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Abstract

In this thesis we study a class of operators namely discrete maximal operator, discrete singular
operator and commutator of discrete singular operator and their corresponding ergodic versions.
We consider centred, non centred, dyadic and sharp maximal operators. The non-centred
maximal operator is also known as Hardy-Littlewood maximal operator. We prove inequalities
for these discrete operators on weighted ¢4,(Z) spaces. Using these inequalities and Rubio de

Francia method, we prove the corresponding inequalities on variable exponent Ep(')(Z) spaces.

Using Calderén-Coifman-Wiess transference principle, we prove the inequalities for the er-
godic maximal operator, ergodic singular operator and commutator of ergodic singular operator
on weighted L, (X, B, i) spaces, where (X, B, ;1) is a probability space equipped with an invertible
measure preserving transformation U. With the assumption the ergodic maximal operator is
bounded on Lp(')(X ,B, 1), we prove that the corresponding inequalities for ergodic singular

operator and commutator of ergodic singular operator on variable Lp(')(X , B, 1) spaces.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we study a class of operators namely discrete maximal operator, discrete singular
operator, commutator of discrete singular operator and their corresponding ergodic versions.
We consider centered, non-centered, dyadic versions of maximal operator and sharp maximal
operator. The non-centered version of discrete maximal operator is usually known as Hardy-
Littlewood maximal operator which is denoted by M. The generalization of this operator is
fractional Hardy-Littlewood maximal operator which is denoted by M,. We derive inequalities
for M, on Ep(’)(Z) using Calderén-Zygmund theorem for sequences and by the use of Log Hélder
continuity at infinity. When we take o = 0, M, is nothing but the Hardy-Littlewood maximal
operator. Using good-Lambda inequalities, relations between maximal operator, we also derive
inequalities for Hardy-Littlewood maximal operator M on weighted #,(Z).

Using boundedness of Hardy-Littlewood maximal operator M on weighted ¢4,(Z) spaces, we
derive strong type and weak type inequalities for discrete singular operator Ty and discrete
maximal singular operator T} on 4,(Z). Further, using boundedness of T7 on 4,(Z) , bounded-
ness of M on (P0)(Z) and Rubio de Francia method, we derive boundedness of T7 on variable
exponent sequence spaces fp(')(Z). We extend the same procedure for deriving inequalities for
the commutator of discrete singular operators and obtain the corresponding results.

We also consider ergodic versions of these class of operators, i.e maximal ergodic operator,
maximal ergodic singular operator and commutator of maximal ergodic singular operator which
are denoted by M, T*, [b, T¢]* respectively. For these operators, we first prove inequalities for
these class of operators on weighted L%, (X, B, i) spaces, where (X, B, 1) is a probability space
equipped with an invertible measure preserving transformation U. Assuming the fact that

ergodic maximal operator is bounded on Lp(')(X , B, 1), we prove boundedness of ergodic singular
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operator and commutator of ergodic singular operator on LP()(X, B, ).

The classical example of the ergodic singular operator is ergodic Hilbert transform which is
defined as

N—oo

~ N 7]6‘,1:.
Hf(x)= lim Z f(Uk)
k=—N

where the prime in the summation means exclusion of the term k = 0. In 1955, Cotlar proved
the almost everywhere convergence of the above series for f € LP(X),1 < p < oo and that the
operator H is bounded on LP(X) for 1 < p < oo and is of weak type (1,1). A proof of Cotlar’s
result using Calderdén-Coifman-Weiss principle of transference was given by Petersen in 1983.
This proof consists in proving #° inequalities for the maximal discrete Hilbert transform on

sequence spaces, that is, for the operator

N
Z a(nk_k),aeﬁp(Z), 1 <p<oo.

H*a(n) = sup
N V=N

Then, inequalities of the maximal ergodic Hilbert transform

~ N 7k:
() = sup| Y2 U
Ay A—

are obtained by transference.

For the discrete singular operators and commutators of discrete singular operators we study in
this thesis, we prove inequalities for the corresponding maximal operators. These inequalities
will ensure the existence of these operators due to the following theorem which is known as

Banach principle.

Theorem 1.1.1 (Banach Principle [10] ). Let 1 < p < co. Let (X, 1) be a measure space and B
a Banach space. Let (T,,) be a sequence of operators defined on L5 (X). Let

T f(x) = sup [T f ()] -
n>1

If there exists a positive decreasing function C(\) on (0,00) which tends to zero as A — oo such
that

u({w e X1 f(2) > A1, b < COV.
Then the set {f € LY (X) : T, f () converges a.e} is closed in L, (X).
In Chapter 2, we give the notation and standard or known results that are needed in later

chapters. We present the properties of A, weights on sequences, ergodic A, weights. We also

discuss about the reverse-Holder inequality and its corollaries. For each result we give a suitable
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reference for the proof. Also properties of variable exponent sequence spaces and ergodic variable
exponent Lp(‘)(X , B, pu) are given. The definition of various maximal operators are defined which
are required in later chapters. The definition of BMO is given in this chapter. This definition is
required in the theory of commutators of singular operator(both discrete and ergodic versions).
We also define ergodic rectangles that will be used to derive some results for commutators of

ergodic singular operators.

In Chapter 3, we define norm and present various results on sequence spaces with variable
exponents that are needed in later chapters. Properties of modular functional, norm on variable
exponent sequence spaces, Log Holder continuity, variable Holder inequality, Rubio de Francia

method are presented in detail in this chapter.

In Chapter 4, we study several types of discrete maximal operators on real valued sequence spaces
and present relationships between them. Mainly, we use Calderén-Zygmund decomposition for se-
quences, discrete version of good-Lambda inequality which will be used to study relations between
these maximal operators. We also derive weighted good-Lambda estimate using reverse Holder
inequality. With the use of weighted good-Lambda estimate, we derive weighted version of rela-
tionship between sharp maximal operator and dyadic maximal operator. We also discuss weighted
inequalities for Hardy-Littlewood maximal operator on £4,(Z) spaces. Also, we present strong
type (p(-),p(+)), weak type (p(-),p(:)) inequalities for the generalization of Hardy-Littlewood
maximal operator M which is also known as fractional Hardy-Littlewood maximal operator
M, on fp(')(Z). For these results, we use Calderén-Zygmund decomposition for sequences,
boundedness of Hardy-Littlewood maximal operator on ¢P(Z) spaces. As a corollary, we obtain

strong type (p(+), p(-)), weak type (p(+), p(+)) inequalities for Hardy-Littlewood maximal operator.

Using Calderén-Coifman-Weiss transference principle, we study the ergodic maximal oper-
ator on L, (X, B, 1) spaces. We also prove strong type and weak type inequalities for ergodic
maximal operator on weighted L%, (X, B, i) spaces. Finally, we discuss strong type (p(-), p(+)),
weak type (p(-),p(-)) inequalities for ergodic maximal operator on A% (X, B, i) spaces.

In Chapter 5, we define and study discrete singular operators of Calderén-Zygmund kernel
type. We derive strong type and weak type inequalities for these operators on £4,(Z) spaces.
Using these results and Rubio de Francia method, we obtain corresponding inequalities for these
operators on fp(')(Z). We also derive inequalities for maximal singular operators by transferring
the corresponding results from real line. We also derive similar results for ergodic versions of these

operators. Finally, we discuss boundedness of ergodic maximal singular operator on LP() (X, B, ).

In Chapter 6, we define and study the commutator of discrete singular operator. We de-

rive strong type and weak type inequalities for these operators on £4,(Z) spaces. Using these
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results and Rubio de Francia method, we obtain corresponding inequalities for these operators

on (P0)(Z). We also derive similar results for ergodic version of these operators.



Chapter 2
Notation and Preliminaries

In this chapter, we specify the notation and state standard and known results which are needed

in later chapters. For each such result we have given a suitable reference.

Throughout Z denotes the group of integers with the counting measure and R denotes the real

line with the Lebesgue measure dx.

For a subset A of R or Z, |A| denotes the Lebesgue measure of A or counting measure of A
respectively. For any set A C Z,0A denotes complement of A in Z. Let M(R) denote set of
measurable functions on R. The space LP(R) is defined as {f € M(R) : [p|f(2)[Pdz < 0o} and

norm in LP(R) is defined as

”f”p: (/R|f(x)\pdl’>p, 1 <p<oo.

The space ¢P(Z) is defined as the set of all sequences {a(n) : n € Z} such that

D la(k)P < o

keZ

Norm in ¢P(Z) is given by

lallpzy = (Zraw)yp)’l’.

kEZ

For {a(n) :n € Z} € ¢P(Z), norm in (P(Z) (refer to [7]) can be computed using distribution

function as follows

lallogsy = [ 9 {m € Z: atm)] > AHaA

An operator 7" is bounded on ¢P(Z) if Va € (P(Z)

HTaHep(z) <G ”aHZP(Z) :

5
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An operator T is of weak type (1,1) on ¢P(Z) if for each a € ¢1(7Z)

C
[{m € Z:|Ta(m)| > A}| < +[lal; -

2.1 Intervals in integers

Throughout this thesis, Z denotes the set of all integers and Z, denotes the set of all positive
integers. For a given interval I in Z (we always mean finite interval of integers) , |I| always
denotes the cardinality of I. For each positive integer N, consider collection of disjoint intervals

of cardinality 2V,
{IN,j}jeZ = {[(] - 1)2N +1,... 7j2N]}jeZ .
The set of intervals which are of the form Iy ; where N € Z, and j € Z are called dyadic intervals.

For fixed N, Iy ; are disjoint. Given a dyadic interval I = {[(j — 1)2" +1,... ,j2N]}j€Z and a

positive integer m, we define

2L = [(j —2)2Y +1,...,52"N]
ALT = [(5 —4)2N +1,..., 52V
2RI =[(j —1)2V +1,...,(j + 1)2"]
ART = [(j — 12N 4+1,...,(j + 3)2"]

3 =2L1U2RI
5] =4LI U4RI
Let I be an interval in Z with center jg. If I is an interval of cardinality 2V, by center we mean
I'=[jo=N—=1jo,jo+1,....50+ NJ.
If I is an interval of cardinality 2N + 1, by center we mean
I=1[jo—N,....j0,---,J0+ NJ.

If jo is a center of an interval I, 21 denotes an interval [jo — 2N, ..., jo + 2N].
In general, if I = [m,m + 1,...n] is any interval in Z, then the left doubling of I denoted as
2L1I and right doubling interval of I denoted as 2RI are as shown below

2L =P2m—-n—1,2m—n,...,m,m+1,...n].

and

2RI =[m,m+1,...n,n+1,n+2,....2n —m+ 1].
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Then 31 =2L1 U2RI.

2.2  Weights on sequence spaces and Ergodic weights

Throughout this thesis, weight sequences {w(n) : n € Z} considered are non-zero.

Definition 2.2.1. For a fixed p, 1 < p < oo, we say that a positive sequence {w(n) : n € Z}

belongs to class A, if there is a constant C such that, for all intervals I in Z, we have
1 p—1
(5 u) (S tewny )" <
kel kel

Infimum of all such constants C' is called A, constant. We say that {w(m) : m € Z} belongs to

class A; if there a constant C such that, for all intervals I in Z,

for all m € I. Infimum of all such constants C' is called A; constant.

Let 1 <p < ooand {w(n):n € Z} € Ay(Z). We say that a sequence {a(n) : n € Z} is in 4,(Z)

if
Z|a )|Pw(n) < oco.

nez

We define norm in #,(Z) by

D=

ol = (3 lath o))

keZ

For a subset A of Z, w(A) denotes ), 4, w(k).
For a given sequence {a(n) : n € Z} € 4,(Z), the weighted weak(p,p) inequality for a positive

weight sequence {w(n) : n € Z} is as follows:

w({m € Z: Ma(m) > \}) <—Z\a )[Pw(m
meZ

A, conditions which are due to Muckenhoupt[14] are characterized by w € A, is equivalent to
boundedness of M on ¢P(Z).

Now, we give definition of ergodic weights [5].

Definition 2.2.2. Let (X, B, i) be a probability space and U an invertible measure preserving

transformation on X. Suppose 1 < p < oo and w : X — R be a positive integrable function. The
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function w is said to satisfy ergodic A, condition if

1 N 1 N 1 p—1
Uk Ukg)r—1 < C.
(e X 00 (g X o) s

The function w is said to satisfy ergodic A; condition if

1
ess sup sup
zex N>12N+1

N
Z w(U*z) < Cw(U™z).
k=—N

form=-N,-N+1,...,N.

Definition 2.2.3. Let 0 < p < co. We say that a function f € L,(X) if
J @ put)duta) < .

For f € L, (X) , define norm in L%, (X) as follows
1
p
lsze = ([ @ utne)"

We will also require Young’s inequality in this thesis. For any real a,b € R, and any two real
numbers p, g such that % + % = 1, Young’s inequality [9] is as follows:
aP bl

ab < — + —.
p q

2.3 Properties of A, weights on sequence spaces

In the following lemmas, we state and prove the properties of A, weights on sequence spaces on

an interval I.

Lemma 2.3.1. For 1 < p < q, weight classes A, and A, have the following property: A, C
Aqa 1<p<yq.

Proof. Assume p = 1. Let D = supyc; w(k)'~?. Then

() = (mEo)”

mel

DII]\"™ ~1 e\ -1
< s < DT = (supw(k) 1 < supw(m)™ . (2.3.1)
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Hence,

(72 w(m)l—q’)q_l <swputm = (e won)) <040

mel mel

For p > 1, use Holder inequality with the following exponents

p;l + 1 =1,
q—1 r
1 p—
where . = %.
Let w(m) € A,,m € I. Then
-1 P=2(g-1) L(g—1)
1 =1\ 1 1 —1\ 1Y A\
<|I| Z w(m)q1> < T (Z w(m)p1> <Z 1 )
meZ meEZ meZ
1 = p—1 q—p
— e Zw(m)p1> (\I\)
me
1 P!
— [ — 1
(7 2 wom ™)
mEZ
1 1
< C< Z w(m))
‘I‘ MEZ

Thus, A, C A;,1 <p <q.

Lemma 2.3.2. For weights wo, w1 € A1 we have the following property: wo,w; € Ap

wowll_p € Ap.

Proof. We need to prove that
1 o\ (1 i\
] Z wo(m)wy (m) ] Z(wo(m)wl(m) )P < C.
mel mel

But this is,

(G, > wo(m)wl(m)1p> <|}|wo(m)1p/’wl(m)>p1 =C

mel

wo (1) wo (1)

O

—

Since wg, w1 € A1 we have s Cwp(m) and < Cwi(m) for all m € I. Further, note

that

IN

o)
o)

-1
wo(m) ™t < suel;wg(m)*l = (;Iéflwo(m)>

IN

~1
wi(m)™ < supwi(m)~' = (inf wl(m)>
mel mel
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Applying this relation for weights with negative exponents, we get

b St} i i)

meZ meZ
(i Z e () NS () ) <o

‘ O

Lemma 2.3.3. Let p’ be conjugate to p. Then, we have the following property for weights:
w € Ap if and only if wl™? e Ay

Proof. Let w(m) € Ap,m € I. Note that A,y condition for w P is

(}’ 3 w(m)l—p'> (ﬁ_‘ 3 w(m)(l—m(l—p’))p e

mel mel

This equation, when raised to power p — 1, gives

() g s

mel

Now let w(m)l_p/ € Ay,m € I. From the LHS of A, condition i.e

(i1 Z o) (i i)

meZ mEZ
_ <|11T| %:Zw(m)l—p'yl <|}| ge:zw(m)a—p)(l—p’))
O

O

The proof of the following theorem is similar to the proof of corresponding result in continuous

version [7]. We state here without proof.

Theorem 2.3.4. Let {a(n) : n € Z} be a positive sequence and {w(n):n € Z} € A,,1 <p < o0

be a positive weight sequence. Let I be an interval such that a(m) > 0 for some m € I. Then,

w(1)<“;> <Y Ja(m)Pwim (2.3.4A))

mel
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2. Given a finite set S C I )
w([) <||f|> < Cw(S). (2.3.4]B])

2.3.4]A] follows from Hélder’s inequality and the A, condition. 2.3.4[B] follows by taking a = x5
in 2.3.4[A].

2.4 Reverse Holder inequality

Here, we state and prove reverse Holder inequality for weighted sequence spaces. For continuous

version of these proofs, refer to [7].

Theorem 2.4.1. Letw € A,,1 <p < 0o. Then for every a,0 < o < 1, there exists 3,0 < 8 <1,
such that given an interval I and S C I with |S| < allI|,w(S) < pw(I).

Proof. 1f we replace S by I'\ S in inequality 2.3.4[B], we get

w<1>< - ‘,i) < Cu(I) - w(S)).

If |S| < alll, then
C—-—(1—-a)p
S < —n
w(s) < S
which gives us the desired result with 8 =1— C~(1 — )P. O

w(l),

Theorem 2.4.2. [Reverse Holder Inequality] Let w € Ay, 1 < p < co. Then there exists constants
C and € > 0, depending only on p and the A, constant of w, such that for any interval I,

(5o e

mel mel

Proof. Fix an interval I and consider the following increasing sequence
— L =A< A< A< ..l

For each Ag, apply the Calderén-Zygmund decomposition at height A;. We get a family of
disjoint cubes {Ij ;}

and if
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Note from construction ;1 C Q. If we fix I, j, from Calderén Zygmund decomposition at

height Ay, then Iy j, M Q441 is union of intervals ;41 ; Therefore,
[k, jo N Q1] = Z‘Ik—&-l il

2. 2w

( me]k+l i

<o Y wm)

)\k+1

A
k1 me&ly,jo
2k
< Mk jol-
— 7_]0
Ak+1

Fix a < 1, choose \; such that 2)": = . i.e
I
A = (201
Then |1y j, N Qy1| < a|ly j,| By Lemma 2.4.1 , there exists 8 < 1 such that

w(Ika N Qk+1) < Bw(lk,jo)'

Now sum over all intervals in decomposition at height A\;. Then get w(Qx41) < fw (). Iterating
w(Q) < BFw(Q). Similarly |Qx] < a¥|Q|. Hence, | Q| = limg_o0|Q%| = 0. Therefore,

1
Tzwl ; Z 1+e+7z Z wite
7] 2 1]

I\Q k 0 (Q\Qpop1)NI

<ML+ — S
<A m *mz b

w(I) —1\(k
< A€ - 2 ( +1) EA € k )

Fix e > 0 such that (2a7!)°8 < 1, then series converges and last term is bounded by c’\OTI”‘(I).

Since A\ = ‘(”) result follows. O

Corollary 2.4.3.
Ap = Uq<pAq7 1< p < 00.

Proof. If w(m) € A,,m € I, then by Lemma|2.3.2], w(m)l_p/ € Ay,m € I. This means that

<}| 3 w(m)l_p/) <|}| 3 w(m)(l—p')a—p))p/_l <c

mel mel
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But (1 -p')(1 —p) =1. So,

(3 5 ) o) 2

mel

This gives
> (1=p")(1+e€)

(o) " 5oL

Now, fix ¢ such that ¢ — 1= (p' — 1)(1 + €) where % + % = 1. Since ¢’ > p’, ¢ < p. Therefore,

/

R > At

mel mel

Also note, w! ™ e A,y satisfies reverse Holder inequality for some € > 0. This gives,

(i o100 < gy S 242

mel mel

that is using 2.4.1

(gt ) (5 g <eligom)

mel mel

It follows that .

(12 w(m)l—q’)q_l <o X um)

mel mel
which shows that w € A,;. Hence w € Uy<pA,.
For the converse, if w € Uy<p Ay, then by Lemmal[2.3.1], w € A,. O

Corollary 2.4.4. If w € A,,1 <p < oo, then there exists € > 0 such that wlte e Ap

Proof. Let w(m) € Ay, m € I, Then

(G 5e) G o) e

mel mel

Additionally, we will show that w(m)""

<|}| > w(m)HE) (ylﬂ 2 w(m)(l—p/><1+e>>“

mel mel

o 1+e C , (1+€)(p—1)
< <|I Z w(m)) <m Z w(m)' P ) Using Reverse Holder Inequality.
mel mel

€ Ap,mel.
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(G5 (5 G ) )" 5o

mel mel

Hence wlte e Ap. O

Corollary 2.4.5. If w € A,,1 < p < 00, then there exists 6 > 0 such that given an interval I

and S C I, 5
w(sS) 151
w(l) SC(m)

Proof. Fix § C I and suppose w satisfies the reverse Holder inequality with exponent 1 + €.
Then

() = Y- xsutm) < (X wim)) 5155 < Culn) (5

mel mel

2.5 Variable exponent sequence spaces and Ergodic L*() spaces

In this thesis, the following notation are used. Given a bounded sequence {p(n) : n € Z} which
takes values in [1,00), define £P()(Z) to be set of all sequences {a(n) : n € Z} such that for some
A >0, Zkez(ila()fg)‘)p(k) < oo.

Throughout this thesis, {p(n):n € Z} denotes a bounded sequence, which takes values in
[1,00). Define p_ = inf {p(n) : n € Z} ,p4 =sup{p(n) : n € Z}.

Let S denote the set of all bounded sequences which takes values in [1, 00).

Definition 2.5.1. We define 3 canonical subsets of 2 € Z as follows.

QL) = {n e Z: p(n) = oo} .
Qf(') ={neZ:pn)=1}.
Y = (neZ:1<pn)<}.

Then define modular functional associated with p(-) as

ppr(@) = 1a®)P® + lall e g -
kEZ\ Qoo
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Note, when p; < oo, modular functional becomes

po(y(@) =D _la(k)P®)

kEZ

Throughout this thesis, we assume p; < co. Further for a given sequence {a(k) : k € Z}, define
norm in /7()(Z) as
a

HaHﬂ,(A)(Z) = inf {)\ >0: pp(_)()\) < 1} .

| [lew(r(z) is @ norm [12]. A similar norm on 2P)(R™) is defined in [8] and there it is proved it

is a norm.

Further, details about variable exponent sequence spaces are given in Chapter 3.

2.6  Variable exponent LP")(X, B, ;1) spaces

In this thesis, we derive inequalities for ergodic maximal operator, ergodic singular operator and

commutator of ergodic singular operator on LP()(X, B, 1) spaces.

Let (X, B, i) be a o-finite, complete measure space. Then by L°(X, i), we denote the space of

all real valued, u measurable functions on X. For the following details refer [13].

The variable exponent Lebesgue space LPC)(X, u) is

Lp(')(X,,u) — {f c LO(X, 1) :pr(.)(X)(é) < oo for some > 0},

equipped with the norm

| f
I lss600 =10 {33 0 o) < 1.

2.7 Maximal operators on sequence spaces and Ergodic maximal

operators

Let {a(n) : n € Z} be a sequence. We define the following types of Hardy-Littlewood maximal

operators as follows:
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Definition 2.7.1. If [, is the interval {—r,—r+1,...,0,1,2,...,7 — 1,7}, define centered

Hardy-Littlewood maximal operator

/ o —
Ma(m)—i;lg 2r+1 7;|a n)

For any positive integer J, define truncated centered Hardy-Littlewood maximal operator as

M'’a)(m) = sup a(m
(Mja)m) = swp s P
Definition 2.7.2 (Hardy-Littlewood Maximal Operator). We define Hardy-Littlewood maximal

operator as follows
Ma(m) = sup — |I| Z|a

mel

where the supremum is taken over all intervals containing m. For any positive integer J, define

truncated Hardy-Littlewood maximal operator as

Mjya(m) = sup a(n
m) semer |1] 4 Z'
Definition 2.7.3 (Dyadic Hardy-Littlewood Maximal Operator). We define dyadic Hardy-

Littlewood maximal operator as follows:

Mga(m) = sup — Z]a

where supremum is taken over all dyadic intervals containing m.

Definition 2.7.4 (Sharp Maximal Operator). Given a sequence {a(n) : n € Z} and an interval
I, let a; denote average of {a(n):n € Z} on I. Let, aj = |71‘ > mera(m). Define the sharp

maximal operator M# as follows

M#a(m) = sup — Z|a

mel nEI
where the supremum is taken over all intervals I containing m.

Definition 2.7.5 (Fractional Hardy-Littlewood Maximal Operator). Given a non-negative
sequence of real numbers, {a(n) : n € Z},0 < a < 1, define fractional Hardy-Littlewood Maximal

operator as follows:

aa(n) = suplI|*~" Y "|a(k)

nel kel
where supremum is taken over all intervals of integers which contain n. When « = 0, fractional

Hardy-Littlewood maximal operator becomes Hardy-Littlewood maximal operator.
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Here, we define a sequence space called sequences of bounded mean oscillation which is denoted
by BMO(Z). This space plays an important role in commutators which are presented in Chapter
6.

Definition 2.7.6 (BMO). We say that sequence {a(n) : n € Z} has bounded mean oscillation if
the sequence M#a is bounded. The space of sequences with this property is denoted by BMO(Z).
We define a norm in BMO(Z) by ||a||, = HM#aHOO. The space BMO(Z) is studied in [2].

2.8 Boundedness of Hardy-Littlewood maximal operator

Here, we state the inequalities for Hardy-Littlewood maximal operator on sequence spaces [4].

The following well-known theorem is proved exactly as in the case of R (See [7]).
Theorem 2.8.1. Let 1 < p < oo. There exist constants Cp, > 0 such that

1. (i) If 1 < p < oo then
1Mall, < Cpllall,, Vae (Z).

2. (ii) .
{n: Ma(n) > A} | < TlHaHp Va € ('(Z) and YA > 0.

2.9 Ergodic rectangle

Let (X, B, 1) be a probability space, U an ergodic invertible measure preserving transformation
on X.

Definition 2.9.1 (Ergodic Rectangle). [2] Let E be a subset of X with positive measure
and let K > 1 be such that UUENU/E = ¢ if i # j and —K < i,j < K. Then the set
R= Ufi_ U'E is called ergodic rectangle of length 2K + 1 with base E.

Lemma 2.9.2. Let (X, B, ) be a probability space, U an ergodic invertible measure preserving
transformation on X and K a positive integer.
1. If F C X is a set of positive measure then there exists a subset E C F' of positive measure

such that E is base of an ergodic rectangle of length 2K + 1.

2. There exists a countable family {E;} of bases of ergodic rectangles of length 2K + 1 such
that X = UjEj.



Chapter 3

Variable Exponent Sequence Spaces

In this chapter, we state and prove various results on variable exponent sequence spaces. Most
of the proofs are similar to corresponding proofs for the real line. We give the proofs for the

sake of completeness.

3.1 Variable exponent sequence spaces

Definition 3.1.1. Given a sequence p(-) € S, we say that p(-) is locally log-Hélder continuous,

if there exists positive real constants Cj such that for all m,n € Z,

[p(m) — p(n)] < —— 0

< 0 VYmneZ
—log(|m —n)

In this case, we write p(-) € LHy(Z).

Definition 3.1.2. Given a sequence p(-) € S, we say that p(-) is log-Hélder continuous at

infinity, if there exists positive real constants C's, poo such that for all n € Z,

o0

77 6 ZJ
log(e + [n]) "

[p(n) — poc| <

and e is exponential number. In this case, we write p(-) € LHoo(Z).

Remark 3.1.3. One can easily observe that local Log Holder continuity automatically follows for

sequence spaces.

Definition 3.1.4. Let p(-) € S. Then {q(n) : n € Z} is called conjugate sequence of {p(n) : n € Z}
which satisfies

1 1
— +— =1 VnezZ
p(n)  q(n)

18
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Recall that, we define 3 canonical subsets of 2 € Z as follows.

Definition 3.1.5. We define.

) = (neZ:p(x)
Q’f(.) ={neZ:plx)=1}
Pt = {neZ:1<px)

oo}

< oo}

Lemma 3.1.6. Let {q(n)} be the sequence which satisfies ﬁ + ﬁn) = 1,Vn € Z. Let

1<p_<pn) <py <oo,Vn €Z. The following are equivalent:

1. p(-) € LHw(Z)

1
2. b5 € LH.o(Z)

1
3. -5 € LHuo(Z)

4- Q() S LHOO(Z) .
Proof. (a) We shall prove (1) = (2). Let p(-) € LHx(Z). Note, that when p; < oo, Vn € Z,

Coo

11 p() = () [p(0) = ()l - GO
| = ) | = ) = Togle + n])

for some LH., constant, which is ks, = m.

(b) We shall prove (2) = (1). Let ﬁ') € LHy(Z). Then, Vn € Z

1 1 Coo

[p(n) = (poo)| = Ip(n)(poo)<p(n) - (poo)>| < ) peo) gty

[e.9] kOO

log(e + [n|) ~ log(e + |n])’

< (p+)(Po)

for some LHy, constant which is koo = (p+)(Poo)Coo -
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(c) We shall prove that (1) = (3). Let p(-) € LHx(Z). Note, that when p, < oo, for
n € 7,

’L _ i| = 11 | = ’p(n) - (poo)’ < lp(n) — (P
qn) 4o p(n)  (Peo) p(n)(ps) T (P-)(Peo)
e
~ log(e + |n|)’

for some LH., constant, which is ko, = (pj%.

(d) We shall prove (3) = (4) and (4) = (1)
Let .ty € LHo(Z). Then % € LHy(Z), which implies that q(-) € LHu(Z). This shows (3)
= (4).
(4) = (1) follows same argument as (c) .
O

Lemma 3.1.7. Let q(-) be conjugate sequence to p(-). Let 1 < p_ < p(n) < py < oo, Vn € Z.
Then, p(-) € LHx(Z) implies pso > p—.

Proof. Given that p(-) € LH(Z) implies () € LH(Z) using Lemma[3.1.6] and since p_ > 1,
it follows that

1 1 1 1 1 1 1 Coo
o =+ o = ] Sl | s €
Poo p(n)  pe  p(n) = p(n) p p(n) T p- log(e+|n)
Since this is true for every n, po > p—. O
We state below some properties of modular function [4],[8]. Recall that p,,.) denotes the modular

functional associated with the variable exponent p(-) norm which is defined as

Pp() = Z|a )™,

kEZ

and S denote the set of all bounded sequences which takes values in [1,00). Also, the norm in
P()(Z) is defined as
. ] a
||ang(.)(Z) = inf {)\ >0: pp(.)(x) < 1} .

Lemma 3.1.8. Let {u(n)} be a non-negative sequence of real numbers. Let p(-) € S. Then

1. For all u, pyy(u) >0 and pyey(|u]) = pp.y(u).
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2. pp(y(u) =0 if and only if u(k) = 0 for all k € Z.

3. If ppey(u) < oo, then u(k) < oo for all k € Z.

4 pp(y 18 convex: Given a, > 0,0+ B =1, ppy(au + Bv) < apyy(u) + Bpye (v).

5. If for every k, [u(k)| > |v(k)| , then py)(u) > ppey(v).

6. If for some 6 > 0, pp((5)
on [§,00). Further p,.y(}) — 0 as X — oo.

< 00, then the function X — ppy(%) is continuous and decreasing

Lemma 3.1.9. Let {a(n),n € Z} be a non-negative sequence of real numbers such that a € (PC)(Z)

and let p(-) € S.

1. For all A > 1,

APy (@) < pp(y (Aa) < AP py (a).
2. When 0 < A < 1, the reverse inequalities are true.
A pp(y (@) < pp(y(Aa) < APy (a).

Proof. For A > 1,

pp<.><Aa>=Z(Aa<n>) ZAP R < NP0 (a).
n=1

Further,

0 p(n)
A\P- pp( Z \P-a (n) < Z (Aa(n)) = Pp() (Aa).
n=1

Similar proof can be used for the case 0 < A < 1.

The following lemma gives the connection between modular functional and ¢°()(Z) norm.

Lemma 3.1.10. Let {u(n),n € Z} be a non-negative sequence of real numbers. Let p(-)

Then u € PC)(Z) if and only if

=" Ju(k)P™® < co.

keZ

€S.

Proof. If pp.y(u) < oo, then by definition of norm u € ¢P()(Z). Conversely since u € P0)(Z) by

definition of norm, p,.)(}) < oo for some A > 0. Further by (6) of modular functional properties,
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we have pp,.y(%) < oo for some A > 1. So, it follows that

u(k)|A U
Pry(u) = (’ (Aﬂ ) < N pp(3) < o0

keZ

Proof of (4) follows from the fact that whenp_ > 1, the mapping x — |z|P is convex.

Lemma 3.1.11. |||,y defined is a norm on the linear space O(z) [12].

Proof. If u € ¢?1)(Z), then the set {\ > 0: pp()(%) > 1} is bounded below by zero. Since R
has greatest lower bound property( as such every set which is bounded below has inﬁmum)
inf {A>0: Pp()(3) < 1} exists. Suppose u € ¢°C)(Z). Then the set {A>0:pp (%) <1} s

nonempty and bounded below. Hence by the greatest lower bound property of real hne, we have

mf{)\ >0: p()\) < 1}
exists. Next, we check the required properties of norm as below.

1. Positive Definiteness: If v = 0, then u(i) = 0 for each i € Z and thus @ = 0 for each
i € Z. As aresult p(§) = 0 for each A > 0, from which it follows that [[uf/,., =0
On the other hand, if |ul|,., = 0, then there is positive sequence \,, — 07 such that
Pp()(%5) < 1. Suppose (for contradlc‘mon) that u # 0, then there exists ¢ € Z such that
u(i) # 0. It then follows that |“(Z)‘p() < pp(y(35) < 1 and hence 0 < lu(@) [P < A, — 0F

as n — 0o, which contradicts Wlth u # 0.

2. Scalar Multiplication: For any u € /()(Z) and o € R, au € ?()(Z) and in addition

: au
leul,.) = inf {)\ >0: pp(.)(T) < 1}

: au
= 1nf{>\ = plal >0: pp(.)(T) < 1}

. u
= |a]1nf{,u >0: pp(,)(;) < 1}

= laf [lull,-

3. Triangular Inequality: For any w,v € #0) u + v € ¢?(). Given an arbitrary ¢ > 0 by
properties of infimum, there exists Ay, Ay € {A > 0: p(%) < 1}such that A\, < [Jul| () TE
and A, < [Jvfl,) + € with p(55) < 1,p(55) < 1. Let 6 = 5735~ +)\ , then by the convexity of
Pp(-), We have

U+ v U U U U
Pp(-)(m) < pr(')()\u n /\U)+(1—9)Pp(~)(m) < 9pp(~)(r)+(1_9)pp(~)()\7) <1

u v u v




Chapter 3. Variable Exponent Sequence Spaces 23

It then follows from the definition of |||, that
w4+ vl < Au+ Ao < oy + ol + 26
Since € > 0 is arbitrary, then
o+ vlly < el + ol

O

Lemma 3.1.12. [Fatou Property of the Norm/. Let u € (PC)(Z) be a sequence of non-negative
real numbers and p(-) € S. Further, let {uy} C P0)(Z) be a non-negative sequences of real
numbers such that uy increases to the sequence u pointwise. Then |[uk |l pwe)z) = [[ullepe) z)-
Proof. Since for every n, u’“T(n) < u’“%(n), by property (5) of modular functional, p,)(5) <
Py (P5E) and hence [kl (z) < lltrtr o (z)- Therefore, {ug} is an increasing sequence, so
is {”UkH zp(~>(Z)} and so this increasing sequence either converges to a finite limit or diverges to
00.

It is required to prove limg—oo [[wk|[gne)(z) = [ltllgne) (z)- Note that [[ug|[s) 7 is increasing and

[kl z) < Mlullgwer zy- Hence limpoo [kl oo 2y < Mlullne) z)-

Take A > 0, [[ul o) (z) > A. We shall prove that if ||ul|se()(zy > A then for sufficiently large values

of k, [[ugll ey (zy > A Since pp( (%) > 1 and using Monotone convergence theorem,

Pp(-)<§> -y <u(}7\n))P(m) _y (W)p(m

meZ
e up,(m) p(m) s w
—J&(é( V) ) = dim )

So, pp(y(5) > 1 for sufficiently large values of k. Let Ay = {Ax>0: Pp() () < 1} and

B = {X>0:py(%) <1}. From above discussion, Bt C AE for sufficiently large values of
k. Therefore A C B for sufficiently large values of k. Hence inf Ay > inf B for sufficiently
large values of k. Therefore [|ug[sn()(z) 2 [|ullgw)(z) for sufficiently large values of k. and hence

imy oo [kl ey (zy = 1wkl (z)- =

Lemma 3.1.13. [Fatou’s lemma for sequences]. Let {uy} be a non-negative sequence of real
numbers such that {uy,} € (PC)(Z). Let p(-) € S, suppose the sequence {uy} € PO)(Z) such that

ug(n) = u(n) for every n. If

lim inf . .
min [kl v (zy < 00
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then u € P0)(Z) and
ol 2y < T 0k gl -
Proof. Define

v (i) = nzgfk U (7).

Then for all m > k,v4(i) < um (i) and this shows that v, € P()(Z). Since {v}} is an increasing
sequence and

lim vy () = liminf u,, (i) = u(i), i€ Z.

k—o0 m— 00
Also,
ullgper (z) = ‘ Jim v o) = lim [[vkllg) z) = mint [[vg[lgey (z)

Therefore, by Fatou’s norm property[3.1.12] for sequences

HUH@(»)(Z) = klgfolo HUkHzp(-)(z) = khj&(%gfk HumHep(-)(z)) = h]&g}f ||Uk||ep<<)(2)-

So, if iminfy o0 [[uk () (z) < 00, then [Jul[pe)z) < 0o, which implies u € (7). O

The following lemma shows normalizing a sequence gives pp(,)(ﬁ) < 1. Additionally, if
() ()

P < 00, pp(')(m N

Lemma 3.1.14. Let {a(k)} be a non-negative sequence of real numbers and p(-) € S,

1. If a € PY)(Z) and ||a]l ez > 0, then p,,(.)(m) <

2. If py < 00, then py( ) =1 for all nontrivial a € PC)(Z).

—_a
||a‘Hep(')(2)

Proof. (1) By definition

Ha||ep(-)(z) = inf {)\ >0: pp(.)(a/)\) < 1}

and [[al| () (z) + 1 is not an infimum. Therefore, there exists a A, such that A, < lallgwer(z) + 1

and pp()(55) < 1. Fix such a decreasing sequence {A,} such that {A,} = [[al/p()(z). Then by
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Fatou’s lemma and the definition of modular functional,

a Ja(k)| >p<’“>
Po() ) =
p“(uaum.)@) ,%(n all ) )
o (la®”
- JE&( M
kEZ

. la (k)| \ "
<imint ("

keZ

= liminf p,.)(s— a

n—00 An

(2). Assume pi < oo but p( ) < 1. Then VA such that 0 < A < |lal[sn()z), by Lemma

llall

[P()(Z)
3.1.9
a lallgper(z) a lallgperzy \ P+ a
P (L) = s < ( ) ot
eO@IN PO allpo g A Mallwo )

Now, choose A close to ||af|,., such that

(Hallm»(z) Pr 1
e— < .
)\ a
Pp() <||aep(.)(z))
For this A, pp()(%) < 1. This will contradict the fact that A <{|a[|g() )

O]

Using Lemma 3.1.9, properties of modular functional and homogeneity of the norm, following
lemma can be proved. Continuous version of Lemma 3.1.15 can be found in [8].
Lemma 3.1.15. Let p(-) € S and {a(k)} be a non-negative sequence of real numbers such that

{a(k)} € 0°0)(2)

If Ha”ep(-)(z) < 1, then Pp(y(a) < ”CLHzp(~)(z)
If ||aH£p(<)(2) > 1, then pp(.)(a) 2 ”aHzp(-)(z)-

Proof. 1f [lal|,,.y = 0, then a = 0 and so p(a) = 0.
If 0 < [al,y <1, then by the convexity of the modular

a
Pp() (@) :Ppc)(HaHp(.)W) < llall,cy Py (H H )_ lall,.) -
(-
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If lall,.y > 1, then py)(a) > 1, for if p,)(a) < 1, then by the definition of the norm we would
have [|af|,.y < 1. But then

p(k)

a a(k)

Pp(+) (a)

)=

Po)(@) i

< (Tt )~

pp(')(a) ke

P (

It follows that [lall,) < pp()(a). O

Using Lemma 3.1.9, we can prove the following lemma below. Continuous version of Lemma

3.1.16 can be found in [8]. Same line of proof works here.

Lemma 3.1.16. Let {a(k)} be a non-negative sequence of real numbers such that {a(k)} € £*0)(Z)
and p(-) € S. Then

1. 1f [|all e zy > 1o then pyey(a)/P+ < lallpwer gy < ppey(@)/P-

Proof. Since p; < 0o, by Lemma 3.1.9 and using the fact that p,.)( )=1

—a
Ha”p(-)

Pp() (@) @\ _ ppo(a)

< pp(y ( < =
lalng, = " Mlally” = allf,

3.2 Variable Holder inequality

Theorem 3.2.1. Let {a(n) :n € Z} € (PO)(Z),{b(n) : n € Z} € L91)(Z), then

> la(B)b(k)] < C lalwe ) 1Bl )
k€EZ

where constant C' depends on p(-).

Proof. First, we will show that
()= =p+'.
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We use the fact that sup(%) = — VA >0, inf(%) = ﬁ, VA > 0 and using sup(A — B) =
sup A —inf B
1 1 1 p(k) — 1) , 1 1 1
= - = sup(——=) = sup =]1—-inf(—=)=1—-—-—=1— —.
= e == = (U G =" swp® =
Hence
L
q)—  py’ P+
We use 3 canonical subsets of 2 € Z as follows.
QP = {neZ:pn)=oc}
0PV = (neZ:pn) =1}
Qf('):{nEZ:1<p( ) < oo}
On ) using Holder inequality, we have
Z!a B)| < lla(k)Xaw llo 10(F) Xaw 1 = llaxasw lwo z) 10X0w ) z) < lallpwo 2y [0l 2

A similar result is valid on € by reversing roles of p(-), q(+). So, on ©; using Holder inequality,

we have

Z|a k) < lla(k)xa lloo 10(R) X1 Iy = llaxe, oo z) 10X a2y < llalleworz) 1Bl a2 -

Now on 2, we have

q(k)
a(k)b(k 1 k (k
5 LU S k(ra<>|> Dy (b >r>
. Ha”epnz Pl ~ &, 20 \laloom ) & ) \ Bl

< 1 a n 1 b
< —Pp( p
p-"POD Ul ) a0 @\ Dbl

Using

and norm-homogeneity, which is
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b
<1.
P <\bu )-

and

we have that

k)|b 1 1
3 |a(k)[b(k)

< 1-—.
. lalleo @) 1ol 2 =0 P+

combining the above statements, and using the fact that each is needed precisely when the ¢*°

norm of the corresponding characteristic function equals 1, we have

1 1
> la(k)b(k)| < (HXQOOHOO +lixanlloo + (p* +1- ﬁ) HXQJOO) lallepr zy 18l a2

keZ
O
Lemma 3.2.2. Given a sequence {a(n):n € Z}, and p(-) € S, then for all s, p% < 5 < o0,
Halllpey = llallgy.
Proof. This follows at once from the defintion of the norm, if we assume p = As.
la(m p(m)
llal*]l ) = inf S A >0 Z( ) <1
MEZ
‘CL sp(m)
=inflp®>0: Z( ) <1 =llall3,-
meEZ
O

3.3 Rubio de Francia method

In later chapters, we use a method called Rubio de Francia method to derive inequalities for
variable sequence spaces from the corresponding inequalities for weighted sequence spaces. Here
we define the operator which is used in this method. We state and prove some properties of this

operator as follows.

Lemma 3.3.1. Given p(-) such that M is bounded on (?C)(Z), for each h € (PC)(Z), define

=L

k=0 HMHng() (7))
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where for k > 1, M* = M o ... M where o denotes composition operator acting k times and

= |I|, I being identity operator. Then
(a) For all m € Z,|h(m)| < Rh(m).
(b) R is bounded on P*)(Z) and 1R e (zy < 2 ([l oz -
(c) Rh € Ay and [Rhla, < 2| M| gz -

Proof. (a) Proof of (a) is obvious.
(b) Using subadditivity of norm and that ||M*|| < | M]|*, it follows that

=M

1RR],) <D

k=0 2" HMHB (er() (7))

1
< Al Z M* :
7 k=0 H Hp(') zk”MHB(ep(»(z))
> 1
< llyey Y 1M1l ; :
P k=0 P Qk”MHB(zp(-)(Z))

o

< hlly D27 =21Rlly -
k=0

(c) Using subadditivity and homogeneity of the maximal operator, it follows that

< i M*+1h(m)

— k
k=0 2k||M||B(zp(‘> (2))

& Mk+1h( )
<2HMHB ((Z Z k+1
k=0 2k+1HMHB+gp( (7))

< 2([M|| g(eec) (zy) RR(m).



Chapter 4

Maximal Operators

4.1 Introduction

In this chapter ! 2, we study several types of maximal operators on sequence spaces and ergodic
spaces. Some contents of this chapter appeared for publications mentioned in footnote[1], [2].
Several such operators are defined in continuous case and studied in standard literature in
harmonic analysis [7]. In this regard, we discuss them namely, Hardy-Littlewood maximal
operator (both centered and non-centered), dyadic maximal operator, sharp maximal operator
and fractional Hardy-Littlewood maximal operator. We also present truncated versions of these
maximal operators that are required in the proofs of results in this chapter. For details of these

maximal operators on real line, refer to [7].

The method of Calderén-Zygmund decomposition on sequence spaces plays an important role in
studying the relationship between these operators [3]. In the discrete case, Calderén-Zygmund
decomposition uses dyadic intervals. When we study the relation between the maximal operators,
we are required to double the intervals that destroys the dyadic nature of the intervals. This

challenge is not there in the case of real line [7].

A good-\ inequality is presented which relates dyadic maximal operator and sharp maximal

operator.

! Anupindi Sri Sakti Swarup and A. Michael Alphonse, Relations Between Discrete Mazimal Operators in
Harmonic Analysis. Proceedings of the Ninth International Conference on Mathematics and Computing. ICMC
2023. Lecture Notes in Networks and Systems, vol 697. Springer, Singapore. https://doi.org/10.1007/
978-981-99-3080-7_30.

2 Anupindi Sri Sakti Swarup and A. Michael Alphonse, The boundedness of Fractional Hardy-Littlewood mazimal
operator on variable lp(Z) spaces using Calderon-Zygmund decomposition. Accepted for publication in “The
Journal of Indian Mathematical Society (2022), Vol 89”, Acceptance Letter Dated: May 9 2023.
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The following lemma will be used as a variation of Holder’s inequality. Proof of this lemma in
continuous version can be found in [8]. Same line of proof works here. For completeness sake,

we provide the proof below.

11_

Lemma 4.1.1. Let 0 < a <1, and p,q such that 1 <p < —, > % = «. For every interval I in

Z and non-negative sequence {a(n) :n € Z}

1 1 D
o va 1 a
17171 " a(k) < (Z a(k)p> <II\ Za(k)) .
kel kel kel
Proof. Suppose p’ is conjugate exponent of p. Then
1 1
*/ + - = 1
p p
Since
1 1
- =aq,
p q
it follows that
a—1+ oi%) =_£
So,
. . ap l—ap
Y am) = 1 (an ) (L aw)
kel kel kel
%ap , % 1—ap
< (Sawr) (X)) (L aw)
kel kel kel
a P
ap q
< e (Sawr) (Sam)
kel kel
11 2
< (Za(k)p)p q ( 7 Za(k)) q
ket et
This completes the proof. ]

4.2 Calderén-Zygmund decomposition theorem for sequences

The Calderén-Zygmund decomposition theorem for sequences [3] is as follows.
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Theorem 4.2.1. Let 0 < o < 1. Take a real number p such that 1 < p < é (If « = 0 then
1 <p<o0) Let {a(n):n€Z} € tP(Z). Then, for every t > 0, there exists a sequence of

disjoint dyadic intervals {I]t} such that

(4) !Itll aZm )| < 2t,Vj € Z
kel!

(i) Vg UL, la(n] <t

(#i1) If t1 >te, then each Ijt-l is subinterval of some I'2, Yj,m € Z.

Proof. For each positive integer N, consider the collection of disjoint intervals of cardinality 2%V,
{Ingy ={lG -2 +1,....52"]},j € Z.
For each t > 0, let N = N, be the smallest positive integer such that

- > lak)| <t.

kEINt i

’INtJ

Such N is possible as {a(n) : n € Z} € (P(Z) and p < 1. Now consider collection {Iy, ;} and
subdivide each of these intervals into two intervals of equal cardinality. If I is one of these

intervals either

(A) mMZya )| > t.

kel

or (B) s Ylak)| <t

kel

In case (A) we select this interval and include it in a collection {I, ;}.

In case (B) we subdivide I once again unless I is a singleton and select intervals as above. Now
the elements which are not included in {, ;} form a set S such that for every n € S, |a(n)| < t.
This proves (i).

Also, from the choice of {I, ;}, note that {I, ;} are disjoint and satisfy

a > t.
|Ir]|1 « Z| |

kel ;
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Since each I, ; is contained in an interval Jy with card Jy = |2Iw‘|l_a, which is not selected in

the previous step, we have

2
‘IT]Pa Z|a J—Z k)| < 2t.

Kel,; eJo

This proves (ii). It remains to prove (iii).
If #4 > 3 then Ny, < Ni,. So each I, ; is contained in some Iy, ;. In the subdivision and the

selecting process for t; we have

1
T e > alk)] >ty > to.

Iy, .
‘ Nty 5 keINtl ;

So, if I;fi1 is not one of the intervals I’2, then it must be subinterval of some I’2 selected in an

earlier step. This completes proof. O

4.3 Relations between maximal operators

Theorem 4.3.1. Given a sequence {a(m) : m € Z}, the following relation holds:

M'a(m) < Ma(m) < 3M'a(m).

Proof. First inequality is obvious as M’a considers supremum over centered intervals, while
M considers supremum over all intervals. For second inequality, let I = [m — ri,m —r; +
1,...,m+ 19 — 1,m + ro| be an interval containing m. Let r = max {ry,r2}. Consider I =
[m—r,m—r+1,...,m+r—1,m-+r] containing m. Note that [I;| =2r+ 1,|I| =7 + 72 + 1.
Then

[

I|l=ro+m+1>r=2-3r>-2r+1)= f|11].

w
oo\»—k

This gives
1
LS a) < 23 alk) < 3Ma(m).

Theorem 4.3.2. If a= {a(k) : k € Z} is a sequence with a € {1(Z), then

{m € Z : M'a(m) > 4\}| < 3|{m € Z : Mga(m) > X\}|.
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Proof. Using Calderén Zygmund decomposition at height A, we obtain a collection of disjoint

dyadic intervals {I; : j € ZT} such that

|I|Z|a )| < 2\
kel;

Then
Uil C{m e Z: Mga(m) > A}.

It suffices to show that
{meZ:Ma(m)>4x} C U;3I;.

Let m ¢ U;31;. We shall prove m ¢ {k € Z : M'a(k) > 4\}. Let I be any interval centered at
m. Choose N € Z, such that 2¥~1 < |I| < 2V, Then I intersects exactly 2 dyadic intervals
in Ty say Ri, Re. Assume R; intersects I on the left and Ry intersects I on the right. Since
m & U231, m ¢ 2RI;,j = 1,2,3... and m ¢ 2LI;,j = 1,2,3,.... But m € 2RR; and
m € 2LRs.

Therefore, both Ry and Ry cannot be any one of I;.

Hence, the average of {a(n):n € Z} on each R;,i = 1,2 is at most A. Further note that

|Rl‘ < |R72‘ <
T 2, ] 2. So

mel keR, kER>
1 |Ry| 1 |Ry|
la(k)| + |a(
<\R\ 1] Z !R! 1] ,%;
( > la(k) Zya )—2)\+)\)—4/\
keR keR

Using Theorem 4.3.2, we have the following corollary.

Corollary 4.3.3. For a sequence {a(n):n € Z}, if Mga € tP(Z),1 < p < o0, then
1Mal () < C 1 Maaller z
Proof.
3y = [ 9 m: 2r'a(m) > A}an

<srt [Tprtifm s Miatm > 3 by
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< 3(4)P /OOO puP L {m : Mga(m) > u}|du.

< 3(4)F ”Mda”ep(Z)

O]

In the following lemma, we see that in the norm of BMO(Z) space, we can replace the average
ar of {a(n) : n € Z} by a constant b. The proof is similar to the proof in continuous version [7].

We provide the proof for the sake of completeness.

Lemma 4.3.4. Consider a non-negative sequence {a(n) :n € Z}. Then the following are valid.

1. HaH < sup 1nf

LT |\ a(m) —b| < all, -

2. M#(\a|)( ) < M*a(i),i € Z.

Proof. For first inequality, note for all b € R,

> la(m) —ar| <Y la(m) b+ > |b—al=A+B (say).

mel mel mel
Now
1
B=S"lb—ar| = Iljb—as| = |I|\ |Z|a<k>|\
mel kel
'”||<Z< )’ 2_lb—alk)
kel kel
So,

S Ja(m) —ar] < 3 la(m) — b+ S b —arl <23 Ja(m) — b,

mel mel mel mel

Now, divide both sides by |I|, and take infimum over all b followed by, supremum over all I.
This proves

1
—|lal|, < sup inf —l|a(m) — b|.
5 llal, < sup it —fa(m) — b

R |I|

The proof for second inequality

sup inf — 7] ]a( ) —b <|all, -

mel beER

is obvious.

The proof of (2) follows from the fact that ||a| — |b|| < |a| — |b| for any a,b € R. O
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4.4 Good lambda estimate

The following is the good- A inequality for the unweighted case.

Lemma 4.4.1. If a € (P9(Z) for some py, 1 < py < 0o, then for ally >0 and A >0

’ {n € Z: Mga(n) > 2\, M#a(n) < 7)\} ‘ <2v{n € Z : Mga(n) > A}|.

Proof. Perform Calderén-Zygmumd decomposition for the sequence {a(n) : n € Z} at height A,

which gives collection of intervals {I;} such that for each j,
1

A< 07 > lak)| < 2.
J

kEIj

Let I be one of the interval in the collection {I;}. In Calderén-Zygmund decomposition, there

exists interval I such that I is either 2RI or 2LI and

TOBLCIERS

kel

We shall show that Vm € I, Mga(m) > 2\ implies Mg(axs)(m) > 2X. Given Mga(m) > 2\, by

definition of My, there exists a dyadic interval J containing m such that
S lak)] > 22 (1.41)
— a . 4.
/]
keJ

Consider two possibilities:
Case (1): I C J and I # J. From 4.4.1, since

1
il > la(k)| > 23 > A,
keJ

the dyadic interval J must have been chosen in the collection of intervals in Calderén-Zygmund

decomposition instead of I. So this case is not possible.

Case (2): J C I. Here |J| < |I| implies ﬁ > 177+ So from 4.4.1,

1 1
7] ZW@X}(’M > ] Z\a(k)\ > 2\

keJ keJ

From above cases, we conclude that the only possibility is that Mg(axr)(m) > 2. Write

axj = a1 + az where

ar = (a— af)XI
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as = an[.
Since My is sublinear and using the fact that My is sublinear and Mg(axs)(m) < aj, we have

Mg(ar + az) < My((a —aj)xr) + Ma(azxi).
< My((a —aj)xr) + (aj).

Since My(ajxs)(k) < aj VE, it follows that
Ma(ar + az) = Ma(axr) < Ma((a — ap)xr) + (af).
Hence for every, k € I, it follows that
Mqy((a —aj)x1)(k) > Mg(axr)(k) — aj.
So, for those k’s,
My((a —aj)xr)(k) > Mg(axr)(k) —a; >2X =X = A
Using weak(1,1) inequality for My

‘ {kel:Myl(a—ap)](k)>2\} ' < ‘ {k eI:Myl(a—ajp)xi](k)>2)}

IN

’{keZ Mg[(a — aj)x1)(k >/\}' < —Z|a

kel
< ,| |= > la(k
MZ

kel

2C

for every m € I.

Now,
2 2
{n € I: Mga(n) > 2\, M#*a(n) < m} < 2911 (int MFa(n)) < 2E1119A = 20110
A nel A
Therefore,
’ {n € Z: Mga(n) > 2\, M#a(n) < ’y/\} ‘ = ‘ U, {n € I; : Mya(n) > 2\, M#a(n) < ’y/\} ‘

<2Cy Z|Ij| <2vy/{n € Z: Mga(n) > A} '

jel;
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As a consequence of good-\ inequality, we prove the following theorem.

Theorem 4.4.2. Let {a(n) : n € Z} be a non negative sequence in (P(Z),1 < p < co.Then

> IMaa(m)P < ) IMFa(m)P.

meZ mEZ

where My is the dyadic mazimal operator and M7 is the sharp mazimal operator, whenever, the

left hand side is finite.
Proof. For a positive integer N > 0, let
N
Iy = / pAP T {m € Z : Mga(m) > \}|dA.
0
I is finite, since a € (P(Z) implies Mya € (P(Z)

N
Iy = / PN H{m € Z : Mga(m) > \}|d\
0

S

= 2p/ PN TH{m € Z : Mga(m) > 2\}|dA

ol

< 2p/ p)\p_1|{m € Z : Mga(m) > 2\, M#a(m) < 'y)\}|d)\—|—
0

N
21’/2 p)\p_ll{m € Z: Mya(m) > 2\, M#a(m) > 7)\}|d)\
0

vz

< 2p/ P10 {m € Z - Mya(m) > AHdAt
0

N
2p/2 p)\p_ll{m €Z: M*a(m) > ’y)\}\d)\
0

N
< 2P07/ oAU fm € Z - Mya(m) > A}dA  +
0

z [
0

vl

pApfly{m €Z: M*a(m) > w\}\d)\.

It follows that

N
2

(1 - 2°Cy) Iy < 21’/ pAp—l\{m e Z: M*a(m) > w\}\d)\.
0

Now choose v = 2p+1 such that (1 — 2PCy) = 7. Then,

ol2

71N<2P p)\pl m e Z: M¥a(m )>7)\}|d)\

o
<5 | e g m € Z: M*a(m) > A}|d)\.

/7
[



Chapter 4. Mazximal Operators 39

Now, take N — oo, we get

Z Mga(m)? < C Z M#a(m)".

meZ meZ

4.5 Weighted good lambda estimate

Lemma 4.5.1. Let {a(n) : n € Z} be a non-negative sequence in {4,(Z). Let w € A,, 1 < py <
p < oo. If{a(n) : n € Z} is such that Mga € (5)(Z), then

> IMga(m)Pw(m) < C > |M*a(m)Pw(m).

meZ MEZ

where My is the dyadic mazimal operator and M7 is the sharp mazimal operator, whenever, the
left hand side is finite.

Proof. In order to prove Lemma 4.4.2, first we prove the weighted good-A inequality, which is as

follows: We know
{m € 7 : Mya(m) > 2\, M#a(m) < ’y)\} C{meZ: Mia(m) > \}.

Also from Theorem 2.3.4 we have

w(S) 1SN’ _ s
wu>§0<u0 =7

Hence,
w({m € Z: maa(m) > 22, M*a(m) < 4A}) = w(S) = Cr w(I) = Cy w({Maa(m) > A}),
For some § > 0,
w({m € 7 : Mya(m) > 2)\, M#a(m) < w}) < Cyw({m € Z : Mga(m) > \}).

Since {m € Z : Mga(m) > A} can be decomposed into disjoint dyadic intervals, it is enough to

show that for each such interval I,

w({m € I: Mga(m) > 2\, M#a(m) < ’y)\}) < Cyow(I).
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Using this weighted good-\ inequality, along the same line of proof of Theorem 4.4.2, we can
prove the weighted version of Theorem 4.4.2. ]

Theorem 4.5.2. Let 0 < o < 1. Take a real number p such that 1 < p < é (If « = 0 then
1<p<o0). Let{a(n) :n € Z} € (P(Z). Let {I;} be intervals obtained from Calderdn-Zygmund
decomposition at height t. Then

{n: Maa(n) > 9t} C U;21I;.

Proof. Since I; are the intervals obtained from Calderén-Zygmund decomposition at height ¢,

for each j, we have

|It1 az| |>t

keIt

Therefore, U;I; C {n : Maa(n) > t}. Let n ¢ U;21% and I be any interval which contains n. Then

Ylak)= > lak)+ Y la(k)| =51+ 5.

kel keIn(u;It) In(u;I)e

To estimate S1, we observe a simple geometric fact. If I N I;- is non-empty and I is not contained
in 2[;, then I]t C 41. Sincen € [ and n ¢ 2];, for each j, I is not contained in 2[; for each j.
Also, note that So < ¢|I|. Therefore,

S1 < Z Z|a(k‘)

{s:1tcar} kelj

< > 2.

{j:I]t.gle}
< 2t|41|
< 8t|I].

Hence, ) ;. crla(k)] < 81+ Sz < 9t[1].

Since I was an arbitrary interval containing n, we have Mya(n) < 9t. Therefore

(Uj2I;f)C C {n: Mya(n) < 9t}.
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Lemma 4.5.3. Let 0 < a < 1. Take a real number p such that 1 < p < = (If a = 0 then
1<p< o). Let{a(n):neZ} € tP(Z) and q(-) € S. Let { j} be mtervals obtained from
Calderdn-Zygmund decomposition at height (9t)*~1 where k € Z and 0 < t < %. Define

O = {z € Z: Maa(i) > 9A4F = 9(9¢)* }

and

Q1 \ Qp = UjEjk.

where Ejk are pairwise disjoint for all j, k € Z. Then the fractional maximal operator satisfies

q(7)
S aali) < 418507 5 (s 32 )

€L k,j eE’“ ezlf

where A is chosen based on t.

Proof. Take A = 9t < 1. Define Q; = {z €7 : Mua(i) > 9AF = 9(9t) } For each integer k,
apply Theorem 4.2.1 Calderén-Zygmund decomposition for sequence {a(i)}, at height t = A*+1
to get pairwise disjoint cubes {I jk} such that

Qiy1 C U215 (4.5.1)
1
% Z (1(2) > Ak+1. (452)
|I' | ieIJ’F

Multiply both sides of (4.5.2) by 21%&, we get

1 , L gkt
‘Qlk‘l—a Z a(l) > 21704A :
J ie2rk

Define sets inductively as follows:

Q1 \ Qk> N QIf

g =
Ey = <<Qk+1\9k>m2jg>\Ef
Bl = (((a v ) naf) \ Bt U b))

<Qk+1 \ Qk> N 211;) \ (EFUES ... Eﬁl_l)).
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Then, sets Ejk are pairwise disjoint for all j and k& and satisfy for every k

Q1 \ Qe = U EY.
J
So, Z =y, (Qk+1 \ Qk> =g Uj E]k Further, note Qg1 \ Q. = {9Ak+1 < Mya(i) < 9Ak}.

We now estimate M,a as follows, noting A < 1,

S Moa(@)™@ =3" N Maa(i)™?

1EZ k ieﬂk+1\ﬂk

SZ Z [9.A%]9()

k iEQk+1\Qk

a6)
< A 1gr - 3" §° (\2Ik|1 — Y Jafm > '

k.1 s k k
) ZEEJ EQ[J

This completes the proof. ]

4.6 Weighted classical results for maximal operators

In this section, for a given sequence {a(n):n € Z} in #,(Z), we prove weighted weak(p,p)

inequality with respect to the weight {w(n) : n € Z} € A, which is as follows:

w({m € Z: Ma(m) > \}) < — Z\a )[Pw(m (4.6.1)
mGZ

Inequality A4 will be proved via several theorems, Theorem 4.6.1 to Theorem 4.6.2.

The proof of Theorem 4.6.1 uses Calderén-Zygmund decomposition. For the proofs of the
corresponding results for the continuous version, we refer [7]. The proofs of Theorem 4.6.1 and
Theorem 4.6.2 are same as the proof for the continuous versions of the corresponding results
apart from the fact that the constants obtained here are slightly different from the constants
obtained for the continuous version due to the nature of dyadic intervals in Z (see [4]). So, we

give here the proof of Theorem 4.6.1 and Theorem 4.6.2 for the sake of completeness.
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Theorem 4.6.1. If {w(n) :ne€Z} € A, ,1<p<ooand{a(n):n € Z} is a sequence in {*(Z),
then for p > 1, there exists a constant C, such that

> Ma(m)Pw(m) < Cp Y la(m)[? Mw(m). (4.6.1[A])

meZ meZ

Furthermore, for p =1, there exists a constant C1 such that

> Z\ )| Mw(m). (4.6.1[B])

{mGZ:Ma(m)>)\} meZ

Proof. We will show that [[Mal|gecz) < [lall e (1) and that weak(1,1) inequality holds; the
strong(p,p) inequality then follows from the Marcinkiewicz interpolation theorem.

If Mw(m) = 0 for any m € Z, then w(m) = 0 and there is nothing to prove

If Mw(m) > 0 for some m, then w(m) > 0 for those m. But since Mw(m) is evaluated over
all intervals I containing m, Mw(m) > 0,Vm € Z. Therefore, we assume that for every m € Z,
Mw(m) > 0. Take C' > Ha||%..}w(z). Then

Z Muw(n) = 0.
{n€Z:|a(n)|>C}
which shows that
{neZ:la(n) >C}=0.

Hence, |a(n)| < C,Vn € Z which implies that |Ma(n)| < C,Vn € Z. Therefore
{ne€Z:|Ma(n)| >C}=0.

So,

Z w(n) = 0.

{n€Z:|Ma(n)|>C}
which gives w({n € Z : |Ma(n)| > C}) = 0.
Therefore, [[Mal|joo(z) < C. Taking inf {C’ HaHeoo ) < C} we get

1Mallgee (z) < llallgss 2y -

To prove the weak(1,1) inequality we may assume that {a(n) : n € Z} € ¢}(Z). Form Calderén-
Zygmund decomposition of sequence {a(n):n € Z} at helght > 0. Then we get a sequence
{I;} of dyadic intervals in Z such that



Chapter 4. Mazximal Operators 44

Further as we showed in the proof of Lemma 4.3.2(See [3]),
{meZ:Ma(m)>\} CU,;3I,.

It follows that

Z w(m)ﬁZZwm

{m:M’a(m)>\} j mesl;
Z?MI %};j w(m)
< ((g;.'a@”)(wmwO)
S120Zm (M
nez

Since by Lemma 4.3.1, {m : Ma(m) > A} C {m: M'a(m) > 3}, it follows that

Z w(m) < Z 360 Z]a )| Mw(n

{m:Ma(m)>\} {m:M/a(m)>%} ner
O]

Theorem 4.6.2. Assume {w(n):n € Z} € A,. Given a non-negative sequence {a(n) :n € Z} €
&.(Z), for 1 < p < oo, the weighted weak(p,p) inequality holds:

w({m €Z: Ma(m) > \}) < Z|a )|Pw(m
mEZ

Proof. Let {a( ):n € Z} € £4,(Z). Form the Calderén-Zygmund decomposition of {a(n) : n € Z}
at helght 5 to get a collection of disjoint intervals {I;} such that

r . A
Z ma(l) > ﬁ

ZEI]'

By the proof of Lemma 4.3.2 in [3] and Lemma 4.3.1 , we have
, A
{m e€Z: Ma(m) > \} C mGZ:Ma(m)>§ C U;31;.
Therefore, using Theorem 2.3.4, we have

w({m € Z: Ma(m) > \}) < Z (31) <C3pz

J J
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Theorem 4.6.3. Ifw € A,,1 < p < oo, then M is bounded on l4,(Z).

The proof follows from Theorem 4.6.2 and Marcinkiewicz interpolation theorem.

4.7 Fractional Hardy-Littlewood maximal operator

Lemma 4.7.1. Define sets

E=FEUFE,
Ei={x € E:F(m)<R(m)};meZ
Ey={xe€ EF:R(m)<F(m)};meZ.

Let p(-) : Z — [0,00) be such that p(-) € LHy(Z) and 0 < pso < 00. Let R(k) = (e+ k)™, N >
]t. Then there exists a real constant C depending on N and LHy(Z) constant of p(-) such that

given any set E and any function F with 0 < F(m) <1 form € E

Z m)Pm) < Z m)P= + CZR (4.7.1)
E

E

> F( <C> F(m)rtm 4 CZR (4.7.2)
E

E

Proof. For m € Z, let R(m) = (e + |m|)™N

Since (e + |m|) > e > 1,Vm € Z, we have (e + |m|)_N < 1 which implies that R(m) < 1Vm € Z.
Further since p(+) € LHy : [p(k) — poo| < keZ,|p(m)— psollogle +|m|) < coo. So,
it follows that

log(eﬂk\)’

R(m) P =Pl — (¢ 4 |p[) (=M (= Ip(m)—pec])
= (e + |m]|)NIPm)—pec]

= exp(N log(e + [m|)[p(m) — poo|) < exp(NCo).
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Also, p(m) — peo > —|p(m) — pso|,m € Z. Since R(m) < 1,Vm € Z

R(m)P(m) =P < R(m)~IPIm)=peol,

Therefore,
ZF<m)p(m) < Z R(m)P™
Eq
< Z R pooR |p(m)7poo‘

< exp(NCy) ZR m)P
Ey

Also F(m) <1, and on Es, R(y) < F(y) <1 hence,
ZF( p(m) < ZF )P F(m =|p(m)—poo
Es
< Z F pooR —[p(Mm)—peo

< exp(NCy) ZFmp
Es

Combining both estimates, above

S Fm)P™ < ¢ F(m)Pe +C> R(m)P
E E

E

This completes the proof of (4.7.1) .

Proof of (4.7.2):

Note, from p(y) — poo < [P(y) — Pool, We get poo = p(y) — [P(y) — Pool-
On Ey = {F(y) > R(y);y € Z} and since F(y) <1

ZF(y)poo < Z F(y)PW) p=ip(y)=p|
yc ks

< Z F(y)PW R(y)~IPW) =Pl
IS

<exp(NCx) Y F(y)W. (4.7.3)
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On By = {F(y) < R(y);y € Z}

Y Py~ < > R, (4.7.4)

yeE yeE
From (4.7.4), (4.7.3) we conclude that

S P <SR + 57 Ry,
E E

E

4.7.1 Strong (p(-),p(:)) inequality for Fractional Hardy-Littlewood maximal

operator

In this section, we derive strong (p(-),p(+)) inequality for fractional Hardy-Littlewood maximal

Operator. In order to prove this theorem, we use Lemma 4.5.3.

Theorem 4.7.2 (Strong (p(-), p(+)) inequality for Fractional Hardy-Littlewood maximal operator).
Let {a(n) : n € Z} be a non-negative sequence in PC)(Z) where {p(n) : n € Z} is a sequence in
S that belongs to LHx(Z). Let {a(n) :n € Z} be a sequence which satisfies

1 1
m—m:a,nez

and p(-) € LHy,1 < p_ < p, < é Further assume that q(-) € LHy,.

Then

||Maa||eq<<>(z) <C ||a||ep<<>(z) :

Proof. Now, we are going to prove HMaaHM.)(Z) <C Ha”emg(z). We may assume without loss
of generality that [la|s()z) = 1. We will show that there exist a constant Ay = Az(p(+)) > 0
such that pq(.)(Ma)\%) < 1. For this it suffices to prove pq(.)(agﬁgygégMaa) < % form some
non-negative real numbers as, 82,2, 6.

Let Ay ~! = aaBry202. To estimate this term we perform Calderén-Zygmund decomposition for
sequences {a(k)} at height (9¢)**! with 0 < a < % and obtain disjoint dyadic intervals {I ]k}
Then we use Lemma 4.5.3 for the fractional Hardy-Littlewood maximal operator M,. We will
show that p,(.)(aeB2y2d2Mua) < % for suitable choices of ag, B2, v2, d2.

Then

Pq( (227202 Mpa) = Z [ Bay202 Mpa(m)] 2™
meZ
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< af B0 Maa(m)*™

meZ
q(m)
<o Ao s S (e S al)
k,j mGEJ’.C ‘ ‘ 7"621']’C
Now choose
a“ 1
¥ = A+ 18+ (1—a) "
Then )
ZEEL SR Y C =D ML 0"
k.j meE;.C e21j’€
Hence
m)
Z[azﬁﬂzézMaa( )20 < B9~ 5q_z Z <’2 T Z la(r > . (4.7.5)
mez meEk realk

We have to estimate right hand side of equation (4.7.5). At this point, we note that g, < oc.
Let go(r) = a(r)P"), then equation (4.7.5) becomes,

1\ a(m)
DRSS SPNCL

kg meEj’? rezfjk

Since () € LH, from the definition we have

1 1 Cx

‘Q(m) - q(oo)’ = log(e + |m|)Vm €Z.
Also, 1 1
p(m)  q(m) 1 VmeZ
and
RIS R
p(m)  q(m) = :
So,
‘1_1‘:‘1_a_1<000 o
q(m)  q(o0) p(m) q(c0) | = Tog(e + |m]) .

which shows — is the LH., constant with value -~ + «. Hence we conclude
q(c0) p(o0)

R
p(oo)  q(o0)

Note, since () € LH(Z), it follows that the exponents poo, goo satisfy zﬁ — q%.o = «. Hence,
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using Lemma 4.1.1 with exponents pso, ¢oo-

1 1 Poo
1

2 Y < (X wm)T T (G X en )T @)

k k
7‘62[j TEQIj

Further, note the following estimates.

1. go(r)P>= < 1. since go(r)P> = a(r)p(r)p‘x’ < 1 since a(r) < 1.

2. For N > 1, define R(k) = (e + |k[)~". Since N > Ii, > pez R(k)NPeo = Zkez(ﬁ)]\mx
converges and can be bounded by some constant. So, the second integral is a constant
depending only on po, by taking sufficiently large N > zi' By taking N large enough, it

follows that

3. Also, note that by the property of variable norm

Yo g2(r)= > alrP <Y ar)P? < lal|pe gy = 1

7’62]]]? TEQI]’? rez

4. Let F(k) = ga(k)Pe>. Since go(k)P>~ < 1Vk, F(k) < 1Vk. Hence, we use following form of

Lemma 4.7.1 , where % is taken as LH., constant.

S Py <C S Fm)yie +C Y. Rim)i=.

k k k
mEZIj m€21j m€2lj

Since ﬁ € LH.(Z) and using Lemma 4.7.1 with exponents peo, goo With F' = go(r)P> <1,

based on estimates [1-4], it follows that

1 1

5 (o) 20 o) oot

me21;c meZ meZ

=03 ga(m)+C Y Rm)7= < C.

meZ meZ
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Therefore equation (4.7.6) is

1 1 Poo
_ 1 Poo \ Poo  doo 1 1\ 4o
RS ) < (30 ) (e 3 )
reark re2rk i reark
Poo
1 1\ doo
CcCYl —— p(r)
< (g 2 00

Therefore, using estimates [1-4], we can now choose constant Sa > 0, f2 = % such that

a(m)
ﬁ27’yé17 537 Z Z <|2[j |a—192 (r) p(lr) )

kg Ek
1 1\ Pee qq(:;)
<5705 D> ( Uigpy 2o 92(n)7 :
- |217%|
k,j E]’? J reﬂf
Note,
1 Poo 1
o 2o () = o D ax(r) <1
|2I ‘ re2rk ‘QIj ’ re2lk

1

q(r)poo 1\ 4(M)peo
So et F(r) = (0007 ) < (Seam)™ ) <1,
€ LHy(Z), we get

Using Lemma 4.7.1 and with q(l.)

1

S F(r)iw <GS F(r) T 4+ Cy S R(r) .

reZ rEZ reZ
Therefore,
Z<92(k)pk>> < 012<92(k)m>> +Co ) R(k)ae
keZ kezZ keZ

and so,
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Pooy L
1 qoo
=5 ((m X m00) )
kg EY re2lk
1 L\ P
<s(oghy Z o) s
re2r keZ
Take 2 > 0 such that C; = 1. Then
) a(m)
q- 59— 1 SRR
73 ZZ((,M, > gz(ﬂp(’") )
kg EX T reark
1 Poo
<6q ZZ<< 27k Z 92(7")P(T>> )+022R(k:)q
kg EF ‘ ’7“62[]’.“ keZ
.
<4y Z(Mgz( )P0 >(/€)p°° +C.
Z

Note that the maximal operator is bounded on P>~ (Z), since poo > p— > 1. Again apply Lemma
4.7.1 to get

5 (M) ) 0 <€ X <03 gnll) + € Y R <

kEZ

4.7.2 Weak (p(-),p(:)) inequality for Fractional Hardy-Littlewood maximal

operator

Theorem 4.7.3 (Weak (p(-),p(+)) inequality for Fractional Hardy-Littlewood maximal operator).
Given a non-negative sequence {a(i)} € tPC)(Z), let p(-) € S,py < oo,p— = 1,1 <p_ < p; <
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1 and p(-) € LHx(Z). Define sets 0, Ej,j € Z as follows.
O ={keZ: Maa(k) > 9t} = U;E;.
where Ej are disjoint for all j € Z. Then
b [|tx{atuak)>90 | a2 < € ol 2

Proof. Using Theorem 4.5.2 for sequence {a(n) : n € Z}, we get for fixed t > 0, disjoint intervals
{1}
{k €EL: Maa(k:) > gt} = UjQIj.

Define disjoint sets F; such that E; C 2I; inductively as follows:

Ey =21,
By = 2L\ By
By =215\ By

By = 2L\ Em_1.

Now @ = U;FE;. To prove the weak inequality, it will suffice to show that for each k € €,
[txa (k)4 < € and in turn it will suffice to show that for some az >0,

P (aztx) = > _[agt]™ < 1.
keQ

We will show that each term on the right is bounded by for suitable choice of as.

To estimate ) ;. [a2t]? 4(k) " we note from Lemma 4.5.3 and results from previous theorem, we have

payaztxa) = 3 laztxa(k))"®
kEZ

N Z txa(k q(k) _ = ay?- Z[t](I(k)

keZ ke

_ (%)q— 3 (Maa(k))Q(k)

ke

< Ot~ Z Z (Maa(k))q(k

j keE,

< (X (s 2 o))

J kJEE 621]'
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J Ej k€2I]
1 Poo. 1
< 01-§9- k) —
<o (S5 35 20) o)
J E; ke2l
poo 1
S (Z g2(k) D + 6)
keQ
Now, choose d2 > 0 such that right hand side is bounded by % O

4.8 Hardy-Littlewood maximal operator

In this section, we prove boundedness of Hardy-Littlewood maximal operator for Ep(')(Z) spaces
where p_ > 1. The proof is based on boundedness of Hardy-Littlewood maximal operator on

(P(Z), where p is a fixed number, 1 < p < 0.

Remark 4.8.1. Note that when o = 0 the fractional Hardy-Littlewood maximal operator is
nothing but Hardy-Littlewood maximal operator. However we can prove strong type, weak type
inequalities for Hardy-Littlewood maximal operator on Ep(')(Z) directly from the corresponding
results for fixed ¢P(Z) spaces, 1 < p < co. The key point of the proofs is Lemma 4.7.1. The

proof of continuous version of Lemma 4.7.1 can be found in [8]. Same line of proof works here.

4.8.1 Strong (p(:),p(-)) inequality

Theorem 4.8.2 (Strong (p(-), p(+)) inequality). Given a non-negative sequence {a(i)} € tPC)(Z),p(-) €
S,pr <oo,p_ >1, then

”MGHM-)(z) <C ”CLH@(-)(Z) :
Proof. By homogeneity, it is enough to prove the above result with the assumption |[|a|| wo @) = 1-
By Lemma 3.1.15, ziezla(z‘)\p(i) < 1. So, it is enough to prove that
> IMa(i)P? < C.
1EZ

Given that 0 < a(k) < 1, it follows that 0 < Ma(k) < 1. To prove boundedness of {Ma}, we

start with Lemma 4.7.1 as follows:
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> Ma(k)P™® < C> " Ma(k)P= +C> _ R(k)

k€EZ k€EZ k€EZ

Since N > ——, > R(k YNPo = Zkez(ﬁ)]\mw converges and can be bounded by some
constant. So, the second integral is a constant depending only on py, by taking sufficiently large

1
N>poo

To bound the first integral, note that 1 < p_ < ps. Since ps > 1, M is bounded on ¢~ (Z) and
by using strong (p, p) inequality valid for classical Lebesgue spaces with index po,, we get using

Lemma 4.7.1 and equation (4.7.1) ,

D Ma(k)P= < CY a(k)r= < C Y ak)P™ +C Y R(k)P> < Clall,y +C>_ R(k)P= < C.

kEZ kEZ kEZ kEZ kEZ

Like previous case, the term involving summation of R(k) is bounded by a constant depending
only on ps, by taking sufficiently large N > Ii.

Therefore, using above results,

Pp()( Z Ma(k p(k <C.
keZ

4.9 Maximal ergodic operator

Let (X, B, 1) be a probability space and U an invertible measure preserving transformation on

X. We define maximal ergodic operator as

J

- B 1 L
M () = sup 55 S U F)

For any positive integer J, we also define truncated maximal ergodic operator as

er

M;f(x)= su
7/ (@) 1<nI<)J2n+].

In the following theorem using transference, we prove that the maximal ergodic operator is

bounded on weighted L%,(X, B, u),1 < p < oo where w is ergodic A, weight and the maximal
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ergodic operator satisfies weak type (1,1) inequality on L} (X, B, 1) space. For the definition of
ergodic A, weights refer Chapter 2.

Theorem 4.9.1. Let (X, B, ) be a probability space and U an invertible measure preserving

transformation on X.

1. If w is an ergodic A, weight, 1 < p < oo and f € L4, (X, B, 1), then the mazimal ergodic

operator

|31 £()

oo <Gl ¥ 1<p<oo

2. If w is an ergodic Ay weight and f € LL(X,B,p) , then

C
/{xeX:|Mf(gg)|>)\} w(z)dp(z) < )\/X’f(ﬂfﬂw(m)du(x)

Proof. Take p,1 < p < co and take a function f € L%,(X). For a positive integerJ > 0 define

1 n
|f(U )]
+1 kz—:n

M ) = Ssu
Jf(x) 191272%

It is enough to prove that M satisfies (1) and (2) with constants not depending on .J. Let A > 0

and put
Ey = {xeX My f(z)] > /\}.

For x lying outside a p null set and a positive integer L, define sequences

—k .
BT B LB A

0 otherwise

w(U *x) if |k|<L+J
wy (k) =
0 otherwise

Using Theorem 4.3.1, observe that for an integer m with |m| < L we have

M;f(U ") =

n
su Uk=—my
S, T 2 U

n
1
sup
1<n<J 2n+1

> lax(m + k)| = Mjagy(m) < Mag(m)
k=—n
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Therefore,

w({m € X :|M;yf(x) > )\}) —/ w(z)du(z) = ;/E NPw(x)dp(z)

Ex

IN

¥ [ Tf@Pue@d)

IA

L / NI ) P ()

= 5T Z / 31 £ (U)oU) ()

< S m; [ e ml.m)dita)

11 - )
- w1/, 3 Mo unlm)uo)

1
< yarrif, D m)[Pew, (m)dp(x)
Cc 1
LI /mz_:oom ) em )
L+J
Cc 1
= o / Z;H () [P, (m) ()
(L+J)
)\p 2L 1 / Z;J |f(U " 2)[Pw(U " 2)dp(x)
(L+J)
C’ 1
<P 2 J U@ duta)
—(L+J)
(L+J)
cC 1
S . %J)/'f o) P (e)dp(z)
Cc 1
< S AL+ D)+ D

C oL 2741
<7
< w1 Tarer Mz

¢ p
< ﬁ HfHLZJ(X)

by choosing L appropriately. Conclusion (1) of the theorem now follows by using the Marcinkiewicz

interpolation theorem. O

Now, we prove the converse of Theorem 4.9.1 for p > 1 with the additional assumptions (1)

(X, B, 1) is a probability space and (2) U is ergodic measure preserving transformation. Using
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transference method, we prove the converse of Theorem 4.9.1. A direct proof can be seen in [5].

For this we require the concept of ergodic rectangles [5].
The following lemma, whose proof is obvious is used in the proof of below theorem.

Lemma 4.9.2. Suppose {w(n) : n € Z} is a sequence in Ap(Z),1 < p < co. Put

w() if relj-j.i+i, JjEZ

0 otherwise

w'(x) =

If we Ap(Z), then w' € Ap(R),1 < p < oo.
If w e Ay(Z), then w' € A1(R).

Theorem 4.9.3. Let (X, B, i) be a probability space, U an invertible ergodic measure preserving
transformation on X. If M f is bounded on L5,(X) for some 1 < p < oo, then w € Ap(X).

Proof. For the given function w on X, for a.e x € X define the sequence w, (k) = w(U *z). We
shall prove that

p—1
esssupsex (g Sl ) (1 Sl 1) <

kel kel

This will prove that w € A,(X). In order to prove this, we shall prove that the Hardy-Littlewood

maximal operator M is bounded on &, (Z) and
HMaHeT;M(Z) <G HaHE{’M(Z)

where C), is independent of z. In order to prove the above inequality, take a sequence
{a(n) :n € Z} € 44, (Z).

Let R = U%ifZJUkE be an ergodic rectangle of length 4.J 4+ 1 with base E. Let F' be any
measurable subset of . Then F is also base of an ergodic rectangle of length 4J 4+ 1. Let

R = Ui_72 JUkF Define function f and w as follows.

FU ) = a(k) if z€F and—J<k<J

0 otherwise.

Then,

g0 = [ 1@Pe@n) = [ |1@Pe@iue)

J

=3 [ l@Pe@ne

k=—J
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J
=2 A\f(U-kxnpw(U—kx)du(w)

Z/\ ) Pua (k) dis(z)

k=—J

-/ (Z\a Psth) ) da)

—
<llalle, 2y (F).

Using Lemma 4.3.1, it is easy to observe that for —J < m < J and z € F
T —-m / 1
M;f(U ™z) = Mja(m) > gMJCL(m).
Now,

Clli g > [ NS @Pu@n()
— [ 1M p(a)Pula)due)
.

J ~
= 3 [ P

.S [t e ) dnte)

k=—J

_ kZ_J /F |MYa(k) P, (K)du(z)

J
_ /F 2 IMjak) P (k) du(e)
Z3 FkZJ‘MJa )Pwz(k)dp(z).

So, from the above estimates

1 J
u(F)/F > IMa(k)Pw, (k) du(z) < Cllallp s
k=—J

Since F' was an arbitrary subset of E, we get

> IMja(k)[Pws(k) < Clla

Cop (Z)
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a.e x € . Since U is ergodic, X can be written as countable union of bases of ergodic rectangles

of length 4J 4 1. Therefore for a.e z € X,

> IMa(k)Pws(k) < Cllallg, (-
Since C' is independent of J, a.e x € X,

> IMa(k) Pus (k) < Cllallg, )
kEZ

It follows that the sequence {wy(n):n € Z} as defined by w,(k) = w(U*z) belongs to A,(Z)
a.e x € X and A, weight constant for w, is independent of x so that w € A,(X). O



Chapter 5

Singular Operators

In this chapter, we study Singular operator of Calderén-Zygmund kernel type on weighted Eﬁ,(') (Z)
spaces. This operator on (P(Z) spaces is studied in [1]. Here we prove the strong type (p,p)
inequality on 5,(Z) and weak(1,1) inequality on £.(Z) for both singular operator and maximal
singular operator. The inequalities for singular operators are obtained from the corresponding
inequalities for Hardy-Littlewood maximal operators. The inequalities for maximal singular
operator are proved using transference method by transferring the corresponding results on real
line and the using the observation that the linear extension of singular kernel on Z is a singular

kernel on R.

5.1 Calderon-Zygmund singular operator
The continuous version of singular operator are studied in [15]. The singular kernel K(z) is

defined as follows.

Definition 5.1.1. A locally integrable function K (z) defined on R is said to be Calderén-

Zygmund singular kernel if the following conditions are satisfied:

/ K(x) dx converges as e — 0. (K1)
e<|z\<%

[K ()] <

‘mc’_ (K2)

Clyl
.’L‘2

[K(x) = K(z —y)| < for|z| > 2Jy|. (K3)

60
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The principal value integral

Tk f(z) = lim . K(z —y)f(y)dy,
T—Y|>€

and the maximal singular integral operator

Tk f(z) = sup K(z —y)f(y)dyl,
>0 J|z—y|>e

are of strong type (p,p) for 1 < p < oo and weak type (1,1) [1].

Definition 5.1.2. A sequence {¢(n)} is said to be a singular kernel if there exist constants C

and C5 > 0 such that

(S1): Zivz—zv ¢(n) converges as N — oo.
(S2): ¢(0) =0 and |¢(n)| < {3, n #0
(83): |o(n+1)—¢(n)| < 53, n#0.

If ¢ = {#(n)} is a singular kernel and {a(n) :n € Z} € P(Z),1 < p < oo, define

Tya(n) = (¢xa)(n) =Y d(n — k)a(k).

keZ
Since S2 implies that ¢ € ¢ for all 1 < r < oo, the above convolution is defined. The operator

T, defined above is called discrete singular operator.

The maximal discrete singular operator corresponding to this discrete singular operator is defined
as

> blk)aln — k)|

3 ‘
k=—N

T7a(n) = sup
N

The proof of following theorems can be found in [1]. The following theorems state that the discrete
maximal singular operator and discrete singular operator are bounded on ¢?(Z),1 < p < oo and

they satisfy weak(1,1) inequality.

Theorem 5.1.3. Let ¢ = {¢(n)} be a singular kernel on Z. Then there exists constant Cp, > 0
such that

1 If 1< p < o0, ||Tsall, < Gy llall, . ¥a € ().

2. [{n:|Tha(n)| > A} | < % lall, ,Va € £X(Z) and X > 0.
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Theorem 5.1.4 ([1]). Let ¢ be a singular kernel and 1 < p < co. Then there exists a constant
Cp > 0 such that (1)

HTgaHp <Cplal, Vael(Z), if 1<p<oco.

(ii)
C
|{j€Z:T$a(j)>)\}|§71Ha||1 YA>0 and acl(Z).

In the following lemma, we observe that if ¢ is singular kernel on Z, then its linear extension is
singular kernel on R.

Lemma 5.1.5. Let ¢ be a singular kernel. Let K be the linear extension of ¢ defined as

K(r)=(1-t)¢(j) +to(j+1) if v=7+t0<t<1

Then K is a singular integral kernel on R
Proof. For x € R, z = |z] +t, 0 <t <1. Note that for z # 0

(K ()| = [(1 = )([z]) + to(lz] + 1)].
Hence K satisfies K2. Since ¢(0) = 0, lim¢_o f: K (x)dx exists.
Now

R (LRJ-1)
K(z)dr = ¢(|R])/2 —|R])/2 k k(zr)dx.
[ K@z =2 o lR) 2+ ST e [ k)

R k=—(|R]-1)
bt SR . #(~[R))
5 + 5 + /[R]<x|<R K(z)dz < @ -0

as R — oco. Therefore, by S1, S2, and K2 , we have K1.

For K3:

Let x,y € R such that |z| > 2|y|.
Letx=n+t,y=j+s, wheret >0,s<1landn,j€Z
We consider two cases, namely, |y| < 1 and |y| > 1.

For the first case there are 2 possibilities namely: (1) y > 0 and (2) y < 0.

Since (1) and (2) are dealt in a similar fashion we only discuss (1)

Now z —y =n+ (t — y). Let us assume t —y > 0.
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(Ift—y <0, wewrite x —y = (n—1)+[1 — (y — t)] and proceed.)

Now

K(z—y) - K@) =|1-({-y)on)+(t—-y)dn+1)—(1-t)p(n) —té(n+1)
<lyllg(n) — ¢(n +1)|
< Clylmin{1/n?, 1/(n + 1))
< Clyl/«*

For the cases |y| > 1. first we assume t —s > 0
(Ift —s <0, we write
z-y=Mn-j-1)+[1-(s—1)

and proceed ).
Then

|K(z —y) — K(z)| < [K(z —y) = K(n = j)| + [¢(n — j) — ¢(n)| + |K(n) — K(z)|.

By mean value theorem and the fact that the slope of the line joining the points ¢(k), p(k + 1)

is less that or equal to k% we have

|K(z —y) — K()|
< C(t—s)/(n—j)*+Cljl/(n—j)* + Ct/n?
< Cly|/n = j* + Cly|/n’(since|y| > 1)

< Clyl/(z —y)* + cly|/2*
< Cly|/«*(since|z| > 2|y]).

5.2 Results on Calderén-Zygmund singular operators on weighted

(? (Z) spaces

In this section, we provide some results for Calderén-Zygmund singular operators on weighted

0 (Z) spaces.

For this we require the following lemmas.
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Lemma 5.2.1. Let ¢ be a singular kernel. Given an interval I which contains integers m,n,

then for r ¢ 51,

Proof. If m > n, then

[p(n —r) = d(m —r)|

< 1oln —r) ~ 9ln— -+ 1) +6ln —r +1) ~ gln 7 +2) -+
+o(n—r4+m-n—1)—¢(n—r+m—n)|
<lp(n—r)—dn—r+D[+[¢(n—r+1)=¢(n—r+2)| -+
+lpn—r+m—-n—1)—¢(n—r+m—n)|

C C C
“n—r2 |n—r+12 |m —r—1J2
<C’n_ml
~ n—r?

1]
C
~ n—r?

By the same argument, if n > m, then

C|I
=) — ot — )| <
Also
im —r|=[m—n)+(n—r)|>|n—rl—|m—n|>[n—rl- ][I
Since r € Z\ 51, we have |n —r| > 2|I|. Hence for r € Z\ 5I. |m —r| > |n —r| —%;rl > \n;r|
ie ﬁ < ﬁ Therefore, in this case also, |p(m —r) — p(n —71)| < (ﬂng. O

Lemma 5.2.2. If Ty is a singular operator, then for each s > 1, there exists a constant Cs > 0

such that

M (Tyafm) < a1l o)

for each integer m € Z.

Proof. Fix s > 1. Given an integer m and an interval I which contains m, by Lemma 4.3.4 , it

is enough to find a constant h such that

1 S Tyan) = b < CM (Jaf)(m)*.
nel
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Decompose a = a1 + ag, where a; = axsr, a2 = a — a1. Now let h = Tya(m), then

G,Z\Tqﬁ“(”) < ‘} > ITsar(n)| + ‘}‘ > |Tyaz(n) — Tyas(m)].

nel nel nel

Since s > 1, Ty is bounded on ¢°(Z). Therefore,

1
s

nel nel

< ¢ Shatr)’

nezZ

7 S T ()] < (é‘ Dnal(n)r)

1

<o 71625:[|a<n>18)5

<ste | m(ap)m)|

To deal with ao, we require the estimate from Lemma 5.2.1.

Now, we estimate the second term as follows.

1
T > |Tpaz(n) — Tyaz(m)|
nel

< XIS (6n =)= otm =) Jatr)

nel reZ\5I

< },Z S 1é(n — 1) — ¢(m — r)]lar)|

nel reZ\5I

1 1
<O E ¥ gl

nel reZ\bI

copyS %

nel k=12k|I|<|n—r|<26+1 (]|

RN
< Cm Z Z 2%k|] |2 Z ja(r)]

nel k=1 |n—r|<2k+1|1|

[n—r|<2k+1|1|

1 > 2
CEZZW Z la(r)]

nel k=1 |n—r|<2k+1|1|

IN
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A
[\~}
A
=
=
=
NE
| —

O

Theorem 5.2.3. If Ty is a singular operator, then for any w € Ap,1 < p < 00, Ty is bounded
on 05,(7Z).

Proof. Let w € A,. Since A, = Uy<pA,, we can find s such that p > s > 1 and w € Ap.
Consider a sequence {a(n) : n € Z} such that a(n) = 0 outside the interval [-R,—R+1,..., R].
Therefore,

> _|Tsa(m)Pw(m)

meZ

SZ[Md[T¢a(m)]]pw(m) Lemma 4.4.2

mEZ

<C Z [M# [T¢a ” Theorem 5.2.2
meZ
p

<% M }w(m)

meZ

< € Y Ja(m) Pu(m

meZ

In the second step, we use Lemma 4.4.2(Weighted Good -Lambda estimate) provided

p
S | Ma(sam) | wim)
meZ

is finite. To show this it is enough to show that Tya € (4, (Z).

5 (Tuatm)) i) < .

meZ

We have to prove

To show that this is finite, we split this sum as

P
Z <T¢a(m)> w(m).
m<2R

and

> <T¢a(m))pw(m)-

m>2R
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The former sum

is trivial as shown below.

For |m| < 2R,

Toa(m)| <C Y7 la(n)

[n|<2R,m#n

< Clall, 4R < . (A4)
[m —n =

For |m| > 2R,

|Tya(m)| = |Z a(n)¢(m —n)| < C Z \nj(n)7L| =¢ Hhﬂﬂ

nez [n|<R,m#n

Further, 1(0,2R) C 1(0,2**!'R) and w(I(0,2R)) is a constant independent of m. Also, since
w € Ap, by Lemma 2.4.3, there exists ¢ < p such that w € A;. Then by Lemma 2.3.4

w(I(0,281R)) < Cw(I(O,QR))<|2k+1R> < Cw(1(0,2R))(2")? < C(w, R)2™.

2R| )~

So,

S atmpum<cy, ¥ un

|m|>2R k=12k R<|m|<2~k+1R

<CY (2°R)P ) w(m)
k=1 |m|<2k+1R

<O (2°R)PC(w, R)2
k=1

= C(w, R) Z ok(g—p) — C(w, R) Z(Qp
k=1 k=1

1 >’“
< o0
—q

Combining both results, Tya € 4,(Z).
O

Theorem 5.2.4. Let Ty be a Calderon-Zygmund operator and let w € Ai. Then for any
{a(n) :n € Z} € 11(2),

w({m € Z : |Tya(m)| > A}) <

> Q

=
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Proof. Perform Calderén-Zygmund decomposition of sequence {a(n) : n € Z} at height A and
obtain disjoint dyadic intervals {I;} which satisfy

1
J

mGI]-

Decompose a(m) = g(m) + b(m),m € Z

where Q = U;I;

b(m) = b;(m)
j=1
where )
bim) = (atm) - 3 ) ) ).
Write

w({m € Z : |Tya(m)| > A})

<w{mez: Togtm] > 5 )+ wfme z: o) > 5 b,

To estimate the first term, note that w € A; implies w € Aa. Further, since T} is bounded on
¢2(Z), it follows that

wfmez: Tgm)| > 5 1)

2 3 Ty m) ()

MEZ

3 lotm)Pum)

meZ

= S (3 tolmatm) + 3 latmPum) ).

mee me

IN

IN

Now,

> lg(m)Pw(m)

meQe

<A Y lg(m)fw(m) <A Y~ la(m)|w(m).

mee meQe
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@) < cw(m) VYmeI. SoonQ,

1]
> lg(m ) 4N w(m)

mes) me)

_“Z«ruk;'“ )(;I )
_”Z((Hk; DICCE)
-0 (o) (vw))
<4wz<2|a ")

mel;

<4CA D a(m)

meZ

Note w € A; implies ¥

From above estimates we get

Consider,
w({m €Z:Tb(m) > ;}) < w(U;315) + w({m € Z\ U;31; : |Tb(m)| >

For the second estimate, by Lemma 2.3.4

w(U;31;) <CZ <CZ ‘”

<oX A(k;' )
j@a ")

SA(%\a w<k>)

< S S Jatk)hu(k

keQ

< S S latkhu(k

kEZ

A
2

}),
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Now let ¢; be center of I;. Then, since b; has zero average on I;.

w({m € Z\ U315 : | Tgb(m)| > ;\})

<SS imptm)luwm)
meZ\U;31;
=S Y glm - mblw(m)
meZ\U;3I; n€Z
<Y XS elm by mfu(m)
meZ\U;3I; j n€l;
<SS I S elm ) — oles — m)y () aom).

meZ\U;3I; j mnel;

If m € Z\ U;31; and n € I; then |m —n| > |I;| Vj. So, it follows that Vj € Z, from Lemma
5.2.1 [¢(m — n) — ¢lc; —m)| < Crin Tt follows that,

({m € Z\U;31; : [Th(m)| > \})

T Y EE (it

meZ\sl j nel;

m)
Iy = ‘f'n,z () )y o)

j nel; mEZ\3I

e 35 30 DD DI G ) [

, m — nl|?
Jj ne&l; s=0 25|I-\<|m—n|§25+1|1j|

Yy S QQSH 2 > w(m)[b;(n)|

j nel; s=0 25| |<Im—n|<25F1 ||
<SS Mumlbyn)
Jj nel;
C
< X ;nezlw n)|bi(n
CE 3 (Il + oyl o)t
Jj nel;
< %2 S lasm) ) + 5 37 S lgsm)hw(n)
j nel; j nel;
< S el + § Slomhuin)
nez nez
< 53 la(m) i)
meZ

Combining both estimates for Tyg, T;3b, we get desired result. O
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Now, we prove the weak and strong type inequalities for the maximal singular operator T(;

operator on [4,(Z) spaces. Here, we use transference principle of the corresponding results on R.
The following lemma, whose proof is obvious, is used in the proof of Theorem 5.2.6.

Lemma 5.2.5. Suppose {w(n) :n € Z} is a sequence in A,(Z),1 < p < co. Put

w'(z) =
0 otherwise

If we Ap(Z), then w' € Ap(R),1 < p < 0.
If w e A1(Z), then w' € A1(R).

Theorem 5.2.6. If T}, is a singular kernel operator, then for 1 < p < oo, Tdf s bounded on

Co(Z) if w € Ap and T} is weak (1,1) with respect to w if w € Ay.

Proof. Let K(z) be the linear extension of ¢. Also, for a given sequence {a(n):n € Z}, we
define a function f(z) =Y, ., a(m)xr,, (z) where I,,, = (m— I, m+ 1). The following inequality
which gives the relation between the maximal singular operator on Z and the maximal singular

integral operator on R is proved in [1].
pa(m) < C(Tg f(x) + Sf(x)), = €lnm (A5)

where

) o
Sle) = /| -2 ™

N ()
B Z/2’€2|a:—y|>2kl (.%' - y)2dy

k=0

Now for 1 < p < o0,

11y = [ @0 (@)da
=3 [ latm)Pumde = 3 Slatm)Pwm) = 5 ol o) - (46)

mez " m me”Z

71 = (1 @)’

and
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Therefore, using Lemma 5.2.5

70l ) = (X FrsatmPton))

mEZ

< Z |Tga(m)[Pw(m)dx

meZ Im

(202/ [ka )+ Sf( )} ((2)d )é

meZ
= CITi S+ SFllee, m)

<C HT*fHLfU,(R) +C HSfHLi,(R)
< ONT* fllee, @y + CNM e, )
< Ol fller,

= Cllallz,(z)

The last inequality follows from that fact T and M are bounded on L (R). Refer [1]. It follows
that 77 is strong type (p,p) on £,(Z).

Now, we shall prove the weak type (1,1) inequality. From [A5], we have
{m e Z:Tha(m)> X}
A A
C :
_{xe[m wf(x) > 20} {:):EI :Sf(x) > QC}
Clzel 'T*f(ﬂ:)>i Usz € [ 'Mf(x)>i
= ook 2C " 2C [

Therefore, the weighted analogue would give for each x € I,,,,

w({m € Z: Tja(m >>\}

<w({xe] (TR f(x 2} {mGZ:Mf(w)>2>é})
§

+
C’ C
< Sl + 5 Wl < 5 Nl z
Hence, T} is of weak type (1,1) and M is also of weak type (1,1) on Ll (Z). Refer [1]. This gives

T is weak type (1,1) on k(7). O

Now, we want to prove that if H* is bounded on #,(Z),1 < p < oo, then w € A,(Z) . The
methodology used in our proof is given in [6]. Observe that for 1 < p < oo, if H* is bounded on
5,(Z) then H is bounded on &,(Z),
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Theorem 5.2.7. If for 1 < p < oo and any positive sequence {w(n) :n € Z}

Z\Ha )[Pw(m <CZ\a )Pw(m) VY{a(n):neZ}

MmEZ meZ

then w satisfies the discrete A, condition which is as follows

(g (g =

mel mel
for any interval I in Z.
Proof. Let I} = [m,m + 1,...n] be any interval in Z. Consider the right doubling interval of I
as
2RI =[m,m+1,...n,n+1,n+2,...2n —m+ 1].
Let

Li=n+1,n+2...2n—m+1].

Take a non-negative sequence {a(n) : n € Z} supported in I;. Observe that

[Ha(m)| = |3 2L r—z st

neh

So, for m € Iy we get

\Ha(m)] > ;(1 3 a(n)>x12 (m) Vnel.

‘Il‘ nely

Now, using boundedness of H on #,(Z) i.e,

> [Ha(m)Pw(m) < C Y la(m)Pw(m

MEZ mMmEZ

Since support of {a(n) : n € Z} is in I}, we have,

(S a) (S wm) <X (7 X a<n>>p><12<m>w<m>)

nel; mels meZ nely
< Z X1, (m)|Ha(m)|Pw(m) < C Z|a )Pw(m) =C Z la(m)[Pw(m
MEZL meZ mely

It follows that

<u11| 3 a(n))p< S ) <C Y Ja(m)Pw(m (AT)

neh meIQ mEIl
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Take a(n) =1, Vn € Z in [A7] and by interchanging I; and I, we have the following two
inequalities.

> wim) <C Y wim). (AS)

mels mel;

Z w(m) < C Z w(m). (A9)
mel mels

Likewise, take a(n) = w(n)r-1, Vn € Z in [A7] to get

(3 wm) (i 2 w(m)ii)p <C'Y wim)w(m)

mels mely mely
So,
1 L\ P!
w(m — w(m)r—1 <C
(3 wim) (77 2w )" <
melo mel
Therefore,
1 1 1 \P!
P - —1
(77 2 vm) (17 X wiem ™)
mely mely
C 1 i \Pt
< (= — T <
< (17 2 v (g S wem™ ) <
mels mely
It follows that w € A,(Z). O

5.3 Maximal singular operator on variable sequence spaces
(7

In this section, we prove weak type, and strong type inequalities for the maximal singular
operator on ﬁp(')(Z) spaces, 1 < p < 0o, using Rubio de Francia extrapolation method given in

Chapter3.

Theorem 5.3.1. Given a sequence {a(n) : n € Z}, suppose p() € S such that p— > 1. Let T}

be a maximal singular operator.
Then,

HTqﬁCLHm)(J(Z) <C ||a||ep(-)(z) .

If p_ =1, then for allt >0

< Cllallgwey(z) -

HtX{n:\Tﬂ;‘a(n)bt} w0 (2)
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Proof. We will prove strong type inequality when p_ > 1. Take pg such that 1 < py < p_ <
p+ < 00. Therefore by Lemma 3.2.2

1T [y = 1 TE@™]| oo

(% ()
_ ~ swp > | Tza(k) [P |h(k)|
p()
hed %) @l L0 =1 FEE
o )
< sup Z!qua )|P° Rh(k)
(M), keZ
het 20 @Il )0 =1
(z)
S sup Z|CL |PORh
)
net 5 @) by =t
%o (Z)
<C - sup Hal™ll o)) BRI ooy
) _ ere ert@
net' 0 (@), hll =1
f pU ) (z)
=¢ r P lalllz >”RhH4<%‘))>/(z>
nee 5 (@) 1n) 0y =
18 Po 7 (z)
< 20)all% -

Now we are going to prove type weak type (1,1) inequality stated in the theorem.

Let A= {m € Z: |Tja(m)| > t}. Then,

H (tX{meZ:\Tga(m)bt}) Hp(.)

< sup Z |tX{meZ:|T£a(m)\>t} (E)IACEN
hew) (z), “h“[p(')l(Z):1 hez

S T SRICEE
heép(')/(Z)VH’l“gp(‘)’ (Z):l kEZ

_ sup tRh(A)
he[?’(')/(Z),“hl”lp(‘)/(z):l

) s t— Z|a )| Rh(k
heer()’ (Z),”h”ep(‘)l(l) =1 hez

. sup C'Z]a )| Rh(k)

hetrt) (z), ||h||g,,<4>,(z) ~1 ez

=C |a(k)|Rh(k
keZ
< Cllallgpor zy 1RB] oy 7y < 2C Nlally.
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5.4 Maximal Ergodic singular operator

Let (X, B, i) be a probability space and U an invertible measure preserving transformation on
X. We define the truncated maximal ergodic singular operator and maximal ergodic singular

operator as follows:
n

Tynf(w)= sup | > f(UF)p(k)|.

1<n<N T~

3 f(x) = sl 3, FUF2)o(k)]

k=—n

We define discrete Hilbert transform and maximal discrete Hilbert transform for a sequence
{a(n) :n € Z} € (P(Z) as follows:

,ae P, 1<p<oo.

We define maximal ergodic Hilbert transform and truncated maximal ergodic Hilbert transform

for a function f € LP(R),1 < p < oo as follows:

N

3 —k
H* f(z) = sup Z f(ka)
N Te=—n
7 ~ (U )
gt = | 3 75

Now, we prove the strong type, weak type inequalities for the maximal ergodic singular operator

on weighted L%,(X, B, i) spaces.

Theorem 5.4.1. Let (X, B, ) be a probability space and U an invertible measure preserving
transformation on X. If w is an ergodic A, weight, 1 < p < oo, then the mazimal ergodic

singular operator satisfies

|21

Lz}(X)SCPHfHL{’U(X) if 1<p<oo.
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where C, is independent of N.

2. If w € Ay, then

w(z)dpu(z 3 z)|w(x)du(z).
/{$€Xilf’$f(x)|>>\} (w)dp(r) < /X|f( )w(x)dp(z)

where C is independent of N.

Proof. Fix N > 0 and take a function f € L, (X).

n
T: vf(x) = sup FU k) (k).
oS (x) 1<n<N’kZ—:n ( ) (k)]
It is enough to prove that T(; y satisfies (1) and (2) with constants not depending on N. Let

A > 0 and put
By = {x € X [T nf(a)] > )\}.

For x lying outside a p null set and a positive integer L, define sequences

_k .
iy | TUT) SN

0 otherwise.

w (k) = wU " z) if |k|<L+N

0 otherwise.

Therefore,

w({e e X Tns@) >3 = [ w@dne) = 55 [ V@i

Ey

< 5, T s @Po@ntz)

v [T s@Pe@n)

L
1 1 -

= * MNP —-m
ek m:ZL/X‘TQ%Nf U @) wU" ) du()

L
1 1 -

<4 * —M .\ |P -m

S NI LmZZL‘T¢’Nf U 0)Pw (U ") dp()

L
1 1 )
<ware fy X, T et
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)\1 X, = wx(m)du(:c)
1
<
CAP2L+1/ Z |z (1) [Pwy () dpa()
(L+N)
% 2L+1/ EL:HV |ae(m) [Pwz (m)dp(x)
(L+N)
—M AP —-m
)\p 2L+1/ Z(L:JFN)’f(U z)Pw(U"™z)dp(x)
(L+N)
c 1
< p
T AN2L+1 EL:JrN)/ |fUT™2)[Pw(U""z)dpu(x)
(L+N)
c 1
=3 )P
NP 2L + 1 XL:+N)/|f ) [Pw(z)dpu(x)
c 1 )
< ﬁm@@ £ N+ 12,
< 2 -

by choosing L appropriately. Conclusion (1) of the theorem now follows by using the Marcinkiewicz

interpolation theorem. O

Remark 5.4.2. Using the same transference argument, we can prove that the singular operator

T, is bounded on L%, (X) and satisfies weak type (1,1) inequality in L%, (X).

Now, we prove the converse of the above theorem when Tg n With singular kernel as

Lot k#0
0 k=0.

¢(k) =

The singular operator associated with this particular singular kernel is known as the maximal
ergodic Hilbert transform and is denoted by H*. Here, we further assume that the associated

measure preserving transformation is ergodic.

Definition 5.4.3 (Ergodic Rectangle). Let E be a subset of X with positive measure and let
K > 1besuchthat UUENU/E = ¢ if i# jand —K <i,j < K. Thentheset R=UX L U'FE
is called ergodic rectangle of length 2K + 1 with base F.

For the proof of following lemma, refer[5].

Lemma 5.4.4. Let (X, B, ) be a probability space, U an ergodic invertible measure preserving

transformation on X and K a positive integer.
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1. If F C X is a set of positive measure then there exists a subset EE C F' of positive measure

such that E is base of an ergodic rectangle of length 2K + 1.

2. There exists a countable family {E;} of bases of ergodic rectangles of length 2K + 1 such
that X = UjEj.

Theorem 5.4.5. Let (X, B, i) be a probability space, U an invertible ergodic measure preserving

transformation on X. If H*f is bounded on LE(X) for some 1 < p < oo, then w € Ap(X).

Proof. For the given function w on X, for a.e x € X define the sequence w, (k) = w(U *z). We

shall prove that

1 N 1 N p—1
k k)Pt <C.
esssupzexjsvuzpl<2N+1k:ZN|wx( )|> <2N+1kzN|wz( ) > <

This will prove that w € A,(X). In order to prove this, we shall prove that the maximal Hilbert

transform H* is bounded on #,, (Z) and

[Hallg 7y < Cpllalle, ) -
where C), is independent of z. In order to prove the above inequality, take a sequence
{a(n):n e Z} € &, (Z).

Let R = U%iwakE be an ergodic rectangle of length 4J + 1 with base E. Let F' be any
measurable subset of F. Then F is also base of an ergodic rectangle of length 4J 4+ 1. Let

R = Ui‘ifQJUkF. Define function f and w as follows.

alk) if xze€eF and—2J <k <2J,
R T

0 otherwise

Then as shown in the proof of Theorem 4.9.3

1Az ) = Nalle,, z) w(F).
w(X) o

It follows that for —J <m < J and x € F

N N

fU—Fma)
K

a(m + k)

H%f(U ™) = sup ’

1I<KNZJ

= sup
1<N<J

= Hja(m)

k=—N k=—N
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Now,

Cliflyy > [ 31 @Pu@n(z)
> [ 13 @) uta)duta)

J ~
-3 /U N f@Pe@ia)
= 3 [t P

k=—J

_ kz;} /F (k) [P (k) dps ()
J
_ / S [ Halk)[Pws(k)du().
Fr=—y

So from the above estimates
1 J
T /F S [Ha(k)Pus(k)du(e) < C lally,
k=—J

Since F' was an arbitrary subset of E, we get
Z [Hja(k)[Pws (k) < CHaHEﬁ,I(Z)'
k=—J

a.e x € . Since U is ergodic, X can be written as countable union of bases of ergodic rectangles

of length 4J 4 1. Therefore for a.e z € X,

Since C' is independent of J, a.e x € X,

Z|H* Pwa (k) < CHaHéﬁ,I(Z)
keZ

It follows that the sequence {wy(n):n € Z} as defined by w,(k) = w(U*z) belongs to A,(Z)
a.e v € X and A, weight constant for w, is independent of x so that w € A,(X). O

Remark 5.4.6. We shall prove that the ergodic singular operator Ty is bounded on variable
LPO)(X, B, ) when p_ > 1 and satisfies weak type (1,1) on variable LP()(X) when p_ > 1 with
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the assumption that the ergodic maximal operator is bounded on variable LPO) (X, B, 11). We

follow the method of Rubio de Francia to achieve this result.

5.5 Rubio de Francia Method for L*")(X, B, )

Lemma 5.5.1. Given p(-) such that M is bounded on LP)(X), for each h € LPO)(X), define

> MP*h(x)
Rh(z) = ST :
k=0 B(LrO) (X))

where for k > 1, M* = M o ... M where o denotes composition operator acting k times and
MO = ||, I being identity operator. Then

(a) For all x € X, |h(x)| < Rh(x)

(b) R is bounded on LPO)(X) and ||Rh||pc) < 2 1710

(¢c) Rh € Ay and [Rh]a, < 2[|[M||grec)(x)), where [w]a, = esssupzex Aiu(}i)m) < 00.

Proof. Let B = ||MHB(LP<.)(X)). We proceed as follows.

(a)

> k X X 2 X
SSMa) ) Mba) | MPh)

okpk 2B 22 B2
k=0

Rh(z) =

So h(z) < Rh(x).

(b) Using subadditivity of norm and that ||M*|| < ||A1 I|¥, it follows that

> MPFEh
>

=0 2’“HMHIE(LP<->(X))
oo k
[[MER],.

[ RAl,y =

< . %
=0 2°IM [ 200) (x)

< Wil 3 |
k=0

< Bl D 1M1l
k=0

1
p0) 25| M| 1o x)
1

) 28| M ) )

<l D275 =21l -
k=0

(¢) Using subadditivity and homogeneity of the maximal operator, it follows that

M(Rh)(m) < i M*Thia)

k
k=0 2k||M”B(LT—’(')(X))
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> MF1h(x)
< 2| M| g xy D —
k=0 2k+1 HMHBJ(FLP(J(X))

<2 ”MHB(LP(-)(X)) Rh(z).

O]

Remark 5.5.2. Tt is well known that the ergodic maximal operator M is bounded on LPU) (X, B, 1)
when p(-) is invariant under U [11]. But, the boundedness of M on LP()(X,B, 1) when p(.)

satisfies LH, condition remains open.



Chapter 6

Commutator of singular operator on

sequence spaces

In this chapter we study the commutator of the operator of pointwise multiplication by a sequence
b= {b(n):n € Z} and a singular operator. Also we study the commutator of ergodic singular
operator on the spaces LP(X) where (X, B, i) is a probability space equipped with an invertible
measure preserving transfromation U. For the commutator on the spaces LP(R),1 < p < oo, we

refer to [15].

6.1 Commutator on weighted sequence spaces (2 (Z)

Let {a(n):n € Z} € P(Z) and f € LP(R),1 < p < 0.

Definition 6.1.1. We define commutator of singular operator as the operator of pointwise
multiplication by a sequence b = {b(n) : n € Z} and a singular operator T on ¢P(Z). More

precisely, we consider the operators given

([b: Tsla)(n) = b(n)Tya(n) — Ty(ba)(n) = Y ¢(k)[b(n) = b(n — k)]a(n — k).

k=—o0
and its maximal version T} on (P(Z) which is defined as

N

Y dk)[b(n) —b(n — k)la(n — k)|

([b, Ty]*a)(n) = sup
A

We will use the word commutator instead of commutator of singular operator and the maximal

commutator instead of maximal commutator of singular operator.

83
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Definition 6.1.2. We define commutator of maximal ergodic singular operator T¢

N

S 6(R)[b(x) b(U‘kw)]f(U"“:v))’-

k=—N

[bv T(b]*f(l‘) = sup
N>1

and its truncated version corresponding to commutator of maximal ergodic singular operator T;
as follows: For J > 1

N

b T3 5t0) = sup | 3 ) WO “a)o )|

N<J

We will use the word ergodic maximal commutator instead of commutator of maximal ergodic

singular operator.

Definition 6.1.3. We define discrete Hilbert transform and maximal discrete Hilbert transform

for a sequence {a(n) : n € Z} € (P(Z) as follows:

,ae P, 1<p<oo.

k=—N
We define maximal ergodic Hilbert transform and truncated maximal ergodic Hilbert transform

for a function f € LP(R),1 < p < oo as follows:

N

; D
H~* f(x) = sup —
N k:z—:N k
. " fwta)
Hyf(x) = sup kz_:n -

6.2 Some results on BMO(Z)

In order to prove the boundedness of commutator on weighted sequence spaces, we require the

properties of BMO(Z) which we state and prove in the following lemmas.

One of the most important results about BMO is the John-Nirenberg inequality. As a consequence

we get a family of equivalent norms on BMO(Z).
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Lemma 6.2.1. Let b € BMO(Z). Then there exists consstants C1,Ca > 0 such that, for every
finite interval I in Z and \ > 0,

Hnel: |b(‘7})‘ —br| > A} < C’le%‘ﬁ:.

Proof. The key to the proof of the theorem is the Calderén-Zygmund decomposition restricted

to an interval in Z. Proof is same as the result in case of R. For details refer [7]. O

John-Nirenberg theorem has an interesting corollary, namely, the reverse Holder’s inequality.

Corollary 6.2.2. Let b € BMO(Z). Then for every finite p > 1,

[un

1 P
sup (o STI0) = b ) < Gy ol

kel

Proof.

(171 b - i)

kel

N e T |b(n)—bs| >\
[T L)
0

A

< Clp/ AP T )
0

o o 1
<G / tean = S blr = ¢ o]
C12 0 C(2

Lemma 6.2.3. Let b€ BMO(Z) and I,J be two finite intervals in Z,I C J.
(a) If |J] < 21|, then
br — by < 20, -

(b) If |J| > 2|1], then

J
b — by] < 2log[||l||] 151, -

Proof.

br = bl < | o= S 1b(k) — ]

2
< = (k) —bsl < 2]l -
Bt

(b Let =1 C I C ... I, = J. where I,...I, are intervals in Z such that |Ixi| < 2|Ix| and

where n < C log<||}]||>. Repeated applications of (a) yields (b). O
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Lemma 6.2.4. Let b € BMO(Z), I any interval in Z and ng the centre of I. Then for each

r > 1, there exists a constant C, such that

S~ B = b\ _ Ol
|’I’L0—7”L|r — i

ng3l kg

1 1
where;—l—;—l.

Proof. Recall that 3] =2LITU2RI. For k=1,2...,let [} = 3T and J;, = Ijiq \ I. Now

(=5 -G )

n¢31 k=1neJy

(L y ot )

k=0neJy

[b(n) — b \’”% lbr — bi,.,|
(M rely (% fzkr‘;jf)

k=0neJy k=0neJy
= A; + As.

Then using Corollary 6.2.2, we have

0o 1
4 P\
= (X s gy 3 0 bl

n€lpi1

1
G 4 . C
< _ Tl <
< (X geomrlol) < 3 Wl
k=1

To estimate Aa, we use (b) part of Lemma 6.2.3

< log(HHhy] [lblI7 \ +
k=1 ne[k+1\[k

0 k+2 k+1
282 1] (log 277H)" B[}
k=1

%) N
ool 4 (Z +1) ) HbH
(r 1k -

7\ Ik
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6.3 Weighted sharp maximal sequence theorem

The proof of weighted sharp maximal sequence theorem uses Calderén-Zygmund decomposition
theorem for sequences, relations between maximal operators and weighted good-Lambda estimate

which were proved in Chapter 4.

Theorem 6.3.1 (Weighted sharp maximal sequence theorem). Let 1 < p < oo and w € A,(Z).

Then there ewists a constant Cp ., > 0 such that

IMall,., < Cpu Ha#pr, Va € ,(Z).

6.4 Weighted maximal commutator theorem

In this section we prove weighted strong type inequalities for the discrete maximal commutator.
the strong type inequalities without weights for the discrete maximal commutators can be found
in [2].

Definition 6.4.1. For a sequence b = {b(n)} € BMO(Z), define maximal commutator of

singular integral operator as follows

N
[b, Ts]"a(n) = sup| Z ¢(k)[b(n) — b(n — k)]a(n — k).
N k=N

We want to prove that the maximal commutator is bounded on #,(Z), where 1 < p < oo which

we state it as the following theorem.
Theorem 6.4.2 (Weighted maximal commutator theorem). Let 1 < p < 0o, b € BMO(Z).

Then there exists a constant Cp > 0 such that

(b, T¢]*CLH5{’U(Z) <Cp HGHZ{’U(Z) :

Condition (S53) in the definition of singular kernel plays a crucial role in this proof. Let ¢n

denote truncation of ¢ which is defined as follows

k) if |k <N
(k) = ok) it k| < (6.4.1)
0 if|k| > n.

The proof of the maximal commutator inequalities would have been simpler if the ¢x’s satisfied

(53) uniformly in N. However this is not true even for ¢(n) = L. To overcome this difficulty we
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dominate [b, Ty]* by a sum of two operators [b, T,,]* and [b, T|y]*, whose truncated kernels vy,
1 satisfy S3 uniformly in N. Then we prove the boundedness of the corresponding maximal

operators on #,(Z). We define the kernels {v}, {+#} and their truncation{vy},{1)n} as follows.

Definition 6.4.3. Consider the differentiable function v and 1) defined on (0, c0) by

1 if 0<t<3:
v(t) =4 11 —cos2mt] if L<t<1 (6.4.2)
0 if t>1
0 if 0<t<3
Hl+4cos2mt] if f<t<1
Y(t) =141 if 1<t<?2 (6.4.3)
%[1—(:087%] if 2<t<4
\() if t>4
Observe that
Xty (1) = v(t)] < 9(t), € (0,00). (6.4.4)

For j € Z, let

Using the kernels {v} and {¢)y}, we define the operators [b,T,|* and [b, T|y|* as

o

b, T, *a(n) = sup | > [b(n) = b()lww(n - j)a(j)

N1 2T
(b Tjuy"a(n), = sup > () = b(@)][[n (n = llali)].
>1,75

Because of inequality 6.4.4, we can prove the following lemma.

Lemma 6.4.4. For each n € Z

b, Tyl a(n) < (b T.]"a(n) + [b, Ty a(n)



Chapter 6. Commutator of singular operator on sequence spaces 89

As we mentioned earlier in the following lemma, we prove both the truncated kernels {vnx}, {¢n}

satisfy (S3) uniformly in N.

Lemma 6.4.5. There exists a constant C' > 0 such that

lvn(n—j) —vn(n)| < (110—|j]|)2 for |n|>2[j| and VN >1. (6.4.5[A))
[ (n — ) — ()] < (f_'j]',)g for |nl>2j| and YN >1. (6.4.5[B))

Proof. We will prove first of the inequalities 6.4.5[A]. The proof for second inequality 6.4.5[4] is
similar.

Consider the kernel {vy}. Let |n| > 2|j|. Then as in [4] we can show that

i

N

ot = ) = o o0] = ot — (" ) = o)
< J6(n — )~ oI )] +lo(n — )l 1) (2T
<oV _Le l.u("”)—u(‘”_J’)'.

(n—=j)*  In—j
Since supp v C (0, 1] and |n| > 2|j],

id

IV(W];]') (=0 it ’”];‘7|>2.

It ln]:;jl < 2, applying the mean value theorem, we get

oIy pmh < V),

where t is a point between l"—;,]‘ and le But |/(t)| < 7, Vt € (0,00). Therefore,

In —Jl Inly, < lalm - 27la]
_ < M7
Hence, the kernels {vy} satisfy condition S3 uniformly. O

For proving the boundedness of the operators [b, T,|* and [b, Tj,]* on £4,(Z), we need to consider

the maximal operators T}y and Tﬁm defined as:

T—su vn(n —k)a(k
NﬁlE: N ( Ja(k)|

T;::?gk§2J¢Nol_kma%”'
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Lemma 6.4.6. Let 1 < p < oo. Then there exists a constant C, > 0 such that

1T7alln,z) < cpllalleg,zy Va € &,(Z)

7], ,, < collalgey vee @@

Proof. For a non negative real number «. let [a] denote the greatest integer less than or equal
to a. Then

[n—j|<N

<| Y dm—-pail+ D sn—lla()]
In—j|<[N/2] N>|n—j|>[N/2]

SID SRR RO RERD SR
In—j|<[N/2] N>In—j|>[N/2] J

< C[Tja(n) + Ma(n)]
where Ma is the Hardy-Littlewood maximal sequence of {a(n) : n € Z}. Therefore,
Tra(n) < C[Tia(n) + Ma(n)].

Since we already prove that M and T7 are bounded on #,(Z) in Chapter4 and Chapterb
respectively , it follows that T)* is also bounded on ,(Z).

For the proof of second inequality, fix N and consider

> et — =)

In—j|<AN
N a(Jj
< Y B-dlleGl<c Y M
AN>[n—j|>N/2 AN>|n—j|>N/2 J
C
< )| < .
SeviT L a0 < CMa(n)
In—j|<4N

Therefore, T@}‘a(n) < CMa(n). It follows that T}¥

| i bounded on AVAR O

Theorem 6.4.7. Let 1 < p < oo and B € BMO(Z). Then there exists a constant Cp, > 0 such
that

b Tl all g, z) < epllallzy  Va € 4,(Z).
H[b’ T|1/f|]*aHzg(Z) < ¢ Ha”gg)(z) Va € 8 (Z).
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Proof. For J=1,2,3... define

n+N
Vsa(n) = sup > [b(n) = b (n = j)al)|-
j=n—N
n+4N
Wia(n) = sup > b D (n = 5)lla(i)]-
j=n—4N

Then

[b, T, ]*a(n) = sup Vya(n).
J

[b, Tiy]*a(n) = Sl}p Wia(n).

We will prove that

‘VJQHE{’U(Z) <C ”aHzg(Z) :

For the proof of above inequalities, we first obtain estimates for the corresponding sharp maximal
sequences. Then we will prove Theorem 6.4.7 using weighted sharp maximal sequence theorem

i.e Theorem 6.3.1. These estimates are proved in the following lemma. O

Lemma 6.4.8. Let r > 1 and {a(n) : n € Z} be a sequence. then there exist constants C and
C1 such that

Sl}p(VJa)#(n) < C [, [M(Ta)" (n)] 7 + [M(a) (n)] (6.4.5)

S =

Sl}p(WJa)#(n) < Cu [|Bll, [M (T3 )" (n)]7 + [M(a)" (n)]- (6.4.6)

Proof. Fix J > 1 and n € Z. Then if I is an interval containing n, put

Cr = su ) —brlv —1)a 1)].
I N<PJ|Z 1]vn (Jo — 1)axz\31(4)]

where j, is centre of I. Then, for j €

\Vya(j) — Cr| =
Jfflg)"iz_:oo[b(j) = b(i)vn(j —1)a(i)| — iflip |iz_:oo[bl = b(i)]vn (Jo — i)ax \31(i)]
< sup Z [b(4) — b(i)]vn(j —i)a(i) — Z (b1 — b(i)]vn (Jo — 1)axz\31(7)

1=—00 1=—00
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< sup ZZ@[b(j) —brlun (j — i)a(i)
+ ]%12?7 I_Z_:w[b(i) — brlun(jo — )axsr(i)
+ ;‘g} Z [b(i) = br][vn (j — @) — vN (Jo — 1)]ax 2\31(%)

= A1(j) + A2(5) + Az(j).

For the first term, we have, with 1 -+ , =1
Jjel jel

S(ﬁlg'b( bf’r>rl(rf|Z'T* )

1
T

< [|b]l, [M(T7a)"(n)]".
Now consider

G‘ 3 As(j) < |I| Z|T* [(b = br)axsi](j)]
jel

i Z\T* br)axar](G)° ¢

jel

where s > 1. We can further replace the above summation over I by a summation over Z. Then

using the boundedness of T on [°, we get

® =

Jjel jesl
1 1
sq 1 sq’
<C 3I Z|b — by[™ B Z\a(j)fsq ;
131] ’JESI | |j€21

Whereq>1andé+%:1

Now,

1

,3[, Do) —bi*y <cC (,31, > 1b() - b2f\sq> + |b2r = by| < C[[b]],, -

jedl je3l
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Therefore,

‘I,ZAQ j) < ellpll, [M(lal") ()]

J€eI

provided we choose s and ¢’ so that s¢’ = r. It remains to estimate A3(j),j € I.

) < s Z [6(i) = brllvn (j — 1) — v (Jo — 9)llaxz\2r (2)].

1=—00

But since i ¢ 3 and j € I, |jo — i| > 2[j — Jo

Therefore,

o o Cli=gol _ Cli = ol
—4q) = — < < .

Therefore,

J — Jol
Asz(j) < Csu E b(i) — by|--—=]a
( N<I?]l_ OO| |< )2| XZ\?)I( )|
Z b — b Z
—i|” |Jo Z\
i¢31 i¢31

Now by Lemma 6.2.4

1
r

(s b-bp)y? I,
ljo — 4"

1
igal (D)~

Now let I, = 3*1, then by standard techniques, we get

0@\ _ CIM(al") )
(Sr) ="

2]+

Therefore,
A3(4) < Cllpll, [M(la]") ()]

and so,

IIIZAs ) < ClIbll, [M(Jal") ()]

Jel

For the proof of second inequality in Lemma 6.4.8, we proceed as follows. For n € Z and any

interval I containing n, we choose

Cr= sup Z 1b(2) — brl|vn (Go — i)]laxz\sr(2)]-
=Y j=—00
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where jg is centre of I. Then

Wia() - €1l =
sup ; 1b(3) — (@)l (G — Dllao)
— sup _Z 16(i) = brllvn (o — )llaxzar (0)]
<sw rzoo"b )= 6l = D] = (166 = bl - Dllaxzn (0] )
< s i (00~ 1ot = Dt + 01 = Dl G = Dlloar()]

+ (br = b()|[¥n (G — )llaxz\s1(9)

] - (!bf = b(@)[[¥n (Jo — i)||aXZ\3I) ‘

Now
24yl — |2|| < |z + ‘\y| —|2||, ¥z, g,z € C. (6.4.7)
We have
(Wja(j) — C1l
< e ; 'lb — brl[on (5 = Dlla@)] + (br — b(i)[¥n (G — )llaxsr(7)]

+ ‘!b(i) = brl[n (5 = D)llaxz\sri| — 16(2) = brlln (Go = D)llaxzysie)]

< ifgz b(4) = brlln (5 —9)a(@)]

+ sup Z 16(3) — br|[Yn (5 — i)l|axsr(i)]

N<J;
+ sup Z 16(3) = brl|Yn (G — 1) — ¥ (o — 9)llaxz3r(s)]

= Bl(j) + Ba(j) + Bs(j)-

The estimates for each of these terms are obtained exactly as in the previous case by replacing v

by % . This concludes proof of Lemma 6.4.8. O

Here we prove the boundedness of sharp maximal sequences {(Vya)#},{(W;a)#} on ¢4,(Z).
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Theorem 6.4.9. For 1 < p < oo,

o

< » P (Z).
S Cllalle,zy, VYae€l(Z)

|

& < Cilallgzy, Va el (Z).

where C, Cy are independent of J

Proof.
H(VN)# ()
={ > |<vja>#<n>|f’w<n>}p
<C { > M(T:am)w(n)}f}p +{ S [M<|a|r<n>]’iw<n>}p
< c{ 3 [T;a<n>1pw<n>}p n { 3 [a(n)}f’w(n)}p
< Clallpg

By a similar argument

O]

It remains to prove Vjya, Wya € ¢,(Z). Then the boundedness of sequences {(Vjya)},{(Wya)}

on /4,(Z) hold by the weighted sharp maximal sequence theorem i.e Theorem 6.3.1 as follows

[(Vsa)l, < IM(Vsa)l, < G |(Vsa)#| . ¥ ac @),

sl < 1MV, < G o] . v e

The #4,(Z) norms of {(Vja)},{(Wsa)}( may depend on J).

Alternatively, we claim that
Via(n) < Gy [lbll, (M(Ja|")(n))/", 1 <7 < oo,

and
Wa(n) < CF[|bll, T7y,a(n).
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‘We have
n+N
Vya(n) = sup| 3 [b(n) — b(a)lvn (0 — i)a(i)]
N<T =

= sup| Z Dvn(n —i)axr, (9.

where I; = [n— J,n+ J]. We estimate this exactly as we estimated the term As in Lemma 6.4.8

and we have

Vya(n) < (27 + 1) {C|b]l, + (log ) b} {M(Ja")(n)}'/"
< Cy [|bll, {M(Ja]" ) ()}

Therefore, choosing r < p we see that Vya € ¢4,(Z) for a € (4,(Z).

Next let n € Z and Iy; = [n — 4J,n 4+ 4J]. Then for i € I

[b(n) = b(i)] < [b(n) = b, | + |br,, = b()] < 2(87 + 1) [[bll, -

Therefore,
n+4N
Wa(n) = sup 37 [b(n) = b(@)|[n(n = i)lla(@)| < Cy [bl], Tiya(n).
N<T, S =uN

So Wya € &5,(Z),Va € 5,(Z).
Hence we conclude the boundedness of operators V;, W on £,(Z). Since the constants obtained
in the inequalities stated in Theorem 6.4.9 are independent of J, boundedness of [b, T, |*, [b, T} ]*

on 4,(Z),1 < p < oo follow immediately using weighted sharp maximal sequence theorem.

Corollary 6.4.10. Let 1 < p < oo. If b € BMO(Z), then the commutator of the singular
operator [b, Tyla exists for every a € £4,(Z).

Proof. Note that finite sequences are dense in ¢},(Z) [15] and [b, Tyla exists for every finite

sequence {a(n) : n € Z}. Since [b, Ty|* is bounded on #,(Z), the proof follows. O

6.5 Maximal commutator of singular operator on variable se-

quence spaces (""" (Z)

In this section, we prove strong type inequality for the maximal commutator of singular operator
on Ep(')(Z), 1 <p_ <py <oo,1<p< oo, using Rubio de Francia extrapolation method given
in [8].
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Theorem 6.5.1. Given a sequence {a(n):n € Z}, suppose p(-) € S such that p_ > 1. Let

(b, Ty]* be a mazximal commutator of singular operator.
Then,

1. Tl all o z) < C llall iz -
Proof. Take pg such that 1 < pg < p_ < py < 0o. Therefore by Lemma 3.2.2

(1 T @)l 2y = 1([b: T6]® oIl w0 (Z)

= LS > I, Tl a(k) P |1 (k)]
hed % (@)l by =1 ke
%o ()
< sup > I, Tyl a(k) [ Rh(k)
M !
hed %) @ nl 0 =1 FE
P (2
<C ~ sup Z|a )|P° Rh(k
()
hed ) @) nll L, =1 FEE
o) (2)
<C sup [lal”|] 20 7y R 20y
(M)/ ¢ PO ¢ PO (Z)
el @ oy =t
¢ PO
=C ~ sup Halll75e) iz, 1Al (2
(29, _ w0 @
hed % @)l Loy =1
o )

< QCH@ng()

6.6 Ergodic maximal commutator of singular operator

Let (X, B, i) be a probability space and U an invertible measure preserving transformation on

X. We define the commutator of the truncated ergodic maximal singular operator as follows:

[b, Ty] f(z) = sup)| Z o(k)[b(x) — bU *a)] f(UF ).

<Jk

Definition 6.6.1 (BMO(X)). For a probability space (X, B, x) and an invertible measure

preserving transformation on X, the space BMO(X) is defined as the space of those functions
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b € L'(X) satisfying

N N
1 . 1 |
essmprex (51 gy 30 UM~ gy j_ZNMUJw)l) = b, < oo

Now, we prove the strong type inequality for the ergodic maximal commutator of singular

operator on L, (X, B, i) spaces.

Theorem 6.6.2. Let (X, B, u) be a probability space and U an invertible measure preserving
transformation on X. If w is an ergodic A, weight, 1 < p < oo and b € BMO(X), then there

exists a constant Cp, > 0 such that

o7

Lﬁ,(X) = Cp ||f”L1€)(X) vf € LfU(X767H)

Proof. Observe that if b € BMO(X), then b € L'(X) and for a.e the sequence b, given by
by(n) = b(U"x) is in BMO(Z), with ||b;||, < C, where C' is independent of x. For J > 1, let

N

[b, Ty]5 f(x) = sup [b(z) — b(U ") f (U *2)p(k)|.
—-N

N<J

k=

We will prove that

. T3]

LB,(X) SC’HfHL‘ZJ(X) VfELfU(X,B,ILL),

where the constant C is independent of f and J. Then the theorem will follow by monotone

convergence theorem. For a.e z € X let

N

> [be(n) = ba(n = B)la(n — k)g(k)|.

k=—N

bz, T¢]}a(n) = sup
N<J

It is easy to see that [by,Ty]% is sub linear. Let L be any integer greater than or equal to J.
Observe that if {a(n) : n € Z} is a sequence such that a(n) = 0 for |n| < L then

b, Tyla(n) =0 for |n|<L—J.

For a.e x € X, let fz(n) = f(U"z) and wy(n) = w(U"x). For k € Z,, define

fz(n) if |n| <K,
0 it |n|> K.
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Since [b/Ty|% is sub linear, for K, L € Z and n € Z, we have

(b2, To 5 Fo () < [bw, Tel5 f2 T () + D To)5 (fo — f275) ().
We can choose L large enough so that
(o, Tl (fo = fE () =0 if |n| < K.
Note that L depends only on J and not on K. Therefore,
[0, Tyl fu(n) < [ba, Tyl £3HF (n)

for |n| < K.

Also, for a.e x € Xand j € Z, we have

b, Ty] 5 f (U7 ) —wm§j — b(UT I F(UTF) (k)|
N<J b
= ;gl}\kz — )|f2(j — k)o(k)]

= [bxa Tqﬁ]}fx(])

Then

1

K
/;<w,TM5¢xx»Pumx>du::2](4_1jz;%ﬁ[;<w,fm;fxvjx»pumtﬂa»du

K

1Y o TPt

K
< s §j/ ([bos Tol5 £ G) P () dp
C K+L
S ’fm )|pwm(j)dﬂ
+ / —(K+L)
C K+L
“wT %%L/MUJWwW>

<ch+m+uwmmw
- 2K +1
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Choosing K sufficiently large, we get

| 0. Z15]

L0(X) < Cp 1 fll e x) -

O]

Remark 6.6.3. Using the boundedness of maximal ergodic commutator of singular operator
and Rubio de Francia method, we can prove that the maximal ergodic commutator of singular
operator is bounded on variable Lp(')(X , B, 1) spaces. But Rubio de Francia method assumes
maximal ergodic operator is bounded on the variable Lp(')(X , B, 1) spaces. With this assumption
we can prove the boundedness of maximal ergodic commutator singular operator to variable
LPO)(X, B, 1) spaces.



Chapter 7

Concluding remarks and future

Perspectives

1. Using the boundedness of ergodic maximal commutator and Rubio de Francia method,
we can prove that the maximal ergodic discrete singular operator and commutator of
maximal ergodic discrete singular operator are bounded on variable Lp(')(X , B, 1) spaces.
But Rubio de Francia method assumes maximal ergodic operator is bounded on the variable
Lp(')(X , B, 1) spaces. With this assumption we can prove the boundedness of maximal

ergodic commutator singular operator to variable LP()(X, B, 1) spaces.

2. In [11] maximal ergodic theorem is proved on LP()(X, B, 1) using the condition that the
variable exponent p(+) is invariant under U, where (X, B, u1) is a probability space equipped
with an invertible measure preserving transformation U. One has to explore that the
maximal ergodic theorem holds under the condition that p(-) satisfies log Holder LH,

condition.

3. Results obtained for boundedness of various operators on #,(Z) mentioned in this thesis

may be extended to Lorentz spaces, Sobolev spaces.
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