model leads to a single point

of failure in the global controller of the management layer in network monitoring, network

topology maintenance, and placement of local controllers while managing the lifecycle of network

functions.

Park et al. [83], have proposed SDN-based traffic offloading, where the controller can regularly

monitor the packet drops in the links. The idea is to automatically re-route such traffic flows on

the pretext of loss detection, which can occur due to congestion.
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The controller monitors every node and port through ofp queue stats messages from the OpenFlow

protocol. On finding a packet drop, the controller can utilize the re-routing module to compute

the alternate paths. Results show that this work would reduce the average loss rate in the

system. The authors also identify the need for thresholds for packet losses, which triggers the

re-routing procedure. Otherwise, the ping pong effect can be observed, which could degrade the

network performance. This procedure solely identifies the packet drop and subsequently triggers

offloading. This work doesn’t consider the vital parameters of QoS.

Alameddine et al. [84], study the dynamic task offloading and scheduling under three subproblems,

which are i) task offloading, ii) application-aware resource allocation, and iii) task scheduling.

Application server instances are hosted in the edge servers. The tasks are offloaded to the nearby

edge server, which the application instance processes. The task scheduling and offloading in this

work are centered on the IoT for ultra-low latency and formulated as a mixed-integer problem.

The work utilizes logic-based blender decomposition.

Olfa Chabbouh [85] presents a joint service offloading and scheduling strategy in Heterogeneous

Cloud Radio Access Networks (HCRANs). The scheduling scheme aims to minimize the task

execution time. Here, an edge cloud is added to the remote radio head near the mobile end-user.

When the computational load shoots up in the resource-depleted mobile device, the tasks are

offloaded for remote execution.

Authors [86] have studied traffic offloading under different streams. Offloading in Mobile Cloud

Computing (MCC) has been researched based on communication and computation costs. There

is a necessity to scrutinize offloading through a concrete set of QoS Parameters.

We investigate task offloading based on QoS attributes such as QCI, Allocation and retention

priority, soft deadlines, and computation cycles in Chapter 5. We propose an ensemble categorizer

through Borda scoring and methodologies such as single and multiple attribute categorizers.

We also reduce the waiting time for certain types of tasks through probabilistic priority-based

scheduling.
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2.5 Application Aware routing through SDN, NFV, and NS

methodologies

We attempt to summarize the study on QoS metrics and frameworks through NS, SDN, and

NFV in the upcoming sub-sections. Next, we focus on the existing literature and its effect

on quality assurance standards and mechanisms for data transmission. We then tabulate the

different literature comparing their proposed QoS frameworks and the focus areas. Finally, we

attempt to identify the existing gaps for application-aware routing methodologies to deliver

better-customized NS settings.

2.5.1 QoS in Software Defined Networking

A design to enable service differentiation and efficient network resource use through SDN con-

trollers is studied in [87]. The authors have designed resource monitoring, route calculation, call

admission control, and resource reservation modules through OpenvSwitch and POX controllers.

However, this solution doesn’t guarantee end-to-end delay and lacks performance analysis and

admission control mechanisms. Dutra et al. [88] propose ensuring QoS guarantees without

over-committing the network resources to users who request high bandwidth and low jitter.

The simulations employ Open vSwitches (OVSs) in the network, where the algorithm strives to

minimize the active OVS. The authors [89] put forward a QoS provisioning architecture where

the user queries through Resource Reservation Protocol (RSVP). The SDN framework enables

the QoS settings through admin and RSVP providers. The result shows the average total data

transfer times for larger files performed better with QoS setting against a Non-QoS setting.

2.5.2 QoS through Network Function Virtualization (NFV)

The NFV functions operating on virtual machines facilitate Service Function Chaining (SFC).

However, processing and queuing delays may differ with virtual CPU, virtual memory, and the

overall traffic load. The packet delays could be irregular; a prediction method based on random

forest regression is proposed [90]. A QoS-assured SFC is presented here to reduce the latency

and bandwidth consumption. The authors implement routing modules in the OpenStack cloud

operating system, which exchanges the results with the OpenContrail to improve the overall

QoS by decreasing the delay time for medical application data [91]. Wide area management



Chapter 2. Literature Review 32

system estimates, gathers and investigates data in power systems through SDN and NFV. The

work [92] is implemented in Mininet setup and Ryu controllers to realize the quality of service

(QoS) requirements like reducing round-trip latency and packet loss and exploiting the network

resources optimally. The increase in traffic volume and service demand in telecom operators

are addressed through NFV functions deployed as virtual machines in cloud environments. The

authors studied VNF placement through the Mixed Integer Programming (MIP) model and

solved it using the Gurobi solver for a topology of 28 nodes and 41 links. However, this model

takes a significant time to converge and can be challenging to apply for real-time evaluations

[93].

2.5.3 Application aware routing

Bagaa et al. [94] have shared three solutions for multipath forwarding. In this setup, an

orchestrator communicates the resource demands among the access points and switches. The

SDN controller executes the proposed algorithms to optimize resource allocation.

The first solution is Full Paths Re-computation (FPR), which applies a linear integer programming

technique that leverages branch and bound methods. However, it is not time efficient as it

consumes exponential time. The second solution, Heuristic Paths Re-computation (HPR),

explores Dijkstra’s shortest path algorithm, and the output comprises activated switches and

assigned paths. The above solutions reduce operational expenditure but ignore several pivotal

QoS KPIs. Further, the work doesn’t describe the algorithm design for multiple controller

planes and distributed coordination of the computed paths. The third solution, Partial Paths

Computation (PPR) is a greedy algorithmic design where the shortest routing paths are computed

and allocated for the new requests while ignoring the previous allocation, which would become

suboptimal with time.

Diffserv defines a scalable mechanism for classifying the network traffic and providing QoS for

IP networks. It classifies through QoS tolerance limits comprising attributes such as packet loss,

delay, and jitter. For each service class, like signalling, streaming, and real-time - low latency

data, the tolerance limits are baselined [95].

Network Situation Aware Framework (NSAF) [96] applies a genetic algorithm for examining every

application’s QoS requirements, observes the current status, identifies the violation, and finds

the suitable path for fulfilling the specifications. This framework lies between the control and
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application layers and acts as an intermediator between them. It manages the QoS requirement

of the application and controls the SDN controller.

NSAF handles 12 different application types described by DiffServ classes. It employs the digest

algorithm and makes use of a T-score based on average, a standard deviation of QoS attributes.

A latency-aware optimization model (directMIN ) for provisioning 5G slices in cloud networks

is studied [97]. This work proposes networkAware mode to balance the trade-off between

resource/energy consumption and realized latency.

A slice-tailored resource allocation, scheduling, and selection of Backhaul (BH) link maximize the

total BH throughput. This work complements adaptive routing and small cell-related operations

focusing on throughput-oriented slices [32].

The focus of this work is limited to analyzing primitive metrics such as bandwidth allocation

and overall time to bring up switches for a slice [98]. The existing literature has not studied

the QoS holistically to cater to tailored offerings for network setup in unison with SDN, NFV,

and slicing to the best of our knowledge. In Chapter 6, we study QoS through holistic metrics

collection, monitoring, and analysis through application-aware QoS routing in SDN and NFV

for customized requirements in a 5G network slicing setup, which would be vital to meet the

SLA requirements.

2.6 Fair Co-existence and QoS in 5G Wi-Fi Co-existence

Wi-Fi 6/6E and Private 5G are complementary solutions as both support dense IoT environments,

new applications, and use cases targeting high throughput, low latency, and high capacity. Private

5G networks support wide-range indoor and outdoor deployments. It enables high-capacity

throughput and coverage in both dedicated and shared spectrum. Particularly, Licensed-Assisted

Access leverages the 5 GHz unlicensed band in combination with the licensed spectrum to deliver

a performance gain for mobile devices. In contrast, Wi-Fi 6/6E targets short-range indoor

deployment, upholding similar throughputs.

Wi-Fi 6/6E and Private 5G together can grow its prospects across multiple initiatives. For

example, in education, students can learn better with immersive learning (virtual reality) serviced

by Wi-Fi. A cellular base station can connect buildings and track transportation across the
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entire campus. The Wi-Fi 5G co-existence is exciting and of particular interest to the research

community due to fair proportional user sharing.

2.6.1 Challenges in 5G Wi-Fi Co-existence

The frequency bands of 5G and Wi-Fi are in close proximity. The unchaining of frequency bands

leads to interference, and these technologies lack a means of coordination among them. The

prominent mechanisms that facilitate fair co-existence between Wi-Fi and cellular are Medium

Access Control (MAC) based, which are a) Listen-Before-Talk (LBT) and b) Duty-Cycling (DC).

LBT is a technique where radio transmitters first sense if the channel is busy. The device can

start transmitting the data if it finds the channel idle. This methodology applies two algorithms,

namely Carrier Sensing and Energy detection, to determine whether the radio channel is free. If

it detects the channel is occupied, the user waits a random amount of time before re-applying

the technique.

The LBT technique is combined with the complementary Distribution co-ordination Function

(DCF). Here, when the device wants to transmit, it waits for a small amount of time equal

to DIFS (Distributed Inter-Frame Space) if it finds the channel idle. Then, the device again

senses the medium. The device sends a Request to Send (RTS) signal if the medium is still

free. Once the user receives the Clear to Send (CTS) message from the BS, the user starts the

data transmission. In case of a failed transmission, the user enters a randomized truncated

exponential backoff period.

In a binary exponential backoff algorithm, after c collisions, each retransmission is delayed by

a random number of slots between zero and 2log2(CWmin)+c. After a successful transmission,

the backoff counter is reset to zero. The truncated variant implies that the exponentiation

stops after a specific backoff counter value increases. CWmin and CWmax are minimum and

maximum contention windows of the truncated Carrier Sense Multiple Access (CSMA) / Collision

Avoidance (CA) exponential backoff. A busy channel does not cause a backoff, but only causes

the backoff counter (b) to freeze.

b = rand(1,min{2log2(CWmin)+c, CWmax}) (2.1)
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LBT squanders critical time resources over the air to decide the user contention when implemented

inaccurately. The devices require transmitters to sense over time to acquire the channel. It could

lead to battery drain in mobile devices.

Duty-Cycling (DC) allows cellular systems to transmit only in a portion (α) of fair time in a

period T . The rest of the time (1− α) would be utilized by Wi-Fi devices for communication.

Here, cellular devices do not sense the carrier before transmission. Instead, it achieves data

transmission in a deterministic manner controlled by a centralized access mechanism in the

cellular BS.

Wherein the Wi-Fi users follow carrier sensing and DCF mechanisms. Hence, these users transmit

when the carrier is free and follow exponential backoff if the channel is occupied. Additionally,

Wi-Fi devices are unaware of the presence of a cellular system.

The main concern of duty cycling is that, since cellular devices do not perform carrier sensing

before transmission, ongoing Wi-Fi transmissions at the end of the current period ((1− α)T )
spill into the cellular portion of the next period (αT ). It leads to interference of Wi-Fi packets

with cellular transmissions at the start of the next period. This interference occurs due to no

coordination among Wi-Fi and cellular systems.

2.6.2 Inter Technology Communication

LAA-as-a-Service (LAAS) is applied in the network slicing framework to improve RAN perfor-

mance across slicing [99]. This work studies dynamic radio topologies through nomadic movable

access nodes with LAAS to complement the ultra-dense networks for various key performance

indicators (KPI) based on the deployment requirements.

Here, the licensed channel remains the primary carrier, and the unlicensed band can provide

the best-effort service to boost availability, reliability, and performance. While License Assisted

Access (LAA) is actuated through LBT, challenges such as delay in LBT in heterogeneous

environments and hidden terminal problem between Wi-Fi and cellular technology has to be

studied.

The system parameters such as initial backoff duration, transmission opportunity (TXOP) of

LAA, packet length, and transmission rate of Wi-Fi are tuned for maximizing the total network

sum rate of LAA-Wi-Fi co-existence. This study also compares the various scenarios wherein the
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network performance of LAA-Wi-Fi. and LAA-Wi-Fi considers duty-cycle-based transmissions

for the cross-technology co-habitants.

In the physical layer, this work [100] studies the co-existence of Wi-Fi and cellular networks

under the same frequency and time domain. The power domain is used to accommodate the

heterogeneous neighbour.

Inherently, the LTE scheduler blacklists the usage of specific resource blocks in each time slot.

Wherein the Wi-Fi interleaves payload-generating bits in the proper position with low-power

constellation points. The power of unaffected and affected subcarriers differs by 13 dB.

The authors in [34] study MAC-based duty cycling in the LTE-U and Wi-Fi co-existence.

This work analyzes the performance of LTE-U interference and Wi-Fi performance in terms of

throughput and fairness. In duty-cycling, Wi-Fi employs DCF CSMA/CA with exponential

back-off. When the LTE-U transmission with Interference to Noise Ratio (INR) is higher than

-62 dbm or a neighbour Wi-Fi station transmission with INR greater than -82 dbm, it will cause

the interfered Wi-Fi station to freeze its back-off timer. The authors refer to weak interference

as the LTE-U interference with INR less than -62 dbm and strong interference with INR greater

than -62 dbm. Firstly, this work demonstrates that this co-existence using simple air time-sharing

is generally unfair to Wi-Fi during weak interference. Secondly, it shows that co-existence can

achieve fair sharing under strong interference for some (T, α). Thirdly, this work illustrates that

fairness degrades linearly when Wi-Fi payload length or LTE-U to Wi-Fi collision probability

increases. The authors recommend a version of the LBT mechanism for LTE-U networks to

overcome the observed unfairness.

The authors suggest that LBT has the potential to serve as a unified global solution framework.

It identifies frame-based and load-based equipment as add-ons that can be deployed along with

LBT for low interference and higher efficiency.

Frame-based LBT (FLBT), similar to Carrier Sense Adaptive Transmission (CSAT), decomposes

air time channels into continuous frames with a fixed duration. FLBT divides each frame into

an idle (10-100 µs) and channel occupancy period (1-10 ms). The LTE must remain muted in

this idle period, and after it completes, it invokes clear channel assessment. When the channel is

idle, LTE can transmit.
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Load-based LBT doesn’t follow a fixed frame structure. If the channel is idle during channel

sensing, it enters an extended clear channel assessment of 34 µs instead of transmitting immedi-

ately. If the channel is still idle, it tries to acquire the channel. This mechanism avoids one node

monopolizing the channel usage.

The authors [101] focus on real-time deployment aspects of coexisting networks. It studies

fundamental parameters such as latency of Wi-Fi connection affected due to co-existence.

Similarly, it analyzes the energy-sensing threshold of Wi-Fi that affects the latency and throughput

of its devices. The work outlines the diversified concerns in the co-existence of cellular and IEEE

802.11 technologies in the unlicensed bands in coordination, fairness conditions, transmission

techniques, regulatory requirements, deployment scenarios, and standardization efforts [102].

This work [103] examines wireless interference identification techniques in co-existence manage-

ment amongst heterogeneous technologies. The methods discussed are limited to hardware or

the physical layer.

2.6.3 Selfishness in CSMA/CA

In this work, we discuss the effect of selfish nodes on the LAA-Wi-Fi co-existence. It is a crucial

problem to address since we discuss the co-existence, and that to be fair.

In conventional CSMA/CA Networks, Mario et al. [104] study the greedy behaviour of nodes,

where users are static and mutually reachable to avoid hidden terminal problems. Esmalifalak

et al. [105] assume apriori knowledge on the number of devices in the network to gauge the

optimal throughput of selfish nodes. Thereby, this work calculates the transmission probabilities

to optimize network traffic. In reality, these assumptions are unviable. Here, the selfish nodes

aim to increase their common transmission resource by decreasing the backoff window size value.

Vaidya [106] proposes a methodology where the receiver-assigned backoff value is validated by

the sender to identify the misbehaviour of the former node. However, these require changes to

the current protocol.

The network performance impact is studied for IEEE 802.11 when the selfish nodes are pro-

grammed not to obey exponential backoff [107]. Not only malicious, but selfish users can

increase its throughput, significantly impacting well-behaved user operations. The well-behaved

user and misbehaving nodes are modelled to show how the access probability of selfish nodes
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increases against regular users. Mainly, denial of service for legitimate nodes due to selfish users

is presented. Additionally, the work discusses a Nash Equilibrium while obtaining equitable

throughput among selfish users when multiple selfish users are present in the Wi-Fi network.

The authors [108] show when a selfish user exhibits perpetual fixed window backoff patterns, these

selfish users affect the channel acquisition of legitimate users. However, if an intermittent fixed

window backoff pattern or perpetual reduced exponential backoff is applied, the misbehaving

node converges with the legitimate node on acquisition and throughput.

CRISP [109] and Bayesian estimation [110] are counteraction strategies applied when selfish

users are present in the Wi-Fi-only network. Here, legitimate Wi-Fi users also use a greedy

approach to obtain equal bandwidth as selfish Wi-Fi users. However, by applying these methods

in a co-existing network, all Wi-Fi users may be greedy and cellular users would be legitimate.

Hence, these strategies don’t work in a co-existing network.

We perform an in-depth investigation of the detrimental effects of selfish Wi-Fi users on the

co-existing network in Chapter 7. For both duty-cycling and listen-before-talk, we study the

counteraction action strategies for various network configurations.

2.7 Chapter summary

This chapter undertook a review of resource allocation strategies in NS and the significance of

QoS-based scheduling and energy efficiency. We also examined the QoS attributes in S1AP and

IP protocols and application-aware routing procedures. We studied the importance of SINR,

CQI, QoS of devices, and load balancing in the 5G micro infrastructure. We deep-dived into

co-existence challenges for 5G use cases in the unlicensed spectrum.

♦



Chapter 3

Traffic Classification and Resource

Allocation in Network Slicing

3.1 Introduction

Network slicing is a key enabler for 5G for supporting custom requirements. The objective of

the chapter is two-fold. Firstly, the resource allocation in network slicing needs to factor in

operational efficiency, network performance, and timeliness KPIs. We implement QoS-based

resource allocation in network slicing, combining MADM with AHP to maximize stakeholder

objectives. The maximum possible flows are computed through Enhanced Dinic algorithms.

Secondly, we deep dive and consolidate a list of QoS parameters across the Internet and Radio

Access Technologies (RATs) such as 4G and 5G. We apply standard ML regressors to compute

the priority of the network packets and compare their results. Subsequently, we propose a

probabilistic class-based scheduling and theoretical results of this algorithm is detailed for M/D/1

and M/D/c models. For resource allocation, we propose a novel Virtual Backbone and Cognitive

cycle based solution. The fitness function comprises a list of parameters around energy savings,

latency, bandwidth, and cost to the operator, and is studied as a multi-objective optimization

problem.

The system model and problem formulation are discussed in sections 3.2 and 3.3, respectively.

The proposed algorithm for managing stakeholder objectives and its results are examined in

section 3.4. The detailed study of QoS parameters in S1AP and IP protocols and the use of these

39
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attributes in traffic classification are studied in section 3.5. Class based scheduling is discussed

in section 3.6. Virtual backbone and Cognitive cycle-based solutions for joint QoS and energy

savings are discussed in section 3.7. The simulation setup for Network slicing is presented in

section 3.8.

The results and analysis for QoS-based resource allocation through analytical hierarchical

processing and MADM are studied in 3.9. The results of traffic classification are studied in

3.10. The results of virtual back and cognitive cycle-based solutions for joining QoS and energy

savings are presented in 3.11.

In this chapter, we have addressed two distinct problems. The first one involves studying resource

allocation to meet stakeholder objectives related to timeliness, operating efficiency, and network

performance. The second problem, still within the domain of resource allocation, explores the

joint study of QoS attributes for achieving differentiated services and energy savings. Due to the

distinct nature of these problems, we have employed different approaches here.

3.2 Network Slicing System Model

The system is modelled with the following groups of parameters:

Fixed parameters: The physical network is represented as G = {N,E, ζ, ω} where N and E

represent Nodes and Edges in the network. ζn and ζn,m indicate the capacity of node n and link

(n,m), where capacity refers to the throughput supported by the access point and connection

link, respectively. Once a fraction of capacity is allocated, the allocatable capacity reduces. Let

the residual capacities of nodes and links be represented as Υn and Υn,m. ωu,v stands for the

weight between two dissimilar nodes u and v. ωU ,AI would be first-hop weight between the

end-user and air interface.

The weight assigned to the air interface (wai) and edges (wei), i ∈ {T,CN} directly corresponds

to the operational cost in air interface selection, transport cost, and core network routing. The

overall operational cost of a network slice is defined as the sum of the products of the fractional

allocation percentages of the air interface, edges, application server, and their respective weights

(costs). Here, we refer to dissimilar nodes as the nodes within the network that may possess

distinct characteristics, configurations, or functionalities. More specifically, these differences
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can encompass variations in capacity and functional aspects, including elements like application

servers, air interfaces, and other node-related disparities.

Input variables: Inputs are the slice(s) to be allocated. A slice is denoted through S. NS are set

of slices (logical networks) over a physical substrate,

S1 ∪ S2 ∪ S3 ∪ S4.. ∪ Ss

A slice request consists of demand d̂ (in terms of bandwidth) and resources needed (e.g., an

application or network functions hosted on the core network). The slice request would contain a

detailed specification and SLA covering parameters like reliability, security, peak bandwidth,

average bandwidth, and acceptable latency.

The Slice request can be expressed as a tuple (d̂, R, SLA), where:

- d̂ represents the bandwidth demand.

- R is a set that includes resources like air interfaces (AI), core network nodes (CN), and

application servers (SV ).

- SLA encompasses service level agreement parameters such as Latency (Lreq) of a request,

operational cost (OC), and reliability parameters such as availability (Av).

Control parameters: The selection of nodes and edges along the path are the tuning knobs.

Control parameters encompass choices related to selecting or adjusting elements such as the air

interface, nodes, edges along the path, and application servers. These choices directly impact

the achieved bandwidth, latency, and operational cost of the network slice.

In a network, a path P refers to the route or sequence of network elements and connections

taken by data or traffic as it travels from a source to a destination. This path includes various

components and stages, which may include:

- Source: The starting point of the data transmission, often a device or User Terminal (UT )

that initiates the communication.

- Air Interfaces (AI): These are wireless communication interfaces or access points that

facilitate the wireless transmission of data. Air interfaces are commonly used in wireless

networks such as Wi-Fi, cellular networks, and satellite communications.
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- Transport Network: This part of the path involves the intermediate network infrastructure

that transports data between different locations. It may include switches, routers, and

optical fiber links, depending on the network technology. Nodes are represented by {T1, ..Tt}.
Edges between air interface and first node in the transport network is denoted by EAI ,T1

.

- Core Network Nodes: These are key nodes or network devices that play a central role in

routing and forwarding data within the network. Core network nodes are responsible for

efficient data transport across the network, and nodes are represented by {CN1, ..CNcn}.
Edges between egress node from transport and ingress node in core network is denoted by

ETt ,CN1
.

- Application Server (SV ): An application server is a dedicated server or software component

that hosts and provides various network functions or applications. It may serve as the

endpoint for specific services or applications in the network. Here network functions can

be hosted such as baseband processing, data processing, or other specialized functions.

The path in a network represents the complete journey of data or traffic as it traverses through

these components, starting from the source, passing through air interfaces, transport and core

network nodes, and eventually reaching the application server where it may interact with network

functions or applications. This path is crucial for understanding how data flows within a

network and for optimizing network performance, reliability, and latency based on the specific

requirements of the applications and services being used.

Output variables: Outputs are the virtual paths of an individual slice represented by a function

ψ, whose arguments would be a tuple of Path P and Slice S. ψ returns a boolean value. In

this output setup, a virtual path P on physical network G can be allocated to only one slice.

However, the proposed algorithm can be extended for nested virtual path allocation.

ψ(Pi, Sj) =


True, if Pi ϵ slice Sj allocation

False, otherwise

(3.1)

Let ϑ be |P | × |AI| matrix containing the allocated percentage of air interfaces AI in the path P.

Similarly ℓ and η are 2D matrices |P | × |E|, and |P | × |N | respectively, indicating the allocated

portion of edges E and reserved capacity of Nodes N to the path P. The values in the above

matrices would be between 0 and 1, indicating the fraction allocation of the paths.
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Cost of slice S from an edge E with a demand d̂ (percentage of usage of total capacity) is d̂swE .

The cost of air interface network selection AI is d̂swAI .

3.3 Problem Formulation

Providing end-to-end services through NS is a combined optimization problem between different

network components. Below, the optimization constitutes operational efficiency (the cost to the

network operator), Network Performance, and customer QoS satisfaction (Bandwidth, Latency).

The cost of a Slice Si comprises of three components:

i) Cost of Network Selection:

CNS =
∑P
p=1 ψ(p, Si) ·

∑AI
ai=1[ϑp,ai · wai]

ii) Cost of Transport and Core Network routing:

CT,CN =
∑P
p=1 ψ(p, Si) ·

∑T+CN
et=1 [ℓp,et · wet ]

iii) Cost of the application server CSV .

The Operational Cost (OC) of all input slices (NS) to the network operator and the constraints

can be formulated as:

OC =

NS∑
s=1

P∑
p=1

ψ(p, s) ·
[
AI∑
a=1

ϑp,awa +

T+CN∑
et=1

ℓp,etwet

]
+C

A
(3.2)

∀ai,
P∑
p=1

ϑp,ai ≤ 1,∀Si,
P∑
p=1

ψ(p, Si) ·
AI∑
ai=1

[ϑp,ai × ζai] = d̂Si (3.3)

∀e,
P∑
p=1

ℓp,e ≤ 1,∀Si,
P∑
p=1

ψ(p, Si) ·
T,CN∑
et=1

[ℓp,et × ζet ] = d̂Si
(3.4)

∀n,
P∑
p=1

ηp,n ≤ 1 (3.5)

The equations (3.3), (3.4), and (3.5) bounds maximum allocation along each edge and node.

(3.5) is applicable for the nodes in transport and core network part of slice allocation. (3.3) and

(3.4) provide constraints around bandwidth allocated to each slice.

Bandwidth aside, QoS related parameters such as request latency and path length has to be

minimized, and reliability has to be maximized. To improve the operational efficiency, the cost
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to the operator needs to be maximized as shown in (3.2). For a given request, the end-to-end

latency would span from RAN, Transport (T), Core Network (CN), and application processing

time.

Lreq = 2 ·
[
Lai +

T,CN∑
et=1

Let

]
+ LSV (3.6)

Lai =
Length(Pkt)

ϑut,ai · ζai
+ Tprai +

(
Tpraiλ

m
)
√

2(m+1)−1

m− λTprai

· Cv
2
a + Cv2p
2

(3.7)

Latency on a given e(u, v) in (3.7) involves the transmission time of the source node, propagation

delay over the link, queuing delay, and processing time on the target node. Propagation delay

involves the time taken to transfer the packet size Length(Pkt) over an allocated edge. In the

given model, M/M/m queuing model is considered, where m is the number of parallel processing

units, Tprai is the processing time of a unit, λ is the rate of arrival, and Cva and Cvp indicates

the coefficient of variation of service time and average inter-arrival time. The latency of a request

is denoted by Lreq. The total latency would be round trip time comprising nodes in the traversed

path of RAN, Transport, and backhaul links as shown in (3.6) and (3.7). The overall path length

(PL) of a request in path pi is

PL = 2 +

T,CN∑
et=1

ℓpi,et (3.8)

The availability of a path would depend on all the nodes serially between the air interface,

transport, core, and application server. Av = ρAI .ρT .ρCN .ρSV .

From above, multiple attributes are being optimized, where the path should be allocated such

that QoS, QoE, and QoBiz parameters are optimized.

The operating cost is a financial metric representing the expenses incurred by the network

operator in maintaining and operating the network infrastructure, including factors like power

consumption, maintenance, management, and other associated costs.

These are all components that contribute to the overall operating cost, and when formulated

into an equation, the result would be expressed in a specific currency unit (e.g., dollars) as it

represents the financial impact on the network operator’s resources.

Eqns. (3.3)-(3.4) represents the bandwidth allocation in megabits per second (Mbps) or gigabits

per second (Gbps) for a given slice based on the demand.

In Eqn (3.5), the allocated fractional bandwidth from a specific link should be less than or equal

to its residual bandwidth, which is again represented in Mbps or Gbps. The unit of overall

latency in Eqn (3.6) is represented in milliseconds (ms).
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Table 3.1: QoS-Based Analytic Hierarchy Process

Timeliness Network Performance Operational Efficiency

Latency Availability Cost

Path Length Throughput Benefit

3.4 Proposed QoS-Driven Resource Allocation Algorithm for

Tailored Offerings for end-to-end Network Slicing

A hybrid MADM and Analytical Hierarchy Process (AHP) with levels of QoS parameters are

proposed to address this problem. It is tabulated in Table 3.1.

We propose an online algorithm which processes the slice allocation request. The algorithm

operates in real-time, allocating network slices as incoming requests arrive based on available

bandwidth. In summary, the term ”online” indicates that the algorithm operates continuously,

responding to network slice requests in real-time as they arrive rather than processing them in a

batch or offline mode.

Algorithm 1: ENHANCED DINIC PATH FINDER(UT , SV )

Paths = ϕ, total = 0
while (BFS(UT ,SV )) do

pt ← ϕ ;
flow ← SendFlow(UT ,∞,SV ,pt);
if !pt.isEmpty() then

Paths.add(pair(flow,pt));
total += flow;

else
return Paths ;

Algorithm 2: BFS(s, t)

∀ n, level[i] = −1; level[s] = 0 ; Q.push(s) ;
while !Q.isempty() do

u← Q.pop() ;
for each e : adj[u] do

if level[e.v] < 0 && Υe < ζe then
level[e.v] = level[e.u] + 1 ;
Q.push(e.v) ;

return level[t] < 0 ? false : true ;
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The proposed approach begins by invoking Algorithm 1, called ”ENHANCED DINIC PATH FINDER,”

to find the maximum possible paths from a user terminal to an application server. The User

Terminal set (UT) represents a collection of user terminals in the network, which acts as

the source of slice requests, denoted as UT = {u1, u2, u3, ..., un}. The Application Server set

(SV) represents application servers that serve as the destination of slice requests, defined as

SV = {sv1, sv2, sv3, ..., svn}. These are the input parameters of this algorithm.

In essence, this algorithm 1 invokes a path-finding component within a network flow optimization

process. It uses the Breadth First Search (BFS) algorithm to explore paths between user

terminals and application servers, sending flow along these paths and keeping track of the

discovered paths and their associated flow values in the Paths set. The algorithm terminates

when no more paths can be found and returns the set of discovered paths along with the total

flow value.

The pseudocode for Algorithm 1 can be elaborated as follows:

- We initialize two variables: Paths as an empty set and total as 0.

- It enters a while loop that continues until the Breadth-First Search (BFS) algorithm

between the user terminals (UT ) and application servers (SV ) returns true, indicating

that there are still paths to explore.

- Inside the loop, we create an empty path variable pt. Then, we invoke the SendFlow

function with parameters (UT , ∞, SV , pt).

- The output i.e., the path pt variable is checked if it is not empty. If pt is not empty, a valid

flow path has been found. We add a pair consisting of the flow value (flow) and the path

(pt) to the set of Paths. We update the total flow value by adding the newly found flow.

- If the path pt is empty, algorithm returns the set of Paths. This implies that no further

paths can be found, and the algorithm terminates.

Algorithm 2 employs BFS to determine flows between source and destination and to form a

level graph. Each node is assigned a level, representing its shortest path length from the source.

The level graph then triggers Algorithm 3, known as SEARCH PATH, to locate multiple flows

in the graph. This process continues until a blocking flow is reached. The algorithm traverses

the graph, considering the residual capacities of nodes and edges. SEARCH PATH recursively
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Algorithm 3: SEARCH PATH(u, flow, t, pt)

if u==t then return flow ;
edgeList← adj[u] ;
while !edgeList.isempty() do

e← edgeList.get(R.nextInt(edgeList.size()) ;
if level[e.v] < 0 && Υe < ζe then

currF low = min(flow,Υe − ζe);
tempF low = SEARCH PATH(e.V ,currF low,t,pt) ;
if tempF low < 0 && !pt.isempty() then

Υe += tempF low ;
adj[v][e.rev] -= tempF low ;
pt.add(e) ;
return tempF low ;

else
pt ← ϕ ;

identifies paths, which are collected in the Paths set. These paths are finite alternatives and are

evaluated based on various decision-making attributes.

The pseudocode of the SEARCH PATH algorithm, which finds a path in a graph from node u

to node t while respecting certain constraints, is explained below:

- If node u is target t, we return the flow.

- We get the edges connected to u in edgeList.

- While edgeList is not empty, we randomly select an edge e from edgeList. We check if

e.v is unvisited (level[e.v] < 0) and if capacity constraints are met.

- If constraints are met, we calculate currF low as the minimum of requested bandwidth

and available capacity. Recursively, we then call SEARCH PATH function.

- If a valid path is found, we update capacities and add e to pt. We return the flow.

This algorithm efficiently explores paths from u to t, adjusting flows and respecting constraints

to find a suitable path or return false if none exists.

The assessment results are stored in matrix A, where Aij represents the value of alternative

i against attribute j in Algorithm 4. To make comparisons across different attributes and

ensure consistency, matrix A is normalized using the Enhanced Max-Min method (EMM), where

0 represents the worst rank, and 1 represents the best rank. Before evaluation, weights are
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Algorithm 4: ALLOC SLICE(S.Req)

Paths← PATH FINDER(S.Req.src, S.Req.res) ;
A← populateAttri AlternatesM(Paths,Attr) ;

Â← normalize EMM(A) ;
allocated← 0 ;

while allocated < d̂S do
WgtA,WgtH ← AssignWgtEntropy(H,Attr) ;

WH ← eval Attr Within Hierarchy(Â,WgtA, H) ;

ŴH ← normalize EMM(WH) ;

AH ← eval Across Hierarchy(ŴH,WgtH , H) ;
newflow ← 0, BP ← AH.nextBestPath() ;
pathflow ← BP.left, P ← BP.right ;

if pathflow > d̂S then
if allocated > 0 then

newflow ← (d̂S − allocated); ;
else

newflow ← d̂S .half() ;

else

if pathflow ≥ (d̂S − allocated) then
newflow ← (d̂S − allocated) ;

else
newflow ← pathflow ;

allocatedF low + = newflow ;
ϑ(P, pAI)← pathflow/ζAI ;
ΥAI ← ΥAI − pathflow ;
ψ(P, S)← 1 ;
for e = pAI .next() toS.Req.res do

ℓ(P, e)← pathflow/ζe ;
η(P, e.u)← pathflow/ζe.u ;
Υe ← Υe − pathflow ;
Υe.u ← Υe.u − pathflow ;

computed using the entropy function. Within each group, a Simple Additive Weighing (SAW)

method is used to compute CSAW for each path against each attribute. At the hierarchy level,

these values are aggregated. The attributes within each hierarchy are detailed in Table 3.1.

The table represents the proposed hierarchy for evaluating Quality of Service (QoS) in network

performance. This hierarchy helps in a comprehensive QoS assessment. It has three main

categories:

- Timeliness (Latency, Path length): Focuses on network responsiveness, measuring attributes

like latency (delay) and path length (distance).
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- Network Performance (Throughput, Availability): Evaluates overall network performance,

considering throughput (data processing capacity) and availability (uptime).

- Operational Efficiency (Cost, Benefit): Assesses network efficiency and cost-effectiveness

by examining costs and overall benefits.

The finest path with the highest coefficient value across the hierarchy is selected. This process

continues until the slice request’s demand is met. ψ(P, S) is set for the allocated paths, and

the residual capacities of nodes (ΥN ) along the path are reduced. Matrices ϑ(p, ai), ℓ(p, e), and

η(p, n) capture the allocated percentages, while ψ(P, S) represents the final outcome of the slice

allocation problem.

On slice request arrival, we invoke SEARCH PATH, which computes the maximum possible

paths between the requested source and destination. The time complexity is O(EV 2). All the

paths are evaluated against each criterion C, and the decision matrix A is attained, which takes

O(PC) time.

WgtA = 1− 1

lnP
·
P∑
p=1

[Apj ln(Apj)] (3.9)

WHHi,p =

|HAttr|∑
j=1

WgtA,jÂpj (3.10)

CSAW =

|H|∑
j=1

WgtH,jŴHpj (3.11)

EMM =


1− |Apj −max(Apj)|

max(Apj)−min(Apj)
,Upward attributes

1− |Apj −min(Apj)|
max(Apj)−min(Apj))

,Downward attributes

(3.12)

Av ≥ 1− (1− (ρAI .ρT .ρCN .ρSV ))
2 (3.13)

The entropy function to calculate the weight of attributes (3.9) takes just O(P) time. The

decision matrix is normalized through the EMM method denoted in (3.12).

In the proposed algorithm, the Enhanced Max-Min method (EMM) is used to normalize the

values of decision-making attributes to a common scale, where 0 represents the worst, and

one represents the best. This normalization process ensures that attributes with different

measurement units or scales can be effectively compared and combined in the decision-making

process. The weights assigned through the entropy function and the Simple Additive Weighing
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(SAW) method help prioritize the attributes and alternatives based on their importance and

performance.

When the identified paths identified by Algorithm 1 are fewer, the relativity in normalization could

be skewed. Hence, EMM is tweaked during such runs, where min is set to a minimum acceptable

value. The well-known compensatory algorithm, Simple Additive weighing, is applied within

attributes in the hierarchy and across the hierarchy as shown in (3.10) and (3.11). It consumes

O(C) and O(H) time, respectively. Our algorithm provides at least one-to-one redundancy of

paths during average traffic. The availability is shown in (3.13).

Algorithm 1 details Breadth-First Search (BFS) Layering: The Enhanced Dinic’s algorithm

starts by constructing a level graph using BFS. This step has a time complexity of O(V + E),

where V is the number of vertices and E is the number of edges in the network. Algorithm 2

controls the Blocking Flow Phase. The layered graph finds augmenting paths in each blocking

flow phase. Each BFS takes O(V + E) time. However, each augmenting path is found in O(V)

time since each vertex can be visited at most once, and each edge can be examined at most twice

(once for forward and once for backward edges). Algorithm 3 defines the number of Blocking

Flow Phases: In the worst case, the number of blocking flow phases can be O(V ), leading to a

worst-case complexity of O(EV 2). Overall, the Enhanced Dinic algorithm’s time complexity is

typically O(EV 2), which can be significantly improved for networks with certain characteristics.

In Algorithm 4, each path P is evaluated against each criterion C, and the decision matrix A is

attained, which takes O(PC). The entropy function to calculate the weight of attributes takes

just O(P ) time.

3.5 QoS attributes and Traffic Classification

Differentiated services play a critical role in ensuring Quality of Service (QoS) in cellular networks.

The QCI (QoS Class Identifier) values, ranging from 1 to 254, are defined within the S1AP

protocol. The setting of QCI values lacks centralized control and validation, making it a non-

standard parameter. The existing literature does not provide a detailed and comprehensive

study of QoS attributes.

As 5G would conglomerate multiple tiers and RATs [20]. There is a need for traffic classification

algorithms [12] and identifying the right set of attributes for segregating the packets in 5G for

improved differentiated services and to meet the QoS requirements.
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Our approach for traffic classification is as follows:

a) Data Collection:

The S1 Application Protocol (S1AP) facilitates signalling between E-UTRAN and the Evolved

Packet Core (EPC). Within S1AP messages, attributes such as QCI, allocation retention priority,

and pre-emption vulnerability function are encompassed. These attributes are particularly

relevant during the E-Ultran Radio Access Bearer (E-RAB) establishment or modification, where

packets carry essential Quality of Service (QoS) parameters. These packets, dispatched by the

Mobility Management Entity (MME), are utilized by the eNodeB to allocate resources for one

or multiple E-RABs.

Initially, data was sourced from various origins in the form of packets. Subsequently, these

packets underwent analysis using Wireshark. Applying Wireshark’s robust expressions, filters,

and column selectors, the pertinent fields were extracted and exported in CSV format. Specifically,

the analysis encompassed PCAP files related to VOIP calls, captures for traffic analysis, initial

Context Setup, iPhones employing VoLTE on their respective networks, E-UTRAN Radio Access

Bearer (E-RAB) Management procedures, UE Capability Information, Tracking Area Update

requests, E-RAB Modify Requests, Ciphered messages, and Activate Default EPS Bearer Context

requests. The evaluation focused on selecting sources, particularly prioritizing materials like

the Initial Context Setup Request, Attach Accept, and Activate Default EPS Bearer Context

Request, all of which are extensively documented [111].

b) Feature Extraction and Cleaning:

Attributes considered for learning are tabulated. Table 3.2 lists the parameters along with its

measurement units and PRotoCol (PRC). Most QoS attributes are present in the S1 Application

Protocol, and the rest are from IP Differentiated Services. Categorical values such as QCI and

DSCP are elaborated into more fields due to their inherent importance. For instance, from QCI

- the parameters are Resource Type (GBR/Non−GBR) and Service Types. The standard QCI

characteristics are broken down as per [112].

Recently, while establishing the formal specification for QoS in 5G, QCI is extended as 5QI (5G

QoS Identifier). 5QI is a pointer to a set of QoS characteristics such as priority level, packet

delay or packet error rate [113],

The difference between QCI and 5QI is conceptually exactly the same. Hence, in the thesis,

we have referred to the QCI metric as it is more prevalent in real-world packets, as 5QI is just
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Table 3.2: Attributes used in Traffic Classification

Parameters Measurement units PRC
QCI [0.1-10] s1ap
Packet Length Length in Bytes na
Info Description na
uE aggregate MBR UL Bits per sec s1ap
uE aggregate MBR DL Bits per sec s1ap
ARP Priority High(1)-Low(15) s1ap
Pre Emption Capability 0,1 s1ap
Pre Emption Vulnerability 0,1 s1ap
QoS Delay Class 1-4 s1ap
Reliability Class 1-4 s1ap
Peak throughput Octets per sec s1ap
Precedence Class 0-7 s1ap
Traffic class 1-4 s1ap
Delivery Order Delivery Order no s1ap
Erroneous SDU delivery Whether Discarded s1ap
Maximum SDU Size in Octets s1ap
Maximum Bit Rate for Uplink kbps s1ap
Maximum Bit Rate for Downlink kbps s1ap
Residual Bit Error Rate Fractional Value s1ap
SDU Error Ratio Fractional Value s1ap
Transfer Delay ms s1ap
Traffic Handling Priority Relative Importance s1ap
GBR for uplink kbps s1ap
GBR for downlink kbps s1ap
ECN Whether Enabled ip
Src Statistic Descriptor 0,1 s1ap
Maximum Bit rate Downlink (Extended) Mbps s1ap
Guaranteed Bit Rate Downlink (Extended) Mbps s1ap
Maximum Bit Rate Uplink (Extended) Mbps s1ap
Guaranteed Bit Rate for Uplink (Extended) Mbps s1ap
Radio Priority Value s1ap
Packet Flow Identifier 1-4 s1ap
APN Aggregate Maximum Bit Rate Downlink kbps s1ap
APN Aggrgate Maximum Bit Rate Uplink kbps s1ap
Total APN Aggrgate Maximum Bit Rate Downlink Ex-
tended

Mbps s1ap

Total APN Aggrgate Maximum Bit Rate Uplink Extended Mbps s1ap
Service Type Description s1ap
DSCP Default,CS1 to CS7 ip
Resource Type GBR/Non-GBR Der
Is Mission Critical Boolean Der
Is Low Latency Boolean Der
Forwarding type based on DSCP AF,DF,EF Der
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formalized. The only difference is that 5QI applies to a flow carried at some point in a bearer,

while QCI applies to a bearer within which certain types of flows are expected.

The service type being descriptive is replaced by a set of boolean attributes. New attributes to

indicate if these packets are mission-critical and belong to the low latency category are framed.

The DSCP field is categorized into assured, expedited, and default forwarding. The output

attribute would be a priority that can hold continuous fractional values between [0.1,10], with

0.1 being the highest priority and 10 being the lowest.

c) Algorithm Selection and Model Construction:

The traffic analysis is performed through supervised techniques like Support Vector Machine,

Random Forest, and Gradient Boosting. These are compared to select the best regressor.

3.6 Priority Class Based Packet Scheduling

We observed in the earlier section the traffic classification module determines the priority of

the packets. It is important to treat priority levels of [0-2) like emergency since it consists of

mission-critical users, along with delay-sensitive and IP Multimedia Subsystem (IMS) packets.

Packets with priority levels 8+ can be scheduled only when the network is available without

contention. These packets form a significant population. We model priority-based scheduling

as a class-based formulation. Priority levels [0-2] are treated as Class A. Classes C [5-8) & B

[2-5), which encompass GBR and Non-GBR flows, constitute a division into B1, B2, C1, and C2

sub-classes as depicted in Figure 3.1. Packets can be ordered as a function of priority arrival

time denoted through Ordering Function Ord(Packets).

The classes can be properly defined as follows:

- Class A (Priority Levels 0-2): This class represents the highest priority packets, including

mission-critical users, delay-sensitive packets, and IMS packets. These packets are treated

as emergency traffic.

- Class B (Priority Levels 2-5): Class B encompasses both GBR (Guaranteed Bit Rate). It

is further divided into two sub-classes, B1 and B2. Here, B1 represents conversational

voice and relative gaming flows, where low packet loss and latency are needed. B2 consists

of other guaranteed bit flows like buffered streaming.
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Figure 3.1: Packet Based Priority Scheduling

- Class C (Priority Levels 5-8): This class includes Non-GBR flows and is divided into two

sub-classes, C1 and C2. C1 represents Non-GBR conversation voice and interactive gaming.

C2 consists of Non-GBR TCP-based applications.

- Class D (Priority Levels 8+): This class represents the lowest priority packets. Packets with

priority levels 8+ can be scheduled only when the network is available without contention.

The priority-based scheduling is modelled using these classes, with different levels of priority

assigned to each class.

Approach 1

Here, the approach for scheduling the packets is deterministic. We have six sub-divisions. We

refer to sub-divisions or classes as Units of Work (UoW ) to be serviced. In a scenario where

every sub-division has a packet to be scheduled:

–At t0, class A is slotted. (Round 1)

–At t1, class A is slotted again. (Round 2)

–At t2, class B GBR is slotted.

–At t3, class A is slotted. (Round 3)

–At t4, class B GBR is slotted.

–At t5, class B non-GBR is slotted.

–At t6, class A is slotted. (Round 4) ...

–At t9, class C GBR is slotted.
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–At t10, class A is slotted. (Round 5) ...

–At t13, class C GBR is slotted.

–At t14, class C non-GBR is slotted.

–At t15, class A is slotted. (Round 6) ...

–At t20, class D is slotted.

In total, it consists of six rounds, and it gets repeated after six rounds. On round i, it covers

i UoW s in i timeslots in the order of priority of UoW . Class A is of the highest priority, and

Class D is of the lowest one. Class A is serviced in every round, whereas class D is allotted only

in the sixth round. If a particular subclass doesn’t have traffic to be serviced, timeslots are

not unutilized but rather identified in advance through an indicator. Through this indicator,

schedulers denote if the UoW needs to be serviced in the round. Hence, every timeslot is

effectively utilized as long as traffic is in the switch.

Approach 2

This approach is based on randomized probability. Much like the deterministic approach, we

have the same concept of classes and UoW . All six sub-class have been assigned a probability:

p1 > p2 > p3 > p4 > p5 > p6, such that the sum of probabilities =1. A sub-class is chosen

based on the outcome of the random variable X. W.r.t every subclass, one can apply geometric

distribution following with success as pi and failure as (1− pi). As approach 1, if the sub-class j

is selected, and if it doesn’t have packets to be serviced, the subsequent next highest priority

sub-class holding the packets is serviced. W.k.t in a typical system, the arrival rate of higher

priority packets is much lower than the default ones. Hence, the exponential distribution is

considered for the packet arrivals whose priority range lies in [0-10].

Packets were scheduled based on priority dealt through precedence classes. Considering the

packets are found in all queues, class j queue would be scheduled for 2
∑n

i (j ≥ i : 1 : 0) times in

every n(n+ 1) timeslots. The probability of the data traffic to be picked up for processing and

transmission is:

For each class j, pj =
2(n− j + 1)

n(n+ 1)
. Assuming the traffic follows exponential distribution and the

model is M/M/1, the probability distribution function of the amount of traffic in each class is:

κ(i) =


1− e−2x, if class i == 1

e−2(i−1)x − e−2ix, if class i ≥ 2

(3.14)
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The overall utilization from each class is given by, ρ(i) =
κ(i)

2µpi
.

ρ(i) =


n(n+ 1)(1− e−2x)

4µ(n− i+ 1)
, class i == 1

n(n+ 1)(e−2(i−1)x − e−2ix)

4µ(n− i+ 1)
, class i ≥ 2

(3.15)

The average time spent for a packet in the queue q belonging to the class i, Wq(Ci) =
κ(i)

µpi(2µpi − κ(i))
. Similarly, the expected number of messages in the queue q of class i is,

Lq =
κ2(i)(n− i+ 1)

µ2n2(n+ 1)2 − µn(n+ 1)κ(i)

For M/M/c queuing model, the overall utilization from each class is given by , ρ(i) =
κ(i)

2µcpi
. From

the same consumption queue, the scheduler dispatches processing for c servers. The expected

number of messages in the queue q of class i is, Lq =
ϱ0(κ(i))

c+1

c! (2µρ(i))c−1(2µρ(i)− κ(i))2 , where ϱ0

denotes the probability that there are 0 packets in the system, ϱ0 =
1

c−1∑
m=0

(cρ)m

m!
+

(cρ)c

c!(1− ρ)

3.7 Virtual Backbone formation

At first, the backbone is initialized with zero nodes. The setup is considered to be a bipartite

graph with the user terminals and points of interest on the left. The network in the middle,

as shown in Figure 3.2, needs to provide coverage connecting the resources. The middle layer

is composed of backbone nodes in radio access, transport, and core slices. When the request

allocation is fulfilled, Backbone nodes are elected based on their fitness function (fit) and

proximity (pr) to the target node t. Fitness is a function of multiple objectives which are varied

through the path traversal.

Thresholds (Th) are established for both fitness and proximity functions, above which the nodes

are privileged to be selected as the next hop tree node. The computed fitness and proximity

values would be needed in the next-hop selection.

Next Hop Selection Function: While dealing with next-hop and when we find the presence of

multiple nodes in the transmission range whose valuation is higher than both thresholds Thpr

and Thfit, we do the following:
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— The Tree node with the highest value for the proximity function pr is selected as the next

hop.

— When there are no tree nodes, the node with the highest fitness value fit is elected as a Tree

node and chosen as the next hop.

When a slice allocation request is received, paths are established from source to target nodes, and

the path allocation is invoked until the requested bandwidth is allocated. The algorithm selects

the next-hop node based on proximity and fitness functions and establishes that communication

happens entirely via tree nodes. The virtual backbone ensures nodes that are not part of the

backbone can operate passively. Backbone should select the best out of the immediate possible

alternatives during the search. Energy is conserved for the nodes that aren’t part of the backbone.

This solution can be classified as a typical dynamic power-saving technique with QoS guarantees.

When there are node outages or as part of the global CCs re-structuring, the virtual backbones

would be altered.

To prevent the overuse of tree nodes, causing congestion, the residual capacities are updated

once the tree nodes are allocated for a slice request. Subsequently, the revised residual capacity

is used for fitness function computation. Hence, this would lead to lower fitness and not be used

for servicing subsequent slice allocation requests.

As indicated in Fig. 3.2, the backbone tree nodes span across RAN, Transport, and Core Network

sub-slices. It connects sources to resources, thereby forming an end-to-end NS.

Through the cognitive cycles, the network is observed and assessed. It identifies the path

populated through the virtual backbone and can be optimised through re-structuring. Here,

we apply the Dijkstra algorithm during cognitive cycles on the existing virtual backbone.

Recombination involves selecting paths and using Dijkstra’s algorithm to find the shortest path

for each request. The cognitive cycle mimics natural evolution by iteratively selecting paths and

nodes from the population generated in the initialization phase.

In summary, Cognitive cycles (CC) enable a node to learn, gain knowledge from prior experience,

and act to adapt to the dynamic network conditions [61]. CC are a set of cascading recurring

patterns. Each CC senses the current situation and interprets it about ongoing goals. Then, it

selects an internal or external action in response.

Cognitive cycles can be used to monitor performance and gain insights on the network. In this

work, we have used cognitive cycles to reconfigure the network path allocation to yield better
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Figure 3.2: Virtual Backbone in Network Slicing

performance periodically. We use the dynamic power savings technique, with inspiration from

EARTH model. The idea is that only the backbone nodes are meant to be always active. Other

nodes can be in sleep mode, which is not used for routing. This helps in reducing the power

consumption of non-backbone nodes.

3.8 Simulation Setup - Mininet, Flowvisor, and Controllers for

Network Slicing

The system setup consists of:

a) Traffic analyzer: The captured and filtered traffic are fed into the traffic analyzer component.

Here, as we discussed, the ML techniques are applied to derive the different QoE classes of users.

Tools like Jupyter Notebook and python API are used.

b) Channel Assignment and Priority Scheduling Engine: The network is segmented as per slice

requests. The proposed packet scheduling algorithm governs the priority routing, and channel

assignment (virtual backbone creation and assignment) provides the routing infrastructure setup.

c) CC Analyzer: CCs orient themselves and observe the network slice performance. The analysis

is performed based on QoS metrics, which decide the logical clustering of network nodes and the

re-orientation of network slices.
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The same network slicing setup is used across the work. It comprises Mininet, POX and Beacon

controllers, and Flowvisor. Let us discuss a few details on these entities.

We have emulated the network of hosts, links, and switches through Mininet. This tool provides

rapid prototyping for Software Defined Networks (SDN) and acts as the data plane in the slice.

The bash process emulates the hosts running on the network namespace, and it is composed of

a private network interface. Switches are software-based OpenvSwitch or OpenFlow reference

switches. Links are virtual ethernet pairs which connect the Mininet switches and hosts. Notably,

Mininet-Wi-Fi extends virtualized access points to this ecosystem.

The control plane consists of POX and Beacon controllers. These controllers are implemented in

Python and Java, respectively. These controllers adapt OpenFlow devices into a hub, switch,

load balancer, and firewall devices, and yield faster deployment and prototyping.

Flowvisor, a special-purpose controller, creates slices of virtual network resources, and it delegates

control of each network slice to the configured controller. These slices constitute a combination

of layer 1 - switch ports, layer 2 - source and destination Ethernet address, layer 3 - source

and destination IP address and layer 4 - TCP or UDP port. The Flowvisor enforces isolation

between the configured slices.

Virtual backbone creation and re-orientation are simulated through Flowvisor and the control

plane. RAN partitioning is achieved by allocating a set of subcarriers (in the frequency domain)

for the slice request in the allotted time domain.

3.9 Simulation Results and Analysis: QoS-Driven AHP-based

Resource Allocation

The results of QoS-Driven and MADM-AHP-based resource allocation for stakeholder objective

is discussed in this section. A linear topology is implemented in Mininet, wherein each switch is

connected to a single host and interconnected in a straight line. The network configuration is

established using commands like ”sudomn −−topo linear, 4 −−link tc, bw = x, delay = yms”,

to generate the Mininet network. This configuration allows for specifying desired bandwidth,

delay, and packet loss parameters for individual links.

The network’s performance is assessed using tools such as IPERF, which measures the available

bandwidth, and by conducting controlled ping floods to calculate latency and assess packet loss.
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Figure 3.3: Satisfaction Levels of Network Slice Allocation

The number of hops determines the path length, indicating the count of intermediate devices

data traverses between the source and destination.

Eq 3.10 computes the entropy function of a path across a hierarchy. Hierarchy consists of

attributes j = 1 to |HAttr|. For e.g., for hierarchy - Timelines, j = {latency, path length}. For a
given path p on a hierarchy Hi, the entropy function is denoted by WHHi,p. Here, hierarchy

is denoted by H={Timeliness, Operating Efficiency, Network performance}. The individual

attributes encompassed in them are represented in Table 3.1, and their notation and equations

are represented in Sections 3.3 and 3.4.

The satisfaction level is the normalized value represented between 0 to 1 that the path can

achieve on a given hierarchy. Hence, it is used as a metric in the comparison. This normalization

is achieved through the well-described Enhanced Max min method in Eq. 3.13. Satisfaction is

an absolute measure between 0 and 1, which WHHi,p can reach for any hierarchy Hi and path p.
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Figure 3.4: Satisfactory levels and performance of against QoS parameters

a) Our proposed algorithm is compared against the utility theory (cost function), pure MADM

approach, and online path selection algorithms [42]. In Fig. 3.3, the x-axis represents the

number of nodes in the graph, and the y-axis measures the satisfaction level (SL). For every

configuration, 4 simulation trials with independent topology and weights are run, and we compute

the mean results against each parameter. SL lies between 0 and 1 computed as per the equations

(3.9)-(3.13) which follows relative normalization. In Fig. 3.3, we compared these algorithms

using Operational Efficiency, Timeliness, and Network Performance.

We can infer that the satisfaction index of the proposed algorithm strikes a balance and optimizes

for different stakeholders of NS. Utility Theory focuses on Operational Efficiency leading to poor

timeliness and network performance. Online Path Selection in [42] has mixed results across these

hierarchies.
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In this context, we’ve normalized Operating Efficiency and Network Performance on a scale

from 0 to 1. When we juxtapose our proposed approach with the MADM method, it becomes

evident that our approach outperformed the latter. This was manifested in the form of improved

Operating Efficiency and Network Performance achieved by our approach in Fig. 3.3. Even with

timeliness, and the proposed approach is closely behind pure MADM.

b) The proposed approach and well-known algorithms are compared against individual criteria

(Latency, Cost, Path Length, Availability) in Fig. 3.4.

Cost is the financial investment required to create, maintain, and operate network paths and

slices. This includes capital expenditures (CAPEX) for initial infrastructure setup and operating

expenses (OPEX) for ongoing management. Cost considerations include equipment, energy

consumption, maintenance, and leasing network resources. Computation in a Realistic Network:

To compute the cost of a network slice, you would need to consider factors like hardware and

software expenses, energy consumption, and maintenance costs. These can be quantified based

on the pricing of network components, power consumption rates, and expected maintenance

frequency.

Network performance refers to the ability of a network slice to meet certain quality of service

(QoS) and performance requirements. This includes bandwidth, latency, packet loss, jitter,

and throughput metrics. Different applications and services require varying levels of network

performance to function optimally. In this research work, for the Analytic Hierarchical structure,

Throughput and Availability are considered to be constituents of Network Performance. We

have carved out another domain, Timeliness to capture Latency, Path length, etc.. Computation

in a Realistic Network: Network performance metrics can be measured through various tools

and techniques. Bandwidth can be measured using tools like iPerf. Latency can be measured

using ping or specialized latency measurement tools.

Availability refers to the ability of a network slice to remain operational and accessible to users.

High availability ensures that services provided by the slice are accessible with minimal downtime.

Availability is often measured as a percentage of time the service is up and running. Computation

in a Realistic Network: Availability can be calculated by monitoring the slice’s uptime and

downtime over a specific period. The formula for availability is:

Availability(%) = (Uptime/(Uptime+Downtime)) ∗ 100 (3.16)
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Uptime and downtime can be measured using monitoring systems that track the state of the

network slice and detect outages.

In our study, we define availability through the probability of failure in links along the path

of the slice. The proposed algorithm defines a primary and secondary (next best) path to the

slice. This strengthens the fault tolerance in the slice. Theoretical availability is defined as (1 –

Probability of failure along both the allocated paths of the slice). In a realistic network slicing

scenario, these factors are interrelated. For example, higher network performance might come

at a higher cost due to the need for more advanced hardware or increased resource allocation.

Similarly, ensuring high availability might require redundant infrastructure, leading to increased

costs. Balancing these factors is crucial to designing effective network slices that meet the needs

of various applications and services.

Â values are referred to here to evaluate the compensatory algorithms using EMM. Online Path

Selection Algorithm [42] outperforms all the algorithms in terms of path length. In terms of

cost, the proposed algorithm is comparable with utility theory. Pure MADM fares well with

most QoS parameters except the overall cost incurred.

3.10 Results and Analysis - Traffic Classification

The data orientation of the captured packets represents an aggregated function of Resource Type

and Allocation Retention Priority in Tables 3.3 and 3.4. The regression function of predicting

the priority computed against a set of 5, 10, 15, and 20 QoS parameters. The number of QoS

parameters is denoted on the x-axis. The experiment is performed on the s1ap dataset [111]

Wireshark and pcap captures. The train-test split evaluation is through the Scikit-learn library

by configuring the random seed value. Two different sets of runs are assessed:

i) The training set would comprise 40% of the dataset, while the rest represents the testing set.

ii) Training dataset with 70% of total captures and test set with the remaining 30%.

We use the default settings of each of the ML regression algorithms. Emerged outputs of the

algorithms are compared against standard metrics such as Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE). MAE takes the average of this error from every sample in a

dataset. RMSE is the square root on the average of the square of the difference between the
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Table 3.3: Insights on Data distribution - Mean values on group function of Resource Type.

Attributes GBR Non GBR Attributes GBR Non GBR

QCI 30.94 16.82 Priority 2.32 5.73

ARP Priority 1.714 6.84 MBR DL (Mbps) 128 96

Pre-Emption capability 0.22 0.46 Packet Length 268.8 404.3

Table 3.4: Insights on Data distribution - Mean values on group function of ARP Priority.

Attributes 1 2 9 15

QCI 4.3 2 9.0 9.0

Priority 1.7 2.8 9.0 9.0

Length 367.8 312.0 290.8 512.0

Pre-Emption capability 0.2 0 1 0

original and predicted values of the data. It indicates the spread of the error. Fig. 3.5 represents

how each regressor fares against the other.

Support Vector Regressor (SVR) produces acceptable error rates, however, it doesn’t perform

relatively with the others. Random Forest Regressor (RVR) and Gradient Boosting Regressor

(GBR) provide comparable results with negligible error rates. We would recommend RVR and

GBR for further traffic classification. Against the five-parameter QoS run, prominent attributes

like QCI, DSCP, Is Mission Critical, Resource Type and Allocation Retention Parameter were

considered from the tabulated QoS parameters. The runs with 5 and 10 parameters provided

satisfactory outcomes, and it can be perceived higher parameters lead to overfitting from Fig

3.5. When repeated with different hyperparameters like depth and a number of estimators, we

could notice the QCI feature, being a prime constituent attribute, plays a key role in traffic

prioritization.

3.11 Results and Analysis - Virtual backbone

In this section, we discuss the results of the virtual backbone based approach for joint QoS and

energy savings.

The simulation settings are captured in Table 3.5. The field setting constitutes different

combinations of Nodes [500,1000,2000], and Slice Requests [25,50,100] indicated by FS1 - FS5 in

Fig. 3.6. It captures the mean and confidence intervals of no. of nodes consumed for intermediate
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Error in predicting priority through Regression-based ML algorithms.

Mean Absolute Error for 40% training and 60% test are shown in (a) and (b), respectively.
Root mean square error for 40% training and 60% test plotted in (c) and (d) respectively.
Mean Absolute Error for 70% training and 30% test are shown in (e) and (f), respectively.
Root mean square error for 70% training and 30% test plotted in (g) and (h) respectively.
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routing. 98% confidence intervals are computed across 1000 Monte Carlo runs in each field

setting. In every run, we invoke the Erdos Renyi graph generator to fix the positions of nodes

within the testbed. Among these runs, the slice resources are located near the centre of the field

setting. In this section, we compare the following algorithms:

i) Proposed Online Virtual Backbone solution, ii) Routing Information Protocol based on

minimum hops (RIP-Min Hops), iii) Online Path computation and Function Placement which

relies on Dijkstra shortest path algorithm (PC-FP), and iv) Proposed Cognitive Cycles Based

Approach (CC Cycles).

The time complexity of constructing a virtual backbone for a slice request is O(V + E), and

space complexity is O(V ) since an extra visited array of size V is required. The search strategy

is similar to the Depth-first search. For the candidate algorithms, RIP - Min Hops and Dijkstra

shortest path, the time complexity is O(V 2). When the input graph is represented using an

adjacency list, the time complexity is O(E log V ) with the help of a binary heap. The reformation

of the virtual backbone using cognitive cycles inherently uses Dijkstra’s algorithm for the broken

path. The time complexity is O(E′ log V ′), where E′ ⊂ E and V ′ ⊂ V .

Every slice in the experiment is assigned a total of 20MHz bandwidth. For example, Wi-Fi uses

Orthogonal Frequency Division Multiplexing (OFDM). Here, 64 OFDM subcarriers span over

20MHz of bandwidth. 11 subcarriers are used as a guard band between two adjacent channels,

4 are pilot subcarriers, and the centre subcarrier is inactive. Effectively, 48 subcarriers are

applied for slice transmission. Since the Sub Carrier Spacing amounts to 312.5kHz, 15.323 MHz

bandwidth is effectively achieved when all data sub-carriers are allotted. Using 64-QAM with

one spacing stream, MCS Index 6, 800ns guard interval, and 3/4 coding rate, the data rate is

≈ 58.5Mb/s. When n slices (RAN partitions) share the sub-carriers, it reduces to ≈ 58.5/nMb/s.

From Fig. 3.6, we can observe the proposed virtual backbone solution consumes no. of routing

nodes in the same range as compared to RIP-Min Hops and PC-FP. It should also be noted

the proposed virtual backbone solution is online-based, and it has a view only on its next-hop

selection, whereas the other two algorithms have a global view of the field setting.

VB solution provides a leaner confidence interval indicating that the number of nodes employed

is at close quarters across the independent runs in every field configuration. In terms of no. of

nodes utilized, one can also observe RIP-Min hops faring better than PC-FP.
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Table 3.5: Simulation Settings - Virtual Backbone

Parameters Value
Nodes [500, 1000, 2000]
Slice Requests [25, 50, 100]
Simulation Runs per each setting 1000 Monte Carlo runs
Location of Slice resources Center of testbed
TestField area 10000 sq. feet area
Transmission Range (TR) of AP 1000 sq. feet area
Location of user or slice requests Erdos Renyi Graph Generator in TR for the APs in the testbed
Erdos Renyi Probability to access
nodes within TR

1

Fitness function threshold (Thfit) top 60% percentile
Fitness function scalar co-efficients 20% capacity, 20% distance, 20% energy, 20% delay, 20% cost
Proximity fn threshold (Thpr) top 60% percentile

Node selection in a slice
randomly selected connected graph consisting of nodes with an
allocated capacity. Originates from source to resources

fit, pr co-efficients 0.6 and 0.4, summative additive weighing applied

(a) (b)

(c) (d)

(e)

Figure 3.6: Node Utilization against different configuration (Mean and 98% Confidence
Interval)
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Figure 3.7: (a) Percentage of Routing nodes Greater than Threshold (b) No. of Routing Nodes
whose energy is greater than the threshold (c) Percentage of the Energy level of routing nodes

The Cognitive cycle-based approach optimizes on top of the virtual backbone and attains the

least number of nodes for routing in Fig. 3.6. This evolutionary algorithm uses the proposed

VB and random paths during its initialization phase. In the recombination phase, a randomized

variant of PC-FP is employed, which helps it to produce far better results in terms of node

consumption.

Thresholds are set for both fitness and proximity functions. In Fig. 3.7a), when we take a

closer look at the percentage of routing nodes with Open vSwitch, their fitness and proximities

are greater than the threshold (fit, pr > Thfit, Thpr), the proposed virtual backbone solution

employs the highest. All the other approaches are comparable to each other, as shown in Figure

3.7a. Out of the total nodes, which are part of the final solution, VB has the highest percentage

of nodes greater than proximity and fitness thresholds. In this regard, it fares better than all

the other algorithms.

Fig. 3.7b) depicts the number of routing nodes that exceed the threshold metrics. One could
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notice PC-FP has the highest numbers among other solutions. It is obvious that this algorithm

has the highest node consumption (it can be seen in Fig. 3.6, the mean number of nodes

consumed is far greater than others). Due to this ripple effect, PC-FP has the highest value as

compared to other candidate algorithms. Even here, we could observe the proposed VB solution

producing better results.

Assuming the nodes are assigned random energy levels between 0 and 100 during the initialization

phase of each field setting, the percentage of static energy levels of elected routing nodes are

shown in Fig. 3.7c). Based on the application use case, the energy levels can also be an attribute

of the fitness function. Again here, the virtual backbone yields better results.

3.12 Conclusion

The first objective of the chapter was around the study of end-to-end resource allocation in

network slicing for tailored offerings. Our employed algorithm tries to bring in fairness and

efficiency. This approach covers breadth and depth in online virtual paths discovery, evaluation,

ranking, and assignments for slice allocation. The proposed approach took inspiration from the

Dinic algorithm and MADM for addressing the formulated multi-objective constraint optimization

problem. This approach uses simple and low-complexity techniques to allocate the virtual paths

for slices. Detailed Simulation results prove that the proposed algorithm performs well in fulfilling

stakeholder goals when compared with other candidate algorithms. We published this work [1]

in the 91st IEEE Vehicular Technology Conference, VTC Spring 2020.

The next goal of the chapter was to jointly investigate QoS and energy savings. QoS is ensured

in a two-fold manner. Firstly, traffic classification predicts packet priority. A comprehensive

fine-grained list of QoS attributes is identified from S1AP and DSCP protocols. ML algorithms

such as Random Forest, Gradient Boosting, SVM, and MLP are applied using these attributes.

Random Forest and Gradient Boosting record lesser mean absolute percentage error of 0.79% and

1.22%, offering higher accuracy than other compared approaches. Following this, Class-based

priority scheduling routes packets based on the predicted priority. Secondly, QoS metrics such

as bandwidth, latency, jitter, and path length are an integral part of the fitness function. The

fitness function plays a significant role in node selection during resource allocation in NS.

EE is achieved by reducing the number of nodes employed for routing. Virtual backbone and

CC-based approaches are proposed to bring in energy savings in slices. Our experimental results
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show the basic VB utilizes 17.8% and the Cognitive cycle-based VB tree uses 8.4% nodes,

respectively, which are lesser than other standard approaches. We published this work [2] in the

Computer Communications, Elsevier journal, 2023.

♦



Chapter 4

Swap-based Load Balancing in Radio

Access Networks

4.1 Introduction

5G leverages millimeter waves (mmWave) to meet the high bandwidth demands in densely

populated urban areas. As mmWave has a low range, 5G operators densify their networks with

small cells to provide seamless connectivity and reliable coverage. In a real network setup, some

microcells could handle most of the traffic while others remain idle. It causes overloaded cells to

experience intermittent, unstable connectivity and high packet jitter.

In this chapter, we examine the load imbalance at the base station and the signal strength of

the connected devices. The terms base station, access points, and cells are used interchangeably.

Here, we refer to traffic flow as the channel connection between the mobile device and the serving

AP, which requires a certain bandwidth. Thus, the load of a traffic flow on a given small cell

from a device would be the number of radio blocks allocated to service, i.e., the total data rate

required to service the bandwidth requirements based on the Modulation Coding Scheme (MCS)

between the device and the AP. The load on the micro or picocell is the sum-rate function of all

its connections. The control plane drives the proposed reactive algorithm, which can be classified

under association management.

In this work, we intend to ensure balanced loads among APs with heterogeneous access points. The

proposed algorithm would be suitable for both homogenous APs like micro cell only deployments

71
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and heterogeneous networks (HetNets) like macro-small cell or micro-pico combinations applicable

to 5G deployments.

We use parameters such as threshold, load per unit capacity, and load imbalance to classify

APs, which are described in the next section. Furthermore, we aim for better signal quality for

traffic flows that belong to the data plane. The control plane tracks the status of the APs in its

coverage area.

Chapter 4, which discusses swap-based load balancing in radio access networks, can be related

to the resource allocation aspect discussed in Chapter 3 on network slicing in the following ways:

a) Optimizing Resource Utilization: In Chapter 4, load balancing techniques are explored to

distribute traffic and resources more efficiently. This relates to the resource allocation in

Chapter 3 because effective load balancing helps in optimizing the utilization of network

resources allocated to different slices.

b) Enhancing Network Performance: The load balancing techniques detailed in Chapter 4

aim to minimize load imbalance and improve metrics such as the Channel Quality Index

(CQI) and Signal-to-Noise Ratio (SNR). These improvements directly impact network

performance, which is a key consideration in resource allocation, as discussed in Chapter 3.

c) QoS and QoE Considerations: Chapter 3 emphasizes Quality of Service (QoS) attributes,

while Chapter 4’s load balancing techniques can influence QoS by ensuring a more balanced

distribution of traffic and resources, ultimately affecting the end-user Quality of Experience

(QoE) discussed in Chapter 3.

In summary, Chapter 4’s discussion on load balancing complements the resource allocation and

network performance optimization goals outlined in Chapter 3, creating a cohesive approach to

managing network resources and ensuring a better user experience.

We establish the system model, variables, and constraints in Section 4.2. Then, we analyze

one-way load balancing and propose a swap-based load balancing in Sections 4.3 and 4.5. Finally,

section 4.6 compares the results of the discussed approaches.
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4.2 Load Balancing System Model

The mathematical formulation of load distribution in radio access devices is a triple (F, P,R).

Here F is a finite set of traffic flow of user devices, P is a finite set of macro or small cells

and (R(f) ⊂ P : f ∈ F ) is a set of reachable APs. The bandwidth requirement is a vector

(B(f) : f ∈ F ), where (∀f, B(f) > 0). The Signal-to-Interference-plus-Noise Ratio between the

user connection f and the corresponding cell p is given by SINRf,p. Let λ(f, p) be the total

data rate load, i.e., the number of resource blocks consumed for serving B(f) by AP p based on

Channel Quality Index (CQI), coding, and modulation rate between the device and AP.

The neighbourhood vector R(f) denotes the cells that are reachable to the traffic flow f ,

with equitable RSSI so that it can be associated with R(f). An association already exists

(∀f ∈ F,R(f) ̸= ∅) for admitted traffic flows in their respective neighbourhoods. The associated

access point of a traffic flow is indicated by A(f) ⊂ P : f ∈ F, A(F ) ∈ R(f). A microcell can

serve around 200 users, and a picocell can serve 32 to 64 users approximately [114]. The capacity

of a micro cell (p1) or picocell (p2) is denoted by ζp, where ζp1 > ζp2 . The total load at an access

point p ∈ P is given by q(p) =
∑
λ(f, p), where A(f) = p. The Network Slice (NS) controller or

control plane computes the load per unit capacity in its coverage area.

Load per unit capacity(ϕ): The total sum of loads (λ(f, p)) of all the traffic flows associated

with the access points divided by the sum of the capacities (ζp) of all the access points in a given

coverage area (C). It tracks the utilization factor of the coverage.

ϕC =

∑
p q(p)∑
p ζp

: p ∈ P, q(p) =
∑

λ(f, p) where A(f) = p (4.1)

The threshold or balanced state of an AP (p ∈ P ) in a given coverage area is the product of

load per unit capacity (ϕ) and capacity of the access point (ζp : p ∈ P ).

Load Imbalance of an AP(δ): The difference of the total load of an AP (p : p ∈ P ) and its

computed threshold in the given coverage area (C).

δC(p) = |q(p)− ϕC · ζp| (4.2)
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NS controller in its coverage area (C) determines the state (S(p) : p ∈ P ) of the APs as

overloaded, fair, and underloaded,

SC(p) =


Overloaded, if (ϕC · ζp + ϵ) < q(p)

Fair, if (ϕC · ζp − ϵ) ≤ q(p) ≤ (ϕC · ζp + ϵ)

Underloaded, if q(p) < (ϕC · ζp − ϵ)

(4.3)

In 5G networks, micro and pico cells would co-exist; we strive to sustain the overall load

proportional to the capacity of such cells. Meanwhile, we target to reduce imbalance among

homogenous micro or pico cells only deployments. Here, ϵ is the margin above and below the

threshold.

Total Load Imbalance(ψ): The absolute sum of the load imbalance of every access point

(∀p ∈ P ) participating in the given coverage area (C).

ψC =
∑
p

| δC(p) |: p ∈ P (4.4)

The migration (M) of a traffic flow (f) at a specific instant (t) from one access point AP (u)

to another AP (v) is represented as M(f, t) = (u, v). At time t, the traffic flow f is associated

with AP u, and at time (t+ 1), it is associated with AP v. In this context, u and v represent

different access points within a network, and f is the traffic flow being relocated from u to v.

Hence, at instant t, A(f) = u, and at (t+ 1), A(f) = v.

Lf,p quantifies the delay or latency experienced by the device associated with the access point

(AP ) p when handling a traffic flow (f) over the channel.

To begin with, we formulate the LB problem,

∀p minimize δC(p) : p ∈ P

byM(f, t) = (u, v) : f ∈ F, v ∈ R(f)

minimize Lf,p, maximize SINRf,p

0 ≤ t ≤ T, u and v ∈ P, andu ̸= v

The derived entity ψC is minimized. Further, we reduce latency Lf,p and improve the signal

strength SINRf,p of the traffic flow (f) while selecting the underloaded macro or small cell (p).
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The constraints primarily revolve around ensuring that devices can establish a connection with

the migrated access point, as indicated by the condition v ∈ R(f). Additionally, the latency

(Lf,p) and SINR (SINRf,p) constraints are indirectly accounted for by introducing a biasing

factor into the optimization process. This biasing factor helps strike a balance between these

constraints and other objectives.

4.3 One-Way Traffic Distribution

One-way load balancing mechanism allows only unidirectional transfer of traffic flows from

overloaded to reachable underloaded cell. The control plane would pick a traffic flow (f ∈
F, at t + 1 ⇒ A(f) = u, SC(u) isOverloaded : u ∈ P ) randomly from overloaded cell and

offload the traffic flow (f ∈ F, at (t + 1) ⇒ A(f) = v) to the chosen underloaded cell (v ∈
R(f), SC(v) is Underloaded : v ∈ P ). The control plane filters the underloaded cells with

available admissible capacity (α(k) ≥ λ(f, k)). λ(f, k) denotes the total data rate or bandwidth

consumption on cell k to support user experienced data rate B(f) of the traffic flow f .

Algorithm 5: 1-way load balancing

function loadBalance (f, u,A, q, λ, t, C, P )
n← {R(f)− u};
while (k : (n : Sc(n) == Underloaded)) do

α(k) = ϕC · ζp − q(p);
Bias(k) = (1 + α(k)/max

k
α(k)(1− Lf,p/max

k
Lf,p)× β);

h← argmax
k

SINRf,k ×Bias(k)
such that α(k) ≥ λ(f, k)&Sc(k) == Underloaded;

if h ̸= ∅ then
Migrate M(f, t) = (u, h);
Update q(h), A(f), q(u);

else
LB is not possible. Try SLB

We define (α(p) : p ∈ P, SC(p) == Underloaded) as the difference between the threshold and

the current load of the underloaded access point in a given coverage area.

α(p) = ϕC · ζp − q(p) : p ∈ P (4.5)

In Algorithm 5, among the reachable underloaded APs with available admissible capacity, instead

of selecting the AP with the highest SINR to the potential underloaded AP, we elect the AP with
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the highest absolute product of SINRf,p and biased factor based on available admissible capacity

and latency. The biasing factor is a normalized function, (1 + α(k)/max
k

α(k)(1− Lf,p/max
k

Lf,p)× β),
to provide a chance for associating flow to heavily underloaded APs and lower round-trip response

time. 0 < β < 1, ensures the association doesn’t overtly incline towards heavily underloaded

with low signal quality and doesn’t connect with AP, enduring excessive latency. At an instant

t, the coverage area reaches a steady state when the 1-way algorithm can’t initiate any more

migrations, and it is proved through Lemma 4.4 and Theorem 4.5. The average number of

processed overloaded APs (p) through Algorithm 5 is O(|P |/2 − ϵ). This complexity is based

on the real-world random selection of overloaded access points using a threshold that roughly

bisects the total access point count. On average, the algorithm addresses roughly half of the

overloaded access points, considering the ϵ factor, which represents a margin above and below

the threshold.

Lemma 4.1. In 1-way LB, ∄p ∈ P where before load balancing, SC(p) == Underloaded and

after LB, SC(p) == Overloaded.

Proof. In Algorithm 5, (p : SC(p) is Underloaded) cannot be chosen to receive f unless α(p) ≥
λ(f, p), where w.k.t α(p) = ζpϕC − q(p). Further, after LB, q(p) = q(p) + λ(f, p) is updated.

Thus, q(p) ≤ ζpϕC and by eq.(4.3) proves post LB, SC(p)! = Overloaded.

Theorem 4.2. 1-way LB reaches a steady state after ∀p ∈ P : SC(p) == Overloaded are

processed by control plane CP for a given time t in a coverage area C.

Proof. To verify, we need to show ∄M(f, t) : f ∈ F after ∀p ∈ P , SC(p) isOverloaded are

processed by Algorithm 5. Let’s prove it by contradiction. Pre & post LB ∀f ∈ F : A(f) = u,

and after steady state ∃f : A(f) = (u)&SC(u) isOverloaded, and v ∈ P : SC(v) is Underloaded

and M(f, t) = (u, v) is possible.

During 1-way LB, the Algorithm 5 has been processed for ∀f ∈ F,A(f) = p ∈ P , where

q(p) ≥ ζpϕC . Either f should have got transferred or not transferred during LB.

Consider f is transferred, then during LB, it is migrated to x : SC(x) is Underloaded→ A(f) = x,

which contradicts the initial assumption that A(f) = u post-LB. Now, consider f is not transferred

during LB → ∄v : v ∈ R(f) and v is underloaded with α(v) ≥ λ(f, p). Clearly, v doesn’t have

admissible capacity (α(v)) to accept f , and from Lemma 4.4, v in SC(v) is Underloaded before

LB, can’t become overloaded post LB. Hence, ∀p where SC(p) is Underloaded can’t accept
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anymore f from the overloaded APs. This disproves the initial statement M(f, t) = (u, v) exists.

At t+ 1 in C, when the field setting of F , P , ∀f ∈ F , R(f), λ(f, p), and A(f) changes, it would

necessitate further migrations.

4.4 Swap-based Load Balancing

Migrating f is not possible through 1-way LB, when ∀p ∈ P : SC(p) is Underloaded and

∀f, α(p) < λ(f, p). The Exchange or Swap Load Balancing (SLB) is executed after 1-way LB,

explores the possibility of migrating M(f, t) = (u, v), by including a reverse transfer of reachable

traffic flows K such that K ⊂ F : A(K) = v, SC(v) is Underloaded, u ∈ R(K) from underloaded

to overloaded AP (u) denoted by M(K, t) = (v, u) in Algorithm 6.

Figure 4.1: Swap Based Load Balancing

Like 1-way LB, SLB ensures no underloaded APs become overloaded. In Fig. 4.1a, we present

an example with two homogenous picocells, A and B, with capacity x, and let us assume the

MCI index is equivalent. Loads on picocells, q(A) = 60 constitutes {f40, f20}, and q(B) = 40

comprises {f22, f8, f6, f4}. Hence, ϕ(C) = 100/x+x, δC(A) = 10, and δC(B) = | − 10| = 10. Then,

α(B) = 10 and ψC = 20. Since (α(B) < f40&α(B) < f20), reducing ψC through 1-way LB is

not feasible.

However, through SLB, we can transfer M(f20, t) = (A,B) and transfer back M({f6, f4}, t) =
(B,A) represented in Fig. 4.1b. Thus, (q(A) = q(B) = 50)→ ψC = 0.

Though it finds an AP for migration, it leads to twice the handoff cost, and CP should study

the cost before executing SLB. The message overhead demands APs to periodically update CP
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accounting O(|P |). Through SLB, no underloaded APs become overloaded, which is validated

through Theorem 4.6.

Theorem 4.3. In SLB, ∄p ∈ P where before SLB, SC(p) == Underloaded & after SLB, SC(p) ==

Overloaded.

Proof. Swapping is invoked post 1-way LB. Through Lemma 4.4, the above statement is proved

for 1-way LB. In SLB, at a minimum, for a flow f from p : SC(p) is Underloaded, we return

atleast τ(f, p) from underloaded nodes.

τ(f, p) = q(p) + λ(f, p)− ζpϕC (4.6)

Hence, the current load of p at instant t+ 1 post 2-way migrations would be,

qt+1(p) ≤ qt(p) + λ(f, p)− τ(f, p) (4.7)

Substituting τ(f, p) from eq. 3,9,

qt+1(p) ≤ qt(p) + λ(f, p)− q(p)− λ(f, p) + ζpϕC → qt+1(p) ≤ ζpϕC (4.8)

Thus, q(p) ≤ ζpϕC & by eq.(3) proves post LB, SC(p)! = Overloaded.

Algorithm 6: Swap based LB

function SLB (f, u,A, q, λ, t, C, P )
ρ(f, u) = ζuϕC − q(u) + λ(f, u) n← {R(f)− u};
while (p : (n : Sc(n) == Underloaded)) do

τ(f, p) = α(p)− λ(f, p);
if τ(f, p) > 0& τ(f, p) < (ζv − q(v)) then

Compute K through 0− 1 Knapsack DP such that
τ(f, p) ≤ µ(f, v) ≤ ρ(f, u) ≤ λ(f, u) where µ(f, p) = ∑

k λ(k, p) : A(k) = p

l← argmin
p

µ(f, p);

if l ̸= ∅&µ(l, f) < λ(f, u) then
Migrate M(f, t) = (u, l);
Migrate M(K, t) = (l, u);
Update q(l), A(f), q(u), A(K);

else
LB is not possible through SLB

By accepting f : A(f) = u from SC(u) = Overloaded, if λ(f, v) − α(v) > 0, we denote the

exceeded threshold offset by τ(f, v), where τ(f, v) = λ(f, v)− α(v) : SC(v) is Underloaded. At
a minimum,

∑
k λ(k, v) : k ∈ K ≥ τ(f, v) : A(k) = v is migrated back through M(K, t) = (v, u).
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Table 4.1: Traffic Flow selection

Flow Weight 1 2 3 4 5 6 7 8 9 10

f8 8 0 0 0 0 0 0 0 8 8 8

f✓4 4 0 0 0 4 4 4 4 8 8 8

f✓6 6 0 0 4 4 4 6 6 8 8 10

In strict case, if q(u)−λ(f, u) ≤ ζuϕC , the maximum load which can be return transferred would

be (ζuϕC − q(u) + λ(f, u)) denoted by ρ(f, u). A loose bound would be returning a load lesser

than the accepted flow (
∑

k λ(k, u) : k ∈ K < λ(f, u)). A stricter constraint minimizes ϕC than

the latter.

Hence, for v to accept the traffic flow f , the total load of traffic flows K to be transferred back

from v lies in,

τ(f, v) ≤
∑
k

λ(k, u) : k ∈ K ≤ ρ(f, u, v) ≤ λ(f, u) (4.9)

In Algorithm 6, CP selects underloaded AP (l) with the least return transfer to minimize the

offloading cost.

l← argmin
p

K∑
k

λ(k, p) : A(k) = p&Sc(p) == Underloaded (4.10)

Computing K through Dynamic Programming (DP) is detailed in Algorithm 7.

4.4.1 Dynamic Programming Solution

The selection of traffic flows to be migrated in the reverse transfer can be reduced to the 0-1

Knapsack problem where the value and weight of the picked item (traffic flow) are equivalents.

Hence, the set K is computed through the Dynamic Programming technique. The DP matrix

for Fig. 4.2a is given below in Table 4.1.

Here, in this example, f4 and f6 are chosen through the DP matrix. DP solution is explained in

Algorithm 7.

We’ve defined ϵ to represent the margin above and below the load threshold. Access points with

loads falling within this lower and upper bound range are considered to be load balanced. It’s

worth noting that there are no established citations in the literature that explicitly define the ϵ

value. The choice of ϵ in load balancing algorithms can vary based on specific network or system

requirements, objectives, and characteristics.
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Algorithm 7: DP Matrix and exchange flows

fn DP (τ(f, v), l← λ(f, v), p : (p : Sc(p) == Underloaded) o : (o : Sc(o) == Overloaded))
D[ ][ ]← ϕ, link[ ]← ϕ, i← 0;
for f : f ∈ F&(A(f) = p&f ∈ R(o)) do

i+ = 1, link[i] = f ;
for (j = 0; j ≤ l; j+ = 1) do

if l ≤ j then
D[i][j] = max(D[i− 1][j − l] + l,D[i− 1][j])

else
D[i][j] = D[i− 1][j − 1]

tl← argminlq=τ(f,v)(D[i][q] ≥ τ(f, v) : D[i][q]);

if ∃tl&D[i][tl] ≥ τ(f, v) then
w ← D[i][tl]
K ← ϕ
for k = i; k > 0&w > 0; k −− do

if D[k][w]! = D[k − 1][w] then
K ← K ∪ fk−1

w ← w − λ(k − 1, v)

return K;

Factors like network topology, workload distribution, and primary performance goals (such as

minimizing response time and maximizing throughput) should be considered. In general, an

acceptable ϵ value might range from 5-7%. However, when facing more stringent requirements,

there’s a tradeoff to consider between performance, resource utilization, and system demands.

Therefore, observing the network environment is essential for determining the acceptable range.

The time complexity of Algorithm 5 can be summarized as follows. The main loop iterates

through overloaded access points and has a time complexity of O(|P |), where |P | is the total

number of access points. Arithmetic calculations, comparisons, and SINR computations within

the loop are typically O(1) constant time operations. In Algorithm 6, Computing ρ(f, u) and

initializing variables takes constant time, O(1). The main loop iterates through underloaded

access points and has a time complexity of O(|P |), where |P | is the total number of access

points. The calculation of τ(f, p) for each underloaded access point is a constant time operation

O(1) within the loop. The time complexity of solving the 0-1 knapsack problem using dynamic

programming in Algorithm 7 is O(nW ), where n is the number of traffic flows, and W is the

maximum load capacity of the knapsack. This time complexity arises from filling a 2D table of

size (n+ 1)× (W + 1).
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4.5 Results and Analysis

The simulation is carried out in the Mininet 2.3.0 setup [115]. Network slices are built through

Flowvisor. The nodes and switches from the data plane are connected to the created slices. The

slices are supervised by Beacon or POX controllers. In Flowvisor, the dataset contributed by the

Irish mobile operator [116] - 4G dataset and [117] - 5G dataset is evaluated in Java language.

An agent program resides in every AP. This agent measures the details concerned to APs and

devices associated with it. The metrics captured are the number of devices connected, their

geo-location information, throughput consumption, current RSSI, and CQI with the connected

AP. It sends the maximum serviceable capacity, geo-position of AP. The agent periodically

reports the above metrics to the NS controller like FlowVisor or control plane. The load balancing

algorithm operating in Flowvisor (Java) or Beacon Controller (Java) computes and makes the

load balancing decisions. The controllers send the devices to be migrated to the agent program

of monitored APs in their coverage area. The agent program performs the handover.

The sum of the uplink and downlink bandwidth impact of devices on the serving cell is considered

as the load on the cell. When the device migrates, based on CQI, modulation, and coding

rate, the channel bandwidth consumption on the cell would vary for the same usable network

throughput.

In 5G, one New Radio Resource Block (RB) contains 12 sub-carriers in a frequency domain.

The New Radio works with 100 MHz channel bandwidth for lower bands < 6GHz and 400 MHz

channel bandwidth for higher bands in mmWave ranges.

Like the frequency domain parameter △f , 5G NR has a parameter for the time domain. For

instance, if = 0, △f = 15 KHz: One resource block is 180KHz (15 x 12 sub-carriers) in the

frequency domain and 1ms in the time domain. Similarly, If = 1, △f = 30 KHz: One resource

block is 360KHz (30 x 12 sub-carriers) in the frequency domain and 0.5ms in the time domain.

Mapping the Channel Bandwidth (in MHz) to a number of Resource Blocks is shown in Table

4.2. MCS defines bits transmitted per resource block, as shown in Table 4.3.

The attributes in the dataset are:

- Timestamp of the sample

- Longitude and Latitude
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Table 4.2: Mapping Channel Bandwidth and Resource Blocks

µ 1 2 3

△f = 2µ× 15KHz 30KHz 60KHz 120KHz

Min RB 24 24 24

Max RB 275 275 275

Min Channel Bandwidth(MHz) 8.64 17.28 34.56

Max Channel Bandwidth(MHz) 99 198 396

Table 4.3: Modulation Coding Scheme

CQI Modulation Code Rate Bits per RB

6 16 QAM 0.6016 2.4064

7 64 QAM 0.4551 2.7306

8 64 QAM 0.5537 3.3222

9 64 QAM 0.6504 3.9022

- Cellular Operator Name

- Serving Cell for Mobile Device

- Network Mode

- Downlink Bit Rate (Rate measured at the device) (kbps)

- Uplink Bit Rate (Rate measured at the device) (kbps)

- Ping Statistics (average, minimum, maximum, standard deviation and loss)

- Signal strength (signal quality) is measured across all resource elements, including interfer-

ence from all sources (dB).

- SNR: value for signal-to-noise ratio (dB).

- RSSI represents a received power, including a serving cell and interference and noise from

other sources.

- RSRQ Represents a ratio between RSRP and Received Signal Strength Indicator (RSSI).

- CQI: value for CQI of a mobile device. It indicates the data rate that could be transmitted

over a channel as the function of SINR and UE’s receiver characteristics.

- RSRP represents an average power over cell-specific reference symbols. Used for measuring

cell signal strength/coverage (dBm).
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Table 4.4: Simulation Settings - Load Balancing

Parameter Value/Description

Number of Traces 135

Average Trace Duration 15 minutes per trace

β value 0.3

Serving Cell Type Homogeneous serving cells with heterogeneous loads

Modulation Types QAM (16, 64, and 256)

Handline missing metrics Simple Regressor library in Java

Mobility Patterns Cumulative patterns for bus, car, static, pedestrian

The tabular view of the simulation parameters is present in Table 4.4.

The dataset consists of 135 traces, with an average of 15 minutes per trace, and β is initialized

to 0.3. The x-axis marks the timeslots, where every time slot remarks the 15-minute trace.

The proposed approach is applicable to heterogeneous serving cells and loads. For evaluation,

homogenous serving cells with heterogeneous loads are considered with capacities ζsc and

∀f, f ∈ F : R(f) := P as per the dataset. Hence, the threshold would be the same for each

of the serving cells. We applied Quadrature Amplitude Modulation (QAM) - (16, 64, and 256

QAM) and Channel Quality Index (CQI) in the dataset for determining the load at destination

AP. Since the channel and context metrics of devices to unconnected APs are not present in the

dataset, these are populated through the Simple Regressor library in Java.

In our simulation, we observe the arrival of real-time traffic from various devices. Initially, in

Fig. 4.2a, we can see that a significant portion of the traffic load is handled by Sc0 without

the application of load balancing. However, when load balancing techniques are introduced, we

can clearly see the impact in Fig. 4.2b and 4.2c, where both the mean and variance of the load

imbalance factor are significantly reduced.

Fig. 4.2 evaluates the cumulative (bus, car, static, and pedestrian) mobility patterns. Fig. 4.2a

plot the q(p)/ζ(p) under no traffic distribution. The serving cells that lie above and below the

threshold are overloaded and underloaded, respectively. We could observe that the resource

utilization is not uniform, and hence, there is a need for traffic re-distribution in this dataset.

The proposed swap-based algorithm with and without biasing is compared against the candidate

algorithms like Asakura [79], Jadhav [80], Farzi [68], Cui [69], and Sahoo [70].

While not cellular algorithms, the works of Cui et al. [69] and Sahoo et al. [70] indirectly relate

to our research. Cui’s focus on best response time for devices has a direct correlation to SINR
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Figure 4.2: Evaluation on Cumulative Mobile Pattern

and CQI, which are key attributes in our biasing-based algorithm. Similarly, Sahoo et al. applied

TOPSIS techniques for multi-attribute optimization, aligning with our QoS-centric approach.

For more direct comparisons, we evaluated our approach against specific cellular algorithms.

Garcia et al.’s work [75] presents a cellular algorithm for load balancing in access points,
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specifically focusing on optimal 1-way Nash Equilibrium. In contrast, our approach compared

against Jadhav’s round-robin load balancing with random strategies, which incurs less overhead.

Furthermore, we benchmarked our approach against Asakura et al. [79], a prominent primary

load balancing cellular algorithm featuring backup flows for each primary flow. Additionally,

we assessed Kawada et al.’s algorithm [76], which rebalances only the most overloaded access

point, as mentioned in the literature. Our proposed approach, SLB, demonstrated superior

performance in comparison.

In this study, we conducted thorough comparisons with the aforementioned state-of-the-art

algorithms, as illustrated in Fig 4.2. The selection of these algorithms was based on their

relevance to our research objectives and problem domain.

Fig. 4.2b and 4.2c compare the mean imbalance and variance. SLB without biasing delivers

the least imbalance among all other contestants. However, SLB without biasing suffer from

poor SNR and CQI values, as shown in Fig. 4.2d and 4.2e. Cell association through signal

strength and latency [79],[69] provides a better SNR and CQI but a higher load imbalance since

it is swayed just by signal quality. Our multi-dimensional approach, SLB with biasing, offers

comparable SNR and CQI for the migrated devices compared to [79] and [69]. It also achieves a

lesser imbalance among the serving cells than candidate algorithms. Thus, SLB with biasing

offers a good trade-off between load imbalance and signal quality and exhibits better results in

each of the parameters shown in Fig. 4.2b to Fig. 4.2e.

To outline the overall effectiveness, we first measure the load imbalance reduction percentage of

SLB with biasing against other candidates in every time slot. Then, we determine the minimum

percent ratio in which SLB outperforms state-of-the-art approaches in every round. Finally, we

compute the moving average of minimum percentage gain across the ten timeslots to state the

overall improvement. Overall, SLB with biasing reduces the imbalance by a factor of 7.14%

compared to the optimal uni-transfer algorithm. Against other state-of-the-art algorithms, it

outperforms them by a factor of 22.24%.

4.6 Chapter Summary

The chapter on swap-based load balancing presented a comprehensive approach to managing net-

work traffic distribution and optimizing performance. The key points underscore the significance
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of the research work.

• One-way and Two-way Traffic Distribution: The chapter begins by detailing the standard

one-way traffic distribution method, which considers factors like signal strength and

access point load. This approach provides a foundation for understanding traditional load

balancing methods.

• Proposed Two-way Swap Load Balancing: The chapter introduces a novel approach, the

two-way extreme load balancing technique, designed to minimize load imbalances and

improve critical metrics such as Channel Quality Index (CQI) and Signal-to-Noise Ratio

(SNR) for users. This innovation sets the stage for improved network performance.

• Validation with Real Data and Comparison with Other Algorithms: The work is validated

using a dataset from an Irish mobile operator, adding a practical dimension to the research.

Real-world data evaluation strengthens the credibility of the proposed load balancing

techniques. The research rigorously compares the proposed swap-based algorithm, with

and without biasing, against other candidate algorithms proposed by various researchers.

The results highlight the effectiveness of the approach, especially when biasing is applied.

• 0-1 Knapsack Algorithm and Biasing Techniques: The implementation of swap-based

load balancing employs the 0-1 Knapsack algorithm to determine which devices should

be exchanged. The chapter explores biasing techniques based on signal strength and

associated access points. These techniques are vital in controlling how load balancing is

executed, leading to better load distribution and performance optimization.

• Tighter and Looser Variants: The tighter variant maintains equilibrium with minimal

exchange, while the looser variant allows for more dynamic load balancing, adapting to

the network’s needs.

• Control-Plane-Driven Methodology: The chapter discusses a control-plane-driven load

balancing methodology applicable to Software-Defined Networking (SDN)-enabled architec-

tures in WLANs, Radio communications, and SD-WAN deployments. This adds relevance

to modern network infrastructure.

• Signal Quality Improvement and Reducing Load Imbalance: Swap-based load balancing

decreases the imbalance among access points (APs) and enhances signal quality for

connected devices. These outcomes directly impact user experience and network efficiency.
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The chapter emphasizes that SLB without biasing achieves the least load imbalance among

all other contestants. This underscores the practical significance and superiority of the

proposed load balancing technique.

The chapter provides a detailed exploration of swap-based load balancing, supported by empirical

data, algorithmic insights, and a focus on network performance improvement. It contributes to

the field by offering innovative solutions to address load balancing challenges in modern network

environments. We published this work [4] in IEEE Wireless Communications Letters Journal in

November 2021.

♦



Chapter 5

QoS Driven Task Offloading in RAN

Slicing

5.1 Introduction

The storage and computation power of mobile devices are not able to scale up to run resources-

hungry applications. A possible alternative could be to offload the requests to remote resource-rich

VM instances, possibly in the cloud or container-based technology at the edge. It could involve

offloading cost, network delay cost and scheduling delay. Hence, the system design should

consider when to offload and when not to in the paradigm of Multi-access Edge Computing

(MEC).

Requests can be offloaded to an edge server only when they can cater to the specific application

processing or Virtual Network Function (VNF). Such offloaded requests to the edge server, need

to be scheduled at the application servers or VNF and the resources need to be subsequently

provisioned. Hence, there is a need for joint task offloading with resource allocation in the edge

servers.

As we know, when the applications in the mobile devices become resource-intensive, an option is

to offload total or part of the application workflow to a resource-rich cloud infrastructure. The

pitfall would be a long latency associated with it. A cloudlet solution was proposed to bring

down the latency. The cloudlets can act as a valid solution, particularly for small or medium

resources. However, due to its inherent architecture and placement, it would be difficult to

satisfy QoS in difficult circumstances [85].

88
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The improvised version of cloudlet constitutes next-gen technology: Mobile Edge Cloud Comput-

ing, where cloud computing technology is at the edge of the Radio Access Networks. This version

is an extension of the Cloud Radio Access Network (C-RAN). C-RAN is a cloud computing-based,

centralized, clean and collaborative radio access network. C-RAN comprises of three units: i)

Remote Radio Heads (RRH), ii) Base Band Unit (BBU) pool and iii) High-bandwidth, high

speed, low latency fiber transport or fronthaul link. The fronthaul link connects RRH to the

BBU cloud pool. In traditional architecture, radio and baseband functions are located in physical

BSs. Whereas, in C-RAN, the functions are virtual and deployed as cloud services.

In summary, the chapter discusses requests for task offloading from mobile devices, the tasks

themselves, and the computational resources available at the edge, particularly within the context

of Mobile Edge Computing (MEC) and Network Slicing (NS).

- Requests: These are requests related to task offloading in the context of mobile edge

computing and network slicing. Specifically, they refer to requests to offload tasks from

devices to edge servers for processing. These requests are made to improve the performance

and resource utilization of resource-constrained devices.

- Tasks: The tasks referred to are computing tasks or workloads generated by mobile devices

that can be offloaded to edge servers. These tasks are typically application processing or

Virtual Network Functions (VNFs) that require computational resources for execution.

- Resources: The resources in question primarily pertain to the edge servers located within

the Radio Access Network (RAN). These edge servers are equipped with computational

capacity and are responsible for handling the offloaded tasks efficiently. The architecture

also involves other network components like Remote Radio Heads (RRH), Base Band Unit

(BBU) pools, and high-speed fiber transport links.

In the context of a Mobile Edge Computing (MEC) system with edge servers installed at

Radio Access Network (RAN) slices, the problem statement is to optimize the task offloading

process from mobile devices to these edge servers based on Quality of Service (QoS) attributes.

Specifically, this chapter aims to categorize incoming tasks into different priority levels and

efficiently process them at edge servers. The task placement needs to consider attributes such

as QoS Class Identifier (QCI), Allocation and Retention Priority (ARP), Access Class Bearing

(ACB), Differentiated Services Code Point (DSCP), soft deadlines, and computing cycles.

In this chapter,
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Figure 5.1: Network Slice setup for Task Offloading

- We present a novel task categorizer for offloading that considers the QoS attributes. We compare

the proposed ensemble method with other multiple and single attribute categorization

approaches.

- We present Kafka topic based priority queuing and resource provisioning of offloaded tasks to

the edge servers hosted in container-based technology.

In this work, we realise slices through flowvisor and controllers from SDN technologies depicted

in Fig. 5.1. The network slices are created and configured through flowvisor.

5.2 Task Offloading System Model

Edge servers are installed at RAN slice. Tasks from mobile devices traverse through the radio

device to the co-located edge host. The traffic analyzer inspects the task and routes it to the

appropriate Kafka topic. Tasks are executed as containers.

5.2.1 Computation Task Model

We formulate the offloading scheme for mobile User Equipments (UEs) as a triple (U, T, S). Here

U is a finite set of UEs, T is a finite set of tasks. ti,u∈ T is a task belongs to user u∈ U and

is identified by i. Tasks are executed by the processing units s ∈ S. In this work, we consider
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discrete tasks modelled by a set of attributes,

ti,u = {Qi, ζi, αi, d̂i, θi, µi} (5.1)

Qi represents QCI ranging from 1-254 are used for prioritization in scheduling and queuing of

admitted values.

ζi denotes the Allocation and Retention Priority (ARP) which governs through the ARP priority

(1-15). It is a constituent in subscribed QoS profile for the default bearer.

αi depicts the Access Class Bearing (ACB) feature used for terminal class prioritization. When

the network is massively overloaded, the regular access classes are either barred or set a particular

blocking probability.

d̂i denotes the Differentiated Services Code Point (DSCP) attribute of the task ti,u belonging to

user u.

θi, µi represent the soft deadline (latency requirements) and computing cycles required for

processing by p ∈ P .

In this model, we inspect based on parameters such as QCI, ARP, and ACB. QCI fills in for other

parameters, such as Guaranteed Bit Rate (GBR) and Maximum Bit Rate (MBR), and these are

not autonomously examined. In this chapter, we follow the notation ti and ti,u interchangeably.

5.2.2 QoS Task Scheduling Model

When task offloading requests arrive, the task should be characterized by attributes in equation

5.1. We construct a priority scheduling model based on QoS parameters as follows,

• In this work, we structure task processing through Kafka topics τ = {τE , τH , τM , τL} which
stands for Emergency, High, Medium, and Low priority topics, respectively. This can be

generalized or extended to τ = {τ1, τ2, τ3, ..τp} with τ1 as the higher priority and τp being

the lower priority.

• The number of pending tasks to be executed in each topic k is given by σk.

σk = Latest pushed offset − Current offset read

The offset is a simple integer number that is used by Kafka to maintain the current position

of a consumer.
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• ϵi is the Earliest Finish Time (EF) of task ti based on the current load {σE , σH , σM , σL}
in the Kafka topics. It is computed based on: a) the unconsumed number of tasks in each

topic, b) the topic in which the task ti is placed, and c) the frequency with which messages

are consumed from the topics. Further, ϵi is defined later in the discussion through the

equation 6.6. The actual completion time would also depend on the future arrivals of

higher priority tasks that are going to be scheduled before this particular task.

The Earliest Finish Time of a task is the expected completion time of that task, taking into

account the current set of tasks that have not yet been processed, the system’s scheduling

strategy, and the time required for task execution. EF represents the point in time at which the

task is anticipated to finish. Importantly, the calculation of EF focuses solely on the existing tasks

that have not been completed and does not consider potential tasks with higher priority that

might arise in the future. This approach ensures that the EF is based on the current workload,

without being influenced by potential future tasks that could alter the task’s completion time.

5.3 Solution Framework

In this section, we discuss the proposed QoS driven prioritized offloading mechanism. The

offloading algorithm consists of three parts: (a) Offloaded Task placement (b) Task Categorizer

(c) QoS driven Prioritized Task scheduling.

5.3.1 Offloaded Task Placement

In task classification, the incoming task ti,u = {Qi, ζi, αi, d̂i, θi, µi} is categorized to place in one

of the topics of τ = {τE , τH , τM , τL}.

Algorithm 8 examines the incoming offloaded tasks T and rejects the task whose deadline

(θi < c : ti ∈ T ) have already expired where c denotes the current time. Then, the task classifier

analyzes and computes the priority of the task ti, and it returns the priority of traffic class

p ∈ {E,H,M,L}. If the task is classified as emergency, it is instantly placed in the emergency

topic τE . For other traffic classes p, if the earliest finish time is less than the deadline d̂i, the

tasks are placed in the topic τp where p ∈ {H,M,L},. The earliest finish time for task ti,u is

denoted by Fκ(p,ti) where p ∈ {H,M,L}.
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Algorithm 8: Offloaded Task Placement in Kafka Topic

function taskPlacement (T, τ)
while (ti,u ∈ T fromu ∈ U) do

if θi < c then
reject ti,u;

p→ task categorizer(ti,u, τ)
if p ∈ E then

place ti in τE
ϵi → Fκ(p,ti)
if θi < ϵi then

reject ti,u;

else
place ti,u in τp : p ∈ {H,M,L}

5.3.2 Task Categorizer

The proposed traffic categorizer is an ensemble method achieved over two stages. First, we apply

mathematic models which evaluate the QoS attributes of each task and choose the appropriate

priority. Second, we integrate it and implement a weighted voting scheme for deducing the traffic

priority.

Models

Model I and II are based on the multiple attributes decision making (MADM) [118]. The

attributes are J = {Q, ζ, α, d̂, θ, µ} which defines the tasks. Let aij represent the mapped value

ξj for task ti with respect to jth attribute.

aij = ξj(ti) (5.2)

âij is the normalized matrix using the Max-Min function,

âij =
aij −mini(aij)

maxi(aij)−mini(aij)

for upward attributes. Max and Min functions are reversed for downward attributes. Model I

and II use Simple Additive Weighting (SAW) and Multiplicative Additive Weighting (MEW)

represented in equation 5.3 and 5.4 respectively.

RSAW =

J∑
j=1

wj âij (5.3)

RMEW =

J∑
j=1

â
wj

ij (5.4)
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Table 5.1: Standard QoS Class Identifier (QCI) values and priority level

QCI Value Priority Level Services

1 2 GBR Conversational voice

2 4 GBR Conversational video

3 3 GBR Relative Gaming

4 5 GBR Non-Conversational video

65 0.7 Mission critical user plane Push to talk

66 0.7 Non Mission critical user Push to talk

5 1 IMS Signalling

6 6 Non-GBR Video (Buffered Streaming)

7 7 Non-GBR Voice, Interactive Gaming

8 8 Non-GBR TCP based apps

9 9 Default

69 0.5 Mission Critical Delay Sensitive signalling

70 5.5 Mission Critical Data

Every attribute is provided with homogeneous weights. The range of RSAW co-efficient values

are divided into four equal parts and are classified into {E,H,M,L} respectively The top portion

of RSAW → E and lowest RSAW → L.

The mapping function ξj is prescribed for the transformation of attribute j based on its relative

priority. For example, every standard QCI (Q) values can be coded into a relative priority where

0.5 is the highest priority and 9 implying the lowest priority level. Based on the priority level

range, the mapping function classifies it into {E,H,M,L} or {1, 2, 3, 4} values, and are stored

in decision matrix aij . In Table 5.1, we tabulate the standard QCI values in LTE to its relative

priority level [112].

Similarly, ACB (α) has values AC12 for emergency, AC14 for security service, AC10 for consumer

emergency and AC0-8 are for regular class. The mapping function (ξj) is applied for the actual

values for attributes j of the task ti to classify into one of {E,H,M,L}.

Models III-V III are designed as Single Attribute Categorization Problem (SACP) for ∀j ∈ J
referred in equation 5.1. Models III-V III are for {Q, ζ, α, d̂, θ, µ} based on the single attribute

only. Here again, we apply mapping function (ξj : j ∈ J) for relative ranking based on the levels

of ξj we classify into one of {E,H,M,L}.

For example, in model IV , QCI(Qi) of task ti with priority (0-2) are classified as high H, (3-5)

as medium M , and (6-9) as low L. The mission critical traffic and signalling category of (Qi)

are treated as emergency E.
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Model(IX) utilizes fuzzy rule sets. A fuzzy set is a membership function assigning each object

to the priority class. We develop a module of fuzzy rule base which is a collection of IF - THEN

rules. For example, in access class bearing attribute, if αi ≥10, then p ← E.

Voting through Borda Scoring

The models are the voters and the candidates are the topics to choose from. In this work,

the collected ballots from each of the models classify the task ti ∈ T into suitable topics with

a ranking order. For example, for task ti,u, MI can provide the ranking as H→E→M→L,

indicating it prefers to place the task ti,u in topic τH > τE > τM > τL. In this approach, we

apply Borda Score(BS). Borda score of τH for task ti against models (MI -MIX) can be applied

as follows:

When the number of topics ranging from τ1 to τp,

BS(τk) =



(p− 1)× #{l|l ranks τk first}

+(p− 2)× #{l|l ranks τk second}

+..

+1× #{l|l ranks τk second to last}

+0× #{l|l ranks τk last}

(5.5)

In the current implementation, we use the following topics {τE , τH , τM , τL}. Also, the Borda

Scoring is enhanced by providing weights (wt) to the models. The enhanced Borda Score of τH

is,

BS(τH) =



3× #{∑R1

r wtr|r ranks τH first}

+2× #{∑R2

r wtr|r ranks τH second}

+1× #{∑R3

r wtr|r ranks τH second to last}

+0× #{∑R4

r wtr|r ranks τH last}

(5.6)

where |R1|+ |R2|+ |R3|+ |R4| = number of models. R1 and R2 are set of models which rank

τH first and second respectively. wtr indicates the weight given for the model for voting. Hence,

we sum the weights of the models which provides the same rank and multiply with the points

that are given to each model in reverse proportion to their ranking. Similarly the above formula

can be applied for computing BS(τE), BS(τM ) and BS(τL) for evaluating task ti. The topic with

the highest Borda Score is selected for placing the task ti represented by equation 5.7.

τk = argmax
p

BS(τp)⇔ BS(τk) = max
p∈{τ}

BS(τp) (5.7)
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The time complexity of Borda scoring is O(m ∗ n) for calculating the score of a single task,

where n is the number of topics to choose from, and m is the number of models. The topic

selection for a task is performed using a max function in O(n). If scores are calculated for all

tasks (|T |), the overall time complexity becomes O(m ∗ n ∗ |T | + n ∗ |T |) → O(m ∗ n ∗ |T |) .

Each model involved in ensemble categorization has different time complexities. Single attribute

categorizers, like Access Class Bearing, categorize tasks in O(1) time. Others, like Quality Class

Identifier (QCI), Allocation and Retention Priority (ARP), and Differentiated Services Code

Point (DSCP), map tasks into ranked topics in O(1) time. Multiple attribute decision-making

models like Simple Additive Weighting (SAW) depend on multiple attributes (|J |), leading to a

complexity of O(|J |). When ensemble categorization has single and multiple attribute decision

categorizers, the overall time complexity becomes O(m ∗ n ∗ |J | ∗ |T |).

Borda scoring can be used in ensemble methods, although it is less common than other aggregation

techniques like majority voting or averaging. Here are some key reasons why Borda scoring

should be considered in ensemble methods:

- Preference Aggregation: Borda scoring is primarily used for preference aggregation when

there is a need to rank or prioritize multiple options or choices. In certain ensemble

scenarios, such as recommender systems, where the goal is to rank items based on user

preferences, Borda scoring can be a suitable choice.

- Ranking-Based Ensembles: If individual models in an ensemble provide ranked predictions

or preferences, Borda scoring can be employed to aggregate these rankings effectively. For

example, in a collaborative filtering recommendation system, where each model ranks items

for a user, Borda scoring can help determine the final ranked list of recommendations.

- Combining Ranking Models: Ensemble methods often involve combining multiple models

with different strengths and weaknesses. If some of these models are designed to produce

rankings or preferences, Borda scoring can be used to leverage their outputs alongside

other models that produce class labels or continuous predictions.

- Customized Aggregation: Borda scoring allows for customized weighting of individual

models based on their ranks. This can be valuable when certain models in the ensemble

are known to perform better or have more credibility in specific situations.
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- Diverse Ensemble Members: In cases where ensemble members provide diverse rankings or

preferences, Borda scoring can help capture and combine these diverse viewpoints to make

a final decision.

In many classification and regression tasks, simpler aggregation methods like majority voting or

averaging are more commonly used because they directly address the objectives of predicting

class labels or continuous values. However, when the objective is to rank or prioritize options,

Borda scoring can be a relevant choice within an ensemble framework.

5.3.3 Proposed Prioritized Scheduling

Here the offloaded tasks present in the τE are consumed immediately. If there are no emergency

tasks, the scheduler assigns probability of ρH , ρM , ρL for each of the topic where ρH > ρM >

ρL where ρH + ρM + ρL=1. As mentioned earlier, σH ,σM ,σL captures the number of unread

tasks lying in the topics where σH+σM+σL would be the total number of unexecuted offloaded

tasks. The probability of processing in the next time slot from topic H is

Pr(H) =
ρHσH

ρHσH + ρMσM + ρLσL
(5.8)

Similarly, the above probabilities are applied for τM and τL respectively. The task when

dispatched by scheduler processor instantiates a docker container.

The Earliest Finish time (EF (ti)) for task ti categorized into τH would be as follows. Let l be

the number of scheduling operations such that ρH ∗ l = σH + 1,

EF (ti) =

σE∑
v

µv +

σH∑
x

µx +

l∗ρM∑
y

µy +

l∗ρL∑
z

µz (5.9)

where u ∈ τE , x ∈ τH , y ∈ τH , z ∈ τL, σH >> σM >> σL.

To summarize, there are number of offloaded tasks to be executed, which need task prioritization

and scheduling at edge servers. Following Quality of Service (QoS) considerations are considered:

Qi (QCI): Prioritizes tasks using values from 1-254.

ζi (ARP): When network resources are scarce or in high demand, ARP is used to determine

which services or tasks should receive preferential treatment in terms of resource allocation.

αi (ACB): Prioritizes tasks based on terminal class, crucial during network congestion.
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Figure 5.2: Mininet Host integration with the Docker and Kafka messaging system

d̂i (DSCP): Identifies tasks based on specific attributes.

θi, µi (Soft Deadline and Computing Cycles): Ensure tasks meet latency requirements and have

adequate processing resources.

These attributes optimize task management and resource allocation, enhancing system perfor-

mance.

When offloading tasks with different parameters, we have discussed techniques for categorizing

and accuracy of such methods. Our focus during scheduling optimization has been metrics like

minimizing waiting times and reducing queue lengths for different priority classes.

5.4 Simulation and Results

The network slicing setup is already well-explained in Chapters 3 and 4 simulation section.

The offloaded tasks are redirected from the end-user devices to the Mininet hosts, which are

functioning in the slice. The slices are administered through the respective controllers. The

Mininet host operates the web server, which receives the request for task execution and, based

on the precedence factor of the request, places it in the appropriate Kafka topic. It is eventually

picked up by one of the multiple processing units, which are instantiated as application server

instances using the Docker ecosystem. The topics are realised through the Kafka messaging

system.
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Table 5.2: Accuracy of Task Categorization

Methodologies Emergency High Medium Low

ACB SAC 76.73% NA 11.79% 91.22%

Proposed Ensemble method 100% 100% 64.18% 99.37%

Deadline (EDF) SAC NA 16.05% 39.35% 75.8%

DSCP SAC NA 63.45% 64.32% 100%

MADM Model I 71.17% 68.72% 88.28% 58.18%

MADM Model II 100% 79.65% 100% 60.9%

QCI SAC 30.95% 41.71% 65.59% 75%

Docker uses OS-level virtualization to create containers. Containers are isolated processing units

with their software, libraries and configuration files. Container instances are brought up with

required dependencies to process the request. Requests for task execution are read from the

Kafka topics.

The traffic categorization through ensemble method is compared against the results of multiple

attribute decision making, and Single Attribute Categorization (SAC) methods for different

priority task classes. The accuracy of the categorizers are tabulated in Table 5.2. The generated

test data consists of 10000 tasks of the four priority classes {E,M,H,L}.

We have depicted in Figure 5.2, how the Mininet host is integrated with Docker and Kafka

messaging systems.

The web service is hosted on port 8080 using the Tomcat or Jetty HTTP web server with the Java

programming language. We’ve also experimented with the Django web server, which operates

with Python and uses port 8000 to handle requests. When a task arrives at these REST services,

we trigger ensemble categorization and Borda scoring. Based on the Borda scoring result, the

Kafka producer publishes the task to the relevant topic.

In the background, Apache ZooKeeper is running on port 2181 to assist the Kafka producer

in dynamic broker discovery. The Kafka broker operates on port number 9092 and relies on

ZooKeeper for cluster management, managing topic and partition metadata, and leader election.

A relevant Kafka consumer retrieves tasks from different topics (Emergency, High, Medium,

Low) based on the probabilistic priority scheduling outcome. The Kafka consumer also uses

ZooKeeper for offset management.

To execute tasks, we create a Docker instance using a Docker run file. This run file uses the

official Ubuntu image as the base image. Inside the container, we set up the working application.
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An executable script for the task is created and marked as executable. We specify that the task

executable should be executed as part of the CMD command, which is used to start the script

when the Docker instance starts.

To create and store the Docker image, we use the docker build command, ship to docker hub and

then run the image using the ”docker run” command.

For this experiment, the emergency class consists of emergency & security services of ACB,

mission-critical sensitive signalling & data of QCI. High priority tasks include GBR conversation

voice, IMS signalling, and mission-critical user (push to talk) services of QCI, Expediated

Forwarding from DSCP, and top 10% of earliest deadline tasks. Medium priority tasks include

GBR services except for the voice, assured forwarding, and 10% - 50% percentile of the deadline

of tasks received. Low priority tasks are non-GBR and default services, default forwarding, and

tasks with the bottom 50% percentile deadline. The SAC methods exhibit low accuracy. The

ensemble method shows an accuracy of 97.695% across the priority classes.

On average, the proposed methodology has greater accuracy compared to both MADM Model I

and II by 26% and 12.5%, respectively. For the experiment, during the enhanced Borda score

voting, the weights for the models I - IX in the ensemble method are (1,1,2,0,1,1,2,0,2).

Some of the key observations are listed below:

- The Proposed Ensemble Method achieves the highest accuracy across all priority levels,

with 100% accuracy for Emergency and High tasks.

- DSCP SAC also performs well with high accuracy for High, Medium, and Low priority

tasks.

- MADM Model II has perfect accuracy for Emergency and Medium tasks but lower accuracy

for High and Low tasks. ACB SAC performs well for Emergency and Low tasks but does

not provide accurate information for High priority tasks.

- Deadline (EDF) SAC has lower accuracy compared to other methods, especially for Medium

and Low tasks. QCI SAC has relatively lower accuracy across all priority levels compared

to some other methods.

The choice of methodology depends on the specific requirements and priorities of your task

categorization system.
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Figure 5.3: Unprocessed tasks for experimental settings - I

The Proposed Ensemble Method appears to be the most accurate overall, but the trade-offs

between accuracy and other factors like computational complexity should also be considered when

selecting a methodology for your application. The computational complexity of the proposed

ensemble categorization is well explained in the previous section.

In Fig. 5.3, we plot the performance of the proposed scheduler and compare it against Tao’s EDF,

standard priority queuing, and FCFS-based approaches. The simulation settings of Fig. 5.3 are

captured in Table 5.3. This experiment I constitutes the first of the two experimental settings

outlined. Tao’s EDF is a deadline-based scheduling approach that prioritizes tasks based on

their deadlines, ensuring that tasks with imminent deadlines are executed first. Standard priority

queuing assigns tasks priorities and executes higher-priority tasks before lower-priority ones.

FCFS-based approaches execute tasks in the order they arrive, without considering priorities or
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Table 5.3: Experimental Settings - I for Fig 5.3 - Proposed Priority Based Scheduling

Property Value

Number of Tasks 10000

Execution time of a task 2 seconds

Emergency Tasks 20.14%

High Priority Tasks 23.58%

Medium Priority Tasks 26.24%

Low Priority Tasks 30.03%

Task arrival distribution Poisson

Poisson Mean and Seed parameters 25 and 1000%

deadlines.

We process 10K tasks where tasks arrive in batches. The task population comprises 20%

emergency, 23.5% high, 26.25% medium, and 30% low priority tasks. In Fig. 5.3, we plot the

number of unprocessed tasks for each priority class against time in seconds. Each task takes

an average of 2 seconds to get executed. The Poisson Distribution is used task arrival. Mean

is set to value 25, which represents the average number of events in the distribution, and seed,

which is an optional parameter, is set to 1000, used to initialize a random number generator for

generating random values following the Poisson Distribution with the specified mean for the

experiment in Fig. 5.3a. In the simulation, the Docker task execution time of 2 seconds was

chosen. This simplifies the experiment, allowing for a fair comparison of scheduling methods (e.g.,

FCFS, Random, Round Robin, Tao’s EDF, standard priority) against the proposed approach

without the complexity of varying execution times. While the specific value was selected for

practicality, it aligns with typical task durations in the simulation context.

In the context of scheduling algorithms, particularly in First-Come-First-Serve (FCFS) and

Earliest Deadline First (EDF) strategies, there is a notable issue with emergency and high-priority

tasks experiencing prolonged waiting times. This means that these critical tasks, which are often

time-sensitive or of utmost importance, tend to linger in the queue for a significant duration

before being processed.

In our proposed approach, we have strived to address this concern effectively. When we

compared the number of pending emergency and high-priority tasks using our methodology

against the conventional standard priority queuing method, we found that our approach maintains

a comparable number of such tasks in the queue. This means that we don’t compromise on the

prompt processing of these high-priority tasks.
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Figure 5.4: Unprocessed tasks for experimental settings - II (Logarithmic Distribution)

However, our approach brings a significant advantage over standard priority queuing when it

comes to medium and low-priority tasks. These tasks often form long queues in traditional

priority queuing systems, leading to delays and inefficiencies. In our method, we observed a

remarkable reduction in queue buildup for medium and low-priority tasks. Specifically, within

the observed time interval from the start of the process to 1.2× 104 seconds later, we noticed a

reduction in queue length by 9% for medium-priority tasks and 5% for low-priority tasks.

This means that our proposed methodology not only ensures that high-priority and emergency

tasks are handled promptly, as in standard priority queuing, but it also optimizes the system’s

overall efficiency by significantly reducing queue congestion for less critical tasks. This outcome

makes our approach a promising solution for systems where a balance between prioritizing critical

tasks and maintaining overall performance is essential.
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Table 5.4: Experimental Settings - II for Fig 5.4 - Proposed Priority Based Scheduling

Property Value

Number of Tasks 10000

Execution time of a task 2 seconds

Emergency Tasks 53.33%

High Priority Tasks 26.67%

Medium Priority Tasks 13.33%

Low Priority Tasks 6.66%

Task arrival distribution Poisson

Poisson Mean and Seed parameters 25 and 1000%

In Experiment II, we designed the task composition according to a logarithmic distribution

with an emergency-to-high-to-medium-to-low ratio of 8:4:2:1, as visualized in Fig. 5.4a. The

simulation settings of Fig. 5.4 are tabulated in Table 5.4. In this experiment, additionally,

we have also compared with Round Robin and Random scheduling algorithms. Round Robin

allocates CPU time to tasks in a circular order from the pre-defined set of topics. Random

Scheduling, selects tasks for execution in a completely random manner, without any specific

order or priority, making it unpredictable. In this experiment, we can observe that both Round

Robin and random scheduling encounter a notable problem with queuing a large number of

emergency and high-priority tasks.

In Fig. 5.4b, both the Priority and Proposed approaches immediately execute emergency tasks

without delay. While handling high-priority tasks, the Proposed approach, while slightly trailing,

exhibits comparable performance when compared to priority-based scheduling.

In Fig. 5.4c, during the timeframe spanning from 1 × 104 to 1.6 × 104 seconds, we observe

the trend where medium-priority tasks effectively circumvent lengthy queueing. This, in turn,

mitigates the risk of medium-priority tasks facing resource starvation, especially for those tasks

that arrived earlier in the queue.

Similarly, in the interval stretching from 1× 104 to 1.8× 104 seconds in Fig. 5.4d, we note a

similar trend where low-priority tasks, which entered the system earlier during the simulation

run, receive substantially earlier execution within the Proposed approach in contrast to the

priority-based scheduling method.
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5.5 Chapter Summary

In this chapter, we presented QoS-driven task offloading through ensemble categorization and

probabilistic prioritized task scheduling at edge servers. We apply enhanced weighted Borda

scoring for topic selection. We simulate the Network slicing setup through Mininet, Flowvisor,

POX and Beacon controllers. The offloaded tasks to edge servers are categorized and placed in

Kafka topics, and later processed through docker containers. We published this work [3] in the

18th Annual Consumer Communications Networking Conference (CCNC), 2021.

♦



Chapter 6

Application-aware QoS-Based

Routing for 5G Network Slicing

6.1 Introduction

We know that software-defined networking has spurred the paradigm of programmable network

structures. SDN has three layers: control, data, and infrastructure planes. SDN has predomi-

nantly centered around the functioning and performance aspects of the controller and data plane

co-ordination. [119].

The application-aware routing is a method to administer the network from an application point

of view. Here, the prime focus is applying QoS constraints and the maximization of relevant

utility functions in SLAs.

5G mobile platform comprises of multiple radio access and wireless technologies [49]. Similarly, 5G

core and transport network has widespread softwarization and seeks end-to-end path optimization

that targets the application’s QoS requirements and SLA. In the previous generations of cellular

networks, Key Performance Indicators are over-provisioned to meet the application demands.

However, to implement network slicing and enable multi-tenancy, 5G would need more robust

and reliable co-ordination and harmonization between RAT, transport, and core networks, which

are connecting the end-users and application servers.

In this chapter, we apply application-aware routing principles in the state-of-the-art QoS

framework, by measuring QoS metrics, mapping, and allocating paths while meeting SLA

106
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boundaries. Firstly, we estimate the key QoS parameters such as latency, packet loss, and jitter

of the data path, and we also compute the notional value of the above metrics. The second step

is to map each data route against the SLA class definition of users. Finally, we discuss QoS Key

Performance Indicator (KPI) driven routing scheme through the standard algorithm in SDN.

This chapter’s content is organized as follows: Section 6.2 outlines the system model. Section

6.3 discusses the proposed mechanism using application-aware routing principles and the overall

workflow. The simulation environment and the QoS framework are described in Section 6.4.

Section 6.5 evaluates the results against other candidate solutions. In the last section, we

conclude by summarizing our work and defining the future directions.

6.2 Application-aware routing system model and problem state-

ment

Let G = {V,E,A,U, S}, where V denotes the set of base station, routers and switches in the

Transport and Core Network. E represents the links from the wireline communication between

these routers, Layer 2, and Layer 3 switches. Let S denote the application server in the core

network. Let A be the set of antenna in a base station (b ∈ B) on massive Multiple Input

Multiple Output (MIMO) in 5G New Radio communication. The users associated with the BS

are denoted by u. Each user can have different client requests, indicated by vector R(u).

The uplink path Pu1 of first hop wireless channel and wireline transport can be described as:

Pu1
= u · {a1, a2, ..am} · b · v1 · e1... · vn · en · s1

The application server (s1 ∈ S) receives the data x (vector) through the transport and core

(V,E) from the base station b. The message x̄ is transmitted through a set of m× 1 antennas

{a1, a2, ..am} to user u.

Similarly, the uplink path Pu2 for a mobile wireless backhaul would be,

Pu2 = u · {a1..amb1
} · b1....{a1..ambk

} · bn · v1 · e1... · vn · en · s1
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where mbk is the number of antennas in base station bk. In a mobile wireless backhaul, k > 0

and n >= 0. In a pure mobile wireless backhaul with an edge server s, n = 0. Here, (.) operator

indicates the flow of data from one entity to other.

The communication channel between the user and the transmitter exhibits small and large scale

fading, both modeled using the Rayleigh fading model. In this context, the received signal y (a

vector) at the first-hop wireless base station [120] can be described using Equation 6.1.

In this equation:

- ρu represents the normalized scalar downlink transmit power of the user.

- n denotes the additive white Gaussian noise vector.

- The transmitted message is represented by the signal vector x.

- G is the downlink composite channel matrix.

- The set of users is numbered from 1 to |U |.

To summarize, Equation 6.1 captures the received signal y at the first-hop base station, taking

into account user transmit power, noise, transmitted message, and the characteristics of the

channel, which includes both small and large-scale fading based on the Rayleigh fading model.

y =
√
ρuGx̄+ n (6.1)

To meet the users’ QoS requirements, let us define the Service Level Agreements (SLA). An

SLA class i consists of attributes βi ,µi , Φi , and τi, where each of the metric has a minimum or

maximum acceptable criterion. The desired value for these metrics are described through min

and max criteria.

SLAi = {βi, µi,Φi, τi}

∀j ∈ SLAi,∃(jmin, jmax)

β is the requested user bandwidth measured in Mbps. τ(Pu) is the round-trip latency in path

Pu measured in milli seconds, which is defined as the sum of transmission time (Tt,u) at the
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antenna/router, propagation time (Tp,u) over the wired or wireless link, and the processing time

(Tpr) at the server along the routing path.

τ(Pu) = 2 ∗
{ Pu∑

p

(Tt,u + Tp,u) + Tpr

}
(6.2)

Here, Φ is the Signal-to-Interference-plus-Noise Ratio (SINR) defined for the MIMO system for

user j. The total SINR is the effective product of all the links traversed in the path.

Φ(uj , Aj) =
ρu||gj ||2

K∑
i=1,i̸=j

E

{ ∣∣∣∣ gHj
||gj ||

gi

∣∣∣∣2 }
+ E

{ ∣∣∣∣ gHj
||gj ||

n

∣∣∣∣2 } (6.3)

For wired backhaul, the noise and interference is negligible.

Here, µ is the measured periodic jitter. Say, the mean response time is E(τp), and rk is the

Round Trip Time (RTT) along path p during round k. Then, µ can defined as,

µ(p) =

√
1

K
((Eτ − r1)2 + (Eτ − r2)2 + ..+ (Eτ − rK)2) (6.4)

6.3 Proposed Heuristic Application-aware Routing Methodology

6.3.1 Measurement of QoS Metrics

In the data path, the controller sends the beacon messages periodically over an interval. The

one-way latency, Round Trip Time (RTT), and packet loss in the data path are measured. A

route would consist of two components: a) the first-hop wireless channel between the end-user

device and eNodeB and b) the wireline communication from the access point to the application

server through the transport and core network.

6.3.2 Aggregation and Mapping

The average loss, latency, and jitter are computed through a sliding window of measured packet

loss and latency. The application-aware routing uses the set of the latest polls in a sliding window

to determine the SLA classification of the data path. Based on the measurement and calculation

of path loss and latency, along with the bandwidth details, each path may satisfy one or more
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user-configured SLA classes. The next phase maps an application’s traffic to the data plane that

renders the desired performance. The data plane should meet the required constraints as per

the SLA description in terms of bandwidth, latency, and jitter.

Algorithm 9: Candidate Path Identification

function pathIdentification(P, ptrack, n, ex,n, S, SLAi)
v[n] = true
if P.size() < |C| then

return

if n == S then
if evalMinQoS(‘full′, e, n, ptrack, SLAi) then

ptrack.add(n)
P.put(GUID,ptrack)

else
if evalMinQoS(‘partial′, e, n, ptrack, SLAi) then

while m : adj[n] do
if !v[m] then

ptrack.add(n)
pathIdentification(P, ptrack,m, en,m, S)

return P;

Algorithm 10: QoS Evaluation

function evalMinQoS(type, e, n, path, SLAi)
if e.isAirInteface() then

Compute Φe

if Φe < Φmin,SLAi then return false

Compute βe and τpath
if βe < βmin,SLAi ||τpath < τmin,SLAi then

return false

if type.isFull() then
Compute µ
if µpath < µmin,SLAi then return false

return true

6.3.3 Path identification

Let P be a hash map of paths < path id, nodes > selected for evaluation through Algorithm

9. Let N ← {V,A,B} comprise of vertices (routers and switches), and base station antennas.

The controller initiates Depth First Search (DFS) in the directed paths from the source. In

the path identification phase, we intend to find n possible paths that meet the minimum SLA

specifications of the class. Along the route, the path identifier and the visited nodes are stored
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in the data structure. DFS attributes to the time complexity of O(V + E), and can be applied

to find the route in the presence of failures.

Once we traverse a node, we check if the parameters have exceeded the upper bound of the SLA

class. For eg., whether the latency has crossed the maximum latency range, if so, rejects the

path through Algorithm 10. When the traversal leads to the server node, the path is identified.

The paths are assessed against the QoS parameters. When it satisfies the minimum acceptable

range in terms of measured KPI and inherent theoretical KPI of the SLA class, the path is

selected for further evaluation against the remaining n− 1 identified connections. The nodes in

the selected path to the server are marked as visited to avoid cycles.

6.3.4 Path evaluation

The selected paths are evaluated against the SLAi class to which it is mapped. Among the

paths, the path with the highest rank is elected as shown in Algorithm 11. The rank is calculated

based on the Borda scoring of the path among each attribute in the SLAi class.

Each path from the candidate set (P ) is evaluated for each attribute j in the SLAi class. Every

path is ranked in the natural order against each QoS metric. Path identification and evaluation

are re-triggered when there are soft network failures or new nodes are deployed. Similarly,

re-computation is triggered during periodic monitoring of the QoS metrics phase when the

elected paths fall below the minimum SLA values. The Borda scoring can be further extended

by providing weights against the natural order rank.

The Borda score of an evaluated path is:

BS(ρp1) =



(|P | − 1)× #{j|j ranks ρp1 first}

+(|P | − 2)× #{j|j ranks ρp1 second}

+ ...

+1× #{j|j ranks ρp1 second to last}

+0× #{j|j ranks ρp1 last}

(6.5)

The Borda scoring can be further extended by providing weights against the natural order rank.
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Algorithm 11: Path Evaluation

∀p ∈ P , Compute βp, µp,Φp, τp
∀p ∈ P , Compute BS(p)
bp← argmax

p
BS(p)

return bp

Table 6.1: Network Slices - Core Networks settings

Slices TL Bandwidth TL Latency (per hop) TL Packet Loss (per hop)

Slice 1 500MBps 0.1ms 0.01

Slice 2 500MBps 0.5ms 0.01

Slice 3 500MBps 0.5ms 0.03

Slice 4 500MBps 0.1ms 0.1

Slice 5 1GBps 0.1ms 0.01%

Slice 6 1GBps 0.1ms 0.1%

Slice 7 1GBps 0.5ms 0.1%

Slice 8 250MBps 0.1ms 0.01%

6.4 QoS Framework and Simulation Settings

In this simulation setup, we use the same network slicing setup discussed in the work with Kafka,

Docker, and Java Web services. Firstly, we generate the random graph topologies and QoS

configurations of edges through the Erdos-Renyi MATLAB module. These topologies and their

configurations (in terms of bandwidth, packet loss, and latency) are realized through Mininet

network.

We apply the application-aware routing procedures in the well-established architecture of NS

(through FlowVisor), SDN (POX controllers), and NFV modules deployed in Docker instances.

Each SDN controller, such as POX, has slice-aware QoS modules, which invoke the virtual

network functions in Docker for optimal path allocation.

6.5 Results and Analysis

We have come up with a few samples for NS settings in Tables 6.1 and 6.2, configured through

bandwidth, latency, and packet loss at each hop of Transport Network and RAN, respectively.

We state some real-world metrics set for various services during the analysis.
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Table 6.2: Network Slices - Radio Access Networks settings

Slices RAN Bandwidth RAN Latency RAN Packet Loss

Slice 1 300MBps 0.5ms 0.05%

Slice 2 250MBps 0.5ms 0.05%

Slice 3 250MBps 0.5ms 0.05%

Slice 4 250MBps 0.5ms 0.2%

Slice 5 1GBps 0.5ms 0.05%

Slice 6 1GBps 0.5ms 0.2%

Slice 7 500MBps 1ms 0.2%

Slice 8 250MBps 0.5ms 0.01%
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Figure 6.1: Evaluation of Network Slices 1- 4 for actual QoS performance

Having more slices with higher end configuration, can indeed saturate the network capacity,

depending on the available hardware resources and the specific network topology and traffic

patterns. To extend the overall eco-system to support more slices, one can consider following:

- Hardware Resources: Ensuring that our physical hardware (e.g., CPU, RAM, and network
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Figure 6.2: Evaluation of Network Slices 5 - 8 for actual QoS performance

adapters) can handle the increased load. Upgrading or using more powerful hardware can

help accommodate a larger number of slices, hosts and links.

- Network Topology Optimization: Carefully designing our network topology to reduce

unnecessary link and host saturation. Efficiently structuring our network can help mitigate

capacity issues.

- Traffic Management: Implement traffic shaping and Quality of Service (QoS) policies to

prioritize traffic and prevent congestion. This can help ensure that critical traffic gets the

necessary resources.

In Mininet specifically, for the simulation, one can consider the following approaches:

- Parallelism: Distributing the simulation across multiple Mininet instances or using dis-

tributed simulation frameworks if our simulation workload is extremely large.
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- Optimized Mininet Settings: Tweaking Mininet parameters, such as the CPU scheduling

policy and resource allocation, such as CPU and Memory allocation, link capacity, queue

size, host - link properties, to optimize performance for our specific use case.

- Scaling Down: If scaling up hardware resources is not feasible, we can consider downsizing

our simulation, reducing the number of hosts and links, or simulating smaller subsets of

our network.

- Profiling and Optimization: Profiling our Mininet setup to identify bottlenecks and areas

for optimization. Tools like top, htop, and iperf can help in diagnosing performance issues.

- Simulation Timeframe: Adjusting the timeframe of our simulation to avoid overloading

the network during the entire simulation period.

By applying these strategies, one can extend Mininet-based network simulation to support a

larger number of slices, hosts, and links while maintaining network performance and avoiding

saturation issues.

6.5.1 QoS Performance of Network Slices

In Fig. 6.1 and 6.2, we evaluate network slices on their performance. We sequentially plot the

perceived bandwidth and mean RTT in Fig. 6.1a and 6.1b. MDEV RTT and the overall Packet

Loss (PL) is outlined in Fig. 6.1c and Fig. 6.1d. The x-axis indicates the number of hops

between the src and dest. In the y-axis, we measure the bandwidth in MBits/sec, latency in ms,

and packet loss in percentages. Although Slice 2 and 3 have near-identical configurations, we

observe bandwidth of Slice 2 is higher than Slice 3, β(NS2) >> β(NS3). It is owing to higher

per-hop packet loss probability, PL(NS2) ≈ 3PL(NS3).

Similarly, the mean RTT doubles between NS1 and NS2 due to an increase in the propagation

delay from 0.1ms to 0.5ms. Assuming round trip, the total latency comprises nodes in the

traversed path of RAN (R), Transport (T), and backhaul links (CN - Core Network) as shown

in the (6.6) and (6.7).

Lreq = 2 ·
[
LR +

T,CN∑
et=1

Let

]
+ LSV (6.6)
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Figure 6.3: Information Rate

LR =
L(Pkt)

ϑut,R · ζR
+ TprR +

(
TprRλ

m
)
√

2(m+1)−1

m− λTprR
· Cv

2
a + Cv2p
2

(6.7)

Latency on a given RAN link between user terminal (ut) to Radio (R) involves the transmission

time of the source node, propagation delay over the link, queuing delay, and processing time on

the target node. Propagation delay consists of the time taken for transferring the packet size

L(Pkt) over an allocated edge. When M/M/m queuing model is considered, where m is the

number of parallel processing units, TprR is the processing time of a unit, λ is the rate of arrival,

and Cva and Cvp indicate the coefficient of variation of service time and average inter-arrival

time. Here, in this experiment, though the propagation delay is increased five times since the

delay is minimal (0.5ms), the perceived latency (τ) drops only by half due to the effect of other

components mentioned in Equations (6.6) and (6.7).

According to surveys, the network should keep packet loss of Voice over Internet Protocol (VoIP)

traffic below 1%. For video, between 0.05% and 5% is preferred. When nodes between the source

and destination are less than 20, these slice configurations fit in-meeting VoIP requirements.

NS1, NS2, NS5, and NS8 present less packet loss, and these slices can service GBR VOIP when

the number of hops increases. The overall mdev is around 100 milliseconds in the presence of

many nodes.

For low latency reliable communications, a combination of a higher packet loss rate like NS4

and a greater latency value like NS3 would not be appropriate and may lead to higher round

trip time and jitter. Instead, a slice configuration with both lesser propagation delay like NS3

and negligible packet loss like NS4 would be preferred.

NS1, NS5, and NS8 would be best suited as they offer the least latency and packet loss compared

to other candidates. The total cost of ownership (TCO) of NS5 is significantly higher than
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Figure 6.4: Comparison of path selection algorithms

NS8. Due to cost considerations around high bandwidth links, for a network setup that focuses

only on ultra-reliable low latency communication, a slice like NS8 would be ideal among the

candidate configurations.

The user’s information rate for the Massive MIMO system is shown in Fig. 6.3. The x-axis and

y-axis represent the number of antennas, and the information rate is calculated in MBits per

second. The information rate is computed through Maximal Ratio Combiner (MRC). The total

rate experienced is plotted considering the random placement of users in the coverage area, the

intensity of the signal, path loss, and increased SINR with more antennas leveraging spatial

multiplexity.

6.5.2 Application-Aware Path Selection Algorithms

FPR [94] consumes exponential time, wherein other candidates discussed in this work exhibit a

heuristic solution. The HPR [94] explores Dijkstra shortest-path based approach but considers
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only bandwidth constraints. HPR takes less time than (directMIN ) [97]. The proposed heuristic

application-aware routing shows significant reduction than HPR due to optimization based on

QoS metrics during the path selection phase. When the latency or bandwidth is not met during

the path identification, further traversal among the route is avoided.

SLAexp is defined for the attributes j with (jmin, jmax) as follows. βexp as (100, 500)Mbits/s,

packet loss in [0.01%, 0.09%] per hop and τ in [0.1,0.5] milliseconds per link. All the candi-

date algorithms HPR, directMIN, BH Throughput [32], and studied application-aware routing

approach obey the minimum and maximum attribute constraints for the SLA class.

In Fig. 6.4a, 6.4b, and 6.4c, we plot the bandwidth, packet loss, and latency attributes in

the y-axis. Though BH Throughput [13] exhibits high bandwidth, it suffers from high packet

loss and latency. The directMIN displays minimal latency across the candidates. However, it

demonstrates less bandwidth. The latency and packet losses are measured through standard

ping flood, changing the size of bytes in an ICMP packet header and sending it over an extended

ping. We used the IPerf tool for bandwidth measurement on IP networks. The usage of

application-aware approach provides an equitable opportunity for the performance of the path

in each attribute. Although it does not give the best performance in bandwidth and latency

metrics, the performance of the selected routes is comparable to the single objective optimized

approaches. These metrics are proven through repeated 1000 Monte Carlo runs.

The computational time of the application-aware path selection algorithms is discussed in Fig.

6.4d. The proposed heuristic application-aware routing shows a significant reduction than HPR

and directMIN due to optimization based on QoS metrics during the path selection phase. When

latency or bandwidth are not met during path identification, further traversal among the route

is avoided. The x-axis represents the number of nodes in the route, and the y-axis represents

the computational time. The path traversal from one node to another is randomly distributed

between 100 microseconds to 1 milliseconds. For the proposed approach, the number of selected

QoS paths for evaluation is capped at ten distinct routes.

The absolute values of bandwidth, packet loss, and latency are normalized on a scale of 0 to

1. We apply an enhanced max-min approach to derive the scale from the upward attribute -

Bandwidth, and downward features - Latency and Packet loss: We calculated the difference

between the best value of a metric against each algorithm’s performance on the metric. We then

computed the root mean square deviation against the top values of each metric. The discussed

approach exhibits the least mean square deviation of 29.4%.
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6.6 Chapter Summary

In this chapter, we accomplish application-aware routing through NS, SDN, and NFV. QoS

parameters such as bandwidth, path loss, and latency constraints are assessed. The work

discusses how our proposed heuristic application-aware routing methodology can be applied

within the well-established QoS architecture through NFV, SDN, and slicing modules applied in

5G. We outlay the performance of network slices on various QoS metrics. We have focused on

structuring the performance around the SLAs meant for the slices and how the application-aware

approach guarantees the SLAs.

♦



Chapter 7

Co-existence of Wi-Fi and Cellular

Networks

7.1 Introduction

5G operates in the unlicensed spectrum to increase capacity. Wi-Fi is another prominent

technology in these frequency bands. The proximity can cause interference. These cross-

technology lack centralized control, negotiation and coordination between them.

The goal of co-existence is to ensure balance and equitable sharing of resources and communication

channels among cross-technology devices in an indoor environment. The performance of co-

existence can be measured by the following parameters: a) Channel acquisition rate of Wi-Fi vs.

cellular devices. b) Throughput realized by these devices.

At the core of them are Listen-Before-Talk (LBT) medium access mechanism and Duty Cycling

(DC) based approaches to drive the co-existence between cellular and other Radio Access

Technologies (RATs). LBT operates through two related functions: Carrier Sense can recognize

and distinguish the Wi-Fi packet headers. Energy Detection would perform the backoff data

transmission based on the energy threshold.

The other standard coexistence MAC approach DC splits the shared radio channel through air

time sharing between the Wi-Fi and LTE-U subsystems. In the DC-based approach, cellular

devices can transmit signals only in a pre-determined duty cycle when one cellular unlicensed

access point and one Wi-Fi base station co-exist. In contrast, Wi-Fi has to contend with

120
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Distributed Coordinated Function (DCF). Wi-Fi users and stations don’t have prior knowledge

of the DC period or DC transmission operated by Cellular technology.

The cellular devices achieve the duty cycle in a deterministic manner. It has a centralized access

control mechanism. The access time and OFDM subcarriers of cellular frames are pre-determined

in eNodeB. MAC schedulers can consider radio measurement based on deterministic access time

and sub-carriers to plan for necessary QoS. However, since Wi-Fi MAC follows DCF, the access

is random and distributed. While improving the efficiency of spectrum usage, the users would

experience interference due to heterogeneous RAT systems. The interference mitigation among

dense areas would be vital for decoding the signal [121].

Now, network adapters are becoming exceedingly programmable. Selfish users will aim to

increase their share of data transmissions.

In this chapter, we study the effect of the selfish behaviour of the nodes in cross-technology

communications. There are several methods the selfish user can exploit to trigger an unfairness

in the network. The first way is to vary the CCA threshold such that it can disable its carrier

sensing. It enables the selfish user to gain more transmission opportunities. Though the channel

might be busy, this selfish user starts transmitting immediately, leading to interference among

other users. The second approach is misbehaviour caused by selfish users by declining to forward

the network packets in route discovery and maintenance processes. The third method is setting

the backoff window smaller. In CSMA/CA, the node first listens if the channel is idle for more

than Distributed Inter Frame Space (DIFS) timeslot, then it sends the Request to Send signal.

In case of a failed transmission, the user enters a randomized truncated exponential backoff

period. [122].

The CSAT algorithm, through exponential backoff, relies on a stochastic delay of packet trans-

missions during collisions [123]. The nodes operate by these rules to maintain a fair co-existence.

The selfish user can exploit this backoff window mechanism to attain better transmission opportu-

nities. This could be dangerous in cross-technology deployments. With the absence of centralized

control, the node could obtain a larger share of the available bandwidth at the expense of the

others. In this chapter, we consider selfish nodes that don’t appreciate the regulated exponential

backoff. The adverse impact of QoS on other selfish users, the underlying network, and regular

users are well studied for LBT and Duty-Cycling mechanisms in this chapter. Moreover, we

characterize the backoff mechanisms of many selfish nodes and study their effect on the network.

We depict the presence of Wi-Fi selfish user in Cellular Wi-Fi coexistence in Fig. 7.1. To the
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Figure 7.1: Presence of Selfish user in Cellular Wi-Fi Co-existence

best of our knowledge, this is the first discussion on the rational cheating of nodes in the purview

of cross-technology between Wi-Fi and 5G.

The rest of the chapter is organised as follows. The system model is described in Section 7.2.

Section 7.3 studies the case of backoff mechanisms, nodes, and their influence on the LBT-based

co-existence. Section 7.4 discusses the Duty-Cycling based co-existence. Section 7.5 discusses

the simulation setup of cross-technology communications. Section 7.6 investigates the impact of

selfish users on LBT-based co-co-existing networks and other regular users within the network.

Section 7.7 analyses the effects of different degrees of selfishness and backoff patterns in LBT.

Section 7.8 discusses the results and analysis of Duty-cycle configuration The counteractions of

selfishness are briefed in Section 7.9.

7.2 Listen-Before-Talk based Co-existence System Model

We begin system modelling by considering two sets of wireless nodes, D = {d1, d2, d3, ...d|D|}
that are the devices serviced by Wi-Fi AP and L = {l1, l2, l3, ...l|L|},that are served by the 5G

cell. The co-existence among Wi-Fi and 5G cells is studied. Here, we define the selfish as a

subset of nodes C1 ⊂ D and C2 ⊂ L. The terms selfish, misbehaving, and cheater are used

interchangeably to refer to nodes that disregard the exponential backoff protocol. Conversely, the
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terms regular, legitimate, and honest are used to describe users who adhere to the exponential

backoff protocol.

During generalization, we denote all the users or nodes as N , N ∈ {D,L}. The selfish users

C ∈ {C1, C2} doesn’t respect the exponential backoff. This mode of selfishness is most convenient

among the cheaters since it doesn’t require changes to the protocol’s operation.

The static or dynamic backoff is indicated by two dimensional vector B. B = {B1, B2, B3, ...Bn},
where Bi is the backoff vector for user i, ∀ i ∈ N . For an user i, the backoff values can be defined

as Bi = {bi,1, bi,2, ..bi,j , ..bi,T }, where j indicates the timeslot during a discrete duration T .

We assume selfish users to be rational, i.e., they want to maximize their benefit by reducing the

waiting time to access the channel and increasing the frequency of obtaining the channel access

to deliver better throughput.

In particular, the misbehaving nodes want to maximize throughput (r) and minimize the waiting

time (τ) for channel acquisition. The strategy of each selfish node (i) would be not to follow

the exponential backoff values and alter the backoff values (bi,j) such that its expected payoffs

(utilities) are maximized.

For the LBT, Request-To-Send (RTS) and Clear-To-Send (CTS) mechanisms is used.

Tstart be the minimum wait duration normalized to the system slot time before the user can

start a transmission.

Tstart = DIFS + TRTS + SIFS + TCTS (7.1)

Tstart is the time involved between transmitting the RTS from the user and obtaining the CTS

before data transmission.

Tb̂ =

ψ∑
rand(1,min{2log2(CWmin)+Υ, CWmax}) (7.2)

Tb̂ is the total time spent in the repeated exponential or paused backoffs. A backoff is capped to

CWmax. The minimum contention window is CWmin. The backoff counter increments in each

repeated iteration of failed transmission.

When the channel is sensed as busy, the backoff counter is paused. Here Υ is the running backoff

counter in eq. 7.2. Once successful transmission occurs, Υ is reset to 0. The backoff window
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Table 7.1: Notations - Wi-Fi Co-existence with 5G

Symbol Description

D = {d1, d2, ...d|D|} Set of Wi-Fi nodes

L = {l1, l2, ...l|L|} Set of cellular nodes

B Two dimensional backoff window vector

N = {D,L} Total nodes in the co-existing network

C = {C1, C2} Set of misbehaving nodes

bi,j Backoff window of user i during timeslot j

ri Throughput of node i

τi Waiting time of node i

is bi,j = rand(1,min{2log2(CWmin)+Υ, CWmax}). Here ψ is the number of retries to sense the

channel before a successful transmission.

Tf =



bi,j , Channel busy sensed after backoff window

bi,j + TRTS +DIFS, Channel occupied amid RTS/CTS

bi,j + TRTS +DIFS + 2 ∗ SIFS + TCTS , Base station

chosen another node for data transmission

(7.3)

There are different variants of Tf . Once the backoff window is completed, and immediately

channel could be sensed as busy. Or, the medium could be reported as occupied amid RTS/CTS

requests. The BS would have to decide on only one of the users to transmit and send CTS signal.

In the first case, when the channel is sensed busy, Υ is not incremented. In the rest of the failure

cases, Υ is incremented.

7.3 Co-existence Analysis for LBT

7.3.1 Correlation of Backoff Window and Throughput

The channel sensing and acquisition probabilities of a cellular and Wi-Fi node are discussed in

this and upcoming sections. The throughput enjoyed by a given node k, which is the average

information payload transmitted in a slot time over the average length of time, is computed

using Bianchi’s model [124] as follows:

rk =
PkS̄

P tS + Pidletidle + Pcollisiontcollision
(7.4)
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Pk is the probability that user k successfully acquires the channel in a given time slot, Pk =

ρ(tk)Πj ̸=k(1− ρ(tj)). ρ(tk) denotes the probability of successfully sensing the channel to be idle

for user k at time t. S̄ is the average size of the packet and tS is the time taken to transfer

this packet. ρ(tk) is the channel sensing probability of user k, where k ∈ D ∪ L. Pidle is the

probability of channel being idle - Πj(1− ρ(tj)). tidle is the duration of the idle period in a slot.

Pcollision and tcollision is the probability and average time spent in collision. P is the total access

probability of all users, P =
∑

k Pk = 1.

We consider two separate Markov chains. The first one, with a fixed backoff stage, assumes the

misbehaving nodes randomly select their backoff window size between 1 and the fixed value.

The sensing probability for cheater i be ρ(tc). The second chain is for a well-behaved node. The

cheater c ∈ C sensing probability which fixes its backoff values in Bc would be [124],

ρ(tc) =
2

µBc + 1
, c ∈ {C}

µBc indicates the average backoff window value of cheater. The throughput of the cheater is,

rc =
ρ(tc)αc

ρ(tc)βc + γc

where αc = p−cS̄, βc = p−c(tS− tidle)− s−c(tS− tc), and γc = (1−p−c− s−c)tc+ s−ctS +p−ctidle

with the following substitution [104],

p−c = Πk ̸=c(1− ρ(tk))

s−c =
∑
j ̸=c

ρ(tj)Πk,d̸=j,d̸=c(1− ρ(tk))

p−c and s−c ignore about probabilities of transfer from the cth node. p−c is the probability that

none of the other nodes transfer during a timeslot. s−c is the sum of the channel acquisition

probabilities of each of the other nodes in the network.

It is important to notice here, the selfish user has full control over its backoff window Bi. By

varying Bi, node i (cheater) can change its sensing probability ρ(ti). Let us assume Bi is a

continuous variable. We apply first-degree partial differentiation through the first derivation of

ri,
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∂ri
∂Bi

=
αc γc

(ρ(tc)βc + γc)2
−2

(µBc + 1)2

where tS ≥ tc. We conclude that expected received throughput ri is a strictly decreasing function

of Bi (for ρ(tj) < 1, j ̸= i). Thus, by unilaterally decreasing its own Bi, a device can increase its

throughput. Except, when ρ(tk) = 1 for some device k.

7.3.2 Effect of misbehaviour in co-existing network

We refer to the performance metric, Order Gain, G(d1, d2, t) to quantify the gain of backoff

misbehavior. It is based on waiting time τi, which indicates the average sum of the total number

of idle slots from the time node i contends for the channel to acquire it successfully. Once we

sum the number of slots spent in failed transmissions Tf of node i and the time spent to acquire

the channel Ts, we divide this sum by the number of successful acquisitions to derive τi.

Order gain can be defined as,

G(d1, d2, t) = log
ϱ(τd1 > t)

ϱ(τd2 > t)

ϱ(τd1 > t) denotes the probability that the waiting time of d1 is greater than a given t, showing

how often the waiting time of node d1 is longer than a given value.

The work proves [108] this order gain of a fixed-window backoff misbehaving node over legitimate

nodes in a Wi-Fi only network is,

G(d1, d2, t) = Θ

(
t

ln t

)

d1 ∄C, d2 ∃C, and d1, d2 ∃D

It reveals that the order gain G of fixed window backoff misbehavior following a uniform integer

distribution is an increasing function as t → ∞ and saturates as the number of users in the

network increases. It confirms that this misbehaving node can always get considerable benefits

from fixed-window backoff misbehavior.

In the wireless network, let’s say dx ∃C1 is selfish and {dx, dy} ∃D and dy ∄C1. Here dy is

legitimate node. Then for a given t, w.k.t,
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G(dx, dy, t) = log
ϱ(τdx > t)

ϱ(τdy > t)
< 1

In an LBT-based network, where both Wi-Fi and cellular network follow CSMA/CA with similar

CWmin and CWmax, the following condition holds,

G(dy, lz, t) = log
ϱ(τdy > t)

ϱ(τlz > t)
≈ 1

Here, dy ∃D, lz ∃L and lz ∄C2. Both dy and lz are legitimate nodes lying in the Wi-Fi and

cellular network, respectively.

Order gain G follows the transitive additive rule and is proven here [108]. Hence, in a co-existing

network where dx is a selfish Wi-Fi node, and lz is a cellular non-legitimate node, from the above

two equations, we notice:

G(dx, lz, t) = log
ϱ(τdx > t)

ϱ(τlz > t)
< 1

We observe here that the presence of a selfish Wi-Fi node in the network increases the waiting

time of a legitimate node in the cellular network.

We discuss how equilibrium is achieved among all Wi-Fi users through Cooperation via the

Randomized Inclination to Selfish Play (CRISP) strategy which leads the equilibrium to a

Sub-game Perfect NE (SPNE) in Section 7.9. It also shows, how this can lead to detrimental

effects on the co-existing cellular networks.

7.4 Co-existence Analysis for Duty Cycling

In the duty-cycle mode with time period T , let α be the initial fraction of the time - cellular

unlicensed is ON, where the 5G users can communicate. The rest of the duration (1 − α)T ,
Wi-Fi nodes can transmit till the end of the duty-cycle period. Let ry be the average throughput

of node y.

We can assume the cellular reference signal doesn’t cause significant interference in Wi-Fi

communication during the Cellular Unlicensed OFF period. The Wi-Fi subsystem has no direct
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Table 7.2: Simulation Settings for Wi-Fi Co-existence

Parameters Values

Location of Wi-Fi access point (0,0)

Initialization of backoff window [1, CWmin]

Location of Cellular Base station (0, rand(0,IBS))

Regular Users MAC LBT Exponential backoff

CWmin 16

Selfish Users MAC LBT Uniform Integer Distribution backoff [1, CWmin]

CWmax 1024

Wi-Fi coverage radius (WCR) 30m

Total number of nodes [4,20]

Minimum Separatable Unit (MSU) 1m

Total number of selfish users 0,1,2,3,4

Duration of simulation 200000 microseconds

Number of Monte Carlo Runs 1000

Position of Wi-Fi users Straight, Diagonal from BS

DIFS time duration 34 micro seconds

Cellular coverage radius (CCR) 30m

One basic unit of simulation 1 micro second

RTS / CTS time taken Propagation time between device and base station

Data Slots 1ms,10ms

Inter Base station distance (IBS) [MSU,rand(min(WCR,CCR))]

SIFS time duration 16 micro seconds

Position of Cellular users Straight, Diagonal from BS

Distance of Wi-Fi users from BS rand(MSU,WCR)

Distance of Cellular users from BS rand(MSU,CCR)

knowledge of unlicensed cellular network presence and simply adheres to the DCF mechanism.

Thus, the Wi-Fi node senses the channel during the Cellular unlicensed ON period, detects the

channel being busy due to cellular signals, and increments its exponential backoff. During the

cellular ON period, Wi-Fi transmission will fail due to substantial cellular signal interference.

When cellular signal interference is weak, the Wi-Fi users keep transmitting when possible.

In Duty-cycling, we study the effect of selfish Wi-Fi users on the co-existing network. We do not

consider selfish cellular users as the cellular base station centrally manages the channel allocation

and can detect the presence of such users who try to gain more throughput by deviating from

the agreed protocols.

In Wi-Fi, since the users apply carrier sensing and exponential backoff through CSMA/CA and

DCF functions, this method lacks centralized and distributed control over channel allocation.
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Figure 7.2: Duty-Cycling in Co-existence

Hence, we apply selfishness only to Wi-Fi users through a fixed backoff window to maximize the

throughput. We discuss different scenarios to study the impact of Wi-Fi selfishness below.

7.4.1 Strict Time Domain Multiplexing (STDM)

In this use case, we consider both Wi-Fi and cellular operators follow a strict Time Domain

Multiplexing. Both operators would have agreed mutually on α. When the Cellular - OFF

period and duty-cycle period end, the cellular transmission would strictly begin immediately.

The interference (I) occurs when Wi-Fi transmission (IF2) at the end of the current duty-cycle

period overlaps with the start of the cellular portion (IF1) of the next duty-cycle.

In Theorem 7.1, we prove if the operators mutually agree upon α and the network follows STDM

duty-cycling strategy, the impact of Wi-Fi selfish users on co-existence and cellular users is

limited to the length of the last Wi-Fi transmission in the Cellular-OFF period.

Theorem 7.1. When α is agreed and Duty-cycle follows STDM by Wi-Fi and cellular operators,

∃x, x ∈ D&x ∈ C → ∀y ∈ L, impact on ry is limited to the last Wi-Fi transmission in the

duty-cycle period.

Proof. Let the start time of the first duty-cycle period is t0. The channel acquisition of ∀y ∈ L
lies in [t0, t0 + αT ] in this cycle. Similarly, for all Wi-Fi devices, the transmission start time of

∀x ∈ D lies in [t0 + αT, t0 + T ]. Let t1,where t1 = t0 + T is the start of the next duty-cycle

period. The Wi-Fi transmission started before [t0 + T ], can end after [t0 + T ]. This transmission

causes interference between Wi-Fi signal and cellular in [t1 + αT ]. Similarly, in ∀ti, at the start
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of duty-cycle period, the last overlapping Wi-Fi transmission from previous duty-cycle period

can impact cellular users.

Provided IF2 << αT , the impact of Wi-Fi selfish users is minimal and strictly only forces

interference issues during the last Wi-Fi transmission. Also, the user x, which arbitrarily overlaps

with the cellular ON period, could also occur in the absence of selfish nodes. Hence, the impact

of Wi-Fi selfish users on cellular transmissions is strictly limited to the last Wi-Fi transmission

in the duty-cycle period and would be minimal provided IF2 << αT .

This theorem and statement hold as long as the Wi-Fi users follow the duty-cycle and obey the

start of Wi-Fi transmission only during the (1−αT ) period. If Wi-Fi devices deviate and initiate

communication during αT fraction, the medium access mechanism is violated, and cellular users

are exposed to Denial of Service attack.

7.4.2 Interference in Duty-Cycling

Figure 7.3: Interference in STDM-based Duty Cycling

Assuming overall simulation duration is 𭟋, the expected overlap transmission duration (Given

that: IF1 << αT ) is,

E(I) =
𭟋
T
× IF1

2
(7.5)

Fig. 7.3 portrays the possibility of interference of Wi-Fi transmissions on cellular signals at the

end of the period.
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The interference is inversely proportional to duty-cycle period T - more the duty-cycles (T)

during simulation duration ( 𭟋), interference drops. Similarly, the smaller the data transmission

duration, the lesser the interference. The total inference in percentages, I(%) =
E(I)× 100

𭟋
.

7.4.3 Carrier-Sensing Adaptive Transmission (CSAT) with Flexible Duty-

Cycling

Here, we study the use case when the cellular operator adjusts its fraction of Cellular being ON

in the duty-cycle according to the dynamic Wi-Fi load.

We can classify this methodology into three sub-categories:

a) The overall duty-cycle period is constant. With the increased traffic load in the Wi-Fi, we

consider that the cellular network reduces the α fraction linearly.

b) The cellular base station proportionally increases the cellular traffic at the start of the duty-

cycle, thereby reducing Wi-Fi transmission comparably. The Duty-cycle period is subsequently

increased, and the actual Cellular period is ON is calculated once the cellular signals are on full

flow.

c) The overall duty-cycle period is constant. The Cellular ON period is flexible and proportion-

ately decreases with increased Wi-Fi load.

In the first sub-category, when α varies as per Wi-Fi load and the duty-cycle period is constant,

the throughput of cellular users are impacted. With a higher likelihood of channel access,

selfish users obtain higher channel acquisition in CSMA/CA. Hence, the probability of channel

acquisition decreases for legitimate Wi-Fi users. To perform the same m transmissions, the

overall time taken for legitimate Wi-Fi users increases, leading to the rise in overall Wi-Fi load

or more frequency bands to accommodate selfish nodes.

In the second subcategory of CSAT, the cellular ON period activates after cellular transmissions

have reached 100% channel occupancy. And the length of the cellular ON period is not impacted

and not altered. Hence, the impact of the Wi-Fi selfish users only exists during the proportional

increase of cellular transmissions and decrease of Wi-Fi transmissions. If the proportional

strategy is fair, this subcategory achieves an equitable co-existence.

In the third subcategory of CSAT, since the duty-cycle period is fixed, the cellular ON period

diminishes. Here, the impact of the Wi-Fi selfish users is again based on the proportional strategy



Chapter 7. Co-existence of Wi-Fi and Cellular Networks 132

to increase cellular transmissions and decrease Wi-Fi transmissions. If the proportional approach

takes time to converge, this use case dilutes to subcategory I, where co-existence is impossible.

If the proportional strategy can converge in negligible time, the third subcategory can achieve

an equitable co-existence and is comparable to the second subcategory.

7.5 Simulation

The co-existence setup is built through unlicensed cellular variants in the 5GHz band and Wi-Fi

system. MATLAB is used for this realistic discrete-event simulation as the tool also extends

support for channel coding schemes. The procedure in our evaluation is pursued as follows:

1. Every LTE-U and Wi-Fi user initializes their request counter to sense the channel or contention

window with a random number between [0, CWmin]

2. Regular users in both technologies use LBT - CSMA/CA with exponential backoff in LBT. In

Duty-cycle, only regular Wi-Fi users apply exponential backoff.

3. When the channel is busy, the backoff counter is incremented by 1. And the new channel

sensing time is derived as the current timer + 2backoff counter. The contention window is capped

to 1024 units.

4. We use continuous event simulation with discrete frames. The total duration of this simulation

is 200000 µs, where one basic unit is one µs. DIFS = 34µs, SIFS = 16µs, and the experiment is

run with data slots as 1ms and 10ms [21]. Once the user successfully acquires the channel, the

user transmits the data in the above slot. The propagation time to send RTS and CTS from the

user to the base station or vice versa is computed by dividing distance by the speed of light.

5. Full buffer traffic is considered for the users. The minimum separable unit between the user

and the base station is 2m.

We first examine the performance of well-behaved nodes. Here, the location of BS and devices

are fixed, and they offset from one another through random grid positioning. We consider the

Wi-Fi base station is located at the origin. We perform 1000 Monte Carlo runs. The cellular base

station is allocated a position in a Wi-Fi coverage radius with a minimum separable distance in

each run.
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The experiments are repeated for the total number of nodes in [4,20]. The devices are equally

divided between Wi-Fi and cellular base stations. We study the effect of zero, one, and two

selfish users in each configuration. When adequate nodes are in the setup, three and four selfish

users are considered. This simulation configuration is tabulated in Table 7.2. Throughput is

defined as the quantity of data received on a flow divided by the time interval between the initial

and latest packet of the flow.

The throughput of the devices is computed as follows. The distance between the base station

and the user is used for computing the data rates. Then, we calculate the path loss in dbm

for 802.11ax transmission in the 5 GHz band for Wi-Fi. Next, we estimate the SINR and then

figure out the data rate by applying the Modulation and Coding Scheme (MCS) for 802.11ax 20

MHz, GI=400ns, and one special stream. Similarly, we compute the path loss of cellular users by

combining both Line of Sight (LoS) and non-LoS path loss values as per LoS probability. MCS

of a cellular user is determined by the number of bits per PRB per 1 ms for a given SINR.

7.6 LBT Results - Effect of selfish users on the co-existing

network

In this section, we investigate the effect of selfishness on co-existence. Here the Wi-Fi nodes are

programmed to behave selfishly, and we study the impact on the cellular nodes.

7.6.1 Channel acquisition and Channel sensing

In the presence of just legitimate nodes, the Wi-Fi and cellular users obtain near-identical

mean channel acquisition and sensing rates. The channel acquisition and sensing rates of

legitimate Wi-Fi users are plotted in Fig. 7.5a and 7.5c, and the cellular users in Fig. 7.4b and

7.4d, respectively. We can observe here that the regular users achieve an acquisition ratio of

TotalDataOccupancy/n, where n is the total number of users in the absence of selfish users. The

total number of nodes in the setup is denoted on the x-axis.

However, with a selfish user in Wi-Fi, we witness an apparent disparity among the mean

acquisition rates of Wi-Fi and cellular users. With an increase in the number of legitimate nodes,

although this disparity reduces, we still have a noticeable difference in the channel acquisition

rates.
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Figure 7.4: Effect of Selfish users in Wi-Fi cellular co-existence in LBT

When the number of selfish users increases in the Wi-Fi network, the throughput or acquisition

of the co-existing cellular user drops to zero. The plots in Fig. 7.4a and 7.4b demonstrate

the side-effect of selfish Wi-Fi users on cellular co-existence through the above observations.

Here, on the y-axis, we denote the average channel acquisition rates of Wi-Fi and cellular users,

respectively. This channel acquisition for all Wi-Fi users is computed as an average across

legitimate and misbehaving nodes.

Fig. 7.4d conveys the average sensing rate of all cellular users. We observe this sensing rate as

0.1 - 0.4% throughout the experiment, and the authors [26] also show this behaviour. The mean

channel sensing rates of Wi-Fi users are an increasing function of the number of Wi-Fi selfish

users, as observed in Fig. 7.4c. Since the cellular user follows the truncated exponential backoff,

the sensing rate is relatively lower than that of Wi-Fi users.
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Figure 7.5: Performance of Wi-Fi legitimate and selfish users during co-existence

7.6.2 Impact of selfishness on legitimate Wi-Fi and Cellular nodes

In Fig. 7.5, we study the exploitation of selfish Wi-Fi users and their effect on their counterpart

legitimate nodes in the Wi-Fi segment of the co-existing network. In Fig. 7.5b, we observe

the exploitation of selfish users, which grabs most of the data transmission opportunities. The

maximum channel acquisition rate of a selfish user is realized when there is precisely one selfish

user in the system. As the number of selfish users increases in the setup, each selfish user obtains

a channel acquisition ratio close to TotalDataOccupancy/n, where n is the number of selfish users.

In Fig. 7.4 and Fig. 7.5, we consider the data slot to be 1ms.

The channel sensing rate of selfish users is marked in Fig. 7.5d. The sensing probability follows

uniform integer distribution with a range [1, CWmin]. We notice the sensing rate of a selfish user

is comparatively less when there are fewer selfish and total users in the system. These users

exhibit this behaviour because they transmit the data regularly and do not sense the channel
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Figure 7.6: Overall Data Transmission Channel Occupancy with Data slots set to (a) 1ms (b)
10ms

during this period. With the increase in the number of selfish and legitimate nodes, we notice

that the channel sensing rate of selfish Wi-Fi users converges between 4% to 5% here.

As the number of selfish Wi-Fi users increases, it also reveals a significant channel acquisition

dip in regular Wi-Fi users. When the number of total and selfish users increases, the overall

acquisition of a regular user tends to zero. In the absence of selfish users, the users have a

near-constant sensing rate when the system’s total number of users increases. It can be attributed

to the exponential backoff mechanism used during channel sensing.

The sensing rate of regular users is always slightly higher when selfishness is present in the

system than when it is absent. This observation is due to the deprival of channel occupancy.
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Figure 7.7: Performance of regular and selfish user exploitation with Data slots set to 10ms

7.6.3 Data Channel occupancy

Fig. 7.6 depicts the overall data channel occupancy percentages when the data transmission

period is 1 ms and 10 ms. The total number of users in the system is denoted on the x-axis. We

realize 95% and 99.5% channel utilization for the actual data transmission, respectively. These

data slots are configured between 1 ms and 10 ms in the experiments [125]. This configuration

range allows optimal utilization as it avoids frequent context switching and does not hold the

channel for too long, denying access to other users. The channel acquisition rate of regular and

selfish users when the data transmission period is initialized to 10ms is portrayed in Fig. 7.7a

and 7.7b. When the number of users is less in the system, the higher data occupancy directly

leads to a slight increase in the acquisition rate of these users. However, the rise in acquisition

rate becomes negligible when the number of users in the setup increases.
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Figure 7.8: Exploitation of Users with different degree of selfishness
a) Channel Sensing - 5% b) Channel Sensing - 7% c) Channel Sensing - 9.5%

7.6.4 Throughput study of legitimate and misbehaving nodes

The mean throughput obtained by legitimate and misbehaving users across both technologies is

depicted in Fig. 7.6c and 7.7c.

Initially, these selfish users attain a higher throughput in fewer selfish nodes. However, when

there are more selfish users, the throughput of these users rapidly decreases, as shown in Fig.

7.7c. When more selfish users are present, the well-behaved nodes reach near-zero throughputs,

the fairness index is zero, and the network may crash. Though equilibrium for selfish nodes can

fix the network, the well-behaved user would still suffer. It accomplishes the complete starvation

of regular users, as shown in Fig. 7.6c.
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7.7 LBT Results - Different Degree of selfishness and backoff

patterns

7.7.1 Degree of Selfishness

Fig. 7.8 plots the channel acquisition in percentages for the different degrees of selfishness

exhibited. Here, the degrees are differentiated by channel sensing rate. Figures 7.7a, 7.7b, and

7.7c represent channel sensing rates of 5%, 7%, and 9.5%, respectively, during the simulation

duration.

We observe from Fig. 7.8a that in the presence of two selfish nodes, a selfish user with a 5%

sensing rate can acquire roughly 10% of the channel occupancy. With as many selfish nodes, a

selfish user can obtain the data channel for approximately 30 - 50% with a sensing rate of 7%, as

shown in Fig. 7.8b. With the increase in the total number of nodes in the system, this channel

acquisition drops from 50% to 30%.

Similarly, with three selfish nodes in the network, a selfish user with a 7% sensing rate acquires

only roughly 8% of the data occupancy. But, in a similar setup, when a selfish user exhibits

9.5% carrier sense, it reaches almost 25 - 30% data occupancy when the total number of nodes

ranges [4,20].

From the above trends, we can notice how a higher degree of selfishness leads to greater channel

exploitation.

We also observe with the increase in the total number of nodes and the number of selfish users,

the data occupancy of the selfish user with a specific sensing rate drops linearly from the above

figures. To overcome this effect, the selfish user needs to increase its sensing rate to retain the

same level of throughput.

7.7.2 Side-Effects of other backoff window patterns

We have applied different backoff patterns for selfish users and observed the behaviour of

the nodes in terms of channel sensing and acquisition. We have scrutinized through three

distributions: a) Chi-Square Distribution - one-parameter family of curves, which is commonly

used in hypothesis testing. b) Normal Distribution - a two-two-parameter family of curves,

generally employed as the sum of independent samples from any distribution with finite mean
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Figure 7.9: Selfish User Channel Acquisition with Different Backoff distributions

a) Chi-Square: ν = CWmin b) Normal: µ = CWmin, σ =
CWmin

2
c) Poisson: λ = CWMIN

and variance, converges to the normal distribution as the sample size reaches infinity. c) Poisson

Distribution - a one-parameter family of curves that models the number of times a random event

occurs.

In Fig. 7.9, we plot the selfish user channel acquisitions in percentages for the above distributions.

We set ν to CWmin in Fig. 7.9a, µ = CWmin and σ = CWmin/2 in Fig. 7.9b, and λ to CWmin

to Fig. 7.9c. We noticed that Chi-Square and Poisson distribution, with its one-parameter

setting to a value CWmin, can game the setup and extract significant data extraction. The

above configurations provide near comparable results as the uniform Integer distribution between

[1,CWmin] simulated in earlier sub-sections. However, the Normal distribution with mean

CWmin and standard deviation CWmin cannot extract any better than a regular node with this

composition. Here, the settings might have to be tweaked by lowering them further.
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Figure 7.10: Channel Acquisition in STDM-based Duty cycles with α = 0.5 and interference

7.8 Duty Cycling Results

7.8.1 Strict Time Domain Multiplexing (STDM) Duty-Cycling

The STDM results are plotted in Fig. 7.10. Here, α is set to 0.5, duty-cycle period T is set

to 2 × 104 microseconds, and total duration is 2 × 105 microseconds. We induce misbehaving

nodes, which don’t obey exponential backoff in Wi-Fi technologies. The channel acquisition of

cellular users is presented in Fig. 7.10a. Similarly, regular Wi-Fi and selfish devices are shown in

Fig. 7.10b and 7.10c.

We can observe that the channels acquired by legitimate users in cellular technology are

proportional to the fraction αT . In Duty-cycle, the average users are shielded by cellular

technology. The Wi-Fi selfish ones are unable to penetrate the cellular system. To be precise, the

side-effect is limited to the last Wi-Fi transmission in the duty-cycle period, which is quantified

in the following sub-section. Here, the cellular base station applies a proportional fair scheduling
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Figure 7.11: Wi-Fi users Impact on co-existence due to adaptive α as per Wi-Fi load variation

algorithm. Here, it tries to maximize the total throughput of the network during the cellular-ON

period while simultaneously allowing all users at least a minimal level of service in accordance

with its demanded data rate.

The Wi-Fi users apply Distributed Coordinated Function (DCF), carrier sensing, and exponential

backoff. Here, the average Wi-Fi users still suffer in acquiring the channel as the selfish

users exploit the network. In the duty-cycle, we could observe that each selfish Wi-Fi user is

experiencing a channel acquisition of 1/m fraction in every duty-cycle period as shown in Fig.

7.10b, m being the number of selfish Wi-Fi users. In Fig. 7.10c, we notice how the regular user’s

acquisition percentage drops close to zero when the number of selfish nodes increases.

7.8.2 Interference in STDM Duty-Cycling

For the experiments using settings from Table 7.1, the observed average interference is plotted

in Fig. 7.10d. The interference mainly occurs at the end of the cellular off period, when Wi-Fi
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devices transmit. When the cellular-ON period starts, the Wi-Fi device will communicate until

its data transmission slots end. Wi-Fi device is unaware of the cellular-ON period, and as per

the protocol of Duty-cycle, the cellular device starts transmission. We vary the period T from

11ms to 19ms and plot on the x-axis. The y-axis displays the interference exhibited when the

data transmission slots after successfully acquiring Wi-Fi Distributed co-ordinated function is

[0.5ms, 1ms, 5ms].

We observe that interference increases with the data transmission duration of Wi-Fi devices.

Comparatively, we notice lesser interference when this data transmission duration is set to

0.5ms (lesser value). Similarly, we observe with the increase in the duty-cycle period (T), the

interference decreases in Fig. 7.10d. Hence, lower data transmission duration after channel

acquisition and a higher duty-cycle period are preferred to achieve minimal interference.

7.8.3 Carrier-Sensing Adaptive Transmission (CSAT) with Flexible Duty-

Cycling

In Fig. 7.11, we study the use case when the cellular operator adjusts its part of Cellular being

ON in the duty-cycle according to the dynamic Wi-Fi load (the first subcategory). With the

increased traffic load in the Wi-Fi, we consider that the cellular network reduces the α fraction

linearly. We consider the presence of selfish users in the Wi-Fi network, and Fig. 7.11 plots the

effect of cellular users on this co-existence configuration.

We could observe Wi-Fi selfish users having a profound impact on co-existence as they misuse

the duty-cycle contract and increase their bandwidth share in the network. As the number of

selfish users increases in the network, the α fraction drops to 0.1. This fraction deprives the

cellular users of access to the network, leading to a denial of service attack, as shown in Fig.

7.11a. In the above figures, please note that three and four selfish users in the network are

considered when at least ten nodes are in the co-existing network.

7.9 Counteraction

There are a few possible selfish behaviours: a) Having smaller CWmin and CWmax. It results in

higher sensing probability. b) Slower increase in CW after the collision. When the range of [1,
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CW] increases slowly, resulting in better access probability. c) Lesser backoff window values. We

discuss three counteraction approaches.

7.9.1 Jamming selfish users

The main idea is to identify the deviating device individually. Here, we assume devices can

measure the bandwidth obtained by other users through the broadcast nature of wireless

communications. This is possible for legitimate Wi-Fi users, which can deduce the bandwidth

acquired by the selfish Wi-Fi user. If a device is measured at a different bandwidth altogether,

it deviates.

A simple punishment mode scheme is applied through selective jamming to bring down the

bandwidth of the non-cooperative user. For a short period during a selfish player’s transmission

time, jamming signals are sent by regular users [104]. When a Wi-Fi user is selfish, this

punishment has to be applied by another legitimate Wi-Fi user. Across technology, the cellular

user can jam a Wi-Fi selfish user only when the legitimate cellular user can comprehend packet

headers from the selfish Wi-Fi user and subsequently infer bandwidth details.

We know that the sensing probability ρ(i), for each device i optimizes the overall throughput

R = {r1, r2, ...rn}, where n is the number of users. By choosing system parameter ρ(i) = ρ0, all

devices can achieve a unique Nash Equilibrium.

7.9.2 CRISP strategy

Cooperation via Randomized Inclination to Selfish Play (CRISP) [109] is a strategy that applies

a limited punishment technique which leads the equilibrium to a Sub-game Perfect NE (SPNE).

Regular users could use the deviation detection mechanisms to determine selfish nodes that

don’t follow CSAT with exponential backoff.

Once detected, other users can enforce a cooperating strategy in the Prisoner’s dilemma. It

defines punishment and non-punishment modes. Until selfish users are detected, all regular users

follow the usual honest approach, i.e., non-punishment (wh). Once greedy nodes are detected,

nodes can apply CRISP strategies through a selfish strategy (ws) or toggle between wh and ws

to control selfish users from higher payoff.
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Table 7.3: CRISP strategy

State Description Strategy

H c=0 Follow wh

S/H c > 0, Toggle mode wh : p1;ws : (1− p1), p1 ≥ 0

S/H Phase-up c > 0, c increasing wh : p2;ws : (1− p2), p2 ≤ p1

LetN be the number of devices and c be the number of selfish devices. The successful transmission

probability is P (N, c) when there are N users in the network, and c of them are selfish. Let c∗ is

the threshold where the difference between P (N, c) and P (N ′, c+ 1) is significant for all N , N ′

and c ≤ c∗. Although, the legitimate user cannot guess the exact backoff window strategies of

other devices. This assumption enables us to state that the legitimate user can infer an increase

or presence of selfish players in the network with a certain granularity. When strategy applied in

the device i is ws, it can distinguish the case between c ≤ c∗ and c > c∗.

Similarly, when the strategy applied in the device i is wh, the user can distinguish between c = 0

and c > 0. The CRISP strategy is tabulated in Table 7.3. When c = 0, all cooperating nodes

follow wh. When c > 0 and but remains constant, the regular nodes follow a mixed strategy

where wh is followed with probability p1 ≥ 0 and otherwise, ws.

When c > 0 and further increases in the system, the strategy is to increase the likelihood of

applying ws. The probability of using an honest approach is p2, where p2 ≤ p1.

7.9.3 Counteraction in LBT Technique

When all the players use the CRISP strategies, the equilibrium achieved is fair and Pareto

optimal in the LBT technique.

When a Wi-Fi user is selfish, all other legitimate Wi-Fi users can switch to the CRISP strategy.

If this selfish user is becoming greedy, all the legitimate users can exhibit a similar approach to

achieve Pareto-optimal behaviour.

However, if legitimate cellular users cannot detect this deviation or change in strategy, it would

lead to the complete starvation of the cellular network.

In counteraction A, selection jamming is applied to punish selfish users. This method is preferred

in a co-existing network as legitimate Wi-Fi can block selfish Wi-Fi users. The co-existence is
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not at risk even if a legitimate cellular user cannot detect this behaviour. This methodology

works as long as the complete Wi-Fi network is not selfish.

In counteraction B, the users switch between punishing and non-punishing modes. These

strategies help to achieve a Pareto optimal solution. The selfish users are also encouraged to play

CRISP, or they may acquire a lower payoff as other regular users apply CRISP. This methodology

is preferred if a legitimate cellular user can detect selfish behaviour by deducing Wi-Fi packet

details.

Approach B may be counter-intuitive if a legitimate cellular user cannot detect the Wi-Fi user’s

misbehaviour. Through CRISP, all legitimate Wi-Fi users would adopt aggressive channel sensing,

and cellular users may still follow exponential backoff, leading to starvation. The fixed backoff

pattern might be easier to detect and take counteraction against it. So, selfish users need to

understand other distributions and use them effectively. By frequently switching backoff patterns,

selfish users can deceive counteraction measures, and it will be hard to detect misbehaviour.

7.9.4 Counteraction in Duty-Cycling Technique

Wi-Fi and cellular operators can follow Strict Time Domain Multiplexing (STDM) Duty-Cycling

to mitigate selfishness attacks in Duty-cycling. Selfish Wi-Fi users wouldn’t be able to intrude

into the cellular segment except for the last Wi-Fi transmission in each duty cycle period. This

impact is negligible if the duty-cycle period and cellular ON segment are much higher than a

specific Wi-Fi transmission. Within the Wi-Fi segment, legitimate Wi-Fi users can follow the

CRISP strategy. Here, legitimate Wi-Fi users can apply any deviation mechanism to detect

selfish Wi-Fi users not obeying exponential backoff.

When all the players use the CRISP strategies, the equilibrium is fair and Pareto optimal within

the Wi-Fi network. In Carrier-Sensing Adaptive Transmission (CSAT), when we set adaptive α,

fixed duty-cycle period and is not operator monitored, the above methodology forces α→ 0 and

cannot be applied. Hence, CSAT’s second and third subcategories with flexible duty-cycling can

be preferred. A fair proportional strategy to increase cellular and decrease Wi-Fi transmissions

at the start of the cellular ON period can bring the system into equilibrium.



Chapter 7. Co-existence of Wi-Fi and Cellular Networks 147

7.10 Chapter Summary

In this chapter, we focus on the fair co-existence of Wi-Fi with 5G cellular users through Listen-

Before-Talk or Duty-Cycling approaches to ensure smooth data transmission with relatively less

interference. Our work examines the side effects of selfish Wi-Fi users on co-existence and the

regular nodes through throughput, channel occupancy, sensing, and acquisition percentages. We

also examine different backoff patterns that could be adopted for selfishness and their effect on

the network.

♦



Chapter 8

Conclusion

In this research, we analyzed in breadth and depth QoS aspects in the field of Next-Gen networks

such as 5G, and we have quantified the results of our work. The conclusion is summarized below:

8.0.1 Classification for Traffic prioritization

A detailed study of QoS attributes around S1AP and IP protocols is identified. The significance

of these QoS parameters is described. The work describes using these QoS attributes for traffic

classification using machine learning techniques. Data collection involved gathering packets from

various sources and inspecting them through Wireshark [111]. The relevant fields are exported

to CSV format for feature extraction and cleaning. The QoS attributes are tabulated, and

categorical values such as QCI and DSCP are elaborated into more fields. The traffic analysis

was performed using supervised techniques like Support Vector Machine, Random Forest, and

Gradient Boosting. The results are compared using standard metrics such as Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE). The QCI feature is found to be a prime

constituent attribute that plays a key role in traffic prioritization. The study suggests that

using higher parameters may lead to overfitting. Our study of viable QoS attributes for traffic

classification and priority class derivation is comprehensive, and we have demonstrated an applied

class-based probabilistic priority scheduling through traffic classification results.

148
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8.0.2 Resource Allocation in Network Slicing

We focused on two important problems in Resource Allocation in Network slicing: Firstly, we

analyzed the implementation of QoS-based resource allocation in network slicing for tailored

offerings. The proposed approach considers multiple objectives, such as network performance,

operating efficiency, and timeliness KPIs. The simulation results show that the proposed algorithm

performs well in fulfilling stakeholder’s goals and outperforms other candidate algorithms.

Secondly, this work focused on the critical challenges of QoS, energy savings, and network slicing

that are vital to 5G. We have proposed solutions to these challenges using virtual backbone

and cognitive cycle-based approaches for route allocation in network slices. In addition, we

have investigated the joint objective of Energy savings and QoS in communication networks,

where we achieved EE by reducing the number of nodes employed for routing. Our experimental

results show that our proposed solutions are effective and perform better than other standard

approaches.

8.0.3 Load balancing in 5G micro infrastructure

5G operators use small cells to densify their networks and ensure seamless connectivity and

reliable coverage. However, in a real network setup, some microcells handle most of the traffic

while others remain idle, causing overloaded cells to experience intermittent, unstable connectivity

and high packet jitter. The one-way load balancing mechanism allows only unidirectional transfer

of traffic flows from overloaded to reachable underloaded cells. To address this issue, we proposed

an extreme Swap-based Load Balancing (SLB) algorithm between APs, which minimizes the

load imbalance at cell edges and improves signal strength issues in the micro infrastructure.

Our proposed algorithm improves fairness among APs and signal quality among devices in 5G

deployments.

8.0.4 Application-Aware Routing

Implementing application-aware routing in the 5G platform is crucial in meeting stakeholder

objectives. The QoS parameters of latency, bandwidth, packet loss, and jitter are holistically

examined and monitored in network slicing. The proposed heuristic application-aware routing

approach reduced computational time and performed on the above QoS metrics compared to

other candidate algorithms.
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8.0.5 Cellular Co-existence with Wi-Fi

In the unlicensed spectrum, 5G operators would have interference issues with the Wi-Fi spectrum.

The fair co-existence of Wi-Fi and 5G is crucial, and counteraction mechanisms are explored

to overcome the impact of selfish nodes on legitimate users. This study analyzed the impact

of QoS through metrics such as throughput and channel acquisition due to selfishness under

different network configurations in the medium access mechanisms such as duty cycle and

Listen-Before-Talk. We recommended network configurations and counteraction mechanisms

that promote co-existence and shield legitimate users.

♦



Chapter 9

Summary and Future Work

9.1 Specific Contributions

9.1.1 Swap-based Load Balancing for 5G micro-infrastructure

Our work proposes an extreme Swap-based Load Balancing (SLB) algorithm between APs

to minimize the load imbalance at cell edges and improve signal strength issues in the micro

infrastructure. Our algorithm aims to ensure fairness among APs with heterogeneous loads and

is suitable for both homogeneous and heterogeneous networks applicable to 5G deployments.

Our algorithm uses threshold, load per unit capacity, and load imbalance parameters to classify

APs. The one-way load balancing mechanism allows only unidirectional transfer of traffic

flows from overloaded to reachable underloaded cells. We discuss the rules on swap-based load

balancing at overloaded and underloaded cells. A 0-1 Knapsack dynamic programming-based

solution is applied to return exchanged load. Parameters such as minimum and maximum loads

to be exchanged during SLB are established. To evaluate the effectiveness of our proposed

algorithm, we measured the load imbalance reduction percentage of SLB with biasing against

other candidates in every time slot. We found that SLB with biasing outperforms state-of-the-art

approaches by a factor of 22.24%. Overall, our proposed algorithm reduces the imbalance by a

factor of 7.14% compared to the optimal uni-transfer algorithm. Our work provides a unique

outlook on traffic distribution through exchanging or re-arranging devices between overloaded

and underloaded APs. The proposed algorithm improves fairness among APs and signal quality

among devices in 5G deployments.
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9.1.2 Traffic Classification and Resource Allocation in Network Slicing

This work makes two specific contributions to resource allocation in network slicing for 5G

deployments. Firstly, the study systematically investigates the allocation of network resources

for the slices. It considers core parameters of Quality of Experience (QoE) to end-user systems,

Network Performance, and Operating efficiency while placing network virtual functions and

determining the nodes, links, and resources for assignment to these slices. The proposed approach

uses Multi-Attribute Decision Making and Analytical Hierarchical Processing to maximize

stakeholder objectives and Enhanced Dinic algorithms to compute the maximum possible flows

for network slices. The simulation results show that the proposed algorithm performs well in

fulfilling stakeholder’s goals and outperforms other candidate algorithms. Secondly, with the

objective of joint QoS and energy efficiency, we comprehensively study viable QoS attributes

for traffic classification and priority class derivation. The proposed class-based probabilistic

priority scheduling algorithm based on ML regression algorithms can be applied to any network.

Finally, the proposed virtual backbone and cognitive cycle-based approaches for route allocation

in network slices targeting joint QoS and energy efficiency provide an effective solution for energy

savings.

9.1.3 Application aware routing

The technical contributions of this work centre on applying application-aware routing principles

in the state-of-the-art QoS framework. This involved measuring QoS metrics, mapping, and

allocating paths while meeting SLA boundaries. The proposed heuristic application-aware routing

approach showed significant reductions in computational time compared to other candidate

algorithms, such as HPR and directMIN. The methodology for tracking, measuring, mapping,

and monitoring QoS metrics to achieve application-aware routing was detailed. The approach

estimated key QoS parameters such as latency, packet loss, and jitter of the data path and

computed the notional value of the metrics. It also mapped each data route against the SLA

class definition of users and discussed QoS Key Performance Indicator (KPI)-driven routing

schemes through the standard algorithm in SDN. Through repeated 1000 Monte Carlo runs, the

performance of the selected routes was comparable to single-objective optimized approaches,

which was proven by the evaluation of the bandwidth, packet loss, and latency attributes.

Overall, implementing application-aware routing would lead to improved network performance

and meeting the QoS requirements of the SLA classes.
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9.1.4 QoS-driven Task Offloading

The work scrutinizes Multi-access Edge Computing by presenting a QoS-based methodology

for offloading requests from mobile devices to resource-rich edge servers. By considering QoS

attributes, we ensure that the critical tasks receive the highest priority and are executed promptly.

The task categorization is implemented through the ensemble technique and Borda scoring. We

also present a Kafka-based queuing system with probabilistic priority-based scheduling that

avoids piling tasks in queues while executing these tasks.

9.1.5 Wi-Fi Cellular Co-existence

The study focused on investigating the effect of the selfish behaviour of nodes in cross-technology

communications, particularly on the co-existence of Wi-Fi and 5G. The impact of standard MAC-

based mechanisms such as Listen-Before-Talk and Duty-Cycling on fair co-existence and QoS

of the devices across technologies is analyzed. The study characterizes the backoff mechanisms

of many selfish nodes and their effect on the network. It depicts the presence of selfish Wi-Fi

users in co-existing networks. To the best of our knowledge, this is the first discussion on the

rational cheating of nodes in the purview of cross-technology between Wi-Fi and 5G. Overall,

this study provides insights into the impact of selfish users and offers recommendations for a fair

co-existence of Wi-Fi and 5G.

9.2 Future Scope of Work

In this section, we detail the next steps or actions that can be taken to build upon and expand

the current research findings and contributions. We describe potential opportunities for further

exploration and investigation and can help guide researchers toward identifying new research

questions and directions.

9.2.1 Swap-Based Load Balancing

The swap-based load balancing technique, especially the two-way extreme load balancing

approach, can be highly beneficial for 6G networks and next-generation networks. Here are some

reasons why:
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- Increased device density: With the advent of 6G and next-generation networks, we can

expect to see a massive increase in the number of connected devices. This will put even

greater pressure on network resources, making load balancing techniques like swap-based

load balancing necessary to ensure that resources are allocated optimally.

- Energy efficiency: Load balancing techniques can also contribute to energy efficiency in

6G and next-generation networks. By balancing the load across network resources, we

can reduce the energy consumption of individual resources, which is critical for achieving

sustainability goals.

Overall, swap-based load balancing techniques can help ensure the performance, reliability, and

efficiency of 6G and next-generation networks, which will play a critical role in supporting the

applications and services of the future.

9.2.2 Resource allocation in Network Slicing

Our proposed algorithm addressed a multi-objective constraint optimization problem using

a combination of the Dinic algorithm, Multiple Attribute Decision Making, and Analytical

Hierarchical Processing. Future work can explore how other optimization techniques, such as

game theory or reinforcement learning, can be applied to network slicing problems.

As network traffic and user demands continue to evolve, future work can explore how network

slicing algorithms can be made more dynamic to respond to changing network conditions in 6G.

This can involve developing techniques for re-juggling resource allocations in stressful traffic

demands and dynamic slicing to optimize network performance.

While we have already detailed QoS attributes from S1AP and IP, additional attributes, such as

network load, could be considered to enhance QoS.

As with any network solution, it is essential to consider security and privacy implications in

network slicing. Future work could explore how to design network slicing to better protect

against cyber attacks and safeguard user privacy while still maintaining optimal QoS and energy

efficiency.

Combining the problem statements, such as load balancing of devices and resource allocation of

network elements, studying them together will add computational complexity. The convergence

time will be longer with integer optimization techniques. AI-based optimization techniques
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can be applied to study the problem together. Also, some system models had to be dealt with

independently when exploring a horizontal QoS theme. With researchers zooming into specific

research problems with assumptions and constraints, unifying them needs more investigation.

9.2.3 Co-existence between Wi-Fi and 5G

In the current study, the focus was on co-existence between Wi-Fi and 5G. We studied coun-

teraction mechanisms to avoid selfish user attacks and to promote fair co-existence in Listen

Before Talk and Duty Cycling approaches. However, in real-world deployments, there may be

multiple vendors providing Wi-Fi and 5G solutions. Future work could explore the impact of

vendor-specific implementations on coexistence and develop counteraction mechanisms that work

across vendors. Similarly, Machine learning algorithms could be used to develop more efficient

counteraction mechanisms. For instance, an algorithm could learn from historical data to predict

the likelihood of interference and adjust network parameters accordingly.

Game theory can be used in Cellular co-existence with Wi-Fi to analyze the behaviour of selfish

users, design strategies to incentive cooperation and achieve a Pareto optimal outcome. Nash

Equilibrium and Stackelberg competition are two approaches to modelling competition between

selfish users in game theory. We can study the CRISP strategy for counteraction on these

standard game theory models.

In Nash Equilibrium, each player chooses their strategy independently, assuming that the other

players’ strategies are fixed. In this scenario, there may be multiple Nash Equilibria, where no

player can unilaterally improve their payoff by changing their strategy. In the current work

context, if Wi-Fi users behave selfishly, they may choose their backoff mechanism based on their

own payoff. Similarly, cellular operators after detecting deviations in Wi-Fi network, may adapt

their parameters to optimize the cellular user’s payoff. In this scenario, the Nash Equilibrium

is the set of strategies where no player can increase their payoff by unilaterally deviating from

their current strategy.

On the other hand, Stackelberg competition models competition between two players where one

player (the leader) makes a decision first, and the other player (the follower) observes the leader’s

decision before making their own decision. In this scenario, the leader’s decision can affect the

follower’s payoff, and the leader chooses their strategy to maximize their own payoff, taking into

account the follower’s response. In the context of the current work, suppose the selfish Wi-Fi
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user is the leader, and they choose their backoff parameters to maximize their own payoff. In

this scenario, the selfish Wi-Fi user can affect the other Wi-Fi user’s payoff and the cellular

network. Hence, the cellular operator can detect the deviation and adapt their parameters to

tune the channel acquisition of cellular users. Similarly, other Wi-Fi users can choose their

backoff parameters to optimize their payoff, taking into account the selfish Wi-Fi user leader.

In future work, we can study CRISP counteraction on both Nash Equilibrium and Stackelberg

competition, which can be used to model competition between selfish users in the current work.

However, the specific approach depends on the decision-making process and the interdependence

of the players’ strategies.

♦
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