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ABSTRACT  

The problem of robot manipulator control is a complex and challenging task. The 

complexity and challenge arise mainly from the fact that the accurate manipulator 

dynamic model is difficult to formulate and the manipulator itself might be working in an 

environment, where it is required to pick different and unknown loads at different times. 

Under these circumstances, accurate and high-speed motion control of manipulator is a 

difficult task. Many different control strategies have been proposed in the past to achieve 

this goal, and it is presently an active area of research. These control strategies range from 

conventional to adaptive to soft computing techniques like artificial neural networks, 

fuzzy, genetic algorithms and their combinations. 

In this thesis a simulation study of these different control strategies has been undertaken. 

First the conventional control strategies like the non-model based PD and PID, and model 

based strategies like, Computed Torque (CT), Feed Forward Inverse Dynamics (FFID) 

and Critically Damped Inverse Dynamics (CDID) control were studied. These controllers 

were tested against different trajectories and also for the case where manipulator 

parameters change during motion due to picking up of payload. It was seen that model 

based controllers give good performance only if the model parameters are known 

accurately. It was also seen that the performance of controller improves if we use 

reference or desired trajectory values for model calculation rather than the actual 

trajectory values which are obtained from the sensors.  

A modification is proposed to the model based control strategies in terms of introduction 

of modified integral error compensation. The integral action sums the errors for every five 

iterations of control loop for a given set point. When the set point changes, the error 

summation is reset to zero. It was seen that the performance of model based controllers 

improved with inclusion of modified integral action. 

Next some adaptive control algorithms for manipulator control were studied. The 

advantage of adaptive approach is that the accuracy of a manipulator carrying unknown 

load improves with time because the adaptation mechanism keeps extracting the 

parameter information from tracking errors. The adaptive controllers studied were 

Adaptive Critically Damped Inverse Dynamics Controller (ACDID), Model Reference 

Adaptive Controller (MRAC) and Decentralized Adaptive Controller (DAC). These 

controllers were also tested for different trajectories and different situations like cold start 

(no initial estimate of parameters available), warm start (some rough initial estimate of 

parameters available) and manipulator picking unknown load during the course of 
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motion. It was seen that adaptive controllers give best performance in face of parameter 

variations. Moreover, the performance is better if some initial estimate of manipulator 

parameters is available as in case of warm start. Like the conventional controllers these 

adaptive controllers were also tested for effect of including modified integral error 

compensation in the control law. It was observed that the performance of adaptive 

controllers also improves with addition of the modified integral action. 

Finally, many different Fuzzy control algorithms for manipulator control were studied. 

Different hybrid fuzzy control algorithms were tested, which are essentially combinations 

of conventional or adaptive control algorithms with a lookup table based fuzzy controller. 

It was found that hybrid fuzzy plus conventional controllers provide performance 

comparable to adaptive controllers at lesser computational cost.  

The Self Organizing Fuzzy Controller (SOC), which builds up the look up table, based on 

trajectory errors through a modifier algorithm was investigated.  It was found that this 

controller gave best performance amongst all the fuzzy controllers studied in this thesis. 

The Self Tuning Fuzzy controller (STFC), which changes the output denormalization 

factor depending on the current trajectory errors, was also investigated. Its performance 

was not found to be as good as that of Self Organizing Fuzzy controller; however, the 

overall manipulator motion is smoother for this controller. This is because the controller 

is not based on lookup table. A modification to the STFC is suggested in terms of 

changing both the input and output gains by zooming the universe of discourse. This 

modified controller is known as Coarse/Fine Adaptive Fuzzy controller (CFAF). It was 

found that CFAF gives better performance than STFC although it is still not as good as 

SOC. Lastly a new hybrid Fuzzy plus Integral Error controller (HFIE) was investigated. 

The modified integral action used for this controller was the same as that used earlier for 

conventional and adaptive controllers. It was found that this simple controller gives a very 

good performance, next only to SOC and better than STFC or CFAF.  

Amongst all the controllers investigated it was found that the hybrid Adaptive Critically 

Damped Inverse Dynamics (ACDID) + Fuzzy controller gives the best performance.  

It is our view that some of the control strategies and techniques that have been extensively 

investigated for manipulator control in this thesis can also be used in fields like Process 

control systems which exhibit nonlinear, nonstationary behavior and are difficult to model 

and control. Experimental implementation of various control schemes studied in this 

thesis is also recommended for future work.  
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INTRODUCTION  

The design of intelligent, autonomous machines to perform tasks that are dull, repetitive, 

hazardous, or that require skill, strength, or dexterity beyond the capability of humans is 

the ultimate goal of robotics research. Examples of such tasks include manufacturing, 

excavation, construction, undersea, space and planetary exploration, toxic waste cleanup, 

and robotic assisted surgery. 

Robotics research is highly interdisciplinary, requiring the integration of control theory 

with mechanics, electronics, artificial intelligence, and sensor technology. Table 1.1 

shows a brief history of robotics and also highlights its interdisciplinary nature.                       

1920 

 

Czechoslovakian playwright Karel Capek introduces the word robot in the 
play R.U.R. - Rossum's Universal Robots. The word comes from the 
Czech robota, which means tedious labor. 

1938 

 

The first programmable, paint spraying mechanism is designed by 
Americans, Willard Pollard and Harold Roselund for the DeVilbiss 
Company. 

1942   Isaac Asimov publishes Runaround, in which he defines the Three Laws of 
Robotics. 

1946    Emergence of the computer. 
1950    I, Robot, a landmark collection of Asimov's stories, is published. 
1951 

  

In France, Raymond Goertz designs the first teleoperated articulated arm 
for the Atomic Energy Commission. The design was based entirely on 
mechanical coupling between the master and slave arms (using steel 
cables and pulleys). 

1954 

 

George Devol designs the first programmable robot and coins the term 
Universal Automation, planting the seed for the name of his future 
company - Unimation. 

1959 

 

Marvin Minsky and John McCarthy establish the Artificial Intelligence   
Laboratory at MIT. 

1962 

 

General Motors purchases the first industrial robot from Unimation and   
installs it on a production line. Hardyman is born! 

1964    Artificial intelligence research laboratories are opened at Stanford 
Research  Institute (SRI), Stanford University, and the University of 
Edinburgh. 

1965    Carnegie Mellon University establishes the Robotics Institute. 
1970 s  Robots begin to be used in industrial applications. 
1980 s 

 

Several robotics companies are founded: CRS, Adept, Computer Motion 
etc.  

CHAPTER I
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Table 1.1 Brief history of Robotics 

The term robot has been applied to a wide variety of mechanical devices, from children's 

toys to guided missiles. An important class of robots is the manipulator arms, such as the 

CRS A255 robot shown in Figure 1.1. These manipulators are used primarily in materials 

handling, welding, assembly, spray painting, grinding, deburring, and other 

manufacturing applications. The research work in this thesis discusses the aspects related 

to control of such manipulators. 

 

Fig 1.1 The CRS A255 articulated manipulator  

This thesis exclusively considers a commonly accepted class of robot plants - rigid body 

open kinematic chains. A rigid body open kinematic chain consists of a serial 

arrangement of finitely many (n) rigid bodies fixed by either prismatic or rotational 

joints, and whose proximal link is joined to an inertial reference system. It is assumed 

that each joint is instrumented with an actuator capable of delivering a commanded 

torque, and sensors for sensing both position and velocity. This class of holonomic* 

                                                

 

* In robotics, holonomicity refers to the relationship between the controllable and total degrees of freedom 
of a given robot. If the controllable degrees of freedom are equal to the total degrees of freedom then the 
robot is said to be holonomic. If the controllable degrees of freedom are less than the total degrees of 
freedom it is non-holonomic. A robot is considered to be redundant if it has more controllable degrees of 
freedom than degrees of freedom in its task space.    

1990 s  Walking robots, mobile robots, and new innovations emerge: Haptics, 
Humanoids, Rovers etc. 

2000 s 

 
Robots are mainstream ex: Space station arm, Sony Aibo, Palm 
robot, Telesurgery. 
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systems has the useful property that the joint positions and velocities provide a natural set 

of generalized coordinates, for which by applying straightforward techniques of classical 

mechanics a finite dimensional, second order, ordinary differential equation of motion is 

obtained. The equations of motion, though nonlinear, have the desirable structure that 

they are completely controllable, observable, and are integrable. The control problem 

considered is reference trajectory tracking [Tarokh and Seraji (1988)]; the task is to 

analyze/design controllers which causes the plant output (robot position and velocity) to 

asymptotically match a specified reference signal. This thesis does not address a great 

number of other problems in robot control e.g. impedance control, grasping, assembly, 

collision avoidance, task encoding, sensing environment, vision, user-interaction, 

running, hitting, catching, flexible joints, flexible links, etc. 

The initial attempts to solve the problem of manipulator control fall under the 

conventional category. The controllers here consisted of simple PD controllers and 

some model-based feedback linearizing controllers [Kelly (1998), Heredia and Wen 

(2000)]. The PD controllers are widely used in industrial robots and treat each joint of 

manipulator as decoupled and driving a constant inertia load. These controllers work well 

if the manipulator joints are highly geared in which case the cross coupling effects of 

dynamics diminish and can be neglected. These controllers give poor performance in case 

of direct drive, high-speed robots. 

Feedback linearization is a useful paradigm because it allows the extensive body of 

knowledge from linear systems to be used to design controllers for nonlinear systems. 

The roots of feedback linearization in robotics predate the general theoretical 

development by nearly a decade, going back to the early notion of feed forward computed 

torque [An et al. (1989)]. The basic idea of feedback linearization control is to transform 

a given nonlinear system into a linear system by use of a nonlinear coordinate 

transformation and nonlinear feedback. 

In the robotics context, feedback linearization is known as inverse dynamics. The idea is 

to exactly compensate for all of the coupling nonlinearities in the Lagrangian dynamics in 

a first stage so that a second stage compensator may be designed based on a linear and 

decoupled plant. Any number of techniques may be used in the second stage. The 
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feedback linearization may be accomplished with respect to the Joint Space coordinates 

or with respect to the Task Space coordinates. 

The feedback linearization approach exploits important structural properties of robot 

dynamics. However, the practical implementation of such controllers requires 

consideration of various sources of uncertainties such as modeling errors, computation 

errors, external disturbances, unknown loads, and noise. Moreover as the manipulator 

functions in its workspace, its parameters change with every new payload it picks up. 

This makes the applicability of conventional controllers very limited. However these 

controllers give us a good insight into the problem of manipulator control and also form 

the framework on which more advanced adaptive controllers are based. 

In this thesis we have done an in-depth study of these conventional controllers and have 

also suggested a method of adding integral action to these controllers to improve their 

performance. 

Robust and adaptive control are concerned with the problem of maintaining precise 

tracking under uncertainty [Slotine (1985), Yao (1997), Imura et al. (1994)]. We 

distinguish robust from adaptive control in the sense that an adaptive algorithm typically 

incorporates some sort of on-line parameter estimation scheme while a robust, non-

adaptive scheme does not. 

An advantage of adaptive approach is that the accuracy of a manipulator carrying 

unknown loads improves with time because the adaptation mechanism keeps extracting 

parameter information from tracking errors. Thus the adaptive controllers hold promise of 

consistent performance in face of large load variations and inaccuracies in initial 

parameter estimations. While many adaptive controllers have been proposed in literature 

[Johansson (1990), Hsia (1986), Yuh et al. (1998)], most of them rely on assumptions 

such as local linearization, time invariance, decoupled dynamics etc., to guarantee their 

tracking convergence. However in recent past, attempts have been made and control 

strategies have been proposed which do not resort to these assumptions for proving global 

stability. These schemes mostly make use of linear parameterization property of 

manipulator dynamics to synthesize the adaptation law and to prove global stability 

[Sadegh and Horowitz (1990)]. In this thesis we have studied through simulations a few 

adaptive controllers. These controllers were tested for both warm and cold start 
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situations. In case of warm start, the controller starts with some rough initial estimate of 

values of the parameters whereas in case of cold start it is assumed that no such initial 

estimate is available. A comparison of performance is also done. We have also 

investigated the effect of introducing integral error compensation on the performance of 

these controllers. 

While conventional controllers suffer in performance because they do not take care of 

many uncertainties that a manipulator faces, the adaptive controllers have their own 

drawbacks. They are: 

Requirement of a reasonably accurate manipulator model, even though the 

parameter values are not required to be known exactly. 

Requirement of fast processors to implement computationally intensive 

algorithms. 

The adaptive laws are derived mainly by trial and error.  

It is difficult to prove the stability and robustness of these controllers. 

In order to overcome the problems of inaccurate dynamics model and computational time 

constraints, a lot of work has been done in the area of fuzzy logic control of robot 

manipulators [Emami et al. (2000), Ham et al. (2000), Koo (1995)]. Fuzzy Logic control 

provides an extensive freedom for control designers to exploit their understanding of the 

problem and to construct intelligent control strategies. Nonlinear controllers can be 

devised easily by using fuzzy logic principles. It makes fuzzy controller a powerful tool 

to deal with nonlinear systems. 

Many forms of fuzzy controllers for robotic manipulators have been proposed in 

literature. These include conventional controllers [Ya-Chen et al. (1997), Nedungadi and 

Wenzel (1991)], controllers with gravity compensation, self-organizing [Koh et al. 

(1990), Kazemian (1998)] and self-tuning fuzzy controllers [Llama et al. (2000)], hybrid 

fuzzy controllers [Meng and Swee (2000), Karner and Janocha (1997), Ya and Meng (2004)] 

etc. Some of these controllers have been investigated in this thesis. Of particular promise 

is the self-organizing controller, which builds up the rule base on-line as the manipulator 

operates. It has a very simple structure, is computationally not intensive and gives very 

good performance. Also of interest is a new hybrid fuzzy controller proposed in the 

thesis, which too gives commendable performance. This controller is combination of 
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conventional fuzzy and integral error compensator. The integration of errors is done in a 

novel way so as to avoid any chances of instability. 

As can be seen from above discussion, the robot manipulator control problem is a wide 

and open area of research. In this thesis we have studied some of the many control 

strategies used for manipulator control and have also proposed some new control 

methods as well.   

1.1 OBJECTIVES  

This thesis is mainly about the computer control of motion, and represents an 

infinitesimal advance in the human capacity to both understand and to synthesize devices 

capable of performing useful work. Specifically, it addresses the problem of constructing 

and analyzing control systems for robot arms, which reliably and accurately follow, 

prespecified trajectory. 

The main objectives of thesis are as follows:  

(a) Conventional Control 

(i) To study various conventional control algorithms used for manipulator 

control. These algorithms include non-model based simple PD and 

PID as well as model based Computed Torque, Feed-forward inverse 

dynamics etc. 

(ii) To analyze the performance of various conventional controllers 

through simulations on predefined trajectories. 

(iii) To investigate the effect of parameter variations on controller 

performance. 

(iv) To study the effect of inclusion of integral error compensation on 

controller performance 

       

(b) Adaptive Control 

(i) To study different adaptive control algorithms proposed for robot 

manipulator control. These include Adaptive Critically damped inverse 
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dynamics controller, Model reference adaptive scheme and 

Decentralized adaptive controller. 

(ii) To study the performance of these controllers for situations like, 

parameter change, warm start, cold start etc. 

(iii) To study the effect of inclusion of integral error compensation on 

controller performance  

      (c) Fuzzy Control 

(i) To study some different Fuzzy control schemes which are used for 

manipulator control. These include Conventional Fuzzy, Adaptive 

Fuzzy and Hybrid Fuzzy schemes. 

(ii) To investigate the performance of these controllers under situations 

like manipulator picking up a load, starting with zero/non-zero entries 

in rule base etc. 

(iii) Propose some new hybrid controllers which combine fuzzy with 

conventional, and fuzzy with adaptive controllers. 

      

     (d) Comparative analysis of performance of the aforesaid controllers.   

1.2 ORGANIZATION OF THE THESIS  

This thesis is organized in seven chapters. Chapter 2 reviews literature in the area of 

robot manipulator control. The review includes work done by researchers across the 

globe on conventional, adaptive and fuzzy control. Review is also done of schemes, 

which have not been directly tested on manipulators. 

Chapter 3 deals with the general structure of manipulator dynamics. It discusses some 

important properties of the component matrices of manipulator dynamics. These 

properties are extensively exploited for design of controllers and for proving their 

stability. The dynamics equations of a two-link manipulator are derived, and error norms 

used for comparison of performance are discussed. 
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Chapter 4 deals with Conventional control strategies for manipulators. These controllers 

are tested on trajectories for cases like, parameters exactly known, parameters not exactly 

known, parameters changing during the course of trajectory etc. Effect of adding integral 

error compensation to these controllers is also investigated. 

Chapter 5 discusses Adaptive control strategies for manipulators. These controllers are 

tested for performance through simulations. The situations tested include: manipulator 

parameter estimate available (warm start), manipulator parameter estimate not available 

(cold start), manipulator picking up a load during motion etc. Effect of adding integral 

error compensation to these controllers is also investigated. 

Chapter 6 deals with Fuzzy control methods for robot control. Various controllers like 

Conventional, Hybrid and Adaptive Fuzzy are discussed. Both, self-organizing and self-

tuning varieties of adaptive fuzzy controllers are discussed. Also both lookup table and 

non-lookup table based controllers are investigated. Some new Hybrid fuzzy controllers 

are also proposed. All these controllers are tested through simulations. 

Finally Chapter 7 presents the main conclusions of the thesis and provides 

recommendations for future work.                
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LITERATURE REVIEW  

2.0 INTRODUCTION   

As explained in Chapter 1, control of robot manipulator is a complex and challenging 

task. The motion of each joint of manipulator is usually produced by actuators that 

produce torque or force. If the actuator used (e.g. Stepper motors) could directly execute 

the trajectory commands then open loop control would suffice. However such actuators 

are usually not used in manipulators because of their high weight to torque ratios and 

slow speeds. 

The complexity of manipulator control problem is compounded by many factors, some 

of which are listed below: 

The highly nonlinear dynamics of both manipulator and actuator, arising due to 

inertia, gravitational, coriolis and centrifugal effects, friction, mechanical 

flexibility, backlash, hysteresis and actuator geometry. 

Accurate control is required over a wide range of operating conditions. 

There is cross coupling between neighboring inputs and outputs of the system. 

The system dynamics parameters are time varying, for example due to changes 

in payload, configuration, speed of motion and component wear. 

There are many control schemes proposed in literature for robot manipulators. The use 

of a particular scheme is very much situation dependent. Simple PD controller can 

accurately control a highly geared industrial robot, performing pick and place operation 

on a known load. On the other hand a manipulator working in unknown environment or 

a high speed direct drive manipulator would require more complex Adaptive or Fuzzy 

controller. 

The various controllers proposed by researchers for manipulator motion control can be 

broadly classified into two categories based on the co-ordinate system they deal with. 

These two categories are Joint space based schemes and Cartesian space based 

schemes. The latter are also known as Resolved motion controllers in literature.  

Another possible classification of robot controllers is in terms of their structure. In this 

scheme the controllers are classified into one of the following categories: 

CHAPTER II
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Conventional 

Robust 

Adaptive 

Fuzzy, Neural, GA based etc. 

A good taxonomy of robot manipulator controllers is provided by Miljanovic and Croft 

(1999). In this thesis we have explored controllers belonging to Conventional, Adaptive 

and Fuzzy categories. This chapter presents a brief literature review of controllers in 

these categories.  

2.1 CONVENTIONAL CONTROL  

The conventional controllers for robot manipulators consist of simple PD/PID 

controllers, minimum time controllers, variable structure controllers and non-linear 

decoupled feedback controllers etc. 

The PD/PID controllers are very popular because of their simple structure and are still 

widely used in many industrial robots. 

Tarokh and Seraji (1988) have proposed a simple scheme for control of manipulators. 

The scheme has two loops: an inner PD loop and an outer PID loop. The PD controller 

stabilizes the robot by classical pole assignment technique, while the outer PID loop 

achieves input-output decoupling for easy reference trajectory tracking. The PD and PID 

gains are easily tunable and are related directly to the linearized manipulator model. 

One of the main weaknesses of PD controllers is that they require measurement of 

velocity for calculating the control law. Velocity measurement is often a problem and is 

noise prone. One solution to overcome this problem is to implement a velocity observer. 

Heredia and Wen (2000) have proposed a high gain observer for estimating the velocity. 

They use the singular perturbation method to analyze the PD controller with high gain 

observer. They have proved that observer error and tracking error become stable and 

have also given the conditions to show the asymptotic stability of the PD controller. 

The proportional derivative (PD) control plus gravity compensation together with the 

PD control plus desired gravity compensation are the simplest global regulators for 

robot manipulators. The best feature of these controllers is that the tuning procedure to 
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achieve global asymptotic stability reduces to selecting the proportional and derivative 

gains in a straightforward manner. However, a drawback of both control strategies is 

that the knowledge of the gravitational torque vector of the robot dynamics, which 

depends on some parameters such as mass of the payload, usually uncertain, is required. 

Kelly (1998) introduced a new class of global position controllers for robots, which do 

not include their dynamics in the control laws. He developed a new class of regulators 

leading to a linear PD feedback plus an integral action driven by a class of nonlinear 

functions of the position error. He characterizes the class of function and gives simple 

explicit conditions on the controller parameters which guarantee global positioning. 

Another important class of conventional controllers is those, which use the model of 

manipulator to accomplish feedback linearization. This idea was explained in some 

detail in previous chapter. These controllers are known as model-based controllers. 

These controllers use schemes, which range from simple gravitational compensation to 

feedback linearization of the full manipulator dynamics. Clearly the suitability of a 

model-based controller is dependent upon how well the system under control is known.   

An ideal model based controller consists of the inverse of the system dynamics, used as 

a pre-compensator to the actual system. The control inputs required to meet the desired 

positions, velocities and accelerations can then be calculated directly from the inverse 

system model. Thus, the system is driven open loop with perfect cancellation between 

the inverse dynamics and the real system. This simple scheme suffers from the 

drawback that manipulator dynamics is usually never known perfectly. All the 

unmodelled effects are thus not compensated. To overcome this problem feedback is 

used where the open loop model-based controller is combined with a classical feedback 

controller (ex. PID). The two controllers are then known as Primary and Secondary 

respectively. The purpose of secondary controller is to maintain trajectory tracking in 

presence of modeling errors and unmodelled disturbances. The primary controller is 

designed using any available knowledge of system dynamics. The overall controller is 

also known as feedforward model based controller. Paul (1974) and Bejczy (1976) 

proposed such controllers which use full manipulator dynamics model in primary part. 

These controllers are also known as Computed Torque controllers because the primary 

part of controller computes the torque to be applied at joints depending on desired 
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position, velocity and acceleration. These controllers are thus computationally very 

intensive. To reduce the computational burden, schemes have been suggested which use 

only part of manipulator dynamics, such as, gravity terms. The gravity part of dynamics 

is simple and provides the holding torque information thereby reducing the integral 

action required of the secondary controller. 

However to cancel the gravity terms we should have their exact knowledge. This at 

times is a difficult task. Khorrami and Ozguner (1988) showed that asymptotic exact 

tracking of trajectory could be achieved with state feedback and PI controllers. No exact 

knowledge of gravity terms is required. Only the nominal parameter values and bounds 

on their variations are required. However global asymptotic stability is guaranteed only 

for the case of constant set point trajectory. 

Another way of reducing the computational burden of these model-based schemes is to 

use a linearized model of the system under control. This can take the form of a state 

space controller designed to position the poles of the closed loop system, or to optimize 

some performance criterion. However, the linearized model quickly becomes 

inappropriate as the manipulator moves throughout its workspace, and hence degrades 

the control. This approach may be effective if deviations from the linearization point are 

small, or alternatively if different linearized models are used as the robot moves along 

its trajectory. An et al. (1989) give a good comparative experimental study on some 

feedforward and computed torque controllers. 

Another approach to manipulator control is to use the model in feedback part of 

controller. It is thus known feedback model based controller. Here, the inner primary 

controller is designed using the inverse system dynamics to give an ideally decoupled 

and linearized system. It is then a simple task to design a secondary controller that 

regulates the nominally linear system, giving the required closed loop system response. 

The secondary controller also compensates for errors in the model based primary 

controller, to ensure set point tracking and disturbance rejection. This approach is also 

occasionally referred to as computed torque control, but differs from previous law since 

it uses feedback rather than feedforward. 

Song et al. (1989) proposed a scheme, which tackles the problem of manipulator picking 

up unknown loads at different times. They incorporate the load dynamics in the 
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manipulator dynamics itself and then exploit its properties to design the controller. Their 

scheme compensates for effects of nonlinearities, couplings and varying payloads and 

also ensures tracking convergence.  

Leung et al. (1990) proposed a sliding mode robot controller based on the variable 

structure control theory. Spong et al. (1986) proposed a robot controller which uses 

optimal decision strategy, to derive a pointwise optimal control law which minimizes 

the deviation between the vector of actual joint accelerations and a desired joint 

acceleration vector, subject to the input constraints.  

For a class of robot manipulators, which contain nonlinear couplings and uncertainties, 

Mao-Lin and Meng (2000) proposed decentralized stabilizing controllers and tracking 

controllers. In the former case, the system state is ensured to lie ultimately in a 

prescribed neighborhood of the origin and this neighborhood can be made arbitrarily 

small. In the latter case, the system is guaranteed to ultimately track a desired model 

with a prescribed error and this tracking error can also be made arbitrarily small. 

Moreover, this approach can admit larger nonlinear couplings and uncertainties in the 

robot manipulator system. Zhang et al. (1990) present a digital implementation of an 

optimal PID controller of linearly interpolated joint trajectories. The controller obtains 

optimal performance by reformulating the PID control law to minimize the time delay 

between the position transducer reading and the application of the corrective torque.  

Some authors have also proposed globally stable controllers where the motor dynamics 

is included in the manipulator model. Su and Stepanenko (1994) proposed one such 

controller and proved its stability using the Lyapunov method. They only assumed that 

the inertial parameters of manipulator and electrical parameters of actuators are 

bounded. 

An exhaustive discussion on advanced robot control techniques has been given by Ge 

(1998) and Er (1993).  

2.2 ADAPTIVE CONTROL  

The controllers discussed previously have constant parameters, and are designed to be 

stable even when there are variations in the system under control. An alternative 
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approach, termed adaptive control [Ortega and Spong (1988), Tosunoglu and Tesar 

(1988), Sinha et al. (1990), Yu et al. (1992), Ham (1993), Zhang et al. (2000), 

Zergeroglu et al. (2000)], automatically adjusts the controller gains as the system 

changes, as shown in Figure 2.2.1. The controller therefore acts to maintain the closed 

loop system response in the presence of variations in the system.  

  

Fig. 2.2.1 Block diagram of Adaptive controller  

The first adaptive robot control algorithms in the literature addressed simplified 

approximations to the full rigid body model.  

One of the earliest papers specifically addressing adaptive robot control is by Dubowski 

and DesForges (1979). This paper address a robot model where the joints are modeled 

as decoupled linear time invariant (LTI) plants. Horowitz and Tomizuka (1986)  

proposed to adaptively compensate for time varying nonlinear elements of the full 

nonlinear plant with the assumption that these elements are slowly time varying in 

comparison to the rate of parameter adaptation. Takegaki and Arimoto (1981) proposed 

a different approach using an approximation to the full plant model, which omits some 

of its nonlinear terms. Many researchers working with adaptive control algorithms 

addressed a great variety of approximations to the full rigid-body nonlinear model. Hsia 

(1986) and Landau (1988) give a complete account of these results, which, because of 
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the plant approximations employed, can at best provide only local stability with respect 

to the full nonlinear system. 

Several authors made explicit use of the linearity of robot inertial parameters in 

developing experimental techniques for adaptive gravity cancellation [Koditschek 

(1985)] as well as the off-line and on-line identification of these parameters [Khosla and 

Kanade (1985)]. Shortly thereafter, several authors reported stable direct adaptive 

tracking controllers that were correct with respect to the full nonlinear robot model. 

These adaptive controllers, which still require accurate plant structure parameter values, 

compensated for either partial or complete lack of knowledge of plant inertial parameter 

values. 

Craig et al. (1986) reported the fist adaptive robot control algorithm, which is globally 

convergent in tracking error. This algorithm is an adaptive version of the familiar 

"computed torque" exact linearization inverse dynamics control law [Luh et al. (1980)]. 

It has the advantage that it provides for linear tracking error dynamics. It has the 

disadvantage that (i) it requires measurement of joint acceleration in addition to position 

and velocity, and (ii) it is only locally stable in controller parameter error, due to a 

required inversion of its estimated inertia matrix in the parameter update law. Ortega 

and Spong (1988) have reported versions of these control algorithms, which do not 

require measurement of joint acceleration, but remain only locally stable in the 

controller parameter error. 

Many model based adaptive schemes have also been proposed [Ham (1993), Slotine 

(1986), Tso et al. (1991)], where those coefficients of the robot model that are not well 

known or are changing, are updated automatically. This is achieved using a system 

identification algorithm, which uses past input and output values of the system to 

estimate the parameters, for example payload mass. The nonlinear equations of motion 

of the robot are expressed as a linear function of joint outputs and model parameters. 

These parameters are estimated using a Lyapunov function candidate approach [Wen 

(1990)], and they converge to their true values provided certain constraints are met. This 

method requires measurement of the joint angles, velocities and accelerations that can 

be problematic due to noise. 
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A different approach to stable adaptive model based control which achieves stable 

tracking without exact linearization was reported independently, by Slotine and Li 

(1988), and by Horowitz and Sadegh (1987), using a sliding-mode type of stability 

proof. This algorithm has the perceived disadvantage that it does not provide linear 

tracking error dynamics, but it has the advantage that it is globally stable in plant 

parameter tracking error, asymptotically exact tracking, and does not require 

measurement of joint acceleration. This particular area of research has seen much work 

and is still active, addressing issues of convergence, stability and computational burden. 

However, these model based adaptive controllers are generally only practical if the 

number of estimated parameters is restricted. The problem becomes complex if the full 

manipulator model is to be estimated. 

A simpler version of this "non-linearizing" approach, possessing a local lyapunov 

stability proof, was reported independently by Koditschek (1987). A globally stable 

version of this simpler approach, with proof of global stability, was provided by 

Whitcomb et al. (1993). 

A second variant of this "non-linearizing" approach with a feedforward structure 

admitting off-line tabulation was reported by Wen et al. (1987). DeWit and Fixot (1992) 

proposed an adaptive controller based on estimated velocity feedback thereby removing 

the need of actual velocity measurement, which may be contaminated by noise. 

In deriving the adaptive and control laws, many times the motor dynamics are ignored, 

which essentially is an approximation. Yu and Lloyd (1995) and Jing (1995) proposed 

an adaptive controller that takes the manipulator motor dynamics into consideration. The 

adaptation law proposed overcomes uncertainties of both manipulator and motor 

parameters. 

As mentioned earlier, the need of developing advanced control methods for robot 

manipulators has been stressed by many researchers, and a lot of papers have appeared 

during the last decade. One of these approaches is the decentralized adaptive control. 

This scheme, also known as "independent joint control," is motivated by the notion of 

the decentralized location of the actuator and sensor on each link. In practice, however, 

the control gets somewhat complicated since the robot is a highly coupled, nonlinear 

multivariable system. Also their operating environment is often poorly known and their 
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parameters cannot be calculated accurately enough to be used in real-time control 

applications. As a result, its stability analysis becomes more complicated and its 

accurate model parameters have to be known a priori. For these reasons, adaptive 

schemes are very susceptible to these uncertainties and complexities. Several 

development and applications have been presented, where adaptive controllers are used 

to enhance stability and improve operating conditions of robot manipulator systems 

[Hsu and Fu (2002), Oh et al. (1988)]. 

Oh et al. (1988) proposed a decentralized adaptive controller where the controller gain is 

derived by using model reference adaptive control theory based on Lyapunov's direct 

method. The adaptive gains consist of proportional, and integral combination of the 

measured and reference values of the corresponding subsystems. Colbaugh et al. (1993) 

proposed a controller, which is extremely simple computationally and does not require 

knowledge of either the mathematical model or the parameter values of the robot 

dynamics. The controller was shown to be globally stable in the presence of bounded 

disturbances. Furthermore the control strategy is very general and is implementable for 

either position regulation or trajectory tracking in either joint space or task space. Gavel 

and Hsia (1987) presented a decentralized adaptive controller based on high gain 

feedback approach. Convergence is local in the state parameter space. Because of a high 

gain feedback approach, the algorithm is tolerant to the nonlinear, time varying 

interaction among joints, and also to the interaction among control channels due to the 

nondiagonal inverse Jacobian matrix. The positive definiteness of inverse Jacobian 

matrix is exploited to make this approach successful. 

Tarokh (1990) proposed a decentralized adaptive controller based on discrete time 

model of the robot manipulator. In his scheme each local controller utilizes only its own 

joint angle measurement and reference position, and does not require knowledge of the 

payload, robot characteristics or other joint angles. Due to the decentralized structure of 

the controller and the simplicity of the control algorithm, computation of joint torques 

can be performed in parallel in a real time environment. The adaptation laws are derived 

using hyperstability theory, which guarantees asymptotic trajectory tracking despite 

gross robot parameter variations. The controller gains are independent of the robot 

parameters provided that the gain adaptation is sufficiently fast. In the independent joint 
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controller scheme proposed by Seraji (1988) for the development of the decentralized 

control scheme, each joint is viewed as a subsystem of the entire manipulator system. 

These subsystems are interconnected by disturbance torques representing the inertial 

coupling terms and the coriolis, centrifugal, friction and gravity terms.  The proposed 

decentralized control scheme consisting of a number of independent joint controllers has 

several advantages over a single centralized controller for the entire manipulator. A 

major advantage is that the joint control algorithms require much less computations than 

the single algorithm resulting from a centralized control law. Furthermore, due to the 

possibility of parallel processing and distributed computing, the decentralized control 

scheme can be implemented on a number of simple and fast microprocessors with a high 

sampling rate, thus improving the system performance. Another major advantage of the 

decentralized control scheme is its reliability and fault tolerant feature. In case one joint 

encoder gives erroneous readings of the joint position, in a centralized control system, 

this would affect the entire control action for all joint motors; whereas in a decentralized 

system, only one control loop is affected and the remaining joint controllers are 

unaffected. A variant of this control strategy proposed by Magana and Tagami (1994) is 

investigated in detail in Chapter 5. Recently Parra-Vega (2003) proposed another simple 

decentralized continuous sliding PID controller for tracking tasks that yields semi global 

stability of all closed-loop signals with exponential convergence of tracking errors.  

Besides the main approaches to adaptive control discussed above, many other variations 

of adaptive control have been proposed in literature. Variable structure adaptive 

controllers have been proposed by Yu (1998), Yu and Lloyd (1997) and Tso et al. 

(1991). Adaptive learning controller has been proposed by Messner et al. (1991). An 

adaptive controller designed using input-output approach is presented by Kelly and 

Ortega (1988). Trusca and Lazea (2003) have proposed an adaptive PID learning control 

algorithm for periodic robotic motion. Their controller consists of an adaptive PID 

feedback part and a feedforward input learning part. The feedback part overcomes the 

disturbances while the feedforward part produces the desired torques. Some authors 

have also presented adaptive control schemes based on manipulator task space. In one 

such scheme Feng (1995) presents a composite law, which uses the prediction error and 

tracking error to derive parameter estimates without requiring inverse of Jacobian or 
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estimated inertia matrix. Burkan (2005) developed adaptive controller using 

trigonometric functions depending on manipulator kinematics, inertia parameters and 

tracking error, and both system parameters and adaptation gain matrix are updated in 

time. The control law includes a PD feed forward part and a full dynamics feed forward 

compensation part with the unknown manipulator and payload parameters. 

As can be seen, many versions of adaptive control strategies are available for use today. 

To decide on merits and demerits of one adaptive strategy vis-à-vis another, and also 

that of adaptive with respect to conventional or robust schemes, some results are 

available in literature. Erlic and Lu (1990) presented an experimental comparison of 

Adaptive, Robust and Classical Feedback Controllers used in unconstrained trajectory 

tracking for robot manipulators. In their study it was found that the adaptive controller 

outperforms the other controllers. Good performance was also achieved using the 

computed torque method. The proportional-derivative controller was found to perform 

poorly for velocity tracking. The adaptive algorithm however was found to be 

computationally demanding. Kim and Hori (1995) have presented an experimental 

evaluation of adaptive and robust schemes for robot manipulator control. They have 

classified the adaptive control laws in three groups and have shown that the main 

difference between groups is in terms of their PD gains. They have further shown that 

the controllers can give matching performances by proper adjustment of the PD gains. 

They have also investigated a two degree-of-freedom robust controller and have 

demonstrated its strong disturbance rejection properties. 

Burdet et al. (1998) have also given a comparative evaluation of nonlinear adaptive 

controllers. They have shown that a version of Feedforward adaptive controller is well 

suited for learning the parameters of dynamic equation even in presence of friction and 

noise. However, if the task consists of executing a repeated trajectory, a Lookup table 

based memory controller is simpler to implement. Niemeyer and Slotine (1988) have 

commented on performance in adaptive control, specifically about issues related to 

computational efficiency and recursive implementation of the control algorithms. 

To summarize, the adaptive control theory for robot manipulators is at present seeing 

wide interest and many researchers are trying alternative controller designs. In this 

thesis we have studied some of the approaches to adaptive control of robot manipulators. 



 

20

  
2.3 FUZZY CONTROL  

Real time control of a robot manipulator has been the topic of research for a long time. 

Many theoretical results have been and are being published showing various efficient 

and accurate control strategies. These include adaptive control, non-linear feedback 

control, resolved motion rate control, inverse dynamics control etc. But all of them have 

problems from practical applicability point of view because of: 

1) Complex non-linear mathematical model of the manipulator and  

2) Extremely involved computational requirements.  

In such cases, where conventional and other control methods prove inadequate and 

complex, it is worthwhile to investigate the control policies of a human operator. Fuzzy 

Logic is one such control method, which is based on human intuition and experience. 

Fuzzy algorithms are easy to implement on a computer, do not involve any major 

computational problems, and do not require a detailed mathematical model of the 

system [Jamshidi (1997), Kazemian (2001)]. Fuzzy algorithms find wide use in robotic 

control systems [de Silva (1995), Banerjee and Woo (1993)]. 

Many Fuzzy control strategies for manipulator control have been proposed in literature. 

Erbatur et al. (1995) provide a comparative analysis of four different kinds of fuzzy 

controllers. The controllers studied are: Straight forward conventional fuzzy control, 

fuzzy control with gravity compensation, fuzzy control with nonlinear state feedback 

and a self organizing fuzzy control. The problem of gain adjustment in basic fuzzy 

controller is overcome by using a self-organizing fuzzy controller. The self-organizing 

controller is able to adjust its gains in a single run. Abdessemed and Benmahammed 

(1998) have proposed a two layer fuzzy controller. The first layer is the familiar PID 

controller, and the second is the precompensator, designed on the basis of decision 

making rules and tuned to minimize the output error when the conventional controller 

exhibits significant steady state error and a loss in control. The control strategy proposed 

by Lim and Hiyama (1991) for robotic manipulators incorporates a proportional plus 

integral (PI) controller with a simple fuzzy logic (FL) controller. In the proposed 

strategy, the PI controller is used to ensure fast transient response and zero steady-state 
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error for step inputs, or end-point control, whereas the FL controller is used to enhance 

the damping characteristics of the overall system. A good classification of fuzzy PID 

controllers is provided by Hu et al. (2001).  

Researchers have proposed many versions of adaptive fuzzy controllers. Zhao et al. 

(1993) showed that the gains of a simple PID controller could be adapted using fuzzy 

logic. Fuzzy rules and reasoning are utilized on-line to determine the controller 

parameters based on the error signal and its first difference. Tzafestas and 

Papanikolopoulos (1990) presented an approach to intelligent PID control, which is 

based on the application of fuzzy logic. Their approach assumes that nominal controller 

parameter settings are available through some classical tuning technique (Ziegler-

Nichols, Kalman, etc.). By using an appropriate fuzzy matrix (which is similar to 

Macvicar-Whelan matrix), they determine small changes on these values during the 

system operation, that lead to improved performance of the transient and steady state 

behavior of the closed-loop system. Visoli (2001) presents a comparison between 

different methods, based on fuzzy logic, for the tuning of PID controllers. Yoo and Ham 

(1999) proposed an adaptive controller that uses a fuzzy logic system to approximate 

any nonlinear system. There is no need to derive the linear robot dynamic formulation. 

Their controller is robust not only to the structured uncertainties such as payload 

parameters, but also to the unstructured ones such as friction model and disturbances. 

Neo and Er (1995) present a controller that employs tracking errors of the joint motion 

to estimate the robot dynamics, which are subsequently used in the control law. In 

particular, it requires no feedback of joint accelerations. This adaptive controller does 

not require the exact robot dynamics but only the boundary of the dynamics. The 

controller guarantees the global stability of resulting closed-loop system in the sense that 

all the signals are bounded. A good reference, which discusses stability issues related to 

fuzzy controllers, is by Kandel et al. (1999). A controller for adaptive fuzzy tracking 

control of manipulator is proposed by Lin et al. (2003). Their adaptive fuzzy 

compensator performs on-line learning to approximate and compensate the unknown 

nonlinear dynamics of the system so that minimizing a quadratic performance index can 

obtain the optimal tracker. The proposed controller and the associated learning 

algorithm require no preliminary off-line learning for initialization and guarantee the 
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output-tracking error to be uniformly bounded. Commuri and Lewis (1996) propose a 

learning algorithm that learns the stabilizing membership functions online from initial 

membership functions that are selected using simple design criteria. The controller 

requires no regression matrix and is essentially model free. 

The approach proposed by Kwan and Liu (1999) uses quantitative control schemes to 

ensure global stability and qualitative control scheme to approximate any non-linear 

functions caused by disturbances, system uncertainties and interconnections. With the 

PD control as a preliminary component in maintaining the local stability, non-linear 

feedback is added to ensure global stability of the entire system. An adaptive fuzzy logic 

controller is incorporated into the robot arm control system as a function approximator 

to compensate interconnections effect, unmodelled dynamics, friction, gravity force and 

uncertainties. The stability criterion of the proposed controller is developed using the 

Lyapunov synthesis approach. Sun and Wan (2004) have used a controller output error 

method to design  adaptive fuzzy control system. The proposed control strategy employs 

a gradient descent algorithm to minimize a cost function, which is based on the error of 

the controller output and is minimized by tuning some or all of the parameters of fuzzy 

controller. The underlying idea of controller output error method is that each time the 

response of a plant to a set-point signal is observed, it is learnt how to repeat that 

response when it is required in future. 

Santibanez et al. (2000) extend the idea of PD+ controller to fuzzy. The structure of 

PD+ control consists of a linear PD feedback plus a specific compensation of the robot 

dynamics. Furthermore, this control strategy has the distinguishing feature that it 

reduces to the PD control with gravity compensation in the particular case of set-point 

control. The authors show that the gains of PD+ can be varied according to a fuzzy logic 

system, which depends on the robot state. Global Stability of the system is also shown. 

Kim (2002) has proposed an independent joint fuzzy controller, which does not require 

an accurate manipulator dynamic model and the joint acceleration measurement, yet it 

guarantees asymptotic trajectory tracking despite gross robot manipulator variations. No 

inversion of the estimated mass matrix is also involved. It incorporates an integral term 

in the control law, which eliminates steady state error. The feedback control loop is 

guaranteed to be stable. The use of sliding mode control theory in developing an 
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adaptive fuzzy controller is shown by Hsu and Fu (1995). They have presented adaptive 

robust fuzzy control architecture for robot manipulators. The control objective is to 

adaptively compensate for the unknown nonlinearities of robot manipulator, which is 

represented as a fuzzy rule-base consisting of a collection of if-then rules. The algorithm 

embedded in the proposed architecture can automatically update fuzzy rules and, 

consequently, it is guaranteed to be locally stable and to drive the tracking errors to a 

neighborhood of zero. An adaptive fuzzy controller, which does not require 

measurement of joint velocities, is discussed by Kim (2004). In this controller, adaptive 

fuzzy logic allows approximation of uncertain and nonlinear robot dynamics. Only one 

fuzzy system is used to implement the observer-controller structure of the output 

feedback robot system.  

A self-tuning adaptive fuzzy version of the computed torque controller is discussed by 

Llama et al. (1998). They have shown that the computed-torque control scheme can also 

yield a globally asymptotically stable closed-loop system not only for constant positive 

definite gain matrices, but also for a class of manipulator state dependent gain matrices. 

This is a theoretical result with useful implications to handle real constraint of robot 

manipulators such as friction in the manipulator joints and torque capability limitations 

of their actuators. They also show application of fuzzy logic to design a self-tuner for 

the computed-torque control taking into account specifications of allowable actuator 

torques limits and desired tracking accuracy in presence of friction.  

Colbaugh (1994) proposed another approach to adaptive motion control called as 

performance-based adaptive control. It is known so because the adaptive laws adjust the 

controller gains directly based on system performance. The development of this schemes 

proceeds by assuming that very little information is available concerning either the 

structure or the parameter values of the manipulator dynamic model. As a consequence, 

these methods are equally applicable to trajectory tracking in joint-space or task-space. 

The controller proposed is extremely simple, require very little model information, and 

shows good tracking performance and robustness characteristics. Loc et al. (2004) 

proposed an adaptive fuzzy controller based on optimal control theory. The controller 

does not require exact mathematical model of manipulator and takes the error vector as 

control input. 
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Many model-following adaptive fuzzy schemes have been investigated by researchers 

[Tsai et al. (2000)]. Koo (1995) proposed a model reference adaptive fuzzy scheme and 

showed that it is capable of achieving reference model tracking of a two-link robot 

manipulator system. He has shown that model reference scheme is capable of 

manipulator control by achieving adaptive feedback linearization, i.e. to asymptotically 

cancel the nonlinearities in the system and to place system poles in the desired locations 

as specified in the reference model. Golea (2002) proposed another such model-

following fuzzy adaptive scheme. In his scheme the adaptive fuzzy system is trained to 

approximate the robot dynamic and then, based on the estimated model, a controller is 

designed to ensure the tracking of a stable reference model. It is proven, using Lyapunov 

stability, that this adaptive scheme is robust against uncertainty, external disturbance 

and approximation error, and achieves asymptotic tracking of a stable reference model. 

Kuswadi et al. (2003) also proposed another such scheme with particular reference to a 

hopping robot. Their approach uses linearized model to design a state feedback servo 

controller. Thereafter, by using fuzzy networks they have developed model reference 

adaptive fuzzy control in which a fuzzy network is used to compensate the nonlinearities 

of robot dynamics. The role of the fuzzy network is to construct a linearized model by 

minimizing the output error caused by nonlinearities in the robot control system through 

a learning mechanism. 

Another class of fuzzy controllers widely reported in literature is the hybrid fuzzy 

controllers. These controllers combine the action of fuzzy controllers with that of some 

conventional control algorithm. Butkiewicz (2000) gives a comparative study of 

different conventional, hybrid fuzzy and adaptive fuzzy controllers. Brehm and Rattan 

(1993) proposed a hybrid fuzzy PID controller, which takes advantage of the properties 

of the fuzzy PI, and PD controllers and another method, which adds the fuzzy PD 

control action to the integral control action.  Li et al. (2001) have proposed a hybrid       

P +ID controller for manipulator control. The structure of the FUZZY P+ID controller is 

very simple, since it is constructed by replacing the proportional term in the 

conventional PID controller with an incremental fuzzy logic controller. On the basis of 

the PID type controllers, only two additional parameters have to be adjusted to 

implement the FUZZY P+ID controller. These two parameters allow the controller to 
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behave differently, depending on the values of error and error derivative. A very similar 

approach to hybrid fuzzy controller design has been discussed by Li (1998). 

Ordonez et al. (1997) provide a good comparative study of adaptive fuzzy, conventional 

adaptive and nonlinear non-adaptive controllers. Lin et al. (1995) provide a comparative 

analysis of fuzzy and PID controllers. Their study shows the simplicity and superiority 

of fuzzy controllers over their PID counterpart. Khoury et al. (2004) provide a 

comparative evaluation of the fuzzy PID control method with respect to other methods 

of nonlinear control, i.e., the computed torque control method and the direct adaptive 

control method.  They emphasize that the main advantage of the fuzzy control approach 

is its non-dependency on the dynamic model of the plant.  

2.4 MOTIVATION FOR PRESENT STUDY  

As can be seen from the brief literature survey presented in the previous sections, the 

problem of manipulator control is a complex and challenging task. Many methods of 

manipulator control have been proposed by researchers, which range from conventional 

to adaptive to fuzzy control etc. Furthermore each of these strategies have their own 

wide and varied flavors.  

In view of different kinds of control strategies available, work needs to be done which 

could test and compare these different control strategies against a common background 

and suggest the advantages and disadvantages of these strategies. As can be seen from 

literature survey, some researchers have attempted these comparative studies but they 

are not very exhaustive.  

As discussed in section 2.1 many conventional, model based strategies have been 

proposed for manipulator control. These model based schemes give good performance 

in case the manipulator model is known accurately enough and is working in an known 

environment. A study however needs to be done to compare these conventional model 

based control strategies for their performance against each other and also against the 

non-model based algorithms under various situations. With this motivation we 

undertake the following tasks in Chapter 4:  
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Compare three model based control strategies against each other for same 

manipulator   model and similar test trajectories 

Analyze the effect of using approximate rather than accurate parameter values in 

manipulator model 

Compare the performance of model based and non model based conventional 

control algorithms 

Study and compare the effect of manipulator picking up an unknown load during 

the course of its motion on its performance  

Propose and study the effect of including a modified integral action to the model 

based conventional control algorithms 

As the efficacy of conventional control algorithms goes down with increase in 

uncertainty in the manipulator model, adaptive control is often cited in literature as the 

way out. As discussed in section 2.2 many adaptive control algorithms have been 

proposed in literature for manipulator control. But a comprehensive comparative study 

of these algorithms is by and large missing in the literature. This is the motivation for 

chapter 5, where we undertake the task of an exhaustive comparative study of three 

popular adaptive control algorithms used for manipulator control. In particular we 

Compare the performance of adaptive control algorithms for the case when the 

manipulator picks up and releases an unknown load during the course of its 

motion 

Compare the performance of adaptive control algorithms when no initial 

estimate of manipulator parameters are available 

Compare the performance of adaptive control algorithms when some initial 

estimate of manipulator parameters are available 

Investigate the effect of adding modified integral action to these adaptive 

controllers 

The adaptive control algorithms give good performance but have their own drawbacks 

like being computationally expensive and difficult to prove to be stable. This has led 

many researchers to investigate strategies like fuzzy and neural control for manipulators. 

As discussed in section 2.3 many different fuzzy controllers have been proposed in 

literature but their efficacy for manipulator control has been rarely investigated. 
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Moreover there is no good comparative study existing in literature for these different 

fuzzy controllers. Also there is lot of scope to investigate new hybrid fuzzy controllers, 

which are obtained as combinations of fuzzy with conventional or adaptive controllers. 

This forms the main motivation for chapter 6 where we have undertaken the following 

tasks: 

Investigate lookup table based and non lookup table based pure fuzzy controllers 

Investigate a self organizing fuzzy controller for situation where the lookup 

tables start with zero and non zero values 

Propose and investigate some new hybrid fuzzy controllers 

Investigate a self tuning adaptive fuzzy controller 

Investigate a coarse/fine adaptive fuzzy controller 

Investigate the performance of these controllers for the cases when manipulator 

parameters change during motion and when they do not change 

Do a comparative study of performance of the above controllers  

The main motivation thus, for the present study is absence of good comparative study of 

different control algorithms for manipulator control against a common background. We 

have made an attempt in this thesis to do the same and in the process have also proposed 

some new controllers and some modifications to the existing controllers with a view to 

improve their performance.  

2.5 CONCLUDING REMARKS 
   

In this chapter we have presented a brief overview of studies carried out in the field of 

manipulator control by different researchers. In particular we have presented the work 

done in areas of conventional, adaptive and fuzzy control. The literature survey 

represents a small and important portion of a vast body of literature available in this 

area. We have not included in the survey work done on manipulator control in the areas 

of neural networks, genetic algorithms, impedance control etc, as we do not intend to 

investigate these schemes in this thesis.   
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ROBOT DYNAMICS AND ISSUES IN CONTROL  

3.0 INTRODUCTION  

A robot manipulator consists of number of links interconnected by joints to form a 

kinematic chain. Figure 3.1 shows a serial link (left) and a parallel link (right) 

manipulator. A parallel link robot, by definition, contains two or more independent serial 

link chains. In this thesis for simplicity of analysis we confine ourselves to serial link 

manipulators with only rotational or revolute joints. Also most of the robots used in 

industry today have this serial open kinematic chain structure. Anyway, most of our 

discussion about control strategies in the thesis remains valid for parallel robots and for 

robots with sliding or prismatic joints as well. 

In the serial open kinematic chain structure, a number of links are connected in series 

through joints, which are either revolute or prismatic (linear) in nature. Each joint usually 

has a single degree of freedom. 

 

Fig. 3.1. A serial manipulator (left), the ABB IRB1400, and a parallel manipulator (right), 
the ABB IRB940Tricept.   

For the purpose of studying manipulator dynamics, it is usually assumed that the 

manipulator consists of rigid links with no flexibility. This assumption is quite true for the 

industrial grade manipulator and does not hold good only for large arms designed for 

space applications etc. Rigid robot manipulators are fully actuated, i.e., there is an 
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independent control input for each degree of freedom. By contrast, robots possessing 

joint or link flexibility are no longer fully actuated and the control problem is more 

difficult, in general.  

The problem of flexibility, if any, in the industrial manipulator is avoided by setting the 

controller gains in such a way that the natural frequency of the system lies far away from 

the lowest resonance frequency of the structure so as not to excite them.  

3.1 MANIPULATOR DYNAMICS EQUATIONS  

The two most common methods used to derive the manipulator inverse dynamics are the 

Newton-Euler and the Lagrange methods [Spong and Vidyasagar (1989)]. The Newton-

Euler method is based on force balance approach while the Lagrangian method is based 

on energy conservation approach. The Lagrangian approach is easier if the number of 

degrees of freedom, i.e., the number of joints of the manipulator is less than four. The 

Newton-Euler approach is more suitable for implementation on computer because of its 

iterative nature. However as the dynamics equations are very explicit and cumbersome 

even for the simplest of manipulator, it is always better to use the closed form solution. 

This saves a lot of processor time, thereby making the real time implementation much 

more easier [Paul (1972)]. 

The general state space representation of the manipulator inverse dynamics is given by 

equation 3.1.1 below. 

, ,M V F G                                                                                  (3.1.1) 

Where: 

is 1n  vector of joint torques, 

M  is n n  matrix called the manipulator mass matrix,  

,V  is  1n  matrix consisting of terms arising due to centrifugal and coriolis forces, 

,F  is 1n  matrix consisting of terms arising due to friction forces, 

G  is  1n  matrix consisting of terms arising due to gravity, 

 

is  1n  vector of joint accelerations, 
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is  1n  vector of joint velocities, 

 
is  1n  vector of joint positions and 

n is the degrees of freedom of the manipulator, equal to the number of joints. 

Equation 3.1.1 can also be written in another form as:  

, ,M MM V F G  .                                (3.1.2) 

Where ,MV  and ,MF  are now n n  matrices. 

The various matrices in equations 3.1.1 and 3.1.2 have some typical properties and 

relations with each other. These are often exploited for designing a controller and for 

proving its stability [Craig (1988)]. Some of the important properties are listed below: 

Mass matrix, M

 

It is symmetric. 

It is positive definite and bounded above and below, i.e., for an n x n identity 

matrix nI

 

and for scalars m

 

and m

 

which satisfy 0< m <
m

 

we can say that 

m n m nI M I .  

Its inverse exists and is positive definite and bounded. 

Its time derivative is given by 2 ,MV J , where J

 

is some skew symmetric 

matrix. This implies that 0.5 ,T T
MX M X X V X

 

where X

 

is an n x 1 

vector. 

The mapping q  is passive, i.e., there exists 0  such that 

0

T
Tq u u du

 

Centrifugal and Coriolis force matrix, ( , )V

 

It has a bound, which is independent of  but increases quadratically with . 

It is related to time derivative of manipulator mass matrix as above. 
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Friction force matrix, ,F

 
Position dependence comes only when eccentricity of gears is present. 

In highly geared robots, the friction forces can account for almost 25% of the total 

torque required. 

Friction is a local effect, so ,F  is uncoupled. 

Friction forces are dissipative, i.e. , 0T F . 

Friction forces are largely viscous in nature. 

If only viscous friction is modelled, then ,F is a diagonal matrix with viscous 

friction coefficients as the elements. 

Gravity force matrix, G

 

It consists of all gravity related terms. 

It has a bound that is independent of . 

The dynamic equations of the manipulator used for our simulations are now derived. 

3.2. TWO LINK MANIPULATOR DYNAMICS  

The manipulator used for simulations is a simple two degree-of-freedom articulated arm. 

This is a very standard test bed used for studies on control in robotics literature. The two 

joints of this manipulator are assumed to be driven by DC permanent magnet 

servomotors. The manipulator is assumed to be of direct drive type, i.e., no gearings are 

used at the joints. This is usually the case for high speed and high precision manipulators. 

The control strategies were tested on this two link planar manipulator. This allows us 

primarily to reduce the amount of calculations that have to be made during runtime while 

still including the effect of gravity on motion. Figure 3.2.1 shows the manipulator with 

frames assigned to the links.   
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Fig 3.2.1    Manipulator used for experiments with frames attached 

In Fig. 3.2.1 the axes 0 1 2, and z z z are perpendicular to the plane of the paper and point 

out. 

The inverse dynamics is derived using the Lagrange method [Craig (1989)]. The joints 

were assumed to have only viscous friction. This model was used for all simulations. The 

various manipulator parameters and variables used in the model are: 

im   = Mass of the i-th link (kg) 

il     = Length of the i-th link (m) 

ix    = Location of the centre of mass of the i-th link along the respective x- axis (m) 
i

civ

  

= Linear velocity of the centre of mass of the i-th link as seen in the i-th frame 

(m/sec) 
i

i   = Angular velocity of the i-th link expressed in the i-th frame (rad/sec) 

zziI  = Moment of inertia of the i-th link about zi axis (kg-m2) 
ci

iI = Inertia tensor of the i-th link with respect to a frame having its origin at centre of 

mass of i-th link and axes parallel to the faces of the link (kg-m2) 
i

ciP = Vector location of centre of mass of i-th link with respect to i-th frame (m) 
i

jv
  = Linear velocity of origin of j-th frame with respect to i-th frame 

i
j R = Orientation difference between frames i and j  

0 g  =  Gravity vector with respect to base frame 

Gravity 0x

0y

1y

 

1x

2y
2x
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As both the links of the manipulator are symmetric cuboids, we have approximated all the 

off diagonal terms of the inertia tensor to zero by proper selection of frames. The kinetic 

energy, iK

 
of the i -th link is given by equation 3.2.1. 

0.5 i T i T ci i
i i ci i i iK m v I                                                      (3.2.1) 

For the first link i=1. The kinetic energy for this link is given by equation 3.2.2 

1 1 1 1
1 1 1 1 1 10.5 T T c

cK m v I                                                      (3.2.2) 

Also 

1
1

1

0

0        and               (3.2.3)                                                                 

1 1 1
1 1 1c cv P

 

      
1

1 1

1

0 0

0 0

0 0

x

x                                                               (3.2.4) 

Substituting 3.2.3 and 3.2.4 in 3.2.2 we get 

2 2 2
1 1 1 1 1 10.5 zzK m x I                                                             (3.2.5) 

Similarly for the second link, the kinetic energy, K2 is given by equation 3.2.6 

2 2 2 2 2
2 2 2 2 2 2 20.5 T T c

c cK m v v I                                           (3.2.6) 

Also 

  2
2

1 2

0

0        and                                            (3.2.7)                                     

   

2 2 1 2 2
2 1 2 2 2c cv R v P

  

  
2 2

2 2 1 1 2 1 2

00 0

0

0 0 1 0 0

C S

S C l x
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2 1 1

2 1 1 2 1 2

0

S l

C l x

       
               (3.2.8) 

Here 2C  is same as 2cos and 2S  is same as 2sin . 

Substituting 3.2.7 and 3.2.8 in 3.2.6 we get kinetic energy for second link as 

2 22 2 2
2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 20.5 2 0.5 zzK m l x C l x I              (3.2.9) 

The total kinetic energy, K, of the manipulator is given by equation 3.2.10 as 

1 2K K K                       (3.2.10) 

For calculating the potential energy of the manipulator, we know that the potential energy 

of the i-th link, iP , is given by 

0 0T
i i ci iP m g P C

      

                                   (3.2.11) 

Where iC  is a constant chosen such that the potential energy never becomes negative. 

Using equation 3.2.11 the potential energy of the first link is given by 

0 0
1 1 1 1

T
cP m g P C

 

    1 1 1 1sinm gx C                                                         (3.2.12) 

Similarly the potential energy of second link is given by 

0 0
2 2 2 2

T
cP m g P C                                                          

      = 2 1 1 2 1 2 2sin sinm g l x C                        (3.2.13) 

The total potential energy, P, of the manipulator is now given by 

1 2P P P                               (3.2.14) 

The Lagrangian, L , for the manipulator can be calculated as 

L K P                                             (3.2.15) 

The torques, , required at the joints to give the desired acceleration and velocity can be 

calculated as 

           
d L L

dt
                                                                                          (3.2.16) 

or       
d K K P

dt
                                                                              (3.2.17) 
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From equation 3.2.17 we calculate torque required at joint 1, 1 , as 

1
1 11

2 2 2 2
2 2 2 2 2 1 1 1 2 1 1 2 1 2 2 2 1 2

2
2 2 2 1 2 1 1 2 2 12 1 1 2 1 1 2 2 2 2 2 1 2 2

)

[( 2 ) ]

(2 ) ( ) ( )

zz zz

zz

d K P K

dt

m x m x c l m x m l I I m x s l

m x s l F m x gc m x m l gc m x m x c l I

 

                                                                                                                                   (3.2.18) 

Similarly the torque at joint 2, 2  is given by 

2
2 22

2 2 2
2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 2 12 2 2( ) ( )zz zz

d K P K

dt

m l x c m x I m x I m x l s m x gc F

 

                                                                                                                                   (3.2.19) 

1F

 

in equation 3.2.18 and 2F

 

in equation 3.2.19 are coefficients of viscous friction 

present at joints 1 and 2 respectively.  

Equations 3.2.18 and 3.2.19 can be written in standard state space format of equation 

3.1.2 as 

2 2 2 2
1 2 2 2 2 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1

2 2
2 2 1 2 2 2 2 2 2 2 2 2

12 2 2 1 2 2 2 2 1 2 1 1

22 2 1 2 1 2 2

[( 2 ) ] ( )

( )

2

0

zz zz zz

zz zz

m x m x c l m x m l I I m x m x c l I

m l x c m x I m x I

Fm x s l m x s l

Fm x l s

2 2 12 1 1 2 1 1

2 2 12

( )

( ) ( , ) ( )M M

m x gc m x m l gc

m x gc

M V F G

                                    

              (3.2.20) 

The manipulator dynamics in equation 3.2.20 can be rewritten in a linear form by simple 

rearrangement of terms. In other words, there is a constant vector mP

 

and a function 

. . n mW  such that 

, , , ,M V F G W P
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Here, m is the dimension of the parameter space and is non-unique in general. The 

function , ,W

 
is called the Regressor. The parameter vector P is comprised of link 

masses, moments of inertia etc. The properties of linear parameterisation and passivity 

are very important from point of view of controller design. Using these properties 

researchers have been able to prove elegant global convergence and stability results for 

robust and adaptive control [Yu and Arteaga (1994)]. 

The linear form of manipulator dynamics is particularly suitable for derivation of 

adaptation laws. To derive the linear form for our two-link manipulator, we define 

manipulator parameter constants as:   

2 2 2
1 1 2 2 2 1 1 1

2 2 1 2

( )                                      

                         

(3.2.21)

2                                                                                         

zz zzP I I m x l m x

P m l x

2
3 2 2 2

4 1

        

(3.2.22)

                                                                                            

(3.2.23)

                                                                  

zzP m x I

P F

5 2

6 1 1 2 1                                       

(3.2.24)

                                                                                                         

(3.2.25)

( )                    

P F

P g m x m l

7 2 2                                        

                          

(3.2.26)

                                                                                                  

(3.2.27)P gm x

 

It can be seen that all these constants are functions of manipulator parameters like, mass 

of link, moment of inertia, link length etc. 

The manipulator inverse dynamics can now be written in a linear form as 

( , , )W P                                                                 (3.2.28) 

Where 1 2 3 7.. ..
T

P P P P P

 

is the vector of manipulator parameters and 

, ,W

 

is the 2 x 7 manipulator regressor matrix that has terms that are non-linear in 

nature and that depend on manipulator kinematics. 

For the two-link manipulator under consideration, the various terms of W matrix are: 
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11 1

12 2 1 2 2 2 2 1

13 2

14 1

15

16 1

17 12

21

2
22 2 1 2 1

23 1 2

24

25 2

26

27 12

( 0.5 ) 0.5 ( )

0

0

0.5 0.5

0

0

W

W C S

W

W

W

W C

W C

W

W C S

W

W

W

W

W C

 

Here 12C  is same as 1 2cos( ) . 

The model derived above has been used throughout for simulation studies. The above 

model includes all effects considering the rigid body behaviour of the individual links. 

The actual values of the various manipulator parameters used for simulation are given 

below in Table.3.2.1. These values are based on the Link 2 and Link 3 parameter values 

for the CRS Plus manipulator.  

1

2

1

1

2

2
1

2
2

1

2

2.0 

2.0 

0.26 

0.13 

0.14 

0.09 

0.09 

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

 

Table.3.2.1. Actual manipulator parameters 
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3.3 ACTUATOR DYNAMICS  

The simplest modification to the rigid robot model given by equation 3.2.20 is the 

inclusion of the actuator inertia matrix I [Craig (1989)]. The actuator inertia matrix I is an 

n x n diagonal matrix, 

I = diag(I1; . . .; In)                      (3.3.1) 

where Ii is the actuator inertia of the i-th joint.  

Defining, ( ) ( )D M I , we may modify the dynamics to include these additional 

terms as 

, ,D V F G

      

             (3.3.2) 

As can be seen, the inclusion of the actuator inertias and friction does not change the 

order of the equations. 

If the joints are actuated with permanent magnet DC motors we may write the actuator 

dynamics as 

b

di
L Ri V K q

dt

         

 (3.3.3) 

where i, V are vectors representing the armature currents and voltages, and L, R, Kb are 

matrices representing, respectively, the armature inductances, armature resistances, and 

back e.m.f constants. 

Since the joint torque 

 

and the armature current i are related by mK i , where mK is 

the torque constant of the motor, we may write the complete system (3.3.1)-(3.3.3) as 

, , mD V F G K i

      

 (3.3.4) 

b

di
L Ri V K q

dt

         

 (3.3.5) 

In addition, whenever the manipulator is in contact with the environment, the complete 

dynamic description includes the dynamics of the environment and the coupling forces 

between the environment and the manipulator. Modeling all of these effects produces an 

enormously complicated model. The key in robot control system design is to model the 

most dominant dynamic effects for the particular manipulator under consideration and to 

design the controller so that it is insensitive or robust to the neglected dynamics. 
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In the model considered in this thesis, we have neglected all the environment interaction 

effects and also all the joint flexibilities. We have only considered the inertia of motors 

and have included it in the dynamic model. However some work has been done by 

researchers on manipulator control with actuator dynamics included in the manipulator 

model [Purwar et al. (2004), Ham et al. (1995)].   

3.4 ERROR NORMS  

For a quantitative comparison of performance of various controllers, three values of 

errors in position have been used. They are: 

Maximum absolute error at any time during the course of entire trajectory. 

Steady state error of the joints, which is formally defined as   

. lims s
t

e e t

 

Root Mean Square average of the error (e) or the 2L  norm. This norm is defined as  

0

0

1
2

22

2

2

2

1

    which for discrete time case becomes,

  where

   is the total number of samples over the entire trajectory

 total time taken fo

t

t

t

t

i s
i

i
i

s

L e t e t dt
t

e t dt

t

e t t

t

e t

N

t
N

t

t r the trajectory

sampling timest

 

These error norms cover well the various aspects of manipulator performance for the test 

trajectories that we have chosen.  The test trajectories are described in detail in Chapter 4. 
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3.5 CONCLUDING REMARKS 

In this chapter we have highlighted a few important properties of the individual matrices 

that comprise the manipulator dynamics equation. These properties are widely used for 

controller design and in particular for proving their stability. 

We have also derived the two-link planar manipulator dynamics equations using the 

Lagrangian method. These equations comprise the mathematical model of the 

manipulator and are used in all simulation studies. 

Finally the various error norms used for comparative analysis of performance of various 

controllers are discussed.  
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CONVENTIONAL CONTROL OF ROBOT MANIPULATORS  

4.0 INTRODUCTION  

The problem of manipulator control is a highly complex problem of controlling a system 

which is multi-input, multi-output, non-linear and time variant. The general structure of a 

manipulator with controller is shown in figure 4.1 below.  

Fig 4.1 General structure of robot control system  

Because of the complexity of both the kinematics and dynamics of the manipulator and of 

the task to be carried out, the motion control problem is generally decomposed into three 

stages, Motion Planning, Trajectory Generation, and Trajectory Tracking [Spong et al. 

(1992)]. In the motion planning stage, desired paths are generated in the Task Space 

without timing information, i.e., without specifying velocity or acceleration along the 

paths. Of primary concern is the generation of collision free paths in the workspace. In 

the trajectory generation stage, the desired position, velocity, and acceleration of the 

manipulator along the path, as a function of time are computed. The trajectory planner 

may parameterize the end-effector path directly in Task Space or it may compute a 

trajectory for the individual joints of the manipulator as a curve in the Configuration 

Space. 

In order to compute a Joint Space trajectory, the given end-effector path must be 

transformed into a Joint Space path via the inverse kinematics mapping. Because of the 

difficulty of computing this mapping on-line, the usual approach is to compute a discrete 

set of joint vectors along the end-effector path and to perform an interpolation in Joint 

Space among these points in order to complete the Joint Space trajectory. Common 

     
      TRAJECTORY 
      GENERATOR 

, ,d d d

 

     
CONTROLLER 

      

     
ROBOT  

  
CHAPTER IV
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approaches to trajectory interpolation include polynomial spline interpolation, using 

trapezoidal velocity trajectories or cubic/quintic polynomial trajectories. 

The computed reference trajectory is then presented to the controller, whose function is to 

cause the robot to track the given trajectory as closely as possible. This thesis is mainly 

concerned with the design and analysis of the tracking controllers assuming that the path 

and trajectory have been precomputed. 

The trajectory generator provides the controller with information about the desired 

position, velocity and acceleration , ,d d d

 

for each joint and keeps updating this 

information at the path update rate, which usually lies in the range of 20 to 200 Hz 

[Khosla (1987)]. The controller takes this information and compares it with the present 

(actual) position and velocity (sometimes acceleration also) of joints , , , which are 

provided as feedback through the sensors (usually optical encoders and tachogenerators). 

Based upon the error between the desired and actual values, the controller calculates a 

vector of joint torques 

 

that should be applied at respective joints by the actuators to 

minimise these errors. The torques are calculated using a control law. The goal of the 

controller is thus, minimisation of the error, e

 

and its first derivative e

 

(and sometimes 

the second derivative e  also). Here e is calculated as 

                                            de                                                                         (4.1) 

and e  as                              de

     

        (4.2) 

where  is the vector of actual joint positions and  that of actual joint velocities. 

There are various possible controller configurations for manipulator control. In this 

chapter we analyse some common conventional manipulator controller architectures [Luh 

(1983)]. 

The conventional control strategies can be broadly classified as Linear and Non Linear 

strategies. We first discuss the essence of linear control of manipulators.  

4.1. LINEAR CONTROL OF MANIPULATORS  

The use of linear control techniques for any system is valid only when the system to be 

controlled can be modelled by linear differential equations. Thus the linear control of 
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robot manipulators is essentially an approximation, as the manipulator dynamics is 

described by highly non linear equations. The linear control strategies for robots give 

excellent performance for manipulators having highly geared joints. This is the case with 

most of the industrial robots in use today. These controllers assume that each joint is a 

decoupled, independent entity. Further it is also assumed that each actuator on each joint 

is driving a constant inertia load. All these assumptions hold good if the manipulator 

joints are highly geared. One common linear control strategy known as PD (proportional   

Fig 4.1.1.  Block diagram of fixed proportional plus derivative plus integral (PID) 

feedback control  

plus derivative) control is shown in Fig 4.1.1. 

The control law used for this strategy is given by equation 4.1.1. 

PD D PK e K e                                                                           (4.1.1) 

where e

 

and e

 

are error in velocity and position, and KP and KD are the controller gain 

matrices. PD

 

is the vector of joint torques. Usually the gain matrices are chosen to be 

diagonal because of the assumption of decoupled nature of the joints, and the diagonal 

elements are chosen to be greater than zero (required for stability).  

All the control strategies investigated in this section and the next section (4.2) were tested 

against two trajectories. In the first test trajectory (Fig. 4.1.2(a)), the direction of rotation 

of the joints was not reversed. Here the first joint moves from its initial position of 0

 

to 

90

 

degrees in 5 seconds and then stays there for another 5 seconds. The second joint on 

the other hand was made to move from 0

 

degrees to 90

 

degrees in 5 seconds and was 

held there for next 5 seconds. 
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d       +    

d       +
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In the second test trajectory, the direction of motion of joints was reversed in between the 

motion. This produces a greater stress on the controllers. In this trajectory (Fig.4.1.2 (b)), 

the first joint of the manipulator was required to move from its initial position at 0  to 90

 
and then back to 0

 
in 10 seconds. It was further required to hold this joint at 0

 
degrees 

for another 5 seconds. The second joint had to trace a similar path starting from 0 , going 

to 90

 

and then again coming back to its initial position of 0

 

in 10 seconds. The second 

joint then stays at 0  for a further time of 5 seconds. 

Both the test trajectories were defined using quintic polynomials, which satisfied the 

conditions of zero velocity and acceleration at the beginning and at the end of motion. 

The path update rate was selected as 333 Hz. Thus the trajectory generator supplies the 

controller a new set point at every 3msec interval. The manipulator control loop runs 5 

times during this interval between two set points. 

 

Fig. 4.1.2(a) Desired trajectory 1 (Fixed Parameters)  

 

Fig. 4.1.2(b) Desired trajectory 2 (Fixed Parameters) 
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The performance of PD controller was tested for the above two trajectories. For 

simulation it was assumed that we have perfect knowledge of manipulator parameters and 

their values were taken as shown in Table 3.2.1. 

The simulation results (error profiles) for this simple control strategy are shown in 

Fig.4.1.3 (a) and Fig. 4.1.3 (b) for the two different trajectories. The root mean square 

(RMS) value and the steady state (S.S) value of the errors for the two joints are tabulated 

in Table 4.1.1.  

 

Fig. 4.1.3(a) Errors for PD control (Trajectory 1, Fixed Parameters)  

 

Fig. 4.1.3(b) Errors for PD control (Trajectory 2, Fixed Parameters)   
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PD Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 
Link2 

0

 
-90

 
Link1 

0  90 0

 
Link2 

0

 
-90 0

 
RMS S.S RMS S.S RMS S.S RMS S.S 

3.6101 1.6990 1.3115 1.5660 4.8932 5.9127 1.5740 1.5583 

 

Table 4.1.1 Errors for PD control (Fixed Parameters)  

For simulation the PD controller gain matrices were chosen to be diagonal with 

100PK and 50DK . Increasing the values of PK

 

and DK

 

lead to smaller errors but 

increase the chances of exciting the manipulator resonance. We chose these values 

through repeated simulations mainly through trial and error. 

The problem with PD controllers is that they do not guarantee exact trajectory tracking, 

i.e.     lim 0
t

e t

 

This can also be seen Fig 4.1.3 (a) and 4.1.3 (b), which show a finite steady state errors. 

They only guarantee the error e t  to be bounded. The steady state magnitude of e t

 

may be reduced to some extent by selecting higher gains [Wen et al. (1987)]. The upper 

limit to the value of these gains is dictated by the unmodelled flexibility of the 

manipulator. Higher gains may excite the natural resonance frequencies of the 

manipulator and cause the whole structure to become unstable. 

Usually an integral term is also used in the control law and is shown by the dashed line in 

Fig. 4.1.1. Equation 4.1.1 is then modified as 

PID D P IK e K e K edt                                                                         (4.1.2) 

where KI once again is a diagonal matrix with small scalar values to keep the higher 

order effects at minimum.  

The simulation results (error profiles) of the PID control strategy are shown in 

Fig.4.1.4(a) and Fig. 4.1.4 (b) for the two different trajectories. The root mean square and 

the steady state values of the errors for the two joints are tabulated in Table 4.1.2. In this 

simulation the IK  gain matrix was chosen as diagonal with elements equal to 0.25. 
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Fig. 4.1.4(a) Errors for PID control (Trajectory 1, Fixed Parameters)  

 

Fig. 4.1.4(b) Errors for PID control (Trajectory 2, Fixed Parameters)  

PID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 

Link2 
0

 

-90

 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

RMS S.S RMS S.S RMS S.S RMS S.S 

0.7248 0.0 0.1944 0.0 0.6195 -0.0001 0.1682 -0.0003 

 

Table 4.1.2 Errors for PID control (Fixed Parameters)  

Comparing Tables 4.1.1 and 4.1.2, although the introduction of the integral term in the 

control law results in significantly low values of errors as compared to PD control, it also 
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increases the order of the system, which can result in system instability. As shown in Fig 

4.1.4(c), even a small value of 5IK

 
introduces appreciable oscillations in the system 

and degrades its performance. The integral term thus is almost always avoided in the real 

manipulator controller implementations. 

All these limitations make linear control of manipulators unfit for tasks requiring high 

degree of accuracy and/or high speed of operation. 

In such situations recourse is taken to more accurate non-linear control techniques, some 

of which are discussed below.  

 

Fig. 4.1.4(c) Errors for PID Control with 5IK  (Trajectory 1)  

4.2 NON-LINEAR CONTROL OF MANIPULATORS  

The linear control of manipulators is non-model based in the sense that the control law 

does not take into consideration the robot mathematical model at all. In the non-linear 

control of manipulators the manipulator dynamics equation is taken in its complete form, 

usually without omitting or approximating any of the constituent matrices. The only 

approximation still used is that the links are still assumed to be perfectly rigid. The 

manipulator model may be in feedback or in forward path of the control loop. When used 

in forward path the aim is to provide a non-linear component torque in accordance with 

manipulator nonlinearities. On the other hand when used in feedback path the main aim is 
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to cancel the manipulator dynamics nonlinearities and make the system linear and 

decoupled.  Some common non-linear control techniques are now discussed.  

4.2.1 COMPUTED TORQUE CONTROL (CT)  

The most common control technique in the category of non-linear control is the 

Computed torque control proposed by Paul (1972). The block diagram representation of 

computed torque control strategy is shown below in Figure 4.2.1.1. As can be seen the 

basic idea of computed torque control is that of feedback linearization. 

Here the computed torque ct  is given by 

,ct d D P MM K e K e V G                                                 (4.2.1.1) 

If the manipulator model is known exactly then this scheme results in asymptotically 

stable, linear time invariant error dynamics and provides asymptotically exact tracking 

[Campa et al. (2001)].           

Fig. 4.2.1.1 Block diagram of Computed torque control  

The simulation results for the Computed Torque Control method, with an exact model, 

i.e., assuming that the parameter values are exactly known, are shown in Fig. 4.2.1.2(a) 

and Fig 4.2.1.2(b). The RMS and Steady State values of errors are tabulated in Table 

4.2.1.1(a). As can be seen, the performance of this controller is really good with both the 
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steady state and the RMS values of the errors appreciably low without any danger of 

instability as in the PID controller. In fact the Steady state errors are almost zero.  

 

Fig. 4.2.1.2(a) Errors for Computed torque control (Trajectory 1, Exact model)  

 

            

Fig. 4.2.1.2(b) Errors for Computed torque control (Trajectory2, Exact model)  

Computed Torque Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 

Link2 
0

 

-90

 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

RMS S.S RMS S.S RMS S.S RMS S.S 

0.1332 -0.0023 0.2990 0.0022 0.1579 0.0000 0.3513 0.0000 

 

Table 4.2.1.1(a) Errors for Computed torque control with exact model  
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The effectiveness of this controller unfortunately lasts only till the model used is accurate. 

Even a slightly inexact model, if used, can lead to drastic degradation in performance. 

This can be seen from the Fig. 4.2.1.2(c) and Fig. 4.2.1.2(d), which depict the errors in 

position for a Computed Torque Controller with inexact model. The inexactness in 

modelling in this case was limited to just the masses of the two links, which were taken to 

be 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator 

parameters, like the link lengths, the positions of the centre of masses of the links, etc., 

were taken accurately. But even this small inexactness in the value of just two parameters 

degrades the transient as well as steady state performance of the controller to a great 

degree. Table 4.2.1.1(b) tabulates the values of these errors.  

 

Fig. 4.2.1.2(c) Errors for Computed torque control   (Trajectory1, Inexact model)  

 

Fig. 4.2.1.2(d) Errors for Computed torque control  (Trajectory2, Inexact model) 
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Computed Torque Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 
Link2 

0

 
-90

 
Link1 

0  90 0

 
Link2 

0

 
-90 0

 
RMS S.S RMS S.S RMS S.S RMS S.S 

0.8839 0.0044 1.3060 1.2498 1.4132 1.7100 1.3908 -1.3497 

 

Table 4.2.1.1(b) Errors for Computed torque control with inexact model  

As the estimation of the parameters of the manipulator exactly is a difficult, if not an 

impossible task, and as the manipulator parameter change when it picks up a load, this 

controller clearly cannot be relied upon to give a good performance under practical 

circumstances.  

4.2.2 FEED FORWARD INVERSE DYNAMICS (FFID) CONTROL  

A slightly different approach that is more suitable to adaptation is sometimes used instead 

of computed torque scheme [Liegeois et al. (1980)]. This scheme uses the inverse 

dynamics in feed forward mode. The block diagram of this scheme is shown below in 

figure 4.2.2.1. 

Fig. 4.2.2.1 Block diagram of Feed Forward Inverse Dynamics Control  
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In this strategy the torque is calculated as 

, ,

, , ,

ffid d M d M d D P

d d D P

M V F G K e K e

W P K e K e
               (4.2.2.1)        

Equation 4.2.2.1 uses the inverse dynamics model with , , ,d dW

 
as the regressor 

matrix and P

 

as the vector of manipulators parameters. The W

 

and P

 

matrices are as 

defined in equation 3.2.28. The regressor matrix is dependent both, on actual and the 

desired values of acceleration and velocity instead of the actual values alone as can be 

seen from equation 4.2.2.1. The error system resulting from this controller can be shown 

to be globally asymptotically stable when PK

 

and DK

 

are diagonal and all the scalar 

values are positive.   

The simulation results for this controller, under the assumption that the manipulator 

model is known accurately, are shown in Fig. 4.2.2.2(a) and Fig. 4.2.2.2(b). The values of 

the RMS and the steady state errors are listed in Table 4.2.2.1(a). 

It can be seen from the error profiles of Fig. 4.2.2.2(a) and (b) that the overall motion of 

the manipulator, with this controller, is smoother compared to that with the Computed 

Torque controller. This is indicated by a lesser number of sign changes in the error 

gradient. Also the magnitude of the RMS error for both the trajectories has decreased 

appreciably as compared to the Computed Torque controller.  

 

Fig. 4.2.2.2(a) Errors for FFID Control (Exact model, Trajectory1)  
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Fig. 4.2.2.2(b) Errors for FFID Control (Exact model, Trajectory2)  

FFID Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 

Link2 
0

 

-90

 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

RMS S.S RMS S.S RMS S.S RMS S.S 

0.0181 -0.0029 0.0181 0.0030 0.0208 0.0000 0.0208 0.0000 

 

Table 4.2.2.1(a) Errors for FFID Control with exact model  

The performance of the Feed Forward Inverse Dynamics controller was further tested by 

using an inexact model of the manipulator, for the feed forward torque calculations. The 

inexactness in modelling in this case, as for the previous Computed Torque controller, 

was once again limited to just the masses of the two links. The two links were taken to be 

of 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator 

parameters, like the link lengths, the positions of the centre of masses of the links, etc., 

were taken accurately. The error profiles of the two joints for this case are shown in Fig. 

4.2.2.2(c) and Fig. 4.2.2.2(d). The RMS and steady state values of the errors are listed in 

Table 4.2.2.1(b). It is observed that the performance of the controller shows degradation 

with larger errors for both the joints and for both the trajectories. However, the 

deterioration in the performance of the controller is not as marked and pronounced as it 

was for the Computed Torque scheme. 
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This clearly indicates the merits of using the inverse dynamics in the feed forward mode 

and further illustrates the advantage of using the desired velocity and acceleration instead 

of the actual ones for calculating the manipulator regressor matrix. The use of desired 

acceleration instead of the actual value has further advantage in terms of real 

implementation. Measuring the actual acceleration of the manipulator joints is a difficult 

task, as easy to use acceleration sensors are not readily available. Further, if the 

acceleration is found by differentiating the velocity information given by a 

tachogenerator or by double differentiating the position information given by an optical 

encoder, there always are possibilities of getting wrong values due to even a very low 

noise signal whose differentiation may result in very large and incorrect values of the 

actual acceleration.  

 

Fig. 4.2.2.2(c) Errors for FFID Control (Inexact model, Trajectory1) 

 

Fig. 4.2.2.2(d) Errors for FFID Control (Inexact model, Trajectory2) 
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FFID Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 
Link2 

0

 
-90

 
Link1 

0  90 0

 
Link2 

0

 
-90 0

 
RMS S.S RMS S.S RMS S.S RMS S.S 

0.3083 0.1610 0.1638 0.1601 0.4849 0.5949 0.1544 0.1571 

 

Table 4.2.2.1(b) Errors for FFID Control with inexact model  

We next investigate another control strategy, which calculates the manipulator regressor 

matrix, W , in slightly different way, leading to further improvement in performance.  

4.2.3 CRITICALLY DAMPED INVERSE DYNAMICS (CDID) CONTROL                        

This control strategy is almost same as the previous feedforward inverse dynamics, 

except that the regressor matrix, W , is calculated using reference velocity and reference 

acceleration instead of the desired values [Slotine and Li (1988)]. These reference values 

are defined as 

R d d                                                                   (4.2.3.1) 

R d d                                                               (4.2.3.2) 

The torque is calculated as 

, , ,cdid R R DW K e                                                        (4.2.3.3) 

where the error , e , is defined as  

R

d d

e
                                                                                          (4.2.3.4) 

This control law results in a system of stable first order subspace. An exponentially stable 

system forced by an input that decays to zero has an output that decays to zero. Then 

lim 0
t

e t .  This result is used to prove the stability of the controller [Sadegh and 

Horowitz (1987)]. The block diagram of this control scheme is given in Fig. 4.2.3.1.  
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Fig.4.2.3.1 Block diagram of Critically damped inverse dynamics control 

The CDID controller was also tested for performance, using both the exact and inexact 

models of the manipulator as for the previous controllers. As can be seen from equations 

4.2.3.3 and 4.2.3.4 there are two main differences between this controller and the 

previous FFID controller. First, in this controller, the manipulator regressor matrix is 

calculated as a function of actual positions and velocities and also as a function of 

reference velocities and accelerations, while in the FFID controller the regressor matrix 

was calculated as a function of actual positions and velocities, and desired velocities and 

accelerations. Second, the effective proportional gain of the CDID controller is increased 

in comparison to that of FFID controller. To see the effective increase in gain, we know 

that the FFID control law from equation 4.2.2.1 is 

, ,

, , ,

ffid d M d M d D P

d d D P

M V F G K e K e

W P K e K e
                     (4.2.3.5) 

and from equation 4.2.3.3, the control law for the CDID controller can be written as 

, , ,

, ,

cdid R R D R

R M R M R D R

W P K

M V F G K

  

          (4.2.3.6) 

Substituting equation 4.2.3.1 and 4.2.3.2 in equation 4.2.3.6 we get,  

, ,

, , 

,

, , , ,

cdid R M R M R D D

d M d M d

M D D

d d D M D

M V F G K e K e

M V F G M e

V e K e K e

W P M K e V K e

 

          (4.2.3.7) 
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Comparing equations 4.2.3.5 and 4.2.3.7 we see the equivalent controller gains as 

,

Deq D

Peq M D

K M K

K V K

       
          (4.2.3.8) 

As the manipulator mass matrix M

 
is positive definite and if the 

 
matrix is also 

chosen to be positive definite, then their product M

 

is also positive definite. Thus 

the resultant derivative controller gain for CDID controller is increased compared to the 

derivative gain for FFID controller. The matrix of the CDID controller effectively has 

the same role as the PK

 

matrix has in the FFID controller. The matrix product 

,MV

 

in equation 4.2.3.8 can have both positive and negative valued elements, but 

usually the magnitudes of these elements are small. As a result, if we choose PK , the 

effective proportional gain constant of the CDID controller increases approximately by a 

factor of DK . 

The simulation results for the CDID controller with exact manipulator model are shown 

in Fig. 4.2.3.2(a) and (b). The RMS and the Steady State values of the errors for the two 

links for two different trajectories are listed in Table 4.2.3.1(a).  

  

Fig. 4.2.3.2(a) Errors for CDID Control (Exact model, Trajectory1)     
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Fig. 4.2.3.2(b) Errors for CDID Control (Exact model, Trajectory2)  

CDID Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 

Link2 
0

 

-90

 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

RMS S.S RMS S.S RMS S.S RMS S.S 

0.0183 -0.0001 0.0183 0.0000 0.0211 0.0000 0.0212 0.0000 

 

Table 4.2.3.1(a) Errors for CDID Control with exact model  

As can be expected and as is also seen in Fig. 4.2.3.2(a) and (b), with the model known 

exactly, the CDID controller does not give any performance improvement over the FFID 

controller as far as the RMS value of the transient portion of motion is concerned. 

However, as the effective proportional gain constant for the CDID controller is larger 

than that for the FFID controller, it results in a better steady state performance. In fact, 

the steady state errors in this simulation are seen to have been completely removed. 

The strength of the CDID controller comes to the fore when the manipulator model is not 

known exactly. The error profiles for the simulation with inexact model are shown in    

Fig. 4.2.3.2(c) and (d). Table 4.2.3.1(b) lists the quantitative values of the errors for 

different cases. As can be seen, both the RMS and steady state values of errors, for both 

the links for both the trajectories are considerably reduced in magnitude over the 
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corresponding values for FFID. As explained earlier, the greater value of the proportional 

gain constant results in a better steady state performance, while, the use of reference 

velocities and accelerations for calculation of the manipulator regressor matrix instead of 

the actual values, results in an improved transient performance of the arm. This can be 

mainly attributed to the fact that the reference values are cleaner compared to the actual 

values, which are sensor derived and hence always ridden with noise. Moreover if only an 

optical encoder is used for feedback (as is usual), the values of velocity and acceleration 

of the joints has to be derived by differentiating the position information provided by the 

encoders. This numerical differentiation can further reduce the validity of data and the 

problem becomes more severe with increase in the noise in the environment where the 

manipulator is working.   

  

Fig. 4.2.3.2(c) Errors for CDID Control (Inexact model, Trajectory1)  
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Fig. 4.2.3.2(d) Errors for CDID Control (Inexact model, Trajectory2)  

CDID Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90

 

Link2 
0

 

-90

 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

RMS S.S RMS S.S RMS S.S RMS S.S 

0.0140 0.0029 0.0203 0.0030 0.0232 0.0113 0.0214 0.0030 

 

Table 4.2.3.1(b) Errors for CDID Control with inexact model  

4.2.4 PURE FEEDFORWARD CONTROLLER  

As the name suggests, the inverse dynamics in this scheme is calculated using only the 

desired values of trajectory. The torque here is calculated as  

2 1
2, , ,idp d d d d PD nW P e K Ke                                                   (4.2.4.1) 

The last term in the above equation is added to guarantee the stability of the system [Wen 

and Bayard (1987)]. 

The simulation results of this controller showed that in performance this controller is 

essentially at par with the Critically Damped Inverse Dynamics Controller. The error 

profiles and magnitudes for both the cases of exact and inexact models of the manipulator 

matched to a good degree to those of CDID controller. Hence the results for this 

controller are not shown separately. 
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4.2.5 COMMENTS ON PERFORMANCE OF VARIOUS MODEL BASED               

CONTROLLERS    

The consolidated results for the simulations are presented in Table 4.2.5.1 (Exact model) 

and Table 4.2.5.2 (Inexact model) for easy comparison of the controllers performances.  

TRAJECTORY NO.1 TRAJECTORY NO.2 S.No

 

link1 
0  90

 

link2 
0

 

-90

 

link1 
0  90 0

 

link2 
0

 

-90 0

 

STRATEGY 

RMS SS RMS SS RMS SS RMS SS 

 

1. PD Control 3.6101 1.6990 1.3115 1.5660 4.8932 5.9127 1.5740 1.5583 
2. PID control 0.7248 0.0 0.1944 0.0 0.6195 -0.0001 0.1682 -0.0003 
3. CT 0.1332 -0.0023 0.2990 0.0022 0.1579 0.0 0.3513 0.0 
4. FFID 0.0181 -0.0029 0.0181 0.0030 0.0208 0.0 0.0208 0.0 
5. CDID 0.0183 -0.0001 0.0183 0.0 0.0211 0.0 0.0212 0.0 

 

Table 4.2.5.1. Errors for various controllers (Exact model)  

TRAJECTORY NO.1 TRAJECTORY NO.2 S.No

 

STRATEGY 
link1 

0  90

 

link2 
0

 

-90

 

link1 
0  90 0

 

link2 
0

 

-90 0

 

RMS SS RMS SS RMS SS RMS SS 

 

1.  CT 0.8839 0.0044 1.3060 1.2498 1.4132 1.7100 1.3908 -1.3497 

2. FFID 0.3083 0.1610 0.1638 0.1601 0.4849 0.5949 0.1544 0.1571 

3. CDID 0.0140 0.0029 0.0203 0.0030 0.0232 0.0113 0.0214 0.0030 

 

Table 4.2.5.2. Errors for various controllers (Inexact model)  

Following are the observations made based on the simulation studies done in sections 4.1 

and 4.2. 

1. PD controller does not give acceptable performance in case the cross coupling 

effects of manipulator dynamics are not negligible. The errors can be reduced by 

increasing the controller gains but at the risk of exciting unmodelled dynamics. 

Anyway, the steady state errors cannot be totally eliminated by even increasing 

the controller gains. 

2. PID controller gives a very good performance but has the risk of instability. 

Hence it is generally not used in its pure form for manipulator control. 
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3. If the manipulator model and parameters are known exactly, then the FFID and 

CDID controllers give comparable performance. 

4. If the manipulator parameters are not known exactly, then the CDID outperforms 

FFID controller. 

5. Model based controllers perform better if the values used in the model are of 

reference or desired trajectory input rather than the sensor values. (Ex. CDID or 

FFID vs. CT) 

6. The model-based controllers are sensitive to incorrect parameter values, and 

sometimes their performance may degrade below PD performance level if 

inexactness in parameter values is too high. 

7. For CDID the effective controller gain is increased and hence it gives lower error 

than FFID. 

8. The performance of these model-based controllers depends to a great extent on the 

accuracy of modelling.  

The flowchart for the algorithm used for software simulations done in section 4.1 and 4.2 

is shown in Fig. 4.2.5.1. The variable K keeps track of the iteration number for a given 

set point. When K is equal to four, a new set point is calculated. 

In the next section we investigate the performance of various controllers for the case 

when manipulator picks up a load sometime during its motion. This changes the values of 

parameters during motion and demands more from the controllers to maintain their 

performance.           
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Fig.4.2.5.1. Software Simulation Algorithm Flowchart 

Initialise Variables and Constants, K=5, 
sampling time ts=0.003sec, t=0 

Get inputs: final position and time Tf 

from user 

Calculate constants of quintic trajectory

 

Calculate the actual manipulator 
parameters matrix, P

 

Is time 
t<= Tf ?

Exit

 

Is 
K=5?

 

Calculate the new 
trajectory set point, set 

t=t+ts, K=0.

 

Calculate the errors in position / 
velocity 

Calculate the torque for the joints using 
the inverse dynamics and control law

 

Calculate the manipulator forward 
dynamics parameters 

Is 
K=4?

 

Store the error values in 
array for analyses 

Find the actual position, velocity and 
acceleration using the forward dynamics,

 

K=K+1 

Write files

 

NO

 

YES

 

YES 

NO

 

YES

 

NO
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4.3. EFFECT OF PARAMETER VARIATION ON CONTROLLER 
PERFORMANCE  

A great cause of stress on the controller is the change in the values of manipulator 

parameters when the arm picks up a load and moves it in its workspace to place it at some 

destination point. We have already said that the determination of manipulator parameters 

exactly, is a very difficult task. At most we may have only a good estimate of these 

parameter values but only rarely their exact values. Now as the manipulator may pick up 

different loads during the course of its operation, and these loads may not be known in the 

most general case, the model based controllers discussed previously will certainly result 

in a degraded performance. These controllers need information about the parameter 

values to control the manipulator motion effectively. Any deviation from the values used 

in calculating the control law will lead to a poor performance of these controllers.  

4.3.1 TEST TRAJECTORIES AND PARAMETER VALUES  

The various control strategies discussed previously in sections 4.1 and 4.2 were tested for 

performance against two trajectories. The first trajectory consisted of only a single quintic 

polynomial, which moved the two joints from their initial positions (0 ) to a final position 

of 90

 

or -90 . The second trajectory on the other hand consisted of two quintic 

polynomials. The first polynomial takes the joints from their initial home position (0 ) to 

either 90

 

or 90 , while the second polynomial moves the joints back to their home 

positions. This trajectory switching is a typical occurrence during the course of 

manipulator motion and puts a great stress on the controller. 

In the following sections we further tested the performance of these control strategies by 

incorporating the fact that the manipulator picks up a load during its motion. This results 

in changed values of its parameters. We assume that in the beginning of manipulator 

motion the parameter values were known exactly, and at some time during its motion, the 

manipulator picks up a load thereby changing its parameter values. The controller 

performance under this situation was tested by simulation. 

We once again used two trajectories for testing the control strategies. In the first case, the 

joint 1 of the manipulator moves from 0  to 90  in 5 seconds. At this time the manipulator 

picks up a load. The joint then moves back to 0

 

in 5 seconds and then stays there for 
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another 5 seconds. The motion of joint 2 is exactly same as of joint 1 except that it moves 

to 90

 
in place of  +90 . The interpolating polynomials used were quintic. This first 

trajectory is shown in Fig. 4.3.1.1(a). For this trajectory the quantitative measures of 

performance were taken as the RMS and the steady state values of the errors. 

 

Fig. 4.3.1.1(a) Desired Trajectory 1 (Changing Parameters)  

  

Fig. 4.3.1.1(b) Desired Trajectory 2 (Changing Parameters)  

The second trajectory used for testing is shown in Fig. 4.3.1.1(b). In this trajectory the 

two joints of the manipulator were required to move in a cyclic fashion. The first joint 

moves from its home position of 0  to +45  in 2 seconds. The manipulator then picks up a 

payload and returns home in next 2 seconds and upon reaching home it drops its payload. 

This operation is then repeated over time. The second joint has a trajectory profile similar 

to the first one except that it moves from home to 45

 

and back to home. The motion of 
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manipulator over a period of 8 seconds was used for finding the RMS values of the errors. 

Since in this case the set point is always changing, the measure of steady state error was 

replaced by the maximum error over this time period. This kind of motion is commonly 

found in industrial manipulators used for Pick and Place kind of operation. The original 

values of various manipulator parameters were taken to be same as in the case of previous 

simulations. When the manipulator picks up a load, the values of these parameters 

undergo a change. For the task of simulation, the original and the changed values of the 

parameters were taken as shown in Tables 4.3.1.1 and 4.3.1.2. The values in Table 4.3.1.1 

are based on Link 2 and Link 3 parameters of the CRS Plus manipulator.  

1

2

1

1

2

2
1

2
2

1

2

2.0 

2.0 

0.26 

0.13 

0.14 

0.09 

0.09 

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

  

Table 4.3.1.1. Original manipulator parameter values  

1

2

1

1

2

2
1

2
2

1

2

3.0 

3.0 

0.26 

0.15 

0.16 

1.5 

0.09 

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

  

Table 4.3.1.2. Changed manipulator parameter values (on picking up load)     
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4.3.2 PD / PID CONTROLLERS  

The PD and the PID control algorithms are non-model based control strategies. These two 

controllers were tested for the effect of parameter variation on their performance to form 

a basis for comparison of performance for model-based algorithms. 

The PD controller error profiles are shown in Fig. 4.3.2.1(a) and (b) for trajectory 1 and 

trajectory 2 respectively. The magnitudes of various error norms are tabulated in Table. 

4.3.2.1. As expected, the effect of parameter variation on the performance of PD 

controller is drastic. Both the RMS and the Steady State values of errors for both the 

trajectories show a marked increase. It can be seen from Fig.4.3.2.1 (b) that the errors 

increase every time the manipulator picks up the load and they decrease when the load is 

released. Overall the errors are large and unacceptable.  

Fig. 4.3.2.1(a) PD Control errors for Trajectory 1 (Changing Parameters)  

  

Fig. 4.3.2.1(b) PD Control errors for Trajectory 2 (Changing Parameters)  
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PD Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

 

Table 4.3.2.1 Errors for PD control (Changing Parameters)  

Adding an integral term and modifying the controller to PID substantially reduces the 

large errors of PD controller. The simulation results for the PID controller are shown in 

Fig. 4.3.2.2(a) and (b). The magnitudes of the errors are listed in Table. 4.3.2.2. The 

integral gain constant IK

 

for this controller is taken to be a small value equal to 0.25. 

PK

 

and DK

 

were taken as 100 and 50 respectively as for previous simulations. It can be 

seen that even this small value of IK

 

results in a marked improvement in performance. 

The RMS values of the errors are substantially reduced and the steady state errors are 

eliminated almost totally.  

  

Fig. 4.3.2.2(a) PID Control errors for Trajectory 1 (Changing Parameters)     
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Fig. 4.3.2.2(b) PID Control errors for Trajectory 2 (Changing Parameters)  

PID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.6783 -0.0024 0.1960 -0.0004 1.2578 2.8973 0.5218 0.9304 

Table 4.3.2.2 Errors for PID control (Changing Parameters) 

But unfortunately this performance improvement is not without peril. Even a small 

increase in the integral gain constant results in an unstable system. Fig. 4.3.2.2(c) is the 

plot of PID controller errors versus time for a value of IK =3.25. It can be seen that the 

system has become unstable with the errors increasing with time. This instability of PID 

controllers makes them unfit for actual use for controlling the manipulator. 

 

Fig. 4.3.2.2(c) PID Control errors for Trajectory 2 with KI=3.25 (Changing Parameters)   
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The above PID controller can be modified in the way errors are summed up for the 

integral action. Instead of summing the errors during the entire duration of trajectory, the 

errors are summed up only for the five iterations of the control loop. These five iterations 

are associated with every new set point supplied by the trajectory generator. Whenever 

the new set point arrives from trajectory generator, the error summation is reset to zero. 

This change in the way errors are summed up, result in great advantage from stability 

point of view for the controller. It can be shown that this controller is stable [Loria 

(2000)]. 

The position error profiles for this modified PID controller are shown in Fig. 4.3.2.2(d) 

and 4.3.2.2(e) for trajectory 1 and trajectory 2 respectively. Table 4.3.2.3 lists the values 

of various errors for the two trajectories. It can be seen that the error magnitudes have 

gone down appreciably for this modified PID controller when compared to the PD 

controller. Of course the performance improvement is not as marked as in case of 

normal PID, but is still good enough to warrant its use. In fact the errors have gone 

down by more than 50% compared to PD control errors. Moreover the fact that this 

scheme can be proved to be stable makes it all the more appealing.   

 

Fig. 4.3.2.2(d) Modified PID Control errors for Trajectory 1 (Changing Parameters)      
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Fig. 4.3.2.2(e) Modified PID Control errors for Trajectory 2 (Changing Parameters)   

Modified PID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

 

Table 4.3.2.3 Errors for Modified PID control (Changing Parameters)  

4.3.3. COMPUTED TORQUE CONTROL  

The computed torque control is a model based control strategy, in which the model of the 

manipulator is in the feedback loop. We have already seen that the performance of this 

controller depends largely on the exactness of the model being used. For this simulation 

we assumed that to begin with the model is exactly known and that this model changes 

when the manipulator picks up a load. The errors versus time plot for this controller is 

shown in Fig 4.3.3.1(a) and (b) for the two trajectories. Table 4.3.3.1 lists the magnitude 

of errors for the two trajectories used for the simulated testing. 

It can be seen from the error plots that in the beginning, when the model is known 

exactly, the tracking errors of the two joints are small. These errors show a sharp increase 

in magnitude when the manipulator picks up a load, when time is 5 seconds for the first 

trajectory and 2 seconds for the second trajectory. It can be further seen that the transient 

errors, which build up, tend to increase the steady state error as well. Overall the errors 
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are large and the motion is jerky with the errors increasing and decreasing alternately. 

Computed torque control as a result performs poorly in case the manipulator is working 

in a dynamic, unknown environment.  

  

Fig. 4.3.3.1(a) Computed Torque Control errors for Trajectory 1 (Changing Parameters)  

 

Fig. 4.3.3.1(b) Computed Torque Control errors for Trajectory 2 (Changing Parameters)   

Computed Torque Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

 

Table 4.3.3.1 Errors for Computed Torque control (Changing Parameters)  



 

74

4.3.4. FFID CONTROL  

The Feed Forward Inverse Dynamics controller, as opposed to the Computed Torque 

controller, is a model-based strategy in which the model is in the forward path of the 

control loop. Moreover as stated earlier, the model-based part is evaluated as a function 

of actual position and velocity as well as the desired velocity and acceleration i.e., 

, , ,d dW . For this controller too the initial errors at the beginning of motion are 

small values, as the model is assumed to be known perfectly. However, as the 

manipulator picks up the load and the model becomes inexact, the errors show a sudden 

increase. These errors again decrease when the manipulator releases the load and its 

original model again becomes valid. This fluctuation of errors is akin to the one seen in 

the case of Computed Torque control, but the magnitude of these errors is considerably 

reduced, as can be seen from Table 4.3.4.1. This can be mainly attributed to the fact that 

this controller uses comparatively cleaner desired velocity and acceleration information 

instead of the actual values, which are always tainted with noise signals. The error 

profiles for the two joints for the two trajectories are shown in Fig. 4.3.4.1(a) and (b).   

  

Fig. 4.3.4.1(a) FFID Control errors for Trajectory 1 (Changing Parameters)  



 

75

  

Fig. 4.3.4.1(b) FFID Control errors for Trajectory 2 (Changing Parameters)   

FFID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

 

Table 4.3.4.1 Errors for FFID control (Changing Parameters)  

4.3.5 CDID CONTROL  

The simulation results for the Critically Damped Inverse Dynamics controller are shown 

in Fig. 4.3.5.1(a) and Fig. 4.3.5.1(b). The overall profiles of the errors have the same 

basic characteristics as those for the FFID controller. There are some noticeable 

differences however. First, the overall magnitudes of the different error norms for CDID 

controller have decreased considerably. This can be seen from Table. 4.3.5.1. Secondly, 

the errors for joint 2 have also been limited in magnitude to a large extent. But the 

oscillation of the errors is still very much present and they tend to increase whenever the 

manipulator picks up a load. The larger effective gains of the CDID controller as 

compared to the FFID controller are mainly responsible for this improved performance of 

the controller.   



 

76    

  

Fig. 4.3.5.1(a) CDID Control errors for Trajectory 1 (Changing Parameters)  

  

Fig. 4.3.5.1(b) CDID Control errors for Trajectory 2 (Changing Parameters)   

CDID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

 

Table 4.3.5.1 Errors for CDID control (Changing Parameters)  



 

77  

4.3.6 COMPARISON OF PERFORMANCE  

The consolidated results for the simulations carried out in section 4.3 are presented in 

Table 4.3.6.1 for easy comparison of the performance of various controllers.  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

2. PID control 
(Modified) 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

3. CT control 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

 

Table 4.3.6.1. Errors of different controllers for changing parameter case  

Following observations are made based on simulations carried out in this section:  

1. The performance of PD controller degrades further for the case when parameters 

of manipulator change during motion. This is mainly due to the fact that the 

controller gains chosen for good performance for one set of parameters are no 

longer optimal when the parameters of the manipulator change. Clearly one set of 

controller gains cannot give good performance if parameters change during 

motion. 

2. The modified PID scheme results in better controller performance with an 

additional advantage of guaranteed system stability. The controller errors are 

reduced significantly when compared to PD controller. Modified PID could be a 

good choice for manipulator control using non-model based controllers. 

3. The CT controller gives errors almost matching the PD controller. This shows that 

this controller does not perform well if the model used has inaccuracies. Moreover 

it just adds to the calculations required to be performed to calculate the 

manipulator model equations used in feedback loop. 
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4. The FFID controller performs appreciably better than the CT controller and 

slightly better than the modified PID controller. This once again indicates the 

merits of using the inverse dynamics in the feed forward mode and further 

illustrates the advantage of using the desired velocity and acceleration instead of 

the actual ones for composing the manipulator regressor matrix. As already stated 

earlier, the use of desired acceleration instead of the actual value has further 

advantage in terms of real world implementation.  

5. The CDID controller is the best performer for the case of varying manipulator 

parameters.  It is observed that both the RMS and steady state values of errors, for 

both the links for both the trajectories are considerably reduced in magnitude over 

the corresponding values for FFID. As explained earlier, the greater value of the 

proportional gain constant results in a better steady state performance, while, the 

use of reference velocities and accelerations for calculation of the manipulator 

regressor matrix instead of the actual values, results in an improved transient 

performance of the arm.  

6. Model-based controllers (CT) do not always give a better performance than a non-

model based controller (PID). 

We next investigate the effect of adding modified integral error compensation on the 

performance of various model-based controllers.   

4.4 EFFECT OF ADDING INTEGRAL COMPENSATION TO MODEL BASED 

      CONTROLLERS  

In this section we propose adding modified integral error compensation to the model 

based controllers namely CT, FFID and CDID, which were discussed earlier. We also 

investigate the effect of adding this modified integral action on the performance of these 

controllers. The integral action in these controllers was limited to the five iterations of the 

control loop performed for every new set point supplied by the trajectory generator. The 

errors were thus summed up for only these five iterations and the summation was reset to 

zero whenever the trajectory generator supplied a new set point. This was done primarily 

to keep the higher order effects introduced by integral error compensation from 

dominating the response and resulting in possible instability of the system. The system 
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can be proved to be stable if the summation of errors is done as described earlier [Loria 

(2000)]. Moreover as a precaution, provision was made in the software to switch off the 

integral action completely in case of errors growing beyond a presettable upper bound.  

4.4.1 COMPUTED TORQUE + INTEGRAL ERROR CONTROL  

The first controller investigated in this section is the Computed Torque controller 

discussed previously in section 4.2.1. The block diagram of this controller with integral 

error compensation is shown in Fig. 4.4.1.1. The control law for this controller is given 

by equation 4.4.1.1 as 

,ctie d D P M IM K e K e V G K edt

 

                      (4.4.1.1)  

Fig. 4.4.1.1. Block diagram of Computed Torque + Integral Error Control  

Fig. 4.4.1.2(a) and 4.4.1.2(b) show the error profiles for this controller for trajectory 1 

and trajectory 2 respectively. Table 4.4.1.1 list the various errors for this controller for the 

two trajectories. When the two error profiles of Fig 4.4.1.2(a) and 4.4.1.2(b) are 

compared with the error profiles for the CT controller without integral error 

compensation, given in Fig.4.3.3.1(a) and 4.3.3.1(b), a marked improvement in 

performance is noticed. 

For the first trajectory the RMS values of the errors are brought down considerably and 

so are the steady state errors. The steady state errors however have only been reduced and 

not removed altogether because of the special nature of integral action. It is mainly 
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because the summation of errors is not over the entire trajectory but only for five 

iterations of the control loop, after which the summation is reset to zero.  

For the second trajectory, which depicts pick-and-place kind of motion, we notice a 

similar improvement as seen for the first trajectory. Both the RMS and maximum values 

of errors reduce considerably when compared to Computed Torque controller without 

integral error compensation.   

  

Fig. 4.4.1.2(a) CT + Integral Error Control errors for Trajectory 1   

  

Fig. 4.4.1.2(b) CT + Integral Error Control errors for Trajectory 2    
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CT + Integral Error Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

 

Table 4.4.1.1 Errors for CT + Integral Error control  

4.4.2 FEED FORWARD INVERSE DYNAMICS + INTEGRAL ERROR 
         CONTROL  

The second controller investigated in this section is the Feed Forward Inverse Dynamics 

controller discussed previously in section 4.2.2. The block diagram of this controller with 

integral error compensation is shown in Fig. 4.4.2.1. The control law for this controller is 

given by equation 4.4.2.1 as 

, ,ffidie d M d M d D P IM V F G K e K e K edt      (4.4.2.1) 

      
Fig. 4.4.2.2(a) and 4.4.2.2(b) show the error profiles for this controller for trajectory 1 

and trajectory 2 respectively. Table 4.4.2.1 list the various errors for this controller for the 

two trajectories. When the two error profiles of Fig 4.4.2.2(a) and 4.4.2.2(b) are 

compared with the error profiles for the FFID controller without integral error 

compensation,  given   in   Fig.4.3.4.1 (a)   and   4.3.4.1(b),   a   marked   improvement  in  

Fig. 4.4.2.1 Block diagram of Feed Forward Inverse Dynamics + Integral Error Control 
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performance can be noticed. 

For the first trajectory the RMS values of the errors are brought down considerably and 

so are the steady state errors. The steady state errors however have only been reduced and 

not removed altogether because of the same reason as stated previously. 

For the second trajectory, we notice a similar improvement as seen for the first trajectory. 

Both the RMS and maximum values of errors reduce considerably when compared to 

FFID controller without integral error compensation. The reduction in errors for this 

controller however, is not as marked as that for the CT controller.  

  

Fig. 4.4.2.2(a) FFID + Integral Error Control errors for Trajectory 1   

  

Fig. 4.4.2.2(b) FFID + Integral Error Control errors for Trajectory 2    
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FFID+ Integral Error Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

 

Table 4.4.2.1 Errors for FFID + Integral Error control  

4.4.3 CRITICALLY DAMPED INVERSE DYNAMICS + INTEGRAL ERROR 

         CONTROL  

The last controller investigated in this section is the Critically Damped Inverse Dynamics 

controller discussed previously in section 4.2.3. The block diagram of this controller with 

integral error compensation is shown in Fig. 4.4.3.1. The control law for this controller is 

given by equation 4.4.3.1 as 

, ,cdidie R M R M R D D IM V F G K e K e K e      (4.4.3.1)  

Fig. 4.4.3.2(a) and 4.4.3.2(b) show the error profiles for this controller for trajectory 1 

and trajectory 2 respectively. Table 4.4.3.1 list the various errors for this controller for the 

two trajectories. When the two error profiles of Fig 4.4.3.2(a) and 4.4.3.2(b) are 

compared with the error profiled for the CDID controller without integral error 

compensation, given in Fig.4.3.5.1 (a) and 4.3.5.1(b), we do not notice any marked 

improvement in performance. In fact the improvement in errors is only discernible when 

we compare the values in Table 4.4.3.1 and Table 4.3.5.1. This is mainly due to the fact 

that the errors for CDID controller without integral error compensation are already pretty 

low and do not sum up to a substantial value over the five iterations of the control loop. 

Choosing a higher value of can reduce the errors further IK  but we have not done so here 

because the intention is to compare the performance of different controller under similar 

conditions.   
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Fig 4.4.3.1 Block diagram of CDID + Integral Error Controller  

  

Fig. 4.4.3.2(a) CDID + Integral Error Control errors for Trajectory 1  

  

Fig. 4.4.3.2(b) CDID + Integral Error Control errors for Trajectory 2    
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CDID+ Integral Error Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

 

Table 4.4.3.1 Errors for CDID + Integral Error control  

4.4.4. COMPARISON OF PERFORMANCE 

The consolidated results for the simulations carried out in section 4.3 and 4.4 are 

presented in Table 4.4.4.1 for easy comparison of the performance of various controllers.  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

* Integral Error compensation 

Table 4.4.4.1. Errors (in degrees) for different controllers with modified IE compensation  

Following observations are made based on simulations carried out in this section:  

1. The use of integral error compensation improves the performance of CT and FFID 

controllers appreciably. Hence a judicious use of integral error compensation as 

discussed previously, seems advisable. 

2. The use of integral error compensation does not show any appreciable 

performance gain in case of CDID controller, as the errors of the original 

controller were already low. 

3. The CDID + IE controller gives an overall best performance in the category of 

conventional controllers.  



 

86

4.5 CONCLUDING REMARKS  

In this chapter we investigated some conventional manipulator controllers for their 

performance under different situations. These situations were: manipulator model known 

exactly, model not known exactly and model changing during the course of motion. We 

also investigated the effect of adding a modified integral action to these conventional 

controllers. 

The results for various controllers presented in this chapter are for the case when the 

manipulator parameters change only slightly. In real practice, the parameter values may 

change by over 200% or more, as the manipulator operates in its work environment and 

picks up large loads. As a result the ensuing errors due to large parameter variations 

would also be large. This fact forms the basis of development of some non-conventional 

control strategies, which can absorb the effect of parameter variation in its performance. 

These controllers can adapt themselves depending upon the changing parameter values. 

We discuss adaptive control of manipulators in the next chapter.  
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ADAPTIVE CONTROL OF ROBOT MANIPULATORS   

5.0 INTRODUCTION  

As seen in the last chapter, due to the highly non-linear nature of manipulator 

dynamics and the variable nature of manipulator parameters, the conventional non-

linear control of manipulators falls short of performance expectations in applications 

requiring very accurate and precise motion control. This problem is further 

compounded in the case of direct drive robots, which do not use any torque 

amplifying gearings for high speed and high precision tasks. This in turn means that 

we cannot in general neglect the cross coupling effects of manipulator dynamics for 

these direct drive robots. 

The variable nature of manipulator parameters suggests the use of Adaptive 

controllers for the control of manipulators [Pagilla and Biao (2000), Song (1994)]. 

These controllers can either estimate the unknown manipulator parameters [Datta 

and Ming (1996), Kawasaki et al. (1996)] or they can change the controller gains 

depending on the prevailing position and/or velocity errors in the system [Spong and 

Ortega (1996), Colbaugh and Seraji (1994)]. Some of the important desirable goals 

for design of adaptive controllers for robot manipulators are: 

Insensitivity to parameter uncertainties 

Insensitivity to unknown payload variations 

Low demand for on-line computations 

Decoupled joint response  

In general the adaptive controller design problem is as follows: given the desired 

joint position ( )d t , and with some or all the manipulator parameters unknown, 

derive a control law for the actuator torques, and an estimation law for the unknown 

parameters, such that the manipulator joint position ( )t

 

precisely tracks ( )d t

 

after 

an initial adaptation process. Adaptive control design approaches can be broadly 

classified into two categories [ Astrom and Wittenmark (1995)]:  

(i) Model reference adaptive control (MRAC) and 

(ii) Self-tuning adaptive control   

The structures of these two types of adaptive control systems are shown in Fig. 

5.1(a) and 5.1(b). Existing robot adaptive schemes are derived from the applications 

CHAPTER V
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of these two approaches. The adaptive controller can tackle the problem of parameter 

variation to a great extent and give good performance even in the face of very large 

load variation. In fact the adaptive controller goes on improving with time as it keeps 

on extracting the parameter information while executing a trajectory.            

Fig. 5.1(a) Model reference adaptive controller            

Fig. 5.1(b) Self tuning adaptive controller  

In this chapter we study few adaptive control strategies for their performance in face 

of different operating conditions. We also study the effect of adding a modified 

integral action on performance of these controllers and do a comparative analysis of 

performance of these controllers.     
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5.1 ISSUES IN ADAPTIVE CONTROL OF MANIPULATORS  

Some of the main issues associated with adaptive control of manipulators are listed 

below:  

The strong non-linearity of robot dynamics makes the analysis of adaptive 

controllers difficult. 

Most of the controllers still rely on approximations and assumptions such as 

local linearization, time invariance of parameters or decoupled nature of 

dynamics to prove stability. 

These adaptive schemes are computation intensive and require a fast 

processor for their implementation. 

The direct adaptive approach is computationally much less expensive than 

the indirect or the composite approach.  

Theoretical analysis and computer simulations of an adaptive controller are 

important but not sufficient. This is because of inherent factors such as 

unmodelled high frequency dynamics and measurement noise are generally 

neglected in stability analysis. 

For convergence of parameter values, the reference signal should be rich 

enough, i.e., it should contain sufficiently high frequency components. 

The parameter values may converge to different magnitudes for different 

trajectories. This implies transients during switching from one trajectory to 

another. 

The controller parameters may not always converge to true plant values.  

The importance and significance of these issues are highlighted in following 

sections, where we simulate the behavior of these controllers for different situations.  

5.2. TESTING METHOD   

The Adaptive controllers simulated in this section were tested for two different 

trajectories. These two trajectories are same as those used for testing the 

conventional controllers and described in section 4.3.1. We briefly describe the 
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salient points of these trajectories again for sake of clarity in the context of adaptive 

motion control of manipulators.  

In the first trajectory, the first joint was required to move from its initial home 

position (0 ) to a final position of  +90

 
in 5 seconds. On reaching the final position 

the manipulator picks up a load and returns back to its home position in another 5 

seconds. On reaching the home position the manipulator was required to stay there 

with the load for another 5 seconds. Thus the desired position of first joint remains 

constant at 0

 

for the last 5 seconds of its motion. This kind of trajectory enables us 

to test the steady state performance of the controller. The desired motion for the 

second joint is exactly the same as for the first one except that it is required to move 

from 0

 

to -90

 

and then back to 0

 

in a total time of 15 seconds. Fig. 4.3.1.1(a) 

shows the desired joint position profiles for this trajectory.  

The second test trajectory was chosen to simulate the motion of manipulator during a 

typical pick and place operation. Here the manipulator s first joint was required to 

move from its home position of 0

 

to a final position of +45

 

in 2 seconds. At this 

point the manipulator picks up a load and returns back to its home position in the 

next 2 seconds. On reaching home the manipulator releases the load and this cycle is 

repeated all over again. The second joint of the manipulator has a motion similar to 

the first one except that it moves to a final position of -45 . The errors for this 

trajectory were traced for two cycles, i.e., 8 seconds. The RMS and the maximum 

values of the errors were used for quantitative performance comparisons of various 

controllers for this trajectory. Fig 4.3.1.1(b) shows the joint motion profiles for this 

trajectory. 

The controllers were tested using the above trajectories for two cases. In the first 

case we assumed that some initial estimate is available, of the various manipulator 

parameter values. This estimate is a rough approximation of the real, actual values 

and can be arrived at by some elementary measurements. For simulation the actual 

and the estimated values of the manipulator parameters were taken as shown in 

Tables 5.2.1 and 5.2.2 respectively. The actual manipulator parameters as same as 

those used previously in Chapter 4, and are also given in Table 4.3.1.1.  
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2.0 

2.0 

0.26 

0.13 

0.14 

0.09 

0.09 

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

   

Table 5.2.1. Actual manipulator parameter values   

1

2

1

1

2

2
1

2
2

1

2

1.0 

1.0 

0.26 

0.11 

0.12 

0.05 

0.05 

2.0 / / sec

2.0 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

  

Table 5.2.2. Estimated manipulator parameter values  

The adaptive algorithms in this case start with this apriori estimate and then adapt to 

the true values as the motion progresses. We thus say that the manipulator makes a 

warm start in this case. In the second case we assume the worst-case condition of 

having no information about the manipulator parameters. Here the adaptive 

algorithms have to start with no knowledge whatsoever of the values of different 

parameters, i.e., all the parameters are initialized to zero value. This situation is 

referred to as cold start. The parameters of the manipulator were further assumed to 

have changed to new values whenever it picked up a load. These new values of the 

parameters of manipulator with load were taken as shown in Table 5.2.3. The actual 

manipulator parameters as same as those used previously in Chapter 4, and are also 

given in Table 4.3.1.2. These values are repeated here for easy reference.  
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1

2

1

1

2

2
1

2
2

1

2

3.0 

3.0 

0.26 

0.15 

0.16 

1.5 

0.09 

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

 

Table 5.2.3. Changed manipulator parameter values (on picking up load)  

In the following sections we present the results of simulation studies on some 

adaptive controllers tested for situations discussed above.  

5.3. ADAPTIVE COMPUTED TORQUE CONTROLLER  

This controller is the adaptive version of Computed torque controller discussed in 

detail in section 4.2.1. It was one of the first adaptive controllers proposed for 

adaptive manipulator control by Craig (1988). This adaptive controller suffered from 

many problems and is generally not preferred because of its three main 

disadvantages listed below: 

The algorithm requires inversion of the manipulator mass matrix, which is 

computationally very intensive. 

Implementation requires measurement of acceleration. Good and relatively 

inexpensive acceleration sensors are difficult to get and if acceleration is 

found from numerical differentiation of position or velocity information, then 

the values may be spurious in the presence of even slightest noise. 

The controller can be proved to be only locally stable in parameter error. This 

requires a constant check on the values of the parameters to keep them within 

acceptable range. 

We did not investigate this controller because the aforesaid problems make its 

practical implementation very difficult.  
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5.4 ADAPTIVE CRITICALLY DAMPED INVERSE DYNAMICS 

CONTROLLER (ACDID)  

The first adaptive controller investigated in this work is the adaptive version of the 

conventional Critically Damped Inverse Dynamics controller (CDID), described in 

detail in section 4.2.3. This controller was proposed by Slotine and Li (1988). This is 

a direct adaptive controller in the sense that the parameter values are adapted directly 

from the information about position and velocity errors of the different joints. The 

adaptation law is derived starting from the manipulator dynamics equation written in 

a linear form as in equation 3.2.28. If we define 

P P P

    

             (5.4.1) 

as the parameter estimation error vector, with P

 

as the true parameter values vector 

and P

 

as the vector of parameter estimates, then the linearity property of the robot 

dynamics enables us to write 

, , , , ,R M R M R R RM V F G W P            (5.4.2) 

Where 

M M M

M M M

M M M

V V V

F F F

G G G

 

and R  and R  are reference trajectories as defined in equations 4.2.3.1 and 4.2.3.2. 

The control law used can then be written as 

, ,R M R M R DM V F G K e                                 (5.4.3) 

where e

 

is as defined in equation 4.2.3.4 and DK

 

is uniformly positive definite 

controller gain matrix. The stability of the controller can be proved, by considering 

the Lyapunov function candidate, 

11

2
T TV t e M e P P

  

                      (5.4.4) 

where  is a constant positive definite adaptation gain matrix. 

Differentiating V t  with respect to time leads to equation 

1,T
R M RV t e M V G P P

  

         (5.4.5) 
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Substituting the control law in the above equation results in  

1T T T
DV t e K e P P W e

      
     (5.4.6) 

Now if we choose the adaptation law as 

TP W e

     
            (5.4.7) 

then equation 5.4.6 reduces to 

0T
DV t e K e

         

     (5.4.8) 

Thus the system is proved to be stable if the gain matrix DK  is chosen to be positive 

definite. The block diagram for this controller is shown in Fig.5.4.1.   

Fig.5.4.1 Block diagram of Adaptive Critically Damped Controller (with Integral 

Error Feedback)  

The simulation for ACDID controller was carried out for the two trajectories for the 

warm and cold start cases. Fig 5.4.2(a) shows the error profiles for first trajectory, 

warm start, while Fig 5.4.2(b) shows the error profiles for second trajectory, warm 

start. Figures 5.4.2(c) and 5.4.2(d) are for the cold start case.   
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Fig. 5.4.2(a) Errors for ACDID, Trajectory 1 (warm start)  

  

Fig. 5.4.2(b) Errors for ACDID, Trajectory 2 (warm start)   

  

Fig. 5.4.2(c) Errors for ACDID, Trajectory 1 (cold start)  

Warm Start 

Warm Start 
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Fig. 5.4.2(d) Errors for ACDID, Trajectory 2 (cold start)              

Table 5.4.1 Errors for ACDID (warm and cold start)  

Table 5.4.1 summarizes the errors for ACDID for the two trajectories for the warm 

and cold start cases. As can be seen from the table and the error profiles, the errors 

for ACDID controller are minimal and performance is much better than any 

conventional controller discussed in chapter 4. Moreover as the errors are already 

low there is hardly any perceptible difference between the cold and warm start cases. 

Also it can be seen that the errors are higher for the cold start case when compared to 

warm start in the beginning of motion. The controller then learns the parameter 

values within first few iterations and after that the two profiles for cold and warm 

start almost match. 

A modification done to ACDID controller was inclusion of integral error term in 

calculation of final controller output. This is indicated by blue dotted line in Fig. 

5.4.1. The integral action was limited to only five iterations of the control loop, 

which are done for every new set point produced by the trajectory generator. After 

every five iterations the summation of errors was reset to zero. This is done primarily 

ADAPTIVE CDID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

Warm Start 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642 

Cold Start 0.0244 0.0001 0.0220 -0.0002 0.0390 0.0785 0.0323 0.0732 
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to keep the summation term from growing without bound or in other words to keep 

the system stable. This idea was discussed in detail in section 4.4. This modified 

ACDID controller was tested for the same two trajectories as above, for warm and 

cold start cases. 

Fig 5.4.3(a) shows the error profiles for first trajectory, warm start, while Fig 

5.4.3(b) shows the error profiles for second trajectory, warm start. Figures 5.4.3(c) 

and 5.4.3(d) are for the cold start case. Table 5.4.2 summarizes the errors for ACDID 

for the two trajectories for the warm and cold start cases.   

  

Fig. 5.4.3(a) Errors for ACDID trajectory 1 (warm start, integral error)   

  

Fig. 5.4.3(b) Errors for ACDID trajectory 2 (warm start, integral error)       
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Fig. 5.4.3(c) Errors for ACDID trajectory 1 (cold start, integral error)   

  

Fig. 5.4.3(d) Errors for ACDID trajectory 2 (cold start, integral error)    

Table 5.4.2 Errors for ACDID (warm and cold start with integral error) 

ADAPTIVE CDID Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

Warm Start 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745 

Cold Start 0.0215 0.0 0.0213 0.0 0.0324 0.0505 0.0326 0.0716 

Cold Start
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The introduction of integral error compensation further improves the performance of 

ACDID controller. For the first trajectory the major improvement is in terms of 

steady state errors. The steady state error goes to zero almost immediately after the 

manipulator reaches home at the end of ten seconds. This can be seen from Figures 

5.4.3(a) and 5.4.3(c). Even for the second trajectory, there is improvement in terms 

of both the Maximum error and the RMS error. As the introduction of an integral 

error compensation term does not add much to the computational complexity of the 

controller and on the other hand gives improved trajectory tracking, its use with 

ACDID controller is advisable.  

5.5 MODEL REFERENCE ADAPTIVE CONTROLLER (MRAC)  

The second controller investigated is a model reference adaptive controller [Lewis et 

al. (1988), Maliotis and Lewis (1989)]. It is synthesized in two stages. First, the 

known dynamics are separated out and used to perform a global linearization on the 

nonlinear system. Second, a model reference adaptive controller, based on the 

Lyapunov stability criterion, is designed for the remaining unknown portion of the 

plant. This controller takes advantage of structure and any known dynamics of the 

system in order to increase the speed of adaptation and relax the conditions required 

for convergence. 

The adaptation law is derived starting from the manipulator dynamic equation 

written as 

( ) ( , ) ( )M F G                                             (5.5.1) 

where ( )M

 

is n x n inertia matrix, ( , )F

 

is n x n matrix containing the 

centrifugal, coriolis and friction terms, ( )G

 

is a n x 1 vector containing the gravity 

terms, 

 

is an n x 1 joint position variable vector and 

 

is n x 1 input torque vector. 

If the system described in 5.5.1 has some known and some unknown plant dynamics 

then we may write: 

* 1 *( )k u k k u k u

k u

k u

M M M M I M M M M

G G G

F F F

     

     (5.5.2) 
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where subscript  k stands for known part and subscript u stands for unknown part 

of manipulator dynamics. 

Substituting 5.5.2 in 5.5.1 results in equation 

1 1
u k u k uM M F M G u

      
                 (5.5.3) 

where 

1( )k k ku M F G

        

     (5.5.4) 

If we define  

x

         

     (5.5.5) 

we can write equation 5.5.3 as 

1 1 1 1 1

00

u k u u k u u

I
x x u

M M G M M F M

Ax Bu

    

     (5.5.6) 

Next we choose a reference model given by 

d m d mx A x B v

        

     (5.5.7) 

where 

1 2

0 0 0
, m mA B

K K I

       

     (5.5.8) 

If the errors between actual and desired trajectories is defined as 

de x x

         

     (5.5.9) 

the error dynamics will be given by 

1

2

( )m m me A e A A x Bu B v

e

e

      

   (5.5.10) 

The control objective is to make the error decrease asymptotically. This can be 

achieved if the adaptive control law chosen is  

k au u u

         

    5.5.11) 

where the linear feedback portion of the controller is given by 

1 2[  ]ku K K x v

        

   (5.5.12) 

and the adaptive portion of the control is given by 

1 2[  ]a vu x v

        

   (5.5.13) 
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where 1 , 2 and v  are adaptive gains chosen using a Lyapunov approach. 

The adaptive gains are calculated as 

1

2

T

T

T
v

aw

aw

bwv

         
   (5.5.14) 

where a and b are positive scalar gains and w is the filtered error defined as 

2 1 3 2w P e P e

         

   (5.5.15) 

where 

1 2

2 3

TP P
P

P P

         

   (5.5.16) 

is the positive definite solution of the Lyapunov equation 

T
m mA P PA Q

        

   (5.5.17) 

with Q > 0.  

The block diagram for this controller is shown in Fig.5.5.1.   

Fig.5.5.1 Block diagram of Direct Adaptive Model Reference Control (with 

Integral Error Feedback)    
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The simulation for MRAC controller was carried out for the two trajectories for the 

warm and cold start cases. Fig 5.5.2(a) shows the error profiles for first trajectory, 

warm start, while Fig 5.5.2(b) shows the error profiles for second trajectory, warm 

start. Figures 5.5.2(c) and 5.5.2(d) are for the cold start case.   

  

Fig. 5.5.2(a) Errors for MRAC, trajectory 1 (warm start)    

  

Fig. 5.5.2(b) Errors for MRAC, trajectory 2 (warm start)        
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Fig. 5.5.2(c) Errors for MRAC, trajectory 1 (cold start)   

  

Fig. 5.5.2(d) Errors for MRAC, trajectory 2 (cold start)    

Table 5.5.1 Errors for MRAC (warm and cold start)  

Table 5.5.1 summarizes the errors for MRAC for the two trajectories for the warm 

and cold start cases. As can be seen from the table, the errors for MRAC are quite 

MRAC Control Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

Warm Start 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390 

Cold Start 1.3565 1.9183 0.3808 0.5383 1.1114 1.9689 0.3510 0.7286 



 

104

 
different for the two cases of cold and warm start. The errors are appreciably lower 

in case of warm start as compared to cold start. This is expected because the control 

law is explicitly dependent upon torques due to known dynamics. Hence use of 

known portion of manipulator dynamics is advisable for this controller. The errors of 

this controller however are larger as compared to ACDID controller as can be seen 

from Tables 5.4.1 and 5.5.1. 

A modification done to MRAC was inclusion of integral error term in calculation of 

final controller output. This is indicated by blue dotted line in Fig. 5.5.1. The integral 

action was, as previously, limited to only five iterations of the control loop, which 

are done for every new set point produced by the trajectory generator. After every 

five iterations the summation of errors was reset to zero. This modified MRAC 

controller was also tested for the two trajectories described earlier. 

Fig 5.5.3(a) shows the error profiles for first trajectory, warm start, while Fig 

5.5.3(b) shows the error profiles for second trajectory, warm start. Figures 5.5.3(c) 

and 5.5.3(d) are for the cold start case. Table 5.5.2 summarizes the errors for MRAC 

for the two trajectories for the warm and cold start cases.   

  

Fig. 5.5.3(a) Errors for MRAC trajectory 1 (warm start, integral error)         
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Fig. 5.5.3(b) Errors for MRAC trajectory 2 (warm start, integral error)   

  

Fig. 5.5.3(c) Errors for MRAC trajectory 1 (cold start, integral error)   

  

Fig. 5.5.3(d) Errors for MRAC trajectory 2 (cold start, integral error)  

Cold start
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Table 5.5.2 Errors for MRAC (warm and cold start with integral error)  

As expected, the introduction of integral error compensation improves the 

performance of MRAC controller considerably. For the first trajectory the major 

improvement is in terms of both, the RMS and steady state errors. The steady state 

error goes to zero almost immediately after the manipulator reaches home at the end 

of ten seconds. This can be seen from Figures 5.5.3(a) and 5.5.3(c). For the second 

trajectory also there is improvement in terms of both, the Maximum error and the 

RMS error. As the introduction of an integral error compensation term does not add 

much to the computational complexity of the controller and at the same time gives 

improved trajectory tracking, its use with MRAC controller is advisable.  

5.6 DECENTRALIZED ADAPTIVE CONTROLLER (DAC)  

Decentralized control has been widely accepted by the robotics industry due to ease 

of implementation and tolerance to failure. Conventional controllers for industrial 

robots are based on independent joint control schemes in which each joint is 

controlled separately by a simple position servo loop with predefined constant gains. 

This control scheme is adequate for simple pick-and-place tasks, for which industrial 

robots are often used, where only point-to-point motion is of concern. However, in 

tasks where precise tracking of fast trajectories under different payloads is required, 

the independent joint, conventional robot control systems are severely inadequate. 

The controller investigated in this section uses a technique for advanced manipulator 

control based on adaptive independent joint control [Magana and Tagami (1994)]. 

A major point of departure in this approach from the centralized approaches is the 

formulation of the problem in a decentralized control context at the outset. This 

control scheme has two major features. First, due to its adaptive nature, knowledge 

of manipulator dynamic model and parameter values or the payload parameters are 

MRAC Control with Integral Errors (degrees) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

Warm Start 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732 

Cold Start 0.0496 -0.0001 0.0221 0.0 0.0755 0.3604 0.0300 0.1158 
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not required. Second, due to its decentralized structure and controller simplicity, the 

scheme is computationally very fast and is amenable to parallel processing 

implementation within a distributed computing architecture, with one 

microprocessor dedicated to each joint. 

The centralized model of an n link manipulator is given by equation 5.6.1 as: 

( ) ( , ) ( ) ( )M V F G

     

     (5.6.1) 

where ( )M

 

is n x n inertia matrix, ( , )V

 

is n x n matrix containing the 

centrifugal and coriolis terms, ( )F

 

is n x n matrix containing friction terms, ( )G

 

is a n x 1 vector containing the gravity terms, 

 

is an n x 1 joint variable vector and 

 is n x 1 input vector. 

To design the controller the centralized model of equation 5.6.1 is decomposed into 

n interconnected systems as: 

1

( ) ( , ) ( ) ( )
n

ii ii ij j i i i i
j
j i

m m V F G

    

     (5.6.2) 

The coupling effects from each subsystem are then lumped together (in d) and 

treated as disturbance. Each subsystem then becomes: 

( )ii ii i im d

        

     (5.6.3) 

The main objective of the controller design is to control each joint independently in a 

decentralized fashion and to track the prescribed trajectories. This controller uses an 

adaptive PID control law given by equation 5.6.4. 

i P d f dK K e K e K

       

     (5.6.4) 

where e is the error given by 

de

         

     (5.6.5) 

Substituting equation 5.6.5 in equation 5.6.3 yields 

i P d f dm d K K e K e K

      

     (5.6.6) 

which on simplification gives the state space model of the system as 

00 1 0

dfd iP

e e
X m KK d KK

e e
m m m m

   

     (5.6.7) 

If the error model is defined as 

2

0 1

2
m m

m m
m m

e e
X AX

e e

     

     (5.6.8) 
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then error model tracking error is given by 

2 2

00 0 0
0 1

2 2
m

dfd iP
m

e e
E E X K mK K dK

e e
m m m m

            

                 (5.6.9) 

To ensure the stability of the system given by equation 5.6.9, using the Lyapunov 

method, the various gains can be adapted as given by equation 5.6.10. 

0 0

0

1 1

0

2 2

0

3 3

0

t

i

t

P

t

d

t

f d d

K C rdt f r

K C redt f re

K C redt f re

K C r dt f r

       

   (5.6.10) 

where  

, 0,1, 2,3 and  are positive constantsii
i i

i

m
C i Q

Q

 

2 3 2 3

 

where and  are positive constantsr p e p e p p

 

and 

0 0 0

1 1 1

2 2 2

3 3 3

,  0

,  0

,  0

,  0

f k r k

f k r k

f k r k

f k r k

 

The block diagram for this controller is shown in Fig.5.6.1.         
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Fig. 5.6.1 Block diagram of Decentralized Adaptive Control  

The simulation for DAC was carried out for the two trajectories as for the previous 

controllers. Fig 5.6.2(a) shows the error profiles for first trajectory, while Fig 

5.6.2(b) shows the error profiles for second trajectory. However for DAC there are 

no cases of warm and cold start, as this controller does not make use of any 

manipulator model whatsoever. It only tunes the controller gains depending on the 

current position and velocity errors.    

  

Fig. 5.6.2(a) Errors for DAC, trajectory 1     
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Fig. 5.6.2(b) Errors for DAC, trajectory 2               

Table 5.6.1 Errors for DAC   

Table 5.6.1 summarizes the errors for DAC for the two trajectories. As can be seen 

from the various errors, the performance of controller is pretty good keeping in mind 

the fact that no model is being used. Because this controller uses no model, the 

amount of calculations to be performed in the control loop is considerably reduced. 

The performance of this controller is better than MRAC but not as good as ACDID. 

For situations where we cannot afford a fast processor or where such a processor is 

not available, DAC is a viable option.  

An additional modified integral error compensation term was introduced in this 

controller to see if it provides improved trajectory tracking as in the case of previous 

controllers. Figures 5.6.3(a) and 5.6.3(b) show the error profiles for the two 

trajectories for DAC with integral error compensation.    

Decentralized Adaptive Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600 
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Fig. 5.6.3(a) Errors for DAC, trajectory 1 (Integral error)   

  

Fig. 5.6.3(b) Errors for DAC, trajectory 2 (Integral error)             

Table 5.6.2 Errors for DAC (Integral Error)  

Integral Decentralized Adaptive Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507 
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Table 5.6.2 list the values of various errors for the two trajectories for DAC with 

integral error compensation. As can be seen from Fig 5.6.3(a), the introduction of 

integral error compensation does bring down the trajectory tracking errors but it also 

introduces oscillations in the system. As these oscillations do not grow in amplitude, 

because the controller is stable, and as the magnitude of these oscillations is very 

small, integral error compensation can still be used with this controller.  

5.7 COMPARISON OF PERFORMANCE  

The consolidated results for the simulations carried out in section 4.3, 4.4, 5.4, 5.5 

and 5.6 are presented in Table 5.7.1 for easy comparison of the performance of 

various controllers.  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
CONVENTIONAL CONTROLLERS 

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

ADAPTIVE CONTROLLERS 

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642 

10. ACDID+IE* 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745 

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390 

12. MRAC+IE* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732 

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600 

14. DAC+IE* 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507 

* Integral Error Compensation (modified)  

Table 5.7.1. Errors (in degrees) for different controllers  

Following observations are made based on simulations carried out in this section:  

1. The adaptive controllers give better performance than the conventional 

controllers studied in chapter 4. This is mainly because of the learning 

capability of these controllers. These controllers can learn the unknown or the 



 

113

 
changed parameter values as they execute the trajectory. Alternatively they 

can adjust the controller gains depending on the current system errors. 

2. The adaptive controllers also perform better than conventional controllers 

with modified integral error compensation. 

3. Model based adaptive controllers perform better for the warm start case than 

for the cold start case. Thus it is advisable to use whatever knowledge one 

may have about the manipulator parameter values at the start of motion. This 

knowledge may be a rough estimate of the actual values. 

4. Addition of modified integral error compensation to the adaptive controllers 

further improves their performance. The steady state errors for these 

controllers are almost zero, while the maximum and RMS values of errors are 

also reduced. 

5. Model Based Adaptive controllers are computationally expensive. The DAC 

discussed above is computationally least expensive of all the adaptive 

controllers studied. 

6. The ACDID controller with modified integral error compensation gives the 

best performance amongst all controllers investigated in this chapter and in 

chapter 4. This is indicated by the shaded cells in Table 5.7.1.  

5.8 CONCLUDING REMARKS  

In this chapter we studied the efficacy of adaptive algorithms for manipulator 

control. Both model based and non-model based adaptive controllers were 

investigated. It was seen that all the adaptive controllers outperform the conventional 

controllers. 

The model based adaptive controllers were also tested for two different cases. In first 

case it was assumed that a rough estimate of parameters was available while in 

second case it was assumed that no such estimate is available. 

Further, the effect of inclusion of a modified integral compensation to these adaptive 

controllers was studied. The integral action is such that it maintains the stability of 

the controller. It was seen that this integral action further improves the performance 

of these controllers. 

Although the adaptive controllers give a very good performance, it comes at the 

price of computational complexity. All these controllers are computationally 
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intensive and require a fast processor for practical implementation. We thus need to 

investigate other control schemes, which can give comparable results at lesser 

computational expense. One such scheme is the Fuzzy control. We study the fuzzy 

controller in detail in the next chapter.                                               
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FUZZY CONTROL OF ROBOT MANIPULATORS  

6.0 INTRODUCTION  

Fuzzy control of robotic manipulators has found vast interest in the control literature. 

Unlike Boolean logic, fuzzy logic deals with concepts of vagueness, uncertainty or 

imprecision. It provides an extensive freedom for control designers to exploit their 

understanding of the problem and to construct intelligent control strategies [Bonissone 

and Chiang (1993), Ken et al. (1988)]. Nonlinear controllers can be devised easily by 

using fuzzy logic principles [Zhou and Coiffet (1992)]. This makes fuzzy controllers 

powerful tools to deal with nonlinear systems [Chun Fei and Chin-Teng (2004), 

Mamdani (1993)].  

The fuzzy control strategy consists of situation and action pairs, similar to how a human 

operator uses his experience to interpret the situation and initiate the control action. A 

human operator usually looks at the error and the change of error so as to arrive at a 

particular control action. A block diagram for the fuzzy controller is shown in Fig.6.1. 

The fuzzy controller here defines error (e) as  

de

          

              (6.1) 

and rate of change of error ( e ) as 

de

         

              (6.2)             

Fig. 6.1. Block diagram of Fuzzy Controller  

 

is the output of fuzzy controller applied as control input to the robot system.  
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A detailed view of internal of the Fuzzy controller block shown in Fig. 6.1 is shown in 

Fig.6.2. 

The input variables to the fuzzy controller (e, e ) are quantized into thirteen levels 

represented by 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and a set of linguistic variables 

such as Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE), 

Positive Small (PS), Positive Medium (PM), Positive Big (PB) are assigned.  

The next step in the design of the fuzzy controller is to decide the membership functions 

for the linguistic variables. The decision regarding the type of the membership function 

is arbitrary and depends on the choice of the user. Here, we have selected the triangular 

membership function as shown in Fig. 6.3. The control rules are formulated in a manner 

to represent the operator s experience regarding the system behavior [Dubois and Prade 

(1996)].              

Fig. 6.2. Details of Fuzzy controller block       

Fuzzifier 

Fuzzy Rule Base 

Defuzzifier 

Fuzzy Inference Engine

 

,e e

 

u 

 

*, *e e
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Fig. 6.3. Membership functions of the Linguistic variables  

Some of the rules that were formulated are 

R1: If e is ZE and e  is ZE, then u is ZE. 

R2: If e is ZE and e

 

is NS, then u is NS. 

R3: If e is NM and e is ZE, then u is NM. 

R4: If e is NM and e  is NB, then u is NB. 

These rules constitute the knowledge base of the fuzzy controller [Nagrath et al. (1995)]. 

The rule strength of the individual rule is evaluated using the intersection operation 

defined as 

( ) min( ( *), ( *))NB NM NBu e e

      

              (6.3) 

where ( )NB u

 

is the rule strength of the rule R4, ( *)NM e

 

is the membership of the 

crisp input *e

 

in the fuzzy set NM and ( *)NB e

 

is the membership of  *e

 

in the fuzzy 

set NB. For each possible combination of *e

 

and *e , the rules are fired individually to 

give the degree to which the rule antecedent has been matched by the crisp value. The 

clipped values for the individual rules thus obtained are aggregated forming the overall 

control values. The output value is then defuzzified by using the center of gravity 

method, which, for the discrete case, is given by 

( ).
*

( )

Ri Ri Ri
Ri

Ri Ri
Ri

u u
u

u

        

              (6.4) 

       -6      -5      -4       -3      -2      -1      0       1        2       3        4       5        6 

NB              NM            NS          ZE                   PS              PM              PB    

2
3PS
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The output values thus obtained for all the ( *e , *e ) pairs are stored in the form of a 

lookup table (LUT) as shown in Table 6.1. 

The array implementation improves execution speed, as the run-time inference is 

reduced to a table look-up which is a lot faster, at least when the correct entry can be 

found without too much searching [Albertos et al. (2000)].  

Membership Function e

 

e  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-6

 

-5.6 -5.4 -5.0 -4.8 -4.8 -4.7 -4.7 -4.6 -4.5 -4.4 -4.3 -4.3 -4.2 

-5

 

-4.7 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.8 -3.7 -3.6 -3.5 

-4

 

-3.7 -3.6 -3.5 -3.2 -3.0 -3.0 -3.0 -2.9 -2.9 -2.8 -2.8 -2.7 -2.7 

-3

 

-2.0 -2.0 -1.9 -1.9 -1.8 -1.8 -1.7 -1.7 -1.6 -1.5 -1.4 -1.3 -1.3 

-2

 

0.0 0.0 -0.8 -1.0 -1.2 -1.7 -2.3 -2.2 -2.2 -2.0 -2.0 -1.0 -1.0 

-1

 

1.0 1.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -1.2 -1.5 -1.7 -1.0 -1.0 

0 1.3 1.2 1.0 0.8 0.6 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0 

1 2.0 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.5 0.0 -0.3 -1.0 -0.8 

2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.2 0.8 0.0 0.0 

3 2.0 2.1 2.3 2.5 2.5 2.5 2.6 2.7 2.8 2.8 2.9 2.9 3.0 

4 2.7 2.7 2.8 3.1 3.2 3.3 3.5 3.6 3.6 3.8 3.8 3.9 3.9 

5 3.6 3.3 3.7 4.0 4.1 4.3 4.3 4.4 4.4 4.5 4.5 4.6 4.7 

6 4.4 4.4 4.3 4.8 5.0 5.0 5.1 5.2 5.3 5.4 5.6 5.6 5.6 

 

Table 6.1. Lookup Table for the Fuzzy Controller  

The controller output values shown in the Table 6.1 were obtained after some manual 

adjustment through trial and error to give best possible results. This was required 

because the manipulator control problem is highly nonlinear and the rules formulated 

through user experience are not always correct under different situations.  

6.1. PURE FUZZY CONTROL  

The first investigation that was carried out concerned the performance of fuzzy 

controller under the circumstance that the manipulator parameters do not change 

throughout the motion. In other words, the manipulator does not pick up or release any 

load during its motion. The manipulator parameters were kept same as for all previous 
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simulations and are given in Table 4.3.1.1. The two trajectories used for simulation are 

same as shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). The lookup table used for fuzzy 

controller is given in Table 6.1. 

The error profiles for the two links are shown in Fig. 6.1.1(a) for the first trajectory, and 

Fig. 6.1.1(b) for the second trajectory. Table 6.1.1 lists the various error measures 

magnitudes for the two trajectories. As mentioned earlier these profiles are obtained by 

using the lookup table given in Table 6.1, which was obtained after some manual 

adjustments to the original table obtained from the rule base. As can be seen from the 

error magnitudes, the performance of this controller is pretty good. Except for somewhat 

large maximum error the RMS values of errors and steady state errors are quite small. 

The large amount of error in the beginning of a trajectory segment is mainly because the 

set points are changing rapidly during this time or the manipulator is picking/releasing 

load. The amount of calculations to be done by this controller is small compared to 

Model based adaptive or conventional controllers. This means that this controller can be 

run at higher sampling rates giving even better performance. We have however, in this 

simulation, kept the sampling rates same as for previous simulations for the sake of 

JUST comparison.    

  

Fig. 6.1.1(a) Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory 1)   



 

120

    

Fig. 6.1.1(b) Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory 2)           

Table 6.1.1. Errors for Fuzzy control (LUT based, Fixed parameters)  

The good performance of the Fuzzy controller deteriorates considerably if the 

manipulator parameters change during motion. The two trajectories used to investigate 

this case are same as before. The only difference is that now in these two trajectories the 

manipulator picks up and releases load during its motion. This Picking up and releasing 

of load changes manipulator parameters during motion. The changed parameters of 

manipulator are listed in the Table 4.3.1.2. 

The error profiles for the two links are shown in Fig. 6.1.2(a) for the first trajectory, and 

Fig. 6.1.2(b) for the second trajectory. Table 6.1.2 lists the magnitudes of various error 

measures for the two trajectories. It can be seen from Fig. 6.1.2(a) the steady state error 

for link 1 has increased considerably from the previous value of 0.1676 to 2.0 degrees. 

This also results in larger RMS value of error. From Fig. 6.1.2(b) we notice a similar 

increase in errors for the second trajectory. This is mainly due to the fact that the lookup 

Fuzzy Control (Fixed parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.6781 0.1676 0.2270 0.1664 1.1374 2.6153 0.2901 -0.9998 
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table used for control is not optimally tuned for the new values of manipulator 

parameters.  

  

Fig. 6.1.2(a) Errors for Fuzzy control (LUT based, Changing parameters, Trajectory 1)  

  

Fig. 6.1.2(b) Errors for Fuzzy control (LUT based, Changing parameters, Trajectory 2)           

Table 6.1.2. Errors for Fuzzy control (LUT based, Changing parameters) 

Pure Fuzzy Control Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 
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This problem of having to retune the Fuzzy lookup table every time the trajectory 

changes or manipulator parameters change can be solved by primarily by two methods. 

These two methods are Adaptive Fuzzy and Self Organizing Fuzzy control methods. 

These methods will be discussed in later sections. The problem can also be alleviated by 

use of Hybrid fuzzy controllers, which we would investigate next.  

6.2 HYBRID FUZZY CONTROL  

In this section we propose and investigate some new hybrid fuzzy control schemes. The 

primary characteristic of these controllers is that in these schemes the final control 

output applied to the plant is summation of individual output of two controllers. One of 

them is the Fuzzy controller while the other could be a Conventional or Adaptive 

controller [Butkiewicz (2000), Chin and Er (1998)]. The general block diagram of the 

controller is shown in Fig. 6.2.1. As both the controllers are individually stable, the 

combination is also stable. We first discuss the results of combining Fuzzy and 

Conventional controllers and then Fuzzy and Adaptive controllers.          

Fig. 6.2.1. Block diagram of Hybrid Fuzzy Controller  

All the controllers discussed in the following subsections were tested for the case when 

the parameters of the manipulator change during motion. The two trajectories used to 

investigate the controllers are shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). In these two 
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trajectories the manipulator picks up and releases load during its motion. This Picking 

up and releasing of load changes manipulator parameters during motion. The changed 

parameters of manipulator are listed in the Table 4.3.1.2.  

6.2.1 FUZZY PLUS COMPUTED TORQUE CONTROLLER  

The Computed Torque controller discussed in section 4.2.1 is combined with the Fuzzy 

controller in this scheme. Fig. 6.2.1.1 shows the block diagram of this controller. The 

error profiles for the two links are shown in Fig. 6.2.1.2(a) for the first trajectory, and 

Fig. 6.2.1.2(b) for the second trajectory. Table 6.2.1.1 lists the magnitudes of various 

error measures for the two trajectories for this controller and some other related 

controllers. As can be seen from the table, this controller performs much better than 

Pure Fuzzy, CT and CT+IE controllers. Both the RMS and steady state values of the 

errors have reduced considerably for this controller when compared to the other 

controllers. Even the maximum values of errors have reduced considerably for the 

second trajectory.             

Fig. 6.2.1.1 Block diagram of Fuzzy + Computed Torque Controller 

M

 

ROBOT 

, ,MV F G

 

DK PK

    

d

 

d

d

_+

 

+ _

 

+

 

+

 

++

+

  

ct

 

FUZZY 
CONTROLLER

 



 

124

   

Fig. 6.2.1.2(a) Errors for CT + Fuzzy control (Trajectory 1)  

  

Fig. 6.2.1.2(b) Errors for CT + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

3. CT+IE 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

4. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030 

 

Table 6.2.1.1. Comparison of Errors for CT + Fuzzy control   
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6.2.2 FUZZY PLUS FFID CONTROLLER  

The FFID controller discussed in section 4.2.2 is combined with the Fuzzy controller in 

this scheme. Fig. 6.2.2.1 shows the block diagram of this controller. The error profiles 

for the two links are shown in Fig. 6.2.2.2(a) for the first trajectory, and Fig. 6.2.2.2(b) 

for the second trajectory. Table 6.2.2.1 lists the various error measures magnitudes for 

the two trajectories for this controller and some other related controllers. As can be seen 

from the table, this controller performs much better than Pure Fuzzy, FFID and 

FFID+IE controllers.                

Fig. 6.2.2.1 Block diagram of Fuzzy + FFID Controller 

 

Fig. 6.2.2.2(a) Errors for FFID + Fuzzy control (Trajectory 1) 
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Fig. 6.2.2.2(b) Errors for FFID + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

3. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

4. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186 

 

Table 6.2.2.1. Comparison of Errors for FFID + Fuzzy control    

6.2.3 FUZZY PLUS CDID CONTROLLER  

The CDID controller discussed in section 4.2.3 is combined with the Fuzzy controller in 

this scheme. Fig. 6.2.3.1 shows the block diagram of this controller. The error profiles 

for the two links are shown in Fig. 6.2.3.2(a) for the first trajectory, and Fig. 6.2.3.2(b) 

for the second trajectory. Table 6.2.3.1 lists the magnitudes of various error measures 

for the two trajectories for this controller and some other related controllers. It is seen 

from the table, that this controller performs better than Pure Fuzzy, CDID and CDID+IE 

controllers.   
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Fig. 6.2.3.1 Block diagram of Fuzzy + CDID Controller   

 

Fig. 6.2.3.2(a) Errors for CDID + Fuzzy control (Trajectory 1) 
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Fig. 6.2.3.2(b) Errors for CDID + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No

   

CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

3. CDID+IE 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

4. FFID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507 

 

Table 6.2.3.1. Comparison of Errors for CDID + Fuzzy control   

6.2.4 FUZZY PLUS ACDID CONTROLLER  

Adaptive controllers can also be combined with fuzzy to give a hybrid controller [Lin 

and Mon (2003), Hojati and Gazor (2002)]. The ACDID controller discussed in section 

5.4 is combined with the Fuzzy controller in this scheme. Fig. 6.2.4.1 shows the block 

diagram of this controller. The error profiles for the two links are shown in Fig. 

6.2.4.2(a) for the first trajectory, and Fig. 6.2.4.2(b) for the second trajectory. Table 

6.2.4.1 lists the various error measures magnitudes for the two trajectories for this 

controller and some other related controllers. As can be seen from the table, this 

controller performs almost same as ACDID+IE controller with slightly lower errors.   



 

129

                         

Fig. 6.2.4.1 Block diagram of  Fuzzy + ACDID Controller  

  

Fig. 6.2.4.2(a) Errors for ACDID + Fuzzy control (Trajectory 1)   
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Fig. 6.2.4.2(b) Errors for ACDID + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642 

3. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745 

4. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564 

 

Table 6.2.4.1. Comparison of Errors for ACDID + Fuzzy control   

6.2.5 FUZZY PLUS MRAC  

Some work has been done on hybrid MRAC Fuzzy controllers by researchers [Jen-Yang 

(2002). The MRAC discussed in section 5.5 is combined with the Fuzzy controller in 

this scheme. Fig. 6.2.5.1 shows the block diagram of this controller. The error profiles 

for the two links are shown in Fig. 6.2.5.2(a) for the first trajectory, and Fig. 6.2.5.2(b) 

for the second trajectory. Table 6.2.5.1 lists the magnitudes of various error measures 

for the two trajectories for this controller and some other related controllers. As can be 

seen from the table, this controller performs much better than Pure Fuzzy, MRAC but 

not as good as MRAC+IE controller.   
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Fig. 6.2.5.1 Block diagram of MRAC + Fuzzy Controller   

  

Fig. 6.2.5.2(a) Errors for MRAC + Fuzzy control (Trajectory 1)    
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Fig. 6.2.5.2(b) Errors for MRAC + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390 

3. MRAC+IE 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732 

4. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403 

 

Table 6.2.5.1. Comparison of Errors for MRAC + Fuzzy control  

6.2.6 FUZZY PLUS DAC  

The DAC discussed in section 5.6 is combined with the Fuzzy controller in this scheme. 

Fig. 6.2.6.1 shows the block diagram of this controller. The error profiles for the two 

links are shown in Fig. 6.2.6.2(a) for the first trajectory, and Fig. 6.2.6.2(b) for the 

second trajectory. Table 6.2.6.1 lists the magnitudes of various error measures for the 

two trajectories for this controller and some other related controllers. It is seen from the 

table, that there is no marked improvement in performance of this controller over DAC 

and DAC+IE controllers.    
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Fig. 6.2.6.1 Block diagram of DAC + Fuzzy Controller  

  

Fig. 6.2.6.2(a) Errors for DAC + Fuzzy control (Trajectory 1)         
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Fig. 6.2.6.2(b) Errors for DAC + Fuzzy control (Trajectory 2)   

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

2. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600 

3. DAC+IE 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507 

4. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791 

 

Table 6.2.6.1. Comparison of Errors for DAC + Fuzzy control  

6.2.7 COMPARISON OF PERFORMANCE  

The consolidated results for the simulations carried out in section 6.2 and some other 

relevant simulations carried out in Chapter 4 and 5 are presented in Table 6.2.7.1 for 

easy comparison of the performance of various controllers.        
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No

   
CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
CONVENTIONAL CONTROLLERS 

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

6. CT+IE 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

7. FFID+IE 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

8. CDID+IE 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

ADAPTIVE CONTROLLERS 

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642 

10. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745 

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390 

12. MRAC+IE 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732 

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600 

14. DAC+IE 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507 

HYBRID FUZZY CONTROLLERS 

15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

16. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030 

17. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186 

18. CDID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507 

19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564 

20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403 

21. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791 

 

Table. 6.2.7.1 Comparison of errors for various control strategies vs. Hybrid Fuzzy  

Following observations are made based on simulations carried out in this section:  

1. The Hybrid fuzzy/conventional controllers show significant performance 

improvement over their conventional counterparts. All model based conventional 

controllers, i.e., CT, FFID and CDID show marked improvement in 

performance. 
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2. The Hybrid fuzzy/conventional controllers also show significant performance 

improvement over the conventional controllers with integral error compensation. 

3. The Hybrid fuzzy/adaptive controllers also show performance improvement over 

their adaptive counterparts. However the improvement is not that significant as 

in case of hybrid fuzzy/conventional controllers. This is mainly because of the 

fact that adaptive controllers by themselves give very good performance leaving 

little scope for further improvements. 

4. Adaptive controllers are computationally intensive and adding a Fuzzy controller 

to them increases the computational burden even further. Further it does not 

result in any significant performance improvement. Hence the use of Hybrid 

fuzzy/adaptive controllers does not seem advisable. 

5. The performance of CDID + Fuzzy hybrid controller is almost at par with 

ACDID+IE controller as can be seen from Table 6.2.7.1. It indicates that Hybrid 

conventional/fuzzy controllers can perform as good as adaptive controllers. 

Moreover they are computationally much less expensive than the adaptive 

controllers. 

6. The best performance in hybrid category is that of hybrid Fuzzy + ACDID 

controller.  

6.3 SELF ORGANIZING CONTROLLER (SOC)  

Self Organizing Controller (SOC) is based on the original Fuzzy controller [Koh et al 

(1990), Kazemian (1998, 2002)]. It is termed as self-organizing because it is able to 

adjust the control strategy in a fuzzy controller automatically without any human 

intervention [Novakovic (1997)]. The SOC has a layered structure in which the lower 

layer is a LUT based controller and the higher layer is the adjustment mechanism. Fig. 

6.3.1 shows the block diagram of SOC. At the lower layer is a Fuzzy controller. The two 

inputs to this controller are the error e and change in error ce. These are multiplied by 

normalization gains GE and GCE respectively before being given to the rule base in F. 

The value obtained from lookup table in F is the output of the controller u. This is 

multiplied by the output gain GU to give the final control signal U. 
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Fig. 6.3.1 Block diagram of SOC [Jantzen (1998)]  

The idea behind self-organization is to let an adjustment mechanism update the values in 

LUT of F, based on current performance of the controller. The updating should be such 

that the table entry responsible for poor performance is punished, so that the next time 

this entry is used, the performance is better. If the performance is good, the entries are 

left unchanged. 

The input to higher layer is also error and change in error, and it modifies the LUT in F 

through a modifier algorithm M when necessary. It uses a performance measure to 

decide the magnitude of each change to F. The performance measures are numbers; 

organized in a table P, which is of same size as F, expressing what is desirable, in a 

transient response. The table P can be built using linguistic rules, but is often built 

manually, based on experience. The same performance table P may be used with a 

different process, without prior knowledge of the process, since it only expresses the 

desired transient response. The controller can start from scratch with an F-lookup table 

full of zeros; it will, however, converge faster towards a stable table, if F is initialized 

with sensible numbers to begin with. 

The SOC learns to control the system in accordance with the desired response. This is 

called training. At the sampling instant n, it records the error between desired 

performance and the actual performance. Based on this error it modifies the LUT in F 
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accordingly. The performance table P evaluates the current state and returns a 

performance measure P(in, jn), where in is the index corresponding to En, and jn is the 

index corresponding to CEn. Tables 6.3.1 and 6.3.2 are examples of performance tables.              

Table 6.3.1 Example of Performance Table (Yamazaki, 1982)              

Table 6.3.2 Example of another Performance Table (Procyk and Mamdani, 1979) 

Membership Function e

 

e  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-6 -6 -6 -6 -6 -6 -6 -6 -5 -4 -3 -2 -1 0 

-5 -6 -6 -6 -6 -5  -4 -4 -4 -3 -2 -1 0 0 

-4 -6 -6 -6 -5 -4 -3 -3 -3 -2 -1 0 0 1 

-3 -6 -6 -5 -4 -3 -2 -2- -2 -1 0 0 1 2 

-2 -6 -5 -4 -3 -2 -1 -1 -1 0 0 1 2 3 

-1 -5 -4 -3 -2 -1 -1 0 0 0 1 2 3 4 

0 -5 -4 -3 -2 -1 0 0 0 1 2 3 4 5 

1 -3 -2 -1 0 0 0 0 1 1 2 3 4 5 

2 -2 -1 0 0 0 1 1 1 2 3 4 5 6 

3 -1 0 0 0 1 2 2 2 3 4 5 6 6 

4 0 0 0 1 2 3 3 3 4 5 6 6 6 

5 0 0 1 2 3 4 4 4 5 6 6 6 6 

6 0 1 2 3 4 5 6 6 6 6 6 6 6 

Membership Function e

 

e  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-6 -6 -6 -6 -6 -6 -6 -6  0  0  0 0 0 0 

-5 -6 -6 -6 -6 -6 -6 -6 -3 -2 -2 0 0 0 

-4 -6 -6 -6 -6 -6 -6 -6 -5 -4 -2 0 0 0 

-3 -6 -5 -5 -4 -4 -4 -4 -3 -2  0 0 0 0 

-2 -6 -5 -4 -3 -2 -2 -2  0  0  0 0 0 0 

-1 -5 -4 -3 -2 -1 -1 -1  0  0  0 0 0 0 

0 -4 -3 -2 -1  0  0  0  0  0  1 2 3 4 

1  0  0  0  0  0  0  1  1  1  2 3 4 5 

2  0  0  0  0  0  0  2  2  2  3 4 5 6 

3  0  0  0  0  2  3  4  4  4  4 5 5 6 

4  0  0  0  2  4  5  6  6  6  6 6 6 6 

5  0  0  0  2  2  3  6  6  6  6 6 6 6 

6  0  0  0  0  0  0  6  6  6  6 6 6 6 
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It can be seen that the zeros in Table 6.3.1 are almost in a diagonal band. It can be 

shown that this amounts to a desired first order system behavior. Table 6.3.2 on the 

other hand has zeros in a Z shaped patch. This allows for a zero slope to begin with, 

and a slight overshoot at the end of transient [Jantzen (1998)].   

6.3.1 PURE FUZZY (FIXED PARARAMETERS)  

The controller tested here is exactly same as that discussed in section 6.2. The only 

difference here is that the normalization gain for error was increased by a factor of ten to 

get an improved performance from the fuzzy controller. This is because the SOC 

performance can then be compared against almost best possible fuzzy performance. 

The two trajectories used for simulation are same as earlier. It is assumed that the 

manipulator parameters do not change throughout the motion. The error profiles for the 

two links are shown in Fig. 6.3.1.1(a) for the first trajectory, and Fig. 6.3.1.1(b) for the 

second trajectory. Table 6.3.1.1 lists the magnitudes of various error measures for the 

two trajectories for this controller. As can be seen, the errors for both the trajectories 

have improved when compared to fuzzy controller investigated in section 6.2.  

  

Fig. 6.3.1.1(a) Errors for Fuzzy control (Increased normalization gains, Fixed 
parameters, Trajectory 1)  
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Fig. 6.3.1.1(b) Errors for Fuzzy control (Increased normalization gains, Fixed 
parameters, Trajectory 2)        

Table 6.3.1.1. Errors for Fuzzy control (Increased normalization gains, Fixed 

parameters) 

The high frequency in the above error profiles is mainly due to increased normalization 

gains, which leads to increased control activity.  

6.3.2 SOC (FIXED PARAMETERS, ZERO LUT)  

The SOC with initial LUT empty was investigated next. Here too the parameters do not 

change throughout the manipulator motion. The error profiles for the two links are 

shown in Fig. 6.3.2.1(a) for the first trajectory, and Fig. 6.3.2.1(b) for the second 

trajectory. Table 6.3.2.1 lists the magnitudes of various error measures for the two 

trajectories for this controller.  The SOC controller gives better performance than the 

Pure Fuzzy controller even with initial LUT empty. This can be seen from Tables 

6.3.1.1 and 6.3.2.1. 

Fuzzy Control (Fixed parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0551 0.0173 0.0167 0.0171 0.1198 0.3397 0.0200 -0.0632 
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Fig. 6.3.2.1(a) Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 1)  

  

Fig. 6.3.2.1(b) Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 2)         

Table 6.3.2.1. Errors for SOC control (Fixed parameters, Zero LUT) 

SOC (Fixed parameters, Zero LUT) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923 
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6.3.3 SOC (FIXED PARAMETERS, NONZERO LUT)  

In this case it was assumed that the initial lookup table is not empty and the starting 

point is same as the lookup table for Pure fuzzy controller (Table 6.1). The error profiles 

for the two links are shown in Fig. 6.3.3.1(a) for the first trajectory, and Fig. 6.3.3.1(b) 

for the second trajectory. Table 6.3.3.1 lists the magnitudes of various error measures 

for the two trajectories for this controller.   

  

Fig. 6.3.3.1(a) Errors for SOC control (Fixed Parameters, Nonzero LUT, Trajectory 1)  

 

Fig. 6.3.3.1(b) Errors for SOC control (Fixed Parameters, Nonzero LUT, Trajectory 2) 
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Table 6.3.3.1. Errors for SOC control (Fixed parameters, Nonzero LUT)  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.0551 0.0173 0.0167 0.0171 0.1198 0.3397 0.0200 -0.0632 

2. SOC Zero 
LUT 

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923 

3. SOC Nonzero 
LUT 

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908 

 

Table 6.3.3.2. Errors for SOC and Fuzzy (Fixed Parameters)  

Table 6.3.3.2 lists the errors for the above three cases for comparison. It is seen that the 

errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT. It is 

however observed that this improvement is marginal. This is because in these cases the 

manipulator parameters do not change during motion and therefore the pure fuzzy 

controller gives a good performance as it is tuned for these fixed parameters of the 

manipulator.  

6.3.4 PURE FUZZY (CHANGING PARARAMETERS)  

The next three simulations are similar to the previous three except that in these cases we 

assume that the manipulator picks up and releases load during motion. Hence the 

manipulator parameters change here. The first simulation is for Pure Fuzzy controller. It 

is observed here as in section 6.1, that the performance of controller degrades compared 

to the fixed parameter case. The error profiles for the two links are shown in Fig. 

SOC (Fixed parameters, Nonzero LUT) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908 
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6.3.4.1(a) for the first trajectory, and Fig. 6.3.4.1(b) for the second trajectory. Table 

6.3.4.1 lists the various error magnitudes for the two trajectories for this controller.    

  

Fig. 6.3.4.1(a) Errors for Fuzzy control (Increased normalization gains, Changing 
parameters, Trajectory 1)  

   

Fig. 6.3.4.1(b) Errors for Fuzzy control (Increased normalization gains, Changing 
parameters, Trajectory 2   
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Table 6.3.4.1 Errors for Fuzzy control (Increased normalization gains, Changing 

parameters)  

6.3.5 SOC (CHANGING PARAMETERS, ZERO LUT)  

The performance of SOC under the circumstance of changing parameters is investigated 

here. The error profiles for the two links are shown in Fig. 6.3.5.1(a) for the first 

trajectory, and Fig. 6.3.5.1(b) for the second trajectory. Table 6.3.5.1 lists the various 

error measures for the two trajectories for this controller. It is seen that SOC even with 

an initially empty LUT performs better than Fuzzy controller. This is primarily because 

SOC can auto tune the LUT as the parameters of manipulator change.  

  

Fig. 6.3.5.1(a) Errors for SOC control (Changing Parameters, Zero LUT, Trajectory 1)  

Fuzzy Control (Changing parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 
Link2 

0

 
-90 0

 
Link1 

0  45 0

 
Link2 

0

 
-45 0

 
RMS SS RMS SS RMS MAX RMS MAX 

0.1364 0.1998 0.0180 0.0173 0.1382 0.3249 0.0354 0.1012 
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Fig. 6.3.5.1(b) Errors for SOC control (Changing Parameters, Zero LUT, Trajectory 2)        

Table 6.3.5.1. Errors for SOC control (Changing parameters, Zero LUT)  

6.3.6 SOC (CHANGING PARAMETERS, NONZERO LUT)  

The last case investigated was the effect on performance of SOC when the lookup table 

is initially nonzero. Here we initialized the values in lookup table to be same as those 

used for Pure fuzzy controller. The error profiles for the two links are shown in Fig. 

6.3.6.1(a) for the first trajectory, and Fig. 6.3.6.1(b) for the second trajectory. Table 

6.3.6.1 lists the magnitudes of various error measures for the two trajectories for this 

controller.   

SOC (Variable parameters, Zero LUT) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 
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Fig. 6.3.6.1(a) Errors for SOC control (Changing Parameters, Nonzero LUT,  
Trajectory 1)  

  

Fig. 6.3.6.1(b) Errors for SOC control (Changing Parameters, Nonzero LUT,  
Trajectory 2)        

Table 6.3.6.1. Errors for SOC control (Changing parameters, Nonzero LUT) 

SOC (Variable parameters, Nonzero LUT) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No   CONTROL 

STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.1364 0.1998 0.0180 0.0173 0.1382 0.3249 0.0354 0.1012 

2. SOC Zero 
LUT 

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 

3. SOC Nonzero 
LUT 

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 

 

Table 6.3.6.2. Errors for SOC and Fuzzy (Changing Parameters)  

Table 6.3.6.2 lists the errors for the above three cases for comparison. It is seen that the 

errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT.   

6.3.7 COMPARISON OF PERFORMANCE  

Following observations are made based on simulations carried out in this section (6.3): 

1. When the manipulator parameters do not change during the course of trajectory, a 

fixed LUT based fuzzy controller gives good performance. But building up the 

LUT requires lot of intuition and experience. Besides it may also requires 

adjustment of values through trial and error by repeated runs. A SOC under this 

situation can quickly build its LUT starting from all zero values and give better 

performance than Pure Fuzzy controller. The performance of SOC further improves 

if we can start with non zero LUT. 

2. When the manipulator parameters change during the course of trajectory, the 

performance of Pure Fuzzy controller degrades considerably. This is because this 

controller uses a fixed LUT, which is tuned for one set of parameters. The SOC 

under these circumstances gives much better performance as it can change its LUT 

as the parameters of manipulator change. This is seen from simulations done in 

section 6.3. Thus using SOC for manipulator control seems to be a better option 

than Pure fuzzy as invariably the manipulator parameters change during motion. 

Further it does not require any tuning beforehand. However it is better to use a 
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nonzero lookup table that incorporates some user experience as it can lead to 

improved performance.   

6.4 SELF TUNING (ADAPTIVE) FUZZY CONTROLLER (STFC)  

A Fuzzy controller consists of three major components that can be altered to give 

different controller behaviors. These three components are: 

The normalization and denormalization scaling factors 

The fuzzy set representing the meaning of linguistic values 

The if-then rule base  

If the above three components remain fixed the fuzzy controller is of type non-adaptive. 

If on the other hand any of the above three components are altered when the controller is 

running, it is known as Adaptive-Fuzzy [Han-Xiong (1996)]. 

A Controller that changes scaling factors or modifies the fuzzy set definitions is known 

as self-tuning controller. Adaptive Fuzzy controller that modifies the rule base is 

known as self-organizing controller. These controllers can start with an existing rule 

base and then modify it or they can build the rule base entirely afresh starting with no 

rules at all. This type of controller was studied in previous section. Figure 6.4.1 shows 

the classification of fuzzy controllers.            

Fig 6.4.1. Classification of Fuzzy controllers  

Fuzzy Controller

 

Non- Adaptive 

Adaptive Self-Tuning

 

Self-Organizing
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The Adaptive Fuzzy controller that we investigated is of PD type [Mudi and Pal (1999), 

Chatterjee and Watanabe (2005)]. The output gain (denormalization, GU) of this 

controller is adjusted on-line depending on the present values of error and error 

derivative. Thus the controller is of self-tuning type. We also investigated the more 

general case where both the input (normalization, GE & GCE) and output 

(denormalization, GU) gains of the controller are adapted on-line. The block diagram of 

the self-tuning fuzzy controller is shown in Fig. 6.4.2. The membership functions for 

controller inputs (error and error derivative) and output are defined on the common 

interval [-6 6] and are same as shown in Fig. 6.3. The membership functions for gain 

updating factor ( ) are defined on [0 1]. These membership functions are as shown in 

Fig. 6.4.3.                           

Fig. 6.4.2. Block diagram of the self-tuning fuzzy controller (adapted from Mudi and 
Pal, 1999)   
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Fig. 6.4.3 Membership functions for gain updating factor ( )  

For the conventional fuzzy controller the controller output is mapped to the respective 

actual output by the output gain GU. On the other hand in the self-tuning fuzzy 

controller the actual output is obtained by multiplying the controller output with GU . 

The gain-updating factor 

 

is calculated on-line using a model independent fuzzy rule base 

which has e and e as inputs. The governing equations for this self-tuning fuzzy controller are 

given below. 

.ne GE e

         

           (6.4.1) 

.nce GCE ce

         

           (6.4.2) 

. . nu GU u

         

           (6.4.3) 

The fuzzy controller produces output based on rules of the form: 

Ri : If e is E and ce is CE then u is U 

The complete rule base for the controller is shown in Table. 6.4.1. 

    e 

e

 

NB NM

 

NS ZE PS PM

 

PB 

NB NB NB NB NM

 

NS NS ZE 

NM

 

NB NM NM

 

NM

 

NS ZE PS 

NS NB NM NS NS ZE PS PM

 

ZE NB NM NS ZE PS PM PB 

PS NM

 

NS ZE PS PS PM PB 

PM NS ZE PS PM PM

 

PM PB 

PB ZE PS PS PM PB PB PB 

Table. 6.4.1. Fuzzy controller Rule Base  
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The gain updating part of the controller produces output based on rules of the form: 

Ri : If e is E and ce is CE then  is 

 
The complete rule base used for updating  is shown in Table. 6.4.2.  

   e 

e

 
NB

 
NM

 
NS ZE

 
PS PM

 
PB 

NB VB

 

VB VB B SB S ZE 

NM

 

VB

 

VB B B MB

 

S VS

 

NS VB

 

MB

 

B VB

 

VS S VS

 

ZE S SB MB

 

ZE MB

 

SB S 

PS VS

 

S VS VB

 

B MB

 

VB

 

PM VS

 

S MB

 

B B VB VB

 

PB ZE S SB B VB VB VB

  

Table. 6.4.2. Fuzzy Rule Base for 

  

The parameter 

 

is independent of any manipulator parameter and depends only on 

current system states. Thus the self-tuning scheme is largely independent of the process 

being controlled. 

The following steps were used for tuning the controller: 

Assuming that =1, we first adjust the value of GE so that the normalized error covers 

the entire domain [-6 6] to make efficient use of rule base. We then adjust the values of 

GCE and GU to make the output as acceptable as possible. This process is done through 

trial and error for any one trajectory. Now we have a good conventional fuzzy 

controller, which becomes the initial starting point for fuzzy self-tuning controller. 

The output-scaling factor (GU) is now set to three times (to keep the rise time almost 

same) the value found in previous step. The other two scaling factors are kept same as 

determined in previous step. 

 

is no longer fixed at 1 but is calculated on-line from its 

rule base.    
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6.4.1 PURE FUZZY (FIXED PARARAMETERS)  

The controller investigated in this section is a normal Pure Fuzzy controller (Non LUT 

based), exactly similar to the controller discussed in section 6.3.1. The normalization 

and denormalization factors are chosen to be exactly same and so are the rule base and 

membership functions. The complete rule base is shown in Table. 6.4.1. 

The difference here is that this controller evaluates the fuzzy rules as it is and does not 

make use of lookup table while calculating the output torque values for the two links of 

the manipulator. The disadvantage of not using the lookup table is mainly in terms of 

considerably more number of calculations required which in turn increases the sampling 

time of the controller. The advantage on the other hand is in terms of much smoother 

controller action compared to lookup table based controller. This is of importance when 

we modify this controller to self-tuning controller. The self-tuning controller gives much 

better performance if the control action of the original controller is smooth. 

The two trajectories used for simulation are same as earlier. For the first simulation it is 

assumed that the manipulator parameters do not change throughout the motion. The 

error profiles for the two links are shown in Fig. 6.4.1.1(a) for the first trajectory, and 

Fig. 6.4.1.1(b) for the second trajectory. Table 6.4.1.1 lists the various error magnitudes 

for the two trajectories for this controller. A comparison between the error profiles (for 

trajectory 1) of this controller and the exactly similar LUT based controller studied in 

6.3.1 is shown in Fig 6.4.1.1(c). As can be seen from this figure, the errors for LUT 

based controller are lower compared to Non-LUT based controller. This is mainly 

because of manual fine-tuning done for LUT based controller. Also as can be expected 

the trajectory for Non-LUT based controller is much smoother compared to LUT based 

controller.       
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Fig. 6.4.1.1(a) Errors for Fuzzy control (Non LUT based, Fixed parameters, 
 Trajectory 1)    

  

Fig. 6.4.1.1(b) Errors for Fuzzy control (Non LUT based, Fixed parameters, 
 Trajectory 2)  
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Fig 6.4.1.1(c) Comparison of errors for LUT and Non LUT based Fuzzy controllers 
(Fixed parameters)           

Table 6.4.1.1. Errors for Fuzzy control (Non LUT based, Fixed parameters)   

6.4.2 ADAPTIVE FUZZY (FIXED PARAMETERS)  

The self-tuning adaptive fuzzy controller is investigated in this section. This controller is 

discussed in detail in section 6.4. We run the simulation for two trajectories for the case 

that manipulator parameters do not change during the entire duration of motion. Fig. 

6.4.2.1(a) shows the error profiles for first trajectory. Fig. 6.4.2.1(b) shows a comparison 

of errors between adaptive fuzzy and pure fuzzy control. As can be seen from the figure, 

the adaptive fuzzy controller gives improved performance compared to pure fuzzy 

controller. Errors for both links for adaptive fuzzy controller are reduced. However like 

the pure fuzzy controller, the adaptive fuzzy controller also has non-zero steady state 

errors for both links albeit reduced to some extent.  

Fig. 6.4.2.1(c) shows the error profiles for the second trajectory. Fig. 6.4.2.1(d) shows a 

comparison of errors between adaptive fuzzy and pure fuzzy control for the second 

Pure Fuzzy (Fixed parameters Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308 
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trajectory. Once again it is observed that adaptive fuzzy controller gives better 

performance with both r.m.s and maximum errors getting reduced, when compared to 

pure fuzzy controller. Table 6.4.2.1 lists the various error measures for the two 

trajectories for this controller.   

  

Fig. 6.4.2.1(a) Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 1)    

  

Fig. 6.4.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed 
parameters, Trajectory 1)   
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Fig. 6.4.2.1(c) Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 2)  

  

Fig. 6.4.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed 
parameters, Trajectory 2)            

Table 6.4.2.1. Errors for Adaptive Fuzzy control (Fixed parameters)  

Adaptive Fuzzy (Fixed parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468 
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No   CONTROL 

STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308 

2. SOC Zero 
LUT 

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923 

3. SOC Nonzero 
LUT 

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908 

4 STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468 

 

Table 6.4.2.2. Errors for Fuzzy, SOC and STFC  (Fixed Parameters)  

Table 6.4.2.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can 

be seen that STFC performs well but is not as good as SOC.  

6.4.3 PURE FUZZY (CHANGING PARARAMETERS)  

The simulations done in this section are similar to those done in previous section except 

that in these cases we assume that the manipulator picks up and releases load during 

motion. Hence the manipulator parameters change during the course of motion. The first 

simulation is for pure fuzzy controller. It is observed that the performance of controller 

degrades compared to the fixed parameter case. In particular it is the transient 

performance of the controller that suffers. The steady state errors for first trajectory 

remain same for fixed and changing parameter cases. The maximum errors for second 

trajectory increase in case of changing parameters. The error profiles for the two links 

are shown in Fig. 6.4.3.1(a) for the first trajectory, and Fig. 6.4.3.1(b) for the second 

trajectory. Table 6.4.3.1 lists the magnitudes of various errors for the two trajectories for 

this controller. A comparison between the error profiles (for trajectory 1) of this 

controller and the exactly similar LUT based controller studied in 6.3.4 is shown in Fig 

6.4.3.1(c). As can be seen from this figure, the errors for LUT based controller are lower 

compared to Non-LUT based controller. As explained earlier, this is mainly because of 

manual fine-tuning done for LUT based controller. Also as can be expected the 

trajectory for Non-LUT based controller is much smoother compared to LUT based 

controller. 
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Fig. 6.4.3.1(a) Errors for Fuzzy control (Non LUT based, Changing parameters, 
Trajectory 1)   

  

Fig. 6.4.3.1(b) Errors for Fuzzy control (Non LUT based, Changing parameters, 
Trajectory 2)     
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Fig 6.4.3.1(c) Comparison of errors for LUT and Non LUT based Fuzzy controllers 
(Changing Parameters)           

Table 6.4.3.1. Errors for Fuzzy control (Non LUT based, Changing parameters)  

6.4.4. ADAPTIVE FUZZY (CHANGING PARAMETERS)   

The simulations carried out in this section are similar to those done in section 6.4.2 

except for the fact that here the manipulator parameters change during the course of 

motion. The manipulator is assumed to pick and release load periodically. We run the 

simulation for two trajectories as used for all simulation. Fig. 6.4.4.1(a) shows the error 

profiles for first trajectory. Fig. 6.4.4.1(b) shows a comparison of errors between 

adaptive fuzzy and pure fuzzy control. As can be seen from the figure, the adaptive 

fuzzy controller gives improved performance compared to pure fuzzy controller. Errors 

for both links for adaptive fuzzy controller are reduced. However like the pure fuzzy 

Pure Fuzzy (Changing parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774 
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controller, the adaptive fuzzy controller also has non-zero steady state errors for both 

links although reduced to some extent.  

Fig. 6.4.4.1(c) shows the error profiles for the second trajectory. Fig. 6.4.4.1(d) shows a 

comparison of errors between adaptive fuzzy and pure fuzzy control for the second 

trajectory. Once again it is observed that adaptive fuzzy controller gives better 

performance with both r.m.s and maximum errors getting reduced, when compared to 

pure fuzzy controller. Table 6.4.4.1 lists the various error measures for the two 

trajectories for this controller.   

 

Fig. 6.4.4.1(a) Errors for Adaptive Fuzzy control (Changing parameters, Trajectory 1)   

  

Fig. 6.4.4.1(b) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Changing 
parameters, Trajectory 1) 
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Fig. 6.4.4.1(c) Errors for Adaptive Fuzzy control (Changing parameters, Trajectory 2)  

  

Fig. 6.4.4.1(d) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Changing 
parameters, Trajectory 2)            

Table 6.4.4.1. Errors for Adaptive Fuzzy control (Changing parameters)  

Adaptive Fuzzy (Changing parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651 
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No   CONTROL 

STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774 

2. SOC Zero 
LUT 

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 

3. SOC Nonzero 
LUT 

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 

4 STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651 

 

Table 6.4.4.2. Errors for Fuzzy, SOC and STFC  (Changing Parameters)  

Table 6.4.4.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can 

be seen that STFC performs well but is not as good as SOC.  

6.4.5 COMPARISON OF PERFORMANCE  

Following observations are made based on simulations carried out in this section (6.4): 

1. The error profiles for non-lookup table based Fuzzy controller are much smoother 

compared to LUT based Fuzzy controllers. This is mainly because of smoother 

controller action and translates directly into a smoother manipulator motion. The 

errors for the LUT based controller however, are smaller. 

2. The Adaptive Fuzzy controller improves the performance of Pure Fuzzy controller 

considerably. The performance improvement is more for the case when the 

manipulator parameters change during motion. 

3. The error profiles for Adaptive Fuzzy controllers are much smooth compared to 

their SOC counterparts. This is once again mainly due to their non-lookup table 

based nature.   

6.5 HYBRID FUZZY+INTEGRAL ERROR CONTROLLER (HFIE)  

The PD self-tuning adaptive controller investigated in previous sections gives a 

reasonably good performance for both trajectories as far as rms errors are concerned. 

However it is observed that for the first trajectory, both the manipulator links end up 
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with steady state errors of about 0.1 degrees. Moreover these errors do not decrease even 

if we consider the case of manipulator parameters not changing during the course of 

motion. 

With a view to reduce this steady state error we propose and investigate a simple hybrid 

fuzzy controller. The block diagram of this controller is shown in Fig. 6.5.1. This 

controller consists of two parts. First is a simple non-lookup table based fuzzy 

controller. This controller is same as that investigated in section 6.4.1 and 6.4.3. It is 

also the same as the            

Fig. 6.5.1. Hybrid Fuzzy plus Integral error Controller block diagram  

self-tuning adaptive fuzzy controller investigated in section 6.4.2 and 6.4.4 but with 

adaptation gain  fixed at a constant value of 1. Second is an integral error controller, as 

shown in Fig. 6.5.1. Usually the integral part of a controller produces an output, which is 

proportional to integral of error over the entire period of motion. But this simple 

addition of integral term also increase the order of system and might result in an 

unstable closed loop system. The controller that we propose does not perform 

summation (integration) of error over entire period of motion.  

For our simulations the trajectory generator provides the controller with information 

about the desired position, velocity and acceleration ( , ,d d d ) for each joint and 

keeps updating this information at the path update rate which has been chosen as 3ms 

(333Hz). The controller takes this information and compares it with the present (actual) 
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position and velocity of joints , , which are provided as feedback through the 

sensors. Based upon the error between the desired and actual values, the controller 

calculates a vector of joint torques , which should be applied at respective joints by 

the actuators to minimize these errors. In the simulations, the control loop runs five 

times for every set point supplied by the trajectory generator.  The integral action of our 

controller is limited to summing up these five errors for every set point provided by the 

trajectory generator. The sum of these errors is reset to zero every time the trajectory 

generator gives a new set point. This type of integral action cannot of course give zero 

values of steady state error but can nevertheless reduce them. Further the overall 

resulting controller does not suffer from danger of instability.  

6.5.1. HFIE CONTROLLER (FIXED PARAMETERS)  

We run the simulation for two trajectories for the case that manipulator parameters do 

not change during the entire duration of motion. Fig. 6.5.1.1(a) shows the error profiles 

for first trajectory. Fig. 6.5.1.1(b) shows a comparison of errors between adaptive fuzzy 

and HFIE control. As can be seen from the figures, the HFIE controller gives much 

improved performance compared to adaptive fuzzy controller. Errors for both links for 

HFIE controller are reduced. This includes not only the steady state errors but also the 

transient, rms and maximum errors as well. The steady state errors although reduced, are 

still not zero.  

Fig. 6.5.1.1(c) shows the error profiles for the second trajectory. Fig. 6.5.1.1(d) shows a 

comparison of errors between adaptive fuzzy and HFIE control for the second trajectory. 

Once again it is observed that HFIE controller gives better performance with both r.m.s 

and maximum errors getting reduced, when compared to adaptive fuzzy controller. 

Table 6.5.1.1 lists the various error measures magnitudes for the two trajectories for this 

controller.    



 

166

         

Fig. 6.5.1.1(a) Errors for HFIE controller (Fixed parameters, Trajectory 1)   

   

Fig. 6.5.1.1(b) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed 
parameters, Trajectory 1)    
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Fig. 6.5.1.1(c) Errors for HFIE controller (Fixed parameters, Trajectory 2)  

  

Fig. 6.5.1.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed 
parameters, Trajectory 2)           

Table 6.5.1.1. Errors for HFIE control (Fixed parameters)   

Pure Fuzzy + Integral Error (Fixed parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450 
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No   CONTROL 

STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308 

2. SOC Zero 
LUT 

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923 

3. SOC Nonzero 
LUT 

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908 

4. STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468 

5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450 

 

Table 6.5.1.2. Errors for Fuzzy, SOC, STFC and HFIE (Fixed Parameters)  

Table 6.5.1.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison. 

It can be seen that HFIE performs better than STFC but is not as good as SOC.  

6.5.2. HFIE CONTROLLER (CHANGING PARAMETERS)  

We next do the simulation for two trajectories for the case that manipulator parameters 

change during the duration of motion. Fig. 6.5.2.1(a) shows the error profiles for first 

trajectory. Fig. 6.5.2.1(b) shows a comparison of errors between adaptive fuzzy and 

HFIE control. Once again it can be seen from the figures, that the HFIE controller gives 

much improved performance compared to adaptive fuzzy controller. Errors for both 

links for HFIE controller are reduced. This includes not only the steady state errors but 

the transient, rms and maximum errors as well. The steady state errors although reduced 

are still not zero.  

Fig. 6.5.2.1(c) shows the error profiles for the second trajectory. Fig. 6.5.2.1(d) shows a 

comparison of errors between adaptive fuzzy and HFIE control for the second trajectory. 

As expected, the HFIE controller gives better performance with both r.m.s and 

maximum errors getting reduced, when compared to adaptive fuzzy controller. Table 

6.5.2.1 lists the various error measures magnitudes for the two trajectories for this 

controller.   
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Fig. 6.5.2.1(a) Errors for HFIE controller (Changing parameters, Trajectory 1)   

  

Fig. 6.5.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing 
parameters, Trajectory 1)  

  

Fig. 6.5.2.1(c) Errors for HFIE controller (Changing parameters, Trajectory 2) 
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Fig. 6.5.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing 
parameters, Trajectory 2)           

Table 6.5.2.1. Errors for HFIE control (Changing parameters)  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774 

2. SOC Zero 
LUT 

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 

3. SOC Nonzero 
LUT 

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 

4. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651 

5. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498 

 

Table 6.5.2.2. Errors for Fuzzy, SOC, STFC and HFIE (Changing Parameters)  

Table 6.5.2.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison. 

It can be seen that HFIE performance is almost comparable to that of SOC. 

Pure Fuzzy + Integral Error (Changing parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498 
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6.5.3 COMPARISON OF PERFORMANCE  

Following observations are made based on simulations carried out in this section (6.5): 

1. The modified integral action is an effective method to reducing the overall errors 

for manipulator trajectory tracking.  

2. The proposed HFIE controller performs remarkably well when compared to 

STFC. The HFIE controller gives better performance with r.m.s., maximum and 

steady state errors all getting reduced, when compared to STFC 

3. The improved performance of HFIE controller is further achieved with having 

much lesser number of calculations to perform compared to adaptive fuzzy 

controller. Although for our simulations we have kept the sampling rate for both 

adaptive fuzzy and HFIE controllers same, the much higher possible sampling 

rates for HFIE controller will improve its performance further. 

4. It was also observed that errors for HFIE controller go down as we increase the 

integral gain constant Ki to a certain value. Any further increase in Ki results in 

errors increasing again. Hence there is an optimal value for the gain Ki.  

6.6 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CFAF)  

When a controller is required to operate under conditions of both large and small 

excursions of its inputs from their nominal values, it is convenient to use two or more 

sets of fuzzy rules to effect improved control [Dunlop et al. (1994)]. For large 

excursions of the controller input variables, coarse control is applied with the objective 

of forcing the plant to return to its nominal operating point as rapidly as possible. 

Accuracy of control is of secondary importance under these circumstances and only a 

few rules are required. When the plant variables reach some small region about the 

nominal operating point then fine control is applied. Here a new set of control rules 

necessary to effect the desired fine control actions are used and these involve a larger 

number of rules and fuzzy sets. Under normal operating conditions the controller uses 

fine control for small excursions about the nominal operating point. 
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An alternative way of achieving coarse-fine control is through zooming of the universe 

of discourse of each controller input variable. In this case the universe of discourse is 

varied, either in discrete regions in control space or smoothly as the plant approaches the 

desired operating point. This approach has been used to great effect for the control of 

high precision mechatronic devices and is investigated in this section for effectiveness in 

case of mechanical manipulator. 

The basic controller is still the self-tuning adaptive fuzzy controller discussed in section 

6.4. In that controller the output-scaling factor alone is adapted via the variable gain 

factor . The characteristics of a PI- or PD-type fuzzy logic controller depends on both 

input and output scaling factors, i.e., for the best performance, simultaneous adjustment 

of both input and output scaling factors is more justified. To this effect the controller 

normalizes the position and velocity errors to limit them to domain [-6 6]. It then checks 

if the position and velocity errors are both within [-3 3]. If they are, then both the 

position and velocity error are doubled to provide the zooming effect. If the errors are 

not within [-3 3], then they are used as they are, without being doubled. This simple 

strategy results in much improved performance of the controller as discussed in the 

following sections.  

6.6.1 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (FIXED 

         PARAMETERS)  

We first run the simulation for two trajectories for the case that manipulator parameters 

do not change during the entire duration of motion. Fig. 6.6.1.1(a) shows the error 

profiles for first trajectory. Fig. 6.6.1.1(b) shows a comparison of errors between 

adaptive fuzzy and CFAF control. As can be seen from the figures, the CFAF controller 

gives much improved performance compared to adaptive fuzzy controller. Errors for 

both links for CFAF controller are reduced. This includes not only the steady state errors 

but the transient, rms and maximum errors as well.  

Fig. 6.6.1.1(c) shows the error profiles for the second trajectory. Fig. 6.6.1.1(d) shows a 

comparison of errors between adaptive fuzzy and CFAF control for the second 

trajectory. Once again it is observed that CFAF controller gives better performance with 
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both r.m.s and maximum errors getting reduced, when compared to adaptive fuzzy 

controller. Table 6.6.1.1 lists the various error measures magnitudes for the two 

trajectories for this controller.   

  

Fig. 6.6.1.1(a) Errors for CFAF controller (Fixed parameters, Trajectory 1)   

  

Fig. 6.6.1.1(b) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed 
parameters, Trajectory 1)    
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Fig. 6.6.1.1(c) Errors for CFAF controller (Fixed parameters, Trajectory 2)  

  

Fig. 6.6.1.1(d) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed 
parameters, Trajectory 2)           

Table 6.6.1.1. Errors for CFAF control (Fixed parameters)  

CF Adaptive Fuzzy (Fixed parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0747 0.0910 0.0373 0.0392 0.0766 0.1115 0.0358 0.0583 
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No   CONTROL 

STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308 

2. SOC Zero 
LUT 

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923 

3. SOC Nonzero 
LUT 

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908 

4. STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468 

5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450 

6. CFAF 0.0747 0.0910 0.0373 0.0392 0.0766 0.1115 0.0358 0.0583 

 

Table 6.6.1.2. Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Fixed Parameters)  

Table 6.6.1.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for 

comparison. It can be seen that CFAF performs better than STFC but is not as good as 

SOC or HFIE.  

6.6.2 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CHANGING 

         PARAMETERS)  

We next do the simulation for two trajectories for the case that manipulator parameters 

change during the entire duration of motion. Fig. 6.6.2.1(a) shows the error profiles for 

first trajectory. Fig. 6.6.2.1(b) shows a comparison of errors between adaptive fuzzy and 

CFAF control. Once again it can be seen from the figures, that the CFAF controller 

gives much improved performance compared to adaptive fuzzy controller. Errors for 

both links for CFAF controller are reduced. This includes not only the steady state errors 

but the transient, r.m.s and maximum errors as well.  

Fig. 6.6.2.1(c) shows the error profiles for the second trajectory. Fig. 6.6.2.1(d) shows a 

comparison of errors between adaptive fuzzy and CFAF control for the second 

trajectory. As expected, the CFAF controller gives better performance with both r.m.s 

and maximum errors getting reduced, when compared to adaptive fuzzy controller. 

Table 6.6.2.1 lists the various error measures magnitudes for the two trajectories for this 

controller.  
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Fig. 6.6.2.1(a) Errors for CFAF controller (Changing parameters, Trajectory 1)  

  

Fig. 6.6.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Changing 
parameters, Trajectory 1)  

  

Fig. 6.6.2.1(c) Errors for CFAF controller (Changing parameters, Trajectory 2) 
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Fig. 6.6.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Changing 
parameters, Trajectory 2)           

Table 6.6.2.1 Errors for CFAF control (Changing parameters)  

TRAJECTORY NO.1 TRAJECTORY NO.2 
link1 

0  90 0

 

link2 
0

 

-90 0

 

link1 
0  45 0 45 0

 

link2 
0

 

-45 0 -45 0

 

S.No   CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774 

2. SOC Zero 
LUT 

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 

3. SOC Nonzero 
LUT 

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 

4. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651 

5. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498 

6. CFAF 0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644 

 

Table 6.6.2.2. Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Changing Parameters)  

CF Adaptive Fuzzy (Changing parameters) Errors (deg) 

TRAJECTORY NO.1 TRAJECTORY NO.2 

Link1 
0  90 0

 

Link2 
0

 

-90 0

 

Link1 
0  45 0

 

Link2 
0

 

-45 0

 

RMS SS RMS SS RMS MAX RMS MAX 

0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644 
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Table 6.6.2.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for 

comparison. It can be seen that CFAF performance is better than STFC but not as good 

as HFIE or SOC.  

6.6.3 COMPARISON OF PERFORMANCE  

Following observations are made based on simulations carried out in this section (6.6): 

1. It is observed that the CFAF controller gives much improved performance 

compared to STFC. Errors for both links for CFAF controller are reduced for 

fixed as well as changing parameters case. 

2. CFAF does not involve any additional computational burden on the controller. 

The additional complexity is only in terms of few additional if-then-else 

statements.  

3. The CFAF controller however is still not as good as HFIE controller or SOC.  

6.7 CONCLUDING REMARKS 

In this chapter we investigated the efficacy of Fuzzy control techniques for manipulator 

control. We investigated both the lookup table based controller and the conventional 

fuzzy controller. We found that the fuzzy controller on its own does not give a 

performance as good as Adaptive controllers. However the Self-Organizing and Self-

Tuning versions of the fuzzy controllers give very good performance. 

We also investigated the performance of some new hybrid fuzzy controllers. It was 

found that hybrid conventional-fuzzy controllers give a substantial performance 

improvement. On the other hand the Hybrid adaptive-fuzzy controllers do not give much 

performance improvement. 

The HFIE and CFAF controllers are also very competitive in their performance. On the 

whole Fuzzy control is a viable alternative to adaptive control both in terms of good 

performance and reduced complexity of computations required.     
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CONCLUSIONS AND RECOMMENDATIONS  

7.1 CONCLUSIONS  

In this thesis we have attempted to explore the behavior of few robot manipulator 

control strategies. The controllers investigated in this thesis are of conventional, 

adaptive and fuzzy kind and their combinations.  

We have also suggested some modifications to the existing control strategies, which 

could lead to improvement in their performance. This is mainly in terms of introducing a 

modified integral error compensation. We have also suggested some new control 

strategies, like HFIE, which give good performance with minimal computational 

complexity. 

For the sake of just comparison, we have kept the manipulator model and test 

trajectories same throughout. The detailed conclusions for the study carried out on them 

are already presented in Chapters 4, 5 and 6 respectively. Here we state the main 

conclusions and present them section wise.  

CONVENTIONAL CONTROL  

Various manipulator control strategies belonging to the conventional strategies were 

tested in this section. These included the PD, PID, Computed Torque, Feed Forward 

Inverse Dynamics and Critically Damped Inverse Dynamics control. These strategies 

were tested for two different trajectories. In the first trajectory the manipulator had to 

essentially position itself accurately and in the second trajectory the manipulator is 

essentially involved in a pick and place task. The first trajectory allows us to investigate 

the steady state behavior of the controller while the second trajectory allows 

investigation of transient behavior of the controller more rigorously.  

The first situation tested was where the manipulator parameters do not change during 

the entire trajectory. Under this situation it was seen that although the manipulator 

parameters are not changing, the fixed gain PD controller perform poorly. This is mainly 

because the manipulator model used does not include any gearings at the joints, a case 

CHAPTER VII
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which is true for high-speed robots. The PID controller gives much better performance 

than PD controller but can become unstable very easily even with low gain values. This 

clearly points to the fact that for high speed and high precision operations these simple 

non-model based schemes cannot be used. 

Amongst the model-based controllers, the performance is greatly dependent upon 

exactness with which the model structure and its parameters are known. If the model 

and its parameters are known exactly, the model-based controllers give very good 

performance. This performance degrades rapidly with increasing inaccuracies of 

measurement and modeling. So much so that the performance may degrade below that 

of PD controller. Under the situation of inexactness of modeling and parameter 

estimation, the CDID controller gives best performance. This is mainly because this 

controller uses reference values of trajectory rather than actual ones for model 

computation. 

The second situation, which was tested, was when the manipulator picks up an unknown 

load during the course of its motion and releases it later. This effectively means that the 

manipulator parameters change during motion and the magnitude of change is unknown. 

Under this situation, the performance of PD controller and CT controller degrades 

appreciably. The FFID and CDID controllers also loose on their performance but not as 

much as PD or CT controllers. This clearly once again highlights the merit of using 

reference and desired trajectory values, rather than actual ones, for model computation. 

Lastly in this section we proposed the use of a modified integral error compensation 

with the model based controllers for improving their performance. The integral action 

sums up the errors for every five iterations of control loop for a given set point. When 

the set point changes, the error summation is reset to zero. This modified integral action 

does not suffer from stability related problems and greatly improves the performance of 

the model-based controllers. Moreover as the integral action is implemented entirely in 

software, it can be switched off in case the manipulator performance degrades below a 

datum level. It was seen that the performance of CT and FFID controllers improved 

appreciably with the inclusion of modified integral action, while the performance of 

CDID controller only improved marginally.  
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ADAPTIVE CONTROL   

To further improve the performance of manipulator controller, we need a controller, 

which can change or learn the manipulator parameters which are not known exactly 

because of inaccuracies of estimation or because they change as the manipulator picks 

up unknown loads in its work environment. Alternatively the controller could adjust its 

gains as the parameters change with the objective of driving the tracking errors to zero. 

This is essentially what the adaptive controllers do.  

In this section we investigated the behavior of three different adaptive controllers widely 

quoted in literature for manipulator control. These controllers are the adaptive version of 

CDID or the ACDID controller, a Model Reference Adaptive Controller (MRAC) and a 

Decentralized Adaptive Controller (DAC). 

We first investigated the performance of these controllers for the situation that the 

manipulator parameters change during the motion as it picks up and releases load. This 

case was further analyzed for the situations of warm start (some estimate of parameters 

known) and cold start (no estimate of parameters is available). It was seen that the 

adaptive controllers out perform the conventional controllers for all situations. Even the 

conventional controllers with modified integral action do not perform as well as these 

adaptive controllers. Further it was seen that the model-based controllers (ACDID and 

MRAC) perform better for the warm start case. This clearly shows the importance of 

using good estimates of parameter, whenever available, for performance improvement.  

We also investigated the effect of adding modified integral action to these controllers 

just like we did for conventional controllers. It was seen that addition of this action 

improves the performance of adaptive controllers both in terms of steady state and 

transient errors. Overall the ACDID controller with modified integral action gave best 

performance amongst adaptive controllers.      
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FUZZY CONTROL  

Although the adaptive controllers give very good performance, their practical 

implementation is not easy because of their computational complexity. This means that 

high-speed processors need to be used to get sufficiently high sampling rates. This 

directly translates into high cost of implementation. Hence it is worthwhile to 

investigate the Fuzzy control method, which promises good performance at much less 

computational complexity. In this thesis we investigated many different fuzzy 

controllers, which include self-organizing, self-tuning, hybrid fuzzy etc. We have also 

proposed some new fuzzy controllers for the robot manipulators. 

In this section we proposed and tested several new hybrid fuzzy controllers. These 

controllers are essentially a combination of pure fuzzy (LUT based) and another 

conventional or adaptive controller. The control action of the two controllers is summed 

up to produce the final actuating signal. 

It was seen that the performance of conventional controllers studied earlier (CT, CDID 

and FFID) improves considerably when they are combined in the hybrid structure with 

fuzzy controller. The performance of these hybrid fuzzy/conventional controllers is also 

better than conventional controllers with modified integral error compensation. As the 

fuzzy controller is LUT based, it adds only a minimal computational burden. However 

this burden is more than that incurred by adding only the modified integral error 

compensation. 

The hybrid fuzzy/adaptive controllers also showed some performance improvement. 

However this improvement is not as marked as the previous case of hybrid 

fuzzy/conventional controllers. Moreover these controllers are computationally even 

more intensive than the adaptive controller alone. Hence we conclude that it is not 

worthwhile using such controllers. We found that CDID + Fuzzy controller performs 

almost as good as ACDID with modified integral error compensation with lesser 

computational complexity. Hence these hybrid fuzzy/conventional controllers may 

provide a viable alternative to adaptive controllers. 

The second variant of fuzzy controller investigated is the fuzzy self-organizing 

controller (SOC). Here the controller builds up its own LUT starting from all zero 
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entries or modifies the already existing entries according to error profiles. This 

controller gives an outstanding performance that was not matched by any other 

controller of the fuzzy category. The performance was good even if the LUT had all 

entries as zero initially. Of course the performance improved further when we started 

with non-zero values in LUT. 

The self-tuning fuzzy controller (STFC) was also studied. This controller adapts its 

output denormalization gain online depending on the present error and its derivative. 

The implementation of this controller is non-LUT based. It was seen that this controller 

improves the performance beyond that of pure fuzzy controller but it is not at par with 

the self-organizing controller. However the trajectory for STFC is much smoother 

compared to that of SOC, mainly because of its non-LUT based nature. We suggest a 

modification to STFC such that effectively both the input and output gains of the fuzzy 

controller can be changed. This is achieved by zooming the universe of discourse. This 

controller is known as coarse/fine adaptive fuzzy controller (CFAF). The CFAF 

improves on the performance of STFC with minimal additional computational burden. 

However the performance is still not as good as that of SOC. 

Lastly we tried out a very simple hybrid architecture where we combined the fuzzy 

controller with the modified integral error compensation (HFIE). To our surprise the 

HFIE gives a very good performance next only to SOC. It also outperforms the STFC 

and CFAF controllers. The computational burden is lesser than SOC. 

Table 7.1.1 lists the errors for various controllers under similar situation of changing 

parameters. The shaded cells indicate the best performer in a category. Amongst all 

controllers the hybrid ACDID + Fuzzy controller gives the best performance which is 

closely matched by ACDID + IE controller.        
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TRAJECTORY NO.1 TRAJECTORY NO.2 

link1 
0  90 0

 
link2 

0

 
-90 0

 
link1 

0  45 0 45 0

 
link2 

0

 
-45 0 -45 0

 
S.No

   
CONTROL 
STRATEGY 

RMS SS RMS SS RMS MAX RMS MAX 
CONVENTIONAL CONTROL 

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037 

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036 

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733 

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846 

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509 

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798 

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419 

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513 

ADAPTIVE CONTROL 

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642 

10. ACDID+IE* 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745 

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390 

12. MRAC+IE* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732 

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600 

14. DAC+IE* 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507 

HYBRID FUZZY 

15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183 

16. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030 

17. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186 

18. CDID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507 

19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564 

20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403 

21. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791 

ADAPTIVE FUZZY 

22. SOC ZLUT 0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032 

23. SOC NZLUT 0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898 

24. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651 

25.  HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498 

26. CFAF 0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644 

 

Table 7.1.1 Errors for all controllers for parameter changing case    
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7.2 SUMMARY OF CONTRIBUTIONS  

In brief we have contributed to the body of existing knowledge in the field of 

manipulator control in the following way: 

1. Done a comparative study of some conventional model based and non-model 

based controllers. This was done for different situations like manipulator model 

known exactly, manipulator model not known exactly etc. 

2. Proposed and investigated the effect of including a modified integral action to 

the all model based conventional controllers 

3. Showed that including the modified integral error compensation improves the 

performance of conventional controllers appreciably 

4. Showed that CDID controller with modified integral action is the best performer 

in conventional controllers category 

5. Done a comparative study of some existing adaptive controllers for various 

situations like warm start and cold start etc. 

6. Proposed and investigated the effect of including a modified integral action to 

the adaptive controllers 

7. Showed that including the modified integral error compensation improves the 

performance of adaptive controllers  

8. Showed that ACDID controller with modified integral action is the best 

performer in adaptive controllers category 

9. Proposed and investigated some new hybrid fuzzy controllers 

10. Done a comparative study of different fuzzy controllers like self-organizing, 

self-tuning, hybrid etc. 

11. Showed that the self-organizing controller with a non zero lookup table is the 

best performer in fuzzy controllers category  

7.3 RECOMMENDATIONS FOR FUTURE WORK  

In any practical implementation of a robot controller, the actuator dynamics 

plays an important role. Actuator torque saturation for example, would have a 
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direct impact on stability of the system. Not much work has been done in this 

direction. A complete manipulator model would definitely include not only the 

robot dynamics but the actuator dynamics as well. Work may be done in the 

direction of testing the behavior of these controllers with actuator dynamics 

incorporated in the model.  

With the recent availability of lightweight and precision acceleration sensors, 

work needs to done on developing control algorithms, which use acceleration 

feedback. It may be analyzed if controllers using acceleration feedback give 

better performance than the controllers that do not use it.  

Any simulation can at best be a pointer to expected behavior of a controller. It 

can never be a substitute to testing by experimentation. All the control 

algorithms simulated in the thesis may be experimentally tested as well.  

Much work has recently been done in the area of neural networks based 

controllers for robot manipulators [Patino et al. (2002), Horne et al. (1990)].  A 

comparative study of these controllers with conventional, adaptive and fuzzy 

controllers may be carried out.  

Many genetic algorithm based robot controllers have also been proposed of late 

[Alander (1998)]. A comparative study of these genetic algorithm based 

controllers with conventional, adaptive, fuzzy and neural networks based 

controllers may be carried out.  

These various controllers may be compared not only for their trajectory tracking 

performance but also for their computational complexity. More computational 

complexity directly implies costlier practical implementation.   
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APPENDIX A   

In this appendix are presented some sample codes used for simulation of different control 
algorithms. All the codes except for Adaptive fuzzy controller are written in C. That for 
adaptive fuzzy is written in MATLAB. We present sample codes in each of the three 
categories, i.e., conventional, adaptive and fuzzy.  

A.1 CDID CONTROL CODE  

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For 
each set point the control loop is executed 5 times. Strategy is CDID Control.  */ 
/*------------------------------------------------------------------------------------------------------*/ 

/*SIMULATION*/ 
/* CRITICALLY DAMPED INVERSE DYNAMICS */ 

/*------------------------------------------------------------------------------------------------------*/ 
#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <float.h> 
#define pi 3.142857 
/*-----------------------------------------------------------------------------------------------------*/ 

/* TRAJECTORY IS QUINTIC */ 
/*-----------------------------------------------------------------------------------------------------*/ 
void main() 
{ 
int    n=0,i=0,k=5,seg=1; 
float tf,t=0.0,ts=0.003,tsp,g=9.8,acc1d,acc2d,v1cap=2.5,v2cap=2.5,a0,b0, 
thf1,thf2,vel1=0.0,vel2=0.0,l1=0.26,a3,a4,a5,b3,b4,b5,v22,pos1o,pos2o, 
 pos1=0.0,pos2=0.0,p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12, 
 error1s[5000],error2s[5000],acc1=0.0,acc2=0.0,pos1d,pos2d,vel1d,vel2d, 
ep1,ep2,ev1,ev2,ep1s=0.0,ep2s=0.0,torque1,torque2,izz1=0.09,izz1cap=0.09,con21, 
con22,m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,izz2cap=0.09,e1dot,e2dot, 
m11,m12,m21,m22,v11,v12,v21,g11,g21,m2cap=1.8,m1cap=1.8,vel1r,vel2r, 
x2cap=0.14,x1cap=0.13,gamma=100.0,kv11=50.0,kv22=50.0,ki11=50.0,ki22=50.0,acc1r
,acc2r,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16; 
FILE   *er1,*er2; 
clrscr(); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*GET INPUTS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
tsp=ts/5.0; 
highvideo(); 
textbackground(YELLOW); 
window(10,5,80,25); 
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textcolor(CYAN); 
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec"); 
window(15,10,80,25); 
textcolor(CYAN); 
cprintf("FINAL TIME                             "); 
scanf("%f",&tf); 
window(15,14,80,25); 
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) "); 
scanf("%f",&thf1); 
window(15,15,80,25); 
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)"); 
scanf("%f",&thf2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/* INITIALISE */ 
/*-------------------------------------------------------------------------------------------------------*/ 
thf1=(thf1*pi)/180.0; 
thf2=(thf2*pi)/180.0; 
if(thf1 < 0.0 || thf2 > 0.0) 
{ 
window(15,18,80,25); 
cprintf("GIVE CORRECT ANGLES                    "); 
goto END; 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
a0=0.0; 
b0=0.0; 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ACTUAL PARAMETERS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
window(15,19,80,25); 
cprintf("BUSY WITH CONTROL                      \n"); 
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/*-------------------------------------------------------------------------------------------------------*/ 
/*SERVO LOOP*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
for (;seg<=4;) 
{ 
for (;t<=tf;) 
{ 

/* DESIRED POSITION, VELOCITY, ACCELERATION*/ 
if(k==5) 
{ 
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t); 
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t); 
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t); 
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t); 
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t); 
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t); 
t=t+ts; 
k=0; 
} 
ep1=gamma*(pos1d-pos1); 
ev1=gamma*(vel1d-vel1); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LINK 2 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
ep2=gamma*(pos2d-pos2); 
ev2=gamma*(vel2d-vel2); 
ep1s=ep1s+(pos1d-pos1); 
ep2s=ep2s+(pos2d-pos2); 
vel1r=vel1d+ep1; 
vel2r=vel2d+ep2; 
acc1r=acc1d+ev1; 
acc2r=acc2d+ev2; 
e1dot=vel1r-vel1; 
e2dot=vel2r-vel2; 
/*exact model*/ 
m11=izz1+izz2+(m2*(x2*x2+l1*l1))+(m1*x1*x1)+2.0*m2*l1*x2*cos(pos2); 
m12=(m2*x2*x2)+izz2+(m2*l1*x2*cos(pos2)); 
m21=m2*x2*l1*cos(pos2)+izz2+(m2*x2*x2); 
m22=(m2*x2*x2)+izz2; 
v11=v1-(2.0*m2*l1*x2*sin(pos2))*vel2; 
v12=(-m2*l1*x2*sin(pos2))*vel2; 
v21=m2*l1*x2*sin(pos2)*vel1; 
v22=v2; 
g11=g*(m1*x1+m2*l1)*cos(pos1)+(m2*x2*g*cos(pos1+pos2)); 
g21=g*(m2*x2*cos(pos1+pos2)); 
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/*-------------------------------------------------------------------------------------------------------*/ 
/*Calculate torques due to known values*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
torque1=m11*acc1r+m12*acc2r+v11*vel1r+v12*vel2r+g11; 
torque2=m21*acc1r+m22*acc2r+v21*vel1r+v22*vel2r+g21; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*Total torque to be applied*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque1=torque1+kv11*e1dot+ki11*ep1s; 
torque2=torque2+kv22*e2dot+ki22*ep2s; 
/*-------------------------------------------------------------------------------------------------------*/ 

/* VALUES FOR LINK 1 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+  

 p6*cos(pos1)+(p7*cos(pos1+pos2)); 
con11= (p1+p2*cos(pos2)+0.1498); 
con12= (p3+0.5*p2*cos(pos2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*VALUES FOR LINK 2*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
c2=      0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2); 
con21= (0.5*p2*cos(pos2)+p3); 
con22= (p3+0.1498); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*STORE VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if(k==4) 
{ 
error1s[n]=ep1*180.0/(pi); 
error2s[n]=ep2*180.0/(pi); 
n=n+1; 
ep1s=0.0; 
ep2s=0.0; 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22); 
acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21); 
vel1=acc1*tsp+vel1; 
vel2=acc2*tsp+vel2; 
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp; 
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp; 
k=k+1; 
} 
seg=seg+1; 



 

212  

/*-------------------------------------------------------------------------------------------------------*/ 
/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND 

SEGMENT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (seg==2 || seg==4) 
{ 
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n; 
p2=2.0*m2n*l1*x2n; 
p3=m2n*x2n*x2n+izz2n; 
p4=v1; 
p5=v2; 
p6=g*(m1n*x1n+m2n*l1); 
p7=m2n*x2n*g;    
t=0.0; 
a0=thf1; 
b0=thf2; 
a3=-10.0*(thf1)/(tf*tf*tf); 
a4=15.0*(thf1)/(tf*tf*tf*tf); 
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=-10.0*(thf2)/(tf*tf*tf); 
b4=15.0*(thf2)/(tf*tf*tf*tf); 
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf); 
k=5; 
} 
if (seg==3) 
{ 
t=0.0; 
a0=0.0; 
b0=0.0; 
/*thf1=0.0; 
thf2=0.0;*/ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
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k=5; 
} 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*OPEN FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
er1=fopen("scerror1.dat","w+"); 
er2=fopen("scerror2.dat","w+"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*WRITE FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for(i=0;i<=(n-1);i++) 
{ 
fprintf(er1,"%f\n",error1s[i]/gamma); 
fprintf(er2,"%f\n",error2s[i]/gamma); 
} 
fcloseall(); 
END:; 
/*-------------------------------------------------------------------------------------------------------*/ 
}                           



 

214

A.2.  ACDID CONTROL CODE  

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For 
each setpoint the control loop is executed 5 times.kd1=100 and kd2=50. */ 
/*-------------------------------------------------------------------------------------------------------*/ 

/*SIMULATION ACDID CONTROL*/ 
/* POSITION + VELOCITY FEEDBACK */ 

/*-------------------------------------------------------------------------------------------------------*/ 
#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <float.h> 
#define pi 3.142857 
/*-------------------------------------------------------------------------------------------------------*/ 

/* TRAJECTORY IS QUINTIC */ 
/*-------------------------------------------------------------------------------------------------------*/ 
void main() 
{ 
int    n=0,i=0,k=5,seg=1; 
float  tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambda1=100.0,lambda2=100.0,g=9.8, 
       vel1=0.0,vel2=0.0,l1=0.26,thf1,thf2,a0,b0,a3,a4,a5,b3,b4,b5, 
       pos1,pos2,p1cap,p2cap,p3cap,p4cap,p5cap,p6cap,p7cap, 
       p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12,con21,con22, 
       error1s[5000],error2s[5000],w11,w12,w13,w14,w16,w17,pos1o,pos2o, 
      gama1=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,gama6=100.0, 
       pos1d,pos2d,vel1d,vel2d,acc1d,acc2d,vel1r,vel2r,acc1r,acc2r,gama7=100.0, 
       error1,error2,e1,e2,torque1,torque2,w22,w23,w25,w27,p1capdot=0.0,p2capdot=0.0, 
       p3capdot=0.0,p4capdot=0.0,p5capdot=0.0,p6capdot=0.0,p7capdot=0.0,izz1=0.09, 
       m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,acc1=0.0,acc2=0.0,m2n=3.0, 
       m1n=3.0, x1n=0.15,x2n=0.16,izz1n=1.5,izz2n=0.09, 
       x1cap=0.11,x2cap=0.12,v1cap=2.0,v2cap=2.0,izz1cap=0.05,izz2cap=0.05, 
       m1cap=1.0,m2cap=1.0; 
FILE   *er1,*er2; 
clrscr(); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*GET INPUTS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
tsp=ts/5.0; 
highvideo(); 
textbackground(YELLOW); 
window(10,5,80,25); 
textcolor(CYAN); 
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec"); 
window(15,10,80,25); 
textcolor(CYAN); 
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cprintf("FINAL TIME                             "); 
scanf("%f",&tf); 
/*window(15,11,80,25); 
textcolor(GREEN); 
cprintf("FIRST ELEMENT OF GAIN MATRIX           "); 
scanf("%f", &kd1); 
window(15,12,80,25); 
cprintf("SECOND ELEMENT OF GAIN MATRIX          "); 
scanf("%f", &kd2);*/ 
window(15,14,80,25); 
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) "); 
scanf("%f",&thf1); 
window(15,15,80,25); 
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)"); 
scanf("%f",&thf2);  

/*-------------------------------------------------------------------------------------------------------*/ 
/* INITIALISE */ 

/*-------------------------------------------------------------------------------------------------------*/ 
thf1=(thf1*pi)/180.0; 
thf2=(thf2*pi)/180.0; 
if(thf1 < 0.0 || thf2 > 0.0) 
{ 
window(15,18,80,25); 
cprintf("GIVE CORRECT ANGLES                    "); 
goto END; 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
pos1=0.0; 
pos1o=0.0; 
pos2=0.0; 
pos2o=0.0; 
a0=pos1o; 
b0=pos2o; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ESTIMATE OF PARAMETERS */ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1cap=izz1cap+izz2cap+m2cap*(x2cap*x2cap+l1*l1)+m1cap*x1cap*x1cap; 
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p2cap=2.0*m2cap*l1*x2cap; 
p3cap=m2cap*x2cap*x2cap+izz2cap; 
p4cap=v1cap; 
p5cap=v2cap; 
p6cap=g*(m1cap*x1cap+m2cap*l1); 
p7cap=m2cap*x2cap*g; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ACTUAL PARAMETERS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
window(15,19,80,25); 
cprintf("BUSY WITH CONTROL                      \n"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*SERVO LOOP*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for (;seg<=4;)  /* for two segment trajectory*/ 
{ 
for (;t<=tf;) 
{ 

/* DESIRED POSITION, VELOCITY, ACCELERATION*/ 
if(k==5) 
{ 
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t); 
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t); 
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t); 
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t); 
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t); 
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t); 
t=t+ts; 
k=0; 
} 
error1=pos1d-pos1; 
vel1r=(vel1d + lambda1*error1); 
acc1r=(acc1d - lambda1*(vel1-vel1d)); 
e1=(vel1-vel1r); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LINK 2 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
error2=pos2d-pos2; 
vel2r=(vel2d + lambda2*error2); 
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acc2r=(acc2d - lambda2*(vel2-vel2d)); 
e2=(vel2-vel2r); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*TORQUE VALUES FOR LINK 1 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque1=(p1cap+p2cap*cos(pos2))*acc1r+(p3cap+0.5*p2cap*cos(pos2))*acc2r+  

(p4cap-p2cap*sin(pos2)*vel2)*vel1r-0.5*p2cap*sin(pos2)*vel2*vel2r+  
 p6cap*cos(pos1)+(p7cap*cos(pos1+pos2))+(0.1498*acc1r)-kd1*e1; 

c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+  
 p6*cos(pos1)+(p7*cos(pos1+pos2)); 

con11= (p1+p2*cos(pos2)+0.1498); 
con12= (p3+0.5*p2*cos(pos2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque2=(0.5*p2cap*cos(pos2)+p3cap)*acc1r+p3cap*acc2r+(0.1498*acc2r)+ 
      0.5*p2cap*sin(pos2)*vel1*vel1r+p5cap*vel2r+p7cap*cos(pos1+pos2)-kd2*e2; 
c2=      0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2); 
con21= (0.5*p2*cos(pos2)+p3); 
con22= (p3+0.1498); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*STORE VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if(k==4) 
{ 
error1s[n]=error1*180.0/pi; 
error2s[n]=error2*180.0/pi; 
n=n+1; 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/* W MATRIX */ 
/*-------------------------------------------------------------------------------------------------------*/ 
w11=acc1r; 
w12=(cos(pos2))*(acc1r+0.5*acc2r)-(0.5*sin(pos2)*vel2*(vel1r+vel2r))-
0.5*sin(pos2)*vel1*vel2r; 
w13=acc2r; 
w14=vel1r; 
w16=cos(pos1); 
w17=cos(pos1+pos2); 
w22=0.5*(cos(pos2)*vel1r+sin(pos2)*vel1*vel1r); 
w23=acc1r+acc2r; 
w25=vel2r; 
w27=cos(pos1+pos2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*PCAPDOT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
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p1capdot= -1.0*(gama1*w11*e1); 
p2capdot= -1.0*((gama2*w12*e1)+(gama2*w22*e2)); 
p3capdot= -1.0*((gama3*w13*e1)+(gama3*w23*e2)); 
p4capdot= -1.0*(gama4*w14*e1); 
p5capdot= -1.0*(gama5*w25*e2); 
p6capdot= -1.0*(gama6*w16*e1); 
p7capdot= -1.0*((gama7*w17*e1)+(gama7*w27*e2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*UPDATE THE ESTIMATED VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1cap=(tsp*p1capdot)+p1cap; 
p2cap=(tsp*p2capdot)+p2cap; 
p3cap=(tsp*p3capdot)+p3cap; 
p4cap=(tsp*p4capdot)+p4cap; 
p5cap=(tsp*p5capdot)+p5cap; 
p6cap=(tsp*p6capdot)+p6cap; 
p7cap=(tsp*p7capdot)+p7cap;  

/*-------------------------------------------------------------------------------------------------------*/ 
/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
acc2=(((torque1-c1)*con21)-((torque2-c2)*con11))/((con12*con21)-(con11*con22)); 
acc1=(((torque1-c1)*con22)-((torque2-c2)*con12))/((con11*con22)-(con12*con21)); 
vel1=acc1*tsp+vel1; 
vel2=acc2*tsp+vel2; 
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp; 
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp; 
k=k+1; 
} 
seg=seg+1; 
if (seg==2 || seg==4) 
{ 
t=0.0; 
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n; 
p2=2.0*m2n*l1*x2n; 
p3=m2n*x2n*x2n+izz2n; 
p4=v1; 
p5=v2; 
p6=g*(m1n*x1n+m2n*l1); 
p7=m2n*x2n*g; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND 
SEGMENT*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
a0=thf1; 
b0=thf2; 
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a3=-10.0*(thf1)/(tf*tf*tf); 
a4=15.0*(thf1)/(tf*tf*tf*tf); 
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=-10.0*(thf2)/(tf*tf*tf); 
b4=15.0*(thf2)/(tf*tf*tf*tf); 
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf); 
k=5; 
} 
if (seg==3) 
{ 
t=0.0; 
k=5; 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
a0=0.0; 
b0=0.0; 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
} 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*OPEN FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
er1=fopen("scerror1.dat","w+"); 
er2=fopen("scerror2.dat","w+"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*WRITE FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for(i=0;i<=(n-1);i++) 
{ 
fprintf(er1,"%f\n",error1s[i]); 
fprintf(er2,"%f\n",error2s[i]); 
} 
fcloseall(); 
END:; 
/*-------------------------------------------------------------------------------------------------------*/ 
} 
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A.3 ACDID+FUZZY CONTROL CODE  

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For 
each setpoint the control loop is executed 5 times.*/ 
/*-------------------------------------------------------------------------------------------------------*/ 

/* ACDID + FUZZY */ 
/*SIMULATION*/ 

/* POSITION + VELOCITY FEEDBACK */ 
/*-------------------------------------------------------------------------------------------------------*/ 
#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <float.h> 
#define pi 3.142857 
/*-------------------------------------------------------------------------------------------------------*/ 

/* TRAJECTORY IS QUINTIC */ 
/*-------------------------------------------------------------------------------------------------------*/ 
void main() 
{ 
int    n=0,i=0,k=5,row,row2,col,col2,seg=1; 
float  tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambda1=100.0,lambda2=100.0,g=9.8, 
       vel1=0.0,vel2=0.0,l1=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,a0,b0, 
       pos1,pos2,p1cap,p2cap,p3cap,p4cap,p5cap,p6cap,p7cap,izz2cap=0.05, 
       p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12,con21,con22, 
       error1s[5000],error2s[5000],w11,w12,w13,w14,w16,w17,pos1o,pos2o, 
       gama1=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,  
       gama6=100.0, pos1d,pos2d,vel1d,vel2d,acc1d,acc2d,vel1r,vel2r,acc1r,acc2r, 
       gama7=100.0,error1,error2,e1,e2,torque1,torque2,w22,w23,w25, 
       w27,p1capdot,p2capdot,p3capdot,p4capdot,p5capdot,p6capdot, 
       p7capdot,izz1cap=0.05,izz1=0.09, 
       m1cap=1.0,m1=2.0,m2cap=1.0,m2=2.0,v1cap=2.0,v1=2.5,v2cap=2.0,v2=2.5, 
       x1cap=0.11,x1=0.13,x2cap=0.12,x2=0.14,acc1=0.0,acc2=0.0,nep,nev,dnc, 
       ep1,ep2,ev1,ev2,count1,count2,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0, 
       x1n=0.15,x2n=0.16; 
FILE   *er1,*er2; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*FUZZY LOOK UP TABLE*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
float lookt[13] [13]=   

     {   
     {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},   
     {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},   
     {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},   
     {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},   
     { 0.0,  0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0}, 
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     { 1.0,  1.0,  0.0,  0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},   
     { 1.3,  1.2,  1.0,  0.8,  0.6,  0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},   
     { 2.0,  2.0,  1.9,  1.8,  1.8,  1.8,  1.8,  1.8,  1.5,  0.0, -0.3, -1.0, -0.8},   
     { 2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  1.2,  0.8,  0.0,  0.0},   
     { 2.0,  2.1,  2.3,  2.5,  2.5,  2.5,  2.6,  2.7,  2.8,  2.8,  2.9,  2.9,  3.0},   
     { 2.7,  2.7,  2.8,  3.1,  3.2,  3.3,  3.5,  3.6,  3.6,  3.8,  3.8,  3.9,  3.9},   
     { 3.6,  3.3,  3.7,  4.0,  4.1,  4.3,  4.3,  4.4,  4.4,  4.5,  4.5,  4.6,  4.7},   
     { 4.4,  4.4,  4.3,  4.8,  5.0,  5.0,  5.1,  5.2,  5.3,  5.4,  5.6,  5.6,  5.6}   
     }; 

clrscr(); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*GET INPUTS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
tsp=ts/5.0; 
highvideo(); 
textbackground(YELLOW); 
window(10,5,80,25); 
textcolor(CYAN); 
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec"); 
window(15,10,80,25); 
textcolor(CYAN); 
cprintf("FINAL TIME                             "); 
scanf("%f",&tf); 
/*window(15,11,80,25); 
textcolor(GREEN); 
cprintf("FIRST ELEMENT OF GAIN MATRIX           "); 
scanf("%f", &kd1); 
window(15,12,80,25); 
cprintf("SECOND ELEMENT OF GAIN MATRIX          "); 
scanf("%f", &kd2); */ 
window(15,14,80,25); 
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) "); 
scanf("%f",&thf1); 
window(15,15,80,25); 
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)"); 
scanf("%f",&thf2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/* INITIALISE */ 
/*-------------------------------------------------------------------------------------------------------*/ 
thf1=(thf1*pi)/180.0; 
thf2=(thf2*pi)/180.0; 
if(thf1 < 0.0 || thf2 > 0.0) 
{ 
window(15,18,80,25); 
cprintf("GIVE CORRECT ANGLES                    "); 
goto END; 
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} 
a0=0.0; 
b0=0.0; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
pos1=0.0; 
pos2=0.0; 
nep=108.0/pi;         /*Normalisation factor for position error*/ 
nev=10.8/(pi);  /*Normalisation factor for error dot*/ 
dnc=255.0/5.6;          /*Denormalisation factor for voltage*/ 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ESTIMATE OF PARAMETERS */ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1cap=izz1cap+izz2cap+m2cap*(x2cap*x2cap+l1*l1)+m1cap*x1cap*x1cap; 
p2cap=2.0*m2cap*l1*x2cap; 
p3cap=m2cap*x2cap*x2cap+izz2cap; 
p4cap=v1cap; 
p5cap=v2cap; 
p6cap=g*(m1cap*x1cap+m2cap*l1); 
p7cap=m2cap*x2cap*g; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ACTUAL PARAMETERS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
window(15,19,80,25); 
cprintf("BUSY WITH CONTROL                      \n"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*SERVO LOOP*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for (;seg<=4;) 
{ 
for (;t<=tf;) 
{ 
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/* DESIRED POSITION,VELOCITY,ACCELERATION*/ 
if(k==5) 
{ 
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t); 
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t); 
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t); 
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t); 
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t); 
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t); 
t=t+ts; 
k=0; 
} 
error1=pos1d-pos1; 
vel1r=(vel1d + lambda1*error1); 
acc1r=(acc1d - lambda1*(vel1-vel1d)); 
e1=(vel1-vel1r);  

/*-------------------------------------------------------------------------------------------------------*/ 
/*LINK 2 */ 

/*-------------------------------------------------------------------------------------------------------*/ 
error2=pos2d-pos2; 
vel2r=(vel2d + lambda2*error2); 
acc2r=(acc2d - lambda2*(vel2-vel2d)); 
e2=(vel2-vel2r); 
ep1=(pos1d-pos1)*nep;  /*Normalised errors*/ 
ev1=(vel1d-vel1)*nev; 
ep2=(pos2d-pos2)*nep; 
ev2=(vel2d-vel2)*nev; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL THE ERROR*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ep1 <= 4.8){row=0;} 
if (-4.8 < ep1 && ep1 <= -3.6){row=1;} 
if (-3.6 < ep1 && ep1 <= -2.4){row=2;} 
if (-2.4 < ep1 && ep1 <= -1.2){row=3;} 
if (-1.2 < ep1 && ep1 <= -0.6){row=4;} 
if (-0.6 < ep1 && ep1 <= -0.1){row=5;} 
if (-0.1 < ep1 && ep1 <=  0.1){row=6;} 
if ( 0.1 < ep1 && ep1 <=  0.6){row=7;} 
if ( 0.6 < ep1 && ep1 <=  1.2){row=8;} 
if ( 1.2 < ep1 && ep1 <=  2.4){row=9;} 
if ( 2.4 < ep1 && ep1 <= 3.6){row=10;} 
if ( 3.6 < ep1 && ep1 <= 4.8){row=11;} 
if ( 4.8 < ep1){row=12;} 

/*SECOND LINK*/ 
if (ep2 <= 4.8){row2=0;} 
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if (-4.8 < ep2 && ep2 <= -3.6){row2=1;} 
if (-3.6 < ep2 && ep2 <= -2.4){row2=2;} 
if (-2.4 < ep2 && ep2 <= -1.2){row2=3;} 
if (-1.2 < ep2 && ep2 <= -0.6){row2=4;} 
if (-0.6 < ep2 && ep2 <= -0.1){row2=5;} 
if (-0.1 < ep2 && ep2 <=  0.1){row2=6;} 
if ( 0.1 < ep2 && ep2 <=  0.6){row2=7;} 
if ( 0.6 < ep2 && ep2 <=  1.2){row2=8;} 
if ( 1.2 < ep2 && ep2 <=  2.4){row2=9;} 
if ( 2.4 < ep2 && ep2 <= 3.6){row2=10;} 
if ( 3.6 < ep2 && ep2 <= 4.8){row2=11;} 
if ( 4.8 < ep2){row2=12;} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL EDOT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ev1 <= 4.8){col=0;} 
if (-4.8 < ev1 && ev1 <= -3.6){col=1;} 
if (-3.6 < ev1 && ev1 <= -2.4){col=2;} 
if (-2.4 < ev1 && ev1 <= -1.2){col=3;} 
if (-1.2 < ev1 && ev1 <= -0.6){col=4;} 
if (-0.6 < ev1 && ev1 <= -0.1){col=5;} 
if (-0.1 < ev1 && ev1 <=  0.1){col=6;} 
if ( 0.1 < ev1 && ev1 <=  0.6){col=7;} 
if ( 0.6 < ev1 && ev1 <=  1.2){col=8;} 
if ( 1.2 < ev1 && ev1 <=  2.4){col=9;} 
if ( 2.4 < ev1 && ev1 <= 3.6){col=10;} 
if ( 3.6 < ev1 && ev1 <= 4.8){col=11;} 
if ( 4.8 < ev1){col=12;} 

/*SECOND LINK*/ 
if (ev2 <= 4.8){col2=0;} 
if (-4.8 < ev2 && ev2 <= -3.6){col2=1;} 
if (-3.6 < ev2 && ev2 <= -2.4){col2=2;} 
if (-2.4 < ev2 && ev2 <= -1.2){col2=3;} 
if (-1.2 < ev2 && ev2 <= -0.6){col2=4;} 
if (-0.6 < ev2 && ev2 <= -0.1){col2=5;} 
if (-0.1 < ev2 && ev2 <=  0.1){col2=6;} 
if ( 0.1 < ev2 && ev2 <=  0.6){col2=7;} 
if ( 0.6 < ev2 && ev2 <=  1.2){col2=8;} 
if ( 1.2 < ev2 && ev2 <=  2.4){col2=9;} 
if ( 2.4 < ev2 && ev2 <= 3.6){col2=10;} 
if ( 3.6 < ev2 && ev2 <= 4.8){col2=11;} 
if ( 4.8 < ev2){col2=12;} 
count1=(lookt[row] [col])*dnc; 
count2=(lookt[row2] [col2])*dnc;   
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/*-------------------------------------------------------------------------------------------------------*/ 
/*TORQUE VALUES FOR LINK 1 */ 

/*-------------------------------------------------------------------------------------------------------*/ 
torque1=(((((24.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0; 
/*------------------------------------------------------------------------*/ 

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque2=(((((24.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*TORQUE VALUES FOR LINK 1 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque1=(p1cap+p2cap*cos(pos2))*acc1r+(p3cap+0.5*p2cap*cos(pos2))*acc2r+  

(p4cap-p2cap*sin(pos2)*vel2)*vel1r-0.5*p2cap*sin(pos2)*vel2*vel2r+  
 p6cap*cos(pos1)+(p7cap*cos(pos1+pos2))+(0.1498*acc1r)-kd1*e1+torque1; 

/*if(torque1 > (80.0*10.5*0.066)) 
{torque1=(80.0*10.5*0.066);} 
if(torque1 < (-80.0*10.5*0.066)) 
{torque1=-(80.0*10.5*0.066);}*/ 
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+  

 p6*cos(pos1)+(p7*cos(pos1+pos2)); 
con11= (p1+p2*cos(pos2)+0.1498); 
con12= (p3+0.5*p2*cos(pos2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque2=(0.5*p2cap*cos(pos2)+p3cap)*acc1r+p3cap*acc2r+(0.1498*acc2r)+ 
      0.5*p2cap*sin(pos2)*vel1*vel1r+p5cap*vel2r+p7cap*cos(pos1+pos2)-
kd2*e2+torque2; 
c2=      0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2); 
con21= (0.5*p2*cos(pos2)+p3); 
con22= (p3+0.1498); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*STORE VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if(k==4) 
{ 
error1s[n]=error1*180.0/pi; 
error2s[n]=error2*180.0/pi; 
n=n+1; 
} 
/*-------------------------------------------------------------------------------------------------------*/ 

/* W MATRIX */ 
/*-------------------------------------------------------------------------------------------------------*/ 
w11=acc1r; 
w12=(cos(pos2))*(acc1r+0.5*acc2r)-(0.5*sin(pos2)*vel2*(vel1r+vel2r))-
0.5*sin(pos2)*vel1*vel2r; 
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w13=acc2r; 
w14=vel1r; 
w16=cos(pos1); 
w17=cos(pos1+pos2); 
w22=0.5*(cos(pos2)*vel1r+sin(pos2)*vel1*vel1r); 
w23=acc1r+acc2r; 
w25=vel2r; 
w27=cos(pos1+pos2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*PCAPDOT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1capdot= -1.0*(gama1*w11*e1); 
p2capdot= -1.0*((gama2*w12*e1)+(gama2*w22*e2)); 
p3capdot= -1.0*((gama3*w13*e1)+(gama3*w23*e2)); 
p4capdot= -1.0*(gama4*w14*e1); 
p5capdot= -1.0*(gama5*w25*e2); 
p6capdot= -1.0*(gama6*w16*e1); 
p7capdot= -1.0*((gama7*w17*e1)+(gama7*w27*e2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*UPDATE THE ESTIMATED VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1cap=(tsp*p1capdot)+p1cap; 
p2cap=(tsp*p2capdot)+p2cap; 
p3cap=(tsp*p3capdot)+p3cap; 
p4cap=(tsp*p4capdot)+p4cap; 
p5cap=(tsp*p5capdot)+p5cap; 
p6cap=(tsp*p6capdot)+p6cap; 
p7cap=(tsp*p7capdot)+p7cap; 
/*-------------------------------------------------------------------------------------------------------*/ 

/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
acc2=(((torque1-c1)*con21)-((torque2-c2)*con11))/((con12*con21)-(con11*con22)); 
acc1=(((torque1-c1)*con22)-((torque2-c2)*con12))/((con11*con22)-(con12*con21)); 
vel1=acc1*tsp+vel1; 
vel2=acc2*tsp+vel2; 
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp; 
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp; 
k=k+1; 
} 
seg=seg+1; 
t=0.0; 
pos1o=pos1; 
pos2o=pos2;    
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/*-------------------------------------------------------------------------------------------------------*/ 
/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND 

SEGMENT*/ 
/*-------------------------------------------------------------------------------------------------------*/  

if(seg==2 || seg==4) 
{ 
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n; 
p2=2.0*m2n*l1*x2n; 
p3=m2n*x2n*x2n+izz2n; 
p4=v1; 
p5=v2; 
p6=g*(m1n*x1n+m2n*l1); 
p7=m2n*x2n*g; 
a0=thf1; 
b0=thf2; 
a3=-10.0*(thf1)/(tf*tf*tf); 
a4=15.0*(thf1)/(tf*tf*tf*tf); 
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=-10.0*(thf2)/(tf*tf*tf); 
b4=15.0*(thf2)/(tf*tf*tf*tf); 
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf); 
k=5; 
} 
if(seg==3) 
{ 
t=0.0; 
a0=0.0; 
b0=0.0; 
/*thf1=0.0; 
thf2=0.0; */ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
k=5; 
} 



 

228

} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*OPEN FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
er1=fopen("scerror1.dat","w+"); 
er2=fopen("scerror2.dat","w+"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*WRITE FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for(i=0;i<=(n-1);i++) 
{ 
fprintf(er1,"%f\n",error1s[i]); 
fprintf(er2,"%f\n",error2s[i]); 
} 
fcloseall(); 
END:; 
/*-------------------------------------------------------------------------------------------------------*/ 
}                             
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A.4 SOC FUZZY CONTROL CODE  

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For 
each setpoint the control loop is executed 5 times.*/ 
/*-------------------------------------------------------------------------------------------------------*/ 

/*SIMULATION*/ 
/* SOC FUZZY */ 

/*-------------------------------------------------------------------------------------------------------*/ 
#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <float.h> 
#define pi 3.142857 
/*-------------------------------------------------------------------------------------------------------*/ 

/* TRAJECTORY IS QUINTIC */ 
/*-------------------------------------------------------------------------------------------------------*/ 
void main() 
{ 
/*-------------------------------------------------------------------------------------------------------*/ 

/*FUZZY LOOK UP TABLE*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
float lookp[13] [13]={   

     {-6, -6, -6, -6, -6, -6, -6, -5, -4, -3, -2, -1,  0},   
     {-6, -6, -6, -6, -5, -4, -4, -4, -3, -2, -1,  0,  0},   
     {-6, -6, -6, -5, -4, -3, -3, -3, -2, -1,  0,  0,  1},   
     {-6, -6, -5, -4, -3, -2, -2, -2, -1,  0,  0,  1,  2},   
     {-6, -5, -4, -3, -2, -1, -1, -1,  0,  0,  1,  2,  3},   
     {-5, -4, -3, -2, -1, -1,  0,  0,  0,  1,  2,  3,  4},   
     {-5, -4, -3, -2, -1,  0,  0,  0,  1,  2,  3,  4,  5},   
     {-3, -2, -1,  0,  0,  0,  0,  1,  1,  2,  3,  4,  5},   
     {-2, -1,  0,  0,  0,  1,  1,  1,  2,  3,  4,  5,  6},   
     {-1,  0,  0,  0,  1,  2,  2,  2,  3,  4,  5,  6,  6},   
     { 0,  0,  0,  1,  2,  3,  3,  3,  4,  5,  6,  6,  6},   
     { 0,  0,  1,  2,  3,  4,  4,  4,  5,  6,  6,  6,  6},   
     { 0,  1,  2,  3,  4,  5,  6,  6,  6,  6,  6,  6,  6}   
     }; 

float lookt[13] [13]={   
     {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},   
     {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},   
     {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},   
     {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},   
     { 0.0,  0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},   
     { 1.0,  1.0,  0.0,  0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},   
     { 1.3,  1.2,  1.0,  0.8,  0.6,  0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},   
     { 2.0,  2.0,  1.9,  1.8,  1.8,  1.8,  1.8,  1.8,  1.5,  0.0, -0.3, -1.0, -0.8}, 
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     { 2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  1.2,  0.8,  0.0,  0.0},   
     { 2.0,  2.1,  2.3,  2.5,  2.5,  2.5,  2.6,  2.7,  2.8,  2.8,  2.9,  2.9,  3.0},   
     { 2.7,  2.7,  2.8,  3.1,  3.2,  3.3,  3.5,  3.6,  3.6,  3.8,  3.8,  3.9,  3.9},   
     { 3.6,  3.3,  3.7,  4.0,  4.1,  4.3,  4.3,  4.4,  4.4,  4.5,  4.5,  4.6,  4.7},   
     { 4.4,  4.4,  4.3,  4.8,  5.0,  5.0,  5.1,  5.2,  5.3,  5.4,  5.6,  5.6,  5.6}   
     }; 

/*float lookt[13] [13]={   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},  

                 {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0}   
     }; */  

float lookt2[13] [13]={   
     {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},   
     {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},   
     {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},   
     {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},   
     { 0.0,  0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},   
     { 1.0,  1.0,  0.0,  0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},   
     { 1.3,  1.2,  1.0,  0.8,  0.6,  0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},   
     { 2.0,  2.0,  1.9,  1.8,  1.8,  1.8,  1.8,  1.8,  1.5,  0.0, -0.3, -1.0, -0.8},   
     { 2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  2.0,  1.2,  0.8,  0.0,  0.0},   
     { 2.0,  2.1,  2.3,  2.5,  2.5,  2.5,  2.6,  2.7,  2.8,  2.8,  2.9,  2.9,  3.0},   
     { 2.7,  2.7,  2.8,  3.1,  3.2,  3.3,  3.5,  3.6,  3.6,  3.8,  3.8,  3.9,  3.9},   
     { 3.6,  3.3,  3.7,  4.0,  4.1,  4.3,  4.3,  4.4,  4.4,  4.5,  4.5,  4.6,  4.7},   
     { 4.4,  4.4,  4.3,  4.8,  5.0,  5.0,  5.1,  5.2,  5.3,  5.4,  5.6,  5.6,  5.6}   
     }; 

/*float lookt2[13] [13]={   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},  

                 {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
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     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0},   
     {0,0,0,0,0,0,0,0,0,0,0,0,0}   
     }; */  

int    n=0,i=0,j=0,k=5,row=0,row2=0,col=0,col2=0,rowp,row2p,colp,col2p,seg=1; 
float  tf,t=0.0,ts=0.003,tsp,g=9.8,a0=0.0,b0=0.0,pos1o,pos2o,vel1=0.0,vel2=0.0, 
       l1=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,pos1,pos2,p1,p2,p3,p4,p5,p6,p7, 
       izz2=0.09,c1,c2,con11,con12,con21,con22,error1s[5000],error2s[5000], 
       acc1,acc2,pos1d,pos2d,vel1d,vel2d,ep1=0.0,ep2=0.0,ev1=0.0,ev2=0.0, 
       izz1=0.09,count1,count2,m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14, 
       nep,nev,dnc,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16,ep1s=0.0, 
       ep2s=0.0,ki1=0.0,ki2=0.0, torque1,torque2,; 
FILE   *er1,*er2; 
clrscr(); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*GET INPUTS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
tsp=ts/5.0; 
highvideo(); 
textbackground(YELLOW); 
window(10,5,80,25); 
textcolor(CYAN); 
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec"); 
window(15,10,80,25); 
textcolor(CYAN); 
cprintf("FINAL TIME                             "); 
scanf("%f",&tf); 
window(15,14,80,25); 
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) "); 
scanf("%f",&thf1); 
window(15,15,80,25); 
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)"); 
scanf("%f",&thf2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/* INITIALISE */ 
/*-------------------------------------------------------------------------------------------------------*/ 
thf1=(thf1*pi)/180.0; 
thf2=(thf2*pi)/180.0; 
if(thf1 < 0.0 || thf2 > 0.0) 
{ 
window(15,18,80,25); 
cprintf("GIVE CORRECT ANGLES                    "); 
goto END; 
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} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
pos1=0.0; 
pos2=0.0; 
nep=1080.0/(pi);        /*Normalisation factor for position error*/ 
nev=1.0*10.8/pi;  /*Normalisation factor for error dot*/ 
dnc=255.0/6.0;       /*Denormalisation factor for voltage*/ 
/*-------------------------------------------------------------------------------------------------------*/ 

/*ACTUAL PARAMETERS*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
window(15,19,80,25); 
cprintf("BUSY WITH CONTROL                      \n"); 
a0=0.0; 
b0=0.0; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*SERVO LOOP*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for (;seg<=4;) 
{ 
for (;t<=tf;) 
{ 

/* DESIRED POSITION,VELOCITY,ACCELERATION*/ 
if(k==5) 
{ 
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t); 
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t); 
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t); 
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t); 
t=t+ts; 
k=0; 
} 
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ep1=(pos1d-pos1)*nep; 
ep2=(pos2d-pos2)*nep; 
ev1=(vel1d-vel1)*nev; 
ev2=(vel2d-vel2)*nev; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL THE ERROR*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ep1 <= -4.8){rowp=0;} 
if (-4.8 < ep1 && ep1 <= -3.6){rowp=1;} 
if (-3.6 < ep1 && ep1 <= -2.4){rowp=2;} 
if (-2.4 < ep1 && ep1 <= -1.2){rowp=3;} 
if (-1.2 < ep1 && ep1 <= -0.6){rowp=4;} 
if (-0.6 < ep1 && ep1 <= -0.1){rowp=5;} 
if (-0.1 < ep1 && ep1 <=  0.1){rowp=6;} 
if ( 0.1 < ep1 && ep1 <=  0.6){rowp=7;} 
if ( 0.6 < ep1 && ep1 <=  1.2){rowp=8;} 
if ( 1.2 < ep1 && ep1 <=  2.4){rowp=9;} 
if ( 2.4 < ep1 && ep1 <= 3.6){rowp=10;} 
if ( 3.6 < ep1 && ep1 <= 4.8){rowp=11;} 
if ( 4.8 < ep1){rowp=12;} 

/*SECOND LINK*/ 
if (ep2 <= -4.8){row2p=0;} 
if (-4.8 < ep2 && ep2 <= -3.6){row2p=1;} 
if (-3.6 < ep2 && ep2 <= -2.4){row2p=2;} 
if (-2.4 < ep2 && ep2 <= -1.2){row2p=3;} 
if (-1.2 < ep2 && ep2 <= -0.6){row2p=4;} 
if (-0.6 < ep2 && ep2 <= -0.1){row2p=5;} 
if (-0.1 < ep2 && ep2 <=  0.1){row2p=6;} 
if ( 0.1 < ep2 && ep2 <=  0.6){row2p=7;} 
if ( 0.6 < ep2 && ep2 <=  1.2){row2p=8;} 
if ( 1.2 < ep2 && ep2 <=  2.4){row2p=9;} 
if ( 2.4 < ep2 && ep2 <= 3.6){row2p=10;} 
if ( 3.6 < ep2 && ep2 <= 4.8){row2p=11;} 
if ( 4.8 < ep2){row2p=12;} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL EDOT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ev1 <= -4.8){colp=0;} 
if (-4.8 < ev1 && ev1 <= -3.6){colp=1;} 
if (-3.6 < ev1 && ev1 <= -2.4){colp=2;} 
if (-2.4 < ev1 && ev1 <= -1.2){colp=3;} 
if (-1.2 < ev1 && ev1 <= -0.6){colp=4;} 
if (-0.6 < ev1 && ev1 <= -0.1){colp=5;} 
if (-0.1 < ev1 && ev1 <=  0.1){colp=6;} 
if ( 0.1 < ev1 && ev1 <=  0.6){colp=7;} 
if ( 0.6 < ev1 && ev1 <=  1.2){colp=8;} 
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if ( 1.2 < ev1 && ev1 <=  2.4){colp=9;} 
if ( 2.4 < ev1 && ev1 <= 3.6){colp=10;} 
if ( 3.6 < ev1 && ev1 <= 4.8){colp=11;} 
if ( 4.8 < ev1){colp=12;} 

/*SECOND LINK*/ 
if (ev2 <= -4.8){col2p=0;} 
if (-4.8 < ev2 && ev2 <= -3.6){col2p=1;} 
if (-3.6 < ev2 && ev2 <= -2.4){col2p=2;} 
if (-2.4 < ev2 && ev2 <= -1.2){col2p=3;} 
if (-1.2 < ev2 && ev2 <= -0.6){col2p=4;} 
if (-0.6 < ev2 && ev2 <= -0.1){col2p=5;} 
if (-0.1 < ev2 && ev2 <=  0.1){col2p=6;} 
if ( 0.1 < ev2 && ev2 <=  0.6){col2p=7;} 
if ( 0.6 < ev2 && ev2 <=  1.2){col2p=8;} 
if ( 1.2 < ev2 && ev2 <=  2.4){col2p=9;} 
if ( 2.4 < ev2 && ev2 <= 3.6){col2p=10;} 
if ( 3.6 < ev2 && ev2 <= 4.8){col2p=11;} 
if ( 4.8 < ev2){col2p=12;} 
lookt[row][col]=lookt[row][col]+lookp[rowp][colp]; 
if(lookt[row][col]>6.0) 
{lookt[row][col]=6.0;} 
if(lookt[row][col]<-6.0) 
{lookt[row][col]=-6.0;} 
lookt2[row2][col2]=lookt2[row2][col2]+lookp[row2p][col2p]; 
if(lookt2[row2][col2]>6.0) 
{lookt2[row2][col2]=6.0;} 
if(lookt2[row2][col2]<-6.0) 
{lookt2[row2][col2]=-6.0;} 
ep1=(pos1d-pos1)*nep;  /*Normalised errors*/ 
ev1=(vel1d-vel1)*nev; 
ep1s=ep1s+(pos1d-pos1); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LINK 2 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
ep2=(pos2d-pos2)*nep; 
ev2=(vel2d-vel2)*nev; 
ep2s=ep2s+(pos2d-pos2); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL THE ERROR*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ep1 <= -4.8){row=0;} 
if (-4.8 < ep1 && ep1 <= -3.6){row=1;} 
if (-3.6 < ep1 && ep1 <= -2.4){row=2;} 
if (-2.4 < ep1 && ep1 <= -1.2){row=3;} 
if (-1.2 < ep1 && ep1 <= -0.6){row=4;} 
if (-0.6 < ep1 && ep1 <= -0.1){row=5;} 
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if (-0.1 < ep1 && ep1 <=  0.1){row=6;} 
if ( 0.1 < ep1 && ep1 <=  0.6){row=7;} 
if ( 0.6 < ep1 && ep1 <=  1.2){row=8;} 
if ( 1.2 < ep1 && ep1 <=  2.4){row=9;} 
if ( 2.4 < ep1 && ep1 <= 3.6){row=10;} 
if ( 3.6 < ep1 && ep1 <= 4.8){row=11;} 
if ( 4.8 < ep1){row=12;} 

/*SECOND LINK*/ 
if (ep2 <= -4.8){row2=0;} 
if (-4.8 < ep2 && ep2 <= -3.6){row2=1;} 
if (-3.6 < ep2 && ep2 <= -2.4){row2=2;} 
if (-2.4 < ep2 && ep2 <= -1.2){row2=3;} 
if (-1.2 < ep2 && ep2 <= -0.6){row2=4;} 
if (-0.6 < ep2 && ep2 <= -0.1){row2=5;} 
if (-0.1 < ep2 && ep2 <=  0.1){row2=6;} 
if ( 0.1 < ep2 && ep2 <=  0.6){row2=7;} 
if ( 0.6 < ep2 && ep2 <=  1.2){row2=8;} 
if ( 1.2 < ep2 && ep2 <=  2.4){row2=9;} 
if ( 2.4 < ep2 && ep2 <= 3.6){row2=10;} 
if ( 3.6 < ep2 && ep2 <= 4.8){row2=11;} 
if ( 4.8 < ep2){row2=12;} 
/*-------------------------------------------------------------------------------------------------------*/ 

/*LABEL EDOT*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if (ev1 <= -4.8){col=0;} 
if (-4.8 < ev1 && ev1 <= -3.6){col=1;} 
if (-3.6 < ev1 && ev1 <= -2.4){col=2;} 
if (-2.4 < ev1 && ev1 <= -1.2){col=3;} 
if (-1.2 < ev1 && ev1 <= -0.6){col=4;} 
if (-0.6 < ev1 && ev1 <= -0.1){col=5;} 
if (-0.1 < ev1 && ev1 <=  0.1){col=6;} 
if ( 0.1 < ev1 && ev1 <=  0.6){col=7;} 
if ( 0.6 < ev1 && ev1 <=  1.2){col=8;} 
if ( 1.2 < ev1 && ev1 <=  2.4){col=9;} 
if ( 2.4 < ev1 && ev1 <= 3.6){col=10;} 
if ( 3.6 < ev1 && ev1 <= 4.8){col=11;} 
if ( 4.8 < ev1){col=12;} 

/*SECOND LINK*/ 
if (ev2 <= -4.8){col2=0;} 
if (-4.8 < ev2 && ev2 <= -3.6){col2=1;} 
if (-3.6 < ev2 && ev2 <= -2.4){col2=2;} 
if (-2.4 < ev2 && ev2 <= -1.2){col2=3;} 
if (-1.2 < ev2 && ev2 <= -0.6){col2=4;} 
if (-0.6 < ev2 && ev2 <= -0.1){col2=5;} 
if (-0.1 < ev2 && ev2 <=  0.1){col2=6;} 
if ( 0.1 < ev2 && ev2 <=  0.6){col2=7;} 
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if ( 0.6 < ev2 && ev2 <=  1.2){col2=8;} 
if ( 1.2 < ev2 && ev2 <=  2.4){col2=9;} 
if ( 2.4 < ev2 && ev2 <= 3.6){col2=10;} 
if ( 3.6 < ev2 && ev2 <= 4.8){col2=11;} 
if ( 4.8 < ev2){col2=12;} 
count1=(lookt[row] [col])*dnc; 
count2=(lookt2[row2] [col2])*dnc; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*TORQUE VALUES FOR LINK 1 */ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque1=(((((20.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0+ki1*ep1s; 
/*if (torque1>55.44) 
{torque1=55.44;} 
if (torque1<-55.44) 
{torque1=-55.44;} */ 
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+  

 p6*cos(pos1)+(p7*cos(pos1+pos2)); 
con11= (p1+p2*cos(pos2)+0.1498); 
con12= (p3+0.5*p2*cos(pos2)); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
torque2=(((((20.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0+ki2*ep2s; 
/*if (torque2>48.51) 
{torque2=48.51;} 
if (torque2<-48.51) 
{torque2=-48.51;}  */ 
c2=      0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2); 
con21= (0.5*p2*cos(pos2)+p3); 
con22= (p3+0.1498); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*STORE VALUES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
if(k==4) 
{ 
error1s[n]=ep1*180.0/(pi*nep); 
error2s[n]=ep2*180.0/(pi*nep); 
n=n+1; 
ep1s=0.0; 
ep2s=0.0; 
}  

/*-------------------------------------------------------------------------------------------------------*/ 
/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22); 



 

237

acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21); 
vel1=acc1*tsp+vel1; 
vel2=acc2*tsp+vel2; 
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp; 
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp; 
k=k+1; 
} 
t=0.0; 
pos1o=pos1; 
pos2o=pos2; 
seg=seg+1; 
/*-------------------------------------------------------------------------------------------------------*/ 

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND 
SEGMENT*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
if(seg==2 || seg==4) 
{ 
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n; 
p2=2.0*m2n*l1*x2n; 
p3=m2n*x2n*x2n+izz2n; 
p4=v1; 
p5=v2; 
p6=g*(m1n*x1n+m2n*l1); 
p7=m2n*x2n*g; 
a0=thf1; 
b0=thf2; 
a3=-10.0*(thf1)/(tf*tf*tf); 
a4=15.0*(thf1)/(tf*tf*tf*tf); 
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=-10.0*(thf2)/(tf*tf*tf); 
b4=15.0*(thf2)/(tf*tf*tf*tf); 
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf); 
k=5; 
} 
if(seg==3) 
{ 
t=0.0; 
a0=0.0; 
b0=0.0; 
/*thf1=0.0; 
thf2=0.0;  */ 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
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b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
k=5; 
} 
}  

/*-------------------------------------------------------------------------------------------------------*/ 
/*OPEN FILES*/ 

/*-------------------------------------------------------------------------------------------------------*/ 
er1=fopen("scerror1.dat","w+"); 
er2=fopen("scerror2.dat","w+"); 
/*-------------------------------------------------------------------------------------------------------*/ 

/*WRITE FILES*/ 
/*-------------------------------------------------------------------------------------------------------*/ 
for(i=0;i<=(n-1);i++) 
{ 
fprintf(er1,"%f\n",error1s[i]); 
fprintf(er2,"%f\n",error2s[i]); 
} 
/*for(i=0;i<=12;i++) 
{ 
for(j=0;j<=12;j++) 
{ 
fprintf(er1,"%f\n",lookt[i][j]); 
fprintf(er2,"%f\n",lookt2[i][j]); 
} 
} */ 
fcloseall(); 
END:; 
/*-------------------------------------------------------------------------------------------------------*/ 
}          
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A.5 ADAPTIVE FUZZY CONTROL CODE  

% Declare and initialize the variables 
clear error1s; 
clear error2s; 
ts=0.003; 
tsp=ts/5.0; 
tf=2.0; 
thf1=45; 
thf2=-45; 
n=1; 
i=0; 
k=5; 
seg=1; 
t=0.0; 
g=9.8; 
a0=0; 
b0=0; 
vel1=0; 
vel2=0; 
l1=0.26; 
izz2=0.09; 
izz1=0.09; 
m1=2.0; 
m2=2.0; 
v1=2.5; 
v2=2.5; 
x1=0.13; 
x2=0.14; 
izz1n=1.5; 
izz2n=0.09; 
m1n=3.0; 
m2n=3.0; 
x1n=0.15; 
x2n=0.16; 
ki1=6000; 
ki2=6000; 
ep1s=0; 
ep2s=0; 
thf1=(thf1*pi)/180.0; 
thf2=(thf2*pi)/180.0; 
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
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b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
pos1=0.0; 
pos2=0.0; 
nep=1080.0/(6.0*pi);        %Normalisation factor for position error*/ 
nev=1.0*10.8/(6.0*pi);     %Normalisation factor for error dot*/ 
dnc=3*255.0;                     %Denormalisation factor for voltage*/ 
%--------------------------------------------------------------------------------------------------------- 

%ACTUAL PARAMETERS*/ 
%--------------------------------------------------------------------------------------------------------- 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
a0=0.0; 
b0=0.0; 
%--------------------------------------------------------------------------------------------------------- 

%SERVO LOOP*/ 
%--------------------------------------------------------------------------------------------------------- 
while seg <= 4,  

while t <= tf,  

% DESIRED POSITION, VELOCITY, ACCELERATION*/ 
if k==5, 
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t); 
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t); 
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t); 
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t); 
t=t+ts; 
k=0; 
end 
ep1=(pos1d-pos1)*nep;  %Normalised errors*/ 
ev1=(vel1d-vel1)*nev; 
ep1s=ep1s+(pos1d-pos1); 
%--------------------------------------------------------------------------------------------------------- 

%LINK 2 */ 
ep2=(pos2d-pos2)*nep; 
ev2=(vel2d-vel2)*nev; 
ep2s=ep2s+(pos2d-pos2); 
%--------------------------------------------------------------------------------------------------------- 
if abs(ep1)<0.5 & abs(ev1)<0.5, 
    ep1=2*ep1; 
    ev1=2*ev1; 
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end 
if abs(ep2)<0.5 & abs(ev2)<0.5, 
    ep2=2*ep2; 
    ev2=2*ev2; 
end 
%--------------------------------------------------------------------------------------------------------- 
u1=[ep1  
    ev1]; 
u2=[ep2  
    ev2]; 
count1=evalfis(u1,x1x); 
count2=evalfis(u2,x1x); 
%alpha1=evalfis(u1,x2x); 
%alpha2=evalfis(u2,x2x); 
%--------------------------------------------------------------------------------------------------------- 
if abs(ep1)<0.5 & abs(ev1)<0.5, 
    alpha1=alpha1;%/2; 
end 
if abs(ep2)<0.5 & abs(ev2)<0.5, 
    alpha2=alpha2;%/2; 
end 
%---------------------------------------------------------------------------------------------------------  

count1=count1*dnc;%*alpha1; 
count2=count2*dnc;%*alpha2; 
%--------------------------------------------------------------------------------------------------------- 
if abs(ep1)<0.5 & abs(ev1)<0.5, 
    ep1=ep1/2; 
    ev1=ev1/2; 
end 
if abs(ep2)<0.5 & abs(ev2)<0.5, 
    ep2=ep2/2; 
    ev2=ev2/2; 
end 
%--------------------------------------------------------------------------------------------------------- 

%TORQUE VALUES FOR LINK 1 */ 
%--------------------------------------------------------------------------------------------------------- 
torque1=(((((20.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0+ki1*ep1s; 
c1= (p4-p2*sin(pos2)*vel2)*vel1-
0.5*p2*sin(pos2)*vel2*vel2+p6*cos(pos1)+(p7*cos(pos1+pos2)); 
con11= (p1+p2*cos(pos2)+0.1498); 
con12= (p3+0.5*p2*cos(pos2)); 
%--------------------------------------------------------------------------------------------------------- 

%CALCULATE ESTIMATED TORQUE FOR LINK 2*/ 
%--------------------------------------------------------------------------------------------------------- 
torque2=(((((20.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0+ki2*ep2s; 
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c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2); 
con21= (0.5*p2*cos(pos2)+p3); 
con22= (p3+0.1498); 
%--------------------------------------------------------------------------------------------------------- 

%STORE VALUES*/ 
%--------------------------------------------------------------------------------------------------------- 
if k==4, 
error1s(n)=ep1*180.0/(pi*nep); 
error2s(n)=ep2*180.0/(pi*nep); 
n=n+1; 
ep1s=0.0; 
ep2s=0.0; 
end 
%--------------------------------------------------------------------------------------------------------- 

% CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/ 
%--------------------------------------------------------------------------------------------------------- 
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22); 
acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21); 
vel1=acc1*tsp+vel1; 
vel2=acc2*tsp+vel2; 
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp; 
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp; 
k=k+1; 
end 
t=0.0; 
pos1o=pos1; 
pos2o=pos2; 
seg=seg+1; 
%--------------------------------------------------------------------------------------------------------- 

%CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND 
SEGMENT*/ 

%--------------------------------------------------------------------------------------------------------- 
if seg==2 | seg==4,  

p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n; 
p2=2.0*m2n*l1*x2n; 
p3=m2n*x2n*x2n+izz2n; 
p4=v1; 
p5=v2; 
p6=g*(m1n*x1n+m2n*l1); 
p7=m2n*x2n*g; 
a0=thf1; 
b0=thf2; 
a3=-10.0*(thf1)/(tf*tf*tf); 
a4=15.0*(thf1)/(tf*tf*tf*tf); 
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf); 
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b3=-10.0*(thf2)/(tf*tf*tf); 
b4=15.0*(thf2)/(tf*tf*tf*tf); 
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf); 
k=5; 
end 
if seg==3,  

    t=0.0; 
a0=0.0; 
b0=0.0; 
%thf1=0.0; 
%thf2=0.0;  
a3=10.0*(thf1)/(tf*tf*tf); 
a4=-15.0*(thf1)/(tf*tf*tf*tf); 
a5=6.0*(thf1)/(tf*tf*tf*tf*tf); 
b3=10.0*(thf2)/(tf*tf*tf); 
b4=-15.0*(thf2)/(tf*tf*tf*tf); 
b5=6.0*(thf2)/(tf*tf*tf*tf*tf); 
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1; 
p2=2.0*m2*l1*x2; 
p3=m2*x2*x2+izz2; 
p4=v1; 
p5=v2; 
p6=g*(m1*x1+m2*l1); 
p7=m2*x2*g; 
k=5; 
end 
end 
%--------------------------------------------------------------------------------------------------------- 

%OPEN FILES*/ 
%--------------------------------------------------------------------------------------------------------- 
er1=fopen('f:\back\output\scerror1.dat','w'); 
er2=fopen('f:\back\output\scerror2.dat','w');  

%--------------------------------------------------------------------------------------------------------- 
%WRITE FILES*/ 

%--------------------------------------------------------------------------------------------------------- 
error1s=error1s'; 
error2s=error2s'; 
%i=1; 
%while i<n, 
fprintf(er1,'%2.5f \n',error1s); 
fprintf(er2,'%2.5f \n',error2s); 
%i=i+1; 
%end 
fclose(er1); 
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fclose(er2);  

%---------------------------------------------------------------------------------------------------------          
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