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Abstract

The late time acceleration of the Universe has challenged contemporary cosmology since its

discovery. General Relativity explains this phenomenon by introducing the cosmological constant,

named the standard cosmological model (ΛCDM). However, the cosmological constant solution

has several drawbacks that have led cosmologists to explore and propose alternative models to

explain the late time acceleration of the Universe. These alternatives span from models of a

dynamical dark fluid, known as “dark energy”, to models of large-scale modifications of the

gravitational interaction, known as “modified gravity”.

The first chapter briefly introduces background formulation, fundamental gravity theories, and

cosmological observations. In chapters 2-5, we investigate the dark sector of the Universe in

modified gravity using Markov Chain Monte Carlo (MCMC) methods and large datasets derived

from measurements of the background expansion of the Universe.

Chapter 2 discusses the acceleration of the Universe by incorporating bulk viscosity in f(R, T )

gravity. Incorporating bulk viscosity into the f(R, T ) gravity model violated the strong energy

condition describing the accelerated expansion. In chapters 3 and 4, we examine the theoretical

viability of f(Q, T ) gravity. We investigate f(Q, T ) gravity using the matter-dominated Universe

and the effective equation of state. To achieve this, we constrain the two models with the Hubble

dataset, Union 2.1 and Pantheon supernovae datasets, and the BAO dataset with the analyses of

numerous cosmological parameters. The study indicates whether the f(Q, T ) gravity models are

supported by the observational data in comparison to the ΛCDM scenario. The reconstructed

models of dark energy exhibit accelerating behavior and deviate from the ΛCDM at certain

redshifts.

In chapter 5, we analyze the exponential f(Q) gravity to examine the formation of structures

and the viable cosmology. The study aims to reproduce feasible results within f(Q) gravity

using MCMC constraints and N-body + SPH simulations. We deduce CDM+baryons over

density/temperature/mean molecular weight fields, matter power spectrum, bispectrum, two-

point correlation function, and halo mass function. Therefore, the outcomes for small and large

simulation boxes are appropriately compared. Chapter 6 finishes with concluding remarks and a

discussion of the thesis with an eye toward the future.
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Chapter 1

Introduction and Theoretical

Background

1.1 General Introduction and Motivation

Cosmology is the large-scale scientific study of the Universe, its elements, and its past and future.

In the past two decades, cosmology has advanced significantly as a science, with unexpectedly

fast-paced information regarding the creation, structure, and evolution of the Universe. Einstein’s

general theory of relativity (GR) is a well-known classic field theory of gravity. It incorporates and

goes beyond Newton’s approach, which applies only to particles travelling in a weak gravitational

field with modest velocities (slower than the speed of light). GR is essential for discussing

cosmological scenarios or those that require strong gravity, such as compact stellar objects, which

include neutron stars, black holes, and white dwarfs [1–5]. Black holes, where the gravity is

so intense that even light cannot escape from them, were predicted to exist within Einstein’s

theory. In addition, over the past century, GR has continued to achieve significant successes,

including the prediction of the existence of Gravitational Waves (GW), which was confirmed by

the detection of GW170817 by the Laser Interferometer Gravitational-Wave Observatory (LIGO)

and the prediction of the existence of Black Holes (BH), which was observed by the Event Horizon

Telescope (EHT) [6, 7]. Moreover, GR, a theory of dynamical spacetime, naturally provides a

framework for an expanding Universe. The first general relativistic cosmological model, which

corresponds to a static, homogeneous, and isotropic Universe with spherical geometry, was put

forth by Einstein in 1917 [8]. But, the gravitational force of matter caused this model to be

unstable. Later, Einstein modified his equation of general relativity by adding a new component

known as the cosmological constant denoted by Λ. This new term is used to describe a type of

anti-gravity effect because it opposes the gravitational attraction of matter. Despite including

the cosmological constant, it turns out that the Einstein static Universe is still sensitive to small

1
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perturbations. In the early 1920s, Russian Mathematician Alexander Friedmann discovered

that Einstein gravitational field equations contained non-static solutions that might describe

an expanding Universe whose size varies with time. The explanations provided by Friedmann

demonstrated that our Universe began around 13 billion years ago in a single event [9]. Therefore,

according to Friedmann’s solutions, the Universe, all matter, space and time itself appeared

all at once in a single instant. British scientist Fred Hoyle called this theory the “Big Bang”.

Under this term, it came to represent the accepted cosmological paradigm, according to which

the Universe was created at a single point at an extremely high density and temperature. After

learning about this study, Einstein promptly abandoned the cosmological constant as the greatest

error of his life.

After that, Edwin Hubble, in 1929 [10], observed that all galaxies recede from us by measuring

the distance between them. Additionally, he introduced the Hubble constant H0 in units of

km/s/Mpc, along with the expansion law [11] v = H0 d, where v is the speed of the galaxy

receding away from Earth and d is the distance between the observed galaxy and Earth.

It indicates that greater distances translate into greater receding velocities. As a result, the

expansion of the Universe appeared to be practically established. The emergence of the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric by Friedmann, Lemâıtre, Robertson, and Walker

independently in the 1920s could be considered as the beginning of this field [9, 12]. Soon

after, observations revealed that the Universe was expanding, a phenomenon that the FLRW

solution could easily account for. The existence of the Cosmic Microwave Background Radiation

(CMBR) is another prediction made using the FLRW metric. That is, the CMBR has a thermal

black-body spectrum at a uniform temperature of T ≈ 2.7K at the present epoch, corresponding

to the microwave part of the electromagnetic spectrum, which affects the formation of galaxies

[17]. Arno Penzias and Robert Wilson observed this spectrum in 1965 [13]. This finding has been

recognized as a support to the cosmological model, which asserts that the Universe has expanded

since the Big Bang and is homogeneous and isotropic at large scales. Hence, the following years

have witnessed remarkable developments in the theoretical and observational sectors.

According to observational studies of type Ia supernovae (SNeIa) conducted in 1998, the Universe

is currently expanding more rapidly than previously thought. Two groups, Riess and Schmidt

[14] (the High-Z Supernova Search Team), and Perlmutter [15] (Supernova Cosmology Project)

acquired the lead in this study and found that the galaxy and its clusters are moving apart from

one other in an accelerated rate. Various observations, including data from the Planck satellite

[16], led to the astounding discovery that the observable Universe contains only 4% to 5% of

conventional matter composed of baryons and electrons. The remaining balance of the Universe

comprises of two fundamentally unidentified components: dark matter (25%) and dark energy

(70%). The ΛCDM (Λ cold dark matter) paradigm, which assumes that cold dark matter is the

predominant component in a Universe whose late-time dynamics are determined by Einstein’s

cosmological constant, was developed due to these astounding results in modern cosmology.
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Hence, the accelerated expansion of the Universe has been the most perplexing phenomenon in

cosmology for the previous two decades.

But, our current cosmological framework presents a somewhat hazy image. It suffers from

severe theoretical issues, including dark matter, dark energy, and the Hubble tension. Let us

take a quick look at these three issues one by one. Based on the observations, most of the

mass is found in the center of the galaxy. According to the rotational curves of galaxies, which

represent the velocity versus the radial distance from the galaxy’s center, the velocity of stars

or gas reaches a maximum and remains constant regardless of the radial distance from the

galaxy’s center. By Kepler’s law, one would expect the velocity to begin to fall with distance

after reaching a maximum. It has been suggested that the presence of dark matter, a distinct

component of matter from baryonic matter, which does not interact via electromagnetism, is

required to explain this phenomenon. Dark matter has never been directly detected before. One

can check [18, 19] for further information. High-precision observational data has provided great

substantial confirmation that the Universe is going through an accelerated expansion phase,

which is pertinent to the issue of dark energy. Invoking the ΛCDM paradigm is the simplest

way to explain cosmic acceleration in recent times. However, suppose that the vacuum energy

of the gravitational field is made up of the cosmological constant, then, the theory predicts

a discrepancy between the theoretical and observed values of the cosmological constant. The

expected theoretical value exceeds the observed value by nearly 60 orders of magnitude. The

theoretical value derived from quantum-mechanical processes utilizing the standard model is

10−60M4
Pl, where MPl is the Planck mass, whereas the observed value is 10−120M4

Pl. This results

in a cosmological constant problem. Also, the Hubble tension [20] is an additional issue that can

be addressed in two ways: by directly measuring the speed of the nearest galaxies as they recede

or by extrapolating it from the inhomogeneity of the CMB. However, the reason why these two

do not produce the same Hubble parameter values is unknown.

The preceding discussion has been independent of any mathematical equations. We shall now

establish connections between the mathematical formulation and the underlying physical concepts

of some theories. One can now mention the main fundamental ideas on which GR is based on. It

is important to keep in mind that any gravitational field can be understood mathematically and

is closely related to a substantial change in the spacetime metric gµν . Geometrically, the metric

tensor represents the distance between two adjacent points in the spacetime continuum. In GR,

the gravitational field is defined by the quantities that characterize the inherent geometrical

characteristics and structure of spacetime. It has been acknowledged that GR has issues at

both small and large scales, despite its excellent accord with most observational data. The main

problems with the ΛCDM model in GR to create a cosmological model are described in the

further sections. This paves the way for physics beyond General Relativity, which may address

the issues mentioned earlier through modified gravity. Specifically, the new theory must behave

similarly to GR on the solar system’s scale. Therefore, we have additional ways to modify GR.
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One might change the matter content by adding new types of matter to the right side of the

Einstein equations, or one could change the geometry through modifications to the left side of

the Einstein equations.

The most attractive aspect of GR is its geometric interpretation. After understanding the

geometrization of gravity, theories employing geometric concepts are of particular interest. Since

it can be derived using the metric gµν and its derivatives, the connection in Einstein’s theory

of gravity is, in a sense, secondary to the metric. One is then confronted with the well-known

Riemannian geometry, in which the structure of the manifold is entirely determined by its

metric. In this instance, the connection, which is the Levi-Civita connection, is symmetric and

metric compatible (∇αgµν = 0). The most basic modification can be achieved by considering a

generalized action by substituting an arbitrary function for the gravitational Lagrangian R of the

Einstein-Hilbert (EH) action S =
∫ (

1
2kR+ Lm

)√−gd4x, where k = 8πG
c4

, G is the gravitational

constant and c is the speed of light in vacuum. This led to the development of f(R) theories

with some significant works studied in [21–25]. An alternative approach to f(R) gravity, as

discussed in [26], introduces further modifications to the Einstein-Hilbert (EH) action. This is

achieved by including a coupling term between matter and gravity, represented by an arbitrary

function f(R, T ), where T denotes the trace of the energy-momentum tensor (EMT), a tensorial

quantity characterizes the energy and flux of matter. It is worth mentioning that the covariant

divergence of the energy-momentum tensor in f(R, T ) gravity is not conserved, resulting in the

non-geodesic motion of massive test particles. The coupling effects between matter and geometry

result in the particles experiencing an extra acceleration. Works in [27–32] have more findings

on f(R, T ) gravity.

Another way to extend the geometry would be to relax the Riemannian constraints. There

are, however, other gravity theories in which the metric is introduced as a fundamental field

variable with a different independent connection where the curvature plays a secondary role. This

connection is intended to have a vanishing curvature, in contrast to the Levi-Civita connection,

but one that permits non-vanishing torsion, non-metricity, or both. H. Weyl [33] made an

innovative approach with the primary goal of geometrically uniting gravity and electromagnetism.

Weyl’s theory employs a mechanism with two connections: one transmits information about a

vector’s length, while the other regulates the vector’s direction during parallel transport. The

non-zero covariant divergence of the metric tensor, a trait that leads to a new geometrical quantity

called non-metricity, is the most remarkable aspect of the theory. Meanwhile, the idea of torsion

was introduced, which led to another significant advancement in differential geometry, i.e., the

Einstein-Cartan theory [34]. Weitzenböck provided a different exquisite geometrical formalism

known as Weitzenböck spaces [35], where the manifold possesses the properties Rµνλσ = 0,

T µνλ 6= 0, and ∇µgνλ = 0. One can notice that, the Weitzenböck space reduces to a Euclidean

manifold when T µνλ = 0. In a Weitzenböck manifold, the Riemann curvature tensor vanishes

identically, resulting in distant parallelism, also known as teleparallelism or absolute parallelism.
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The fundamental idea behind the teleparallel formulation of gravity is to replace the spacetime

metric, or primary geometrical variable gµν with a collection of tetrad vectors eiν . Then,

gravitational processes can be described entirely using the torsion tensor produced by the tetrad

fields, with the curvature being substituted by torsion. As a result, this leads to the so-called

teleparallel equivalent of general relativity (TEGR) [36], and its extension is referred to as

the f(T ) gravity theory [37, 38], where T is the torsion scalar. Torsion precisely balances

curvature, which has the critical consequence that spacetime becomes a flat manifold, and this

is the fundamental characteristic of teleparallel theories. The fact that second-order differential

equations are used to describe the gravitational field is another significant characteristic of f(T )

gravity theories. More detailed analysis of f(T ) theory can be seen in [39–42]. Let us now talk

about the third equivalent formulation of GR.

One can note that the non-metricity Q disappears in both the curvature-based and teleparallel

formulations. Geometrically Q depicts the change in a vector’s length in parallel transport. Now,

a non-vanishing non-metricity Q is considered the fundamental geometrical variable accountable

for all varieties of gravitational interactions in a third equivalent formalism of GR, named

symmetric teleparallel equivalent to gravity relativity (STEGR) [43]. Non-metric gravity is

another name for these non-metricity based gravitational theories. While having a Lagrangian

represented by the non-metricity scalar Q, equivalent to GR description of gravity, a generalization

of the Lagrangian with a generic function of the non-metricity f(Q) gives a different description

of the gravitational interaction. Various physical and geometrical characteristics of symmetric

teleparallel gravity and f(Q) gravity have been studied in different research studies, and interest

in this kind of theoretical approach to gravity is increasing rapidly [42, 44–53]. Furthermore,

the authors in [44] established a non-minimal connection between the non-metricity Q and the

matter Lagrangian Lm as the foundation for an extension of the f(Q) gravity. The non-minimal

interaction between the geometry and matter sectors predictably results in the non-conservation

of the energy-momentum tensor and the development of an additional force in the geodesic

equation of motion. Another extension of the theory, known as the f(Q, T ) gravity, was proposed

by Xu. et al. in [54], where the gravity Lagrangian is essentially an arbitrary function of Q and

the trace of the energy-momentum tensor T . The authors explored the dynamical evolution for

several specific coupling functions.

The current dissertation intends to show several ways to investigate late time cosmology or to

look at probable places for future investigations in order to shed more light on the dark sector of

the Universe. To explore the accelerated phase of the Universe, we shall mainly concentrate on

modified theories of gravity. This chapter includes an overview of the background dynamics, the

cosmic observations, the standard model of cosmology, and its extensions.
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1.2 Foundations

This section discusses the fundamental differential geometry concepts that allow for constructing

both Riemannian and non-Riemannian spacetime. We will present the basic concepts and

principles of GR1. This section’s primary objective is to introduce differential manifolds, vectors,

tensors, and other mathematical concepts used to describe the properties of physical objects

[55, 56].

1.2.1 Manifolds

A manifold is one of the most fundamental concepts in both Mathematics and Physics. Math-

ematicians developed the theory of analysis in Rn over many years. However, we naturally

associate specific other spaces with curved spaces or topological complexity. To address the

concept, there is a manifold which refers to a space that may be curved and have a complex

topology but which, in certain localized sections, resembles Rn.

We first require the concept of topology and topological space to introduce a manifold.

Definition 1.1. Let M be any set, and τ = {Ui, i ∈ I} denote a collection of subsets of M. The

pair (M, τ) is a topological space if τ satisfies the following conditions:

(i) ∅, M ∈ τ ,

(ii) If J is any subcollection of I, the family {Uj , j ∈ J} satisfies
⋃
j∈J

Uj ∈ τ ,

(iii) If K is any finite subcollection of I, the family {Uk, k ∈ K} satisfies
⋂
k∈K

Uk ∈ τ .

Here, Ui are known as open sets, τ is referred to as a topology on M, and M is a topological

space. In fact, a topology on a set provided by a metric function is known as metric2 topology.

Additionally, if the inverse image of an open set is also an open set, then a map between two

topological spaces is continuous. Similar to the notion of continuity in topology, the theory

of manifolds has smoothness. A function is referred to Cr, if its rth derivative exists and is

continuous. Thus, C∞ functions are referred to as smooth.

Definition 1.2. For any p, q ∈ M, with p 6= q, there exists U1, U2 ∈ τ such that p ∈ U1, q ∈ U2

and U1 ∩U2 = ∅. Topological spaces satisfying such conditions are called Hausdorff space.

Definition 1.3. A homeomorphism between topological spaces is a continuous bijective map

whose inverse map is also continuous.

1Refer to: Introduction to General Relativity and Cosmology by Christian G. Böhmer
2A metric d : X ×X → R is a function that is symmetric, non-degenerate and obeys a triangle inequality.



Chapter 1. Introduction and Theoretical Background 7

Definition 1.4. An n-dimensional differentiable manifold is a Hausdorff topological space M

that satisfies the following conditions:

(i) M is locally homeomorphic to Rn. This means that for each p ∈ M, there is an open set U

such that p ∈ U and a homeomorphism φ : U→ O with O an open subset of Rn.

(ii) Consider two open sets Uα and Uβ such that Uα ∩ Uβ 6= ∅. The corresponding maps

φα : Uα → Oα and φβ : Uβ → Oβ are compatible, that means the map φβ ◦ φ−1
α :

φα (Uα ∩Uβ)→ φβ (Uα ∩Uβ) is smooth (infinitely differentiable), as is its inverse.

The maps φα are called charts and the collection of charts is called an atlas. The maps φβ ◦ φ−1
α

take us between different coordinate systems3 and are called transition functions. A chart (U, φ)

on M is said to be compatible with a C∞-atlas A on M if A ∪ (U, φ) is a C∞-atlas. So, the two

compatible atlases define the same differentiable structure on the manifold.

1.2.2 Vectors and Tensors

In this subsection, we introduce the concepts of vectors and tensors. The most crucial aspect

to highlight is that each vector occupies a specific location in spacetime. One can commonly

think of vectors as entities that extend between two distinct points in space and even as free

vectors that can be effortlessly displaced between various points. The concept above needs

more practical utility beyond the confines of flat spaces. The capacity to define preferred curves

between points or effectively move vectors across a manifold is lost upon the introduction of

curvature. Consequently, the concept of a tangent vector is the foundation of calculus on

manifolds. Hereafter, we define the following terms.

Definition 1.5. Let F be a collection of C∞ functions from M to R. We define a tangent

vector V at a point p ∈ M to be a map V : F→ R which is linear and obeys the Leibnitz rule

(i) V (af + bg) = a V (f) + b V (g), f, g ∈ F, and a, b ∈ R,

(ii) V (fg) = f(p)V (g) + g(p)V (f).

The object ∂µ|p = ∂
∂xµ

∣∣
p

acts on functions and obeys all requirements of the tangent vector. For

a function f : M→ R and a chart φ =
(
x1, ....., xn

)
in a neighbourhood of p, we define a map

f ◦ φ−1 : U→ R with U ⊂ Rn. So, we differentiate functions on M as

∂f

∂xµ

∣∣∣∣
p

=
∂(f ◦ φ−1)

∂xµ

∣∣∣∣
φ(p)

.

3The coordinate associated to p ∈ Uα is φα(p) =
(
x1(p), x2(p), ....., xn(p)

)
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This depends on the choice of chart φ and coordinates xµ. However, we need a coordinate

independent definition of differentiation.

Theorem. The set of all tangent vectors at point p forms an n-dimensional vector space, which

is known as tangent space Tp(M). The tangent vector ∂µ|p provides a basis for Tp(M). So, we

can write any tangent vector as

Vp = V µ ∂

∂xµ

∣∣∣∣
p

,

with V µ = Vp(x
µ).

The crucial notion is that a certain tangent vector Vp exists regardless of the coordinate system

used. However, the chosen basis {∂µ|p} depends on our choice of coordinates: charts φ and

coordinates xµ.

Suppose that we chose a different chart φ′ with the coordinates x′µ near p. The tangent vector

Vp is expressed as

Vp = V µ ∂

∂xµ

∣∣∣∣
p

= V ′µ
∂

∂x′µ

∣∣∣∣
p

.

Here, the components of the vector vary, while the vector itself remains the same. It should be

noted that by applying the chain rule and the tangent vector Vp acting on a function f , one can

express

Vp(f) = V µ ∂ f

∂xµ

∣∣∣∣
p

= V µ ∂x
′ν

∂xµ

∣∣∣∣
φ(p)

∂ f

∂x′ν

∣∣∣∣
p

.

This can be viewed as
∂

∂xµ

∣∣∣∣
p

=
∂x′ν

∂xµ

∣∣∣∣
φ(p)

.
∂

∂x′ν

∣∣∣∣
p

,

V ′µ = V µ∂x
′ν

∂xµ
. (1.1)

This type of component transformation is referred to as contravariant.

A vector field V is defined to be a smooth assignment of a tangent vector Vp to each point

p ∈ M.

Definition 1.6. The dual space to the tangent space Tp(M) is called a cotangent space T ∗p (M).

It is the space of all linear maps from Tp(M) to R.

The gradients of the coordinate function xµ offer a natural basis for the cotangent space, just as

the partial derivative along coordinate axes does for the tangent space such that

dxµ(∂ν) =
∂xµ

∂x′ν
= δµν .

which further results in

W ′µ =
∂xµ

∂x′µ
Wµ. (1.2)
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This type of component transformation is referred to as covariant. Now, we are ready to define

a tensor.

Definition 1.7. A (m,n) tensor is a multilinear map from a collection of m dual vectors and n

vectors to R. Hence, we write

Aµ1.....µm ν1.....νn = A(dxµ1 , ......, dxµm , ∂ν1 , ....., ∂νn).

Using the transformation laws of vectors and dual vectors in equations (1.1) and (1.2), the

general coordinate transformation for tensor is

A
′µ′1.....µ′m

ν′1.....ν
′
n

=
∂x′µ

′
1

∂xµ1
......

∂x′µ
′
m

∂xµm
∂xν1

∂x′ν
′
1
........

∂xνn

∂x′ν′n
Aµ1.....µm ν1.....νn . (1.3)

Now, we define an important aspect to define the distance between two points in the space.

1.2.3 The Metric

The metric structure enables the definition of distance between any two spacetime points. A

metric is meant to inform us of the infinitesimal squared distance associated with an infinitesimal

displacement and is instead an inner product on each vector space Tp(M).

Definition 1.8. The metric is a tensor of type (0, 2) which is

(i) Symmetric: g (V1, V2) = g (V2, V1), V1, V2 ∈ Tp(M),

(ii) Non-degenerate: For any p ∈ M, g(V, V1) = 0 for all V ∈ Tp(M), then V1 = 0.

We may expand g in terms of its components gµν in a coordinate basis as

g = gµν dx
µ ⊗ dxν .

This further can be written as

ds2 = gµν dx
µdxν , (1.4)

with g = det(gµν). Furthermore, putting gµν into its canonical form yields a meaningful

characterization4 of the metric as gµν = diag (−1,−1, .....,−1,+1,+1, ...+ 1, 0, ......0). The

signature of the metric is the number of positive and negative eigenvalues. If all signs are positive,

we refer to the metric as Euclidean or Riemannian. If there is a negative sign, the metric is

called Lorentzian or pseudo-Riemannian. Otherwise, it is referred to as indefinite.

4A square matrix can be reduced to a diagonal matrix.
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1.3 General Relativity

The initial stage in the development of the theory of gravitation involves the establishment of

a mathematical framework that enables the formulation of the laws of physics in a covariant

fashion. The formulation of the laws of physics can be achieved by utilizing vectors and tensors,

which are mathematical entities possessing transformation qualities that embody the concept

of covariance in physical laws. Therefore, we commence our discussion by examining the

fundamental differential operations that may be derived from vectors and tensors. One can

review some concepts in [57].

1.3.1 Some Important Concepts

Definition 1.9 (Christoffel Symbol). A special connection that we might draw from the

metric is represented by an object known as the Christoffel symbol and is provided by

Γαµν =
1

2
gαλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (1.5)

Although the three index symbol or Christoffel symbol resembles a tensor, it is not a tensor.

It is symmetric in its lower pair of indices by definition. Consequently, the dyad produces
n(n+1)

2 components in n dimensions. No other symmetries exist, so the third index can take any

value, resulting in n2(n+1)
2 independent components in n dimensions. The main purpose of this

connection is to generate covariant derivatives, a generalization of partial derivatives.

Definition 1.10 (Covariant Derivative). An operator ∇ known as covariant derivative

produces a tensor when applied to a tensor in a way entirely independent of coordinates. It is

defined as follows

∇µAν = ∂µA
ν + ΓνµλA

λ. (1.6)

Furthermore, the general expression for the covariant derivative is

∇λAµ1µ2....µnν1ν2....νm = ∂λA
µ1µ2....µn

ν1ν2....νm + Γµ1λσA
σµ2....µn

ν1ν2....νm + Γµ2λσA
µ1σ....µn

ν1ν2....νm + ....

− Γσλν1A
µ1µ2....µn

σν2....νm − Γσλν2A
µ1µ2....µn

ν1σ....νm − ..... (1.7)

Definition 1.11 (Parallel Transport). Parallel transport describes the idea of transporting a

vector along a path while keeping its orientation constant. Let xµ(λ) be a path with tangent

vector dxµ

dλ and assume Aµ be a vector. Then, we say Aµ is parallelly transported along a path if

dxµ

dλ
.∇µAν = 0. (1.8)
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Following the discussion of the definition of parallel transport, we will move on to geodesics.

A geodesic is a mathematical construct that generalizes the motion of a straight line across

Euclidean space to motion through curved space. If we have two points connected by a curve/path,

we may use the arc length to determine the distance between these places along that curve. The

curves that minimize the distance between our points are of particular interest to us. Let us

summarize this as a definition.

Definition 1.12 (Geodesics). A curve/path xµ(λ) is called a geodesic if it satisfies the equation

d2xµ

dλ2
+ Γµδσ

dxδ

dλ

dxσ

dλ
= 0, (1.9)

where Γµσν is the Christoffel symbol.

Definition 1.13 (Riemann Tensor). The Riemann tensor or curvature tensor is a tensor of

type (1, 3) defined as

Rµνσλ = ∂σΓµλν − ∂λΓµσν + ΓµσδΓ
δ
λν − ΓµλδΓ

δ
σν . (1.10)

It has some important relations as follows.

1. Rµνσλ = −Rµνλσ, (Antisymmetric)

2. Rµνσλ +Rµσλν +Rµλνσ = 0, (Cyclic)

3. Rµνσλ;δ +Rµνλδ;σ +Rµνδσ;λ = 0. (Bianchi Identity)

Definition 1.14 (Ricci Tensor). The Ricci tensor is a type (0, 2) tensor, which is a contracted

Riemann tensor. That is

Rµν = Rσµσν . (1.11)

The Ricci tensor associated with the Christoffel connection is symmetric, which is Rµν = Rνµ.

Definition 1.15 (Ricci Scalar). The trace of the Ricci tensor is known as the Ricci Scalar.

R = Rµµ = gµνRµν . (1.12)

Definition 1.16 (Einstein Tensor). The tensor Gµν = Rµν − 1
2gµνR is the Einstein tensor,

which is symmetric and has a great importance in GR. Furthermore, ∇µGµν = 0. It is a

fundamental tensor quantity that describes the physical and geometrical properties of the

gravitational field.

So far, we have covered some fundamental mathematical notions and tools that will be required

in the mathematical formulation of the General Theory of Relativity. We shall now focus on the

aspect of obtaining the Einstein field equations.
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1.3.2 Einstein Field Equations

Einstein field equations are a set of differential equations used to characterize the gravitational

field within the framework of general relativity. These equations are defined in Riemannian

geometry, and they establish a profound relationship between the geometric properties of

spacetime and its matter content, providing a complete description of the geometric properties

of spacetime and the dynamics of the particles. We seek to find an equation that replaces

the Poisson equation for the Newtonian potential. This can be done by the application of the

principle of least action to the gravitational field.

The total action for gravity and any other physical fields present in the system is given by

S =
1

2k

∫
R
√−g d4x+

∫
Lm
√−g d4x, (1.13)

where
√−g d4x is a 4-dimensional volume on the manifold. g is the determinant of the metric

tensor, k = 8πG
c4

, G is the Newton’s constant and Lm is the Lagrangian density of matter fields.

The variation of the above action (1.13) with respect to the metric tensor yields

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.14)

which are known as the Einstein field equations. We also note that the

Tµν = − 2√−g
δ (
√−gLm)

δgµν
, (1.15)

is named the energy-momentum tensor (which will be discussed in the following sections),

quantifying the matter and energy content of spacetime.

Taking the covariant divergence of the equation (1.14), we can easily find

∇µGµν ≡ 0 ≡ ∇µTµν . (1.16)

This pertains to the important law of conservation of the matter-energy momentum tensor Tµν .

Finally, we may construct general relativistic theoretical models of the Universe using various

cosmological assumptions and parameters discussed in the following section.

1.4 The Standard Cosmological Model

This section describes the standard cosmological model. We discuss essential concepts such as

the FLRW metric, the Hubble parameter, and redshift, as well as the successes and flaws of the
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ΛCDM model. A more comprehensive introduction to cosmology can be found in Weinberg [55].

1.4.1 The FLRW Metric

The cosmological principle states that the Universe is homogeneous and isotropic at all times

on large enough scales. In other words, homogeneity suggests that the Universe looks the same

to any observer at any place, but isotropy implies no preferred directions from a given position.

On the assumption that the Universe is homogeneous, it is possible to transform two particles

separated by a distance ~r into a coordinate system known as comoving coordinates by using the

formula ~r = a(t) ~x, where ~x is the comoving distance or separation between the same points in the

comoving frame. The scale factor a(t) of the Universe governs how the physical separations grow

through time. Friedmann, Lemâıtre, Robertson, and Walker (FLRW) developed the following

form for the line element in spherical coordinates, considering the geometrical properties of

homogeneity and isotropy following the cosmological principle and the fact that the Universe is

expanding

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

]
, (1.17)

where (r, θ, φ) are the comoving spatial coordinates in spherical coordinate system, k is the

spatial curvature of the Universe. For the sake of simplicity, we will choose units when c = 15.

Furthermore, k = −1, 1, and 0 correspond to an open (Hyperbolic), closed (Spherical), and

flat Universe (Euclidean), respectively. When examining the geometrical properties of several

coordinate systems, it can be helpful to use a new radial-type coordinate ξ defined as

ξ =

∫
dr√

1− kr2
=


arc sin r, k = +1

r, k = 0

arc sinh r, k = −1

. (1.18)

Hence, the FLRW metric in a new coordinate system becomes

ds2 = −dt2 + a2(t)
[
dξ2 + S2

k(ξ)
(
dθ2 + sin2θdφ2

)]
, (1.19)

where

Sk(ξ) =


sin ξ, k = +1

ξ, k = 0

sinh ξ, k = −1

.

Before determining the Friedmann equations and their solutions, we will introduce additional

parameters that play a role in characterizing the expansion of the Universe.

5Empirically, we know c = 3× 108m/s, thus we are working in units where 1 second equals 3× 108m
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1.4.2 The Hubble Parameter

One can define the rate of change of the distance from the relation ~r = a(t) ~x as

~̇r = ˙a(t)~x = ˙a(t)
~r

a(t)
, (1.20)

which gives

~̇r =
˙a(t)

a(t)
~r = H(t)~r, (1.21)

where dot denotes the time derivative, and H is the Hubble parameter, which provides the rate

of change of expansion of the Universe as defined by

H(t) =
˙a(t)

a(t)
. (1.22)

From equation (1.22), one can obtain the expression of the Hubble law at the present time:

~v = H0 ~r, where H0 represents the Hubble constant at present, and ~v is the velocity at which

the objects are moving away from the observer. Edwin Hubble saw it as the first observable

foundation for the expansion of the Universe in 1929. According to this principle, a galaxy’s

recession rate is proportional to its distance from the observer.

1.4.3 Redshift

The fact that practically everything in the Universe appears to be moving away from us and that

this apparent movement increases with increasing distance is a significant piece of observational

evidence in cosmology. When a photon travels through the Universe, it is inextricably linked to

the expansion of space, which causes it to expand or, more precisely, increases its wavelength.

Therefore, traveling photons lose energy in the Universe. If these photons were in the visible

spectrum, they would begin with a blue hue and a high energy level before turning to the red

spectrum as their energy decreases. This is where the term redshift originates.

Since all galaxies are moving away from us, the scientific terminology is redshift z, which is

defined by

z =
λob − λem
λem

, (1.23)

where λob and λem are the wavelengths of light at the points of observation and emission,

respectively. The Doppler law can now be used to establish that the difference in wavelength

between emission and reception
λob − λem
λem

=
dv

c
, (1.24)
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where λob > λem. The time between emission and reception is given by the light travel time

dt = dr
c , which results

λob − λem
λem

=
ȧ

a

dr

c
=
ȧ

a
dt =

da

a
. (1.25)

We obtain that λ ∝ a, where λ is the instantaneous wavelength measured at any given time.

Hence, one gets the redshift in terms of scale factor as

1 + z =
λob
λem

=
a(tob)

a(tem)
. (1.26)

Next, we turn our attention to the specific energy tensor and different types of matter sources

described by it in the following section.

1.4.4 The Stress Energy-Momentum Tensor

In this section, we go over the properties of the stress-energy-momentum tensor. For modelling the

Universe, we assume that the Universe is homogeneous and isotropic and also that the Universe is

filled with the perfect fluid6 distribution of matter. The equation for the stress-energy-momentum

tensor is

Tµν = (ρ+ p)uµuν + pgµν , (1.27)

where uµ = (1, 0, 0, 0) is the fluid 4-velocity vector. In addition to stresses, it contains information

about the energy density and energy fluxes of the matter. The contraction of Tµν results in

T µν = diag(−ρ, p, p, p), and the trace T = T µµ = −ρ+ 3p, where ρ is the energy density and p is

the pressure in all directions of the spacetime.

Further, we can recall that the stress-energy-momentum tensor satisfies the conservation equation

∇µTµν = 0, which yields

ρ̇+ 3 (ρ+ p)
ȧ

a
= 0. (1.28)

Often the perfect fluid relevant to cosmology obeys the simple equation of state

p = ωρ, (1.29)

where ω is a constant and independent of time. Using equation (1.28), one gets the relation

ρ ∝ a−3(1+ω). (1.30)

One has p = 0, that is ω = 0 for the non-relativistic matter. The Universe is considered

matter-dominated if matter accounts for most of the energy density and is known as dust. The

6When a matter component is considered continuous, it cannot support shear stress. That is, we can neglect
viscosity.
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energy density in this case is characterized as

ρm = ρm0a
−3(t). (1.31)

The Universe in which the majority of the energy density takes the form of radiation that is

pr = 1
3ρr is known as a radiation-dominated Universe. The energy density, in this case, falls off

as

ρr = ρr0a
−4(t). (1.32)

A vacuum-dominated Universe has an equation of state pΛ = −ρΛ, i.e. ω = −1. The energy

density here is constant and defined by

ρΛ = ρΛ0 . (1.33)

Here, ρm0 , ρr0 , and ρΛ0 represents the respective densities at t = t0. Although we have

discussed the stress-energy momentum tensor for various matter components, reviewing some

general considerations, such as what types of stresses are acceptable at varying levels, is helpful.

Consequently, energy conditions are useful for this purpose.

1.4.5 Energy Conditions

Energy conditions (ECs) serve three purposes and impose coordinate invariant restrictions on

the stress-energy-momentum tensor of the matter. First, as Einstein’s equation involves no other

properties of matter besides its stress tensor, ECs allow us to analyze the behavior of gravitating

systems without specifying the behavior of matter in detail. The crucial step that allowed

Penrose and Hawking to prove their singularity theorems [58, 59] was bypassing a complicated

and comprehensive analysis using this method. The second purpose of ECs is to convey a concept

of ‘normal matter’ that should apply to various matter kinds. The third objective of the ECs is

conceptual simplicity. For example, the positivity of the energy density may be related to the

system’s stability, at least in the naive sense that systems are stable in classical mechanics when

the energy is bounded from below. ECs have great adequacy in classical GR, which considers the

singularity problems of spacetime and explains the behavior of spacelike, timelike, or lightlike

geodesics [60]. These conditions can be derived from the well-known Raychaudhuri equations of

the form [61, 62].

dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνω

µν −Rµνuµuν , (1.34)

dθ

dτ
= −1

2
θ2 − σµνσµν + ωµνω

µν −Rµνnµnν , (1.35)

where θ, σµν and ωµν are the expansion factor, shear and rotation associated with the geodesic

congruence defined by the vector field uµ and the null vector nµ.
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As a result, there are different ECs, each with distinct advantages and disadvantages in terms of

the range of validity, significance and interpretations. We construct scalars from Tµν , which is

typically accomplished using arbitrary timelike vectors tµ or null vectors nµ [63, 64].

The weak energy condition (WEC) is probably the most intuitive of the energy conditions. It

claims that

Tµνtµtν ≥ 0, (1.36)

for any timelike vector tµ. For a perfect fluid, the WEC suggests that ρ+ p ≥ 0 and also, ρ ≥ 0.

A null energy condition (NEC) is a variation of the WEC, with the timelike vector replaced by a

null vector nµ such that

Tµνnµnν ≥ 0. (1.37)

In the perfect fluid description, the NEC asserts ρ + p ≥ 0. The NEC is crucial because it

determines whether the Universe will experience inflation and whether it will evolve into a

singularity or bounce solution. The NEC is weaker than the WEC.

The WEC can be generalized to dominant energy conditions (DEC). It indicates that DEC and

WEC are equivalent, with the additional requirement that Tµνtµ must be either timelike or null.

It gives us the perfect fluid condition as ρ ≥ |p|.

The strong energy condition (SEC) imposes a bound:(
Tµν −

1

2
gµνT

)
tµtν ≥ 0, (1.38)

for every timelike vector tµ. The SEC transforms into ρ+ p ≥ 0 and ρ+ 3p ≥ 0 for a perfect

fluid. According to Einstein equation, SEC is strictly geometric, so Rµνt
µtν ≥ 0. This condition

is widely employed and is one of the most important conditions of the Hawking and Penrose

singularity theorems.

After determining the fundamental principles underlying the model, many quantities, which

are cosmological parameters, may remain undetermined. It is common practice to specify

cosmological models with a handful of parameters, which one then attempts to observe in order

to determine which version of the model best describes our Universe. In the following section,

we will discuss the cosmological parameters that are commonly considered.

1.4.6 Cosmological Parameters

This section discusses the relevant cosmological parameters for observational cosmology. Consider

the Taylor expansion of the scale factor about the present time t0. The general form of a(t) is

a(t) = a(t0) + ˙a(t0)(t− t0) +
1

2
¨a(t0)(t− t0)2 +

1

3!

...
a(t0)(t− t0)3 +

1

4!

....
a(t0)(t− t0)4 + ...... (1.39)
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Dividing by a(t0), one gets

a(t)

a(t0)
= 1 +H0(t− t0)− q0

2
H2

0 (t− t0)2 +
1

3!
j0H

3
0 (t− t0)3 +

1

4!
s0H

4
0 (t− t0)4 + ...... (1.40)

where t0 is the present time. Here, the coefficients are named Hubble, deceleration, jerk, snap

parameters, respectively. That is

H =
ȧ

a
, q = − ä

aH2
, (1.41)

j =

...
a

aH3
, s =

1

aH4

d4a

dt4
. (1.42)

One can predict whether or not the expansion of the Universe is accelerating or decelerating.

So, q < 0 represents acceleration, while q > 0 represents deceleration. In addition, the change

in the sign of the jerk parameter j in an expanding model denotes an increase or decrease in

acceleration.

Now, it is time to talk about the simplest model of the Universe, as we shall see.

1.4.7 Friedmann Equations for the Standard Model

The ΛCDM model was developed to model universal dynamics such as an accelerated expansion.

It consists of a Universe evolving under GR and adding dark energy with a negative equation

of state parameter, represented by a cosmological constant. In GR, an accelerated expansion

via a cosmological constant is possible, but its origin remains unexplained. This subject will be

addressed in subsequent sections. Unless otherwise specified, we will use units such as c, ~ = 1

for the remainder of this work, where c is the speed of light and ~ is the reduced Planck constant.

In 1915, Einstein’s theory of GR was derived from the Einstein-Hilbert action given by

S =

∫
d4x
√−g

[
1

2κ
(R− 2Λ) + Lm

]
, (1.43)

where Λ is the cosmological constant and κ = 8πG. The Einstein field equations can be derived

by vanishing the variation of the action with respect to metric tensor, that is

Gµν + Λgµν = κ Tµν . (1.44)

Furthermore, we examine the cosmological equations of the ΛCDM model, known as the

Friedmann equations. The equations are derived using equation (1.44), the FLRW metric (1.17),
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and the stress-energy momentum (1.27), we have

H2 =
8πG

3
ρ− k

a2
+

Λ

3
, (1.45)

2Ḣ + 3H2 = −8πGp− k

a2
+ Λ. (1.46)

Combining equations (1.45) and (1.46) gives

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.47)

which is known as the acceleration equation. If ä > 0, we call the Universe accelerating, while

the Universe is decelerating for ä < 0.

There is a specific density that must exist for a particular value of H in order to make the

geometry of the Universe flat, that is, k = 0. This is named as the critical density ρc, which is

determined as

ρc =
3H2

8πG
. (1.48)

Understand that the critical density does not necessarily correspond to the actual density of the

Universe since the Universe need not be flat. Therefore, rather than quoting the density of the

Universe directly, referring to its value relative to the critical density is frequently more helpful.

This quantity is referred to as the density parameter Ω, defined as

Ωi(t) =
ρi(t)

ρ(t)
=

8πG

3

ρi(t)

H2(t)
, (1.49)

where i denotes the sum of matter, radiation, spatial curvature, and vacuum. One can rewrite

the Friedmann equation (1.45) as

1 = Ωm(t) + Ωr(t) + Ωk(t) + ΩΛ(t). (1.50)

where Ωk(t) is the density parameter for curvature defined as Ωk(t) = − k
H2a2

and ΩΛ(t) = 8πG
3H2 ρΛ,

where ρΛ = Λ
8πG . However, if k = 0, then Ωm + Ωr + ΩΛ = 1, i.e. Ωtotal = 1 at all times. The

quantities Ωi are time-dependent, and we can write the values at present time Ωi,0, yielding

H2 = H0

[
Ωm,0 a

−3 + Ωr,0 a
−4 + Ωk,0 a

−2 + ΩΛ,0

]
. (1.51)

The values for the parameters involved in the above equation (1.51) have been determined by

the Planck Collaborations in 2018 [65]. We shall now elaborate more on the success and issues

of the standard cosmological model in the next section.
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1.4.8 Successes of ΛCDM and its Issues

The standard cosmological model has been extraordinarily successful in characterizing the

Universe and is primarily consistent with observations. It can describe the evolution, and

formation of structures that can only be explained in terms of gravitation within an inflationary,

dark energy, dark matter scenario, and the abundance of light elements that can only be explained

in primordial nucleosynthesis. Nonetheless, the ΛCDM approach faces certain shortcomings:

There is a discrepancy between the theoretical and observed values of the cosmological constant.

The expected theoretical value exceeds the observed value by nearly 60 orders of magnitude.

The theoretical value derived from quantum-mechanical processes utilizing the standard model

is 10−60M4
Pl, where MPl is the Planck mass, whereas the observed value is 10−120M4

Pl. This

discrepancy is referred to as the cosmological constant problem [66].

The Horizon problem [67] is a cosmological fine-tuning issue within the Big Bang theory

of the Universe, supported by the ΛCDM model, and is also referred to as the homogeneity

problem. It arises from the difficulty of explaining the apparent homogeneity of spatial regions

that are casually unconnected in the absence of a process that uniformly sets the initial conditions

across all regions. The most widely acknowledged explanation is exponential growth in the early

Universe or cosmic inflation.

Another is the cosmological coincidence issue [68], which relates to the fact that the ΛCDM

model predicts that we are in a transitional period between the matter-dominated era and

the late-time acceleration era. Observational evidence indicates that the current values of

cosmological constant matter densities are comparable in magnitude.

According to current knowledge, dark matter (DM) [69–71] is non-baryonic and does not

interact with other matter components other than gravitational interactions. Without assuming

the existence of DM with these characteristics, we cannot explain, for example, the rotational

trajectories of galaxies and the formation and distribution of structures in the Universe. Although

ΛCDM assumes the existence of dark matter, neither ground-based nor space-based experiments

have detected the signature of DM particles.

There have been disagreements between high and low redshift measurements, such as those

based on local measurements and those based on CMB measurements, with the latter assuming

ΛCDM, regarding the estimated value of present Hubble constant H0. This tension is known

as H0 tension [72] and corresponds to roughly 4.4σ tension. The Planck data, measurements

of weak lensing, and redshift surveys produce a second significant source of tension known as

σ8 tension [73]. This corresponds to the matter density (Ωm) and the amplitude or growth

rate of structure (σ8, fσ8). Based on the ΛCDM, the Planck collaboration estimates S8 =
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σ8

√
Ωm/0.3 = 0.834± 0.016, whereas KIDS-450 collaboration estimates S8 = 0.745± 0.039 [74].

This results in approximately 2σ of tension.

These constraints have necessitated the search for an alternative explanation. In the following

sections, we update various theories extending beyond ΛCDM.

1.5 Beyond ΛCDM

In light of the ΛCDM issues enumerated in the previous section, one must seek out novel

approaches that extend beyond ΛCDM and, more generally, GR. Possible alternatives to GR

will be discussed here. As a result of the flaws in the cosmological constant, new theories

to explain cosmic acceleration have been proposed. These can be grouped into two distinct

classifications, the first being dark energy (DE) models and the second being modified gravity

(MG) models. A DE model is created by adding a DE fluid component parametrized by a static

or dynamic equation of state. In MG models, the modification occurs within the gravitational

sector, resulting in different field equations from GR. For DE models, modifications are made on

the matter side of Einstein equations, ignoring Λ and typically adding additional fluid to the set

of Einstein equations.

� It is hypothesized that the dark energy EoS has changed during the evolution of the

Universe. As a result, several dynamical dark energy (DDE) models with a time-varying

EoS parameter have been proposed. Common DDE models with respect to redshift z

include the Chevallier-Polarski-Linder (CPL) model [75], the Jassal-Bagla-Padmanbhan

(JBP) model [76], the Barboza-Alcaniz paramterization [77], the Wetterich paramterization

[78], etc.

� The most widely recognized theory for DDE is the quintessence scalar field model. We

consider a scalar field minimally coupled to the matter field, where the scalar field is

time-dependent and associated with the potential V (φ). This φ exerts a negative pressure,

gradually decreasing V (φ). Quintessence models are categorized into three types based on

the nature of potential V (φ). When V (φ) << φ̇2, ω ≈ 1, which is equivalent to the stiff

matter and does not contribute to dark energy. When V (φ) >> φ̇2, ω ≈ −1, corresponds

to the cosmological constant. For −1 < ω < 1, we get ρ ∝ a−m, which gives the accelerated

expansion for 0 ≤ m < 2. The following references help readers familiarise themselves

with the wide variety of studies on late-time cosmic acceleration using various quintessence

potentials [79–82].

� Caldwell [83] proposed the phantom field model of DE to explain the late-time cosmic

acceleration. In this scenario, the kinetic term exhibits a negative signature. As a result of



Chapter 1. Introduction and Theoretical Background 22

its negative kinetic energy, a phantom field accelerates the expansion of the Universe to an

infinite size in a finite amount of time. Big Rip depicts a future in which both the actual

volume and expansion rate are infinite. The scalar field models in which the evolution

of the EoS parameter resembles that of the phantom field are known as quintom models

[84, 85].

� The K-essence scalar field model, also known as the K-inflation [86–88], describes an

inflationary model of the early Universe. In contrast to the quintessence models, in which

the potential energy term causes an accelerated expansion, the K-essence scalar field

models have a dominant kinetic contribution to the energy density, causing the late-time

acceleration of the Universe.

� Another class of theories that modify Einstein’s GR provides an alternative explanation

for the occurrence of late-time cosmic acceleration. Without relying on a DE component, a

wide variety of modified gravity theories are now available in the literature that gives rise

to the rapid expansion of the Universe [89, 90]. Among these extended theories are f(R)

gravity [91–97], scalar-tensor theories [98–103], f(T ) gravity [41, 104–108], f(Q) gravity

[51, 109–113], and a few other extended theories [26, 54, 114–116]. Let us discuss some

popular theories of modified gravity in the next section.

1.6 Modified Theories of Gravity

Numerous modified theories of gravity extending beyond the standard GR model have been

proposed to build a more fundamental framework for explaining dark matter and dark energy

and resolving the current observational and theoretical contradictions. MG provides a suitable

unification of primordial inflation and cosmic acceleration. The alternative approach to the

theory of GR could prove extremely useful for unifying gravity with the theory of quantum

mechanics and other fundamental natural interactions.

The Einstein-Hilbert action can be naturally generalized within the framework of Riemannian

geometry by substituting the Ricci scalar R with any arbitrary function f(R). This results in

the f(R) modified theory of gravity. There are two approaches to f(R) gravity: the metric

formulation, in which the metric is viewed as the only dynamical variable, and the Palatini

formulation, in which the connection is considered a fundamental variable together with the

metric tensor. Detailed discussions of f(R) gravity can be found in [23, 93, 117, 118]. The most

glaring disadvantage of the f(R) gravity theory is that the scalar field in the Palatini formulation

is not dynamic. This implies that no additional degrees of freedom can be introduced, resulting

in the existence of physically impossible infinite tidal forces.
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1.6.1 f(R) Gravity and Its Extensions

One can generalize the Einstein-Hilbert action by substituting the Ricci scalar R with the generic

function f(R) as

S =
1

2κ

∫
f(R)

√−gd4x+

∫
Lm
√−gd4x. (1.52)

It is also immediate that GR is recovered at f(R) = R. To obtain the field equations of f(R)

gravity, we take into account the variation of action (1.52) with respect to the metric tensor,

which yields

f ′(R)Rµν −
f(R)

2
gµν − (∇µ∇ν − gµν�) f ′(R) = 8πG Tµν , (1.53)

where � = ∇µ∇µ is the D’Alembert operator, f ′(R) = df(R)
dR , and Tµν is the stress-energy-

momentum tensor defined in (1.15). Models of dark energy based on f(R) theories have

been intensively studied as the simplest modified gravity scenario to account for the late time

acceleration. The model with f(R) = R + βR2 (β > 0) can cause the Universe to expand at

a faster rate due to the presence of R2 term. This was the first inflation model proposed by

Starobinsky in 1980 [119]. Another model with f(R) = R − β
Rn , (β > 0, n > 0) was proposed

for dark energy in the metric formulation [57, 120]. However, it was demonstrated that this

model suffers from matter instability [121, 122] and problems satisfying local gravity constraints

[123, 124]. It lacks a conventional matter-dominated era due to a strong coupling between dark

energy and dark matter. These results demonstrate how challenging it is to construct reliable

models of dark energy.

Henceforth, the f(R) function should meet the following requirements [24, 25]

� To avoid ghost states, f(R) > 0, for R ≥ R0, where R0 is the present value of Ricci scalar.

� To avoid the existence of a scalar degree of freedom with negative mass, i.e. tachyons, we

should have fRR > 0, for R ≥ R0.

� f(R) → R − 2Λ, for R ≥ R0. This condition is needed for the presence of a matter-

dominated era and for agreement with the local gravity constraints.

� The condition for stability and late de-sitter limit of the Universe is given by 0 < RfRR
fR

< 1.

An intriguing extension of gravity is incorporating a non-minimal connection of geometry and

matter into the action via the arbitrary function of scalar curvature and Lagrangian density of

matter, i.e. f(R,Lm) gravity or f(R, T ) gravity, where T is the trace of the energy-momentum

tensor. Another exciting feature of this theory is that the field equations of f(R, T ) gravity

reduce to those of f(R) gravity when the energy-momentum tensor is assumed to be traceless,

or T = 0.
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The action in f(R, T ) gravity is of the form [26]

S =
1

2κ

∫
f(R, T ) d4x

√−g +

∫
Lm d

4x
√−g. (1.54)

By varying the action (1.54) with respect to metric tensor, the gravitational field equations of

f(R, T ) gravity is obtained as

fR(R, T )Rµν−
1

2
gµνf(R, T )+(gµν�−∇µ∇ν) fR(R, T ) = 8πG Tµν−fT (R, T )Tµν−fT (R, T )Θµν ,

(1.55)

where Θµν = gσλ δTσλδgµν , fR(R, T ) = df(R,T )
dR , and fT (R, T ) = df(R,T )

dT . In addition, f(R, T )

cosmology has been the subject of substantial research such as the dust fluid is shown to

reproduce ΛCDM, phantom, non-phantom era, Chaplygin gas and scalar field reconstruction,

energy conditions, and so on [31, 32, 125].

One can also write the covariant derivative of equation (1.54) as

∇µTµν =
fT (R, T )

8πG− fT (R,T )

[
(Tµν + Θµν)∇µln fT (R, T ) +∇µΘµν −

1

2
gµν∇µT

]
. (1.56)

This demonstrates that the energy-momentum tensor is not conserved in the f(R, T ) theory.

Due to matter-energy coupling, a non-zero value of the covariant divergence of the stress-energy-

momentum tensor reflects an additional acceleration that causes massive test particles to follow

a non-geodesic motion [126].

1.6.2 Geometrical Representation

1.6.2.1 Geometrical Meaning of Curvature

We introduce the curvature tensor by considering the parallel displacement of a vector along two

distinct paths. Let us consider a parallelogram ABCD with infinitesimally small adjacent sides

AB = dxµ and AD = δxµ. Consider a contravariant vector V µ|A defined at point A which is

parallelly transported as: first, displace vector V µ|A parallelly from point A to B as V µ|B. Then,

proceed to displace vector V µ|B parallelly from point B to C, resulting in the vector V µ|CB.

Secondly, displace vector V µ|A parallelly from point A to D as V µ|D. Then, proceed to displace

vector V µ|D parallelly from point D to C, resulting in the vector V µ|CD. Now, we can write the

vector V µ|B obtained by parallel displacement of V µ|A

V µ|B = V µ|A + dV µ|A, where dV µ|A = −Γµνλ|A V ν |A dxλ. (1.57)
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Again, the same vector is parallelly displaced from B to C as

V µ|CB = V µ|B + δV µ|B = V µ|B − Γµhk|B V h|B δxk. (1.58)

The connection or the Christoffel symbol depends on the metric tensor, which is a function of

coordinates. Hence, for a small displacement, we get

Γµhk|B = Γµhk|A + Γµhk|A,m dxm, where Γµhk|A,m =
∂

∂xm
Γµhk

∣∣∣∣
A

. (1.59)

Substituting equations (1.59) and (1.57) in (1.58), we have the following

V µ|CB = V µ|A − Γµνλ|A V ν |A dxλ −
[
Γµhk|A + Γµhk|A,m dxm

] [
V h|A − Γhνλ|A V ν |A dxλ

]
δxk,

= V µ − Γµνλ V
ν dxλ − Γµhk V

h δxk + Γµhk ΓhνλV
νdxλδxk − Γµhk,mV

hdxmδxk. (1.60)

Here, we ignore the higher-order derivatives. Similarly, one can obtain V µ|CD by interchanging

dxµ by δxµ, that is

V µ|CD = V µ − Γµνλ V
ν δxλ − Γµhk V

h dxk + Γµhk ΓhνλV
νδxλdxk − Γµhk,mV

hδxmdxk. (1.61)

We now subtract equation (1.60) from (1.61) to obtain

V µ|CD − V µ|CB = Γµhk,mV
hdxmδxk −Γµhk,mV

hδxmdxk + Γµhk ΓhνλV
νδxλdxk −Γµhk ΓhνλV

νdxλδxk.

(1.62)

Next, replace h by ν and m by λ in the first two terms of the equation (1.62) on the right-hand

side and interchange λ by k in the second and third terms. Hence, we obtain

V µ|CD − V µ|CB = RµνλkV
νdxkδxλ, (1.63)

where

Rµνλk = Γµνk,λ − Γµνλ,k + Γµhλ Γhνk − Γµhk Γhνλ. (1.64)

It could be deduced that in a non-Euclidean space, when a tensor is parallelly shifted along a

closed curve till returning to the initial point, the resultant vector may not necessarily be the

same as the original vector.

1.6.2.2 Geometrical Meaning of Torsion

Let us have a look at a simple example to see how the geometry of torsion works [128]. Consider

the curves C : yµ = yµ(λ) and C̃ : ỹµ = ỹµ(λ). The associated tangent vectors are

uµ =
dyµ

dλ
, and ũµ =

dỹµ

dλ
. (1.65)
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Assume that dỹµ represent a displacement of uβ along C̃ and we get u′β as

u′β = uβ + (∂µu
β)dỹµ, (1.66)

but since uβ is parallel transported along C̃, then

dỹµ

dλ
∇̃µuβ = 0 =

dỹµ

dλ
∂µu

β + Γ̃βνµ
dỹµ

dλ
uµ,

which means

∂µu
βdỹµ = −Γ̃βνµu

ν ũµdλ, (1.67)

Henceforth, (1.66) becomes

u′β = uβ − Γ̃βνµu
ν ũµdλ. (1.68)

Similarly, for a displacement dxµ of ũβ along C, we obtain

ũ′β = ũβ − Γ̃βνµũ
µuνdλ, (1.69)

and

(ũβ + u′β)− (uβ + ũ′β) = −T βµν ũµuνdλ. (1.70)

It is now apparent that the vectors (ũβ + u′β) and (uβ + ũ′β) are not identical in the presence

of torsion, which rules out the existence of the infinitesimal parallelogram. The latter can be

expressed as

Ṽ β = −T βµν ũµuν , (1.71)

where Ṽ βdλ is the deviation vector, indicating how much the parallelogram has been broken.

Hence, the presence of torsion cracks parallelograms into pentagons.

1.6.2.3 Geometrical Meaning of Non-Metricity

Let us have a look at the geometry of non-metricity. Consider two vectors uµ and vµ on a

differential manifold with a metric and connection. We define an inner product of these vectors

as u.v = uµvνgµν and parallel transport both the vectors along a curve C : xµ = xµ(λ), we obtain

∇̃λ(u.v) =
dxα

dλ

(
∇̃αuµ

)
vµ +

dxα

dλ

(
∇̃αvν

)
uν +

dxα

dλ

(
∇̃αgµν

)
uµvν . (1.72)

The condition of parallel transport of uµ and vµ results in

dxα

dλ

(
∇̃αuµ

)
= 0, and

dxα

dλ

(
∇̃αvµ

)
, (1.73)
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and hence

∇̃λ(u.v) = Qαµν
dxα

dλ
uµvν . (1.74)

This demonstrates that parallel transporting two vectors around a curve changes the inner

product. Equalizing the two vectors requires

∇̃λ(|u|2) = Qαµν
dxα

dλ
uµuν , (1.75)

which shows how the length of the vector’s magnitude changes when we parallel transport it

along a given curve. Henceforth, the length of a vector changes when being transported in

parallel in a space with non-metricity.

Note: The most common combinations of three geometries are defined as

� The combination Rµνσλ 6= 0, T βµν = 0, Qβµν = 0 with a Levi-Civita connection is known

as the GR spacetime.

� The combination Rµνσλ ≡ 0, T βµν 6= 0, Qβµν 6= 0 gives the Teleparallelism.

� The combination Rµνσλ ≡ 0, T βµν 6= 0, Qβµν ≡ 0 gives the Torsional Teleparallelism.

� The combination Rµνσλ ≡ 0, T βµν ≡ 0, Qβµν 6= 0 shows the non-metricity Teleparallelism.

� The combination Rµνσλ ≡ 0, T βµν ≡ 0, Qβµν ≡ 0 results in the Minkowski space. In this

case, the connection is fixed up to diffeomorphism and does not carry any gravitational

degrees of freedom.

The best strategy to further relax the Riemannian constraints is now evident from the above

discussion. In other words, a generic affine connection that allows for torsion and non-metricity

is required to reach the realm of non-Riemannian geometry. The generic affine connection

encompasses torsion and non-metricity degrees of freedom with ease. The affine connection can

be written as [127]

Γ̃σµν = Γσµν +
1

2
gλσ (−Qµνλ −Qνλµ +Qλµν) +

1

2
gλσ (Tνλµ + Tµλν − Tλµν) , (1.76)

where Γσµν = 1
2g
σλ (gλν,µ + gµλ,ν − gµν,λ) represents the usual Levi-Civita connection and the

terms associated with the previous combination are known as Disformation and Contortion

tensors given by

Lλµν =
1

2
gλσ (−Qµνλ −Qνλµ +Qλµν) , (1.77)

Kλ
µν =

1

2
gλσ (Tνλµ + Tµλν − Tλµν) , (1.78)
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with T σµν = Γ̃σνµ − Γ̃σµν and Qσµν = ∇σgµν . Let us discuss more about torsion teleparallel and

non-metricity teleparallel theories.

1.6.3 Teleparallel Equivalent to GR and its Extensions

GR expresses gravitation via the metric tensor and the torsion-free Levi-Civita connection.

Curvature is thus displayed through the connection rather than the metric itself. Teleparallel

gravity (TG) replaces the standard gravity connection with the Weitzenböck connection, which

is curvature-less and satisfies the metricity connection (∇αgµν = 0) [36]. In TG, the metric is a

derived quantity that emerges from the tetrad7. The curvature-less Weitzenöck connection in

TG is defined by

Γ̃λµν = eλa∂νe
a
µ = −eaν∂νeλa. (1.79)

The action for TEGR [129, 130] is written as

S = − 1

2κ

∫
T
√−g d4x+

∫
Lm
√−g d4x, (1.80)

where T is the torsion scalar defined as T = S µν
a T aµν . For this purpose, we introduce the

torsion and contortion tensor as follows

T λµν = Γ̃λνµ − Γ̃λµν = eλa
(
∂µe

a
ν − ∂νeaµ

)
, (1.81)

Kλ
µν = Γ̃λνµ − Γλµν =

1

2

(
T λ
µ ν

+ T λ
ν µ − T λµν

)
, (1.82)

where Γλµν is the Levi-Civita connection. Subsequently, the superpotential tensor is obtained

using equations (1.81) and (1.82), that is

S µν
a = Kµν

a − e νa T λµλ + e µa T
λν
λ . (1.83)

Now, we can extend TEGR by taking an arbitrary function of torsion scalar T defined by f(T )

S =
1

2κ

∫
f(T )

√−g d4x+

∫
Lm
√−g d4x. (1.84)

Varying the action (1.84) with respect to tetrad, one gets the following field equations for f(T )

gravity

e−1∂µ

(
e eλaS

µν
λ

)
fT + eλaS

µν
λ ∂µ(T )fTT − fT eλaT λµρS ρµ

λ +
1

4
eνaf(T ) = 4πGeλaΘ

ν
λ , (1.85)

7At each point of the manifold, the vierbein fields/tetrad form an orthonormal basis for the tangent
space, which is presented by the line element of the four-dimensional Minkowski spacetime, i.e. eµeν =
ηµν = diag(−1,+1,+1,+1). The tetrads can be used to transform between inertial and non-inertial indices as
gµν = eaµe

b
νηab with eaµe

µ
b = δab
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where fT = df
dT , fTT = d2f

dT 2 , and Θ ν
λ denotes the energy-momentum tensor of the matter sector.

Since the torsion scalar T is only dependent on the first-order derivatives of the tetrads, this

theory is of the second order. One can review f(T ) gravity in [37, 131–133].

In addition to an arbitrary function of the torsion scalar, f(T ) gravity can be extended by

permitting an arbitrary function of both torsion T and energy-momentum tensor T , such as

f(T, T ) gravity. The action for f(T, T ) gravity is given by [134]

S =
1

2κ

∫
[T + f(T, T )]

√−g d4x+

∫
Lm
√−g d4x. (1.86)

Varying the action with respect to tetrad yields the field equations given by

(1 + fT )
[
e−1∂µ

(
e eλaS

αµ
λ

)
− eλaTµνλS να

µ

]
+ (fTT∂µT + fTT ∂µT ) eλaS

αµ
λ + eαa

(
f + T

4

)

− fT

eλaemT α

λ + peαa
2

 = 4πGeλa
em
T

α

λ , (1.87)

where fT = ∂f
∂T and fTT = ∂2f

∂T ∂T .

1.6.4 Symmetric Teleparallel Equivalent to GR and its Extensions

This section will examine the theory of symmetric teleparallel equivalent to general relativity

(STEGR). GR is a metric theory in which the covariant derivative of the metric is zero. In the

meantime, non-metricity theories are derived from the non-metricity tensor, which is defined

below

Qαµν = ∇αgµν . (1.88)

If Qαµν(Γ, g) = 0, we get a metric-compatible geometry. In non-metric theories, non-metricity

measures the amount by which the length of vectors varies when they are parallel transported.

Assuming the relationship in the equation (1.88) gives rise to non-metric theories such as

symmetric teleparallelism in which the non-metricity manifests as a flat torsion-free geometry. As

the equation (1.77) demonstrates, we can derive the disformation tensor from the non-metricity

tensor, which measures the Levi-Civita connection’s deviation from the symmetric part of the

entire connection.

It is useful to introduce the non-metricity conjugate, which is defined as

Pαµν = −1

2
Lαµν +

1

4
Qα − Q̃αµνgµν −

1

4
δα(µQν), (1.89)
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where Qα = gµνQαµν and Q̃α = gµνQµαν are the two independent traces. Henceforth, one can

define the non-metricity scalar as Q = −QαµνPαµν .

The action for STEGR is

S = − 1

2κ

∫
Q
√−g d4x+

∫
Lm
√−g d4x. (1.90)

It is important to note that the difference between the invariant Q and the Ricci scalar is a

boundary term. The theory described by Q, in which there is no boundary term, is a type of

special STG analogous to an enhanced version of GR. The connection between tangent space and

spacetime is entirely trivial and represents a much more straightforward geometric interpretation

of gravity; the origins of tangent space and spacetime coincide. This theory is known as coincident

GR, i.e., STEGR [42].

We can also extend STEGR by considering an action defined by an arbitrary function f(Q) as

S = − 1

2κ

∫
f(Q)

√−g d4x+

∫
Lm
√−g d4x. (1.91)

Motivating a specific choice of non-metricity scalar and the preceding action is the replication

of GR for the choice f(Q) = Q. The variational principle with respect to gµν yields the field

equations

2√−g∇α
(√−gfQPαµν)+

1

2
gµνf + fQ

(
PµαβQ

αβ
ν − 2QαβµP

αβ
ν

)
= 8πG Tµν , (1.92)

where fQ = df
dQ .

Various geometrical and physical aspects of STEGR and f(Q) gravity have been investigated in

a number of studies [109, 110, 113].

Another specific modified gravity that yields a general class of non-linear gravity model having

the action as [54]

S =
1

2κ

∫
f(Q, T )

√−g d4x+

∫
Lm
√−g d4x, (1.93)

where f(Q, T ) is a general function of Q and the trace of energy-momentum tensor T . In

the presence of geometry-matter coupling, the general field equation describing gravitational

phenomena is obtained by varying the action with respect to the metric tensor

− 2√−g∇α
(√−gfQPαµν)− 1

2
gµνf + fT (Tµν + Θµν)− fQ

(
PµαβQ

αβ
ν − 2QαβµP

αβ
ν

)
= 8πG Tµν .

(1.94)

Broadly speaking, there are two distinct phases. Firstly, it is essential to establish a comprehensive

understanding of the model. Ideally, this model should exhibit a high degree of simplicity.

Furthermore, once the model has been determined, we utilize our data to quantify the values
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of the parameters. The forthcoming section provides an overview of diverse observational

methodologies.

1.7 Cosmological Observations

This section will introduce fundamental statistical concepts. In cosmological reconstruction,

the best-fit parameter values can be derived through either statistical methods: minimizing

the function through optimization or maximizing the likelihood function via marginalization.

An alternative is to conduct a Markov Chain Monte Carlo (MCMC) analysis, which uses a

marginalization of the posterior probability distribution over the parameter space to derive

constraints on the parameter values.

1.7.1 Basics of Statistics

1.7.1.1 χ2 Minimization

Based on observational data, the χ2 statistic has been extensively used to estimate the parameters

of theoretical models. If we assume an observational data (zi, fi) with a standard deviation σi,

an experimentally measured value fiobs, and a theoretically anticipated value fith, then the χ2 is

defined as

χ2 =
∑
i

[fiobs − fith({θ})]2
σ2
i

, (1.95)

where {θ} denotes the set of model parameters.

If the fi’s are related to each other, then the χ2 function can be defined as

χ2 =
∑
i,j

[fiobs − fith({θ})]Tr (Cov−1)ij
[
fjobs − fjth({θ})

]
, (1.96)

where Tr represents the transpose of the matrix, (Cov−1)ij is a covariance matrix needed to

characterize the errors of the data.

To acquire the parameters of the best-fitting model, we must minimize the χ2 function. We

define another quantity, which is the reduced χ2
red given by the expression

χ2
red =

χ2

d
, (1.97)

where d signifies the degrees of freedom. The necessary condition that needs to be checked for

presenting any over-fitting is χ2
red < 1. Moreover, one can determine ∆χ2 = χ2 − χ2

min for 1σ

(68%), 2σ (95%), and 3σ (99%) confidence level ranges of a specific model.
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1.7.1.2 Maximum Likelihood Analysis

According to Baye’s theorem, the posterior probability distribution of parameters {θ} is obtained

as

P ({θ}/D, I) =
P ({θ}/I)P (D/{θ}, I)

P (D/I)
, (1.98)

where I represents the prior information and D is the observational data. P ({θ}/I) gives the

prior probabilities and P (D/{θ}, I) is the probability of obtaining D if {θ} is given referenced

to I, also known as the likelihood L. Further, P (D/I) is the global likelihood which serves as a

normalization factor

P (D/I) =

∫
θ1

.....

∫
θn

P ({θ}/I) P (D/{θ}, I) dθ1....dθn, (1.99)

such that ∫
θ1

.....

∫
θn

P ({θ}/D, I) dθ1....dθn = 1. (1.100)

The likelihood L is related to χ2 function defined as

L ({θ}) = exp

(
−χ

2

2

)
. (1.101)

Thus, one can note that the minimized value of χ2 corresponds to the maximized likelihood

function L. Using the MCMC approach, we sample the posterior probability distribution

throughout the parameter space to determine the best-fit parameter values and associated error

uncertainties. Using the Metropolis-Hastings (MH) algorithm provides a more effective means

of exploring parameter space through random walks from one set of parameter values to the

next. The MH rule assesses whether or not a given set of random walks should be accepted

by comparing the likelihood of the new and old sets of parameter values. When a fit to the

data is optimal, the algorithm is more inclined towards the regions with the highest likelihood.

The shape of L around the maximum is then explored as it wanders around that area of the

parameter space. This investigation maps out the posterior probability of each parameter value

by maximizing the marginal likelihood function, also known as the integrated likelihood, which

results in the marginalized constraints in the parameter space. As a result, the MCMC analysis is

comparable to the minimization, where the parameters are marginalized rather than optimized.

1.7.2 Observational data

Cosmological observations have been crucial in understanding the history of the expansion of the

Universe. We shall briefly review several cosmological findings in the search for cosmic evolution.
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1.7.2.1 Hubble Measurements

The H(z) dataset provides strong evidence for the fine structure of the expansion history of the

Universe. Direct measurements of H(z) at different redshifts, based on the ages of the most

massive and passively evolving galaxies, generate another standard probe in cosmology. Notably,

H(z) measurements are derived from two distinct techniques: galaxy differential age (also known

as cosmic chronometer) and radial baryon acoustic oscillations (BAO) size methodologies [143].

The authors of [135, 136] present 13 H(z) values derived from the BC03 and MaStro SPS models

[137], which we will refer to as the CCB compilation and the CCM compilation, respectively.

The authors of [138, 139] provide only 5 H(z) values obtained using the BC03 model; these values

have been added to the CCB compilation. In the case of [140], the combined MaStro/BC03

values for 2 H(z) measurements are available. In [141], an alternative SPS, distinct from the

MaStro and BC03 models, is presumed to consist of 11 H(z) values and is subsequently referred

to as the CCH compilation and the other 26 points assessed using BAO [142].

1.7.2.2 Type Ia Supernovae

When a white dwarf star explodes, it causes a tremendous explosion in a large-scale structure

known as a Type Ia Supernovae (SNeIa). An explosion occurs when a white dwarf star approaches

the Chandrasekhar mass limit after gaining mass from a companion star. Therefore, SNeIa can

be used as a standard candle to measure the luminosity distance. In 1998, Riess et al. [14]

discovered the accelerated expansion of the Universe using 16 distant and 34 nearby SNeIa

from the Hubble telescope observations. In 1999, Perlmutter et al. [15] confirmed the cosmic

acceleration by analyzing 18 nearby supernovae (SNe) from the Calan-Tololo sample and 42-

high-redshift SNe. Many research groups have focused on this field, such as the Sloan Digital

Sky Survey (SDSS) SNe Survey [144], the Lick Observatory Supernova Search (LOSS) [145],

the Carnegie Supernova Project (CSP) [146], the Nearby Supernova Factory (NSF) [147], the

Supernova Legacy Survey (SNLS) [148], and the Higher-Z Team [149], etc. Moreover, recently the

Union 2.1 SNeIa dataset, consisting of 580 SNeIa was released [150]. The Pantheon compilation

is one of the most up-to-date compilations of data on type Ia supernovae (SNeIa), which contains

1048 points in the redshift range 0.01 < z < 2.26 [151].

1.7.2.3 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations refer to the aggregation or overdensity of baryonic matter at

specific length scales caused by acoustic waves propagating in the early universe [152]. Similar

to SNeIa, BAO provides a standard candle for length sales in cosmology, which enables us to

investigate the expansion history of the Universe. On the matter power spectrum, BAO leaves
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a distinctive imprint. Consequently, astronomical surveys of galaxy clusters allow for their

measurement at low redshifts (z < 1) [153]. In addition, BAO scales can also be measured

through reionization emission, which provides extensive information regarding the early Universe

at high redshifts (1.5 ≤ z ≤ 20) [154]. The Hubble parameter and angular diameter distance

can be calculated using the apparent magnitude of the BAO as determined by astronomical

observations. Numerous investigations have been conducted for BAO measurements, including

the Two-degree-Field Galaxy Redshift Survey (2dFGRS) [155], the Sloan Digital Sky Survey

(SDSS) [156], etc. SDSS is the most successful survey for BAO observation, releasing its eighth

data continuously in 2011 [157].

The following chapters employ the modified gravity theories we have been discussing to some

specific challenges with the above observational data.



Chapter 2

Effective Equation of State in

Modified Gravity and Observational

Constraints

The current chapter presents the effective equation of state (EoS) in modified f(R, T ) gravity.

The detailed study of the work is outlined as follows:

� We consider an effective equation of state with bulk viscosity to study the cosmological

evolution of the Universe.

� The present study aims to derive the Hubble parameter and deceleration parameter in

terms of redshift z to explain the late time accelerating phase. In order to distinguish the

present model from other dark energy models, we also present the statefinder and Om(z)

diagnostics analyses.

� We eventually provide constraints on the cosmological parameters of our model using 580

points of Type Ia Supernovae (Union 2.1) and the updated version of 57 Hubble datasets.

2.1 Introduction

Viscosity: The ΛCDM model has received significant attention since it can explain most

observations despite its inability to describe the accurate physics of DM and DE. Although

*The work in this chapter is covered by the following publication:
Effective equation of state in modified gravity and observational constraints, Classical and Quantum Gravity, 37,
205022 (2020).
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the ΛCDM model agrees with a wide range of experimental data, there exists a substantial

phenomenological gap. The two primary issues are the coincidence problem and fine-tuning

problem. These issues have prompted the development of numerous dark energy models, including

quintessence, perfect fluid models, and scalar fields. In addition, many authors have asserted that

cosmic viscosity regulates late time accelerated expansion. The viscosity theories in cosmology

are significant in relation to the early Universe when the temperature was approximately 104K

(during the neutrino split). In the cosmic fluid, there are two different viscosity coefficients:

bulk viscosity and shear viscosity. Due to the accepted spatial isotropy of the Universe, such as

the Robertson-Walker metric descriptions, we omit shear viscosity. By contemplating a bulk

viscous fluid, the issue of identifying a viable mechanism for the origin of bulk viscosity in an

expanding Universe is addressed. Physically, bulk viscosity is viewed as an internal friction

resulting from various cooling rates in an expanding matter. By converting the kinetic energy

of the particles into heat, its dissipation reduces the effective pressure in an expanding fluid

[159]. The existence of viscosity parameters in a fluid is fundamentally attributable to the

thermodynamic irreversibility of the motion. If the deviation from reversibility is small, it can

be assumed that the momentum shift between various parts of the fluid is linearly dependent on

the velocity derivatives. This condition corresponds to the paradigm of constant viscosity. When

the viscosity is proportional to the Hubble parameter, on the other hand, the momentum shift

entails second-order quantities in the deviation from reversibility, resulting in more intriguing

physical outcomes. Consequently, the correct selection of their coefficients may result in crossing

the phantom divide line [160]. Other studies indicate that the bulk viscosity is sufficient to drive

the cosmic fluid from the quintessence to the phantom region. Sharif and Yousaf [161] have also

investigated stability regions for a non-static restricted class of axially symmetric geometries.

Their work includes shearing viscous fluid that collapses non-adiabatically.

Viscosity in modified gravity: If we consider the problem of cosmic adaptation, i.e., the

average stage of low redshift, one can justify the accelerating expansion of the Universe by

modifying Einstein equations geometrically. Bulk viscosity can also produce acceleration without

a scalar field or cosmological constant if connected to inflation. The bulk viscosity contributes

to the pressure term and exerts an additional pressure that accelerates the expansion of the

Universe [162]. Most arguments for standard gravity presume that the fluid of the Universe is

perfect and non-viscous. From the standpoint of hydrodynamics, the two viscosity coefficients

discussed above enter into play, which indicate a first-order deviation from thermal equilibrium.

Thus, this supports Eckart’s approach [158] from 1940 due to its non-causal behavior. Therefore,

taking second-order deviations from a thermal equilibrium leads to a causal theory respecting

special relativity. Now, it is also essential to consider more realistic models, which process due

to complex viscosity, for example, research in [163] studied the role of bulk viscosity in the

evolution of the Universe using a modified f(R, T ) gravity model. In addition, many authors

have investigated the concept of bulk viscous fluid to explain the accelerating expansion of the
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Universe [165–167]. Davood [168] also investigated the role of bulk viscosity in f(T ) gravity.

Eckart originally proposed the form of cosmic pressure p = (γ− 1)ρ− 3ζH, where γ parametrizes

the EoS parameter [169]. However, Eckart’s theory undergoes some anomalies. One of those

is the instability of the equilibrium states [170]. Also, dissipative perturbations propagate at

infinite velocities [171]. In 1979, Israel and Stewart [172] developed a more general theory that

was causal and stable. The first-order limit of Stewart’s viewpoint can also be used to develop

the Eckart theory [173]. Fisher and Carlson [32] examined the form f(R, T ) = f1(R) + f2(T ), in

which they state that f(R, T ) yields a new physics and limits could be placed on the cross-terms

by comparing them to observations. Harko and Moreas [174] revised their work to investigate

observational constraints on the function f2(T ). The impact of viscosity on the finite-time future

singularities in f(T ) gravity has been studied by Setare and Houndjo [175]. Sharif and Rani [176]

have also studied dark energy viscosity in f(T ) gravity. Viscosity in f(R) gravity is discussed by

Brevik [177].

The plan of this chapter is to study the FLRW model with bulk viscosity effects in the modified

f(R, T ) gravity theory with a general effective equation of state p = (γ − 1)ρ + p0 + ωHH +

ωH2H
2 + ωdHḢ. This chapter is divided into different sections. In section 2.2, we introduce the

field equations with bulk viscosity. Then, we describe the general solution and the behavior of

various cosmological parameters in section 2.3. In section 2.4, we conduct numerous tests to

validate the model, which includes the energy conditions, statefinder, and Om(z) diagnostics. To

study all the cosmological parameters, we obtain the best-fit values of model parameters using

the observational datasets H(z), SNeIa, and BAO in section 2.5. The final section 2.6 presents

the conclusion.

2.2 Field Equations

Let us consider a FLRW metric in the flat space geometry (k = 0) by

ds2 = dt2 − a2(t)[dr2 + r2dθ2 + r2 sin2 θdφ2], (2.1)

with the four-velocity uµ = (1, 0, 0, 0) and the cosmic fluid along with a bulk viscosity ζ. So, one

can rewrite the energy-momentum tensor for a viscous fluid as follows

Tµν = ρ uµuν − p hµν , (2.2)

where hµν = gµν + uµuν and the effective pressure is p = p− 3ζ H. If we choose the Lagrangian

density as Lm = −p, then the tensor Θµν can be written as

Θµν = −2 Tµν − p gµν . (2.3)
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Now, remembering the field equation (1.55) of f(R, T ), we shall find the field equation for the

bulk viscous fluid using equations (2.2), (2.3) and the functional form f(R, T ) = R + 2f(T )

(assuming κ = 1) as

Rµν −
1

2
Rgµν = Tµν + 2 f ′(T ) Tµν + (2 p f ′(T ) + f(T ))gµν . (2.4)

For the particular choice of the function f(T ) = ηT , η as a constant and R = 6(2H2 + Ḣ), one

can obtain the following Friedmann equations

3H2 = ρ+ 2η (ρ+ p) + η T , (2.5)

and

2Ḣ + 3H2 = −p+ η T , (2.6)

where T = ρ− 3 p. It can be noted that the field equations reduce to general relativity for η = 0

(η is the coupling constant for modified gravity). Finally, we combine equations (2.5) and (2.6)

to get a single equation as follows

2Ḣ + (1 + 2η)(p+ ρ)− 3(1 + 2η)ζH = 0. (2.7)

2.3 General Solution

The equations (2.5) and (2.6) contain four unknown parameters, namely ρ, p, ζ & H. To obtain

an exact solution from the equations, we need two more physically viable equations. As stated

in the introduction, we will consider the subsequent EoS (as given in the explicit form in [169])

p = (γ − 1)ρ+ p0 + ωHH + ωH2H
2 + ωdHḢ, (2.8)

where p0, ωH , ωH2, ωdH are free parameters. In this chapter, we assume that the Universe is

filled with a single fluid described by the above-defined EoS. Next, we shall make use of the

following form of the time-dependent bulk viscosity

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
, (2.9)

to check that this form is effectively equivalent to the form derived by equation (2.8), where

ζ0, ζ1, ζ2 are constants. The justification behind this is as follows

p = p− 3 ζH = p− 3

(
ζ0 + ζ1

ȧ

a
+ ζ2

ä

ȧ

)
H,

= p− 3 ζ0H − 3 ζ1H
2 − 3 ζ2(Ḣ +H2),
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which gives

p = p− 3 ζ0H − 3(ζ1 + ζ2)H2 − 3 ζ2Ḣ. (2.10)

Hence, one can write the corresponding coefficients for the simplicity by

ωH = −3 ζ0,

ωH2 = −3(ζ1 + ζ2),

ωdH = −3 ζ2.

According to the work done in the literature, it is important to mention that the expression for

bulk viscosity ζ = ζ0 + ζ1H indicates that the expansion of scale factor deviates more rapidly

from the expansion rate of a perfect fluid for larger bulk viscosity coefficient. Furthermore, for

ζ = 0 and ζ = ζ1H, the scale factor exhibits a power-law dependence on cosmic time, and the

values of q remain constant [163].

The motivation behind investigating the general form of bulk viscosity emerges from the un-

derstanding in fluid mechanics that the transport and viscosity phenomenon are intricately

connected to the concept of velocity. This velocity, in turn, is associated with the Hubble

parameter and acceleration. Given the lack of precise knowledge regarding the specific nature of

viscosity, we opt to examine a parameterized bulk viscosity that can be expressed as a linear

combination of three distinct factors. The initial term in the equation represents a constant

value denoted by ζ0. The second term is directly proportional to the Hubble parameter, which

characterizes the relationship between bulk viscosity and velocity. Lastly, the third term is

proportional to ä
ȧ , representing the impact of acceleration on bulk viscosity.

Combining equations (2.5), (2.8), and (2.9), we obtain the explicit form of energy density

ρ =
η p0 + 2 η ωHH + (2 η ωH2 + 3)H2 + 2 η ωdHḢ

1 + 4 η − η γ . (2.11)

Subsequently, the bulk viscous pressure using equation (2.6) is obtained as

p =
η2 p0 + 2 η2ωHH + (2 η2ωH2 − 9 η − 3 + 3 η γ)H2 + (2 η2ωdH − 2(1 + 4 η − η γ))Ḣ

(1 + 4 η − η γ)(1 + 3 η)
. (2.12)

Finally, we get the following differential equation using equations (2.7), (2.8), (2.12). That is

[
2 +

2(1 + 2η)ωdH(1 + 4η)

1 + 4η − ηγ

]
Ḣ+

[
2(1 + 2η)ωH(1 + 4η)

1 + 4η − ηγ

]
H+

[
(1 + 2η)(2ωH2(1 + 4η) + 3γ)

1 + 4η − ηγ

]
H2+[

(1 + 2η)p0(1 + 4η)

1 + 4η − ηγ

]
= 0. (2.13)

We notice that the above equation is highly non-linear, so without loss of generality, we assume

p0 = 0. As a result, the equation becomes simple and the time evolution of the Hubble parameter
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H can be expressed as

H =
k1

k1ek1t − k2
, (2.14)

where k1 =

2(1+2η)ωH(1+4η)
1+4η−ηγ

2 + 2(1+2η)ωdH(1+4η)
1+4η−ηγ

, k2 =

(1+2η)(2ωH2(1+4η)+3γ)
1+4η−ηγ

2 + 2(1+2η)ωdH(1+4η)
1+4η−ηγ

. Using the definition H = ȧ
a , the

scale factor is obtained as

a = k4k
− 1
k2

1 (k1 − k2e
−k1t)

1
k2 , (2.15)

where k4 is the constant of integration.

Next, we make substitutions from the above equation of scale factor to obtain the deceleration

parameter (q = −aä
ȧ2

) given by

q = −1 + k1e
k1t. (2.16)

The solution set for the formulated system is now readily accessible. The present work aims

to examine the dynamics of different cosmological parameters to understand the evolutionary

trajectory of the Universe better. Our objective is to investigate the numerous phases of the

Universe by imposing constraints on the model parameters, focusing on the transition from a

decelerated phase to an accelerated phase. It is understood that a positive value of the parameter

q is associated with the decelerating phase of the Universe, whereas a negative value signifies its

accelerating behaviour. As a result, we shall present all cosmological parameters by utilizing the

redshift z as a reference, as per the established relation, that is

a(t) =
1

1 + z
, (2.17)

with a0 = a(z = 0) = 1. The Hubble parameter and deceleration parameter are two observable

parameters that can be rewritten in terms of redshift as

H(z) = H0

[
(k4 + k4z)

k2 − 1
]

kk24 − 1
, (2.18)

and

q(z) = −1 + k2
(k4 + k4z)

k2

(k4 + k4z)k2 − 1
. (2.19)

According to a recent study by [178], it has been shown that the present deceleration parameter,

denoted by q0 is estimated to be q0 = −0.51+0.09
−0.01. Moreover, the transition redshift from

deceleration to acceleration is obtained as zt = 0.65+0.19
−0.17 [179]. The transition of the Universe

from a decelerated phase to an accelerated phase at zt ≈ 0.7 has been depicted in several

studies [180–183]. Henceforth, in the current model, we have selected specific values of the free

parameters (k1, k2, k4) in order to ensure that our q0 and zt values are consistent with values

reported in the existing literature. In this discourse, we shall examine a particular model as an

illustration and study the cosmic history of the Universe by employing a set of numerical choices



Chapter 2. Effective Equation of State in Modified Gravity and Observational Constraints 41

k4=-0.43

k4=-0.49

-1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

1.5

z

q

Figure 2.1: Evolution of the deceleration parameter versus redshift z for k2 = 3 and k4 =
−0.43,−0.49.

of the values of these model parameters. To be specific, we assumed two parameters γ and η

according to the works done previously and found the other parameters using the equations of k1,

k2 and k3. Nevertheless, we have taken the values of k2 and k4 that observational datasets have

constrained in the further section. Figure 2.1 illustrates the evolution of q(z) with a suitable

choice of the model parameters. It is observed that the deceleration parameter q undergoes a

transition from positive to negative at zt = 0.84 and zt = 0.62. The corresponding values of

q0, i.e. at present, are found to be with q0 = −0.78 and q0 = −0.68 for two different values of

k4 = −0.43 and k4 = −0.49, respectively. This observation suggests that the Universe exhibits a

transition from early deceleration to the current acceleration in the framework of this model.
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Figure 2.2: Evolution of the density and pressure versus redshift z for η = −0.1, γ = 1.01,
ωH = 4.1, ωH2 = 1.57, ωdH = −0.1 and k4 = −0.43,−0.49.

The behavior of ρ and p̄ from equations (2.11) and (2.12) with respect to redshift z is also

depicted in figure 2.2. The observed behavior suggests that the energy density increases as a
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function of the redshift parameter z, whereas the effective pressure now demonstrates a negative

behavior, implying the Universe is undergoing an accelerated expansion.

The EoS parameter is employed to categorize the different phases of the Universe, distinguishing

between the decelerating and accelerating eras. It assigns numerous epochs into several classifi-

cations as outlined: when ω = 1, it signifies the presence of stiff fluid. If ω = 1/3, the model

depicts a radiation-dominated phase while ω = 0 represents a matter-dominated phase. In the

present accelerated stage of evolution, −1 < ω < 0 indicates the quintessence phase, ω = −1

represents the cosmological constant, i.e., ΛCDM model, and ω < −1 yields the phantom era. In

figure 2.3, the plot displays the EoS parameter versus redshift z, utilising the identical model

parameter values as previously described.

The graph in figure 2.3 shows that as z → −1, ω → −1 in the future. This also illustrates a

transition from positive to negative in due course of evolution. It signifies the earlier decelerating

phase of the Universe with positive pressure, which is favourable to the structure formation.

Subsequently, it indicates the present accelerating phase of the evolution characterized by negative

pressure. It is clear that the present model does not cross the phantom divide line, thereby

ensuring that the model is free from Big Rip singularity. The present values of the EoS parameter

is obtained as ω0 = −0.88 for k4 = −0.43 and ω0 = −0.84 for k4 = −0.49 together with the

stated values of other model parameters. In the following section, we will discuss cosmological

diagnostics and observational datasets.
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Figure 2.3: Evolution of the equation of state versus redshift z for η = −0.1, γ = 1.01,
ωH = 4.1, ωH2 = 1.57, ωdH = −0.1, k4 = −0.43,−0.49.

Next, we present various energy conditions as mentioned in section 1.4.5. The violation of

NEC implies that none of the mentioned ECs are validated. The SEC is currently a subject

of much discussion for the current accelerated expansion of the Universe [184, 185]. SEC must

be violated in cosmological scenarios both during the inflationary expansion and in the current

epoch. The graph of these energy conditions is depicted in figure 2.4. The analysis focused on
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the observation that the NEC and DEC satisfy their conditions, whereas the violation of the

SEC immediately leads to the rapid expansion of the Universe.
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Figure 2.4: Evolution of energy conditions versus redshift z for η = −0.1, γ = 1.01, ωH = 4.1,
ωH2 = 1.57, ωdH = −0.1, k4 = −0.43,−0.49, respectively.

2.4 Tests for validation of the Model

There are some theoretical and observational tests to check the validity of any cosmological

model. In this discussion, we will examine some cosmological tests that might be employed to

authenticate the validity of our derived model.

2.4.1 Statefinder Diagnostic

In order to distinguish our model from a variety of existing dark energy models, it is possible to

introduce a set of parameters known as statefinder pairs [186–188]

r =

...
a

aH3
, (2.20)

s =
r − 1

3(q − 1/2)
, q 6= 1

2
. (2.21)

For the sake of simplicity, we could redefine the statefinder pair {r, s} fully in terms of the

deceleration parameter

r(z) = q(z)(1 + 2q(z)) + q′(z)(1 + z), (2.22)

s(z) =
r(z)− 1

3(q(z)− 1/2)
, q(z) 6= 1

2
. (2.23)
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Figure 2.5: Evolution of r − s and r − q planes for η = −0.1, γ = 1.01, ωH = 4.1, ωH2 = 1.57,
ωdH = −0.1, k4 = −0.43,−0.49.

We will proceed with the construction of the phase plane denoted as r − s and r − q, where

distinct points on the plane represent different states of the Universe, adhering to the following

conditions:

� ΛCDM corresponds to (s = 0, r = 1),

� Chaplygin gas (CG) corresponds to (s < 0, r > 1),

� Standard cold dark matter (SCDM) corresponds to (r = 1, q = 0.5),

� Quintessence corresponds to (s > 0, r < 1).

The analysis focuses on investigating the departure of any dark energy model from the specified

coordinates in the r − s and r − q planes. The plot below depicts statefinder pairs of the model

we have developed. So the present model resembles the ΛCDM model in the future. The r − s
plane trajectories of the model are depicted in figure 2.5. The trajectories in the r − s plane are

confined to the region r > 1, s < 0, akin to the generalized Chaplygin gas model of dark energy

as described in [189]. It is noted that the model will reach ΛCDM and may lie in quintessence

at late times. The present position of the bulk viscous model in the r − s plane corresponds to

{1.04,−0.013} and {1.09,−0.02} for k4 = −0.43 and k4 = −0.49. The present model can also

be differentiated from the holographic dark energy model with event horizon as the infrared

cutoff, in which the r − s evolution starts from a region r ∼ 1, s ∼ 2/3 and terminates at the

ΛCDM point [190]. This observation suggests that the current model exhibits notable differences

when compared to the ΛCDM model. The central solid line within the r − q plane highlights

the trajectory of the ΛCDM Universe, effectively bisecting the plane. The upper region is

representative of the Chaplygin gas model, while the lower area corresponds to the Quintessence
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model. In a similar fashion, the plot on the right in figure 2.5 illustrates the convergence of

our model towards the de-Sitter point (q = −1, r = 1) while also exhibiting deviations from the

SCDM model.

2.4.2 Om(z) Diagnostic

In the following section, we will analyze the Om diagnostic denoted as Om(z). This diagnostic

tool distinguishes the standard ΛCDM model from other dark energy models such as quintessence

and phantom. The study of the Om(z) diagnostic mainly relies on the utilization of first-order

derivatives, as it encompasses the Hubble parameter. In reference with Sahni et al. [186–188],

Om(z) for a flat Universe is defined as

Om(z) =

(
H(z)
H0

)2
− 1

(1 + z)3 − 1
. (2.24)

According to the definition, we obtain Om(z) for our model as

Om(z) =

((k4z+k4)k2−1)
2(

k
k2
4 −1

)2 − 1

(z + 1)3 − 1
. (2.25)

Thus, we have different values of Om(z) for the ΛCDM, phantom and quintessence cosmological

models. The behavior of dark energy may be categorized into three types: quintessence,

phantom, and ΛCDM. The quintessence type, characterized by ω > −1, is associated with

negative curvature. The phantom type, described by ω < −1, corresponds to positive curvature,

and lastly, the Om(z)=ΛCDM is associated with zero curvature.
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Figure 2.6: Evolution of Om(z) versus redshift z for η = −0.1, γ = 1.01, ωH = 4.1, ωH2 = 1.57,
ωdH = −0.1, k4 = −0.43,−0.49.

The authors in [191] have presented a parametrization of Om(z) that allows the examination

of the compatibility or discrepancy between the ΛCDM and observations by using the latest
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and enhanced observations of H(z) and SNeIa. The behavior can be easily seen in figure 2.6,

illustrating that the growth of Om(z) at later stages tends to support the viability of decaying

dark energy models (quintessence dark energy at late time) as discussed in [192].

2.5 Observational Constraints

A variety of observational datasets are currently available, as discussed in the section 1.7.2.

To assess the feasibility of our acquired model, we shall evaluate its performance using these

datasets. Here, we consider 57 points of H(z) data, of which 31 points are derived from the

differential age method and 26 points are from BAO and other methods [142] (given in the

appendix). Secondly, we consider 580 points of type Ia Supernovae corresponding to Union 2.1

compilation dataset [193, 194] (https://supernova.lbl.gov/Union/) to achieve our objective of

determining the best-fit values of the model parameters and comparing them to the ΛCDM

model.

2.5.1 Fitting the Model with H(z) & SNeIa Datasets

First, let us initiate a discussion regarding the Hubble data. The Hubble rate is usually defined

by the following formula

H(z) =
−1

1 + z

dz

dt
. (2.26)

The ratio dz/dt can be obtained by calculating the ratio ∆z/∆t, where ∆z is the redshift

separation in the galaxy sample. This value can be estimated with a high value of precision and

accuracy using spectroscopic techniques. However, the determination of the value of ∆t is much

more challenging and requires some standard clocks. For that purpose, it is possible to utilize

massive, passively evolving, and old stellar populations that are present across a wide range

of redshifts, and therefore, could be considered cosmic chronometers [140, 143]. Now, we shall

define the χ2 function for the H(z) dataset by

χ2
H =

NH∑
i=1

[Hobs(θ, zi)−Hth(zi)]
2

σ(zi)2
, (2.27)

where Hobs and Hth are the observed and theoretical values of H, θ is the parameter space, σ(zi)

is the standard error in the measured value of H, and NH is the number of data points. The

plot displayed in figure 2.7 exhibits a significant relationship between the H(z) dataset and the

model parameter values, indicating a favorable match. This fit is then compared to the ΛCDM

model. For our computation, we choose a value of H0 = 67.8 km/s/Mpc as given by Planck2015

[16].

https://supernova.lbl.gov/Union/
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Figure 2.7: The plot shows 57 points of the H(z) dataset (green dots) with corresponding error
bars along with the present model (solid red line). The ΛCDM model is also shown in the black

dashed line.

Next, we define the corresponding chi-square function for SNeIa as

χ2
SN =

580∑
i=1

(
∆µi
σµ(zi)

)2

, (2.28)

where ∆µi = µth(θ, zi) − µobs(zi), and µobs, µth, σµ(zi), denote the observed and theoretical

distance moduli of the model, and the standard error in the measurement of µ(z), respectively.

And the distance moduli is expressed as follows

µth = 5 log10DL(z) + µ0, µ0 = 5 log10

H−1
0

Mpc
+ 25, (2.29)

DL(z) =
c(1 + z)

H0
SK

(
H0

∫ z

0

dz

H(z)

)
. (2.30)

Here, the function Sk(x) is given by

Sk(x) =


sinh(x

√
Ωk)/Ωk, Ωk > 0

x, Ωk = 0

sin(x
√
|Ωk|)/|Ωk|, Ωk < 0

. (2.31)

It is widely acknowledged that the spatial curvature of our Universe is flat, resulting in a value

of ΩK = 0. The χ2
SN function and the distance DL(z) are calculated in order to quantify the

differences between the SNeIa observational data and predictions made by our model. The plot

presented in figure 2.8 shows a nice fit to the SNeIa dataset with suitable model parameter

values compared to the ΛCDM model.
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Figure 2.8: The plot shows 580 points of the SNeIa dataset (green dots) with corresponding
error bars along with the present model (solid red line). The ΛCDM model is also shown in the

black dashed line.

2.5.2 Estimation of Model Parameters with H(z), SNeIa & BAO Datasets

Here, in this subsection, we shall find the constraints with the above-discussed datasets, that

is, H(z) and SNeIa, together with one more external dataset, the BAO dataset for our analysis.

From very large scales, BAO measures the structures in the Universe. In this chapter, we

have considered a sample of BAO distance measurements from surveys of SDSS(R) [195], 6dF

Galaxy survey [196], BOSS CMASS [197] and WiggleZ [198]. So, the distance redshift ratio dz

is expressed as dz = rs(z∗)
Dv(z) , where rs(z∗) is the comoving sound horizon at the time photons

decouple and z∗ is the photon decoupling redshift. In accordance with Planck 2015 results [16],

the value of z∗ is determined to be 1090. We have taken rs(z∗) as considered in [199]. Also,

dilation scale Dv(z) is given by Dv(z) =
(d2B(z)z

H(z)

) 1
3 , where dA(z) is the angular diameter distance.

The chi-square value for BAO measurements is written as [200]

χ2
BAO = BTC−1B. (2.32)

The matrix B in the chi-square formula of BAO datasets is obtained by dB(z∗)/DV (zBAO)

B =



dB(z?)
DV (0.106) − 30.95
dB(z?)
DV (0.2) − 17.55
dB(z?)
DV (0.35) − 10.11
dB(z?)
DV (0.44) − 8.44
dB(z?)
DV (0.6) − 6.69
dB(z?)
DV (0.73) − 5.45


,
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and the inverse covariance matrix C−1 is defined in [200]

C−1 =



0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738

−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751

−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574

−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437

−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441

−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022


.
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Figure 2.9: The plot shows the contour plot for the model parameters k2 and k4 for independent
H(z) dataset at 1σ, 2σ and 3σ level in k2-k4 plane.
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Figure 2.10: The plot shows the contour plot for the model parameters k2 and k4 for combined
H(z)+SNeIa+BAO dataset at 1σ, 2σ and 3σ level in k2-k4 plane.
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Using the three samples of datasets, we have determined the likelihood contours for the model

parameters k2 and k4 at 1σ, 2σ and 3σ confidence levels. These contours are displayed in figures

2.9 and 2.10, representing the k2-k4 plane. We have found constraints with the independent

H(z) dataset and combined H(z)+SNeIa+BAO dataset. The best estimated values of the model

parameters k2 and k4 are found to be k2 = 3, k4 = −0.4389 and k2 = 3, k4 = −0.43374,

respectively for independent H(z) datasets and joint H(z)+SNeIa+BAO datasets. The values

obtained for both the H(z) as well as joint data are almost identical. So, we have considered the

second value of k4 in the neighbourhood, that is,k4 = −0.49.

2.6 Conclusions

The present chapter analyzed a cosmological model that describes the phenomenon of cosmic

acceleration through a viscous fluid. The dynamical equation of the Hubble parameter can be

entirely integrated using the effective viscosity equation of state (EoS). This integration leads to

an exact solution for Einstein’s field equation in the FLRW background for modified f(R, T )

gravity. Without introducing a cosmological constant or dark energy, the effective EoS (pressure

with added bulk viscosity) characterizes the late-time acceleration of the Universe.

In section 2.3, the deceleration parameter demonstrated a transition from early deceleration to

present acceleration at zt = 0.84 and zt = 0.62 for different values of k4 = −0.43 and k4 = −0.49,

respectively. Additionally, the corresponding values of the current deceleration parameter are

q0 = −0.78 and q0 = −0.62, which is depicted in figure 2.1. Figure 2.3 illustrated the evolution

of effective equation of state ω specifically ω0 = −0.88 for k4 = −0.43 and ω0 = −0.84 for

k4 = −0.49. The cosmological model under consideration continues within the quintessence

phase, characterized by a value of the equation of state parameter ω that does not cross the

phantom line ω = −1. Furthermore, in the future, the model approaches a value of ω equal to

−1, resulting in the emergence of the Einstein-de-Sitter space.

It is also important to note that the EoS parameter ω undergoes a transition from a positive

regime in the past to a negative regime in the present, implying that the incorporation of a bulk

viscous pressure term is crucial for achieving a decelerated expansion in the past (suitable for

structure formation) and an accelerated expansion in the present. This is depicted in figure

2.3, demonstrating that standard cosmology confirms the existence of the latter regime when

ω < −1
3 . In section 2.4, we have discussed some physical properties of the model, the evolution

of cosmological parameters, and energy conditions. It has been noticed that NEC and DEC do

not violate their conditions, whereas SEC is violated, resulting in a repulsive force that causes

the Universe to accelerate. The violation of SEC depicted in figure 2.4 demonstrates the viability

of our model, as described in [184]. In addition, statefinder parameter analysis and Om(z)

diagnostic have been performed and compared to the ΛCDM model. It has been observed that
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the model will converge to the ΛCDM model in the distant future but exhibits deviations from

it in the present. We have conducted model fitting utilizing the updated 57 points of Hubble,

580 points of Union 2.1 compilation supernovae, and the BAO datasets in section 2.5.

ECs have provided us with unique insights into the spacetime evolution processes underlying the

spacetime structure. The NEC and DEC are satisfied in the current paradigm, but the SEC is

violated due to cosmic acceleration. As it is known, the formation of wormholes necessitates

the explicit violation of the null energy condition, which compels us to investigate further the

confrontation of dark energy with an unusual spacetime structure. With this effective viscosity

EoS in non-minimally coupled gravity, additional research can be conducted. However, the

model addressed in the present chapter may also offer an alternative approach that could provide

some insights into the physical interpretation of the theories with curvature-matter coupling and

for observationally testing alternative gravity theories.

In the following two chapters, we will assess the validity of f(Q, T ) gravity in a cosmological

context by utilizing advanced and latest observational datasets.



Chapter 3

f (Q, T ) Gravity Models with

Observational Constraints

This chapter presents the cosmology of late time in f(Q, T ) gravity, where dark energy is purely

geometric. The detailed study of the work is outlined as follows:

� We begin by utilizing a well-motivated f(Q, T ) gravity model with f(Q, T ) = ξ Qn + b T
where ξ, n and b are model parameters.

� In addition, we assume that the Universe is dominated by pressure-less matter, resulting

in a power-law scale factor.

� We use the 580 points from the Union 2.1 compilation supernovae dataset and the revised

57 points from the Hubble dataset to constrain the model parameters to test the model’s

cosmological viability.

� We investigate the nature of geometrical dark energy modeled by the parametrization of

f(Q, T ) = ξ Qn + b T using the statefinder diagnostic in r − s and r − q planes, as well as

the Om(z) diagnostic analysis.

3.1 Introduction

Extended theories of gravity such as f(R) gravity, f(G) gravity, f(R, T ) gravity, etc. are widely

employed in modern cosmology (For a recent review on modified gravity see [201]). Also see

*The work in this chapter is covered by the following publication:
f(Q, T ) gravity models with observational constraints, Physics of the Dark Universe, 30, 100664 (2020).
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[202] for some interesting cosmological applications of modified gravity to address the late-

time acceleration and other shortcomings of ΛCDM cosmologies. f(Q, T ) gravity is a recently

proposed extended theory of gravity in which the Lagrangian density of the gravitational field

is a function of the non-metricity Q and the trace of energy-momentum tensor T [54]. A very

recent study by Yixin et al. [116] demonstrates the non-minimal coupling between Q and T
taking into account a variety of cosmological models with specific functional forms of f(Q, T ).

Different forms of f(Q, T ) can result in obtaining a large variety of cosmological evolution,

including the decelerating and accelerating expansion. Also, according to the study in [203],

f(Q, T ) gravity yields an excellent theoretical estimate of baryon-to-entropy ratios and therefore,

could solve the puzzle of over-abundance of matter over anti-matter. With that in mind, we

intend to investigate the cosmological viability of f(Q, T ) gravity in sufficing the conundrum of

late-time acceleration without incorporating dark energy.

The present chapter is organized as follows: In section 3.2, a concise overview of f(Q, T ) is

presented. In the very next section 3.3, we discuss the cosmological model in f(Q, T ) framework

and derive some necessary cosmological parameters. In accordance, the non-parametric method

is sometimes more beneficial, as the evolution of our Universe can be found directly from the

observational data. Thus, in section 3.4, we constrain the model parameters using H(z) and

SNeIa datasets. We present geometrical diagnostics that allow for distinguishing between various

dark energy models and ΛCDM in section 3.5. Further, the behavior of energy density is

demonstrated in section 3.6. In section 3.7, we distinguish between the non-linear model under

consideration and a specific linear form of f(Q, T ). Lastly, in section 3.8, we explain our findings

and draw our conclusions.

3.2 Overview of f(Q, T ) Gravity

In order to obtain the generalized Friedmann equations, one considers a flat FLRW metric (1.17)

(for k = 0) and the equation (1.94), which leads to the following equations

8πρ =
f

2
− 6FH2 − 2G̃

1 + G̃
(ḞH + FḢ), (3.1)

8πp = −f
2

+ 6FH2 + 2(ḞH + FḢ), (3.2)

where dot represents a derivative with respect to time and F = fQ and 8πG̃ = fT are the

derivatives of f with respect to Q and T , respectively. The non-metricity scalar using the FLRW

metric is obtained as Q = 6H2. In light of the previous work done by [54], we use the assumption

G = 1 in the action (1.91) to maintain consistency.
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We can then combine equations (3.1) & (3.2) and arrive at the following equation

Ḣ +
Ḟ

F
H =

4π

F
(1 + G̃)(ρ+ p). (3.3)

In the present discussion, our attention shall be directed in obtaining expressions for different

cosmological parameters. Thus, we begin our analysis by considering the energy density. For

generality, we assume that the cosmological matter satisfies an equation of state of the form

p = (γ − 1)ρ, where γ is a constant, and 0 ≤ γ ≤ 2. By solving equations (3.1) and (3.3), we

obtain the energy density ρ

ρ =
f − 12FH2

16π(1 + γG̃)
. (3.4)

3.3 Cosmological Model with f(Q, T ) = ξ Qn + b T

Given that the functional form is arbitrary, we focus on the power-law model of f(Q, T ) [54]

represented by

f(Q,T ) = ξ Qn + b T , (3.5)

where ξ, b and n are model parameters. We choose this form as it considers a Qn term along with

the term T representing deviations from ΛCDM and f(Q). Also note that F = fQ = ξ nQn−1

and 8π G̃ = fT = b. We determine the solution for zero pressure (dust matter), for which γ = 1

and the equation (3.4) reduces to

ρ =
ξ6nH2n(1− 2n)

16π + 3b
. (3.6)

The dynamical equation (3.3) that characterises the dynamics of the model is now presented

Ḣ +
3(8π + b)

n(16π + 3b)
H2 = 0, (3.7)

which integrates easily to yield the time evolution of the Hubble parameter H(t)

H(t) =
1

At+ c1
, where A =

3(8π + b)

n(16π + 3b)
, (3.8)

and c1 is the constant of integration. From equation (3.8), we obtain the explicit form of scale

factor as a simple power law type solution given by

a(t) = c2(At+ c1)
1
A , (3.9)

where c2 is another constant of integration. As we are dealing with zero pressure and attempting

to explain the present cosmic acceleration of the Universe, we shall express all the above
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cosmological parameters in terms of redshift z defined by z = a0
a − 1, where a0 is the present

value (at time t = t0) of the scale factor. In addition, we will consider the normalized value

a0 = c2(At0 + c1)
1
A = 1 for which the t-z relationship is established as

t(z) = −c1

A
+

1

A
[c2(1 + z)]−A . (3.10)

Henceforth, using equation (3.10), we obtain the Hubble parameter in terms of z. That is

H(z) = H0(1 + z)A = H0(1 + z)
3(8π+b)
n(16π+3b) , (3.11)

containing only two model parameters n and b. Following the expression of the Hubble parameter,

our focus is to determine the deceleration parameter q = −1− Ḣ
H2 , which turns out to be

q(t) = −1 +
3(8π + b)

n(16π + 3b)
, (3.12)

One can observe that the expression gives us a constant value for specific n and b as expected

due to the power-law type expansion of the model. The values of the model parameters n and

b in the H(z) function are currently unknown. To determine these values, we aim to impose

constraints by analyzing the observational data discussed in the subsequent section.

3.4 Parameters of the Model & Observational Constraints

The expressions in equations (3.11) and (3.12) illustrate the inclusion of two model parameters

that govern the dynamics of the model. The model parameter n is more significant than b,

as determined by the expression
24π + 3b

16π + 3b
, which contains the homogeneous term 3b in both

numerator and denominator. The choice of model parameters n and b must be such that the

deceleration parameter attains a negative value at present and is consistent with the observed

value q0 ' −0.54 [179, 204, 205]. This requires n = 25.142+b
7.542+0.45b . In order for a model to be

consistent with the observations and the q0 value of around −0.54, the model parameters n and

b must satisfy the relation

n =
25.142 + b

7.542 + 0.45b
. (3.13)

The graph in figure 3.1 illustrates the choice of these two model parameters. Based on the

information in figure 3.1, we can make a rough estimate for the range of the model parameters.

The best estimate could be n ∈ (1, 3) and b ∈ (0, 2). We have examined two observational

datasets to achieve more precise estimates for the model parameters n and b. The first dataset

consists of 57 points of Hubble data, while the second dataset comprises 580 points of Union 2.1

compilation supernovae dataset, as discussed in section 2.5.
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Since, the values of the model parameter b ranges from −∞ to +∞, the b-axis in the above

contour plots is unbounded but the model parameter n is in its fixed range n ∈ (1, 4) in both

the contour plots. We have obtained the best fitting pair (n, b) of model parameter values in

figure 3.3.
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Figure 3.1: The variation of model parameters n and b in the shown ranges to have a q0 value
consistent with observations.

The left panel in figure 3.2 shows the error bar plot of 57 points of the Hubble dataset together

with the presented model shown in solid red line with n = 1.7763 and b = 0.8491 compared

with the ΛCDM model shown in black dashed line showing a poor fit at higher redshift but

better at lower redshift. The blue line depicted in the figure serves as a fiducial model, intended

solely for comparison with the values of n = 1.5 and b = 0.8491, which fall outside the contour.

The right panel shows the error bar plot of 580 points of Union 2.1 compilation supernovae

dataset together with the present model shown in solid red line with n = 1.7769 and b = 2.4889

compared with the ΛCDM model shown in black dashed line.
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Figure 3.2: The error bar plots of 57 points of H(z) dataset, 580 points of SNeIa dataset with
the ΛCDM model.
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Figure 3.3: The contour plots using 57 points of H(z) dataset and 580 points of SNeIa dataset
displaying the likelihood values of n and H0 at 1σ, 2σ and 3σ level in the n-H0 plane along with

the constrained values illustrated by black dots.

Moreover, the left panel in figure 3.3 depicts the contour plot due to the 57 points of the Hubble

dataset displaying likelihood values of the model parameters n and b in n-b plane at 1σ, 2σ &

3σ level. The black dot represents the constrained values of model parameters as n = 1.7763

and b = 0.8491. The right panel shows the contour plot due to the 580 points of Union 2.1

compilation supernovae dataset displaying likelihood values of the model parameters n and b in

n-b plane at 1σ, 2σ & 3σ level. The black dot shows the constrained values of model parameters

found as n = 1.7769 and b = 2.4889.

3.5 Statefinder and Om(z) Diagnostic Analysis

This section discusses the diagnostic tools used to distinguish between various dark energy

models, as discussed in section 2.4.1. The plot of r − s and r − q planes is depicted in figure

3.4. Different dark energy models can be represented by different trajectories in the r − s plane.

Figure 3.4 reveals that the point (s, r) = (0, 1) represents the ΛCDM, whereas (q, r) = (−1, 1)

corresponds to the de Sitter (dS) point. That is, our constructed model will finally approach

the ΛCDM passing from the quintessence phase. The red line divides the plane into two parts,

depicting the Quintessence phase as a lower half. The statefinder plots have been done for the

values of n and b constrained by the H(z) and SNeIa datasets. The phenomenon described in

this study is also evident in previous research conducted by [183, 206]. We note that for the

H(z) dataset, the r and s parameters at the present epoch are r0 = −0.112 and s0 = 0.554, while

for the SNeIa dataset, we have r0 = −0.118 and s0 = 0.538. However, according to reference

[207], these parameters have the potential to be inferred by forthcoming discoveries, thereby

significantly helping in the explanation of the nature of dark energy. Additionally, we have
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Figure 3.4: The left panel shows the r− s plane for our model with b = 0.8491 and b = 2.4889
and varying n. The right panel shows the r − q plane for b = 0.8491 and b = 2.4889 and varying

n.

generated a plot of the function Om(z), as shown in figure 3.5. This plot visually represents a

quintessence type at present and ΛCDM at late times, based on the constrained values of the

model parameters derived from the H(z) and SNeIa datasets.
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Figure 3.5: Evolution of Om(z) for n = 1.7763, b = 0.8491 and n = 1.7769, b = 2.4889.

3.6 Evolution of ρ(z)

The energy density also plays a significant role in cosmological theories. The energy density

expression in equation (3.6) can be formulated in terms of the redshift z

ρ(z) =
6nξ(1− 2n)

16π + 3b
H2n

0 (1 + z)2( 24π+3b
16π+3b). (3.14)
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Figure 3.6: The evolution of energy density (left panel) and the density parameter (right
panel) for the obtained model versus redshift z with ξ = −0.003.

We define the density parameter, Ω = 8πρ
3H2 using the equation (3.14) as

Ω(z) =
ξ π 2n+33n−1(1− 2n) (z + 1)

− 6(b+8π)
(3b+16π)n

(
H0(z + 1)

3b+24π
3bn+16πn

)2n

(3b+ 16π)H2
0

, (3.15)

with Ω(0) = 8π 6nξ(1−2n)
3(16π+3b) H2n−2

0 . Since the expressions in equations (3.14) and (3.15) contain

a term (1 − 2n) that will be negative for the discussed range of n values, we must adopt the

adjustable free parameter ξ so that ρ assumes a positive value. In figure 3.6 (left panel), we

depict the evolution of the energy density with respect to redshift z for the constrained numerical

values of the model parameters n and b. Also, we have shown the evolution of the density

parameter (right panel) for our model together with the evolution of density parameter of matter

density Ωm = 0.3089(1 + z)3 as in the ΛCDM model H(z) =
√

Ωm(1 + z)2 + ΩΛ for comparison

(where Ωm0 = 0.3089 and ΩΛ = 0.6911 as suggested by Planck2015 results.

Now, let us analyse the simplest instance of the functional form, specifically the linear functional

form of f(Q, T ) in the next section.

3.7 Linear Form of f(Q, T ) = ξ Q+ b T

We can see that for n = 1, the considered functional form of f(Q, T ) = ξ Qn + b T reduces to

the linear form f(Q, T ) = ξ Q+ b T , which is similar to the linear functional form considered in

[54]. One can obtain the expression for the energy density from equation (3.6)

ρ =
−6ξH2

16π + 3b
, (3.16)
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and the dynamical equation in H reads as

Ḣ +
3(8π + b)

16π + 3b
H2 = 0, (3.17)

yielding a Hubble parameter in the form

H =
1

Bt+ k1
. (3.18)

Here, B = 24π+3b
16π+3b and k1 is the constant of integration. Using the equation (3.18), we can also

easily find the scale factor given by

a(t) = k2(Bt+ k1)
1
B , (3.19)

where k2 is the constant of integration. As discussed above, we must express all the above

cosmological parameters in terms of redshift z, for which the t− z relationship is obtained as

t(z) = −k1

B
+

1

B
[k2(1 + z)]−B . (3.20)

Henceforth, the Hubble parameter in terms of z can be written as follows

H(z) = H0(1 + z)B = H0(1 + z)(
24π+3b
16π+3b), (3.21)

which contains only one model parameter b. Moreover, q(t) = −1 + 24π+3b
16π+3b is also constant

with only one model parameter b. Since, the term 24π+3b
16π+3b assumes a value ' 3

2 for any value

of b ∈ (−∞,∞), we have q(t) = 0.5, showing a constant deceleration. The model reduces to

the standard lore with H(z) = H0(1 + z)
3
2 and a(t) ∝

(
3
2 t+ k1

) 2
3 . It is noted that the energy

density reduces to ρ(z) = −6ξ
16π+3bH

2
0 (1 + z)3.

3.8 Conclusions

This chapter addressed the late time cosmology using a well-motivated f(Q, T ) gravity model

using the functional form f(Q, T ) = ξ Qn+ b T , where ξ, n and b are model parameters proposed

in [54]. By constraining the free parameters with observational datasets: 57 points of the

Hubble dataset and 580 points of the Union 2.1 compilation supernovae dataset, we found

that the deceleration parameter at z = 0 to be negative, that is q0 = −0.17 and q0 = −0.19,

respectively, which is consistent with the present scenario of an accelerating Universe. Previous

works in power law cosmology also reported similar constraints (see, for example [183, 206]).

The solution and data analysis have already been discussed for the model considered in [54]

with the f(Q, T ) function f(Q, T ) = −σQ − δT 2 (σ and δ are model parameters). Another

model is also considered in the same paper with the f(Q, T ) function f(Q, T ) = αQ+ βT (α
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and β are model parameters) which is similar to the linear case with n = 1 in our considered

f(Q, T ) = ξ Qn+b T form, that is, ξ Q+b T . In the linear case, the solution mimicked the power

law expansion model with a(t) ∝ (Bt+ c1)
1
B , where B = 24π+3b

16π+3b . This model relies on a single

parameter b. It is observed that the parameter b contribute significantly less in the evolution as

the term B = 24π+3b
16π+3b ≈ 3

2 for b ∈ (−∞,∞). Consequently, the model behaved similarly to the

standard lore of a(t) ∼ t 23 with a constant deceleration q = 0.5.

We have thoroughly investigated the nature of dark energy modelled by the parametrization

f(Q, T ) = ξ Qn + b T using the statefinder diagnostic as r − s and r − q planes and the Om(z)

diagnostic analysis for our model. For the values of the model parameters n and b obtained by

57 points of H(z) dataset, the present statefinder parameter values are obtained as r0 = −0.112

and s0 = 0.554, whereas the Union 2.1 compilation dataset resulted r0 = −0.118 and s0 = 0.538.

The model investigated here is good at explaining the current observations but may not adequately

explain the early evolution (as it is inconsistent with the constraints derived from the BAO

dataset, which are not considered here). One important thing to notice is that the model

parameter b, which is the coefficient of the trace T in the f(Q, T ) = ξ Qn + b T form considered,

contributes very little to the evolution, indicating that the linear trace T does not affect the

evolution. The behavior of energy density and the density parameter with respect to redshift

z for the constrained values of the model parameters n and b are depicted in figure 3.6 with

Ωm0 = 0.3089. Some more functional form of f(Q, T ) could be explored in the same way and is

deferred to our future works.

One can also consider an effective equation of state which could distinguish and discriminate

between the standard model and various theories of gravity. Henceforth, in the upcoming chapter,

we will investigate f(Q, T ) gravity using an effective equation of state.



Chapter 4

Constraining Effective Equation of

State in f (Q, T ) Gravity

The present chapter discusses a parameterized effective equation of state with two parameters in

f(Q, T ) gravity. The detailed study of the work follows as

� We use the recently proposed f(Q, T ) gravity to investigate the accelerated expansion of

the Universe, where Q is the non-metricity and T is the trace of the energy-momentum

tensor.

� The investigation uses a parameterized effective equation of state with two parameters, m

and n.

� We consider the linear form f(Q, T ) = Q + b T , where b is a constant. By confining

the model with the recently published 1048 Pantheon sample, we could determine the

parameters b, m, and n with the best fit.

4.1 Introduction

Several studies have investigated cosmological models and the phenomenon of rapid cosmological

expansion within the framework of f(Q, T ) gravity, employing various functional forms. Yang et

al. [208] developed the geodesic deviation and Raychaudhuri equations in the f(Q, T ) gravity

based on the observation that the curvature-matter coupling considerably modifies the nature of

tidal forces and the equation of motion in the Newtonian limit. Hence, it is possible to investigate

*The work in this chapter is covered by the following publication:
Constraining Effective Equation of State in f(Q, T ) Gravity, European Physical Journal C, 81, 555 (2021).
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the feasibility of the recently proposed f(Q, T ) gravity within various cosmological scenarios.

Thus, utilizing the post-Newtonian limit seems suitable for comparing theoretical predictions with

observations made within the solar system. Therefore, a rationale exists for examining multiple

aspects of the f(Q, T ) theory from a theoretical, observational, and cosmological perspective.

To review f(Q, T ) gravity in different aspects, one can check references [202, 209].

It is commonly known that the EoS parameter defines the relationship between pressure and

energy density. The EoS parameter is used to classify various phases of the Universe, specifically

distinguishing between decelerated and accelerated expansion. Understanding the late time

acceleration in f(Q, T ) gravity is the focus of our work, and we do so by reconstructing a

parameterized equation of state parameter. The present value of the effective equation of state

parameter is established by model parameters that are constrained by observational evidence.

CMB [210], SNeIa [14, 15], BAO [211] and other observational datasets are currently available

for various measurements and are providing robust evidence for the accelerating Universe.

Consequently, we will use Pantheon datasets [151] to constrain the model parameters. The

recently proposed supernovae Pantheon sample contains 1048 points covering the redshift range

0.01 < z < 2.26. We use the MCMC ensemble sampler given by the emcee library.

The chapter has been divided into various sections. In section 4.2, we engage in a comprehensive

examination of the cosmological model employing the parameterized equation of state. We

derive an expression for the Hubble parameter using the Friedmann equations of f(Q, T ). The

brief discussion on observational data used to constrain the model parameters is presented in

section 4.3. Section 4.4 includes the behavior of cosmological parameters such as the deceleration

parameter and EoS parameter. The last section 4.5 encompasses the concluding remarks.

4.2 Cosmological Model and Equation of State

In a flat FLRW metric, we have already obtained the generalized Friedmann equations in (3.1)

and (3.2). Since, f(Q, T ) is an arbitrary function of Q and T , we consider the simplest functional

form f(Q, T ) = Q+ b T , where b is a constant. In order to elaborate upon our prior research on

the linear trace term, we assumed a specific functional form. One can note that F = fQ = 1

and 8πG̃ = b. Further solving equations (3.1) and (3.2) for p and ρ allow us to determine the

equation of state parameter ω = p
ρ given by

ω =
3H2(8π + b) + Ḣ(16π + 3b)

bḢ − 3H2(8π + b)
. (4.1)

To establish a comprehensive understanding, it is imperative to express all the cosmological

parameters in terms of redshift z. Consequently, the relation for t and z using a0
a = 1 + z can be
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derived as
d

dt
=
dz

dt

d

dz
= −(1 + z)H(z)

d

dz
. (4.2)

Normalizing the present value of scale factor to be a0 = a(0) = 1. The Hubble parameter can be

written in the form

Ḣ = −(1 + z)H(z)
dH

dz
. (4.3)

We need one more alternate equation to solve equation (4.1) for H. So, we assume a well-

motivated parametric form of the equation of state parameter as a function of redshift z [213],

which is defined by

ω = − 1

1 +m(1 + z)n
, (4.4)

where m and n are model parameters. Mukherjee describes the behavior of the considered

equation of state parameter in [213]. At the epoch of recent acceleration, it has a negative value

of less than −1
3 . For positive values of the model parameters m and n, the value of ω tends to

zero at a high redshift z and depends on the model parameter at z = 0. The effective equation

of state assumed for the current reconstruction conveniently accommodates these two phases of

evolution. A positive model parameter frequently establishes a lower limit on the value of ω and

maintains it in the non-phantom regime. Using equations (4.1), (4.3) and (4.4), we obtain the

Hubble parameter H in terms of redshift z as

H(z) = H0

(
b+ (16π + 3b)(1 +m(1 + z)n)

b+ (16π + 3b)(1 +m)

)l
, (4.5)

where l = 3(8π+b)
n(16π+3b) , H0 is the Hubble value at z = 0.

In the following section, we attempt to obtain the best possible values for the model parameters

associated with the equation of the Hubble parameter.

4.3 Observational Constraints

This section describes the observational dataset used to constrain the model parameters b, m,

and n after obtaining the solutions for our model. We use the MCMC sampling technique to

explore the parameter space and mainly employ Python’s emcee [214] library. To estimate the

parameters, one need not compute the evidence, which is a normalizing constant. Instead, the

prior and likelihood are sufficient to determine the posterior distributions of the parameters.

We use the recent Pantheon dataset for our work. One can find the dataset in the link8; it

consists of 1048 Supernova Type Ia experiment results discovered by the Pan-STARRS1(PS1)

Medium Deep Survey, the Low-z, SDSS, SNLS, and HST surveys [151, 212], in the redshift range

z ∈ (0.01, 2.26) described in section 5.3.2.

8https://cdsarc.cds.unistra.fr/viz-bin/cat?J/ApJ/859/101

https://cdsarc.cds.unistra.fr/viz-bin/cat?J/ApJ/859/101
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As the functional form f = Q+ bT contains b as a model parameter and m, n are the parameters

in the parametric functional form of the equation of state ω. The bounds for the parameters

from our analysis are obtained as b = 0.2+2.7
−2.9 ,m = 0.47+0.27

−0.21, n = 3.2+1.8
−2.0. The comparison

between our model and the widely accepted ΛCDM model is depicted in figure 4.1. For the plot,

we assume Ωm0 = 0.3, ΩΛ0 = 0.7, and H0 = 69 km/s/Mpc [65]. The figure also includes the

Pantheon experimental results, 1048 data points along with their error, and allows for a clear

comparison between the two models.
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32
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From data

Figure 4.1: The evolution of distance modulus µ(z) versus redshift z for our model shown in
red line and ΛCDM in black dotted line which shows nice fit to the 1048 points of the Pantheon

dataset with its error bars.

Initially, we perform the analysis considering a flat prior for all the parameters. However, we

notice the marginalized distribution for parameter b to be roughly uniform in the range. We then

motivate our work to study the result in the neighbourhood of b = 0. This approach intends to

find any deviation from GR, which accounts for a local minimum for the function in equation

(4.5). We also perform the numerical analysis with a Gaussian prior for the parameter b with

σ = 1.0 as dispersion. The results are presented in figure 4.2. There is no significant difference

in the marginalized distributions of the remaining parameters, m and n.

If we consider the case of b = 0, the model reduces to f(Q, T ) = fΛ(Q) = Q, i.e. it has a direct

link to ΛCDM model. Therefore, the equation of Hubble parameter H reduces to

H(z) = H0

(
m(z + 1)n + 1

m+ 1

) 3
2n

, (4.6)

where m and n are model parameters. One interesting point regarding this expression of the

Hubble parameter is that for n = 3, this becomes exactly like the ΛCDM model as stated in

[213]. The constraints for m and n using the Pantheon SNeIa dataset are shown in figure 4.3.
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Figure 4.2: The plot compares the two numerical analyses with different prior distributions
for the parameter b. For either case, we considered a uniform distribution for the other two

parameters, m and n. The counter represent 1σ and 2σ confidence intervals.

4.4 Cosmological Parameters

In this section, we examine the behavior of the deceleration and the equation of state parameters.

The equation of deceleration parameter q = −1− Ḣ
H2 , according to our model, reads

q = −1− 3(b+ 8π)m(−z − 1)(z + 1)n−1

b+ (3b+ 16π) (m(z + 1)n + 1)
. (4.7)
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Figure 4.3: The plot showing the best-fit values of the model parameters m and n obtained
with 1048 points of Pantheon dataset at 1σ and 2σ confidence level with b = 0.
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Figure 4.4: Evolution of the deceleration parameter for the best fit values b = 0.2, m = 0.47
and n = 3.2 from the analysis of SNeIa Pantheon samples.

Figure 4.4 depicts the behavior of q(z) based on the estimated values of model parameters b,

m, and n obtained from the Pantheon sample. We can observe a well-behaved transition from

deceleration to acceleration phase at redshift zt. The value of the transition redshift has been

determined to have a value of zt = 0.58± 0.30 [215]. The findings align with several works in

literature [182, 216]. Also, we can note that the value of q0 is obtained as −0.52 [217], which is

negative at present, indicating that the Universe is undergoing acceleration.
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Figure 4.5: Evolution of the equation of state parameter for the best-fit values b = 0.2,
m = 0.47, and n = 3.2 from the analysis of SNeIa Pantheon samples.

In addition, we have analyzed the effective EoS parameter, as shown in figure 4.5. The value of

the EoS parameter at z = 0 is obtained as ω0 = −0.68+0.10
−0.11 [217], which indicates an accelerating

phase, exhibiting a quintessence type behavior.

4.5 Conclusions

As new theories of gravity emerge in the literature, it is vital to put them to the test to determine

if they are viable in describing the dark sector of the Universe. To begin, we considered the

functional form f(Q, T ) = Q+ b T , where b is a free parameter.

We used a well-motivated parametric form of the equation of state parameter as a function of

redshift z to solve the field equations for H. At the epoch of recent acceleration, the value of the

EoS parameter is seen to be negative, specifically less than −1
3 . At a high redshift z, the value of

ω tends to zero for positive values of the model parameters m and n, and its value is influenced

by the model parameter at z = 0. The Pantheon study, a recently proposed observational

dataset, was used to constrain the parameter space. The parameters from our study have bounds

of b = 0.2+2.7
−2.9, m = 0.47+0.27

−0.21, and n = 3.2+1.8
−2.0. The error bar plot depicting the 1048 points

from the Pantheon dataset, together with our derived model and the ΛCDM model assuming

Ωm0 = 0.3, ΩΛ0 = 0.7 and H0 = 69 km/s/Mpc demonstrates a good match to the observational

results as seen in section 4.3.

Finally, we observed the behavior of the deceleration parameter and equation of state parameter

in section 4.4. We see a well-behaved transition from deceleration to acceleration phase at

redshift zt. The value of the transition redshift is obtained as zt = 0.58± 0.30, while the present

deceleration parameter is estimated to be q0 = −0.52. Furthermore, it is worth noticing that

the value of the EoS parameter at z = 0 exhibits a value of ω0 = −0.68+0.10
−0.11, which provides

strong evidence in favour of accelerating phase. The current analysis provides a justification
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and motivation for investigating these extensions, potentially explaining the deviation from the

ΛCDM. In this case, the model does not deviate much from the ΛCDM.

In addition to considering the cosmic evidence, it is imperative to ascertain the stability of the

newly proposed f(Q, T ) theory. This is necessary to facilitate the analysis of the perturbation

level differences between this theory and the ΛCDM framework. The investigation of f(Q, T )

can be further explored in future research endeavors. The study mentioned previously examines

modified gravity models as a potential alternative to dark energy models. Our subsequent

work aims to explore an alternative perspective on the enigma of dark matter, as given by

modified theories. In this study, we investigate the impact of modified gravity on the dynamics

of large-scale structures.



Chapter 5

On the Impact of f (Q) Gravity on the

Large Scale Structure

The current chapter presents the exponential f(Q) gravity to probe structure formation and

viable cosmology. A detailed study of the work follows:

� We consider the exponential f(Q) form namely f(Q) = Q + αQ0

(
1− e−β

√
Q/Q0

)
to

probe the structure formation with box sizes Lbox = 10/100 Mpc/h and middle resolution

N
1/3
p = 512.

� The present study aims to reproduce viable cosmology within the aforementioned modified

gravity theory using MCMC sampling on H(z)/BAO/Pantheon datasets and constrain a

parameter space.

� While carrying out N-body+SPH simulations, we derive CDM+baryons overdensity/tem-

perature/mean molecular weight fields, matter power spectrum (both 2/3D, with/without

redshift space distortions), bispectrum, two-point correlation function, and halo mass

function.

5.1 Introduction

It is well-known that GR is a quite successful theory on various cosmological scales, and it

can describe the recent accelerated expansion of the Universe by introducing the so-called

*The work in this chapter is covered by the following publication:
On the impact of f(Q) gravity on the large scale structure, Monthly Notices of the Royal Astronomical Society,
522, 252-267 (2023).
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cosmological constant (or Λ term) in the Einstein-Hilbert action integral. Since the gravitational

Lagrangian is not practically restricted by only the linear Ricci scalar term, one can introduce

additional terms to emulate effective dark energy and reproduce different Universe evolutionary

phases, such as cosmological inflation or late time accelerated expansion.

There are many ways to modify GR, for example, by introducing some matter fields (canonical

scalar field, vector and gauge boson fields, Dirac spinors, etc.). Another way is to present an

entirely different notion of the Lorentzian 4-manifold curvature by adjusting the metric-affine

connection [25, 218]. For example, one could use the so-called torsion or non-metricity, which

are constructed based on Weitzenböck and metric incompatible affine connections, respectively.

Consequently, GR has two analogs, namely, TEGR and STEGR as mentioned in section 1.6. In

the current work, we will focus on the arbitrary parameterization of an extended STEGR (f(Q)

gravitation).

A key aspect of f(Q) theory is the usage of a flat connection pertaining to the existence of

affine coordinates in which all of its components vanish, converting covariant derivatives into

partial derivatives [219, 220]. So, it is possible to distinguish gravity from inertial effects in

the f(Q) theory. For many modified gravity theories, the development of the f(Q) theory

provides a fresh starting point. It offers a straightforward formulation in which self-accelerating

solutions spontaneously appear in both the early and late Universe. Compared to other geometric

extensions of GR, both f(T ) and f(Q) theories have a substantial benefit in that the background

field equations are always of second order.

Many studies have been incorporated on f(Q) gravity, and is a very promising theory, that

can reproduce the behaviour of both early and late Universe, satisfy constraints from Cosmic

Microwave Background (CMB), SNeIa, BAO, H(z) datasets and primordial scalar index ns,

standard sirens from LIGO/VIRGO/ET [221, 222]. For instance, exponential gravitation was

constrained in the study by [223, 224], and the authors found out that such a theory can

challenge concordance ΛCDM theory. Additionally, observational constraints on the f(Q) gravity

have been established for a number of parameterizations of the f(Q) function using various

observational probes [42, 109]. Aside from these findings, f(Q) gravity has been the focus of

several investigations in various studies [51, 225–227]. In the current chapter, we are going

to investigate exponential f(Q) gravity in terms of observational constraints using MCMC

methodologies and high-resolution N-body simulations, which will be discussed in the following

subsections.

5.1.1 N-body Simulation as a Probe of Modified Gravity

To probe the validity of a particular modified theory of gravitation, one needs to incorporate

various cosmological observables, ranging from cosmic expansion rate to clustering and structure
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formation history. The latter could be most effectively studied with the use of the so-called

N-body simulations, which are well-known to be the best theoretical probe of the large scale

structure of the Universe, that provide information on the matter power spectrum/bispectrum,

N -point correlation functions and halo mass function, void size function, etc. Over the last few

years, such an approach has attracted some interest in modified gravity (see the work in [228]).

Authors of the paper [229] developed a pipeline to differentiate modified gravity theories from the

ΛCDM model and constrain those theories properly using voids in the N-body simulations that

are known to be less affected by the non-linear and baryonic physics in relation to the dark matter

halos. Besides, in addition to voids, intrinsic shape alignments of massive halos and galaxy/halo

angular clustering could be used to discriminate modified gravity theories from ΛCDM in the

presence of massive neutrino (see [230] and [231] respectively). The aforementioned Halo Mass

Function (further-HMF) was examined for f(Q) and Dvali-Gabadadze-Porrati (DGP) gravities

in [232]. Widely used code MG-Gadget, introduced and developed in [233] were employed to

study f(R) Hu-Sawicki theory [234, 235], and conformally coupled gravity [236]. In turn, we are

going to use ME-GADGET code (for documentation, check [237]) to study f(Q) gravity behaviour.

Such code was applied to the case of f(T ) theory [238], interacting dark energy [237] and cubic

vector gallileon [239].

This chapter is organized as follows: In section 5.1, we briefly introduce modified theories

of gravity and N-body simulations. Consequently, in section 5.2, we present the foundations

of symmetric teleparallel gravity and we adopt the FLRW isotropic line element to derive

field equations for our exponential choice of f(Q) function. In section 5.3, we introduce each

observational dataset of our consideration and perform MCMC analysis. In section 5.4, we

analyze the provided constraints deriving theoretical predictions for the deceleration parameter,

statefinder pair and Om(z). In the following section 5.5, we set up the ME-GADGET suite and

study the N-body output for a small simulation box size. We therefore compare the results with

the ones above obtained for large Lbox in section 5.6. Finally, in the last section 5.7, we present

the concluding remarks on the key topics of our study.

5.2 Modified Symmetric Teleparallel Gravitation

As we already mentioned in section 1.6.4, both Ricci scalar and torsion terms vanish, and

therefore we are left with only non-metricity. Therefore, to proceed with the STEGR case, one

could derive the non-metricity scalar from the non-metricity tensor and its independent traces

in section 1.6.4 defined by

Q = −gµν(LαβνL
β
µα − LβαβLαµν) = −PαβγQαβγ . (5.1)
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The condition of symmetric teleparallelism makes the generic affine connection to be inertial.

The most general connection is

Γ̃αµν =
∂xα

∂ξσ
∂2ξσ

∂xµ∂xν
, (5.2)

where ξσ is an arbitrary function of spacetime position. We can always choose a coordinate

xα = ξσ by utilizing a general coordinate transformation, where the general affine connection

Γ̃αµν = 0. We call this coordinate the coincident gauge [42]. Thus, in the coincident gauge, we

will have Qαµν = ∂αgµν , i.e. all the covariant derivatives are identical to ordinary derivatives.

Now we are going to present the formalism of modified symmetric teleparallel cosmology. Einstein-

Hilbert action of the f(Q) theory of gravity is therefore could be written as mentioned in equation

(1.91).

The reason for the above action and specific selection of the non-metricity scalar is that GR

is recreated, up to a boundary term for the choice f = Q, i.e., for this choice, we recover the

allegedly “symmetric teleparallel equivalent of GR”. By varying the action (1.91) with respect

to the metric tensor (using least action principle δS = 0), we could obtain the corresponding

field equations in equation (1.92). The connection equation of motion can be computed by

noticing that the variation of the connection with respect to ξα is equivalent to performing a

diffeomorphism so that ∂ξΓ
α
µν = −LξΓαµν = −∇µ∇ν ξα [53]. Besides this, in the absence of

hypermomentum, one can take the variation of equation (1.91) with respect to the connection

∇µ∇ν
(√−gfQPµνα) = 0. (5.3)

For the metric and connection equations, one can notice that ∇µTµν = 0, where ∇µ is the

metric-covariant derivative.

Since we have already defined all of the necessary quantities, we could proceed further and set

up the background spacetime.

5.2.1 FLRW Cosmology

In order to study the evolution of our Universe, it will be useful to assume that background

spacetime is isotropic and homogeneous, namely FLRW spacetime9. Consequently, with the

assumption of FLRW spacetime, the non-metricity scalar is written as follows

Q = 6H2. (5.4)

9Notice that we have used the Diff gauge freedom to fix the coincident gauge and, therefore, setting the lapse
(N(t) in metric) to 1 is not, in principle, a permitted choice. It happens, however, that the f(Q) theories retain a
time-reparametrization invariance that allows to get rid of the lapse [42].
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Finally, one could evaluate the FLRW field equations of the f(Q) theory:

3H2 = κ (ρm + ρeff) , (5.5)

3H2 + 2Ḣ = −κ (pm + peff) . (5.6)

Here, ρm and pm are matter energy density and isotropic pressure, respectively. Moreover, in the

equation above ρeff and peff are effective energy density and pressure that define the contribution

of f(Q) gravity to the field equations. For modified STEGR, field equations with exact forms of

effective quantities read

3H2 =
κ

2fQ

(
ρm +

f

2

)
, (5.7)

(
12H2fQQ + fQ

)
Ḣ = −κ

2
(ρm + pm) . (5.8)

where fQ = ∂f(Q)
∂Q , fQQ = ∂2f(Q)

∂Q2 .

The energy-momentum tensor of the cosmological fluid which is given in equation (1.27) leads to

conservation equation as ρ̇+ 3H (ρ+ p) = 0. In symmetric teleparallel gravity and its extensions,

the conservation law Tµν;µ = 0 holds for the matter energy-momentum tensor. The Tµν;µ = 0

holds through (5.3) for the connection as well [127, 220].

5.2.2 Exponential f(Q) Gravity

This work particularly aims at investigating the f(Q) gravity model, namely modified exponential

f(Q) gravity (which is built from the linear and exponential terms, respectively). In f(Q) theory,

numerous cosmic possibilities have been examined using various exponential models, notably

inflationary cosmology, BBN constraints, and dynamic system analysis [44, 52, 240]. For that

kind of gravity, f(Q) function reads (we adapt the work of [241] for modified STEGR)

f(Q) = Q+ αQ0(1− e−β
√
Q/Q0), (5.9)

where α, β are free parameters corresponding to additional degrees of freedom and Q0 = 6H2
0

is the present value of Q. We can reduce the number of degrees of freedom by matching first

Friedmann equation (5.7) at the present time (i.e. assuming z = 0)

α = −e
β(−1 + Ωm0)

−1 + eβ − β . (5.10)

Thus, the complexity of this form is just one step more than the standard ΛCDM. The exponential

modified gravity could satisfy stability and validity and not cross the phantom divide line [242].

In order to solve the field equations and obtain the numerical form of the Hubble parameter, we
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use

Ḣ = aH
dH

da
. (5.11)

We will solve the field equation numerically, as already stated, with Mathematica numerical

ODE solver NDSolve. Initial conditions at the vanishing redshift for Ḣ could be therefore set up

(as a cosmographical quantity)

Ḣ0 = −H2
0 (1 + q0), (5.12)

where q0 is the current deceleration parameter, we fix it to q0 = −0.55 [243]. Additionally,

for MCMC, as truths, we assume that the present value of the Hubble parameter is H0 =

69 km/s/Mpc and that matter mass fraction at present is Ωm0 = 0.315± 0.007, following the

observational constraints of Planck2018 [65].

5.3 MCMC Constraints

In this section, we constrain our f(Q) gravity model via observational datasets. To explore the

parameter space, we will be using the MCMC methodology and Python package emcee [214].

5.3.1 Observational Hubble Data (OHD)

To determine the priors and likelihood functions (which are necessary), we use the H(z) dataset

consisting of 31 points from cosmic chronometers described in section 2.5.1. We introduce the

chi-square function as mentioned in equation (2.27) to constrain our modified gravity model.

The likelihood function for MCMC sampling has its usual exponential form L = exp(−χ2/2).

5.3.2 Pantheon SNeIa Sample

We also use the Pantheon dataset to constrain our modified gravity with dark energy, which

consists of 1048 SNeIa (discovered by the Pan-STARRS1 (PS1) Medium Deep Survey, Low z,

SNLS, SDSS, and HST [151]). In this case, we have used the binned Pantheon sample10. The

corresponding chi-square function reads as in equation (2.28). The nuisance parameters in the

Tripp formula [244] µ = mB −MB +αx1−βc+ ∆M + ∆B were retrieved using the novel method

known as BEAMS with Bias Correction (BBC) [245], and the observed distance modulus is

now equal to the difference between the corrected apparent magnitude MB and the absolute

magnitude mB (µ = mB −MB). Additionally, one can define the chi-square function in terms

of the covariance matrix as follows [246]:

χ2
SN = ∆µTC−1∆µ, (5.13)

10https : //github.com/dscolnic/Pantheon/tree/master/Binneddata

https://github.com/dscolnic/Pantheon/tree/master/Binned_data
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where the covariance matrix consists of statistical and systematic uncertainties respectively [247]:

C = Dstat + Csys. (5.14)

In the current work, we assume that the diagonal matrix of statistical uncertainties looks like

Dstat,ii = σ2
µ(zi)

. Besides, systematic uncertainties are derived using the Bias Corrections (BBC)

method, introduced and developed in [151]:

Cij,sys =
K∑
k=1

(
∂µobsi
∂Sk

)(
∂µobsj
∂Sk

)
σ2
Sk
. (5.15)

Indexes {i, j} denote the redshift bins for distance modulus, Sk here denotes the magnitude of

systematic error, σSk is its standard deviation uncertainty.

5.3.3 Baryon Acoustic Oscillations

Consequently, we also use the chi-square function for the BAO dataset as described in section

2.5.2. In addition, we consider that the photon decoupling epoch arises at the redshift [16]

z∗ = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωmh

2)g2 ], (5.16)

where,

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)−0.763
, (5.17)

g2 =
0.560

1 + 21.1(Ωbh2)−1.81
. (5.18)

This dataset was gathered from the works of [200, 210, 248].

We performed the joint analysis for the combined H(z)+SNeIa+BAO by minimizing χ2
H +χ2

SN +

χ2
BAO. The results are, therefore, numerically derived from MCMC trained on H(z), Pantheon,

BAO, and joint datasets. Results are placed in the Table 5.1 for model parameters H0, β and

Ωm0. Furthermore, the 1σ and 2σ likelihood contours for the possible subsets of parameter space

are presented in figure 5.1.

5.3.4 Statistical Evaluation

To evaluate the success of our MCMC analysis, one should perform the statistical evaluation

using the so-called Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC). The first quantity, namely AIC can be expressed as follows [249]:

AIC = χ2
min + 2d. (5.19)
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with d being the number of free parameters in a chosen model. To compare our results with

the well-known ΛCDM model, we are going to use the AIC difference between our modified

gravity model and the ΛCDM ∆AIC = |AICΛCDM −AICMG|. In that case, if ∆AIC < 2, there

is strong evidence in favor of the modified gravity model, while for 4 < ∆AIC ≤ 7 there is little

evidence in favor of the modified gravity model of our consideration. Finally, for the case with

∆AIC > 10, there is practically no evidence in favor of the modified gravity [250]. In addition,

BIC is defined through the relation

BIC = χ2
min + d lnN. (5.20)

Here, N is the number of data points used for MCMC. For BIC, if ∆BIC < 2, there is no strong

evidence against a chosen model that deviates from ΛCDM, if 2 ≤ ∆BIC < 6, there is evidence

against the modified gravity model and finally for ∆BIC > 6, there is strong evidence against

the modified gravity model. We therefore store the χ2
min/AIC/BIC data for the modified gravity

model of our consideration in the Table 5.1. We see that ∆AIC = 1.25 and ∆BIC = 3.01 so our

model can precisely mimic ΛCDM one.

Table 5.1: Best-fit values of model parameters and statistical analysis

Datasets H0 Ωm0 β

Hubble (OHD) 66.9± 3.3 0.320+0.055
−0.070 4.3± 1.9

OHD+SNeIa 68.9± 1.7 0.290+0.028
−0.020 5.3+1.8

−1.0

OHD+SNeIa+BAO 68.9± 1.6 0.292± 0.016 5.6± 1.25

Models χ2
min AIC BIC

ΛCDM 58.700 67.248 76.127

f(Q) 57.616 68.499 79.137
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Figure 5.1: MCMC best fits from H(z) (OHD), Pantheon, and BAO datasets and joint
distribution for exponential f(Q) model. Here ωb = Ωb0 h

2.

5.4 Validity of Cosmological Constraints

Consequently, we plot both statefinder parameter phase portraits, deceleration parameter, and

additionally H(z) as probes of model validity in the cosmological sense in figures 5.2 and 5.3.

Statefinder diagnostics and q(z) are performed only for the joint dataset, since other datasets

show similar behavior. Remarkably, a transition from the deceleration to an acceleration phase

is seen in figure 5.4. A valid interval for q0 is marked as a gray area. As stated already, one

may check the Universe evolutionary scenario using statefinder pairs {r, s} and {r, q}. From the

r − s plane of our model, one could observe that the early Universe was filled with quintessence,
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then passed the ΛCDM phase, and is currently reverting towards the quintessence scenario.

On the other hand, in the r − q plane, it is evident that the Universe once passed through the

ΛCDM phase. However, now that our spacetime is generally filled with quintessential fluid, it is

expected that the future universe will eventually turn to the de-Sitter state (when the Λ term

will fully dominate). The point on quintessential fluid also coincides with MCMC observational

constraints.

Figure 5.2: Evolution of the Hubble parameter and distance modulus for exponential f(Q)
gravity with the best fit values from MCMC.

Figure 5.3: Evolution of statefinder pairs for exponential f(Q) gravity.
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Figure 5.4: Evolution of the deceleration parameter versus redshift z for exponential f(Q)
gravity.

Consequently, we place the numerical solution of Om(z) function for f(Q) model in figure 5.5.

For the sake of comparison, we also plot Om(z) solutions within the classical ΛCDM model and

within ω varying ΛCDM cosmologies. As one could easily notice, for our f(Q) model, Om(z)

shows only Om(z) < Ωm0 behavior in the distant past, which could lead to the presence of

phantom fluid (for more information on the subject, see [251]).

0 1 2 3 4 5

z

0.0

0.2

0.4

0.6

0.8

1.0

Ω
x
(z

)

z
eq

Ωm0

ΩΛ0

Figure 5.5: Evolution of Om(z) function and dimensionless mass density for matter and
effective dark energy for exponential f(Q) gravity, ΛCDM, and ω varying ΛCDM cosmologies.

However, at z ≈ 2, our model transits ΛCDM and has a constantly growing trend. Therefore,

in the near past, the quintessential fluid appears, which converges well with the statefinder

diagnostics and MCMC. Finally, we also analyse both matter and effective dark energy mass

densities for our model to confirm its validity. Corresponding results are plotted in figure 5.5.
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One can easily notice both Ωm0 ∧ΩΛ0 ∈ [0, 1] and their sum always converges to unity, an epoch

of the equality appears at redshift z ≈ 0.35, which is very close to the ΛCDM estimate.

The numerical fitting findings are utilized as input parameters for simulation purposes, enabling

an investigation into the effect of the interaction between the dark sector and the structure

formation process. This investigation is conducted through the implementation of N-body

simulations. The parameters utilized in our computational analysis are presented in Table 5.1.

5.5 N-body Simulations of LSS with Small LBox

As we already remarked, the primary purpose of this chapter is to perform N-body simulations

of the comoving box that contains DM+baryonic matter and dark energy in exponential f(Q)

gravitation and compare our results with the Large Scale Structure of concordance ΛCDM

cosmology. For that aim, we will use the publicly available code ME-GADGET, a modification of

the well-known hydrodynamical N-body code GADGET2. It has been modified for generality to

perform simulations for practically any cosmological model. The code above is described in the

pioneering works of [252, 253], whereas the tests are provided in [254]. This code as an input

needs tables with Hubble flow H/H0 and the deviation of effective gravitational constant from

the Newtonian one Geff/GN (in some models of modified gravity, namely screened ones, such

deviation exists only up to some scale kscreen because of the so-called fifth force). One can find

the effective gravitational constant exact form in [53] as

Geff =
GN
fQ

. (5.21)

The equation above is being numerically solved, assuming appropriate best-fit values for the

free parameters of our model. As one could easily notice, at the very early time (high-z epochs),

f(Q) gravity has Newtonian-like gravitational constant and then, at approximately a ≈ 0.1, Geff

is being separated from GN for our model. Since we have already defined needed inputs for

ME-GADGET code, we could proceed further to fine-tuning our simulation setup.

5.5.1 Simulation Setup

One needs to define various parameters to produce the simulations and initial conditions based on

the second-order Lagrangian Perturbation Theory (namely, 2LPT). We want to obtain the mid-

resolution simulations, and henceforth, particle number is N = 5123 and mesh size is respectively

Nmesh = 2 × 5123. The simulation box has periodic vacuum boundary conditions and sides

with length 10 Mpc/h. Initial conditions were produced with the Simp2LPTic code (see GitHub

repository https://github.com/liambx/Simp2LPTic), and glass files (pre-initial conditions) were

https://github.com/liambx/Simp2LPTic
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generated with the use of ccvt-preic (check https://github.com/liaoshong/ccvt-preic). The

capacity-constrained Voronoi tessellation (CCTV) method is an alternative method to produce

a uniform and isotropic particle distribution to generate pre-initial conditions. More details are

explained in the appendix.
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Figure 5.6: N-body simulations snapshot of overdensity for f(Q) gravity with best fit MCMC
values on different redshifts.

We assumed that the glass tile fraction is unitary since the final configuration can be scaled to

any box size. Moreover, cosmological parameters were borrowed from our MCMC constraints,

discussed earlier: h = H0/100 = 0.689± 0.016 (so-called “little-h”), Ωm0 = 0.292± 0.016, leading

to ΩΛ0 = 0.708, if one will not take into account radiation and massive neutrino species. On

the other hand, baryon mass density equals Ωb = 0.0493 (the relation between total matter

https://github.com/liaoshong/ccvt-preic
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density and baryon mass density decides how many gas particles are present in the simulation).

Moreover, matter power spectrum amplitude at k = 8Mpc/h is assumed to be σ8 = 0.811±0.006.

The initial power spectrum is linear, constructed from the Eisenstein & Hu transfer function

[255] (power spectrum were constructed using code CAMB, see [257]). Initial conditions have been

generated at the redshift z = 10, and we use the spectrum index of scalar perturbations as

ns = 0.9649± 0.0042 obtained from Planck [256].

0 4 8 6 8

h−1Mpc

0

2

4

6

8

10

h
−

1
M

p
c

z = 2

1028 1030

T [Internal Units]

0 4 8 6 8

h−1Mpc

0

2

4

6

8

10

h
−

1
M

p
c

z = 0

1030

T [Internal Units]

0 4 8 6 8

h−1Mpc

0

2

4

6

8

10

h
−

1
M

p
c

z = 2

1025

µ [Internal Units]

0 4 8 6 8

h−1Mpc

0

2

4

6

8

10

h
−

1
M

p
c

z = 0

1025

µ [Internal Units]

Figure 5.7: SPH simulation snapshots of f(Q) gravity for gas temperature T and mean
molecular weight µ.
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5.5.2 Results

The current subsection will discuss the main results obtained from the N-body simulations of

the Large Scale Structure of the Universe. Firstly, we demonstrate the spatial slices of CDM

overdensity δCDM = ρCDM/ρCDM for our f(Q) gravity model with different values of redshift z

in the figure 5.6. In addition to the overdensity measurements, we also show the temperature of

gas T that arises from Smoothed Particle Hydrodynamics (SPH) and mean molecular weight

µ = mHI/m, which defines the relation between mean particle mass and neutral hydrogen particle

mass on the figure 5.7, respectively. As one can easily notice, the DM walls are represented by

the smaller value of mean molecular weight. Besides, temperature maps show the well-known hot

“bubbles” within the Inter-Galactic Medium (IGM) that are formed due to impinging galactic

winds.

Now we investigate the matter power spectrum for our model. For comparison, we are going to

use the ΛCDM cosmology power spectrum, generated with the use of CAMB code11 [257–260].

In order to extract P (k) for some value of redshift within our N-body framework, we used

Python-based code Pylians312 [261].

We consequently compare the matter power spectrum on the figure 5.8 with/without Redshift-

Space Distortions (RSDs) directed along both X, Y and Z axes. As we noticed during numerical

analysis, up to some k near kBox limit for our simulation, P (k) spectrum in Fourier space does

reconstruct non-linear matter power spectrum, given by CAMB, while Redshift-Space Distorted

(RSD) one behaves like the linear matter power spectrum, as expected. Also, it is worth noticing

that the difference between RSD and regular matter power spectrum is bigger for the CDM+Gas

case. Finally, the effect of RSDs in our simulations is almost isotropic, so that ∆(RSD) differs

only by a few percent with the change of RSD direction axis.

5.5.3 Halo Mass Function

Now, we employ the halo mass function (HMF) to demonstrate the relative frequency of dark

matter halos across a range of mass values. That is, it defines the number of halos at a certain

mass. It is a good measure of the structure formation. There is an accepted notion that galaxies

are situated within dark matter halos, and it is valuable to analyze halo statistics for establishing

connections between simulations and observations. First, we built the halo catalog for all of our

snapshots with the use of halo/subhalo structure finder, namely ROCKSTAR (for more information

on the subject, refer to the documentation paper [262]). Consequently, we built the binned

halo mass function, which is based on the values of M200c (the mass of enclosed halo volume

with an energy density 200 times bigger than the critical density of the Universe ρcr). We plot

11Documentation for this code is stored in camb.readthedocs.io
12For installation procedure and full documentation, refer to the pylians3.readthedocs.io

https://camb.readthedocs.io/en/latest/
https://pylians3.readthedocs.io/en/master/
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Figure 5.8: Matter power spectrum with/without RSDs for f(Q) gravity vs. CAMB linear/non-
linear P (k) for ΛCDM. Dashed N-body P (k) represents the CDM-only power spectrum, while
the solid line represents CDM+Gas P (k). Error bars represent Ly α forest observations on high

z.
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the respective results in figure 5.9 with the added Seth-Tormen theoretical prediction for halo

mass function, based on Planck2018 fiducial cosmology and CAMB power spectrum at the z = 0.

Seth-Tormen HMF was computed using the python package pynbody [263].

From the figure 5.9 shown, one could easily notice that, in general, our prediction for halo mass

function from the modified gravity N-body simulation shows values of n that approximately

coincide with the ones that are theoretically predicted by the Seth-Tormen HMF.
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Figure 5.9: Halo mass function for f(Q) gravitation with LBox = 10 Mpc/h and theoretical
prediction for HMF by Seth-Tormen

5.6 LSS with Large LBox: Comparison

We are now going to perform an analysis of N-body simulation for a bigger simulation box size,

namely with Lbox = 100h−1Mpc. In that case, we only differ in force resolution (ε = 3.9 kpc),

while other cosmological parameters are assumed to be the same. At first, we, as usual, plot the

CDM overdensity field for vanishing redshift in figure 5.10.

In addition, we also plot the matter power spectrum for CDM, CDM+baryons in figure 5.11.

As an obvious consequence of a larger box size, one can notice that maximum wavenumber k

grew to kmax ≈ 20 h/Mpc. Even at such big scales, our matter power spectrum, derived from

the corresponding N-body simulation, converges with the theoretical prediction from CAMB code

with up to sub-percent accuracy. As we noticed previously for the small simulation box, the

axis of redshift-space distortions had a very small impact on the matter power spectrum. This

statement also holds for large Lbox.

In the previous section, we discussed the halo mass function for the case with a smaller simulation

box. Now we can discuss the same matter for the larger LBox. As it appears, HMF extracted

from the simulation replicates the Seth-Tormen HMF almost perfectly up to M ≈ 1014M�
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(see figure 5.9). However, at bigger halo masses, our simulation HMF slightly differs from the

theoretical prediction, usually observed in N-body simulations.
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Figure 5.10: Present day snapshot of CDM over density for Lbox = 100h−1Mpc run.

5.6.1 Reduced Bispectrum from 3PCF

Finally, we are going to introduce the so-called reduced bispectrum, which is derived from the

regular bispectrum and matter power spectrum via the following relation, written below

Q =
B

P1P2 + P2P3 + P1P3
, (5.22)

where Pi = Pm(ki). We plot the relation between the bispectrum of large and small cosmological

volumes in figure 5.12. It is easy to notice that for smaller wavenumber (k1 = 5), relation

between Q(k1, k2, k3) for both the cases has a mean value ≈ 1.9 for all bins of angle θ (where its
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maximum value is θ = π, which is the angle between two sides of triangle k1 and k2). In contrast,

when considering a relatively big k1 (in our case, it is k1 = 6h/Mpc), the deviation between the

reduced bispectrum of a large Lbox and that of a small Lbox is small. This can be attributed to

the fact that the range of wavenumbers is shifted towards higher values. Conversely, in the first

scenario, where k1 = 5h/Mpc, the wave numbers were at the limit of the box size for the smaller

simulation, resulting in distorted outcomes and causing the deviation to grow.
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Figure 5.12: Relation of reduced matter power spectrum Q(k1, k2, k3) for both small and large
simulation volumes with 1σ deviation, varying k1 = 2k2.

5.6.2 2PCF for f(Q) gravitation

In addition to the matter power spectrum/reduced bispectrum and halo mass function, we derive

the two-point correlation function (further - just 2PCF) in a real space for CDM halos. Generally,

2PCF is defined as follows

ξ(|x1 − x2|) = 〈δm(x1)δm(x2)〉, (5.23)

where xi is three-dimensional position of an i-th CDM halo and δm is CDM overdensity parameter.

We show the monopole redshift-space distorted two-point correlation functions for both large

and small simulations boxes on the figure 5.13, where we added Quijote simulations [264] 2PCF,

that admits Planck ΛCDM cosmology. We additionally marked BAO bumps for each case with

color-coded dotted lines for completeness. It is obvious, that in the case of a small simulation

box size, the permitted range of R is very small (up to R ≈ 2× 100h−1Mpc) and because of the

small box size, the correlation function is undersampled and does not coincide with the Quijote

one. On the other hand, for LBox = 100h−1Mpc simulation, the correlation function corresponds

to the Quijote one with sub-percent accuracy for the range R ∈ [2 × 100, 101]. Now, we can

proceed to the latest topic of our consideration, namely two-dimensional power spectra.
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Figure 5.13: Monopole redshift-space distorted two point correlation function with LBox =
10/100h−1Mpc for f(Q) modified gravity. In relation, we plot the Quijote simulation correlation
function for the Planck ΛCDM cosmology with a Gpc-wide box. Also, for each case, we display

the scale at which the BAO bump occurs.

5.6.3 2D matter power spectrum

We plot the two-dimensional matter power spectrum for small and large boxes in figure 5.14

with/without redshift-space distortions. As one can easily notice, on the plots with RSDs,

the so-called “Finger of God” effect is observed13, which arises because of the large scatter of

galaxies’ recessional velocities at the small scales. Also, it is worth informing that 2D matter

power spectra for both box sizes are similar. Now, since we discussed all of the topics for both

simulation volumes within the modified theory of gravitation, we can proceed to the concluding

remarks on the key findings within our study.

5.7 Conclusions

One can describe gravity using several geometric bases. The STEGR, which attributes gravity

to the non-metricity tensor, has recently drawn much attention. A fascinating method for

studying modified gravity is f(Q) gravity, an extension of STGR. This study examined large-

scale structure formation observables using N-body simulations of f(Q) gravitation for the first

time to assess the theory’s validity in the cosmological context. Simulations were run with the

use of ME-GADGET code, modification of the widely known GADGET-2 code for two simulation

boxes, namely LBox = 10h−1Mpc and LBox = 100h−1Mpc to decide on the optimal box size and

compare the results for both simulation volumes.

13At smaller scales, there is a significant scattering in the velocity of galaxies. This dispersion, in addition to
the cosmological redshift, contributes to a broader distribution of redshift values. Consequently, the elongation of
the galaxy distribution along the line of sight occurs, leading to a weakened correlation between galaxies. This
phenomenon is commonly referred to as the Finger of God effect.
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Figure 5.14: Two-dimensional matter power spectrum for small and large simulations within
f(Q) gravitation with/without RSDs.

We first performed Markov Chain Monte Carlo (MCMC) analysis for our exponential f(Q)

model to obtain best-fit values of free parameters in section 5.3. To test the fits provided by

MCMC, we obtained theoretical predictions for the dimensionless mass densities Ωm0 and ΩΛ0,

the Hubble parameter H(z), deceleration parameter q(z) and statefinder pair {r, s}, Om(z)

parameter, placing graphical results on the figures 5.3, 5.4, and 5.5, respectively. As we noticed,

the Hubble parameter respected low redshift observations, and the deceleration parameter

provided correct values of q0 and transitional redshift within the constrained range. Moreover,

statefinder diagnostics predict that the Universe was initially in the Quintessence phase, passing

the ΛCDM state and returning to Quintessence again. Finally, Om(z) demonstrated that at the

high-z range, our Universe was filled with phantom fluid, passed ΛCDM EoS at z ≈ 2, and now

again has a phantom equation of state. After theoretical predictions, we started working on the

N-body simulations whose primary findings corresponding to the quantities of interest are as

follows:

� Three-dimensional matter power spectrum monopole Pk: This was the first probe of a
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large-scale structure we studied in the present work. We plotted non-linear matter power

spectra (with/without RSDs) for both small and large simulation volumes on the figures

5.8 and 5.11, respectively, where we plotted CAMB linear/non-linear ΛCDM power spectra

and observational data from Ly-α forest for the sake of comparison. One can notice that

within the permitted range of wavenumber k (limited by mean inter-particle separation

and simulation box length), non-linear matter power spectra from small/large N-body

simulations coincide with the CAMB one. However, for LBox = 10h−1Mpc, non-linear Pk

coincide with linear CAMB prediction too early because of the small box size.

� Halo Mass Function: the second significant quantity that can solely conclude the validity

of a simulation. We place Seth-Tormen’s theoretical HMF and the ones extracted from

our N-body simulations in figure 5.9. As we found, our small box size cannot provide

sufficient halo masses and reproduce viable halo mass function at all mass ranges up to

the resolution limit, while large simulation follows Seth-Tormen prediction very precisely

within the large span of halo masses log10M/M� ∈ [10, 14], but gets slightly smaller than

the theoretical prediction for higher masses.

� Two-Point Correlation Function monopole ξ0(r): we also investigated the redshift-space dis-

torted correlation function monopoles in figure 5.13, where Quijote simulations correlation

function is plotted to compare our results to fiducial ΛCDM cosmology. As remarked during

numerical analysis, small box simulation fails to predict correct CDM halo correlations.

On the other hand, in the range, R ∈ [2× 100, 101]h−1Mpc large box simulation precisely

reconstructs Quijote data.

� Reduced bispectrum Q(k1, k2, k3): for the reduced bispectra case, we plotted the relation

(QLarge −QSmall)/QSmall with different k1 values (which acts as a triangle side length) in

figure 5.12. We observed that this relation is generally close to ≈ 1.5 across all bins of

the angle between k1 and k2 (namely θ) if one assumes the value of k1 that is not on the

resolution limit for both cases (while it is worth to notice that we only adopted the case,

where k2 = 2k1).

� Two-dimensional matter power spectrum Pm(k‖, k⊥): This is the last quantity extracted

from our N-body simulations. We plotted 2D power spectra for both simulations in figure

5.14 with/without redshift-space distortions. From the plots, we noticed the so-called

“Finger of God” effect in the RSD case because of the elongated positions of CDM halos.

In conclusion, considering all the above points, the small simulation volume experiment failed to

recreate the matter power spectrum and correlation function correctly. However, the second one,

namely more extensive N-body simulation provided both viable 3D/2D matter power spectrum,

correlation function, and halo mass functions and, therefore, we can consider exponential f(Q)

model to be a viable substitution of ΛCDM cosmology, since it not only satisfies many large
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scale structure constraints mentioned above but also provide correct distance modulus up to

high redshift values, where ΛCDM fails.

In future works, it will be interesting to investigate this modified gravity model using hybrid N-

body and SPH simulations that incorporate supernova/AGN feedback, star and galaxy formation,

jets, etc. using code GIZMO that allows the use of tabulated Hubble parameter and the effective

gravitational constant. It will, however, require a lot more computational resources (on the scale

of millions of CPU hours).



Chapter 6

Conclusions and Future Perspectives

Let us take a moment to summarise the findings brought to light by this thesis. The primary

objective of this thesis is to examine the development of dark energy models to assess the

compatibility of our cosmological theories with observational evidence, intending further to

understand the phenomenon of accelerated expansion in the Universe. We need access to a

diverse range of independent methods to evaluate and validate our theories and models.

In chapter 1, we discussed the mathematical notations, fundamental elements, applications in

cosmology, fundamental theories of gravity, and cosmological observations. Aside from this, it

is well-known that the fundamental theory of gravity, like general relativity, fails to address

certain issues, such as fine-tuning and the flatness problem. Therefore, its modifications and

generalizations are more effective in addressing these concerns, and the chapter concludes with a

summary of the modified gravity theories.

Let us discuss the results obtained in this dissertation. In chapter 2, we developed a dark energy

model using the effective equation of state in f(R, T ) gravity. Since the precise form of viscosity

is unknown, we considered a parametrized bulk viscosity consisting of three linear terms. The

first term is a constant, while the second and third are proportional to the Hubble parameter

and ä
ȧ , respectively. Using the observational datasets: 57 points of Hubble data and 580 points of

Union 2.1 supernovae, we examined the model’s viability and discussed the evolution of various

cosmological parameters. We observed a transition in the deceleration parameter from positive to

negative at z = 0.84 and z = 0.62 with q = −0.78 and q = −0.68 for k4 = −0.43 and k4 = 0.49,

respectively. It is also seen that as z → −1, ω → −1, the Universe approaches ΛCDM in the near

future. Additionally, we found that the incorporation of bulk viscosity supported a decelerated

expansion in the past and an accelerated expansion in the present. We presented the validation

tests for our model using statefinder diagnostics and energy conditions. We discovered that

the current paradigm satisfies the NEC and DEC but violates the SEC when describing cosmic

acceleration. Moreover, statefinder diagnostics allowed us to observe our model’s deviation from
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the ΛCDM. According to the r − s plane, the current model lies in the Chaplygin gas region

and resembles the ΛCDM or may be quintessence in the future. This indicates that the current

model is distinct from the ΛCDM at present.

Consideration of non-minimal coupling of the non-metricity Q and the trace of the energy-

momentum tensor T , i.e., f(Q, T ) gravity, is another way to go beyond GR. Chapter 3 examined

the f(Q, T ) theory, according to which dark energy is solely geometric. However, there is

no doubt that the coupling should have a positive value to reproduce the solar system scale.

Employing MCMC techniques, we have addressed f(Q, T ) gravity using f(Q, T ) = ξ Qn + b T in

a matter-dominated Universe. The 57 Hubble data points and 580 points of Union 2.1 supernovae

data points were used to reconstruct the dark sector as a function of redshift. The deceleration

parameter appears negative, which is consistent with the current scenario of an accelerating

Universe. The statefinder parameters exhibit a quintessence phase and converge to ΛCDM

in the future using the constrained values of the model parameters n and b derived from the

datasets. However, the linear model f(Q, T ) = ξ Q + b T resembles the power-law expansion

model a(t) ∝ (B t+ c1)1/B, where B = 24π+3b
16π+3b . One can notice that the model behaves similar

to the standard lore of a(t) ∝ t2/3 with a constant deceleration of q = 0.5. Hence, it reveals that

the model parameter b contributes less to the evolution, suggesting that the linear trace does

not affect the evolution much.

To study more on the contribution of the linear trace, the parameterized equation of state in

f(Q, T ) gravity is considered in chapter 4, which represents an additional theoretical scenario

beyond GR. The Pantheon sample was used to constrain the parameter space {b,m, n}, as the

functional form f includes b as a model parameter, while m and n are the parameters of the

considered parametrized equation of state. The bounds on the parameter space for our analysis

are b = 0.2+2.7
−2.9, m = 0.47+0.27

−0.21, and n = 3.2+1.8
−2.0. Further, we focus on the neighborhood of b = 0,

which seeks to identify any deviation from GR. It is seen that the approach does not result in a

statistically significant difference between the marginalized distributions of parameters m and n.

Lastly, we observed the behavior of the deceleration parameter, which demonstrates a transition

from deceleration to acceleration with q0 = −0.52. In addition, value of the EoS parameter at

z = 0 is ω0 = −0.68+0.10
−0.11, which supports a phase of acceleration. Henceforth, to the cosmic

evidence, we must ensure that the f(Q, T ) theory is stable to perform the perturbation level

difference in approach to ΛCDM.

In chapter 5, we focused on the extension of the newly proposed geometrical framework of

GR, named as the f(Q) gravity. We proposed and investigated the structure formation and

viable cosmology for exponential f(Q) gravity. However, we provided cosmological constraints

for the model using Hubble data, a reduced Pantheon sample, and the BAO dataset. In order

to compare our model with ΛCDM model results, we conducted AIC and BIC analysis. We

obtained that there is strong evidence in favor of our f(Q) gravity model. We observed that
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the deceleration parameter provided a consistent value of q0 and a transition within the allowed

range. We discovered that the statefinder diagnostics initially predicted quintessence behavior,

then the ΛCDM state, and then quintessence behavior again.

After theoretical predictions, N-body simulations were conducted. We investigated the 3D

monopole power-spectrum using small/large N-body simulations, which coincides with CAMB

one within the permitted range of wavenumber, whereas for Lbox = 10h−1Mpc, non-linear Pk

coincides with linear CAMB prediction too early due to the small box size. Then, we moved

on to the second significant number, the Halo mass function, that alone can determine the

viability of simulations. We found that the small box size could not provide enough halo masses

to produce a valid halo mass function at all mass ranges up to the resolution limit. In contrast,

the large simulation follows the Seth-Tormen prediction precisely within the large span of halo

masses log10M/M� ∈ [10, 14] but gets slightly smaller than the theoretical prediction at higher

masses. In addition, we examined the redshift-space distorted correlation function monopoles,

where the correlation function from the Quijote simulations is plotted in order to compare our

results to fiducial cosmology. Observations indicate that small box simulation fails to predict

CDM halo correlations accurately. In contrast, R ∈ [2× 100, 101]h−1Mpc large box simulation

precisely reconstructs Quijote data in the range. Moreover, 2D power spectra were depicted for

both simulations with and without redshift-space distortions. We observed the so-called “Finger

of God” effect in the RSD case due to the elongated CDM halo positions.

This chapter concludes that the small simulation volume experiment did not recreate the matter

power spectrum and correlation function. Nevertheless, a realistic 3D/2D matter power spectrum,

correlation function, and halo mass function were obtained from the second, more extended

N-body simulation. The exponential f(Q) model may therefore be viewed as an alternative to

the fiducial ΛCDM cosmology, as it not only satisfies the above-mentioned large-scale structure

constraints but also provides correct distance modulus up to high redshift values, where ΛCDM

fails.

As observed, the theories of gravitational extension and modification, which effectively incorporate

advanced observations and attract the cosmological community’s interest, do not seem to alter

the foundations of GR. Gravity is still classical and is related to the geometry of spacetime.

These findings indicate that we are not at an endpoint. In the future, several large-scale surveys,

such as the dark energy spectroscopic instrument (DESI), Square kilometer array (SKA), and

the large-aperture synoptic survey telescope (LSST), will cover the entire redshift range in which

accelerated expansion played a significant role over the next decade. We will use the newly

collected observational data to investigate the H0 and σ8 tensions in these modified theories of

gravity. In anticipation of having actual data, forecast analysis enhances our understanding of

cosmology.
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[138] C. Maraston, G. Strömbäck, Mon. Not. R. Astron. Soc. 418, 2785 (2011).

[139] C. Zhang et al., Res. Astron. Astrophys. 14, 1221 (2014).

[140] M. Moresco, Mon. Not. R. Astron. Soc. 450, L16 (2015).

[141] D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010).

[142] G. S. Sharov, V. O. Vasiliev, Mathematical Modelling and Geometry 6, 1 (2018).



References 103

[143] H. Yu, B. Ratra, F-Y Wang, Astrophys. J. 856, 3 (2018).

[144] J. A. Holtzman et al., Astron. J. 136, 2306 (2008); R. Kessler et al., ApJS. 185, 32 (2009).

[145] J. Leaman et al., Mon. Not. R. Astron. Soc. 412, 1419 (2011); W. D. Li et al., Mon. Not.

R. Astron. Soc. 412, 1441 (2011).

[146] G. Folatelli et al., Astron. J. 139, 120 (2010); G. Folatelli et al., Astron. J. 139 , 519

(2010).

[147] Y. Copin et al., New Astronomy Rev. 50, 436 (2006); R. A. Scalzo et al., Astrophys. J.

713, 1073 (2009).

[148] P. Astier et al., Astron. Astrophys. 447, 31 (2006); S. Baumont et al., Astron. Astrophys.

491, 567 (2008).

[149] A. G. Riess et al., Astrophys. J. 607, 665 (2004); A. G. Riess et al., Astrophys. J. 659, 98

(2007).

[150] M. Visser, Class. Quantum Grav. 21, 2603 (2004).

[151] D. M. Scolnic et al., Astrophys. J. 859, 101 (2018).

[152] P. J. E. Peebles, J. T. Yu, Astrophys. J. 162, 815 (1970).

[153] U. Alam, V. Sahni, A. A. Starobinsky, J. Cosmol. Astropart. Phys. 06, 008 (2004).

[154] J. Johnson et al., J. Cosmol. Astropart. Phys. 0409, 007 (2004).

[155] M. Colless et al., arXiv:astro-ph/0306581, (2003).

[156] D. G. York et al., Astrophys. J. 120, 1579 (2000); M. Tegmark et al., Phys. Rev. D 74,

123507 (2006).

[157] http://www.sdss3.org/dr8/.

[158] C. Eckart, Phys. Rev. 58, 919 (1940).

[159] H. Okumura, F. Yonezawa, Physica A: Statistical Mechanics and its Applications, 321,

207-219 (2003).

[160] I. Brevik et al., Int. J. Mod. Phys. D 26, 1730024 (2017).

[161] M. Sharif, Z. Yousaf, J. Cosmol. Astropart. Phys. 06, 019 (2014).

[162] S. D. Odintsov, D. S.-C. Gomez, G.S. Sharov, Phys. Rev. D 101, 044010 (2020).

[163] C. P. Singh, P. Kumar, Eur. Phys. J. C 74, 3070 (2014).

[164] W. Misner, Astrophys. J. 151, 431 (1968).



References 104

[165] T. Padmanabhan, S. Chitre, Phys. Lett. A 120, 433 (1987).

[166] B. Cheng, Phys. Lett. A 160, 329 (1991).

[167] G. C. Samanta, R. Myrzakulov, Chin. J. Phys. 55, 1044 (2017).

[168] S. Davood Sadatian, EPL 126, 30004 (2019).

[169] J. Ren, X. H. Meng, Phys. Lett. B 633, 1 (2006).

[170] W. A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985).

[171] W. Israel, Ann. Phy. 100, 310 (1976).

[172] W. Israel, J. M. Stewart, Ann. Phys. 118, 341 (1979).

[173] A. Sasidharan, T. K. Mathew, Eur. Phys. J. C. 75, 348 (2015).

[174] T. Harko, P. H. R. S. Moreas, Phys. Rev. D 101, 108501 (2020).

[175] M. R. Setare, M. J. S Houndjo, Can. J. Phys. 91, 260-267 (2013).

[176] M. Sharif, S. Rani, Mod. Phys. Lett. A 27, 1350118 (2013).

[177] I. Brevik, Entropy 14, 2302-2310 (2012).

[178] A. A. Mamon, S. Das, Eur. Phys. J. C 77, 495 (2017).

[179] J. R. Garza et al., Eur. Phys. J. C 79, 890 (2019).

[180] R. A. Knop et al., Astrophys. J. 598, 102 (2003).

[181] E. E. O. Ishida et al., Astropart. Phys. 28, 547 (2008).

[182] J. V. Cunha, Phys. Rev. D 79, 047301 (2009).

[183] S. Rani et al., J. Cosmol. Astropart. Phys. 1503, 031 (2015).

[184] C. Barcelo, M. Visser, Int. J. Mod. Phys. D 11, 1553 (2002).

[185] P. H. R. S. Moraes, P. K. Sahoo, Eur. Phys. J. C 77, 480 (2017).

[186] V. Sahni et al., J. Exp. Theor. Phys. 77, 201–206, (2003).

[187] U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057, (2003).

[188] A. Pasqua et al., J. Cosmol. Astropart. Phys. 04, 015 (2017).

[189] B. Wu Ya et al., Gen. Relativ. Gravity 39, 653 (2007).

[190] D. J. Liu, W.Z. Liu, Phys. Rev. D 77, 027301 (2008).



References 105

[191] J-Zhao Qi et al., Res. Astron. Astrophys. 18, 066 (2018).

[192] A. Shafieloo, V. Sahni, A. A. Starobinsky, Phys. Rev. D 80, 101301 (2009).

[193] N. Suzuki et al., Astrophys. J. 746, 85 (2012).

[194] R. Nagpal et al., Eur. Phys. J. C 78, 946 (2018).

[195] N. Padmanabhan et al., Mon. Not. Roy. Astron. Soc. 427, 2132 (2012).

[196] F. Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011).

[197] BOSS collaboration, L. Anderson et al., Mon. Not. Roy. Astron. Soc. 441, 24 (2014).

[198] C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012).

[199] M. Vargas dos Santos, R. R. R. Reis, J. Cosmol. Astropart. Phys. 1602, 066 (2016).

[200] R. Giostri et al., J. Cosmol. Astropart. Phys. 1203, 027 (2012).

[201] S. Nojiri et al., Phys. Rept. 692, 1 (2017).

[202] P. K. Sahoo, S. Bhattacharjee, New Astronomy 77, 101351 (2020); R. Zaregonbadi, et

al., Phys. Rev. D 94, 084052 (2016); G. Sun, Y. C. Huang, Int. J. Mod. Phys. D 25,

1650038 (2016); P. H. R. S. Moraes et al. J. Cosm. Astrop. Phys., 06, 005 (2016); P. H.

R. S. Moraes, P.K. Sahoo, Eur. Phys. J. C 79, 677 (2019); E. Elizalde, M. Khurshudyan,

Phys. Rev. D 99, 024051 (2019).

[203] S. Bhattacharjee, P. K. Sahoo, Eur. Phys. J. C 80, 289 (2020).

[204] A. H. Almada et al. Phys. Rev. D 101, 063516 (2020).

[205] O. Akarsu et al. Eur. Phys. J. C 79, 846 (2019).

[206] S. Kumar, Mon. Not. Roy. Astron. Soc. 422, 2532 (2012).

[207] J. Albert et al. [SNAP Collaboration]: arXiv:0507458; J. Albert et al. [SNAP Collaboration]:

arXiv:0507459.

[208] J. Z. Yang et al., Eur. Phys. J. C 81, 111 (2021).

[209] A. Najera, A. Fajardo, J. Cosm. Astrop. Phys. 03, 020 (2022).

[210] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).

[211] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).

[212] Z. Chang et al., Chin. Phys. C 43, 125102 (2019).

[213] A. Mukherjee, Mon. Not. R. Astron. Soc. 460, 273 (2016).



References 106

[214] D. F. Mackey et al., Publ. Astron. Soc. Pac. 125, 306 (2013).

[215] O. Farooq, B. Ratra, Astrophys. J. 766, L7 (2013).

[216] J. V. Cunha, J. A. S. Lima, Mon. Not. R. Astron. Soc. 390, 210 (2008).

[217] C. Gruber, O. Luongo, Phys. Rev. D 89, 103506 (2014).

[218] S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167-321 (2011).

[219] M. Hohmann, Phys. Rev. D 104, 124077 (2021).

[220] N. Dimakis et al., Phys. Rev. D 106, 043509 (2022).

[221] R. D’Agostino, R.C. Nunes, Phys. Rev. D 106, 124053 (2022).

[222] J. Ferreira et al., Phys. Rev. D 105, 123531 (2022).

[223] F. K. Anagnostopoulos, S. Basilakos, E. N. Saridakis, Phys. Lett. B 822, 136634, (2021).

[224] L. Atayde, N. Frusciante, Phys. Rev. D 104, 064052 (2021).

[225] I. S. Albuquerque, N. Frusciante, Phys. Dark Univ. 35, 100980 (2022).

[226] W. Wang, H. Chen, T. Katsuragawa, Phys. Rev. D 105, 024060 (2022).

[227] F. Esposito et al., Phys. Rev. D 105, 084061 (2022).

[228] F. Hassani, L. Lombriser, Mon. Not. R. Astron. Soc. 497, 1885 (2020).

[229] C. Wilson, R. Bean, Phys. Rev. D 107, 124008 (2023).

[230] J. Lee et al., Astrophys. J. 945, 15 (2023).

[231] P. Drozda et al., Phys. Rev. D 106, 043513 (2022).

[232] S. Gupta et al., Phys. Rev. D 105, 043538 (2022).

[233] E. Puchwein, M. Baldi, V. Springel, Mon. Not. R. Astron. Soc. 436, 348 (2013).

[234] C. Arnold, V. Springel, E. Puchwein, Mon. Not. R. Astron. Soc. 462, 1530 (2016).

[235] C. Giocoli, M. Baldi, L. Moscardini, Mon. Not. R. Astron. Soc. 481, 2813 (2018).

[236] C-Z. Ruan et al., J. Cosmol. Astropart. Phys. 05, 018 (2022).

[237] J. Zhang et al., Phys. Rev. D 98, 103530 (2018).

[238] Y. Huang et al., Phys. Rev. D 106, 064047 (2022).

[239] S. Chen et al., Astrophys. J. 951, 64 (2023).



References 107

[240] K. F. Anagnostopoulos et al., Eur. Phys. J. C 83, 58 (2023).

[241] Eric V. Linder et al., Phys. Rev. D 81, 127301 (2010).

[242] S. Arora, P.K. Sahoo, Ann. Phys. 534, 2200233 (2022).

[243] M. J. Reid, D. W. Pesce, A. G. Riess, Astrophys. J. Lett. 886, L27 (2019).

[244] R. Tripp, Astron. Astrophys. 331, 815-820, (1998).

[245] R. Kessler, D. Scolnic, Astrophys. J. 836, 56, (2017).

[246] H. K. Deng, H. Wei, Eur. Phys. J. C 78, 755 (2018).

[247] A. Conley et al., ApJS 192, 1 (2011).

[248] S. Basilakos, A. Pouri, Mon. Not. R. Astron. Soc. 423, 3761, (2012).

[249] H. Akaike, IEEE Transactions on Automatic Control 19, 716 (1974).

[250] A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74, (2007).

[251] B. Mostaghel, H. Moshafi, S. M. S. Movahed, Eur. Phys. J. C 77, 541, (2017).

[252] R. An et al., Mon. Not. R. Astron. Soc. 489, 297 (2019).

[253] J. Zhang et al., Astrophys. J. Lett. 875, L11 (2019).

[254] J. Zhang et al., Phys. Rev. D 98, 103530 (2018).

[255] D. J. Eisenstein, W. Hu, Astrophys. J. 496, 605-614 (1998).

[256] Y. Akrami et al., Astron. Astrophys. 641, A10 (2020).

[257] A. Lewis, A. Challinor, CAMB: Code for Anisotropies in the Microwave Background,

Astrophysics Source Code Library, record ascl:1102.026, (2011).

[258] A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002).

[259] A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473-476 (2000).

[260] C. Howlett, A. Lewis, A. Hall, J. Cosmol. Astropart. Phys. 1204, 027 (2012).

[261] F. Villaescusa-Navarro, Pylians: Python libraries for the analysis of numerical simulations,

Astrophysics Source Code Library, record ascl:1811.008, (2018).

[262] P. S. Behroozi, R. H. Wechsler, H-Yi Wu, Astrophys. J. 762, 109 (2013).

[263] A. Pontzen et al., pynbody: N-Body/SPH analysis for python, Astrophysics Source Code

Library, record ascl:1305.002, (2013).



References 108

[264] V. N. Francisco et al., ApJS, 250, 2 (2020).

[265] D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010).

[266] E. Gaztaaga, A. Cabre, L. Hui, Mon. Not. Roy. Astron. Soc. 399, 1663 (2009).

[267] J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005).

[268] A. Oka et al., Mon. Not. Roy. Astron. Soc. 439, 2515 (2014).

[269] Y. Wang et al., Mon. Not. Roy. Astron. Soc. 469, 3762 (2017).

[270] M. Moresco et al., J. Cosmol. Astropart. Phys. 08, 006 (2012).

[271] C. H. Chuang, Y. Wang, Mon. Not. Roy. Astron. Soc. 435, 255 (2013).

[272] C. Zhang et al., Research in Astron. and Astrop. 14, 1221 (2014).

[273] S. Alam et al., Mon. Not. Roy. Astron. Soc. 470, 2617 (2017).

[274] C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012).

[275] M. Moresco et al., J. Cosmol. Astropart. Phys. 05, 014 (2016).

[276] A.L. Ratsimbazafy et al., Mon. Not. Roy. Astron. Soc. 467, 3239 (2017).

[277] C. H. Chuang et al., Mon. Not. Roy. Astron. Soc. 433, 3559 (2013).

[278] L. Anderson et al., Mon. Not. Roy. Astron. Soc. 441, 24 (2014).

[279] N. G. Busca et al., Astron. Astrop. 552, A96 (2013).

[280] J. E. Bautista et al., Astron. Astrophys. 603, A12 (2017).

[281] T. Delubac et al., Astron. Astrophys. 574, A59 (2015).

[282] A. Font-Ribera et al., J. Cosmol. Astropart. Phys. 05, 027 (2014).

[283] M. Moresco, Mon. Not. Roy. Astron. Soc.: Letters. 450, L16 (2015).

[284] M. Baldi et al., Mon. Not. Roy. Astron. Soc.: Letters. 403, 1684 (2010).

[285] S. Liao, Mon. Not. Roy. Astron. Soc.: Letters. 481, 3750 (2018).

[286] D. Polarski, A. A. Starobinsky, H. Giacomini, J. Cosmol. Astropart. Phys. 12, 037 (2016).

[287] L. Xu, Phys. Rev. D 88, 084032 (2013).

[288] L. Kazantzidis, L. Perivolaropoulos, Phys. Rev. D 97, 103503 (2018).

[289] B. Ryden, Introduction to Cosmology, Cambridge University Press, (2017).



Appendices

ME-GADGET

When considering the simulation technique, it is crucial to acknowledge four significant distinctions

from the ΛCDM simulation [284]. Firstly, the expansion rate of the Universe, denoted as H(a),

shall be modified accordingly. Secondly, the interaction of energy exchange between dark matter

and dark energy, as well as the mass of the simulated particles that represent the energy density of

dark matter, ought to be modified in accordance with the scale factor. Thirdly, in the simulation,

the particles experience an increase in drag force due to their interaction with the background

dark energy field. Lastly, the additional gravitational force caused by the perturbation of the

dark energy field can be treated as an effective gravitational constant. As a result, the DM

particles in the simulations will experience an additional force, also called the fifth force. The

fifth force is caused by the perturbation of DE. Hence, the fifth force can be understood as a

modification to the Poisson equation in harmonic space, as computed by the modified CAMB.

These four modifications were carried out in the original N-body simulation code GADGET2,

resulting in a modified version referred to as ME-GADGET.

CCVT Algorithm

The methodology involves initializing a random distribution of Np particles within the designated

region R, followed by an iterative relaxation process to achieve a Centroidal Voronoi Tessellation

(CCVT) distribution [285]. To satisfy the first constraint of the CCVT distribution, we use Ns

spatial points to uniformly sample the region R and assign c = Ns/Np of them to each particle.

Subsequently, a fraction of these points is allocated to each particle. Using this approach, an

assignment A is generated where each particle is allocated an equal number of spatial locations,

denoted as the capacity c for every particle. In the subsequent relaxing phase, the capacity of

each particle remains constant while solely altering the specific assignment. It should be noted

that in the first assignment, spatial locations can be arbitrarily allocated to particles, provided

that each particle receives an equal capacity. In order to accelerate the process of relaxing, it
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is advisable to employ an initial assignment that is compact based on the distance between

particles in spatial points.

Empirical evidence has demonstrated that the CCVT distribution is associated with the minimal

value of the energy function, that is

E =
∑
i∈Ns
|xi − rj=A(i)|2, (6.1)

where rj and xi are the coordinates of the j − th particle and i− th spatial point respectively.

The assignment function A(i) tells us the index of the particle that the i− th spatial point is

assigned to. Hence, the relaxing process can be understood as minimizing the energy function

associated with the system comprising particles and spatial points. It should be noted that

the energy function computation can readily accommodate the periodic boundary condition.

Consequently, the CCVT configuration possesses periodicity and can be seamlessly employed in

cosmological simulations.

Tools of Large-Scale Structure

This section describes the theoretical frameworks that provide the link between the current

cosmological model and observed structure in the present day Universe [289]. Consider some

component of the Universe whose energy density ρ(~r, t) is a function of position as well as time.

At a given t, the spatially averaged energy density is

ρ(t) =
1

V

∫
V
ρ(~r, t)d3r. (6.2)

The volume V over which we are averaging must be large compared to the size of the biggest

structure in the Universe. It is useful to define dimensionless density fluctuations

δ(~r, t) =
ρ(~r, t)− ρ(t)

ρ(t)
. (6.3)

The value of δ is thus negative in underdense regions and positive in overdense regions.

An attempt to describe the physics of structure formation is concerned with the statistical rather

than the individual properties of the distribution of density perturbations. We can expand the

dimensionless density enhancement at some position ~r as a three-dimensional Fourier series

defined as

δ(~r) =
V

(2π)3

∫
δ~ke
−i~k.~rd3k, (6.4)
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where the individual Fourier components δ~k are given by

δ~k =
1

V

∫
δ(~r)ei

~k.~rd3k. (6.5)

When conducting the Fourier transform, the function δ(~r) is decomposed into an infinite number

of sine waves, each with comoving wavenumber ~k and comoving wavelength λ = 2π
k . When

|δ~k| � 1, each Fourier component obeys the perturbation equation. In this scenario, the

perturbation equation for gravity governed by the function f(Q) is employed.

The power spectrum is defined as the mean square of the Fourier components, that is

P (k) = 〈|δ~k|
2〉, (6.6)

where the average is taken over all possible orientations of the wavenumber ~k.

The most effective approach for identifying low-amplitude overdensities on a spatial scale of

160 Mpc involves analyzing the correlation function of galaxies. The correlation function ξ(r)

is a quantitative measure indicating the expected number of probable galaxies to be observed

inside a certain infinitesimal volume dV . The expected dN is given by the relation

dN = ng [1 + ξ(r)] dV, (6.7)

where ng is the average number of galaxies at the present day. So, the correlation function ξ(r)

is the Fourier transform of the power spectrum P (k)

ξ(r) =
V

(2π)3

∫
P (k)e−i

~k.~rd3k. (6.8)

Redshift-Space Distortion Effect

Redshift-space distortions (RSD) are a phenomenon in observational cosmology where the spatial

distribution of galaxies appears distorted when their positions are viewed as a function of their

redshift in contrast to their distances [286–288]. The distribution of galaxies in observations is

known to deviate from that in real space due to the peculiar velocity of each galaxy, resulting

in the redshift space distortion (RSD) phenomenon. Since we cannot calculate the percentage

of the measured velocity that arises from the Hubble flow or from the peculiar velocity, the

resulting distance measurement becomes inaccurate by a certain value, denoted as ∆D, that is

D =
vHubble + vpec

H0
= Dreal + ∆D. (6.9)
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Therefore, it is necessary to examine the disparity in the power spectrum between actual space

and redshift space in both three-dimensional (3D) and two-dimensional (2D) contexts. The

Pylians python package is employed to compute the overdensity of dark matter, both with and

without redshift-space distortions (RSD).

Datasets

z H(z) σH Ref.

0.24 79.69 2.99 [266]

0.30 81.7 6.22 [268]

0.31 78.18 4.74 [269]

0.34 83.8 3.66 [266]

0.35 82.7 9.1 [271]

0.36 79.94 3.38 [269]

0.38 81.5 1.9 [273]

0.40 82.04 2.03 [269]

0.43 86.45 3.97 [266]

0.44 82.6 7.8 [274]

0.44 84.81 1.83 [269]

0.48 87.79 2.03 [269]

0.51 90.4 1.9 [273]

0.52 94.35 2.64 [269]

0.56 93.34 2.3 [269]

0.57 87.6 7.8 [277]

0.57 96.8 3.4 [278]

0.59 98.48 3.18 [269]

0.60 87.9 6.1 [274]

0.61 97.3 2.1 [273]

0.64 98.82 2.98 [269]

0.73 97.3 7.0 [274]

2.30 224 8.6 [279]

2.33 224 8 [280]

2.34 222 8.5 [281]

2.36 226 9.3 [282]

Details of H(z) dataset: 26 points of Hubble parameter values H(z) with errors σH from the
BAO and other methods
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z H(z) σH Ref.

0.070 69 19.6 [265]

0.90 69 12 [267]

0.120 68.6 26.2 [265]

0.170 83 8 [267]

0.1791 75 4 [270]

0.1993 75 5 [270]

0.200 72.9 29.6 [272]

0.270 77 14 [267]

0.280 88.8 36.6 [272]

0.3519 83 14 [270]

0.3802 83 13.5 [275]

0.400 95 17 [267]

0.4004 77 10.2 [275]

0.4247 87.1 11.2 [275]

0.4497 92.8 12.9 [275]

0.470 89 34 [276]

0.4783 80.9 9 [275]

0.480 97 62 [265]

0.593 104 13 [270]

0.6797 92 8 [270]

0.7812 105 12 [270]

0.8754 125 17 [270]

0.880 90 40 [265]

0.900 117 23 [267]

1.037 154 20 [270]

1.300 168 17 [267]

1.363 160 33.6 [283]

1.430 177 18 [267]

1.530 140 14 [267]

1.750 202 40 [267]

1.965 186.5 50.4 [283]

Details of H(z) dataset: 31 points of Hubble parameter values H(z) with errors σH from the
differential age method
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zBAO 0.106 0.2 0.35 0.44 0.6 0.73
dA(z∗)
Dv(z) 30.95± 1.46 17.55± 0.60 10.11± 0.37 8.44± 0.67 6.69± 0.33 5.45± 0.31

Measurements of BAO observable for MCMC sampling procedure
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