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ABSTRACT

Satellite data has emerged as a disruptive technology in the field of Earth observa-

tion, offering unparalleled insights into environmental dynamics and facilitating informed

decision-making in various domains such as agriculture, land use management, and dis-

aster monitoring. This thesis undertakes a thorough exploration of satellite data, con-

textualizing its importance alongside traditional numeric datasets. Through meticulous

analysis and empirical research, the complexities inherent in satellite data acquisition are

examined, with a keen focus on spatial, temporal, and spectral resolutions offered by

different satellite platforms.

The thesis proposes two models for crop yield prediction namely YieldPredictNet

(YPN), CropYieldNet (CYN). YPN and CYN leverage cutting-edge deep learning ar-

chitectures to integrate multi-modal data sources, including meteorological, soil, and

satellite-derived features, thereby enabling precise timely, and early crop yield prediction.

Notably, YPN and CYN incorporate novel attribute selection and depth selection modules

to optimize feature representation and mitigate noise inherent in the data. Additionally,

YPN is equipped with a spatial clustering technique and temporal padding mechanism to

capture spatial and temporal patterns inherently present in the agricultural domain. YPN

recommends that taking data at week granularity predicts the yield more accurately by ap-

prox 3%, 8.5%, and 23% for soybean, wheat, and corn, respectively than taking the data

at month granularity. Also, there is approx. 1.17%, 20.40%, and 11.12% improvement in

respective yield predictions by modeling depth-variant factors. Data augmentation used

in CYN showed maximum improvement of 23.2% for Sentinel-2, followed by Landsat-8

with 22.09%, and the least in MODIS with 18.99%.

Working with high spatial resolution satellite images is a challenging task due to their

large computing requirements. PatchNet, another model proposed in the thesis helps

in democratizing the use of satellite image technology for various earth observation ap-

plications. It enables efficient processing of high-resolution satellite image time series



by innovatively combining beam search and attention mechanisms to select and process

the most informative image patches, thereby circumventing computational bottlenecks

associated with high spatial resolution satellite image time series. PatchNet achieves

state-of-the-art performance for various Earth observation applications considered. Patch

Selection Mechanism has a significant improvement in the model performance as RMSE

achieved by random selection is 24.29 bu/ac and 9.98 bu/ac for corn and soybean yield

prediction in comparison to 21.47 bu/ac and 7.29 bu/ac, respectively using PatchNet.

Furthermore, the thesis addresses the complex problem of trade-off between spatial

and temporal resolutions in satellite systems through two data fusion techniques—LSFuseNet

and FuSITSNet. LSFuseNet works on histogram time series of satellite data whereas

FuSITSNet works on image time series. Both these deep learning models employ sophis-

ticated fusion mechanisms to seamlessly integrate data from satellites with varying spatial

and temporal resolutions, without significantly increasing computational overhead. This

helps in unlocking new opportunities for downstream analysis and interpretation.

Spectral Reflectance Indices (SRIs) represent an important data modality in satellite

systems. But, SRIs have not been extensively explored. The thesis proposes SpInN, an

automated model for spectral reflectance index selection, which innovatively combines

video (ViViT) and text (BERT) transformers to recommend relevant spectral indices for

a specific Earth observation application. SRIs are typically associated with loss of spatial

information. To overcome this limitation, we introduce the concept of an SRI image.

Lastly, we propose a foundation model SaTran for learning end task agnostic repre-

sentation of Satellite Image Time Series which otherwise have huge computational re-

quirements. SaTran focuses on non-redundant patch tubes using its two-fold mechanism

for handling redundancy and distributed application of VideoMAE to enable space and

time-efficient processing of Large-size SITS.

Through rigorous experimentation, comparative analysis, ablation study, and inno-

vative methodologies, the thesis proposes to significantly advance the broad area of Ar-

tificial Intelligence for Earth Observation (AI4EO) by bringing together two disruptive

technologies - Deep Learning and Satellite Imagery.

xi
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Chapter 1

Introduction

Artificial intelligence (AI) and satellite imaging technologies are two disruptive tech-

nologies which we attempt to bring together in this thesis. With the ability to process vast

amounts of data and recognize intricate patterns, AI has demonstrated its utility across

numerous domains, including healthcare, finance, and transportation. Satellite Imaging

Technologies, on the other hand, encompass a range of technologies used to capture high-

resolution images of the Earth’s surface from orbiting satellites. These images provide

invaluable insights into various aspects of the planet, such as land use, vegetation cover,

urban development, and environmental changes over time. By combining the analytical

power of AI with the information provided by satellite imagery, we seek to unlock new

avenues for understanding and addressing complex earth observation applications such

as prediction of crop yield, soil moisture, solar energy, cloud cover, snow cover, etc.

1.1 Evolution of Satellite Imaging Techniques

The evolution of satellite image technology has been characterized by ongoing advance-

ments across various dimensions, including improvements in sensor technology, spatial

resolution, spectral capabilities, revisit frequency, and data processing techniques.
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The first Earth observation satellite, launched in the early 1960s is the TIROS-N se-

ries which provided low-resolution images of the Earth’s surface, primarily for weather

monitoring [9]. The next launched satellite is one of longest-running satellites ”the Land-

sat Program”, a series of Earth-observing satellite missions jointly managed by National

Aeronautics and Space Administration (NASA) and the U.S. Geological Survey. The first

satellite of the series is Landsat-1 which was launched in 1972, and currently, the actively

orbiting satellites are Landsat 8, and Landsat 9.

The SPOT (Satellite Pour l’Observation de la Terre) Program was launched in 1986

for commercial purposes. Synthetic Aperture Radar (SAR) technology, which allows for

day-and-night and all-weather imaging, was integrated into satellite systems and function

from the 1980s to the 1990s.

Another successful satellite used across the world is the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) [10]. First MODIS instrument was the Terra satellite

launched in December 1999, and the second was Aqua launched in May 2002. MODIS

has a viewing swath width of 2,330 km and a revisit time ranging from every one to two

days to 16 days, depending upon the product. Its detectors measure 36 spectral bands and

it acquires data at three spatial resolutions: 250 m, 500 m, and 1,000 m [11].

Another commonly used satellite is the Sentinel satellite. It is a series of Earth obser-

vation satellites developed by the European Space Agency (ESA) as part of the European

Union’s Copernicus program [12]. Planet is a commercial satellite working with 200

satellites that together provide an unprecedented dataset of Earth observation imagery.

The data provided by these satellites is high-resolution images, but it is not available free

of cost [13]. The details of popular satellites are explained in the sub-sections below.

1.1.1 Advanced very high-resolution radiometer

Advanced very high-resolution radiometer (AVHRR) is the TIROS-N series satellite which

has been used in the earlier days for different Earth Observation applications. AVHRR

was launched in 1978 by NASA. It is carried by National Oceanic and Atmospheric Ad-

ministration (NOAA) series of satellites and is mainly used for weather surveillance, sea

2
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surface temperature, and detection of wildfires. It provides data for five channels includ-

ing red, near-infrared, and two thermal radiation bands [9]. The satellite provides data at

a spatial resolution of 1 km and a temporal resolution of 1 day.

AVHRR suffered from certain limitations, one of which is the coarse spatial resolu-

tion. Additionally, the data is captured for a limited number of spectral bands, which is

insufficient to discriminate between different land cover types and accurately analyze the

earth’s surface. The satellite does not have advanced onboard data processing capabili-

ties, which delays the availability of processed data. The users have to process the data

on their own which is a challenging process. Moreover, the satellite data is potentially

affected by atmospheric conditions such as clouds and aerosols.

1.1.2 Satellite Pour l’Observation de la Terre

The SPOT (Satellite Pour l’Observation de la Terre) satellites are a series of Earth obser-

vation satellites operated by Airbus Defence and Space. The SPOT program is one of the

longest-running commercial Earth observation satellite programs and has contributed sig-

nificantly to applications such as cartography, agriculture, forestry, urban planning, and

environmental monitoring [14]. The recent launches of the SPOT program are SPOT-6

and SPOT-7 which provide data at a high spatial resolution of less than 1.5 m for optical

bands and 6 m for multispectral bands including red, blue, green, and near-infrared. The

satellite has not been used in any of the applications in the literature due to the unavail-

ability of data to the public.

1.1.3 Moderate Resolution Imaging Spectroradiometer (MODIS)

Moderate Resolution Imaging Spectroradiometer (MODIS) is the most commonly used

satellite capturing data using two sub-satellites - Terra and Aqua. Terra passes from

north to south across the equator in the morning, while Aqua passes south to north over

the equator in the afternoon. They view the entire Earth’s surface every day or every 2

days acquiring data in 36 spectral bands. These bands are acquired using various sensors

(called data products).
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Table 1.1: Products of MODIS data

Data Product Description Resolution

MOD09A1
Contains 7 surface reflectance bands and
other quality check bands

Spatial – 500 m
Temporal – 8 day

MOD09Q1 Contains same bands as in MOD09A1
Spatial – 250 m
Temporal – 8 day

MOD09GA Contains same bands as in MOD09A1
Spatial – 500 m
Temporal – daily

MOD11A1
Provides Land Surface Temperature (LST)
at day and night time

Spatial – 1 km
Temporal – daily

MOD11A2 Contains same bands as in MOD11A1
Spatial – 1 km
Temporal – 8 day

MCD12C1 Gives yearly description of land cover type
Spatial – 500 m
Temporal – yearly

MOD13A1
Provides Vegetation Index values Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) along with other reflectance bands

Spatial – 500 m
Temporal – 16 day

There are numerous data products with different temporal and spatial resolutions used

for capturing different information. Table 1.1 presents a few data products describing the

type of bands they capture. The most commonly used and suitable data products for

agriculture-related study include MOD09, MOD11, MCD12, etc.

1.1.4 Landsat

NASA and U.S. Geological Survey jointly manage a series of Earth-observing satellite

missions under The Landsat Program. Landsat satellites have good ground resolution and

spectral bands to effectively track land use and land change. Land use changes [15, 16]

due to climate change, urbanization [17–20], wildfire [21], biomass changes, etc.

The Landsat Program is the longest-running program for capturing Earth’s satellite

imagery. The first satellite “Landsat 1” was launched in 1972. After that other satellites

were launched and terminated at various time intervals. The currently active satellite

Landsat 8 was launched in 2013. The timeline for the satellite program is given in Figure

1.1.
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Figure 1.1: Landsat Timeline [1]

1.1.5 Sentinel

Sentinel-1 is the first Copernicus satellite consisting of two satellites sharing the same

orbital plane. Sentinel 1 has a spatial resolution of 5m and a repeat time of 12 days.

Sentinel-1 provides radar imagery for a wide range of applications. Synthetic Aperture

Radar (SAR) images are highly effective for monitoring land subsidence and structural

damage, as their systematic observations and advanced interferometric capabilities can

detect ground movements that are almost imperceptible in daily life. This data is not only

valuable for urban planners but also crucial for tracking changes caused by earthquakes,

landslides, and volcanic activity. Additionally, it supports geohazard monitoring, min-

ing, geology, and city planning by assessing subsidence risks. Sentinel-1 is specifically

designed to deliver rapid-response imagery for disasters like floods and earthquakes.

Another satellite Sentinel -2A was launched in 2015. It delivers an exceptional view

of Earth through its combination of high-resolution imagery, innovative spectral capabil-

ities, a 290 km swath width, and frequent revisit intervals. The primary objective of the
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Table 1.2: Resolution of various satellite systems

Satellite System Spatial Resolution Temporal Resolution No. of bands

AVHRR 1km Daily 4
MODIS 500m 8 days 7
SPOT 20m 3 5

Landsat-7 30m 16 8
Landsat-8 30m 16 11
Sentinel-2 20m 10 13
RapidEye 5m Daily 5

mission is to provide critical data for agricultural and forestry management, thereby sup-

porting food security. The satellite imagery facilitates the calculation of various plant in-

dices, including leaf area, chlorophyll content, and water content, which are vital for pre-

cise yield forecasting and vegetation monitoring. Beyond tracking plant growth, Sentinel-

2 is used in mapping land cover changes and monitoring global forest ecosystems.

1.1.6 Planet

Planet is a private Earth imaging company that operates a large constellation of small

satellites dedicated to capturing high-resolution imagery of the Earth’s surface [13]. It

consists of several small satellites called CubeSats, and different generations of satellites,

such as the Dove and SkySat series. The Dove satellites are the primary imaging satellites

that capture data in the visible and near-infrared spectral ranges. SkySat series is a col-

lection of larger satellites equipped with higher-resolution optical and synthetic aperture

radar (SAR) sensors. The satellites provide data at high spatial and temporal resolutions

but a lesser number of bands in comparison to MODIS, Landsat, and Sentinel. Moreover,

the data is not publicly available which is one of the main reasons these satellites are not

much used.

1.1.7 Resolutions of Satellite Systems

We now give the details of resolutions of the most popular satellite systems in a tabular

form in Table 1.2.
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Satellite systems face a trade-off between spatial and temporal resolutions, making it

challenging to optimize both simultaneously. Sensors with high spatial resolution often

cover a smaller area compared to those with lower spatial resolution. Consequently, a

smaller field of view leads to longer time requirements to survey the same area. Thus, as

spatial resolution increases, temporal resolution decreases. Freely available imagery, such

as Landsat, Sentinel, and MODIS, typically offers either a short revisit time measured in

days (1-4 days) with resolutions ranging from 300m to 500m, or a longer revisit time

measured in weeks (10-20 days) with resolutions ranging from 10m to 30m.

1.2 Importance of Satellite Imaging Technology
The increased application of satellite imagery in environmental forecasting, border area

surveillance, security of energy resources, mapping construction, and swift responses to

emergencies, like natural disasters, and defense security concerns, is driving the escalat-

ing demand for satellite imaging [22].

The significance of enhanced satellite system technology is increasingly evident across

various domains, contributing substantially to driving the growth of the satellite imaging

market value. As per the reports [2] and graph shown in Figure 1.2, the Satellite Data

Services Market Size reached USD 198.9 billion in 2022. The industry is anticipated to

witness significant growth, projecting an increase from USD 128.359 billion in 2023 to

USD 246.9133 billion by 2030.

The growing integration of artificial intelligence (AI) and machine learning (ML)

in the space sector has created a plethora of opportunities for researchers and scientists

working in different domains all across the world. ML algorithms play an increasingly

vital role in processing daily satellite imagery, enabling the classification and detection

of objects, identification of geographic and topographic features, and monitoring subtle

changes over time. Defense corporations have introduced the Global Automated Tar-

get Recognition System (GATR) specifically designed for recognizing satellite pictures.

GATR employs open-source deep learning libraries to efficiently classify and identify ex-

tensive datasets in a faster and more effective manner. These advancements are poised to
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Figure 1.2: Anticipated Market value trend for Satellite Imagery [2]

create opportunities for the satellite data services market in the near future. Furthermore,

ML and AI models demonstrate accurate detection capabilities for various elements vis-

ible from space, including cars in parking lots, crop yields, and other Earth Observation

applications. .

1.3 Artificial Intelligence for Earth Observation (AI4EO)

Artificial Intelligence for Earth Observation (AI4EO) involves the integration of AI tech-

niques with the vast amount of data generated by Earth observation satellites. Integrating

Earth Observation (EO) and Artificial Intelligence (AI) technologies is pivotal in address-

ing climate change’s impacts, enhancing disaster management operations, and solving

problems in other areas like transportation, urban planning, agriculture, changes in land

cover, deforestation rates, and water resource availability, etc. The application of AI

models to analyze this data facilitates the development of intelligent prediction models

applicable to different domains.

As per the United Nations, leveraging Earth Observation (EO) data, such as satellite

images, proves advantageous for generating and supporting official statistics, serving as

a valuable complement to traditional sources of socio-economic and environmental data.
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Figure 1.3: AI4EO leads to sustainable development [3]

Satellite imagery emerges as a cost-effective technology, particularly capable of providing

data at a global scale. This global accessibility becomes pivotal for understanding the

progress and contributions of underdeveloped countries toward Sustainable Development

(SD), considering their limited resources for data collection. However, substantial volume

of data furnished by EO sources necessitates effective analysis and processing through

appropriate methods and tools to yield robust indicators of SD. The continual growth of

the Machine Learning (ML) field presents new opportunities for monitoring and analysis

of satellite images applied to Sustainable Development Goals (SDGs). The intersection

of EO data and ML methodologies enhances the precision and efficiency of deriving

meaningful insights relevant to SDGs [3] (Figure 1.3).

AI has resembled the “electricity of the 21st century” and has transformed the world.

Among the various branches of AI, machine learning plays a pivotal role by bridging the

gap between the ever-expanding, often openly accessible data and the development of

solutions and products derived from that data. Earth observation community stands to

greatly benefit from the integration of AI [23].

1.4 Foundational Deep Learning Models

Deep learning is the subset of Artificial Intelligence (Figure 1.4) and has proven to be

the game changer in the era of AI. As a cutting-edge technology, deep learning finds

applications across a broad spectrum of fields.
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Figure 1.4: AL-ML-DL Relationship [4]

Over the past years, deep learning has undergone significant advancements across

various models, each tailored to address specific challenges and tasks. In this thesis, we

have used many deep learning models individually or in combination with one another.

We have now given a generic brief description of the models used in our work.

Figure 1.5: Deep Neural Network [5]

Starting with the fundamental Deep Neural Networks (DNNs). These networks,

characterized by multiple layers of interconnected nodes, have seen continual refinement

in optimization algorithms and training methodologies, enhancing their ability to learn

intricate patterns from data (Figure 1.5).
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Convolutional Neural Networks (CNNs) have emerged as powerhouse models for

tasks involving images, leveraging hierarchical feature extraction to discern complex vi-

sual patterns. This makes CNNs highly effective in computer vision applications, such as

image classification and object detection (Figure 1.6).

Figure 1.6: Convolutional Neural Network [6]

Figure 1.7: Recurrent Neural Network and its variants [7]

Recurrent Neural Networks (RNNs), with variants like Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU), specialize in sequential data processing, ad-

dressing challenges like vanishing gradients and allowing models to capture and remem-

ber dependencies over extended sequences (Figure 1.7). This makes them well-suited for

tasks such as natural language processing and time-series analysis.
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Moving to advanced models, Autoencoders (Figure 1.8), a class of unsupervised

learning models have gained prominence for their ability to compress data and extract

meaningful features. They consist of an encoder, compressing input data into a latent

space, and a decoder, reconstructing the input from this compressed representation. They

find applications in dimensionality reduction and anomaly detection where the focus is

on capturing the essential features of input data. It makes them a valuable tool for repre-

sentation learning.

Figure 1.8: Autoencoder [8]

The Transformer architecture, initially designed for natural language processing, has

emerged as a versatile model architecture. Their attention mechanisms enable capturing

contextual relationships in data, making them effective for tasks beyond sequential data.

Transformers have been successfully applied in computer vision, where they outperform

traditional architectures, providing enhanced performance in image recognition and ob-

ject detection. Their ability to process data in parallel and capture long-range depen-

dencies makes them particularly valuable in scenarios where contextual understanding

is crucial. Furthermore, Transformers have been pivotal in advancing transfer learning

approaches. Models pre-trained on large datasets, such as Bidirectional Encoder Repre-

sentations from Transformers (BERT) for language understanding or Vision Transformer

(ViT) for vision tasks, have demonstrated remarkable performance when fine-tuned on
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smaller, task-specific datasets. This has led to breakthroughs in various domains by lever-

aging the knowledge encoded in pre-trained models.

Together, these models and methodologies showcase the great progress in deep learn-

ing and we have used them in this thesis for solving the earth observation applications.

1.5 Motivating Earth Observation Applications
Proper modeling of Earth Observation Applications is critically important for developing

acceptable and deployable solutions. Choosing spatial and temporal granularities is done

in an application-aware manner and is dependent on multiple factors like availability of

computing resources, availability of ground truth, real-timeliness of application, scala-

bility requirements, etc. A detailed explanation of the choice of suitable granularities is

given next for different earth observation applications considered in the thesis.

Crop Yield Prediction: By 2050, the world population is expected to touch the 10

billion mark. At the same time, global warming and climate change are playing havoc

with the weather patterns globally and their impact on crop yield needs to be analyzed

very carefully. Moreover, increasing unplanned urbanization is shrinking cultivable land,

especially in India. Feeding an additional 2.5 billion people in the next three decades is

going to be a herculean task despite the technological advances and innovations in the

agricultural sector in the 21st century. Predicting Crop yield is a crucial aspect of agricul-

ture that has garnered significant attention from scientists due to its profound influence

on the national and international economy, as well as its potential to address the issue of

food scarcity.

Accurate and timely crop yield forecasting plays a crucial role in supporting gov-

ernments and farmers in making informed decisions and planning strategies related to

agricultural production. Governments rely on crop yield prediction to formulate policies

regarding import and export, determine pricing mechanisms, and address potential threats

to food security. By having access to reliable crop yield predictions, governments can ef-

fectively manage resources, allocate budgets, and implement measures to ensure stability

and sustainability in the agricultural sector. For individual farmers, crop yield predic-
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tion provides valuable insights into the expected output of their crops. This information

enables them to plan their farming activities, make informed choices regarding inputs

such as seeds, fertilizers, and pesticides, and manage their resources effectively. Farmers

can adjust their cultivation practices, adopt appropriate risk management strategies, and

optimize their harvest and post-harvest activities based on the anticipated yield.

Crop yield prediction is required at the temporal granularity of a crop cycle which

is typically 6-8 months, and ideally at the farm-level spatial granularity. While crop cy-

cle temporal granularity is achievable, working at farm-level granularity poses a lot of

challenges. These include lack of ground truth at the farm level, increased computational

requirements of working high spatial resolution satellite images, farm segmentation due

to irregular shape, etc. Predicting crop yield at crop cycle granularity enables yearly

prediction which is of paramount importance for governments as it allows for strategic

planning, ensuring a stable food supply through proper management of data warehouses

and supply chains. In the thesis, we have worked with county/district level spatial gran-

ularity and at a crop-cycle temporal granularity. The predictions are made up to 8 weeks

early from harvest. The predictions are updated at the revisit frequency of the satellite

used. The prediction accuracy improves as we move closer to the harvest. We hypoth-

esize that the counties experiencing ’similar’ weather and soil conditions tend to have

’similar’ yield patterns. Thus, we exploited the spatiality of the problem by clustering the

counties. The model pre-trained on global data is fine-tuned with the data of individual

clusters. In this way, the model can learn both global and cluster-specific yield patterns.

Soil Moisture Prediction: Another significant application is soil moisture prediction

which indirectly impacts many other earth observation applications. It helps in studying

long-term climate patterns, managing water resources in any area, drought management,

and allocation of water resources for agriculture and urban use. It helps the infrastructure

industry to decide on the design and material for bridges and pipelines for their stability

and longevity. It even helps in disaster preparation by identifying high-risk zones for

landslides or droughts. Soil moisture analysis helps environmental planners to implement

erosion control measures effectively as less moisture in the soil leads to more soil erosion
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in the area.

We predicted soil moisture at a spatial granularity of the county level and temporal

granularity of a month. Soil moisture prediction is also governed by the revisit frequency

of satellite data, update frequency of meteorological data, ground truth availability, and

use case. Predicting soil moisture on a monthly basis helps in facilitating strategic plan-

ning for water availability, drought management, the allocation of resources for both

agricultural and urban use, and infrastructure planning.

Solar Energy Prediction: Solar energy prediction is done to find a suitable location

for the installation of solar plants and reduce the dependence on fossil fuels for economic

development. It helps in planning resource utilization to meet energy demands. The

predictions play a vital role in shaping the future of energy production and consumption,

leading the way towards a more sustainable and eco-friendly energy source.

Solar energy can also be predicted at different granularities ranging from daily pre-

diction to a few days or months. At different temporal granularities, it has a different

significance. Predicting solar energy on a few days or monthly level helps governments

to make policies to install solar infrastructure in solar energy-rich areas and make use of

renewable energy sources for a sustainable environment. Considering the availability of

ground truth and revisit frequency of satellite data, we predicted the average solar energy

produced in a county at a fortnightly temporal granularity.

Snow Cover Prediction: Snow cover plays a vital role in agriculture as it provides

moisture to the soil during spring melt. Snow cover prediction is crucial for managing

reservoirs, planning irrigation, road maintenance, ensuring safer transportation, and pre-

venting flooding. Also, predicting the snow cover can help in identifying high-risk areas

to issue early warnings. It also helps in planning tourism for a nation during the winter

season. Predicting snow cover can be carried out using drones, sensors, or by manually

visiting the place. However, snow cover prediction with the help of satellite data is useful

in getting an estimate of the presence of snow cover in dangerous and inaccessible areas.

Unlike CYP, snow cover prediction is required at a fine temporal granularity of a few

hours to a month depending upon the availability of ground truth. It is typically governed
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by the revisit frequency of satellite data and the update frequency of meteorological data.

Keeping these factors in mind we have predicted snow cover area at a monthly granularity

which allows us to study the impact of global warming and the influence of snowmelt on

soil moisture which is particularly relevant for farmers and agricultural planners. The

spatial granularity is at the county/district level.

Cloud Cover Prediction: Cloud cover prediction has a significant impact on the

tourism industry and Maritime Operations of a nation. Tourism agencies and travel-

ers consider historical cloud cover patterns when planning vacations and destinations.

Mariners use cloud cover predictions, especially in coastal and navigational areas, to plan

shipping routes. Cloud cover can affect visibility and safe navigation at sea. Cloud cover

also helps in air quality monitoring as cloud cover affects the dispersion of pollutants in

the atmosphere. Air quality researchers use cloud cover predictions to understand how

pollutants disperse and accumulate, aiding in air quality monitoring and management.

Hydrologists and water resource managers use cloud cover predictions to model evap-

oration rates from water bodies. Cloud cover influences the amount of solar radiation

reaching the surface, affecting evaporation rates and water availability.

We have predicted cloud cover for a county at a fortnightly temporal granularity due

to the availability of satellite data. Cloud cover prediction at a monthly level or a few

days helps in making decisions at a big-picture level profoundly impacting the tourism

industry, water resource managers, maritime navigation, etc.

All the above-listed problems are studied using satellite image time series for which

we developed LSTM, CNN+LSTM, and other deep learning models. All the models

work for time series data coming from satellites and other sources. Satellite data is used

in different forms namely, histograms, images, and spectral reflectance indices.

1.6 Research Gaps
Many attempts have been made in the literature to solve earth observation applications

using satellite data. Based on an extensive literature survey, we identified the following

research gaps which we have addressed in the thesis:
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1. Impediment in the democratization of satellite imaging technology due to extensive

computational requirements: When working with high spatial resolution satellite

image time series, the amount of data we need to process increases manifolds,

leading to a computing bottleneck. Most of the work reported in the literature uses

Spectral Reflectance Indices (SRIs) and histograms to deal with computing bottle-

necks. But, this leads to the loss of critical spatial information. To the best of our

knowledge, very little work is available in the literature that directly works with

time series of raw satellite images for large spatial granularity prediction problems.

Researchers have used satellite images for applications like object detection, se-

mantic classification, etc. [24–26]

2. Requirement for fusing data from 2 satellites: The last decade has witnessed a

significant improvement in sensor technology leading to the availability of higher

spatial and temporal resolution satellite images. However, due to budgetary and

technological constraints, it is not possible to capture satellite images with the re-

quired high spatial and temporal resolutions using a single satellite system. This

necessitates the development of efficient fusion algorithms that combine high spa-

tial resolution images of one satellite system (with low temporal resolution) with

high temporal resolution images of another satellite system (with low spatial resolu-

tion). Many applications predicting crop yield, forest cover, forest fire, etc. require

satellite image time series data at high resolution along both spatial and tempo-

ral dimensions. Publicly available data from satellite systems like LANDSAT 8/9,

SENTINEL-2, MODIS, etc. have high resolution only along one dimension and

not along the other dimension. For example, LANDSAT 8 has a spatial resolu-

tion of 30m and a 16-day revisit cycle whereas, MODIS has a spatial resolution of

250-500m and a temporal resolution of 8 days.

To overcome this limitation, researchers have tried to fuse the data from satellite

systems with complementary resolutions [27] and from different sensors of the

same satellite [28–31] to produce high-spatial and spectral resolution imagery. In
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most cases, models are developed to generate a synthetic image at a finer tempo-

ral resolution with the motivation that the combined data of original and synthetic

images can be used for different earth observation applications. Because of the

complex image generation process, these generative models operate on smaller-

scale datasets, limited to only a few locations. In the realm of the applications at

hand, where high-temporal-resolution time series data is imperative, the interpola-

tion of images between consecutively captured images increases the data volume

by at least twofold making it storage and computation intensive. Moreover, it po-

tentially propagates existing noise in original images.

3. Use of limited spectral reflectance indices: Existing studies rely on a limited num-

ber (mostly only a single SRI is used and a maximum of 2-3) of SRIs manually

picked by domain experts [32, 33]. These studies overlooked valuable information

encoded in other SRIs which could be useful for a given application. Another ma-

jor limitation of existing work involving SRIs is that a single SRI value is used to

represent a large region, leading to loss of spatial information.

4. Lack of foundation model: Deep learning has gained popularity in the remote sens-

ing community. A couple of studies used BERT [25, 26] to classify time series for

every pixel which limits them from effectively exploiting the spatial correlations

in the image time series. Moreover, these models work only for classification as

they spatially segment the image time series which is not suitable for prediction

problems like prediction of crop yield, snow cover, cloud cover, etc. In predic-

tion problems, the ground truth is mostly available for coarser granularity than that

of pixel e.g., at a county or a district level. Another model TSViT used ViT for

landcover classification. The authors factorize input dimensions into spatial and

temporal components to reduce the computation. However, the model is not able

to identify the redundancy in the patches and processes them all.
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1.7 Thesis Contributions

The summary of the thesis is presented below:

• Establishing the advantages of using satellite data over numeric data: We per-

formed a preliminary study for crop yield prediction to compare the impact of

ground-based data and satellite data. We have used a numeric NC94 dataset and

satellite data from three satellites viz. MODIS, Landsat-8, and Sentinel-2. We pro-

pose a deep learning model YieldPredictNet (YPN) which works with numeric

data and models the problem of crop yield prediction as a spatiotemporal prob-

lem. We proposed another model CropYieldNet(CYN) which uses a time series of

histograms obtained from satellite images. We hypothesize and validate that high-

resolution satellite data can provide better insights about the factors affecting crop

yield, even when limited historical data is available for training suitably designed

deep learning models.

• Handling computational bottleneck and loss of spatial information: To address

the problem of infeasible computational requirements for processing high spatial

resolution satellite image time series (SITS) we proposed a model PatchNet which

learns prominent patterns in a SITS by doing a spatial patch-based partial traversal,

e.g., (1/p)th spatial processing of SITS using the idea of beam search and attention

mechanism for learnable patch selection. The amount of processing is reduced by a

factor of p with some additional overheads and the model still achieves state-of-the-

art results for end tasks. Existing methods deal with the processing challenges by

transforming the images into histograms which leads to loss of spatial information.

• Handling spatial and temporal resolution trade-off: We addressed the problem

of resolution trade-off by developing fusion models for two pairs of satellites 1)

For Landsat-8 and Sentinel-2 fusion and 2) for MODIS & Landsat-8 fusion. Both

fusions have their own challenges which have been dealt with in this thesis.
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– For Landsat-8 and Sentinel-2, we proposed LSFuseNet, which fuses the his-

togram time series of the two satellites at the feature level. We chose to

work with histograms because both satellites have a high spatial resolution,

so working with a time series of huge-size images is computationally ex-

pensive. The proposed model LSFuseNet learns features from the individual

time series of histograms from the two satellites with the help of respective

pre-trained encoders and applies a novel dual-fusion using two modules viz.

Fusion Module (FM) and Feature Alignment Module (FAM).

– For MODIS-Landsat-2 Fusion, we proposed FuSITSNet, a twofold feature-

based fusion model that can be used to fuse any two satellite image time se-

ries. FuSITSNet improves the temporal features of Landsat SITS by aligning

its PatchNet processed patches with the MODIS SITS. It takes care of the un-

traversed area of the time series by cross-modality attention which assimilates

complementary features from the two modalities (Landsat & MODIS).

• Exploring a broader perspective of Spectral Reflectance Indices for different appli-

cations: We proposed a generalized prediction model for different earth observa-

tion applications working on spectral indices as an input. We have listed 10 SRIs

used in the literature for various purposes. We propose a model Spectral Index

Network (SpInN), which selects the most relevant spectral indices for a given ap-

plication. SpInN performs dual encoding of SRI images at a timestamp using Video

Vision transformers (ViViT) [34] (which we pre-train on different tasks and refer

to as SRI ViViT). The dual pre-trained ViViT is fine-tuned using a disentangled

representation learning in an end-to-end learning setup for downstream tasks. We

applied BERT [35] to exploit temporal patterns in the obtained SRI time series.

• Foundation Model: SITS data can be characterized by the presence of patches with

spatiotemporal redundancy persisting throughout the time series, referred to here-

after as redundant patch tubes. SITS data also contains patches where temporal

redundancy lasts only for a few timestamps, referred to hereafter as non-redundant
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patch tubes. We propose a transformer model, SaTran, for large size satellite im-

age time series which exploits spatiotemporal redundancies. It has two modules

- PatchTubeSelect and TemporalRedundancyHandler. We first remove spatiotem-

poral redundancies with the help of PatchTubeSelect which selects hotspots (non-

redundant patch tubes) using an attention mechanism to discern critical areas neces-

sitating focused attention and exclude the redundant patch tubes. We, then use Tem-

poralRedundancyHandler which innovatively uses VideoMAE on non-redundant

patch tubes to further handle temporal redundancy local to these patches.

1.8 Thesis Organisation
The thesis is organized in 8 chapters. Chapter 1 includes an introduction, and covers the

background study, research gaps, and contributions of the thesis. The work carried out in

this chapter helped us to identify the research gaps more precisely and to decide the future

course of the thesis. Chapter 2 describes the datasets used and the pre-processing steps re-

quired for each type of dataset. Chapter 3 discusses the problem of crop yield prediction

and the impact of using satellite data over conventionally collected data. In this chap-

ter, we propose two models – YieldPredictNet for conventional data and CropYieldNet

for satellite histogram time series. Chapter 4 proposes PatchNet for efficient represen-

tation learning of satellite image time series. Chapter 5 presents two fusion models –

LSFuseNet and FuSITSNet to handle the mandatory trade-off between spatial and tem-

poral resolution any satellite system faces. LSFuseNet and FuSITSNet fuse histogram

time series and image time series, respectively taken from any two satellites. Chapter

6 presents the work SpInN a model working with satellite-obtained spectral reflectance

indices which recommends SRIs relevant to an earth observation application. Chapter

7 introduces a foundation model SaTran for efficient processing large size SITS where

the existing vision/video models shortfall. Chapter 8 concludes the thesis and throws an

insight on future directions.
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Data Collection and Preparation

Earth observation involves the systematic collection, analysis, and interpretation of

information related to Earth’s physical, biological, and chemical systems using remotely

sensed data collected using satellites, aircraft, and drones. The data collected is in the

form of images from which various spectral reflectance indices (SRIs) can be derived.

We have also worked with data collected using proximal sensors.

2.1 Sources of Data
The sources of data for earth observation applications are listed below:

1. Ground-Based Data Collection: Equipment is placed on or near Earth’s surface to

collect data for a specific purpose at a specific location. Different types of sensors

are used to collect meteorological, environmental, and soil data. One major ad-

vantage of using Ground-based data collection is that temporal granularity can be

adjusted as per the requirements of the application. Ground-based data collection

has been prevalent but suffers from scalability problems and can be very expen-

sive. The process of Ground-based data collection is also prone to human errors.

Remotely sensed data captured using satellites overcome these problems. In Chap-

ter 3, we have shown satellite data offers many advantages over ground-based data
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to solve various earth observation applications. We have used NC94 [36] ground

based data for crop yield prediction.

2. Data collection through drones and aircraft: Aerial photography is a technique of

capturing images of the Earth’s surface using Unmanned Aerial Vehicles (UAVs)

and aircraft giving an aerial perspective of Earth’s surface. They are typically

equipped with different kinds of RGB, multispectral, and hyperspectral vision sen-

sors which can be configured to take images at desired spatial and temporal reso-

lutions. This method also suffers from scalability and cost issues. Any change in

settling during flight introduces new challenges in analyzing data. E.g., any change

in angle or height can result in misleading patterns which are difficult to interpret.

3. Satellite Imaging: Satellites have been in use for collecting data for the last five

decades for various applications like communication, surveillance, earth observa-

tion, etc. In the past 5-6 years, satellite imaging technology has gained importance

and adoption. This has been possible due to free access to data from different satel-

lite agencies like NASA, ESA, ISRO, etc. This has led to the democratization of

satellite imaging technology. Researchers across the world are now increasingly us-

ing satellite data to solve complex problems. Cloud service providers like AWS and

Google Cloud are storing satellite data thereby further accelerating global usage

of satellite imagery. Google Earth Engine (GEE) [37] and Microsoft’s planetary

computer [38] are leading platforms which provide application specific datasets

collected from different satellite systems.

The major advantage of satellite based remotely sensed data is that its coverage

is global and is cost-effective as compared to ground-based and aerial data. It

does not require any infrastructure on the ground to collect data and is therefore

scalable. Satellite imaging technology is rapidly advancing in terms of spatial,

temporal, and spectral resolutions. The finest spatial resolution available is 0.3 m

using Worldview 3. Some satellite systems have a revisit frequency of 1 day. In

terms of spectral resolution, we now can get hyperspectral images having 100s of
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bands. Commonly used publicly available satellites have moderate resolutions for

example, MODIS has a spatial resolution of 500m and a temporal resolution of 8

days, and Landsat-8 captures data at a spatial resolution of 30m at an interval of 16

days.

In this thesis, we have worked with ground-based numeric data and satellite data cap-

tured using MODIS, Landsat, and Sentinel satellite systems. The details of the datasets

used in the thesis are given next.

2.2 Numeric Data: NC94

This dataset is collected by the North Central Regional Association of Agricultural Ex-

periment Station for the North Central region of the United States and named as NC94

[36]. It is collected for 30 years from 1971 to 2000 at the county level and consists of

crop data, soil data, and weather data. The dataset contains the yield data for almost all

the major staple crops of the US including wheat, corn, sorghum, soybean, rice, etc. The

crop data includes details about the harvested area for various crops, yearly production

and yield of the crop for a county, yield unit, etc. The weather parameters collected in

the NC94 dataset are maximum and minimum temperature, radiance, and precipitation.

The maximum and minimum temperature is the highest and lowest temperature in the

day for a location. Precipitation is the liquid or solid form of water that falls back to the

ground. Radiance represents the light or heat emitted by the sun. Dew is the moisture

condensed from the atmosphere in the form of small water drops on the crops and plants.

Another type of data present in NC94 is the soil data which is collected once for the entire

duration and is the same for a location for all considered years and thus is considered as

static i.e. invariant with respect to time. The soil characteristics do not change in such a

short period for a location. The dataset consists of 102 attributes of soil out of which 11

attributes are collected at 6 different depths (measured in cm) of the soil from the ground

surface as shown in Figure 2.1. The description of the data attributes is given in Table

2.1.
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Figure 2.1: Soil data at different depths

Table 2.1: NC94 Description

NC94 Dataset

Crop Attributes
Crop name, area harvested, yearly production & yield of the crop
for a county, yield unit

Soil Attributes
Depth-
invariant

PctArable, PctSlopeT, PAV, AcresT, Arable, PctSlopeA,
Drainage, DepthH2O, DepthBed, OMkgm-2, MaxRoot

Soil Attributes
Varying with
Depth

Sand, Silt, Clay, Liquid, Plastic, AvailH2o, BulkDen,
Omatter, Perm, Wilt, Field

Meterological
Attributes

maximum temperature, minimum temperature, Radiance, precipitation

Additional Attributes

Meteorological
Attributes

Dew, Humidity, Visibility, Wind speed, Cloud cover

Attributes such as sand, silt, clay, etc. vary with the depth of the ground and are

referred to as depth-variant attributes. They impact yield prediction differently at dif-

ferent depth levels. Sand, Silt, and clay represent the percentage of these properties,

respectively. Liquid and plastic is the presence of water content measured in centimeters

(cm) at liquid and plastic limits. After a certain limit soil behaves like liquid and plastic.

AvailH2o represents the water content available for the crop measured in cm. BulkDen is

the bulk density measured as mg/m3. Omatter is the percentage of organic matter present

in the soil. Perm means permeability (cm/hr) which represents the property of transmit-
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ting water and air through soil. The more permeable the soil is, the more it is easier to

transmit water and nutrients to the roots of the crop passing through different layers of

depth. The attributes like arable, depth Bed, drainage, etc are collected at a single depth

and are thus referred to as depth-invariant.

Additional meteorological attributes: Since the NC94 dataset contains only 4 mete-

orological attributes, we used additional weather attributes viz. dew, humidity, visibility,

wind speed, and cloud cover for all the counties for the same time duration of 30 years

with the same granularity as that of NC94. These climate attributes have a significant

effect on the crop yield. Dew activates the photosynthesis process in plants and crops by

hydrating them. Humidity refers to the amount of water vapors present in the air. The

right amount of humidity is an important factor in the growth of crops. The right amount

of humidity helps in the growth and pollination process of the crops which directly affects

the yield of a crop. The increased humidity can lead to the growth of bacteria and mold

which reduces crop growth and sometimes destroys the crop. Visibility represents how

far the objects can be seen clearly by the naked eye. The pollution particles in the air,

snow, hale windblown dust, etc. are some of the reasons which reduce visibility and have

an impact on the health of the crops. Thus, visibility helps in measuring the impact of

many other factors affecting the crop yield. Wind speed is the speed with which wind

flows from high to low-pressure areas. The turbulence caused by wind increases the car-

bon dioxide supply to the crops which increases the rate of photosynthesis and helps in

the growth of crops. Cloud cover means the part of the sky covered by the clouds at a

particular geographic location. Cloud cover reduces the temperature and radiance which

can positively or negatively impact a yield depending on the crop requirements.

2.3 Satellite Data
These are satellites from NASA, European Space Agency, etc. End users can use plat-

forms like Google Earth Engine to access, clean, and download this data by writing small

scripts. Among these satellites, there are both free and paid options, each offering unique

advantages and catering to different user needs and preferences. Many of these satellites
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are operated by governmental agencies or international organizations and provide data

without any cost e.g. MODIS, Landsat, sentinel, Advanced Very High-Resolution Ra-

diometer (AVHRR), etc. Researchers, educators, policymakers, and practitioners lever-

age these datasets to gain insights into global phenomena, track long-term trends, and

monitor changes in the Earth’s surface over time. Moreover, the open nature of these

datasets fosters collaboration and innovation within the scientific community, enabling

the development of new methodologies, algorithms, and applications that benefit society

as a whole.

In addition to free satellite data, there exists a range of paid options offered by com-

mercial satellite operators and data providers. These premium datasets, such as Rapid-

Eye by Planet, Maxar Imagery Mosaics, and Airbus OneAtlas, often boast higher spatial

resolution, increased temporal frequency, and specialized features tailored to specific in-

dustries or applications. While access to paid data typically involves subscription fees or

licensing agreements, the benefits they offer can be invaluable for certain users.

The data used in this thesis is captured using three famous publicly available satellites

viz. MODIS, Landsat-8, and Sentinel-2. A detailed description of each is given in the

subsequent subsections.

2.3.1 MODIS

Moderate Resolution Imaging Spectroradiometer (MODIS) is the most commonly used

satellite capturing data using two sub-satellites - Terra and Aqua. MODIS provides data

through its various products listed in section 1.2.3. MODIS data used in this thesis is

taken from MOD09A1. MOD09A1 has a spatial resolution of 500m and a revisit time of

8 days. The details of the bands of MOD09A1 are given in Table 2.2.

2.3.2 Landsat-8

The Landsat-8 data consists of 9 spectral bands with a spatial resolution of 30 meters and

a temporal resolution of 16 days. The Landsat data is captured using two sensors – an op-

erational land imager (OLI) with a spatial resolution of 30 meters and a Thermal Infrared
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Table 2.2: Description of MODIS (MOD09A1) Product

Scientific Data sets Description Range Scale Factor

Surface Reflectance band 1 Red Band -100 - 16000 0.0001

Surface Reflectance band 2 Near Infra-Red (NIR) band -100 - 16000 0.0001

Surface Reflectance band 3 Blue band -100 - 16000 0.0001

Surface Reflectance band 4 Green band -100 - 16000 0.0001

Surface Reflectance band 5 NIR band -100 - 16000 0.0001

Surface Reflectance band 6 Short Wave Infrared (SWIR) -100 - 16000 0.0001

Surface Reflectance band 7 SWIR -100 - 16000 0.0001

Reflectance band quality
32-bit unsigned integer for

describing quality of band pixels
NA NA

Solar Zenith Angle Sun zenith angle of band pixels 0 -18000 0.01

View Zenith Angle View zenith angle of band pixels 0 -18000 0.01

Relative Azimuth Angle Relative azimuth angle of band pixels -18000-18000 0.01

State Flags
Quality of the product whether

clouds or snow detected or not.

(16-bit unsigned integer)

NA NA

Day of Year Julian day of the year 1- 366 NA

Table 2.3: Landsat-8 brief description

Band Number Band Name Spatial Resolution Description
Band 1 Coastal/Aerosol 30 m Coastal water and ocean colour analysis

Band 2 Blue 30 m
Discriminates vegetation from soil and
deciduous from coniferous vegetation

Band 3 Green 30 m Peak vegetation

Band 4 Red 30 m
Vegetation slopes. The vegetation
absorbs the red band

Band 5 NIR 30 m
Focuses on biomass content and the
band is reflected by the vegetation

Band 6 SWIR-1 30 m
Distinguishes between vegetation and
soil moisture content

Band 7 SWIR-2 30 m
Improved difference between vegetation
and soil moisture content

Band 8 Panchromatic 15 m Better imaging capability
Band 9 Cirrus 30 m Thin cloud detection
Band 10 TIR-1 100 m Estimated soil moisture and thermal mapping

Band 11 TIR-2 100 m
Improved estimated soil moisture
and thermal mapping
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Sensor (TIRS) with a spatial resolution of 100 meters. Bands 1-9 (Coastal aerosol, Blue,

Green, Red, NIR, SWIR 1, SWIR 2, Panchromatic, and Cirrus) are captured by OLI, and

bands 10-11 (TIRS 1, TIRS 2) are captured by TIRS [39]. The description of each band

is given in Table 2.3.

For Cloud cover assessment, Landsat 8 uses the CFMask algorithm for the identifi-

cation of clouds, cloud shadow, snow, and ice and their representation in the QA band.

Decision trees are used in CFMask for labeling the pixels in the scene. The cloud shadow

mask is created by iteratively computing cloud height and projecting it onto the ground

[40].

2.3.3 Sentinel-2

The spatial resolution for Sentinel-2 is 10m -60m and a revisit time of 10 days. After the

launch of Sentinel-2B, the revisit time changed to 5 days with the same spatial resolu-

tion. The time series retrieved from the Sentinel-2 data can contain more useful patterns

because of more number of repetitions in a year. Sentinel-2 covers the entire earth’s land

surface, islands, and coastal regions with the help of its two satellites [41]. The satellite

provides 13 spectral bands and the description of these bands is given in Table 2.4.

The features of the area under consideration can be better analyzed by various combi-

nations of the bands. The set of Band 2, 3, and 4 i.e. RGB (Natural color) represents the

image as perceived by the human eye in which green color depicts vegetation, blue repre-

sents water, and grey or white shows the urban area. Bands 5-8a have a range of Visible

and Nera Infrared (VNIR) and 9-12 are Shortwave Infrared (SWIR). The combination of

bands 8, 4, and 3 (Colour Infrared) distinguishes between healthy and unhealthy vege-

tation in which red color depicts healthy vegetation due to the reflectance of NIR (band

8) by chlorophyll. Short-wave Infrared, a combination of bands 12, 8a, and 4 helps in

the discrimination between vegetation (represented by green color) and bare soil (brown

color). Bands 11, 8, and 2 combined help in monitoring crop health. Moisture Index

can be computed using bands 8a and 11. The moist vegetation will have a high value for

moisture index as compared to the dry vegetation.
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Table 2.4: Band description of Sentinel-2

Band Number Band Name Spatial Resolution Description
Band 1 Coastal Aerosol 60 m For aerosol detection
Band 2 Blue 10 m For soil and vegetation discrimination

Band 3 Green 10 m
Differentiates between clear and
muddy water. Highlights oil on water
surfaces, and vegetation

Band 4 Red 10 m
Identifies vegetation types, soils, and
urban (city and town) areas

Band 5 VNIR 20 m For classifying vegetation
Band 6 VNIR 20 m For classifying vegetation
Band 7 VNIR 20 m For classifying vegetation
Band 8 VNIR 10 m Detecting and analysing vegetation
Band 8a VNIR 20 m For classifying vegetation
Band 9 SWIR 60 m Detecting water vapour
Band 10 SWIR 60 m Cirrus cloud detection

Band 11 SWIR 20 m
Measures moisture content
of soil and vegetation

Band 12 SWIR 20 m Differentiate between snow and clouds

2.4 Satellite Data Download and Pre-processing
Earth is divided into grids and each grid cell is called a tile. The satellite data is available

in the form of tiles of varying sizes depending on the spatial resolution of the satellite.

Each tile may contain data for multiple geographical locations e.g. counties/districts and

vice-versa a location spread over multiple tiles. Collecting this data and mosaicking it

for the required geographical location is a difficult and tedious task. It can also lead to

redundancy of information or add irrelevant data if mosaicking is not done correctly. To

solve this problem and make the data downloading process easier and faster, we have used

Google Earth Engine (GEE) [37] which allows us to perform these tasks using its in-built

functions and scripts. The data can be accessed from GEE in the form of ‘ImageCollec-

tions’. A unique image collection ID is associated with each type of satellite e.g. there

is a separate collection ID for MOD09V6, Landsat-8, and Sentinel-2. These image col-

lections contain the data for the entire globe from the date of launch of the satellite. One

has to filter out the data in terms of locations and time duration as per the requirement.
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Some key steps are to be taken care of - filtering the required time duration, clipping the

area of interest, removing the cloudy pixels, etc. To filter the data for the area of interest,

administrative boundaries for the region are required to be uploaded on GEE. The data is

obtained in the form of geotiff images.

2.4.1 Data Preprocessing

Satellite data often encounters challenges due to cloudy pixels and missing data, which

can degrade the quality and reliability of analyses. Cloud cover obstructs the observation

of Earth’s surface, leading to incomplete or obscured information in satellite imagery.

Additionally, missing data can arise due to sensor malfunctions, orbital constraints, or

atmospheric conditions, further complicating the interpretation and utilization of satellite

observations. Addressing these issues requires advanced data processing techniques such

as cloud masking, interpolation, and data fusion to mitigate the impact of cloudy pixels

and missing data on downstream applications.

We have handled both the problems as given below:

• Handling cloudy pixels: The scenes with less than 15 percentile of cloud cover

are considered at every pixel using the simple composite algorithm of the Google

Earth Engine.

• Handling missing values: The missing data at pixels is estimated using nearest

neighbor interpolation and missing data for timestamps is estimated using linear

interpolation. We used nearest-neighbor interpolation for pixel-level missing data.

It involves replacing missing pixel values with the values of the nearest neighboring

pixels because neighboring pixels often have similar values due to spatial autocor-

relation. Also, this method is quick and computationally efficient. The missing

data across timestamps is estimated using linear interpolation because it estimates

missing values based on a linear relationship between known values at different

timestamps [42].
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2.5 Satellite images and derived Data
Satellite data has been used in various forms in different applications. It can be used

as images of all bands, histograms, and spectral reflectance indices. The pictorial rep-

resentation of the three forms is given in Figure 2.2. In addition to the pre-processing

steps mentioned in section 2.3, there are some pre-processing steps specific to a partic-

ular way of modeling the satellite data. A detailed description of modeling ways and

pre-processing is given in subsequent subsections.

Figure 2.2: Different forms of satellite data

2.5.1 Images

The best to use maximum information from satellite data for an application is the use

of the entire image as the images correctly capture spatial information. The size of a

satellite image for a location is large depending upon the spatial and spectral resolution

of the satellite system used.

Applications such as the prediction of crop yield, snow cover, soil moisture, etc. re-

quire time series analysis and analysis of historical data. Also, the ground truth for these

problems is publicly available at the district or county levels. This requires the satellite
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data to be captured and processed at the same level. For instance, in the prediction of crop

yield, time series analysis is essential for capturing the seasonal variations, growth stages,

and responses to environmental factors exhibited by crops over time. By analyzing his-

torical satellite image time series, researchers can track the development of crops from

planting to harvest, observe how environmental conditions such as temperature, precip-

itation, and soil moisture fluctuate throughout the growing season, and identify patterns

that correlate with variations in yield. Similarly, in monitoring snow cover, time series

analysis enables the detection of seasonal changes, trends, and anomalies in snow ex-

tent and depth over time. By analyzing historical satellite imagery, researchers can track

the onset and duration of snowfall, observe patterns of snowmelt and accumulation, and

assess the spatial distribution of snow cover across different regions. Thus time series

analysis serves as a foundational tool for extracting actionable insights from historical

satellite data across various applications.

Thus these applications require analysis of satellite image time series. The size of

a single satellite image is large and combining these images captured at different time

stamps further increases the volume of data to be processed. Thus, processing the image

time series for such applications is challenging. To the best of our knowledge, there is

very little work available in the literature in which raw satellite images have been used for

earth observation applications over a large geographical area like a district or a county.

For example, the number of pixels for a county in Landsat-8 is 2000 × 2000. Most

researchers have worked at the pixel level and mainly for classification problems [25, 26]

where ground truth is easily available. .

2.5.1.1 Data Pre-processing

The data preparation steps performed for the satellite image time series are given below:

• Bits Precision: Bits Precision is performed only for Landsat-8 images. By default,

the Landsat-8 images have float values at every pixel for all the reflectance bands.

Images in float values require 32 bits to store a single pixel. The number of pixels

in a Landsat-8 image on average are 2000 × 2000. Thus it requires a large storage
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space for an image to store. To work with the mentioned spatiotemporal applica-

tions, we need historical data for all the locations, thus storing so many images

of such huge size is difficult. To save storage space we used the bits precision

compression technique and converted all the float values to unsigned integer values

as:

intvalue = round(floatvalue ∗ 255) (2.1)

It requires only 8 bits leading to a reduction in storage space by four. We verified

the conversion by performing a set of preliminary experiments and the details are

given in chapter 4 section 4.8.

2.5.2 Histograms

To overcome the computing bottleneck in working with satellite images, researchers have

converted the images into histograms and used the histogram time series to solve prob-

lems like CYP, SCP, SEP [43, 44] etc. A histogram captures the information on the

number of pixels against a range of intensity values (bin) for a band. For example, the

count in bins is sufficient to predict the crop yield for a region. The particular locations of

healthy/unhealthy crop plants in a region will not affect the aggregate yield of the region.

According to the permutation in-variance assumption [43], it is the value of the pixel that

contributes to the yield prediction for a specific location and not the position where that

pixel is placed in the image. As shown in Figure 2.3, satellite images are converted into

histogram volume of size T × B ×D where B is the number of bins, T is the number of

timestamps and D is the number of bands e.g. obtained data volume of Landsat-8 having

23 timestamps for a year, for 64 bins and 9 bands is 23 × 64 × 9. In this way 3D data

is converted into 2D data for band. It is important to maintain the trade-off between the

number of bins and the computation time required to process the time series. We have

compared the impact of using different numbers of bins on crop yield prediction accuracy

and the supporting results are shown in chapter 3, section 3.12.2.
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Figure 2.3: Histogram representation

2.5.2.1 Data Preprocessing and Histogram Creation
The size of multi-spectral satellite images is huge because of the high spatial resolu-

tion and the large number of bands. Moreover, we require historic time series data with

weekly/fortnightly time granularity leading to a huge set of high-resolution images to be

processed. Therefore, to handle computational cost (time and memory) we use data in

the form of histograms for the spatiotemporal problems which subsume entries of im-

ages into intensity bins and convert an image at a timestamp for a band to a vector of

size B. Satellite surface reflectance images are represented as histogram volume of size

T × B × D where B as shown in Figure 2.3. The soil data is also converted into his-

tograms of dimension 1 × Bs × Ds having 1 timestamp as the soil is time-invariant for

a location, Bs as the number of bins, and Ds as a number of depth levels. The pictorial

representation of the complete process of data-preprocessing and histogram creation is

shown in Figure 2.4.
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2.5.3 Spectral Reflectance Indices

Another method opted by researchers to handle the computational bottleneck in work-

ing with satellite images is to convert the satellite data into Spectral Reflectance Indices

(SRIs). SRIs designed by physicists and domain experts, are mathematical formulations

of bands in the visible and near-infrared electromagnetic spectrum. The formulations

of these bands improve the sensitivity towards the detection of vegetation, environmental

variables, physiological and morphological characteristics of the earth’s surface or plants,

etc. [45]. The use of SRIs has consistently proven to be a simple yet effective approach

for assessing various aspects of vegetation, including qualitative and quantitative mea-

sures of growth parameters and health assessment. For example, Normalized Difference

Vegetation Index (NDVI), derived from Red and Near Infra-red (NIR) bands has emerged

as one of the most commonly employed spectral indices for monitoring crop growth and

crop yield. However, various other SRIs have been used to support crop yield estima-

tions like the Normalized Difference Water Index (NDWI), Enhanced Vegetation Index

(EVI), etc. [46]. Different SRIs highlight different characteristics depending upon their

mathematical formulations and thus can be useful in different applications.

We have derived all the spectral indices used from MODIS product MOD06 which

has a spatial resolution of 500m and a revisit time of 8 days. The details of the SRIs

considered are given below:

1. Normalized Difference Vegetation Index (NDVI): NDVI is an indicator of vegetation

health based on how plants reflect certain ranges of the electromagnetic spectrum.

Low NDVI values indicate poor health of vegetation and higher values indicate a

higher density of green vegetation. The formula for NDVI is:

NDV I =
(NIR−Red)

(NIR +Red)
(2.2)

2. Normalized Difference Water Index (NDWI): NDWI, is used to differentiate water

from dry land or is rather most suitable for water body mapping. Water bodies have
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low radiation and strong absorbability in the visible infrared wavelength range.

NDWI is sensitive to changes in the liquid water content of vegetation canopies.

It is complementary to, not a substitute for NDVI. Values lie between -1 to +1,

depending on the surface water content. High values of NDWI correspond to high

water content. Low NDWI values correspond to low water content.

NDWI =
(Green−NIR)

(Green+NIR)
(2.3)

3. Soil Adjusted Vegetation Index (SAVI): SAVI is a spectral reflectance index that

attempts to minimize soil brightness influences using a soil brightness correction

factor. This is often used in arid regions where barren land is more. The values of

NDVI and SAVI change in the same pattern. Negative values are either water or

urban areas. The higher the NDVI values (the same stands for SAVI) the denser

(and more healthy) the vegetation. But NDVI starts saturating after the value of

0.7, while SAVI at this point is only 0.3. This means that SAVI can be better used

in dense vegetation because it saturates slower than NDVI.

SAV I =
(NIR−Red)

(NIR +Red+ L)
∗ (1 + L), L is constant (2.4)

4. Normalized Difference Yellowness Index (NDYI): NDYI computed from the green

and blue wavebands and overcomes limitations of the NDVI. It provides infor-

mation about the yellowness of the target surface, with higher values indicating a

greater intensity of yellow coloration.

NDY I =
(Green−Blue)

(Green+Blue)
(2.5)

5. Plant Senescence Reflectance Index (PSRI): This index maximizes the sensitivity

of the index to the ratio of bulk carotenoids (for example, alpha-carotene and beta-

carotene) to chlorophyll. An increase in PSRI indicates increased canopy stress
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(carotenoid pigment), the onset of canopy senescence, and plant fruit ripening. Ap-

plications include vegetation health monitoring, plant physiological stress detec-

tion, and crop production and yield analysis. The values of this index range from

-1 to 1, with the common values for green vegetation ranging between -0.1 and 0.2

PSRI =
(Red−Green)

NIR
(2.6)

6. Enhanced Vegetation Index (EVI): EVI is similar to NDVI and can be used to quan-

tify vegetation greenness. However, EVI corrects for some atmospheric conditions

and canopy background noise and is more sensitive in areas with dense vegetation.

EV I = G× (NIR−Red)

(NIR + C1×Red−C2×Blue+ L)

where G, C1, C2, L are constants

(2.7)

7. Simple Ratio (SR): This index is a commonly used spectral index in remote sensing

for assessing surface characteristics and the wavelength of the deepest chlorophyll

absorption across various environments. The simple equation is easy to understand

and is effective over a wide range of conditions. In areas with homogeneous surface

characteristics, such as bare soil regions, the SR tends to be close to 1. As the

properties of the surface change, such as the presence of different materials or land

cover types, the SR value also changes accordingly. However, it’s important to note

that the SR index is not bounded, and its values can exceed 1.

SR =
NIR

Red
(2.8)

8. Wide Dynamic Range Vegetation Index (WDRVI): This index is similar to NDVI,

but it uses a weighting coefficient (a) to reduce the disparity between the contribu-

tions of the near-infrared and red signals to the NDVI. The WDRVI is particularly
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effective in scenes that have moderate-to-high vegetation density when NDVI ex-

ceeds 0.6. NDVI tends to level off when vegetation fraction and leaf area index

(LAI) increase, whereas the WDRVI is more sensitive to a wider range of vegeta-

tion fractions. WDRVI enables a more robust characterization of crop physiological

and phenological characteristics. Although this index needs further evaluation, the

linear relationship with vegetation fraction and much higher sensitivity to change in

LAI will be especially valuable for precision agriculture and monitoring vegetation

status under conditions of moderate-to-high density. It is anticipated that the new

index will complement the NDVI

WDRV I =
(a×NIR−Red)

(a×NIR +Red)
, 0.1 ⩽ a ⩽ 0.2 (2.9)

9. Modified Soil-Adjusted Vegetation Index (MSAVI): The modified soil-adjusted veg-

etation index (MSAVI) is an index designed to substitute NDVI and NDRE where

they fail to provide accurate data due to low vegetation or a lack of chlorophyll in

the plants. It addresses some of the limitation of NDVI when applied to areas with

a high degree of exposed soil surface. During the stages of germination and leaf de-

velopment, there is a lot of bare soil between the seedlings. NDVI and NDRE both

interpret this as poor vegetation. Here is where MSAVI comes to aid. “SA” stands

for “soil-adjusted,” revealing the key aspect of this vegetation index. It reduces the

effect of the soil on the calculation of vegetation density in the field MSAVI values

range from -1 to 1, where

• -1 to 0.2 indicate bare soil

• 0.2 to 0.4 is the seed germination stage

• 0.4 to 0.6 is the leaf development stage

• When the values go over 0.6, it is now high time to apply NDVI instead. In

other words, the vegetation is dense enough to cover the soil
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MSAV I =
2 ∗NIR+ 1−

√
(2 ∗NIR+ 1)2−(8 ∗ (NIR−Red))

2
(2.10)

10. Modified Soil Ratio (MSR): MSR produces images with a good contrast. It was

also observed that the MSR image has a better signal-to-noise ratio than that of the

NDVI image. This could aid in making a reliable mapping of the vegetation cover

of the area under study. MSR is proposed for retrieving biophysical parameters of

boreal forests using remote sensing data. This SRI is formulated based on an evalu-

ation of several two-band vegetation indices, including the Normalized Difference

Vegetation Index (NDVI) and simple Ratio (SR).

MSR =
NIR
Red

− 1√
NIR
Red

+ 1
(2.11)

2.5.3.1 Creating Spectral Reflectance Index Image

The raw images of MODIS have 5 bands - Red, Green, Blue, NIR, and SWIR. After all the

required corrections for missing data, we calculated the value of each spectral reflectance

index at every pixel, thus forming a matrix for each vegetation index at a timestamp. Then

we stacked all the vegetation index matrices of a timestamp one after the other making an

image with 10 channels. The process is shown in Figure 2.5.

2.6 Meteorological Data

We used different meteorological attributes including maximum temperature, minimum

temperature, Radiance, precipitation, Dew, Humidity, Visibility, Wind speed, Cloud cover,

sea level pressure, wind gust, solar radiation, and solar energy.

2.6.1 Data Preprocessing

Meteorological data also requires pre-processing steps listed below.
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Figure 2.5: SRI image at a particular timestamp T

2.6.1.1 Handling Missing Values
The meteorological data is recorded on a daily basis and it also suffers from missing data.

The method of forward fill, a common approach for handling missing values in time series

data is used to estimate missing values at any day. This assumes a certain continuity in

the time series, where the most recent known value is deemed a reasonable estimate for

the missing value.

2.6.1.2 Temporal granularity
Since the meteorological data is captured at a higher temporal granularity than satel-

lite data, an aggregation step is necessary. The meteorological data is averaged to align

with the temporal resolution of the satellite data, ensuring compatibility between the two

datasets. This aggregated and imputed meteorological data can then be integrated with

the satellite data, allowing for cohesive analysis and model training.

2.7 Soil Data
The soil properties do not change with time for a location and thus the soil data does not

have any temporal resolution and can be downloaded for the required spatial resolution.

We downloaded soil data from Open Land Map [47] for different soil properties. The soil
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properties for which the data is available include – clay content, bulk density, pH in water,

water content, carbon content, and sand content. The soil data is captured at 6 different

depth levels from ground level– 0, 10, 30, 60, 100, and 200 (in cm). So, this makes a

total of 6 levels for each soil attribute for a location. The data can be used in the form of

images or histograms. We used it in the form of histograms as shown in Figure 2.4.
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Crop Yield Prediction: An Important

Earth Observation Application

1

3.1 Introduction
Agriculture is one of the most important industrial sectors and the backbone of economic

development and food security in any nation. Crop yield prediction (CYP) is the most

crucial for agriculture. Yield prediction refers to the estimate of the crop produced in a

year based on historical data. It plays a vital role in decision-making by the government

and farmers. Early and timely yield prediction helps the government in making better

decisions for import/export, warehouse management for post-harvest of crops, etc. [48].

Predicting crop yield accurately is a challenging task as it is dependent on various me-

teorological factors like climate (maximum and minimum temperature, rainfall, precipita-

1The work presented in this chapter has resulted in the following publications:

• Arshveer Kaur, Poonam Goyal, Kartik Sharma, Lakshay Sharma, and Navneet Goyal, ”A gen-
eralized multimodal deep learning model for early crop yield prediction”, in IEEE International
Conference on Big Data 2022.

• Arshveer Kaur, Poonam Goyal, Rohit Rajhans, Lakshya Agarwal, and Navneet Goyal, ”Fusion
of multivariate time series meteorological and static soil data for multistage crop yield prediction
using multi-head self attention network”, in Expert Systems with Applications (2023).
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tion, humidity, etc.), soil (soil type, groundwater availability, soil moisture, soil ph-value,

etc.), location, seed variety and resources available to farmers. The factors affecting the

yield vary both temporally and spatially, thus making the CYP problem, a spatiotemporal

problem. However, researchers have attempted to model crop yield prediction in many

ways. Authors in many studies have taken meteorological data as static data along with

soil and genotype data. Out of weather, soil, and genotype parameters, weather parame-

ters are the ones having the maximum variability during a crop cycle. Suitable weather

conditions at every stage of the crop are important for its growth and better yield. Sev-

eral machine-learning models have been used for CYP. The commonly used models are

random forest (RF) [49], support vector regression (SVR) [50], multi-layer perceptron

(MLP) [51], k-nearest neighbor (KNN), support vector machine (SVM) [52], etc. Deep

learning models used in the literature include deep neural networks (DNN) [52–57], con-

volutional neural network (CNN) [43, 44, 48, 58], RNN [44, 48], LSTM [43, 58], etc.

In recent times, remote sensing data has gained the attention of researchers, due to its

easy availability and capability to scale up across the regions. There are many satellites

viz., MODIS [10], Landsat [40], Sentinel [41], etc. providing remote sensing data which

is available in different temporal, spatial, and spectral resolutions. Every satellite gives

data for a fixed number of reflectance bands.

The existing studies for the CYP problem have used MODIS satellite data which has

a spatial resolution of 500m and temporal resolution of 8 days. Other satellites, Landsat-

8 and Sentinel-2, launched in the later years (2013 and 2015, respectively), have higher

spatial resolution than that of MODIS. The data from Landsat-8 and Sentinel-2 satellites

is available only for 7 and 5 years, respectively (2021 and 2022 yield data for crops not

available) and thus has not been yet used for CYP.

In this chapter, we have worked with three modalities of data viz. meteorological,

soil, and surface reflectance bands. In the first part, we have taken meteorological and

soil data collected in a conventional (not remote sensing) way for crop yield prediction.

In the second part, we have used conventionally collected meteorological data along with

satellite-based soil data and surface reflectance bands. We conducted experiments to
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establish the fact that adding satellite modality to earth observation applications improves

the model accuracy. From the next chapter onwards we have focused primarily on satellite

data for various earth observation applications.

3.2 CYP using conventionally collected data
Many researchers have worked on solving the problem of CYP in recent times. The exist-

ing studies have modeled the problem in different ways using statistical models, machine

learning, and deep learning models using numeric data which includes meteorological

data, genotype, soil, and remote sensing data. Researchers have used these data individ-

ually or in combination to solve the CYP problem.

3.2.1 Related Work

The simplest way to estimate yield is using only the meteorological data. Verma et al.

[59] have used climate variables including rainfall, maximum and minimum temperature,

humidity, etc. for predicting the yield of the mustard crop in the Haryana state of India.

The authors used the principle component analysis and multiple linear regression to pre-

dict yield at the district level. Authors in [60] have also used the meteorological data for

wheat yield prediction with the World Food Studies (WOFOST) model.

The authors [61] applied a simple regression model for predicting the rice yield based

on only weather data. A Seasonal Prediction System (SPS) is used to predict the weather

attributes using historical data. This predicted weather data is used in the Crop System

Model CERES-Rice to predict the rice yield. The accurate prediction of yield depends

on the accuracy of the predicted weather data. The errors and anomalies in the weather

prediction model are carried forward to the yield prediction model leading to a poor

estimate of yield for those years.

Ensemble model of Ada Boost with SVM and Naı̈ve Bayes classifiers is used to pre-

dict the yield of different crops including Sugarcane, Rice, Cotton, Groundnut, etc. using

only the climatic data [62]. The weather parameters considered include maximum and

minimum temperature, precipitation, vapor pressure, cloud cover, and wet day frequency,
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captured at the temporal granularity of the month.

Droesch [53] applied a semi-parametric deep neural network for predicting the corn

yield in the US Midwest area from the years 1976-2016. The data used included the past

yield data for corn and historic weather parameters (maximum and minimum temperature,

wind speed, precipitation, humidity, and radiation) collected daily. The model performed

better than the statistical and simple machine learning models as it was able to capture

the non-linear relationship between the weather attributes and yield.

Sharma et al. [63] proposed an artificial neural network using a Bayesian optimiza-

tion approach for corn yield prediction based on meteorological factors like temperature,

precipitation, and geographic coordinates of the location.

The authors [64] have applied ML models viz. random forest, neural network, and

SVM for estimating the rice yield. The experiments were carried out on minimum, max-

imum, and mean values using different weather and soil parameters including day-time

temperature, night temperature, precipitation, humidity, wind speed, soil moisture, and

soil temperature averaged at two different spatial granularity levels: district level and

taluk level. The study shows that taking the data at a finer taluk level was more beneficial

for accurate yield prediction.

The authors have modeled the yield prediction problem as a classification problem by

classifying the yield into three classes’ viz. low, mid, and high [52]. The yield is predicted

using three classifier models - k-nearest neighbor, SVM, and least squared vector machine

using past yield data, soil parameters, and rainfall in the area.

Khaki et al. [48] proposed a CNN-RNN model for yield prediction of corn and soy-

bean using the weather and soil parameters. The weather parameters included maximum

and minimum temperature, vapor pressure, precipitation, snow water equivalent, and so-

lar radiation. The soil parameters include bulk density, pH value, organic matter percent-

age, hydraulic conductivity, water content, etc.

Other than using weather and soil data, genotype data also plays an important role

in the yield of a crop. Few researchers have incorporated the genotype data as well
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for CYP. Khaki et al. [65] in another work designed a deep neural network for maize

yield prediction using meteorological data, soil, and genotype data. The data used in the

paper is Syngenta crop challenge data (not available now) consisting of 8 and 6 soil and

weather parameters, respectively along with 2267 genotype hybrids planted over different

locations. The weather data is averaged over month granularity making in a total of 72

weather parameters.

The authors [66] have applied the LSTM model on the dataset consisting of weather

parameters and genotype details for soybean yield prediction. The weather data is taken

as a time series on a weekly basis. The LSTM model was reported to perform better than

support vector regression with radial basis function kernel (SVR-RBF) and least absolute

shrinkage and selection operator (LASSO). The study is done to find the most suitable

genotype for a location.

Maloy et al. [67] proposed a deep learning model for yield prediction of barley using

genotype and environmental data. The study was done to make the breeding decisions

for different genotypes depending on the meteorological data and yield of crops using the

specific genotype in particular weather conditions.

Research Gaps: All the existing studies lack incorporating the data from different

modalities and appropriate modeling of the CYP problem. We hypothesize that locations

with ’similar’ meteorological and soil conditions will have ’similar’ yield patterns. The

existing models for CYP are mostly trained with the meteorological data of the entire

year. However, most of the crops do not have their crop cycles spanned over the whole

year, and thereby training models with data that is not directly relevant leads to poor

training. The existing models predict the yield using the meteorological data for the

entire crop cycle and prediction is made at harvest time. Predicting the crop yield at the

harvest time is not as useful as predicting the yield during the crop cycle, many weeks

before the harvest time.
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3.2.2 Study Area and Data Used

We used NC94 numeric data which consists of 4 meteorological and 102 soil attributes.

It is collected at the county level covering 1055 counties from 12 states highlighted in

the map (Figure 3.1). We used some additional numeric meteorological attributes. The

description of the dataset is given in Table 2.1. We have taken three crops viz. soybean,

wheat, and corn for experiments. The number of counties taken for each crop is 603, 345,

and 628 respectively. The counties are selected based on a crop cultivated there and the

availability of the weather data for the entire crop cycle. Some of the selected counties

can be common across crops. The meteorological and soil attributes have a varying range

of values and units in NC94. We normalize all the attributes using min-max normalization

to remove any kind of biases.

Figure 3.1: Study Area: Numeric Data (YieldPredictNet)

3.2.3 Modelling of Problem: Numeric Data

The pipeline of the system used for yield prediction is given in Figure 3.2. The raw data is

first pre-processed for handling missing values and aggregating them as per the required

temporal granularity of week or month. The next module performs the spatial clustering

of locations (counties) w.r.t. meteorological and soil characteristics. The backbone of

the pipeline is a sequential model realized by LSTM units with multi-head self-attention

for time series data for learning temporal relationships. We use two variable selection
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modules (i) Attribute Selection Unit and (ii) Depth-level Selection Unit (DLSU) for static

soil attributes. In the end, we predict the crop yield.

Figure 3.2: Modelling the crop yield prediction problem

3.2.3.1 Padded Crop Cycle
The meteorological data has a significant impact on the growth and yield of a crop. Most

existing studies are done using the weather data for the entire year [48, 55, 61, 65, 68–

70]. The crops experience different crop cycle starting at different times of the year. In

the US, the crop cycle for soybean starts in mid-May and lasts till November end. The

crop cycle of corn lasts from mid-March to mid-November and for wheat sowing starts in

mid-September and harvesting takes place at the end of July. Few studies have also used

the crop cycle [43, 44, 56, 58] rather than the entire year data. We have considered three

lengths of time series- (i) entire year (Y), (ii) weeks or months covering the crop cycle

(CC), and (iii) padded crop cycle (PCC). In the padded crop cycle, we have padded two

extra weeks on either end of the crop cycle. Padding the crop cycle helps in modeling the

discrepancy in the sowing and harvesting time at different locations. Padding also helps

in capturing any anomaly or sudden change in climatic conditions before the sowing of

51



Chapter 3

a crop. In real-time, the weather conditions before the sowing of the crop can have a

substantial impact on the growth of the crop as it can affect the soil conditions as well.

3.2.4 Modelling Spatiality

Yield prediction is a spatiotemporal problem because meteorological and soil data vary

with locations. In addition, Meteorological data has very fine time granularity, but soil

data can be considered largely static. We have considered meteorological data at weekly

granularity. We have exploited the spatiality of the problem by clustering the counties. We

hypothesize that the counties experiencing ’similar’ weather and soil conditions tend to

have ’similar’ yield patterns. NC94 dataset consists of the geographical locations spread

over a large area of North Central US. There is a massive disparity in the soil character-

istics and meteorological conditions experienced by different states and counties in this

area. The counties are clustered using the k-means algorithm (i) using only meteorologi-

cal data and (ii) using soil and meteorological data. We have fine-tuned the proposed base

deep learning model by further training it with the data of individual clusters. In this way,

the model can learn both global and cluster-specific yield patterns. The results prove that

our hypothesis is correct as the error in predicted yield reduces significantly after training

the model on cluster-specific data. We have also clustered the data using Dynamic Time

Warping (DTW) distance measure and achieved comparable results. The clustering is

done for all three lengths of the time series i.e. Y, CC, and PCC. The obtained k-means

clusters for weekly PCC using soil and meteorological data (giving the best results) for

different crops are presented in Figure 3.3. The number of clusters obtained for soybean,

wheat, and corn are 3, 4, and 3, respectively shown in different colors. The number of

clusters taken in each crop is decided with the help of the inverse scree method [71]. We

have not considered too many clusters as it would reduce the data for each cluster and

consequently, the base deep learning models would not get fine-tuned properly.

3.2.4.1 Modelling Temporality

The data is a multivariate time series as all the meteorological attributes vary with time.

The length of the time series depends on the granularity level and its span depends on
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Corn Soybean

Wheat

Figure 3.3: K-means clusters obtained for weekly PCC using meteorological and soil data

whether we are considering data for the entire year, crop cycle, or padded crop cycle.

The length of the time series for soybean, wheat, and corn is 25, 44, and 35 respec-

tively for crop cycle data. The time series for meteorological data is represented as

M = {M1,M2, ..Mt, ...MT} where T is a number of time stamps, Mt = {mit}, i = 1 to

q is the set of q meteorological attributes at any time t.

3.2.4.2 Attribute Selection and Depth Selection for Soil Variables

In the NC94 dataset, the soil data was collected only once as the soil properties change

very marginally. Therefore, soil attributes can be considered largely static in compar-

ison to meteorological data. The dataset contains 102 soil attributes out of which 11

attributes are depth-variant and is collected at 6 different depths and 36 attributes are

depth-invariant. We designed an Attribute Selection Unit (ASU) to select a subset of k

attributes that play an important role for CYP from a total of n input parameters. We have

performed attribute selection in two ways: (i) Flat Attribute Selection (FAS) - Out of all
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the n = 102 attributes top k relevant attributes are selected. (ii) Soil Depth Modelling

(SDM) - In this case, FAS is done only for n = 36 depth-invariant attributes. We have

modified and used ASU to select the appropriate depth till at which the parameter is rele-

vant for CYP for each depth-variant soil attribute at each time stamp (as shown in Figure

2.1 in Chapter 2). For example, ith soil factor, Si, is selected at depth 3 this means that the

attributes si0, si1 and si2 will be considered for CYP at that time stamp. We have named

this module as Depth-level Selection Unit (DLSU). This exercise may help farmers to

focus on enhancing the relevant soil properties with the help of fertilizers or pesticides

if possible. It is evident from the results that modeling the soil variant attributes has a

significant impact on predicting the yield accurately.

3.2.5 Model Architecture: YieldPredictNet

The architecture of the proposed model YieldPredictNet is shown in Figure 3.4. The

proposed model has three modules. The LSTM module consists of LSTM units with

multi-head self-attention as the backbone of the system to process the time series. It

learns the temporal dependencies present in the data. The other two modules are the

Attribute Selection Unit (ASU) and Depth-level Selection Unit (DLSU) given in Figure

3.5 and described later in this section.

Model Input: We input meteorological data as multi-variate time series and soil data

as static. The model inputs the meteorological data directly into the LSTM module.

The soil attributes are input to either ASU or both ASU and DLSU for FAS and SDM,

respectively.

3.2.5.1 LSTM-module

The multivariate time series meteorological data is modeled as a sequential model using

LSTM units. LSTM is a type of RNN, with forget gate [72]. It helps LSTM to decide

when and what information is to be forgotten. The gates and the cell states in LSTM

make it suitable for dealing with the long-term dependencies and problem of vanishing

gradient. The output of the module is the predicted crop yield for the year (N+1) based

on its learning from the past N years. We use bidirectional LSTM that enables learning

54



Chapter 3

Figure 3.4: The Model Architecture: YieldPredictNet

in both directions, forward and backward. In the backward direction, learning is done

from the future to the past. The combination effectively learns the relationships involving

attributes and yield at any timestamp during the crop cycle and is thus helpful in predict-

ing yield at the early stages of the crop cycle. The output from LSTM units is passed to

the Multi-head Self Attention module. The futile layers in the network are skipped using

the gate mechanism. The sigmoid activation function is used after the gated layer and

then layer normalization is applied to normalize the feature for having a mean of zero and

variance as one. Layer normalization helps in faster convergence of sequential models.

As the layer normalization works on an instance basis, it avoids any kind of dependencies

between the batches making it suitable for sequential models.

Multi-head Self Attention: Attention is used to exploit and learn the long-term de-

pendencies in the time series or sequential input. The attention layer takes three parame-

ters as input viz., Query (Q), Key (K), and Value (V) in the form of vectors. It is referred

to as a mapping of query, key-value pairs to the output [73]. The attention is calculated

with the help of a query by comparing it with the keys to get weights for the values.

Self-attention means having the same value for key, query, and value i.e. K=Q=V. The

self-attention can be used in three ways – self-attention in an encoder, self-attention in a
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Figure 3.5: Attribute Selection Units

decoder, and encoder-decoder attention in the decoder. We have used self-attention in the

encoder as CYP is a sequence-to-number problem and the decoder is not involved.

Multi-head attention refers to the mechanism of dividing the input to be computed

in parallel on different multiple heads. The heads output the different representations

for each (query, key, value) pair. The output from each head is joined to find the final

attention score or weight assigned to every element in the time series. The computational

cost is equal to that of a single head because of the reduced dimensions at each head. The

mathematical representation of attention is given below:

Attention(Q,K, V ) = Softmax((QKT )/
√
d)V (3.1)

where d denotes the dimension of the Key and is used as a scaling factor for preventing

the dot product from having larger values in magnitude. The input is divided into m parts

to be executed at m different heads denoted by h. The attention at each head is denoted

as below:

hi = Attention(QwQ
i , KwK

i , V wV
i ) (3.2)

where wQ
i , w

K
i and wV

i represent the weights assigned by ith head to query, key and value,
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respectively. The output from every head is concatenated as:

Multihead(Q,K, V ) = [h1, h2, . . . ., hm]W
o (3.3)

3.2.5.2 Attribute Selection Unit (ASU)
This module is intended to select the depth-invariant soil attributes relevant to CYP. The

input to ASU is the set of n soil attributes denoted by A = {a1, a2, . . . .an} out of which

the unit selects k most relevant attributes. ASU consists of two linear layers having a

Gaussian Error Linear Unit (GELU) activation function, a Layer Normalization layer,

and a softmax layer to output weights for each attribute. LayerNorm is a standard nor-

malization layer for normalizing the activation results of the previous layer for every

instance of the data. Layer normalization helps in removing the dependencies among the

instances. GELU is an activation function [74] which combines the properties of zone

out, dropout, and Rectified Linear Unit (ReLU) for intensifying the probability of neu-

ron output. GELU shows the curvature at every point because of its non-monotonic and

non-convex property. The mathematical formulation of the module is given below.

τ1 = W1A+ b1 (3.4)

τ̃1 = GELU(τ1)k (3.5)

GELU = xP (X⩽x) = xϕ(x) (3.6)

= x/2(1 + tanh[(2/Π)(x+ 0.044715x3)] (3.7)

where ϕ is the cumulative distribution function for Gaussian distribution.

τ2 = W2(τ̃1) + b2) (3.8)

where (W1, b1) and (W2, b2) are the weights and bias at two linear layers, respectively.

τ̃2 = GELU(τ2) (3.9)

δ = LayerNorm(τ̃2) (3.10)

γ = Softmax(δ) (3.11)

=
n∑

i=1

γi × ai (3.12)

57



Chapter 3

where γi represents the softmax weight associated with each attribute ai, τ1 and τ2 are the

two linear layers, and τ̃1 and τ̃2 depicts the intermediate form of linear layers τ1 and τ2

after applying GELU. The output of the unit will be Ã, the set of selected k attributes.

3.2.5.3 Depth Level Selection Unit (DLSU)

The module selects the appropriate depth level for each soil factor since soil property is

relevant to crop growth up to a certain depth. The significance of the depth level for a

factor may vary with different stages of the crop cycle. That is why, we use a separate

DLSU at each time stamp of the crop cycle (i.e. phenological stage of a crop). The input

Si where, i = 1 to p and Si = sij, j = 1 to z to the DLSU is p soil factors captured at z

different depths. The output of the unit is selected depth level li for each factor Si. li is

the depth-level up to which the attribute Si is suitable for a crop at a time stamp. DLSU

has a similar composition as that of ASU. It consists of two linear layers with a GELU

activation function, followed by a Layer Normalization layer and a softmax layer similar

to ASU. The final softmax layer will be modified as:

γ =

p∑
i=1

z∑
j=1

γij × sij (3.13)

where γij represents the weight given to each attribute sij The final output of the DLSU

unit will be the selected depth-level li for each attribute si(i = 1 to p) at each phenological

stage of crops.

S̃i = {s1l1 , ..., splp} (3.14)

The selected attributes from DLSU and ASU are passed to the LSTM module.

3.2.5.4 Forecasting

The prediction is done in two ways: end of season prediction and in-season prediction.

In most of the studies, prediction is done at the end of the year or crop cycle. A single

value is given as the output by the linear layer applied at the end of all the functions and

transformations. The output Ŷ represents the predicted yield of the crop. The forecasting

model can be represented as:
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ŶN+1 = F ([M1,M2, ...,MN], Ã, S̃i) (3.15)

where ŶN+1 is the yield predicted by the model for (N + 1)th year and F denotes the

forecasting model and Mi is set of meteorological attributes at N th year.

Early Prediction: For early prediction, we have modified our end-of-cycle model to

predict yield at the end of any week of the crop cycle. The error is back-propagated at

every timestamp rather than only at the last time stamp. The early prediction is done at

4 different in-season time stamps. The yield is predicted at intervals of 2 weeks starting

from 8 weeks before the harvesting.

3.2.6 Experimental Setup for YieldPredictNet

The implementation is done using Pytorch open-source library in Python. 4 Tesla M10

GPU servers with 8 GB of VRAM are used to run the experiments. Hyper-parameter

optimization is done using the Adam optimizer for all three crops viz. soybean, corn,

and wheat. The clustering of counties is done to exploit the spatiality patterns. The

counties are clustered into 3, 4, and 3 clusters for soybean, wheat, and corn, respectively.

The hidden dimensions and learning rate are 80 and 0.0000045, respectively when only

meteorological data is used and 1000 and 0.0000025, respectively when both soil and

meteorological data are used. We have taken a batch size of 64 for all experiments.

The number of epochs for experiments using only meteorological data and using both

meteorological and soil data are 100 and 50, respectively. When the data is taken for the

entire year, the length of the time series will be 52 for all the crops. If only the crop cycle

is considered, the length is 25, 44, and 35 for soybean, wheat, and corn, respectively. If a

padded crop cycle is considered, then the crop cycle length increases by four time stamps

for all crops (2 on either end of the crop cycle).

3.2.7 Evaluation Metric

We have used the mean squared error as the loss function for the prediction model. The

evaluation metric used is root mean square error (RMSE). The formula for RMSE is given
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below in Equation 7 where yi depicts the actual yield, ŷi denotes the predicted yield for

a county in a year, and C denotes the number of counties considered for each crop. The

yield is measured in bushels/acre (bu/ac).

RMSE =

√√√√√√
C∑
i=1

(y − ŷi)
2

C
(3.16)

Training and Testing: The prediction is done in two ways by taking single-time

horizons and multi-time horizons. In taking a single time horizon, prediction is done for

(N + 1)th year using the data of preceding N years. While predicting yield for (N + 2)th

year, the models are trained for previous N+1 years and so on. In the case of the multi-

time horizon, we predict the yield for years (N+1) to (N + x) using the model trained

only for the first N years. We have considered x = 5 in our experiments.

3.2.8 Models for comparison: YieldPredictNet

We have done a comparison of YieldPredictNet with six existing models for yield predic-

tion which use non-remote sensing data. All the models are optimized and trained on the

NC94 dataset for every crop separately in the same way as we have done for YPN for fair

comparisons. The models taken for comparison are:

Random Forest [39]: The number of base estimators for random forest taken in the

case of soybean, wheat, and corn are 11, 9, and 13, respectively and the maximum depth

for each decision tree of random forest is 11, 17, and 9, respectively.

LASSO [66]: Least Absolute Shrinkage and Selection Operator (LASSO) is a type

of regression model with a regularization technique. The shrinkage factor alpha (taken as

0.1) helps in shrinking towards the center point of the data.

Support Vector Regression (SVR) [66]: SVR works similarly to SVM but the mar-

gin is approximated in the case of SVR because the output for regression problems is

a real number and has infinite possibilities. The kernel function used is the radial basis

function.
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DNN [58]: DNN model predicts the yield by taking both meteorological and soil data

as static data after flattening it. The number of layers and neurons used at every layer is

(11,25), (11,19), and (14,33) in the case of soybean, wheat, and corn, respectively. The

model uses the Adam optimizer for hyperparameter tuning with a learning rate of 0.0001.

CNN-RNN model [48]: The model takes both the meteorological and soil data as

the multivariate time series data. The model uses a W-CNN with 60 neurons for learning

weather data features an S-CNN with 40 neurons for soil data features and finally an

LSTM layer with 64 cells for predicting the yield for the target year. It uses stochastic

gradient descent as the optimizer with a learning rate of 0.001.

LSTM [66]: The model uses meteorological (time series) data and genotype (static)

data for prediction. We have used the soil data in place of the genotype as both are static

and don’t require any modification to the model. The model uses an Adam optimizer with

a learning rate of 0.001.

3.2.9 Experimental Scenarios for YieldPredictNet

All the experiments are executed for six scenarios and are denoted by acronyms given in

Table 3.1. The first scenario M considers only the meteorological data for both training

and prediction. While both meteorological and soil data are considered in all the other

scenarios from 2-6. The model taking entire meteorological and soil data is referred to as

MS. For model CM, clustering is done only on meteorological data. CM+RMS represents

clustering on meteorological data and then retraining the MS model for each cluster to

exploit cluster-specific patterns. Similarly, model CMS denotes that the model uses both

meteorological and soil data for clustering and CMS+RMS denotes retrained MS using

CMS clusters.

3.2.10 Results: YieldPredictNet

NC94 dataset consists of 30 years of data, out of which we have taken 5 years of data

(1996-2000) for testing. The results are captured at two different time granularities

(weekly and monthly) and three different lengths of time series viz. Y, CC, and PCC.
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Table 3.1: Different scenarios considered for experiments

Sce. No. Met. Data Soil Data Met. Clusters (M+S) Clusters Retrain Model Model

1 × × × × M

2 × × × MS

3 × × CM

4 × MS CM+RMS

5 × × CMS

6 × MS CMS+RMS

Table 3.2: Average RMSE of the proposed model (YPN) for all the crops

Soybean
Week Granularity

TS
length

M MS CM CM+RMS CMS CMS +RMS
Add. Data
CMS+RMS

DTW
CMS+RMS

Y 8.3042 5.6733 5.7868 5.7238 5.7859 5.634 5.3897 5.5111
CC 8.5514 5.7014 5.9277 5.6514 5.8495 5.5195 5.3228 5.4077
PCC 7.6866 5.64 5.6137 5.4204 5.5578 5.4565 5.3172 5.3842

Month Granularity
Y 14.6052 9.5231 8.3252 8.1542 9.1255 7.5236 5.6878 5.7582
CC 12.1795 8.1957 6.8524 6.3712 6.5242 6.2112 5.4921 5.5207

Wheat
Week Granularity

TS
length

M MS CM CM+RMS CMS CMS +RMS
Add. Data
CMS+RMS

DTW
CMS+RMS

Y 14.6901 11.2957 11.5223 11.1144 11.4686 10.9496 10.7971 10.5106
CC 13.8013 11.1694 12.1415 11.8496 12.2059 10.8134 9.907 10.2245
PCC 14.2361 10.9011 10.8802 10.8052 10.79 10.6162 9.8814 10.1913

Month Granularity
Y 15.7983 14.646 15.6833 11.6682 15.6191 11.6187 11.0073 11.1729
CC 15.0086 12.3899 14.1266 11.3703 14.1024 11.3124 10.7971 10.8691

Corn
Week Granularity

TS
length

M MS CM CM+RMS CMS CMS +RMS
Add. Data
CMS+RMS

DTW
CMS+RMS

Y 29.039 23.0627 22.7516 21.4038 22.2438 20.9824 18.6348 19.2052
CC 29.4 21.3086 22.4019 21.7268 22.2723 19.9613 17.9576 18.7616
PCC 27.1383 20.4639 20.7716 19.8635 20.9189 19.7816 17.4857 18.429

Month Granularity
Y 45.2208 36.3924 33.3699 28.3718 33.6849 28.4192 24.7902 24.9587
CC 32.6111 30.8778 30.626 25.2128 30.6282 25.1494 22.8676 22.9226
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Ablation study: We have done extensive experiments considering a number of de-

sign choices of the proposed model to better understand their relative importance. Table

3.2 presents the impact of using the type of data and the kind of modeling used for the

problem for different six successive models (see Table 3.1 for description). The results

show that taking soil along with meteorological data, substantially improves the accuracy

as compared to the results obtained with only meteorological data for all lengths of time

series and crops. Further, adding additional meteorological attributes reduces the RMSE

up to 11% across the crops as they play a role in the growth of the crop. It can also be

observed from Table 3.2 that RMSE is the least when a padded crop cycle is used. This

is observed for all crops and other data choices considered in this chapter.

The counties are clustered for modeling spatiality and the clusters are obtained using

k-means with L2 and DTW distance. The experiments show that the average RMSE

obtained with DTW distance is slightly higher in comparison to that of clusters obtained

using L2 distance across the crops (see Table 3.2). Clustering reduces the data for training

the cluster-specific models and leads to poor training. Re-training the MS model on

cluster-specific data leads to a significant reduction in the error. This allows the model to

learn both global and cluster-specific local patterns.

The re-trained CMS+RMS model with additional meteorological attributes and L2

k-means clusters on both climate and soil data surpass the performance of all the other

scenarios for all crops. The results also show that the granularity at which the data is

collected also plays an important role in accurately predicting the crop yield. Taking the

data at week granularity predicts the yield more accurately by approx 3%, 8.5%, and 23%

for soybean, wheat, and corn, respectively than taking the data at month granularity.

We have also tested our design choices on existing methods (Table 3.3). We observed

that all the observations for design choices hold true for all the existing models. The

given results establish that considering soil attributes has a positive impact on yield pre-

diction. Based on the above observations, we present all results of our proposed model

with additional meteorological data at week granularity with PCC length of time series

and k-means clustering with L2 distance. We call this design choice ’YieldPredictNet’.
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Figure 3.6: Variation in RMSE with number of soil parameters in the proposed model
(YPN) with FAS and SDM

As per attribute selection of soil attributes as described in section 3.2.4.2, we have

compared the two attribute selection units viz. FAS and SDM in Figure 3.6. Table 3.4

shows the difference in results while taking all the attributes versus FAS and SDM. We

observed the variance in the performance of the model by varying the number of soil

attributes selected for FAS and SDM (Figure 3.6). It can be observed that the number

of favorable attributes for different crops are different e.g. in FAS the least RMSE is

achieved by taking 75, 50, and 102 attributes for soybean, wheat, and corn, respectively.
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All the experimental results presented are taken by considering the optimal number of

soil attributes for all the crops in every scenario. FAS gives the improvement of up to 7%

improvement in yield prediction over using all the features (Table 3.4).

Table 3.4: Comparison of YPN with existing models on NC94 dataset (RMSE)

Soybean Wheat Corn
DNN [65] 7.9004 15.2334 28.6908
CNN-LSTM [48] 6.0599 11.8602 24.3317
LSTM [66] 8.9299 15.0528 29.6173
YPN-AF 5.3172 9.8814 17.3193
YPN-FAS 5.3050 9.1613 17.3193
YPN-SDM 5.2551 7.8654 15.5408

The results given in Figure 3.7 show that the relevant depth of different factors is

different throughout the crop cycle. The graph shows the depth level after every 15 days.

The required depth of a factor differs with respect to crop as well. E.g., the depth required

for measuring the percentage of organic matter present in the soil is around 50cm, 10cm,

and 25cm, respectively for the soybean, wheat, and corn at starting of their respective crop

cycles. Likewise, the appropriate level changes throughout the crop cycle. Modeling the

depth-variant factors has shown significant improvement over using all attributes for yield

prediction. The percentage improvement is approximately 1.17%, 20.40%, and 11.12%,

for soybean, wheat, and corn, respectively.

We compare the performance of our proposed model YPN with six existing models

given in Table 3.4. YPN- with AF, FAS, and SDM represent YPN with all the attributes

taken, YPN with flat attribute selection, and YPN with soil depth modeling, respectively.

It is evident from the results that our proposed model (YPN) predicts the yield more

accurately as compared to other models in all three ways of modeling the soil attributes.

The best results are achieved when depth-variant soil factors are modeled separately and

a suitable depth level is selected for each factor at every time stamp.

Early Prediction: So far we have given end of season (end of PCC) prediction. We

have modified our YPN model for early prediction. An early and accurate prediction
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Figure 3.7: Soil depth required throughout the crop cycle for soybean. The corresponding
depth levels are- 0:10cm, 1:25cm, 2:50cm, 3:100cm, 4:200cm and 5:250cm

can help farmers and the government to intervene appropriately if required. We have

predicted the yield every two weeks backward from the harvest time (end of PCC) of the

crop. The results for early prediction given in Table 3.5 show that the model can predict

the yield with almost the same accuracy at 8 weeks before the harvest. As expected, the

prediction accuracy is closer to harvest time. We have compared our results for early

prediction with the available model in literature [58]. Our results at T-8 have an error of

0.26% from the prediction at time T. This is much lower than the 3% error of the existing

model [58].

Multi-time horizon Prediction: In multi-time horizon prediction, we have trained

the model till N years and predicted the yield for (N + 1)th year to (N + x = 5)th year.

Table 3.6 shows the difference between single-time horizon prediction and multi-time

horizon predictions. As expected, the percentage error increases from (N + 2)th year to
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Table 3.5: Early yield prediction using YPN-FAS and SDM

Prediction Early Prediction
End of
Season

Crop
Time
Step

T-8 T-6 T-4 T-2 T

Soybean
FAS 5.8532 5.8514 5.8509 5.8498 5.8469
SDM 5.2692 5.2666 5.2657 5.2626 5.2551

Wheat
FAS 9.1651 9.1624 9.1616 9.1614 9.1613
SDM 7.8809 7.8795 7.8758 7.8726 7.8654

Corn
FAS 17.6009 17.5709 17.5577 17.5383 17.3193
SDM 15.6315 15.5990 15.5841 15.5637 15.5408

Table 3.6: Multi-horizon Prediction
SHP: Single-time horizon prediction & MHP: Multi-time horizon prediction

Soybean Wheat Corn

Year SHP MHP SHP MHP SHP MHP

N+1 4.3716 4.3716 6.1242 6.1242 16.3457 16.3457

N+2 4.3075 4.5254 7.2327 7.3952 13.0571 13.9175

N+3 5.6265 6.0201 6.8254 7.4253 16.5955 17.8760

N+4 6.4556 6.9707 9.5241 12.7661 18.3569 19.8391

N+5 5.5147 6.1518 9.6204 13.5387 13.3486 15.1363

(N + 5)th year. This can be attributed to the fact that meteorological conditions from

(N +1)th year to (N + (k− 1))th year are not factored in while predicting for (N + k)th

year. This leads to the maximum error of approximately 10%, 29%, and 12% for soybean,

wheat, and corn, respectively for (N + k)th year.

3.3 Crop Yield Prediction: Satellite Data

With the advancements in remote sensing data, it has been lately used in various agricul-

tural tasks. The satellite data is captured in the form of multi-spectral images consisting

of a different number of surface reflectance bands depending on the satellite.
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3.3.1 Related Work

As mentioned in Chapter 2, the surface reflectance bands are either used as an image,

histograms [43, 58], or some mathematical formula is applied over two or more bands

to derive a SRI. The SRIs used in yield prediction include NDVI, enhanced vegetation

index (EVI), Normalized difference water index, (NDWI), etc. [39, 44, 55, 69, 75]. The

authors [39] used NDVI and NDWI derived from Sentinel data for wheat yield prediction

in Madhya Pradesh (India). The random forest regression model achieved better accu-

racy as compared to other machine learning algorithms including SVM regression and

multivariate polynomial regression. The authors [76] used the SRI along with meteo-

rological data for wheat yield prediction with multiple models including random forest,

Lasso, K-Nearest Neighbour, and Multi-layer perceptron (MLP).

As compared to the machine learning models, deep learning models perform better

with satellite data. A few researchers have applied deep learning models in their work for

CYP [44, 48, 53–55, 58, 65]. Although the satellite data is itself spatiotemporal, in the

existing studies it has been either taken as only time series [44, 48, 55, 58] or by flattening

it as static data [43, 48, 54]. Different deep-learning models have been applied for CYP

using different kinds of data for various crops. CNN and RNN model [48] are used by

taking weather and soil parameters as time series, a model designed by combining CNN

and LSTM [44] for yield prediction by taking surface reflectance bands as time series and

soil as static data.

Another deep learning Spike neural network (SNN) [55] is applied over the NDVI

data to analyze crop health and phenological characteristics for yield prediction. The

authors in [44] and [43] have tried to exploit the spatiotemporality of the satellite data but

the SNN [55] model is incapable of handling the static data as it works on the concept

of analyzing the spikes in the dataset and static data will be constant and not have any

spikes.

Considering all the aspects and different types of data involved, we can say that CYP

is a spatiotemporal problem, but in the existing studies it has been either modeled as only
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time series [55, 58, 77] or static [43, 64, 78, 79]. Sun et.al. [44] have done CYP taking

surface reflectance data as a time series and soil as static. The soil data used in the study

is captured at varying depth levels for each attribute and this information is not dealt with.

Research Gaps: The existing studies working with satellite data have been focusing

on remote sensing data captured by only MODIS satellites. The data from recent satellites

with high spatial resolution is not considered for the application because of its availabil-

ity for limited years. We hypothesize that high-resolution satellite data can provide better

insights about the factors affecting crop yield, even when limited historical data is avail-

able for training suitably designed deep learning models. Moreover, the above-mentioned

studies work only for a specific region or a specific crop.

3.3.2 Study Area and Data Used: Satellite Data

We used histograms created from three satellites viz. MODIS, Landsat-8, and Sentinel-

2. The histogram creation process is explained in section 2.5.1. We have made yield

predictions for the years 2019 and 2020. we used MODIS data from the year 2001,

Landsat-8, and Sentinel-2 from 2014 and 2016, respectively. The data from Landsat-8

and Sentinel-2 satellites is available only for 7 and 5 years, respectively as they were

launched in the later years (2013 and 2015, respectively).

Yield data: The yield data for crops is taken at the county level for the US from

Quick Stats [80] collected by the United States Department of Agriculture (USDA) and

at the district level for India [81]. We have taken data from year 2014 to 2020.

Study Area: The area considered for CYN includes the counties of the US and dis-

tricts of India which are listed as the top producers of corn and soybean. The US counties

include from states viz. Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota,

Mississippi, etc. The district data is taken from states of India viz. Andhra Pradesh,

Telangana, Punjab, Rajasthan, Uttarakhand, Himachal Pradesh, Assam, etc.
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3.3.3 Data Preparation

Handling missing values: The data could be missing for a few timestamps because of

cloudy days, technical problems with the sensor of the satellite, etc. The missing data at

certain time stamps is estimated using linear interpolation [42].

Processing meteorological data: The missing values in meteorological data are esti-

mated using the forward fill method in which the missing value at timestamp T for an

attribute is replaced by the value at timestamp T-1 for that attribute. The meteorological

data is captured at daily granularity and is aggregated to match the temporal granularity

of the respective satellite data as given in Chapter 2.

3.3.4 Model Architecture: CropYieldNet

We proposed CropYieldNet to capture information from data of different modalities such

as numeric time series (meteorological), and static (depth-variant soil data) spatiotempo-

ral (surface reflectance bands data) obtained from satellite systems. The proposed model,

CYN, consists of four modules- Surface Reflectance Encoder (SRE) which learns the spa-

tial patterns in surface reflectance data without tampering the temporal patterns, Soil Data

Encoder (SDE) to learn the pixel intensity information across bins for each soil attribute,

Depth-level Selection Module (DSM) to select the soil data input only till the relevant

depth-level for each attribute, and Core Temporal Module (CTM) to exploit the temporal

patterns in surface reflectance and meteorological data and ultimately predict the output

yield. The pictorial representation of CYN architecture is given in Figure 3.8.

Note that all four modules are jointly learned in an end-to-end process via stochastic

gradient descent and contrastive learning applied to satellite data.
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Model Input: An input instance to SRE is the data for a year/crop-cycle for a loca-

tion. The surface reflectance data for a timestamp is stored as a histogram (see Histogram

Generation of chapter 2). The histograms for all T timestamps are arranged in columns

to form a 2D matrix of dimensions B × T for each band. The band information has been

taken as channels and the data tensor, SR, for instance, has size B × T × D (see Figure

2.3). Similarly, meteorological data for all timestamps in a year/crop cycle is arranged

as a 2D matrix of size n × T and passed directly to the CTM module. The soil data is

also converted into histograms of dimension 1 × Bs × Ds having 1 timestamp because

soil is time-invariant for a location, Bs as the number of bins, and Ds as the number of

depth-levels, and is passed to SDE.

3.3.4.1 Surface Reflectance Encoder (SRE)

This module is intended to learn the spatial patterns of the surface reflectance data. Let

the data input be denoted by SR. The SR encoder consists of 1D CNN to capture spatial

patterns in the data. It contains convolution layers with 18, 36, and 72, filters in successive

layers. Each convolution layer is followed by a maxpool layer. To keep the temporal

information intact, we have taken the kernel size as 2×1 with stride ’1’. The last maxpool

layer is followed by two blocks of linear, normalization, and ReLU activation layers. A

dropout layer with a probability of 0.3 is used to regularize the model and prevent it from

over-fitting. At the end, the linear layer is used to flatten the tensor of each timestamp

resulting in 2D output of SRE which is denoted by S̃R.

3.3.4.2 Soil Data Encoder (SDE)

Soil Data Encoder encodes soil information using CNN as the backbone. Soil information

in the form of rearranged soil histograms is taken as a 3D tensor with shape Bs × 1 ×

Ds, where Bs is the number of bins and Ds as the number of depth levels for each soil

attribute. Collective input for all attributes is taken as Bs×A×Ds, where A is the number

of soil attributes. SDE consists of three 1D convolution layers with successive number

of channels as 9, 12, and T. Each convolution layer is followed by a maxpool layer. The

kernel size is taken as 2 × 1 to process the soil data for each attribute separately. The

last maxpool layer is followed by a dropout layer with a probability of 0.3 to nullify the
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contribution of some neurons toward the output. This is done to prevent the model from

over-fitting and to prevent the biased influence of the first input batch in model training.

The output of SDE is a 3D tensor denoted as: S̃D with dimensions Bs
′ × A×Ds

′
.

3.3.4.3 Depth-level Selection Module (DSM)

The soil attributes are collected at 6 different depth levels and it is possible that an attribute

is not relevant at all depths at a timestamp for crop growth. We modified DLSU (section

3.5.3) to work with satellite-obtained soil data and named it as Depth-level Selection

Module (DSM). DSM selects the appropriate depth level up to which a soil attribute

contributes to crop growth. Depth level is selected based on the surface reflectance data

representing the phenological stages of a crop. DSM takes two inputs- S̃R and S̃D. We

have rearranged the S̃D to make its dimensions identical to that of S̃R.

DSM consists of two dense layers each followed by a Gaussian Error Linear Unit

(GELU) [74] activation layer. GELU is considered a smoother ReLU because it combines

the benefits of ReLU activation and dropout regularization. At the time of thresholding,

it weighs the inputs by their value, unlike ReLU which weighs on the basis of their sign.

GELU is followed by a normalization layer. Layer normalization is used to stabilize the

hidden state dynamics in LSTM and make the learning process faster. Softmax is applied

at the end to assign weights to each depth level and select the most relevant depth level (d)

at every timestamp (t). A separate DSM is used for every timestamp. The output of DSM

for a soil attribute is the data from level 1 to d of the attribute. This data corresponding to

all A soil attributes is denoted by S̃D′.

3.3.4.4 Core Temporal Module (CTM)

The Core Temporal Module is designed taking LSTM as its backbone followed by a lin-

ear layer with ReLU activation function and a dropout layer with probability 0.1. A linear

layer is used at the end to output the predicted yield. LSTM is a recurrent network with

forget gate which helps the model in deciding what information is to be forgotten at each

timestamp. The cell states and forget gate in LSTM make it convenient to handle the

long-term dependencies in the time series and deal with the problem of vanishing gradi-

ent. We have used a bidirectional LSTM model as it learns the patterns in data in both
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forward and backward directions. This makes it suitable to learn the temporal patterns

correctly from the augmented data generated using the inversion technique. Also, using

the bidirectional LSTM helped in predicting precise in-season yield. The input to the

module is output from SRE and DSM. The preprocessed meteorological data is directly

input to the module. The meteorological data is represented as M = {M1,M2, ...,MT}

where M and Mt = {mit}, i = 1 to n are the set of meteorological data for T timestamps

and at a timestamp t, respectively. mit is set of meteorological attributes. The prediction

model is denoted by:

ŶN+1 = CTM(S̃R,M, S̃D′) (3.17)

where ŶN+1 is the predicted yield by CTM for year N +1 using the static soil data and N

years of surface reflectance and meteorological data.

In-season Prediction: We modified our end-of-season model to predict in-season yield

at multiple time stamps. We have back-propagated the loss at every time stamp of the

model and thus trained the model at all the in-season stages of the crop cycle. We have

done the early prediction from T-5 to T timestamps.

3.3.5 Data Augmentation: CropYieldNet

Deep learning models work remarkably well on time series data as compared to tradi-

tional machine learning models. However, these models require a large amount of data

for training to get superior performance. The data from Landsat-8 and Sentinel-2 is avail-

able only for 7 and 5 years, respectively and crop yield data is also not available for most

of the locations over the globe. Therefore data augmentation (DA) is essential for the

success of the model. Unlike vision and NLP, DA in time series is more challenging to

find the techniques that do not tamper with the intrinsic properties of the time series data

and generate valid data which enhances the generalization capability of the model. We

propose to apply two DA techniques to the surface reflectance band data of satellites.

Inverting Time Series: We have reversed the order of time series as (T, T-1,...,t,..,2,1)
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for surface reflectance band and meteorological data and labeled with the same target

yield. This will not affect adversely as our model learns time series through bidirectional

LSTMs.

Temporal Irregularity: We generate training samples by dropping 10% of the times-

tamped data with 0.1 probability. keeping the same target value. This results in a differ-

ently shaped input data volume which is handled by padding the volume with zeros to

match with the size of the input data.

3.3.6 Training objectives: CropYieldNet

We have used standard mean square error MSE and contrastive loss as training objectives

for regression and contrastive learning, respectively.

Contrastive Loss: The revival of studies in contrastive learning has made major advance-

ments in self-supervised representation learning [82]. We applied batch-wise N-pair con-

trastive loss to learn the mutual spatiotemporal patterns in different representations of

the same surface reflectance and soil data instance. Two different representations of S̃R

and S̃D are created by varying the dropout probability with 0.1 in SRE and SDE, re-

spectively. It is done to create the positive pair for the instance (anchor). Corresponding

negative pairs are selected from a set of other samples in the mini-batch. The working

principle of contrastive learning is to pull the positive pairs closer to the anchor and push

negative pairs away from it. The mathematical formulation of the process is given below.

S̃Ri1 = SRE(SRi, dp1) (3.18)

S̃Ri2 = SRE(SRi, dp2) (3.19)

where SRi is the set of surface reflectance data for a county i for T, dp1 and dp2 are the

dropout probabilities (dp1 ̸= dp2). We will calculate the dot product between all the

samples in one batch of size k. Let’s say S̃Ri1 as the original representation and S̃Ri2 as

augmented, i ranges from 1 to k. For each, S̃Ri1, there is only one positive pair in S̃Ri2

and all other 2k-1 are negative pairs.
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pos = S̃Ri1.dot(S̃Rj2), say i = j (3.20)

neg = otherwise (3.21)

Calculating the contrastive loss using the following equation:

CL1 = − log[
exp(pos/τ)∑k
i=1 exp(

neg
τ
)
], i ̸= k (3.22)

where pos and neg is the similarity between positive and negative pairs, respectively for

surface reflectance data, τ denotes the temperature constant which helps in maintaining

the gradient for the optimization process. We have taken τ = 27.17 after hyper-parameter

tuning [83].

Similarly, contrastive loss is calculated for soil data:

CL2 = − log[
exp(poss/τ)∑k
i=1 exp(

negs
τ

)
], i ̸= k (3.23)

where poss and negs are the similarities between positive and negative pairs, respectively

for soil data.

Mean squared error (MSE): We have used the standard mean squared error (MSE)

function as the loss function for regression. The formula for MSE is given below where

yi depicts the actual yield, ŷi denotes the predicted yield for the county for the year, and

N denotes the number of counties considered for each crop.

MSE =
N∑
i=1

(y − ŷi)
2

N
(3.24)

The total loss L for the model is:

L = CL1 + CL2 +MSE (3.25)
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3.3.7 Experimental setup for CropYieldNet

The implementation is done using Pytorch open source library in Python. A30 GPU

server with 24 GB of VRAM is used to run the experiments. Hyperparameter tuning is

done using Stochastic Gradient Descent with a learning rate of 0.0001 and momentum

of 0.7. The hidden dimensions for LSTM in our baseline model are taken as 30. The

sequence length of LSTM changes with the temporal resolution of the satellite and du-

ration (T) considered for time series. If the time series is considered for the entire year

(Y)/padded crop cycle (PCC), then T takes values 46/34, 23/15, and 37/25 for MODIS,

Landsat-8 and Sentinel-2, respectively. We have used 5 and 3 years of data for training

for Landsat-8 and Sentinel-2, respectively, and 2 (2019 and 2020) years of data for test-

ing. To predict the yield for N th year, training is done till (N − 1)th year. For example,

to predict for 2019, training is done from 2014-2018 and 2016-2018 for Landsat-8 and

Sentinel-2, respectively. To predict yield for 2020, training is done till 2019.

3.3.8 Models for comparison: CropYieldNet

We compare our model (CYN) with three existing models CNN [43], CNN+GP [43],

and CNN+LSTM [44], the first two of which uses only surface reflectance data and the

third uses soil data with surface reflectance data. These models are trained and tested

for different crops, locations, and time duration. However, we have used the data for the

same locations and time duration in all the models for a fair comparison. The experiments

for CNN and CNN+GP are performed only on surface reflectance data as the model

is incapable of taking any other data as input. Similarly, CNN+LSTM can only take

surface reflectance and soil data as input. The models CNN, CNN+GP, and CNN+LSTM

use Adam optimizer for hyper-parameter tuning with learning rates of 0.001, 0.001, and

0.00001, respectively.

In addition to this, we have some of the variants of CYN listed below:

CYN Variants: We consider a few variants of CropYieldNet, CYN, to evaluate the sig-

nificance of its different modules:
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BCYN: We call our baseline of CYN as BCYN which does not have a depth-level selec-

tion module and contrastive learning. Soil data processed by SDE to learn information

across bins is directly input to LSTM. Only one loss MSE is used for learning.

BCYN SDM: This model utilizes the DSM module exploiting the depth-variant informa-

tion in soil data with BCYN.

CYN: This is our final model which makes use of all the advancements such as contrastive

learning and DSM with BCYN.

3.3.9 Results and Discussion: CropYieldNet

Through the first set of experiments carried over the US counties and Indian districts,

given in Table 3.7 and 3.8, respectively, we make the following observation:

• All the methods including baselines, CYN, and its variants show that RMSE is consid-

erably lesser for both the crops when times series length is taken as padded crop cycle in

comparison to the whole year length. However, this reduction in RMSE is larger for base-

lines for MODIS data than that of Landsat and Sentinel Data. This is because MODIS

data is larger and has better temporal resolution.

• The impact of selecting the appropriate depth for soil attributes (adding SDM to BCYN)

overtaking soil attributes at all depths as different attributes is clearly visible in Table 3.7.

The maximum % improvement of BCYN SDM over BCYN is achieved for Sentinel-

2 (S-2) which is 7.56 and 8.07 for corn and soybean, respectively for the US. Similar

patterns are observed for India with an improvement of 4.05% in corn and 13.49% in

soybean (Table 3.8).

• It can also be observed from Table 3.7 and 3.8 that our final model CYN shows im-

provement over all the variants and existing models for both crops for all regions. The

improvement is maximum for MODIS and minimum for Landsat-8/Sentinel-2. This is

because of the temporal resolution of the satellites.

• On comparing our model CYN and its variants with the existing models, we observe

that CYN outperforms for all crops and regions (US and India) for all satellite data. For

example, the RMSE achieved for soybean in the US using Landsat-8 data is 7.370 bu/ac
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Table 3.7: RMSE (bu/ac) achieved by baselines, CYN and its variants with yearly and
PCC data from different satellites for US

Corn (US)
M16 M7 L-8 S-2

Model Y PCC Y PCC Y PCC Y PCC
CNN [43] 30.08 27.169 31.345 28.673 24.619 24.617 27.766 26.997
CNN+GP [43] 29.857 28.204 32.083 30.165 24.365 23.881 31.366 31.049
CNN+LSTM [44] 24.565 23.586 26.926 27.634 23.931 23.632 26.36 25.477
BCYN 24.379 23.069 26.197 25.638 23.296 23.253 24.426 24.356
BCYN SDM 21.754 21.717 25.854 25.12 21.861 21.84 22.624 22.513
CYN 21.545 21.505 21.595 21.517 21.834 21.819 22.533 22.459

Soy (US)
M16 M7 L-8 S-2

Model Y PCC Y PCC Y PCC Y PCC
CNN [43] 14.8 12.436 10.861 10.696 8.679 8.346 10.102 9.679
CNN+GP [43] 10.303 10.115 8.911 8.592 8.561 8.343 8.737 8.383
CNN+LSTM [44] 10.028 9.956 10.472 9.998 8.412 8.37 11.613 10.956
BCYN 9.248 9.212 8.302 8.262 8.446 7.794 8.631 8.372
BCYN SDM 9.167 9.122 7.973 7.97 7.564 7.476 8.059 7.969
CYN 8.379 8.166 7.898 7.895 7.484 7.37 7.972 7.964

and this is approximately 11% more accurate than all three competing models. CYN

obtained RMSE value for soybean in India as 9.840 bu/ac and this is more precise than

CNN, CNN+GP, and CNN+LSTM model by 29.79%, 13.75%, and 37.06%, respectively.

We can see the same patterns in results for corn in both regions.

Varying number of bins for satellite data: We experiment for observing the be-

havior of our model on varying the number of bins (B) for surface reflectance data. The

experiments are performed for 32, 64, 128, and 256 bins. Table 3.9 shows the results

obtained by CYN for corn in the US using Landsat-8 data. It is clear that RMSE achieved

for more number of bins makes the model converge faster with marginal improvement

in prediction accuracy. The data with more bins will have higher dimensions leading to

accuracy improvement. However, the best reduction is obtained when the number of bins

is increased to 64 from 32. Similar behavior is observed for different satellite data and

for Indian regions. Thus, all the results are taken with histograms of 64 bins.
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Table 3.8: RMSE (bu/ac) achieved by baselines, CYN and its variants with PCC data
from different satellites for India

Corn (IN) Soy(IN)
Model M7 L-8 S-2 M7 L-8 S-2
CNN [43] 20.03 15.145 17.645 15.219 14.016 14.848
CNN+GP [43] 18.224 15.243 16.736 12.291 11.41 11.837
CNN+LSTM [44] 17.765 15.585 15.64 12.022 15.636 13.37
BCYN 15.445 15.008 15.535 9.817 10.268 11.335
BCYN SDM 15.386 14.626 14.906 9.816 9.877 9.805
CYN 15.307 14.599 14.852 9.802 9.864 9.795

Table 3.9: RMSE obtained for corn in US using Landsat-8 using histograms with different
number of bins

#Bins RMSE #Iterations
32 21.9607 32000
64 21.81921 16000
128 21.79979 11000
256 21.78927 7500

Significance of Data Augmentation (DA): Table 3.10 shows RMSE and correspond-

ing % improvement in RMSE with respect to the predictions without DA techniques to

see the impact of DA techniques applied on training data from Landsat-8 and Sentinel-2.

It is evident from the table that DA has significantly reduced the error in yield prediction.

The best results are obtained by CYN when data is augmented using both inversion and

temporal irregularity techniques. Data augmentation has worked the best for Sentinel-

2 irrespective of crop and location. For example, the best RMSE obtained for corn in

India is 11.328 bu/ac on applying both DA techniques on Sentinel-2 data. Data augmen-

tation showed the maximum percentage improvement of 23.2% for Sentinel-2, followed

by Landsat-8 with 22.09%, and the least improvement is seen for MODIS with 18.99%.

These results also prove our hypothesis that the satellites with high spatial resolution can

outperform even with limited data.
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Figure 3.9: Error in In-season Yield Prediction

Table 3.11: Comparison of In-season yield prediction for corn in India by different mod-
els using Sentinel-2 data

Model CNN[43] CNN+GP[43] CNN+LSTM[44] CYN
T-5 18.106 17.488 19.139 15.409
T-4 17.929 17.313 17.135 14.402
T-3 17.597 17.106 16.678 12.892
T-2 16.134 16.93 16.541 12.387
T-1 15.925 16.705 16.124 11.781
T 15.194 15.588 15.408 11.328

In-season prediction: All the results given till now are end-of-season predictions.

We have modified CYN to predict yield at multiple in-season timestamps for a crop.

Also, we have captured in-season predictions for other existing models by limiting the

data input to a smaller number of timestamps. The results for early prediction for corn

in India using Sentinel-2 are given in Table 3.11 and the corresponding percentage error

is shown in Figure 3.9. As expected, the prediction accuracy improves as we approach

towards harvest time. CYN predicts the yield at timestamp T-5 with an error of 0.71%

wrt the prediction at timestamp T which is an order lower than 19.17%, 12.18%, and

24.21%, obtained by CNN, CNN+GP, CNN+LSTM, respectively.

Analyzing models for generalization capability: We have analyzed our model for

its generalization capabilities to learn from data of different crops or regions. Cross-crop/

83



Chapter 3

cross-region training is required to predict the yield using CYN. The results are given in

Table 3.12 for Landsat-8 and Table 3.13 for Sentinel-2.

Table 3.12: Comparison of generalizable capability of CYN with other existing models
for Landsat-8
Corresponding %age change in RMSE is given in ()

Soybean (US)
Model Inverse TS Cross-Crop Cross -region
CNN [43] 8.259 16.092 (48.64) 10.874 (23.99)
CNN+GP [43] 6.342 9.589 (17.97) 9.886 (20.43)
CNN+LSTM [44] 8.103 12.917 (36.13) 10.482 (21.3)
CYN 6.210 6.414 (3.01) 6.353 (2.08)

Soybean (India)
CNN [43] 13.820 26.379 (47.61) 14.120 (2.12)
CNN+GP [43] 10.527 16.563 (36.44) 10.614 (0.82)
CNN+LSTM [44] 14.012 17.579 (20.29) 14.171 (1.12)
CYN 7.711 8.200 (5.97) 7.769 (0.75)

Corn (US)
CNN [43] 23.804 28.462 (16.37) 37.243 (36.09)
CNN+GP [43] 22.336 24.755 (9.77) 25.281 (11.65)
CNN+LSTM [44] 23.974 25.387 (5.57) 25.612 (6.4)
CYN 18.692 18.819 (0.68) 18.700 (0.04)

Corn (India)
CNN [43] 14.933 16.836 (11.31) 25.390 (41.19)
CNN+GP [43] 14.757 16.254 (9.21) 22.133 (33.33)
CNN+LSTM [44] 14.936 17.603 (15.15) 28.076 (46.8)
CYN 11.409 11.490 (0.71) 11.487 (0.68)

Cross-crop training: We combine the data for two crops, corn, and soybean, sharing a

similar crop cycle. The major challenge in combining the data for different crops is the

different ranges of their target yield. To handle this challenge, we have normalized our

target yield using min-max normalization before combining the data and denormalizing it

at the prediction end. In order to distinguish between the crops, we add crop as a feature.

It is necessary to do this so that anomalies generated can be handled. An anomaly will

occur if two crops are grown in the same location (county or district).
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Table 3.13: Comparison of generalizable capability of CYN with other existing models
for Sentinel-2
Corresponding %age change in RMSE is given in ()

Soybean (US)
Model Inverse TS Cross-Crop Cross -region
CNN [43] 9.485 23.771 (60.1) 19.842 (52.2)
CNN+GP [43] 8.116 9.884 (17.89) 10.228 (20.65)
CNN+LSTM [44] 9.417 14.750 (36.15) 19.276 (51.15)
CYN 6.190 6.392 (3.17) 6.268 (1.25)

Soybean (India)
CNN [43] 14.788 33.441 (55.78) 19.623 (24.64)
CNN+GP [43] 11.740 16.978 (30.85) 20.240 (42)
CNN+LSTM [44] 13.169 31.214 (57.81) 15.232 (13.54)
CYN 7.679 8.089 (5.07) 7.690 (0.14)

Corn (US)
CNN [43] 25.947 35.058 (25.99) 31.633 (17.98)
CNN+GP [43] 27.983 33.009 (15.23) 30.158 (7.21)
CNN+LSTM [44] 25.317 37.332 (32.18) 33.815 (25.13)
CYN 19.356 20.752 (6.73) 19.432 (0.39)

Corn (India)
CNN [43] 15.677 29.511 (46.88) 31.396 (50.07)
CNN+GP [43] 15.942 25.324 (37.05) 30.905 (48.41)
CNN+LSTM [44] 15.610 19.643 (20.53) 28.260 (44.76)
CYN 11.336 11.738 (3.43) 11.351 (0.13)

Cross-region training: To study the behavior of models when trained on the data from

different regions growing the same crop, we use US (county level) and India (district

level) data. For cross-region training, the key points that need to be taken care of include

the same measuring unit of the target yields, the same duration of the crop cycles, and

padding a few timestamps to compensate for differences in crop cycles.

Tables 3.12 and 3.13 clearly show that the RMSE increases for all the models when

trained across crops and regions. However, the increase in RMSE is minimal for the

proposed model CropYieldNet, CYN. In contrast to this, the existing models drastically

fail to precisely predict the crop yield in either of the scenarios. For example, the increase
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in RMSE for corn in the US using models trained on both corn and soybean in the US on

Landsat-8 data is 16.37%, 9.77%, 5.57%, and 0.68% for CNN, CNN+GP, CNN+LSTM,

and CYN, respectively. On the same line, when the models were trained on corn for both

the US and India and tested on corn in the US, the corresponding increases in RMSE

were 36.09%, 11.65%, 6.40%, and 0.04%, respectively. Similar patterns were observed

with Sentinel-2 data.

3.4 Main Contributions
In this chapter, we have focused on analyzing the impact of using conventionally collected

data and satellite data and validated the results for the crop yield prediction problem.

Also, we have focused on correct and efficient modeling of the CYP problem. The major

contributions of the chapter are:

• The proposed model YieldPredictNet (YPN) models CYP as a spatiotemporal prob-

lem using simple numeric data and integrates time series with static data.

• We have introduced two modules for handling soil parameters: first an attribute

selection unit for soil parameters to minimize the impact of the irrelevant and noisy

features on crop yield prediction and second unit to select the appropriate depth for

the soil factors that are collected at varying soil depth at different time steps of the

crop. These modules are used in both models.

• We have modified the models to perform early in-season predictions for a crop

yield at multiple stages with comparable accuracy at harvest time prediction.

• We performed extensive comparative analysis on MODIS, Landsat-8, and sentinel-

2 data using CYN incorporating data from different modalities, trained on multiple

regions, and trained on multiple crops.

• We have also given data augmentation techniques for satellite histogram time series

to overcome the problem of data scarcity and more precise prediction of the crop

yield.
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3.5 Summary

In this chapter, we have worked with three modalities of data viz. meteorological, soil,

and surface reflectance bands. For this, we developed two models YieldPredictNet (YPN)

and CropYieldNet (CYN). YPN works with meteorological and soil data collected in a

conventional (not remote sensing) way. CYN uses conventionally collected meteorolog-

ical data along with satellite-based soil data and surface reflectance bands for CYP. We

also tried to appropriately model the crop yield prediction problem as a spatiotemporal

problem. our approach consolidates many effective design decisions such as 1) handling

spatiality by clustering the locations based on meteorological and soil characteristics; 2)

using a padded crop cycle to handle any discrepancy in sowing and harvesting time of

the crop at various locations; 3) using data at weekly granularity for regular monitoring

of meteorological conditions. We introduced two modules viz. attribute selection module

and depth selection module for soil attributes. The attribute selection module selects the

appropriate depth-invariant attributes and the depth selection module is used to select the

appropriate depth of the soil attribute captured at different levels throughout the crop cy-

cle. Through extensive experimentation, we can make certain recommendations that can

prove to be useful for any crop yield prediction system. The recommendation includes

the incorporation of as many ”relevant” meteorological attributes as possible. Selecting

relevant soil attributes (through FAS) and appropriate depth levels (through SDM) for soil

factors plays an important role in improving the prediction accuracy and varies through-

out the crop cycle. We also recommend clustering counties to capture spatial patterns.

We retrained our model with cluster-specific data to improve the model. The experi-

ments show that the best-suited granularity is weekly and the length of the time series is

a padded crop cycle.

The motivation for using recently launched satellites like Landsat-8/9 or Sentinel-2

is their capability to capture high spatial resolution images. However, this leads to the

problem of data scarcity which we have addressed using data augmentation techniques.

Our extensive experimentation shows the efficacy of our model presented in the chapter.
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We also show that when working with satellite data, we can achieve better results even

without explicitly handling the spatiality.

The work carried out in this chapter helped us to identify the research gaps more

precisely and to decide the future course of the thesis.
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PatchNet: Efficient Representation

learning of high-spatial resolution

Satellite Image Time Series

1

4.1 Introduction
Popular satellite systems which make their data publicly available include Landsat-8/9

[40], Sentinel-2 [41], and MODIS [10]. The last decade has witnessed a significant im-

provement in sensor technology leading to the availability of higher spatial and temporal

resolution satellite images. Many applications like predicting crop yield, snow cover,

solar energy, forest fire, etc. require high spatial resolution satellite image time series

(HSRSITS) data.

As compared to low spatial resolution satellite image time series (SITS), the amount

1The work presented in this chapter has resulted in the following publication and patent:

• Poonam Goyal, Arshveer Kaur, Arvind Ram, and Navneet Goyal, ”Efficient Representation Learn-
ing of Satellite Image Time Series and Their Fusion for Spatiotemporal Applications”, in AAAI
Conference on Artificial Intelligence (AAAI 2024).

• Provisional Patent Filed: 202411011144 dated 17 February 2024.
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of data associated with HSRSITS increases manifolds, leading to a computing bottle-

neck. For example, the combined amount of 7 years’ data considered for three applica-

tions (Crop yield prediction, snow cover prediction, and solar energy prediction) span-

ning 2000 US counties is approximately 2.1 TB for MODIS (spatial resolution 500m)

and 10.0 TB for Landsat 8 (spatial resolution 30m), respectively. The huge amount of

data processing required seriously impedes the democratization of the use of satellite

image technology for various applications. In this chapter, we address the problem of

impractical computational requirements for processing HSRSITS.

We propose PatchNet which learns prominent patterns in HSRSITS by doing a spatial

patch-based partial traversal, e.g., (1/p)th spatial processing of SITS using the idea of

beam search and attention mechanism for learnable patch selection as shown in Figure

4.1. The learnable patch selection mechanism eliminates the need for full processing of

SITS, thereby reducing the amount of processing by a factor of p with some additional

overheads and still achieves state-of-the-art results for end tasks. Existing methods deal

with the processing challenges by transforming the images into histograms [43, 44, 58,

84]. A few researchers have also tried to transform images into single-value numeric

spectral reflectance indices [39, 85–87]. Both these approaches suffer from significant

spatial information loss leading to degraded performance.

4.2 Related Work
Satellite data: Satellite systems like AVHRR [88], PlanetScope [89], CartoSat-1 [90],

MODIS [10], Landsat-8/9 [40], Sentinel-2 [41], and others are orbiting around the earth

and collecting data at varying spatial, temporal and spectral resolutions. AVHRR has a

coarse spatial resolution of 1km while PlanetScope, CartoSat-1 have a high resolution of

2-3m but their data is not freely available. Popular satellite systems are MODIS, Landsat-

8/9, and Sentinel-2 due to their publicly available data which can be used in different

real-world applications like disaster management, urban planning, agriculture, climate

studies, etc. MODIS launched in 1999 provides data at a spatial resolution of 250-500m

with a revisit time of daily or 8 days depending on the product. Landsat-8/9, launched in
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Figure 4.1: Partial Traversal of SITS

2013/2021, has a spatial resolution of 30m with a revisit time of 16 days, and Sentinel-2

launched in 2015 has a spatial resolution of 20m with a revisit time of 10/5 days.

Spatiotemporal Applications: We consider three applications viz. crop yield prediction,

snow cover prediction, and solar energy prediction. Accurate crop yield prediction is

crucial for ensuring food security around the globe. Researchers have tried to predict

crop yield with climate data [59, 64, 91, 92] using traditional machine learning models.

These models lack in capturing complex relationships between meteorological attributes

and yield. A few researchers applied deep learning models and incorporated genotype

[65, 67] and/or soil [44, 93] information. Recent studies attempt to include physics-

guided patterns [94], and topological features [95] along with climate data. Research

shifted from meteorological data to the use of satellite image data after getting easy ac-

cess to it. However, it is difficult to process image data due to its high volume. Therefore,

vegetation indices are directly computed from MODIS product MOD13Q1 for a loca-

tion. Researchers [44, 58] and [43] converted MODIS images into histograms and used

histogram time series to predict crop yield. Authors [84] presented a deep learning model

for MODIS, Landsat, and Sentinel histogram time series to predict crop yield and high-

lighted the importance of high spatial and high temporal resolution of data required for
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the application. However, researchers faced data scarcity for training models using high-

resolution satellites launched in the last few years.

The other two applications have gained interest only recently, and very little work

is available in the literature. Support vector machine is applied to atmospheric-oceanic

dynamics data to predict snow cover. However, satellite technology has a great advantage

for collecting data on inaccessible and hazardous regions as compared to proximal sensors

and UAV-mounted sensors [96]. Solar energy prediction is done to find a suitable location

for the installation of solar plants and reduce the dependence on fossil fuels for economic

development. Authors [97] predicted solar energy using Pearson correlation and random

forest on meteorological data. Other researchers [98–100] employed climate attributes

such as daily minimum and maximum ambient temperature, cloud cover, and day length

to predict daily global solar radiation. In recent studies, authors Vico et al. [101], Barrera

et al. [102], and Lardizabal et al. [103] employed deep neural networks for daily solar

energy prediction using various attributes. The existing studies do not make use of SITS.

4.3 Study Area and Data
We considered the top producers of corn and soybean from the United States for CYP.

The crop yield labels are collected from Quick Stats [80] compiled by the United States

Department of Agriculture (USDA). For SCP, we have considered the counties which

experience average snowfall of more than 250 inches per year. The percentage of the area

covered under snow is obtained from the MODIS product MOD10A1 [104]. For SEP, we

considered 5 US states.

4.3.1 Data used

We have taken around 2000 counties from different states of US for all applications con-

sidered highlighted in Figure 4.2.

Crop Yield Prediction: We have taken top producer counties of corn and soybean

from states - Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota,

Mississippi, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Tennessee, and
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Figure 4.2: Study area for different applications

Wisconsin.

Snow Cover Prediction: We consider 300 counties from states experiencing annual

snowfall of more than 250 inches. The counties lie in the states of Washington, Oregon,

Utah, California, New Hemisphere, and Colorado.

Solar Energy Prediction: We consider 275 counties from the states- Illinois, Indiana,

Iowa, Kansas, and Kentucky.

Meteorological Data: Along with surface reflectance data, we have also used mete-

orological data as an additional modality that has a direct impact on the considered spa-

tiotemporal applications. Though weather data is available in the form of images through

various MODIS products, but the data is available only for four weather attributes - the

land surface temperature at night time, precipitation and land surface temperature at day

time, vapor pressure, and precipitation. So, we have used meteorological data [105] in a

numeric form for 12 attributes collected at a temporal resolution of one day.

Processed Data Volume: The data volume processed for each of the satellites is different
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due to their different resolutions. For one MODIS time series for one year is 200× 250×

5(#bands) × 46(#timestamps) pixels which is ≈ 150MB whereas for one Landsat-

8 time series it is 2000 × 2000 × 5(#bands) × 23(#timestamps) pixels that makes

data volume of ≈ 700MB. We have used data for 7 years from 2014-2020. In total this

makes, total data processed ≈ 2.1TB for MODIS and ≈ 10TB for Landsat-8. However,

we removed the data for counties where the ground truth labels were missing, or if data

was not captured by one of the satellites. After performing the entire data cleaning, the

final collective data used in three applications is approximately 1.8TB for MODIS and

≈ 9.6TB for Landsat-8.

4.3.2 Data Preparation

Since the satellite data is captured as raw multispectral images. It needs pre-processing

before using it for the end task. The data preparation steps are given in Appendix A.

4.4 Problem Formulation
We have considered three spatiotemporal forecasting problems viz. CYP, SCP, and SEP.

The goal is to predict ŷc,zϵ {crop yield, percentage of area under the snow, and solar

energy produced} for a county c at prediction time granularity z which is a year, a month

and a fortnight for CYP, SCP, and SEP, respectively. Let input data set of TS be Xz =

{[x1
1, x

2
1, ..., x

t
1], [x

1
2, x

2
2, ..., x

t
2], ...[x

1
z−1, x

2
z−1, ..., x

t
z−1]}, where t represents the number of

timestamps depending on the application and the satellite. For example, for soybean crop

t=15 and t=30 for Landsat-8 and MODIS, respectively.

4.5 Proposed Model: PatchNet
PatchNet is designed to encode high spatial resolution SITS which is otherwise imprac-

tical to process. It works on image times series iteratively for multiple patch time series

(patchTS) and uses the idea of a beam search for optimizing the patch selection process.

A patch is selected in the spatial dimension and patchTS consists of entire time series for

the patch. The architecture of the PatchNet is given in Figure 4.3.
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We divide the image time series into a spatial virtual grid, resulting in multiple patchTS,

one for each cell. We now onwards refer to patchTS as a patch. The patches are processed

using TSE and their representations are passed to the Patch selection module (PSM). PSM

uses attention score to identify top ’k’ patches that are then forwarded to the Neighbor

Selector (NS). NS determines the unprocessed neighboring patches of top ’k’ patches and

also creates a list of patches to be processed in the next iteration. The process continues

till a fraction (1/p) of the SITS is processed. The enhanced patch representations obtained

from PSM are passed to the embedding generation module which outputs the embedding

of the entire SITS learned by the network in multiple iterations. The pseudo-code of the

process is given in Algorithm 1.

Algorithm 1 PatchNet
Input: SITS
Output: Embedding of SITS
initialize: m = 0 and
|P | = total patches in SITS

0: while (m) ̸= |P |/p do
0: select n random patches
0: R = TSE(patchTS) ∀ n patches // apply TSE to get linear representation of n

patches
0: l, l̄, R̃ = PSM(R) // list of top ’k’ patches and enhanced patch representations
0: n′ = NS(l) // NS gives neighbors of each patch in l
0: Select n− n′ random patches
0: m = m+ n
0: EL = EG(R̃)

0: return EL =0

4.5.1 Time Series Encoder (TSE)

TSE gives a linear representation of the input patch. It consists of two submodules

3DCNN network and a Spatial Attention Mask (SAM) followed by a linear layer.

4.5.1.1 3DCNN Module
3DCNN [106] consists of three convolution layers having 10, 15, and 20 filters with

zero padding. Each convolution layer is followed by a 3D-max pool layer. 3DCNN

leverages both spatial and temporal features simultaneously and learns more informative
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representations of the volume.

4.5.1.2 Spatial attention mask (SAM)

We followed [107] and modified it for our problem. It has 6 2D convolution layers, each

followed by a batch normalization layer to reduce the internal covariate shift and model

overfitting. The skip connections are used after every two convolution layers to improve

the information flow within the network and mitigate the problem of vanishing gradient.

Global average pooling is done by two pooling operations ’average pooling’ and ’max

pooling’ applied along the channel axis and are concatenated to create an efficient feature

descriptor. A convolution layer is applied over the feature descriptor to get the highlighted

regions.

4.5.2 Patch Selection Module (PSM)

We utilize the self-attention mechanism (given by equations 4.1 and 4.2) to focus on the

most important k patches from n input patches. PSM learns the enhanced representations

of all the patches across iterations using the following process and gives the score of each

patch based on its contribution to the end task. The input to PSM is R = {r1, r2, ...rn},

where n is the total number of patches and ri is the linear representation of each patch

after being processed by TSE. The mathematical representation of the mechanism is given

below:

Query (Q), Key (K), and Value (V) for self attention are:

Q = R× wq, K = R× wk, V = R× wv (4.1)

where wq, wk, and wv are weight matrices for Q, K, and V, respectively.

A = softmax(QKT ) (4.2)

where A = {a1, a2, ...., an} is an attention score matrix for all the n patches, and each as

is of size b equal to size of patch embedding.

To get the collective score i.e. contribution of the patch towards the end task is calcu-
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lated as:
S =

b∑
i=0

ais s = 1 to n (4.3)

l, l̄ = top k(S) where l + l̄ = n (4.4)

where top k is the function that returns a list, l, the indices of top k patches and a list, l̄,

remaining patches to be used in the next iteration of the selection process.

PSM also helps in enhancing the patch representations R as:

R̃ = S × V (4.5)

4.5.3 Neighbor Selector (NS)

NS finds the untraversed neighboring patches of all k patches. For a patch pij , set of

neighbors is {pef − pij}, e = i − 1, i, i + 1 and f = j − 1, j, j + 1. Selecting the

neighboring patches ensures that focus is maintained near the hotspots and this leverages

the geospatial information to boost the prediction. We select a few untraversed random

patches for the next iteration to make the number of patches n.

4.5.4 Embedding Generation (EG)

EG is a two-level process and consists of two linear layers. The first layer is used to get the

representation of each patch, pij in an iteration. The embeddings of all selected patches

across iterations are then concatenated and passed to the second linear layer which gives

a representation of the entire SITS.

4.6 Models for Comparison
We compared PatchNet with models which work on histogram time series of satellite

data. We considered four existing CYP models CNN [58], CNN+GP [58], CNN+LSTM

[44], and CYN [84] working on histogram TS to compare with the proposed PatchNet. A

separate histogram is created for each reflectance band by aggregating the pixel intensities

of the image into fixed-length bins at every timestamp.
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The authors [43] applied CNN and CNN+GP models on histogram time series of

reflectance bands for crop yield prediction. They model CYP as a static problem by

using CNN models. The models use only surface reflectance data and do not exploit the

temporal dependency in the data.

Researchers in [44] used CNN+LSTM over MODIS reflectance band histogram time

series and only CNN over soil histograms to model soil as static data, but ignores the

depth-sensitive soil information. It models CYP as a temporal problem using soil data

and surface reflectance TS. The authors processed raw features using 2DCNN and used

LSTM to model the sequence embeddings.

CYN [84] models CYP as a spatiotemporal problem and used soil, and meteorological

data along with surface reflectance histograms. It handled the depth-sensitive information

of soil as soil data is modeled such that the required depth level is selected for each soil

attribute at every timestamp of the crop cycle.

All these models work for different locations, and time duration. However, we used

the data for the same locations and time duration in all the models for a fair comparison.

To the best of our knowledge, there are no existing models working on histograms for the

other two applications.

4.7 Experimental Setup

We performed experiments using Pytorch 1.11.0 and CUDA 11.7 on an A100 GPU server

with 80 GB RAM. A model is trained for 50 epochs with a batch size of 8 using Adam

optimizer with a learning rate η. We have trained the model with 5 years of data (2014-

2018) and, 2 years (2019 and 2020) for testing. To predict the output for the zth year,

the training is conducted until the (z − 1)th year. For CYP, η = 0.0005 for a single

modality (TSE and PatchNet) and η = 0.000005 for FuSITSNet. In case of SCP and

SEP, η = 0.00001 for all three models.
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4.7.1 Evaluation Metric

We have considered root mean square error (RMSE) for the performance evaluation of

the proposed model for the three applications. RMSE measures the error’s root mean

squared magnitude and penalizes the larger errors compared to the small magnitude er-

rors. The higher RMSE depicts that the model encounters many large-magnitude errors.

The formula for RMSE is given as:

RMSE =

√√√√√√
N∑
i=1

(yc,z − ŷic,z)
2

N
(4.6)

where N is the total number of {c, z} pairs, c is the county, z is year, month, or fortnight

for CYP, SCP, or SEP, respectively.

4.8 Results and Discussion

Significance of using SITS over histograms time series: The first set of experiments

are conducted to compare the proposed model PatchNet with existing CYP models using

histogram TS. Table 4.1 presents RMSE (in bu/ac) achieved for corn and soybean yield

prediction using various models. It can be observed from the table that for corn yield pre-

diction RMSE reduced by ≈ 12% and 10% with that of CNN and CNN+GP, respectively.

These two models use only surface reflectance histograms. The reduction in RMSE is

9% for the CNN+LSTM model which also incorporates meteorological data. CYN uses

both meteorological and soil data along with surface reflectance histograms. PatchNet

outperforms CYN even without using any other data. However, the error is reduced by

an additional 6% when meteorological data is incorporated into PatchNet.

Significance of Number of bands: To create the baseline, we conducted a few prelim-

inary experiments using the histogram data to analyze the impact of bands being taken.

The RMSE obtained using all the bands of Landsat-8 time series for corn yield predic-

tion is 24.064bu/ac, and using 5 bands common in almost all satellite systems, RMSE
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Table 4.1: Comparison: PatchNet vs histogram models

Model Corn Soybean

CNN[43] 24.617 8.346

CNN+GP[43] 23.881 8.343

CNN+LSTM*[44] 23.632 8.370

CYN**[84] 21.819 7.370

PatchNet 21.469 7.290
PatchNet+M 20.631 6.963

*uses additional soil data ** uses both meteorological & soil

obtained is 24.3421bu/ac. A similar pattern is observed in other cases as well. There is

not much difference in the error, when we carried out the experiments using only 5 bands

i.e. Red, Blue, Green, NIR, and SWIR. These bands contribute the maximum in detecting

vegetation and various other land covers. The spectral reflectance indices or commonly

known as vegetation indices used for monitoring agriculture, water stress etc. are all de-

rived from only these 5 bands. So, we can say that these five bands are sufficient for the

selected applications. So, we have taken only common bands i.e. Red, Blue, Green, NIR,

and SWIR for all the experiments.

Significance of patch selection mechanism: We conducted experiments without using

PSM and NS in PatchNet and instead replaced them with random patch selection. RMSE

achieved by random selection is 24.29 bu/ac and 9.98 bu/ac for corn and soybean yield

prediction in comparison to 21.47 bu/ac and 7.29 bu/ac, respectively using PatchNet. It

is evident that there is a significant improvement in the model performance and PSM and

NS collectively work effectively to exploit the required hot spot features in the SITS and

eliminate the need to fully process it. Also, it suppresses the noise in the two modalities.

Significance of using Bits Precision: We tested the pipeline used in PatchNet based on

a random selection of n patches. RMSE (in bu/ac) obtained using float SITS is 24.764 and

10.416 for corn and soybean, respectively. In the case of using unsigned integer SITS,

the respective RMSE achieved is 24.912 and 10.514 bu/ac. The change in RMSE is less

than 1% in both cases. So, we converted the entire dataset into unsigned integer images

101



Chapter 4

as it reduced the storage space significantly. All the results presented in this chapter are

performed on unsigned integer SITS.
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Figure 4.4: Deciding p for (1/p)th traversal of SITS

Deciding (1/p)th traversal of SITS: The next set of experiments is performed for Patch-

Net to know the optimum number of patches for the traversal of Landsat-8 image time

series. Figure 4.4 shows the computation time required and RMSE curve for corn yield

prediction by varying p as 5,4,3, and 2 keeping the patch size of H ×H,H = 64. It can

be observed from Figure 3 that, there is an improvement of ≈ 6% in the performance of

the model when the traversed region p changes from 5 to 4, and RMSE did not change

much after that. However but the computation time required from p = 5 to 4 is almost

constant but it increases linearly after that.

We also experimented by changing the patch size to H = 128 for p = 4 and found

that RMSE reduced to 21.42 bu/ac which is just 0.2% as compared to that with patch

size 64, but the computation time required to process the patch size of 128 increased 1.5

times. To maintain the trade-off between the computation time and RMSE, we chose to

carry out the results by taking p = 4 and patch size H = 64.
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4.9 Main Contributions
The main contributions of the chapter are as follows:

• We introduce a novel model to efficiently process time series of high spatial reso-

lution satellite images. We propose PatchNet which only needs to partially process

the image time series using the concept of patches. The patch selection mechanism

recommends the most informative patches and achieves state-of-the-art results for

the end tasks considered.

• The proposed approach helps in the democratization of satellite technology.

4.10 Summary
We proposed a model to efficiently process the high spatial resolution satellite image

time series for earth observation applications. PatchNet is able to get the representation

of SITS by partial traversal. The learnable mechanism of patch selection has shown

superiority over a random selection of patches to get the SITS representation.

The experimentation shows that PatchNet outperforms the existing models working

with histogram time series of satellite data. By preserving spatial information and tempo-

ral dynamics, using image time series provides a richer representation of changes in the

Earth’s surface over time. This enables finer-grained analysis, facilitating precise iden-

tification of trends, patterns, anomalies, and more accurate monitoring of different earth

observation applications.
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Fusion of two Satellite Image Time

Series: Best of both worlds

representation learning

1

5.1 Introduction
Satellite systems are characterized by their varying spatial, temporal, and spectral reso-

lutions. MODIS has a moderate spatial resolution, which varies between 250 meters to

1 kilometer, and a revisit time of one day or 8 days. Despite having a satisfactory tem-

poral resolution, the coarse spatial resolution of MODIS renders it either unsuitable for

applications like urban planning and precision agriculture or imprecise for applications

like crop yield prediction, snow cover, etc. [108]. The later applications require data

1The work presented in this chapter has resulted in the following publications:

• Arshveer Kaur, Poonam Goyal, and Navneet Goyal, ”LSFuseNet: Dual-Fusion of Landsat-8 and
Sentinel-2 Multispectral Time Series for Permutation Invariant Applications”, in IEEE 10th Inter-
national Conference on Data Science and Advanced Analytics (DSAA 2023).

• Poonam Goyal, Arshveer Kaur, Arvind Ram, and Navneet Goyal, ”Efficient Representation Learn-
ing of Satellite Image Time Series and Their Fusion for Spatiotemporal Applications”, in AAAI
Conference on Artificial Intelligence (AAAI 2024).
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from higher-spatial resolution satellites. Landsat-8 and Sentinel-2 have a spatial resolu-

tion of 30m and 20m, with a revisit time of 16 and 10 days, respectively. Although these

satellites have a finer spatial resolution, their usability is often constrained by various

atmospheric effects, like clouds and shadows, which makes their temporal resolution ir-

regular and coarser. This increases the imprecision for applications such as the prediction

of crop yield, snow cover, etc. All these satellites either have a high spatial resolution or

finer temporal resolution but cannot achieve both simultaneously. Due to budgetary and

technological constraints, it is still not possible to capture satellite images with required

high spatial and temporal resolutions using a single publicly available satellite system

[109]. This necessitates the development of efficient fusion algorithms that combine high

spatial resolution images of one satellite system (with low temporal resolution) with high

temporal resolution images of another satellite system (with low spatial resolution), and

vice-versa.

NASA and the US Geological Survey (USGS) collaborated to create the Harmonized

Landsat Sentinel-2 (HLS) data product. HLS merges Landsat-8 and Sentinel-2 data to

offer reliable, and seamless data [110]. By utilizing reflectance bands from the two satel-

lites, temporal resolution can be significantly enhanced to 5 days. The spectral resolution

of the data is the same as that of Sentinel-2. However, the difference in spatial resolution

between the two datasets is not optimally exploited because the HLS data is generated

using the resampling approach proposed in [111]. As a result, HLS data provides high

temporal resolution with a lower spatial resolution of 30 meters [112].

HLS data has opened up the possibility of fusing data from different satellites to

achieve better resolutions. Data can be fused in many ways– pixel-level, feature-level, and

decision-level [113]. The pixel-level fusion requires mapping the corresponding pixels

in two images e.g. STARFM [27] which fuses the images obtained from MODIS and

Landsat-8. The limitation of this fusion technique is that it requires at least one pair of

images captured on the same day which is not possible in the case of Landsat-Sentinel

fusion. A few attempts are made to fuse the data from different sensors of the same

satellite [28–31] to produce high-spatial and spectral resolution imagery. A study uses a
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generative adversarial network (GAN) based super-resolution method to reconstruct the

synthetic Landsat images to match the spatial resolution of Sentinel-2 images [114]. Also,

performing the pixel-level fusion of these high spatial resolution satellites adds up another

challenge of storing and processing huge sizes of multi-spectral images. These models

are constrained by the requirement of availability of Landsat and MODIS images captured

on the same day and may also propagate existing noise. Moreover, the generation process

is slow. If we use the generative models to enhance the temporal resolution of SITS, it

will increase the amount of data twofold and would thus be computationally prohibitive.

The decision-level fusion entails integrating the extracted features from both satellites

to arrive at a single decision using voting or weighting methods [113]. The feature-

level fusion combines the features from both satellites to perform the end task. However,

in the name of feature-level fusion, the existing models [115, 116] have taken spectral

reflectance indices like NDVI, GNDVI, NDWI, etc. from two satellites to perform the

end task. Feature-level fusion allows us to handle the bottleneck of the two satellites

having completely different visiting days, and varying spatial and spectral resolutions.

In this chapter, we propose two fusion models- LSFuseNet and FuSITSNet. LS-

FuseNet performs a feature-level fusion of histogram time series of Landsat-8 and Sentinel-

2. FuSITSNet is a twofold feature-based fusion model which can be used to fuse any two

satellite image time series. We have applied it for Landsat-8 and MODIS SITS.

5.2 Related Work
To handle the resolution trade-off of satellite systems, spatiotemporal fusion is one of the

possible solutions. Fusion of the satellite data can be done at three different levels– pixel

level, decision level, and feature level.

Pixel-level fusion: STARFM [27] creates synthetic Landsat-like image at timestamp

t + 1 by fusing MODIS and Landsat images at time t. It is a linear model which selects

the neighboring pixels with similar spectral properties at the fine resolution and calculates

a weighted sum to calculate the final predicted reflectance values. STARFM is a strictly

pixel-based method and struggles to achieve satisfactory results in heterogeneous land-
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scapes and needs at least one pair of images captured on the same day. Other variants of

the method have also been developed but they also suffer from similar challenges. An-

other study uses a linear regression model on pixels to generate images [117]. NASA, in

its HLS data project, fused Landsat-8 and Sentinel-2 to create temporally denser images

with a spatial resolution of 30 meters. A model is introduced for the fusion of common

bands from Landsat-8 OLI and Sentinel-2 data using the upscaling and downscaling prin-

ciple along with a regression model [111]. Shao et.al. fused Landsat-8 and Sentinel-2

data using the super-resolution convolutional neural network at each band individually.

Wu et.al. [109] proposed an approach to simulate the coarse-resolution image on the

reference date with the help of a fine-resolution image. The approach was able to give

satisfactory results for MODIS-Landsat fusion, but the performance of the approach was

not up to the mark for Landsat-Sentinel fusion. Generative Adversarial Network-based

super-resolution method is used to predict the synthetic Landsat images having a spatial

resolution as that of Sentinel-2 images [114]. All these studies focused on the pixel-level

fusion of the high-resolution images of Landsat-8 and Sentinel-2 which limits their ap-

plicability on a large scale due to high memory and computational requirements. The

pixel-based methods blindly use noisy pixels in the fusion process, thus propagating the

noise in the neighboring pixels of the predicted image [118].

Decision-level fusion: The authors in [113] use the decision-level fusion method for

fusing the data from Sentinel-1 and Sentinel-2. The study focused on explicitly selecting

the features and observing their impact on crop type classification.

Generative Models: Given the limitations of pixel-based methods, learning-based ap-

proaches are gaining interest due to their flexibility and adaptability in capturing complex

relationships from the data without relying on predefined assumptions, like in STARFM.

Authors in [119] and [120] used downscaling and upscaling approaches to generate an

image having a spatial resolution of Landsat-8 with the help of a MODIS image. A few

attempts have been made to use advanced Generative adversarial networks (GAN) for

image generation. The model in [121] generates a Landsat image at time t using MODIS

and Landsat images at t and t−1, respectively. Similarly, [118] also used GAN to handle
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noise while generating a Landsat-like image using a MODIS image at timestamp t and

two Landsat images at t−1 and t+1. Because of the complex image generation process,

generative models have been applied to small-scale datasets having only a few locations

are considered for the study [121]. The applications under consideration require time

series at a high temporal resolution and interpolating images between two consecutive

images is inefficient and computationally expensive. Moreover, this approach increases

the data volume twofold when we generate images at mid-timestamps. Also, the gener-

ated images can increase the already existing noise in the original images.

Feature-level fusion: To overcome the computational problem, researchers tried to

fuse the data from two satellites by retrieving various spectral reflectance indices mak-

ing it computationally easy to work with, and named this feature-level fusion. Schreier

Jonas et. al [122] fused Landsat and Sentinel data with the help of MODIS data to per-

form the crop-specific phenomapping using NDVI values. Another study [115] focuses

on integrating the data from Landsat-8 and Sentinel-2 for yield prediction of sugarcane

using green normalized difference vegetation index (GNDVI) obtained from Landsat-8

and Sentinel-2. These methods were applicable to only specific applications as all the

vegetation indices are not applicable to all the applications.

Few studies have been carried out using HLS data. Pastick Neal et.al. [110] proposed

a regression approach for monitoring the land surface phenology. HLS data derived Nor-

malized Difference Vegetation Index (NDVI) values are compared with the NDVI values

captured using MODIS to evaluate the accuracy of the model. Similarly, another study

focuses on predicting wheat yield using the vegetation indices obtained from HLS data

[108]. Griffiths Patrick et.al. used a few red edge bands from HLS data for crop and land

cover mapping [74]. Although, HLS has the advantage of the harmonization of data and

the consistency in spectral bands as if the data were acquired by a single sensor [108].

But, HLS is more susceptible to cloud cover as compared to Landsat-8 and Sentinel-2 in-

dividually, and HLS data is not able to use the high resolution of Sentinel-2 as its spatial

resolution is limited to 30m.

In this chapter, we introduced two models LSFuseNet and FuSITSNet as a solution
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to overcome the limitations mentioned above. The models fuse the time series of two

satellites and can learn the features from the time series of varying spatial, temporal, and

spectral resolutions. The models incorporate advancements in multi-modal learning and

integration of heterogeneous data used in NLP/vision [123–125] to address the limitations

of using data from a single satellite and handle the challenges encountered while using

multi-modality data from two different satellites. We hypothesize that if the data from

the two satellites are modeled and fused appropriately it can achieve comparable results

without any additional data. The same is evident from the results of our proposed models.

Still, we have also modified the models to incorporate meteorological and soil data to

further enhance the performance.

5.3 Study Area and Data
We have used different data for the two models. LSFuseNet works only for histogram

time series and FuSITSNet works for satellite image time series data. The details of

study area considered for different applications is given in Table 5.1.

Satellite Data: Surface reflectance bands were acquired from two satellites, Landsat-

8 and Sentinel-2 for LSFuseNet. FuSITSNet uses images acquired from two satellites,

Landsat-8 and MODIS.

Table 5.1: Study area for different applications

Application States Total No. of counties

CYP

Arkansas, Illinois, Indiana, Iowa, Kansas,
Kentucky, Michigan, Minnesota, Mississippi,
Missouri, Nebraska, North Dakota, Ohio, South
Dakota, Tennessee, and Wisconsin

900

SCP
Washington, Oregon, Utah, California,
New Hemisphere, and Colorado

300

SEP Illinois, Indiana, Iowa, Kansas, and Kentucky 275

Yield data: The crop yield data for US counties is obtained from Quick Stats [80],

a database compiled by the United States Department of Agriculture (USDA). We have

taken top producer counties of corn and soybean from the states given in Table 5.1. The
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data span is from 2016 to 2020 for LSFuseNet and 2014 to 2020 for FuSITSNet. The

yield values are in bushels per acre (bu/ac).

Snow Cover Prediction: The snow cover data at the county level is collected using

MODIS product MOD10A1 [104]. It provides a snow cover extent at a spatial resolution

of 500 meters. The algorithm utilized in this approach for identifying snow cover extent

is based on the normalized difference snow index (NDSI), which leverages the disparity

in reflectance values between snow and non-snow surfaces in the visible and near-infrared

spectral regions. NDSI indicates the percentage of area covered under snow. We consider

300 counties from states experiencing annual snowfall of more than 250 inches.

Solar Energy Prediction: The information about solar energy produced in a county

has been acquired from [105]. The value represents the total solar energy produced in

MJ/m2 for a county in a day. The data used in this study spans the period from 2014 to

2020.

Meteorological Data: Along with surface reflectance data, we have also used mete-

orological data as an additional modality that has a direct impact on the considered spa-

tiotemporal applications. Though weather data is available in the form of images through

various MODIS products, but the data is available only for four weather attributes - the

land surface temperature at night time, precipitation and land surface temperature at day

time, vapor pressure, and precipitation. So, we have used meteorological data in a nu-

meric form for 12 attributes collected at a temporal resolution of one day.

Soil Data: The soil properties typically remain constant over time at a particular lo-

cation, which makes soil data independent of temporal resolution. The soil data provides

information on various soil properties, such as carbon content, pH in water, clay content,

bulk density, water, and sand content. The data is collected at six different depth levels,

starting from ground level up to 200 cm. Soil data is applicable only for CYP application

and it is not relevant to SCP or SEP.
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5.3.1 Data Preparation

Since the satellite data is captured as raw multispectral images. It needs data pre-processed

before it can be used for the end task. The data preparation steps followed for LSFuseNet

are given:

• Missing values in satellite data: The missing values are handled using interpolation

methods (see Chapter 2 section 2.4.1).

• Preparing meteorological data: The meteorological data is captured at a daily gran-

ularity and missing values are estimated using the forward fill method as given in

Chapter 2 section 2.6.1.

• Generating Histograms: The images obtained from Landsat-8 and Sentinel-2 are

converted into separate histogram time series using the process given in Chapter 2

section 2.5.2.1.

FuSITSNet works with image time series and thus needs different preparation steps.

The steps followed for FuSITSNet are:

• Handling cloudy pixels: The cloudy pixels in the images are handled as given in

Chapter 2 section 2.4.1.

• Bits Precision: By default the Landsat-8 images have float values at every pixel

for all the reflectance bands. The float values are converted into unsigned integers

to reduce the storage space required. Bits Precision is applied only to Landsat-8

images and the details are mentioned in Chapter 2 section 2.5.1.1.

• Number of bands: As mentioned in Chapter 4 section 4.8 there was not much

difference in the error in the preliminary results when all the bands were used and

when only 5 bands were used. Thus, we have used only the 5 bands common

in both Landsat-8 and MODIS satellite systems i.e. Red, Blue, Green, NIR, and

SWIR. Another reason for the same is to have a fair comparison with the generative

fusion models, as they are capable of working only with the common bands.
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• Time series length in each application: The length of the time series for each ap-

plication is decided as given in Chapter 4 section 4.3.2.2.

5.4 Proposed Model: LSFuseNet
In this section, we introduce our proposed model, LSFuseNet. The broad model pipeline

is given in Figure 5.1. First, we have given a brief overview of the technique to effectively

fuse the two modalities (Landsat-8 and Sentinel-2) using LSFuseNet and subsequently

elaborated on each module of the model.

Figure 5.1: Model Architecture: LSFuseNet

5.4.1 Model Overview

The fusion of Landsat-8 and Sentinel-2 using the images has high computational and

memory requirements. To utilize the maximum possible information from the satellite

data with lesser computational cost, we chose to convert the images into histograms and

use these histograms in the fusion technique. LSFuseNet consists of four modules viz.

Multispectral Spatiotemporal Encoders (MSTE), Fusion Module (FM), Feature Align-

ment Module (FAM), and Task-Specific Module (TSM). Two parallel Multispectral Spa-

tiotemporal Encoders (MSTE) learn the individual spatial, temporal, and spectral patterns

in surface reflectance data from Landsat-8 and Sentinel-2, respectively. The proposed

model uses a novel dual-fusion using Fusion Module (FM) and Feature Alignment Mod-

ule (FAM). FM and FAM mutually reinforce each other. FM emphasizes and learns the
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cross-modal features from both the time series and reduces heterogeneity in the extracted

features. FAM handles any noise incurred in cross-modal learning and aligns the features

of one modality guided by the other to effectively learn the fine-grained features. Finally,

a Task-Specific Module (TSM) is applied to the combined features using a feed-forward

network and regression layer to accurately predict the target output.

MSTE is first pre-trained on a larger satellite dataset for two classification tasks to

enhance the model performance. MSTE is fine-tuned during the end-to-end learning of

the whole model architecture using stochastic gradient descent and contrastive learning.

Input: The input to the model is a histogram time series for a specific location from

both satellites. Say, input is represented as X which comprises of two time series XL and

XS for Landsat-8 and Sentinel-2, respectively. The length of the time series varies de-

pending on the application and the temporal granularity of the satellite. For crop yield pre-

diction, it is the padded crop cycle, and for snow cover prediction, we use three months to

forecast the snow for the next month. The histograms for all TS timestamps are arranged

in columns to form a 2D matrix with dimensions B × TS for each band, where the band

information is considered as depth. The resulting data tensor has a size of B × TS ×D.

5.4.2 Multispectral Spatiotemporal Encoder (MSTE)

The module learns the heterogeneous spatial, temporal, and spectral patterns present in

the surface reflectance data of the two modalities. The input data is passed through a 1D

CNN encoder that captures the spatial patterns. The encoder consists of 3 convolutional

layers with 12, 15, and 20 filters respectively, followed by a maxpool layer after each

convolution layer. A bidirectional LSTM layer is applied to learn temporal patterns, with

a dropout layer to prevent overfitting. We have used multi-head self-attention to highlight

the hotspots in the time series [126]. The attention layer determines weights for the values

by mapping query(q) and key-value (k-v) pairs. Multi-head attention divides input and

computes it in parallel on different heads, resulting in multiple representations for each

(query, key, value) combination. The process reduces the computational cost from that

of a single head due to the reduced dimensions at each head. A linear layer is applied
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to flatten the tensor of each timestamp, resulting in a 2D output. We have used two

encoders in parallel– MSTEL for Landsat-8 and MSTES for Sentinel-2. The output of

the respective encoders is represented as El and Es, combined we call it E. The pictorial

representation of the module is given in Figure 5.2.

Figure 5.2: Multispectral Spatiotemporal Encoder

5.4.3 Fusion Module (FM)

Fusion Module is used to learn the inter-modality relationships from the two embed-

dings El and Es obtained from the two pre-trained encoders MSTEL and MSTES .

The standard attention mechanisms [127] use one modality as the query and compute

the cross-attention score. We have used bi-directional cross-modal attention to learn the

enhanced features from both modalities. The attention mechanism uses both embedding

representations as queries and uses two cross-modal attention layers to learn the relation-

ship between the two modalities - first from Landsat-8 to Sentinel-2 and second from

Sentinel-2 to Landsat-8. This helps the module capture the complementary aspects of the

two modalities and leverage information from one modality to correct or compensate for

the poor-quality data in the other modality. The problem of poor quality data can be more

often in satellite data which is a matter of concern. The module outputs two vectors, say

Fl and Fs for Landsat-8 and Sentinel-2, respectively. The pictorial representation of the

module is given in Figure 5.3.
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5.4.4 Feature Alignment Module (FAM)

The cross-modal attention in FM may induce some amount of noise in the features be-

cause of the mismatching of the context (as a result of poor quality data from one/both

satellites) of the two multi-spectral time series. We introduced a feature alignment mod-

ule (used in text video hybrid fusion [124]) to ensure that the features extracted from

the two modalities are aligned towards the same context. The feature alignment module

captures fine-grained underlying relationships between them. The module performs the

feature-wise cross-modal interaction between the two modalities. The sequence length

of the Landsat-8 and Sentinel-2 vectors is denoted as m and n, respectively. We compute

the similarity of each feature of Landsat-8 with all features of Sentinel-2 and vice-versa,

using the following formula:
SimL = Fl(Fs)

T (5.1)

SimS = Fs(Fl)
T (5.2)

where SimL and SimS are the similarity scores of Landsat-8 and Sentinel-2, respectively.

Fl and Fs are the respective embeddings for Landsat-8 and Sentinel-2 obtained from FM.

We then applied the softmax function over the similarity matrices and used the aver-

age feature-wise aggregator over the Sentinel-2 features as shown below:

Ai(Fl) = softmax(SimS)Fl, (1 ⩽ i < n) (5.3)

A(Fl) = [A1(Fl);A2(Fl); · · · ;An(Fl)] (5.4)

where Fi(Fl) is the similarity-aware aggregated Sentinel-2 representation of ith feature

of Landsat-8.

Similarly, we obtained the similarity-aware aggregated Landsat-8 representation of

ith feature of Sentinel-2:

Ai(Fs) = softmax(SimL)Fs, (1 ⩽ i < m) (5.5)
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A(Fs) = [A1(Fs);A2(Fs); · · · ;Am(Fs)] (5.6)

5.4.5 Task-Specific Module (TSM)

This module implements the end task e.g. regression and consists of three layers of linear

transformations with the Gaussian Error Linear Unit (GELU) activation function, and

each linear layer is followed by layer normalization. Finally, regression is applied to get

the output of the end task.

5.4.6 Soil Data Encoder (SDE)

The Soil Data Encoder (similar to one in Chapter 3 Section 3.6.2) is an additional module

that is used to extract features from soil histograms. This module encodes soil information

using a CNN as its backbone. The soil information is presented as a 3D tensor in the

form of rearranged soil histograms with dimensions Bs × 1 × Ds, where Bs represents

the number of bins and Ds represents the number of depth levels for each soil attribute.

The collective input for all attributes is presented as Bs × A × Ds, where A denotes the

number of soil attributes. The output of the SDE is a 3D tensor, represented by S̃D, with

dimensions of Bs
′ × A×Ds

′
.

5.5 Pre-training
Taking the motivation from applications in NLP, we pre-trained our encoder with indi-

vidual data for Landsat-8 and Sentinel-2. While pre-training a model, we took care of- i)

the size of the dataset should be sufficiently large to offer the required variation in data

patterns and ii) the selection of pre-training objectives. The dataset used for pertaining

is ≈ 0.1M instances which makes a dataset size of around 1GB for Landsat-8 and 2GB

for Sentinel-2. We have pre-trained the encoder (MSTE) for two binary self-supervised

classification tasks.

Is reversed (Y/N): During training, the model is presented with time-series data in re-

versed order along with the original data, and it must predict whether the series has been

reversed or not.
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Is irregular (Y/N): Irregular time-series data is characterized by inconsistent time inter-

vals. The model is given as input the original regular time series and irregular time series

by randomly removing 15% of the original timestamps of a time series.

The model is pre-trained with Binary Cross entropy which loss heavily penalizes for

incorrect predictions.

5.6 Proposed Model: FuSITSNet
FuSITSNet (Figure 5.4) consists of two encoders TSE and PatchNet and a fusion mod-

ule. We use FuSITSNet for fusing two SITS from Landsat-8 and MODIS. We processed

Landsat SITS using PatchNet (see Chapter 4). MODIS has a coarser spatial resolution

and can be processed as a whole, thus we used TSE for processing its time series. How-

ever, we can replace TSE with PatchNet to generate embeddings if the second SITS also

has a high spatial resolution.

Figure 5.4: FuSITSNet

5.6.1 Time Series Encoder (TSE)

Time Series Encoder (TSE) gives a linear representation of the input patch. It consists of

two submodules - 3DCNN network and a Spatial Attention Mask (SAM) followed by a

linear layer. Details are given in Chapter 4 section 4.5.1.
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5.6.2 PatchNet

PatchNet is designed to encode high spatial resolution SITS which is otherwise imprac-

tical to process. It works on image times series iteratively for multiple patch time series

(patchTS) and uses the idea of a beam search to optimize the patch selection process. The

complete working of PatchNet is given in Chapter 4 section 4.5.

5.6.2.1 Fusion Module
Fusion Module given in Figure 5.5 is a twofold module that takes the embeddings EM

and EL from the two encoders for MODIS and Landsat-8, respectively. It learns the

features from the two modalities using two sub-modules, a patch alignment module, and

cross-modality attention.

Figure 5.5: Fusion Module:FuSITSNet

Patch Alignment Module (PAM): We modified the Feature Alignment Module of

LSFuseNet (see section 5.4.5) to work with image time series and named it as Patch
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Alignment Module (PAM). PAM is used to align the patches of fine spatial resolution

modality (Landsat-8) with the corresponding regions in the MODIS time series and learn

fine temporal patterns for the aligned patches. This also suppresses the noise present in

two SITS and mitigates its effect on the end task. In FAM the similarity calculation is

bidirectional as spatiality is lost in both modalities. However, in PAM we calculate the

similarity of Landsat patches with the MODIS image time series to know which patch

aligns with which spatial region in the MODIS image time series. In the alignment pro-

cess, we calculate the similarity, SimL of Landsat-8 patches with MODIS as given below:

SimL = EL(EM)T (5.7)

Softmax is applied over SimL and we use an average patch-wise aggregator over the

MODIS embeddings as:

P i
ML = softmax(SimLi

)EM , (1 ⩽ i < n) (5.8)

PML = [P 1
ML;P

2
ML; · · · ;P n

ML] (5.9)

n is number of patches traversed, P i
ML is similarity-aware aggregated MODIS represen-

tation of ith patch of Landsat.

Cross-Modal attention (CMA) learns the inter-modality relationships from the two

embeddings EM and EL by applying bi-directional cross-modality attention by taking

queries from both modalities to leverage their profound features. The scalar dot prod-

uct attention between the hotspot spatial features of Landsat and highlighted temporal

features of MODIS gives the joint high-quality features in both aspects. This helps the

model to capture the complementary aspects of the two modalities and thus utilizes the

information from one modality to compensate for the low quality of the other modality.

Also, the module covers the untraversed Landsat-8 regions with the help of the MODIS

time series. The output of the module is represented by FM and FL.

We concatenate PML, FM , and FL and apply multi-head self-attention to highlight the
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combined hot spot features. It is followed by a feed-forward network comprising three

linear layers with the Gaussian Error Linear Unit (GELU) activation function. Each linear

layer is followed by layer normalization. Lastly, a regression layer is applied to get the

prediction.

5.7 Learning Objectives
We have used two learning objectives for different modules in both models. The first

objective is the marginal contrastive loss used in contrastive learning and the second is

the mean square error (MSE) used for the downstream regression task.

5.7.1 Margin Contrastive Loss

Margin Contrastive Loss: In our twofold fusion technique, we innovatively applied mar-

gin contrastive loss [128]. Utilizing contrastive loss in regression problems is challenging

since there are no explicit class categories to directly determine positive and negative pairs

for training. The number of ”classes” is roughly equivalent to the size of the dataset, ren-

dering traditional contrastive loss implementation difficult. To overcome this challenge,

we developed an approach to create positive and negative pairs based on locations and

years, and then applied batch-wise margin contrastive loss. For each data instance (an-

chor) in a batch, we used the anchor as a positive instance by adjusting the dropout value

in the encoder, while the negative pair is selected from a different location, a different

year, or both.

The mathematical formulation of the loss is given below:

Oanc = FusionModel(Xi, dp1) (5.10)

Opos = FusionModel(Xj=i, dp2) (5.11)

Oneg = FusionModel(Xj ̸=i, dp1) (5.12)

Oanc, Opos, and Oneg are the outputs of anchor, positive and negative instances, respec-

tively. FusionModel is LSFuseNet or FuSITSNet. The loss is calculated as:
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dins =
√

(

g∑
i=1

(Oanc −Oins)
2 ∀ all g instances in a batch (5.13)

lossins =
1

g

g∑
i=1

max(min(dins × target,margin),min) (5.14)

where ins = {pos, neg}

5.7.2 Mean square error

The loss function used for regression is the mean squared error (MSE), which is a com-

mon metric to evaluate the difference between the predicted and actual values. The

formula for MSE is shown below, where yi represents the actual target, ŷi represents

the predicted output for a given location and year, and N represents the total number of

location-year pairs considered.

MSE =
N∑
i=1

(y − ŷi)
2

N
(5.15)

Total Loss

The total loss (L) for the model is:

L = losspos + lossneg +MSE (5.16)

5.8 Models for Comparison

We have compared both models with different existing models. LSFuseNet is compared

with the single modality and HLS data. FuSITSNet is compared with the single modality

and existing generative fusion models. The details for both are given below:
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5.8.1 Models for comparison: LSFuseNet

5.8.1.1 Baseline variants:

We tested a few variants of the proposed model for evaluating the importance of different

modules used in the model. A brief description of the variants is given below:

MSTNet: We have used the simplified version of our proposed model for single

modality and HLS data. The model variant consists of a surface reflectance band en-

coder MSTE, and the Task Specific Module (TSM). The variant is named MSTNet L,

MSTNet S, and MSTNet HLS for Landsat-8, Sentinel-2, and HLS data, respectively.

LSFuseNet base: The baseline model of LSFuseNet consists of the surface reflectance

band encoders MSTEL, MSTES , and the fusion module (FM). The encoders are trained

in an end-to-end training setting in our baseline.

LSFuseNet: The final version of the model includes the feature alignment module

along with contrastive loss over the baseline and it uses the encoders, pre-trained on larger

data which are fine-tuned during end-to-end learning along with other modules.

LSFuseNet+M: This model incorporates the additional meteorological data (if avail-

able) to further enhance the performance of the model.

LSFuseNet+M+S: The variant uses the additional soil data encoder (SDE) to incor-

porate available soil data along with the additional meteorological data.

5.8.1.2 Existing models for comparison:

We have compared our model with four existing models CNN [43], CNN+GP [43], and

CNN+LSTM [44], and CYN [84]. The first two models use only surface reflectance data

from a single satellite. The CNN+LSTM model uses soil data along with the surface
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reflectance of a single satellite. These models are applied to different crops and locations

in their original work. However, for a fair comparison, we have applied them for the

same locations and time duration as that of our model. The hyperparameters of the models

CNN, CNN+GP, and CNN+LSTM are fine-tuned using the Adam optimizer with learning

rates of 0.001, 0.001, and 0.00001, respectively. While the CYN model uses SGD with a

learning rate of 0.0001 and momentum of 0.7 for the optimization process.

5.8.2 Models for comparison: FuSITSNet

5.8.2.1 Baseline models:

To the best of our knowledge, there is no method that works with SITS for spatiotemporal

problems. We applied the proposed PatchNet and TSE models on single modality image

time series of Landsat-8 and MODIS, respectively, and compared them with FuSITSNet

to see the significance of fusing two time series over a single modality.

5.8.2.2 Generative fusion models:

There are a few studies that fuse the information from one/two MODIS images with that

of one/two Landsat images to generate a Landsat-like image at any timestamp. We gen-

erated images at every mid-timestamp to get time series of 8-day frequency using three

such methods- STARFM [27], RSFN [118], and GAN[121]. We then applied PatchNet to

get predictions using enhanced SITS and compared them with the proposed FuSITSNet

model.

STARFM is a pixel-based method that works on the principle of a moving window

and calculates the value of the pixel depending on the value of neighboring pixels. The

method assumes that if MODIS and Landsat surface reflectances are equal at a given

time, then these values should be equal at the prediction date. Predicting the value for

each pixel one by one is a very time-consuming task and it took us almost 25 days on an

A30 GPU server with 24GB RAM to generate the data at mid-timestamps of the Landsat-

8 time series for all the counties used in crop yield prediction. As the process was very

inefficient and was not the best performer in the generative models, so we did not generate

the data for counties used in snow cover prediction.
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Robust Spatiotemporal Fusion Network (RSFN) is a generative adversarial network

and attention mechanism-based model to generate the Landsat-like image using one coarse-

resolution (MODIS) image on the prediction date and two referential fine-resolution im-

ages (Landsat-8) before and after the prediction date as model inputs. It took us around 7

days to train the model on an A30 GPU server with 24GB RAM and 5 days to generate

the data for all the counties used in the three applications.

Conditional Generative Adversarial Network is used to generate cloud-free Landsat-

like images using MODIS image at time t and time t-1 and Landsat-8 image from time

t-1 to predict the image at time t. A U-Net-based generator is used in the model to fuse

the two images. It took us approximately 5 days to train the model on an A30 GPU server

with 24GB RAM and 4 days to generate the data at mid-timestamps of the Landsat-8 time

series for all the counties used in the three applications.

The generated sample images by the three models are given in Figure 5.6.

Original Image STARFM Generated 

RSFN Generated cGAN Generated 

Figure 5.6: Original Landsat-8 image and images generated by different generative mod-
els
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5.9 Experimental Setup

We performed experiments using Pytorch 1.11.0 and CUDA 11.7 on an A100 GPU server

with 80 GB RAM for all the models. The optimizers used for both models are different.

While training LSFuseNet for CYP, the stochastic gradient descent (SGD) optimizer

was used with a learning rate of 0.0001 and a momentum of 0.7. The model was trained

for 150 epochs with a batch size of 16, while for SCP, the same optimizer was used with

a learning rate of 0.00001 and the same momentum value. The model was trained for 50

epochs with a batch size of 64.

FuSITSNet is trained for 50 epochs with a batch size of 8 using Adam optimizer with

a learning rate η. We have trained the model with 5 years of data (2014-2018) and, 2

years (2019 and 2020) for testing. To predict the output for the zth year, the training is

conducted until the (z − 1)th year. For CYP, η = 0.0005 for a single modality (TSE and

PatchNet) and η = 0.000005 for FuSITSNet. In case of SCP and SEP, η = 0.00001 for

all three models. The evaluation metric used is Root Mean Squared Error (RMSE).

5.9.1 Evaluation Metrics:

Two metrics root mean square error (RMSE) and mean absolute error (MAE) are used for

the performance evaluation of the proposed model for both applications. MAE represents

the mean magnitude of the errors that occurred in the predictions by the model, while

RMSE measures the root mean squared magnitude of the errors, giving more weight to

larger errors. A higher RMSE indicates that the model is suffering from by a substantial

quantity of errors with significant magnitudes

The higher RMSE depicts that the model suffers from a large number of large-magnitude

errors. The crop yield is measured in bushels/acre (bu/ac) and snow cover is measured as

the percentage of area under snow.

The formula for RMSE is given as:
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RMSE =

√√√√√√
N∑
i=1

(yc,z − ŷic,z)
2

N
(5.17)

where N is the total number of {c, z} pairs, c is the county, z is year, month, or fortnight

for CYP, SCP, or SEP, respectively.

5.10 Results and Discussion

In this section, we present results and discussion for both models in subsequent subsec-

tions.

5.10.1 Results: LSFuseNet

The first set of experiments is conducted to compare the predictions of MSTNet (using

Landsat-8, Sentinel-2, and HLS data) and LSFuseNet. Table 5.2 depicts MAE and RMSE

for both applications (CYP and SCP). We observed that Sentinel-2 performed slightly

better than Landsat-8 when single satellite data is used individually. This is because of its

finer spatial and temporal resolution than Landsat-8. We also compare the results using

the existing HLS data which is also a fused data of Landsat-8 and Sentinel-2. The model

performs better for HLS than individual Landsat-8 and Sentinel-2 for both applications

due to a finer temporal resolution of HLS in comparison to Landsat-8 and Sentinel-2. The

HLS data shows that RMSE is improved as compared to Sentinel-2 by 2.5% in the case

of SCP and the improvement of 2.3% and 0.32% is observed for soybean and corn yield

prediction, respectively.

For CYP, MAE achieved by LSFuseNet is 18.6927 and 6.1953 for corn and soybean,

respectively and the respective RMSE is 18.4671 and 5.9677 bu/ac. The MAE is approx-

imately 23%, 21%, and 13% improved from that of Landsat-8, Sentinel-2, and HLS data,

respectively for soybean yield prediction. It can be observed that LSFuseNet improves

RMSE by 23.5% and 22.9% from HLS for soybean and corn, respectively.

A similar pattern is observed in SCP where the achieved MAE is 10.6437 which
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Table 5.2: Comparison of MAE and RMSE using single satellite data and LSFuseNet

Model
CYP SCP

Corn Soybean

MAE RMSE MAE RMSE MAE RMSE

MSTNet L 19.673 24.064 8.056 8.043 13.257 19.478

MSTNet S 19.353 24.033 7.939 7.984 12.748 19.269

MSTNet HLS 19.318 23.954 7.201 7.802 12.679 18.769

LSFuseNet 18.693 18.467 6.195 5.968 10.644 10.322

Table 5.3: Difference between ground truth and predicted yield for corn (bu/ac)

S. No. Location Gound Truth MSTNet L MSTNet S MSTNet HLS LSFuseNet

1 17-1 178.4 8.602 -6.707 4.557 -0.412

2 17-105 182.4 8.293 4.002 2.933 -0.988

3 5–79 165.0 -2.681 -2.739 1.256 0.982

4 27-91 204.5 162.946 123.797 121.216 19.250

5 28-3 153.5 101.946 89.875 74.35 -11.343

shows 19%, 16.5%, and 16% improvement on Landsat-8, Sentinel-2, and HLS data pre-

dictions, respectively. The improvement in RMSE is 46.43% and 45% as compared to

the predictions of Sentinel-2 and HLS data, respectively.

The increased rate of improvement in RMSE in comparison to MAE in the proposed

model shows that LSFuseNet is capable of better capturing the variance in the data. Also,

we can observe that the RMSE of LSFuseNet is less than the respective MAE in all

three cases. The reason behind it is the reduction in the large errors more than that of

small errors. For example, as shown in Table 5.3, the error for locations 1-3 is less in

magnitude for all the models with the least in LSFuseNet. Whereas, the error in locations

4 and 5, is quite high for single modality and HLS models which are drastically reduced

for LSFuseNet. For example, the least error 121.216 of HLS is reduced to 19.250 for the

county ’27-91’, and from 74.34 of HLS in the county ’28-3’ is reduced to 11.343.

It can be observed from Table 5.2 that the reduction in RMSE obtained by LSFuseNet

from that of a single modality for SCP is much higher than that of CYP. This can be

explained that in CYP, data unavailability at finer temporal granularity does not affect
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Table 5.4: Ablation Study: LSFuseNet (RMSE for CYP and SCP)

Model
CYP SCP

Corn Soybean

LSFuseNet base 19.7568 7.5602 13.0453

LSFuseNet base+FAM 18.7399 6.2649 10.9946

LSFuseNet base+Pretrain 18.8718 6.6974 11.4332

LSFuseNet 18.4671 5.9677 10.3218

Table 5.5: RMSE obtained by LSFuseNet for different pretraining tasks

Pretraining Task Corn Soybean Snowcover
Without Pre-training 18.7399 6.2649 10.9946

Reverse TS 18.5584 5.9977 10.8641

Irregular TS 18.5496 5.9847 10.7794

Reverse & Irregular TS 18.4671 5.9677 10.3218

more as it can be covered by analyzing the crop health in the upcoming timestamps.

Whereas in SCP this effect is much more. It is clear that this impact is reduced by the

fusion of two modalities via LSFuseNet.

Ablation Study: Table 5.4 presents the results obtained without various modules of

the proposed model. It can be observed that the RMSE for SCP using the baseline model

is 13.0453 which is reduced to 10.9946 (≈ 15%) after using the FAM. Similarly, the

RMSE is reduced to 11.4332 (≈ 12%) when we pre-trained our baseline model. When

we pre-trained the model using FAM (LSFuseNet), collectively, they reduced the RMSE

to 10.3218 which is ≈ 21%. The results show the importance of enhancing the features

of each modality by guiding them from the other modality and mitigating the effect of

any noise using FAM. Similar results were obtained for CYP.

Table 5.5 presents the results obtained with different pre-training tasks. The best

results were obtained when the encoders were pre-trained using both classification tasks

(see section 5.5). Also, it is evident from the results that pre-training has substantially

improved the RMSE by 12% after pertaining the baseline for SCP and the improvement
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observed after pertaining the model using FAM is 6%. Similar patterns are observed for

CYP.

Importance of Feature Level Fusion: We also experimented with fusing only those

bands which are common in both satellites. To carry out these results we have used the

non-pre-trained version of our model. The RMSE obtained using only the common bands

in CYP is 7.0535 and 19.6072 bu/ac for soybean and corn, respectively, and for SCP it

is 12.7935. On comparing these RMSE values with that of the fusion of two modalities

with all bands, the performance degraded by approximately 14.06% for SCP and 11.18%

and 4.4% for corn and soybean yield prediction, respectively. This observation indicates

the importance of using all the bands in the satellites. This kind of fusion is not possible

in the case of pixel-level fusion. Thus, these results clearly emphasize the importance of

a feature-level fusion technique to maximize the contribution of the spectral resolution of

the satellites

Zero Shot Testing: We also experimented with zero-shot learning in which testing is

performed on the data from the classes which are completely different from that of testing

classes. For CYP, we tested the model for 79 counties after training it for a different set

of 500 counties. The RMSE obtained by LSFuseNet is 18.7165 and 6.0544 bu/ac for

corn and soybean, respectively. Similarly, in the case of snow cover, we trained the

model for 1000 counties, tested it for 312 counties, and achieved the RMSE of 10.6088.

The results obtained by LSFuseNet in zero-shot learning are comparable to that obtained

during normal training (18.4671 and 5.9677 for corn and soybean yield prediction and

10.3218 for SCP).

Incorporating different modalities: We modified LSFuseNet to incorporate meteo-

rological and soil data along with surface reflectance data. The results given in Figure 5.7

show the impact of using different modalities in different models for both applications. It

can be observed from the results that RMSE improves when meteorological and soil data

is incorporated into both single satellite models and fusion models. There is an improve-

ment of ≈ 2%, 4%, 7%, and 15% in corn yield prediction when meteorological data is

incorporated into MSTNet L, MSTNet S, MSTNet HLS, and LSFuseNet, respectively.
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Figure 5.7: Incorporating additional modalities-effect on RMSE.
*LSFuseNet+M+S represents only using meteorological data in case of Snowcover Prediction

Table 5.6: Comparison of LSFuseNet with existing Models for CYP (in RMSE)

Model Corn Soybean
CNN [43] 26.997 9.679
CNN + GP [43] 31.049 8.383
CNN + LSTM [44] 25.477 10.956
CYN [84] 18.938 5.990
LSFuseNet 18.467 5.967
LSFuseNet+M+S 16.467 5.029

It is evident from the results that maximum improvement is obtained using our proposed

model. Similar results were observed for soybean yield prediction and SCP.

Comparison with existing models: In Table 5.6, we have compared the results with

the existing models for crop yield prediction. All these existing models are designed to

work with data from a single satellite. The results in the table for these models are taken

for Sentinel-2. CNN and CNN + GP models are designed to predict the yield using only

the surface reflectance data from a satellite. So, for a fair comparison, we compared it

with LSFuseNet and observed a significant difference in the RMSE. The RMSE achieved
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by CNN and CNN+GP is 26.997 and 31.049, respectively for corn and in the case of

soybean, it is 9.679 and 8.383 bu/ac respectively. The corresponding RMSE obtained

by LSFuseNet is 18.467 and 5.968 bu/ac for corn and soybean, respectively. Our results

are even better than the other two models, CNN+LSTM and CYN which use additional

meteorological and soil data. If we compare these results with LSFuseNet+M+S, the

error is reduced to 16.467 and 5.029 bu/ac for corn and soybean, respectively.

We have also compared the results of CYN using MODIS data for 16 years [84]. The

RMSE of CYN with MODIS data is 21.505 bu/ac and 8.166 bu/ac for corn and soybean,

respectively which is much much larger than that of LSFuseNet+M+S.

5.10.2 Results: FuSITSNet

Comparison of FuSITSNet with single modality baselines: Table 5.7 presents RMSE

obtained by FuSITSNet and single modality baselines TSE and PatchNet using MODIS

and Landsat-8 time series, respectively. It is evident from the results, that the PatchNet

(Landsat-8) performed better than TSE (MODIS) with ≈ 8% and 3.5% lower RMSE in

corn and soybean yield prediction, respectively. RMSE reduced from 17.17 to 12.81 for

SCP and from 8.86 to 8.54 for SEP, making an improvement of 25% and 3.6%, respec-

tively. This shows the importance of using high spatial resolution data for the applica-

tions. The results improved further using FuSITSNet for all three applications. RMSE

reduced by ≈ 24% and 30% for corn and soybean yield prediction, respectively when

compared with PatchNet (Landsat-8). A similar pattern is observed in SCP with an im-

provement of 46% from TSE and ≈ 28% from PatchNet (Landsat-8). The maximum

improvement is observed in SEP with almost 76%. The huge reduction in error signifies

that FuSITSNet exploits high temporal and high spatial features and is thus suitable for

spatiotemporal applications.

Our baselines on enhanced SITS: We generated Landsat-8 images at every mid-

timestamp. It can be observed from Table 5.7 that RMSE reduces when PatchNet is

applied over enhanced time series in comparison to PatchNet (Landsat-8) with an excep-

tion in the case of corn yield prediction. Out of three generative models, GAN generated
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Table 5.7: FuSITSNet vs single modality baselines

Model
CYP SCP SEP

Corn Soybean
TSE (MODIS) 23.3352 7.5457 17.1675 8.8633

PatchNet(Landsat-8) 21.4697 7.2901 12.8136 8.5436

PatchNet(STARFM) [27] 20.2898 6.3084 — 7.2274

PatchNet(RSFN) [118] 22.8389 6.4323 12.3298 8.0126

PatchNet(GAN)[121] 18.102 6.296 11.9518 7.0431

FuSITSNet 16.1925 5.0389 9.2308 2.0447

image time series performed the best with an improvement of ≈16%, 14%, 7%, and 18%

for corn, soybean, snow cover, and solar energy prediction, respectively.

Comparison of FuSITSNet with Generative fusion models: Table 5.7 shows that

FuSITSNet outperforms all the scenarios where PatchNet applied on SITS generated by

the existing generative fusion models. RMSE reduced by ≈ 20% for CYP in comparison

to the pixel-based model STARFM. The reduction in RMSE for FuSITSNet is 29% and

10% in comparison to learning-based models RSFN and GAN, respectively for corn yield

prediction and the corresponding reduction is 21% and 19% for soybean. For the snow

cover application, FuSITSNet performed 23% better than PatchNet(GAN), the top per-

former. The best results are obtained for solar energy prediction where RMSE is reduced

by ≈ 70% using FuSITSNet than that of PatchNet(GAN).

Comparison of running time and the number of parameters: We have compared

the no. of parameters & running time required for each model (see table 5.8). In Patch-

Net(RSFN) and PatchNet(GAN), the proposed model PatchNet is applied to images gen-

erated by existing RSFN (Tan et al. 2022), and GAN (Bouabid et al. 2020) generative

models. Thus, the no. of parameters & training time is the sum of parameters & time

needed in the generation and prediction process. FuSITSNet has more parameters, but

the running time is approx. 1/4th of other fusion models as it does not need a generation

process. Moreover, it outperforms the prediction. The inference time of each model is

almost the same which is ≈ 10 mins.
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Table 5.8: Running time & No. of training parameters for models for CYP: corn

Parameters Training time (hrs) RMSE
TSE (Modis) 183M 30 23.3352
PatchNet
(Landsat-8) 131M 45.5 21.4697

PatchNet
(RSFN)

146M (generation)+
205M (prediction)
= 351M (total)

168 (RSFN training)+
120 (generation)+
50 (prediction) = 338 (total)

22.8389

PatchNet
(GAN)

165M (generation)+
205M (prediction)
= 370M (total)

120 (GAN training)+
96 (generation)+
50 (prediction) = 266 (total)

18.102

FuSITSNet 416M 70 16.1925

Table 5.9: Ablation Study: FuSITSNet

Model
CYP SCP SEP

Corn Soybean
FuSITSNet 16.1925 5.0389 9.2308 2.0447

FuSITSNet (no PAM) 17.1989 5.2862 12.4484 2.5017

FuSITSNet (no CMA) 17.2425 5.8476 11.5232 2.7494

Ablation Study: We carried out an ablation study to show the importance of modules

in FuSITSNet. Considering variations in results in Table 5.9, we observed that RMSE

increased significantly without using PAM with a maximum increase of 25% for SCP

followed by 18% in solar energy. Similarly, the performance of the model is also de-

graded without cross-modality attention. This shows that both modules are important to

effectively exploit high spatial and high temporal features in the two SITS.

Hyper-parameter Tuning: We experimented with η ranging from 0.0001 to 0.007 for

TSE & PatchNet & η = 0.0001 to 0.000005 for FuSITSNet for CYP. For SEP and SCP,

we experimented for η = [0.0001 to 0.00003] for all three models. Final values were

decided based on validation & training graphs.

We experimented with 1000, 500, 400 & 100 hidden layers (HL). HL is fixed to 100

based on the trade-off between computation time and RMSE. GPU memory overflowed

when HL exceeded 500. We experimented with different kernel sizes for both TSE and
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Table 5.10: Incorporating Meteorological attributes

Model Without meteorological With meteorological
Corn

TSE (MODIS) 23.3352 22.7405
PatchNET 21.4697 20.6316
FuSITSNet 16.1925 15.8448

Soybean
TSE (MODIS) 7.5457 7.4957

PatchNET 7.2901 6.9631
FuSITSNet 5.0389 4.9197

PatchNet. For PatchNet the experiments were conducted with kernel sizes starting with

timestamp length 5 and reduced to 3 and H×W from 11 to 7. Best results were obtained

for 3× 9× 9. Similarly, kernel size for TSE is fixed to 5× 23× 39.

Significance of Meteorological data: Meteorological conditions have a significant

impact on the spatiotemporal applications considered in this thesis. As in the case of

crop yield prediction, weather conditions in the area throughout the crop cycle can have a

positive or negative impact on the crop yield. Therefore, we incorporated meteorological

data into PatchNeT and FuSITSNET to see its impact on crop yield prediction. We used

an additional LSTM layer to learn the patterns from the meteorological attributes and

then concatenated the LSTM output with the image time series encoder output to get

the predictions using feed forward and regression modules in the two models. From the

results, it is evident that the model performance improved when meteorological data is

incorporated. The results are given in Table 5.10.

5.11 Main Contributions

In this chapter, we have given two fusion techniques LSFuseNet and FuSITSNet to han-

dle the spatial and temporal resolution trade-offs faced by satellite systems. LSFuseNet

works with histogram time series and FuSITSNet works with image time series obtained

from two different satellite systems. The main contributions of the chapter are:

• We proposed two techniques which perform a feature-level fusion of multi-spectral
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varying temporal and spatial resolution satellite time series data.

• LSFuseNet is a dual-fusion technique of fusing histograms using two key modules

- a fusion module and a novel feature alignment module which together have the

capability of learning enhanced fine-grained features and mitigating the noise.

• A pre-trained encoder of LSFuseNet on satellite data for two classification tasks

to enhance the model performance. To the best of our knowledge, this is the first

attempt at pre-training in the field of satellite data.

• FuSITSNet is a twofold feature-based fusion model for fusing two image time se-

ries having different resolutions. We complementarily use a patch alignment mod-

ule and cross-modality attention to learn high spatial resolution features of Landsat-

8 and high temporal features of MODIS.

The proposed fusion techniques are capable of achieving the following: 1) working

with multi-spectral high-resolution satellite images without requiring high-end hardware;

2) we can use multi-spectral time series of varying temporal, spatial, and spectral res-

olutions; 3) achieving better results in comparison to the single satellite data; 4) The

direct feature-based learning from two SITS using proposed techniques outperform the

enhanced SITS obtained from existing generative fusion models.

5.12 Summary
The democratization of satellite imaging technology is still marred by the need for pro-

cessing huge volumes of data and by the unavailability of high spatial and temporal res-

olution images from a single publicly available satellite system. We proposed two fusion

techniques to handle the trade-off between spatial and temporal resolution of satellite

systems. LSFuseNet and FuSITSNet fuse two image time series to obtain a joint repre-

sentation that captures the high spatial resolution features of one satellite system and the

high temporal resolution features of another. The difference is that LSFuseNet works with

histogram time series and FuSITSNet works with image time series. Both the techniques
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are twofold fusion techniques having two key modules-fusion module (FM) and a feature

alignment module (FAM) in LSFuseNet and Cross-Modal attention (CMA) and Patch

Alignment Module (PAM) in FuSITSNet. The two modules reinforce each other in their

respective models. Together these modules, highlight and exchange the hotspot informa-

tion in two modalities, learn fine-grained features, and mitigate noise in the data. The

highlight of the fusion techniques is that high spatial and temporal features are learned

without image generation, thereby not increasing the voluminous data further as is the

case with generative approaches.
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SpInN: A broader perspective for

Spectral Reflectance Indices

1

6.1 Introduction
Spectral Reflectance Indices (SRIs) designed by physicists and domain experts, are math-

ematical formulations of bands in the visible and near-infrared electromagnetic spectrum.

The formulations of these bands improve the sensitivity towards the detection of vege-

tation, environmental variables, physiological and morphological characteristics of the

earth’s surface or plants, etc. [45]. Use of satellite-obtained SRIs is a ubiquitous prac-

tice in monitoring vegetation health [39, 85–87].For example, the Normalized Difference

Vegetation Index (NDVI), derived from Red and Near Infra-red (NIR) bands has emerged

as one of the most commonly employed spectral indices for monitoring crop growth and

crop yield. However, various other SRIs have been used to support crop yield estimations

like the Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI),

1The work presented in this chapter is communicated:

• Arshveer Kaur, Poonam Goyal, Vansh Bansal, Deep Pandya, and Navneet Goyal, ”SpInN: A Pre-
trained Model for Spectral Indices Recommendation for Earth Observation Applications using
Satellite Data”, in IEEE Transactions on Neural Network and Learning Systems. [Communicated]
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etc. [46]. Different SRIs highlight different characteristics depending upon their mathe-

matical formulations and thus can be useful in different applications. However, this has

not been explored yet. We bolstered the idea of using SRIs for solving applications like

snow cover, soil moisture prediction, land cover classification, etc.

Identification of relevant SRIs and their usefulness for an application needs domain

expertise. However, to the best of our knowledge, there are no automated ways to recom-

mend relevant SRIs for a given application. Existing studies aggregate SRIs values for

a location (like a county) at a given timestamp resulting in a univariate time series for a

location, thereby losing critical spatial information. Some researchers have used multiple

SRIs without examining their relevance to the application, and their compatibility with

each other leading to noise and eventually degraded performance.

To handle the problem of loss of spatial information, we propose to calculate the

spectral index at every pixel of the satellite image as per the spatial resolution of the

satellite, thereby, generating a matrix of spectral reflectance index values for a location

at a timestamp. These matrices are stacked to obtain an SRI image having the number of

channels equal to the number of SRIs considered. We propose a model Spectral Index

Network (SpInN), which selects the most relevant spectral indices for a given application.

We tested SpInN on six earth observation applications viz. crop yield prediction (for

two crops corn and soybean), soil moisture, solar energy, snow cover, cloud cover predic-

tion, and land cover classification. The results indicate that recommendations made by

the proposed model produce state-of-the-art predictions.

6.2 Related Work
Satellite image technology is witnessing significant improvements in its ability to capture

data at high spatial, temporal, and spectral resolutions. This facilitates monitoring of the

Earth’s surface at desired levels of resolution for different Earth observation applications.

Many of the satellite systems provide data free of cost e.g. MODIS [10], Landsat-8/9

[40], Sentinel [41], etc. Satellite imagery is a cost-effective technology to get data at

a global scale. Most of the applications require time series analytics. The researchers
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have used satellite data in the form of histograms [43, 44, 58], spectral reflectance indices

[32, 33] or images [18] for different applications. We focused on six earth observation

applications viz. prediction of crop yield, solar energy, soil moisture, cloud cover, snow

cover, and land lover classification.

Crop Yield Prediction: Timely and accurate yield estimation helps the government

to make various decisions regarding insurance, import-export, etc. Different studies have

applied various statistical [129] and machine learning [46, 130–133] on different types

of data. For example, systems [59, 61] predicted crop yield using meteorological data,

in [43, 44, 58, 77] used histogram time series of satellite data. Authors have used a

few common spectral indices including NDVI, EVI, NDWI, SAVI, etc. for CYP [131,

134]. All these studies have taken the spectral indices as a single value by averaging the

entire image for a region at a timestamp. One of the significant drawbacks is the loss of

spatial information, as this approach discards the arrangement of pixels and the spatial

relationships within the image. Moreover, noise, outliers, or irrelevant details may affect

the global mean rather than remain localized.

Snow Cover Prediction: Traditionally, meteorological stations measured snow depth

through manual surveys. In recent years, researchers have used time series data obtained

from satellites MODIS, SPOT-4/5, and Landsat-8 using fractional and binary snow-cover

data [135, 136]. MODIS no longer provides this data and thus recent studies [96, 137]

used normalized difference snow index (NDSI) to predict snow cover.

Solar Energy Prediction: Predicting solar energy is essential for identifying optimal

locations for solar plant installations, aiming to decrease reliance on fossil fuels and foster

economic development. Researchers have explored the prediction of solar energy using

meteorological attributes in recent studies [98, 101–103] using different machine learning

(RF and SVM) and deep learning (LSTM, ANN, DNN) models. For example, a study

[103] is performed over Basque country using ANN applied on the weather data and

achieved RMSE ranging from 5.33 to 77.76 on different days. In [98], SVM and DNN

are applied over meteorological data of Turkish provinces, and the maximum RMSE is

observed as 2.820 and 2.814, respectively.
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Cloud Cover Prediction: Accurate forecasting of cloud cover is critical for various

applications, like photovoltaic energy production, agriculture, tourism, etc. A study [138]

has done cloud cover prediction using meteorological data using regression models, and

ground-based sky images [139, 140] using CNN models. Ground-based cameras are a

costly method and have limitations, such as fixed positions, inconsistent data quality,

calibration problems, etc. To overcome these issues, researchers [137, 141] used satellite

data and deep learning models like DNN and CNN with regression models.

Soil Moisture Prediction: Accurate prediction of soil moisture [142] is crucial for

efficient water resource management in agriculture and hydrological cycles. Researchers

[142] conducted the study in a small region of Beijing for soil moisture prediction using

meteorological data and achieved the RMSE of 4.05, and 6.01 using SVM, and ANN,

respectively. FLUXNET dataset incorporating meteorological and soil parameters has

been used in [143] and [144] to predict soil moisture by applying LSTM. Taktikou et al.

[145] used NDVI combined with sensor and land surface temperature to retrieve daily

soil moisture content using a regression model.

Land Cover Classification: It is a current research interest as it plays an important

role in land use analysis, urban planning, etc. The problem has been attempted [15–19]

using satellite images and with ground truth pixel-wise annotated images given in datasets

MCD12Q1 V6, GlobCover2009, GLC, and GlobeLand30. These datasets have different

classes and have different spatial resolutions of the annotated images. However, data is

given at the yearly temporal granularity. For example, authors achieved an accuracy of

82.7% [18] for Europe using ground truth divided into 5 classes. Some other studies

working with the MCD12Q1 dataset have obtained accuracy 74.8% [146] and 69% [146]

respectively for regions in China. In another study [20] conducted in Northeast Asia,

researchers obtained an accuracy of 77.94% for the MCD12Q1 data classified into 17

classes.

From the literature survey, it is clear that the models used for applications other than

CYP are either shallow machine learning models or simply neural networks which are

not capable of modeling complex patterns of satellite data. There is no generic model
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which can be seamlessly applied across applications with desired output. The proposed

model SpInN aims to overcome the aforementioned limitations.

6.3 Study Area and Data

6.3.1 Study Area

This study encompasses a comprehensive geographic scope, spanning the counties of the

United States. We used different counties for different applications. The focus for Crop

Yield Prediction (CYP) is set upon those counties reigning as major producers of corn and

soybean. This elite cohort is drawn from states of considerable agricultural prominence,

including but not limited to states viz. Illinois, Tennessee, Iowa, Missouri, Nebraska,

Michigan, Wisconsin, Mississippi, etc. In the realm of Snow Cover Prediction (SCP), the

focus shifts to counties that witness an average snowfall of more than 250 inches. The

counties lie in the states of Washington, Oregon, Utah, California, New Hemisphere, and

Colorado. In the context of applications like Solar Energy Prediction, Soil Moisture Pre-

diction, Cloud Cover Prediction, and land cover classification, we selected a quintet of

states comprising Illinois, Indiana, Iowa, Kansas, and Kentucky. These states take center

stage in these predictive endeavors, representing regions where the interplay of environ-

mental factors holds particular significance for the applications under consideration.

6.3.2 Data Used

The input data used consists of spectral reflectance index images, and additional meteo-

rological data, and soil data. The ground truth data is specific to the application. A brief

description of each type of data is given below:

6.3.2.1 SRI images:
Spectral reflectance indices represent a diverse array of mathematical metrics, ratios, or

linear combinations. We have derived all the spectral indices used from MODIS product

MOD06 which has a spatial resolution of 500m and a revisit time of 8 days. We have used

spectral indices given in Table 6.1. Other details are given in Chapter 2 section 2.5.3.
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6.3.2.2 Ground Truths:
The crop yield data for U.S. counties is taken from Quick Stats [80]. For snow cover,

normalized difference snow index (NDSI) has been acquired at the county level using

the MODIS product MOD10A1 [104]. The soil moisture data is acquired at the county

level every month using NASA-USDA Enhanced SMAP Global soil moisture data [147].

The information about solar energy produced in a county has been acquired from weather

data[105]. Daily cloud cover values are typically derived by calculating the mean of the

hourly cloud coverage values throughout the day. We acquired data captured on a daily

basis from [105]. For land cover classification, we use data from MCD12Q1 [148] which

classifies land cover into 17 classes, assigning a class label to every pixel of the satellite

image. The collection of ground truths for every application is given below:

Yield data: The crop yield data for U.S. counties utilized in this study is taken from

Quick Stats [80], a comprehensive database compiled by the United States Department

of Agriculture (USDA). The data used in this study spans the period from 2002 to 2020.

The yield values are quantified in bushels per acre (bu/ac), offering a standardized unit

for assessing and comparing crop productivity across different regions.

Snow cover data: The snow cover data has been acquired at the county level using

the MODIS product MOD10A1 [104]. This dataset offers information about snow cover

extent with a spatial resolution of 500 meters. The methodology employed in this process

relies on the normalized difference snow index (NDSI). It is a metric that exploits the dif-

ferences in reflectance values between surfaces covered by snow and those without snow

in the visible and near-infrared spectral regions. NDSI is a key indicator, representing the

percentage of the area covered by snow.

Soil Moisture Data: The soil moisture data is acquired at the county level for ev-

ery month using NASA-USDA Enhanced SMAP Global soil moisture data [147]. This

dataset was developed by the Hydrological Science Laboratory at NASA’s Goddard Space

Flight Center in cooperation with USDA Foreign Agricultural Services and USDA Hy-

drology and Remote Sensing Lab. The Soil Moisture Active Passive (SMAP) instrument

measures the amount of water in the surface soil everywhere on Earth. The value repre-
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sents the amount of water in mm. The data is available from 2016 and thus data used in

this study spans the period from 2016 to 2020.

Solar energy data: The information about solar energy produced in a county has

been acquired from [105]. The value represents the total solar energy produced in MJ/m2

for a county in a day. The data used in this study spans the period from 2014 to 2020.

Cloud cover data: Cloud cover represents the extent of the sky covered by clouds and

is usually expressed as a percentage. This percentage encompasses clouds at all altitudes.

Daily cloud cover values are typically derived by calculating the mean of the hourly cloud

coverage values throughout the day. Essentially, it represents the proportion of the sky

covered by clouds throughout the day. We acquired data captured on a daily basis from

[105]. The data used in this study spans the period from 2014 to 2020.

Land cover classification: Land cover can be classified into a different number of

classes. We used MCD12Q1 [148] which classifies land cover into 17 classes. The

dataset provides annotations for the land cover at a spatial resolution of 500m and yearly

granularity. The data used in this study spans the period from 2014 to 2020.

6.3.3 Data Preparation

We used Google Earth Engine to download satellite images and performed basic pre-

processing steps given in Chapter Section 2.4. Meteorological data is downloaded and

pre-processed using the steps given in Chapter 2 section 2.6.

Deciding Time series length for each application: The length of the time series varies

for each application. For crop yield prediction, a padded crop cycle is employed for each

crop, extending two timestamps on either side (Chapter 3). For the other applications viz.

snow cover, soil moisture, solar energy, and cloud cover prediction, the time series spans

the last three months to forecast the target. For snow cover and soil moisture, prediction

is made for the upcoming month, and for solar energy and cloud cover, prediction is done

for the subsequent fortnight. These applications are sensitive to climatic conditions that

undergo changes over short durations. Thus, the length of the time series is small. For

land cover classification, prediction is done at the yearly granularity.
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6.4 Proposed Model: SpInN
We introduce a model, Spectral Indices Network (SpInN), which determines the rele-

vance of different spectral reflectance indices for earth observation applications. The

proposed model is depicted in Figure 6.1. It consists of four modules viz. - Dual Encoder

and Recommender (DER); Temporal Encoder; MetSoEnc; and Downstream Task Mod-

ule (DTM). SRI image at every timestamp is processed individually using DER which

also recommends the spectral reflectance indices relevant to the application. The image

embeddings at every time stamp are passed to the temporal encoder which learns the tem-

poral patterns from the time series. The temporal encoder embeddings are forwarded to

DTM for prediction or classification. MetSoEnc which is used to incorporate meteoro-

logical and/or soil data depending upon the application at hand. The module gives joint

representations of the meteorological and soil data. This is an optional module and if used

its embeddings are appended to the embeddings of the temporal encoder and forwarded

to DTM.

6.4.1 Creating SRI Images

The raw images of MODIS have 5 bands - Red, Green, Blue, NIR, and SWIR. To create

an SRI image with k channels, we calculate different spectral reflectance indices at every

pixel of the satellite image and stack each SRI matrix them one after the other. (see Figure

6.2).

6.4.2 Dual Encoder and Recommender

Dual Encoder is designed to get a representation of spectral index images at every times-

tamp. It also effectively selects and recommends the most suitable spectral indices for the

end task. It has three sub-modules described below:

6.4.2.1 Channel Selection Module (CSM):
CSM is designed to leverage relationships among different spectral reflectance indices

within the SRI images. It utilizes average pooling and max pooling operations to ef-

fectively reduce spatial dimensions while retaining crucial channel (spectral reflectance
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SRI image at time T 

Different SRIs 

Value at  
every pixel 

Figure 6.2: Spectral Reflectance Index Image

index) information. A two-layer feed-forward neural network is employed to model chan-

nel dependencies, incorporating ReLU activations. The output of FFN undergoes softmax

yielding attention scores for each channel. The channel attention is an integral compo-

nent of Dual Encoder, empowering the model to dynamically emphasize or de-emphasize

the channels based on their contextual significance, thereby helping the model to capture

task-relevant SRIs. The mathematical representation is:

Xavg = AvgPool(X) (6.1)

Xmax = MaxPool(X) (6.2)

FCavg = ReLU(Linear(Xavg)) (6.3)

FCmax = ReLU(Linear(Xmax)) (6.4)

Xcombined = FCavg + FCmax (6.5)

Xattn = softmax(Xcombined, dim = 1) (6.6)

Xselchn = X ×Xattn (6.7)

where X is an SRI image, Xattn is the attention score of the channels, and Xselchn repre-

sents the modified SRI image after multiplying the attention score of each channel by its

input matrix. Xselchn is passed to SRI ViViT for further processing.
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6.4.2.2 SRI ViViT:

We adapted video vision transformer (ViViT) [34] designed for getting representations of

RGB videos. In ViVIT, the image time series of dimension Z ×H ×W is converted into

multiple tubelets of dimension z × h × w and tokens are extracted from the temporal,

height, and width dimensions. Tubelet embeddings allow the model to efficiently cap-

ture spatiotemporal information by representing non-overlapping spatiotemporal patches.

We use the factorized encoder version of the transformer which consists of two separate

transformer encoders viz spatial encoder and temporal encoder. The spatial encoder, only

models interactions between tokens extracted from the same temporal index. These rep-

resentations are then forwarded to a temporal encoder.

We modified ViViT to make it work in conjunction with the channel attention module.

The spatial features are exploited using the spatial encoder. If we use ViViT in its conven-

tional way, it is not possible to retain the channel information separately. The model gives

the collective embeddings of the entire video or SRI image. Our requirement is to get the

features of individual channels to decide the importance of the channel for the considered

task. Thus, we apply the temporal encoder of ViViT on the channel dimension for each

SRI image individually to learn the features of every channel rather than applying it to the

SRI time series. Thus, the transformer exploits the features of the channels which helps

CSM to learn and identify the relevant channels.

We use two parallel SRI ViViTs, which we pre-train on two different tasks to make

them exploit different features from the same SRI images (see section 5). We use disen-

tanglement learning during fine-tuning to make sure that the two embeddings learn com-

plementary features. The two embeddings (e1 and e2) obtained from SRI ViViT models

are passed to the bilinear pooling layer.

6.4.2.3 Bilinear Pooling:

Bilinear pooling is mostly employed in computer vision, to combine the features from

two different modalities or sources. Similarly, we use bilinear pooling to join the embed-

dings obtained from two SRI ViViT models. Bilinear pooling exploits the higher-order

information and complex relationships in the two embeddings using pairwise correla-
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tions. The final flattened tensor serves as a fused feature representation, encapsulating

the joint information derived from both embeddings. Although bilinear pooling leads to

redundancy to a certain extent [149], but we handled this problem using disentanglement

learning. This forced the models to learn the complementary features and enhanced the

model’s ability to understand intricate cross-modal relationships and model performance

across diverse objectives during fine-tuning. The layer gives the joint embedding ebt at

timestamp t given as follows:

ebt = eT1Ae2 (6.8)

where A is the weight matrix which plays an important role in shaping the interactions

between the two embeddings. The final embeddings of all the timestamps, represented

by eb, are passed to the temporal encoder.

6.4.2.4 Temporal Encoder:

We use NLP transformer BERT [35] as a backbone in the temporal encoder. It uses the

attention mechanism to exploit and learn long-term dependencies in the input sequence.

The SRI image embeddings are obtained at every timestamp and form SRI TS which

are passed to BERT along with the positional embeddings. These embeddings are anal-

ogous to the embeddings of words in a sentence in NLP. We made two modifications

to BERT to make it suitable for SRI TS. First, we replace the default embedding layer

(which generates embeddings for text data) with dual encoder embeddings. Second, we

have not used the ”cls” token in order to get the task-agnostic embeddings. Without the

cls token, the model learns more generic and intrinsic features from the data that apply to

a broader range of tasks. We also pre-train BERT (see section 5) on the SRI time series.

The mathematical representation of the module is as follows:

Etoken = Embeddings(X), X isSRI image TS (6.9)

Etoken = Eb (6.10)
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Epos =

sin(t/100002i/d) i%2 == 0

cos(t/10000(2i+1)/d) i%2 ̸= 0

(6.11)

Inpbert = Etoken + Epos (6.12)

ESRITS = TSEnc(Inpbert) (6.13)

where i is the dimensions, ESRITS represents the final embedding of the SRI time series.

6.4.3 Downstream Task Module (DTM)

DTM comprises a feed-forward network with two linear layers activated by the GELU

activation function followed by the regression or the classification layer. GELU activation

combines the properties of zone out, dropout, and ReLU for intensifying the probability

of neuron output.

6.4.4 MetSoEnc

MetSoEnc is designed to incorporate and learn the combined representation of meteoro-

logical and soil data, wherever applicable. It contains an attribute selection unit [93] for

soil attributes to select j most relevant attributes. The selected attributes are concatenated

with the meteorological attributes and the combined set of attributes is passed to the bidi-

rectional LSTM layer. If the application requires only meteorological data, soil attribute

selection module is ignored.

Ems = MetSoEnc([M1,M2, ...Mn], Ã) (6.14)

where Ems represents the embedding for meteorological (and soil attributes).

6.5 Learning Objectives

We use Euclidean distance to get a disentangled representation of two embeddings of the

dual encoder, mean square error, and cross-entropy loss for prediction and classification,

respectively.
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Disentangled representation learning: Disentangled representation learning (DRL)

is used to learn embeddings that capture different characteristics and are independent of

each other. By using disentanglement learning, we ensure that each embedding captures a

different aspect of the data. This property allows the representations to be used for various

downstream tasks [150]. We used the concept for disentangling the embeddings obtained

from SRI ViViT models pre-trained on different tasks. This leads to improved data qual-

ity and more reliable information extraction. Disentangling these embeddings ensures

that these embeddings are generic, transferable, complementary, and capture different as-

pects of the data in a concise form which reduces redundancy. This facilitates improved

performance of the model when adapting and fine-tuning to new tasks. The disentangled

representations enable faster convergence and require less task-specific fine-tuning. It

also mitigates task-specific biases that may arise during pre-training and reduces the risk

of biased transfer when adapting the model to a new downstream task.

We calculate the Euclidean distance between the embeddings (e1 and e2) obtained

from the two pre-trained SRI ViViT models as given in the equation below:

Ldrl = ||e1i − e2i || (6.15)

Mean Square Error: We used mean square error as a loss function for the prediction

downstream task. The mathematical representation of the loss function is given in the

equation below where yi and ŷi are the actual and predicted output, respectively for a

given location and year. N is the total number of location-year pairs.

Ldt = MSE =
N∑
i=1

(y − ŷi)
2

N
(6.16)

Cross entropy loss (CEL): This is a log loss function that we used in classification.

In the equation below, yi is the actual labels, ŷi is the predicted labels, and C is the number

of classes.

Ldt = CEL =
C∑
i=1

yi.log(ŷi) (6.17)
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Total Loss: Amongst the two losses considered in training, downstream task (Ldt)

needs to be minimized, and Ldrl between the SRI ViViT embeddings needs to be maxi-

mized. The total loss in the model training is given in the equation below.

Total loss(L) = Ldt − Ldrl (6.18)

6.6 Pre-training
Taking inspiration from applications in computer vision and NLP we pre-train ViViT and

BERT on spectral reflectance index images and SRI image time series, respectively. We

pre-train ViViT for two pre-training objectives and BERT for one. The size of the dataset

used for pertaining is 600GB. We used following pre-training taks:

• Function approximation task: This is a regression task in which a model is pre-

trained to estimate the value of one attribute based on the values of other attributes

in the dataset. We used it to pre-train ViViT using the set of 10 SRIs and estimate

the value of another spectral reflectance index - Optimized Soil Adjusted Vegeta-

tion Index (OSAVI). The task learns the relationships among different SRIs and

captures intricate patterns in the data. Exposure to noise in the function approx-

imation task equips the model to handle uncertainties in satellite data, ensuring

improved robustness.

• Is TS Ordered(Y/N): We also pre-train ViViT on the classification task to identify

whether the given input is temporally in the correct order or not. The model is

given as input the original SRI time series and the shuffled time series by randomly

permuting the original time series. ViViT is applied iteratively on every image of

the SRI time series. The task captures the contribution of each SRI image in the

overall temporal context.

• Reconstruction task: We pre-train the BERT model using the next frame recon-

struction pretext task. As the BERT model is designed to learn the temporal fea-
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tures, we passed the embedding vectors of each time stamp of the spectral index

time series obtained from ViViT models pre-trained on the function approximation

task to the BERT model. We use an additional decoder to construct the spectral

index image at the next timestamp from the predicted SRI vector.

Note: The ViViT models pre-trained on two different tasks are used in parallel in

the disentangled representation learning setup to make sure that they are fine-tuned to

extract different and complementary sets of features for the downstream task. Also, while

pre-training BERT, the weights for the ViViT model are frozen. Using the pre-trained

models in parallel helped in the concurrent utilization of their respective strengths. Each

model may capture different aspects of the data, leading to a richer, more comprehensive,

and holistic understanding. The redundancy provided by a parallel model contributes to

robustness, especially in situations where one model may falter or exhibit biases. The

parallel utilization of pre-trained models can facilitate transfer learning across related

tasks, optimizing performance and generalization capabilities.

The loss function used for the function approximation task and the reconstruction task

is the mean squared error and Binary Cross entropy loss for the classification task.

6.7 Models for Comparison

Out of six applications considered, existing studies have used spectral reflectance indices

only for crop yield prediction. We conducted a comprehensive comparison of our pro-

posed model SpInN with four existing models working with SRIs viz., Linear Regression

(LR) [32], Random Forest regression (RFR) [33], Support Vector Regression (SVR) [32],

and LSTM [32]. These models predict crop yield using SRIs as a single numeric value

for a specific location (county). We also compare our model with four other existing

models viz. CNN[43], CNN +GP [43], CNN+LSTM [44], and CYN [84], working with

histogram time series. To ensure fair comparisons, all the existing models were optimized

and trained for the same location and year as used in training SpInN. For other predic-

tion applications, we chose LSTM (best-performing model using SRIs) as the baseline
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for comparison (see Table 6.3). For landcover classification, we compared SpInN with

Resnet50 [18].

Thus, the models selected for this comparative analysis are divided into three types:

6.7.1 Models for prediction problems working on SRIs

The details of models used for prediction problems are as follows:

• Linear Regression: Linear regression is a statistical method used for modeling

the relationship between a dependent variable and one or more independent vari-

ables. Most of the researchers have used linear regression using only one spectral

reflectance index to predict crop yield. A few of them have used multiple linear

regression for crop yield prediction using 2-3 spectral indices. We have applied

multi-linear regression using 10 SRIs for crop yield prediction.

• Random Forest Regression: Random Forest Regression is an ensemble method

that uses different independent decision trees to make predictions. The final pre-

diction is obtained by aggregating the predictions of all the trees using the average

method. Random Forest Regression captures non-linear relationships and provides

stable and accurate predictions. After hyper-parameter tuning, we used the number

of base estimators as 37 and the maximum depth for each decision tree as 11.

• Support Vector Regression: SVR operates by identifying a hyperplane that best

represents the distribution of data points in a high-dimensional space, where the

distance between the hyperplane and the data points is minimized. We have used

the Radial Basis Function (RBF) kernel which helps in capturing the non-linear

relationships between input features and target variables. It helps SVR to capture

intricate patterns and dependencies in the data that linear models are not able to.

After hyper-parameter tuning, we have used epsilon as 0.03.

• Long Short Term Memory: LSTM is a type of recurrent neural network (RNN)

with forget and memory gates designed for capturing long-term dependencies in
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sequential data. These gates help LSTM to decide when and what information

needs to be forgotten. The gates and the cell states in LSTM make it suitable

for dealing with the long-term dependencies and problem of vanishing gradient in

RNN. We trained and optimized LSTM using Adam optimizer keeping a learning

rate of 0.0001 after hyper-parameter tuning.

6.7.2 Models for prediction problems working on histograms

The next set of models are working with histogram time series. To work with histograms,

researchers have created a separate histogram for each reflectance band by aggregating

the pixel intensities. Thus histograms represent the count of pixels in a certain intensity

range. The details of the models are:

• The researchers [43] applied CNN and CNN+GP models on histogram time series

of reflectance bands obtained from MODIS for crop yield prediction. CYP is mod-

eled as a static problem and they did not exploit the temporal patterns in the data,

which is crucial for appropriate modeling of crop yield prediction problem.

• CNN+LSTM [44] uses histograms of MODIS reflectance bands and soil data. The

authors apply CNN over soil histograms to model soil as static data, and LSTM for

learning temporal patterns in the surface reflectance data.

• CYN [84] models crop yield prediction as a spatiotemporal problem, also incorpo-

rating the depth-sensitive information of soil data. CYN models soil data to select

the required depth level for each soil attribute at every timestamp of the crop cycle.

6.7.3 Model for Land cover classification:

The above-mentioned models are only suitable for prediction problems. To validate the

performance of the proposed model SpInN in a classification problem, we compared it

with an existing model ResNet used in study [18]. The authors have not given the details

for which version of the model they used, so we opted for ResNet50 with four blocks.
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6.8 Experimental Setup and Evaluation Metric

This section covers the details of the experimental setup and valuation metrics used.

6.8.1 Experimental Setup

All the experiments are performed using Pytorch 1.11.0 and CUDA 11.7 on an A100 GPU

server having 80GB GPU RAM. All the models are trained using the Stochastic Gradient

Descent optimizer for 50 epochs with a batch size of 16. The momentum and weight

decay are 0.3 and 0.001, respectively for all the applications. The learning rate η for

the optimizer is decided while tuning hyper-parameters for each model and application.

For CYP, CCP, SMP, SEP, SCP, η = [0.0003, 0.001, 0.001, 0.0001, 0.00001], respectively.

We tested the models for two years (2019 and 2020). All the predictions are done at

timestamp t + 1, taking 1 to t as input TS data. If prediction needs to be done yearly,

we averaged the predicted output for the years 2019 and 2020. If the application requires

prediction at a monthly level (for SMP and SCP), the average is taken for 24 predictions

in two years, and so on. We have performed the experiments five times and given the

best-observed results in the results section.

6.8.2 Evaluation Metrics

We used two key metrics viz. Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) for prediction problems. For classification, we used accuracy and f1-score.

Evaluation metrics for prediction: We used two key metrics for prediction prob-

lems viz., root mean square error (RMSE) and mean absolute error (MAE) for evaluating

and comparing the performance of our proposed model. RMSE calculates the root mean

squared magnitude of errors, assigning more weight to larger errors and MAE provides

insight into the mean magnitude of errors in the model predictions. A higher RMSE

implies that the model is encountering a notable quantity of errors with substantial mag-

nitudes. It indicates that the model is struggling with a considerable number of errors

characterized by significant magnitudes. Its tendency to heavily penalize large errors due
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to the squaring operation makes it sensitive to outliers. The formula for both the metrics

is given below:

RMSE =

√√√√√√
N∑
i=1

(yic,T − ŷic,T )
2

N
(6.19)

MAE =

N∑
i=1

|yic,T − ŷic,T |

N
(6.20)

where N is the total number of {c, T} pairs, c is the county, T is a year for crop yield

prediction, a month, for snow cover and soil moisture prediction, and for solar energy

and cloud cover prediction it is a fortnight.

Evaluation metric for classification: We used accuracy and f1-score as the evalu-

ation metrics. Accuracy measures the overall correctness of a classification model. F1-

score combines precision and recall into a single value. It provides a balance between

precision and recall, making it useful in imbalanced data. The formula for both the met-

rics is given below:

Accuracy =
Number of Correct Predictions

Total Predictions
(6.21)

F1− Score = 2× Precision×Recall

Precision+Recall
(6.22)

6.9 Results and Discussion
Comparison with existing models on crop yield prediction: The first set of experiments

is performed for crop yield prediction. Table 6.2 shows RMSE and MAE obtained by

different models using all 10 listed spectral reflectance indices. It can be observed from

the table that the proposed model outperforms the existing models. There is a significant

reduction in RMSE obtained by SpInN. The RMSE is reduced for corn yield prediction by
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Table 6.2: RMSE and MAE for CYP

Model Corn Soybean
RMSE MAE RMSE MAE

LR [32] 37.3733 27.1181 8.3813 7.5609
RFR [33] 23.7021 21.9117 7.3676 6.9295
SVR [32] 27.8096 25.5323 9.9320 9.6108
LSTM [32] 22.1133 18.8315 6.0310 5.7554
CNN [43] 27.1690 25.1255 12.436 10.0146
CNN+GP [43] 28.2040 26.6421 10.115 8.5051
CNN+LSTM [44] 23.5860 21.3289 9.9560 7.6278
CYN [84] 21.5050 18.1359 8.1660 5.8712
SpInN 18.8498 17.1664 5.9669 5.5609

approximately 37%, 19%, 32%, and 14% in comparison to LR, RFR, SVR, and LSTM.

Similar results are obtained for soybean yield prediction where a minimum reduction in

error is observed in comparison to LSTM 5.49% and the maximum is observed from

SVR which is 42.6%. The percentage improvement of approximately 12% and 27% is

observed, respectively for corn and soybean yield prediction when compared with the

best-performing histogram model, CYN. The superior results obtained by SpInN can be

attributed to multiple factors including the use of SRI images in place of single aggregated

value (as used in existing models of SRIs) and the use of transformers in the architecture.

Channel Selection: The next set of experiments is performed to find the importance

of different spectral reflectance indices for the end tasks. The attention for each chan-

nel/spectral index is calculated using the CSM of the dual encoder. The graphs depicting

the weight of each SRI for all the applications are given in Figure 6.3. We have used

the inverse-scree method [71] and the weight value of SRI to select the spectral indices

relevant to the given application. For example for corn, soybean, soil moisture, and cloud

cover we recommend 5 spectral indices. For solar energy and classification, we recom-

mend 6 SRIs and for snow cover prediction, 7 channels are recommended. The selected

SRIs are taken from left to right before the red mark in each graph.
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Figure 6.3: SRI Selection
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Table 6.3: Impact of using SRIs relevant to applications (RMSE)

Application 10 SRIs Selected SRIs
SpInN LSTM SpInN LSTM

CYP(Corn) 18.849 22.113 17.446 20.075
CYP(Soybean) 5.6996 6.0310 5.1647 5.8607
SCP 4.7837 9.6103 4.1836 8.3642
SEP 6.2235 8.6349 5.7313 7.8735
SMP 5.1203 10.677 4.3802 9.6408
CCP 13.898 23.347 13.519 21.758

Significance of SRI recommendation: The next set of experiments is performed to

see the impact of using only recommended SRIs for each application. We performed

the experiments to validate the significance of recommended SRIs for SpInN and the

best performer amongst the existing models i.e. LSTM for all applications. It can be

observed from Table 6.3 that using only the recommended spectral reflectance indices

significantly affects models’ performance. The RMSE obtained using SpInN for corn

yield prediction is 18.849 bu/ac when using all the spectral indices and it is reduced to

17.449 bu/ac when using only the set of recommended five spectral indices (≈ 7.4%

improvement). Similarly, using the LSTM model the RMSE reduced from 22.113 bu/ac

to 20.075 bu/ac (≈ 9.2%). In the case of snow cover prediction, RMSE reduced by

≈ 12% on using selected spectral indices for both models. Similar results are obtained

for other applications. The reduced error using selected SRIs signifies that irrelevant

SRIs possibly add noise to the data and thus lead to degraded performance. Some other

benefits of using the reduced number of spectral indices include reduced computational

and memory requirements during training and inference.

Significance of Additional data: Table 6.4 contains the output of experiments con-

ducted using additional meteorological and/or soil data depending upon the requirement

of the application. We conducted experiments for the existing LSTM model and the

proposed model SpInN. It is clear from the table that incorporating meteorological and

soil data has a significant impact on all the applications. Incorporating meteorological
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Table 6.4: Impact of additional data (RMSE)

Application Only selected SRIs SRI+additional data
SpInN LSTM SpInN LSTM

CYP(Corn) 17.446 20.075 14.4796 18.0675
CYP(Soybean) 5.1647 5.8607 4.5488 5.3894
SCP (no soil) 4.1836 8.3642 4.0248 8.0104
SEP 5.7313 7.8735 5.505 7.2837
SMP 4.3802 9.6408 3.6209 9.1440
CCP (no soil) 13.519 21.7585 10.8465 19.242

Table 6.5: Ablation Study: Significance of DRL and BP (RMSE)

Application SpInN SpInN-DRL SpInN-DRL-BP
CYP(Corn) 14.479 14.701 15.197
CYP(Soy) 4.5483 4.8783 5.0901
SCP 4.0248 5.0727 5.3232
SEP 5.5050 5.6326 6.2783
SMP 3.6209 4.3208 4.4964
CCP 10.846 11.003 11.257

and soil data has improved the corn yield predictions by approximately 17% and 10%

using SpInN and LSTM models, respectively. Similar patterns were obtained for other

applications. For example, RMSE is reduced by ≈ 4% for snow cover prediction by

incorporating meteorological data in both models.

Significance of Disentangled representational learning and Bilinear Pooling: We

perform experiments without using the disentangled representation learning and bilinear

pooling to verify their significance. SpInN represents the model when DRL is removed

from the model. It is observed that the model is not able to handle redundancy introduced

due to bilinear pooling, and the model is also not able to learn complementary features.

Both these problems adversely affect the RMSE as shown in column 3 of Table 6.5.

To emphasize the importance of using two parallel pre-trained SRI ViViT models in

parallel, we removed both bilinear pooling and disentanglement learning from SpInN.
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Table 6.6: Comparison: Landcover classifcation

Model 10 SRIs Selected SRIs
SpInN ResNet SpInN ResNet

Accuracy 84.56% 42.82% 89.9% 47.29%
F1-score 0.595 0.539 0.612 0.557

SpInN-DRL-BP represents this variant of the model. In this scenario, we can use only a

single pre-trained SRI ViViT model. This results in a significant increase in RMSE for

all the applications. It can be observed from Table 6.5 that there is a significant impact on

RMSE for all the applications considered (see column4, Table 6.5). The most adversely

affected application is snow cover (increase in RMSE by approximately 24%), followed

by soil moisture with an increase of 19% in RMSE.

Results for Land Cover Classification: We achieve an accuracy and f1-score of

84.56% and 0.595, respectively when using all the SRIs for classifying the land cover

into 17 classes. The accuracy and f1-score increased to 89.9% and 0.61, respectively

when we used only six relevant SRIs recommended by SpInN. It can be observed from

Table 6.6 that SpInN outperforms Resnet.

Except for CYP, there are only a few studies [18, 20, 98, 103, 142, 144, 146] available

for other applications considered. Most of the existing solutions related to these applica-

tions are confined to very small regions and they address only one application. Except for

the proposed SpInN, there is no existing model which generalizes for multiple applica-

tions. The existing models are either shallow machine learning models or simple neural

networks which are not capable of learning highly non-linear patterns in satellite data.

Standard Deviation in results: All the results mentioned are best-case results. How-

ever, we performed each set of experiments five times and observed a standard deviation

of a maximum of 0.3 for all applications. The details are given in Table 6.7.

6.10 Main Contributions

The main contributions of the chapter are:
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Table 6.7: Standard deviation in experiments for SpInN

Application 10 SRIs Selected SRIs
Best-case Mean Std-dev Best-case Mean Std-dev

Corn 18.8498 19.1185 ±0.1830 17.4495 17.7172 ±0.2721
Soybean 5.6996 5.8844 ±0.2017 5.1647 5.2473 ±0.0821
SCP 4.7837 4.9791 ±0.1682 4.1836 4.3232 ±0.0972
SEP 6.2235 6.6378 ±0.3070 5.7313 5.9100 ±0.1704
SMP 5.1203 5.4330 ±0.2362 4.3802 4.5792 ±0.2169
CCP 13.8985 14.4628 ±0.3302 13.5196 13.7501 ±0.2089

1. We explore the use of spectral reflectance indices in different earth observation

applications and introduce a model to recommend the most relevant SRIs for an

application. We have applied and validated the recommendations for six different

applications.

2. We innovatively introduce a channel attention mechanism applied to features ob-

tained from the temporal encoder of SRI ViViT which is employed on channels of

SRI image. The time series of SRI images is then exploited by BERT for temporal

patterns.

3. We pre-train ViViT on SRI images to learn their spatial-spectral features and BERT

on a time series of features obtained from ViViT (representing SRI time series) to

learn temporal features in the SRI time series.

4. This is the first attempt to model spectral reflectance indices as an image to preserve

the SRI properties in the spatial modality.

6.11 Summary
We attempted to establish that spectral reflectance indices and their sensitivity towards the

detection of vegetation, environmental variables, and physiological and morphological

characteristics are important and can be used for various earth observation applications.

We also show that a subset of SRIs is sufficient to solve an earth observation application.
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We have innovatively modeled prediction and classification problems using a novel con-

cept of SRI images, unlike previous existing studies which use single value representation

of SRIs for a large region like a county for a time stamp. This leads to the loss of critical

spatial information. We have used the image representation to address the spatial infor-

mation loss problem. We also propose a model, SpInN which can recommend relevant

SRIs for a given application and solves the problem using the subset of recommended

SRIs.

SpInN uses ViViT and BERT innovatively on SRI image time series to learn its

spatial-spectral-temporal representation. Our results demonstrate that SpInN gives state-

of-the-art results for six earth observation applications considered. The proposed archi-

tecture is generic and can be used for many other earth observation applications. The

pre-trained dual encoder of SpInN can be used independently for applications that re-

quire only static SRI image analytics. SpInN automates the spectral reflectance index

recommendation process for various applications, which otherwise require the services

of domain experts.
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SaTran: A transformer for Satellite

Image Time Series

1

7.1 Introduction
Satellite Image Time Series (SITS) data offer valuable insights into Earth’s surface char-

acteristics and dynamics. It has widespread applications across domains like ecology,

agriculture, forestry, land management, disaster monitoring, risk assessment, etc. Deep

learning has gained popularity in the remote sensing community due to its ability to learn

valuable features from input data without feature engineering. In the realm of SITS clas-

sification, a combination of convolutional and recurrent neural networks is employed to

capture spatiotemporal characteristics from the data. An alternative to RNNs, transform-

ers, originally proposed for natural language processing tasks, have shown promising

performance in sequence encoding. A couple of studies [25, 26] used BERT to classify

1The work presented in this chapter is communicated:

• Arshveer Kaur, Poonam Goyal, Niranjan, and Navneet Goyal, ”SatTran: A transformer for high
spatial resolution satellite image time series exploiting spatiotemporal redundancies”, in NeurIPS
2024. [Communicated]

• Patent filing in process.
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time series for every pixel which limits them from effectively exploiting the spatial cor-

relations in the image time series. Moreover, these models work only for classification

as they segment the image time series which is not suitable for prediction problems like

prediction of crop yield, snow cover, cloud cover, etc. In prediction problems, the ground

truth is mostly available for coarser granularity than that of pixel e.g., at a county or

a district level. Another model TSViT [24] used ViT for landcover classification. The

authors factorize input dimensions into spatial and temporal components to reduce the

computation. However, the model is not able to identify the redundancy in the patches

and processes them all.

Satellite data is much larger than the large datasets used in NLP or vision domains

[151]. The size of an image for Landsat-8 satellite, a high spatial resolution satellite,

is approximately 2000 × 2500 × #bands. For yearly time series of Landsat-8, the size

becomes 2000×2500×5(#bands)×23(#timestamps) which makes its data volume ≈

700MB. The total data used in the study for pre-training and downstream tasks comprises

of around 2000 counties making the amount of data is 10.0 TB for Landsat-8 which

is much larger than the datasets used in other domains [152]. Processing single image

time series of Landsat-8 using existing video vision models leads to GPU out-of-memory

(OOM) error on A100 GPU card with 80GB memory.

There are a few models like AdaVit [153], and DynamicVit [154] which reduce the

computational requirements by processing images in patches and using attention to select

only informative patches. Authors [155] used the token dropping mechanism to ignore

less informative tokens while pre-training BERT. However, as mentioned Esther Rolf et.

al. [151] any models developed for 3-channel RGB images or videos are suboptimal for

modeling satellite datasets due to the large volume and different characteristics of SITS

data in comparison to RGB data. Thus, we require a method which can train a Large

SITS Model efficiently.

We propose a transformer model, SaTran, for large size satellite image time series

which exploits spatiotemporal redundancies. SITS data can be characterized by the pres-

ence of patches with spatiotemporal redundancy persisting throughout the time series,

168



Chapter 7

referred to hereafter as redundant patch tubes. SITS data also contains patches where tem-

poral redundancy lasts only for a few timestamps, referred to hereafter as non-redundant

patch tubes. The pictorial representation of the classification of patch tubes is given in

Figure 7.1. For example, a region of a barren land/water body has spatiotemporal re-

dundancy, and it won’t change even for years (thus is a redundant patch tube); 2) the

non-redundant patches (regions of interest) experience changes with time but can still

have a temporal redundancy for a shorter span, for example, cultivation land experiences

changes in the crop cycle duration. However, during harvest time when the crop is fully

grown, there can be redundancy for a few time stamps. Removing redundancies reduces

the computational requirements thereby helping in the democratization of satellite image

technology.

Figure 7.1: Classification of Patch Tubes

SaTran disentangles spatiotemporal and temporal redundancies and makes the SITS

processing efficient. It has two modules - PatchTubeSelect and TemporalRedundancy-

Handler. We first remove spatiotemporal redundancies with the help of PatchTubeSelect

which selects hotspots (non-redundant patch tubes) using an attention mechanism to dis-

cern critical areas necessitating focused attention and exclude the redundant patch tubes.

We, then use TemporalRedundancyHandler which innovatively uses VideoMAE [156] on
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non-redundant patch tubes to further handle temporal redundancy local to these patches.

The twofold redundancy handling approach of SaTran helps mitigate the impact of noise

and data leakage leading to a more accurate representation of the SITS.

7.2 Related Work
Satellite Data: Advancements in satellite image technology are leading to notable en-

hancements in capturing data with high spatial, temporal, and spectral resolutions. This

progress enables effective monitoring of the Earth’s surface at desired levels of detail,

catering to various Earth observation applications. Popular satellite systems are MODIS

[10], Landsat-8/9 [40], and Sentinel-2 [41] due to their publicly available data which can

be used in different real-world applications like disaster management, urban planning,

agriculture, climate studies, etc. This makes satellite imagery a cost-effective solution

for obtaining global-scale data. Time series analytics are commonly required for many

applications leveraging satellite imagery. Satellite image time series is analogous to RGB

videos but it has characteristics that differentiate it from RGB videos e.g. SITS do not

contain moving objects, the landscape does not change their position and only the changes

are observed in them with time. This is the reason why the existing video models are not

suitable for SITS data.

Earth Observation Applications: Researchers have tried to model SITS data in dif-

ferent forms according to specific applications. They have used satellite data in the form

of histograms [43, 44, 58], spectral reflectance indices [32, 33] or images [18] for differ-

ent earth observation applications. Different studies have applied various statistical [129]

and machine learning [46, 130–133] on different types of data for crop yield prediction.

Transformers in other domains: Transformers are gaining success in areas of NLP

and vision. BERT [35] is a revolutionary text model that has significantly advanced the

field of language understanding. Similarly, Video Vision Transformer (ViViT) [34] rep-

resents a significant advancement in the domain of computer vision, extending the trans-

former architecture to handle sequential frames of video data. VideoMAE [156] cus-

tomized video tube masking approach characterized by an exceptionally high masking
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ratio to extract effective video representations during the pre-training process. Authors

[157] introduced making the decoder of VideoMAE and proposed model VideoMAE:v2

to improve the accuracy of video analytics. Lingchen et al. [153] proposed an Adap-

tive Vision Transformer (AdaViT) which processes an image in patches. It learns which

patches to use and which self-attention heads to activate for every image and thus reduces

the computation cost. Similarly, Rao et al. proposed DynamicViT [154] which prunes re-

dundant tokens dynamically based on the input. The model divides the RGB images into

independent patches and uses the attention masking concept to mask the tokens of patches

which are of minimum importance. In another study [155], Hou et al. proposed the token-

dropping concept for accelerating the pertaining process of BERT. These models can be

explored for their use in SITS analytics but are not directly applicable to satellite data.

Models in SITS Analyisis: As stated in [151], the basic properties of two types of

data- regular RGB videos and SITS are different. Unlike RGB videos, the objects in

temporal sequences of satellite images remain in a fixed position but change in appear-

ance over time. Researchers [25, 26] tried to adapt BERT for SITS classification at pixel

level. Authors [25] presented a self-supervised pre-training approach of BERT designed

to initialize a transformer-based network. The model is tasked with predicting randomly

contaminated observations within an entire time series of a pixel. Similarly, authors [26]

extended the above work to apply BERT to the time series of the immediate neighboring

pixels and then predict the label of the center pixel using SITSFormer. The use of BERT

on pixel time series shown to be a potential method for improving SITS classification

performance and mitigating overfitting challenges in the application. Tarasiou et al. [24]

proposed Temporo-Spatial Vision Transformer (TSViT) which is based on famous ViT

model and adopted for satellite image time series analytics. TSViT divides a SITS into

non-overlapping patches across both spatial and temporal dimensions which are then to-

kenized and processed by a factorized temporal-spatial encoder. However, these models

are not suitable for applications like prediction of crop yield, snow cover, cloud cover,

etc. where the ground truths cannot be available at pixel level. For such applications, the

ground truths are available at a bigger region like a county or district and it necessitates
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processing the data at the image time series level and not at pixel time series level.

The existing models for SITS are designed specifically for classification problems and

are not able to solve prediction tasks. The video analytics models are not suitable to be

adapted for SITS. The proposed model in this paper works to resolve these two problems.

7.3 Study Area and Data Used
The data used for SaTran consists of satellite image time series from two satellites MODIS

and Landsat-8. The ground truth data is specific to the application. We have taken around

2000 counties from different states of US for all applications considered. The details are

as follows:

• Data Used: For MODIS, time series for one year is 200 × 250 × 5(#bands) ×

46(#timestamps) and for Landsat-8, it is 2000× 2500× 5(#bands)× 23

(#timestamps). For a fair comparison, we have used data for the same years

(2014-2020) for both satellites and used only the bands common to both satellites

i.e. Red, Green, Blue, NIR, SWIR.

• Crop Yield Prediction (CYP): The crop yield data for U.S. counties utilized in this

study is taken from Quick Stat, a comprehensive database compiled by the United

States Department of Agriculture (USDA) [80]. The data used in this study spans

the period from 2002 to 2020. The yield values are quantified in bushels per acre

(bu/ac), offering a standardized unit for assessing and comparing crop productivity

across different regions. We used top producer counties of soybean from states -

Michigan, North Dakota, Arkansas, Indiana, Tennessee, Ohio, South Dakota, Iowa,

Kansas, Kentucky, Minnesota, Mississippi, Missouri, Nebraska, Illinois, and Wis-

consin.

• Snow Cover Prediction (SCP): The snow cover data has been acquired at the

county level using the MODIS product MOD10A1. This dataset offers information

about snow cover extent with a spatial resolution of 500 meters using normalized
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difference snow index (NDSI). NDSI is a key indicator, representing the percentage

of the area covered by snow. We consider 300 counties from states experiencing

annual snowfall of more than 250 inches. The counties lie in the states of New

Hemisphere, Washington, Oregon, California, Colorado, and Utah.

• Soil Moisture Prediction (SMP): The soil moisture data is acquired at the county

level for every month using NASA-USDA Enhanced SMAP Global soil moisture

data [147]. This dataset was developed by the Hydrological Science Laboratory at

NASA’s Goddard Space Flight Center in cooperation with USDA Foreign Agricul-

tural Services and USDA Hydrology and Remote Sensing Lab. The Soil Moisture

Active Passive (SMAP) instrument measures the amount of water in the surface soil

everywhere on Earth. The value represents the amount of water in mm. The data

is available from 2016 and thus data used in this study is for 5 years from 2016 to

2020. We consider 275 counties from the states- Iowa, Kansas, Illinois, Kentucky,

and Indiana.

• Solar Energy Prediction (SEP): The information about solar energy produced in

a county has been acquired from visual crossing [105]. The value represents the

total solar energy produced in MJ/m2 for a county in a day. The data used in this

work spans the period from 2014 to 2020. The counties considered lie in the states-

Iowa, Kansas, Illinois, Kentucky, and Indiana.

• Cloud Cover Prediction (CCP): Cloud cover represents the proportion of the sky

covered by clouds throughout the day. We acquired data captured on a daily basis

from visual crossing [105]. The data used in this study spans the period from 2014

to 2020. The counties considered lie in the states- Iowa, Kansas, Illinois, Kentucky,

and Indiana.

• Land Cover Classification (LCC): Land cover can be classified into a different

number of classes. We used MCD12Q1 [148] which classifies land cover into 17

classes. The dataset provides annotations for the land cover at a spatial resolution
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Table 7.1: Length of time series used for different downstream applications

Satellite CYP SMP SCP SEP CCP LCC

MODIS 32 12 12 24 24 46
Landsat-8 16 6 6 12 12 23

of 500m and yearly granularity. The data used in this study spans the period from

2014 to 2020. The counties considered belong to states- Iowa, Kansas, Illinois,

Kentucky, and Indiana.

7.3.1 Deciding length of time series:

The length of time series for an instance for every application is different due to the

difference in the visiting frequency of satellite systems. For e.g. in snow cover and

solar energy prediction the time series considered is from the last three months and the

prediction is for the next month for snow cover and the next fortnight for solar energy. The

details are given in Table 7.1. Other details of data pre-processing are given in Appendix

A.

7.4 Proposed model: SaTran
In this section, we discuss the characteristics of satellite image time series and how it

is different from RGB videos, and then describe the architecture of SaTran to handle

challenges posed by SITS.

7.4.1 Characteristics of SITS

Satellite image data are stored in a raster format, organized as a tensor with dimen-

sions for height, width, and channels. Temporal aspects can be integrated by arrang-

ing spatially-aligned rasters along a fourth dimension. Although this structure resembles

images\videos, satellite images are far different from their equivalent in natural images

for many reasons including:

1) Number of channels in satellite images and the size of the images from high spatial

resolution satellites.
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2) Unlike RGB videos, SITS often exhibit spatiotemporal redundancy over time, espe-

cially in specific landforms. For example, water bodies will have consistent patterns year

after year. The spatial arrangements of landforms in SITS data do not change drastically

over time. In contrast, RGB videos capture dynamic scenes where spatial configurations

change frequently. The stable patterns observed in SITS contrasts with the fluid nature

of video imagery, especially in urban environments or areas with constant human activity

leading to huge spatiotemporal redundancy.

3) The rate of temporal redundancy is different in different spatial landforms. The re-

dundant patch tubes such as water bodies, urban area, etc. will have temporal redundancy

for a longer time. However, non-redundant patch tubes like areas under snow experience

different redundancy for a shorter span. In regions where snowfall is a regular occurrence,

such as high-altitude areas or northern latitudes, the temporal redundancy in satellite im-

age time series can be less during the initial phase which can eventually be relatively high

during winter months once snow settles and decreases as temperature rises. This leads to

dynamic changes in the landscape. The once uniform snow cover gives way to patches

of melting snow, revealing underlying terrain and vegetation. During this transition pe-

riod, the temporal redundancy in satellite imagery decreases as the spatial patterns evolve

rapidly.

4) SITS do not contain moving objects and thus the orientation of regular RGB videos

is of more importance and SITS don’t have any natural orientation [151].

7.4.2 Model Architecture

SaTran consists of two important modules – PatchTubeSelect and TemporalRedundancy-

Handler. The architecture is given in Figure 7.2. PatchTubeSelect handles the spatiotem-

poral redundancy in SITS by selecting and processing the patch tubes using an attention

mechanism. Temporal Redundancy Handler uses VideoMAE to handle the local temporal

redundancy of the selected patch tubes. Both modules are described below:
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7.4.2.1 PatchTubeSelect:

A satellite image is gridded virtually into spatial patches. each patch consist of n × n

pixels. A patch tube extends a patch in the temporal dimension. The patch tubes are

passed to the Temporal Redundancy Handler which gives the representations of Patch

tubes which are then forwarded to the Tube Selection Module (TSM) which is a sub-

module in patch tube select. TSM utilizes attention scores to identify the top ’k’ tubes,

which are then passed to the Region of Interest Selector (ROI-S) sub-module. ROI-S

determines the unprocessed neighboring tubes of the top ’k’ tubes and generates a list of

tubes to be processed in the subsequent iteration. Most of the neighboring patch tubes are

excluded due to spatiotemporal redundancy and new patch tubes are randomly selected

which then become the new regions of interest. This process iterates until a fraction (1/x)

of the SITS is processed. The enhanced tube representations obtained from TSM are sub-

sequently forwarded to the embedding generation module, which outputs the embedding

of the entire SITS learned by the network across multiple iterations.

7.4.2.2 TemporalRedundancyHandler:

It adapts VideoMAE for handling temporal redundancy. The patch tubes are divided into

tiny tubelets of size (T/t × H/h × W/w) where t, h, w depends on the satellite used

and details are given in section 6.1. These tiny tubelets are randomly masked and the

remaining tubelets are processed using vanilla Vision Transformer (ViT) [158]. Video-

MAE takes these tiny tubelets as inputs and uses the joint space-time cube embedding to

obtain tubelet tokens. This reduces the volume of input data due to reduced spatial and

temporal dimensions thus making the processing efficient. As the temporal redundancy

in SITS persists for shorter lengths, the original high masking (95%) ratio in VideoMAE

cannot be used for SITS. Also, there is less risk of information leakage in SITS, due to

which we recommend reducing the masking ratio to 75% which is still significant and

thus only a small number of tokens need to be processed by the encoder which further

makes the process efficient. The comparative study for different masking ratios is given

in the results section. To effectively capture high-level spatiotemporal details within these

remaining tokens, we utilize the ViT backbone and incorporate joint space-time attention.
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This allows all pairs of tokens to interact with each other in the multi-head self-attention

layer, enhancing the model’s ability to understand complex spatiotemporal relationships.

7.4.2.3 Embedding Generator:

It collects the individual embeddings of all the processed patch tubes and uses a feedfor-

ward network to give the joint representation of the entire SITS. It consists of two linear

layers.

7.4.2.4 Decoder:

We pre-train SaTran for two tasks viz. reconstruction and classification (refer section 4)

using different decoders one for each task.

The decoder for the reconstruction task consists of trans-convolutional layers to per-

form the upsampling operations and construct the middle frame. Batch normalization

is applied to ensure stability and efficiency in training. The decoder is trained using the

mean squared error loss function for the model to generate the middle frame reconstructed

images.

The decoder for the classification task consists of a simple feedforward network with

two linear layers and a sigmoid activation for the output. We use binary cross-entropy

loss as the loss function.

The decoders are used only in pre-training and are removed during fine-tuning.

7.5 Pre-training of SaTran

We optimized SaTran for two objectives in pre-training, given as follows:

1. Reconstruction task: We pre-train the SatTran using the middle frame reconstruc-

tion pretext task. The embeddings obtained from SatTran are passed to an addi-

tional decoder to construct the satellite image at the middle timestamp of the time

series. The model learns to capture temporal dependencies and patterns inherent

in the dynamic changes on Earth’s surface. This pre-training task ensures that the

model acquires a robust understanding of the temporal and spatial dynamics of

SITS.

178



Chapter 7

2. Classification task: The second pre-training task is a binary classification task to

decide whether the given SITS is ordered or shuffled. SatTran learns whether the

given input is temporally in the correct order or not. The model is given as input

the original SITS and the shuffled time series by randomly permuting the original

time series. The loss function used is binary cross-entropy loss.

We separately pre-trained SatTran on two SITS datasets viz. MODIS (a moderate spa-

tial resolution satellite) and Landsat-8 (high spatial resolution satellite) image time series,

and named them SatTran-M and SatTran-L, respectively. This is due to the properties of

the satellite data. The characteristics including height, width, bands, and time stamps (i.e.

number of frames) are different for different satellites due to the different spatial, tempo-

ral, and spectral resolutions. Thus, the model pre-trained for one satellite data cannot be

used for the other satellite data. This also requires optimization for suitable size of patch

tubes and tiny tubelets for two satellite data. The details are given in the experimentation

section 7.7.1.

We have also pre-trained VideoMAE for the reconstruction task in the same way as in

the original paper for MODIS data for different masking ratios. The impact of different

masking ratios by VideoMAE is given in the results section. VideoMAE did not work for

Landsat-8 data in its original resolution because of the huge size of the images. So we

pretrained VideoMAE-R, the resized version of VideoMAE given in section 7.6.

Pre-training data details: SatTran is trained for 600 US counties on 7 years (2014-

2020) of data. The length of time series taken in pre-training is 13 timestamps for MODIS

and 7 timestamps for Landsat-8. The total number of instances used for pre-training is

1M for each satellite data and the size of the dataset is approx. 100GB for MODIS and

900GB for Landsat-8.

Fine-Tuning of SaTran: We have considered six earth observation applications as

downstream tasks for testing SaTran. The applications include prediction of crop yield

(CYP), snow cover (SCP), solar energy (SEP), soil moisture (SMP), cloud cover (CCP),

and classification of land cover (LCP). The data used consists of SITS from two satellites
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MODIS and Landsat-8. We have taken around 2000 counties from different states of US

for all applications considered. The ground truth data is specific to the application.

7.6 Models for Comparison
We compare SaTran with existing models including two RGB video transformers (Video-

MAE [156], and ViViT [34]) and two SITS models - SITSFormer [26] and TSViT [24]

developed for classification tasks. VideoMAE is pretrained on the reconstruction task,

whereas ViViT is not pretrained and is developed for the classification task. We adopted

all four models for both prediction and classification downstream tasks. Also, none of

these models is able to process Landsat-8 image time series at its original size and gives

out-of-memory (OOM) error. We used two modification techniques in order to use these

models for Landsat-8 data:

1. Resize SITS: We resize the Landsat-8 image time series to one-fourth along the

spatial dimension keeping spectral and time dimensions the same. If the original

SITS is of size B × T × H × W , the resized SITS is of size B × T × H
4
× W

4
.

The variants of the models mentioned above are represented by ”∗-R” in the results

section e.g., VideoMAE is represented as VideoMAE-R.

2. Segmentation: We segment the original Landsat-8 image time series into 16 seg-

ments along the spatial dimension without tampering other two dimensions and

each segment is of size B × T × H
4
× W

4
. The existing models are applied to each

segment and their embeddings are then concatenated together and passed through

a feed-forward network to get the final predictions. This variant is represented by

”∗-S” e.g., VideoMAE is represented as VideoMAE-S.

The details of the models used for comparison are as follows:

1. VideoMAE [156]: VideoMAE divides the RGB videos into tubelets and uses a

high masking ratio (95%) to handle temporal redundancy in the videos. However,

VideoMAE pre-trained on RGB videos is not suitable for SITS data. Thus, for
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a fair comparison, we tried to pre-train VideoMAE for the Landsat-8 image time

series. We are not able to do so for Landsat-8 data in its original fine resolution due

to huge size of images and the GPU was out of memory even after reducing batch

size to 2. Thus, we pretrain the resize variant of the model mentioned in section

6.1 using 90% and 75% masking ratio and used this variant for all the downstream

tasks.

2. ViViT [34]: ViViT[34] is originally developed for RGB videos. Image time series

of dimension T×H×W is converted into multiple tubelets of dimension z×h×w

and tokens are extracted from all three dimensions. These tubelet embeddings ef-

ficiently capture spatiotemporal information by representing non-overlapping spa-

tiotemporal patches. We adapted it for SITS data and used the factorized encoder

version of the transformer.

3. SITSFormer [26]: SITSFormer uses the neighboring pixels and then predict the

label of the center pixel using the BERT model. SITSFormer is originally designed

for classification tasks. We have adapted it for prediction tasks by replacing the

classification head with two linear layers and an output layer for prediction.

4. TSViT [24]: TSViT is also designed for classification tasks. It splits a SITS in-

stance into non-overlapping patches in space and time which are tokenized and

processed by a factorized temporal-spatial encoder. It uses class-specific cls tokens

as inductive bias to improve the model prformance. We have adapted it for pre-

diction tasks by replacing the classification head with prediction head consisting of

two linear layers and an output layer for prediction.

7.7 Experiments and Evaluation Metric

7.7.1 Experimental Setup

All the experiments are performed using Pytorch 1.11.0 and CUDA 11.7 on an A100

GPU server having 80GB GPU RAM. SatTran is pre-trained and fine-tuned using Adam
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optimizer for 35 and 15 epochs, respectively with a batch size of 8. The learning rate η for

the optimizer is decided while tuning hyper-parameters for each model and application.

For CYP, CCP, SMP, SEP, SCP, η= [0.0003, 0.001, 0.001, 0.0001, 0.00001], respectively.

The size of patch tubes for MODIS is 10× 10 and for Landsat-8, it is 64× 64. The size

of tiny tubelets for MODIS is 5× 5× 2 and for Landsat-8 it is 16× 16× 2.

We tested SatTran for two years (2019 and 2020) for all the applications. All the

predictions are done at timestamp t+1, taking 1 to t as input TS data. If prediction needs

to be done yearly, we averaged the predicted output for the years 2019 and 2020. If the

application requires prediction at a monthly level (for SMP and SCP), the average is taken

for 24 predictions in two years, and so on.

7.7.2 Evaluation Metrics

We use Root Mean Square Error (RMSE) for prediction problems and accuracy and F1-

score for classification. RMSE calculates the root mean squared magnitude of errors,

assigning more weight to larger errors.

7.8 Results and Discussion
Preliminary experiments: Pre-training using MODIS data

We present preliminary experiments to pre-train SaTran and the existing model Video-

MAE for the reconstruction task using MODIS data. The results are captured for differ-

ent masking ratios. Table 7.2 presents the GPU memory and the time required for both

models using batch size 8 for training. It can be observed from the table that SaTran

takes approximately half of the GPU memory than that of VideoMAE. Though Video-

MAE needs less time to execute for one epoch in comparison to SaTran, SaTran con-

verges faster due to its attention mechanism of handling spatiotemporal redundancy and

distributed approach of applying VideoMAE to patch tubes. Thus the total time taken

by SaTran is much less than VideoMAE. Moreover, the GPU memory requirements of

VideoMAE increase exponentially by reducing the masking ratio. The RMSE obtained

by SaTran is lower than that of VideoMAE in all the cases.
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It can also be observed from the table that though the best results are obtained for

60% masking for both models, the change from 90% to 75% is more than the change

from 75% to 60%. However, the computational requirements for 60% are more than 75%.

Thus we recommend 75% masking of tiny tubelets this is unlike what is recommended by

VideoMAE (95%) for RGB videos. VideoMAE suggests high masking ratio to avoid data

leaks. In our case data leaks are avoided by not processing the redundant patches and 75%

masking is sufficient to avoid data leaks in non-redundant patches. We also conducted

experiments for batch size 16 where VideoMAE gives the out-of-memory error when the

masking ratio is reduced to 60%. The results are given in ablation study subsection.

Pre-training using Landsat-8 data

The memory and time requirements for the models pretrained using Landsat-8 data are

given in Table 7.2. We use VideoMAE-R variant for Landsat-8 data because Landsat-8 is

a high spatial resolution satellite and its image time series is huge and cannot be processed

using VideoMAE even for the masking ratio of 90% on the systems with the specifications

mentioned in section 6. Whereas, SaTran is successfully able to process Landsat-8 image

time series in its original resolution and also requires less time as compared to VideoMAE

but the GPU memory used is slightly more than that for VideoMAE-R.

Comparison of SaTran with existing models:

We compare SaTran with existing models (given in section 6.1) for various downstream

tasks using Landsat-8 data. Table 7.3 represents the RMSE obtained by different models

for various downstream tasks. It can be observed from the table that none of the existing

models were able to process the Landsat-8 time series with its original dimensions due

to its large size. All the existing models suffer from out-of-memory (OOM) error. The

resize and segmentation variants of models are able to process Landsat-8 SITS, but their

performance is inferior to that of SaTran. SITSFormer and TSViT perform better for clas-

sification problems as they were originally developed for similar classification problems

and we adapted them for prediction tasks.
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Table 7.4: Comparison of SaTran with competitive models for various downstream ap-
plications using MODIS data

Model CYP SEP SCP SMP CCP

VideoMAE (90%) [156] 8.1661 6.4693 21.1754 6.5409 14.7517
VideoMAE (75%) [156] 7.9826 6.3983 20.7469 5.1252 14.7325
SITSFormer[26] 8.2761 7.5721 19.9875 6.1574 19.2559
ViViT [34] 9.2437 6.7068 20.0251 6.4843 17.2785
TSViT [24] 9.1051 6.2486 17.4759 4.9115 18.6722
SaTran (75%) (our) 6.5825 5.7992 16.8472 3.3842 12.3456

It can also be observed that the error obtained by the resize variant of the models is

larger than their corresponding segmentation variants. This is because the spatial resolu-

tion of SITS is degraded. In a few cases, the performance of resize variants degrades even

from MODIS data (see Table 7.4) because the temporal resolution of Landsat-8 is already

coarser than MODIS and due to resizing the spatial resolution is also compromised, thus

leading to further loss of information. On the other hand, the proposed model SaTran not

only successfully processes the Landsat-8 image time series at its original resolution but

also outperforms both the variants of all existing models for all the tasks.

Memory and time requirements of the Models

The GPU memory, time, and number of training parameters are given in Table 7.5. It

can be observed from the table that only ViViT has lesser number of training parameters

than that of SaTran, and all other models (both variants) need more training parameters

than SaTran. Also, the training time of SaTran is comparable to resize variant of existing

models and it is lesser than the segmentation variants which use the same resolution of

SITS as that used in SaTran. It can also be observed that the GPU memory requirements

of SaTran are also comparable to the competing models.

It is evident from Table 7.3 and 7.5 that SaTran outperforms all the existing models

and has reasonable time and space requirements. None of the baselines either processes

the Landsat image time series at coarser spatial resolution (resize variant) or by segment-

ing in the spatial dimension performs well in solving the earth observation applications.

Thus, this establishes the requirement of SaTran which can efficiently process large size
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Table 7.5: Comparison of SaTran with competitive models for memory and time require-
ments for CYP

Model # training parameters Training time (in hours) GPU memory

VideoMAE-R (90%) [156] 431M 14.5 48GB
VideoMAE-R (75%) [156] 431M 16.0 54GB
SITSFormer-R [26] 500M 18.0 42GB
ViViT-R [34] 86M 9.16 52GB
TSViT-R [24] 360M 12.5 56GB

VideoMAE-S (90%) [156] 451M 27.5 67GB
VideoMAE-S(75%) [156] 451M 29.1 72GB
SITSFormer-S [26] 553M 48.0 58GB
ViViT-S [34] 92M 15.3 72GB
TSViT-S [24] 490M 22.2 66GB

SaTran (75%) 311M 16.4 64GB

SITS to give learned representations and can be used for various applications.

We have also conducted experiments for MODIS image time series for fair compari-

son because the existing models are able to process the MODIS data in its original spatial

resolution. The results are given in Table 7.4. The results show that SaTran outperforms

all the existing models.

7.8.1 Ablation Study

We performed ablation study for deciding traversal fraction (1/x) of SITS, batch size,

masking ratio for tiny tubelets, and pretraining tasks. The details are given in Appendix

D. We fixed masking ratio for the experiments at 75%. We concluded empirically that

optimal traversal for MODIS x=4 (refer Figure 7.3) and for Landsat x=3 (refer Figure

7.4), respectively. We used these selected values of all parameters in all the experiments.

Results of MODIS for Batch size 16:

We also conducted experiments for different masking ratio and batch size while training.

When batch size is increased to 16, VideoMAE is not able to process MODIS time series

also if the masking ratio is less than 75%. However, SaTran performs well even at a lower

masking ratio as well. Thus, for fair comparison, we performed all results at 8 batch size.

Also, this shows that SaTran is an efficient model in terms of computation requirements
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Table 7.6: Memory and Time required for MODIS with batch size 16

GPU memory Time per epoch (in hours) Total time (in hours) RMSE

Masking VideoMAE SaTran VideoMAE SaTran VideoMAE SaTran VideoMAE SaTran
90 54 GB 30GB 3.5472 3.6111 177.3600 126.3891 0.2081 0.1874
75 70GB 31GB 3.6694 3.7222 183.4700 130.2775 0.1975 0.1861
60 OOM 32GB OOM 4.0292 OOM 141.0220 OOM 0.1818

Figure 7.3: Deciding x for (1/x)th traversal of SITS: MODIS Data

in comparison to VideoMAE for SITS analytics. The results are given in Table 7.6.

Selecting optimal x for partial traversal of SITS

Figure 7.3 and 7.4 shows the computation time required and error curve for the recon-

struction task by varying x as 5,4,3, and 2 for MODIS and Landsat-8 time series, respec-

tively. The masking ratio is fixed at 75%. It can be observed from the figure that, there

is an improvement of ≈ 6% in the performance of the SaTran-M when we traverse 1/x

of the time series x changing x from 5 to 4, and the error did not change much after that.

Similarly, for SaTran-L, the maximum improvement is observed when x changes from 4

to 3. The computation time required from x = 5 to 4 for SaTran-M and from x = 4 to 3

does not increase much, but it increases linearly after that. The results for the downstream

tasks are given for the optimal traversal in both cases (For MODIS x=4 and for Landsat

x=3).

Impact of different masking ratios on downstream applications

To analyze the impact of different masking ratios of tiny tubelets, we performed exper-
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Figure 7.4: Deciding x for (1/x)th traversal of SITS: Landsat-8 Data

Table 7.7: Impact of masking ratios on performance of SaTran and VideoMAE (pre-
trained on Reconstruction Task using MODIS data) for various applications (RMSE)

Application 90% masking 75% masking 60% masking

VideoMAE SaTran VideoMAE SaTran VideoMAE SaTran
CYP 8.1661 7.7240 7.9826 7.3894 7.5549 7.3862
SCP 21.175 18.175 20.746 18.115 20.449 18.057
SEP 6.4693 6.3361 6.3983 6.1997 6.2302 6.1806
CCP 14.751 14.342 14.732 13.810 14.324 13.764
SMP 6.5409 3.8088 5.1252 3.5338 4.8953 3.5131

iments for prediction downstream applications using MODIS data. The table 7.7 gives

RMSE for various applications. It can be observed from Table that SaTran outperforms

VideoMAE for all the applications for all masking ratios. For example, when using 75%

masking, RMSE reduces by approximately 8%, 14.5%, 3%, 6.6%, and 45% for soybean,

snow cover, solar energy, cloud cover, and soil moisture prediction, respectively.

Impact of pretraining tasks on SaTran

Table 7.8 gives RMSE values and shows the impact of training SaTran for different pre-

training tasks. The results in table are presented with 1/4 traversal of MODIS image

time series and 75% masking of the tubelets. It can be observed that RMSE reduces

by a significant margin for all the applications when SaTran is pre-trained further using

classification task. In case of MODIS data, maximum improvement is seen in crop yield

prediction with approximately 12% reduction in RMSE, followed by 11% in cloud cover
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Table 7.8: Impact of different pretraining tasks on performance of SaTran for various
downstream applications

MODIS Data

Application
Pre-trained on

reconstruction task
Pre-trained on reconstruction

+ classification tasks % improvement

CYP 7.3894 6.5825 12.25
SCP 18.115 16.847 7.520
SEP 6.1997 5.7992 6.900
CCP 13.810 12.345 11.86
SMP 3.5338 3.3842 4.420

Landsat-8 Data

Application
Pre-trained on

reconstruction task
Pre-trained on reconstruction

+ classification tasks % improvement

CYP 5.9046 5.5584 6.220
SCP 15.641 15.311 2.150
SEP 5.2523 5.0193 4.640
CCP 12.195 12.071 1.020
SMP 3.4844 3.0775 13.22

prediction. The minimum improvement observed is 4% for soil moisture prediction.

Similarly, Table 7.8 presents the RMSE obtained by SaTran when pre-trained only

for the reconstruction task and both reconstruction and classification tasks using high

spatial resolution Landsat-8 image time series. The results in table are presented with 1/3

traversal of SITS and 75% masking of the tubelets for Landsat-8. It can be observed from

the table that RMSE reduces when SaTran is pre-trained for both tasks. The maximum

improvement is observed in soil moisture prediction with a reduction in RMSE by 13%.

7.9 Main Contributions
The main contributions of the chapter are listed below:

1. We introduce SaTran, a novel, cost and time-efficient transformer for large-size

SITS to learn their generic representation for earth observation tasks.

2. SaTran has a twofold redundancy handling mechanism which ignores 1) spatiotem-

poral redundant patch tubes and 2)temporally redundant spans in non-redundant

patch tubes. Moreover, SaTran uses a distributed processing approach to apply
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VideoMAE on non redundant patch tubes. The redundancy handling and dis-

tributed approach collectively result in reduced memory and time requirements.

3. We have done extensive experimentation and compared our model with existing

video vision models and SITS models. The results show that SaTran outperforms

the existing models for various downstream earth observation applications like crop

yield prediction, snow cover prediction, land cover classification, etc.

7.10 Summary
We have presented a two-fold data redundancy handling, self-supervised learning method

SatTran for SITS transformer pretraining. We pretrained SatTran for two pretext tasks-

Reconstruction and classification and fine-tuned for six earth observation applications in-

cluding prediction of crop yield, soil moisture, solar energy, snow cover, cloud cover, and

classification of land cover. SaTran introduces two novel designs - automatic patch tube

selection and a distributed approach of applying tube masking on tiny tubelets. SatTran

reduces the memory requirements by approximately a factor of 2. Experimental results

show that due to short temporal redundancy, it is not recommended to have a very high

masking ratio to achieve better results. Our experiments also demonstrate that the time

taken by SatTran increases sublinearly with the increase in image size e.g., we observed

an increase of 18% in processing time for 900GB of Landsat-8 data in comparison to

100GB of moderate resolution SITS (MODIS) data. The proposed transformer model

outperforms existing video models and SITS transformers for all the downstream earth

observation applications considered.
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Conclusions and Future Directions

8.1 Conclusion

In this thesis, we have explored the diverse realm of data used in earth observation ap-

plications, distinguishing between conventional proximally sensed data and satellite data.

We have worked with different modalities of satellite data viz. histograms, images, and

spectral reflectance indices. In addition to this, we have also included other modalities

like meteorological, and soil data wherever applicable.

We have given two crop yield prediction models for various crops spanning different

regions in India and US. YPN is based on proximally sensed data and CYN incorporated

histograms obtained from satellites. We innovatively modeled CYP as a spatiotemporal

problem, incorporating effective design decisions such as spatial clustering, and padded

crop cycles. Additionally, we introduced attribute selection and depth selection modules

to enhance prediction accuracy, making recommendations crucial for optimizing any crop

yield prediction system. Our experiments underline the importance of modeling depth-

variant soil information, significantly improving model performance. We compared CYN

with existing models for their generalizability capability. The increase in RMSE for corn

using models trained on both corn and soybean is 16.37%, 9.77%, 5.57%, and 0.68% for
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CNN, CNN+GP, CNN+LSTM, and CYN, respectively.

Furthermore, we addressed challenges associated with historic data scarcity in satel-

lite imagery, particularly in context of high spatial resolution datasets like Landsat-8 and

Sentinel-2. Our findings highlighted the efficacy of data augmentation techniques in im-

proving yield prediction accuracy, especially when utilizing high-resolution satellite data.

PatchNet, a model for processing high spatial resolution satellite image time series,

demonstrated its superiority over existing models, leveraging spatial information and tem-

poral dynamics for finer-grained analysis in earth observation applications. The experi-

mentation shows that PatchNet outperforms the existing models working with histogram

time series of satellite data. By preserving spatial information and temporal dynamics,

using image time series provides a richer representation of changes in the Earth’s surface.

The democratization of satellite image technology remains hindered by processing

constraints and the limited availability of high-resolution data. Satellite image technol-

ogy holds immense promise for global coverage and data provision, yet challenges per-

sist, including the trade-off between spatial and temporal resolution. We proposed fusion

techniques—LSFuseNet and FuSITSNet that effectively address this trade-off by lever-

aging fusion modules and feature alignment mechanisms. These techniques offer a robust

solution for earth observation tasks, by seamlessly integrating high spatial and temporal

features without increasing data volume, thus overcoming a significant hurdle in the field.

Moreover, we contributed to the optimization of spectral reflectance index selection,

introducing the innovative concept of SRI images and developing the SpInN model for

automated recommendation of relevant SRIs. SpInN, leveraging ViViT and BERT archi-

tectures, emerged as a state-of-the-art solution for various Earth observation applications,

offering automation and efficiency in spectral reflectance index recommendation.

Lastly, we proposed a transformer SaTran for SITS. It uses an automatic patch tube

selection mechanism which ignores spatiotemporally redundant patches and exploits the

spatial correlation between pixels by processing of patch tubes and handling of their

temporal redundancy using tube masking using RGB transformer VideoMAE. This two-

fold handling of redundancy enables space and time-efficient processing of SITS.
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The meticulous experimentation, comparative analysis, ablation study, and innovative

techniques proposed in the thesis attempt to significantly advance the area of Artificial In-

telligence for Earth Observation (AI4EO). The thesis endeavors to further the research at

the intersection of deep learning and satellite image technologies. All the proposed solu-

tions can be fine-tuned for application to different regions of the world and for emerging

earth observation applications. The summary of models proposed in the thesis is given in

Table 8.1

8.1.1 Limitations

Due to lack of availability of high spatial resolution satellites, we could not test on finer

resolution. Most of them are not available to public free of cost.

8.2 Future Directions
1. The proposed models can be upgraded by incorporating:

a. physics-informed characteristics

b. knowledge-enhanced models.

2. The hyperspectral imagery can be used for enhancing our models and adapting

for applications like crop classification, soil characteristic monitoring, crop disease

detection, green-house gas emission, etc.

3. Some applications like crop yield prediction and soil moisture can be extended to

solve at smaller granularity like farm level.

4. Models can be enhanced for Crop yield prediction for the next crop cycle predic-

tion.
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Landsat-8 Data Preprocessing

Since the satellite data is captured as raw multispectral images. It needs data pre-

processed before it can be used for the end task. The data preparation steps are given

below:

A.0.0.1 Bits Precision
By default the Landsat-8 images have float values at every pixel for all the reflectance

bands. Images in float values require 32 bits to store a single pixel. The number of

pixels in a Landsat-8 image on average is 2000 × 2000. Thus it requires a large storage

space for an image to store. To work with the mentioned spatiotemporal applications,

we need historical data for all the locations, thus storing so many images of such huge

size is difficult. To save storage space we used the bits precision compression technique

explained in Chapter 2 section 2.5.1.1.

A.0.0.2 Time series length in each application
The length of the time series taken for each application is different and also depends on

the satellite. For CYP, we have used a padded crop cycle for each crop by padding 2 time

stamps on either side of a crop cycle. Taking a padded crop cycle for CYP captures any

anomalies or sudden changes in climatic conditions before sowing a crop which can have

a substantial effect on crop growth. Additionally, padding the extra time stamps to the

crop cycle handles the discrepancy in sowing and harvesting dates across locations.
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Table A.1: Length of time series used

Satellite
CYP SCP SEP

Corn Soybean
MODIS 36 32 12 24
Landsat-8 18 16 6 12

For snow cover and solar energy prediction we have taken the time series from the last

three months to predict snow cover for the next month and solar energy for next fortnight.

These applications depend on climatic conditions which change over a few days. The

exact time series length for all three applications in the case of the two satellites is given

in Table A.1.
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video vision transformer,” in Proceedings of the IEEE/CVF international confer-

ence on computer vision, pp. 6836–6846, 2021.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[36] N. Kumar, Implementation of the NC-94 hybrid storage prototype on a binary

version of CanStoreX. Iowa State University, 2008.

[37] Google, “Google Earth Engine — earthengine.google.com.” https://

earthengine.google.com/, 2019. Accessed: 2022-5-5.

203

https://earthengine.google.com/
https://earthengine.google.com/


Bibliography

[38] “Microsoft Planetary Computer — planetarycomputer.microsoft.com.” https:

//planetarycomputer.microsoft.com/. [Accessed 20-04-2024].

[39] K. Choudhary, V. Pandey, C. Murthy, and M. Poddar, “Synergetic use of optical,

microwave and thermal satellite data for non-parametric estimation of wheat grain

yield,” The Int. Archives of Photogrammetry, RS and Spatial Information Sciences,

vol. 42, pp. 195–199, 2019.

[40] NASA, “Landsatwebpage.” https://www.usgs.gov/faqs/

what-are-band-designations-landsat-satellites?qt-news_

science_products=0#qt-news_science_products, 2016. Ac-

cessed: 2022-2-16.

[41] European Space Agency Signature, “Sentinel webpage.” https:

//www.netiq.com/documentation/sentinel-82/user/data/

bookinfo.html, 2017. Accessed: 2023-2-25.

[42] paul, “Interpolation methods — paulbourke.net.” http://paulbourke.net/

miscellaneous/interpolation/. [Accessed 06-june-2022].

[43] J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep gaussian process for crop

yield prediction based on remote sensing data,” in Thirty-First AAAI conference on

artificial intelligence, 2017.

[44] J. Sun, Z. Lai, L. Di, Z. Sun, J. Tao, and Y. Shen, “Multilevel deep learning network

for county-level corn yield estimation in the us corn belt,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5048–

5060, 2020.

[45] B. Verma, R. Prasad, P. K. Srivastava, S. A. Yadav, P. Singh, and R. Singh, “Inves-

tigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area

index using enhanced learning algorithms,” Computers and Electronics in Agricul-

ture, vol. 192, p. 106581, 2022.

204

https://planetarycomputer.microsoft.com/
https://planetarycomputer.microsoft.com/
https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
https://www.netiq.com/documentation/sentinel-82/user/data/bookinfo.html
https://www.netiq.com/documentation/sentinel-82/user/data/bookinfo.html
https://www.netiq.com/documentation/sentinel-82/user/data/bookinfo.html
http://paulbourke.net/miscellaneous/interpolation/
http://paulbourke.net/miscellaneous/interpolation/


Bibliography
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