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Abstract

Optical and mechanical nanoscale devices are being combined to create a new class of hybrid

systems. Mechanically tunable optical resonators and radiation pressure-driven optical resonators

are two kinds of optomechanical devices that can be summed up based on their principles for

interaction. Photonic crystal (PhC) cavities have received a lot of attention in sensing applica-

tions due to their excellent quality factors, tiny mode volumes, and superior on-chip integrability

with waveguides/circuits. An integrated PhC cavity coupled to an optomechanical system benefits

from the optomechanical interaction by offering a fascinating platform for ultrasensitive sensors to

measure displacement, mass, force, and acceleration. In our study, we propose a few theoretical

models which are experimentally feasible for quantum information processing and sensing appli-

cations and discuss the physical interpretations of their novel outcomes. PhC cavities based on

optomechanical interaction offer extraordinary potential for developing lab-on-a-chip devices and

show a bright future for further controlling light propagation in the field of nanophotonics.

Cavity optomechanics is an evolving field of study where the radiation pressure of the confined

cavity photon is employed to establish a coherent coupling between the optical modes of the cav-

ity and the mechanical modes of the oscillating membrane. Achievements like gravitational wave

detectors, ultrahigh-precision measurements, quantum information processing, entanglement, op-

tomechanically induced transparency (OMIT) and four-wave mixing process are examples of how

quickly technology has advanced in this area. Due to the nonlinearity between the optical mode

and mechanical mode, the optomechanical systems show optical bistability and multistability. This

optical phenomena has real-world applications in all-optical switching and memory storage. Op-

tomechanically induced transparency (OMIT) has fascinating applications in quantum information

processing, slow light devices, and ultra-sensitive sensors. It offers a method for controlling how

light is manipulated, as well as a platform for investigating quantum coherence and control in the

interactions between light and mechanical vibrations. Optomechanical systems can also show the

extraordinary optical phenomena known as Fano resonance, which depends on quantum coherence

and interference. While EIT and OMIT both indicate symmetric line profiles, a Fano resonance
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exhibits an asymmetric line profile. In various research and application fields, tunable Fano res-

onance offers a number of significant advantages. Researchers can control optical responses and

increase efficiency in various photonic devices by modifying the Fano resonance to increase or

inhibit particular interactions. Significant improvements in nonlinear optical effects can also re-

sult by controlling Fano resonance. Applications like frequency conversion, signal processing,

and quantum information processing also rely upon this phenomena. All-optical switches can be

created which are effective and extremely fast by taking advantage of the asymmetric response of

Fano resonances to control light transmission. The potential to modify and control quantum states

and quantum entanglement in quantum systems is provided by Fano resonance control which is

essential for quantum state engineering and quantum sensing. The nonlinear optical phenomenon

known as four-wave mixing (FWM) plays an important role in many areas of photonics, quantum

optics, and communication. The technique involves the coupling of several optical waves with a

nonlinear medium, which causes a nonlinear mixing of the input waves in order to generate new

frequencies. Applications in spectroscopy, nonlinear optics, quantum technologies, and telecom-

munications show how important the four-wave mixing process is. It is an essential component of

recent photonics and optical research because of its potential to create new frequencies and modify

optical signals in a nonlinear manner.

Strong light-matter coupling in a hybrid system can be demonstrated through vacuum Rabi

splitting. It is possible to create quantum dot-based on-chip devices using any hybrid CQED

system that exhibits VRS. In order to do this, non-linearities in hybrid semiconductor cavities may

be crucial for coherently manipulating VRS and producing novel, intriguing physics that can be

used to realize novel quantum devices.

An in-depth introduction to cavity optomechanics is given in Chapter 1 with a brief discussion

of cavity quantum electrodynamics, quantum dots, photonic crystal cavities, mechanical oscillator,

radiation-pressure interaction, and other optical response phenomena. Here, the importance of

vacuum Rabi splitting, optical switching capability, optomechanically induced transparency, and

four-wave mixing technique are briefly discussed. Additionally, it briefly described numerous
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experimental possibilities and the uses of quantum photonics equipment in relation to various non-

linear interactions.

In Chapter 2, an overview of the numerical methods used to solve the Heisenberg-Langevin

equations of motion is given along with a more or less detailed explanation of the steady state

and semiclassical approximation equations. This chapter also gives a very quick summary of the

literature required for numerical and analytical calculations to evolution equations.

In the framework of VRS, optomechanical nonlinearities caused by the radiation pressure of

light on a mechanical resonator have not been investigated earlier which we thoroughly explored

in chapter 3 and proposed a theoretical model that consists of a hybrid quantum electrodynamics

(C-QED) system where a QD-based photonic crystal optomechanical microcavity is coupled to

an auxiliary cavity with a single mode waveguide. The auxiliary cavity plays an essential role

to explore the system’s quantum dynamics. An optical waveguide capable of supporting only a

single optical mode connects the system to an auxiliary cavity. We show the possibility to achieve

tunable optical bistability, double-bistability, and tristability, which may be used to develop multi-

valued logic circuits and all-optical switch systems that will eventually be a part of a large-scale

quantum communication platform. Additionally, it has been observed that the proposed system

exhibits the Mollow triplet and Fano resonances that have been modified by an optomechanical

interaction. The optomechanically induced transparency (OMIT) has been superimposed on the

Fano resonance (OMIT-Fano resonance), with the transparency window appearing exactly at the

point where the probe detuning equals the resonant frequency of the mechanical oscillator.

We investigated the nonlinear four-wave mixing process, which was yet another unexplored

region in C-QED. In chapter 4, we have proposed a theoretical model where we examined the

optical response properties of a quantum dot (QD) embedded in an optomechanical photonic crys-

tal (PhC) nanocavity which is coherently driven by two-tone laser fields. Our theoretical analysis

shows optical bistability, where the steady-state photon number follows a steady increase in the

switch’s gain by controlling a strong pump field that drives the QD. A strong coupling between

a quantized field and matter (e.g. in optical cavities) is a successful approach for conventionally
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modifying the dressed state and by altering the field parameters, thereby achieving modulation

of the QD dressed state. Additionally, we discuss the influence of exciton-nanocavity coupling

strength, Rabi coupling strength, and off-resonant detuning of the laser fields in our proposed sys-

tem, which generates a tunable four-wave mixing (FWM) signal in the transmission spectra of the

output probe field of the system. When strong coupling and high pump power are present simul-

taneously, the intensity of the FWM signal is considerably changed which causes the formation

of an OMIT window and slow light. The theoretical investigation of the proposed system may be

useful for on-chip QD-based nanophotonic devices.

We have done a theoretical investigation in chapter 5 on how a hybrid optomechanical system

consisting of double mechanical modes coupled to a photonic crystal (PhC) nanocavity dynami-

cally changes the amplification of the output probe field spectra. A quantum dot (QD) (two-level

system) is also incorporated into the PhC cavity, which is simultaneously driven by an external

pump and a probe field. We illustrate that the strength of the QD-cavity coupling can control mul-

tiple number of transparency windows that develops due to optomechanical interactions. The reso-

nant frequency of the mechanical mode can be employed to precisely measure the Fano profiles of

the optical responses. We also show the optical transition from optical bistability to tristability and

multistability by varying the system parameter’s switching threshold. The results obtained in our

study showed us some convenient way to explore all-optical-switching and sensing applications

along with optical nonreciprocity in multi-resonator photonic systems.

The conclusion of my research work and a potential overview of the future aspect of the current

work are present in chapter 6.
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CHAPTER 1

Introduction

In this chapter, the fundamental laws of physics and phenomena are briefly introduced which serves

as the thesis’s underlying theoretical framework. The prime focus of this chapter is on quantum

dot, photonic crystal cavities, cavity quantum electrodynamics (CQED) and radiation-pressure in-

teraction to study different types of optical response properties in different hybrid optomechanical

systems.

1.1 Cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) is the study of interaction between a single mode radia-

tion field and matter which allow the study of various quantum optical phenomena like quantum-

classical boundary, quantum entanglement, quantum decoherence etc [1]. The characteristic of all
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physical system is that they are open system with a limited degree of coherence. An atom-photon

system can achieve quantum coherence over dynamically significant time scales if it is confined

within a high-quality cavity, allowing the system to be significantly insulated from the decohering

interaction with its surroundings. For quite a long time, CQED has been the fundamental approach

for the study of an open quantum system which offers a special framework to rigorously and sys-

tematically explore decoherence. The recent progress in CQED experiments is due to the higher

degree of coherence which makes them a suitable testing ground for fundamental concepts in quan-

tum control and quantum computation. Light can be confined in optical cavities in a small mode

volume, which can result in a strong electric field inside the cavity. Therefore, one can achieve

strong light-matter interactions by embedding matter inside the cavity. The perturbation theory

can be used to explain the dynamics of the system when the interaction strength is less than the

system losses and the coupling between the emitter and cavity field is weak. On the other hand,

when the interaction strength is greater than the system losses then a strong coupling regime is

attained. The entangled quantum dot (QD) and cavity field eigenstates for such strongly coupled

systems are referred to as polaritons, which are hybridised states of light and matter. Recent de-

velopments in nanofabrication technologies have made it possible to integrate CQED systems into

integrated semiconductor platforms. To confine light in such systems, one uses nanophotonic cav-

ities and quantum confined structures like quantum wells or quantum dots (QD). The potential of

semiconductor technology is quite promising where a nano-photonic cavity can have a mode vol-

ume below∼ (λ/n)3 which is substantially smaller than the mode volumes of Fabry-Perot cavities

(usually of the order of 100-1000 λ3) [2]. The volume that confines the incoming light is known

as cavity mode volume and is given by

Vc =

∫
ϵ(r⃗)|E⃗(r⃗)|2d3r⃗

max[ϵ(r⃗)|E⃗(r⃗)|2]
, (1.1)

where E⃗(r⃗) is the electric field amplitude and ϵ(r⃗) is the dielectric constant of the medium. When

a quantum confined structure (QD) is placed inside a cavity where the value of ϵ|E|2 is maximum

then its dipole moment µ, is proportional to the interaction strength between QD and cavity which

2
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is given as,

g =
1

ℏ

√
ℏω
2Vc

µ, (1.2)

where Vc is the cavity mode volume and g is the QD-cavity coupling strength. The coupled sys-

tem is said to be in the strong-coupling regime if the interaction strength overcomes the dissipa-

tive losses. Here, photon and atom entangle, allowing the interaction between light and matter

reversible. This characteristic signature is known as vacuum-field Rabi splitting. Potential appli-

cations in solid-state quantum information technology are a major source of the current excitement

in the research community.

1.1.1 Jaynes Cumming Model

In 1963, Jaynes and Cummings performed the first detailed analysis of the interaction between a

resonant cavity mode and an atom. They investigated the relationship between a two-level quan-

tum mechanical system and a monochromatic electromagnetic field mode. Despite the fact that

this model is clearly approximate, it has shown to be essential for understanding the basic interac-

tion between light and matter. In 1984 the first experimental demonstration was done by Rempe,

Walther, and Klein which is commonly employed in quantum information processing, particularly

in circuit and cavity QED. The interaction between light and matter is described by the Jaynes

Cummings model, which contains quantum mechanical framework. When an atom interacts with

a single-mode cavity field, it takes the form with ground state atomic levels |g > and excited level

|e > as

Ê = e
ℏω
ϵ0V

1
2

(â+ â†)Sin(kz) (1.3)

3
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where e is polarization vector which is arbitrarily positioned. The interaction Hamiltonian is given

as,

HI =− d̂.Ê

=− d̂e( ℏω
ϵ0V

1
2

)(a+ a†)Sin(kz)

=d̂g(a+ a†)

(1.4)

where d̂ = d̂.e. The atomic transition operators are written as σ̂+ = |e >< g| and σ̂− = |g ><

e| = ˆ
σ†
+ and the inversion operator is written as σ̂z = |e >< g| − |g >< g|,where all the operators

obeys the Pauli’s spin algebra,

[σ+, σ−] = [σ+σ− − σ−σ+]

= |e >< e| − |g >< g|

= σ̂z.

Therefore, we can write, [σ+, σ−] = σz and [σz, σ±] = 2σ±.

Considering the parity, < e|d|e >= 0 =< g|d|g >, we can write

d̂ = dσ− + d⋆|e >< g|

= dσ− + d⋆σ+

= d(σ+ + σ−)

Therefore, the interaction Hamiltonian is written as,

HI = ℏα(σ+ + σ−)(a+ a†) (1.5)

where α = dg
ℏ

When we consider the level of energy to be zero in between the states |g > and |e >, then the

free atomic Hamiltonian can be written as,

HA =
1

2
(Ee − Eg)σz

=
1

2
ℏω0σz

(1.6)

where (Ee − Eg) =
1
2
ℏω0.

4
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After excluding the zero-point energy term, the free-field Hamiltonian is expressed as,

HF = ℏωa†a (1.7)

Therefore, the interaction of the quantized electromagnetic field with a single electron atom is

described by the total Hamiltonian as

H = HA +HF +HI

=
1

2
(ℏω0σz) + ℏωa†a+ ℏλ(σ+ + σ−)(a+ a†)

(1.8)

In case of free-field, the operators â and â† evolve as,

â(t) = â(0)e−iωt

â†(t) = â†(0)eiωt

Similarly, for the free-atomic case, the operators evolve as σ̂±(t) = σ̂±(0)e
±iω0t

As a result, we can observe that Eq. (1.8)’s operator products have the following approximate

time dependences which does not conserve energy,

σ+a ∼ ei(ω0−ω)t

σ−a
† ∼ e−i(ω0−ω)t

σ+a
† ∼ ei(ω+ω0)t

σ−a ∼ e−i(ω+ω0)t

If ω ≈ ω0, then the last two terms change much more quickly than the first two where, unlike

the first two terms, the last two terms do not conserve energy. When an atom is moved from a

higher energy state to lower energy state, the situation in which a photon is generated is referred

to as ”a†σ−”. Additionally, when an atom is moved from a lower energy state to a higher energy

state then a photon is destroyed or annihilated ,such a situation is expressed as ”aσ+” . In both

cases, energy is conserved and the process of an atom changing from a higher to a lower level

whilst simultaneously annihilating a photon is described by the term ”aσ−” which results in a loss

of energy of around 2ℏω, whereas the process described by the term ”a†σ+” results in a gain of

energy of 2ℏω [3]. This result violates the law of conservation of energy where the conserved

5
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energy terms are kept, but the non-conserving energy terms are eliminated in the rotating wave of

approximation.

Therefore, the Hamiltonian is simplified as

H =
1

2
(ℏω0σz) + ℏωa†a+ ℏλ(σ+a+ σ−a

†) (1.9)

The above mentioned Hamiltonian is called as the Jaynes-Cummings Hamiltonian, which explains

the behavior of a two-level atom with a single-mode mode field. This Hamiltonian can be calcu-

lated with high precision and describes quantum dynamics such as spontaneous emission, periodic

recovery of atomic inversion, etc.

1.1.2 Vacuum Rabi splitting (VRS)

In the early 1980s [4], the research of vacuum Rabi splitting (VRS) with its first observation with

atoms has been a fascinating area of atomic physics. Vacuum Rabi splitting with a single atom

was observed after a decade of gradually improving the Q-factor of the cavity along with lowering

its volume. This offered the discipline of atomic cavity QED fascinating opportunities. When a

single photon or atom is added to a quantum system, the optical properties change, allowing the

study of the quantum-classical boundary. But since atoms can move around and even leave, their

coupling is dependent on time. Hence, it was obvious that the next target was to establish a cold

atom using atomic traps [5] inside the cavity. The semiconductor equivalent of a two-level system

is a semiconductor quantum dot (SQD), which is an extremely small semiconductor crystal that

is confined three-dimensionally by a higher-bandgap material [6, 7]. It was demonstrated that,

depending on size and form, the sharp emission lines seen from nanometer sampling areas result

from transitions between discrete energy levels of the quantum dot. These atom-like transitions

were subjected to coherent transient tests, and the Purcell effect was used to amplify and limit their

spontaneous emission in microcavities with increasing Q. The requirement for strong coupling

on Q is that the vacuum Rabi splitting, caused by a SQD, must be greater than the average of

the decay rates of the cavity, κ, and the quantum dot. The strong coupling regime is intriguing

6
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because it makes it possible to conduct nonlinear quantum optics experiments using as few as two

photons, control the direction of emission as well as phase of one photon with another, observe

single-atom lasing, study and use quantum entanglement, and investigate the boundary between

the classical and quantum physics. If the coupling strength between two oscillators of identical

energy is greater than the mean of their decay rates then the coupled system has two eigen-energies,

with split states as shown in figure 1.1. VRS emerges when one of the oscillators is a two-level

system or QD and the other is a high-Q small-volume cavity. The VRS has a numerical value

of two times the product of the transition dipole moment and the vacuum field produced by the

root-mean-square of the vacuum fluctuations (zero-point energy of 0.5 eV in the cavity mode). A

Fabry-Perot interferometer’s transmission formula can be easily understood by adding the QD or

QW (quantum well) absorption and refractive index. If the absorption is strong and narrow enough,

the transmission will become double-peaked. When this splitting occurs in a system with many

atoms, it behaves classically, and removing or absorbing one photon has no impact. Although the

splitting is completely eliminated when the SQD is removed, the VRS is a fundamentally quantum

event if it results from the well-isolated transition of a single atom or SQD. This situation is known

as the strong coupling regime of VRS. When the system is pulse stimulated, the strong coupling

may be utilised to emit a single photon on request with the photons being indistinguishable from

one another because the emission is predictable by adjusting the decay rate of the cavity which

is considerably greater than the QD transition dephasing rate. Previously the source of SQD of

single photons has functioned in the weak coupling zone of irreversible emission. However, strong

coupling is a reversible technique that can be applied to coherently transfer quantum information

between QDs and photons.

1.2 Quantum dots

Quantum dots (QDs) are nanostructured semiconductors which can be embedded in other semi-

conductor materials and has remarkable electrical and optical properties because of the quantum

7
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Figure 1.1: The spectrum of VRS for Zero atom-cavity detuning.

confinement of their energy levels where the electrons or any other charge carriers are confined

in all three dimensions. Different quantum dot structures can be grown or made using various

methods, resulting in confinement length scales that range from 2 to 100 nanometers. The size

of the QD determines how differently it behaves optically for a particular material. The size typ-

ically falls between a few and tens of nanometers and such small sizes are typically smaller than

the thermal electron’s de Broglie wavelength. Excitons are the light-induced electron and hole

pair that are held together by quantum confinement when QDs are optically excited. Due to their

confinement nature, quantum dots (QDs) can only de-excite the carrier along restricted pathways,

which results in slow cooling dynamics. [8, 9]. As a result, QDs can be used to extract electrical

or chemical-free energy before relaxing to their lowest electronic state. This indicates that such

slow cooling behavior in QDs can increase the possibility to generate multiple excitons since the

exciton rate becomes similar to the cooling rate. For photo-driven applications using QDs, this

chance of numerous excitons per excitation has important ramifications. The density of states in

QDs exhibits a Dirac-delta (δ) like function, which reduces the continuous electronic energy bands

to discrete quantized states and is denoted as,

D(E) =
∑

2δ(E − En) (1.10)

8
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where D(E) and E are the corresponding density of state and energy. In quantum dots, the energy

gap can be adjusted by changing the QD’s dimension [10, 11]. The optical properties of QD are

greatly influenced by the electron’s quantum state because of the large surface ratio [12, 13]. The

energy band structure of the QD exhibits coulomb attraction due to an electron confined in the

conduction band and a hole confined in the valance band. A number of methods, including chem-

ical synthesis in a regulated nucleation and growth environment, molecular beam epitaxy (MBE),

and MOCVD (metal organic chemical vapour deposition), can be used to make quantum dots. Re-

searchers have been looking at the unique properties of quantum dots in a variety of devices for

many years, including LEDs, biological devices, solar cells, spintronics-based devices, etc. The

intrinsic properties of QD structures might vary depending on the size, shape, crystallinity, defect

and impurities. As a result, the fabrication of QD structures must be carried out in controlled

conditions. Excitons within a quantum dot (QD) can either unite or change states both with or

without emitting radiation [14]. In order to make QDs processable for usage in various applica-

tions, appropriate functionalization procedures must be used. Additionally, in order for a device

to function properly, the carriers produced by these materials in response to optical or electrical

stimulation must be separated and sent to an appropriate interface. To achieve this, QDs would

need to be combined with other materials that would help in the delocalization of excitons as well

as the transport of the split electrons or holes [15].

1.3 Photonic crystal cavity

In experiments involving quantum optics, two-dimensional PhC (photonic crystal) structures are

commonly used, where a cavity is created by introducing a defect into the periodic structure.

The term "photonic crystals" often corresponds to structures with periodic dielectric constants in

two and three dimension, whereas distributed Bragg reflectors (DBRs) are used to describe one-

dimensional periodic medium [16]. The fundamental characteristics of photonic crystal are signif-

icantly altered when a ’defect’ is created on it. In other words, when a defect is introduced into

9



Chapter 1. 1.3. PHOTONIC CRYSTAL CAVITY

the periodicity of the crystalline structure, a micro/nano cavity surrounded by a highly reflective

mirror region is formed which allows the photonic crystal to localize light. According to Vukovi

et al.(2002), the defect causes dispersed Bragg reflection to limit light in-plane and complete in-

ternal reflection to restrict it out-of-plane and if the size of the cavity has a small mode volume

then the electric field produced by a single photon inside the cavity will be substantially enhanced.

In general, the structures of photonic crystal devices show high optical confinement over a large

frequency range. High optical confinement in a small volume is required to offer a good plat-

form for the optical emission properties, enhancing the luminous atoms by spontaneous emission.

Photonic technology has evolved greatly for various applications, either using devices like III-V

semiconductor materials, or devices like silicon and silica. Although the fundamental goal is still

to produce a single photonic integration which is able to manage any application in a microchip,

the latter two materials continue to function as a distinct system. There has been much discussion

of the innovations based on theories by Purcell [17, 18] regarding the impact of radiation charac-

teristics brought on by the presence of mirrors. As a result of these ideas a revolutionary concept

of photonic crystals [19, 20] came into existence. Photons can be controlled in dielectric periodic

structures ( Photonic crystal), that show photonic band gap and stopband behavior, in contrast to

controlling the electrons that are included for using the electronic properties (of solids), in order to

create an electronic band gap. In other words, there is a prohibited gap or band gap due to which

photons cannot propagate through the periodic structures. When light is allowed to pass through

photonic band gap structures over a certain photon energy range, it reflects back when it hits the

periodic structure and is not allowed to propagate, forming the so-called forbidden zone. The op-

tical characteristics of photonic crystal cavity (micro or nano) structures can be described by the

ratio Q/Vc, where Vc is the mode volume and Q is the quality factor associated with a specific

cavity and its distinctive microwave resonant modes. When light is trapped within a small volume

of the order of (λ/2n)3, where n is the refractive index of the supplied material, and λ is the emis-

sion wavelength, then developing high Q-factor optical cavities (micro or nano) confined in a small

volume may be beneficial for fast optical processing. The Q-factor is very helpful in figuring out

10
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how a system will behave qualitatively. A system’s quality factor is a non-dimensional parameter

that describes the first-order characteristic of an oscillating frequency decaying inside a microcav-

ity. It can be identified by a decrease in the amplitude of the propagating wave through the system

throughout the course of an oscillation. The quality characteristics and optical transmission at a

specific resonance frequency influence the performance of particular resonances for some telecom

applications, like dense wavelength division multiplexing (DWDM). When the Q-factor is higher,

there is a slower rate of energy dissipation in relation to the resonant frequencies, which prolongs

the life of the oscillations. A pendulum oscillating in the air while suspended on a high-quality

bearing, for instance, will have a high Q, whereas a pendulum submerged in oil would have a low

Q. The Q-factor in optics is typically given by [21],

Q =
2πfrE

Pd

(1.11)

where fr is the resonant frequency, E is the energy stored in the cavity and Pd is the power dissi-

pated from the cavity given as, Pd = −dE
dt

. The ratio of the resonance frequency to the bandwidth

of the cavity resonance gives the Q-factor as shown in Figure 1.2. The quality factor of a cavity

is proportional to the average lifespan of a resonant photon. Resonant systems react much more

strongly to frequencies that are close to their resonance frequency compared to other frequencies.

When compared to a system with a low-quality factor, a high-quality system resonates with a larger

amplitude and exhibits a faster decay in response as the frequency approaches resonance. Hence,

the physical explanation of resonance is given by the equation,

Q =
fr
∆f

(1.12)

where ∆f is the difference in frequency of the total energy stored in the cavity (micro/nano) system
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Figure 1.2: Resonance frequency resulting from the structure of a cavity (micro/nano) described by the

central resonance frequency and the frequency's bandwidth

1.4 Mechanical Oscillator

The momentum exchange between photons and a mechanical degree of freedom occurs during

the radiation pressure interaction between light and matter. The mechanical oscillators used in

research feature many degrees of freedom and eigenmodes, whose spectral properties depend on

the oscillator’s structure, material, and interaction. The spatial structure of a mechanical mode

can be defined using a displacement field x(r, t), which in general geometries can be arbitrarily

complex. We can expand x(r, t) based on the eigen-modes and the time-dependent amplitudes of

the oscillators as

x(r, t) =
∑
n

An(t)xn(t) (1.13)

where An(t) is the time-dependent amplitude.

In spite of the fact that mechanical oscillators are often not linear in how they react to applied

forces, linearity offers a decent approximation for small deformations that are frequently realized

during normal operation. Thus, we model the time-dependent amplitudes to correspond to the

damped harmonic transformation given by

Än(t) + κnȦn(t) + ωn
2An(t) =

Fex

mef
(n)
. (1.14)

12
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where κn and ωn represent the damping constant and angular frequency of the n-th eigen-mode,

respectively, while mef
(n) stands for the corresponding effective mass derived from the mode vol-

ume of xn. Fex represents the total external force (which includes fluctuating Langevin forces and

radiation pressure types) acting on a specific mechanical mode. For a single-mode case, we can

assume that one can only address a single mechanical eigenmode. The spectral overlap between

this mode and its nearby modes is presumed to be negligible. The resonance frequency of this

mode is denoted by ωm, while the energy dissipation rate is denoted by κm. We’ll designate the

oscillation’s associated amplitude as An(t). The possible eigenmode of a model like the Fabry-

Pérot cavity is the center-of-mass oscillation, and the amplitude An(t) corresponds to the mirror’s

displacement from its steady state. Thus, the mirror’s overall mass is nearly equal to the effec-

tive mass mef without considering the mass of the mirror. The mechanical oscillator is coupled

to its support, which both serves as a thermal environment (often known as a "heat bath") and a

source of noise for the mechanical oscillator, which results in the damping described in Eq. 1.14.

As originally proposed by Caldeira and Leggett [22], this heat bath is typically represented as a

collection of many harmonic oscillators together in a thermal state (at temperature T). A Bose-

Einstein distribution governs the mean bath occupation number, given by nb(ω) = 1
exp(ℏω/kBT )−1

where kB is the Boltzmann constant. At high-temperature, the mean bath occupation as a function

of the mechanical frequency can be roughly estimated as nb(ωm) ≈ kBT/ℏωm. A mechanical os-

cillator with high-Q and a low-temperature bath is required for low thermal decoherence, and these

components can be introduced to an experimental setup through cryogenic cooling. The thermal

decoherence rate, often known as the effective decoherence rate, is given by n̄κm ≈ kBT/ℏQm,

where Qm = ωm

κm
is the mechanical quality factor. For the quantum analysis of the mechanical

oscillator we introduce the position Xm and momentum operators Pm, which satisfy the canonical

commutation relations [Xm, Pm] = iℏ where i =
√
−1. In quantum optics, the non-dimensional

quadratures xm and pm with [xm, pm] = i can be defined in terms of the creation and annihilation

operators a†m, am ([am, a
†
m] = 1)

xm =
am + am

†
√
2

, pm =
am − am†

i
√
2

(1.15)
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Additionally, we convert the operators to Xm =
√
2x0xm and Pm =

√
2mefωmx0pm by enhancing

the oscillator’s zero-point motion, x0 = ( h
2mefωm

).

1.4.1 Radiation pressure interaction

Radiation pressure refers to the force applied to any surface that has been exposed to electro-

magnetic radiation and which can be utilised for cooling atomic motion. Kepler was the first to

postulate the concept that light has momentum and can, consequently, generate pressure due to

a force known as the radiation pressure force. In the 17th century, he proposed these forces and

suggested that radiation pressure seems to be what causes the tail of the comets. When light con-

tacts an object’s surface, it then transfers momentum to that object and creates a force known as

radiation pressure. The electromagnetic field equation which Maxwell developed in 1873 foresaw

the optomechanical effect of electromagnetic fields. Lebedew, Nichols, and Hull were the first to

experimentally demonstrate the presence of radiation pressure at the beginning of the 20th century

[23]. The transfer of momentum between photons and a mechanical degree of freedom occurs

during the radiation pressure interaction between matter and photons. The interaction between the

optical mode and mechanical mode in cavity optomechanical systems usually leads to a dispersive

coupling, which changes the cavity resonance frequency depending on where the mechanical res-

onator is placed. In addition to the dispersive regime, there is an optomechanical coupling regime

where the mechanical position influences the cavity decay rate [24, 25]. Prior to digging more into

the optomechanical interaction, it is important to remember the simple example of a single pho-

ton that reflects back from the mirrored surface of a mechanical oscillator. The photon’s impact

causes a momentum transfer in the oscillator, which allows it to oscillate. In terms of quantum me-

chanics, the region where the oscillator’s maximum displacement exceeds its zero-point motion,

xz0 =
√

ℏ
2mefωm

, is unquestionably intriguing. In this regime, observations on a mechanical oscil-

lator that is originally in its ground state can demonstrate the impact of photons that has actually

occurred, serving as a quantum nondemolition (QND) measurement of the population of photons
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in the field. Since, a photon with a wavelength λ has a momentum of h/λ, in the basic scenario

where the photon reflects back from the mechanical resonator at normal incidence with unit effi-

ciency, it gives the oscillator a 2h/λ momentum kick. This momentum kick causes a displacement

of ∆x = 2h/λmefωm = 8πx2z0/λ , after a quarter period, assuming the oscillator is significantly

underdamped. In order to achieve the quantum regime, mechanisms are required to improve the in-

teraction between the optical field and the oscillator. The conventional methods involve confining

the field in a microwave cavity to increase the number of times the photons interact with the oscil-

lator and thereby increasing the optical field’s intensity. The amount of incoming incident radiation

that impinges on the mechanical membrane determines the radiation pressure. Since photons often

exert a very weak force on larger bodies, cavity optomechanical investigations employs an optical

cavity as a resonator for the photons. This benefits both the increase in radiation pressure coupling

and the increase in effective incident radiation.

1.4.2 Optomechanical coupling

The momentum transfer of photons is a basic process that couples the cavity radiation field’s prop-

erties to the mechanical motion. The momentum transfer as a result of the reflection that takes

place in a Fabry-Perot cavity is the most basic type of radiation-pressure coupling. In a dispersive

cavity optomechanical system, the resonance frequency of an optical resonator generally couples

nonlinearly to the location of the mechanical membrane. The field that departs the optical resonator

carries enough information about the resonance frequency as well as the mechanical position. The

optical or microwave field causes radiation pressure that helps in adjusting the position of the me-

chanical membrane. A change in the mechanical position of a moveable mirror in the Fabry-Perot

cavity results in the modification of the resonance frequency of the cavity mode, which enables the

description of the interaction Hamiltonian by describing the scaled coupling between the optical

field and the mechanical resonator. As shown in Fig. 1.3, we are considering a Fabry-Perot cavity

with length L having one end membrane, which is a part of the mechanical oscillator. The motion
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of the mechanical oscillator due to radiation pressure interaction changes the length of the cavity to

L(x) = L− x, where x defines the displacement of the mechanical oscillator from its equilibrium

position and the minus sign is arbitrary, which denotes only the positive direction of mechanical

vibration. The length of an optical cavity allows a number of longitudinal photonic modes with

wavelengths

λj =
2(L− x)

j
(1.16)

where j is the mode number and the mode frequencies are given by,

ωc,j(x) =
2πc

λj
=

πcj

L− x
≈ ωc,j(1 +

x

L
) (1.17)

Here, the approximation holds true as long as L >> x, which is suitable for the large majority

of cavity optomechanical systems, c is the speed of light, and ωc,j ≡ ωc,j(0) is the cavity’s bare

optical resonance frequency where the cavity resonance frequency is denoted by the subscript c.

We observe that the mechanical motion of the membrane has a tendency to shift linearly to first

order with the resonance frequency of the optical cavity. The change in frequency per meter is

measured by the optomechanical coupling strength g0

G =
δωc(x)

δx
=
ωc

L
(Fabry − Perot cavity) (1.18)

where we have neglected the mode number j. The Fabry-Perot cavity was the precise example

utilised to arrive at Eq. 1.18, and the equation G = ωc

L
is only applicable to this particular type

of cavity geometry. The optomechanical coupling strength is an important and widely applicable

property.

1.4.3 Quantum Optomechanical system

Optomechanical systems can be found in a wide variety of physical applications, which can be

explained using a simple model like a Fabry-Perot resonator. There are a number of resonances in

a Fabry-Perot resonator or etalon, which consists of two highly reflecting mirrors separated by a

16
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Figure 1.3: Schematic of a cavity optomechanical system

length L. Let us consider, a laser-driven cavity where the displacement of the moveable end mirror,

x, determines the optical resonance frequency. The energy of the radiation in a certain cavity mode

is calculated by multiplying its energy per quantum ℏωc by the number of photons (n(t)) that are

present in the cavity. Therefore,the Hamiltonian of the cavity mode is given by,

Hcav = ℏωc(x)n. (1.19)

where we consider the cavity frequency’s dependency on the mechanical oscillator.

The energy of the mechanical oscillator in absence of the radiation pressure interaction is given

by,

Hm =
p2

2m
+
mω2

m

2
x2. (1.20)

where p,m are the momentum and mass respectively and ωm is the resonance frequency of the

mechanical oscillator.

When the quantum picture of the system is shown by replacing the classical variables with the

corresponding operators x → x̂, p → p̂, n → a†a that satisfies the canonical computing relations

Ĥ = kq̂2

2
+ p̂2

2m
and [a, a†] = 1 then the quantum Hamiltonian is given by

H =
p2

2m
+
mω2

m

2
x2 + ℏωc(x)a

†a. (1.21)
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Expanding the frequency to linear order in x and introducing the raising and lowering operators of

the mechanical mode as b and b, which also obey the Boson commutation relation [a, a†] = 1, we

then write the Hamiltonian as

Ĥ = ℏ(ωc +Gx)a†a+ ℏωmb
†b

= ℏωca
†a+ ℏωmb

†b+ ℏg0a†a(b† + b)
(1.22)

The vacuum optomechanical coupling rate is defined by using the relation x̂ = xzp(a
† + a) and is

given by,

g0 = Gxzp = xzp
ωc

L
(1.23)

In every cavity optomechanical structure, the linear dispersive shift of the optical resonance fre-

quency caused by the mechanical motion is measured by the optomechanical coupling strength

from the perspective of the cavity field. It quantifies the interaction between a single phonon and

a single photon. The optomechanical coupling rate, g0 is one of the main parameter in the area of

quantum optomechanics which has units of (rads−1).

The interaction of a moving mirror with the radiation field is basically a nonlinear process that

involves three operators (three-wave mixing) and the interaction Hamiltonian is given as,

Hint = −ℏg0a†a(b+ b†) (1.24)

The resonance frequency ωc of the optical cavity is greater than the other system parameters in most

cavity optomechanics experiments. The total Hamiltonian,Htotal also contains terms for fluctua-

tions (influx of thermal phonons), dissipation (photon decay and mechanical friction), and driving

by an external field. The input-output framework [26] and the equations of motion are the most

effective ways to formulate these effects. In this regime, it is appropriate to modify the optical

mode by applying a rotating frame at the incident laser frequency ωL. By using the unitary trans-

formation Û = exp(iωLa
†at), the driving terms become time-independent and a new Hamiltonian

(Ĥ = ÛĤÛ † − iℏÛ∂Û †/∂t) is formed,

HTot = ℏ∆aa
†a+ ℏωmb

†b− ℏg0a†a(b† + b) (1.25)

where ∆a = ωc − ωL is the cavity-laser detuning.
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1.4.4 Input-output theory for an optical cavity

The quantum fluctuations introduced into the cavity from any coupling point, like the input mirror,

can be easily modelled using input-output theory. An electromagnetic resonator’s energy can be

expressed as a complex field amplitude, α(t), where |α(t)| gives the number of photons inside the

resonator at time t. The energy in the resonator decays as the field amplitude changes.In general,

the cavity decay rate κ can have two factors:

κ = κex + κin (1.26)

where κex is the loss rate related to the incident coupling of radiation field with the cavity mirror

and κin is the loss rate inside the cavity, which includes all the scattering and absorption losses

behind the first mirror as well as the transmission losses at the second cavity mirror. Also, there

will be no trace of the photon passing through the κin decay channel.

For open quantum systems, the input-output theory states that the field that is reflected back

from the Fabry-Perot cavity is provided by,

aout(t) = ain(t)−
√
κexa(t) (1.27)

In case of a two sided cavity, an additional term
√
κ
(2)
ex a

(2)
in is included for the transmission from

the second mirror. We can assume the input field ain(t) to be a stochastic quantum field which

represents a coherent laser drive in addition to the fluctuating vacuum electric field coupled to the

cavity at time ′t′.

Both the input noise operator and its adjoint follows the correlation and commutation relations

[26] given below

[ain(t), a
†
in(t

′)] = δ(t− t′) (1.28)

[ain(t), ain(t
′)] = [a†in(t), a

†
in(t

′)] = 0 (1.29)

where δ(t) is the Dirac delta function.

Given that the input noise is assumed to be in a thermal condition, the correlation relations are:

< a†in(t)ain(t
′) >= n̄δ(t− t′) (1.30)
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< ain(t
′)a†in(t) >= (n̄+ 1)δ(t− t′) (1.31)

< ain(t)ain(t
′) >=< a†in(t)a

†
in(t

′) >= 0 (1.32)

Initially, when no mechanical mode is considered, the quantum stochastic differential equation is

written as,

ȧ(t) = − i
ℏ
[a(t), H]− κ

2
a(t) +

√
κexain +

√
κinfin. (1.33)

Suppose we are not considering the noise properties, but instead concentrate on the classical av-

erage quantities < a >. In the presence of a monochromatic laser field, whose amplitude is

given by < ain >, we can first solve Eq. (1.33) for the steady-state amplitude. For vacuum state

(< fin >= 0), steady state is given as,

< a >=

√
κex < ain >

κ/2− i∆a

(1.34)

In frequency range,

< a(ω) >=

√
κex < ain(ω) >

κ/2− i(ω −∆a)
(1.35)

where ω refers to the Fourier frequency of the input field’s fluctuations around its laser frequency

ωL.

The expression relating the incident laser field to the intracavity field indicates the optical

susceptibility written as,

χop(ω) ≡
1

κ/2− i(ω −∆a)
(1.36)

The steady-state population inside the cavity (n̄ =< a†a >) i.e., the average number of photons

propagating inside the cavity is given by,

n̄cav = | < a > |2 = κexP

[κ2/4 + ∆2
a]ℏωL

. (1.37)

Here, P is the input power injected into the cavity where, P = ℏωL| < ain >
2 |.

Using Eq. (1.34) in Eq. (1.27), the reflection amplitude can be written as,

R =
< aout >

< ain >
=

(κin − κex)/2 + i∆a

(κin + κex)/2 + i∆a

(1.38)
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The square of reflection amplitude |R|2 gives the probability of reflection from the cavity.

|R|2 = (κin − κex)2/4 + ∆2
a

(κin + κex)2/4 + ∆2
a

(1.39)

If the external coupling κex is greater than the cavity losses (κex >> κin) then the cavity is called

over-coupled and |R|2 ≈ 1. Therefore, the pump photons leave the cavity through the second

mirror without being absorbed or lost.

If κex = κin, then such situation is referred to as critical coupling where R(∆a = 0) = 0 on

resonance which indicates that either the input power is completely dissipated inside the resonator

or the input power is completely transmitted through the second mirror.

If κex << κin, then such cases is referred to as under-coupling and is linked to cavity losses

that are primarily caused by intrinsic losses. This coupling condition is unfavourable for many

studies since it causes a loss of information.

1.5 Optomechanical bistability

In some nonlinear optical systems, a specific input state might have more than one output state.

Optical bistability refers to the event where two stable output intensities are achievable for a given

input intensity, and optical multistability, in a broader sense, refers to the event in which two or

more stable output states are possible [27]. In the year 1969, Szöke et al. made the first theo-

retical description of optical bistability and its experimental observations by using an absorptive

nonlinearity. For the case of a refractive nonlinearity, Gibbs et al. [28] experimentally observed

optical bistability in 1976. A nonlinear medium is positioned inside a Fabry-Perot cavity to create

the bistable optical devices which is the subject of this research. A schematic illustration of such

a device is illustrated in figure 1.4. To further understand this phenomenon, let’s first review the

conditions that must be met. When a continuous wave laser beam is incident on an optical cavity,

like a Fabry-Perot cavity, it experiences partial reflection, absorption, and transmission. Following

are the two cavity situations that can be thought about :
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1. In the case of empty cavity without any absorbent material, the detuning and fineness of the

cavity determines the ratio of transmitted power to incident power, which is constant.

2. In the case of filled cavity with absorbing material the Fabry-Perot resonator contains a

nonlinear medium in order to build a bistable optical device. Here, the field amplitude of the

Figure 1.4: Schematic of a Fabry-Perot interferometer with a nonlinear medium inside is a bistable optical

device.

incident wave is represented by A1, the reflected wave by A11, the waves going forward and

backward inside the interferometer by A2 and A22, and the transmitted wave is denoted by A3. If

the cavity mirrors are identical and lossless, the relationship between amplitude reflectance ρ and

transmittance τ and their corresponding intensity reflectanceR and transmittance T is given by the

expression,

R = |ρ|2andT = |τ |2, (1.40)

where

R + T = 1 (1.41)

A connection between the incident and internal fields can be seen through the boundary conditions

of the form

A2
′
= ρA2e

2ikl−αl, (1.42)

A2 = τA1 + ρA2
′
. (1.43)
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In these equations, we presume that the field amplitudes are determined on the inner surface of the

left mirror. Both the intensity absorption coefficient α and the propagation constant, κ = nω
c

, are

considered to be real quantities, including its both linear and nonlinear effects. We assume that

the nonlinear material’s and the medium around the resonator’s linear refractive indices are the

same. Additionally, we assume that the values k and α are spatially invariant under a mean-field

approximation. Consequently, the above equations (1.42) and (1.43) can be derived as

A2 =
τA1

1− ρ2e2ikl−αl
. (1.44)

The above mentioned equation is known as Airy’s equation which describes the properties of a

Fabry-Perot interferometer. Suppose that the light intensity inside the interferometer has a suffi-

cient nonlinear effect on k or α (or both). In that situation, as anticipated by the equation above,

the transmitted wave’s intensity will show bistability. The two essential conditions for producing

such optical phenomena are the medium’s nonlinearity and the optical feedback action. Optical

bistability can be classified as dispersive or absorptive based on whether the feedback occurs by an

intensity-dependent refractive index or through an intensity-dependent absorption, respectively.

1.5.1 Absorptive bistability

Let’s start by taking a look at the case where the amplitude of the wavevector k is assumed to be

constant while only the absorption coefficient is believed to have a nonlinear dependence on the

field intensity. In order to simplify the analysis below, we assume that the spacing l between the

mirrors is adjusted to tune the cavity to resonance with the applied field. In this case, a real quantity

R is equal to the factor ρ2e2ikl in the denominator of the equation (1.44). Additionally, we assume

that αl << 1, which allows us to ignore the spatial fluctuation of the field’s intensity inside the

cavity and supports the use of the mean-field approximation. In all of these circumstances, Airy’s

equation (1.44) becomes,

A2 =
τA1

1−R(1− αl)
. (1.45)
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A similar equation for the relationship between the incident and circulating intensities Ii = 2nϵ0|Ai|2

is given by

I2 =
τI1

1−R(1− αl)2
, (1.46)

I2 =
1

T

I1

(1 + C)2
, (1.47)

Here, C is a dimensionless parameter known as cooperation number, where C = Rαl
1−R

.

We now suppose that the parameter C and the absorption coefficient α are dependent on the

amount of light that enters the interferometer. In order to keep things simple, we consider that the

absorption coefficient satisfies the relationship that applies to a two-level saturable absorber,

α =
α0

1 + I
Is

, (1.48)

where I and Is is the local and saturation intensity respectively and α0 is the unsaturated (low

intensity) absorption coefficient [27]. The input-output properties of an optical bistable system

Figure 1.5: Schematic of an optical bistable input-output system.

are illustrated in figure (1.5). The section of the curve with a downward slope, where the output

intensity rises and the input intensity falls, is shown as a dashed line. This plot point is not stable,

which is intuitively expected and supported by a linear steady-state study. If the system is at first in

24



Chapter 1. 1.5. OPTOMECHANICAL BISTABILITY

this shape, the aggregation of minor perturbations will cause it to swiftly switch to the other stable

solutions. Further information is provided on the hysteresis loop of the bistable figure. Suppose

the input intensity I1 begins at zero and increases to Ih over time. The output intensity is therefore

determined by the lower branch of the solution, which is the section that is terminated by points

a and b. Once the input intensity has been raised further, the output intensity must travel to point

c and trace out the region of the curve denoted by the letters c to d. If the intensity gradually

decreases, the system will remain on the upper branch, and the curve part from e to d will regulate

the output intensity. As the input intensity crosses the value Il, the system changes to point f , and

when the input intensity reaches zero, it follows the curve from f to a.

1.5.2 Refractive bistability

The dispersive nonlinearity of a medium leads to the second kind of bistability. Optical bistability

can be categorized as either dispersive or absorptive depending on what causes the feedback, a re-

fractive index or an intensity-dependent absorption. However, since both absorptive and refractive

systems may be significant at the same time, it is obvious that this distinction is not precise. Even

though one of them may produce a nonlinear effect that is noticeably larger than the other, they

are always related on a more fundamental level. In contrast to an absorptive analog, a dispersive

system dispersive system, in contrast to an absorptive analog, consists of a Fabry-Perot etalon filled

with a medium whose refractive index varies proportionally to the radiation intensity. The cavity

is initially configured at a low transmission state that is nearly in resonance. The refractive index

of the medium is thus determined by the total intensity inside the cavity, which is proportional to

the transmitted intensity. Consequently, the refraction varies with the increase of radiation in the

cavity changing the frequency of the cavity. When the cavity resonance gets close to the radiation

frequency, a slight increase in input intensity will result in a substantial change in the intensity of

the transmission and the cavity. As a result, the refractive index of the medium is further decreased,

bringing the cavity even closer to resonance. When the cavity resonance gets close to the radiation
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frequency, a slight increase in input intensity will result in a substantial change in the intensity of

the transmission and the cavity. As a result, the refractive index of the medium is further decreased,

bringing the cavity even closer to resonance. In accordance with the change in the medium’s index

of refraction, the output will eventually suffer a runaway effect. When that happens, the output

will suddenly increase in value before levelling off at the transmitted intensity.

1.5.3 Optical switching

The detection of optical bistability requires both the cavity feedback and a nonlinear medium.

Therefore, the medium might be a material having an intensity-dependent refractive index, and the

feedback is created by placing the material inside a Fabry-Perot cavity. Now, let’s investigate an

illustration of an optical switching device, as shown in figure (1.6). Here, we examine a Fabry-

Figure 1.6: In a Fabry-Perot interferometer with length L and mirror re�ectivity R, the incident and trans-

mitted intensities are Iin and It, respectively.

Perot cavity with a length (L), a refractive index (n), and mirror reflectivity (R). Assuming a signal

field with input intensity Iin is applied to the cavity where the transmission (T) of the optical cavity

is measured by the relation between input and output intensity It which is given by

T =
1

1 + FSin2ϕ0

, (1.49)
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where is the wavelength of the radiation, F = 4Rα

1+Rα
2 stands for the cavity finesse factor with mirror

reflectivity coefficient Rα, and the initial detuning, which stands for the linear round-trip phase

shift is represented as ϕ0 = 2π
λ
n0L. Let’s now examine the conditions that result in a nonlinear

phase shift in greater detail. As the linear refractive index (n0) turns non-linear (n2), equation

(1.46) is modified as,

n(Iint) = no + n2Iint, (1.50)

where Iint denotes the cavity’s interior intensity. In this instance, a nonlinear phase shift develops

as,

ϕ =
2π

λ
n2IintL. (1.51)

The equation of transmission (Airy function), which includes both linear and non-linear phase

shifts, is given as,

T =
1

1 + FSin2(ϕ0 + ϕ)
. (1.52)

The relationship between internal intensity Iint and transmitted intensity It is given by,

RBIint = It, (1.53)

where RB = 2πn2L
λ

is the reflectivity of the cavity mirrors and It = TIn.

Therefore, from Eq.(1.49) and (1.50), we have,

RBIint =
Iin

1 + FSin2(ϕ0 + ϕ)
. (1.54)

Hence, the final equation is given as,

ϕ =
Iin

1 + FSin2(ϕ0 + ϕ)
. (1.55)

By plotting a ϕ vs Iintfor various parameter values we can obtain several bistable hysteresis graphs.

However, the calculation above, which illustrates the situation of a single input field, is slightly

oversimplified, which draws attention to an essential concept: Strongly linearly absorbed nonlinear

optical materials can provide a nonlinear phase shift as big as radians, required for high-contrast

all-optical switching. The application of some materials for all-optical switching is not possible,
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even theoretically, because their effective interaction lengths are longer than the actual length of the

non-linear medium. Stegeman and Miller (1993) [29] provided an excellent overview of all-optical

switching.

1.6 Optomechanically Induced Transparency (OMIT)

The ability of light fields in mechanically deformable microcavities to couple the optical and me-

chanical degrees of freedom via radiation pressure offers an intriguing link between nanophotonics

and nanomechanics. Over the past few years, this capability has gained increasing attention due to

its significant applications in gravitational-wave detection [30], the creation of macroscopic-scale

quantum entanglement [31], and the observation of mechanical motion [32]. Cavity optomechanics

investigations have recently reached the resolved sideband limit, where the mechanical sidebands

of the optical mode reside outside its linewidth. It has been demonstrated that when the input

field is red-detuned from the cavity resonance, during which the photons usually absorb a phonon

from the mechanical oscillator and disperse upward to the cavity resonance, the intracavity optical

field can modify the effective loss factor of mechanical modes and subsequently cause mechanical

cooling via the optomechanical interaction. This condition is comparable to the laser cooling of

atomic and molecular motion in an optical cavity [33]. A number of phenomena resulting from

the coherent interaction of optical fields with atoms have analogs in cavity optomechanics due to

the mechanical effects of light. The coherent interaction of the intracavitary field and mechanical

oscillator via radiation pressure, for instance, causes optomechanical systems to exhibit a mechan-

ical analog of the Autler-Townes splitting, and it has also been shown that quantum interference

in the phonon excitation pathways leads to an optomechanical analog of electromagnetically in-

duced transparency which is known as optomechanically induced transparency (OMIT). The first

theoretical [34] prediction of optomechanically produced transparency was made in April 2010,

and a few months later, it was experimentally [35] confirmed. The apparent drop in the absorption

spectrum regulated by the control laser beam and a comparable interaction Hamiltonian involving
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electromagnetically induced transparency in a three-level atomic system indicates the phenomena

corresponds to quantum interference.

1.6.1 Standard structure of OMIT

The optomechanical system as illustrated in figure(1.7) usually consist of a high-Q optical cavity

where the mechanically deformable limit is observed as a moving mirror and as a result, it describes

the mechanical oscillator with its effective massm and angular frequency Ωm. The energy of cavity

Figure 1.7: A standard schematic model of an optomechanical system, where the displacement of the end

mirror of a Fabry-Perot cavity is de�ned as the mechanical degree of freedom.

optical mode is given by the Hamiltonian,

Hcav = ℏωaa
†a (1.56)

where a†(a) is the creation(annihilation) operator of the cavity field and ωa is the resonance fre-

quency of the cavity.

Hamiltonian of mechanical oscillator,

Hmech =
p2

2m
+
mΩm

2x2

2
(1.57)

where x̂ and p̂ are the position and momentum operators of the mechanical oscillator respectively.
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Now, the mechanical oscillator can be quantised by introducing the bosonic annihilation and

creation operator as

b† =
(mΩmx− ip)
2mΩmxZPF

, (1.58)

b =
(mΩmx+ ip)

2mΩmxZPF

. (1.59)

where xZPF =
√

ℏ
2mΩm

represents the zero point fluctuation amplitude of the mechanical oscilla-

tor.

Therefore, the Hamiltonian which represents the mechanical oscillator’s uncoupled free energy

is given by

Hmech = ℏΩm(b
†b+ 1/2) (1.60)

with commutation relation [b, b†] = 1.

According to the rotating wave approximation, the following Hamiltonian can adequately rep-

resent the photon hopping process that the input lasers use to drive the intracavity field

Hdrive = iℏ
√
ηκ

∑
sj(a

†e−iωjt − aeiωjt) (1.61)

Here, η = κex

κ
is the dimensionless coupling parameter with intrinsic decay rate κ0 and external

cavity decay rate κex, where the total total decay rate is given by κ = κ0 + κex. Also, sj =

e−iθj
√
Pj/ℏωj is the normalized amplitude of the j-th cavity field. Pj is the power of the j-th

cavity mode with phase and frequency given by θj and ωj respectively.

The intracavitary photon may exert radiation pressure on the cavity wall once the optical fields

inside the cavity get excited, which will modify the position of the mechanically deformable mem-

brane. The motion of the cavity wall also affects the behavior of the intracavity field because of its

sensitivity where the radiation pressure depends on the position of the cavity wall, resulting in a

feedback-backaction that will couple the cavity field and the mechanical oscillator [36]. Through

mechanical effects, such optomechanical interaction cancan significantly alter the cavity field. The

Hamiltonian representing the non-relativistic optomechanical interaction is given by

HI = ℏGXa†a (1.62)
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where G is the optomechanical coupling parameter, which may be derived from the electromag-

netic wave equation [37] and has a time-varying boundary condition. In terms of bosonic cre-

ation(annihilation) operators, the interaction Hamiltonian described above can be expressed as

HI = ℏg0(b† + b) (1.63)

where g0 = GxZPF denotes the single photon optomechanical coupling parameter.

In the optically induced transparency arrangement, an optomechanical system is driven by a

strong pump field and a weak probe field with amplitudes s1 and s2 and frequencies ω1 and ω2 as

illustrated in figure (1.8). While the probe laser field is resonant to the cavity mode, the control

field is introduced at the red-detuned sideband of the cavity resonance.

The total Hamiltonian is given by

H = Hcav +Hmech +HI +Hdrive (1.64)

where the driving term Hdrive is formed by adding Hcontrol = iℏ√ηκs1(a†e−iω1t − aeiω1t) with

Hprobe = iℏ√ηκs2(a†e−iω2t − aeiω2t).

Figure 1.8: Optomechanically induced transparency in the standard frequency range.

The Heisenberg-Langevin equations can be used to explain the dynamics of intracavity fields

and mechanical motion by using the total Hamiltonian and adding the noise term. Therefore, the
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equation of motion for both the cavity and mechanical mode is obtained as,

dâ

dt
= (−iω0 − iGx− κ/2)â+

√
ηκ

∑
sje

−iωjt +
√
η̃κâin, (1.65)

m(
d2

dt2
+ Ωm

2 + Γm
d

dt
)x̂ = −ℏGa†a+ F̂th. (1.66)

where âin, and F̂th represents the quantum noise operators for cavity and mechanical modes which

follows < ain(t)ain
†(t′) > = δ(t− t′), < ain(t) = 0 >. Here, η̂ = 1− η. Also, < Fth(t)Fth

†(t′) >

= Γm

∫
e−iω(t−t′)[coth(ℏω/2kBT ) + 1]dω/2πΩm and < Fth(t) > = 0 [35] and the damping terms

for the cavity and mechanical mode are described classically as −κ/2 and mΓm
dx
dt

respectively.

1.6.2 Steady-state dynamics of OMIT

In the weak coupling regime (g0 << κ) of a single photon, the operators can be simplified by

their expectation values a(t) =< a(t) > and x(t) =< x(t) >. In the semi-classical condition, the

Heisenberg Langevin equation is written as,

da

dt
= [i(∆−Gx)− κ/2]a+√ηκ

∑
sje

−iΩt, (1.67)

m(
d2

dt2
+ Ωm

2 + Γm
d

dt
)x = −ℏGa†a, (1.68)

where, Ω = ω2−ω1. The above equations (1.67) and (1.68) admit a steady-state solution when the

probe laser is removed and only the control field of amplitude s1 is incident into the cavity where

the solutions are given as,

ā =

√
ηκs1

i∆̄ + κ/2
, (1.69)

x̄ =
ℏG|ā|2

mΩm
2 , (1.70)

where ∆̄ = ∆−Gx, and ∆ = ω1 − ω0.

After the light enters the cavity, the system reaches a steady state (ā, x̄) in a matter of nanosec-

onds, as defined by the mechanical oscillator’s decay rates. Optomechanical dynamics can display
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a bistable behaviour (one input with two possible stable outputs) in its steady-state optical response

when the control field is strong enough, as a result of the nonlinear feedback mechanism. While

trying to examine optomechanically generated transparency the bistable region needs to be avoided

since unstable dynamics always take place in that region.

1.6.3 Theoretical model of OMIT

In order to witness optomechanically induced transparency, optomechanical bistability must be

absent and the probe field must be significantly less than the control field which allows the probe

field to be regarded as a steady-state perturbation. By taking the steady state approach a = ā+ δa

and x = x̄+ δx, the Langevin equation can be solved in linearized form as,

da

dt
= (i∆̄− κ/2)δa− iGāδx+√ηκs2e−iΩt, (1.71)

m(
d2

dt2
+ Ωm

2 + Γm
d

dt
)δx = −ℏG(āδa∗ + ā∗δa). (1.72)

According to the physical model, the probe field is viewed as a perturbation of the steady state

while the control field provides a solution for the system at a steady state(ā, x̄). Equation (1.71)

and (1.72) can be solved analytically by using the ansatz:

δa = A−e−iΩt + A+eiΩt, δx = Xe−iΩt +X∗eiΩt. (1.73)

This, along with the input-output relation Sout(t) = Sin(t)−
√
ηκa, between the input and output

fields, ultimately results in the analytical expression of the probe laser’s transmission [35] given

as,

tp = 1− 1 + if(Ω)

κ/2− i(δ̄ + Ω) + 2∆̄f(Ω)
ηκ, (1.74)

where, f(Ω) = ℏG2|ā|2χ(Ω)/[κ/2+ i(∆̄−Ω)] and χ(Ω) = 1/m(Ωm
2−Ω2− iγmΩ). In terms of

optomechanical interaction term g0, can be written as f(Ω) = ℏxZPF
2g0

2|ā|2χ(Ω)/[κ/2 + i(∆̄−

Ω)].

A transmission window on resonance (Ω = Ωm) with a window width of Γm + 4go
2|ā|2/κ << κ

can be seen in the transmission of the probe field as a function of probe detuning Ω.
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1.6.4 Physical origin of OMIT

A time-varying radiation-pressure force is caused by the beat of the probe field and the control

field when the beat frequency is given by Ω = ω2−ω1. When the mechanical resonance frequency

and the beat frequency are equal (Ω ≈ Ωm), the mechanical resonator is forced into resonance

and begins to oscillate coherently. The optical sidebands are then produced on the cavity field as

a result of the mechanical oscillation, producing photons at frequencies ω1 + nΩm where n is an

integer that represents the optical sideband’s order. In the resolved sideband limit (for the case of a

strong control field), the first-order sideband (n = 1) is dominant and it has the same frequency as

the probe field. A transparency window in the transmission is produced due to the cancellation of

the intracavity field as a result of the destructive interference between the first-order sideband and

the probe field. Probe excitations in OMIT are transformed into mechanical oscillations and then

returned to the probe field. Therefore, the probe cannot continue to exist in the cavity. A standard

Λ-type three-level system with three states |0a, 0b >, |0a, 1b >, and |1a, 0b > can well describe the

effect of optomechanically induced transparency as shown in figure (1.9) where a and b stands for

the cavity photon and phonon states, respectively.

Figure 1.9: Standard energy level diagram of OMIT
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This is comparable to the situation of electromagnetically induced transparency (EIT) in atomic

systems. When the resonance condition of the system is satisfied, the coupling of the probe field

shows the transition |0a, 0b >⇌ |1a, 0b >. However, the coupling of pump field or the control field

shows the transition |0a, 1b >⇌ |1a, 0b >. Optomechanically induced transparency results from a

destructive interference of these two excitation paths when the condition, Ω = Ωm is fulfilled.

1.7 Four-wave mixing process

Four-wave-mixing (FWM), also known as four-photon-mixing (FPM), is a nonlinear optical phe-

nomenon in which four distinct waves or photons interact with one another as a result of the

material’s third-order nonlinearity. As a result, as the waves propagate through the waveguide,

new waves with sum and difference in frequencies are produced. Many optical telecommunica-

tions applications, including wavelength conversion and optical switching, can benefit from the

application of FWM. According to the quantum mechanical theory, the atom simultaneously pro-

duces two new photons while annihilating two existing photons. Since only the virtual states of

the atom are involved, the process must adhere to the laws of energy and momentum conservation.

The phase-matching condition results from momentum conservation. The correct alignment of the

waves’ phases is a critical factor in determining the efficiency of the FWM. Consequently, the fibre

dispersion affects the FWM efficiency. The use of material with zero dispersion in transmission

systems is a serious challenge. However, the FWM can be efficiently suppressed if the transmis-

sion system exhibits substantial local dispersion, which is the situation with dispersion-managed

systems.

All four-wave mixing processes are described in terms of three electromagnetic fields inter-

acting to create a fourth field. If we think about how each field interacts with each other within

a dielectric medium, we can physically comprehend how this process works. The first input field

induces an oscillating polarisation in the dielectric, which reradiates with some phase shift dictated

by the damping of the individual dipoles which is just the conventional Rayleigh scattering that is
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accounted for by linear optics. By applying a second field, the dielectric will also become polar-

ized, and the interference of the two waves leads to harmonics in the polarisation at the sum and

difference frequencies. The application of a third field shall also drive the polarisation, which will

beat with the other input fields, the sum frequencies, and the difference frequencies. The beating

between the sum and the difference in frequencies causes the fourth field in four-wave mixing.

In this section we consider the response of a two-level system in the simultaneous presence of

a strong optical field (called as pump field) and one or more weak optical fields (called as probe

field). As illustrated in figure 1.10, one determines how the presence of the pump field modifies the

medium’s response to the probe field. Usually, both the intensity and frequency ω of the pump field,

as well as the frequency detuning δ between the pump and probe field, can be used to determine

the transmission of the probe field. It is possible to learn more about the dipole transition moments

and the T1 and T2 relaxation times from the outcomes of such studies.

Figure 1.10: Setup for saturation spectroscopy

The multi-wave mixing experiment illustrated in part (a) of Figure 1.11 is yet another illustra-

tion of the interactions taken into consideration in this section. Here, the pump field at a frequency

ω and the probe field at a frequency ω+δ are co-propagating through the medium. For such a struc-

ture, the four-wave mixing process illustrated in part (b) of the figure 1.11 becomes phase-matched

which results in the formation of the symmetric sideband at frequency ω − δ. The response of the

two-level system at frequency ω + δ and ω − δ can be determined using the perturbation theory

[27] for low intensities of the pump field. The existence of the pump field in this limit is found to

somewhat reduce the absorption (and dispersion) that the probe field experiences in the structure of
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Figure 1.11: (a) Four-wave mixing process. (b)Four-wave mixing process described by the energy level

Fig. 1.10. It is also observed that the intensity of the sideband formed at frequency ω− δ increases

quadratically with the increase of the pump intensity for the structure of Fig. 1.11. When the

intensity of the pump field rises to a point where perturbation theory is insufficient to adequately

describe the interaction, the nature of these nonlinear processes is significantly modified. When

the Rabi frequency Ω of the pump field exceeds both the transition linewidth 1/T2 and the pump

wave’s detuning ∆ from the system (two-level) resonance, then these processes of higher orders

become essential. In this situation, the pump field dramatically modifies the system’s energy lev-

els, causing novel resonances in the absorption and mixing responses. We will discover that these

novel resonances can be activated when the pump-probe detuning δ is approximately comparable

to ±Ωg, where Ωg is the generalised Rabi frequency.
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1.8 Outline of the Thesis

The first of the six chapters that make up this thesis gives a quick review of the basic ideas about the

cavity quantum electrodynamics (CQED), quantum dot, photonic crystal cavities, and radiation-

pressure interaction to study different types of optical response properties in different hybrid op-

tomechanical systems. It provides a brief explanation of different optical phenomena that take

place in a photonic crystal optomechanical system as well as the various modes that can be cou-

pled to the optical system. Chapter two is a description of the mathematical techniques and tools

that were adopted to understand the dynamics of different optomechanical systems. The absorp-

tive and dispersive behaviour in the transmission spectra of the output probe field is also discussed

in order to determine the dynamics of various coupling parameters in resonant and off-resonant

conditions. It is possible to address the issue analytically by using a mathematical framework

that transforms the Hamiltonian into the rotating wave approximation frame of reference. In addi-

tion, the Heisenberg equations of motion are also discussed, which are essential for studying the

dynamics of the proposed systems. However, the mean-field approximation is introduced while

neglecting the correlation between the operators.

As a result of the nonlinear interaction between the primary cavity and the secondary cavity

as well as the mechanical oscillator, the process of energy transfer between optical and mechan-

ical modes has been greatly enhanced, as discussed in chapter three. A strong pump field and a

weak probe field is incident on the primary cavity to determine the optical response properties of

the system. In chapter four we theoretically investigated the optical response characteristics of a

quantum dot placed in an optomechanical photonic crystal (PhC) nanocavity, which is driven by

two-tone fields. It has been greatly discussed how the off-resonant coupling between the exciton

and the PhC nanocavity causes the four-wave mixing signal to vary significantly. Furthermore, we

have obtained significant optical response properties of a hybrid system consisting of a QD-based

photonic crystal nanocavity coupled to two nanomechanical membrane. This study focuses on

multi-OMIT and Fano resonances along with optical multistability, which are efficient and con-

trollable optical responses.
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CHAPTER 2

Methods and formulation

In this chapter, a variety of methodologies and techniques are used to explain the dynamics of the

theoretical framework that was implemented to support the thesis are explained.

2.1 Rotating wave approximation

The rotating wave approximation in quantum optics is important for avoiding the fast oscillating

terms of the Hamiltonian given as∫
e±inθdθ =

e±inθ

±in
≈ 0. (if n→∞) (2.1)
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The Hamiltonian H must be transferred to a rotating frame with frequency ω0 in order to achieve

Hrot given as,

Hrot = U †HU + i
∂U †

∂t
, (2.2)

where U represents the unitary operator.

For a basic Jaynes-Cummings model of a two-level system interacting with a cavity, the Hamil-

tonian is denoted by the equation: H = ℏωaa
†a+ ℏ

2
ωσz + ℏg(σ+ + σ−)(a+ a†).

The Hamiltonian is frequently thought of as being transformed into a rotational frame with

frequency ω0. Now, selecting U to enter the rotating frame as, U = e−iω0ta†a e−iω0tσz . Therefore,

U †HU = eiω0t(a†a+σz)(ℏωaa
†a+

ℏ
2
ωσz + ℏg(σ+ + σ−)(a+ a†))e−iω0t(a†a+σz) (2.3)

Now, applying

eαABe−αA = B + α[A,B] +
α2

2!
[A, [A,B]] + ..., (2.4)

and

[a, a†] = 1 (2.5)

Using the above transformation, the first term of the Hamiltonian H is given as,

eiω0t(a†a+σz)ℏωaa
†ae−iω0t(a†a+σz) = ℏωaa

†a+ iω0t[a
†a+ σz, ℏωaa

†a]

+
(iω0t)

2

2!
[a†a+ σz, [a

†a+ σz, ℏωaa
†a]] + ...

(2.6)

Since, [a†a+ σz, ℏωaa
†a] = 0,

eiω0t(a†a+σz)ℏωaa
†ae−iω0t(a†a+σz) = ℏωaa

†a (2.7)

Similarly,

eiω0t(a†a+σz)ωσze
−iω0t(a†a+σz) =

ℏ
2
ωσz, (2.8)

eiω0t(a†a+σz)ae−iω0t(a†a+σz) = e−iωta, (2.9)
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eiω0t(a†a+σz)a†e−iω0t(a†a+σz) = eiωta†, (2.10)

eiω0t(a†a+σz)σ+e
−iω0t(a†a+σz) = eiωtσ+, (2.11)

eiω0t(a†a+σz)σ−e
−iω0t(a†a+σz) = e−iωtσ−, (2.12)

i
∂U †

∂t
= −ω0(a

†a+ σz). (2.13)

Therefore, the final Hamiltonian is written as,

Hrot = ℏ(ωa − ω0)a
†a+ ℏ(

ω

2
− ω0)σz + ℏg(e−iωta+ eiωta†)(e−iωtσ+ + eiωtσ−). (2.14)

Under the rotating wave approximation, neglecting the fast oscillating term, ω + ω0, we obtain

Hrot = ℏ∆aa
†a+ ℏ∆σz + ℏg(σ+a+ σ−a

†), (2.15)

where ∆a = ωa − ω0 and ∆ = ω
2
− ω0.

2.2 Heisenberg Equation of motion

Let us consider the time-dependent wavefunction ψ(t) and a linear operator ô. The expectation

value of the linear operator is given by,

< ô >=< ψ(t)|ô|ψ(t) > (2.16)

d<ô>
dt

can be written as follows [26]

d < ô >

dt
=

d

dt
< ψ(t)|ô|ψ(t) > . (2.17)

As we know

iℏ
d

dt
|ψ(t) >= Ĥ|ψ(t) >, (2.18)

iℏ
d

dt
|ψ(t) >=< ψ(t)|H† =

i

ℏ
< ψ(t)|Ĥ. (2.19)
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Using the above equations

d

dt
< ô >=

1

iℏ
< ôĤ − Ĥô|ψ(t) > + < ψ(t)|∂o

∂t
|ψ(t) >, (2.20)

d

dt
< ô >=

1

iℏ
< [ô, Ĥ] > +

∂o

∂t
. (2.21)

The relationship established by equation (2.21) can be used to derive a significant assumption. If

the operator ô has no explicit time dependency then < ∂o
∂t
>= 0.

Thus, the equation of motion gives

∂

∂t
< ô >=

1

iℏ
< [ô, Ĥ] > . (2.22)

By using the commutation relation, [a, a†] = 1, [σ−, σz] = 2σ− and [σ+, σz] = −2σ+, where

σz, σ+ and σ− are Pauli matrix, we solve the Jaynes Cumming’s Hamiltonian of equation (2.15)

mentioned above.

ȧ =
i

ℏ
[H, a], (2.23)

ȧ = −iωaa− gσ− − κa, (2.24)

σ̇z =
i

ℏ
[H, σz], (2.25)

σ̇z = i2g(a†σ− − σ+a)− γσz, (2.26)

where γ and κ are respectively the decay rates of the atom dipole and the cavity field.

2.3 Semi-classical approximation

The steady-state dynamics of the hybrid system are investigated in the present work, and semi-

classical approximations are essential for understanding this procedure. The semiclassical approx-

imation of a system can be achieved by taking the expectation value of the equation of motion

[26]. The operator’s inner product of the type < 0̂p̂ > in this approximation can be replaced with
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< 0̂ >< p̂ >. The approximation is based on the presumption that the product of the fluctuation

term for each operators < (0̂− < 0̂ >)(p̂− < p̂ >) > is smaller than < 0̂ >< p̂ >. In order

to derive equations of motion, each instance of an operator must be described along with its cor-

responding expectation value which can be done by using Heisenbergs equation of motion in the

mean field approximation. Since it is not necessary to take into account the correlation between

two degrees of freedom, he Jaynes Cummins Hamiltonian’s equation of motion in a mean field

approximation can be written as,

< ȧ >= −iωa < a > −g < σ− > −κ < a >, (2.27)

< σ̇z >= i2g(< a† >< σ− > − < σ+ >< a >)− γ < σz > . (2.28)

The use of this technique for the handling of nonlinear optical media with high photon densities

has shown to be important in the literature [38]. Carusotto validated the effectiveness of this

method by comparing the outcomes to exact calculations [39]. The accuracy of approximations

is compromised when a single photon has the power to significantly change a device’s optical

response in the photon blockade domain [40]. It is at this point when photons’ quantum properties

become important.

2.4 Steady-state solution

In stable states with small oscillation from the variables, we consider the steady state solution. For

this case, our focus is on small fluctuations that are close to a few classical stable states. We assume

that the system enters a steady state at time t. The equation of motion is then used to calculate an

average over a period of time. In this case, the variable’s temporal derivative is taken to be zero. As

a result, the Jaynes Cumming Hamiltonian’s equation of motion in the steady state approximation

can be expressed as

0 = −iωa < as > −g < (σ−)s > −κ < as >, (2.29)
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0 = i2g(< a†s >< (σ−)s > − < (σ+)s < as >)− γ < (σz)s > . (2.30)

where the steady-state solution of the operators are as, (σ−)s and (σz)s.

44



CHAPTER 3

A QD-based hybrid photonic crystal optomechanical microcavity with

tunable multistability and Fano resonances

We study the optical behaviour of a quantum dot (QD) embedded in a photonic crystal (PhC)

optomechanical cavity in a hybrid cavity quantum-electrodynamics (C-QED) system. A single

optical mode-supporting waveguide connects the system to an auxiliary cavity. We show how it

is possible to produce tunable optical bistability, double-bistability and tristability which can be

used to develop multi-valued logic circuits and all-optical switch systems that will eventually be a

part of a large-scale quantum communication platform. Additionally, it has been observed that the

proposed system displays the Mollow triplet and Fano resonances that have been modified by an

optomechanical interaction.
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3.1 Introduction

The study of enhanced interactions between photons and quantum emitters found within a small

volume is called cavity quantum electrodynamics (C-QED) [41, 42]. One of the primary advan-

tages of C-QED has been the ability to coherently control the spontaneous emission of the quan-

tum emitter, which is now known as the Purcell effect [43]. A unique quantum phenomena known

as vacuum Rabi splitting (VRS) [44], which has been experimentally verified in a variety of C-

QED systems, is caused by the reversible interaction between quantum emitters and photons in the

strong coupling regime. In order to categorize the dynamics of the emitter-photon system as having

a weak or strong coupling, three separate characteristic time scales are defined by the parameters

of the cavity mode decay rate, non-resonant decay rate, and emitter-photon coupling strength [45].

Auxiliary-cavity-assisted VRS has recently been performed in a hybrid photonic crystal (PhC)

nanocavity integrated with a quantum dot (QD). The findings showed that the auxiliary cavity was

essential for controlling the dynamics of the system [46]. It is important to note that solid-state

optical emitters are well suited for quantum sensing applications due to their quantum mechanical

features. These quantum technologies depend on being able to include optical emitters into solid-

state networks. Faron et al. [47] have successfully created quantum devices using GaAs photonic

crystals and InAs quantum dots (QD). There have also been numerous published theoretical and

experimental studies based on linking a quantum dot to a nano-phC cavity [48, 49].

Due to recent technical developments, quantum optomechanics has demonstrated significant

promise in examining both the storage and transport of quantum information and, as a result, con-

structing sensitive quantum sensors in addition to testing the fundamentals of quantum physics

[26]. It is interesting to note that a system exhibiting optical bistability could reveal all optical

switching characteristics [50]. Drummond and Walls proposed the first quantum theory of optical

bistability in a dispersive cavity based on cubic nonlinearity in the polarisation [51]. Optome-

chanical systems can exhibit optical multistability because of the intrinsic nonlinearity brought on

by the interaction between the two systems. Another helpful and fascinating phenomenon known

as optomechanically induced transparency (OMIT) is seen in cavity optomechanical systems. It
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is similar to electromagnetically induced transparency (EIT), which is demonstrated in quantum

optics [34, 35]. OMIT has been revealed in a nanobeam cavity optomechanical system based on

photonic crystals. The Fano resonance is a distinct asymmetric line profile in the probe absorption

spectra that differs from the symmetric profile of EIT/OMIT [52]. Through careful manipulation

of optical signals, the OMIT phenomenon has been proven to be effective for storing information

in mechanical oscillators [53]. Techniques for creating optical semiconductor cavities with high-

quality factors have prepared the way for studying cavity quantum electrodynamic phenomena in

solid-state systems, such as quantum dots inside photonic crystals [54, 55]. Quantum photonic ap-

plications such as optical switching and networks for processing quantum information have been

made possible by further integrating quantum optical networks based on quantum dots placed in-

side photonic crystal cavities [47]. Photonic crystal cavities with a high quality factor and small

mode volume can be integrated seamlessly with circuitry and waveguides on a chip [56]. On the

other hand, a new type of device based on opto-mechanical interaction in photonic crystal give a

promising platform for sensing application [56]. In this chapter, we discuss the new physics and

applications that result from the combination of a mechanical resonator, a solid-state optical cavity,

and a quantum emitter. Our objective is to demonstrate that QD-PhC cavities with optomechanical

interactions provide several opportunities to further control the optical response in nanophotonics.

In this chapter, we discuss the new physics and applications that result from the combination of

a mechanical resonator, a solid-state optical cavity, and a quantum emitter. Our objective is to

demonstrate that QD-PhC cavities with optomechanical interactions provide several opportunities

to further control the optical response in nanophotonics. We believe that this study has never been

attempted before.

3.2 Theoretical framework

Our proposed design is based on single quantum dot embedded in an optomechanical photonic

crystal (PhC) nanocavity coupled to another PhC auxiliary cavity via a single mode waveguide
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Figure 3.1: Schematic diagram of the proposed hybrid photonic crystal based opto-mechanical system. An

embedded quantum dot is interacting with the mode of the primary optomechanical cavity. The primary

cavity is coupled to the auxiliary cavity via a waveguide.

as shown in Fig 3.1. Small regions of disorder (artificial defects) in the photonic crystal(PhC)

can serve as high-Q factor resonant optical cavities. A high Q-factor and small modal volume

V are an essential pre-requisite for strong light-matter interactions [57]. The semiconductor het-

erostructure consisting of InAs QD (with QD density ranging from zero to 3 per µm2) embedded in

gallium arsenide (GaAs) photonic crystal structure can be fabricated by well developed experimen-

tal techniques [47, 58, 59, 60]. Experimental procedures of designing and fabricating a PhC cavity

integrated opto-mechanical system have also been recently reviewed [56]. The coupling between

the primary cavity "A" and the auxiliary cavity "C" is via exchange of energy with strength J. The

coupling strength J can be tuned by varying the distance between the two cavities [61] . At low

temperatures, the QD may be approximated as an artificial two-level atom consisting of the ground

state and the first excited state(single exciton) [62, 63]. The two level QD can be characterized
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by the pseudospin -1 operators σ± and σz. The optical mode of the primary cavity is driven by a

pump laser with frequency ωp whereas the optical response of the hybrid system is probed by a

weak laser of frequency ωs .

The Hamiltonian of the proposed system is given by:

H = H0 +HI +Hd, (3.1)

where,

H0 = ℏωaa
†a+ ℏωcc

†c+ ℏωbb
†b+

ℏωe

2
σz, (3.2)

HI = ℏg(σ†a+ a†σ−) + ℏJ(a†c+ c†a)− ℏgoma†a(b† + b), (3.3)

Hd = ℏEp(a
†e−iωpt + aeiωpt) + ℏEs(a

†e−iωst + aeiωst). (3.4)

Here, H0 is the bare Hamiltonian with the first term being the energy of the primarily cavity

optical mode with resonant frequency ωa and the second term is the energy of the auxiliary cavity

mode with frequency ωc . The third term inH0 represents the energy of the mechanically compliant

distributed Braggs reflector (DBR) with frequency ωb and the last term is the energy of the two-

level QD with resonant frequency ωe . The Hamiltonian HI is the interaction Hamiltonian with

the first term denoting QD-primary optical field interaction with strength g. The second term in

equation (3.3) describes the energy exchange between the primary and the auxiliary cavity whereas

the last term represents the optomechanical interaction term between the primary optical mode and

the mechanical mode of the movable DBR with single photon optomechanical strength gom, the

Hamiltonian Hd describes the coherent driving and the probe field. The first term in Hd is the

driving of the primary cavity "A" at the rate Ep while the second term denotes the probe with Rabi

frequency Es . Finally a,c and b denotes the annihilation operators of the primary cavity mode,

auxiliary cavity mode and the mechanical mode, respectively.

In a frame rotating at the pump frequency ωp, the Hamiltonian of equations (3.1)-(3.4) is rewrit-

ten as,
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HRWA = ℏ∆aa
†a+ ℏ∆cc

†c+ ℏωbb
†b+

ℏωe

2
σz + ℏg(σ†a+ a†σ−) + ℏJ(a†c+ c†a)

−ℏgoma†a(b† + b) + ℏEp(a
† + a) + ℏEs(a

†e−iδt + aeiδt), (3.5)

where, ∆a = ωa − ωp is the primary cavity-pump field detuning,

∆c = ωc − ωp is the auxiliary cavity-pump field detuning,

∆e =
(ωe−ωp)

2
is the exciton-pump detuning,

and δ = ωs − ωp is the probe- pump detuning.

Now, using iℏȮ = [O,H] (O is any operator), we obtain the Heisenberg equations of motion

for the various degrees of freedom for our hybrid system as,

ȧ = −(i∆a +
κa
2
)a− igσ− − iJc+ igoma(b

† + b)− iEp − iEse
−iδt, (3.6)

ḃ = −(iωb +
κb
2
)b+ igoma

†a, (3.7)

ċ = −(i∆c +
κc
2
)c− iJa, (3.8)

σ̇− = −(i∆e + Γ2)σ
− + igaσz, (3.9)

σ̇z = −Γ1(σ
z +

1

2
) + 2ig(a†σ− − σ†a). (3.10)

Here, κa, κb, κc are the decay rates of primary cavity, mechanical mode and auxiliary cavity

respectively. Also Γ1(Γ2) is the exciton relaxation rate (dephasing rate).

Equations (3.6)- (3.10) will form the basis of ours future analysis in the next section of the

steady-state behaviour of the system.

3.3 Optical Multistability: tunable switching

To understand the conditions under which the system exhibits bistable or tristable behaviour, we

analyze the steady state solutions of equations (3.6)-(3.10). We take as, bs, cs, σ−
s and σz

s as the

average values of the operators a , b , c , σ− and σz respectively under the condition of strong
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Figure 3.2: a: Optical bistabilty (typical S shaped curve) obtained from eqn.(16). The plot shows intracavity

photon number |as|2 as a function of EP . The parameters used are: ∆e = 1.5κa, ∆a = 0.5κa, ∆c = 1.5κa,

κc = κa, Γ1 = 0.65κa, Γ2 = 0.33κa, g = 10κa, gom = 0.7κa, ωb = 1.5κa, J = 2.0κa, κb = 0.0001κa. (b):

Steady state plot of |as|2 as a function of EP for two di�erent values of gom = 1.0κa (thick solid line) and

gom = 1.2κa(thin solid line). The parameters used are: ∆e = ∆a = ∆c = 1.5κa, κc = κa, Γ1 = 0.65κa,

Γ2 = 0.33κa, g = 3.5κa, ωb = 1.5κa, J = 0.88κa, κb = 0.001κa. The abbreviations used have the following

meaning: USR: Upper Stable Region, LSR: Lower Stable Region, LTP: Lower Transition Point, UTP: Upper

Transition Point.

optical driving field (Ep >> Es). The steady state solutions are obtained by equating the time

derivatives of equations (3.7) - (3.10) to zero. This yields ,

as =
−i[gσ−

s + Jcs − gomas(b∗s + bs) + Ep]

(i∆a +
κa

2
)

, (3.11)

cs =
−iJas

(i∆c +
κc

2
)
, (3.12)

bs =
igom|as|2(−iωb +

κb

2
)

(ω2
b +

κ2
b

4
)

, (3.13)

σ−
s =

igas
(i∆e + Γ2)

[−1

2

A1

(A1 + A2|as|2)
], (3.14)
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σz
s = [−1

2

A1

(A1 + A2|as|2)
], (3.15)

where, A1 = Γ1(∆
2
e + Γ2

2) and A2 = 4g2Γ2 .

Note that if g=0, σz
s = −1

2
, i.e, in the absence of the light-QD coupling, the two-level QD stays

in its ground state. By substituting the value of σ−
s , cs, bs into Equation(3.11), we obtain the mean

number of photons as,

P5x
5 + P4x

4 + P3x
3 + P2x

2 + P1x = P, (3.16)

where ,

x = |as|24, P =
E2

pA
2
1

∆2
a+

κ2a
4

, P1 = ψ2
1 + ϕ2

1 − A12, P2 = 2(ψ1ψ2 + ϕ1ϕ2)− A22,

P3 = (ψ2
2 + ϕ2

2 + ψ1ψ3 + ϕ1ϕ3), P4 = 2(ψ2ψ3 + ϕ2ϕ3), P5 = ψ2
3 + ϕ2

3,

A12 =
2E2

pA1A2

∆2
a+

κ2a
4

, A22 =
E2

pA
2
2

∆2
a+

κ2a
4

, ψ1 = A1 − α1 − β1A1, ψ2 = A2 − β1A2 − γ1A1,

ψ3 = −γ1A2, ϕ1 = α2 + β2A1, ϕ2 = β2A2 + γ2A1, ϕ3 = γ2A2,

α1 =
g2A1(∆e∆a−κaΓ2

2
)

2(∆2
e+Γ2

2)(∆
2
a+

κ2a
4
)
, α2 =

g2A1(∆e
κa
2
+∆aΓ2)

2(∆2
e+Γ2

2)(∆
2
a+

κ2a
4
)
, β1 =

J2(∆c∆a−κcκa
4

)

(∆2
c+

κ2c
4
)(∆2

a+
κ2a
4
)
,

β2 =
J2(∆cκa

2
+∆aκc

2
)

(∆2
c+

κ2c
4
)(∆2

a+
κ2a
4
)
, γ1 =

2g2omωb∆a

(ω2
b+

κ2
b
4
)(∆2

a+
κ2a
4
)
, γ2 =

g2omωbκa

(ω2
b+

κ2
b
4
)(∆2

a+
κ2a
4
)
.

In order to justify our results, we consider realistic experimental values [1, 56, 64] . Note

that all parameters used in our numerical study have been made dimensionless with respect to the

primary cavity photon decay rate κa.

One of the essential pre-requisite to design and fabricate tunable all-optical switching devices

is the existence of optical bistability / multistability [65]. A high degree of nonlinearity prevails in

our proposed system due to the optomechanical interaction and this may result in the possibility of

optical multistability to exist if the system parameters are tuned properly. Fig 3.2(a) illustrates the

optical bistability curve obtained by solving equation (3.16) numerically. It is a plot of intracavity
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photon number |as|2 as a function of incident pumping rate Ep. It shows a typical hysteresis loop

that the intracavity photon number follows as the incident pumping rate is increased or decreased.

Transition from the off-state to the on-state takes place at the lower transition point (LIP) while

transition from the on-state to off-state takes place at the upper transition point(UTP). Both the

off-state and on-state are the stable solutions of equation (3.16).

Fig 3.2(b), illustrates the optical switching behaviour for two different values of the optome-

chanical coupling gom . A sharp transition from the off-state to the on-state is observed for

gom = 1.0 (thick solid line) compared to a smooth transition seen for gom = 1.2 (thin solid line).

A sharp transition is desirable for optical switching. The ratio of the maximum (at the transition

point) to minimum value of |as|2 is defined as the switching ratio. As evident the switching ratio

for gom = 1.0κa is higher compared to that for gom = 1.2κa. A higher switching ratio is essential

since a less sensitive detector is also able to distinguish between the OFF and ON state.

Fig 3.3(a) and 3.3(c) demonstrate two different tristabilities that can be generated in our hybrid

system. In Fig.3(a), the system can jump from the lower stable region (LSR) to the meta-stable

region (MSR) at lower transition point 1 (LTP1) as we increase Ep. On further increasing Ep, it

continues on the MSR till it reaches LTP2 to make a further transition to USR. On decreasing Ep

, the system first makes a transition to MSR at upper transition point (UTP), continues on MSR

as Ep is decreased further and finally it jumps to LSR at UTP1. Thus a switching behaviour of

the form, LSR ←→ MSR ←→ USR has been observed. Fig 3.3(b) clearly shows the LSR of

Fig.3(a).

A different tristable switching behaviour is observed in Fig 3.3(c). On increasing Ep, the

system directly jumps from LSR to USR at LTP1 and continuous on USR on further increasing

Ep. Decreasing Ep now leads the system to jump from USR to MSR at UTP1. Hence we have the

following two observations : At this point if Ep is again increased, a transition from MSR to USR

occurs at LTP2. Decreasing Ep when the system is in MSR , takes the system to LSR at UTP2.

The switching behaviour in this case is of the form LSR→ USR ⇌MSR→ LSR.

This interesting tristability behaviour demonstrated by our proposed hybrid system opens new
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possibilities to develop advanced quantum devices for multi-valued logic circuits.

3.4 Optomechanically induced transparency (OMIT)-Fano

Resonances

Optomechanically induced transparency exhibited in optomechanical systems is similar to the

phenomena of electromagnetically induced transparency(EIT) observed in atomic systems. De-

structive interference between photon excited through different pathways is responsible for the

transparency window in the transmitted field. In this section, we analyze the generation of Fano

resonance/OMIT in the probe absorption spectra. In particular we investigate the tunability of

the OMIT/Fano resonance and the effect of various system parameters on it. Since the probe

field is weaker than the pump field, the Heisenberg operators of the system can be rewritten as

O = Os + δO (O = a, b, c, σz, σ−) , where Os is the steady state mean value of O and δO is the

corresponding small fluctuation with zero mean value, that is < δO >= 0 . In order to explore the

dynamics of quantum fluctuations, we neglect the small nonlinear fluctuation terms and make the

ansatz < δO >= O+e
−iδt + O−e

iδt[27]. The procedure for obtaining the fluctuation equations is

outlined in Appendix A.

Solving analytically the set of ten equations A1-A10 and working to the lowest order in Es ,

we obtain from eqn. A11, the linear susceptibility as,

χ
(1)
eff (ωs) =

N1 + iN2

D1 + iD2

, (3.17)

where,

N1 = gσz
s(Γκ3 − δκ1), N2 = gσz

s(Γκ1 + δκ3),

D1 = (κ21 + κ23)(δ
2 + Γ2) + g|as|2(κ21 + κ23)(ΓσI − δσR) + g2σz

s(κ3Γ− δκ1),
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D2 = g|as|2(κ21 + κ23)(ΓσR + δσI) + g2σz
s(κ3δ + Γκ1),

κ1 =
κa

2
+ ϵ2+, κ2 = δ − gomRbo − A|as|2, κ3 = ϵ2− − δ − gomRbo − A|as|2,

Rbo =
2gomωb|as|2

ω2
b+

κ2
b
4

, A =
2g2om(ω2

b+
κ2b
4
−δ2)

[(ωb−δ)2+
κ2
b
4
][(ωb+δ)2+

κ2
b
4
]
, ϵ2+ =

J2 κc
2

δ2+
κ2c
4

, ϵ2− = J2δ

δ2+
κ2c
4

,

σR = 2g(1−|as|2ϵσ)δ
Γ2+δ2

, σI =
2g(1−|as|2ϵσ)Γ

Γ2+δ2
, ϵσ = 2g2

δ2+Γ2+2g2|as|2 .

Here, we have taken Γ1 = Γ2 = Γ for simplicity. Also, we have taken the resonance condition

∆a = ∆c = ∆e = 0 .

The real and imaginary part of χ(1)
eff (ωs) give the absorption and dispersion of the system re-

spectively. In order to analyze OMIT in our system, we choose realistic experimental values ob-

tained by other researchers [1, 56]. In particular, our parameter values will be based on InAs/GaAs

QD embedded in a photonic crystal optomechanical nanocavity. Typical experimental values of

the system [66] are κa = κc = 8MHz, Γ1 = 5.2MHz, Γ2 = 2.6MHz, J ranges between 1.0 -

2.0 MHz, (depending on the distance between the two cavities), g is tuned between weak(20 MHz)

to strong(15 MHz) coupling strength. The other parameters like the mechanical frequency ωb can

vary between 10-600 MHz, κb and the single photon optomechanical strength have the ranges be-

tween 10-600 MHz, 0.01-0.06 MHz and 1-8 MHz, respectively. We work in the resolved side band

regime (RBS) where, κa < ωb . In this regime, the intracavity photons on average remains in the

cavity for longer duration compared to the mechanical period. Thus, the photons interact equally

with all the quadratures of the mechanical motion.

In fig 3.4, we show the variation of absorption spectra (Im χ
(1)
eff (ωs)) as a function of probe

detuning δ . A typical Mollow tripet along with Fano resonance modified by OMIT (OMIT-Fano

resoance) is observed. A Mollow triplet is observed only in the strong coupling regime [67] .

The central peak is slightly shifted from δ = 0 which may be attributed to an the optomechanical

effect. In fig 3.4(a), ωb = 0.25κ while that in fig 3.4(b), is ωb = 0.30κ. Clearly, an asymmetric

transparency window is observed exactly at δ = 0,±ωb. The inset in the figures show the magnified
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view of the Fano resonance at δ = ωb. The occurrence of Fano resonance/OMIT can be understood

as follows. The beat of the control pump and the probe field creates a time-dependent radiation

pressure force with beat frequency δ = ωp − ωs. As the mechanical resonator is driven resonantly

at δ = ±ωb, a coherent oscillation is initiated resulting in optical sidebands on the auxiliary cavity

field. The optical sidebands are generated at frequencies ωp±nωb with n being an integer, denoting

the order of the sideband. In the presence of a strong pump field and recalling that we were in the

RSB regime, the first order sideband (n = 1) dominates having the same frequency. Comparing Fig

3.4(a) and 3.4(b), we note that the transparency window in fig 3.4(a) occurs at δ = ±ωb(= 0.25κ)

while in fig 3.4(b), it occurs at δ = ±0.30κ.

We can see that optomechanical interaction has generated dressed photon-phonon states anal-

ogous to atom-photon dressed states generated through Autler-Townes (AC Stark ) effect in EIT

[65]. The physical origin of the asymmetric transparency windows may be argued in the following

ways. In the dressed state picture, OMIT is a result of destructive interference between the two

excitation pathways due to the probability amplitude of the indirect excitation pathway having a π

phase shift compared with the direct excitation pathway [68, 69]. If the phase difference between

the two excitation pathways is not exactly π, an asymmetric Fano resonance profile is generated in

the probe transmission [69] . Fig 3.4(c), illustrates the absorption profile for a lower value of the

optomechanical coupling (gom = 0.2κ) compared to that of plots 3.4(a), (b) (gom = 0.6κ). It is

evident that by lowering gom , the transparency window almost disappears, which clearly implies

that observed Fano profile is a result of optomechanical interaction. It is important to note that both

Fano resonance and OMIT show transparency window. The absorption profile for a lower value

of J = 0.4κ (weak coupling between the primary and auxiliary cavity) shows that the asymmetric

Fano profile gradually makes a transition towards a symmetric OMIT profile. This indicates that

the intercavity coupling leads to a phase shift between the two pathways different from π. Double

cavities coupled by a single optomechanical mirror is known to show splitting of the Fano reso-

nance and has a zero at ω = ±ωm [70]. However in our proposed system, the tunabilty is more due

to the presence of QD and the auxiliary cavity. In addition, our results also show a combination of
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Mollow triplet and a clear OMIT superimposed on the Fano profile.

3.5 Conclusions

In summary, we have theoretically designed and investigated the optical response properties of

a novel hybrid C-QED system consisting of a QD implemented in an optomechanical photonic

crystal cavity that is optically coupled to an auxiliary cavity. The steady state mean-field analysis

shows the existence of tunable optical bistability, double-bistability and tristability, paving the

way for novel multi-switching photonic devices. The probe absorption spectra of the fluctuations,

reveals a Mollow triplet along with an OMIT modified asymmetric Fano resonances. We identify

the parameters which can coherently tune the OMIT-Fano line shapes. In particular the auxiliary

cavity, the QD and the mechanically compliant DBR offers three different quantum channels to

influence and control the optical response of the system. This study provides a novel platform for

further research on chip-scale nano quantum photonic devices.
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Figure 3.3: (a): Plot illustrating two connected bistable behavior (optical double bistability). Three stable

roots are clearly visible. (b): Magni�ed plot showing the lower stable root of plot (a). (c): Optical tristability

obtained from eqn. (16). (d): Magni�ed plot showing the lower stable region of plot (c). The tristable

behavior of plot (a) di�ers from that shown in plot (c). Parameters used are, (a): ∆e = 0.5κa, ∆a = 1.5κa,

∆c = 8.0κa, κc = κa, Γ1 = 0.65κa, Γ2 = 0.33κa, g = 6.0κa, gom = 0.5κa, ωb = 1.5κa, J = 1.0κa,

κb = 0.0001κa. (c): g = 8.0κa, all other parameters are same as that in plot (a). MSR: Middle Stable

Region, LTP1: Lower Transition Point 1, UTP1: Upper Transition Point 1, LTP2: Lower Transition Point

2, UTP2: Upper Transition Point 2.
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Figure 3.4: Absorption spectra of the probe �eld as a function of probe detuning δ. Plots (a) and (b)

at ωb = 0.25κ and ωb = 0.30κ respectively. The inset depicts the magni�ed shape of the curve near the

transparency window δ = ωb. Plot (c) shows the Fano pro�le for gom = 0.20κ while plot (d) illustrates the

absorption spectra at J = 0.4κ. The parameters used are: κa = κc = κ = 1.0,J = 0.6κ, κb = 0.0075κ,

gom = 0.4κ, g = 1.3κ, Γ1 = Γ2 = 0.08κ.
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CHAPTER 4

Optical bistability and four-wave mixing response of a quantum dot

coupled to a photonic crystal optomechanical nanocavity

We theoretically investigate the hybrid cavity quantum electrodynamic (C-QED) system’s nonlin-

ear optical response, including optical bistability and the four-wave mixing (FWM) process. The

hybrid C-QED system comprises of a quantum dot (QD) placed in an optomechanical photonic

crystal (PhC) nanocavity and coherently controlled by two-tone laser beams. Our theoretical

analysis shows optical bistability, where the steady-state photon number follows a steady increase

in the switch’s gain by regulating a strong pump field that drives the QD. The dressed state may be

typically modified successfully by creating a strong coupling between matter and quantized fields,

and the dressed state of QDs can also be modulated by changing the field parameters. We also

detail the effects of exciton-nanocavity coupling strength, Rabi coupling strength, and off-resonant
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detuning in our proposed system, which produces a controlled FWM signal in the system’s output

probe field. When strong coupling and high pump power are present simultaneously, the inten-

sity of the FWM is considerably altered, which causes the establishment of an OMIT window and

slow light. The analysis of the proposed system may be useful for on-chip QD-based nanophotonic

devices.

4.1 Introduction

Studying the physics behind the coherent interaction between a quantum emitter and a single radi-

ation field mode inside various types of optical cavities [58] has significantly advanced the field of

cavity quantum electrodynamics (C-QED) systems and may have applications in quantum informa-

tion science [1, 41, 42]. Numerous fascinating quantum phenomena, such as laser oscillation [71],

spontaneous emission control [72], and multi-emitter quantum optics [73], have been seen in the

investigation of such hybrid QD-based photonic crystal systems. The radiation pressure induced

coherent photon-phonon interaction offers a platform for manipulating mechanical resonators and

electromagnetic fields, in an optomechanical system (OMS) which has drawn a lot of attention.

This opens the door for potential applications in optomechanical devices, such as phonon lasers

[74, 75], sensing [76], phonon squeezing [77], the realization of squeezed light [78, 79], ground-

state cooling [80, 81], and optomechanically induced transparency (OMIT) [35, 82] - induced

store light in solid-state devices [83, 84]. The light-matter interaction becomes reversible in the

strong coupling domain when photons and the quantum emitter become entangled which leads to

an important phenomena called Vacuum Rabi splitting (VRS) [1, 44, 54, 85].

The interaction of light and matter in an optomechanical system (OMS) results in a wide range

of nonlinear effects that can be thoroughly studied. Among other nonlinear effects, optical bista-

bility (OB) and four-wave mixing (FWM) are the typical optical responses that have drawn at-

tention. The bistable behaviour of the mean intracavity photon number inside various systems,

including atom-cavity systems [86, 87, 88, 89, 90, 91], metal–semiconductor hybrid nanostruc-
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tures [92, 93, 94, 95, 96, 97, 98], hybrid optomechanical systems [99, 100, 101, 102], etc., has

always been thoroughly studied. It is now known that a typical system, consisting of an opti-

cal cavity and a two-level system, can achieve optical bistability [103]. It is interesting to note

that a system with optical bistability could display all optical switching behaviour, opening the

door for the development of devices like optical switches, logic gates, and memory components

[28, 104, 105, 106].

The four-wave mixing (FWM) phenomenon, on the other hand, is a different nonlinear phe-

nomenon that occurs in a variety of optical and optomechanical systems. The nonlinear four-wave

mixing phenomena results from the interaction of a two-level system exposed to a strong pump

field and a weak probe field at off-resonant frequencies that creates index gratings generating

multi-sidebands [107]. In addition to wavelength conversion [108, 109] , parametric amplification

[110, 111], and sampling, FWM is an extremely fast process with many potential applications. Due

to their adaptable atom-like characteristics, quantum dot (QD) nanostructures have been proposed

for a variety of quantum mechanical applications. For the use of quantum information process-

ing, the emitters of controllable quantum states are essential. An InAs QD can store quantum

information which can be totally controlled with fast light pulses by developing the information

in the electron or hole spin [112]. Due to their extremely small optical mode volumes, photonic

crystal cavities are advantageous for integration with optical waveguides and on-chip electronics

[113]. Therefore, the incorporation of such QD-based structures into PhC cavities leads to a va-

riety of applications, including optical switching and quantum networks for processing quantum

information [47]. Potential applications that could result from the creation of quantum dots in-

side a photonic crystal cavity have undergone major analysis[41, 114, 115, 116] . The bistable

four-wave mixing response in a semiconductor quantum dot (SQD) in the simultaneous presence

of a strong pump field and a weak probe field coupled to a PhC nanocavity was recently studied

theoretically by Li et al. [103]. But prior to this, no systematic analysis of the bistable four-wave

mixing (FWM) behaviour of a quantum dot (QD) coupled to an optomechanical photonic crystal

(PhC) nanocavity had been taken into consideration. In contrast to Li et al. [103], we have taken
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into account an optomechanical radiation pressure kind of interaction in our PhC nanocavity. Even

though the radiation pressure type of optomechanical coupling is weaker than QD-cavity coupling,

our studies reveal that this weak coupling exhibits enhanced optical bistability.

In this study, we theoretically examined the optical response properties of a quantum dot (QD)

embedded in an optomechanical photonic crystal (PhC) nanocavity which is driven by two optical

fields. Here, we have explicitly investigated the optical bistability, switching ratio, and gain of

the optical switch along with various FWM signals regulated by the exciton-nanocavity coupling

regime, the strength of the Rabi coupling, and the pump power. The FWM signal is significantly

altered by the off-resonant coupling between the exciton and the PhC nanocavity, which has been

comprehensively explored. It has been extensively discussed how the FWM signal could change

significantly as a result of the off-resonant coupling between the exciton and the PhC nanocavity.

4.2 Theoretical model and formalism

Our theoretical model is based on a single quantum dot embedded in an optomechanical pho-

tonic crystal nanocavity as shown in figure 4.1(a). The experimental approach for designing and

fabricating a photonic crystal (PhC) cavity in an optomechanical system has recently been re-

viewed [56, 117]. Using well developed experimental techniques [47, 59, 118, 119], the semi-

conductor heterostructure involving a InAs quantum dot embedded in a GaAs photonic crys-

tal structure can be fabricated easily. Here, a quantum dot with two distinct energy levels and

an electric dipole moment µ, has been driven simultaneously to both a strong pump field and

a weak probe field. So the Hamiltonian of the QD coupled to the two-tone fields is given by,

HQ−F = −µEp(σ10e
−iωput + σ01e

iωput)− µEpr(σ10e
−iωprt + σ01e

iωprt), where µ is the dipole mo-

ment and ωpu(ωpr) are the frequency of the pump (probe) field respectively and the slowly varying

envelope of the pump (probe) field is written as Ep(Epr).

The optomechanical interaction between the cavity mode and the mechanical mode via radia-

tion pressure is described by the Hamiltonian Hom = ℏg0a†a(b + b†), where a†(a) and b†(b) are
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the creation (annihilation) operators of the cavity mode and the mechanical mode respectively with

optomechanical coupling strength g0.

Figure 4.1: (a) Schematic diagram of a QD embedded in an optomechanical PhC nanocavity. The QD

is driven by a strong pump �eld (ωpu) and probed by a weak �eld (ωpr) (b) Energy level diagram of

exciton interacting with photons in the PhC optomechanical nanocavity and (c) Energy level transition with

entangled state |ntotal > formed upon coupling exciton and photon.

In a frame rotating at the pump frequency ωpu, the Hamiltonian of the proposed optomechanical

system is written as,

H = ℏ∆puσz + ℏ∆pca
†a+ ℏωmb

†b+ ℏg0a†a(b+ b†) + ℏg(σ10a+ σ01a
†)− ℏΩ(σ10 + σ01)

− µEpr(σ10e
−iδt + σ01e

iδt),

(4.1)

where, ∆pu = ω10 − ωpu is the exciton-pump field detuning, ∆pc = ωpc − ωpu is the cavity-pump
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field detuning and δ = ωpr−ωpu is the probe-pump detuning. The two-level QD is approximated as

an artificial two-level atom consisting of the ground state |0 > and the single exciton (first excited)

state |1 > and characterized by three pseudospin Pauli operators σ01, σ10 and σz. Here, g denotes

the coupling strength between the exciton in the QD and photons in the PhC cavity, ωm is the

resonance frequency of the mechanical resonator and Ω = µEp/ℏ is the effective Rabi frequency

of the control (pump) field.

The quantum dynamics of the operators of our proposed system are described by the follow-

ing quantum Langevin equations, while considering the relevant quantum or thermal noise and

dissipation terms, we have

˙σ01 = −(i∆pu + Γ2)σ01 + 2igσza− 2iΩσz − 2iµEprσze
−iδt +

√
Γ2σ01in , (4.2)

σ̇z = −Γ1(σz+
1

2
)−ig[σ10a−σ01a†]+iΩ[σ10−σ01]+iµEpr[σ10e

−iδt−σ01eiδt]+
√

Γ1σzin , (4.3)

ḃ = −(iωm +
γm
2
)b− ig0a†a+

√
γmbin, (4.4)

ȧ = −(i∆pc +
κ

2
)a− igσ01 − ig0a(b+ b†) +

√
κain. (4.5)

Here, κ and γm are the decay rates of cavity and mechanical mode respectively. Also, Γ2(Γ1)

denotes the exciton dephasing rate (relaxation rate). σ01in , σzin , bin and ain are the quantum input

noises that are initially dependent on the bath operators. The time derivatives of the mean values

of the system operators and the average values of these input noises disappear in the steady state

approximation i.e, < σ01in >=< σzin >=< bin >=< ain >= 0. Since, we are examining the

system’s average response to the signal field, quantum fluctuations are not taken into consideration.

Furthermore, we neglect quantum correlations and entanglement between different subsystems.

Therefore, we can re-write the system operators in terms of mean classical values as follows,

< ˙σ01 >= −(i∆pu + Γ2) < σ01 > +2ig < σz >< a > −2iΩ < σz > −2iµEpr < σz > e−iδt,

(4.6)
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< σ̇z > = −Γ1(< σz > +
1

2
)− ig(< σ10 >< a > − < σ01 >< a† >) + iΩ(< σ10 > − < σ01 >)

+ iµEpr(< σ10 > e−iδt− < σ01 > eiδt),

(4.7)

< ḃ >= −(iωm +
γm
2
) < b > −ig0 < a† >< a >, (4.8)

< ȧ >= −(i∆pc +
κ

2
) < a > −ig < σ01 > −ig0 < a > (< b > + < b† >). (4.9)

In the next section we will further solve the equations(4.6)-(4.9) for analysing the optical

switching behaviour of our system.

4.3 Optical Bistability

Optical bistability is a common phenomenon found in various non-linear systems. This optical

response has been demonstrated in many optomechanical systems which are identified by a high

degree of nonlinearity arising due to the dynamical backaction induced by radiation pressure. The

mechanical oscillator of an optomechanical cavity gets displaced from its original position due to

the radiation pressure force that changes the resonance frequency of the optical cavity and thereby

changing the intracavity intensity. This results in optical bistability, where a given incident light

intensity can yield two different stable states in the mechanical position as well as the intracavity

photon number. Moreover, in an optomechanical system, the displacement of the mechanical oscil-

lator caused by the mean effect of the optical field depends on the strength of the optomechanical

coupling which is different from a bare optical cavity [26]. Optical bistability is an important opti-

cal response for designing and fabricating tunable all-optical switching devices. The fundamental

benefit of optical switching is that it enables the routing of optical data streams without transform-

ing them into electrical signals. Therefore, it is not constrained by data protocol or rate [120]. In

this section we will investigate the bistable behaviour of the steady-state photon number |a0|2 of

the cavity field. For simplicity, we set < σ01 >= P and 2 < σz >= w , and use the following

ansatz [27] to analyse the steady-state solutions of Equations (4.6)-(4.9),
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P = P0 + P1e
−iδt + P−1e

iδt;

w = w0 + w1e
−iδt + w−1e

iδt;

a = a0 + a1e
−iδt + a−1e

iδt;

b = b0 + b1e
−iδt + b−1e

iδt.

(4.10)

Here, the steady state amplitudes of the parameters follows: |P0| >> |P1|, |P−1|; |w0| >>

|w1|, |w−1|; |a0| >> |a1|, |a−1|; |b0| >> |b1|, |b−1|.

Now, by substituting the above mentioned ansatz and further solving for the steady-state solu-

tion of the equations (4.6)-(4.9), we obtain the mean intracavity photon number as,

|a0|2 =
g2Ω2w2

0

[Γ2
k
2
−∆pu∆pc −∆puB1|a0|2 − g2w0]2 + [∆pu

k
2
+ Γ2∆pc + Γ2B1|a0|2]2

, (4.11)

where, B1 =
−2g20ωm

ω2
m+

γ2m
4

.

The results illustrated in Fig 4. 2 shows optical bistability obtained by numerically solving Eq.

(4.11). For illustration, we have considered a realistic system of InAs QD embedded in a GaAs

photonic crystal optomechanical nanocavity. Here, we have considered realistic experimental val-

ues [1, 56] to justify our results. All the parameters used for the numerical analysis have been

made dimensionless with respect to the photon decay rate κ of the PhC cavity. Fig 4.2(a) is a plot

of steady-state photon number |a0|2 as a function of incident pumping rate Ep , for different values

of optomechanical frequency ωm = 2.5κ (solid purple line), ωm = 2κ (dot-dashed black line) and

ωm = 1.5κ (dashed blue line), when g0 = 0.02κ. Here, when ωm increases from 1.5κ through

2κ to 2.5κ then the threshold value of the incident pumping rate to observe the optical bistabil-

ity gradually increases giving rise to a broader bistable regime. The transition from Off-State to

On-State takes place at the Lower Transition Point (LTP) where the transition occurs from a low

photon number to a higher photon number while increasing Ep . On the other hand, the transition

from On-State to Off-State takes place at the Upper Transition Point (UTP) where the transition

occurs from a higher photon number to a lower photon number while decreasing Ep . The plot

shows a typical hysteresis loop which the intracavity photon number follows with the increase or

decrease of the pumping rate. Thus, the switching from the Off-State to On-State takes place at a
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Figure 4.2: Plot of intracavity photon number |a0|2 as a funtion of pumping rate Ep

lower value of Ep when ωm is small. A lower value of Ep for optical switching indicates a power

efficient device.

Fig. 4.2(b) illustrates the optical switching behaviour for three different values of the optome-

chanical coupling, g0 = 0.02κ (solid Red line), g0 = 0.03κ (dashed Blue line) and g0 = 0.05κ

(dot-dashed green line), when ωm = 2κ. At g0 = 0.02κ (thick solid Red line), we observe a large

transition from Off-State to On-State for a lower value of coupling. However, for g0 = 0.03κ

(dashed Blue line) and g0 = 0.05κ (dot-dashed Green line), we demonstrate the possibility of a

smooth transition in the strong opto-mechanical coupling regime. A large transition indicates a

higher switching ratio which is defined as the ratio of the maximum to minimum cavity emission

in the steady-state driving curve and is obtained by the following equation,
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SwitchRatio(SR) =
(Pout)max.

(Pout)min.

Here, Pout =< a0
†a0 >. Here, all the values of g0 allows optical switching where the steady-

state photon number jumps from Off-State to On-State at a given pump rate. But, for application

in efficient optical switching, a large transition from Off-State to On-State is desirable. Hence,

it is clear that the switching ratio for g0 = 0.02κ is higher compared to that of g0 = 0.03κ and

g0 = 0.05κ . Since, a less sensitive detector can also easily differentiate between the Off-State and

On-State, so a higher switching ratio is very much important. But at the same time it is to be noted

that for g0 = 0.02κ, switching occurs at a relatively higher value of EP . Thus, one has to optimize

the low switching power and high switching ratio. Based on this, we extend our analysis into the

switching ratio (SR) and gain of the switch.

In figure 4.2(c), we show the switching ratio versus the input pump amplitude. We observe

that the switch operates in analogous to a high pass filter and the ratio increases as the value of Ep

increases. The greater ratio shows that the switch has more exact control over the light signal that

is propagating. We also analyze the gain of the switch versus pump amplitude, which is defined as

follows:

Gain =
(Pout)max. − (Pout)min.

Pin

Figure 4.2(d) shows that a constant gain in the population (na = |a0|2) of the photon number

is observed as we increase the pumping amplitude. It should be emphasised that a high gain

is necessary for an effective optical switch. This implies that the input amplitude and coupling

parameters have a major impact on the switch performance, and a large Ep and g are necessary for

an efficient switch.

All the other parameters used in figure 4.2 are: g = 1κ, Γ2 = 0.33κ, γm = 0.01κ , ∆pu = 2κ

,∆pc = 2.5κ.
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4.4 Four-wave mixing process

In this section we investigate a typical optical nonlinear phenomenon which is the four-wave mix-

ing (FWM) process in our proposed QD based PhC optomechanical cavity. FWM describes the

generation of new waves where the annihilation of a signal wave with two incident pump photons

generates an idler wave [121]. In order to study the FWM process of the output field, we can use

the input-output relation, [26]

σout(t) = σin(t)−
√
2Γ2σ01(t)

where, σin and σout are the input and output operators respectively.

In this system, we use the previously mentioned ansatz from Eq.(4.10) and obtain the expectation

value of the output field as,

< σout(t) > = (Ep/
√

2Γ2 −
√

2Γ2P0)e
−iωput + (Epr/

√
2Γ2 −

√
2Γ2P1)e

−i(ωpu+δ)t

−
√

2Γ2P−1e
−i(ωpu−δ)t

(4.12)

We now write < σout(t) > as,

< σout(t) >= σout0e
−iωput + σout+e

−i(ωpu+δ)t + σout−e
−i(ωpu−δ)t (4.13)

and by comparing Eqs. (4.12) and (4.13), we obtain the output field amplitude of the FWM as,

σout− = −
√

2Γ2P−1 (4.14)

To describe the FWM briefly, a dimensionless FWM intensity in terms of the probe field is defined

as,

IFWM = | σout−

Epr/
√
2Γ2

|2 = |P−12Γ2

Epr

|2

= |(γ1τ
∗
2X

∗
2 + γ1τ

∗
3w

∗
0 + γ2X4X

∗
2 + γ2X5)Γ2

1− γ1τ ∗1 − γ1τ ∗2X∗
1 − γ2X3 − γ2X4X∗

1

|2
(4.15)

All the unknown variables of the above equation is given in Appendix B. The FWM component

mentioned above is produced at frequency 2ω10−ωpr and the transmission of the output probe field

is defined as

70



Chapter 4. 4.4. FOUR-WAVE MIXING PROCESS

tm(ωpr) =
2Γ2 < P+1 >

Epr

+ 1. (4.16)

The transmission of the probe signal can be changed with respect to the input pump field,

causing a quick phase shift, ϕt(ωpr) = arg[tm(ωpr)] over the transparency window as well as an

obvious group delay as [35],

τg =
dϕt(ωpr)

dωpr

=
d(arg[tm(ωpr)])

dωpr

. (4.17)

Our technique is built around an InAs/GaAs quantum dot embedded in a silicon photonic crys-

tal cavity that couples exciton-photon confinement with flexural mechanical motion, as depicted in

figure 4.1. We are all aware that the exciton-photon interaction is crucial in changing the optical

characteristics of the QD system [122, 123, 124]. In order to demonstrate how the exciton-photon

interaction affects the FWM response in a coupled SQD-PhC nanocavity system, we illustrate how

|P−1ℏΓ2

µEpr
| described in Eq.(4.15) changes with the probe-pump detuning in four different scenarios,

including off coupling (g=0), the weak coupling regime (g < κ), the intermediate regime (g ≈ κ),

and the strong coupling regime (g > κ), is shown in figure 4.3. The outcome in figure 4.3(a)

demonstrate that the peak at ωpr = ωpu can be attributed to a typical optical absorptive behaviour

[125]. In actuality, the SQD-PhC nanocavity system in the absence of QD-cavity coupling can be

treated as a pure SQD system. Additionally, single InAs quantum dots have been found to have

single-peaked FWM spectra [126]. As we switch the exciton-nanocavity coupling from off (g = 0)

to on (g = 0.5κ), as illustrated in Fig. 4.3(b), the situation becomes very clear. Two Fano profiles

emerge as the FWM spectrum’s shape changes from single-peaked to asymmetric double-peaked

in this weak coupling regime. The amplitude of the central absorption peak in the FWM spectrum

is decreased for weak coupling regime, and the Fano peaks appears at two Rabi sidebands.

The situation varies somewhat in the intermediate regime (g = 1κ), shown in figure 4.3(c).

Despite the rise in g, the FWM spectrum has two peaks similar to figure 4.3(b) but as g rises, so

does the peak value of the FWM signal. The vacuum Rabi splitting (VRS) is thought to be the

cause of these two Rabi sideband peaks [1, 127]. Individual InAs QDs placed in an asymmetri-

cal low-Q GaAs/AlGaAs microcavity have also been found to exhibit such double-peaked FWM
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spectra experimentally [128]. It is possible to quantify the SQD-nanocavity coupling strength and

determine the VRS using the measured zero-detuning (∆pu = 0) vacuum Rabi splitting in this

case, which is 2g
ωm

= 2. Figure 4.3(d) illustrates the peak splitting in the FWM spectra in the strong

coupling regime (g = 4κ), which is a total vacuum Rabi splitting based on C-QED. Here, we

take into account the role of photon-phonon mode when the VRS varies significantly to produce

distinct FWM spectra at δ = ±ωm and two additional important peaks at δ = ±4 , which emerges

around the Rabi splitting (≈ 2g
ωm

). A dressed-state picture can be used to explain the occurrence.

When the QD is coupled to the mechanical PhC cavity, the excited state of the exciton |1 > is

dressed by an entangled state |ntot > that satisfies the total population of the photon-phonon mode

ntot = na + nb(note that na and nb stand for the number states of the photon mode a and phonon

mode b). Then, two dressed states are created by altering the original eigenstates |1 > i.e,|1, ntot >

and |1, ntot + 1 >, as shown in figure 4.1(c) . The transition from |0 > to |1, ntot + 1 > is

shown by the sharp peak on the left, while the transition from |0 > to |1, ntot > is shown by the

sharp peak on the right. Thus, the interaction of the QD with the strong pump and weak probe

field leads to the generation of two new sidebands for two different frequencies at δ = ±ωm due

to the four-wave mixing(FWM) process. The separation of the two side peaks is more evident

when the coupling strength is increased. The propagation of FWM signals is strongly dependent

on the combined effects of the vacuum Rabi splitting and the exciton-nanocavity coupling, as we

may infer from the description above. All the other system parameters used in figure 4.3 are:

g0 = 0.005κ, γm = 0.002κ,Γ1 = 0.6κ,Γ2 = 0.3κ, ωm = 1κ,∆pu = 0,∆pc = 0,Ω = 0.1κ.

The FWM signal as a function of pump-probe detuning δ is shown in Figure 4 for various Rabi

coupling strength Ω in order to determine the effect of the coupling on the FWM response. As seen

in figure 4.4(a), the peak intensity of the FWM signal increase with the increase in the pump power

from Ep = 0.1 (figure 3d) to Ep = 0.5 (figure 4.4a) at g = 4κ, and Ω = 1κ. Figure 4.4(b), which

demonstrates the dependence of the peak values on the Rabi coupling strength Ω, also shows the

increase at peak intensity of the FWM spectrum in the higher order sidebands at δ ≈ 2g
ωm

= ±4,

along with the peaks appears at δ = ±ωm. As it can be seen that, the pump power is tuned from
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Figure 4.3: FWM response as a function of probe-pump detuning δ for di�erent QD-cavity coupling at (a)

g = 0. (b) g = 0.5κ. (c) g = 1κ. and (d) g = 4κ.

Ep = 3(figure 4.4b) to Ep = 5(figure 4.4c), clearly increases the peak intensities of the FWM

signal when g = 6κ , and Ω = 10κ. Additionally, it appears that there are more peaks showing

OMIT phenomena with a narrow transparency window at δ = ±ωm (figure 4.4(b) and (c) inset).

The homodyne traces were employed in experimental observation to demonstrate the similar trans-

parency window, where the formation of optomechanically induced nonreciprocity in the system

occurs as a result of the copropagating signal used to obtain the OMIT spectrum [129]. The phys-

ical mechanism of the above mentioned can be seen from two different perspectives. First off, the

coupled hybrid COS exhibits quantum interference effects and correlation when various physical

modes interact and compete with one another [130, 131]. Moreover, the optomechanical coupling

and exciton-photon coupling induces a frequency shift (2g02|a0|2 + g2ω0) in the amplitude a0 of
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Figure 4.4: The FWM response as a function of probe-pump detuning δ for various Rabi coupling strength.

the cavity field which leads to the decrease in the intracavity photon number and simultaneously

effects the mean displacement b0 of the system. As a result of cavity-QDs and photon-phonon

coupling, this produces bipartite dressed excitations (optomechanical interference between various

dressed states). We may therefore draw the conclusion that in this hybrid QD-COS, a robust FWM

signal can be generated when the pump power is optimally controlled.

We show the phase (ϕt) of the output probe field as a function of δ in the range of the FWM

signals for g = 6κ , and Ω = 10κ are illustrated in figure 4.4(d). It demonstrates that in the

range of the FWM signals, the output probe field exhibits rapid phase dispersion spectra. The

rapid normal-phase dispersion at δ = ±ωm and δ = ± g
ωm

which is thought to represent the slow

light, can occur in a positive group delay. Each of the Fano-type transparency windows is enabled
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Figure 4.5: FWM response as a function of probe-pump detuning δ for o�-resonant values of the exciton-

pump detuning at (a) ∆pu = 2κ (Red solid line) and ∆pu = 6κ (Blue dot-dashed line) and (b) Same plot as

�gure (a) near δ = 0.

by rapid phase dispersion, as shown in figure 4.4(d) (inset). Additionally, it can be helpful to see

the propagation of slow and stop lights. The position of the output spectrum will shift as a result

of better control over the pump power and exciton-photon interaction of the system, allowing for

more precise tuning of the output probe field’s total group delay dispersion over a wider frequency

range. We may therefore draw the conclusion that in this hybrid QD-COS, a robust FWM signal

can be generated when the pump power is optimally controlled. All the other parameters used in

figure 4.4 are: g0 = 0.005κ, γm = 0.002κ,Γ1 = 0.6κ,Γ2 = 0.3κ, ωm = 1κ,∆pu = 0,∆pc = 0.

Figure 4.5 illustrates how the FWM spectrum changes with the exciton-pump field detuning ∆pu

at Ω = 5κ and g = 4κ. The FWM spectrum shows an asymmetric single-peak structure at δ = ±3

whose symmetry axis is provided by the line δ = 0. This occurs in the strong coupling regime

when the pump field is off resonant with the exciton in the SQD, i.e, at ∆pu = 2κ(Red solid line).

The situation completely changes when the pump field is set further detuned from the exciton

transition (at ∆pu = 6κ). The FWM spectrum will shift from being double-peaked to quadrupole-

peaked when ∆pu rises, with two new peaks occurring inside of two sideband peaks. In a coupled

system of a single QD and a nanobeam PC cavity, such an off-resonant coupling behavior has been

observed [132]. Additionally, when ∆pu increases, the magnitudes of the sideband peaks appears
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larger while those of the other peaks get smaller. Evidently, the off-resonant coupling between

the SQD and the PC nanocavity allows for efficient modification of the FWM spectrum. All the

other parameters used in figure 4.5 are: g = 4κ, g0 = 0.005κ, γm = 0.002κ,Γ1 = 0.6κ,Γ2 =

0.3κ, ωm = 1κ,∆pc = 0,Ω = 5κ.

4.5 Conclusions

Optical bistability and four-wave mixing have been theoretically studied in a C-QED system made

up of an optomechanical photonic crystal nanocavity connected to a QD that is driven by two-tone

fields. All optical switching can be achieved via tunable optical bistability, which is demonstrated

by the study of the steady-state mean field. A tunable four-wave mixing (FWM) spectrum is

produced by the interaction of the exciton-nanocavity coupling strength, Rabi coupling strength,

and pump power. For a strong coupling regime, the FWM displays a stronger signal. The size of

the sideband peaks is controlled by the exciton-pump field detuning, while the distance between the

two peaks of the vacuum Rabi splitting is best controlled by the off-resonant QD-cavity coupling

strength. In regions of the four-wave mixing spectrum where a transparency window exists, the

two-level system considerably changes the output probe fields at high pump power, creating a

mechanism to further improve the system’s group delay and slow light. As a result, the obtained

results demonstrate that a QD-based optomechanical photonic crystal nanocavity system is suitable

for the development of optical switches as well as for the processing of quantum information.
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Coupling of QD-based PhC nanocavity with double mechanical

modes: An approach to tunable optical switching and sensing

applications

We theoretically study the dynamical change in the amplification of the output probe field spectra of

a hybrid optomechanical system consisting of double mechanical membrane coupled to a photonic

crystal (PhC) nanocavity. The PhC cavity is also embedded with a quantum dot (two-level system)

and simultaneously driven by an external pump and a probe field. We show that multiple number

of transparency windows that appear can be controlled by the QD-cavity coupling strength and

also the Fano profiles are directly measured by the resonant frequency of the mechanical mode.

We also show the optical transition from bistability to tristability/multistability by adjusting the
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switching threshold of the system parameters. These results can also be used to study frequency

optical nonreciprocity and all-optical switches in multi-resonator photonic devices.

5.1 Introduction

Cavity quantum electrodynamics (QED) has recently emerged as one of the key physical sys-

tems for integrating quantum information processing, structural quantum computing, and quantum

modeling because of the rapid growth of micro- and nano-processing technologies. Qubits possess

discrete energy levels that can be controlled by external fields and the coherence time of qubits

has also been considerably enhanced up to the order of 0.2 to 0.6µs [133, 134] by applying ad-

vanced technologies. On the other hand, the damping term in the hybrid state is described by the

non-Markovian regime since its lifetime is still many times shorter than the time required for vi-

brational damping, i.e., in the range of tens of femtoseconds. To be precise, nonresonant excitation

conditions were used for many experiments. One of the best candidates for studying the strong

coupling regime is semiconductor nanocrystals [135, 136, 137], also referred to as quantum dots

(QDs). Also, additional experiments conducted under resonant conditions would offer more details

of the hybrid cavity-QD states coupled to multiple vibrational modes.

Cavity optomechanics is used in engineering metrology for precision measurement of nanopho-

tonic optomechanical devices for sensing applications [138, 139] as well as for understanding

the dynamics of radiation force-driven interaction beyond the conventional quantum limit [140].

For photonic intregated circuits, current on-chip nano-/micro-electromechanical systems provide

a number of competitive advantages, including a compact footprint, an easy fabrication method,

and compatibility with photonic integrated circuits integration [141] . Mechanically tunable pho-

tonic crystal (PhC) cavities have evolved into a variety of sensors for use in sensing applications,

including magnetic [142, 143] and electric field [144] sensors, displacement [145, 146] and stress

sensing [147, 148]. These sensors benefit from tunable mechanical combinations and integration

with nano-/micro-electromechanical systems. The strict requirements for testing in experiments
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have improved as a result, though; for instance, the majority of optomechanical measurements call

for a vacuum atmosphere and a low adiabatic temperature.

The emerging field of cavity optomechanical systems (COMS), which studies the radiation

pressure interaction between optical and mechanical degrees of freedom, has made significant

advancements in recent years, including the realization of non-classical or squeezed light [149,

150, 151, 152, 153], phonon cooling [154, 155, 156, 157], ultrasensitive sensing [158], phonon

squeezing [159], phonon laser [160, 161], and slow light [162, 163, 164]. When multi-mechanical

resonators are constructed inside an optical cavity, cooperative response, switching properties, im-

proved interactions, and nontrivial characteristics emerge [165, 166, 167, 168, 169, 170, 171, 172].

In particular, one can create and manipulate the coherent exchange of excitations [173, 174, 175,

176] or analyze self-oscillations and synchrony via dynamical interactions in the context of two

or more mechanical resonators [177, 178, 179]. This article focuses on an optomechanical system

consisting of two nanomechanical resonators(NR) in a high-Q photonic crystal cavity. The lin-

ear interactions of such hybrid systems are previously investigated in the red sideband regime by

controlling the pump power of the optical cavity. The optomechanical interaction can be spatially

modified along the cavity axis to change the interaction as needed in two-membrane-in-the-middle

cavity optomechanical system [180]. Also, multiple modulators can be cooled asynchronously

[181], or used for heat transfer and photon-mediated coherent coupling between different res-

onators [175, 176].

Moreover, optomechanically induced transparency(OMIT)[182, 183] becomes a fundamental

absorption phenomenon that is associated with the present work. This is analogous to an Electro-

magnetically induced transparency-type phenomenon found in natural atomic systems in C-OMS

[184], which offers an alternate method for coherent control of light using a solid state device,

including precision measurement of charge number [185] and quantum memory [186]. In order to

achieve OMIT, two optical lasers fields known as a pump field and a probe field produce an anti-

Stokes field that interacts with the excitation of an intracavity probe field and, when a two-photon

resonance condition is satisfied, it creates a transparency window in the transmission spectrum of
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the output probe field. The study of the OMIT phenomena has advanced to include the double

OMIT and Multi-OMIT in the aspect of multiple electromechanical induced transparency [187] of

a charged two-mechanical-mode system [188] and two coupled optomechanical resonators [189].

This was similar to how the EIT was done. Additionally, some hybrid optomechanical systems

have been shown to exhibit Fano lineshapes transparency windows to produce slow light in the

output probe spectra [190].

In this study, we are focused on the controllable and efficient output probe response, particu-

larly the multiple OMIT and Fano resonance in contrast to the above-mentioned hybrid systems

in Ref[187,188,189,190]. Inspired by the various C-OMS systems discussed above, we introduce

a coupled QD-PhC optomechanical system, in which the cavity is driven by a strong pump and a

weak probe field consisting of two mechanical modes as shown in figure 1(a). J is the coupling

strength between two mechanical modes, that could be achieved in a C-OMS using either Coulomb

interaction [191] or phononic crystal waveguides in an optomechanical cavity [192]. This hybrid

C-OMS enables controllable switching between a single OMIT (single Fano resonance) and multi-

ple OMIT (two or more Fano resonances) by manipulating and modifying the system parameters.

We also study the frequency switching between the ON and OFF states to show the optical switch-

ing characteristic.

5.2 Theoretical framework

As schematically illustrated in Figure 5.1, we consider a theoretical model consisting of a single

quantum dot embedded in an optomechanical photonic crystal(PhC) nanocavity where the PhC

cavity is coupled to two mechanical modes with the interaction strength J . The quantum dot(QD)

is approximated as a two-level system with a ground state |1 > and a single excited state |2 > and

can be characterized by the pseudospin operators σ± and σz. A proper approximate representation

of the mentioned two-level system is analogous to a QD molecule [193], which when coupled to

a hybrid system affects both the output optical probe field and the displacement spectrum of the
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Figure 5.1: (a) Schematic diagram of the proposed system where a QD is embedded in the PhC optome-

chanical nanocavity. (b) Energy level diagram of the optomechanical system interacting with the two-level

system (QD) where |0a >, |0b1 > and |0b2 > denotes the zero number states of the cavity photons and the

two phonons respectively and (c) Energy level diagram of the hybrid system when the two mechanical modes

are identical (with the same frequency and mass) and the interaction is not considered (i.e., at J = 0).

mechanical modes. Here, the optical mode of the PhC cavity is coherently driven by a strong pump

field with frequency ωp and a weak probe field with frequency ωs. So the total Hamiltonian of the

proposed system is written as,

H = H0 +HI +Hd, (5.1)

where

H0 = ℏωaa
†a+ ℏωm1b

†
1b1 + ℏωm2b

†
2b2 +

ℏ
2
ωqσ

z (5.2)
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HI = ℏg1a†a(b1 + b†1) + ℏg2a†a(b2 + b†2)− ℏJ(b†1b2 + b1b
†
2) + ℏG(σ†a+ a†σ−) (5.3)

Hd = iℏEp(a
†e−iωpt − aeiωpt) + iℏEs(a

†e−iωst − aiωst) (5.4)

Here, the first term of the bare Hamiltonian H0 is the energy of the optical cavity mode with

resonant frequency ωa and a(a†) are the respective annihilation (creation) operator of the cavity

mode. The second and third term describes the energy of the two mechanical modes with frequen-

cies ωm1 and ωm2 respectively and b1(b
†
1) and b2(b

†
2) are the annihilation(creation) operators of the

two different mechanical modes respectively. The last term represents the energy of the two-level

system (QD) with frequency ωq. The first and second term of the interaction Hamiltonian HI

denotes the optomechanical interaction between the cavity mode and the two different mechani-

cal modes with optomechanical coupling strengths g1 and g2 respectively. A ‘defect’ in a planar,

one or two-dimensional, periodic dielectric structure of PhC cavity can confine both photons and

phonons simultaneously inside a relatively small volume which exhibits strong optomechanical

coupling [194, 195]. The cavity photons cause the mechanical modes to move slightly, modulating

the resonance frequency of the optical cavity ωa(x) up to the 1st order of Taylor’s expansion as

ωa(x) = ωa(0) + x.dωc

dx
|x=0, where x is the displacement of the NR which forms the linear inter-

action of the optomechanical coupling. The third term of Eq. (5.3) denotes the energy exchange

between both the mechanical modes of the system with the interaction strength J . The coupling

strength between the two mechanical modes J can be accomplished by tuning the frequencies ωm1

and ωm2, when the system was pumped at 2ωm1 or 2ωm2 (a process known as parametric pump-

ing) or at ωm1 + ωm2 (a process known as mechanical pumping) [196]. The last term denotes the

QD-cavity interaction with coupling strength G. The Hamiltonian of the coherent pump and probe

field is given by Hd where the first term denotes the driving of the cavity field at pumping ampli-

tude Ep and the second term denotes the probe with amplitude Es. The relationship between the

amplitude of the control field (Ep) and the probe field (Es) can be expressed as, Ep =
√

2κaPp

ℏωp
and

Es =
√

2κaPs

ℏωs
, where Pp(Ps) are the relevant field powers of the control(probe) field.

In a frame rotating with the pump field frequency ωp, the Hamiltonian of the proposed system
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is rewritten as,

H =ℏ∆aa
†a+ ℏωm1b

†
1b1 + ℏωm2b

†
2b2 +

ℏ
2
∆qσ

z + ℏg1a†a(b1 + b†1) + ℏg2a†a(b2 + b†2)

− ℏJ(b†1b2 + b1b
†
2) + ℏG(σ†a+ a†σ−) + iℏEp(a

† − a) + iℏEs(a
†e−iδt − aiδt)

(5.5)

where ∆a = ωa − ωp is the cavity-pump field detuning, ∆q = ωq − ωp is the exciton-pump field

detuning and δ = ωs − ωp is the probe-pump detuning.

Now, using iℏȮ = [O,H] (O is any operator), we obtain the following Heisenberg-Langevin

equations of motion for the various degrees of freedom for our proposed system as,

ȧ = −(i∆a +
κa
2
)a− iGσ− − ig1a(b1 + b†1)− ig2a(b2 + b†2) + Ep + Ese

−iδt (5.6)

ḃ1 = −(iωm1 +
κb1
2
)b1 − ig1a†a+ iJb2 (5.7)

ḃ2 = −(iωm2 +
κb2
2
)b2 − ig2a†a+ iJb1 (5.8)

σ̇z = −Γ1(σ
z +

1

2
) + 2iG(σ−a† − σ†a) (5.9)

σ̇− = −(i∆q + Γ2)σ
− + iGσza (5.10)

Here, κa is the decay rate of cavity mode and κb1 and κb2 are the decay rates of the two different

mechanical modes, respectively. Γ1(Γ2) is the exciton relaxation (dephasing) rate.

5.3 Optical Multistability

In this section we investigate the steady state solution of equations (5.6)-(5.10), to understand

the conditions during which the system experiences multistable (bistable and tristable) behaviour.

Under the condition of strong pump field and weak probe field (Ep >> Es), the Heisenberg

operators a, b1, b2, σ− and σz can be rewritten as the sum of its average steady-state values Os and

small fluctuation δO having a zero average value i.e. O = Os + δO (O = a, b1, b2, σ
−, σz). Thus

the steady-state solutions of (5.6)-(5.10) can be obtained as,
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σ−
s =

iGσz
sas

(i∆q + Γ2)
(5.11)

b1s =
−ig1|as|2 + iJb2s
(iωm1 +

κb1

2
)

(5.12)

b2s =
−ig2|as|2 + iJb1s
(iωm2 +

κb2

2
)

(5.13)

as =
Ep

i∆1 +
κa

2
− G2σz

s

i∆q+Γ2

(5.14)

σz
s = −1

2
(

A1

A1 + A2|as|2
) (5.15)

where, A1 = Γ1(Γ
2
2 + ∆2

q) , A2 = 4G2Γ2 and ∆1 = ∆a + g1(b1s + b∗1s) + g2(b2s + b∗2s) is the

effective detuning.

Further solving the above steady-state solutions we obtain the mean number of intracavity

photons na = |as|2, given by

|as|2 =
E2

p

(κa

2
− G2A1C

C2+D2 )2 + (∆a +
G2A1D
C2+D2 + (g1w1 + g2w2)|as|2)2

(5.16)

where C = 2Γ2(A1 + A2|as|2), D = 2∆q(A1 + A2|as|2), w1 = g2J−ig1
M1M2+J2 + g2J+ig1

M∗
1M

∗
2+J2 , w2 =

Jg1+ig2(J2−1)

M1M2
2+J2M2

+ Jg1−ig2(J2−1)

M∗
1M

∗2
2 +J2M∗

2
, M1 =

κb1

2
+ iωm1 and M2 =

κb2

2
+ iωm2.

Mean intracavity photon number (na) is important in measuring the optical nonreciprocity in

the transmission of the light field in a typical bistable region [197]. In our case, we use realistic

experimental values from [198, 199, 200] to support our findings and all the parameters used for

the numerical study have been made dimensionless with respect to the mechanical frequency ωm1.

The optomechanical interaction of the two mechanical modes in our proposed system generates

a higher rate of nonlinearity, which results in the possibility of optical multistability provided the

system parameters are tuned properly.

Figure 5.2(a) illustrates the optical bistability curve, which is achieved by numerically solving

Eq.(5.16), where the mean intracavity photon number is plotted as a function of incident pumping

amplitudeEp. Here, the mean intracavity photon number shows a typical hysteresis type behaviour

that changes with the increase or decrease of the pump power. Figure 5.2(a) demonstrates that
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Figure 5.2: (a)Plot of intracavity photon number na as a function of Ep which illustrates an optical bistability

curve for the value of exciton-pump detuning ∆q = 0.2ωm1. (b)Optical Switching behaviour for two di�erent

values of the exciton-pump detuning ∆q = 0.3ωm1 (Red solid line) and ∆q = 0.5ωm1 (Blue dashed line).

initially, the mean intracavity photon number (na) remains in the lower transition point (LTP, which

corresponds to the smallest root), in which the photon number transitions from the Off-state to the

On-state takes place, while the upper transition point (UTP) is where the photon number transition

jumps from the On-state to the Off-state on reversing the pump field. As a result, increasing

the input pump power will result in more intracavity photons. Thus, both the Off-state and On-

state of the photon number can be considered as the stable solutions of Eq.(5.16). Figure 2(b)

illustrates the typical optical switching behaviour for two different exciton-pump detuning values,

where the intracavity photon value switches from a lower to a higher value at a certain rate of

the incident pump power. Here, a smooth transition from the Off-state to the On-state can be

seen for ∆q = 0.5ωm1 (Blue dashed line). However, for a lower value of exciton-pump detuning

∆q = 0.3ωm1 (Red solid line), a sharp transition from Off-state to On-state can be seen which

indicates a higher gain and is favourable for optical switching [201, 202]. A sharp transition

indicates a greater switching ratio, which is calculated as the ratio of maximum to minimum cavity

emission in the steady-state driving curve using the equation, SwicthingRatio = (Pout)max

(Pout)min
; where

Pout =< a†0a0 >. When the steady-state photon number jumps from the Off-state to the On-state
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at a certain pump rate, Ep, optical switching is possible for both the values of ∆q = 0.3ωm1 and

∆q = 0.5ωm1. It is obvious that the switching ratio for ∆q = 0.3ωm1 is greater compared to

∆q = 0.5ωm1. Since a less sensitive detector may also distinguish between the Off-state and On-

state, a higher switching ratio is essential. Optomechanical interactions are known to be nonlinear,

hence our proposed system becomes highly nonlinear when two coupled mechanical modes are

introduced to it. This approach overcomes the limits that a single mechanical mode will have by

significantly enhancing both the power density and speed. For example, in figure 5.2(b), switching

between off-state to on-state occurs at the driving laser strength Ep = 11MHz. Correspondingly,

the power level of the driving laser is equal to several nW ( ∼ 22nW for κa = 1kHz). The field

strength Ep is measured in the units of MHz which is directly related to the optical pump power

by, Pp =
ℏωpE2

p

2κa
. It is also known that coupling the two mechanical modes allows the transfer of

information between the two modes which is useful for quantum networks. All other parameters

used in figure 5.2 are : ∆a = 15, G = 1, g1 = g2 = 0.02, κa = 1, κb1 = κb2 = 0.000001,Γ1 =

0.65,Γ2 = 0.33, ωm1 = ωm2 = 1, J = 0.01.

Now, further adjusting the system parameters of our proposed system, optical double-bistability

and tristability can be attained, as illustrated in figure 5.3. Figure 5.3(a) shows two connecting

bistable behaviour for the value of QD-cavity coupling strength at G = 8, which has three distinct

stable roots. At Lower Transition Point 1 (LTP 1), the system switches from Lower Stable Region

(LSR) to the Meta-stable Region (MSR) with the increasing pump power. The system continues

to be at MSR until it reaches the Lower Transition Point 2 (LTP 2) in response to a higher Ep

before making a transition to the Upper Stable Region (USR). At this point, when Ep is lowered,

the system first switches to the MSR at UTP 1, stays on MSR while Ep is being lowered further

and then abruptly switches to LSR at LTP 1. The Lower Stable Region (LSR) of the Fig. 5.3(a) is

clearly shown in a magnified form in Fig. 5.3(b). Thus the observed transition indicates an optical

switching threshold behaviour of the form LSR ⇌ MSR ⇌ USR. The chemical potential in

optical materials or superconductors can easily be used to adjust the switching thresholds of all-

optical switching via optical bistability where the bistability’s upper threshold denotes logic 1 and
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Figure 5.3: (a)and(c) Plot of intracavity photon number as a function of Ep. (b) Magni�ed view of the

double-bistability, showing the Lower Stable Region (LSR) of the plot and (d) Magni�ed view of the optical

tristability, showing the Lower Stable Region (LSR) of the plot.

writing, while its lower threshold denotes logic 0 and erasing [203]. As a result, logical processes

and data access activities can be fully realized within the optical domain or dynamically controlled

by the external parameters.

On the other hand Figure 5.3(c) illustrates a different tristable switching behaviour for the

value of QD-cavity coupling strength at G = 9. Here, the system makes a direct transition from

the LSR to USR at LTP 1, when the pump field is switched on at a higher rate and continues to

stay on USR until the pumping rate Ep starts decreasing. Due to the reduced pumping rate another

transition is made which brings the system down from USR to the MSR at UTP 1. At this stage,

we may consider two different possibilities. Firstly, if the pumping rate is further increased then
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the system will again switch to the USR by making a transition from the MSR at LTP 2. And

secondly, if the system experiences a low pumping rate then it makes a transition from the MSR to

the LSR at UTP 2. Thus, this type of tristable switching behaviour introduces new opportunities for

developing advanced photonic devices. Note that the figure 5.3(d) illustrates the magnified view of

the LSR of figure 5.3(c). A higher intracavity photon number in the USR of the hysteresis results

from simultaneous presence of stronger pump field effect as well as strong QD-cavity coupling as

shown in figure 5.3(a) and 5.3(c). Also, the ground state cooling of an optically levitated high-

Q mechanical system has been shown in the aspect of bistability and multistability [204]. All

other parameters used in figure 5.3 are: ∆a = 7,∆q = 6, g1 = g2 = 0.1, κa = 6, κb1 = κb2 =

0.000001,Γ1 = 0.65,Γ2 = 0.33, ωm1 = ωm2 = 1, J = 0.2.

5.4 Tunable Multi-OMIT and Fano resonance in Trans-

mission �eld

Optomechanically Induced Transparency(OMIT)[205] is a nonlinear phenomena which occurs due

to an optomechanical(OM) interaction where a strong pump (control) field drives the OM system

on the red sideband. Such OM interaction generates photons at second and higher-order sidebands

as a result of the nonlinearity. In this section we will discuss the possibility of multiple OMIT

and other nonlinear effects by controlling and tuning different system parameters of our proposed

model. The quadrature of the phase and amplitude are defined by the operators

X1 = (a∗ + a), X2 = i(a∗ − a), Y1 = (b∗1 + b1), Y2 = i(b∗1 − b1), Z1 = (b∗2 + b2),

Z2 = i(b∗2 − b2), U1 = (σ−∗ + σ−), U2 = i(σ−∗ − σ−), V1 = (σz∗ + σz), V2 = i(σz∗ − σz).

However, each of the above mentioned operators can be rewritten as sum of its average steady-

state value and small fluctuations as, C = Cs + δC (where, C = X1, X2, Y1, Y2, Z1, Z2, U1, U2,

V1, and V2). Now, to solve the linearized Quantum Langevin equations we remove the oscillatory

terms and define the fluctuations of the system quadratures by using the following ansatz,

88



Chapter 5. 5.4. TUNABLE MULTI-OMIT AND FANO RESONANCE IN
TRANSMISSION FIELD

δX1 = X1+e
−iδt +X1−e

iδt (5.17)

δX2 = X2+e
−iδt +X2−e

iδt (5.18)

δY1 = Y1+e
−iδt + Y1−e

iδt (5.19)

δY2 = Y2+e
−iδt + Y2−e

iδt (5.20)

δZ1 = Z1+e
−iδt + Z1−e

iδt (5.21)

δZ2 = Z2+e
−iδt + Z2−e

iδt (5.22)

δU1 = U1+e
−iδt + U1−e

iδt (5.23)

δU2 = U2+e
−iδt + U2−e

iδt (5.24)

δV1 = V1+e
−iδt + V1−e

iδt (5.25)

δV2 = V2+e
−iδt + V2−e

iδt (5.26)

After the relevant substitutions, we used the standard input-output relation [206] to investigate

the optical response of the output field of the optomechanical cavity as,

< Xout(t) > = (Ep −
√
κaXs)e

−iωpt + (Es −
√
κaX1+)e

−i(δ+ωp)t −
√
κaX1−e

−i(δ−ωp)t

= (Ep −
√
κaXs)e

−iωpt + (Es −
√
κaX1+)e

−iωst −
√
κaX1−e

−i(2ωp−ωs)t
(5.27)

The phase dispersion can create a transmission group delay given as,

τGd =
dψt

dωs

=
d(arg[t(ωs)])

dωs

(5.28)

The transmission coefficient of the output probe field at the probe frequency is given as

t(ωs) = 1− 2κa < X1+ >

Es

(5.29)

The transmission of the probe field over the OMIT window can change in response to the

incident pump field resulting in phase dispersion given as,

ψ(t) = arg[t(ωs)] (5.30)
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In the case of positive group delay (τGd > 0), there will be faster transmission of light compared

to negative group delay (τGd < 0) which corresponds to slow light. Thus, for both slow and fast

light propagation the change of phase plays a significant role.

After rescaling the total transmission field, we get the transmission rate as,

|t|2 = |1− 2κa < X1+ >

Es

|2 (5.31)
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Figure 5.4: Plot of output probe �eld transmission |t|2 as a function of normalised probe-pump detuning

δ/ωm1 for di�erent values of QD-cavity coupling strength (a) at G = 0 (b) at G = 1 (c) at G = 3, and (d)

at G = 6. All other parameters used are: ∆a = 0.9, ∆q = 0.5, g1 = g2 = 0.01, κa = 1, κb1 = κb2 = 0.00001,

Γ1 = 0.65, Γ2 = 0.33, ωm1 = ωm2 = 1, and J = 0.01.

In figure 5.4, the probe transmission |t|2 is plotted as a function of normalised probe-pump

detuning δ/ωm1 for different QD-cavity coupling strengthG. In the absence of QD-cavity coupling

i.e., at G = 0, the output probe field transmission as illustrated in figure 5.4(a) has the standard
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absorption shape at δ/ωm1 = 0 along with the narrow transmission peaks which describes the

transmission field behaviour as a single OMIT-phenomena [182]. Figure 5.4(b) illustrates the

transmission spectrum of the output probe field which is observed in the presence of the two-level

system (QD) i.e., at G = 1. Here, also a single dip can be seen evolving at δ = 0, when the

coupling between the QD and the cavity is in the intermediate regime (G ∼ κa/ωm1). Now, further

increasing the QD-cavity coupling strength to G = 3 , it can be observed that the transmission

spectra has three dips as illustrated in figure 5.4(c). These three dips occurs as a result of strong

QD-cavity coupling (G > κa/ωm1) and the observed behaviour of the transmission field can be

attributed as triple-OMIT, which is analogous to a N +1 transparency window in a multiple cavity

OM system [207].

Figure 4(d) illustrates the transmission spectrum with four dips occurs at off-resonant i.e, at

δ/ωm1 ̸= 0. Such transmission spectrum with four dips and five transmission peaks occurs due to

coupled multi-mechanical mode system, when the QD-cavity coupling is in the ultra-strong regime

i.e., at (G >> κa/ωm1). So this behaviour of the optical response can be attributed as four-OMIT

phenomena. The results mentioned above can be achieved due to the destructive interference

between the optical sidebands and the probe field when the beat frequency of the input fields

matches multiple no of times with the frequency space of the mechanical motion which leads to

multiple-OMIT in the tranmission spectrum.

Next, we investigate the influence of cavity detuning on the output probe transmission field of

the system. In figure 5.5, the probe transmission |t|2 is plotted as a function of normalised probe-

pump detuning δ/ωm1 for different values of cavity detuning ∆a. In Figure 5.5(a), a broad peak can

be observed along with a narrow Fano profile for the value of detuning at ∆a = ωm1− 0.5κ = 0.5.

The Fano line shape on the broad peak appears at δ/ωm1 = 1 for resonant frequency of the NR

i.e., at ωm1 = ωm2. For a larger value of detuning close to the red-sideband regime at ∆a =

ωm1 − 0.1κ = 0.9, as shown in figure 5.5(b), the output field generates a standard OMIT profile

with narrow transparency window at δ/ωm1 = 1 which results due to the destructive interference

between the first-order sideband and the input probe field of the system. For the value of detuning
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Figure 5.5: Plot of output probe �eld transmission |t|2 as a function of normalised probe-pump detuning

δ/ωm1 in the absence of the two-level system i.e, at G = 0 for di�erent values of cavity detuning (a) at

∆a = 0.5 (b) at ∆a = 0.9. (c) at ∆a = 1.1 and (d) at ∆a = 1.5. All other parameters used are: ∆q = 0.5,

g1 = g2 = 0.1, κa = 1, κb1 = κb2 = 0.00001, Γ1 = 0.65, Γ2 = 0.33, ωm1 = ωm2 = 1, and J = 0.01.

at ∆a = ωm1 + 0.1κ = 1.1, as shown in figure 5.5(c), illustrates a broad peak that can be observed

towards right of the Fano line shape. The Fano profile in the transmission spectrum can be seen

located at the same coordinate (at δ/ωm1 = 1) as already shown in Figure 5(a). Similarly, for the

value of detuning at ∆a = ωm1 + 0.5κ = 1.5, a similar Fano profile is observed at δ/ωm1 = 1

along with a broad peak, as shown in Figure 5.5(d). Here, the broad peak of the transmission

spectra makes a further shift towards far-right of the Fano line shape. From the above mentioned

results we can conclude that the narrow dip of the Fano line shape appears exactly at δ/ωm1 = 1,

when ∆a is either larger or smaller than ωm1 = ωm2 = 1 and the shifting of the transparency peak
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occurs due to the different sideband detuning.

Figure 5.6: Plot of output probe �eld transmission |t|2 as a function of normalised probe-pump detuning

δ/ωm1, when g1 ̸= g2 (a) for the value of J = 0. (b)Magni�ed view of the single Fano pro�le for two di�erent

values of g1 = 0.2 and g2 = 1.8(Red solid line) and g1 = 0.5 and g2 = 1.5(Blue dashed line) for the value

of J = 0. (c) for the value of J = 0.01, and (d)Magni�ed view of the double-Fano pro�le for two di�erent

values of g1 = 0.2 and g2 = 1.8(Red solid line) and g1 = 0.5 and g2 = 1.5(Blue dashed line) for the value of

J = 0.01.

In our proposed system, the PhC cavity is coupled to two NRs with optomechanical coupling

strengths g1 and g2 respectively. We analyse the effects of these two optomechanical-coupling

strengths under strong QD-cavity coupling regime to show its influence on OMIT phenomena.

Figure 5.6(a) illustrates the probe transmission plotted as function of normalised probe-pump de-

tuning δ/ωm1, for different values of both the optomechanical coupling strengths g1 and g2 in the
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absence of the NRs interaction i.e J = 0. Here, we can observe four transmission peaks along

with a single asymmetric splitting at δ/ωm1 = ±1 in the transmission spectrum of the output probe

field when g1 ̸= g2 (at g1 = 0.2 and g2 = 1.8), under the condition J = 0. Figure 6(b) illustrates

the magnified view of the asymmetric single-Fano lineshape near δ/ωm1 = 1, in the transmission

spectrum for two different values of g1 and g2 under the condition J = 0.In figure 5.6(b), we ob-

served an identical single-Fano type structure at δ/ωm1 = ±1 for each different value of coupling

(i.e, for increasing value of g1 and decreasing value of g2 or vice versa). The transmission spectra

in Electromagnetically induced transparency (which is analogous to OMIT phenomena) or Fano

lineshapes, were important to study while investigating structural asymmetry in quasi-bound states

in the continuum [208].

On the other hand, when the interaction between the two mechanical modes is considered,

the transmission spectrum of the output field demonstrates four transmission peaks (similar to the

peaks appearing in figure 5.6(a)) but experiences a change from a single asymmetric splitting to

double asymmetric splitting at δ/ωm1 = ±1, as shown in Figure 6(c). Here, for two different

values of g1 = 0.2 and g2 = 1.8 we observe double-Fano profile under the condition of J = 0.01.

Moreover, when we investigate for either increasing value of g1 (decreasing value of g2) or vice

versa, then for each different values of optomechanical coupling, we observe double-Fano profile

at δ/ωm1 = ±1. Figure 5.6(d) illustrates the magnified view of the double-Fano line shape in

the transmission spectrum for two different values of g1 and g2 (g1 ̸= g2) under the condition

J = 0.01. The asymmetric Fano profile appears in the transmission spectrum for both the values

of J = 0 and J = 0.01, because the scattering of field amplitude does not satisfy the criteria for

OMIT phenomena. All other parameters used in figure 5.6 are: ∆a = 0.9, ∆q = 0.5, κa = 1,

κb1 = κb2 = 0.00001, Γ1 = 0.65, Γ2 = 0.33, ωm1 = ωm2 = 1, and G = 3.

The output probe field contains information on the mechanical position because the mechanical

movement induced by radiation pressure force (also known as optical force) can tune the optical

cavity field due to the optomechanical coupling. In addition to the amplitude fluctuation of the

optical mode, the cavity field is again coupled back to the mechanical modes via optical field
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detuning that results in a backaction. In an optomechanical system, the dynamical backaction is

represented by an interaction Hamiltonian, HI where both the optical and the mechanical modes

are coupled to each other and the radiation pressure force induced in the system can be derived as,

Frad = −∂HI

∂x
[208]. Therefore, the optical force dependency on optomechanical interaction can

be exploited for the application of optomechanical sensing to develop sensors that have inherent

advantages over mechanically tunable methods in terms of bandwidth, speed, and efficiency [198,

209].

Figure 5.7: Plot of output probe �eld transmission |t|2 as a function of normalised probe-pump detuning

δ/ωm1 for two di�erent cases at J = 0 (Red Solid line) and J = 0.01 (Blue dashed line). (a), (b), and (c)

under the condition ωm1 ̸= ωm2 and (d) under the condition ωm1 = ωm2.

We now investigate the possible results of the output transmission spectrum if we treat the two

mechanical modes of our proposed system as independent oscillators with off-resonant mechanical

frequencies (ωm1 ̸= ωm2) for two different cases at J = 0 and J = 0.01. Figure 5.7(a) shows the
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probe transmission as a function of normalised probe-pump detuning δ/ωm1 under strong QD-

cavity coupling regime. It shows four transmission peaks that appear with three transparency

windows in the output probe field transmission of the system. Here, we observe an emerging

Fano profile appearing in the Lorentzian absorption peak located at δ/ωm1 = ±1. We further

investigate the Fano profile of the transmission spectrum for two different cases (at J = 0 and

J = 0.01). It is observed that, in absence of the interaction between the two mechanical modes i.e,

at J = 0, for different value of mechanical frequencies ωm1 = 1 and ωm2 = 0.98, we get two Fano

lineshape at δ/ωm1 = 1 and 0.98 (Red solid line) respectively, as shown in figure 5.7(b). On the

other hand, if the interaction between the two mechanical modes are considered i.e at J = 0.01,

then two Fano lineshapes are generated again but here with a slight phase shift from right to left

at δ/ωm1 = 0.99 and 0.97 (Blue dashed line) as shown in figure 5.7(b). Similarly, figure 5.7(c)

illustrates two Fano lineshapes for ωm1 = 1 and ωm2 = 1.02 under the two different cases at

J = 0 and J = 0.01. For J = 0 , the Fano lineshape can be seen located at δ/ωm1 = 1 and

1.02 (Red solid line) and for J = 0.01, the Fano lineshape makes a phase shift from right to left at

δ/ωm1 = 0.99 and 1.01 (Blue dashed line). But, in case of identical frequencies (ωm1 = ωm2 = 1),

a single-fano lineshape can be observed under both the conditions J = 0 and J = 0.01 as shown

in figure 5.7(d). For J = 0 , the single Fano profile can be seen located at δ/ωm1 = 1 (Red solid

line) and for J = 0.01, the single-Fano profile is located at δ/ωm1 = 0.99 (Blue dashed line), as

illustrated in figure 5.7(d). Hence, the result obtained from our proposed model can be used to

realize double-channel optical communication [210], high resolution spectroscopy [211], tunable

cross-phase modulation [212], and high-speed optical switches [213]. All other parameters used

in figure 5.7 are: ∆a = 0.9,∆q = 0.5, κa = 1, κb1 = κb2 = 0.00001,Γ1 = 0.65,Γ2 = 0.33, g1 =

g2 = 0.2, G = 3. Typically, linear or nonlinear optomechanical coupling is used to transmit

the optical signal’s output probe field, which also transmits data based on the displacement of

the mechanical oscillator. By using displacement sensing based on an optomechanical system,

it is possible to determine the displacement x(ωm1)or x(ωm2) in the frequency domain of the

mechanical oscillator. Also, the force acting on the mechanical oscillator may be measured with
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high precision by the optomechanical system. The displacement of the mechanical mode and the

external force has a relationship that follows F (ω) = x(ω)/χ(ω), which can be used to derive the

force signal via displacement detection. It is obvious that the only variable that distinguishes the

sensitivity of force detection from that of displacement detection is a response factor that depends

on mechanical frequency of the system [214].

5.5 Conclusion

In conclusion we have shown the possibilities of different optical response properties of our pro-

posed system consisting of a QD embedded in a PhC cavity with two mechanical modes. The

hybrid system attains tunable optical bistability, double-bistability and tristability by analysing the

steady-state mean field approximation of the system. The presence of the two-level system in

the hybrid optomechanical cavity shows single and multiple OMIT windows for strong QD-cavity

coupling regime. The probe transmission spectrum also shows the occurrence of tunable Fano res-

onance by adjusting the system parameters for different sideband regimes. The enhancement of the

radiation pressure interaction caused by the mechanical displacement results in a cavity frequency

shift equivalent to or greater than the optical linewidth, which produces a nontrivial change in the

cavity response. This provides another way to explain the nonlinear optomechanical interactions in

this multi-mechanical parametric coupling regime. Using multiple mechanical modes in a hybrid

PhC cavity to control both optical switching and light transmission will be a convenient method to

explore in all-optical switching and sensing applications.
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Conclusions

6.1 Brief summary of work

In this thesis, I have presented a detailed theoretical study of a few novel hybrid cavity-QED

systems consisting of optomechanical photonic crystal (PhC) cavities that are experimentally fea-

sible for applications in all-optical switching, quantum information processing and sensing. We

have demonstrated that a very high optical and optomechanical nonlinearity may be attained at

the single photon level for each of our proposed systems. Photonic crystal(PhC) cavities based

on optomechanical interaction have a promising future in the field of nanophotonics for further

manipulating light propagation and have a lot of potential for developing lab-on-a-chip devices. In

the emerging field of cavity optomechanics, coherent coupling between the optical modes of the

cavity and the mechanical modes of the mechanical resonator is achieved by using the radiation
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pressure of the confined cavity photon. Strong light-matter coupling in a hybrid cavity-QED sys-

tem is evident due to the occurrence of vacuum Rabi splitting (VRS). To create quantum dot-based

on-chip devices, any hybrid mesoscopic system that displays VRS can be employed. In order to

do this, non-linearities in hybrid mesoscopic semiconductor cavities could potentially be important

for coherently manipulating VRS and producing novel and intriguing physics that can be used to

realise novel quantum devices. We have thoroughly investigated the optomechanical nonlinearities

due to the radiation pressure of light on a mechanical resonator, which was earlier not explored in

the context of vacuum Rabi splitting(VRS). We proposed a theoretical model that consists of a hy-

brid quantum electrodynamics (C-QED) system where a quantum dot(QD)-based photonic crystal

optomechanical microcavity is coupled to an auxiliary cavity with a single mode waveguide. The

auxiliary cavity plays an important role to study the quantum dynamics of the system. The steady-

state mean-field analysis of our proposed system demonstrates the presence of tunable optical

bistability, double-bistability, and tristability, paving the way for innovative multi-switching pho-

tonic devices. The probe absorption spectra of the fluctuations show a Mollow triplet including an

asymmetric Fano resonance that has undergone optomechanically induced transparency (OMIT)

modification. We identify the parameters that can coherently tune the OMIT-Fano line shapes.

Particularly, three distinct quantum channels are offered by the auxiliary cavity, the QD, and the

mechanically compliant DBR, to influence and control the system’s optical response. This finding

offers a novel foundation for further research into chip-scale nano-quantum photonic devices.

In a variety of optical and optomechanical systems,a nonlinear phenomenon known as four-

wave mixing (FWM) has been observed which results from the creation of index grating that gen-

erates multiple sidebands when a two-level system interacts with a strong pump field and a weak

probe field at off-resonant frequencies. Cavity-QED was an unexplored area to study four-wave

mixing process along with optomechanical nolinearities induced due to radiation pressure force.

Therefore, we have done a systematic study on the four-wave mixing (FWM) response of a cavity-

QED system with optomechanical nonlinearity. In our proposed system all optical switching can

be achieved through tunable optical bistability, which is demonstrated by the investigation of the
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steady-state mean field. A controllable four-wave mixing (FWM) spectrum is generated due to

the QD-cavity coupling strength, Rabi coupling strength, and pump power. For a strong coupling

regime, the FWM displays a stronger signal. The off-resonant QD-cavity coupling strength con-

trols the separation between the two peaks of the vacuum Rabi splitting, and the exciton-pump

field detuning regulates the size of the sideband peaks. When the pump power is high, the two-

level system significantly modifies the output probe fields where a transparency window appears

in the four-wave mixing spectrum, allowing an approach to further improve the group delay and

slow light of the system. Therefore, the results that were obtained show that a QD-based optome-

chanical photonic crystal nanocavity system is suitable for the development of optical switches as

well as for the processing of quantum information.

When multi-mechanical resonators are built inside an optical cavity, cooperative response,

switching features, better interactions, and nontrivial characteristics appear. For instance, using dy-

namical interactions between two or more mechanical resonators, one can engineer and control the

coherent exchange of excitations or examine self-oscillations and synchronization. Optomechan-

ical interactions are known to be nonlinear and hence including two coupled mechanical modes

inside a cavity-QED system makes the system highly nonlinear. This approach overcomes the

limitations that a single mechanical mode will have by considerably enhancing both power density

and speed. Furthermore, it is known that coupling two mechanical modes can allow rapid transfer

of information between them, which is useful for quantum networks. We have theoretically pro-

posed a design where two nano-mechanical resonators are coupled to a cavity-QED system. The

presence of two mechanical modes in our hybrid system will provide a strong control system for

fast optical switching application than a single microcavity.
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6.2 Future scope of work

For recent quantum technologies like quantum precision measurement and quantum information

processing, quantum squeezing is a significant asset. In the field of cavity optomechanics, the cre-

ation of squeezed states of mechanical modes is an essential challenge. The increasing interest in

the topic of multi-mode optomechanics inspires the development of quadrature squeezing in sev-

eral mechanical resonators. However, the dark-mode effect highly overpowers the quantum effects

in multiple-degenerate-mechanical modes of an optomechanical system. The creation of mechan-

ical squeezing in a multi-mechanical-mode hybrid optomechanical system can be investigated by

eliminating the dark-mode effect using the synthetic-gauge field method. Therefore, investigating

optomechanical cooling and squeezing in a non-Hermitian system that consists of a photonic crys-

tal cavity coupled to multiple intercoupled lossy mechanical resonators, that includes a closed-loop

interaction, will be fascinating.

Some of the important cooling restrictions in Hermitian optomechanics are optical decoher-

ence, mechanical damping, optomechanical backaction, heating due to optical excitations, strong

coupling and thermal noise. The investigation of non-Hermitian optomechanics will be interesting

for future approaches as it is a promising platform to overcome certain cooling limitations and

develop novel cooling techniques with asymmetric damping.

Quantum optomechanical systems can be explored further by using non-Gaussian states which

might be a non-Gaussian resource to study quantum optomechanical phenomena and to cool me-

chanical oscillators to reach the quantum ground state.
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Appendix A

Substituting < δO >= O+e
−iδt + O−e

iδt (O = a,b,c,σz, σ− ) into equations (6)-(10) and

comparing the terms containing e±iδt on both the sides of the equations, we obtain:

−iδa+ = −(i∆a +
κa
2
)a+ − igσ−

+ − iJc+ + igom[as(b+ + b∗−) + a+(bs + b∗s)], (6.1)

iδa− = −(i∆a +
κa
2
)a− − igσ−

− − iJc− + igom[as(b− + b∗+) + a−(bs + b∗s)]− iEs, (6.2)

−iδb+ = −(iωb +
κb
2
)b+ + igom(a

∗
sa+ + asa

∗
−), (6.3)

iδb− = −(iωb +
κb
2
)b− + igom(a

∗
sa− + asa

∗
+), (6.4)

−iδc+ = −(i∆c +
κc
2
)c+ − iJa+, (6.5)

iδc− = −(i∆c +
κc
2
)c− − iJa−, (6.6)

−iδσ−
+ = −(i∆e + Γ2)σ

−
+ + ig(asσ

z
+ + σz

sa+), (6.7)

iδσ−
− = −(i∆e + Γ2)σ

−
− + ig(asσ

z
− + σz

sa−), (6.8)

−iδσz
+ = −Γ1σ

z
+ + 2ig(a∗sσ

−
+ + σ−

s a
∗
− − σ−∗

s a+ − asσ−∗
− ), (6.9)

iδσz
− = −Γ1σ

z
− + 2ig(a∗sσ

−
− + σ−

s a
∗
+ − σ−∗

s a− − asσ−∗
+ . (6.10)

Solving the above set of ten equations, we obtain the linear susceptibility as,

χ
(1)
eff (ωs) =

σ+(ωs)

Es

. (6.11)

Appendix B

All the additional variables used in Eq. (15) are mentioned below:

b0 = c0|a0|2 ,

P0 =
igw0a0−iΩw0

(i∆pu+Γ2)
,

a0 =
−gΩw0

Γ2
k
2
−∆pu∆pc−∆puB1|a0|2−g2w0+i[∆pu

k
2
+Γ2∆pc+Γ2B1|a0|2

,

b1 = c1a1 + c2a
∗
−1 ,
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b−1 = c3a−1 + c4a
∗
1 ,

a1 = αP1 + βP ∗
−1 ,

a−1 = (D3 +D4β
∗)P−1 +D4α

∗P ∗
1 ,

w1 = X1P
∗
1 +X2

µEpr

ℏ ,

w−1 = X3P−1 +X4w
∗
1 +X5

µEpr

ℏ ,

P1 = τ1P
∗
−1 + τ2w1 + τ3

µEpr

ℏ w0 ,

P−1 =
(γ1τ∗2X

∗
2+γ1τ∗3w

∗
0+γ2X4X∗

2+γ2X5)Γ2

1−γ1τ∗1−γ1τ∗2X
∗
1−γ2X3−γ2X4X∗

1
(µEpr

ℏ ) ,

c0 =
−ig0

iωm+ γm
2

,

c1 =
−ig0a∗0

iωm+ γm
2

−iδ
, c2 = −ig0a0

iωm+ γm
2

−iδ
, c3 =

−ig0a∗0
iωm+ γm

2
+iδ

c4 =
−ig0a0

iωm+ γm
2

+iδ
,

D1 =
−ig

i∆pc+
k
2
−iδ+ig0a0(c1+c∗4)+ig0(c0+c∗0)|a0|2

,

D2 =
−ig0a0(c2+c∗3)

i∆pc+
k
2
−iδ+ig0a0(c1+c∗4)+ig0(c0+c∗0)|a0|2

,

D3 =
−ig

i∆pc+
k
2
+iδ+ig0a0(c3+c∗2)+ig0(c0+c∗0)|a0|2

,

D4 =
−ig0a0(c4+c∗1)

i∆pc+
k
2
+iδ+ig0a0(c3+c∗2)+ig0(c0+c∗0)|a0|2

,

α = D1

1−D2D∗
4

, β =
D2D∗

3

1−D2D∗
4

,

τ1 =
igw0β

i∆pu+Γ2−iδ−igw0α
, τ2 = iga0−iΩ

i∆pu+Γ2−iδ−igw0α
, τ3 = −i

i∆pu+Γ2−iδ−igw0α
,

γ1 =
igw0D4α∗

i∆pu+Γ2+iδ−igw0(D3+D4β∗ , γ2 =
(iga0−iΩ)

i∆pu+Γ2+iδ−igw0(D3+D4β∗)
,

X1 =
−2ig[p∗0ατ1+p∗0β+a0−P0(D∗

3+D∗
4β)−P0D∗

4ατ1−τ1a∗0]+2iΩ−2iΩτ1
Γ1−iδ+2igP ∗

0 ατ2−2igP0D∗
4ατ2−2igτ2a∗0−2iΩτ2

,

X2 =
−2ig[P ∗

0 ατ3w0−P0D∗
4ατ3w0−τ3w0a∗0]−2iΩτ3w0+2iP ∗

0

Γ1−iδ+2igP ∗
0 ατ2−2igP0D∗

4ατ2−2igτ2a∗0−2iΩτ2
,

X3 =
−2igP ∗

0 (D3+D4β∗)−2igD4α∗P ∗
0 τ

∗
1−2igτ∗1 a0+2igP0α∗τ∗1+2igP0β∗+2iga∗0+2iΩτ∗1−2iΩ

(Γ1+iδ)
,

X4 =
−2igD4α∗P ∗

0 τ
∗
2−2igτ∗2 a0+2igP0α∗τ∗2+2iΩτ∗2

(Γ1+iδ)
,

X5 =
−2igD4α∗P ∗

0 τ
∗
3w

∗
0−2igτ∗3w

∗
0a0+2igP0α∗τ∗3w

∗
0+2iΩτ∗3w

∗
0−2iP0

(Γ1+iδ)
.

Appendix C

Using the Routh-Hurwitz Criterion [215], we discovered the stability requirements for our

proposed system as follows:

By calculating Eq.(5.11-5.15), we obtained a characteristic equation of the form:

r5λ
5 + r4λ

4 + r3λ
3 + r2λ

2 + rλ + r0 = 0 (6.12)
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where,

r5 = 1 (6.13)

r4 = A+ iB − i∆q − kb1/2− kb2/2 + Γ1 − Γ2 − iwm1 − iwm2 (6.14)

r3 = iA∆q −B∆q −G2 − J2 + (Akb1)/2 + (iBkb1)/2− (i∆qkb1)/2 + (Akb2)/2+

(iBkb2)/2− (i∆qkb2)/2− (kb1kb2)/4− AΓ1 − iBΓ1 + i∆qΓ1 + (kb1Γ1)/2 + (kb2Γ1)/2+

AΓ2 + iBΓ2 − (kb1Γ2)/2− (kb2Γ2)/2 + Γ1Γ2 + iAwm1 −Bwm1 +∆qwm1 − (ikb2wm1)/2

+ iΓ1wm1 − iΓ2wm1 + iAwm2 −Bwm2 +∆qwm2 − (ikb1wm2)/2 + iΓ1wm2 − iΓ2wm2 + wm1wm2

(6.15)

r2 = AJ2 + iBJ2 − i∆qJ
2 + 1/2iA∆qkb1 − (B∆qkb1)/2− (G2kb1)/2 + 1/2iA∆qkb2

− (B∆qkb2)/2− (G2kb2)/2 + (Akb1kb2)/4 + 1/4iBkb1kb2 − 1/4i∆qkb1kb2 − iA∆qΓ1

+B∆qΓ1 +G2Γ1 + J2Γ1 − (Akb1Γ1)/2− 1/2iBkb1Γ1 + 1/2i∆qkb1Γ1−

(Akb2Γ1)/2− 1/2iBkb2Γ1 + 1/2i∆qkb2Γ1 + (kb1kb2Γ1)/4− J2Γ2 + (Akb1Γ2)/2 + 1/2iBkb1Γ2+

(Akb2Γ2)/2 + 1/2iBkb2Γ2 − (kb1kb2Γ2)/4− AΓ1Γ2 − iBΓ1Γ2 + (kb1Γ1Γ2)/2 + (kb2Γ1Γ2)/2− A∆qwm1

− iB∆qwm1 − iG2wm1 + 1/2iAkb2wm1 − (Bkb2wm1)/2 + (∆qkb2wm1)/2− iAΓ1wm1

+BΓ1wm1 −∆qΓ1wm1 + 1/2ikb2Γ1wm1 + iAΓ2wm1 −BΓ2wm1 − 1/2ikb2Γ2wm1+

iΓ1Γ2wm1 − A∆qwm2 − iB∆qwm2 − iG2wm2 + 1/2iAkb1wm2 − (Bkb1wm2)/2

+ (∆qkb1wm2)/2− iAΓ1wm2 +BΓ1wm2 −∆qΓ1wm2 + 1/2ikb1Γ1wm2 + iAΓ2wm2 −BΓ2wm2

− 1/2ikb1Γ2wm2 + iΓ1Γ2wm2 − Awm1wm2 − iBwm1wm2 + i∆qwm1wm2 − Γ1wm1wm2 + Γ2wm1wm2

(6.16)
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r1 = iA∆qJ
2 −B∆qJ

2 −G2J2 + 1/4iA∆qkb1kb2 − 1/4B∆qkb1kb2 − 1/4G2kb1kb2

− AJ2Γ1 − iBJ2Γ1 + i∆qJ
2Γ1

− 1/2iA∆qkb1Γ1 + 1/2B∆qkb1Γ1 + 1/2G2kb1Γ1 − 1/2iAΓqkb2Γ1 + 1/2B∆qkb2Γ1

+ 1/2G2kb2Γ1 − 1/4Akb1kb2Γ1 − 1/4iBkb1kb2Γ1 + 1/4i∆qkb1kb2Γ1 + AJ2Γ2

+ iBJ2Γ2 + 1/4Akb1kb2Γ2 + 1/4iBkb1kb2Γ2 + J2Γ1Γ2 − 1/2Akb1Γ1Γ2

− 1/2iBkb1Γ1Γ2 − 1/2Akb2Γ1Γ2 − 1/2iBkb2Γ1Γ2 + 1/4kb1kb2Γ1Γ2 − 1/2A∆qkb2wm1−

1/2iB∆qkb2wm1 − 1/2iG2kb2wm1 + A∆qΓ1wm1 + iB∆qΓ1wm1 + iG2Γ1wm1 − 1/2iAkb2Γ1wm1

+ 1/2Bkb2Γ1wm1 − 1/2∆qkb2Γ1wm1 + 1/2iAkb2Γ2wm1− 1/2Bkb2Γ2wm1 − iAΓ1Γ2wm1

+BΓ1Γ2wm1 + 1/2ikb2Γ1Γ2wm1 − 1/2A∆qkb1wm2 − 1/2iB∆qkb1wm2 − 1/2iG2kb1wm2

+ A∆q∆1wm2 + iB∆qΓ1wm2 + IG2Γ1wm2 − 1/2iAkb1Γ1wm2 + 1/2Bkb1Γ1wm2−

1/2∆qkb1Γ1wm2 + 1/2iAkb1Γ2wm2 − 1/2Bkb1Γ2wm2 − iAΓ1Γ2wm2 +BΓ1Γ2wm2

+ 1/2ikb1Γ1Γ2wm2 − iA∆qwm1wm2 +B∆qwm1wm2 +G2wm1wm2 + AΓ1wm1wm2

+ iBΓ1wm1wm2 − i∆qΓ1wm1wm2 − AΓ2wm1wm2 − iBΓ2wm1wm2 − Γ1Γ2wm1wm2

(6.17)

r0 = −iA∆qJ
2Γ1 +B∆qJ

2Γ1 +G2J2Γ1 − 1/4iA∆qkb1kb2Γ1 + 1/4B∆qkb1kb2Γ1

+ 1/4G2kb1kb2Γ1 − AJ2Γ1Γ2 − iBJ2Γ1Γ2 − 1/4Akb1kb2Γ1Γ2 − 1/4iBkb1kb2Γ1Γ2+

1/2A∆qkb2|gamma1wm1 + 1/2iB∆qkb2Γ1wm1 + 1/2iG2kb2Γ1wm1 − 1/2iAkb2Γ1Γ2wm1

+ 1/2Bkb2Γ1Γ2wm1 + 1/2A∆qkb1Γ1wm2 + 1/2iB∆qkb1Γ1wm2 + 1/2iG2kb1Γ1wm2

− 1/2iAkb1Γ1Γ2wm2 + 1/2Bkb1Γ1Γ2wm2 + iA∆qΓ1wm1wm2 −B∆qΓ1wm1wm2

−G2Γ1wm1wm2 + AΓ1Γ2wm1wm2 + iBΓ1Γ2wm1wm2

(6.18)

Note: A = (κa

2
− G2A1C

C2+D2 ), B = (∆a +
G2A1D
C2+D2 + (g1w1 + g2w2)|as|2), C = 2Γ2(A1 +A2|as|2),

D = 2∆q(A1 + A2|as|2), w1 = g2J−ig1
M1M2+J2 +

g2J+ig1
M∗

1M
∗
2+J2 , w2 = Jg1+ig2(J2−1)

M1M2
2+J2M2

+ Jg1−ig2(J2−1)

M∗
1M

∗2
2 +J2M∗

2
, M1 =

κb1

2
+ iωm1 and M2 =

κb2

2
+ iωm2
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Now, the Routh array can be written as,

r5 r3 r1

r4 r2 r0

b1 b2 b3

c1 c2 c3

d1 d2 d3

e1 d2 d3

where,

b1 = −
1

r4

∣∣∣∣∣∣r5 r3

r4 r2

∣∣∣∣∣∣ , b2 = − 1

r4

∣∣∣∣∣∣r5 r1

r4 r0

∣∣∣∣∣∣ , b3 = − 1

r4

∣∣∣∣∣∣r5 0

r4 0

∣∣∣∣∣∣ ,
c1 = −

1

b1

∣∣∣∣∣∣r4 r2

b1 b2

∣∣∣∣∣∣ , c2 = − 1

b1

∣∣∣∣∣∣r4 r0

b1 b3

∣∣∣∣∣∣ , c3 = − 1

b1

∣∣∣∣∣∣r4 0

b1 0

∣∣∣∣∣∣ ,
d1 = −

1

c1

∣∣∣∣∣∣b1 b2

c1 c2

∣∣∣∣∣∣ , d2 = − 1

c1

∣∣∣∣∣∣b1 b3

c1 c3

∣∣∣∣∣∣ , d3 = − 1

c1

∣∣∣∣∣∣b1 0

c1 0

∣∣∣∣∣∣ ,
e1 = −

1

d1

∣∣∣∣∣∣c1 c2

d1 d2

∣∣∣∣∣∣ , e2 = − 1

d1

∣∣∣∣∣∣c1 c3

d1 d3

∣∣∣∣∣∣ , e3 = − 1

d1

∣∣∣∣∣∣c1 0

d1 0

∣∣∣∣∣∣ .
After numerically solving the characteristic equation we find that all the coefficients in the first

column of the Routh array [216, 217] have the same sign and are non-zero. Therefore, we conclude

that our system is stable.
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