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Abstract 

Sandwich structures are commonly used in aerospace vehicles, ship hulls, road vehicles and 

civil engineering due to their high bending rigidity, low weight, excellent vibration isolation 

and fatigue properties. The introduction of nanofillers such as carbon nanotubes (CNTs) and 

graphene platelets (GPL) as reinforcements in facings causes considerable improvement in 

overall mechanical properties, which has led to an increase in the use of sandwich structures 

with functionally graded carbon nanotube reinforced composite (FGCNTRC) facings. 

Accurate analysis of slender members in aerospace structures are crucial to prevent failure due 

to instabilities under static and dynamic loads. Partial differential equations are used to 

represent the equilibrium of complex structures under different loading conditions. Numerical 

methods are employed to solve them, finite element methods (FEM) being the most common 

for analysing solid mechanics problems. In FEM, the meshing is time-consuming and may 

introduce errors when analysing structures. Researchers have made significant progress in 

improving the Finite Element Method (FEM) by developing various modified versions that 

effectively address its limitations. Isogeometric Analysis (IGA) is one of the modified versions 

of FEM, which uses non-uniform rational B-splines (NURBS) as basis functions to 

approximate geometry and unknown field variables. The present work attempts to investigate 

the effectiveness of IGA in obtaining solutions for linear/non-linear static and dynamic 

behaviours of initially imperfect sandwich panels under uniform/non-uniform mechanical 

loads with/without considering the effect of temperature-dependent properties. An in-house 

MATLAB code is developed to solve the linear and non-linear equilibrium algebraic equations 

for sandwich plates.  

In the beginning, the efficacy of IGA with non-polynomial higher-order theory for stability 

behaviour of sandwich plates under nonuniform mechanical loads is examined by a series of 

convergence studies and a comparison of the present numerical results with available analytical 

or numerical solutions. Thereafter, the buckling, post-buckling, and post-buckled vibration 

behaviour of initially imperfect skew sandwich plates is investigated. The face sheets are 

FGCNTRC, and the core layer is made up of aluminium foam. The effects of three types of 

CNT distributions (UD, FGX and FGO) in the face sheets, two types (uniform, symmetric) of 

porosity distribution functions for the core layer and five types of in-plane compressive loads 

are examined. The pre-buckling stresses are calculated using static analysis to evaluate 
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accurate, critical loads. The post-buckling paths are traced using the modified Riks method. 

Subsequently, the influence of CNT distribution patterns, porosity functions, compressive 

loads, skew angle and the side-to-thickness ratio is studied on the non-linear stability and free 

vibration behaviour of the post-buckled skew sandwich plates.  

Next, the stability characteristics of skew sandwich plates with functionally graded facings 

reinforced with carbon nanotubes having temperature-dependent properties and a re-entrant 

auxetic core with tunable material properties are presented. The continuous function for 

material properties of the CNTs is obtained by interpolating the parameters at different 

temperature values using the fourth-degree polynomial. The resultant properties for the facings 

are determined using the modified rule of mixtures with the efficiency parameters. The 

mechanical and thermal properties of the re-entrant auxetic core are based on modified Gibson's 

relations. The equations of equilibrium are derived using the Hamilton’s principle. Several 

parametric studies are conducted to study the influence of type and magnitude of initial 

geometric imperfection, CNT distribution pattern in facings, cell angle of the auxetic core, rib 

length to thickness ratio, skew angle, and boundary conditions on linear and non-linear thermal 

post-buckling characteristics of the sandwich plate. New findings on the influence of geometric 

imperfection and auxetic core parameters on the thermal post-buckling behaviour of sandwich 

plates are presented for the first time, which may contribute towards a better understanding of 

the stability behaviour of lightweight structures. 

Finally, the non-linear vibration response for sandwich plates under thermal loading conditions 

is studied. Sandwich plates with functionally graded facings reinforced with carbon nanotubes 

having temperature-dependent properties, and a re-entrant auxetic core with tunable material 

properties are selected for investigation. The material properties of FGCNTRC face sheets are 

assumed to be graded in the direction of thickness. A detailed parametric study is conducted 

on the effects of CNTs volume fraction and distribution pattern, core-to-face sheet thickness 

ratio, skew angle, side-to-thickness ratio, the effect of cell wall angle and cell wall thickness to 

rib length ratio and in-plane boundary conditions on the non-linear vibration characteristics of 

the sandwich plates. 
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 Chapter 1  

 

1.1 Introduction 

The introduction of sandwich plate structures Figure 1.1 has been a remarkable development 

in the field of structural engineering, aerospace engineering, and marine engineering. These 

innovative configurations, which feature a core material sandwiched between two faceplates, 

offer a balance of strength and weight efficiency that has proven vital in modern engineering 

applications. To effectively utilise sandwich plates, it is imperative to have a comprehensive 

understanding of their deformable characteristics, stress distribution, natural frequencies, 

dynamic behaviour, and instability under thermal and mechanical loads.  

 

 

 
Figure 1.1: Sandwich Structures (a) with honeycomb core (b) with auxetic re-entrant core 

 

The failure mode of sandwich structures can be classified into two categories: static failure, 

which includes bending and buckling, and dynamic failure, which includes vibration and 

dynamic instability. Figure 1.2 illustrates the buckling of the aeroplane fuselage caused by 

excessive compression loading. Figure 1.3 shows an example of buckling due to wave impact 

loads in an aluminium ship structure. 

(a) (b) 
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By making small displacement and strain assumptions, the plate formulation can be simplified 

into a linear problem that can be easily solved with low computational cost. However, it is 

important to note that linear solutions may deviate from the actual responses of structures. In 

some cases, nonlinearity is the only viable option for an analyst, such as when dealing with 

post-buckling phenomena. Since the safety of such structures is of paramount concern, non-

linear analysis must be considered. It is evident from the literature that the stability analyses 

and non-linear behaviour of plates and the related approximation/discretisation technique of 

the non-linear governing equations for the general problem domain are the subject of ongoing 

research. Thus, this thesis investigates the linear and non-linear behaviour of sandwich 

structures to investigate plate behaviour in the large deformation regime thoroughly. This study 

addresses some of the less explored problems concerning sandwich plates, specifically in non-

uniform mechanical loading and response of structures in a thermal environment. 

 

The design and analysis of plates and shells under static and dynamic loads are critical in the 

structure’s overall design. The static/dynamic equilibrium of complicated structures under 

general loading conditions is mathematically represented using complex partial differential 

equations. Closed-form solutions of higher-order partial differential equations are available 

only for specific loading and boundary conditions cases. Numerical methods offer an 

alternative approach by transforming these equations into algebraic ones that can be solved 

Figure 1.3: Buckling on the ship hull 

Structure (Lavroff et al., 2013) 

 

Figure 1.2: Local buckling in airplane 

fuselage (Imran et al., 2018)  
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easily with the help of computers. The finite element method (FEM) is the most commonly 

used approach, and there are numerous commercial software options available, including 

ANSYS, ABAQUS, COMSOL, and LS DYNA. When it comes to computer-aided design for 

engineering structures, non-uniform rational B-spline (NURBS) curves are currently used for 

geometric modelling, while FEM is used for analysis. However, frequent changes in the 

structure’s design necessitate regular remeshing of the model, which can take up a significant 

amount of time and computational resources. A recent study by Ted Blacker, manager of 

simulation sciences at Sandia National Laboratories, focused on time consumption during 

modelling and analysis. The results showed that a significant portion - approximately 80% - of 

the simulation time is spent on creating suitable geometry, input data, and meshes for 

conducting large-scale finite element analysis. As illustrated in Figure 1.4, automobiles 

comprise roughly 3,000 parts alone, while the Boeing 777 boasts over 100,000 parts, and 

nuclear-powered, ballistic missile-carrying submarines feature more than 1,000,000 parts 

(Bazilevs et al., 2010). Engineering design and analysis are deeply interconnected, and 

complex designs require expertise in various fields, including structural mechanics, fluid 

mechanics, acoustics, heat transfer, electromagnetics, and more. Establishing a strong 

integration between modelling and analysis procedures is essential to address this issue. To 

address these problems, Hughes et al. (2005) proposed a method called isogeometric analysis 

(IGA), which attempts to bridge the gap between the original CAD geometry and the FEM 

mesh. It is a computational technique whose main objective is to create one model by 

integrating finite element analysis (FEA) into computer-aided design (CAD). In FEM, 

Lagrange interpolation functions are used for geometry and solution approximation. As the 

name suggests, the functions are interpolating and will pass through all the nodes during 

geometry approximation, but in IGA, the non-uniform rational B-splines (NURBS) basis 

functions are used to approximate both the geometry and unknown variables of the problem. 

The classical plate theory, which requires C1-continuity elements, often yields satisfactory 

results for thin plates. However, the first-order shear deformation (FSDT) theory is more 

appropriate for moderately thick plates. Unfortunately, standard FSDT-based finite elements 

can become overly rigid, leading to shear locking during thin plate analysis. Additionally, the 

results rely heavily on the shear correction factor, which is problematic across multiple 

problems. This thesis uses a non-polynomial higher-order theory incorporating higher-order 

terms in the displacement field to describe the shear energy component more accurately without 

needing a shear correction factor. This study aims to investigate the effectiveness of 



4 

 

isogeometric analysis using non-polynomial higher-order theory to analyse sandwich plates’ 

linear and non-linear behaviour. 

 

Figure 1.4: Engineering structures are becoming increasingly complex and large, resulting in 

longer manufacturing times and more expensive analysis. (Bazilevs et al., 2010) 

 

1.2 The Structure of the Thesis  

 
This thesis consists of eight chapters that examine the structural behaviour of sandwich plates. 

The first chapter introduces the research problem and emphasises on its importance. The 

second chapter presents a detailed review of existing literature on the subject, which helps 

outline the investigation’s scope in the third chapter. The fourth chapter documents the 

mathematical formulation of the isogeometric analysis approach, which employs non-

polynomial higher-order theory to describe the field variables of the plates. Chapter five 

focuses on the solution strategies for various problems of sandwich plates, including buckling, 

post-buckling, and post-buckled vibration behaviour of initial imperfect sandwich plates under 

non-uniform mechanical loadings. In chapter six, the buckling and post-buckling behaviours 

of initially imperfect sandwich plates in a thermal environment are examined. Chapter seven 

investigates the non-linear vibration behaviour of sandwich plates. Finally, chapter eight 
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summarises the important conclusions of the study and mentions the scope for future research 

on the problems considered. The thesis also includes references and archival publications from 

the present work. 
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Chapter 2  

Literature Review 

2.1 Introduction 

This chapter comprehensively reviews isogeometric analysis development and its applications 

in buckling, post-buckling, post-buckled vibration behaviours, and non-linear vibration 

behaviours of plates in different loading conditions. As discussed in Chapter 1, the accuracy of 

numerical solutions depends on the selection of the discretization technique or approximation 

scheme. While the finite element method may have limitations, this thesis explores the 

isogeometric analysis (IGA) as an alternative approach. Section 2.2 presents an overview of 

various plate theories. Section 2.3 briefly overviews the IGA method, including its 

developments and applications, and reviews the published works on using isogeometric 

analysis in various fields. The previous research on the linear buckling and non-linear post-

buckling phenomenon of sandwich plates under mechanical loading is discussed in Section 2.4. 

Furthermore, Section 2.5 presents the plate's thermal buckling and post-buckling behaviour 

under a thermal environment. The review of dynamic instability and non-linear vibration 

behaviours of sandwich plates is covered in Section 2.6. Finally, in Section 2.7, a summary of 

the critical review of existing literature and the corresponding research gap is provided to 

conclude this chapter. 

  

2.2 Overview of Plate Theories 

 

As technology advances, many industries - such as aerospace, civil engineering, and 

automotive - are exploring composite and functionally graded materials. Plates play an 

important role in the construction of structures, and it's essential to understand their structural 

behaviour - including bending, displacements, stress formation, and buckling - before 

incorporating them into the structure. Various plate theories have been proposed to describe 

these behaviours, as shown in Figure 2.1. Love and Kirchoff (1888) presented the first theory 

of plates based on displacement assumptions. Based on the assumption in this theory, 

transverse shear deformation is not considered. Due to this, it gives reliable results only in the 

case of thin plates, and it does not provide accurate results in the case of moderately thick 

plates. Shear deformation plate theories have been developed for transverse shear strains. In 
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order to avoid the inaccuracy of classical plate theory, Reissner-Mindlin (1945&1951) presents 

a new theory, also known as first-order shear deformation theory, taking the shear effect into 

account. 

However, due to the assumption, i.e. linear inline displacement, the shear stress, given by this 

theory, is inaccurate. For accurate results, the shear correction factor is required. However, it 

is very tedious to calculate the shear correction factor for every problem. Various higher-order 

shear deformation theories were given to overcome these issues, including proper distribution 

of shear stress, higher-order shear deformation theory, third-order shear deformation theory 

(Reddy, 1984) and fifth-order shear deformation theory (FiSDT). All theories use a single-layer 

model, which has the same degree of freedom of all the layers. The problem arises because the 

core and face sheet strength is very high due to these bending behaviours, and the dynamic 

response is inaccurate  (Ready, 1987). For more accuracy, a new concept is proposed, i.e. layer-

wise theory. The layer-wise idea is the most popular among all the layer-wise theory theories. 

The above-emphasised shows that the CPT, FSDT, HSDT, and layer-wise approaches 

described are 2D models. The multi-layered plates can also use the 3D model based on an 

elastic 3D continuum. However, the practical application of the 3D model is limited due to the 

increased number of unknowns of the problem.  

 

Figure 2.1: Illustration of how CPT, FSDT and HSDT differ regarding in-plane 

displacements Wang et al.(2000)  
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Various authors reviewed the plate theories and presented conclusions. For example, Reddy & 

Bobbins (1994) reviewed theories and computational models for the laminated composite plate. 

Liu & Li (1996) developed an overall view of laminate theories based on the displacement 

hypothesis. A review of shear deformation plate and shell theories was presented by Reddy & 

Arciniega (2004). Aydogdu (2006) compared various higher-order shear deformation theories 

(HSDTs) with available three-dimensional analysis. The researchers found that the exponential 

shear deformation theory provides the most accurate predictions for transverse displacement 

and stresses. However, the parabolic and hyperbolic shear deformation theories yield more 

precise predictions for natural frequencies and buckling loads. Zhang & Yang (2009) 

comprehensively analysed the finite element models constructed using different laminated 

plate theories. Kreja (2011) provided a detailed analysis and summary of the existing 

computational models that are used for laminated composite and sandwich panels in the 

literature review.  

2.3 History of Isogeometric Analysis (IGA) 

 

Partial differential equations are a mathematical representation of the static and dynamic 

balance of complex structures under various loading conditions. However, closed-form 

solutions for higher-order equations are only available for specific boundary conditions and 

load cases. The advent of computer technology has made the process of engineering analysis 

and design much more straightforward. Numerical methods such as the finite element method 

(FEM), finite difference method, meshless method, and differential quadrature method are 

utilised for the approximate solution of partial differential equations. FEM is the most 

commonly used technique for solid mechanics problems and was developed in 1950 for 

aerospace engineering. By the late 1960s, commercial computer programs like ASKA, 

NASTRAN, and Stardyne were available for analysis. Today, most industries related to 

automotive, aerospace, shipbuilding, and architectural design use computer-aided design 

(CAD) software for engineering design. The B-spline modelling technique, introduced by R. 

Reisenfeld in his doctoral thesis, has also significantly contributed to computer-aided design. 

(Reisenfeld, 1975). He produced line basis functions using recursive formulas, which were 

separately developed by  Cox (1972) and De Boor (1972). Non-uniform Rational B-splines 

(NURBS) is a mathematical technique for creating curves and surfaces with exceptional 

precision and flexibility. With NURBS, it is possible to accurately represent an array of basic 

shapes, including cylinders, conical sections, and circles, among many others. Moreover, this 
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technique can accurately model complex shapes while providing straightforward continuity 

control. The non-uniform rational B-spline (NURBS) system has two elements - the patch and 

the knot span. A patch is a subdomain created by knot vectors and is referred to as the 

parametric space. Patch used as a single model unless encounter geometric complexities that 

require local meshing. Each patch has two spaces to express its geometry - the physical space 

and the parent space, which is helpful for numerical evaluation. The knot span is the 

decomposition of the patch and is defined by the intervals of knots. Knots are points, lines, and 

surfaces in one-, two-, and three-dimensional topology, respectively. In order to generate 

meshes for two or three-dimensional models, NURBS surfaces or volumes are utilised. These 

surfaces are defined by a control polygon with constituent points Pi, which is crucial in 

deducing and visualising the surface within a physical space. As Figure. 2.2 demonstrates this 

changes from the parameter space governed by parameters ξ and η.  

 

Figure 2.2: General Concepts Involving Isogeometric Analysis (Ćojbašić et al., 2023) 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

IGA is gaining popularity for accurately representing and analysing complex geometries. Here 

are some examples of isogeometric analysis applications in structural analysis. Cottrell et al. 

(2006) provided an overview of isogeometric analysis for structural vibrations, including 

solving vibration models for rods, beams, plates, and 3D solids. Various researchers solved the 
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fluid mechanics and solid-fluid interaction problems using Isogeometric analysis. Akkerman 

et al. (2011)  presented an isogeometric analysis of free-surface flow for the first time. Nielsen 

et al.(2011) presented an isogeometric analysis of the 2-dimensional, steady state, 

incompressible Navier–Stokes flow subjected to Dirichlet boundary conditions with a detailed 

description of the numerical method used to solve the boundary value problem. Bazilevs et al. 

(2012) developed a framework for fluid–structure interaction (FSI) modelling and simulation 

with an emphasis on isogeometric analysis (IGA) and non-matching fluid–structure interface 

discretisations. In 2017, C. Wang and colleagues (Wang et al., 2017) conducted a 

comprehensive fluid-structure interaction (FSI) analysis in a full-scale hydraulic arresting gear. 

Recently, Bazilevs et al. (2023) proposed the effective use of isogeometric analysis in 

computational aerodynamics. Some researchers solved optimisation problems using 

isogeometric analysis. Wall et al. ( 2008) presented a structural shape optimisation framework 

based on isogeometric analysis. Hassani et al. (2011) utilised the isogeometric analysis method 

in the three-dimensional shape optimisation of structures as an alternative to finite elements. 

Dedè et al. (2012) employed isogeometric analysis in topology optimisation.  

Few researchers have worked on non-linear contact analysis problems using isogeometric 

analysis. Gutiérrez et al. (2020) presented the utilisation of isogeometric analysis and the 

boundary integral element method for solving non-linear contact problems. 

2.4 Buckling and Post-buckling Analysis of Plate Subjected to 

Mechanical Load 

When an elastic structure is under quasi-static external load, mechanical or thermal, it deforms 

proportionally until the load reaches a limiting value where it behaves nonproportional and 

becomes unstable. This condition is known as buckling (Eslami, 2018). 

There are three types of buckling and instability that a structure may experience. The first one 

is classical buckling or bifurcation buckling, which has been studied the most. In this type of 

instability, a linear elastic structure follows the primary deformation path before buckling. The 

deformation is linear up to the bifurcation point, where the loading path splits into the unstable 

and stable post-buckling paths as shown in Figure 2.3.  
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Figure 2.3: Bar subjected to axial force and the unstable linear path and stable post-buckling 

path (Eslami, 2018). 

 

 

Figure 2.4: Stable post-buckling path (Eslami, 2018) 

The second type of instability is finite disturbance buckling, as shown in Figure 2.4. It occurs 

when a point reaches the bifurcation point and experiences a sharp drop in the applied load 

before reaching a stable post-buckling path. This type of instability is common in shells. The 

structure shows an elastic response after the bifurcation point, and the loss of stability is so 

significant that it requires returning to an earlier loading level to maintain stability.  

The third type of instability is snap-through buckling, as shown in Figure 2.5. This type of 

instability is characterised by a sudden jump from one equilibrium path to another, where the 

displacements are more significant than the first non-adjacent equilibrium state. Snap-through 

is a dynamic phenomenon because the static equilibrium path is interrupted by an unstable 

region. The system must dynamically jump past the unstable region and onto a stable region 
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capable of bearing loads above the snap-through load as the load increases. Unlike column 

buckling, there is no stable branch the system can continuously follow along the equilibrium 

path. 

 

 

 

 

 

Figure 2.5: Unstable post-buckling path (Eslami, 2018) 

 

Durvasula (1970) carried out the buckling analysis of the isotropic skew plate using the 

Galerkin method under the influence of mechanical load. Brunelle (1971) worked on the 

transversely isotropic Mindlin plate under initial stress and displacement. Sherbourne & 

Pandey (1991) presented solutions for uniaxial buckling of the isotropic plate using the 

differential quadrature method (DQM). In their 2003 study, X. Wang and colleagues  Wang et 

al. (2003) employed the differential quadrature method (DQM) to investigate the buckling 

loads of thin anisotropic rectangular plates as well as isotropic skew plates. The study's findings 

offer a valuable contribution to understanding the buckling behaviour of these types of plates 

under various loading conditions. Using the DQM, the authors could accurately predict the 

buckling loads of these plates, which is crucial information for designing structures that can 

withstand buckling. Eisenberger & Alexandrov (2003) calculated accurate solutions for 

bifurcation buckling loads of isotropic plates with thickness that varies in the directions parallel 

to the two sides. The plates are subjected to biaxial compression. Wu et al. (2010) proposed a 
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mesh-free least squares-based finite difference (LSFD) method for solving free vibration and 

buckling analysis of highly skewed plates. Ferreira et al. (2011) used Reddy’s third-order shear 

deformation theory and collocation method with radial basis functions to predict elastic plate 

buckling loads. Bourada et al. (2016) studied a buckling analysis of isotropic and orthotropic 

plates using a new four-variable refined plate theory subjected to axial load. Moslemi et al. 

(2017) presented an analytical solution for the buckling of thick rectangular transversely 

isotropic plates subjected to in-plane loads.  Wang & Yuan (2018) introduced a buckling 

analysis of skew plates under axial loadings using the modified differential quadrature method 

(DQM). Ullah et al. (2019) utilised a finite integral transform method to obtain an analytical 

solution for buckling of the thin rectangular plate problem.  

The use of composite materials is necessary due to the limitations of isotropic plates. As 

composite materials are artificial materials, properties can be adjusted accordingly. 

Ungbhakorn & Singhatanadgid (2006) employed an extended kantorovich method to 

investigate the buckling of rectangular laminated composite plates with various edge supports. 

 Komur et al.(2010) studied a buckling analysis of a woven–glass–polyester laminated 

composite plate with a circular/elliptical hole using the finite element method (FEM). Arani et 

al. (2011)  presented the buckling analysis of laminated composite plates reinforced by single-

walled carbon nanotubes (SWCNTs). The analytical approach, in combination with the finite 

element method, is used to perform the analysis. Rouhi & Ansari (2012)  applied finite element 

analysis to create an atomistic model to study the buckling and vibration properties of single-

layered graphene sheets. Naderi & Saidi (2013) have presented an approach to accurately 

obtain critical buckling stress for thick orthotropic plates by considering the pre-buckling 

deformations that have not been considered in the previously published literature. Upadhyay 

& Shukla (2013) investigated the buckling and post-buckling behaviour of laminated 

composite and sandwich skew plates. In the problem formulation, higher-order shear 

deformation theory and von- Karman's non-linearity are considered in the problem formulation. 

Malekzadeh & Shojaee (2013) examined quadrilateral laminated composites' buckling 

behaviour reinforced with CNTs for uniform and functionally graded distributions. They also 

derived an analytical solution for the composite with FG symmetric distribution subjected to 

simply supported boundary conditions, with higher-order shear deformation theory and a 

meshless technique. Lei et al. (2013) presented the buckling analysis of functionally graded 

carbon nanotube-reinforced composite (FGCNTRC) plates under various in-plane mechanical 

loads using the element-free kp-Ritz method. Asadi (2014) studied the buckling analysis of 

annular composite plates reinforced by carbon nanotubes (CNTs) subjected to compressive and 
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torsional loads. Adim et al. (2016) used a refined higher-order exponential shear deformation 

theory to examine the buckling analysis of anti-symmetric cross-ply laminated composite 

plates under different boundary conditions. Singh & Singh (2016) analysed the buckling of 

composite plates subjected to uniaxial loading. Yu et al. (2016) investigated free, forced 

vibration, and buckling analysis of laminated composite plates with complicated cutouts using 

IGA-based first-order shear deformation theory. Zhang et al. (2017) utilised IGA and Reddy’s 

HSDT to study the influence of CNT orientation on the buckling behaviour of CNTRC skew 

plates. Thang et al. (2017) presented an analytical approach to analyse the buckling of 

imperfect FGCNTRC plates subjected to axial compression. In a study conducted by Zghal and 

colleagues (2018) (Zghal et al., 2018), the mechanical buckling behaviour of composite plates 

and curved panels reinforced with carbon nanotubes and functionally graded materials was 

examined. A double director's finite element shell model was utilized to establish the governing 

equations, resulting in a high-order displacement field distribution and accounting for the 

impact of transverse shear deformations. Geng et al. (2021) carried out the buckling analysis 

of functionally graded graphene platelets-reinforced composite  (GPL-RC) rectangular plates 

with a circular hole using the finite-element (FE) method. Jahanpour (2023) studied the 

buckling of functionally graded (FG) plates under in-plane compressive loadings. Various 

researchers worked on the plates' linear buckling and post-buckling behaviour, which is 

described below. This section analyses the plate's post-buckling and post-buckled vibration 

behaviour.  

The buckling and post-buckling behaviours of thick functionally graded plates resting on 

elastic foundations were investigated by Duc & Van Tung (2011)  and subjected to in-plane 

compressive, thermal, and thermomechanical loads using higher-order shear deformation 

theory. Ovesy et al. (2012) employed higher-order shear deformation theory to examine the 

post-buckling analysis of composite plates with embedded delamination’s of any shape. The 

formulation relies on the Rayleigh-Ritz approximation technique. They applied higher-order 

shear deformation theory and Green–Lagrange non-linear strain–displacement relationships. 

Dash & Singh (2012) carried out laminated composite plates' buckling and post-buckling 

behaviour. Le-Manh & Lee (2014) explored the post-buckling behaviour of laminated 

composite plates using NURBS-based isogeometric analysis (IGA). They used a green strain 

tensor with minor rotations. The proposed strain tensor and the von Karman strain tensor are 

both formulated. Governing equations are derived from the first-order shear deformation theory 

(FSDT) framework. Praciano et al. (2019) used the isogeometric approach to carry out buckling 

and post-buckling analyses of laminated plates and shells. They studied the effects of various 
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factors on critical load and post-buckled behaviour. Yang et al. (2020) applied the IGA and 

Finite Cell Method (FCM) to the post-buckling behaviour of multi-directional perforated FGM 

plates.  

Since metal foam-based sandwich structures can be manufactured without adhesive bonding, 

they are being used in automotive and aerospace applications (Betts, 2012). There are limited 

investigations on the flexural behaviour of sandwich structures with metal foam cores. 

Magnucka-Blandzi & Magnucki (2007) investigated the elastic buckling behaviour of a 

sandwich beam with a metal foam core. Styles et al. (2007) explored the effect of core thickness 

on the deformation mechanism of a sandwich structure with an aluminium foam core and a 

thermoplastic composite facing. Furthermore, the literature on the non-linear stability 

behaviour of non-rectangular sandwich plates with nanocomposite facings and porous and 

auxetic cores is scarce.   

2.5 Buckling and Post-buckling Analysis under Thermal Load 

 

Conducting a thermal buckling analysis is crucial to structural engineering and design. Thermal 

buckling and post-buckling are critical in aerospace, civil engineering, and mechanical 

engineering, as they involve examining how structures handle thermal loads and assessing the 

likelihood of buckling or failure occurring in such conditions. This section presented a 

literature review on the buckling and post-buckling of plates in a thermal environment. 

Using the finite element method, Chen et al. (1991) studied the thermal buckling behaviour of 

composite laminated plates subjected to uniform and non-uniform temperature fields. In their 

study published in 2001, Shukla & Nath (2001) explored the buckling and post-buckling 

analysis of moderately thick angle-ply laminated composite rectangular plates. The plates were 

subjected to combined in-plane mechanical load and temperature gradient across the thickness. 

The problem was formulated using geometric non-linearity in the von Karman sense and first-

order shear deformation theory. Thankam et al. (2003)  studied the post-buckling behaviour of 

rectangular laminated plates subjected to thermal loads using the finite element method. 

Matsunaga (2005) proposed a two-dimensional global higher-order deformation theory for 

cross-ply laminated composite and sandwich plates for thermal buckling. Shariyat (2007) 

conducted a thermal buckling analysis of rectangular composite multi-layered plates subjected 

to uniform temperature rise using a layer-wise plate theory. The von Karman strain-

displacement equations were utilised to account for large deflection occurrences. Wu et al. 

(2007) investigated the post-buckling response of a functionally graded materials plate 
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subjected to thermal and mechanical loads using rapidly converging double Chebyshev 

polynomials.  Kumar & Singh (2009) presented a non-linear FEM analysis of laminated 

composite plates with SMA fibres subjected to uniform temperature to study buckling and post-

buckling behaviour. In 2013, Gunda  (Gunda, 2013) explored the thermal post-buckling paths 

of square plate configurations that are homogeneous, isotropic, and resting on an elastic 

foundation of the Winkler type. The plates were subjected to biaxial compressive thermal loads, 

and the results were expressed as simple closed-form solutions using the Rayleigh-Ritz method. 

The analysis accounted for the geometric non-linearity of the von Karman type. The study 

conducted by Sreehari & Maiti (2016) focuses on the creation of a finite element formulation 

that can effectively handle the analysis of bending, buckling, and post-buckling behaviours of 

composite laminated structures that have experienced damage. To achieve this, the researchers 

applied the inverse hyperbolic shear deformation theory in the creation of the finite element 

formulation.  

Thermal buckling and post-buckling were studied by various researchers using a first-order 

shear deformation theory in conjunction with NURBS-based isogeometric analysis.  

Isogeometric finite element analysis (IGA) was (Nguyen-Xuan et al., 2014)  applied to study 

static, free vibration, and buckling analysis of functionally graded material plates using a 

refined plate theory. Tran et al. (2016) developed equilibrium and stability equations for plates 

of functionally graded material in a thermal environment using isogeometric analysis in 

conjunction with higher-order shear deformation theory. 

 Kiani (2018a) and Kiani (2020) investigated the thermal buckling and post-buckling 

behaviour of composite laminated skew plates reinforced by graphene platelets. The formulat

ion uses the first-order shear deformation theory, Reddy’s third-order shear deformation plate 

theory, and isogeometric analysis. Kiani (2018b) studied the post-buckling behaviour of a 

sandwich plate with FGCNTRC facings and Ti-6Al-4V core using a formulation based on 

FSDT.  

Farzam & Hassani (2018) used isogeometric analysis (IGA) based on the modified couple 

stress theory to examine the thermal and mechanical buckling analysis of functionally graded 

carbon nanotube-reinforced composite plate. Do & Lee (2019) and Fang et al. (2021) explored 

the thermal buckling analysis of the functionally graded plate using 3D quasi-isogeometric 

analysis.  Do & Lee (2021) examined the buckling and post-buckling behaviour of laminated 

composite plates containing functionally dispersed graphene platelets (GPLs) under various 

thermal loadings using deformable shear theory and isogeometric analysis. Most of the existing 

studies have provided analytical solutions or used FEM with simplified imperfection models. 
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However, the thermal stability characteristics of sandwich plates with a re-entrant core and 

initial geometric imperfection have not been explored.  

2.6  Dynamic Instability Analysis and Non-linear Vibration  

 

Dynamic instability occurs when a structure loses stability and experiences uncontrolled 

vibrations or deformations due to dynamic loading, temperature changes, material properties, 

or geometric configurations in sandwich plates. Various studies have thoroughly examined the 

dynamic instability of composite sandwich plates, focusing on the effects of CNTs. 

Researchers have explored several factors that influence this instability, such as the volume 

fraction of carbon nanotubes, thickness ratio between the core and face sheet, overall plate 

thickness, aspect ratio, damping, and temperature.(Sankar et al.(2016); Kamarian & Song 

(2023); Fu et al. (2016). Numerous authors have studied the dynamic instability of plates in 

various configurations. They studied the dynamic stability of plates, demonstrating the 

practical application of finite element and finite difference methods. Their research focused on 

analysing the behaviour of plates under varying conditions, using advanced mathematical 

techniques to model and predict dynamic stability. (R. Kumar et al. (2017);(Sahoo & Singh 

(2018); Lei et al. (2014); J. P. Singh & Dey (1992);  Nguyen & Ostiguy (1989).Nguyen et al. 

(1989) conducted a comprehensive investigation into the dynamic instability and non-linear 

response of isotropic plates under the influence of different boundary conditions. The 

researchers conducted a comprehensive study that incorporated theoretical predictions and 

experimental analyses to gain valuable insights into the behaviour of sandwich plates in varying 

conditions. The study was mainly focused on evaluating the stability of the plates in thermal 

environments, which is a critical factor for ensuring their safe and reliable operation. It is 

important to thoroughly understand and effectively manage the dynamic instability of these 

structures. The thermal environment poses additional complexities and challenges, as 

temperature changes can induce thermal stresses and strains within the structure. This can cause 

variations in facings and core material properties, significantly altering sandwich plates' 

dynamic behaviour and stability. Properly accounting for these temperature-induced effects in 

the design and analysis processes is essential to avoid catastrophic consequences. 

Recent studies have examined how temperature variation affects structural dynamic instability 

(Alijani & Amabili (2013); Wu et al. (2017); Fu et al. (2021); Chen et al. (2017). Plates can 

have imperfections that come in different forms, such as geometric deviations, surface 
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roughness, residual stresses, material inhomogeneities, and manufacturing defects. These 

deviations can negatively affect the mechanical properties of plates, leading to a decrease in 

their load-carrying capacity stiffness and an increase in stress concentrations. They can even 

cause premature failure.  Rafiee et al.(2014) conducted a study on the non-linear dynamic 

instability of piezoelectric functionally graded carbon nanotube-reinforced composite plates 

under thermal and mechanical loads, considering initial geometric imperfection using the 

Galerkin approach. Gu et al. (2019) investigated the dynamic instability of a rotating cantilever 

cross-ply laminate thin-walled twisted plate with an exponential function type initial geometric 

imperfection using the Rayleigh-Ritz method and shallow shell theory. In their study (Li et al., 

2023) investigated the dynamic buckling behaviour of an imperfect sandwich plate with an 

architected cellular core. They utilised the first-order shear deformation plate theory with the 

Von Karman non-linearity to construct the governing equation system, which was then solved 

using the Galerkin and fourth order Runge-Kutta methods.  

An isogeometric method was used to investigate the dynamic stability of anisotropic composite 

plates with generic forms, as described by  Shafei et al. (2019). Nguyen et al. (2020) used the 

isogeometric analysis to investigate the mechanical behaviour of FG graphene platelets 

reinforced porous plates, including buckling, vibration, and dynamic instability.  Mohammadi 

et al.(2022) used IGA and higher-order shear deformation theory to analyse uniform in-plane 

loaded folded plates strengthened by carbon nanotubes (CNTs). This work is motivated by the 

importance of addressing dynamic instability in sandwich plates in thermal environments. The 

investigation will involve numerical analyses to explain the effects of temperature changes, 

material properties, and geometric configurations on the dynamic stability of sandwich plates.  

This section delves into a detailed analysis of the non-linear vibration of both perfect and 

imperfect shear deformable plates, considering the application of thermo-electro-mechanical 

preload.  

Using a semi-analytical approach, Kitipornchai et al. (2004) analysed non-linear vibration on 

laminated plates made of functionally graded material face sheets and homogeneous cores. 

Chen et al. (2006) performed a non-linear vibration analysis of an imperfect functionally 

graded material plate. They utilised the perturbation technique, which allowed them to 

investigate the plate's vibrational behaviour under various conditions. Chen & Tan (2007) 

conducted a study on the non-linear vibration behaviour of FGM plates that were initially 

stressed and had geometric imperfections. They utilised Galerkin's method to analyse the 

behaviour of an imperfect FGM plate and the Runge-Kutta method to solve the problem under 
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harmonic axial loading conditions. Del Prado et al. (2009) investigated a cylindrical shell's 

stability and non-linear vibration analysis with an initial geometric imperfection. In their 2011 

study, Jagtap and colleagues Jagtap et al. (2011) explored the stochastic non-linear free 

vibration response of functionally graded materials plates, which were elastically supported 

and rested on a two-parameter Pasternak foundation with Winkler cubic non-linearity. In their 

research study, the researchers delved into the impact of uniform and non-uniform temperature 

fluctuations on various system properties, such as temperature-independent (TID) and 

temperature-dependent (TD) material properties. They employed a higher-order shear 

deformation theory, added by the finite element method and a first-order perturbation technique 

to conduct the analysis. Overall, aimed to gain a deeper understanding of how the system 

properties are affected by temperature changes, and the findings may have significant 

implications for related fields of study. Belalia & Houmat (2012)  utilised a curved triangular 

p-element to investigate the non-linear free vibration properties of functionally graded shear 

deformable sector plates. The study employed the p-version of the finite element method to 

analyse non-linear free vibration in functionally graded sector plates, utilising a curved 

triangular p-element. Von Karman's assumptions were integrated with Mindlin's first-order 

shear deformation theory to account for geometric non-linearity. The shape functions were 

generated using shifted Legendre orthogonal polynomials. In a study conducted by Gulshan 

Taj et al. (2014), the vibration behaviour of FGM skew plates in a thermal environment was 

examined. The kinematics equations relied on Reddy's theory, and a 9-noded isoparametric 

Lagrangian element was utilised to mesh the plate shape. To determine the temperature profile 

of the plate along the thickness direction, a one-dimensional Fourier heat conduction equation 

was employed. Gupta et al. (2016) presented vibration characteristics of shear deformable 

functionally graded material plates using the C0 isoprametric finite element method. Parida & 

Mohanty (2018)  presented a free vibration analysis of skew FGM plate in thermal loading 

conditions using the finite element method in conjunction with higher-order shear deformation 

theory. Kim et al. (2019) proposed a semi-analytical method to study the non-linear dynamic 

response and vibration of a stiffened functionally graded plate resting on an elastic foundation 

that is eccentrically oblique. Yang et al. (2020) studied large amplitude non-linear vibration of 

carbon nanotube-reinforced composite (CNTRC) laminated plates with negative Poisson's 

ratios in thermal environments using the Reddy theory and the two-step perturbation technique.  

Singh et al. (2021) presented a study on the non-linear vibration and instability of carbon 

nanotube fibre-reinforced composite plates under different types of non-uniform in-plane 

periodic loadings. Studies on the non-linear vibration behaviour of sandwich plates made up 
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of FGCNTRC facings and re-entrant auxetic core materials in thermal environments are not 

readily available in the literature. 

2.7 Summary 

After a detailed review of the literature, the following gaps in the literature have been 

identified:  

1. The efficiency of isogeometric analysis (IGA) with non-polynomial higher-order 

theory has not been explored in detail for the linear buckling and non-linear post-

buckling and post-buckled vibration behaviour of sandwich plates made up of 

FGCNTRC facings and re-entrant auxetic core materials.  

2. The literature on the non-linear stability behaviour of skew sandwich plates subjected 

to non-uniform mechanical loadings is limited.  

3. The literature on the non-linear stability behaviour of skew sandwich plates with re-

entrant auxetic cores subjected to thermal loading is scarce.  

4. Studies on the non-linear vibration behaviour of sandwich plates made up of 

FGCNTRC facings and re-entrant auxetic core materials in thermal environments are 

not readily available in the literature. 
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Chapter 3  

Scope and Objectives 

 

3.1 Introduction 

The preceding chapter offers a comprehensive overview of the literature on buckling, post-

buckling, and vibration attributes of isotropic, laminated, composite, and sandwich plates. It is 

worth noting that most research in this field has focused on the stability characteristics of 

isotropic, laminated plates and sandwich structures with honeycomb cores. Through an 

extensive review of the literature, it was discovered that there are no existing investigations on 

the post-buckling and free vibration of post-buckled skew sandwich plates with functionally 

graded carbon nanotube reinforced composite (FGCNTRC) facings and metal foam core 

subject to arbitrary edge loading conditions. Moreover, there are no studies available on the 

stability behaviour of sandwich structures with tunable auxetic cores having a negative Poisson 

ratio in a thermal environment. The non-linear vibration behaviour of the auxetic core-based 

sandwich plate in a thermal environment is also available in the literature, possibly due to the 

inherent complexities of the non-linear modelling of the sandwich plate. This study examines 

distinctive features of linear and non-linear plate behaviours, specifically on skew sandwich 

plates. As such, the objectives of the current investigation are outlined herein. 

1. To develop an in-house MATLAB code to explore the efficiency of isogeometric analysis 

(IGA) with non-polynomial higher-order theory for stability and vibration characteristics 

of sandwich plates in mechanical or thermal environments.  

2. To study the buckling, post-buckling and post-buckled vibration behaviour of initial 

imperfect sandwich plates with metal foam core (square, skew) under various mechanical 

loading (uniform, parabolic, sinusoidal, triangular and concentrated) and boundary 

conditions (simply supported and clamped). 

3. To study the buckling and post-buckling behaviour of initial imperfect sandwich plates 

(square and skew) with an auxetic core having tunable material properties under thermal 

loading and different boundary conditions. 

4. To investigate linear and non-linear vibration characteristics of auxetic core-based 

sandwich plates in the thermal environment. 
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Chapter 4  

Mathematical Formulation 

 

4.1 Introduction 

This thesis utilises the non-polynomial higher-order theory of plates for both linear and linear 

analyses of sandwich plates. Section 4.2 introduces a non-uniform rational B-spline (NURBS) 

based isogeometric analysis (IGA), followed by structural modelling and constitutive relations 

for isotropic and composite plates in Section 4.3. The transformed constitutive relation is 

presented in Section 4.4, while Section 4.5 covers the strain displacement relationship for the 

plate using non-polynomial higher-order theory. Section 4.6 delves into the effect of the mode 

of imperfection in the plate, and Section 4.7 presents the governing equation for problem 

formulation. Section 4.8 outlines the procedure for modelling the stability behaviour of the 

plate under non-uniform mechanical loading, while Section 4.9 covers thermal buckling and 

post-buckling analysis. Section 4.10 explores the non-linear vibration behaviours of the plate 

under thermal loading conditions. Section 4.11 presents the Newton-Raphson, force control 

displacement control, and arc length methods for solving non-linear equations. Finally, Section 

4.12,Section 4.13 and section 4.14 discuss the procedure for numerical integration,imposing 

boundary conditions for various problems.Finally section 4.15 summarises the important 

contributions of this chapter.  

4.2 Isogeometric Analysis (IGA) 

IGA, an engineering analysis methodology based on using the exact representation of 

geometry, was proposed by Hughes et al. (2005). In IGA, NURBS basis functions approximate 

geometry and field variables. NURBS are weighted rational B-spline curves. The B-Spline 

basis functions are obtained using the Cox-de-Boor recursion formula. (Cox (1972);de Boor 

(1972)) 

𝑁𝑖,0(𝜉) = {
1    𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0        otherwise 

                                                                             (4.1) 

𝑁𝑖,𝑝(𝜉) =
𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉)                                   (4.2) 

Here 𝜉 is the knot value in the knot vector, 𝛯 = {𝜉1, 𝜉2, . . . . ,𝜉𝑛+𝑝+1}, p is the degree of the B-

spline curve, and n is the number of control points in the physical space. 
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Let 𝑁𝑖,𝑝(𝜉) be 𝑝-th order B-spline function defined by the knot vector Ξ = [𝜉1, ⋯ , 𝜉𝑛+𝑝+1] 

The derivative of the B-spline function 
𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) is calculated recursively as        

𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) =

𝑝

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) −

𝑝

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉)                                         (4.3) 

This can be proven by mathematical introduction. The 𝑘𝑡ℎ derivative of the B-spline function, 

denoted by 𝑁𝑖,𝑝
(𝑘)

 also can be computed by 

𝑁𝑖,𝑝
(𝑘)
= 𝑝(

𝑁𝑖,𝑝−1
(𝑘−1)

𝜉𝑖+𝑝−𝜉𝑖
−

𝑁𝑖+1,𝑝−1
(𝑘−1)

𝜉𝑖+𝑝+1−𝜉𝑖+1
)                               (4.4) 

Alternatively, the 𝑘𝑡ℎ derivative may be computed in terms of B-spline functions such that 

𝑁𝑖,𝑝
(𝑘)
=

𝑝!

(𝑝 − 𝑘)!
∑  

𝑘

𝑗=0

𝑎𝑘,𝑗𝑁𝑖+𝑗,𝑝−𝑘(𝜉)                                             (4.5) 

Where 

𝑎0,0  = 1

𝑎𝑘,0  =
𝑎𝑘−1,0

𝜉𝑖+𝑝−𝑘+1−𝜉𝑖

𝑎𝑘,𝑗  =
𝑎𝑘−1,𝑗−𝑎𝑘−1,𝑗−1

𝜉𝑖+𝑝+𝑗−𝑘+1−𝜉𝑖+𝑗
 𝑗 = 1,2,⋯ , 𝑘 − 1

𝑎𝑘,𝑘  =
−𝑎𝑘−1,𝑘−1

𝜉𝑖+𝑝+1−𝜉𝑖+𝑘
.

                                         (4.6) 

For the given knot vector 𝑝-th order NURBS  basis function is given by 

𝜑𝑖
𝑝(𝜉) =

𝑁𝑖,𝑝(𝜉)𝜔𝑖

∑  𝑛
𝑖=1  𝑁𝑖,𝑝𝜔𝑖

                                                                     (4.7) 

Where 𝜔𝑖 are the weights and 𝑁𝑖,𝑝(𝜉) is the B-spline basis function.  

Applying corresponding control points 𝑃𝑖 to the NURBS function, the NURBS curve can be derived 

as 

𝐂(𝜉) =∑  

𝑛

𝑖=1

𝜑𝑖
𝑝(𝜉)𝑃𝑖                                                                                  (4.8) 

A two-dimensional NURBS basis function is defined as follows: 

𝜑𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝜔𝑖,𝑗

∑  𝑛
𝑖̂=1 ∑  𝑚

𝑗̂=1𝑁𝑖̂,𝑝(𝜉)𝑀𝑗̂,𝑞(𝜂)𝜔𝑖̂,𝑗̂
                                (4.9) 
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Where Ni,p and Mj,q are the B-Spline basis functions with orders p, q respectively in two 

different directions, defined by the knot vectors        

The derivative of the NURBS function is given by 

𝑑

𝑑𝜉
𝜑𝑖
𝑝(𝜉) = 𝜔𝑖

𝑊(𝜉)𝑁𝑖,𝑝
′ (𝜉)−𝑊′(𝜉)𝑁𝑖,𝑝(𝜉) 

(𝑊(𝜉))2
                    (4.10) 

 

                                    where 𝑁𝑖,𝑝
′ =

𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) and 𝑊′(𝜉) = ∑  𝑛

𝑖=1 𝑁𝑖,𝑝
′ (𝜉)𝜔𝑖 

 

𝛯1 = {𝜉1, 𝜉2, … . ,𝜉𝑛+𝑝+1}, 𝛯2 = {𝜂1, 𝜂2, . . . . ,𝜂𝑛+𝑝+1} in the parametric, space with n, m is the 

number of control points in the respective directions coordinates. The solution variables are 

approximated as a linear combination of basis functions, and the values of the variable at 

control points are as follows: 

𝑆(𝜉, 𝜂) =∑  

𝑛

𝑖=1

∑ 

𝑚

𝑗=1

𝜑𝑖,𝑗
𝑝,𝑞𝑃𝑖,𝑗                                             (4.11)   

 Where Pi,j represents the corresponding values at the control points. A detailed derivation of 

NURBS-based approximation can be found in Hughes et al. (2005) 

4.3  Structural Modelling 

 

Structures analysed in the present investigation are assumed to consist of elastic and 

homogenous material. Both isotropic and orthotropic materials are considered in the present 

work. The stress-strain (constitutive) relations are given in the following section (Watts et al., 

2017). 

 

{

𝜎1
𝜎2
𝜏12
} = [

𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝛾12
]                                (4.12) 
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{
𝜏23
𝜏13
} = [

𝑄23 0
0 𝑄13

] [
𝛾23
𝛾13
]                                        (4.13) 

Where '1' represents the direction along the fibers of the lamina. '2' and '3' are directions 

perpendicular to the fiber. 𝑄𝑖𝑗 re plane-stress reduced stiffness coefficients which are related 

to engineering constants as follows (Watts et al., 2017) 

4.3.1 Isotropic Material  

𝑄11 =
𝐸

(1−𝜈2)
,  𝑄12 =

𝜈𝐸

(1−𝜈2)
,  𝑄66 = 𝐺,  𝑄23 = 𝑄13 = 𝐺       (4.14) 

4.3.2 Orthotropic Material 

 

𝑄11 =
𝐸1

(1−𝜈12𝜈21)
,  𝑄22 =

𝐸2

(1−𝜈12𝜈21)
;  𝑄12 =

𝜈12𝐸2

(1−𝜈12𝜈21)
=

𝜈21𝐸1

(1−𝜈12𝜈21)

𝑄66 = 𝐺12,  𝑄23 = 𝐺23,  𝑄13 = 𝐺13
        (4.15) 

4.4   Transformed Constitutive Relations 

In a laminated composite structure, the fibres of the lamina are inclined at an angle βf to the 

global x-axis. Therefore, constitutive relations must be transformed from local to global 

coordinate systems. 

Transformation of constitutive relations in global 𝑥 - 𝑦 coordinate system for a 𝑘th  lamina is 

given by (Watts et al., 2017) 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

}

𝑘

= [

𝑄‾11 𝑄‾12 𝑄‾16
𝑄‾21 𝑄‾22 𝑄‾26
𝑄‾16 𝑄‾26 𝑄‾66

]

𝑘

[

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

]

𝑘

= 𝐐̅𝜖‾1               (4.16) 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
}
𝑘
= [

𝑄‾44 𝑄‾45
𝑄‾45 𝑄‾55

]
𝑘

[
𝛾𝑦𝑧
𝛾𝑥𝑧
]
𝑘
= 𝐏̅𝜖‾2                 (4.17) 

𝐐̅ = 𝐓𝐐𝐓′  and  𝐏̅ = 𝐓𝟏𝐏𝐓′1                                        (4.18) 

𝐏,𝐐, 𝐓 and 𝐓𝟏 are defined as 

Q = [
𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄66

]                                                      (4.19) 
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𝐏 = [
𝑄23 0
0 𝑄13

]                                                              (4.20) 

𝐓 = [

cos2 𝛽𝑓 sin2 𝛽𝑓 −2sin 𝛽𝑓cos 𝛽𝑓

sin2 𝛽𝑓 cos2 𝛽𝑓 2sin 𝛽𝑓cos 𝛽𝑓

sin 𝛽𝑓cos 𝛽𝑓 −sin 𝛽𝑓cos 𝛽𝑓 cos2 𝛽𝑓 − sin
2 𝛽𝑓

]       (4.21) 

𝐓𝟏 = [
cos 𝛽𝑓 sin 𝛽𝑓
−sin 𝛽𝑓 cos 𝛽𝑓

]                                                          (4.22) 

The equations (4.16-4.17) are combined and written as 

𝝈 = [
𝑸̅    0

0    𝑷̅
] {
𝜖1̅
𝜖2̅
} = 𝐃𝜺                                       (4.23) 

4.5   Strain-Displacement Relations 

The kinematic assumptions of the mid-plane of the plate with thickness h are formulated on 

the non-polynomial higher-order theory Watts et al. (2020) 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0(𝑥,𝑦)

𝜕𝑥
+ 𝑓(𝑧)𝜃𝑥(𝑥, 𝑦)                                                   (4.24)                                                                                       

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0(𝑥,𝑦)

𝜕𝑦
+ 𝑓(𝑧)𝜃𝑦(𝑥, 𝑦)                                                   (4.25)                                                                       

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                                                            (4.26) 

 𝑢0, 𝑣0 are displacements in x and y direction and 𝑤0 is the displacement in the z-direction at 

any point on the middle plane. θy and
 
θx are normal to the mid-plane rotations about the x and 

y-axis, respectively. The exponential function,  𝑓(𝑧)= (𝑧𝑒
1−

4𝑧2

ℎ2 + 𝑧) is derived to satisfy zero 

transverse shear conditions at the top and bottom surfaces of the sandwich laminate as shown  

Figure 4.1:Sandwich Plate 
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in Figure 4.1 

Additionally, hc refers to the thickness of the auxetic core, and hf represents the facings 

thickness of the top layer, which is equal to the thickness of the bottom layer. 

The displacements are approximated using NURBS basis functions as follows: 

 

𝑞 =

{
 
 

 
 
𝑢0
𝑣0
𝑤0
𝜃𝑥
𝜃𝑦}
 
 

 
 

= ∑  

𝑛×𝑚

𝑖=1

[
 
 
 
 
φi 0 0 0 0
0 φi 0 0 0
0 0 φi 0 0
0 0 0 φi 0
0 0 0 0 φi]

 
 
 
 

{
 
 

 
 
𝑢0𝑖
𝑣0𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖}
 
 

 
 

= ∑  

𝑛×𝑚

𝑖=1

φi𝑞𝑖                                            (4.27) 

 

where 𝜑i is the NURBS-based approximation function  and (𝑢0𝑖,𝑣𝑜𝑖 , 𝑤0𝑖,𝜃𝑥𝑖,𝜃𝑦𝑖)
𝑇
are the 

degrees of freedom of control point Pi. 

The strain displacement relations are as follows: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥}
 
 

 
 

− 𝑧

{
 
 

 
 

𝜕2𝑤0

𝜕𝑥2

𝜕2𝑤0

𝜕𝑦2

2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

+ 𝑓(𝑧)

{
 
 

 
 

𝜕𝜃𝑥

𝜕𝑥
𝜕𝜃𝑦

𝜕𝑦

𝜕𝜃𝑥

𝜕𝑦
+
𝜕𝜃𝑦

𝜕𝑥 }
 
 

 
 

+
1

2

{
 
 

 
 (

𝜕𝑤0

𝜕𝑥
)
2

(
𝜕𝑤0

𝜕𝑦
)
2

2
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦 }
 
 

 
 

                                   (4.28) 

 

{
𝛾𝑥𝑧
𝛾𝑦𝑧
} =

𝜕𝑓(𝑧)

𝜕𝑧
{
𝜃𝑥
𝜃𝑦
}                                                (4.29) 

 

The non-linear component of in-plane strain can be written as: 

𝜺𝑁𝐿 =
1

2
𝐇𝜃𝜽                                                    (4.30) 

where 

𝐇𝜃 = [

𝑤0,𝑥 0

0 𝑤0,𝑦
𝑤0,𝑦 𝑤0,𝑥

]  and 𝜽 = {
𝑤0,𝑥
𝑤0,𝑦

} 

 

The net strains, after including initial imperfections, can be rewritten as: 
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𝜀1 = 𝜀𝑚 − 𝑧𝜀ℎ + 𝑓(𝑧)𝜀𝑏 + 𝜀𝑛𝑙 + 𝜀𝐼                                          (4.31) 

𝜀𝑚 = ∑[

𝜑𝑖,𝑥 0 0 0 0

0 𝜑𝑖,𝑦 0 0 0

𝜑𝑖,𝑦 𝜑𝑖,𝑥 0 0 0
]

[
 
 
 
 
𝑢0𝑖
𝑣𝑜𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖 ]
 
 
 
 

= 𝐁𝐦𝐪

𝑛𝑐𝑝

𝑖=1

                                  (4.32) 

 

𝜀ℎ =∑[

0 0 𝜑𝑖,𝑥 𝑥 0 0

0 0 𝜑𝑖,𝑦 𝑦 0 0

0 0 2𝜑𝑖,𝑥 𝑦 0 0
]

[
 
 
 
 
𝑢0𝑖
𝑣𝑜𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖 ]

 
 
 
 

 = 𝐁𝐡𝐪                                     (4.33)  

𝑛𝑐𝑝

𝑖=1

 

𝜀𝑏 = ∑[

0 0 0 𝜑𝑖,𝑥 0

0 0 0 0 𝜑𝑖,𝑦 
0 0 0 𝜑𝑖,𝑦 𝜑𝑖,𝑥 

]

[
 
 
 
 
𝑢0𝑖
𝑣𝑜𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖 ]
 
 
 
 

=  𝐁𝐛𝐪  

𝑛𝑐𝑝

𝑖=1

                         (4.34) 

𝜀𝑛𝑙 =∑
1

2
[

𝑤0,𝑥 0

0 𝑤0,𝑦
𝑤0,𝑦 𝑤0,𝑥

] [
0 0 𝜑𝑖,𝑥 0 0

0 0 𝜑𝑖,𝑦 0 0
]

[
 
 
 
 
𝑢0𝑖
𝑣𝑜𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖 ]
 
 
 
 

= 𝐁𝐧𝐥𝐪

𝑛𝑐𝑝

𝑖=1

    (4.35) 

𝜀𝐼 =

{
  
 

  
 

𝜕𝑤0
𝜕𝑥

𝜕𝑤∗

𝜕𝑥
𝜕𝑤0
𝜕𝑦

𝜕𝑤∗

𝜕𝑦
𝜕𝑤0
𝜕𝑥

𝜕𝑤∗

𝜕𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤∗

𝜕𝑥 }
  
 

  
 

=∑[

𝑤𝑥
∗ 0
0 𝑤𝑦

∗

𝑤𝑦
∗ 𝑤𝑥

∗
] [
0 0 𝜑𝑖,𝑥 0 0

0 0 𝜑𝑖,𝑦 0 0
] =  𝐁𝐈𝐪

𝑛𝑐𝑝

𝑖=1

 (4.36) 

𝜀2 =∑[
𝜕𝑓(𝑧)

𝜕𝑧
] [
0 0 0 𝜑𝑖 0
0 0 0 0 𝜑𝑖

]

[
 
 
 
 
𝑢0𝑖
𝑣𝑜𝑖
𝑤0𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖 ]
 
 
 
 

=

𝑛𝑐𝑝

𝑖=1

𝐁𝛄𝐪                                (4.37) 

  

where [, 𝑥 ]and[ , y] denotes derivatives with respect to 𝑥 and y, respectively. Using 

equations (4.32) - (4.37), strains are written as 

ε = {
𝐁𝐦
L

𝐁γ
} 𝐪 +

1

2
{𝐁𝐦

NL

0
} 𝐪 + f(z) {

𝐁h
0
} 𝐪 + z {

𝐁b
0
} 𝐪                          (4.38) 
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⟹ 𝜀 = {
𝐁𝐦
L + 𝑧𝐁𝐛 + 𝐁𝐡

𝐁𝛾
} 𝐪 +

1

2
{𝐁𝐦

NL

0
} 𝐪

⟹ 𝜀 = 𝜀𝐿 + 𝜀𝑁𝐿 = {𝐁L +
𝐁NL
2
} 𝐪

 

𝜀L and 𝜀NL are the linear and non-linear components of strain, respectively. 

4.6   Influence of Mode of Imperfections 

The strains due to initial imperfection at the mid-surface can be written as (Girish & 

Ramachandra, 2005) 

𝜀𝑥
∗ =

1

2
(𝑤,𝑥

∗ )
2
;   𝜀𝑦

∗ =
1

2
(𝑤,𝑦

∗ )
2
;   𝛾𝑥𝑦

∗ = 𝑤,𝑥
∗𝑤,𝑦

∗ ;     𝛾𝑥𝑧
∗ = 𝑤,𝑥

∗  ; 𝛾𝑦𝑧
∗ = 𝑤,𝑦

∗             (4.39) 

An imperfection function combines trigonometric and hyperbolic functions introduced 

previously by Kitipornchai et al. (2004). The imperfection considered in the present work is 

given by 

𝑤∗ = 𝜇ℎ sec ℎ [𝛿1 (
𝑥

𝑎
 − 𝛽1)] cos [𝜇1𝜋 (

𝑥

𝑎
− β1)] × sec ℎ [𝛿2 (

𝑦

𝑏
− β2)] 𝑐𝑜𝑠 [𝜇2𝜋 (

𝑦

𝑏
− β2)]  (4.40)

  

In the imperfection function, the symbol μ denotes the amplitude of imperfection, which 

exhibits values ranging from 0 to 1. The constants δ1 and δ2 serve to refer to the localised 

imperfection order, which possesses symmetry concerning x/a =β1 and y/b =β2, respectively. 

Additionally, μ1 and μ2 represent the half-wave numbers of the imperfection along the x and y 

axes, and h is the thickness of the plate. To better understand the effect of geometric 

imperfection's shape on the plate's buckling strength, two distinct forms of imperfection types, 

namely sinusoidal type and local imperfection (L2), are selected in the present investigation, 

as illustrated in Figure 4.2 
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Figure 4.2: Description of various modes of initial Imperfections(Kitipornchai et al., 2004) 

 
𝛿1 = 𝛿2 = 0, 𝜇1 = 𝜇2 = 1,𝛽1 = 𝛽2 = 0.5 

 

 
𝛿1 = 𝛿2 = 0, 𝜇1 = 𝜇2 = 3, 𝛽1 = 𝛽2 = 0.5 

 
𝛿1 = 𝛿2 = 0, 𝜇1 = 𝜇2 = 5, 𝛽1 = 𝛽2 = 0.5 

 

 
𝛿1 = 𝛿2 = 0, 𝜇1 = 𝜇2 = 7, 𝛽1 = 𝛽2 = 0.5 

 
𝛿1 = 15, 𝛿2 = 0, 𝜇1 = 2, 𝜇2 = 1,𝛽1 = 0.25, 𝛽2 = 0.5 

 

 

 
𝛿1 = 15, 𝛿2 = 0, 𝜇1 = 2, 𝜇2 = 1, 𝛽1 = 0.5, 𝛽2 = 0.5 

 

Sine type 
G1 

G2 G3 

L1 
L2 
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𝛿1 = 15, 𝛿2 = 0, 𝜇1 = 2, 𝜇2 = 3, 𝛽1 = 0.5, 𝛽2 = 0.5 

 

 

 
𝛿1 = 15, 𝛿2 = 0, 𝜇1 = 2, 𝜇2 = 5, 𝛽1 = 0.5, 𝛽2 = 0.5 

 

 

 
𝛿1 = 15, 𝛿2 = 0, 𝜇1 = 2, 𝜇2 = 7, 𝛽1 = 0.5, 𝛽2 = 0.5 

 

 

 

 

L4 L3 

L5 
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In non-uniform mechanical loading, it is assumed that the geometric imperfection of the plate 

is proportional to the first eigen-buckling mode shape and may be written as 

 

 

Δ = 𝑤𝑚𝑎𝑥
∗ /𝑎                                                                                                                                              (4.41) 

 

where 𝑤𝑚𝑎𝑥
∗  is the maximum value of imperfection.  
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4.7 Governing Equations 

 
The governing equations of the plate structure are derived from the principle of virtual 

displacement (Tran, 2016)  

∫  
𝑡

0
(𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)d𝑡 = 0                                              (4.42) 

where the virtual strain energy 𝛿𝑈 is defined as:  

𝛿𝑈 = ∫  
𝑉
𝛿𝝐̂𝑇𝝈̂d𝑉                                                          (4.43) 

Before proceeding with the discretisation of the virtual strain energy in Eq. (4.42), it is 

necessary to consider further the variation of strain 𝛿𝜺̂ due to the virtual displacements as 

the sum of the variation of the linear and non-linear generalised strains as: 

𝛿𝜺̂ = 𝛿𝜺̂𝐿 + 𝛿𝜺̂𝑁𝐿                                                        (4.44) 

where the variation of the non-linear component of the in-plane strain is obtained from Eq. 

(4.30) as: 

𝛿𝜺𝑁𝐿 = 𝐻𝜃𝛿𝜽                                                            (4.45) 

Substituting the stress and strain in the virtual strain energy is rewritten as: 

𝛿𝑈 = ∫  
Ω
𝛿𝜀𝑇𝐃̂𝜺̂ − 𝛿𝜀𝑇𝝈̂𝑡ℎ dΩ                              (4.46) 

The virtual work done by external forces 

𝛿𝑉 = −∫  
Ω
𝛿𝐪𝑇𝐟d̅Ω − ∫  

Γ
𝛿𝐪𝑇𝐭d̅Γ                             (4.47) 

Where q presents the displacement field, 𝐟 ̅ represents the external load and 𝐭 ̅ is the 

prescribed traction on the natural boundaries. And the virtual kinetic energy is: 

          𝛿𝐾 = ∫  
𝑉
𝛿𝐪̇𝑇𝜌𝐪̇d𝑉                                                       (4.48) 

where 𝜌 is the effective density of the material, and a dotted variable indicates its time 

derivative. Integrating Eq. (4.48) by part with respect to time, obtained a new form of the 

virtual kinetic energy.  
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∫  
𝑡

0
𝛿𝐾 d𝑡 = −∫  

𝑡

0
(∫  
𝑉
 𝛿𝐪̈𝑇𝜌𝐪d𝑉)d𝑡                                          (4.49) 

4.8 Stability Behaviour Under Non Uniform Mechanical Load 

 

The in-plane forces, moments, higher-order forces and shear forces are expressed as (Sengar 

et al., 2023) 

                                {

N
M
P
R

} = 𝑫̂𝜺̂ = [

A B E 0
B D F 0
E F H 0
0 0 0 𝐷𝑠

] {

𝜀𝑚
𝜀ℎ
𝜀𝑏
𝜀𝛾

}                            (4.50) 

{
𝐍
𝐌
𝐏
}  = ∑∫  

𝑍𝑘+1

𝑍𝑘

𝝈 {
1
𝑧

𝑓(𝑧)
} 𝑑𝑧                                              (4.51)

3

𝑘=1

 

                                                                                              

𝐑 =∑∫  
𝑍𝑘+1

𝑍𝑘

𝑓′(𝑧)𝜏𝑑𝑧

3

𝑘=1

                                                                                              (4.52) 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∑∫  
𝑍𝑘+1

𝑍𝑘

3

𝑘=1

𝑄𝑖𝑗
𝑘 (1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))d𝑧       (4.53) 

𝐷𝛼𝛽
𝑠 =∑∫  

𝑍𝑘+1

𝑍𝑘

(𝑓′(𝑧))2𝑃𝛼𝛽d𝑧

3

𝑘=1

 , (𝑖, 𝑗, 𝑘 = 1,2,3; 𝛼, 𝛽 = 1,2 )                    (4.54) 

 

Where 𝑫̂ is the rigidity matrix composed of the membrane, bending coupling and shear 

rigidity matrix. 𝑄 and G are material matrices. 

 

The governing equations can be derived using Hamilton's principle(Watts et al., 2020) 

 

𝛿 ∫ (𝑇 − 𝑈𝑠 +𝑊)
𝑡2
𝑡1

𝑑𝑡 = 0                                                                       (4.55) 

Where 𝛿 denotes the first variation, T and Us are total kinetic and strain energy, respectively. 

W represents the work due to external loads and can be written as (Watts et al., 2020) 

 

 

𝑊 =
1

2
∫  
𝑟𝑝
  [𝑁𝑥𝑥 (

∂𝑤0

∂𝑥
)
2

+ 𝑁𝑦𝑦 (
∂𝑤0

∂𝑦
)
2

+2𝑁𝑥𝑦 (
∂𝑤0

∂𝑥
) (

∂𝑤0

∂𝑦
)] 𝑑Γ𝑝                    (4.56) 

 



38 

 

where Γ𝑝 denotes the surface area of the mid-plane. 𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦 are the pre-buckling stress 

components, which can be obtained as follows: 

[

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

] =∑  

𝑁𝐿

𝑖=1

∫  
𝑧𝑘+1

𝑧𝑘

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] 𝑑𝑧                                                    (4.57) 

where 𝑁𝐿 denotes the number of layers in the sandwich composite. 

 

The weak form can be transformed into algebraic equations using a standard procedure. The 

algebraic equations, thus obtained, may be written as: 

                                          𝐌𝐗̈  + {𝐊𝐋  + 𝐊𝐍𝐋 }𝐗 =  𝟎                                     (4.58) 

Where M is the mass matrix, KL is the linear stiffness matrix, and KNL is the non-linear 

stiffness matrix. The pre-buckled and post-buckled vibration behaviours can be analysed by 

assuming the displacement as a combination of static and time-dependent deflections: 

                                                     𝑿 = 𝑿𝒔+ 𝑿𝒕                                                           (4.59) 

Where Xs is static, and Xt is the time-dependent deformation. The governing equations for 

post-buckling and the post-buckled configuration can be obtained by neglecting higher-

order terms as follows: 

{𝐊𝐋  + 𝐊𝐍𝐋 }𝐗𝐬  =  𝐅                                            (4.60) 

                                                 𝐌𝐗̈  + {𝐊𝐋  + 𝐊𝐍𝐋 }𝐗𝐭  =  𝟎                               (4.61) 

By assuming a sinusoidal response, 

Xt = 𝐗̅ sin𝜔𝑡                                                                     (4.62) 

 

the above equation can be modified as an eigenvalue problem, which can be solved to obtain 

free vibration frequencies. 

|𝐊𝐓 −𝜔
2𝐌|                                                                    (4.63)  

where KT is the tangent stiffness matrix. 

The mass matrix is given by 

𝐌 =   ∫  
Γp
[𝐒T𝐘 𝐒]𝑑Γp                                                (4.64) 
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               𝐒      =

[
 
 
 
 
 
 
 
𝜑𝑖 [0] [0] [0] [0]

[0] 𝜑𝑖 [0] [0] [0]

[0] [0] 𝜑𝑖 [0] [0]

[0] [0] 𝜑𝑖,𝑥 [0] [0]

[0] [0] 𝜑𝑖,𝑦 [0] [0]

[0] [0] [0] [𝜑𝑖] [0]
[0] [0] [0] [0] 𝜑𝑖 ]

 
 
 
 
 
 
 

                                                                (4.65) 

 

   𝐘 =

[
 
 
 
 
 
 
𝐼0 0 0 −𝐼1 0 𝐼3 0
0 𝐼0 0 0 −𝐼1 0 𝐼3
0 0 𝐼0 0 0 0 0
−𝐼1 0 0 𝐼2 0 −𝐼4 0
0 −𝐼1 0 0 𝐼2 0 −𝐼4
𝐼3 0 0 −𝐼4 0 𝐼5 0
0 𝐼3 0 0 −𝐼4 0 𝐼5 ]

 
 
 
 
 
 

                                              (4.66) 

Where 

 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5 =∑  

𝑁𝐿

𝑘=1

∫  
𝑧𝑘+1

𝑧𝑘

𝜌𝑠
𝑘{1, 𝑧, 𝑧2, 𝑓, 𝑧𝑓, 𝑓2}𝑑𝑧                (4.67) 

4.9   Stability Behaviour of Plate Under Thermal Environment 

 

The stress-strain relations for kth lamina can be written as (Sengar et al., 2024): 

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

𝑘

= [

𝑄11
𝑘 𝑄12

𝑘 0

𝑄21
𝑘 𝑄22

𝑘 0

0 0 𝑄33
𝑘

] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

]

𝑘

 and [
𝜏𝑦𝑧
𝜏𝑥𝑧
]
𝑘

= [
𝑃11
𝑘 0

0 𝑃22
𝑘 ] [

𝛾𝑦𝑧
𝛾𝑥𝑧
]
𝑘

                      (4.68) 

Where 

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
; 𝑄22 =

𝐸2
1 − 𝜈12𝜈21

; 𝑄12 = 𝑄21 =
𝐸2𝜈12

1 − 𝜈12𝜈21
; 

𝑄33 = 𝐺12; 𝑃11 = 𝐺23; 𝑃22 = 𝐺12                                             (4.69) 

 

The stress moment and shear resultant forces can be written as (Tran et al., 2016) 

{

𝐍
𝐌
𝐏
𝐑

} = [

𝐀    𝐁    𝐄    𝟎
𝐁    𝐃    𝐅    𝟎
𝐄    𝐅    𝐇    𝟎
𝟎    𝟎    𝟎    𝐃𝑠

] {

𝜀𝑚
𝜀ℎ
𝜀𝑏
𝜀𝛾

} − {

𝐍th 

𝐌th 

𝐏th 

0

} = 𝐃̂𝑢𝜀̂ − 𝜎̂0                                 (4.70) 

                   

The thermal stress resultants are written as(Tran et al., 2016) 
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{𝐍th   𝐌th   𝐏th } = ∑∫  
𝑍𝑘+1

𝑍𝑘

𝑄𝑖𝑗
𝑘 {
𝛼
𝛼
0
} {1    𝑧    𝑓(𝑧)}𝛥𝑇𝑑𝑧        

3

𝑘=1

               (4.71) 

 

  

The plate's total energy variation is calculated using the principle of virtual displacement 

(Tran et al., 2016) 

 

𝛿Π = 𝛿𝑈𝜀 − 𝛿𝑉 = ∫  
Ω
𝛿𝜀̂𝑇𝜎̂dΩ − ∫  

Ω
𝛿q𝑇𝑓𝑧dΩ = 0                        (4.72) 

    From equations (4.27),(4.28) and(4.29) generalised strains can be rewritten in matrix 

form as 

𝜺̂ = (𝐁𝐋 +
1

2
𝐁𝐍𝐋) 𝐪𝐢                                                               (4.73) 

 

𝐁𝐋 = 𝐁𝐦 − 𝑧𝐁𝐡 + 𝑓(𝑧)𝐁𝐛 + 𝐁𝐈                                                      (4.74) 

 

The first variation of the strains is defined as  

𝛿𝜺̂ = (𝑩𝑳 + 𝑩𝑵𝑳)𝛿𝒒𝒊                                                       (4.75) 

Substituting Eqs. (4.70) and (4.75) into Eq. (4.72), the governing equation can be written in 

the following matrix for 

(𝐊L + 𝐊NL − 𝐊0)𝐪𝐢 = 𝐅                                                             (4.76) 

   

𝐊𝐺 = ∫  
Ω
(𝐁𝐠)

𝑇
[
𝑁𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦

] (𝐁𝐠)dΩ                                                        (4.77) 

 

    𝐅 = ∫  
Ω
(𝐁𝐋)

𝑇𝝈̂0                                                                         (4.78)                       

 

The linear stiffness matrix is denoted as KL, while the non-linear stiffness matrix is denoted 

as KNL. Additionally, K0 represents the initial stiffness matrix resulting from the initial 

compressive force caused by temperature. The load vector, designated as F, depends on the 

thermal load. 

In contrast, the non-linear stability characteristics are studied by solving a non-linear system 

of equations using the iterative and incremental process, i.e., the Newton–Raphson method.  

The incremental form of algebraic equations (4.76) is given by: 
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𝐊TΔ𝐪 = Δ𝐅                                                                      (4.79) 

Where                                    𝑞𝑖+1 = 𝑞𝑖 + Δ𝑞 

Δ𝐅 = [𝐅 − (𝐊𝐿 + 𝐊𝑁𝐿(𝐪𝐢) − 𝐊𝟎)𝐪𝐢]                                  (4.80) 

𝐊0 = ∫  
Ω
(𝐁𝐠)

𝑇
[
𝑁𝑥𝑥
𝑡ℎ 𝑁𝑥𝑦

𝑡ℎ

𝑁𝑥𝑦
𝑡ℎ 𝑁𝑦𝑦

𝑡ℎ] (𝐁𝐠)dΩ                                  (4.81) 

The solution procedure for Eq.(4.76) is described in Figure 4.1. 

4.10    Non-Linear Vibration 

 

For the free vibration analysis of the plate without external forces, the weak form can be 

derived from the principle of virtual work as (Kiani, 2018) 

∫  
Ω
𝛿𝜺̂𝑇𝝈̂𝑑Ω = ∫  

Ω
𝛿𝐪𝑇𝐌𝐪̈𝑑Ω                                     (4.82) 

The vector 𝑞 in Eq. (4.83) may be expressed as 

                                                 𝑞 = {

𝑞1
𝑞2
𝑞3
}                                                               (4.83)                                             

where the following definitions apply 

𝒒𝟏 = {

𝑢0
𝑣0
𝑤0
} ,  𝒒2 = {

𝑤,𝑥
𝑤,𝑦
0
} , 𝒒3 = {

𝜃𝑥
𝜃𝑦
0

}                                              (4.84) 

Substitution of Eqs. (4.50) and (4.73) into the definition of motion equation (4.83) results 

in 

(𝐊𝐿 + 𝐊𝑁𝐿 − 𝐊𝐺)𝐪 +𝐌𝐪̈ = 0                                                     (4.85) 

The above equation is a nonlinear eigenvalue problem.  

Where     

                                                                                

𝐊𝐋 = ∫ 𝑩𝒎
𝑻 𝑨𝑩𝒎𝑑𝛤𝑝 −𝛤𝑝

∫ 𝑩𝒎
𝑻 𝑩𝑩𝒃𝑑𝛤𝑝 +𝛤𝑝

∫ 𝑩𝒎
𝐓 𝐄𝑩𝒉𝑑𝛤𝑝 − ∫ 𝑩𝒃

𝐓𝐁𝑩𝒎𝑑𝛤𝑝 + ∫ 𝑩𝒃
𝐓𝐃𝑩𝒃𝑑𝛤𝑝𝛤𝑝𝛤𝑝𝛤𝑝

 −

 ∫ 𝑩𝒃
𝐓𝐅𝑩𝒉𝑑𝛤𝑝 + ∫ 𝑩𝒉

𝐓𝐄𝑩𝒎𝑑𝛤𝑝 − ∫ 𝑩𝒉
𝐓𝐅𝑩𝒃𝑑𝛤𝑝 + ∫ 𝑩𝒉

𝐓𝐇𝑩𝒉𝑑𝛤𝑝𝛤𝑝𝛤𝑝𝛤𝑝𝛤𝑝
+ ∫ 𝑩𝜸

𝑇𝑫𝜶𝜷
𝒔 𝐁𝛾𝑑𝛤𝑝𝛤𝑝

+𝐊𝑰
𝐥                                                                                                                                                   

(4.86) 



42 

 

Where 𝐊𝑰
𝐥  Includes the additional terms in the linear stiffness matrix due to initial 

imperfection. 

𝐊𝐍𝐋 = ∫ 𝑩𝒏𝒍
𝑻 𝑨𝑩𝒎𝑑𝛤𝑝 −

𝛤𝑝

∫ 𝑩𝒏𝒍
𝑻 𝑩𝑩𝒃𝑑𝛤𝑝 +

𝛤𝑝

∫ 𝑩𝒏𝒍
𝐓 𝐄𝑩𝒉𝑑𝛤𝑝

𝛤𝑝

+ 0.5∫ 𝑩𝒎
𝐓 𝐀𝑩𝒏𝒍𝑑𝛤𝑝 − 0.5 ∫ 𝑩𝒃

𝐓𝐁𝑩𝒏𝒍𝑑𝛤𝑝
𝛤𝑝𝛤𝑝

 

               + 0.5∫ 𝑩𝒉
𝐓𝐄𝑩𝒏𝒍𝑑𝛤𝑝 + 0.5 ∫ 𝑩𝒏𝒍

𝐓 𝐀𝑩𝒏𝒍𝑑𝛤𝑝𝛤𝑝𝛤𝑝
+𝐊𝑰

𝐧𝐥                                                        (4.87) 

Where 𝐊𝑰
𝐧𝐥 Includes the additional terms in the non-linear stiffness matrix due to initial 

imperfection.The M and KG matrix is already given in eq. (4.64 and 4.77)  

4.11   Solution Procedure for the Non-Linear Algebraic 

Equations 

 
Figure 4.3 presents a brief flowchart of the present solution procedure, in which the Newton-

Raphson iterative scheme is employed to solve the nonlinear algebraic equations.  

 

Figure 4.3: Flowchart of the nonlinear analysis method 
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4.11.1  Newton–Raphson Method.  

 
Numerical analysis is a method used to find the roots of nonlinear equations. The approach 

involves assuming an initial estimate, q0, and determining its increment, Δq, so that the new 

estimate, q0 + Δq, is close to the solution of Eq. (4.76). To determine the increment, linear 

ones locally approximate the nonlinear equations. This process is repeated until the original 

nonlinear equations are satisfied. If an approximate solution qi is known at the ith iteration, 

the solution at the next iteration can be approximated using the first-order Taylor series. 

(Kim, 2015) 

 

𝐟(𝐪𝑖+1) ≈ 𝐟(𝐪𝑖) + 𝐊𝑇
𝑖 (𝐪𝑖) ⋅ Δ𝐪𝑖 = 𝐅                                 (4.88) 

where 𝐊𝑇
𝑖 (𝐪𝑖)  commonly referred to as the tangent stiffness matrix in structural 

applications and Δ𝐪𝑖 represent the solution increment. The objective is to iteratively 

calculate  Δ𝐪𝑖 and update the solution, 𝐪𝑖+1.  By rearranging the terms, we can obtain a 

system of linearised equations represented as: 

𝐊𝑇
𝑖 Δ𝐪𝑖 = 𝐅 − 𝐟(𝐪𝑖)                                                        (4.89) 

After calculating the displacement increment, qi, a new approximate solution can be 

obtained using the following formula: 

𝐪𝑖+1 = 𝐪𝑖 + Δ𝐪𝑖                                                            (4.90) 

The solution will not exactly satisfy the system of nonlinear equations and there will be 

some residual or unbalanced force, defined as follows: 

 

𝐑𝑖+1 = 𝐅 − 𝐟(𝐪𝑖+1)                                                      (4.91) 

When solving a problem with numerical methods, it is important to ensure that the solution 

is accurate. One way to do this is by checking the residual, which is the difference between 

the calculated and actual solutions. If the residual is smaller than a certain tolerance level, 

then the calculated solution can be accepted as accurate and the process stops. However, if 

the residual is still too large, then the process is repeated until the residual becomes very 

small. The termination criterion is expressed in a normalised form as shown below: 
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conv =
∑  𝑛
𝑗=1   (𝑅𝑗

𝑖+1)
2

1 + ∑  𝑛
𝑗=1   (𝑓𝑗)

2 

The general procedures of the Newton-Raphson Method can be summarised in Figure 4.4. 

The Newton-Raphson method updates the tangent stiffness matrix of the structure at every 

iteration. In contrast, the modified Newton-Raphson method reforms it only in the first 

iteration and keeps it unchanged within the load cycle. Both methods offer a high 

convergence rate in the stable equilibrium range. However, as the limit point of the load-

deflection curve is approached, numerous iterations may be needed even for a small load 

increment. In the Newton-Raphson method, the solution point at the specified applied load 

level is taken, making it impossible to trace any unloading path. This leads to a divergence 

in the solution scheme near the critical point due to the tangent stiffness matrix's the load 

increment's size exceeding the limit load, as demonstrated above. 

4.11.2    Force Control Method  

 

The incremental force method involves applying the load in increments as shown in Figure 

4.5. Within each load increment, the standard Newton-Raphson method is used. The next 

load increment is applied once the solution corresponding to the previous load increment 

has converged. The converged solution at each increment is then used to estimate the next 

increment. To ensure a quick convergence to the solution, the magnitude of the increment, 

ΔF2, is chosen carefully. This process is repeated until the applied load increment reaches 

Figure 4.4: Conventional Newton-Raphson Method 
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its full magnitude. It's important to note that the solutions at the end of each load increment 

are all valid responses of the system at the given load level. 

 

Figure 4.5: Force control method 

4.11.3     Displacement Control Method 

 

In contrast to prior load control techniques, this approach introduces a displacement 

constraint equation. The displacement control method was first suggested by Argyris 

(1965). However, the addition of the displacement constraint equation in his study 

compromised the symmetry of the tangent stiffness matrix. To preserve the symmetry of 

the tangent stiffness matrix, Batoz & Dhatt (1979) implemented an iterative approach to 

enforce the displacement constraint. As per their method, a solitary Figure 4.6 illustrates 

the procedural diagram. While the constant displacement method smoothly passes the snap-

through limit point, it struggles to converge in snap-back problems. As a result, it is  

typically employed alongside other solution techniques to address general non-linear 

problems 
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4.11.4      Arc Length Method 

 

Several methods of the arc-length technique have been proposed by various researchers in 

the past, including Wempner (1971), Riks (1979), Ramm (1981) for non-linear analysis. 

However,. The fundamental principle of the spherical arc-length method involves 

constraining the load increment to maintain a constant dot product of displacement along 

the iteration path in the 2-dimensional plane of load versus deformation. It is worth noting 

that the load increment sign will depend on the determinant of the updated tangent stiffness 

matrix. In simpler terms, a positive determinant will increase loading, while a negative 

determinant will decrease load. This idea of choosing the sign was first introduced by 

Bergan (1978) in their research on the method of the current stiffness parameter. The 

process of the spherical arc-length method is depicted in Figure 4.7. Due to its high 

accuracy, reliability, and satisfactory convergence rate, it is considered the most widely 

used method for non-linear analysis. Additionally, it has been noted for its robustness and 

stability in pre- and post-buckling analysis. 

Figure 4.6:  Displacement Control Method 
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4.12  Mapping Technique in IGA 

 

The physical space, parametric space, and parent space (element) for integration in IGA are 

shown in Figure 4.8. As mentioned before, the same basis functions are utilised for both 

geometric construction and discretisation of unknown field variables, given as 

𝑥 = ∑  

𝑛×𝑚

𝑖=1

𝜑𝑖(𝜉, 𝜂)𝑥𝑖 , 𝑞̅ = ∑  

𝑛×𝑚

i=1

𝜑𝑖(𝜉, 𝜂)𝑞i                                                              (4.92) 

where 𝒙 and 𝑞̅ Correspond to the physical coordinate vector of geometry and unknown 

field variable vector, respectively; 

 

Figure 4.7: Arc length method 

Figure 4.8: Mapping technique in isogeometric analysis. 
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This part provides information on the first and second derivatives of NURBS basis functions 

in relation to physical coordinate variables. Applying the chain rule makes it possible to 

calculate the first and second derivatives of the basis functions with respect to physical 

coordinates (x, y). 

 {

∂𝜑𝑖

∂𝜉

∂𝜑𝑖

∂𝜂

} = [

∂𝑥

∂𝜉
    

∂𝑦

∂𝜉

∂𝑥

∂𝜂
    

∂𝑦

∂𝜂

] {

∂𝜑𝑖

∂𝑥
∂𝜑𝑖

∂𝑦

} → {

∂𝜑𝑖

∂𝑥
∂𝜑𝑖

∂𝑦

} = [𝐉𝜉𝜂]
−1
{

∂𝜑𝑖

∂𝜉

∂𝜑𝑖

∂𝜂

}            (4.93) 

[𝐉𝜉𝜂] = [

∂𝑥

∂𝜉
    

∂𝑦

∂𝜉

∂𝑥

∂𝜂
    

∂𝑦

∂𝜂

]                                                            (4.94) 

where 𝐉𝜉𝜂
−1 indicates the inverse of the Jacobian matrix. Starting from Eq. (4.93), the second-

order derivatives concerning the parametric coordinates 𝜉 and 𝜂 in the extended form can 

be evaluated as 

{
 
 

 
 
∂2𝜑𝑖

∂𝜉2

∂2𝜑𝑖

∂𝜂2

∂2𝜑𝑖

∂𝜉 ∂𝜂}
 
 

 
 

=

[
 
 
 
 
 (

∂𝑥

∂𝜉
)
2

(
∂𝑦

∂𝜉
)
2

2 (
∂𝑥

∂𝜉
) (

∂𝑦

∂𝜉
)

(
∂𝑥

∂𝜂
)
2

(
∂𝑦

∂𝜂
)
2

2 (
∂𝑥

∂𝜂
) (

∂𝑦

∂𝜂
)

(
∂𝑥

∂𝜉
) (

∂𝑥

∂𝜂
) (

∂𝑦

∂𝜉
) (

∂𝑦

∂𝜂
) (

∂𝑥

∂𝜉
) (

∂𝑦

∂𝜂
) + (

∂𝑥

∂𝜂
) (

∂𝑦

∂𝜉
)]
 
 
 
 
 

{
 
 

 
 
∂2𝜑𝑖

∂𝑥2

∂2𝜑𝑖

∂𝑦2

∂2𝜑𝑖

∂𝑥 ∂𝑦}
 
 

 
 

+

[
 
 
 
 
 
∂2𝑥

∂𝜉2
∂2𝑦

∂𝜉2

∂2𝑥

∂𝜂2
∂2𝑦

∂𝜂2

∂2𝑥

∂𝜉 ∂𝜂

∂2𝑦

∂𝜉 ∂𝜂]
 
 
 
 
 

{

∂𝜑𝑖

∂𝑥
∂𝜑𝑖

∂𝑦

} →

{
 
 

 
 
∂2𝜑𝑖

∂𝑥2

∂2𝜑𝑖

∂𝑦2

∂2𝜑𝑖

∂𝑥 ∂𝑦}
 
 

 
 

= [𝐉𝜉𝜂
33]

−1

(

  
 

{
 
 

 
 
∂2𝜑𝑖

∂𝜉2

∂2𝜑𝑖

∂𝜂2

∂2𝜑𝑖

∂𝜉 ∂𝜂}
 
 

 
 

− [𝐉𝜉𝜂
32] {

∂𝜑𝑖

∂𝑥
∂𝜑𝑖

∂𝑦

}

)

  
 

  (4.95) 

 

[𝐉𝜉𝜂
33] =

[
 
 
 
 
 (

∂𝑥

∂𝜉
)
2

(
∂𝑦

∂𝜉
)
2

2 (
∂𝑥

∂𝜉
) (

∂𝑦

∂𝜉
)

(
∂𝑥

∂𝜂
)
2

(
∂𝑦

∂𝜂
)
2

2 (
∂𝑥

∂𝜂
) (

∂𝑦

∂𝜂
)

(
∂𝑥

∂𝜉
) (

∂𝑥

∂𝜂
) (

∂𝑦

∂𝜉
) (

∂𝑦

∂𝜂
) (

∂𝑥

∂𝜉
) (

∂𝑦

∂𝜂
) + (

∂𝑥

∂𝜂
) (

∂𝑦

∂𝜉
)]
 
 
 
 
 

                                             (4.96) 

It should be noted that the numerical integration utilised in IGA is similar to that of FEM, 

utilising the Gauss-Legendre quadrature. However, IGA's implementation is more intricate, 

dividing the integral of the entire physical system into integrals over each physical element. 
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This approach results in a superior level of accuracy and is a distinguishing feature of IGA 

in comparison to FEM. 

The integral is first pulled back to the parametric element for integration over each physical 

element using geometry mapping. Next, the integrals over the parametric element are 

further pulled back to the parent domain. This is where existing integration rules are usually 

defined. The mapping Ωe˜ → Ωeˆ  from the parent domain [−1,1] × [−1,1] to the parametric 

domain [𝜉𝑖, 𝜉𝑖+1] × [𝜂𝑖 , 𝜂𝑖+1] Is given by (Tran, 2016) 

𝜉 =
1

2
[(𝜉𝑖+1 − 𝜉𝑖)𝜉𝑔 + (𝜉𝑖+1 + 𝜉𝑖)]                            (4.97) 

          𝜂 =
1

2
[(𝜂𝑗+1 − 𝜂𝑗)𝜂𝑔 + (𝜂𝑗+1 + 𝜂𝑗)]                     (4.98)                  

Therefore, the Jacobian of this transformation is defined as: 

|𝐉𝐠| =
1

4
(𝜉𝑖+1 − 𝜉𝑖)(𝜂𝑗+1 − 𝜂𝑗)                                   (4.99)                                                                               

Now, the function 𝑓(𝑥, 𝑦) can be integrated over an element in the physical domain (Ω𝑒) 

as follows (Tran, 2016) 

∫  
Ω

 𝑓(𝑥, 𝑦)dΩ =∑  

𝑛

𝑒=1

 ∫  
Ω𝑒

 𝑓(𝑥, 𝑦)dΩ𝑒 

=∑  

𝑛

𝑒=1

 ∫  
Ω̂𝑒

 𝑓(𝜉, 𝜂)|𝐉| |𝐉𝐠𝒆
| dΩ̃𝑒                

               = ∑  

𝑛

𝑒=1

 ∑  

𝑛cop 

𝑖

  ∑  

𝑚cop 

𝑗

 𝑓(𝜉𝑖, 𝜂𝑗)|𝐉| |𝐉𝐠𝑒
|𝑊𝑖𝑊𝑗                                 (4.100) 

 

where (𝜉𝑖, 𝜂𝑖) are the Gaussian points and 𝑊𝑖, 𝑊𝑗 are the weighting coefficients, which are 

introduced in Table  4.1  
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Table 4.1: Gauss points and weights in the Gauss-Legendre numerical integration 

 Gauss Point  Integration point   Weight 

1 0.000000000000000 2.000000000000000 

2 ± 0.577350269189625 1.000000000000000 

3 0.000000000000000 

± 0.774596669241483 

0.888888888888888 

0.555555555555555 

4 ± 0.339981043584856 

±0.861136311594052 

0.652145154862546 

0.347854845137453 

5 0.000000000000000 

±0.538469310105683 

± 0.906179845938664 

0.568888888888888 

0.478628670499366 

0.236926885056189 

6 ±0.238619186083196 

± 0.661209386466264 

±0.932469514203152 

0.467913934572691 

0.360761573048138 

0.171324492379170 

7 0.000000000000000 

± 0.405845151377397 

±0.741531185599394 

± 0.949107912342758 

0.417959183673469 

0.381830050505118 

0.279705391489276 

0.129484966168869 

 

4.13      Oblique Boundary Transformation for Skew Plate 

As the displacement fields of the skew plate are defined in an oblique coordinate system, it 

is necessary to transform the displacement variables from the orthogonal coordinate 

system(𝑥, 𝑦)  to the local oblique coordinate system(𝑥′, 𝑦′) as shown in Figure 4.9. This 
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involves considering the relationship between axial displacements and rotations in the local 

coordinate system{𝑞𝑖
𝐿}  and the global coordinate system{qi}, which can be represented in 

matrix form as follows 

 

Figure 4.9: The coordinate system and displacement field variables of the skew sandwich 

plate 

 Where 

   

[
 
 
 
 
𝑢𝑖
𝑣𝑖
𝑤𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖]
 
 
 
 

𝐺

= 𝐓m

[
 
 
 
 
𝑢𝑡
𝑢𝑛
𝑤𝑖
𝜃𝑡
𝜃𝑛]
 
 
 
 

𝐿

                                                                           (4.101) 

{q𝑖} = [𝑇𝑚]{q𝑖
L}                                                                              (4.102) 

Tm =

[
 
 
 
 
T … … … …
… T … … …
… … T … …
… … … T …
… … … … T]

 
 
 
 

                                                                      (4.103) 

T =

[
 
 
 
 
cos 𝜓 −sin 𝜓 0 0 0
sin 𝜓 cos 𝜓 0 0 0
0 0 1 0 0
0 0 0 cos 𝜓 −sin 𝜓
0 0 0 sin 𝜓 cos 𝜓 ]

 
 
 
 

                                      (4.104) 
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In the present work, a non-polynomial higher-order theory of plates is employed for conducting 

both linear and non-linear analyses of sandwich plates. This chapter introduces a non-uniform 

rational B-spline (NURBS) based isogeometric analysis (IGA), structural modelling and 

constitutive relations for isotropic and composite plates. The governing equations, 

discretisation technique, and solution procedure for analysing sandwich plates are also 

presented. Two-way mapping between physical domain and paramtric space as well as 

parametric space and master element that is used in isogeometric analysis for numerical 

integration is also described. The chapter also discusses various methods for tracing load-

displacement paths in structural mechanics problems. Chapter 5 uses the arc length method to 

trace the nonlinear path, while chapters 6 and 7 employ force control and displacement control 

strategies, followed by boundary conditions. 

4.14     Boundary Conditions  

 

As in finite element analysis, there are two types of boundary conditions: Dirichlet and 

Neumann. Boundary conditions imposed on primary unknown variables (Ex, deformation, 

temperature, etc.) are known as Dirichlet boundary conditions. Neumann boundary 

conditions are imposed on the derivative of the primary variable (Ex, slope, heat flux, etc.). 

The form u = 0 boundary conditions are called homogeneous Dirichlet boundary conditions, 

where u can be any primary variable. These conditions are enforced by assigning the 

corresponding control variables as zeros. Boundary conditions of the form u=u1 are called 

non-homogeneous Dirichlet boundary conditions. These conditions can also be imposed by 

setting the corresponding control variables as u1. Assuming open uniform knot vectors, both 

Dirichlet boundary conditions can be satisfied if control variables are at free end or corner 

points due to the Kronecker delta property. If the Dirichlet boundary conditions are to be 

imposed at any other point (other than endpoints) of the domain, special techniques are used 

in that case: penalty, Lagrange multiplier, and least squares minimisation. An alternative 

way is to use h-refinement over the domain boundary over which the Dirichlet boundary 

condition is to be imposed. This method is simple to implement but sometimes results in 

minor errors because boundary conditions are partially satisfied. The imposition of the 

Neumann boundary condition in IGA is the same as in FEA. These conditions are naturally 

satisfied in the weak form. 

4.15  Summary  
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Chapter 5 

Stability Analysis of Sandwich Plates under Non-uniform 

Mechanical Loading  

5.1 Introduction 
 

Chapter 4 presents the governing equations, discretisation technique, and solution procedure 

for analysing sandwich plates. This chapter delves into using non-polynomial theory with 

isogeometric analysis (IGA) to perform stability analysis for sandwich plates featuring 

FGCNTRC face sheets and metal foam core. The accuracy of the developed in-house 

MATLAB code is investigated for both linear and non-linear stability behaviour of sandwich 

plates with different boundary conditions. Section 5.2 details the geometry and material 

properties of the sandwich plates, while Section 5.3 explores the linear buckling behaviour of 

isotropic and sandwich plates under varying loading and boundary conditions. Section 5.4 

compares results for the non-linear post-buckling analysis of isotropic plates and presents new 

results on the non-linear post-buckling behaviour of skew sandwich plates. Through-thickness 

displacements are discussed in Section 5.5, and Section 5.6 summarises the important 

contributions of this chapter. The non-linear stability of skew sandwich plates under non-

uniform mechanical loadings is a complex area of study. Our research aims to investigate the 

buckling, post-buckling, and post-buckled vibration behaviour of initial imperfect sandwich 

plates with a metal foam core (square, skew) under various mechanical loadings (uniform, 

parabolic, sinusoidal, triangular, and concentrated) and different boundary conditions (simply 

supported and clamped). 

 

5.2 Geometry and Material Properties 
 

The geometry of the skew plate is described in Figure 5.1. The face sheets are nanocomposites 

made up of CNTs and polymethyl methacrylate (PMMA) matrix. The elastic constants of the 

constituents are given in Table 5.1. The distribution of CNTs in the face sheets influences the 

effective material properties. The three types of CNT distributions through the face sheets' 

thickness, uniform distribution (UD), FGX and FGO, are shown in Figure 5.2. The functions 
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corresponding to the graded distributions of CNTs are given in Table 5.2. The total volume 

fraction of CNTs in all three cases is assumed to be the same. 

Table 5.1: Material properties for the various cases considered in the present study. 

Cellular Aluminium (Thang et al., 

2018) 

Cellular Aluminium: G1 =26.923 GPa, ν = 0.3, E1 = 2G1(1+ 

ν), ρ = 2707 kg/m3 

FGCNTRC Plate (Wang & Shen, 

2012) 

CNTs:  E11 =5.4466 TPa, E22 =7.08 TPa, G12 =1.9445 TPa, G13 

= G12, G23 =1.2G12, ν12 = 0.175, ρ = 1400 kg/m3 

PMMA: Em = 2.5 GPa, νm = 0.3, ρm = 1150 kg/m3 

Three-layered Sandwich Plate 

 

Face Sheets: FGCNTRCs  

CNTs:  E11 =5.4466 TPa, E22 =7.08 TPa, G12 =1.9445 TPa, G13 

= G12, G23 =1.2G12, ν12 = 0.175, ρ = 1400 kg/m3 

PMMA: Em = 2.5 GPa, νm = 0.34, ρm = 1150 kg/m3 

Core Layer: Cellular Aluminium, G1 =26.923 GPa, ν = 0.3, 

E1 = 2G1(1+ ν), ρ = 2707 kg/m3 

 

Table 5.2: Volume fraction function of CNTs for different distributions  

CNTs Distribution Type Volume Fraction of CNTs in Face Sheets 

UD. 𝑉𝐶𝑁
∗  

F.G.X. 

4

ℎ𝑡 − ℎ𝑏
 (|
ℎ𝑡 + ℎ𝑏
2

− 𝑧|) 𝑉𝐶𝑁
∗  

 

F.G.O. 

4

ℎ𝑡 − ℎ𝑏
(
ℎ𝑡 − ℎ𝑏
2

− |
ℎ𝑡 + ℎ𝑏
2

− 𝑧|)𝑉𝐶𝑁
∗  

 

In Table 5.2 ht and hb are the z coordinates of the end positions of face sheets. The properties 

of the CNTs and PMMA at room temperature (300 K) (Wang & Shen, 2012)and are given in 

Table 5.1 The extended rule of mixtures with efficiency parameters is used to evaluate the 

effective material properties of the face sheets, which are given by:  

𝐸11 = 𝜂1𝑉𝐶𝑁𝐸11
𝐶𝑁 + 𝑉𝑚𝐸𝑚                                                     (5.1) 

𝜂2 𝐸22⁄ = 𝑉𝐶𝑁 𝐸22
𝐶𝑁⁄ + 𝑉𝑚 𝐸𝑚⁄                                                  (5.2) 

𝜂3 𝐺12⁄ = 𝑉𝐶𝑁 𝐺12
𝐶𝑁⁄ + 𝑉𝑚 𝐺𝑚⁄                                                        (5.3) 

𝜈12 = 𝑉𝐶𝑁
∗ 𝜈12

𝐶𝑁 + 𝑉𝑚𝜈𝑚                                                            (5.4) 
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𝐸11
𝐶𝑁,  𝐸22

𝐶𝑁, 𝐺12
𝐶𝑁  and 𝜈12

𝐶𝑁 are in-plane Young's moduli, shear moduli and Poisson's ratio of 

CNTs, respectively. 𝐸𝑚,  𝐺𝑚 and 𝜈𝑚 are the Young's moduli, shear moduli and Poisson's ratio 

for the PMMA matrix. 𝑉𝐶𝑁 and 𝑉𝑚 are the volume fractions of CNT and the matrix, 

respectively. The material properties of the resultant FGCNTRC are assumed to be scale 

dependent. The scale dependency of material properties is incorporated by determining the 

efficiency parameters. The efficiency parameters (η1, η2, η3) (Jiang et al., 2014) considered in 

the present investigation are given in Table 5.3. The aluminium foam core layer is isotropic, 

and two types (uniform, non-uniform symmetric) of porosity distribution are assumed to 

investigate the influence of porosity, as shown in Figure 5.3. The corresponding porosity 

functions are listed in Table 5.4. where E0 and G0 are the maximum values of Young's and 

shear moduli, respectively. The amount of porosity is controlled by introducing the coefficient 

of porosity (e0). hc is the thickness of the core layer. 

Table 5.3: Efficiency parameters for the FGCNTRC (Wang & Shen, 2012) 

Volume Fraction (𝑉𝐶𝑁
∗ ) Efficiency Parameters 

0.12 
𝜂1 = 0.137, 𝜂2 = 1.022, 𝜂3 = 0.7𝜂2 

 

 

0.17 
𝜂1 = 0.142, 𝜂2 = 1.626, 𝜂3 = 0.7𝜂2 

 

 

0.28 
𝜂1 = 0.141, 𝜂2 = 1.585, 𝜂3 = 0.7𝜂2 

 

 

Table 5.4: Porosity distribution functions 

Porosity Distribution Type Material Properties 

Uniform Porosity Distribution (UPD) 

 

𝐸(𝑧) = 𝐸0(1 − 𝑒0Λ) 

𝐺(𝑧) = 𝐺0(1 − 𝑒0Λ) 

where 

Λ =
1

e0
−
1

𝑒0
(
2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

 

 

Symmetric Porosity Distribution (SPD) 

𝐸(𝑧) = 𝐸0 (1 − 𝑒0 cos (
𝜋𝑧

ℎ𝑐
)) 

𝐺(𝑧) = 𝐺0 (1 − 𝑒0 cos (
𝜋𝑧

ℎ𝑐
)) 
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Figure 5.1: Geometrical parameters for the sandwich skew plate 

 

Figure 5.3. Types of porosity function through the thickness of the core 

 

 

ψ

b

y

x

a

βf

z 

z 

x

x 

E1, G1 

E1, G1 

E2, G2 
E, G 

(a) Uniform Porosity Distribution (U.P.D.)        (b) Symmetric Porosity Distribution (S.P.D) 

(S.P.D.) 

x 

(a) UD                                            (b) FGX                                   (c) FGO   

Figure 5.2: Various types of CNT pattern distributions in the top and bottom face sheets 
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Load Diagram Load type Load equation 

 

 

Uniform 

 

𝐹𝑢 = 𝑞0 

 

 

 

 

Parabolic 

 

𝐹𝑝 = 6𝑞0
𝑦

𝑏1
(1 −

𝑦

𝑏1
) 

 

 

 

 

Sinusoidal 

 

𝐹𝑠 =
𝑞0𝜋

2
sin 

𝜋𝑦

𝑏1
 

 

 

 

 

 

Triangular 

 

𝐹𝑡 =

{
 

 4𝑞0
𝑦

𝑏1
0 ≤ 𝑦 ≤

𝑏1
2

4𝑞0 (1 −
𝑦

𝑏1
)

𝑏1
2
≤ 𝑦 ≤ 𝑏1

 

 

 

 

 

Concentrated 

 

 

𝐹𝑐 = 𝑞0𝑏1 At 𝑦 =
𝑏1
2

 

 

Figure 5.4: Functions for arbitrary compressive loads (𝑏1 = 𝑏 cos𝜓) 

5.2.1   Boundary Conditions 
 

The following boundary conditions are considered in the present analysis: 

Simply supported (SSSS) At all edges: 𝑢𝑛 = 𝑢𝑡 = 𝑤0 = 0 

Clamped (CCCC) At all edges: 𝑢𝑛 = 𝑢𝑡 = 𝑤0 = 𝜃𝑛 = 𝜃𝑡 = 0 

where 𝑢𝑡 and 𝑢𝑛 denote displacements along tangential and normal directions to the edge, 

whereas 𝜃𝑛 and 𝜃𝑡 represent the rotation of the mid-plane about the axis tangential and normal 

to the edge, respectively. 𝑤0 is the transverse deflection of the mid-plane of the plate. 

5.3 Linear Buckling Analysis  

  
This section presents the linear buckling analysis of isotropic and sandwich plates subjected to 

non-uniform mechanical load. Convergence studies and new results on linear buckling analysis 

of isotropic, single-layered and FGCNTRC skew plates are presented in Section 5.3.1 and 

results for sandwich plates with various types of support conditions and skew angles are 

discussed in Section 5.3.2. 
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5.3.1   Isotropic Plates 

A validation study is performed first to confirm the accuracy of the code. The linear buckling 

loads for SSSS isotropic skew plate subjected to uniform edge compression are obtained for 

different skew angles. The values obtained are compared with the results given by Babu and 

Kant (Babu & Kant, 1999) were obtained using FEM with FSDT and HSDT  in Table 5.5 while 

present work based on IGA with refined higher order theory and are found to be in good 

agreement. The convergence study is performed for two different orders of the B-spline curve, 

p = 2 and p = 3, and it has been observed that when the order is higher, the results converge 

faster and require a lesser number of knot insertions.  

Table 5.5: Convergence study of linear buckling load parameters for SSSS thin (a/h = 1000) 

isotropic skew plate subjected to uniform compression (𝑁𝑐𝑟𝑎
2/𝜋2𝐷), 𝐷  =  𝐸ℎ3/12(1 − 𝜈2) 

Order, p nk NCP 
Skew angle (ψ) 

0° 15° 30° 45° 

2 

8 11 × 11 4.0196 4.4356 6.1191 11.6062 

10 13 × 13 4.0144 4.4255 6.0745 11.2882 

12 15 × 15 4.0117 4.4203 6.0515 11.1126 

14 17 × 17 4.0102 4.4173 6.0381 11.0056 

16 19 × 19 4.0093 4.4155 6.0295 10.9357 

18 21 × 21 4.0086 4.4142 6.0237 10.8875 

20 23 × 23 4.0080 4.4133 6.0197 10.8529 

22 25 × 25 4.0078 4.4127 6.0166 10.8271 

 
Babu & Kant 

(1999) 
4.00 4.40 5.92 10.23 

3 

7 11 × 11 4.0001 4.3957 5.9264 10.3358 

9 13 × 13 4.0000 4.3955 5.9233 10.2957 

11 15 × 15 4.0000 4.3954 5.9214 10.2792 

13 17 × 17 4.0000 4.3953 5.9201 10.2688 

15 19 × 19 4.0000 4.3952 5.9190 10.2611 

17 21 × 21 4.0000 4.3952 5.9182 10.2549 

19 23 × 23 4.0000 4.3951 5.9175 10.2499 

 
Babu & Kant 

(1999)   
4.00 4.40 5.92 10.23 
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Table 5.6: Linear buckling loads for single-layered porous aluminium skew plate subjected to 

uniform edge loads (
𝑃𝑐𝑟𝑎

2

𝐸1ℎ3
,
𝑎

ℎ
= 50) 

 

Therefore, order, p =3 is used for approximation for all the subsequent studies. For p = 3, the 

results converged for 19-knot insertions, and thus, the same knot insertions are used for all 

further investigations. It can be seen from Table 5.5 that the linear buckling load parameter 

increases with an increasing skew angle due to an increase in the stiffness of the plate. 

Table 5.6 presents the linear buckling loads for a single-layered cellular aluminium skew plate 

under uniform compression for different skew angles, boundary conditions and porosity 

distributions. The critical load decreases with the increase in porosity coefficient because the 

effective modulus decreases as the porosity coefficient is increased. The buckling load 

increases with the skew angle for a particular boundary condition. Moreover, the buckling load 

is higher for a CCCC than an SSSS plate as the plate is more constrained under clamped 

conditions, and consequently, higher stiffness is offered. The buckling load is also found to be 

higher for the non-uniform SPD than the uniform porosity distribution because the symmetric 

porosity distribution reduces the stiffness of the plate by a smaller amount than the uniform 

porosity distribution. The linear buckling loads for an FGCNTRC skew plate under two 

different types of edge compression (𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝐿𝑜𝑎𝑑: 𝐹 =
4𝑞0𝑦

𝑏1
(1 −

𝑦

𝑏1
) , 𝑏1 = 𝑏 cos𝜓) are 

presented in Table 5.7 for different skew angles and boundary conditions. It should be noted 

that the function of the parabolic edge load used for the validation study in Table 5.7 is different 

from that described in Figure 5.4, which is used in all the other investigations. 

 

Boundary 

Condition 

Skew 

angle, ψ 

UPD SPD 

e0 = 0.1 e0 = 0.3 e0 = 0.5 e0 = 0.1 e0 = 0.3 e0 = 0.5 

SSSS 

0° 3.3752 2.8959 2.3873 3.4761 3.2141 2.9517 

15° 3.7077 3.1812 2.6225 3.8185 3.5306 3.2422 

30° 4.9832 4.2755 3.5246 5.1318 4.7441 4.3557 

45° 8.5629 7.3469 6.0566 8.8163 8.1454 7.4718 

CCCC 

0° 8.4508 7.2507 5.9773 8.7011 8.0396 7.3751 

15° 9.0821 7.7923 6.4238 9.3508 8.6391 7.9239 

30° 11.3219 9.7140 8.0080 11.6554 10.7647 9.8683 

45° 16.7526 14.3735 11.8492 17.2408 15.9102 14.5664 
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5.3.2   Sandwich Plate with Various Support Conditions 

  

Table 5.7: Linear buckling loads for FGCNTRC plate subjected to uniaxial edge loads 

((𝑁𝑐𝑟𝑎
2/𝜋2𝐷𝑚), 𝐷𝑚 = 𝐸𝑚ℎ

3/12(1 − 𝜈2),
𝑎

ℎ
= 50, VCN

∗  =  0.17)  

The results are also compared with those obtained by Kiani (Kiani, 2017) using the Ritz method 

and Airy stress function formulation with FSDTfor the case of parabolic loading, while present 

work based on IGA with refined higher order theory and the results are in excellent agreement. 

It is observed that the buckling loads are higher for the FGX distribution and least for the FGO 

distribution for a particular skew angle and boundary condition. This indicates that the stiffness 

of the plate is higher when the CNTs are distributed more towards the plate's surfaces than to 

the centre. The effect of the type of edge compression on linear buckling load for sandwich 

skew plates is studied in Table 5.8. The material properties of the constituents are tabulated in 

Table 5.1. The sandwich plate is made of FGCNTRC face sheets with a uniform distribution 

of CNTs and a cellular aluminium core with a uniform porosity distribution. The study is 

performed for different edge loadings and boundary conditions. The resultant net load is 

assumed to be the same for all loading types. Table 5.8 shows that the buckling load increases 

with a/h ratio due to higher stiffness. The concentration of stresses is highest when the plate is 

subjected to a concentrated load; hence, the buckling loads are the least for the concentrated 

loading condition. 

 

 

Boundary 

Condition 

Skew 

angle (ψ) 

Uniform Load Parabolic Load 

UD FGX FGO UD FGX FGO 

SSSS 

(Kiani 

(2017) 
- - - 59.1758 84.3354 33.2042 

0° 51.6034 73.2386 29.3230 59.1645 83.7756 33.7371 

15° 52.8781 74.6711 30.4554 60.7305 85.5804 35.0908 

30° 58.2350 80.7457 35.1194 67.2147 93.0473 40.6476 

45° 75.9021 101.1506 49.9002 88.3829 117.6155 58.3026 

CCCC 

Kiani 

(2017) 
- - - 192.5509 264.7015 110.7794 

0° 177.4228 244.1586 101.8428 194.4289 266.9257 112.0621 

15° 180.0280 247.0183 104.1976 197.5852 270.5128 114.7881 

30° 190.6830 258.8288 113.5791 210.1730 284.7865 125.5588 

45° 223.0980 295.3898 140.6409 247.6384 327.4383 156.5064 
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Table 5.8: Effect of edge compression on non-dimensional critical load parameter for the 

sandwich skew plate. (
𝑃𝑐𝑟𝑎

2

𝐸𝑐ℎ3
, 𝑉𝐶𝑁

∗ = 0.17, UD, UPD,  𝑒0 = 0.3, ℎ𝑐/ℎ𝑓  =  8) 

Table 5.9 reports the effect of CNT distribution in facings on the eigen-buckling loads for the 

sandwich skew plate with cellular aluminium core with uniform porosity distribution subjected 

to uniform edge load. The buckling loads are presented for different types of CNT distributions, 

CNT volume fractions and boundary conditions. The results indicate that an increase in the 

concentration of CNTs in the facings increases the eigen buckling loads for a particular type of 

CNT distribution pattern. This is due to the higher elasticity modulus of the plate and higher 

overall stiffness. The buckling loads are found to be highest for FGX distribution, followed by 

UD, while being least in the case of FGO distribution for particular boundary conditions, skew 

angle and CNT volume fraction. Non-dimensional critical loads for sandwich skew plates 

subjected to uniaxial uniform edge load are reported in Table 5.10 for two types of porosity 

functions in the core, different ratios of the core thickness (hc) to face sheet thickness (hf), 

boundary conditions and skew angles. The symmetric porosity distribution in the core layer 

yields higher buckling loads compared to UPD as the effective elastic modulus, and hence, the 

stiffness is lesser when the distribution is uniform compared to non-uniform symmetric 

distribution due to higher porosity. 

Boundary 

Condition 

𝑎

ℎ
 

 

Skew 

angle(ψ)  
Uniform Parabolic  Sinusoidal  Triangular Concentrated 

SSSS 

10 

0° 2.2403 1.8858 1.8562 1.7854 1.3260 

15° 2.4421 2.0674 2.0363 1.9624 1.4758 

30° 3.2125 2.7757 2.7406 2.6598 2.0873 

45° 5.3082 4.8014 4.7674 4.7055 3.4707 

100 

0° 2.3561 1.9838 1.9528 1.8785 1.4010 

15° 2.5764 2.1810 2.1482 2.0703 1.5640 

30° 3.4294 2.9592 2.9215 2.8343 2.2392 

45° 5.8788 5.2932 5.2529 5.1761 4.5613 

CCCC 

10 

0° 6.0591 5.1170 5.0362 4.8364 3.3054 

15° 6.3924 5.4251 5.3431 5.1432 3.5515 

30° 7.5462 6.4905 6.4042 6.2019 4.3787 

45° 10.0540 8.7621 8.6575 8.4147 5.9996 

100 

0° 7.1398 6.0408 5.9468 5.7154 4.1433 

15° 7.6056 6.4716 6.3759 6.1437 4.5432 

30° 9.3162 8.0697 7.9698 7.7415 6.1002 

45° 13.6136 12.1069 11.9966 11.7682 9.7466 
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Table 5.9: Effect of CNT distribution in facings on linear buckling loads for sandwich skew 

plate subjected to uniform compression (
𝑃𝑐𝑟𝑎

2

𝐸𝑐ℎ3
,
𝑎

ℎ
= 100, 𝑒0 = 0.3, ℎ𝑐 ℎ𝑓⁄ = 4, U.P.D.) 

 

 

Table 5.10: Effect of porosity functions in the core on linear buckling loads for the sandwich 

skew plate under uniform compression (
𝑃𝑐𝑟𝑎

2

𝐸𝑐ℎ3
, 𝑉𝐶𝑁

∗ = 0.17, UD, 
𝑎

ℎ
= 100) 

As the porosity coefficient is increased, the buckling load decreases. It is found that buckling 

loads are increasing with hc/hf ratios. This indicates that the core layer contributes more to the 

𝑉𝐶𝑁
∗  

Skew 

angle (ψ) 

SSSS CCCC 

UD FGX FGO UD FGX FGO 

0.12 

0° 1.7120 1.7496 1.6751 5.4922 5.6417 5.3440 

15° 1.8557 1.8946 1.8175 5.8017 5.9544 5.6504 

30° 2.4176 2.4621 2.3741 6.9593 7.1261 6.7943 

45° 4.0560 4.1195 3.9942 9.9581 10.1712 9.7473 

0.17 

0° 2.1153 2.1714 2.0612 7.0262 7.2478 6.8096 

15° 2.2766 2.3344 2.2212 7.3763 7.6019 7.1565 

30° 2.9122 2.9773 2.8510 8.7032 8.9465 8.4682 

45° 4.7885 4.8789 4.7060 12.2213 12.5244 11.9318 

0.28 

0° 2.8399 2.9351 2.7527 9.8989 10.2687 9.5486 

15° 3.0164 3.1143 2.9283 10.2859 10.6618 9.9332 

30° 3.7221 3.8319 3.6293 11.7857 12.1883 11.4202 

45° 5.8542 6.0047 5.7412 15.9320 16.4231 15.5107 

Boundary 

Condition 
hc/hf 

Skew 

angle(ψ) 

 

UPD   SPD 

𝒆𝟎 = 0.1 𝒆𝟎 = 0.3 𝒆𝟎 = 0.5 𝒆𝟎 = 0.1 𝒆𝟎 = 0.3 𝒆𝟎 = 0.5 

SSSS 

4 

0° 2.2577 2.1153 1.9642 2.2877 2.2100 2.1322 

15° 2.4376 2.2766 2.1051 2.4715 2.3837 2.2957 

30° 3.1445 2.9122 2.6628 3.1931 3.0669 2.9398 

45° 5.2194 4.7885 4.3211 5.3091 5.0754 4.8390 

8 

0° 2.6021 2.3562 2.0952 2.6539 2.5198 2.3855 

15° 2.8502 2.5764 2.2851 2.9078 2.7586 2.6091 

30° 3.8092 3.4294 3.0229 3.8889 3.6822 3.4746 

45° 6.5549 5.8788 5.1508 6.6961 6.3281 5.9573 

CCCC 

4 

0° 7.3910 7.0262 6.6383 7.4675 7.2672 7.0659 

15° 7.7805 7.3763 6.9452 7.8650 7.6435 7.4205 

30° 9.2478 8.7032 8.1168 9.3611 9.0637 8.7631 

45° 13.0982 12.2213 11.2652 13.2791 12.8014 12.3155 

8 

0° 7.7659 7.1401 6.4753 7.8974 7.5549 7.2114 

15° 8.2879 7.6059 6.8795 8.4309 8.0580 7.6835 

30° 10.1970 9.3167 8.3728 10.3808 9.9002 9.4159 

45° 14.9625 13.6147 12.1591 15.2422 14.5059 13.7609 
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plate's stiffness than the face sheets, as the elasticity modulus of the core layer is more 

compared to the effective modulus of the face sheets. 

5.4 Non-linear Post-Buckling Analysis 
 

The present numerical technique is efficient for the linear buckling analysis of isotropic and 

sandwich plates in the previous section. The same numerical technique is extended here for the 

non-linear post-buckling and post-buckled vibration behaviour of the isotropic and sandwich 

plates. 

5.4.1   Isotropic plates 
 

In this subsection, the efficiency of the present numerical technique and the accuracy of the 

computer code developed herein is tested by the non-linear post-buckling analysis of the 

isotropic plate, which comparative results are available in the literature. 

 

 

The in-house MATLAB code is validated for non-linear stability analysis of skew plates. The 

present results for post-buckling paths of a simply supported isotropic square plate subjected 

to uniaxial uniform edge load are compared to those presented by Le-Manh and Lee (Le-Manh 

& Lee, 2014) were obtained using NURBS based IGA with FSDT  in Figure 5.5 for different 

Figure 5.5: Post-buckling behaviour of an initially imperfect SSSS square isotropic plate under 

uniform compression 
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values of initial imperfections  while present work based on IGA with refined higher order 

theory and are found to be in good agreement. A bifurcation point is observed when the initial 

imperfection is very small, of the order of 10-5 or lesser.  

 

(a)                        (b) 

 

Figure 5.6: Post buckling and free vibration behaviour about the post-buckled configuration of 

a skew isotropic plate with different values of initial imperfections subjected to uniaxial 

uniform edge load.    

Figures 5.6a, 5.6b, 5.6c and 5.6d show the post-buckling paths and natural frequencies of the 

post-buckled configuration of an SSSS isotropic skew plate subjected to uniform compression 

with initial imperfections 10-4 and 10-3. The linear buckling load for the square plate is taken 

as the reference load (λcr
*) for all the cases. It is seen from Figures 5.6a and 5.6c that the post-

buckled strength is highest for the skew angle of 45° and least for 0° because of increasing 

        (c)                                             (d) 
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stiffness with the skew angle, as mentioned earlier. Theoretically, at the critical load, the 

fundamental frequency of the perfect skew plate should be zero. However, the plate exhibits 

small vibrational frequencies due to the imperfection, as seen in Figures 5.6b and 5.6d.   

5.4.2   Skew Sandwich Plate 
 

The post-buckling behaviours of sandwich skew (𝜓 = 45°)  plate with FGCNTRC facings and 

aluminium foam core with uniform porosity distribution are shown in Figures 5.7a and 5.7b 

for different distribution patterns of carbon nanotubes in the facings. The critical load for the 

UD case is taken as a reference (λcr
*). It is evident from the figures that there is no significant 

change in behaviour concerning changes in the CNT distribution pattern. This implies that the 

CNT pattern in the face sheets has no considerable influence on the post-buckling strength of 

the sandwich plate.  

    

 

 

 

                               (a)                             (b) 

Figure 5.7: Influence of CNT distribution in the facings on post-buckling behaviour of a 

skew sandwich plate subjected to uniform compression ( 𝑎 ℎ⁄ = 100, 𝜓 = 45°, ℎ𝑐 ℎ𝑓⁄ =

4, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝑒0 = 0.3, U. P. D.) 
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Figure 5.8: Influence of porosity functions in the core of a skew sandwich plate on post-

buckling behaviour subjected to uniaxial uniform edge load (𝑎 ℎ⁄ = 100, 𝜓 = 45°, ℎ𝑐 ℎ𝑓⁄ =

4, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝑒0 = 0.3, UD) 

Figures 5.8a and 5.8b present the post-buckling paths and eigen frequencies about a post-

buckled state of an SSSS skew sandwich plate subjected to uniform compression for different 

porosity distributions. The critical load for the UPD is taken as a reference (λcr
*). It is observed 

that the post-buckled strength is higher for SPD. The frequencies are higher for SPD than UPD 

before buckling and higher for UPD than SPD in the post-buckling regime. Figures 5.9a and 

5.9b illustrate the post-buckling behaviours of a simply supported skew sandwich plate with 

UD of CNTs in the facings and UPD in the core under different edge loadings.  

 

Figure 5.9: Influence of edge load distribution on post-buckling behaviour of a skew sandwich 

plate (𝑎 ℎ⁄ = 100, 𝜓 = 45°, ℎ𝑐 ℎ𝑓⁄ = 4, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝑒0 = 0.3, UD, UPD. )  

                               (a)                             (b) 

                               (a)                             (b) 
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Figure 5.10: influence of skew angle on post-buckling paths and post-buckled vibration 

behaviour of a skew sandwich plate (𝑎 ℎ⁄ = 100, ℎ𝑐 ℎ𝑓⁄ = 4, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝑒0 =

0.3, UD, UPD. ) 

The linear buckling of the plate subjected to uniform compression is taken as the reference 

(λcr
*). Figure 5.9a shows that the post-buckling strength is the least for concentrated load and 

is greatest under uniform edge load. From Figure 5.9b, it can be seen that the lowest load at 

which the plate exhibits minimum frequency is when the plate is under a concentrated load. 

The influence of skew angle on the post-buckling and post-buckled vibration behaviour is 

presented in Figures 5.10a and 5.10b. The buckling parameter of the square plate is taken as 

the reference (λcr
*). The post-buckling strength increases with the skew angle due to the 

increase in stiffness of the plate. Figure 5.10b shows that for the same load, the fundamental 

frequency of the equilibrium position is highest when the skew angle is 45° and is least for 0° 

in the pre-buckling regime. The trend is reversed in the post-buckled configuration. 

5.5 Displacement Through Thickness 

Analysing displacement through the thickness is essential to comprehending how structures 

behave when subjected to dynamic loading conditions. This factor plays a significant role in 

several applications, including vibration analysis, modal analysis, and structural design. To 

understand the displacement patterns through the thickness of vibrating structures, engineers 

and researchers frequently rely on numerical methods and finite element analysis to analyse 

and visualise the data. The mode shapes of a vibrating structure provide a visual representation 

of the displacement distribution across the structure, highlighting the unique characteristics of 

each vibrational mode. These mode shapes are inherently linked to the natural frequency of 

                               (a)                             (b) 
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vibration and are affected by factors such as boundary conditions, material properties, and the 

type of excitation. As one examines the displacement through the thickness of the structure, it 

becomes apparent that this varies along the length of the structure, demonstrating the complex 

interplay between these various factors. 

 

Figure 5.11: In-plane and Transverse Displacement through-thickness for pre-buckled 

vibration behaviour about the equilibrium position (
𝜆

𝜆𝑐𝑟
∗ = 0.5) of a square sandwich plate 

subjected to uniform compression ( 
𝑎

ℎ
= 100,

ℎ𝑐

ℎ𝑓
= 4, 𝑉𝐶𝑁𝑇

∗ = 0.17, 𝑒0 = 0.3, U. P. D.)  

 

Figure 5.12: In-plane and Transverse Displacement through-thickness for post-buckled 

vibration behaviour about the equilibrium position (
𝜆

𝜆𝑐𝑟
∗ = 1.5) of a square sandwich plate 

subjected to uniform compression ( 
𝑎

ℎ
= 100,

ℎ𝑐

ℎ𝑓
= 4, 𝑉𝐶𝑁𝑇

∗ = 0.17, 𝑒0 = 0.3, U. P. D.)  



69 

 

 

Figure 5.13: In-plane and Transverse Displacement through-thickness for pre-buckled 

vibration behaviour about the equilibrium position (
𝜆

𝜆𝑐𝑟
∗ = 0.5) of a square sandwich plate 

subjected to uniform compression ( 
𝑎

ℎ
= 100,

ℎ𝑐

ℎ𝑓
= 8, 𝑉𝐶𝑁𝑇

∗ = 0.17, 𝑒0 = 0.3, U. P. D.) 

Figures 5.11, 5.12, 5.13, and 5.14 display the relative displacements across the thickness of the 

sandwich plate, comparing two distinct core-to-face sheet thickness ratios. These results were 

obtained through non-polynomial higher-order theory, illustrating pre-buckled and post-

buckled vibration behaviour. Generally, the specific modes in the thickness direction depend 

on the position within the given sandwich structures. 

 

 

Figure 5.14: In-plane and Transverse Displacement through-thickness for post-buckled 

vibration behaviour about the equilibrium position (
𝜆

𝜆𝑐𝑟
∗ = 1.5) of a square sandwich plate 

subjected to uniform compression ( 
𝑎

ℎ
= 100,

ℎ𝑐

ℎ𝑓
= 8, 𝑉𝐶𝑁𝑇

∗ = 0.17, 𝑒0 = 0.3, U. P. D.) 

The zigzag-based displacement model can be employed to obtain the accurate distribution of 

displacements through-thickness for a specific mode. This study primarily focuses on the 

global buckling and post-buckled vibration behaviour of sandwich plates. Therefore, the 
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authors utilised the equivalent single-layer theory to comprehend the vibration behaviour of 

plates around pre-buckled and post-buckled equilibrium configurations.  

 

5.6 Summary  
 

An isogeometric (IGA) non-polynomial higher-order theory formulation is used to study the 

post-buckling and free vibration behaviour of the post-buckled configuration of the skew plate 

with FGCNTRC facings and an aluminium foam core. The midplane assumptions are based on 

a non-polynomial higher-order theory, and the strain-displacement relations are based on von 

Kármán assumptions. The effect of CNT pattern in face sheets, porosity distribution in the core 

layer, edge loading conditions, skew angle, side-to-thickness ratio, and volume fraction index 

of CNTs on the stability and vibration behaviour of the sandwich plates are studied. The skew 

angle affects the static and dynamic characteristics of the sandwich plate for all boundary 

conditions. As the skew angle of the sandwich plate increases, the buckling strength increases 

for both SSSS and CCCC skew sandwich plates due to the higher stiffness of the plate. The 

buckling strength of the sandwich skew plate under uniform compression reduces with the 

reduction in the porosity due to lower flexural stiffness and the same geometric stiffness. The 

buckling load and post-buckling strength are higher for the SPD than UPD because the 

symmetric porosity distribution reduces the stiffness of the plate by a smaller amount than the 

uniform porosity distribution. In the pre-buckling region, the frequencies are higher for SPD 

than UPD and higher for UPD than SPD in the post-buckling regime. The buckling loads 

increase with ℎ𝑐/ℎ𝑓 ratio. This indicates that the core layer contributes more to the plate's 

stiffness than the face sheets, as the elasticity modulus of the core layer is more than the 

resultant modulus of the facings. The buckling strength is higher when the CNTs are distributed 

more towards the plate's surfaces than the centre. The critical load is highest for uniform 

compression and least under concentrated load due to a high concentration of stresses. 
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Chapter 6 
 

Stability Analysis of Plates in Thermal Environment 

 

6.1 Introduction 
 

In this chapter, an in-depth investigation is conducted on sandwich plates’ linear and non-linear 

stability behaviours in a thermal environment. The efficiency of the Isogeometric analysis, with 

non-polynomial higher-order theory, and the accuracy of the in-house MATLAB code have 

already been established in Chapter 5 for linear and non-linear analyses of sandwich plates 

under non-uniform mechanical loading conditions. The suitability of the same numerical 

technique and the in-house MATLAB code is explored for the sandwich plate’s linear buckling 

and non-linear post-buckling analysis in a thermal environment. Section 6.2 presents the 

geometrical and material variables of sandwich plates, providing a detailed overview of the 

parameters that affect the stability behaviours of sandwich plates. Section 6.3 explains the 

plates’ linear thermal buckling analysis, highlighting the sandwich plates’ response to thermal 

loads. Section 6.4 examines the behaviour of sandwich plates after buckling and the influence 

of thermal loads on this behaviour. Finally, Section 6.5 summarises the observations from this 

numerical work, providing valuable insights into the linear and non-linear stability behaviours 

of sandwich plates and the influence of thermal loads on these behaviours. The non-linear 

stability behaviour of skew sandwich plates with re-entrant auxetic cores under thermal loading 

is limited. The present work investigates the buckling and post-buckling behaviour of initially 

imperfect sandwich plates (square and skew) with an auxetic core possessing tunable material 

properties under various thermal loading conditions and boundary constraints. 

 

6.2 Geometrical and Material Variables of Sandwich Plate 
 

Figure 6.1 illustrates the shape and geometrical parameters of the skew plates. An essential 

aspect to consider is determining the thermomechanical properties of carbon nanotubes as a 

function of temperature. To achieve this, a fourth-degree interpolation function is utilised to 
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calculate the thermomechanical characteristics of CNTs. Through this function, each property 

is accurately represented as: 

𝑃 = 𝑃0 + 𝑃1(𝑇 𝑇0⁄ ) + 𝑃2(𝑇 𝑇0⁄ )2 + 𝑃3(𝑇 𝑇0⁄ )3 + 𝑃4(𝑇 𝑇0⁄ )4              (6.1)                                                    

in which 𝑇 = 𝑇0 + Δ𝑇, Δ𝑇 is the temperature increment in the environment containing the 

material and 𝑇0 = 300 K (room temperature). The values of unique coefficients Pi are provided 

in Table 6.1 for each thermomechanical property. The three forms of CNT distributions (Kiani, 

2018), uniform distribution (UD), FGX and FGO, are illustrated in Figure 6.2, and the 

corresponding functions are tabulated in Table 6.2. In all three scenarios, the total volume 

fraction of CNTs is considered to be the same. In Table 6.2, ht and hb represent the top and 

bottom positions of two-layer ends in the transverse direction. The matrix is made of PMMA, 

and its material properties are assumed to vary linearly with temperature (Thanh et al., 2017) 

𝐸𝑚 = (3.52 − 0.0034𝑇)GPa, 𝑣𝑚 = 0.34, 𝛼𝑚 = 45(1 + 0.0005Δ𝑇) ×
10−6

𝐾
, 𝜌m = 1150kg/m3 

 The resultant Young’s modulus, shear modulus and Poisson’s ratio of facings are determined 

using the modified rule of mixtures with efficiency parameters as: 

𝐸11 = 𝜂1𝑉𝐶𝑁𝐸11
𝐶𝑁 + 𝑉𝑚𝐸𝑚                                                       (6.2) 

𝜂2 𝐸22⁄ = 𝑉𝐶𝑁 𝐸22
𝐶𝑁⁄ + 𝑉𝑚 𝐸𝑚⁄                                                  (6.3) 

𝜂3 𝐺12⁄ = 𝑉𝐶𝑁 𝐺12
𝐶𝑁⁄ + 𝑉𝑚 𝐺𝑚⁄                                                        (6.4) 

The effective Poisson ratio of face sheets depends weakly on position (Jam & Kiani, 2015; 

Shen, 2011) and is expressed as a 

𝜈12 = 𝑉𝐶𝑁𝜈12
𝐶𝑁 + 𝑉𝑚𝜈𝑚                                                           (6.5) 

𝜌 = 𝑉𝐶𝑁𝜌𝐶𝑁 + 𝑉𝑚 𝜌𝑚                                                           (6.6) 

The longitudinal and transverse thermal expansion coefficients can be represented as follows 

(Kiani, 2018) 

𝛼11 = 𝑉𝐶𝑁𝛼11
𝐶𝑁 + 𝑉𝑚𝛼𝑚                                                           (6.7) 

𝛼22 = (1 + 𝑣12
𝐶𝑁)𝑉𝐶𝑁𝛼22

𝐶𝑁 + (1 + 𝑣𝑚)𝑉𝑚𝛼𝑚 − 𝑣12𝛼11           (6.8) 

𝐸11
𝐶𝑁,  𝐸22

𝐶𝑁, 𝐺12
𝐶𝑁  and 𝜈12

𝐶𝑁 indicate the properties of CNTs, while 𝐸𝑚,  𝐺𝑚 and 𝜈𝑚 are similar to 

the PMMA matrix. 𝑉𝐶𝑁 and 𝑉𝑚 are the volume fractions of CNT and the matrix, respectively. 

𝛼11
CN, 𝛼22

CN and 𝛼𝑚 are the thermal expansion coefficients of the CNT and matrix, respectively. 

The efficiency parameters (η1, η2, η3) (Jiang et al., 2014) given in Table 6.3 are used to account 
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for the difference in the resultant properties estimated through the simple rule of mixtures and 

those determined using molecular dynamics simulations.  

Table 6.1: Pi coefficients for various thermomechanical characteristics associated with fourth-

order interpolation. (Kiani, 2018) 

𝑃 𝑃0 𝑃1 𝑃2 𝑃3 𝑃4 

𝐸11[TPa] +6.56537 -1.76156 +1.13347 -0.32260 +0.03193 

𝐸22[TPa] +8.22710 -2.19725 +1.41176 -0.40125 +0.03964 

𝐺12[TPa] +1.10442 +1.88427 -1.47623 +0.49029 -0.05829 

𝛼11[10−6/ ∘C] -1.12800 +6.88290 -2.60621 +0.31023 -0.00054 

𝛼22[10−6/ ∘C] +5.43593 -0.29201 +0.02268 +0.00182 -0.00023 

𝜈12 +0.17500       0         0        0        0 

 

Table 6.2: CNTs’ volume fraction function for various distributions 

CNTs Pattern UD                        FGX                         FGO 

The volume fraction 

of CNTs in the 

facings 

𝑉𝐶𝑁
∗  

4

ℎ𝑡 − ℎ𝑏
 (|

ℎ𝑡 + ℎ𝑏

2
− 𝑧|) 𝑉𝐶𝑁

∗  

 

4

ℎ𝑡 − ℎ𝑏
(

ℎ𝑡 − ℎ𝑏

2
− |

ℎ𝑡 + ℎ𝑏

2
− 𝑧|) 𝑉𝐶𝑁

∗  

 

 

Table 6.3: FGCNTRC efficiency parameters (Wang & Shen, 2012) 

Volume Fraction (𝑉𝐶𝑁
∗ ) Efficiency Values 

0.12 𝜂1 = 0.137, 𝜂2 = 1.022, 𝜂3 = 0.7𝜂2 

0.17 𝜂1 = 0.142, 𝜂2 = 1.626, 𝜂3 = 0.7𝜂2 

0.28 𝜂1 = 0.141, 𝜂2 = 1.585, 𝜂3 = 0.7𝜂2 

The material properties of the auxetic re-entrant core made up of aluminium 

(E = 69 GPa, ν = 0.3, G = 27 GPa and ρ = 2700 kg/m3) (Gupta & Pradyumna, 2022) are 

dependent on various geometrical parameters and can be written as (Thuy Anh et al., 2022) 

 

𝐸11
(𝑐)

= 𝐸 (
𝑡

𝑙1
)

3 (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐)

cos3 𝜃ℎ𝑐  [1 + (tan2 𝜃ℎ𝑐 +
𝑙2
𝑙1

sec2 𝜃ℎ𝑐) (
𝑡
𝑙1

)
2

]

 

 

𝐸22
(𝑐)

= 𝐸 (
𝑡

𝑙1
)

3 1

cos 𝜃ℎ𝑐 (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐) (tan2 𝜃ℎ𝑐 + (
𝑡
𝑙1

)
2

)

 

𝐺12
(𝑐)

= 𝐸 (
𝑡

𝑙1
)

3 1

(
𝑙2
𝑙1

) (1 + 2
𝑙2
𝑙1

) cos 𝜃ℎ𝑐
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𝐺23
(𝑐)

= 𝐺 (
𝑡

𝑙1
)

cos 𝜃ℎ𝑐

(
𝑙2

𝑙1
− sin 𝜃ℎ𝑐)

(6.9)
 

 

𝐺13
(𝑐)

= 𝐺
(

𝑡
𝑙1

)

2cos 𝜃ℎ𝑐
[
(

𝑙2
𝑙1

− sin 𝜃ℎ𝑐)

(1 + 2
𝑙2
𝑙1

)
+

(
𝑙2
𝑙1

+ 2sin2 𝜃ℎ𝑐)

2 (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐)
] 

 

 

𝑣12
(𝑐)

= −
sin 𝜃ℎ𝑐 (1 − (

𝑡
𝑙1

)
2

) (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐)

cos2 𝜃ℎ𝑐 [1 + (tan2 𝜃ℎ𝑐 +
𝑙2
𝑙1

sec2 𝜃ℎ𝑐) (
𝑡
𝑙1

)
2

]

 

 

𝑣21
(𝑐)

= −
sin 𝜃ℎ𝑐 (1 − (

𝑡
𝑙1

)
2

)

(tan2 𝜃ℎ𝑐 + (
𝑡
𝑙1

)
2

) (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐)

 

 

𝜌(𝑐) = 𝜌
(

𝑡
𝑙1

) (
𝑙2
𝑙1

+ 2)

2cos 𝜃ℎ𝑐 (
𝑙2
𝑙1

− sin 𝜃ℎ𝑐)
 

𝛼11
(𝑐)

= 𝛼 ×
(

𝑡
𝑙1

) cos 𝜃ℎ𝑐

(sin 𝜃ℎ𝑐 +
𝑙2
𝑙1

 )
; 𝛼22

(𝑐)
= 𝛼 ×

(
𝑡
𝑙1

) (
𝑙2
𝑙1

+ sin 𝜃ℎ𝑐)

(2
𝑙2
𝑙1

+ 1) cos 𝜃ℎ𝑐

 

 

𝐸11
(𝐶)

, 𝐸22
(𝐶)

, 𝐺12
(𝐶)

, 𝐺23
(𝑐)

, 𝐺13
(𝑐)

,𝜈12
(𝐶)

  𝑣21
(𝑐)

and 𝛼11
(𝑐)

, 𝛼22
(𝑐)

 are Young’s moduli shear moduli, Poisson’s 

ratio and longitudinal and transverse thermal expansion coefficients of the auxetic core. ρ is 

the density of the core material, i.e., aluminium. Where l1 is the length of the inclined cell rib, 

l2 is the length of the vertical cell rib, t is the rib thickness, and θhc is the inclined cell angle, as 

shown in Figure 6.1. Additionally, h2 refers to the thickness of the auxetic core, and h1 

represents the facings thickness of the top layer, which is equal to the bottom layer thickness. 
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Figure 6.1: Shapes and geometrical parameters of the sandwich skew plate 

 

 

(a)   UD                                          (b) FGX                                  (c) FGO 

Figure 6.2: Different CNT patterns in facings and the re-entrant auxetic core.     
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6.2.1 Boundary Conditions  
 

The different types of edge constraints for the plate are given as: 

(A) Simply supported :(SSSS): {
𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑦 = 0 on 𝑥 = 0, 𝑎

𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 0 on 𝑦 = 0, 𝑏
 

(S1S1S1S1 ): {
𝑣0 = 𝑤0 = 𝜃𝑦 = 0 on 𝑥 = 0, 𝑎

𝑢0 = 𝑤0 = 𝜃𝑥 = 0 on 𝑦 = 0, 𝑏
 

(B) Clamped support :(CCCC):  {
𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0

𝑤0,𝑥 = 𝑤0,𝑦 = 0
All edges 

In the present article SSSS, boundary conditions are used for all the cases unless a particular 

case is specified. 

6.3 Linear Thermal Buckling Analysis 
 

A MATLAB code has been created to conduct linear buckling and non-linear post-buckling 

analyses of sandwich plates under thermal loading conditions. Several validation studies have 

been undertaken to ascertain the correctness of the code. 

6.3.1  Linear Stability Analysis for Isotropic, Laminated, and Sandwich 

Plate 
 

Firstly, the MATLAB code developed is confirmed by performing validation studies on linear 

thermal buckling analysis of the plate:  

(a) Critical temperature parameters (Tcr) for the SSSS FGCNTRC square plate under thermal 

load are determined for different volume fractions in Table 6.4. The results are compared 

to those given by Shen & Zhang (2010) were obtained using multi-scale approach, and 

Kiani (2017) was obtained using Ritz-based solution with FSDT while present work based 

on IGA with refined higher order theory and are in good agreement. The study is conducted 

for two distinct orders of the B-spline curve, p = 2 and p = 3, where p is the order of the 

curve, and it is noticed that the results converge faster and require a lesser number of knot 

insertions (nk) as the order of the curve increases. Hence, order 3 with 13-knot insertions 

is employed in all the following investigations.  

(b) Table 6.5 shows the thermal buckling parameter ( 𝜆𝑐𝑟) for a [0/90°] laminated skew plates 

with various skew angles and boundary conditions. The findings of Kant & Babu (2000) 

were obtained using a higher-order shear deformation theory (HSDT) with finite elements.  
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Table 6.4: Convergence of critical buckling temperature parameter (Tcr) for simply supported 

(SSSS) FGCNTRC plates established on a temperature-dependent analysis. (𝑎 𝑏⁄ = 1)   

 

formulation, while Kiani (2017) employed First-order shear deformation theory FSDT with 

the Ritz method for thin plates. The obtained results agree with those of Kant & Babu 

(2000) and Kiani (2017), while present work based on IGA with refined higher order 

theory, confirming the effectiveness of the proposed approach. 

(c)  Since no study is available for linear thermal buckling behaviour of auxetic core sandwich 

plates with FGCNTRC facings, the present formulation is validated for its accuracy by 

 𝑽𝑪𝑵
∗  

a/h p nk NCP 0.12 0.17 0.28 

UD FGX UD FGX UD FGX 

10 2 2 5 × 5 392.25 405.91 403.89 420.80 396.21 411.93 

4 7 × 7 390.95 404.64 402.35 419.28 395.04 410.85 

6 9× 9 390.54 404.33 401.86 418.92 394.63 410.54 

8 11× 11 390.24 404.09 401.53 418.65 394.31 410.28 

10 13× 13 390.03 403.90 401.30 418.43 394.08 410.08 

12 15 × 15 389.89 403.75 401.15 418.28 393.93 409.92 

14 17 × 17 389.79 403.65 401.05 418.16 393.81 409.80 

16 19 × 19 389.72 403.57 400.97 418.08 393.73 409.70 

3 3 7× 7 389.87 403.74 401.14 418.27 393.90 409.89 

5 9 × 9 389.44 403.24 400.69 417.73 393.41 409.30 

7 11× 11 389.41 403.19 400.65 417.68 393.37 409.24 

9 13× 13 389.41 403.18 400.65 417.68 393.37 409.23 

11 15× 15 389.40 403.18 400.65 417.67 393.36 409.23 

13 17 × 17 389.40 403.18 400.65 417.67 393.36 409.23 

15 19 × 19 389.40 403.18 400.65 417.67 393.36 409.23 

Shen & 

Zhang (2010) 

388.19 403.91 399.44 419.09 391.62 410.58 

Kiani (2017) 387.63 402.25 399.03 419.13 390.81 415.79 

20 2 2 5 × 5 341.42 353.57 345.23 359.64 346.24 361.71 

4 7 × 7 340.34 352.23 344.03 358.13 345.08 360.31 

6 9× 9 339.94 351.84 343.57 357.66 344.69 359.96 

8 11× 11 339.75 351.63 343.36 357.42 344.49 359.74 

10 13× 13 339.66 351.51 343.25 357.29 344.38 359.61 

12 15 × 15 339.60 351.44 343.19 357.21 344.32 359.52 

14 17 × 17 339.57 351.39 343.16 357.16 344.28 359.47 

16 19 × 19 339.54 351.36 343.13 357.13 344.25 359.43 

3 3 7× 7 339.61 351.46 343.20 357.23 344.33 359.54 

5 9 × 9 339.46 351.25 343.04 357.01 344.15 359.30 

7 11× 11 339.45 351.24 343.03 356.99 344.14 359.28 

9 13× 13 339.45 351.24 343.03 356.99 344.14 359.28 

11 15× 15 339.45 351.24 343.03 356.99 344.14 359.28 

13 17 × 17 339.45 351.24 343.03 356.99 344.14 359.28 

15 19 × 19 339.45 351.24 343.03 356.99 344.14 359.28 

Shen & 

Zhang (2010) 

339.42 353.20 343.00 359.52 344.08 362.06 

Kiani (2017) 339.40 352.77 343.00 359.43 344.05 364.07 
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comparing it with similar works. Table 6.6 shows the non-dimensional frequencies of the 

re-entrant core-based sandwich plate for different h2/h ratios and cell angle θhc, along with 

the results of Gupta & Pradyumna (2022) were obtained using FEM with TSDT and Cong 

& Duc (2021) were obtained using analytical approach with Reddys FSDT, while present 

work based on IGA with refined higher order theory, and it shows good agreement. The 

non-dimensional parameters, 𝜔̅L = 𝜔(𝑎2/ℎ)√12𝜌(1 − 𝜈2)/𝐸2 is considered for non-

dimensional values. 

(d) The linear buckling loads of an initially imperfect uniformly heated isotropic ceramic plate 

( E=380GPa, α = 7.4×10-6/°C, 𝜈 = 0.30, a/h =100) simply supported (S1S1S1S1 ) is plotted 

against different imperfection amplitude size µ of a sine type imperfection in Figure 6.4. 

Figure 6.4 illustrates that critical temperature increases steadily change in imperfection 

amplitude μ from 0 to 1, establishing a good match of the present results with those based 

on the layer wise theory model (Cetkovic, 2022) while present work based on IGA with 

refined higher order theory.         

Table 6.5: Thermal buckling parameter  𝜆𝑐𝑟 = 100𝛼22𝛥𝑇𝑐𝑟 of [0/90°]s laminated skew plates 

with numerous skew angles and BC. (𝑎 ℎ⁄ = 100, 𝑎 𝑏⁄ = 1)   

 

Figure 6.3 shows the effects of the inclination angle of the unit cell on the Poisson’s ratio of 

the auxetic core sandwich plate with varied l2/l1 and t/l1 = 0.1 values. It can be seen that negative 

poisons ratio (NPR) values are associated with positive cell angles. Therefore, cell angle (𝜃ℎ𝑐 =

30°) is used for all subsequent investigations unless specified. Table 6.7 analyses the influence 

of various geometric imperfection modes on critical buckling temperature Δ𝑇̅𝑐𝑟 of thin (a/ h = 

100) ceramic plate. It is noted that the L3 and L2 local-type imperfections show the least effect 

on critical buckling temperature, whereas the greater influence has all global-type 

imperfections G3, G2 and G1. Table 6.8 shows the influence of two imperfection modes with 

different width-to-thickness ratios on the critical buckling temperature of a simply supported 

(SSSS) square sandwich plate with the auxetic core. As the imperfection amplitude increases 

and the width-to-thickness ratio decreases, the critical buckling temperature for the square 

BC Skew angle ( 𝜓) Present  Kiani (2017) Kant & Babu (2000) 

SSSS 0° 0.0996 0.0997 0.0996 

15° 0.1018 0.1018 0.1017 

30° 0.1118 0.1108 0.1116 

45° 0.1433 0.1433 0.1427 

CCCC 0° 0.3352 0.3354 0.3348 

15° 0.3444 0.3446 0.3441 

30° 0.3576 0.3578 0.3572 

45° 0.4175 0.4179 0.4169 
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sandwich plate increases. The results are expected since, with increasing the thickness, the 

flexural rigidity of the plate increases. Table 6.9 includes new results on the effect of two 

imperfection modes on critical temperature for sandwich plates with auxetic core for numerous 

skew angles and boundary conditions. As the imperfection amplitude and skew angle increase, 

the critical temperature for the skew sandwich plate increases. It is also observed that critical 

buckling temperate is higher for CCCC boundary conditions than SSSS boundary conditions.  

 

Table 6.6: Non-dimensional frequency parameters of the auxetic core sandwich plate for 

various θhc and h2/h. ( 𝑎 ℎ⁄ = 100, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑎/𝑏 =  1 ) 

𝜽𝒉𝒄 

 

h2 / h Present Gupta & 

Pradyumna (2022) 

Cong & Duc 

(2021) 

0° 0.3 22.774 22.723 22.814 

0.5 24.877 24.825 24.905 

0.7 26.318 26.298 26.409 

0.9 23.916 23.911 23.990 

30° 0.3 22.522 22.486 22.552 

0.5 24.269 24.238 24.317 

0.7 24.997 24.996 25.102 

0.9 20.986 21.031 21.049 

     

 

 

 

Figure 6.3: Poisson’s ratio Vs. cell angle with various cell aspect ratio 

Table 6.10 contains the results for linear stability characteristics of a sandwich plate with 

different types of CNT distribution in face sheets. Buckling loads are shown for various CNT 
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distributions, concentrations, and BCs. The tabulated values indicate that increasing the CNT 

concentration in the facings improves buckling strength for a specific CNT distribution pattern. 

This may be attributed to improved effective elasticity modulus and overall stiffness of the 

plate. Furthermore, buckling strength improves when the CNTs are non-uniformly distributed 

(FGX) through-thickness for a particular case of BC, skew angle, and CNT volume fraction. 

The influence of cell angle (𝜃ℎ𝑐) of the re-entrant core on the critical temperature of the 

sandwich plate is studied in Table 6.11. It can be inferred that the change in cell angle and rib 

thickness ratio (l1/l2) has minimal effect on the results. The results are reported in Table 6.12 

for three distinct (ℎ2/h) ratios. The upper and lower facings’ thickness should be the same for 

the sandwich laminate.  

 

 

 

 

Figure 6.4: Critical buckling temperature (𝛥𝑇𝑐𝑟
̅̅ ̅̅ ) Vs. Imperfection size μ for isotropic 

imperfect ceramic plate 
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Table 6.7: Critical temperature 𝛥𝑇̅𝑐𝑟  of the isotropic imperfect ceramic plate for different 

imperfection modes under uniform temperature rise (𝐸 = 380𝐺𝑃𝑎, 𝛼 = 7.4 ⋅
10−6

°𝐶
, 𝜈 =

0.30,
𝑎

ℎ
= 100, 𝑆1𝑆1𝑆1𝑆1) 

 

Table 6.8: Critical buckling temperature (ΔT)cr of the simply supported square sandwich plate 

with auxetic core for two different imperfection modes under a uniform temperature rise 

( l2/l1 = 2, t/l1 = 0.1, h2/h=0.5 and a/h = 100, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, UD ) 

 

 

𝝁  Imperfection mode 

       S        G1        G2    G3       L1        L2    L3 

0 17.0894 17.0894 17.0894 17.0894 17.0894 17.0894 17.0894 

0.1 17.2324 17.2656 17.2749 17.3305 17.1267 17.1642 17.1418 

0.2 17.6600 17.7836 17.8213 18.0419 17.2372 17.3851 17.2929 

0.3 18.3690 18.6143 18.7018 19.1914 17.4171 17.7432 17.5263 

0.4 19.3534 19.7163 19.8785 20.7348 17.6608 18.2246 17.8195 

0.5 20.6051 21.0463 21.3108 22.6243 17.9615 18.8127 18.1488 

0.6 22.1127 22.5521 22.9612 24.8168 18.3116 19.4902 18.4935 

0.7 23.8621 24.2040 24.7984 27.2772 18.7035 20.2399 18.8374 

𝝁 Imperfection mode 

10 20 100 

S L2 S L2 S L2 

0 218.8950 218.8950 81.4072 81.4072 3.8868 3.8868 

0.1 226.7205 219.8575 83.6416 81.6942 3.9837 3.8994 

0.2 249.7625 222.2592 90.2869 82.5025 4.2731 3.9367 

0.3 286.6976 225.2103 101.1649 83.7012 4.7514 3.9965 

0.4 335.1496 228.1453 115.9572 85.1378 5.4117 4.0758 

0.5 375.2046 230.8894 134.1621 86.6851 6.2426 4.1712 

0.6 375.9160 233.4550 155.0191 88.2589 7.2256 4.2789 

0.7 376.7536 235.9023 174.0783 89.8138 8.3328 4.3954 

0.8 377.7159 238.2882 190.4021 91.3311 9.1583 4.5177 

0.9 378.8012 240.6545 208.1551 92.8075 10.0348 4.6431 

1 380.0075 243.0293 212.9974 94.2469 10.9912 4.7698 
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Table 6.9: Critical temperature (ΔTcr) of the skew sandwich plate for two imperfection modes 

under a uniform temperature rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ =

0.17, 𝜃ℎ𝑐 = 30°, UD ) 

 

Table 6.10: The effect of CNT distribution pattern in facings on critical temperature  parameter 

( ΔTcr ) for the skew sandwich plate for uniform temperature rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ =

0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, UD) 

 

 

BC Imperfection 

mode 

 

Skew Angle 

(𝝍) 

 

Imperfection amplitude,  

(𝝁) 

 

SSSS S  0.2 0.5 1 

  0° 4.2731 6.2426 10.9912 

15° 4.3471 6.3324 11.4223 

30° 4.6726 6.7263 13.1141 

45° 5.7963 8.1114 15.8256 

L2 0° 3.9367 4.1712 4.7698 

15° 4.0094 4.2458 4.8497 

30° 4.3270 4.5734 5.2069 

45° 5.4113 5.7007 6.4531 

CCCC S 0° 14.9861 16.5697 21.3569 

15° 15.1139 16.7048 21.9000 

30° 15.6942 17.3278 22.7907 

45° 17.7590 19.5757 25.6078 

L2 0° 14.8571 15.6966 17.8209 

15° 14.9847 15.8291 17.9708 

30° 15.5620 16.4311 18.6500 

45° 17.6112 18.5795 21.0714 

𝑉𝐶𝑁
∗  Skew 

angle 

(𝝍) 

SSSS CCCC 

UD FGX FGO UD FGX FGO 

0.12 0° 3.6776 3.8505 3.7176 14.0425 14.7135 14.1752 

15° 3.7396 3.9123 3.7831 14.1506 14.8198 14.2892 

30° 4.0124 4.1854 4.0706 14.6452 15.3099 14.8099 

45° 4.9607 5.1403 5.0643 16.4386 17.1070 16.6883 

0.17 0° 3.8868 4.1398 3.9796 14.6793 15.6440 15.0034 

15° 3.9592 4.2136 4.0568 14.8060 15.7710 15.1377 

30° 4.2748 4.5365 4.3924 15.3785 16.3498 15.7445 

45° 5.3503 5.6438 5.5297 17.4075 18.4258 17.8868 

0.28 

 

 

0° 4.3567 4.8778 4.6220 16.4290 18.3765 17.4000 

15° 4.4156 4.9428 4.6873 16.5301 18.4856 17.5105 

30° 4.6769 5.2319 4.9766 16.9964 18.9929 18.0214 

45° 5.6031 6.2603 5.9981 18.7198 20.8882 19.9113 
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Table 6.11: Influence of cell angle and skew angle on critical temperature parameter (ΔTcr ) for 

a sandwich skew plate  ( 𝑎 ℎ⁄ = 100, 𝑡 𝑙1⁄ = 0.1, 𝑉𝐶𝑁𝑇
∗ = 0.17, UD) for uniform temperature 

rise   

 

 

Table 6.12: Influence of type of core to plate thickness on critical temperature parameter for 

skew sandwich plate ( 𝑎 ℎ⁄ = 100, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, UD) 

Skew 

Angle 

(ψ) 

 

𝜽𝒉𝒄 

 

 

l2/l1 

SSSS                         CCCC 

1.5 2 2.5 3 1.5 2 2.5 3 

0° 

 

-30° 3.9089 3.9074 3.9064 3.9057 14.6565 14.6539 14.6527 14.6523 

-15° 3.9004 3.8989 3.8980 3.8975 14.5774 14.5787 14.5801 14.5814 

15° 3.8877 3.8841 3.8826 3.8820 14.6065 14.5891 14.5820 14.5790 

30° 3.8904 3.8868 3.8858 3.8858 14.7193 14.6793 14.6616 14.6528 

15° 

 

-30° 3.9835 3.9810 3.9794 3.9783 14.7892 14.7846 14.7821 14.7807 

-15° 3.9773 3.9744 3.9726 3.9714 14.7144 14.7128 14.7123 14.7123 

15° 3.9648 3.9588 3.9560 3.9545 14.7428 14.7205 14.7107 14.7060 

30° 3.9650 3.9592 3.9572 3.9567 14.8502 14.8060 14.7863 14.7763 

30° 

 

-30° 4.3049 4.2987 4.2945 4.2915 15.3790 15.3662 15.3581 15.3525 

-15° 4.3092 4.3002 4.2944 4.2904 15.3239 15.3099 15.3013 15.2955 

15° 4.3002 4.2837 4.2750 4.2698 15.3554 15.3119 15.2904 15.2782 

30° 4.2900 4.2748 4.2683 4.2651 15.4418 15.3785 15.3497 15.3345 

45° -30° 5.3842 5.3659 5.3537 5.3449 17.4263 17.3886 17.3634 17.3453 

-15° 5.4242 5.3953 5.3767 5.3637 17.4339 17.3813 17.3472 17.3235 

15° 5.4383 5.3872 5.3591 5.3414 17.5021 17.3910 17.3313 17.2944 

30° 5.3973 5.3503 5.3281 5.3157 17.5349 17.4075 17.3470 17.3129 

𝛉𝐡𝐜 

 

Skew 

Angle( 𝜓) 

SSSS CCCC 

h2/h = 0.2 h2/h = 0.5 h2/h= 0.8 h2/h = 0.2 h2/h = 0.5 h2/h= 0.8 

-30° 0° 2.7485 3.9074 5.6879 10.2791 14.6539 21.2134 

15° 2.7984 3.9810 5.8218 10.3673 14.7846 21.4650 

30° 3.0149 4.2987 6.3841 10.7622 15.3662 22.5411 

45° 3.7477 5.3659 8.2009 12.1480 17.3886 26.0705 

-15° 0° 2.7461 3.8989 5.6429 10.2448 14.5787 21.0916 

15° 2.7961 3.9744 5.7949 10.3330 14.7128 21.3778 

30° 3.0129 4.3002 6.4375 10.7283 15.3099 22.6077 

45° 3.7467 5.3953 8.5228 12.1140 17.3813 26.6320 

15° 0° 2.7464 3.8841 5.4630 10.2537 14.5891 20.9787 

15° 2.7965 3.9588 5.6060 10.3420 14.7205 21.2327 

30° 3.0135 4.2837 6.2359 10.7378 15.3119 22.3884 

45° 3.7484 5.3872 8.3862 12.1260 17.3910 26.4200 

30° 0° 2.7499 3.8868 5.4231 10.3046 14.6793 20.9661 

15° 2.7999 3.9592 5.5420 10.3928 14.8060 21.1690 

30° 3.0166 4.2748 6.0749 10.7885 15.3785 22.1207 

45° 3.7512 5.3503 7.9404 12.1793 17.4075 25.5923 
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6.4 Thermal Post-buckling Analysis 
 

Thermal post-buckling is the analysis of structural components or systems under thermal 

loading after buckling. This section presents the thermal post-buckling analysis of an imperfect 

sandwich plate. 

6.4.1 Validation Study 

 

Firstly, two comparison studies are performed to explain the present model’s efficacy for non-

linear post-buckling analysis.                       

(a) The post-buckling path of a CCCC skew plate ( 𝜓 = 45∘, 𝐸 = 1GPa, 𝑣 = 0.3, 𝛼 =

10−6/°C ) illustrated in Figure 6.5, using the present approach, matches well with that 

of Prakash et al. (2008) were obtained using the deformable finite element approach. In 

this case, the temperature is normalised 𝑇∗ = 𝑇𝑐𝑟𝐸𝛼𝐿2ℎ/(𝜋2𝐷) with the flexural 

rigidity 𝐷 = 𝐸ℎ3/12(1 − 𝑣2) . 

 

(b) Secondly, symmetric laminated [0/90°]s and temperature-dependent properties are 

considered for comparison, as shown in Figure 6.6 The following expressions can be 

used to describe how strongly temperature affects the material properties of the layers: 

𝐸11(𝑇) = 40 × 109(1 − 0.5 × 10−3(𝑇 − 𝑇0))Pa, 𝐸22(𝑇) = 1 × 109(1 − 0.2 × 10−3(𝑇 − 𝑇0))Pa  

𝐺13(𝑇) = 0.5 × 109(1 − 0.2 × 10−3(𝑇 − 𝑇0))Pa, 𝐺23(𝑇) = 0.2 × 109(1 − 0.2 × 10−3(𝑇 − 𝑇0))Pa 

𝛼11(𝑇) = 1 × 10−6(1 + 0.5 × 10−3(𝑇 − 𝑇0))1/K, 𝛼22(𝑇) = 10 × 10−6(1 + 0.5 × 10−3(𝑇 − 𝑇0))1/𝐾 

𝑣12 = 0.25 

Figure 6.5: A comparison of thermal 

post-buckling equilibrium path of 

CCCC isotropic square plate. 

Figure 6.6: A comparison of the post-

buckling behavior of a [0/90°]s laminated 

plates. (𝑎 𝑏⁄ = 1 , 𝑎 ℎ⁄ = 30)  
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The obtained results are very close to those of Kiani (2018) and are obtained using an 

eigenvalue problem solution while present work based on IGA with refined higher order 

theory.  

6.4.2 Thermal Post-Buckling of Square Sandwich Plate 
 

In the previous section, the numerical technique used for linear analysis of plates was found to 

be efficient. In this section, the same numerical technique is extended to study the non-linear 

post-buckling behaviour of the square sandwich plate. In this section, the parametric study of 

the square sandwich plate’s thermal post-buckling is presented in detail. 

 

 

Figure 6.7 presents the thermal post-buckling of plates with different a/h ratios. It is shown that 

the critical buckling temperature of sandwich plates increases as the a/h ratio decreases. This 

is accepted since, with increasing the thickness, the flexural rigidity of the plate increases. 

Figure 6.8 indicates the effect of core thickness to plate thickness ratio on the square sandwich 

plate’s thermal post-buckling equilibrium path with simply supported (SSSS) boundary 

conditions. UD of face sheets are considered for the sake of comparison. It is observed from 

Figure 6.7: Influence of width-to-plate 

thickness ratio of a sandwich plate on post-

buckling behaviour subjected to uniform 

temperaturerise(,ℎ2 ℎ⁄ =

0.5, 𝑡 𝑙1⁄ 0.1, 𝑙2 𝑙1 =⁄ 2,𝑉𝐶𝑁𝑇
∗ 0.17,θhc=30°, 

UD,SSSS) 

 

Figure 6.8: Influence of core to a plate 

thickness of a  square sandwich plate on post-

buckling behaviour subjected to uniform 

temperate rise (𝑎 ℎ⁄ = 100,𝑉𝐶𝑁𝑇
∗ = 0.17, 

θhc=30∘, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, SSSS) 
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the results that the critical buckling temperature of the sandwich plate may be enhanced by 

increasing the core-to-thickness ratio where the total thickness of the plate is constant. 

 

 

Figure 6.9 shows the Influence of CNT distribution in the face sheets of a square sandwich 

plate on post-buckling behaviour subjected to uniform temperature rise. The figure shows that 

the thermal post-buckling equilibrium paths of sandwich plates with UD, FG-X, and FG-O face 

sheets are approximately the same. 

The core angle in auxetic materials is a critical parameter influencing their unique mechanical 

properties and behaviour. In Figure 6.10, four cell angles are considered for comparison in the 

present studies. As the cell angle increases, the post-buckling strength increases. 

Figure 6.9: Influence of CNT distribution in 

the face sheets of a square sandwich plate on 

post-buckling behaviour subjected to 

uniform temperature rise( 𝑎 ℎ⁄ =

100,ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 

θhc=30°,𝑉𝐶𝑁𝑇
∗ = 0.17, SSSS) 

 

Figure 6.10: Influence of core auxecity on a 

square  sandwich plate consists of isotropic 

face sheets on post-buckling behaviour 

subjected to thermal load (UD, 𝑉𝐶𝑁𝑇
∗ = 0.17, 

, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, SSSS) 
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The sinusoidal and L2-type imperfections on a plate can have significant post-buckling effects, 

influencing how the plate behaves after it has experienced buckling. Figure 6.11 shows the 

post-buckling behaviour of a square sandwich plate under the two different types of initial 

imperfections, i.e., sine type and L2 type. It is observed from the figure that thermal post-

buckling equilibrium paths of sandwich plates with sine type and L2 type imperfections are 

approximately the same due to the similar shape of imperfections. The effect of boundary 

conditions on the sandwich plate, including an auxetic core, is shown in Figure 6.12 As 

expected, the critical buckling temperature of CCCC plates is higher than that of SSSS plates. 

This observed trend may be ascribed to an edge clamped being stiffer than an edge just 

supported. 

 

 

 

 

 

Figure 6.11: Influence of  types of 

imperfections of a sandwich plate on post-

buckling behaviour subjected to uniform 

temperature rise( 𝑎 ℎ⁄ = 100,ℎ2 ℎ⁄ =

0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2,𝑉𝐶𝑁𝑇
∗ =

0.17,𝜃ℎ𝑐= 30°) 

Figure 6.12: Influence of boundary 

conditions of the skew sandwich plate on 

post-buckling behaviour subjected to thermal 

load (𝑎 ℎ⁄ = 100,h2 h⁄ = 0.5 ,  𝑉𝐶𝑁𝑇
∗ =

0.17, 𝜃ℎ𝑐=30∘, 𝑡 𝑙1⁄ = 0.1 , 𝑙2 𝑙1⁄ = 2) 
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6.4.3 Thermal Post-Buckling of Skew Sandwich Plate 

 

 

 

 

Figures 6.13a and 6.13b indicate the effect of skew angles on the sandwich plate’s post-

buckling behaviour with two magnitudes of initial imperfections and SSSS BCs. It is observed 

from the figures that the post-buckled strength can be improved by increasing the skewness of 

the plate, as mentioned earlier. Figure 6.14a shows the influence of imperfection amplitude on 

the load-deflection path of the skew sandwich plate. It is clear from the results that as the 

imperfection amplitude increases, the post-buckling strength decreases accordingly. Similar 

behaviours are observed in L2-type imperfection, as shown in Figure 6.14b. The effect of the 

CNT distribution pattern on the thermal post-buckling behaviour of skew sandwich plates in 

Figure 6.15a shows that there is no substantial change in the post-buckling strength with 

variations in the CNT pattern. According to the findings illustrated in Figure 6.15b, an increase 

in the volume fraction of carbon nanotubes results in a higher critical temperature of the plate. 

This phenomenon occurs because the carbon nanotubes have a very high value of Young’s 

modulus, and the face sheets’ stiffness is directly proportional to the CNT volume fraction 

value. Figure 6.16 includes the effect of core thickness to total thickness ratio on the skew 

sandwich plate’s non-linear stability characteristics with SSSS BCs. It is observed from the 

figure that the buckling strength may also be enhanced by modifying the core-to-thickness ratio 

while keeping the overall thickness the same. It has been observed that as the relative thickness 

of the core increases, the buckling load parameter also increases because the rate of change of 

                            (a)                                                                     (b) 

 Figure 6.13: Influence of skew angle on the post-buckling path of a sandwich skew plate under 

uniform temperature rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 =

30°, UD, SSSS ) 
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geometric stiffness with a change in core thickness is higher than that of the overall stiffness 

of the sandwich plate.  

Figure 6.14: Influence of sine type  and L2 type imperfections on post-buckling paths of a 

skew sandwich plate ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 =

30°, 𝜓 = 45°, UD, SSSS ) 

 

Figure 6.15: The effect of CNT distribution in the face sheets of a skew sandwich plate on post-

buckling behaviour subjected to uniform temperature rise ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ =

0.1, 𝑙2 𝑙1⁄ = 2, 𝜃ℎ𝑐 = 30°, 𝜓 = 45°, SSSS ) 

 

          (a)                                                                     (b) 

 

                (a)                                                                     (b) 
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Figure 6.17: Influence of width to a plate thickness of a skew sandwich plate on post-buckling 

behaviour subjected to uniform temperate rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ =

2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝜓 = 45°, UD, SSSS ) 

Figure 6.17 presents the non-linear thermomechanical stability behaviour of skew sandwich 

plates with various a/h ratios. It is shown that the critical temperature of sandwich plates 

increases as the a/h ratio decreases because, with the increase in the thickness, the flexural 

              (a)                                                                     (b) 

 

                            (a)                                                                     (b) 

 
Figure 6.16: Effect of core-to-plate thickness ratio of a skew sandwich plate on post-buckling 

behaviour subjected to uniform temperature rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ =

0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝜓 = 45°, UD, SSSS ) 
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rigidity of the plate increases. The cell angle in auxetic core geometry is a critical parameter 

influencing their unique mechanical properties and behaviour.  

Figure 6.18: Influence of core auxeticity on a skew sandwich plate on post-buckling behaviour 

subjected to thermal load  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜓 =

45°, UD, SSSS ) 

 

Figure 6.19: Influence of boundary conditions of the skew sandwich plate on post-buckling 

behaviour subjected to uniform temperature rise  ( 𝑎 ℎ⁄ = 100, ℎ2 ℎ⁄ = 0.5, 𝑡 𝑙1⁄ =

0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝜓 = 45°, UD) 

Figure 6.18 considers the thermomechanical stability paths of skew sandwich plates with 

auxetic cores for four different cell angles. It is apparent from the results that the cell angle in 

the core geometry does not contribute towards the buckling strength. The impact of boundary 

conditions on the skew sandwich plate, including a re-entrant auxetic core, is shown in Figure 

6.19. As expected, the critical buckling temperature of CCCC plates is higher than that of SSSS 

                (a)                                                                     (b) 

               (a)                                                                     (b) 
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plates. This observed trend may be ascribed to an edge clamped being stiffer than an edge just 

simply supported. 

 

6.5  Summary 

  
This study analyses thermomechanical stability characteristics of initially imperfect sandwich 

plates made of FGCNTRC facings and re-entrant auxetic core. The material properties for 

carbon nanotubes (CNTs) at different temperature values are interpolated using polynomial 

interpolation, and the resultant material properties are evaluated using the extended rule of 

mixtures with the efficiency parameters. The system of equations is formulated using a non-

polynomial theory, incorporating the von Karman assumptions. Firstly, validation studies are 

conducted on linear/non-linear thermal post-buckling behaviour of perfect 

isotropic/laminated/sandwich plates to ascertain the efficacy of the present methodology. 

Subsequently, parametric studies are conducted to explore the effects of CNT patterns in 

facings, core auxeticity, skew angle and boundary conditions. 

New findings on the influence of the type and magnitude of global geometric imperfection and 

geometrical parameters of the auxetic core are reported for the first time. The following 

observations have been made from the present work: 

(a) The magnitude of the geometrical imperfection has a significant influence on the post-

buckling strength of the sandwich plate.  

(b) As the sandwich laminate’s width-to-thickness ratio increases, post-buckling 

deflection is found to be more at the same temperature.  

(c) The buckling strength of the FGCNTRC skew sandwich plates in a thermal 

environment change significantly with a variation in the skew angle. 

(d) The post-buckling strength of the sandwich plate can be improved by increasing the 

volume fraction of CNTs in the face sheets. 

(e) The FG-X pattern of CNTs in facings results in higher buckling temperature and less 

post-buckling deflection in comparison to other distribution patterns. 

(f) The critical buckling strength of the sandwich plates may also be enhanced by 

increasing the core thickness ratio to the plate’s total thickness.  
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(g) The critical buckling temperature of the skew sandwich plates with a positive cell angle 

of auxetic core and negative Poisson’s ratio is slightly lower than those with a negative 

cell inclination angle. 
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Chapter 7  

Non-linear vibration analysis of sandwich plate in thermal 

environment 

 

7.1 Introduction 

This chapter investigates the linear and non-linear vibration behaviours of sandwich plates with 

auxetic cores having tunable material properties. The accuracy of the isogeometric analysis 

(IGA) method with non-polynomial higher-order theory and in-house MATLAB code has been 

established for the linear and non-linear analyses of isotropic, laminated and sandwich plates 

in Chapter 5. Section 7.2 explores the same numerical technique and the in-house MATLAB 

code for the linear vibration analysis of isotropic, laminated, functionally graded carbon 

nanotube-reinforced composite (FGCNTRC) and sandwich plates in a thermal environment. 

Section 7.3 investigates the effect of geometrical parameters on the non-linear vibration 

characteristics of functionally graded carbon nanotube-reinforced composite (FGCNTRC) and 

sandwich plates. The chapter concludes with a summary of observations from the present 

numerical work in Section 7.4. The geometrical parameters and CNTs distribution pattern of 

sandwich plates are presented in Figures 7.1 and 7.2, respectively. The material properties 

considered in the present investigation have already been discussed in Chapter 6.  

Unless otherwise stated, the following numerical studies utilise Poly methyl methacrylate 

(PMMA) as the matrix. In Chapter 6, CNTs are employed as reinforcements, and their 

properties are given in Table 7.1 

7.1.1 Boundary conditions 

 

The different types of edge constraints for the plate are given as: 

Simply supported: (SSSS)     ∶ { 𝑢0 = 𝑣0 = 𝑤0 = 0 at 𝑥 = 0, 𝑎 and 𝑦 = 0, 𝑏} 

(S1S1S1S1): {
𝑣0 = 𝑤0 = 𝜃𝑦 = 0 on 𝑥 = 0, 𝑎

𝑢0 = 𝑤0 = 𝜃𝑥 = 0 on 𝑦 = 0, 𝑏
} 

Clamped support :(CCCC):  {
𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0

𝑤0,𝑥 = 𝑤0,𝑦 = 0
All edges 
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Table 7.1: Temperature-dependent material properties for SWCNT(Zhu et al., 2012) 

Temperature (K) 𝑬𝟏𝟏
𝐂𝐍𝐓(𝐓𝐏𝐚) 𝑬𝟐𝟐

𝐂𝐍𝐓(𝐓𝐏𝐚) 𝑮𝟏𝟐
𝐂𝐍𝐓(𝐓𝐏𝐚) 𝜶𝟏𝟏

𝐂𝐍𝐓(𝟏𝟎−𝟔/𝐊) 𝜶𝟐𝟐
𝐂𝐍𝐓(𝟏𝟎−𝟔/𝐊) 

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 

 

 

 

(a) UD                                                    (b) FGX                                           (c) FGO 

 

Figure 7.2: CNT distribution pattern 

 

 

Figure 7.1: Geometrical parameters of the sandwich plate 
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7.2 Linear Vibration Analysis 

Table 7.2: Convergence study of the influence of width-to-thickness ratio and CNT volume 

fraction on the non-dimensional natural frequency parameter 𝜔‾ = 𝜔(𝑎2/ℎ)√𝜌𝑚/𝐸𝑚 for 

simply supported S1S1S1S1 FGCNTRC square plates. 

 

Since no studies are available on the vibration behaviour of sandwich plates with auxetic cores, 

validation studies are presented for single-layered FGCNTRC plates. In all the validation 

studies, FGCNTRC is made up of CNTs and the matrix PmPV (Han & Elliott, 2007) and its 

properties are given by : νm = 0.34, 𝜌𝑚 = 1.15 g/cm3, and 𝐸𝑚 = 2.1GPa at room temperature 

(300 K).  For this specific case, the considered volume fractions and related efficiency 

parameters are: 𝑉𝐶𝑁𝑇
∗ = 0.11 with 𝜂1 = 0.149 and 𝜂2 = 0.934; 𝑉𝐶𝑁𝑇

∗ = 0.14 with 𝜂1 = 0.150 

VCN
∗  

a/h p n

k 

NCP 0.11 0.14 0.17 

UD FGX FGO UD FGX FGO         UD FGX FGO 

10 2 2 5 × 5 13.933 15.260 11.451 14.782 16.045 12.207 17.304 18.885 14.222 

4 7 × 7 13.799 15.132 11.322 14.654 15.928 12.079 17.135 18.727 14.058 

6 9× 9 13.734 15.075 11.263 14.587 15.870 12.018 17.053 18.656 13.983 

8 11× 11 13.695 15.037 11.233 14.545 15.830 11.985 17.006 18.608 13.945 

10 13× 13 13.673 15.012 11.216 14.520 15.803 11.967 16.978 18.578 13.925 

12 15 × 15 13.659 14.997 11.207 14.504 15.785 11.956 16.962 18.559 13.914 

14 17 × 17 13.651 14.987 11.200 14.494 15.773 11.949 16.951 18.547 13.906 

16 19 × 19 13.645 14.979 11.196 14.487 15.765 11.944 16.943 18.538 13.901 

3 3 7× 7 13.662 15.002 11.209 14.507 15.790 11.958 16.965 18.565 13.916 

5 9 × 9 13.622 14.953 11.181 14.461 15.734 11.927 16.916 18.506 13.883 

7 11× 11 13.620 14.950 11.180 14.458 15.730 11.925 16.913 18.501 13.881 

9 13× 13 13.620 14.949 11.179 14.458 15.729 11.925 16.913 18.501 13.881 

11 15× 15 13.619 14.949 11.179 14.457 15.729 11.924 16.913 18.501 13.880 

13 17 × 17 13.619 14.949 11.179 14.457 15.729 11.924 16.913 18.501 13.880 

15 19 × 19 13.619 14.949 11.179 14.457 15.729 11.924 16.913 18.501 13.880 

Zhu et al. 

(2012) 

13.532 14.616 11.550 14.306 15.368 12.338 16.815 18.278 14.282 

20 2 2 5 × 5 17.833 20.568 13.828 19.464 22.322 15.105 22.044 25.408 17.049 

4 7 × 7 17.555 20.262 13.607 19.171 22.006 14.866 21.699 25.030 16.775 

6 9× 9 17.433 20.137 13.504 19.044 21.881 14.757 21.546 24.876 16.645 

8 11× 11 17.384 20.083 13.466 18.991 21.822 14.716 21.486 24.808 16.599 

10 13× 13 17.361 20.055 13.449 18.965 21.791 14.697 21.457 24.774 16.578 

12 15 × 15 17.347 20.039 13.439 18.950 21.774 14.686 21.441 24.755 16.566 

14 17 × 17 17.339 20.030 13.434 18.941 21.763 14.679 21.431 24.743 16.559 

16 19 × 19 17.334 20.023 13.430 18.935 21.755 14.675 21.424 24.735 16.554 

3 3 7× 7 17.350 20.044 13.441 18.953 21.779 14.687 21.444 24.761 16.567 

5 9 × 9 17.314 20.001 13.416 18.913 21.73 14.659 21.400 24.707 16.536 

7 11× 11 17.312 19.998 13.414 18.910 21.727 14.657 21.398 24.704 16.535 

9 13× 13 17.312 19.998 13.414 18.910 21.726 14.657 21.397 24.704 16.535 

11 15× 15 17.312 19.998 13.414 18.910 21.726 14.657 21.397 24.703 16.534 

13 17 × 17 17.312 19.998 13.414 18.910 21.726 14.657 21.397 24.703 16.534 

15 19 × 19 17.312 19.998 13.414 18.91 21.726 14.657 21.397 24.703 16.534 

Zhu et al. 

(2012) 

17.355 19.939 13.523 18.921 21.642 14.784 21.456 24.764 16.628 
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and 𝜂2 = 0.941; and 𝑉𝐶𝑁𝑇
∗ = 0.17 with 𝜂1 = 0.149 and 𝜂2 = 1.381. Besides, the assumptions 

𝜂2 = 𝜂3 and 𝐺12 = 𝐺13 = 𝐺23 are also made.  

Non-dimensional natural frequency parameter ω‾ = ω(a2/h)√ρm/Em for simply supported 

FGCNTRC square plates subjected to the thermal load are tabulated in Table 7.2 for different 

CNT volume fractions and CNT distributions through thickness. The results are compared to 

those given by Zhu et al. (2012), and they agree well. The study is conducted for two distinct 

orders of the B-spline curve, p=2 and p=3, where p is the order of the curve, and it is noticed 

that the results converge faster and require a lesser number of knot insertions as the order of 

the curve increases. Hence, order, p=3, is employed in all the following investigations. The 

results exhibit convergence when 13-knot insertions are made for a third-order approximation. 

Therefore, the same number of knot insertions is employed for all the subsequent 

investigations.  

Table 7.3: First six non-dimensional natural frequency parameter ω‾ = ω(a2/h)√ρm/Em of 

simply supported functionally graded reinforced composite plates with CNT volume fraction, 

(VCN
∗ = 0.11, 𝑎 ℎ⁄ = 50, S1S1S1S1). 

Results 

 

CNT ω‾  

ω‾ 1 ω2‾  ω3‾  ω4‾  ω5‾  ω6‾  

Present UD 

 

 

19.152 23.266 34.032 51.903 70.007 72.110 

Zhu et al. (2012)(ANSYS) 19.184 23.310 34.272 52.770 70.363 72.395 

Zhu et al. (2012) 19.223 23.408 34.669 54.043 70.811 72.900 

Phung-Van et al. (2015) 19.093 22.968 34.017 53.664 70.808 72.569 

Fazzolari (2018) 19.154 23.273 34.056 51.9641 70.019 72.128 

Present FGX 22.832 26.554 36.855 54.653 79.237 82.467 

Zhu et al. (2012)(ANSYS) 22.910 26.660 37.016 54.912 79.630 82.297 

Zhu et al. (2012) 22.984 26.784 37.59 56.964 83.150 84.896 

Phung-Van et al. (2015) 22.880 26.183 36.238 55.066 83.604 83.703 

Fazzolari (2018) 22.899 26.621 36.939 54.783 79.413 82.321 

Present FGO 14.383 19.355 31.059 49.312 52.421 55.207 

Zhu et al. (2012)  14.290 19.274 31.013 49.326 52.569 55.362 

Zhu et al. (2012) (ANSYS) 14.302 19.373 31.615 51.370 53.035 55.823 

Phung-Van et al. (2015) 14.153 19.154 31.710 52.422 52.616 55.123 

Fazzolari (2018) 14.244 19.273 31.066 49.422 52.132 54.961 

 

According to Table 7.2, the UD and FGO CNTRC plates have a smaller natural frequency than 

the FGX CNTRC plates despite all three having the same volume fraction of CNT. This is due 

to the distribution of reinforcements affecting the stiffness of the plates. The desired stiffness 

can be achieved by adjusting the distribution of CNTs along the thickness direction of the 
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plates. It can be inferred that placing reinforcements closer to the top and bottom is more 

effective at increasing plate stiffness than placing them near the mid-plane. 

Table 7.4: First six dimensionless natural frequency parameters, ω‾ = ω(a2/h)√ρm/Em of 

simply supported functionally graded reinforced composite plates with CNT volume fraction 

(VCN
∗ = 0.14 𝑎 ℎ⁄ = 50, S1S1S1S1). 

 

Results 

 

CNT ω‾  

ω‾ 1 ω2‾  ω3‾  ω4‾  ω5‾  ω6‾  

Present UD 

 

 

21.314 25.183 35.660 53.482 77.383 77.923 

Zhu et al. (2012) (ANSYS) 21.311 25.192 35.866 54.320 77.629 79.482 

Zhu et al. (2012) 21.354 25.295 36.267 55.608 78.110 80.015 

Phung-Van et al. (2015) 21.290 24.933 35.678 55.280 78.110 80.087 

Fazzolari (2018) 21.316 25.190 35.685 53.543 77.389 79.324 

Present FGX 25.427   28.979 39.104 57.010 82.032 90.68 

Zhu et al. (2012) (ANSYS) 25.474 29.065 39.257 57.272 82.437 90.389 

Zhu et al. (2012) 25.555 29.192 39.833 59.333 87.814 91.299 

Phung-Van et al. (2015) 25.528 28.616 38.313 56.98 85.793 92.220 

Fazzolari (2018) 25.494 29.049 39.196 57.155 82.231 90.413 

Present FGO 15.917 20.59 32.011 50.191 58.079   60.621 

Zhu et al. (2012) (ANSYS) 15.788 20.469 31.918 50.145 58.237 60.782 

Zhu et al. (2012) 15.80 20.563 32.509 52.184 58.748 61.277 

Phung-Van et al. (2015) 15.70 20.455 32.840 53.668 58.490 60.805 

Fazzolari (2018) 15.762 20.487 31.992 50.268 57.840 60.420 

 

Tables 7.3-7.5 present the initial six dimensionless frequency parameters of simply supported 

FGCNTRC plates. The outcomes of the present model have been compared with those of Zhu 

et al. (2012) obtained by finite element (FE) analysis, the commercial software ANSYS, the 

Ritz method and IGA formulations found in the literature. The present results have been 

observed to match well with those reported in the existing literature. 
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Table 7.5: First six dimensionless natural frequency parameters ω‾ = ω(a2/h)√ρm/Em of 

simply supported functionally graded reinforced composite plates with CNT volume 

fraction, (VCN
∗ = 0.17 𝑎 ℎ⁄ = 50, S1S1S1S1). 

Results CNT ω‾  

ω‾ 1 ω2‾  ω3‾  ω4‾  ω5‾  ω6‾  

Present 

UD 

 

 

23.604 28.805 42.360 64.785 86.370 89.031 

 Zhu et al. (2012) (ANSYS) 23.649 28.865 42.667 65.880 86.830 89.403 

Zhu et al. (2012) 23.697 28.987 43.165 67.475 87.385 90.031 

Phung-Van et al. (2015) 23.528 28.440 42.362 67.018 87.328 89.569 

Fazzolari (2018) 23.607 28.813 42.390 64.861 86.385 89.054 

Present 

FGX 

28.176 33.077 46.512 69.506 101.097 101.681 

 Zhu et al. (2012) (ANSYS) 28.322 33.274 46.797 69.940 101.739 101.877 

Zhu et al. (2012) 28.413 33.434 47.547 72.570 102.939 105.334 

Phung-Van et al. (2015) 28.228 32.412 45.090 68.729 103.300 104.608 

Fazzolari (2018) 28.267 33.170 46.636 69.703 101.370 101.534 

Present 

FGO 

17.662 23.802 38.239 60.746 64.506 67.951 

Zhu et al. (2012) (ANSYS) 17.529 23.659 38.109 60.652 64.580 68.01 

Zhu et al. (2012) 17.544 23.783 38.855 63.179 65.154 68.579 

Phung-Van et al. (2015) 17.398 23.754 39.579 64.620 65.570 67.836 

Fazzolari (2018) 17.488 23.713 38.2919 60.968 64.147 67.652 

Table 7.6: Non-dimensional natural frequency parameter ω‾ = ω(a2/h)√ρm/Em for simply 

supported various types of FGCNTRC plates in different temperature environments(VCN
∗ =

0.12 𝑎 ℎ⁄ = 10, S1S1S1S1).  

Temperature Mode UD FGX FGO 

Present Lei et al. 

(2013) 

Present Lei et al. 

(2013) 

Present Lei et al. 

(2013) 

300 1 12.3390 12.1261 13.4646 13.1289 10.2291 10.4535 

2 16.9248 16.5545 17.1629 17.1045 15.4485 15.3530 

3 17.0808 16.9835 17.1629 17.1045 17.0779 17.0365 

500 1 11.1388 10.9644 12.0524 11.6675 9.2702 9.5378 

2 14.5740 14.4941 14.6441 14.5948 13.4858 13.4627 

3 14.5740 14.5494 14.6441 15.1371 14.5715 14.5394 

700 1 9.5195 9.2518 10.1635 9.6982 7.9792 8.2728 

2 11.5345 11.5159 11.590 11.5519 11.0576 11.1033 

3 11.5345 11.8279 11.590 12.2867 11.5325 11.5090 
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Table 7.6 compares various types of FGCNTRC plates under different temperature conditions 

for simply supported FGCNTRC plates. The results obtained from this study show good 

agreement with the solutions provided by Lei et al. (2013) 

Table 7.7: Comparison of the non-dimensional natural frequency parameter 𝜔̅ =

𝜔 𝑎2 ℎ⁄ √𝜌𝐻 𝐸𝐻⁄   for sandwich plates with CNT-reinforced face sheets in a thermal 

environment with 𝑎/𝑏 = 1 and 𝑎/ℎ = 20, S1S1S1S1 for various core-to-face sheet thicknesses 

and CNT volume fraction 𝑉CN
∗ . The CNTs are assumed to be functionally graded, i.e., FGX. 

 

hc/hf Temperature 𝑉CN
∗  𝜔̅ 

Present Natarajan et al. 

(2014) 

4 300 0.12 4.6229 4.6518 

0.17 4.9921 5.0381 

0.28 5.5927 5.6422 

500 0.12 4.4231 4.4425 

0.17 4.7899 4.8244 

0.28 5.3979 5.4238 

6 300 0.12 4.8848 4.8992 

0.17 5.1527 5.1753 

0.28 5.6014 5.6278 

500 0.12 4.6557 4.6662 

0.17 4.9230 4.9408 

 0.28 5.3796 5.3956 

 

The study presented in Table 7.7 examines the natural frequency of sandwich plates with CNT-

reinforced face sheets and homogeneous core ( Ti-6Al-4V Titanium alloy). The properties of 

cores are: 𝛼𝐻 = 7.5788(1 + 6.638 × 10−4𝑇 − 3.147 × 10−6 T2) × 10−6 K−1, Young's 

modulus, 𝐸𝐻 = 122.56(1 − 4.586 × 10−4 T)GPa, Poisson's ratio 𝑣𝐻 = 0.29, and mass 

density 𝜌𝐻 = 4429Kg/m3 in a thermal environment. The results obtained through this 

formulation are consistent with previous literature (Natarajan et al., 2014).  

The study also shows the influence of varying factors, such as CNT volume fraction and core-

to-face sheet thickness ratio, on the non-dimensional frequency parameters. As anticipated, the 

frequency decreases with increasing temperature while increasing volume fraction and core-

to-face sheet thickness. This is due to the compressive forces generated by the temperature 

increase, significantly reducing the plate's overall stiffness. The plate's stiffness also reduces 

with temperature due to its temperature-dependent material properties. 
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Table 7.8: Influence of type of CNT distribution in face sheets on non-dimensional natural 

frequency parameter, 𝜔̅ = 𝜔 (𝑎2 ℎ)⁄ √𝜌𝑐 𝐸𝑐⁄   for the sandwich plate at room temperature 

( l2/l1 = 2, t/l1 = 0.1, 𝜃ℎ𝑐= 30, hC/hf=2 and a/h = 50, S1S1S1S1) 

 

Table 7.8 shows how the type of CNT distribution in face sheets affects the thermal buckling 

load of a sandwich plate with the auxetic core. The non-dimensional natural frequency 

parameter (𝜔) is shown for various CNT distributions, concentrations, and boundary 

conditions. The results indicate that increasing the CNT concentration in the face sheets 

improves non-dimensional natural frequency parameters, 𝜔̅ = 𝜔 (𝑎2 ℎ)⁄ √𝜌𝑐 𝐸𝑐⁄    for a 

specific type of CNT distribution pattern. This is due to an increase in the effective elasticity 

modulus and overall stiffness of the plate. Non-dimensional natural frequencies are determined 

to be highest for the FGX type of distribution, followed by UD, and lowest for the FGO 

distribution for a given boundary condition, skew angle, and CNT volume fraction.  

Table 7.9 shows the effect of the auxetic core, and it is observed from the results that the impact 

of cell angle is very minimal on the natural frequency of the sandwich plate. It is also observed 

from Table 7.9 that as the cell wall thickness to the cell wall length ratio increases, the non-

dimensional natural frequency parameter decreases. This is because the elastic modulus and 

stiffness of the auxetic honeycomb core will reduce with the rise of the cell wall angle.  

 

𝑽𝑪𝑵
∗  Skew 

angle 

(𝝍) 

S1S1S1S1 CCCC 

UD FGX FGO UD FGX FGO 

0.12 0° 5.9543 6.1232 5.7246 12.9903 13.4865 11.9628 

15° 6.0212 6.1894 5.7931 13.0758 13.5707 12.0508 

30° 6.3011 6.4666 6.0779 13.4381 13.9286 12.4225 

45° 7.1895 7.3521 6.9715 14.6402 15.1229 13.6388 

0.17 0° 7.1993 7.4046 6.9235 15.6640 16.2639 14.4259 

15° 7.2896 7.4947 7.0158 15.7803 16.3796 14.5453 

30° 7.6635 7.8684 7.3961 16.2691 16.8671 15.0453 

45° 8.8283 9.0388 8.5669 17.8633 18.4655 16.6534 

 

 

0.28 

0° 8.9644 9.2342 8.6086 19.6018 20.3782 17.9676 

15° 9.0455 9.3180 8.6927 19.7047 20.4845 18.0752 

30° 9.3873 9.6715 9.0457 20.1433 20.9375 18.5326 

45° 10.4974 10.8209 10.1779 21.6238 22.4694 20.0572 
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Table 7.9: Influence of cell angle and skew angle on non-dimensional natural frequency 

parameter 𝜔̅̅̅ = 𝜔 (𝑎2 ℎ⁄ )√𝜌𝑐 𝐸𝑐⁄   for a sandwich plate( t/l1 = 0.1, hc/hf=2, a/h = 20, S1S1S1S1)   

at room temperature . 

 

Table 7.10 shows the effect of core thickness, skew angle, and auxetic core cell angle on the 

non-dimensional frequency parameter. The results indicate that the non-dimensional frequency 

parameter of the plate rises alongside the core thickness up to a certain point, and then its effect 

is minimal. Additionally, increased skew angles result in a higher natural frequency due to 

increased stiffness. 

 

 

 

Skew Angle 

(𝝍) 

 

𝛉𝐡𝐜 
 
 

t/l1 
0.05 0.1 0.2 

0° 

 

-30° 7.3963 7.3406 6.9467 

-15° 7.3021 7.2834 6.9140 

15° 7.2157 7.1009 6.6087 

30° 7.2194 6.9598 6.3240 

15° 

 

-30° 7.4927 7.4347 7.0375 

-15° 7.4011 7.3803 7.0085 

15° 7.3138 7.1952 6.6985 

30° 7.3136 7.0487 6.4056 

30° 

 

-30° 7.8860 7.8200 7.4086 

-15° 7.8047 7.7769 7.3957 

15° 7.7152 7.5834 7.0702 

30° 7.7000 7.4152 6.7444 

45° -30° 9.0713 8.9921 8.5389 

-15° 9.0174 8.9814 8.5742 

15° 8.9265 8.7718 8.2171 

30° 8.8751 8.5443 7.7973 
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Table 7.10: Influence of thickness of core to face sheets thickness on non-dimensional natural 

frequency parameter  𝜔̅̅̅̅ = 𝜔 𝑎2 ℎ⁄ √𝜌𝑐 𝐸𝑐⁄   for sandwich plate ( t/l1 = 0.1, a/h = 20, l2/l1 = 2 ,  

𝑉𝐶𝑁
∗ = 0.17,UD, S1S1S1S1 ) 

 

7.3 Non-Linear Vibration Analysis 

This section deals with the plate's non-linear vibration analysis, including isotropic, laminated, 

FGCNTRC and sandwich plate. 

7.3.1 Non-Linear Vibration Analysis of Isotropic Plate 

The current formulation was first tested to ensure accuracy by examining the non-linear free 

vibration frequencies of simply supported isotropic plates. Numerous numerical results for this 

plate type were already available in the literature. The study focused on thin square plates with 

a/h=1000 and evaluated the non-linear frequency variation with non-dimensional maximum 

Skew 

Angle 

(𝝍) 

𝛉𝐡𝐜 

 

S1S1S1S1 CCCC 

hc/hf = 2 hc/hf = 4 hc/hf =8 hc/hf= 2 hc/hf = 4 hc/hf=8 

0° 

 

-30° 7.3406 7.5922 7.3744 14.3111 15.2453 15.2092 

-15° 7.2834 7.5394 7.3157 13.9490 14.9329 14.9786 

15° 7.1009 7.1907 6.7543 13.6854 14.3812 14.0697 

30° 6.9598 6.8920 6.3029 13.7701 14.0915 13.3493 

15° 

 

-30° 7.4347 7.6942 7.4847 14.4318 15.3755 15.3513 

-15° 7.3803 7.6475 7.4391 14.0741 15.0716 15.1370 

15° 7.1952 7.2928 6.8655 13.8077 14.5123 14.2102 

30° 7.0487 6.9826 6.3922 13.8845 14.2070 13.4610 

30° 

 

-30° 7.8200 8.1097 7.9292 14.9334 15.9151 15.9340 

-15° 7.7769 8.0890 7.9383 14.5959 15.6486 15.7911 

15° 7.5834 7.7155 7.3303 14.3209 15.0656 14.8093 

30° 7.4152 7.3594 6.7701 14.3650 14.6963 13.9429 

45° -30° 8.9921 9.3647 9.2469 16.5198 17.6148 17.7413 

-15° 8.9814 9.4205 9.4148 16.2481 17.4694 17.8256 

15° 8.7718 9.0162 8.7603 15.9602 16.8466 16.7533 

30° 8.5443 8.5325 7.9635 15.908 16.2886 15.5460 
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amplitude (wmax/h). Figure 7.3 shows the results, which are compared to published findings. 

The results indicate a close agreement between the present and available solutions. Singha & 

Daripa (2009) and Shi et al. (1997) 

 

Figure 7.3: A comparison of non-linear to linear frequency ratio of isotropic plate 

 

7.3.2 Non-Linear Vibration Analysis of Laminated Composite Plate  

 

This section also includes a comparison study examining cross-ply and angle-ply lamination 

schemes. Singha and Daripa's (2009) material properties(𝐸𝐿/𝐸𝑇 = 40.0, 𝐺𝐿𝑇/𝐸𝑇 = 0.6, 𝐺𝑇𝑇/

𝐸𝑇 = 0.5, 𝑣𝐿𝑇 = 0.25; 𝐸𝑇 = 100000.0 and 𝜌 = 1.0), which consider a square plate with a 

side-to-thickness ratio (a/h=100), are used in this analysis. The lamination schemes used are 

[0/90/0/90/0] and [45/-45/45/-45/45]. The results are presented in Figures 7.4 and 

7.5, and the present study shows close agreement with those of Singha and Daripa (2009) for 

both CCCC and SSSS boundary conditions. This confirms the accuracy and validity of the 

present formulation. 
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Figure 7.4: A validation study on composite laminated plates'(angle ply) non-linear to linear 

frequency ratio results in two boundary conditions. 

 

Figure 7.5: A validation study on composite laminated plates'(cross-ply) non-linear to linear 

frequency ratio results in two boundary conditions. 

7.3.3 Non-Linear Vibration Analysis of FGCNTRC Plate 

Once the proposed formulation is validated, parametric studies are conducted to investigate the 

effects of different parameters on the non-linear frequencies of the FGCNTRC plate. 

Specifically, the non-dimensional non-linear frequency of an SSSS plate with a skewness of 

45° is selected for the parametric study. The results include three types of CNTs distribution 

patterns and three types of  CNT volume fractions.  
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Figure 7.6: Influence of side-to-thickness ratio on the non-linear frequency parameter (𝜔𝑁𝐿 =

𝜔𝑛𝑙(𝑎2/ℎ)√𝜌𝑚/𝐸𝑚) of a FGCNTRC plate ( 𝜓 = 45°, 𝑉𝐶𝑁𝑇
∗ = 0.17, UD  ) 

Figure 7.7: Influence of  non-linear frequency parameters(𝜔𝑁𝐿 = 𝜔𝑛𝑙(𝑎2/ℎ)√𝜌𝑚/𝐸𝑚 ) on 

FGCNTRC plates with UD patterns, different CNTs volume fractions and different boundary 

conditions ( 𝜓 = 45°, 𝑎 ℎ⁄ = 10) 

𝑤𝑚𝑎𝑥 ℎ⁄ =0.6,a/h=10,SSSS wmax h⁄ =0.8,a/h=10,SSSS 
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Figure 7.6 indicates the influence of the plate's side thickness ratio on the FGCNTRC plate's 

non-linear frequency parameter (𝜔𝑁𝐿). The thickness ratio (a/ℎ) under two distinct boundary 

conditions, as observed in shear deformable plate theories, affects the non-linear frequency 

parameter (𝜔𝑁𝐿). This property is not present in classical plate theory, where the non-linear 

frequency parameter (𝜔𝑁𝐿) remains independent of the thickness ratio by ignoring shear 

strains.  

 

Figure 7.8: Non-linear frequency parameter (𝜔𝑁𝐿 = 𝜔𝑛𝑙(𝑎2/ℎ)√𝜌𝑚/𝐸𝑚 )  in FGCNTRC 

plates with FGX patterns, different CNT volume fractions and different boundary conditions 

( 𝜓 = 45°, 𝑎 ℎ⁄ = 10) 

 

Figure 7.9: Non-linear frequency parameter (𝜔𝑁𝐿 = 𝜔𝑛𝑙(𝑎2/ℎ)√𝜌𝑚/𝐸𝑚 )   in FGCNTRC 

plates with FGO patterns, different CNT volume fractions and different boundary conditions 

( 𝜓 = 45°, 𝑎 ℎ⁄ = 10) 
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According to the findings in Figure 7.7, the non-linear frequency parameter (𝜔𝑁𝐿) of the plate 

increases as the volume fraction of CNTs increases. This is a reasonable conclusion, as an 

increase in the volume fraction of CNTs leads to a higher flexural stiffness in the plate, resulting 

in higher stiffness levels. As the amplitude of vibration increases, there is a sudden decrease in 

the previously increasing frequency trend, followed by a gradual increase. This phenomenon 

can be attributed to a change in stiffness values, resulting in a redistribution of mode shapes at 

specific vibration amplitudes. As a result, symmetry is lost, and the maximum displacement is 

shifted towards one side of the plate, indicating hardening behaviour. Figures 7.7, 7.8, and 7.9 

explain that the non-linear frequency parameter  (𝜔𝑁𝐿) increases as a matrix is enhanced with 

more CNT. FGX CNTRC plates show higher non-linear frequency parameters (𝜔𝑁𝐿)  than UD 

and FGO CNTRC plates. When comparing the above Figures, it is evident that CCCC plates 

have higher non-linear frequencies than SSSS plates when all physical and geometrical 

properties are equal. This is due to the fact that clamping results in more flexural rigidity than 

a simply supported condition. Similarly, for SSSS plates, a mode redistribution phenomenon 

occurs at low amplitudes compared to the CCCC plates, resulting in a sudden drop in frequency 

amplitude curves. When comparing Figures 7.7,7.8 and 7.9, the mode redistribution 

phenomenon is less pronounced for SSSS plates than CCCC plates. 

7.3.4 Non-Linear Vibration Analysis of Skew Sandwich Plate 

An investigation was conducted on the influence of skew angle on the non-linear vibration 

behaviour of simply supported skewed sandwich plates, and the findings are illustrated in 

Figure 7.10 for two distinct boundary conditions. It has been noted that an increase in skew 

angle results in a decrease in the non-linear to linear frequency ratios(𝜔𝑁𝐿 𝜔𝐿⁄ ). This is due to 

the fact that an increase in skew angle leads to an increase in plate stiffness and linear 

frequency. However, as the skew angle increases, the linear frequency increase rate is higher 

than that of non-linear frequency. It has also been found that an increase in the skew angle leads 

to a drop in frequency ratio at a relatively low amplitude due to mode redistribution. Figure 

7.11 examines the effect of the plate's side-to-thickness ratio on the linear to non-linear 

frequency ratios(𝜔𝑁𝐿 𝜔𝐿⁄ ). Regardless of the boundary conditions, the non-linear to linear 

frequency ratio decreases as the plates become thinner due to the stiffness of the plate. It's 

worth noting that all plates are maintained at room temperature (300 K). The influence of 

varying core-to-face sheet thickness ratios (hc/hf = 2,4,8) on the non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) of sandwich plates is illustrated in Figure 7.12. 
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Figure 7.10: Influence of skew angle on the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ )of a 

sandwich plate at room temperature ( 𝑎 ℎ⁄ = 10, ℎ𝑐 ℎ𝑓⁄ = 2, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ =

0.17, 𝜃ℎ𝑐 = 30°, UD) 

 

Figure 7.11: Influence of side-to-thickness ratio on the non-linear to linear frequency ratio 

(𝜔𝑁𝐿 𝜔𝐿⁄ )of a skew sandwich plate at room temperature  ( 𝜓 = 45°, ℎ𝑐 ℎ𝑓⁄ = 2, 𝑡 𝑙1⁄ =

0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝑈𝐷) 

𝑤𝑚𝑎𝑥 ℎ⁄ =0.8, 𝜓 = 45°, 𝑆𝑆𝑆𝑆 wmax h⁄ =1, 𝜓 = 45°, 𝑆𝑆𝑆𝑆 
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Figure 7.12: Influence of side-to-thickness ratio on the non-linear to linear frequency ratio 

(𝜔𝑁𝐿 𝜔𝐿⁄ ) of a skew sandwich plate at room temperature ( 𝜓 = 45°, 𝑎 ℎ⁄ = 10, 𝑡 𝑙1⁄ =

0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝑈𝐷) 

 

 

Figure 7.13: The effect of CNT distribution in the face sheets of a skew sandwich plate on non-

linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) at room temperature ( 𝑎 ℎ⁄ = 10, ℎ𝑐 ℎ𝑓⁄ =

0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝜃ℎ𝑐 = 30°, 𝜓 = 45) 

The results indicate that the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) decreases with 

increasing hc/hf ratio. As the core's thickness increases, the plate's overall stiffness decreases. 

The non-linear to linear frequency ratios(𝜔𝑁𝐿 𝜔𝐿⁄ ) of skew sandwich plates are shown in 

𝑤𝑚𝑎𝑥 ℎ⁄ =0.6, 𝜓 = 45°, 𝐹𝐺𝑂 wmax h⁄ =1, 𝜓 = 45°, 𝐹𝐺𝑂 
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Figure 7.13 for three types of functionally graded patterns of CNTs. The results indicate that 

the FGX pattern results in the highest natural frequency, while the FGO pattern results in the 

lowest natural frequency. This is because the elasticity modulus of CNTs is significantly 

greater than the PMMA matrix's. As a result, when the regions near the top and bottom surfaces 

of the plate contain more CNT,the flexural rigidity of the plate increases, leading to an increase 

in its natural frequency.  

  

Figure 7.14: Influence of core auxeticity on a skew sandwich plate on non-linear to linear 

frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ )  at room temperature ( 𝑎 ℎ⁄ = 10, ℎ𝑐 ℎ𝑓⁄ = 0.5, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ =

2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜓 = 45°, UD, SSSS)  

Figure 7.15: Influence of boundary conditions of the skew sandwich plate on non-linear to 

linear frequency ratio (𝜔𝑁𝐿 𝜔𝐿⁄ ) subjected to uniform temperature rise  ( 𝑎 ℎ⁄ = 10, ℎ𝑐 ℎ𝑓⁄ =

2, 𝑡 𝑙1⁄ = 0.1, 𝑙2 𝑙1⁄ = 2, 𝑉𝐶𝑁𝑇
∗ = 0.17, 𝜃ℎ𝑐 = 30°, 𝜓 = 45°, UD) 

It has been observed that when all the properties are the same, the CCCC plate has the highest 

frequency, and the SSSS plate has the lowest. This is because clamping causes a local flexural 
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rigidity in the plate, increasing its overall stiffness. Upon further analysis of the numerical 

results, it is apparent that the FGX pattern has the lowest non-linear to linear frequency ratio, 

while the FGO pattern results in the highest non-linear to linear frequency ratio (𝜔𝑁𝐿 𝜔𝐿⁄ ). 

The variation of volume fraction on the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) is minor 

in a skew sandwich plate. Importantly, it should be noted that the non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) of the FGX sandwich plate is consistently lower across all scenarios than that 

of the equivalent UD sandwich plate.Figure 7.14 shows the influence of auxetic cores with four 

different cell angles on the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). It is apparent from 

the results that the cell angle in the core geometry does not contribute towards the non-linear 

to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). Furthermore, increasing core cell wall thickness to cell 

wall length increases the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). Figure 7.15 illustrates 

that the SSSS plate has the maximum non-linear to linear frequency ratio, while the minimum 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) belongs to CCCC plates. It is expected since clamping results in higher flexural 

rigidity compared to a simply supported edge. Hence, the rate of increase of linear frequency 

in CCCC is more than that of increase of the non-linear frequency at a particular amplitude. 

7.4 Summary  

This research investigates the non-linear vibration behaviour of sandwich plates made of 

FGCNTRC face sheets and re-entrant auxetic core. The formulation is based on a non-

polynomial higher-order theory that considers the von Kármán type of strain-displacement 

relations. The CNTs are uniformly distributed throughout the plate thickness or according to a 

prescribed functionally graded pattern. The properties of the composite media are evaluated 

using an extended rule of mixtures that contains efficiency parameters. The governing 

equations are obtained using the Hamilton principle. A non-linear eigenvalue problem is 

established and solved using a displacement control strategy. The numerical results are first 

validated for isotropic and laminated cases, and then new results are presented for the sandwich 

and FGCNTRC plates with simply supported and clamped boundary conditions. The following 

key observations have been made after summarising this chapter. 

1. For both CCCC and SSSS plates, the mode redistribution phenomenon takes place. In 

such a case, the maximum amplitude moves from the center to one side of the plate, 

which is also distinguished by a sudden drop in frequency amplitude curves. This 

phenomenon occurs in lower amplitudes for SSSS plates than CCCC plates. 
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2. It was observed that as the skew angle increased, the non-linear to linear(𝜔𝑁𝐿 𝜔𝐿⁄ ) 

frequency ratios decreased. This is due to the fact that an increase in skew angle leads 

to an increase in plate stiffness and linear frequency. However, as the skew angle 

increases, the linear frequency increase rate is higher than that of non-linear frequency. 

3. The carbon nanotube (CNTs) distribution pattern notably influences the non-linear to 

linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). The order of non-linear to linear frequency 

ratio (𝜔𝑁𝐿 𝜔𝐿⁄ )  observed in FGCNTRC plates is completely opposite to the order of 

stiffness. Specifically, FGO exhibits the highest non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) followed by UD and FG-X. 

4. It has been observed that the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) increases 

with the thickness of the plate due to the stiffness of the plate.  

5. The results indicate that the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) decreases 

with increasing hc/hf ratio. As the core’s thickness increases, and the plate’s overall 

stiffness decreases. 

6. It is apparent from the results that the cell angle in the core geometry does not contribute 

towards the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). Furthermore, increasing 

core cell wall thickness to cell wall length increases the non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). 
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Chapter 8  

Conclusions 

8.1 General 
 

In the present study, linear and non-linear analyses of the sandwich plate are carried out using 

the Isogeometric analysis (IGA) approach with non-polynomial higher-order theory. An in-

house computer code is written to analyse the sandwich plates of various geometries subjected 

to different loading and boundary conditions. The study considered two types of cores: metal 

foam core and auxetic re-entrant honeycomb core. Section 8.2 details the performance of the 

method used, while Sections 8.3 and 8.4 outline specific conclusions drawn from the analysis 

of sandwich plates under mechanical and thermal loads, respectively. Section 8.5 presents 

findings from investigating sandwich plates' non-linear vibration characteristics. Finally, 

Section 8.6 discusses potential avenues for future research in this field.  

 

8.2 Performance of the Present Numerical Method 
 

The effects of different parameters on the efficiency of Isogeometric analysis with non-

polynomial higher-order theory are investigated, and the observations made are as follows:  

1. The use of non-uniform rational B-spline (NURBS) in isogeometric analysis (IGA) 

improves computational efficiency while maintaining accuracy as compared to finite 

element method (FEM). This is a significant advantage in computational mechanics, where 

precise and efficient solutions are of paramount importance. These results highlight the 

practicality and effectiveness of IGA, making it a preferred choice for applications that 

require fast and accurate results.  

2. The isogeometric approach exhibits monotonic convergence and provides accurate and 

stable results with mesh refinement. k-refinement procedure provides faster convergence 

than h and p refinement strategies. It has also been observed that when the order is higher, 

the results converge faster and require fewer knot insertions.  
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3. The non-polynomial higher-order theory accounts for the shear deformation effects and 

satisfies the zero transverse shear stresses on the top and bottom surfaces of the plate; thus, 

a shear correction factor is not required. 

4. The accuracy of the present results is marginally better than that of other numerical methods 

like finite element analysis. 

 

8.3 Stability Analysis of Plates Under Non-Uniform Mechanical 

Loadings 
 

The conclusions drawn from the linear and non-linear stability behaviour of sandwich plate 

with metal foam core subjected to non-uniform mechanical loading are given below: 

1. Isogeometric analysis and non-polynomial higher-order theory can produce accurate 

and effective results for predicting the post-buckling behaviours of sandwich plates. 

2. The results for order 3 converged at 19-knot insertions for linear buckling analysis and 

15-knot insertions for non-linear post-buckling and post-buckled vibration behaviour. 

As a result, the same knot insertions are utilised for all subsequent investigations 

involving non-uniform mechanical loadings. 

3. As the skew angle of the sandwich plate increases, the buckling strength increases for 

both SSSS and CCCC skew sandwich plates due to the higher stiffness of the plate. 

4. The buckling load and post-buckling strength are higher for the SPD than UPD because 

the symmetric porosity distribution reduces the stiffness of the plate by a smaller 

amount than the uniform porosity distribution. 

5. In the pre-buckling region, the frequencies are higher for SPD than UPD and higher for 

UPD than SPD in the post-buckling regime. 

6. The buckling loads increase with ℎc/ℎf ratio. This indicates that the core layer 

contributes more to the plate's stiffness than the face sheets, as the elasticity modulus 

of the core layer is more than the resultant modulus of the facings. 

7. The buckling strength is higher when the CNTs are distributed more towards the plate's 

surfaces than the centre. 

8. The critical load is highest for uniform compression and least under concentrated load 

due to a high concentration of stresses. 
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8.4 Stability Behaviour of Plates Under Thermal Loadings 
 

The following conclusions are made from the linear buckling and non-linear post-buckling of 

plates under thermal loadings: 

1. The results converged at 15-knot insertions with order 3 in thermal buckling and post-

buckling analysis. Therefore, the same number of knot insertions are employed for all 

further investigations. 

2. As the skew angle increases, the critical buckling temperature increases, and the post-

buckling deflection is lower for the same magnitude of load because the stiffness of the 

sandwich skew plates in a thermal environment highly depends on the variation in the 

skew angle. 

3. Increasing the core thickness may also enhance the critical buckling strength of the 

sandwich plates. As the relative thickness of the core increases, the buckling load 

parameter also increases because the rate of change of geometric stiffness with a change 

in core thickness is higher than that of the overall stiffness of the sandwich plate. 

4. The critical buckling temperature of the skew sandwich plates with a positive cell angle 

of auxetic core and negative Poisson's ratio is slightly lower than those with a negative 

cell inclination angle. This is because the elastic modulus and stiffness of the auxetic 

honeycomb core will reduce with the rise of the cell wall angle. 

5. The FG-X pattern of CNTs in facings results in higher buckling temperature due to 

higher rigidity and less post-buckling deflection in comparison to other distribution 

patterns. 

6. If the imperfection is relatively large, buckling deformation highly correlates with the 

shape of the imperfection.  

7. The sinusoidal and L2-type initial imperfections have nearly identical effects on the 

plate due to their similar shapes. 

8. The critical buckling temperature of a clamped plate is greater than that of a simply 

supported one since clamped edges causes higher flexural rigidity when compared to a 

simply supported edge. 
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8.5  Non-Linear Vibration Analysis of Sandwich Plate 
 

The following conclusions are made from the non-linear vibration analysis of sandwich plates 

with auxetic cores in thermal environments. 

1. The mode redistribution phenomenon occurs for clamped (CCCC) and simply 

supported (SSSS) plates. In such a case, the maximum amplitude moves from the center 

to one side of the plate, which is also distinguished by a sudden drop in frequency 

amplitude curves. This phenomenon occurs in lower amplitudes for SSSS plates than 

CCCC plates. 

2. It is observed that as the skew angle increases, the linear to non-linear frequency 

ratios(𝜔𝑁𝐿 𝜔𝐿⁄ ) decreased. This is because an increase in skew angle leads to an 

increase in plate stiffness and natural frequencies. However, as the skew angle 

increases, the linear frequency increase rate is higher than that of non-linear frequency.  

3. The carbon nanotube (CNT) distribution pattern notably influences the non-linear to 

linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). The order of non-linear to linear frequency 

ratio (𝜔𝑁𝐿 𝜔𝐿⁄ )  observed in FGCNTRC plates is completely opposite to the order of 

stiffness. Specifically, FGO exhibits the highest non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) followed by UD and FG-X. 

4. The results indicate that the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ )decreases 

with increasing hc/hf ratio because the core's thickness increases, and the plate's overall 

stiffness decreases. 

5. It has been observed that the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ) increases 

with the thickness of the plate due to the stiffness of the plate.  

6. It is apparent from the results that the cell angle in the core geometry does not contribute 

towards the non-linear to linear frequency ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). Furthermore, increasing 

core cell wall thickness to cell wall length increases the non-linear to linear frequency 

ratio(𝜔𝑁𝐿 𝜔𝐿⁄ ). 

7. The non-linear to linear frequency ratio (𝜔𝑁𝐿 𝜔𝐿⁄ ) of SSSS plates are higher than 

CCCC plates at a particular amplitude since clamping results in higher flexural rigidity 

compared to a simply supported edge. Hence, the rate of increase of linear frequency 

in CCCC is more than that of increase of the non-linear frequency at a particular 

amplitude. 
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8.6 Recommendations for Future Work 
 

This study's primary focus was to analyse sandwich plate buckling, post-buckling, post-

buckled vibration, and non-linear vibration behaviours. The research assumes that the material 

used in the study is homogeneous and elastic for all the problems examined. However, this 

research can be further extended to include structures made of non-homogeneous or inelastic 

materials. Furthermore, the present formulation can also be used to investigate the dynamic 

instability behaviour of sandwich plates in thermal environments. Finally, it's worth mentioning 

that the isogeometric analysis (IGA) technique employed in this study can also be applied to 

other areas, such as fracture mechanics, optimisation, and contact problems. 
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Appendix A 

 

Modified Riks Technique 

 

 

The non-linear algebraic equilibrium equations and its linearised form is given by: 

𝐊𝐔 = 𝐅                                                      (A.1) 

𝐊𝐓Δ𝐔 = Δ𝐅                                                           (A.2) 

 

The force vector can be written as 𝐅 = 𝜆𝐅̅, where 𝜆 is an additional dependent variable. The 

various steps of the algorithm for Modified Riks technique are given by (Reddy, 2014) 

A. First iteration of first load step 

(i) Take initial load increment 𝛿𝜆1
0 as one and solution vector 𝑈0 = [0] 

(ii) Solve for 𝛿𝐔̂1 and 𝛿𝐔̅1
(1)

 using the following equations 

𝛿𝐔̅𝑛
𝑟 = −𝐊𝐓 −1𝐑𝐧 (𝑟−1)

                                            (A.3) 

𝛿𝐔̂𝑛 = 𝐊𝐓 −1𝐅̅                                                 (A.4) 

where 𝐑𝐧 𝑟−1 is the unbalanced force vector at any iteration (𝑟 − 1)𝑡ℎ iteration of 𝑛th  load 

step and is given by: 

𝐑𝐧 𝑟−1 = 𝐊𝐔𝐧 𝑟−1 − 𝜆𝑛
𝑟−1𝐅̅                                                                                 (A.5) 

(iii) Now, the solution is updated by calculating the increments as: 

𝛿𝐔𝐧
𝑟  = 𝛿𝐔̅𝑛

𝑟 + 𝛿𝜆𝑛
𝑟 𝛿𝐔̂𝑛 

 
 

                                           (A.6) 
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= −𝐊𝐓 −1𝑅𝑛
𝑟−1 + 𝛿𝜆𝑛

𝑟 𝐊𝐓 −1𝐅̅                                 (A.7) 

 

𝐔𝟏 = 𝐔𝟎 + 𝛿𝐔𝟏
1                                                       (A.8) 

 

(iv) Load increment is updated in this step: 

 

 

𝜆𝑛
𝑟 = 𝜆𝑛

𝑟−1 + 𝛿𝜆𝑛
𝑟−1                                                          (A.9) 

(v) Compute the arc length 

Δ𝑠 = 𝛿𝜆1
0√𝛿𝐔̂1

𝑇 ⋅ 𝛿𝐔̂1,  𝛿𝐔̂1
𝑇 = 𝐊𝐓 −1𝐹,  𝐊𝐓 = 𝐊𝐓(𝑈0)     (A.10) 

B. First iteration of any load vector except the first load step 

 

(i) Compute the initial increment load parameter 𝛿𝜆𝑛
0  by using the following equation: 

𝛿𝜆𝑛
0 = ±(Δ𝑠𝑛) ⋅ (𝛿𝐔̂𝑛

𝑇 ⋅ 𝐔̂𝑛)
−1/2

                         (A.11) 

(ii) Compute the incremental solution 

𝛿𝐔̅𝑛
𝑟 = −𝐊𝐓 −1𝑅𝑛

𝑟−1                                          (A.12) 

(iii) Update the total solution vector and load parameter 

𝛿𝐔𝐧 1 = 𝛿𝐔̅𝑛
1 + 𝛿𝜆𝑛

0 𝛿𝐔̂𝑛
1                                  (A.13) 

𝐔𝐧 = 𝐔𝐧−𝟏 + 𝛿𝐔𝐧
1                                           (A.14) 

𝜆𝑛
1 = 𝜆𝑛

0 + 𝛿𝜆𝑛
0 ,  Δ𝐔𝐧

1 = 𝛿𝐔𝐧
1                              (A.15) 
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(iv) Check for convergence 

C. The 𝑟th  iteration for any load step (r = 2,3 … ) 

(i) Update the external load vector. 

𝐅𝐫−𝟏 = 𝜆𝑛
𝑟−1𝐅̅                                                   (A.16) 

(ii) Solve for 𝛿𝐔̂1 and 𝛿𝐔̅1
(1)

 using the following equations 

𝛿𝐔̅𝑛
𝑟 = −𝐊𝐓 −1𝐑𝐧 (𝑟−1)                              (A.17) 

 

𝛿𝐔̂𝑛 = 𝐊𝐓 −1𝐅̅                                            (A.18) 

(iii) Calculate the incremental load parameter 𝛿𝜆𝑛
𝑟  From the following quadratic equation: 

𝑎1𝛿𝜆2 + 2𝑎2𝛿𝜆 + 𝑎3 = 0

𝑎1 = 𝛿𝐔̂𝑛
𝑇 ⋅ 𝛿𝐔̂𝑛

𝑎2 = (𝛿𝐔̅𝑛
𝑟 + Δ𝐔𝐧 𝑟−1)𝑇 ⋅ 𝛿𝐔̂𝑛

𝑎3 = (𝛿𝐔̅𝑛
𝑟 + Δ𝐔𝐧 𝑟−1)𝑇 ⋅ (𝛿𝐔̅𝑛 + Δ𝐔𝐧 𝑟−1) − (Δ𝑠)𝑛

2

(A.19) 

equations. The 𝛿𝜆 that gives the positive value of the product Δ𝐔𝐧 𝑟−1 ⋅ Δ𝐔𝐧 𝑟 is selected. If 

both the roots give the positive value of the product, we use the one giving the smallest value 

of (−𝑎3/𝑎2) 

(iv) Compute the correction to the solution vector and update the incremental solution vector, 

total solution vector and the load parameter. 

𝛿𝐔𝐧 𝑟 = 𝛿𝐔̅𝑛
𝑟 + 𝛿𝜆 ⋅ 𝛿𝐔̂𝑛  

Δ𝐔𝐧 𝑟 = Δ𝑛
𝑟−1 + 𝛿𝐔𝐧 𝑟

𝐔𝐧 = 𝐔𝐧−𝟏 + Δ𝑛
𝑟

𝜆𝑛
𝑟 = 𝜆𝑛

𝑟−1 + 𝛿𝜆𝑛
𝑟

                                             (A.20) 

(v) Repeat the above steps until the following convergence criterion is satisfied: 

[
(𝐔𝐧 𝑟−𝐔𝐧 𝑟−1)

𝑇
⋅(𝐔𝐧 𝑟−𝐔𝐧 𝑟−1)

(𝐔𝐧 𝑟)𝑇𝑈𝑛
𝑟 ]

1/2

< 𝜖                                             (A.21) 
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(vi) Adjust the arc length for the subsequent load steps by Δ𝑆 = Δ𝑠𝑛−1𝐼𝑑/𝐼0 𝛿𝑠𝑛−1 is the arc 

length used in the last iteration of the (𝑛 − 1)𝑠𝑡 Load step. 𝐼𝑑 is the number of desired 

iterations (usually < 5 ) and 𝐼𝑜 is the number of iterations required for convergence in the 

previous step. 
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