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Abstract

Prey-predator dynamics is an elementary notion in ecology that enables us to comprehend
population fluctuations and complex relationships between predators and their prey in ecosys-
tems. Modeling these prey-predator interactions helps us to assess the status and viability of
endangered species populations, facilitate sustainable management of natural resources, etc.
Mathematically, these interactions can be modeled using differential equations. Through math-
ematical analysis and simulation, these models offer valuable insights into the mechanisms
underlying predator-prey dynamics. Various ecological factors such as fear effect, hunting co-
operation, prey refuge, carry-over effects, time delay, and random movement of individuals can
significantly influence the prey-predator dynamics. Incorporating these factors into the models
enhances the realism and intricacy of the ecological systems.

This thesis attempts to study various ecological models that depict the interaction between
prey and predator species incorporating various environmental factors, which can significantly
affect the system dynamics. This thesis consists of six chapters. The introductory chapter pro-
vides essential background information to facilitate understanding of the remaining chapters.
The subsequent chapters formulate and analyze the various spatiotemporal models represented
using ordinary, partial, or delay differential equations. The well-posedness and feasibility of
multiple steady-states are investigated for all the proposed models. We analyzed the system
dynamics using the stability theories for non-delayed and delayed models, bifurcation theory,
chaos theory, and the theory for spatial models. Extensive numerical simulations are conducted
to corroborate the analytical findings. The abstracts for all chapters are provided below.

Chapter 1 begins with the basic introduction to the subsequent chapters. It contains the
background, objective, and motivation of the research work presented in the thesis. This chap-
ter briefly discusses some fundamental concepts and mathematical tools used throughout the
remaining chapters.

Cooperation among species is a ubiquitous behavior that helps us better understand the sys-
tem dynamics from an ecological perspective. Hunting cooperation among predators can im-
pose fear effects on the prey population, thereby decreasing the prey’s birth rate. Considering
this fact, in Chapter 2, we propose a model that incorporates hunting cooperation among preda-
tors and the fear induced birth reduction in the prey population. We have done the complete
dynamical analysis, including boundedness of solutions, persistence of the system, existence of
all equilibria and their local and global stability, existence of Hopf-bifurcation and its direction

and stability, existence of saddle-node bifurcation. We analyzed Hopf-bifurcation with respect
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to the hunting cooperation parameter and observed that system undergoes saddle-node bifur-
cation by varying the predation rate. Moreover, we analyzed the multi-stability of the system
and observe that bi-stability occur in two different scenarios. In the spatially extended system,
we provided detailed stability analysis and obtained the conditions for Turing instability. Vari-
ous Turing patterns such as spots, holes, and stripes are obtained and discussed the biological
significance of these patterns for the two-dimensional spatial model.

Recent studies indicate that the presence of prey refuge can help prolong the prey-predator
interactions by decreasing the risk of extinction for prey species caused by predation. Chap-
ter 3 presents a qualitative analysis of a modified Leslie-Gower prey-predator model with fear
effect and prey refuge in the presence of diffusion and time delay. For the non-delayed tem-
poral system, we examined the dissipativeness and persistence of the solutions. The existence
of equilibria and stability analysis are performed to comprehend the complex behavior of the
proposed model. Bifurcation of codimension-1 such as Hopf-bifurcation, saddle-node are in-
vestigated. In addition, it is observed that increasing the strength of fear may induce periodic
oscillations, and a higher value of fear may lead to the extinction of prey species. The system
shows a bistability attribute involving two stable equilibria. The impact of providing spatial
refuge to the prey population is also examined. We noticed that prey refuge benefits both the
species up to a specific threshold value beyond which it turns detrimental to predator species.
For the non-spatial delayed system, the direction and stability of Hopf-bifurcation are investi-
gated with the help of the center manifold theorem and normal form theory. We noticed that
increasing the delay parameter may destabilize the system by producing periodic oscillations.
For the spatiotemporal system, we derived the analytical conditions for Turing instability. We
investigated the pattern dynamics driven by self-diffusion. The biological significance of vari-
ous Turing patterns, such as cold spots, stripes, hot spots, and organic labyrinth, is examined.
We analyzed the criterion for Hopf-bifurcation for the delayed spatiotemporal system. The
impact of fear response delay on spatial patterns is investigated.

In ecology, carrying capacity is a crucial component that gives an idea about population size
and resource availability. The past activities of the species influence the carrying capacity, and
the impact is not immediate. Taking these facts in consideration, in Chapter 4, we attempt to
study the temporal and spatiotemporal dynamics of a delayed prey-predator system with vari-
able carrying capacity. Prey and predator interact via Holling Type-II functional response. A
detailed dynamical analysis, including well-posedness and the possibility of coexistence equi-
libria has been performed for the temporal system. Local and global stability behavior of the
co-existence equilibrium is discussed. Bistability behavior between two coexistence equilib-
ria is demonstrated. The system undergoes Hopf-bifurcation with respect to the crucial pa-

rameter which affects the carrying capacity of the prey species. The delayed system exhibits
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chaotic behavior. Maximal Lyapunov exponent and sensitivity analysis are done to confirm
the chaotic dynamics. In the spatiotemporal system, the conditions for Turing instability are
derived. Further, we analyzed the Turing pattern formation for different diffusivity coefficients
for a two-dimensional spatial domain. Moreover, we investigated the spatiotemporal dynamics
incorporating two discrete delays. The effect of the delay parameters in the transition of the
Turing patterns is depicted. Various Turing patterns, such as hot-spot, cold-spot, patchy and
labyrinth are obtained in the case of a two-dimensional spatial domain. This study shows that
the key parameters significantly instigate the intriguing system dynamics and provide new in-
sight into population dynamics. The findings in this chapter may help evaluate the biological
revelations obtained from research on interactions between the species.

Allee effects play a crucial role in the extinction of small populations, exerting significant
influence on population dynamics within ecosystems. In Chapter 5, we have investigated the
temporal and spatiotemporal behavior of a prey-predator model with weak Allee effect in prey
and the quality of being cannibalistic in a specialist predator. The parameters responsible for the
Allee effect and cannibalism impact both the existence and stability of coexistence steady states
of the temporal system. The temporal system exhibits various kinds of local bifurcations such
as saddle-node, Hopf, Generalized Hopf (Bautin), Bogdanov-Takens, and global bifurcation
like homoclinic, saddle-node bifurcation of limit cycles. For the model with self-diffusion,
we establish the non-negativity and prior bounds of the solution. Subsequently, we derive
the theoretical conditions in which self-diffusion leads to the destabilization of the interior
equilibrium. Additionally, we explore the conditions under which cross-diffusion induces the
Turing-instability where self-diffusion fails to do so. Further, we present different kinds of
stationary and dynamic patterns on varying the values of diffusion coefficients to depict the
spatiotemporal model’s rich dynamics. It has been found that the addition of self and cross-
diffusion in a prey-predator model with the Allee effect in prey and cannibalistic predator play
essential roles in comprehending the pattern formation of a distributed population model.

The past interactions and experiences between prey and predator species can subsequently
impact current behaviors, physiological states, or population dynamics. Chapter 6 aims to
investigate a diffusive predator-prey system incorporating additional food for predators, prey
refuge, fear effect, and its carry-over effects. For the temporal model, the well-posedness and
persistence of the system have been discussed. We investigated the existence and the stability
behavior of the various equilibria. Furthermore, we explored the bifurcations of co-dimension
one including transcritical, saddle-node, and Hopf, with respect to the crucial parameters. The
system also presents co-dimension two bifurcations such as Bogdanov-Takens and cusp bifur-

cation along with the global homoclinic bifurcation. We observed the bubbling phenomena,



which illustrates the fluctuations in the amplitudes of the periodic oscillations. For the spa-
tiotemporal system, we established the non-negativity and boundedness of the solutions. We
derived the conditions for the diffusion-driven instabilities in a confined region with Neumann
boundary conditions. It is observed that incorporating cross-diffusion divides the bi-parametric
plane into various sub-regions and dynamic patterns are analyzed in these different regions.
The intricate spatiotemporal dynamics exhibited by prey-predator interactions are crucial for

unraveling the intricacies within ecological systems.
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Chapter 1

Introduction

1.1 Basic introduction and literature survey

Mathematical ecology constitutes a specialized field within ecology that employs mathematical
models to study the dynamics and interactions of populations within ecosystems. Fundamen-
tally, it aims to unravel the basic principles of ecological phenomena and forecast the responses
of ecosystems to perturbations, changes in the environment, and human interventions. Math-
ematical modeling serves as a powerful tool for ecologists to comprehend a diverse range of
ecological phenomena, such as population dynamics, prey-predator interactions, resource man-
agement, and ecosystem resilience. Prey-predator interaction is one of the most captivating
themes in ecology and evolutionary biology that has piqued ecologists’ interest for a good
cause. In the realm of population dynamics, Thomas Robert Malthus [94] introduced a seminal
concept in 1798. The well-known Malthusian growth model, which is derived from this idea
and describes the dynamics of a single species, is given by:

dx

ikl
where r is the per capita growth rate of population species. This model fails to reflect real-
world scenarios as it doesn’t account for the limited resources in nature, which may influence
the exponential growth of the population. To address these shortcomings, in 1838, Pierre F
Verhulst [174] proposed the logistic growth model incorporating a carrying capacity (K) to
consider the environmental constraints on population size. The mathematical representation of

the Verhulst model is given by:



2 Chapter 1. Introduction

where r is the per capita growth rate of population and K is the carrying capacity of the envi-
ronment. This model acknowledges the self-limiting nature of population growth in response
to environmental constraints.

Although the Verhulst model offers a valuable framework for comprehending population
growth within single species, the growing recognition of interdependent species within eco-
logical communities underscores the necessity for a more intricate and responsive portrayal
of prey-predator interactions. The Lotka-Volterra model, introduced by Alfred J. Lotka [91]
and Vito Volterra [177], comprises a set of coupled differential equations that served as the

foundation for modeling the dynamic prey-predator interactions, given by:

dx

i ax — bxy,
dy
_— = —d

where x and y denote the population density of prey and predator at any time ¢, respectively.
a is the per capita growth rate and b is the attack rate of predator on prey population. The
parameters c, d respectively describe the effect of the presence of prey on predator’s growth
rate and predator’s natural mortality rate. In the absence of predators, this model assumes that
prey grows exponentially, which may not hold true in all ecological contexts due to limited
food supply, and it can influence the model’s ability to represent real-world dynamics accu-
rately. Furthermore, the generalist behavior of predators is not taken into account by the Lotka-
Volterra model. This restriction may affect the model’s capacity to represent the intricacies of
prey-predator interactions in heterogeneous environments where several prey species coexist
and are pursued by the same predator species. Leslie [84, 85] introduced the prey-predator
model in which the predator’s carrying capacity is directly proportional to the prey density.
The generalist behavior of predators can be addressed by the modified Leslie-Gower model
by incorporating multiple food sources, allowing predators to adjust their feeding preferences
dynamically.

In nature, prey-predator interactions often exhibit non-linear dynamics, such as saturation
effects or functional responses, that can have varying consequences on population dynamics. A
functional response is a measure of successfully attacked prey by the predator. In recent years,
selecting an appropriate functional response has been a matter of subject in the ecological field.
In a series of influential articles that began in the late 1950s, Holling established three broad
categories of functional response [55, 56, 57]. Holling type I functional response assumes a

linear increase in the intake rate of predators with increasing prey density, beyond which it
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attains its maximum handling capacity. It is mathematically represented as:

f1(x) = ax,

where a is the attack rate. This is the simplest and fundamental functional response used in the
Lotka-Volterra prey-predator model. Despite the valuable foundation offered by this functional
response, it has certain limitations. The assumption that predators can consume prey at a con-
stant rate may not hold true in all ecological scenarios, as predators can face satiation, which
influences their intake rate. To mitigate the drawbacks of type I functional response, Holling

type II functional response is proposed, given by:

ax

Lx) = 15 ahe’

where a is the attack rate and 4 is the handling time. This functional response represents a
predator’s average feeding rate when the predator spends some time searching for prey and
some time, apart from seeking, handling each captured prey.

Holling type III functional response is identical to Holling type II functional response at
high levels of prey density. But for low values of prey density, the graphical representation
between the number of prey consumed and prey density is a superlinearly increasing function

of prey consumed by predators. It may be represented as:

2

S prey

In nature, ecological factors can have a profound impact on population dynamics by influ-
encing the interaction between prey and predators. In most cases, social interactions among
conspecifics are beneficial to each other. In the context of hunting, cooperation refers to when
two or more individuals work together to achieve a common goal to increase their fitness, or
success and, consequently, their chances of survival and reproduction [6, 19]. There are nu-
merous advantages of incorporating hunting cooperation among predators, including increased
capture rate, a reduction in chasing distance, etc. [33]. In particular, many living organisms co-
operate during hunting; for example, wild chimpanzees [17], lions [110], birds [54], wild dogs
[33]. Cosner et al. [29], in 1999, initially derived a functional response depending on the spatial
distribution of predators when the predators aggregate for hunting prey herd to increase their
biomass. Berec [9] investigated a prey-predator system incorporating hunting cooperation and
analyzed that when the encounter rate between the species is affected by hunting cooperation, it
destabilizes the system dynamics. Alves and Hilker [2] examined a Lotka-Volterra model con-

sidering Berec’s encounter-driven functional response. They found that cooperative hunting
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produces oscillatory dynamics in the prey-predator model and improves the stability scenario
of the coexistence steady-state, both of which are impossible without cooperative hunting.

In the early studies of prey-predator interactions, researchers relied on the long-held be-
lief that predators can only impact prey populations by killing them directly. But later on, it
was discovered that the mere presence of predators is enough for prey to exhibit anti-predator
responses such as habitat relocation, reduced reproduction rate, foraging less, etc. In 2011,
Zanette et al. [187] carried out an experiment on song sparrows and highlighted that the preda-
tion fear alone reduced the number of song sparrow (Melospiza Melodia) offsprings by 40%. In
2016, Wang et al. [180] proposed the very first prey-predator model incorporating fear phenom-
ena and discovered that high levels of fear could stabilize the system dynamics by excluding
the existence of periodic oscillations. Panday et al. [117] proposed a three-species food chain
model considering the cost of fear and found that a sufficient value of fear might bring order to
a system that would otherwise be chaotic.

In the presence of predators, it becomes imperative to protect prey species as part of efforts
to manage and preserve biodiversity in ecosystems. Prey refuge serves as a buffer against
predation risk by reducing the possibility of prey extinction due to predation. Kar [63] observed
that spatial refugia, which conceal prey from predators and reduce the chance of extinction of
prey, is a common feature of mite predator-prey interactions. In 2015, Sharma and Samanta
[150] proposed an eco-epidemiological model and analyzed how the infected prey refuge can
affect the constituent population dynamics. They remarked that prey refuge plays a crucial role
in regulating the stability of populations.

The term “carry-over effect” was originally introduced from repeated clinical experiements.
In the realm of prey-predator interactions, carry-over effect results from lingering consequences
of species’ past interactions and experiences that might affect the current behaviors, physiolog-
ical states, or population dynamics [107]. Experimental evidences show that the carry-over
effect might occur within a single season and over a short time span in insects, amphibians,
marine invertebrates, and marine fish [98, 162]. In a study examining the impact of the per-
ceived risk of predation and its carry-over effects, Sasmal and Takeuchi [145] noted that chang-
ing the carry-over effect parameter can have a substantial impact on the stability of the co-
existence equilibrium. Furthermore, they concluded that the “paradox of enrichment" might
be completely eradicated with the appropriate choice of non-lethal effect parameters. There-
fore, incorporating carry-over effects into population dynamics can facilitate comprehending
the possible connection between the reproduction cost and trade-offs in life history strategies.

A correlation between population size or density and the mean individual fitness of a popu-

lation or species defines the Allee effect. This concept was first established by ecologist Warder
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Clyde Allee in 1931. Prey populations may expand at negative or positive rates at lower popula-
tion densities, depending on the intensity of the Allee effect. The Allee effect can be categorized
into two distinct types: strong and weak, depending on whether there is a negative or positive
growth rate at lower population densities. Empirical evidence substantiating the existence of
the Allee effect is observed in a diverse array of natural species, covering insects [80], plants
[43], marine invertebrates [43], birds and mammals [30]. Notably, when the Allee effect occurs,
populations may experience decreased growth rates at low densities, leaving individuals more
vulnerable to cannibalism or predation. Cannibalism is a phenomenon that involves the killing
and consumption of the whole or a part of an individual of the same species (conspecifics).
Experimental zoologists have documented cases of cannibalism in a wide range of animal taxa,
including fish, wolf spiders, house finches, bank voles, and zooplankton. With rates ranging
from 8% in Belding’s ground squirrels to 95% in dragonfly larvae, size-structured cannibal-
ism—in which more prominent individuals of the same species devour smaller ones—may
significantly contribute to overall mortality [128]. This indicates how it impacts community
interactions and population dynamics [27, 134].

In nature, most of the biological processes entail a time lag. Incorporating time delays into a
mathematical model can alter the system dynamics, rendering it more ecologically realistic [46,
74, 92]. Mathematically, delay differential equations can capture any past phenomena that can
influence the present state within the system. These equations help us better comprehend the
temporal dynamics of ecological systems and anticipate how the system behaves in response
to environmental perturbations. A wide variety of research has been devoted to investigate the
complex dynamics of a prey-predator model incorporating various discrete delays [8, 42, 118].
There are different types of delays that can ne introduced in a dynamical model to make it
more robust such as maturation delay, gestation delay, fear response delay. Jana et al. [62]
proposed and examined a dynamical model incorporating gestation delay and noticed that the
discrete delay preserves system’s stability. Panday et al. [119] analyzed a delayed prey-predator
system and concluded that the delay parameter has both stabilizing and destabilizing effects on
the system dynamics. Dubey er al. [42] investigated a multi-delayed prey-predator model
and highlighted that system exhibits chaotic dynamics for sufficiently high value of the fear
response delay.

The irregular movement of species across the space is ubiquitous. During prey-predator
interactions, predators tend to diffuse in search of prey, and prey migrate to avoid predators, re-
sulting in spatial variations [108]. As a result, because of the temporal and spatial interactions,
the population disperses according to the erratic movements of every individual in the popu-
lation. This irregular movement can result in a variety of intriguing spatial patterns. In 1952,

Alan Turing [165] first proposed the concept of Turing instability, which arises when a stable



6 Chapter 1. Introduction

equilibrium point loses its stability in the presence of diffusion. Before recognizing this insta-
bility mechanism caused by the diffusion coefficients, it was usually presumed that diffusional
effects stabilize the system. In the early 1970s, Segel and Jackson [146] and Levin and Segel
[87] discovered Turing’s concept that differential diffusion may lead to spatial patterns when
acted upon a reacting system. In fact, spatial diffusion plays a significant role in population evo-
lution, and there has been a growing focus and engagement in studying Turing patterns in the
spatial population models [41, 99, 106, 121, 143, 168, 170, 171]. A broad range of spatiotem-
poral patterns, including stationary patterns like spots, labyrinthine patterns, and mixtures of
stripes and spots, as well as non-stationary patterns like periodic, quasi-periodic, chaotic, and
so on, can be produced by diffusive prey-predator systems. The study of Turing patterns in
ecology can help one better understand the processes that govern the spatial pattern formation
in natural systems as well as the variables affecting biodiversity and spatial heterogeneity. It is
crucial to comprehend the emergence and evolution of Turing patterns in ecological systems in

order to forecast ecosystem dynamics, manage natural resources, and preserve biodiversity.

1.2 Objectives of the thesis

This thesis aims to investigate certain ecological factors influencing the ecosystem’s stability
and addresses several issues related to biological population dynamics that may alter ecologi-
cal stability. We delineated several gaps based on the abovementioned review of the existing

literature, which we articulate as our thesis objectives.

1. To analyze the diffusive patterns in a predator-prey system with fear and hunting cooper-

ation.

2. To study the consequences of fear effect and prey refuge on pattern formation in a delayed

predator-prey system.

3. To investigate the spatiotemporal dynamics of a multi-delayed prey-predator system with

variable carrying capacity.

4. To study the cannibalistic prey-predator system with Allee effect in prey under the pres-

ence of diffusion.

5. To explore the spatiotemporal dynamics in a diffusive predator-prey system incorporating

a Holling type II functional response.
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1.3 Mathematical preliminaries

Mathematically, most of the physical or ecological phenomena can be modelled using differen-

tial equations. It may be expressed as:

dw

g g(w), wlto) = wo, (1.1)
t

where w(t) = (w1 (t),wz(t),...,wa(t))T, gw(t)) = (g1,82,.-.,82)" and 1y denotes the initial

time. The enough smoothness of g ensures the existence and uniqueness of the solution to (1.1).

Definition 1.3.1. The solution w(t) of (1.1) is called a stable solution if, for each € > 0, there
exists a 0 = 8(&) > 0 such that, for any solution w(t) = w(t,ty,wo) of (1.1), the inequality
[|Wwo — wol| < & implies ||w(t) —w(t)|| < € ast — oo.

Definition 1.3.2. The solution w(t) of (1.1) is said to be unstable if it is not stable.

Definition 1.3.3. The solution w(t) of (1.1) is said to be locally asymptotically stable if it is
stable and there exists a 8y > 0 such that ||wo — wo|| < 8 implies ||w(t) —w(t)|| — 0 ast — oo.

Definition 1.3.4. A point w € R" is called a steady-state or an equilibrium point of (1.1) if
g(W) = 0. This steady-state is said to be hyperbolic if Dg(W) (Jacobian of g evaluated at W)

has no eigenvalue with zero real part.

Definition 1.3.5. An equilibrium point w of system (1.1) is called sink (stable) or source (un-
stable) if all the corresponding eigenvalues of Dg(W) have negative or positive real parts, re-
spectively. If at least one eigenvalue has the real component of the opposite sign from the other

eigenvalues, the steady state is referred to as the saddle point.

Definition 1.3.6. A steady state W of system (1.1) is said to be globally asymptotically stable if

every solution of the system, irrespective of the initial value, converges to w.

Definition 1.3.7. A closed solution curve of (1.1) is said to be periodic orbit or cycle if the
system returns to the same state at regular intervals of time. The stability of this cycle can be

employed similar to the stability of an equilibrium point.

Definition 1.3.8. The orbit or trajectory y(wy) of (1.1) through wy is defined by

y(wg) ={weR" :w=w(t,tg,wp), t € R},
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where w(t,wy) is any solution of (1.1) defined for every t € R. Similary, the positive and

negative semiorbit of (1.1) through wq are described as
v (wg) = {w € R" : w = w(t,tg,wp), t €[0,00)},
and
v (wo) ={weR":w=w(t,tg,wp), t € (—0,0]}.

Definition 1.3.9. The set of all limit points of W (wq) (or W~ (wy)) is said to be w— limit set
L(y™") (or a— limit set L(y ™)), respectively. More precisely, a point p € L(y™) is known as
w— limit point if 3 a sequence {t,}, t, — o0 as n — oo such that

lim W(thO) =P

n—yoo
In a similar way, a point q € L(y™) is known as a— limit point if 3 a sequence {t,}, t, — —oo
as n — o such that

lirlc}o Y (ty,wo) = q.

n—

Definition 1.3.10. A ser N € R" is called an invariant set of (1.1) if for every solution w(t),
w(to) € N implies w(t) € NVt > .

Definition 1.3.11. A periodic solution I" of (1.1) is said to be a limit cycle if it is either a ®
or o.— limit set of some other orbit. If a periodic orbit I is ®-limit set (or a-limit set) for
every solution contained in its interior as well as exterior, then it is called stable limit cycle (or

unstable limit cycle).

Definition 1.3.12. In the dynamical system, multi-stability refers to a situation wherein a sys-

tem inhibits multiple stable states or attractors.

Definition 1.3.13. Basin of attraction is the collection of all initial points wo € R" for an
attractor A of (1.1) if

limw(t,w,) =A.
f—o0

Definition 1.3.14. (Sylvester’s criterion) Consider

n
Vy)=y"Ay="Y aijyiy;
i,j=1
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be the quadratic form with the symmetric matrix A = (a;;). The necessary and sufficient con-
dition for V(y) to be positive definite is that the symmetric matrix A has all the successive

principal minors with the positive determinant.

Definition 1.3.15. Bifurcation is the qualitative change that occur in the dynamical system by
varying one or more parameters. Qualitative changes can encompass alterations in the number

of steady states or modifications in their stability characteristics.

Definition 1.3.16. The number of parameters that need to be varied for a bifurcation to occur

is known as its codimension.

Definition 1.3.17. In transcritical bifurcation, two steady states interchange their stability as

the bifurcation parameter is varied.

Definition 1.3.18. The saddle-node bifurcation occurs when two steady states collide and an-

nihilate each other with variation in the bifurcation parameter.

Definition 1.3.19. Pitchfork bifurcation occurs when a system transits from one steady state to

three steady states.

Definition 1.3.20. The Hopf-bifurcation refers to the emergence of a periodic solution from
a steady state or vice-versa as a parameter crosses a critical value. In supercritical Hopf-
bifurcation, the stable steady state switches its stability and a stable limit cycle appears. The
unstable steady state gains stability by creating unstable limit cycle in the case of subcritical
Hopf-bifurcation.

Definition 1.3.21. Homoclinic bifurcation occurs when a limit cycle expands and collides with
a saddle point, forming a homoclinic orbit. In the case of heteroclinic bifurcation, a limit cycle

connects with two or more saddle points.

Definition 1.3.22. In bifurcation theory, a Bogdanov-Takens bifurcation is a co-dimension two
bifurcation that involves the intersection of three co-dimension one bifurcation: saddle-node,

Hopf, and homoclinic.

Definition 1.3.23. The cusp bifurcation occurs when two branches of the saddle-node bifurca-

tion curve meet tangentially, forming a semicubic parabola.

Definition 1.3.24. The Bautin or generalized Hopf bifurcation is a bifurcation of codimension
two that separates branches of supercritical and subcritical Hopf-bifurcation in the parameteric

plane.
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Definition 1.3.25. Self-diffusion refers to the random movement of individuals of the same
species within the habitat. In contrast, cross-diffusion describes how the interaction between

species affects the migration of individuals of different species.

Definition 1.3.26. Homogenous Neumann or zero-flux boundary conditions ensure that no

member of the species can leave the domain of interaction nor can one enter it. It takes the

following form:
du(x,t
unt) o (t>0, x €9Q),
an
where dQ is the smooth boundary of the bounded domain Q in R" and %;[) is the directional

derivative of u in the direction of 1.

Definition 1.3.27. A delay differential equation (DDE) is a differential equation using delays
as the dependent variable. In other words, the rate of change of dependent variables at a given

time is determined by their current and previous states. The general form of DDE is given by

dw

E :f(t7w(t)=wf)7

where wr = {w(71) : 0 < T <t} represents the solution trajectories in the past.

Definition 1.3.28. Chaos may be described as the unpredictable, non-repeating behavior ob-

served in a deterministic system that exhibits sensitive dependence on initial conditions.

Definition 1.3.29. The solution is said to have sensitive dependence on initial conditions on
I if there exists € > 0 such that, for any x € I" and any neighborhood Q of x, there exist’y €
and t > 0 such that |y (x,t) — y(y,1)| > €.

1.4 Methodology

To investigate the properties such as persistence and permanence, stability, chaos, multi-stability,
Turing instability, and bifurcation associated with our objectives defined by ordinary differen-
tial equations, partial differential equations, and delay differential equations, we employ the

following distinct methodologies:

1. Persistence and permanence: Persistence and permanence are significant aspects of the
system, as they depict its behavior over the long term. In a dynamical system, uniform
persistence ensures the ultimate existence of all the species. The permanence of a system

means the survival of all populations of the system in future time.
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Assume that the ith component of the solution w = w(r) of the deterministic dynamical
system is w;(t), which represents the population density of the ith of a particular collec-

tion of species at time ¢, given by
wi =wifi(w), i=1,2,3. (1.2)

Uniform persistence of (1.2) implies there exists a positive number & such that if, for
each i, w;(0) > 0, then

liminfw; (1) > . (1.3)
t—yo0
Moreover, if there exists a constant K such that, V¥ w;(t) ,

limsupw;(t) <K, (1.4)
f—soo
then, system (1.2) is said to be dissipative or uniformly bounded. The system (1.2) is
called permanent if both (1.3) and (1.4) hold true.

2. Linearization of differential equations: Let us consider that our system can be repre-
sented as follows
—— =G(()), (1.5)

where Y(t) = (yl (t)7y2<l)7 "'7yn(t>)T7 G(Y(t)) = (g17g27 "'7gn)T and
E* = (y1,y5,...,y5)T is the steady state corresponding to (1.5). Let z;(¢) = y;(¢) — y; and
linearizing (1.5) about E*, we obtain

dz(t)
— = =Dz(1), (1.6)

where D is Jacobian matrix corresponding to system (1.5) evaluated about E*.

3. Local stability: The stability of an equilibrium point in its neighborhood is determined
by computing the characteristic equation associated with the Jacobian matrix evaluated
at the equilibrium point. Then, we assess the sign of the real parts of the eigenvalue of

this equation. To facilitate this, we use the following theorem:

Theorem 1.4.1. (Hurwitz’s theorem) A necessary and sufficient condition for the nega-

tivity of the real parts of all the roots of the polynomial

AT+ AT A, =0, (1.7)
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with real coefficients is the positivity of all principle diagonals of minors of the Hurwitz

matrix ~ _
A 1. 0 0 0 0 0 . 0
A3 Ap Ay 1 0 0 O . 0
1 0 . 01,

H,= |As As A3 Ar A

0O 0 0 0 0 00 0 A,

Here, it should be noted that the elements of the Hurwitz matrix H, = (hy) are given by

hix = Ay, the missing coefficients are replaced by zero.

The Hurwitz conditions for negative real parts of the solutions of (1.7) for the second,

third and fourth degrees are applied as:

n=2,A1>0,A;>0,
n=3 A1>0,A,>0,A3>0,and AjAy; —A3 >0,
n=4,A;>0,A;>0, A3 >0, Ay >0, and A;A,A3 — A3 —A2A4 > 0.

This theorem becomes impractical for large n.
Remark: The characteristic polynomial (1.7) is said to be stable if all its roots have

negative real parts.

. Non-linear Stability (Global Stability): If the solution trajectory starting from any-

where in the given domain coverges to the same steady state, then that steady state is said
to be globally stable. Here, we establish the sufficient conditions for the global Stability
of the system around the critical point by choosing a suitable Lyapunov’s function which
is a positive definite function.

Let us consider an autonomous system of differential equations:

dx
— = 1.8
where f € C[R",R"] and Sy, = {x € R" : ||x|| < p} such that f is smooth enough to ensure
the existence and uniqueness of (1.8) and x* is the equilibrium point for it.

We have some important results to lay down the ample conditions ensuring the global

stability of the system and are stated below.
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Theorem 1.4.2. If there exists a scalar function V (x) which is positive definite about x*
such that V*(x) < 0 (derivative of V (x) along (1.8) is negative definite) on Sp, then x* is
asymptotically stable.

Theorem 1.4.3. If there exists a scalar function V (x) which is positive definite about x*
such that V*(x) <0 on Sp, then x* is stable.

Theorem 1.4.4. If there exists a scalar function V(x);V(0) = 0 such that dd—‘[/ >0o0nSp
and if in every neighbourhood N of the x*, N C Sy, there is a point xo where V (xg) > 0

then then x* is unstable.

5. Bendixson-Dulac theorem: Consider the system (1.5) with n=2 and assume there exists
a continuously differentiable function ¢ (y;,y>) (called the Dulac function) such that the

expression

J(9g1) n J(9g2)
Iy Y2

has the same sign (# 0) almost everywhere in a simply connected region of the plane,
then according to the Bendixson—Dulac theorem, system (1.5) (for n=2) has no noncon-

stant periodic solutions lying entirely within the region.

6. Bifurcation theory: If varying one or more parameters leads to a change in the qualita-
tive behavior of the equilibrium point, the dynamical system is said to undergo bifurca-
tion.

To demonstrate the occurrence of transcritical and saddle-node bifurcation, we illustrate
the Sotomayor’s theorem conditions by considering the following system:

d
== g(z,n), (1.9)

dr
where U is the bifurcation parameter. Assuming z = zo be the corresponding hyperbolic
equilibrium of the system (1.9) at the critical point ¢ = gy with p and g be the be the
eigenvectors corresponding to the zero eigenvalue of A = Dg(zo, tlo) and A7, respectively.

Now, we procced with the subsequent theorems for different bifurcations.

Theorem 1.4.5. Under the following conditions of the Sotomayor’s theorem, the system
(1.9) undergoes saddle-node bifurcation at the equilibrium point zo as the parameter [

passes through the bifurcation value L = L.

* q" gu(z0,M0) # 0, and
* q"[D*g(z0,10)(p, p)] # 0.
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Theorem 1.4.6. The system (1.9) undergoes transcritical bifurcation at the equilibrium
point zg as the parameter U passes through the bifurcation value L = Ly, if the following

conditions of the Sotomayor’s theorem hold:

* 4" 8u(z0, o) =0,
* q" [Dgu(z0, o)) # 0, and
* 4" [D?g(z0, 0) (P, p)] 0.

Dg(zo, o) has a pair of complex eigenvalues in Hopf-bifurcation. The subcritical or
supercritical Hopf-bifurcation occurs when the complex eigenvalues cross the imaginary
axis as the bifurcation parameter varies. At the critical point, we get a pair of pure
imaginary eigenvalues.

Let us consider a two-dimensional system

dz;

dz
& 2 1.10
o gi1(z1,22,10), 5 g2(z1,22,10), (1.10)

where u is the bifurcation parameter. Now, let us assume that the jacobian matrix about
E*(z],z;) has eigenvalues A; »(u) = oe(u) +if (). Moreover, we consider that the fol-

lowing conditions hold at the critical point © = Uy:

* non-hyperbolicity condition:
0‘(#0) =0, ﬁ(au’o) = >0,

e tranversality condition:

do(p)
e

—d #£0,

then the system undergoes Hopf-bifurcation at 4 = g about the equilibrium point E*.
Next, we determine the direction of the Hopf-bifurcation by evaluating the following:

1 1
o :E (glzlzlzl + glzlzzzz + gzzlzlzz + gzzzzzzz) + 16w (glzlzz (glzlzl + glzzzz )
—82,,.,(82,., T82,,) ~ 81,821, T 81,,:,8200, )
2
where g1, . = 'l , and in the similar manner other derivates may be defined.

a2 dz102 .
sH=H0
Thus, the Hopf bifurcation obtained is considered subcritical (or supercritical) if ¢ is

positive (or negative), respectively.
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7. Chaotic dynamical systems: Some dynamical system shows the characteristic of chaos.
In this, the system is highly sensitive to initial conditions. A small perturbation in the
initial values causes a very significant change in the behavior of the system, which makes
it unpredictable in the future. However, every system is not chaotic. For confirmation of

chaos; we corresponding maximum Lyapunov exponent, A, defined as

1. 0Z(t
A=1im lim —In (),
1057001  0Z

where 67 is the perturbation in the initial condition, and 8Z(¢) is the resulting change
in the solution.
Remark: For a system to be chaotic, the corresponding maximum Lyapunov exponent

must be positive.

8. Numerical simulation: Most of the existing literature’s mathematical models exhibit
nonlinear characteristics; therefore, they cannot be solved analytically. This is where
numerical methods and tools become indispensable for solving such equations. Every
forthcoming chapter of this thesis comprises extensive numerical simulations carried out
with the help of Mathematica/MATLAB to validate the theoretical results. In some sec-
tions, we have used the popular continuation toolbox MatCont, a MATLAB package. For
the phase plane analysis, we frequently used Pplane8, which is another toolbox pack-
age of MATLAB. Most simulation codes are written from scratch and mainly use a few
standard MATLAB solvers, ode45 and dde23, for the system of ODEs and DDEs. The
resulting plots enable us to better comprehend population dynamics concerning essential

ecological factors.
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Chapter 2

Diffusive patterns in a predator-prey system with

fear and hunting cooperation'

2.1 Introduction

Predator-prey interaction is a central topic in ecology and evolutionary biology that has piqued
ecologists’ interest for a good cause. Predation ultimately results in the eviction of prey in-
dividuals from biological systems, which can substantially impact prey population dynamics
and ecosystems as a whole. The long-held belief is that predators can only have an impact on
prey populations by killing them directly. On the other hand, theoretical biologists [89] contend
that a broad understanding of predator-prey interactions necessitates knowledge of predators’
behaviorally generated nonlethal consequences. When prey perceives predation risk, they ex-
hibit a variety of anti-predator responses. For example, they may decide to leave their original
high-risk environment and relocate to lower-risk areas, forage less, reducing the reproduction
rate and affecting their survival through starvation, etc. [32, 34]. Moreover, Zanette et al. [187]
experimented on song sparrows (Melospiza melodia) and discovered that the fear of predation
could itself reduce the number of offspring production by 40%. Based on such experimental
evidence, Wang et al. [180] proposed a model incorporating the fear effect and analysed that
significant levels of fear can stabilize the predator-prey system by excluding the possibility of
periodic solutions. Many researchers have now integrated the reduced prey growth rate due to
predation risk in their mathematical models [141, 144, 145, 181].

Cooperation is a crucial aspect of animal social behavior and a critical component in ecol-
ogy. There are numerous advantages of incorporating hunting cooperation among predators,
including increased capture rate, a reduction in chasing distance, etc. [33]. In particular, many
living organisms cooperate during hunting; for example, wild chimpanzees [17], lions [110],

birds [54], wild dogs [33]. It was observed [9] that when the encounter rate between prey and

I'This chapter is based on our paper published in The European Physical Journal Plus, 137, 281, 2022.
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predator is affected by hunting cooperation, it destabilizes the system dynamics. Pribylova and
Peniaskova [132] studied a predator-prey system and analyzed that by introducing intra-specific
cooperation among predators, prey and predator can coexist for specific rates. Still, it can have
severe repercussions for the predators themselves in the majority of cases. Alves and Hilker
[2] showed that adding hunting cooperation increases the attack rate and allows the predator to
exist even when the prey population is insufficient to sustain them; however, it can also lead to
a sudden predator population collapse.

The irregular movement of species across space is ubiquitous. During prey-predator interac-
tions, predators tend to diffuse in search of prey, and prey migrate to avoid predators, resulting
in spatial variations [108]. This irregular movement can result in a variety of intriguing spa-
tial patterns. Alan Turing first proposed Turing instability in 1952 [165], which arises when a
stable steady-state loses its stability in the presence of diffusion. In the early 1970s, Segel and
Jackson [146] and Levin and Segel [87] discovered Turing’s concept that differential diffusion
may lead to spatial patterns when acted upon a reacting system. Dubey et al. [39] studied the
effect of time dependent cross diffusivity in a Gause-type predator-prey model.

Considerably, many recent studies investigated the reaction-diffusion system that can induce
stationary spatial patterns [41, 99, 106, 121, 143, 168, 170, 171]. Sasmal et al. [143] proposed
a prey-predator model and concluded that non-Turing patterns arise as a combined effect of
aposematic time and searching efficiency of prey. Recently, Kumar and Kumari [76] studied
the diffusion-induced chaos in a spatially extended model.

In recent years, the combined effect of hunting cooperation and fear effect on the dynamics
of the system has been studied extensively [90, 112, 113]. Very few researchers have inves-
tigated the combined effect of both the ecological factors in a diffusive predator-prey system
[38]. The aim of this study is to analyze the dynamics of a diffusive model system incorporating
both hunting cooperation and fear effect. In this paper, we consider the predator mortality rate
as:

M) =22 g<y<s,
l1+y
i.e. M(y) is a predator density-dependent function [184]. The current model has a benefit over
more widely used models because the predator mortality rate is neither constant nor unbounded
here. However, it increases with predator density due to intra-species competition. Moreover,
we consider that increasing hunting cooperation among predators increases fear among prey, as
a result prey’s birth rate decreases.

The rest of the chapter is arranged in the following manner. In Section 2.2, we formulated

our mathematical model with fear and hunting cooperation. Fundamental mathematical analy-

sis like positivity, dissipativeness, and persistence of the system has been discussed in Section
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2.3. In Section 2.4, we analyzed the existence, local stability, and global stability of all equi-
libria. Bifurcation analysis is presented in Section 2.5. In Section 2.6, we analyzed the local
and global stability for the spatial model. We perform some extensive numerical simulations in

Section 2.7. The paper ends with a discussion in Section 2.8.

2.2 Formulation of mathematical model

First, we assume that prey grows logistically, which can be divided into three parts, namely, the
birth, natural death and death due to intra-species competition. Hence, in predators’ absence,
the prey dynamics can be governed by the following ODE:
%C :rx—rox—rlxz, 2.1)
where x(¢) is the prey population density at any given time ¢, r is the birth rate of prey, ry is the
natural death rate of prey, ry is the death rate due to intra-species competition among the preys.
Now, we explicitly include the predator dynamics in (2.1). This paper considers that the
predator-prey interaction follows a linear functional response. We also incorporated the hunting
cooperation among predators, which benefited the predator population [2, 54]. Moreover, we
consider that the prey’s growth rate decreases due to fear of predation, which depends on the

predator population density [180]. Hence, our prey-predator model becomes:

dx _|_r . _ — (0 + a1y)
dy B _ Y+ Oy
x(0) > 0, y(0) > 0. 2.2)

Here, y(t) is the predator population density at any time #, @ is the predation rate (without
hunting cooperation among predators), @ is the predator hunting cooperation parameter, c is
the conversion coefficient from prey density to predator density, which should lie between O to
1. Here, the parameter k refers to the level of fear which reflects the reduction of prey growth
rate due to the anti-predator behavior. Moreover, we considered that the level of fear increases
due to hunting cooperation among predators i.e., prey’s growth rate decreases as the hunting

cooperation parameter ¢ increases. Thus we modify the fear function as Wlaly’ We consider

_ Y+oy
=15

assumption ¥ < §. The advantage of using this function as mortality rate, is that it is neither a

the predator mortality rate M(y) to be predator density dependent function with the
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constant nor an unbounded function, yet it is an increasing function with the predator density
[184].
Now, if we consider spatial effects in prey and predator population, then the spatial prey-

predator model can be written in the following reaction-diffusion equations:

0
A [ﬁ —rg—rix— (Oco+061y)y] x+D1V2x,

ot |(1 + ko y

dy Y+ 0y 2

= = o - D,V 2.3

5 [C(OCOJr 1y)x Tty y+DyV7y, (2.3)
where x = x(u;v;t), y = y(u;v;t) denotes the prey and predator population density at the spa-
tial coordinate (u;v) and time ¢, respectively. V2 = ;—:2 + aa—jz is the Laplacian Operator in two

dimensional space. D; and D, are the self-diffusion coefficients of prey and predator species,
respectively, which describe that the individuals tend to migrate from higher to lower concen-
tration regions.

The spatiotemporal dynamics (2.3) are subjected to non-zero initial conditions and Neu-

mann boundary conditions (which means that no species can leave or enter through the bound-

ary):

x(u;v;0) = xo(u;v) > 0;y(u;v;0) = yo(u;v) > 05 (u,v) € Q=[0,L] x [0,M], and % = % =0,

where 7 is the outward unit normal vector.

2.3 Mathematical analysis of non-spatial model

First, we will analyze model (2.2) which is without diffusion. We assume that all the parameters

involved with the model (2.2) are positive.

2.3.1 Positivity and boundedness of the solutions

In particular, positivity of solutions implies that the species will exists. Model (2.2) can be

written as:

% = ¥ (t)x,

% — lP2(t)y7
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where
Wi(t) = (1+—Ir<oqy) — 1o —r1x— (0 + ary)y,
Yy (t) =clap+ o y)x — %5;}
Thus,
x(1) = x(0) exp [ /0 " (x(s), y(s))ds} >0,
1) = 3exp | [ wala(s).5(5))ds] 20,

which gives
x(t) > 0, and y(t) > 0,

and implies the positivity of all the solutions.

Theorem 2.3.1. System (2.2) is dissipative i.e. all the solutions are bounded above in R%r with
the following properties:
r—ro

i <
lim supx(r) < _—

r—rop

lim sup (x(t)—l—%y(t)) . {(n

r—ro+7y)2
W when y<r—r.

when y>r—r,

Proof. From the first equation of (2.2), we have

dx rx ) (0 + 01y)
— = — X — X — X
dt ~ (I+kogy) 'OF7 "% TG

< (r—ro)x—rix°.

Considering r — ro > 0 (for the survival of prey, otherwise x(¢) — 0 as t — o), we have

. r—ro
< .
th_}n; supx(z) < .
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Now, we define z(¢) = x(t) + %y(t), then

dz _ rx _rx_rxz_(7’+5Y)
dt 1+koyy = ! c(1+y)”’
o
er—rox—rlxz—ﬁ, (asd >y = rY y>’}’)
c 1+y
= FX — roX — x> — Y(z—x),
= (r—ro+7)x—rx*—yz.
Then similar to the proof of the theorem (2.1) in [144], our results follow. ]

Theorem 2.3.2. System (2.2) is uniformly persistent under the following conditions:
(a) r > (1 + kalymax)(ro + 0oYmax + (le,znax),

(b) Xpmin > %

Proof.
dx rx 5 (co-+a1)
— = — X —rx - X
di — (Itkoyy) &' 0 + 011 y)xy
dx S [ (0o + 0 ) ]
— X|l——————ro—rix—
dr = (1+ka1ymax) 0 1 (04)) 1Ymax)Ymax
r
= — — 1) — o _
x[((1+ka1ymax) o (@0t 1y’"“")y’”“x> ”x}’
limfﬁwinfx(t) > %(m —rg— (a()"‘alymax))’max) =m*.
Now,
dy Y+ 5y]
7 — o _+£r -
o )’[C(Oto+ 1y)x 5
d
d_i) > yleopx + coyxy — J]
dy
Z >y [(Caf)xmin - 6) + Calxminy:| .

Now, if (c0pxmin — 0) > 0, then % > 0. This implies that y is strictly increasing function of
t,Vt > 0. Thus, y(r) > y(0), Vt > 0.
Choosing, &€ = min{m*,y(0)} we get
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For € > 0,

lim; e infx(t) > €, (2.4)
lim, . infy(¢) > €. |

Hence, this completes the proof. [

2.4 Equilibrium analysis

Model (2.2) has three non-negative equilibria:

1. The trivial extinction equilibrium Ey = (0, 0), which always exists.

2. The axial equilibrium, where only prey population survive is given by E| = (rjlr 0,0),

which exists if r —rg > 0.

3. Other non-negative interior steady states of (2.2) can be solved from the following equa-

tions

r

= — — = O
F(x,y) T kary ro—rix— (oo + oqy)y ,
Y+ 0y
y) = (g + agy)x — S——= =0. 2.5
g(x,y) :=c¢( = > (2.5)

From g(x,y) = 0, we can get the expression of x as follows:

_ ey
X = Sartany 1) @9

Now from f(x,y) = 0, we can get a 5¢th degree polynomial equation in y as follows:

Boy® + Biy* + Boy® + Bsy* + Bay + Bs = 0, (2.7)

where

Po = keai (> 0),

Bi = co (1 +kay +2kog) (> 0),

B> = cou (rokoy + oy 4201 + 2k o +kod) (> 0),

B3 = rockoq2 + rikay 0 + rockoyoy +2cop oty + cag +kca§oc1 —coy(r—ryp),
Bs = rockoyoy + rikayy+r16 —l—COt(% —c(r—rp) (oo + o),

Bs = r1y—cop(r—ry).
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Depending on the values of the parameter 3]s for i = 3,4, 5, our proposed system (2.2) would

have none, one, two or three interior equilibria.
We have the following theorem for the number of interior equilibria corresponding to system
(2.2).

Theorem 2.4.1. (a) System (2.2) has no interior equilibrium if the following condition
holds:

_ . i ri(8+kyon)+eag(og+rokay) clopoy (2+kag+kro)+0o3+roka?]+rikoy 8
O<r r0<m1n{ca0, c(ootar) , ca .

(b) System (2.2) has unique interior equilibrium if any one of the following two conditions
holds:

clogey (2+kao+kr0)+a§+roka12] +riko &

(i) %<r—r0< o0l

(”) max{ yr1 ri(8+kyay)+cog(op+rokay) } <r—rp.

cop’ c(ap+ay)

(¢) System (2.2) has at most two interior equilibria if any one of the following two condi-

tions holds:

. r1(8+kyay)+cap(on+rokay ) . yri

(i) c((xo+0621) ) <r—ro < zg-

.. C[OC()O([ (2+ka()+kr0)+06 +roko }+r1k0615 r
(ii) calo . <r—r0<2/7:).

(d) System (2.2) has at most three interior equilibria if the following condition holds:

yri clogon (2+kog+kro)+0d+rokad]+rikoy § _ r1(8+kyay ) +cog(ag+rokoy)
max{cao, ca <r—rop< (oo o)

Proof. The number of interior equilibria depends on the number of positive real roots of the
equation (2.7), which depends on the sign of coefficients 33, B4 and 5. By using ’Descartes’
rule of signs’ we can easily verify that the equation (2.7) has no positive real root if B/s > 0,

for i = 3,4,5, which gives

_ ) oy ri(8+kyon)Feap(aptrokoy) clonon (2+kog+kro)+ad+rokad]+rikon §
r r0<m1n{caﬂ, (e ta) , o .

Similarly, the system has unique interior equilibrium in any of the three set of conditions (i)
ﬁ3>0, ﬁ4>0andﬁ5<0, (ii)ﬁ3>0, B4<Oand[35<0, (iii)ﬁ3<0, ﬁ4<0and[35<0.
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Combining these three set of conditions we can easily simplify that the equation (2.7) has
unique real positive roots if f3 > 0 and B5 < 0 or B4 < 0 and B5 < 0, i.e., if % <r—-r<

clopay (2+kao+kr0)+ag+r0ka12}+r1ka1 1) yr1 r1(0+kyoy)tcop(an+rokog ) ..
o Or Max 4 o c(ootar) < r—rg. Similarly,
we can prove that when the system has at most two or three interior equilibria. |

Note: From Theorem 2.4.1, we can conclude that system (2.2) has atleast one interior
equilibrium if any of the conditions (») and (d) hold (the region above the black solid line in
Fig. 2.1).

In Fig. 2.2, we fixed the parameters as r =2.7,r90=0.2,r; =0.1, k= 0.1, oy = 0.006, ¢ = 0.5,

Existence of Interior

35F7

Fig. 2.1: Here we fix the parameter values as ro = 0.2, r; = 0.1, k = 0.1, ap = 0.05,

o = 0.006, c = 0.5, 6 = 0.8 and vary the parameters y and r from 0 to 0.8, and 0 to 3.5,
respectively. Here, (0) is for the existence of at most three interior equilibria (condition
(d) in Theorem 2.4.1), (x) is for the existence of at most two interior equilibria (con-
dition (c) in Theorem 2.4.1) and () is for the existence of unique interior equilibrium
(condition (b) in Theorem 2.4.1). Thus, Model (2.2) has at least one interior equilibrium
in the region above black solid line.

Y=0.5, 6 = 0.8 and vary the parameter 0. For ap = 0.03, we have no interior steady state.
We get a unique interior steady state for o = 0.05. For o = 0.04 and o = 0.045, we have
two and three interior steady states, respectively.

Next, we provide the following theorems regarding the stability of equilibria corresponding to
system (2.2).

Theorem 2.4.2. The extinction equilibrium Ey is locally asymptotically stable if r —rg < 0. In
fact, Ey is globally asymptotically stable under this condition.
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(c) Two interior steady states for o = 0.04. (d) Three interior steady states for o = 0.045.

Fig. 2.2: Number of interior steady states for model (2.2) with varying . The other
parameter values are fixed as r = 2.7, = 0.2, r; = 0.1, k = 0.1, a; = 0.006, c = 0.5,
y=0.5,and 6 =0.8.

Proof. The eigenvalues at the extinction equilibrium Ej are given by A; = r —rg and A, =

—7 (< 0). Thus Ej is locally asymptotically stable if r — ry < 0.

It is easy to show that the solution (x(z),y()) of (2.2) for any positive initial conditions in
]Ri tends to Ep = (0,0) when r —rg < 0. [}

Theorem 2.4.3. The axial equilibrium E; exists and is locally asymptotically stable if 0 <
r—ro < 2% Moreover, Ey is globally asymptotically stable if

yri ri(8+kyoy)+cag(ogtrokan) oo (2+kag+kry)+of +rokod]+rikay 8

0 <r—rp <min

cop’ c(op+on) ’ coy
Proof. The eigenvalues at the axial equilibrium Ej are given by A = —(r — rp) and A; =
cao(r;—lr(’) — 7. Thus, E| is locally asymptotically stable if 0 < r —ry < 2%)
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Moreover, under the condition

. yr1 ri(8+kyay )+cog(ao+rokoy) clatgo (2+kag+kro)+0g +rokad]+rikoy 8
0<r—ro<m1n{%, e(opT0n) , o ,
the system does not have any interior equilibrium. The extinction equilibrium is always unstable
(saddle) and E| is always locally stable under this condition. Also, all the solutions of system

(2.2) remains positive and bounded. So, every solution ultimately tends to Ej. [ |

Theorem 2.4.4. The interior equilibrium E* = (x*,y*) is locally asymptotically stable if

* . y(9-7) 6y Op+ony rko; .
xt < mtn((1+y*)2(ca1y*r1)’ () T na (1+kally*)2 + (o + 20y )} ) and y* > Zi-.

Proof. The Jacobian matrix at the interior equilibrium is given by

o[, i e
(oo +ony)y* co X*y* - (1(fy*§/2)
The characteristic equation at the interior equilibrium is
A% —Tr(Jg)A +det(Jg+) = 0,
= A%+ [rlx* + % — coclx*y*} A
+rxty* [—((16+_y*))2 - calx*] +ex’y* (o + ouy”) [—(1 J;:Z:y*)z + (a0 +2a1y") | =0.

Thus, the interior equilibrium E* = (x*,y*) is locally asymptotically stable if Tr(Jg+) < 0
and det (Jg+) > 0, i.e., if

rix* + y<—>;(i;<§/2) —coux*y* >0
and rq [% — ca1x*1 +c(op + ary®) {(l—ifllz—zll)z’k)z + (o +2a1y*)} > 0.
The above two inequalities satisfies if
o min<(1+y%2((ia3/y)*—r1) e T e + (o0 + 2a1y")| ) Y
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Remark: From the expressions of Tr(Jg+) and det(Jg+), the sufficient condition for the
local stability of E*(x*,y*) is

8 > y+coyx*(1+y*)2.

Next, we assume that we have a unique interior equilibrium under conditions (b) of Theo-
rem 2.4.1. Now, we provide the following result for the global stability of the unique interior

equilibrium.

Theorem 2.4.5. The unique interior equilibrium ET is globally asymptotically stable if the

following condition holds:

g B .
ca1(1+ymax)(1+y*> 4ri oy (lrk,f“ —|—a1y*>2
+ko

Proof. Let us consider a positive definite function:
Vi(x,y) = (x —x" —x*ln%) +m