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Abstract

Fluid dynamics of liquids past a membrane is an important fundamental aspect of var-
ious natural and engineered systems, influencing phenomena from sediment transport in
rivers to particle-laden flows in industrial processes. In this phenomenon, the membrane
can be conceptualized as consisting of a swarm of regularly distributed solid particles, with
the flow past the membrane analogous to the fluid flow around these particles within the
swarm. The topic of flow past a swarm of particles has been a topic of immense interest for
researchers to get an insight into the flow of fluid through porous media owing to its promi-
nent applications in diverse areas like physical and biological science such as flow through
smooth muscle cells, petroleum reservoir rocks, wastewater treatment filtration processes,
blood flow via the lungs, digestive system design and the sand beds. While analyzing fluid
flow through a swarm of porous particles, it is not easy to simultaneously discuss the role and
contributions of every particle in a swarm. Hence, the particle-in-cell approach can be used
to discuss the behavior and role of every particle in a swarm. The primary objective of the
cell model techniques is to consider a single particle from a swarm disassembled in a space.
Analyzing fluid flow through a single particle is much easier than a swarm of particles. A
condition on the hypothetical cell surface is considered to find the role and contributions
of each particle in a swarm, where the hypothetical cell surface is a virtual envelope of the
chosen particle. The cell size is assumed so that the particle volume fraction of the mem-
brane should be the ratio of the particle’s volume and the volume of a cell. The fluid flow is
considered in the separately taken hypothetical cell. In this domain, the primary focus has
been on the movement of Newtonian fluid across a membrane. The research predominantly
examines particles of a spherical nature, though there is also attention given to those of a
cylindrical shape within swarms, encased in a porous coating. Here, the regulation of fluid
movement is governed by the Darcy-Brinkman equations.
The thesis aimed to extend the research of this field in terms of geometrical, rheological and
thermal aspects of the fluid flow past a membrane composed of swarm of particles. Chap-
ter 1 provides an introduction to the different aspects of flow past a porous media. It begins
with historical developments of fluid flow around a body mentioning some of the important
literature in this field followed by the studies considering the flowing medium as a porous
material. The next section includes the importance and involvement of membranes in to-
day’s lifestyle and provides a classical framework in terms of its types, structures and uses.
This section further describes the mathematical modeling of the membrane as a swarm of
particles and illustrate the cell model technique in detail with its historical developments
including the important literature utilizing this technique to cover different aspects of fluid
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flow past a membrane. The role of Heat transfer, Entropy generation and electroosmosis
in the membrane is emphasizes using the predominant literature of their respective field.
The brief introduction of rheological fluids considered in this thesis in included along with
their stress-strain relationship. The governing equations of fluid in different scenarios along
with suitable boundary conditions and the methodology are discussed in detail to help read-
ers understand the approach that will be followed. Chapter 1 set the foundation for the
research by establishing the need for studying flow past a membrane, identifying research
gaps, establishing research objectives, outlining the research methodology, and introducing
fundamental concepts critical for understanding the research findings.
Chapter 2 explores the impact of temperature-dependent viscosity on the creeping flow of
Jeffrey fluid through a membrane made of porous cylindrical particle aggregates. The flow,
moving axially along the cylindrical particles, is analyzed using a cell model approach, lead-
ing to governing equations propelled by a constant pressure gradient. The flow is divided
into two layers: inside the porous particle (governed by the Brinkman–Forchheimer equa-
tion) and outside it (governed by the Stokes equation). Due to the nonlinear nature of the
Brinkman–Forchheimer equation, perturbation methods are used for its solution under the
assumption of temperature-dependent viscosity. The study derives expressions for velocity,
hydrodynamic permeability, and the Kozeny constant, discussing the effects of viscosity,
Forchheimer number, permeability, and Jeffrey fluid parameter. The findings align well
with existing studies on Newtonian fluids, validating the approach under constant viscosity
assumptions in porous media flow.
The aim of the chapter 3 is to examine the combined effect of electro-hydrodynamic flow
and heat transfer on the flow through a membrane made of porous layered cylindrical par-
ticles. The study uses steady-state thermal equations to analyze temperature distribution,
dominating conduction over convection. Fluid flow is governed by the Brinkman equation
in porous region near the particle’s solid core and the Stokes equation in non-porous region
outside it. The study explores the impact of an “ion drag formulation" utilizing an elec-
tric field, represented by the Hartmann electric number, on fluid flow, coupling momentum
equations and charge density into a nonlinear differential equation. Analytical solutions
for energy equations in both regions are found, further usees in the derivation of velocity
expansions derived via perturbation for different nonlinearity parameter values. It assesses
how the Hartmann electric number, Grashof number, radiation parameter, viscosity ratio,
and porosity affect hydrodynamic permeability, the Kozeny constant of the membrane.
Chapter 4 explores the hydrodynamics and thermodynamics of incompressible Carreau
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fluid flow through a membrane composed of uniformly distributed porous cylindrical parti-
cles with a solid core, focusing on the non-Newtonian Carreau fluid’s impact on the filtra-
tion process. It characterizes the flow into two areas: a porous region near the solid core
and a non-porous region outside. The Brinkman equation models the porous area, while the
Stokes equation describes the non-porous region. By using asymptotic series expansion, the
study derives expressions for velocity, hydrodynamic permeability, Kozeny constant, and
temperature profile under various conditions. The findings, illustrated through graphs, ana-
lyze how factors like the power-law index, viscosity ratio, and Weissenberg number affect
these parameters in case of small and large permeabilities of porous layer, comparing them
to existing studies on Newtonian fluids to validate the results.
A theoretical attempt has been made in chapter 5 to explore the behavior of non-Newtonian
Carreau-Yasuda fluid flowing through a membrane made of biporous layered cylindrical
particles, using a variable permeability model. The study adopts the empirical particle-in-
cell method to formulate equations capturing the fluid flow dynamics. It is structured around
different regions of flow around the particle: near the solid core, governed by the Brinkman-
Forchheimer equation with variable permeability; an intermediate layer by the Brinkman
equation; and the outermost layer by the Stokes equation due to its non-porous nature. The
complexity arises from nonlinearities and equation coupling, addressed by using empirical
regular perturbation for asymptotic solutions under certain conditions, and numerical meth-
ods for graphical analysis of flow profiles, examining the effects on membrane permeability,
Kozeny constant, and temperature variation across various parameters.
Chapter 6 presents a theoretical framework to analyze entropy production in a creeping
flow of a Newtonian fluid through porous layered cylindrical particles, considering their
varying permeabilities. It focuses on fully developed, steady, laminar, forced convection
within these particles under a constant wall temperature, using Brinkman and Brinkman-
Forchheimer models for hyperporous materials. The research highlights the fluid’s rheolog-
ical properties and explores entropy production with an emphasis on heat transfer. The flow
past a membrane is modeled using a particle-in-cell approach. Analytical solutions for the
Stokes equations are derived, while velocity expressions for the other regions are obtained
using perturbation methods. The study examines the effects of various control parameters
on hydrodynamic and thermal properties, including membrane permeability, Kozeny con-
stant, temperature, entropy generation number, and Bejan number.
Chapter 7 focuses on the impact of surface roughness on fluid flow in microchannel sys-
tems, specifically through membranes composed of porous, corrugated cylindrical particles.
With a high surface-to-volume ratio, the roughness of micro objects significantly affects
fluid dynamics. The research employs the cell model technique to divide the flow regime
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into two: the porous layer governed by the Brinkman equation and the clear fluid region
governed by the Stokes equation. A semi-analytical solution for the fluid flow is derived us-
ing the regular perturbation technique, with corrugation height as a perturbation parameter.
Key findings include the influence of wave number, corrugation height, and porous medium
parameters on the fluid velocity and hydrodynamic permeability of the membrane, high-
lighting that an increase in wave number reduces fluid velocity and affects the membrane’s
hydrodynamic permeability.
Chapter 8 examines the combined electroosmotic flow (EOF) and pressure-gradient-driven
flow of an electrolyte solution through a membrane containing poly-electrolyte coated solid
cylindrical particles, under an externally applied electric field. The poly-electrolyte layer,
acting as an ion-penetrable porous layer, traps fixed charge ions, forming an electric double
layer at the interface with the electrolyte. The flow through the membrane is modeled using
a unit cell approach, dividing the flow regime into a poly-electrolyte layer (PEL) governed
by the Brinkmann-Forchheimer equation, and a clear fluid region governed by the Stokes
equation. Analytical solutions to the governing equations are challenging due to non-linear
terms and external forces, thus regular and singular perturbation methods are employed to
derive asymptotic analytic expressions for fluid velocity, hydrodynamic permeability, and
the Kozeny constant of the membrane.
Chapter 9 is a crucial section of the thesis that summarizes key research findings, high-
lighting those with significant real-world relevance. It aims to provide a clear and concise
overview of the discoveries, emphasizing their reliability and areas for improvement. The
chapter also outlines future research directions and potential applications, ensuring the work
contributes to further studies and practical use.



xiii

Contents

Certificate v

Acknowledgements vii

Abstract ix

Physical Parameters xli

1 Introduction 1
1.1 Flow around a Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Flow Through a Porous Media . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Flow Through a Swarm of Particles . . . . . . . . . . . . . . . . . 9
1.3.2 Cell Model Technique . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Heat Transfer and Entropy Generation . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Entropy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Electroosmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Diverse Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.2 Jeffrey Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.3 Carreau-Yasuda Fluid . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . 22
1.7.3 Convection–Diffusion Equation . . . . . . . . . . . . . . . . . . . 22
1.7.4 Momentum Equations in Porous Media . . . . . . . . . . . . . . . 23

1.7.4.1 Brinkmann Equation . . . . . . . . . . . . . . . . . . . . 23
1.7.4.2 Brinkmann Forchheimer Equation . . . . . . . . . . . . 23

1.8 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xiv

1.9 Mathematical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.9.1 Perturbation Method . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9.1.1 Regular Perturbation . . . . . . . . . . . . . . . . . . . . 27
1.9.1.2 Singular Perturbation . . . . . . . . . . . . . . . . . . . 27

1.9.2 Seperation of Variables . . . . . . . . . . . . . . . . . . . . . . . . 29
1.10 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.11 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Creeping Flow of Jeffrey Fluid through a Swarm of Porous Cylindrical Par-
ticles: Brinkman-Forchheimer Model 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Statement of the Problem and Model Description . . . . . . . . . . 37
2.2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Non-Dimensional Parameters and Equations . . . . . . . . . . . . 40
2.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Solution of Thermal Equation . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Solutions of Hydrodynamic Equations . . . . . . . . . . . . . . . . 42

2.3.2.1 Asymptotic Solution for the Porous Region . . . . . . . . 43
2.3.2.2 Analytical Solution for the Clear Fluid Region . . . . . . 48

2.3.3 Hydrodynamical Quantities . . . . . . . . . . . . . . . . . . . . . 48
2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Velocity Profile (w) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.4 Hydrodynamic Permeability (L11) . . . . . . . . . . . . . . . . . . 52
2.4.5 Kozeny Constant (Kz) . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Asymptotic Analysis of Electrohydrodynamic Flow through a Swarm of Porous
Layered Cylindrical Particles: A Particle-in-Cell Approach 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 69



xv

3.2.3.1 Energy Equations . . . . . . . . . . . . . . . . . . . . . 69
3.2.3.2 Hydrodynamical Equations . . . . . . . . . . . . . . . . 70
3.2.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . 71

3.2.4 Non-Dimesionalization . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.5 Hydodynamical Quantities . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1 Solution of Temperature Equations . . . . . . . . . . . . . . . . . 75
3.3.2 Solution of Hydrodynamic Equations . . . . . . . . . . . . . . . . 76

3.3.2.1 Small Parameter (α ≪ 1) . . . . . . . . . . . . . . . . . 76
3.3.3 Large Parameter (α ≫ 1) . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Velocity Profile (w) . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 Hydrodynamic Permeability (L11) . . . . . . . . . . . . . . . . . . 84
3.4.4 Kozeny Constant (Kz) . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.5 Model Validation and Comparative Study . . . . . . . . . . . . . . 91

3.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Creeping flow of non-Newtonian fluid through membrane of porous
cylindrical particles: A particle-in-cell approach 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Mathematical Formulation of the Proposed Work . . . . . . . . . . . . . . 104

4.2.1 Statement and Assumptions . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Model Description of the Problem . . . . . . . . . . . . . . . . . . 104
4.2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.3.1 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 106
4.2.4 Non-Dimensional Parameters and Governing Equations . . . . . . 107

4.2.4.1 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 108
4.2.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.6 Hydrodynamical Quantities and Kozeny Constant . . . . . . . . . . 109

4.3 Solution of the Proposed Problem . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Asymptotic Solution of the Problem . . . . . . . . . . . . . . . . . 111
4.3.2 Analytical Expression of Fluid Velocity . . . . . . . . . . . . . . . 114
4.3.3 Numerical Solution of the Problem . . . . . . . . . . . . . . . . . 115

4.4 Temperature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.1 Solution of Temperature Equation . . . . . . . . . . . . . . . . . . 117

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



xvi

4.5.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5.2 Deduction of Special Cases . . . . . . . . . . . . . . . . . . . . . 119
4.5.3 Graphical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.3.1 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . 120
4.5.3.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . 127

4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Analytical Study of the Effect of Complex Fluid Rheology and Membrane
Parameters on Heat Transfer in Fluid Flow through a Swarm of Cylindrical
Particles 137
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.1 Statement of the Problem and Model Assumptions . . . . . . . . . 142
5.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.5 Non-Dimensional Parameters and Governing Equations . . . . . . 147
5.2.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.7 Hydrodynamical Quantities and Kozeny Constant . . . . . . . . . . 149

5.3 Asymptotic Solution of the Problem . . . . . . . . . . . . . . . . . . . . . 150
5.3.1 Perturbation Solution for Carreau-Yasuda Fluid . . . . . . . . . . . 151
5.3.2 Numerical Solution for Small Weissenberg and Permeability (i.e.,S ≫ 1)155
5.3.3 Temperature Analysis . . . . . . . . . . . . . . . . . . . . . . . . 156
5.3.4 Solution of Temperature Equations . . . . . . . . . . . . . . . . . 158
5.3.5 Nusselt Number (Nu) . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.4.2 Limiting Cases and Model Validation . . . . . . . . . . . . . . . . 161
5.4.3 Velocity Profile (w) . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.4 Flow Rate (Qs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4.5 Hydrodynamic Permeability (L11) . . . . . . . . . . . . . . . . . . 167
5.4.6 Kozeny Constant (Kz) . . . . . . . . . . . . . . . . . . . . . . . . 174
5.4.7 Temperature Distribution (θ) . . . . . . . . . . . . . . . . . . . . 176
5.4.8 Nusselt Number (Nu) . . . . . . . . . . . . . . . . . . . . . . . . 179

5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 181



xvii

6 Analysis of Entropy Generation for a Creeping Flow of Newtonian Fluid
through a Swarm of Biporous Layered Cylindrical Particles: Brinkman-
Forchheimer Model 185
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.1.1 Entropy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2.1 Statement of the Problem and Model Assumptions . . . . . . . . . 188
6.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.3.1 Hydrodynamical and Thermal Equations . . . . . . . . . 191
6.2.3.2 Entropy Generation and Bejan Number . . . . . . . . . . 193
6.2.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . 194

6.2.4 Non-Dimensional Parameters and Governing Equations . . . . . . 195
6.2.4.1 Hydrodynamic and Thermal Equations . . . . . . . . . . 196
6.2.4.2 Entropy Generation and Bejan Number . . . . . . . . . . 197
6.2.4.3 Dimensionless Boundary Conditions . . . . . . . . . . . 198

6.3 Asymptotic Solution of the Problem . . . . . . . . . . . . . . . . . . . . . 198
6.3.1 Perturbation Solutions for Hydrodynamic Equations . . . . . . . . 198

6.3.1.1 Solution for Large Permeability (i.e.,S ≪ 1) . . . . . . . 199
6.3.1.2 Solution for Small Permeability (i.e.,S ≫ 1) . . . . . . . 201

6.3.2 Solutions for Thermal Equations . . . . . . . . . . . . . . . . . . . 204
6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4.1 Model Validation and Limiting Cases . . . . . . . . . . . . . . . . 205
6.4.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.4.3 Entropy Generation Number (S) . . . . . . . . . . . . . . . . . . . 207
6.4.4 Bejan Number (Be) . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.4.5 Model Validation and Comparative Analysis . . . . . . . . . . . . 212

6.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Effect of Surface Roughness on Flow Past a Membrane composed of Porous
Cylindrical Particles 217
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.2.1 Statement of the Problem and Model Description . . . . . . . . . . 219
7.2.1.1 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 221

7.2.2 Non-Dimensional Parameters and Governing Equations . . . . . . 222
7.2.2.1 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 222



xviii

7.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.2.4 Hydrodynamical Quantities and Kozeny Constant . . . . . . . . . . 223

7.3 Asymptotic Solution of the Problem . . . . . . . . . . . . . . . . . . . . . 224
7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.4.2 Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.4.3 Hydrodynamic Permeability . . . . . . . . . . . . . . . . . . . . . 233
7.4.4 Kozeny Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8 Electroosmotic Flow past an Array of Poly-Electrolyte Coated Solid Cylin-
drical Particles: A Particle-in-Cell Approach 243
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.2.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.2.3.1 Electric Potential Equation . . . . . . . . . . . . . . . . 246
8.2.3.2 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 249

8.2.4 Non-Dimensional Parameters and Governing Equations . . . . . . 250
8.2.4.1 Poission-Boltzmann Equation . . . . . . . . . . . . . . . 250
8.2.4.2 Hydrodynamic Equations . . . . . . . . . . . . . . . . . 251

8.2.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.2.6 Hydrodynamical Quantities and Kozeny Constant . . . . . . . . . . 252

8.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.3.1 Solution of Poisson-Boltzmann equation . . . . . . . . . . . . . . 253
8.3.2 Solution of Hydrodynamic Equations . . . . . . . . . . . . . . . . 254
8.3.3 Large Permeability (k ≫ 1) . . . . . . . . . . . . . . . . . . . . . 254
8.3.4 Small Permeability (k ≪ 1) . . . . . . . . . . . . . . . . . . . . . 256

8.3.4.1 Solution for the Porous Region . . . . . . . . . . . . . . 256
8.3.4.2 Solution for the Clear Fluid Region . . . . . . . . . . . . 258

8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.4.2 Electric Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.4.3 Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.4.4 Hydrodynamic Permeability . . . . . . . . . . . . . . . . . . . . . 266
8.4.5 Kozeny Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



xix

8.4.6 Model Validation and Limiting Cases . . . . . . . . . . . . . . . . 272
8.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9 Conclusions and Research Prospects 277
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.2 Noteworthy Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 278
9.3 Research Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

List of Publications 301

Conference/ Workshop Attended 302

Brief Biography of the Candidate 304

Brief Biography of the Supervisor 305



xx

List of Figures

1.1 Electron microscope image of PES 300 membrane . . . . . . . . . . . . . 8
1.2 Different type of aggregates with different internal structure.(Lowenfels and

Yayne [62]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Pictorial representation of Uchida’s [70] model of swarm of uniformly dis-

tributed spherical particles enclosed each in a cubic cell. . . . . . . . . . . 12
1.4 Pictorial representation of Happel’s [71] model of swarm of uniformly dis-

tributed spherical particles enclosed each in a spherical cell. . . . . . . . . . 12
1.5 Physical Model of Veerapanneni for flow through a swarm of spherical par-

ticles with radially varying permeability. . . . . . . . . . . . . . . . . . . . 14
1.6 Charge distribution in the electrical double layer region near the charged

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 The physical sketch of a cylindrical particle in cell . . . . . . . . . . . . . . 38
2.2 the circular cross-section of the cylindrical particle in cell . . . . . . . . . . 38
2.3 Variation of velocity profile w with radial distance r for different values of

(2.3a) viscosity parameter α (λ1 = F = 1,βS = 0.4) and (2.3b) Jeffrey fluid
parameter λ1 (α = 0.1,F = 0,βS = 0.1). (l = γ = 0.5,ζh = 5, ps = 1) . . . 52

2.4 Variation of hydrodynamic permeability L11 with particle volume fraction
γ between present study and Deo et al. [3]. (l = 0.5,βS = 0.1,ζh = 5,α =

0, ps = 1,F = λ1 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Variation of hydrodynamic permeability L11 with particle volume fraction

γ for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey
fluid parameter λ1 (α = 0.1). (l = 0.5,βS = 0.1,ζh = 5, ps = F = 1) . . . . 54

2.6 Variation of hydrodynamic permeability L11 with stress-jump parameter βS

for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey
fluid parameter λ1 (α = 0.1). (l = γ = 0.5,ζh = 5, ps = F = 1) . . . . . . . 56

2.7 Variation of hydrodynamic permeability L11 with particle volume fraction
γ between constant and varying viscosity models. (l → 0, ps = 1,βS =

0.1,ζh = 5,k = 0.05,λ1 = F = 0) . . . . . . . . . . . . . . . . . . . . . . 56



xxi

2.8 Variation of hydrodynamic permeability L11 with particle volume fraction γ

between Newtonian and Jeffrey fluids. (l → 0,k → 0, ps = 1,βS = 0.1,ζh =

5,α = F = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9 Variation of hydrodynamic permeability L11 with stress-jump parameter βS

for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey
fluid parameter λ1 (α = 0.1). (l = γ = 0.5,ζh = 5, ps = F = 1) . . . . . . . 58

2.10 Variation of Kozeny constant Kz with stress-jump parameter βS for different
values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey fluid parameter
λ1 (α = 0.1). (l = ε = 0.5,ζh = 5, ps = F = 1) . . . . . . . . . . . . . . . 59

3.1 The physical depiction of an “ion drag" configuration for electrohydrody-
namic flow along the axis of an array of porous cylindrical particles . . . . 68

3.2 A visual depiction of a circular cross-section revealing a swarm of cylindri-
cal particles with a solid core and porous layer inside a hypothetical cell. . . 69

3.3 Changes in fluid velocity (w) in radial direction(r), with varying Hartmann
electric number(H), under high (k = 100) and low (k = 0.1) permeability
parameters, (a) large alpha parameter (α = 4.0) and (b) small alpha param-
eter (α = 0.25). (β = 0.1, l = 0.5,γ = 0.45,Gr = N1 = 2,λ1 = 1) . . . . . 82

3.4 Changes in fluid velocity (w) in radial direction (r), with varying Radiation
parameter (N1), under high (k = 100) and low (k = 0.1) permeability pa-
rameters, (a) large alpha parameter (α = 4.0) and (b) small alpha parameter
(α = 0.25). (β = 0.1,H = Gr = 2, l = 0.5,γ = 0.45,λ1 = 1) . . . . . . . . 82

3.5 Changes in fluid velocity (w) in radial direction (r), with varying viscosity
ratio parameter(λ1), under high (k = 100) and low (k = 0.1) permeability
parameters, (a) large alpha parameter (α = 4.0) and (b) small alpha param-
eter (α = 0.25). (β = 0.1, l = 0.5,γ = 0.45,H = Gr = N1 = 2) . . . . . . . 83

3.6 Changes in fluid velocity (w) in radial direction (r), with varying Grashof
number (Gr), under high (k = 100) and low (k = 0.1) permeability param-
eters, (a) large alpha parameter (α = 4.0) and (b) small alpha parameter
(α = 0.25). (β = 0.1,λ1 = 1, l = 0.5,γ = 0.45,H = N1 = 2) . . . . . . . . 83

3.7 Changes in the hydrodynamic permeability (L11) relying on particle volume
fraction (γ) with varying Hartmann electric number (H), under high (k =

100) and low (k = 0.1) permeability parameters. (β = 0.1,α = 4.0,λ1 =

1, l = 0.5,Gr = N1 = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.8 Changes in L11 relying on stress jump parameter β with varying Radiation

number(N1), under high (k = 100) and low (k = 0.1) permeability parame-
ters. (α = 4.0,γ = 0.45,λ1 = 1, l = 0.5,H = 2.0,Gr = 2.0) . . . . . . . . . 85



xxii

3.9 Changes in L11 relying on Grashof number Gr with varying viscosity ratio
parameter λ1, under high (k = 100) and low (k = 0.1) permeability param-
eters. (α = 4.0,β = 0.1,γ = 0.45,N1 = 2.0, l = 0.5,H = 2.0) . . . . . . . . 85

3.10 Changes in L11 relying on Hartmann electric number H with varying Grashof
number Gr, under high (k = 100) and low (k = 0.1) permeability parame-
ters. (α = 4.0,β = 0.1,γ = 0.45,N1 = 2.0, l = 0.5,λ1 = 1) . . . . . . . . . 86

3.11 Changes in L11 relying on Hartmann electric number H with varying viscos-
ity ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,β = 0.1,γ = 0.45,Gr = 2.0,N1 = 2.0, l = 0.5) . . . . 86

3.12 Changes in L11 relying on Hartmann electric number H with varying stress
jump parameter β , under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,λ1 = 1,γ = 0.45,Gr = 2.0,N1 = 2.0, l = 0.5) . . . . 87

3.13 Changes in L11 relying on Radiation parameter N1 with varying viscosity
ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,β = 0.1,γ = 0.45,Gr = 2.0,H = 2.0, l = 0.5) . . . . 87

3.14 Changes in L11 relying on Grashof number Gr with varying viscosity ratio
parameter λ1, under high (k = 100) and low (k = 0.1) permeability param-
eters. (α = 4.0,β = 0.1,γ = 0.45,N1 = 2,H = 2.0, l = 0.5) . . . . . . . . . 88

3.15 Changes in L11 relying on Hartmann electric number H with varying radi-
ation parameter N1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 0.25,β = 0.1,γ = 0.45,λ1 = 1,Gr = 2.0, l = 0.5) . . . . 88

3.16 Changes in L11 relying on Hartmann electric number H with varying Grashof
number Gr, under high (k = 100) and low (k = 0.1) permeability parame-
ters. (α = 0.25,β = 0.1,γ = 0.45,N1 = 2,λ1 = 1.0, l = 0.5) . . . . . . . . 89

3.17 Changes in L11 relying on radiation parameter N1 with varying stress jump
parameter β , under high (k = 100) and low (k = 0.1) permeability parame-
ters. (α = 0.25,γ = 0.45,H = 2,Gr = 2,λ1 = 1.0, l = 0.5) . . . . . . . . . 89

3.18 Changes in L11 relying on stress jump parameter β with varying Grashof
number Gr, under high (k = 100) and low (k = 0.1) permeability parame-
ters. (α = 0.25,γ = 0.45,H = 2,N1 = 2,λ1 = 1.0, l = 0.5) . . . . . . . . . 90

3.19 Changes in L11 relying on stress jump parameter β with varying Hartmann
electric number H, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 0.25,γ = 0.45,Gr = 2,N1 = 2,λ1 = 1.0, l = 0.5) . . . . . 90

3.20 Changes in L11 relying on stress jump parameter β with varying Hartmann
electric number H, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,Gr = 2,N1 = 2,ε = l = 0.5,λ1 = 1.0) . . . . 91



xxiii

3.21 Changes in Kozeny constant Kz relying on stress jump parameter β with
varying Radiation parameter N1, under high (k = 100) and low (k = 0.1)
permeability parameters. (α = 4.0,γ = 0.6,Gr = 2,H = 2,ε = l = 0.5,λ1 =

1.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.22 Changes in Kozeny constant Kz relying on Grashof number Gr with varying

Hartmann electric number H, under high (k = 100) and low (k = 0.1) per-
meability parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = l = 0.5,λ1 = 1.0) 92

3.23 Changes in Kozeny constant Kz relying on Hartmann electric number H with
varying Grashof number Gr, under high (k = 100) and low (k = 0.1) perme-
ability parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = l = 0.5,λ1 = 1.0) 92

3.24 Changes in Kozeny constant Kz relying on Hartmann electric number H with
varying viscosity ratio parameter λ1, under high (k = 100) and low (k = 0.1)
permeability parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = 0.5,Gr =

2.0, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.25 Changes in Kozeny constant Kz relying on Radiation parameter N1 with

varying viscosity ratio parameter λ1, under high (k = 100) and low (k = 0.1)
permeability parameters. (α = 4.0,γ = 0.6,β = 0.1,H = 2.0,Gr = 2.0,ε =

0.5, , l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.26 Changes in Kozeny constant Kz relying on porosity parameter ε with vary-

ing Hartmann electric number H under high (k = 100) and low (k = 0.1)
permeability parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,λ1 = 1,Gr =

2.0, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.27 Changes in Kozeny constant Kz relying on stress-jump parameter β with

varying Grashof number Gr, under high (k = 100) and low (k = 0.1) per-
meability parameters. (α = 0.25,γ = 0.0.45,ε = 0.5,H = 2.0,N1 = 2,λ1 =

1, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.28 Changes in Kozeny constant Kz relying on Radiation parameter N1 with

varying Hartmann electric number H, under high (k = 100) and low (k =

0.1) permeability parameters. (α = 0.25,γ = 0.45,ε = 0.5,β = 0.1,Gr =

2.0,λ1 = 1, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.29 Changes in Kozeny constant Kz relying on Hartmann electric number H with

varying viscosity ratio parameter λ1, under high (k = 100) and low (k =

0.1) permeability parameters. (α = 0.25,γ = 0.45,ε = 0.5,β = 0.1,Gr =

2.0,N1 = 2, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



xxiv

3.30 Changes in Kozeny constant Kz relying on Hartmann electric number H

with varying stress-jump parameter β , under high (k = 100) and low (k =

0.1) permeability parameters. (α = 0.25,γ = 0.45,ε = 0.5,λ1 = 1.0,Gr =

2.0,N1 = 2, l = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.31 Changes in Kozeny constant Kz relying on porosity parameter ε with varying

radiation parameter N1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 0.25,γ = 0.45,H = 2.0,λ1 = 1.0,Gr = 2.0,β = 0.1, l = 0.5) 96

3.32 Comparision between radially varying velocities of asymptotic and numer-
ical solutions for the case small non-linearity parameter α = 0.25 (β =

0.1,H = 2.0,λ1 = 1, l = 0.5,Gr = 2.0,N1 = 2, pz = 1) . . . . . . . . . . . 97
3.33 Variation of the membrane permeability L11 with radial distance with asymp-

totic and numerical variations (β = 0.1,H = 2.0,α = 0.25,λ1 = 1, l = 0.5,Gr =

2.0,N1 = 2, pz = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.34 Variation of the Kozeny constant Kz with radial distance with asymptotic

and numerical variations (β = 0.1,α = 0.25,H = 2.0,λ1 = 1, l = 0.5,Gr =

2.0,N1 = 2, pz = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 The physical depiction of the flow along the axis of an aggregate of porous
layered solid cylinders in a membrane . . . . . . . . . . . . . . . . . . . . 105

4.2 The physical representation of circular cross-sectional view of a swarm con-
sisting of solid cylindrical particle surrounded by a porous layer enclosed in
hypothetical cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 The velocity profile w depending upon the radial distance r with varying (a)
Weissenberg number We (n = 0.2,η = 0.1), (b) Power-law index n (η =

0.1,We = 0.3). (γ = 0.5,β = 0.4,S = 0.1, ps = 1) . . . . . . . . . . . . . . 120
4.4 The hydrodynamic permeability L11 depending upon particle volume frac-

tion γ with varying (a) Weissenberg number We (β = 0.1,n = 0.1,η = 0.1)
(b) Power-law index n (β = 0.4,We = 0.3,η = 0.1), and (c) viscosity ratio
parameter η (n = 0.1,We = 0.3,β = 0.1). (S = 0.1, ps = 1) . . . . . . . . 121

4.5 The hydrodynamic permeability L11 depending upon stress-jump parameter
β with varying (a) Weissenberg number We (γ = 0.5,n = 0.5,η = 0.1) and
(b) Power-law index n (γ = 0.5,We = 0.3,η = 0.1), and (c) viscosity ratio
parameter η (n = 0.5,We = 0.3,γ = 0.5). (S = 0.1, ps = 1) . . . . . . . . . 122

4.6 The hydrodynamic permeability L11 depending upon pressure gradient ps

with varying (a) Weissenberg number We (γ = 0.5,n = 0.5,η = 0.1), and
(b) Power-law index n (γ = 0.5,We = 0.4,η = 0.1). (S = 0.1,β = 0.4) . . 123



xxv

4.7 The Kozeny constant Kz depending upon the porosity ε with varying (a)
Weissenberg number We (γ = 0.1,n = 0.1,η = 0.1) and (b) Power-law
index n (γ = 0.2,We = 0.3,η = 0.1), and (c) viscosity ratio parameter
η (n = 0.1,We = 0.5,β = 0.1). (S = 0.1, ps = 1,β = 0.1) . . . . . . . . . 124

4.8 The Kozeny constant Kz depending upon the stress-jump parameter β with
varying (a) Weissenberg number We (n = 0.1,η = 0.1) and (b) Power-
law index n (We = 0.3,η = 0.1), and (c) viscosity ratio parameter η (n =

0.1,We = 0.3). (S = 0.1, ps = 1,γ = 0.5,ε = 0.5) . . . . . . . . . . . . . . 125
4.9 Variation of temperature θ with radial distance r for different values of

(a) Nusselt number Nu (n = η = 0.1,We = 0.4,β = 0.1,γ = 0.53) and
(b) Power-law index n (η = 0.1,We = 0.4,β = 0.4,γ = 0.5,Nu = 4.0).
(S = 0.1, ps = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Variation of temperature θ with radial distance r for different values of (a)
Weissenberg number We (n = 0.2,η = 0.01) and (b) viscosity ratio param-
eter η (We = 0.4,n = 0.05). (γ = 0.5,S = 0.1, ps = 1,Nu = 4,β = 0.4) . . 126

4.11 Variation of temperature θ with radial distance r for different values of (a)
Weissenberg number We (n = 0.2,η = 0.01) and (b) viscosity ratio param-
eter η (We = 0.4,n = 0.05). (γ = 0.5,S = 0.1, ps = 1,Nu = 4,β = 0.4) . . 127

4.12 The velocity profile w depending upon the radial distance r with varying (a)
Weissenberg number We (n = 2,η = 0.1,β = 0.4) and (b) viscosity ratio
parameter η (n = 2,We = 0.3,β = 0.45). (γ = 0.5,S = 100, ps = 1) . . . . 128

4.13 The hydrodynamic permeability L11 depending upon particle volume frac-
tion γ with varying Weissenberg number We (β = 0.1,n = 0.1,η = 0.1).
(S = 100, ps = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.14 The hydrodynamic permeability L11 depending upon stress-jump parame-
ter β with varying Power law index n (γ = 0.8,We = 0.5,η = 0.1). (S =

100, ps = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.15 The Kozeny constant Kz depending upon the porosity ε with varying (a)

Weissenberg number We (n = 0.1,η = 0.1,γ = 0.1) and (b) Power-law
index n (We = 0.5,η = 0.1,γ = 0.2), and (c) viscosity ratio parameter
η (We = 0.5,n = 0.1,γ = 0.2). (S = 100, ps = 1,β = 0.1) . . . . . . . . . 129

4.16 The Kozeny constant Kz depending upon the stress-jump parameter β with
varying Power law index n (We = 0.5,η = 0.1). (S = 100, ps = 1,γ =

0.5,ε = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



xxvi

4.17 Variation of temperature (θ ) with radial distance (r) for different values of
(a) Nusselt number Nu (n = 0.1,η = 0.1,β = 0.1,We = 0.5) and (b) Weis-
senberg number We (η = 0.1,n = 2,β = 0.4,Nu = 4.0). (γ = 0.444,S =

100, ps = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.18 Variation of temperature θ with radial distance r for different values of (a)

viscosity ratio parameter η (We = 0.5,n = 2,β = 0.4) and (b) Stress-jump
parameter β . (We = 0.5,Nu = 4.0,n = 0.05,η = 0.01,γ = 0.444, ps = 1) . 132

4.19 (a) The hydrodynamic permeability L11 depending on particle volume frac-
tion γ for the case of fully solid cylindrical particle, and (b) Validation of
hydrodynamic permeability L11 of currunt work with the work of Deo et al.

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.20 (a) The hydrodynamic permeability L11 depending on particle volume frac-

tion γ for the case of fully solid cylindrical particle, and (b) Validation of
hydrodynamic permeability L11 of currunt work with the work of Deo et al.

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1 (a) The portrayal of the movement along the central axis of a collection
of biporous layered solid cylinders within a membrane and (b) the circular
cross-sectional perspective depicts a swarm composed of a solid cylindrical
particle enveloped by biporous layers contained within a hypothetical cell . 143

5.2 The solid core of a cylindrical particle, coated with a swarm and situated
within biporous layers, is depicted in the cross-sectional view with nomen-
clature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Dimensionless velocity w with radial distance r for various values of tran-
sition parameter a1 (a1 = 1,2,3,4) under ((5.3a)) large Darcy number (k =
10,n = 0.1,ε f = εb = 0.5) and (5.3b) small Darcy number (k = 0.1,n =

2.0,ε f = εb = 0.2). (a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,η =

0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4 Dimensionless velocity w with radial distance r for various thicknesses of

Forchheimer layer b (b = 0.55,0.7,0.85) under (5.4a) large Darcy num-
ber (k = 10,n = 0.1,ε f = εb = 0.5) and (5.4b) small Darcy number (k =

0.1,n = 2,ε f = εb = 0.1). (a = 0.4,γ = 0.445,β = 0.5,We = 0.2,a1 =

3,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



xxvii

5.5 Dimensionless velocity w with radial distance r for various values of per-
meability parameters (ε f ,εb) under (5.5a) large Darcy number (k = 10,n =

0.1,ε f = εb = 0.1,0.5,0.9) and (5.5b) small Darcy number (k = 0.1,n =

2,ε f = εb = 0.1,0.2,0.3). (a= 0.4,b= 0.7,γ = 0.445,β = 0.5,We= 0.2,a1 =

3,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.6 Dimensionless velocity w with radial distance r for comparative values of

permeability parameters (ε f ,εb) under (5.6a) large Darcy number (k= 10,n=
0.1) and (5.6b) small Darcy number (k = 0.1,n = 2). (a = 0.4,b = 0.7,γ =

0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1) . . . . . . . . . . . . . . 165
5.7 Changes in flow rate Qs with Forchheimer number F for various values of

the Weissenberg number We (We = 0.1,0.3,0.5) under (5.7a) large Darcy
number (k = 10,n = 0.1,ε f = εb = 0.5,η = 0.1) and (5.7b) small Darcy
number (k = 0.1,n = 2,ε f = εb = 0.2,η = 0.4). (a = 0.4,b = 0.7,γ =

0.444,a1 = 3,β = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.8 Changes in flow rate Qs with thickness of Forchheimer layer b for various

values of the viscosity ratio parameter η (η = 0.01,0.2,0.3) under (5.8a)
large Darcy number (k = 10,n = 0.1,We = 0.5,ε f = εb = 0.5) and (5.8b)
small Darcy number (k = 0.1,n = 2,We = 0.2,ε f = εb = 0.2). (a = 0.4,b =

0.7,γ = 0.444,a1 = 3,β = 0.5,F = 1) . . . . . . . . . . . . . . . . . . . . 166
5.9 Changes in flow rate Qs with particle volume fraction γ for various values of

the transition parameter a1 (a1 = 1,2,3,4) under (5.9a) large Darcy number
(k = 10,n= 0.1,ε f = εb = 0.5) and (5.9b) small Darcy number (k = 0.1,n=
2,ε f = εb = 0.2). (a = 0.4,b = 0.7,F = 1,β = 0.5,We = 0.2,η = 0.1) . . 167

5.10 Dimensionless hydrodynamic permeability L11 with particle volume frac-
tion γ for different thicknesses of Forchheimer layer b (b = 0.55,0.7,0.85)
under (5.10a) large Darcy number (k = 10,n = 0.1,ε f = εb = 0.5) and
(5.10b) small Darcy number (k = 0.12,n = 2,ε f = εb = 0.1). (a = 0.4,β =

0.5,We = 0.2,a1 = 3,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . 167
5.11 Dimensionless hydrodynamic permeability L11 with particle volume frac-

tion γ for various values of permeability parameters (ε f ,εb) under (5.11a)
large Darcy number (k = 10,n = 0.1,ε f = εb = 0.1,0.5,0.9) and (5.11b)
small Darcy number (k = 0.12,n = 2,ε f = εb = 0.1,0.2,0.3). (a = 0.4,b =

0.7,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1) . . . . . . . . . . . . . . . 168



xxviii

5.12 Dimensionless hydrodynamic permeability L11 with particle volume frac-
tion γ for comparative values of permeability parameters (ε f ,εb) under (5.12a)
large Darcy number (k = 10,n = 0.1) and (5.12b) small Darcy number
(k = 0.12,n = 2). (a = 0.4,b = 0.7,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)169

5.13 Dimensionless hydrodynamic permeability L11 with particle volume frac-
tion γ for various values of transition parameter a1 (a1 = 1,2,3,4) under
small Darcy number (k = 0.1,n = 2.0,ε f = εb = 0.1,a = 0.4,b = 0.7,β =

0.5,We = 0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . 169
5.14 Dimensionless hydrodynamic permeability L11 with Brinkman permeabil-

ity parameter εb for different thicknesses of Forchheimer layer b under small
Darcy number (k= 0.1,n= 2,ε f = 0.1,a1 = 3,a= 0.4,γ = 0.2,β = 0.5,We=

0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.15 Dimensionless hydrodynamic permeability L11 with Brinkman permeabil-

ity parameter εb for various values of Forchheimer permeability parameter
ε f under small Darcy number (k = 0.1,n = 2,a1 = 3,a = 0.4,b = 0.7,γ =

0.2,β = 0.5,We = 0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . 170
5.16 Dimensionless hydrodynamic permeability L11 with thickness of Forchheimer

layer b for various values of transition parameter a1 under small Darcy num-
ber (k = 0.2,n = 2,ε f = εb = 0.1,a = 0.4,γ = 0.2,β = 0.5,We = 0.2,η =

0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.17 Dimensionless hydrodynamic permeability L11 with thickness of Forchheimer

layer b for various values of Brinkman permeability parameter εb under
small Darcy number (k = 0.2,n = 2,ε f = 0.1,a1 = 3,a = 0.4,γ = 0.2,β =

0.5,We = 0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . 172
5.18 Dimensionless hydrodynamic permeability L11 with thickness of Forchheimer

layer b for various values of Forchheimer permeability parameter ε f under
small Darcy number (k = 0.15,n = 2,εb = 0.1,a1 = 3,a = 0.4,γ = 0.2,β =

0.5,We = 0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . 172
5.19 Dimensionless hydrodynamic permeability L11 with the Weissenberg num-

ber We for various values of transition parameter a1 (a1 = 1,2,3,4) under
small Darcy number (k = 0.2,n = 2,ε f = εb = 0.1,a = 0.4,b = 0.7,γ =

0.445,β = 0.5,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . 173
5.20 Dimensionless hydrodynamic permeability L11 with the Weissenberg num-

ber We for comparative values of permeability parameters (ε f ,εb) under
small Darcy number (k = 0.2,n = 2,a1 = 3,a = 0.4,b = 0.7,γ = 0.445,β =

0.5,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



xxix

5.21 Kozeny constant Kz with stress-jump parameter β for various values of the
Forchheimer number F under large Darcy number (k = 10,n = 0.1,ε f =

εb = ε = 0.5,a1 = 3,a = 0.4,b = 0.7,γ = 0.2,We = 0.2,η = 0.1) . . . . . 175
5.22 Kozeny constant Kz with porosity parameter ε for various values of perme-

ability parameters, (ε f ,εb) under (5.22a) large Darcy number (k = 10,n =

0.1) and (5.22b) small Darcy number (k = 0.2,n= 2). (a= 0.4,b= 0.7,γ =
0.2,β = 0.5,a1 = 3,We = 0.2,η = 0.1,F = 1) . . . . . . . . . . . . . . . 175

5.23 Kozeny constant Kz with porosity parameter ε for different thicknesses of
Forchheimer layer b under large Darcy number (k = 10,ε f = εb = 0.5,a1 =

3,a = 0.4,b = 0.7,γ = 0.2,β = 0.5,We = 0.2,η = 0.1,F = 1) . . . . . . . 175
5.24 Kozeny constant Kz with particle volume fraction γ for various values of per-

meability parameters (ε f ,εb) under (5.24a) large Darcy number (k = 10,n=
0.1) and (5.24b) small Darcy number (k = 0.2,n = 2.0). (a = 0.4,b =

0.7,β = 0.5,a1 = 3,We = 0.2,η = 0.1,F = 1,ε = 0.5) . . . . . . . . . . . 176
5.25 Dimensionless temperature θ with radial direction r for various values of

transition parameter a1 under (5.25a) large Darcy number (k= 10,n= 0.1,ε f =

εb = 0.5) and (5.25b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.2).
(a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,η = 0.1,F = 1) . . . . . . 177

5.26 Dimensionless temperature θ with radial direction r for different thick-
nesses of Forchheimer layer b under (5.26a) large Darcy number (k= 10,n=
0.1,ε f = εb = 0.5) and (5.26b) small Darcy number (k = 0.1,n = 2.0,ε f =

εb = 0.2). (a = 0.4,γ = 0.445,β = 0.5,We = 0.2,a1 = 3.0,η = 0.1,F = 1) 177
5.27 Dimensionless temperature θ with radial direction r for various values of

permeability parameters (ε f ,εb) under (5.27a) large Darcy number (k =

10,n = 0.1,ε f = εb = 0.1,0.5,0.9) and (5.27b) small Darcy number (k =

0.2,n= 2,ε f = εb = 0.1,0.2,0.3). (a= 0.4,b= 0.7,γ = 0.445,β = 0.5,We=

0.2,a1 = 3,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.28 Dimensionless temperature θ with radial direction r for various values of

the Forchheimer number F (F = 1,2,3) under small Darcy number (k =

0.1,n= 2,ε f = εb = 0.1,a= 0.4,b= 0.7,γ = 0.445,β = 0.5,We= 0.2,a1 =

3,η = 0.1,Br = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.29 Dimensionless temperature θ with radial direction r for various values of

Brinkman numbers Br (Br = 0,1,2,3) under (5.29a) large Darcy number
(k = 10,n = 0.1,ε f = εb = 0.5) and (5.29b) small Darcy number (k =

0.1,n= 2,ε f = εb = 0.2). (a= 0.4,b= 0.7,γ = 0.445,β = 0.5,We= 0.2,a1 =

3,η = 0.1,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xxx

5.30 Changes in Nusselt number Nu with Brinkman number Br for various values
of (5.30a) varying permeabilities ε f ,εb (F = 1) and (5.30b) Forchheimer
number F (ε f = εb = 0.1). (a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We =

0.2,a1 = 3,η = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.31 Changes in Nusselt number Nu with particle volume fraction γ for various

values of (5.31a) Weissenberg number We (a1 = 3) and (5.31b) transition
parameter a1 (We = 0.2). (a = 0.4,b = 0.7,ε f = εb = 0.1,β = 0.5,η =

0.1,F = 3,Br = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.32 Various reduced cases of the current study for large Darcy number (k = 100)

(γ = 0.445,β = 0.5,η = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.33 Validation of the current study with the study of Saini et al. [199] under

large Darcy number (k = 100,n = 0.2,ε f = εb = 0,a = 0.5,b = 1.0,γ =

0.5,β = 0.5,We = 0.5,a1 = 2,η = 0.1,F = 0) . . . . . . . . . . . . . . . 181
5.34 Validation of the current study with the study of Deo et al. [3] and Saini et

al. [199] under large Darcy number (k → ∞,ε f = εb = 0,a = 0.5,b = 1,γ =

0.445,β = 0.5,a1 = 3,η = 0.1,F = 0) . . . . . . . . . . . . . . . . . . . . 181

6.1 (a) The visual representation of the flow along the axis within a membrane
consisting of a collection of bi-porous layered solid cylinders, (b) A hypo-
thetical cell encloses a biporous layer surrounding a solid cylindrical particle
within a swarm, visually depicted as a circular cross-sectional view. . . . . 190

6.2 A hypothetical cell encloses a solid core within biporous layers, which in
turn are coated with a cylindrical particle exhibiting a circular cross-section
in its physical sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3 Dimensionless entropy S with radial distance r for various values of Brinkmann
number Br (Br = 0.1,1.0,2.0) under (a) large Darcy number (k = 10,T0 =

1,Pe = 50) and (b) small Darcy number (k = 0.1,T0 = 10,Pe = 500).(λ1 =

1,b = 0.7,γ = 0.444,F = 1,Nu = 4.0) . . . . . . . . . . . . . . . . . . . . 207
6.4 Dimensionless entropy S with radial distance r for various values of Peclet

number Pe under (a) large Darcy number (k = 10,T0 = 1,Nu = 4,Br = 0.8)
and (b) small Darcy number (k = 0.1,T0 = 10,Nu = 4,Br = 2.0).(λ1 =

1,b = 0.7,γ = 0.444,F = 1) . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.5 Dimensionless entropy S with radial distance r for various values of perme-

ability parameters ε f ,εb under (a) large Darcy number (k = 10,T0 = 1,Pe =

50,Br = 0.8) and (b) small Darcy number (k = 0.1,T0 = 10,Pe = 500,Br =

2.0).(λ1 = 1,b = 0.7,γ = 0.444,F = 1,Nu = 4.0) . . . . . . . . . . . . . . 208



xxxi

6.6 Dimensionless entropy S with radial distance r for different thickness of
Forchheimer layer b under (a) large Darcy number (k = 10,T0 = 1,Br =

0.8) and (b) small Darcy number (k = 0.1,T0 = 10,Br = 2.0).(λ1 = 1,b =

0.7,γ = 0.444,F = 1,Nu = 4.0,Pe = 50) . . . . . . . . . . . . . . . . . . 209
6.7 Dimensionless entropy, S with radial distance, r for various values of Forch-

heimer number F under (a) large Darcy number (k = 10,T0 = 1,Br = 0.8)
and (b) small Darcy number (k= 0.1,T0 = 10,Br = 2.0).(λ1 = 1,b= 0.7,γ =
0.444,F = 1,Nu = 4.0,Pe = 50,ε f = εb = 0.5) . . . . . . . . . . . . . . . 209

6.8 Dimensionless entropy, S with radial distance, r for various values of viscos-
ity ratio parameter λ1 under (a) large Darcy number (k = 10,T0 = 1,Br =

0.8) and (b) small Darcy number (k = 0.1,T0 = 10,Br = 2.0).(b = 0.7,γ =

0.444,F = 1,Nu = 4.0,Pe = 50,ε f = εb = 0.5) . . . . . . . . . . . . . . . 210
6.9 Bejan number, Be with radial distance, r for various values of viscosity

ratio parameter λ1 under small Darcy number (k = 0.1,T0 = 1,ε f = εb =

0.1).(b = 0.7,γ = 0.444,F = 1,Nu = 4.0,Pe = 100) . . . . . . . . . . . . 211
6.10 Bejan number, Be with radial distance, r for various values of Peclet number

Pe under small Darcy number (k = 0.1,T0 = 1,Br = 2,ε f = εb = 0.1).(b =

0.7,γ = 0.444,F = 1,Nu = 4.0) . . . . . . . . . . . . . . . . . . . . . . . 211
6.11 Bejan number, Be with radial distance, r for various values of viscous dis-

sipation coefficient
(

Br
T0

)
under small Darcy number (k = 0.1,ε f = εb =

0.1).(b = 0.7,γ = 0.444,F = 1,Nu = 4.0,Pe = 100) . . . . . . . . . . . . 212
6.12 Bejan number, Be with radial distance, r for various values of variable

permeability parameters (ε f ,εb) under small Darcy number (k = 0.1,T0 =

1,Br = 2,ε f = εb = 0.1).(b = 0.7,γ = 0.444,F = 1) . . . . . . . . . . . . 212
6.13 Comparision of velocity obtain via asymptotic solution and numerical so-

lution of the problem for the large permeability case (k = 100,ε f = εb =

0.5,γ = 0.445,λ1 = 1,F = 1). . . . . . . . . . . . . . . . . . . . . . . . . 213
6.14 Validation of current study with the study of Deo et al. in terms of Hydro-

dynamic permeability, L11 for k → ∞,a = b = 1. . . . . . . . . . . . . . . . 214
6.15 Different reduced cases of current work under large permeability parameter

(k = 100,ε f = εb = 0.5,γ = 0.445,λ1 = 1,F = 3). . . . . . . . . . . . . . 214

7.1 The cross-section of an array of uniformly distributed corrugated porous
layered cylindrical particles . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.2 The circular cross-section of an corrugated cylindrical particle with the hy-
pothetical cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



xxxii

7.3 Contours of velocity profile, w(r,φ) for different wave number, λ . (a =

0.5,γ = 0.445, pz = 1,k = 3,δ = 0.1,β = 0.4) . . . . . . . . . . . . . . . 231
7.4 Contours of velocity profile, w(r,φ) for different height of corrugation δ .

(a = 0.5,γ = 0.445, pz = 1,k = 3,λ = 6,β = 0.4) . . . . . . . . . . . . . . 232
7.5 Contours of velocity profile, w(r,φ) for different values of the Darcy num-

ber, k. (a = 0.5,γ = 0.445, pz = 1,δ = 0.1,λ = 6,β = 0.1) . . . . . . . . . 232
7.6 Contours of velocity profile, w(r,φ) for different values of the stress-jump

parameter β , for large (k = 2) and small (k = 0.1) permeability of porous
media. (a = 0.5,γ = 0.445, pz = 1,δ = 0.1,λ = 6) . . . . . . . . . . . . . 233

7.7 The dependence of hydrodynamic permeability L11 on the corrugation height
δ for different values of wave number λ . (a = 0.5,γ = 0.445, pz = 1,k =

0.5,β = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.8 The dependence of hydrodynamic permeability L11 on the corrugation height

δ for different values of stress-jump parameter β . (a = 0.5,γ = 0.445, pz =

1,k = 0.5,λ = 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.9 The dependence of hydrodynamic permeability L11 on the particle volume

fraction γ for different values of corrugation height δ . (a = 0.5, pz = 1,k =
0.5,λ = 6,β = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.10 The dependence of hydrodynamic permeability L11 on the particle volume
fraction γ for different values of wave number λ . (a = 0.5, pz = 1,k =

0.5,δ = 0.1,β = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.11 The dependence of hydrodynamic permeability L11 on the Darcy number k

for different values of corrugation height δ . (a = 0.5, pz = 1,k = 0.5,λ =

6,β = 0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.12 The dependence of hydrodynamic permeability L11 on the Darcy number

k for different values of wave number parameter k. (a = 0.5, pz = 1,k =

0.5,δ = 0.1,β = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.13 The dependence of the Kozeny constant Kz on the porosity ε for different

values of corrugation height δ . (a = 0.5, pz = 1,k = 0.5,λ = 6,β = 0.1) . . 237
7.14 The dependence of the Kozeny constant Kz on the porosity ε for different

values of particle volume fraction γ . (a = 0.5, pz = 1,k = 0.5,λ = 6,δ =

0.1,β = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.15 The dependence of the Kozeny constant Kz on corrugation height δ for dif-

ferent values of stress-jump parameter β . (a = 0.5, pz = 1,k = 0.5,λ =

6,ε = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



xxxiii

7.16 The dependence of the Kozeny constant Kz on corrugation height δ for dif-
ferent values of stress-jump parameter β . (a = 0.5, pz = 1,β = 0.1,λ =

6,ε = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.17 The dependence of the Kozeny constant Kz on corrugation height δ for dif-

ferent values of the wave number λ . (a= 0.5, pz= 1,k = 0.5,β = 0.1,ε = 0.5)239

8.1 The physical sketch of cell model considered in a swarm of particles . . . . 246
8.2 The cross-sectional view of a cylindrical particle having the solid core,

coated with a poly-electrolyte(porous) layer. . . . . . . . . . . . . . . . . . 247
8.3 The electric potential distribution ψ in radial direction r with varying (a)

thicknesses of EDL layer λ (K = 1), (b) ratio parameter K (λ = 0.1). (a =

0.5,γ = 0.445,ζ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.4 The electric potential distribution ψ in radial direction r with varying zeta

potential ζ (K = 1,λ = 0.1). (a = 0.5,γ = 0.445) . . . . . . . . . . . . . . 261
8.5 The dependence of velocity profile w on the radial distance r for differ-

ent values of EDL thicknesses (λ ) in case of (a) large Darcy number (k =

200,ζ = 1,ε f = 0.5), (b) small Darcy number (k = 0.07,ζ = 0.8,ε f = 0.1).
(γ = 0.444,K = 1, ps = 1,µR = 1.0,β = 0.4,F = 1) . . . . . . . . . . . . . 262

8.6 The dependence of velocity profile w on the radial distance r for differ-
ent values of ratio parameter (K) in case of (a) large Darcy number (k =

200,ζ = 1,λ = 0.1,ε f = 0.5), (b) small Darcy number (k= 0.07,ζ = 0.8,λ =

0.4,ε f = 0.1). (γ = 0.444, ps = 1,µR = 1.0,β = 0.4,F = 1) . . . . . . . . 262
8.7 The dependence of velocity profile w on the radial distance r for different

values of variable permeability parameter (ε f ) in case of (a) large Darcy
number (k = 200,ζ = 1,λ = 0.1), (b) small Darcy number (k = 0.07,ζ =

0.8,λ = 0.3). (γ = 0.444, ps = 1,K = 1,µR = 1.0,β = 0.4,F = 1) . . . . . 263
8.8 The dependence of velocity profile w on the radial distance r for different

values of zeta potential (ζ ) in case of (a) large Darcy number (k = 200,λ =

0.1,ε f = 0.5), (b) small Darcy number (k = 0.07,λ = 0.3,ε f = 0.1). (γ =

0.444, ps = 1,K = 1,µR = 1.0,β = 0.4,F = 1) . . . . . . . . . . . . . . . 263
8.9 The dependence of velocity profile w on the radial distance r for different

values of viscosity ratio parameter (µR) in case of (a) large Darcy number
(k= 200,ζ = 0.8,λ = 0.1,ε f = 0.5), (b) small Darcy number (k= 0.07,ζ =

1,λ = 0.3,ε f = 0.1). (γ = 0.444, ps = 1,K = 1,β = 0.4,F = 1) . . . . . . 264



xxxiv

8.10 The dependence of velocity profile w on the radial distance r for different
values of stress-jump parameter (β ) in case of (a) large Darcy number (k =
200,ζ = 0.8,λ = 0.1,ε f = 0.5), (b) small Darcy number (k = 0.07,ζ =

1,λ = 0.3,ε f = 0.1). (γ = 0.444, ps = 1,K = 1,µR = 1.0,F = 1) . . . . . . 265
8.11 The dependence of velocity profile w on the radial distance r for different

values of Forchheimer number (F) in case of (a) large Darcy number (k =

200,ζ = 0.8), (b) small Darcy number (k = 0.07,ζ = 1). (γ = 0.444, ps =

1,K = 1,λ = 0.3,µR = 1.0,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . 265
8.12 The dependence of hydrodynamic permeability L11 on the particle volume

fraction γ for different EDL thicknesses (λ ) in case of (a) large Darcy num-
ber (k = 200), (b) small Darcy number (k = 0.01). (ps = K = ζ = F =

µR = 1.0,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.13 The dependence of hydrodynamic permeability L11 on the particle volume

fraction γ for different ratio parameter (K) in case of (a) large Darcy number
(k = 200), (b) small Darcy number (k = 0.01). (ps = ζ =F = µR = 1.0,λ =

0.1,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.14 The dependence of hydrodynamic permeability (L11) on the particle volume

fraction (γ) for different zeta potential (ζ ) in case of (a) large Darcy number
(k = 200), (b) small Darcy number (k = 0.01). (ps =K =F = µR = 1.0,λ =

0.3,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.15 The dependence of hydrodynamic permeability (L11) on variable permeabil-

ity (ε f ) for different ratio parameter (K) in case of (a) large Darcy number
(k = 200,γ = 0.2), (b) small Darcy number (k = 0.01,γ = 0.44). (ps = ζ =

F = µR = 1.0,λ = 0.1,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . 268
8.16 The dependence of hydrodynamic permeability (L11) on stress-jump param-

eter (β ) for different particle volume fraction (γ) in case of (a) large Darcy
number (k = 200), (b) small Darcy number (k = 0.01). (ps = ζ = F = K =

µR = 1.0,λ = 0.3,ε f = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.17 The dependence of hydrodynamic permeability (L11) on ratio parameter (K)

for different viscosity ratio parameter (µR) in case of (a) large Darcy num-
ber (k = 200,γ = 0.2,λ = 0.14), (b) small Darcy number (k = 0.01,γ =

0.444,λ = 0.1). (ps = ζ = F = 1.0,ε f = 0.1,β = 0.4) . . . . . . . . . . . 269
8.18 The dependence of hydrodynamic permeability (L11) on EDL thickness (λ )

for different viscosity ratio parameter (µR) in case of (a) large Darcy number
(k = 200,γ = 0.2), (b) small Darcy number (k = 0.01,γ = 0.444). (ps = ζ =

F = K = 1.0,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . 270



xxxv

8.19 The dependence of Kozeny constant (Kz) on porosity of the medium(ε) for
different ratio parameter (K) in case of (a) large Darcy number (k = 200,γ =
0.6), (b) small Darcy number (k = 0.01,γ = 0.444). (ps = ζ = F = µR =

1,λ = 0.1,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.20 The dependence of Kozeny constant (Kz) on porosity of the medium(ε) for

different zeta potential (ζ ) in case of (a) large Darcy number (k = 200,γ =

0.6), (b) small Darcy number (k = 0.01,γ = 0.444). (ps = K = F = µR =

1,λ = 0.4,ε f = 0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.21 The dependence of Kozeny constant (Kz) on EDL thickness (λ ) for different

stress-jump parameter (β ) in case of (a) large Darcy number (k = 200,γ =

0.6), (b) small Darcy number (k = 0.01,γ = 0.444). (ps = K = ζ = F =

µR = 1,λ = 0.4,ε f = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.22 The dependence of Kozeny constant (Kz) on ratio parameter(K) for different

Forchheimer number (F) in case of (a) large Darcy number (k = 200), (b)
small Darcy number (k = 0.01). (ps = ζ = µR = 1,γ = 0.444,λ = 0.1,ε f =

0.1,β = 0.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.23 (a) Comparision among special cases of the current model (k = 200), (b)

Validation of the asymptotic solution of current model with numerical solu-
tion (200). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



xxxvi

List of Tables

1 Range of values for the existing parameters with their resources . . . . . . xli

2.1 Range of values for the existing parameters with their resources . . . . . . 51
2.2 Variation of hydrodynamic permeability of membrane L11 for (a) small per-

meability (k = 0.05) and (b) large permeability (k = 100) of the porous
medium, under different values of viscosity parameter α , Forchheimer num-
ber F and Jeffrey fluid parameter λ1. (l = γ = 0.5,ζh = 5, ps = 1,βS = 0.1) 55

2.3 Variation of hydrodynamic permeability of membrane L11 for different val-
ues of viscosity parameter α , Forchheimer number F and Jeffrey fluid pa-
rameter λ1. (l → 0,γ = 0.5,ζh = 5, ps = 1,k = 0.05,βS = 0.1) . . . . . . . 57

3.1 Domain of interest for the ongoing parameters with their references . . . . 81
3.2 Validation of current work with the study of Deo et al. [3] using variations

in hydrodynamic permeability L11 with particle volume fraction γ. (α = 0.1). 99
3.3 Validation of current work with the study of McKee et al. [14] using varia-

tions in velocity w in radial direction r for different values electric Hartmann
number, H (H2 = 1,10,100). . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Domain of interest for the ongoing parameters with their references . . . . 119
4.2 Variation of Permeability k on (a) the membrane permeability L11 and (b)

Kozeny constant Kz of the porous medium under different values of Weis-
senberg number We, and Power-law index n. (l = ε = 0.5,γ = 0.5, ps =

1,β = 0.1,η = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1 Range of parameters with their references . . . . . . . . . . . . . . . . . . 161
5.2 Validation of current work with the experimental data of Filippov et al.

[201] using variations in hydrodynamic permeability, L11 with porosity,
ε. (a = b = 1,We = 0,β = 0,n = η = 0,ε f = εb = 0,F = 0). . . . . . . . . 174

6.1 Domain of interest for the ongoing parameters with their references . . . . 206

7.1 Ranges for the ongoing parameters with their references . . . . . . . . . . 230



xxxvii

8.1 Ranges for the ongoing parameters with their references . . . . . . . . . . 260





xxxix

List of Symbols

˜ Represents dimensional quantities
r Radial (transverse) distance
z Axial (longitudinal) distance
w f ,wb,ws Axial velocities in Forchheimer, Brinkman and Stokes regions, respectively
wp,wc Axial velocities in Porous and clear fluid regions, respectively
C Drag coefficient
CF Inertial coefficient
CF Forchheimer number
p Pressure
q Darcian velocity vector
J Current density
n Power law index
η Viscosity ratio parameter
ps Pressure gradient in steady flow state
Qs Volumetric flow rate for steady flow
k Permeability in porous medium
w0 Characteristic (Average) velocity
g Gravitational acceleration
T Temperature
Q Heat absorption coefficient
K Thermal conductivity
Gr Grashof number
J0,Y0 Bessel functions of first and second kind of order zero, respectively
I0,K0 Modified Bessel functions of first and second kind of order zero, respectively
Pe Peclet number

Greeks letters

φ Azimuthal angle



xl

ρ Density
θ Dimensionless temperature
ζh Constant heat absorption parameter
ζ Wall potential
α Viscosity parameter
αp = 1/λ 2

1 Porosity parameter
τ Shear stress of fluid
γ Particle volume fraction
µ Viscosity of Newtonian fluid
µ0 Constant viscosity coefficient
µe Effective viscosity coefficient of porous medium
λ1 Viscosity ratio parameter in Brinkman region
λJ Jeffrey fluid parameter
βS Stress-jump parameter



Physical Parameters

Values of parameters

Parameters Values Resources

Heat absorption parameter ζ 0-9 [1]
Permeability k (0,∞) [2], [3]
Steady pressure gradient ps 1-10 [4], [5]
Stess-jump parameter βS −1< βS < 1 [3], [5]
Viscosity parameter α 0.0-0.5 [1], [6]
Forchheimer number F 0.0-2.0 [7], [8]
Jeffrey fluid parameter λ1 0.0-2.0 [9], [10]
Particle volume fraction γ 0.1-1.0 [3], [11]
Radiation parameter N1 2-15 [12], [13]
Grashof number Gr 0.5-17.0 [13]
Hartmann electric number H 0.1-4.0 [14]
Viscosity ratio parameter λ1 1.0-1.6 [15], [5]
Weissenberg number We 0-0.8 [6]
Power-law index n 0.1-2.0 [16], [17]
Nusselt number Nu 2.0-8.0 [7]
Viscosity ratio parameter η 0.1-0.4 [18]
Transition parameter a1 1.0-4.0 [18]
Brinkman number Br 0-10 [19], [20]
Peclet number Pe 1-100 [20]
Porosity parameter ε 0.3-1.0 [3]
Dimensionless temperature con-
stant T0

1.0 [19]

Corrugation height δ 0-0.1 [21]
Wave number λ 1-7 [21]
EDL thickness λ (0,0.5) [22], [23]
Equivalent EDL thickness λ f (0,0.5) [22]
zeta potential ζ (0.8,1.0) [22]
Variable permeability parameter ε f 0.0-0.9 [24]

Table 1: Range of values for the existing parameters with their resources





1

Chapter 1

Introduction

Fluids are substances that owns the remarkable ability to deform under any externally
imposed forces and adapt to the shape of their receptacle, regardless of its size or com-
plexity, setting them apart from solid materials, which maintain their shape and volume
under normal circumstances. This inherent characteristic of fluids enables them to appear
countless times in our everyday experiences, making them one of the most intriguing sub-
jects for exploring their behavior under various circumstances, particularly for researchers
and scientists in the field of fluid dynamics. Researchers and scientists are interested in
exploring flow dynamics as it passes around objects and their interaction with different ma-
terials, driven by its practical relevance in aerospace engineering, environmental science,
and biomedical technology.

1.1 Flow around a Body

If we refer to the history of the study of the flow around a body, one of the most deeply
studied problems in viscous hydrodynamics deals with the steady-state flow past a sphere
placed in an uniform stream. Although the geometric aspects of this problem may seem
straightforward but achieving an exact closed-form solution seems to be permanently out
of reach. In 1851, an Irish physicist and mathematician, Sir George Gabriel Stokes [25]
gave an asymptotic solution of this problem for small values of Reynolds number, where he
approached the challenge by employing the equations governing creeping viscous flow and
neglected the inertia terms altogether from the Navier Stokes equation. These approximate
solutions are called Stokes’ solutions and approximation involved in these solutions is often
termed as Stokes’ approximation. In absence of the body forces, the Stokes equation for
steady flow of an incompressible fluid, is given by, (1.1)

µ∇
2u = ∇p, (1.1)
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where u, p,and µ are fluid velocity, pressure and viscosity, respectively. This led to the for-
mulation of the renowned Stokes’ law, which states that a force of 6µπU0a is necessary to
sustain a constant velocity U0 for a sphere with radius a moving through a liquid with a
viscosity coefficient of µ . Following Stokes’ initial investigations, some conceptual issues
emerged with the theory of creeping flow past a body. The later research on this topic is
centered around these difficulties. When Stokes endeavored to explore the steady creep-
ing flow around an infinitely long cylinder using the two-dimensional Stokes equations, he
encountered challenges in deriving a solution that adequately satisfies both near-field and
far-field boundary conditions. As a result, he concluded that an exact solution to this prob-
lem does not exist. This absence of such a solution is recognized as Stokes’ paradox. The
paradox draws attention to one of the Stokes equations’ shortcomings. They are only valid
at very low Reynolds numbers (velocities). The fluid’s inertia becomes significant at larger
distances from the object, even in slowly-moving fluids, and this effect was not captured by
the Stokes equations. In 1910, Carl Wilhelm Oseen [26] introduced the Oseen equations as
a solution to this limitation. Oseen noted that the ratio of the inertia term to the viscous term,
given by Re× r

L at a distance r, is insignificant only when both the Reynolds number (Re)
and r

L are small. He argued that Stokes’ equations failed to satisfy boundary conditions at
far distances because Stokes neglected the inertia term entirely. However, Oseen highlighted
that at sufficiently large distances, regardless of how small the Reynolds number might be,
the ratio of the inertia term to the viscous term becomes non-negligible, leading to compara-
ble magnitudes of inertia and viscous forces. Therefore, the Stokes’ approximation becomes
ineffective in the far field. Consequently, if one aims to apply Stokes’ equations in regions
far from the body, the inertia terms must also be considered. However, incorporating these
terms introduces non-linearity into the governing equations, rendering the solution of these
equations intractable. In response to this challenge, Oseen introduced the modified Stokes
equations that take into account the convective acceleration term partly, which is important
at larger distances, and provide a more accurate description of the flow in such scenarios. In
absence of body forces, the Oseen’s equation for steady flow of an incompressible fluid, is
given by,

ρ(U0 ·∇)u′ =−∇p+µ∇
2u′,

∇ ·u′ = 0,
(1.2)

where U0 = (U0,0,0) is the constant velocity, and u′ = (u′,v′,w′) is the perturbation term
which is small with respect to U0. The Oseen equation received significant attention due
to its analytical tractability, as its solutions provided critical quantitative understandings
of characteristics such as drag in low Reynolds number flows around bluff bodies. These



1.1. Flow around a Body 3

insights were especially useful before the introduction of computational fluid dynamics
(CFD). Lamb [27] [28] discussed the limitations of the accepted solutions for the motion
of a sphere and circular cylinder through a viscous fluid and presented Oseen’s results in
a simpler form using a different method, but still subject to the same limitation. Goldstein
[29], in 1929, made the initial attempt to solve Oseen’s linearized equation of motion ana-
lytically, where he focused on examining the steady flow of an incompressible viscous fluid
around a sphere and derived an exact expression for the total drag exerted on the sphere.
Similarly, Faxen(1927) [30] derived the exact analytical solution for the same problem con-
cerning a circular cylindrical body. Imai [31] made an attempt to solve Oseen’s linearized
equations for 2D, steady viscous fluid flow past an arbitrary cylindrical body. He developed
a new general method based on the fact that the velocity near the cylinder can typically be
represented using a pair of analytic functions.

Although Oseen successfully addressed the limitation of the Stokes equation by incor-
porating the convective acceleration term, which included the effect of inertia far from the
body, but his approximation assumed linearization to the free stream velocity, which breaks
down on the object’s boundary. It is evident that the solution provided by the Stokes equa-
tions accurately describes the creeping flow near the body but fails to capture the behavior in
the far field. Conversely, the Oseen approximation successfully predicts the flow in the far
field, yet encounters limitations near the boundary of the body. In response to this challenge,
Proudman and Pearson [32] introduced the technique of matched asymptotic expansion.
This approach offers a combined solution that integrates the Stokes flow approximation
near the object’s’s surface with the Oseen flow approximation in regions distant from the
object’s surface. Kaplun [33] proposed a solution that combines an Oseen and Stokes solu-
tion by introducing a third term in the expansion for low Reynolds numbers, while Lamb’s
solution only includes the first two terms. Several authors [34] [35] [36] also explored the
phenomenon of flow past a circular cylinder using experimental methods for low Reynolds
numbers and presented different qualitative and quantitative results. Tomotika and Aoi [37]
used Goldstein’s exact analytical solution of Oseen’s linearized equations to explore the flow
patterns of viscous fluid around a sphere and a circular cylinder at small Reynolds numbers
and derived expressions for the pressure and frictional drag. Furthermore, Tomotika and
Aoi [38] developed a power series expansion formula for the drag experienced by a circular
cylinder moving through a viscous fluid at low Reynolds numbers, claiming that their ex-
pression is a more accurate representation of the drag coefficient because it includes Lamb’s
well-known formula as its first approximation. Yano and Kieda [39] used a discrete sin-
gularity approach with a least squares criterion to solve Oseen’s linearized equations for a
two-dimensional steady flow of an incompressible viscous fluid past arbitrary cylindrical
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bodies while satisfying the no-slip boundary condition.
The analytical results provide a good representation of a flow around simple geometri-

cal bodies, but as geometries become more complex, numerical approaches provide a better
foundation for the analysis. Lee and Leal [40] investigated the two-dimensional creeping
flow around bodies with arbitrary cross-sectional geometries by employing a numerical im-
plementation of the method of matched asymptotic expansions. Their approach utilized
Green’s integral representations of velocity to analyze the flow behavior. Chadwick [41]
integrated Stokes and Oseen flow in a boundary integral formulation, observing that optimal
accuracy is achieved when the matching boundary aligns with the body. He resolved an un-
explained aspect of the boundary element technique for Stokes flow by demonstrating that
the far-field Green’s integral in Stokes flow is zero. This is accomplished by matching it to
a far-field Green’s integral in Oseen flow.

1.2 Flow Through a Porous Media

Fluid flow through porous media is widespread across diverse scientific and technologi-
cal fields, including hydrology, soil physics, petroleum engineering, chemical engineering,
mining, mineral processing, and oil and gas extraction. This phenomenon finds application
in various scenarios such as heat exchangers, packed bed reactors, fluid contacting filtra-
tion, and different separation and purification devices, as demonstrated by investigations
carried out by researchers such as Sutherland et al. [42], Mandal et al. [43], [44], Harris
[45], and Kundu et al. [46]. Porous media include towers filled with pebbles, Berl saddles,
Raschig rings, sand beds, granules, or lead shot, porous rocks such as limestone, pumice, or
dolomite, fibrous aggregates such as cloth, felt, or filter paper, and catalytic particles with
extremely small "micro" pores.

Defining "porous media" as solid bodies with "pores" may appear simple, but determin-
ing a precise geometrical definition of a "pore" is complex. While it is intuitive to think of
"pores" as void spaces within the material, determining their precise size and distribution
requires careful consideration. "Pores" refer to void spaces that are neither extremely small,
like ‘molecular interstices’, nor extremely large, like ‘caverns’ [47]. Their size falls some-
where between these two extremes, though defining their precise limits remains ambiguous
and open to interpretation. Pores in a porous system can be interconnected or disconnected.
Interstitial fluid flow occurs only when a portion of the pore space is interconnected, which
is known as the porous medium’s effective pore space. Two crucial parameters in the analyt-
ical treatment of flow through porous media are porosity and permeability. Porosity denotes
the ratio of the volume of voids or pores to the total material volume, where each pore can
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be interconnected, dead-end, or isolated. Effective porosity specifically refers to the vol-
ume fraction of interconnected pores. While it might seem intuitive that a higher number
of pores would facilitate easier flow, this is not always the case, as permeability plays a
crucial role. Permeability quantifies the inter connectivity of voids in the medium, deter-
mining the ease of fluid flow. Porosity and permeability, being macroscopic parameters, are
solely dependent on pore structure and are independent of other properties. Permeability,
often measured in darcy, is uniquely determined by pore geometry and remains unaffected
by fluid properties. For instance, a material is considered to have a permeability of 1 darcy
if a pressure difference of 1 atmosphere yields a flow rate of 1 cm³/sec of a fluid with 1
centipoise viscosity through a 1 cm³ cube. Hence,

1 darcy =
1(cm3/sec)1(cp)
1(cm2)1(atm/cm)

= 0.987µm2 (1.3)

Due to it’s vast domain of applications in geological and industrial problems the fluid
flow through porous media has been a topic of immense interest for researchers and has
been studied for a long time. In 1856, Henri Darcy [48] conducted research on the flow of
water in vertical homogeneous sand filters in Dijon, France, which led to the conclusion that
the rate of flow is directly proportional to the pressure drop across a bed of fine particles,
establishing a pioneering linear correlation between pressure drop and flow rate in the inves-
tigation of fluid flow through packed sand. This relationship, later termed Darcy’s law, was
subsequently refined to incorporate fluid viscosity, and it can be summarized as follows:

µq
k

=−∆p
l

(1.4)

where the Darcian velocity or superficial velocity (q) is defined as the volume flow rate
divided by the total cross-sectional area of the porous medium. This velocity is influenced
by the fluid viscosity (µ), the permeability of the porous media (k), and the pressure gra-
dient (∆p/l) over the distance l in the direction of flow. It is evident that in Darcy flow
within porous media, the dominant factor controlling the motion is the viscous force. De-
spite being an empirical law, Darcy’s law has shown to be successful in providing strong
agreement with experimental data when applied to a variety of biomedical engineering-
related problems. Darcy’s model was extended by Huyghe and Campen [49] to analyze the
mechanics of blood flow through soft tissues, and Vankan et al. [50] compared a hierar-
chical mixture model of blood-perfused biological tissue, incorporating an extended Darcy
equation for blood flow. Both approaches produced good agreement. Along with that, sev-
eral researchers have confirmed that Darcy’s law is applicable only to sufficiently slow and
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single-phase fluid flow through porous media [51]. Mokadam [52] developed a comprehen-
sive equation for flow through porous media using irreversible thermodynamics, revealing
that Darcy’s equation represents a specific scenario. Beyond a critical velocity, nonlinearity
emerges in the relationship between pressure drop and velocity, attributed to the growing
influence of inertial forces arising from interactions between fluid flow and the solid matrix
(Chauveteau & Thirriot [53]). Dupuit [54] and Forchheimer [55] are generally credited with
first suggesting a nonlinear relationship between pressure drop and Darcian velocity. They
proposed that inertial resistance could be represented by the kinetic energy per unit volume
of the fluid, denoted by ρq2. As a result, in most engineering applications, the governing
law for this fluid flow is a modified form of Darcy’s equation, where inertial resistance is
combined with viscous resistance.

µq
k

+ρCq2 =−∆p
l

(1.5)

where k represents permeability in the Darcy regime, ρ stands for fluid density, and C rep-
resents the drag coefficient of the medium. The term ρCq2 accommodates inertial effects
or nonlinear flow resistance within the flow. This equation is commonly referred to as the
Forchheimer extended Darcy equation. In a recent development, Joseph et al. [56] adjusted
the Forchheimer equation using insights from Ward’s [57] research, incorporating an iner-
tial coefficient, CF , into Equation 1.5, where CF is defined as the product of C and k1/2.
Consequently, the equation can be represented as:

µq
k

+
CFρq2
√

k
=−∆p

l
(1.6)

Another limitation of Darcy’s law is that it does not accurately describe the behavior of
highly permeable porous media. As per equation (1.4), when k → ∞, the pressure difference
approaches zero, it suggests increased difficulty in flow within the region, contradicting the
definition of permeability. To overcome this limitation, Brinkman introduced an alternative
extension of the Darcy equation, known as Brinkman’s equation. When inertial terms are
disregarded, it adopts the following form:

µq
k

+µe∇
2q =−∆p

l
(1.7)

The initial viscous term corresponds to the conventional Darcy term, while the second term
resembles the Laplacian term found in the Navier-Stokes equation. The coefficient µe rep-
resents an effective viscosity of porous medium. Vafai and Tien [58], [59] developed a
comprehensive model for fluid transport in porous media, incorporating multiple relevant
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factors. The model is represented by the following equation:

ρ f

ε

(
∂ ⟨u⟩

∂ t
+ ⟨⟨u ·∇⟩u⟩

)
=−∇⟨p⟩ f +

µ f

ε
∇

2⟨u⟩−
µ f

k
⟨u⟩−

ρ f Fε√
k

(⟨u⟩ · ⟨u⟩)J (1.8)

The model includes dimensionless parameters such as F and ρ , representing the inertia term
coefficient and fluid density respectively. ∇⟨p⟩ f and J denote the average pressure inside the
fluid and a unit vector aligned with the velocity vector u, while ⟨u⟩ and ⟨⟨u ·∇⟩u⟩ represent
the local volume averages of u and u ·∇u associated with the fluid. This generalized model,
which also incorporates convective terms, is often referred to as the Brinkman-Forchheimer-
Darcy equation, where F is replaced by CF , a dimensionless Forchheimer coefficient.

1.3 Membranes

A safe and clean drinking water is an essential human need to live a healthy lifestyle. How-
ever, due to increased environmental and water contamination issues, the majority of the
world’s population now lacks access to clean water. A significant way to address this issue
is through water purification/filtration, which removes contaminants and other impurities
from it, and makes it suitable for everyday use. The increasing worldwide population and
urbanization, together with a greater awareness of reducing environmental footprints and
stronger government rules governing water treatment, are driving an increase in the use of
filtration techniques to fulfill the growing demand for clean water. Apart from this, the food,
chemical, pharmaceutical, and other industries including separation or purification applica-
tions also depend significantly on filtration technology.[60]
The separation technology industry comprises a wide range of techniques and processes
used to extract distinct components from mixtures or solutions. The membrane filtration
market is a subset of this industry that uses semi-permeable membranes to extract particles,
molecules, and ions from liquids and gases. The membrane filtration market focuses on the
production, advancement and implementation of filtration systems using semi-permeable
membranes and is a quickly growing market in the world. This market is expected to grow
at a compound annual growth rate of 8.33% from USD 18.41 billion in 2023 to USD 32.24
billion by 2030, globally, according to a report added to 360iResearch.com. This growth
is attributed to the numerous applications of membrane filters across a range of industries,
including food and beverage processing, pharmaceuticals and biotechnology, dairy process-
ing, water and wastewater treatment, and the chemicals industry. Hence, the fluid flow anal-
ysis in the membrane filtration process has been a topic of immense interest for researchers
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in fluid mechanics who want to gain insight into the flow of a liquid past a membrane.

(a) Top View (b) X Section

Figure 1.1: Electron microscope image of PES 300 membrane

A membrane is a thin layer of semi-permeable material that is used for solute sepa-
ration as transmembrane pressure is applied across the membrane. It creates a thin barrier
between the macroscopic phases of solute, maintaining a relatively small volume compared
to the separated phases. In the early 1700’s, membrane separation was first introduced
through the word osmosis, which was originally referred to the passage of water through
a diaphragm. Following osmosis, the technology advances continuously and used in the
membrane distillation, fuel cells, reverse osmosis, gas seperation, electrodialysis and helped
to create a plethora of industrial processes, products, and applications.[61]
A membrane has two types: porous and non-porous membrane, and its usefulness often
depends upon the degree of selectivity-that is, its capacity to make certain materials easier
to transfer between the two bulk phases. Porous membranes are thin, semipermeable mem-
branes that separate solutes when pressure is applied across the membrane. The degree of
filtration is largly affected by the charges on the membrane and its porosity. A membrane
is having a uniform structure if the pores are symmetric; however non-uniform structured
membranes have asymmetric pores have different pore diameters. Porous membranes find
primary applications in microfiltration and ultrafiltration processes. These membranes have
pores sizes ranging from 0.1 to 10 µm for microfiltration and 0.001 to 0.1 µm for ultra-
filtration, which makes particle size-based separation easier. High selectivity requires the
pores in the membrane to be smaller than the size of the mixture’s particles. Non-porous
membranes are primarily employed in gas phase molecular separation, reverse osmosis, and



1.3. Membranes 9

nanofiltration. These are consist of dense films through which solute diffuses in the pres-
ence of pressure, electrical potential, or concentration gradients. The choice of polymeric
material significantly influences the membrane’s permeability and selectivity. membranes
often consist of porous materials with interconnected void spaces

Membranes frequently comprise porous materials, which are structured as particle as-
semblies or interconnected solid frameworks featuring void spaces either between the par-
ticles or within the solid framework itself. Consequently, to investigate fluid flow around a
membrane, it becomes necessary to construct a mathematical model focusing on the flow
past a particle assembly. This model should account for both the physical and geometrical
attributes of the assembly.

1.3.1 Flow Through a Swarm of Particles

Porous materials are typically categorized into two classes: granular media and fibrous me-
dia. Granular media comprise compact grains forming a solid matrix with interconnected
void spaces characterized by large open pores and narrow constrictions. Examples include
rock formations in petroleum reservoirs, catalyst particles, and packed beds in reactors. On
the other hand, fibrous media consist of rod-like particles or intricate networks of inter-
twining fibers. Common examples encompass industrial filters, biological tissues, polymer
membranes, and materials in the pulp and paper industry. Fibrous porous media are par-
ticularly intriguing due to their properties’ close relation to those of fibrous suspensions
and entangled polymer networks, emphasizing their multifaceted significance and potential
applications in various fields.

Porous structure characteristics are heavily influenced by factors such as particle com-
position, formation method, and subsequent geological changes, all of which have a signif-
icant impact on the media’s properties. Clay minerals, for example, tend to form sheet-like
structures, whereas granular soils have interlocking Lego block configurations. Figure (1.2)
depicts various structures formed by particles of different sizes and shapes.

In this study, our primary focus is on fibrous porous media which is defined as assem-
blies of fiber like particles (a periodic array of fibers) or interconnected solid frameworks
with void spaces between particles or within the solid framework. The void spaces in porous
material influence a variety of material properties, including strength, thermal conductivity,
and permeability. However, the understanding of the microstructural impact on the per-
meability of porous materials holds significant relevance across diverse engineering fields.
Key research challenges encompass characterizing and quantifying microstructural proper-
ties, and integrating these measures effectively into mathematical models that align with
physical principles.
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Granular: Similar to cookie crumbs
and the size of the particle is usu-
ally smaller than 0.6cm.

Blocky: Blocks of which the shape
is irregular and the diameter ranges
from 1.5 to 5.0cm

Prismatic: Vertical columns of soil
with length being a number of cen-
timeters long.

Columnar: Vertical columns of soil
with a salt “cap"

Platy: Thin, flat plates of soil with
horizontal stratification.

Single grained: Soils that have very
little or no consistency. The grains
do not stick together.

Figure 1.2: Different type of aggregates with different internal structure.(Lowenfels and
Yayne [62])

The initial models devised to examine creeping flow within fibrous media were two-
dimensional in nature and employed a unit cell comprising either a single fiber or a periodic
arrangement of fibers. These models solved the Stokes equations for either parallel flow or
transverse flow relative to the fiber axis, from which expressions for hydraulic permeability
and/or drag coefficients were deduced. [63, 64, 65, 66, 67, 68] Comprehensive insights into
these models can be found in a review article authored by Jackson and James [69].

1.3.2 Cell Model Technique

Most porous structures are inherently complex and it is impossible to precisely describe their
solid boundaries, which creates complexities in deriving the solution of the corresponding
problem. As a result, it is typically impossible to obtain an accurate mathematical analy-
sis of the fluid flow occurring within porous media. To address this challenge and gain a
quantitative understanding, it becomes necessary to adopt a specific model which represent
the porous media accurately. The primary objective of a porous media model is to offer a
reasonable idealization of the geometrical structure of a specific class of porous media. This
idealization allows for the mathematical modeling of a desired fluid transport process. It
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is crucial for the model to encompass the most relevant characteristics of the real porous
medium while maintaining a manageable level of complexity. From these considerations,
it should be clear that the choice of a porous media model depends not only on the porous
medium itself but also on the specific process under investigation. Generally, a given porous
media model may prove inadequate when applied to studying processes that are more com-
plex or fundamentally different from those for which it was initially formulated.

Recognizing the significance of investigating fluid flow through random arrangements of
particles, particularly in groundwater flow modeling, researchers began developing methods
to analyze such complex systems. When considering flow through a swarm of particles, the
computational burden escalates if the exact positions of all particles within the swarm are
accounted for in the flow field solution. To circumvent this complexity, it suffices to derive
analytical expressions considering the influence of neighboring particles on the flow field
around a single particle within the swarm. Such an approach enables the development of
relatively straightforward and dependable models for heat and mass transfer, leading to the
emergence of particle-in-cell models.

The central focus throughout this thesis revolves around the utilization of the cell model
technique to develop a practical and semi-empirical model that describes the influence of
suspended particles on our overall system. This model envisions each particle, referred to as
the secondary or suspended phase, positioned at the center of a hypothetical cell containing
fluid. Our conceptualization of the two-phase system entails assigning each particle its own
distinct cell, characterized by a hypothetical boundary at a uniform radius from the origin
of the particle or droplet. This boundary, termed the ‘region of influence,’ serves as a virtual
surface indicating where the properties of the suspension may transition. The fluid enclosed
in this region of influence and over the suspended phase is designated as the ‘cellular fluid
phase,’ representing the sole fluid component within the suspending phase affected by the
presence of the particle. This approach allows us to discretize the system into three distinct
volumes, each of which can be accurately calculated by examining a single cell, owing to
the uniformity of our cell structure.

In the beginning, Uchida [70] proposed this model to analyze the creeping flow by as-
suming fluid to be an infinite cubic assemblage. He considered a hypothetical cubic cell
around a randomly chosen particle from swarm. Despite being the space-filling envelope,
the undertaken study has a significant drawback of difference in inner and outer geometry
which creases mathematical complexities while driving the fluid flow through the swarm.



12 Chapter 1. Introduction

Figure 1.3: Pictorial representation of Uchida’s [70] model of swarm of uniformly dis-
tributed spherical particles enclosed each in a cubic cell.

Happel ([71], [68]) developed a mathematical treatment based on Uchida’s model and
removed the limitations by considering both the outer and inner geometry as same. The
conditions of uniform velocity with no penetration and no friction at the cell particle’s hy-
pothetical surface enable a closed form solution to be acquired, satisfying the Navier-Stokes
equation for the flow having low Reynolds number.

Figure 1.4: Pictorial representation of Happel’s [71] model of swarm of uniformly dis-
tributed spherical particles enclosed each in a spherical cell.

Kuwabara [67] extended the treatment of regular porous medium to infinitely many cir-
cular cylinders or spheres with random and homogeneous distribution in viscous flow. He
studied both spherical and cylindrical geometries cases assuming no vorticity on the hy-
pothetical cell surface and derived the expression for velocity and drag force. The Happel
formulation is slightly superior to the Kuawbara formulation as each cell exchanges me-
chanical energy with its surrounding cells in Kuwabara’s model. Two other cell models
were proposed by Kvashnin [72] and Cunningham [73] (and later by Mehta-Morse [74])
using different boundary conditions on the cell particle’s hypothetical surface. In contrast
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to the previously proposed models, Kvashnin proposed a variant of the cell model by con-
sidering that the tangential component of the velocity attains its minimum value at the free
surface concerning radial distance, indicating the symmetry on the cell. Cunningham and
Mehta-Morse proposed the boundary condition on the cell surface assuming the tangential
velocity is equal to a component of average fluid velocity, signifying the homogeneity of the
flow of the cell surface.

With help of the Happel’s and Kuwabara’s model, Epstein and Masliyah [75] analysed
the axisymmetric flow past oblate spheroid, prolate spheroid and elliptical cylinders con-
sidering outer envelope same as abovementioned shape and solved the governing equations
numerically by finite difference method. Neale and Nadar [76] enhanced Happel’s for-
mulation by incorporating the concept of the unit cell being immersed within an infinite,
continuous, homogeneous, and isotropic permeable medium. The permeability values de-
rived from this refined model exhibited favorable agreement with existing data. Dassios
[77] also studied Happel’s and Kuwabara’s boundary conditions in the spheroidal particle-
in-cell model. Kim and Yuan [78] proposed a new model to evaluate specific hydrodynamic
cake resistance by developing a simple hydrodynamic model in which a fractal aggregate is
replaced by a solid core particle with a porous shell and located in the center of Happel’s
hypothetical cell. Bhattacharya [79] and Prakash [80] discussed an arbitrary viscous, in-
compressible flow past a porous sphere using Brinkmann and Stokes equations for porous
and clear fluid regions, respectively, with Ochoa-Tapia and Whitaker [81], [82] boundary
condition. With the help of Faxen’s law, they have derived the expression for drag, torque
and discussed their dependence on the permeability and stress-jump coefficient. Deo [83]
also discussed the same case by assuming low Reynolds number flow past a porous approx-
imately spheroid particle for the Kuwabara boundary condition. In order to investigate the
flow dynamics within a non-uniform porous medium, Veerapaneni and Wiesner [84] dis-
sected a spherical porous aggregate into numerous spherical layers, each characterized by a
distinct permeability value. Their research investigates the dependence of permeability on
the radial distance, building upon the foundation laid by earlier studies. Their paper provides
a thorough examination of the hydrodynamic properties of fractal aggregates, with a special
emphasis on the changes in permeability across different radii. They also compared various
models of permeability, pointing out the merits of Happel’s model for its combination of
simplicity and precision in representing these phenomena. Vasin [85], Deo [3], and Saad
[86] did a review by comparing different cell models (Happel’s , Kuwabara’s, Kvashnin’s ,
and Cunningham’s (usually referred to as Mehta–Morse’s model)) in a flow past a particle
with a porous shell, and investigated the hydrodynamic permeability of the porous medium
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Figure 1.5: Physical Model of Veerapanneni for flow through a swarm of spherical parti-
cles with radially varying permeability.

built-up by such particles. Faltas and Saad [87] considered a swarm of slip eccentric spher-
ical particles in Stokes flow, where the center of the solid particle is located away from the
center of the hypothetical spherical envelope. Happel and Kuwabara boundary conditions
are used to solve the Stokes equation, and the normalized drag force acting on the particle
was calculated. Faltas et al. [88] considered the flow in corrugated microannuli cylindri-
cal tubes with a slip surface and investigated the effect of the corrugations on the flow rate
and pressure gradient. Yadav et al. studied a low Reynolds number flow of an incompress-
ible viscous fluid through the membrane composed of non-homogeneous porous cylindrical
particles with radially varying permeability. Yadav et al. [89] investigated the steady incom-
pressible flow of micropolar fluid sandwiched between two Newtonian fluid layers through
a horizontal porous channel under the influence of a magnetic field. In the process of filtra-
tion, the construction of membrane can be affected in two ways: (i) dissolution of particles,
(ii) adsorption of polymer on the surface of the particles. As a result of these processes,
a porous layer is formed on the surface of solid particles, and it affects the drag force ex-
erted by the flow on the particles. Saad [90] investigated the quasi-steady translational and
steady rotational motions of a porous spheroid enveloped by a fictitious spheroid in the low
Reynolds number flow. The analytical expressions for flow fields were derived by solving
Stokes and Brinkman equation. Also they derived the closed form expressions for the hy-
drodynamic drag force and couple exerted on the porous spheroid in a cell. Yadav et al.
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[91] emphasized on the hydrodynamic permeability and its controlling parameter by con-
sidering unit cell particles to be spheroidal shape covered by a porous layer. Further, they
[92] extended this work by analyzing the effect of magnetic fields on hydrodynamic perme-
ability. Tiwari et al. [93] considered the assemblage of non-homogeneous porous medium
with cylindrical-shaped particle in the stokes flow, and established a comparison of all four
cell models (Happel, Kuwabara, Kvashnin and Mehta-Morse/Cunningham). Yadav et al.
[94] studied a low Reynolds number flow of an incompressible viscous fluid through the
membrane composed of non-homogeneous porous cylindrical particles with radially vary-
ing permeability. Khanukaeva et al. ([95], [96]) considered the flow of micropolar fluid and
investigated the flow past an aggregate of solid cylindrical particles with a porous layer in
the parallel and perpendicular directions to the cylinder’s axis. They solved the governing
equations analytically by taking continuity of velocities as well as stresses on porous-liquid
surface together with no-couple stress and no-spin condition on the hypothetical cell sur-
face. Kishore et al. [97] studied the rate of mass transfer by considering an ensemble of
mono sized spherical droplets in a Newtonian fluid with a free surface model and solved the
governing equations numerically for moderate Reynolds and Peclet numbers. With the use
of power-law fluid at low Reynolds number and Happel’s free-surface cell model, Yoshi-
nore and Jaromir [98] obtained an approximate solution for the motion of a swarm of solid
spherical particles. Pressure drop, the minimum fluidization velocity, and the rate of mass
transfer were also discussed theoretically. Zhu [99] used Happel’s free surface cell model
to investigate the steady, axisymmetric, and low Reynolds number flow of an incompress-
ible Carreau fluid past aggregates of spherical Newtonian drops and access the effects of
viscosity ratios on the drag along with the mass transfer rate. Dang and Steinberg [100] an-
alyzed mass transfer from aggregates of bubbles with chemical reactions between a swarm
of bubbles and continuous phase.

1.4 Heat Transfer and Entropy Generation

1.4.1 Heat Transfer

Heat transfer rate in particle-to-fluid interactions at very low Reynolds number is a major
topic of research interest, having applications in the combustion of finely dispersed fuel, dry-
ing of a gas by a granular absorbent and meteorological studies. It is a crucial phenomenon
that occurs in the process of roasting ores, ion exchange, gas chromatography, fibers in ad-
sorbers, electrolyzers, hollow-fiber reactors, and catalytic chemical reactions. In most unit
operations or a series of mechanical or chemical operations, one has to face the involvement
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of non-uniform temperature and concentration fields, because of which one encounter the
heat and mass transfer within the flow domain.

In numerous applications, including chemical reactors and heat transfers arising from
particle interactions, heat transfer in a swarm of particles is crucial. The cell model can be
used to comprehend liquid flow through a swarm of particles. Further, numerous real-life
applications involve a minor increase in temperature or radiation, making the mathematical
analysis of its effect on creeping flow an intriguing challenge. Due to increased pollution and
significant liquid contaminants, filtering is crucial, and the researchers used mathematical
analysis to get further insights into the filtration process.

Over the years, considerable research efforts have been expended in investigating the
convection-diffusion equation analytically with the help of appropriate boundary conditions.
The cell method in the problems of heat and mass transfer was first studied by Pfeffer and
Happel [101]. They solved the energy equation coupled with Happle’s free surface model
with perturbation technique by expanding the fluid temperature distribution in even powered
terms of the spherical angle and obtained a rapidly converging solution. By then, limited
work had been done on the analytical approach of investigating heat and mass transfer for
creeping flow.

Mandhani et al. [102] used the unit cell model technique to investigate the forced con-
vection heat transfer characteristics in a membrane composed of cylindrical bundles. Fer-
reira and Chhabra [103] applied Happel and Kuwabara cell models and Stokes flow approx-
imation to examine the mass transfer and creeping flow of Power-law fluids over cylinder
banks. Narasimha et al. [104] explored the role of shear-thinning viscosity on the convective
heat transfer in a swarm of particles by solving the governing equation numerically for the
free surface cell model. Zhu [105] developed a new cell model for saturated porous medium
and determined the effective thermal conductivity based on the developed temperature pro-
file in the cell. Zhu [106] developed a new physical conceptualization of the evolution of
water phase saturation using a cell model and estimated the thermal conductivity of unsatu-
rated porous materials. Zhu [107] developed a new approach to separate two mechanisms of
conduction and convection explicitly. He considered the flow at low Reynolds number and
solved the energy equations by finite difference method for various physical and kinematic
conditions. Sharanya et al. [108] used the cell model to study the viscous flow of polydis-
perse spherical drops as a porous media, considering thermocapillary effects, and compared
the computed bed permeability with the Carman-Kozeny relation.
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1.4.2 Entropy Generation

The suboptimal performance of industrial and engineering flow processes and thermal sys-
tems is primarily attributed to the generation of entropy. Identifying the factors responsible
for entropy generation is crucial, as minimizing these factors will lead to the optimization of
energy resources and the efficiency of the flow system. Entropy analysis is a method used
to assess the thermodynamic irreversibility present in fluid flow and heat transfer processes,
stemming from the second law of thermodynamics. Entropy generation serves as a metric
for quantifying the level of irreversibility inherent in actual processes. Various elements,
such as heat transfer across finite temperature gradients, the nature of convective heat trans-
fer, and the influence of viscosity, contribute to the overall entropy generation. The process
of entropy generation leads to the dissipation of available energy within a system, resulting
in significant additional expenses for any thermal system.

The primary contributors to entropy generation in thermal and engineering processes
are the three modes of thermal exchange: conduction, convection, and thermal radiation.
Additionally, factors such as fluid friction, the existence of porous media, viscous effects,
fluid mixing, buoyancy forces, magnetohydrodynamics, and radiative heat transfer play sig-
nificant roles in this context. The conversion of energy across various forms like thermal
energy, potential energy, and kinetic energy, among others, plays a crucial role in the gen-
eration of entropy. These elements contribute to a decrease in the operational efficiency
(energy) of diverse thermo-fluid devices. Furthermore, the study of entropy production is a
crucial aspect of contemporary engineering thermofluid devices, and it represents one of the
most frequently explored areas in research.

Bejan’s groundbreaking study ([109], [110], [111], [112], [113]) explores the notion of
entropy production across various flow conditions, scenarios, and geometric models. Within
the realm of advanced engineering thermodynamics, the scrutiny of entropy production pro-
vides invaluable insights for integrating miniature electronic and thermal devices, augment-
ing the performance of petroleum equipment, and optimizing heat exchangers, among other
applications. Relying on information regarding entropy production offers a more depend-
able approach to designing these devices and amplifying the operational efficiency of ther-
mal technologies. Shit et al. [114] developed a mathematical model to analyze entropy
generation in unsteady two-dimensional magnetohydrodynamic flow of nanofluid over an
exponentially stretching surface in a porous medium under the influence of thermal radi-
ation. This research was further extended by Shit and Mandal [115], who applied Buon-
giorno’s model to study entropy generation in unsteady magnetohydrodynamic flow of Cas-
son nanofluid over a stretching vertical plate influenced by thermal radiation. Their findings
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indicated that the Casson parameter significantly increases entropy generation, while ther-
mal radiation enhances it closer to the plate. Some notable studies pertaining to the entropy
generation phenomena are documented in the articles ([116], [117], [118] [119], [120]).

1.5 Electroosmosis

Following Ferdinand Friedrich Reuss’s discovery more than two centuries ago that water
could flow through a clay plug when an external electric field was applied, a plethora of
theoretical and experimental research has been conducted. The most important result of this
discovery was the ability to create water flow only by applying an external electric field
without any requirement of mechanical component. The concept, subsequently termed as
electrokinetic transport, operates through the mechanism where an external electric field in-
teracts with a charged interface. This interaction is balanced by a liquid layer possessing a
charge opposite to that of the interface. Electroosmosis within porous materials has gained
significance owing to its diverse applications, including soil contaminant removal, dewa-
tering processes, electrochromatography, hot embossing techniques, micropumping mech-
anisms, and separation procedures. Porous materials often comprise parallel fibers, akin to
those found in filters. Prior microscale investigations have focused on theoretical forecasts
concerning parallel arrangements of weakly interacting circular cylindrical fibers.

Figure 1.6: Charge distribution in the electrical double layer region near the charged
surface.

The electrically charged solid-liquid interface, known as the electrical double layer
(EDL), plays a crucial role in the electroosmotic phenomenon. Comprising a charged solid
surface and an extremely thin layer of counter-charges in an aqueous solution (typically a
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few nanometers thick), the EDL was initially explored in the 19th century [12], and has
since been subject to further investigation in the 20th century [13–15] and contemporary
research [16–20]. Consequently, deepening our comprehension of the arrangement of wa-
ter and ionic species in proximity to an electrically charged solid surface holds significant
importance.

Levine and Neale [121] noted that in suitable ionizing solvents like water, the particle
constitutes a diffuse (double) layer of a significant thickness. So, the results of the Happel
[68] and Kuwabara [67] model of uncharged particles should not be applied indiscriminately
when dealing with electrolytes. Oshima [122] used the cell model approach to find the mo-
bility expression for a swarm of identical spherical colloidal particles with Kuwabara’s [67]
boundary condition. Huan and Chen [123] analyzed the body-forced-driven migration in the
homogeneous suspension of an electrolyte solution by linearising the governing equation
with the assumption that the system is only slightly distorted from equilibrium. Analytical
expressions for the settling velocity and the sedimentation potential are derived. Zholkovskij
[124] demonstrated several contradictions on imposition of boundary conditions at the outer
boundary of the representative spherical cell, and the theory of electrokinetic phenomena in
concentrated suspensions was revisited primarily focusing on the boundary conditions at the
outer boundary of the spherical cell. Chiang [125] analyzed the transient electrophoresis of
a homogeneous suspension of dielectric spherical particles in a step function electric field
with the assumption of thin but finite double layers. Cheng and Huan [126] considered a
spherical particle in a microtube filled with a gaseous medium and presented a theoretical
study to obtain asymptotic analytical results for the thermophoretic mobility of an aerosol
sphere. Saad and Faltas [127] derived the expression for electrophoretic apparent velocity
slip by considering the time-dependent flow in a charged porous medium under the influence
of an electric field. Further, Saad [128] investigated the electrophoretic motion of dielec-
tric cylindrical particle semi analytically in a charged porous medium. Using Happel and
Kuwabara’s unit cell model, Saad [129] analyzed the starting electrophoresis in a charged
porous medium consisting of spherical particles semi-analytically. Theoretical work on the
electric conduction of electrolyte solutions in a fibrous porous medium was done by Chen
and Huan [130]. They considered parallel charge-regulating cylinders with arbitrary elec-
tric double layer thickness and derived the expressions for the electroosmotic mobility and
effective electric conductivity by solving the governing electrokinetic equations. Lai and
Huan [131] also examined the initiation of electrophoretic motion in a suspension of spher-
ical colloidal charged particles by the unit cell model for hydrodynamic interaction between
particles. By extending the case of transient electrophoresis of a dielectric cylindrical parti-
cle, Saad [128] presented a semi-analytical study of unsteady electrophoresis of a dielectric
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circular cylindrical particle placed in Brinkman medium with a uniform electric field in an
arbitrary direction. He [132] extended the above study by considering the time-evolving
electrophoresis in the Brinkman medium.

1.6 Diverse Fluids

The world encompasses a multitude of fluid types, each possessing distinct applications
across various scientific domains. Examples include modeling groundwater flow, geophys-
ical flows, blood flow through large and small arteries, tidal waves, among others. The
present thesis explores several categories of fluids.

1.6.1 Newtonian Fluid

In a Newtonian fluid, the relationship between shear stress and strain rate is characterized
by linearity, with the proportionality constant defined as the coefficient of viscosity. This
relationship can be expressed mathematically, as

τ̃ = µ̃
∂ w̃
∂ r̃

(1.9)

here τ̃ is the shear stress, µ̃ is the coefficient of viscosity and ∂ w̃
∂ r̃ is the rate of strain (velocity

gradient).

1.6.2 Jeffrey Fluid

Jeffrey fluid model is a generalization of the Newtonian fluid model having both proper-
ties of viscosity and elasticity of the fluid and reduces to the Newtonian fluid model for the
specific value of the viscoelastic parameter. The involvement of parameters related to re-
laxation and retardation time makes the rheology of Jeffery fluid slightly different from the
Newtonian fluids without any further complexities. Also, for very low relaxation time, the
model reduces to linearized form and hence suitable for an analytical treatment of problems
dealing with the flow of Jeffery fluid. Viscoelastic nature of fluid exhibits the shear thinning
behavior. The mathematical expression of the extra tensor of Jeffrey fluid is given by

τ̃r̃z̃ =
µ̃

1+λ1
(γ̇ +λ2γ̈) , (1.10)

here, τ̃r̃z̃ denotes the shear stress, µ̃ represents the dynamic viscosity of the Jeffrey fluid, γ̇

stands for the shear rate, and λ1 and λ2 refer to the Jeffrey fluid parameters, signifying the
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ratio of relaxation to retardation times and retardation times, respectively. The dots signify
differentiation with respect to time.

1.6.3 Carreau-Yasuda Fluid

The Carreau-Yasuda fluid model is a non-Newtonian viscoelastic fluid which provides a
more generalized description than the Newtonian model. It is more accurate in capturing
the variation of viscosity η with shear rate γ than the power law rheological model and has
sufficient flexibility to fit a wide variety of experimental η(γ̇) curves; it has proven to be
useful for numerical calculations in which one needs an analytical expression for the non-
Newtonian viscosity curve. The complexity of parameterization is a key distinction between
these formulations. The Carreau-Yasuda equation characterizes fluid rheology with five
parameters (η0,η∞,λ ,n,a), unlike the power law relation, which has only two parameters
(k,n). The stress–strain relation for Carreau-Yasuda fluid is given by [133], [134]

η −η∞

η0 −η∞

= (1+(λ γ̇)a)
n−1

a , (1.11)

where, µ0 and µ∞ are the asymptotic viscosities for zero and infinite shear rates, respec-
tively. The parameter λ is a constant possessing units of time, with 1

λ
indicating the critical

shear rate at which viscosity starts to decrease. Furthermore, the parameter n serves as
the power law index, delineating fluid behavior relative to shear rate: (i) shear-thinning for
pseudoplastic fluids when n < 1 at high shear rates; (ii) Newtonian behavior when n = 1;
(iii) shear-thickening for dilatant fluids when n > 1 at low shear rates. The nondimensional
parameter a represents the width of the transition zone between zero shear rate viscosity and
the power law region.
Yasuda [135], [136] later added the transition region parameter, a. For a = 2, the equation
(1.11), is usually reffered to as the Carreau equation, and given by

η −η∞

η0 −η∞

= (1+(λ γ̇)a)
n−1

2 . (1.12)

1.7 Governing Equations

Fluid flow obeys the law of conservation of mass, momentum, and energy. The mathemati-
cal expressions for these laws are described as below:
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1.7.1 Conservation of Mass

The continuity equation serves as the mathematical representation of the principle of con-
servation of mass. Assuming a fluid region V devoid of sources or sinks, the conservation of
mass dictates that the rate of mass accumulation within V must equate to the cumulative rate
of mass inflow into V . For an incompressible fluid flow, the conservation of mass reduces to

∇ · u⃗ = 0, (1.13)

where ∇· the divergence operator, and u⃗ is the velocity vector of the fluid.

1.7.2 Conservation of Momentum

The law of conservation of momentum states that the rate of change of momentum per unit
volume V is caused by pressure, viscous, and gravity forces. Then for incompressible flows

ρ
D⃗u
Dt

= ρF⃗−∇p+µ∇
2⃗u, (1.14)

where D
Dt ≡

∂

∂ t + (⃗u.∇) denote the total/material derivative, ∇2 is the Laplacian operator, F⃗
is external body force, p is the pressure, v⃗ is the velocity vector, µ is the viscosity coefficient
and ρ is the density of the fluid. The equation (1.14) is also known as Navier-Stokes equation
which was given by Navier.

1.7.3 Convection–Diffusion Equation

The convection-diffusion equation can be derived in a straightforward way from the con-
tinuity equation, which states that the rate of change for a scalar quantity in a differential
control volume is given by flow and diffusion into and out of that part of the system along
with any generation or consumption inside the control volume. The vector form of the
convection-diffusion equation is given as:

∂ψ

∂ t
= ∇ · (D∇ψ)−∇ · (⃗uψ)+R, (1.15)

where ψ is the variable of interest (species concentration for mass transfer, temperature for
heat transfer), D is the diffusivity, such as mass diffusivity for particle motion or thermal
diffusivity for heat transport, u⃗ is the average velocity with which the quantity is moving, R

describes “sources” or “sinks” of the quantity ψ .
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1.7.4 Momentum Equations in Porous Media

1.7.4.1 Brinkmann Equation

Brinkman [137], [138] proposed a modification to Darcy’s law, claiming that the flow rate of
a fluid through a porous medium correlates with the pressure gradient within it. He extended
Darcy’s investigation by taking into account the permeability of the porous zone, specifically
micro-sized holes. Unlike Darcy’s law, which ignores the effects of fluid viscosity and
boundary effects, the Brinkman equation incorporates these factors by adding an effective
viscosity and velocity gradient term to Darcy’s law. As a result, the equation provides a
more comprehensive description of fluid flow in porous media.

ρ
∂ ũ
∂ t

=−
(

∂ p
∂ z

+
µ

k
ũ
)
+µe∇

2(ũ), (1.16)

where ρ denotes the fluid density, p denotes the pressure, u is the velocity, µ expresses
fluid viscosity, µe expresses effective viscosity and k represents the permeability of porous
medium.

1.7.4.2 Brinkmann Forchheimer Equation

The Brinkman-Forchheimer equation [55] is an extension of Darcy’s law, which provides a
comprehensive model for fluid flow through porous media, including scenarios where fluid
inertia cannot be ignored. Unlike Darcy’s law, which only considers viscous effects, the
Brinkman-Forchheimer equation takes into account both viscous and inertial effects. This
improved formulation makes it more suitable for accurately modeling flow in porous media,
especially under high flow rates. The Brinkman-Forchheimer equation can be written as
follows:

ρ
∂ ũ
∂ t

=−
(

∇p+
µ

k
ũ
)
+µe∇

2(ũ)− CF√
k

ρ|ũ|ũ, (1.17)

where ρ denotes the fluid density, p denotes the pressure, u is the velocity, µ expresses
viscosity, µe expresses effective viscosity, k represents the permeability constant for the
porous medium and CF denotes the inertial coefficient.

1.8 Boundary Conditions

To ensure mathematical consistency in addressing flow problems, it is essential to establish
appropriate boundary conditions for evaluating the arbitrary constants involved. Following
are some of the useful boundary conditions:
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1. Osborne Reynolds [139] introduced the no-slip condition, which states that a viscous
fluid must reach zero velocity at a solid boundary. Hence the tangential component
of velocity vanishes at the solid surface. Reynolds proposed this boundary condition
based on findings from his seminal pipe flow experiments. This boundary condition
exemplifies a Dirichlet boundary condition.

2. The solid surface to particle is assumed to be held at constant ambient temperature.

3. Velocity profile, shear stress, and temperature profile are assumed to be continuous at
the interfaces.

4. Ochoa-Tapia and Whitaker ([81], [82]) proposed a stress jump boundary condition
for the interface between a fluid and a porous medium, where the porous region is
governed by Brinkman’s equation. The formulated stress-jump boundary condition is
as follows,

τ
(p)
nt − τ

(c)
nt =

β µ√
k

w(p)
t , (1.18)

In this context, τ
(p)
nt and τ

(c)
nt represent the tangential stress components within the

porous medium and the clear fluid region, respectively. Here, β denotes the stress
jump coefficient, µ stands for viscosity, and k represents the permeability of the
porous medium.

5. Happel [71] [68] assumed that the outer envelope (or surface) of the cell is frictionless,
i.e., the shear stress vanishes at the outer boundary of the cell. The disturbance due
to any particle is, therefore, confined within the fluid cell. Thus, Happel boundary
condition is

τnt = 0 At the cell surface. (1.19)

6. Kuwabara [67] proposed a cell model, similar to the Happel cell model, to explain the
forces acting on circular cylinders or spheres randomly distributed in a viscous flow
at low Reynolds numbers. In this model, two concentric spheres are used to represent
the spherical particle in cell. Instead of requiring no tangential stress on the outer
surface, Kuwabara proposed that the vorticity (spin) vanishes on the outer surface.
As a result, the Kuwabara boundary condition states that the fluid’s spinning motion
should come to a halt on the outer surface. Thus, Kuwabara boundary condition is

ω = 0 At the cell surface. (1.20)
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7. Kvashnin [72] introduced a condition stating that the tangential velocity of fluid reaches
its lowest point at the surface of the cell when considering its distance from the cen-
ter. This condition indicates symmetry within the cell. In simpler terms, it means
that as you move away from the center of the cell towards its surface, the tangential
component of fluid’s velocity decreases until it reaches a minimum. In cylindrical
coordinates (r,θ) the condition comes out as

∂vθ

∂ r
= 0 At the cell surface. (1.21)

8. Mehta-Morse [74] proposed the boundary condition on the cell surface assuming the
tangential velocity is equal to a component of average fluid velocity, signifying the
homogeneity of the flow of the cell surface. In cylindrical coordinates, this condition
is expressed as:

vθ = 0 At the cell surface. (1.22)

where vθ represents the tangential component of velocity. However, Filippov and
Vasin [140] demonstrated that this condition is not applicable for analyzing flow
through a swarm of particles.

1.9 Mathematical Methods

Fluid flow obeys the law of conservation of mass, momentum, and energy. The mathemat-
ical expressions for these laws are described in detail, based on the proposed models. The
governing equations corresponding to these conservation laws are set of partial differential
equations that are coupled and highly nonlinear so that in most cases, the analytical solu-
tions to these equations are intractable due to the presence of nonlinear inertia term and
other body force terms in it. In order to obtain the analytical solution of these equations,
researcher often solve the corresponding problem for the special cases where the nonlinear
terms are reduced to be zero. However; to overcome from the solution intractability, we
may use the semi-analytical/approximate solution methods like the perturbation techniques.
Given the representation of swarm of particles as cylindrical shaped particles, mathemati-
cal formulations will employ cylindrical coordinate systems (r,φ ,z), where r and z denote
the radial and axial coordinates, respectively, with the origin positioned on the axis of the
cylinder. Initially, expressions for the velocity profile across different regions (porous, non-
porous/clear fluid) will be determined. Subsequently, these expressions will be utilized to
derive analytical expressions for temperature distributions.
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1.9.1 Perturbation Method

The perturbation theory emerged as a useful tool for dealing with complex calculations,
particularly in the study of fluid motion. In academic contexts, perturbation can be defined
as a minor deviation from a predetermined state. A set of analytical techniques contained
in perturbation theory helps in deriving the approximate solutions to difficult problems by
utilizing the well-known analytical solution of a related but easier problem. The mechanism
of perturbation techniques is based on the mechanical transformation’s Taylor series expan-
sion with a small dimensionless parameter. In order to clarify this theoretical approach, let
us examine real-world phenomena that are subject to a boundary value problem, which can
be expressed mathematically as

F̃ [w̃(r̃)] = 0,

B̃[w̃(r̃)] = 0 on ∂ δ̃ .
(1.23)

The exact analytical solution of equation (1.23) is often impossible or very difficult to find
when the above expression closely resembles real-life phenomena. When dealing with these
kinds of situations, it is useful to think about the equation in its non-dimensional form of
equation (1.23), with a small parameter, “ε”.

F [w(r;ε)] = 0,

B[w(r;ε)] = 0 on ∂δ (0 < ε ≪ 1).
(1.24)

The technique begins with the decomposition of the problem F [w(r);ε] = 0 into two parts
as

S[w(r)]+P[w(r);ε] = 0, (1.25)

where S[w(r)] represents a closely related, simpler problem, for which an exact analytical
solution w0(r) can be readily obtained, and P[w(r);ε] denotes a perturbing component of
the problem. In perturbation theory, the solution of equation is expressed as a power series
in the perturbed parameter, denoted as ε , as follows.

w(r) = w0(r)+
∞

∑
n=1

ε
nwn(r). (1.26)

The initial term represents the well-established exact analytical solution to the correlated el-
ementary problem. An approximate perturbation solution of equation (1.24) can be derived
by selectively truncating the series expansion (1.27) after a certain number of successive
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terms. Typically, the higher-order terms involving greater powers of the dimensionless pa-
rameter tend to diminish as more terms are included.

w(r) = w0(r)+
N

∑
n=1

ε
nwn(r)+O(εN+1) (1.27)

The series (1.14) is recognized as the asymptotic series, and a solution derived from it is
termed the asymptotic series solution. Typically, for practical purposes, only the first three
terms are retained: the solution to the known problem, and the first and second-order per-
turbation corrections are included. This can be expressed as:

w(r)≈ w0(r)+ εw1(r)+ ε
2w2(r)+O(ε3) (1.28)

1.9.1.1 Regular Perturbation

A perturbation problem is regular when the perturbed component, characterized by a non-
zero small parameter ε , and the unperturbed component both diminish and exhibit signif-
icant qualitative resemblance. In such instances, the approximate perturbed solution can
be derived by expanding the governing equations as a series in ε , aggregating terms with
equivalent powers of ε , and subsequently solving them iteratively to the required degree of
accuracy.

1.9.1.2 Singular Perturbation

The singular perturbation problem exhibits qualitative distinctions from its unperturbed
problem. Differential equations arising from singular perturbation problems are influenced
by varying time scales and length parameters. Generally, singular perturbation problems can
be categorized into two main types: boundary layer problems and multiple-scale problems.
Boundary layer problems hold particular significance as they are discussed extensively in
Chapter 2 and are effectively addressed using the matched asymptotic expansion method.
The domain of the singular perturbation problem can be partitioned into two or more re-
gions. Within a predominant primary subdomain, the problem can be treated as a regular
perturbation problem, and an approximate solution can be obtained through an asymptotic
series (1.28). However, in smaller subdomains termed as boundary layers, the solution can-
not be adequately approximated by the asymptotic series (1.28). Boundary layers manifest
as narrow regions proximate to the domain boundary. The approximate solution derived
from (1.28) for the primary domain remains valid solely outside the boundary layers and
therefore known as outer solution and denoted by wo.
Matched Asymptotic expansion
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In continuum mechanics, the need for solutions to classical problems led to the develop-
ment of matched asymptotic expansions. Boundary layers, being narrow regions, necessi-
tate stretching or magnification to investigate their behavior effectively, thereby enabling the
derivation of a uniform solution for singularly perturbed problems. The stretching parame-
ter, introduced as

η =
r−a

εv , (1.29)

where a is the point where the boundary layer originates and a scale of magnification v. By
incorporating the stretching parameter into the boundary value problem (1.24), it is trans-
formed as,

F [w(η);ε] = 0,

B[w(η);ε] = 0 on ∂δ .
(1.30)

Subsequently, the approximate solution for (1.30) is obtained through a distinct asymptotic
series expansion, denoted as the inner solution and represented by wi(η), valid solely within
the boundary layer.
In this context, it’s worth noting that the primary domain and boundary layers may not be
clearly separated and may overlap. As a result, combining the approximate solutions for the
primary domain and boundary layers directly is not feasible. Instead, a suitable matching
condition is required to generate a composite solution. Prandtl’s boundary layer theory,
known for its applicability, is commonly used to establish the matching condition, resulting
in the derivation of a composite solution for singularly perturbed problems.
Prandtl’s Matching Condition

woverlap = (wi)o = (wo)i. (1.31)

Composite Solution
w ≈ wi +wo +woverlap. (1.32)

In equation (1.32), (wi)o represents the limiting value of the inner solution obtained from
outside the boundary layer, while (wo)i denotes the limiting value of the outer solution
derived from outside the primary domain, specifically from within the boundary layers.
woverlap refers to the solution within the overlapping region encompassing both the primary
domain and boundary layers.
Extensive discussions on the methodology for obtaining solutions to singular perturbation
problems employing various matching conditions have been provided by Bush [141] and
Nayfeh [142].
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1.9.2 Seperation of Variables

The method of separation of variables stands as a prominent technique for solving both
ordinary and partial differential equations. This method is suitable for addressing a broad
spectrum of problems in mathematical physics, applied mathematics, and engineering sci-
ence. This method involves algebraic operations to transform an equation such that each
of the two variables appear on distinct sides of the equation. The method of separation of
variables operates under the assumption that a function can be expressed in the form:

u(x, t) = φ(x)G(t), (1.33)

which will constitute a solution to a linear homogeneous partial differential equation in
terms of both x and t. Termed as a product solution and provided the boundary conditions
are also linear and homogeneous this will also satisfy the boundary conditions.
The separation method offers several advantages, including its simplicity, directness, ease
of understanding, and straightforwardness in solving problems. Nonetheless, in complex
scenarios such as boundary value problems, the separation of variables method can become
intricate and challenging to resolve.

1.10 Objectives

Based on the literature survey and observed gaps in the work done till now, the following
objectives have been proposed for the thesis work:

1. To investigate the flow of non-Newtonian fluids through a swarm of particles by using
Happel [71], [68], Kuwabara [67], Kvashnin [72], and Cunningham [73] formulations
on cell surface.

2. To study the flow through a swarm of porous elliptic cylindrical particles and compare
the results with a swarm of rigid circular cylindrical particles.

3. To study the flow through a deformed porous cylindrical particle and swarm of de-
formed porous cylindrical particles by considering flow across and along the axis.

4. To study the flow of Newtonian and non-Newtonian fluids through a swarm of porous
cylindrical/spherical particles by including convective terms in the formulations.

5. To study the flow through a swarm of particles by using Forchheimer formulation for
porous medium.
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6. To study the mass transfer and heat transfer in fluid flow through a swarm of particles.

7. To study the electrophoresis of a charged particle in cell model.

1.11 Thesis Organization

This thesis contains nine chapters. The first chapter introduces the study of fluid flow past
porous media, beginning with historical developments and emphasizing the significance of
membranes in modern technology. It explains membrane modeling, including the cell model
technique and its development. This chapter also highlights the importance of heat transfer,
entropy generation, and electroosmosis in membranes and introduces rheological fluids and
their properties. It concludes by setting the research foundation and outlining objectives and
methodologies, providing a comprehensive understanding of the research on fluid flow past
membranes.
Chapter 2 analyses how temperature-dependent viscosity influences Jeffrey fluid flow through
a swarm of porous layered cylindrical particles. It uses the unit cell model to analyze axial
flow, dividing it into two layers with Brinkman and stokes equations governing the fluid
flow in porous and clear fluid layers, respectively. The study applies perturbation methods
to solve the system of equations, deriving key flow characteristics like velocity and perme-
ability. The findings, consistent with existing research on Newtonian fluids, validate the
model for porous media flow under constant viscosity conditions.
Chapter 3, we are going to analyze and look at the “ion drag" effect of the electro-hydrodynamic
flow and heat transfer-influenced fluid movement through a membrane consisting of porous
cylindrical particles. It employs thermal equations to assess temperature effects, primarily
conduction and fluid dynamics governed by the Brinkman and Stokes equations in different
regions. The study examines the role of an electric field, via the Hartmann electric number,
in fluid flow. It also explores the effect of the buoyancy force, effective viscosity, and stress
jump of the porous-fluid interface on the membrane’s hydrodynamic permeability and the
Kozeny constant.
Chapters 4 and 5 explore the dynamics of non-Newtonian Carreau and Carreau-Yasuda fluid
flows through porous membranes, with a focus on understanding the impact of fluid prop-
erties on the filtration process. Chapter 4 uses the unit cell model to investigates incom-
pressible Carreau fluid flow through a membrane consisting of uniformly distributed porous
cylindrical particles, and utilizing the regular perturbation method to derive semi-analytical
expressions for key parameters such as velocity and temperature profile. Building on this,
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Chapter 5 delves into Carreau-Yasuda fluid flow through biporous layered cylindrical par-
ticles, utilizing a variable permeability model and perturbation method to analyze flow dy-
namics and its effects on membrane permeability and temperature variation. Both chapters
contribute to a deeper understanding of non-Newtonian fluid behavior in filtration processes,
highlighting the complex interplay between fluid dynamics and membrane characteristics.
Chapter 6 explores the entropy production in the flow of a Newtonian fluid through bi-
porous layered cylindrical particles with different variable permeabilities. It uses Brinkman
and Brinkman-Forchheimer models for analyzing forced convection in hyperporous materi-
als, focusing on heat transfer and the fluid’s rheological properties. The study examines the
effect of various control parameters on the flow velocity, entropy generation, Bejan number,
and other hydrodynamical quantites like hydrodynamic permeability and the Kozeny con-
stant.
Chapter 7 examines the impact of surface roughness on fluid flow in membranescomposed
of porous layered corrugated cylindrical particles. It demonstrates how roughness affects
fluid dynamics and presents a semi-analytical solution for analyzing fluid flow, highlighting
the influence of various parameters on fluid velocity, membrane’s hydrodynamic permeabil-
ity, and the Kozeny constant.
Chapter 8 explores the flow of an electrolyte solution through a membrane with poly-
electrolyte coated particles,driven by both electroosmotic force and pressure gradient. The
study models the flow, differentiating between the poly-electrolyte layer and the clear fluid
region, using specific governing equations to analyze fluid velocity and membrane prop-
erties. Regular perturbation method with variation of parameter technique is employed to
approximate these characteristics due to the complex nature of the flow.
Chapter 9 provides a summary of the thesis, emphasizing the significant results that have
practical importance and potential uses. It contains the main conclusions related to the
study throughout the work followed by the recommended directions for future study and
ways to strengthen the current work.
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Chapter 2

Creeping Flow of Jeffrey Fluid through a Swarm
of Porous Cylindrical Particles: Brinkman-
Forchheimer Model 1

2.1 Introduction

The flow of liquids through membrane comprising a swarm of particles has been a topic of
immense interest for researchers to get an insight of the flow of fluid through porous me-
dia owing to its prominent applications in diverse areas like physical and biological science
such as flow through smooth muscle cells [143], petroleum reservoirs and the sand beds.
Acknowledging the importance of flow through porous media Kumar et al. [144] provided
the estimates of poro-mechanical properties of cortical bone surfaces in different anatom-
ical regions. The mathematical conceptualization of the flow of fluid through membrane
modeled as a swarm of porous particles is a complex phenomenon in terms of mathemat-
ical formulation for flow visualization as it is difficult to simultaneously observe the flow
field past several particles as well as its dependence on particle interactions. To address this
issue, the cell model technique or particle-in-cell method was introduced. The cell model
technique is employed to analyze the flow of fluid a periodic array of particles by consid-
ering a particle confined within a hypothetical cell and the appropriate boundary conditions
are imposed on the hypothetical cell to formulate the impact of neighboring particles on
the particle concerned. The modeling of filtration process through membranes composed
of aggregates of particles can be done by applying the traditional particle-in-cell approach
to analyze the flow of fluid through a randomly oriented swarm of particles. The advan-
tage of the cell model technique is to select a single particle inside a fluid envelop among
large numbers of cells and analyze the behavior of neighboring particles through imposed
boundary conditions on the cell surface.

1A considerable part of this chapter is published in International Journal of Multiphase Flow, 96(12),
125277, 2021.
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The stimulation of taking a porous structure on the surface of the rigid cylindrical parti-
cle with an impermeable core is due to the dissolution and adsorption of the polymers. The
presence of such a layer affects the entire membrane permeability. The slow viscous flow
of fluid through membrane composed of a swarm of concentric clusters of porous cylin-
drical particles has been discussed by Deo et al. [145] using Happel’s boundary condition
and particle-in-cell approach. Deo et al. [3] reported the flow of Newtonian fluid parallel
and perpendicular to the axis of porous cylindrical particles with impermeable core. Sharif
et al. [146] and Khanukaeva et al. ([95], [96]) discussed the microlevel properties of the
fluid flowing through swarm of porous cylindrical particles by taking flows parallel and
perpendicular to the axis. Yadav et al. [147] reported the impact of magnetic field on the
circulation of slow flow through membranes consisting of the aggregates of porous cylin-
drical particles. Recently, Yadav [148] and Madasu and Bucha [11] investigated the flow of
fluid through membrane composed of a porous cylindrical particles having cavity.

Majority of the above works were done for Newtonian fluid flow through the swarm
of particles but many researchers used the suitability of creeping flow to model the flow
of non-Newtonian fluids through swarm of particles owing to their high viscosity levels
([103], [149], [150]). The introduction of the viscoelastic properties of the fluids in the
filtration process that attracted to the researchers and explored their studies to make a better
model in the membrane filtration process. Jeffrey fluid model is a generalization of the
Newtonian fluid model having the viscoelastic properties of the fluid and reduces to the
Newtonian fluid model for the specific value of the viscoelastic parameter. The involvement
of parameters related to relaxation and retardation time makes the rheology of Jeffery fluid
slightly different from the Newtonian fluids without any further complexities. Also, for very
low relaxation time, the model reduces to linearize form and hence suitable for an analytical
treatment of problems dealing with the flow of Jeffery fluid. The investigations have been
made by Pandey and Tripathi [151], Tripathi et al. [10], Ramesh et al. [152] and Prakash et

al. [153] for the flow of viscoelastic fluid through channel/tubes and the closed form of the
solutions are presented using long wavelength and small Reynolds numbers approximations.
Nallapu and Radhakrishnamacharya [9] used the Jeffrey-Newtonian fluids (two-fluid model
of blood) approach to study the blood circulation through arteries, and analyzed the impact
of transverse magnetic field on the circulation process.

The above literature emphasized upon the heat transfers through assemblage of particles
and their dependence on the flow parameters of fluids flowing through the swarm of parti-
cles. It is interesting to observe the effect of heat transfer on fluid flow through a swarm of
particles such as drag force, membrane permeability etc. There are several works exploring



2.1. Introduction 35

many physical processes involving heat transfer under the low Peclet number approxima-
tions, leading to negligible convective term effect in the heat transfer. Here, we present a
few of the works which have a weak coupling in fluid velocity and temperature. Faltas and
Ragab [154] investigated thermophoresis and photophoresis of a spherical aerosol particle
in a porous medium and concluded that the thermophoretic velocity of the particle varies
with thermal stress slip for small as well as large permeabilities. Another aspect is the ther-
mocapillary effect leading towards motion of a suspended drop in a fluid in the direction of
temperature gradient owing to a decay in temperature. The decay was justified due to in-
terfacial tension. Choudhari and Raja Sekhar [155] analyzed the thermocapillary effects on
the non-isothermal steady flow of fluid in and around the liquid drop and formulate the gov-
erning equations inside and outside of the liquid drop using Stoke’s equations consisting the
appropriate nonisothermal boundary conditions. Sharanya and Raja Sekhar [156] explored
the above study in the unsteady hydrodynamic flow using the Solenoidal decomposition
method. Sharanya et al. [108] analyzed the impact of permeability of the packed beds of
polydisperse droplets under the thermocapillary effects using particle-in-cell approach.

The position or temperature-dependent viscosity plays an important role whenever the
physical properties of the fluids may change considerably with the position and temper-
ature. In all the aforementioned works, the authors used the constant viscosity model to
analyze the flow of fluid through membranes however, the reduced inner friction due to heat
affects the viscosity of the fluids. Therefore, the constant viscosity assumptions is not ap-
propriate everywhere. Also, in the blood flow through small blood vessels, the viscosity
of the blood may vary with thickness of the tube. Bali and Awasthi [157] introduced the
position-dependent viscosity to analyze the flow of blood through constricted blood ves-
sels. Shit et al. [158] examined theoretically the combined aspects of magnetic field and
hematocrit-dependent viscosity on the circulation of blood flow through porous blood ves-
sels. Filippov and Koroleva [159] and Koroleva [160] discussed the qualitative properties
of the viscous fluid flow through membranes describing a partially filled porous material
using varying viscosity approach and deduced the existence and uniqueness of the solutions
as well as uniform estimates for boundary value problems. Further, Filippov and Koroleva
[161] investigated the dependencies of the hydrodynamical permeability of the membranes
on the varying nature of viscosity using the polynomial and exponential viscosity models.
Recently, Tiwari and Chauhan ([4], [5], [162], [163]) examined the impact of hematocrit-
dependent viscosity on the circulation of blood flow through microvessels and observed that
the variable nature of viscosity play an important role to compute the correct measurement
of the hemodynamical quantities which is more important for medical treatment. The study
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of heat transfer becomes vital in fluid flow problems as fluid viscosity is affected by tem-
perature variation. Nadeem et al. [1] formulated the equations governing the peristaltic
flow of Newtonian fluid under the long wavelength and temperature-dependent viscosity as-
sumptions and discussed quantitatively the impact of magnetic field and variable viscosity
on the behavior of flow quantities like axial velocity, pressure drop and temperature profiles.
Mekheimer and Abd Elmaboud [164] discussed the temperature-dependent thermal conduc-
tivity and viscosity on the peristaltic flow of Newtonian fluid through asymmetric channel
and Akbar et al. [6] discussed the impact of temperature-dependent viscosity on the flow of
blood through constricted artery with permeable walls.

To best of the author’s knowledge and based on the aforementioned literature, the impact
of variable viscosity, Jeffrey fluid parameter, and Forchheimer number on the creeping flow
of Jeffrey fluid through a swarm of porous cylindrical particles using Brinkman-Forchheimer
equation has not earlier been covered. This motivates the authors to explore the impact of
temperature dependent viscosity and non-linear inertial resistance of porous medium on flow
through a swarm of particles. The slight variation in temperature may affect the viscosity of
the fluid and hence affects the flow of fluids through a swarm of porous cylindrical particles.
The inclusion of variable viscosity in the flow of Jeffrey fluid may create complexity to
resolve the governing equations analytically for flow through porous media. The motivation
behind considering the Brinkman-Forchheimer equation to obtain the asymptotic solution
using regular and singular perturbation approaches.

The motivation of the present study is to investigate the impact of variable viscosity on
the creeping flow of Jeffrey fluid through a swarm of porous cylindrical particles. The flow
pattern of the Jeffrey fluid along the axis of the cylindrical particle (tube) is divided into two
regions: one is the flow of fluid inside the porous cylindrical particle and the other is the flow
of clear fluid outside the porous cylindrical particle. The Brinkman-Forchheimer equation
regulates the flow through porous cylindrical particle inside the porous cylindrical particles,
however, the Stokes equation regulates the flow of the clear fluid outside the porous cylin-
drical particles. The analytical technique has been utilized to solve the governing equation
outside the porous cylindrical particles, however, a perturbation technique has been used to
solve the nonlinear Brinkman-Forchheimer equation using matched asymptotic expansion.
The dependencies of hydrodynamic permeability of the membrane and Kozeny constant
on the numerous control parameters are analyzed and compared with the previous studies.
Some novel results and interesting changes in the flow patterns are reported with stress-jump
parameter, particle volume fraction and porosity parameter. The limiting cases of perfectly
porous and perfectly solid cylindrical particle in hypothetical cell are also discussed.
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The present work is divided into 5 sections. Section 2 deals with mathematical formu-
lation constituting the physical assumptions, model description, governing equations and
their non-dimensionalizations. Section 3 introduces the solution strategy and solution ex-
pressions of the governing equations followed by the expressions of the hydrodynamical
quantities and Kozeny constant. Section 4 reveals the results of the graphical findings with
model validation and parameter selections. After completing the results and discussions of
the findings, section 5 illustrates the summary of the present study and conclusions followed
by references.

2.2 Problem Formulation

2.2.1 Statement of the Problem and Model Description

The horizontal flow is assumed along the axis of the solid cylindrical particle with a porous
layer confined within a cell of the same geometry as demonstrated in Figure 2.1 which is
an axially symmetric, laminar, incompressible, steady and fully developed flow. The nature
of Jeffrey fluid with temperature-dependent viscosity regulates the flow through a swarm
of porous cylindrical particles. The flow regime is divided into two regions: Region-I de-
lineates the flow of fluid inside the porous cylindrical particle and Region-II replicates the
flow of clear fluid outside the porous cylindrical particle. The Brinkman-Forchheimer equa-
tion governs the flow of fluid through porous media inside the porous cylindrical particle,
however the Stokes equation governs the flow of clear fluid outside the porous cylindri-
cal particle. The particle geometry is assumed to be right circular cylinder, so we use the
cylindrical polar coordinate system (r̃,φ , z̃) to formulate the equations governing the flow
of Jeffrey fluid through cylindrical particle coated over the porous layer confined within the
hypothetical cell of same geometry, where r̃ and z̃ are the radial and axial coordinates, re-
spectively. The velocity component which regulates the flow of fluid is taken as (0,0, w̃),
i.e., flow along the axial direction only.

Figure 2.2 delineates the flow of fluid past porous cylindrical particle enclosing a solid
core and confined within hypothetical cell. The figure describes a cylindrical particle with
solid core of radius ã, coaxial interior region of the porous layer with radius b̃. The radius of
the hypothetical cell surface c̃ is chosen in such a way that the particle volume fraction

(
1

m2

)
of the impermeable cylinder coated over the porous layer is equal to the volume fraction on
the cell.

m2 =
1
γ
=

π c̃2

π b̃2
. (2.1)
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Figure 2.1: The physical sketch of a cylindrical particle in cell
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Figure 2.2: the circular cross-section of the cylindrical particle in cell

2.2.2 Governing Equations

In the present section, we present the thermal equation and the momentum equation govern-
ing the flow through membranes consisting the aggregates of the porous cylindrical particle.

The flow of Jeffrey fluid is subjected to the thermal effects due to an ambient temperature
T̃0. The steady state thermal equation in cylindrical coordinate system describing the energy
equation by ignoring the convection while considering the heat conduction and heat source
is given by

K̃

(
∂ 2T̃
∂ r̃2 +

1
r̃

∂ T̃
∂ r̃

)
+ Q̃ = 0, (2.2)
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where T̃ is the temperature, K̃ is the thermal conductivity, and Q̃ is the heat absorption
coefficient, which is taken to be constant.

The thermal boundary conditions on the solid core of the cylindrical particle and surface
of the hypothetical cell exhibit the finite temperature at the solid core and constant tempera-
ture (T̃w) at the hypothetical cell surface. The respective boundary conditions in dimensional
forms are given as

∂ T̃
∂ r̃

= 0, at r̃ = ã,

T̃ = T̃w, at r̃ = c̃,
(2.3)

where T̃w is the constant temperature at the surface of the hypothetical cell.
In order to determine the fluid velocity through porous material (medium), Brinkman

[137] described the flow of fluid through the porous mass, by modifying the Darcy’s law.
Permeability of the porous medium depends on the micro-structure of the solid phase in-
volved in the porous material and the properties that affects the permeability of the porous
medium are porosity, particle size (solid particles) and the connection of pores with each
other. The determination of permeability effects on the flow velocity and membranes per-
meability are very important for simulating flow in a porous medium. Many authors ([165],
[166], [167]) used the Brinkman equation to formulate the governing equation in the flow of
fluid through porous materials. In the blood flow through microvessels having an endothelial
glycocalyx layer near the tube wall replicating the porous region, Tiwari et al. [2] discussed
the microlevel properties of the fluid through porous layered tubes and obtained the solutions
of the governing equations by imposing suitable boundary conditions along with the stress-
jump condition at the fluid-porous interface. Most of the previous works have discussed
modeling on the creeping flow of fluid through a swarm of particles adopting Brinkman
formulation representing flow through porous media. The Brinkman formulation is valid
for small as well large permeability but in the case of a significant fluid inertia such as flow
through skeletal tissues, the generalized Brinkman-Forchheimer model is more appropri-
ate for formulating the flow through porous media [168]. Hooman and Gurgency ([7], [8])
adopted the Brinkman-Forchheimer equation to model the forced convection through tubes
enclosed with a saturated porous material and employing the asymptotic series expansion
method to solve the governing equations for the flow and temperature profiles.
Region- I, i.e., ã ≤ r̃ ≤ b̃

The continuity and Brinkman-Forchheimer equations governing the flow of Jeffrey fluid
under temperature-dependent viscosity through porous region (i.e., flow inside the porous
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cylindrical particle) are described as

∂ w̃p

∂ z̃
= 0, (2.4a)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃
(r̃τ̃p)−

µ̃(T̃ )w̃p

k̃
−

CF ρ̃w̃2
p√

k̃
, (2.4b)

where ρ̃, p̃, w̃p, τ̃p are the density, pressure, velocity and shear stress of the fluid in the porous

region, respectively; µ̃(T̃ ) = µ̃0e
−α

(
T̃−T̃0

T̃w−T̃0

)
is the temperature-dependent viscosity, µ̃0 is

the constant viscosity coefficient of the clear fluid, T̃0 is the ambient temperature, k̃ is the
permeability constant of the porous medium and CF is the inertial coefficient.
The stress-strain relation for Jeffrey fluid under varying viscosity assumption is given by
([9], [1])

τ̃p =
µ̃(T̃ )
1+λ1

(
∂ w̃p

∂ r̃

)
, (2.4c)

where λ1 is the Jeffrey fluid parameter (ratio to relaxation to retardation time).
Region- II, i.e., b̃ ≤ r̃ ≤ c̃

The continuity and Stokes equations governing the flow of Jeffrey fluid under temperature-
dependent viscosity through clear fluid region (i.e., flow outside of the porous cylindrical
particle) are given by

∂ w̃c

∂ z̃
= 0, (2.5a)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃

(
r̃µ̃(T̃ )
1+λ1

(
∂ w̃c

∂ r̃

))
, (2.5b)

where w̃c is the axial velocity for the clear fluid.

2.2.3 Non-Dimensional Parameters and Equations

To solve the above system of equations (2.2)− (2.5), the following non-dimensional vari-
ables are introduced:

p =
p̃b̃

w̃0µ̃0
, r =

r̃

b̃
, z =

z̃

b̃
, l =

ã

b̃
, m =

1
√

γ
=

c̃

b̃
, S2 =

1
k
, w̃0 =

q̃0b̃2

µ̃0
, θ =

T̃ − T̃0

T̃w − T̃0
,

wp =
w̃p

w̃0
, wc =

w̃c

w̃0
, k =

k̃

b̃2
, τp =

τ̃pb̃
w̃0µ̃0

, F =
CF ρ̃ b̃3q̃0

µ̃2
0

, ζh =
b̃2Q̃

K̃(T̃w − T̃0)

(2.6)
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where w0 is the characteristic velocity, F is the Forchheimer number, S is a dimensionless
parameter, and q̃0 is the characteristic pressure gradient.
The dimensionless form of the energy equation 2.2 is given by

∂ 2θ

∂ r2 +
1
r

∂θ

∂ r
+ζh = 0, (2.7)

where θ is the dimensionless temperature and ζh is the constant heat absorption parameter.
The non-dimentional form of the continuity equations (2.4a), (2.5a) and the momentum
equations (2.4b), (2.5b) using (2.6) will become
Region- I, i.e., l ≤ r ≤ 1

∂wp

∂ z
= 0, (2.8a)

∂ p
∂ z

=
1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wp

∂ r

)
−

e−αθ(r)wp

k
−

Fw2
p√

k
. (2.8b)

Region- II, i.e., 1 ≤ r ≤ m

∂wc

∂ z
= 0, (2.9a)

∂ p
∂ z

=
1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wc

∂ r

)
. (2.9b)

2.2.4 Boundary Conditions

The dimensionless boundary conditions are described as

1. No slip condition and zero temperature gradient on the surface of the solid cylinder
are considered, i.e.,

wp = 0, and
dθ

dr
= 0 at r = l. (2.10a)

2. The continuity of velocities at fluid-porous interface is considered, i.e.,

wp = wc at r = 1. (2.10b)

3. When a fluid flows through two different type of medium there must be a shear stress
jump or discontinuity in shear stress. The discontinuity of shear stresses at the fluid-
porous interface was proposed by Ochoa-Tapia and Whitaker [81], [82] that demon-
strates the momentum transfer between homogeneous porous medium and the clear
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fluid, which is commonly known as the stress-jump condition, i.e.,

dwp

dr
− dwc

dr
=

βS√
k

wp at r = 1, (2.10c)

where βS is the stress-jump parameter signifying the difference in shear stresses at the
fluid-porous interface.

4. The conditions on the hypothetical cell surface are defined for velocity and tempera-
ture distributions, i.e.,

dwc

dr
= 0, and θ(r) = 1 at r = m. (2.10d)

2.3 Solution of the Problem

For the solution of the concerned problem, the fluid flow is driven by the constant pressure
gradient, which is same for the porous as well as clear fluid regions, i.e., ∂ p

∂ z = −ps =

constant.

2.3.1 Solution of Thermal Equation

The solution of the equation 2.7 describing the thermal equation is obtained analytically

θ(r) = E1 log(r)+E2 −
r2ζh

4
, (2.11)

where E1 and E2 are constants which are evaluated using the given boundary conditions
2.10a and 2.10d.

2.3.2 Solutions of Hydrodynamic Equations

Due to presence of nonlinear Forchheimer term in the porous region equation, the analytical
solution is intractable. In order to overcome this difficulty, we propose here the perturbation
approach in case of small and large permeability of the porous medium. First, we are going
to tackle the problem for large permeability and later on for small permeability of the porous
medium.
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2.3.2.1 Asymptotic Solution for the Porous Region

The equation 2.8b may be written in terms of a parameter S

∂ p
∂ z

=
1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wp

∂ r

)
−S2e−αθ(r)wp −SFw2

p, (2.12)

where S2 = 1
k is a parameter and k is the permeability of the porous medium. The solution of

the above equation 2.12 is difficult to obtain analytically due to presence of nonlinear Forch-
heimer terms (SFw2

p) and temperature-dependent viscosity (e−αθ(r)). To overcome these
difficulties, we introduce here the perturbation technique for the parameter S which depends
on the permeability of the porous medium and the linear approximation of temperature-
dependent viscosity (either e−αθ(r) = 1−αθ(r) or eαθ(r) = 1+αθ(r)). Further, the above
procedure is used to find the asymptotic expansions of fluid velocity in the porous medium.
The solutions of the Eq. 2.12 will be developed for small as well as large values of the
parameter S using perturbation approach.

Solution for Large Permeability (i.e.,S ≪ 1)

The asymptotic expansion of the velocity profile wp of the fluid in the porous region under
the assumption of small parameter S can be written as [142]

wp = wp0 +Swp1 +S2wp2 + ..., (2.13)

where the parameter S ≪ 1 for the case of large permeability of the porous medium.
Putting the expression of velocity profile wp of the porous region into the Eq. 2.12 and
equating the zeroth, first and second-order coefficients of the parameter S. We have the
obtained the zeroth, first and second-order expressions for velocity distribution. The respec-
tive expressions for the zeroth, first and second-order expressions for velocity distribution
are obtained as

∂ p
∂ z

=
1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wp0

∂ r

)
, (2.14a)

1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wp1

∂ r

)
−Fw2

p0 = 0, (2.14b)

1
r

∂

∂ r

(
re−αθ(r)

1+λ1

∂wp2

∂ r

)
− e−αθ(r)wp0 −2Fwp0wp1 = 0. (2.14c)



44
Chapter 2. Creeping Flow of Jeffrey Fluid through a Swarm of Porous Cylindrical

Particles: Brinkman-Forchheimer Model

The equations 2.14a-2.14c are solved analytically using MATHEMATICA 10.0 software.
The solution expression for the zeroth-order velocity is obtained as

wp0 =C1

∫ (1+αθ(r)
r

)
dr+C2 −

psQ
2

∫
r(1+αθ(r))dr

=
C1

8
(
4log(r)(αE1 log(r)+2αE2 +2)−αζhr2)+C2

+
psQr2

32
(
4αE1 −8αE1 log(r)−8αE2 +αζhr2 −8

)
. (2.15a)

The solution expression for the first-order velocity is obtained as

wp1 =C3

∫ (1+αθ(r)
r

)
dr+C4 +FQ

∫ (1+αθ(r)
r

(∫
rw2

p0dr
))

dr (2.15b)
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=C3

(
−1

8
αζhr2 +

1
2

E1α log2(r)+E2α log(r)+ log(r)
)
+C4

+
FQ

552960

(
−1

8
9p2

s Q2
α

3
ζ

3
h r12 − 27

200
psQα

2
ζ

2
h (psQ(149E1α −240(E2α +1))−100C1αζh)r10

− 5
64

αζh
(

p2
s
(
1733E2

1 α
2 −5160E1(E2α +1)α +4032(E2α +1)2)Q2

−8psα(C1(223E1α −312(E2α +1))−288C2)ζhQ+576C2
1α

2
ζ

2
h
)

r8

− 5
3
(
8p2

s
(
13E3

1 α
3 −78E2

1(E2α +1)α2 +132E1(E2α +1)2
α −72(E2α +1)3)Q2

+psα
(
48C2(35E1α −48(E2α +1))+C1

(
229E2

1 α
2 −564E1(E2α +1)α +336(E2α +1)2))

ζhQ

+18C1α
2(C1(−5E1α +12E2α +12)−48C2)ζ

2
h
)

r6

−135
(
α
(
87E2

1 α
2 −156E1(E2α +1)α +80(E2α +1)2)

ζhC2
1

+
(

psQ
(
21E3

1 α
3 −84E2

1(E2α +1)α2 +128E1(E2α +1)2
α −64(E2α +1)3)

+32C2α(3E1α −4E2α −4)ζh)C1 +8C2
(

psQ
(
5E2

1 α
2 −20E1(E2α +1)α +16(E2α +1)2)

+16C2αζh))r4 +34560C2
1E3

1 α
3 log5(r)r2

−4320C1E2
1 α

2 (2E1 psQαr2 +C1
(
αζhr2 +36E1α −40E2α −40

))
log4(r)r2

+240E1α
(
4E2

1 p2
s Q2

α
2r4 +36C2

1
(
48E2

1 α
2 +E1

(
αζhr2 −72E2α −72

)
α

+2(E2α +1)
(
−αζhr2 +16E2α +16

))
+C1E1α

(
psQ

(
8αζhr2 +81E1α −144E2α −144

)
r2

+576C2)) log3(r)r2 −5
(
144

(
1008E3

1 α
3 −24E2

1
(
−αζhr2 +72E2α +72

)
α

2

+240E1α
(
4E2

1 p2Q2
α

2r4 +36C2
1
(
48E2

1 α
2 +E1

(
αζhr2 −72E2α −72

)
α

+2(E2α +1)
(
−αζhr2 +16E2α +16

))
+C1E1α

(
psQ

(
8αζhr2 +81E1α −144E2α −144

)
r2

+576C2)) log3(r)r2 −5
(
144

(
1008E3

1 α
3 −24E2

1
(
−αζhr2 +72E2α +72

)
α

2

+E1
(
−α

2
ζ

2
h r4 −36αζhr2 +1056E2

2 α
2 +12E2α

(
176−3r2

αζh
)
+1056

)
α

−24(E2α +1)2 (−αζhr2 +8E2α +8
))

C2
1

+2E1α
(

psQ
(
1998E2

1 α
2 −4E1

(
−49αζhr2 +1458E2α +1458

)
α

+9
(
α

2
ζ

2
h r4 −64αζhr2 +480E2

2 α
2 −64E2α

(
r2

αζh −15
)
+480

))
r2

+1728C2
(
αζhr2 +20E1α −24E2α −24

))
C1

+E2
1 psQr2

α
2 (psQ

(
63αζhr2 +352E1α −576E2α −576

)
r2 +3456C2
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log2(r)r2

−8640
(
3
(
15E3

1 α
3 −30E2

1(E2α +1)α2 +24E1(E2α +1)2
α −8(E2α +1)3)C2

1

+8C2
(
3E2

1 α
2 −6E1(E2α +1)α +4(E2α +1)2)C1 +8C2

2(E1α −2E2α −2)
)

r2

+
1
40
(
7200

(
4320E3

1 α
3 −9E2

1
(
−13αζhr2 +896E2α +896

)
α

2

+2E1
(
−α

2
ζ

2
h r4 −96αζhr2 +2880E2

2 α
2 −96E2α

(
r2

αζh −60
)
+2880

)
α

−8(E2α +1)
(
−α

2
ζ

2
h r4 −12αζhr2 +192E2

2 α
2 −12E2α

(
r2

αζh −32
)
+192
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C2

1

+200
(
3456C2

(
24E2

1 α
2 +E1

(
αζhr2 −40E2α −40

)
α +2(E2α +1)

(
−αζhr2 +8E2α +8

))
− psQr2 (−2268E3

1 α
3 +4E2

1
(
−47αζhr2 +1998E2α +1998

)
α

2

+E1
(
39α

2
ζ

2
h r4 +784αζhr2 −9504E2

2 α
2 +16E2α

(
49r2

αζh −1188
)
−9504

)
α

+12(E2α +1)
(
3α

2
ζ

2
h r4 −64αζhr2 +288E2

2 α
2 −64E2α

(
r2

αζh −9
)
+288
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C1

+E1α
(

p2
s Q2 (41600E2

1 α
2 −25E1

(
−645αζhr2 +5632E2α +5632

)
α

+144
(
9α

2
ζ

2
h r4 −175αζhr2 +800E2

2 α
2 −25E2α

(
7r2

αζh −64
)
+800
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r4
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(
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(
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2
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log(r)r2) . (2.15c)
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The solution expression for the second-order velocity is obtained as

wp2 =C5

∫ (1+αθ(r)
r

)
dr+C6

+Q
∫ (1+αθ(r)

r

(∫
(r(1−αθ(r))wp0 +2Frwp0wp1)dr

))
dr, (2.15d)

where Q = 1+λ1 and due to very large expressions, the complete expression for the second-
order velocity of the porous region have not been presented here.

Solution for Small Permeability (i.e.,S ≫ 1)

In the case of small permeability, the parameter S is very large (S ≫ 1). Dividing equation
2.12 by S2 throughout, we obtained

1
S2

(
∂ p
∂ z

)
=

S−2

r
∂

∂ r

(
re−αθ(r)

1+λ1

∂wp

∂ r

)
− e−αθ(r)wp −S−1Fw2

p, (2.16)

where S2 = 1
k is a parameter and in case of small permeability, the parameter S−1 is small

which is much less than unity.
The above boundary value problem (2.10 and 2.16) is singularly perturbed boundary

value problem (SPBVP) in case of very large parameter (S ≫ 1) because the limiting case
of S−1 → 0 reduces the order of the differential Eq. 2.16. At this stage, we can not han-
dle the above equation using regular perturbation approach. To overcome this difficulty,
we introduce here the singular perturbation technique with matched asymptotic expansion.
Since the difference between the derivative of the term multiplied by the small parameter
S−1 and the second term free from the small parameter (S−1) is 2. We expect to have two
boundary layers, one at each end. Hence the outer expansion is not expected to satisfy one
of the boundary conditions [142]. In the above boundary value problem, the boundary layer
is located near the fluid-porous interface, i.e., at r = 1. The detailed description about the
singular perturbation approach are discussed in the work of Nayfeh [120]. Following this
approach, we find out the outer solution of the given equation 2.16 far away from the in-
terface by using regular perturbation expansion approach in terms of the small parameter
(S−1). By skipping some intermediate terms as mentioned in the above reference book, the
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outer solution of the velocity wo
p is obtained as

wo
p =− ps

64(1+λ1)r2S5

(
4αE1 log(r)+4αE2 −αζhr2 +4

)
×
(
8S
(
α
(
2αE2

1 −2αE1ζhr2 +ζhr2 (−2αE2 +αζhr2 +2
))

−2(1+λ1)r2S2)
+16α

2E2
1 F p(1+λ1)r2 log2(r)−8αE1r2 log(r)(F ps(1+λ1)

×
(
−4αE2 +αζhr2 −4

)
+2αζhS

)
+F ps(1+λ1)r2 (4αE2 −αζhr2 +4

)2
)
, (2.17)

where superscript (o) represents the outer solution and the velocity components are given

wp0 = wp1 = wp3 = 0,

wp2 = ps(1+αθ(r)) = ps

(
1+α

(
E1 log(r)+E2 −

ζhr2

4

))
,

wp4 = (1+αθ(r))
(

1
r

d
dr

(
r(1−αθ(r))

Q
dwp2

dr

))
=

α ps

8(1+λ1)r2×(
4αE1 log(r)+4αE2 −αζhr2 +4

)
×(

−2αE2
1 +2αE1ζhr2 +2αE1ζhr2 log(r)−ζhr2 (−2αE2 +αζhr2 +2

))
,

wp5 =−Fw2
p2 =−F p2

s
64
(
4αE1 log(r)+4αE2 −αζhr2 +4

)3
.

(2.18)

We can check the limit of the outer solution in terms of the inner limit

(wo
p)

in = lim
S→∞

wo
p = 0. (2.19)

Now, we are going to find out the expression for the inner solution. Firstly, we introduce the
stretching variable as below

η = S(1− r). (2.20)

Introducing the parameter η in the equation 2.16 and after neglecting the smaller term
(S−1 → 0) to obtain the reduced equation in the following form:

d2win
p

dr2 − (1+λ1)win
p = 0. (2.21)

The solution of the above equation is obtained as the one term solution

win
p =C7e−η

√
(1+λ1) =C7e−S(1−r)

√
(1+λ1). (2.22)
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Now, we can check the limit of inner solution in terms of outer limit

(win
p )

o = lim
η→∞

win
p = 0. (2.23)

From equations 2.19 and 2.23, we found that the Prandtl’s matching condition is satisfied
[141]. We have obtained the matching solution from the above equations 2.19 and 2.23

wm
p (r) = 0. (2.24)

The composite solution of the above equation 2.16 is obtained below

wp = (wp)
o +(wp)

in − (wp)
m,

=C7e−S(1−r)
√

(1+λ1)− ps

64(1+λ1)r2S5

(
4αE1 log(r)+4αE2 −αζhr2 +4

)
×
(
8S
(
α
(
2αE2

1 −2αE1ζhr2 +ζhr2 (−2αE2 +αζhr2 +2
))

−2(1+λ1)r2S2)
+16α

2E2
1 F p(1+λ1)r2 log2(r)−8αE1r2 log(r)(F ps(1+λ1)

×
(
−4αE2 +αζhr2 −4

)
+2αζhS

)
+F ps(1+λ1)r2 (4αE2 −αζhr2 +4

)2
)
. (2.25)

2.3.2.2 Analytical Solution for the Clear Fluid Region

The solution of the equation 2.9b for clear fluid region is obtained analytically

wc =C8

∫ (1+αθ(r)
r

)
dr+C9 −

psQ
2

∫
r(1+αθ(r))dr

=
C8

8
(
4log(r)(αE1 log(r)+2αE2 +2)−αζhr2)+C9

+
psQr2

32
(
4αE1 −8αE1 log(r)−8αE2 +αζhr2 −8

)
, (2.26)

where C1 to C9 are constants appeared in the solution of the given differential equations
which can be obtained using the given boundary conditions 2.10.

2.3.3 Hydrodynamical Quantities

The volumetric flow rate Qs in non-dimensional form is defined as

Qs = 2π

∫ m

l
rw(r)dr = 2π

(∫ 1

l
rwp(r)dr+

∫ m

1
rwc(r)dr

)
. (2.27)
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The hydrodynamic permeability L11 of the swarm of the porous cylindrical particles is ex-
pressed as [96]

L11 =−
Vf

∂ p/∂ z
, (2.28)

where Vf represent the filtration velocity and is given by Vf =
Qs

πm2 .
The semi-empirical Kozeny-Karman formula [71] results in the following expression for the
permeability of the porous media

L11 =
ερ2

h

Kzb̃2
, (2.29)

where ε is the porosity and Kz is the dimensionless Kozeny constant, ρh is the hydraulic
radius which is equal to the ratio of pore volume to the wetting area.
The Kozeny constant is obtained by the above Eq. 2.29

Kz =
ερ2

h

b̃2L11
. (2.30)

For the media composed of cylindrical particles, we have

ρh =
π(c̃2 − b̃2)

2π b̃
=

b̃
2

(
1− γ

γ

)
=

ε b̃
2(1− ε)

. (2.31)

Substituting the value of ρh in the above equation 2.30, we have

Kz =
ε3

4(1− ε)2L11
, (2.32)

where L11 is the hydrodynamic permeability of the membranes.

2.4 Results and Discussion

The present work is a theoretical attempt to analyze the impact of variable viscosity on
the flow of Jeffrey fluid through membranes composed of a swarm of porous cylindrical
particles with solid core. Before going to discuss the results of present work in detail, an
effort has been made to describe the behavior of the Jeffrey fluid. Due to involvement of
the viscous and elastic characteristic of the fluid, it is worth acknowledging that Jeffrey fluid
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is a realistic in the filtration process of the polymer solutions while modeling the creep-
ing flow of fluid through membranes. The fluid is assumed to be Jeffrey fluid with vary-
ing viscosity and the flow is driven by constant pressure gradient. Further, for analytical
treatment the relaxation time is assumed to be very small resulting in linear stress-strain
relation. The Brinkman-Forchheimer equation regulates the flow through porous media,
however the Stokes equation governs the flow outside the porous media. An analytical solu-
tion is obtained for flow of clear fluid, however perturbation method is employed to solve the
Brinkman-Forchheimer equation for flow through porous media under the small as well as
large permeability of the porous medium. The dependency of the hydrodynamic permeabil-
ity of the membranes and Kozeny constant on the numerous parameters like Forchheimer
number, permeability of the porous media, porosity parameter, and Jeffrey fluid parameter
are discussed and compared with results of previous studies ([71], [3]).

2.4.1 Model Validation

Our model reduces to following limiting cases:

1. As the Forchheimer number approaches to zero, i.e., ( F → 0), the Brinkman-Forchheimer
model reduces to the Brinkman model for flow through porous medium.

2. As the Jeffrey fluid parameter (λ1 = 0), the present Jeffrey fluid model reduces to the
Newtonian fluid model with varying viscosity assumption.

3. As the viscosity parameter approches to zero, i.e.(α → 0), the present variable vis-
cosity model reduces to the constant viscosity model.

4. As the radius of the cylindrical tube with solid core approaches to zero, i.e., (l → 0),
the present model reduces to porous cylindrical tube without solid core (i.e., fully
porous cylindrical particle).

5. As the radius of the cylindrical tube with solid core and the permeability of the porous
medium approaches to zero, i.e., (l → 0 and k → 0) or (l → 1), the present model
reduces to solid cylindrical particle in cell without porous medium (i.e., fully solid
cylindrical particle in cell).

The expression for the hydrodynamic permeability of the membrane is obtained in
the limiting case (l → 0, k → 0, and F = λ1 = α = 0) for small permeability formu-
lation, and in the limiting case (l → 1, and F = λ1 = α = 0) for large permeability
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formulation (Happel’s cell model [71]).

L11 =
−2lnγ − γ2 +4γ −3

8γ
, (2.33)

which is exactly derived in the work of Deo et al. [3].

6. As the permeability of the porous medium is very large, i.e., (k → ∞), the porous
medium reduces to the clear fluid.

2.4.2 Parameter Selection

The values of numerous parameters are taken from the various work to perform the graph-
ical analysis of the present work. The range of values of the control parameters with their
appropriate resources are given in Table 1.

Values of parameters

Parameters Values Resources

Heat absorption parameter ζh 0-9 [1]

Permeability k (0,∞) [2], [3]

Steady pressure gradient ps 1-10 [4], [5]

Stess-jump parameter βS −1 < βS < 1 [3], [5]

Viscosity parameter α 0.0-0.5 [1], [6]

Forchheimer number F 0.0-2.0 [7], [8]

Jeffrey fluid parameter λ1 0.0-2.0 [9], [10]

Particle volume fraction γ 0.1-1.0 [3], [11]

Table 2.1: Range of values for the existing parameters with their resources

2.4.3 Velocity Profile (w)

A radially increasing velocity profile is observed with concave for small permeability and
convex for large permeability in the porous region but the variation remains the same in
the clear fluid region (Fig. 2.3a). A rising viscosity parameter α contributes towards in-
creasing velocity owing to decay in viscosity. Higher viscosity parameter leads to a higher
growth rate in the velocity profile for both the formulations (small and large permeability
of the porous medium). The effect of the viscosity parameter is more significant for large
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permeability. The effect of the Jeffrey fluid parameter λ1 on the velocity profile for both
the formulations (small and large permeability of the porous medium) is delineated in Fig.
2.3b in which the specific case of Newtonian fluid with varying viscosity is represented by
λ1 = 0. The consistent increase in Jeffrey fluid parameter λ1 leads to an increase in fluid
velocity with a relatively higher growth rate. The effect of the Jeffrey fluid parameter is
more significant for the large permeability of the porous medium. A velocity profile is not
smooth at the fluid-porous interface owing to the stress-jump boundary condition.
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Figure 2.3: Variation of velocity profile w with radial distance r for different values of
(2.3a) viscosity parameter α (λ1 = F = 1,βS = 0.4) and (2.3b) Jeffrey fluid parameter
λ1 (α = 0.1,F = 0,βS = 0.1). (l = γ = 0.5,ζh = 5, ps = 1)

2.4.4 Hydrodynamic Permeability (L11)

The results of the present study are compared with specific case of Deo et al. [3] for viscosity
parameter α → 0, Jeffery fluid parameter λ1 = 0, and Forchheimer number F = 0. Fig. 2.4
illustrates that the limiting case of our solution with Deo et al. [3] is in good agreement with
the results of Deo et al. [3] for the validation of the hydrodynamic permeability with particle
volume fraction γ for both the formulations. This further validates the present model.

The flow of Jeffrey fluid with varying viscosity through a porous region with Forch-
heimer formulation has been discussed and the same has been delineated in Fig. 2.5a. A ris-
ing particle volume fraction leads to decay in the hydrodynamic permeability of the swarm
of particlees for both the formulations (small and large permeability of the porous medium)
owing to the enhanced resistance which can be accredited to the relatively larger space of
porous region in comparison to clear fluid region. That is, the envelope occupies lesser
region containing clear fluid offering less resistance in comparison to porous region offer-
ing more resistance to the fluid flow. It is further observed that the decay rate is relatively
higher for higher varying viscosity parameters. Although this difference is relatively lesser
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Figure 2.4: Variation of hydrodynamic permeability L11 with particle volume fraction γ

between present study and Deo et al. [3]. (l = 0.5,βS = 0.1,ζh = 5,α = 0, ps = 1,F =
λ1 = 0)

for low permeability formulation. The effect of varying viscosity is almost insignificant for
higher particle volume fraction. The dependence of the hydrodynamic permeability of the
membrane on Jeffrey fluid parameter with particle volume fraction is illustrated in Fig. 2.5b
for both the formulations (k = 0.05 and k = 100). An increasing Jeffrey fluid parameter
contributes towards growth in hydrodynamic permeability. However, the decay rate of hy-
drodynamic permeability L11 with particle volume fraction is relatively higher for higher
Jeffrey fluid parameter. It is expected that the hydrodynamic interactions are less prominent
if the cylindrical particles are very close to each other. So, at very large particle volume
fraction (γ > 0.45), it is expected that the variation in the hydrodynamic permeability of the
membrane is minimal. The impact of Jeffrey fluid parameter is more significant for large
permeability.

The effect of the stress-jump parameter βS on the membrane permeability reveals a slight
growth for large permeability (Fig. 2.6a). However, this variation becomes relatively sig-
nificant and nonlinear for low permeability owing to a significant contribution of the jump
coefficient term in the boundary condition (Eq. 2.10c) for low permeability. The impact of
stress-jump parameter β1 on the hydrodynamic permeability of the membrane is more for
Jeffrey fluid and less for Newtonian fluid (Fig. 2.6b).
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Figure 2.5: Variation of hydrodynamic permeability L11 with particle volume fraction γ

for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey fluid parameter
λ1 (α = 0.1). (l = 0.5,βS = 0.1,ζh = 5, ps = F = 1)

A comparative study of the effect of Forchheimer number F on the hydrodynamic per-
meability L11 of the swarm of particles for the flow of Newtonian and Jeffrey fluids through
membrane composed of a swarm of porous cylindrical particles reveals a slight decay in
L11 with increasing Forchheimer number for low permeability owing to slightly higher re-
sistance (Table 2(a)). However, this decay is relatively more for Jeffrey fluid and varying
viscosity. The same observation for high permeability is delineated in Table 2(b). Here also,
we observed that the results similar to the low permeability case. The effect of Forchheimer
number on hydrodynamic permeability of the membrane for both the fluids (Newtonian and
Jeffrey fluids) is analyzed for the limiting case of a perfectly porous particle with low per-
meability in Table 3. Here, it is evident that the perfectly porous particle (with no solid core)
will have a relatively smooth flow as observed in slightly higher values of L11. The rest of
the analysis is similar to the observations made in Table 2.

The present model and the approximate solution is being validated through the compar-
ison in the results of limiting cases of the work of Deo et al. [3] and l → 0,F = λ1 = 0 in
Fig. 2.7. It is observed that the limiting case for the flow of Newtonian fluid with constant
viscosity through a swarm of the perfectly porous cylindrical particles (l → 0,k → 0,α →
0,F = λ1 = 0) is in good agreement with the work of Deo et al. [3]. The slight difference in
L11 curve for the two formulations can be accredited to the approximate solution obtained
in the present study, yet it also shows the accuracy of the approximate solution. In the same
figure, variation of the hydrodynamic permeability of the membrane with particle volume
fraction for the limiting case of the flow of Newtonian fluid with varying viscosity through a
swarm of perfectly porous cylindrical particles reveals growth in L11 with varying viscosity
parameter.
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F
y Newtonian Fluid (λ1 = 0) Jeffrey Fluid (λ1 = 1)

α = 0.0 α = 0.1 α = 0.2 α = 0.0 α = 0.1 α = 0.2

F = 0.0 0.164388 0.198048 0.232066 0.221629 0.266209 0.310925

F = 0.5 0.164123 0.197534 0.231185 0.221371 0.265721 0.310101

F = 1.0 0.163857 0.197020 0.230304 0.221113 0.265232 0.309276

F = 1.5 0.163592 0.196506 0.229423 0.220855 0.264744 0.308452

F = 2.0 0.163327 0.195992 0.228542 0.220597 0.264256 0.307628

(a)

F
y Newtonian Fluid (λ1 = 0) Jeffrey Fluid (λ1 = 1)

α = 0.0 α = 0.1 α = 0.2 α = 0.0 α = 0.1 α = 0.2

F = 0.0 0.411456 0.509371 0.607319 0.822574 1.01834 1.21422

F = 0.5 0.411106 0.508696 0.606163 0.819820 1.01307 1.20531

F = 1.0 0.410760 0.508032 0.605035 0.817188 1.00817 1.19731

F = 1.5 0.410417 0.507379 0.603936 0.814677 1.00364 1.19020

F = 2.0 0.410079 0.506738 0.602864 0.812289 0.99947 1.18400

(b)

Table 2.2: Variation of hydrodynamic permeability of membrane L11 for (a) small per-
meability (k = 0.05) and (b) large permeability (k = 100) of the porous medium, under
different values of viscosity parameter α , Forchheimer number F and Jeffrey fluid param-
eter λ1. (l = γ = 0.5,ζh = 5, ps = 1,βS = 0.1)
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Figure 2.6: Variation of hydrodynamic permeability L11 with stress-jump parameter βS

for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey fluid parameter
λ1 (α = 0.1). (l = γ = 0.5,ζh = 5, ps = F = 1)
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Figure 2.7: Variation of hydrodynamic permeability L11 with particle volume fraction
γ between constant and varying viscosity models. (l → 0, ps = 1,βS = 0.1,ζh = 5,k =
0.05,λ1 = F = 0)
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F
y Newtonian Fluid (λ1 = 0) Jeffrey Fluid (λ1 = 1)

α = 0.0 α = 0.1 α = 0.2 α = 0.0 α = 0.1 α = 0.2

F = 0.0 0.171569 0.211547 0.251893 0.228285 0.279997 0.331846

F = 0.5 0.171269 0.210899 0.250706 0.227992 0.279383 0.330735

F = 1.0 0.170969 0.210252 0.249519 0.227699 0.278768 0.329623

F = 1.5 0.170668 0.209605 0.248332 0.227406 0.278154 0.328512

F = 2.0 0.170368 0.208958 0.247145 0.227113 0.277539 0.327400

Table 2.3: Variation of hydrodynamic permeability of membrane L11 for different values
of viscosity parameter α , Forchheimer number F and Jeffrey fluid parameter λ1. (l →
0,γ = 0.5,ζh = 5, ps = 1,k = 0.05,βS = 0.1)
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Figure 2.8: Variation of hydrodynamic permeability L11 with particle volume fraction γ

between Newtonian and Jeffrey fluids. (l → 0,k → 0, ps = 1,βS = 0.1,ζh = 5,α = F = 0)

A graphical comparison of the present study with the limiting case of Deo et al. [3]
is depicted in Fig. 2.8 showing that for the flow of Newtonian fluid with constant viscosity
through a swarm of solid cylindrical particles (l → 0,k → 0,α → 0,F = λ1 = 0), the limiting
case of the present solution exactly matches with the work of Deo et al. [3]. The same has
already been analytically depicted in equation 2.33. A novel observation is that a rising
Jeffrey fluid parameter leads to rise in hydrodynamic permeability of membrane for the flow
of Jeffrey fluid with constant viscosity through a swarm of solid cylindrical particles. The
effect of particle volume fraction on hydrodynamic permeability of membrane remains same
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in this case.

2.4.5 Kozeny Constant (Kz)

The effect of porosity on Kozeny constant Kz for both the formulations (low and high per-
meability) under varying viscosity assumption reveals that a rising porosity leads to growth
in Kozeny constant for high as well as low permeability, which is similar to the observa-
tion of Madasu and Buch [11] for the case of Newtonian fluid flow through particles with
cavity (Fig. 2.9a). However, the present study reveals that a higher varying viscosity pa-
rameter leads to reduced growth rate of Kozeny constant with porosity, illustrating the effect
of varying nature of viscosity on Kozeny constant Kz. It is further observed that the higher
permeability leads to significantly reduced Kozeny constant Kz. The dependence of Kozeny
constant on Jeffrey fluid parameter is illustrated in Fig. 2.9b under varying viscosity and it is
noticed that a growth in Kozeny constant with porosity parameter is observed for Newtonian
(λ1 = 0) and Jeffrey (λ1 ̸= 0) fluids. It is also observed that a rising Jeffrey fluid parameter
contributes to decay in growth rate of Kozeny constant with porosity parameter for both
the formulations (low as well as high permeability of the porous medium). The impact of
Jeffrey fluid parameter on Kozeny constant is more significant in case of low permeability
in comparison to high permeability.
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Figure 2.9: Variation of hydrodynamic permeability L11 with stress-jump parameter βS

for different values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey fluid parameter
λ1 (α = 0.1). (l = γ = 0.5,ζh = 5, ps = F = 1)

A nonlinear decay in Kozeny constant with rising stress-jump parameter βS for low per-
meability under varying viscosity assumption is delineated in Fig. 2.10a owing to rise in
hydrodynamic permeability of membrane with stress-jump parameter. However, this effect
is almost negligible in the case of large permeability owing to an almost negligible presence
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of discontinuity in shear stress at the fluid-porous interface for large permeability. The de-
pendence of Kozeny constant on the Jeffrey fluid parameter is demonstrated in Fig. 2.10b
for Newtonian (λ1 = 0) and Jeffrey (λ1 ̸= 0) fluids. It is noticed that the fluid with large
relaxation time (λ1 ̸= 0) leads to decay in Kozeny constant however for a larger stress-jump
parameter, a reverse trend is observed. The decay rate reduces with increasing Jeffrey fluid
parameter in case of low permeability however, a negligible effect of stress-jump parameter
on Kozeny constant for high permeability is reported for Newtonian and Jeffrey fluids. It is
further noticed that the Kozeny constant is more for Newtonian fluid for both the formula-
tions (low as well as high permeability of the porous medium). It is worth acknowledging
that Jeffrey fluid characteristic affects the Kozeny constant more significantly for low per-
meability in comparison to high permeability.
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Figure 2.10: Variation of Kozeny constant Kz with stress-jump parameter βS for different
values of (a) viscosity parameter α (λ1 = 1) and (b) Jeffrey fluid parameter λ1 (α = 0.1).
(l = ε = 0.5,ζh = 5, ps = F = 1)

Analogues to Tables 2-3, the similar analysis is being done for Kozeny constant in Ta-
bles 4-5. All the three tables shows a rise in Kozeny constant with increasing Forchheimer
number F for Newtonian and Jeffrey fluids under constant as well as varying viscosity as-
sumptions.

2.5 Summary and Conclusions

The primary objective of the present study is to evaluate the analytical or asymptotic solu-
tion expressions for the velocity profile and hence obtain the expressions for hydrodynamic
permeability of the membrane and Kozeny constant. The hydrodynamic equations are cou-
pled with thermal equations via temperature-dependent viscosity. The notable contribution
of the present study is to analyze the impact of temperature-dependent viscosity and porous
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medium parameters on the flow of Jeffrey fluid through membranes composed of a swarm
of porous cylindrical particles with solid core. The Brinkman-Forchheimer and Stoke’s
equations regulate the flow inside and outside of the porous cylindrical particle, respec-
tively. The regular and singular perturbation techniques with matched asymptotic expansion
method have been used to obtain approximate solutions of the Brinkman-Forchheimer equa-
tion for low and high permeability of the porous medium, however an analytical solution is
being obtained for clear fluid region (outside of the porous cylindrical particle). The depen-
dency of the flow variables, membrane permeability and Kozeny constant on the viscosity
and porous layer parameters are discussed comprehensively through graphical and tabular
analysis. Some previous results have been deduced as the limiting cases of the present
study. From the discussion of the aforementioned results, the main findings are concluded
as follows:

1. It is observed that a decay in viscosity leads to growth in velocity profile, and hy-
drodynamic permeability of the membranes, however a decay in Kozeny constant is
observed with increasing viscosity parameter. Further, for large particle volume frac-
tion the impact of viscosity variation and relaxation time on membrane permeability
is almost insignificant for the case of low permeability.

2. For low and high permeability, the growth of velocity profile follows different pat-
terns owing to different perturbation approaches (regular and singular perturbation
methods).

3. The effect of relaxation time on velocity profile is significantly higher for large per-
meability whereas the same is almost insignificant for small permeability.

4. For porous cylinder in cell and solid cylinder in cell (both are the limiting cases of our
present model), the membrane permeability decays with particle volume fraction but
grows with viscosity and Jeffrey fluid parameters.

5. A noteworthy observation is that the rising viscosity parameter and the relaxation time
of the Jeffrey fluid (λ1 ̸= 0) contribute to decay in growth rate of the Kozeny constant
with porosity parameter.

6. Due to presence of nonlinear resistance term in the Brinkman-Forchheimer equation, a
slight impact of Forchheimer number on the hydrodynamic permeability and Kozeny
constant is observed for Newtonian and Jeffrey fluids.

In the present problem, the generalized Brinkman-Forchheimer model has been used to for-
mulate the fluid flow through a swarm of porous particles using cell model technique with
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the assumption of temperature-dependent viscosity. It is worth mentioning that the cell
model technique gives the good approximation of the computed quantities, so we can con-
clude that in the processes related to the contaminant clean-up, filtration process, and water
purification, the temperature-dependent viscosity and the fluid inertia term in the porous
region have significant impact on the membrane permeability and Kozeny constant.
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Chapter 3

Asymptotic Analysis of Electrohydrodynamic Flow
through a Swarm of Porous Layered Cylindrical
Particles: A Particle-in-Cell Approach1

3.1 Introduction

The mechanical properties of the fluid flow through tubes or conduits are crucial in the study
of diverse areas of research. Several factors enhance or decline the fluid flow through tubes
or conduits, and such factors play a pivotal role in studying the physical and biological
circumstances [169]. The mechanism of the fluid flow process through a tube or conduit
becomes crucial to examine the functioning of the hydrodynamical quantities like velocity,
flow rate, and resistance offered against the fluid flow and the relation between prevailing
pressure and flow fields. The medium addressed in the fluid’s circulation process plays an
essential role in understanding the functioning of the fluid flow pattern and the resistance
offered against the flow via mediums. In many cases, some obstructions occur in the cir-
culation process of fluid through tubes or conduits, and one of them is the porous material,
leading to a reduction in the fluid flow quantity throughout the circulation process. Due to its
wide range of applications in science and technology, the fluid flow phenomenon in porous
media has been the subject of researchers’ ongoing investigation. There are various appli-
cations of the fluid flow through porous materials such as pharmaceutical fields, petroleum
reservoir rocks, wastewater treatment filtration processes, blood flow via the lungs, and di-
gestive system design [170].

Most works mentioned above delineate the utility of the particle-in-cell approach in the
membrane filtration process and discuss the contribution and effect of the numerous control
parameters involved in their study on the various hydrodynamic quantities and membrane
permeability. Much of the work related to the creeping flow through a swarm of particles

1A considerable part of this chapter is published in Physics of Fluids, 36(4), 041910, 2024
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has been studied by considering fluid flow through the tubes of the circular cross-section.
There are various situations in real-life problems where additional body forces like electric
fields play an important role in fluid flow past a swarm of particles ([171], [172], [173],
[174]). The electrolyte plays a significant role in biology, chemistry, and industrial engi-
neering owing to its ability to conduct electricity when dissolved in a solvent. In the study
of the dynamics of electrolyte fluid, electrohydrodynamic flows are encountered in a vari-
ety of contexts, making them useful for applications such as EHD drying, MEMS devices,
ESPs, heat transfer enhancement, EHD plasma actuators, EHD pumping, and so on. Re-
cently, many researchers have studied the electrohydrodynamic ion drag pumping system,
where the electrical precipitation technique is used to control the fluid flow. This technique
involves charging particles by ion impact and injecting them into one end of the membrane.
During this process, neutral particles were subjected to a corona discharge, which was gen-
erated by a high-voltage electrode and led to the establishment of a strong electric field,
thereby causing ionization of the surrounding medium. Consequently, the neutral particles
obtained charges from the ions present in the medium. The implantation of an external
potential difference induces a drag force on these charged particles, prompting them to mi-
grate towards the direction of the opposite electrode. The motion of charged particles within
a fluid generates a body force that impacts the fluid’s overall mass, hence causing it to flow.
The “ion drag" configuration of electrohydrodynamic flow in a circular cylindrical conduit
was initially studied by McKee et al. [14], where they analyzed the flow velocity in the case
of small and large values of the non-linearity parameter α using the perturbation approach.
Paullet [14] discussed the qualitative properties (existence and uniqueness) of the solution to
the same problem and revealed the bounds and monotonically decreasing behaviour of the
approximated solution. He also found an ambiguity in the perturbation solution of McKee
for large values of α . In addition, many researchers ([175], [176], [177]) have investigated
the “ion drag" configuration of electrohydrodynamic flow employing various approximation
approaches and have discussed the convergence of the solution. The EHD thrust arises from
the acceleration of ionized fluid within an electric field, resulting from the exchange of mo-
mentum between charged particles and neutral molecules has been discussed by Vaddi et

al. [178]. Based on the preceding conversation and to the best of the authors’ understand-
ing, there has been no prior discussion on the inclusion of electrohydrodynamic flow in the
context of heat transfer within the membrane filtration process.

The present study aims to discuss the combined effect of electrohydrodynamic flow and
heat transfer on fluid flow through a swarm of porous cylindrical particles by adopting the
particle-in-cell model approach. The configuration of the flow pattern is divided into two
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different regions. The region that is proximate to the solid core is porous. A region sur-
rounded by the porous region free from the porous material is a non-porous region. The
nonlinear momentum equation in terms of the Hartmann electric number is introduced to
model the EHD effect in the fluid flow through porous and non-porous regions. The solu-
tions of the energy equations for both regions are analytically obtained. In order to solve
the momentum equations for both regions, the analytical treatment is challenging due to
the presence of nonlinear electric field terms in the momentum equations. The asymptotic
series expansions are introduced to solve the nonlinear momentum equations for both re-
gions in terms of small and large values of the parameter α . The expression of velocities
and temperature profiles for different regions have been used to derive the expressions of
membrane permeability and the Kozeny constant. The efficacy of the numerous control
parameters like Hartmann electric number, Grashof number, radiation parameter, viscosity
ratio parameter, and porosity of the porous material on the hydrodynamical quantities such
as velocity, membrane permeability, and Kozeny constant have been graphically discussed.
A comparative graphical analysis of the same with its numerical solution has been done to
validate the asymptotic solution.

The framework of the proposed work is split into five sections. Section 1 demonstrates
the essential information with applications about the present work. The mathematical for-
mulation with assumptions, model description, the suitable boundary conditions for energy
and momentum equations, and the non-dimensionalization are given in section 2. Section
3 reveals the solution methodology for the proposed governing equations. The parameter
selection, model validation, results, and graphical analysis for the present work are demon-
strated in section- 4. The remarkable contributions of the present work are illustrated in the
conclusion (section 5), followed by the author’s acknowledgment and references.
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3.2 Problem Formulation

3.2.1 Statement of the Problem

The proposed study focuses on the electrohydrodynamic flow of a Newtonian fluid passing
through a membrane constructed from a collection of porous cylindrical particles, with an
emphasis on incorporating the heat transfer principle. The study employs the particle-in-
cell approach to examine the behavior of a swarm of particles, focusing on a porous layered
cylindrical particle within the swarm. Additionally, a condition on the hypothetical cell sur-
face is taken into account for further analysis. Examining the impact of electromagnetic
forces on hydrodynamic permeability and the Kozeny constant involves incorporating an
additional resistance term in the form of an electrical field. Additionally, the membrane fil-
tration process includes the consideration of heat transfer to analyze temperature variations
and associated parameters. Throughout filtration procedures, the membrane’s composition
might experience changes owing to particle dissolution and polymer attachment onto parti-
cle surfaces, commonly referred as poisoning. These occurrences result in the formation of
a porous shell, like a colloidal or gel layer, encasing solid particles’ surfaces, which proves
to be notoriously difficult to eradicate. The presence of this porous shell notably impacts
the drag force exerted on the particles by the flow. The proposed model’s configuration is
divided into two clearly defined regions: a porous region near the cylindrical particle’s solid
core and an outer region devoid of any porous structure, commonly referred as the non-
porous (clear fluid) region. The model’s structure is designed such that the Brinkman equa-
tion governs the porous region proximate to the solid core of the cylindrical particle, while
the Stokes equation controls a concentric, non-porous region surrounding the porous region.
The equations describing the flow of an electrohydrodynamic Newtonian fluid through a
membrane comprising a collection of porous layered cylindrical particles have been derived
under the following assumptions:

1. The flow is considered steady, incompressible, demonstrating laminar characteristics,
symmetrical within the tube, and fully developed.

2. The Reynolds number is deemed to be extremely low, signifying that viscous forces
exert more influence than inertial forces, leading to the convective term being of min-
imal significance and thus excluded from the present study.

3. To achieve accurate physical representation, the governing equation for a unidirec-
tional flow of Newtonian fluid parallel to the porous layered cylindrical particle is
formulated using the cylindrical polar coordinate system (r̃,θ , z̃).
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4. The thermal equations in a steady-state condition are simplified when heat conduction
dominates over heat convection, leading to a negligible contribution of the convective
term.

5. A uniform electric field E0 is imposed along the length of cylindrical particles gener-
ating using voltage V . The electric field caused by the injected charge is considered
to be small in comparison to the applied electric field.

6. The Brinkman and Stokes equations regulate fluid flow through a swarm of porous
layered cylindrical particles in porous and non-porous regions, respectively.

3.2.2 Model Description

The physical sketch of the proposed work delineated in Fig. 3.1 represents an electrohydro-
dynamic (EHD) flow past a membrane composed of a swarm of porous layered cylindrical
particles and its cross-sectional view (Fig. 3.2), where the membrane’s “ion drag" configu-
ration is set up using the electrical precipitation. During the electrical precipitation process,
uncharged particles were exposed to a corona discharge, resulting in their interaction with
the ionized medium and subsequent acquisition of ionic charge. When subjected to exter-
nally applied potential differences, these charged particles will encounter a drag force that
compels them to migrate toward the opposing electrode. The mobile charged particles were
exposed to a body force within the bulk fluid, influencing the general mass to flow. The
center region of a particle is a solid cylindrical core of radius ã which is surrounded by a
porous layer of thickness (b̃− ã). The cell model has been used to account for the interaction
of neighboring particles, according to which the porous layered solid cylindrical particle is
assumed to be confined in a hypothetical cell of radius c̃. The same has been shown in the
physical sketch using dashed lines. The two different regions of the present study are con-
sidered in such a way that region I is a concentric layer of porous medium adjacent to the
solid core of the cylindrical particle. While region II is a non-porous surrounding region I
with the thickness of (c̃− b̃). Here c̃ is the radius of the hypothetical cell, assuming that the
particle volume fraction γ , of bulk, is equal to the particle volume fraction inside a unit cell.
The relation between the particle volume fraction and the porosity ε , of the membrane can
be stated as [3]

γ =
π b̃2

π c̃2 = 1− ε. (3.1)
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Figure 3.1: The physical depiction of an “ion drag" configuration for electrohydrody-
namic flow along the axis of an array of porous cylindrical particles
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Figure 3.2: A visual depiction of a circular cross-section revealing a swarm of cylindrical
particles with a solid core and porous layer inside a hypothetical cell.

3.2.3 Governing Equations

The energy equation regulates the temperature variations in the Newtonian fluid flow through
a membrane composed of porous cylindrical particles, which aims to study the temperature
variation in the hydrodynamic quantities like velocity, membrane permeability, and Kozeny
constant. The continuity and momentum equations with body force (additional electric field)
control fluid flow through porous and non-porous media in the membrane filtration process.
The Brinkman equation controls the fluid flow through a porous medium. However, the
Stokes equation regulates fluid flow through a non-porous region. The mathematical formu-
lation of the temperature equations and flow regimes based on the proposed model is divided
into two subsections, as described below:

3.2.3.1 Energy Equations

The energy equation regulates the temperature variation in the porous and non-porous re-
gions of the cylindrical particle is described below ([12], [13])

K̃

(
d2T̃
dr̃2 +

1
r̃

dT̃
dr̃

)
− dq̃

dr̃
= 0, (3.2a)
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where K̃ and T̃ are thermal conductivity and temperature of the fluid, respectively. The
radiative heat flux can be expressed as ([12], [13])

dq̃
dr̃

= 4α̃
2
r (T̃ − T̃∞), (3.2b)

where α̃r is the mean radiation absorption coefficient for Newtonian fluid and T̃∞ is an
ambient (uniform) temperature.

3.2.3.2 Hydrodynamical Equations

After being generated by a corona discharge, the ions are injected at one end of the swarm
of parallelly situated cylindrical particles and later collected at the other end by a screen
electrode. A voltage V produces an imposed electrical field Ẽ0 across the length of the
cylindrical tube (|Ẽ0|= V

L ), which is used to pull the ions through the viscous fluid to provide
electrohydrodynamic pumping. The total current includes the electric field modified by
the charge-space density; however, the electric field caused by fluid charges is small in
comparison to the field imposed using voltage, V . The current density J within the fluid
depends upon the ion mobility of the particles, giving

J = qe(K̃Ẽ0ez +v), (3.3)

where qe is the charge space density of the ion/fluid and K̃ is the ion mobility [179].
Assumptions for a fully developed flow are as,

v = (0,0, w̃), J = (0,0,Jz(r)), qe = q(r),
∂ p̃
∂ z̃

= const. (3.4)

With Jz(r) = J0 (uniform over the cross-section at the inlet), the charge space density from
the z-component of equation (3.3) can be expressed as

qe =
J0

K̃Ẽ0 + w̃
. (3.5)

Since the velocity vector v and the current density vector, J are solenoidal, the governing
equations for the proposed problem will be as follows ([3], [14], [13]):
Region- I, i.e., ã ≤ r̃ ≤ b̃

∂ p̃
∂ z̃

=
J0Ẽ0

K̃Ẽ0 + w̃p
+

µ̃e

r̃
∂

∂ r̃

(
r̃

∂ w̃p

∂ r̃

)
−

µ̃0w̃p

k̃
+ g̃ρ̃ γ̃(T̃p − T̃∞), (3.6a)



3.2. Problem Formulation 71

where p̃ represents the pressure, w̃p denotes the velocity in the porous region, µ̃e signifies
the effective viscosity of the fluid, and k̃ denotes the permeability of the porous medium.
Furthermore, the coefficient of fluid’s volume expansion in response to changes in tempera-
ture, represented by γ̃ , and g̃ is the gravitational acceleration. The interdependence between
the fluid flow, temperature, and charged density is characterized by a non-linear coupling,
where the body force acting on the fluid is directly proportional to the charge density.
Region- II, i.e., b̃ ≤ r̃ ≤ c̃

∂ p̃
∂ z̃

=
µ̃0

r̃
∂

∂ r̃

(
r̃

∂ w̃c

∂ r̃

)
+

J0Ẽ0

K̃Ẽ0 + w̃c
+ g̃ρ̃ γ̃(T̃c − T̃∞), (3.6b)

where w̃c and µ̃0 are the flow parameters describing an axial velocity and viscosity of fluid
in clear fluid region, respectively.

3.2.3.3 Boundary Conditions

The incorporation of boundary conditions holds considerable importance in the mathemat-
ical modeling of any given process. These conditions can be utilized to solve the gov-
erning equations by examining the characteristics of the solutions, taking into account the
assumptions made in the physical and biological processes. The current study examines the
following boundary conditions applied to the solid surface, fluid-porous interface, and hy-
pothetical cell surface, which aims to understand the behaviour of the neighbouring particles
in the filtration process:

1. There is a wall (surface) temperature on the surface of the solid core of the cylindrical
particle, and along with that, no slip condition of the surface of the solid cylinder is
considered, which states that there is no relative motion between a fluid and a solid
boundary, i.e.,

T̃ = T̃w, w̃p = 0 at r̃ = ã. (3.7a)

2. The continuity of velocities at the fluid-porous interface is considered i.e.,

w̃p = w̃c at r̃ = b̃. (3.7b)
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3. The stress-jump condition of tangential stress at the fluid-porous interface is taken
into consideration [81], i.e.,

1
αp

dw̃p

dr̃
− dw̃c

dr̃
=

β√
k̃

w̃p at r̃ = b̃, (3.7c)

where αp is the porosity and β is stress-jump parameter.

4. There is zero temperature gradient and zero velocity gradient at the hypothetical cell
surface of the cylindrical particle, i.e.,

dT̃
dr̃

= 0,
dw̃c

dr̃
= 0, at r̃ = c̃. (3.7d)

3.2.4 Non-Dimesionalization

To solve the above system of equations (3.6) along with the boundary conditions (3.7), the
following non-dimensional variables are introduced:

p =
p̃b̃

w̃0µ̃0
, r =

r̃

b̃
, z =

z̃

b̃
, a =

ã

b̃
, c =

c̃

b̃
, N2

1 =
4α̃2b̃2

K̃
, α =

K̃

j̃0

∂ p̃
∂ z̃

−1,

θ =
T̃ − T̃∞

T̃w − T̃∞

, Gr =
g̃ρ̃ γ̃ b̃2(T̃w − T̃∞)

αK̃Ẽ0µ̃0
, w̃0 =

q̃0b̃2

µ̃0
=−αK̃Ẽ0,

wp =
w̃p

−αK̃Ẽ0
, wc =

w̃c

−αK̃Ẽ0
, k =

k̃

b̃2
, λ

2
1 =

µ̃e

µ̃0
,H =

√
j̃0b̃2

K̃2Ẽ0µ̃0
,

(3.8)

where w̃0 is the average velocity and the Grashof number Gr is a dimensionless parameter
that arises in the study of fluid mechanics and heat transfer. It characterizes the relative im-
portance of buoyancy forces to viscous forces in a fluid that is heated from below, causing
natural convection. It can be used to predict and control the behavior of charged particles
in the fluid under the influence of electric fields, and to optimize the heat transfer in the
system. The parameter N1 is a radiation parameter and it can be used to understand and
control the relative importance of radiative and convective heat transfer, and to optimize the
temperature distribution and heat transfer performance of the system.
Using the above non-dimensional variables, the non-dimensional form of governing equa-
tion (3.2b) regulating the temperature variation in the cylindrical particle is stated as

d2θ(r)
dr2 +

1
r

dθ(r)
dr

+N2
1 θ(r) = 0. (3.9)
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The hydrodynamic equations (3.6a)-(3.6b) in their non-dimensional form for both porous
and non-porous regions are obtained as
Region- I, i.e., a < r ≤ 1

λ
2
1

(
d2wp

dr2 +
1
r

dwp

dr

)
−

wp

k
+H2

(
1−

wp

1−αwp

)
+Grθ(r) = 0, (3.10)

where the above system of equations has a Hartmann electric number H characterizing the
influence of electric forces relative to viscous forces. The fluid in the medium experiences
a body force due to the migration of charged particles under the influence of externally
applied potential difference. This state is referred to as the “ion drag" configuration. Here,
the velocity of the fluid exhibits a nonlinear relationship with the externally applied electric
field.
Region- II, i.e., 1 ≤ r ≤ c

d2wc

dr2 +
1
r

dwc

dr
+H2

(
1− wc

1−αwc

)
+Grθ(r) = 0. (3.11)

The non-dimensionless forms of thermal and hydrodynamic boundary conditions are given
as follows:

wp = 0, and θ = 1 at r = a, (3.12a)

wp = wc, at r = 1, (3.12b)

1
αp

dwp

dr
− dwc

dr
=

β√
k

wp at r = 1, (3.12c)

dwc

dr
= 0, and

dθ

dr
= 0 at r = c. (3.12d)

3.2.5 Hydodynamical Quantities

The volumetric flow rate Qs of a single particle surrounded by the hypothetical cell in its
non-dimensional form is stated as [3]

Qs = 2π

∫ c

a
rw(r)dr = 2π

(∫ 1

a
rwpdr+

∫ c

1
rwcdr

)
. (3.13)

The membranes exhibit diverse characteristic features, including their hydrodynamic perme-
ability, referred to as L11. This particular parameter, serving as the primary component of
the Onsager kinetic coefficient matrix, signifies the relationship between the flow rate across
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the membrane and the imposed pressure gradient. The mechanical characteristics of the
membrane material depend on its structural arrangement, composition, and physicochemi-
cal traits. Understanding the evolution dynamics during operational use, modifications, and
experimental treatments is essential for effectively discerning its functional alterations [180].
Electrohydrodynamic and porous medium parameters notably influence L11, as evident in
equations 3.13 and 3.14. The mathematical expression for hydrodynamic permeability of
the membrane L11 is given by

L11 =−
Vf

∂ p/∂ z
, (3.14)

where Vf is the filtration velocity of fluid flowing through porous cylindrical particles, relat-
ing with the volumetric flow rate stated as Vf =

Qs
πc2 .

The mathematical expression relating the hydrodynamic permeability of the membrane con-
sisting of a swarm of porous cylindrical particles with porosity ε is given by the classical
Kozeny–Karman equation

L11 =
ερ2

h

Kzb̃2
, (3.15)

where ρh is the hydraulic radius, ε is the porosity of the membrane, and Kz is the dimension-
less Kozeny constant, which encapsulates the effect of particle shape, packing arrangement,
and tortuosity on the fluid flow through the porous medium. The Kozeny constant is a pa-
rameter that describes the flow of fluids through porous media. The physical significance of
the Kozeny constant lies in its ability to quantify the resistance to fluid flow in porous media.
The Kozeny constant is affected by a variety of factors, including porosity, pore-to-throat
size ratio, and the geometry of the porous medium. It provides information about the tortu-
osity of the flow paths within the porous medium, which influences how easily fluid flows
through it. Identifying the Kozeny constant assists researchers and engineers in designing
and optimizing processes involving fluid flow through porous materials, such as filtration
systems, packed beds, and soil permeability studies [181]. The expression of Kozeny con-
stant from the above relation (3.15) can be derived as

Kz =
ερ2

h

L11b̃2
. (3.16)
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The hydraulic radius is derived from the ratio of pore volume to wetting area and can be
mathematically expressed as

ρh =
π(c̃2 − b̃2)

2π b̃
=

b̃
2

(
1− γ

γ

)
=

ε b̃
2(1− ε)

, (3.17)

using the above expression of hydraulic radius in the equation (3.16), the Kozeny constant
in terms of porosity and the hydrodynamic permeability L11 is given as

Kz =
ε3

4(1− ε)2L11
. (3.18)

3.3 Solution of the Problem

The principles of mass, momentum, and energy conservation govern the behaviour of fluid
flow. The mathematical formulations of these rules are explained in detail based on their
respective proposed models. The governing equations of unidirectional flow (continuity,
momentum, and energy equations) of the Newtonian fluid through a membrane composed
of porous cylindrical particles are a set of nonlinear coupled ordinary differential equations.
Therefore, obtaining analytical solutions to hydrodynamical equations such as the Brinkman
and Stokes equations remains challenging due to the presence of a nonlinear electric field
term. However, the reduced cases of these equations are analytically solved when the nonlin-
ear electric field term is approximated to zero. Asymptotic or numerical solution techniques
may be utilized to derive the velocity expressions for both porous and non-porous regions to
determine the solutions of the governing equations. The perturbation solution technique can
be utilized in cases where the governing equations feature either a small or large parameter,
in accordance with the principle of perturbation techniques, which dictates that the equa-
tions must incorporate such a parameter. The proposed model incorporates a nonlinearity
parameter, denoted as α , in its governing equations. Consequently, a perturbation tech-
nique is employed to convert the nonlinear ODEs into linear ones, facilitating the derivation
of asymptotic solutions while the energy equation is solved analytically. The numerical
scheme NDSolve within Mathematica software is employed to validate our findings.

3.3.1 Solution of Temperature Equations

The governing equation for temperature (3.9) is the second-order Bessel differential equa-
tion that can be solved analytically, and its solution in terms of Bessel functions of the first
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and second kind can be written as

θ(r) =C1J0(N1r)+C2Y0(N1r), (3.19a)

where C1 and C2 are unknown constants that can be obtained using the temperature boundary
conditions mentioned in equation (3.12), and are given as

C1 =
Y1(cN1)

J0(aN1)Y1(cN1)−Y0(aN1)J1(cN1)
, (3.20a)

C2 =
J1(cN1)

Y0(aN1)J1(cN1)− J0(aN1)Y1(cN1)
, (3.20b)

where J0 and J1 are the Bessel functions of the first kind of orders zero and one, respectively,
and Y0 and Y1 are the Bessel functions of the second kind of orders zero and one, respectively.

3.3.2 Solution of Hydrodynamic Equations

The hydrodynamic equations governing electrohydrodynamic (EHD) flow in both porous
and non-porous regions exhibit nonlinearity, thus rendering the analytical treatment highly
intricate. In order to surmount the above challenge, the regular perturbation approach has
been employed to find the asymptotic solutions of the equations (3.10), and (3.11) for small
and large parameter values α . The solutions of the hydrodynamical equations are divided
into two subsections in case of small and large parameters α .

3.3.2.1 Small Parameter (α ≪ 1)

λ
2
1

(
d2wp

dr2 +
1
r

dwp

dr

)
−

wp

k
+H2(1−wp −αw2

p −α
2w3

p)−Grθ(r) = 0, (3.21)

d2wc

dr2 +
1
r

dwc

dr
+H2(1−wc −αw2

c −α
2w3

c)−Grθ(r) = 0. (3.22)

An asymptotic series expansion of velocities of porous and non-porous regions in terms of
the small perturbation parameter α has been considered of the form [142]

w j(r) = w j(r;α) =
m

∑
n=0

α
nw jn(r), j = p,c, (3.23)

where the subscripts p and c denote the velocities for porous and non-porous regions, re-
spectively.
In order to obtain the first three terms of the velocities in this expansion, introducing (3.23)
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into (3.21) and (3.22) and equating the coefficients of α0,α1,α2. The zeroth-order approx-
imate velocities for porous and non-porous regions are obtained as

λ
2
1

(
d2wp0

dr2 +
1
r

dwp0

dr

)
−

wp0

k
−H2wp0 =−H2 +Grθp(r), (3.24a)

d2wc0

dr2 +
1
r

dwc0

dr
−H2wc0 =−H2 +Grθc(r). (3.24b)

The first-order approximate velocities for porous and non-porous regions are obtained as

λ
2
1

(
d2wp1

dr2 +
1
r

dwp1

dr

)
−

wp1

k
−H2wp1 = H2w2

p0, (3.24c)

d2wc1

dr2 +
1
r

dwc1

dr
−H2wc1 = H2w2

c0. (3.24d)

The second-order approximate velocities for porous and non-porous regions are obtained as

λ
2
1

(
d2wp2

dr2 +
1
r

dwp2

dr

)
−

wp2

k
−H2wp2 = H2(2wp0wp1 +w3

p0), (3.24e)

d2wc2

dr2 +
1
r

dwc2

dr
−H2wc2 = H2(2wc0wc1 +w3

c0). (3.24f)

The equations (3.24a)− (3.24 f ) are non-homogeneous modified Bessel equations. The so-
lution of the homogeneous modified Bessel equation is available in terms of modified Bessel
functions Iν and Kν , where ν is any positive integer. The solution of the non-homogeneous
modified Bessel equation can be obtained using a variation of parameters. Adopting the
method of variation of parameters, the solutions of the equations (3.24a)− (3.24 f ) are
given below.
The zeroth-order velocities wp0 and wc0 for porous and non-porous regions are obtained as

wp0 =C3I0(rS1)+C4K0(rS1)−
G1(C1J0(N1r)+C2Y0(N1r))

N2
1 +S2

1
+

H2
1

S2
1
, (3.25a)

wc0 =C5I0(rH)+C6K0(rH)+1+
Gr(C1J0(N1r)+C2Y0(N1r))

H2 +N2
1

, (3.25b)

where S2
1 =

1
λ 2

1

(
1
k
+H2

)
, H2

1 =
H2

λ 2
1

and G1 =
Gr
λ 2

1
. Here, I0 and K0 are the modified Bessel

functions of the first and second kinds of order zero, respectively.
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The first-order velocities wp1 and wc1 for porous and non-porous regions are obtained as

wp1 =

C7 +H2
1

 r∫
a

rK0(rS1)(wp0)
2dr

 I0(rS1)

+

C8 −H2
1

 r∫
a

rI0(rS1)(wp0)
2dr

K0(rS1), (3.25c)

wc1 =

C9 +H2

 c∫
r

rK0(rH)(wc0)
2dr

 I0(Hr)

+

C10 −H2

 c∫
r

rI0(rH)(wc0)
2dr

K0(Hr). (3.25d)

The second-order velocities wp2 and wc2 for porous and non-porous regions are obtained as

wp2 =

C11 +H2
1

 r∫
a

rK0(rS1)
(
2wp0wp1 +w3

p0
)

dr

 I0(rS1)

+

C12 −H2
1

 r∫
a

rI0(rS1)
(
2wp0wp1 +w3

p0
)

dr

K0(rS1), (3.25e)

wc2 =

C13 +H2

 c∫
r

rK0(rH)
(
2wc0wc1 +w3

c0
)

dr

 I0(Hr)

+

C14 −H2

 c∫
r

rI0(rH)
(
2wc0wc1 +w3

c0
)

dr

K0(Hr), (3.25f)

where C3 −C14 are arbitrary constants that can be determined using the specified bound-
ary conditions. The expressions of the constants C3 −C14 are given in Appendix A. Due
to presence of modified Bessel functions in the equations (3.25a) and (3.25b), the inte-
grals involved in the equations (3.25c)− (3.25 f ) have been numerically computed in the
Mathematica software 10.3.

3.3.3 Large Parameter (α ≫ 1)

The above series expansion of the velocity profile mentioned in (3.23) is not a valid series
expansion in the case of large parameter α . In order to solve the momentum equations
delineating the fluid flow through porous and non-porous media, the equations can be written
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in terms of the parameter α−1 = 1
α
≪ 1 for a large α ≫ 1.

λ
2
1

(
d2wp

dr2 +
1
r

dwp

dr

)
−

wp

k
+(1+α

−1)H2 −Grθ(r) = 0, (3.26a)

d2wc

dr2 +
1
r

dwc

dr
+(1+α

−1)H2 −Grθ(r) = 0. (3.26b)

The above equations regulating the fluid flow through porous and non-porous regions can be
solved using a perturbation approach in terms of the small parameter α−1. An asymptotic
series expansion of the velocities is given below

w j(r) = w j(r;α) =
m

∑
n=0

α
−nw jn(r;α), j = p,c. (3.27)

For large values of the parameter α ≫ 1, the perturbation parameter α−1 ≪ 1 is very small,
and hence, the second and higher order velocity components in the above series expansion
may have less contributions. Introducing the above series expansions (3.27) into (3.26) and
equating the coefficients of (α−1)0 and α−1. The zeroth-order velocities wp0 and wc0 for
porous and non-porous regions are obtained as

λ
2
1

(
d2wp0

dr2 +
1
r

dwp0

dr

)
−

wp0

k
+H2 −Grθ(r) = 0, (3.28a)

d2wc0

dr2 +
1
r

dwc0

dr
+H2 −Grθ(r) = 0. (3.28b)

The first-order velocities wp1 and wc1 for porous and non-porous regions are obtained as

λ
2
1

(
d2wp1

dr2 +
1
r

dwp1

dr

)
−

wp1

k
+H2 = 0, (3.28c)

d2wc1

dr2 +
1
r

dwc1

dr
+H2 = 0. (3.28d)

The equations (3.28a) and (3.28c) are non-homogeneous modified Bessel equations, how-
ever, the equations (3.28b) and (3.28d) are non-homogeneous Stokes equations. The ana-
lytical solutions of equations (3.28a)-(3.28d) can be obtained using variation of parameters
method. The analytical expressions of the zeroth-order velocities for porous and non-porous
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regions are obtained as

wp0 =C15I0(rS)+C16K0(rS)+
H2

1
S2 +

G1(C1J0(N1r)+C2Y0(N1r))
N2

1 +S2 , (3.29a)

wc0 =C17 log(r)+C18 +
Gr(C1J0(N1r)+C2Y0(N1r))

N2
1

− C2Gr
N2

1
− H2r2

4
. (3.29b)

Here, I0 and K0 are the modified Bessel functions of the first and second kinds of order zero,
respectively.
The analytical expressions of the first-order velocities for porous and non-porous regions
are obtained as

wp1 =C19I0(rS)+C20K0(rS)+
H2

1
S2 , (3.29c)

wc1 =C21 log(r)+C22 −
H2

1 r2

4
, (3.29d)

where C15 −C22 are the arbitrary constant that can be obtained using the given boundary
conditions. The mathematical expressions of the constants C15 −C22 are given in Appendix
B.

3.4 Results and Discussion

The electrohydrodynamic flow of Newtonian fluid through a membrane composed of a
swarm of porous cylindrical particles is considered by introducing a heat transfer approach
to analyze the combined effect of the Hartmann electric number and temperature variations
in the membrane filtration process. The flow regime of the proposed model is segregated
into two regions in which region- I is a porous region adjacent to the solid core of the cylin-
drical particle and regulated by the Brinkman equation. Region- II is a non-porous region
surrounding the porous region and regulated by the Stokes equation. The particle-in-cell
approach is used to consider the boundary condition on the hypothetical cell surface to
demonstrate the effect of neighbouring particles on the concerned particle. The mathemati-
cal expressions of the temperature and velocity profiles have been obtained using analytical
and asymptotic series expansion techniques, and the same has been used to obtain the hy-
drodynamical quantities like membrane permeability and Kozeny constant. The graphical
analysis of the mathematical expressions of hydrodynamical quantities is presented below,
and the contributions of temperature and electric field parameters have been discussed.
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3.4.1 Parameter Selection

The measurement of a fluid in motion is a challenge due to the necessity of estimating the
mass or volume of the substance as it traverses a pipe or conduit. Difficulties may develop
due to the intricate nature of fluid flow dynamics. The quantification of physical factors is
typically challenging in the context of flow measurements. The following parameter table
3.1 includes the range of parameter values depending on the applications in various fields.
All the critical parameters listed in this table have been thoroughly described in their re-
spective cited literature, which will aid the reader in grasping the concepts involved. The
pressure gradient pz = 1 is taken as constant throughout the discussion.

Range of Parameters

Parameters Range Sources

Radiation parameter N1 2-15 [12], [13]

Grashof number Gr 0.5-17.0 [13]

Steady pressure gradient pz 1-10 [5], [182]

Permeability k (0,∞) [145]

Hartmann electric number H 0.1-4.0 [14]

Stress-jump parameter β (−1,1) [3], [15], [167]

Viscosity ratio parameter λ1 1.0-1.6 [15], [5]

Particle volume fraction γ 0.1-1.0 [145], [11]

Table 3.1: Domain of interest for the ongoing parameters with their references

3.4.2 Velocity Profile (w)

Figures 3.3a and 3.3b describe the impact of the Hartmann electric number on the velocity
profile for small and large permeabilities and small and large values of the nonlinearity pa-
rameter α . In both cases, the graphical analysis reveals that a rising Hartmann electric num-
ber leads to growth in velocity, which is relatively more significant for higher permeability.
However, this behaviour is reversed for small α and large permeability in the non-porous
region. Further, for small permeability, the growth in velocity reduces at higher H in the
non-porous region. The effect of the radiation parameter on the velocity profile is depicted
in Figure 3.4, signifying the impact of the relative dominance of radiative heat transfer over
convective heat transfer on the velocity profile. A rising N1 leads to a slight delay in fluid
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Figure 3.3: Changes in fluid velocity (w) in radial direction(r), with varying Hartmann
electric number(H), under high (k = 100) and low (k = 0.1) permeability parameters, (a)
large alpha parameter (α = 4.0) and (b) small alpha parameter (α = 0.25). (β = 0.1, l =
0.5,γ = 0.45,Gr = N1 = 2,λ1 = 1)

velocity in both small and large permeability cases. The same pattern is continued for small
nonlinearity parameter α . There is a relatively lesser velocity decay for radiation heat trans-
fer, N1, varying from 2.3 to 3.0 in comparison to variation from 2.0 to 2.5. This observation
is the same for small and large permeability cases. Figure 3.5 delineates the effect of the
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Figure 3.4: Changes in fluid velocity (w) in radial direction (r), with varying Radiation
parameter (N1), under high (k = 100) and low (k = 0.1) permeability parameters, (a) large
alpha parameter (α = 4.0) and (b) small alpha parameter (α = 0.25). (β = 0.1,H = Gr =
2, l = 0.5,γ = 0.45,λ1 = 1)

viscosity ratio on the velocity profile for large and small values of α . A rising viscosity
ratio leads to relatively higher viscosity in the porous medium, significantly reducing the
overall fluid velocity. While this decay is more significant for a large α , it is relatively less
for small α . Figures 3.6a and 3.6b depict the relative dominance of buoyancy over viscous
forces on fluid velocity for small and large permeability and small and large parameter α ,
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Figure 3.5: Changes in fluid velocity (w) in radial direction (r), with varying viscosity
ratio parameter(λ1), under high (k = 100) and low (k = 0.1) permeability parameters, (a)
large alpha parameter (α = 4.0) and (b) small alpha parameter (α = 0.25). (β = 0.1, l =
0.5,γ = 0.45,H = Gr = N1 = 2)

respectively. It can be interpreted from these figures that, as the buoyant forces dominate
the viscous forces, heat transmission in the medium increases, resulting in increased fluid
velocity, as illustrated in Figures 3.6a and 3.6b. The growth rate of fluid velocity for large
permeability is significantly higher than that for small permeability when α is significant;
however, this difference is significantly reduced for a small α . Additionally, the growth rate
of velocity increases more significantly with increasing graph of number in case of signifi-
cant nonlinearity parameter, α .
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Figure 3.6: Changes in fluid velocity (w) in radial direction (r), with varying Grashof
number (Gr), under high (k = 100) and low (k = 0.1) permeability parameters, (a) large
alpha parameter (α = 4.0) and (b) small alpha parameter (α = 0.25). (β = 0.1,λ1 = 1, l =
0.5,γ = 0.45,H = N1 = 2)
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3.4.3 Hydrodynamic Permeability (L11)

In analyzing flow through a swarm of particles, the hydrodynamic permeability of the swarm
of particles plays an important role. Hence, a detailed analysis is presented, revealing the
impact of various parameters on the hydrodynamic permeability of the swarm of particles.
Here, in Figure 3.7, a decay in the hydrodynamic permeability is observed with the parti-
cle volume fraction. This decay rate is relatively higher for the higher Hartmann electric
number.

k=100, α=4.0
H=1.0
H=2.0
H=3.0

k=0.1, α=4.0
H=1.0
H=2.0
H=3.0

0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

γ

L
11

Figure 3.7: Changes in the hydrodynamic permeability (L11) relying on particle volume
fraction (γ) with varying Hartmann electric number (H), under high (k = 100) and low
(k = 0.1) permeability parameters. (β = 0.1,α = 4.0,λ1 = 1, l = 0.5,Gr = N1 = 2.0)

Figure 3.8 depicts an almost negligible impact of β on L11. However, a rising radiation
parameter leads to a slight decay in hydrodynamic permeability, which may be attributed to
a decay in fluid velocity. Figure 3.9 reveals a slight increase in hydrodynamic permeability
with increasing Gr. This can be interpreted as the dominance of buoyancy over viscous
forces, leading to a rise in fluid velocity and higher hydrodynamic permeability. Further,
it can be seen that a rising viscosity ratio leads to decay in the hydrodynamic permeability
owing to a relatively higher fluid viscosity in a porous medium.

Figure 3.10 reveals the growth in hydrodynamic permeability in membranes with in-
creasing Hartmann electric number. While the growth rate is significantly higher for large
permeability, it slightly reduces with increasing Grashof number. Figure 3.11 reveals the
impact of relatively higher viscosity in the porous medium on the growth rate of L11 with
increasing H. A relatively higher viscosity in a porous medium is perceived to lead to
a decay in the growth rate of hydrodynamic permeability L11 with increasing Hartmann
electric number H. A similar observation is reported in Figure 3.12, where an increasing
stress-jump coefficient for small permeability leads to a higher growth rate of hydrodynamic
permeability with increasing Hartmann electric number. However, it is almost negligible
for large permeability. This can be interpreted from the fact that a smaller permeability
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Figure 3.8: Changes in L11 relying on stress jump parameter β with varying Radiation
number(N1), under high (k = 100) and low (k = 0.1) permeability parameters. (α =
4.0,γ = 0.45,λ1 = 1, l = 0.5,H = 2.0,Gr = 2.0)
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Figure 3.9: Changes in L11 relying on Grashof number Gr with varying viscosity ratio
parameter λ1, under high (k = 100) and low (k = 0.1) permeability parameters. (α =
4.0,β = 0.1,γ = 0.45,N1 = 2.0, l = 0.5,H = 2.0)

makes the difference in shear stress at the fluid-porous interface very significant, leading
toward a significant impact of stress-jump parameter β on hydrodynamic permeability. The
dominance of radiative heat transfer slightly reduces the hydrodynamic permeability, which
becomes almost steady. So, the hydrodynamic permeability remains unaffected for signif-
icant dominance of radiative heat transfer (Figure 3.13). All the above observations were
made for a significant α parameter; however, it may be interesting to explore the above
variations for a small α parameter owing to using a different parameter for the regular per-
turbation scheme for analytical solutions of governing equations. Figure 3.14 depicts
growth in hydrodynamic permeability with increasing Grashof number, signifying that the
dominance of thermal buoyancy forces over viscous forces leads to higher membrane per-
meability. The growth rate of the hydrodynamic permeability is slightly reduced for higher
viscosity ratio parameters. Figure 3.15 delineates the growth in hydrodynamic permeability
with Hartmann electric number for different radiation parameters. It is perceived that the
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Figure 3.10: Changes in L11 relying on Hartmann electric number H with varying
Grashof number Gr, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 4.0,β = 0.1,γ = 0.45,N1 = 2.0, l = 0.5,λ1 = 1)
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Figure 3.11: Changes in L11 relying on Hartmann electric number H with varying viscos-
ity ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 4.0,β = 0.1,γ = 0.45,Gr = 2.0,N1 = 2.0, l = 0.5)

dominance of radiative heat transfer over convective heat transfer leads to a higher growth
rate for hydrodynamic permeability with the Hartmann electric number. However, in the
case of a small non-linearity parameter, the variation of hydrodynamic permeability with
the Hartmann electric number will be reversed for a higher Grashof number, like in Figure
3.3b. Figure 3.15 also reveals a decay in hydrodynamic permeability with increasing N1.
The further decay rate is significantly reduced for increasing H. The observation indicates
a more significant impact of radiation heat transfer on hydrodynamic permeability for low
Hartmann electric numbers. The effect of the Hartmann electric number on hydrodynamic
permeability for different Grashof numbers is depicted in Figure 3.16. Unlike the case of
significant alpha, here, hydrodynamic permeability shows a decay with increasing Hartmann
electric number for the cases where thermal buoyancy forces dominate the viscous forces.
However, for small Grashof, the observation is similar to the one discussed for large alpha.
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Figure 3.12: Changes in L11 relying on Hartmann electric number H with varying stress
jump parameter β , under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 4.0,λ1 = 1,γ = 0.45,Gr = 2.0,N1 = 2.0, l = 0.5)
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Figure 3.13: Changes in L11 relying on Radiation parameter N1 with varying viscosity
ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 4.0,β = 0.1,γ = 0.45,Gr = 2.0,H = 2.0, l = 0.5)

The decay in the hydrodynamic permeability with radiation parameters for varying beta is
depicted in Figure 3.17. It is perceived that an increasing beta leads to a higher decay rate
for membrane permeability. This observation can be interpreted as the decay in L11 with
radiation parameter is more significant when the porous medium has higher shear stress
than the non-porous region. Figure 3.18 depicts the impact of the stress-jump parameter
on membrane permeability for varying Grashof numbers. While for large permeability, the
effect of beta is almost negligible owing to a negligibly slight difference in shear stress at the
interface, the variation is significant for low permeability. In the case of low permeability, a
rising Grashof number contributes towards a higher growth rate of L11 with increasing beta.
Figure 3.19 reveals that the growth rate of hydrodynamic permeability with increasing beta
reduces for higher Hartmann electric numbers.
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Figure 3.14: Changes in L11 relying on Grashof number Gr with varying viscosity ratio
parameter λ1, under high (k = 100) and low (k = 0.1) permeability parameters. (α =
4.0,β = 0.1,γ = 0.45,N1 = 2,H = 2.0, l = 0.5)
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Figure 3.15: Changes in L11 relying on Hartmann electric number H with varying ra-
diation parameter N1, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 0.25,β = 0.1,γ = 0.45,λ1 = 1,Gr = 2.0, l = 0.5)

3.4.4 Kozeny Constant (Kz)

Tortuosity is essential in representing enhanced fluid resistance for flow through porous
media in analyzing flow through porous media. The impact of various parameters on the
Kozeny constant enhancing the tortuosity is discussed in this section. Figure ?? depicts a
decreasing Kozeny constant with increasing β . Further, the decay rate reduces with increas-
ing H, although it is almost negligible for higher permeability. This can be interpreted as,
for a low Hartmann electric number, a rise in stress-jump coefficient β more significantly
reduces the tortuosity of the porous medium. Figure ?? delineates the same effect under
varying radiation parameters. It can be seen that the dominance of radiation heat transfer
over convective heat transfer leads to a higher decay rate of the Kozeny constant with β .

The effect of the Grashof number on the Kozeny constant under varying H is similar to
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Figure 3.16: Changes in L11 relying on Hartmann electric number H with varying
Grashof number Gr, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 0.25,β = 0.1,γ = 0.45,N1 = 2,λ1 = 1.0, l = 0.5)
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Figure 3.17: Changes in L11 relying on radiation parameter N1 with varying stress jump
parameter β , under high (k = 100) and low (k = 0.1) permeability parameters. (α =
0.25,γ = 0.45,H = 2,Gr = 2,λ1 = 1.0, l = 0.5)

Figure 21, which reveals that the dominance of thermal buoyancy forces over viscous forces
reduces the tortuosity of the porous medium, and the decay rate reduces for higher H (Figure
3.22). The Kozeny constant decays with H, and the decay rate significantly reduces with
increasing Gr (Figure 3.23). A similar observation is reported in Figure 3.24 for different
λ1, and it can be concluded that a relatively rising viscous effect in porous medium leads to
increased tortuosity. A rising radiation parameter leads to a slight increase in the tortuosity,
which becomes almost steady, as shown in Figure 3.25.

Figure 3.26 reveals the impact of the porosity of the medium on the Kozeny constant
with varying Hartmann electric numbers. Increasing porosity of the porous medium leads to
an increase in the Kozeny constant. However, the growth rate decays significantly with the
increasing Hartmann electric number. While observing the graphical representations of the
Kozeny constant for small values of nonlinearity parameter, Figure 3.27 reveals that in small
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Figure 3.18: Changes in L11 relying on stress jump parameter β with varying Grashof
number Gr, under high (k = 100) and low (k = 0.1) permeability parameters. (α =
0.25,γ = 0.45,H = 2,N1 = 2,λ1 = 1.0, l = 0.5)
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Figure 3.19: Changes in L11 relying on stress jump parameter β with varying Hartmann
electric number H, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 0.25,γ = 0.45,Gr = 2,N1 = 2,λ1 = 1.0, l = 0.5)

permeability, the Kozeny constant decays with the increasing stress difference of porous and
non-porous medium at the interface. However, the decay rate reduces with the increasing
dominance of thermal buoyancy forces over viscous forces. For highly permeable porous
medium, this dependence is almost negligible.

The Kozeny constant shows a higher growth rate with the increasing dominance of radia-
tive heat transfer over convective heat transfer, and this growth rate decreases significantly
when the electric Hartman number increases (Figure 3.28). An increasing dominance of
the porous medium’s viscosity over the clear fluid viscosity (non-porous region’s viscosity)
leads to an enhancement of the Kozeny constant of the membrane in both cases of per-
meability (Figure 3.29). The stress jump parameter shows a significant impact on flow
behaviour for the case of small permeability owing to the small valued denominator in the
RHS of the stress jump boundary condition. The increasing stress jump between porous and
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Figure 3.20: Changes in L11 relying on stress jump parameter β with varying Hartmann
electric number H, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 4.0,γ = 0.6,Gr = 2,N1 = 2,ε = l = 0.5,λ1 = 1.0)
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Figure 3.21: Changes in Kozeny constant Kz relying on stress jump parameter β with
varying Radiation parameter N1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,Gr = 2,H = 2,ε = l = 0.5,λ1 = 1.0)

non-porous medium decreases the Kozeny constant and hence enhances the tortuosity of the
porous medium (Figure 3.30). The Kozeny constant increases exponentially with the poros-
ity of the medium. Along with that dominance of radiative heat transfer over convective
heat transfer leads to enhance value of the Kozeny constant of the membrane, regardless of
the permeability cases (Figure 3.31).

3.4.5 Model Validation and Comparative Study

The proposed work is a theoretical attempt to understand the electrohydrodynamic flow
(EHD) with heat transfer past a swarm of porous layered cylindrical particles by analyz-
ing the variations of hydro-dynamical quantities like velocity, membrane permeability, and
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Figure 3.22: Changes in Kozeny constant Kz relying on Grashof number Gr with varying
Hartmann electric number H, under high (k = 100) and low (k = 0.1) permeability pa-
rameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = l = 0.5,λ1 = 1.0)
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Figure 3.23: Changes in Kozeny constant Kz relying on Hartmann electric number H
with varying Grashof number Gr, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = l = 0.5,λ1 = 1.0)

Kozeny constant with various parameters signifying the effect of the electric field, ther-
mal buoyancy forces, and radiative heat transfer. The comparative graphical analysis of the
analytical solution has been made with a numerical solution to validate the approximate so-
lution. The numerical solution is obtained through the NDSolve command in Mathematica
10.3 software. The fluid velocity derived from the two different methods for small non-
linearity parameters is compared in Figure 3.32, where it can be observed that the curve of
asymptotic fluid velocity and numerical fluid velocity are in good agreement (a difference
of 0.02 can be seen at the fluid-porous interface in the inset). Also, the comparison of both
methodologies for the hydrodynamic permeability and the Kozeny constant has been plotted
in Figure 3.33 and Figure 3.34, respectively. The numerical solution of the hydrodynamic
permeability overlaps with the asymptotic solution from the low Grashof number; however,
a slight difference can be seen between these two as the Grashof number goes higher. The
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Figure 3.24: Changes in Kozeny constant Kz relying on Hartmann electric number H with
varying viscosity ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,ε = 0.5,Gr = 2.0, l = 0.5)
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Figure 3.25: Changes in Kozeny constant Kz relying on Radiation parameter N1 with
varying viscosity ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,β = 0.1,H = 2.0,Gr = 2.0,ε = 0.5, , l = 0.5)

asymptotic solution of the Kozeny constant with porosity parameter almost coincides with
its numerical solution for the case of a small non-linearity parameter.

This subsection also includes the validation of the “ion drag" effect on electrohydro-
dynamic flow and its dependence on parameters such as electric Hartmann number and
non-linearity parameter and is validated from the results of previously published literature.
An increasing particle volume fraction leads to a greater occupancy of porous layered par-
ticles in the medium and less space for the clear fluid media, which reduces the fluid flow
velocity past a membrane. The current study delineates the above-mentioned theory and
validates the variation of Hydrodynamic permeability (L11) along particle volume fraction
(γ) with the study of Deo et al. [3], where L11 follows the same behavior with particle
volume fraction in both the studies. However, due to the presence of an additional electric
field, the decay rate in the present model is slightly less, and the same can be observed in
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Figure 3.26: Changes in Kozeny constant Kz relying on porosity parameter ε with vary-
ing Hartmann electric number H under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 4.0,γ = 0.6,β = 0.1,N1 = 2,λ1 = 1,Gr = 2.0, l = 0.5)
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Figure 3.27: Changes in Kozeny constant Kz relying on stress-jump parameter β with
varying Grashof number Gr, under high (k = 100) and low (k = 0.1) permeability param-
eters. (α = 0.25,γ = 0.0.45,ε = 0.5,H = 2.0,N1 = 2,λ1 = 1, l = 0.5)

Table 5.2. The behavior of hydrodynamic permeability in the current work is qualitatively
validated. Further, similar behavior has also been observed in various other works involving
flows through a swarm of particles such as Vasin et al. [85], Prakash et al. [183], Yadav et

al. [92], and Fillipov et al. [184]. The findings of the work have also validated the behavior
of the electric Hartmann number with the work of McKee et al. [14] where velocity is get-
ting higher for the increasing electric Hartmann number in the case of small non-linearity
parameter (α ≪ 1). The same has been observed in the analysis of the current study and
can be verified in Table 3.3.
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Figure 3.28: Changes in Kozeny constant Kz relying on Radiation parameter N1 with
varying Hartmann electric number H, under high (k = 100) and low (k = 0.1) permeabil-
ity parameters. (α = 0.25,γ = 0.45,ε = 0.5,β = 0.1,Gr = 2.0,λ1 = 1, l = 0.5)
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Figure 3.29: Changes in Kozeny constant Kz relying on Hartmann electric number H with
varying viscosity ratio parameter λ1, under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 0.25,γ = 0.45,ε = 0.5,β = 0.1,Gr = 2.0,N1 = 2, l = 0.5)

3.5 Summary and Conclusion

The consideration of the external electric field and the heat transfer in the flow of Newtonian
fluid through membrane aggregates of porous cylindrical particles has been discussed in
the present work. The flow regime is separated into two regions in which the fluid flow
through the porous medium is considered proximate to the solid core of the cylindrical
particle and regulated by the Brinkman equation. However, an envelope enfolded over the
porous medium is considered a non-porous region and regulated by the Stokes equation. The
analytical solutions of the Brinkman and Stokes equations are difficult to obtain owing to
the presence of non-linear body force (external electric field). In order to obtain the solution
of the governing equations the regular perturbation method has been employed to solve the
governing equations, and the expressions of velocity have been used to obtain the membrane
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Figure 3.30: Changes in Kozeny constant Kz relying on Hartmann electric number H with
varying stress-jump parameter β , under high (k = 100) and low (k = 0.1) permeability
parameters. (α = 0.25,γ = 0.45,ε = 0.5,λ1 = 1.0,Gr = 2.0,N1 = 2, l = 0.5)
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Figure 3.31: Changes in Kozeny constant Kz relying on porosity parameter ε with varying
radiation parameter N1, under high (k = 100) and low (k = 0.1) permeability parameters.
(α = 0.25,γ = 0.45,H = 2.0,λ1 = 1.0,Gr = 2.0,β = 0.1, l = 0.5)

permeability and Kozeny constant. The results and discussion section have given a detailed
discussion of the graphical analysis. The following novel determinations from the present
study are pointed out:

1. The graphical analysis reveals that a rising Hartmann electric number leads to the
growth of velocity and membrane permeability, which is relatively more significant
for higher permeability. However, the reverse trend is observed in the Kozeny con-
stant with Hartmann electric number, which is relatively less significant for higher
permeability.

2. The effect of the radiation parameter on the velocity profile and membrane permeabil-
ity is discussed, and it is found that a rising radiation parameter leads to a significant
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Figure 3.32: Comparision between radially varying velocities of asymptotic and numeri-
cal solutions for the case small non-linearity parameter α = 0.25 (β = 0.1,H = 2.0,λ1 =
1, l = 0.5,Gr = 2.0,N1 = 2, pz = 1)
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Figure 3.33: Variation of the membrane permeability L11 with radial distance with
asymptotic and numerical variations (β = 0.1,H = 2.0,α = 0.25,λ1 = 1, l = 0.5,Gr =
2.0,N1 = 2, pz = 1)

decay in fluid velocity and membrane permeability for small α . However, a significant
growth in the Kozeny constant is observed with the radiation parameter.

3. The dominance of the thermal buoyancy forces over the viscous forces on the hydro-
dynamical quantities enhances the velocity and membrane permeability. However, a
decline in the Kozeny constant is observed.

4. A significant growth is observed in velocity and membrane permeability for large
non-linearity parameters, α in the case of small and large permeability of the porous
material. However, a reverse trend is observed in the Kozeny constant for large α .

The suggested explanation has the potential to significantly contribute to the examination of
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Figure 3.34: Variation of the Kozeny constant Kz with radial distance with asymptotic and
numerical variations (β = 0.1,α = 0.25,H = 2.0,λ1 = 1, l = 0.5,Gr = 2.0,N1 = 2, pz = 1)

important physical and biological applications, including petroleum reservoir rocks, wastew-
ater treatment filtration processes, and blood flow through smooth muscle cells. However,
empirical validation remains an essential step in establishing the reliability of the proposal.
While our research offers valuable insights into electrohydrodynamic flow dynamics and
membrane hydrodynamic permeability, it’s crucial to recognize certain inherent limitations
in our approach. This study modeled the swarm of particles as a uniformly distributed ar-
ray, though in reality, it may exhibit a randomly oriented distribution. Furthermore, our
methodology employs the regular perturbation method to derive asymptotic solutions for
governing equations, considering cases of small and large non-linearity parameters (α ≪ 1
and α ≫ 1). However, our analysis is constrained by the prescribed parameter domain of α ,
representing another limitation of our study.
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γ

y Hydrodynamic Permeability (L11)

Deo et al. [3] Current Study

γ = 0.25 0.355044 0.365176

γ = 0.30 0.215811 0.347859

γ = 0.35 0.134694 0.331048

γ = 0.40 0.085182 0.314860

γ = 0.45 0.054032 0.299385

γ = 0.50 0.034074 0.284681

γ = 0.55 0.021176 0.270771

γ = 0.60 0.012844 0.257654

Table 3.2: Validation of current work with the study of Deo et al. [3] using variations in
hydrodynamic permeability L11 with particle volume fraction γ. (α = 0.1).

r
y McKee et al. [14] (α = 0.1)

r
y Current Work (α = 0.1)

H2 = 1.0 H2 = 10 H2 = 100 H2 = 1.0 H2 = 10 H2 = 100

r = 0.0 0.209371 0.778501 0.781792 r = 0.5 0.0 0.0 0.0

r = 0.1 0.206853 0.773975 0.771753 r = 0.6 0.053342 0.230540 0.588723

r = 0.2 0.202238 0.764922 0.765861 r = 0.7 0.094587 0.373586 0.765640

r = 0.3 0.192168 0.742291 0.743101 r = 0.8 0.130706 0.473453 0.820996

r = 0.4 0.178741 0.712871 0.705548 r = 0.9 0.166745 0.557559 0.844898

r = 0.5 0.160699 0.668741 0.666856 r = 1.0 0.206993 0.646145 0.873521

r = 0.6 0.140559 0.601980 0.599716 r = 1.1 0.244939 0.724957 0.898284

r = 0.7 0.110350 0.522772 0.513229 r = 1.2 0.272406 0.775292 0.906191

r = 0.8 0.078462 0.388119 0.396017 r = 1.3 0.290753 0.805741 0.908727

r = 0.9 0.043217 0.218388 0.223883 r = 1.4 0.300984 0.821604 0.909517

r = 1.0 0.0 0.0 0.0 r = 1.5 0.303841 0.825889 0.909676

Table 3.3: Validation of current work with the study of McKee et al. [14] using variations
in velocity w in radial direction r for different values electric Hartmann number, H (H2 =
1,10,100).
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Chapter 4

Creeping flow of non-Newtonian fluid through mem-
brane of porous cylindrical particles: A particle-
in-cell approach 1

4.1 Introduction

The fluid flow in a porous medium is an intriguing topic for research in fluid dynamics.
This multidisciplinary topic has recently gotten much attention because of its wide range of
academic and industrial research applications. It has broad applications in the pharmaceu-
tical field, petroleum reservoir rocks, wastewater treatment filtration processes, blood flow
via the lungs, digestive system design, etc. As mentioned above, the flow medium in the
applications is a porous material comprising a swarm of particles. Flow throgh such me-
dia can be governed by the Darcy [48] and Brinkman equations [137]. Srivastava and Deo
[24] considered the Brinkman equation to study the fluid flow in a porous channel. In order
to study the flow dynamics in a porous media consisting of an aggregate of particles, one
has to derive the hydrodynamic interaction between these swarm particles. It is difficult to
study all particles in a multi-particle system at the same time, a new analytical approach is
developed in which an arbitrary single particle is taken into consideration, and a hypothet-
ical cell around this particle is chosen in such a way that it incorporates the hydrodynamic
interactions of adjacent particles on the particle under consideration.

In the study of fluid filtration processes, the rheological behaviour of fluid can be mod-
elled by a shear-rate-dependent non-Newtonian viscosity and its viscoelasticity. Researchers
have identified several rheological fluids that resemble the fluid’s non-Newtonian behaviour,
and their constitutive relationship may be utilized to imitate a variety of natural occurrences.
Researchers have looked at the Carreau fluid model extensively as a generalized Newtonian
fluid in the past since it has four parameters that can be used to analyze the fluid’s rheology.

1A considerable part of this chapter is published in Physics of Fluids, 35, 043101, 2023.
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This four-parameter model has been beneficial in hemodynamics, and it is flexible enough
to accommodate a range of experimental apparent viscosity curves. Carreau fluid acts like
Newtonian fluid (n = 1) at low shear rates, whereas it can exhibit both shear-thinning or
pseudoplastic (n < 1) and shear thickening or Dilatent (n > 1) behaviour at high shear rates.
Rana and Murthy [18] studied the solute dispersion of an unsteady Carreau fluid flow and
derived the asymptotic expressions of the effective transport coefficients. Zhu and Satish
[185] used the cell method to study the flow of the Carreau fluid slowly moving through a
heavily populated array of solid particles. Chaffin and Rees [186] used the Carreau fluid and
examined the wall-driven corner flow.

Throughout the studies above, based on the Newtonian, non-Newtonian and polar fluids
flowing through membranes consisting of an array of particles using a particle-in-cell model
approach, it has been noted that the non-Newtonian fluid flow through membranes has yet
to find enough attention from researchers. The non-Newtonian Carreau fluid exhibits the
fluid’s shear-thinning and thickening behaviour owing to the Power-law index involved in
the stress-strain relationship. It has the liquid’s elastic nature owing to the Weissenberg
number’s presence in the governing equation, which is taken as a very small (We ≪ 1) for a
more realistic study in the membrane filtration process. The additional benefit of considering
the Carreau fluid is that the viscosity ratio parameter η (0.1<η < 0.4) replicates the infinite
to zero shear-rate viscosity ratio. The analysis of the supremacy of zero shear-rate viscosity
over the infinite shear-rate viscosity or vice-versa may help to understand the behaviour
of pseudoplastic fluid flowing through the membrane and hence may be beneficial in the
movement of fluid through the porous medium. Temperature variation has a strong effect
on the membrane filtering process.

The purpose of this research is to explore the hydrodynamic and thermal aspects of the
slow flow of a non-Newtonian Carreau fluid over a membrane comprising a cluster of porous
layered solid cylinders owing to its non-Newtonian property of a pseudoplastic fluid. The
flow regime in a cross-sectional area of an individual cylinder is separated into two regions,
the fluid flow inside the porous annular region proximate to the solid core. At the same
time, the other one is the non-porous fluid flow region around the annular layer of porous
media. The Brinkman and Stokes equations regulate the Carreau fluid flow in the porous
and non-porous (clear fluid) sections, respectively. Due to the existence of a nonlinear
velocity gradient term in the stress-strain relationship of Carreau fluid, The exact solutions
to the Brinkman and Stokes equations are challenging. An asymptotic (perturbation) series
expansion method presuming the small parameters (Weissenberg number We ≪ 1 and a
dimensionless hydraulic resistivity parameter S = 1√

k
≪ 1) is used to derive the solution

expressions for the equation governing fluid flow through the porous region; however, the
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perturbation technique based on small Weissenberg number (We ≪ 1) is used to derive
the asymptotic solution of flow through the non-porous region. In the low permeability
case (i.e., a significant dimensionless parameter (S ≫ 1)), the equation regulating the flow
through porous material is reduced to a non-linear boundary value problem subject to the
suitable boundary conditions, which is difficult to solve analytically. Hence the numerical
strategy (NDSolve in Mathematica) has been used to demonstrate the results in the graphical
form of the present analysis. The expressions of membrane permeability and the Kozeny
constant are derived for the large Darcy number case; however, for the small Darcy number,
a comparative analysis with the expressions of the large Darcy number is presented in the
form of graphical and tabular analysis. The heat flow at the cylinder’s wall of the cylinder
is maintained constant at the value q′′ in the case of forced convection in a porous layered
circular cylinder. The steady-state thermal equation is analytically solved without the source
of heat, axial conduction, and heat dispersion.

The sketch of the present study is demonstrated in the VI sections. The introduction
section (Section- 1) discusses the fundamental knowledge of the work with a preamble,
literature survey, gaps in existing research and the objective of the present work. The flow
configuration, In Section- 2, the model assumptions, the physical sketch of the work, and the
hydrodynamical and thermal equations with the suitable boundary conditions are described,
which is followed by the mathematical forms of membrane permeability and Kozeny con-
stant. Section- 3 illustrates the work’s solution technique and the associated formulations of
the governing equations in small and large Darcy number cases. The temperature equations
for porous and non-porous media subject to the appropriate boundary conditions and their
solutions are demonstrated in Section- 4. Section- 5 divulges the selection of parameters
and their resources for the graphical analysis and model validation in case of asymptotic
and numerical solutions of the work. The special cases deduced from the present work and
the comprehensive discussion of the present work in the form of graphical and tabular anal-
ysis have also been done. A summary and the significant novel contribution of the current
research are displayed in the last section (Section- 6), followed by acknowledgement and
the references used in the current work.
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4.2 Mathematical Formulation of the Proposed Work

4.2.1 Statement and Assumptions

The non-Newtonian Carreau fluid flows through a membrane (porous media) consisting of
an array of uniformly distributed porous cylindrical particles with a solid core of radius ã,
which is surrounded by a porous layer of thickness b̃− ã, and the flow is considered to be
incompressible, steady, and laminar. The fluid flows parallel to the longitudinal centerline
of the solid cylindrical-shaped particle. The concept of the particle-in-cell model is used
to study the flow through a membrane in which a single porous layered solid cylindrical
particle of radius ã is chosen from the swarm. A hypothetical cell of thickness (c̃− b̃) is
considered in the vicinity of the porous layer to accommodate the influence of hydrodynamic
interactions between neighbouring particles and the particle in consideration. Concerning
the geometry of the model, the z-axis is employed such that it corresponds with the central
axis of a solid cylinder using the cylindrical polar coordinate system (r̃,φ , z̃), where r̃ and
z̃ are the radial and axial coordinates, respectively and φ is the azimuthal angle. The flow
is considered axially symmetric, fully developed flow in the axial direction only, so flow
quantities will be independent of the variable φ . The velocity component of the fluid is
taken as (0,0, w̃) owing to its unidirectional flow in the axial direction. In the case of low
Reynolds number flow, the convective term in the momentum equation has a negligible
contribution. So, it can be neglected from the momentum equation. The energy equations
regulating the transmission of heat in fluid flow through the membrane are simplified for
high Peclet numbers (Pe ≫ 1).

4.2.2 Model Description of the Problem

The framework of the proposed model is divided into two regions. The region (Region-I)
adjacent to the solid core is a porous region, and an outer region (Region-II) overlying by
the porous region, which is free from the porous material, is a non-porous region (or clear
fluid region). The Brinkman equation regulates the flow through a porous region; however
the Stokes equation regulates the flow through a non-porous region. Figures 4.1 and 4.2
delineate the liquid flow through solid cylindrical particles of the membrane surrounded by
the porous layer. The figures describe a solid cylindrical core of radius ã and a coaxial
cylindrical layer of the porous medium around the solid core of radius b̃ with a hypothetical
surface layer surrounded over the porous cylindrical cell of radius c̃. The thickness of the
hypothetical cell of a porous cylindrical particle is selected in a manner that the volume
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Flow Direction

Figure 4.1: The physical depiction of the flow along the axis of an aggregate of porous
layered solid cylinders in a membrane

c

b
a

c

Porous Region Clear Fluid Region

Hypothetical Cell

Solid
Cylindrical

Particle

Figure 4.2: The physical representation of circular cross-sectional view of a swarm con-
sisting of solid cylindrical particle surrounded by a porous layer enclosed in hypothetical
cell
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fraction of the particles in the swarm is equal to the volume fraction of the cell.

c2 =
1
γ
=

π c̃2

π b̃2
. (4.1)

4.2.3 Governing Equations

4.2.3.1 Hydrodynamic Equations

Following the problem statement and assumptions of the proposed model, the equations
governing the flow through the porous (ã ≤ r̃ ≤ b̃) and non-porous (b̃ ≤ r̃ ≤ c̃) cylindrical
particle are as follows:
Region- I, i.e., ã ≤ r̃ ≤ b̃

∂ w̃p

∂ z̃
= 0, (4.2a)

∂ p̃
∂ r̃

= 0, (4.2b)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃
(r̃τ̃p)−

µ̃0w̃p

k̃
, (4.2c)

where p̃, w̃p, τ̃p are the pressure, velocity and shear stress of the fluid in the porous region,
respectively; µ̃0 is the constant viscosity coefficient of the clear fluid, k̃ is the permeability
constant of the porous medium. The equations (4.2a)-(4.2c) delineate the conservation of
mass (i.e., continuity equation), and momentum equations (i.e., conservation of mementum)
in radial r and axial z directions, respectively. The momentum equation (4.2c) in the axial
direction replicating the Brinkman equation that has an additional resistance term, which is
known as the Darcian term.
The stress-strain relation for Carreau fluid in terms of porous medium liquid velocity is
given by [18]

τ̃p =

µ̃∞ +(µ̃0 − µ̃∞)

(
1+
(

λ
∂ w̃p

∂ r̃

)2
) n−1

2
 ∂ w̃p

∂ r̃
, (4.2d)

where µ̃0 and µ̃∞ are the zero and infinite shear-rate viscosity of Carreau fluid, respectively;
n is the Power-law exponent exhibiting the shear-thinning and thickening behavior of the
fluid and λ is the time constant.
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Region- II, i.e., b̃ ≤ r̃ ≤ c̃

∂ w̃c

∂ z̃
= 0, (4.3a)

∂ p̃
∂ r̃

= 0, (4.3b)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃
(r̃τ̃c) , (4.3c)

where τ̃c and w̃c are the shear-stress and axial velocity of the the clear fluid (non-porous re-
gion liquid). The equations (4.3a)-(4.3c) delineate the conservation of mass (i.e., continuity
equation), and momentum equations (i.e., conservation of meomentum) in radial r and axial
z directions, respectively. The momentum equation (4.3c) in axial direction replicating the
Stokes equation for non-porous (clear fluid) region.
The stress-strain relation for Carreau fluid in terms of clear fluid velocity is given by [18]

τ̃c =

µ̃∞ +(µ̃0 − µ̃∞)

(
1+
(

λ
∂ w̃c

∂ r̃

)2
) n−1

2
 ∂ w̃c

∂ r̃
. (4.3d)

4.2.4 Non-Dimensional Parameters and Governing Equations

The non-dimensional variables presented below are used to perform non-dimensionalisation
on the aforementioned system of equations: ([3], [18], [7])

p =
p̃b̃

w̃0µ̃0
, r =

r̃

b̃
, z =

z̃

b̃
, a =

ã

b̃
, c =

c̃

b̃
, S2 =

1
k
, w̃0 =

q̃0b̃2

µ̃0
, η =

µ̃∞

µ̃0
,

wp =
w̃p

w̃0
, wc =

w̃c

w̃0
, k =

k̃

b̃2
, τp =

τ̃pb̃
w̃0µ̃0

, We =
λ w̃0

b̃
, θ =

T̃ −Tw

Tm −Tw
,

Nu =
2q′′b̃

K̃(Tw −Tm)
,

(4.4)

where w̃0 is the average velocity, η is the viscosity ratio parameter, We is the Weissenberg
number which is the ratio of elastic forces to the viscous forces (i.e. product of the shear
rate and characteristic time of the fluid), S is a dimensionless parameter defined in terms of
the permeability parameter k, q̃0 is the characteristic pressure gradient, Nu is the Nusselt
number which is the ratio of convective to conductive heat transfer in a fluid, and θ is the
dimentionaless temperature.
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4.2.4.1 Hydrodynamic Equations

Using the non-dimensional variables, the governing equations replicating the continuity
equation, and momentum equations in radial and axial directions, respetively, for porous
(a ≤ r ≤ 1) and non-porous (1 ≤ r ≤ c) fluid flow regions in non-dimensional form are as
follows:
Region-I, i.e., a ≤ r ≤ 1

∂wp

∂ z
= 0, (4.5a)

∂ p
∂ r

= 0, (4.5b)

∂ p
∂ z

=
1
r

∂

∂ r
(rτp)−

wp

k
, (4.5c)

where the constitutive equation of Carreau fluid in terms of porous medium liquid velocity
is given by

τp =

η +(1−η)

(
1+
(

We
∂wp

∂ r

)2
) n−1

2
 ∂wp

∂ r
. (4.5d)

Region-II, i.e., 1 ≤ r ≤ c

∂wc

∂ z
= 0, (4.6a)

∂ p
∂ r

= 0, (4.6b)

∂ p
∂ z

=
1
r

∂

∂ r
(rτc) , (4.6c)

where the constitutive equation of Carreau fluid in terms of clear fluid velocity is given by

τc =

η +(1−η)

(
1+
(

We
∂wc

∂ r

)2
) n−1

2
 ∂wc

∂ r
. (4.6d)

4.2.5 Boundary Conditions

In order to obtain the closed form of solutions of the governing equations, the appropriate
boundary conditions are required to discuss the fluid flow mechanism through a swarm of
porous cylindrical particles. The following dimensionless boundary conditions are consid-
ered at the surface of the solid core, fluid-porous interface and hypothetical cell surface:
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1. The zero porous layer velocity is considered on the surface of the solid core of the
cylinder, i.e.,

wp = 0 at r = a. (4.7a)

2. The fluid velocity is assumed to be continuous at the interface of clear fluid (non-
porous region fluid) and porous region fluid, i.e.,

wp = wc at r = 1. (4.7b)

3. The usual condition of continuity of shear stress may not be suitable for describing
the flow of fluids through the fluid-porous interface. To encounter this inadequacy,
Ochoa-Tapia and Whitaker [81] proposed the discontinuous behavior of shear stresses
at the interface of clear fluid and porous media, which is referred to as the stress-jump
condition along tangential stresses, i.e.,

τp − τc =
βwp√

k
at r = 1, (4.7c)

where β is the stress-jump parameter.

4. The Happel, Kuwabara, Kvashnin and Cunningham boundary conditions lead to the
following single result [3], i.e.,

τc = 0 at r = c. (4.7d)

The boundary condition (4.7d) is taken from the work of Deo et al. [3], which is
Happel’s zero stress boundary condition, signifying that the tangential viscous stress
vanishes on the cell boundary. The shear stress in the present work is different from
Newtonian fluid, but through the perturbation process, it reduces to the zero velocity
gradient, i.e., dwc

dr = 0.

4.2.6 Hydrodynamical Quantities and Kozeny Constant

The volumetric flow rate Qv of fluid flow in non-dimensional form is given by

Qv = 2π

∫ c

a
rw(r)dr,

= 2π

(∫ 1

a
rwp(r)dr+

∫ c

1
rwc(r)dr

)
. (4.8)
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An identical particle from the swarm has been taken into the consideration to analyze the
impact of properties of the porous and non-porous material on the membrane permeability.
The mathematical expression of the membrane permeability L11 is given by [3],

L11 =−
Vf

∂ p/∂ z
, (4.9)

where Vf denotes the filtration velocity and is reffered by Vf =
Qv
πc2 .

The classical Kozeny–Karman equation equation that predicts the permeability of a swarm
of porous cylinder particles pretty accurately is given as

L11 =
ερ2

h

Kzb̃2
, (4.10)

where ε is the porosity, Kz is the dimensionless symbolic representation of Kozeny constant,
and ρh describes the hydraulic radius which is a fractional value of the pore volume and the
wetting area.
The Kozeny constant can be written as

Kz =
ερ2

h

L11b̃2
, (4.11)

where hydraulic radius for the porous medium composed of porous cylinders is expressed
as

ρh =
π(c̃2 − b̃2)

2π b̃
=

b̃
2

(
1− γ

γ

)
=

ε b̃
2(1− ε)

. (4.12)

Introducing the expression of hydraulic radius into the expression of the Kozeny constant,
the Kozeny constant is obtained as

Kz =
ε3

4(1− ε)2L11
, (4.13)

where L11 is the hydrodynamic permeability of the membrane.

4.3 Solution of the Proposed Problem

The Carreau fluid flow in porous and non-porous regions is governed by the Brinkman
and Stokes equations, respectively, which are second-order non-linear equations and is very
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difficult to solve analytically. Hence, this work aims to use asymptotic and numerical tech-
niques to solve these governing equations. The double perturbation technique is used to get
the asymptotic solution to the problem. The Weissenberg number is used as the first pertur-
bation parameter and is taken to be sufficiently small, while the Darcy number is used as the
second perturbation parameter and is held to be sufficiently large to obtain the asymptotic
solution to the problem [142]. In MATHEMATICA software 10.3, the NDSolve command
is used to solve the governing equations numerically, allowing the darcy number to be as
small as possible. The numerical solution of both porous and non-porous regions validates
the asymptotic solution (We ≪ 1,k ≫ 1). A constant pressure gradient continuously propels
the fluid in the porous and clear fluid regions, i.e., ∂ p

∂ z =−ps = constant.

4.3.1 Asymptotic Solution of the Problem

In a membrane made up of a swarm of small-radius cylinders at low shear rates, the non-
Newtonian characteristics of fluid is quite significant. The stress-strain relation for Carreau
fluid with the assumption of low shear rate

(
We∂w

∂ r < 1
)

[18] is introduced in the momen-
tum equation for both porous and non-porous region. The expression of the shear stress for
porous and non-porous regions can be obtained using the above assumption

(
We∂w

∂ r < 1
)

and binomial series expansion upto first order approximation only. The expression of shear
stress for Carreau fluid is given by

τ =

[
η +(1−η)

(
1+

n−1
2

{
We

∂w
∂ r

}2
)]

∂w
∂ r

.

The momentum equations in the axial directions for porous and non-porous liquid regions
can be obtained by introducing the expresion of shear stress in the simplified form. The
governing equations for the flow of Carreau fluid in porous and clear fluid regions are given
by

∂ p
∂ z

=
1
r

∂

∂ r

(
r

(
1+

(1−η)(n−1)We2

2

(
∂wp

∂ r

)2
)

∂wp

∂ r

)
−

wp

k
. (4.14a)

∂ p
∂ z

=
1
r

∂

∂ r

(
r

(
1+

(1−η)(n−1)We2

2

(
∂wc

∂ r

)2
)

∂wc

∂ r

)
. (4.14b)

The equation (4.14a) and (4.14b) is a second order, non-linear partial differential equation
which is complex to solve analytically. So the perturbation method is used to solve these
equations analytically. We have to use two level regular perturbation technique in the Weis-
senberg number and the Darcy number respectively to obtain the series from solution of the
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problem. Let us consider a solution of equations (4.14a) and (4.14b) in the series form as
[142]

w j(r) = w j(r;We) =
m

∑
i=0

We2iw ji(r), where j = p,c. (4.15)

Introducing the series form of the porous medium velocity from equation (4.15) into the
governing equations (4.14a) and (4.14b), and equating the like powers of the Weissenberg
number. The zeroth-order equations are obtained as

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂wp0

∂ r

)
−

wp0

k
. (4.16a)

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂wc0

∂ r

)
. (4.16b)

A series form solution of the equations governing the zeroth order velocity is assumed in
the form

w j0(r) = w j0(r;S) =
m

∑
i=0

Siw j0i(r), where j = p,c. (4.17)

where the non-dimensional parameter S = 1√
k

in term of the permeability of the porous
medium.
Introducing the series form of zeroth order velocities into equations (4.16a) and (4.16b), and
equating the like powers of the Darcy number parameter.

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂wp00

∂ r

)
. (4.18a)

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂wc00

∂ r

)
. (4.18b)

1
r

∂

∂ r

(
r

∂wp01

∂ r

)
= 0. (4.18c)

1
r

∂

∂ r

(
r

∂wc01

∂ r

)
= 0. (4.18d)
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1
r

∂

∂ r

(
r

∂wp02

∂ r

)
−wp00 = 0. (4.18e)

1
r

∂

∂ r

(
r

∂wc02

∂ r

)
= 0. (4.18f)

The equations governing the first order velocities with respect to the Weissenberg number
are given as

1
r

∂

∂ r

[
r

(
∂wp1

∂ r
+

(n−1)(1−η)

2

(
−

∂wp0

∂ r

)2
∂wp0

∂ r

)]
=

wp1

k
. (4.19)

1
r

∂

∂ r

[
r

(
∂wc1

∂ r
+

(n−1)(1−η)

2

(
−∂wc0

∂ r

)2
∂wc0

∂ r

)]
= 0. (4.20)

A series form solution of the equations governing the first order velocities are assumed in
the form

w j1(r) = w j1(r;S) =
m

∑
i=0

Siw j1i(r), where j = p,c, (4.21)

where S = 1√
k

is a dimentionless parameter.
Introducing the series form of first order velocity (4.21) into the equations (4.19) and (4.20),
and equating the like powers of the Darcy number parameter.

1
r

∂

∂ r

(
r

(
∂wp10

∂ r
+

(n−1)(1−η)

2

(
−

∂wp00

∂ r

)2
∂wp00

∂ r

))
= 0. (4.22a)

1
r

∂

∂ r

(
r

(
∂wc10

∂ r
+

(n−1)(1−η)

2

(
−∂wc00

∂ r

)2
∂wc00

∂ r

))
= 0. (4.22b)

1
r

∂

∂ r

(
r

(
∂wp11

∂ r
+

3(n−1)(1−η)

2

(
∂wp00

∂ r

)2
∂wp01

∂ r

))
= 0. (4.22c)

1
r

∂

∂ r

(
r

(
∂wc11

∂ r
+

3(n−1)(1−η)

2

(
∂wc00

∂ r

)2
∂wc01

∂ r

))
= 0. (4.22d)
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1
r

∂

∂ r

(
r

(
∂wp12

∂ r
+

3(n−1)(1−η)

2

(
∂wp00

∂ r

(
∂wp01

∂ r

)2

+

(
∂wp00

∂ r

)2
∂wp02

∂ r

)))
−wp10 = 0.

(4.22e)

1
r

∂

∂ r

(
r

(
∂wc12

∂ r
+

3(n−1)(1−η)

2

(
∂wc00

∂ r

(
∂wc01

∂ r

)2

+

(
∂wc00

∂ r

)2
∂wc02

∂ r

)))
= 0.

(4.22f)

4.3.2 Analytical Expression of Fluid Velocity

The zeroth, first , and second order Darcy number perturbed equations reduced from zeroth
order Weissenberg number purturbation can be solved analytically. The general solution of
the equations (4.18a)-(4.18f) are obtained as

wp00 =C1 log(r)+C2 −
psr2

4
, (4.23a)

wc00 =C3 log(r)+C4 −
psr2

4
, (4.23b)

wp01 =C5 log(r)+C6, (4.23c)

wp01 =C7 log(r)+C8, (4.23d)

wp02 =
1
4

r2(C2 −C1)+ log(r)
(

C1r2

4
+C9

)
+C10 −

psr4

64
, (4.23e)

wc02 =C11 log(r)+C12, (4.23f)

where C1 −C12 are arbitrary constants that can be derived from their respective boundary
conditions. The exact expressions of these constants are given in the Annexure A.
The zeroth, first, and second order Darcy number perturbed equations reduced from first
order Weissenberg number purturbation can be solved analytically. The general solution of
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the equations (4.22a)-(4.22f) is given as,

wp10 =−
(η −1)(n−1)

(
16C3

1 −12C1 p2
s r4 + p3

s r6)
64r2 +C13 log(r)+C14, (4.24a)

wc10 =C15 log(r)+C16 −
(η −1)(n−1)

(
16C3

3 −12C3 p2
s r4 + p3

s r6)
64r2 , (4.24b)

wp11 =
3C5(η −1)(n−1)

(
p2

s r4 −4C2
1
)

16r2 +C17 log(r)+C18, (4.24c)

wc11 =C19 log(r)+C20 +
3C7(η −1)(n−1)

(
p2

s r4 −4C2
3
)

16r2 , (4.24d)

wp12 =
1

64
log(r)

(
16C3

1(η −1)(n−1) log(r)+ r2 (16C13 −3C1(η −1)(n−1)ps
(
8C1 − psr2))

+64C21)−
(η −1)(n−1)

1152r2

(
−54psr4 (7C2

1 −8C1C2 +4C9 ps
)
+864C1

(
C1C9 +C2

5
)

−54C2 p2
s r6 +5p3

s r8
)
+

1
4

r2(C14 −C13)+C22, (4.24e)

wc12 =
3(η −1)(n−1)

(
C11 p2

s r4 −4C3
(
C11C3 +C2

7
))

16r2 +C23 log(r)+C24, (4.24f)

where C13 −C24 are arbitrary constants which derived from their respective reduced bound-
ary condition. The exact expressions of these constants are given in the Annexure A.

4.3.3 Numerical Solution of the Problem

The numerical solutions of the governing equations in porous (4.5a)-(4.5d) and non-porous
(4.6a)-(4.6d) regions with the appropriate boundary conditions (4.7a)-(4.7d) have been de-
rived using the NDsolve command in MATHEMATICA 10.3. The Darcy number is kept to
be small during the analysis and graphical representation.

4.4 Temperature Analysis

In the above section, the velocity of the slow viscous flow of the Carreau fluid through the
membrane has been calculated asymptotically and numerically with the appropriate bound-
ary conditions. The velocity will now be used to calculate the radial temperature variation
in the porous cylinder with a solid core. The assumptions of homogeneity and local ther-
mal equilibrium are made throughout the analysis. In order to make sure the solution of
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the energy equation regulates the heat transfer in porous and non-porous regions, the heat
source terms, axial conduction, and thermal dispersion have not been considered [7]. The
mathematical expression of the energy equation adopting the above assumptions is given by

ρ̃ c̃pw̃
∂ T̃
∂ z̃

=
K̃
r̃

∂

∂ r̃

(
r̃

∂ T̃
∂ r̃

)
, (4.25)

where T̃ is the temperature, ρ̃ is the density of the fluid, c̃p is specific heat at constant
pressure, K̃ is the thermal conductivity, and the temperature gradient in axial direction is
taken as

∂ T̃
∂ z̃

=
2q′′

ρ̃ c̃pb̃w̃0
,

where q′′ is the wall heat flux.
The bulk mean temperature, denoted by Tm, is determined by the following:

Tm =
2

(c̃2 − ã2)w̃0

∫ c̃

ã
w̃T̃ r̃dr̃.

The dimensionless temperature distribution θ , is a function of the radial coordinate (r̃)

solely, as observed by Nield in [187]. However, the local temperature T̃ varies in axial
and radial directions. Although the mean temperature of the bulk is a function of the axial
coordinate (z̃). The transformed energy equation in non-dimensional form is given by

d2θ

dr2 +
1
r

dθ

dr
+wNu = 0, (4.26)

and the following are the dimensionless boundary conditions:

1. On the outermost layer of the solid core, the temperature is always at the ambient
level, i.e.,

θp = 1 at r = a. (4.27a)

2. The continuity of temperature and temperature gradient are considered at the interface
of porous and non-porous regions, i.e.,

θp = θc at r = 1, (4.27b)
dθp

dr
=

dθc

dr
at r = 1, (4.27c)
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where the subscriepts p and c repersent the porous and clear fluid (non-porous) re-
gions, respectively.

3. The temperature gradient is taken to be zero on the hypothetical cell, i.e.,

dθc

dr
= 0 at r = c. (4.27d)

4.4.1 Solution of Temperature Equation

The dimensionless temperature equation (4.26) can be solved using their respective veloci-
ties for porous and non-porous regions. The exact solutions of temperature in both regions
are obtained as

θp(r) =
1

9216
(
−288Nur2 (3C3

1(η −1)(n−1)S2We2 −8C1 +8(S(C10S−C5 +C6 −C9S)

+We2(−C13 +C14 +S(−C17 +C18 −C21S+C22S))+C2
))

−576C1(η −1)(n−1)

×NuWe2 log2(r)
(
C2

1
(
r2S2 −2

)
−6C1S(C5 +C9S)−6C2

5S2)−12Nur2 log(r)×(
−96C3

1(η −1)(n−1)S2We2 −18C2
1(η −1)(n−1)psr2S2We2 +C1

(
r2S2 ((η −1)

×(n−1)p2
s r2We2 +12

)
+192

)
+12We2 (C13

(
r2S2 +16

)
+16S(C17 +C21S)

)
+192S(C5 +C9S))−9Nur4 (−8S2 (3C1 +We2(3C13 −2C14)−2C2

)
+ ps (3C1×

(η −1)(n−1)S2We2(11C1 −8C2)−16
)
+12(η −1)(n−1)p2

s We2(S(C5 +C9S)

+C1))+4Nupsr6 (S2 ((η −1)(n−1)psWe2(C1 −3C2)+1
)
+(η −1)(n−1)p2

s We2)
+

5
8
(η −1)(n−1)Nup3

s r8S2We2 +9216T12 log(r)
)
+T11, (4.28a)

θc(r) =
Nur2

2304
(
576

(
S(C11S−C12S+C7 −C8)+We2(C15 −C16 +S(C19 −C20 +C23S−C24S))

)
−27(η −1)(n−1)p2

s r2SWe2(C11S+C7)+9C3
(
3p2

s r2We2(η −ηn+n−1)+64
)

−576C4 +(η −1)(n−1)p3
s r4We2 +36psr2)+ 1

8
log(r)

(
−2Nur2 (S(C11S+C7)

+We2(C15 +S(C19 +C23S))+C3
)
+C3(η −1)(n−1)NuWe2 log(r)(3C3S(C11S

+C7)+C2
3 +3C2

7S2)+8T13
)
+T14, (4.28b)

where T11,T12,T13, and T14 are arbitrary constants which can be obtained from boundary
conditions given in equations (4.27a)-(4.27d). The exact expressions of the above constants
are given in Annexure B.
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4.5 Results and Discussion

The theoretical model of non-Newtonian Carreau fluid flowing through membranes con-
sisting of a swarm of porous cylindrical particles has been investigated in the present work.
The configuration of the flow rheology includes a solid cylindrical core enfolded by a porous
layer confined in a cylindrical cell. The non-Newtonian characteristic of Carreau fluid, de-
lineating the shear thinning and thickening behaviour of the liquid, is governed by the non-
linear equations regulating the non-Newtonian fluid flow through porous and non-porous
regions. The Brinkman equation governs fluid flow in the annular porous cylindrical region,
whereas the Stokes equation regulates the flow in the non-porous region. Due to the pres-
ence of a nonlinear velocity gradient term in the stress-strain relationship of Carreau fluid, it
is challenging to cope with the analytical treatment of governing equations of Carreau fluid
through porous and non-porous media. To tide over this complication, the perturbation se-
ries expansion approach involving the Wissenberg number (We≪ 1) and a non-dimensional
quantity (S ≪ 1) in case of the highly permeable porous medium is utilised to obtain the
solution of the Brinkman equation regulating the flow of viscoelastic fluid in the porous
region. The Stokes equation governing the non-porous region is solved using the asymp-
totic series expansion method on the Weissenberg number (We ≪ 1). In order to derive
the solution of the Brinkman equation for the case of small permeability of the porous ma-
terial, the analytical treatment of singularly perturbed Brinkman equation with appropriate
boundary conditions is not feasible due to the presence of boundary layer along with a non-
linear stress-strain relationship. The numerical scheme (NDSolve in Mathematica) for the
boundary value problems (BVPs) is used to demonstrate the results in the form of graphical
analysis and compared with previously published works which is in good agreement with
the present study. The impact of numerous parameters like Wissenberg number, particle
volume fraction, stress-jump parameter, viscosity ratio parameter, and Power-law index on
the membrane permeability, Kozeny constant and temperature profile are discussed in de-
tail. The solution obtained through the asymptotic series expansion for large permeability is
validated with the numerical solution obtained through NDSolve in Mathematica.

4.5.1 Parameter Selection

Most of the parameters used in this analysis were taken from previously published works.
The numerous parameters used in this study have been presented in the tabular form (4.1)
with their respective references to make the results and graphical analysis more visible to
the readers.
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Range of Parameters

Parameters Range Sources

Weissenberg number We 0-0.8 [6]

Steady pressure gradient ps 1-10 [5], [4]

Power-law index n 0.1-2.0 [16], [17]

Permeability k (0,∞) [2], [3]

Nusselt number Nu 2.0-8.0 [7]

Stess-jump parameter β (−1,1) [3], [147], [5]

Viscosity ratio parameter η 0.1-0.4 [18]

Particle volume fraction γ 0.1-1.0 [3], [11]

Table 4.1: Domain of interest for the ongoing parameters with their references

4.5.2 Deduction of Special Cases

1. Carreau Fluid through a Swarm of Fully Solid Cylinders
If the permeability of the porous medium (Darcy number) approaches infinity (k →∞)
for a large Darcy number, then the annular porous layer disappears, and the particle
reduces to the solid cylinder. The membrane permeability of the Carreau fluid flow
through a swarm of solid cylinders is expressed as

L11 =
1
γ3 (γ(0.0045 −0.25γ) log(γ)−0.125375γ

4 +0.50225γ
3 −0.38175γ

2

+0.00375γ +0.001125).
(4.29)

2. Newtonian Fluid Flow through a Swarm of Fully Solid Cylinders
The current study of a flow through a swarm of solid cylinders surrounded by a porous
layer of the thickness (1− l) can also be reduced to a fully solid cylinder by approach-
ing the radius of the solid cylinder to fluid-porous interface (l → 1). This can be
further reduced to the Newtonian fluid model by approaching either the Power-law in-
dex or the viscosity ratio parameter to 1 (n → 1,η → 1) or vanishing the Weissenberg
number (We → 0). The hydrodynamic permeability of the NF flow through a swarm
of solid cylinders is expressed as (Happel’s cell model) [71]

L11 =
−0.125γ2 +0.5γ −0.25log(γ)−0.375

γ
, (4.30)
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which is precisely converges to the study of Deo et al. [3].

4.5.3 Graphical Analysis

The visual observations of the fluid velocity profile, the hydrodynamic permeability of
the membrane, the Kozeny constant, and the temperature have been discussed in terms of
asymptotic and numerical analyses using various porous mediums and the Carreau fluid
rheological parameters.

4.5.3.1 Asymptotic Analysis

The effect of the Carreau fluid parameters on the radially increasing velocity profile is de-
picted in Figure 4.3. It is observed from Figure 4.3a that rising Weissenberg number We
leads to an enhancement in velocity, which is more significant in the porous region. This
can be interpreted as the rising elastic forces compared to viscous forces leading to slightly
higher fluid velocity. Figure 4.3b reveals that growth in the Power-law index parameter
leads to a decay in the fluid velocity. In other words, as the fluid rheology deviates from
shear-thinning to shear-thickening, the fluid velocity decays.
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Figure 4.3: The velocity profile w depending upon the radial distance r with varying (a)
Weissenberg number We (n = 0.2,η = 0.1), (b) Power-law index n (η = 0.1,We = 0.3).
(γ = 0.5,β = 0.4,S = 0.1, ps = 1)

Figures (4.4-4.6) contain a detailed discussion of the hydrodynamic permeability as it
varies with particle volume fraction, stress-jump parameter, and pressure gradient. The vis-
coelastic effect on the hydrodynamic permeability is almost negligible at higher particle
volume fractions γ; however, for low particle volume fractions, this effect is visible, where
we can see a relatively significant increase in the membrane’s hydrodynamic permeabil-
ity L11 with increasing Weissenberg number We (increasing dominance of elastic forces
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over viscous forces) (Figure 4.4a). As the fluid rheology deviates from shear-thinning to
shear thickening, the hydrodynamic permeability significantly reduces at low particle vol-
ume fraction (Figure 4.4b). This indicates that the fluid rheology significantly affects the
swarm’s hydrodynamic permeability L11. Figure 4.4c depicts the influence of the viscosity
ratio parameter η on hydrodynamic permeability, which states that the lower the decay in
the fluid’s dynamic viscosity as it deviates from zero shear rates to infinite shear rate, the
lower will be the value of L11. Further, it is observed a slightly higher decay rate for the
hydrodynamic permeability L11 with the particle volume fraction for large viscosity ratio
parameter η , which signifies that the particle volume fraction will play a relatively more
significant role in exhibiting reduced decay of dynamic viscosity with shear rate.
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Figure 4.4: The hydrodynamic permeability L11 depending upon particle volume fraction
γ with varying (a) Weissenberg number We (β = 0.1,n = 0.1,η = 0.1) (b) Power-law
index n (β = 0.4,We = 0.3,η = 0.1), and (c) viscosity ratio parameter η (n = 0.1,We =
0.3,β = 0.1). (S = 0.1, ps = 1)

The influence of the parameter β on the membrane permeability L11 with varying Car-
reau fluid parameters is depicted in Figure 4.5. The increasing behaviour of the hydrody-
namic permeability with a rising stress-jump coefficient can be seen in Figure 4.5a, where
an increment in the L11 can be observed with the increasing viscoelasticity of the fluid. In
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Figure 4.5b, a decline is observed in the hydrodynamic permeability with increasing Power-
law index n, or we can conclude that the hydrodynamic permeability decreases if we deviate
the nature of fluid from shear-thinning to shear thickening. A slightly higher growth rate
of the hydrodynamic permeability L11 with stress-jump parameter β is reported for shear-
thinning fluid. A slight decay in the hydrodynamic permeability L11 with the increasing
viscosity ratio parameter η is reported in Figure 4.5c as the flow is entirely regulated by the
pressure, it is interesting to observe that the effect of pressure gradient on the hydrodynamic
permeability.
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Figure 4.5: The hydrodynamic permeability L11 depending upon stress-jump parameter
β with varying (a) Weissenberg number We (γ = 0.5,n= 0.5,η = 0.1) and (b) Power-law
index n (γ = 0.5,We = 0.3,η = 0.1), and (c) viscosity ratio parameter η (n = 0.5,We =
0.3,γ = 0.5). (S = 0.1, ps = 1)

The increased pressure gradient increases the velocity of the fluid and thus the flow rate,
which increases the hydrodynamic permeability, as evident in Figure 4.6a. The dominance
of elastic forces leads to a pressure gradient significantly affecting the hydrodynamic perme-
ability of the membrane. The membrane’s permeability changes its behaviour and is reduced
with increasing pressure gradient when the rheology of fluid shifts from shear thinning to
shear thickening (Figure 4.6b).
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Figure 4.6: The hydrodynamic permeability L11 depending upon pressure gradient ps

with varying (a) Weissenberg number We (γ = 0.5,n = 0.5,η = 0.1), and (b) Power-law
index n (γ = 0.5,We = 0.4,η = 0.1). (S = 0.1,β = 0.4)

The Kozeny constant Kz incorporates the impacts of the flow path (i.e., tortuosity), par-
ticle form, and their interactions, and it can be considered directly proportional to tortuosity
(Ozgumus et al. [181]). So, it will be interesting to see how fluid rheological parameters af-
fect the tortuosity through Kz. Figure 4.7 depicts the behaviour of tortuosity concerning the
porosity of the membrane for different parameters. The plot of Kz with the porosity ε of the
membrane reveals that increasing porosity contributes to an enhancement in Kz. According
to Figure 4.7a, Kz reduces with increasing value of the viscoelastic parameter We, and these
variations in the Kozeny constant with the fluid’s rheological parameters are more signifi-
cant for the medium of high porosity. The deviation of fluid’s nature from shear thinning
to shear thickening or increasing Power-law parameter n enhances the Kozeny constant Kz

(Figure 4.7b). The increasing viscosity ratio parameter η causes an increase in the Kozeny
constant, indicating an increase in the system’s tortuosity for an increasing η (Figure 4.7c).
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Figure 4.7: The Kozeny constant Kz depending upon the porosity ε with varying (a)
Weissenberg number We (γ = 0.1,n = 0.1,η = 0.1) and (b) Power-law index n (γ =
0.2,We = 0.3,η = 0.1), and (c) viscosity ratio parameter η (n = 0.1,We = 0.5,β = 0.1).
(S = 0.1, ps = 1,β = 0.1)

Figure 4.8 displays the Kozeny constant variation with the stress-jump parameter β ,
where the increasing stress-jump parameter leads to decay in the Kozeny constant. The
Kozeny constant declines as the Carreau fluid’s viscoelastic effect grows in terms of the
Weissenberg number We (Figure 4.8a). Further, a slightly higher decay rate in Kz with
parameter β is observed with increasing the Weissenberg number We. An increase in tor-
tuosity of the porous material is observed in Figure 4.8b as the fluid rheology shift towards
the shear-thickening nature. The behaviour of tortuosity for the viscosity ratio parameter is
similar to that of the Power-law index. However, it has a lesser effect in this case (Figure
4.8c).
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Figure 4.8: The Kozeny constant Kz depending upon the stress-jump parameter β with
varying (a) Weissenberg number We (n = 0.1,η = 0.1) and (b) Power-law index n (We =
0.3,η = 0.1), and (c) viscosity ratio parameter η (n = 0.1,We = 0.3). (S = 0.1, ps =
1,γ = 0.5,ε = 0.5)

Variation of temperature in the porous and non-porous region and its dependence on
fluid rheology has been discussed in Figures 4.9, 4.10 , and 4.11. It is observed that the
temperature variation follows a parabolic profile and increases along the radial direction as
we approach the hypothetical cell. For large permeability rising Nusselt number Nu leads to
growth in temperature, signifying that the temperature rises as the flow is dominated by con-
vection (Figure 4.9a). Further, a deviation from shear thinning to shear thickening behaviour
(increasing n) of fluid leads to a significant decay in temperature (Figure 4.9b). Figure 4.10a
shows that the temperature profile rises as the Weissenberg number rises, implying that the
increasing dominance of elastic forces causes an increase in the fluid’s temperature, with
the effect being more pronounced in the non-porous region. Figure 4.10b interprets the tem-
perature decrease caused by a lesser decline in dynamic viscosity with increasing shear rate
(increasing η). The stress-jump parameter involved in the temperature equation through
velocity of the Carreau fluid. The effect of stress jump parameter for large permeability of
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the porous material on temperature profile through velocity of the Carreau fluid is demon-
strated in (Figure 4.11). Although the temperature and its gradient follows continuity at the
fluid porous interface, the effect of the stress jump parameter beta on thermal profile comes
through the convective term present in the temperature equation (4.25). An increased stress
jump at the interface between porous and non-porous regions results in temperature growth.
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Figure 4.9: Variation of temperature θ with radial distance r for different values of (a)
Nusselt number Nu (n = η = 0.1,We = 0.4,β = 0.1,γ = 0.53) and (b) Power-law index
n (η = 0.1,We = 0.4,β = 0.4,γ = 0.5,Nu = 4.0). (S = 0.1, ps = 1)
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Figure 4.10: Variation of temperature θ with radial distance r for different values of (a)
Weissenberg number We (n = 0.2,η = 0.01) and (b) viscosity ratio parameter η (We =
0.4,n = 0.05). (γ = 0.5,S = 0.1, ps = 1,Nu = 4,β = 0.4)



4.5. Results and Discussion 127

k=100
β=-0.5
β=0.0
β=0.5

0.6 0.8 1.0 1.2 1.4
1.0

1.5

2.0

2.5

r

θ

Figure 4.11: Variation of temperature θ with radial distance r for different values of (a)
Weissenberg number We (n = 0.2,η = 0.01) and (b) viscosity ratio parameter η (We =
0.4,n = 0.05). (γ = 0.5,S = 0.1, ps = 1,Nu = 4,β = 0.4)

4.5.3.2 Numerical Analysis

In order to discuss the flow of viscoelastic fluid through the membrane for the case of low
permeability, the governing equations are solved numerically using the NDSolve in MATH-
EMATICA software 10.3. The graphical analysis examines the effect of Carreau fluid and
porous medium parameters on velocity, hydrodynamic permeability, Kozeny constant and
temperature. Figure 4.12 shows that the fluid velocity increases with radial distance in both
porous and non-porous regions. At the same time, the non-smoothness at the fluid-porous
interface is observed due to the boundary condition of Ochoa-Tapia and Whitaker at the
interface. Figure 4.12a shows that for the shear-thickening fluid, a reduction in the fluid ve-
locity is reported with the Weissenberg number, indicating that velocity decreases due to the
increasing dominance of elastic forces over inertial forces.For reduced decay of dynamic
viscosity with shear rate (η increases), the fluid velocity increases and assumes the most
significant value for Newtonian fluid (Figure 4.12b).

Figures 4.13 illustrates the reliance of the hydrodynamic permeability L11 on the fluid’s
rheological parameters and the particle volume fraction γ of the membrane built up by
porous cylindrical particles. The value of L11 declines as the cylindrical particles of the
swarm occupies more space in the system’s volume (γ increases). One can observe the gain
in hydrodynamic permeability L11 as the dominance of elastic forces over the viscous forces
increases. This effect is more substantial for lower values of particle volume fraction γ but
is almost negligible for more significant particle volume fraction (γ > 0.4).
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Figure 4.12: The velocity profile w depending upon the radial distance r with varying
(a) Weissenberg number We (n = 2,η = 0.1,β = 0.4) and (b) viscosity ratio parameter
η (n = 2,We = 0.3,β = 0.45). (γ = 0.5,S = 100, ps = 1)
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Figure 4.13: The hydrodynamic permeability L11 depending upon particle volume frac-
tion γ with varying Weissenberg number We (β = 0.1,n= 0.1,η = 0.1). (S= 100, ps = 1)

The hydrodynamic permeability L11 increases with the parameter β , and its rate of in-
crease enhances with the stress jump parameter β . (Figure 4.14) reveals a more substantial
impact of the stress jump parameter on the hydrodynamic permeability for shear-thinning
fluids. Also, like the case of large permeability here, L11 increases with β . Figures 4.15
and 4.16 depict the dependence of the Kozeny constant on the porosity and the stress-jump
parameter, respectively. It can analyze the impact of these parameters on the tortuosity,
particle form, and their interactions.
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Figure 4.14: The hydrodynamic permeability L11 depending upon stress-jump parameter
β with varying Power law index n (γ = 0.8,We = 0.5,η = 0.1). (S = 100, ps = 1)
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Figure 4.15: The Kozeny constant Kz depending upon the porosity ε with varying (a)
Weissenberg number We (n = 0.1,η = 0.1,γ = 0.1) and (b) Power-law index n (We =
0.5,η = 0.1,γ = 0.2), and (c) viscosity ratio parameter η (We = 0.5,n = 0.1,γ = 0.2).
(S = 100, ps = 1,β = 0.1)

An increase in the membrane’s porosity leads to a rise in the Kozeny constant, similar
to the case of large permeability. For large porosity, a significant decay in the Kozeny
constant can be observed for the increasing visco-elasticity of the fluid (Figures 4.15a). At
the same time, it is almost negligible for low porosity (the inset of the cited figure shows
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the variation at the third decimal place), which indicates that increasing dominance of the
viscoelastic effect leads to decay in the Kozeny constant for flow through a medium with
high porosity. Growth in the Kozeny constant can be seen for the increased Power-law
index and viscosity ratio parameter in Figures 4.15b and 4.15c, respectively, which defines
the tortuosity growth concerning these parameters. A decay in the Kozeny constant with
rising stress jump parameter β can be seen in figure 4.16, where the decay rate is dependent
on the fluid rheology, making it maximum for shear-thinning fluids.
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Figure 4.16: The Kozeny constant Kz depending upon the stress-jump parameter β with
varying Power law index n (We = 0.5,η = 0.1). (S = 100, ps = 1,γ = 0.5,ε = 0.5)

The effect of the properties of the porous layer materials and fluid’s rheological param-
eters on the temperature is discussed in figures 4.17 - 4.18. The temperature increases in
the flow as we move towards the hypothetical cell, which agrees with the case of large per-
meability. However, the growth rate in a clear fluid medium is less significant than in the
porous layer. The enhancement of heat transfer by convection over conduction (increas-
ing Nu) leads to an increase in the resulting temperature profile (Figure 4.17a). Suppose
we enhance the non-Newtonian characteristics of the shear-thinning fluid by increasing the
Weissenberg number. In that case, it results in the reduction of the temperature of the fluid
(Figure 4.17b). A slight increase in the fluid’s temperature profile with the viscosity ratio
parameter can be observed in Figure 4.18a. An interesting observation from Figure 4.18b
is that the stress jump significantly impacts the temperature profile where the temperature
profile’s growth rate is higher for positive values of stress jump parameter.

Tables 2a and 2b compare the effect of the permeability k on the Kozeny constant and the
hydrodynamic permeability of a membrane composed of a swarm of porous cylindrical par-
ticles for different values of Weissenberg number and Power-law index. The hydrodynamic
permeability increases with the permeability k, and its variation is more effective for small
Darcy numbers than large k. Growth in the hydrodynamic permeability with the increas-
ing viscoelasticity of the Carreau fluid can be seen in Table 2a. Further, L11 decays as the
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k
y hydrodynamic permeability (L11)

We = 0.1 We = 0.3 We = 0.4 n = 0.1 n = 1.0 n = 2.0

k = 0.01 0.077938 0.078182 0.078399 0.078182 0.077908 0.077612

k = 0.1 0.225969 0.227166 0.228217 0.227166 0.225819 0.224368

k = 1.0 0.391851 0.406832 0.421302 0.406832 0.390087 0.375446

k = 2.0 0.407250 0.425671 0.444007 0.425671 0.405117 0.387867

k = 3.0 0.411903 0.431537 0.451297 0.431537 0.409642 0.391525

k = 4.0 0.413956 0.434169 0.454623 0.434169 0.411636 0.393116

k = 5.0 0.415035 0.435570 0.456416 0.435570 0.412681 0.393940

k = 7.0 0.416041 0.436902 0.458151 0.436902 0.413654 0.394694

k = 10.0 0.416540 0.437595 0.459085 0.437595 0.414134 0.395050

(a)

k
y Kozeny constant (Kz)

We = 0.1 We = 0.3 We = 0.5 n = 0.1 n = 1.0 n = 2.0

k = 0.01 1.603850 1.598830 1.588670 1.603850 1.604460 1.605160

k = 0.1 0.553174 0.550257 0.544497 0.553174 0.553540 0.553946

k = 1.0 0.318998 0.307252 0.282853 0.318998 0.320441 0.322011

k = 2.0 0.306937 0.293654 0.265339 0.306937 0.308553 0.310305

k = 3.0 0.303470 0.2896630 0.259931 0.303470 0.305144 0.306957

k = 4.0 0.301964 0.287906 0.257479 0.301964 0.303666 0.305508

k = 5.0 0.301180 0.286980 0.256153 0.301180 0.302897 0.304755

k = 7.0 0.300451 0.286105 0.254857 0.300451 0.302185 0.304059

k = 10.0 0.300091 0.285653 0.254134 0.300091 0.301834 0.303719

(b)

Table 4.2: Variation of Permeability k on (a) the membrane permeability L11 and (b)
Kozeny constant Kz of the porous medium under different values of Weissenberg number
We, and Power-law index n. (l = ε = 0.5,γ = 0.5, ps = 1,β = 0.1,η = 0.1)
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Figure 4.17: Variation of temperature (θ ) with radial distance (r) for different values of
(a) Nusselt number Nu (n= 0.1,η = 0.1,β = 0.1,We= 0.5) and (b) Weissenberg number
We (η = 0.1,n = 2,β = 0.4,Nu = 4.0). (γ = 0.444,S = 100, ps = 1)
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Figure 4.18: Variation of temperature θ with radial distance r for different values of (a)
viscosity ratio parameter η (We = 0.5,n = 2,β = 0.4) and (b) Stress-jump parameter β .
(We = 0.5,Nu = 4.0,n = 0.05,η = 0.01,γ = 0.444, ps = 1)

fluid rheology shifts from shear thinning to shear thickening. According to the observa-
tions in Table 2b, one can conclude that the variation in the Kozeny constant will become
less significant for a more permeable porous medium. It decays with the increasing dom-
inance of elastic forces over viscous forces, while growth is observed with the increasing
shear-thickening effects of the Carreau fluid.

As a limiting case(a → 1,k → ∞), the current model (solid cylindrical particle sur-
rounded by a porous annular layer of thickness (1 − l)) is reduced to a perfectly solid
cylinder in a cell. A graphical representation of the hydrodynamic permeability of Car-
reau fluid passing in an aggregate of perfectly solid cylinders is shown in Figure 4.19a. A
novel expression for the same is already mentioned in the equation (4.29). It is depicted
in Figure 4.19b that a limiting case of the present model (Newtonian fluid passing in an
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aggregate of perfectly solid cylinders) is in perfect agreement with the published work of
Deo et al.. The equation (4.30) provides an analytical expression of L11 for the same. Fig-
ure 4.19a will also include a comparison of non-Newtonian characteristics (shear-thinning
and shear-thickening) with the above-limiting case of a Newtonian fluid. It can be depicted
from Figure 4.19 that the hydrodynamic permeability of the shear-thinning fluid is higher
in comparison to the Newtonian fluid, while it is lower in the case of the shear-thickening
fluid.
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Figure 4.19: (a) The hydrodynamic permeability L11 depending on particle volume frac-
tion γ for the case of fully solid cylindrical particle, and (b) Validation of hydrodynamic
permeability L11 of currunt work with the work of Deo et al. [3].

A graphical comparison of Carreau and Newtonian fluid for both small and large perme-
ability cases are performed in Figure 4.20a. The hydrodynamic permeability of the Carreau
fluid is found to be greater in both cases than that of the Newtonian fluid. The difference
in the membrane permeability of the shear-thinning Carreau and Newtonian fluid is more
significant in the case of large permeability; however, it decreases as we reduce the perme-
ability. It is also observed that the difference in L11 for the Carreau fluid and Newtonian
fluid diminishes for a higher particle volume fraction. One can conclude that the medium’s
permeability considerably impacts the flow and its characteristics. The asymptotic solution
in the case of large permeability is validated by comparing it with the numerical solution,
and Figure 4.20b illustrates the same by graphically comparing the two solutions. It can
be observed from Figure 4.20b that the asymptotic solution is in good agreement with the
numerical solution. At the same time, the difference can be seen in the inset box, which is
up to the third decimal place.
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Figure 4.20: (a) The hydrodynamic permeability L11 depending on particle volume frac-
tion γ for the case of fully solid cylindrical particle, and (b) Validation of hydrodynamic
permeability L11 of currunt work with the work of Deo et al. [3].

4.6 Summary and Conclusions

A study of the non-Newtonian rheology of the Carreau fluid flowing through membranes
consisting of a cluster of cylindrical particles with a porous layer has been demonstrated
owing to its significant impact on the filtration process of viscoelastic fluids. A particle has
been selected from the swarm involving a cluster of identical cylindrical particles to analyse
the flow of Carreau fluid through membranes using the particle-in-cell method. The bound-
ary condition has been applied on the cell surface to include the influence of neighbouring
particles using the particle-in-cell approach. The layout of the proposed study includes a
porous cylindrical layer overlying the solid cylindrical core with a circular cross-section
and a non-porous layer enclosing the porous layer. The Brinkman and Stokes equations
have been used to formulate the governing equations regulating the flow through porous and
non-porous media. The Brinkman and Stokes equations are nonlinear due to the presence of
the nonlinear stress-strain relation of the Carreau fluid. This makes analytical solutions of
the governing equations difficult to be obtained. Hence, the perturbation series expansion in
terms of small parameters (We ≪ 1 and S ≪ 1) has been applied to derive the expressions
of a velocity profile for different regions, which was then used to obtain the analytical ex-
pressions for the hydrodynamical quantities like flow rate, membrane permeability, Kozeny
constant and the thermal quantities like temperature profile. The computations reveal that
the Carreau fluid and porous layer parameters affect the hydrodynamical quantities and tem-
perature profile. The impact of numerous control parameters on the hydrodynamical quanti-
ties and temperature profile are graphically analysed. The results of the limiting cases of the
previously published works were deduced to validate the present work. The present study
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reveals that the fluid’s shear-thining and shear-thickening behaviour significantly influences
the medium’s membrane permeability and tortuosity.
The following prominent outcomes of the proposed work are pointed out below:

1. The Carreau fluid’s rheological parameters significantly impact the hydrodynamic
permeability. In a highly permeable porous medium, the hydrodynamic permeabil-
ity increases with the fluid’s viscoelasticity; however, it decreases as the rheology
shifts from shear thinning to shear thickening. In the case of small permeability, the
impact of viscoelasticity is the same as that of large permeability for shear-thinning;
however, it becomes the opposite for shear thickening.

2. For both large and small permeability cases, the Kozeny constant or the tortuosity of
the system increases with the medium’s porosity. It gets a lesser value for the rising
viscoelastic property of Carreau fluid, while it gains as the fluid rheology shifts from
shear thinning to shear thickening.

3. The fluid temperature also exhibits different behaviours concerning the Carreau fluid
parameters in the cases of small and large permeability. A higher viscoelastic fluid
causes a temperature increase in the case of a large permeability, whereas a small
permeability has the opposite effect for shear-thickening fluids.

4. For large permeability, the fluid temperature shows decay with rising η , however, for
small permeability, an opposite behaviour is observed for shear thickening fluids.

The findings of the present work may be instrumented in analysing various physical and
biological processes, including petroleum reservoir rocks, wastewater treatment filtration
processes, and blood flow through smooth muscle cells. The following work, however,
requires experimental verification.
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Chapter 5

Analytical Study of the Effect of Complex Fluid
Rheology and Membrane Parameters on Heat Trans-
fer in Fluid Flow through a Swarm of Cylindrical
Particles 1

5.1 Introduction

The membrane filtration processes, or the flow of liquids through a swarm of particles, are
emerging subject for researchers owing to the broad engineering and science research do-
main. The understanding of crucial physical and biological applications, such as filtration
processes in wastewater treatment, petroleum reservoir rocks, and the flow of blood through
smooth muscle cells, is evident through the noteworthy contributions of these fluid flow pro-
cesses [143]. The movement of liquids is influenced not only by the pressure and mechanical
characteristics of the medium, but also by its mechanical properties. Various factors, includ-
ing the shape and size of tubes or conduits, as well as the behavior of fluids and mediums,
contribute to the fluid circulation process. Studying the flow of fluids within a material
composed of pores and solid particles, known as a porous medium, is crucial and serves as
a compelling driving force for current research efforts. Fluid flow through porous materi-
als has diverse applications, including but not limited to pharmaceutical fields, petroleum
reservoir rocks, filtration processes in wastewater treatment, blood circulation through the
lungs, and the design of the digestive system. Tiwari and Deo [2] have focused on examin-
ing the movement of Newtonian fluid through porous materials. Their findings indicate that
a decrease in pore size leads to a reduction in the permeability of the material, resulting in
increased obstruction to the fluid flow process.

1A considerable part of this chapter is accepted in International Communications of Heat and Mass Trans-
fer, 2024
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The preceding research has explored the movement of liquid through a porous tube or
conduit. However, emphasizing the movement of fluid through a collection of particles is
crucial, given its various applications in processes like membrane filtration, sand bed flow,
and petroleum reservoirs. Discussing the theoretical role and contributions of each particle
within a swarm poses a challenge. To address this, the particle-in-cell model is utilized to
isolate a single particle within the swarm. This enables the examination of the contributions
and effects of each particle in the fluid flowing through the swarm. Additionally, a bound-
ary condition on a hypothetical cell surface is applied to illustrate the role of neighboring
particles.

The porous configuration on the exterior of the inflexible cylindrical particle, resulting
from polymer dissolution and adsorption, initiates stimulation. This stratum carries signifi-
cance for the membrane’s overall permeability. Deo et al. studied a membrane of concentric
clusters of porous cylindrical particles [145] for the low Reynolds number and viscous fluid
flow using the unit cell model approach by considering Happel’s free surface model. Deo
at al. [3] analyzed Newtonian fluid past a swarm of cylinders by taking the flow in parallel
as well as perpendicular directions. Sharif et al. [146] and Khanukaeva et al. ([96], [95])
also investigated both parallel and perpendicular flow past through a swarm of cylinders to
gain an understanding of the micro-level properties of fluid flow. Sucharitha et al. [188]
investigated the peristaltic flow past differently shaped porous channels and analyzed wall
flexibility and Joule heating effect on the velocity, concentration, and energy.

The particle-in-cell method was used in all the above described investigations to study
the flow of fluids through a group of single-layered porous cylindrical particles. However,
Yadav et al. [189] and Deo et al. [190] investigated the hydrodynamic permeability of a bi-
porous membrane comprising porous cylindrical particles embedded within another porous
medium, utilizing cell model methodologies. The governing equations for fluid flow through
a biporous layered cylindrical particle are formulated based on the Brinkman equations.
They have taken into account constant permeabilities for different porous regions.

The preceding discussion focuses on the analysis of creeping flow passing through a
swarm of single or biporous layered cylindrical particles, employing both Newtonian and
polar fluids. However, the membrane filtration process relies significantly on the non-
Newtonian behavior of the fluid. Bhandari et al. [191] presented a model aimed at examin-
ing the pumping and flow attributes arising from wall contraction, encompassing both prop-
agative and non-propagative elements. Furthermore, they examined the impact of the couple
stress parameter by employing a fluid model that integrates couple stress effects. Recently,
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extensive research has been conducted by employing the Carreau and Carreau–Yasuda mod-
els to characterize non-Newtonian fluids. The Carreau fluid model stands out for its straight-
forward mathematical treatment. A notable advantage of the Carreau–Yasuda fluid model,
compared to other non-Newtonian models, is its inclusion of five parameters, enabling a
comprehensive interpretation of fluid rheology. This five-parameter model offers ample
flexibility to effectively match a diverse range of experimental apparent viscosity curves
and has demonstrated its utility in the field of hemodynamics [18]. This model elucidates
the variation in fluid viscosity across low to high shear rate ranges and additionally charac-
terizes the fluid’s shear-thinning behavior, contributing to its recent surge in popularity. The
aim of incorporating the non-Newtonian Carreau-Yasuda fluid into the membrane filtration
process is to explore its non-Newtonian rheological effects on various hydrodynamic and
thermal quantities such as velocity, membrane permeability, temperature and the Kozeny
constant. The discussion of analytical and asymptotic solutions for the flow of Carreau-
Yasuda fluid through a porous medium is pending, primarily because of the nonlinear and
complex relationship between shear stress and the rate of strain.

When fluid inertia is significant, the form drag exerted by the fluid on the solid object
becomes appreciable. Vafai and Tien ([192], [193]) formulated a comprehensive model for
the transport of flow in porous media, taking into account various pertinent effects. The
extensive model under consideration incorporates convective terms and is widely referred
to as the Brinkman–Forchheimer–Darcy equation, whether in its complete formulation or
a simplified variant. Research utilizing this model, especially in the realm of biological
studies concerning tissue media near the aortas or in high-perfusion skeletal tissues, is lim-
ited. The comprehensive examination of the Brinkman-Forchheimer equation, including
considerations for heat transfer, can be found in the studies conducted by Khaled and Vafai
[168]. Hooman and Gurgency ([7], [8]) chose the Brinkman-Forchheimer model for its
broadened application beyond the Darcy model. Chauhan et al. [194] discussed the impact
of heat transfer and Forchheimer parameters on fluid flow quantities and the Fahraeus effect
in physiological fluid flow.

After reviewing through all of the aforementioned works for a constant permeability
model, the porous material’s permeability might not stay constant because of contaminants
and impurities. The radially-varying permeability of a tube filled with Casson fluid was in-
vestigated in 1996 by Dash et al. [165]. They utilized the Brinkmann model to incorporate
the impact of resistance induced by the porous medium. A critical finding from Srivastava
and Deo’s study [24] is that pollutants and impurities can change a porous material’s per-
meability. Their analysis took into account the permeability’s variable nature, which was
modeled as a quadratic function of a radial variable. In addition, a thorough stability study
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was carried out by Hill and Morad [195] to investigate how mass transport is affected by
an anisotropic porous medium when a first-order bulk chemical reaction is present. In or-
der to examine flow in a non-uniform porous media, Veerapaneni and Wiesner [84] divided
the spherical porous aggregate into n spherical shells, each of which had a fixed but unique
permeability. They looked into permeability’s continuous dependence on radial distance in
more detail, drawing on several earlier models. According to the aforementioned research,
the variable aspect of permeability in membrane filtration has not been addressed, despite its
potential significance in determining membrane permeability within the filtration process.

The utilization of the particle-in-cell approach to examine the flow characteristics of
Carreau-Yasuda fluid through aggregations of biporous layered cylindrical particles in a
membrane has not been previously addressed. Based on the earlier discussions, it is noted
that the permeability of the porous medium may vary due to the presence of impurities and
contaminants in both the fluid and the medium. However, the discussion has not addressed
the influence of variable permeability on the flow of fluid through the membrane. Exam-
ining varying permeability across distinct porous regions draws attention to illustrating the
prevalence of one porous layer over another and vice versa. An intriguing finding from prior
research is that the majority of studies on membrane filtration processes have employed ei-
ther the Brinkman equation or the Brinkman-Forchheimer equation. Nevertheless, when
accounting for fluid inertia, the Brinkman-Forchheimer equation proves to be more suitable
for consideration in proximity to the solid core of the cylindrical particle. The fluctuation in
temperature within the passage of a non-Newtonian Carreau-Yasuda fluid through a collec-
tion of biporous layered cylindrical particles has not been addressed.

This study aims to explore the flow behavior of a non-Newtonian Carreau-Yasuda fluid
through a membrane composed of biporous layered cylindrical particles, each with differ-
ent permeabilities. The widely adopted particle-in-cell approach has been utilized to derive
mathematical equations that replicate the continuity, momentum, and temperature equations.
The structure of the proposed research is intended to be such that a porous area near the solid
core of cylindrical particles follows the Brinkman-Forchheimer equation with varying per-
meability. Additionally, an intermediate porous region covering the Brinkman-Forchheimer
region is controlled by the Brinkman equation with variable permeability. To demonstrates
the behaviour of the neighbouring particles, a hypothetical cell surface is considered to
mimic the partcles interaction in membrane. The peripheral non-porous region proximate to
the hypothetical cell is regulated by Stokes equation. The quadratic polynomial form of dif-
ferent variable permeabilities for different porous mediums are considered to demonstrates
the dominance of one porous medium over other and vice versa. The equations regulating
the Brinkman-Forchheimer, Brinkman porous regions and a non-porous region adjacent to
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the hypothetical cell surface are nonlinear and difficult to obtain the analytical expressions.
To deal with this hurdle, the empirical regular perturbation method has been employed to
obtain the asymptotic expressions of velocity for large permeability and small Weissenberg
number. However, a numerical scheme (NDSolve) in Mathematica is used to illustrates the
graphical analysis of the mathematical equations for small permeability and Weissenberg
number. The purpose of this research is to explore the membrane filtration processes, taking
into account non-Newtonian fluid models, in order to comprehend the various physiological
or industrial mechanisms at play.

When adopting the particle-in-cell model approach, the structure of the proposed work
is divided into five sections. Section 1 presents fundamental details about the proposed
model, including a literature review, identification of gaps in existing research, and the ob-
jectives of the current study. In Section 2, the physical mechanism of the proposed work
is translated into mathematical equations, utilizing the statements and assumptions outlined
in the proposed model. Section 3 outlines the solution techniques for the governing equa-
tions, presenting their asymptotic expansions in relation to constants that can be determined
through appropriate boundary conditions. Graphical analysis is employed to examine the
mathematical equations, and a thorough discussion of the results of the current study is pre-
sented in Section 4. The noteworthy results of the current study are discussed in section 5,
accompanied by a summary of the proposed work.
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5.2 Problem Formulation

5.2.1 Statement of the Problem and Model Assumptions

The present work explores the flow of a Carreau-Yasuda fluid through a collection of bi-
porous layered cylindrical particles under heat transfer approach. The flow of fluid through
biporous layered cylindrical particles within the swarm is analysed using the particle-in-
cell approach, and an examination of the hypothetical cell surface condition is conducted to
investigate the collective behavior of the cylindrical particles in a swarm. The model’s struc-
ture is designed so that the Brinkman-Forchheimer region near the solid core of the cylindri-
cal particle follows the Brinkman-Forchheimer equation. Simultaneously, an intermediate
concentric Brinkman region surrounding the Brinkman-Forchheimer region is governed by
the Brinkman equation. The Stokes equation governs a peripheral region encompassing both
the Brinkman-Forchheimer and Brinkman regions.

1. The flow is regarded as 1-D steady, incompressible, laminar, symmetrical about the
cylindrical tube’s axis, and fully developed.

2. To realistically model the unidirectional flow of Carreau-Yasuda fluid through a swarm
of biporous layered cylindrical particle, the governing equations are formulated using
the cylindrical polar coordinate system (r̃,φ , z̃). The velocity components in cylindri-
cal polar coordinates according to the proposed model are (0,0, w̃(r̃)).

3. The Reynolds number is deemed to be quite low, signifying a prevalence of viscous
forces over inertial forces. This leads to the convective term making an insignificant
contribution, and as such, it is omitted in the present investigation.

4. The stress–strain relationship for Carreau-Yasuda fluid under the assumption of low
shear rate λ

(
∂ w̃
∂ r̃

)
< 1 is incorporated into the momentum equation for both porous

and non-porous regions. By applying this assumption λ

(
∂ w̃
∂ r̃

)
< 1 and using a first-

order binomial series expansion, the shear stress expressions for both porous and non-
porous regions are derived.

5. The permeability in porous regions is modelled as a quadratic polynomial of radial
distance to showcase the prevalence of either the Forchheimer porous region or the
Brinkman porous region.

6. The thermal equations under steady-state conditions are simplified when heat con-
duction is the primary mechanism, causing the convective term to be negligible. The
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analysis of the temperature profile incorporates the effects of viscoelastic rheology,
porous medium, and heat transfer parameters, considering the heat flux and viscous
dissipation.

Flow Direction

(a)

Porous Region I Clear Fluid Region

Hypothetical CellPorous Region II

Solid
Cylindrical

Particle

(b)

Figure 5.1: (a) The portrayal of the movement along the central axis of a collection of
biporous layered solid cylinders within a membrane and (b) the circular cross-sectional
perspective depicts a swarm composed of a solid cylindrical particle enveloped by bi-
porous layers contained within a hypothetical cell
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5.2.2 Model Description

The visual depiction presented in Figure 1 illustrates the conceptual design of the proposed
project, showcasing a membrane consisting of a collection of biporous layered cylindrical
particles along with its cross-sectional perspective. The three different regions of the present
study is taken into consideration in such a procedure that the porous region- I adjacent to the
solid core of the cylindrical particle is regulated by Brinkman-Forchheimer equation under
the quadratic polynomial form of the variable permeability, and a concentric porous region-
II is governed by Brinkman equation under the quadratic polynomial form of the variable
permeability. The peripheral non-porous region proximate to the hypothetical cell surface
is regulated by the Stokes equation. The selected thickness of the presumed cell within a
porous cylindrical particle is adjusted to match the volume fraction of the particles within
the assembly to that of the cell, i.e., d2 = 1

γ
= π d̃2

π c̃2 , where γ is the particle valume fraction.

z̃

r̃

ã
b̃̃b

c̃̃c

d̃
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eti
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l C

ell

Porous Region IPorous Region I

Porous Region IIPorous Region II

φ

w̃r̃

w̃φ

w̃z̃

z̃

r̃

ã

φ

Figure 5.2: The solid core of a cylindrical particle, coated with a swarm and situated
within biporous layers, is depicted in the cross-sectional view with nomenclature

5.2.3 Governing Equations

With the aim of formulating the proposed physical model into the mathematical equations,
the continuity, momentum and energy equations control the flow of fluid through a swarm
of cylindrical particles. As per the intention of particle-in-cell model approach, a biporous
layered cylindrical particle from a swarm is considered to analyze the flow of fluid through
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a swarm of particle using a boundary condition on the hypotheical cell surface. Following
the above hypotheses under variable permeability assumption, the equations govern the flow
through the biporous layered cylindrical particle are as follows ([18], [7], [24], [137]):
Porous Region- I, i.e., ã ≤ r̃ ≤ b̃

∂ w̃ f

∂ z̃
= 0, (5.1a)

∂ p̃
∂ r̃

= 0, (5.1b)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃

(
r̃τ̃ f
)
−

µ̃0w̃ f

k̃ f (r)
−

C̃F ρ̃w̃2
f√

k̃ f (r)
, (5.1c)

where the parameters w̃ f and τ̃ f represent the flow parameters characterizing the axial ve-
locity and shear stress within the fluid region governed by Brinkman-Forchheimer equation,
while p̃, ρ̃ , and µ̃0 correspond to the pressure, density, and zero shear-rate viscosity of the
Carreau-Yasuda fluid, respectively, the Brinkman-Forchheimer porous region parameters

are C̃F and k̃ f (r) = k̃
(

1− ε f

(
r̃
c̃

)2
)

delineating the inertial coefficient and the quadratic

polynomial form of the variable nature of permeability, respectively, where k̃ and ε f are the
permeability of the porous medium and variable permeability parameter [24]. The equation
(5.1a) represents the continuity equation, while (5.1b) expresses the momentum equation
in the radial direction. Additionally, equation (5.1c) pertains to the momentum equation in
axial direction within the Brinkman-Forchheimer region, considering variable permeability.
The expression describing the relationship between stress and strain for a Carreau-Yasuda
fluid, expressed in relation to the velocity within the Forchheimer region, is provided by
[18]

τ̃ f =

[
µ̃∞ +(µ̃0 − µ̃∞)

(
1+
(

λ
∂ w̃ f

∂ r̃

)a1
) n−1

a1

]
∂ w̃ f

∂ r̃
, (5.1d)

where the Carreau-Yasuda fluid is distinguished by its parameters µ̃∞,λ ,n, and a1. These pa-
rameters respectively represent the infinite shear-rate viscosity, a time constant, the Power-
law exponent indicating shear-thinning and thickening tendencies of the fluid, and the Ya-
suda parameter signifying the transition between the zero shear rate region and the Power-
law region.
Porous Region- II, i.e., b̃ ≤ r̃ ≤ c̃

∂ w̃b

∂ z̃
= 0, (5.2a)
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∂ p̃
∂ r̃

= 0, (5.2b)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃
(r̃τ̃b)−

µ̃0w̃b

k̃b(r)
, (5.2c)

where w̃b, τ̃b are the flow parameters delineating the velocity and shear stress of the Carreau-
Yasuda fluid in the Brinman porous region, respectively; the variable nautre of permeability

for Brinkman region k̃b(r) = k̃
(

1− εb

(
r̃
c̃

)2
)

, where k̃ is the permeability constant of the

porous medium and εb is the variable permeability parameter for Brinkman porous region
[24].
The expression describing the stress-strain relationship of a Carreau-Yasuda fluid with Brinkman
region velocity can be expressed as follows [18]:

τ̃b =

[
µ̃∞ +(µ̃0 − µ̃∞)

(
1+
(

λ
∂ w̃b

∂ r̃

)a1
) n−1

a1

]
∂ w̃b

∂ r̃
. (5.2d)

Non-Porous (Clear Fluid) Region, i.e., c̃ ≤ r̃ ≤ d̃

∂ w̃s

∂ z̃
= 0, (5.3a)

∂ p̃
∂ r̃

= 0, (5.3b)

∂ p̃
∂ z̃

=
1
r̃

∂

∂ r̃
(r̃τ̃s) , (5.3c)

where the axial velocity and shear stress for the clear fluid are denoted as w̃s and τ̃s, respec-
tively.
The velocity-dependent stress-strain relationship for a Carreau-Yasuda fluid is expressed in
relation to the velocity within the clear fluid region [18]

τ̃s =

[
µ̃∞ +(µ̃0 − µ̃∞)

(
1+
(

λ
∂ w̃s

∂ r̃

)a1
) n−1

a1

]
∂ w̃s

∂ r̃
. (5.3d)

5.2.4 Boundary Conditions

In the pursuit of deriving closed-form solutions for various regions in the Carreau-Yasuda
fluid flow, the boundary and interface conditions are crucial for determining the arbitrary
constants associated with the nonlinear second-order ordinary differential equations that
govern the flow of Carreau-Yasuda fluid through a cluster of particles. The closed form of
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the solutions is derived by addressing the following boundary conditions, and a comprehen-
sive description of the dimensional form of these conditions is provided below:

1. A state of zero velocity is regarded at the solid core of the cylindrical particle, i.e.,

w̃ f = 0, at r̃ = ã. (5.4a)

2. The consistent flow of velocities and shear stresses is taken into account at the inter-
face between porous materials, i.e.,

w̃ f = w̃b, and τ̃ f = τ̃b, at r̃ = b̃. (5.4b)

3. The fluid-porous interface considers the continuity of velocity and the stress-jump
condition proposed by Ochoa-Tapia and Whitaker [81], i.e.,

w̃b = w̃s, and τ̃b − τ̃s =
β w̃b√
k̃b(r̃)

, at r̃ = c̃, (5.4c)

where β is the stress-jump parameter.

4. The hypothetical cell surface of the cylindrical particle exhibits a zero shear stress,
i.e.,

τ̃s = 0, at r̃ = d̃. (5.4d)

5.2.5 Non-Dimensional Parameters and Governing Equations

The dimensionless numbers (or characteristic numbers) are essential in analyzing the be-
haviour of fluids and their flow with other transport phenomena. To solve the system of
equations outlined in (5.1)-(5.3), along with the associated boundary and interface condi-
tions in (5.4), we introduce the following non-dimensional variables:

p =
p̃c̃

w̃0µ̃0
, r =

r̃
c̃
, z =

z̃
c̃
, a =

ã
c̃
, b =

b̃
c̃
, d =

d̃
c̃
, S2 =

1
k
, w̃0 =

q̃0c̃2

µ̃0
, , Br =

µ̃0w̃2
0

K̃(T̃w − T̃∞)
,

w f =
w̃ f

w̃0
, wb =

w̃b

w̃0
, ws =

w̃s

w̃0
, k =

k̃
c̃2 , τ f =

τ̃ f c̃
w̃0µ̃0

, τb =
τ̃bc̃

w̃0µ̃0
, τs =

τ̃sc̃
w̃0µ̃0

,

We =
λ w̃0

c̃
, η =

µ̃∞

µ̃0
, F =

C̃F ρ̃ c̃3q̃0

µ̃2
0

, θ =
T̃ − T̃∞

T̃w − T̃∞

, Nu =
2q′′c̃

K̃(T̃w − T̃∞)
,

(5.5)
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where the average velocity, represented by w̃0, is linked to the Weissenberg number We,
calculated as the product of the shear rate and the characteristic time of the fluid. The Nus-
selt number Nu quantifies the relationship between the combined heat transfer (convection
and conduction) and the conductive heat transfer across a boundary. The Brinkman number
Br, a dimensionless parameter, represents the relationship between heat generated through
viscous dissipation and heat transfered via molecular conduction. Essentially, it gauges the
ratio of heat generation due to viscosity against external heating. A higher Brinkman number
indicates a slower conduction of heat resulting from viscous dissipation, leading to a greater
temperature increase. The parameter θ represents the non-dimensional temperature corre-
sponding to the dimensional temperature T̃ . The parameters T̃w and T̃∞ are the wall (surface)
and ambient temperatures, respectively. Additionally, F represents the Forchheimer num-
ber, S is a dimensionless parameter, η signifies the viscosity ratio parameter, and q̃0 denotes
the characteristic pressure gradient.
Utilizing the aforementioned non-dimensional variables (5.5), the governing equations (5.1)-
(5.3) will transform into their non-dimensional form:
Porous Region- I, i.e., a ≤ r ≤ b

∂w f

∂ z
= 0, (5.6a)

∂ p
∂ r

= 0, (5.6b)

∂ p
∂ z

=
1
r

∂

∂ r

(
rτ f
)
−

w f

k f (r)
−

Fw2
f√

k f (r)
. (5.6c)

where k f (r) = k(1− ε f r)2 is the quadratic polynomial form of the permeability with vary-
ing permeability parameter ε f for Brinkman-Forchheimer region and k is the permeability
constant.
The equation for the Carreau-Yasuda fluid provides a description of the nonlinear relation-
ship between shear stress and strain [18]

τ f =

[
1+

(1−η)(n−1)
a1

(
We

∂w f

∂ r

)a1
]

∂w f

∂ r
. (5.6d)

Porous Region- II, i.e., b ≤ r ≤ 1

∂wb

∂ z
= 0, (5.7a)

∂ p
∂ r

= 0, (5.7b)
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∂ p
∂ z

=
1
r

∂

∂ r
(rτb)−

wb

kb(r)
, (5.7c)

where kb(r) = k(1−εbr)2 is the quadratic polynomial form of the permeability with varying
permeability parameter εb for Brinkman porous region.
The Carreau-Yasuda fluid equation elucidates the nonlinear correlation between shear stress
and strain [18]

τb =

[
1+

(1−η)(n−1)
a1

(
We

∂wb

∂ r

)a1
]

∂wb

∂ r
. (5.7d)

Non-Porous (Clear Fluid) Region, i.e., 1 ≤ r ≤ d

∂ws

∂ z
= 0, (5.8a)

∂ p
∂ r

= 0, (5.8b)

∂ p
∂ z

=
1
r

∂

∂ r
(rτs) , (5.8c)

where the Carreau-Yasuda fluid equation clarifies the non-linear relationship between shear
stress and strain [18]

τs =

[
1+

(1−η)(n−1)
a1

(
We

∂ws

∂ r

)a1
]

∂ws

∂ r
. (5.8d)

5.2.6 Boundary Conditions

The dimensionless boundary and interface conditions are given as follows:

w f = 0, at r = a,

w f = wb, and τ f = τb, at r = b,

wb = ws, and τb − τs =
β√

kb(r)
wb, at r = 1,

τs = 0, at r = d.

(5.9)

5.2.7 Hydrodynamical Quantities and Kozeny Constant

The non-dimensional expression for the volumetric flow rate Qs is defined as follows:

Qs = 2π

∫ d

a
rw(r)dr = 2π

(∫ b

a
rw f (r)dr+

∫ 1

b
rwb(r)dr+

∫ d

1
rws(r)dr

)
. (5.10)
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The expression for the hydrodynamic permeability L11 of the collective of porous cylindrical
particles is formulated as follows [96]

L11 =−
Vf

∂ p/∂ z
, (5.11)

where Vf denotes the filtration velocity and is expressed as Vf =
Qs

πd2 .
The permeability of porous media is ascertained through the application of the following
expression, derived from the semi-empirical Kozeny-Karman formula [71]

L11 =
ερ2

h
Kzc̃2 , (5.12)

where ε represents porosity, Kz denotes the dimensionless Kozeny constant, and ρh signifies
the hydraulic radius, defined as the ratio of pore volume to wetting area.
The Kozeny constant is obtained by the above equation (5.12)

Kz =
ερ2

h
c̃2L11

. (5.13)

For the media composed of cylindrical particles, we have

ρh =
π(d̃2 − c̃2)

2π c̃
=

c̃
2

(
1− γ

γ

)
=

ε c̃
2(1− ε)

. (5.14)

Substituting the value of ρh in the above equation (5.13), we have

Kz =
ε3

4(1− ε)2L11
, (5.15)

where L11 is the hydrodynamic permeability of the membrane.

5.3 Asymptotic Solution of the Problem

The objective is to find solutions to the governing equations that regulate the flow of Carreau-
Yasuda fluid through a swarm of biporous layered cylindrical particles. This investigation
concentrates on fluid motion driven by a constant pressure gradient, which persists through-
out both porous and non-porous fluid regions, i.e., ∂ p

∂ z = −pz (constant). The analytical
solutions for the governing equations pose a challenge due to the inclusion of the nonlinear
Forchheimer term in the Brinkman-Forchheimer equation, the nonlinear correlation between
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shear stress and strain in Carreau-Yasuda fluid, and the variable permeabilities across dif-
ferent porous mediums. To address this challenge, the empirical perturbation approach is
employed for solving the governing equations, particularly in situations characterized by a
small Weissenberg number and large permeability of the porous medium. The governing
equations are solved by considering the binomial series expansions of the varying perme-
ability of the porous regions up to the second order approximations, where ε f < 1 and εb < 1
are considered, i.e.,

(1− ε f r)−1 = 1+ ε f r+ ε
2
f r2 +O(ε3

f ),

(1− ε f r)−2 = 1+2ε f r+3ε
2
f r2 +O(ε3

f ),

(1− εbr)−1 = 1+ εbr+ ε
2
b r2 +O(ε3

b ),

(1− εbr)−2 = 1+2εbr+3ε
2
b r2 +O(ε3

b ).

5.3.1 Perturbation Solution for Carreau-Yasuda Fluid

The perturbation series expansions, expressed in the powers of a small Weissenberg number,
provide a direct representation for velocities in distinct porous and non-porous regions [141].

w f (r) = w f 0 +Wea1w f 1 +O(We2a1), (5.16a)

wb(r) = wb0 +Wea1wb1 +O(We2a1), (5.16b)

ws(r) = ws0 +Wea1ws1 +O(We2a1). (5.16c)

Porous Region- I, i.e., a ≤ r ≤ b

Introducing the equation (5.16a) into equations (5.6c) and (5.6d), the zeroth and first-order
equations are obtained as

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂w f 0

∂ r

)
−

w f 0

k(1− ε f r)2 −
Fw2

f 0√
k(1− ε f r)

, (5.17a)

1
r

∂

∂ r

[
r
(

∂w f 1

∂ r
+
(n−1)(1−η)

a1

(
∂w f 0

∂ r

)a1 ∂w f 0

∂ r

)]
=

w f 1

k(1− ε f r)2 +
2Fw f 0w f 1√
k(1− ε f r)

.

(5.17b)

Solving the equations (5.17a)-(5.17b) governing the Carreau-Yasuda fluid flow through the
Forchheimer region becomes challenging due to the nonlinearity introduced by the Forch-
heimer term and the variable permeability. To address the governing equation for the porous
medium with high permeability (where k ≫ 1), the regular perturbation method is employed
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by introducing the small parameter S = 1√
k
. The equations (5.17a)-(5.17b) can be expressed

in relation to the small parameter S ≪ 1.

∂ p
∂ z

=
1
r

∂

∂ r

(
r

∂w f 0

∂ r

)
−

S2w f 0

(1− ε f r)2 −
SFw2

f 0

(1− ε f r)
, (5.17c)

1
r

∂

∂ r

[
r
(

∂w f 1

∂ r
+
(n−1)(1−η)

a1

(
∂w f 0

∂ r

)a1 ∂w f 0

∂ r

)]
=

S2w f 1

(1− ε f r)2 +

(
2SFw f 0w f 1

(1− ε f r)

)
.

(5.17d)

The series expansions, formulated in terms of a small parameter S, offer a straightforward
representation for velocities at zeroth and first orders [141].

w f 0(r) = w f 00(r)+Sw f 01(r)+S2w f 02(r)+O(S3), (5.18a)

w f 1(r) = w f 10(r)+Sw f 11(r)+S2w f 12(r)+O(S3). (5.18b)

Equating the coefficient of S in equation (5.17c), the zeroth, first and second order equations
are obtained as
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The analytical solutions for the governing equations (5.19a)-(5.19b) have been derived, and
the velocity expressions are provided in the Appendix.
Equating the coefficient of S in equation (5.17d), the zeroth, first and second order equations
are obtained as

1
r

∂

∂ r

[
r

(
∂w f 10

∂ r
+

(n−1)(1−η)

a1

(
∂w f 00

∂ r

)a1+1
)]

= 0, (5.20a)

1
r

∂

∂ r

[
r
(

∂w f 11

∂ r
+

(a1 +1)(n−1)(1−η)

a1

(
∂w f 00

∂ r

)a1 ∂w f 01

∂ r

)]
−

2Fw f 00w f 10

(1− ε f r)
= 0,

(5.20b)

1
r

∂

∂ r

[
r

(
∂w f 12

∂ r
+

(a1 +1)(n−1)(1−η)

2a1

(
∂w f 00

∂ r

)a1−1
(

a1

(
∂w f 01

∂ r

)2

+2
∂w f 00

∂ r
∂w f 02

∂ r

))]
−

w f 10

(1− ε f r)2 −
2F

(1− ε f r)
(w f 00w f 11 +w f 01w f 10) = 0. (5.20c)



5.3. Asymptotic Solution of the Problem 153

The analytical solutions for the aforementioned equations (5.20a)-(5.20b) are determined
using zeroth-order velocity expressions. However, the chapter does not include these solu-
tions due to their extensive nature.
Porous Region- II, i.e., b ≤ r ≤ 1
By incorporating the equation (5.16b) into (5.7a)-(5.7b), we derived both the zeroth and
first-order equations. The zeroth and first-order equatione are determined as
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Addressing the challenge of solving the equations that govern the Carreau-Yasuda fluid flow
through the Brinkman region becomes complex, primarily because of the variable perme-
ability. To handle the governing equation for the porous medium with high permeability
(where k ≫ 1), the regular perturbation method is utilized by introducing the small param-
eter S = 1√

k
. Expressing equations (5.21a)-(5.21b) in terms of the small parameter S ≪ 1

allows for a more manageable analysis.
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The provided equations for the zeroth and first-order velocities in Brinkman porous region
II are expressed through a series-form solution in terms of small parameter S [141].

wb0(r) = wb00(r)+Swb01(r)+S2wb02(r)+O(S3), (5.22a)

wb1(r) = wb10(r)+Swb11(r)+S2wb12(r)+O(S3). (5.22b)

By incorporating equation (5.22a) into (5.21c) and matching the coefficients of powers of
the parameter S, we find that the zeroth, first, and second order velocities for Brinkman
porous media
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The analytical solutions for the governing equations (5.23a)-(5.23c) have been derived, and
the velocity expressions are provided in the Appendix.
By incorporating equation (5.22b) into (5.21d) and matching the coefficients of powers of
the parameter S, we find that the zeroth, first, and second order velocities for Brinkman
porous media
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The analytical solutions for the aforementioned equations (5.24a)-(5.24c) are determined
using zeroth-order velocity expressions. However, the chapter does not include these solu-
tions due to their extensive nature.
Non-Porous (Clear Fluid) Region, i.e., 1 ≤ r ≤ d

By incorporating the equation (5.16c) into equations (5.8c)− (5.8d), we derive the zeroth
and first-order equations. The resulting zeroth and first-order equations are expressed as
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The equations given for the zeroth and first-order velocities in non-porous region are pre-
sented as a series-form solution using the small parameter S [141]

ws0(r) = ws00(r)+Sws01(r)+S2ws02(r)+O(S3), (5.26a)

ws1(r) = ws10(r)+Sws11(r)+S2ws12(r)+O(S3). (5.26b)

Equating the coefficient of powers of S in equation (5.25a), the zeroth, first and second
order equations are obtained as
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1
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The analytical solutions for the governing equations (5.27a)− (5.27c) have been obtained,
and the velocity expressions are detailed in the Appendix.
By incorporating equation (5.26b) into (5.25b) and equating the coefficients of powers of
the parameter S, the zeroth, first, and second order velocities for non-porous region are
obtained as
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The solutions to equations (5.28a)− (5.28c) are found through zeroth-order velocity ex-
pressions, but the manuscript omits these solutions because of their extensive nature.

5.3.2 Numerical Solution for Small Weissenberg and Permeability (i.e.,S ≫ 1)

In the previous calculation, the velocity profiles for different regions are determined through
the regular perturbation technique, considering small Weissenberg and large Darcy numbers.
The singularly perturbed boundary value problems arise in the regulation of Carreau-Yasuda
fluid flow within various porous regions when dealing with small Weissenberg and Darcy
numbers. The formulations of the boundary value problems for singularly perturbed sys-
tems are presented in relation to a small parameter S−1 = 1

S =
√

k. The equations for the
Forchheimer region under a small Weissenberg number are given for both zeroth and first
orders
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The equations for the Brinkman region under a small Weissenberg number are given for
both zeroth and first orders
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Obtaining analytical solutions for the singularly perturbed BVPs mentioned above is chal-
lenging. To obtain solutions for the aforementioned BVPs, the governing equations (5.6)-
(5.8) are tackled using the numerical scheme NDSolve in Mathematica. The graphical rep-
resentation and comparison of numerical solutions for the governing equations, considering
small Weissenberg and Darcy numbers, are presented and contrasted with asymptotic solu-
tions in situations characterized by small Weissenberg and large Darcy numbers.

5.3.3 Temperature Analysis

The velocity, flow rate, membrane permeability, and Kozeny constant are determined in the
preceding subsections for the creeping, viscous flow of a Carreau-Yasuda fluid through a
membrane. This is achieved using both asymptotic series expansions and numerical meth-
ods, taking into account the pertinent boundary conditions. The influence of viscoelastic
rheological and porous layer parameters on temperature can be analyzed by examining the
fluid flow velocity in various porous and non-porous regions, according to the proposed ob-
jective. Now, we will utilize this flow velocity to examine the radial temperature variation
within a porous layered cylinderical particle featuring a solid core. The analysis presumes
a uniform material with consistent heat transfer occurring throughout (local thermal equi-
librium). To examine heat transfer across various regions, we’ve streamlined the equation
by omitting heat sources, longitudinal heat conduction along the cylinder, and the conduc-
tion of heat within the material. The subsequent mathematical equations that govern energy
transfer are deduced as follows ([196] [7], [197], [198]):
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where the variables include T̃ for temperature, ρ̃ for fluid density, c̃p for specific heat at
constant pressure, and K̃ for thermal conductivity.

The appropriate interface and boundary conditions for temperature distribution in di-
mensional form are taken into account as follows:

1. The surface temperature at the outermost layer of the solid core is considered, i.e.,

T̃f = T̃w, at r̃ = ã, (5.32a)

where T̃w is the surface temperature.

2. The temperature and temperature gradient continuity are taken into account at the
interface between two porous mediums, i.e.,

T̃f = T̃b, at r̃ = b̃, (5.32b)

dT̃f

dr̃
=

dT̃b

dr̃
, at r̃ = b̃, (5.32c)

where the subscriepts f and b repersent the Forchheimer and Brinkman porous re-
gions, respectively.

3. The temperature and temperature gradient continuity are taken into account at the
interface between Brinkman and Stokes regions, i.e.,

T̃b = T̃s, at r̃ = c̃, (5.32d)

dT̃b

dr̃
=

dT̃s

dr̃
, at r̃ = c̃, (5.32e)

where the subscriepts s repersents the Stokes flow (non-porous) region.

4. On the virtual cell surface, the temperature gradient is considered to be zero, i.e.,

dT̃s

dr̃
= 0, at r̃ = d̃. (5.32f)
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By employing the non-dimensional parameters defined in equation (5), the non-dimensional
form of the energy equations for different porous and non-porous regions are given as fol-
lows:
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The dimensionless boundary and interface conditions are outlined below:

θ f = 1, at r = a,

θ f = θb, and
dθ f

dr
=

dθb

dr
, at r = b,

θb = θs, and
dθb

dr
=

dθs

dr
, at r = 1,

dθs
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= 0, at r = d.

(5.34)

5.3.4 Solution of Temperature Equations

The equations (5.33a)− (5.33c) depict second-order ordinary differential equations that
are both linear and non-homogeneous. They describe the temperature distribution within
different porous and non-porous regions, expressed in terms of velocities. The velocity of
both porous and non-porous regions have been evaluated numerically and asymptotically
in the preceding subsections. The method of variation of parameters is utilized to derive
the temperature distribution for both porous and non-porous regions. The mathematical
representation of the temperature distribution within the Forchheimer region is obtained as

θ f = Tf 1 log(r)+Tf 2 −A f (r) log(r)+B f (r), (5.35a)
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The mathematical representation of the temperature distribution within the Brinkman region
is demonstrated as

θb = Tb1 log(r)+Tb2 −Ab(r) log(r)+Bb(r), (5.35b)
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The mathematical representation of the temperature distribution within the non-porous re-
gion is provided as

θs = Ts1 log(r)+Ts2 −As(r) log(r)+Bs(r), (5.35c)

As(r) =
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The constants Tf 1,Tf 2,Tb1,Tb2,Ts1, and Ts2 involved in the equations (5.35a)− (5.35c) can
be determined through the specified boundary conditions (5.34). The integrals required
for evaluating the coefficients A f ,B f ,Ab,Bb,As, and Bs are computed numerically using
Mathematica 10.3 software.

5.3.5 Nusselt Number (Nu)

In thermal fluid dynamics, the Nusselt number signifies the ratio of overall heat transfer to
conductive heat transfer at a fluid boundary, combining both conduction and convection,
where convection involves fluid motion and conduction diffusion. Typically falling between
1 and 10, the Nusselt number describes either slug flow or laminar flow. A higher Nusselt
number suggests that conductive heat transfer dominates total heat transfer (convection +
conduction) across a boundary, leading to a more pronounced temperature increase. The
heat transfer coefficient on the surface of the solid cylinder is defined by Fourier’s heat
conduction law

q̃′′ = K̃

(
dT̃f

dr̃

)
, at r̃ = ã, (5.36)



160
Chapter 5. Analytical Study of the Effect of Complex Fluid Rheology and Membrane

Parameters on Heat Transfer in Fluid Flow through a Swarm of Cylindrical Particles

where q̃′′ represents the constant heat flux.
The non-dimensional form of the above relation (5.36) is provided below

Nu =
dθ f

dr
, at r = a, (5.37)

where Nu is the Nusselt number.

5.4 Results and Discussion

The present study explores the impact of variable permeability in a biporous layer struc-
ture within the medium, coupled with the viscoelastic properties of the fluid, on the flow
of Carreau-Yasuda fluid through a aggregates of biporous layered cylindrical shaped parti-
cles. The objective is to investigate how the varying permeability, diverse porous media,
and the non-Newtonian Carreau-Yasuda fluid collectively play a crucial role in modeling
fluid flow through a membrane. The physical scketch of the proposed work is constructed
in a way that the Brinkman-Forchheimer region close to the solid core of the cylindrical
particle is governed by Brinkman-Forchhheimer equation under variable permeability, and
a concentric Brinkman porous region is regulated by the Brinkman equation under variable
permeability of the medium. However, a region free from the porous structure known as a
non-porous region, is governed by the Stokes equation. The mathematical equations regulat-
ing the flow of Carreau-Yasuda fluid through a membrane constituting a swarm of biporous
layered cylindrical particles are nonlinear and coupled in terms of velocity and shear stress
of Carreau-Yasuda fluid and it is difficult to obtain the analytical expressions of the hydro-
dynamic quantities. With the objective of finding the solutions of the governing equations,
the regular perturbation method has been used to obtain the asymptotic expansions of the
hydrodynamic quantities. The influence of control parameters like porous medium param-
eters, Carreau-Yasuda parameters and volume fraction on the hydrodynamic permeability
of the membrane, Kozeny constant are investigated. The comparison of results with previ-
ously published works in case of single porous layered cylindrical particles are established
in the present section. The analysis maintains a constant value of the steady-state pressure
gradient, denoted as pz = 1.

5.4.1 Parameter Selection

The graphical analysis in the current work involves extracting values for numerous parame-
ters from various sources. Table 1 provides the range of control parameter values along with
their corresponding resources.
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Range of parameters

Parameters Range References

Forchheimer number F 0.0-2.0 [7], [8]
Particle volume fraction γ 0.1-1.0 [3], [96]
Permeability k (0,∞) [2], [3]
Power-law index n 0.1-2.0 [18], [199]
Nusselt number Nu 2.0-8.0 [7], [8]
Steady pressure gradient pz 1-10 [5], [167]
Transition parameter a1 1.0-4.0 [18]
Viscosity ratio parameter η 0.1-0.4 [18], [199]
Weissenberg number We 0.0-0.8 [18], [199]
Stress-jump parameter β (−1,1) [3], [5]

Table 5.1: Range of parameters with their references

5.4.2 Limiting Cases and Model Validation

Taking into account the Brinkman-Forchheimer equation that governs fluid flow near the
solid core of a cylindrical particle, the inclusion of an intermediate Brinkman porous region
regulated by the Brinkman equation, variable permeability, and an approach to heat transfer
enhances the comprehensiveness of the proposed study. The integration of certain parame-
ters serves to alleviate the intricacy of the model and facilitates the ability to draw analogies
with prior research. The limiting cases of present model and their comparisons with the
previously published works are descibed below:

1. As the transition parameter a1 is set to the value 2, the present viscoelastic Carreau-
Yasuda model reduces to Carreau fluid model.

2. Further, as the Carreau fluid parameters (We = 0,n = 1), the Carreau fluid model
simplifies to the Newtonian fluid model.

3. As the permeability parameters (ε f → 0) and (εb → 0), the proposed variable perme-
ability model simplifies to the model with constant permeability.

4. As the porous-porous interface radius converges towards the clear fluid interface (i.e.,
as b approaches 1), the current model simplifies to a single-layered porous cylindrical
particle with a solid core.

5. When the Forchheimer number vanishes(i.e., F → 0), the Brinkmann-Forchheimer
model converges to the Brinkman model.
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6. When the permeability of the porous medium is extremely high, denoted as (k → ∞),
the porous medium behaves like a clear fluid.

The results of the present work for the particular values of control parameters validate the
previously published works. The following results and their validations are described below:

1. The current work have been validated with the recently published work of Saini et

al. [199] under the limiting cases of Carreau fluid (a1 = 2), constant permeability
(ε f → 0,εb → 0) and, single Brinkmann layer (b → 1,F = 0), which shows a perfect
overlapping alignment of the graphs of fluid velocity of both works.

2. The hydrodynamic permeability L11 derived from current study shows a perfect over-
lapping alignment with the study of Deo et al. [3] under the limiting cases of New-
tonian fluid (We = 0,n = 1), constant permeability (ε f → 0,εb → 0), and fully solid
cylinder without a porous layer (k → ∞).

5.4.3 Velocity Profile (w)

The rheological parameter known as the transition parameter a1 in the Carreau-Yasuda fluid
model plays a crucial role in determining the extent of the transition state between the zero
shear rate and the power-law regions [200]. This parameter has a notable impact on fluid
flow velocity when passing through a membrane composed of porous layered cylinderical
particles, regardless of whether the permeability is large or small. In the case of a shear
thinning fluid flowing in a highly permeable porous media (k = 10), an augmentation in the
transition parameter results in diminution of fluid flow velocity in all regions of the biporous
layered circular cylinder or in other words the membrane’s flow velocity decreases as the
width of transition region (the transition state between the zero shear rate and the power-law
behavior of Carreau-Yasuda fluid) gets decreases (Figure 5.3a).



5.4. Results and Discussion 163

k=10, n=0.1
a1=1.0
a1=2.0
a1=3.0
a1=4.0

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r

w

(a)

k=0.1, n=2.0
a1=1.0
a1=2.0
a1=3.0
a1=4.0

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

w

0.990 0.995 1.000 1.005 1.010
0.560

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

(b)

Figure 5.3: Dimensionless velocity w with radial distance r for various values of tran-
sition parameter a1 (a1 = 1,2,3,4) under ((5.3a)) large Darcy number (k = 10,n =
0.1,ε f = εb = 0.5) and (5.3b) small Darcy number (k = 0.1,n = 2.0,ε f = εb = 0.2).
(a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,η = 0.1,F = 1)

However, this behavior gets reversed for shear thickening Carreau-Yasuda fluid as de-
picted for low permeability in Figure 5.3b. It will be interesting to observe how the relative
thicknesses of the two porous layers in a biporous layered cylindrical particle affect the
fluid velocity. As the thickness between the solid surface and the porous-porous interface
increases, particularly by expanding the thickness of region I (known as the Forchheimer
porous region), the flow velocity decreases in both cases of permeability due to a larger
region experiencing inertial resistance. Moreover, an enhanced decay is observed for in-
creased Forchheimer layer thickness (Figure 5.4). Figures 5.5 and 5.6 present the influence

k=10, n=0.1
b=0.55
b=0.70
b=0.85

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

r

w

0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75
0.56

0.58

0.60

0.62

0.64

0.66

0.68

(a)

k=0.1, n=2.0
b=0.55
b=0.70
b=0.85

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

r

w

0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75

0.30

0.32

0.34

0.36

0.38

(b)

Figure 5.4: Dimensionless velocity w with radial distance r for various thicknesses of
Forchheimer layer b (b = 0.55,0.7,0.85) under (5.4a) large Darcy number (k = 10,n =
0.1,ε f = εb = 0.5) and (5.4b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.1). (a =
0.4,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

of radially varying permeability on the flow velocity. Figure 5.5a illustrates a decrease in
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fluid velocity that is associated with a consistent increase in the permeability parameters.
This occurs while maintaining identical values for both the permeability parameters ε f and
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Figure 5.5: Dimensionless velocity w with radial distance r for various values of per-
meability parameters (ε f ,εb) under (5.5a) large Darcy number (k = 10,n = 0.1,ε f =
εb = 0.1,0.5,0.9) and (5.5b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.1,0.2,0.3).
(a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

εb in the Forchheimer and Brinkman regions, respectively. This can be interpreted as
an increase in the permeability parameter (ε f \εb) reduces the overall permeability of the
porous region, resulting in a reduction in the flow velocity. The observations are similar
for both cases of permeability but the decay rate of flow velocity is more pronounced in
the small permeability case owing to the increased contribution of Brinkman and Forch-
heimer terms in the momentum equation, which are influenced by the small Darcy number
Figure 5.5. The analysis of the impact of radially varying permeability on flow velocity,
when the permeability of both the layers follows opposite variations, is illustrated in Fig-
ures 5.6a and 5.6b. The findings indicate that the velocity increases when the permeability
parameter of the Forchheimer layer dominates the permeability parameter of the Brinkman
layer, regardless of the medium’s permeability being large or small. Alternatively, it can
be inferred that the flow velocity in all three regions exhibits an increase when the perme-
ability of the Brinkman region surpasses that of the Brinkman Forchheimer region. This
can be attributed to the fact that Brinkamnn region doesn’t have an inertial resistance so, an
increasing permeability (decreasing εb) in Brinkman region dominates the enhanced resis-
tance of Forchheimer region due to increasing εb. The same effect with enhanced diffrence
can be seen for low permeability as in this case the porous medium resistance and the inertial
resistance become more influencial in comparision to large permeability.
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Figure 5.6: Dimensionless velocity w with radial distance r for comparative values of
permeability parameters (ε f ,εb) under (5.6a) large Darcy number (k = 10,n = 0.1) and
(5.6b) small Darcy number (k = 0.1,n = 2). (a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We =
0.2,a1 = 3,η = 0.1,F = 1)

5.4.4 Flow Rate (Qs)

This subsection examines the impact of various Carreau-Yasuda and porous layer parameters
on volumetric flow rate Qs. Figure 5.7 shows the effect of the Forchheimer number, which
incorporates fluid inertia in the Brinkman-Forchheimer equation, on the flow rate across
different Weissenberg numbers. The analysis for large permeability pertains to a shear thin-
ning fluid (n = 0.1), while the small permeability case relates to a shear thickening fluid
(n = 2.0). The increasing Forchheimer number results in a decreased volumetric flow rate
for various Weissenberg numbers due to the growing influence of fluid inertia resistance.
The rate of decay in flow rate with Forchheimer number is more pronounced for low perme-
ability compared to high permeability of the porous medium. It is noted that there is a recip-
rocal relationship between flow rate and Weissenberg number concerning the shear thinning
and thickening behavior exhibited by the Carreau-Yasuda fluid. As anticipated, considering
the physical significance of porous mediums with varying permeabilities, the flow rate for
any Forchheimer number is greater when the permeability of the porous medium is large
compared to when it is small.

The analysis of the thickness of Forchheimer porous region, governed by the Brinkman-
Forchheimer equation, significantly affects the flow rate of fluid passing through a swarm
of porous cylindrical particles. As the thickness of the Forchheimer region increases, the
flow rate decreases due to the substantial resistance it imposes on the fluid flow, as shown in
Figure 5.8. Additionally, an increase in the viscosity ratio parameter results in a reduction
of the flow rate, which is more pronounced in porous media with high permeability com-
pared to those with low permeability. The analysis of the neighboring particles’ role and
contributions within a swarm is conducted by examining the particle volume fraction on the
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Figure 5.7: Changes in flow rate Qs with Forchheimer number F for various values of
the Weissenberg number We (We = 0.1,0.3,0.5) under (5.7a) large Darcy number (k =
10,n = 0.1,ε f = εb = 0.5,η = 0.1) and (5.7b) small Darcy number (k = 0.1,n = 2,ε f =
εb = 0.2,η = 0.4). (a = 0.4,b = 0.7,γ = 0.444,a1 = 3,β = 0.5)

flow rate. The graphical analysis in Figure 5.9 delves into the impact of alterations in parti-
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Figure 5.8: Changes in flow rate Qs with thickness of Forchheimer layer b for various
values of the viscosity ratio parameter η (η = 0.01,0.2,0.3) under (5.8a) large Darcy
number (k = 10,n = 0.1,We = 0.5,ε f = εb = 0.5) and (5.8b) small Darcy number (k =
0.1,n = 2,We = 0.2,ε f = εb = 0.2). (a = 0.4,b = 0.7,γ = 0.444,a1 = 3,β = 0.5,F = 1)

cle volume fraction γ on the volumetric flow rate across a range of values for the transition
state parameter a1. As the volume fraction of particles increases, it reduces the clear fluid
flow region, consequently leading to a decrease in the volumetric flow rate with increasing
particle volume fraction. A reduction in flow rate with an increasing transition parameter
a1 is observed for shear-thinning fluids with high permeability, whereas a slight increase in
flow rate with an increasing transition parameter is noted for shear-thickening fluids with
low permeability.
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Figure 5.9: Changes in flow rate Qs with particle volume fraction γ for various values of
the transition parameter a1 (a1 = 1,2,3,4) under (5.9a) large Darcy number (k = 10,n =
0.1,ε f = εb = 0.5) and (5.9b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.2). (a =
0.4,b = 0.7,F = 1,β = 0.5,We = 0.2,η = 0.1)

5.4.5 Hydrodynamic Permeability (L11)

This subsection explores how different Carreau-Yasuda and porous layer parameters influ-
ence the hydrodynamic permeability L11. The influence of the porous layer thickness on
the membrane’s hydrodynamic permeability is shown for large and small permeabilities in
Figures 5.10a and 5.10b, respectively. The membrane’s hydrodynamic permeability de-
creases as the thickness of porous-porous interface from the solid surface increases. This
can be interpreted as the flow velocity and consequently, the hydrodynamic permeability of
the membrane decreases with increasing thickness of Forchheimer layer b owing to a wider
region experiencing inertial resistance of porous medium. Figures 5.11a and 5.11b demon-
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Figure 5.10: Dimensionless hydrodynamic permeability L11 with particle volume fraction
γ for different thicknesses of Forchheimer layer b (b = 0.55,0.7,0.85) under (5.10a) large
Darcy number (k = 10,n = 0.1,ε f = εb = 0.5) and (5.10b) small Darcy number (k =
0.12,n = 2,ε f = εb = 0.1). (a = 0.4,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

strate a concurrent increase in the permeability parameters of radially varying permeability



168
Chapter 5. Analytical Study of the Effect of Complex Fluid Rheology and Membrane

Parameters on Heat Transfer in Fluid Flow through a Swarm of Cylindrical Particles

inside the porous layers of region I and region II, resulting in a decline in the hydrodynamic
permeability of the membrane. Although the observations are same in both cases of per-
meability but the large permeability analysis corresponds to shear thinning fluid (n = 0.1),
whereas the small permeability case corresponds to shear thickening fluid (n = 2.0). Fig-
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Figure 5.11: Dimensionless hydrodynamic permeability L11 with particle volume fraction
γ for various values of permeability parameters (ε f ,εb) under (5.11a) large Darcy number
(k = 10,n = 0.1,ε f = εb = 0.1,0.5,0.9) and (5.11b) small Darcy number (k = 0.12,n =
2,ε f = εb = 0.1,0.2,0.3). (a = 0.4,b = 0.7,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

ures 5.12a and 5.12b delineate the comparative impact of variable permeability within two
distinct porous layers encompassing a solid cylindrical particle, pertaining to porous media
with high and low permeability, respectively. It is evident that a combined effect of the
decreasing permeability of the Forchheimer region and an increasing permeability of the
Brinkman region leads to an overall growth of the hydrodynamic permeability. This shows
the prevailing influence of the Brinkman region over the Forchheimer region. However, the
increase in L11 is minimal as a reduced permeability of the Forchheimer number suppresses
the effect of increasing permeability of the Brinkman region. For porous media character-
ized by high permeability, a reduction in growth of hydrodynamic permeability becomes
apparent as the dominance of permeability within the Brinkman region surpasses that of the
Forchheimer region, this can be further justified as the increasing permeability of Brinkman
region enhances the flow but the decreasing permeability of Forchheimer region obstructs
the flow in Forchheimer region which is further supported by a more influential inertial
resistance in this case.
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Figure 5.12: Dimensionless hydrodynamic permeability L11 with particle volume fraction
γ for comparative values of permeability parameters (ε f ,εb) under (5.12a) large Darcy
number (k = 10,n= 0.1) and (5.12b) small Darcy number (k = 0.12,n= 2). (a= 0.4,b=
0.7,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)
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Figure 5.13: Dimensionless hydrodynamic permeability L11 with particle volume fraction
γ for various values of transition parameter a1 (a1 = 1,2,3,4) under small Darcy number
(k = 0.1,n = 2.0,ε f = εb = 0.1,a = 0.4,b = 0.7,β = 0.5,We = 0.2,η = 0.1,F = 1)

The transition parameter exerts a discernible influence on the fluid dynamics surrounding
a membrane. A noticeable ascending trajectory is observed in the hydrodynamic permeabil-
ity as the transition parameter exhibits an increasing trend. This can be rationalized by a
diminished distinction between the zero shear rate state and the power-law state, elucidating
the heightened membrane permeability in this context. This diminishing distinction between
the two state also increase the decay rate of L11 with γ , which can be seen in Figure 5.13.

The interplay between hydrodynamic permeability and the permeability parameter within
the Brinkman region, along with a comparison of the thicknesses of the Brinkman and the
Forchheimer regions, is graphically presented in Figure 5.14. The figure illustrates a signifi-
cant reduction in hydrodynamic permeability with an increase in the permeability parameter
εb, indicating a decline in the overall permeability of the Brinkman region.
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Figure 5.14: Dimensionless hydrodynamic permeability L11 with Brinkman permeability
parameter εb for different thicknesses of Forchheimer layer b under small Darcy number
(k = 0.1,n = 2,ε f = 0.1,a1 = 3,a = 0.4,γ = 0.2,β = 0.5,We = 0.2,η = 0.1,F = 1)
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Figure 5.15: Dimensionless hydrodynamic permeability L11 with Brinkman permeability
parameter εb for various values of Forchheimer permeability parameter ε f under small
Darcy number (k = 0.1,n = 2,a1 = 3,a = 0.4,b = 0.7,γ = 0.2,β = 0.5,We = 0.2,η =
0.1,F = 1)

Moreover, a diminished rate of decay in L11 is evident under conditions of reduced occu-
pancy of the Brinkman region in comparision to Forchheimer region. Figures 5.15 provide
insight into the influence of the permeability parameter of Forchheimer region on the hydro-
dynamic permeability of a membrane in the context of a slightly permeable porous medium.
It can be observed that a reduction in the overall permeability of the Brinkman-Forchheimer
region (as ε f increases) corresponds to a decrease in fluid velocity and hence in overall hy-
drodynamic permeability. Based on the Figure 5.15, it can be inferred that when dealing
with low permeable porous media, the augmentation of viscoelastic properties in the shear
thickening Carreau-Yasuda fluid leads to a decrease in the hydrodynamic permeability of



5.4. Results and Discussion 171

the membrane. The influence of different thicknesses in the porous regions on the hydrody-
namic permeability of the membrane is illustrated in Figures 5.16-5.18. These figures specif-
ically examine the impact of the transition parameter, as well as the permeability parameters
associated with the Brinkman and Forchheimer regions, respectively. The hydrodynamic
permeability of the membrane in a low permeable porous medium is observed to undergo a
decay with increased occupancy of Forchheimer region relative to Brinkman region, when
subjected to shear thickening fluid. The observed phenomenon of a reduced thickness of
transition state between the zero shear state and the power-law state has been found to result
in an enhanced hydrodynamic permeability of the membrane (Fig. 5.16). Furthermore, it
has been observed that a further reduction in this thickness leads to a reduced growth in L11,
as well as decreased decay rate in L11 with thickness of Brinkman-Forchheimer region.
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Figure 5.16: Dimensionless hydrodynamic permeability L11 with thickness of Forch-
heimer layer b for various values of transition parameter a1 under small Darcy number
(k = 0.2,n = 2,ε f = εb = 0.1,a = 0.4,γ = 0.2,β = 0.5,We = 0.2,η = 0.1,F = 1)

An intriguing observation can be made from Figures 5.17-5.18, wherein the permeability
parameters of the Brinkman and Brinkman-Forchheimer regions exhibit opposite trends in
response to an augmentation in the occupancy of Forchheimer region relative to Brinkman
region. The observed phenomenon is a noticeable decrease in the value of L11 as the total
permeability of the Brinkman region decreases (specifically, as εb increases), while the value
of ε f remains constant (Fig. 5.17). Similarly, a significant decrease with an increasing decay
rate can be seen in L11 with the decay a total permeability of Brinkman-Forchheimer region
(specifically, as ε f increases), while εb being constant (Fig. 5.18).

According to the findings presented in Figure 5.19, it can be observed that as the vis-
coelastic parameter of the shear-thickening fluid increases, there is a corresponding decrease
in the hydrodynamic permeability of the membrane. This decrease can be attributed to the
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Figure 5.17: Dimensionless hydrodynamic permeability L11 with thickness of Forch-
heimer layer b for various values of Brinkman permeability parameter εb under small
Darcy number (k = 0.2,n = 2,ε f = 0.1,a1 = 3,a = 0.4,γ = 0.2,β = 0.5,We = 0.2,η =
0.1,F = 1)
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Figure 5.18: Dimensionless hydrodynamic permeability L11 with thickness of Forch-
heimer layer b for various values of Forchheimer permeability parameter ε f under small
Darcy number (k = 0.15,n = 2,εb = 0.1,a1 = 3,a = 0.4,γ = 0.2,β = 0.5,We = 0.2,η =
0.1,F = 1)

growing influence of elastic forces relative to viscous forces. Further, the decay rate sig-
nificantly reduces with decreasing thickness of transition state between zero shear state and
power law state.
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Figure 5.19: Dimensionless hydrodynamic permeability L11 with the Weissenberg num-
ber We for various values of transition parameter a1 (a1 = 1,2,3,4) under small Darcy
number (k = 0.2,n= 2,ε f = εb = 0.1,a= 0.4,b= 0.7,γ = 0.445,β = 0.5,η = 0.1,F = 1)

The findings of the study conducted in Figure 5.20 revealed a noteworthy increase in
the hydrodynamic permeability when the permeability parameters of the Brinkman and
Brinkman-Forchheimer regions (εb and ε f , respectively) exhibit opposite trends. The ob-
served trend indicates that the growth rate of L11 is positively correlated with a decrease in
the permeability of the Forchheimer region and, conversely, with an increase in the perme-
ability of the Brinkman region. The growth rate of shear thickening flow past a membrane in
slightly permeable porous media becomes increasingly significant a as elastic forces domi-
nates viscous forces. The present study compares its findings with the experimental research
on hydrodynamic permeability with porosity conducted by Filippov et al. [201], revealing
a close correspondence between the results of both studies (Table 5.2).
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Figure 5.20: Dimensionless hydrodynamic permeability L11 with the Weissenberg num-
ber We for comparative values of permeability parameters (ε f ,εb) under small Darcy num-
ber (k = 0.2,n = 2,a1 = 3,a = 0.4,b = 0.7,γ = 0.445,β = 0.5,η = 0.1,F = 1)
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Porosity(ε)
y Hydrodynamic Permeability (L11)

Experimental Study
(Filippov et al.)

Current Study

ε = 0.0 0.0 0.0
ε = 0.003742 0.00001775 4.37×10−9

ε = 0.015344 0.00009467 3.09×10−7

ε = 0.018338 0.00009467 5.07×10−7

ε = 0.027320 0.00019530 1.78×10−6

ε = 0.031063 0.00019530 2.64×10−6

ε = 0.075599 0.00059760 0.0000413
ε = 0.086452 0.00069230 0.0000630
ε = 0.094686 0.00079880 0.0000841
ε = 0.108530 0.00120100 0.0001300
ε = 0.123500 0.00140200 0.0001980
ε = 0.136230 0.00150300 0.0002720
ε = 0.209210 0.00330800 0.0011500
ε = 0.240270 0.00401180 0.0018600
ε = 0.224180 0.00401180 0.0014600

Table 5.2: Validation of current work with the experimental data of Filippov et al. [201]
using variations in hydrodynamic permeability, L11 with porosity, ε. (a = b = 1,We =
0,β = 0,n = η = 0,ε f = εb = 0,F = 0).

5.4.6 Kozeny Constant (Kz)

The observed trend in Figure 5.21 indicates a decrease in the Kozeny constant as the stress-
jump parameter of the fluid-porous interface increases. This behavior holds true for large
permeability of the porous media. The observed phenomenon of an increase in the Kozeny
constant in the flow past a membrane can be attributed to the progressive dominance of
inertial resistance within the Brinkman-Forchheimer region.

The examination of Figures 5.22-5.23 reveal the relationship between the Kozeny con-
stant and the porosity of the membrane, as well as its dependence on various fluid and porous
medium parameters. A notable augmentation in the membrane’s tortuosity is seen in corre-
lation with an escalation in the porosity of the membrane. The impact of this augmentation
is minimal for materials with low porosity, but it increases significantly when the porosity
of the medium is raised. Based on the graphical data presented in Figures 5.22a and 5.22b,
it can be inferred that the augmented permeability parameters in both the Brinkman and
Brinkman-Forchheimer regions have a favorable influence on the Kozeny constant
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Figure 5.21: Kozeny constant Kz with stress-jump parameter β for various values of
the Forchheimer number F under large Darcy number (k = 10,n = 0.1,ε f = εb = ε =
0.5,a1 = 3,a = 0.4,b = 0.7,γ = 0.2,We = 0.2,η = 0.1)
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Figure 5.22: Kozeny constant Kz with porosity parameter ε for various values of per-
meability parameters, (ε f ,εb) under (5.22a) large Darcy number (k = 10,n = 0.1) and
(5.22b) small Darcy number (k = 0.2,n = 2). (a = 0.4,b = 0.7,γ = 0.2,β = 0.5,a1 =
3,We = 0.2,η = 0.1,F = 1)
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Figure 5.23: Kozeny constant Kz with porosity parameter ε for different thicknesses of
Forchheimer layer b under large Darcy number (k = 10,ε f = εb = 0.5,a1 = 3,a= 0.4,b=
0.7,γ = 0.2,β = 0.5,We = 0.2,η = 0.1,F = 1)
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The dependence of the Kozeny constant on the variable thickness of both porous layers
is revealed in Figure 5.23. The dominance of the Brinkman-Forchheimer layer thickness
over the Brinkman layer thickness leads to an increase in the Kozeny constant for highly
porous media. This can be understood as the heightened impact of inertial resistance, which
subsequently decreases the hydrodynamic permeability of membranes, resulting in the am-
plification of the Kozeny constant. It is also observed that the growth rate of the Kozeny
constant is increased with the expansion of the Brinkman-Forchheimer layer within the
porous medium encompassing the solid cylindrical particle. The investigation examines
the correlation between the Kozeny constant and the particle volume fraction across vari-
ous permeability parameters of the porous regions. This relationship is visually represented
in Figures 5.24a and 5.24b. The observed phenomenon is a notable augmentation in the
Kozeny constant as the particle volume fraction of the membrane is increased. The growth
rate of this augmentation exhibits a positive correlation with the permeability parameters of
both the Brinkman and Brinkman-Forchheimer layers.
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Figure 5.24: Kozeny constant Kz with particle volume fraction γ for various values of
permeability parameters (ε f ,εb) under (5.24a) large Darcy number (k = 10,n = 0.1) and
(5.24b) small Darcy number (k = 0.2,n = 2.0). (a = 0.4,b = 0.7,β = 0.5,a1 = 3,We =
0.2,η = 0.1,F = 1,ε = 0.5)

5.4.7 Temperature Distribution (θ)

The notable contribution of this study lies in analyzing the effects of Carreau-Yasuda fluid
and porous medium parameters on temperature distribution, considering viscous dissipation.
This subsection delves into the significant effects of multiple parameters such as transition
parameter, Forchheimer number, thickness of the Forchheimer region, and Brinkman num-
ber on temperature distribution, which is contingent upon the radial coordinate. An aug-
mentation in the transition parameter results in an reduction of temperature in all regions
of the biporous layered cylinderical particles (Fig. 5.25a). However, this behaviour gets
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reversed for shear thickening Carreau-Yasuda fluid as depicted for low permeability in fig-
ure (5.25b). Additionally, for large permeability a higher growth rate of temperature with
decreasing thickness of transition state is observed.
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Figure 5.25: Dimensionless temperature θ with radial direction r for various values of
transition parameter a1 under (5.25a) large Darcy number (k = 10,n = 0.1,ε f = εb = 0.5)
and (5.25b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.2). (a = 0.4,b = 0.7,γ =
0.445,β = 0.5,We = 0.2,η = 0.1,F = 1)

An increasing occupancy of Forchheimer region in the porous layer diminishes the tem-
perature profile in the membrane owing to decreased velocity of the fluid (Figures 5.26a and
5.26b). Figures 5.27a and 5.27bdescribe the variations in the temperature distribution with
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Figure 5.26: Dimensionless temperature θ with radial direction r for different thicknesses
of Forchheimer layer b under (5.26a) large Darcy number (k = 10,n = 0.1,ε f = εb = 0.5)
and (5.26b) small Darcy number (k= 0.1,n= 2.0,ε f = εb = 0.2). (a= 0.4,γ = 0.445,β =
0.5,We = 0.2,a1 = 3.0,η = 0.1,F = 1)

respect to varying permeability. It can be observed from Figures 5.27a and 5.27b, referring
for large and small permeability respectively, that the increasing permeability parameters
of both Brinkman and Forchheimer layer leads to a decay in the temperature profile in all
flow regions owing to decreased permeability of porous layers, signifying the decreasing
behavior of velocity in response to the increasing permeability parameters, εb, and ε f . Fig-
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Figure 5.27: Dimensionless temperature θ with radial direction r for various values of
permeability parameters (ε f ,εb) under (5.27a) large Darcy number (k = 10,n = 0.1,ε f =
εb = 0.1,0.5,0.9) and (5.27b) small Darcy number (k = 0.2,n= 2,ε f = εb = 0.1,0.2,0.3).
(a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

ure 5.28, describes that the temperature profile get reduced in response to the increasing
Forchheimer number signifying the decreased heat flow due to increasing inertial resistance
and manifesting that the fluid velocity and temperature profile are propotional to each other.
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Figure 5.28: Dimensionless temperature θ with radial direction r for various values of
the Forchheimer number F (F = 1,2,3) under small Darcy number (k = 0.1,n = 2,ε f =
εb = 0.1,a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,Br = 1)

The Brinkman number (Br) is a dimensionless parameter utilized to analyze heat trans-
fer between a wall and a viscous fluid, particularly pertinent in polymer processing. It
characterizes the balance between heat produced via viscous dissipation and heat conducted
through molecular conduction, effectively comparing internal heat generation to external
heating. A higher Brinkman number indicates slower heat conduction due to viscous dis-
sipation, leading to a greater temperature elevation. This significance is apparent in the
temperature profiles illustrated in Figure (5.29). The qualitative changes in temperature pro-
files with the Brinkman number remain consistent irrespective of the permeability of the
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porous medium. However, quantitatively, temperature rises more prominently with radial
distance for higher permeability, which can be attributed to the porous materials’ influence
on fluid flow dynamics.
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Figure 5.29: Dimensionless temperature θ with radial direction r for various values of
Brinkman numbers Br (Br = 0,1,2,3) under (5.29a) large Darcy number (k = 10,n =
0.1,ε f = εb = 0.5) and (5.29b) small Darcy number (k = 0.1,n = 2,ε f = εb = 0.2). (a =
0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1,F = 1)

5.4.8 Nusselt Number (Nu)

Figure 5.30 illustrates how the variation in permeabilities of both the regions impact the
Nusselt number Nu due to viscous dissipation through temperature in the flow of Carreau-
Yasuda fluid around a cluster of cylindrical particles. The rise in Brinkmann number am-
plifies the Nusselt number values, a result of heightened membrane temperature caused
by greater thermal energy production from viscous dissipation. Moreover, the rising vari-
able permeability parameters within both the Forchheimer and Brinkmann regions as well
as Forchheimer number contribute to the decline of fluid velocity and temperature profiles
within the flow domain, consequently reducing the Nusselt number profile. The influence of
both particle volume fraction and the viscoelastic properties of the fluid on the Nusselt num-
ber is depicted in Figure 5.31.The figure suggests that as the hydrodynamic permeability of
the membrane decreases (accompanied by a higher particle volume fraction) and the fluid’s
viscoelasticity improves, the Nusselt number decreases. This phenomenon is likely due to
the reduced impact of temperature on the fluid’s viscoelastic properties. Furthermore, the
gradual reduction in the transition state between the zero shear rate region and the power-law
region (indicated by an increasing transition parameter) contributes to an enhanced Nusselt
number. This enhancement can be linked to heightened heat transfer within the flow domain
for shear-thickening fluids.
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Figure 5.30: Changes in Nusselt number Nu with Brinkman number Br for various values
of (5.30a) varying permeabilities ε f ,εb (F = 1) and (5.30b) Forchheimer number F (ε f =
εb = 0.1). (a = 0.4,b = 0.7,γ = 0.445,β = 0.5,We = 0.2,a1 = 3,η = 0.1)
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Figure 5.31: Changes in Nusselt number Nu with particle volume fraction γ for vari-
ous values of (5.31a) Weissenberg number We (a1 = 3) and (5.31b) transition parameter
a1 (We = 0.2). (a = 0.4,b = 0.7,ε f = εb = 0.1,β = 0.5,η = 0.1,F = 3,Br = 1)

Reduced Cases
Carreau Yasuda Fluid (a1=4)
Carreau Fluid (a1=2)
Newtonian Fluid (We=0, n=1)
Constant Permeability (εf =εb=0)

Single Forchheimer Layer (b→c)
Single Brinkmann Layer (F=0)
Clear fluid Region (k→∞)

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

r

w

Figure 5.32: Various reduced cases of the current study for large Darcy number (k = 100)
(γ = 0.445,β = 0.5,η = 0.1)
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Figure 5.33: Validation of the current study with the study of Saini et al. [199] under
large Darcy number (k = 100,n= 0.2,ε f = εb = 0,a= 0.5,b= 1.0,γ = 0.5,β = 0.5,We=
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Figure 5.34: Validation of the current study with the study of Deo et al. [3] and Saini et
al. [199] under large Darcy number (k → ∞,ε f = εb = 0,a = 0.5,b = 1,γ = 0.445,β =
0.5,a1 = 3,η = 0.1,F = 0)

5.5 Summary and Conclusions

The creeping flow of non-Newtonian Carreau-Yasuda fluid through an aggregates of bi-
porous layered cylindrical particles is investigated using variable permeability, particle-in-
cell and heat transfer approaches. The demonstration of the proposed work is designed in
such a manner that the Brinkman-Forchheimer region proximate to the solid core of the
cylindrical particle is regulated by Brinkman-Forchheimer equation with variable perme-
ability of the porous medium, and an intermediate Brinkman porous region is governed
by the Brinkman equation with variable permeability of the porous medium. However, a
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peripheral layer of non-porous region is governed by the Stokes equation. The equations
governing the flow of Carreau-Yasuda fluid through a membrane composed of a swarm of
biporous layered cylindrical particles are nonlinear and coupled in terms of the velocity
and stress of the Carreau-Yasuda fluid. To address this complications, the empirical regular
perturbation techniques is employed to obtain the asymptotic expansion of the velocities
for different (Brinkman-Forchheimer, Brinkman, and non-porous) regions under large per-
meability and small Weissenberg number. However, a numerical technique (NDSolve) in
Mathematica is used to exhibit the graphical analysis for hydrodynamical quantities under
the various control parameters like Carreau-Yasuda parameters, porous medium parameters,
and Forchheimer number. The equations regulating the temperature distributions for various
porous and non-porous regions are solved using the method of variation of parameters. The
following remarkable outcomes of the present work is mentioned below:

1. The transition parameter a1 of the Carreau-Yasuda fluid significantly affects the ve-
locity of fluid flow, permeability of membranes, and temperature as it passes through
a membrane made up of porous layered cylinders, irrespective of whether the perme-
ability is high or low.

2. The prevalence of elastic forces over viscous forces (i.e., for increasing Weissenberg
number We) results in significantly increased fluid velocity and membrane perme-
ability when dealing with shear-thinning fluid characteristics. However, a reverse
behavior is noted with shear thickening fluid.

3. The hydrodynamic permeability of the membrane in a low permeable porous medium
is observed to undergo a decay with increased occupancy of Brinkman-Forchheimer
region relative to Brinkman region, when subjected to shear thickening fluid.

4. An increase in permeability parameters within both the Brinkman and Brinkman-
Forchheimer regions positively impacts the Kozeny constant and leads to an enhance-
ment in the membrane’s tortuosity. This enhancement is a result of decreased perme-
ability in the porous areas, which occurs due to the heightened values of the perme-
ability parameters.

5. Emphasizing the growing impact of inertial resistance on hydrodynamic and thermal
properties in the flow past a membrane as influenced by the Forchheimer number, a
slight decrease in flow velocity, membrane permeability, and temperature distribution
is noticeable for both high and low permeability values.

6. The significant discovery in this research lies in the observation that elevating the vari-
able permeability parameters within both the Forchheimer and Brinkmann regions,
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alongside the Forchheimer number, results in a decline in fluid velocity and tempera-
ture distributions throughout the flow domain, ultimately causing a diminished Nusselt
number distribution.

The proposed explanation holds promise for making substantial contributions to the investi-
gation of crucial physical and biological applications, such as the study of petroleum reser-
voir rocks, wastewater treatment filtration processes, and blood flow through smooth muscle
cells. Nevertheless, empirical validation is a necessary step to ensure the credibility of the
proposal.
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Chapter 6

Analysis of Entropy Generation for a Creeping
Flow of Newtonian Fluid through a Swarm of Bi-
porous Layered Cylindrical Particles: Brinkman-
Forchheimer Model

6.1 Introduction

The flow of liquids through membranes composed of a cluster of particles has captivated
the interest of researchers, providing valuable insights into fluid flow through porous ma-
terials. This holds significant applications across a wide array of fields, including physical
and biological sciences, such as in the study of flow through smooth muscle cells, petroleum
reservoirs, and sand beds.Heat transfer, a classical phenomenon, has been extensively ex-
plored by numerous researchers due to its wide-ranging applications in various fields such
as chemical engineering, material processing industries, biological systems, polymers, and
food processing. The study of heat transfer within a cluster of particles holds significant
importance in engineering applications, including chemical reactors and heat exchangers,
owing to the interactions among particles.

6.1.1 Entropy Generation

The suboptimal performance of industrial and engineering flow processes and thermal sys-
tems is primarily attributed to the generation of entropy. Identifying the factors responsible
for entropy generation is crucial, as minimizing these factors will lead to the optimization of
energy resources and the efficiency of the flow system. Entropy analysis is a method used
to assess the thermodynamic irreversibility present in fluid flow and heat transfer processes,
stemming from the second law of thermodynamics. Entropy generation serves as a metric
for quantifying the level of irreversibility inherent in actual processes. Various elements,
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such as heat transfer across finite temperature gradients, the nature of convective heat trans-
fer, and the influence of viscosity, contribute to the overall entropy generation. The process
of entropy generation leads to the dissipation of available energy within a system, resulting
in significant additional expenses for any thermal system.

The primary contributors to entropy generation in thermal and engineering processes
are the three modes of thermal exchange: conduction, convection, and thermal radiation.
Additionally, factors such as fluid friction, the existence of porous media, viscous effects,
fluid mixing, buoyancy forces, magnetohydrodynamics, and radiative heat transfer play sig-
nificant roles in this context. The conversion of energy across various forms like thermal
energy, potential energy, and kinetic energy, among others, plays a crucial role in the gen-
eration of entropy. These elements contribute to a decrease in the operational efficiency
(energy) of diverse thermo-fluidic devices. Furthermore, the study of entropy production is
a crucial aspect of contemporary engineering thermo fluidic devices, and it represents one
of the most frequently explored areas in research.

Bejan’s groundbreaking study ([109], [110]) explored the notion of entropy genera-
tion across various flow conditions, scenarios, and geometric models. Within the realm
of advanced thermodynamics, the study of entropy generation provides invaluable insights
for integrating miniature electronic and thermal devices, augmenting the performance of
petroleum equipment, and optimizing heat exchangers, among other applications. Rely-
ing on the information regarding entropy generation offers a more dependable approach to
designing these devices and amplifying the operational efficiency of thermal technologies.

Murthy et al. [202] provided an detailed study of the thermodynamic properties of
immiscible Eringen’s micropolar fluid within a rectangular pipe. This research holds sig-
nificant importance in the automobile sector, particularly in the realm of micropolar fluid
application as effective lubricants. In another study, Srinivas et al. [203] conducted an anal-
ysis on entropy generation in the flow of steady, incompressible, immiscible couple stress
fluids between two static horizontal isothermal walls, which were filled with porous beds.
Furthermore, Srinivas et al. [204] investigated the impact of magnetic fields on entropy pro-
duction in immiscible, steady, and incompressible viscous fluids flowing through an inclined
channel model. They utilized the homotopy analysis method to solve nonlinear momentum
and thermal energy equations.

This current research seeks to examine entropy generation in the context of the creeping
flow of Newtonian fluid through a membrane composed of biporous layered cylindrical par-
ticles under different variable permeability assumptions. The flow domain is divided into
three distinct layers. The first layer, adjacent to the solid core of the cylindrical particle,
is termed the Brinkman-Forchheimer layer and is governed by the Brinkman-Forchheimer
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equation, with varying permeability assumption. The second layer, situated between the
Brinkman-Forchheimer and peripheral layers, is referred to as the Brinkman porous layer,
regulated by the Brinkman equation with varying permeability assumption. Finally, a non-
porous liquid layer overlying the porous layers constitutes the non-porous region (clear fluid
region), which is governed by the Stokes equation. Attaining analytical solutions for the
mathematical equations governing fluid flow through porous media is intricate due to the
presence of non-linear inertial terms in the Brinkman-Forchheimer equation, as well as the
variability of permeabilities in the Brinkman and Brinkman-Forchheimer equations. To sur-
mount these challenges, regular and singular perturbation methods are applied to derive
asymptotic solutions for the equations pertaining to fluid flow through porous media. The
resulting asymptotic velocity expressions for three distinct regions are then utilized to derive
expressions for membrane permeability, the Kozeny constant, entropy generation number,
and Bejan number. The study illustrates and thoroughly discusses the impacts and influ-
ences of diverse hydrodynamic, porous medium, and thermal parameters—including vari-
ables like permeability, Forchheimer number, particle volume fraction, viscous dissipation
and stress-jump parameters on membrane permeability, the Kozeny constant, entropy gen-
eration number, and Bejan number. These relationships are visually depicted and compre-
hensively examined. Furthermore, the research examines limiting cases and the simplified
form of the proposed model, comparing it with previously published works that is not con-
sider variable permeability and an additional Brinkman-Forchheimer region near the solid
core of the cylindrical particle. The asymptotic analysis has been compared with numerical
solutions obtained through Mathematica software to validate our findings.

The framework of the current chapter is structured into five sections. Section 1 provides
fundamental information about the research topic, explores its applications across inter-
disciplinary domains, conducts a literature review covering various aspects, identifies gaps
in existing research, and outlines the objectives of the proposed study. In Section 2, the
study outlines the statement of the problem, establishes key physical assumptions, provides
a detailed model description, presents the governing mathematical equations for fluid flow
through a membrane, and introduces their non-dimensional forms. Additionally, asymptotic
solutions of the governing equations and their respective expressions are derived using both
regular and singular perturbation methods, which are given in Section 3. Section 4 employs
the mathematical expressions of velocities for distinct regions to conduct a graphical anal-
ysis of diverse hydrodynamical and thermal parameters. This analysis is performed with
consideration of various control parameters. Section 5 encapsulates the noteworthy findings
from the current research in a summary and conclusion.
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6.2 Problem Formulation

6.2.1 Statement of the Problem and Model Assumptions

The present model deals with the generation of entropy in a fully developed creeping flow
of a Newtonian fluid passing through a membrane consisting of biporous layered cylindri-
cal particles. To facilitate this, the particle-in-cell approach is employed, focusing on an
individual cylindrical particle confined in a cell selected from the swarm and utilizing a
condition on the hypothetical cell surface to examine the contributions and effects of each
particle within the swarm. Throughout filtration process, modifications can occur within the
membrane’s composition, triggered by particle dissolution and polymer adherence to parti-
cle surfaces, often referred to as poisoning. These alterations result in the development of a
porous coating, like a colloidal or gel layer, encasing solid particles, which proves difficult to
eradicate. The presence of this porous shell significantly impacts the drag force experienced
by particles due to the flow. The model delineates fluid flow through the cylindrical particle
across three distinct regions: Brinkman-Forchheimer, Brinkman, and non-porous regions.
The analysis of entropy production attributed to heat transfer irreversibility (HTI) and fluid
friction irreversibility (FFI) is conducted using the heat transfer approach, assuming local
thermal equilibrium and homogeneity. The assumption is made that the flow is fully de-
veloped in both hydrodynamic and thermal aspects, with a much greater Peclet number,
allowing us to disregard any axial conduction influences. The equations delineating entropy
generation within a creeping flow of Newtonian fluid through a membrane composed of
biporous layered cylindrical particles have been formulated based on the following assump-
tions:

1. The flow within the tube is regarded as steady, incompressible, displaying laminar
characteristics, and symmetrical about axial direction.

2. The work’s formulation involves the Brinkman-Forchheimer equation, which con-
trols the flow of a Newtonian fluid within the Brinkman-Forchheimer (BF) porous re-
gion. Meanwhile, the Brinkman equation manages the fluid flow within the Brinkman
porous region, while the flow within the non-porous area is regulated by the Stokes
equation.

3. The Reynolds number is considered exceedingly low, indicating that viscous forces
have a greater impact than inertial forces, resulting in the convective term being of
minimal importance and thus omitted from the current study.
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4. The formulation of the governing equations for a unidirectional flow of a Newtonian
fluid parallel to the biporous layered cylindrical particle is conducted using the cylin-
drical coordinate system (r̃,φ , z̃) to ensure precise physical representation.

5. The permeability of the porous material may exhibit variability, and thus, the analysis
incorporates this by adopting a quadratic polynomial function of radial distance to
account for these variations.

6. When heat conduction prevails over heat convection and a constant heat flux is as-
sumed, the thermal equations in a steady-state condition are simplified, resulting in
the convective term making a negligible contribution.

6.2.2 Model Description

Figure 6.1 illustrates the conceptual representation of the proposed model, showcasing a
collection of biparous layered cylindrical particles along with their cross-sectional perspec-
tives. For the purpose of examining entropy generation in the flow of a Newtonian fluid
through a membrane comprising a swarm of porous cylindrical particles, a porous lay-
ered solid cylindrical tube with radius ã is considered. Among the flow three regions,
the Brinkman-Forchheimer porous region with thickness b̃− ã is regulated by Brinkman-
Forchheimer equation, and the Brinkman porous region with thickness (c̃− b̃) Brinkman
equation regulated the flow. However, in a non-porous region with thickness (d̃− c̃) overly-
ing the porous regions the flow is is regulated by Stokes equation.
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Figure 6.1: (a) The visual representation of the flow along the axis within a membrane
consisting of a collection of bi-porous layered solid cylinders, (b) A hypothetical cell
encloses a biporous layer surrounding a solid cylindrical particle within a swarm, visually
depicted as a circular cross-sectional view.
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Figure 6.2: A hypothetical cell encloses a solid core within biporous layers, which in
turn are coated with a cylindrical particle exhibiting a circular cross-section in its physical
sketch

6.2.3 Governing Equations

The principles of mass, momentum, and energy conservation are applied in formulating the
equations that govern the flow of fluid through a membrane consisting of a collection of
porous cylindrical particles, under the assumptions mentioned earlier. The analysis focuses
on pressure-driven flow in the axial direction while maintaining a constant heat flux. Ac-
cording to the construction of the physical model, three distinct areas are taken into account,
each with varying thicknesses, i.e., Brinman-Forchheimer region (ã ≤ r̃ ≤ b̃), Brinkman
region (b̃ ≤ r̃ ≤ c̃), and non-porous region (c̃ ≤ r̃ ≤ d̃).

6.2.3.1 Hydrodynamical and Thermal Equations

Under the assumption of variable permeability as outlined above, the equations that govern
the flow through a biporous cylindrical particle are as stated below with their reduced forms:
Region- I, i.e., ã ≤ r̃ ≤ b̃

∂ w̃1

∂ z̃
= 0, (6.1a)

∂ p̃1

∂ r̃
= 0, (6.1b)
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∂ p̃1

∂ z̃
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r̃
∂

∂ r̃

(
r̃

∂ w̃1

∂ r̃

)
− µ̃w̃1

k̃1(r̃)
−

C̃F ρ̃w̃2
1√

k̃1(r̃)
, (6.1c)
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(
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)2
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C̃F ρ̃w̃3

1√
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, (6.1d)

where the quantities ρ̃ , p̃1, and w̃1 refer to the density, pressure, and velocity of the fluid
within the porous region, respectively. Meanwhile, µ̃e denotes the effective viscosity co-
efficient, µ̃ represents the constant viscosity coefficient of the Newtonian fluid, and k̃1(r̃)

stands for the variable permeability of the porous medium. Additionally, T̃1 signifies the
temperature of the Brinkman-Forchheimer region, K̃ is the thermal conductivity, c̃p denotes
the specific heat, and C̃F represents the inertial coefficient. The equation labeled as (6.1a)

embodies the principle of mass conservation and is commonly referred to as the continuity
equation. Equations (6.1b) and (6.1c) represent the conservation of momentum principle
in the radial and axial directions, respectively. Equation (6.1c) encompasses the contribu-
tions of pressure force, viscous effects, Brinkman resistance in relation to permeability, and
a non-linear inertia term. Equation (6.1d), which describes the steady-state thermal energy
balance in the absence of axial conduction and thermal dispersion, embodies the principle of
energy conservation. It is recognized as the thermal equation and encompasses a non-linear
convective term.
Region- II, i.e., b̃ ≤ r̃ ≤ c̃

∂ w̃2

∂ z̃
= 0, (6.2a)

∂ p̃2

∂ r̃
= 0, (6.2b)
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, (6.2c)
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2
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(
∂ w̃2
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, (6.2d)

where the variables p̃2 and w̃2 represent the pressure and velocity of the fluid within the
Brinkman porous region, respectively. Additionally, T̃2 denotes the temperature specific to
this region, while k̃2(r̃) stands for the variable permeability of the porous medium.
Region- III, i.e., c̃ ≤ r̃ ≤ d̃

∂ w̃3

∂ z̃
= 0, (6.3a)
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∂ p̃3

∂ r̃
= 0, (6.3b)
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where p̃3, w̃3 are the pressure, and velocity of the clear fluid region, respectively, T̃3 is the
temperature of clear fluid region.

6.2.3.2 Entropy Generation and Bejan Number

Entropy generation is a thermodynamic parameter used to quantify the dissipation of useful
energy in any irreversible thermodynamic process, such as heat transfer and mass trans-
fer. It is determined by analyzing the velocity and temperature distributions. In tube flow,
the convection process naturally leads to irreversibility. This results in entropy generation
occurring within the flow field as a consequence of momentum and energy transfer. In
the specific scenario under consideration, entropy generation arises from the presence of a
porous material, thermal exchange, and fluid friction. Hooman and Ejlali [205] proposed
that the rate of volumetric entropy production for a viscous, incompressible Newtonian fluid
for Brinkman-Forchheimer region can be described as follows:
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(∂ T̃1

∂ r̃

)2

+

(
∂ T̃1

∂ z̃

)2
+ 1

T̃0

 µ̃w̃2
1

k̃1(r̃)
+ µ̃e

(
∂ w̃1

∂ r̃

)2

+
C̃F ρ̃w̃3

1√
k̃1(r̃)

 , (6.4a)
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, (6.4c)

where S̃1, S̃2, and S̃3 denote the rate of volumetric entropy generation corresponding to
three separate zones: the Brinkman-Forchheimer, Brinkman, and non-porous regions, re-
spectively. The equation (6.4a) comprises five components, with the first two components
representing the entropy generation rate due to heat transfer irreversibility. However, the
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remaining three components describe the entropy generation arising from viscous dissipa-
tion (fluid friction irreversibility) caused by the presence of viscous, Brinkman resistance
and fluid inertia terms. The equation (6.4b) consists of four components. The first two
components correspond to the entropy generation rates arising from radial and axial thermal
conduction, respectively. In contrast, the last two components signify the entropy generation
resulting from viscous dissipation owing to the presence of viscous and Brinkman resistance
term.
The first law of thermodynamics results in

∂ T̃1

∂ z̃
=

∂ T̃2

∂ z̃
=

∂ T̃3

∂ z̃
=

2q′′

ρ̃ c̃pc̃w̃0
. (6.5)

The definitions pertain to the mean velocity, U and the bulk mean temperature, Tm

U =
2

(d̃2 − ã2)

∫ d̃

ã
w̃r̃dr̃, Tm =

2

(d̃2 − ã2)U

∫ d̃

ã
w̃T̃ r̃dr̃. (6.6)

Ultimately, the Nusselt number is characterized as

Nu =
2q′′c̃

K̃(T̃w − T̃m)
. (6.7)

6.2.3.3 Boundary Conditions

In diverse scenarios related to fluid dynamics, there exist exchanges between the fluids and
their surroundings at interfaces. These exchanges referred to as boundary conditions, affect-
ing the fluid flow concerning its environment. Derived from the system’s properties, these
conditions mathematically articulate the physics occurring at these boundaries. When opt-
ing for a particular design or flow field, conditions are inherently established. Conversely,
if these conditions are readily apparent, it may signal the necessity for a more precise de-
lineation of the system’s boundaries, potentially resulting in challenges when tackling prob-
lems. Boundary conditions encompass factors like the behaviour of external forces acting
on the fluid, mass and momentum exchange rates, values of variables at the boundary, and
their interrelationships. When addressing solutions pertaining to the evolution of flow fields
over time, both initial and boundary conditions are imperative.

The quantity of conditions necessary is contingent upon the governing equations that de-
pict the behaviour of fluids, as distinct physical phenomena can give rise to various boundary
conditions. In essence, there are typically three main classifications of boundary conditions:
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1. The state of zero axial velocity at the surface of the solid cylinder is being taken into
account and the temperature consistently remains at the ambient level, i.e.,

w̃1 = 0, and T̃1 = T̃∞, at r̃ = ã, (6.8a)

2. It is assumed that the fluid’s velocity and temperature remain continuous at the in-
terface between the Brinkman-Forchheimer and Brinkman porous regions. Also, it is
postulated that the velocity and temperature gradients exhibit continuity at the inter-
face between the Brinkman-Forchheimer and Brinkman porous regions, i.e.,

w̃1 = w̃2, and T̃1 = T̃2, at r̃ = b̃, (6.8b)

dw̃1

dr̃
=

dw̃2

dr̃
, and

dT̃1

dr̃
=

dT̃2

dr̃
, at r̃ = b̃, (6.8c)

3. The stress jump boundary along with continuity of temperature gradient is considered
at the Brinkman-Stokes interface, i.e.,

w̃2 = w̃3, and T̃2 = T̃3, at r̃ = c̃, (6.8d)
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, and
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, at r̃ = c̃, (6.8e)

4. The hypothetical cell surface is assumed to have zero velocity and temperature gradi-
ents, i.e.,

dw̃3

dr̃
= 0, and

dT̃3

dr̃
= 0 at r̃ = d̃. (6.8f)

6.2.4 Non-Dimensional Parameters and Governing Equations

To solve the above system of equations (6.1a)− (6.3d), the following non-dimensional
variables are introduced:
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where w̃0 represents the average velocity, F denotes the Forchheimer number also referred
to as the Forchheimer-Reynolds number, is a dimensionless factor employed to quantify the
significance of inertial forces compared to viscous forces in fluid motion. This parameter
proves especially valuable when simulating the movement of fluids within permeable sub-
stances like soils, rocks, and industrial filters. S stands for a dimensionless parameter and
q̃0 signifies the characteristic pressure gradient, Nu corresponds to the Nusselt number, Br

is therepresents the Brinkman number, and λ1 is the viscosity ratio parameter. i = 1,2,3.

6.2.4.1 Hydrodynamic and Thermal Equations

The provided non-dimensional variables (6.9) lead to the transformation of the governing
equations for porous and non-porous regions into their non-dimensional forms as outlined
below:
Region- I, i.e., a ≤ r ≤ b

∂w1

∂ z
= 0, (6.10a)

∂ p1

∂ r
= 0, (6.10b)
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Region- II, i.e., b ≤ r ≤ 1
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Region- III, i.e., 1 ≤ r ≤ d

∂w3

∂ z
= 0, (6.12a)

∂ p3

∂ r
= 0, (6.12b)
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6.2.4.2 Entropy Generation and Bejan Number

The non-dimensional expressions for entropy generation and Bejan number, pertaining to
both porous and non-porous regions, are formulated utilizing the non-dimensional param-
eters outlined in equation (6.9). The mathematical expressions for entropy generation are
derived as
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+
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S3 =
S̃3
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+
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, (6.13c)

where S1, S2, and S3 represent the entropy generation associated with three distinct regions:
the Brinkman-Forchheimer, Brinkman, and non-porous regions, respectively.
The Bejan number, which quantifies irreversibility resulting from heat transfer, is stipulated
as

Be1 =

(
dθ1
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+
(Nu

Pe

)2[(
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] , (6.14a)
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where Be1,Be2, and Be3 denote the Bejan numbers corresponding to three separate regions:
the Brinkman-Forchheimer, Brinkman, and non-porous regions, respectively.

6.2.4.3 Dimensionless Boundary Conditions

The dimensionless boundary and interface conditions for hydrodynamic and thermal equa-
tions are provided as follows:

w1 = 0, and θ1 = 1, at r = a.

w1 = w2, and θ1 = θ2, at r = b,
dw1

dr
=

dw2

dr
, and

dθ1

dr
=

dθ2

dr
, at r = b.

w2 = w3, and θ2 = θ3, at r = 1,

1
αp

dw2

dr
− dw3

dr
=

βw2√
k2(r)

, and
dθ2

dr
=

dθ3

dr
, at r = 1.

dw3

dr
= 0, and

dθ3

dr
= 0, at r = d.

(6.15)

6.3 Asymptotic Solution of the Problem

In the suggested framework, the governing equations regulating the flow of Newtonian fluid
within porous regions become nonlinear second-order ordinary differential equations due to
the presence of a nonlinear inertia term in the Brinkman-Forchheimer equation and the vari-
able nature of permeability. The solutions of these nonlinear equations present considerable
challenges. To find solutions for these governing equations, either asymptotic or numerical
solution techniques may be employed to derive velocity expressions for both the porous re-
gions. The asymptotic expansions of velocities in both the porous regions are determined by
considering whether the permeability parameter k is small or large. The numerical scheme
NDSolve within Mathematica is utilized to validate our results. For a comprehensive under-
standing of perturbation techniques, readers are referred to Bush [141] and Nayfeh [142].

6.3.1 Perturbation Solutions for Hydrodynamic Equations

This subsection discusses the asymptotic solutions of the governing equations that analyze
entropy generation in a creeping flow of a Newtonian fluid through a swarm of biporous
layered cylindrical particles. The solution approach is divided into two subsections: one for
low Darcy numbers and the other for large Darcy numbers. A regular perturbation method
is employed for large Darcy numbers, while a singular perturbation method, combined with
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a matched asymptotic assumption, is used to solve the equations for small Darcy numbers.
Below are detailed explanations and derivations for the asymptotic expansions of velocity
profiles in porous regions.

6.3.1.1 Solution for Large Permeability (i.e.,S ≪ 1)

wi = wi0 +Swi1 +S2wi2 +O(S3), (6.16a)

where i = 1,2,3 represent for Forchheimer, Brinkman, and Stokes regions, respectively.
Forchheimer Region (a ≤ r ≤ b)
The momentum equation along the axial direction governing fluid flow within the Forch-
heimer region can be expressed using the small parameter S ≪ 1, particularly applicable for
high permeability of the porous medium, as follows:

∂ p1

∂ z
=

λ 2
1
r

∂

∂ r

(
r

∂w1

∂ r

)
− S2w1

(1− ε f r)2 −
SFλ 2

1 w2
1

1− ε f r
, (6.17a)

The velocity profiles of zeroth, first, and second order are derived through asymptotic series
expansions based on the high permeability of the porous medium. The zeroth, first, and
second order velocity profiles are obtained as

λ 2
1
r

d
dr

(
r

dw10

dr

)
=−ps, (6.18a)

λ 2
1
r

d
dr

(
r

dw11
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)
=

Fλ 2
1 w2

10
1− ε f r

, (6.18b)

λ 2
1
r

d
dr

(
r

dw12

dr

)
=

w10

(1− ε f r)2 +
2Fλ 2

1 w10w11

1− ε f r
, (6.18c)

The analytical solutions for the equations governing the velocity profiles of zeroth, first, and
second order, denoted as (6.18a), (6.18b), and (6.18c) respectively, are derived as

w10 =C1 log(r)+C2 −
psr2

4λ 2
1
, (6.19a)

w11 =
Fr2

3456
(
C2

1(ε f r(81ε f r+256)+1296)−8C1C2(ε f r(27ε f r+64)+216)+24C2
2(ε f r(9ε f r+16)+36)

)
+

1
144

C2
1Fr2(ε f r(9ε f r+16)+36) log2(r)

+
F psr4

216000λ 2
1
(C1(8ε f r(125ε f r+216)+3375)−30C2(4ε f r(25ε f r+36)+225))
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− C1Fr2 log(r)
21600λ 2

1

(
50λ

2
1 (C1(ε f r(27ε f r+64)+216)−6C2(ε f r(9ε f r+16)+36))

+3psr2(4ε f r(25ε f r+36)+225)
)
+C3 log(r)+C4

+
F p2

s r6(9ε f r(49ε f r+64)+784)
451584λ 4

1
. (6.19b)

Due to very large expressions, the complete expression for the second-order velocity, w12,
containing the constants C5 and C6 have not been presented here. The constants C1 −C6

are arbitrary and can be determined by applying boundary conditions (6.15). Due to their
lengthy nature, the mathematical expressions for these constants are not included in the
chapter.
Brinkman Region (b ≤ r ≤ 1)
The momentum equation in the axial direction and the thermal equation that governs fluid
flow within the Brinkman porous region can be represented using the small parameter S≪ 1,
which is especially relevant for high permeability of the porous medium, as follows

∂ p2

∂ z
=

λ 2
1
r

∂

∂ r

(
r

∂w2

∂ r

)
− S2w2

(1− εbr)2 , (6.20a)

(6.20b)

The velocity profiles for zeroth, first, and second orders are obtained by employing asymp-
totic series expansions, leveraging the high permeability of the porous medium. The velocity
profiles for the zeroth, first, and second order are derived as

λ 2
1
r

∂

∂ r

(
r

∂w20

∂ r

)
=−ps, (6.21a)

λ 2
1
r
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∂ r

(
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)
= 0, (6.21b)

λ 2
1
r

∂

∂ r

(
r

∂w22

∂ r

)
=

w20

(1− εbr)2 , (6.21c)

The analytical solutions for the equations governing the velocity profiles of zeroth, first, and
second order, denoted as (6.20a), (6.23), and (6.24) respectively, are derived as

w20 =C7 log(r)+C8 −
psr2

4λ 2
1
, (6.22a)

w21 =C9 log(r)+C10, (6.22b)

w22 =C11 log(r)+C12 +
C7r2(εbr(27εbr+32)+36) log(r)

144λ 2
1
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− 1
43200λ 4

1

[
50λ

2
1 r2(C7(εbr(81εbr+128)+216)−6C8(εbr(27εbr+32)+36))

+9psr4(4εbr(25εbr+24)+75)
]
, (6.22c)

where the constants C7 −C12 are arbitrary and can be established by applying boundary
conditions (6.15). Owing to their extensive form, the mathematical expressions for these
constants are omitted from the chapter.
Stokes Region (1 ≤ r ≤ d)
The reduced governing equations of velocity profiles for the zeroth, first, and second order
are derived as

1
r

∂

∂ r

(
r

∂w30

∂ r

)
=−ps, (6.23)

1
r

∂

∂ r

(
r

∂w31

∂ r

)
= 0, (6.24)

1
r

∂

∂ r

(
r

∂w32

∂ r

)
= 0, (6.25)

which can be solved exactly, and analytical expression of their solution can be given as,

w30 =C13 log(r)+C14 −
psr2

4
, (6.26)

w31 =C15 log(r)+C16, (6.27)

w32 =C17 log(r)+C18 (6.28)

where the constants C13 −C18 are arbitrary and can be established by applying boundary
conditions (6.15).

6.3.1.2 Solution for Small Permeability (i.e.,S ≫ 1)

Taking into account the low permeability of the porous medium k ≪ 1, the parameter S ≫ 1
exhibits significant enlargement. The equations governing the flow of a Newtonian fluid
through biporous layered cylindrical particles will transform into a singularly perturbed
boundary value problem, with the parameter S−1 ≪ 1, where S = 1

k and k is the perme-
ability of the porous medium. Finding analytical solutions for these singularly perturbed
boundary value problems presents a significant challenge. The equations describing the
flow of a Newtonian fluid through porous regions are presented in terms of S−1 as follows:

S−2
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)
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1 w2
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1− ε f r
, (6.29a)



202
Chapter 6. Analysis of Entropy Generation for a Creeping Flow of Newtonian Fluid
through a Swarm of Biporous Layered Cylindrical Particles: Brinkman-Forchheimer

Model

S−2
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S−2λ 2
1

r
∂

∂ r

(
r

∂w2

∂ r

)
− w2

(1− εbr)2 . (6.29b)

The conventional perturbation technique is inadequate for establishing asymptotic solutions
to singularly perturbed boundary value problems owing to the presence of the parameter S−1

associated with the highest order derivative term.
Outer Solution

w1 = w10 +S1
1w11 +S2

1w12 +S3
1w13 +S4

1w14 +S5
1w15 +O(S6

1), (6.30a)

w2 = w20 +S1
1w21 +S2

1w22 +S3
1w23 +S4

1w24 +S5
1w25 +O(S6

1), (6.30b)

The series form of velocities is introduced in the equation 6.29a and 6.29b and equated the
like power of the parameter S1.

w10 = 0, w11 = 0, w12 = pz(1− rε f )
2, w13 = 0,

w14 =
2λ 2

1 pzε f (rε f −1)2(2rε f −1)
r

, w15 = Fλ
2
1 p2

z (rε f −1)5, (6.31a)

w20 = 0, w21 = 0, w22 = pz(1− rεb)
2, w23 = 0,

w24 =
2λ 2

1 pzεb(rεb −1)2(2rεb −1)
r

, w25 = 0, (6.31b)
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2
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2
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2
1 S2

1εb
)
, (6.32b)

Inner Solution
To derive the solution for the boundary layer region, a streatching variable (inner variable)
will be defined at the left end of each domain, which will be introduced as

η1 =
r−a

S1
, (6.33a)

η2 =
r−b

S1
, (6.33b)
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Introducing these inner variables in the boundary value problem 6.29a, 6.29b and 6.15 and
neglecting the smaller terms (S−1 → 0).

λ
2
1

d2w1

dη2
1
− (1+2ε f a+3ε

2
f a2)w1 = 0, (6.34a)

λ
2
1

d2w2

dη2
2
− (1+2εbb+3ε

2
b b2)w2 = 0, (6.34b)

(6.34c)

The above set of equations can be solved exactly and their one term bounded solution is
represented as

wi
1 = c2e−

r−a
S1

√
3a2ε2

f +2aε f +1

λ1 , (6.35a)

wi
2 = c4e−

r−b
S1

√
3b2ε2

b+2bεb+1

λ1 , (6.35b)

Matching Procedure
The outer solution in terms of inner limit is stated as,

(wo
1)

i = lim
S→+∞

wo
1 = 0, (6.36a)

(wo
2)

i = lim
S→+∞

wo
2 = 0, (6.36b)

The inner solution in terms of outer limit is stated as,

(wi
1)

o = lim
η1→+∞

wo
1 = 0, (6.37a)

(wi
2)

o = lim
η2→+∞

wo
2 = 0, (6.37b)

It can be observed from the equations (22) and (23) that the Prandtl’s matching condition
(uo

k)
in = (uin

k )
o = um

k , k = 1,2 is satisfied, where, um
k is the match solution of both inner and

outer solutions. The matching solution is

wm
k = 0, k = 1,2. (6.38a)

By using the inner and outer solution the expression of composite solution of velocities for
three different regions is

wk = wo
k +wi

k −wm
k , k = 1,2. (6.39a)
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Additionally, the analytical expression of velocity for the Stokes region can be derived as

w3 = c5 log(r)+ c6 −
psr2

4
(6.40)

Since the boundary layer is assumed on the left side of the Forchheimer and Brinkman
region, i.e. r = a, and r = b, respectively. Therefore, one the condition on the right side of
each domain, r = b, and r = c, respectively, i.e. the conditions of continuity of stresses at the
porous-porous interface and fluid-porous interface should be omitted. Hence, the constants
c2, c4, c5 and c6 will be derived using the following set of boundary conditions

w1 = 0 at r = a, (6.41a)

w1 = w2 at r = b, (6.41b)

w2 = w3 at r = 1, (6.41c)
dw3

dr
= 0 at r = d. (6.41d)

6.3.2 Solutions for Thermal Equations

The analytical solutions for the equations that control the temperature profiles in the Forch-
heimer, Brinkman, and Stokes region are obtained using variation of parameter method, and
are given as
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θ2 =t5 log(r)+ t6 − log(r)
∫ d
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+
∫ d

1
r log(r)

(
Nuŵ3 +Br

(
∂ ŵ3

∂ r

)2
)

dr, (6.44)

where the constants t1− t6 are arbitrary and can be established by applying boundary condi-
tions (6.15).

6.4 Results and Discussion

The present study delves into the influence of varying permeability and the biporous layer
arrangement within the medium, along with the generation of entropy, in the context of the
slow, Newtonian flow of fluid through a collection of cylindrical particles with biporous
layers. The goal is to shed light on how the changing permeability, diverse porous media,
and entropy generation play a crucial role in modeling fluid flow through a membrane. The
envisioned work’s physical sketch is designed such that the Brinkman-Forchheimer region
near the solid core of the cylindrical particle is governed by the Brinkman-Forchheimer
equation with variable permeability. Simultaneously, a concentric Brinkman porous region
is governed by the Brinkman equation, also under variable permeability of the medium. In
contrast, a region without porous region, referred to as the non-porous region, is referred to
the Stokes equation. The hydrodynamic quantities in the context of the flow of a Newtonian
fluid through a membrane composed of a swarm of biporous layered cylindrical particles are
challenging to express analytically due to the nonlinear and coupled nature of the mathemat-
ical equations. This complexity arises from the interdependence between velocity and the
changing permeability of the porous material. The traditional regular perturbation methods
has been employed with the aim of uncovering solutions to the governing equations. This
approach has been utilized to derive asymptotic expansions for the hydrodynamic quanti-
ties. This enables a thorough examination of the outcomes and their physical implications,
including the impact of parameters such as those associated with the porous medium, heat
transfer, and volume fraction on the entropy generation.

6.4.1 Model Validation and Limiting Cases

1. When the Forchheimer number tends toward zero, (F → 0), the Brinkman–Forchheimer
model simplifies to the Brinkman model for flow through a porous medium.

2. When the permeability parameters approach zero, denoted as ε f → 0,εb → 0, the
current variable permeability model simplifies to the constant permeability model.
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3. When both the radius of the solid cylindrical core and radius of the Forchheimer layer
tend towards one or the permeability of the porous medium tend towards infinite,
denoted as (a → 1,b → 1 and k → ∞), the current model simplifies to solid cylinder-
in-cell.

6.4.2 Parameter Selection

Measuring the movement of a flowing fluid presents a challenge, as it requires estimating
the mass or volume of the substance as it moves through a pipe or conduit. Complications
may arise due to the complex nature of fluid flow dynamics. Quantifying physical factors is
generally difficult in the realm of flow measurements. The table below outlines the range of
parameter values, which vary depending on the applications in different fields. All the vital
parameters listed in this table have been comprehensively explained in their respective cited
sources, giving the reader a better understanding of the underlying concepts.

Range of Parameters

Parameters Range Sources

Brinkman number Br 0-10 [203]

Peclet number Pe 0.001-10 [206]

Steady pressure gradient ps 1-10 [5], [167]

Permeability k (0,∞) [2], [3]

Forchheimer number F 0-2 [7], [8]

Stress-jump parameter β (−1,1) [3], [5]

Viscosity ratio parameter λ1 1.0-1.6 [207], [167]

Particle volume fraction γ 0.1-1.0 [3], [96]

Nusselt number Nu 2-8 [7], [8]

Variable permeability parameters ε f ,εb 0.0-0.9 [24]

Porosity parameter ε 0.3-1.0 [3]

Dimensionless temperature constant T0 1.0 [203]

Table 6.1: Domain of interest for the ongoing parameters with their references
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6.4.3 Entropy Generation Number (S)

This subsection is focused on examining thermodynamic irreversibilities arising from fluid
friction, heat conduction, fluid flow through porous mediums with changing permeabilities,
and particle interactions within a swarm. Entropy production (or generation) quantifies the
amount of entropy generated throughout the process involving heat transfer, serving as a
metric for assessing process efficiency.

Figure 6.3 analyzes the relationship between the entropy generation number S and the
Brinkman number Br. The graphical analysis reveals that entropy generation number de-
creases with radial distance for various Brinkman numbers. Elevated Brinkman numbers
lead to heightened entropy generation, especially noticeable within porous regions in both
formulations (small and large Darcy numbers). A higher Brinkman number Br indicates
a reduced rate of heat conduction stemming from viscous dissipation, resulting in greater
temperature elevation and hence the entropy generation. The entropy production is compar-
atively higher when the permeability of the porous medium is small, as it encounters greater
resistance from the low permeability medium compared to situations with higher permeabil-
ity. A higher decay rate is noted as radial distance increases in porous mediums with high
permeability, particularly pronounced in Forchheimer region due to the inclusion of the fluid
inertia term in the Forchheimer equation.
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Figure 6.3: Dimensionless entropy S with radial distance r for various values of
Brinkmann number Br (Br = 0.1,1.0,2.0) under (a) large Darcy number (k = 10,T0 =
1,Pe = 50) and (b) small Darcy number (k = 0.1,T0 = 10,Pe = 500).(λ1 = 1,b = 0.7,γ =
0.444,F = 1,Nu = 4.0)

The analysis considers the influence of the Peclet number (Pe) on entropy generation (S)
across formulations for both small and large Darcy numbers (Fig. 6.4). It is deduced that
the prevalence of convective heat transfer over diffusive heat transfer results in an decreased
temperature and hence entropy generation. The influence of the Nusselt number Nu is more
significant within the Stokes region across both formulations.
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Figure 6.4: Dimensionless entropy S with radial distance r for various values of Peclet
number Pe under (a) large Darcy number (k = 10,T0 = 1,Nu = 4,Br = 0.8) and (b) small
Darcy number (k = 0.1,T0 = 10,Nu = 4,Br = 2.0).(λ1 = 1,b = 0.7,γ = 0.444,F = 1)

Figures 6.5a and 6.5b illustrate the alterations in entropy generation across radial dis-
tance, corresponding to different permeabilities of porous media. It is apparent from these
figures, representing high and low permeabilities respectively, that augmenting the perme-
ability parameter in both the Brinkman and Forchheimer layers leads to increased obstruc-
tions in flow to porous media resulting in slight increase in the entropy generation. The
impact of varying permeability parameters is more noticeable for low permeability com-
pared to high permeability in the porous medium.
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Figure 6.5: Dimensionless entropy S with radial distance r for various values of perme-
ability parameters ε f ,εb under (a) large Darcy number (k = 10,T0 = 1,Pe = 50,Br = 0.8)
and (b) small Darcy number (k = 0.1,T0 = 10,Pe = 500,Br = 2.0).(λ1 = 1,b = 0.7,γ =
0.444,F = 1,Nu = 4.0)

Figures 6.6a and 6.6b illustrate the radial variation of entropy generation for different
thicknesses of the Forchheimer region near the solid cylinder core in both formulations. An
increased occupancy of the Forchheimer region within the porous layer leads to a increased
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temperature profile in the membrane and consequently enhances entropy generation. More-
over, higher permeability results in a slower decline in entropy generation with expanding
Forchheimer region width.
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Figure 6.6: Dimensionless entropy S with radial distance r for different thickness of
Forchheimer layer b under (a) large Darcy number (k = 10,T0 = 1,Br = 0.8) and (b)
small Darcy number (k = 0.1,T0 = 10,Br = 2.0).(λ1 = 1,b = 0.7,γ = 0.444,F = 1,Nu =
4.0,Pe = 50)

An increase in the Forchheimer number leads to a increase in entropy generation across
all areas of the biporous layered cylindrical particles, suggesting a temperature rise due to
increased inertial resistance (Fig. 6.7).
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Figure 6.7: Dimensionless entropy, S with radial distance, r for various values of Forch-
heimer number F under (a) large Darcy number (k = 10,T0 = 1,Br = 0.8) and (b) small
Darcy number (k = 0.1,T0 = 10,Br = 2.0).(λ1 = 1,b = 0.7,γ = 0.444,F = 1,Nu =
4.0,Pe = 50,ε f = εb = 0.5)

The impact of the Forchheimer number is more noticeable in low-permeability scenarios
compared to high-permeability conditions within the porous medium. Additionally, in low-
permeability situations, a gradual increase in entropy generation with rising Forchheimer
number is observed.
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An increase in the viscosity ratio parameter leads to an enhanced entropy generation
throughout all segments of the biporous layered cylindrical particles, as depicted in Figure
6.8. The influence of the viscosity ratio parameter is almost same for both large and small
permeability cases. The rising entropy generation can be attributed to enhanced resistance
due to increasing viscosity ratio parameter.
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Figure 6.8: Dimensionless entropy, S with radial distance, r for various values of viscosity
ratio parameter λ1 under (a) large Darcy number (k = 10,T0 = 1,Br = 0.8) and (b) small
Darcy number (k = 0.1,T0 = 10,Br = 2.0).(b = 0.7,γ = 0.444,F = 1,Nu = 4.0,Pe =
50,ε f = εb = 0.5)

6.4.4 Bejan Number (Be)

The second law of thermodynamics dictates that minimizing the total entropy generation
in any thermofluidic system is crucial for achieving peak efficiency, enabling us to maxi-
mize the utilization of usable energy from the system. Following this, our focus shifts to
gauging the proportion of entropy generation stemming from heat transport relative to the
total entropy within micro confinements. Figure 6.9 illustrates the impact of the viscosity
ratio parameter, λ1 on the Bejan number. The viscosity ratio parameter determines the rel-
ative significance of porous medium viscosity compared to clear fluid viscosity. Increasing
viscosity ratio parameter contribute towards higher fluid friction, hence leading towards a
relatively higher irreversibilities due to viscous dissipation.
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Figure 6.9: Bejan number, Be with radial distance, r for various values of viscosity ratio
parameter λ1 under small Darcy number (k = 0.1,T0 = 1,ε f = εb = 0.1).(b = 0.7,γ =
0.444,F = 1,Nu = 4.0,Pe = 100)

Figure 6.10 depicts the variation of the Bejan number with the Peclet number across
various parameter configurations. The Peclet number signifies the ratio between advection
and diffusion rates in a system driven by a temperature gradient. The impact of the Peclet
number is notably more significant in clear fluid areas compared to porous regions. It can be
understood that a rising Peclet number leads to a reduced thermal irreversiblities whereas the
irreversiblities due to viscous dissipation is almost negligible near hypothetical cell owing
to Happel boundary condition, which results in reduced Bejan number.
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Figure 6.10: Bejan number, Be with radial distance, r for various values of Peclet num-
ber Pe under small Darcy number (k = 0.1,T0 = 1,Br = 2,ε f = εb = 0.1).(b = 0.7,γ =
0.444,F = 1,Nu = 4.0)

The parameter Br/T0, which represents dissipation, is only present in the temperature
equations. A slight increase in Br/T0 leads to a notable decrease in the Bejan number. Figure
6.11 reveals that near hypothetical cell, the Bejan number reaches its minimum, indicating
maximum available energy in the transverse direction. Throughout the porous region and
at the hypothetical cell the Bejan number attains its peak value suggesting a dominant fluid
friction in those region.
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Figure 6.11: Bejan number, Be with radial distance, r for various values of viscous dissi-
pation coefficient

(
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)
under small Darcy number (k = 0.1,ε f = εb = 0.1).(b = 0.7,γ =

0.444,F = 1,Nu = 4.0,Pe = 100)

A varying permeability also has its impact on relative irreversibility due to heat transfer
as depicted in figure 6.12. It is evident that a decaying permeability leads to Bejan number
attaining its minimum value closer to the hypothetical cell a further reduction in the mini-
mum value. In other words a reduced permeability leads to a reduced irreversibility due to
heat transfer near the hypothetical cell.
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Figure 6.12: Bejan number, Be with radial distance, r for various values of variable
permeability parameters (ε f ,εb) under small Darcy number (k = 0.1,T0 = 1,Br = 2,ε f =
εb = 0.1).(b = 0.7,γ = 0.444,F = 1)

6.4.5 Model Validation and Comparative Analysis

The graphical analysis described above illustrates the asymptotic behavior of entropy gen-
eration in a slow flow of a Newtonian fluid through a membrane composed of biporous
layered cylindrical particles, utilizing a particle-in-cell approach. To verify the conclusions
drawn from this analysis, it is essential to compare them with existing research in simplified
scenarios and validate them through a combination of quantitative and qualitative graphical
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analysis, alongside numerical solutions of the governing equations. The Figure (6.13) com-
pares the second order asymptotic solution of the velocity with the numerical solution where
both can be seen aligning well with each other, signifying the validation of the asymptotic
results. The solution of current study is reduced to the model of flow past a solid cylindri-
cal particles by taking the parameters (k → ∞,a = b = 1), and the obtained results of the
hydrodynamic permeability is compared with the work of Deo et al. [3], which shows a
perfect alignment of the curves corresponding to both the studies (Figure 6.14). The current
model is also reduced to some special cases and represented the results in Figure (6.15),
simultaneously. An increased velocity profile for constant permeability model signifies the
extra resistance in the fluid flow of variable permeability model. Further increase in fluid
velocity for Brinkman model signifies the contribution of extra inertial resistance due to
Forchheimer term in the current model. Finally, the flow past a solid cylindrical particles
without any coating of porous layer receive a slight enhancement in the fluid velocity of the
membrane.
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Figure 6.13: Comparision of velocity obtain via asymptotic solution and numerical solu-
tion of the problem for the large permeability case (k = 100,ε f = εb = 0.5,γ = 0.445,λ1 =
1,F = 1).
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Figure 6.14: Validation of current study with the study of Deo et al. in terms of Hydro-
dynamic permeability, L11 for k → ∞,a = b = 1.
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Figure 6.15: Different reduced cases of current work under large permeability parameter
(k = 100,ε f = εb = 0.5,γ = 0.445,λ1 = 1,F = 3).

6.5 Summary and Conclusions

This study undertakes a theoretical effort to examine entropy generation in the context of
the slow flow of a Newtonian fluid through aggregated bi-porous layered cylindrical parti-
cles within a membrane. This analysis incorporates a variable permeability and heat trans-
fer approach. The proposed work’s demonstration is structured to control the Brinkman-
Forchheimer region near the solid core of the cylindrical particle using the Brinkman-
Forchheimer equation, taking into account the variable permeability of the porous medium.
Meanwhile, an intermediate Brinkman porous region is govern by Brinkman equation with
variable permeability, also considering the variable permeability of the porous medium.
However, a peripheral non-porous layer is governed by the Stokes equation. The equations
describing the flow of a Newtonian fluid through a membrane consisting of a collection of
bi-porous layered cylindrical particles are complex and interdependent. This complexity
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arises from the inclusion of changing permeability and a non-linear fluid inertia term in the
governing equations for the porous region. To tackle these complexities, empirical methods
involving both regular and singular perturbations are utilized to derive the asymptotic expan-
sion of velocities in various porous regions (such as Brinkman-Forchheimer and Brinkman
porous) under conditions of both high and low permeability. To assess the validity of the
asymptotic solutions for the governing equations, the NDSolve command of Mathematica
software has been employed to graphically analyzed the hydrodynamic variables across a
range of control parameters, including parameters related to porous media, heat transfer,
and the Forchheimer number. The subsequent noteworthy results of the current study are
detailed below:

1. The augmentation in varying permeability parameters of the Brinkman and Forch-
heimer layers leads to an enhancement in entropy generation owing to reduced fluid
velocity.

2. The wider Forchheimer region produces an enhanced inertial resistance to the fluid
flow, resulting in a reduced velocity and enhanced temperature profile, which further
reduces entropy generation in the membrane.

3. Highlighting the significance of increasing inertial resistance on the hydrodynamic
and thermal characteristics in membrane flow, influenced by the Forchheimer number,
a subtle reduction in flow velocity and hence an enhancement in temperature distribu-
tion and entropy generation becomes apparent across various permeability levels.

4. The increased values of Brinkman number significantly enhances the temperature and
entropy of the membrane. The Bejan number shows a decreasing trend for larger
Brinkmann number.

The results of the current asymptotic analysis have been confirmed through numerical sim-
ulations using the NDSolve command in Mathematica, demonstrating a strong concurrence
between our asymptotic analysis and the numerical solutions. To the best of our knowledge,
above outcomes are first attempt in flows through swarm of particles and hence can be use-
ful to understand the variations in irreversibility due to variations of different parameters
in processes such as filtration processes in wastewater treatment, petroleum reservoir rocks,
and the flow of blood within smooth muscle cells.
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Chapter 7

Effect of Surface Roughness on Flow Past a Mem-
brane composed of Porous Cylindrical Particles:
A Particle-in-Cell Approach

7.1 Introduction

Fluid dynamics within different shaped objects featuring corrugated or irregular boundaries
have garnered significant interest among researchers due to their diverse field of applica-
tions. Corrugated walls have a rich history of application in improving heat and mass trans-
fer within the fluid flow [208], hence the exploration of fluid flow through objects with
irregular surfaces holds immense relevance in fields such as distillation columns and sep-
aration processes [209], [210], biological transport phenomena, chemical separation [211],
[212], and the determination of pressure drop in micro-channels featuring rough surfaces
[213], [214]. Boundary effects in microchannel systems hold a significant importance due
to their large surface-to-volume ratio. Therefore, a rough surface of a mirco object has
a significant impact on the fluid flow compared to the system’s length scale. Hence, the
boundary roughness becomes more noticeable in these systems. Consequently, the mathe-
matical treatment of these boundaries is important in the fluid flow problem involving rough
surfaces. Many authors attempted to address this problem by considering the roughness as
a corrugation of different periodic functions. Phan-Thien [215] initiated the mathematical
treatment of flow through objects with corrugated or irregular shaped boundary by study-
ing the flow of Newtonian fluid through a circular cylindrical pipe featuring a sinusoidal
corrugated boundary. Apart from this, he [216] also carried out an analytical treatment of
the flow problem involving Stokes’ flow around a rotating corrugated rod and Stokes’ flow
within the space between two corrugated cylinders with distinct cross-sectional geometries.
Wang [217], [218] studied the stokes flow between two fixed corrugated plates and analyzed
the effect of phase difference of the corrugations on the flow rate. He noted that even when
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phase difference does not affect the wetted perimeter nor the cross-sectional area, still this
has a significant impact on flow depending upon the flow directions. Zhou et al. [219] con-
ducted a study on the the flow of a viscous fluid in a two-dimensional corrugated channel
using the perturbation and finite volume approach and compared the result to validate the
asymptotic solutions. Additionally they found an explicit relation exists between the criti-
cal Reynolds number, at which the wall flow separates, and the dimensionless corrugation
height and wavelength of the corrugations. Sherief et al. [220] explored the effect of sinu-
soidal corrugations on the creeping flow of micropolar fluid flowing between two corrugated
plates using the perturbation method up to the second order. Ashmawy [21] investigated the
effect of both longitudinal and transverse corrugations in the tube flow of a couple stress
fluid. He used the sinusoidal corrugations on the surface and utilize the perturbation tech-
nique to solve and explore the effect of corrugation control parameter on the flow rate and
mean velocity. Many researchers explored the effect of surface roughness in the flow past a
porous vessel. Ng and Wang [221] considered a sinusoidal corrugated channel filled with a
sparse porous medium and carried out a perturbation analysis of the Newtonian fluid flow-
ing in either parallel or normal to the corrugations. Faltas et al. [88] studied the partial slip
effect of fluid in the corrugated microannuli cylindrical tubes, where the tube was filled with
a porous medium and Brinkman equation regulated the flow. They also emphasize the effect
of phase difference in inner and outer wall of the corrugated annular tube.
A prevalent focus in these studies was the examination of geometric influences stemming
from wall corrugations on flow resistance or pressure drop within the vessel. This serves
as inspiration for our investigation into the influence of surface roughness on flow dynam-
ics within a membrane. The flow past a membrane is a topic which is studied by many
researchers from a long time using different models and solving techniques. But as per the
authors knowledge, the exploration of the effect of rough surfaces in flow past a membrane
is still not studied by anyone. The present study is focused on the influence of surface
roughness on the flow past a membrane composed of corrugated porous layered cylindrical
particles.
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7.2 Problem Formulation

7.2.1 Statement of the Problem and Model Description

The aim of this study is to investigate the steady flow of a Newtonian fluid over a membrane
constructed from a concentration suspension of porous layered cylindrical particles featuring
sinusoidal grooves which are taken along the transverse direction of the cross-section of the
tube as shown in Figure 7.1. The solid particles are coated with a porous layer that replicates
the sinusoidal grooves of the solid cylindrical particles, aligning without phase shifting. The
sinusoidally corrugated surface of solid cylinder is given by

r̃ = ã+ d̃ sin(λφ), (7.1)

where ã is the radius of perfectly circular solid cylinder in absence of any corrugations, d̃ is
the height is a corrugation, λ is the wave number that is related with the wave length L by
the expression λ = 2π

L . The unit cell model technique is utilized to solve the flow around
an array of particles. This approach divides the flow domain into two distinct regions. The
first region represents the porous layer with a thickness of (b̃− ã), where b̃ denotes the outer
radius of the porous layer. Fluid flow within this region is regulated by the Brinkmann equa-
tion coupled with the continuity equation. The second region encompasses the clear fluid
region confined within a hypothetical cell of radius c̃, enveloping the porous region and
intended to take the effect of surrounding particles on the concerned particle. The radius
of this hypothetical cell varies based on the concentration or compactness of the particle
swarm. In our investigation, we set the thickness of the clear fluid region as (c̃− b̃). Fluid
flow within this region is governed by Stokes’ law. The z-axis is aligned with the center line
of a solid cylinder. The flow is presumed to be fully developed and one dimensional, with
velocity components of the fluid being (0,0, w̃).
The thickness of the concentric cylindrical envelope (hypothetical cell) of the porous cylin-
drical particle is chosen in such a way that the particle volume fraction of the swarm of
porous cylindrical particles is the same as the particle volume fraction of the cell.

γ =

∫ 2π

0

(
r̃+ d̃ sin(λφ)

)
cos(φ) ∂

∂φ

(
(r̃+ d̃ sin(λφ))sin(φ)

)∣∣∣
r̃=b̃∫ 2π

0

(
r̃+ d̃ sin(λφ)

)
cos(φ) ∂

∂φ

(
(r̃+ d̃ sin(λφ))sin(φ)

)∣∣∣
r̃=c̃

. (7.2)
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The above expression can be used to derive a relation between radius of the hypothetical
cell and particle volume fraction of the swarm. The relation is given as,

c̃ =

√
2G−4δ sin2(πλ )

4πλ
, (7.3)

where,

G =
1
γ

(
4π

2
λ

2
(

2b̃2 − (γ −1)d̃2
)
+ d̃(−4cos(2πλ )(2π b̃λ + γ d̃)+π(γ −1)d̃λ sin(4πλ )

+γ d̃ cos(4πλ ))+8π b̃d̃λ +3γ d̃2
)
. (7.4)

Solid
Cylindrical

Particle

Figure 7.1: The cross-section of an array of uniformly distributed corrugated porous
layered cylindrical particles



7.2. Problem Formulation 221

w̃r̃

w̃θ
w̃z̃

z̃

r̃
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Figure 7.2: The circular cross-section of an corrugated cylindrical particle with the hy-
pothetical cell

7.2.1.1 Hydrodynamic Equations

The hydrodynamic governing equations of a steady, fully developed and unidirectional flow
caused by the pressure gradient are given by
Region- I, i.e., ã+ d̃ sin(λφ)≤ r̃ ≤ b̃+ d̃ sin(λφ)

µ̃e

r̃
∂

∂ r̃

(
r̃

∂ w̃p

∂ r̃

)
+

µ̃e

r̃2
∂ 2w̃p

∂φ 2 − µ̃

k̃
w̃p =

∂ p̃
∂ z̃

, (7.5)

Region- II, i.e., b̃+ d̃ sin(λφ)≤ r̃ ≤ c̃+ d̃ sin(λφ)

µ̃

r̃
∂

∂ r̃

(
r̃

∂ w̃c

∂ r̃

)
+

µ̃

r̃2
∂ 2w̃c

∂φ 2 =
∂ p̃
∂ z̃

, (7.6)

where w̃c is the axial velocity for the clear fluid.
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7.2.2 Non-Dimensional Parameters and Governing Equations

To solve the above system of equations (7.5,7.6), the following non-dimensional variables
are introduced:

p =
p̃
p̃0

, r =
r̃

b̃
, z =

z̃

b̃
, δ =

d̃

b̃
, S2 =

1
k
, w̃0 =

p̃0b̃2

µ̃
, wp =

w̃p

w̃0
,

wc =
w̃c

w̃0
, k =

k̃
ã2 , p̃0 =

w̃0µ̃

b̃
,µ2

R =
µ̃e

µ̃

(7.7)

where (˜) denotes the quantities with dimensions, w0 is the average velocity, p̃0 is the char-
acteristic pressure, δ is the dimensionless height of a sinusoidal groove, S is a dimensionless
parameter, µR is the visocity ratio parameter.

7.2.2.1 Hydrodynamic Equations

The non-dimensional variables in equation (7.7) is used to reduce the hydrodynamic equa-
tions (7.5),(7.6), in the on-dimensional forms of the same are given as
Region- I, i.e., a+δ sin(λφ)≤ r ≤ 1+δ sin(λφ)

µ2
R

r
∂

∂ r

(
r

∂wp

∂ r

)
+

µ2
R

r2
∂ 2wp

∂φ 2 −
wp

k
=

∂ p
∂ z

. (7.8)

Region- II, i.e., 1+δ sin(λφ)≤ r ≤ c+δ sin(λφ)

1
r

∂

∂ r

(
r

∂wc

∂ r

)
+

1
r2

∂ 2wc

∂φ 2 =
∂ p
∂ z

. (7.9)

7.2.3 Boundary Conditions

The dimensionless boundary conditions are given as follows:

1. The no slip boundary condition is considered at the corrugated surface of the solid
core of the cylinder i.e.,

wp = 0, at r = a+δ sin(λφ). (7.10a)

2. Continuity of velocity is considered at the fluid-porous interface, i.e.,

wp = wc, at r = 1+δ sin(λφ). (7.10b)
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3. The stress-jump condition along tangential stresses is also considered at the fluid-
porous interface, i.e.,

µ
2
R

dwp

dr
− dwc

dr
=

β√
k

wp, at r = 1+δ sin(λφ), (7.10c)

where β is the stress-jump parameter.

4. The Happel, Kuwabara, Kvashnin and Cunningham boundary conditions leads to the
following single result, i.e.,

dwc

dr
= 0, at r = c+δ sin(λφ). (7.10d)

7.2.4 Hydrodynamical Quantities and Kozeny Constant

The volumetric flow rate Qv of fluid flow in non-dimensional form is given by

Qv = 2πλ

∫ 2π

λ

0

∫ c+δ sin(λφ)

a+δ sin(λφ)
rw(r,φ)drdφ ,

= 2πλ

(∫ 2π

λ

0

∫ 1+δ sin(λφ)

a+δ sin(λφ)
rwp(r,φ)drdφ +

∫ 2π

λ

0

∫ c+δ sin(λφ)

1+δ sin(λφ)
rwc(r,φ)drdφ

)
. (7.11)

An identical particle from the swarm has been taken into the consideration to analyze the
impact of properties of the porous and non-porous material on the membrane permeability.
The mathematical expression of the membrane permeability L11 is given by [145],

L11 =−
Vf

∂ p/∂ z
, (7.12)

where Vf denotes the filtration velocity and is reffered by

Vf =
Qv∫ 2π

0

(
r̃+ d̃ sin(λφ)

)
cos(φ) ∂

∂φ

(
(r̃+ d̃ sin(λφ))sin(φ)

)∣∣∣
r̃=c̃

dφ

(7.13)

The classical Kozeny–Karman equation that predicts the permeability of a swarm of porous
cylinder particles is given as

L11 =
ερ2

h

Kzb̃2
, (7.14)
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where ε is the porosity, Kz is the dimensionless of Kozeny constant, and ρh describes the
hydraulic radius which is a fractional value of the pore volume and the wetting area.
The Kozeny constant can be written as

Kz =
ερ2

h

L11b̃2
, (7.15)

where hydraulic radius for the porous medium composed of porous cylinders is expressed
as

ρh =
Ac̃ −Ab̃

P̃b
(7.16)

=
ε

(
4πλ

(
2b̃2 + d̃2

)
−2d̃ cos(2πλ )(4b̃+ d̃ sin(2πλ ))+8b̃d̃

)
16(1− ε)

(
π b̃λ + d̃ sin2(πλ )

) . (7.17)

Introducing the expression of hydraulic radius into the expression of the Kozeny constant,
the Kozeny constant is obtained as

Kz =
ε3 (4π

(
δ 2 +2

)
λ −2δ cos(2πλ )(δ sin(2πλ )+4)+8δ

)2

256L11(ε −1)2
(
δ sin2(πλ )+πλ

)2 , (7.18)

where L11 is the hydrodynamic permeability of the membrane.

7.3 Asymptotic Solution of the Problem

The present study addresses the challenge of modeling the fluid flow of a Newtonian fluid
past along a uniform array of corrugated cylindrical particles using the cell model ap-
proach. Specifically, we employ a system of Brinkman and Stokes equations to describe
the steady, unidirectional, fully developed flow within porous and non-porous regions, re-
spectively. Exact analytical solutions to this system of PDEs, particularly in the cylindrical
coordinate system with the consideration of the corrugated surface boundary conditions,
are mathematically difficult to derive. To address this challenge, we employ the regular
perturbation method. This technique requires the assumption of small corrugation height
(δ ≪ 1) as a perturbation parameter. By expanding the velocity functions in Taylor series
expansions along the corrugated boundaries and subsequently employing perturbation se-
ries expansions, we systematically derive an asymptotic solution to the problem. A constant
pressure gradient continuously propels the fluid in the porous and clear fluid regions, i.e.,
∂ p
∂ z =−ps = constant.



7.3. Asymptotic Solution of the Problem 225

The governing equations for both porous and non-porous fluid regions, where the pa-
rameter S = 1√

k
, are

Region- I, i.e., a+δ sin(λφ)≤ r ≤ 1+δ sin(λφ)

µ2
R

r
∂

∂ r

(
r

∂wp

∂ r

)
+

µ2
R

r2
∂ 2wp

∂φ 2 −S2wp =
∂ p
∂ z

. (7.19)

Region- II, i.e., 1+δ sin(λφ)≤ r ≤ c+δ sin(λφ)

1
r

∂

∂ r

(
r

∂wc

∂ r

)
+

1
r2

∂ 2wc

∂φ 2 =
∂ p
∂ z

. (7.20)

By considering the non-dimensional corrugation height δ as perturbation parameter, the
perturbation series expansions of velocity functions are given as

w j(r) = w j(r;δ ) =
m

∑
n=0

δ
nw jn(r), j = p,c, (7.21)

where the subscripts p and c corresponds to the porous and clear fluid regions respectively.
The boundary conditions (7.10a-7.10d) are expanded using the Taylor series expansion, and
using the perturbation series expansion,

1. The no slip condition

wp0
∣∣
r=a +δ

{
wp1
∣∣
r=a + sin(λφ)

∂wp0

∂ r

∣∣∣∣
r=a

}
+δ

2
{

wp2
∣∣
r=a + sin(λφ)

∂wp1

∂ r

∣∣∣∣
r=a

+
sin2(λφ)

2!
∂ 2wp0

∂ r2

∣∣∣∣
r=a

}
+O(δ 3) = 0. (7.22)

2. The continuity of velocity

wp0
∣∣
r=1 +δ

{
wp1
∣∣
r=1 + sin(λφ)

∂wp0

∂ r

∣∣∣∣
r=1

}
+δ

2
{

wp2
∣∣
r=b + sin(λφ)

∂wp1

∂ r

∣∣∣∣
r=1

+
sin2(λφ)

2!
∂ 2wp0

∂ r2

∣∣∣∣
r=1

}
+O(δ 3) = wc0|r=1 +δ

{
wc1|r=1 + sin(λφ)

∂wc0

∂ r

∣∣∣∣
r=1

}
+δ

2
{

wc2|r=1 + sin(λφ)
∂wc1

∂ r

∣∣∣∣
r=1

+
sin2(λφ)

2!
∂ 2wc0

∂ r2

∣∣∣∣
r=1

}
+O(δ 3). (7.23)

3. The stress jump condition

∂wp0

∂ r

∣∣∣∣
r=1

+δ

{
∂wp1

∂ r

∣∣∣∣
r=1

+ sin(λφ)
∂ 2wp0

∂ r2

∣∣∣∣
r=1

}
+δ

2
{

∂wp2

∂ r

∣∣∣∣
r=1

+ sin(λφ)
∂ 2wp1

∂ r2

∣∣∣∣
r=1
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+
sin2(λφ)

2!
∂ 3wp0

∂ r3

∣∣∣∣
r=1

}
+O(δ 3) =

∂wc0

∂ r

∣∣∣∣
r=1

+δ

{
∂wc1

∂ r

∣∣∣∣
r=1

+ sin(λφ)
∂ 2wc0

∂ r2

∣∣∣∣
r=1

}
+δ

2
{

∂wc2

∂ r

∣∣∣∣
r=1

+ sin(λφ)
∂ 2wc1

∂ r2

∣∣∣∣
r=1

+
sin2(λφ)

2!
∂ 3wc0

∂ r3

∣∣∣∣
r=1

}
+O(δ 3)+

β√
k

{
wp0
∣∣
r=1

+δ

{
wp1
∣∣
r=1 + sin(λφ)

∂wp0

∂ r

∣∣∣∣
r=1

}
+δ

2
{

wp2
∣∣
r=1 + sin(λφ)

∂wp1

∂ r

∣∣∣∣
r=1

+
sin2(λφ)

2!
×

∂ 2wp0

∂ r2

∣∣∣∣
r=1

}}
. (7.24)

4. The condition of hypothetical cell

∂wc0

∂ r

∣∣∣∣
r=c

+δ

{
∂wc1

∂ r

∣∣∣∣
r=c

+ sin(λφ)
∂ 2wc0

∂ r2

∣∣∣∣
r=c

}
+δ

2
{

∂wc2

∂ r

∣∣∣∣
r=c

+ sin(λφ)
∂ 2wc1

∂ r2

∣∣∣∣
r=c

+
sin2(λφ)

2!
∂ 3wc0

∂ r3

∣∣∣∣
r=c

}
= 0. (7.25)

The zeroth order solution, O(δ 0)

The series expansion (7.21) is introduced in equations (7.19) and (7.20), and equating the
like powers of the parameter δ , the zeroth order equations are given as

µ2
R

r
∂

∂ r

(
r

∂wp0

∂ r

)
−S2wp0 =

∂ p
∂ z

, (7.26)

1
r

∂

∂ r

(
r

∂wc0

∂ r

)
=

∂ p
∂ z

. (7.27)

The corresponding zeroth order boundary condition are

wp0
∣∣
r=a = 0,

wp0
∣∣
r=1 = wc0|r=1 ,

µ
2
R

∂wp0

∂ r

∣∣∣∣
r=1

=
∂wc0

∂ r

∣∣∣∣
r=1

+βS wp0
∣∣
r=1 ,

∂wc0

∂ r

∣∣∣∣
r=c

= 0. (7.28)

The general solution of Equations (7.26) and (7.27) are

wp0(r) = c1I0(rS)+ c2K0(rS)+
pz

S2 (7.29)

wc0(r) = c4 log(r)+ c3 −
pzr2

4
, (7.30)
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where,

c1 =

(
c2 −1

)
SpzK0(aS)−2pz(−βK0(aS)+βK0(S)+K1(S))

2S2(K0(aS)(I1(S)−β I0(S))+ I0(aS)(βK0(S)+K1(S)))
, (7.31)

c2 =−
I0(aS)

((
c2 −1

)
Spz +2βpz

)
−2βpzI0(S)+2pzI1(S)

2S2(K0(aS)(I1(S)−β I0(S))+ I0(aS)(βK0(S)+K1(S)))
, (7.32)

c3 =− 1
4S3(K0(aS)(I1(S)−β I0(S))+ I0(aS)(βK0(S)+K1(S)))

(
−
(
S2 pz (K0(aS)(I0(S) ×(

2c2 −βS−2
)
+SI1(S)

)
+ I0(aS)

(
K0(S)

(
−2c2 +βS+2

)
+SK1(S)

)))
−4pz(SI1(S)K0(aS)+SK1(S)I0(aS)−1))

c4 =
c2 pz

2
(7.33)

The first order solution, O(δ 1)

By equating the first powers of the parameter δ , the governing equations for first order
velocity is reduced in the form

1
r

∂

∂ r

(
r

∂wp1

∂ r

)
+

1
r2

∂ 2wp1

∂φ 2 −S2
1wp1 = 0, (7.34)

1
r

∂

∂ r

(
r

∂wc1

∂ r

)
+

1
r2

∂ 2wc1

∂φ 2 = 0, (7.35)

where the parameter, S1 =
S

µR
.

In the view of first order boundary conditions we can assume solution of first order govern-
ing equations in porous and clear fluid regions in the form, wp1(r,φ) = f1(r)sin(λφ) and
wc1(r,φ) = g1(r)sin(λφ), respectively. The reduced equations independent from coordinate
φ are

1
r

∂

∂ r

(
r

∂ f1

∂ r

)
−
(

λ 2

r2 +S2
1

)
f1 = 0 (7.36)

1
r

∂

∂ r

(
r

∂g1

∂ r

)
−
(

λ 2

r2

)
g1 = 0 (7.37)

The corresponding first order boundary conditions are

f1|r=a +
∂wp0

∂ r

∣∣∣∣
r=a

=0

f1|r=1 +
∂wp0

∂ r

∣∣∣∣
r=1

−
{

g1|r=1 +
∂wc0

∂ r

∣∣∣∣
r=1

}
=0

∂ f1

∂ r

∣∣∣∣
r=1

+
∂ 2wp0

∂ r2

∣∣∣∣
r=1

−
{

∂g1

∂ r

∣∣∣∣
r=1

+
∂ 2wc0

∂ r2

∣∣∣∣
r=1

}
=+

β√
k

{
f1|r=1 +

∂wp0

∂ r

∣∣∣∣
r=1

}
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∂g1

∂ r

∣∣∣∣
r=c

+
∂ 2wc0

∂ r2

∣∣∣∣
r=c

=0 (7.38)

wp1 = (c5Iλ (rS)+ c6Kλ (rS))sin(λφ) (7.39)

wc1 = (c7 cosh(λ log(r))+ c8 sinh(λ log(r)))sin(λφ), (7.40)

The expression of the constants c5,c6,c7, and c8 can be derived using the boundary condi-
tions 7.38; however, analytical expressions of these are not mentioned here in this chapter
due to their large expressions.
The second order solution, O(δ 2)

1
r

∂

∂ r

(
r

∂wp2

∂ r

)
+

1
r2

∂ 2wp2

∂φ 2 −S2
1wp2 = 0 (7.41)

1
r

∂

∂ r

(
r

∂wc2

∂ r

)
+

1
r2

∂ 2wc2

∂φ 2 = 0 (7.42)

In the view of second order boundary conditions we can assume solution of second or-
der governing equations in porous and clear fluid regions in the form, wp2(r,φ) = fp2(r)+

gp2(r)cos(2λφ) and wc2(r,φ) = fc2(r)+gc2(r)cos(2λφ), respectively. The reduced equa-
tions independent from coordinate φ are

1
r

∂

∂ r

(
r

∂ fp2

∂ r

)
−S2

1 fp2 = 0, (7.43)

1
r

∂

∂ r

(
r

∂gp2

∂ r

)
−
(

4λ 21
r2 +S2

1

)
gp2 = 0, (7.44)

1
r

∂

∂ r

(
r

∂ fc2

∂ r

)
= 0, (7.45)

1
r

∂

∂ r

(
r

∂gc2

∂ r

)
−
(

4λ 2

r2

)
gc2 = 0. (7.46)

(7.47)

The second order boundary conditions corresponding to fp2 and fc2 are

fp2
∣∣
r=a + D1(r)|r=a =0,

fp2
∣∣
r=1 + D1(r)|r=1 = fc2|r=1 + D2(r)|r=1 ,

d fp2

dr

∣∣∣∣
r=1

+
dD1(r)

dr

∣∣∣∣
r=1

=
d fc2

dr

∣∣∣∣
r=1

+
dD2(r)

dr

∣∣∣∣
r=1

+βS
{

fp2
∣∣
r=1 + D1(r)|r=1 ,

}
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d fc2

dr

∣∣∣∣
r=c

+
dD2(r)

dr

∣∣∣∣
r=c

=0. (7.48)

The second order boundary conditions corresponding to gp2 and gc2 are

gp2
∣∣
r=a + D1(r)|r=a =0,

gp2
∣∣
r=1 + D1(r)|r=1 = gc2|r=1 + D2(r)|r=1 ,

dgp2

dr

∣∣∣∣
r=1

+
dD1(r)

dr

∣∣∣∣
r=1

=
dgc2

dr

∣∣∣∣
r=1

+
dD2(r)

dr

∣∣∣∣
r=1

+βS
{

gp2
∣∣
r=1 + D1(r)|r=1 ,

}

dgc2

dr

∣∣∣∣
r=c

+
dD2(r)

dr

∣∣∣∣
r=c

=0, (7.49)

where

D1(r) =
1
2

d f1

dr
+

1
4

d2wp0

dr2 , (7.50)

D2(r) =
1
2

dg1

dr
+

1
4

d2wc0

dr2 . (7.51)

wp2(r) =c10K0(rS)+ c9I0(rS)− cos(2λφ)(c11I2λ (rS)+ c12K2λ (rS)) (7.52)

wc2(r) =c13 log(r)+ c14 − cos(2λφ)(c15 cosh(2λ log(r))+ c16 sinh(2λ log(r))) (7.53)

The expression of the constants c9−c16 can be derived using the boundary conditions (7.48)
and (7.49); however, analytical forms of these are not included here in this chapter due to
their large expressions.

7.4 Results and Discussion

The present study explores the effect of corrugations on the steady flow of Newtonian fluid
past a uniformly distributed array of porous layered cylindrical particles. The aim of this
study is to reveal the effect of porous medium and corrugation shape parameters on the flow
velocities and hydrodynamic quantities like hydrodynamic permeability and Kozeny con-
stant. The effect of porous medium and corrugated shape of particles lead to generate a
set of non-homogeneous partial differential equations which are solved asymptotically us-
ing regular perturbation method. The analytical expressions of fluid velocity, hydrodynamic
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permeability, and Kozeny constant were then used to analyze the effect of corrugation height
(δ ), wave number (λ ), Darcy number (k), stress jump parameter (β ), viscosity ratio param-
eter (µR), particle volume fraction (γ), and porosity (ε) etc.

7.4.1 Parameter Selection

Range of Parameters

Parameters Range Sources

Corrugation height δ 0-0.1 [21]

Wave number λ 1-7 [21]

Steady pressure gradient ps 1-10 [4], [167]

Permeability k (0,∞) [3]

Stress-jump parameter β (−1,1) [3], [4]

Viscosity ratio parameter µR 1.0-1.6 [207], [167]

Particle volume fraction γ 0.1-1.0 [3], [96]

Porosity parameter ε 0.3-1.0 [3]

Table 7.1: Ranges for the ongoing parameters with their references

7.4.2 Velocity Profile

This section includes the contour plots of velocity signifying the effect of different corruga-
tion and porous medium parameters along with the radial as well as azimuthal directions.
Figure 7.3 depicts the contours of velocity profile for the cylindrical particles encompassing
different wave numbers. The three white closed boundaries represents the three surfaces of
on the cross-section of a cylindrical particle where the innermost curve represent the solid
surface of particle having zero velocity on it. The middle boundary in white color depicts
the interface of porous medium and clear fluid, where the continuity of velocity is applicable
which can be verified by checking the continuous curves of velocity contours on this bound-
ary, whereas the outermost boundary in white color depicts the hypothetical cell surface. It
can be observed from figure 7.3 that the increasing wave number λ leads to a fading red
color, denoting the reduction of velocity in the flow domain. This reduction in fluid veloc-
ity with increasing number of corrugation corresponds to the increased wall roughness that
leads to enhance the resistance caused to the flow near the boundary, results in decreasing
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the velocity profile throughout the flow domain. It can also be observed from the contours
that the fluid velocity gets its highest value on the top of a node, however in the saddle part
of the domain the fluid velocity is lower a its vicinity.
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Figure 7.3: Contours of velocity profile, w(r,φ) for different wave number, λ . (a =
0.5,γ = 0.445, pz = 1,k = 3,δ = 0.1,β = 0.4)

The figure 7.4 depicts the effect of perturbation parameter ε on the velocity profile of
the fluid, where the perturbation parameter corresponds to the height of corrugation. The
gradual transition of red color in the hypothetical cell region towards the orange with respect
to the increasing parameter δ draws the fact that the increasing height of corrugation leads
to a decay in the fluid velocity. This decay can be attributed to the increased wall area of
the solid surface within the corrugated cylinder, which leads to heightened flow resistance
in the domain, causing a reduction in fluid velocity. According to the findings depicted in
Figure 7.5, as the Darcy number k increases, indicating greater permeability of the porous
medium, there is a corresponding augmentation in fluid velocity. Figure 7.6 included the
velocity contours for different values of stress jump parameters in case of small (k ≪ 1) as
well as (k ≫ 1) permeability of the porous media. It can be concluded that as the disparity in
stresses between the clear fluid and porous regions augmented at the fluid-porous interface,
it leads to an escalation in fluid velocity.
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Figure 7.4: Contours of velocity profile, w(r,φ) for different height of corrugation δ .
(a = 0.5,γ = 0.445, pz = 1,k = 3,λ = 6,β = 0.4)
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Figure 7.5: Contours of velocity profile, w(r,φ) for different values of the Darcy number,
k. (a = 0.5,γ = 0.445, pz = 1,δ = 0.1,λ = 6,β = 0.1)



7.4. Results and Discussion 233

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=0.1, =-0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=0.1, =0.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=0.1, =0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=2, =-0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=2, =0.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k=2, =0.5

w

0.023

0.115

0.207

0.299

0.391

0.483

0.575

Figure 7.6: Contours of velocity profile, w(r,φ) for different values of the stress-jump
parameter β , for large (k = 2) and small (k = 0.1) permeability of porous media. (a =
0.5,γ = 0.445, pz = 1,δ = 0.1,λ = 6)

7.4.3 Hydrodynamic Permeability

Figures 7.7 and 7.8 depicts the dependence of hydrodynamic permeability of the membrane
on the corrugation thickness of cylindrical particles for different wave number and stress-
jump coefficient respectively. As the thickness of the corrugations increases, it results in
a reduction in the hydrodynamic permeability of the membranes. This can be attributed to
an increased wetted area along the surface of the solid cylinder, where the no-slip condi-
tion governs. This enlarged wetted area intensifies flow resistance, thereby diminishing the
membrane’s hydrodynamic permeability. This diminishing effect of hydrodynamic perme-
ability with corrugation height is more significant for the corrugated cylindrical particles
with higher wave number. The increasing stress jump parameter enhances the hydrody-
namic permeability of the membrane, which corresponds to the previous result of Figure
7.6. Furthermore, observation reveals that the increase in L11 is more pronounced for posi-
tive values of the stress-jump parameter. This suggests that elevated stress levels within the
porous medium, compared to the clear fluid, render the fluid flow more sensitive to varia-
tions in the stress-jump parameter. Conversely, higher stress levels in the clear fluid region
render it somewhat less responsive to changes in the stress jump.
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Figure 7.7: The dependence of hydrodynamic permeability L11 on the corrugation height
δ for different values of wave number λ . (a = 0.5,γ = 0.445, pz = 1,k = 0.5,β = 0.1)
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Figure 7.8: The dependence of hydrodynamic permeability L11 on the corrugation height
δ for different values of stress-jump parameter β . (a= 0.5,γ = 0.445, pz= 1,k = 0.5,λ =
6)

Figure 7.9 illustrates the impact of particle volume fraction on hydrodynamic permeabil-
ity for various corrugation heights. A notable decreasing trend in L11 is evident as the par-
ticle volume fraction increases. This decline can be attributed to the cylinders’ augmented
size, elevating the suspension concentration and consequently diminishing hydrodynamic
permeability. Moreover, the influence of corrugation height on the correlation between L11

and γ is particularly pronounced for membranes comprising corrugated cylinders with lower
particle volume fractions. The wave number of corrugated particles also slightly affect the
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dependence of L11 on the particle volume fraction, where it leads to decay in hydrodynamic
permeability of the membrane (Figure 7.10).
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Figure 7.9: The dependence of hydrodynamic permeability L11 on the particle volume
fraction γ for different values of corrugation height δ . (a = 0.5, pz = 1,k = 0.5,λ =
6,β = 0.1)
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Figure 7.10: The dependence of hydrodynamic permeability L11 on the particle volume
fraction γ for different values of wave number λ . (a = 0.5, pz = 1,k = 0.5,δ = 0.1,β =
0.1)

Figures 7.11 and 7.12 depict the impact of the Darcy number on hydrodynamic perme-
ability across varying corrugation characteristics. It can be concluded from these figures
that the increasing Darcy number results in an enhancement of L11. As the Darcy number
increases, the L11 curve tends towards a plateau, indicating a diminished dependency of
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L11 on the Darcy number for highly permeable porous media. Specifically, it is discerned
that L11 exhibits substantial growth for Darcy numbers below unity, while its curve is al-
most flattened for values exceeding unity. Additionally, an augmentation in the corrugation
height leads to reduction in the growth of L11 with the Darcy number, representing extra
flow resistance due to increased roughness of particles in the flow domain. Following to
the observations illustrated in figure 7.12, the hydrodynamic permeability shows a similar
behavior of reduced growth rate with the Darcy number for increasing wave number λ .
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Figure 7.11: The dependence of hydrodynamic permeability L11 on the Darcy number k
for different values of corrugation height δ . (a = 0.5, pz = 1,k = 0.5,λ = 6,β = 0.2)
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Figure 7.12: The dependence of hydrodynamic permeability L11 on the Darcy number k
for different values of wave number parameter k. (a = 0.5, pz = 1,k = 0.5,δ = 0.1,β =
0.1)
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7.4.4 Kozeny Constant

The Kozeny constant, Kz, serves as a comprehensive parameter encompassing the influences
of flow path tortuosity, particle shape, and their interplay. Notably, Kz exhibits a direct
proportionality to tortuosity, as emphasized by Ozgumus et al. [181]. Thus, it becomes
compelling to investigate the impact of corrugation parameters on tortuosity through their
influence on Kz. The effect of porosity, ε on the Kozeny constant reveals that the increasing
porosity of the porous layer leads to a growth in the Kozeny constant, which is similar to the
observation of Madasu and Bucha [11] for the case of Newtonian fluid flow through particles
with cavity (Figure 7.13). This growth rate get enhanced for higher values of corrugations
height, signifying that the increasing roughness of corrugated particles leads to increase in
the tortuosity of the membrane. Figure 7.14 demonstrates that an increasing particle volume
fraction significantly enhances the growth rate of Kz with porosity ε . This phenomenon
can be accredited to the increasing concentration/compactness of particles within the array
leading to a greater tortuosity of the flow path and consequently yielding higher values of
Kz.
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Figure 7.13: The dependence of the Kozeny constant Kz on the porosity ε for different
values of corrugation height δ . (a = 0.5, pz = 1,k = 0.5,λ = 6,β = 0.1)
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Figure 7.14: The dependence of the Kozeny constant Kz on the porosity ε for different
values of particle volume fraction γ . (a = 0.5, pz = 1,k = 0.5,λ = 6,δ = 0.1,β = 0.1)

Figure 7.15 to 7.17 illustrates the relationship of the Kozeny constant Kz, with the cor-
rugation height δ for different control parameter. The stress-jump parameter reduces the
growth rate of the Kozeny constant with roughness of cylindrical particles, which can be
validated from the previous result of figure 7.8 describing that the higher stress jump pa-
rameter leads to a more permeable membrane, and hence less tortuous flow paths in the
membrane (Figure 7.15).
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Figure 7.15: The dependence of the Kozeny constant Kz on corrugation height δ for
different values of stress-jump parameter β . (a = 0.5, pz = 1,k = 0.5,λ = 6,ε = 0.5)
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The increasing Darcy number reduces the Kozeny constant Kz, signifying the inversely
proportional relation of the Darcy number with tortiosity of the porous medium (Figure
7.16).
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Figure 7.16: The dependence of the Kozeny constant Kz on corrugation height δ for
different values of stress-jump parameter β . (a = 0.5, pz = 1,β = 0.1,λ = 6,ε = 0.5)

It can be observed from Figure 7.17 that the growth rate of the Kozeny constant increases
with the particles roughness in terms of corrugations height. However, the wave number
contributes in this growth rate and make it more significant for corrugated particles
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Figure 7.17: The dependence of the Kozeny constant Kz on corrugation height δ for
different values of the wave number λ . (a = 0.5, pz = 1,k = 0.5,β = 0.1,ε = 0.5)
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with higher wave number. This observation signifies that an enhancement in the corru-
gation height of a groove leads to augmented tortuosity of the medium.

7.5 Summary and Conclusions

In this chapter, the effect of surface corrugations on the flow past a membrane composed of
an array of uniformly distributed porous layered cylindrical particles is studied. The sinu-
soidal transverse corrugation are assumed along the transverse direction of the cross-section
of the cylinder. The steady, fully developed, and in-compressible flow of Newtonian fluid is
studied using the cell model technique according to which, the flow regime is divided into
two segments, one is the porous layer region enveloping the solid corrugated cylindrical par-
ticle, in which the fluid flow is governed by the Brinkann equation. Second is the clear fluid
region enclosed by a hypothetical cell, where the flow is governed by the Stokes equation.
The analytical solution of the system of PDE’s governing the fluid flow in corrugated bound-
aries is difficult to derive. Hence The asymptotic solution were obtained using the regular
perturbation technique with the assumption of the corrugation height as a perturbation pa-
rameter (δ ≪ 1). The hydrodynamic permeability and Kozeny constant of the membrane
is analyzed for different corrugation and porous medium control parameters by utilizing the
asymptotic expressions of fluid velocity. The results and discussion section have given a
detailed discussion of the graphical analysis.
The following novel determinations from the present study have been pointed out:

1. The increasing wave number λ in the corrugated cylindrical particle leads to re-
duce the fluid velocity. The similar effect of wave number is also seen for hydro-
dynamic permeability L11 of the membrane, owing to enhanced obstruction in fluid
flow through membrane.

2. The increasing corrugation height corresponds to increased wall area of the solid sur-
face within the corrugated cylinder, causing a reduction in fluid velocity. An aug-
mented corrugation height leads to reduced hydrodynamic permeability, with increas-
ing decay rate, signifying an enhanced resistance due to increasing δ .

3. The disparity in stresses between the clear fluid and porous regions at the fluid-porous
interface, leads to an escalation in fluid velocity. Additionally, the elevated stress
levels within the porous medium, compared to the clear fluid, render the fluid flow
more sensitive to variations in the stress-jump parameter. Conversely, higher stress
levels in the clear fluid render it somewhat less responsive to changes in the stress
jump.
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4. The growth rate of Kozeny constant with respect to porosity ε get enhanced for higher
values of corrugations height, signifying that the increasing roughness of corrugated
particles leads to increase the tortuosity of the membrane. The wave number of corru-
gated particles also affect the Kz in same manner. Additionally, the higher stress jump
parameter leads to a more permeable membrane, and hence less tortuous flow paths
in the membrane.

These results helps in providing a broader physical insights associated with particle’s surface
roughness in the flow past a membrane composed of an array of cylindrical particles. The
following work, however, requires experimental verification.
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Chapter 8

Electroosmotic Flow past an Array of Poly-Electrolyte
Coated Solid Cylindrical Particles: A Particle-in-
Cell Approach

8.1 Introduction

The electrokinetic transport of electrolytes past charged interfaces is a captivating area of
study that has attracted considerable interest among researchers and scientists in both aca-
demic and industrial fields. This phenomenon holds significant importance due to its diverse
applications across various industries, including but not limited to chemical, pharmaceuti-
cal, and life sciences [222, 223, 224, 225, 226, 227, 228]. Several researchers have tried to
model the the electrokinetic transport of ionized solution past a soft (poly-electrolyte coated)
surfaces due to its wide variety of applications e.g., in energy conversion systems [229], cell
membranes [230], bio-sensor [231], drug delivery [232], etc. A soft surface typically con-
sists of an ion-penetrable membrane composed of poly-electrolyte fibers, forming what is
known as the Poly-electrolyte Layer (PEL). This layer is situated between a rigid surface and
the bulk electrolyte solution. Within the PEL, there exists a density of additional immobile
ions that cannot migrate into the bulk electrolyte, thus creating a localized potential known
as the Donnan potential. This Donnan potential arises due to the presence of fixed charges
within the PEL, resulting in the formation of a layer known as Fixed Charge Layer (FCL).
The presence of this FCL and its associated Donnan potential significantly influences the
electrostatics of the Electric Double Layer (EDL) across the entire flow domain. Under-
standing the interplay between the Donnan potential of the FCL and the EDL electrostatics
is crucial for studying electrokinetic transport phenomena, particularly when considering
flow past soft structures. By explaining these interactions, researchers can gain insights
into the complex behavior of soft surfaces in various electrochemical and biophysical ap-
plications. Donath and Voigt [233] were the first who studied the electrokinetic transport of
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fluid past the soft surfaces, where they have introduced the non-linear Poisson-Boltzmann
model to study the potential distribution of fixed charges across the surfaces. Oshima and
Kondo [234] extended this study later and done some excellent works in this field of elec-
troosmootic flow near the poly-electrolyte coated soft surfaces [235, 236, 237, 238, 239,
240]. The theory of electrokinetic transport in membrane composed of an array of parti-
cles was started in 1974, where Levine and Neale [171] investigated electrokinetic transport
of fluid past a concentrated suspensions of spherical colloidal particles, where they solved
this problem using the unit cell model approach and considered the effect of neboughring
particles using Kuwabara’s boundary condition [67]. Kozak and Davis [241] considers the
study of elecroosmosis and electrophoresis in a concentrated suspension of particles and
extended the work of Levine and Neale by taking the flow past across an array of cylindri-
cal shaped particle system. They derived the expression of electroosmotic velcoity for low
zeta potential including the numerical integrations which were later simplified by Oshima
[242], where he derived a more accurate electroosmotic velcoity expression without includ-
ing any numerical integration. Oshima [243] initiated the theory of soft particles (particles
coated with poly-electrolyte layer) in the study of EOF flow past a concentrated suspen-
sion. He applied the Kuwabara’s cell model approach to analyze the flow past an array of
soft spherical particles and reduced some special cases for the hard/rigid particles (particles
without poly-electrolyte layer). Following to this, he made a significant contribution in the
field of electrokinetic transport in concentrated suspension of soft particles, where electrical
conductivity, Sedimentation potential, electrophoretic mobility [244, 245, 246].
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8.2 Problem Formulation

8.2.1 Statement of the Problem

The proposed study focuses on the electrokinetic transport of electrolyte within a membrane
composed of a swarm of uniformly distributed soft cylinderical particles, where is flow is
considered along the axis of cylinders. The bulk fluid is considered as an electrolyte which
is flowing along the array of cylinders. The uncharged solid cylindrical particles are coated
with an ion-penetrable layer of polyelectrolye fibers (referred as PEL), which have their
own charge density apart from the mobile ions of the bulk electrolyte. These ions of PEL
are immobile/fixed and can not migrate in the bulk electrolyte outside of PEL. Hence the
PEL is referred as Fixed Charged Layer or FCL and these ions were called the FCL ions.
Following assumptions have been made:

1. The unidirectional flow is considered to be steady, incompressible, axisymmetric
around the solid core, and fully developed.

2. The Reynolds number is deemed to be extremely low, signifying that viscous forces
exert more influence than inertial forces, leading to the convective term being of min-
imal significance and thus excluded from the present study.

3. The potential due to the electrical double layer is independent of axial position z in
the cylinder (which is valid for long cylinders, neglecting any end effects).

4. the electric potential is assumed to be small as compared to the thermal energy of the
ions (Debye-Huckel approximation)

8.2.2 Model Description

The Newtonain electrolyte solution is flowing past a swarm of uniformly distributed solid
cylindrical particles of radius ã. The surface of solid cylindrical particle is covered by poly-
electrolyte materials, also called soft layer or poly-electrolyte layer or PEL, which is con-
sidered as a porous layer containing fix charge density of ions. The thickness of PEL is
(b̃− ã). The unidirectional flow of electrolyte is considered to be steady, in-compressible,
and flowing along the axis of the solid cylindrical particle. The unit cell model technique is
utilized to study the flow past uniformly distributed array of these particles. According to
which a virtual envelop or hypothetical cell of radius c̃ is assumed to incorporate the effect
of the particle’s surroundings. The flow field around the solid cylindrical particle is divided
into two layer of regions. The inner layer region is the PEL region which is a porous region
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having permeability k and is governed by the Brinkmann Forchheimer equation; However
the outer layer is clear fluid region having free flow and is governed by the Stokes’ equa-
tion. The geometry of the model is defined by a cylindrical polar coordinate system (r̃,θ , z̃),
wherein r̃ and z̃ represent the distances in radial and axial directions, respectively. The z-
axis is aligned with the center line of a solid cylinder. The flow is presumed to be axially
symmetric and fully developed, with velocity components of the fluid being restricted to the
axial direction only and given as (0,0, w̃).
The thickness of the concentric cylindrical envelope (hypothetical cell) of the porous cylin-
drical particle is chosen in such a way that the particle volume fraction of the swarm of
porous cylindrical particles is the same as the particle volume fraction of the cell.

c2 =
1
γ
=

π c̃2

π b̃2
. (8.1)

Flow Direction

Figure 8.1: The physical sketch of cell model considered in a swarm of particles

8.2.3 Governing Equations

8.2.3.1 Electric Potential Equation

The electric potential in the cylinder is given by φ̃(r̃, z̃), which arises due to superposition of
the potential difference generated from the charge density of poly electrolyte layer and the
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Figure 8.2: The cross-sectional view of a cylindrical particle having the solid core, coated
with a poly-electrolyte(porous) layer.

externally applied electric potential.

φ̃(r̃, z̃) = ψ̃(r̃)+(φ̃0 − z̃Ẽz), (8.2)

where the first term on right hand side, ψ̃(r) represents the potential due to EDL at the equi-
librium state corresponding to no fluid motion and no applied electric field. The second term
on RHS represents the potential at any axial location due to applied electric field strength Ẽz

in absence of EDL, where Ẽz is the electric field strength due to applied potential difference,
independent from position and φ̃0 is the value of imposed potential at starting point z̃0 of the
cylinder.
The equations governing the electric potential in different regions of the poly-electrolyte
coated solid cylindrical particles are given by
Region- I, i.e., ã ≤ r̃ ≤ b̃

∇
2
φ̃p =

1
r̃

∂

∂ r̃

(
r̃

∂ φ̃p

∂ r̃

)
+

∂ 2φ̃p

∂ z̃2 =− ρ̃e +ZeN
ε0εr

. (8.3)
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Region- II, i.e., b̃ ≤ r̃ ≤ c̃

∇
2
φ̃c =

1
r̃

∂

∂ r̃

(
r̃

∂ φ̃c

∂ r̃

)
+

∂ 2φ̃c

∂ z̃2 =− ρ̃e

ε0εr
, (8.4)

where, the subscripts p and c are for PEL and clear fluid regions, respectively. ε0 is the
permittivity of the free space, εr is the relative permittivity of the medium (assumed to be
identical in both the FCL and electrolyte), ρ̃e is the free charge density in the electrolyte,
e is the fundamental charge of an electron, Z and N are the valence and the ionic number
concentration of the FCL ions.
The expression of electric potential from equation (8.2) can be utilized in equations (8.3),
and (8.4).
Region- I, i.e., ã ≤ r̃ ≤ b̃

1
r̃

∂

∂ r̃

(
r̃

∂ψ̃p

∂ r̃

)
=− ρ̃e +ZeN

ε0εr
. (8.5)

Region- II, i.e., b̃ ≤ r̃ ≤ c̃
1
r̃

∂

∂ r̃

(
r̃

∂ψ̃c

∂ r̃

)
=− ρ̃e

ε0εr
. (8.6)

The free charge density of the electrolyte is given by

ρ̃e = eze(n+−n−), (8.7)

where ze is the absolute value of the ionic valence, and n+ and n− are the ionic number
concentrations of the cations and anions in the electrolyte, respectively and satisfies the
Boltzmann-distribution given by

n± = n∞exp
(
∓ezeψ̃

KBT

)
, (8.8)

where, KB and T are the Boltzmann constant and absolute temperature, where product of
these two represents the thermal energy. n∞ represents the ionic number concentration at the
neutral state where ψ̃ = 0. It should be noted that the equation (8.8) is valid for any values
of the EDL thickness; however if the electric potential is assumed to be small as compared
to the thermal energy of the ions then,

exp
(
∓ ezψ̃

KBT

)
≈ 1∓ ezψ̃

KBT
. (8.9)

The approximation involved here is called Debye-Hückel linearization or Debye-Hückel
approximation, which is used here to analytically solve the governing equations of electric
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potential. Now the free charge density can be written as

ρ̃e =−2e2z2n∞ψ̃

KBT
. (8.10)

The Debye-Hückel approximation can be used to linearised the equations (8.5) and (8.6)
Region- I, i.e., ã ≤ r̃ ≤ b̃

1
r̃

∂

∂ r̃

(
r̃

∂ψ̃p

∂ r̃

)
=

ψ̃p

λ̃ 2
− ψ̃s

λ̃ 2
f

. (8.11)

Region- II, i.e., b̃ ≤ r̃ ≤ c̃
1
r̃

∂

∂ r̃

(
r̃

∂ψ̃c

∂ r̃

)
=

ψ̃c

λ̃ 2
, (8.12)

where λ̃ =
(

ε0εrKBT
2n∞e2z2

) 1
2 represents the thickness of EDL in the clear fluid region and λ̃ f =(

ε0εrKBT
Ne2Zz

) 1
2 represents the thickness of an equivalent EDL inside the FCL region which

corresponds to the distance over which the electric potential (at the interface of FCL and
bulk electrolyte) and is formed inside the FCL region.

8.2.3.2 Hydrodynamic Equations

The flow domain is divided into two subdomains, first, the FCL region which is considered
as a porous layer with varying permeability, where the flow governed by the Brinkmann-
Forchheimer equations, second is the outer layer of clear fluid region which is bounded by a
hypothetical cell of redius c̃, and is governed by the stokes equation. Therefore, the hydro-
dynamic governing equations of a steady, fully developed and unidirectional flow caused by
the combined effect of pressure gradient and electroosmotic body force is given by
Region- I, i.e., ã ≤ r̃ ≤ b̃

µ̃e

r̃
∂

∂ r̃

(
r̃

∂ w̃p

∂ r̃

)
− µ̃

k̃(r̃)
w̃p −

CF ρ̃w̃2
p√

k̃(r̃)
=

∂ p̃
∂ z̃

− ρ̃eẼz, (8.13)

Region- II, i.e., b̃ ≤ r̃ ≤ c̃

µ̃

r̃
∂

∂ r̃

(
r̃

∂ w̃c

∂ r̃

)
=

∂ p̃
∂ z̃

− ρ̃eẼz, (8.14)

where ρ̃, p̃ are the density and pressure, of the electrolyte, respectively. w̃p and w̃c are
the velocity of electrolyte in FCL and clear fluid regions, respectively. µ̃e is the effec-
tive viscosity of the electrolyte in FCL region, µ̃ is the constant viscosity of electrolyte.
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k̃(r̃) = k̃
(

1− ε f

(
r̃
b̃

))2
is the quadratic form of the variable permeability of the porous

medium where k̃ is the constant permeability coefficient and ε f (0 ≤ ε f < 1) is the variable
permeability parameter.
where w̃c is the axial velocity for the clear fluid.

8.2.4 Non-Dimensional Parameters and Governing Equations

To solve the above system of equations (8.11)-(8.14), the following non-dimensional vari-
ables are introduced:

p =
p̃
p̃0

, r =
r̃

b̃
, z =

z̃

b̃
, a =

ã

b̃
, c =

c̃

b̃
, S2 =

1
k
, w̃0 =−ε0εrψ̃sẼx

µ̃
, wp =

w̃p

w̃0
,

wc =
w̃c

w̃0
, k =

k̃

b̃2
, p̃0 =

w̃0µ̃

b̃
,ψp =

ψ̃p

ψ̃s
,ψc =

ψ̃c

ψ̃s
, λ =

λ̃

b̃
, λ f =

λ̃ f

b̃
, F =

CF ρ̃ b̃3 p̃0

µ̃eµ̃

ψ̃s =
KBT
eze

,ζ =
ζ̃

ψ̃s
, µ

2
R =

µ̃e

µ̃
, K =

λ f

λ

(8.15)

where w̃0 is the characteristic velocity, p̃0 is the characteristic pressure, ψ̃s is the character-
istic electric potential, ζ̃ is the electric potential at r̃ = ã, µR is the ratio of effective viscosity
of electrolyte in FCL region and constant viscosity of electrolyte, and S is a dimensionless
parameter.

8.2.4.1 Poission-Boltzmann Equation

The non-dimentionalised governing equations for electric potential distribution are as fol-
lows.
Region- I, i.e., a ≤ r ≤ 1

1
r

∂

∂ r

(
r

∂ψp

∂ r

)
=

1
λ 2

(
ψp −

1
K2

)
. (8.16)

Region- II, i.e., 1 ≤ r ≤ c
1
r

∂

∂ r

(
r

∂ψc

∂ r

)
=

ψc

λ 2 . (8.17)
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8.2.4.2 Hydrodynamic Equations

Using the above non-dimensional variables (8.15), the hydrodynamic governing equations
in non-dimensional form are given by
Region- I, i.e., a ≤ r ≤ 1

µ2
R

r
∂

∂ r

(
r

∂wp

∂ r

)
−

wp

k(r)
−

Fµ2
Rw2

p√
k(r)

=
∂ p
∂ z

−
ψp

λ 2 . (8.18)

Region- II, i.e., 1 ≤ r ≤ c

1
r

∂

∂ r

(
r

∂wc

∂ r

)
=

∂ p
∂ z

− ψc

λ 2 . (8.19)

8.2.5 Boundary Conditions

The dimensionless boundary conditions are given as follows:

1. The no slip boundary condition at the surface of the solid core of the cylinder along
with a constant electric potential (zeta potential) at the surface, i.e.,

wp = 0, ψp = ζ at r = a. (8.20a)

2. The electrolyte velocity and electric potential are continuous at the FCL and clear
fluid interface, i.e.,

wp = wc, ψp = ψc at r = 1. (8.20b)

3. The stress-jump condition along tangential stresses and continuity of electric potential
gradient in radial direction is considered at the FCL and clear fluid interface, i.e.,

µ
2
R

∂wp

∂ r
− ∂wc

∂ r
=

β√
k

wp,
dψp

dr
=

dψc

dr
at r = 1, (8.20c)

where µR is the viscosity ratio parameter and β is the stress-jump parameter.

4. The zero potential gradient at the hypothetical cell along with a zero velocity gradient
in the redial direction representing the combined result of the Happel, Kuwabara,
Kvashnin and Cunningham boundary conditions, is taken i.e.,

∂wc

∂ r
= 0,

dψc

dr
= 0 at r = c. (8.20d)
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8.2.6 Hydrodynamical Quantities and Kozeny Constant

The volumetric flow rate Qs in non-dimensional form is given by

Qs = 2π

∫ c

a
rw(r)dr,

= 2π

(∫ 1

a
rwp(r)dr+

∫ c

1
rwc(r)dr

)
. (8.21)

The expression for the hydrodynamic permeability L11 of the collective of porous cylindrical
particles is formulated as follows [95]

L11 =−
Vf

∂ p/∂ z
, (8.22)

where Vf denotes the filtration velocity and is expressed as Vf =
Qs
πc2 .

The permeability of porous media can be obtained through the application of the following
expression, derived from the semi-empirical Kozeny-Karman formula [71]

L11 =
ερ2

h

Kzb̃2
, (8.23)

where ε represents porosity of the medium corresponding to the concentration of particles
in the array, Kz denotes the dimensionless Kozeny constant, and ρh signifies the hydraulic
radius, defined as the ratio of pore volume to wetting area.
The Kozeny constant is obtained by the above equation (12)

Kz =
ερ2

h

b̃2L11
. (8.24)

For the media composed of cylindrical particles, we have

ρh =
π(c̃2 − b̃2)

2π b̃
=

b̃
2

(
1− γ

γ

)
=

ε b̃
2(1− ε)

. (8.25)

Substituting the value of ρh in the above equation (8.24), we have

Kz =
ε3

4(1− ε)2L11
, (8.26)

where L11 is the hydrodynamic permeability of the membrane.
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8.3 Solution of the Problem

The electroosmotic flow (EOF) of an electrolyte solution past a membrane consisting of
poly-electrolyte coated solid cylindrical particles is considered where the separate govern-
ing equations are formed for different regions in the flow domain. The fluid flow through
membrane is modeled using the unit cell model according to which, the flow regime is di-
vided into two segments, one is the FCL region which is a porous layer of poly-electrolyte
fibers, in which the fluid flow is governed using the Brinkann-Forchheimer equation. Sec-
ond is the clear fluid region enclosed by a hypothetical cell, in which the flow is governed
by Stokes equation. The linearized Poisson-Bolzmann equations were solved analytically
in cylindrical coordinate system and the respective solution is further used in the electroos-
motic body force terms in the hydrodynamic equations. Now, due to the non-linear Forch-
heimer terms and external body force term (electric force), analytical solution for the system
of governing equations is difficult to derive. Hence The the regular and singular perturba-
tion methods were applied to derive the asymptotic analytical expressions of the solution. A
constant pressure gradient continuously propels the fluid in the PEL and clear fluid regions,
i.e., ∂ p

∂ z =−ps = constant.

8.3.1 Solution of Poisson-Boltzmann equation

The equations 8.16 and 8.17 can be solved analytically and the exact form of their solution
is given as

ψp(r) =
1

K2 + p1I0

( r
λ

)
+ p2K0

( r
λ

)
, (8.27)

ψp(r) =p3I0

( r
λ

)
+ p4K0

( r
λ

)
, (8.28)

where, p1, p2, p3, and p4 are constants, which will be evaluated using the boundary condi-
tions (8.20a)-(8.20d) and are given as

p1 =
K1
( c

λ

)(
I1
( 1

λ

)
K0
( a

λ

)
+λ

(
ζ K2 −1

))
−K1

( 1
λ

)
K0
( a

λ

)
I1
( c

λ

)
K2
(
λK0

( a
λ

)
I1
( c

λ

)
+λ I0

( a
λ

)
K1
( c

λ

)) ,

p2 =
I1
( c

λ

)(
K1
( 1

λ

)
I0
( a

λ

)
+λ

(
ζ K2 −1

))
− I1

( 1
λ

)
I0
( a

λ

)
K1
( c

λ

)
K2
(
λK0

( a
λ

)
I1
( c

λ

)
+λ I0

( a
λ

)
K1
( c

λ

)) ,

p3 =
K1
( c

λ

)(
I1
( 1

λ

)
K0
( a

λ

)
+K1

( 1
λ

)
I0
( a

λ

)
+λ

(
ζ K2 −1

))
K2
(
λK0

( a
λ

)
I1
( c

λ

)
+λ I0

( a
λ

)
K1
( c

λ

)) ,

p4 =
I1
( c

λ

)(
I1
( 1

λ

)
K0
( a

λ

)
+K1

( 1
λ

)
I0
( a

λ

)
+λ

(
ζ K2 −1

))
K2
(
λK0

( a
λ

)
I1
( c

λ

)
+λ I0

( a
λ

)
K1
( c

λ

)) . (8.29)
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8.3.2 Solution of Hydrodynamic Equations

The hydrodynamic equation governing the fluid flow in porous region is a second order
non-linear equation with non-homogeneity of body forces as pressure gradient and elec-
troosmotic force, finding the exact analytical solution of this equation is intractable. To
overcome this difficulty we have used the regular and singular perturbation technique in the
case of large and small Darcy number, respectively.

8.3.3 Large Permeability (k ≫ 1)

The governing equations for porous or non porous regions in case of the large Darcy number
are given as

µ2
R

r
∂

∂ r

(
r

∂wp

∂ r

)
−

S2wp(
1− ε f r

)2 −
SFµ2

Rw2
p(

1− ε f r
) = ∂ p

∂ z
−

ψp

λ 2 , (8.30)

1
r

∂

∂ r

(
r

∂wc

∂ r

)
=

∂ p
∂ z

− ψc

λ 2 , (8.31)

Depending on the position of perturbation parameter in the governing equation, the regular
perturbation technique will be used to solve the above-mentioned governing equations. The
perturbation series expansions, expressed in the powers of a small Darcy number, provide a
direct representation for velocities in distinct porous and non-porous regions

wi(r;S) = wio(r)+Swi1(r)+S2wi2(r)+O(S3), (8.32)

where the subscription index i = p,c, represents the porous and clear fluid regions, respec-
tively. Equating the coefficient of S in equation (8.30) and (8.31), the zeroth order equations
are

µ2
R

r
∂

∂ r

(
r

∂wp0

∂ r

)
=

∂ p
∂ z

−
ψp

λ 2 , (8.33)

1
r

∂

∂ r

(
r

∂wc0

∂ r

)
=

∂ p
∂ z

− ψc

λ 2 , (8.34)

Equation (8.33) and (8.34) can be solve analytically using the expressions of electric poten-
tial in equations (8.27) and (8.28). Then exact form of solutions are given as

wp0(r) =−
r2 (λ 2K2 ps +1

)
4λ 2K2µ2

R
−

p1
(
I0
( r

λ

)
−1
)
+ p2K0

( r
λ

)
µ2

R
+ c1 log(r)+ c2 (8.35)

wc0(r) =− 1
4

r2 ps − p3I0

( r
λ

)
+ p3 − p4K0

( r
λ

)
+ c3 log(r)+ c4 (8.36)



8.3. Solution of the Problem 255

where, c1,c2,c3, and c4 are constant, which will be evaluated using the boundary conditions
(8.20a)-(8.20d) and are given as

c1 =
c2λ 2K2 ps +2λK2 (cp3I1

( c
λ

)
− cp4K1

( c
λ

)
+(p1 − p3) I1

( 1
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)
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( 1
λ

))
+1

2λ 2K2µ2
R

,
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1

4λ 2K2µ2
R
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a2 (

λ
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)
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( c
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)
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( c
λ

)
+λ p1I0
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,
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( c
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,
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)(
λ
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(
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. (8.37)

The first order equations are

µ2
R

r
∂

∂ r

(
r

∂wp1

∂ r

)
−

Fµ2
Rw2

p0(
1− ε f r

) = 0, (8.38)

1
r

∂

∂ r

(
r

∂wc1

∂ r

)
= 0. (8.39)

The solution is given as

wp1(r) =c5 log(r)+ c6 − log(r)
∫ r

a

(
−r
(
Fµ

2
Rw2

p0
(
1+ ε f r+ ε

2
f r2)))dr

+
∫ r

a

(
−r log(r)

(
Fµ

2
Rw2

p0
(
1+ ε f r+ ε

2
f r2)))dr, (8.40)

wc1(r) =c7 log(r)+ c8. (8.41)

The second order equations are

µ2
R

r
∂

∂ r

(
r

∂wp2

∂ r

)
−

wp0

(1− ε f r)2 −
Fµ2

Rwp0wp1(
1− ε f r

) = 0, (8.42)
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1
r

∂

∂ r

(
r

∂wc2

∂ r

)
= 0. (8.43)

The solution is given as

wp1(r) =− log(r)
∫ r

a

(
−r
(
wp0(1+2ε f r+3ε

2
f r2)+Fµ

2
Rwp0wp1

(
1+ ε f r+ ε

2
f r2)))dr

+
∫ r

a

(
−r log(r)

(
wp0(1+2ε f r+3ε

2
f r2)+Fµ

2
Rwp0wp1

(
1+ ε f r+ ε

2
f r2)))dr

+ c9 log(r)+ c10. (8.44)

wc1(r) =c11 log(r)+ c12. (8.45)

8.3.4 Small Permeability (k ≪ 1)

8.3.4.1 Solution for the Porous Region

Taking into account the low permeability of the porous medium k ≪ 1, the parameter S ≫ 1
exhibits significant enlargement. The equations governing the flow of an electrolyte through
a swarm of porous layered cylindrical particles will transform into a singularly perturbed
boundary value problem, with the parameter S−1 = S1 ≪ 1, where S = 1

k and k is the per-
meability of the porous medium. Finding analytical solutions for these singularly perturbed
boundary value problems presents a significant challenge. The equation describing the flow
of an electrolyte solution through porous region is presented in terms of S−1 as follows:

S2
1µ2

R
r

∂

∂ r

(
r

∂wp

∂ r

)
−

wp(
1− ε f r

)2 −
S1Fµ2

Rw2
p(

1− ε f r
) = S2

1
∂ p
∂ z

−S2
1

ψp

λ 2 , (8.46)

Outer Solution

wo
p(r;S1) = wp0 +S1wp1 +S2

1wp2 +S3
1wp3 +S4

1wp4 +S5
1wp5 +O(S6

1) (8.47)

The series form of velocity is introduced in the equation (8.46) and equated the like power
of the parameter S1.

wp0 = 0, wp1 = 0, wp2 = (rε f −1)2
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(

p1

(
I0

( r
λ

)(
2λ

2
ε f (2rε f −1)+ r(rε f −1)2)+4λ rε f (rε f −1)I1

( r
λ

))
+p2

(
K0

( r
λ

)(
2λ

2
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+(2rε f −1)×
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2λ
2
ε f
(
λ

2K2 ps +1
))

,

wp5 =
Fµ2

R(rε f −1)5 (K2 (p1I0
( r

λ

)
+ p2K0

( r
λ

))
+λ 2K2 ps +1

)2

λ 4K4 . (8.48)

Inner Solution
To derive the solution for the boundary layer region, a streatching variable (inner variable)
will be defined at the right end of porous domian, which will be introduced as

η =
1− r

S1
, (8.49)

Introducing these inner variables in the boundary value problem (8.46) and neglecting the
smaller terms (S−1 → 0). equation (8.46) is reduced to

µ
2
R

∂ 2wp(η)

∂η2 −
(
1+2ε f +3ε

2
f
)

wp(η) = 0 (8.50)

The above equation can be solved exactly and their one term bounded solution is represented
as

wi
p(r) = c13e−

(1−r)
√

1+2ε f +3ε2
f

µRS1 + c14e
(1−r)

√
1+2ε f +3ε2

f
µRS1 . (8.51)

Since the boundary layer is assumed on the right side of the porous domain, (r = 1), the
condition on the left side of the porous domain (r = a) i.e. the no slip boundary condition
should be omitted. The constant c14 is considered to be vanished due to boundness of the
solution under the limit (η → ∞); however, the expression of c13 will be derived using the
fluid-porous interface boundary condition.
Matching Procedure
The outer solution in terms of inner limit is stated as,

(wo
p)

i = lim
S→+∞

wo
p = 0, (8.52a)

The inner solution in terms of outer limit is stated as,

(wi
p)

o = lim
η→+∞

wo
p = 0, (8.53a)

It can be observed from the equations (22) and (23) that the Prandtl’s matching condition
(wo

p)
in = (win

p )
o = wm

p is satisfied, where, wm
p is the matched solution of both inner and outer
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solutions. The matching solution is

wm
p = 0. (8.54a)

By using the inner and outer solutions the expression of composite solution of velocities for
three different regions is

wp = wo
p +wi

p −wm
p . (8.55a)

8.3.4.2 Solution for the Clear Fluid Region

The governing equations for clear fluid regions is

1
r

∂

∂ r

(
r

∂wc

∂ r

)
=

∂ p
∂ z

− 1
λ 2

(
p3I0

( r
λ

)
+ p4K0

( r
λ

))
(8.56)

The Solution is given as

wc(r) =− 1
4

r2 ps − p3I0

( r
λ

)
+ p3 − p4K0

( r
λ

)
+ c15 log(r)+ c16 (8.57)

The constants c13,c15, and c16 will be derived using the following set of boundary condi-
tions

wp = wc at r = 1 (8.58)

µ
2
R

dwp

dr
− dwc

dr
=

β√
k

wp, at r = 1, (8.59)

dwc

dr
= 0, at r = c. (8.60)

8.4 Results and Discussion

The present study explores the effects of the electroosmotic forces in a flow past a membrane
composed of swarm of poly electrolyte layered solid cylindrical particles. The aim of this
study is to reveal the effect of porous medium parameters such as Darcy number, permeabil-
ity parameter, Forchheimer number, stress jump coefficient, and electroosmotic parameters
such as EDL thickness, zeta potential, fixed charge density in FCL, etc. on the flow veloci-
ties and hydrodynamic quantities like hydrodynamic permeability and Kozeny constant. The
envisioned work’s physical sketch is designed such that the Brinkmann-Forchheimer equa-
tion governs the fluid flow in poly-electrolyte layer (porous layer), where the permeability
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of the medium is considered in a variable nature with permeability parameter ε f signifying
changes in permeability with radial direction. Along with that the Stokes’ equation governs
the electroosmotic flow in clear fluid medium (non-porous layer) enclosed by a virtual cell.
The effect of porous medium and external body forces (electroosmotic force, pressure gradi-
ent, etc.) leads to generate a non homogeneous nonlinear set of governing equations which
are handled in an asymptotic manner using regular and singular perturbation techniques.
The analytical expressions of fluid velocity, Hydrodynamic permeability, and Kozeny con-
stant were then used to analyze the effect of EDL thickness (λ ), fix charge density (λ f ), zeta
potential (ζ ), stress jump parameter (β ), Forchheimer number (F), permeability parameter
(ε f ), Darcy number (k), viscosity ratio parameter (µR), particle volume fraction (γ), etc.
Additionally, a reduction of special cases and validation of current work with previously
published works is performed.

8.4.1 Parameter Selection

Measuring the movement of a fluid presents a challenge, as it requires estimating the mass
or volume of the substance as it moves through a pipe or conduit. Complications may arise
due to the complex nature of fluid flow dynamics. Quantifying physical factors is generally
difficult in the realm of flow measurements. The table below outlines the range of parameter
values, which vary depending on the applications in different fields. All the vital parameters
listed in this table have been comprehensively explained in their respective cited sources,
giving the reader a better understanding of the underlying concepts.
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Range of Parameters

Parameters Range Sources

EDL thickness λ (0,0.5) [22], [23]

Equivalent EDL thickness λ f (0,0.5) [22]

zeta potential ζ (0.8,1.0) [22]

Steady pressure gradient ps 1-10 [5], [167]

Permeability k (0,∞) [2], [3]

Forchheimer number F 0.0-3.0 [7], [8]

Stress-jump parameter β (−1,1) [3], [5]

Viscosity ratio parameter µR 1.0-1.6 [207], [167]

Particle volume fraction γ 0.1-1.0 [3], [96]

Variable permeability parameter ε f 0.0-0.9 [24]

Porosity parameter ε 0.3-1.0 [3]

Table 8.1: Ranges for the ongoing parameters with their references

8.4.2 Electric Potential

The distribution of electric potential depends significantly on electroosmotic parameters
and is affected in both the fixed charge layer of poly-electrolytes and the clear fluid region.
Increasing the thickness of the Electric Double Layer (EDL) corresponds to a greater move-
ment of ions from the bulk electrolyte to the interface of the Fixed Charge Layer (FCL)
and the clear fluid region. This movement enhances the electric potential within the EDL
region. Simultaneously, as the EDL layer thickens, a decrease in potential in the FCL region
can be observed (as shown in Figure 8.3a). This decrease is attributed to the reduced ionic
concentration inside the FCL region. It should be noted that in Figure 8.3a, the parameter K

(the ratio of characteristic scale of the mobile charges to the fixed charges within the FCL
region) is fixed at a value 1, which ensures a similar enhancement of the equivalent EDL
thickness in the FCL region. The relatively larger values of parameter K corresponds to the
increasing thickness of equivalent EDL in FCL region, which reduces the number density
of the FCL ions, resulting in decrement of the electric potential in both FCL and clear fluid
regions (Figure 8.3b). As the zeta potential increases at the solid wall of the cylindrical
particle, the rate at which the electric potential decays also increases; however this decay
rate is particularly significant in the FCL region. (Figure 8.4)
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Figure 8.3: The electric potential distribution ψ in radial direction r with varying (a)
thicknesses of EDL layer λ (K = 1), (b) ratio parameter K (λ = 0.1). (a = 0.5,γ =
0.445,ζ = 1)
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Figure 8.4: The electric potential distribution ψ in radial direction r with varying zeta
potential ζ (K = 1,λ = 0.1). (a = 0.5,γ = 0.445)

8.4.3 Velocity Profile

The dimensionless velocity of electrolyte as a function of radial distance r shows variations
with respect to electroosmotic and porous medium parameters, which are showed in Figures
8.5 to 8.11. Figure 8.5 illustrates how the thickness of the Electric Double Layer (EDL)
affects the flow of electrolyte fluid, considering both high and low permeability cases. As
the EDL thickness increases while upholding the ratio of the characteristic scale of the mo-
bile charges to the fixed charges within the FCL region at unity, causes a diminished ion
concentration in the FCL region, which will decrease the electric potential and, hence, the
electrolyte fluid velocity. This reduction in fluid velocity can be confirmed by equations
(8.18) and (8.19). Additionally, the augmentation of Electric Double Layer (EDL) thickness
within the clear fluid region leads to an increase in the number of ions having lower mobil-
ity compared to the bulk electrolyte in the vicinity of FCL and clear fluid interface. This
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occurrence stems from the restricted space and interactions with other ions and the charged
surface, which leads to a reduced velocity gradient within the EDL region, contributing to
the overall decrease in flow velocity.
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Figure 8.5: The dependence of velocity profile w on the radial distance r for different
values of EDL thicknesses (λ ) in case of (a) large Darcy number (k = 200,ζ = 1,ε f =
0.5), (b) small Darcy number (k = 0.07,ζ = 0.8,ε f = 0.1). (γ = 0.444,K = 1, ps =
1,µR = 1.0,β = 0.4,F = 1)

In Figures 8.6, the velocity profile decreases for both high and low permeability cases as
the ratio parameter K increases. This rise in K corresponds to a decline in electric potential
across both the Fixed Charge Layer and the clear fluid region, attributed to the low ionic
concentration of fixed charges within the poly-electrolyte layer. Moreover, it is noticeable
that the rate of reduction in fluid velocity diminishes as the ratio parameter K attains higher
values, particularly evident in the case of high permeability.
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Figure 8.6: The dependence of velocity profile w on the radial distance r for differ-
ent values of ratio parameter (K) in case of (a) large Darcy number (k = 200,ζ =
1,λ = 0.1,ε f = 0.5), (b) small Darcy number (k = 0.07,ζ = 0.8,λ = 0.4,ε f = 0.1).
(γ = 0.444, ps = 1,µR = 1.0,β = 0.4,F = 1)
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Figure 8.7 analyses the influence of the variable permeability of poly-electrolyte layer
region on the velocity profile, where the increasing permeability parameter corresponds to
a decrease in the overall permeability of PEL region, resulting in an enhanced drag which
reduces the flow velocity in both small and large permeability cases.

0.6 0.8 1.0 1.2 1.4
0

5

10

15

(a)

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

(b)

Figure 8.7: The dependence of velocity profile w on the radial distance r for dif-
ferent values of variable permeability parameter (ε f ) in case of (a) large Darcy num-
ber (k = 200,ζ = 1,λ = 0.1), (b) small Darcy number (k = 0.07,ζ = 0.8,λ = 0.3).
(γ = 0.444, ps = 1,K = 1,µR = 1.0,β = 0.4,F = 1)

An augmentation in the fluid’s velocity can be seen in response to the increased values
of zeta potential in Figure 8.8, which can be interpreted as the increasing zeta potential
enhances the overall potential distribution in the flow domain, which enhances the velocity
profiles according to equations (8.18) and (8.19) in both small and large permeability cases.
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Figure 8.8: The dependence of velocity profile w on the radial distance r for different
values of zeta potential (ζ ) in case of (a) large Darcy number (k = 200,λ = 0.1,ε f = 0.5),
(b) small Darcy number (k = 0.07,λ = 0.3,ε f = 0.1). (γ = 0.444, ps = 1,K = 1,µR =
1.0,β = 0.4,F = 1)
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In Figure 8.9, the correlation between effective viscosity and constant viscosity reveals
a notable dependence on fluid flow. As the viscosity ratio parameter rises, the prominence
of effective viscosity over constant viscosity becomes apparent. Consequently, this leads
to heightened viscous drag in porous layer and a subsequent reduction in fluid velocity.
Additionally, in the case of small permeability, the influence of the stress jump parameter
vanishes with the growing dominance of effective viscosity over fluid viscosity; However
this effect is almost unnoticeable in the case of large permeability owing to large values of
the Darcy number.
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Figure 8.9: The dependence of velocity profile w on the radial distance r for different
values of viscosity ratio parameter (µR) in case of (a) large Darcy number (k = 200,ζ =
0.8,λ = 0.1,ε f = 0.5), (b) small Darcy number (k = 0.07,ζ = 1,λ = 0.3,ε f = 0.1).
(γ = 0.444, ps = 1,K = 1,β = 0.4,F = 1)

Figure 8.10 demonstrates that an increase in the stress jump parameter results in an
increased fluid velocity across both large and small permeability cases. This increment
in fluid velocity is particularly pronounced in the case of the small Darcy number. This
observation can be interpreted from the fact that smaller permeability values magnify the
disparity in shear stress at the fluid-porous interface, thereby enhancing the influence of the
stress jump parameter.
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Figure 8.10: The dependence of velocity profile w on the radial distance r for different
values of stress-jump parameter (β ) in case of (a) large Darcy number (k = 200,ζ =
0.8,λ = 0.1,ε f = 0.5), (b) small Darcy number (k = 0.07,ζ = 1,λ = 0.3,ε f = 0.1).
(γ = 0.444, ps = 1,K = 1,µR = 1.0,F = 1)

The Forchheimer number parameter F signifies the impact of inertial resistance within
the porous medium, where higher values result in a decrease in fluid velocity across both
high and low permeability cases. However, the effect of inertial resistance is more pro-
nounced in small permeability cases (Figure 8.11). This difference can be attributed to the
smaller values of the Darcy number, which amplify the magnitude of the non-linear Forch-
heimer term in equation (8.18).
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Figure 8.11: The dependence of velocity profile w on the radial distance r for different
values of Forchheimer number (F) in case of (a) large Darcy number (k = 200,ζ = 0.8),
(b) small Darcy number (k = 0.07,ζ = 1). (γ = 0.444, ps = 1,K = 1,λ = 0.3,µR =
1.0,ε f = 0.1,β = 0.4)
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8.4.4 Hydrodynamic Permeability

This subsection investigates the impact of various electroosmotic parameters—such as EDL
thickness λ , equivalent EDL thickness in the Fixed Charge Layer region λ f , and zeta poten-
tial ζ , as well as porous parameters—including the Forchheimer number F , Darcy number
k, variable permeability parameter ε f , stress-jump parameter β , and viscosity ratio param-
eter µR—along with the particle volume fraction γ of the membrane on the hydrodynamic
permeability denoted as L11. Figure 8.12 depicts the relation of hydrodynamic permeability
with particle volume fraction for different thickness of EDL region. The hydrodynamic per-
meability of membrane shows a decaying behavior with increasing particle volume fraction,
which can be attributed to the increased occupancy of poly-electrolyte grafted solid cylin-
drical particles in the bulk electrolyte fluid region, reducing the size of clear fluid region and
hence the hydrodynamic permeability of the membrane. Moreover, the increasing thickness
of EDL in the clear fluid region leads to a diminished hydrodynamic permeability for both
large and small permeability cases, which can be physically justified with the argument that
the expansion of the EDL region is associated with an augmentation of the ionic density
inside this layer, leading to high resistance against the axial velocity resulting in a decay
be in the dimensionless velocity, consequently, a decay in the hydrodynamic permeability.
It can also depicted from figure 8.12 that an increasing thickness of EDL region slightly
reduces the dependency of particle volume fraction on hydrodynamic permeability of the
membrane.
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Figure 8.12: The dependence of hydrodynamic permeability L11 on the particle volume
fraction γ for different EDL thicknesses (λ ) in case of (a) large Darcy number (k = 200),
(b) small Darcy number (k = 0.01). (ps = K = ζ = F = µR = 1.0,ε f = 0.1,β = 0.4)

Figure 8.13 illustrates the impact of the thickness of the equivalent EDL in the FCL re-
gion, denoted as λ f , on the hydrodynamic permeability of membranes. A noticeable decline
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in hydrodynamic permeability is evident with the increasing ratio parameter K, directly pro-
portional to λ f . Referring back to equation (8.18), it becomes apparent that an increase in
λ f (while keeping other parameters constant) leads to a decrease in the electric potential
within the domain. Consequently, this diminishes the driving force exerted by the external
electric field, thereby reducing the dimensionless velocity. Furthermore, this analysis can
be elucidated by noting that the increasing λ f corresponds to a decrease in ionic concen-
tration within the poly-electrolyte layer. This decrease in concentration lowers the driving
force induced by the external electric field, resulting in reduced velocity and consequently
diminishing the hydrodynamic permeability.
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Figure 8.13: The dependence of hydrodynamic permeability L11 on the particle volume
fraction γ for different ratio parameter (K) in case of (a) large Darcy number (k = 200),
(b) small Darcy number (k = 0.01). (ps = ζ = F = µR = 1.0,λ = 0.1,ε f = 0.1,β = 0.4)

In the case of large permeability of PEL region a slight augmentation in the hydrody-
namic permeability can be observed in response to the increased zeta potential at the solid
surface of the particle; However this effect is almost neglisible for slightly permeable poly-
electrolyte layer. The graphical representation of the same can be observed from Figure
8.14b and the behavior can be accessed from equation (8.18) and (8.19).
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Figure 8.14: The dependence of hydrodynamic permeability (L11) on the particle volume
fraction (γ) for different zeta potential (ζ ) in case of (a) large Darcy number (k = 200),
(b) small Darcy number (k = 0.01). (ps = K = F = µR = 1.0,λ = 0.3,ε f = 0.1,β = 0.4)

Figure 8.15 illustrates that an increase in the permeability parameter ε f , leading to a
decrease in the overall permeability of the PEL region, resulting in a reduction of the hy-
drodynamic permeability of the membrane. This effect of variable permeability on the hy-
drodynamic permeability is particularly pronounced in the case of the small Darcy number.
This prominence can be attributed to the smaller values of the Darcy number, which am-
plify the drag effect associated with the second and third terms in equation (8.18). Further,
a diminished decay rate of L11 with respect to ε f is observed in response to a higher ratio
parameter K.
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Figure 8.15: The dependence of hydrodynamic permeability (L11) on variable permeabil-
ity (ε f ) for different ratio parameter (K) in case of (a) large Darcy number (k = 200,γ =
0.2), (b) small Darcy number (k = 0.01,γ = 0.44). (ps = ζ = F = µR = 1.0,λ = 0.1,ε f =
0.1,β = 0.4)

An augmentation in the stress jump parameter leads to a growth in hydrodynamic per-
meability for both high and low permeability cases; However this growth rate is higher for
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the case of low permeable porous medium owing to a significant contribution of the stress
jump coefficient term in the boundary condition 58 for small Darcy number. (Figure 8.16)
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Figure 8.16: The dependence of hydrodynamic permeability (L11) on stress-jump param-
eter (β ) for different particle volume fraction (γ) in case of (a) large Darcy number (k =
200), (b) small Darcy number (k = 0.01). (ps = ζ =F =K = µR = 1.0,λ = 0.3,ε f = 0.1)

It can be depicted from Figure 8.17 that the decay rate of L11 with respect to K is higher,
when the values of ratio parameters are in the vicinity of 1, i.e. the EDL thicknesses of FCL
and clear fluid regions are of same order; however as the thickness of equivalent EDL in
FCL region gets larger relative to EDL in clear fluid region (increasing K), the decay rate of
L11 gets reduced.
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Figure 8.17: The dependence of hydrodynamic permeability (L11) on ratio parameter (K)
for different viscosity ratio parameter (µR) in case of (a) large Darcy number (k = 200,γ =
0.2,λ = 0.14), (b) small Darcy number (k = 0.01,γ = 0.444,λ = 0.1). (ps = ζ = F =
1.0,ε f = 0.1,β = 0.4)

An augmentation in effective viscosity in comparison to the constant viscosity corre-
sponds to enhancing the viscous drag in the fluid, leads to a decreased permeability of the
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membrane. It can be observed from figure 8.18 that the decay rate of hydrodynamic perme-
ability get reduced as the thickness of EDL layer gets enhanced in both cases of permeability.
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Figure 8.18: The dependence of hydrodynamic permeability (L11) on EDL thickness (λ )
for different viscosity ratio parameter (µR) in case of (a) large Darcy number (k = 200,γ =
0.2), (b) small Darcy number (k = 0.01,γ = 0.444). (ps = ζ =F =K = 1.0,ε f = 0.1,β =
0.4)

8.4.5 Kozeny Constant

The Kozeny constant Kz encapsulates the effects of flow path (tortuosity), particle shape,
and their interactions. It can be regarded as directly proportional to tortuosity (Ozgumus
et al. [181]). Thus, it is intriguing to examine how electroosmotic parameters influence
tortuosity via Kz. The effect of porosity ε on the Kozeny constant for both cases of large and
small permeability reveals that the increasing porosity of the poly-electrolyte layer leads
to a growth in the Kozeny constant, which is similar to the observation of Madasu and
Bucha [11] for the case of Newtonian fluid flow through particles with cavity (Figure 8.19).
Additionally, this growth rate get enhanced for larger values of ratio parameter K, signifying
the enhanced resistance in the flow domain, which can be attributed to the decreased electric
potential in the flow domain due to lower ionic concentration in the FCL region.
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Figure 8.19: The dependence of Kozeny constant (Kz) on porosity of the medium(ε) for
different ratio parameter (K) in case of (a) large Darcy number (k = 200,γ = 0.6), (b)
small Darcy number (k = 0.01,γ = 0.444). (ps = ζ = F = µR = 1,λ = 0.1,ε f = 0.1,β =
0.4)

The outcomes of figure 8.20 can be understood with the discussion of figure 8.19. Here,
the increased zeta potential enhances the overall electric potential distribution in the flow
domain, which will reflect in the enhanced flow velocity, results in acting as the reduced
resistance in the overall flow domain, consequently the tortuosity of medium. (Figure 8.20)
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Figure 8.20: The dependence of Kozeny constant (Kz) on porosity of the medium(ε) for
different zeta potential (ζ ) in case of (a) large Darcy number (k = 200,γ = 0.6), (b) small
Darcy number (k = 0.01,γ = 0.444). (ps = K = F = µR = 1,λ = 0.4,ε f = 0.1,β = 0.4)

It can be concluded from figure 8.21 that the increasing thickness of EDL layer leads
to increase the tortuosity of the poly-electrolyte layer, which can be supported with the
argument that the increasing thickness of EDL layer corresponds to the higher density of
ions inside the layer, which create a high resistance against the axial velocity resulting in the
increase in the tortuosity of the medium and consequently the Kozeny constant.
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Figure 8.21: The dependence of Kozeny constant (Kz) on EDL thickness (λ ) for different
stress-jump parameter (β ) in case of (a) large Darcy number (k = 200,γ = 0.6), (b) small
Darcy number (k = 0.01,γ = 0.444). (ps = K = ζ = F = µR = 1,λ = 0.4,ε f = 0.1)

An augmentation in the stress jump parameter results in a decay of Kozeny constant,
which is more pronounced in the case of small permeability owing to an enhanced magni-
tude of stress jump term for small permeability case. The increasing Forchheimer number
corresponds to the higher inertial resistance in the fluid flow, which leads to decay in flow
velocity and hydrodynamic permeability of the membrane and consequently enhances the
value of the Kozeny constant and tortuosity of the medium.
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Figure 8.22: The dependence of Kozeny constant (Kz) on ratio parameter(K) for different
Forchheimer number (F) in case of (a) large Darcy number (k = 200), (b) small Darcy
number (k = 0.01). (ps = ζ = µR = 1,γ = 0.444,λ = 0.1,ε f = 0.1,β = 0.4)

8.4.6 Model Validation and Limiting Cases

The limiting cases of the current model are discussed in Figure 8.23a for the large per-
meability case, which includes the constant permeability model under the limit (ε f → 0)
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showing the enhanced fluid velocity in comparison to the current model signifying the re-
duced permeability in the porous medium for non-zero variable permeability parameter ε f .
Further limiting case of Brinkman model under the limit (F → 0) signifying the effect of
inertial resistance in the model. The zero stress jump corresponds to the continuity of stress
at the fluid porous interface, which results in a reduction of fluid velocity. Further the limit
(k → ∞) corresponds to vanishing the PEL layer or a flow of electrolyte fluid past an array
of rigid particles. The negligible variation in this case can be attributed to the already highly
permeable PEL region (k = 200). In Figure 8.23b, The asymptotic solution of current study
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Figure 8.23: (a) Comparision among special cases of the current model (k = 200), (b)
Validation of the asymptotic solution of current model with numerical solution (200).

is compared to the numerical solution computed using NDSolve command in MATHE-
MATICA 14.0 Software. It can be observe that the asymptotic solution of the current study
is in good agreement with the numerical solution, signifying the validation of the second
order perturbed solution of fluid velocity.

8.5 Summary and Conclusions

In this chapter, the electroosmotic flow (EOF) along with a constant pressure gradient driven
flow of an electrolyte solution past a membrane consisting of poly-electrolyte coated solid
cylindrical particles under the effect of an externally applied electric field is analyzed. The
poly-electrolyte layer is considered as an ion penetrable porous layer enveloped around the
solid cylindrical particles entraps a particular types of ion (different from electrolyte ions)
called fixed charge ions. Hence the poly-electrolyte layer (PEL) is also referred as fixed
charge layer (FCL). The mobile ions of bulk electrolyte accumulates near the interface of
FCL and clear fluid region, which results in the formation of electric double layer. The
fluid flow through membrane is modeled using the unit cell model according to which, the
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flow regime is divided into two segments, one is the FCL region which is a porous layer of
poly-electrolyte fibers, in which the fluid flow is governed using the Brinkann-Forchheimer
equation. Second is the clear fluid region enclosed by a hypothetical cell, in which the
flow is governed by Stokes equation. Due to the non-linear Forchheimer terms and external
body force term (electric force), analytical solution for the system of governing equations is
difficult to derive. Hence The the regular and singular perturbation methods were applied
to derive the asymptotic analytical expressions of the solution. The hydrodynamic perme-
ability and Kozeny constant of the membrane is analyzed by using the expressions of fluid
velocity. The results and discussion section have given a detailed discussion of the graphical
analysis.
The following novel determinations from the present study are pointed out:

1. The increasing thickness of the EDL in clear fluid region λ diminishes the flow profile
of electrolyte, regardless of the high and low permeability cases. This decay with λ

is also seen in the hydrodynamic permeability of the membrane for both cases of
permeability. A significant increase is also observed in the Kozeny constant with
increasing λ f .

2. A noticeable decline in hydrodynamic permeability is evident with the increasing ratio
parameter K, directly proportional to the equivalent EDL thickness in FCL region λ f .
This qualitative behavior of λ f is transmitted in the hydrodynamic permeability of the
membrane and observed the decay of L11 with increasing λ f ; however the Kozeny
constant shows an increasing trend with a higher equivalent EDL thickness in FCL
region λ f .

3. An augmentation in the fluid’s velocity can be seen in response to the increased values
of zeta potential for both cases of permeability. A discernible increment in the hydro-
dynamic permeability can be observed in response to the increased zeta potential at
the solid surface of the particle (for k ≫ 1); However this effect is almost negligible
for slightly permeable poly-electrolyte layer. Additionally, an increasing zeta poten-
tial leads to decay the Kozeny constant of the membrane.

4. An increasing values of permeability parameter corresponds to a decrease in the over-
all permeability of PEL region, resulting in an enhanced drag which reduces the flow
velocity in both small and large permeability cases. Consequently, this increasing
permeability parameter reduces the hydrodynamic permeability of the membrane.
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These results helps in providing a broader physical insights associated with the combined
electroosmotic and pressure driven flow of an electrolyte solution past a membrane con-
sisting of poly-electrolyte coated solid cylindrical particles. The following work, however,
requires experimental verification.
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Chapter 9

Conclusions and Research Prospects

9.1 Conclusions

The aim of this thesis is to use the cell model approach to investigate the flow past a mem-
brane for different physical and rheological scenarios. In particular, we have assumed the
membrane is composed of a swarm of uniformly distributed cylindrical-shaped particles.
The particles of swarm are modeled as porous cylindrical particles having an impermeable
core along the axis, signifying the dissolution and adsorption of the polymers. The effect
of inertial resistance is incorporated for the fluid flow within the polymer layer called the
porous layer, using a non-linear body force term called the Forchheimer term. The vari-
able nature of permeability within the porous layer is considered to incorporate the effect of
non-uniform permeability in the porous layer of a swarm of particles. The flow behavior of
different rheological fluids has been analyzed by considering the different Newtonian and
non-Newtonian fluid models such as Jeffreys fluid, Carreau fluid, Carreau-Yasuda fluid.
Throughout the whole discussion, the main findings are determined as

1. An observable effect of variable viscosity has been seen on the velocity profile and
hydrodynamic quantities of the membranes. It is also observed that for the case of
slightly permeable porous layer, this effect of variable viscosity is significant only for
membranes of low particle volume fraction.

2. The Carreau-Yasuda model is first time applied for flow of non-Newtonian fluid through
a membrane composed of an aggregate of porous layered cylindrical particles and the
effect of fluid parameters signifying the rheological behavior of fluid on the hydro-
dynamic quantities of membrane such as hydrodynamic permeability, and Kozeny
constant is found to be significant.

3. The surface roughness of cylindrical particles of swarm, depending on the param-
eters wave number, corrugation height etc., affect the membrane filtration process
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significantly, and founded a significant impact on the hydrodynamic permeability and
tortuosity of the membrane.

9.2 Noteworthy Contributions

This thesis contributes towards different mathematical models of fluid flow through uni-
form array of particles under the influence of the varying nature of viscosity and permeabil-
ity. Effect of different body forces like electro-hydrodynamic force, electroosmotic force,
buoyancy force has been analysed on the hydrodynamic and thermal characteristics of the
membrane. Throughout the whole study, the main findings as specific contributions are as
follows:

1. A decay in variable viscosity leads to growth in velocity profile, and hydrodynamic
permeability of the membranes, however a decay in Kozeny constant is observed with
increasing viscosity parameter. Further, for large particle volume fraction the im-
pact of viscosity variation and relaxation time on membrane permeability is almost
insignificant for the case of low permeability.

2. The visco-elasticity of the Carreau and Carreau-Yasuda fluid significantly affect the
flow process within the membrane. In a highly permeable porous medium, the hydro-
dynamic permeability increases with the fluid’s viscoelasticity; however, it decreases
as the rheology shifts from shear thinning to shear thickening. In the case of small per-
meability, the impact of viscoelasticity becomes opposite for shear thickening fluids
owing to larger-than-unit values of the power law parameter.

3. The theoretical analysis of electro-hydrodynamic flow reveals that a rising Hartmann
electric number leads to the growth of velocity and membrane permeability, which
is relatively more significant for higher permeability. However, the reverse trend is
observed in the tortuosity of the membrane with Hartmann electric number.

4. The augmentation in varying permeability parameters of the Brinkman and Forch-
heimer layers leads to an enhancement in entropy generation owing to reduced fluid
velocity. Additionally, an enhanced inertial resistance in the fluid flow, results in a
enhancement of entropy generation within the membrane.

5. The increasing thickness of the EDL in clear fluid region λ , equivalent EDL thickness
in PEL region λ f , diminishes the flow profile of electrolyte fluid, regardless of the
high and low permeability cases. This decay with increasing λ and λ f is also seen
in the hydrodynamic permeability of the membrane for both cases of permeability;
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however the tortuosity of the membrane increases significantly with the increment of
these thicknesses.

6. The increasing surface roughness of particles of the membrane leads to a significant
reduction in the flow past a membrane, and hence it can be concluded that the surface
roughness had a significant impact on the hydrodynamic quantities of the membrane.

9.3 Research Prospects

The simplicity of the model lends itself to further applications, both from an academic and
industrial point of view; its highly flexible nature allows for a variety of different possibili-
ties. Based on the current study, the following research prospects arises,

1. The membrane filtration process shows significant dependence upon the geometrical
perturbations in the shape of the particles of a swarm. The cylindrical shape with
sinusoidal corrugation has been analyzed but it can be further extended to arbitrary
corrugations, which will surely provide more impactful insights about the flow.

2. The circular cylindrical shape of current study can be further extended to elliptic cylin-
drical shape or deformed cylindrical shape to analyse the effect of particle shape on
the fluid flow past a membrane.

3. The current study is focused on the flow past along the axis of cylindrical particles;
however it will be interesting to study to flow across the swarm of cylindrical particles
and observe the effect of different Cell model on the hypothetical cell surface.

4. Apart from the already studied fluid models, the behavior of other Non-newtonian
fluid models can be analysed to explore the effect of different rheological properties
of fluid on the flow past a membrane.

5. The effect of electroosmotic flow on the soft cylindrical particle has been explored in
the current study. However, the study of electrophoretic and diffusiophoretic flows in
the membrane is a topic of future research.
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74–87 (2017).

160. Koroleva, Y. O. Qualitative properties of the Solution to Brinkman-Stokes system
modelling a filtration process. Mathematics and Statistics 4, 143 (2017).

161. Filippov, A. & Koroleva, Y. On a hydrodynamic permeability of a system of coaxial
partly porous cylinders with superhydrophobic surfaces. Applied Mathematics and

Computation 338, 363–375 (2018).

162. Tiwari, A. & Chauhan, S. S. Effect of varying viscosity on two-fluid model of pul-
satile blood flow through porous blood vessels: A comparative study. Microvascular

research 123, 99–110 (2019).

163. Tiwari, A. & Chauhan, S. S. Effect of varying viscosity on two-layer model of pul-
satile flow through blood vessels with porous region near walls. Transport in Porous

Media 129, 721–741 (2019).

164. Mekheimer, K. S. & Abd Elmaboud, Y. Simultaneous effects of variable viscosity
and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Cana-

dian Journal of Physics 92, 1541–1555 (2014).

165. Dash, R., Mehta, K. & Jayaraman, G. Casson fluid flow in a pipe filled with a ho-
mogeneous porous medium. International Journal of Engineering Science 34, 1145–
1156 (1996).

166. Tiwari, A., Shah, P. D. & Chauhan, S. S. Solute dispersion in two-fluid flowing
through tubes with a porous layer near the absorbing wall: Model for dispersion phe-
nomenon in microvessels. International Journal of Multiphase Flow 131, 103380
(2020).



294 Bibliography

167. Tiwari, A., Shah, P. D. & Chauhan, S. S. Analytical study of micropolar fluid flow
through porous layered microvessels with heat transfer approach. The European Phys-

ical Journal Plus 135, 1–32 (2020).

168. Khaled, A.-R. & Vafai, K. The role of porous media in modeling flow and heat trans-
fer in biological tissues. International Journal of Heat and Mass Transfer 46, 4989–
5003 (2003).

169. Galdi, G. P., Rannacher, R., Robertson, A. M. & Turek, S. Hemodynamical flows.
Delhi Book Store, 8–10 (2008).

170. Greenkorn, R. A. Flow phenomena in porous media: fundamentals and applications
in petroleum, water and food production (1983).

171. Levine, S & Neale, G. H. The prediction of electrokinetic phenomena within multi-
particle systems. I. Electrophoresis and electroosmosis. Journal of Colloid and Inter-

face Science 47, 520–529 (1974).

172. Ohshima, H. Electrokinetic phenomena in a dilute suspension of spherical solid col-
loidal particles with a hydrodynamically slipping surface in an aqueous electrolyte
solution. Advances in colloid and Interface Science 272, 101996 (2019).

173. Ohshima, H. Electroosmotic velocity in an array of parallel cylindrical fibers with a
slip surface. Colloid and Polymer Science 299, 937–941 (2021).

174. Keh, H. J. & Wei, Y. K. Diffusioosmosis and electroosmosis of electrolyte solutions in
fibrous porous media. Journal of colloid and interface science 252, 354–364 (2002).

175. Roul, P. & Madduri, H. A new approximate method and its convergence for a strongly
nonlinear problem governing electrohydrodynamic flow of a fluid in a circular cylin-
drical conduit. Applied Mathematics and Computation 341, 335–347 (2019).

176. Alomari, A., Erturk, V. S., Momani, S. & Alsaedi, A. An approximate solution method
for the fractional version of a singular BVP occurring in the electrohydrodynamic
flow in a circular cylindrical conduit. The European Physical Journal Plus 134, 1–11
(2019).

177. Wang, A., Xu, H. & Yu, Q. Homotopy Coiflets wavelet solution of electrohydrody-
namic flows in a circular cylindrical conduit. Applied Mathematics and Mechanics

41, 681–698 (2020).

178. Vaddi, R. S., Guan, Y., Mamishev, A. & Novosselov, I. Analytical model for electro-
hydrodynamic thrust. Proceedings of the Royal Society A 476, 20200220 (2020).

179. Eringen, A. C. & Maugin, G. A. Electrodynamics of continua II: fluids and complex

media (Springer Science & Business Media, 2012).



Bibliography 295

180. Khanukaeva, D. Y. Approximation of the hydrodynamic permeability for globular-
structured membranes. Mechanics of Materials 148, 103528 (2020).

181. Ozgumus, T., Mobedi, M. & Ozkol, U. Determination of Kozeny constant based on
porosity and pore to throat size ratio in porous medium with rectangular rods. Engi-

neering Applications of Computational Fluid Mechanics 8, 308–318 (2014).

182. Sankar, D. & Hemalatha, K. A non-Newtonian fluid flow model for blood flow through
a catheterized artery—steady flow. Applied mathematical modelling 31, 1847–1864
(2007).

183. Prakash, J., Raja Sekhar, G. & Kohr, M. Stokes flow of an assemblage of porous
particles: stress jump condition. Zeitschrift für angewandte Mathematik und Physik

62, 1027–1046 (2011).

184. Filippov, A., Koroleva, Y. O. & Verma, A. Cell Model of a Fibrous Medium (Mem-
brane). Comparison between Two Different Approaches to Varying Liquid Viscosity.
Membranes and Membrane Technologies 2, 230–243 (2020).

185. Zhu, J & Satish, M. Non-Newtonian effects on the drag of creeping flow through
packed beds. International journal of multiphase flow 18, 765–777 (1992).

186. Chaffin, S. & Rees, J. Carreau fluid in a wall driven corner flow. Journal of Non-

Newtonian Fluid Mechanics 253, 16–26 (2018).

187. Nield, D. A note on a Brinkman–Brinkman forced convection problem. Transport in

porous media 64, 185–188 (2006).

188. Sucharitha, G, Lakshminarayana, P & Sandeep, N. Joule heating and wall flexibil-
ity effects on the peristaltic flow of magnetohydrodynamic nanofluid. International

Journal of Mechanical Sciences 131, 52–62 (2017).

189. Yadav, P. K. et al. Hydrodynamic permeability of biporous membrane. Colloid Jour-

nal 75, 473–482 (2013).

190. Deo, S., Maurya, D. K. & Filippov, A. Effect of magnetic field on hydrodynamic per-
meability of biporous membrane relative to micropolar liquid flow. Colloid Journal

83, 662–675 (2021).

191. Bhandari, D., Tripathi, D. & Narla, V. Pumping flow model for couple stress flu-
ids with a propagative membrane contraction. International Journal of Mechanical

Sciences 188, 105949 (2020).

192. Vafai, K. & Tien, C. L. Boundary and inertia effects on flow and heat transfer in
porous media. International Journal of Heat and Mass Transfer 24, 195–203 (1981).



296 Bibliography

193. Vafai, K. & Tien, C. Boundary and inertia effects on convective mass transfer in
porous media. International Journal of Heat and Mass Transfer 25, 1183–1190 (1982).

194. Chauhan, S. S., Shah, P. D. & Tiwari, A. Analytical study of the effect of variable vis-
cosity and heat transfer on two-fluid flowing through porous layered tubes. Transport

in Porous Media 142, 641–668 (2022).

195. Hill, A. A. & Morad, M. Convective stability of carbon sequestration in anisotropic
porous media. Proceedings of the Royal Society A: Mathematical, Physical and En-

gineering Sciences 470, 20140373 (2014).

196. Vaidya, H. et al. Scrutiny of MHD impact on Carreau Yasuda (CY) fluid flow over a
heated wall of the uniform micro-channel. Chinese Journal of Physics 87, 766–781
(2024).

197. Jangili, S., Adesanya, S., Falade, J. & Gajjela, N. Entropy generation analysis for a
radiative micropolar fluid flow through a vertical channel saturated with non-Darcian
porous medium. International Journal of Applied and Computational Mathematics

3, 3759–3782 (2017).

198. Khan, M. I. & Alzahrani, F. Entropy-optimized dissipative flow of Carreau–Yasuda
fluid with radiative heat flux and chemical reaction. The European Physical Journal

Plus 135, 1–16 (2020).

199. Saini, A. K., Chauhan, S. S. & Tiwari, A. Creeping flow of non-Newtonian fluid
through membrane of porous cylindrical particles: A particle-in-cell approach. Physics

of Fluids 35 (2023).

200. Liu, H. C., Zhang, B. B., Schneider, V., Venner, C. & Poll, G. Two-dimensional
generalized non-Newtonian EHL lubrication: Shear rate-based solution versus shear
stress-based solution. Proceedings of the Institution of Mechanical Engineers, Part

J: Journal of Engineering Tribology 235, 2626–2639 (2021).

201. Filippov, A. et al. Simulation of the onset of flow through a PTMSP-based polymer
membrane during nanofiltration of water-methanol mixture. Petroleum Chemistry 55,
347–362 (2015).

202. Murthy, J. R. & Srinivas, J. Second law analysis for Poiseuille flow of immiscible
micropolar fluids in a channel. International Journal of Heat and Mass Transfer 65,
254–264 (2013).

203. Srinivas, J, Murthy, J. R. & Bég, O. A. Entropy generation analysis of radiative heat
transfer effects on channel flow of two immiscible couple stress fluids. Journal of the

Brazilian Society of Mechanical Sciences and Engineering 39, 2191–2202 (2017).



Bibliography 297

204. Srinivas, J, Murthy, J. R. & Chamkha, A. J. Analysis of entropy generation in an
inclined channel flow containing two immiscible micropolar fluids using HAM. In-

ternational Journal of Numerical Methods for Heat & Fluid Flow 26, 1027–1049
(2016).

205. Hooman, K & Ejlali, A. Entropy generation for forced convection in a porous satu-
rated circular tube with uniform wall temperature. International communications in

heat and mass transfer 34, 408–419 (2007).

206. Pabi, S., Mehta, S. K. & Pati, S. Analysis of thermal transport and entropy generation
characteristics for electroosmotic flow through a hydrophobic microchannel consid-
ering viscoelectric effect. International Communications in Heat and Mass Transfer

127, 105519 (2021).

207. Srivastava, A. & Srivastava, N. Flow past a porous sphere at small Reynolds number.
Zeitschrift für angewandte Mathematik und Physik ZAMP 56, 821–835 (2005).

208. Bergles, A. E. Some Perspectives on Enhanced Heat Transfer—Second-Generation
Heat Transfer Technology. Journal of Heat Transfer 110, 1082–1096 (1988).

209. Hufton, J. R., Bravo, J. L. & Fair, J. R. Scale-up of laboratory data for distillation
columns containing corrugated metal-type structured packing. Industrial & engineer-

ing chemistry research 27, 2096–2100 (1988).

210. Olujiæ, B. K., Jansen, H, Rietfort, T, Zich, E & Frey, G. Distillation column in-
ternals/configurations for process intensification. Chem. Biochem. Eng 7, 301–309
(2003).

211. Young, D. F. Effect of a Time-Dependent Stenosis on Flow Through a Tube. Journal

of Engineering for Industry 90, 248–254 (1968).

212. Rodbard, S. Dynamics of blood flow in stenotic vascular lesions. American heart

journal 72, 698–704 (1966).

213. Qu, W., Mala, G. M. & Li, D. Pressure-driven water flows in trapezoidal silicon
microchannels. International Journal of Heat and Mass Transfer 43, 353–364 (2000).

214. Bahrami, M., Yovanovich, M. M. & Culham, J. R. Pressure Drop of Fully Developed,
Laminar Flow in Rough Microtubes. Journal of Fluids Engineering 128, 632–637
(2005).

215. Phan-Thien, N. On the Stokes Flow of Viscous Fluids Through Corrugated Pipes.
Journal of Applied Mechanics 47, 961–963 (1980).

216. Phan-Thien, N. Couette flow between corrugated cylinders. Zeitschrift für angewandte

Mathematik und Physik ZAMP 43, 207–215 (1992).



298 Bibliography

217. Wang, C.-Y. Parallel flow between corrugated plates. Journal of the Engineering Me-

chanics Division 102, 1088–1090 (1976).

218. Wang, C.-Y. On Stokes Flow Between Corrugated Plates. Journal of Applied Me-

chanics 46, 462–464 (1979).

219. Zhou, H., Khayat, R., Martinuzzi, R. & Straatman, A. On the validity of the perturba-
tion approach for the flow inside weakly modulated channels. International Journal

for Numerical Methods in Fluids 39, 1139 – 1159 (2002).

220. Sherief, H., Faltas, M., Ashmawy, E. & Abdel-Hameid, A. Creeping motion of a mi-
cropolar fluid between two sinusoidal corrugated plates. European Journal of Mechanics-

B/Fluids 59, 186–196 (2016).

221. Ng, C.-O. & Wang, C. Darcy–Brinkman flow through a corrugated channel. Trans-

port in porous media 85, 605–618 (2010).

222. Hunter, R. Foundations of Colloid Science (Oxford University Press, 2001).

223. Masliyah, J. H. & Bhattacharjee, S. Electrokinetic and colloid transport phenomena

(John Wiley & Sons, 2006).

224. Ghosal, S. Lubrication theory for electro-osmotic flow in a microfluidic channel of
slowly varying cross-section and wall charge. Journal of Fluid Mechanics 459, 103–
128 (2002).

225. Bhattacharyya, S, Zheng, Z & Conlisk, A. Electro-osmotic flow in two-dimensional
charged micro-and nanochannels. Journal of Fluid Mechanics 540, 247–267 (2005).

226. Ohno, K.-i., Tachikawa, K. & Manz, A. Microfluidics: applications for analytical
purposes in chemistry and biochemistry. Electrophoresis 29, 4443–4453 (2008).

227. Friebe, A. & Ulbricht, M. Cylindrical pores responding to two different stimuli via
surface-initiated atom transfer radical polymerization for synthesis of grafted diblock
copolymers. Macromolecules 42, 1838–1848 (2009).

228. Swaminathan, V. V. et al. Ionic transport in nanocapillary membrane systems. Nan-

otechnology for Sustainable Development, 17–31 (2014).

229. Lee, J., Panzer, M. J., He, Y., Lodge, T. P. & Frisbie, C. D. Ion gel gated polymer thin-
film transistors. Journal of the American Chemical Society 129, 4532–4533 (2007).

230. Zhang, H., Tian, Y. & Jiang, L. From symmetric to asymmetric design of bio-inspired
smart single nanochannels. Chemical communications 49, 10048–10063 (2013).



Bibliography 299

231. Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S. & Hoffman, A. S. Size-dependent
control of the binding of biotinylated proteins to streptavidin using a polymer shield.
Nature 411, 59–62 (2001).

232. Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Advanced

drug delivery reviews 58, 1655–1670 (2006).

233. Donath, E & Voigt, A. Streaming current and streaming potential on structured sur-
faces. Journal of colloid and interface science 109, 122–139 (1986).

234. Ohshima, H. & Kondo, T. Electrokinetic flow between two parallel plates with sur-
face charge layers: Electro-osmosis and streaming potential. Journal of colloid and

interface science 135, 443–448 (1990).

235. Ohshima, H. Electrophoretic mobility of soft particles. Journal of colloid and inter-

face science 163, 474–483 (1994).

236. Ohshima, H. Electrophoresis of soft particles. Advances in colloid and interface sci-

ence 62, 189–235 (1995).

237. Ohshima, H. Electrophoretic mobility of soft particles. Colloids and Surfaces A:

Physicochemical and Engineering Aspects 103, 249–255 (1995).

238. Ohshima, H. & Furusawa, K. Electrical phenomena at interfaces: fundamentals:

measurements, and applications (CRC Press, 1998).

239. Ohshima, H. On the general expression for the electrophoretic mobility of a soft
particle. Journal of colloid and interface science 228, 190–193 (2000).

240. Ohshima, H. Electrophoretic mobility of a highly charged soft particle: relaxation
effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects 376, 72–
75 (2011).

241. Kozak, M. W. & Davis, E. J. Electrokinetic phenomena in fibrous porous media.
Journal of colloid and interface science 112, 403–411 (1986).

242. Ohshima, H. Electroosmotic velocity in fibrous porous media. Journal of colloid and

interface science 210, 397–399 (1999).

243. Ohshima, H. Electrophoretic mobility of soft particles in concentrated suspensions.
Journal of colloid and interface science 225, 233–242 (2000).

244. Ohshima, H. Electrical conductivity of a concentrated suspension of soft particles.
Journal of colloid and interface science 229, 307–309 (2000).

245. Ohshima, H. Sedimentation potential and velocity in a concentrated suspension of
soft particles. Journal of colloid and interface science 229, 140–147 (2000).



300 Bibliography

246. Ohshima, H. Cell model calculation for electrokinetic phenomena in concentrated
suspensions: an Onsager relation between sedimentation potential and electrophoretic
mobility. Advances in Colloid and Interface Science 88, 1–18 (2000).



List of Publications

The following works included in this thesis in chapter form have been published/ communi-
cated in the following journals:

1. A. K. Saini, S. S. Chauhan, A. Tiwari, Creeping flow of Jeffrey fluid through a swarm
of porous cylindrical particles: Brinkman–Forchheimer model, International Journal

of Multiphase Flow 145 (2021) 103803. (SCI, IF-3.6, Q1)
(https://doi.org/10.1016/j.ijmultiphaseflow.2021.103803)

2. A. K. Saini, S. S. Chauhan, A. Tiwari, Creeping flow of non-Newtonian fluid through
membrane of porous cylindrical particles: A particle-in-cell approach, Physics of Flu-

ids 35(4) 043101 (2023). (SCI, IF-4.1, Q1)
(https://doi.org/10.1063/5.0143317)

3. A. K. Saini, S. S. Chauhan, A. Tiwari, Asymptotic analysis of Jeffreys–Newtonian
fluids flowing through a composite vertical porous layered channel: Brinkman–Forchheimer
model, Physics of Fluids 35 (2023) 123118. (SCI, IF-4.1, Q1)
(https://doi.org/10.1063/5.0175488)

4. A. K. Saini, S. S. Chauhan, A. Tiwari, Asymptotic analysis of electrohydrodynamic
flow through a swarm of porous cylindrical particles, Physics of Fluids 36(4) (2024)
041910. (SCI, IF-4.1, Q1)
(https://doi.org/10.1063/5.0203073)

5. A. K. Saini, S. S. Chauhan, A. Tiwari, Analytical Study of the Effect of Complex
Fluid Rheology and Membrane Parameters on Heat Transfer in Fluid Flow through
a Swarm of Cylindrical Particles, International Communications in Heat and Mass

Transfer 158 (2024) 107791. (SCI, IF-6.4, Q1)
(https://doi.org/10.1016/j.icheatmasstransfer.2024.107791)

6. A. K. Saini, A. Tiwari, Electroosmotic Flow past an Array of Poly-Electrolyte Coated
Solid Cylindrical Particles: A Particle-in-Cell Approach. (Under-review)

7. N. Ghiya, A. K. Saini, A. Tiwari, Electrohydrodynamic Flow of Viscoelastic non-
Newtonian Fluid through a Porous Cylindrical Tube. (Communicated)

8. S. S. Chauhan, A. K. Saini, A. Tiwari, Analysis of Entropy Generation for a Creeping
Flow of Newtonian Fluid through a Swarm of Biporous Layered Cylindrical Particles:
Brinkman-Forchheimer Model. (To be communicated)

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103803
https://doi.org/10.1063/5.0143317
https://doi.org/10.1063/5.0175488
https://doi.org/10.1063/5.0203073
https://doi.org/10.1016/j.icheatmasstransfer.2024.107791


Conferences/ Workshop Attended

1. Presented a paper titled "Effect of Surface Roughness on Flow Past a Membrane com-
posed of Porous Cylindrical Particles: A Particle-in-Cell Approach" at the Interna-
tional Conference on Recent Advances in Fluid Mechanics and Nanoelectronics
(ICRAFMN-2024) in July-2024 at Manipal University, Jaipur.

2. Presented a paper titled "Electrohydrodynamic Flow through a Swarm of Porous
Cylindrical Particles: A Cell Model Approach" In the International conference named
International Conference on Recent Advances in Fluid Mechanics and Nano-
electronics (ICRAFMN-2023) in July-2023 at Manipal Institute of Technology Ben-
galuru in Association with National Institute of Technology, Uttarakhand.

3. Presented a paper titled "Electrohydrodynamic Flow through a Swarm of Porous
Cylindrical Particles: A Cell Model Approach" In the International conference named
International Conference on Differential Equations and Control Problems (ICDECP23)
in June–2023 at IIT Mandi North Campus.

4. Presented a paper titled "Creeping Flow of Non-Newtonian Fluid through Membrane
of Porous Cylindrical Particles: A Particle-in-Cell Approach" In the International con-
ference named International Conference on Advances in Mechanics, Modelling,
Computing and Statistics (ICAMMCS-22) in March-2021 at Birla Institute of Tech-
nology and Science, Pilani.

5. Attended the International Conference titled 2nd International Conference on Fluid
under Confinement - 2022 in July–2019 organized by the School of Energy Science
and Engineering & Department of Mechanical Engineering, Indian Institute of Tech-
nology Kharagpur, Kharagpur.

6. Participated in a one-week online certificate course on Computational Mathematical
Software (MATHEMATICA, MAXIMA & R) from 22-28 February 2022 organized
by the Department of Mathematics, Atma Ram Sanatan Dharma College, University
of Delhi.

7. Participated in a two days’ workshop on Numerical Methods for Differential Equa-
tions and Applications from 27-28 March 2023 organized by the Department of
Mathematics, Birla Institute of Technology and Science, Pilani.



Bibliography 303

8. Attended the International Symposium of Advances in Mathematical Sciences
(ISAMS 2024) organized by Canadian University Dubai, Dubai, UAE in March 2024.

9. Attended the Asian and European Schools in Mathematics (AESIM 2023) Math-
ematics for Health Sciences CIMPA School at Department of Mathematics, Birla
Institute of Technology and Science, Pilani in January 2024.

10. Attended a workshop named Mathematics Towards Machine Learning: Unveiling
the Fundamentals, by Indian Mathematics Professors Association (IMPA) jointly
organized with Infinity Research and Development Institute in August-2024.

11. Attended an International Workshop on Recent Trends in Mathematics, organized
by the Division of Mathematics, School of Advanced Sciences, Vellore Institute of
Technology, Chennai, in April 2023.

12. Attended a workshop on Navier-Stokes Equations: Theory, Numerics, and Appli-
cations, organized by the Department of Mathematics, Birla Institute of Technology
and Science, Pilani in March 2023.

13. Attended a workshop on Python Programming for Data Science, Department of
Mathematics, School of Basic & Applied Sciences, Harcourt Butler Technical Uni-
versity, Kanpur, in February 2022.



Brief Biography of the Candidate

Mr. Amit Kumar Saini earned his Bachelor’s degree in Science from Shri Radheshyam R.
Morarka Govt. College, Jhunjhunu (Rajasthan). He then pursued his Master’s degree in
Mathematics at Government Lohia College, Churu (Rajasthan). He was declared successful
in the Joint CSIR-UGC Test for Junior Research Fellowship twice with AIR 149 and 95,
Eligible for Lectureship (NET), and qualified for GATE in the subject of Mathematical
Sciences. He then decided to pursue his doctoral degree at BITS Pilani, where he is currently
a senior research fellow under CSIR, conducting research on the mathematical analysis of
fluid flow through a membrane under the guidance of Prof. Ashish Tiwari.



Brief Biography of the Supervisor

Dr. Ashish Tiwari serves as an Associate Professor at the Department of Mathematics, Birla
Institute of Technology and Science Pilani, Pilani Campus, located in Pilani, Rajasthan. His
academic journey includes obtaining a Master of Science (M. Sc. in Mathematics) degree in
2003 and a Doctor of Philosophy (D. Phil) in 2010 from the University of Allahabad, located
in Prayagraj, Uttar Pradesh. Following this, he commenced his tenure as an Assistant Pro-
fessor in the Department of Mathematics at Birla Institute of Technology and Science Pilani,
Pilani Campus, Rajasthan, in December 2011. His research interests are in the area of flow
through porous media, creeping flow, membrane filtration process, heat and mass transfer,
electroosmotic and electrophoresis phenomena, solute dispersion process, homogenization
process, and physiological fluid flow. He has published more than 30 research articles in re-
puted international journals. He has guided two Ph.D. students, namely Dr. Satyendra Singh
Chauhan and Dr. Pallav Dhanendrakumar Shah. He is supervising three Ph.D. students,
namely Mr. Amit Kumar Saini, Mr. Yogesh Kuntal, and Ms. Neelima Ghiya, while also
providing mentorship to two other Ph.D. students, namely Ms. Komal and Ms. Ansal. He
served as the principal investigator for two significant projects: "Modelling of cardiovascular
flows and influence of magnetic field on circulation" (SR/FTP/MS-038/2011), and a collabo-
rative Indo-Russian project titled "Flow through a membrane modelled of porous cylindrical
particles using particle-in-cell approach" (INT/RUS/RFBR/P-212) funded by DST-RFBR,
conducted in partnership with Prof. A.N. Filippov from Gubkin Russian State University,
Moscow, Russia. Currently, he is a principal investigator of the ongoing METRICS Scheme
project “Title” (MTR/2021/000959), which is funded by DST-SERB.


	Certificate
	Acknowledgements
	Abstract
	Physical Parameters
	Introduction
	Flow around a Body
	Flow Through a Porous Media
	Membranes
	Flow Through a Swarm of Particles
	Cell Model Technique

	Heat Transfer and Entropy Generation
	Heat Transfer
	Entropy Generation

	Electroosmosis
	Diverse Fluids
	Newtonian Fluid
	Jeffrey Fluid
	Carreau-Yasuda Fluid

	Governing Equations
	Conservation of Mass
	Conservation of Momentum 
	Convection–Diffusion Equation 
	Momentum Equations in Porous Media
	Brinkmann Equation
	Brinkmann Forchheimer Equation


	Boundary Conditions
	Mathematical Methods
	Perturbation Method
	Regular Perturbation
	Singular Perturbation

	Seperation of Variables

	Objectives
	Thesis Organization

	Creeping Flow of Jeffrey Fluid through a Swarm of Porous Cylindrical Particles: Brinkman-Forchheimer Model
	Introduction
	Problem Formulation
	Statement of the Problem and Model Description
	Governing Equations
	Non-Dimensional Parameters and Equations
	Boundary Conditions

	Solution of the Problem
	Solution of Thermal Equation
	Solutions of Hydrodynamic Equations
	Asymptotic Solution for the Porous Region
	Analytical Solution for the Clear Fluid Region

	Hydrodynamical Quantities

	Results and Discussion
	Model Validation
	Parameter Selection
	Velocity Profile bold0mu mumu (w)(w)(w)(w)(w)(w)
	Hydrodynamic Permeability bold0mu mumu (L11)(L11)(L11)(L11)(L11)(L11)
	Kozeny Constant bold0mu mumu (Kz)(Kz)(Kz)(Kz)(Kz)(Kz)

	Summary and Conclusions

	Asymptotic Analysis of Electrohydrodynamic Flow through a Swarm of Porous Layered Cylindrical Particles: A Particle-in-Cell Approach
	Introduction
	Problem Formulation
	Statement of the Problem
	Model Description
	Governing Equations
	Energy Equations
	Hydrodynamical Equations
	Boundary Conditions

	Non-Dimesionalization
	Hydodynamical Quantities

	Solution of the Problem
	Solution of Temperature Equations
	Solution of Hydrodynamic Equations
	Small Parameter bold0mu mumu (1)(1)(1)(1)(1)(1)

	Large Parameter bold0mu mumu (1)(1)(1)(1)(1)(1)

	Results and Discussion
	Parameter Selection
	Velocity Profile bold0mu mumu (w)(w)(w)(w)(w)(w)
	Hydrodynamic Permeability bold0mu mumu (L11)(L11)(L11)(L11)(L11)(L11)
	Kozeny Constant bold0mu mumu (Kz)(Kz)(Kz)(Kz)(Kz)(Kz)
	Model Validation and Comparative Study

	Summary and Conclusion

	Creeping flow of non-Newtonian fluid through membrane of porous  cylindrical particles: A particle-in-cell approach
	Introduction
	Mathematical Formulation of the Proposed Work
	Statement and Assumptions
	Model Description of the Problem
	Governing Equations
	Hydrodynamic Equations

	Non-Dimensional Parameters and Governing Equations
	Hydrodynamic Equations

	Boundary Conditions
	Hydrodynamical Quantities and Kozeny Constant

	Solution of the Proposed Problem
	Asymptotic Solution of the Problem
	Analytical Expression of Fluid Velocity
	Numerical Solution of the Problem

	Temperature Analysis
	Solution of Temperature Equation

	Results and Discussion
	Parameter Selection
	Deduction of Special Cases
	Graphical Analysis
	Asymptotic Analysis
	Numerical Analysis


	Summary and Conclusions

	Analytical Study of the Effect of Complex Fluid Rheology and Membrane Parameters on Heat Transfer in Fluid Flow through a Swarm of Cylindrical Particles
	Introduction
	Problem Formulation
	Statement of the Problem and Model Assumptions
	Model Description
	Governing Equations
	Boundary Conditions
	Non-Dimensional Parameters and Governing Equations
	Boundary Conditions
	Hydrodynamical Quantities and Kozeny Constant

	Asymptotic Solution of the Problem
	Perturbation Solution for Carreau-Yasuda Fluid
	Numerical Solution for Small Weissenberg and Permeability bold0mu mumu  (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1)
	Temperature Analysis
	Solution of Temperature Equations
	Nusselt Number (bold0mu mumu NuNuNuNuNuNu)

	Results and Discussion
	Parameter Selection
	Limiting Cases and Model Validation
	Velocity Profile bold0mu mumu (w)(w)(w)(w)(w)(w)
	Flow Rate bold0mu mumu (Qs)(Qs)(Qs)(Qs)(Qs)(Qs)
	Hydrodynamic Permeability bold0mu mumu (L11)(L11)(L11)(L11)(L11)(L11)
	Kozeny Constant bold0mu mumu (Kz)(Kz)(Kz)(Kz)(Kz)(Kz)
	Temperature Distribution bold0mu mumu ()()()()()()
	Nusselt Number (bold0mu mumu NuNuNuNuNuNu)

	Summary and Conclusions

	Analysis of Entropy Generation for a Creeping Flow of Newtonian Fluid through a Swarm of Biporous Layered Cylindrical Particles: Brinkman-Forchheimer Model
	Introduction
	Entropy Generation

	Problem Formulation
	Statement of the Problem and Model Assumptions
	Model Description
	Governing Equations
	Hydrodynamical and Thermal Equations
	Entropy Generation and Bejan Number
	Boundary Conditions

	Non-Dimensional Parameters and Governing Equations
	Hydrodynamic and Thermal Equations
	Entropy Generation and Bejan Number
	Dimensionless Boundary Conditions


	Asymptotic Solution of the Problem
	Perturbation Solutions for Hydrodynamic Equations
	Solution for Large Permeability bold0mu mumu (i.e., S1)(i.e., S1)(i.e., S1)(i.e., S1)(i.e., S1)(i.e., S1)
	Solution for Small Permeability bold0mu mumu  (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1) (i.e., S1)

	Solutions for Thermal Equations

	Results and Discussion
	Model Validation and Limiting Cases
	Parameter Selection
	Entropy Generation Number bold0mu mumu (S)(S)(S)(S)(S)(S)
	Bejan Number bold0mu mumu (Be)(Be)(Be)(Be)(Be)(Be)
	Model Validation and Comparative Analysis

	Summary and Conclusions

	Effect of Surface Roughness on Flow Past a Membrane composed of Porous Cylindrical Particles
	Introduction
	Problem Formulation
	Statement of the Problem and Model Description
	Hydrodynamic Equations

	Non-Dimensional Parameters and Governing Equations
	Hydrodynamic Equations

	Boundary Conditions
	Hydrodynamical Quantities and Kozeny Constant

	Asymptotic Solution of the Problem
	Results and Discussion
	Parameter Selection
	Velocity Profile
	Hydrodynamic Permeability
	Kozeny Constant

	Summary and Conclusions

	Electroosmotic Flow past an Array of Poly-Electrolyte Coated Solid Cylindrical Particles: A Particle-in-Cell Approach
	Introduction
	Problem Formulation
	Statement of the Problem
	Model Description
	Governing Equations
	Electric Potential Equation
	Hydrodynamic Equations

	Non-Dimensional Parameters and Governing Equations
	Poission-Boltzmann Equation
	Hydrodynamic Equations

	Boundary Conditions
	Hydrodynamical Quantities and Kozeny Constant

	Solution of the Problem
	Solution of Poisson-Boltzmann equation
	Solution of Hydrodynamic Equations
	Large Permeability (k1)
	Small Permeability (k1)
	Solution for the Porous Region
	Solution for the Clear Fluid Region


	Results and Discussion
	Parameter Selection
	Electric Potential
	Velocity Profile
	Hydrodynamic Permeability
	Kozeny Constant
	Model Validation and Limiting Cases

	Summary and Conclusions

	Conclusions and Research Prospects
	Conclusions
	Noteworthy Contributions
	Research Prospects

	List of Publications
	Conference/ Workshop Attended
	Brief Biography of the Candidate
	Brief Biography of the Supervisor

