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Abstract 

The rising electricity demand, the need to reduce greenhouse gas (GHG) emissions, 

and the continued depletion of fossil fuel reserves require an extra effort by the various 

countries of the world to bring a paradigm shift in the energy sector. Thus, energy 

generation from renewable energy resources (RERs) and the installation of battery energy 

storage systems (BESS) have become very popular. The RERs, BESS and fossil fuel-

based traditional generators (TGs) are considered distributed energy sources (DERs) and 

a micro-scale interconnection of these DERs and loads to make a low voltage electrical 

network can be termed a microgrid (MG). Furthermore, as electric vehicles (EVs) gained 

popularity as a viable alternative to fossil fuel-powered vehicles, their penetration has 

increased significantly. Therefore, to achieve the stable, optimal, sustainable, and 

efficient operation of the MG with EV integration, an energy management strategy 

(EMS) is required. The development of EMS is highly dependent on the type of MG, and 

the most critical MGs are community and building grid-tied MGs. Therefore, it is 

essential to evaluate energy management aspects for both the MGs.  

The stable operation of MG, especially for a community-type MG, is governed by the 

size and placement of the DERs. To investigate this, multi-bus-based community MG is 

developed with various renewable & fossil fuel-based DERs, residential, industrial & 

commercial type voltage-dependent load models, BESS and different EV charging 

patterns. Further, this thesis formulates a multi-objective function to determine the 

optimal capacity and location of multiple DERs along with EVS to reduce power losses 

and voltage fluctuations in the system. Further, to achieve economical, sustainable, and 

efficient operation of the developed community MG an optimal energy management 

strategy (OEMS) is developed considering different modes of EV operation, i.e., 

autonomous charging mode (ACM) and governed charging/discharging mode (GCDM). 

The developed OEMS aims at maximum utilization of DERs, promotes energy trading 

between MG and utility grid, performs peak load management through GCDM, and 

minimizes the dependency of an MG on the utility grid. To attain the maximum utilization 

of BESS, a coordinated charging/discharging scheduling algorithm is formulated, which 

takes into account certain operational parameters such as total load demand, state of 
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charge (SOC) of the previous interval, and power not fulfilled by RERs, and fossil fuel 

based DERs.   

To evaluate the energy management aspects of a building MG (prosumer) data from a 

real-time system is taken into account. The considered system is a grid-tied MG that 

consists of solar PV and BESS with EVS, which is designed, developed and deployed at 

the building of BITS, Pilani, campus. As the BESS accounts for high capital 

investment and has a limited life cycle, therefore there is a need for an EMS for prosumer 

buildings that aim at economical and efficient operation of the system. In this regard, this 

thesis proposed an improved energy management strategy (IEMS) that focuses on 

increasing the profit of a prosumer building and improving the operating life span of 

BESS. In addition, a non-linear battery degradation model considering static and dynamic 

degradation factors, is used to estimate the practical operating life span of BESS. Further, 

to enhance the efficacy of the proposed IEMS and to achieve the sustainable and more 

efficient operation of a building MG, a flexible load shifting (FLS) scheme is formulated. 

It minimizes the burden on BESS and decreases the grid export to MG, which increases 

the profit of a prosumer building operator, improves the operating life span of BESS, and 

reduces the dependency of MG on the grid.  

The impact of EV penetration on the prosumer building is assessed by advanced 

probabilistic modelling of EVL, which considers practical situation, i.e., availability of 

plug-points and uncertain behaviour of EV owner in terms of time duration after which 

EV may leave the EVS. Further, along with ACM, a new mode of EV operation is 

introduced, i.e., governed charging/discharging with demand response mode 

(GCD_DRM). It combines vehicle-to-grid power transfer services and a vehicle demand 

response strategy to manage the load on the prosumer building. Finally, the performance 

of IEMS is evaluated by integrating the proposed FLS and the modes of EV operation.  
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Chapter 1 

Introduction 

1.1. Background 

The availability of electrical energy significantly impacts a society's present and future 

progress. The daily depletion of fossil fuel reserves, increasing electricity demand, and 

the need to reduce greenhouse gas (GHG) emissions necessitate a paradigm shift in the 

energy industry. It was reported by the European scientists from Copernicus and the 

World Meteorological Organization (WMO) that the past 10 decades were the hottest 

years on record, with 1.40°C above the pre-industrial average (1850-1900) [1][2]. It was 

also found that for the first time in 2022, global average CO2 concentrations exceeded 

pre-industrial values by 50% and continued to rise in 2023 [3]. Therefore, promoting 

energy generation using indigenous resources, especially renewable energy resources 

(RERs) and low-carbon technology, has gained immense popularity. In this regard, at the 

26th annual summit of COP (Conference of Parties), i.e., COP26, more than 200 

countries pledged to keep temperature rises within 1.5°C and to reach net zero emissions 

by 2050 [4]. Scientists estimated that the goal can be achieved by reducing GHG 

emissions by 45% by 2030, compared with 2010 levels, and from there to net zero 

emissions by 2050.   Further, COP28 discussed measures to accelerate efforts towards net 

zero by around mid-century and reduce non-CO2 emissions, e.g., methane emissions 

globally by 2030 [5]. It is suggested to triple the renewable energy capacity by 2030 (to 

at least 11,000 GW by 2030) and collectively double the global energy 

efficiency improvements from around 2% to over 4% annually until 2030, as shown in 

Fig. 1.1 [6]. The International Energy Agency (IEA) discussed the roadmap to achieve 

Net Zero by 2050 and expects a surge in solar photovoltaic (PV) and wind energy source 
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capacity addition (including households with rooftop), battery storage installations and 

sales share of electric vehicles (EVs) as shown in Fig. 1.2 respectively [7][8]. These 

RERs, such as solar PV systems, wind generators, battery energy storage systems (BESS) 

and fossil fuel-based traditional generators (TGs), are considered distributed energy 

sources (DERs) [9]–[11]. However, their integration with each other, and with the 

electrical network, requires a smart energy management strategy (EMS) to achieve the 

optimal, efficient, and stable operation of the system [12]. The interconnection of the 

DERs to make an electrical network is called a microgrid (MG).  

 

Figure 1.1 Expected growth in installed capacity of renewables and in annual energy intensity 
improvement [6] 

(a) (b) 



Chapter 1. Introduction   

3 

 

 
 

(c) (d) 

Figure 1.2 Expected growth in (a) solar PV and wind energy source capacity addition (b) 
households with solar PV rooftops, (c) battery storage installations and (d) sales share of electric 
vehicles (EVs) 

1.2. Microgrids (MGs) 

A micro-scale interconnection of the DERs and loads developing a low-voltage 

electrical network can be termed a MG [13]–[15]. The International Electrotechnical 

Commission and the U.S. Department of Energy define a MG as a group of 

interconnected loads and DERs within clearly specified electrical boundaries forming a 

local electric power system at distribution voltage levels that act as a single controllable 

entity for the grid [16], [17]. It can operate in grid-connected and an islanded mode [16]–

[20]. The basic architecture of an AC-DC community MG with its main components is 

shown in Fig. 1.3.  

PCC

Bidirectional AC-
DC Converter

DC
DC

DC
DC

DC
DC

AC Bus

DC Bus

Industrial Load Commercial Load Residential Load Wind turbine

Main Grid

Point of Common Coupling

Solar Generation
Battery Bank/ Energy 

Storage System Electric Vehicle

DC
DC

Fuel Cell

 

Figure 1.3 Basic architecture of an AC-DC community MG 
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There are several benefits of MG, such as it reduces CO2 emission due to utilization 

of RERs, it provides ancillary support to the main grid, it feeds local demand, which can 

reduce the distribution losses and cost of transmission of the power network, it can 

provide the adequacy of generation as it has control over its generation and internal loads, 

etc. A typical MG classification is shown in Fig. 1.4. While integrating the DERs into 

MG, it is crucial to take care of uncertainties associated with RERs, as well as optimal 

sizing and effective scheduling of DERs. Therefore, MG demands an energy management 

architecture (EMA) to maintain its optimal, efficient, sustainable and stable operation. 

 

Figure 1.4 Typical MG classification 

1.3. Energy Management Architecture (EMA) of MGs 

According to the IEC standard 61970, associated with the application of energy 

management program in power systems, EMA is a computer system containing a 

software platform providing essential support services and a set of applications providing 

the functionality needed for the effective operation of electrical generation and 

transmission facilities to assure adequate security of energy supply at minimum cost 

[21],[22]. The main functions of an EMA for MGs are to assign generation schedules for 

DERs, monitor and forecast their generation, perform load forecasting, manage the 

controllable loads to control energy production and consumption and analyze energy 

market prices[23],[24]. The EMA in MG has been considered the most promising 
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solution to attain MGs' resilient, reliable, optimized, and cost-effective operation while 

satisfying the technical constraints [25]–[27].  

An EMA makes use of various modules such as forecast, optimization, data analysis, 

and human-machine interface (HMI) to perform optimal decisions with the help of an 

energy service interface (ESI) and communications protocols, and these decisions are 

communicated to grid side and customer side units as shown in Fig.1.5 [19],[28]–[30]. 

These modules look after different areas, such as forecast deals with DERs/load 

forecasting and energy market prices. Further, forecasted data and historical data are 

analyzed using a data analysis module. The optimization module, which is considered to 

be the most important system of the EMA, deals with the optimal and efficient operation 

of the MG. It works as the brain of an EMA, which can operate/control the MG as per 

the desired objectives. Further, the HMI module helps in data visualization and real-time 

control.  

 

Figure 1.5 Energy management architecture for an MG 

Energy management of MGs has numerous benefits, including increased efficiency, 

reliability, sustainability, and economic viability of energy systems [31]. Some of the 

main benefits are as follows: 

 Energy efficiency: Energy management optimises the use of available resources 

in MGs, which leads to higher energy efficiency. MGs can be more efficient 
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than standard centralised grids by reducing waste and optimising energy 

distribution and consumption. 

 Cost savings: Effective energy management can significantly reduce costs for 

MG operators and end users [32]. MGs can reduce dependency on expensive 

peak-demand electricity by optimising energy generation, storage, and 

distribution, lowering energy bills and mitigating the impact of volatile energy 

prices. 

 Integration of renewable energy: MGs incorporate renewable energy sources 

such as solar, wind, and hydroelectric power [33]. EMA allows optimal 

integration of these intermittent resources, maximising their utilisation while 

maintaining grid stability and reliability. 

 Grid resilience: MGs are more resilient and reliable than centralized grids, 

particularly in disruptions such as disasters, grid outages, or cyber-attacks. 

Energy management offers proactive monitoring, rapid response to disruptions, 

and islanding capabilities to keep critical systems operational during 

emergencies. 

 Carbon emission reduction: MG energy management helps to reduce carbon 

emissions and mitigate the effects of climate change by encouraging the use of 

renewable energy and optimising energy consumption patterns. MGs play an 

important part in achieving a low-carbon energy future. 

 Demand response: EMA enables MGs to change energy consumption patterns 

in response to changing grid circumstances, electricity costs, or environmental 

issue [12]. Demand response programmes help to balance supply and demand, 

optimise grid operations, and decrease stress on the power system during peak 

times. 

 Enhanced grid stability: MG energy management improves grid stability by 

actively controlling generation, storage, and demand in the system [34]. 

Advanced control algorithms and predictive analytics help mitigate voltage 

fluctuations, frequency deviations, and other instabilities, delivering a reliable 

and consistent power supply for connected users. 
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 Grid independence: MGs can function independently or in conjunction with the 

main power grid, providing greater energy security and grid independence. 

Energy management systems enable MGs to optimise local resources, balance 

supply and demand, and provide crucial services even when isolated from the 

main grid. 

 Remote and off-grid applications: MGs are ideal for providing dependable 

power to communities, industries, and infrastructure in remote areas [35]. EMA 

enables the optimal use of local resources, lowering dependence on imported 

fuels and increasing energy availability in underserved areas. 

 Technological innovation and economic development: Investing in MG energy 

management promotes technological innovation, job creation, and economic 

development in the energy industry. Renewable energy, energy storage, smart 

grid technology, and data analytics contribute to growth and competitiveness 

while creating opportunities for sustainable development. 

1.4. Classification of EMA for MGs 

An EMA in MG can be broadly classified according to three main categories, i.e., 

based on supervisory control, operating time platform, and the decision-making strategy 

adopted to achieve effective and optimal operation of MG, as shown in Fig. 1.6.  

 

Figure 1.6 Classification of the energy management architecture 
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1.4.1. EMA based on Supervisory Control 

Supervisory control can be referred to the overall monitoring of the individual process 

operations occurring in the system. It is responsible for the complete monitoring of the 

system and the effective interconnection between individual controllers [36],[37]. Based 

on supervisory control, EMA can be broadly divided into three types, i.e., centralized,  

decentralized, and distributed, as shown in Fig. 1.7. The circles in Fig. 1.7 show the 

various nodes or units of the MG system. 

 
(a) (b) (c) 

Figure 1.7 Various supervisory control approaches for EMA in MG (a) Centralized (b) 
Decentralized (c) Distributed  

The centralized EMA consists of a central controller that gathers all the necessary 

information about DERs, load, electricity market, weather, etc. and performs optimal 

scheduling of MG. Later, the decision is sent to the local controllers (LC) of units 

[38],[39]. Whereas, in decentralized EMA, there are multiple central controllers, and they 

communicate with each other and their respective LCs in real-time. Every LC puts 

forward a present and future generation or demand request to the central controller. 

Further, it performs the optimal scheduling and communicates it back to the LC of 

MG [40]. This process keeps on going until local and global objectives are achieved. The 

third approach, distributed EMA, is an advanced version of decentralized EMA and 

eliminates the concept of centralization. In this control approach, along with the central 

controller, each LC unit also communicates and exchanges local information like voltage 

and frequency with each other [41],[42]. This helps the central controllers to obtain a 

global solution while using the two-way communication link of the local controllers [33]. 
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1.4.2. EMA based on the operating time platform 

For developing an efficient and effective EMA, the time taken for implementation and 

execution of a new decision/adaptation is the most critical parameter that needs to be 

selected carefully [43]. The two most commonly used operating time platforms for the 

EMA decision-making process are offline and real-time (RT) platforms. 

1.4.2.1. EMA based on the offline time platform 

This operating time platform is usually preferred during the planning of the system or 

performing day ahead scheduling when it is assumed that forecasted parameters (RERs 

generation, load demand, market price) are already known. Then, the offline EMA 

obtains an optimal schedule for all the sub-sections of the system [44]–[49]. The offline 

EMA lacks consideration of uncertainties in MGs; therefore, commonly used 

probabilistic methods for uncertainty quantifications, such as Monte Carlo and scene 

reduction techniques, are adopted to manage the uncertainty of RERs and load demand. 

Then, a random or deterministic optimization technique can be used to determine the 

optimal solution [47]. 

1.4.2.2. EMA based on the real-time platform 

Although day-ahead scheduling may provide the global optimal solution, as the actual 

values are slightly different from forecasted values due to unavoidable forecasted errors, 

therefore, it is difficult to achieve the expected results. Further, the high uncertainty of 

RERs and load demand leads to the complex design of the EMA. Thus, many researchers 

are focussing on real-time (RT) scheduling to reduce the impact of uncertainties on the 

EMA and make it simpler from the design perspective [50]–[58]. For grid-connected 

MGs, the RT scheduling should also optimize the traded energy between the grid and 

MG.  

The offline EMA has several disadvantages, but it still acts as auxiliary support to the 

RT EMA for any MG. The results of offline EMA are fed to RT EMA to test its 

convergence [59],[60]. The objective function of offline EMA is decomposed into 

smaller sub-problems to reduce the computational complexity, which can be solved 

further using a distributed optimization approach [61],[62]. 
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1.4.3. EMA based on decision-making approaches 

Decision-making approaches are adopted to achieve effective, stable, and optimal 

operation of MG. Based on these approaches, EMA can be majorly segregated into two 

categories, i.e., optimization and power control approach, as shown in Fig. 1.8. The 

optimization-based approach includes classical programming methods, meta-heuristic 

approaches, stochastic/robust programming approaches, and artificial intelligence-based 

approaches. The power control-based approach is subdivided into model predictive 

control techniques and other power control methods such as droop control, hierarchical 

control, master-slave control, peer-to-peer (P2P) control, voltage-frequency control, etc.  

 
Figure 1.8 EMA classification based on a decision-making approach. 

1.5. Motivation and problem statement 

The main component of the MG EMA is the optimization module because it consists 

of an energy management strategy (EMS), which is entirely responsible for the optimal, 

efficient, stable and sustainable operation of the MG. However, the development of EMS 



Chapter 1. Introduction   

11 

 

for MGs faces numerous challenges due to the complexity of integrating many energy 

sources, controlling dynamic loads, including EVs, and assuring grid stability, which 

motivated this research. Some of the significant challenges are: 

 MGs frequently use intermittent renewable energy sources such as solar and 

wind, which are weather-dependent. Managing the fluctuation of these sources 

necessitates complex EMSs, including forecasting and scheduling operations, to 

efficiently balance supply and demand. 

 Energy storage devices, such as batteries, are critical in stabilizing MG 

operations because they store excess energy for later use or smooth out supply 

and demand fluctuations. However, integrating energy storage involves 

challenges for an MG EMS in terms of its proper sizing, management, and 

maintenance in order to maximize efficiency and life span.  

 MGs serve a wide range of customers with variable energy needs that might vary 

frequently and unpredictably. Managing these dynamic loads necessitates 

demand forecasting and demand response mechanisms in EMSs to provide 

a reliable power supply without overloading the grid. 

 EV charging raises the MG's load, which could strain the present 

distribution infrastructure and lead to increasing peak demand. An MG EMS 

should be able to balance EV charging demand with other electrical demand to 

prevent overloads, voltage fluctuations, and grid congestion. 

 Community MGs are usually comprised of various DERs, such as solar panels, 

wind turbines, and smaller generators. Coordinating the operation of these DERs 

while ensuring grid stability and reliability can be difficult, particularly in 

systems with multiple owners and controls. Further, ensuring grid stability and 

resilience in MGs is critical, especially during disruptions such as power outages 

or unexpected changes in load or generation. EMS must have advanced voltage 

regulation and power loss minimization algorithms that can prevent grid 

instabilities or cascading failures. 

 Deployment of the MG with EMA, especially on a large-scale building, involves 

a huge initial investment and continuous operational costs. The MG EMS should 
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balance the costs of technology deployment with the expected benefits in terms 

of energy savings, efficiency, and system longevity.  

The development of EMS is highly dependent on the type of MG, and the most critical 

are community and building MGs. Therefore, it is essential to evaluate energy 

management aspects for both types of MGs.  

Thus, this research focuses on developing an EMS to achieve the economical, efficient, 

and stable operation of the community MG consisting of various DERs and for a 

prosumer building MG having solar PV rooftop and BESS with the integration of EV 

load. 

1.6. Organization of thesis 

Chapter 1 discusses the background, motivation, problem statement and objectives of 

the research carried out in the thesis.  

Chapter 2 presents an exhaustive literature survey of the previously reported studies that 

consider community MGs, prosumer buildings, and the modelling of the electric vehicle 

load (EVL). Further, few research limitations are identified.  

Chapter 3 designs the community MG consisting of various DERs and electric vehicle 

stations (EVSs). Moreover, it formulates a multi-objective function with the purpose of 

determining the optimal capacity and location of multiple DERs along with EVS to 

reduce power losses and voltage fluctuations in the system. 

Chapter 4 proposed an optimal energy management strategy (OEMS) that aims at 

maximum utilization of DERs, promotes energy trading between MG and the utility grid, 

performs peak load management, and minimizes the dependency of an MG on the utility 

grid. It mainly focuses on achieving economic, efficient, and sustainable operation of 

community MG. 

Chapter 5 is about designing a grid-connected AC-DC hybrid MG for a building and 

deploying it on its rooftop to develop a prosumer building. Further, an improved energy 

management strategy (IEMS) is developed to optimize the operating cost of MG and 

improve the operating life span of BESS by its effective utilization. It aims to achieve the 

economical and efficient operation of the system. 
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Chapter 6 formulates a flexible load shifting (FLS) scheme for a prosumer building 

aiming at shifting the flexible loads to improve the utilization of RERs and increase the 

sustainability of the system. Moreover, it discusses the advanced probabilistic modelling 

of EVL, which considers the practical events and the uncertain behaviour of EV owners. 

Further, the performance assessment of IEMS is studied with FLS and EVL. 

Chapter 7 concludes the research work by outlining the main contributions and discusses 

the future scope of the research. 

Figure 1.9 shows the pictorial representation of the organization of the thesis. 

Chapter 1 - Introduction

Background, MGs and its types, Benefits of 
MG EMS, Challenges associated to it, 

Motivation

Chapter 2 – Literature Review

Previously reported EMS studies considering 
community MG, prosumer building and modelling of 

the EVL, Research limitations and Research objectives

Chapter 7 – Closure 

Summary, Main contributions 
and Future scope

Community MG Prosumer Building MG

Chapter 6 –Enhancing the Performance of IEMS with an Advanced 
Probabilistic EV Load and Flexible Load Shifting

Formulation of a FLS scheme aiming at shifting the flexible loads as per the 
RERs, EVL modeling considering practical events and uncertain behavior of 

EV owner, performance assessment of IEMS with FLS and EVL.

Chapter 5 – Designing of Prosumer Building MG and Achieving its 
Optimal Operation  by Considering BESS Degradation Model

Development of an improved energy management strategy (IEMS) based 
on rule-based algorithm (RBA), aims to achieve the economical operation 

of the system and increases the BESS operating life span.

Chapter 3 – Designing of the Community MG with Optimal 
Sizing and Placement of DERs and EV Stations

Designed a community MG based on IEEE 33 bus network, 
formulates a multi-objective function to determine the optimal capacity 
and location of DERs along with EVS, reduces power losses and voltage 

fluctuations in the system. 

Chapter 4 – Development of an EMS for Economic, Efficient 
and Sustainable Operation of Community MG 

Proposed an optimal energy management strategy (OEMS), 
focuses on achieving economic, efficient, and sustainable operation of 
community MG, performance assessment considering various electric 

vehicle penetration levels for different modes of EV operation.

 

Figure 1.9 Pictorial representation of organization of thesis 
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Chapter 2 

Literature Review 

This chapter details the comprehensive literature review of the previously reported 

studies considering community MG, prosumer building and modelling of the EVL. The 

community MGs are studied for optimal placement & capacity estimations of DERs and 

developments of their EMSs. The building MGs are investigated for the development of 

EMSs considering battery degradation and demand side management (DSM). Further, 

few research limitations are identified based on which objectives of the thesis are formed. 

2.1. Community MG 

2.1.1. Optimal placement and capacity estimations of DERs 

In the past few years, many algorithms have been formulated to optimize the 

placement and capacity of DERs to minimize overall power losses in the distribution 

network [1-5]. In [1], the authors proposed an analytical technique to calculate the 

optimal location and size of DERs. In [2], the authors utilize an artificial bee colony 

algorithm to estimate the optimum location, power factor, and size of DERs. The study 

in [3] was focused on the optimal allocation and sitting of solar PV cells in radial 

distribution systems based on the Ant Lion optimizer algorithm. The multi-objective 

function is formulated for the optimization problem, but the authors did not present any 

information regarding the efficiency of the algorithm compared with other optimization 

algorithms. In [4], the optimal allocation of DERs is done using a hybrid particle swarm 

optimization algorithm (HPSO). To place DERs at a suitable position, loss sensitivity 

analysis is performed, and for optimum sizing, the HPSO algorithm is used, and the 

results obtained are compared with other optimization algorithms. The work in [5] 
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applied a hybrid method based on loss sensitivity factors and Moth-Flame optimization 

to determine the optimal placement and size of DERs. The loss sensitivity factors are 

used to estimate the candidate bus for DER allocation, and Moth-Flame optimization is 

used to determine the optimal size and placement of solar and wind-based DER.  

Further, the authors of [6] aim to cut down the total investment value by optimal 

placement of wind-based DER and BESS. The cost of investment for BESS and DERs is 

taken to be proportional to their size. It is reported in [7], that Hybrid Grey Wolf 

Optimization (HGWO) is suitable to solve discrete, non-convex problems. Also, there is 

a considerable reduction in loss and improvement in voltage profile. The results are 

compared with various metaheuristic algorithms and show that the HGWO algorithm 

outshines all the other algorithms. The authors in [8] utilize the grasshopper optimization 

technique to determine the optimal place and size of DERs. The multi-objective function 

is formulated to minimize the active power losses and to improve the voltage profile of 

the system.  

The voltage-dependent electric load demand and seasonal variations of wind and 

solar-based DERs are considered but didn’t take into account the impact of EV charging 

load demand and optimal placement of EV charging stations. A genetic algorithm-based 

optimization problem is formulated in [9] to determine the optimal site and size of EV 

parking lots. The optimization problem considers the distribution system’s reliability and 

power losses along with investment costs. However, this article didn’t consider renewable 

DERs and various electric vehicle charging patterns based on the location of parking lots 

in the system. Further, an approach for simultaneous optimal allocation of renewable 

energy sources and EVS in smart grids is proposed in [10]. A multi-objective 

optimization problem is formulated to reduce power losses, charging and demand 

supplying costs, and voltage fluctuations. A hybrid genetic algorithm and particle swarm 

optimization are used to solve this multi-objective optimization problem, but the authors 

didn’t discuss the impact of different EV charging patterns. 

By the conducted literature survey, we remark that the researchers did not focus on 

optimal capacity estimation and allocations of DERs together with appropriate placement 

of EVS simultaneously and considering different charging patterns and voltage-

dependent load. 
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2.1.2. EMS considering community MG 

The cost optimization-based EMS has been formulated that focuses on minimizing the 

MG’s total cost, which includes DERs and storage system costs, worst scenario 

transaction cost stemming from the uncertainty in RERs, and utility of dispatchable loads 

[11]. Further, in [12], the authors present a deterministic EMS that functions in 2 groups: 

local power management at the customer side and central energy management of the MG. 

With the help of communication between these two groups, the power flow is managed 

between the various sources. Whereas, a new concept for community MGs with zero grid 

impact is introduced to improve the MG’s efficiency [13]. To achieve this aim, an 

intelligent system is developed based on a DC/AC converter that is connected to the 

building point of coupling with the main grid.  

Similarly, few other EMSs are proposed in the literature that focus on energy 

efficiency, energy trading, and demand profile improvement [14]–[17]. An optimal 

billing mechanism has been developed, which includes the concepts of fairness, 

optimality, and user privacy in the DSM of the system [14]. The developed billing 

mechanism is fair because it distributes the total energy cost among the users depending 

on their contribution in minimizing the total cost of the system. Authors in [15] formulate 

an economic model that consists of functional links between properly linked shiftable and 

shifted load, which minimizes the operation energy costs. A unified demand-side 

management model is proposed to reduce the operating cost, diminish the peak-to-

average power ratio and curtail peak hour's demand with minimized distribution losses 

[16]. Haffez et al. in [17] presented an autonomous system focusing on the effective and 

efficient management of different energy sources. The authors concluded that the 

proposed EMS has desirable performance as it results in saving energy and minimizing 

the load on the grid.  

Few studies of literature have reported an energy management algorithm to optimize 

the energy flow in the MG by using various techniques [18]–[22]. Like, authors of [18] 

have employed the Markov decision principle, whereas a fuzzy logic-based advanced 

system has been proposed in [19] to ensure near optimally managed energy flows. An 

EMS is formulated based on multi-objective particle swarm optimization to maximize 

the penetration of renewable energy sources while simultaneously minimizes the 
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operating cost of MG [20]. Paul et al. in [21] have formulated an economic dispatch 

problem based on quadratic programming that claims optimal power and BESS 

scheduling in end-user-MG. A day-ahead energy management scheme is developed for 

optimal scheduling of RERs and diesel generators by formulating a non-linear 

programming problem [22]. It co-optimizes the costs associated with both active and 

reactive powers of diesel generators while simultaneously considering the reactive power 

capability of inverter-interfaced DERs. 

It has also been mentioned in the literature that uncoordinated charging of EVs results 

in a rise of network losses & peak demand, overloads lines & transformers, and violates 

voltage range as well [23]. Therefore, network reinforcement is one of the effective 

solutions to deal with the large deployment of EVs, but it is expensive and infeasible [24]. 

Another possible solution to resolve these issues is to adopt coordinated or governed 

charging/discharging algorithms for non-commercial EVs because, 90% of the time, 

these types of EVs are parked or idle [23].  

In this regard, few EMSs are presented in the literature, which aim to achieve efficient 

operation of MG while simultaneously fulfilling the charging and discharging 

requirements of EVs [25]–[30]. Like, smart plug-in EV charging strategies, including a 

unified grid-to-vehicle and vehicle-to-grid (V2G) charging framework, are presented to 

optimally integrate EVs within the existing distribution system [25]. In addition, the 

authors of [26] develop an optimal charging/discharging control of EVs that aims to 

reduce operating costs and considers the constraints of power systems, EVs, and battery 

degradation costs. An event-triggered-based mathematical model is developed for the 

V2G scheduling scheme based on the stochastic EVs connection to the smart grid [27]. 

L. Jian et al. in [28] consider a large-scale EVs V2G scenario and formulate an 

optimization problem to minimize the load variance of the system. Due to the high 

computational complexity with large-scale EVs, a double-layer optimal charging strategy 

is proposed, which effectively solves the problem. Whereas to improve the technical and 

economic performance of the grid, an EV charging model is developed based on optimal 

power flow, EV owners’ degree of satisfaction, statistical characteristics of EVs,  and the 

power grid cost [29].  
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Likewise, a smart PHEVs charging strategy utilizing solar power is presented in [30]. 

In addition, to decrease the dependency of the MG on the utility grid, the challenge of 

proper sizing of BESS is also addressed. The strategy presented in [30] aims to minimise 

the energy exchanged between MG and the utility grid by minimizing the energy drawn 

and energy supplied to the utility grid.  

However, these previously reported strategies, such as mentioned in [30] may fail to 

perform satisfactorily under various scenarios due to certain limitations. These few 

common limitations are as follows.   

1) restriction in the maximum utilization of DERs & energy trading between the MG 

and utility grid; 2) underutilization of the MG’s capability to support the utility grid 

during contingencies occurring in the system; 3) inability to minimize active power loss 

(APL) and voltage deviation (VD).  

2.2. Prosumer building MG  

2.2.1. EMS considering Battery Energy Storage System (BESS) 

degradation  

With the increased popularity of BESS, their integration into the MG network has 

significantly increased. Therefore, various studies have been conducted on MG energy 

management and its optimal operation, considering different generation sources and 

storage systems [31]–[37].  

In [33], distributed economic dispatch is performed for a grid-connected MG with high 

renewable energy penetration and demand-side management. The developed algorithm 

aims to minimize MG's net cost, including the utility of dispatchable loads, the cost of 

distributed generation and storage units, and worst-case transaction costs stemming from 

the uncertainty in renewable energy sources. A. Elgammal et al. [34] developed an 

efficient EMS for a PV, wind, fuel cell, and battery energy scheme to minimize the 

operation cost of the MG and maximize the power generated by each source. In [35], an 

energy management algorithm has been formulated which is based on a mixed integer 

linear programming problem for grid-connected and islanded MGs integrated with PV, 

wind turbine, fuel cell, microturbine, diesel generator, and BESS to minimize the 
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operating cost. Zupančič et al.[36] develops a home energy management system 

consisting of solar PV, battery and grid. It aims to lower the operating cost of the system 

as well as maximize the green factor. It was found that the proposed management system 

decreased the cost objective by 17% and significantly improved the performance ratio. 

An energy management system for a grid-connected MG consisting of solar PV and 

BESS is proposed in [37] to minimize the operating cost by controlling battery 

charge/discharge operations based on the load of MG. These studies focus on minimizing 

MG's operating cost but do not focus on reducing battery degradation. 

In addition to the above-mentioned points, various studies have developed an energy 

management algorithm for MG considering battery degradation [38]–[45]. In [38] and 

[39],  a linear model of the battery degradation cost is considered that assumes a 

proportional relationship with the amount of energy exchanged by the battery, regardless 

of the charge-discharge cycle depth and the current state of charge (SOC) level. In [40], 

a unit commitment model is formulated that aims at cost minimization considering the 

battery degradation model based on cycle depth. Authors of [41] proposed a regression-

based battery degradation cost model that considers the battery's temperature and cycle 

depth, i.e., depth of discharge (DOD). However, these studies do not consider the current 

SOC of each cycle.  

Further, in [42],[43], piece-wise linearization of the life cycle function (number of 

cycle v/s DOD) of the battery is proposed for a BESS sizing of an under-planning MG to 

achieve the convexity of the formulated problem. Authors of [44] and [45] use the 

rainflow cycle counting algorithm based on the piece-wise approximation model of 

battery degradation. A novel battery degradation cost model is developed in [46] that uses 

the concept of auxiliary SOC of the battery with the cycle depth and formulates a cost 

minimization objective function. However, the authors use piece-wise linear 

approximation to incorporate the degradation model into an optimization problem.  

It is worth mentioning that all aforementioned studies use piece-wise linear 

approximation to linearise the life cycle function of BESS, and some ignore calendar 

ageing that significantly governs the operating life of BESS. Therefore, these models fail 

to depict the practical degradation and estimation of the life span of BESS.  
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2.2.2. EMS with Demand Side Management (DSM) 

Traditionally, generation was controlled in such a way that the load was met, i.e., 

generation follows load [4],[7]. However, with the extensive integration of intermittent 

renewable energy sources into the grid, generation is no longer controllable. Therefore, 

it becomes necessary that the load itself should contribute to energy management. This is 

called DSM, and DR strategies are part of it. It models consumer consumption behavior 

in such a way that the electricity bills are minimized [8]. DSM can be employed in three 

ways: energy efficiency, demand response (DR) programs, and strategic load 

management. Among them, DR programs are widely used and include incentive-based 

and price-based programs. Methods like Direct Load Control (DLC), demand bidding, 

and interruptible/curtailable load fall under incentive-based DR programs. These 

methods are mainly applied to thermostatic loads to directly control/curtail the flexible 

loads [47]. The price-based DR programs mostly consist of time of use (TOU), real time 

pricing (RTP) and critical peak pricing (CPP).  

Recently, many researchers have presented EMS that considers DR programs, such as 

DLC and various pricing methods [48]–[51]. These strategies optimize the energy cost 

of consumers. Further, their DR programs aim to shift/control the loads based on the cost 

of energy or minimize the peak-to-average ratio of load demand, i.e., try to flatten the 

load demand. However, for prosumer building MGs, these DR strategies may not 

improve the efficiency of the system because, in these methods, the load is 

shifted/controlled as per the grid energy prices and does not consider the RERs 

utilization. 

2.3. Modelling of Electric Vehicle Load (EVL) 

The rise in the penetration of EVs has motivated researchers to develop an MG 

scheduling strategy that also considers EV load along with consumer load [52]. However, 

the modelling of the EV load profile has created further challenges for the development 

of an adequate MG scheduling strategy. Numerous studies have been conducted to model 

the EV load profile accurately, and it is generally performed using three major 

techniques: historical data regression method, machine learning prediction model, and 

stochastic simulation method based on probability distribution [53].  
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The historical data regression approach [54] includes the regression analysis 

prediction model [55] and the day prediction model [56]. The disadvantages of this 

strategy include a lack of historical data and conflicting statistical criteria, which can lead 

to errors in mathematical equations and reduce prediction accuracy. Further, machine 

learning prediction algorithms have been widely employed in recent years to anticipate 

short-term load for EV charging. Intelligent algorithms such as neural networks [57]–

[60], support vector machines [61]–[63], and deep learning [64], [65] are frequently 

utilized. However, the integrity and the accuracy of historical data have a significant 

impact on forecast results. While the Monte Carlo approach from the stochastic 

simulation method [66], [67] is currently the most extensively used method to estimate 

EV charging demand [68], can simulate random processes and is suitable for macro 

prediction of unpredictable behaviors of EV users. Based on this, more factors could be 

added to the EV load profile model. 

Like Zhang et al. [68] proposed an improved EV charging load forecast approach that 

considers demographic and socioeconomic factors. The findings show that the gender, 

age, and education level of the consumers had a significant impact on the EV charging 

load. Authors of ref. [69] proposed an EV charging load prediction model by taking into 

account numerous random parameters such as place, temperature, and road conditions. 

Most of these studies assume that 1) As the EV arrives at the station, it starts charging 

instantaneously, irrespective of the available number of EV plug points, and 2) the EV 

leaves the station only after it is fully charged.  However, these assumptions limit the 

practical modelling of the EVL profile.  

2.4. Gaps in the existing research 

2.4.1. Considering community MG 

 Optimal capacity estimation and allocations of DER units, along with 

appropriate placement of EVS simultaneously considering different charging 

patterns and voltage-dependent load, needs to be addressed. 

 Previously reported EMS for community MG mainly focused on operating cost 

minimization, i.e., economical operation of MG, but failed to perform 

satisfactorily under various scenarios, including stability of the MG due to 
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certain limitations. These limitations include 1) restriction in the maximum 

utilization of DERs & energy trading between the MG and utility grid; 2) 

underutilization of the MG’s capability to support the utility grid during 

contingencies occurring in the system; 3) inability to APL and VD to maintain 

the stability of MG. 

2.4.2. Considering prosumer building MG 

 Most of the existing EMSs consider battery degradation in the optimization 

model to achieve optimal operation of MG. However, they use piece-wise linear 

approximation to linearize the life cycle function of BESS, and some of them 

ignore calendar ageing because of that it fails to depict the practical degradation 

and estimation of the life span of BESS.  Therefore, there is a need of EMSs that 

attain economical and efficient operation of MG while considering a non-linear 

battery degradation model.   

 Former studies have developed EMSs by integrating DR programs such as DLC, 

TOU, RTP, and CPP. Their DR programs aim to shift/control the loads based on 

the cost of energy or minimization of the peak-to-average ratio of load demand, 

i.e., try to flatten the load demand. Though for building MGs, these DR 

strategies will result in a reduction in power imported from the grid, but they fail 

to improve the sustainability and efficiency of the system in terms of RER 

utilization. 

2.4.3. Considering modelling of EVL 

 Various studies have modelled the EVL profile considering numerous uncertain 

parameters such as demographic, socioeconomic, and environmental factors. 

However, these studies didn’t consider the availability of EV plug points and the 

uncertain behavior of EV owners regarding leaving the station even before their 

EV is fully charged. 
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2.5. Objectives of the proposed work 

 Designing an optimal and stable community MG model based on a multi-bus 

network with renewable energy sources, battery energy storage system (BESS), 

and EVs with V2G/G2V features.  

 Development of an energy management algorithm for the designed community 

MG to maximize the profit of MG operator through the efficient utilization of 

DERs considering probabilistic modelling of EV load. 

 Formulation of an improved energy management algorithm for a prosumer 

building that optimizes the operating cost of MG and improves the BESS 

operating life span. 

 Integration of a flexible load shifting (FLS) scheme and advanced probabilistic 

EV load modelling (V2G/G2V feature) with improved energy management 

algorithm to further enhance its performance.    
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Chapter 3 

Designing of the Community MG with Optimal Sizing 

and Placement of DERs and EV Stations 

3.1. Introduction 

In recent years, the integration of DERs to the conventional grid has increased rapidly 

due to its advantages in technical, environmental, and economic aspects. Along with 

DERs, EVs are also getting popular as a potential alternative to fossil-fuel-driven 

transportation. The penetration of EVs in the network increases the system’s total load 

which is a challenge for the current distribution system [1]. It is observed that power loss 

and voltage stability of an electrical network is dependent on DER’s sizing, EVs charging 

load, location of DERs, and EV stations (EVSs) in a network. Therefore, if the sizing of 

DERs and their integration with EVS are planned optimally and strategically in a network 

then they are always committed to reduce the network’s power losses, enhancement of 

voltage stability margin, improvement of voltage profile and power quality of supplied 

power [2].  

By the conducted literature survey, discussed in Chapter 2, we remark that the 

researchers did not focus on optimal capacity estimation and allocations of DER units 

together with appropriate placement of EVS simultaneously, and considering different 

charging patterns and voltage-dependent load. To investigate these issues, this chapter 

formulates a multi-objective function with a purpose to determine the optimal capacity 

and location of multiple DERs along with EVS, to reduce power losses and voltage 
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fluctuations in the system. The considered test system includes voltage-dependent load 

models, renewable energy-based DER units, and different EV charging patterns.  

3.2. Modelling of various DER units and electrical load  

The DER units are usually modeled as a constant power factor model.  Power 

electronic and synchronous generator-based DERs are referred to as controllable DERs 

[3]. In this study, all DERs are modelled as constant power factor model having a power 

factor of 0.9 lagging. The details of modelling of various DERs units and electric load 

are discussed below. 

3.2.1. Solar Photovolatic (PV) system  

The power of solar PV systems is expressed in terms of solar irradiance and 

temperature using (3.1) [4]. 

                      (3.1) 

where,  is the rated power of the PV generator which is considered to be 5 kW,  

is the measured solar radiation at time t,  is the nominal solar radiation, which is 

assumed to be 1000W/m2,  is a constant equal to -0.0357%/◦C,  is the measured 

ambient temperature at time t,  is the panel temperature in standard test conditions, 

which is assumed to be 25oC and  is the performance coefficient of the PV power 

converter which is considered to be 95%.  is a subset of , represents time intervals, 

defined as    is the total number of time intervals. 

3.2.2. Wind turbine generator (WTG)  

The power output of a WTG is a function of wind speed and is expressed by (3.2) [4].  

(3.2) 
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where  is the active power output of   for time ‘t’. Also,  and   

represents the active power output of   at cut-out and rated wind speed respectively. 

Furthermore,  and  are measured, rated, cut-in, and cut-out wind speeds in 

 respectively. The specifications of the considered , including rated, cut-in, 

and cut-out wind speeds are 12.5 , 3.5 , 25  respectively. The WTG 

(Bonus 150/30) having a specified rated power of 150  is considered in this study [5]. 

3.2.3. Dispatchable energy generator (DEG)  

The dispatchable energy generator having a constant power factor of 0.9 lagging is 

considered. The fossil fuel-dependent energy sources are mainly considered as DEG. In 

this work, natural gas combined cycle based DEG is taken into account for the simulation 

studies. Further, the hourly fuel cost of a natural gas generator can be determined using 

the equation in (3.3).  

                 (3.3) 

where  refers to the cost of natural gas consumed per hour of operation in $/h,  

 represents the purchase price of natural gas per thousand cubic feet in $ / thousand 

cubic feet and    is the natural gas consumption in cubic feet per hour (ft3 /h). 

3.2.4. Electrical load modelling 

In a practical distribution system, the load is continuously changing. Therefore, this 

study considers voltage-dependent load i.e., residential, commercial, and industrial load 

models to simulate the practical scenario. In load flow problems, the exponential-based 

static load modeling is more appropriate with respect to dynamic load modeling [17]. In 

the static load model, load behavior is represented as an algebraic function of voltage 

magnitude [6]. In the case of exponential load, the mathematical relation between the 

load parameters and voltage magnitude is shown in (3.4) & (3.5) [7].  

                                  (3.4) 

                                (3.5) 
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where, and  are active and reactive power exponents which vary according to 

different load classes i.e., residential, commercial, and industrial respectively.   and 

 refers to real and reactive power load at  bus, while and  are the values of 

active and reactive power load at initial working conditions, respectively.  is the 

magnitude of the voltage at the   load bus. Table 3.1 shows the exponent values 

corresponding to different load types. For constant power loads these exponent values 

remain zero. 

Table 3.1 Exponent values corresponding to different load types[7] 

Load Type 
Residential Commercial Industrial 

      

Summer 
Day 0.72 2.96 1.25 3.5 0.18 0.6 

Night 0.92 4.04 0.99 3.95 0.18 0.6 

Winter 
Day 1.04 4.19 1.5 3.15 0.18 0.6 

Night 1.3 4.38 1.51 3.4 0.18 0.6 

3.3. Probabilistic modelling of EVL 

The stochastic behavior of EVs is an outcome of numerous factors, such as battery 

capacity, the number of vehicles, charging speeds, time at which it is plugged in or 

plugged out, daily distance traveled by an EV, type of vehicle, and charging patterns [8]. 

In this study, the load modeling of EVs is based on few factors, i.e., daily distance 

traveled by an EV, the number of vehicles, time at which it is plugged in i.e., arrival time 

and plugged out i.e. departure time.  

The parameters such as daily distance traveled by an EV and arrival time are extracted 

by using Monte Carlo simulation from their respective probability density functions and 

information regarding these probability density functions are reported in [9]. All the EVs 

are assumed to be private vehicles and are charged/ discharged according to three 

different EV stations/parking nodes i.e., residential charging station  commercial 

charging station  and industrial charging station . It is assumed that EVs 

considered in this study are private vehicles. It is also assumed; the charging of EVs will 

start as soon as they reach their residence/workplace until the battery is fully charged.  
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At , the EV charging starts at 4:00 pm after the owner arrives at the residence, 

whereas, for  it begins at 8:00 am when the owner arrives at the workplace. Usually, 

industrial employees have three kinds of working shifts therefore for , at morning 

6:00 am first shift’s EV charging starts, similarly, the second shift and the third shift start 

at 2:00 pm and 10:00 pm respectively. The SOC of EV for each EV at the time of 

arrival can be calculated using (3.6). The time duration of charging  for each 

EV can be obtained from (3.7)[9]. 

                                        (3.6)                        

                                   (3.7)                        

 and  are the distance travelled by the  EV and maximum distance EV can 

travel in one charge.   is the SOC of  EV at the time of plug-in;  represents 

the rated energy capacity of EV in kWH,  is the charging rate of EV in kW;  

is the charging efficiency of EVs.  is a subset of , represents number of EVs and is 

defined as     represents the total number of EVs. 

 The plug-out time  of EVs can be further calculated using (3.8) [9]. 

                                          (3.8) 

where  represents the time at which EV charging begins. The charging power  

required to charge the EV can be estimated using equation (3.9). The associated time 

interval to this charging power can be calculated using equation (3.8) and  . 

           (3.9) 

As EVs charging time intervals are independent of each other, therefore they can be 

accumulated. The daily EVL of a large number of EVs can be calculated using (3.10) as 

follows: 

                            (3.10) 

where  is the daily EVL profile of  EVs.  
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3.4.  Objective function formulation and operational constraints 

In order to formulate the objective function, power flow calculation is an initial step. 

Conventional power flow algorithms such as Gauss-Seidel, Newton Raphson are 

incompetent for distribution network as it has low X/R ratio. 

Hence, the Backward-Forward sweep power flow algorithm is mainly used for 

distribution networks for fast and accurate results [10]. Consider a radial distribution 

network shown in Fig. 3.1.  Buses r & s are connected through a line having a total 

impedance  . 

 

Figure 3.1 Radial distribution network 

                                                 (3.11) 

Active power loss for the line between r & s can be written as: 

                                           (3.12) 

The total active power loss (TAPL) can be computed by: 

                                          (3.13) 

where  is the total number of branches present in the network,  and  is 

the number of buses. 

The voltage deviation (VD) determines the weak buses in a network. It is a measure 

of voltage stability margin in the power system network to maintain voltage within the 

permissible limits after the occurrence of disturbance. Total voltage deviation (TVD) is 

given by: 

                                    (3.14) 

where,  is the voltage at bus r, . 
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In this chapter, two objective functions (F1 and F2) are formulated to minimize active 

power loss and minimize voltage deviation index. i.e., Minimize  and 

Minimize  . 

This multi-objective problem is solved using the weighted sum approach, and the 

overall objective function (F3) is defined in (3.15). 

                                   (3.15) 

where  and  are the weights of  and  respectively. The values considered 

for  and  are 0.7 and 0.3, respectively.  The objective function in (3.15) is minimized 

with respect to the constraints shown in (3.16-3.20). 

 Power Balance Constraints 

                     (3.16) 

where  and are the active power of the electrical grid, active losses of 

the network, and power output of all DERs respectively. 

                               (3.17) 

where  and are the reactive power of the electrical grid, reactive losses 

of the network, and power output of all DERs respectively. 

  Voltage limits of the bus 

                 (3.18) 

where, and are the minimum and maximum bus voltage limits, having values 

0.95 and 1.05 respectively.   is the voltage magnitude at bus  in pu. 

 Power limits of DERs 

                    (3.19)

                (3.20) 

where,  and are the minimum and maximum limits on the active & 

reactive power output of the  DER, respectively. M is the total number of DERs. 
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3.5. Methodology of the proposed algorithm 

The flow chart of the proposed method is shown in Fig. 3.2. It has been reported in 

[11] that among various evolutionary algorithms like Genetic Algorithm, Tabu Search, 

Teaching Learning Based Optimization, Imperialist Competitive Algorithm, Artificial 

Bee Colony, Particle Swarm Optimization (PSO) has the best performance for solving 

energy management problems in less time within the maximum allowable iteration. 

Therefore, the formulated optimization problem is solved using a well-established meta-

heuristic-based approach, PSO, considering population size and iterations as 70 and 200, 

respectively. 

In order to set the lower and upper limits of control parameters for optimization, 

certain pre-assumptions are made:   

 For the scenarios in which DERs are integrated into the test system, the total 

load of the system is fulfilled only by DERs, which means that the power taken 

from the grid is zero. Further, the sum of capacities of all DERs present in the 

network is less than or equal to the total connected load on the system to restrict 

the over-sizing of DERs. 

 DERs are permitted to be located at any bus except the grid-connected bus, i.e., 

bus number 1. 

 A total of four EV charging stations are considered in this system for optimal 

location. Two charging stations   are assigned to locate for 

residential buses. However, for a commercial and industrial group of buses, one 

charging station  is allocated to each group. 

3.6. Case study & results 

The IEEE 33-bus radial distribution system is considered. During the analysis, the 

base voltage and base MVA considered are 12.66 kV and 100 MVA, respectively. The 

test system consists of 33 buses and 32 branches, as shown in the single-line diagram 

depicted in Fig. 3.3. It is assumed that the total real and reactive power loads on the 

system (with EV charging load) are 3715 kW and 2300 kVAr, respectively. Figure 3.4 
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shows the daily charging load profile of 160 EVs at residential  commercial  

and industrial  charging stations each. 

Input Load 
and Line 

Data

Initialize optimization parameters such as 
population size count (p=1), iteration 
count (i=1), lower and upper limits of 

capacities and locations of DERs and EVS 

Start

Update the system data using values 
obtained from optimization algorithm 

Execute power flow and evaluate initial 
fitness using multi-objective function

Check constraints

Update DER parameters and EVS 
location based on updated optimization 

parameters

Execute power flow and update new 
fitness using multi-objective function

Add penalty factor to 
objective function

Check for maximum no. of
 population

Check for maximum no. of 
iterations

p= p+1

i= i+1

Print optimal results

No

Yes

Yes

Yes

No

No

 
Figure 3.2 Flow chart of the proposed method 
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Table 3.2 shows the parameters of electric vehicles considered in this work. The peak 

load of each EV charging load pattern is considered for determining the optimal locations 

of four EVS. 

 

Figure 3.3 IEEE 33 bus modified test system 

In this study, five scenarios are considered, i.e., a test system without DER and EVS; 

without DER but with EVS; with a PV as DER and EVS; with a PV and WTG as DER; 

and EVS and a test system with all the three DERs, PV, WTG, DEG, and EVS. In scenario 

2, optimum allocations of EVS are determined using all three optimization algorithms. 

Moreover, for scenarios 3,4 and 5, the optimum capacity and allocations of DERs and 

allocations of EVS are obtained. These results are summarized in Table 3.3. 

 

Figure 3.4 Charging load profile of 160 number of EVs at residential  commercial  
and industrial  charging station. 
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Table 3.2 Parameters of EV 

PHEV Parameters Value 

 (km/charge) 200 

 (kWh) 24 

 (%) 20/100 

 (kW) 3 

 85% 

In scenario 2, the value of TAPL is higher than base scenario 1 as in this case, EV 

charging load is also considered.  In scenario 3, the optimal location and capacity of DER 

are 26th bus and 3.9 MW, respectively. It indicates that, in this case, approximately 780 

PV arrays are required to fulfill the total load demand. The value of TAPL and maximum 

VD observed at these optimal solutions is 103.037 kW and  0.0363 on the 18th bus, 

respectively.  

Similarly, in scenario 4, 1.5 MW rated PV allocated on the 24th bus and 2.71 MW 

rated WTG on the 26th bus are the optimal solutions. It depicts, 300 PV arrays and 18 

WTGs are required in this scenario. The TAPL and maximum VD values observed in this 

case are 74.90 kW and 0.0491 on the 18th bus, respectively.  

However, in scenario 5 the optimal locations and rated capacities of PV, WTG, and 

DEG are 30th bus with 1 MW, 11th bus with 1.65 MW, 24th bus with 1.8 MW, 

respectively. This implies that the test system requires approximately 200 PV arrays, 11 

WTGs and a diesel generator of 1800kW to fulfill the total load demand. The TAPL and 

maximum VD value in this scenario are the lowest among all scenarios, i.e., 23.76 kW 

and 0.0212 on the 18th bus.  It is evident that as the number of DERs increases in the test 

system, the value of TAPL decreases. 

Fig. 3.5 shows the voltage profile in all the scenarios. It is significant from Fig. 3.5 

that the most stable voltage profile is observed for Scenerio 5 with minmum voltage 

deviation at each bus. 
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Table 3.3 Results obtained in all the considered scenarios 

Different Cases 

Optimal 
Bus No. 
locations 
of DER 

Capacity of 
DER 

Optimal EVS Bus 
No. locations 

Min 
value of 
TAPL 

(kW) 

Maximum 
Voltage 
Deviation 

Base Scenario 1 –  

Without DER and 
EVS 

N.A. N.A. N.A. 165.72 0.0839 at 
18th bus 

Scenario 2 – 

Without DER but 
with EVS 

N.A. N.A. 

at 8,  at 
19 

 at 23,  at 
29 

272.89 0.1013 at 
18th bus 

Scenario 3 – 

With PV as DER 
and EVS 

26 (PV) 3.9 kW 

at 8,  at 
19 

 at 23,  at 
29 

103.037 0.0363 at 
18th bus 

Scenario 4 – 

With PV and WTG 
as DER and EVS 

24 (PV) 1.5 MW (PV) at 8,  at 
19 

 at 23,  at 
29 

74.90 0.0491 at 
18th bus 26 (WTG) 2.71 MW 

(WTG) 

Scenario 5 – 

With PV, WTG, 
and DEG as DER 
and EVS 

11 (PV) 1 MW (PV) at 11,  
at 19 

 at 23,  at 
30 

23.76 0.0212 at 
18th bus 30 (WTG) 1.65 MW 

(WTG) 

23 (DEG) 2 MW(DEG) 

 

Figure 3.5 Voltage profile in all the considered scenarios 
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3.7. Conclusion 

This chapter proposed a method to estimate the optimal capacity and placement of 

multiple DERs along with EVS optimal allocation in a radial distribution network. The 

multi-objective function is employed to minimise the power losses and improve voltage 

stability. Using the proposed method, a multi-bus community MG having solar PV, 

WTG, and DEG with voltage-dependent load models such as residential, commercial, 

and industrial load types is formulated along with EVL. The EVL for various types of 

charging stations, such as RCS, ICS, and CCS, is modelled using a probabilistic 

modelling approach. Further, the optimal allocation of these EVS is determined. The 

results show that as the number of DERs increases in the MG, the total power loss and 

voltage deviation decreased by 85.66% and 74.73%, respectively, that leads to improved 

voltage profile which can be observed for Scenario 5. 

Further, to achieve the economical, efficient and sustainable operation of the 

developed community MG, an optimal EMS is formulated in the next chapter 4. 
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Chapter 4 

Development of an EMS for Economic, Efficient and 

Sustainable Operation of Community MG  

4.1. Introduction 

Due to the intermittent generation of various RERs and uncertain charging load 

patterns of EVs, MGs face numerous challenges regarding their optimal dispatch, 

reliability, stability, etc., which in turn introduces uncertainty in the system  [1], [2]. To 

eradicate this issue and fulfill the energy demand, the incorporation of BESS plays a 

prominent role in an islanded MG [3]–[5]. Further, for grid-connected MGs along with 

BESS, the exchange of power from the utility grid also helps in taking care of uncertainty 

and fulfilling the electricity demand [6]. In the case of grid-connected MGs, more power 

is needed to be exchanged from the utility grid to meet the increased electricity demand 

due to EVs charging load [7][8]. It develops a dependency on the utility grid to 

accomplish the charging requirement of the EVs and also spikes the power loss and 

voltage deviation of the power grid because of unanticipated widespread power flow in 

the system. Consequently, these issues demand an efficient EMS that aims at the 

stochastic matching of DERs and EVs charging/discharging. 

Several literatures have developed EMS for MG considering various aspects like cost 

optimization, optimal dispatch, power flow management, energy efficiency, energy 

trading, and stability, which are extensively detailed in Chapter 2. It was found that the 

EMS proposed in [9], which is termed as basic energy management strategy (BEMS), 

may fail to perform satisfactorily under various scenarios, including the stability of the 

MG, due to certain limitations. These limitations are as follows.   
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1) restriction in the maximum utilization of DERs & energy trading between the MG 

and utility grid; 2) underutilization of the MG’s capability to support the utility grid 

during contingencies occurring in the system; and 3) inability to minimize APL and VD.  

To resolve these shortcomings, an optimal energy management strategy (OEMS) is 

proposed to meet the non-EV and EV load demand of the MG by maximizing the 

utilization of DERs. It increases the profit of MG operator (MGO) by promoting energy 

trading between MG and utility grid, performs peak load management by incorporating 

governed charging/discharging mode (GCDM) of operation of EVs, aids in the 

improvement of BESS performance through the developed coordinated charging/ 

discharging state flow, and diminishes the dependency of MG on the utility grid.  

The proposed OEMS formulates an objective function that minimizes the energy 

drawn from the utility grid required to meet the charging requirement of the EVs, 

optimizes the surplus energy of DERs supplied to the utility grid, especially during 

moderate and peak load conditions, and minimizes TAPL and TVD of the MG. It may be 

noted that the value of APL and VD is directly influenced by power flows in the system. 

Thus, if the power flow increases or decreases, it may affect the TAPL and TVD of the 

network, which may cause instability in the network and may alter the operating cost of 

the system. Therefore, these parameters are also taken into consideration to achieve the 

optimal energy flow solution.  

The performance evaluation of the proposed strategy is analyzed by firstly comparing 

the simulation results obtained from OEMS with the BEMS secondly by analyzing and 

comparing the economic aspects of both the strategies through the economic analysis. 

Further, to improve the performance of OEMS and to perform peak load management in 

order to increase the efficiency of the system, the GCDM operating mode of EVs is 

introduced in the system.  

The major contributions of this work are summarized below: 

 Development of a coordinated charging/discharging scheduling algorithm, 

which improves the performance of BESS and facilitates its maximum 

utilization. In order to provide the BESS’s schedule, it takes into account certain 
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operational parameters such as total load demand, SOC of previous interval, and 

power not fulfilled by RERs and DEG.  

 Formulation of an optimal energy management strategy (OEMS) which aims at 

maximum utilization of DERs, promotes energy trading between MG and utility 

grid, performs peak load management, and minimizes the dependency of a MG 

on the utility grid. It is achieved by optimizing the energy exchanged between 

MG and utility grid considering minimum TAPL and TVD. 

4.2. Modeling of energy components of MG 

The community MG model designed in Chapter 3 is used in this study. Therefore, the 

modelling of solar PV systems, WTG, and DEG is similar to that in Chapter 3.  However, 

the BESS is also integrated into it. Furthermore, the EVL modelling is performed for two 

modes, i.e., Autonomous Charging mode (ACM) and Governed Charging/Discharging 

mode (GCDM). This section details the modeling of BESS and EVL. 

4.2.1. BESS modelling 

The BESS is required in the system to surmount the intermittent behaviour of both 

supply-side i.e., RERs and demand-side. It will improve power controllability and 

enhance power quality. The attention towards these storage systems is increasing 

significantly, as proper coordination of BESSs with various generation units can enhance 

the energy efficiency, reliability, and stability of the MG system [10]. The operation of 

BESS can be defined using (4.1) and (4.2). In order to have long battery life of BESS, 

the SOC of BESS should satisfy the below-mentioned constraint: 

                           (4.1)                        

       (4.2) 

where  and  are the charging and discharging power of the BESS at time  
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instant ‘t’, respectively.  is always negative and  is always positive.  is the 

self-discharge rate of the BESS.  and  are the charging and discharging 

efficiencies of the BESS.  is the rated energy capacity of BESS. 

Moreover, the BESS operation is subject to the following constraints (4.3-4.5). 

                                    (4.3)                        

                                     (4.4)                        

                                  (4.5) 

where,  and  are the maximum charging and discharging limit of the BESS. 

 and  are the minimum and maximum limits of the SOC of the BESS, 

respectively. 

4.2.2. Probabilistic modelling of EVL under various modes of EV 

operation 

Like in chapter 3, in this chapter also, the EVL is modelled using parameters such as 

the number of vehicles, daily distance traveled by an EV, time at which it is plugged in 

i.e., arrival time and plugged out, i.e., departure time.  

It is assumed that all the EVs are assumed to be private vehicles and are charged/ 

discharged according to three different charging stations/parking nodes i.e., ,  

and . The two modes of EV operation i.e., ACM and GCDM is considered in the 

simulation studies. In the case of GCDM, for ease of the study, it is assumed that these 

EVs can be scheduled completely.  

4.2.2.1. Autonomous Charging mode (ACM)  

In this mode of operation, EV owners start the charging of EVs as soon as they arrive 

at their residence/workplace till the battery is fully charged. The power flow is completely 

unidirectional from the distribution network to a vehicle.  The modelling of EVL under 

the ACM is same as that of mentioned in chapter 3. 
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4.2.2.2. Governed Charging/Discharging mode (GCDM) 

This mode deals with the bi-directional power flow between the distribution network 

and EVs. It coordinates the charging and discharging of EVs in an orderly and centralized 

way, considering charging at low or moderate load regions while discharging at peak load 

regions.  

The charging time duration  required to fully charge the EV before undergoing 

the discharging process can be calculated using (3.7). 

The maximum discharging time duration  can be calculated from 

(4.6)[11][12]. 

(4.6)

where  refers to the maximum limit of SOC of an EV battery and  

refers to the threshold limit of SOC of EV battery till which discharging can be 

performed.  is the discharging rate of EVs in kW.  is the distance travelled by 

the EV and  is the maximum distance EV can travel in one charge in km.  

The plug-in time depends on the type of charging station nodes and arrival time of 

EVs to their residence/workplace. It is assumed that this plug-in time is the start time of 

the discharging process. The plug-in time of EVs for ,  and  (both shifts first 

and second) is obtained from (4.7- 4.10) respectively. 

                          (4.7) 

                       (4.8) 

(4.9) 

(4.10) 

where  is the plug-in or arrival time of EV at the charging station. 
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The time at which discharging ends (  can be calculated as (4.11), which is 

also assumed to be equal to the time at which charging starts . 

                               (4.11) 

The discharging power  taken from the EV can be estimated using equation 

(4.12). The associated time interval to this discharging power can be calculated using 

(4.11) and  .  

                 (4.12) 

After the discharging process, the time duration for which EV will be charged 

 can be estimated using (4.13). 

                                   (4.13) 

The plug-out time of EV  which will be the time at which discharging and 

charging process of EV will end can be estimated as in equation (4.14). 

                       (4.14) 

Using (3.9) the charging power  can be estimated. 

The daily EVL profile of a large number of EVs for GCDM mode can be calculated 

using (4.15) as follows: 

                      (4.15) 

where  is the daily EVL profile of  EVs in case of GCDM.  

4.3. Formulation of proposed Optimal Energy Management Strategy 

(OEMS) 

4.3.1. Problem Statement 

The proposed OEMS aims to diminish the dependency of an MG on the utility grid by 

maximizing the utilization of DERs and minimizing the energy drawn from the utility 

grid. It also focuses on increasing MGO’s profit by optimizing the energy supplied to the 
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MG and promoting energy trading between the two entities. The active power supplied 

to or drawn from the utility grid can be expressed by 4.16. 

          (4.16) 

where,  and  are the EVs charging/discharging load and the total non-PHEV 

load the system respectively. , ,  represents the total generated active power 

of solar PV system, WTG and DEG, respectively.  shows the charging/ discharging 

power of BESS.   refers to the real power loss in the MG system. If total load i.e., 

PHEVs charging load and load on the system becomes equal to the total power output of 

all DERs, then  is equals to zero and there is no exchange of power between MG and 

the utility grid. Further when,  then excess power is supplied to the utility grid by 

the MG. In contrast, when then extra power required to meet the total load is 

drawn from the utility grid. The total amount of energy supplied to the utility grid  

and energy drawn from the utility grid  in a whole day (24 hours) can be expressed 

as: 

In the case of  : 

                                             (4.17) 

In the case of  : 

                                              (4.18) 

The formulation of TAPL and TVD is discussed in Chapter 3. 

The active power levels of DEG and BESS are not pre-determined instead, they are 

computed by an optimization problem. The optimization problem is formulated in such a 

way that as a result, it minimizes the total energy drawn from the grid i.e.,  and 

maximizes the total energy supplied to the utility i.e., , considering minimum TAPL 

and TVD. Equation (4.19) represents the objective function (F4) of the proposed strategy.  

                            (4.19) 

where ,  and  are the weights of individual functions and their considered 

values are 0.6, 0.2, and 0.2 respectively. It may be noted in case of , F4 is  
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minimized to maximize the power supplied to the utility grid. 

The above-mentioned F4 is minimized subject to the following constraints shown in 

(4.20-4.23), like power balance, power limits of DERs, voltage constraints, and ramp rate 

limits of DEG. 

 Power Balance of MG system 

                           (4.20) 

where   and are the power output of the utility grid, losses of the MG, 

and power output of all DERs respectively. 

 Bus Voltage limits of MG 

                              (4.21) 

where, and are the minimum and maximum bus voltage limits, having values 

0.95 and 1.05 respectively.   and  are the voltage magnitude at bus  in pu and number 

of buses of the MG, respectively. 

 Active Power limits of DERs 

                  (4.22) 

where,  and are the minimum and maximum limits on the active power 

output of the  DER, respectively. M is the total number of DERs. 

 Ramp Rate limits of DEG 

                                       (4.23) 

where  and  is the output of DEG in periods  and  ; is the 

maximum ramp rate of DEG,  is the time interval. 

4.3.2. Coordinated charging/discharging algorithm for scheduling of 

BESS 

In order to determine the appropriate mode of operation of BESS at a particular instant 
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, a coordinated charging/discharging state flow algorithm is proposed. This state flow 

aims to achieve the maximum utilization of BESS to increase MGO profits. It considers 

various charge/discharge power levels, SOC ranges of BESS and different load regions, 

i.e., low load, moderate load, and peak load region. The charging and discharging 

schedules of BESS have three output ranges, i.e., low, medium, and high, having power 

output ranges, 100-400  , 400-700 , 700-1000  respectively. The SOC level of 

BESS has three levels, i.e., low (L) [15 %, 30%), medium (M) [30%, 60%), and high (H) 

[60%, 85%). Figure 4.1 shows the state flow diagram of the coordinated 

charging/discharging algorithm of BESS. 
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Figure 4.1 State flow diagram of coordinated charging/discharging algorithm of BESS 

4.4. Basic Energy Management Strategy (BEMS) 

The proposed strategy, OEMS, is compared with the energy management scheme 

reported in [9]. It aims to minimize total energy drawn from the utility grid  i.e.,   as 

well as extra energy supplied to the utility i.e., . Basically, it minimizes the 

summation of   and    in order to reduce energy exchange between the MG and utility 

grid. Like in OEMS in this strategy also the active power levels of DEG and BESS are 

variable and are determined by an optimization algorithm. 
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4.5. Case study & results 

In order to showcase the efficacy of OEMS and GCDM for varying EV penetration 

level (EVPL), two scenarios are considered, Scenario 1 compares the results of OEMS 

and BEMS, and Scenario 2 studies the impact of GCDM on OEMS’s performance and 

compares the results with ACM. Moreover, economic analysis is performed for both 

Scenarios to estimate the MGO’s profit. This analysis incorporates the obtained 

simulation results, energy trading cost, and levelized energy cost of DEG. 

4.5.1. Input Data 

The community MG designed in Chapter 3 is used in this work. It consists of a 1MW 

of a solar PV generator, 1.65 MW of wind turbine generator, 2MW of a DEG and 

additionally a 3.5MWh of BESS that are optimally located at bus numbers 11, 30, 23, 

and 8 as shown in Fig. 4.2. The variable load profile under this study is estimated based 

on the IEEE-RTS system [13] and the data associated to load is based on IEEE 33 bus 

network. The load demand in the peak load region is highest and stands in the range of 

94-100% of daily peak load demand and occurs from 4 to 8 pm in a day, whereas the low 

load region lies between 12 midnight to 6 am, where the load demand ranges from 59-

67% of daily peak load. The other time of day is considered as a moderate load region. 

The solar irradiation and wind speed data for a winter day considered for simulation is 

taken from the National Research Energy Laboratory [14][15]. The day-ahead hourly 

energy trading cost from California ISO (CAISO) is considered for the analysis, as shown 

in Fig. 4.3  [16]. As the DEG considered in this study is a natural gas combined cycle-

based generation, therefore its Levelized cost of energy, according to LAZARD ranges 

from $44/MWh- $73/MWh [17]. Thus, $50/MWh is taken for the analysis.  

As buses are segregated based on the nature of the load, i.e., residential, commercial, 

and industrial, EV stations/parking nodes are also positioned accordingly. Two 

stations/parking nodes are considered for residential-type load buses located at bus 

numbers 11 and 19 that are named as RCS. Similarly, one is allotted to industrial-type 

load buses and one for commercial-type load buses stationed at bus number 30 (ICS) and 

23 (CCS), respectively. 
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Figure 4.2 Developed microgrid model based on modified IEEE 33 bus 

 

Figure 4.3 Day-ahead energy trading cost from CAISO[16] 

The performance of the proposed algorithm is examined at various levels of EVPL. It 

can be defined as the ratio of the total EV load to the total non-EV load on the MG over 

24 hours. Moreover, the generation capacity of DERs that is designed in Chapter 3 is to 

meet modelled non-EV load in addition to 15% EVPL. The peak active power load (non-

EV & EV) on the system is 3715 kW, respectively. Figure 4.4 shows the modelled EV 

charging load for ACM at different charging stations, considering various EVPL values.  
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Figure 4.4 EV charging load for ACM case  

To have a fair and effective comparison between ACM and GCDM in Scenario 2, they 

are compared considering an equal number of EVs. Like in the case of ACM, the number 

of EVs accounting for 15% EVPL, 20% EVPL, and 25% EVPL are 160, 205, and 225 at 

each charging station. Therefore, under GCDM, the EV load is modelled for 160, 205 

and 225 EVs at each charging station. Figure 4.5 shows the modelled EV charging load 

for ACM and GCDM at different charging stations, considering 160, 205 and 225 EVs at 

each charging station, respectively.  

 

Figure 4.5 EV charging/discharging load for GCDM case 

4.5.2. Scenario 1 - Comparison between OEMS and BEMS 

This scenario discusses and compares the simulation results obtained from OEMS and 

BEMS. It is further segregated into three sub-sections. The first sub-section (4.5.2.1) 
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discusses and compares the simulation results obtained from OEMS and BEMS for the 

rated system (in which generation capacity is designed according to the total load 

demand). 

The second sub-section (4.5.2.2) analyses the impact of an increase in EVPL values on 

the performance of OEMS and BEMS. Whereas the third subsection (4.5.2.3) discusses 

the results of an economic analysis performed for both strategies to estimate the net 

operation cost of MG. 

4.5.2.1. Comparison of OEMS and BEMS for the rated system  

This section discusses and compares the simulation results of OEMS and BEMS for 

the rated system. As mentioned above, the MG system is designed to fulfill the total non-

EV load in addition with 15% EVPL. Therefore, 15% EVPL case has been considered as 

a rated system.  

Figure 4.6 shows the obtained schedule, including the total load on the system, PV 

output, WTG output, the active power exchanged between MG and utility grid, power of 

DEG and BESS. It can be observed from Fig. 4.6 that in the case of OEMS, utilization of 

DEG and BESS is increased. As a result, MG optimally feeds power to the utility grid, 

especially during peak load hours, which benefits the MGO. Moreover, it draws 

minimum power from the utility grid and reduces its dependency on the utility grid.  

Whereas, in the case of BEMS, MG supplies minimum power to the utility grid and 

draws 10.37 % more power from the utility grid as compared to OEMS. This extra power 

is drawn to charge the BESS and to compensate for the extra APL that occurred in the 

system, as the objective function of BEMS does not account for the minimization of 

TAPL and TVD. 

Further Table 4.1 summarizes the comparison between OEMS and BEMS for a day 

for the rated case, it is evident from Table 4.1 that, OEMS draws 10.37 % less energy as 

compared to BEMS, and supplies 4195.54 kWh of surplus energy to the utility grid after 

meeting the total load of MG. It became possible because it maximizes the utilization of 

DEG and BESS, which is why the total energy supplied/discharged by DEG and BESS 

in kWh is more for OEMS. It is to be also noted that the total APL and maximum VD 
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occurred in the system is less for OEMS, which is 690.01 kW and 0.04747, respectively. 

This is mainly because of the ability of the objective function formulated in OEMS to 

minimize the APL and VD that occur in the system. 

 

Figure 4.6 Schedule of DERs considering OEMS and BEMS for rated case 

Table 4.1 Comparison between OEMS and BEMS for the rated case 

Parameters OEMS_15%EVPL BEMS_15%EVPL 

Total Energy Supplied to the utility grid  in 
kWh 

4195.54 96.43 

Total Energy Drawn from the utility grid  
in kWh 

813.59 907.73 

Total energy generated by DEG in kWh 33281.50 29121.89 

Total energy discharged by the BESS in kWh 3405.54 3381.21 

Total APL occurred in the system in kW 690.01 710.01 

The maximum value of VD occurred in a day 0.04747 0.049392 

4.5.2.2. Impact of increase in EVPL on the performance of OEMS and BEMS 

To further analyze the performance of OEMS and BEMS with the increase in EVPL, 

the simulation results are obtained with 20% and 25% EVPL as well. Figures 4.7 and 4.8 

represent the active power levels of DEG and BESS, respectively, obtained from OEMS 

and BEMS considering various values of EVPL. The base active power of ESS is 
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assumed to be zero. Thus, if BESS’s active power is higher than the base load, it is 

discharging, and if it is lower than the baseload, it indicates that BESS is charging.  

It can be observed from Figs. 4.7 and 4.8 that in the case of OEMS, for all the values 

of EVPL, utilization of DERs (DEG and BESS) reaches a maximum in such a way that 

MG can meet the total load demand at each instant and optimizes the energy supplied to 

the utility grid keeping in mind minimum APL and VD.  On the other hand, in the case 

of BEMS, the DERs output varies just to meet MG’s load demand.  

 

Figure 4.7 Dispatchable energy generator output considering OEMS and BEMS with various 
EVPL values 

 
Figure 4.8 Active power output of BESS considering OEMS and BEMS with various EVPL 
values 
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The active power exchanged between MG and utility grid considering OEMS & 

BEMS with various EVPL values is shown in Fig. 4.9. The increase in EVPL in the MG 

denotes that the total demand on the system is increasing, but the maximum generation 

capacity of MG is the same. Therefore, it can be observed from Fig. 4.9 that in the case 

of OEMS, with the increase in EVPL, the total active power supplied to the utility grid 

decreases.  

Further, the total active power drawn from the utility grid is increasing for both 

strategies with the increase in EVPL. However, it is still more for BEMS than OEMS. 

 
Figure 4.9 Active power exchanged between MG and utility grid considering OEMS and BEMS 
with various EVPL  

Figures 4.10 and 4.11 show the active power losses and maximum voltage deviation 

that occurred in the system considering OEMS & BEMS with various EVPL values, 

respectively. It can be noted from Figs. 4.10 and 4.11, for most of the time instant, the 

TAPL & maximum VD is less for OEMS as compared to BEMS. It is because OEMS 

considers the minimization of TAPL along with VD in its objective function. Further, 

due to the increment in EVPL, TAPL and maximum VD increase significantly during 

peak load for both strategies. Also, it is observed from Fig. 4.11 that in the case of OEMS, 

the maximum VD remains under/closer to the limit for all the EVPL.  

Figure 4.12 shows the SOC level of BESS for OEMS and BEMS with various EVPL 

values. The initially assumed SOC is 50%. It is clear from Fig. 4.12 that in the case of 

OEMS, BESS is getting charged during off-peak hours and discharging more, especially 
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during peak hours, which facilitates its maximum utilization and helps in the efficient 

operation of MG. 

 

Figure 4.10 Total active power losses of MG considering OEMS and BEMS with different 
EVPL 

 

Figure 4.11 Maximum voltage deviation considering OEMS and BEMS with different EVPL 

Table 4.2 shows the comparison of OEMS and BEMS with the increasing EVPL. It 

can be observed from Table 4.2 that as EVPL increases, the energy supplied to the utility 

grid decreases and energy drawn from the grid increases for both strategies. Also, the 

energy generated/ discharged by the DEG & BESS, total APL and maximum value of 

VD is increased. 
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Figure 4.12 SOC level of BESS considering OEMS and BEMS with various EVPL 

Table 4.2 Comparison of OEMS and BEMS with the increasing EVPL 

Parameters OEMS_
15% 
EVPL 

OEMS_
20% 
EVPL 

OEMS_
25% 
EVPL 

BEMS_
15% 
EVPL 

BEMS_
20% 
EVPL 

BEMS_
25% 
EVPL 

Total Energy Supplied to 
the utility grid  in kWh 

4195.54 3528.10 3489.82 96.43 20.98 15.77 

Total Energy Drawn from 
the utility grid  in 
kWh 

813.59 2143.17 3601.16 907.73 2795.70 3707.97 

Total energy generated by 
DEG in kWh 

33281.5 34011.7 35728.3 29121.9 30309.9 32107.5 

Total energy discharged by 
the BESS in kWh 

3405.54 3482.46 3594.27 3381.21 3358.55 3319.16 

Total APL occurred in the 
system in kW 

690.01 738.32 786.6 710.01 744.26 792.55 

The maximum value of VD 
occurred in a day 

0.04747 0.05227 0.06167 0.04939 0.05487 0.06673 

4.5.2.3. Economic analysis of OEMS and BEMS 

To further examine the performance of OEMS and BEMS, economic analysis is 

performed using obtained simulation results, energy trading cost of grid, and Levelized 

cost of energy of considered DEG. This analysis estimates the net operating cost of MG, 

and by comparing these costs, a more profitable strategy for MGO can be determined. 
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Table 4.3 presents the estimated net operating cost of OEMS and BEMS, along with 

the increase in MGO’s profit due to OEMS. It can be noted from Table 4.3, (a) for all the 

considered EVPL values, net operating cost is less in the case of OEMS as compared to 

BEMS, (b) with the increment of EVPL, the percentage increase in MGO’s profit is 

reducing.  It is mainly due to the reduction in total energy supplied to the utility grid with 

the increase in EV load on the MG.  

Lastly, from the comparison Tables 4.1, 4.2 and 4.3, it can be concluded that OEMS 

is superior to BEMS, as it facilitates the efficient & stable operation of MG and 

simultaneously provides a cost-benefit to the MGO. 

Table 4.3 Estimated net operating cost and increase in MGO’s profit due to OEMS 

Cases 15% EVPL 20% EVPL 25% EVPL 

Net operating cost with OEMS $1441 $1685 $1912 

Net operating cost with BEMS $1536 $1787 $1976 

Percentage increase in MGO’s profit due to 
OEMS w.r.t BEMS 6.15% 5.71% 3.23% 

4.5.3. Scenario 2 – Impact of GCDM on OEMS performance 

In order to improve the efficiency of OEMS and to perform peak load management, 

GCDM operation of PHEVs is introduced in the system. This section analyses and 

compares the simulation results obtained from OEMS with ACM and GCDM. The impact 

of GCDM on MG’s total demand is visible from Fig. 4.13. It shifts the peak load to the 

off-peak load region as a result, peak load management in MG can be achieved.  

Figure 4.14 shows the active power exchanged between MG and utility grid 

considering ACM & GCDM with various EVPL. It is observed from Fig. 4.14 that due 

to GCDM, the energy supplied to the utility grid is increased mainly during peak load 

hours, and energy drawn from the utility grid is shifted to the low load period. 
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Figure 4.13 Impact of GCDM on MG’s total load demand 

This is beneficial for MG as it is performing peak load management. Moreover, it 

seems to be a profitable solution for the grid operator as well because it improves the 

ancillary service support of MG to the grid. 

 

Figure 4.14 Active power exchanged between MG and utility grid considering ACM & GCDM 
with various EVPL 

To investigate and estimate the increased performance of OEMS due to the 

incorporation of GCDM, economic analysis has been performed in a similar way as 

discussed in Section 4.5.2.3. Table 4.4 shows the estimated net operating cost of MG and 

the percentage increase in MGO’s profit from OEMS with GCDM.  
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Table 4.4 Estimated net operating cost and increase in MGO’s profit due to GCDM 

Cases 15% 
EVPL 

20% 
EVPL 

25% 
EVPL 

Net operating cost with OEMS_ACM $1441 $1685 $1912 

Net operating cost with OEMS_GCDM $1103 $1173 $1236 

Percentage increase in MGO’s profit due to 
GCDM 23.44% 30.37% 35.34% 

It is evident from Table 4.4 that 1) MGO’s profit has been increased due to the 

incorporation of GCDM in OEMS for all the EVPLs, and 2) an increase in EVPL leads 

to an increase in MGO’s profit. This is because of the increase in total energy supplied to 

the utility grid (mainly during peak load hours) with the increased EVPL. 

4.6. Conclusion 

This chapter proposed an OEMS for a grid-connected community MG that maximizes 

the utilization of DERs, increases the MGO profit by promoting energy trading between 

MG and the utility grid, and reduces the dependency of MG on the utility grid. The 

formulated objective function aims at minimization of energy drawn from the utility grid 

and optimize the energy supplied to the utility grid in such a way that TAPL and TVD of 

MG are minimal. In order to achieve maximum utilization of BESS, a coordinated 

charging/ discharging algorithm has been developed and incorporated in the OEMS. 

Further, to evaluate the effectiveness of the proposed algorithm the obtained simulation 

results are compared with the previously reported strategy. The results obtained from the 

simulation and economic analysis reveal that the OEMS is superior to the previous 

reported strategy, as it facilitates the efficient & stable operation of MG and 

simultaneously provides cost-benefit to the MGO. It has decreased the energy drawn from 

the grid by 10.37% and increased MGO’s profit in the range of 3.23-6.15% (depending 

on EVPL) in comparison with the previously reported strategy.  

The efficacy of OEMS is further improved, and peak load management for MG is 

achieved by incorporating a GCDM of EV. The superiority of GCDM over ACM is 

explained by the obtained results. It shows that in the case of OEMS with GCDM, the 

MGO’s profit is increased to 23.44%, 30.37 %, and 35.34% for 15% EVPL, 20% EVPL, 
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and 25% EVPL, respectively, in comparison from OEMS with ACM. Lastly, OEMS with 

GCDM can be considered the most profitable solution for MG as well as the utility grid 

in terms of economical, stable, and efficient operation.  

Further, in the next chapter 5 discusses the design and deployment of the other type of 

MG, i.e., building MG. Moreover, using the data from the developed system, an improved 

EMS is formulated to achieve optimal and efficient operation.  
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Chapter 5 

Designing of a Prosumer Building MG and Achieving 

its Optimal Operation by Considering BESS 

Degradation Model 

5.1. Introduction 

Due to the increased large-scale RERs installation, the need for energy storage 

technology has significantly increased [1][2]. Therefore, energy storage systems are 

becoming critical technological components of today's power grid infrastructure. 

Recently, BESSs have been deployed for a variety of grid applications, ranging from their 

installation at the generation site to the end-user site [3]. Their abilities, such as fast 

response, storage and provision of energy when needed (time shifting), and adaptable 

installation capabilities due to the modularization of their cell structure, have made them 

more popular and advantageous [4][5]. Because of the mentioned features, BESSs can 

have a wide range of power and energy capabilities. Hence, they balance the uncertain 

nature of renewable energy sources, especially in MG scenarios.  

The lifespan of BESS is mainly determined by various components, such as depth of 

discharge, charge-discharge cycles, and environmental conditions [6]. For any of the 

BESS applications, maximizing the depth of discharge reduces the energy storage 

capacity and thus increases the number of cycles. Further, the degradation factor of BESS 

mainly depends on its energy exchange, which in turn diminishes battery capacity and is 

termed as capacity fading [7]. Although the ageing mechanism of batteries is complex, 

for optimal scheduling, parameters like the DOD and charge/discharge cycles have the 
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most significant influence on degradation. The number of cycles of BESS is defined as 

the maximum number of charge/discharge cycles allowed to a BESS. The BESS is 

considered thoroughly degraded when its number of cycles reaches its maximum value 

or its energy capacity is reduced to a predetermined level (for example, 80% of rated 

capacity). The maximum number of cycles for a particular battery type is determined 

from the experimental data [8]. Therefore, it varies depending on its manufacturer.  

Aside from applications of BESSs in large and interconnected power systems, many 

small-scale systems, including households, buildings, localities, or even factories, have 

recently employed their BESSs [9]–[11]. These buildings are major electricity consumers 

and are incentivized to incorporate renewable energy generation and BESSs into their 

energy system to create a new class of flexible and effective prosumers. Moreover, 

building prosumers can attain substantial economic profit if they optimally manage their 

energy production, consumption, and the energy they exchange with the utility grid. 

However, because of the high capital investment of the BESS and the limited amount of 

available energy due to its SOC, there is a need for an effective energy management 

strategy for prosumer buildings that aim at economical and efficient operation of MGs. 

The economic operation leads to the minimization of the operating cost of MG, and 

efficient operation deals with improving the active life span of BESS.  

After a through literature review presented in Chapter 2, it is noted that previous 

studies, either do not focus on reducing battery degradation (termed as conventional 

energy management strategy (CEMS)) or use piece-wise linear approximation to linearise 

the life cycle function of BESS, and ignore calendar ageing (termed existing energy 

management strategy (EEMS)). Therefore, these studies fail to depict the practical 

degradation and estimation of the life span of BESS.  

In this regard, there is a need to design an EMS for an MG that incorporates a realistic 

BESS life span estimation model based on static and dynamic degradation, and is 

independent of linear approximation of life cycle function. Further, it should also 

consider the generation and load uncertainties, and results in lower operation cost of MG 

and improved the operating life span of BESS. 
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In view of the limitations of previously reported EMSs and identified research 

limitations, an attempt has been made through this work to address these shortcomings. 

The major contributions of this chapter are as follows: 

 A non-linear battery degradation model considering calendar and cyclic ageing 

in terms of static and dynamic degradation factors, respectively, is used to 

estimate the practical operating life span of BESS. 

 An improved energy management strategy (IEMS) is developed to increase the 

profit of a prosumer building and improve the operating life span of BESS. It is 

achieved by minimizing the formulated cost objective function of MG as per the 

proposed rule-based algorithm (RBA). The proposed RBA effectively utilizes 

the BESS and power grid based on solar PV power, load demand power, type of 

load demand (off-peak load/peak load), and SOC of the BESS.  

5.2. Designing of a building MG 

This section details the design methodology of a prosumer building. This design 

methodology includes selected site location analysis as per the availability of the 

irradiance, calculation of required solar power capacity to meet the load demand of the 

system, selection of solar PV panels and their number on the basis of calculated solar 

power capacity and available area, selection of inverter capacity, determination of BESS 

capacity. A detailed description of this design methodology is as follows. 

5.2.1. Selection of site  

A building located at BITS, Pilani campus is selected to install solar PV and BESS 

based grid connected MG and build a prosumer building. It is selected on several bases, 

such as available irradiance, ambient temperature, wind speed, dust on the module, and 

humidity. The building is located in Pilani which is situated in the northern part of India 

in the Jhunjhunu district of Rajasthan, which is a semi-arid region. Its latitude is 28.3802o 

N and has a longitude of 75.6092o E. After a thorough study of its weather pattern, it was 

found that Pilani receives sufficient solar irradiance (around 600W/m2) for more than 300 

days and has an average sunshine of 6 hours/day [12]. This signifies that this building’s 
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location has a high potential for solar PV electricity generation and is suitable to install 

solar PV based MG. 

5.2.2. Calculation of required solar power capacity 

In order to calculate required solar PV capacity, firstly, the maximum load demand 

and daily average energy consumption of a building should be known, which is found out 

to be 25 kW and 150 kWh, respectively, from the previous year’s data (2015-2021). 

Further, it is necessary to know the operating factor of that location, inverter, and BESS 

efficiency. These factors are crucial for designing a MG as they significantly affect the 

energy output of the solar PV system. The operating factor of any location mainly 

depends upon temperature, wind speed, humidity, dust on the module, solar irradiance, 

and sunshine hours of the day. It ranges between 0.60 to 0.90, implying that the output 

power is 60 to 90% of the rated output power. In this study, the operating factor, inverter 

efficiency, and BESS efficiency, DC link voltage are considered as 0.75, 0.9, 0.9, and 

360V, respectively. The equations (5.1-5.5) show the calculation of the required solar 

power capacity. 

Let’s assume the total solar power capacity be ‘P’ kW                                                                           

The actual power output of PV panel = Total solar power capacity  Operating factor    

               = P  0.75                                                          (5.1) 

The combined efficiency of the inverter and BESS will be calculated as: 

combined efficiency = Inverter efficiency  BESS efficiency 

                  combined efficiency     = 0.9  0.9 =0.81 = 81%                                  (5.2)                        

Power available for load (When both inverter and BESS are operating) = 

 P  0.75  0.81                                               (5.3) 

Maximum load demand of the building = 25 kW                                       (5.4) 

Now, the power available for load should be equal to the maximum load demand of 

the building.  
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                                           (5.5) 

The total solar power capacity should be 41.152 kW to meet the maximum load 

demand of the building. 

5.2.3. Selection of solar PV panels and estimation of their number 

The building has a limited rooftop area of 234.9 m2. Therefore, to produce maximum 

PV power with this limited area, a maximum rated power panel of 535Wp (available in 

the market) has been selected for designing the MG. A detailed market survey of available 

535Wp-rated solar PV panels was conducted. From the thorough comparative study of 

various PV panel manufacturers, it was found that Longi Green Energy Technology Co. 

Ltd. is providing the economical solar PV panel (rated 535Wp) with almost similar 

efficiency and panel dimensions. Thus, the solar PV panel of model number LR5-

72HPH-535M (rated capacity 535Wp) of Longi Green Energy Technology Co. Ltd. has 

been selected. The details of the selected PV panel are discussed in Table 5.1. The number 

of PV panels mainly depends on two factors, i.e., total solar power capacity and available 

rooftop area. Hence, keeping these two constraints in mind, an optimized number of PV 

panels is determined, i.e., 77. 

Table 5.1 Details of selected solar PV panel 

Parameter Value 

Maximum power  535 W 

Open circuit voltage  49.35 V 

Short circuit current  13.78 A 

Voltage at maximum power  41.5 V 

Current at maximum power  12.9 A 

Module efficiency 20.9 % 

Temperature coefficient of short circuit current +0.048%/oC 

Temperature coefficient of open circuit voltage -0.270%/oC 

Temperature coefficient of maximum power -0.350%/oC 

Dimensions 2256*1133*35 mm 

Area 2.55m2 
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Figure 5.1 shows the optimized arrangement of these 77 solar PV panels on the rooftop 

of a building. Among these, nine panels are placed horizontally in a row; likewise, eight 

rows are formed, and at the end, five panels are placed separately to form a 9th row. A 

solar panel covers a length of 3.19 m distance by considering its own shadow. The 

shadow distance is 1.011 m. The total covered area by solar PV panels is 267.98 m2, 

which is more than the available rooftop area; therefore, it can be stated that the PV panels 

are placed optimally to cover the rooftop area of building to its maximum limit. 

27
 m

27
.7

m

8.7 m

10.197 m

75° 
60° 

15° 30° 

3.19 m 1.011 m

 

Figure 5.1 Building rooftop with layout of solar PV panels  

5.2.4. Selection of inverter capacity 

The inverter’s capacity is decided based on the maximum connected load of the 

building, which is approximately 30 kW. In order to compensate for the losses of the 
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inverter, its rating must be chosen 1.25-1.3 times the maximum connected load of the 

building. The rating of the inverter is calculated using (5.6-5.7). 

             (5.6) 

          (5.7) 

A 40 kVA inverter is used, considering the availability of inverters in the market. The 

inverter is a multi-mode hybrid inverter. Table 5.2 represents the parameters of the 

inverter. 

Table 5.2 Details of selected hybrid inverter 

Parameter Value 

DC input voltage range 360 to 460 V 

Self-consumption <4% 

Output voltage (Inverter mode) 415V AC ± 2% 

Voltage regulation ± 2% 

Total harmonic distortion (THD) ≤ 3% at linear load 

Inverter efficiency (%) ≥ 90% 

Modes available  Hybrid, Grid export, Standalone 

5.2.5. PV array connections  

An array is formed from the 77 solar PV panels. In order to meet up the inverter’s input 

DC link voltage, 11 panels are connected horizontally and vertically to make a series 

string. Likewise, such seven-series strings are formed. Further, these seven series strings 

are connected in parallel in order to keep the current below the rated value at the input 

side of the inverter. 

5.2.6. Determination of BESS capacity 

The BESS is designed only to meet essential loads of the building. The essential loads 

include lighting loads, fans, and computer systems. They account for almost 7 kW of 

load, and their energy consumption is approximately 56 kWh in a day. The lead acid 

battery is selected as it is more economical than other batteries.  
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In order to integrate BESS with the inverter, the BESS must be designed and 

configured to match the input voltage range of the inverter. It is necessary to regulate the 

charging and discharging of the batteries according to the system requirements. The 

battery efficiency has been considered to be 90%.  

The battery ampere-hour (Ah) is calculated by (5.8-5.9).  

             (5.8)        

                                         (5.9)        

A detailed market survey of available batteries was conducted. Thus, the lead acid 

battery of model STT22500 (rated capacity 12V, 225 Ah) of Solance industries has been 

selected for designing the BESS. Such 30 batteries are connected in series to meet the 

input voltage of the inverter. Hence, the rating of the BESS becomes 360V, 225Ah. 

5.3. Line diagram and glimpses of the developed and deployed MG  

Figure 5.2 shows the schematic of prosumer building with AC-DC hybrid MG 

structure. Further pictures of solar PV and BESS-based AC-DC hybrid MG installed at a 

building is shown in Fig. 5.3. 

 

Figure 5.2 Schematic of prosumer building with AC-DC hybrid MG structure 
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Figure 5.3 Solar PV and BESS-based AC-DC hybrid MG installed at a building 

5.4. Mathematical modelling of MG components 

The mathematical modelling of solar PV system and BESS is similar as discussed in 

Chapter 3 and 4, respectively. Further, the modeling of electrical load demand and grid 

connection is discussed below. 

5.4.1. Load demand of the prosumer building 

The load demand of the building is composed of two components, i.e., flexible and 

non-flexible load. The flexible load demand can be shifted to any time slot. The load 

demand can be represented by (5.10). 

                                (5.10) 

Where  is the load demand power of the prosumer building.  and  are the 

flexible and non-flexible load power. The load demand of the building varies as per the 

constraint in (5.11). 

                                          (5.11) 

Where  and  are the minimum and maximum limits of load demand. 
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5.4.2. Grid power modeling  

The grid power (  flow is bidirectional and is expressed by (5.12). The grid power 

acts as a source for the MG to satisfy the load power and as a sink when there is excess 

renewable generation.  

                    (5.12) 

The grid operation is restricted by the constraints discussed in (5.13-5.14). 

                                    (5.13)                        

                                    (5.14) 

where,   is positive when the grid is exporting to MG and becomes negative when 

the grid is importing from MG.  and  are the maximum limits of power export 

and import with grid.  

5.5. Formulation of non-linear life estimation model of a battery  

The battery life model has two aspects, i.e., calendar life and cycle life. The calendar 

life reflects the capacity decline over time (due to the passage of time) without taking into 

account the battery’s cycles. It is affected by the factors surrounding the battery 

installation location and is therefore considered a non-operational factor. However, cycle 

life is determined by the maximum possible charge and discharge cycles of a battery. It 

is primarily determined by operational approaches, such as how often and how deeply 

the battery charges and discharges. 

The degradation of battery life refers to the loss of life induced by the degradation of 

battery functional qualities and changes in operating conditions. In other words, battery 

degradation is stated as a percentage decrease in battery lifetime. There are several factors 

that contribute to battery life degradation, such as battery cycle time, charge-discharge 

status, temperature, and its way of operation. The battery degradation factor is segregated 

into two components, static and dynamic degradation, and can be expressed by (5.15).  

                                        (5.15) 
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The static degradation  is mainly caused by the deterioration of functional 

qualities of the battery, such as the growth of a passivation layer on the negative 

electrodes, thickening of the electrolyte interface film, electrode active material loss, and 

electrolyte oxidation.  

As a result of this functional feature degradation, the storage battery’s internal 

resistance will rise, which will reduce its capacity. It is considered linear with battery 

shelf life because it is independent of operating conditions. The annual static depreciation 

is expressed in (5.16) [7]. 

                                                     (5.16) 

where  stands for the battery calendar/shelf life. For instance, if the calendar/shelf 

life of the battery is 12 years, then one year’s static degradation is 1/12 = 8.33%.  

The dynamic degradation  is completely associated with the operating 

conditions of the battery. Operating factors include the depth of discharge and the charge-

discharge rate, which correspond to the battery’s charge-discharge procedure. Because 

practical charge-discharge cycles are aperiodic, the dynamic deterioration becomes non-

linear. Therefore, it is crucial to consider practical operating circumstances while 

calculating the dynamic degradation, as indicated by (5.17) [7]. 

                             (5.17) 

where  denotes the  charge-discharge cycle,   and  denote the beginning and end 

of the charge-discharge process between SOC values,  and .  represents the 

total number of charge-discharge intervals.  is the number of cycles of the battery 

when it is charged and discharged between  and , until its capacity falls to 60% of its 

nominal capacity, and it is calculated using (5.18).  

                                         (5.18) 

where, in regard to  charge-discharge cycle,  and  are the cycle numbers 

when the SOC charges and discharges from  and  to 100%, respectively. 
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Further, ,  and is the dynamic degradation when battery charges and 

discharges from  to ,  to , and  to  respectively.  

The dynamic degradation of battery  can be expressed using (5.19) [7]. 

          

(5.19) 

where  represents the total number of charge-discharge intervals in a time interval 

‘t’.  is the dynamic degradation for time interval ‘t’. 

Using (5.15-5.19), if  then the annual battery degradation factor 

(  becomes, 

                                     (5.20) 

In order to estimate the accurate  for any battery, only the relationship between 

the number of cycles and its SOC or DOD needs to be examined. Thus, it is possible to 

compute battery degradation of any charge-discharge interval for practical operating 

conditions and estimate the total operating life  of any battery energy storage. 

When the battery life degradation process reaches 100%, i.e., the battery degradation 

factor becomes unity as shown in (5.21), the estimated total operating life  can be 

determined. 

                                           (5.21)      

Figure 5.4 shows the flowchart for calculating  of a battery. 

5.6. Development of a proposed Improved Energy Management 

Strategy (IEMS) 

In order to compensate for the limitations of the CEMS and EEMS of MG, this chapter 

develops an IEMS. The major objective of IEMS is to minimize the operating cost of the 

MG for the prosumer building and increase the lifespan of the BESS. The salient features 

of IEMS are as follows –  



Chapter 5. Designing of a Prosumer Building MG and Achieving its Optimal Operation 

by Considering Realistic BESS Degradation Model  

83 

 

Start

Data Initialization, Solar irradiance, load demand 
profile, Rated power for renwable generators 
and BESS, BESS characteristics and constraints, 
Grid power exchange tariff profile, Fixed and 
variable O&M  cost variables,  Efficiencies, Max 
limit of charging and discharging of BESS and 
Max limit of export and import from/to the grid 
and Shelf life.

Initialize t=0 Input initial SOCB
t=0 Calculate 

PEP
t= PL

t-PPV
t

Obtain schedule of BESS and 
grid from the energy 

management strategy for 
time ‘t’

Calculate 
CMG

tCalculate SOCB
t+1, and BDFD

tt=T

BDFT=BDFs+BDFD
T

Calculate CMG
T

If T=Y

∑Y=1Y=ToLBDFY=100%
 Calculate CMG

Y, BDFY, TOL

Yes

No

1

2

3 4 5

678

9

10

t=t+1

 

Figure 5.4 Flowchart for calculating  of a battery 

 It aims to maximize the profit of the prosumer building by optimizing the 

operating cost associated with MG. 

 It focuses on improving the total operating lifetime of BESS by reducing its 

degradation factor and optimally utilizing solar PV generation.  

 It consists of a rule-based algorithm (RBA) that governs the operation of MG 

depending on four factors: solar PV power, load demand power, type of load 

demand (off-peak/peak), and the current status of the BESS. 

 The formulated RBA decides the contribution of BESS and grid, which depends 

on rules considering the above four factors as input.  

To minimize the total operating cost  of the MG, a cost optimization model is 

formulated that considers the O&M cost of solar PV system, complete BESS’s O&M 

cost model with variable and fixed cost terms, and cost associated with the grid power 

exchange. The formulated cost optimization model is shown in (5.22). The mathematical 

expressions of the components of the formulated model are presented in (5.23-5.25). 

 (5.22) 

                           (5.23) 

                       (5.24) 
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                                 (5.25) 

where, is the total operation cost of MG, is the hourly O&M cost of solar PV 

systems,  is the hourly O&M cost of BESS and  is the hourly cost of energy 

exchanged with the grid at a time ‘t’.  is the operation and maintenance coefficient 

for the installed PV system in $/h.  is BESS’s charging or discharging power at 

time instant ‘t’.  and  are the variable and fixed O&M cost coefficients of 

BESS in $/kWh and $/h, respectively, where  depends on the .  is the 

power exchanged with the grid at a time ‘t’.  is the energy trading price of the grid at 

a time ‘t’ in $/kWh.  

The formulated cost objective function is minimized subject to the constraints 

presented in (4.3-4.5), (5.11), (5.13-5.14), and (5.26):  

                          (5.26) 

where  ,  and are the load demand on the microgrid, power generated by solar 

PV, and power exported/imported to/from the grid at time instant ‘t’.  

Figure 5.5 shows the proposed IEMS flow chart. In this scheme, the variable BESS’s 

discharging power (  has two bounds for optimization, i.e., Low and High. For the 

low bound, the variable  will remain between the limits 0 to ,  whereas, 

for the high bound, it will vary between 0 to . Here,  is the constant that decides 

the contribution of BESS, which is taken as 0.85 after multiple simulations. Further, the 

SOC of BESS also has a threshold level, i.e., . The decision for every time instant 

‘t’ is taken based on the equivalent power at a time ‘t’  calculated using (5.27) 

average off-peak load demand , and SOC of BESS at a time ‘t’ . 

                                     (5.27) 
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5.7. Case Study & Results 

5.7.1. Input Data 

In order to show the efficacy of IEMS, two-time scales are considered. In Case 1, the 

performance analysis of IEMS over CEMS and EEMS is compared considering real-time 

yearly data of the prosumer building for a year time scale. Figures 5.6(a) and 5.6(b) show 

real-time yearly data (365 days) of solar PV generation and load demand with a 1-h time 

step. The result for this scenario is analyzed and compared with different DOD levels, 

i.e., 30%, 50%, and 70%.   
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Figure 5.5 Flow chart of the proposed IEMS 

 
(a) 
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(b) 

Figure 5.6 Real-time data based 365 scenarios (a) solar PV generation and (b) load demand. 

Further, in order to handle the uncertainty associated with solar PV generation and 

load demand and reduce the computational burden, the real-time yearly data is reduced 

to 10 scenarios using the Scenario reduction technique [13][14]. Thus, in Case 2, the 

performance of IEMS over CEMS and EEMS is compared considering these scenarios, 

and further day-ahead scheduling is obtained. The result for this case is analyzed for 70% 

DOD level. Figures 5.7(a) and 5.7(b) show the 10 solar PV generation and load demand 

scenarios obtained using the scenario reduction technique. Figure 5.8 shows the day-

ahead grid exchange prices. The solar PV generation and load demand for case 2 are 

expressed by (5.28) and (5.29).  

                          (5.28) 

                           (5.29) 

where, S is the total number of scenarios and s is the index of a scenario. and  

are the solar PV and load power of scenario ‘s’ at time instant ‘t’.  and  represents 

the probabilities of each scenario ‘s’ for time instant ‘t’. 

As discussed, the estimation of  for a battery depends on the relationship between 

the number of cycles and its SOC or DOD. Figure 5.9 shows the curve of the number of 

cycles (until battery capacity falls to 60% of its nominal capacity) vs. DOD of a battery 

of rating 12V, 225Ah @C20 [16].  
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(a) 

 
(b) 

Figure 5.7 Reduced scenarios of (a) solar PV generation and (b) load demand obtained using 
Scenario reduction technique.  

 

Figure 5.8 Day-ahead grid exchange prices [15] 
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Using the curve fitting technique, a mathematical relationship between the number of 

cycles and DOD for LA BESS of C20 rate is estimated, which is shown by (5.30).  

           (5.30) 

where  is the number of cycles at a depth of discharge  as defined in (5.31). 

                                          (5.31)                        

where  means that the battery charges and discharges repeatedly between  

 
Figure 5.9 Number of cycles (until battery capacity falls to 60% of its nominal capacity) vs. DOD 
of LA BESS [16]  

and . Therefore, using (5.31), the mathematical relationship between the number 

of cycles and  can be shown by (5.32). 

       (5.32) 

Table 5.3 presents the parameters used in the simulation studies that are obtained from 

the real-time MG installed at prosumer building [16]. Table 5.4 shows the cost 

coefficients of batteries and solar PV [17]–[19].  

5.7.2. Case 1 – Performance analysis of CEMS, EEMS, and IEMS for a 

year time scale  

This section presents the performance analysis of CEMS, EEMS, and IEMS based on 

three major factors, i.e., the annual degradation factor, the total operating life of BESS, 
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and the annual operating cost of MG. The impact of change in DOD on MG operation is 

also analyzed.  

Figures 5.10, 5.11, and 5.12 show the annual operating cost of MG, the annual 

dynamic degradation factor, and the estimated total operating life of BESS for CEMS, 

EEMS, and IEMS, respectively. The annual static degradation  of BESS only 

depends on the shelf 

Table 5.3 Parameters used in the simulation studies. 

S.No. Parameter Value 

1.  100% 

2.  (Depending on DOD) 70%, 50%, 30% 

3.  81kWh 

4.  35kW 

5.  -14kW 

6.  -4.05kW/4.05kW 

7.  5% per month 

8.  0.85 

9.  6 years 

10.  0.1666 per year 

Table 5.4 Cost coefficients of batteries and solar PV system 

($/kWh)  ($/h) ($/h) 

0.0005125 0.02854 0.057 $/h 

life of the BESS and is 0.166 for all the cases. Therefore, it is independent of the 

operational mode of MG and DOD levels of the BESS. The lower value of the 

degradation factor results in a higher total operating life of BESS. 

Figures 5.10 and 5.11 show that IEMS has significantly reduced the operating cost of 

the MG and dynamic degradation factor of BESS compared to CEMS and EEMS. Thus, 

BESS’s estimated total operating life is higher for IEMS than for CEMS and EEMS, as 

shown in Fig. 5.12. Moreover, it is also noted that, as DOD increases, the dynamic 

degradation factor increases irrespective of the scheme, thereby decreasing BESS’s 
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operating life. It is because of the decrease in the number of cycles, and the estimated 

operating life of BESS decreases.  

 

Figure 5.10 Annual operating cost of MG for CEMS, EEMS, IEMS considering various DOD 
levels 

 
Figure 5.11 Annual dynamic degradation factor of BESS for CEMS, EEMS, IEMS considering 
various DOD levels 

 

Figure 5.12 Total operating life of BESS for CEMS, EEMS, IEMS considering various DOD 
levels 



Chapter 5. Designing of a Prosumer Building MG and Achieving its Optimal Operation 

by Considering Realistic BESS Degradation Model  

91 

 

5.7.2.1. Impact of IEMS on various factors with respect to CEMS  

The percentage change in the annual operating cost of MG, annual dynamic degradation 

factor and estimated total operating life of BESS from IEMS with respect to CEMS is 

tabulated in Table 5.5. The negative sign shows the decrement, and the positive sign 

shows the increment in the factor. 

Table 5.5 shows that for the scenario of 70% DOD, there is an 8.93% and 66.55% 

reduction in the operating cost of MG and degradation factor, respectively, and there is a 

63.67% increment in the total operating life of BESS. Thus, profit earned by the prosumer 

building owner is significant in the case of IEMS in terms of cost and life of BESS. 

Table 5.5 Percentage change in operating cost of MG, dynamic degradation factor, and estimated 
total operating life of BESS from IEMS with respect to CEMS 

DOD Levels Percentage 
change in  

Percentage change 
in  

Percentage 
change in  

30% -3.87 -42.62 17.83 

50% -8.42 -57.60 38.60 

70% -8.93 -66.55 63.67 

5.7.2.2. Impact of IEMS on various factors with respect to EEMS 

Table 5.6 shows the percentage change in the annual operating cost of MG, annual 

dynamic degradation factor and estimated total operating life of BESS from IEMS with 

respect to EEMS. It can be observed that, for 70% of DOD, IEMS has decreased the 

operating cost and degradation of BESS by 4.37% and 52.99%, respectively, which is the 

highest among all DODs. Further, it improved the operating life of BESS by 36.06% with 

respect to EEMS.  

Table 5.6 Percentage change in operating cost of MG, dynamic degradation factor, and estimated 
total operating life of BESS from IEMS with respect to EEMS 

DOD Levels Percentage 
change in  

Percentage change 
in  

Percentage 
change in  

30% -1.68 -35.71 13.34 

50% -2.82 -44.17 22.48 

70% -4.37 -52.99 36.06 
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Therefore, it can be concluded from Tables 5.5 and 5.6 that IEMS is superior to CEMS 

and EEMS in terms of enhancing the MGO’s profit and improving the operating life of 

BESS. 

5.7.3. Case 2 – Performance analysis of CEMS, EEMS, and IEMS for 

day-ahead scheduling 

The performance analysis of CEMS, EEMS, and IEMS considering reduced scenarios 

is discussed in this section. This study is performed for 70% of DOD levels, as the higher 

DOD level is the most critical one. Figure 5.13 shows the day-ahead optimal schedule of 

BESS and grid considering CEMS, EEMS, and proposed IEMS. Figure 5.14 shows the 

SOC profile of BESS from CEMS, EEMS, and IEMS.  

 

Figure 5.13 Optimal day-ahead schedule of BESS for CEMS, EEMS and IEMS 

 

Figure 5.14 SOC of BESS for CEMS, EEMS and IEMS. 
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It can be observed that as the IEMS aims at optimal utilization of BESS, for time 

instants 10 and 11, when the BESS reaches to 90% SOC, it is not getting charged, due to 

which surplus generation is supplied to the grid and finally ends up reducing the operating 

cost of the MG. When the equivalent power is positive, for time instant 20, after the peak 

hours, the BESS either discharges at a slightly lower discharge rate than that of CEMS 

and EEMS or comes to a standby mode to decrease its degradation. 

The daily operating cost of MG , and the dynamic degradation factor from 

CEMS, EEMS, and IEMS is tabulated in Table 5.7. The negative sign in the daily 

operating cost of MG shows the profit earned by the prosumer building owner.  

Table 5.7 Daily operating cost of MG and dynamic degradation factor of BESS from CEMS, 
EEMS, and IEMS 

Parameters CEMS EEMS IEMS 

Daily operating cost of MG  in $ -0.2 -0.38 -0.64 

Dynamic degradation factor  33.92E-5 24.73E-5 12.50E-5 

It can be noted from Table 5.7 that the daily operating cost of MG  and the 

dynamic degradation factor of BESS is lowest for IEMS. Therefore, the proposed IEMS 

can maximize the profit of the prosumer building owner and improve the operating life 

of BESS compared to CEMS and EEMS. 

5.8. Conclusion 

This chapter develops an IEMS for a prosumer building consisting of a solar PV and 

BESS-powered grid-tied AC-DC hybrid MG. The proposed scheme aims to maximize 

the building owner’s profit by optimizing the operating cost associated with the MG while 

simultaneously improving the total operating lifetime of BESS by reducing its 

degradation factor. It consists of a RBA, as per which the formulated objective function 

of MG is minimized. The proposed RBA decides the contribution of BESS and grid based 

on solar PV power, load demand power, type of load demand (off-peak load/peak load) 

and condition of the BESS. Moreover, this study considers a non-linear battery 

degradation model that includes static and dynamic degradation factors to estimate 

BESS’s practical operating life span.  
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In case 1, the proposed IEMS is tested for the yearly 1-h time step, data obtained from 

grid-connected real-time MG consisting of a solar PV system and a BESS installed at a 

building of a university, BITS, Pilani. Further, to handle the uncertainty associated with 

solar PV generation and load demand and to reduce the computational burden, the 

Scenario reduction technique is used to reduce these 365 scenarios to 10 scenarios. In 

Case 2, a day ahead of the optimal schedule is obtained using these reduced scenarios. 

The performance of the proposed IEMS is validated by comparing the results of the IEMS 

with the CEMS and EEMS of the MG. In order to showcase the effectiveness of IEMS, 

different levels of DOD of BESS are considered, i.e., 30%, 50% and 70%.  

The results conclude that, for the critical DOD such as 70% and the yearly analysis, 

IEMS has reduced the operating cost of MG and dynamic degradation of BESS by 4.37% 

and 52.99%, respectively and increased the operating life span of BESS by 36.06% in 

comparison to EEMS. Thus, the proposed method can be regarded as a superior EMS for 

prosumer building in terms of improved economic profit and system efficiency by 

increasing the operating life of BESS. 

Further to increase the sustainability of the developed building MG and improve the 

performance of IEMS, chapter 6 presents the formulation of the FLS scheme. Moreover, 

in order to account for more practical EVL, its advanced probabilistic modelling is 

developed. Finally, the performance assessment of IEMS integrated with FLS and EVL 

is discussed.    
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Chapter 6 

Enhancing the Performance of IEMS with an Advanced 

Probabilistic EV Load Model and Flexible Load 

Shifting  

6.1. Introduction 

The DR programs enhance the performance of EMS because they allow the load to 

contribute in energy management operations [1]. Therefore, many researchers have 

presented EMS that considers DR programs, as discussed in Chapter 2. However, these 

DR strategies may not improve the reliability of the prosumer building because, in these 

methods, the load is shifted/controlled as per the grid energy prices without considering 

the RER utilization. In this regard, this chapter formulates an FLS scheme that aims to 

shift the flexible loads from the time slot where the equivalent power (solar PV generation 

subtracted from the load power) is the maximum to the time slot where it is the minimum. 

The proposed FLS scheme is integrated into the developed IEMS to improve its 

effectiveness in further reducing the operating cost of MG, reducing the degradation of 

BESS, and achieving sustainable operation of the system.  

Further, as EVs have gained great attention as a green energy transportation method 

in the past few years [2], it is necessary to examine their effect on the system. These EVs 

can also play a crucial role in the energy management of MG by optimally managing 

their charging time as a DR program and by discharging energy stored in their batteries 

as V2G services. By enabling the V2G power transfer technology, the MG owner and EV 

owner not only can obtain financial benefits, but this technology can also provide the 
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necessary energy resources during islanded operation [3][4]. However, the efficient 

modeling of EV load also with V2G technology becomes complicated due to the 

uncertain EV owner's charging and discharging patterns. Further, it was found from the 

literature review presented in Chapter 2 that most of the studies have modelled EV load 

considering assumptions that as the EV arrives at the station, it starts charging instantly 

irrespective of the available number of EV plug points and the EV will leave the station 

only after it is fully charged. In other words, they have not taken into account the 

availability of EV plug-points and the random leave time duration for the EV. These 

limitations restrict the practical modelling of the EVL profile.  

Therefore, this work presents the advanced probabilistic modelling of EVL by 

considering–  

 A practical situation where the number of EVs arriving at the station may be 

more than the available EV plug-points at the station. 

 An uncertain behavior of EV owner regarding their leave time from the EVS is 

modelled by considering a variable “leave time duration”, i.e., the time duration 

after which EV may leave the EVS, which is random in nature. 

Further, a governed charging/discharging with demand response mode (GCD_DRM) 

of EV operation is introduced that combines the concept of V2G power transfer services 

and vehicle demand response strategy to minimize the peak load on the prosumer 

building.  

6.2. Formulation of Flexible load shifting (FLS) scheme 

The load shifting is a part of the load management technique in which the flexible 

loads are shifted to the off-peak hours from the peak hours of the day. The flexible loads 

can operate at any time of the day. Therefore, these loads are usually shifted as per the 

grid tariff or peak/off-peak load hours. However, in this study, a flexible load shifting 

(FLS) scheme is developed that performs the load shifting mechanism of flexible loads 

based on the equivalent power  as it can give information on excess renewable 

generation and load unmet by renewable sources. Therefore, the FLS mechanism focuses 
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on shifting this unmet flexible load to the time instant where excess generation is 

available. It can minimize the burden on BESS and reduce the grid export to MG, thereby 

decreasing the dynamic degradation of BESS and the operating cost of MG. After a 

thorough study of the prosumer building discussed in Chapter 5, it is observed that most 

shiftable types of equipment are operated from 16:00 to 20:00. Also, the peak of load 

unmet by MG occurs during this duration as the solar PV generation is low. Therefore, 

shifting these flexible types of equipment to the time slot where excess solar generation 

is available is desirable. Further, the flexible and non-flexible load power ratio is 

approximately 30-35%. The FLS scheme is governed using the following steps: 

 Identifying the time intervals with the minimum value (negative peak) of 

equivalent power and calculating the total excess solar PV power generation and 

its size.  

 Identifying the time slots with the maximum value (positive peak) of equivalent 

power and estimating the total flexible load power that can be shifted.  

 Selecting the time slots of the same size of flexible load power as that of excess 

solar generation. Calculate the total flexible load power to be shifted as per the 

excess solar generation power. 

 Move the flexible load on the selected time slot.   

Implementing FLS will change the daily load profile of the building, but the total load 

remains the same. To restrict the overpower at any time instant, the constraint (6.1) must 

hold true, such as 

                                        (6.1) 

where  is the load demand of the building obtained after the implementation of FLS. 

6.3. Advanced probabilistic modelling of EVL   

This section details the probabilistic modelling of EVL for clusters of various types of 

EVs. In this study, the EVL is obtained for two user modes, i.e., ACM and governed 

charging/discharging with demand response mode (GCD_DRM). The daily distance 

travelled by an EV and the arrival time (time at which the EV arrives at the EV station) 



 Chapter 6. Enhancing the Performance of IEMS with an Advanced Probabilistic EV 

Load Model and Flexible Load Shifting  

100 

 

is extracted by using Monte Carlo simulation from the log-normal and normal probability 

density functions, respectively, as discussed in previous Chapters 3 and 4. This work 

takes into account the two most essential conditions in the probabilistic modelling of 

EVL, which are as follows: 

 If the number of available EV plug-points is less than the number of EVs arriving 

at the station, in that case the arrival time of the EV and the plug-in time (time 

at which EV is plugged-in) may not be equal.  

 The expected time at which the EV may leave the EV station, i.e., leave time, is 

highly uncertain and is governed by human behavior. Therefore, it may not be 

equal to the estimated plug-out time (the time at which EV is fully charged).  

Hence, in order to accurately model the EVL these above conditions are important. As 

the leave time duration of EV and type of EV, which are input by the EV owners, are 

uncertain parameters, therefore, they are modelled as a random variable. 

Four different types of EVs are considered in this study. The EV owners are segregated 

into three categories: employees of the buildings, visitors coming to the buildings, and 

residential public coming to charge their EVs. 

Let the total number of EVs coming to the station be . Further, the number of EVs 

of employees ( ), visitors ( ), and residential people ( )  can be calculated using 

(6.2-6.5). 

                                                                 (6.2) 

                                                                (6.3) 

                                                                 (6.4) 

                                                            (6.5) 

where ,  and  are the ratios of employees, visitors, and residential EV owners 

with respect to total number of EVs. 

The mean and standard deviation used to generate the arrival time of EV (  for 

employees, visitors, and residential EV owners are shown in Table 6.1. 
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Table 6.1 Mean and standard deviation of arrival time of EV for employees, visitors, and 
residential EV owners 

Type of EV owner Mean of  Standard deviation of   in hour 

Employees 9:00 0.25 

Visitors 11:00 and 18:00 1 

Residential 20:00 1 

6.3.1. Autonomous charging mode (ACM) considering advanced 

probabilistic model 

This mode focuses on unidirectional power flow, i.e., only charging the EVs. As the 

EV reaches the station, the EV aggregator takes the specific input from the EV owner, 

such as the present SOC of the EV and the leave time, i.e., the expected time at which the 

EV may leave the station, irrespective of its SOC. Using these inputs, the EV aggregator 

will calculate the estimated plug-out time (the time at which the EV will be fully charged) 

and will display it to the EV owner. If the leave time is less than the estimated plug-out 

time, then a notification will be sent to the EV owner regarding this difference in this 

time, after depending on the owner's input, represented by ,  aggregator takes the 

decision.  

The plug-in time of EV  can be calculated by (6.6). It is assumed that the plug-in 

time of the EV is the start time of charging of the EV. 

                                   (6.6) 

Where  is the plug-out time of the previous EV.  is the number of EV plug-

points.  

The SOC of EV for each number EV having type at the time of arrival can be 

calculated using (6.7).  is a subset of , represents type of EV and is defined as  

  represents the total types of EVs. 

                                (6.7) 
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 and  are the distance travelled by the number EV having type and 

maximum distance type EV can travel in one charge. 

The charging duration  of each EV can be obtained from (6.8). 

                            (6.8) 

 is the SOC of  EV having  type, at the time of plug-in;  represents 

the rated energy capacity of EV in kWh,  is the charging rate of EV in kW/h; 

is the charging efficiency of EVs.  

The estimated plug-out time of EV   can be further calculated using (6.9). 

                                            (6.9) 

The actual plug-out time of EV  totally depends on the leave time duration of 

EV  and the decision input  given by the EV owner and can be calculated 

by (6.10). 

                (6.10) 

The charging power  required to charge the EV can be estimated using equation 

(6.11). The associated time interval to this charging power can be calculated using 

equation (6.6) and (6.9). 

    

(6.11) 

As EVs charging time intervals are independent of each other, therefore they can be 

accumulated. The daily EVL profile of a large number of EVs for ACM mode can be 

calculated using (6.12) as follows: 

                                (6.12) 

where  is the daily EVL of  EVs in case of ACM.  
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6.3.2. Governed charging/discharging with demand response mode 

(GCD_DRM) 

This mode is a combination of V2G and governed grid to vehicle, i.e., DR mode of 

EVs. It provides flexibility to the EV owner in discharging their EV batteries and earning 

financial incentives from it. The V2G deals with the bi-directional power flow between 

the EVs and MG, and the DR mode governs the G2V operation. In the GCD_DRM mode, 

the EV aggregator plays two vital roles. It allows the EVs to discharge during dynamic 

peak price hours and charge them during low price hours. The amount of power to be 

discharged from the EVs is dynamic and depends on the leave time of the EV. Hence, the 

EV aggregator calculates it and makes sure that EV is fully charged (after participating 

in V2G) before the leave time duration of EV. Further, it motivates the EV owners to 

participate in the DRS by shifting their charging load from peak load hour to off-peak 

load hour.  

The plug-in time of EV  and the charging duration  of each EV can be 

obtained from (6.6) and (6.8), respectively. 

The desired plug-out time of EV  can be calculated using (6.13). 

                                        (6.13) 

where  is the leave time duration of nth EV.  

The EV aggregator takes the decision  of performing 

V2G/DR/G2V(ACM) depending on the following conditions as shown by (6.14). 

 

(6.14) 

where and  are the start and end of the peak price time interval.  is the 

minimum value of leave time duration of EV required for the V2G. 
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6.3.2.1. Decision of the EV aggregator: Allowing the EV owner to perform V2G  

The plug-in time of EV is assumed to be the start of the discharging time of the EV. 

The maximum discharging duration  of EV until it reaches the threshold SOC 

(set by the EV aggregator) can be calculated from (6.15). 

         (6.15) 

where  refers to a maximum limit of SOC of an EV battery and  refers 

to threshold limit of SOC of EV battery till which discharging can be performed.  

is the discharging rate of EVs in kW/h.  is the distance travelled by the EV and  

is the maximum distance EV can travel in one charge in km.  

The estimated plug-out time of EV  where EV starts charging after the end of 

peak price  can be calculated using (6.16). 

                                       (6.16) 

Using above equations, the discharging duration  of EV can be obtained using 

(6.17). 

 

(6.17) 

The time at which discharging of EV ends (  can be calculated using (6.18). 

                                             (6.18) 

The discharging power  taken from the EV can be estimated using (6.19). The 

associated time interval to this discharging power can be calculated using (6.6) and 

(6.18).  

        (6.19) 

The time at which charging of EV starts  after discharging is calculated 

from (6.20). 



 Chapter 6. Enhancing the Performance of IEMS with an Advanced Probabilistic EV 

Load Model and Flexible Load Shifting  

105 

 

                         (6.20) 

The actual plug-out time of EV  which will be the time at which discharging and 

charging process of EV will end can be estimated by (6.21). 

                 (6.21)               

The charging power of EV can be estimated using (6.11). As EVs discharging and 

charging time intervals are independent of each other, therefore they can be accumulated.  

By combining all the cases above, the daily EVL profile of a large number of EVs for 

V2G operation can be calculated using (6.22) as follows: 

                         (6.22) 

where  is the daily EVL of  EVs in case of V2G user operation.  

6.3.2.2. Decision of the EV aggregator: To send the request to the EV owner to 

participate in DR 

In this case also the plug-in time of EV  and the charging duration  of each 

EV can be obtained from (6.6) and (6.8), respectively. Further, depending on the EV 

owner's input  towards the sent DR request, the EV aggregator takes the decision. 

The actual plug-out time of EV  can be calculated using (6.23). 

 (6.23)    

Moreover, the charging power calculation of EV is similar as in (6.11). The daily EVL 

of a large number of EVs for DR operation can be calculated using (6.24) as follows: 

                                              (6.24) 

The total EV load  for GCD_DRM can be defined as 

                         (6.25) 
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where ,  and  are the modelled EV load for ACM, V2G and DR 

operations. 

6.4. Case study and results 

This section discusses the impact of the proposed FLS and modelled EVL on the 

developed IEMS (in Chapter 5). The model specifications and parameters are similar to 

those in Chapter 5. Figure 6.1 shows the schematic of the system with a prosumer 

building, EV aggregator and grid.  Further, the simulation parameters associated to EV 

load modelling are shown in Table 6.2. Moreover, the details of the types of EVs, along 

with their specifications, are discussed in Table 6.3.  

It is assumed that the EVs will charge at a price of 0.07 $/kWh and the EVs participating 

in V2G will be charged (after discharging) with an electricity rate of 0.04 $/kWh. Based 

on these values, the cost paid by EV aggregator  to MG is estimated. In this study, 

the modeling of EVL is performed for 10, 20, and 30 EVs and for each level and both 

modes, 365 EV load scenarios are generated using the developed probabilistic model. 

The modelled EVL for ACM and GCD_DRM considering 20 EVs are shown in Fig. 

6.2(a) and Fig. 6.2(b), respectively. 

PROSUMER BUILDING 

EV plug-points

EV STATION

EV 
Aggregator

Building MG 
Operator Grid Connection

Power Exchange

 

Figure 6.1 Schematic of the system with prosumer building, EV aggregator and grid 
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Table 6.2 Values of different simulation parameters 

S.No. Parameter Value 

1.  10,20,30 

2.  30%, 50%, 20% 

3.  3 

4.  90% 

5.  4 

6.  3 hours 

7.  18:00 

8.  20:00 

9.  100% 

10.  60% 

Table 6.3 Details of the types of EVs along with their specifications 

Type of 
EV 

Wheeler 
Type  in kWh 

 
in kW/h  in km 

Time required for 
full charge in hours 

Type 1 2-wheeler 3 0.6 128 5 

Type 2 2-wheeler 4.56 1.14 145 4 

Type 3 3-wheeler 7.4 1.85 125 4 

Type 4 3-wheeler 5.76 1.65 60 4 

 
(a) 
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(b) 

Figure 6.2 EVL modelled for (a) ACM and (b) GCD_DRM considering 20 EVs 

6.4.1. Performance assessment of IEMS with FLS 

Figures 6.3, 6.4, and 6.5 show the annual operating cost of MG, the annual dynamic 

degradation factor, and the estimated total operating life of BESS for IEMS and 

IEMS+FLS, respectively. 

 

Figure 6.3 Annual operating cost of MG for IEMS and IEMS+FLS considering various DOD 
levels 

It can be observed from Figs. 6.3, 6.4 and 6.5, and the FLS scheme improves the 

performance of IEMS by further reducing the operating cost of the MG and dynamic 

degradation factor and improving the total operating life of BESS. By integrating FLS, 
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the burden on BESS has been reduced, thereby decreasing its dynamic degradation factor 

and its operating & maintenance (O&M) cost. Due to this, the total operating cost of MG 

reduces. Additionally, as the power exported by the grid also decreases, the operating 

cost of MG is further reduced. 

 

Figure 6.4 Annual dynamic degradation factor of BESS for IEMS and IEMS+FLS considering 
various DOD levels 

 

Figure 6.5 Total operating life of BESS for IEMS and IEMS+FLS considering various DOD 
levels 

Table 6.4 shows the impact of FLS on IEMS in terms of the percentage change in the 

annual operating cost of MG, annual dynamic degradation factor and estimated total 

operating life of BESS from IEMS+FLS with respect to IEMS. 
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Table 6.4 Percentage change in operating cost of MG, dynamic degradation factor, and estimated 
total operating life of BESS from IEMS+FLS with respect to IEMS 

DOD Levels Percentage change 
in  

Percentage change 
in  

Percentage change 
in  

30% -33.06 -17.87 4.48 

50% -33.01 -18.39 5.83 

70% -32.70 -18.64 6.34 

Table 6.4 shows a considerable improvement in all the key factors by integrating 

IEMS and FLS. For 70% DOD, the decrease in operating costs and degradation factor is 

32.70% and 18.64% from IEMS+FLS with respect to IEMS. Further, there is a 6.34% 

increment in the total operating life of BESS. It can be concluded that IEMS+FLS 

provides the maximum benefit to the prosumer building in terms of economic and 

efficiency perspective. 

To further assess the operation of BESS and grid with IEMS and IEMS+FLS daily is 

performed. Figure 6.6 shows the day-ahead optimal schedule of BESS and grid 

considering IEMS+FLS and IEMS with 70% DOD. Moreover, Fig. 6.7 shows the SOC 

profile of BESS from IEMS+FLS and IEMS.  

 

Figure 6.6 Optimal day-ahead schedule of BESS for IEMS and IEMS+FLS 
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Figure 6.7 SOC of BESS for IEMS and IEMS+FLS 

It can be observed from Figs. 6.6 and 6.7 that with the FLS scheme, the flexible load 

demand is shifted from the time slot where generation is less than the load, to the time 

slot where excess generation is available. Further, due to this, the burden on BESS and 

grid especially during peak hours has been significantly reduced. Therefore, for time 

instants 18 and 19, the BESS discharges and grid exports with lesser value than in IEMS 

as shown in Fig. 6.6. 

The daily operating cost of MG , and the dynamic degradation factor from 

IEMS, and IEMS+FLS is tabulated in Table 6.5.  

Table 6.5 Daily operating cost of MG and dynamic degradation factor of BESS from IEMS and 
IEMS+FLS 

Parameters IEMS IEMS+FLS 

Daily operating cost of MG  in $ -0.64 -0.95 

Dynamic degradation factor  12.50E-5 8.53E-5 

It can be noted that FLS has considerably improved the performance of IEMS, 

therefore IEMS+FLS leads to optimal operation of MG in terms of profit of building 

owner as well as life of BESS. 
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6.4.2. Performance assessment of IEMS with EVL 

Figures 6.8 and 6.9 show the annual operating cost of MG and annual cost paid by EV 

aggregator, respectively, with IEMS, IEMS+ACM and IEMS+GCD_DRM considering 

10, 20 and 30 EVs.  

It can be observed from Fig. 6.8 that, as the EV penetration increases, the operating 

cost of MG decreases irrespective of EV operating mode. It is mainly because as the EV 

load is increased, the MG starts using surplus power to charge the EVs rather than 

exporting it to the grid. However, GCD_DRM leads to a lowering of the operating cost 

of MG as compared to ACM, as in this mode, EV starts discharging at peak hours and 

also tries to shift the load from peak hours to off-peak hours, due to which the burden on 

BESS and grid is reduced. 

 

Figure 6.8 Annual operating cost of MG with IEMS, IEMS+ACM and IEMS+GCD_DRM 
considering 10, 20 and 30 EVs 

From Fig. 6.9 it is clearly observed that, as the EV penetration level increases, the 

annual cost paid by the EV aggregator also increases irrespective of mode of EV 

operation. Further, it can be noted that, GCD_DRM mode of EV operation reduces the 

cost paid by EV aggregator as compared to ACM.  

Figures 6.10 and 6.11 show the annual dynamic degradation factor and total operating 

life of BESS, respectively, with IEMS, IEMS+ACM and IEMS+GCD_DRM considering 

10, 20 and 30 EVs.  
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Figure 6.9 Annual cost paid by EV aggregator with IEMS+ACM and IEMS+GCD_DRM 
considering various number of EV levels 

It can be noticed from Figs. 6.10 and 6.11 that, as the EV penetration increases, the 

annual dynamic degradation factor of BESS also increases, thus resulting in reduction of 

the total operating life of BESS. However, the GCD_DRM lowers this effect on BESS 

operation. 

 
Figure 6.10 Annual dynamic degradation factor of BESS with IEMS, IEMS+ACM and 
IEMS+GCD_DRM considering 10, 20 and 30 EVs 
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Figure 6.11 Total operating life of BESS with IEMS, IEMS+ACM and IEMS+GCD_DRM 
considering various number of EV levels 

Table 6.6 shows the percentage change in operating cost of MG, dynamic degradation 

factor, and estimated total operating life of BESS from IEMS+ACM with respect to 

IEMS. 

It can be concluded from Table 6.6 that, for the highest EV penetration level i.e., 30 

EVs, the IEMS+ACM, decreases the operating cost of MG by 2.06%. However, the 

degradation factor increases by 67.69%, thereby the operating life of BESS has reduced 

by 17.80%. 

Table 6.6 Percentage change in operating cost of MG, dynamic degradation factor, and estimated 
total operating life of BESS from IEMS+ACM with respect to IEMS 

EV Levels Percentage change 
in  

Percentage change in 
 

% Percentage 
change in  

10 -0.92 24.46 -7.26 

20 -0.52 49.71 -13.72 

30 -2.06 67.69 -17.80 

Table 6.7 shows the percentage change in operating cost of MG, cost paid by EV 

aggregator, dynamic degradation factor, and estimated total operating life of BESS from 

IEMS+GCD_DRM with respect to IEMS+ACM. 
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Table 6.7 Percentage change in operating cost of MG, cost paid by EV aggregator, dynamic 
degradation factor, and estimated total operating life of BESS from IEMS+GCD_DRM with 
respect to IEMS+ACM 

EV 
Levels 

Percentage 
change in  

Percentage change 
in  

Percentage change 
in  

Percentage 
change in  

10 -7.33 -19.63 -12.30 4.76 

20 -6.97 -20.57 -16.10 7.13 

30 -5.18 -21.24 -20.08 9.71 

From Table 6.7 it is noted that, for 30 EVs load, the GCD_DRM, decreases the  

and  by 5.18% and 21.24%, respectively as compared to ACM. Moreover, it also 

decreases the  by 20.08% and thus increases the operating life of BESS by 9.71%.  

It can be concluded that, IEMS+GCD_DRM helps in optimizing the operation of MG 

as well as EV aggregator by increasing their profit as compared to IEMS+ACM. 

6.4.3. Performance assessment of IEMS with FLS and EVL 

To estimate the performance of IEMS with the integration of FLS and EVL, critical 

values such as 70% DOD and 30 EVs are considered. Figures 6.12 and 6.13 show the 

annual operating cost of MG and the annual cost paid by EV aggregator with IEMS, 

IEMS+FLS, IEMS+ACM, IEMS+GCD_DRM, IEMS+ACM+FLS and 

IEMS+GCD_DRM+FLS.   

 

Figure 6.12 Annual operating cost of MG for all the considered cases considering 30 EVs 
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Figure 6.13 Annual cost paid by EV aggregator for all the considered cases considering 30 EVs  

It is observed from Figs. 6.12 and 6.13 that IEMS+GCD_DRM+FLS results in 

minimum annual operating cost of MG and cost paid by EV aggregator as compared to 

other cases.  

The annual dynamic degradation factor and total operating life of BESS with IEMS, 

IEMS+FLS, IEMS+ACM, IEMS+GCD_DRM, IEMS+ACM+FLS and 

IEMS+GCD_DRM+FLS are shown in Figs. 6.14 and 6.15, respectively.   

 

Figure 6.14 Annual dynamic degradation factor of BESS with each case considering 30 EVs 

From Figs. 6.14 and 6.15, it is noticed that, without EV penetration, IEMS+FLS results 

in minimum annual dynamic degradation of BESS and thus ends up with maximum value 

of total operating life of BESS. However, with the EV penetration, 
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IEMS+GCD_DRM+FLS has the lowest annual dynamic degradation of BESS and, 

therefore, achieves the highest value of the total operating life of BESS. 

 

Figure 6.15 Total operating life of BESS for each case considering 30 EVs 

It can be concluded from Figs. 6.12 to 6.15, that integration of FLS and GCD_DRM 

significantly improves the performance of the developed IEMS by maximizing the 

financial profit of the MGO & EV aggregator and improving the reliability, life and 

efficiency of the MG. 

6.5. Conclusion 

This chapter formulates an FLS scheme to improve the efficacy of the proposed IEMS 

and achieve sustainable and more efficient operation of the prosumer building. It 

effectively utilizes solar PV generation and shifts the loads of the building as per the 

equivalent power. The integration of IEMS with FLS further reduces the operating cost 

of MG from 32.7% to 33.06% and increases the life span of BESS by 4.48% to 6.34%, 

depending on the DOD.  

In addition, in order to consider the detailed effect of EVs on the system, a practical 

EVL is required. Therefore, to model the practical EVL profile, an advanced probabilistic 

modelling is performed that considers uncertain events and practical situations. It 

considers two most essential conditions, i.e., 1) availability of EV plug-points at EVS, 

and 2) uncertain behavior of EV owner regarding their leave time duration. Further, a 

new operating mode, GCD_DRM, is introduced that integrates the concept of V2G and 

motivates EV owners to participate in DR.  In this study, the EVL is modelled for two 
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operating modes, i.e., ACM and GCD_DRM and their performances are examined while 

integrated with IEMS. The results reveal that IEMS+ GCD_DRM decreases the operating 

cost of MG owner and EV aggregator in the range of 5.18% to 7.33% and 19.63% to 

21.24% with respect to IEMS+ACM depending on number of EVs. Further, it increases 

the life span of BESS in the range of 4.76% to 9.71% for the similar case.  

Moreover, the performance of IEMS is examined with FLS and both the EV modes 

individually. It is found that IEMS+FLS+ GCD_DRM is the most economical, 

sustainable and efficient EMS for the prosumer building (MGO) and the EV aggregator.  
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Chapter 7 

Closure  

7.1. Summary 

A microgrid (MG) is a low-voltage electrical network that is developed from the small-

scale interconnection of the various distributed energy resources (DERs) and loads. These 

DERs may include renewable energy sources (RERs), fossil fuel-based traditional 

generators (TGs) and battery energy storage systems (BESSs). Further, as electric 

vehicles (EVs) are growing as the potential alternative to fossil fuel-based vehicles, their 

penetration has substantially increased. Therefore, to achieve stable, optimal, efficient 

and sustainable operation of MG and to handle the uncertainty associated with load and 

RERs, an energy management strategy (EMS) is necessary. In this regard, this thesis 

focuses on the development of EMS for community and prosumer building MG. It 

explores the performance aspects of BESSs, various modes of EV operation and the 

impact of demand-side management (DSM) on the developed system. 

7.2. Main Contributions 

The main contributions of the thesis are as follows: 

 A community MG is modelled based on a multi-bus network having various 

types of DERs and EVS. Further, to obtain the optimal sizing & appropriate 

placement of DERs together with EVS, an objective function is formulated that 

minimizes power loss and voltage deviation of the system. It considers voltage-

dependent load and different charging patterns modelled as per residential, 

commercial, and industrial buses.  
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 For the designed community MG, an optimal energy management strategy 

(OEMS) is developed that aims at maximum utilization of DERs, promotes 

energy trading between MG and utility grid, performs peak load management 

through (governed charging/discharging mode) GCDM of EV operation, and 

minimizes the dependency of a MG on the utility grid. It is achieved by 

optimizing the energy exchanged between MG and the utility grid considering 

minimum total active power loss (TAPL) and total voltage deviation (TVD). 

The developed OEMS utilizes the coordinated BESS charging/discharging 

scheduling algorithm, which improves its performance and facilitates its 

maximum utilization. The proposed OEMS and GCDM of EV operation help in 

attaining the optimal, efficient, and sustainable operation of the community MG.  

 In addition, to evaluate the energy management aspects of a prosumer building 

MG, a solar PV and BESS based grid-tied MG with EVS is designed, developed 

and deployed at the building of BITS, Pilani, campus. Further, an IEMS is 

proposed that focuses on increasing the profit of a prosumer building and 

improving the operating life span of BESS to achieve optimal and efficient 

operation of the building. It is achieved by minimizing the formulated cost 

objective function of MG as per the proposed rule-based algorithm (RBA), 

which effectively utilizes the BESS and grid power. It involves a non-linear 

battery degradation model considering calendar and cyclic ageing in terms of 

static and dynamic degradation factors, respectively, to estimate the practical 

operating life span of BESS. 

 A flexible load shifting (FLS) scheme is formulated for prosumer building MG 

aiming at shifting the flexible loads from the time slot of a day where the 

equivalent power (solar PV generation subtracted from the load power) is the 

maximum to the time slot where it is the minimum. It increases the efficacy of 

the proposed IEMS by further reducing the operating cost of MG and the 

degradation factor of BESS, which improves the sustainability and efficiency of 

the building MG.  

 Advanced probabilistic modelling of EVL is performed, which considers 

practical events, i.e., availability of plug-points and uncertain behavior of EV 
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owners in terms of time at which EV may leave the EVS. Moreover, a new mode 

of EV operation is introduced, i.e., governed charging/discharging with demand 

response mode (GCD_DRM). In addition, the performance of IEMS is 

examined with the modelled EVL under various modes of EV operation, i.e., 

ACM and GCD_DRM. Further, to estimate the maximum efficacy of IEMS, the 

combination of modelled EVL and proposed FLS is studied. The results showed 

that IEMS+FLS+ GCD_DRM is the most economical, sustainable, and efficient 

EMS for prosumer building operators and EV aggregators.  

7.3. Future Scope 

Though the proposed study has shown considerable improvements in performance, 

there is scope for future research, which is as follows: 

 Optimal sizing & appropriate placement of RERs and TG units, together with 

EVS, is performed for a community MG to minimize power loss and voltage 

deviation of the system. However, it did not consider the optimal placement and 

sizing of BESS, which can be considered in future studies.  

 The OEMS developed for community MG achieves economical, efficient, and 

sustainable operation by minimizing a multi-objective function that consists of 

energy exchanged between MG and utility grid, TAPL and TVD. Further, the 

direct incorporation of the operation cost function can enhance the performance 

of OEMS in terms of economical operation.   

 In the IEMS proposed for the building, the operation of the BESS and grid power 

is dependent on the equivalent power, load demand (peak/off-peak), and SOC 

of BESS, as discussed in RBA. However, it can include grid exchange price to 

further reduce the operating cost of MG and improve the operating life of BESS,  

 The performance of the developed FLS scheme, which is part of DSM, can be 

augmented by optimally shifting the various flexible loads considering their 

power ratings, operating hours, flexible time window, and customer comfort.  

 Modelling of EVL can be performed using a machine learning prediction model 

after data collection and analysis. Further, the proposed probabilistic modelling 
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of EVL can be improved by integrating various demographic, socioeconomic, 

and weather factors with the considered uncertain events and parameters. 
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