
1

Chapter – 1

Introduction and Literature Review

1.1 Overview

During the last few years a significant change has occurred in the paradigm of

software development and dissemination. Modern software’s are large scale and complex.

Many organizations consider implementing such software’s using software components with

the expectations that software components can significantly lower development costs, shorten

development life cycle, producing high reliable and high stable product (Tran et al., 1997).

Component based software engineering has emerged as a separate discipline which ultimately

leads to software system that requires less time to specify, design, test and maintain and yet

establishes high reliability requirements (Raje et al., 2001; Kallio and Niemela, 2001; Preiss

et al., 2001; Szyperski, 1998). In the current chapter a sound base for the research work is

developed. The organization of the chapter is as follows: Section 1.2 provides transition of

software development structure from development centric to procurement centric approach.

Sub-section 1.2.1 provides the description of the need and importance of the research study.

Terminologies and definitions related to component paradigm have been provided in sub-

section 1.2.2. Sub-section 1.2.3 covers research objectives of the work and the brief structure

to accomplish those objectives. Organization of the thesis is presented in sub-section 1.2.4. In

section 1.3, critical literature review is performed. This review (sub-section 1.3.1 to sub-

section 1.3.4) is classified under – System Approach, Software Components Classification,

Quality Modeling and Evaluation and Decision Approach for Software Components

Selection. Research gaps and motivation are discussed in section 1.3.5. Finally section 1.4

provides concluding remarks of the chapter.

1.2 Introduction

In traditional software development approach, software organizations concentrated on

the development of systems using conventional software engineering process models such as

Waterfall, Spiral, or Iterative from scratch. These process models provided them control over

all or most of the pieces of software system. To create fully functional software product no

matter which process model an organization used, it performed requirements, design,

architecture, construction, and integration and test activities. However, the concept of using

pre-fabricated, reusable and tested software components for creating software system has

2

changed the focus of the development centric approach assumed in traditional software

development (i.e., custom development) by a procurement centric approach (Brownsword et

al., 2000; Kotonya and Hutchinson, 2007).

Table 1.1 provides a general overview of this fundamental paradigm shift of software

development. This change also has had an impact on nature, timing, and order of the

activities and the processes performed during the life cycle of the software development.

Furthermore, it can be seen that utilizing software components concept for the creation of

software system is not merely a technical matter for system designers and integrators, but

many other changes must be posed. To adopt component paradigm numerous technical,

organizational, management, and business activities must be adapted to deal with the

challenges and risks of efficiently using software components and exploiting their benefits

(Voas, 1998; Moraes et al., 2007). The requirement engineering activity must also support

simultaneous consideration of the system requirements and the marketplace. The

development effort must be less and design quality evaluation must not be too complex.

Traditional

Software

Lifecycle

Custom Development Software Component Based System

Development

Requirement Identification and

creation of software

system.

Identification and creation of a set of flexible

requirements according to existing search

pattern and software components market place

information that best fit these requirements.

Design Analysis of requirements

to create structural

elements, constraints and

rationale to provide basis

for system functionality

construction.

Analysis of existing software components and

integration feasibility to meet system

requirements. It implies an iterative trade-off

process of requirements analysis, architecture,

software components availability,

prioritization and negotiation.

Construction To implement the

system requirements,

coding of the design is

accomplished.

Requirements functionalities that are not

addressed by software components are created

in house in terms of glue code or wrappers.

Bridges or adaptors are also created or utilized

to smoothen incompatibilities in the

component interfaces.

3

Continued...

Traditional

Software

Lifecycle

Custom Development Software Component Based System

Development

Testing Based on finite set of test

cases, integration and

evaluation of the product

quality is achieved

Less testing is required as individual

software components are already tested

by their respective vendors.

Maintenance Modification of code and

associated documentation

due to a problem or need

for improvement.

Software Components Based systems

undergo a technology refresh and renewal

cycle that has many implications, due to

maintenance effects because of multi

vendor support.

Table 1.1 Paradigm shift of software development

The academia, practitioners and researchers have shown an interest in component based

development as it shortens development life cycle, reduces costs while delivering high

quality complex and distributed systems. The notion of component was coined by McIlllory

(1968) at the NATO workshop. Component technology today is one of the fastest growing

technologies in the world as component industry is expected to grow by an average of 49

percent which is much higher than an average 14.5 percent growth rate for the software

industry during the corresponding period (Weyuker, 1998). This is because developing large

and complex industrial software systems with very high reliability and quality requirements

entails enormous costs and the use of software components to develop such systems offers

the following benefits:

 Software components designed for reuse can significantly lower development costs

and shorten development cycles; and

 Using them will ultimately lead to software systems that require less time to specify,

design, test and maintain, yet satisfy high quality requirements.

4

Many organizations see the arrival of platforms like C#(C Sharp), EJB (Enterprise Java

Beans), CORBA (Common Object Request Broker Architecture) and VB.NET (Visual Basic

.NET) for the specific purpose of implementing software components.

1.2.1 Need and Importance of the Study

Software system designers and developers view components as building blocks that can be

easily incorporated into a software design and system to provide specified functionality.

However, despite all the advantages such as - lower development cycle and costs, high

quality and stable product, just-in-time development, market edge etc., (Allen, 2002; Henry

and Faller, 1995; McMahon, 1995) the software component technology may introduce risks

and failures in the process and system because component technology involves the

acquisition and assembly of software components from different vendors and therefore it

might lead to failure when unreliable components or low quality components are used in the

development process. It is to be noted that this happens because a component based system is

largely dependent on the quality of each component and the manner they interact with each

other that comprises the system. Following case studies support this claim:

1) Case study I (Dowson, 1997; Nuseibeh, 1997; Le, 1997): The Ariane5 rocket disaster

resulted from a failure of the software component controlling the horizontal

acceleration of the Ariane5 rocket. That particular component contained a small

computer program that converts a 64-bit floating point real number, related to the

horizontal velocity of the vehicle, to a 16 bit signed integer. The software was tested

and used for the Ariane4 project without any problems. However, Ariane5 was a much

faster vehicle than Ariane4 and the 16 bits allocated for the converted signed integer

was no longer sufficient. This overflow error confused the control system and caused it

to determine that a wrong turn had taken place. As a result, an abrupt course correction

that was not needed was triggered and the disaster happened.

2) Case Study II (Councill, 1999): An award winning design and management tool

vendor (and component consumer) incorporated in its application architecture an

ORBIX daemon for client to database communications. The daemon worked

flawlessly in the application’s first version. The producer then recommended that the

daemon’s consumers upgrade to a more efficient version. Trust had developed

between the producer and consumer and the vendor implemented the new daemon.

Customers were made aware of the upgrade and they awaited the increased

5

performance. The new daemon was exceptionally defective and the application’s mean

time between failures at some customer’s sites decreased from months to hours.

3) Case Study III (Voas, 1998): An automatic shut down of photoshop3.0 happened

because Adobe team forgot to remove a time bomb that automatically shut down the

program. The time bomb was an overlooked remnant of the beta test cycle.

The first case study points out to the fact that the component usage may have

catastrophic results without involvement of high quality component. Also, case studies 2 and

3 identify the increased level of customer dissatisfaction by ignoring minor (important)

details and the reliance on some assumptions. Therefore, quality of software components and

their collaborations affect the overall quality of the system. The building of CBSS involves

simultaneous consideration of many aspects such as: performing domain engineering in order

to identify functional, behavioural and data components that are candidate for reuse, selection

of architectural style (propagated from structural model) as per component based

requirements, selection, qualification, adaptation, modification and integration of components

to form sub-systems and the application as a whole. This process involves decision making

for each aspect at each step. Thus there is a dire need of unified approach which takes into

account all aspects concurrently leading to an effective (quality) solution. The approach

should also be capable of considering decisions at all levels. Using such approach quality of

software components, their collaborations and their placements in architecture can be

considered concurrently and in totality. A composite quality index can be developed utilizing

unified (concurrent) approach for software components and component based software

system and designs. There are many mathematical models and decision techniques available

in the literature such as systems approach, graph theoretic models, multi-attribute decision

making models, genetic algorithms, fuzzy logic, neural networks etc. In this thesis a unified

approach is developed utilizing graph theoretic models, systems approach, decision models,

concurrent engineering principles and fuzzy approach. Using such unified approach effective

analysis, evaluation, optimization, and selection of software component and component based

software design can be achieved.

1.2.2 Component Paradigm

Component based software development (CBSD) is an approach in which systems are

built from well defined independently produced pieces known as components. Some

6

definitions emphasize that components are conceptually coherent packages of useful

behaviour, while some others state that components are physical, deployable units of software

which are executed within a well defined environment. Researchers have proposed several

definitions for a component. Some of these are as:

 A component is a language neutral, independently implemented package of software

services, delivered in an encapsulated and replaceable container, accessed via one or

more published interface. While a component may have the ability to modify a

database, it should not be expected to maintain state information. A component is not

platform constrained nor is it application bound (Sparling, 2000).

 A software component is a unit of composition with contractually specified interface

and explicit context dependencies only. A software component can be deployed

independently and is subjected to composition by third parties (Szyperski, 1998).

 A software component is a unit of packaging, distribution or delivery that provides

services within a data integrity or encapsulation boundary (Sharma et al., 2007).

 A software component is a coherent package of software implementation that can be

independently developed and delivered. It has explicit and well specified interfaces

for the services it provides and for the services it expects from the others. Also, it can

be composed with other components, perhaps customizing some of their properties,

without modifying the components themselves (D’Souza and Willis, 1998).

 A COTS acts as pre-existing software products, sold in many copies with minimal

changes; whose customers have no control over specification, schedule, and

evolution; access to source code as well as internal documentation is usually

unavailable; complete and correct behavioural specifications are not available (Vigder

and Dean, 2000).

 A COTS product is also defined as been sold, leased, or licensed to the general public;

offered by a vendor trying to profit from it; supported and evolved by the vendor, who

retains the intellectual property rights; available in multiple, identical copies; and used

without source code modification (Oberndorf, 1997).

 A COTS product is a commercially available or open source piece of software that

other software projects can reuse and integrate into their own products (Torchiano and

Morisio, 2004).

7

 A component is any piece of independently executable binary code written to a

specification, which can only be accessed via a set of well published interfaces and

which can be integrated into any kind of software application irrespective of

language/platform. A component always offers a set of services via its interfaces and

may be encapsulated inside a container depending on the kind of middleware

technology used to develop the component (Kalaimagal and Srinivasan, 2008a).

It is to be noted that a black box component encapsulates services behind well defined

interfaces which are restricted in some way due to the fact that their plug and play

functionality is supported by component frameworks rather than by application domain

entities. Components are meant to be reused and collaborate with others to achieve some

objective thus primarily they are not used in isolation and also their composition may be

governed by some specific rules of the frameworks and technology. Component technology

allows software modules written in different technologies to be integrated with one another,

with the help of middleware technologies such as CORBA, COM, DCOM, JavaBeans and

EJB. These middleware technologies are simply a set of specifications or rules in the form of

functions, which when incorporated into the code allows the software to be integrated with

software developed using other platforms/languages.

Component Based Software System (CBSS) is considered as a computer based

application that integrates one or more software components, while Component Based

System Development (CBSD) is treated as the processes that lead to the development of a

CBSS.

1.2.3 Scope and Research Objectives

In this work, the main emphasis is to develop effective methodological framework to

model, analyze, and evaluate component based software systems; effective software

component classification framework; quality model and evaluation methodological

framework to design, and evaluate software components; and effective decision framework

for software component selection. The objectives of the present research work are:

 To develop system model by identifying complete component based software system,

sub-systems, sub-sub-systems up to component level and studying interactions

among them and finally evaluating the overall component based software system.

8

A systematic approach based on graph theoretic methodological framework is

developed to establish unique system characteristic expression to identify influential

parameters for the complete system analysis. Elements and concepts necessary to

establish concrete framework to model, analyze and design component based software

system are exploited and utilized by limiting composition of typical component based

web application. Exhaustive modeling and analysis of typical component based web

application is not considered in the current research work.

 To develop software component classification framework in order to explore, learn,

assess, compare and evaluate software components.

A six dimensional classification framework is developed for the identification

of appropriate software components (as per the requirement) available from the

software components market place and the same approach is used in decision making

process.

 To develop component specific quality model and evaluative methodology to

evaluate software component considering characteristics concurrently.

A component specific quality model is developed that facilitates component

(re)users to assess components. The model is for black box software components,

though the model can easily be adopted by modifying certain characteristics and

notions for other form of components such as open source software components. A

concurrent framework based on graph theory is also developed which provides

systematic approach to design and evaluate component based on quality standards.

Concurrent evaluation of quality characteristics such as reliability, usability and

maintainability of components are considered based upon developed software quality

model. Reliability evaluation at the architectural level made up of heterogeneous

styles such as: pipes and filters, call-back, fault tolerant are considered. There are

other styles such as peer-2-peer style that are not explored in the current research

work. Failure modes identified to evaluate failure index of a typical component based

web application are not exhaustive but are used to demonstrate the applicability of the

approach in calculating failure index. Usability evaluation and design of a component

is performed, based upon the concept of usability as mentioned in the developed

component quality model, by calculating usability index. Similarly, maintainability

evaluation and design of a component is also performed, based upon the concept of

9

maintainability as mentioned in developed component quality model, by calculating

maintainability index.

 To develop concurrent decision framework for software component selection.

An integrated (concurrent) decision framework is developed for software

component selection both for non-fuzzy and fuzzy environment.

The values used for calculating quality, reliability, failure, usability and

maintainability indices and for software component selection were based on experts’

subjective and objective knowledge. The values and interactive complexity might be changed

based upon experts’ decisions.

1.2.4 Outline of Thesis

The thesis is divided into nine chapters, each of which explores a specific topic

comprehensively. Each chapter begins with a short overview of the chapter. A brief

description of the chapters is as follows:

 Chapter 1, Introduction and Literature Review, provides introduction, objectives,

scope and outline of the thesis. It also presents an overview of the state-of-art and

state-of-practice of software components quality modeling, classification, evaluation,

design and selection.

 Chapter 2, Modeling and Analysis of Component Based Software Systems, provides

methodological framework based on systems engineering approach, concurrent

engineering approach and graph theory to model and analyze component based

software systems. Concepts of coefficient of similarity and dissimilarity have been

also provided by which two or family of component based software system designs

can be compared and evaluated. A case study of typical component based web

application has also been discussed to demonstrate the applicability and validity of the

methodological framework.

 Chapter 3, Software Component Classification Model, reviews existing

classification models for software components and attempt Six Dimension

Classification Strategy Framework (SDCS) which overcomes the shortcomings of the

existing ones and acts as a reference model to learn, assess, evaluate and compare

10

software components with the other existing ones. The validity of the framework is

done by performing an extensive survey on group of researchers, academicians and

practitioners.

 Chapter 4, Concurrent Usability Evaluation and Design of a Software Component,

provides a methodology based on digraph and matrix approach to provide in depth

analysis of a component considering usability characteristic. Digraph and (permanent)

matrix is utilized to analyze component usability by considering all sub-characteristics

and attributed factors along with all the levels of interactive complexity (inter-intra)

based on the concurrent approach. The concept of formation of hypothetical maximum

(best) usability and hypothetical minimum (worst) usability index is also discussed.

Based upon these, users can take decisions on selection, evaluation and ranking of

potential candidates and wherever possible attain improvements in the component

design and development as per usability point of view.

 Chapter 5, Concurrent Maintainability Evaluation and Design of a Software

Component, describes a methodology based on digraph and matrix approach for

developing the maintainability (characteristic) index of a software component. Sub-

characteristics and associated attributes of a component, which characterize

maintainability are identified and modeled in terms of maintainability digraph. The

nodes in the digraph represent the maintainability sub-characteristics and edges

represent the interactive complexity among the sub-characteristics. A detailed

procedure for the maintainability analysis of component is suggested through a

maintainability function. The maintainability index (Im) is obtained from VPF - m (i.e.

permanent of the matrix) by substituting the numerical values of the sub-

characteristics and their interactions. Concept of hypothetical best maintainability

index and hypothetical worst maintainability index is also attempted which will help

system developers to identify relative comparison of candidates from hypothetical

best maintainability index and hypothetical worst maintainability index. Designers

and developers can improve the component maintainability characteristic (considering

critical attributed factors) by performing sensitivity analysis. A higher value of the

VPF - m implies better maintainability of the component.

 Chapter 6, Concurrent Reliability Evaluation and Design of a Software Component,

presents a graph theoretic approach for concurrent failure modes and effects analysis

(CFMEA) of component based software systems (CBSS). Failure Modes and Effects

11

(FMEA) digraph, derived from the structure of the CBSS, models the effect of failures

modes of the system. As failures in the systems are not independent thus the approach

takes in to account CBSS structural and functional interactive characteristics

complexity. CFMEA function (VPF – cfmea) is computed from permanent matrix

which represents the characteristics of CBSS failure mode and effects. This leads to

the identification of the various structural components of failure mode and effects.

The procedure is useful not only for the analysis, but also for identification,

comparison and evaluation of failure modes and effects. To evaluate and rank failure

mode and effects of the system (CBSS), failure modes and effects analysis index

(Icfmea) is developed which is derived from VPF – cfmea. The method is useful and

applicable both at design and operational stage. It permits analysis, identification and

comparison of CBSS based on FMEA and provides the user directions for minimizing

the failure mode and effects leading to the improvement of the CBSS reliability. A

methodology is also developed to compute reliability of CBSS when reliabilities of its

constituent elements are known.

 Chapter 7, Concurrent Quality Modeling and Evaluation of a Software Component,

presents a software component quality model (SCQM) by overcoming shortcomings

of existing quality models. The chapter also discusses a methodology for the quality

evaluation of a component using digraph and matrix approach. The quality index (IQ)

is obtained from ‘variable permanent quality function’ obtained from ‘quality

digraph’ which is used to evaluate and rank the quality of alternative components.

Based upon these users can take decisions on selection, evaluation and ranking of

potential candidates and wherever possible attain improvements in the component

design and development. The validity of proposed component quality model and

methodological framework to evaluate the quality of a component is performed by

conducting surveys. Case study demonstrates the applicability of the framework by

considering concurrent evaluation of ‘reliability’ ‘usability’ and ‘maintainability’

characteristics.

 Chapter 8, Concurrent Decision Approach for Software Component Selection,

discusses the concurrent decision approach for effective selection of software

components from the available pool of alternatives. Case studies have been discussed

to describe the utility and dimension of the approach.

12

 Chapter 9, Conclusions and Future work, presents the overall conclusion of the

research work by presenting the contributions made, salient features, usefulness of the

methodological framework, models and approaches. It also discusses the future

directions of the current research work.

The list of tables, list of figures and list of abbreviations are presented after table of

contents. The references are cited in the text by author(s) name(s) with year of publication in

parenthesis. In the reference section, the references are listed alphabetically by author’s

names, followed by initials, year of publication, title of the article, name of the

journal/conference/book (abbreviated according to standard practice), volume number, and

number of first and last pages. The list of publications is shown after the reference section.

Appendices are labeled as A, B, C,…, etc., in the order of appearance. The brief biography of

the candidate (student) and the supervisor is given in the last two pages.

1.3 Literature Review

In this section a systematic literature review is done to provide a sound basis for the

current research work. The literature review is broadly classified into the following areas:

 System Approach

 Software Component Classification schemes

 Quality model and Evaluation

 Decision Approach for Software Component Selection

1.3.1 System Approach

In this sub-section literature is reviewed under following category: systems modeling,

graph theory, concurrent engineering and tools and techniques.

1.3.1.1 System Modeling

In the recent years the growing impact of the component technology paradigm can be

noticed, in relation to the development of customizable, cost effective, just-in-time and

reusable large scale and complex software systems (Tran et al., 1997). The context of

component based development has become very important in industry and research (Ivica et

al., 2006). It is widely accepted that the component based software system (CBSS)

development requires a different way of thinking than the conventional development. A

CBSS is an organized collection of cooperative components representing real world entities.

13

The quality of CBSS is affected greatly by the complexity of the component structure in the

system (Upadhyay et al., 2009; Woit, 1997). Researchers have identified that the quality of

any system is a function of its basic architecture (i.e. layout and design). Systems engineering

has been evolved as a novel approach to model software architectures by focusing on

exogenous and endogenous interactions and dependencies of systems/sub-systems (Saradhi,

1992). In order to estimate the contribution of different attributes of the quality of the CBSS

it is necessary to understand CBSS architecture. Software architecture describes the structure

of software at an abstract level (Garlan and Shaw, 1993). The structure of every component,

sub-system and system as a whole that is denoted by the geometry and topology, decides the

quality of CBSS under any given situation. It consists of a set of components, connectors and

configurations. An architectural style (Dutton and Sims, 1994; Garlan, 1995) is considered as

a repeatable pattern that characterizes the configurations of components and connectors of

software architectures. Many architectural styles have been identified (Shaw, 1993; Tracz,

1995) and with the need and technology many new styles are continuously emerging

(Medvidovic et al., 1996; Medvidovic et al., 1997; Taylor et al., 1996). A method or model

to evaluate the quality of a CBSS based on components and its placement in

architecture/structure can certainly provide a means through which designers can configure

the architecture that best fits their quality demands.

1.3.1.2 Graph Theory

One of the interesting features of the study of graphs lies in the geometric or pictorial

aspect of the subject. Graphs play a significant role in solving a rich class of problems. A

graph can be used to represent almost any physical or real world situation involving discrete

objects and a relationship among them. The intrinsic simplicity of graph theory has rendered

its applicability in numerous fields such as engineering, linguistics, physical-social,

biological-sciences etc. The Königsberg bridge problem, evolved by Leonhard Euler, can be

cited as one of the best example in graph theory (Biggs, 1986; Deo, 2004).

Graph theory is also considered to understand molecules in chemistry (Balaban, 1976)

and physics (Enting, 1978). By gathering statistics on graph-theoretic properties related to the

topology of the atoms the three dimensional structure of complicated simulated atomic

structures can be studied quantitatively in condensed matter physics. In chemistry a molecule

can be represented as graph, where vertices represent atoms and edges stand for bonds. In

statistical physics, local connections between interacting parts of a system, as well as the

14

dynamics of a physical process on such systems can be represented through graphs. Graph

theory has also been applied to sociology (Barnes, 1969) to study behavior pattern of

individual in social networks.

Graph theory has also numerous applications in the areas of mechanism and machine

theory. Ambedkar and Agrawal (1987) utilized graph theory based min codes to identify

kinetic chains, mechanisms, path generators and functions generators. Agrawal and Rao

(1989) attempted the graph theory and matrix approach in the identification, classification

and isomorphism of kinetic chains. Gandhi et al. (1991) developed an evaluative

methodology to evaluate system reliability, and to evaluate and analyse the system wear

(Gandhi and Agrawal, 1994). Using digraph and matrix methods Gandhi and Agrawal (1996)

developed a methodology to analyse failure cause of a system. Failure Mode and Effect

Analysis of mechanical and hydraulic systems was studied utilizing digraph and matrix

approach (Gandhi and Agrawal, 1992). Venkatasamy and Agrawal (1996) utilized graph

theoretic analysis for analyzing automobile vehicles. Wani and Gandhi (1999) developed a

maintainability index for mechanical systems; Sehal et al. (2000) presented a reliability

evaluation and selection of rolling element bearings; Garg et al. (2006) developed a

methodology evaluate and compare power plants; Venkata and Padmanabhan (2006)

developed a procedure for industrial robots selection, identification and comparison.

Graph theory is widely used in computer science to represent network of

communications (Yegnanarayanan and Umamaheswari, 2010), data organizations (Deo,

2004), computation services (Tamura et al., 1996), complexity measures (Watson and

McCabe, 1996, Pressman, 2005), precedence (Upadhyay, 2004) etc. In Stickney (1978) work

selection of software test data is demonstrated with the help of graph theory. Alexander et al.,

(2006) showed that object oriented systems deal with the analysis, design and implementation

of systems employing classes as modules that can be represented as directed graphs. They

also mentioned that study of graph properties is valuable in many ways for understanding the

characteristics of the underlying software system. Pressman (2005) used graph theory to

show concurrent execution of activities in spiral model. Guo et al. (2009) discussed

estimation of reusable software component by utilizing component assembly graph. The work

also demonstrated the optimization of the architecture from the component level. Jenkins and

kirk (2007) have analyzed software architecture graphs as complex networks. Using the

graph approach they developed software metric to quantify the evolution of the stability vs

15

maintainability of the software through various releases. Beizer (1990) described state graph

as a useful way to think about software behavior and testing. Chow (1978) presented

approach of testing combinations of action called “switch cover” in finite state machines. One

can use de Bruijn sequences to generate the appropriate actions to get switch cover (Gross

and Yellen, 1998). McCabe’s structural testing methodology (Watson and McCabe, 1996)

based on graph theoretical complexity measuring technique became the widely used method

in the complexity of the code analysis, independent logical path testing, and integration test

planning and test coverage estimation in different industries. Eric et al. (2010) have discussed

cognitive model for assessing complexity of software architecture. Their model is based on

cognitive science and system attributes that have proven to be indicators of maintainability in

practice (McCabe & Associates, 1999). Alexander et al. (2006) have reviewed applications of

graph theory by looking at the identification of God classes, clustering, detection of design

patterns and scale-freeness of object oriented systems.

From the literature it is clear that study of graphs and their properties is a classical

subject of interest in the area of computer science. A graph structure can be extended by

assigning weight to each edge of the graph. Graphs with weights, or weighted graphs, are

used to represent structures in which pairwise connections have some numerical values. For

example if a graph represents a web based system, the weights at each edge could represent

the page retrieval time. A digraph with weighted edges in the context of graph theory is

called a network. Network analysis has many practical applications, for example, to model

and analyze traffic networks. Applications of network analysis split broadly into three

categories:

 First, analysis to determine structural properties of a network.

 Second, analysis to find a measurable quantity within the network,

 Third, analysis of dynamical properties of networks.

It has been recognized that diagrammatic representation of software designs are

important for analyzing and evaluating its overall performance characteristic (Peterson and

Davie, 2004). Graph as a visualization tool puts the focus on relationships between nodes

(entities such as components), for component based software system, while hiding details.

Quality of software system depicts the quality of the architecture which consists of its

16

constituent elements, their relationships and rationale for their selection. A CBSS design or

architecture represented through UML diagrams (Sheldon, 2001; Coombs and Coombs,

1998) can easily be mapped to one or more graphs.

At present, there is no effective mathematical model applied to study CBSS in a

comprehensive manner which could take into account all its sub-systems, sub-sub-systems up

to component level concurrently. One approach having such a capability reported in the

literature is Graph Theory (Harary, 1969; Deo, 2004), a systems approach. This approach has

extensively been applied to a number of disciplines. It serves as a mathematical model of the

system reflecting the system characteristics. Its usefulness to provide concepts, representation

and methods for the system analysis has led to successful results in many fields. It has

numerous advantages over all other methods. The system modeling, analysis and design of

CBSS, which comprises of many systems and sub-systems, has not been attempted till now in

the literature using graph theoretic systems approach.

1.3.1.3 Review of Tools and Techniques

The selection of software components is a complex task. According to the

observations and findings, many decision makers and designers select software components

according to their experience and intuition using subjective approach. The weakness of this

approach is addressed in several research studies (Hwang and Yoon, 1981; Saaty and Vargas,

2001; Traintaphyllou and Mann, 1989; Finnie et al., 1993; Hong and Nigam, 1981; Kontio,

1996). A good software component selection strategy during designing phase of component

based software system (CBSS) plays a significant role in developing final quality product.

Multi Criteria Decision Making (MCDM) approaches were evolved in order to overcome the

drawbacks of subjective approaches. This approach is based on ranking or selecting one or

more software components from a pool of available alternatives with respect to multiple

criteria established by stakeholders’ requirements and systems/business constraints. Priority

based, distance-based, outranking, weighted and mixed methods could be considered as the

primary class of the current methods (Pomerol and Romero, 2000; Hwang and Yoon, 1981;

Saaty and Vargas, 2001). It is almost impossible to decide which one is the best decision

method. Traintaphyllou and Mann (1989) addressed a virtual paradox to judge the relative

effectiveness of the MCDM methods. The analytic hierarchy process (AHP), one of the latest

and most talked about MCDM techniques can efficiently handle the tangible as well as

intangible attributes. Many research studies have shown the usage of AHP for software

component selection during the design phase (Finnie et al., 1993; Hong and Nigam, 1981;

17

Kontio, 1996; Min, 1992). The BAREMO approach (Adolfo and Asuncion, 2002) explains in

detail how a decision can be made based on the AHP (Saaty, 1996; Saaty, 1999) method.

Kontino et al. (1996) suggest creating hierarchy which addresses the evaluation criteria based

on MCDM approach. The LusWare (Morisio and Tsoukis, 1997) is a two phase approach

which addresses the formal selection process and quality requirements during the evaluation

process using AHP. All the above mentioned approaches fail to identify what to do when

there are many criteria and alternatives. In AHP the number of pair-wise comparisons in a

decision problem having m alternatives and n criteria is expressed by the following equation

(Triantaphyllou, 1999):

(1) (1)

2 2

n n m m
n

 (1.1)

However, this becomes highly unmanageable if the criteria and alternatives are very large.

The Analytic Hierarchy Process (AHP) (Saaty, 1990 and Saaty, 1994) has been

widely used to solve multiple-criteria decision-making problems. A hierarchical criteria is

established first then pair-wise comparison matrices using a nine point-scale is created which

then upon synthesis results into selection of alternatives. The pair-wise comparison converts

the human preferences as equally, moderately, strongly, very strongly or extremely preferred.

The uncertainty associated with the preferences i.e. decision maker’s judgments cannot be

described with the help of discrete scale of AHP (Ayağ, 2005). The priority of one decision

variable over other and construction of fuzzy pair wise comparison matrices in fuzzy-AHP

(FAHP) is accomplished by using triangular fuzzy numbers (Chan and Kumar, 2005;

Ghodsypour and O’Brien, 1998).

One of the most widely adopted methods of multi-attribute decision making (MADM)

is Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) which is applied

to varied disciplines (Agrawal et al., 1992, Bhangale et al., 2004, Jee and Kang, 2000,

Prabhakaran et al., 2006, Satapathy and Bijwe, 2004, Tong et al., 2003, and Wang et al.,

2000). To consider impreciseness in the decision making the method has been extended to

fuzzy environment. Fuzzy multi-attribute decision making (FMADM) has been developed for

handling the problem of inherent uncertainty and imprecision in human decision-making

processes involving multiple attributes (Yeh et al., 1999).

18

1.3.1.4 Concurrent Engineering

Concurrent Engineering (Yeh, 1992; Rosenbalt and Waston, 1991) is a discipline

which deals with concurrent processing of activities, tasks, actions and associated states to

accomplish certain goal. The integration of Concurrent Engineering (CE) principles in

software projects has made a significant contribution both in cycle time reduction and quality

improvement (Sprague et al., 1991). In a CE environment all constraints and requirements

from all disciplines are satisfied concurrently as the design progresses. This development

process results in optimal design solution because the team working in parallel can rapidly

verify multiple options. Each new requirement deals with quality concerns. Designing

software for these concerns is a complex task. It has been argued that the software component

selection for “Criteria/ X-bilities” is an intertwined process (Lawlis et al., 2000; Maiden and

Ncube, 1998a; Chung and Cooper, 2001) for designing and building component based

software systems. Huang et al. (1999) proposed a web-based product and process data

modeling in concurrent “design for X-bilites”. Lowenstein et al. (1990) addressed various

issues concerning the implementation of concurrent engineering.

1.3.2 Software Component Classification

The selection of software component is one of the most critical activities in the CBSD

as a wrong selection will increase risks of project failure drastically (Basili and Boehm, 2001;

Vitharana et al., 2003a; Bhuta and Boehm, 2007). Various studies show that the selection

process consists of set of different phases and strategies (Finkelstein et al., 1996; Oberndorf

and Brownsword, 1997; Kunda and Brooks, 1999; Mohamed et al., 2007) and the selection

process is mainly driven by two main activities:

 Searching software component candidates from the marketplace,

 Evaluating them with respect to the system requirements for taking the final decision.

It is to be noted that there is an ever growing marketplace of software component with

many vendors providing several solutions with the help of software component (Vitharana et

al., 2003b). These software components have partial or lack of information which creates

difficulty for customer to compare and select proper software component for their system’s

use (Li et al., 2006; Bhuta and Boehm, 2007). To address the solution for the above problem

several researchers have proposed selection techniques (Kontio et al., 1995; Morisio and

19

Tsoukis, 1997; Lichota et al., 1997; Tran et al., 1997; Maiden and Ncube, 1998b; Kunda and

Brooks, 1999; Ochs et al., 2000; Chung et. al., 2001; Phillips and Polen, 2002; Franch and

Carvallo, 2003). However, most of them concentrated on the evaluative aspect of software

component selection leaving aside the searching and building of software component

repository in the marketplace. It is to be noted that this lack of support affects the whole

selection process. Even if the evaluation is very good it leads to high risks of failure of

projects if evaluation is performed on wrong repository of software component (Neubauer

and Stummer, 2007).

Software components are inherent reusable. In order to reuse software components,

re-users must be able to find and understand the components that best fit their needs. If the

process fails, reuse cannot happen (Frakes and Pole, 1994), or even worst it may result into

the selection of some erroneous components causing critical problems to the software

development project. In this context, how to classify software component so that they can be

found and understood are the two important issues in enabling their efficient reuse (Bass et

al., 2000; Ravichandran and Rothenberger, 2003). Software reusability deals with two

aspects: firstly, developing for reuse which means developing of components so that they can

be made available for reuse and secondly, developing with reuse which refers to the building

of system using reusable components.

To build reuse framework we have to understand the reuse environment which

enables the re-users to look for best fit components. To be identified and selected by the re-

users, component should be properly classified or indexed and stored in a software

repository. Using the classification or indexing re-user can search the repository for

components and if they meet requirements, they can be incorporated into new applications.

The whole environment can be depicted in Figure 1.1 which enables re-users to obtain good

results.

20

Figure 1.1 Reuse environment

Classification (indexing) is central to the software reuse practice thus critical for

CBSD (Prieto-Díaz, 1987). A well-defined classification structure is essential to the design of

an effective storing, searching and retrieval mechanism. The advantages of classification in

CBSD are many and some of them are mentioned below:

 It provides an easy to use mechanism for the organization and identification of

software component.

 It provides filtering of appropriate software component for Just-in-time development

by improving the information retrieval systems’ classical measures such as- Recall

and Precision. Recall is the number of relevant items retrieved over the number of

relevant items in the database. Precision is the number of relevant items retrieved

over the number of all items retrieved.

 It enables end users to understand technology and creates knowledge map for better

understanding of software components.

 It also serves as a comparison tool to compare different software components that fall

under homogeneous structure.

In the literature various researchers have proposed several classification mechanisms

in order to achieve efficient and reliable selection process. Some of the research works have

been concentrated on the classification schemes for the reusable components e.g., (Prieto-

Díaz, 1991; Glass and Vessey, 1995). The area of software component classification has

recently emerged. Thus it becomes a cornerstone of CBSD and several recent works arrange

software component by means of attributes for identifying relationships between

characteristics of products and their impact on CBSD.

21

An initial attempt to classify software component was done by Carney and Long

(2000). They used a bi-dimensional cartesian space. The dimensions that they defined are

origin and modifiability. They also reported some examples that populated this space. The

origin dimension represented the way the product is produced. For that they proposed

following values: independent commercial item, special version of commercial item,

component produced by contract, existing components from external sources, components

produced in-house. The modification dimension described the scope of product to be

modified by the system developer that uses the component. This attribute comprised of five

possible values: extensive reworking of code, internal code revision, necessary tailoring and

customization, simple parameterization, very little or no modification. Two of them assumed

access to code (extensive reworking, internal code revision), to (necessary tailoring,

parameterization) implied some mechanisms built into the software component to modify its

functionality. One of the major shortcomings of their work is that no distinction can be found

between what needs to be modified in order to make a product work and what can be

modified in order to better integrate it into the delivered system.

A more complex classification of software component was presented by Morisio and

Torchiano (2002) which was the extension of the work proposed by Carney and Long (2000).

In their work they emphasized that different research works often adopt different implicit

definition of software component, thus making difficult comparing them and evaluating the

applicability of proposed approaches. The purpose of their proposal was twofold: firstly, it

was a tool to precisely define the meaning of a software component software component and

secondly, it represented a way of distinguishing different sub-classes of products in order to

characterize them better. They proposed ten attributes, grouped into four areas: source,

customization, bundle, and role. Though their work was extensive but it could not relate to

architectural context, domain taxonomy and product functionality related features. This

proposal is similar to (Torchiano et al., 2002; Jaccheri and Torchiano, 2002) which

emphasized the assessment of the reuse of attributes.

The software component Acquisition Process (CAP) (Ochs et al., 2000) provides a

more general framework for product characterization. The main aim of CAP is to reduce

effort needed for characterization and provide the basis for reusing the information acquired

during the process. The process is composed of three main aspects: initialization, execution

and reuse. COCOTS models (Abst et al., 2000) could also be used as a driver for software

22

component classification. To understand marketplace some of its cost drivers could be used

to identify software component categories: product maturity, supplier willingness to extend

product, product interface complexity, supplier product support, and supplier provided

training and documentation. It is to be noted that these factors are though important but are

not related to technology. In CBSD the integration problem of software component is

addressed by several researches; in particular the work by Yakimovich et al. (1999) is most

important as in order to estimate integration effort they proposed a set of criteria for

classifying software architectures. Using same characteristics classification of both

components and systems is possible. Egyed et al. (2000) proposed a methodology for

evaluating the architectural impact of software components. Utilizing such methodology the

selection of components and architectural styles become possible. The key point of the

methodology is the identification of architectural mismatches. Following criteria have been

used to compare the most relevant classification schemes and the result is shown in Table 1.2.

 Domain Specific: It represents whether the approach is addressing a specific domain

or it is used for general domains or not.

 Characterization Schema: It represents whether the approach is describing the

attributes used to classify the components or not.

 Classification Schema Evolution: It represents whether the approach is addressing

effective mechanisms to evolve the classification schema to deal with the constant

growing and evolution of the software component marketplace.

 Reuse: It represents whether the approach is addressing reusability aspect of software

component.

From Table 1.2, it can be realized that the proposals cited before do not fully resolve

the problems of classifying software component neither for performing efficient searching

and retrieval mechanisms, nor for reusing knowledge gained about software component.

23

Research work Domain

Specific

Characterization

Schema

Classification

Evolution

Reuse

Yakimovich et al.

(1999)

× Not clearly

defined

× ×

Carney and Long

(2000).

× Origin and

Modifiability

× ×

Egyed et al., (2000) × Not clearly

defined

× ×

Morisio and

Torchiano (2002)

× Categories of

source,

Customization,

Bundle and Role

× ×

Abst et al., 2000 × Not clearly

defined

× ×

Torchiano et al.,

2002;

× Set of general

attributes similar

to ISO 9126

× Partial

Jaccheri and

Torchiano, 2002

Partial Kind,

Architectural,

level and phase

× Partial

Table 1.2 Classification schemes analysis

It can be clearly seen that though the existing approaches have shown various ways of

representing and understanding software component, they lack in accounting the users

requirements, architectural context, and evolution of the domain and trends of the

marketplace. The most important point in learning about software component and its

evolution in ever growing market place is to define a proper set of attributes and then to

collect information about these attributes. The selection of software component in an

industrial context is clearly depends upon project specific goals. The time spent on learning

about software component in an industrial context is quite expensive. Thus the motivation for

research work is to develop software component classification framework which will be

useful for learning and understanding its usage. Using the framework end user can get the

benefit of assessing, comparing, evaluating and learning software components as per project

goals.

24

1.3.3 Quality Modeling and Evaluation

Quality as perceived by both acquirers and end-users identify the business value of a

software product. Therefore, quality is very critical to the product, since its absence results in

dissatisfied users and financial loss, and may even endanger lives (Garvin, 1984). Software

development organizations, in general, are not best equipped to deal with it as they do not

have at their disposal the quality related measurement instruments that would allow (or

"facilitate") the engineering of quality throughout the entire software product life cycle, even

less when CBSD is used (Carvallo et al., 2007).

The state of art literature yet does not provide a well established and widely accepted

description scheme for assessing the quality of software products (Behkamal et al., 2009).

Various quality models have been evolved since 1976 and each of these quality models

consists of a number of quality characteristics (or factors as called in some models). These

quality characteristics could be used to reflect the quality of the software product. In the

literature various definitions exists for the term “quality” in relation to software:

 The degree to which a system, system component, or process meets specified

requirements and customer (user) needs (expectations) (IEEE Std 610.12, 1990).

 A set of characteristics and sub-characteristics, as well as the relationships between

them that provide the basis for specifying quality requirements and evaluating quality

(ISO 9126-1, 2001).

 Conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of

all professionally developed software (Pressman, 2005).

 The totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs (ISO/IEC 14598-1, 1999).

 The existence of characteristics of a product which can be assigned to requirements

(Petrasch, 1999).

McCall’s quality model (McCall, 1977) for software product is one of the well known

quality models in the literature of software engineering. It originated from US air-force

electronic system decision (ESD), the Rome air development center (RADC) and General

Electric (GE) and primarily aimed towards the system developers and the system

development process. McCall’s model combines eleven criteria around product operations,

25

product revisions, and product transitions (Fizpatrick, 1996). One of the major contributions

provided by this model is the consideration of relationships between quality characteristic and

metrics. There has been a criticism that not all metrics are objective and the issue of product

functionality is not considered. Boehm model (Boehm et al., 1978) is similar to the McCall

model in that it represents a hierarchical structure of characteristics, each of which

contributes to the total quality. In Boehm model the main emphasis is on the maintainability

aspect of a software product. Boehm’s model looks at utility from various dimensions,

considering the various users who are expected to work with the system once it is delivered.

Boehm’s notion includes user’s needs, as McCall does. It also adds the hardware yield

characteristics not encountered in the McCall model. However, Boehm’s model contains only

a diagram and does not elaborate the methodology to measure these characteristics. Dromey

(1995) proposed a quality evaluation framework taking into the consideration relationship

between the attributes (characteristics) and the sub-attributes (sub-characteristics) of the

quality. Dromey model is the product based quality model in which the quality evaluation

differs for each product and a more dynamic idea for modeling the process is needed to be

wide enough to apply for different systems. This model suffers from lack of criteria for

measurement of software quality and it is difficult to see how it could be used at the

beginning of the lifecycle to determine the user needs. The FURPS originally presented by

Robert Grady (Khosravi and Guehneuc, 2004), was extended by IBM Rational Software

(Jacobson et al., 2000; Krutchen, 2000) into FURPS+, where the ‘+’ indicates requirements

such as design constraints, implementation requirements, interface requirements and physical

requirements (Grady, 1992). In this quality model, two different categories of requirements

were identified:

 Functional requirements (F): Defined by input and expected output.

 Non-functional requirements (URPS): Usability, reliability, performance and

suitability.

One disadvantage of the FURPS model is that it fails to take into account the software

product’s maintainability, which may be important criterion for application development

especially for component based software systems (CBSS). The Bayesian belief network

(BBN) is a special category of graphical model which represents quality as root node. Root

node is connected to other quality characteristics via directed arrows (Stefani et al., 2003;

26

Stefani et al., 2004). Similarly, each characteristic is connected to sub-characteristics. This

model is useful to manipulate and represent complex quality model that cannot be established

using conventional methods. However, this model fails to evaluate fully software product due

to lack of criteria involvement. Different perspectives of software quality can be represented

by star model (Khosravi and Guehneuc, 2004). Even though it considers various viewpoints

of quality it does not evaluate fully software product due to lack of criteria involvement. The

ISO 9126 (2001) is a part of ISO 9000 standard, which is the most important standard for

quality assurance. In this model, the totality of software product quality attributes is classified

in a hierarchical tree structure of characteristics and sub-characteristics. The highest level of

this structure consists of the quality characteristics and the lowest level consists of the

software quality criteria. The model specifies six characteristics including functionality,

reliability, usability, efficiency, maintainability and portability; which are further divided into

21 sub-characteristics. These sub-characteristics are manifested externally when the software

is used as part of a computer system, and are the result of internal software attributes.

Bertoa’s model (Bertoa and Vallecillo, 2002a) is a well known initiative to define the

attributes that can be described by software component vendors (no matter whether they are

external or internal providers). The model defines the characteristics and sub-characteristics

in the change context of component based software systems. The characteristics were

discriminated into local characteristics, global characteristics, runtime characteristics and

product characteristics. Bertoa’s model is just a mere adoption of ISO 9126, the only

difference being that the portability and fault tolerance characteristics disappear together

with the stability and analyzability sub-characteristics. Two new sub-characteristics:

compatibility and complexity have been added. Although the research work presents a good

description on quality characteristics, sub-characteristics and their measurements, it fails to

perform any empirical evaluation of the attributes on any application, thus leaving the

proposed work as incomplete. Also, portability and fault tolerance which have been

eliminated are very significant to software components. The purpose of Alvaro’s model

(Alvaro et al., 2005a) is to determine which quality characteristic should be considered for

the evaluation of software component. This model also follows ISO 9126 model. A few sub

characteristics have been added and some exiting sub-characteristics have been removed.

According to (Alvaro et al., 2005b), scalability is relevant in order to express the ability of

the component to support major data volumes. Self-contained is an intrinsic property of a

component and must be analyzed. Configurability becomes essential for the developer to

27

analyze if the component can be easily configured. Reusability is important for the reason

that software factories have adopted component based approaches on the premise of resue.

The maintainability and analyzability sub-characteristics have been removed from ISO 9126.

A high level characteristics ‘Business’ have also been added with following sub-

characteristics: development time, cost, time to market, targeted market and affordability.

The model is similar to Bertoa’s model but provides better footprints as the model has

introduced a number of components specific quality characteristics or sub-characteristics like

self-contained, configurability and scalability. Though Alvaro’s model can be treated as a

major step for component quality model but it also has some drawbacks. Firstly, reusability

has been treated as quality attribute rather than quality factor. Secondly, the definition of

scalability is ambiguous. Scalability as defined in their model indicates only about data

volume and not the maximum number of components. In it the component can interact with

other components without reducing performance. In Rawedah’s model (Raweshdah and

Matalkah, 2006) standard set of quality characteristics suitable for evaluating software

components along with newly defined sets of sub-characteristics associated with them are

identified. The sub-characteristics fault tolerance, configurability, scalability and reusability

have been removed. New characteristic manageability with sub-characteristics quality

management has been added. The model also attempts to match the appropriate type of

stakeholders with the corresponding quality characteristics. It can be clearly seen that no

improvement has been made from the previous models. The sub-characteristics that have

been removed are significant to components. Also this model does not explain how the

attributes belonging to various characteristics and sub-characteristics will be measured to

finally evaluate the quality of the system.

Following sub-sections provide literature review on evaluation and design of

usability, maintainability and reliability aspects of a software component which will be

utilized in chapter 4, chapter 5 and chapter 6 respectively.

1.3.3.1 Usability Evaluation and Design

The existing literature offers several definitions of usability:

 The capability of the software product to be understood, learned, used and be

attractive to the user, when used under specified conditions (ISO/IEC 9126, 2001).

28

 The extent to which a product can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use (ISO

9241-11, 1998).

 The ease with which a user can learn to operate, prepares inputs for, and interprets

outputs of a system or component (IEEE Std. 610.12, 1990).

 Usability of a software product is the extent to which the product is convenient and

practical to use (Boehm et al., 1978).

 The probability that the operator of a system will not experience a user interface

problem during a given period of operation under a given operational profile (Fenton

and Pfleeger , 1998).

Existing literatures have not much discussed about the usability aspect of a

component’s quality. Bertoa et al. (2005) definition of usability is adapted for software

components as “the capability of software component to be understood, learned, used and

be attractive to the user, when used under specific conditions”. According to them under

specific conditions are similar to “context of use” of ISO/IEC quality model. This leads to

the fact that usability as a quality characteristic is intrinsically dependent upon the kind of

“use” that is expected and the kind of user that will use the component. Thus in order to

evaluate usability of a component its characteristics or dimensions should be able to

consider the relationships between component, user and use aspects, as the level of

usability depends upon each of them. The use aspects are included in usability evaluation

because usability is not a unique property of a component in isolation. That means not

only the users who use a component but also the use aspects (tasks) that the users perform

with a component should also be analyzed in the usability evaluation. It is to be noted that

the three elements (component, user and use aspects) are the principal factors of the

usability evaluation.

1.3.3.2 Maintainability Evaluation and Design

Maintainability is a broad concept and thus needs further specification for the proper

understanding. Several existing quality models (McCall et al., 1997; Boehm et al., 1978;

ISO/IEC-9126, 1991; Dromey, 1995; Sedigh-Ali et al., 2001a; ISO 9126, 2001) supports

maintainability characteristic of a software application but none of them addresses the

concerns of component based software systems (specifically to components) directly in a

detailed manner. The existing literature offers several definition of maintainability:

29

 The level of easiness to understand, modify and retest the software product (Boehm et

al., 1978).

 The capability of a software product to be modified. Modification may include

corrections, improvements or adaptation of the software to changes in environment,

and in requirements and functional specifications (ISO 9126, 2001).

 Modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment

(IEEE Std 1219, 1998).

Conventional measure of maintainability deals with mean time to repair (MTTR)

which is inefficient to satisfy maintenance demands of CBSS due to the unavailability of the

visible code. It is difficult to identify whether the problem is in the component itself or in the

system or may be interaction among components. The primary reason for this is that the

evolution and upgrades for the individual software components are outside the direct control

of system developers and acquisition organizations (Vigder and Dean, 2000). It is to be noted

that if due to new requirements system needs to be upgraded, the compatibility of the new

system with the existing one may vanish. This results into ripple effect on other components

which leads to the upgradation or deployment of new components with the desired

compatibility. Voas (1998) has highlighted several issues regarding software component

based systems such as – frozen functionality, incomplete upgrades (such as added features or

bug fixes that, while independently reliable, are incompatible with the host system); defective

or unreliable software component; and complex or defective middleware (such as wrappers).

The paper also suggests some guidelines regarding CBSS in order to minimize overhead in

maintenance activities:

 Avoid building mini-systems rather build up large scale and complex systems where

reusability is a major concern.

 Keep detailed requirements documentation on each component for better

understandability.

 Keep up to date the information repository for storing suitable components.

 Keep two similar components in the repository if competing applications share a

component but cannot tolerate changes the other might need.

30

 It can be seen that Voas study on maintenance of CBSS, though theoretical, provides

an insight to understand and measure software components.

Judith et al. (1998) also address challenges for maintenance of components and CBSS:

 Incompatible upgrades due to the modification or replacement of existing

components (based upon new requirements). Incompatibility that can also arise

with the underlying hardware. This will lead to substantial amount of effort to

modify system in order to achieve desired functionality.

 The required changes for the modified component such as tools and languages

may not be supported by the software system.

 There can be overhead on performance and security measures due to modification

of a component.

 It is to be noted that in their study the major issue is about changeability of a

component. The concentration is on the ability of a component to be upgraded, backward

compatible, adaptable and testable.

Vigder and Dean (1998) throw light on various other challenges in order to effectively

maintain and manage software component based system:

 Reconfiguring of components – addition, deletion and replacement, results in an

extensive maintenance activity.

 Customizing of components in order to achieve required functionality depends

upon vendor supported tailoring techniques (parameterization) for the products

and inclusion of glue code.

Existing literatures have limited scope on the maintainability aspect of component’s

quality (Alvaro et al., 2005a; Alvaro et al., 2005b; Simão and Belchior, 2003; Bertoa and

Vallecillo, 2002a; Bertoa and Vallecillo, 2002b; Goulao et al., 2002a, Goulao et al., 2002b).

More or less every emergent component quality model is an adaptation of existing quality

model (ISO/IEC) considering quality aspects – functionality, efficiency, reliability, usability,

maintainability and portability. ISO 9126 is a generic model for any software product and

caters to the need of software industry to standardize the evaluation of software products in a

more promising and suitable way. Thus the model should be customized to cater to the needs

of component oriented user as per maintainability point of view.

31

1.3.3.3 Reliability Evaluation and Design

The reliable assurance activities are becoming as an integral part of design process of

the software systems. Customers are placing increased demand on software community for

just-in-time, stable and reliable product (Tran et al., 1997). This challenge can be realized

through the use of component based software development approach, which promotes

compositional development and component reuse (Medvidovic et al., 1997). Reliability

assessment provides an insight into the key areas of the software system and highlights

potential problem areas that can be dealt with at the design stage of software development life

cycle (LaCombe, 1999; Teng and Ho, 1996; Hawkins and Woollons, 1998). It allows

comparison to be made among the alternative competing designs. Reliability of a CBSS is

defined as the probability of performing its intended function satisfactorily under given

condition for desired period of time. Reliability of systems made of software component is

affected greatly by their complexity that is influenced directly by the number of components

and their interactions in the system (Woit, 1997). The structure of every component, sub-

system, and system as a whole that is denoted by the topology and geometry, decides the

reliability of a real system under any given situation. Reliability of complex systems is

generally obtained by splitting the system into a set of series and parallel systems, as

available methods are capable of calculating the reliability of series and parallel systems only

(Lyu, 1996). In the present age of advanced technology and increased complexity it is not

possible to represent a real system into simple sets of series and parallel components.

Software system made of large number of components and sub-systems can be represented

by a general graph (Upadhyay et al., 2009). It means reliability of a real CBSS depends upon

the reliability of all sub-systems forming complete CBSS.

Software designers are motivated to integrate software components for rapid software

development. To ensure high reliability for such applications using software components it is

necessary to assess the reliabilities of such systems by investigating the architectures, the

testing strategies, and the component reliabilities (Lyu, 1996 ; Musa et al., 1987; Musa,

1998). In the field of software reliability modeling (Musa et al., 1987; Musa, 1994) the

validity of the execution time theory and operational profile was investigated first. In

(Gokhale and Trivedi, 2002; Gokhale, 1998) authors assumes the failure behaviour of each

component as time-dependent failure intensity. The total number of failures is obtained and

the reliability is estimated via the enhanced non-homogeneous Poisson process (ENHPP).

Everett (1999) uses the extended execution time (EET) reliability growth model and several

32

test cases to model the reliability growth of each component. Yacoub et al. (1999) proposes a

reliability analysis technique called the scenario-based reliability analysis (SBRA), which is

based on execution scenarios to derive a probabilistic model for the analysis of a component-

based system. It has been identified that the reliability of a component-based software

system is evaluated using reliabilities of its components (Krishnamurthy and Mathur, 1997).

Identification of critical sub-systems, components, failure mode, failure mode and

effects etc., at early stage, helps in realizing the reliable product. Various tools are available

that the designers can use to attain the objective such as failure effect analysis (FEA), failure

mode and effect analysis (FMEA), fault tree analysis (FTA), event tree analysis (ETA), cause

effect analysis (CEA), cause consequence diagrams (CCDs), etc. The predominant among all

the tools is FMEA which is used to systematically identify and investigate potential system

weaknesses (Arnzen, 1967; Collaxcott, 1977; Jüttner et al., 2000; Kara-Zaitri et al., 1991;

Ormsby et al., 1991; Stamatis, 1995). It consists of a methodology for examining all the

modes in which a system failure can occur and it also studies the seriousness of these effects.

To automate the analysis process various researchers have also used the matrix form of

FMEA and have applied it to various applications (Barbour, 1977; Legg, 1978; Jordan, 1972;

Kumamto et al., 1981; Reifer, 1979). Thus the main research thrust in this area is to identify

tools and techniques for the early detection and estimation of failure and/or reliability of

software system.

1.3.4 Decision Approach for Software Component Selection

The methodology suggested by Brownstein and Lerner (1982) in order to evaluate

software conducts three main activities - firstly, review of the planning guidelines in order to

assess user requirements, secondly, identification of necessary activities and thirdly,

estimation of the resources needed for the evaluation. Talley (1983) discussed general

guidelines for the selection and evaluation of administrative software. Criteria development

and partitioning as a main technique is addressed in the work of Edmonds and Urban (1984).

Various works have taken care of different methods and techniques for software evaluation

and selection such as - generic domain methodology (Frankel, 1986), experts rating of

candidate software as inputs (Anderson, 1989), classification method based on the products’

quality (Eskenasi, 1989), usage of automated tools (Meier and Williamson, 1989), creation of

33

evaluation criteria and alternatives assessment (Subramanian and Gershon, 1991), criteria and

alternatives evaluation (Williams, 1992), initial product screening and benchmarking (Adeli

and Wilcoski, 1993), and quality checklist driven evaluation (Jeanrenaud and Romanazzi,

1994). Kontio et al. (1995) present the Off-The-Shelf-Option (OTSO) method for reusable

component selection. The IusWare (IUStitia softWARis) (Morisio and Tsoukis, 1997)

approach tried to formalize the selection process, and to address quality requirements during

the evaluation process. It relies on multi-criteria decision aid (MCDA) (Ncube and Dean,

2002) to select software components. The PRISM (Portable, Reusable, Integrated, Software

Modules) (Lichota et al., 1997) approach proposed a generic component architecture that can

be used during the software component evaluation process.

Tran et al. (1997) have proposed the software component based integrated system

development (CISD) model for the selection of multiple homogeneous software component.

It is based on waterfall approach. Maiden and Ncube (1998a) suggested a template approach

known as procurement oriented requirements engineering (PORE) to define requirements that

depend on evaluating software components and usage of AHP. Feblowitz and Greenspan

(1998) presented a scenario based technique to manage the task of making software

component selection decisions by considering enterprise-level factors. Kunda and Brooks

(1999) in their approach, STACE (Social-Technical Approach to COTS Evaluation),

emphasized the importance of non-technical issues when defining the evaluation criteria and

conducting the evaluation process. The CRE (COTS-based RE) approach emphasized the

importance of non-functional requirements (NFR) frameworks (Chung et al., 1999) as

decisive criteria when comparing software component alternatives. Lai et al. (1999) have

discussed the selection of multimedia authorizing systems (MAS) to facilitate the group-

decision making with the applicability of AHP in problem solving. Merad and Lemos (1999)

have described game theoretic solution for the problem of the optimal selection of software

components with respect to their non-functional attributes. Jung and Choi (1999) in order to

develop modular systems have proposed two optimization models for selecting the best

software component among alternatives for each module.

Ochs et al. (2000) have proposed the COTS acquisition process (CAP) which

emphasizes the concept of a “tailorable evaluation process” for software components.

Teltumbde (2000) have presented a structured methodology incorporating participatory

learning and decision-making processes based on Nominal Group Technique (NGT) and the

34

evaluation methodology adopting the AHP to evaluate enterprise resource planning (ERP)

projects. COTS-Aware Requirements Engineering (CARE) approach (Chung and Cooper,

2001; Chung and Cooper, 2002; Chung and Cooper, 2004a; Chung and Cooper, 2004b) uses

a flexible set of requirements based on different agents’ views. Lawlis et al. (2001) have

proposed a requirement driven formal process for evaluating software components. Alves and

Castro (2001) have presented the COTS based requirements engineering (CRE) method,

which emphasizes on requirements to assist the software component selection process. The

PECA (Plan, Establish, Collect, and Analyze) approach (Dorda et al., 2002) describes a

detailed tailorable software component selection process. The BAREMO approach explains

in detail how a decision can be made based on the AHP (Saaty, 1990; Saaty, 1994) method.

The storyboard approach (Gregor et al., 2002) relies on use-cases and screen-captures during

the requirements engineering phase to help customers understand their requirements, and thus

acquire more appropriate software components.

The combined selection approach (Burgues et al., 2002) selects multiple software

components by two way method- local scale and global scale. Sedigh-Ali et al. (2001a)

suggest a metrics-based approach that employs cost of quality and capability maturity models

for cost-benefit analysis of software component based systems. The CEP (Comparative

Evaluation Process) approach (Phillips and Polen, 2002) have introduced the use of the so-

called confidence factor (CF) for software component selection. Morera (2002) have

emphasized on methodologies govern by decision making techniques to evaluate software

component. Lai et al. (1999) have proposed usage of AHP to support the selection of a multi-

media authorizing system in a group decision environment. Sahay and Gupta (2003) software

component evaluation method is based upon software solution merit index (SMI). The

WinWin spiral model (Boehm et al., 2003) which is a risk-driven approach uses a decision

framework to provide guidance for the software component based development decisions,

e.g. make-or-buy, software component selection, software component tailoring, glue-coding,

etc. Erol and Ferrell (2003) have suggested the use of fuzzy theory to quantify qualitative

data, and then to use optimization techniques to determine optimal (or near optimal) solutions

from a finite number of alternatives.

Based on the work done (Franch and Carvallo, 2003), the DesCOTS (Description,

evaluation and selection of software component) system was developed (Grau et al., 2004)

which includes a set of tools that can be used to evaluate software component based on

35

quality models (ISO/IEC9126, 2001). Wei and Wang (2004) have presented a comprehensive

framework based upon both objective and subjective data to select a suitable ERP project.

Colombo and Francalanci (2004) have described a hierarchical ranking model based on AHP

to help the selection of customer relationship management (CRM) packages based on their

functional and technical quality. Cil et al. (2005) developed a Web-based collaborative

system framework for knowledge management and decision making on a special

organizational problem. Wei et al. (2005) have presented a comprehensive group decision

based framework for selecting a suitable ERP system. Various potential gaps such as -

inability to measure uncertainty, lack of control over understanding and sharing

information/knowledge and stakeholders involvement and decision support tools are also

identified in most of the selection approaches (Wanyama and Far, 2006). Some new

developments in multiple attribute decision making (MADM) and multiple criteria decision

making (MCDM) methods have been highlighted for software selection and investment

decisions (Hu and Tsai, 2006; Bernroider and Stix, 2006). Lin et al., (2007) have proposed a

fuzzy based approach for software component selection.

Table 1.3 summarizes the pertinent gaps in the software selection approaches:

 None of the approaches has taken in account concurrent engineering (CE) principles

i.e. in totality consideration of criteria along with their interactions/interdependencies

at all levels.

 Very few have taken care of uncertainty but again rely on single decision technique

thus becomes cumbersome to use when criteria and alternatives are large in number.

 There is a lack of support for the creation/evolution of critical selection factors/criteria

for the selection of software component. All the approaches select criteria on the basis

of intuition, perception and experience.

 Group decision technique has been addressed in a very few approaches only.

36

 Features

Selection

 Approaches
 E

n
v
ir

o
n

m
en

t

C
o
n

cu
rr

en
t

 E
n

g
in

ee
ri

n
g

D
ec

is
io

n
 T

ec
h

n
iq

u
e

T
y
p

e(
s)

 S
in

g
le

 D
ec

is
io

n
 T

ec
h

n
iq

u
e

 M
u

lt
ip

le
 D

ec
is

io
n

T
ec

h
n

iq
u

e

 R
es

u
lt

G
ro

u
p

 D
ec

is
io

n

C
ri

sp
 (

c)

F
u

zz
y
 (

f)

C
ri

sp
 (

c)

F
u

zz
y
 (

f)

(Brownstein and
Lerner, 1982)

√ WSM √ √

(Talley, 1983) √ Heuristic √ √

(Edmonds and
Urban, 1984)

√ WSM √

(Franke, 1986) √ Heuristic √ √

(Anderson, 1989) √ Heuristic √ √

(Eskanasi, 1989) √ Heuristic √ √

(Meier and
Williamson, 1989)

√ Heuristic √ √

(Subramanian and
Gershon, 1991)

√ Electre I √ √

(Williams, 1992) √ Heuristic √ √

(Adeli & Wilcoski,
1993)

√ WSM √ √

(Jeanrenaud and
Romanazzi,1994)

√ Heuristic √ √

(Kontio et al., 1995) √ AHP √ √

(Morisio and
Tsoukias, 1997)

√ MCDM √ √

(Lichota et al.,
1997)

√ --- √ √

(Tran and Liu,
1997)

√ First-fit √ √

(Maiden and Ncube,

1998)
√ MCDM √ √

(Feblowitz and
Greenspan,1998)

√ Heuristic √ √

(Lai et al., 1999) √ AHP √ √

(Merad and Lemos,
1999)

√ Game theory √ √

(Jung and Choi,
1999)

√ 0/1 Integer
programming

√ √

(Kunda and Brooks,
1999)

√ AHP √ √

(Phillips and Polen,
2002)

√ ---- √ √

(Chung et al., 1999) √ WSM √ √

(Ochs et al., 2000) √ AHP √ √

(Teltumbde, 2000) √ AHP √ √

(Lawlis et al., 2001) √ Heuristic √ √

(Altes and Castro,
2001)

√ WSM √ √

37

Continued…

 Features

Selection

Approaches
 E

n
v
ir

o
n

m
en

t

C
o
n

cu
rr

en
t

E

n
g
in

ee
ri

n
g

D
ec

is
io

n
 T

ec
h

n
iq

u
e

T
y
p

e(
s)

S
in

g
le

 D
ec

is
io

n
 T

ec
h

n
iq

u
e

M
u

lt
ip

le
 D

ec
is

io
n

 T
ec

h
n

iq
u

e

 R
es

u
lt

G
ro

u
p

 D
ec

is
io

n

C
ri

sp
 (

c)

F
u

zz
y
 (

f)

C
ri

sp
 (

c)

F
u

zz
y
 (

f)

(Sedigh-Ali et al.,
2001 (a-b))

√ Heuristic √ √

(Chung and Cooper,
2001, 2002, 2004 (a-
b))

√ ----- √ √

(Morera, 2002) √ AHP √ √

(Lai et al., 2002) √ AHP √ √ √

(Dorda et al., 2002) √ ------- √ √

(Adolfo and

Asunction, 2002)

√ AHP √ √

(Gregor et al., 2002) √ -------- √ √

(Burgues et al., 2002) √ ------ √ √

(Sahay and Gupta,

2003)

√ Heuristic √ √

(Erol and Ferrel,

2003)

√ √ Fuzzy OFD,

Pre-emptive

0-1 goal

programming

 √ √ √

(Boehm et al., 2003) √ MCDM √ √

(Wei and Wang,

2004)

√ √ Fuzzy set

theory

√ √ √

(Colombo &

Francalanci, 2004)

√ AHP √ √

(Grau et al., 2004) √ AHP √ √

(Cil et al., 2005) √ MCDM √ √

(Wei et al., 2005) √ AHP √ √

(Bernroider and Stix,

2006)

√ MADM √ √

(Hu and Tsai, 2006) √ AHP √ √

Lin et al. 2007 √ √ MCDM √ √ √

Table 1.3 Comparative analyses of software component selection techniques

38

Above mentioned points indicate that not a single available work deals with

integration of decision techniques and concurrent engineering principles for the software

component selection process comprehensively for fuzzy and non-fuzzy environments.

1.3.5 Gaps and Motivation

In a critical literature review it is seen that though component paradigm has offered

several benefits but still its proper usage is in infant stage as proper quality standard is not

available. Most of the standards are generic and cannot be applied “as is” to component

paradigm. Thus first motivation of the thesis is to establish quality standard for software

component. Component oriented paradigm based upon part and connector approach helps to

design, develop, evaluate, assess, rank and select architectural designs, components, software

systems and strategies. A system engineering approach is well fitted in designing and

developing component based software. The approach is apt to develop a unique system

characteristic by which component based software system or family of component based

software systems can be compared and appropriate decision can be taken by performing

sensitivity analysis at the early stage of life cycle. This process can be followed to compare

component and/or family of components. As the component market supports components

from different vendors and in different versions applicable to different domains from generic

to specific, it is difficult to identify components for the specific requirement. This forms the

second motivation for the creation of classification framework in order to assess, evaluate and

learn component and associated technologies.

Some of the characteristics of a component provide a clear distinction of component

standard from conventional quality standard such as usability. Thus, this research thesis

emphasizes on the evaluation and the design of three important characteristics such as –

usability, maintainability and reliability of a software component thereby creating good

quality component based software system. In addition to this, since the selection of a

component has a critical effect on the overall project, a wrong component selection may

increase the risks and may lead to disaster. This provides third motivation to create decision

framework for the selection of software component in non-fuzzy and fuzzy environment.

Human nature and decisions are often vague thus to avoid vagueness fuzzy theory is utilized

to incorporate fuzziness in decision making. Accomplishment of activities, tasks and actions

together reduces development time, costs and provide interdisciplinary approach to tackle the

problem. This becomes an important motivation to include concurrent engineering principles

39

in component paradigm for modeling, analyzing and designing component based software

system. This approach facilitates simultaneous functioning of different concerns at the same

time.

A systematic graph theoretic approach is developed to create system characteristics

expression. The approach is utilized to evaluate and design individual characteristics of

CBSS and also to evaluate and design multiple characteristics concurrently. The thesis

illustrates functioning of each approach with appropriate case studies. It is believed that

current research work provides an effective approach to model, analyze, design, evaluate and

optimize software component and component based software systems.

1.4 Concluding Remarks

In this chapter, introduction of the research work is given by mentioning component

related terminologies, impacts and benefits. This is followed by research scope and

objectives necessary for doing the current research work. Later critical literature review has

been done to identify the research gaps and motivations to do current research work. The

critical literature review has been categorized under four significant aspects: System

Approach, Software Component Classification, Quality modeling and Evaluation and

Decision Approach for Software Component Selection.

In the next chapter, modeling, analysis and evaluation of CBSS is described.

Coefficient of similarity and dissimilarity is also developed by which two or family of CBSS

can be compared and evaluated. A case study of typical component based web application is

considered to demonstrate the application of the developed methodological frameworks.

