
223

Chapter - 9

Conclusions and Future Work

9.1 Overview

This chapter reviews the main contributions of the research study as well as some

future lines of investigation which have emerged along the research work. The chapter is

organized in the following manner: Section 9.2 summarizes the contributions of the research.

In section 9.3, usefulness of the approach developed in the doctoral research work (Thesis) is

mentioned. Section 9.4 provides the implementation scheme of the developed unified systems

approach. Finally, in section 9.5 future scope of the work is mentioned.

9.2 Contributions of the Thesis

This thesis intends to contribute in several aspects to the field of Component based

software engineering. The present work provides a unified methodological framework

comprises of graph theoretic systems approach, decision techniques and concurrent

engineering principles to assist software development and research industry for complete

system design and optimum selection. The following are the significant contributions of the

research work:

Systems approach related contributions

 A methodological framework is developed using system methodology and graph

theoretic approach to model, analyze and design component based software

system. The framework helps in representing CBSS structural information,

including its sub-systems, their sub-sub-systems (up to component level) and their

interconnections. The methodology consists of the CBSS system structure

digraph, the CBSS system permanent matrix, and the CBSS system permanent

function. The CBSS digraph is the mathematical representation of the structural

characteristics and their interdependence, useful for visual modeling and analysis.

The CBSS system permanent matrix converts digraph into another mathematical

form. This matrix representation is a powerful tool for storage and retrieval of

sub-systems in the computer database and also for computer processing. The

CBSS system permanent function is a mathematical model characterizing the

224

structure of the CBSS product and it also helps one to determine the CBSS

system index.

 The permanent function of the CBSS system architecture at a particular level of

hierarchy represents all possible combination of its sub-systems. The terms of

permanent function not only represent different sub-sets of CBSS system

architecture but are also capable of generating large number of alternative design

solutions. At each level strategic decisions can be taken for the selection or

rejection of components, strategies, procedures and designs. The system’s

structural characteristic level (i.e. permanent index) of the complete system is

computed by calculating the system’s structural characteristic level of each sub-

system at the lower level and substituting them as diagonal elements of the

system permanent matrix at the higher level. The developed systems approach is a

very a powerful tool as it is an integrated systems approach. All the sub-systems

up to the component level are modeled and evaluated to be used as inputs for

diagonal elements at the next higher level and so on. The approach can be used to

optimize the design and the development parameters.

 Developed structural coefficients of similarity and dissimilarity and identification

sets are useful models to select optimum set of sub-systems up to component

level to finally achieve high quality CBSS.

 The developed systems approach is further extended for usability modeling and

analysis of a software component. Software component specific usability

characteristic along with sub-characteristics, associated attributes, measures and

interactive complexity have been identified. The systems approach comprising of

digraph and matrix approach is developed to analyze concurrently usability

characteristic of a software component based on attributed factors which leads to

improvement of the component usability both at the designing and development

of component. Concept of hypothetical best (usability) index and hypothetical

worst (usability) index is also developed by which improvement on component

design, development and selection can be achieved.

 The systems approach is further utilized for developing the maintainability index

of a software component based on attributed factors for maintainability

225

characteristic. To achieve this, sub-characteristics and associated attributes and

their interactions subject to maintainability of a component is considered. A

maintainability digraph in order to analyze the maintainability of a component by

considering all levels of interactions (inter-intra) is developed. For detailed

analysis maintainability digraph is transformed to permanent matrix

(mathematical form) which retains all information of component’s

maintainability. A unique maintainability expression is derived from permanent

function which is developed from the permanent matrix. This expression yields

component’s maintainability index. The concept of hypothetical best

maintainability index; hypothetical worst maintainability index; and component’s

relative index from hypothetical best maintainability index and hypothetical worst

maintainability index is also developed. Based on this, decision related to

selection, optimization, evaluation and ranking of software components, systems

designs etc., can be taken as per maintainability point of view.

 The developed systems approach is further extended to analyze different failure

modes and effects of CBSS which leads to improvement of the CBSS reliability

at the design stage. The failure modes and effects digraph is constructed to

analyze the failure modes and effects of CBSS. The developed permanent

function is a useful tool for minimizing the failure modes and effects and it also

leads to the characterization, comparison and evaluation of the CBSS as per

failure modes and effect point of view. The numerical value of the permanent

function is the CBSS failure modes and effects index. This index is a measure of

the consequence of the failure modes and effects.

 The developed systems approach is also utilized to compute reliability index of

CBSS based on heterogeneous architecture styles when reliabilities of

contributing elements are known. This will help decision makers to identify

software component or design which is less or more reliable.

 A systematic methodology based on the developed systems approach is developed

for the quality characteristics (sometime called as “X-bilities”) evaluation of a

software component. Quality digraph is created to evaluate the quality of a

component by considering relative importance among characteristics. Component

226

quality is represented as a single expression using permanent matrix (one-to-one

mapping to digraph) and permanent function. Quality index is also developed that

can be used for the selection and the ranking of candidates.

Indices related contributions

Several indices are developed under this research work:

 Systems Structure Index (ISS): capable of comparing alternative designs on the

basis of number of terms present in the system permanent expression. Using the

concept alternative designs can be indentified for similarity and dissimilarity.

 Usability index (Iu): The usability index is a quantitative measure of the

component. As usability expression, VPF – u, considers structural and interactive

complexity of sub-characteristics and associated attributes it can be used to

generate the measure. Based on the Iu the selection and evaluation of the

component can be carried out as per usability point of view. To evaluate VPF –

u, numerical values of Ui (usability sub-characteristics) and aij (interaction

between i
th

 and j
th

 sub-characteristics) are required. It is to be noted that using Iu,

one can carry out the comparison of two or more than two alternative

components available in the market as per usability point of view. The designers

and developers of the component will also get to know which factor has to be

improved so as to increase the overall usability of a component.

 Hypothetical best usability index (Ibu): To get hypothetical best usability index

the level of satisfaction for usability sub-characteristics and/or associated

attributes has to be set to 5 (maximum level). The resultant value after

performing permanent computation is the hypothetical best usability index of a

component.

 Hypothetical worst usability index (Iwu): To get hypothetical worst usability

index the level of satisfaction for usability sub-characteristics and/or associated

attributes has to be set to 1 (minimum level). The resultant value after

performing permanent computation is the hypothetical worst usability index of a

component.

227

 Maintainability index (Im): The developed maintainability index is a quantitative

measure of the maintainability of a component. This index of component needs

to take into account concurrently the value of maintainability sub-characteristics

for the component and their interactions (among sub-characteristics). As

maintainability expression, VPF – m, considers interactive complexity of sub-

characteristics and associated attributes in a single maintainability expression it

can be used to generate the measure. Moreover, all terms of VPF – m are

positive. Thus, increased values of VPF – m terms (entities values) will increase

the overall value. Based on the Im the selection and evaluation of the component

can be carried out as per maintainability point of view. Assigning qualitative or

quantitative values to attributes and interactions, evaluation of index can be

accomplished.

 Hypothetical best maintainability index (Ibm): To get hypothetical best

maintainability index the level of satisfaction for maintainability sub-

characteristics and/or associated attributes has to be set to 5 (maximum level).

The resultant value after performing permanent computation is the hypothetical

best maintainability index of a component.

 Hypothetical worst maintainability index (Iwm): To get hypothetical worst

maintainability index the level of satisfaction for maintainability sub-

characteristics and/or associated attributes has to be set to 1 (minimum level).

The resultant value after performing permanent computation is the hypothetical

worst maintainability index of a component.

 Relative maintainability index with hypothetical best maintainability index (Imrb):

It is defined as the ratio of maintainability index of a component with

hypothetical best maintainability index of a component. It represents

maintainability value of the component as “%” of the ideal best value of the

index.

 Relative maintainability index with hypothetical worst maintainability index

(Imrw): It is defined as the ratio of maintainability index of a component with

hypothetical worst maintainability index of a component. It represents

228

maintainability value of the component as “%” of the ideal worst value of the

index.

 Failure index (Icfmea): The concurrent failure mode and effect index (Icfmea) also

known as failure index is a quantitative measure of the CBSS. This means it

indicates the extent of the consequence in the event of the possible failure mode

on component and/or system. As concurrent failure modes and effects

expression, VPF – cfmea, considers structural and interactive complexity of

failure modes and effects it can be used to generate the measure. Based on the

Icfmea the selection and evaluation of the component and/or system can be carried

out as per failure modes and effects point of view. To evaluate VPF – cfmea,

numerical values of Ci (effects of component i) and aij (strength of interaction

between components) are required.

 Reliability index (Ir): The reliability index of CBSS design is a quantitative

measure of the CBSS constituents. As reliability expression, VPF – r, considers

structural and interactive complexity of CBSS design it can be used to generate

the measure. Based on the Ir the selection and evaluation of the CBSS design can

be carried out as per reliability point of view. To evaluate VPF – r, numerical

values of Ri (reliabilities of elements) and rij (reliabilities of interactions between

elements) are required.

 Quality Index (IQ): The quality index of a component can be computed by

evaluating diagonal elements and establishing relative importance of off

diagonal elements of VPQM i.e. variable permanent quality matrix. The

diagonal elements of the matrix correspond to quality characteristics while off

diagonal elements of the matrix correspond to relative importance of one

characteristic over other.

Software component classification and quality related contributions

 The SDCS framework is developed that can classify software component on the

basis of architecture level, domain, kind, source, generic functionality and

phase. Comparison and evaluation of software component can be performed on a

homogeneous set of products such as server side languages (SSL), server side

229

engines (SSE), client side languages (CSL), client side engines (CSE) etc. The

framework leads to a broader and an in depth classification. This classification is

intended to partition software component into sets whose elements are

comparable. SDCS framework is useful for several purposes. First, it provides an

insight into software component available in the same category, second it depicts

the comprehensive information about software component such as its source,

domain, functionality etc., and third it gives a purpose to get knowledge, learn,

assess, evaluate and compare software component. The framework can be used

to denote well known classes of elements, such as classes of all browsers. This

framework helps in building sound knowledge and learning process. It also helps

in assessing, evaluating and comparing software component.

 The software component quality model is developed. At the highest level the

SCQM consists of eight characteristics – functionality, reliability, usability,

efficiency, maintainability, portability, reusability and traceability.

Comprehensive review of conventional and component specific quality models

is done in order to identify their shortcomings. Each characteristics is further

reviewed and explored in the form of sub-characteristics and associated

attributes respectively. Quality model can be used to evaluate software

component and in totality CBSS.

Decision based contributions

 A new approach, decision based concurrent framework, to provide an effective

selection of software component for designing CBSS is presented. The

approach takes into consideration input from concurrent teams for the

selection and ranking of software components. The approach is capable of

handling any criteria and any number of alternatives for selecting the optimum

one when sufficient resource for the computation is provided. The methods

and principles used in the framework – Concurrent Engineering, (Fuzzy)AHP

and (Fuzzy)TOPSIS in both non-fuzzy as well as fuzzy environment are useful

in quantifying the software component selection process during the design

phase of CBSS. This decision framework as developed helps in identifying

suitable software component by considering all the design (criteria)

parameters concurrently. A decision Matrix is created on the basis of available

230

qualitative and quantitative inputs for the criteria/sub-criteria. The relative

weights generated from Analytic Hierarchy Process structure act as an input to

normalized decision matrix. (Fuzzy) positive and negative benchmarks, i.e.,

hypothetical (fuzzy) best and (fuzzy) worst software component solutions are

generated. The methodology ensures that optimum software component is

nearest to the hypothetical (fuzzy) best solution and farthest from hypothetical

(fuzzy) worst solution.

9.3 Usefulness of the Developed Methodologies and Frameworks

This section is intended to briefly summarize some high level benefits of the

developed approach and methodological framework. Below the roles and the associated

benefits are mentioned:

 System Analyst: Complete system analysis and evaluation is possible by utilizing

system permanent expression. Identification of alternative system design, comparison and

evaluation at this stage is facilitated by system’s structural identification set.

Quality Engineer: Comprehensive software component specific model is available

that helps in exploring quality of a component. Concurrent quality characteristics can be

evaluated by utilizing quality matrix and quality function concepts.

Market Watcher: Market place exploration is easier and understandable since market

watcher to screen software component according to software component classification

framework. Thus software component repository can be easily created.

Knowledge Keeper: Permanent expression when associated with actual terms and

given physical meaning can act as a knowledge hub. Each term of the expression with

suitable interpretation can be stored properly and later retrieved for further analysis.

Usability Engineer: Component designer and developer can identify potential

usability factors affecting component by performing sensitivity analysis in order to improve

the overall usability of a component.

Maintainability Engineer: Component designer and developer can identify potential

maintainability factors affecting component by performing sensitivity analysis in order to

231

improve the overall maintainability of a component. Relative maintainability indices are

helpful in improvising maintainability aspects of a component.

Reliability Engineer: Identification of the potential component and/or design failures

can be done easily and comprehensively.

Designer: Selection, evaluation and ranking of alternative component and CBSS

design become easier by utilizing the approaches mentioned in the thesis.

Selector: To take the final decision based on the evaluation of the candidates is more

reliable since all the information required is in the same umbrella and therefore their

comparison is better handled and are less risky.

Management: Just-in-time, cost effective, stable and good quality product is possible

by the involvement of concurrent teams in the project and utilizing methodological

frameworks. Management will get total system overview considering all factors and issues

related to project and can take appropriate decisions.

9.4 Step-by-step Procedure for the Implementation of Unified Systems Approach

As explained in chapter 1 that a unified systems approach is required to cope up with

the modeling, analysis and design of component and component based software systems. This

approach must take into account concerns of stakeholders of respected component oriented

project/domain. The methodological framework developed in the thesis using graph theoretic

systems approach; software component classification framework and concurrent decision

based frameworks can be implemented at a software and research industry as is discussed

below:

On the basis of the worked carried out in this thesis, a dedicated stand-alone

knowledge expert system can be developed to document, compile and evaluate software

component and component based software systems. This can be done by utilizing indices

such as: Systems Structure Index, Usability index, Hypothetical best usability index,

Hypothetical worst usability index, Maintainability index, Hypothetical best maintainability

index, Hypothetical worst maintainability index, Relative maintainability index with

hypothetical best maintainability index, Relative maintainability index with hypothetical

worst maintainability index, Failure index, Reliability index and Quality Index and decision

techniques such as: AHP, TOPISIS, Fuzzy AHP and Fuzzy TOPSIS.

232

It is to be noted that based on developed approach other quality characteristics indices

can also be created, documented and implemented. To get quality system analysis following

recommendations and step-by-step procedure is given below:

Step 1: Identification of problem domain, resources and constraints.

Step 2: Development of System Model, see chapter 2

Step 2.1: Identification of sub-systems, sub-sub-systems up to the component level

considering all levels of interactions, see section 2.3

Step 2.2: Identification of Quality concerns, followed by sub-characteristics and

associated attributes considering all levels of interactive complexity, see chapter 7.

Step 2.3: Identification of software component market place and repositories based on

software component classification frameworks and document details accordingly, see

chapter 3.

Step 3: Development of matrix model, see section 2.5.

Step 3.1: Developing system permanent matrix and system permanent function, see

section 2.5.5

Step 3.2: Repeat step 3.1 up to respective component level.

Step 3.3: Developing quality permanent matrix and quality permanent function, see

section 7.4.2

Step 3.4: Repeat step 3.3 up to respective quality attribute level.

Step 4: Performing Evaluation, see chapter 2

Step 4.1: Developing coefficient of similarity and dissimilarity indices on the basis of

systems structure, see section 2.8

Step 4.2: Filter software component from repository using concurrent decision based

framework, see chapter 3

Step 4.3: Developing indices related to quality and create coefficient of similarity and

dissimilarity indices, see chapter 2, chapter 4 to chapter 6.

233

Step 4.3.1: Develop composite quality index, see chapter 7.

Step 5: Arrange alternatives in ascending order or descending order utilizing results from

indices based on step 4.

Step 6: Perform selection and ranking.

Step 6.1: Repeat step 1 to step 5 until satisfied.

Step 6.2 Document results and stop.

Figure 9.1 Unified systems approach

Above procedure can be followed to create composite quality index based on systems

structure and quality characteristics associated with it. Five software sub-systems, Figure 9.1,

can be created which allow users to feed values and get required information in order to

model, analyze, select, evaluate and rank alternative software component, system designs and

strategies.

234

Sub-system ClassiStorage: This sub-system is responsible to generate software

component repository based on SDCS framework. Effective searching of software component

can be done by providing classification keywords. It interacts with software component

market place to get updates for updated version of exiting software component and new

software component.

Sub-system FilterCOMPONENTS: This sub-system screens the initial list of software

component fed from sub-system ClassiStorage and select and rank software component as

per criteria fed into it. Later the final ranking of software component list is stored in

ClassiStorage repository.

Sub-system SysModeling: This sub-system provides the functionality of creating

structure of sub-systems and quality characteristics for a particular domain. It also provides

the functionality of creating interactions at all levels.

Sub-system SysMatModeling: This sub-system helps in generating permanent

expressions for systems and quality structure. The data of system and quality structure is fed

from SysModeling to sub-system SysMatModeling.

Sub-system SysEvaluation: This sub-system is responsible for evaluating and

interpreting terms present in permanent expressions generated by sub-system

SysMatModeling. Similarity and dissimilarity of system structure and several aforementioned

indices can be developed. This sub-system will provide variety of visual aids such as pie-

charts, graphs etc., to facilitate decision makers, designers, managers and other stakeholders

in making effective strategic decision to select, optimize, evaluate and rank software

component and designs.

It is to be noted that some practical concerns such as selection of decision makers,

evaluators, designers, developers, integrators etc, may arise during actual implementation of

methodology developed in the current thesis. This will affect the elicitation of preference

data. The values associated with the attributes and to their interactions need to be determined

accurately and precisely to get the actual results. It is to be noted that sometimes these values

may be estimations. In case of lack of accurate and reliable data it is recommended to

perform multiple runs of the developed model for a what-if or cause and effect analysis.

235

9.5 Future work

The work presented in this thesis addresses some of the fundamental problems with

modeling, analysing and designing component and component based software systems;

however, much work remains to be done and several research lines remain open for future

investigation to improve and extend the research results obtained from this thesis and it is as

follows:

 To explore the use of other techniques to support the evolution and

management of the classification schemes thereby providing exhaustive

characterization of software component.

 To develop a dedicated web application based on section 9.4 providing XML

schema, evaluation tool and structured feedback mechanisms in order to

achieve world-wide evaluation

 To utilize the methodological framework developed in the thesis for

evaluation of any functional or non-functional requirements.

 To develop capability maturity model for software components that can be

mapped to the developed software component quality model.

 To collect empirical industrial data to evaluate and improve the Systems

approach, classification framework and decision framework

 To develop hazard analytical model on the lines of concurrent failure modes

and effects analysis.

 To exploit developed approach in other software domains of research such as

safety-critical domain, banking domain, e-commerce and m-commerce

domain etc.

 To extend permanent models with the inclusion of path based approaches.

