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Abstract

This thesis comprehensively explores partial and integral-partial differential equations,

specifically focusing on coagulation, bivariate coagulation, breakage, and growth equa-

tions. These models have significant applications in various real-world scenarios, including

engineering, pharmaceuticals, food processing, and cloud formations. The primary objec-

tive of the thesis is to solve different versions of coagulation models using semi-analytical

methods. The initial phase of the research investigates the variational iteration method

for growth, aggregation, and coupled aggregation-breakage equations. The optimal varia-

tional iteration method is also investigated for pure growth and aggregation equation (for

constant kernel). The results are compared with the precise and approximated solutions

obtained via the Adomian decomposition method. The superiority of the proposed scheme

is highlighted through numerical computations and graphs.

The thesis further addresses the scarcity of semi-analytical methods for the coupled

aggregation-breakage and bivariate aggregation models. To this end, the Elzaki-based

accelerated homotopy perturbation method (AHPETM) is implemented to solve these

models. The theoretical convergence of the scheme is presented for aggregation and

bivariate aggregation equations. For numerical validation, the results of the proposed

scheme are compared with those of Adomian decomposition method(ADM), homotopy

perturbation method (HPM), homotopy analysis method (HAM) and optimized decom-

position method (ODM) for aggregation and breakage, demonstrating the efficiency and

accuracy of the proposed scheme. The results obtained via AHPETM show more precision

with respect to time than the other methods, leading to an extension of the results for

coupled aggregation-breakage and bivariate aggregation equations.

The work also delves into the coupled aggregation-growth equation, which holds signif-

icant interest due to its wide application in real-life scenarios. The improved optimal

homotopy analysis method (IOHAM) is implemented to solve the aggregation and coupled



aggregation-growth equations. The results of IOHAM are compared with the ADM, HPM,

HAM, and ODM, with IOHAM surpassing all the mentioned methods for the aggregation

equation. Consequently, the results are extended for the coupled aggregation-growth

model, and the work includes the convergence analysis of the scheme for aggregation and

coupled aggregation growth equations.

Proceeding further, the thesis considers another variant of the aggregation process, namely

the condensing coagulation model. Motivated by the limited attempts to solve the model

analytically and numerically, the HPM and ADM are employed. The proposed schemes

provide closed-form solutions for the product and constant kernels, while the approximated

solutions are obtained for physically relevant kernels such as sum and Ruckenstein kernels.

The work is further extended to solve the Lifshitz Slyozov model with encounters, and the

results align well with the exact solutions.

Lastly, a new implicit form of semi-analytical technique is introduced to solve differential

equations that provides accuracy for larger time domains. A detailed analysis is performed

to study the convergence of the scheme. The results are compared with standard semi-

analytical methods such as ADM, HPM, HAM, and ODM to demonstrate the supremacy

of the proposed scheme. The convergence control parameter is incorporated to enhance

the scheme’s accuracy. Finally, the thesis concludes with a discussion on the possible

extensions of the scope for future investigations, paving the way for further research in

this field.
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Chapter 1

Introduction

The art of proposing a question must be held of higher value than solving it.

— Georg Cantor

This chapter gives a comprehensive context and motivation for the thesis work. It investi-

gates various coagulation models and performs an extensive literature review. Besides, it

defines the main purpose and scope of the current research. A chapter-wise roadmap of

the thesis is also presented towards the end of this chapter.

1.1 Overview
Particle processes are widely recognized in various engineering fields, encompassing crys-

tallization, comminution, precipitation, polymerization, aerosol, and emulsion processes.

A continuous phase and a dispersed phase of particles with various attributes are involved

in these processes. These particles, which could take the form of crystals, grains, drops, or

bubbles, possess diverse characteristics such as size, composition, porosity, enthalpy, and

others. In numerous contexts, particle size is often considered the sole pertinent property

of significance.

Given the potential variability in sizes and properties of particles, a mathematical rep-

resentation of their distribution or properties is essential for characterization. In cases

where particles exhibit uniform shapes, as seen in grinding or crystallization process, a

1



Chapter 1. Introduction

characteristic shape factor can be established. However, in engineering processes such as

fluidized bed agglomeration and pharmaceutical, where particles demonstrate more di-

verse properties, a multidimensional distribution function becomes necessary for accurate

characterization.

Particulate matter may transform their physical properties via several pathways. This

thesis delineates its scope to study coagulation, breakage, growth, and synergistic effects.

A succinct description of these phenomena is furnished in the following section.

1.1.1 Aggregation

Aggregation (coagulation) is a fundamental process where two or more particles in a

suspension come into contact and adhere to each other, forming larger clusters. In the

physical realm, aggregation has numerous applications. Within the realm of industrial

applications, the principle of aggregation is instrumental in water purification procedures,

specifically through the method of flocculation, wherein the conjoined particles are more

readily isolated from the aqueous medium. Furthermore, in the pharmaceutical industry,

the aggregation of particles can significantly influence the stability and therapeutic effec-

tiveness of medicinal preparations.

During this process, there is a diminution in the aggregate count of particles, yet the mass

remains invariant within the system. The scholarly literature provides an array of theoreti-

cal frameworks designed to forecast the likelihood of adhesion between two impinging

particles. An elaborate elucidation of the chosen model is delineated in the subsequent

section. The graphical depiction of the process is presented in Figure 1.1.

Figure 1.1: Aggregation process

2



1.1. Overview

1.1.2 Breakage

The phenomenon of breakage (fragmentation) pertains to the division of substances into

smaller fragments across diverse circumstances. This process, influenced by factors such

as material properties, applied forces, and environmental conditions, plays a significant

role in various industries, including food processing for edible portioning, pharmaceuticals

for medication efficacy, construction for material management, and recycling for material

repurposing. The total number of particles increases in the system during the process while

the total mass remains conserved in the system. The visual illustration of the procedure is

delineated in Figure 1.2.

Figure 1.2: Breakage process

1.1.3 Growth

Particle growth transpires when dust or non-particulate matter accumulates on the surface

of a particle, leading to an increase in its mass while maintaining the same particle count.

During this process, the size of the particle continuously increases. This phenomenon is

critical in various fields, such as air filtration, which aids in trapping airborne particles,

and in the pharmaceutical industry, which ensures uniformity in drug formulations. Figure

1.3 illustrates the pictorial representation of the process.

Figure 1.3: Growth process

3



Chapter 1. Introduction

Following the aforementioned processes, particles undergo a modification of their proper-

ties, necessitating the application of mathematical models, particularly population balance

equations (PBEs), to analyze the resultant variations in the distribution of particle proper-

ties. These models are integral in understanding and managing the complexities of particle

dynamics in various scientific and industrial contexts. They characterize the dynamic

changes in the distribution of specific properties. In the context of this thesis, which

focuses on growth, aggregation and breakage equations, volume is a practical metric for

sizing.

1.2 Population balance models
A general one-dimensional PBE for a well mixed system can be written as

∂

∂τ
µ(η ,τ) =

Pin

W
µin(η)− Pout

W
µout(η)− ∂

∂η
(G(η ,τ)µ(η ,τ))+Bnuc(η ,τ)

+Bagg(η ,τ)−Dagg(η ,τ)+Bbreak(η ,τ)−Dbreak(η ,τ), (1.2.1)

with appropriate initial and/or boundary conditions. The parameter η denotes the size

of the particle, µ(η ,τ) denotes the number density of particle of size η at time τ and

the system’s volume is denoted by W . On the right-hand side, the initial two expressions

signify the influx or efflux within the ongoing procedure. The functions Pin and Pout

stand for the inlet and outlet flow rates from the system, respectively. The terms Bnuc

and G(η ,τ), respectively, denote the rates of nucleation and growth. In a batch process,

the absence of inflow and the exclusive consideration of outflow allow for the omission

of the first two terms on the right-hand side of the equation. The terms Bagg and Bbreak

represent the formation of particles of size η in aggregation and breakage, respectively,

while Dagg and Dbreak indicate the reduction of particles through these same processes.

This streamlined approach simplifies the analysis of particle dynamics within the system.

Despite considerations of number density, the dynamics of moments hold significant
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attention. The jth moment of the particle size distribution is defined as

µ j(τ) =
∫

∞

0
η

j
µ(η ,τ)dη . (1.2.2)

The zeroth moment ( j = 0) represents the aggregate count of particles within the system,

while the first moment ( j = 1) signifies the total mass encompassed. Beyond these, the

second moment of the distribution serves as a metric for evaluating numerical outcomes,

specifically reflecting the proportionality to light scattering by particles within the Rayleigh

regime.

In the following subsections, we provide the introduction of various models along with the

literature survey about the numerical and semi-analytical results.

1.2.1 Smoluchowski’s coagulation equation

Consider the non-negative variables i and t to symbolize the particle size and time, re-

spectively, with νi(t) denoting the number density of particles sized i at time t. The rate

at which particles of size i merge with particles of size j is depicted by the coagulation

kernel κi, j which is assumed to be non-negative and symmetric. Abiding by the law of

mass action, the augmentation in number density of particles of size i can be expressed as

1
2

i−1

∑
j=1

κi− j, jνi− j(t)ν j(t). (1.2.3)

Similarly, the reduction in the quantity of particles of size i, resulting from collisions with

particles of size j, is expressed as

∞

∑
j=1

κi, jνi(t)ν j(t). (1.2.4)
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Hence, the discrete coagulation equation, provided by Smoluchowski in 1917 [1] as an

infinite set of non-linear differential equations is governed by

∂νi(t)
∂ t

=
1
2

i−1

∑
j=1

κi− j, jνi− j(t)ν j(t)−
∞

∑
j=1

κi, jνi(t)ν j(t),

where the first term on right-hand side signifies the birth term and second term denotes

the death of the particle of size i. The derivation of the model was based on the Brownian

motion of particles. Further, in 1928, Muller proposed the continuous version of the

aggregation equation as

∂ µ(η ,τ)

∂τ
=

1
2

∫
η

0
κ(η −ω,ω)µ(η −ω,τ)µ(ω,τ)dω −

∫
∞

0
κ(η ,ω)µ(η ,τ)µ(ω,τ)dω,

(1.2.5)

where µ(η ,τ) ≥ 0 is the particle number density function of having particles of size

η ∈ R+ at time τ ∈ [0,∞) in a homogeneous physical system. The expression κ(η −

ω,ω), assumed to be non-negative and symmetric, signifies the rate at which particles

of sizes η −ω and ω interact, forming a particle with size η . The initial term on the

equation’s right-hand side indicates the genesis of a particle of size η , termed the birth

term. Conversely, the latter term represents the elimination of a particle of size η within

the system, known as the death term.

In solid processing, e.g., in foods and pharmaceuticals, product quality is characterized

by multiple particle properties, for example, the volume and composition of aggregating

particles. To model such phenomenon, more then one dimensional expression is required.

Therefore, in the following, the bivariate case is considered, i.e., particles (or individual

objects) are characterized by two properties, named η and ζ . The two dimensional

aggregation process is governed by

∂ µ(η ,ζ ,τ)

∂τ
=

1
2

∫
η

0

∫
ζ

0
κ(η −η

′,ζ −ζ
′,η ′,ζ ′)µ(η −η

′,ζ −ζ
′,τ)µ(η ′,ζ ′,τ)dη

′dζ
′

−
∫

∞

0

∫
∞

0
κ(η ,η ′,ζ ,ζ ′)µ(η ,ζ ,τ)µ(η ′,ζ ′,τ)dη

′dζ
′, (1.2.6)
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with the initial condition

µ(η ,ζ ,0) = µ0(η ,ζ )≥ 0. (1.2.7)

for η ,ζ ∈ (0,∞) and τ ∈ [0,T ].

1.2.1.1 Existing numerical and semi-analytical methods
Due to complexity of these models and unavailability of the analytical solutions (except

for some simple cases), several numerical [2–7] and semi-analytical [8–12] techniques are

applied to solve these problems approximately. Numerical schemes to solve coagulation

model (1.2.5) includes finite element method [2], quadrature method of moments [13],

finite volume scheme [4], fixed pivot element [5], fast Fourier transformation method

[14] and references therein. The drawbacks of the numerical schemes lie on non-physical

assumptions such as discretization, linearization, sets of basis functions, and many others.

Recently, several authors have developed interest in semi-analytical approaches that offer

solutions in series form without making such assumptions. Some of the available strategies

are Laplace-variational iteration method (LVIM) [15], Adomian decomposition method

(ADM) [16], homotopy perturbation method (HPM) [9], optimal homotopy asymptotic

method (OHAM) [17], homotopy analysis method (HAM) [8], Laplace optimized de-

composition method [10] and variational iteration method [18]. Interestingly, some of

the algorithms provided the closed form series solutions of coagulation equation (1.2.5)

considering the aggregation kernels

κ(η ,ω) = 1,η +ω,ηω and η
2
3 +ω

2
3 ,

with exponential initial condition (µ(η ,0) = e−η ,e−η/η), see [8, 9, 16] for more detailed

computations. It turned out that these closed form solutions are nothing but the actual

solution of the models. Hammouch and Mekkaoui in [15] developed the LVIM for solving

the coagulation equation (1.2.5) only for two cases of aggregation kernels, constant

(κ(η ,ω) = 1) and product (κ(η ,ω) = ηω). In [19, 20], ODM is implemented to solve
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the coagulation equation using the parameters

κ(η ,ω) = 1,η +ω and ηω with u(η ,0) = e−η .

Recently in [21], HPM is combined with the Pade approximates and results are obtained

for various physically relevant kernels such as Shear stress, bilinear, Brownian and Pulver-

macher kernels for larger time and spatial domains.

In the literature, it was observed that ADM, HPM, and HAM provide the closed form

solutions for the problem (1.2.5), but some drawbacks are observed in these techniques.

In [22, 23], it was found that a large number of iterations of the aforementioned methods

are required to obtain a more accurate approximation. When dealing with chaotic systems,

in [24], authors found that time, time step, and the number of terms must be handled with

extreme caution. Further, Odibat [25] has drawn attention to various drawbacks of ADM,

including its delayed convergence and inability to handle boundary conditions for solving

non-linear PDEs. These shortcoming were avoided by Odibat in [25]. To overcome these

issues for model (1.2.5), recently, ODM [19] has been implemented to solve it, but the

accuracy was still maintained only for a small period of time.

Further, it is known that the analytical solutions for the bivariate aggregation equation

are available only for limited cases, see [26] and references therein. Several numerical

methods, such as moving sectional [27], finite difference [28], Monte Carlo [29], sectional

quadrature [30], dual quadrature [31], finite volume schemes [32, 33] and references

therein, are considered to solve the equation.

1.2.2 Breakage equation

The breakage particulate process is a critical operation in materials engineering, where

particle size reduction is pivotal in enhancing product characteristics. This process is

employed across various industries to manipulate particles’ physical and chemical proper-

ties, thereby optimizing product functionality. In the pharmaceutical sector, particle size

affects drug dissolution rates and bioavailability, making the breakage process vital for
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effective medication delivery. The food industry relies on this process to control product

texture and flavor profiles. In mining, it is essential for producing ores, facilitating efficient

extraction of valuable minerals. Manufacturing paints, pigments, and other consumer

goods also utilize this process to achieve desired color strength and product consistency.

Hence, understanding and controlling this process are fundamental for advancing material

science and meeting the stringent quality demands of modern industry.

A general form of the breakage equation is given as

∂u(x, t)
∂ t

=
∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t). (1.2.8)

The breakage function, denoted as B(x,y), serves as the probability density function that

describes the likelihood of generating a particle of size x from a parent particle of size y.

The term S(x) describes the rate at which particles are selected to break. The breakage

function satisfies the properties

∫ x

0
B(x,y)dy = N (x), (1.2.9)

and

∫ x

0
xB(x,y)dy = x. (1.2.10)

The function N (x) is the number of daughter particle formation obtained from the

breakage of particle of size x.

1.2.2.1 Existing numerical and semi-analytical methods
The breakage equation’s wide-ranging applications have prompted numerous analytical

resolution attempts. Patil and Andrews [34] have analytically resolved the model consider-

ing binary breakage and a linear selection function, yet analytical solutions for physically

significant kernels remain arduous. Consequently, a spectrum of numerical strategies has

been adopted, including the finite volume method [3, 35–37], method of moments [30,

38–40], finite element method [41, 42], stochastic methods [43–45], Haar wavelet [46],
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fixed pivot technique [47, 48], and cell average technique [49, 50].

In recent times, there has been a surge in the adoption of semi-analytical methods for

resolving the model. In 2019, Singh et al. , applied the ADM [16], while Kaur et al.

utilized the HPM [9] and derived solutions for diverse kernels. Further in work, Kaur et

al. [8] had also employed the HAM, that yielded identical closed-form solutions as those

obtained through ADM and HPM.

Interestingly, combined aggregation-breakage equation is considered which is an intriguing

issue for academics. The problem was resolved using a class of numerical or stochastic

methods. Lee and Matsoukas [51] employed a stochastic process, namely the constant-N

Monte Carlo method, to solve the aggregation with a binary breakage equation. In 2002,

Mahoney et al. used the finite element method for aggregation, growth, and nucleation

equations [52]. Further, number density and moments were computed with the help of

the method of moments by Madras et al. in [53]. Till date, there is no literature on

semi-analytical schemes for coupled aggregation-breakage model.

1.2.3 Growth equation

The phenomenon of particle growth is of paramount importance. For instance, within the

realm of nanotechnology, the meticulous regulation of particle growth is imperative for

the synthesis of materials endowed with distinct properties tailored for sectors such as

information technology, healthcare, energy, and environmental sciences. Concurrently, in

the domain of food technology, the principles governing particle growth are strategically

utilized to enhance the preservation and prolong the shelf life of food products.

The PBE for the growth process is described as a hyperbolic PDE, given as

∂ µ(η ,τ)

∂τ
+

∂G(η ,τ)µ(η ,τ)

∂τ
= 0, (1.2.11)

with G(η ,τ) is the growth rate.
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1.2.3.1 Existing numerical and semi-analytical methods
The model in question has been addressed through a variety of numerical techniques,

including finite difference, finite volume, and finite element methods, as referenced

in the works [54, 55]. Additionally, the integrated dynamics of growth combined with

aggregation or breakage equation have garnered attention from numerous scholars. Various

numerical methods are implemented to solve the combined aggregation growth or breakage

growth models such as finite volume [56], method of characteristics [57], and many more

[58]. Recently, a combined form of method of characteristics and finite volume scheme

is implemented to solve the aggregation growth model, see [59] for detailed literature.

However, till now, no semi-analytical technique is used to solve the coupled aggregation

growth model.

1.2.4 Condensing coagulation model

This model is the combination of the two models, namely

1. Safronov-Dubovski coagulation equation and

2. inverse coagulation equation.

In 1972, Safronov reformed the Oort and van de Hulst model to another form, known as

the Oort-Hulst Safronov (OHS) equation [60]. Further, Dubovski introduced the discrete

version of the OHS model in [61]. In 2003 [62], Laurencot et al. established a relation

between Smoluchowski’s coagulation and OHS equations. In the Safronov-Dubovski

coagulation model, j-mers divide into j-monomers, provided that j ≤ i, each j monomer

collides instantly with the i-mer. From this collision act, we have j new i+1 mers. This

description of the coagulation process leads to the balance equation, for i ≥ 1,

dvi(t)
dt

= vi−1(t)
i−1

∑
j=1

κi−1, j jv j(t)− vi(t)
i

∑
j=1

κi, j jv j(t)−
∞

∑
j=i

κi, jvi(t)v j(t),

where vi(t) represents the concentration (number density) of particles of mass i at time

t and κi, j for i ̸= j is the rate at which particles of masses i and j collide, known as the
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coagulation kernel. The term κi, j is non-negative and symmetric for i, j ≥ 1, i.e., ,

κi, j = κ j,i.

The continuous form of the above model, also called OHS equation, is given by

∂ µ(η ,τ)

∂τ
=− ∂

∂η

[∫
η

0
ωκ(η ,ω)µ(η ,τ)µ(ω,τ)dω

]
−
∫

∞

η

κ(η ,ω)µ(η ,τ)µ(ω,τ)dω.

(1.2.12)

In the literature, there also exists an inverse coagulation model in which larger particles

are more unstable than the smaller particles [63]. Here, in this case, initially j-mers divide

into j-monomers provided that j > i and then each j monomer collides instantly with

i-mer. This also leads to have j new i+1 mers, and the model looks like

dvi(t)
dt

= vi−1(t)
∞

∑
j=1

Li−1, j jv j(t)− vi(t)
∞

∑
j=i

Li, j jv j(t)−
i

∑
j=1

Li, jvi(t)v j(t), i ≥ 1,

in discrete setting while the continuous form is given by

∂ µ(η ,τ)

∂τ
=− ∂

∂η

[∫
∞

η

ωL (η ,ω)µ(η ,τ)µ(ω,τ)dω

]
−
∫

η

0
L (η ,ω)µ(η ,τ)µ(ω,τ)dω.

(1.2.13)

Hence, having (1.2.12) and (1.2.13), the continuous version of the condensing coagulation

model (CCM) is described as, see [63],

∂ µ

∂τ
= Q(µ), (1.2.14)

where the collision operator Q is defined as,

Q(µ) =− ∂

∂η

[∫
η

0
ωκ(η ,ω)µ(η ,τ)µ(ω,τ)dω

]
−
∫

∞

η

κ(η ,ω)µ(η ,τ)µ(ω,τ)dω
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− ∂

∂η

[∫
∞

η

ωL (η ,ω)µ(η ,τ)µ(ω,τ)dω

]
−
∫

η

0
L (η ,ω)µ(η ,τ)µ(ω,τ)dω.

(1.2.15)

Similar to the PBE, integral properties of the concentration of particles, i.e., , moments,

are also of interest and is defined exactly as before in equation (1.2.2). It is emphasized

here that the total mass is conserved, i.e.,
dµ1(τ)

dτ
= 0.

1.2.4.1 Existing numerical and semi-analytical methods
In 2016, Davidson [63] found the analytical solutions of (1.2.14)-(1.2.15) using the

method of characteristics for constant and multiplicative kernels under some special initial

conditions and considering κ(η ,ω) = L (η ,ω). Addition to this, he also studied the self-

similar solutions for the same by following a characteristic approach as well as discussed

equilibrium solution for constant kernel. Further, he investigated the Lifshitz-Slyozov

equation(LSE) with encounters. For this, long-time behavior of the solution for three types

of initial data is analyzed. Till date, there was no literature available on semi-analytical

technique for such models.

1.3 Objectives of the thesis
1. To compute the approximate solutions for the aggregation and coupled aggregation-

breakage equations using the variational and optimized variational iteration methods.

2. To study the series solutions of aggregation, breakage, coupled aggregation-breakage

and bivariate aggregation equations using accelerated homotopy perturbation Elzaki

transformation scheme along with theoretical convergence analysis.

3. To discuss the convergence analysis, theoretical error bound and the implementa-

tion of improved optimal homotopy analysis method for aggregation and coupled

aggregation-growth models.

4. To obtain the approximated solutions for a variant of coagulation models, namely

condensing coagulation equation using homotopy perturbation and Adomian decom-
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position methods.

5. To construct a new implicit iterative method for solving ordinary and partial differ-

ential equations and comparison with the standard semi analytical methods.

1.4 Organization of the thesis
The dissertation is organized to present approximate solutions for diverse forms of the

coagulation and fragmentation equations. It explores various semi-analytical techniques,

including HPM, ADM, VIM, IOHAM and AHPETM to find the closed form or finite term

series solutions. Additionally, it introduces a novel implicit semi-analytical method for

solving nonlinear differential equations. The efficacy and precision of this new approach

are demonstrated through comparisons with established methods like ADM, HPM, HAM,

and ODM.

Let us briefly summarize the motivation and work done during this dissertation, chapter

wise, as below.

Chapter 2 delves into the application of semi-analytical strategies, specifically ADM

and VIM, to address the series solutions of aggregation, aggregation-breakage, and pure

growth equations. The chapter conducts a comparative analysis of analytical and truncated

series solutions in terms of number density and various moments. In the scenario of

pure growth, the solutions derived from ADM and VIM are proven to be mathematically

equivalent, offering closed-form solutions when the growth rate is constant. The chapter

also introduces the optimal variational iteration method (OVIM) and studied for two

cases of pure growth and one case of aggregation equation with constant kernels. It is

observed that the inaccuracy decreases to some degree but the computations of higher

term approximations require large computational time. A number of test cases for each

equation is presented to validate the methods’ precision and effectiveness by comparing

the finite term series solutions.

Moving further, Chapter 3 aims to establish a semi-analytical approach based on HPM to

find the closed form or approximated solutions for the population balance equations such
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as Smoluchowski’s coagulation, fragmentation, coupled coagulation-fragmentation and

bivariate coagulation equations. An accelerated form of the HPM is combined with the

Elzaki transformation to improve the accuracy and efficiency of the method. It has benefits

over the existing semi-analytical techniques such as ADM, ODM, and HAM in the sense

that computations of Adomian polynomials and convergence parameters are not required.

The novelty of the scheme is shown by comparing the numerical findings with the existing

results obtained via ADM, HPM, HAM and ODM for non-linear coagulation equation.

This motivates us to extend the scheme for solving the other models mentioned above. The

supremacy of the proposed scheme is demonstrated by taking several numerical examples

for each problem. The error between exact and series solutions provided in graphs and

tables show the accuracy and applicability of the method. In addition to this, convergence

of the series solution is also the key attraction of the work.

Chapter 4 describes a semi-analytical technique based on homotopy for solving the ag-

gregation and aggregation-growth equations. Multiple test scenarios are compared to

the exact and existing estimated solutions derived using HAM, HPM, ADM, and ODM

to demonstrate the precision and effectiveness of the suggested approach, namley IO-

HAM qualitatively and quantitatively. The aggregation equation yields indistinguishable

solutions using ADM, HPM and HAM methodologies. Consequently, there is no dis-

cernible enhancement in the truncated series solutions. On the contrary, ODM enhances

the solutions to a certain degree. However, the proposed scheme surpasses the accuracy

of all previously mentioned methods. Furthermore, integral qualities such as moments

are highlighted, and IOHAM enhances the accuracy of moments compared to ODM. In

contrast, the HAM still better matches the actual moments. In addition, a comprehensive

convergence study of the series solution is investigated.

Proceeding further, Chapter 5 delineates the derivation of analytical approximate solutions

for the condensing coagulation and Lifshitz-Slyzov models, employing two semi-analytical

methodologies: the homotopy perturbation and Adomian decomposition methods. The

work calculates analytical solutions for benchmark kernels, including constant and product

kernels. In addition, it formulates approximated solutions for sum and Ruckenstein kernels
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that are physically significant as well. The convergence of the solutions obtained via these

two methods to the exact solutions is mathematically validated, establishing the methods’

credibility. In cases where an analytical solution is known, the chapter contrasts numerical

results for number density and the zeroth moment with the exact solutions across various

kernels and initial conditions. A graphical illustration of the error margin between the

approximated and exact solutions is also provided.

Chapter 6 proposes a novel semi-analytical method to yield solutions over greater temporal

extents, as solving differential equations over extended temporal domains is pivotal for

many scientific and engineering endeavors. The progression of numerous phenomena in

the natural world occurs over prolonged durations, necessitating a comprehensive under-

standing of their temporal dynamics to facilitate precise prognostications and judicious

decision-making. Existing methodologies such as HPM, ADM and HAM are noted for

their precision within limited temporal scopes. ODM proposed by Odibat extends this ac-

curacy over a longer term, yet its solutions become untenable over substantial timeframes.

Moreover, this work integrates a convergence control parameter to bolster the proposed

method’s accuracy and operational efficiency. A rigorous theoretical convergence anal-

ysis is delineated, substantiating the method’s validity. Three examples are numerically

examined and discussed to validate the proposed approach empirically.

Finally, in the last chapter, the dissertation reaches its denouement by summarizing its

pivotal discoveries and suggesting directions for future academic pursuits.
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Chapter 2

Variational iteration and Adomian

decomposition methods to solve growth,

aggregation and aggregation-breakage

equations

This chapter explores semi-analytical techniques, specifically the ADM and the VIM, for

solving aggregation, aggregation-breakage, and pure growth equations. A comparison

is drawn between analytical and truncated series solutions concerning number density

and diverse moments. Furthermore, OVIM is employed to tackle growth and aggregation

equations, yielding a reduction in error compared to ADM and VIM, albeit at the expense

of increased computational complexity. Various test cases are examined to substantiate the

efficacy and precision of the series approximation methods.

Following Section 1.2, PBE which describes aggregation, breakage and growth is mathe-

matically expressed as

∂u(x, t)
∂ t

+
∂ [G(x)u(x, t)]

∂x
=

1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy−

∫
∞

0
K(x,y)u(x, t)u(y, t)dy

+
∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t). (2.0.1)

The work of this chapter is published in Journal of Computational Science, 101973(64), 2023
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The term u(x, t) is called the number density distribution function with particle size

x ∈ R+ :=]0,∞[ at time t ∈ R+. The second term on the left-hand side represents the

particle’s growth process by the growth rate G. The first two terms in the right-hand side

of the equation (2.0.1) emerge as a result of aggregation, whereas the other two terms

appear due to breakage.

In brief, the goals of this chapter is to solve the aggregation equation using VIM and

compare the results with findings of ADM solutions given in [16]. ADM suffers from the

extensive work required to derive the Adomian polynomials for non-linear terms whereas

VIM has no specific requirement for the non-linear operator and gives the solution in the

form of rapidly convergent successive approximations.

Structure of the chapter is as follows: Section 2.1 delves into the basic idea of Adomian

decomposition, variational iteration and optimal variational iteration schemes for solving

the differential equations. Furthermore, numerical implementations of the methods are

studied for solving growth, aggregation and aggregation-breakage models under Section

2.2. In the last section, conclusions drawn from the implementations are discussed.

2.1 Semi-analytical techniques
Let us review briefly the basic ideas behind the VIM, OVIM and ADM to solve the

differential equations.

2.1.1 Variational iteration method

J.He proposed the VIM [64, 65], for solving linear and non-linear ordinary and partial

differential equations in bounded and unbounded domains. The method is used in various

disciplines including physics [66], chemistry[67], biomedical science [68], and engineering

science [69]. To understand the algorithm, consider a differential equation in the form

T (u)−h(r) = 0, r ∈ Ω, (2.1.1)
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where T is an operator and h(r) is a known analytical function with domain Ω. Above

equation can be written as

L(u)+N(u)−h(r) = 0, (2.1.2)

where L and N are linear and non-linear operators, respectively. According to J.He [64],

the proposed iterations to solve the differential equation are

un+1(x, t) = un(x, t)+
∫ t

0
λ (ζ )(L(un(x,ζ ))+N(ũn(x,ζ ))−h(r))dζ for n ≥ 0, (2.1.3)

for λ (ζ ) being the Lagrange multiplier, which can be identified via the variational theory.

The second term on the right-hand side is called the correction [70]. Here, un is the nth

approximation and ũn is the restricted variation, i.e. δ ũn = 0, where δ ũn represents the

first variation of ũn, one may refer to [71] for more details. The initial condition u(x,0)

is usually considered as initial guess or zeroth approximation u0(x, t). As a result, the

solution is given by

u = lim
n→∞

un. (2.1.4)

2.1.2 Optimal variational iteration method

This section is devoted to defining an enhanced version of the VIM [72], where the

iterations to solve equation (2.1.1) are given as follows:

un+1(x, t) = un(x, t)+h
∫ t

0
λ (ζ )(L(un(x,ζ ))+N(ũn(x,ζ ))−h(r))dζ . (2.1.5)

Here h is a convergence control parameter which possibly speeds up the VIM’s convergence

[72–76]. This optimal parameter h is computed by minimizing the Res(h), defined by

Res(h) =
√∫

Ω

(T (uk)−h(r))dΩ.
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Due to the difficulty in calculating the iterations, residue can also be calculated numerically

using the squared residual formula,

Res(h) =

√
1
M

M

∑
m=1

(T (uk(rm))−h(rm))2,

where rm ∈ Ω are arbitrary sample points and M is the number of partitions. Readers are

referred to [8, 77] and further citations for detailed explanation.

2.1.3 Adomain decomposition method

The technique was developed in 1988 by George Adomian [78] for solving ordinary and

partial linear/non-linear differential equations including differential-algebraic equations,

stochastic systems, functional equations, integro-differential equations, and eigenvalue

problems, see [16, 79–81] and further references cited therein.

Consider the following differential equation to explain the ADM, see [78],

Ly+Ry+Ny = g(x), (2.1.6)

where N is a non-linear and L is a linear operator with highest order derivative. It is

assumed that L is invertible and R is a linear differential operator of order less than L.

Thus, the above equation can be written as

y = φ +L−1g(x)−L−1Ry−L−1Ny, (2.1.7)

for φ being the function representing the term arising from the given initial conditions.

For non-linear equations, non-linear operator N(y) = F(y) is usually represented by an

infinite series of the so-called Adomian polynomials

F(y) =
∞

∑
k=0

Ak(y), (2.1.8)
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where Ak are generated for all kinds of non-linearity of F(y) [82]. According to the ADM,

the solution y is defined by the series

y =
∞

∑
n=0

yn, (2.1.9)

where the components y0,y1,y2, · · · are usually determined recursively by

y0 = φ +L−1g(x),

yk+1 =−L−1(Ryk)−L−1Ak, k ≥ 0. (2.1.10)

By substituting Ak in (2.1.10) leads to the determination of the components of y. Then,

using all these components in (2.1.9), we can find the solution y.

2.2 Numerical implementation
This part focuses on the numerical implementations of the series solution schemes men-

tioned in the previous Section for solving growth, aggregation and aggregation-breakage

equations. The approximated series solutions are compared with the available exact

solutions for number density and the moments. In addition, errors are computed and

represented in tabular form to check the accuracy and reliability of the methods.

2.2.1 Pure growth equation

To solve the pure growth equation, two scenarios are explored. The first case is constant

growth, while the second one is linear growth with an exponential initial condition in

both the situations. By taking K(x,y) = 0 and S(x) = 0 in the equation (2.0.1), the growth

equation is obtained as

∂u(x, t)
∂ t

+
∂ [G(x)u(x, t)]

∂x
= 0. (2.2.1)
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2.2.1.1 Variational iteration method
Using VIM, considering L = ∂

∂ t and the remaining terms as N(u), the iterations for solving

the growth equation are

un+1(x, t) = un(x, t)+
∫ t

0
λ (ζ )

(
∂un(x,ζ )

∂ζ
+

∂

∂x
[G(x)un(x,ζ )]

)
dζ . (2.2.2)

Thus, by following [65]

δun+1 = δun +
∫ t

0
λ (ζ )

(
δu′n +

∂

∂x
[G(x)δ ũn(x,ζ )]

)
dζ

= (1+λ (t))δun −
∫ t

0
λ
′(ζ )δundζ . (2.2.3)

Hence, the stationary conditions are

λ
′(ζ ) = 0 and 1+λ (t) = 0,

which yields λ (ζ ) =−1.

2.2.1.2 Adomian decomposition method
Consider L = ∂

∂ t , where L−1 is given by

L−1 =
∫ t

0
[.]dt.

Operating L−1 on both sides of equation (2.2.1) leads to

u(x, t) = u0(x)−L−1
[

∂ [G(x)u(x, t)]
∂x

]
. (2.2.4)

Following ADM, introduce the solution u(x, t) of (2.2.1) as

u(x, t) =
∞

∑
j=0

c j(x, t). (2.2.5)
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Substituting (2.2.5) in the equation (2.2.4) gives the iterations as follows

c0(x, t) = u0(x), cn+1(x, t) =−L−1
[

∂ [G(x)cn(x, t)]
∂x

]
,

which lead to a complete determination of the solution components c j(x, t). For the

numerical simulations, the n-term truncated series solution can be obtained as

un(x, t) :=
n

∑
j=0

c j(x, t).

Test case 1 (TC-1): Constant growth

Iterations to compute the solution by proposed VIM are, by following the recursive scheme

(2.2.2), by setting G(x) = 1 and with the initial condition u(x,0) = e−x,

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, t)

∂ t
+

∂un(x, t)
∂x

)
dt. (2.2.6)

Having this, we obtain the successive terms of the approximated solution as

u1(x, t) =u0(x, t)−
∫ t

0

(
∂

∂ t
u0(x, t)+

∂

∂x
u0(x, t)

)
dt

=e−x −
∫ t

0

(
∂

∂ t
(e−x)+

∂

∂x
(e−x)

)
dt = (1+ t)e−x,

and in a similar manner,

u2(x, t) =
(

1
2!

t2 + t +1
)

e−x, u3(x, t) =
(

t3

3!
+

t2

2!
+ t +1

)
e−x,

and proceeding further the expression for un(x, t) is

un(x, t) =
(

tn

n!
+ · · ·+ t3

3!
+

t2

2!
+ t +1

)
e−x.
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According to equation (2.1.4), the solution is given by

u(x, t) = lim
n→∞

un(x, t) = et−x,

which is the exact solution of the problem.

Now, considering the same data for G(x) and u0(x), ADM leads to the following iterations

c0(x)= e−x, c1(x, t)= te−x, c2(x, t)=
1
2!

t2e−x, c3(x, t)=
1
3!

t3e−x, · · · ,cn(x, t)=
1
n!

tne−x.

So, here again, the exact solution is defined by

u(x, t) =
∞

∑
j=0

c j(x, t) =
∞

∑
j=0

1
j!

tne−x = et−x.

It can be observed that the truncated solutions using ADM and VIM are identical in

this case. Thus, the numerical results are plotted for VIM and OVIM only. In addition,

truncation errors employing proposed strategies are provided in Table 1 for various values

of n. Such truncation error is computed using the formula given as, see [16] for ADM

error,

Absolute Error =
n

∑
i=1

|ui
n −ui|hi, (2.2.7)

where ui
n = un(xi, t) and ui = u(xi, t). From Table 2.1 where the absolute error is presented,

n 2 4 6 8 10

VIM 74.266 42.0473 15.1825 3.6177 0.599277
OVIM 68.3984 35.1237 11.8776 2.17243 0.299946

Table 2.1: Truncation error when t = 4.5 and x ∈ [0,5] taking hi = 0.01 for TC-1

it is evident that error decreases with increasing number of approximations and OVIM

performs better than VIM. The number density and the first moment at t = 4.5 are depicted
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Figure 2.1: Number density and first moment for TC-1

in Figure 2.1. It is shown that as number of terms in the series solution increases, the

estimated results are in excellent agreement to the analytical solutions of number density

and first moment. Further, Figure 3 presents the absolute error using ten-term truncated

solution obtained using VIM and OVIM. It is clear that the involvement of the convergence

parameter improves the accuracy of the truncated solution. Moreover, one can observe

from Figure 2.2 that as time increases, the error increases, which can be reduced by

considering more components of the truncated solution as demonstrated in Table 2.1 as

well.

Test case 2: Linear growth

In this case, taking G(x) = x in the growth equation and u(x,0) = u0(x, t) = e−x, the

recursive scheme (2.2.2) provides the iterations for VIM as follows

u1(x, t) =e−x −
∫ t

0

(
∂

∂ t
(e−x)+

∂

∂x
(xe−x)

)
dt = e−x(tx− t +1),

u2(x, t) = e−x
(

t2

2
(
x2 −3x+1

)
+ t(x−1)+1

)
,

u3(x, t) = e−x
(

t3
(

x3

6
− x2 +

7x
6
− 1

6

)
+ t2

(
x2

2
− 3x

2
+

1
2

)
+ t(x−1)+1

)
.

Similarly, one can compute the higher order terms using MATHEMATICA. Similar to the
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(a) Exact solution (b) VIM absolute error

(c) OVIM absolute error

Figure 2.2: Exact solution and absolute error for TC-1

previous test case, the first few successive iterations for ADM are obtained as

c0(x, t) = e−x, c1(x, t) = t
(
−e−x)(1− x), c2(x, t) =−1

2
t2e−x (−x2 +3x−1

)
,

c3(x, t)=−1
3

t3e−x
(
−x3

2
+3x2 − 7x

2
+

1
2

)
, c4(x, t)=−1

4
t4e−x

(
−x4

6
+

5x3

3
− 25x2

6
+

5x
2
− 1

6

)
.

Therefore, the n term truncated solution is given by

un(x, t) =
n

∑
j=0

c j(x, t),
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where the exact solution for the model is u(x, t) = e−e−tx−t . Again it is noticed that the

truncated solutions using ADM and VIM are same, so the numerical simulations are

visualized for VIM and OVIM only. The truncation error is summarized in Table 2.2 below

and the decreasing trend of error is marked with increasing n. As expected, OVIM again

provides less error as compared to VIM for all n.

n 2 4 6 8 10

VIM 0.7156 0.6396 0.5134 0.4243 0.3486
OVIM 0.4355 0.2311 0.04584 0.1348 0.0057

Table 2.2: Truncation error when t = 1.5 and x ∈ [0,10] taking hi = 0.01 for TC-2.
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Figure 2.3: Number density and first moment for TC-2

Further to see this, in Figure 2.3, a comparison between the truncated and exact solutions

for the number density and first moment is made at t = 1.2 by taking various values of n.

It is clear from the figure that as the number of terms increases, truncated solutions both

for the number density and the total mass move closer to the analytical ones. It is worth

to point out that the zeroth moment in the above two cases is constant for both exact and

approximated solutions. The accuracy of the methods can also be seen from Figure 2.4

which gives the plot of the absolute errors obtained using OVIM and VIM. It indicates

that the error is negligible for n = 8 for both the schemes with OVIM showing advantages

27



Chapter 2. Variational iteration and Adomian decomposition methods to solve growth,
aggregation and aggregation-breakage equations

(a) VIM solution (b) Exact solution

(c) VIM absolute error (d) OVIM absolute error

Figure 2.4: Truncated solution, exact solution and absolute error for TC-2

over VIM.

2.2.2 Aggregation equation

This section is devoted to solving the aggregation equation using VIM and the obtained

numerical results will be compared to the ADM solutions provided in [16]. Three test

cases are considered consisting of constant, sum and product kernels with exponential

initial condition to show the advantages of VIM over ADM. Following the idea of Section

2.1.1, VIM iterations to solve the aggregation equation (2.0.1), with G = 0 and S = 0 lead
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to

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, t)

∂ t
− 1

2

∫ x

0
K(x− y,y)un(x− y, t)un(y, t)dy

+
∫

∞

0
K(x,y)un(x, t)un(y, t)dy

)
dt. (2.2.8)

Let us simplify these iterations for the following problems.

Test case 3: Constant kernel

Consider K(x,y) = 1 with the initial condition u0(x) = e−x, then the recursive relation

(2.2.8) reduces to

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, t)

∂ t
− 1

2

∫ x

0
un(x− y, t)un(y, t)dy

+
∫

∞

0
un(x, t)un(y, t)dy

)
dt. (2.2.9)

Hence, the first few successive iterations are computed as

u1(x, t)= e−x−
∫ t

0

(
∂

∂ t
(e−x)− 1

2

∫ x

0
e−(x−y)e−ydy+

∫
∞

0
e−xe−ydy

)
dt = e−x

(
t
(x

2
−1
)
+1
)
,

u2(x, t) =e−x
(

t3
(

x3

144
− x2

12
+

x
4
− 1

6

)
+ t2

(
x2

8
− 3x

4
+

3
4

)
+ t
(x

2
−1
)
+1
)
.

and so on. The exact solution to this problem is provided in [83] as

u(x, t) =
4e−

2x
t+2

(t +2)2 .

Using the error formula (2.2.7), in Table 2.3, the errors between the exact and semi-

analytical solutions using ADM, VIM and OVIM are evaluated for various values of n.

It is clear from this table that VIM and OVIM not only provide better estimation than

ADM but errors are significantly reduced and close to zero for n = 6 and higher. To see

this further, five term truncated solution as well as the zeroth moment from ADM, VIM
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and OVIM are plotted along with the exact number density and moment in Figure 2.5 and

one can observe that OVIM and VIM are in excellent agreement with the analytical ones

as compared to ADM. Figure 2.6 displays 3D plots of approximated and exact solutions

along with the errors for the number density. The novelty of VIM is visible from the error

graphs 2.6(d) and 2.6(e) which guarantee that ADM’s error is relatively higher than VIM

and OVIM as time progresses.

n 3 4 5 6

ADM 0.141249 0.0902173 0.0570828 0.0358428
VIM 0.0274487 0.0055058 0.0055058 0.000914124

OVIM 0.0274487 0.0041382 5.41422×10−5 4.96436×10−6

Table 2.3: Truncation error when t = 1.2 and x ∈ [0,10] taking hi = 0.01 for TC-3.
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Figure 2.5: Number density and zeroth moment for TC-3

Remark 2.2.1. The inclusion of the convergence control parameter enhances the VIM’s

accuracy and efficiency to some degree but raises its computing cost heavily. Therefore,

computing the OVIM iterations are based on the model’s complexity. For instance, it was

difficult to calculate the higher-order components of the series solution for non-linear

aggregation (except for constant kernel) and combined aggregation-breakage equations.

It is worth to mention that 17.87 ≈ 18 minutes was required to compute a 4-term esti-

mated solution in OVIM, whereas VIM only needed 18 seconds for aggregation equation
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(a) Exact solution (b) VIM solution

(c) ADM solution (d) OVIM error

(e) VIM error (f) ADM error

Figure 2.6: Number density and absolute error for TC-3
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with constant kernel. Consequently, the computations for OVIM are omitted for further

discussion.

Test case 4: Sum kernel

Considering K(x,y) = x+ y with initial data u0(x) = e−x lead to the following form of

recursive relation

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, t)

∂ t
− 1

2

∫ x

0
(x+ y)un(x− y, t)un(y, t)dy

+
∫

∞

0
(x+ y)un(x, t)un(y, t)dy

)
dt. (2.2.10)

Thus, the first few terms of the series solutions due to VIM are

u1(x, t) =e−x
(

t
(

x2

2
− x−1

)
+1
)
,

u2(x, t) =e−x
(

t3
(

x6

720
− x5

72
− x4

36
+

x3

3
− x2

6
− x

3

)
+ t2

(
x4

12
− x3

2
− x2

4
+

3x
2
+

1
2

)
+ t
(

x2

2
− x−1

)
+1
)
,

and so on. Continuing in the similar manner, one can compute the higher term approxi-

mated solutions with the help of MATHEMATICA. The exact solution for the problem is

given in [16], as

u(x, t) =
e(e−t−2)x−tI1

(
2
√

1− e−tx
)

√
1− e−tx

,

where I1 is the modified Bessel function of the first kind. The number density of the

VIM and ADM solutions for n = 4 at t = 0.7 are compared with the analytical result in

Figure 2.7. VIM performs better with a four term approximated solution. ADM, on the

other hand, needs a sixteen-term truncated solution to achieve the same level of accuracy.

Interestingly, for both approaches, four-term truncated solutions yield similar results and

match exactly with the precise total number of particles in Figure 2.7(b). Figure 2.8 also

illustrates that ADM has deviations when the VIM is nearly equal to the analytical solution

of particle concentration for n = 4. Finally, from Figures 2.8(d) and 2.89(e), it is clear that
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the VIM error is very small compared to the error due to ADM truncated solutions and

thus, it clearly justifies the accuracy of studying VIM. Test case 5: Product kernel
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Figure 2.7: Number density and zeroth moment for TC-4

Let us take K(x,y) = xy and the initial condition u0(x) = e−x, the recursive relation (2.2.8)

becomes

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, t)

∂ t
− 1

2

∫ x

0
xyun(x− y, t)un(y, t)dy+

∫
∞

0
xyun(x, t)un(y, t)dy

)
dt.

(2.2.11)

Using the above defined relation, truncated solutions are obtained as

u1(x, t) =e−x
(

tx3

12
− tx+1

)
,

u2(x, t) =e−x
(

t3
(

x9

544320
− x7

3780
+

x5

180

)
+ t2

(
x6

720
− x4

12
+

x2

2

)
+ t
(

x3

12
− x
)
+1
)
,

and so on. The exact solution for this problem is provided in [16] as

u(x, t) = e(−(1+t)x)
∞

∑
k=0

tkx3k

(k+1)!Γ(2k+1)
.

Again, truncation errors are determined for n = 2,3,4,5 using both VIM and ADM by
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(a) Exact solution (b) VIM solution

(c) ADM solution (d) VIM error

(e) ADM error

Figure 2.8: Number density and absolute error for TC-4
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2.2. Numerical implementation

n 2 3 4 5

ADM 0.178261 0.213002 0.200261 0.257254
VIM 0.146182 0.111638 0.0957513 0.0662966

Table 2.4: Truncation error when t = 0.7 and x ∈ [0,10] taking hi = 0.01 for TC-5.
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Figure 2.9: Number density and the zeroth moment for TC-5

comparing the results with the exact solution in Table 2.4. It indicates that the error due to

ADM is not only higher but having oscillatory nature while VIM consistently provides

decreasing trend of errors with increasing n. Truncated solutions for number density

and the zeroth moment at t = 0.8 are shown in Figure 2.9 along with the exact ones. As

observed in the prior case, similar results are being pursued here. The exact number density

and the VIM-based number density plots are identical taking n = 5 iterations. However,

ADM reveals fluctuations in number density for n = 5 that can be improved by using a

ten-term approximation. In addition to this, both these methods predict the zeroth moment

accurately for n = 5, see Figure 2.9(b). The superiority of VIM over ADM is also justified

from Figure 2.10 which represents 3D plots for the number density using n = 5 and the

errors between the exact and approximate series solutions.

2.2.3 Aggregation-breakage equation

This subsection gives numerical implementation and comparison between VIM and ADM

solutions for the aggregation-breakage equation. With the initial conditions e−x and 4xe−2x,
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(a) Exact solution (b) VIM solution

(c) ADM solution (d) VIM error

(e) ADM error

Figure 2.10: Number density and absolute error for TC-5
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2.2. Numerical implementation

two test cases are investigated to solve the equation (2.0.1) in series form consisting of

constant aggregation kernel K(x,y) = 1, binary breakage kernel B(x,y) = 2/y, selection

rate S(x) = x and growth rate G = 0. Before proceeding to discussion of the numerical

counterpart, let us write VIM and ADM iterations for the coupled model.

2.2.3.1 Variational iteration method
Using the VIM as defined in Section 2.1, considering L = ∂

∂ t and the remaining terms as

N(u), iterations to solve the equation (2.0.1) with G = 0 are governed by

un+1(x, t) =un(x, t)−
∫ t

0

[
∂un(x, t)

∂ t
− 1

2

∫ x

0
K(x− y,y)un(x− y, t)un(y, t)dy

+
∫

∞

0
K(x,y)un(x, t)un(y, t)dy−

∫
∞

x
B(x,y)S(y)un(y, t)dy+S(x)un(x, t)

]
dt. (2.2.12)

2.2.3.2 Adomian decomposition method
Following Section 2.2, operating L−1 on equation (2.0.1) having G = 0 and by denoting

the functions f1(u) = u(x− y, t)u(y, t) and f2(u) = u(x, t)u(y, t) lead to

u(x, t) = u0(x)−
∫ t

0

[
1
2

∫ x

0
K(x− y,y) f1(u)dy−

∫
∞

0
K(x,y) f2(u)dy

+
∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t)

]
dt.

According to [78], ADM introduces the solution u(x, t) and the non-linear polynomials

fi(u), i = 1,2 as

u(x, t) =
∞

∑
j=0

c j(x, t), f1(u) =
∞

∑
j=0

A j, f2(u) =
∞

∑
j=0

B j

where A j and B j are Adomian polynomials, given for n ≥ 1 as

An−1 =
n−1

∑
j=0

c j(x− y, t)cn− j−1(y, t),
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and

Bn−1 =
n−1

∑
j=0

c j(x, t)cn− j−1(y, t).

Thus, the scheme would be as follows

c0(x, t) =c0,

cn(x, t) =−L−1
(

1
2

∫ x

0
K(x− y,y)An−1dy−

∫
∞

0
K(x,y)Bn−1dy+

∫
∞

x
B(x,y)S(y)cn(y, t)dy

−S(x)cn(x, t)
)
, n = 1,2,3, · · · . (2.2.13)

Let us simplify the formulations (2.2.12) and (2.2.13) for the particular cases of kernels.

Test case 6: As mentioned, taking K(x,y) = 1, B(x,y) = 2
y , S(x) = x, G(x) = 0 with

initial condition u(x,0) = e−x, the VIM iterations are obtained using (2.2.12) as

u1(x, t) = e−x
(

t
(

1− x
2

)
+1
)
,

u2(x, t) = e−x
(

t3
(

x3

144
− x2

12
+

x
4
− 1

6

)
+ t2

(
x2

8
− x

4
− 1

4

)
+ t
(

1− x
2

)
+1
)
.

Proceeding in a similar pattern, higher order terms can be calculated using MATHEMAT-

ICA. Next, following (2.2.13), the first few iterations of the ADM solutions are

c1(x, t) =−1
2

te−x(x−2), c2(x, t) = t2e−x
(

x2

8
− x

4
− 1

4

)
,

c3(x, t) = t3e−x
(
− x3

48
+

x
3
− 1

6

)
, c4(x, t) = t4e−x

(
x4

384
+

x3

96
− 5x2

48
− x

24
+

7
48

)
.

Using MATHEMATICA, one can find further iterations and then the nth term approximate

series solution is described as

un(x, t) =
n

∑
j=0

c j(x, t).
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2.2. Numerical implementation

Since, the analytical solutions for the number density and the zeroth moment are not
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*

*

*

*

*
*

*
* * * * * * * * *

⊙

⊙

⊙

⊙

⊙
⊙

⊙
⊙

⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

* VIM (n=3)

⊙ ADM (n=3)
ADM (n=7)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

x

N
um

be
r

D
en

si
ty

(a) Number density

*
*

*
*

*
*

*
*

*
*

*
*

*
*

⊙

⊙
⊙

⊙
⊙

⊙
⊙

⊙
⊙

⊙
⊙ ⊙ ⊙ ⊙

* VIM (n=3)

⊙ ADM (n=3)
ADM(n=7)

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.1

1.2

1.3

1.4

1.5

t

Z
er

ot
h

M
om

en
t

(b) Zeroth moment

Figure 2.11: Number density and zeroth moment for TC-6

available in this case, the solution components are plotted for both the methods using

n = 3 and 7 for ADM and n = 3 for VIM. At t = 1.1, it can be seen from Figure 2.11

that the seven term ADM solution and the zeroth moment coincide with the three term

truncated number density and the zeroth moment obtained using VIM. Same observations

for number density are made from 3D plots presented in Figures 2.12(a)-(c). Moreover,

considering three term VIM solution as a standard solution, Figures 2.12(d) and 2.12(e)

depict that the error between three term VIM solution with seven term ADM solution is

almost negligible as compared to the error with three term ADM solution.

Test case 7: Consider the same aggregation, breakage and growth kinetics parameters as

taken in the previous Test case 6 but with different initial condition u(x,0) = 4xe−2x. The

first two iterations for VIM are computed as

u1(x, t) = e−2x
(

t
(

4x3

3
−4x2 +2

)
+4x

)
,

u2(x, t) =e−2x
(

t3
(

2x7

945
− 4x6

135
+

4x5

45
+

2x4

9
− 10x3

9
+

2x2

3
+

2x
3
− 1

3

)
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(a) VIM solution (n=3) (b) ADM solution (n=3)

(c) ADM solution (n=7) (d) Error (n=3)

(e) Error (n=7)

Figure 2.12: Number density and error for TC-6
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2.2. Numerical implementation

+ t2
(

2x5

15
− 4x4

3
+2x3 +3x2 −3x− 1

2

)
+ t
(

4x3

3
−4x2 +2

)
+4x

)
.

Due to complexity of the expression, we have not provided the higher terms here. For

ADM, the first few terms of the series solution are

c1(x, t)= te−2x
(

4x3

3
−4x2 +2

)
, c2(x, t)= t2e−2x

(
2x5

15
− 4x4

3
+2x3 +3x2 −3x− 1

2

)
,

c3(x, t) =t3e−2x
(

2x7

315
− 2x6

15
+

2x5

3
− 31x3

9
+

4x2

3
+

13x
6

− 1
3

)
,

c4(x, t) =t4e−2x
(

x9

5670
− 2x8

315
+

x7

15
− x6

6
− 5x5

9
+

65x4

36
+

17x3

18
− 11x2

4
− x

6
+

7
24

)
.

The comparison of three term VIM and ADM truncated solutions with seven term ADM

VIM vs. ADM
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Figure 2.13: Number density and zeroth moment for TC-7

approximate solution is shown in Figure 2.13. It is noticed that the ADM seven term

truncated solution is nearly identical to the three term VIM solution, which is again ensured

from 3D Figure 2.14. The errors between ADM seven term solution with three term

solutions of VIM and ADM are presented in Figures 2.14(d) and 2.14(e), demonstrating
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(a) VIM solution (n=3) (b) ADM solution (n=3)

(c) ADM solution (n=7) (d) VIM error (n=3)

(e) ADM error (n=3)

Figure 2.14: Number density and error for TC-7
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that VIM outperforms ADM.

2.3 Conclusions
In comparison to the ADM, this chapter established that the VIM provided better estimates

for solving the non-linear aggregation or coupled aggregation-breakage models for the

number density and the zeroth moment. For the pure growth process, both formulations

were exactly the same for the particle density and finite term series solutions were shown

in excellent agreement with the analytical ones. Both ADM and VIM gave closed form

solutions for the growth equation having constant growth rate. Further, to accelerate

the accuracy of the solution, OVIM was implemented to solve the growth model and

aggregation equation with constant kernel. However, the computational cost restricted us

from applying the technique for other considered problems. The accuracy of VIM over

ADM [16] for the aggregation model was shown by comparing the series approximated

solutions and moment with the analytical solutions. Three different test cases were

implemented to justify the better efficiency and accuracy of VIM over ADM. In addition,

finite term solutions were computed for solving the coupled aggregation-breakage terms,

and numerical simulations were compared between ADM and VIM results in the absence

of analytical solutions. Despite the advantages of the VIM over ADM, we would like

to enlighten the readers with some limitations of the method. It was observed that the

terms obtained using VIM were quite complicated, and it was hard to find the closed-form

solution. Additionally, it also required large computational cost for finding the higher

order components of the series solution.
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Chapter 3

Elzaki transform based accelerated

homotopy perturbation method for

multi-dimensional coagulation and

coupled coagulation-fragmentation

equations

This chapter aims to establish a semi-analytical approach based on the HPM to find

the closed form or approximated solutions for the population balance equations such

as Smoluchowski’s coagulation, fragmentation, coupled coagulation-fragmentation, and

bivariate coagulation equations. An accelerated form of the HPM is combined with

the Elzaki transformation to improve the accuracy and efficiency of the method. The

supremacy of the proposed scheme, called AHPETM, is demonstrated by taking several

numerical examples for each problem. In addition, convergence of the series solution is

also the key attraction of the work.

The considerable part of this chapter is published in Journal of Applied Analysis and Computation,
14(5),1-32, 2024
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Chapter 3. Elzaki transform based accelerated homotopy perturbation method for
multi-dimensional coagulation and coupled coagulation-fragmentation equations

Let us recall the mathematical formulation of pure fragmentation equation 1.2.8,

∂u(x, t)
∂ t

=
∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t), (3.0.1)

and the non-linear Smoluchowski’s coagulation equation (1.2.5),

∂u(x, t)
∂ t

=
1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy−

∫
∞

0
K(x,y)u(x, t)u(y, t)dy, (3.0.2)

with the initial condition u(x,0) = f (x).

Further, the bivariate equation for the coagulation process is given by

∂u(x,y, t)
∂ t

=
1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)u(x− x′,y− y′, t)u(x′,y′, t)dx′dy′

−
∫

∞

0

∫
∞

0
K(x,x′,y,y′)u(x,y, t)u(x′,y′, t)dx′dy′, (3.0.3)

with the initial condition u(x,y,0) = u0(x,y)≥ 0.

The chapter is organized as follows: Section 3.1 discusses a brief outline of the Elzaki

transformation. In Section 3.2, the general methodology of HPM and AHPETM are

presented. In Section 3.3, AHPETM is developed for aforementioned population balance

equations. Further, Section 3.4 gives a detailed convergence analysis of the proposed

iterative scheme. In Section 3.5, the developed formulations are adopted to demonstrate

solutions for several kernels and the supremacy of the scheme over HPM, ADM, HAM,

and ODM solutions are shown by means of numerical simulations.

3.1 Elzaki transformation and its properties
Tarig Elzaki developed the Elzaki transformation in 2011 [84, 85], which is the modifica-

tion of the general Laplace and Sumudu transformations to solve the differential equation

in the time domain. In [84, 85], authors show the efficiency and accuracy of the Elzaki

transformation on a large class of differential and integral equations. To understand the

46



3.2. Methodology

definition of the transformation, consider a set

A =

{
f (t) : ∃M,k1,k2 > 0, | f (t)|< Me

|t|
k j , if t ∈ (−1) j × [0,∞)

}

then the Elzaki transformation is defined as

E[ f (t)] = T [v] = v
∫

∞

0
f (t)e−

t
v dt, t > 0,

and the inverse of Elzaki transformation [86] is defined as

E−1[T [v]] =
1

2πi

∫
∞

0
etvT

[
1
v

]
vdv.

Some of the Elzaki transformation for standard functions are listed in Table 3.1.

Table 3.1: Properties of Elzaki transformation

f (t) E[ f (t)]

1 v2

tn n!vn+2

eat v2

1−av

E[ f (t)+g(t)] E[ f (t)]+E[g(t)]

E[ f n(t)] T [v]
vn −∑

n−1
k=0 v2−n+k f k(0), n ≥ 1

3.2 Methodology
In this section, we review the basics of HPM and AHPETM for solving general differential

equations. Then the schemes are applied to solve multi-dimensional coagulation and

coupled coagulation-fragmentation equations.
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3.2.1 Review of HPM

Let us consider the general differential equation

D(c)−h(x) = 0, x ∈ Ω (3.2.1)

with the boundary conditions

B
(

c,
∂c
∂n

)
= 0,r ∈ ∂Ω, (3.2.2)

where D and B are the differential and boundary operators, respectively. One can usually

decompose the differential operator into linear (L) and non-linear (N) operators, implying

that equation (3.2.1) becomes

L(c)+N(c)−h(x) = 0. (3.2.3)

Now, according to HPM, a homotopy H : Ω× [0,1]→ R is constructed that satisfies

H[v(x, p)] = (1− p)[L[v(r, p)]−L[(c0)]]+ p[D[v(r, p)]−h(x)] = 0, (3.2.4)

where c0 is the initial guess for the equation (3.2.1) and p is the embedding parameter that

increases monotonically from 0 to 1. According to the HPM, we can write the solution of

the equation (3.2.1) in the form of series as

v =
∞

∑
k=0

pkvk = v0 + pv1 + p2v2 + · · · . (3.2.5)

Substituting equation (3.2.5) in (3.2.4) and letting p → 1, the solution is obtained as

follows

c = lim
p→1

v =
∞

∑
k=0

vk. (3.2.6)
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3.2. Methodology

3.2.2 Accelerated homotopy perturbation Elzaki transformation method
Consider a non-linear differential equation

∂ nc
∂ tn +L[c(x, t)]+N[c(x, t)] = b(x) (3.2.7)

with the initial conditions ci(x,0) = gi(x), i = 0,1,2, · · · ,n−1, where ci(x, t) denotes

the ith order derivative of c(x, t) with respect to t. Taking Elzaki transformation and using

its properties on equation (3.2.7) finally provide, by following [87],

E[c(x, t)] =
n−1

∑
k=0

vk+2ck(x,0)+ vnE[b(x)−L[c(x, t)]−N[c(x, t)]]. (3.2.8)

Now, applying the homotopy perturbation method to the equation (3.2.8), we get

(1− p)(E[c(x, t)]−E[c(x,0)])+p
(

E[c(x, t)]−
n−1

∑
k=0

vk+2ck(x,0)

− vnE[b(x)−L[c(x, t)]−N[c(x, t)]]
)
= 0. (3.2.9)

Let the unknown function c(x, t) and non-linear operator N[c(x, t)] can be written in series

form as

c(x, t) =
∞

∑
n=0

vn pn (3.2.10)

and

N[c(x, t)] =
∞

∑
n=0

Hn pn (3.2.11)

where Hn represents the accelerated He’s polynomial with

Hn(x, t) = N(
n

∑
i=0

vi)−
n−1

∑
i=0

Hi, for n ≥ 1 and H0 = N(v0). (3.2.12)
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Substituting the values of c(x, t) and N[c(x, t)] from the equations (3.2.10) and (3.2.11)

into equation (3.2.9) give

E[
∞

∑
n=0

vn pn] =
n−1

∑
k=0

vk+2ck(x,0)+ p

{
vnE

[
g(x)−L[

∞

∑
n=0

vn pk]+
∞

∑
n=0

Hn pn

]}
.

Applying inverse Elzaki transformation and comparing the coefficients of powers of p, the

components of series solution, i.e., v′is are given in Table 3.2 and hence the solution of the

Table 3.2: Components of series solution

v0 c(x,0)

v1 ∑
n−1
k=1

tk

k!c
k(x,0)+E−1{vnE[b(x)−L[v0]+H0]}

v2 −E−1{vnE[L[v1]+H1]}
...

...
vn −E−1{vnE[L[vn−1]+Hn−1]}

equation (3.2.7) is obtained by taking p → 1 in the equation (3.2.10).

3.3 AHPETM for coagulation fragmentation equations
In the below section, AHPETM is extended to solve Smoluchowski’s coagulation, pure

fragmentation, coupled coagulation-fragmentation and bivariate coagulation equations.

3.3.1 Smoluchowski’s coagulation equation

Consider the non-linear aggregation equation (3.0.2) with initial condition u(x,0) = u0(x).

Applying Elzaki transformation, an integral form is obtained as

E[u(x, t)] = v2u(x,0)+vE
[

1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy

−
∫

∞

0
K(x,y)u(x, t)u(y, t)dy

]
. (3.3.1)
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In order to apply the scheme, compare equation (3.3.1) with the transformed equation

(3.2.8), which provides L[u] = 0, b(x) = 0 and

N[u] =−1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy+

∫
∞

0
K(x,y)u(x, t)u(y, t)dy. (3.3.2)

Now, applying the HPM on equation (3.3.1) as defined in equation (3.2.9), we get

(1− p)(E[u(x, t)]−E[u(x,0)])+ p
(

E[u(x, t)]− v2u(x,0)−

vE
[

1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy−

∫
∞

0
K(x,y)u(x, t)u(y, t)dy

])
= 0. (3.3.3)

According to the methodology defined in Section 3.2.2, u(x, t) = ∑
∞
n=0 vn pn and the non-

linear operator N[u] = ∑
∞
n=0 Hn pn, where Hn for SCE is given by

Hn =
1
2

∫ x

0
K(x− y,y)

n

∑
i=0

vi(x− y, t)
n

∑
i=0

vi(y, t)dy

−
∫

∞

0
K(x,y)

n

∑
i=0

vi(x, t)
n

∑
i=0

vi(y, t)dy−
n−1

∑
i=0

Hi, n ≥ 1, (3.3.4)

with H0 =N[v0]. Using the above defined decomposition in equation (3.3.3) and comparing

the powers of p, the nth component of the series solution is

vn+1(x, t) = E−1
{

vE
(

1
2

∫ x

0
K(x− y,y)

n

∑
i=0

vi(x− y, t)
n

∑
i=0

vi(y, t)dy

−
∫

∞

0
K(x,y)

n

∑
i=0

vi(x, t)
n

∑
i=0

vi(y, t)dy
)
−

n

∑
i=0

Hi

}
, n > 0, (3.3.5)

where v0(x, t) = u(x,0) and hence, the n term truncated series solution is calculated by

Ψ
SCE
n (x, t) :=

n

∑
j=0

v j(x, t). (3.3.6)
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3.3.2 Fragmentation equation
Considering the pure fragmentation equation (3.0.1) and applying Elzaki transformation,

the following integral operator form is achieved

E[u(x, t)] = v2u(x,0)+E
(∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t)

)
. (3.3.7)

Next, equation (3.3.7) is compared with the equation (3.2.8) for the implementation of

AHPETM. It is observed that for the case of pure breakage equation N[u(x, t)] = b(x) = 0

and

L[u(x, t)] =−
∫

∞

x
B(x,y)S(y)u(y, t)dy+S(x)u(x, t).

By following the steps discussed in the previous Section 3.2.2, a homotopy is generated as

follows

(1− p){E[u(x, t)]−E[u(x,0)]}+ p
(

E[u(x, t)]− v2u(x,0)

− vE
[∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t)

])
. (3.3.8)

According to the proposed method, AHPETM introduces the solution of unknown function

u(x, t) in the form of infinite series as u(x, t) = ∑
∞
j=0 v j(x, t). Substituting this into equation

(3.3.8) and comparing the coefficients of the powers of p, provide the iterations for the

solution as follows

vn+1(x, t) = E−1
{

vE
[∫

∞

x
B(x,y)S(y)vn(x, t)dy−S(x)vn(x, t)

]}
, n ≥ 0 (3.3.9)

where v0(x, t) = u(x,0) and the n term truncated solution will be provided as

Ψ
FE
n (x, t) :=

n

∑
j=0

v j(x, t). (3.3.10)
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3.3.3 Coupled coagulation-fragmentation equation
The CCFE is governed by

∂u(x, t)
∂ t

=
1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy−

∫
∞

0
K(x,y)u(x, t)u(y, t)dy

+
∫

∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t). (3.3.11)

Applying Elzaki transformation on both sides leads to

E[u(x, t)] = v2u(x,0)+ vE
[

1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy

−
∫

∞

0
K(x,y)u(x, t)u(y, t)dy+

∫
∞

x
B(x,y)S(y)u(y, t)dy−S(x)u(x, t)

]
. (3.3.12)

For the implementation of AHPETM, expression (3.3.12) is compared with (3.2.8) and

the following observations are made

b(x) = 0, L[u] =−
∫

∞

x
B(x,y)S(y)u(y, t)dy+S(x)u(x, t),

and

N[u] =−1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)+

∫
∞

0
K(x,y)u(x, t)u(y, t).

Following the procedure defined in Section 3.2.2, the iterations to solve the equation

(3.3.11) are as follows

vn+1(x, t) =E−1
{

vE
(

1
2

∫ x

0
K(x− y,y)

n

∑
i=0

vi(x− y, t)
n

∑
i=0

vi(y, t)dy

−
∫

∞

0
K(x,y)

n

∑
i=0

vi(x, t)
n

∑
i=0

vi(y, t)dy−
n

∑
i=0

Hi +
∫

∞

x
B(x,y)S(y)vn(x, t)dy

−S(x)vn(x, t)
)}

, for n > 0 (3.3.13)

53



Chapter 3. Elzaki transform based accelerated homotopy perturbation method for
multi-dimensional coagulation and coupled coagulation-fragmentation equations

where v0(x, t) = u(x,0). Let us denote the n term approximated series solution for CCFE

as

Ψ
CCFE
n (x, t) :=

n

∑
j=0

v j(x, t). (3.3.14)

3.3.4 Bivariate Smoluchowski’s coagulation equation

Consider 2D aggregation equation (3.0.3) with initial condition u(x,y,0) = u0(x,y) and

applying Elzaki transformation, leads to form as

E[u(x,y, t)] =v2u(x,y,0)+ vE
[

1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)u(x− x′,y− y′, t)

u(x′,y′, t)dy′dx′−
∫

∞

0

∫
∞

0
K(x,x′,y,y′)u(x,y, t)u(x′,y′, t)dy′dx′

]
. (3.3.15)

In order to apply the AHPETM, equation (3.3.15) is compared with the transformed

equation (3.2.8), implying that L[u] = 0, b(x) = 0 and

N[u] =− 1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)u(x− x′,y− y′, t)u(x′,y′, t)dy′dx′

+
∫

∞

0

∫
∞

0
K(x,x′,y,y′)u(x,y, t)u(x′,y′, t)dy′dx′. (3.3.16)

Thanks to equation (3.2.9), applying the HPM on equation (3.3.15) enables us to have

(1− p)(E[u(x, t)]−E[u(x,0)])+ p
(

E[u(x,y, t)]− v2u(x,y,0)− vE[
1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)u(x− x′,y− y′, t)u(x′,y′, t)dy′dx′

−
∫

∞

0

∫
∞

0
K(x,x′,y,y′)u(x,y, t)u(x′,y′, t)dy′dx′

])
= 0. (3.3.17)
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Again, following the idea of Section 3.2.2, u(x,y, t) = ∑
∞
n=0 vn pn and non-linear operator

N[u] = ∑
∞
n=0 Hn pn where Hn is being given by

Hn =
1
2

∫ x

0
K(x− x′,y− y′,x′,y′)

n

∑
i=0

vi(x− x′,y− y′, t)
n

∑
i=0

vi(x′,y′, t)dy′dx′

−
∫

∞

0
K(x,x′,y,y′)

n

∑
i=0

vi(x,y, t)
n

∑
i=0

vi(x′,y′, t)dy′dx′−
n−1

∑
i=0

Hi with H0 = N[v0].

(3.3.18)

Using the above defined decomposition in equation (3.3.17) and comparing the powers of

p, we get the nth component of the series solution as follows

vn+1(x,y, t) =E−1
{

vE
(

1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)

n

∑
i=0

vi(x− x′,y− y′, t)

n

∑
i=0

vi(x′,y′, t)dy′dx′−
∫

∞

0

∫
∞

0
K(x,x′,y,y′)

n

∑
i=0

vi(x,y, t)

n

∑
i=0

vi(x′,y′, t)dy′dx′
)}

, for n > 0, (3.3.19)

where v0(x,y, t) = u(x,y,0). Let us denote the n term truncated solution by

Ψ
BSCE
n (x,y, t) :=

n

∑
j=0

v j(x,y, t). (3.3.20)

3.4 Convergence analysis

3.4.1 Smoluchowski’s coagulation equation

Consider the Banach space X= C([0,T ] : L1[0,∞),∥.∥) over the norm defined as

∥u∥= sup
s∈[0,t0]

∫
∞

0
|u(x,s)|dx < ∞.
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Let us use equation (3.3.1) in the operator form as

u(x, t) = ˜N [u]

where

˜N [u] = u(x,0)+E−1{vE[N[u]]} (3.4.1)

and N[u] is given by

N[u] =
1
2

∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy−

∫
∞

0
K(x,y)u(x, t)u(y, t)dy.

Theorem 1. Let us consider the coagulation equation (3.0.2) with kernel K(x,y) = 1 for

all x,y ∈ (0,∞). If vs
i are the components of the series solution computed using (3.3.5)

and ΨSCE
n being the n term truncated solution provided in equation (3.3.6), then ΨSCE

n

converges to the exact solution u with the error bound

∥u−Ψ
SCE
n ∥ ≤ ∆n

1−∆
∥v1∥

where ∆ = t2
0 e2t0L(∥u0∥+2t0L2 +2t0L)< 1 and L = ∥u0∥(T +1).

Proof. Two separate phases complete the theorem’s proof. The contractive nature of

the non-linear operator ˜N is initially demonstrated. Then convergence of the truncated

solution towards the exact one is established.

Step 1: As presented in [16], equation (3.4.1) can be written in the equivalent form as

∂

∂ t
[u(x, t)exp[H[x, t,u]]] =

1
2

exp[H[x, t,u]]
∫ x

0
K(x− y,y)u(x− y, t)u(y, t)dy

where H[x, t,u] =
∫ t

0
∫

∞

0 K(x,y)u(y,s)dyds. Thus the equivalent operator Ñ is given by

Ñ[u] = u(x,0)exp[−H(x, t,u)]+
1
2

∫ t

0
exp[H(x,s,u)−H(x, t,u)]
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∫
∞

0
K(x,y)u(x− y,s)u(y,s)dyds.

Since Ñ is contractive (Singh et al. established in [16]) and equivalent to N[u], the

non-linear operator N[u] is also contractive, i.e.,

∥Nu−Nu∗∥ ≤ δ∥u−u∗∥, (3.4.2)

where δ := t0e2t0L(∥u0∥+2t0L2+2t0L)< 1 (for suitably chosen t0) and L = ∥u0∥(T +1).

Now, using the definition and basic properties of Elzaki and Laplace transformations as

well as employing (3.4.2), we get

∥ ˜N u− ˜N u∗∥= ∥E−1{vE(N(u))}−E−1{vE(N(u∗))}∥

=

∥∥∥∥ 1
2π

∫
∞

0

(
1
v2

∫
∞

0
(Nu−Nu∗)e−tvdt

)
etvvdv

∥∥∥∥
≤ 1

2π

∫
∞

0

(
1
v

∫
∞

0
δ∥u−u∗∥e−tvdt

)
etvdv

=
1

2π

∫
∞

0

1
v
L (δ∥u−u∗∥)etvdv

= L −1
{

1
v2 L (δ∥u−u∗∥)

}
≤ δ t0∥u−u∗∥ for a suitable t0.

Step 2: Now, in this phase, an n term truncated solution is computed using the iterations

defined in (3.3.5) and then error is estimated. Given that,

Ψ
SCE
n =

n

∑
i=0

vi(x, t)

=u(x,0)+E−1{vE(N(u0))}+E−1{vE(N(u0 +u1)−H0)}+ · · ·

+E−1{vE(N(
n−1

∑
j=0

u j)−
n−2

∑
j=0

Hi)}

=u(x,0)+E−1{vE(N[v0]+N[v0 + v1]+ · · ·+N[v0 + v1 + · · ·+ vn−1]−

(H0 +(H0 +H1)+ · · ·+(H0 +H1 + · · ·+Hn−2)))}

=u(x,0)+E−1{vE(N(ΨSCE
n−1))}= ˜N [ΨSCE

n−1].
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Using the contractive mapping of ˜N leads to

∥Ψ
SCE
n+1 −Ψ

SCE
n ∥ ≤ ∆∥Ψ

SCE
n −Ψ

SCE
n−1∥,

and thus, we have

∥Ψ
SCE
n+1 −Ψ

SCE
n ∥ ≤ ∆

n∥Ψ
SCE
1 −Ψ

SCE
0 ∥.

Using the triangle inequality for all n,m ∈ N with n > m, we have

∥Ψ
SCE
n −Ψ

SCE
m ∥ ≤ ∥Ψ

SCE
n −Ψ

SCE
n−1∥+∥Ψ

SCE
n−1 −Ψ

SCE
n−2∥+ · · ·+∥Ψ

SCE
m+1 −Ψ

SCE
m ∥

≤ (∆n−1 +∆
n−2 + · · ·+∆

m)∥Ψ
SCE
1 −Ψ

SCE
0 ∥

=
∆m(1−∆n−m)

1−∆
∥u1∥ ≤

∆m

1−∆
∥u1∥,

which converges to zero as m → ∞, implies that there exists a Ψ such that lim
n→∞

ΨSCE
n = Ψ.

Therefore,

u(x, t) =
∞

∑
i=0

vi = lim
n→∞

Ψ
SCE
n = Ψ,

which is the exact solution of the coagulation equation (3.0.2). The theoretical error is

obtained by fixing m and letting n → ∞ in the above formulation.

3.4.2 Pure breakage equation

Let X= C([0,T ] : L1[0,∞),∥.∥]) be a Banach space with the norm

∥u∥= sup
t∈[0,t0]

∫
∞

0
eλx|u(x, t)|dx, where λ > 0. (3.4.3)

Now, equation (3.0.1) can be rewritten in the operator form as

u = L̃ [u] = u(x,0)+E−1vE(L[u])
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with L[u] being the right-hand side of equation (3.0.1).

Theorem 2. Let ΨFE
n be the n term truncated series solution of the fragmentation problem

defined in equation (3.0.1). Then ΨFE
n converges to the exact solution and provides the

error estimates

∥u−Ψ
FE
n ∥ ≤ ϑ n

1−ϑ
∥v1∥, (3.4.4)

where v1 is provided in equation (3.3.9), if the following conditions hold

B1. B(x,y)= c
xr−1

yr where r = 1,2,3, · · · and c is a +ve constant satisfying
∫ y

0 xB(x,y)dx=

y,

B2. S(x)≤ xk, where k = 1,2,3, · · · ,

B3. λ is chosen such that eλy −1 < 1,

B4. ϑ :=
k!(t0)2

λ k+1 < 1 for suitable t0.

Proof. Let us begin with the proof that the operator L̃ is contractive. In order to do

so, we use the fact that the operator L[u] is a contractive operator under the assumptions

mentioned in B1-B3, i.e., ∥L[u]−L[u∗]∥ ≤ ρ∥u−u∗∥ where ρ =
k!t0

λ k+1 < 1 by following

([16] Theorem 2.1). Now, thanks to Elzaki and Laplace transformations, one can write

∥L [u]−L [u∗]∥= ∥E−1{vE(L[u])}−E−1{vE(L[u∗])}∥

=

∥∥∥∥ 1
2π

∫
∞

0

(
1
v2

∫
∞

0
(Lu−Lu∗)e−tvdt

)
etvvdv

∥∥∥∥
≤ 1

2π

∫
∞

0

(
1
v

∫
∞

0
ρ∥u−u∗∥e−tvdt

)
etvdv

=
1

2π

∫
∞

0

1
v
L (ρ∥u−u∗∥)etvdv

= L −1
{

1
v
L (ρ∥u−u∗∥)

}
≤ ϑ∥u−u∗∥ where ϑ = ρt0.
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We proceed further to obtain the estimate (3.4.4). By using the iteration formula (3.3.9),

the n-term truncated solution is computed as

Ψ
FE
n =E−1{vE[v0]}+E−1{vE[v1]}+ · · ·+E−1{vE[vn−1]}

=E−1{vE[v0 + v1 + · · ·+ vn−1]}= E−1{vE[ΨFE
n−1]}.

Therefore, we have

∥Ψ
FE
n+1 −Ψ

FE
n ∥ ≤ ϑ∥Ψ

FE
n −Ψ

FE
n−1∥ ≤ ϑ

n∥Ψ
FE
1 −Ψ

FE
0 ∥.

The above can be used to establish the following, for all n,m ∈ N with n > m,

∥Ψ
FE
n −Ψ

FE
m ∥ ≤ ∥Ψ

FE
n −Ψ

FE
n−1∥+∥Ψ

FE
n−1 −Ψ

FE
n−2∥+ · · ·+∥Ψ

FE
m+1 −Ψ

FE
m ∥

≤ (ϑ n−1 +ϑ
n−2 + · · ·+ϑ

m)∥Ψ
FE
1 −Ψ

FE
0 ∥

=
ϑ m(1−ϑ n−m)

1−ϑ
∥v1∥ ≤

ϑ m

1−ϑ
∥v1∥.

Thanks for Hypothesis B4, the above tends to zero as m → ∞ which means that there exists

a Ψ such that lim
n→∞

ΨFE
n = Ψ. Thus, we obtain the exact solution of the breakage equation

(3.0.1) as

u(x, t) =
∞

∑
i=0

vi = lim
n→∞

Ψ
FE
n = Ψ.

3.4.3 Bivariate Smoluchowski’s coagulation equation

Consider a Banach space X = C([0,T ] : L1[0,∞)×L1[0,∞),∥.∥) with the enduced norm

∥u∥= sup
s∈[0,t0]

∫
∞

0

∫
∞

0
|u(x,y,s)|dxdy < ∞.
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To demonstrate the convergence analysis, let us write the operator form of the equation

(3.3.15) as

u = Q̃[u], (3.4.5)

where Q̃ is given by

Q̃[u] = u0(x,y)+E−1[vE[Q[u]]] (3.4.6)

and

Q[u] =− 1
2

∫ x

0

∫ y

0
K(x− x′,y− y′,x′,y′)u(x− x′,y− y′, t)u(x′,y′, t)dy′dx′

+
∫

∞

0

∫
∞

0
K(x,x′,y,y′)u(x,y, t)u(x′,y′, t)dy′dx′.

The iterative scheme’s convergence concept is splitted into two components, firstly, we

establish that the operator Q̃ is contractive (Theorem 3) and then proceed further to discuss

the worst case upper bound for error (Theorem 4) below. To show the operator Q̃ is

contractive, initially we prove that Q is contractive. To do so, an equivalent form of the

equation (3.0.3) is taken as

∂

∂ t
[u(x,y, t)exp[R(x,y, t,u)]] =

1
2

exp[R(x,y, t,u)]
∫ x

0

∫ y

0
K(x− x′,x′,y− y′,y′)

u(x− x′,y− y′, t)u(x′,y′, t)dy′dx′, (3.4.7)

where R(x,y, t,u) =
∫ t

0
∫

∞

0
∫

∞

0 K(x,x′,y,y′)u(x′,y′, t)dx′dy′dt. Thus the equivalent operator

N is given by

N [u] = u(x,y,0)exp[−R(x,y, t,u)]+
1
2

∫ t

0
exp[R(x,y,s,u)−R(x,y, t,u)]∫ x

0

∫ y

0
K(x− x′,x′,y− y′,y′)u(x− x′y− y′,s)u(x′,y′,s)dy′dx′ds. (3.4.8)
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Since, N and Q are equivalent, it is sufficient to show that N is contractive.

Theorem 3. The operator Q̃, defined in equation (3.4.6) is contractive for all u,u∗ ∈ X if

the following conditions

• K(x,x′,y,y′) = 1 ∀x,x′,y,y′ ∈ (0,∞) and

• ∆ = t2
0 e2t0L(∥u∥+2t0L2 +2t0L)< 1 where L = ∥u0∥(T +1) hold.

Proof. Consider u,u∗ ∈ X, then

N [u]−N [u∗] =u(x,y,0)exp[−R(x,y, t,u)]−u∗(x,y,0)exp[−R(x,y, t,u∗)]

+
1
2

∫ t

0
exp[R(x,y,s,u)−R(x,y, t,u)]

∫ x

0

∫ y

0
u(x− x′,y− y′,s)

u(x′,y′,s)dy′dx′ds− 1
2

∫ t

0
exp[R(x,y,s,u∗)−R(x,y, t,u∗)]∫ x

0

∫ y

0
u∗(x− x′y− y′,s)u∗(x′,y′,s)dy′dx′ds.

Let us define an another operator

H[x,y,s, t] = exp{R[x,y,s,u]−R[x,y, t,u]}− exp{R[x,y,s,u∗]−R[x,y, t,u∗]}.

It can be easily proven that

|H[x,y,s, t]| ≤ (t − s)exp{(t − s)B}∥u−u∗∥ ≤ B1∥u−u∗∥,

where B1 = tetB and B = max{∥u∥,∥u∗∥}. Further,

N [u]−N [u∗] = u0(x,y)H(x,y,0, t)+
1
2

∫ t

0
H(x,y,s, t)

∫ x

0

∫ y

0
u(x− x′,y− y′,s)

u(x′,y′,s)dy′dx′ds+
1
2

∫ t

0
exp[R(x,y,s,u∗)−R(x,y, t,u∗)][∫ x

0

∫ y

0
u∗(x− x′y− y′,s){u(x′,y′,s)−u∗(x′,y′,s)}dy′dx′

+
∫ x

0

∫ y

0
u(x′,y′,s){u(x− x′,y− y′,s)−u∗(x− x′,y− y′,s)}dx′dy′

]
ds. (3.4.9)
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To show the non-linear operator N is contractive, a set D is defined such as D = {u ∈ X :

∥u∥ ≤ 2L}. Taking norm on both sides of (3.4.9) provides

∥N [u]−N [u∗]∥ ≤ B1∥u−u∗∥∥u0∥+B1∥u−u∗∥
∫ t

0

[
1
2
∥u∥2

]
ds

+
∫ t

0
B1

[
1
2
(∥u∥+∥u∗∥)∥u−u∗∥

]
ds

≤ B1

[
∥u0∥+

1
2

t∥u∥2 +
1
2

t(∥u∥+∥u∗∥)
]
∥u−u∗∥

≤ t0e2t0L
[
∥u0∥+2t0L2 +

1
2

t0(2L+2L)
]
∥u−u∗∥

= δ∥u−u∗∥,

for a suitable choice of t0. So, the operator N is contractive if δ = t0e2t0L [∥u0∥+2t0L2 +2t0L
]
<

1, hence Q is contractive. Now we are in position to demonstrate that Q̃ is contractive.

Consider,

∥Q̃u− Q̃u∗∥= ∥E−1(vE [Qu])−E−1(vE [Qu∗])∥

= ∥ 1
2π

∫
∞

0

(
1
v2

∫
∞

0
(Qv−Qv∗)e−vtdt

)
evtvdv∥

≤ 1
2π

∫
∞

0

(
1
v

∫
∞

0
∥Qu−Qu∗∥e−vtdt

)
evtd p

≤ 1
2π

∫
∞

0

(
1
v

∫
∞

0
δ∥u−u∗∥e−vtdt

)
evtdv

=
1

2π

∫
∞

0

1
v
L (δ∥u−u∗∥)evtdv

= L −1
{

1
v
L (δ∥u−u∗∥)

}
= δ t0∥u−u∗∥= ∆∥u−u∗∥.

Hence, the above accomplishes the contractive nature of Q̃.

Theorem 4. Assuming that the criteria of Theorem 3 holds and v′is are the elements of the

series solution calculated by equation (3.3.19). Then the series solution converges to the
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exact solution with the error bound

∥u−Ψ
BCSE
n ∥= ∆n

1−∆
∥v1∥,

whenever ∆ < 1 and ∥v1∥< ∞.

Proof. The proof is similar to the Theorem 1, hence it is omitted here.

Remark 3.4.1. It is worth mentioning that the iterations and hence the finite term series

solutions, computed using the HAM [8], HPM [9], ADM [16] and ODM [19] are identical

to the iterations obtained using the AHPETM for the breakage equation which is linear.

As a result, we have omitted the numerical implementations for pure breakage equation.

So, the main focus of all the approaches is on approximating the non-linearity, which has

no bearing on the linearity in the equations.

3.5 Numerical results and discussion
This section verifies numerically the effectiveness of the suggested approach for coagu-

lation, combined fragmentation-coagulation, and bivariate aggregation equations. Three

physical test cases are considered and results for the number density and moments are

compared with the precise solution as well as established and recently developed methods

(ADM, HPM, HAM, ODM) for SCE. Due to the improved and significant results noticed

in SCE, the numerical implementation is made for solving the coupled CFE and BSCE.

Two test cases of CFE and one example of BSCE are taken into account to justify the

effectiveness of our scheme.

3.5.1 Smoluchowski’s coagulation equation

Example 3.5.1. Consider the case of constant aggregation kernel K(x,y) = 1 with the

exponential initial data u(x,0) = e−x and for this the exact solution

u(x, t) =
4

(2+ t)2 e−
2x

2+t ,
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is discussed in [16].

Employing the equations (3.3.5) and (3.3.6), first three components of the series solutions

are given as follows

v0(x, t) = e−x, v1(x, t) =
1
2

te−x(x−2),

v2(x, t) = t3
(

x3

144
− x2

12
+

x
4
− 1

6

)
e−x + t2

(
x2

8
− 3x

4
+

3
4

)
e−x,

v3(x, t) =
1

40642560
t3e−x

(
t4x7 +14t3(7−4t)x6 +588(t −2)t2(2t −3)x5

−2940t(t(t(4t −21)+36)−24)x4 +11760(5(t −4)t((t −3)t +6)+48)x3

−35280(t(t(t(4t −35)+120)−240)+192)x2 +70560
(

t
(

t(t(2t −21)+90)

−240
)
+288

)
x−10080(t(t(t(4t −49)+252)−840)+1344)

)
.

It is essential to mention here that the components vi are quite complicated and due to the

complexity of the terms, it is hard to find a closed-form solution. Therefore, a three-term

truncated solution is considered. However, thanks to MATHEMATICA, one can compute

the higher order terms using equation (3.3.5). To see the accuracy of proposed method,

the approximated three-term and exact solutions are plotted in Figures 3.1(a) and 3.1(b).

One can scrutinize that the AHPETM solution shows a remarkable agreement with the

exact one. Table 3.3 depicts the numerical errors of AHPETM at different time levels for

n = 3,4,5 and 6 using the formula

Error = ∆m =
m

∑
i=1

|un(xi, t)−u(xi, t)|hi, (3.5.1)

where m defines the number of subintervals, hi the length of the interval and u(x, t) is the

exact solution provided in [16]. As one can notice, the inaccuracy grows as time increases
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(a) AHPETM (n = 3) (b) Exact solution

Figure 3.1: Number density for AHPETM and exact solutions for Example 3.5.1

Table 3.3: Numerical errors at t = 0.5,1,1.5 and 2 for n = 3,4,5,6 for Example 3.5.1

n t = 0.5 t = 1 t = 1.5 t = 2

3 0.0014 0.0153 0.0543 0.1239

4 1.366×10−4 2.656×10−3 1.294×10−2 3.632×10−2

5 1.072×10−5 3.7972×10−4 2.5718×10−3 9.0682×10−3

6 7.154×10−7 4.6146×10−5 4.3241×10−4 1.8931×10−3

for a fixed number of terms and error decreases when more terms in the approximated

solutions are taken into account. Further, to see the beauty of our algorithm, errors

between exact and AHPETM solutions are compared with the errors between exact and

other well-established approximated solutions obtained via HPM/ADM/HAM and ODM

in Figure 3.2. It is important to point out here that the HAM [8]/ADM [16]/HPM [9]

provide the same iterations and hence the identical finite term series solution for the

considered model. It is noticed that HPM is very badly approximated in comparison to

ODM while AHPETM further improves the error of ODM very significantly. Figure

3.2(a) represents the concentration of particles at time t = 2 and the solutions obtained

using HPM and ODM blow up where the AHPETM solution matches well with the exact
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Figure 3.2: Number density and error for Example 3.5.1

solution. Results for error from Figure 3.2(b) indicate that all the schemes are quite

efficient for a short time where as for a significant time, the errors due to HPM and ODM

are relatively very high compared to AHPETM. Further, Figure 3.2(c) depicts the error

plots of approximated solutions with precise solution for a fixed time t = 2 and it is

observed that the AHPETM performs well over HPM and ODM for large space domain.

In addition to this, integral properties associated with number density are plotted in Figure

3.3. The zeroth (total number of particles), first (total mass) and second (energy dispersed

by the system) moments are displayed and comparison are made with the precise moments.

In Figure 3.3(a), AHPETM offers superior approximations in the zeroth moment while

HPM under predicts the result and deviates almost exponentially from the exact one. ODM

shows much better approximation than HAM but still suffers fluctuations. In Figure 3.3(b),

the first moments of AHPETM and HPM exhibit close correspondence with the precise
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Figure 3.3: Zeroth, first and second moments for Example 3.5.1

moments, whereas ODM demonstrates a decline in precision. Notably, AHPETM and

HPM yield solutions that conserve mass effectively, contrasting with ODM’s inability to

replicate the model’s dynamics accurately. As shown in Figure 3.3(c), AHPETM continues

to be the best option as the second moment produced by AHPETM and HPM coincides

with the exact ones but ODM does not offer a decent estimate.

Example 3.5.2. Let us take aggregation kernel K(x,y) = x+ y with the exponential initial

condition u(x,0) = e−x. The exact number density is provided in [88] as

u(x, t) =
e(e−t−2)x−tI1

(
2
√

1− e−tx
)

√
1− e−tx

,

where I1 is the Bessel function of the first kind.

Using the equations (3.3.5) and (3.3.6), first few components of the series solution are
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determined as

v0(x, t) = e−x, v1(x, t) =
1
2

te−x (x2 −2x−2
)
,

v2(x, t) =
1

720
t2e−x

(
tx(x5 −10x4 −20x3 +240x2 −120x−240)+60x4 −360x3

−180x2 +1080x+360
)
.

Continuing in a similar fashion, it is easy to compute the higher order components to

find better-approximated results. A four-term truncated solution is considered here and

the results are compared with the HPM and ODM solutions using the same number of

terms. As observed in the previous case, AHPETM is again found to be more accurate
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Figure 3.4: Number density and error for Example 3.5.2

than HPM and ODM, see Figure 3.4. This is clear from Figure 3.4(a) which displays
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Table 3.4: Absolute error for x = 5 at different time levels for Example 3.5.2

t AHPETM error ODM error HPM error

0.2 2.71288×10−5 1.0352×10−3 1.4248×10−4

0.4 5.3035×10−4 9.2238×10−3 3.8424×10−3

0.6 2.3932×10−3 3.1524×10−2 2.4873×10−2

0.8 5.8862×10−3 7.223×10−2 9.060 ×10−2

1.0 0.0102 0.1327 0.2422
1.2 0.0137 0.2117 0.5345
1.4 0.0131 0.3057 1.0357
1.6 0.038 0.4085 1.8271

the number density at t = 2 for all the schemes. Further, Figure 3.4(b) and Table 3.4

demonstrate that for a fixed x and at different values of time t, AHPETM provide the best

results over both HPM and ODM. In fact, the errors due to HPM and ODM grow almost

exponentially as the time increases, while AHPETM performs consistently. Finally, Figure

3.4(c) depicts that the error due to AHPETM is not only significantly smaller than the

existing approximated solutions of HPM and ODM but also close to zero for large spatial

domain. Moving further, approximated and exact moments are compared for AHPETM in

Figure 3.5. Surprisingly, ODM under predicts the zeroth moment and over predicts the

first and second moments, respectively, while HPM and AHPETM gave almost identical

findings and provided an excellent approximations to the exact zeroth, first and second

moments. One important point to note here is that the AHPETM four term series solution

can approximate the moments accurately up to time t = 1.5, while the ODM with 7 terms

can only achieve the same level of accuracy up to time t = 0.4. This shows the superiority

of the proposed scheme.

Example 3.5.3. Consider the case of product aggregation kernel K(x,y) = xy with the

exponential initial condition u(x,0) = e−x and the precise solution is provided in [89] as

u(x, t) =
∞

∑
k=0

tkx3k exp(−(t +1)x)
(k+1)!Γ(2k+2)

.

Using the recursive scheme defined in equation (3.3.5), a five term truncated solution is
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Figure 3.5: Zeroth, first and second moments for Example 3.5.2

considered. Due to complexity of the terms, only few given here as

v0(x, t) = e−x, v1(x, t) =
1
12

te−xx
(
x2 −12

)
,

v2(x, t) =
1

544320

(
t2e−xx2

(
tx7 −144tx5 +3024tx3 +756x4 −45360x2 +272160

))
.

Figure 3.6 contrasts the error between the exact and truncated solutions obtained via

HAM/HPM/ADM, ODM, and AHPETM. The figure demonstrates that the AHPETM

outperforms both HPM and ODM results. Figure 3.7 further indicates the scheme’s

superiority as the unexpected behavior of the HPM and ODM solutions are noticed, where

as the AHPETM offers better estimates of the exact solution. Figure 3.8 continues by

contrasting the analytical moments with the approximated moments. In situations where
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(a) AHPETM error (n = 5) (b) HPM error (n = 5)

(c) ODM error (n = 5)

Figure 3.6: AHPETM, HPM/ADM/HAM & ODM errors for Example 3.5.3
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Figure 3.7: Number density and error for Example 3.5.3
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Figure 3.8: Zeroth, first and second moments for Example 3.5.3

the HPM and AHPETM moments are almost identical and closer to the exact moments, as

seen in the prior occurrences, ODM moments explode.

Remark 3.5.1. It has been noted that both AHPETM and HPM offer a more precise

approximation for the moments, whereas ODM does not achieve the same level of accu-

racy. Conversely, ODM offers a more accurate approximation than HPM for the number

density, and AHPETM enhances the results for number density even further. Consequently,

AHPETM demonstrates greater efficiency compared to both HPM and ODM.

From the above illustrations, it can be seen that in all contexts, AHPETM performs better

than ADM, HPM, HAM, and ODM. Therefore, due to the novelty of the proposed scheme,

we use AHPETM to solve the more complex models such as coupled aggregation-breakage

and bivariate aggregation equations.
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3.5.2 Coupled aggregation-breakage equation

Example 3.5.4. Considering the case of constant aggregation rate (K(x,y) = 1), binary

breakage (B(x,y) = 2/y) with the selection rate S(x) = x
2 and for the initial condition

u(x,0) = 4xe−2x, the exact solution for the problem (3.3.11) is provided in [90].

Using the iterations defined in equation (3.3.13), components v′is of the solutions are

computed as follows

v0(x, t) = 4xe−2x, v1(x, t) =
1
3

te−2x (4x3 −6x2 −6x+3
)
,

v2(x, t) =
1

3780

(
t2e−2x

(
8tx7 −56tx6 −84tx5 +840tx4 −420tx3 −1260tx2 +630tx+

504x5 −2520x4 −1890x3 +9450x2 +945x−1890
))

.

A four-term truncated solution is computed with the aid of ”MATHEMATICA”. At a
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Figure 3.9: Number density for Example 3.5.4

specific period t, the number density of particles of size x is shown in Figure 3.9(a). It is

observed from Figures 3.9(a) and (b) that smaller particles tend to increase as time goes on,

while larger particles start to fragments into smaller ones. The error between the exact and
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Figure 3.10: Error and moment for Example 3.5.4

truncated solutions is presented in Figure 3.10(a) and is found to be nearly insignificant.

Further, Figure 3.10(b) gives the absolute difference between the subsequent components

of the series solution and it is clear that the difference between the second and third terms

nearly vanishes, which serves as the inspiration for the decision to truncate the solution

for three terms. As shown in Figure 3.10(c), the truncated solution exhibits steady state

behavior for the number of particles as the zeroth moment is constant. This behavior was

also analyzed analytically in [90], and thus demonstrating the method’s novelty.

Example 3.5.5. Consider another example of the coupled aggregation-breakage equation

(3.3.11) with the same parameters as taken in Example 3.5.4 but with selection rate

S(x) = 2x and initial condition u(x,0) = 32xe−4x. Similar to the previous case, here as

well, steady state behavior of zeroth moment was studied in [90].
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Thanks to the formula (3.3.13), three terms of the truncated solution are computed as

v0(x, t) = 32xe−4x, v1(x, t) =
8
3

te−4x (32x3 −24x2 −12x+3
)
,

and

v2(x, t) =
8

945
t2e−4x

(
1024tx7 −3584tx6 −2688tx5 +13440tx4 −3360tx3 −5040tx2

+1260tx+8064x5 −20160x4 −7560x3 +18900x2 +945x−945
)
.

Due to the complexity involved in the terms, a four-term truncated solution is considered.
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Figure 3.11: Number density for Example 3.5.5

The number density of particle in the system is presented in Figure 3.11(a). Further, Figure

3.11(b) presents the concentration of particles at different time levels, and an increment in

smaller particles is encountered, where as larger particles start breaking as time increases.

In Figure 3.12(a), the difference between the consecutive terms is presented, and the error

between the third and fourth terms seems to be vanishing, which leads us to truncate the

solution for three terms. The error between exact and approximated solutions is provided

in Figure 3.12(b). As expected, in Figure 3.12(c), AHPETM shows the steady-state nature

of zeroth moment and is exactly matching with the precise total number of particles.
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Figure 3.12: Error and moment for Example 3.5.5

3.5.3 Bivariate aggregation equation

Example 3.5.6. Let us take two-dimensional aggregation equation (3.0.3) with the constant

aggregation kernel K(x,x′,y,y′)= 1 and the initial condition u(x,y,0)= 16N0xy
m2

1m2
2

exp{− 2x
m1

−
2y
m2
} for which the parameters and the exact solution are given in Table 3.5. For more

details, readers may refer to [91].

The first three elements of the series solution are provided below using the iterations

specified in equation (3.3.19)

v0(x,y, t)= u0(x,y,0), v1(x,y, t)= 5.42535×1011txye−50x−50y (x2y2 −0.1152×10−4) ,
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Table 3.5: Parameters and exact solution for Example 3.5.6

N0, p1, p2 1

m1, m2 0.04

u(x, t) (4N0)
(m1m2)(t+2)2

(
(p1 +1) p1+1 (p1 +1) p2+1)exp

(
− (p1+1)x

m1
− (p2+1)y

m2

)
∑

∞
k=0

( t
t+2)

k
(
((p1+1)p1+1)k((p2+1)p2+1)k

(
x

m1

)
(k+1)(p1+1)−1

(
y

m2

)
(k+1)(p2+1)−1

)
Γ((p1+1)(k+1))Γ((p2+1)(k+1))

and

v2(x,y, t) =3.10441×10−10xye−50x−50y
(

8.06248×1027t3x6y6 −9.10222×1024t3x4y4

+8.73813×1020t3x2y2 −3.35544×1015t3 +1.36533×1025t2x4y4

−2.62144×1021t2x2y2 +1.50995×1016t2 +6t
)
.

Continuing in a similar pattern, a four-term truncated solution is computed and compared

with the exact solution. Figure 3.13(a) gives the number density at time t = 0.4 and it

is marked that larger particles almost disappear, and microscopic particles dominate the

system. A minimal error is seen between the exact and truncated solutions, according to the

error curve shown in Figure 3.13(b). In addition to this, Figures 3.13(c)- 3.13(e) present the

contour plots of the errors by taking two, three, and four terms truncated series solutions.

One can observe that as the number of terms increases, the error reduces significantly.

Finally, Figure 3.13(f) shows that the approximated moments, namely µ0,0,µ1,0,µ2,0,

provide a great agreement with the corresponding exact moments.

3.6 Conclusions
This study employed AHPETM to solve the fragmentation, multi-dimensional coagulation,

and linked aggregation-fragmentation equations. Due to the complexity in the models,

convergence analysis were discussed for fragmentation and multi-dimensional aggregation
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Figure 3.13: Number density, error and moments for Example 3.5.6
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equations considering the constant kernels. With the help of MATHEMATICA, this article

also contained the detailed numerical investigations for each of the predefined models. It

was observed that, for pure fragmentation equation which is linear, all the schemes offered

the same results. However, for non-linear aggregation equation, AHPETM significantly

outperformed the results of ADM, HAM, HPM and ODM even after a lengthy period

of time. This justified the method’s reliability and applicability. AHPETM was also

designed to solve non-linear 2-D aggregation and combined aggregation-fragmentation

equations due to the accuracy and efficiency observed in the pure aggregation equation

and remarkable results were obtained in each case. In future, it would be interesting to

implement AHPETM for tackling static beam and other engineering nonlinear problems

[92–94]. One can include a convergence control parameter and Pade approximation to

enhance the approach that may offer a more refined and effective scheme.
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Chapter 4

New approximate solutions for

Smoluchowski’s aggregation and

coupled aggregation-growth equations

This chapter describes an improved version of homotopy analysis method for solving the

aggregation and aggregation-growth equations. Several physical examples are considered

to examine the precision and efficiency of the approach by comparing the results with exact

and existing estimated solutions derived using HAM, HPM, ADM and ODM. Furthermore,

moments are also highlighted. Interestingly, IOHAM enhances the accuracy of moments

compared to ODM, while HAM still better matches the actual moments. In addition, a

comprehensive convergence study of the series solution is investigated.

Consider a system enduring a particulate process, where µ(x, t) is the number density of

particles of size x at time t. Consequently, the aggregation-growth equation is [95]:

∂ µ(x, t)
∂ t

=
∂

∂x
(G(x)µ(x, t))+

1
2

∫ x

0
β (x− y,y)µ(x− y, t)µ(y, t)dy

−
∫

∞

0
β (x,y)µ(x, t)µ(y, t)dy, (4.0.1)
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with the initial condition

µ(x,0) = µ0(x). (4.0.2)

The left part of equation (4.0.1) depicts the evolution of x-sized particles. In the first term

on the right-hand side, the function G(x) represents the growth rate of the particle of size

x. The second and third terms define the aggregation process as discussed in preceding

chapters.

The article is structured as follows: In the subsequent section, a brief of the HAM

and IOHAM are discussed. In Section 4.2, the recursive scheme corresponding to the

general aggregation-growth equation is developed using IOHAM. Section 4.3 presents the

convergence analysis of the series solution to the exact solution. Section 4.4 is devoted to

a detailed discussion of several numerical examples. Finally, we present some concluding

remarks in Section 4.5.

4.1 Methodology

4.1.1 HAM

The fundamental concept behind the homotopy analysis method is to approximate the series

solution for non-linear differential equations [96]. This section briefly summarizes HAM

for solving the initial value problem for the first-order differential equation. Consider,

D [u′(t),u(t)] = 0, u(0) = u0, for t > 0, (4.1.1)

where D is a non-linear differential operator, u(t) is a unknown function. According to

the scheme [96], one can construct the homotopy as follows

(1−q)L [Φ(t;q)−u0(t)] = qhHD [Φ′(t;q),Φ(t;q)], (4.1.2)
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where q ∈ [0,1] is an embedding parameter, h is convergence control parameter, u0(t) is

an initial guess, H(t) ̸= 0 is an auxiliary function and L is a linear operator. It is clear

from (4.1.2) that as q varies from 0 to 1, Φ(t;q) varies from initial guess u0(t) = Φ(t;0)

to the exact solution u(t) = Φ(t;1). Following the idea of HAM, Φ(t;q) can be expressed

as a power series in q of the form,

Φ(t;q) :=
∞

∑
j=0

q j
φ j. (4.1.3)

If the series (4.1.3) converges at q = 1, the homotopy series solution is obtained as follows

u(t) = Φ(t;1) =
∞

∑
j=0

φ j. (4.1.4)

To obtain the components φ j, substituting (4.1.3) in equation (4.1.2) and equating the

coefficients of powers of q, give the zeroth order deformation equation

L [φ0(t)−u0(t)] = 0, (4.1.5)

and the high order deformation equations

L [φ j] = L [φ j−1]+hHPj−1, j ≥ 1, (4.1.6)

where P′
js, are given by

Pj(t) =
1
j!

∂ j

∂q j D

(
∞

∑
i=0

qi
φ
′
i (t),

∞

∑
i=0

qi
φi(t)

)
. (4.1.7)

4.1.2 Improved optimal homotopy analysis method

Liao in [96], explains that HAM provides the flexibility to provide solutions to non-linear

problems through the use of different base functions that can be constructed based on

the initial guess and the auxiliary linear operator. This section describes an enhanced
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version of the HAM for regulating the convergence rate and region. In order to improve

the accuracy of the solution, linear operator L is chosen of the form

L [u] =
∂u
∂ t

+qk(u0)hHu, (4.1.8)

where

k(u0) =
∂D
∂u (u

′
0,u0)

∂D
∂u′ (u

′
0,u0)

.

Therefore, the new modified homotopy is defined as follows

(1−q)
[

∂

∂ t
+qk(u0)hH

]
[Φ(t;q)−u0] = qhHD(Φ′(t;q),Φ(t;q)). (4.1.9)

To felicitate the calculations, initial condition u0 is considered as the zeroth-order approxi-

mation or the initial guess. Now, considering that the unknown function Φ can be written

into the form of infinite series as mentioned in equation (4.1.3) and following the same

procedure as HAM, iterations to solve the non-linear problems are discussed in Table 4.1

below: Hence the n-term truncated series solution is given by Ψn(t) := ∑
n
j=0 φ j(t). The

Table 4.1: Table of the coefficients for IOHAM

φ0(t) u0(x)
φ1(t)

∫ t
0 hHP0(τ)dτ

φ2(t)
∫ t

0

(
∂

∂ t φ1 +hH(P1(τ)− k(u0)φ1(τ))
)

dτ

φk+1(t)
∫ t

0

(
∂

∂ t φk +hH( ∂

∂ t φk(τ)+Pk(τ)− k(u0)(φk(τ)−φk−1(τ)))
)

dτ, k ≥ 2.

optimal parameter h is computed by minimizing the residual Res(h), defined by

Res(h) =
√∫

Ω

(D [Ψ′(t),Ψ(t)])dΩ.
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Due to the difficulty in calculating the iterations, residue can also be calculated numerically

using the squared residual formula,

Res(h) =

√
1
M

M

∑
m=1

(D [Ψ′(tm),Ψ(tm)])2,

where tm ∈ Ω are arbitrary sample points. Readers are referred to [8, 77] and further

citations for detailed explanation.

4.2 Development of IOHAM for aggregation-growth Equa-

tion
In this section, IOHAM is extended to solve the aggregation-growth equation (4.0.1).

According to the IOHAM defined in Section 4.1.2, the optimal linear operator L is

defined as

L [µ] =
∂ µ

∂ t
+qk(µ0)hHµ,

where

k(µ0) =−1
2

∫ x

0
β (x− y,y)µ0(y, t)dy+

∫
∞

0
β (x,y)µ0(y, t)dy− ∂

∂x
[G(x)], (4.2.1)

with initial approximation or zeroth approximation is considered as φ0 = µ(x,0), then a

homotopy is constructed as follows

(1−q)
[

∂

∂ t
+qk(µ0)hH

]
[φ(t;q)−µ0] = qhH

(
∂φ(x, t)

∂ t
+
∫

∞

0
β (x,y)φ(x, t)φ(y, t)dy

− ∂

∂ t
[G(x)φ(x, t)]− 1

2

∫ x

0
β (x− y,y)φ(x− y, t)φ(y, t)dy

)
. (4.2.2)
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Considering H = 1, substituting equation (4.1.3) in (4.2.2) and then comparing the powers

of q, zeroth and higher order deformation equations are obtained via

φ0(x, t) = µ(x,0)

φ1(x, t) =
∫ t

0

(
∂φ0

∂ t
+h
(

∂φ0

∂ t
− ∂

∂ t
[G(x)φ0(x, t)]−

1
2

∫ x

0
β (x− y,y)A0dy+

∫
∞

0
β (x,y)B0dy

))
dt

φ2(x, t) =
∫ t

0

(
∂φ1

∂ t
+h
(

∂φ1

∂ t
− ∂

∂ t
[G(x)φ1(x, t)]−

1
2

∫ x

0
β (x− y,y)A1dy

+
∫

∞

0
β (x,y)B1dy− k(µ0)φ1

))
dt

φn(x, t) =
∫ t

0

(
∂φn−1

∂ t
+h
(

∂φn−1

∂ t
− ∂

∂ t
[G(x)φn−1(x, t)]−

1
2

∫ x

0
β (x− y,y)An−1dy

+
∫

∞

0
β (x,y)Bn−1dy− k(µ0)(φn−1 −φn−2)

))
dt, n ≥ 3,

(4.2.3)

where

An =
1
n!

dn

dλ n

(
f1

(
∞

∑
k=0

φkλ
k

))
λ=0

, Bn =
1
n!

dn

dλ n

(
f2

(
∞

∑
k=0

φkλ
k

))
λ=0

for f1(µ) = µ(x−y, t)µ(y, t) and f2(µ) = µ(x, t)µ(y, t). Hence, the nth-order deformation

equation is governed by

L [φn −χnφn−1] = hH(Rn + k(µ0) [χnφn−1 −χn−1φn−2]) (4.2.4)

where

Rn =
∂ µn−1(x, t)

∂ t
− ∂ (G(x)µn−1(x, t))

∂x
− 1

2

∫ x

0
β (x− y,y)

n−1

∑
j=0

µ j(t,y− x)µn−1− j(x, t)dy

+
n−1

∑
j=0

∫
∞

0
β (x,y)µ j(x, t)µn−1− j(x, t)dy (4.2.5)
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and the characteristic function χn is given by

χn =

0 if n < 1,

1 if n ≥ 1.
(4.2.6)

Remark 4.2.1. It is worth mentioning that IOHAM is an enhancement to the recently

developed ODM [25]. It involves the convergence control parameter h, which increases

the convergence rate of the truncated solution to the exact solution. A particular case of

h =−1 reduces IOHAM to the ODM.

4.3 Convergence analysis
In this section, the convergence criterion of the iterative scheme, provided in equation

(4.2.3), for solving the aggregation-growth equation is discussed. Further, the convergence

of truncated series solution and error bounds of the approximated solution are presented

for the pure aggregation equation.

Theorem 4.3.1. If the iterative components φn are constructed using the higher-order

deformation equation (4.2.4) with Rn given by equation (4.2.5), then the series solution

∑
∞
n=0 φn is the exact solution to the problem (4.0.1) as long as it converges.

Proof. Let us assume that the series (φn)
∞
n=0 converges to µ(x, t). Then one can write

µ(x, t) =
∞

∑
n=0

φn(x, t) which implies that lim
n→∞

φn(x, t) = 0. (4.3.1)

Considering this, it is easy to see that

j

∑
n=0

[φn(x, t)−χnφn−1(x, t)] = φ1 +(φ2 −φ1)+ · · ·+(φ j −φ j−1) = φ j(x, t),

and hence, we get

∞

∑
n=0

[φn(x, t)−χnφn−1(x, t)] = lim
n→∞

φn(x, t) = 0.
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Using the linear property of the operator L leads to

∞

∑
n=0

L [φn −χnφn−1] = L
∞

∑
n=0

[φn −χnφn−1] = 0.

Thus, recalling the mth-order deformation equation

∞

∑
n=0

L [φn −χnφn−1] = hH
∞

∑
n=1

(Rn + k(µ0)(χnφn−1 −χn−1φn−2)) = 0,

entails that

∞

∑
n=1

Rn[φn−1] = 0, (4.3.2)

as h,H ̸= 0. Therefore,

∞

∑
n=1

Rn =
∞

∑
n=1

[
∂ µn−1(x, t)

∂ t
− ∂ (G(x)µn−1(x, t))

∂x
− 1

2

∫ x

0
β (x− y,y)

n−1

∑
j=0

µ j(x− y, t)µn−1− j(y, t)dy+
n−1

∑
j=0

∫
∞

0
β (x,y)µ j(x, t)µn−1− j(y, t)dy

]
.

Changing the order of sum simplifies to

∞

∑
n=1

Rn =
∞

∑
n=1

∂ µn−1(x, t)
∂ t

−
∞

∑
n=1

∂ (G(x)µn−1(x, t))
∂x

− 1
2

∫ x

0
β (x− y,y)

∞

∑
j=0

∞

∑
n= j+1

µ j(x− y, t)µn−1− j(x, t)dy+
∞

∑
j=0

∞

∑
n= j+1

∫
∞

0
β (x,y)µ j(x, t)µn−1− j(y, t)dy.

Letting k = n−1− j, the above reduces to

∞

∑
n=1

Rn =
∞

∑
n=1

∂ µn−1(x, t)
∂ t

−
∞

∑
n=1

∂ (G(x)µn−1(x, t))
∂x

− 1
2

∫ x

0
β (x− y,y)

∞

∑
j=0

µ j(x− y, t)

∞

∑
k=0

µk(y, t)dy+
∫

∞

0
β (x,y)

∞

∑
j=0

µ j(x, t)
∞

∑
k=0

µk(y, t)dy.

88



4.3. Convergence analysis

Recalling equations (4.3.1) and (4.3.2), we have

∂ µ(x, t)
∂ t

=
∂ (G(x)µ(x, t))

∂x
+

1
2

∫ x

0
β (x− y,y)µ(y− x, t)µ(y, t)dy−

∫
∞

0
β (x,y)µ(x, t)µ(y, t)dy,

(4.3.3)

implying that µ(x, t) is the exact solution of the aggregation-growth equation (4.0.1).

We will now discuss the convergence of the recursive formula (4.2.3). Here, it is hard to

handle the coupled aggregation-growth model and so for the sake of convenience G(x) = 0

is considered, i.e., the case of pure aggregation is handled. Let us rewrite the equation

(4.0.1) into the following form

µ(x, t) = µ(x,0)+
∫ t

0

(
1
2

∫ x

0
β (x− y,y)µ(x− y,s)µ(y,s)dy

−
∫

∞

0
β (x,y)µ(x,s)µ(y,s)dy

)
ds. (4.3.4)

Further, for a fixed T > 0, consider a strip

W := {(x, t) : 0 ≤ t ≤ T,0 < x < ∞}

and define ϕ(T ) be the space of all continuous functions µ(x, t) with the norm

∥µ∥ϕ(T ) := sup
0≤t≤T

∫
∞

0
|µ(x,s)|dx < L. (4.3.5)

Let us write equation (4.3.4) into the operator form as

µ = N [µ], (4.3.6)

where N is given by

N [µ] = µ(x,0)+
∫ t

0

(
1
2

∫ x

0
β (x− y,y)µ(x− y,s)µ(y,s)dy−

∫
∞

0
β (x,y)µ(x,s)µ(y,s)dy

)
ds.
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To show the contractiveness of the non-linear operator N , an equivalent form of the

equation (4.3.4) is defined as

∂

∂ t
[µ(x, t)exp[K (t,x,µ)]] =

1
2

exp[K (s,x,µ)]
∫ x

0
β (x− y,y)µ(x− y, t)µ(y, t)dy

where K (t,x,µ) :=
∫ t

0
∫

∞

0 β (x,y)µ(y,s)dyds. Thus, we have µ = ˜N µ , where

˜N = µ(x,0)exp[−K (t,x,µ)]+
1
2

∫ t

0
exp[K (s,x,µ)−K (t,x,µ)]∫ x

0
β (x− y,y)µ(x− y,s)µ(y,s)dyds. (4.3.7)

Since N and ˜N are equivalent, it is enough to show that ˜N is contractive.

Theorem 4.3.2. The non-linear operator ˜N introduced in (4.3.7) is contractive, i.e.,

∥ ˜N [µ]− ˜N [µ∗]∥ ≤ ∥µ −µ∗∥ for all µ,µ∗ ∈ ϕ(T ) holds if

• β (x,y) = 1 for all x,y ∈ (0,∞),

• δ := τeτL(∥µ0∥+ 1
2τL2 + τL)< 1, where τ = min{τ0,τ1}.

Proof. We begin this by showing ∥ ˜N [µ]∥< L for small τ > 0. Consider,

∥ ˜N [µ]∥ ≤∥µ0 exp[−K [t,x,µ]]∥+ 1
2

∥∥∥∥∫ t

0
(exp[K (s,x,µ)−K (t,x,µ)])

∫ x

0
µ(x− y,s)µ(y,s)dyds

∥∥∥∥
≤∥µ0∥+

1
2

∥∥∥∥∫ t

0
exp
[
−
∫ t

s

∫
∞

0
µ(y, t)dyds

]∫ x

0
µ(x− y,s)µ(y,s)dyds

∥∥∥∥
≤∥µ0∥+

1
2

∫
∞

0

∫ t

0

∫ x

0
µ(x− y,s)µ(y,s)dydsdx.

Further, by changing the order of integration and using the equation (4.3.5), imply that

∥ ˜N [µ]∥ ≤∥µ0∥+
1
2

∫ t

0

∫
∞

0

∫
∞

0
µ(z,s)µ(y,s)dzdyds

≤∥µ0∥+
1
2

L2t.

Hence, ∥ ˜N [µ]∥< L holds true if ∥µ0∥+ 1
2L2τ0 ≤ L for a suitable t = τ0. This inequality
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holds if τ0 ≤ 1
2∥µ0∥ and

1−
√

1−2τ0∥µ0∥
τ0

≤ L ≤
1+
√

1−2τ0∥µ0∥
τ0

.

Now, we concentrate on demonstrating that the mapping ˜N is contractive. For this,

consider

˜N [µ]− ˜N [µ∗] =µ0(x)H (0,x, t)+
1
2

∫ t

0

∫ x

0
H (s,x, t)µ(x,x− y)µ(y,s)dyds

+
1
2

∫ t

0
exp[K (s,x,µ)−K [t,x,µ∗]]

[∫ x

0
µ
∗(x− y,s){µ(y,s)−µ

∗(y,s)}

+
∫ x

0
µ(y,s){µ(x− y,s)−µ

∗(x− y,s)}dyds
]
,

where H (s,x, t) = exp[K (s,x,µ)−K (t,x,µ)]− exp[K (s,x,µ∗)−K (t,x,µ∗)] and it

can be easily shown that

|H (s,x, t)| ≤ γ∥µ −µ
∗∥,

where γ = tetB for B = max{∥µ∥,∥µ∗∥}. Hence, we have

∥ ˜N [µ]− ˜N [µ∗]∥ ≤γ∥µ0∥∥µ −µ
∗∥+ γ∥µ −µ

∗∥
∫ t

0

1
2
∥µ∥2ds+

∫ t

0
γ

[
1
2
(∥µ∥+∥µ

∗∥)∥µ −µ
∗∥
]

ds

≤γ

[
∥µ0∥+

1
2

t∥µ∥2 +
1
2

t(∥µ∥+∥µ
∗∥)
]
∥µ −µ

∗∥

=δ∥µ −µ
∗∥,

which for δ = γ(∥µ0∥+ 1
2τ1L2 + τ1L)< 1 for suitable τ1 indicates that the operator ˜N is

contractive.

Theorem 4.3.3. Let φ1,φ2, . . . ,φn are the components of the series solution and Ψn =

∑
n
i=0 φi be n term truncated series solution. Then the approximated series solution con-
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verges to the exact one with the error bound

∥µ(x, t)−Ψm(x, t)∥ ≤
∆m

1−∆
∥µ1∥,

assuming that all the conditions of Theorem 4.3.2 hold. In addition, the following condi-

tions are also imposed:

A1. k(µ0) ∈ L∞, i.e., |k(µ0)| ≤ k for some k ∈ R+,

A2. φn is a Cauchy sequence, i.e., for any n > m, ∥φn −φm∥< ε where ε < 1
np such that

p > 1.

Proof. Using (4.2.3), (n+1)-term approximated series solution is defined as

Ψn+1 =
∫ t

0

(
(1+h)

∂Ψn

∂ t
− 1

2
h
∫ x

0
(

n

∑
i=0

Ai)dy+h
∫

∞

0
(

n

∑
i=0

Bi)dy−hk(µ0)φn

)
dt. (4.3.8)

Following [97], one can obtain the inequalities ∑
n
i=0 Ai ≤ f1(Ψn) and ∑

n
i=0 Bi ≤ f2(Ψn).

Using these, the above equation reduces to,

Ψn+1 ≤
∫ t

0

(
(1+h)

∂Ψn

∂ t
−hN [Ψn]−hk(µ0)φn

)
dt.

Therefore, using the conditions of Theorem 4.3.2 and A1, we have

∥Ψn+1 −Ψm+1∥ ≤∥(Ψn −Ψm)(1+h)∥+ |h|∥N [Ψn]−N [Ψm]∥+ k(µ0)h∥φn −φm∥

≤|1+h|∥Ψn −Ψm∥+δ |h|∥Ψn −Ψm∥+ εkhτ

≤∆∥Ψn −Ψm∥+ εkhτ,

where ∆ := |1+h|+δ |h|. Hence, the following results is observed

∥Ψm+1 −Ψm∥ ≤∆∥Ψm −Ψm−1∥+ εkhτ ≤ ∆
2∥Ψm−1 −Ψm−2∥+ εkhτ(1+∆)

≤∆
m∥Ψ1 −Ψ0∥+ εkhτ(1+∆+∆

2 + · · ·+∆
m−1)
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= ∆
m∥Ψ1 −Ψ0∥+ εkhτ

(
1−∆m

1−∆

)
.

Using the properties of norm for all n,m ∈ N with n > m, it is certain that

∥Ψn −Ψm∥ ≤∥Ψm+1 −Ψm∥+∥Ψm+2 −Ψm+1∥+ · · ·+∥Ψn −Ψn−1∥

≤(∆m +∆
m+1 + · · ·+∆

n−1)∥Ψ1 −Ψ0∥+

εkhτ

[
1−∆m

1−∆
+

1−∆m+1

1−∆
+ · · ·+ 1−∆n−1

1−∆

]
≤ ∆m

1−∆
∥φ1∥+

εkhτ

1−∆
(n−m),

which converges to zero as m → ∞ under the assumption A2. This implies that there exists

a Ψ such that lim
n→∞

Ψn = Ψ. Thus, we have Ψ = ∑
∞
n=0 φn = µ(x, t), which is the exact

solution of the aggregation equation. Further, by fixing m and letting n → ∞, error bound

is obtained as

∥µ(x, t)−Ψm(x, t)∥ ≤
∆m

1−∆
∥µ1∥.

This concludes the proof of the theorem.

Remark 4.3.4. Consider the convergence control parameter h with ∆ < 1, so that

∆ = |1+h|+δ |h|< 1 =⇒ δ <
1−|1+h|

|h|
, h ̸= 0.

From the RHS of the above equation, we get

1−|1+h|
|h|

=


−1− 2

h h <−1,

1 −1 ≤ h < 0.

−1 h > 0

Therefore, one can choose the parameter h ∈ [−1,0).
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4.4 Numerical implementation
This section consists of three test cases of the pure aggregation (G(x) = 0) equation and

one test case of the coupled aggregation-growth equation with different physical kernels.

For choosing these problems, physical motivation is provided in Section 1. Due to the

non-linearity in the equation, it is hard to find the closed-form solution. Therefore, semi-

analytical results are obtained by truncating the series solutions. The accuracy of the

truncated results are analyzed by comparing approximated number density and moments

with the exact ones. Further, the estimated order of convergence (EOC) is computed and

plotted using the formula

EOC = ln
(
||µ(x, t)−N2i||
||µ(x, t)−N4i||

)
/ ln(2),

where Ni are the numerical results observed using i degrees of freedom. It is worth

to mention that the observations about EOC are identical for all the cases, and hence

simulations are plotted for constant kernel only. Throughout the computations, we consider

H = 1.

4.4.1 Aggregation equation

Example 4.4.1. Consider β (x,y) = 1 and G(x) = 0 in equation (4.0.1) with initial condi-

tion µ(x,0) = e−x for which the exact solution of the problem is given in [89] as

µ(x, t) =
4e−

2x
t+2

(t +2)2 .

Using the equation (4.2.1), one gets

k(µ0) =
1
2
(sinh(x)− cosh(x)+1)−1,
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and employing equation (4.2.3), components of the series solutions are obtained as

φ1(x, t) =ht
(

e−x − e−xx
2

)
,

φ2(x, t) =
1
8

hte−x
(

h
(
te−x(x−2)+ t(x−4)(x−1)−4x+8

)
−4x+8

)
,

φ3(x, t) =
1

96
hte−3x

(
e2x
(

h2 (t2 (−2x3 +20x2 −50x+29
)
+24t

(
x2 −5x+4

)
−48(x−2)

)
+12h

(
t
(
2x2 −11x+10

)
−8(x−2)

)
−48(x−2)

)
−2h2t2(x−2)

−2htex (h(t (x2 −8x+8
)
−12(x−2)

)
−6(x−2)

))
.

Due to the increasing complexity of the components of the series terms, a three-term

solution is being considered. Moreover, it is noticed that three terms approximations is

good enough for predicting the exact solution. To achieve the greater precision, one can

use MATHEMATICA software to calculate the higher-order terms. Figure (4.1) depicts a

comparison between the exact and truncated series solutions obtained using IOHAM and

ODM. It can be observed that for a short period, both ODM and IOHAM show a good

agreement with the exact solution. In contrast, ODM does not match well with the precise

number density as time increases, while IOHAM continues to provide a more accurate

approximation. In Figures (4.2)(a) and (4.2)(b), errors are displayed to demonstrate the

novelty of the proposed schemes. Figure (4.2)(a) displays that errors obtained from all

the defined methods are almost negligible up to time t = 2 for a fixed x. However, as time

progresses, HAM and ODM errors explode, whereas IOHAM error is still insignificant.

Figure (4.2)(b) demonstrates the absolute difference between two consecutive terms for

time t = 1. The difference between the second and third terms is negligible, which leads us

to conclude that the contribution of the higher-order terms is negligible and thus, motivates

us to shorten the solution to three terms. The accuracy of the three-term truncated solutions

can also be observed in Figure (4.2)(c), which depicts a comparison of the number density

at time t = 1. It can be visualized that the HAM under estimates and ODM over predicts

the particle concentration, whereas IOHAM has a remarkable agreement with the actual
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(a) ODM (n = 3) (b) IOHAM (n = 3)

(c) Exact

Figure 4.1: ODM, IOHAM and exact solutions for Example 4.4.1

values. In addition, the 3D absolute errors between exact and truncated solutions using

HAM, ODM, and IOHAM are plotted in Figure (4.3). Figures (4.3)(a) and (4.3)(b) indicate

that HAM and ODM maintain their accuracy for a brief time. However, the error grows

as time passes, whereas in Figure (4.3)(c), IOHAM accuracy persists for a considerable

period of time.

Proceeding further, Figure (4.4) compares the zeroth, first, and second moments of the

truncated solution to those of the exact solution. The first figure demonstrates that the total

number of particles obtained from all truncated solutions correspond well with the precise

solution for a specific time. As time passes, HAM and ODM moments deviate from the
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(c) Concentration

Figure 4.2: Concentration and error for 4.4.1

exact one rapidly. In contrast, IOHAM provides a stable and more accurate estimation of a

time of greater significance. It is worth mentioning here that the total mass is conserved in

all the truncated solutions, as shown in Figure (4.4)(b). Finally, Figure (4.4)(c) shows that

the second moment generated by the truncated solution utilizing all methods correspond

well to the exact second moment. Further, to add some more novelty of the IOHAM, it

can be observed from the error distribution plot in Figure 4.5(a) that as the number of

terms increases, the error reduces. In Figure 4.5(b), EOC is provided for HAM, ODM,

and IOHAM and it is noticed that the order of convergence is one for all the schemes.

However, graph indicates that IOHAM converges towards one faster than ODM and HAM.

Example 4.4.2. The IOHAM series solution for the aggregation parameter β (x,y) =

(x+ y) with exponential initial condition µ0(x) = e−x is computed and compared with the
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(a) ODM error (b) HPM error

(c) IOHAM error

Figure 4.3: Error for Example 4.4.1

exact solution given in [88] as

µ(x, t) =
e(e−t−2)x−tI1

(
2
√

1− e−tx
)

√
1− e−tx

,

where I1 is the Bessel function of the first kind.

Employing equations (4.2.1) and (4.2.3), k(µ0) and the first few components of the series

solutions are obtained as follows

k(µ0) =−x+
1
2

x(sinh(x)− cosh(x)+1)−1, φ0(x, t) = e−x,
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Figure 4.4: Moments for Example 4.4.1
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Figure 4.5: Error distribution and order of convergence for Example 4.4.1

φ1(x, t) = ht
(

e−x(x+1)− 1
2

e−xx2
)
.

Figure (4.6)(a) depicts the concentration of particles at time t = 3, for a three-term

truncated solution. It is shown that ODM and HAM fails to estimate the number density

99



Chapter 4. New approximate solutions for Smoluchowski’s aggregation and coupled
aggregation-growth equations

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Exact

● HAM (n=3)

■ ODM(n=3)

◆ IOHAM(n=3)

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

Size

C
on

ce
nt

ra
ti
on

(a) 2D Concentration

HAM
ODM
IOHAM

0 1 2 3 4 5

0

5

10

15

t

E
rr

or

(b) Error at x = 5

Abs[u1-u0]

Abs[u2-u1]

Abs[u3-u2]

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

E
rr

or

(c) Error at t = 1

Figure 4.6: Concentration and error for Example 4.4.2

accurately and exhibit variations, whereas, IOHAM displays a remarkable agreement

with the actual solution. In Figure (4.6)(b), the error is plotted over a longer period of

time for x = 5, and it is important to note that the error obtained using HAM and ODM

increases virtually exponentially, whereas the error produced using IOHAM remains

tolerable. In addition, Figure (4.6)(c) provides the rationale for truncating the solutions

to three terms, since it is obvious that the absolute difference between two successive

terms is decreasing and the absolute difference between the second and third terms is

nearly negligible. Figure (4.7) depicts contour plots of the errors between finite term series

solutions and precise ones and it is observed that HAM exhibits an unacceptable amount

of error for smaller size particles but a low amount of error for larger size particles. The

same observation is also made for ODM from Figure (4.7)(b), but the error decreases

significantly as compared to HAM. However, this error is still difficult to tolerate. Figure
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Figure 4.7: Error for Example 4.4.2

(4.7)(c) demonstrates that IOHAM yields a negligible error in comparison to the other two

approaches, which justify the superiority of the suggested method. Additionally, Figure

(4.8) compares the approximated and actual zeroth, first and second moments. It indicates

that, over a length of time, all of the stated approaches produce an excellent estimate of

the exact moments. However, as time progresses, ODM deviates from the exact solution,

but IOHAM continues to provide a better approximation. Notably, where HAM fails to

anticipate the number density properly, it delivers a remarkable matching with precise

moments. Similar to the preceding example, it is observed that as the number of terms
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Figure 4.8: Moments for Example 4.4.2

increases, the error decreases, and the order of convergence for each technique is 1.

Example 4.4.3. The IOHAM series solution for the aggregation parameter β (x,y) = xy

with exponential initial condition µ0(x) = e−x is computed and compared with the exact

solution given in [89] as

µ(x, t) =
∞

∑
k=0

tkx3k exp(−(t +1)x)
(k+1)!Γ(2k+2)

.

Using the formula defined in equation (4.2.1) and recursive relation (4.2.3), one gets

φ0(x, t) = e−x, φ1(x, t) = ht
(

e−xx− 1
12

e−xx3
)
,
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φ2(x, t) =
1

720
hte−2xx

(
ex (h(t (x(x(x3 −45x+30

)
+180

)
−360

)
−60x2 +720

)
−60x2 +720

)
−15ht(x+2)

(
x2 −12

))
.

In this instance, the same pattern of particle concentration is observed as in earlier

(a) ODM (n = 3) (b) IOHAM (n = 3)

(c) Exact (n = 3)

Figure 4.9: ODM, IOHAM and exact solutions for Example 4.4.3

instances. One can see from Figure (4.9) that IOHAM gives a great agreement with the

exact solution whereas ODM fails to maintain the precision. Figure (4.10)(a) compares

the amount of particles in the system when HAM, ODM, and IOHAM are utilized. It

is visualized that HAM over estimates the concentration, while ODM under estimates
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it. However, IOHAM contributes significantly to the precise solution. Figure (4.10)(b)

depicts error for a fixed x, and it can be noticed that for HPM and ODM, error develops at

a relatively rapid pace with time, whereas IOHAM maintains accuracy for large instances.

Further, Figure (4.11) presents the error obtained employing HAM, ODM, and IOHAM.
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Figure 4.10: Concentration and error for Example 4.4.3

As evident in the previous cases, IOHAM still maintains its supremacy and provides a

better approximation to the exact solution as compared to other methods.

4.4.2 Aggregation-growth

Example 4.4.4. Let us now consider the generalized aggregation-growth equation (4.0.1)

with linear growth rate G(x) = x, coagulation kernel β (x,y) = 1 and the initial condition

µ(x,0) = e−x. Exact solution for the problem is given by

µ(x, t) =
e
− e−t x

t
2+1

−t( t
2 +1

)2 .

To get the IOHAM solution iterations, using the equations (4.2.1) and (4.1.2) yield

k(µ0) =
1
2
(sinh(x)− cosh(x)+1)−2, φ0(x, t) = e−x,
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Figure 4.11: Error for Example 4.4.3

φ1(x, t) =ht
(

2e−x − 3e−xx
2

)
,

φ2(x, t) =
1
8

hte−x (h(te−x(3x−4)+ t(x(9x−25)+6)−12x+16
)
−12x+16

)
,

φ3(x, t) =
1

96
hte−3x

(
2h2t2(4−3x)−2htex(h(t(7x(3x−8)+12)−36x+48)−18x+24)

+ e2x(h(ht(t(39−2x(9x(3x−16)+143))+24(x(9x−25)+6))+48h(4−3x)

+12tx(18x−59)+96(3t −3x+4))+48(4−3x))
)
.
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Examining a solution for a truncated series with four terms, it becomes evident from

(a) IOHAM error (b) ODM error

Figure 4.12: Errors for Example 4.4.4
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Figure 4.13: Absolute difference of consecutive terms and moments for Example 4.4.4

Figure 4.12 that the IOHAM solution corresponds to the exact answer and provides a more

precise approximation than ODM. In addition, Figure 4.13(a) demonstrates that for a fixed

period of time, the difference between consecutive terms diminishes, indicating that after

a certain period of time, the contribution of higher terms disappears, which leads us to

truncate the solution for a four-term approximation. In Figure 4.13(b), the convergence of

precise and truncated series solutions moments reveal considerable concordance where

µi,n represents the ith moment with utilizing n-term truncated series solution.
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4.5 Conclusions
The chapter developed a new approximated solution for the aggregation and coupled

aggregation-growth equations. In this work, a recently developed semi-analytical tech-

nique, IOHAM, was employed. Additionally, the convergence analysis of the truncated

series solution for this method was examined for the aggregation equation. The numerical

results were compared with the existing solutions obtained using HAM, HPM, ADM,

and ODM. It was observed that all HAM, HPM, and ADM provided the same results.

The ODM improves the solution to some extent, but our proposed scheme improved

all the solutions obtained via predefined semi-analytical methods. Moreover, for the

first time, an analytical approximate method was implemented for solving the coupled

aggregation-growth equation.
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Chapter 5

Homotopy perturbation and Adomian

decomposition methods for condensing

coagulation and Lifshitz-Slyzov models

This chapter implements HPM and ADM to the condensing coagulation and Lifshitz-

Slyzov equations. Closed form solutions are derived for constant and product kernels.

Additionally, approximated solutions are obtained for additive and Ruckenstein kernels.

Mathematical demonstration confirms that the series solutions produced by these ap-

proaches align with the exact solution set, thereby validating the method’s reliability.

Let us recall the condensing coagulation model describe in Section 1.2.4 as,

∂c
∂ t

= Q(c), (5.0.1)

where the collision operator Q is defined as,

Q(c) =− ∂

∂x

[∫ x

0
yK(x,y)c(x, t)c(y, t)dy

]
−
∫

∞

x
K(x,y)c(x, t)c(y, t)dy

− ∂

∂x

[∫
∞

x
yL(x,y)c(x, t)c(y, t)dy

]
−
∫ x

0
L(x,y)c(x, t)c(y, t)dy, (5.0.2)

This work is published in GEM-International Journal of Geomathematics, 14(4), 2023
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where c(x, t) represents the concentration (number density) of particles of mass x at time t

and K(x,y) and L(x,y) are the rate at which particles of masses x and y collide, known as

the coagulation kernels. The coagulation kernels are non-negative and symmetric, i.e.,

K(x,y) = K(y,x) and L(x,y) = L(y,x). (5.0.3)

Such models are not easy to solve analytically and therefore, in this work, we demonstrate

two semi-analytical approaches, namely HPM and ADM to find the approximate solutions

for CCM and LSE in series form. These techniques are used to solve linear/non-linear

ordinary and partial differential equations and also integro-partial differential equations,

see [98–104] and further citations for more details.

The organization of this chapter is as follows. In Section 5.1, the basic idea behind the

homotopy perturbation and Adomian decomposition methods are presented. Proceeding

further, the approximate solutions are compared between two different schemes and/or

with the available exact solutions in Section 5.2 considering various kernels. We also plan

to discuss these schemes to solve the LSE in Section 5.3 and compare the results with

analytical solutions. At the end, some conclusions are reported.

5.1 Semi-analytical methods
In this section, HPM and ADM are explained for solving CCM.

5.1.1 Homotopy perturbation method

This method was proposed by J. He in 1999 [99, 100] for ordinary/partial differential

equations, in which the solution is considered as a sum of infinite series, which converges

to the exact solution. To understand this, let us consider,

A(c)−h(r) = 0,r ∈ Ω ⊂ Rn, (5.1.1)
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with boundary condition

B
(

c,
∂c
∂n

)
= 0,r ∈ ∂Ω, (5.1.2)

where A is a general differential operator and B is a boundary operator. Usually, the

operator A can be decomposed into linear and non-linear parts and so equation (5.1.1) can

be rewritten as

L(c)+N(c)−h(r) = 0, (5.1.3)

for L and N being linear and non-linear operators, respectively. Thanks to HPM, construct

a homotopy v(r, p) : Ω× [0,1]→ R that satisfies,

H[v(r, p)] = (1− p)[L(v(r, p))−L(c0)]+ p[A(v(r, p))−h(r)] = 0, (5.1.4)

where c0 is an initial condition associated with problem (5.1.1) and p ∈ [0,1] is an embed-

ding parameter. According to the HPM, let us assume

v =
∞

∑
k=0

pkvk. (5.1.5)

Substituting (5.1.5) in (5.1.4) and then letting p = 1, we obtain the solution as,

c(x, t) = lim
p→1

v =
∞

∑
k=0

vk. (5.1.6)

Now, we proceed further to solve the CCM equation (5.0.1)-(5.0.2) with initial condition

taken as

c(x,0) = c0(x). (5.1.7)
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For simplicity and to compare the approximate solutions with available exact solutions, let

us assume that K(x,y) = L(x,y) which reduces the equation (5.0.1) to

∂c
∂ t

= Q(c) =− ∂

∂x

[∫
∞

0
yK(x,y)c(x, t)c(y, t)dy

]
−
∫

∞

0
K(x,y)c(x, t)c(y, t)dy. (5.1.8)

Construct the homotopy of the equation (5.1.8) as follows,

H(v, p) = (1− p)
[

∂v
∂ t

− ∂c0

∂ t

]
+p
[

∂v
∂ t

+
∂

∂x

(∫
∞

0
yK(x,y)v(x, t)v(y, t)dy

)
+
∫

∞

0
K(x,y)v(x, t)v(y, t)dy

]
= 0. (5.1.9)

Using the expression (5.1.5) in (5.1.9), collecting the terms in powers of p and then setting

their coefficients to zero, we get

p0 :
∂v0

∂ t
=

∂c0

∂ t
,

p1 :
∂v1

∂ t
=− ∂

∂x

(∫
∞

0
yK(x,y)v0(x, t)v0(y, t)dy

)
−
∫

∞

0
yK(x,y)v0(x, t)v0(y, t)dy− ∂c0

∂ t
,

v1(x,0) = 0,

p2 :
∂v2

∂ t
=− ∂

∂x

(∫
∞

0
yK(x,y)(v0(x, t)v1(y, t)+ v1(x, t)v0(y, t))dy

)
−
∫

∞

0
yK(x,y)(v0(x, t)v1(y, t)+ v1(x, t)v0(y, t))dy, v2(x,0) = 0,

p3 :
∂v3

∂ t
=− ∂

∂x

(∫
∞

0
yK(x,y)(v0(x, t)v2(y, t)+ v1(x, t)v1(y, t)+ v2(x, t)v0(y, t))dy

)
−
∫

∞

0
yK(x,y)(v0(x, t)v2(y, t)+ v1(x, t)v1(y, t)+ v2(x, t)v0(y, t))dy, v3(x,0) = 0,

...

pk :
∂vk(x, t)

∂ t
=− ∂

∂x

[ k−1

∑
l=0

∫
∞

0
yK(x,y)vl(x, t)vk−l−1(y, t)dy

]
−[ k−1

∑
l=0

∫
∞

0
K(x,y)vl(x, t)vk−l−1(y, t)dy

]
,vk(x,0) = 0.
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Let us consider v0 = c0 = f (x), consequently
∂c0

∂ t
= 0. Therefore, we have

v1 =
∫ t

0

(
− ∂

∂x

(∫
∞

0
yK(x,y)v0(x, t)v0(y, t)dy

)
−
∫

∞

0
yK(x,y)v0(x, t)v0(y, t)dy

)
dt,

v2 =
∫ t

0

(
− ∂

∂x

(∫
∞

0
yK(x,y)(v0(x, t)v1(y, t)+ v1(x, t)v0(y, t))dy

)
−
∫

∞

0
yK(x,y)(v0(x, t)v1(y, t)+ v1(x, t)v0(y, t))dy

)
dt,

...

vk =
∫ t

0

(
− ∂

∂x

[ k−1

∑
l=0

∫
∞

0
yK(x,y)vl(x, t)vk−l−1(y, t)dy

]
−
[ k−1

∑
l=0

∫
∞

0
K(x,y)vl(x, t)vk−l−1(y, t)dy

])
dt. (5.1.10)

Setting p = 1 results in an approximation to the solution of the problem (5.1.8) and one

gets

c(x, t) = lim
p→1

v = v0 + v1 + v2 + v3 + . . . . (5.1.11)

We will formulate the right-hand side of (5.1.10) for different kernels later on.

5.1.2 Adomian decomposition method

This method was introduced by George Adomian in 1988 [78]. To apply the scheme for

solving the equation (5.1.8) with initial condition given as in equation (5.1.7), let us rewrite

the equation (5.1.8) as follows

Lc(x, t) =− ∂

∂x

[∫
∞

0
yK(x,y) f (c)dy

]
−
∫

∞

0
K(x,y) f (c)dy. (5.1.12)

Here L = ∂

∂ t is a linear differential operator and the inverse operator L−1 is defined as

L−1 =
∫ t

0
[.]dt, (5.1.13)
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and

f (c) = c(x, t)c(y, t). (5.1.14)

Operating L−1 on both the sides of (5.1.12) with initial condition c(x,0) = c0(x) gives

c(x, t) = c0(x)−L−1
[

∂

∂x

∫
∞

0
yK(x,y) f (c)dy+

∫
∞

0
K(x,y) f (c)dy

]
. (5.1.15)

Following [78], it is known that ADM provides the solution c(x, t) and the non-linear

function f (c) by the infinite series,

c(x, t) =
∞

∑
n=0

vn(x, t), f (c) =
∞

∑
n=0

An(x, t), (5.1.16)

where A′
ns are called Adomian polynomials. Thanks to [82], these polynomials are given

as,

A0 = v0(x, t)v0(y, t), A1 = v0(x, t)v1(y, t)+ v1(x, t)v0(y, t),

and in general An−1 is

An−1 =
n−1

∑
j=0

v j(x, t)vn− j−1(y, t), for n ≥ 1.

So, the iteration using ADM would be as follows

v0 = c0(x)

vn =−L−1
(

∂

∂x

∫
∞

0
yK(x,y)An−1dy+

∫
∞

0
K(x,y)An−1dy

)
,n = 1,2,3, · · · . (5.1.17)

Using the value of An in (5.1.17) leads to

vn =−L−1
(

∂

∂x

∫
∞

0
yK(x,y)

n−1

∑
j=0

v j(x, t)vn− j−1(y, t)dy+
∫

∞

0
K(x,y)

n−1

∑
j=0

v j(x, t)vn− j−1(y, t)dy
)
.

(5.1.18)
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Note that (5.1.18) is exactly the same as equation (5.1.10), concluding that the series

solutions for CCM are same by using both ADM and HPM.

5.2 Numerical results
In this section, approximate solutions for the number density and the total number of

particles obtained by ADM or HPM are compared with the exact solutions when constant

and product kernels are taken with some given initial conditions. There are exceptional

cases where the analytical solution for number density or moments are not available and it

is not always possible to find such a solution to many problems. So, we choose a midway

and try to investigate the problem’s semi-analytic solutions. In all the cases, truncated

series solution is provided for different values of n and the error plot is discussed.

5.2.1 Multiplicative kernel

Consider (5.1.8) with kernel K(x,y) = xy and the initial condition c0(x) = e−x. Now, for

approximate solution by ADM, using these values in the equation (5.1.10) yields

v0(x, t) = e−x, v1(x, t) = e−xt(x−2), v2(x, t) =
1
2

e−xt2(2+(−4+ x)x),

v3(x, t) =
1
6

e−xt3(6+(−6+ x)x)x, v4(x, t) =
1
24

e−xt4(12+(−8+ x)x)x2

and proceeding further, one gets the general form as vk(x, t) = 1
k!e

−xtk(k(k−1)+(−2k+

x)x)xk−2. Hence, following (5.1.6) leads to

c(x, t) =
∞

∑
k=0

vk(x, t) =
∞

∑
k=0

1
k!

e−xtk(k(k−1)+(−2k+ x)x)xk−2 = ex(t−1)(t −1)2.

(5.2.1)

It is the exact solution of the CCM, as given in Davidson’s thesis [63]. To see the efficiency

of proposed algorithm finite n-term truncated series solution can be obtained via

cn(x, t) =
n

∑
j=0

v j(x, t),
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and numerical simulations are compared with the exact solutions. Further, to check the

accuracy of the scheme, we compute the truncation error using the formula

Error = ∆m =
m

∑
i=1

|cn(x, t)− c(x, t)|hi, (5.2.2)

where m defines the number of subintervals, hi the length of the interval and c(x, t) is

the exact solution. Table 5.1 shows the truncation error for different values of n. Using

n 2 4 6 8 10

∆n 0.00417 0.000038 37.0722×10−5 40.8357×10−7 40.8645×10−9

Table 5.1: Truncation error when t = 0.7 & x ∈ [0,10] for n= 2,4,6,8,10 taking hi = 0.01.
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Figure 5.1: Number density and zeroth moment

the error formula defined in equation (5.2.2), we observe that the error decreases by

increasing the number of terms. Figure 5.1(a) provides the comparison between exact and

approximated number density for n = 2,4,6,8 and 10 while the exact zeroth moment is

compared with 8 and 10 terms approximated solutions in Figure 5.1(b). It is noticed that
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5.2. Numerical results

(a) c(x,t) (b) c10(x, t)

(c) |c(x, t)− c10(x, t)|

Figure 5.2: Number density and error

the series solution converges towards the exact solution for large n and in fact c10(x, t)

coincides with the exact concentration and allows excellent agreement with the zeroth

moment at t = 0.7. In addition, Figure 5.2 has a similar pattern of behavior that is a

three-dimensional plot of the exact and truncated solutions reveals that the results are

almost identical, and the error is minimal.

5.2.2 Constant kernel

In this case, the exact solutions for the number density are available for two different initial

conditions c0(x) = xe−x and c0(x) = x2e−x, see [63]. In the first case, thanks to HPM and
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ADM, we are able to sum the series and the result is exactly matching with the available

analytical solutions. While for the second case, few term approximations are considered

and approximate solutions are compared with the exact solutions.

5.2.2.1 Case 1: Consider K(x,y) = α and c0(x) = xe−x

Using these values in equation (5.1.10), we get

v0(x, t) = xe−x, v1(x, t) = αte−x(x−2), v2(x, t) = α
2t2e−x(x−2),

v3(x, t)=α
3t3e−x(x−2), v4(x, t)=α

4t4e−x(x−2), . . . ,vn(x, t)=α
ntne−x(x−2),n ̸= 0.

Hence, equation (5.1.6) leads to

c(x, t) =
∞

∑
n=0

vn(x, t) =
∞

∑
n=1

α
ntne−x(x−2)+ xe−x =−αte−x(x−2)

αt −1
+ xe−x, αt < 1

(5.2.3)

which is the exact solution for the problem. Let us consider the aggregation kernel α = 1

for numerical investigations, which leads us to the restriction on time that is t < 1 as

αt < 1. One may take a small value of alpha to study the behavior of particles for ample

time. Figure 5.3 represents the comparison of the exact and truncated solutions for
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Figure 5.3: Exact and series solutions for number density by taking (a) n = 5,10 at t = 0.6
and (b) n = 10,20 at t = 0.8 for α = 1

several values of n. Similar to the previous test case, again it is reported from this figure

that as the number of series terms increases, more accuracy with respect to time can be
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Figure 5.5: Number density
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(a) |c(x, t)− c6(x, t)| at t = 0.6 (b) |c(x, t)− c6(x, t)| at t = 0.8

(c) |c(x, t)− c8(x, t)| at t = 0.8

Figure 5.6: Error

achieved. It can also be observed that for t = 0.6, c10(x, t) coincides with the exact solution

in Figure 5.3(a), while the same holds true for c20(x, t) when t = 0.8 in Figure 5.3(b). This

concludes that, for large computational time, one has to take more number of terms to

achieve better accuracy. A similar observation has also been noticed in [16] for solving

coagulation-fragmentation models. Further, in Figure 5.4(a), total number of particles

computed via HPM is visualized for n = 10 and the result is found to be in good match

with the exact moment. Also, the error plots between the exact and 10-term, 20-term series

solutions are given in Figure 5.4(b). One can easily see that the error decreases for large

n and is very insignificant for n = 20. The same observation we have noticed for Figure
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5.2. Numerical results

(5.5), and Figure (5.6) represents truncated number density and error between exact and

truncated solution at time t = 0.6 and t = 0.8.

To study the model’s behavior for a considerable time, one more case is taken into account,

i.e., α = 1
10 . Figure 5.7 shows that the approximate solution enjoys a remarkable agreement

with the exact solution, and the error is almost negligible at time t = 8.

(a) c(x, t) at t = 8 (b) c20(x, t) at t = 8

(c) |c(x, t)− c20(x, t)| at t = 8

Figure 5.7: Number density and error

5.2.2.2 Case 2: Assume K(x,y) = α and c0(x) = x2e−x

Taking these values of K and c0(x), equation (5.1.10) provide

v0(x, t) = x2e−x, v1(x, t) = 4αte−x(x−3)x,
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v2(x, t) = 2α
2t2e−x(x(5x−24)+18), v3(x, t) = 8α

3t3e−x(x−6)(2x−3),

v4(x, t) = 4α
4t4e−x((x−48)x+90) and v5(x, t) = 16α

5t5e−x(x+3)(5x−12).

Having the above, considering a 5 term approximation yields

c(x, t)≈
5

∑
k=0

vk(x, t), (5.2.4)

where the exact solution is given in Davidson’s thesis [63] as,

c(x, t) =
e6αt−x(x−6αt)2

2αt +1
, x−6αt > 0. (5.2.5)
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Figure 5.8: (a) Exact and series solutions for n = 2,5 at t = 0.1 and (b) series solutions for
n = 2,5,8 at t = 0.2 and (c) comparison of exact and numerical zeroth moments at t = 0.2

We analyze the curve for the truncated solutions along with the exact ones for two values

of n in Figure 5.8(a). This figure indicates that for n = 5, the numerical simulation curve
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5.2. Numerical results

(a) Exact solution (b) c8(x, t)

(c) |c(x, t)− c8(x, t)|

Figure 5.9: Number density and error

coincides with the exact solution at t = 0.1. Figure 5.8(b) shows the truncated solutions

for n = 2,5,8 at time t = 0.2 and it is concluded that results for n = 5 and n = 8 are almost

identical which leads us to truncate the series at n = 5. Figure 5.9 also exhibits a similar

pattern, and the error resulting from the 8-term truncated solution is virtually insignificant.

Further, in Figure 5.8(c), zeroth moment is shown to be in good accuracy with the 8-term

series solution.

The above illustrations show the reliability of our proposed methods. Thus, motivate us

to extend the results for the physical relevant kernels, for instance sum and Ruckenstein

kernels, where the analytical solutions are not available.
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5.2.3 Sum kernel

In this case, given the initial condition c0(x) = xe−x and the kernel K(x,y) = 1
10(x+ y), an

approximate solution for the number density is determined for various values of n. When

the solution is truncated at n = 10,12,15 and 18, an error plot is displayed by considering

c18 as a standard solution. equation (5.1.10) gives

v0(x, t) = xe−x, v1(x, t) =
1

10
te−x (x2 −6

)
, v2(x, t) =

1
200

t2e−x(x(x(x+2)−6)−24),

v3(x, t) =
1

6000
t3e−x(x(x(x(x+6)+16)−60)−240).

Hence, assuming a 18-term approximation, i.e., c(x, t)≈ ∑
18
k=0 vk(x, t) yields

c(x, t)≈ 1
6000

t3e−x(x(x(x(x+6)+16)−60)−240)+
1

200
t2e−x(x(x(x+2)−6)−24)

+
1

10
te−x (x2 −6

)
+ e−xx+ · · · .

The analytic approximate number density obtained via HPM is plotted for n = 10,12,15

and 18 in Figure 5.10 and it is clearly visible that results for n = 15 and 18 are similar to

each other. One can also verify this by computing the error between |c18(x, t)− ck(x, t)|

for k = 10,12,15 see Figure (5.11) for the justification of such behavior.

5.2.4 Ruckenstein kernel

This kernel has been suggested as a model for the deterioration of supported metal catalysts

[105] and used to represent the process of particle migration and coalescence on a heated

substrate. Consider equation (5.1.8) for Ruckenstein kernel (K(x,y) = x2/3 + y2/3) and

exponential initial condition (u(x,0) = x2e−x), iteration for HPM will be as follows

v0(x, t) =x2e−x, v1(x, t) = e−x
(

4t(x−4)x5/3 +
2

11
t(4x−11)xΓ

(
14
3

))
,

v2(x, t) =
8

81
t2e−x

(
1134x4/3 −729x7/3 +81x10/3 +6(x(57x−346)+385)x2/3

Γ

(
8
3

)
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(a) c12(x, t) (b) c15(x, t)

(c) c18(x, t)

Figure 5.10: Number density cn(x, t) for n = 10,12,15 and 18

+21(4x−5)xΓ

(
7
3

)
+(x(347x−1584)+968)Γ

(
8
3

)2)
.

It is worth mentioning that the terms of the solutions are quite complicated and take

an ample amount of computational time in this scenario. Due to that reason, a three-

term truncated solution is considered. Figure 5.12(a)-(c) presents the number density

distribution for n = 2,3 and 4 terms. One can observe the unpredictable behavior of

number density distribution. The reason behind this may lie in the unavailability of the

higher order terms and exact solutions. However, the first moment’s prediction is quite

well as it shows the mass conservation of the number of particles. The same type of
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(a) |c18(x, t)− c10(x, t)| (b) |c18(x, t)− c12(x, t)|

(c) |c18(x, t)− c15(x, t)|

Figure 5.11: Error |c18(x, t)− ck(x, t)| for k = 10,12,15

behavior of the truncated solution was seen by G. Kaur et al. in [8] and concluded that

closed form or higher order terms were necessary to accurately forecast the behavior of

the number distribution and integral properties.

5.3 Lifshitz-Slyozov equation with encounters
The standard Lifschitz-Slyozov system, as introduced in [106] and [107], describes the

evolution of a solution of polymers. Davidson analyze the long-time behavior of the

solutions for LSE with the encounter having three types of initial data in [63]. The model

is similar to the CCM with addition of some advection term. So, the mathematical equation
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(a) c1(x, t) (b) c2(x, t)

(c) c3(x, t)
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n=3

* n=2

(d) First Moment

Figure 5.12: Number density cn(x, t) for n = 2,3,4 and first moment.

is described as

∂c
∂ t

=− ∂

∂x
[ f (x, t)c(x, t)]+Q(c), (5.3.1)

where

f (x, t) = x[u(t)− x−1] (5.3.2)

127



Chapter 5. Homotopy perturbation and Adomian decomposition methods for condensing
coagulation and Lifshitz-Slyzov models

and

Q(c) =− ∂

∂x

[∫ x

0
yK(x,y)c(x, t)c(y, t)dy

]
−
∫

∞

x
K(x,y)c(x, t)c(y, t)dy

− ∂

∂x

[∫
∞

x
yL(x,y)c(x, t)c(y, t)dy

]
−
∫ x

0
L(x,y)c(x, t)c(y, t)dy. (5.3.3)

Here, f (x, t) is the average rate at which the particle cluster expands by acquiring new

particles. For the further analysis, the same condition on kernels taken as before is

considered, i.e, K(x,y) = L(x,y) = L ≥ 0. Note that, for such model as well, mass remains

a conserved quantity which is given by the expression

∫
∞

0
xc(x, t)dx := M1(t) = M1(0), (5.3.4)

for M1(0) being the initial mass. In order to implement HPM or ADM on equation (5.3.1),

let us rewrite this in some equivalent form. Multiplying equation (5.3.1) by x, integrating

with respect to x over 0 to ∞ and using equation (5.3.4) give

∫
∞

0
x

∂

∂x
[ f (x, t)c(x, t)]dx =

∫
∞

0
xQ(c)dx. (5.3.5)

One can easily compute that
∫

∞

0 xQ(c)dx = 0. Therefore, applying integration by parts

provide

0 =
∫

∞

0
f (x, t)c(x, t)dx.

Substitute the value of f (x, t) from (5.3.2) to get

u(t) =
∫

∞

0 c(x, t)dx∫
∞

0 xc(x, t)dx
:=

M0(t)
M1(0)

. (5.3.6)
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By having (5.3.2), K(x,y) = L(x,y) = L and relation (5.3.4), equation (5.3.1) can be

simplified as

∂c(x, t)
∂ t

=− ∂

∂x
{[xu(t)−1]c(x, t)}−LM1(0)

∂c(x, t)
∂x

−LM0(t)c(x, t)

=

(
1−LM1(0)−

M0(t)
M1(0)

x
)

∂c(x, t)
∂x

−
(

LM0(t)+
M0(t)
M1(0)

)
c(x, t). (5.3.7)

By multiplying the above equation by xr and integrating with respect to x from 0 to ∞

yields the moments equation as

dMr(t)
dt

= rLM1Mr−1 −LM0Mr. (5.3.8)

Solving for the zeroth moment M0(t), it is easy to see that r = 0 enable us to have

M0(t) =
M0(0)

LM0(0)t +1
.

If the initial condition c0(x) = e−x, one can find that M0(0) = M1(0) = 1. Therefore, using

all these desired values in equation (5.3.1), we get

∂c(x, t)
∂ t

=− ∂

∂x

([
x

1+Lt
−1
]

c(x, t)
)
+Q(c). (5.3.9)

Now, we apply HPM and ADM to find the series solution of the above defined model.

5.3.1 Series Solution by HPM

Using the procedure defined in Section 2, we construct a homotopy as,

H(v, p) = (1− p)
[

∂v
∂ t

− ∂c0

∂ t

]
+ p
[

∂c(x, t)
∂ t

+
∂

∂x

([
x

1+Lt
−1
]

c(x, t)
)
−Q(c)

]
= 0.

(5.3.10)
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Substituting the series solution v(x, t) = ∑
∞
k=0 vk(x, t)pk, in the equation (5.3.10) and

collecting the coefficients of powers of p leads to

p0 : v0(x, t) =c0(x),

pk :
∂vk

∂ t
=− ∂

∂x

([
x

1+Lt
−1
]

ck−1

)
− ∂

∂x

[ k−1

∑
l=0

∫
∞

0
yLcl(x, t)ck−l−1(y, t)dy

]
−
[ k−1

∑
l=0

∫
∞

0
Lcl(x, t)ck−l−1(y, t)dy

]
, k = 1,2, . . . .

This can further be rewritten as,

vk(x, t) =−
∫ t

0

∂

∂x

([
x

1+Lt
−1
]

ck−1

)
− ∂

∂x

[ k−1

∑
l=0

∫
∞

0
yLcl(x, t)ck−l−1(y, t)dy

]
−
[ k−1

∑
l=0

∫
∞

0
Lcl(x, t)ck−l−1(y, t)dy

]
dt. (5.3.11)

5.3.2 Series solution by ADM

Consider the equation (5.3.9) with taking L = ∂

∂ t as a linear differential operator and the

inverse operator L−1 is defined as L−1 =
∫ t

0[.]dt. Then the equation (5.3.9) becomes

Lc(x, t) =− ∂

∂x

([
x

1+Lt
−1
]

c(x, t)
)
+Q(c). (5.3.12)

Applying the same procedure for ADM as defined in Section 3, one gets

v0 =c0(x),

vk =L−1
(
− ∂

∂x

([
x

1+Lt
−1
]

ck−1

)
− ∂

∂x

[ k−1

∑
l=0

∫
∞

0
yLcl(x, t)ck−l−1(y, t)dy

]
−
[ k−1

∑
l=0

∫
∞

0
Lcl(x, t)ck−l−1(y, t)dy

])
,k = 1,2, . . . , (5.3.13)

which is again the same as equation (5.3.11), concluding that the results from HPM and

ADM are identical.
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5.3.3 Numerical results

The LSE for number density and zeroth moment with initial condition c(x,0) = e−x is

discussed here. For this initial condition and the constant kernel K(x,y) = L, the analytical

solution is provided in [63] as

c(x, t) = (Lt +1)−
1
L−1e(L−1)t−x(Lt+1)−1/L

.

Thus, the truncated series solutions for the concentration and total number of particles

are compared with the exact solutions for various values of n and error plots are given to

illustrate the convergence of numerical solutions towards the exact one.

By using the given data, equation (5.3.11) enables us to have the following first four terms

of the series solution as

v0(x, t) =e−x, v1(x, t) = e−x
(
(x−1) log(Lt +1)

L
− t
)
,

v2(x, t) =
e−x(log(Lt +1)(−2Lt(x−2)+((x−3)x+1) log(Lt +1)+2)+Lt(Lt −2))

2L2 ,

v3(x, t) =
1

6L3 e−x
(

L3t3 −6L2t2 +6Lt + log(Lt +1){−3L2t2x+9L2t2 +6Ltx−6Lt −6}+

log2(Lt +1){3Ltx2 −15Ltx−6x+12Lt +9}+ log3(Lt +1){−x3 +6x2 −7x+1}
)
.

Figure 5.13(a) shows the numerical simulations for n = 2,4 and a comparison with the

exact solution. One can clearly see that a convergence of approximated solution towards

the exact solution can be established. Fortunately, for n = 4, results from HPM overlaps

with the exact number density. Also, Figure 5.13(b) indicates that as the number of terms

approximation increases, the error between the exact and ADM solutions reduces and

becomes insignificant for t = 0.5. The same data is depicted in Figure (5.14), which

demonstrates that the 4-term truncated solution has a considerable agreement with the

analytical solution, and the error is relatively small. Finally, Figure 5.13(c) compares the
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zeroth moment of the exact and the truncated solutions which concludes that the zeroth

moment using HPM is exactly matching with the analytical solution for n = 4.

5.4 Conclusions
This chapter dealt with the approximated and/or exact solutions for the CCM and LSE

achieved by applying ADM and HPM. Both strategies provided a recursive relation for

obtaining the exact answers in terms of sum of an infinite series, as well as approximate

solutions. It was observed that the solutions via HPM were the same as via ADM. For the

product and constant kernels, series solutions for number density and zeroth moment for

CCM were compared with the available analytical solutions. Moreover, errors between

truncated series solutions were reported for sum kernel to justify the convergence of the

scheme in the absence of exact solutions. Similar results were also obtained and noticed

the convergence of ADM or HPM towards the solutions of LS equation. Since, the total

mass is constant for both the models, we observed the same using series solutions and
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(a) Exact (b) c4(x, t)

(c) Error|c(x, t)− c4(x, t)|

Figure 5.14: Exact solution, truncated solution and error

therefore, omitted the plots.
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Chapter 6

An implicit semi-analytical technique:

development, analysis and applications

It is observed in the preceding chapters that HPM, ADM, HAM, ODM and IOHAM

maintain precision within limited temporal scopes. Hence, in order to solve the problems

over expended period of time, this chapter proposes a novel implicit semi-analytical method

that provides solutions over greater temporal extents. The idea is implemented here for the

nonlinear differential equations and implementation for the aggregation-breakage model is

an open avenue.

Differential equations are crucial in representing the dynamics of systems across various

fields of science and engineering [108–110]. These equations govern the temporal behavior

of systems, depicting the changes in variables affected by internal mechanisms and external

influences. Many realistic problems entail complex systems or boundary conditions

that make analytical solutions infeasible or unattainable, especially over extensive time

domains. Nevertheless, solving the equations over large time domains is imperative to

comprehend and forecast the behavior of dynamic systems encountered in various scientific

and engineering domains. From modeling climate change dynamics to simulating complex

biological processes or analyzing financial systems’ stability [111, 112], differential

equations serve as the foundation for capturing the evolution of variables over time.
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Various numerical methods are employed to approximate the solutions of such problems.

However, these schemes come with computational challenges, such as discretization and

truncation of the domain, which can introduce errors in the solution. These errors can

accumulate and propagate over time, affecting the accuracy of the solution. Numerical

techniques such as finite element [113–115] and finite difference [116, 117] are highly

contextualized techniques based on domain discretization. Hence, devising a more feasible

and precise method to solve the differential equation over a longer time domain is an

unresolved and essential topic.

To overcome the drawbacks of the numerical techniques, various semi-analytical ap-

proaches such as ADM [118], HAM [119], HPM [120, 121], ODM [25] and iterative

finite difference methods [122, 123] have been implemented to solve nonlinear differential,

delayed-differential and integro-differential equations [18, 92, 93, 124–126]. Moreover,

SAT are methods that can solve linear or non-linear differential equations without dis-

cretization, linearization, or special transformation and can provide approximate solutions

in the form of infinite series or polynomials.

6.0.1 Literature review

The ADM, introduced by George Adomian, is a technique for solving ordinary and

partial differential equations [127]. In 1986, it was also applied to stochastic models

[128]. Many researchers use this method to find the exact solutions of various differential

equations, including integral and integro-differential ones [11, 129, 130]. However, the

algorithm has some drawbacks as well. The accuracy of the method and the convergence

of series solution are limited to a small region and to achieve a precise solution for a larger

domain, one must calculate more series terms. Recently, Odibat discusses some additional

limitations of the ADM [25], such as its inability to satisfy the boundary conditions for

some non-linear systems. To address these issues, Odibat proposes the ODM, a technique

for solving both linear and nonlinear differential equations [25] by approximating the

nonlinear term with a Taylor series expansion. The author asserts that the ODM has higher

accuracy and quicker convergence than the ADM.
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HPM [99] has received significant attention in addressing nonlinear problems due to series

solution obtained [100, 102, 131] with easily computable terms. However, the perturbation

methods rely on small/large parameters, also called perturbation quantities. Therefore,

these methods are only suitable for weakly non-linear problems and for small domains.

The HAM [96, 119] is one of the most dependable and efficient SAT for solving non-linear

DEs. Unlike HPM or any other traditional non-perturbation technique, HAM does not

depend on the selection of base function or other small/large physical parameters. It offers

a simpler way to guarantee the fast convergence of series solution. The main benefit of the

HAM is its ability to control the convergence speed and region [96]. As a result, the HAM

can handle even highly non-linear problems.

Several SAT have been proposed in recent years to improve the precision and effectiveness

of the solutions for longer time domains. Odibat [25] argues that ODM outperforms

the conventional SAT such as HAM, HPM, and ADM in accuracy. Hence, it would be

worthwhile to devise a new semi-analytical method that can produce more precise results

than ODM.

6.0.2 Novelty and contribution

The work presents an implicit SAT for resolving ordinary and partial differential equations,

accompanied by the introduction of a convergence control parameter to enhance accuracy.

A theoretical analysis of the proposed method’s convergence is conducted, followed

by presenting results for significant physical problems like Ricarti [132] and Burgers’

equations [125]. Numerical simulations demonstrate the superior performance of the

proposed method compared to HAM, HPM, and ADM.

The subsequent sections are structured as follows: Section 6.1 examines different semi-

analytical methodologies, offering a succinct overview of HAM, HPM, ADM, and ODM.

Section 6.2 introduces an implicit iterative method for differential equations, and the

convergence control parameter is also incorporated. Additionally, Section 6.3 conducts an

extensive investigation into the convergence characteristics of the proposed methodology.

In Section 6.4, the scheme’s numerical implementation is delineated for both ordinary and
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partial differential equations. Lastly, the concluding section underscores critical remarks

and prospects for future research.

6.1 Semi-analytical methods: A comprehensive survey
This section introduces the core ideas of prominent SAT for addressing nonlinear differen-

tial equations. Let us consider the nonlinear differential equation of the form:

N [µ(x, t),µ ′(x, t)] = 0, (6.1.1)

based on the initial condition µ(x,0) = µ0(x). In the above expression, N signifies the

nonlinear differential operator, µ(x, t) is an unknown analytic function, and µ ′(x, t) = ∂ µ

∂ t .

6.1.1 Homotopy analysis method

Considering the equation (6.1.1) and following HAM, a homotopy is constructed as follows

(1−q)L [θ(x, t;q)−µ0(x)]−qhHN [θ(x, t;q),θ ′(x, t;q)] = 0, (6.1.2)

here q ∈ [0,1] is an embedding parameter, H,h ̸= 0 are auxiliary function and auxiliary

parameter respectively and L being a linear operator. It is evident that as the parameter

q progresses from 0 to 1, the function θ(x, t;q) evolves from the initial approximation

µ0(x) = θ(x, t;0) to the exact solution µ(x, t) = θ(x, t;1) of the given problem (6.1.1).

The fundamental concept of HAM posits that the solution to the nonlinear problem can be

expressed as a power series expansion in terms of the parameter q, as

θ(x, t;q) =
∞

∑
k=0

qkvk(x, t). (6.1.3)

As postulated, the series solution outlined in equation (6.1.3) is required to fulfill the stipu-

lations of equation (6.1.1). In order to ascertain the components of the series solution, one

must insert equation (6.1.3) into equation (6.1.2) and equate the coefficients corresponding
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to the identical powers of q, thereby yielding the requisite deformation equations as,

L [v1] =HhA0(v0),

L [v2] =L [v1]+HhA1(v0,v1),

L [v3] =L [v2]+HhA2(v0,v1,v2),

...

L [vn] =L [vn−1]+HhA3(v0,v1,v2, · · · ,vn−1),

where,

N (
j

∑
i=0

qiv′i(x, t),
j

∑
i=0

qivi(x, t)) = A0(v0)+qA1(v0,v1)+q2A2(v0,v1,v2)+ · · ·+

q jA j(v0,v1, · · · ,v j).

In conclusion, the precise solution to the problem is formally articulated as follows

lim
q→1

θ(x, t;q) = µ(x, t) = v0 + v1 + v2 · · ·

.

6.1.2 Adomian decomposition method

Considering the equation (6.1.1) and decomposing in the form

L [µ(x, t)]+R[µ(x, t)]+N[µ(x, t)] = g(x, t),

L represents the linear operator of the utmost order, assuming it is invertible. The term

R denotes the residual portion of the linear operator, while N signifies the nonlinear

differential operator. On further simplification, one can write

µ(x, t) = ω(x, t)+L −1g(x, t)−L −1R[µ(x, t)]−L −1N[µ(x, t)], (6.1.4)
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where ω(x, t) appears due to the initial condition. In ADM, the unknown function µ(x, t)

breakdown in the sum of infinite series, i.e.,

µ(x, t) =
∞

∑
j=0

w j(x, t) (6.1.5)

and the nonlinear term N[µ(x, t)] is represented by

N[µ(x, t)] =
∞

∑
j=0

A j(x, t), (6.1.6)

where Adomian polynomials A′
js are provided by

A j(x, t) =
1
j!

d j

dλ j

[
N

(
j

∑
i=0

λ
jc j(x, t)

)]
λ=0

. (6.1.7)

Substituting the equation (6.1.5), (6.1.6) and (6.1.7) in equation (6.1.4) lead to the evalua-

tion of the components of the series solutions as

w0(x, t) =ω(x, t)+L −1g(x, t),

w j+1(x, t) =−L −1(Rw j(x, t))−L −1A j(x, t), j ≥ 0. (6.1.8)

6.1.3 Optimized decomposition method

To understand the methodology, we first look at the ODE and then broaden the explanation

for the PDE. Consider the ODE

L [µ(t)] = N [µ(t)]+g(t). (6.1.9)

The initial phase of ODM comprises the introduction of an optimized linear operator

based on the Taylor series approximations. This is based on the idea that the nonlinear

operator F [L [µ],µ] =L (µ)−N (µ) may be linearized using a first-order Taylor series

expansion around t = 0. As a result, the linear operator used to approximate F [L [µ],µ]
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at the position (µ∗
0 ,µ0) as follows:

F [L [µ],µ]≈ ∂F

∂L [µ]
(µ∗

0 ,µ0)L [µ]+
∂F

∂ µ
(µ∗

0 ,µ0)µ, (6.1.10)

here µ0 = µ(0), and µ∗
0 = L [µ](0). Utilizing this approximation, equation (6.1.9) is

reformulated as:

R[µ(t)] = N [µ(t)]+K µ(t)+g(t), (6.1.11)

where

R[µ] = L [µ]+K µ, (6.1.12)

and

K =

∂F
∂ µ

(
µ∗

0 ,µ0
)

∂F
∂L [µ]

(
µ∗

0 ,µ0
) . (6.1.13)

The efficacy of ODM relies on the precise specification of constant K and the coefficient

of µ within the devised linear operator R. Given the non-trivial invertibility of the linear

differential operator R, an iterative approach for the proposed method necessitates decom-

posing the solution µ(t) of Eq.(6.1.9) into a series form, expressed as µ(t) = ∑
∞
k=0 µk(t).

Herein, the constituent functions (µk(t))
k=∞

k=0 are determined using the iterations



µ0(t) = f (t)

µ1(t) = L −1 [A0(t)]

µ2(t) = L −1 [A1(t)+K µ1(t)]

µk+1(t) = L −1 [Ak(t)+K (µk(t)−µk−1(t))] , k ≥ 2,

(6.1.14)
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where f (t) = L −1g(t)+µ(0).

Further, the scope of ODM expands to address PDE as detailed in [25]. To grasp the

fundamental concept underlying this extension, contemplate the equation (6.1.1) to the

subsequent PDE structure

∂

∂ t
µ(x, t) = γ

∂ 2

∂x2 µ(x, t)+N [µ(x, t)], t > 0, (6.1.15)

where γ ∈ R and the equation satisfies the following conditions

µ(x,0) = f (x),

µ(x, t)→ 0, as |x| → ∞, t > 0.
(6.1.16)

In accordance with the methodology outlined in [25], it is presupposed that a first-order

Taylor series expansion is capable of linearizing the nonlinear function F (µt ,µxx,µ) =

∂

∂ t µ − γ
∂ 2

∂x2 µ −N [µ] at t = 0. The linear approximation of F is represented as follows:

F (µt ,µxx,µ)≈
∂

∂ t
µ − γ

∂ 2

∂x2 µ −K (x)µ, (6.1.17)

where

K (x) =
∂N

∂ µ

∣∣∣∣
t=0

. (6.1.18)

The aforementioned approximation results in the linear representation of the nonlinear

PDE (6.1.15) as

R[µ(x, t)] = N [µ(x, t)]−K (x)µ(x, t), t > 0, (6.1.19)

where R[µ] = ∂

∂ t µ − γµxx −K (x)µ . Instead of resorting to the inverse of the linear

operator R, which is not readily invertible, the proposed solution to the problem is

taken as µ(x, t) = ∑
∞
k=0 µk(x, t) with the coefficients µk(x, t),k ≥ 0 are determined by the
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following equations



µ0(t,x) = f (x)

µ1(t,x) = L −1
{

A0(x, t)+ γ
∂ 2

∂x2 µ0(x, t)
}

µ2(x, t) = L −1
{(

A1(x, t)+ γ
∂ 2

∂x2 µ1(x, t)
)
−
(

γ
∂ 2

∂x2 +K (x)
)

µ1(x, t)
}

µk(x, t) = L −1
{(

Ak−1(x, t)+ γ
∂ 2

∂x2 µk(x, t)
)
−
(

γ
∂ 2

∂x2 +K (x)
)
(µk−1(x, t)−µk−2(x, t))

}
, k ≥ 3,

(6.1.20)

for A′
ks being the Adomian polynomials.

6.2 Implicit semi-analytical technique
In this section, we introduce a novel SAT for solving differential equations, which we

call the implicit iterative method (IIM). Unlike other semi-analytical methods, such as

homotopy perturbation, homotopy analysis, Adomian decomposition, and optimized

decomposition methods, the IIM is implicit in nature and offers superior accuracy. The

IIM relies on the concept of Taylor series expansion of a non-linear operator. To illustrate

the same, let us consider the following differential equation

A [µ(x,τ)]+g(x) = 0, (6.2.1)

here A is a non-linear differential operator and g(x) is a known analytical function. To

proceed further, let us decompose the operator as

L [µ(x,τ)]+N [µ(x,τ)]+g(x) = 0, (6.2.2)

here L is linear operator and N is a non-linear operator. The zeroth order approximated

solution is obtained by the solution of the linear differential equation

L [µ0(x, t)]+g(x) = 0 with initial condition µ0(x,0) = µ(x,0). (6.2.3)
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Now, to find the next approximated solution µ1(x, t) that satisfies

L [µ1(x, t)]+N [µ1(x, t)]+g(x)≈ 0,

we expand the nonlinear part with respect to known previous approximated solution

µ0(x, t). Hence, the iterative scheme to obtain the first-order iterative solution can be

obtained by solving the differential equation

L [µ1(x,τ)]+µ1(x,τ)C (x) =−N [µ0(x,τ)]+µ0(x,τ)C (x)−g(x). (6.2.4)

where C (x) = ∂N
∂ µ

∣∣∣
t=0

. Continuing in a similar fashion, the higher-order iterative solution

can be obtained by solving the linear differential equation

L [µn+1(x,τ)]+µn+1(x,τ)C (x) =−N [µn(x,τ)]+µn(x,τ)C (x)−g(x) for n ≥ 1.

(6.2.5)

It is worth mentioning that each iteration of the scheme is the solution of the equation

(6.2.1). The increase in the number of iterations leads to the convergence of the approx-

imated solution towards the precise one. In light of this, an analytical solution can be

derived as

µ(x,τ) = lim
n→∞

µn(x,τ). (6.2.6)

Remark 6.2.1. For the purpose of facilitating convergence analysis, let us rewrite the

iterative scheme in another form, define the operator A [µn] as

N [µn]+g(x)−C (x) := A [µn],

implies that

µn+1 =−L −1{A [µn]+C (x)µn+1}. (6.2.7)
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Considering v0(x, t) = µ0(x, t) and by defining vi(x, t) = µi(x, t)−µi−1(x, t) for i ≥ 1, it is

easy to see that

µ(x,τ) = lim
n→∞

µn(x,τ) =
∞

∑
j=0

vi(x,τ).

6.2.1 Convergence control parameter

To improve the accuracy of the scheme, one can involve the convergence control parameter

h in the iterative scheme [18]. The iterative scheme for the approximate solution is obtained

as

L [µn+1(x,τ)]+µn+1(x,τ)C (x) = h(−N [µn(x,τ)]+µn(x,τ)C (x)−g(x)) for n ≥ 1.

(6.2.8)

As a result, the auxiliary parameter h affects the convergence region and rate of the solution

series and allows for a significant improvement by choosing a suitable value for h. This

provides a simple way to manipulate and regulate the convergence region and rate of the

solution series derived by the IIM. Various techniques to calculate the convergence control

parameter are available in the literature, such as the discrete gradient method, CADNA,

CESTAC, h-curve, and discrete residual method [132, 133]. This article employs the

discrete residual methods [132] to determine the optimal value of the convergence control

parameter.

6.3 Convergence analysis
Definition 6.3.1. [134] The number of significant digits between two real numbers α1 and

α2 is expressed by Cα1,α2 and is estimated as

 Cα1,α2 = log
∣∣∣∣ α1 +α2

2(α1 −α2)

∣∣∣∣= log
∣∣∣∣ α1

α1 −α2
− 1

2

∣∣∣∣, α1 ̸= α2

Cα1,α1 = ∞.
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Theorem 6.3.2. Consider µh
n (x, t) be the nth order approximated solution of the equation

(??) which is obtained via convergence control parameter h independent of n, then

C
µh

n ,µ
h
n+1

= Cµh
n ,µ

+O

(
1

n+1

)
,

if {µh
n} is a Cauchy sequence i.e., for any n > m, ∥µh

n −µh
m∥< ε where ε = 1

n! .

Proof. To prove the theorem, use the Definition 6.3.1 as follows

C
µh

n ,µ
h
n+1

−Cµh
n ,µ

=log
∣∣∣∣ µh

n +µh
n+1

2(µh
n −µh

n+1)

∣∣∣∣− log
∣∣∣∣ µh

n +µ

2(µh
n −µ)

∣∣∣∣.
Rearranging the log terms and using (??), we get

C
µh

n ,µ
h
n+1

−Cµh
n ,µ

=log
∣∣∣∣µh

n +µh
n+1

µh
n +µ

∣∣∣∣+ log
∣∣∣∣µh

n −µ

vh
n+1

∣∣∣∣.
As n increases, µh

n moves closer toward the exact solution. Therefore, one can neglect the

first term, and now to deal with the second term, let us consider

log
∣∣∣∣µh

n −µ

vh
n+1

∣∣∣∣=log
∣∣∣∣∑n

i=0 vh
i −∑

∞
i=0 vh

i

vh
n+1

∣∣∣∣
=log

∣∣∣∣∑∞
i=n+1 vh

i

vh
n+1

∣∣∣∣
=log

∣∣∣∣1+ vh
n+2 + vh

n+3 + vh
n+4 + · · ·

vh
n+1

∣∣∣∣.
Now,

vh
n+2 + vh

n+3 + vh
n+4 + · · ·

vh
n+1

=
vh

n+2

vh
n+1

+
vh

n+3

vh
n+1

=
vh

n+4

vh
n+1

+ · · ·=
µh

n+2 −µh
n+1

µh
n+1 −µh

n
+

µh
n+3 −µh

n+2

µh
n+1 −µh

n
+ · · · .

(6.3.1)

Using the assumption {µh
n} is a Cauchy sequence and following the steps of the proof of
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Theorem 1 in [133], we have

vh
n+2 + vh

n+3 + vh
n+4 + · · ·

vh
n+1

≤

1
(n+2)!

1
(n+1)!

+

1
(n+3)!

1
(n+1)!

+ · · · . (6.3.2)

Then
vh

n+2 + vh
n+3 + vh

n+4 + · · ·
vh

n+1
≈ O( 1

n+1), which implies that

log
∣∣∣∣µh

n −µ

µh
n+1

∣∣∣∣= log
∣∣∣∣1+O(

1
n+1

)

∣∣∣∣.
Since O( 1

n+1)≪ 1, the right-hand side of the above relation tends to 0 as n increases.

Remark 6.3.1. The above theorem demonstrates that for the constant convergence control

value h, by augmenting the number of iterations n, we can obtain the optimal iteration

of the IIM. This theorem enables us to employ µh
n −µh

n+1 for the cessation of the series

solution rather than µh
n −µ in the algorithm. Furthermore, this theorem reveals that the

number of common significant digits between two consecutive approximations µh
n and

µh
n+1 is nearly identical to the number of common significant digits between µh

n and µ .

Theorem 6.3.3. Considering the components v1,v2, · · · ,vn expressed in Remark 6.3.1, the

proposed iterative solution is convergent if ∃0 < λ < 1 such that ∥vi+1∥ ≤ λ∥vi∥, ∀i ≥ i0

for some i0 ∈ N, where

∥vi(x, t)∥= max |vi(x, t)|,

defined on the space

W := {(x, t) : α < x < β ,0 < t < T },

for a fixed T and α,β ∈ R.
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Proof. Let us consider the sequence of partial sum (ψn)
∞
n=0 as



ψ0 = v0,

ψ1 = v0 + v1,

ψ2 = v0 + v1 + v2,
...

ψn = v0 + v1 + v2 + · · ·+ vn.

Now, we will prove that the sequence (ψn)
∞
n=0 is a Cauchy sequence in Hilbert space R.

Consider

∥ψn −ψm∥= ∥vn+1∥ ≤ λ∥vn∥ ≤ λ
2∥vn−1∥ ≤ ·· · ≤ λ

n−i0+1∥vi0∥.

For every n ≥ m ≥ i0 where n and m are natural numbers, one can observe that

∥ψn+1 −ψn∥=∥(ψn −ψn−1)+(ψn−1 −ψn−2)+ · · ·++(ψm+1 −ψm)∥

≤λ
n−i0∥vi0∥+λ

n−i0−1∥vi0∥+ · · ·+λ
m−i0+1∥vi0∥

=
1−λ n−m

1−λ
λ

m−i0+1∥vi0∥ ≤
1

1−λ
λ

m−i0+1∥vi0∥,

since 0 < λ < 1, we get

lim
n,m→∞

∥ψn −ψm∥= 0. (6.3.3)

Therefore, (ψn)
∞
n=0 is a Cauchy sequence in R, implying that the iterative solution (6.2.5)

is convergent.

Theorem 6.3.4. Considering the iterative solution of the equation (6.2.1) converging to

the exact solution µ(x, t) and the finite m term truncated solution governed by ψm(x, t) :=
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m

∑
j=0

v j(x, t), the maximum error is given by

∥µ(x, t)−ψm(x, t)∥ ≤
1

1−λ
λ

m+1∥v0∥.

Proof. From the above theorem, we have

∥ψn(x, t)−ψm(x, t)∥ ≤
1−λ n−m

1−λ
λ

m+1∥v0∥, ∀n ≥ m.

Further, if n → ∞, ψn(x, t)→ µ(x, t). Therefore, for a fixed m,

∥µ(x, t)−ψm(x, t)∥ ≤
1

1−λ
λ

m+1∥v0∥.

Here, 0 < λ < 1, λ n−m → 0 as n → ∞ and hence, complete the proof.

Remark 6.3.2. If we define the parameters β ′
i s [125] for each i ∈ N∪{0} as

βi =


∥vi+1∥
∥vi∥ , ∥vi∥ ̸= 0,

0, ∥vi∥= 0.
(6.3.4)

Then, Theorem 6.3.4 concludes that the truncated solution for IIM converges to the exact

solution µ(x, t), if 0≤ βi < 1, ∀i∈N∪{0} and λ =max{β ′
i s}. Furthermore, by following

Theorem 2, the maximum absolute error is calculated to be ∥µ(x, t)−vn∥ ≤ 1
1−β

β n+1∥v0∥.

6.4 Numerical validation
This section presents four examples that demonstrate the effectiveness and performance of

the suggested method over exiting iterative solutions derived by the HAM, HPM, ADM,

and ODM. Specifically, two ODEs, one PDE and one stiff ODE are examined.

Example 6.4.1. Consider the non-linear Ricatti equation

dµ(t)
dt

= 1−µ
2(t), t > 0
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under the initial condition µ(0) = µ0 ∈ R. The exact solution for the problem is given as

[25]

µ(t) =
µ0 + tanh(t)

1+µ0 tanh(t)
. (6.4.1)

As per the IIM described in Section 6.2, the linear and nonlinear operators are selected

as L [µ] =
dµ

dt
and N [µ] := 1− µ2, respectively. Therefore, iterations to obtain the

approximated solutions are provided as follows

L [v0(t)] = 0, with initial condition v0(0) = µ0,

and the higher order iterations are computed via

L [vi+1(t)]+ vi+1(t)C (t) =−N [vi(t)]+ vi(t)C (t)−g(t), i ≥ 1.

The above iterations give the approximated solutions as

v0(t) = µ0, v1(t) =
1

2µ0
e−2µ0t (−hµ

2
0 +hµ

2
0 e2µ0t +he2µ0t −h+2µ

2
0
)
.

Following the similar trend, one can find the higher order iterative solutions using

MATHEMATICA©. For numerical simulations, a five term truncated series solution

is considered. The convergence control parameter is assessed for iterative solutions involv-

ing three, four, and five terms, yielding values of 0.995, 0.998, and 0.999, respectively.

These values exhibit close similarity, thus confirming the validity of Theorem 6.3.2 and

one can consider the value of h = 0.99.

The iterative solutions derived from HPM, HAM, ADM, ODM, and the new proposed

methods IIM and IIM-h are compared in Figure 6.1(a). All the methods show good

accuracy for a short duration, but the HPM errors increase rapidly as time progresses, and

the ODM solution eventually becomes unstable after some time. On the other hand, IIM

and IIM-h keep their accuracy for a longer duration. Figure 6.1(b) indicates a remarkable
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increase in the error of iterative solutions derived via HPM, HAM, ADM, and ODM,

while IIM and IIM-h have a tolerable error. The importance of using the convergence

control parameter is demonstrated in Figure 6.1(c). The accuracy is slightly affected by

the convergence control parameter at the beginning, but it enhances the accuracy for a

longer duration. Table 6.1 outlines the error trends across multiple iterations for distinct
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(c) Comparison between IIM and IIM-h

Figure 6.1: Solution and errors for Example 6.4.1

time intervals. The error increases with the progression of time for both IIM and IIM-h

methods, albeit opting for a higher-order iterative solution can enhance accuracy. Notably,

integrating the convergence control parameter somewhat enhances accuracy but comes

with a heightened computational burden. Additionally, Table 6.2 compares the error with

other iterative solutions. It can be seen that the HPM, HAM, and ADM solutions exhibit

extreme behavior for a longer duration, and ODM solutions are better than the other

solutions, but errors are still unacceptable. On the other hand, IIM and IIM-h perform well
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Time Level (t)
Number of Iterations

IIM IIM-h

n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

2 5.51E-3 1.33E-3 2.93E-4 5.00E-3 8.22E-4 2.25E-4
4 8.16E-3 2.65E-3 8.52E-4 7.65E-3 2.12E-3 3.19E-4
6 8.26E-3 2.735E-3 9.07E-4 7.75E-3 2.20E-3 3.73E-4
8 8.27E-3 2.736E-3 9.08E-4 7.75E-3 2.20E-3 3.75E-4

10 8.28E-3 2.73E-3 9.09E-4 7.76E-3 2.207E-3 3.75E-4

Table 6.1: Error comparison of IIM and IIM-h methods

and demonstrate high accuracy for the higher time. Table 6.3 presents the experimental

Values of t
1 2 3 4 5

HAM 2.535 208.826 2630.16 15602.8 61582.5
ODM 2.43E-2 2.992 12.2178 5.499 95.593
IIM 1.31E-5 2.938E-4 6.808E-4 8.527E-4 8.98E-4
IIM-h 4.34E-4 2.254E-4 1.49E-4 3.19E-4 3.64E-4

Table 6.2: Error distribution for different schemes considering n = 5 with parameters
v0 = 1.5 for Example 6.4.1

order of convergence for diverse methods, uniformly indicating a convergence of first order

across all methodologies. It is noteworthy that the IIM and IIM-h methods demonstrate a

relatively enhanced convergence rate compared to alternative schemes.

Example 6.4.2. Consider the nonlinear differential equation

dµ(t)
dt

=−αµ(t)−β µ
3(t), (6.4.2)

with the initial condition µ(0) = µ0 and α,β ,µ0 ∈ R. The exact solution of the problem

is given by [25]

µ(t) =
µ0eαt√

1+ β

α
µ2

0 (1− exp−2at)
.
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Grid HAM ODM IIM IIM-h
0.5

0.930 0.929 0.982 0.988
0.25

0.964 0.964 0.991 0994
0.25/2

0.982 0.981 0.995 0.997
0.25/4

0.991 0.990 0.997 0.998
0.25/8

Table 6.3: Order of convergence using ADM, ODM, IIM and IIM-h with parameters
v0 = 1.5 in Example 6.4.1

Comparing the equation (6.4.2) with equation (6.2.1), one can deduce that L [µ(t)] =
dµ(t)

dt
and N [µ(t)] = αµ(t)+β µ3(t). Hence iterations to obtained the approximated

solutions are provided as follows v0(t) = µ0,

v′i+1(t)+ vi+1(t)C (x) =−αµ(t)−β µ3(t)+ vi(t)C (x), i ≥ 0.

Simplifying the above iterations, first few approximated solutions are obtained as

v0(t) =µ0,

v1(t) =
1

1.69β +0.75

(
0.75e−1.69β t−0.75t

(
1.69β −1.13βh+1.13βhe(1.69β+0.75)t +0.75

))
.

Following the same approach, one can obtain higher-order iterative solutions to enhance the

accuracy. A four-term truncated series solution is considered, and exact and approximate

solutions are contrasted in Figure 6.2(a). The graph shows that ADM/HPM and HAM

are consistent with the exact solution for a shorter time, while ODM performs better for a

longer time than ADM, HPM, and HAM but still exhibits a sharp increase for the further

extended time domain. On the other hand, IIM and IIM-h demonstrate a remarkable

agreement for a considerably longer time. In Figure 6.2(b), error plots are displayed
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and illustrate the same findings for the error. Figure 6.2(c) emphasizes the effect of the

convergence control parameter. As the previous example shows, the convergence control

parameter substantially lowers the error with a slight perturbation at the initial time.
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Figure 6.2: Solution and errors for Example 6.4.2

Example 6.4.3. Consider the inviscid Burgers’ equation

∂ µ

∂ t
(x, t)+µ(x, t)

∂ µ

∂x
= 0, (6.4.3)

with the initial guess µ(x,0) = αx+β and the exact solution of the problem is provided

as [125]

µ(x, t) =
αx+b
1+αt

.
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By following the iterative procedure defined in equation (6.2.5), first few approximated

solutions are obtained as

µ0(x, t) =β +αx, µ1(x, t) = eα(−t)(β +αx), µ2(x, t) = e−2αt (
αteαt +1

)
(β +αx),

µ3(x, t) =
1
6

e−4αt (eαt (e2αt (3α
2t2 −5

)
+6eαt(αt +1)2 +6αt +3

)
+2
)
(β +αx).

Following the same pattern, higher-order iterative solutions can be derived. A four-term

iterative solution is used for numerical computation. In Figure 6.3(a), the exact solution

and the solutions obtained by ADM, HPM, HAM, and ODM are compared for α = β = 1.

As seen in the previous example, the solutions by ADM, HPM, and HAM agree well

with the exact solution, but they diverge after a short time. On the other hand, the ODM

solution remains stable for a longer time. However, the IIM solution is superior to all the

other methods. This observation is consistent across both Figure 6.3(b) and 6.4.
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Figure 6.3: Solution and errors for Example 6.4.3

In Figure 6.5(a), it is evident that the IIM solution exhibits a disturbance as time progresses,

leading to an increase in error. Conversely, Figure 6.5(b) illustrates that the solution can

be enhanced over time by augmenting the number of iterations. Hence, the choice of

the number of iterations can be tailored to achieve the desired level of accuracy for the

solution. It is worth mentioning here that for PDEs, the experimental order of convergence

is observed one. Therefore, we have chosen to omit the table illustrating the experimental
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Figure 6.4: Absolute errors for Example 6.4.3

order of convergence in this context.

6.4.1 Stiff Ordinary Differential Equation

This section consider an stiff ordinary differential equation and to validate the efficiency

and accuracy of the proposed scheme, IIM approximated solutions are compared with the

FDM solution.
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Figure 6.5: Solution and errors for Example 6.4.3

Example 6.4.4. Consider the non-linear oscillator equation

dµ(t)
dt

= σ(µ(t)−µ
3(t)), (6.4.4)

with the initial condition µ(0) = a.

Again, by following the iterative procedure defined in equation (6.2.5), first few approxi-

mated solutions are obtained as

µ0(t) =a, µ1(t) =
aeσt−3a2σt

(
2a2e(3a2−1)σt +a2 −1

)
3a2 −1

,

µ2(t) =
a

2(3a2 −1)4

(
92a8 −72a6 +12a4 −23a2et(σ−3a2σ)−a2e3t(σ−3a2σ) +6a2

σtet(σ−3a2σ)

+2et(σ−3a2σ) +90a10
σtet(σ−3a2σ) +57a8et(σ−3a2σ) +12a8e2t(σ−3a2σ) +a8e3t(σ−3a2σ)

−228a8
σtet(σ−3a2σ)−117a6et(σ−3a2σ)−24a6e2t(σ−3a2σ)−3a6e3t(σ−3a2σ)

+192a6
σtet(σ−3a2σ) +81a4et(σ−3a2σ) +12a4e2t(σ−3a2σ) +3a4e3t(σ−3a2σ)

−60a4
σtet(σ−3a2σ)

)
. (6.4.5)

Due to the complexity involve in the iterations two and three term truncated series solution

is considered and plotted against the FDM solution, as presented in Figure 6.6. For a

fixed value of a and σ , Figure 6.6(a) illustrates that the two-term truncated series solution
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Figure 6.6: Solution and errors with a = 0.5 and σ = 0.2 for Example 6.4.4

closely aligns with the FDM solution for smaller values of t. This alignment can be

further enhanced by considering more terms, as evidenced by the three-term truncated

solution matching well with the FDM solution. Furthermore, Figure 6.6(b) presents the

absolute difference between consecutive approximated solutions, indicating that higher-

order truncated series solutions have a reduced impact on the solution for the specified

time. This observation prompted us to truncate the solution for three terms. Additional

higher-order terms can be obtained to achieve the desired accuracy. It is important to note

that the IIM-h can also be implemented to obtain a more accurate solution. However,

due to the time complexity involved, we have omitted the discussion of IIM-h for this

particular case.

6.5 Conclusions
The work introduced a novel semi-analytical approach, IIM, to address ODEs and PDEs.

It examined two instances of ODEs and one instance of a PDE, contrasting their outcomes

with approximated solutions like HPM, ADM, HAM, and ODM. The proposed methodol-

ogy yielded more accurate results compared to other semi-analytical methods. Moreover,

it integrated a convergence control parameter to refine the semi-analytical solution further.

However, it is noted that the proposed approach could be more computationally intensive

despite providing results with a minimal number of terms. The proposed technique is

a powerful and versatile tool for solving ODEs and PDEs and can be extended to other
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differential equations. Future work may include improving the computational efficiency

of the technique and applying it to fractional, stochastic, integral, and integral-partial

differential equations.
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Chapter 7

Conclusions and future scopes

This comprehensive study delved into applying various mathematical methods to solve

complex equations related to aggregation and fragmentation processes.

Initially study introduced the VIM for aggregation and coupled aggregation breakage

equations. Compared to ADM, VIM provided better estimates for the number density and

moments. For the pure growth process, both ADM and VIM formulations were precisely

the same for the particle density and finite term series solutions were shown in excellent

agreement with the analytical ones. ADM and VIM gave closed-form solutions with

a constant growth rate for the pure growth equation. To accelerate the accuracy of the

solution, OVIM was implemented to solve the growth model and aggregation equation

with a constant kernel. However, the computational cost restricted us from applying the

technique to other considered problems. Despite its advantages, the VIM was noted to have

limitations, including complex terms and high computational costs for finding higher-order

components of the series solutions.

The AHPETM was employed in the next part of the study. This method was used to solve

fragmentation, multi-dimensional coagulation, and coupled aggregation-fragmentation

equations. It was observed that AHPETM significantly outperformed the results of ADM,

HAM, HPM, and ODM for non-linear aggregation equation, demonstrating its reliabil-
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ity and applicability. AHPETM was also designed to solve non-linear 2-D aggregation

and combined aggregation-fragmentation equations due to the accuracy and efficiency

observed in the pure aggregation equation, and remarkable results were obtained in each

case.

Further, IOHAM was employed to solve aggregation and coupled aggregation-growth

equations. The convergence analysis of the truncated series solution for this method was

examined for the aggregation equation. The numerical results were compared with the

existing HAM, HPM, ADM, and ODM solutions. It was observed that HAM, HPM,

and ADM provided the same results, while ODM improved the solution to some extent.

However, the proposed IOHAM scheme improved all the solutions obtained via predefined

semi-analytical methods. Moreover, for the first time, an analytical approximate method

was implemented for solving the coupled aggregation-growth equation. In the last part

of the study, a novel semi-analytical approach, the IIM, was introduced to address ODEs

and PDEs. The proposed methodology yielded more accurate results compared to other

semi-analytical methods. Moreover, it integrated a convergence control parameter to refine

the semi-analytical solution further. However, it was noted that the proposed approach

could be more computationally intensive despite providing results with a minimal number

of terms.

The study further focused on the ADM and HPM to solve CCM and LSE. ADM and

HPM provided a recursive relation for obtaining exact solutions in terms of the sum of an

infinite series and approximate solutions. Interestingly, it was observed that the solutions

obtained through HPM were identical to those obtained via ADM. A closed-form solution

is obtained for the product and constant kernels. The errors between truncated series

solutions were reported for the sum and Ruckenstein kernels to justify the convergence of

the scheme in the absence of exact solutions. Similar results were also obtained for the

LSE, further validating the effectiveness of these methods.

In conclusion, each method has its strengths and limitations, and the choice of method de-

pends on the specific requirements of the problem. This study contributes to understanding

these methods and their applications in solving complex aggregation and fragmentation

162



equations. Future work could explore the use of considered methods for tackling other

engineering non-linear problems, potentially enhancing the approach with a convergence

control parameter and Pade approximation. This would offer a more refined and practical

scheme for solving complex mathematical problems.

Future Scope

Based on the work done in the thesis, the possible scopes are as follows:

1. To study the semi-analytical technique, namely modified veriational iteration method

for collision-induced breakage equation and study its convergence analysis.

2. To implement the implicit iterative method on aggregation and breakage models to

obtain the accurate solutions for longer time domain.

3. Implementation of finite volume scheme for cancer coagulation model and validate

the results with experimental data.

4. The explore the numerical and semi-analytical methods to solve the Rennet-coagulation

model.
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