
Conventional, Adaptive and Fuzzy Control of

Robot Manipulators

THESIS

Submitted in partial fulfillment

 of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

Sudeept Mohan

Under the Supervision of

Prof. Surekha Bhanot

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2007

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

C E R T I F I C A T E

This is to certify that the thesis entitled Conventional, Adaptive and Fuzzy

Control of Robot Manipulators

submitted by Sudeept Mohan, ID. No.

1994PHXF011 for award of Ph.D. Degree of the Institute, embodies original work

done by him under my supervision.

(Signature in full of the supervisor)

DR. SUREKHA BHANOT

Professor

Birla Institute of Technology and science

Pilani 333 031 (Rajasthan) INDIA

Date:

Place: Pilani

i

ABSTRACT

The problem of robot manipulator control is a complex and challenging task. The

complexity and challenge arise mainly from the fact that the accurate manipulator

dynamic model is difficult to formulate and the manipulator itself might be working in an

environment, where it is required to pick different and unknown loads at different times.

Under these circumstances, accurate and high-speed motion control of manipulator is a

difficult task. Many different control strategies have been proposed in the past to achieve

this goal, and it is presently an active area of research. These control strategies range from

conventional to adaptive to soft computing techniques like artificial neural networks,

fuzzy, genetic algorithms and their combinations.

In this thesis a simulation study of these different control strategies has been undertaken.

First the conventional control strategies like the non-model based PD and PID, and model

based strategies like, Computed Torque (CT), Feed Forward Inverse Dynamics (FFID)

and Critically Damped Inverse Dynamics (CDID) control were studied. These controllers

were tested against different trajectories and also for the case where manipulator

parameters change during motion due to picking up of payload. It was seen that model

based controllers give good performance only if the model parameters are known

accurately. It was also seen that the performance of controller improves if we use

reference or desired trajectory values for model calculation rather than the actual

trajectory values which are obtained from the sensors.

A modification is proposed to the model based control strategies in terms of introduction

of modified integral error compensation. The integral action sums the errors for every five

iterations of control loop for a given set point. When the set point changes, the error

summation is reset to zero. It was seen that the performance of model based controllers

improved with inclusion of modified integral action.

Next some adaptive control algorithms for manipulator control were studied. The

advantage of adaptive approach is that the accuracy of a manipulator carrying unknown

load improves with time because the adaptation mechanism keeps extracting the

parameter information from tracking errors. The adaptive controllers studied were

Adaptive Critically Damped Inverse Dynamics Controller (ACDID), Model Reference

Adaptive Controller (MRAC) and Decentralized Adaptive Controller (DAC). These

controllers were also tested for different trajectories and different situations like cold start

(no initial estimate of parameters available), warm start (some rough initial estimate of

parameters available) and manipulator picking unknown load during the course of

ii

motion. It was seen that adaptive controllers give best performance in face of parameter

variations. Moreover, the performance is better if some initial estimate of manipulator

parameters is available as in case of warm start. Like the conventional controllers these

adaptive controllers were also tested for effect of including modified integral error

compensation in the control law. It was observed that the performance of adaptive

controllers also improves with addition of the modified integral action.

Finally, many different Fuzzy control algorithms for manipulator control were studied.

Different hybrid fuzzy control algorithms were tested, which are essentially combinations

of conventional or adaptive control algorithms with a lookup table based fuzzy controller.

It was found that hybrid fuzzy plus conventional controllers provide performance

comparable to adaptive controllers at lesser computational cost.

The Self Organizing Fuzzy Controller (SOC), which builds up the look up table, based on

trajectory errors through a modifier algorithm was investigated. It was found that this

controller gave best performance amongst all the fuzzy controllers studied in this thesis.

The Self Tuning Fuzzy controller (STFC), which changes the output denormalization

factor depending on the current trajectory errors, was also investigated. Its performance

was not found to be as good as that of Self Organizing Fuzzy controller; however, the

overall manipulator motion is smoother for this controller. This is because the controller

is not based on lookup table. A modification to the STFC is suggested in terms of

changing both the input and output gains by zooming the universe of discourse. This

modified controller is known as Coarse/Fine Adaptive Fuzzy controller (CFAF). It was

found that CFAF gives better performance than STFC although it is still not as good as

SOC. Lastly a new hybrid Fuzzy plus Integral Error controller (HFIE) was investigated.

The modified integral action used for this controller was the same as that used earlier for

conventional and adaptive controllers. It was found that this simple controller gives a very

good performance, next only to SOC and better than STFC or CFAF.

Amongst all the controllers investigated it was found that the hybrid Adaptive Critically

Damped Inverse Dynamics (ACDID) + Fuzzy controller gives the best performance.

It is our view that some of the control strategies and techniques that have been extensively

investigated for manipulator control in this thesis can also be used in fields like Process

control systems which exhibit nonlinear, nonstationary behavior and are difficult to model

and control. Experimental implementation of various control schemes studied in this

thesis is also recommended for future work.

iii

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Prof. Surekha Bhanot for her valuable

guidance, encouragement and moral support. It has been a great pleasure to be associated

with her on this work.

Next I want to thank Prof. I.J. Nagrath who introduced me to the field of robotics. This

work was started under his guidance and he has been a role model and a great source of

encouragement to me.

Special thanks are due to Prof. L. K. Maheshwari, Vice Chancellor, Prof. K. E. Raman,

Deputy Director, Prof. V. S. Rao Deputy Director, Prof. R. Prakash, Dean, Research and

Consultancy Division, for giving me an opportunity and encouragement for completing

this thesis. Thanks are also due to Prof. R. K. Mittal for providing valuable comments

while going through initial drafts of the thesis. I sincerely acknowledge the help received

from Prof. J. P. Misra, Unit Chief, Information Processing center Unit. He helped me

with suggestions on trying out various new control strategies.

Thanks are also due to Prof. Sanjoy Roy and Prof. H.V. Manjunath for their critical

comments, which helped me improve the quality of manuscript.

I would also like to thank Prof. S. Balasubramanium and Prof. S. Gurunarayanan, Dean,

Admissions, for their constant support.

I received encouragements and support from my colleagues namely Dr. Navneet Goyal,

and Mr.Yashvardhan Sharma. I express sincere thanks to them.

Special thanks are due to Dr. Dinesh Saini, who helped me in various stages of the thesis.

He constantly exhorted me to finish this mammoth task and made me believe that I can

do it.

Lastly I also thank my ex-colleagues and friends Mr. Puneet Teja, Mr. Sartaj Singh and

Mr. R. R. Ulanganathan for making the time spent at Center for Robotics and Intelligent

Systems (CRIS) so memorable.

iv

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS iii

CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES xv

LIST OF ABBREVIATIONS xviii

CHAPTER I INTRODUCTION 1

1.1 Objectives 6

1.2 Organization of Thesis 7

CHAPTER II LITERATURE REVIEW 9

 2.0 Introduction 9

2.1 Conventional Control 10

2.2 Adaptive Control 13

2.3 Fuzzy Control 20

2.4 Motivation for the Present Study 25

2.5 Concluding Remarks 27

CHAPTER III ROBOT DYNAMICS AND ISSUES IN CONTROL 28

 3.0 Introduction 28

3.1 Manipulator Dynamics Equations 29

3.2 Two link Manipulator Dynamics 31

3.3 Actuator Dynamics 38

3.4 Error Norms 39

3.5 Concluding Remarks 40

v

CHAPTER IV CONVENTIONAL CONTROL OF ROBOT

MANIPULATORS

41

 4.0 Introduction 41

4.1 Linear Control of Manipulators 42

4.2 Non linear Control of Manipulators 48

4.2.1 Computed Torque Control (CT) 49

 4.2.2 Feed Forward Inverse Dynamics (FFID) Control 52

 4.2.3 Critically Damped Inverse Dynamics (CDID) Control 56

 4.2.4 Pure Feed Forward Controller 61

 4.2.5 Comments on Performance of Various Model Based Controllers 62

4.3 Effect of Parameter Variation on Controller Performance 65

 4.3.1 Test Trajectories and Parameter Values 65

 4.3.2 PD / PID Controllers 68

 4.3.3 Computed Torque Control 72

 4.3.4 FFID Control 74

 4.3.5 CDID Control 75

 4.3.6 Comparison of Performance 77

4.4 Effect of Adding Integral Compensation to Model Based Controllers 78

 4.4.1 Computed Torque + Integral Error Control 79

 4.4.2 Feed Forward Inverse Dynamics + Integral Error Control 81

 4.4.3 Critically Damped Inverse Dynamics + Integral Error Control 83

 4.4.4 Comparison of Performance 85

 4.5 Concluding Remarks 86

CHAPTER V ADAPTIVE CONTROL OF ROBOT

MANIPULATORS

87

 5.0 Introduction 87

5.1 Issues in Adaptive Control of Manipulators 89

5.2 Testing Method 89

5.3 Adaptive Computed Torque Controller 92

vi

5.4 Adaptive Critically Damped Inverse Dynamics Controller (ACDID) 93

5.5 Model Reference Adaptive Controller (MRAC) 99

5.6 Decentralized Adaptive Controller (DAC) 106

5.7 Comparison of Performance 112

5.8 Concluding Remarks 113

CHAPTER VI FUZZY CONTROL OF ROBOT MANIPULATORS 115

 6.0 Introduction 115

 6.1.Pure Fuzzy Control 118

 6.2 Hybrid Fuzzy Control 122

 6.2.1 Fuzzy Plus Computed Torque Controller 123

 6.2.2 Fuzzy Plus FFID Controller 125

 6.2.3 Fuzzy Plus CDID Controller 126

 6.2.4 Fuzzy Plus ACDID Controller 128

 6.2.5 Fuzzy Plus MRAC 130

 6.2.6 Fuzzy Plus DAC 132

 6.2.7 Comparison of Performance 134

 6.3 Self Organizing Controller (SOC) 136

 6.3.1 Pure Fuzzy (Fixed Parameters) 139

 6.3.2 SOC (Fixed Parameters, Zero LUT) 140

 6.3.3 SOC (Fixed Parameters, Nonzero LUT) 142

 6.3.4 Pure Fuzzy (Changing Parameters) 143

 6.3.5 SOC (Changing Parameters, Zero LUT) 145

 6.3.6 SOC (Changing Parameters, Nonzero LUT) 146

 6.3.7 Comparison of Performance 148

 6.4 Self Tuning (Adaptive) Fuzzy Controller (STFC) 149

6.4.1 Pure Fuzzy (Fixed Parameters) 153

6.4.2 Adaptive Fuzzy (Fixed Parameters) 155

6.4.3 Pure Fuzzy (Changing Parameters) 158

6.4.4.Adaptive Fuzzy (Changing Parameters) 160

6.4.5 Comparison of Performance 163

vii

 6.5 Hybrid Fuzzy + Integral Error Controller (HFIE) 163

6.5.1 HFIE Controller (Fixed Parameters) 165

6.5.2 HFIE Controller (Changing Parameters) 168

6.5.3 Comparison of Performance 171

 6.6 Coarse/Fine Adaptive Fuzzy Controller (CFAF) 171

 6.6.1 Coarse/Fine Adaptive Fuzzy Controller (Fixed Parameters) 172

 6.6.2 Coarse/Fine Adaptive Fuzzy Controller (Changing Parameters) 175

 6.6.3 Comparison of Performance 178

 6.7 Concluding Remarks 178

CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS 179

7.1 Conclusions 179

7.2 Summary of contributions 185

7.3 Recommendations for future work 185

LIST OF PUBLICATIONS 187

REFERENCES 188

APPENDIX A - C/MATLAB CODES FOR SOME SAMPLE

 PROGRAMS 208

A.1 CDID CONTROL CODE 208

 A.2 ACDID CONTROL CODE 214

 A.3 ACDID+FUZZY CONTROL CODE 220

 A.4 SOC FUZZY CONTROL CODE 229

 A.5 ADAPTIVE FUZZY CONTROL CODE 239

Brief Biography of the Supervisor 245

Brief Biography of the Candidate 245

viii

LIST OF FIGURES

1.1

The CRS A255 articulated manipulator 2

2.2.1

Block diagram of Adaptive controller 14

3.1

A serial manipulator, the ABB IRB1400, and a parallel manipulator,

the ABB IRB940 Tricept. 28

3.2.1

Manipulator used for experiments with frames attached 32

4.1

General structure of robot control system 41

4.1.1

Block diagram of fixed proportional plus derivative plus integral

(PID) feedback control 43

4.1.2(a)

Desired trajectory 1 (Fixed Parameters) 44

4.1.2(b)

Desired trajectory 2 (Fixed Parameters) 44

4.1.3(a)

Errors for PD control (Trajectory 1, Fixed Parameters) 45

4.1.3(b)

Errors for PD control (Trajectory 2, Fixed Parameters) 45

4.1.4(a)

Errors for PID control (Trajectory 1, Fixed Parameters) 47

4.1.4(b)

Errors for PID control (Trajectory 2, Fixed Parameters) 47

4.1.4(c)

Errors for PID Control with 5IK (Trajectory 1) 48

4.2.1.1

Block diagram of Computed torque control 49

4.2.1.2(a)

Errors for Computed torque control (Trajectory 1, Exact model) 50

4.2.1.2(b)

Errors for Computed torque control (Trajectory2, Exact model) 50

4.2.1.2(c)

Errors for Computed torque control (Trajectory1, Inexact model) 51

4.2.1.2(d)

Errors for Computed torque control (Trajectory2, Inexact model) 51

4.2.2.1

Block diagram of Feed Forward Inverse Dynamics Control 52

4.2.2.2(a)

Errors for FFID Control (Exact model, Trajectory1) 53

4.2.2.2(b)

Errors for FFID Control (Exact model, Trajectory2) 54

4.2.2.2(c)

Errors for FFID Control (Inexact model, Trajectory1) 55

4.2.2.2(d)

Errors for FFID Control (Inexact model, Trajectory2) 55

4.2.3.1

Block diagram of Critically damped inverse dynamics control 57

4.2.3.2(a)

Errors for CDID Control (Exact model, Trajectory1) 58

4.2.3.2(b)

Errors for CDID Control (Exact model, Trajectory2) 59

4.2.3.2(c)

Errors for CDID Control (Inexact model, Trajectory1) 60

ix

4.2.3.2(d)

Errors for CDID Control (Inexact model, Trajectory2) 61

4.2.5.1

Software Simulation Algorithm Flowchart 64

4.3.1.1(a)

Desired Trajectory 1 (Changing Parameters) 66

4.3.1.1(b)

Desired Trajectory 2 (Changing Parameters) 66

4.3.2.1(a)

PD Control errors for Trajectory 1 (Changing Parameters) 68

4.3.2.1(b)

PD Control errors for Trajectory 2 (Changing Parameters) 68

4.3.2.2(a)

PID Control errors for Trajectory 1(Changing Parameters) 69

4.3.2.2(b)

PID Control errors for Trajectory 2 (Changing Parameters) 70

4.3.2.2(c)

PID Control errors for Trajectory 2 with KI=3.25 (Changing

Parameters) 70

4.3.2.2(d)

Modified PID Control errors for Trajectory 1 (Changing Parameters) 71

4.3.2.2(e)

Modified PID Control errors for Trajectory 2 (Changing Parameters) 72

4.3.3.1(a)

Computed Torque Control errors for Trajectory 1 (Changing

Parameters) 73

4.3.3.1(b)

Computed Torque Control errors for Trajectory 2 (Changing

Parameters) 73

4.3.4.1(a)

FFID Control errors for Trajectory 1 (Changing Parameters) 74

4.3.4.1(b)

FFID Control errors for Trajectory 2 (Changing Parameters) 75

4.3.5.1(a)

CDID Control errors for Trajectory 1 (Changing Parameters) 76

4.3.5.1(b)

CDID Control errors for Trajectory 2 (Changing Parameters) 76

4.4.1.1

Block diagram of Computed Torque + Integral Error Control 79

4.4.1.2(a)

CT + Integral Error Control errors for Trajectory 1 80

4.4.1.2(b)

CT + Integral Error Control errors for Trajectory 2 80

4.4.2.1

Block diagram of Feed Forward Inverse Dynamics + Integral Error

Control 81

4.4.2.2(a)

FFID + Integral Error Control errors for Trajectory 1 82

4.4.2.2(b)

FFID + Integral Error Control errors for Trajectory 2 82

4.4.3.1

Block diagram of CDID + Integral Error Controller 84

4.4.3.2(a)

CDID + Integral Error Control errors for Trajectory 1 84

4.4.3.2(b)

CDID + Integral Error Control errors for Trajectory 2 84

5.1(a)

Model reference adaptive controller 88

x

5.1(b)

Self tuning adaptive controller 88

5.4.1

Block diagram of Adaptive Critically Damped Controller (with

Integral Error Feedback) 94

5.4.2(a)

Errors for ACDID, Trajectory 1 (warm start) 95

5.4.2(b)

Errors for ACDID, Trajectory 2 (warm start) 95

5.4.2(c)

Errors for ACDID, Trajectory 1 (cold start) 95

5.4.2(d)

Errors for ACDID, Trajectory 2 (cold start) 96

5.4.3(a)

Errors for ACDID trajectory 1 (warm start, integral error) 97

5.4.3(b)

Errors for ACDID trajectory 2 (warm start, integral error) 97

5.4.3(c)

Errors for ACDID trajectory 1 (cold start, integral error) 98

5.4.3(d)

Errors for ACDID trajectory 2 (cold start, integral error) 98

5.5.1

Block diagram of Direct Adaptive Model Reference Control (with

Integral Error Feedback) 101

5.5.2(a)

Errors for MRAC, trajectory 1 (warm start) 102

5.5.2(b)

Errors for MRAC, trajectory 2 (warm start) 102

5.5.2(c)

Errors for MRAC, trajectory 1 (cold start) 103

5.5.2(d)

Errors for MRAC, trajectory 2 (cold start) 103

5.5.3(a)

Errors for MRAC trajectory 1 (warm start, integral error) 104

5.5.3(b)

Errors for MRAC trajectory 2 (warm start, integral error) 105

5.5.3(c)

Errors for MRAC trajectory 1 (cold start, integral error) 105

5.5.3(d)

Errors for MRAC trajectory 2 (cold start, integral error) 105

5.6.1

Block diagram of Decentralized Adaptive Control 109

5.6.2(a)

Errors for DAC, trajectory 1 109

5.6.2(b)

Errors for DAC, trajectory 2 110

5.6.3(a)

Errors for DAC, trajectory 1 (Integral error) 111

5.6.3(b)

Errors for DAC, trajectory 2 (Integral error) 111

6.1

Block diagram of Fuzzy Controller 115

6.2

Details of Fuzzy controller block 116

6.3

Membership functions of the Linguistic variables 117

6.1.1(a)

Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory1) 119

6.1.1(b)

Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory2) 120

xi

6.1.2(a)

Errors for Fuzzy control (LUT based, Changing parameters,

Trajectory 1) 121

6.1.2(b)

Errors for Fuzzy control (LUT based, Changing parameters,

Trajectory 2) 121

6.2.1

Block diagram of Hybrid Fuzzy Controller 122

6.2.1.1

Block diagram of Fuzzy + Computed Torque Controller 123

6.2.1.2(a)

Errors for CT + Fuzzy control (Trajectory 1) 124

6.2.1.2(b)

Errors for CT + Fuzzy control (Trajectory 2) 124

6.2.2.1

Block diagram of Fuzzy + FFID Controller 125

6.2.2.2(a)

Errors for FFID + Fuzzy control (Trajectory 1) 125

6.2.2.2(b)

Errors for FFID + Fuzzy control (Trajectory 2) 126

6.2.3.1

Block diagram of Fuzzy + CDID Controller 127

6.2.3.2(a)

Errors for CDID + Fuzzy control (Trajectory 1) 127

6.2.3.2(b)

Errors for CDID + Fuzzy control (Trajectory 2) 128

6.2.4.1

Block diagram of Fuzzy + ACDID Controller 129

6.2.4.2(a)

Errors for ACDID + Fuzzy control (Trajectory 1) 129

6.2.4.2(b)

Errors for ACDID + Fuzzy control (Trajectory 2) 130

6.2.5.1

Block diagram of MRAC + Fuzzy Controller 131

6.2.5.2(a)

Errors for MRAC + Fuzzy control (Trajectory 1) 131

6.2.5.2(b)

Errors for MRAC + Fuzzy control (Trajectory 2) 132

6.2.6.1

Block diagram of DAC + Fuzzy Controller 133

6.2.6.2(a)

Errors for DAC + Fuzzy control (Trajectory 1) 133

6.2.6.2(b)

Errors for DAC + Fuzzy control (Trajectory 2) 134

6.3.1

Block diagram of SOC 137

6.3.1.1(a)

Errors for Fuzzy control (Fixed parameters, Increased normalization

gains, Trajectory 1) 139

6.3.1.1(b)

Errors for Fuzzy control (Fixed parameters, Increased normalization

gains, Trajectory 2) 140

6.3.2.1(a)

Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 1) 141

6.3.2.1(b)

Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 2) 141

xii

6.3.3.1(a)

Errors for SOC control (Fixed Parameters, Nonzero LUT,

Trajectory1) 142

6.3.3.1(b)

Errors for SOC control (Fixed Parameters, Nonzero LUT,

Trajectory2) 142

6.3.4.1(a)

Errors for Fuzzy control (Increased normalization gains, Changing

parameters, Trajectory 1) 144

6.3.4.1(b)

Errors for Fuzzy control (Increased normalization gains, Changing

parameters, Trajectory 2) 144

6.3.5.1(a)

Errors for SOC control (Changing Parameters, Zero LUT,

Trajectory1) 145

6.3.5.1(b)

Errors for SOC control (Changing Parameters, Zero LUT,

Trajectory2) 146

6.3.6.1(a)

Errors for SOC control (Changing Parameters, Nonzero LUT,

Trajectory 1) 147

6.3.6.1(b)

Errors for SOC control (Changing Parameters, Nonzero LUT,

Trajectory 2) 147

6.4.1

Classification of Fuzzy controllers 149

6.4.2

Block diagram of the self-tuning fuzzy controller 150

6.4.3

Membership functions for gain updating factor () 151

6.4.1.1(a)

Errors for Fuzzy control (Non LUT based, Fixed parameters,

Trajectory1) 154

6.4.1.1(b)

Errors for Fuzzy control (Non LUT based, Fixed parameters,

Trajectory2) 154

6.4.1.1(c)

Comparison of errors for LUT and Non LUT based Fuzzy controllers

(Fixed Parameters) 155

6.4.2.1(a)

Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 1) 156

6.4.2.1(b)

Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed

parameters, Trajectory 1) 156

6.4.2.1(c)

Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 2) 157

6.4.2.1(d)

Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed

parameters, Trajectory 2) 157

xiii

6.4.3.1(a)

Errors for Fuzzy control (Non LUT based, Changing parameters,

Trajectory 1) 159

6.4.3.1(b)

Errors for Fuzzy control (Non LUT based, Changing parameters,

Trajectory 2) 159

6.4.3.1(c)

Comparison of errors for LUT and Non LUT based Fuzzy controllers

(Changing Parameters) 160

6.4.4.1(a)

Errors for Adaptive Fuzzy control (Changing parameters,

Trajectory1) 161

6.4.4.1(b)

Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control

(Changing parameters, Trajectory 1) 161

6.4.4.1(c)

Errors for Adaptive Fuzzy control (Changing parameters,

Trajectory2) 162

6.4.4.1(d)

Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control

(Changing parameters, Trajectory 2) 162

6.5.1

Hybrid Fuzzy plus Integral error Controller block diagram 164

6.5.1.1(a)

Errors for HFIE controller (Fixed parameters, Trajectory 1) 166

6.5.1.1(b)

Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed

parameters, Trajectory 1) 166

6.5.1.1(c)

Errors for HFIE controller (Fixed parameters, Trajectory 2) 167

6.5.1.1(d)

Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed

parameters, Trajectory 2) 167

6.5.2.1(a)

Errors for HFIE controller (Changing parameters, Trajectory 1) 169

6.5.2.1(b)

Comparison of Errors for Adaptive Fuzzy Vs HFIE control

(Changing parameters, Trajectory 1) 169

6.5.2.1(c)

Errors for HFIE controller (Changing parameters, Trajectory 2) 169

6.5.2.1(d)

Comparison of Errors for Adaptive Fuzzy Vs HFIE control

(Changing parameters, Trajectory 2) 170

6.6.1.1(a)

Errors for CFAF controller (Fixed parameters, Trajectory 1) 173

6.6.1.1(b)

Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed

parameters, Trajectory 1) 173

6.6.1.1(c)

Errors for CFAF controller (Fixed parameters, Trajectory 2) 174

xiv

6.6.1.1(d)

Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed

parameters, Trajectory 2) 174

6.6.2.1(a)

Errors for CFAF controller (Changing parameters, Trajectory 1) 176

6.6.2.1(b)

Comparison of Errors for Adaptive Fuzzy Vs CFAF control

(Changing parameters, Trajectory 1) 176

6.6.2.1(c)

Errors for CFAF controller (Changing parameters, Trajectory 2) 176

6.6.2.1(d)

Comparison of Errors for Adaptive Fuzzy Vs CFAF control

(Changing parameters, Trajectory 2) 177

xv

LIST OF TABLES

1.1

Brief history of Robotics 1-2

3.2.1

Actual manipulator parameters 37

4.1.1

Errors for PD control (Fixed Parameters) 46

4.1.2

Errors for PID control (Fixed Parameters) 47

4.2.1.1(a)

Errors for Computed torque control with exact model 50

4.2.1.1(b)

Errors for Computed torque control with inexact model 52

4.2.2.1(a)

Errors for FFID Control with exact model 54

4.2.2.1(b)

Errors for FFID Control with inexact model 56

4.2.3.1(a)

Errors for CDID Control with exact model 59

4.2.3.1(b)

Errors for CDID Control with inexact model 61

4.2.5.1

Errors for various controllers (Exact model) 62

4.2.5.2

Errors for various controllers (Inexact model) 62

4.3.1.1

Original manipulator parameter values 67

4.3.1.2

Changed manipulator parameter values (on picking up load) 67

4.3.2.1

Errors for PD control (Changing Parameters) 69

4.3.2.2

Errors for PID control (Changing Parameters) 70

4.3.2.3

Errors for Modified PID control (Changing Parameters) 72

4.3.3.1

Errors for Computed Torque control (Changing Parameters) 73

4.3.4.1

Errors for FFID control (Changing Parameters) 75

4.3.5.1

Errors for CDID control (Changing Parameters) 76

4.3.6.1

Errors of different controllers for changing parameter case 77

4.4.1.1

Errors for CT + Integral Error control 81

4.4.2.1

Errors for FFID + Integral Error control 83

4.4.3.1

Errors for CDID + Integral Error control 85

4.4.4.1

Errors (in degrees) for different controllers with modified IE

compensation 85

5.2.1

Actual manipulator parameter values 91

5.2.2

Estimated manipulator parameter values 91

xvi

5.2.3

Changed manipulator parameter values (on picking up load) 92

5.4.1

Errors for ACDID (warm and cold start) 96

5.4.2

Errors for ACDID (warm and cold start with integral error) 98

5.5.1

Errors for MRAC (warm and cold start) 103

5.5.2

Errors for MRAC (warm and cold start with integral error) 106

5.6.1

Errors for DAC 110

5.6.2

Errors for DAC (Integral Error) 111

5.7.1

Errors (in degrees) for different controllers 112

6.1

Lookup Table for the Fuzzy Controller 118

6.1.1

Errors for Fuzzy control (LUT based, Fixed parameters) 120

6.1.2

Errors for Fuzzy control (LUT based, Changing parameters) 121

6.2.1.1

Comparison of Errors for CT + Fuzzy control 124

6.2.2.1

Comparison of Errors for FFID + Fuzzy control 126

6.2.3.1

Comparison of Errors for CDID + Fuzzy control 128

6.2.4.1

Comparison of Errors for ACDID + Fuzzy control 130

6.2.5.1

Comparison of Errors for MRAC + Fuzzy control 132

6.2.6.1

Comparison of Errors for DAC + Fuzzy control 134

6.2.7.1

Comparison of errors for various control strategies vs. Hybrid Fuzzy 135

6.3.1

Example of Performance Table (Yamazaki, 1982) 138

6.3.2

Example of another Performance Table (Procyk and Mamdani, 1979) 138

6.3.1.1

Errors for Fuzzy control (Increased normalization gains, Fixed

parameters) 140

6.3.2.1

Errors for SOC control (Fixed parameters, Zero LUT) 141

6.3.3.1

Errors for SOC control (Fixed parameters, Nonzero LUT) 143

6.3.3.2

Errors for SOC and Fuzzy (Fixed Parameters) 143

6.3.4.1

Errors for Fuzzy control (Increased normalization gains, Changing

parameters) 145

6.3.5.1

Errors for SOC control (Changing parameters, Zero LUT) 146

6.3.6.1

Errors for SOC control (Changing parameters, Nonzero LUT) 147

6.3.6.2

Errors for SOC and Fuzzy (Changing Parameters) 148

6.4.1

Fuzzy controller Rule Base 151

xvii

6.4.2

Fuzzy Rule Base for

152

6.4.1.1

Errors for Fuzzy control (Non LUT based, Fixed parameters) 155

6.4.2.1

Errors for Adaptive Fuzzy control (Fixed parameters) 157

6.4.2.2

Errors for Fuzzy, SOC and STFC (Fixed Parameters) 158

6.4.3.1

Errors for Fuzzy control (Non LUT based, Changing parameters) 160

6.4.4.1

Errors for Adaptive Fuzzy control (Changing parameters) 162

6.4.4.2

Errors for Fuzzy, SOC and STFC (Changing Parameters) 163

6.5.1.1

Errors for HFIE control (Fixed parameters) 167

6.5.1.2

Errors for Fuzzy, SOC, STFC and HFIE (Fixed Parameters) 168

6.5.2.1

Errors for HFIE control (Changing parameters) 170

6.5.2.2

Errors for Fuzzy, SOC, STFC and HFIE (Changing Parameters) 170

6.6.1.1

Errors for CFAF control (Fixed parameters) 174

6.6.1.2

Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Fixed Parameters) 175

6.6.2.1

Errors for CFAF control (Changing parameters) 177

6.6.2.2

Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Changing

Parameters) 177

7.1.1

Errors for all controllers for parameter changing case 184

xviii

List of Abbreviations

ACDID Adaptive Critically Damped Inverse Dynamics

CDID Critically Damped Inverse Dynamics

CFAF Coarse/Fine Adaptive Control

CT Computed Torque

DAC Decentralized Adaptive Control

FFID Feed Forward Inverse Dynamics

FL Fuzzy Logic

FLC Fuzzy Logic Controller

HFIE Hybrid Fuzzy with Integral Error

LTI Linear Time Invariant

LUT Look Up Table

MRAC Model Reference Adaptive Control

NZLUT Non Zero Look Up Table

PD Proportional Derivative

PI Proportional Integral

PID Proportional Integral Derivative

SOC Self Organizing Control

ZLUT Zero Look Up Table

1

INTRODUCTION

The design of intelligent, autonomous machines to perform tasks that are dull, repetitive,

hazardous, or that require skill, strength, or dexterity beyond the capability of humans is

the ultimate goal of robotics research. Examples of such tasks include manufacturing,

excavation, construction, undersea, space and planetary exploration, toxic waste cleanup,

and robotic assisted surgery.

Robotics research is highly interdisciplinary, requiring the integration of control theory

with mechanics, electronics, artificial intelligence, and sensor technology. Table 1.1

shows a brief history of robotics and also highlights its interdisciplinary nature.

1920

Czechoslovakian playwright Karel Capek introduces the word robot in the
play R.U.R. - Rossum's Universal Robots. The word comes from the
Czech robota, which means tedious labor.

1938

The first programmable, paint spraying mechanism is designed by
Americans, Willard Pollard and Harold Roselund for the DeVilbiss
Company.

1942 Isaac Asimov publishes Runaround, in which he defines the Three Laws of
Robotics.

1946 Emergence of the computer.
1950 I, Robot, a landmark collection of Asimov's stories, is published.
1951

In France, Raymond Goertz designs the first teleoperated articulated arm
for the Atomic Energy Commission. The design was based entirely on
mechanical coupling between the master and slave arms (using steel
cables and pulleys).

1954

George Devol designs the first programmable robot and coins the term
Universal Automation, planting the seed for the name of his future
company - Unimation.

1959

Marvin Minsky and John McCarthy establish the Artificial Intelligence
Laboratory at MIT.

1962

General Motors purchases the first industrial robot from Unimation and
installs it on a production line. Hardyman is born!

1964 Artificial intelligence research laboratories are opened at Stanford
Research Institute (SRI), Stanford University, and the University of
Edinburgh.

1965 Carnegie Mellon University establishes the Robotics Institute.
1970 s Robots begin to be used in industrial applications.
1980 s

Several robotics companies are founded: CRS, Adept, Computer Motion
etc.

CHAPTER I

2

Table 1.1 Brief history of Robotics

The term robot has been applied to a wide variety of mechanical devices, from children's

toys to guided missiles. An important class of robots is the manipulator arms, such as the

CRS A255 robot shown in Figure 1.1. These manipulators are used primarily in materials

handling, welding, assembly, spray painting, grinding, deburring, and other

manufacturing applications. The research work in this thesis discusses the aspects related

to control of such manipulators.

Fig 1.1 The CRS A255 articulated manipulator

This thesis exclusively considers a commonly accepted class of robot plants - rigid body

open kinematic chains. A rigid body open kinematic chain consists of a serial

arrangement of finitely many (n) rigid bodies fixed by either prismatic or rotational

joints, and whose proximal link is joined to an inertial reference system. It is assumed

that each joint is instrumented with an actuator capable of delivering a commanded

torque, and sensors for sensing both position and velocity. This class of holonomic*

* In robotics, holonomicity refers to the relationship between the controllable and total degrees of freedom
of a given robot. If the controllable degrees of freedom are equal to the total degrees of freedom then the
robot is said to be holonomic. If the controllable degrees of freedom are less than the total degrees of
freedom it is non-holonomic. A robot is considered to be redundant if it has more controllable degrees of
freedom than degrees of freedom in its task space.

1990 s Walking robots, mobile robots, and new innovations emerge: Haptics,
Humanoids, Rovers etc.

2000 s

Robots are mainstream ex: Space station arm, Sony Aibo, Palm
robot, Telesurgery.

3

systems has the useful property that the joint positions and velocities provide a natural set

of generalized coordinates, for which by applying straightforward techniques of classical

mechanics a finite dimensional, second order, ordinary differential equation of motion is

obtained. The equations of motion, though nonlinear, have the desirable structure that

they are completely controllable, observable, and are integrable. The control problem

considered is reference trajectory tracking [Tarokh and Seraji (1988)]; the task is to

analyze/design controllers which causes the plant output (robot position and velocity) to

asymptotically match a specified reference signal. This thesis does not address a great

number of other problems in robot control e.g. impedance control, grasping, assembly,

collision avoidance, task encoding, sensing environment, vision, user-interaction,

running, hitting, catching, flexible joints, flexible links, etc.

The initial attempts to solve the problem of manipulator control fall under the

conventional category. The controllers here consisted of simple PD controllers and

some model-based feedback linearizing controllers [Kelly (1998), Heredia and Wen

(2000)]. The PD controllers are widely used in industrial robots and treat each joint of

manipulator as decoupled and driving a constant inertia load. These controllers work well

if the manipulator joints are highly geared in which case the cross coupling effects of

dynamics diminish and can be neglected. These controllers give poor performance in case

of direct drive, high-speed robots.

Feedback linearization is a useful paradigm because it allows the extensive body of

knowledge from linear systems to be used to design controllers for nonlinear systems.

The roots of feedback linearization in robotics predate the general theoretical

development by nearly a decade, going back to the early notion of feed forward computed

torque [An et al. (1989)]. The basic idea of feedback linearization control is to transform

a given nonlinear system into a linear system by use of a nonlinear coordinate

transformation and nonlinear feedback.

In the robotics context, feedback linearization is known as inverse dynamics. The idea is

to exactly compensate for all of the coupling nonlinearities in the Lagrangian dynamics in

a first stage so that a second stage compensator may be designed based on a linear and

decoupled plant. Any number of techniques may be used in the second stage. The

4

feedback linearization may be accomplished with respect to the Joint Space coordinates

or with respect to the Task Space coordinates.

The feedback linearization approach exploits important structural properties of robot

dynamics. However, the practical implementation of such controllers requires

consideration of various sources of uncertainties such as modeling errors, computation

errors, external disturbances, unknown loads, and noise. Moreover as the manipulator

functions in its workspace, its parameters change with every new payload it picks up.

This makes the applicability of conventional controllers very limited. However these

controllers give us a good insight into the problem of manipulator control and also form

the framework on which more advanced adaptive controllers are based.

In this thesis we have done an in-depth study of these conventional controllers and have

also suggested a method of adding integral action to these controllers to improve their

performance.

Robust and adaptive control are concerned with the problem of maintaining precise

tracking under uncertainty [Slotine (1985), Yao (1997), Imura et al. (1994)]. We

distinguish robust from adaptive control in the sense that an adaptive algorithm typically

incorporates some sort of on-line parameter estimation scheme while a robust, non-

adaptive scheme does not.

An advantage of adaptive approach is that the accuracy of a manipulator carrying

unknown loads improves with time because the adaptation mechanism keeps extracting

parameter information from tracking errors. Thus the adaptive controllers hold promise of

consistent performance in face of large load variations and inaccuracies in initial

parameter estimations. While many adaptive controllers have been proposed in literature

[Johansson (1990), Hsia (1986), Yuh et al. (1998)], most of them rely on assumptions

such as local linearization, time invariance, decoupled dynamics etc., to guarantee their

tracking convergence. However in recent past, attempts have been made and control

strategies have been proposed which do not resort to these assumptions for proving global

stability. These schemes mostly make use of linear parameterization property of

manipulator dynamics to synthesize the adaptation law and to prove global stability

[Sadegh and Horowitz (1990)]. In this thesis we have studied through simulations a few

adaptive controllers. These controllers were tested for both warm and cold start

5

situations. In case of warm start, the controller starts with some rough initial estimate of

values of the parameters whereas in case of cold start it is assumed that no such initial

estimate is available. A comparison of performance is also done. We have also

investigated the effect of introducing integral error compensation on the performance of

these controllers.

While conventional controllers suffer in performance because they do not take care of

many uncertainties that a manipulator faces, the adaptive controllers have their own

drawbacks. They are:

Requirement of a reasonably accurate manipulator model, even though the

parameter values are not required to be known exactly.

Requirement of fast processors to implement computationally intensive

algorithms.

The adaptive laws are derived mainly by trial and error.

It is difficult to prove the stability and robustness of these controllers.

In order to overcome the problems of inaccurate dynamics model and computational time

constraints, a lot of work has been done in the area of fuzzy logic control of robot

manipulators [Emami et al. (2000), Ham et al. (2000), Koo (1995)]. Fuzzy Logic control

provides an extensive freedom for control designers to exploit their understanding of the

problem and to construct intelligent control strategies. Nonlinear controllers can be

devised easily by using fuzzy logic principles. It makes fuzzy controller a powerful tool

to deal with nonlinear systems.

Many forms of fuzzy controllers for robotic manipulators have been proposed in

literature. These include conventional controllers [Ya-Chen et al. (1997), Nedungadi and

Wenzel (1991)], controllers with gravity compensation, self-organizing [Koh et al.

(1990), Kazemian (1998)] and self-tuning fuzzy controllers [Llama et al. (2000)], hybrid

fuzzy controllers [Meng and Swee (2000), Karner and Janocha (1997), Ya and Meng (2004)]

etc. Some of these controllers have been investigated in this thesis. Of particular promise

is the self-organizing controller, which builds up the rule base on-line as the manipulator

operates. It has a very simple structure, is computationally not intensive and gives very

good performance. Also of interest is a new hybrid fuzzy controller proposed in the

thesis, which too gives commendable performance. This controller is combination of

6

conventional fuzzy and integral error compensator. The integration of errors is done in a

novel way so as to avoid any chances of instability.

As can be seen from above discussion, the robot manipulator control problem is a wide

and open area of research. In this thesis we have studied some of the many control

strategies used for manipulator control and have also proposed some new control

methods as well.

1.1 OBJECTIVES

This thesis is mainly about the computer control of motion, and represents an

infinitesimal advance in the human capacity to both understand and to synthesize devices

capable of performing useful work. Specifically, it addresses the problem of constructing

and analyzing control systems for robot arms, which reliably and accurately follow,

prespecified trajectory.

The main objectives of thesis are as follows:

(a) Conventional Control

(i) To study various conventional control algorithms used for manipulator

control. These algorithms include non-model based simple PD and

PID as well as model based Computed Torque, Feed-forward inverse

dynamics etc.

(ii) To analyze the performance of various conventional controllers

through simulations on predefined trajectories.

(iii) To investigate the effect of parameter variations on controller

performance.

(iv) To study the effect of inclusion of integral error compensation on

controller performance

(b) Adaptive Control

(i) To study different adaptive control algorithms proposed for robot

manipulator control. These include Adaptive Critically damped inverse

7

dynamics controller, Model reference adaptive scheme and

Decentralized adaptive controller.

(ii) To study the performance of these controllers for situations like,

parameter change, warm start, cold start etc.

(iii) To study the effect of inclusion of integral error compensation on

controller performance

 (c) Fuzzy Control

(i) To study some different Fuzzy control schemes which are used for

manipulator control. These include Conventional Fuzzy, Adaptive

Fuzzy and Hybrid Fuzzy schemes.

(ii) To investigate the performance of these controllers under situations

like manipulator picking up a load, starting with zero/non-zero entries

in rule base etc.

(iii) Propose some new hybrid controllers which combine fuzzy with

conventional, and fuzzy with adaptive controllers.

 (d) Comparative analysis of performance of the aforesaid controllers.

1.2 ORGANIZATION OF THE THESIS

This thesis is organized in seven chapters. Chapter 2 reviews literature in the area of

robot manipulator control. The review includes work done by researchers across the

globe on conventional, adaptive and fuzzy control. Review is also done of schemes,

which have not been directly tested on manipulators.

Chapter 3 deals with the general structure of manipulator dynamics. It discusses some

important properties of the component matrices of manipulator dynamics. These

properties are extensively exploited for design of controllers and for proving their

stability. The dynamics equations of a two-link manipulator are derived, and error norms

used for comparison of performance are discussed.

8

Chapter 4 deals with Conventional control strategies for manipulators. These controllers

are tested on trajectories for cases like, parameters exactly known, parameters not exactly

known, parameters changing during the course of trajectory etc. Effect of adding integral

error compensation to these controllers is also investigated.

Chapter 5 discusses Adaptive control strategies for manipulators. These controllers are

tested for performance through simulations. The situations tested include: manipulator

parameter estimate available (warm start), manipulator parameter estimate not available

(cold start), manipulator picking up a load during motion etc. Effect of adding integral

error compensation to these controllers is also investigated.

Chapter 6 deals with Fuzzy control methods for robot control. Various controllers like

Conventional, Hybrid and Adaptive Fuzzy are discussed. Both, self-organizing and self-

tuning varieties of adaptive fuzzy controllers are discussed. Also both lookup table and

non-lookup table based controllers are investigated. Some new Hybrid fuzzy controllers

are also proposed. All these controllers are tested through simulations.

Finally Chapter 7 presents the main conclusions of the thesis and provides

recommendations for future work.

9

LITERATURE REVIEW

2.0 INTRODUCTION

As explained in Chapter 1, control of robot manipulator is a complex and challenging

task. The motion of each joint of manipulator is usually produced by actuators that

produce torque or force. If the actuator used (e.g. Stepper motors) could directly execute

the trajectory commands then open loop control would suffice. However such actuators

are usually not used in manipulators because of their high weight to torque ratios and

slow speeds.

The complexity of manipulator control problem is compounded by many factors, some

of which are listed below:

The highly nonlinear dynamics of both manipulator and actuator, arising due to

inertia, gravitational, coriolis and centrifugal effects, friction, mechanical

flexibility, backlash, hysteresis and actuator geometry.

Accurate control is required over a wide range of operating conditions.

There is cross coupling between neighboring inputs and outputs of the system.

The system dynamics parameters are time varying, for example due to changes

in payload, configuration, speed of motion and component wear.

There are many control schemes proposed in literature for robot manipulators. The use

of a particular scheme is very much situation dependent. Simple PD controller can

accurately control a highly geared industrial robot, performing pick and place operation

on a known load. On the other hand a manipulator working in unknown environment or

a high speed direct drive manipulator would require more complex Adaptive or Fuzzy

controller.

The various controllers proposed by researchers for manipulator motion control can be

broadly classified into two categories based on the co-ordinate system they deal with.

These two categories are Joint space based schemes and Cartesian space based

schemes. The latter are also known as Resolved motion controllers in literature.

Another possible classification of robot controllers is in terms of their structure. In this

scheme the controllers are classified into one of the following categories:

CHAPTER II

10

Conventional

Robust

Adaptive

Fuzzy, Neural, GA based etc.

A good taxonomy of robot manipulator controllers is provided by Miljanovic and Croft

(1999). In this thesis we have explored controllers belonging to Conventional, Adaptive

and Fuzzy categories. This chapter presents a brief literature review of controllers in

these categories.

2.1 CONVENTIONAL CONTROL

The conventional controllers for robot manipulators consist of simple PD/PID

controllers, minimum time controllers, variable structure controllers and non-linear

decoupled feedback controllers etc.

The PD/PID controllers are very popular because of their simple structure and are still

widely used in many industrial robots.

Tarokh and Seraji (1988) have proposed a simple scheme for control of manipulators.

The scheme has two loops: an inner PD loop and an outer PID loop. The PD controller

stabilizes the robot by classical pole assignment technique, while the outer PID loop

achieves input-output decoupling for easy reference trajectory tracking. The PD and PID

gains are easily tunable and are related directly to the linearized manipulator model.

One of the main weaknesses of PD controllers is that they require measurement of

velocity for calculating the control law. Velocity measurement is often a problem and is

noise prone. One solution to overcome this problem is to implement a velocity observer.

Heredia and Wen (2000) have proposed a high gain observer for estimating the velocity.

They use the singular perturbation method to analyze the PD controller with high gain

observer. They have proved that observer error and tracking error become stable and

have also given the conditions to show the asymptotic stability of the PD controller.

The proportional derivative (PD) control plus gravity compensation together with the

PD control plus desired gravity compensation are the simplest global regulators for

robot manipulators. The best feature of these controllers is that the tuning procedure to

11

achieve global asymptotic stability reduces to selecting the proportional and derivative

gains in a straightforward manner. However, a drawback of both control strategies is

that the knowledge of the gravitational torque vector of the robot dynamics, which

depends on some parameters such as mass of the payload, usually uncertain, is required.

Kelly (1998) introduced a new class of global position controllers for robots, which do

not include their dynamics in the control laws. He developed a new class of regulators

leading to a linear PD feedback plus an integral action driven by a class of nonlinear

functions of the position error. He characterizes the class of function and gives simple

explicit conditions on the controller parameters which guarantee global positioning.

Another important class of conventional controllers is those, which use the model of

manipulator to accomplish feedback linearization. This idea was explained in some

detail in previous chapter. These controllers are known as model-based controllers.

These controllers use schemes, which range from simple gravitational compensation to

feedback linearization of the full manipulator dynamics. Clearly the suitability of a

model-based controller is dependent upon how well the system under control is known.

An ideal model based controller consists of the inverse of the system dynamics, used as

a pre-compensator to the actual system. The control inputs required to meet the desired

positions, velocities and accelerations can then be calculated directly from the inverse

system model. Thus, the system is driven open loop with perfect cancellation between

the inverse dynamics and the real system. This simple scheme suffers from the

drawback that manipulator dynamics is usually never known perfectly. All the

unmodelled effects are thus not compensated. To overcome this problem feedback is

used where the open loop model-based controller is combined with a classical feedback

controller (ex. PID). The two controllers are then known as Primary and Secondary

respectively. The purpose of secondary controller is to maintain trajectory tracking in

presence of modeling errors and unmodelled disturbances. The primary controller is

designed using any available knowledge of system dynamics. The overall controller is

also known as feedforward model based controller. Paul (1974) and Bejczy (1976)

proposed such controllers which use full manipulator dynamics model in primary part.

These controllers are also known as Computed Torque controllers because the primary

part of controller computes the torque to be applied at joints depending on desired

12

position, velocity and acceleration. These controllers are thus computationally very

intensive. To reduce the computational burden, schemes have been suggested which use

only part of manipulator dynamics, such as, gravity terms. The gravity part of dynamics

is simple and provides the holding torque information thereby reducing the integral

action required of the secondary controller.

However to cancel the gravity terms we should have their exact knowledge. This at

times is a difficult task. Khorrami and Ozguner (1988) showed that asymptotic exact

tracking of trajectory could be achieved with state feedback and PI controllers. No exact

knowledge of gravity terms is required. Only the nominal parameter values and bounds

on their variations are required. However global asymptotic stability is guaranteed only

for the case of constant set point trajectory.

Another way of reducing the computational burden of these model-based schemes is to

use a linearized model of the system under control. This can take the form of a state

space controller designed to position the poles of the closed loop system, or to optimize

some performance criterion. However, the linearized model quickly becomes

inappropriate as the manipulator moves throughout its workspace, and hence degrades

the control. This approach may be effective if deviations from the linearization point are

small, or alternatively if different linearized models are used as the robot moves along

its trajectory. An et al. (1989) give a good comparative experimental study on some

feedforward and computed torque controllers.

Another approach to manipulator control is to use the model in feedback part of

controller. It is thus known feedback model based controller. Here, the inner primary

controller is designed using the inverse system dynamics to give an ideally decoupled

and linearized system. It is then a simple task to design a secondary controller that

regulates the nominally linear system, giving the required closed loop system response.

The secondary controller also compensates for errors in the model based primary

controller, to ensure set point tracking and disturbance rejection. This approach is also

occasionally referred to as computed torque control, but differs from previous law since

it uses feedback rather than feedforward.

Song et al. (1989) proposed a scheme, which tackles the problem of manipulator picking

up unknown loads at different times. They incorporate the load dynamics in the

13

manipulator dynamics itself and then exploit its properties to design the controller. Their

scheme compensates for effects of nonlinearities, couplings and varying payloads and

also ensures tracking convergence.

Leung et al. (1990) proposed a sliding mode robot controller based on the variable

structure control theory. Spong et al. (1986) proposed a robot controller which uses

optimal decision strategy, to derive a pointwise optimal control law which minimizes

the deviation between the vector of actual joint accelerations and a desired joint

acceleration vector, subject to the input constraints.

For a class of robot manipulators, which contain nonlinear couplings and uncertainties,

Mao-Lin and Meng (2000) proposed decentralized stabilizing controllers and tracking

controllers. In the former case, the system state is ensured to lie ultimately in a

prescribed neighborhood of the origin and this neighborhood can be made arbitrarily

small. In the latter case, the system is guaranteed to ultimately track a desired model

with a prescribed error and this tracking error can also be made arbitrarily small.

Moreover, this approach can admit larger nonlinear couplings and uncertainties in the

robot manipulator system. Zhang et al. (1990) present a digital implementation of an

optimal PID controller of linearly interpolated joint trajectories. The controller obtains

optimal performance by reformulating the PID control law to minimize the time delay

between the position transducer reading and the application of the corrective torque.

Some authors have also proposed globally stable controllers where the motor dynamics

is included in the manipulator model. Su and Stepanenko (1994) proposed one such

controller and proved its stability using the Lyapunov method. They only assumed that

the inertial parameters of manipulator and electrical parameters of actuators are

bounded.

An exhaustive discussion on advanced robot control techniques has been given by Ge

(1998) and Er (1993).

2.2 ADAPTIVE CONTROL

The controllers discussed previously have constant parameters, and are designed to be

stable even when there are variations in the system under control. An alternative

14

approach, termed adaptive control [Ortega and Spong (1988), Tosunoglu and Tesar

(1988), Sinha et al. (1990), Yu et al. (1992), Ham (1993), Zhang et al. (2000),

Zergeroglu et al. (2000)], automatically adjusts the controller gains as the system

changes, as shown in Figure 2.2.1. The controller therefore acts to maintain the closed

loop system response in the presence of variations in the system.

Fig. 2.2.1 Block diagram of Adaptive controller

The first adaptive robot control algorithms in the literature addressed simplified

approximations to the full rigid body model.

One of the earliest papers specifically addressing adaptive robot control is by Dubowski

and DesForges (1979). This paper address a robot model where the joints are modeled

as decoupled linear time invariant (LTI) plants. Horowitz and Tomizuka (1986)

proposed to adaptively compensate for time varying nonlinear elements of the full

nonlinear plant with the assumption that these elements are slowly time varying in

comparison to the rate of parameter adaptation. Takegaki and Arimoto (1981) proposed

a different approach using an approximation to the full plant model, which omits some

of its nonlinear terms. Many researchers working with adaptive control algorithms

addressed a great variety of approximations to the full rigid-body nonlinear model. Hsia

(1986) and Landau (1988) give a complete account of these results, which, because of

15

the plant approximations employed, can at best provide only local stability with respect

to the full nonlinear system.

Several authors made explicit use of the linearity of robot inertial parameters in

developing experimental techniques for adaptive gravity cancellation [Koditschek

(1985)] as well as the off-line and on-line identification of these parameters [Khosla and

Kanade (1985)]. Shortly thereafter, several authors reported stable direct adaptive

tracking controllers that were correct with respect to the full nonlinear robot model.

These adaptive controllers, which still require accurate plant structure parameter values,

compensated for either partial or complete lack of knowledge of plant inertial parameter

values.

Craig et al. (1986) reported the fist adaptive robot control algorithm, which is globally

convergent in tracking error. This algorithm is an adaptive version of the familiar

"computed torque" exact linearization inverse dynamics control law [Luh et al. (1980)].

It has the advantage that it provides for linear tracking error dynamics. It has the

disadvantage that (i) it requires measurement of joint acceleration in addition to position

and velocity, and (ii) it is only locally stable in controller parameter error, due to a

required inversion of its estimated inertia matrix in the parameter update law. Ortega

and Spong (1988) have reported versions of these control algorithms, which do not

require measurement of joint acceleration, but remain only locally stable in the

controller parameter error.

Many model based adaptive schemes have also been proposed [Ham (1993), Slotine

(1986), Tso et al. (1991)], where those coefficients of the robot model that are not well

known or are changing, are updated automatically. This is achieved using a system

identification algorithm, which uses past input and output values of the system to

estimate the parameters, for example payload mass. The nonlinear equations of motion

of the robot are expressed as a linear function of joint outputs and model parameters.

These parameters are estimated using a Lyapunov function candidate approach [Wen

(1990)], and they converge to their true values provided certain constraints are met. This

method requires measurement of the joint angles, velocities and accelerations that can

be problematic due to noise.

16

A different approach to stable adaptive model based control which achieves stable

tracking without exact linearization was reported independently, by Slotine and Li

(1988), and by Horowitz and Sadegh (1987), using a sliding-mode type of stability

proof. This algorithm has the perceived disadvantage that it does not provide linear

tracking error dynamics, but it has the advantage that it is globally stable in plant

parameter tracking error, asymptotically exact tracking, and does not require

measurement of joint acceleration. This particular area of research has seen much work

and is still active, addressing issues of convergence, stability and computational burden.

However, these model based adaptive controllers are generally only practical if the

number of estimated parameters is restricted. The problem becomes complex if the full

manipulator model is to be estimated.

A simpler version of this "non-linearizing" approach, possessing a local lyapunov

stability proof, was reported independently by Koditschek (1987). A globally stable

version of this simpler approach, with proof of global stability, was provided by

Whitcomb et al. (1993).

A second variant of this "non-linearizing" approach with a feedforward structure

admitting off-line tabulation was reported by Wen et al. (1987). DeWit and Fixot (1992)

proposed an adaptive controller based on estimated velocity feedback thereby removing

the need of actual velocity measurement, which may be contaminated by noise.

In deriving the adaptive and control laws, many times the motor dynamics are ignored,

which essentially is an approximation. Yu and Lloyd (1995) and Jing (1995) proposed

an adaptive controller that takes the manipulator motor dynamics into consideration. The

adaptation law proposed overcomes uncertainties of both manipulator and motor

parameters.

As mentioned earlier, the need of developing advanced control methods for robot

manipulators has been stressed by many researchers, and a lot of papers have appeared

during the last decade. One of these approaches is the decentralized adaptive control.

This scheme, also known as "independent joint control," is motivated by the notion of

the decentralized location of the actuator and sensor on each link. In practice, however,

the control gets somewhat complicated since the robot is a highly coupled, nonlinear

multivariable system. Also their operating environment is often poorly known and their

17

parameters cannot be calculated accurately enough to be used in real-time control

applications. As a result, its stability analysis becomes more complicated and its

accurate model parameters have to be known a priori. For these reasons, adaptive

schemes are very susceptible to these uncertainties and complexities. Several

development and applications have been presented, where adaptive controllers are used

to enhance stability and improve operating conditions of robot manipulator systems

[Hsu and Fu (2002), Oh et al. (1988)].

Oh et al. (1988) proposed a decentralized adaptive controller where the controller gain is

derived by using model reference adaptive control theory based on Lyapunov's direct

method. The adaptive gains consist of proportional, and integral combination of the

measured and reference values of the corresponding subsystems. Colbaugh et al. (1993)

proposed a controller, which is extremely simple computationally and does not require

knowledge of either the mathematical model or the parameter values of the robot

dynamics. The controller was shown to be globally stable in the presence of bounded

disturbances. Furthermore the control strategy is very general and is implementable for

either position regulation or trajectory tracking in either joint space or task space. Gavel

and Hsia (1987) presented a decentralized adaptive controller based on high gain

feedback approach. Convergence is local in the state parameter space. Because of a high

gain feedback approach, the algorithm is tolerant to the nonlinear, time varying

interaction among joints, and also to the interaction among control channels due to the

nondiagonal inverse Jacobian matrix. The positive definiteness of inverse Jacobian

matrix is exploited to make this approach successful.

Tarokh (1990) proposed a decentralized adaptive controller based on discrete time

model of the robot manipulator. In his scheme each local controller utilizes only its own

joint angle measurement and reference position, and does not require knowledge of the

payload, robot characteristics or other joint angles. Due to the decentralized structure of

the controller and the simplicity of the control algorithm, computation of joint torques

can be performed in parallel in a real time environment. The adaptation laws are derived

using hyperstability theory, which guarantees asymptotic trajectory tracking despite

gross robot parameter variations. The controller gains are independent of the robot

parameters provided that the gain adaptation is sufficiently fast. In the independent joint

18

controller scheme proposed by Seraji (1988) for the development of the decentralized

control scheme, each joint is viewed as a subsystem of the entire manipulator system.

These subsystems are interconnected by disturbance torques representing the inertial

coupling terms and the coriolis, centrifugal, friction and gravity terms. The proposed

decentralized control scheme consisting of a number of independent joint controllers has

several advantages over a single centralized controller for the entire manipulator. A

major advantage is that the joint control algorithms require much less computations than

the single algorithm resulting from a centralized control law. Furthermore, due to the

possibility of parallel processing and distributed computing, the decentralized control

scheme can be implemented on a number of simple and fast microprocessors with a high

sampling rate, thus improving the system performance. Another major advantage of the

decentralized control scheme is its reliability and fault tolerant feature. In case one joint

encoder gives erroneous readings of the joint position, in a centralized control system,

this would affect the entire control action for all joint motors; whereas in a decentralized

system, only one control loop is affected and the remaining joint controllers are

unaffected. A variant of this control strategy proposed by Magana and Tagami (1994) is

investigated in detail in Chapter 5. Recently Parra-Vega (2003) proposed another simple

decentralized continuous sliding PID controller for tracking tasks that yields semi global

stability of all closed-loop signals with exponential convergence of tracking errors.

Besides the main approaches to adaptive control discussed above, many other variations

of adaptive control have been proposed in literature. Variable structure adaptive

controllers have been proposed by Yu (1998), Yu and Lloyd (1997) and Tso et al.

(1991). Adaptive learning controller has been proposed by Messner et al. (1991). An

adaptive controller designed using input-output approach is presented by Kelly and

Ortega (1988). Trusca and Lazea (2003) have proposed an adaptive PID learning control

algorithm for periodic robotic motion. Their controller consists of an adaptive PID

feedback part and a feedforward input learning part. The feedback part overcomes the

disturbances while the feedforward part produces the desired torques. Some authors

have also presented adaptive control schemes based on manipulator task space. In one

such scheme Feng (1995) presents a composite law, which uses the prediction error and

tracking error to derive parameter estimates without requiring inverse of Jacobian or

19

estimated inertia matrix. Burkan (2005) developed adaptive controller using

trigonometric functions depending on manipulator kinematics, inertia parameters and

tracking error, and both system parameters and adaptation gain matrix are updated in

time. The control law includes a PD feed forward part and a full dynamics feed forward

compensation part with the unknown manipulator and payload parameters.

As can be seen, many versions of adaptive control strategies are available for use today.

To decide on merits and demerits of one adaptive strategy vis-à-vis another, and also

that of adaptive with respect to conventional or robust schemes, some results are

available in literature. Erlic and Lu (1990) presented an experimental comparison of

Adaptive, Robust and Classical Feedback Controllers used in unconstrained trajectory

tracking for robot manipulators. In their study it was found that the adaptive controller

outperforms the other controllers. Good performance was also achieved using the

computed torque method. The proportional-derivative controller was found to perform

poorly for velocity tracking. The adaptive algorithm however was found to be

computationally demanding. Kim and Hori (1995) have presented an experimental

evaluation of adaptive and robust schemes for robot manipulator control. They have

classified the adaptive control laws in three groups and have shown that the main

difference between groups is in terms of their PD gains. They have further shown that

the controllers can give matching performances by proper adjustment of the PD gains.

They have also investigated a two degree-of-freedom robust controller and have

demonstrated its strong disturbance rejection properties.

Burdet et al. (1998) have also given a comparative evaluation of nonlinear adaptive

controllers. They have shown that a version of Feedforward adaptive controller is well

suited for learning the parameters of dynamic equation even in presence of friction and

noise. However, if the task consists of executing a repeated trajectory, a Lookup table

based memory controller is simpler to implement. Niemeyer and Slotine (1988) have

commented on performance in adaptive control, specifically about issues related to

computational efficiency and recursive implementation of the control algorithms.

To summarize, the adaptive control theory for robot manipulators is at present seeing

wide interest and many researchers are trying alternative controller designs. In this

thesis we have studied some of the approaches to adaptive control of robot manipulators.

20

2.3 FUZZY CONTROL

Real time control of a robot manipulator has been the topic of research for a long time.

Many theoretical results have been and are being published showing various efficient

and accurate control strategies. These include adaptive control, non-linear feedback

control, resolved motion rate control, inverse dynamics control etc. But all of them have

problems from practical applicability point of view because of:

1) Complex non-linear mathematical model of the manipulator and

2) Extremely involved computational requirements.

In such cases, where conventional and other control methods prove inadequate and

complex, it is worthwhile to investigate the control policies of a human operator. Fuzzy

Logic is one such control method, which is based on human intuition and experience.

Fuzzy algorithms are easy to implement on a computer, do not involve any major

computational problems, and do not require a detailed mathematical model of the

system [Jamshidi (1997), Kazemian (2001)]. Fuzzy algorithms find wide use in robotic

control systems [de Silva (1995), Banerjee and Woo (1993)].

Many Fuzzy control strategies for manipulator control have been proposed in literature.

Erbatur et al. (1995) provide a comparative analysis of four different kinds of fuzzy

controllers. The controllers studied are: Straight forward conventional fuzzy control,

fuzzy control with gravity compensation, fuzzy control with nonlinear state feedback

and a self organizing fuzzy control. The problem of gain adjustment in basic fuzzy

controller is overcome by using a self-organizing fuzzy controller. The self-organizing

controller is able to adjust its gains in a single run. Abdessemed and Benmahammed

(1998) have proposed a two layer fuzzy controller. The first layer is the familiar PID

controller, and the second is the precompensator, designed on the basis of decision

making rules and tuned to minimize the output error when the conventional controller

exhibits significant steady state error and a loss in control. The control strategy proposed

by Lim and Hiyama (1991) for robotic manipulators incorporates a proportional plus

integral (PI) controller with a simple fuzzy logic (FL) controller. In the proposed

strategy, the PI controller is used to ensure fast transient response and zero steady-state

21

error for step inputs, or end-point control, whereas the FL controller is used to enhance

the damping characteristics of the overall system. A good classification of fuzzy PID

controllers is provided by Hu et al. (2001).

Researchers have proposed many versions of adaptive fuzzy controllers. Zhao et al.

(1993) showed that the gains of a simple PID controller could be adapted using fuzzy

logic. Fuzzy rules and reasoning are utilized on-line to determine the controller

parameters based on the error signal and its first difference. Tzafestas and

Papanikolopoulos (1990) presented an approach to intelligent PID control, which is

based on the application of fuzzy logic. Their approach assumes that nominal controller

parameter settings are available through some classical tuning technique (Ziegler-

Nichols, Kalman, etc.). By using an appropriate fuzzy matrix (which is similar to

Macvicar-Whelan matrix), they determine small changes on these values during the

system operation, that lead to improved performance of the transient and steady state

behavior of the closed-loop system. Visoli (2001) presents a comparison between

different methods, based on fuzzy logic, for the tuning of PID controllers. Yoo and Ham

(1999) proposed an adaptive controller that uses a fuzzy logic system to approximate

any nonlinear system. There is no need to derive the linear robot dynamic formulation.

Their controller is robust not only to the structured uncertainties such as payload

parameters, but also to the unstructured ones such as friction model and disturbances.

Neo and Er (1995) present a controller that employs tracking errors of the joint motion

to estimate the robot dynamics, which are subsequently used in the control law. In

particular, it requires no feedback of joint accelerations. This adaptive controller does

not require the exact robot dynamics but only the boundary of the dynamics. The

controller guarantees the global stability of resulting closed-loop system in the sense that

all the signals are bounded. A good reference, which discusses stability issues related to

fuzzy controllers, is by Kandel et al. (1999). A controller for adaptive fuzzy tracking

control of manipulator is proposed by Lin et al. (2003). Their adaptive fuzzy

compensator performs on-line learning to approximate and compensate the unknown

nonlinear dynamics of the system so that minimizing a quadratic performance index can

obtain the optimal tracker. The proposed controller and the associated learning

algorithm require no preliminary off-line learning for initialization and guarantee the

22

output-tracking error to be uniformly bounded. Commuri and Lewis (1996) propose a

learning algorithm that learns the stabilizing membership functions online from initial

membership functions that are selected using simple design criteria. The controller

requires no regression matrix and is essentially model free.

The approach proposed by Kwan and Liu (1999) uses quantitative control schemes to

ensure global stability and qualitative control scheme to approximate any non-linear

functions caused by disturbances, system uncertainties and interconnections. With the

PD control as a preliminary component in maintaining the local stability, non-linear

feedback is added to ensure global stability of the entire system. An adaptive fuzzy logic

controller is incorporated into the robot arm control system as a function approximator

to compensate interconnections effect, unmodelled dynamics, friction, gravity force and

uncertainties. The stability criterion of the proposed controller is developed using the

Lyapunov synthesis approach. Sun and Wan (2004) have used a controller output error

method to design adaptive fuzzy control system. The proposed control strategy employs

a gradient descent algorithm to minimize a cost function, which is based on the error of

the controller output and is minimized by tuning some or all of the parameters of fuzzy

controller. The underlying idea of controller output error method is that each time the

response of a plant to a set-point signal is observed, it is learnt how to repeat that

response when it is required in future.

Santibanez et al. (2000) extend the idea of PD+ controller to fuzzy. The structure of

PD+ control consists of a linear PD feedback plus a specific compensation of the robot

dynamics. Furthermore, this control strategy has the distinguishing feature that it

reduces to the PD control with gravity compensation in the particular case of set-point

control. The authors show that the gains of PD+ can be varied according to a fuzzy logic

system, which depends on the robot state. Global Stability of the system is also shown.

Kim (2002) has proposed an independent joint fuzzy controller, which does not require

an accurate manipulator dynamic model and the joint acceleration measurement, yet it

guarantees asymptotic trajectory tracking despite gross robot manipulator variations. No

inversion of the estimated mass matrix is also involved. It incorporates an integral term

in the control law, which eliminates steady state error. The feedback control loop is

guaranteed to be stable. The use of sliding mode control theory in developing an

23

adaptive fuzzy controller is shown by Hsu and Fu (1995). They have presented adaptive

robust fuzzy control architecture for robot manipulators. The control objective is to

adaptively compensate for the unknown nonlinearities of robot manipulator, which is

represented as a fuzzy rule-base consisting of a collection of if-then rules. The algorithm

embedded in the proposed architecture can automatically update fuzzy rules and,

consequently, it is guaranteed to be locally stable and to drive the tracking errors to a

neighborhood of zero. An adaptive fuzzy controller, which does not require

measurement of joint velocities, is discussed by Kim (2004). In this controller, adaptive

fuzzy logic allows approximation of uncertain and nonlinear robot dynamics. Only one

fuzzy system is used to implement the observer-controller structure of the output

feedback robot system.

A self-tuning adaptive fuzzy version of the computed torque controller is discussed by

Llama et al. (1998). They have shown that the computed-torque control scheme can also

yield a globally asymptotically stable closed-loop system not only for constant positive

definite gain matrices, but also for a class of manipulator state dependent gain matrices.

This is a theoretical result with useful implications to handle real constraint of robot

manipulators such as friction in the manipulator joints and torque capability limitations

of their actuators. They also show application of fuzzy logic to design a self-tuner for

the computed-torque control taking into account specifications of allowable actuator

torques limits and desired tracking accuracy in presence of friction.

Colbaugh (1994) proposed another approach to adaptive motion control called as

performance-based adaptive control. It is known so because the adaptive laws adjust the

controller gains directly based on system performance. The development of this schemes

proceeds by assuming that very little information is available concerning either the

structure or the parameter values of the manipulator dynamic model. As a consequence,

these methods are equally applicable to trajectory tracking in joint-space or task-space.

The controller proposed is extremely simple, require very little model information, and

shows good tracking performance and robustness characteristics. Loc et al. (2004)

proposed an adaptive fuzzy controller based on optimal control theory. The controller

does not require exact mathematical model of manipulator and takes the error vector as

control input.

24

Many model-following adaptive fuzzy schemes have been investigated by researchers

[Tsai et al. (2000)]. Koo (1995) proposed a model reference adaptive fuzzy scheme and

showed that it is capable of achieving reference model tracking of a two-link robot

manipulator system. He has shown that model reference scheme is capable of

manipulator control by achieving adaptive feedback linearization, i.e. to asymptotically

cancel the nonlinearities in the system and to place system poles in the desired locations

as specified in the reference model. Golea (2002) proposed another such model-

following fuzzy adaptive scheme. In his scheme the adaptive fuzzy system is trained to

approximate the robot dynamic and then, based on the estimated model, a controller is

designed to ensure the tracking of a stable reference model. It is proven, using Lyapunov

stability, that this adaptive scheme is robust against uncertainty, external disturbance

and approximation error, and achieves asymptotic tracking of a stable reference model.

Kuswadi et al. (2003) also proposed another such scheme with particular reference to a

hopping robot. Their approach uses linearized model to design a state feedback servo

controller. Thereafter, by using fuzzy networks they have developed model reference

adaptive fuzzy control in which a fuzzy network is used to compensate the nonlinearities

of robot dynamics. The role of the fuzzy network is to construct a linearized model by

minimizing the output error caused by nonlinearities in the robot control system through

a learning mechanism.

Another class of fuzzy controllers widely reported in literature is the hybrid fuzzy

controllers. These controllers combine the action of fuzzy controllers with that of some

conventional control algorithm. Butkiewicz (2000) gives a comparative study of

different conventional, hybrid fuzzy and adaptive fuzzy controllers. Brehm and Rattan

(1993) proposed a hybrid fuzzy PID controller, which takes advantage of the properties

of the fuzzy PI, and PD controllers and another method, which adds the fuzzy PD

control action to the integral control action. Li et al. (2001) have proposed a hybrid

P +ID controller for manipulator control. The structure of the FUZZY P+ID controller is

very simple, since it is constructed by replacing the proportional term in the

conventional PID controller with an incremental fuzzy logic controller. On the basis of

the PID type controllers, only two additional parameters have to be adjusted to

implement the FUZZY P+ID controller. These two parameters allow the controller to

25

behave differently, depending on the values of error and error derivative. A very similar

approach to hybrid fuzzy controller design has been discussed by Li (1998).

Ordonez et al. (1997) provide a good comparative study of adaptive fuzzy, conventional

adaptive and nonlinear non-adaptive controllers. Lin et al. (1995) provide a comparative

analysis of fuzzy and PID controllers. Their study shows the simplicity and superiority

of fuzzy controllers over their PID counterpart. Khoury et al. (2004) provide a

comparative evaluation of the fuzzy PID control method with respect to other methods

of nonlinear control, i.e., the computed torque control method and the direct adaptive

control method. They emphasize that the main advantage of the fuzzy control approach

is its non-dependency on the dynamic model of the plant.

2.4 MOTIVATION FOR PRESENT STUDY

As can be seen from the brief literature survey presented in the previous sections, the

problem of manipulator control is a complex and challenging task. Many methods of

manipulator control have been proposed by researchers, which range from conventional

to adaptive to fuzzy control etc. Furthermore each of these strategies have their own

wide and varied flavors.

In view of different kinds of control strategies available, work needs to be done which

could test and compare these different control strategies against a common background

and suggest the advantages and disadvantages of these strategies. As can be seen from

literature survey, some researchers have attempted these comparative studies but they

are not very exhaustive.

As discussed in section 2.1 many conventional, model based strategies have been

proposed for manipulator control. These model based schemes give good performance

in case the manipulator model is known accurately enough and is working in an known

environment. A study however needs to be done to compare these conventional model

based control strategies for their performance against each other and also against the

non-model based algorithms under various situations. With this motivation we

undertake the following tasks in Chapter 4:

26

Compare three model based control strategies against each other for same

manipulator model and similar test trajectories

Analyze the effect of using approximate rather than accurate parameter values in

manipulator model

Compare the performance of model based and non model based conventional

control algorithms

Study and compare the effect of manipulator picking up an unknown load during

the course of its motion on its performance

Propose and study the effect of including a modified integral action to the model

based conventional control algorithms

As the efficacy of conventional control algorithms goes down with increase in

uncertainty in the manipulator model, adaptive control is often cited in literature as the

way out. As discussed in section 2.2 many adaptive control algorithms have been

proposed in literature for manipulator control. But a comprehensive comparative study

of these algorithms is by and large missing in the literature. This is the motivation for

chapter 5, where we undertake the task of an exhaustive comparative study of three

popular adaptive control algorithms used for manipulator control. In particular we

Compare the performance of adaptive control algorithms for the case when the

manipulator picks up and releases an unknown load during the course of its

motion

Compare the performance of adaptive control algorithms when no initial

estimate of manipulator parameters are available

Compare the performance of adaptive control algorithms when some initial

estimate of manipulator parameters are available

Investigate the effect of adding modified integral action to these adaptive

controllers

The adaptive control algorithms give good performance but have their own drawbacks

like being computationally expensive and difficult to prove to be stable. This has led

many researchers to investigate strategies like fuzzy and neural control for manipulators.

As discussed in section 2.3 many different fuzzy controllers have been proposed in

literature but their efficacy for manipulator control has been rarely investigated.

27

Moreover there is no good comparative study existing in literature for these different

fuzzy controllers. Also there is lot of scope to investigate new hybrid fuzzy controllers,

which are obtained as combinations of fuzzy with conventional or adaptive controllers.

This forms the main motivation for chapter 6 where we have undertaken the following

tasks:

Investigate lookup table based and non lookup table based pure fuzzy controllers

Investigate a self organizing fuzzy controller for situation where the lookup

tables start with zero and non zero values

Propose and investigate some new hybrid fuzzy controllers

Investigate a self tuning adaptive fuzzy controller

Investigate a coarse/fine adaptive fuzzy controller

Investigate the performance of these controllers for the cases when manipulator

parameters change during motion and when they do not change

Do a comparative study of performance of the above controllers

The main motivation thus, for the present study is absence of good comparative study of

different control algorithms for manipulator control against a common background. We

have made an attempt in this thesis to do the same and in the process have also proposed

some new controllers and some modifications to the existing controllers with a view to

improve their performance.

2.5 CONCLUDING REMARKS

In this chapter we have presented a brief overview of studies carried out in the field of

manipulator control by different researchers. In particular we have presented the work

done in areas of conventional, adaptive and fuzzy control. The literature survey

represents a small and important portion of a vast body of literature available in this

area. We have not included in the survey work done on manipulator control in the areas

of neural networks, genetic algorithms, impedance control etc, as we do not intend to

investigate these schemes in this thesis.

28

ROBOT DYNAMICS AND ISSUES IN CONTROL

3.0 INTRODUCTION

A robot manipulator consists of number of links interconnected by joints to form a

kinematic chain. Figure 3.1 shows a serial link (left) and a parallel link (right)

manipulator. A parallel link robot, by definition, contains two or more independent serial

link chains. In this thesis for simplicity of analysis we confine ourselves to serial link

manipulators with only rotational or revolute joints. Also most of the robots used in

industry today have this serial open kinematic chain structure. Anyway, most of our

discussion about control strategies in the thesis remains valid for parallel robots and for

robots with sliding or prismatic joints as well.

In the serial open kinematic chain structure, a number of links are connected in series

through joints, which are either revolute or prismatic (linear) in nature. Each joint usually

has a single degree of freedom.

Fig. 3.1. A serial manipulator (left), the ABB IRB1400, and a parallel manipulator (right),
the ABB IRB940Tricept.

For the purpose of studying manipulator dynamics, it is usually assumed that the

manipulator consists of rigid links with no flexibility. This assumption is quite true for the

industrial grade manipulator and does not hold good only for large arms designed for

space applications etc. Rigid robot manipulators are fully actuated, i.e., there is an

CHAPTER III

29

independent control input for each degree of freedom. By contrast, robots possessing

joint or link flexibility are no longer fully actuated and the control problem is more

difficult, in general.

The problem of flexibility, if any, in the industrial manipulator is avoided by setting the

controller gains in such a way that the natural frequency of the system lies far away from

the lowest resonance frequency of the structure so as not to excite them.

3.1 MANIPULATOR DYNAMICS EQUATIONS

The two most common methods used to derive the manipulator inverse dynamics are the

Newton-Euler and the Lagrange methods [Spong and Vidyasagar (1989)]. The Newton-

Euler method is based on force balance approach while the Lagrangian method is based

on energy conservation approach. The Lagrangian approach is easier if the number of

degrees of freedom, i.e., the number of joints of the manipulator is less than four. The

Newton-Euler approach is more suitable for implementation on computer because of its

iterative nature. However as the dynamics equations are very explicit and cumbersome

even for the simplest of manipulator, it is always better to use the closed form solution.

This saves a lot of processor time, thereby making the real time implementation much

more easier [Paul (1972)].

The general state space representation of the manipulator inverse dynamics is given by

equation 3.1.1 below.

, ,M V F G (3.1.1)

Where:

is 1n vector of joint torques,

M is n n matrix called the manipulator mass matrix,

,V is 1n matrix consisting of terms arising due to centrifugal and coriolis forces,

,F is 1n matrix consisting of terms arising due to friction forces,

G is 1n matrix consisting of terms arising due to gravity,

is 1n vector of joint accelerations,

30

is 1n vector of joint velocities,

is 1n vector of joint positions and

n is the degrees of freedom of the manipulator, equal to the number of joints.

Equation 3.1.1 can also be written in another form as:

, ,M MM V F G . (3.1.2)

Where ,MV and ,MF are now n n matrices.

The various matrices in equations 3.1.1 and 3.1.2 have some typical properties and

relations with each other. These are often exploited for designing a controller and for

proving its stability [Craig (1988)]. Some of the important properties are listed below:

Mass matrix, M

It is symmetric.

It is positive definite and bounded above and below, i.e., for an n x n identity

matrix nI

and for scalars m

and m

which satisfy 0< m <
m

we can say that

m n m nI M I .

Its inverse exists and is positive definite and bounded.

Its time derivative is given by 2 ,MV J , where J

is some skew symmetric

matrix. This implies that 0.5 ,T T
MX M X X V X

where X

is an n x 1

vector.

The mapping q is passive, i.e., there exists 0 such that

0

T
Tq u u du

Centrifugal and Coriolis force matrix, (,)V

It has a bound, which is independent of but increases quadratically with .

It is related to time derivative of manipulator mass matrix as above.

31

Friction force matrix, ,F

Position dependence comes only when eccentricity of gears is present.

In highly geared robots, the friction forces can account for almost 25% of the total

torque required.

Friction is a local effect, so ,F is uncoupled.

Friction forces are dissipative, i.e. , 0T F .

Friction forces are largely viscous in nature.

If only viscous friction is modelled, then ,F is a diagonal matrix with viscous

friction coefficients as the elements.

Gravity force matrix, G

It consists of all gravity related terms.

It has a bound that is independent of .

The dynamic equations of the manipulator used for our simulations are now derived.

3.2. TWO LINK MANIPULATOR DYNAMICS

The manipulator used for simulations is a simple two degree-of-freedom articulated arm.

This is a very standard test bed used for studies on control in robotics literature. The two

joints of this manipulator are assumed to be driven by DC permanent magnet

servomotors. The manipulator is assumed to be of direct drive type, i.e., no gearings are

used at the joints. This is usually the case for high speed and high precision manipulators.

The control strategies were tested on this two link planar manipulator. This allows us

primarily to reduce the amount of calculations that have to be made during runtime while

still including the effect of gravity on motion. Figure 3.2.1 shows the manipulator with

frames assigned to the links.

32

Fig 3.2.1 Manipulator used for experiments with frames attached

In Fig. 3.2.1 the axes 0 1 2, and z z z are perpendicular to the plane of the paper and point

out.

The inverse dynamics is derived using the Lagrange method [Craig (1989)]. The joints

were assumed to have only viscous friction. This model was used for all simulations. The

various manipulator parameters and variables used in the model are:

im = Mass of the i-th link (kg)

il = Length of the i-th link (m)

ix = Location of the centre of mass of the i-th link along the respective x- axis (m)
i

civ

= Linear velocity of the centre of mass of the i-th link as seen in the i-th frame

(m/sec)
i

i = Angular velocity of the i-th link expressed in the i-th frame (rad/sec)

zziI = Moment of inertia of the i-th link about zi axis (kg-m2)
ci

iI = Inertia tensor of the i-th link with respect to a frame having its origin at centre of

mass of i-th link and axes parallel to the faces of the link (kg-m2)
i

ciP = Vector location of centre of mass of i-th link with respect to i-th frame (m)
i

jv
 = Linear velocity of origin of j-th frame with respect to i-th frame

i
j R = Orientation difference between frames i and j

0 g = Gravity vector with respect to base frame

Gravity 0x

0y

1y

1x

2y
2x

33

As both the links of the manipulator are symmetric cuboids, we have approximated all the

off diagonal terms of the inertia tensor to zero by proper selection of frames. The kinetic

energy, iK

of the i -th link is given by equation 3.2.1.

0.5 i T i T ci i
i i ci i i iK m v I (3.2.1)

For the first link i=1. The kinetic energy for this link is given by equation 3.2.2

1 1 1 1
1 1 1 1 1 10.5 T T c

cK m v I (3.2.2)

Also

1
1

1

0

0 and (3.2.3)

1 1 1
1 1 1c cv P

1

1 1

1

0 0

0 0

0 0

x

x (3.2.4)

Substituting 3.2.3 and 3.2.4 in 3.2.2 we get

2 2 2
1 1 1 1 1 10.5 zzK m x I (3.2.5)

Similarly for the second link, the kinetic energy, K2 is given by equation 3.2.6

2 2 2 2 2
2 2 2 2 2 2 20.5 T T c

c cK m v v I (3.2.6)

Also

 2
2

1 2

0

0 and (3.2.7)

2 2 1 2 2
2 1 2 2 2c cv R v P

2 2

2 2 1 1 2 1 2

00 0

0

0 0 1 0 0

C S

S C l x

34

2 1 1

2 1 1 2 1 2

0

S l

C l x

 (3.2.8)

Here 2C is same as 2cos and 2S is same as 2sin .

Substituting 3.2.7 and 3.2.8 in 3.2.6 we get kinetic energy for second link as

2 22 2 2
2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 20.5 2 0.5 zzK m l x C l x I (3.2.9)

The total kinetic energy, K, of the manipulator is given by equation 3.2.10 as

1 2K K K (3.2.10)

For calculating the potential energy of the manipulator, we know that the potential energy

of the i-th link, iP , is given by

0 0T
i i ci iP m g P C

 (3.2.11)

Where iC is a constant chosen such that the potential energy never becomes negative.

Using equation 3.2.11 the potential energy of the first link is given by

0 0
1 1 1 1

T
cP m g P C

 1 1 1 1sinm gx C (3.2.12)

Similarly the potential energy of second link is given by

0 0
2 2 2 2

T
cP m g P C

 = 2 1 1 2 1 2 2sin sinm g l x C (3.2.13)

The total potential energy, P, of the manipulator is now given by

1 2P P P (3.2.14)

The Lagrangian, L , for the manipulator can be calculated as

L K P (3.2.15)

The torques, , required at the joints to give the desired acceleration and velocity can be

calculated as

d L L

dt
 (3.2.16)

or
d K K P

dt
 (3.2.17)

35

From equation 3.2.17 we calculate torque required at joint 1, 1 , as

1
1 11

2 2 2 2
2 2 2 2 2 1 1 1 2 1 1 2 1 2 2 2 1 2

2
2 2 2 1 2 1 1 2 2 12 1 1 2 1 1 2 2 2 2 2 1 2 2

)

[(2)]

(2) () ()

zz zz

zz

d K P K

dt

m x m x c l m x m l I I m x s l

m x s l F m x gc m x m l gc m x m x c l I

 (3.2.18)

Similarly the torque at joint 2, 2 is given by

2
2 22

2 2 2
2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 2 12 2 2() ()zz zz

d K P K

dt

m l x c m x I m x I m x l s m x gc F

 (3.2.19)

1F

in equation 3.2.18 and 2F

in equation 3.2.19 are coefficients of viscous friction

present at joints 1 and 2 respectively.

Equations 3.2.18 and 3.2.19 can be written in standard state space format of equation

3.1.2 as

2 2 2 2
1 2 2 2 2 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1

2 2
2 2 1 2 2 2 2 2 2 2 2 2

12 2 2 1 2 2 2 2 1 2 1 1

22 2 1 2 1 2 2

[(2)] ()

()

2

0

zz zz zz

zz zz

m x m x c l m x m l I I m x m x c l I

m l x c m x I m x I

Fm x s l m x s l

Fm x l s

2 2 12 1 1 2 1 1

2 2 12

()

() (,) ()M M

m x gc m x m l gc

m x gc

M V F G

 (3.2.20)

The manipulator dynamics in equation 3.2.20 can be rewritten in a linear form by simple

rearrangement of terms. In other words, there is a constant vector mP

and a function

. . n mW such that

, , , ,M V F G W P

36

Here, m is the dimension of the parameter space and is non-unique in general. The

function , ,W

is called the Regressor. The parameter vector P is comprised of link

masses, moments of inertia etc. The properties of linear parameterisation and passivity

are very important from point of view of controller design. Using these properties

researchers have been able to prove elegant global convergence and stability results for

robust and adaptive control [Yu and Arteaga (1994)].

The linear form of manipulator dynamics is particularly suitable for derivation of

adaptation laws. To derive the linear form for our two-link manipulator, we define

manipulator parameter constants as:

2 2 2
1 1 2 2 2 1 1 1

2 2 1 2

()

(3.2.21)

2

zz zzP I I m x l m x

P m l x

2
3 2 2 2

4 1

(3.2.22)

(3.2.23)

zzP m x I

P F

5 2

6 1 1 2 1

(3.2.24)

(3.2.25)

()

P F

P g m x m l

7 2 2

(3.2.26)

(3.2.27)P gm x

It can be seen that all these constants are functions of manipulator parameters like, mass

of link, moment of inertia, link length etc.

The manipulator inverse dynamics can now be written in a linear form as

(, ,)W P (3.2.28)

Where 1 2 3 7.. ..
T

P P P P P

is the vector of manipulator parameters and

, ,W

is the 2 x 7 manipulator regressor matrix that has terms that are non-linear in

nature and that depend on manipulator kinematics.

For the two-link manipulator under consideration, the various terms of W matrix are:

37

11 1

12 2 1 2 2 2 2 1

13 2

14 1

15

16 1

17 12

21

2
22 2 1 2 1

23 1 2

24

25 2

26

27 12

(0.5) 0.5 ()

0

0

0.5 0.5

0

0

W

W C S

W

W

W

W C

W C

W

W C S

W

W

W

W

W C

Here 12C is same as 1 2cos() .

The model derived above has been used throughout for simulation studies. The above

model includes all effects considering the rigid body behaviour of the individual links.

The actual values of the various manipulator parameters used for simulation are given

below in Table.3.2.1. These values are based on the Link 2 and Link 3 parameter values

for the CRS Plus manipulator.

1

2

1

1

2

2
1

2
2

1

2

2.0

2.0

0.26

0.13

0.14

0.09

0.09

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table.3.2.1. Actual manipulator parameters

38

3.3 ACTUATOR DYNAMICS

The simplest modification to the rigid robot model given by equation 3.2.20 is the

inclusion of the actuator inertia matrix I [Craig (1989)]. The actuator inertia matrix I is an

n x n diagonal matrix,

I = diag(I1; . . .; In) (3.3.1)

where Ii is the actuator inertia of the i-th joint.

Defining, () ()D M I , we may modify the dynamics to include these additional

terms as

, ,D V F G

 (3.3.2)

As can be seen, the inclusion of the actuator inertias and friction does not change the

order of the equations.

If the joints are actuated with permanent magnet DC motors we may write the actuator

dynamics as

b

di
L Ri V K q

dt

 (3.3.3)

where i, V are vectors representing the armature currents and voltages, and L, R, Kb are

matrices representing, respectively, the armature inductances, armature resistances, and

back e.m.f constants.

Since the joint torque

and the armature current i are related by mK i , where mK is

the torque constant of the motor, we may write the complete system (3.3.1)-(3.3.3) as

, , mD V F G K i

 (3.3.4)

b

di
L Ri V K q

dt

 (3.3.5)

In addition, whenever the manipulator is in contact with the environment, the complete

dynamic description includes the dynamics of the environment and the coupling forces

between the environment and the manipulator. Modeling all of these effects produces an

enormously complicated model. The key in robot control system design is to model the

most dominant dynamic effects for the particular manipulator under consideration and to

design the controller so that it is insensitive or robust to the neglected dynamics.

39

In the model considered in this thesis, we have neglected all the environment interaction

effects and also all the joint flexibilities. We have only considered the inertia of motors

and have included it in the dynamic model. However some work has been done by

researchers on manipulator control with actuator dynamics included in the manipulator

model [Purwar et al. (2004), Ham et al. (1995)].

3.4 ERROR NORMS

For a quantitative comparison of performance of various controllers, three values of

errors in position have been used. They are:

Maximum absolute error at any time during the course of entire trajectory.

Steady state error of the joints, which is formally defined as

. lims s
t

e e t

Root Mean Square average of the error (e) or the 2L norm. This norm is defined as

0

0

1
2

22

2

2

2

1

 which for discrete time case becomes,

 where

 is the total number of samples over the entire trajectory

 total time taken fo

t

t

t

t

i s
i

i
i

s

L e t e t dt
t

e t dt

t

e t t

t

e t

N

t
N

t

t r the trajectory

sampling timest

These error norms cover well the various aspects of manipulator performance for the test

trajectories that we have chosen. The test trajectories are described in detail in Chapter 4.

40

3.5 CONCLUDING REMARKS

In this chapter we have highlighted a few important properties of the individual matrices

that comprise the manipulator dynamics equation. These properties are widely used for

controller design and in particular for proving their stability.

We have also derived the two-link planar manipulator dynamics equations using the

Lagrangian method. These equations comprise the mathematical model of the

manipulator and are used in all simulation studies.

Finally the various error norms used for comparative analysis of performance of various

controllers are discussed.

41

CONVENTIONAL CONTROL OF ROBOT MANIPULATORS

4.0 INTRODUCTION

The problem of manipulator control is a highly complex problem of controlling a system

which is multi-input, multi-output, non-linear and time variant. The general structure of a

manipulator with controller is shown in figure 4.1 below.

Fig 4.1 General structure of robot control system

Because of the complexity of both the kinematics and dynamics of the manipulator and of

the task to be carried out, the motion control problem is generally decomposed into three

stages, Motion Planning, Trajectory Generation, and Trajectory Tracking [Spong et al.

(1992)]. In the motion planning stage, desired paths are generated in the Task Space

without timing information, i.e., without specifying velocity or acceleration along the

paths. Of primary concern is the generation of collision free paths in the workspace. In

the trajectory generation stage, the desired position, velocity, and acceleration of the

manipulator along the path, as a function of time are computed. The trajectory planner

may parameterize the end-effector path directly in Task Space or it may compute a

trajectory for the individual joints of the manipulator as a curve in the Configuration

Space.

In order to compute a Joint Space trajectory, the given end-effector path must be

transformed into a Joint Space path via the inverse kinematics mapping. Because of the

difficulty of computing this mapping on-line, the usual approach is to compute a discrete

set of joint vectors along the end-effector path and to perform an interpolation in Joint

Space among these points in order to complete the Joint Space trajectory. Common

 TRAJECTORY
 GENERATOR

, ,d d d

CONTROLLER

ROBOT

CHAPTER IV

42

approaches to trajectory interpolation include polynomial spline interpolation, using

trapezoidal velocity trajectories or cubic/quintic polynomial trajectories.

The computed reference trajectory is then presented to the controller, whose function is to

cause the robot to track the given trajectory as closely as possible. This thesis is mainly

concerned with the design and analysis of the tracking controllers assuming that the path

and trajectory have been precomputed.

The trajectory generator provides the controller with information about the desired

position, velocity and acceleration , ,d d d

for each joint and keeps updating this

information at the path update rate, which usually lies in the range of 20 to 200 Hz

[Khosla (1987)]. The controller takes this information and compares it with the present

(actual) position and velocity (sometimes acceleration also) of joints , , , which are

provided as feedback through the sensors (usually optical encoders and tachogenerators).

Based upon the error between the desired and actual values, the controller calculates a

vector of joint torques

that should be applied at respective joints by the actuators to

minimise these errors. The torques are calculated using a control law. The goal of the

controller is thus, minimisation of the error, e

and its first derivative e

(and sometimes

the second derivative e also). Here e is calculated as

 de (4.1)

and e as de

 (4.2)

where is the vector of actual joint positions and that of actual joint velocities.

There are various possible controller configurations for manipulator control. In this

chapter we analyse some common conventional manipulator controller architectures [Luh

(1983)].

The conventional control strategies can be broadly classified as Linear and Non Linear

strategies. We first discuss the essence of linear control of manipulators.

4.1. LINEAR CONTROL OF MANIPULATORS

The use of linear control techniques for any system is valid only when the system to be

controlled can be modelled by linear differential equations. Thus the linear control of

43

robot manipulators is essentially an approximation, as the manipulator dynamics is

described by highly non linear equations. The linear control strategies for robots give

excellent performance for manipulators having highly geared joints. This is the case with

most of the industrial robots in use today. These controllers assume that each joint is a

decoupled, independent entity. Further it is also assumed that each actuator on each joint

is driving a constant inertia load. All these assumptions hold good if the manipulator

joints are highly geared. One common linear control strategy known as PD (proportional

Fig 4.1.1. Block diagram of fixed proportional plus derivative plus integral (PID)

feedback control

plus derivative) control is shown in Fig 4.1.1.

The control law used for this strategy is given by equation 4.1.1.

PD D PK e K e (4.1.1)

where e

and e

are error in velocity and position, and KP and KD are the controller gain

matrices. PD

is the vector of joint torques. Usually the gain matrices are chosen to be

diagonal because of the assumption of decoupled nature of the joints, and the diagonal

elements are chosen to be greater than zero (required for stability).

All the control strategies investigated in this section and the next section (4.2) were tested

against two trajectories. In the first test trajectory (Fig. 4.1.2(a)), the direction of rotation

of the joints was not reversed. Here the first joint moves from its initial position of 0

to

90

degrees in 5 seconds and then stays there for another 5 seconds. The second joint on

the other hand was made to move from 0

degrees to 90

degrees in 5 seconds and was

held there for next 5 seconds.

ROBOT
DK

PK

d +

d +

+

_

_

+

/PD PID

IK

+

44

In the second test trajectory, the direction of motion of joints was reversed in between the

motion. This produces a greater stress on the controllers. In this trajectory (Fig.4.1.2 (b)),

the first joint of the manipulator was required to move from its initial position at 0 to 90

and then back to 0

in 10 seconds. It was further required to hold this joint at 0

degrees

for another 5 seconds. The second joint had to trace a similar path starting from 0 , going

to 90

and then again coming back to its initial position of 0

in 10 seconds. The second

joint then stays at 0 for a further time of 5 seconds.

Both the test trajectories were defined using quintic polynomials, which satisfied the

conditions of zero velocity and acceleration at the beginning and at the end of motion.

The path update rate was selected as 333 Hz. Thus the trajectory generator supplies the

controller a new set point at every 3msec interval. The manipulator control loop runs 5

times during this interval between two set points.

Fig. 4.1.2(a) Desired trajectory 1 (Fixed Parameters)

Fig. 4.1.2(b) Desired trajectory 2 (Fixed Parameters)

45

The performance of PD controller was tested for the above two trajectories. For

simulation it was assumed that we have perfect knowledge of manipulator parameters and

their values were taken as shown in Table 3.2.1.

The simulation results (error profiles) for this simple control strategy are shown in

Fig.4.1.3 (a) and Fig. 4.1.3 (b) for the two different trajectories. The root mean square

(RMS) value and the steady state (S.S) value of the errors for the two joints are tabulated

in Table 4.1.1.

Fig. 4.1.3(a) Errors for PD control (Trajectory 1, Fixed Parameters)

Fig. 4.1.3(b) Errors for PD control (Trajectory 2, Fixed Parameters)

46

PD Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2

0

-90

Link1

0 90 0

Link2

0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

3.6101 1.6990 1.3115 1.5660 4.8932 5.9127 1.5740 1.5583

Table 4.1.1 Errors for PD control (Fixed Parameters)

For simulation the PD controller gain matrices were chosen to be diagonal with

100PK and 50DK . Increasing the values of PK

and DK

lead to smaller errors but

increase the chances of exciting the manipulator resonance. We chose these values

through repeated simulations mainly through trial and error.

The problem with PD controllers is that they do not guarantee exact trajectory tracking,

i.e. lim 0
t

e t

This can also be seen Fig 4.1.3 (a) and 4.1.3 (b), which show a finite steady state errors.

They only guarantee the error e t to be bounded. The steady state magnitude of e t

may be reduced to some extent by selecting higher gains [Wen et al. (1987)]. The upper

limit to the value of these gains is dictated by the unmodelled flexibility of the

manipulator. Higher gains may excite the natural resonance frequencies of the

manipulator and cause the whole structure to become unstable.

Usually an integral term is also used in the control law and is shown by the dashed line in

Fig. 4.1.1. Equation 4.1.1 is then modified as

PID D P IK e K e K edt (4.1.2)

where KI once again is a diagonal matrix with small scalar values to keep the higher

order effects at minimum.

The simulation results (error profiles) of the PID control strategy are shown in

Fig.4.1.4(a) and Fig. 4.1.4 (b) for the two different trajectories. The root mean square and

the steady state values of the errors for the two joints are tabulated in Table 4.1.2. In this

simulation the IK gain matrix was chosen as diagonal with elements equal to 0.25.

47

Fig. 4.1.4(a) Errors for PID control (Trajectory 1, Fixed Parameters)

Fig. 4.1.4(b) Errors for PID control (Trajectory 2, Fixed Parameters)

PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2
0

-90

Link1
0 90 0

Link2
0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.7248 0.0 0.1944 0.0 0.6195 -0.0001 0.1682 -0.0003

Table 4.1.2 Errors for PID control (Fixed Parameters)

Comparing Tables 4.1.1 and 4.1.2, although the introduction of the integral term in the

control law results in significantly low values of errors as compared to PD control, it also

48

increases the order of the system, which can result in system instability. As shown in Fig

4.1.4(c), even a small value of 5IK

introduces appreciable oscillations in the system

and degrades its performance. The integral term thus is almost always avoided in the real

manipulator controller implementations.

All these limitations make linear control of manipulators unfit for tasks requiring high

degree of accuracy and/or high speed of operation.

In such situations recourse is taken to more accurate non-linear control techniques, some

of which are discussed below.

Fig. 4.1.4(c) Errors for PID Control with 5IK (Trajectory 1)

4.2 NON-LINEAR CONTROL OF MANIPULATORS

The linear control of manipulators is non-model based in the sense that the control law

does not take into consideration the robot mathematical model at all. In the non-linear

control of manipulators the manipulator dynamics equation is taken in its complete form,

usually without omitting or approximating any of the constituent matrices. The only

approximation still used is that the links are still assumed to be perfectly rigid. The

manipulator model may be in feedback or in forward path of the control loop. When used

in forward path the aim is to provide a non-linear component torque in accordance with

manipulator nonlinearities. On the other hand when used in feedback path the main aim is

49

to cancel the manipulator dynamics nonlinearities and make the system linear and

decoupled. Some common non-linear control techniques are now discussed.

4.2.1 COMPUTED TORQUE CONTROL (CT)

The most common control technique in the category of non-linear control is the

Computed torque control proposed by Paul (1972). The block diagram representation of

computed torque control strategy is shown below in Figure 4.2.1.1. As can be seen the

basic idea of computed torque control is that of feedback linearization.

Here the computed torque ct is given by

,ct d D P MM K e K e V G (4.2.1.1)

If the manipulator model is known exactly then this scheme results in asymptotically

stable, linear time invariant error dynamics and provides asymptotically exact tracking

[Campa et al. (2001)].

Fig. 4.2.1.1 Block diagram of Computed torque control

The simulation results for the Computed Torque Control method, with an exact model,

i.e., assuming that the parameter values are exactly known, are shown in Fig. 4.2.1.2(a)

and Fig 4.2.1.2(b). The RMS and Steady State values of errors are tabulated in Table

4.2.1.1(a). As can be seen, the performance of this controller is really good with both the

M

ROBOT

, ,MV F G

DK PK

d

d

d

_

+

+

_

+

+

+

+

+

ct

50

steady state and the RMS values of the errors appreciably low without any danger of

instability as in the PID controller. In fact the Steady state errors are almost zero.

Fig. 4.2.1.2(a) Errors for Computed torque control (Trajectory 1, Exact model)

Fig. 4.2.1.2(b) Errors for Computed torque control (Trajectory2, Exact model)

Computed Torque Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2
0

-90

Link1
0 90 0

Link2
0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.1332 -0.0023 0.2990 0.0022 0.1579 0.0000 0.3513 0.0000

Table 4.2.1.1(a) Errors for Computed torque control with exact model

51

The effectiveness of this controller unfortunately lasts only till the model used is accurate.

Even a slightly inexact model, if used, can lead to drastic degradation in performance.

This can be seen from the Fig. 4.2.1.2(c) and Fig. 4.2.1.2(d), which depict the errors in

position for a Computed Torque Controller with inexact model. The inexactness in

modelling in this case was limited to just the masses of the two links, which were taken to

be 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator

parameters, like the link lengths, the positions of the centre of masses of the links, etc.,

were taken accurately. But even this small inexactness in the value of just two parameters

degrades the transient as well as steady state performance of the controller to a great

degree. Table 4.2.1.1(b) tabulates the values of these errors.

Fig. 4.2.1.2(c) Errors for Computed torque control (Trajectory1, Inexact model)

Fig. 4.2.1.2(d) Errors for Computed torque control (Trajectory2, Inexact model)

52

Computed Torque Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2

0

-90

Link1

0 90 0

Link2

0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.8839 0.0044 1.3060 1.2498 1.4132 1.7100 1.3908 -1.3497

Table 4.2.1.1(b) Errors for Computed torque control with inexact model

As the estimation of the parameters of the manipulator exactly is a difficult, if not an

impossible task, and as the manipulator parameter change when it picks up a load, this

controller clearly cannot be relied upon to give a good performance under practical

circumstances.

4.2.2 FEED FORWARD INVERSE DYNAMICS (FFID) CONTROL

A slightly different approach that is more suitable to adaptation is sometimes used instead

of computed torque scheme [Liegeois et al. (1980)]. This scheme uses the inverse

dynamics in feed forward mode. The block diagram of this scheme is shown below in

figure 4.2.2.1.

Fig. 4.2.2.1 Block diagram of Feed Forward Inverse Dynamics Control

, ,M V F Gd M d M d

ROBOT

DK PK

d

d

d

+

+

+

_

_

+

+

ffid

53

In this strategy the torque is calculated as

, ,

, , ,

ffid d M d M d D P

d d D P

M V F G K e K e

W P K e K e
 (4.2.2.1)

Equation 4.2.2.1 uses the inverse dynamics model with , , ,d dW

as the regressor

matrix and P

as the vector of manipulators parameters. The W

and P

matrices are as

defined in equation 3.2.28. The regressor matrix is dependent both, on actual and the

desired values of acceleration and velocity instead of the actual values alone as can be

seen from equation 4.2.2.1. The error system resulting from this controller can be shown

to be globally asymptotically stable when PK

and DK

are diagonal and all the scalar

values are positive.

The simulation results for this controller, under the assumption that the manipulator

model is known accurately, are shown in Fig. 4.2.2.2(a) and Fig. 4.2.2.2(b). The values of

the RMS and the steady state errors are listed in Table 4.2.2.1(a).

It can be seen from the error profiles of Fig. 4.2.2.2(a) and (b) that the overall motion of

the manipulator, with this controller, is smoother compared to that with the Computed

Torque controller. This is indicated by a lesser number of sign changes in the error

gradient. Also the magnitude of the RMS error for both the trajectories has decreased

appreciably as compared to the Computed Torque controller.

Fig. 4.2.2.2(a) Errors for FFID Control (Exact model, Trajectory1)

54

Fig. 4.2.2.2(b) Errors for FFID Control (Exact model, Trajectory2)

FFID Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2
0

-90

Link1
0 90 0

Link2
0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.0181 -0.0029 0.0181 0.0030 0.0208 0.0000 0.0208 0.0000

Table 4.2.2.1(a) Errors for FFID Control with exact model

The performance of the Feed Forward Inverse Dynamics controller was further tested by

using an inexact model of the manipulator, for the feed forward torque calculations. The

inexactness in modelling in this case, as for the previous Computed Torque controller,

was once again limited to just the masses of the two links. The two links were taken to be

of 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator

parameters, like the link lengths, the positions of the centre of masses of the links, etc.,

were taken accurately. The error profiles of the two joints for this case are shown in Fig.

4.2.2.2(c) and Fig. 4.2.2.2(d). The RMS and steady state values of the errors are listed in

Table 4.2.2.1(b). It is observed that the performance of the controller shows degradation

with larger errors for both the joints and for both the trajectories. However, the

deterioration in the performance of the controller is not as marked and pronounced as it

was for the Computed Torque scheme.

55

This clearly indicates the merits of using the inverse dynamics in the feed forward mode

and further illustrates the advantage of using the desired velocity and acceleration instead

of the actual ones for calculating the manipulator regressor matrix. The use of desired

acceleration instead of the actual value has further advantage in terms of real

implementation. Measuring the actual acceleration of the manipulator joints is a difficult

task, as easy to use acceleration sensors are not readily available. Further, if the

acceleration is found by differentiating the velocity information given by a

tachogenerator or by double differentiating the position information given by an optical

encoder, there always are possibilities of getting wrong values due to even a very low

noise signal whose differentiation may result in very large and incorrect values of the

actual acceleration.

Fig. 4.2.2.2(c) Errors for FFID Control (Inexact model, Trajectory1)

Fig. 4.2.2.2(d) Errors for FFID Control (Inexact model, Trajectory2)

56

FFID Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2

0

-90

Link1

0 90 0

Link2

0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.3083 0.1610 0.1638 0.1601 0.4849 0.5949 0.1544 0.1571

Table 4.2.2.1(b) Errors for FFID Control with inexact model

We next investigate another control strategy, which calculates the manipulator regressor

matrix, W , in slightly different way, leading to further improvement in performance.

4.2.3 CRITICALLY DAMPED INVERSE DYNAMICS (CDID) CONTROL

This control strategy is almost same as the previous feedforward inverse dynamics,

except that the regressor matrix, W , is calculated using reference velocity and reference

acceleration instead of the desired values [Slotine and Li (1988)]. These reference values

are defined as

R d d (4.2.3.1)

R d d (4.2.3.2)

The torque is calculated as

, , ,cdid R R DW K e (4.2.3.3)

where the error , e , is defined as

R

d d

e
 (4.2.3.4)

This control law results in a system of stable first order subspace. An exponentially stable

system forced by an input that decays to zero has an output that decays to zero. Then

lim 0
t

e t . This result is used to prove the stability of the controller [Sadegh and

Horowitz (1987)]. The block diagram of this control scheme is given in Fig. 4.2.3.1.

57

Fig.4.2.3.1 Block diagram of Critically damped inverse dynamics control

The CDID controller was also tested for performance, using both the exact and inexact

models of the manipulator as for the previous controllers. As can be seen from equations

4.2.3.3 and 4.2.3.4 there are two main differences between this controller and the

previous FFID controller. First, in this controller, the manipulator regressor matrix is

calculated as a function of actual positions and velocities and also as a function of

reference velocities and accelerations, while in the FFID controller the regressor matrix

was calculated as a function of actual positions and velocities, and desired velocities and

accelerations. Second, the effective proportional gain of the CDID controller is increased

in comparison to that of FFID controller. To see the effective increase in gain, we know

that the FFID control law from equation 4.2.2.1 is

, ,

, , ,

ffid d M d M d D P

d d D P

M V F G K e K e

W P K e K e
 (4.2.3.5)

and from equation 4.2.3.3, the control law for the CDID controller can be written as

, , ,

, ,

cdid R R D R

R M R M R D R

W P K

M V F G K

 (4.2.3.6)

Substituting equation 4.2.3.1 and 4.2.3.2 in equation 4.2.3.6 we get,

, ,

, ,

,

, , , ,

cdid R M R M R D D

d M d M d

M D D

d d D M D

M V F G K e K e

M V F G M e

V e K e K e

W P M K e V K e

 (4.2.3.7)

,

,

R M R

M R

M V

F G

ROBOT

DK

d

d

R

R

_

+

+

cdid

d

+

+

+

+

+

+

_

_

58

Comparing equations 4.2.3.5 and 4.2.3.7 we see the equivalent controller gains as

,

Deq D

Peq M D

K M K

K V K

 (4.2.3.8)

As the manipulator mass matrix M

is positive definite and if the

matrix is also

chosen to be positive definite, then their product M

is also positive definite. Thus

the resultant derivative controller gain for CDID controller is increased compared to the

derivative gain for FFID controller. The matrix of the CDID controller effectively has

the same role as the PK

matrix has in the FFID controller. The matrix product

,MV

in equation 4.2.3.8 can have both positive and negative valued elements, but

usually the magnitudes of these elements are small. As a result, if we choose PK , the

effective proportional gain constant of the CDID controller increases approximately by a

factor of DK .

The simulation results for the CDID controller with exact manipulator model are shown

in Fig. 4.2.3.2(a) and (b). The RMS and the Steady State values of the errors for the two

links for two different trajectories are listed in Table 4.2.3.1(a).

Fig. 4.2.3.2(a) Errors for CDID Control (Exact model, Trajectory1)

59

Fig. 4.2.3.2(b) Errors for CDID Control (Exact model, Trajectory2)

CDID Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2
0

-90

Link1
0 90 0

Link2
0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.0183 -0.0001 0.0183 0.0000 0.0211 0.0000 0.0212 0.0000

Table 4.2.3.1(a) Errors for CDID Control with exact model

As can be expected and as is also seen in Fig. 4.2.3.2(a) and (b), with the model known

exactly, the CDID controller does not give any performance improvement over the FFID

controller as far as the RMS value of the transient portion of motion is concerned.

However, as the effective proportional gain constant for the CDID controller is larger

than that for the FFID controller, it results in a better steady state performance. In fact,

the steady state errors in this simulation are seen to have been completely removed.

The strength of the CDID controller comes to the fore when the manipulator model is not

known exactly. The error profiles for the simulation with inexact model are shown in

Fig. 4.2.3.2(c) and (d). Table 4.2.3.1(b) lists the quantitative values of the errors for

different cases. As can be seen, both the RMS and steady state values of errors, for both

the links for both the trajectories are considerably reduced in magnitude over the

60

corresponding values for FFID. As explained earlier, the greater value of the proportional

gain constant results in a better steady state performance, while, the use of reference

velocities and accelerations for calculation of the manipulator regressor matrix instead of

the actual values, results in an improved transient performance of the arm. This can be

mainly attributed to the fact that the reference values are cleaner compared to the actual

values, which are sensor derived and hence always ridden with noise. Moreover if only an

optical encoder is used for feedback (as is usual), the values of velocity and acceleration

of the joints has to be derived by differentiating the position information provided by the

encoders. This numerical differentiation can further reduce the validity of data and the

problem becomes more severe with increase in the noise in the environment where the

manipulator is working.

Fig. 4.2.3.2(c) Errors for CDID Control (Inexact model, Trajectory1)

61

Fig. 4.2.3.2(d) Errors for CDID Control (Inexact model, Trajectory2)

CDID Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90

Link2
0

-90

Link1
0 90 0

Link2
0

-90 0

RMS S.S RMS S.S RMS S.S RMS S.S

0.0140 0.0029 0.0203 0.0030 0.0232 0.0113 0.0214 0.0030

Table 4.2.3.1(b) Errors for CDID Control with inexact model

4.2.4 PURE FEEDFORWARD CONTROLLER

As the name suggests, the inverse dynamics in this scheme is calculated using only the

desired values of trajectory. The torque here is calculated as

2 1
2, , ,idp d d d d PD nW P e K Ke (4.2.4.1)

The last term in the above equation is added to guarantee the stability of the system [Wen

and Bayard (1987)].

The simulation results of this controller showed that in performance this controller is

essentially at par with the Critically Damped Inverse Dynamics Controller. The error

profiles and magnitudes for both the cases of exact and inexact models of the manipulator

matched to a good degree to those of CDID controller. Hence the results for this

controller are not shown separately.

62

4.2.5 COMMENTS ON PERFORMANCE OF VARIOUS MODEL BASED

CONTROLLERS

The consolidated results for the simulations are presented in Table 4.2.5.1 (Exact model)

and Table 4.2.5.2 (Inexact model) for easy comparison of the controllers performances.

TRAJECTORY NO.1 TRAJECTORY NO.2 S.No

link1
0 90

link2
0

-90

link1
0 90 0

link2
0

-90 0

STRATEGY

RMS SS RMS SS RMS SS RMS SS

1. PD Control 3.6101 1.6990 1.3115 1.5660 4.8932 5.9127 1.5740 1.5583
2. PID control 0.7248 0.0 0.1944 0.0 0.6195 -0.0001 0.1682 -0.0003
3. CT 0.1332 -0.0023 0.2990 0.0022 0.1579 0.0 0.3513 0.0
4. FFID 0.0181 -0.0029 0.0181 0.0030 0.0208 0.0 0.0208 0.0
5. CDID 0.0183 -0.0001 0.0183 0.0 0.0211 0.0 0.0212 0.0

Table 4.2.5.1. Errors for various controllers (Exact model)

TRAJECTORY NO.1 TRAJECTORY NO.2 S.No

STRATEGY
link1

0 90

link2
0

-90

link1
0 90 0

link2
0

-90 0

RMS SS RMS SS RMS SS RMS SS

1. CT 0.8839 0.0044 1.3060 1.2498 1.4132 1.7100 1.3908 -1.3497

2. FFID 0.3083 0.1610 0.1638 0.1601 0.4849 0.5949 0.1544 0.1571

3. CDID 0.0140 0.0029 0.0203 0.0030 0.0232 0.0113 0.0214 0.0030

Table 4.2.5.2. Errors for various controllers (Inexact model)

Following are the observations made based on the simulation studies done in sections 4.1

and 4.2.

1. PD controller does not give acceptable performance in case the cross coupling

effects of manipulator dynamics are not negligible. The errors can be reduced by

increasing the controller gains but at the risk of exciting unmodelled dynamics.

Anyway, the steady state errors cannot be totally eliminated by even increasing

the controller gains.

2. PID controller gives a very good performance but has the risk of instability.

Hence it is generally not used in its pure form for manipulator control.

63

3. If the manipulator model and parameters are known exactly, then the FFID and

CDID controllers give comparable performance.

4. If the manipulator parameters are not known exactly, then the CDID outperforms

FFID controller.

5. Model based controllers perform better if the values used in the model are of

reference or desired trajectory input rather than the sensor values. (Ex. CDID or

FFID vs. CT)

6. The model-based controllers are sensitive to incorrect parameter values, and

sometimes their performance may degrade below PD performance level if

inexactness in parameter values is too high.

7. For CDID the effective controller gain is increased and hence it gives lower error

than FFID.

8. The performance of these model-based controllers depends to a great extent on the

accuracy of modelling.

The flowchart for the algorithm used for software simulations done in section 4.1 and 4.2

is shown in Fig. 4.2.5.1. The variable K keeps track of the iteration number for a given

set point. When K is equal to four, a new set point is calculated.

In the next section we investigate the performance of various controllers for the case

when manipulator picks up a load sometime during its motion. This changes the values of

parameters during motion and demands more from the controllers to maintain their

performance.

64

Fig.4.2.5.1. Software Simulation Algorithm Flowchart

Initialise Variables and Constants, K=5,
sampling time ts=0.003sec, t=0

Get inputs: final position and time Tf

from user

Calculate constants of quintic trajectory

Calculate the actual manipulator
parameters matrix, P

Is time
t<= Tf ?

Exit

Is
K=5?

Calculate the new
trajectory set point, set

t=t+ts, K=0.

Calculate the errors in position /
velocity

Calculate the torque for the joints using
the inverse dynamics and control law

Calculate the manipulator forward
dynamics parameters

Is
K=4?

Store the error values in
array for analyses

Find the actual position, velocity and
acceleration using the forward dynamics,

K=K+1

Write files

NO

YES

YES

NO

YES

NO

65

4.3. EFFECT OF PARAMETER VARIATION ON CONTROLLER
PERFORMANCE

A great cause of stress on the controller is the change in the values of manipulator

parameters when the arm picks up a load and moves it in its workspace to place it at some

destination point. We have already said that the determination of manipulator parameters

exactly, is a very difficult task. At most we may have only a good estimate of these

parameter values but only rarely their exact values. Now as the manipulator may pick up

different loads during the course of its operation, and these loads may not be known in the

most general case, the model based controllers discussed previously will certainly result

in a degraded performance. These controllers need information about the parameter

values to control the manipulator motion effectively. Any deviation from the values used

in calculating the control law will lead to a poor performance of these controllers.

4.3.1 TEST TRAJECTORIES AND PARAMETER VALUES

The various control strategies discussed previously in sections 4.1 and 4.2 were tested for

performance against two trajectories. The first trajectory consisted of only a single quintic

polynomial, which moved the two joints from their initial positions (0) to a final position

of 90

or -90 . The second trajectory on the other hand consisted of two quintic

polynomials. The first polynomial takes the joints from their initial home position (0) to

either 90

or 90 , while the second polynomial moves the joints back to their home

positions. This trajectory switching is a typical occurrence during the course of

manipulator motion and puts a great stress on the controller.

In the following sections we further tested the performance of these control strategies by

incorporating the fact that the manipulator picks up a load during its motion. This results

in changed values of its parameters. We assume that in the beginning of manipulator

motion the parameter values were known exactly, and at some time during its motion, the

manipulator picks up a load thereby changing its parameter values. The controller

performance under this situation was tested by simulation.

We once again used two trajectories for testing the control strategies. In the first case, the

joint 1 of the manipulator moves from 0 to 90 in 5 seconds. At this time the manipulator

picks up a load. The joint then moves back to 0

in 5 seconds and then stays there for

66

another 5 seconds. The motion of joint 2 is exactly same as of joint 1 except that it moves

to 90

in place of +90 . The interpolating polynomials used were quintic. This first

trajectory is shown in Fig. 4.3.1.1(a). For this trajectory the quantitative measures of

performance were taken as the RMS and the steady state values of the errors.

Fig. 4.3.1.1(a) Desired Trajectory 1 (Changing Parameters)

Fig. 4.3.1.1(b) Desired Trajectory 2 (Changing Parameters)

The second trajectory used for testing is shown in Fig. 4.3.1.1(b). In this trajectory the

two joints of the manipulator were required to move in a cyclic fashion. The first joint

moves from its home position of 0 to +45 in 2 seconds. The manipulator then picks up a

payload and returns home in next 2 seconds and upon reaching home it drops its payload.

This operation is then repeated over time. The second joint has a trajectory profile similar

to the first one except that it moves from home to 45

and back to home. The motion of

67

manipulator over a period of 8 seconds was used for finding the RMS values of the errors.

Since in this case the set point is always changing, the measure of steady state error was

replaced by the maximum error over this time period. This kind of motion is commonly

found in industrial manipulators used for Pick and Place kind of operation. The original

values of various manipulator parameters were taken to be same as in the case of previous

simulations. When the manipulator picks up a load, the values of these parameters

undergo a change. For the task of simulation, the original and the changed values of the

parameters were taken as shown in Tables 4.3.1.1 and 4.3.1.2. The values in Table 4.3.1.1

are based on Link 2 and Link 3 parameters of the CRS Plus manipulator.

1

2

1

1

2

2
1

2
2

1

2

2.0

2.0

0.26

0.13

0.14

0.09

0.09

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table 4.3.1.1. Original manipulator parameter values

1

2

1

1

2

2
1

2
2

1

2

3.0

3.0

0.26

0.15

0.16

1.5

0.09

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table 4.3.1.2. Changed manipulator parameter values (on picking up load)

68

4.3.2 PD / PID CONTROLLERS

The PD and the PID control algorithms are non-model based control strategies. These two

controllers were tested for the effect of parameter variation on their performance to form

a basis for comparison of performance for model-based algorithms.

The PD controller error profiles are shown in Fig. 4.3.2.1(a) and (b) for trajectory 1 and

trajectory 2 respectively. The magnitudes of various error norms are tabulated in Table.

4.3.2.1. As expected, the effect of parameter variation on the performance of PD

controller is drastic. Both the RMS and the Steady State values of errors for both the

trajectories show a marked increase. It can be seen from Fig.4.3.2.1 (b) that the errors

increase every time the manipulator picks up the load and they decrease when the load is

released. Overall the errors are large and unacceptable.

Fig. 4.3.2.1(a) PD Control errors for Trajectory 1 (Changing Parameters)

Fig. 4.3.2.1(b) PD Control errors for Trajectory 2 (Changing Parameters)

69

PD Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

Table 4.3.2.1 Errors for PD control (Changing Parameters)

Adding an integral term and modifying the controller to PID substantially reduces the

large errors of PD controller. The simulation results for the PID controller are shown in

Fig. 4.3.2.2(a) and (b). The magnitudes of the errors are listed in Table. 4.3.2.2. The

integral gain constant IK

for this controller is taken to be a small value equal to 0.25.

PK

and DK

were taken as 100 and 50 respectively as for previous simulations. It can be

seen that even this small value of IK

results in a marked improvement in performance.

The RMS values of the errors are substantially reduced and the steady state errors are

eliminated almost totally.

Fig. 4.3.2.2(a) PID Control errors for Trajectory 1 (Changing Parameters)

70

Fig. 4.3.2.2(b) PID Control errors for Trajectory 2 (Changing Parameters)

PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.6783 -0.0024 0.1960 -0.0004 1.2578 2.8973 0.5218 0.9304

Table 4.3.2.2 Errors for PID control (Changing Parameters)

But unfortunately this performance improvement is not without peril. Even a small

increase in the integral gain constant results in an unstable system. Fig. 4.3.2.2(c) is the

plot of PID controller errors versus time for a value of IK =3.25. It can be seen that the

system has become unstable with the errors increasing with time. This instability of PID

controllers makes them unfit for actual use for controlling the manipulator.

Fig. 4.3.2.2(c) PID Control errors for Trajectory 2 with KI=3.25 (Changing Parameters)

71

The above PID controller can be modified in the way errors are summed up for the

integral action. Instead of summing the errors during the entire duration of trajectory, the

errors are summed up only for the five iterations of the control loop. These five iterations

are associated with every new set point supplied by the trajectory generator. Whenever

the new set point arrives from trajectory generator, the error summation is reset to zero.

This change in the way errors are summed up, result in great advantage from stability

point of view for the controller. It can be shown that this controller is stable [Loria

(2000)].

The position error profiles for this modified PID controller are shown in Fig. 4.3.2.2(d)

and 4.3.2.2(e) for trajectory 1 and trajectory 2 respectively. Table 4.3.2.3 lists the values

of various errors for the two trajectories. It can be seen that the error magnitudes have

gone down appreciably for this modified PID controller when compared to the PD

controller. Of course the performance improvement is not as marked as in case of

normal PID, but is still good enough to warrant its use. In fact the errors have gone

down by more than 50% compared to PD control errors. Moreover the fact that this

scheme can be proved to be stable makes it all the more appealing.

Fig. 4.3.2.2(d) Modified PID Control errors for Trajectory 1 (Changing Parameters)

72

Fig. 4.3.2.2(e) Modified PID Control errors for Trajectory 2 (Changing Parameters)

Modified PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

Table 4.3.2.3 Errors for Modified PID control (Changing Parameters)

4.3.3. COMPUTED TORQUE CONTROL

The computed torque control is a model based control strategy, in which the model of the

manipulator is in the feedback loop. We have already seen that the performance of this

controller depends largely on the exactness of the model being used. For this simulation

we assumed that to begin with the model is exactly known and that this model changes

when the manipulator picks up a load. The errors versus time plot for this controller is

shown in Fig 4.3.3.1(a) and (b) for the two trajectories. Table 4.3.3.1 lists the magnitude

of errors for the two trajectories used for the simulated testing.

It can be seen from the error plots that in the beginning, when the model is known

exactly, the tracking errors of the two joints are small. These errors show a sharp increase

in magnitude when the manipulator picks up a load, when time is 5 seconds for the first

trajectory and 2 seconds for the second trajectory. It can be further seen that the transient

errors, which build up, tend to increase the steady state error as well. Overall the errors

73

are large and the motion is jerky with the errors increasing and decreasing alternately.

Computed torque control as a result performs poorly in case the manipulator is working

in a dynamic, unknown environment.

Fig. 4.3.3.1(a) Computed Torque Control errors for Trajectory 1 (Changing Parameters)

Fig. 4.3.3.1(b) Computed Torque Control errors for Trajectory 2 (Changing Parameters)

Computed Torque Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

Table 4.3.3.1 Errors for Computed Torque control (Changing Parameters)

74

4.3.4. FFID CONTROL

The Feed Forward Inverse Dynamics controller, as opposed to the Computed Torque

controller, is a model-based strategy in which the model is in the forward path of the

control loop. Moreover as stated earlier, the model-based part is evaluated as a function

of actual position and velocity as well as the desired velocity and acceleration i.e.,

, , ,d dW . For this controller too the initial errors at the beginning of motion are

small values, as the model is assumed to be known perfectly. However, as the

manipulator picks up the load and the model becomes inexact, the errors show a sudden

increase. These errors again decrease when the manipulator releases the load and its

original model again becomes valid. This fluctuation of errors is akin to the one seen in

the case of Computed Torque control, but the magnitude of these errors is considerably

reduced, as can be seen from Table 4.3.4.1. This can be mainly attributed to the fact that

this controller uses comparatively cleaner desired velocity and acceleration information

instead of the actual values, which are always tainted with noise signals. The error

profiles for the two joints for the two trajectories are shown in Fig. 4.3.4.1(a) and (b).

Fig. 4.3.4.1(a) FFID Control errors for Trajectory 1 (Changing Parameters)

75

Fig. 4.3.4.1(b) FFID Control errors for Trajectory 2 (Changing Parameters)

FFID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

Table 4.3.4.1 Errors for FFID control (Changing Parameters)

4.3.5 CDID CONTROL

The simulation results for the Critically Damped Inverse Dynamics controller are shown

in Fig. 4.3.5.1(a) and Fig. 4.3.5.1(b). The overall profiles of the errors have the same

basic characteristics as those for the FFID controller. There are some noticeable

differences however. First, the overall magnitudes of the different error norms for CDID

controller have decreased considerably. This can be seen from Table. 4.3.5.1. Secondly,

the errors for joint 2 have also been limited in magnitude to a large extent. But the

oscillation of the errors is still very much present and they tend to increase whenever the

manipulator picks up a load. The larger effective gains of the CDID controller as

compared to the FFID controller are mainly responsible for this improved performance of

the controller.

76

Fig. 4.3.5.1(a) CDID Control errors for Trajectory 1 (Changing Parameters)

Fig. 4.3.5.1(b) CDID Control errors for Trajectory 2 (Changing Parameters)

CDID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

Table 4.3.5.1 Errors for CDID control (Changing Parameters)

77

4.3.6 COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3 are presented in

Table 4.3.6.1 for easy comparison of the performance of various controllers.

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control
(Modified) 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT control 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

Table 4.3.6.1. Errors of different controllers for changing parameter case

Following observations are made based on simulations carried out in this section:

1. The performance of PD controller degrades further for the case when parameters

of manipulator change during motion. This is mainly due to the fact that the

controller gains chosen for good performance for one set of parameters are no

longer optimal when the parameters of the manipulator change. Clearly one set of

controller gains cannot give good performance if parameters change during

motion.

2. The modified PID scheme results in better controller performance with an

additional advantage of guaranteed system stability. The controller errors are

reduced significantly when compared to PD controller. Modified PID could be a

good choice for manipulator control using non-model based controllers.

3. The CT controller gives errors almost matching the PD controller. This shows that

this controller does not perform well if the model used has inaccuracies. Moreover

it just adds to the calculations required to be performed to calculate the

manipulator model equations used in feedback loop.

78

4. The FFID controller performs appreciably better than the CT controller and

slightly better than the modified PID controller. This once again indicates the

merits of using the inverse dynamics in the feed forward mode and further

illustrates the advantage of using the desired velocity and acceleration instead of

the actual ones for composing the manipulator regressor matrix. As already stated

earlier, the use of desired acceleration instead of the actual value has further

advantage in terms of real world implementation.

5. The CDID controller is the best performer for the case of varying manipulator

parameters. It is observed that both the RMS and steady state values of errors, for

both the links for both the trajectories are considerably reduced in magnitude over

the corresponding values for FFID. As explained earlier, the greater value of the

proportional gain constant results in a better steady state performance, while, the

use of reference velocities and accelerations for calculation of the manipulator

regressor matrix instead of the actual values, results in an improved transient

performance of the arm.

6. Model-based controllers (CT) do not always give a better performance than a non-

model based controller (PID).

We next investigate the effect of adding modified integral error compensation on the

performance of various model-based controllers.

4.4 EFFECT OF ADDING INTEGRAL COMPENSATION TO MODEL BASED

 CONTROLLERS

In this section we propose adding modified integral error compensation to the model

based controllers namely CT, FFID and CDID, which were discussed earlier. We also

investigate the effect of adding this modified integral action on the performance of these

controllers. The integral action in these controllers was limited to the five iterations of the

control loop performed for every new set point supplied by the trajectory generator. The

errors were thus summed up for only these five iterations and the summation was reset to

zero whenever the trajectory generator supplied a new set point. This was done primarily

to keep the higher order effects introduced by integral error compensation from

dominating the response and resulting in possible instability of the system. The system

79

can be proved to be stable if the summation of errors is done as described earlier [Loria

(2000)]. Moreover as a precaution, provision was made in the software to switch off the

integral action completely in case of errors growing beyond a presettable upper bound.

4.4.1 COMPUTED TORQUE + INTEGRAL ERROR CONTROL

The first controller investigated in this section is the Computed Torque controller

discussed previously in section 4.2.1. The block diagram of this controller with integral

error compensation is shown in Fig. 4.4.1.1. The control law for this controller is given

by equation 4.4.1.1 as

,ctie d D P M IM K e K e V G K edt

 (4.4.1.1)

Fig. 4.4.1.1. Block diagram of Computed Torque + Integral Error Control

Fig. 4.4.1.2(a) and 4.4.1.2(b) show the error profiles for this controller for trajectory 1

and trajectory 2 respectively. Table 4.4.1.1 list the various errors for this controller for the

two trajectories. When the two error profiles of Fig 4.4.1.2(a) and 4.4.1.2(b) are

compared with the error profiles for the CT controller without integral error

compensation, given in Fig.4.3.3.1(a) and 4.3.3.1(b), a marked improvement in

performance is noticed.

For the first trajectory the RMS values of the errors are brought down considerably and

so are the steady state errors. The steady state errors however have only been reduced and

not removed altogether because of the special nature of integral action. It is mainly

M

ROBOT

, ,MV F G

DK PK

d

d

d

_

+

+

_

+

+

+

+

+

IK e

80

because the summation of errors is not over the entire trajectory but only for five

iterations of the control loop, after which the summation is reset to zero.

For the second trajectory, which depicts pick-and-place kind of motion, we notice a

similar improvement as seen for the first trajectory. Both the RMS and maximum values

of errors reduce considerably when compared to Computed Torque controller without

integral error compensation.

Fig. 4.4.1.2(a) CT + Integral Error Control errors for Trajectory 1

Fig. 4.4.1.2(b) CT + Integral Error Control errors for Trajectory 2

81

CT + Integral Error Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

Table 4.4.1.1 Errors for CT + Integral Error control

4.4.2 FEED FORWARD INVERSE DYNAMICS + INTEGRAL ERROR
 CONTROL

The second controller investigated in this section is the Feed Forward Inverse Dynamics

controller discussed previously in section 4.2.2. The block diagram of this controller with

integral error compensation is shown in Fig. 4.4.2.1. The control law for this controller is

given by equation 4.4.2.1 as

, ,ffidie d M d M d D P IM V F G K e K e K edt (4.4.2.1)

Fig. 4.4.2.2(a) and 4.4.2.2(b) show the error profiles for this controller for trajectory 1

and trajectory 2 respectively. Table 4.4.2.1 list the various errors for this controller for the

two trajectories. When the two error profiles of Fig 4.4.2.2(a) and 4.4.2.2(b) are

compared with the error profiles for the FFID controller without integral error

compensation, given in Fig.4.3.4.1 (a) and 4.3.4.1(b), a marked improvement in

Fig. 4.4.2.1 Block diagram of Feed Forward Inverse Dynamics + Integral Error Control

, ,M V F Gd M d M d

ROBOT

DK PK

d

d

d

+

+

+

_

_

+

+

ffidie

IK e

82

performance can be noticed.

For the first trajectory the RMS values of the errors are brought down considerably and

so are the steady state errors. The steady state errors however have only been reduced and

not removed altogether because of the same reason as stated previously.

For the second trajectory, we notice a similar improvement as seen for the first trajectory.

Both the RMS and maximum values of errors reduce considerably when compared to

FFID controller without integral error compensation. The reduction in errors for this

controller however, is not as marked as that for the CT controller.

Fig. 4.4.2.2(a) FFID + Integral Error Control errors for Trajectory 1

Fig. 4.4.2.2(b) FFID + Integral Error Control errors for Trajectory 2

83

FFID+ Integral Error Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

Table 4.4.2.1 Errors for FFID + Integral Error control

4.4.3 CRITICALLY DAMPED INVERSE DYNAMICS + INTEGRAL ERROR

 CONTROL

The last controller investigated in this section is the Critically Damped Inverse Dynamics

controller discussed previously in section 4.2.3. The block diagram of this controller with

integral error compensation is shown in Fig. 4.4.3.1. The control law for this controller is

given by equation 4.4.3.1 as

, ,cdidie R M R M R D D IM V F G K e K e K e (4.4.3.1)

Fig. 4.4.3.2(a) and 4.4.3.2(b) show the error profiles for this controller for trajectory 1

and trajectory 2 respectively. Table 4.4.3.1 list the various errors for this controller for the

two trajectories. When the two error profiles of Fig 4.4.3.2(a) and 4.4.3.2(b) are

compared with the error profiled for the CDID controller without integral error

compensation, given in Fig.4.3.5.1 (a) and 4.3.5.1(b), we do not notice any marked

improvement in performance. In fact the improvement in errors is only discernible when

we compare the values in Table 4.4.3.1 and Table 4.3.5.1. This is mainly due to the fact

that the errors for CDID controller without integral error compensation are already pretty

low and do not sum up to a substantial value over the five iterations of the control loop.

Choosing a higher value of can reduce the errors further IK but we have not done so here

because the intention is to compare the performance of different controller under similar

conditions.

84

Fig 4.4.3.1 Block diagram of CDID + Integral Error Controller

Fig. 4.4.3.2(a) CDID + Integral Error Control errors for Trajectory 1

Fig. 4.4.3.2(b) CDID + Integral Error Control errors for Trajectory 2

,

,

R M R

M R

M V

F G

ROBOT

DK

d

d

R

R

_

+

+

d

+

+

+

+

+

+

_

_

IK e

+

+

85

CDID+ Integral Error Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

Table 4.4.3.1 Errors for CDID + Integral Error control

4.4.4. COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3 and 4.4 are

presented in Table 4.4.4.1 for easy comparison of the performance of various controllers.

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

* Integral Error compensation

Table 4.4.4.1. Errors (in degrees) for different controllers with modified IE compensation

Following observations are made based on simulations carried out in this section:

1. The use of integral error compensation improves the performance of CT and FFID

controllers appreciably. Hence a judicious use of integral error compensation as

discussed previously, seems advisable.

2. The use of integral error compensation does not show any appreciable

performance gain in case of CDID controller, as the errors of the original

controller were already low.

3. The CDID + IE controller gives an overall best performance in the category of

conventional controllers.

86

4.5 CONCLUDING REMARKS

In this chapter we investigated some conventional manipulator controllers for their

performance under different situations. These situations were: manipulator model known

exactly, model not known exactly and model changing during the course of motion. We

also investigated the effect of adding a modified integral action to these conventional

controllers.

The results for various controllers presented in this chapter are for the case when the

manipulator parameters change only slightly. In real practice, the parameter values may

change by over 200% or more, as the manipulator operates in its work environment and

picks up large loads. As a result the ensuing errors due to large parameter variations

would also be large. This fact forms the basis of development of some non-conventional

control strategies, which can absorb the effect of parameter variation in its performance.

These controllers can adapt themselves depending upon the changing parameter values.

We discuss adaptive control of manipulators in the next chapter.

87

ADAPTIVE CONTROL OF ROBOT MANIPULATORS

5.0 INTRODUCTION

As seen in the last chapter, due to the highly non-linear nature of manipulator

dynamics and the variable nature of manipulator parameters, the conventional non-

linear control of manipulators falls short of performance expectations in applications

requiring very accurate and precise motion control. This problem is further

compounded in the case of direct drive robots, which do not use any torque

amplifying gearings for high speed and high precision tasks. This in turn means that

we cannot in general neglect the cross coupling effects of manipulator dynamics for

these direct drive robots.

The variable nature of manipulator parameters suggests the use of Adaptive

controllers for the control of manipulators [Pagilla and Biao (2000), Song (1994)].

These controllers can either estimate the unknown manipulator parameters [Datta

and Ming (1996), Kawasaki et al. (1996)] or they can change the controller gains

depending on the prevailing position and/or velocity errors in the system [Spong and

Ortega (1996), Colbaugh and Seraji (1994)]. Some of the important desirable goals

for design of adaptive controllers for robot manipulators are:

Insensitivity to parameter uncertainties

Insensitivity to unknown payload variations

Low demand for on-line computations

Decoupled joint response

In general the adaptive controller design problem is as follows: given the desired

joint position ()d t , and with some or all the manipulator parameters unknown,

derive a control law for the actuator torques, and an estimation law for the unknown

parameters, such that the manipulator joint position ()t

precisely tracks ()d t

after

an initial adaptation process. Adaptive control design approaches can be broadly

classified into two categories [Astrom and Wittenmark (1995)]:

(i) Model reference adaptive control (MRAC) and

(ii) Self-tuning adaptive control

The structures of these two types of adaptive control systems are shown in Fig.

5.1(a) and 5.1(b). Existing robot adaptive schemes are derived from the applications

CHAPTER V

88

of these two approaches. The adaptive controller can tackle the problem of parameter

variation to a great extent and give good performance even in the face of very large

load variation. In fact the adaptive controller goes on improving with time as it keeps

on extracting the parameter information while executing a trajectory.

Fig. 5.1(a) Model reference adaptive controller

Fig. 5.1(b) Self tuning adaptive controller

In this chapter we study few adaptive control strategies for their performance in face

of different operating conditions. We also study the effect of adding a modified

integral action on performance of these controllers and do a comparative analysis of

performance of these controllers.

Reference

Model

Adjustable
Controller

ROBOT ARM

Adaptation
Algorithm

R

X

+

_

Controller
Parameter
Update

Adjustable
Controller

ROBOT ARM

System
Identification

R X

89

5.1 ISSUES IN ADAPTIVE CONTROL OF MANIPULATORS

Some of the main issues associated with adaptive control of manipulators are listed

below:

The strong non-linearity of robot dynamics makes the analysis of adaptive

controllers difficult.

Most of the controllers still rely on approximations and assumptions such as

local linearization, time invariance of parameters or decoupled nature of

dynamics to prove stability.

These adaptive schemes are computation intensive and require a fast

processor for their implementation.

The direct adaptive approach is computationally much less expensive than

the indirect or the composite approach.

Theoretical analysis and computer simulations of an adaptive controller are

important but not sufficient. This is because of inherent factors such as

unmodelled high frequency dynamics and measurement noise are generally

neglected in stability analysis.

For convergence of parameter values, the reference signal should be rich

enough, i.e., it should contain sufficiently high frequency components.

The parameter values may converge to different magnitudes for different

trajectories. This implies transients during switching from one trajectory to

another.

The controller parameters may not always converge to true plant values.

The importance and significance of these issues are highlighted in following

sections, where we simulate the behavior of these controllers for different situations.

5.2. TESTING METHOD

The Adaptive controllers simulated in this section were tested for two different

trajectories. These two trajectories are same as those used for testing the

conventional controllers and described in section 4.3.1. We briefly describe the

90

salient points of these trajectories again for sake of clarity in the context of adaptive

motion control of manipulators.

In the first trajectory, the first joint was required to move from its initial home

position (0) to a final position of +90

in 5 seconds. On reaching the final position

the manipulator picks up a load and returns back to its home position in another 5

seconds. On reaching the home position the manipulator was required to stay there

with the load for another 5 seconds. Thus the desired position of first joint remains

constant at 0

for the last 5 seconds of its motion. This kind of trajectory enables us

to test the steady state performance of the controller. The desired motion for the

second joint is exactly the same as for the first one except that it is required to move

from 0

to -90

and then back to 0

in a total time of 15 seconds. Fig. 4.3.1.1(a)

shows the desired joint position profiles for this trajectory.

The second test trajectory was chosen to simulate the motion of manipulator during a

typical pick and place operation. Here the manipulator s first joint was required to

move from its home position of 0

to a final position of +45

in 2 seconds. At this

point the manipulator picks up a load and returns back to its home position in the

next 2 seconds. On reaching home the manipulator releases the load and this cycle is

repeated all over again. The second joint of the manipulator has a motion similar to

the first one except that it moves to a final position of -45 . The errors for this

trajectory were traced for two cycles, i.e., 8 seconds. The RMS and the maximum

values of the errors were used for quantitative performance comparisons of various

controllers for this trajectory. Fig 4.3.1.1(b) shows the joint motion profiles for this

trajectory.

The controllers were tested using the above trajectories for two cases. In the first

case we assumed that some initial estimate is available, of the various manipulator

parameter values. This estimate is a rough approximation of the real, actual values

and can be arrived at by some elementary measurements. For simulation the actual

and the estimated values of the manipulator parameters were taken as shown in

Tables 5.2.1 and 5.2.2 respectively. The actual manipulator parameters as same as

those used previously in Chapter 4, and are also given in Table 4.3.1.1.

91

1

2

1

1

2

2
1

2
2

1

2

2.0

2.0

0.26

0.13

0.14

0.09

0.09

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table 5.2.1. Actual manipulator parameter values

1

2

1

1

2

2
1

2
2

1

2

1.0

1.0

0.26

0.11

0.12

0.05

0.05

2.0 / / sec

2.0 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table 5.2.2. Estimated manipulator parameter values

The adaptive algorithms in this case start with this apriori estimate and then adapt to

the true values as the motion progresses. We thus say that the manipulator makes a

warm start in this case. In the second case we assume the worst-case condition of

having no information about the manipulator parameters. Here the adaptive

algorithms have to start with no knowledge whatsoever of the values of different

parameters, i.e., all the parameters are initialized to zero value. This situation is

referred to as cold start. The parameters of the manipulator were further assumed to

have changed to new values whenever it picked up a load. These new values of the

parameters of manipulator with load were taken as shown in Table 5.2.3. The actual

manipulator parameters as same as those used previously in Chapter 4, and are also

given in Table 4.3.1.2. These values are repeated here for easy reference.

92

1

2

1

1

2

2
1

2
2

1

2

3.0

3.0

0.26

0.15

0.16

1.5

0.09

2.5 / / sec

2.5 / / sec

zz

zz

m kg

m kg

l m

x m

x meters

I kg m

I kg m

F N m rad

F N m rad

Table 5.2.3. Changed manipulator parameter values (on picking up load)

In the following sections we present the results of simulation studies on some

adaptive controllers tested for situations discussed above.

5.3. ADAPTIVE COMPUTED TORQUE CONTROLLER

This controller is the adaptive version of Computed torque controller discussed in

detail in section 4.2.1. It was one of the first adaptive controllers proposed for

adaptive manipulator control by Craig (1988). This adaptive controller suffered from

many problems and is generally not preferred because of its three main

disadvantages listed below:

The algorithm requires inversion of the manipulator mass matrix, which is

computationally very intensive.

Implementation requires measurement of acceleration. Good and relatively

inexpensive acceleration sensors are difficult to get and if acceleration is

found from numerical differentiation of position or velocity information, then

the values may be spurious in the presence of even slightest noise.

The controller can be proved to be only locally stable in parameter error. This

requires a constant check on the values of the parameters to keep them within

acceptable range.

We did not investigate this controller because the aforesaid problems make its

practical implementation very difficult.

93

5.4 ADAPTIVE CRITICALLY DAMPED INVERSE DYNAMICS

CONTROLLER (ACDID)

The first adaptive controller investigated in this work is the adaptive version of the

conventional Critically Damped Inverse Dynamics controller (CDID), described in

detail in section 4.2.3. This controller was proposed by Slotine and Li (1988). This is

a direct adaptive controller in the sense that the parameter values are adapted directly

from the information about position and velocity errors of the different joints. The

adaptation law is derived starting from the manipulator dynamics equation written in

a linear form as in equation 3.2.28. If we define

P P P

 (5.4.1)

as the parameter estimation error vector, with P

as the true parameter values vector

and P

as the vector of parameter estimates, then the linearity property of the robot

dynamics enables us to write

, , , , ,R M R M R R RM V F G W P (5.4.2)

Where

M M M

M M M

M M M

V V V

F F F

G G G

and R and R are reference trajectories as defined in equations 4.2.3.1 and 4.2.3.2.

The control law used can then be written as

, ,R M R M R DM V F G K e (5.4.3)

where e

is as defined in equation 4.2.3.4 and DK

is uniformly positive definite

controller gain matrix. The stability of the controller can be proved, by considering

the Lyapunov function candidate,

11

2
T TV t e M e P P

 (5.4.4)

where is a constant positive definite adaptation gain matrix.

Differentiating V t with respect to time leads to equation

1,T
R M RV t e M V G P P

 (5.4.5)

94

Substituting the control law in the above equation results in

1T T T
DV t e K e P P W e

 (5.4.6)

Now if we choose the adaptation law as

TP W e

 (5.4.7)

then equation 5.4.6 reduces to

0T
DV t e K e

 (5.4.8)

Thus the system is proved to be stable if the gain matrix DK is chosen to be positive

definite. The block diagram for this controller is shown in Fig.5.4.1.

Fig.5.4.1 Block diagram of Adaptive Critically Damped Controller (with Integral

Error Feedback)

The simulation for ACDID controller was carried out for the two trajectories for the

warm and cold start cases. Fig 5.4.2(a) shows the error profiles for first trajectory,

warm start, while Fig 5.4.2(b) shows the error profiles for second trajectory, warm

start. Figures 5.4.2(c) and 5.4.2(d) are for the cold start case.

R M R

M R

M V

F G

ROBOT

REFERENCE

TRAJECTORY

GENERATOR

ADAPTIVE

LAW

DK
IK e

_

_

+

+

+

+

+

d

d

d

R

R

e

95

Fig. 5.4.2(a) Errors for ACDID, Trajectory 1 (warm start)

Fig. 5.4.2(b) Errors for ACDID, Trajectory 2 (warm start)

Fig. 5.4.2(c) Errors for ACDID, Trajectory 1 (cold start)

Warm Start

Warm Start

96

Fig. 5.4.2(d) Errors for ACDID, Trajectory 2 (cold start)

Table 5.4.1 Errors for ACDID (warm and cold start)

Table 5.4.1 summarizes the errors for ACDID for the two trajectories for the warm

and cold start cases. As can be seen from the table and the error profiles, the errors

for ACDID controller are minimal and performance is much better than any

conventional controller discussed in chapter 4. Moreover as the errors are already

low there is hardly any perceptible difference between the cold and warm start cases.

Also it can be seen that the errors are higher for the cold start case when compared to

warm start in the beginning of motion. The controller then learns the parameter

values within first few iterations and after that the two profiles for cold and warm

start almost match.

A modification done to ACDID controller was inclusion of integral error term in

calculation of final controller output. This is indicated by blue dotted line in Fig.

5.4.1. The integral action was limited to only five iterations of the control loop,

which are done for every new set point produced by the trajectory generator. After

every five iterations the summation of errors was reset to zero. This is done primarily

ADAPTIVE CDID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642

Cold Start 0.0244 0.0001 0.0220 -0.0002 0.0390 0.0785 0.0323 0.0732

97

to keep the summation term from growing without bound or in other words to keep

the system stable. This idea was discussed in detail in section 4.4. This modified

ACDID controller was tested for the same two trajectories as above, for warm and

cold start cases.

Fig 5.4.3(a) shows the error profiles for first trajectory, warm start, while Fig

5.4.3(b) shows the error profiles for second trajectory, warm start. Figures 5.4.3(c)

and 5.4.3(d) are for the cold start case. Table 5.4.2 summarizes the errors for ACDID

for the two trajectories for the warm and cold start cases.

Fig. 5.4.3(a) Errors for ACDID trajectory 1 (warm start, integral error)

Fig. 5.4.3(b) Errors for ACDID trajectory 2 (warm start, integral error)

98

Fig. 5.4.3(c) Errors for ACDID trajectory 1 (cold start, integral error)

Fig. 5.4.3(d) Errors for ACDID trajectory 2 (cold start, integral error)

Table 5.4.2 Errors for ACDID (warm and cold start with integral error)

ADAPTIVE CDID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745

Cold Start 0.0215 0.0 0.0213 0.0 0.0324 0.0505 0.0326 0.0716

Cold Start

99

The introduction of integral error compensation further improves the performance of

ACDID controller. For the first trajectory the major improvement is in terms of

steady state errors. The steady state error goes to zero almost immediately after the

manipulator reaches home at the end of ten seconds. This can be seen from Figures

5.4.3(a) and 5.4.3(c). Even for the second trajectory, there is improvement in terms

of both the Maximum error and the RMS error. As the introduction of an integral

error compensation term does not add much to the computational complexity of the

controller and on the other hand gives improved trajectory tracking, its use with

ACDID controller is advisable.

5.5 MODEL REFERENCE ADAPTIVE CONTROLLER (MRAC)

The second controller investigated is a model reference adaptive controller [Lewis et

al. (1988), Maliotis and Lewis (1989)]. It is synthesized in two stages. First, the

known dynamics are separated out and used to perform a global linearization on the

nonlinear system. Second, a model reference adaptive controller, based on the

Lyapunov stability criterion, is designed for the remaining unknown portion of the

plant. This controller takes advantage of structure and any known dynamics of the

system in order to increase the speed of adaptation and relax the conditions required

for convergence.

The adaptation law is derived starting from the manipulator dynamic equation

written as

() (,) ()M F G (5.5.1)

where ()M

is n x n inertia matrix, (,)F

is n x n matrix containing the

centrifugal, coriolis and friction terms, ()G

is a n x 1 vector containing the gravity

terms,

is an n x 1 joint position variable vector and

is n x 1 input torque vector.

If the system described in 5.5.1 has some known and some unknown plant dynamics

then we may write:

* 1 *()k u k k u k u

k u

k u

M M M M I M M M M

G G G

F F F

 (5.5.2)

100

where subscript k stands for known part and subscript u stands for unknown part

of manipulator dynamics.

Substituting 5.5.2 in 5.5.1 results in equation

1 1
u k u k uM M F M G u

 (5.5.3)

where

1()k k ku M F G

 (5.5.4)

If we define

x

 (5.5.5)

we can write equation 5.5.3 as

1 1 1 1 1

00

u k u u k u u

I
x x u

M M G M M F M

Ax Bu

 (5.5.6)

Next we choose a reference model given by

d m d mx A x B v

 (5.5.7)

where

1 2

0 0 0
, m mA B

K K I

 (5.5.8)

If the errors between actual and desired trajectories is defined as

de x x

 (5.5.9)

the error dynamics will be given by

1

2

()m m me A e A A x Bu B v

e

e

 (5.5.10)

The control objective is to make the error decrease asymptotically. This can be

achieved if the adaptive control law chosen is

k au u u

 5.5.11)

where the linear feedback portion of the controller is given by

1 2[]ku K K x v

 (5.5.12)

and the adaptive portion of the control is given by

1 2[]a vu x v

 (5.5.13)

101

where 1 , 2 and v are adaptive gains chosen using a Lyapunov approach.

The adaptive gains are calculated as

1

2

T

T

T
v

aw

aw

bwv

 (5.5.14)

where a and b are positive scalar gains and w is the filtered error defined as

2 1 3 2w P e P e

 (5.5.15)

where

1 2

2 3

TP P
P

P P

 (5.5.16)

is the positive definite solution of the Lyapunov equation

T
m mA P PA Q

 (5.5.17)

with Q > 0.

The block diagram for this controller is shown in Fig.5.5.1.

Fig.5.5.1 Block diagram of Direct Adaptive Model Reference Control (with

Integral Error Feedback)

vI

ROBOT

KNOWN
DYNAMICS

MODEL

2vK

1PK

ADAPTIVE
LAW

vK PK

d

d

d

+

+

+

+

+

+

+

+

+

_

__

+

v

_

IK e

102

The simulation for MRAC controller was carried out for the two trajectories for the

warm and cold start cases. Fig 5.5.2(a) shows the error profiles for first trajectory,

warm start, while Fig 5.5.2(b) shows the error profiles for second trajectory, warm

start. Figures 5.5.2(c) and 5.5.2(d) are for the cold start case.

Fig. 5.5.2(a) Errors for MRAC, trajectory 1 (warm start)

Fig. 5.5.2(b) Errors for MRAC, trajectory 2 (warm start)

103

Fig. 5.5.2(c) Errors for MRAC, trajectory 1 (cold start)

Fig. 5.5.2(d) Errors for MRAC, trajectory 2 (cold start)

Table 5.5.1 Errors for MRAC (warm and cold start)

Table 5.5.1 summarizes the errors for MRAC for the two trajectories for the warm

and cold start cases. As can be seen from the table, the errors for MRAC are quite

MRAC Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390

Cold Start 1.3565 1.9183 0.3808 0.5383 1.1114 1.9689 0.3510 0.7286

104

different for the two cases of cold and warm start. The errors are appreciably lower

in case of warm start as compared to cold start. This is expected because the control

law is explicitly dependent upon torques due to known dynamics. Hence use of

known portion of manipulator dynamics is advisable for this controller. The errors of

this controller however are larger as compared to ACDID controller as can be seen

from Tables 5.4.1 and 5.5.1.

A modification done to MRAC was inclusion of integral error term in calculation of

final controller output. This is indicated by blue dotted line in Fig. 5.5.1. The integral

action was, as previously, limited to only five iterations of the control loop, which

are done for every new set point produced by the trajectory generator. After every

five iterations the summation of errors was reset to zero. This modified MRAC

controller was also tested for the two trajectories described earlier.

Fig 5.5.3(a) shows the error profiles for first trajectory, warm start, while Fig

5.5.3(b) shows the error profiles for second trajectory, warm start. Figures 5.5.3(c)

and 5.5.3(d) are for the cold start case. Table 5.5.2 summarizes the errors for MRAC

for the two trajectories for the warm and cold start cases.

Fig. 5.5.3(a) Errors for MRAC trajectory 1 (warm start, integral error)

105

Fig. 5.5.3(b) Errors for MRAC trajectory 2 (warm start, integral error)

Fig. 5.5.3(c) Errors for MRAC trajectory 1 (cold start, integral error)

Fig. 5.5.3(d) Errors for MRAC trajectory 2 (cold start, integral error)

Cold start

106

Table 5.5.2 Errors for MRAC (warm and cold start with integral error)

As expected, the introduction of integral error compensation improves the

performance of MRAC controller considerably. For the first trajectory the major

improvement is in terms of both, the RMS and steady state errors. The steady state

error goes to zero almost immediately after the manipulator reaches home at the end

of ten seconds. This can be seen from Figures 5.5.3(a) and 5.5.3(c). For the second

trajectory also there is improvement in terms of both, the Maximum error and the

RMS error. As the introduction of an integral error compensation term does not add

much to the computational complexity of the controller and at the same time gives

improved trajectory tracking, its use with MRAC controller is advisable.

5.6 DECENTRALIZED ADAPTIVE CONTROLLER (DAC)

Decentralized control has been widely accepted by the robotics industry due to ease

of implementation and tolerance to failure. Conventional controllers for industrial

robots are based on independent joint control schemes in which each joint is

controlled separately by a simple position servo loop with predefined constant gains.

This control scheme is adequate for simple pick-and-place tasks, for which industrial

robots are often used, where only point-to-point motion is of concern. However, in

tasks where precise tracking of fast trajectories under different payloads is required,

the independent joint, conventional robot control systems are severely inadequate.

The controller investigated in this section uses a technique for advanced manipulator

control based on adaptive independent joint control [Magana and Tagami (1994)].

A major point of departure in this approach from the centralized approaches is the

formulation of the problem in a decentralized control context at the outset. This

control scheme has two major features. First, due to its adaptive nature, knowledge

of manipulator dynamic model and parameter values or the payload parameters are

MRAC Control with Integral Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732

Cold Start 0.0496 -0.0001 0.0221 0.0 0.0755 0.3604 0.0300 0.1158

107

not required. Second, due to its decentralized structure and controller simplicity, the

scheme is computationally very fast and is amenable to parallel processing

implementation within a distributed computing architecture, with one

microprocessor dedicated to each joint.

The centralized model of an n link manipulator is given by equation 5.6.1 as:

() (,) () ()M V F G

 (5.6.1)

where ()M

is n x n inertia matrix, (,)V

is n x n matrix containing the

centrifugal and coriolis terms, ()F

is n x n matrix containing friction terms, ()G

is a n x 1 vector containing the gravity terms,

is an n x 1 joint variable vector and

 is n x 1 input vector.

To design the controller the centralized model of equation 5.6.1 is decomposed into

n interconnected systems as:

1

() (,) () ()
n

ii ii ij j i i i i
j
j i

m m V F G

 (5.6.2)

The coupling effects from each subsystem are then lumped together (in d) and

treated as disturbance. Each subsystem then becomes:

()ii ii i im d

 (5.6.3)

The main objective of the controller design is to control each joint independently in a

decentralized fashion and to track the prescribed trajectories. This controller uses an

adaptive PID control law given by equation 5.6.4.

i P d f dK K e K e K

 (5.6.4)

where e is the error given by

de

 (5.6.5)

Substituting equation 5.6.5 in equation 5.6.3 yields

i P d f dm d K K e K e K

 (5.6.6)

which on simplification gives the state space model of the system as

00 1 0

dfd iP

e e
X m KK d KK

e e
m m m m

 (5.6.7)

If the error model is defined as

2

0 1

2
m m

m m
m m

e e
X AX

e e

 (5.6.8)

108

then error model tracking error is given by

2 2

00 0 0
0 1

2 2
m

dfd iP
m

e e
E E X K mK K dK

e e
m m m m

 (5.6.9)

To ensure the stability of the system given by equation 5.6.9, using the Lyapunov

method, the various gains can be adapted as given by equation 5.6.10.

0 0

0

1 1

0

2 2

0

3 3

0

t

i

t

P

t

d

t

f d d

K C rdt f r

K C redt f re

K C redt f re

K C r dt f r

 (5.6.10)

where

, 0,1, 2,3 and are positive constantsii
i i

i

m
C i Q

Q

2 3 2 3

where and are positive constantsr p e p e p p

and

0 0 0

1 1 1

2 2 2

3 3 3

, 0

, 0

, 0

, 0

f k r k

f k r k

f k r k

f k r k

The block diagram for this controller is shown in Fig.5.6.1.

109

Fig. 5.6.1 Block diagram of Decentralized Adaptive Control

The simulation for DAC was carried out for the two trajectories as for the previous

controllers. Fig 5.6.2(a) shows the error profiles for first trajectory, while Fig

5.6.2(b) shows the error profiles for second trajectory. However for DAC there are

no cases of warm and cold start, as this controller does not make use of any

manipulator model whatsoever. It only tunes the controller gains depending on the

current position and velocity errors.

Fig. 5.6.2(a) Errors for DAC, trajectory 1

ROBOT

dK PK

d

d

d

_

+

+

_

+

+

+

iK e

ADAPTIVE
LAW

fK

IK e

+

+

110

Fig. 5.6.2(b) Errors for DAC, trajectory 2

Table 5.6.1 Errors for DAC

Table 5.6.1 summarizes the errors for DAC for the two trajectories. As can be seen

from the various errors, the performance of controller is pretty good keeping in mind

the fact that no model is being used. Because this controller uses no model, the

amount of calculations to be performed in the control loop is considerably reduced.

The performance of this controller is better than MRAC but not as good as ACDID.

For situations where we cannot afford a fast processor or where such a processor is

not available, DAC is a viable option.

An additional modified integral error compensation term was introduced in this

controller to see if it provides improved trajectory tracking as in the case of previous

controllers. Figures 5.6.3(a) and 5.6.3(b) show the error profiles for the two

trajectories for DAC with integral error compensation.

Decentralized Adaptive Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600

111

Fig. 5.6.3(a) Errors for DAC, trajectory 1 (Integral error)

Fig. 5.6.3(b) Errors for DAC, trajectory 2 (Integral error)

Table 5.6.2 Errors for DAC (Integral Error)

Integral Decentralized Adaptive Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507

112

Table 5.6.2 list the values of various errors for the two trajectories for DAC with

integral error compensation. As can be seen from Fig 5.6.3(a), the introduction of

integral error compensation does bring down the trajectory tracking errors but it also

introduces oscillations in the system. As these oscillations do not grow in amplitude,

because the controller is stable, and as the magnitude of these oscillations is very

small, integral error compensation can still be used with this controller.

5.7 COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3, 4.4, 5.4, 5.5

and 5.6 are presented in Table 5.7.1 for easy comparison of the performance of

various controllers.

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
CONVENTIONAL CONTROLLERS

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

ADAPTIVE CONTROLLERS

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642

10. ACDID+IE* 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390

12. MRAC+IE* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600

14. DAC+IE* 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507

* Integral Error Compensation (modified)

Table 5.7.1. Errors (in degrees) for different controllers

Following observations are made based on simulations carried out in this section:

1. The adaptive controllers give better performance than the conventional

controllers studied in chapter 4. This is mainly because of the learning

capability of these controllers. These controllers can learn the unknown or the

113

changed parameter values as they execute the trajectory. Alternatively they

can adjust the controller gains depending on the current system errors.

2. The adaptive controllers also perform better than conventional controllers

with modified integral error compensation.

3. Model based adaptive controllers perform better for the warm start case than

for the cold start case. Thus it is advisable to use whatever knowledge one

may have about the manipulator parameter values at the start of motion. This

knowledge may be a rough estimate of the actual values.

4. Addition of modified integral error compensation to the adaptive controllers

further improves their performance. The steady state errors for these

controllers are almost zero, while the maximum and RMS values of errors are

also reduced.

5. Model Based Adaptive controllers are computationally expensive. The DAC

discussed above is computationally least expensive of all the adaptive

controllers studied.

6. The ACDID controller with modified integral error compensation gives the

best performance amongst all controllers investigated in this chapter and in

chapter 4. This is indicated by the shaded cells in Table 5.7.1.

5.8 CONCLUDING REMARKS

In this chapter we studied the efficacy of adaptive algorithms for manipulator

control. Both model based and non-model based adaptive controllers were

investigated. It was seen that all the adaptive controllers outperform the conventional

controllers.

The model based adaptive controllers were also tested for two different cases. In first

case it was assumed that a rough estimate of parameters was available while in

second case it was assumed that no such estimate is available.

Further, the effect of inclusion of a modified integral compensation to these adaptive

controllers was studied. The integral action is such that it maintains the stability of

the controller. It was seen that this integral action further improves the performance

of these controllers.

Although the adaptive controllers give a very good performance, it comes at the

price of computational complexity. All these controllers are computationally

114

intensive and require a fast processor for practical implementation. We thus need to

investigate other control schemes, which can give comparable results at lesser

computational expense. One such scheme is the Fuzzy control. We study the fuzzy

controller in detail in the next chapter.

115

FUZZY CONTROL OF ROBOT MANIPULATORS

6.0 INTRODUCTION

Fuzzy control of robotic manipulators has found vast interest in the control literature.

Unlike Boolean logic, fuzzy logic deals with concepts of vagueness, uncertainty or

imprecision. It provides an extensive freedom for control designers to exploit their

understanding of the problem and to construct intelligent control strategies [Bonissone

and Chiang (1993), Ken et al. (1988)]. Nonlinear controllers can be devised easily by

using fuzzy logic principles [Zhou and Coiffet (1992)]. This makes fuzzy controllers

powerful tools to deal with nonlinear systems [Chun Fei and Chin-Teng (2004),

Mamdani (1993)].

The fuzzy control strategy consists of situation and action pairs, similar to how a human

operator uses his experience to interpret the situation and initiate the control action. A

human operator usually looks at the error and the change of error so as to arrive at a

particular control action. A block diagram for the fuzzy controller is shown in Fig.6.1.

The fuzzy controller here defines error (e) as

de

 (6.1)

and rate of change of error (e) as

de

 (6.2)

Fig. 6.1. Block diagram of Fuzzy Controller

is the output of fuzzy controller applied as control input to the robot system.

Fuzzy
Controller

ROBOT

d

d

+

+

_

_

ee

CHAPTER VI

116

A detailed view of internal of the Fuzzy controller block shown in Fig. 6.1 is shown in

Fig.6.2.

The input variables to the fuzzy controller (e, e) are quantized into thirteen levels

represented by 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and a set of linguistic variables

such as Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE),

Positive Small (PS), Positive Medium (PM), Positive Big (PB) are assigned.

The next step in the design of the fuzzy controller is to decide the membership functions

for the linguistic variables. The decision regarding the type of the membership function

is arbitrary and depends on the choice of the user. Here, we have selected the triangular

membership function as shown in Fig. 6.3. The control rules are formulated in a manner

to represent the operator s experience regarding the system behavior [Dubois and Prade

(1996)].

Fig. 6.2. Details of Fuzzy controller block

Fuzzifier

Fuzzy Rule Base

Defuzzifier

Fuzzy Inference Engine

,e e

u

*, *e e

117

Fig. 6.3. Membership functions of the Linguistic variables

Some of the rules that were formulated are

R1: If e is ZE and e is ZE, then u is ZE.

R2: If e is ZE and e

is NS, then u is NS.

R3: If e is NM and e is ZE, then u is NM.

R4: If e is NM and e is NB, then u is NB.

These rules constitute the knowledge base of the fuzzy controller [Nagrath et al. (1995)].

The rule strength of the individual rule is evaluated using the intersection operation

defined as

() min((*), (*))NB NM NBu e e

 (6.3)

where ()NB u

is the rule strength of the rule R4, (*)NM e

is the membership of the

crisp input *e

in the fuzzy set NM and (*)NB e

is the membership of *e

in the fuzzy

set NB. For each possible combination of *e

and *e , the rules are fired individually to

give the degree to which the rule antecedent has been matched by the crisp value. The

clipped values for the individual rules thus obtained are aggregated forming the overall

control values. The output value is then defuzzified by using the center of gravity

method, which, for the discrete case, is given by

().
*

()

Ri Ri Ri
Ri

Ri Ri
Ri

u u
u

u

 (6.4)

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

NB NM NS ZE PS PM PB

2
3PS

118

The output values thus obtained for all the (*e , *e) pairs are stored in the form of a

lookup table (LUT) as shown in Table 6.1.

The array implementation improves execution speed, as the run-time inference is

reduced to a table look-up which is a lot faster, at least when the correct entry can be

found without too much searching [Albertos et al. (2000)].

Membership Function e

e -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6

-5.6 -5.4 -5.0 -4.8 -4.8 -4.7 -4.7 -4.6 -4.5 -4.4 -4.3 -4.3 -4.2

-5

-4.7 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.8 -3.7 -3.6 -3.5

-4

-3.7 -3.6 -3.5 -3.2 -3.0 -3.0 -3.0 -2.9 -2.9 -2.8 -2.8 -2.7 -2.7

-3

-2.0 -2.0 -1.9 -1.9 -1.8 -1.8 -1.7 -1.7 -1.6 -1.5 -1.4 -1.3 -1.3

-2

0.0 0.0 -0.8 -1.0 -1.2 -1.7 -2.3 -2.2 -2.2 -2.0 -2.0 -1.0 -1.0

-1

1.0 1.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -1.2 -1.5 -1.7 -1.0 -1.0

0 1.3 1.2 1.0 0.8 0.6 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0

1 2.0 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.5 0.0 -0.3 -1.0 -0.8

2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.2 0.8 0.0 0.0

3 2.0 2.1 2.3 2.5 2.5 2.5 2.6 2.7 2.8 2.8 2.9 2.9 3.0

4 2.7 2.7 2.8 3.1 3.2 3.3 3.5 3.6 3.6 3.8 3.8 3.9 3.9

5 3.6 3.3 3.7 4.0 4.1 4.3 4.3 4.4 4.4 4.5 4.5 4.6 4.7

6 4.4 4.4 4.3 4.8 5.0 5.0 5.1 5.2 5.3 5.4 5.6 5.6 5.6

Table 6.1. Lookup Table for the Fuzzy Controller

The controller output values shown in the Table 6.1 were obtained after some manual

adjustment through trial and error to give best possible results. This was required

because the manipulator control problem is highly nonlinear and the rules formulated

through user experience are not always correct under different situations.

6.1. PURE FUZZY CONTROL

The first investigation that was carried out concerned the performance of fuzzy

controller under the circumstance that the manipulator parameters do not change

throughout the motion. In other words, the manipulator does not pick up or release any

load during its motion. The manipulator parameters were kept same as for all previous

119

simulations and are given in Table 4.3.1.1. The two trajectories used for simulation are

same as shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). The lookup table used for fuzzy

controller is given in Table 6.1.

The error profiles for the two links are shown in Fig. 6.1.1(a) for the first trajectory, and

Fig. 6.1.1(b) for the second trajectory. Table 6.1.1 lists the various error measures

magnitudes for the two trajectories. As mentioned earlier these profiles are obtained by

using the lookup table given in Table 6.1, which was obtained after some manual

adjustments to the original table obtained from the rule base. As can be seen from the

error magnitudes, the performance of this controller is pretty good. Except for somewhat

large maximum error the RMS values of errors and steady state errors are quite small.

The large amount of error in the beginning of a trajectory segment is mainly because the

set points are changing rapidly during this time or the manipulator is picking/releasing

load. The amount of calculations to be done by this controller is small compared to

Model based adaptive or conventional controllers. This means that this controller can be

run at higher sampling rates giving even better performance. We have however, in this

simulation, kept the sampling rates same as for previous simulations for the sake of

JUST comparison.

Fig. 6.1.1(a) Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory 1)

120

Fig. 6.1.1(b) Errors for Fuzzy control (LUT based, Fixed parameters, Trajectory 2)

Table 6.1.1. Errors for Fuzzy control (LUT based, Fixed parameters)

The good performance of the Fuzzy controller deteriorates considerably if the

manipulator parameters change during motion. The two trajectories used to investigate

this case are same as before. The only difference is that now in these two trajectories the

manipulator picks up and releases load during its motion. This Picking up and releasing

of load changes manipulator parameters during motion. The changed parameters of

manipulator are listed in the Table 4.3.1.2.

The error profiles for the two links are shown in Fig. 6.1.2(a) for the first trajectory, and

Fig. 6.1.2(b) for the second trajectory. Table 6.1.2 lists the magnitudes of various error

measures for the two trajectories. It can be seen from Fig. 6.1.2(a) the steady state error

for link 1 has increased considerably from the previous value of 0.1676 to 2.0 degrees.

This also results in larger RMS value of error. From Fig. 6.1.2(b) we notice a similar

increase in errors for the second trajectory. This is mainly due to the fact that the lookup

Fuzzy Control (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.6781 0.1676 0.2270 0.1664 1.1374 2.6153 0.2901 -0.9998

121

table used for control is not optimally tuned for the new values of manipulator

parameters.

Fig. 6.1.2(a) Errors for Fuzzy control (LUT based, Changing parameters, Trajectory 1)

Fig. 6.1.2(b) Errors for Fuzzy control (LUT based, Changing parameters, Trajectory 2)

Table 6.1.2. Errors for Fuzzy control (LUT based, Changing parameters)

Pure Fuzzy Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

122

This problem of having to retune the Fuzzy lookup table every time the trajectory

changes or manipulator parameters change can be solved by primarily by two methods.

These two methods are Adaptive Fuzzy and Self Organizing Fuzzy control methods.

These methods will be discussed in later sections. The problem can also be alleviated by

use of Hybrid fuzzy controllers, which we would investigate next.

6.2 HYBRID FUZZY CONTROL

In this section we propose and investigate some new hybrid fuzzy control schemes. The

primary characteristic of these controllers is that in these schemes the final control

output applied to the plant is summation of individual output of two controllers. One of

them is the Fuzzy controller while the other could be a Conventional or Adaptive

controller [Butkiewicz (2000), Chin and Er (1998)]. The general block diagram of the

controller is shown in Fig. 6.2.1. As both the controllers are individually stable, the

combination is also stable. We first discuss the results of combining Fuzzy and

Conventional controllers and then Fuzzy and Adaptive controllers.

Fig. 6.2.1. Block diagram of Hybrid Fuzzy Controller

All the controllers discussed in the following subsections were tested for the case when

the parameters of the manipulator change during motion. The two trajectories used to

investigate the controllers are shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). In these two

Fuzzy
Controller

ROBOT

d

d

+

+

_

_

ee
Conventional/

Adaptive Controller

+

+

123

trajectories the manipulator picks up and releases load during its motion. This Picking

up and releasing of load changes manipulator parameters during motion. The changed

parameters of manipulator are listed in the Table 4.3.1.2.

6.2.1 FUZZY PLUS COMPUTED TORQUE CONTROLLER

The Computed Torque controller discussed in section 4.2.1 is combined with the Fuzzy

controller in this scheme. Fig. 6.2.1.1 shows the block diagram of this controller. The

error profiles for the two links are shown in Fig. 6.2.1.2(a) for the first trajectory, and

Fig. 6.2.1.2(b) for the second trajectory. Table 6.2.1.1 lists the magnitudes of various

error measures for the two trajectories for this controller and some other related

controllers. As can be seen from the table, this controller performs much better than

Pure Fuzzy, CT and CT+IE controllers. Both the RMS and steady state values of the

errors have reduced considerably for this controller when compared to the other

controllers. Even the maximum values of errors have reduced considerably for the

second trajectory.

Fig. 6.2.1.1 Block diagram of Fuzzy + Computed Torque Controller

M

ROBOT

, ,MV F G

DK PK

d

d

d

_+

+ _

+

+

++

+

ct

FUZZY
CONTROLLER

124

Fig. 6.2.1.2(a) Errors for CT + Fuzzy control (Trajectory 1)

Fig. 6.2.1.2(b) Errors for CT + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

3. CT+IE 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

4. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030

Table 6.2.1.1. Comparison of Errors for CT + Fuzzy control

125

6.2.2 FUZZY PLUS FFID CONTROLLER

The FFID controller discussed in section 4.2.2 is combined with the Fuzzy controller in

this scheme. Fig. 6.2.2.1 shows the block diagram of this controller. The error profiles

for the two links are shown in Fig. 6.2.2.2(a) for the first trajectory, and Fig. 6.2.2.2(b)

for the second trajectory. Table 6.2.2.1 lists the various error measures magnitudes for

the two trajectories for this controller and some other related controllers. As can be seen

from the table, this controller performs much better than Pure Fuzzy, FFID and

FFID+IE controllers.

Fig. 6.2.2.1 Block diagram of Fuzzy + FFID Controller

Fig. 6.2.2.2(a) Errors for FFID + Fuzzy control (Trajectory 1)

, ,M V F Gd M d M d

ROBOT

DK PK

d

d

d

+

+

+

_

_

+

+

ffid

FUZZY
CONTROLLER

126

Fig. 6.2.2.2(b) Errors for FFID + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

3. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

4. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186

Table 6.2.2.1. Comparison of Errors for FFID + Fuzzy control

6.2.3 FUZZY PLUS CDID CONTROLLER

The CDID controller discussed in section 4.2.3 is combined with the Fuzzy controller in

this scheme. Fig. 6.2.3.1 shows the block diagram of this controller. The error profiles

for the two links are shown in Fig. 6.2.3.2(a) for the first trajectory, and Fig. 6.2.3.2(b)

for the second trajectory. Table 6.2.3.1 lists the magnitudes of various error measures

for the two trajectories for this controller and some other related controllers. It is seen

from the table, that this controller performs better than Pure Fuzzy, CDID and CDID+IE

controllers.

127

Fig. 6.2.3.1 Block diagram of Fuzzy + CDID Controller

Fig. 6.2.3.2(a) Errors for CDID + Fuzzy control (Trajectory 1)

,

,

R M R

M R

M V

F G

ROBOT

DK

d

d

R

_

+

+

cdid

d

+

+

+

+

+

+

_

_

FUZZY
CONTROLLER

+

+

128

Fig. 6.2.3.2(b) Errors for CDID + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

3. CDID+IE 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

4. FFID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507

Table 6.2.3.1. Comparison of Errors for CDID + Fuzzy control

6.2.4 FUZZY PLUS ACDID CONTROLLER

Adaptive controllers can also be combined with fuzzy to give a hybrid controller [Lin

and Mon (2003), Hojati and Gazor (2002)]. The ACDID controller discussed in section

5.4 is combined with the Fuzzy controller in this scheme. Fig. 6.2.4.1 shows the block

diagram of this controller. The error profiles for the two links are shown in Fig.

6.2.4.2(a) for the first trajectory, and Fig. 6.2.4.2(b) for the second trajectory. Table

6.2.4.1 lists the various error measures magnitudes for the two trajectories for this

controller and some other related controllers. As can be seen from the table, this

controller performs almost same as ACDID+IE controller with slightly lower errors.

129

Fig. 6.2.4.1 Block diagram of Fuzzy + ACDID Controller

Fig. 6.2.4.2(a) Errors for ACDID + Fuzzy control (Trajectory 1)

R M R

M R

M V

F G

ROBOT

REFERENCE

TRAJECTORY

GENERATOR

ADAPTIVE

LAW

DK

_

_+

+

+

+

+

d

d

d

R

R

e

FUZZY
CONTROLLER

+

_

130

Fig. 6.2.4.2(b) Errors for ACDID + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642

3. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745

4. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564

Table 6.2.4.1. Comparison of Errors for ACDID + Fuzzy control

6.2.5 FUZZY PLUS MRAC

Some work has been done on hybrid MRAC Fuzzy controllers by researchers [Jen-Yang

(2002). The MRAC discussed in section 5.5 is combined with the Fuzzy controller in

this scheme. Fig. 6.2.5.1 shows the block diagram of this controller. The error profiles

for the two links are shown in Fig. 6.2.5.2(a) for the first trajectory, and Fig. 6.2.5.2(b)

for the second trajectory. Table 6.2.5.1 lists the magnitudes of various error measures

for the two trajectories for this controller and some other related controllers. As can be

seen from the table, this controller performs much better than Pure Fuzzy, MRAC but

not as good as MRAC+IE controller.

131

Fig. 6.2.5.1 Block diagram of MRAC + Fuzzy Controller

Fig. 6.2.5.2(a) Errors for MRAC + Fuzzy control (Trajectory 1)

vI

ROBOT

KNOWN

DYNAMICS
MODEL

2vK

1PK

ADAPTIVE
LAW

vK PK

d

d

d

+

+

+

+

+

+

+

+

+

_

__

+

v

_

FUZZY
CONTROLLER

132

Fig. 6.2.5.2(b) Errors for MRAC + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390

3. MRAC+IE 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732

4. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403

Table 6.2.5.1. Comparison of Errors for MRAC + Fuzzy control

6.2.6 FUZZY PLUS DAC

The DAC discussed in section 5.6 is combined with the Fuzzy controller in this scheme.

Fig. 6.2.6.1 shows the block diagram of this controller. The error profiles for the two

links are shown in Fig. 6.2.6.2(a) for the first trajectory, and Fig. 6.2.6.2(b) for the

second trajectory. Table 6.2.6.1 lists the magnitudes of various error measures for the

two trajectories for this controller and some other related controllers. It is seen from the

table, that there is no marked improvement in performance of this controller over DAC

and DAC+IE controllers.

133

Fig. 6.2.6.1 Block diagram of DAC + Fuzzy Controller

Fig. 6.2.6.2(a) Errors for DAC + Fuzzy control (Trajectory 1)

ROBOT

dK PK

d

d

d

_+

+ _

++

+

iK

ADAPTIVE
LAW

fK +

+

FUZZY
CONTROLLER

134

Fig. 6.2.6.2(b) Errors for DAC + Fuzzy control (Trajectory 2)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

2. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600

3. DAC+IE 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507

4. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791

Table 6.2.6.1. Comparison of Errors for DAC + Fuzzy control

6.2.7 COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 6.2 and some other

relevant simulations carried out in Chapter 4 and 5 are presented in Table 6.2.7.1 for

easy comparison of the performance of various controllers.

135

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
CONVENTIONAL CONTROLLERS

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

6. CT+IE 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

7. FFID+IE 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

8. CDID+IE 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

ADAPTIVE CONTROLLERS

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642

10. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390

12. MRAC+IE 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600

14. DAC+IE 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507

HYBRID FUZZY CONTROLLERS

15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

16. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030

17. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186

18. CDID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507

19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564

20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403

21. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791

Table. 6.2.7.1 Comparison of errors for various control strategies vs. Hybrid Fuzzy

Following observations are made based on simulations carried out in this section:

1. The Hybrid fuzzy/conventional controllers show significant performance

improvement over their conventional counterparts. All model based conventional

controllers, i.e., CT, FFID and CDID show marked improvement in

performance.

136

2. The Hybrid fuzzy/conventional controllers also show significant performance

improvement over the conventional controllers with integral error compensation.

3. The Hybrid fuzzy/adaptive controllers also show performance improvement over

their adaptive counterparts. However the improvement is not that significant as

in case of hybrid fuzzy/conventional controllers. This is mainly because of the

fact that adaptive controllers by themselves give very good performance leaving

little scope for further improvements.

4. Adaptive controllers are computationally intensive and adding a Fuzzy controller

to them increases the computational burden even further. Further it does not

result in any significant performance improvement. Hence the use of Hybrid

fuzzy/adaptive controllers does not seem advisable.

5. The performance of CDID + Fuzzy hybrid controller is almost at par with

ACDID+IE controller as can be seen from Table 6.2.7.1. It indicates that Hybrid

conventional/fuzzy controllers can perform as good as adaptive controllers.

Moreover they are computationally much less expensive than the adaptive

controllers.

6. The best performance in hybrid category is that of hybrid Fuzzy + ACDID

controller.

6.3 SELF ORGANIZING CONTROLLER (SOC)

Self Organizing Controller (SOC) is based on the original Fuzzy controller [Koh et al

(1990), Kazemian (1998, 2002)]. It is termed as self-organizing because it is able to

adjust the control strategy in a fuzzy controller automatically without any human

intervention [Novakovic (1997)]. The SOC has a layered structure in which the lower

layer is a LUT based controller and the higher layer is the adjustment mechanism. Fig.

6.3.1 shows the block diagram of SOC. At the lower layer is a Fuzzy controller. The two

inputs to this controller are the error e and change in error ce. These are multiplied by

normalization gains GE and GCE respectively before being given to the rule base in F.

The value obtained from lookup table in F is the output of the controller u. This is

multiplied by the output gain GU to give the final control signal U.

137

Fig. 6.3.1 Block diagram of SOC [Jantzen (1998)]

The idea behind self-organization is to let an adjustment mechanism update the values in

LUT of F, based on current performance of the controller. The updating should be such

that the table entry responsible for poor performance is punished, so that the next time

this entry is used, the performance is better. If the performance is good, the entries are

left unchanged.

The input to higher layer is also error and change in error, and it modifies the LUT in F

through a modifier algorithm M when necessary. It uses a performance measure to

decide the magnitude of each change to F. The performance measures are numbers;

organized in a table P, which is of same size as F, expressing what is desirable, in a

transient response. The table P can be built using linguistic rules, but is often built

manually, based on experience. The same performance table P may be used with a

different process, without prior knowledge of the process, since it only expresses the

desired transient response. The controller can start from scratch with an F-lookup table

full of zeros; it will, however, converge faster towards a stable table, if F is initialized

with sensible numbers to begin with.

The SOC learns to control the system in accordance with the desired response. This is

called training. At the sampling instant n, it records the error between desired

performance and the actual performance. Based on this error it modifies the LUT in F

 P

 F

Array2

Array1

GCE

GE
E

CE

ce

e

M

Modifier

GU

u

U

138

accordingly. The performance table P evaluates the current state and returns a

performance measure P(in, jn), where in is the index corresponding to En, and jn is the

index corresponding to CEn. Tables 6.3.1 and 6.3.2 are examples of performance tables.

Table 6.3.1 Example of Performance Table (Yamazaki, 1982)

Table 6.3.2 Example of another Performance Table (Procyk and Mamdani, 1979)

Membership Function e

e -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6 -6 -6 -6 -6 -6 -6 -6 -5 -4 -3 -2 -1 0

-5 -6 -6 -6 -6 -5 -4 -4 -4 -3 -2 -1 0 0

-4 -6 -6 -6 -5 -4 -3 -3 -3 -2 -1 0 0 1

-3 -6 -6 -5 -4 -3 -2 -2- -2 -1 0 0 1 2

-2 -6 -5 -4 -3 -2 -1 -1 -1 0 0 1 2 3

-1 -5 -4 -3 -2 -1 -1 0 0 0 1 2 3 4

0 -5 -4 -3 -2 -1 0 0 0 1 2 3 4 5

1 -3 -2 -1 0 0 0 0 1 1 2 3 4 5

2 -2 -1 0 0 0 1 1 1 2 3 4 5 6

3 -1 0 0 0 1 2 2 2 3 4 5 6 6

4 0 0 0 1 2 3 3 3 4 5 6 6 6

5 0 0 1 2 3 4 4 4 5 6 6 6 6

6 0 1 2 3 4 5 6 6 6 6 6 6 6

Membership Function e

e -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6 -6 -6 -6 -6 -6 -6 -6 0 0 0 0 0 0

-5 -6 -6 -6 -6 -6 -6 -6 -3 -2 -2 0 0 0

-4 -6 -6 -6 -6 -6 -6 -6 -5 -4 -2 0 0 0

-3 -6 -5 -5 -4 -4 -4 -4 -3 -2 0 0 0 0

-2 -6 -5 -4 -3 -2 -2 -2 0 0 0 0 0 0

-1 -5 -4 -3 -2 -1 -1 -1 0 0 0 0 0 0

0 -4 -3 -2 -1 0 0 0 0 0 1 2 3 4

1 0 0 0 0 0 0 1 1 1 2 3 4 5

2 0 0 0 0 0 0 2 2 2 3 4 5 6

3 0 0 0 0 2 3 4 4 4 4 5 5 6

4 0 0 0 2 4 5 6 6 6 6 6 6 6

5 0 0 0 2 2 3 6 6 6 6 6 6 6

6 0 0 0 0 0 0 6 6 6 6 6 6 6

139

It can be seen that the zeros in Table 6.3.1 are almost in a diagonal band. It can be

shown that this amounts to a desired first order system behavior. Table 6.3.2 on the

other hand has zeros in a Z shaped patch. This allows for a zero slope to begin with,

and a slight overshoot at the end of transient [Jantzen (1998)].

6.3.1 PURE FUZZY (FIXED PARARAMETERS)

The controller tested here is exactly same as that discussed in section 6.2. The only

difference here is that the normalization gain for error was increased by a factor of ten to

get an improved performance from the fuzzy controller. This is because the SOC

performance can then be compared against almost best possible fuzzy performance.

The two trajectories used for simulation are same as earlier. It is assumed that the

manipulator parameters do not change throughout the motion. The error profiles for the

two links are shown in Fig. 6.3.1.1(a) for the first trajectory, and Fig. 6.3.1.1(b) for the

second trajectory. Table 6.3.1.1 lists the magnitudes of various error measures for the

two trajectories for this controller. As can be seen, the errors for both the trajectories

have improved when compared to fuzzy controller investigated in section 6.2.

Fig. 6.3.1.1(a) Errors for Fuzzy control (Increased normalization gains, Fixed
parameters, Trajectory 1)

140

Fig. 6.3.1.1(b) Errors for Fuzzy control (Increased normalization gains, Fixed
parameters, Trajectory 2)

Table 6.3.1.1. Errors for Fuzzy control (Increased normalization gains, Fixed

parameters)

The high frequency in the above error profiles is mainly due to increased normalization

gains, which leads to increased control activity.

6.3.2 SOC (FIXED PARAMETERS, ZERO LUT)

The SOC with initial LUT empty was investigated next. Here too the parameters do not

change throughout the manipulator motion. The error profiles for the two links are

shown in Fig. 6.3.2.1(a) for the first trajectory, and Fig. 6.3.2.1(b) for the second

trajectory. Table 6.3.2.1 lists the magnitudes of various error measures for the two

trajectories for this controller. The SOC controller gives better performance than the

Pure Fuzzy controller even with initial LUT empty. This can be seen from Tables

6.3.1.1 and 6.3.2.1.

Fuzzy Control (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0551 0.0173 0.0167 0.0171 0.1198 0.3397 0.0200 -0.0632

141

Fig. 6.3.2.1(a) Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 1)

Fig. 6.3.2.1(b) Errors for SOC control (Fixed Parameters, Zero LUT, Trajectory 2)

Table 6.3.2.1. Errors for SOC control (Fixed parameters, Zero LUT)

SOC (Fixed parameters, Zero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923

142

6.3.3 SOC (FIXED PARAMETERS, NONZERO LUT)

In this case it was assumed that the initial lookup table is not empty and the starting

point is same as the lookup table for Pure fuzzy controller (Table 6.1). The error profiles

for the two links are shown in Fig. 6.3.3.1(a) for the first trajectory, and Fig. 6.3.3.1(b)

for the second trajectory. Table 6.3.3.1 lists the magnitudes of various error measures

for the two trajectories for this controller.

Fig. 6.3.3.1(a) Errors for SOC control (Fixed Parameters, Nonzero LUT, Trajectory 1)

Fig. 6.3.3.1(b) Errors for SOC control (Fixed Parameters, Nonzero LUT, Trajectory 2)

143

Table 6.3.3.1. Errors for SOC control (Fixed parameters, Nonzero LUT)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.0551 0.0173 0.0167 0.0171 0.1198 0.3397 0.0200 -0.0632

2. SOC Zero
LUT

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923

3. SOC Nonzero
LUT

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908

Table 6.3.3.2. Errors for SOC and Fuzzy (Fixed Parameters)

Table 6.3.3.2 lists the errors for the above three cases for comparison. It is seen that the

errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT. It is

however observed that this improvement is marginal. This is because in these cases the

manipulator parameters do not change during motion and therefore the pure fuzzy

controller gives a good performance as it is tuned for these fixed parameters of the

manipulator.

6.3.4 PURE FUZZY (CHANGING PARARAMETERS)

The next three simulations are similar to the previous three except that in these cases we

assume that the manipulator picks up and releases load during motion. Hence the

manipulator parameters change here. The first simulation is for Pure Fuzzy controller. It

is observed here as in section 6.1, that the performance of controller degrades compared

to the fixed parameter case. The error profiles for the two links are shown in Fig.

SOC (Fixed parameters, Nonzero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908

144

6.3.4.1(a) for the first trajectory, and Fig. 6.3.4.1(b) for the second trajectory. Table

6.3.4.1 lists the various error magnitudes for the two trajectories for this controller.

Fig. 6.3.4.1(a) Errors for Fuzzy control (Increased normalization gains, Changing
parameters, Trajectory 1)

Fig. 6.3.4.1(b) Errors for Fuzzy control (Increased normalization gains, Changing
parameters, Trajectory 2

145

Table 6.3.4.1 Errors for Fuzzy control (Increased normalization gains, Changing

parameters)

6.3.5 SOC (CHANGING PARAMETERS, ZERO LUT)

The performance of SOC under the circumstance of changing parameters is investigated

here. The error profiles for the two links are shown in Fig. 6.3.5.1(a) for the first

trajectory, and Fig. 6.3.5.1(b) for the second trajectory. Table 6.3.5.1 lists the various

error measures for the two trajectories for this controller. It is seen that SOC even with

an initially empty LUT performs better than Fuzzy controller. This is primarily because

SOC can auto tune the LUT as the parameters of manipulator change.

Fig. 6.3.5.1(a) Errors for SOC control (Changing Parameters, Zero LUT, Trajectory 1)

Fuzzy Control (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2

0

-90 0

Link1

0 45 0

Link2

0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.1364 0.1998 0.0180 0.0173 0.1382 0.3249 0.0354 0.1012

146

Fig. 6.3.5.1(b) Errors for SOC control (Changing Parameters, Zero LUT, Trajectory 2)

Table 6.3.5.1. Errors for SOC control (Changing parameters, Zero LUT)

6.3.6 SOC (CHANGING PARAMETERS, NONZERO LUT)

The last case investigated was the effect on performance of SOC when the lookup table

is initially nonzero. Here we initialized the values in lookup table to be same as those

used for Pure fuzzy controller. The error profiles for the two links are shown in Fig.

6.3.6.1(a) for the first trajectory, and Fig. 6.3.6.1(b) for the second trajectory. Table

6.3.6.1 lists the magnitudes of various error measures for the two trajectories for this

controller.

SOC (Variable parameters, Zero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

147

Fig. 6.3.6.1(a) Errors for SOC control (Changing Parameters, Nonzero LUT,
Trajectory 1)

Fig. 6.3.6.1(b) Errors for SOC control (Changing Parameters, Nonzero LUT,
Trajectory 2)

Table 6.3.6.1. Errors for SOC control (Changing parameters, Nonzero LUT)

SOC (Variable parameters, Nonzero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

148

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No CONTROL

STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.1364 0.1998 0.0180 0.0173 0.1382 0.3249 0.0354 0.1012

2. SOC Zero
LUT

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

3. SOC Nonzero
LUT

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

Table 6.3.6.2. Errors for SOC and Fuzzy (Changing Parameters)

Table 6.3.6.2 lists the errors for the above three cases for comparison. It is seen that the

errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT.

6.3.7 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.3):

1. When the manipulator parameters do not change during the course of trajectory, a

fixed LUT based fuzzy controller gives good performance. But building up the

LUT requires lot of intuition and experience. Besides it may also requires

adjustment of values through trial and error by repeated runs. A SOC under this

situation can quickly build its LUT starting from all zero values and give better

performance than Pure Fuzzy controller. The performance of SOC further improves

if we can start with non zero LUT.

2. When the manipulator parameters change during the course of trajectory, the

performance of Pure Fuzzy controller degrades considerably. This is because this

controller uses a fixed LUT, which is tuned for one set of parameters. The SOC

under these circumstances gives much better performance as it can change its LUT

as the parameters of manipulator change. This is seen from simulations done in

section 6.3. Thus using SOC for manipulator control seems to be a better option

than Pure fuzzy as invariably the manipulator parameters change during motion.

Further it does not require any tuning beforehand. However it is better to use a

149

nonzero lookup table that incorporates some user experience as it can lead to

improved performance.

6.4 SELF TUNING (ADAPTIVE) FUZZY CONTROLLER (STFC)

A Fuzzy controller consists of three major components that can be altered to give

different controller behaviors. These three components are:

The normalization and denormalization scaling factors

The fuzzy set representing the meaning of linguistic values

The if-then rule base

If the above three components remain fixed the fuzzy controller is of type non-adaptive.

If on the other hand any of the above three components are altered when the controller is

running, it is known as Adaptive-Fuzzy [Han-Xiong (1996)].

A Controller that changes scaling factors or modifies the fuzzy set definitions is known

as self-tuning controller. Adaptive Fuzzy controller that modifies the rule base is

known as self-organizing controller. These controllers can start with an existing rule

base and then modify it or they can build the rule base entirely afresh starting with no

rules at all. This type of controller was studied in previous section. Figure 6.4.1 shows

the classification of fuzzy controllers.

Fig 6.4.1. Classification of Fuzzy controllers

Fuzzy Controller

Non- Adaptive

Adaptive Self-Tuning

Self-Organizing

150

The Adaptive Fuzzy controller that we investigated is of PD type [Mudi and Pal (1999),

Chatterjee and Watanabe (2005)]. The output gain (denormalization, GU) of this

controller is adjusted on-line depending on the present values of error and error

derivative. Thus the controller is of self-tuning type. We also investigated the more

general case where both the input (normalization, GE & GCE) and output

(denormalization, GU) gains of the controller are adapted on-line. The block diagram of

the self-tuning fuzzy controller is shown in Fig. 6.4.2. The membership functions for

controller inputs (error and error derivative) and output are defined on the common

interval [-6 6] and are same as shown in Fig. 6.3. The membership functions for gain

updating factor () are defined on [0 1]. These membership functions are as shown in

Fig. 6.4.3.

Fig. 6.4.2. Block diagram of the self-tuning fuzzy controller (adapted from Mudi and
Pal, 1999)

Fuzzi-
fication

Control
rule

detrmi-
nation

Defuzzi
fication

Fuzzif
icatio

n

Data base

Gain
rule

detrmi
nation

Defuzzi
fication

GE e

GCE

ce

Rule-base 2

Rule-base 1

GU

ROBOT

Reference Input

Output

en

cen

un u

151

Fig. 6.4.3 Membership functions for gain updating factor ()

For the conventional fuzzy controller the controller output is mapped to the respective

actual output by the output gain GU. On the other hand in the self-tuning fuzzy

controller the actual output is obtained by multiplying the controller output with GU .

The gain-updating factor

is calculated on-line using a model independent fuzzy rule base

which has e and e as inputs. The governing equations for this self-tuning fuzzy controller are

given below.

.ne GE e

 (6.4.1)

.nce GCE ce

 (6.4.2)

. . nu GU u

 (6.4.3)

The fuzzy controller produces output based on rules of the form:

Ri : If e is E and ce is CE then u is U

The complete rule base for the controller is shown in Table. 6.4.1.

 e

e

NB NM

NS ZE PS PM

PB

NB NB NB NB NM

NS NS ZE

NM

NB NM NM

NM

NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM

NS ZE PS PS PM PB

PM NS ZE PS PM PM

PM PB

PB ZE PS PS PM PB PB PB

Table. 6.4.1. Fuzzy controller Rule Base

 0 0.25 0.5 0.75 1

ZE VS S SB MB B VB

1

0.5

152

The gain updating part of the controller produces output based on rules of the form:

Ri : If e is E and ce is CE then is

The complete rule base used for updating is shown in Table. 6.4.2.

 e

e

NB

NM

NS ZE

PS PM

PB

NB VB

VB VB B SB S ZE

NM

VB

VB B B MB

S VS

NS VB

MB

B VB

VS S VS

ZE S SB MB

ZE MB

SB S

PS VS

S VS VB

B MB

VB

PM VS

S MB

B B VB VB

PB ZE S SB B VB VB VB

Table. 6.4.2. Fuzzy Rule Base for

The parameter

is independent of any manipulator parameter and depends only on

current system states. Thus the self-tuning scheme is largely independent of the process

being controlled.

The following steps were used for tuning the controller:

Assuming that =1, we first adjust the value of GE so that the normalized error covers

the entire domain [-6 6] to make efficient use of rule base. We then adjust the values of

GCE and GU to make the output as acceptable as possible. This process is done through

trial and error for any one trajectory. Now we have a good conventional fuzzy

controller, which becomes the initial starting point for fuzzy self-tuning controller.

The output-scaling factor (GU) is now set to three times (to keep the rise time almost

same) the value found in previous step. The other two scaling factors are kept same as

determined in previous step.

is no longer fixed at 1 but is calculated on-line from its

rule base.

153

6.4.1 PURE FUZZY (FIXED PARARAMETERS)

The controller investigated in this section is a normal Pure Fuzzy controller (Non LUT

based), exactly similar to the controller discussed in section 6.3.1. The normalization

and denormalization factors are chosen to be exactly same and so are the rule base and

membership functions. The complete rule base is shown in Table. 6.4.1.

The difference here is that this controller evaluates the fuzzy rules as it is and does not

make use of lookup table while calculating the output torque values for the two links of

the manipulator. The disadvantage of not using the lookup table is mainly in terms of

considerably more number of calculations required which in turn increases the sampling

time of the controller. The advantage on the other hand is in terms of much smoother

controller action compared to lookup table based controller. This is of importance when

we modify this controller to self-tuning controller. The self-tuning controller gives much

better performance if the control action of the original controller is smooth.

The two trajectories used for simulation are same as earlier. For the first simulation it is

assumed that the manipulator parameters do not change throughout the motion. The

error profiles for the two links are shown in Fig. 6.4.1.1(a) for the first trajectory, and

Fig. 6.4.1.1(b) for the second trajectory. Table 6.4.1.1 lists the various error magnitudes

for the two trajectories for this controller. A comparison between the error profiles (for

trajectory 1) of this controller and the exactly similar LUT based controller studied in

6.3.1 is shown in Fig 6.4.1.1(c). As can be seen from this figure, the errors for LUT

based controller are lower compared to Non-LUT based controller. This is mainly

because of manual fine-tuning done for LUT based controller. Also as can be expected

the trajectory for Non-LUT based controller is much smoother compared to LUT based

controller.

154

Fig. 6.4.1.1(a) Errors for Fuzzy control (Non LUT based, Fixed parameters,
 Trajectory 1)

Fig. 6.4.1.1(b) Errors for Fuzzy control (Non LUT based, Fixed parameters,
 Trajectory 2)

155

Fig 6.4.1.1(c) Comparison of errors for LUT and Non LUT based Fuzzy controllers
(Fixed parameters)

Table 6.4.1.1. Errors for Fuzzy control (Non LUT based, Fixed parameters)

6.4.2 ADAPTIVE FUZZY (FIXED PARAMETERS)

The self-tuning adaptive fuzzy controller is investigated in this section. This controller is

discussed in detail in section 6.4. We run the simulation for two trajectories for the case

that manipulator parameters do not change during the entire duration of motion. Fig.

6.4.2.1(a) shows the error profiles for first trajectory. Fig. 6.4.2.1(b) shows a comparison

of errors between adaptive fuzzy and pure fuzzy control. As can be seen from the figure,

the adaptive fuzzy controller gives improved performance compared to pure fuzzy

controller. Errors for both links for adaptive fuzzy controller are reduced. However like

the pure fuzzy controller, the adaptive fuzzy controller also has non-zero steady state

errors for both links albeit reduced to some extent.

Fig. 6.4.2.1(c) shows the error profiles for the second trajectory. Fig. 6.4.2.1(d) shows a

comparison of errors between adaptive fuzzy and pure fuzzy control for the second

Pure Fuzzy (Fixed parameters Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308

156

trajectory. Once again it is observed that adaptive fuzzy controller gives better

performance with both r.m.s and maximum errors getting reduced, when compared to

pure fuzzy controller. Table 6.4.2.1 lists the various error measures for the two

trajectories for this controller.

Fig. 6.4.2.1(a) Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 1)

Fig. 6.4.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed
parameters, Trajectory 1)

157

Fig. 6.4.2.1(c) Errors for Adaptive Fuzzy control (Fixed parameters, Trajectory 2)

Fig. 6.4.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Fixed
parameters, Trajectory 2)

Table 6.4.2.1. Errors for Adaptive Fuzzy control (Fixed parameters)

Adaptive Fuzzy (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468

158

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No CONTROL

STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308

2. SOC Zero
LUT

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923

3. SOC Nonzero
LUT

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908

4 STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468

Table 6.4.2.2. Errors for Fuzzy, SOC and STFC (Fixed Parameters)

Table 6.4.2.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can

be seen that STFC performs well but is not as good as SOC.

6.4.3 PURE FUZZY (CHANGING PARARAMETERS)

The simulations done in this section are similar to those done in previous section except

that in these cases we assume that the manipulator picks up and releases load during

motion. Hence the manipulator parameters change during the course of motion. The first

simulation is for pure fuzzy controller. It is observed that the performance of controller

degrades compared to the fixed parameter case. In particular it is the transient

performance of the controller that suffers. The steady state errors for first trajectory

remain same for fixed and changing parameter cases. The maximum errors for second

trajectory increase in case of changing parameters. The error profiles for the two links

are shown in Fig. 6.4.3.1(a) for the first trajectory, and Fig. 6.4.3.1(b) for the second

trajectory. Table 6.4.3.1 lists the magnitudes of various errors for the two trajectories for

this controller. A comparison between the error profiles (for trajectory 1) of this

controller and the exactly similar LUT based controller studied in 6.3.4 is shown in Fig

6.4.3.1(c). As can be seen from this figure, the errors for LUT based controller are lower

compared to Non-LUT based controller. As explained earlier, this is mainly because of

manual fine-tuning done for LUT based controller. Also as can be expected the

trajectory for Non-LUT based controller is much smoother compared to LUT based

controller.

159

Fig. 6.4.3.1(a) Errors for Fuzzy control (Non LUT based, Changing parameters,
Trajectory 1)

Fig. 6.4.3.1(b) Errors for Fuzzy control (Non LUT based, Changing parameters,
Trajectory 2)

160

Fig 6.4.3.1(c) Comparison of errors for LUT and Non LUT based Fuzzy controllers
(Changing Parameters)

Table 6.4.3.1. Errors for Fuzzy control (Non LUT based, Changing parameters)

6.4.4. ADAPTIVE FUZZY (CHANGING PARAMETERS)

The simulations carried out in this section are similar to those done in section 6.4.2

except for the fact that here the manipulator parameters change during the course of

motion. The manipulator is assumed to pick and release load periodically. We run the

simulation for two trajectories as used for all simulation. Fig. 6.4.4.1(a) shows the error

profiles for first trajectory. Fig. 6.4.4.1(b) shows a comparison of errors between

adaptive fuzzy and pure fuzzy control. As can be seen from the figure, the adaptive

fuzzy controller gives improved performance compared to pure fuzzy controller. Errors

for both links for adaptive fuzzy controller are reduced. However like the pure fuzzy

Pure Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774

161

controller, the adaptive fuzzy controller also has non-zero steady state errors for both

links although reduced to some extent.

Fig. 6.4.4.1(c) shows the error profiles for the second trajectory. Fig. 6.4.4.1(d) shows a

comparison of errors between adaptive fuzzy and pure fuzzy control for the second

trajectory. Once again it is observed that adaptive fuzzy controller gives better

performance with both r.m.s and maximum errors getting reduced, when compared to

pure fuzzy controller. Table 6.4.4.1 lists the various error measures for the two

trajectories for this controller.

Fig. 6.4.4.1(a) Errors for Adaptive Fuzzy control (Changing parameters, Trajectory 1)

Fig. 6.4.4.1(b) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Changing
parameters, Trajectory 1)

162

Fig. 6.4.4.1(c) Errors for Adaptive Fuzzy control (Changing parameters, Trajectory 2)

Fig. 6.4.4.1(d) Comparison of Errors for Adaptive Fuzzy Vs Fuzzy control (Changing
parameters, Trajectory 2)

Table 6.4.4.1. Errors for Adaptive Fuzzy control (Changing parameters)

Adaptive Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

163

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No CONTROL

STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774

2. SOC Zero
LUT

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

3. SOC Nonzero
LUT

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

4 STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

Table 6.4.4.2. Errors for Fuzzy, SOC and STFC (Changing Parameters)

Table 6.4.4.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can

be seen that STFC performs well but is not as good as SOC.

6.4.5 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.4):

1. The error profiles for non-lookup table based Fuzzy controller are much smoother

compared to LUT based Fuzzy controllers. This is mainly because of smoother

controller action and translates directly into a smoother manipulator motion. The

errors for the LUT based controller however, are smaller.

2. The Adaptive Fuzzy controller improves the performance of Pure Fuzzy controller

considerably. The performance improvement is more for the case when the

manipulator parameters change during motion.

3. The error profiles for Adaptive Fuzzy controllers are much smooth compared to

their SOC counterparts. This is once again mainly due to their non-lookup table

based nature.

6.5 HYBRID FUZZY+INTEGRAL ERROR CONTROLLER (HFIE)

The PD self-tuning adaptive controller investigated in previous sections gives a

reasonably good performance for both trajectories as far as rms errors are concerned.

However it is observed that for the first trajectory, both the manipulator links end up

164

with steady state errors of about 0.1 degrees. Moreover these errors do not decrease even

if we consider the case of manipulator parameters not changing during the course of

motion.

With a view to reduce this steady state error we propose and investigate a simple hybrid

fuzzy controller. The block diagram of this controller is shown in Fig. 6.5.1. This

controller consists of two parts. First is a simple non-lookup table based fuzzy

controller. This controller is same as that investigated in section 6.4.1 and 6.4.3. It is

also the same as the

Fig. 6.5.1. Hybrid Fuzzy plus Integral error Controller block diagram

self-tuning adaptive fuzzy controller investigated in section 6.4.2 and 6.4.4 but with

adaptation gain fixed at a constant value of 1. Second is an integral error controller, as

shown in Fig. 6.5.1. Usually the integral part of a controller produces an output, which is

proportional to integral of error over the entire period of motion. But this simple

addition of integral term also increase the order of system and might result in an

unstable closed loop system. The controller that we propose does not perform

summation (integration) of error over entire period of motion.

For our simulations the trajectory generator provides the controller with information

about the desired position, velocity and acceleration (, ,d d d) for each joint and

keeps updating this information at the path update rate which has been chosen as 3ms

(333Hz). The controller takes this information and compares it with the present (actual)

Fuzzy
Controller

ROBOT

d

d

+

+

_

_

e

e

5

1

n

I
n

K e

+

+

165

position and velocity of joints , , which are provided as feedback through the

sensors. Based upon the error between the desired and actual values, the controller

calculates a vector of joint torques , which should be applied at respective joints by

the actuators to minimize these errors. In the simulations, the control loop runs five

times for every set point supplied by the trajectory generator. The integral action of our

controller is limited to summing up these five errors for every set point provided by the

trajectory generator. The sum of these errors is reset to zero every time the trajectory

generator gives a new set point. This type of integral action cannot of course give zero

values of steady state error but can nevertheless reduce them. Further the overall

resulting controller does not suffer from danger of instability.

6.5.1. HFIE CONTROLLER (FIXED PARAMETERS)

We run the simulation for two trajectories for the case that manipulator parameters do

not change during the entire duration of motion. Fig. 6.5.1.1(a) shows the error profiles

for first trajectory. Fig. 6.5.1.1(b) shows a comparison of errors between adaptive fuzzy

and HFIE control. As can be seen from the figures, the HFIE controller gives much

improved performance compared to adaptive fuzzy controller. Errors for both links for

HFIE controller are reduced. This includes not only the steady state errors but also the

transient, rms and maximum errors as well. The steady state errors although reduced, are

still not zero.

Fig. 6.5.1.1(c) shows the error profiles for the second trajectory. Fig. 6.5.1.1(d) shows a

comparison of errors between adaptive fuzzy and HFIE control for the second trajectory.

Once again it is observed that HFIE controller gives better performance with both r.m.s

and maximum errors getting reduced, when compared to adaptive fuzzy controller.

Table 6.5.1.1 lists the various error measures magnitudes for the two trajectories for this

controller.

166

Fig. 6.5.1.1(a) Errors for HFIE controller (Fixed parameters, Trajectory 1)

Fig. 6.5.1.1(b) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed
parameters, Trajectory 1)

167

Fig. 6.5.1.1(c) Errors for HFIE controller (Fixed parameters, Trajectory 2)

Fig. 6.5.1.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed
parameters, Trajectory 2)

Table 6.5.1.1. Errors for HFIE control (Fixed parameters)

Pure Fuzzy + Integral Error (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450

168

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No CONTROL

STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308

2. SOC Zero
LUT

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923

3. SOC Nonzero
LUT

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908

4. STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468

5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450

Table 6.5.1.2. Errors for Fuzzy, SOC, STFC and HFIE (Fixed Parameters)

Table 6.5.1.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison.

It can be seen that HFIE performs better than STFC but is not as good as SOC.

6.5.2. HFIE CONTROLLER (CHANGING PARAMETERS)

We next do the simulation for two trajectories for the case that manipulator parameters

change during the duration of motion. Fig. 6.5.2.1(a) shows the error profiles for first

trajectory. Fig. 6.5.2.1(b) shows a comparison of errors between adaptive fuzzy and

HFIE control. Once again it can be seen from the figures, that the HFIE controller gives

much improved performance compared to adaptive fuzzy controller. Errors for both

links for HFIE controller are reduced. This includes not only the steady state errors but

the transient, rms and maximum errors as well. The steady state errors although reduced

are still not zero.

Fig. 6.5.2.1(c) shows the error profiles for the second trajectory. Fig. 6.5.2.1(d) shows a

comparison of errors between adaptive fuzzy and HFIE control for the second trajectory.

As expected, the HFIE controller gives better performance with both r.m.s and

maximum errors getting reduced, when compared to adaptive fuzzy controller. Table

6.5.2.1 lists the various error measures magnitudes for the two trajectories for this

controller.

169

Fig. 6.5.2.1(a) Errors for HFIE controller (Changing parameters, Trajectory 1)

Fig. 6.5.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing
parameters, Trajectory 1)

Fig. 6.5.2.1(c) Errors for HFIE controller (Changing parameters, Trajectory 2)

170

Fig. 6.5.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing
parameters, Trajectory 2)

Table 6.5.2.1. Errors for HFIE control (Changing parameters)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774

2. SOC Zero
LUT

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

3. SOC Nonzero
LUT

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

4. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

5. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498

Table 6.5.2.2. Errors for Fuzzy, SOC, STFC and HFIE (Changing Parameters)

Table 6.5.2.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison.

It can be seen that HFIE performance is almost comparable to that of SOC.

Pure Fuzzy + Integral Error (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498

171

6.5.3 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.5):

1. The modified integral action is an effective method to reducing the overall errors

for manipulator trajectory tracking.

2. The proposed HFIE controller performs remarkably well when compared to

STFC. The HFIE controller gives better performance with r.m.s., maximum and

steady state errors all getting reduced, when compared to STFC

3. The improved performance of HFIE controller is further achieved with having

much lesser number of calculations to perform compared to adaptive fuzzy

controller. Although for our simulations we have kept the sampling rate for both

adaptive fuzzy and HFIE controllers same, the much higher possible sampling

rates for HFIE controller will improve its performance further.

4. It was also observed that errors for HFIE controller go down as we increase the

integral gain constant Ki to a certain value. Any further increase in Ki results in

errors increasing again. Hence there is an optimal value for the gain Ki.

6.6 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CFAF)

When a controller is required to operate under conditions of both large and small

excursions of its inputs from their nominal values, it is convenient to use two or more

sets of fuzzy rules to effect improved control [Dunlop et al. (1994)]. For large

excursions of the controller input variables, coarse control is applied with the objective

of forcing the plant to return to its nominal operating point as rapidly as possible.

Accuracy of control is of secondary importance under these circumstances and only a

few rules are required. When the plant variables reach some small region about the

nominal operating point then fine control is applied. Here a new set of control rules

necessary to effect the desired fine control actions are used and these involve a larger

number of rules and fuzzy sets. Under normal operating conditions the controller uses

fine control for small excursions about the nominal operating point.

172

An alternative way of achieving coarse-fine control is through zooming of the universe

of discourse of each controller input variable. In this case the universe of discourse is

varied, either in discrete regions in control space or smoothly as the plant approaches the

desired operating point. This approach has been used to great effect for the control of

high precision mechatronic devices and is investigated in this section for effectiveness in

case of mechanical manipulator.

The basic controller is still the self-tuning adaptive fuzzy controller discussed in section

6.4. In that controller the output-scaling factor alone is adapted via the variable gain

factor . The characteristics of a PI- or PD-type fuzzy logic controller depends on both

input and output scaling factors, i.e., for the best performance, simultaneous adjustment

of both input and output scaling factors is more justified. To this effect the controller

normalizes the position and velocity errors to limit them to domain [-6 6]. It then checks

if the position and velocity errors are both within [-3 3]. If they are, then both the

position and velocity error are doubled to provide the zooming effect. If the errors are

not within [-3 3], then they are used as they are, without being doubled. This simple

strategy results in much improved performance of the controller as discussed in the

following sections.

6.6.1 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (FIXED

 PARAMETERS)

We first run the simulation for two trajectories for the case that manipulator parameters

do not change during the entire duration of motion. Fig. 6.6.1.1(a) shows the error

profiles for first trajectory. Fig. 6.6.1.1(b) shows a comparison of errors between

adaptive fuzzy and CFAF control. As can be seen from the figures, the CFAF controller

gives much improved performance compared to adaptive fuzzy controller. Errors for

both links for CFAF controller are reduced. This includes not only the steady state errors

but the transient, rms and maximum errors as well.

Fig. 6.6.1.1(c) shows the error profiles for the second trajectory. Fig. 6.6.1.1(d) shows a

comparison of errors between adaptive fuzzy and CFAF control for the second

trajectory. Once again it is observed that CFAF controller gives better performance with

173

both r.m.s and maximum errors getting reduced, when compared to adaptive fuzzy

controller. Table 6.6.1.1 lists the various error measures magnitudes for the two

trajectories for this controller.

Fig. 6.6.1.1(a) Errors for CFAF controller (Fixed parameters, Trajectory 1)

Fig. 6.6.1.1(b) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed
parameters, Trajectory 1)

174

Fig. 6.6.1.1(c) Errors for CFAF controller (Fixed parameters, Trajectory 2)

Fig. 6.6.1.1(d) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Fixed
parameters, Trajectory 2)

Table 6.6.1.1. Errors for CFAF control (Fixed parameters)

CF Adaptive Fuzzy (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0747 0.0910 0.0373 0.0392 0.0766 0.1115 0.0358 0.0583

175

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No CONTROL

STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308

2. SOC Zero
LUT

0.0338 0.0164 0.0306 -0.0163 0.0331 -0.1023 0.0409 -0.0923

3. SOC Nonzero
LUT

0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908

4. STFC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468

5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450

6. CFAF 0.0747 0.0910 0.0373 0.0392 0.0766 0.1115 0.0358 0.0583

Table 6.6.1.2. Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Fixed Parameters)

Table 6.6.1.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for

comparison. It can be seen that CFAF performs better than STFC but is not as good as

SOC or HFIE.

6.6.2 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CHANGING

 PARAMETERS)

We next do the simulation for two trajectories for the case that manipulator parameters

change during the entire duration of motion. Fig. 6.6.2.1(a) shows the error profiles for

first trajectory. Fig. 6.6.2.1(b) shows a comparison of errors between adaptive fuzzy and

CFAF control. Once again it can be seen from the figures, that the CFAF controller

gives much improved performance compared to adaptive fuzzy controller. Errors for

both links for CFAF controller are reduced. This includes not only the steady state errors

but the transient, r.m.s and maximum errors as well.

Fig. 6.6.2.1(c) shows the error profiles for the second trajectory. Fig. 6.6.2.1(d) shows a

comparison of errors between adaptive fuzzy and CFAF control for the second

trajectory. As expected, the CFAF controller gives better performance with both r.m.s

and maximum errors getting reduced, when compared to adaptive fuzzy controller.

Table 6.6.2.1 lists the various error measures magnitudes for the two trajectories for this

controller.

176

Fig. 6.6.2.1(a) Errors for CFAF controller (Changing parameters, Trajectory 1)

Fig. 6.6.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Changing
parameters, Trajectory 1)

Fig. 6.6.2.1(c) Errors for CFAF controller (Changing parameters, Trajectory 2)

177

Fig. 6.6.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs CFAF control (Changing
parameters, Trajectory 2)

Table 6.6.2.1 Errors for CFAF control (Changing parameters)

TRAJECTORY NO.1 TRAJECTORY NO.2
link1

0 90 0

link2
0

-90 0

link1
0 45 0 45 0

link2
0

-45 0 -45 0

S.No CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774

2. SOC Zero
LUT

0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

3. SOC Nonzero
LUT

0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

4. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

5. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498

6. CFAF 0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644

Table 6.6.2.2. Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Changing Parameters)

CF Adaptive Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2

Link1
0 90 0

Link2
0

-90 0

Link1
0 45 0

Link2
0

-45 0

RMS SS RMS SS RMS MAX RMS MAX

0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644

178

Table 6.6.2.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for

comparison. It can be seen that CFAF performance is better than STFC but not as good

as HFIE or SOC.

6.6.3 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.6):

1. It is observed that the CFAF controller gives much improved performance

compared to STFC. Errors for both links for CFAF controller are reduced for

fixed as well as changing parameters case.

2. CFAF does not involve any additional computational burden on the controller.

The additional complexity is only in terms of few additional if-then-else

statements.

3. The CFAF controller however is still not as good as HFIE controller or SOC.

6.7 CONCLUDING REMARKS

In this chapter we investigated the efficacy of Fuzzy control techniques for manipulator

control. We investigated both the lookup table based controller and the conventional

fuzzy controller. We found that the fuzzy controller on its own does not give a

performance as good as Adaptive controllers. However the Self-Organizing and Self-

Tuning versions of the fuzzy controllers give very good performance.

We also investigated the performance of some new hybrid fuzzy controllers. It was

found that hybrid conventional-fuzzy controllers give a substantial performance

improvement. On the other hand the Hybrid adaptive-fuzzy controllers do not give much

performance improvement.

The HFIE and CFAF controllers are also very competitive in their performance. On the

whole Fuzzy control is a viable alternative to adaptive control both in terms of good

performance and reduced complexity of computations required.

179

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

In this thesis we have attempted to explore the behavior of few robot manipulator

control strategies. The controllers investigated in this thesis are of conventional,

adaptive and fuzzy kind and their combinations.

We have also suggested some modifications to the existing control strategies, which

could lead to improvement in their performance. This is mainly in terms of introducing a

modified integral error compensation. We have also suggested some new control

strategies, like HFIE, which give good performance with minimal computational

complexity.

For the sake of just comparison, we have kept the manipulator model and test

trajectories same throughout. The detailed conclusions for the study carried out on them

are already presented in Chapters 4, 5 and 6 respectively. Here we state the main

conclusions and present them section wise.

CONVENTIONAL CONTROL

Various manipulator control strategies belonging to the conventional strategies were

tested in this section. These included the PD, PID, Computed Torque, Feed Forward

Inverse Dynamics and Critically Damped Inverse Dynamics control. These strategies

were tested for two different trajectories. In the first trajectory the manipulator had to

essentially position itself accurately and in the second trajectory the manipulator is

essentially involved in a pick and place task. The first trajectory allows us to investigate

the steady state behavior of the controller while the second trajectory allows

investigation of transient behavior of the controller more rigorously.

The first situation tested was where the manipulator parameters do not change during

the entire trajectory. Under this situation it was seen that although the manipulator

parameters are not changing, the fixed gain PD controller perform poorly. This is mainly

because the manipulator model used does not include any gearings at the joints, a case

CHAPTER VII

180

which is true for high-speed robots. The PID controller gives much better performance

than PD controller but can become unstable very easily even with low gain values. This

clearly points to the fact that for high speed and high precision operations these simple

non-model based schemes cannot be used.

Amongst the model-based controllers, the performance is greatly dependent upon

exactness with which the model structure and its parameters are known. If the model

and its parameters are known exactly, the model-based controllers give very good

performance. This performance degrades rapidly with increasing inaccuracies of

measurement and modeling. So much so that the performance may degrade below that

of PD controller. Under the situation of inexactness of modeling and parameter

estimation, the CDID controller gives best performance. This is mainly because this

controller uses reference values of trajectory rather than actual ones for model

computation.

The second situation, which was tested, was when the manipulator picks up an unknown

load during the course of its motion and releases it later. This effectively means that the

manipulator parameters change during motion and the magnitude of change is unknown.

Under this situation, the performance of PD controller and CT controller degrades

appreciably. The FFID and CDID controllers also loose on their performance but not as

much as PD or CT controllers. This clearly once again highlights the merit of using

reference and desired trajectory values, rather than actual ones, for model computation.

Lastly in this section we proposed the use of a modified integral error compensation

with the model based controllers for improving their performance. The integral action

sums up the errors for every five iterations of control loop for a given set point. When

the set point changes, the error summation is reset to zero. This modified integral action

does not suffer from stability related problems and greatly improves the performance of

the model-based controllers. Moreover as the integral action is implemented entirely in

software, it can be switched off in case the manipulator performance degrades below a

datum level. It was seen that the performance of CT and FFID controllers improved

appreciably with the inclusion of modified integral action, while the performance of

CDID controller only improved marginally.

181

ADAPTIVE CONTROL

To further improve the performance of manipulator controller, we need a controller,

which can change or learn the manipulator parameters which are not known exactly

because of inaccuracies of estimation or because they change as the manipulator picks

up unknown loads in its work environment. Alternatively the controller could adjust its

gains as the parameters change with the objective of driving the tracking errors to zero.

This is essentially what the adaptive controllers do.

In this section we investigated the behavior of three different adaptive controllers widely

quoted in literature for manipulator control. These controllers are the adaptive version of

CDID or the ACDID controller, a Model Reference Adaptive Controller (MRAC) and a

Decentralized Adaptive Controller (DAC).

We first investigated the performance of these controllers for the situation that the

manipulator parameters change during the motion as it picks up and releases load. This

case was further analyzed for the situations of warm start (some estimate of parameters

known) and cold start (no estimate of parameters is available). It was seen that the

adaptive controllers out perform the conventional controllers for all situations. Even the

conventional controllers with modified integral action do not perform as well as these

adaptive controllers. Further it was seen that the model-based controllers (ACDID and

MRAC) perform better for the warm start case. This clearly shows the importance of

using good estimates of parameter, whenever available, for performance improvement.

We also investigated the effect of adding modified integral action to these controllers

just like we did for conventional controllers. It was seen that addition of this action

improves the performance of adaptive controllers both in terms of steady state and

transient errors. Overall the ACDID controller with modified integral action gave best

performance amongst adaptive controllers.

182

FUZZY CONTROL

Although the adaptive controllers give very good performance, their practical

implementation is not easy because of their computational complexity. This means that

high-speed processors need to be used to get sufficiently high sampling rates. This

directly translates into high cost of implementation. Hence it is worthwhile to

investigate the Fuzzy control method, which promises good performance at much less

computational complexity. In this thesis we investigated many different fuzzy

controllers, which include self-organizing, self-tuning, hybrid fuzzy etc. We have also

proposed some new fuzzy controllers for the robot manipulators.

In this section we proposed and tested several new hybrid fuzzy controllers. These

controllers are essentially a combination of pure fuzzy (LUT based) and another

conventional or adaptive controller. The control action of the two controllers is summed

up to produce the final actuating signal.

It was seen that the performance of conventional controllers studied earlier (CT, CDID

and FFID) improves considerably when they are combined in the hybrid structure with

fuzzy controller. The performance of these hybrid fuzzy/conventional controllers is also

better than conventional controllers with modified integral error compensation. As the

fuzzy controller is LUT based, it adds only a minimal computational burden. However

this burden is more than that incurred by adding only the modified integral error

compensation.

The hybrid fuzzy/adaptive controllers also showed some performance improvement.

However this improvement is not as marked as the previous case of hybrid

fuzzy/conventional controllers. Moreover these controllers are computationally even

more intensive than the adaptive controller alone. Hence we conclude that it is not

worthwhile using such controllers. We found that CDID + Fuzzy controller performs

almost as good as ACDID with modified integral error compensation with lesser

computational complexity. Hence these hybrid fuzzy/conventional controllers may

provide a viable alternative to adaptive controllers.

The second variant of fuzzy controller investigated is the fuzzy self-organizing

controller (SOC). Here the controller builds up its own LUT starting from all zero

183

entries or modifies the already existing entries according to error profiles. This

controller gives an outstanding performance that was not matched by any other

controller of the fuzzy category. The performance was good even if the LUT had all

entries as zero initially. Of course the performance improved further when we started

with non-zero values in LUT.

The self-tuning fuzzy controller (STFC) was also studied. This controller adapts its

output denormalization gain online depending on the present error and its derivative.

The implementation of this controller is non-LUT based. It was seen that this controller

improves the performance beyond that of pure fuzzy controller but it is not at par with

the self-organizing controller. However the trajectory for STFC is much smoother

compared to that of SOC, mainly because of its non-LUT based nature. We suggest a

modification to STFC such that effectively both the input and output gains of the fuzzy

controller can be changed. This is achieved by zooming the universe of discourse. This

controller is known as coarse/fine adaptive fuzzy controller (CFAF). The CFAF

improves on the performance of STFC with minimal additional computational burden.

However the performance is still not as good as that of SOC.

Lastly we tried out a very simple hybrid architecture where we combined the fuzzy

controller with the modified integral error compensation (HFIE). To our surprise the

HFIE gives a very good performance next only to SOC. It also outperforms the STFC

and CFAF controllers. The computational burden is lesser than SOC.

Table 7.1.1 lists the errors for various controllers under similar situation of changing

parameters. The shaded cells indicate the best performer in a category. Amongst all

controllers the hybrid ACDID + Fuzzy controller gives the best performance which is

closely matched by ACDID + IE controller.

184

TRAJECTORY NO.1 TRAJECTORY NO.2

link1
0 90 0

link2

0

-90 0

link1

0 45 0 45 0

link2

0

-45 0 -45 0

S.No

CONTROL
STRATEGY

RMS SS RMS SS RMS MAX RMS MAX
CONVENTIONAL CONTROL

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

7. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513

ADAPTIVE CONTROL

9. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642

10. ACDID+IE* 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745

11. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390

12. MRAC+IE* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732

13. DAC 0.0613 0.0043 0.0259 -0.0007 0.0674 0.1387 0.0284 0.0600

14. DAC+IE* 0.0313 0.0418 0.0220 0.0117 0.0371 0.0798 0.0329 0.0507

HYBRID FUZZY

15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183

16. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030

17. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186

18. CDID+Fuzzy 0.0216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507

19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564

20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403

21. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791

ADAPTIVE FUZZY

22. SOC ZLUT 0.0245 0.0166 0.0333 -0.0169 0.0477 0.1059 0.0395 -0.1032

23. SOC NZLUT 0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898

24. STFC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

25. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498

26. CFAF 0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644

Table 7.1.1 Errors for all controllers for parameter changing case

185

7.2 SUMMARY OF CONTRIBUTIONS

In brief we have contributed to the body of existing knowledge in the field of

manipulator control in the following way:

1. Done a comparative study of some conventional model based and non-model

based controllers. This was done for different situations like manipulator model

known exactly, manipulator model not known exactly etc.

2. Proposed and investigated the effect of including a modified integral action to

the all model based conventional controllers

3. Showed that including the modified integral error compensation improves the

performance of conventional controllers appreciably

4. Showed that CDID controller with modified integral action is the best performer

in conventional controllers category

5. Done a comparative study of some existing adaptive controllers for various

situations like warm start and cold start etc.

6. Proposed and investigated the effect of including a modified integral action to

the adaptive controllers

7. Showed that including the modified integral error compensation improves the

performance of adaptive controllers

8. Showed that ACDID controller with modified integral action is the best

performer in adaptive controllers category

9. Proposed and investigated some new hybrid fuzzy controllers

10. Done a comparative study of different fuzzy controllers like self-organizing,

self-tuning, hybrid etc.

11. Showed that the self-organizing controller with a non zero lookup table is the

best performer in fuzzy controllers category

7.3 RECOMMENDATIONS FOR FUTURE WORK

In any practical implementation of a robot controller, the actuator dynamics

plays an important role. Actuator torque saturation for example, would have a

186

direct impact on stability of the system. Not much work has been done in this

direction. A complete manipulator model would definitely include not only the

robot dynamics but the actuator dynamics as well. Work may be done in the

direction of testing the behavior of these controllers with actuator dynamics

incorporated in the model.

With the recent availability of lightweight and precision acceleration sensors,

work needs to done on developing control algorithms, which use acceleration

feedback. It may be analyzed if controllers using acceleration feedback give

better performance than the controllers that do not use it.

Any simulation can at best be a pointer to expected behavior of a controller. It

can never be a substitute to testing by experimentation. All the control

algorithms simulated in the thesis may be experimentally tested as well.

Much work has recently been done in the area of neural networks based

controllers for robot manipulators [Patino et al. (2002), Horne et al. (1990)]. A

comparative study of these controllers with conventional, adaptive and fuzzy

controllers may be carried out.

Many genetic algorithm based robot controllers have also been proposed of late

[Alander (1998)]. A comparative study of these genetic algorithm based

controllers with conventional, adaptive, fuzzy and neural networks based

controllers may be carried out.

These various controllers may be compared not only for their trajectory tracking

performance but also for their computational complexity. More computational

complexity directly implies costlier practical implementation.

187

LIST OF PUBLICATIONS

1. Conventional Control Strategies for Robot Manipulators: A Simulation

Study, Proceedings of International Conference on Computer Applications in

Electrical Engineering-Recent Advances, IIT, Roorkee, October 2005, pp 362-

367.

2. A Comparative Study of Few Conventional and Adaptive Control

Algorithms for Manipulator Control, Proceedings of the 2nd Indian

International Conference on Artificial Intelligence, Pune, December 2005, pp

252-264.

3. Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator

Control, International Journal of Computational Intelligence, 2006, Vol.3,

Number 4, pp 303-311.

4. Comparative Study of Some New Hybrid Fuzzy Algorithms for Manipulator

Control, Journal of Control Science and Engineering, Vol. 2007, Article ID

75653, 10 pages, 2007. doi: 10.1155/2007/75653.

188

REFERENCES

Abdessemed, F., Benmahammed, K., A two layer robot control design , Proceedings of

IEEE International Conference on Fuzzy Systems, 4-9 May 1998, Vol. 1, Pages: 522

527

Alander, J. T., An indexed bibliography on genetic algorithms in robotics , Report

series No. 94-1-ROBOT, University of Vasaa, Finland, 1998

Albertos, P., Olivares, M., Sala, A., Fuzzy logic based look-up table controller with

generalization , Proceedings of the American Control Conference, June 2000, Pages:

1949-1953

An, C.H., Atkeson, C.G., Griffiths, J.D., Hollerbach, J.M., Experimental evaluation of

feed forward and computed torque control , IEEE Transactions on Robotics and

Automation, June 1989, Vol. 5, Issue: 3, Pages: 368 373

Astrom, K.J., Wittenmark, B., Adaptive control , Addison Wesley, 1995

Banerjee, S., Woo, P. Y., Fuzzy logic control of robot manipulator , Proceedings of

IEEE Conference on Control Applications, 13-16 Sept. 1993, Vol.1, Pages: 87 88

Bonissone, P.P., Chiang, K.H., Fuzzy logic controllers from development to

deployment , Proceedings of IEEE International Conference on Neural Networks, 28

March-1 April 1993, Vol.1, Pages: 610 619

Brehm, T., Rattan, K.S., Hybrid fuzzy logic PID Controller , Proceedings of the IEEE

Aerospace and Electronics Conference, 24-28 May 1993, Vol.2, Pages: 807 813

189

Burdet, E., Codourey, A., Rey, L., Experimental evaluation of nonlinear adaptive

controllers , IEEE Control Systems Magazine, April 1998, Vol. 18, Issue: 2, Pages: 39

47

Burkan, R., Design of an adaptive control law using trigonometric functions for robot

manipulators , Robotica , 2005, Vol. 23, Pages: 93 99.

Butkiewicz, B. S., System with hybrid fuzzy-conventional PID controller , IEEE

International Conference on Systems, Man, and Cybernetics, 2000, Vol. 5, Pages: 3705-

3709

Campa, R., Kelly, R., Garcia, E., On stability of the resolved acceleration control ,

Proceedings of IEEE International Conference on Robotics and Automation, 2001, Vol.

4, Pages: 3523 3528

Chatterjee, A., Watanabe, K., An adaptive fuzzy strategy for motion control of robot

manipulators , Journal of Soft Computing, 2005, Vol. 9, Pages: 185 193

Chin, S.H., Er, M.J., Hybrid adaptive fuzzy controllers of robot manipulators ,

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

13-17 Oct. 1998, Vol. 2, Pages: 1132 1137

Chun-Fei, H., Chin-Teng, L., New techniques for intelligent control , Proceedings of

IEEE International Symposium on Intelligent Control, 2004, Pages: 13 18

Colbaugh, R., Glass, K., Seraji, H., Decentralized adaptive control of manipulators

theory and experiments , Proceedings of the 32nd IEEE Conference on Decision and

Control, 15-17 Dec. 1993, Vol.1, Pages: 153 158

190

Colbaugh, R., Seraji, H., Adaptive tracking control of manipulators: Theory and

Experiments , Proceedings of IEEE International Conference on Robotics and

Automation, 8-13 May 1994, Pages: 2992 2999

Colbaugh, R., Seraji, H., Glass, K., Application of adaptive tracking control to

industrial robots , Proceedings of the Third IEEE Conference on Control Applications,

24-26 Aug. 1994, Vol.2, Pages: 915 920

Commuri, S., Lewis, F.L., Adaptive-fuzzy logic control of robot manipulators ,

Proceedings of IEEE International Conference on Robotics and Automation, 22-28

April 1996, Vol. 3, Pages: 2604 2609

Craig, J. J., Adaptive control of mechanical manipulators , Addison-Wesley, New

York, 1988.

Craig, J. J., Introduction to robotics-mechanics and control , Addison-Wesley, New

York, 1989.

Craig, J. J., Hsu, P., Sastry, S., Adaptive control of mechanical manipulators ,

Proceedings of IEEE International Conference on Robtics and Automation, 1986, Pages:

190-195

Datta, A., Ming-Tzu Ho, A modified model reference adaptive control scheme for rigid

robots , IEEE Transactions on Robotics and Automation, June 1996, Vol. 12, Issue: 3,

Pages: 466 470

de Silva C. W., Applications of fuzzy logic in the control of robotic manipulators ,

Fuzzy Sets and Systems, Vol. 70, Pages: 223 234

191

De Wit, C.C., Fixot, N., Adaptive control of robot manipulators via velocity estimated

feedback , IEEE Transactions on Automatic Control, Aug. 1992, Vol. 37, Issue: 8,

Pages: 1234 1237

Dubois, D., Prade. H., What are fuzzy rules and how to use them , Fuzzy Sets and

Systems, 1996, Vol. 84, Pages: 169-185

Dubowski, S., DesForges, D. T., The application of model reference adaptive control to

robotic manipulators , ASME Journal of Dynamic Systems, Measurement, and Control,

Vol. 101, 1979, Pages: 193-200

Dunlop, J.A., Burnham, K.J., James, D.J.G., King, P.J., A self-regulating scaling

method for fuzzy control , Proceedings of the Third IEEE Conference on Control

Applications, 24-26 Aug. 1994, Vol.1, Pages: 683 - 687

Emami, M. R., Goldenberg, A. A., Turksen, I. B., Systematic design and analysis of

fuzzy-logic control and application to robotics, Part I. Modeling , Robotics and

Autonomous Systems, 2000, Vol. 33, Pages: 65-68

Emami, M. R., Goldenberg, A. A., Turksen, I. B., Systematic design and analysis of

fuzzy-logic control and application to robotics, Part II. Control , Robotics and

Autonomous Systems, 2000, Vol. 33, Pages: 89-108

Er, M.J., Recent developments and futuristic trends in robot manipulator control ,

Proceedings of Asia-Pacific Workshop on Advances in Motion Control, 15-16 July

1993, Pages: 106 - 111

Erbatur, K., Kaynak, O., Rudas, I., A study of fuzzy schemes for control of robotic

manipulators , Proceedings of the 1995 IEEE 21st International Conference on

Industrial Electronics, Control, and Instrumentation, 6-10 Nov. 1995, Vol.1, Pages: 63

68

192

Erlic, M., Lu, W.-S., A comparative evaluation of adaptive, robust and classical

feedback controllers used in unconstrained trajectory tracking for robot manipulators ,

Proceedings of the 33rd Midwest Symposium on Circuits and Systems, 12-14 Aug.

1990, Vol.2, Pages: 661 664

Gang, F., A new adaptive control algorithm for robot manipulators in task space , IEEE

Transactions on Robotics and Automation, June 1995, Vol. 11, Issue: 3, Pages: 457

462

Gavel, D., Hsia, T., Decentralized adaptive control of robot manipulators , Proceedings

of IEEE International Conference on Robotics and Automation, Mar 1987, Vol: 4,

Pages: 1230 1235

Ge, S. S., Advanced control techniques of robotic manipulators , Proceedings of the

American Control Conference, June 1998, Pages: 2185-2199

Golea, N., Indirect fuzzy adaptive model-following control for robot manipulators ,

Proceedings of International Conference on Control Applications, 18-20 Sept. 2002,

Vol. 1, Pages: 198 202

Ham, C., Qu, Z., Johnson, R., Robust fuzzy control for robot manipulators ,

Proceedings of IEE - Control Theory and Applications, March 2000, Vol. 147, Issue 2,

Pages: 212-216

Ham, C., Qu, Z., Kaloust, J., Johnson, R., A new learning control of robot manipulators

in the presence of actuator dynamics , Proceedings of IEEE International Conference on

Robotics and Automation, 21-27 May 1995, Vol. 2, Pages: 2144 2149

Ham, W., Adaptive control based on explicit model of robot manipulator , IEEE

Transactions on Automatic Control, April 1993, Vol: 38, Issue: 4, Pages: 654 658

193

Heredia, J.A., Wen, Yu, A high-gain observer-based PD control for robot manipulator ,

Proceedings of the American Control Conference, 28-30 June 2000, Vol. 4, Pages: 2518

- 2522

Hojati, M., Gazor, S., Hybrid adaptive fuzzy identification and control of nonlinear

systems , IEEE Transactions on Fuzzy Systems, April 2002, Vol. 10, Issue 2, Pages:

198 210

Horne, B., Jamshidi, M., Vadiee, N., Neural networks in robotics: A survey , Journal

of Intelligent and Robotic systems, 1990, Vol. 3, Pages: 61-66

Horowitz, R., Tomizuka, M., An adaptive control scheme for mechanical manipulators

- compensation of nonlinearity and decoupling control , ASME Journal of Dynamic

Systems, Measurement, and Control, Vol.108, 1986, Pages: 127-135

Hsia, T., Adaptive control of robot manipulators- A review , Proceedings of IEEE

International Conference on Robotics and Automation, Apr 1986, Vol. 3, Pages: 183

189

Hsu, F., Fu, L., Nonlinear control of robot manipulators using adaptive fuzzy sliding

mode control , Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, 5-9 Aug. 1995, Vol. 1, Pages: 156 161

Hsu, S., Fu, L., Globally adaptive decentralized control of robot manipulators ,

Proceedings of the 41st SICE Annual Conference, 5-7 Aug. 2002, Vol. 1, Pages: 402

407

Hu, B., Mann, G.K.I., Gosine, R.G., A Systematic Study of Fuzzy PID Controllers

Function-Based Evaluation Approach , IEEE Transactions on Fuzzy Systems, Oct.

2001, Vol. 9, Issue: 5, Pages: 699 - 712

194

Imura, J.-I., Sugie, T., Yoshikawa, T., Adaptive robust control of robot manipulators-

Theory and Experimentation , IEEE Transactions on Robotics and Automation, Oct.

1994, Vol. 10 , Issue: 5 , Pages:705 710

Jamshidi, M., Fuzzy control of complex systems , Journal of Soft Computing, 1997,

Vol.1, Pages: 42-56

Jantzen J., The Self-Organizing Fuzzy Controller , Tech. report no 98-H 869 (soc),

Technical University of Denmark, 19 Aug 1998.

Jen-Yang, C., Hybrid model-based adaptive fuzzy control system , Proceedings of

IEEE International Conference on Fuzzy Systems, 2-17 May 2002, Vol. 2, Pages: 1126

 1131

Jing, Y., Adaptive control of robotic manipulators including motor dynamics , IEEE

Transactions on Robotics and Automation, Aug. 1995, Vol. 11, Issue: 4, Pages: 612 -

617

Johansson, R., Adaptive control of robot manipulator motion , IEEE Transactions on

Robotics and Automation, Aug. 1990, Vol. 6, Issue: 4, Pages: 483 490

Kandel, A., Luo, Y., Zhang, Y.-Q., Stability analysis of fuzzy control systems , Fuzzy

Sets and Systems, 1999, Vol. 105, Pages: 33-48

Karner, J., Janocha H., Hybrid controller for adaptive link control of industrial robots ,

Journal of Intelligent and Robotic Systems, September 1997, Vol. 20, Numbers 2-4,

Pages: 93 104

Kawasaki, H., Bito, T., Kanzaki, K., An efficient algorithm for the model-based

adaptive control of robotic manipulators , IEEE Transactions on Robotics and

Automation, June 1996, Vol. 12, Issue: 3, Pages: 496 501

195

Kazemian, H. B., Development of an intelligent fuzzy controller , Proceedings of

IEEE International Conference on Fuzzy Systems, 2001, Vol. 1, Pages: 517-520

Kazemian, H.B., The self organizing fuzzy PID controller , Proceedings of IEEE

International Conference on Computational Intelligence, 4-9 May 1998, Vol. 1, Pages:

319 324

Kazemian, H.B., The SOF-PID controller for the control of a MIMO robot arm , IEEE

Transactions on Fuzzy Systems, Aug. 2002, Vol. 10, Issue: 4, Pages: 523 532

Kelly, R., Global positioning of robot manipulators via PD control plus a class of

nonlinear integral actions , IEEE Transactions on Automatic Control, July 1998, Vol.

43, Issue: 7, Pages: 934 938

Kelly, R., Ortega, R., Adaptive control of robot manipulators an input-output

approach , Proceedings of IEEE International Conference on Robotics and Automation,

24-29 April 1988, Vol.2, Pages: 699 - 703

Ken. C., Jian-Ya, L., Xiang, L.Y., Fuzzy control of robot manipulators , Proceedings of

the IEEE International Conference on Systems, Man, and Cybernetics, August 8-12,

1988, Vol: 2, Pages: 1210 1212

Khorrami, F., Ozguner, U., Decentralized control of robot manipulators via state and

proportional-integral feedback , Proceedings of IEEE International Conference on

Robotics and Automation, 24-29 April 1988, Vol.2, Pages: 1198 1203

Khosla, P. K., Kanade, Takeo, Parameter identification of robot dynamics ,

Proceedings of IEEE Conference on Decision and Control, 1985, Pages: 777-787

196

Khosla, P., Choosing Sampling Rates for robot control , Proceedings of IEEE

International Conference on Robotics and Automation, Mar 1987, Vol. 4, Pages: 169

174

Khoury, G. M., Saad, M., Kanaan H., Asmar, Y. C., Fuzzy PID control of a five DOF

robot arm , Journal of Intelligent and Robotic Systems, July 2004, Vol. 40, Number 3,

Pages: 299 320

Kim, K., Hori, Y., Experimental evaluation of adaptive and robust schemes for robot

manipulator control , IEEE Transactions on Industrial Electronics, Dec. 1995, Vol. 42,

Issue: 6, Pages: 653 662

Kim, V.T., Independent joint adaptive fuzzy control of robot manipulators ,

Proceedings of the 5th Biannual World Automation Congress, 9-13 June 2002, Vol. 14,

Pages: 645 652

Kim,E., Output feedback tracking control of robot manipulators with model uncertainty

via adaptive fuzzy logic , IEEE Transactions on Fuzzy Systems, June 2004, Vol. 12, No.

3, Pages: 368 378

Koditschek, Daniel E., Adaptive strategies for the control of natural motion ,

Proceedings of IEEE 24th Conference on Decision and Control, Dec 1985, Pages: 1405-

1409

Koditschek, Daniel E., High gain feedback and telerobotic tracking , Workshop on

Space Telembotics, Pasadena, CA, Jan 1987, Pages: 355-363

Koh, K.C., Cho, H.S., Kim, S.K., Jeong, I.S., Application of a self-organizing fuzzy

control to the joint control of a Puma-760 robot , Proceedings of IEEE International

Workshop on Intelligent Robots and Systems, 3-6 July 1990, Vol.1, Pages: 537 542

197

Koo, T.J., Model reference adaptive fuzzy control of robot manipulator , Proceedings

of IEEE International Conference on Systems, Man and Cybernetics, 22-25 Oct. 1995,

Vol. 1, Pages: 424 429

Kuswadi, S., Sampei, M., Nakaura, S., Model reference adaptive fuzzy control for one

linear actuator hopping robot , Proceedings of IEEE International Conference on Fuzzy

Systems, 25-28 May 2003, Vol. 1, Pages: 254 259

Kwan, E., Liu, M., An adaptive fuzzy approach for robot manipulator tracking ,

Proceedings of IEEE International Symposium on Computational Intelligence in

Robotics and Automation, 8-9 Nov. 1999, Pages: 53 58

Landau, I.D., Future trends in adaptive control of robot manipulators , Proceedings of

the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988, Vol.2, Pages: 1604

 1606

Leung, T.P., Su, C.-Y., Zhou, Q.-J., Sliding mode control of robot manipulators: A case

study , Proceedings of 16th Annual Conference of IEEE, IECON '90, 27-30 Nov. 1990,

Vol.1, Pages:671 675

Lewis, F.L., Maliotis, G., Abdallah, C., Robust adaptive control for a class of partially

known nonlinear systems , Proceedings of the 27th IEEE Conference on Decision and

Control, 7-9 Dec. 1988, Vol.3, Pages: 2425 2427

Li, W., Design of a Hybrid fuzzy logic proportional plus conventional integral-

derivative controller , IEEE Transactions on Fuzzy Systems, Nov 1998, Vol. 6, Issue: 4,

Pages: 449-463

Li, W., Changa, X. G.,Wahl, F. M., Farrell, J., Design of an enhanced hybrid fuzzy

P+ID controller for a mechanical manipulator , IEEE Transactions on Systems, Man and

Cybernetics, Part B, Dec 2001, Vol. 31, Issue: 6, Pages: 938-945

198

Li, W., Changa, X. G.,Wahl, F. M., Farrell, J., Tracking control of a manipulator under

uncertainty by FUZZY P+ID controller , Fuzzy Sets and Systems, 2001, Vol. 122,

Pages: 125-137

Liegeois, A., Fournier. A., Aldon, M., Model reference control of high velocity

industrial robots , Proceedings of Joint Automatic Control Conference, 1980.

Lim, C.M., Hiyama, T., Application of fuzzy logic control to a manipulator , IEEE

Transactions on Robotics and Automation, Oct. 1991, Vol. 7, Issue: 5, Pages: 688 691

Lin, C., Mon, Y., Hybrid adaptive fuzzy controllers with application to robotic

systems , 2003, Fuzzy Sets and Systems, Vol. 139, Pages: 151-165

Lin, P.I., Hwang, S., Chou, J., Comparison on fuzzy logic and PID controls for a DC

motor position controller , Conference Record of the 1994 IEEE Industry Applications

Society Annual Meeting, 2-6 Oct. 1994, Vol.3, Pages: 1930 1935

Lin, W., Cheng, C., Chen, C., Adaptive fuzzy design for optimal tracking control of

robot manipulators , Proceedings of IEEE International Symposium on Intelligent

Control, 2003, Pages: 908 913

Llama, M.A., Kelly, R., Santibanez, V., Stable Computed-Torque control of robot

manipulators via fuzzy self tuning , IEEE Transactions on Systems, Man and

Cybernetics, Part B, Feb. 2000, Vol. 30, Issue: 1, Pages: 143 150

Llama, M.A., Santibanez, V., Kelly, R., Flores, J., Stable fuzzy self-tuning computed-

torque control of robot manipulators , Proceedings of IEEE International Conference on

Robotics and Automation, 16-20 May 1998, Vol. 3, Pages: 2369 2374

199

Loc, H. D., Ha, T. T., Cuong, N. C., An adaptive fuzzy logic controller for robot-

manipulator , International Journal of Advanced Robotic Systems, 2004, Vol. 1 Number

2, Pages: 115-117

Loria, A., Lefeber, A.A.J., Nijmeijer, H., Global asymptotic stability of robot

manipulators with linear PID and PI2D control , Stability and Control.:Theory and

Appllications., 2000, Vol. 3(2), Pages: 138-149

Luh, J. Y. S., Walker, M. W., Paul, R. P., Resolved acceleration control of mechanical

manipulators , IEEE Transaction on Automatic Control, Vol.25, 1980, Pages: 468-474

Luh, J.Y.S, Conventional Controller Design for Industrial Robots: A Tutorial , IEEE

Transactions on Sys., Man, and Cybernetics, May/June 1983, Vol. 13, No. 3, Pages:

298-316,

Magana, M.E., Tagami, S., An improved trajectory tracking decentralized adaptive

controller for robot manipulators , IEEE Transactions on Industrial Electronics, Oct.

1994, Vol. 41, Issue: 5, Pages: 477 482

Maliotis, G.N., Lewis, F.L., Improved robust adaptive controller for a class of partially

known nonlinear systems , Proceedings of the 28th IEEE Conference on Decision and

Control, 13-15 Dec. 1989, Vol.3, Pages: 2155 2157

Mamdani, E.H., Twenty years of fuzzy control: Experiences gained and lessons learnt ,

Proceedings of IEEE International Conference on Fuzzy Systems, 28 March-1 April

1993, Vol.1, Pages: 339 344

Mao-Lin N., Meng, J. E., Decentralized control of robot manipulators with couplings

and uncertainties , Proceedings of American Control Conference, 28-30 June 2000, Vol.

5, Pages: 3326 3330

200

Meng, J.E., Swee Hong, C., Hybrid adaptive fuzzy controllers of robot manipulators

with bound estimation , IEEE Transactions on Industrial Electronics, Oct. 2000, Vol.

47, Issue: 5, Pages: 1151 - 1160

Messner, W., Horowitz, R., Kao, W. -W., Boals, M., A new adaptive learning rule ,

IEEE Transactions on Automatic Control, Vol. 36, Issue: 2, Feb. 1991, Pages: 188 197

Miljanovic, D.M., Croft, E.A., A taxonomy for robot control , Proceedings of IEEE

International Conference on Robotics and Automation, 10-15 May 1999, Vol. 1, Pages:

176 181

Mudi, R.K., Pal, N.R., A robust self-tuning scheme for PI- and PD-type fuzzy

controllers , IEEE Transactions on Fuzzy Systems, Feb. 1999, Vol. 7, Issue: 1, Pages: 2

 16

Nagrath, I.J., Pahade Paras Shripal, Chand, A., Development and implementation of

intelligent control strategy for robotic manipulator , Proceedings of IEEE/IAS

International Conference on Industrial Automation and Control, 5-7 Jan. 1995, Pages:

215 220

Nedungadi, A., Wenzel, D.J., A novel approach to robot control using fuzzy logic ,

Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, 13-16

Oct. 1991, Vol.3, Pages: 1925 - 1930

Neo, S.S., Er, M.J., Adaptive fuzzy control of robot manipulators , Proceedings of the

4th IEEE Conference on Control Applications, 28-29 Sept. 1995, Pages: 724 729

Niemeyer,G., Slotine,J.-J.E., Performance in adaptive manipulator control ,

Proceedings of the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988,

Vol.2, Pages:1585 - 1591

201

Oh, B.J., Jamshidi, M., Seraji, H., Decentralized adaptive control [robot] , Proceedings

of IEEE International Conference on Robotics and Automation, 24-29 April 1988,

Vol.2, Pages: 1016 1021

Ortega, R., Spong, M.W., Adaptive motion control of rigid robots: A tutorial ,

Proceedings of the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988,

Vol.2, Pages: 1575 - 1584

Pagilla, P.R., Biao Yu, Adaptive control of a robot carrying a time-varying payload ,

Proceedings of the IEEE International Conference on Control Applications, 25-27 Sept.

2000, Pages: 68 73

Parra-Vega, V., Arimoto, S., Yun-Hui Liu, Hirzinger, G., Akella, P., Dynamic sliding

PID control for tracking of robot manipulators: Theory and experiments , IEEE

Transactions on Robotics and Automation, Dec. 2003, Vol. 19, Issue: 6, Pages: 967

976

Patino, H.D., Carelli, R., Kuchen, B.R., Neural networks for advanced control of robot

manipulators , IEEE Transactions on Neural Networks, Mar 2002, Vol. 13, Issue: 2,

Pages: 343-354

Paul, R.P., Modeling, Trajectory Calculation, and Servoing of a Computer Controlled

Arm , Stanford A.I. Lab, A.I. Memo 177, Stanford, CA, Nov. 1972.

Purwar, S., Kar, I.N., Jha, A.N., Adaptive control of robot manipulators using fuzzy

logic systems under actuator constraints , Proceedings of IEEE International Conference

on Fuzzy Systems, 25-29 July 2004, Vol. 3, Pages: 1449 1454

Sadegh, N., Horowitz, R., An exponentially stable adaptive control law for robot

manipulators , IEEE Transactions on Robotics and Automation, Aug. 1990, Vol. 6,

Issue: 4, Pages: 491 496

202

Sadegh, N., Horowitz, R., Stability analysis of an adaptive controller for robotic

manipulators , Proceedings of IEEE International Conference on Robotics and

Automation, Mar 1987, Vol.: 4, Pages: 1223 1229

Santibanez, V., Kelly, R., Llama, M.A., Fuzzy PD+ control for robot manipulators ,

Proceedings of IEEE International Conference on Robotics and Automation, 24-28

April 2000, Vol. 3, Pages: 2112 2117

Seraji, H., Adaptive independent joint control of manipulators: theory and experiment ,

Proceedings of IEEE International Conference on Robotics and Automation, 24-29

April 1988,Vol.2, Pages: 854 - 861

Sinha, A.S.C., Kayalar, S., Yurtseven, H.O., Nonlinear adaptive control of robot

manipulators , Proceedings of IEEE International Conference on Robotics and

Automation, 13-18 May 1990, Vol.3, Pages: 2084 2088

Slotine, J. -J., Robustness issues in robot control , Proceedings of IEEE International

Conference on Robotics and Automation, Mar 1985, Vol. 2, Pages: 656 661

Slotine, J.-J., On modeling and adaptation in robot control , Proceedings of IEEE

International Conference on Robotics and Automation, Apr 1986, Vol. 3 , Pages:1387

1392

Slotine, J.-J.E., Li Weiping, Adaptive manipulator control: A case study , IEEE

Transactions on Automatic Control, Nov. 1988,Vol. 33 , Issue: 11 , Pages:995 1003

Song, Y. D., Gao, W.B, Cheng, M., Study on path tracking control of robot

manipulators with unknown payload , Proceedings of IEEE International Conference on

Systems Engineering, 24-26 Aug. 1989, Pages: 321 324

203

Song, Y.D., Adaptive motion tracking control of robot manipulators: Non-regressor

based approach , Proceedings of IEEE International Conference on Robotics and

Automation, 8-13 May 1994, Vol.4, Pages: 3008 3013

Spong, M., Thorp, J., Kleinwaks, J., The control of robot manipulators with bounded

input , IEEE Transactions on Automatic Control, Jun 1986, Vol. 31, Issue: 6, Pages: 483

 490

Spong, M.W., and Vidyasagar, M., Robot Dynamics and Control , John Wiley & Sons,

Inc., New York, 1989.

Spong, M.W., Lewis, F., and Abdallah, C., Robot Control: Dynamics, Motion

Planning, and Analysis , IEEE Press, 1992.

Spong, M.W., Ortega, R., On adaptive inverse dynamics control of rigid robots , IEEE

Transactions on Automatic Control, Jan. 1990, Vol. 35, Issue: 1, Pages: 92 95

Su, C., Stepanenko, Y., Guaranteed stability based control of robot manipulators

incorporating motor dynamics , Proceedings of IEEE International Symposium on

Industrial Electronics, 25-27 May 1994, Pages: 345 350

Takegaki, M., Arimoto, S., An adaptive trajectory control of manipulators , The

International Journal of Control, Vol.102, 1981, Pages: 201-217

Tarokh, M., Decentralized digital adaptive control of robot motion , Proceedings of

IEEE International Conference on Robotics and Automation, 13-18 May 1990, Vol.2,

Pages: 1410 1415

Tarokh, M., Seraji, H., A control scheme for trajectory tracking of robot manipulators ,

Proceedings of IEEE International Conference on Robotics and Automation, 24-29

April 1988, Vol.2, Pages: 1192 1197

204

Tosunoglu, S., Tesar, D., State of the Art in adaptive control of robotic systems , IEEE

Transactions on Aerospace and Electronic Systems, Sept. 1988, Vol. 24, Issue: 5, Pages:

552 561

Trusca, M., Lazea, G., An adaptive PID learning controller for periodic robot motion ,

Proceedings of IEEE Conference on Control Applications, 23-25 June 2003, Vol. 1,

Pages: 686 689

Tsai, C., Wang, C., Lin, W., Robust fuzzy model-following control of robot

manipulators , IEEE Transactions on Fuzzy Systems, Aug. 2000, Vol. 8, Issue: 4, Pages:

462 469

Tso, S.K., Xu, Y., Shum, H.Y., Variable structure model reference adaptive control of

robot manipulators , Proceedings of IEEE International Conference on Robotics and

Automation, 9-11 April 1991, Vol.3, Pages: 2148 2153

Tzafestas, S., Papanikolopoulos, N.P., Incremental fuzzy expert PID control , IEEE

Transactions on Industrial Electronics, Oct. 1990, Vol. 37, Issue: 5, Pages: 365 371

Visioli, A., Tuning of PID controllers with fuzzy logic , IEE Proc.-Control Theory

Appl., Jan. 2001, Vol. 148, No. I, Pages: 1-8

Wei Sun, Yaonan Wang, An adaptive fuzzy control for robotic manipulators ,

Proceedings of Control, Automation, Robotics and Vision Conference, 6-9 Dec. 2004,

Vol. 3, Pages: 1952 1956

Wen, J. T., and Bayard, D. S., Robust control for robotic manipulators, Part I: Non-

adaptive case , Jet Propulsion Lab., Pasadena, CA, Tech. Rep. 347-87-203, 1987.

205

Wen, J.T., A unified perspective on robot control: the energy Lyapunov function

approach , Proceedings of the 29th IEEE Conference on Decision and Control, 5-7 Dec.

1990, Vol.3, Pages: 1968 1973

Wen, J. T., Bayard, David S., Robust control for robotic manipulators part 1:

Nonadaptive case , Technical Report 347-87-203, 1987, Jet Propulsion Laboratory,

Pasadena, CA

Whitcomb, L.L., Rizzi, A.A., Koditschek, D.E., Comparative experiments with a new

adaptive controller for robot arms , IEEE Transactions on Robotics and Automation,

Feb. 1993,Vol: 9, Issue: 1, Pages: 59 - 70

Ya Lei Sun, Meng Joo Er, Hybrid fuzzy control of robotics systems , IEEE

Transactions on Fuzzy Systems, Dec. 2004, Vol. 12, Issue 6, Pages: 755 765

Ya-Chen Hsu, Guanrong Chen, Sanchez, E., A fuzzy PD controller for multi-link robot

control stability analysis , Proceedings of IEEE International Conference on Robotics

and Automation, 20-25 April 1997, Vol. 2, Pages: 1412 1417

Yao Bin, Adaptive robust control of robot manipulators: Theory and comparative

experiments , The second CWC on ICIA, 1997, Pages: 442-447.

Yoo, B.K., Ham, W.C., Adaptive Control of Robot Manipulators using fuzzy

compensator-part 1 , Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, 17-21 Oct. 1999, Vol. 1, Pages: 35 40

Yoo, B.K., Ham, W.C., Adaptive Control of Robot Manipulators using fuzzy

compensator-part 2 , Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, 17-21 Oct. 1999, Vol. 1, Pages: 52 56

206

Yu Tang, Arteaga, M.A., Adaptive control of robot manipulators based on passivity ,

IEEE Transactions on Automatic Control, Sept. 1994,Vol. 39, Issue: 9, Pages: 1871

1875

Yu, H., Robust Combined adaptive and variable structure adaptive control of robot

manipulators , Robotica, 1998, Vol. 16, Pages: 623 650.

Yu, H., Lloyd, S., Adaptive control of robot manipulator including motor dynamics ,

Proceedings of the American Control Conference, 21-23 June 1995, Vol. 5, Pages: 3803

 3807

Yu, H., Lloyd, S., Variable structure adaptive control of robot manipulators , IEE

Proceedings on Control Theory and Applications, March 1997, Vol. 144, Issue:

2, Pages: 167 176

Yu, H., Seneviratne, L.D., Earles, S. W.E., Adaptive control of robot manipulators ,

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

July 7-10,1992, Pages: 293 298

Yuh, J., Nie, J., Lee, W.C., Adaptive control of robot manipulators using bound

estimation , Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, 13-17 Oct. 1998, Vol.2, Pages: 1126 1131

Zergeroglu, E., Dawson, D.M., de Queiroz, M.S., Krstic, M., On Global output

feedback tracking control of robot manipulators , Proceedings of the 39th IEEE

Conference on Decision and Control, 12-15 Dec. 2000, Vol. 5, Pages: 5073 5078

Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E., Global adaptive feedback

tracking control of robot manipulators , IEEE Transactions on Automatic Control, June

2000, Vol. 45, Issue: 6, Pages: 1203 1208

207

Zhang, H., Trott, G., Paul, R.P., Minimum delay PID control of interpolated joint

trajectories of robot manipulators , IEEE Transactions on Industrial Electronics, Oct.

1990, Vol. 37, Issue: 5, Pages: 358 - 364

Zhao, Z., Tomizuka, M., Isaka, S., Fuzzy gain scheduling of PID controllers , IEEE

Transactions on Systems, Man and Cybernetics, Oct 1993, Vol. 23, Issue: 5, Pages:

1392-1398

208

APPENDIX A

In this appendix are presented some sample codes used for simulation of different control
algorithms. All the codes except for Adaptive fuzzy controller are written in C. That for
adaptive fuzzy is written in MATLAB. We present sample codes in each of the three
categories, i.e., conventional, adaptive and fuzzy.

A.1 CDID CONTROL CODE

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each set point the control loop is executed 5 times. Strategy is CDID Control. */
/*--*/

/*SIMULATION*/
/* CRITICALLY DAMPED INVERSE DYNAMICS */

/*--*/
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857
/*---*/

/* TRAJECTORY IS QUINTIC */
/*---*/
void main()
{
int n=0,i=0,k=5,seg=1;
float tf,t=0.0,ts=0.003,tsp,g=9.8,acc1d,acc2d,v1cap=2.5,v2cap=2.5,a0,b0,
thf1,thf2,vel1=0.0,vel2=0.0,l1=0.26,a3,a4,a5,b3,b4,b5,v22,pos1o,pos2o,
 pos1=0.0,pos2=0.0,p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12,
 error1s[5000],error2s[5000],acc1=0.0,acc2=0.0,pos1d,pos2d,vel1d,vel2d,
ep1,ep2,ev1,ev2,ep1s=0.0,ep2s=0.0,torque1,torque2,izz1=0.09,izz1cap=0.09,con21,
con22,m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,izz2cap=0.09,e1dot,e2dot,
m11,m12,m21,m22,v11,v12,v21,g11,g21,m2cap=1.8,m1cap=1.8,vel1r,vel2r,
x2cap=0.14,x1cap=0.13,gamma=100.0,kv11=50.0,kv22=50.0,ki11=50.0,ki22=50.0,acc1r
,acc2r,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16;
FILE *er1,*er2;
clrscr();
/*---*/

/*GET INPUTS*/
/*---*/
tsp=ts/5.0;
highvideo();
textbackground(YELLOW);
window(10,5,80,25);

209

textcolor(CYAN);
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);
textcolor(CYAN);
cprintf("FINAL TIME ");
scanf("%f",&tf);
window(15,14,80,25);
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thf1);
window(15,15,80,25);
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);
/*---*/

/* INITIALISE */
/*---*/
thf1=(thf1*pi)/180.0;
thf2=(thf2*pi)/180.0;
if(thf1 < 0.0 || thf2 > 0.0)
{
window(15,18,80,25);
cprintf("GIVE CORRECT ANGLES ");
goto END;
}
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/
/*---*/
a0=0.0;
b0=0.0;
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
/*---*/

/*ACTUAL PARAMETERS*/
/*---*/
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
window(15,19,80,25);
cprintf("BUSY WITH CONTROL \n");

210

/*---*/
/*SERVO LOOP*/

/*---*/
for (;seg<=4;)
{
for (;t<=tf;)
{

/* DESIRED POSITION, VELOCITY, ACCELERATION*/
if(k==5)
{
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t);
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t);
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t);
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t);
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t);
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t);
t=t+ts;
k=0;
}
ep1=gamma*(pos1d-pos1);
ev1=gamma*(vel1d-vel1);
/*---*/

/*LINK 2 */
/*---*/
ep2=gamma*(pos2d-pos2);
ev2=gamma*(vel2d-vel2);
ep1s=ep1s+(pos1d-pos1);
ep2s=ep2s+(pos2d-pos2);
vel1r=vel1d+ep1;
vel2r=vel2d+ep2;
acc1r=acc1d+ev1;
acc2r=acc2d+ev2;
e1dot=vel1r-vel1;
e2dot=vel2r-vel2;
/*exact model*/
m11=izz1+izz2+(m2*(x2*x2+l1*l1))+(m1*x1*x1)+2.0*m2*l1*x2*cos(pos2);
m12=(m2*x2*x2)+izz2+(m2*l1*x2*cos(pos2));
m21=m2*x2*l1*cos(pos2)+izz2+(m2*x2*x2);
m22=(m2*x2*x2)+izz2;
v11=v1-(2.0*m2*l1*x2*sin(pos2))*vel2;
v12=(-m2*l1*x2*sin(pos2))*vel2;
v21=m2*l1*x2*sin(pos2)*vel1;
v22=v2;
g11=g*(m1*x1+m2*l1)*cos(pos1)+(m2*x2*g*cos(pos1+pos2));
g21=g*(m2*x2*cos(pos1+pos2));

211

/*---*/
/*Calculate torques due to known values*/

/*---*/
torque1=m11*acc1r+m12*acc2r+v11*vel1r+v12*vel2r+g11;
torque2=m21*acc1r+m22*acc2r+v21*vel1r+v22*vel2r+g21;
/*---*/

/*Total torque to be applied*/
/*---*/
torque1=torque1+kv11*e1dot+ki11*ep1s;
torque2=torque2+kv22*e2dot+ki22*ep2s;
/*---*/

/* VALUES FOR LINK 1 */
/*---*/
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+

 p6*cos(pos1)+(p7*cos(pos1+pos2));
con11= (p1+p2*cos(pos2)+0.1498);
con12= (p3+0.5*p2*cos(pos2));
/*---*/

/*VALUES FOR LINK 2*/
/*---*/
c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2);
con21= (0.5*p2*cos(pos2)+p3);
con22= (p3+0.1498);
/*---*/

/*STORE VALUES*/
/*---*/
if(k==4)
{
error1s[n]=ep1*180.0/(pi);
error2s[n]=ep2*180.0/(pi);
n=n+1;
ep1s=0.0;
ep2s=0.0;
}
/*---*/

/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/
/*---*/
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22);
acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21);
vel1=acc1*tsp+vel1;
vel2=acc2*tsp+vel2;
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp;
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp;
k=k+1;
}
seg=seg+1;

212

/*---*/
/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND

SEGMENT*/
/*---*/
if (seg==2 || seg==4)
{
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n;
p2=2.0*m2n*l1*x2n;
p3=m2n*x2n*x2n+izz2n;
p4=v1;
p5=v2;
p6=g*(m1n*x1n+m2n*l1);
p7=m2n*x2n*g;
t=0.0;
a0=thf1;
b0=thf2;
a3=-10.0*(thf1)/(tf*tf*tf);
a4=15.0*(thf1)/(tf*tf*tf*tf);
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=-10.0*(thf2)/(tf*tf*tf);
b4=15.0*(thf2)/(tf*tf*tf*tf);
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf);
k=5;
}
if (seg==3)
{
t=0.0;
a0=0.0;
b0=0.0;
/*thf1=0.0;
thf2=0.0;*/
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;

213

k=5;
}
}
/*---*/

/*OPEN FILES*/
/*---*/
er1=fopen("scerror1.dat","w+");
er2=fopen("scerror2.dat","w+");
/*---*/

/*WRITE FILES*/
/*---*/
for(i=0;i<=(n-1);i++)
{
fprintf(er1,"%f\n",error1s[i]/gamma);
fprintf(er2,"%f\n",error2s[i]/gamma);
}
fcloseall();
END:;
/*---*/
}

214

A.2. ACDID CONTROL CODE

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each setpoint the control loop is executed 5 times.kd1=100 and kd2=50. */
/*---*/

/*SIMULATION ACDID CONTROL*/
/* POSITION + VELOCITY FEEDBACK */

/*---*/
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857
/*---*/

/* TRAJECTORY IS QUINTIC */
/*---*/
void main()
{
int n=0,i=0,k=5,seg=1;
float tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambda1=100.0,lambda2=100.0,g=9.8,
 vel1=0.0,vel2=0.0,l1=0.26,thf1,thf2,a0,b0,a3,a4,a5,b3,b4,b5,
 pos1,pos2,p1cap,p2cap,p3cap,p4cap,p5cap,p6cap,p7cap,
 p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12,con21,con22,
 error1s[5000],error2s[5000],w11,w12,w13,w14,w16,w17,pos1o,pos2o,
 gama1=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,gama6=100.0,
 pos1d,pos2d,vel1d,vel2d,acc1d,acc2d,vel1r,vel2r,acc1r,acc2r,gama7=100.0,
 error1,error2,e1,e2,torque1,torque2,w22,w23,w25,w27,p1capdot=0.0,p2capdot=0.0,
 p3capdot=0.0,p4capdot=0.0,p5capdot=0.0,p6capdot=0.0,p7capdot=0.0,izz1=0.09,
 m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,acc1=0.0,acc2=0.0,m2n=3.0,
 m1n=3.0, x1n=0.15,x2n=0.16,izz1n=1.5,izz2n=0.09,
 x1cap=0.11,x2cap=0.12,v1cap=2.0,v2cap=2.0,izz1cap=0.05,izz2cap=0.05,
 m1cap=1.0,m2cap=1.0;
FILE *er1,*er2;
clrscr();
/*---*/

/*GET INPUTS*/
/*---*/
tsp=ts/5.0;
highvideo();
textbackground(YELLOW);
window(10,5,80,25);
textcolor(CYAN);
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);
textcolor(CYAN);

215

cprintf("FINAL TIME ");
scanf("%f",&tf);
/*window(15,11,80,25);
textcolor(GREEN);
cprintf("FIRST ELEMENT OF GAIN MATRIX ");
scanf("%f", &kd1);
window(15,12,80,25);
cprintf("SECOND ELEMENT OF GAIN MATRIX ");
scanf("%f", &kd2);*/
window(15,14,80,25);
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thf1);
window(15,15,80,25);
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);

/*---*/
/* INITIALISE */

/*---*/
thf1=(thf1*pi)/180.0;
thf2=(thf2*pi)/180.0;
if(thf1 < 0.0 || thf2 > 0.0)
{
window(15,18,80,25);
cprintf("GIVE CORRECT ANGLES ");
goto END;
}
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/
/*---*/
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
pos1=0.0;
pos1o=0.0;
pos2=0.0;
pos2o=0.0;
a0=pos1o;
b0=pos2o;
/*---*/

/*ESTIMATE OF PARAMETERS */
/*---*/
p1cap=izz1cap+izz2cap+m2cap*(x2cap*x2cap+l1*l1)+m1cap*x1cap*x1cap;

216

p2cap=2.0*m2cap*l1*x2cap;
p3cap=m2cap*x2cap*x2cap+izz2cap;
p4cap=v1cap;
p5cap=v2cap;
p6cap=g*(m1cap*x1cap+m2cap*l1);
p7cap=m2cap*x2cap*g;
/*---*/

/*ACTUAL PARAMETERS*/
/*---*/
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
window(15,19,80,25);
cprintf("BUSY WITH CONTROL \n");
/*---*/

/*SERVO LOOP*/
/*---*/
for (;seg<=4;) /* for two segment trajectory*/
{
for (;t<=tf;)
{

/* DESIRED POSITION, VELOCITY, ACCELERATION*/
if(k==5)
{
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t);
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t);
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t);
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t);
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t);
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t);
t=t+ts;
k=0;
}
error1=pos1d-pos1;
vel1r=(vel1d + lambda1*error1);
acc1r=(acc1d - lambda1*(vel1-vel1d));
e1=(vel1-vel1r);
/*---*/

/*LINK 2 */
/*---*/
error2=pos2d-pos2;
vel2r=(vel2d + lambda2*error2);

217

acc2r=(acc2d - lambda2*(vel2-vel2d));
e2=(vel2-vel2r);
/*---*/

/*TORQUE VALUES FOR LINK 1 */
/*---*/
torque1=(p1cap+p2cap*cos(pos2))*acc1r+(p3cap+0.5*p2cap*cos(pos2))*acc2r+

(p4cap-p2cap*sin(pos2)*vel2)*vel1r-0.5*p2cap*sin(pos2)*vel2*vel2r+
 p6cap*cos(pos1)+(p7cap*cos(pos1+pos2))+(0.1498*acc1r)-kd1*e1;

c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+
 p6*cos(pos1)+(p7*cos(pos1+pos2));

con11= (p1+p2*cos(pos2)+0.1498);
con12= (p3+0.5*p2*cos(pos2));
/*---*/

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/
/*---*/
torque2=(0.5*p2cap*cos(pos2)+p3cap)*acc1r+p3cap*acc2r+(0.1498*acc2r)+
 0.5*p2cap*sin(pos2)*vel1*vel1r+p5cap*vel2r+p7cap*cos(pos1+pos2)-kd2*e2;
c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2);
con21= (0.5*p2*cos(pos2)+p3);
con22= (p3+0.1498);
/*---*/

/*STORE VALUES*/
/*---*/
if(k==4)
{
error1s[n]=error1*180.0/pi;
error2s[n]=error2*180.0/pi;
n=n+1;
}
/*---*/

/* W MATRIX */
/*---*/
w11=acc1r;
w12=(cos(pos2))*(acc1r+0.5*acc2r)-(0.5*sin(pos2)*vel2*(vel1r+vel2r))-
0.5*sin(pos2)*vel1*vel2r;
w13=acc2r;
w14=vel1r;
w16=cos(pos1);
w17=cos(pos1+pos2);
w22=0.5*(cos(pos2)*vel1r+sin(pos2)*vel1*vel1r);
w23=acc1r+acc2r;
w25=vel2r;
w27=cos(pos1+pos2);
/*---*/

/*PCAPDOT*/
/*---*/

218

p1capdot= -1.0*(gama1*w11*e1);
p2capdot= -1.0*((gama2*w12*e1)+(gama2*w22*e2));
p3capdot= -1.0*((gama3*w13*e1)+(gama3*w23*e2));
p4capdot= -1.0*(gama4*w14*e1);
p5capdot= -1.0*(gama5*w25*e2);
p6capdot= -1.0*(gama6*w16*e1);
p7capdot= -1.0*((gama7*w17*e1)+(gama7*w27*e2));
/*---*/

/*UPDATE THE ESTIMATED VALUES*/
/*---*/
p1cap=(tsp*p1capdot)+p1cap;
p2cap=(tsp*p2capdot)+p2cap;
p3cap=(tsp*p3capdot)+p3cap;
p4cap=(tsp*p4capdot)+p4cap;
p5cap=(tsp*p5capdot)+p5cap;
p6cap=(tsp*p6capdot)+p6cap;
p7cap=(tsp*p7capdot)+p7cap;

/*---*/
/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/

/*---*/
acc2=(((torque1-c1)*con21)-((torque2-c2)*con11))/((con12*con21)-(con11*con22));
acc1=(((torque1-c1)*con22)-((torque2-c2)*con12))/((con11*con22)-(con12*con21));
vel1=acc1*tsp+vel1;
vel2=acc2*tsp+vel2;
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp;
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp;
k=k+1;
}
seg=seg+1;
if (seg==2 || seg==4)
{
t=0.0;
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n;
p2=2.0*m2n*l1*x2n;
p3=m2n*x2n*x2n+izz2n;
p4=v1;
p5=v2;
p6=g*(m1n*x1n+m2n*l1);
p7=m2n*x2n*g;
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

/*---*/
a0=thf1;
b0=thf2;

219

a3=-10.0*(thf1)/(tf*tf*tf);
a4=15.0*(thf1)/(tf*tf*tf*tf);
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=-10.0*(thf2)/(tf*tf*tf);
b4=15.0*(thf2)/(tf*tf*tf*tf);
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf);
k=5;
}
if (seg==3)
{
t=0.0;
k=5;
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
a0=0.0;
b0=0.0;
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
}
}
/*---*/

/*OPEN FILES*/
/*---*/
er1=fopen("scerror1.dat","w+");
er2=fopen("scerror2.dat","w+");
/*---*/

/*WRITE FILES*/
/*---*/
for(i=0;i<=(n-1);i++)
{
fprintf(er1,"%f\n",error1s[i]);
fprintf(er2,"%f\n",error2s[i]);
}
fcloseall();
END:;
/*---*/
}

220

A.3 ACDID+FUZZY CONTROL CODE

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each setpoint the control loop is executed 5 times.*/
/*---*/

/* ACDID + FUZZY */
/*SIMULATION*/

/* POSITION + VELOCITY FEEDBACK */
/*---*/
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857
/*---*/

/* TRAJECTORY IS QUINTIC */
/*---*/
void main()
{
int n=0,i=0,k=5,row,row2,col,col2,seg=1;
float tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambda1=100.0,lambda2=100.0,g=9.8,
 vel1=0.0,vel2=0.0,l1=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,a0,b0,
 pos1,pos2,p1cap,p2cap,p3cap,p4cap,p5cap,p6cap,p7cap,izz2cap=0.05,
 p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,con11,con12,con21,con22,
 error1s[5000],error2s[5000],w11,w12,w13,w14,w16,w17,pos1o,pos2o,
 gama1=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,
 gama6=100.0, pos1d,pos2d,vel1d,vel2d,acc1d,acc2d,vel1r,vel2r,acc1r,acc2r,
 gama7=100.0,error1,error2,e1,e2,torque1,torque2,w22,w23,w25,
 w27,p1capdot,p2capdot,p3capdot,p4capdot,p5capdot,p6capdot,
 p7capdot,izz1cap=0.05,izz1=0.09,
 m1cap=1.0,m1=2.0,m2cap=1.0,m2=2.0,v1cap=2.0,v1=2.5,v2cap=2.0,v2=2.5,
 x1cap=0.11,x1=0.13,x2cap=0.12,x2=0.14,acc1=0.0,acc2=0.0,nep,nev,dnc,
 ep1,ep2,ev1,ev2,count1,count2,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,
 x1n=0.15,x2n=0.16;
FILE *er1,*er2;
/*---*/

/*FUZZY LOOK UP TABLE*/
/*---*/
float lookt[13] [13]=

 {
 {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},
 {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},
 {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},
 {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},
 { 0.0, 0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},

221

 { 1.0, 1.0, 0.0, 0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},
 { 1.3, 1.2, 1.0, 0.8, 0.6, 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},
 { 2.0, 2.0, 1.9, 1.8, 1.8, 1.8, 1.8, 1.8, 1.5, 0.0, -0.3, -1.0, -0.8},
 { 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
 { 2.0, 2.1, 2.3, 2.5, 2.5, 2.5, 2.6, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
 { 2.7, 2.7, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.6, 3.8, 3.8, 3.9, 3.9},
 { 3.6, 3.3, 3.7, 4.0, 4.1, 4.3, 4.3, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7},
 { 4.4, 4.4, 4.3, 4.8, 5.0, 5.0, 5.1, 5.2, 5.3, 5.4, 5.6, 5.6, 5.6}
 };

clrscr();
/*---*/

/*GET INPUTS*/
/*---*/
tsp=ts/5.0;
highvideo();
textbackground(YELLOW);
window(10,5,80,25);
textcolor(CYAN);
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);
textcolor(CYAN);
cprintf("FINAL TIME ");
scanf("%f",&tf);
/*window(15,11,80,25);
textcolor(GREEN);
cprintf("FIRST ELEMENT OF GAIN MATRIX ");
scanf("%f", &kd1);
window(15,12,80,25);
cprintf("SECOND ELEMENT OF GAIN MATRIX ");
scanf("%f", &kd2); */
window(15,14,80,25);
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thf1);
window(15,15,80,25);
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);
/*---*/

/* INITIALISE */
/*---*/
thf1=(thf1*pi)/180.0;
thf2=(thf2*pi)/180.0;
if(thf1 < 0.0 || thf2 > 0.0)
{
window(15,18,80,25);
cprintf("GIVE CORRECT ANGLES ");
goto END;

222

}
a0=0.0;
b0=0.0;
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/
/*---*/
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
pos1=0.0;
pos2=0.0;
nep=108.0/pi; /*Normalisation factor for position error*/
nev=10.8/(pi); /*Normalisation factor for error dot*/
dnc=255.0/5.6; /*Denormalisation factor for voltage*/
/*---*/

/*ESTIMATE OF PARAMETERS */
/*---*/
p1cap=izz1cap+izz2cap+m2cap*(x2cap*x2cap+l1*l1)+m1cap*x1cap*x1cap;
p2cap=2.0*m2cap*l1*x2cap;
p3cap=m2cap*x2cap*x2cap+izz2cap;
p4cap=v1cap;
p5cap=v2cap;
p6cap=g*(m1cap*x1cap+m2cap*l1);
p7cap=m2cap*x2cap*g;
/*---*/

/*ACTUAL PARAMETERS*/
/*---*/
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
window(15,19,80,25);
cprintf("BUSY WITH CONTROL \n");
/*---*/

/*SERVO LOOP*/
/*---*/
for (;seg<=4;)
{
for (;t<=tf;)
{

223

/* DESIRED POSITION,VELOCITY,ACCELERATION*/
if(k==5)
{
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t);
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t);
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t);
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t);
acc1d=(6.0*a3*t)+(12.0*a4*t*t)+(20.0*a5*t*t*t);
acc2d=(6.0*b3*t)+(12.0*b4*t*t)+(20.0*b5*t*t*t);
t=t+ts;
k=0;
}
error1=pos1d-pos1;
vel1r=(vel1d + lambda1*error1);
acc1r=(acc1d - lambda1*(vel1-vel1d));
e1=(vel1-vel1r);

/*---*/
/*LINK 2 */

/*---*/
error2=pos2d-pos2;
vel2r=(vel2d + lambda2*error2);
acc2r=(acc2d - lambda2*(vel2-vel2d));
e2=(vel2-vel2r);
ep1=(pos1d-pos1)*nep; /*Normalised errors*/
ev1=(vel1d-vel1)*nev;
ep2=(pos2d-pos2)*nep;
ev2=(vel2d-vel2)*nev;
/*---*/

/*LABEL THE ERROR*/
/*---*/
if (ep1 <= 4.8){row=0;}
if (-4.8 < ep1 && ep1 <= -3.6){row=1;}
if (-3.6 < ep1 && ep1 <= -2.4){row=2;}
if (-2.4 < ep1 && ep1 <= -1.2){row=3;}
if (-1.2 < ep1 && ep1 <= -0.6){row=4;}
if (-0.6 < ep1 && ep1 <= -0.1){row=5;}
if (-0.1 < ep1 && ep1 <= 0.1){row=6;}
if (0.1 < ep1 && ep1 <= 0.6){row=7;}
if (0.6 < ep1 && ep1 <= 1.2){row=8;}
if (1.2 < ep1 && ep1 <= 2.4){row=9;}
if (2.4 < ep1 && ep1 <= 3.6){row=10;}
if (3.6 < ep1 && ep1 <= 4.8){row=11;}
if (4.8 < ep1){row=12;}

/*SECOND LINK*/
if (ep2 <= 4.8){row2=0;}

224

if (-4.8 < ep2 && ep2 <= -3.6){row2=1;}
if (-3.6 < ep2 && ep2 <= -2.4){row2=2;}
if (-2.4 < ep2 && ep2 <= -1.2){row2=3;}
if (-1.2 < ep2 && ep2 <= -0.6){row2=4;}
if (-0.6 < ep2 && ep2 <= -0.1){row2=5;}
if (-0.1 < ep2 && ep2 <= 0.1){row2=6;}
if (0.1 < ep2 && ep2 <= 0.6){row2=7;}
if (0.6 < ep2 && ep2 <= 1.2){row2=8;}
if (1.2 < ep2 && ep2 <= 2.4){row2=9;}
if (2.4 < ep2 && ep2 <= 3.6){row2=10;}
if (3.6 < ep2 && ep2 <= 4.8){row2=11;}
if (4.8 < ep2){row2=12;}
/*---*/

/*LABEL EDOT*/
/*---*/
if (ev1 <= 4.8){col=0;}
if (-4.8 < ev1 && ev1 <= -3.6){col=1;}
if (-3.6 < ev1 && ev1 <= -2.4){col=2;}
if (-2.4 < ev1 && ev1 <= -1.2){col=3;}
if (-1.2 < ev1 && ev1 <= -0.6){col=4;}
if (-0.6 < ev1 && ev1 <= -0.1){col=5;}
if (-0.1 < ev1 && ev1 <= 0.1){col=6;}
if (0.1 < ev1 && ev1 <= 0.6){col=7;}
if (0.6 < ev1 && ev1 <= 1.2){col=8;}
if (1.2 < ev1 && ev1 <= 2.4){col=9;}
if (2.4 < ev1 && ev1 <= 3.6){col=10;}
if (3.6 < ev1 && ev1 <= 4.8){col=11;}
if (4.8 < ev1){col=12;}

/*SECOND LINK*/
if (ev2 <= 4.8){col2=0;}
if (-4.8 < ev2 && ev2 <= -3.6){col2=1;}
if (-3.6 < ev2 && ev2 <= -2.4){col2=2;}
if (-2.4 < ev2 && ev2 <= -1.2){col2=3;}
if (-1.2 < ev2 && ev2 <= -0.6){col2=4;}
if (-0.6 < ev2 && ev2 <= -0.1){col2=5;}
if (-0.1 < ev2 && ev2 <= 0.1){col2=6;}
if (0.1 < ev2 && ev2 <= 0.6){col2=7;}
if (0.6 < ev2 && ev2 <= 1.2){col2=8;}
if (1.2 < ev2 && ev2 <= 2.4){col2=9;}
if (2.4 < ev2 && ev2 <= 3.6){col2=10;}
if (3.6 < ev2 && ev2 <= 4.8){col2=11;}
if (4.8 < ev2){col2=12;}
count1=(lookt[row] [col])*dnc;
count2=(lookt[row2] [col2])*dnc;

225

/*---*/
/*TORQUE VALUES FOR LINK 1 */

/*---*/
torque1=(((((24.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0;
/*--*/

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/
/*---*/
torque2=(((((24.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0;
/*---*/

/*TORQUE VALUES FOR LINK 1 */
/*---*/
torque1=(p1cap+p2cap*cos(pos2))*acc1r+(p3cap+0.5*p2cap*cos(pos2))*acc2r+

(p4cap-p2cap*sin(pos2)*vel2)*vel1r-0.5*p2cap*sin(pos2)*vel2*vel2r+
 p6cap*cos(pos1)+(p7cap*cos(pos1+pos2))+(0.1498*acc1r)-kd1*e1+torque1;

/*if(torque1 > (80.0*10.5*0.066))
{torque1=(80.0*10.5*0.066);}
if(torque1 < (-80.0*10.5*0.066))
{torque1=-(80.0*10.5*0.066);}*/
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+

 p6*cos(pos1)+(p7*cos(pos1+pos2));
con11= (p1+p2*cos(pos2)+0.1498);
con12= (p3+0.5*p2*cos(pos2));
/*---*/

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/
/*---*/
torque2=(0.5*p2cap*cos(pos2)+p3cap)*acc1r+p3cap*acc2r+(0.1498*acc2r)+
 0.5*p2cap*sin(pos2)*vel1*vel1r+p5cap*vel2r+p7cap*cos(pos1+pos2)-
kd2*e2+torque2;
c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2);
con21= (0.5*p2*cos(pos2)+p3);
con22= (p3+0.1498);
/*---*/

/*STORE VALUES*/
/*---*/
if(k==4)
{
error1s[n]=error1*180.0/pi;
error2s[n]=error2*180.0/pi;
n=n+1;
}
/*---*/

/* W MATRIX */
/*---*/
w11=acc1r;
w12=(cos(pos2))*(acc1r+0.5*acc2r)-(0.5*sin(pos2)*vel2*(vel1r+vel2r))-
0.5*sin(pos2)*vel1*vel2r;

226

w13=acc2r;
w14=vel1r;
w16=cos(pos1);
w17=cos(pos1+pos2);
w22=0.5*(cos(pos2)*vel1r+sin(pos2)*vel1*vel1r);
w23=acc1r+acc2r;
w25=vel2r;
w27=cos(pos1+pos2);
/*---*/

/*PCAPDOT*/
/*---*/
p1capdot= -1.0*(gama1*w11*e1);
p2capdot= -1.0*((gama2*w12*e1)+(gama2*w22*e2));
p3capdot= -1.0*((gama3*w13*e1)+(gama3*w23*e2));
p4capdot= -1.0*(gama4*w14*e1);
p5capdot= -1.0*(gama5*w25*e2);
p6capdot= -1.0*(gama6*w16*e1);
p7capdot= -1.0*((gama7*w17*e1)+(gama7*w27*e2));
/*---*/

/*UPDATE THE ESTIMATED VALUES*/
/*---*/
p1cap=(tsp*p1capdot)+p1cap;
p2cap=(tsp*p2capdot)+p2cap;
p3cap=(tsp*p3capdot)+p3cap;
p4cap=(tsp*p4capdot)+p4cap;
p5cap=(tsp*p5capdot)+p5cap;
p6cap=(tsp*p6capdot)+p6cap;
p7cap=(tsp*p7capdot)+p7cap;
/*---*/

/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/
/*---*/
acc2=(((torque1-c1)*con21)-((torque2-c2)*con11))/((con12*con21)-(con11*con22));
acc1=(((torque1-c1)*con22)-((torque2-c2)*con12))/((con11*con22)-(con12*con21));
vel1=acc1*tsp+vel1;
vel2=acc2*tsp+vel2;
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp;
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp;
k=k+1;
}
seg=seg+1;
t=0.0;
pos1o=pos1;
pos2o=pos2;

227

/*---*/
/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND

SEGMENT*/
/*---*/

if(seg==2 || seg==4)
{
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n;
p2=2.0*m2n*l1*x2n;
p3=m2n*x2n*x2n+izz2n;
p4=v1;
p5=v2;
p6=g*(m1n*x1n+m2n*l1);
p7=m2n*x2n*g;
a0=thf1;
b0=thf2;
a3=-10.0*(thf1)/(tf*tf*tf);
a4=15.0*(thf1)/(tf*tf*tf*tf);
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=-10.0*(thf2)/(tf*tf*tf);
b4=15.0*(thf2)/(tf*tf*tf*tf);
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf);
k=5;
}
if(seg==3)
{
t=0.0;
a0=0.0;
b0=0.0;
/*thf1=0.0;
thf2=0.0; */
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
k=5;
}

228

}
/*---*/

/*OPEN FILES*/
/*---*/
er1=fopen("scerror1.dat","w+");
er2=fopen("scerror2.dat","w+");
/*---*/

/*WRITE FILES*/
/*---*/
for(i=0;i<=(n-1);i++)
{
fprintf(er1,"%f\n",error1s[i]);
fprintf(er2,"%f\n",error2s[i]);
}
fcloseall();
END:;
/*---*/
}

229

A.4 SOC FUZZY CONTROL CODE

/* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each setpoint the control loop is executed 5 times.*/
/*---*/

/*SIMULATION*/
/* SOC FUZZY */

/*---*/
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857
/*---*/

/* TRAJECTORY IS QUINTIC */
/*---*/
void main()
{
/*---*/

/*FUZZY LOOK UP TABLE*/
/*---*/
float lookp[13] [13]={

 {-6, -6, -6, -6, -6, -6, -6, -5, -4, -3, -2, -1, 0},
 {-6, -6, -6, -6, -5, -4, -4, -4, -3, -2, -1, 0, 0},
 {-6, -6, -6, -5, -4, -3, -3, -3, -2, -1, 0, 0, 1},
 {-6, -6, -5, -4, -3, -2, -2, -2, -1, 0, 0, 1, 2},
 {-6, -5, -4, -3, -2, -1, -1, -1, 0, 0, 1, 2, 3},
 {-5, -4, -3, -2, -1, -1, 0, 0, 0, 1, 2, 3, 4},
 {-5, -4, -3, -2, -1, 0, 0, 0, 1, 2, 3, 4, 5},
 {-3, -2, -1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5},
 {-2, -1, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 6},
 {-1, 0, 0, 0, 1, 2, 2, 2, 3, 4, 5, 6, 6},
 { 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 6, 6, 6},
 { 0, 0, 1, 2, 3, 4, 4, 4, 5, 6, 6, 6, 6},
 { 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6}
 };

float lookt[13] [13]={
 {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},
 {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},
 {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},
 {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},
 { 0.0, 0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},
 { 1.0, 1.0, 0.0, 0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},
 { 1.3, 1.2, 1.0, 0.8, 0.6, 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},
 { 2.0, 2.0, 1.9, 1.8, 1.8, 1.8, 1.8, 1.8, 1.5, 0.0, -0.3, -1.0, -0.8},

230

 { 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
 { 2.0, 2.1, 2.3, 2.5, 2.5, 2.5, 2.6, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
 { 2.7, 2.7, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.6, 3.8, 3.8, 3.9, 3.9},
 { 3.6, 3.3, 3.7, 4.0, 4.1, 4.3, 4.3, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7},
 { 4.4, 4.4, 4.3, 4.8, 5.0, 5.0, 5.1, 5.2, 5.3, 5.4, 5.6, 5.6, 5.6}
 };

/*float lookt[13] [13]={
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0}
 }; */

float lookt2[13] [13]={
 {-5.6, -5.4, -5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},
 {-4.7, -4.5, -4.4, -4.3, -4.2, -4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},
 {-3.7, -3.6, -3.5, -3.2, -3.0, -3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},
 {-2.0, -2.0, -1.9, -1.9, -1.8, -1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},
 { 0.0, 0.0, -0.8, -1.0, -1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},
 { 1.0, 1.0, 0.0, 0.0, -0.5, -0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},
 { 1.3, 1.2, 1.0, 0.8, 0.6, 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},
 { 2.0, 2.0, 1.9, 1.8, 1.8, 1.8, 1.8, 1.8, 1.5, 0.0, -0.3, -1.0, -0.8},
 { 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
 { 2.0, 2.1, 2.3, 2.5, 2.5, 2.5, 2.6, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
 { 2.7, 2.7, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.6, 3.8, 3.8, 3.9, 3.9},
 { 3.6, 3.3, 3.7, 4.0, 4.1, 4.3, 4.3, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7},
 { 4.4, 4.4, 4.3, 4.8, 5.0, 5.0, 5.1, 5.2, 5.3, 5.4, 5.6, 5.6, 5.6}
 };

/*float lookt2[13] [13]={
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},

231

 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0}
 }; */

int n=0,i=0,j=0,k=5,row=0,row2=0,col=0,col2=0,rowp,row2p,colp,col2p,seg=1;
float tf,t=0.0,ts=0.003,tsp,g=9.8,a0=0.0,b0=0.0,pos1o,pos2o,vel1=0.0,vel2=0.0,
 l1=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,pos1,pos2,p1,p2,p3,p4,p5,p6,p7,
 izz2=0.09,c1,c2,con11,con12,con21,con22,error1s[5000],error2s[5000],
 acc1,acc2,pos1d,pos2d,vel1d,vel2d,ep1=0.0,ep2=0.0,ev1=0.0,ev2=0.0,
 izz1=0.09,count1,count2,m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,
 nep,nev,dnc,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16,ep1s=0.0,
 ep2s=0.0,ki1=0.0,ki2=0.0, torque1,torque2,;
FILE *er1,*er2;
clrscr();
/*---*/

/*GET INPUTS*/
/*---*/
tsp=ts/5.0;
highvideo();
textbackground(YELLOW);
window(10,5,80,25);
textcolor(CYAN);
cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);
textcolor(CYAN);
cprintf("FINAL TIME ");
scanf("%f",&tf);
window(15,14,80,25);
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thf1);
window(15,15,80,25);
cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);
/*---*/

/* INITIALISE */
/*---*/
thf1=(thf1*pi)/180.0;
thf2=(thf2*pi)/180.0;
if(thf1 < 0.0 || thf2 > 0.0)
{
window(15,18,80,25);
cprintf("GIVE CORRECT ANGLES ");
goto END;

232

}
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/
/*---*/
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
pos1=0.0;
pos2=0.0;
nep=1080.0/(pi); /*Normalisation factor for position error*/
nev=1.0*10.8/pi; /*Normalisation factor for error dot*/
dnc=255.0/6.0; /*Denormalisation factor for voltage*/
/*---*/

/*ACTUAL PARAMETERS*/
/*---*/
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
window(15,19,80,25);
cprintf("BUSY WITH CONTROL \n");
a0=0.0;
b0=0.0;
/*---*/

/*SERVO LOOP*/
/*---*/
for (;seg<=4;)
{
for (;t<=tf;)
{

/* DESIRED POSITION,VELOCITY,ACCELERATION*/
if(k==5)
{
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t);
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t);
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t);
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t);
t=t+ts;
k=0;
}

233

ep1=(pos1d-pos1)*nep;
ep2=(pos2d-pos2)*nep;
ev1=(vel1d-vel1)*nev;
ev2=(vel2d-vel2)*nev;
/*---*/

/*LABEL THE ERROR*/
/*---*/
if (ep1 <= -4.8){rowp=0;}
if (-4.8 < ep1 && ep1 <= -3.6){rowp=1;}
if (-3.6 < ep1 && ep1 <= -2.4){rowp=2;}
if (-2.4 < ep1 && ep1 <= -1.2){rowp=3;}
if (-1.2 < ep1 && ep1 <= -0.6){rowp=4;}
if (-0.6 < ep1 && ep1 <= -0.1){rowp=5;}
if (-0.1 < ep1 && ep1 <= 0.1){rowp=6;}
if (0.1 < ep1 && ep1 <= 0.6){rowp=7;}
if (0.6 < ep1 && ep1 <= 1.2){rowp=8;}
if (1.2 < ep1 && ep1 <= 2.4){rowp=9;}
if (2.4 < ep1 && ep1 <= 3.6){rowp=10;}
if (3.6 < ep1 && ep1 <= 4.8){rowp=11;}
if (4.8 < ep1){rowp=12;}

/*SECOND LINK*/
if (ep2 <= -4.8){row2p=0;}
if (-4.8 < ep2 && ep2 <= -3.6){row2p=1;}
if (-3.6 < ep2 && ep2 <= -2.4){row2p=2;}
if (-2.4 < ep2 && ep2 <= -1.2){row2p=3;}
if (-1.2 < ep2 && ep2 <= -0.6){row2p=4;}
if (-0.6 < ep2 && ep2 <= -0.1){row2p=5;}
if (-0.1 < ep2 && ep2 <= 0.1){row2p=6;}
if (0.1 < ep2 && ep2 <= 0.6){row2p=7;}
if (0.6 < ep2 && ep2 <= 1.2){row2p=8;}
if (1.2 < ep2 && ep2 <= 2.4){row2p=9;}
if (2.4 < ep2 && ep2 <= 3.6){row2p=10;}
if (3.6 < ep2 && ep2 <= 4.8){row2p=11;}
if (4.8 < ep2){row2p=12;}
/*---*/

/*LABEL EDOT*/
/*---*/
if (ev1 <= -4.8){colp=0;}
if (-4.8 < ev1 && ev1 <= -3.6){colp=1;}
if (-3.6 < ev1 && ev1 <= -2.4){colp=2;}
if (-2.4 < ev1 && ev1 <= -1.2){colp=3;}
if (-1.2 < ev1 && ev1 <= -0.6){colp=4;}
if (-0.6 < ev1 && ev1 <= -0.1){colp=5;}
if (-0.1 < ev1 && ev1 <= 0.1){colp=6;}
if (0.1 < ev1 && ev1 <= 0.6){colp=7;}
if (0.6 < ev1 && ev1 <= 1.2){colp=8;}

234

if (1.2 < ev1 && ev1 <= 2.4){colp=9;}
if (2.4 < ev1 && ev1 <= 3.6){colp=10;}
if (3.6 < ev1 && ev1 <= 4.8){colp=11;}
if (4.8 < ev1){colp=12;}

/*SECOND LINK*/
if (ev2 <= -4.8){col2p=0;}
if (-4.8 < ev2 && ev2 <= -3.6){col2p=1;}
if (-3.6 < ev2 && ev2 <= -2.4){col2p=2;}
if (-2.4 < ev2 && ev2 <= -1.2){col2p=3;}
if (-1.2 < ev2 && ev2 <= -0.6){col2p=4;}
if (-0.6 < ev2 && ev2 <= -0.1){col2p=5;}
if (-0.1 < ev2 && ev2 <= 0.1){col2p=6;}
if (0.1 < ev2 && ev2 <= 0.6){col2p=7;}
if (0.6 < ev2 && ev2 <= 1.2){col2p=8;}
if (1.2 < ev2 && ev2 <= 2.4){col2p=9;}
if (2.4 < ev2 && ev2 <= 3.6){col2p=10;}
if (3.6 < ev2 && ev2 <= 4.8){col2p=11;}
if (4.8 < ev2){col2p=12;}
lookt[row][col]=lookt[row][col]+lookp[rowp][colp];
if(lookt[row][col]>6.0)
{lookt[row][col]=6.0;}
if(lookt[row][col]<-6.0)
{lookt[row][col]=-6.0;}
lookt2[row2][col2]=lookt2[row2][col2]+lookp[row2p][col2p];
if(lookt2[row2][col2]>6.0)
{lookt2[row2][col2]=6.0;}
if(lookt2[row2][col2]<-6.0)
{lookt2[row2][col2]=-6.0;}
ep1=(pos1d-pos1)*nep; /*Normalised errors*/
ev1=(vel1d-vel1)*nev;
ep1s=ep1s+(pos1d-pos1);
/*---*/

/*LINK 2 */
/*---*/
ep2=(pos2d-pos2)*nep;
ev2=(vel2d-vel2)*nev;
ep2s=ep2s+(pos2d-pos2);
/*---*/

/*LABEL THE ERROR*/
/*---*/
if (ep1 <= -4.8){row=0;}
if (-4.8 < ep1 && ep1 <= -3.6){row=1;}
if (-3.6 < ep1 && ep1 <= -2.4){row=2;}
if (-2.4 < ep1 && ep1 <= -1.2){row=3;}
if (-1.2 < ep1 && ep1 <= -0.6){row=4;}
if (-0.6 < ep1 && ep1 <= -0.1){row=5;}

235

if (-0.1 < ep1 && ep1 <= 0.1){row=6;}
if (0.1 < ep1 && ep1 <= 0.6){row=7;}
if (0.6 < ep1 && ep1 <= 1.2){row=8;}
if (1.2 < ep1 && ep1 <= 2.4){row=9;}
if (2.4 < ep1 && ep1 <= 3.6){row=10;}
if (3.6 < ep1 && ep1 <= 4.8){row=11;}
if (4.8 < ep1){row=12;}

/*SECOND LINK*/
if (ep2 <= -4.8){row2=0;}
if (-4.8 < ep2 && ep2 <= -3.6){row2=1;}
if (-3.6 < ep2 && ep2 <= -2.4){row2=2;}
if (-2.4 < ep2 && ep2 <= -1.2){row2=3;}
if (-1.2 < ep2 && ep2 <= -0.6){row2=4;}
if (-0.6 < ep2 && ep2 <= -0.1){row2=5;}
if (-0.1 < ep2 && ep2 <= 0.1){row2=6;}
if (0.1 < ep2 && ep2 <= 0.6){row2=7;}
if (0.6 < ep2 && ep2 <= 1.2){row2=8;}
if (1.2 < ep2 && ep2 <= 2.4){row2=9;}
if (2.4 < ep2 && ep2 <= 3.6){row2=10;}
if (3.6 < ep2 && ep2 <= 4.8){row2=11;}
if (4.8 < ep2){row2=12;}
/*---*/

/*LABEL EDOT*/
/*---*/
if (ev1 <= -4.8){col=0;}
if (-4.8 < ev1 && ev1 <= -3.6){col=1;}
if (-3.6 < ev1 && ev1 <= -2.4){col=2;}
if (-2.4 < ev1 && ev1 <= -1.2){col=3;}
if (-1.2 < ev1 && ev1 <= -0.6){col=4;}
if (-0.6 < ev1 && ev1 <= -0.1){col=5;}
if (-0.1 < ev1 && ev1 <= 0.1){col=6;}
if (0.1 < ev1 && ev1 <= 0.6){col=7;}
if (0.6 < ev1 && ev1 <= 1.2){col=8;}
if (1.2 < ev1 && ev1 <= 2.4){col=9;}
if (2.4 < ev1 && ev1 <= 3.6){col=10;}
if (3.6 < ev1 && ev1 <= 4.8){col=11;}
if (4.8 < ev1){col=12;}

/*SECOND LINK*/
if (ev2 <= -4.8){col2=0;}
if (-4.8 < ev2 && ev2 <= -3.6){col2=1;}
if (-3.6 < ev2 && ev2 <= -2.4){col2=2;}
if (-2.4 < ev2 && ev2 <= -1.2){col2=3;}
if (-1.2 < ev2 && ev2 <= -0.6){col2=4;}
if (-0.6 < ev2 && ev2 <= -0.1){col2=5;}
if (-0.1 < ev2 && ev2 <= 0.1){col2=6;}
if (0.1 < ev2 && ev2 <= 0.6){col2=7;}

236

if (0.6 < ev2 && ev2 <= 1.2){col2=8;}
if (1.2 < ev2 && ev2 <= 2.4){col2=9;}
if (2.4 < ev2 && ev2 <= 3.6){col2=10;}
if (3.6 < ev2 && ev2 <= 4.8){col2=11;}
if (4.8 < ev2){col2=12;}
count1=(lookt[row] [col])*dnc;
count2=(lookt2[row2] [col2])*dnc;
/*---*/

/*TORQUE VALUES FOR LINK 1 */
/*---*/
torque1=(((((20.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0+ki1*ep1s;
/*if (torque1>55.44)
{torque1=55.44;}
if (torque1<-55.44)
{torque1=-55.44;} */
c1= (p4-p2*sin(pos2)*vel2)*vel1-0.5*p2*sin(pos2)*vel2*vel2+

 p6*cos(pos1)+(p7*cos(pos1+pos2));
con11= (p1+p2*cos(pos2)+0.1498);
con12= (p3+0.5*p2*cos(pos2));
/*---*/

/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/
/*---*/
torque2=(((((20.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0+ki2*ep2s;
/*if (torque2>48.51)
{torque2=48.51;}
if (torque2<-48.51)
{torque2=-48.51;} */
c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2);
con21= (0.5*p2*cos(pos2)+p3);
con22= (p3+0.1498);
/*---*/

/*STORE VALUES*/
/*---*/
if(k==4)
{
error1s[n]=ep1*180.0/(pi*nep);
error2s[n]=ep2*180.0/(pi*nep);
n=n+1;
ep1s=0.0;
ep2s=0.0;
}

/*---*/
/* CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/

/*---*/
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22);

237

acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21);
vel1=acc1*tsp+vel1;
vel2=acc2*tsp+vel2;
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp;
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp;
k=k+1;
}
t=0.0;
pos1o=pos1;
pos2o=pos2;
seg=seg+1;
/*---*/

/*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

/*---*/
if(seg==2 || seg==4)
{
p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n;
p2=2.0*m2n*l1*x2n;
p3=m2n*x2n*x2n+izz2n;
p4=v1;
p5=v2;
p6=g*(m1n*x1n+m2n*l1);
p7=m2n*x2n*g;
a0=thf1;
b0=thf2;
a3=-10.0*(thf1)/(tf*tf*tf);
a4=15.0*(thf1)/(tf*tf*tf*tf);
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=-10.0*(thf2)/(tf*tf*tf);
b4=15.0*(thf2)/(tf*tf*tf*tf);
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf);
k=5;
}
if(seg==3)
{
t=0.0;
a0=0.0;
b0=0.0;
/*thf1=0.0;
thf2=0.0; */
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);

238

b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
k=5;
}
}

/*---*/
/*OPEN FILES*/

/*---*/
er1=fopen("scerror1.dat","w+");
er2=fopen("scerror2.dat","w+");
/*---*/

/*WRITE FILES*/
/*---*/
for(i=0;i<=(n-1);i++)
{
fprintf(er1,"%f\n",error1s[i]);
fprintf(er2,"%f\n",error2s[i]);
}
/*for(i=0;i<=12;i++)
{
for(j=0;j<=12;j++)
{
fprintf(er1,"%f\n",lookt[i][j]);
fprintf(er2,"%f\n",lookt2[i][j]);
}
} */
fcloseall();
END:;
/*---*/
}

239

A.5 ADAPTIVE FUZZY CONTROL CODE

% Declare and initialize the variables
clear error1s;
clear error2s;
ts=0.003;
tsp=ts/5.0;
tf=2.0;
thf1=45;
thf2=-45;
n=1;
i=0;
k=5;
seg=1;
t=0.0;
g=9.8;
a0=0;
b0=0;
vel1=0;
vel2=0;
l1=0.26;
izz2=0.09;
izz1=0.09;
m1=2.0;
m2=2.0;
v1=2.5;
v2=2.5;
x1=0.13;
x2=0.14;
izz1n=1.5;
izz2n=0.09;
m1n=3.0;
m2n=3.0;
x1n=0.15;
x2n=0.16;
ki1=6000;
ki2=6000;
ep1s=0;
ep2s=0;
thf1=(thf1*pi)/180.0;
thf2=(thf2*pi)/180.0;
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);

240

b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
pos1=0.0;
pos2=0.0;
nep=1080.0/(6.0*pi); %Normalisation factor for position error*/
nev=1.0*10.8/(6.0*pi); %Normalisation factor for error dot*/
dnc=3*255.0; %Denormalisation factor for voltage*/
%---

%ACTUAL PARAMETERS*/
%---
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
a0=0.0;
b0=0.0;
%---

%SERVO LOOP*/
%---
while seg <= 4,

while t <= tf,

% DESIRED POSITION, VELOCITY, ACCELERATION*/
if k==5,
pos1d=a0+(a3*t*t*t)+(a4*t*t*t*t)+(a5*t*t*t*t*t);
pos2d=b0+(b3*t*t*t)+(b4*t*t*t*t)+(b5*t*t*t*t*t);
vel1d=(3.0*a3*t*t)+(4.0*a4*t*t*t)+(5.0*a5*t*t*t*t);
vel2d=(3.0*b3*t*t)+(4.0*b4*t*t*t)+(5.0*b5*t*t*t*t);
t=t+ts;
k=0;
end
ep1=(pos1d-pos1)*nep; %Normalised errors*/
ev1=(vel1d-vel1)*nev;
ep1s=ep1s+(pos1d-pos1);
%---

%LINK 2 */
ep2=(pos2d-pos2)*nep;
ev2=(vel2d-vel2)*nev;
ep2s=ep2s+(pos2d-pos2);
%---
if abs(ep1)<0.5 & abs(ev1)<0.5,
 ep1=2*ep1;
 ev1=2*ev1;

241

end
if abs(ep2)<0.5 & abs(ev2)<0.5,
 ep2=2*ep2;
 ev2=2*ev2;
end
%---
u1=[ep1
 ev1];
u2=[ep2
 ev2];
count1=evalfis(u1,x1x);
count2=evalfis(u2,x1x);
%alpha1=evalfis(u1,x2x);
%alpha2=evalfis(u2,x2x);
%---
if abs(ep1)<0.5 & abs(ev1)<0.5,
 alpha1=alpha1;%/2;
end
if abs(ep2)<0.5 & abs(ev2)<0.5,
 alpha2=alpha2;%/2;
end
%---

count1=count1*dnc;%*alpha1;
count2=count2*dnc;%*alpha2;
%---
if abs(ep1)<0.5 & abs(ev1)<0.5,
 ep1=ep1/2;
 ev1=ev1/2;
end
if abs(ep2)<0.5 & abs(ev2)<0.5,
 ep2=ep2/2;
 ev2=ev2/2;
end
%---

%TORQUE VALUES FOR LINK 1 */
%---
torque1=(((((20.0*count1)/255.0)-0.066*(vel1*80.0))*0.066)/2.32)*80.0+ki1*ep1s;
c1= (p4-p2*sin(pos2)*vel2)*vel1-
0.5*p2*sin(pos2)*vel2*vel2+p6*cos(pos1)+(p7*cos(pos1+pos2));
con11= (p1+p2*cos(pos2)+0.1498);
con12= (p3+0.5*p2*cos(pos2));
%---

%CALCULATE ESTIMATED TORQUE FOR LINK 2*/
%---
torque2=(((((20.0*count2)/255.0)-0.066*(vel2*70.0))*0.066)/2.32)*70.0+ki2*ep2s;

242

c2= 0.5*p2*sin(pos2)*vel1*vel1+p5*vel2+p7*cos(pos1+pos2);
con21= (0.5*p2*cos(pos2)+p3);
con22= (p3+0.1498);
%---

%STORE VALUES*/
%---
if k==4,
error1s(n)=ep1*180.0/(pi*nep);
error2s(n)=ep2*180.0/(pi*nep);
n=n+1;
ep1s=0.0;
ep2s=0.0;
end
%---

% CALCULATE ACTUAL POSITION / VELOCITY OF LINKS*/
%---
acc2=((torque1-c1)*con21-(torque2-c2)*con11)/(con12*con21-con11*con22);
acc1=((torque1-c1)*con22-(torque2-c2)*con12)/(con11*con22-con12*con21);
vel1=acc1*tsp+vel1;
vel2=acc2*tsp+vel2;
pos1=pos1+vel1*tsp+0.5*acc1*tsp*tsp;
pos2=pos2+vel2*tsp+0.5*acc2*tsp*tsp;
k=k+1;
end
t=0.0;
pos1o=pos1;
pos2o=pos2;
seg=seg+1;
%---

%CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

%---
if seg==2 | seg==4,

p1=izz1n+izz2n+m2n*(x2n*x2n+l1*l1)+m1n*x1n*x1n;
p2=2.0*m2n*l1*x2n;
p3=m2n*x2n*x2n+izz2n;
p4=v1;
p5=v2;
p6=g*(m1n*x1n+m2n*l1);
p7=m2n*x2n*g;
a0=thf1;
b0=thf2;
a3=-10.0*(thf1)/(tf*tf*tf);
a4=15.0*(thf1)/(tf*tf*tf*tf);
a5=-6.0*(thf1)/(tf*tf*tf*tf*tf);

243

b3=-10.0*(thf2)/(tf*tf*tf);
b4=15.0*(thf2)/(tf*tf*tf*tf);
b5=-6.0*(thf2)/(tf*tf*tf*tf*tf);
k=5;
end
if seg==3,

 t=0.0;
a0=0.0;
b0=0.0;
%thf1=0.0;
%thf2=0.0;
a3=10.0*(thf1)/(tf*tf*tf);
a4=-15.0*(thf1)/(tf*tf*tf*tf);
a5=6.0*(thf1)/(tf*tf*tf*tf*tf);
b3=10.0*(thf2)/(tf*tf*tf);
b4=-15.0*(thf2)/(tf*tf*tf*tf);
b5=6.0*(thf2)/(tf*tf*tf*tf*tf);
p1=izz1+izz2+m2*(x2*x2+l1*l1)+m1*x1*x1;
p2=2.0*m2*l1*x2;
p3=m2*x2*x2+izz2;
p4=v1;
p5=v2;
p6=g*(m1*x1+m2*l1);
p7=m2*x2*g;
k=5;
end
end
%---

%OPEN FILES*/
%---
er1=fopen('f:\back\output\scerror1.dat','w');
er2=fopen('f:\back\output\scerror2.dat','w');

%---
%WRITE FILES*/

%---
error1s=error1s';
error2s=error2s';
%i=1;
%while i<n,
fprintf(er1,'%2.5f \n',error1s);
fprintf(er2,'%2.5f \n',error2s);
%i=i+1;
%end
fclose(er1);

244

fclose(er2);

%---

245

Brief Biography of the Supervisor

Surekha Bhanot is currently attached to the Instrumentation Unit of Birla Institute of

Technology and Sciences (BITS), Pilani as Professor and Unit Chief. She holds a Ph.D

degree from University of Roorkee (now IIT, Roorkee). Previosly, she completed Master

of Philosophy (M.Phil) in Instrumentation and Bachelor of Engineering (B.E) in

Mechanical from BITS. She has a teaching experience of over 26 years, of which 19

years were at Thapar Institute of Engineering Tectnology (TIET), Patiala and rest at

BITS, Pilani. Her current research interests include Instrumentation and AI techniques for

process modeling and control.

Brief Biography of the Candidate

Sudeept Mohan completed his Master of Engineering (M.E) degree in Electronics and

Control from the Birla Institute of Technology and Sciences (BITS), Pilani. He also holds

a Masters (MSc.) degree in Physics and Bachelor of Engineering (B.E) in Electrical and

Electronics from the same institute. He has a teaching experience of over fifteen years at

BITS, Pilani. Currently he is attached to the Computer Science department at BITS as

Assistant Professor. His research interests include Automatic controls and Robotics.

	COVER PAGE.pdf
	CERTIFICATE.pdf
	Abstract.pdf
	Acknowledgements.pdf
	TABLE OF CONTENTS.pdf
	List of figs and tables.pdf
	List of Abbreviations.pdf
	chapter 1.pdf
	chapter 2.pdf
	chapter 3.pdf
	chapter 4.pdf
	chapter 5.pdf
	chapter 6.pdf
	chapter 7.pdf
	List of Pubs.pdf
	References.pdf
	appendix.pdf
	Brief Biography of the Candidate.pdf

