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                 Abstract 

Colloidal suspensions of charged macroparticles dissolved in electrolyte solutions have  

received long time scientific interests. They are quite complex systems consisting of 

mesoscopic polyions (the colloid) and the microscopic solvent molecules and ions. Under 

most physical conditions, there exists a clear separation of time/length-scales between the 

microscopic degrees of freedom (such as solvent particles, counter/co-ions and salt etc.) and 

the mesoscopically sized colloidal particles. This poses significant challenges for theoretical 

investigation of colloidal suspensions; but makes them excellent model systems to study 

many phenomena in soft-condensed matter physics, such as melting, freezing and glass 

transitions, etc. In this work, we study the colloidal suspensions using the description of 

solvent-solvent, solvent-colloid and colloid-colloid correlations from the formalism of 

statistical thermodynamics of liquids and asymmetrical mixtures.  Molecular dynamic 

simulations and Integral equation theories have been used to find the correlation functions. 

Formulae expressing properties in terms of correlation functions are well known. 

Chapter 1 introduces the importance and modelling of colloidal suspensions, basic statistical 

mechanics leading to pair correlation functions and property calculations, Integral Equation 

theory, Molecular Dynamics simulation, concept of effective pair potential etc.  The gaps in 

existing research and objectives of this research work have also been discussed.  

In Chapter 2, we studied asymmetric binary fluid mixtures using molecular dynamics 

simulation. The asymmetries are either in particle size, charge, or mass alone and their 

combinations. Systematic variations in the pair correlation functions and different properties 

have been observed as a function of size, charge and mass asymmetry. As the size and/or 

charge increases, the pair correlation functions shift to larger inter-particle distances 

indicating increase in repulsion between particles. Both the energy as well as the pressure of 

the system with neutral particles decreases with increase in size asymmetry, an effect similar 

to decrease in density of the system. With increase in the charge asymmetry, the interactions 

between the particles become long ranged and the magnitude of excess free energy increases. 

For a given charge asymmetry, higher excess free energy was found for size asymmetric 

mixture than that of size symmetric case, possibly due to reduction in charge density. The 
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self-diffusion coefficients were found to decrease with increase in size, charge and mass 

asymmetries. Arrhenius-type behavior was observed for the diffusion coefficient. Empirical 

relations expressing diffusion coefficients of systems having more than one-type of 

asymmetries in terms of diffusion coefficients of systems having asymmetry of only one-

type, have been presented.   

In chapter 3, we have extended our molecular dynamics simulation study to model colloidal 

suspensions in bulk solutions as well as in between two parallel walls. The simulations were 

carried out in a wide range of colloid charges (10e-100e), diameters (20 nm-100 nm), 

concentrations (0.484 μM - 2.42 μM) using a two-component (salt free) and a three 

component (with added salt) (1.9 μM – 7.7 μM) primitive model. Systematic variations in 

pair correlation functions, effective colloid potentials, thermodynamic properties and self-

diffusion coefficients were observed with system parameters. The depth of minima in the 

effective colloid-colloid pair potential were found to increase with increase in colloid charge, 

size and concentration. However, the positions of the minima shift to lower inter-colloid 

distances with increase in colloid size and concentration but remain more or less unaltered 

with increase in colloid charge. For the cases of colloid suspensions in between two parallel 

walls, the density profile functions become oscillatory indicating ordering/layering of 

colloids. The oscillatory behavior was found to be pronounced for colloid with neutral walls 

or one positive and one negative wall. Systematic variations in the density profile of small 

particles/ions were also observed. The self-diffusion coefficients of neutral colloids were 

found to be higher than those of charged ones, irrespective of the nature of the walls.  

In Chapter 4, we have investigated the colloidal suspensions using the formalism of Integral 

equation theory. The Ornstein Zernike Equation have been solved along with three different 

closure approximations: Hypernetted Chain (HNC), Percus Yevick (PY) and Martynov 

Sarkisov (MS) using Newton-GMRES algorithm. The effective colloid potentials become 

repulsive with increase in colloid size for a two-component (salt free) system. However, on 

addition of salt (for a three-component system), the effective colloid potentials become 

attractive. With increase in colloid charge and concentration, the effective colloid potentials 

become attractive for both two-component as well as three-component systems. The potential 

of mean force becomes attractive with increase in size, charge and concentration of colloid in 
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HNC theory for two-component system. The three-component systems behave similar to 

those of two-component systems with variation in colloid size and concentration with 

opposite trends which were being observed with charge variation. With increase in size, 

charge and concentration of the colloidal particle, HNC theory performs better than PY and 

MS theory. HNC results show good agreement with MD simulation results for colloid size = 

100nm and charge = -25e, whereas PY results shows good agreement only in three-

component (added salt) systems.  Generally, the integral equation results deviate 

substantially from those of simulation results. Among the studied systems and closures, HNC 

results seem to be closer to simulations than PY and MS results.  

The overall conclusions and future scope of research have been given in chapter 5. 
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1.1. Introduction 

Colloidal suspensions are abundant in everyday experience and are used in countless industrial 

applications in the chemical, pharmaceutical, biological and food industries. They are quite 

complex systems consisting of mesoscopic polyion, (the colloid, in nm-μm range) and the 

microscopic solvent molecules and counterion/co-ions. The presence of solute components 

makes it possible to modify at will and on a large scale the static and dynamic macroscopic 

properties of the whole solution [1]. Different types of macroion interactions, such as long-

range repulsive, short-range attractive, hard-sphere-like and dipolar, can be realized simply by 

changing the system parameters (e.g. quality of solvent, salt concentration etc). Thus colloidal 

suspensions serve as excellent model systems to study a variety of phenomena (such as 

melting, freezing and glass transitions, etc.) in soft-condensed matter physics [2] and for 

making advanced materials [3,4]. 

The structure of a solution or a suspension of charged macroparticles (colloids) has 

been of considerable recent interest because of a variety of reasons. They show quite complex 

phase behavior analogous to simple gases, liquids, solids and glasses. Due to this complex 

phase behavior colloidal fluids, crystals and glasses have been identified. Mixture of spheres 

of different size and charge show interesting phase separation. Colloidal suspensions have 

interesting mechanical and rheological properties [5–7]. They are usually viscoelastic and 

show marked non-linear responses such as yield stress, shear thinning, shear thickening and 

dilatancy [8–10] . Their response to external electric field, commonly called electrorheological 

response is interesting from a fundamental point of view and has considerable technological 

applications. Electrorheological fluids have found applications as vibration isolators, brakes 

and clutches [11,12]. In addition, the biological importance of these polymeric fluids brings 

them to the centerstage of today's research[13].  

 A basic understanding of these important fluids from a microscopic viewpoint uses 

methods of statistical mechanics [14,15]  . The method we propose to use is to solve an integral 

equation, the Ornstein-Zernike equation using an approximation in the form of a "closure" 

relation. An alternative approach for calculation of physical properties is to use the technique 

of computer simulation [16]. Averages over accessible states are calculated by Monte Carlo 
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and by Molecular Dynamics simulation. Below we summarize some basic concept of statistical 

mechanics. 

1.2. Statistical Mechanics- Ensembles, Partition function & average [15,17]  

Statistical mechanics provides methods of calculating properties of systems with many 

interacting particles. The mechanical state of such system is not completely specified. The 

preparation of the system specifies the range of accessible mechanical states in the phase space. 

For calculation of properties, one assigns weight factors to every point in the accessible region 

in phase space. The equilibrium property of the system is calculated as a statistically weighted 

average over the accessible energy eigenstates of the system. If A designates a property, then 

the average value is 

i

i

i ApA =      (1.1)  

where pi is the weight factor of the ith accessible energy eigenstate (diagonal elements of 

density matrix) and iA  is the expectation value of the operator A in this state.  

To calculate properties of systems in thermal equilibrium, statistical mechanics uses 

several classes of accessible states over which averaging is done [18,19]. They are called 

“ensembles”. A statistical-mechanical ensemble is an arbitrarily large collection of imaginary 

systems, each of which is a replica of the physical system of interest and characterized by the 

same macroscopic parameters. The systems of the ensemble differ from each other in the 

assignment of the coordinates and momenta of the particles. The most widely used are 

microcanonical, canonical and grand canonical ensembles, although other types are also in use. 

If E, V (the energy & volume of the system) are fixed, i.e., if the system is isolated, the 

ensemble that represents the system is microcanonical. The accessible states differ from one 

another, but share the same E and V. If T, V (the temperature & volume) are fixed, i.e., if the 

system is mechanically isolated, but thermally interact with a heat bath, then the ensemble that 

represents the system is called canonical. The members of the canonical ensemble do not have 

a fixed value of energy but conservation of energy states that they can have any value of energy 

between zero and the total energy of the heat bath, which is so large that no error is committed 

if we set it to be infinitely large. Energy is a variable, but number of particles is kept fixed in 
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a canonical ensemble. In grand canonical ensemble, the quantities that assume a fixed value in 

every member are μ, V, T (the chemical potential, volume & temperature), the variables now 

include number of particles. Thus, open systems in thermal equilibrium are represented by 

grand canonical ensemble.  

The weight factor of the members of a microcanonical ensemble is a constant, that of a 

canonical ensemble is proportional to the Boltzmann factor, )(exp E− , that of a grand 

canonical ensemble is proportional to the factor, )]([exp NE  −− , where β = 1/kT is the 

inverse temperature. The sum of these weight factors with respect to an arbitrary (and 

unimportant) zero are called partition functions. The canonical partition function QN is given 

by  

 −=
n

nN EQ )exp(       (1.2)  

where n  labels an energy eigenstate. The grand canonical partition function   is given by  

  −−=
Nn

n NE
,

)](exp[                      (1.3) 

Where N specifies the number of particles that can vary.   can be written in terms of  QN as  

 N

N

QN= )exp(      (1.4) 

The weight factors of accessible energy eigenstates in canonical ensemble is given as  

 
N

n
n

Q

E
p

)exp( −
=   (1.5) 

and those in grand canonical ensemble is given as  

 


−−
=

)](exp[
,

NE
p n

Nn


. (1.6) 

Weight factors of a subset of accessible states, when summed, is useful in statistical mechanics. 

For example, the n-particle distribution function pn is the sum of weight factors of accessible 

states which share the characteristics of having fixed location for n-particles: 
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      (1.7) 

 

Where,   −= N

N

NN dddUZ rrrr  21)(exp[  , is the configurational integral and UN (r
N) is 

the potential energy of the system. Thus, the quantity nn

n dd rrrrr  121

)( ),,( gives the 

probability of simultaneously finding particle 1 in dr1 around r1, particle 2 in dr2 around r2, 

…, particle n in drn around rn, irrespective of the positions of the remaining (N – n) particles. 

Because UN depends on relative coordinates, the positions and orientations of particles is not 

random. The detail of such molecular interactions determines the structure and dynamics of 

the system.  

 

For n = 1, the one-particle density distribution, or the density profile gives VN /)( 1

)1( ==  r , 

the mean number density.  In a similar way, the pair density distribution ),( 21

)2(
rr can be 

written. The n-particle correlation function 
)(ng is expressed in terms of 

)(n as  

   


=

=
n

i

i

n

nn
nng

1

)(

)(
)(

)(

)(
)(

r

r
r




                   (1.8)

  

For example, the pair correlation function 
(2)

1 2( )g r r  is defined as (n = 2) 

 
2

21

)2(

21

)2( ),(
),(



 rr
rr =g       (1.9) 

For homogeneous, isotropic systems the pair distribution function depends only on the 

separation || 21 rr −=r  between the two particles. In this special case, it is then called the radial 

distribution function and written as g(r). A variety of properties has been related to pair 

correlation function g(r). Some examples are:   

(1) Internal energy U: 

 


+=
0

24)()(
22

3
drrrgru

kTNkT

U



                 (1.10) 

(ρ: number density, u(r): interparticle central potential)   

( )

1 1 2

!
( , ) exp[ ( )]

( )!

n N

n N n n N

N

N
U d d d

N n Z
  + += −

−  r r r r r r
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(2) Pressure P:  

 2

0

( )
( )4

6

NkT N du r
P r g r r dr

V dr
 



= −     (1.11) 

(3) Chemical potential μ:  

 
1

3 2

0 0
ln ( ) ( )4kT u r g r r d dr     



=  +      (1.12) 

Where ξ is coupling parameter and has a value 1 for real fluid and ( )
3
2

3

2 mkT

h

 = .  

 

1.3. Molecular Simulations 

1.3.1. Monte Carlo Simulation 

The computer simulation of liquids [16] was carried out to get a detailed information at the 

microscopic level and this information is converted into macroscopic level is the domain of 

statistical mechanics. The first computer simulation of the liquid was carried out at Los Alamos 

National Laboratories in the United States [20]. The Los Alamos computer, called MANIAC, 

was at that time one of the most powerful computers. Metropolis laid foundations for Monte 

Carlo (MC) simulations . This method was applied initially to hard discs and spheres [21,22]. 

MC generates configurations of the system by random sampling. Averages are taken over the 

configurations, each weighted by the corresponding normalized Boltzmann factor. Uniform 

sampling of the configurations is impractical, since the Boltzmann factor is negligible but for 

a few typical configurations of the system, so the so-called importance sampling is used, where 

configurations are sampled according to the value of the Boltzmann factor; so, the important 

configurations are generated and contribute to the average. The most popular sampling method 

is Metropolis algorithm [23,24], which is asymptotic but enjoys the advantageous feature is 

partition function is not needed. 

 

1.3.2. Molecular Dynamics Simulation 

Another indispensable tool used to obtain the accurate solutions for various model systems is 

Molecular Dynamics (MD) simulation [25]. This describe the solution of the classical 
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Newton’s equations of motion for all particles in fluid. This was first carried out for a system 

of hard spheres, by Alder and Wainwright in 1957 [26].  Later on, successful attempt was made 

to solve the equations of motion for Lennard-Jones particles [27–30]. The classical molecular 

dynamic simulation is a deterministic procedure where the molecular dynamic simulation 

[16,31] of colloidal suspension is performed by integrating the Newton’s equations of motion 

over time  

2

2

( )
( ) , 1,....i

i i i i

r t
F t m a m i N

t


= = =

                               (1.13)             

where im  is the mass of the particle i, ( )ir t its position at time t, iF  the force acting on particle i 

and N is the number of particles.     

1.3.3. Reduced Units        

In simulations, [16] it is necessary to introduce the variables in reduced units. The energies are 

scaled by characteristic energy in the system ε. The lengths are scaled by the characteristic 

length σ i.e. particle diameter. The reduced variables are defined as: the reduced density 

3  = , the reduced temperature * /BT k T = , the reduced pressure 3 /P P  =  and the 

reduced time in * / ( / )t t M = . The reason for introducing the reduced units in simulations 

is that the many combinations of ρ, ε, T and σ  correspond to the same state in reduced units. 

The use of reduced units minimizes the effects of round off errors and has technical advantage 

if the given value is in unity. The simulation box is scaled by these lengths which yields a unit 

box and useful to treat minimum image convention and periodic boundary conditions (section 

1.4.4). 

1.3.4. System Size and periodic boundary conditions [16,25] 

Simulations were usually carried out with thousands of particles to sometimes millions packed 

in cubic box with periodic boundary conditions.   It is important to choose periodic boundary 

conditions which replicates the infinite bulk surroundings to simulate the bulk systems. The 

simulation box is replicated throughout the space to form an infinite lattice (Figure1.1). The 

surface effects problem can be overcome by implementing periodic boundary conditions [32]. 

The commonly used simulation box is cubic box. The volume V = L3 of the box together with 
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number of particles N, defines the number density n = N/V. The number density in the central 

box and hence in entire system, is conserved. It is not necessary to store the coordinates of all 

images, just the particles in central box have to be stored.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic representation of periodic boundary conditions.   

 

When a particle leaves the central box, attention can be shifted to the image just entering or 

one can follow the motion of the particle leaving the central box. A given particle will interact 

with all other particle in infinite periodic system i.e. all other particles in the same periodic cell 

as well as all particles in all other cells, including its own periodic images. The boundary of 

the periodic box itself has no special significance. The periodic lattice origin of the primitive 

cells can be chosen anywhere, and this choice will not affect any property of the model system 

under study. In contrast, what is fixed is the shape of the periodic cell and its orientation.  When 

it is dealt with short-range pair potential, as in instance of Lennard Jones potential, it is 

admissible to truncate the inter-atomic interaction at finite radial cutoff distance rc and particles 

are now allowed only to interact with the finite number of surrounding particles. If / 2cr L , 

the particle at the center interacts with the nearest periodic image of the surrounding particle. 

This is called minimum image convention (MIC). The use of periodic boundary conditions 

proves to be effective method to simulate the homogeneous bulk systems. However, it inhibits 

the occurrence of long wavelength fluctuations. 
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1.3.5. Finite difference techniques 

These methods are used to generate the trajectories using continuous potentials, assumed to be 

pairwise additive. The basic idea of integration is divided into small steps, each separated in 

time by a fixed time Δt. The total force on each particle in the configuration at time t is 

calculated as vector sum of the particle interactions with the other particles. From this force 

we can determine the accelerations of the particles, which are combined with the velocities 

and positions at time t to calculate the velocities and positions at time t+ Δt.  The forces on the 

particles in their new positions are determined which leads to the new velocities and positions 

at time t+ 2Δt, etc. The integration step is not time-consuming, but it is important because the 

conservation of energy or time reversibility is determined using this method. There are many 

algorithms for integrating the equations of motions used in molecular dynamics simulation 

calculations.  

In 1967 Loup Verlet introduced a central difference-based algorithm into molecular 

simulations [33]. In many cases, this simple algorithm has turned out to be the best to use in 

MD simulations and it is extensively used. The Velocity Verlet algorithm is the most common 

algorithm used to integrate the equations of motion and computes position of particles ( )r t , 

velocity of particles ( )v t , accelerations ( )a t , ( )t is the time step in the numerical scheme and 

previous positions of the particles ( )r t t− .  The algorithm is derived by using Taylor 

expansion of the position coordinate both forward and backward time. 

21
( ) ( ) ( ) ( ) ...

2
r t t r t v t t t a t+  = +  +  +        (1.14) 

21
( ) ( ) ( ) ( ) ...

2
r t t r t v t t t a t− = −  +  +                           (1.15) 

By adding the above two equations we obtain 

2( ) 2 ( ) ( ) ( )r t t r t r t t a t t+ = − − +                                     (1.16) 

This equation is known as verlet algorithm. The velocities do not enter explicitly in the 

algorithm; however, they are needed to estimate kinetic energy and temperature. The 

numerical stability, ease and simplicity makes the velocity Verlet algorithm suitable for MD 

simulations and highly recommended. 
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Another integration method which is common used in MD simulation is leap frog algorithm 

[34]. The positions are computed by using velocities at half-integer time step. 

    
( ) ( )

( / 2) ,
r t r t t

v t t
t

− −
− 


                                        (1.17) 

    
( ) ( )

( / 2)
r t t r t

v t t
t

+  −
+  


                                         (1.18) 

 

The velocities are not calculated at the same time as the positions, using leap frog algorithm. 

Once the new positions of all the particles are computed using equations of motion, the whole 

procedure of calculating the forces and consequently the new positions and velocities are 

repeated as often as needed and thus the system evolves in time. The properties can be time 

averaged once the system is equilibrated. The properties of interest can then be time-averaged 

after the system is equilibrated.  

 

1.3.6. Pair Potential 

The simple and convenient pair potentials used in simulations are: Hard sphere potential [35] 

[36], the potential between the hard spheres of diameter σ, i.e. 

 

( )
0

r
u r

r





 
= 


      (1.19) 

 

Lennard-Jones potential [37] provides a good description of interactions between the pairs of  

noble gases atoms like argon, krypton and xenon.  

It was originally proposed for liquid argon for a pair of atoms i and j at ri and rj  

 

12 6

4
( )

0

ij c

ij ijij

ij c

r r
r ru r

r r

 


     
  −         =      




     (1.20) 
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Where ij i jr r r= − , the parameter directs the strength of the interaction and well depth,   

determines the length scale. The potential has a long-range attractive part in the form of -1/r6 

and the repulsive part in the form of -1/r12. The cutoff distance of separation is rc. 

The Lennard-Jones potential turns to Weeks-Chandler-Andersen (WCA) [38] potential when 

cutoff is minimum, 
1/62cr =  which is purely repulsive. 

The ionic charged systems are quite well represented by sum of pair potentials. The particles 

are charged, and interactions are dominated by the Coulombs interaction. These represent the 

long-range interactions 

rzzLru jiB

C

ij /)( =      (1.21) 

zi, zj are charges,  /2eLB = is the Bjerrum length, 1/ ( )bk T = is the inverse temperature, bk is 

the Boltzmann constant, T is the temperature. 

 

1.4. Integral Equation Theory: 

The pair correlation function (for an m-component system) is calculated by solving the OZ 

equation [39]                     

    
3

12 12 3 13 32

0

( ) ( ) ( ) ( ),
m

ab ab n an nb

n

h r c r d r c r h r
=

= +      (1.22) 

    where ,ab a b nr r r number density= − =  

 

Equation 1.22 can be written in the matrix form as [31] 

     H C C RH= +          (1.23) 

Where H and C are n x n matrix correlation functions and R is the diagonal matrix of densities. 

11 12

21 22

...

...

... ... ...

h h

H h h

 
 

=  
 
 

  ,   

11 12

21 22

...

...

... ... ...

c c

C c c

 
 

=  
 
 

, 

1

2

0 ...

0 ...

... ... ...

R





 
 

=  
 
 

 

Along with closure, we written it without any approximation [40] as 

   ( ) exp[ ( ) ( ) ( ) ( )] 1,ij ij ij ij ijh r u r h r c r B r= − + − + −       (1.24) 
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Where n  is the number density of particle species n, ( ) ( ) 1ij ijh r g r= −  is the total correlation 

function, ( )ijc r is the direct correlation function and ( )ijB r  is the bridge diagram sum.  

Bridge diagrams are difficult to evaluate and most of the time it is approximated, leading to 

different closure relations. For example, by setting  ( ) 0ijB r = , in Eq. 1.24 we obtained HNC 

closure [41], PY closure [42] is obtained by setting 

( ) ln[1 ( ) ( )] ( ) ( )ij ij ij ij ijB r h r c r h r c r= + − − −  and MS closure [43] is obtained when 

1/2( ) [1 2( ( ) ( ))] ( ( ) ( )) 1ij ij ij ij ijB r h r c r h r c r= + − − − − . 

 

1.4.1. Closure Relations [31] [40] 

We discuss now different closure relations which express c(r) approximately in terms  of h(r) 

and pair interaction potential u(r). These relations are derived from a cluster diagrammatic 

analysis [44] that reads 

    ( ) 1 exp[ ( ) ( ) ( ) ( )]h r u r h r c r B r+ = − + − +          (1.25) 

The term h(r) - c(r) + B(r) is called as negative excess potential of mean force [45,46]. The 

bridge function B(r) was shown to be the sum of the infinite number of terms, each consisting 

of intervals whose kernel are products, of increasing order, of correlation functions. This 

infinite series is represented diagrammatically by “bridge” diagram [47,48]. In combination 

with OZ equation, the closure relations to calculation of g(r). These equations have been found, 

in comparison with molecular simulation data and scattering data, to be useful in calculating 

the g(r) and various properties of liquids. 

 

1.4.1.1. Hypernetted Chain (HNC) Approximation 

An analysis of clusters expansion to higher orders leads to hypernetted-chain (HNC) 

approximation [44].The total correlation function is given by 

     ( ) exp[ ( ) ( ) ( )] 1h r u r h r c r= − + − −          (1.26) 

Implying that the bridge function B(r) is identically equal to 0. HNC is not analytically solvable 

[49–55] and requires iterational procedure starting with a guess for either of the functions h or 

c. The easiest method is to use (equation 1.27) between Fourier transforms of h and c 

[40,56,57]. 
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ˆ( )ˆ( )

ˆ1 ( )

c k
h k

c k
=

−
        (1.27) 

An initial guess, c0(r) is made and its Fourier transform is substituted in (equation 1.27). An 

inverse transform of it yields h(r). The improved guess c1(r) is obtained using closure relation 

between h and c. The process is repeated, with c1(r) replacing c0(r) as input, and the iteration 

continues until convergence is achieved. HNC is more accurate than PY for systems governed 

by long range potentials. 

1.4.1.2. Percus-Yevick (PY) Approximation [58]  

The PY approximation is expressed in pair correlation function for a simple fluid as  

     ( ) exp[ ( )][1 ( ) ( )]g r u r h r c r= − + −       (1.28) 

The bridge function corresponding to PY relation reads 

    ( ) ln[1 ( ) ( )] ( ) ( )B r h r c r h r c r= + − − +        (1.29) 

Equation 1.28 and 1.29 are both solved iteratively to obtain the solution of the system [59–66]. 

The PY closure is recovered by linearizing the HNC closure. In this aspect the HNC is expected 

to be more accurate than the PY. 

1.4.1.3. Martynov Sarkisov (MS) Approximation 

This approximation was proposed by Martynov and Sarkisov (MS) and sets the bridge function 

as 

     1/2( ) [1 2( ( ) ( ))] ( ( ) ( )) 1B r h r c r h r c r= + − − − −                               (1.30) 

In the dense regime, it has been shown that MS improved the PY and HNC results, by reducing 

considerably the thermodynamic inconsistency of the two latte ones [67–71]. The MS 

approximation, which has been originally applied to hard sphere system, has no adjustable 

parameter. 

Liquid state integral equations have been an active area of research from some years. 

The numerical solution of these equations was found out initially using Picard iterations, 

however, the hybrid Picard/Newton-Raphson methods of Gillan [72,73] and Labík [74] had 
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dominated the field. A number of problem specific generalizations of these algorithms have 

been developed [75–77]. Some matrix methods for solution of integral equations which 

describe inhomogeneous fluids was carried out by Chen and Pettit [78]. Homeier and 

coworkers used vector extrapolation technique and illustrated the iterative solution of bulk 

Ornstein Zernike (OZ) type integral equations [79], provides standard against which to 

compare the Newton-GMRES algorithm. Zerah [80] described the use of a Newton method 

for the numerical solution of the fluid integral equations in which the linear system is solved 

efficiently using an iterative conjugate gradient (CG) technique [81].  The CG algorithm is 

usually intended for the solution of symmetric positive definite systems. It is generalized to 

nonsymmetric linear systems as carried out by Zerah. The examples considered by Zerah are 

the solution of the Percus-Yevick equation for an inverse twelfth power potential and the 

hypernetted chain (HNC) equation for a Lennard Jones (LJ) potential. Zerah illustrate that the 

stability and efficiency of a Newton iterative method (Newton-CG). 

1.5. Pair Potential and screening [82,83]  

Several different classes of pair potentials have been used to describe interaction between a 

macroion pair in solution. The first is the interaction potential between two macroions in 

vacuum. This potential depends on only the macroion charges and their relative co-ordinates. 

If the pair is suspended in a solvent, then the interaction of the macroions with solvent 

molecules will show up in the expression of “effective interaction" between the pair  [84,85]. 

This complex many body screening effect is taken into account by a single parameter, the 

dielectric constant of the solvent. This is a very good approximation, unless the distances are 

very small. The screening constant alters in the presence of other macromolecules and salt. 

Potential of average force 12 ( )w r , as defined in statistical mechanics, takes into account this 

additional screening. The negative of the gradient is the ensemble averaged force, 12 ( )w r  is 

calculated from the pair correlation function by the formula  

                                     12 12( ) ln ( )w r kT g r= −                                                     (1.31) 
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In thermodynamic equilibrium, states are incompletely specified. In these states 12 12( )w r  is the 

equivalent of 12 12( )u r  in the completely specified mechanical state. So we use 12 ( )w r  as the 

pair potential in an incompletely specified state [86].  

In the closure equation of the hypernetted chain approximation 12 ( )w r  is related to 12 ( )u r  

by the following expression  

                         
( )12 12 12 12

12 12 12

( ) ( ) ln 1 ( ) ( )

( ) ( ) ( )

h r c r h r u r

c r w r u r



 

= + + +

= − +
                                 (1.32) 

or  

 12 12 12 12( ) ( ) ( ) ( )w r u r c r h r − = − .   (1.33) 

12 ( )u r  includes the effect of screening by solvent alone. The ratio 12 12w u  therefore gives 

additional screening due to macroions and salt. We denote it by eff .  

 
12 12

12

( ) ( )
1

( )
eff

c r h r

u r




−
− =     (1.34) 

 

In Chapter 3, we define, following Adelman [87], a one component equivalent of a 

multicomponent solution, in which the particle pairs interact through an effective pair potential 

such that pair correlation function in this one component model is the same as that of this 

component in the multicomponent system. The pair potential enters the theory in the following 

manner. We define an effective macroion-macroion 12 ( )effc r  denoted as ( )eff

mmc r  as that function 

which through an one component O-Z equation gives the macroion-macroion 12 ( )h r  denoted 

as ( )mmh r , which is obtained by solving the multicomponent O-Z equation. The closure 

equation of the one component model (the single component is macroion ‘m’)  

                              ( ) ( ) log(1 ( )) ( )eff eff

mm mm mm mmh r c r h r V r= + + +                               (1.35) 

( )mmh r  remains the same as that of the multicomponent model. ( )eff

mmc r  and ( )eff

mmV r  are different 

from their counterparts in multicomponent model, in which the closure relation are not mixed 

up and remain separate for each component, i.e., for a macroion pair it is  

                                     ( ) ( ) log(1 ( )) ( )mn mm mm mmh r c r h r u r= + + +                           (1.36) 
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So, ( ) ( ) ( ) ( )eff eff

mm mm mm mmc r u r c r V r + = + .  

It is shown in Chapter 3 that ( ) ( ) ( )eff

mm mm sc r c r v r= + , where ( )sv r  is called the screening 

function and is expressed in terms of all direct pair correlation functions other than macroion-

macroion. The ( )eff

mmV r  differs from ( )mmu r  by the same screening term, i.e., 

( ) ( ) ( )eff

mm mm sV r u r v r  = + . ( )eff

mmV r  plays the role of ( )mmu r  in the one component model. It is 

the pair potential between an isolated pair of macroions, in the absence of other macroions, but 

in the solvent environment that prevails at finite macroion concentration and finite salt 

concentration. As macroion concentration decreases the environment approaches that of an 

infinitely dilute solution and may expect DLVO potential [88–90] to be represented by 

( )eff

mmV r . In contrast to 12 ( )w r , ( )eff

mmV r  retains screening due to finite macroion concentration 

only through the solvent environment that it creates. If however the calculation is done in an 

infinitely dilute solution ( ) ( )h r c r=  or ( )effc r  (in one component model) [82] and therefore 

( ) ( )w r u r=  or, ( )effV r  (in one component model). The screening in such a case is only due to 

the salt present. The environment is entirely that of an infinitely dilute solution and is 

completely free from the effect of a finite macroion concentration. This potential should be the 

DLVO potential, as calculated by statistical mechanics. Calculation of correlation function by 

methods of statistical mechanics is therefore a route to understanding DLVO potential and 

deviation from it.  

 

From a theoretical point of view, analytical and numerical methods from classical 

statistical mechanics (due to mesoscopic size of colloid, quantum effect is small) are the 

appropriate tool for predicting properties of these suspensions [85]. However, an explicit 

description of these highly asymmetric, multicomponent, many-particle systems is formidable. 

One way to deal with this problem is coarse-graining approaches where certain degrees of 

freedom are integrated out, resulting in an effective interaction/potential [83]. Significant 

progress has emerged from exploiting the analogy between these (effective) potentials and the 

potentials of atomic and molecular fluids. In other words, colloidal suspensions can be treated 

as a multi-component fluid mixture, and the well-established machinery of liquid state can be 

exploited. 
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1.6. Modeling of colloidal suspensions on different levels [91] 

The theoretical model for the description of charged colloidal particles can be done on five 

different levels [85]. The higher the level, the more realistic the model is, and, at the same 

time, the more complicated the computational effort. Any higher level includes the lower levels 

as special cases.  

 

 The simplest approach is the linear counterion screening theory, resulting  analytical Yukawa 

pair potential for the effective interaction between colloids, as given by the Deraguin–Landau–

Verwey–Overbeek (DLVO) theory [92,93]. On this level, only the colloidal particles are 

considered explicitly. The next level is the nonlinear Poisson–Boltzmann (PB) approach, 

which includes a full treatment of the counterion entropy but still works on a mean-field level. 

On the PB level, the colloids and the averaged counterion density field are considered 

explicitly. In the ‘primitive’ model (PM), one treats the counterions explicitly. This approach 

includes full counterion correlations. The solvent only enters via a continuous dielectric 

background.  Models treating solvent explicitly are also known, e.g. Hard sphere solvent model 

(HSSM) [77] and dipolar solvent model [94,95] or a Stockmayer liquid [96]. With quantum 

chemistry, one may even reach a higher level with a full microscopic description of the solvent 

interactions [97]. 

 

As mentioned, in the Primitive Model (PM) one treats the polyions and small ions explicitly 

while the solvent is considered as a dielectric continuum (degrees of freedom are integrated 

out). Even the PM level of description may be challenging when polyion-microion asymmetry 

(in size and charge) is large. So, in the linear counterion screening theory, only the colloidal 

particles are considered explicitly while the degrees of freedom of solvent as well as remaining 

microions are integrated out, resulting in an analytical Yukawa pair potential for the effective 

interaction between colloids. This is the famous Deraguin-Landau-Verwey-Overbeek (DLVO) 

potential [98]. The concepts of coarse-graining and effective potential are also natural in 

experiments, e.g. the experimental techniques like light, x-ray or neutron scattering view the 

colloidal suspensions at length scales where only the colloids (macroparticles) are visible and 

the microscopic ions and solvent plays the role of a background and their effects are not 

considered explicitly [99].  The experimental profiles have to be then interpreted by means of 
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an effective interaction between the colloids, which indirectly includes all the effects of the 

remaining constituents. The nature, strength and even the sign of this effective potential are 

not obvious and depend on the details of the solvent-solvent and solvent-colloid direct 

interactions [82]. 

 

The DLVO which is a purely repulsive effective pair-potential between colloids was 

very successful in explaining colloidal potential since five decades. However, recent 

experimental study on effective potential of a like charged pair of colloids, a pair of dielectric 

plates, and a plate and a sphere embedded in an electrolyte solution show [85,100] an attractive 

minimum at small as well as large interparticle distance in bulk solution and at large 

interparticle distance in a confined fluid. These observations contradict the DLVO theory and 

are difficult to explain even in the context of the more sophisticated theoretical schemes, since 

they predict different length scales for the attractive interaction. Since the concept of the 

effective interactions of colloids is applied in the determination of the parameters of the system 

(e. g. colloid size & its charge, ionic strength of supporting electrolyte etc.), the question of its 

proper definition and the accuracy of approximations involved are of considerable practical 

interest. 

 

Electrostatic colloid crystals obtained at low concentration in highly deionized conditions 

(monovalent counterions) studied by direct visualization using confocal laser scanning 

microscopy and by ultra-small-angle x-ray scattering reveal the presence of apparently empty 

regions or voids inside the crystal (evidence for a long-range attraction) [101]. However, 

advanced experimental techniques (video microscopy in combination with optical tweezers) 

predict a purely repulsive interaction in bulk suspension [102]. Thus, direct measurement of 

forces acting between charged polyions contrasts with indirect determinations of effective 

forces via small-angle x-ray measurements of static structure factors [103]. Clearly, 

experimental evidence of ion mediated effective attraction between spherical colloids is still 

an open and controversial issue. 

In view of the above, studying of effective interactions between a pair of colloids in a 

systematic and quantitative way is quite important. A clear understanding of this effective 



  Chapter 1 

19 
 

interaction potential and its dependence on system parameters will give new insights to the 

structure and properties of colloidal suspensions.  

 

1.7. Literature Survey: 

Most of the studies on asymmetric electrolytes were done using fluid integral theory [104]. An 

asymmetry (in size and charge) around 10 can be early handled with in PM description using 

the fluid integral equation with Hypernetted Chain approximation (HNC). Using HNC 

equation, Das et al. [105] studied asymmetric macroionic systems and found that as the size 

and charge asymmetry increases the HNC solution tends to be unstable. For the simple planar 

geometry of two parallel dielectric walls (infinite dilution) enclosing an ionic solution of 2:2 

electrolyte or a bivalent counter-ion, both Monte Carlo (MC) simulations [106,107] and 

inhomogeneous HNC calculations [108] within the primitive model have proven without 

ambiguity the existence of attraction between the plates (negative pressure) at high 

electrostatic coupling. The MC result was also verified experimentally. However, for bulk 

systems of spherical colloids, the situation is not so clear. Theoretical evidences of effective 

attraction have been first obtained following the integral equation approach. Patey [51] solved 

the Ornstein-Zernike (OZ) equation [39] using HNC approximation in primitive model and 

found a negative potential of mean force at a small interparticle between a pair of highly 

charged colloids at infinite dilution embedded in the bulk of a 1:1 electrolyte solution at high 

particle charge and salt concentration. However, Teubner [109] pointed out that the minima of 

Patey may very well be an artifact of HNC approximation (i.e., a result of ignoring bridge 

diagrams) as applied to the colloid - colloid correlation and should disappear if neglected 

bridge diagrams are included. Patey’s attraction disappears for monovalent ions but subsists 

for divalent ions when including the first bridge diagram. A similar result supporting Teubner’s 

point was obtained by Behera [110] when a self-consistent integral equation theory was used. 

Behera et al. reported that the potential function obtained from Zerah and Hansen (ZH) closure 

at higher salt concentration, although repulsive over the whole range of distance, shows 

significant deviation from DLVO potential. Brukhno [111] reported that addition of simple 

monovalent salt gradually lowers the effective macroion charge and reduces the solution 

solubility. The concentration of multivalent salt that exceeds the macroion concentration 

causes macroion charge inversion and electrostatically driven macroion aggregation in both 
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60:3 and 60:5 charge asymmetry system. This aggregation of colloids leads to phase 

separation. Allahyarov [112] identified a salt driven attraction between like-charge mesoscopic 

colloid which occurs only for low or moderate dielectric constants of the solvent such that salt 

ions form pairs which are depleted around the colloidal surface. Gutierrez-Valladares [113] 

reported that the size asymmetric 1:1 electrolyte considered does not dramatically affect the 

performance of the HNC theory in applied concentration range of 0.0001 mol dm-3 to 1.5 mol 

dm-3. Leger et al. [114] studied the system of size ratio equal to 80 and charge ratio between 1 

and 4000 using OZ equation and HNC approximation and found a fair agreement with 

effective potential obtained from Poisson Boltzmann (PB) theory when charge is smaller than 

1000. With larger charges the PB and HNC values differ. MC simulation was carried out by 

Cuetos  [115] for a system of two colloidal particles in presence of monovalent co and 

counterions (size asymmetry of 1:40 and charge asymmetry upto 1:1000) in the primitive 

model. They found that whereas the internal energy becomes attractive at high colloidal 

charges, free energy (which corresponds to the true effective colloid-colloid interaction) 

remains always repulsive. The effective force between the charged spherical colloids induced 

by the presence of smaller charged spheres using MC simulations were studied [116–118]. 

Later on Dullens [119] measured chemical potential, pressure of colloidal suspensions using 

confocal microscopy and came out with a concept that from particle configurations the 

available volume to insert an additional sphere of that volume was determined which provides 

direct relations between geometry of colloidal particles and thermodynamics. When it comes 

to tunability of colloids Van Gruijthuijsen [120] synthesized and characterized colloidal 

suspensions that behave as effective hard spheres at very high salt concentration and show 

electrostatic repulsions at lower salt content that can be tuned by further decrease in the salt 

concentration using small-angle neutron and small-angle x-ray scattering experiments. 

 

We planned to use the formalism of statistical mechanical theory of asymmetrical mixtures, 

namely the Integral Equation Theory (IET) and molecular dynamics (MD) simulation to get 

the pair correlation functions, which are related to the properties.  
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1.8. Gaps in Existing Research 

1. The nature and strength of the effective interaction potential of colloidal suspensions is 

still an open and challenging problem. A clear understanding of this potential in a 

systematic way is important. 

2. Although Integral equation theory is quite successful for simple liquids and mixtures, they 

become increasingly unreliable for asymmetric systems and their numerical solution tends 

to become unstable.   

3. Simulation data on colloidal systems are very less. The simulation of colloidal suspensions 

has been mostly done either with lesser number of polyions or with lesser charge 

asymmetry (typically for micellar system). Full simulation even within PM level is rare. 

 

1.9. Objectives 

1. To calculate and properties of asymmetric binary mixtures using molecular dynamics 

simulation. 

2. To calculate the effective potential and thermodynamic properties of model colloidal 

suspensions using both molecular dynamics simulation and Integral equation theory  

with different closures. A systematic variation of these properties will be carried out 

with variation in the system parameters, which would enable in understanding the 

colloidal stability.  

3. To compare the results of Integral equation theory with different closures and 

molecular dynamics simulation for model colloidal suspensions. 

 

1.10. Summary of Thesis: 

With this background, Chapter 1 of the thesis introduces the importance and modelling of 

colloidal suspensions, basic statistical mechanics leading to pair correlation function and 

property calculation, Integral Equation theory, Molecular Dynamics simulation, concept of 

effective pair potential etc.  The gaps in existing research and objectives of this research work 

have also been discussed.  
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In Chapter 2, we studied binary mixtures asymmetric in size, charge and mass and their 

combinations using molecular dynamics simulation. A systematic variations of pair correlation 

functions and different properties as a function of size, charge and mass asymmetry have been 

observed. Empirical relations expressing diffusion coefficient of systems having more than 

one type of asymmetry in terms of diffusion coefficient of systems having asymmetry of only 

one type, have been presented.  

In chapter 3, we have extended our molecular dynamics simulations study to model colloidal 

suspensions in bulk solutions as well as in between two walls. Systematic variation in pair 

correlation functions, effective colloid potential, thermodynamic properties and self-diffusion 

coefficient were observed with system parameters. The density profiles and diffusion 

coefficients of the colloidal suspensions under confinement was studied as a function of colloid  

size, colloid charge and type of walls.  

In Chapter 4, we studied the performance of different integral equation theories for model 

colloidal suspensions and compared with the simulation results of chapter 3. The Newton-

GMRES algorithm was used to solve the Ornstein Zernike equation with three different closure 

approximations: Hypernetted Chain (HNC), Percus Yevick (PY) and Martynov Sarkisov 

(MS). The pair correlation functions, effective colloid potential were systematically studied 

with variation in size, charge and concentration of the colloid. The overall conclusion and 

scope of future research work is presented in chapter 5. 
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Chapter 2 

Molecular dynamics simulation study of 

asymmetric binary mixtures  

 

Structural and thermodynamic properties as well as diffusion coefficients of binary fluid 

mixtures have been investigated. The diameter, charge and mass of the fluid mixture are in 

the range 6Å-60Å, 1e-10e and 1amu-500amu, respectively, corresponding to typical micellar 

solutions. Variations in different properties with the size, charge and mass ratio of the 

particles are presented. 

 

_______________________ 

*Reproduced in part with permission from  

Uday Kumar Padidela, Tarun Khanna, and Raghu Nath Behera, “Structure, thermodynamics and diffusion in asymmetric 

binary mixtures: A molecular dynamics simulation study”, Physics and Chemistry of Liquids, 56(5), 685-701, 2018.  Copy 

right  attached 
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2.1. Introduction 

The study of structural and dynamic properties of fluids and their mixtures has been of great 

importance for both basic as well as applied research [1–7]. Binary fluid mixtures where one 

species differs from others in mass, size and/or charge serve as simple models for a wide 

range of systems, ranging from electrolyte, molten salts, classical plasma, polyelectrolytes, 

micellar solutions to colloidal dispersions, and are subject of many studies, both with respect 

to their static [8–12] as well as dynamic [13–19] properties. A popular theoretical model 

which mimics these systems is the so called “primitive model” [1] where both the species are 

treated explicitly on equal footing, while the solvent is treated as a structure-less dielectric 

continuum. From a theoretical point of view, investigating properties of such systems possess 

significant challenge due to size, charge and mass asymmetry leading to spatial correlations 

on different length and time scales, but makes them excellent model systems to study a 

variety of phenomena such as phase and glass transitions (dynamic arrest and cage effect, 

anomalous diffusion) etc [20] . Many of these studies are based on hard-sphere type model 

(defined by an interaction potential that considers only the repulsive forces among the 

molecules) [21], which facilitates one to study the structure and properties of the systems by 

performing computer simulations [22]. For example, the Weeks Chandler and Andersen 

(WCA) potential [23] has been quite successful in describing the structure and properties of 

liquid systems [23]. 

The equilibrium structure (local order as well as the long-range order) and thermodynamic 

properties of a fluid is provided by the pair correlations. Local properties, e.g. the way in 

which molecules are arranged in a neighborhood of a given molecule of the fluid, is obtained 

by the pair-correlation function (g(r)), while the long-ranged properties, e.g. the 

compressibility, is better described in the reciprocal space (Fourier space) with the structure 

factor (S(k)) [1]. There are several approaches to the study of diffusion phenomena (transport 

phenomena, in general). The hydrodynamic theory (continuum theory approach) [24] is quite 

successful for systems where the solute size is much greater than the solvent particles.  The 

Enskog kinetic theory [25] is successful in predicting the diffusion constant in the low-

density regime, but overestimates in the high-density regime, and also shows strong mass 

dependence for mixture. The mode coupling theory [26] seems to be quite successful in 
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describing the diffusion behavior for dense gases and liquids. Alternatively, molecular 

simulations play key role to describe them [27], as it is possible to observe the motion of the 

particles at atomic length and time scales during the simulation. Diffusion coefficient of 

noble gases, Lennard Jones fluids and their binary mixtures at various temperatures has been 

interest of study from years [3,4,28]. Further the diffusion coefficient of the binary mixtures 

was studied in slit shaped nanochannels [29,30], rectangular nanotubes [31]. 

Systems with asymmetry in mass, size or charge are difficult to analyze and model. These 

systems have been studied less widely. For example, a binary system asymmetric with 

respect to size has two length scales in which the properties can be calculated; either in the 

length scale of smaller particle or the length scale of the larger particle. The difficulty 

increases with increase in the size asymmetry of the mixture. Similar problem occurs in the 

system with mass asymmetry. In case of charged particles, the long-range coulombic 

interaction in combination with Periodic Boundary Condition [1] provide a great difficulty in 

computer simulations because of the slow convergence of the algorithms like P3M [32] at 

large particle charges. The problem is further compounded in a system with more than one 

type of asymmetry. We tried to study the relative effect of asymmetry in size, mass, charge 

and their combinations on the equilibrium and transport properties of the particles. We have 

investigated two component fluids consisting of spherical particles with asymmetry in size 

(6Å:60Å), charge (1e:10e) and mass (1amu:500amu) with total volume fractions in the range 

0.02 to 0.62. The system parameter taken in this study mimics typical micellar solutions. 

2.2. Model and Simulation Details of Asymmetric Binary Mixture 

We consider a two-component mixture of spherical fluid particles of types 0 and 1 with mass 

mi, number Ni, (density ρi = Ni/V) and diameter σi, (i = 0, 1), interacting with the pair 

potential.  

 
C

ij

WCA

ijij uuru +=)(  (2.1) 

Where the truncated and shifted Lennard-Jones potential (also known as Weeks-Chandler-

Anderson potential) given by 
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With, ])/()/[(4)( 612 rrru ijijij

LJ

ij  −= . The Coulomb potential (only for particles having 

charges) is given by rzzLru jiB

C

ij /)( = . In the above expressions, the cut-off distance, 

ijcr 6/12=
, jiijjiij  =+= ,2/)( , r is the inter particle distance,

 
zi are charges,

 /2eLB = is the Bjerrum length, )/(1 Tkb= is the inverse temperature, bk is the Boltzmann 

constant, T is the temperature, ε is the dielectric constant of the medium. The total number of 

particle is N = N1+N0 and the total density is ρ = ρ1 + ρ0.  All the simulations were carried 

out in NVT ensemble. The Langevin Thermostat [33] was used to maintain a constant 

temperature, which also provided the surrounding solvent conditions implicitly. Velocity 

Verlet scheme [34] was used for integrating the equation of motion using ESPResSO 

molecular dynamics simulation package [35]. P3M algorithm [32] was used for the columbic 

interactions in case of charged particles. The parameters needed for P3M algorithm were 

determined by solving the inbuilt rms error function “tuneV2” [36,37] (with accuracy 10-5) of 

the ESPResSO package.  

 

Simulations were carried out for binary mixtures with total number of particles N 

(600 to1000) packed in a cubic box under periodic boundary conditions with total density in 

the range 4×10-6 atoms/Å3 to 4.3×10-4 atoms/Å3 (corresponding to total packing fraction 

10  +=
 
between 0.01554 and 0.61571, with 3)6/( iii  = ). The box sizes and/or number of 

particles were adjusted for the desire density ρ = N/V. Simulations were carried out for at 

least 1.4 × 106 steps (8.4 ns). All the properties were calculated from the configurations 

stored in the production step of at least 1.0 × 106 steps (6.0 ns) with the integration steps of at 

most 300 steps (1.8 ps). This production step is preceded by equilibration steps of at least 4 × 

105 steps (2.4 ns) (Note: Here all the times are with respect to lighter particle).  

The pair-correlation function which is proportional to the probability of finding a 

particle at a given distance r from a given particle, is calculated from  
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where ρ is the density of the fluid, ),( rrrN +  is the average number of particles in a 

spherical shell of radius r and thickness ∆r around a given particle. The structure factor (S(k)) 

is the density response of a system, initially in equilibrium, to a weak, external perturbation 

of wavelength 2π/k. It is determined by  

( ) 1 ( )exp( . )S k g r ik r dr= + −        (2.4) 

 Thermodynamic properties, e.g., osmotic coefficient ΦV, excess free energy exE  are 

calculated using the standard formulae [1].  
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The diffusion coefficient of particle α, Dα, is calculated from the slope of mean square 

displacement (MSD) at large times according to Einstein relation [38] 
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Where, rα (t) is the position of the particle α at time t, and <….> denotes the ensemble 

averaging. 

2.2.1. Details of simulation and choice of simulation parameters: 

During initialization of molecular dynamics (MD) simulation, the number of particles, the 

size of simulation box and the initial positions and velocities of the particles were selected. 

For a crystalline solid the atoms are placed corresponding to the lattice structure. And for a 

liquid, the atoms were placed on the lattice to avoid the overlap between the atoms.  The  

initial positions and velocities of particles are assigned randomly to obtain the kinetic energy 
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of the system. During the initial phase of run, the system is relaxed from its initial condition 

and the energy is exchanged between the potential and kinetic modes; eventually the 

temperature of the system drifts from its set point. However, to attain equilibration we run 

the simulation to certain number of time steps in integration procedure. Figure 2.1a displays 

that the temperature of the system drops down during equilibration of the system and slowly 

the temperature attains equilibrium after certain time steps.  

 

 

 

 

 

 

Figure 2.1: Plot showing equilibration and production steps: a) reduced temperature vs time 

steps b) Total energy vs time steps with mass asymmetry (μ = 125), size asymmetry (σr = 1.0) 

and box length of the system 180Å.         

The total energy of the system (Figure 2.1b) with respect to the time steps doesn’t show more 

fluctuations and the system is stable. Similarly, we have carried out simulations using 

different box lengths (300Å, 375Å) the temperature and the total energy is nearly similar 

without more fluctuations and attains equilibrium. 

We have tested the simulation by varying time steps also in order to find a suitable 

time step to perform the simulations. After testing the system by monitoring the system 

parameters for equilibration we obtained the above properties of the system which concludes 

that the system attains the equilibration state and further carried out simulations to calculate 

properties like pair correlation functions, structure factor, diffusion coefficient etc. 
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2.3. Results and Discussions 

We have studied neutral as well as ionic binary mixtures (of types 0 and 1) from the 

viewpoint of their equilibrium structural arrangement (pair correlation function) and their 

transport properties (self-diffusion coefficient) with size asymmetry (σr = σ0/σ1) from 1.0 to 

10.0, charge asymmetry (zr = z0/z1) from 1.0 to 10.0 and mass asymmetry (μ = m0/m1) from 

 1.0 to 500. The size/mass/charge of type 0 particle is varied (while those of particle 1 is kept 

constant at σ1 = 6Å, m1 = 1amu (1.0 g/mole) and z1 = -1e) to achieve the desire σr, zr and μ. 

The variation of the interaction potential (WCA + Coulomb) for a typical system studied is 

shown in Figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2: Variation of the interaction potential with distance at different Bjerrum lengths 

(LB) for the system with charge asymmetry (zr = 5.0), size asymmetry (σr = 5.0) and no mass 

asymmetry (μ=1.0); (a) Total potential (WCA + Coulomb), (b) Only the Coulomb potential. 

2.3.1. Pair-correlation functions 

2.3.1.1. System with only Size Asymmetry 

We simulated a binary mixture of neutral particles with size of type 0 particle varying from 

6Å to 60Å and size of type 1 particle fixed at 6Å. The mass of both the particles were held 

constant at 1amu. The variation of pair-correlation function and the structure factor with 

different size asymmetry are displayed in Figure 2.3 and Figure 2.4, respectively.  
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As the size of the type 0 particle increases (σr increases), the peak positions in the 

pair-correlation function g00(r) and g01(r) shifts towards larger inter-particle distance. In all 

cases, the first peak positions appear near the inter-particle contact, i.e. at around r/σij ≈ 1. 

For g11(r), the trend is somewhat opposite. As the size of type 0 particles increase, they 

displace the smaller (type 1) particles to a greater extent and thus the probability of finding 

type 1 particles around another type 1 particle increases, the peak position in g11(r) shifts to 

smaller inter-particle distance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Variation of pair-correlation functions with size asymmetry (σr = 2.0 to 10.0) for 

neutral binary mixture: (a) g00(r), (b) g01(r) and (c) g11(r). Other parameters: packing fraction 

(η) = 0.25, no mass asymmetry (μ= 1.0). 

With increase in the size asymmetry, the peak positions in the 0-0 structure factor S00(k) shift 

towards the lower wave vector k (larger inter-particle distance) consistent with g00(r) (Figure 

2.4). 
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Figure 2.4: The variation of 0-0 structure factor S00(k) with size asymmetry (σr = 2.0 to 10.0) 

for the neutral binary mixture. Other parameters are same as in figure 2.3. 

The values of pair-correlation function at contact distances decrease with increase in 

size asymmetry. This trend is clearly observed in g01(r) and roughly observed in the other 

correlation functions. In addition to the first peak, a second peak (coordination shell) is 

observed in most of the correlation functions. This behaviour is quite expected, as the 

systems with particles more tightly packed have more long-range correlations and are closer 

to the solid state as compared with the particles which are loosely packed and are much 

nearer to the gaseous phase. The location of this second peak (coordination shell) is observed 

around r/σij ≈ 2 for low size asymmetry and this value keep on increase as the size of the 

bigger particle increases. For systems with lower packing fraction (lesser than 0.2), only the 

first peak is observed. A representative plot with a packing fraction 0.075 is shown in Figure 

2.5. 

Figure 2.5: Plot of pair-correlation 

function g(r) for size symmetric (σr = 

1.0) and size asymmetric (σr = 2.52) 

neutral binary mixture. Other 

parameters: packing fraction (η) = 

0.075, no mass asymmetry (μ= 1.0). 
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2.3.1.2. System with only Charge Asymmetry 

In this case, we simulated a binary mixture of charged particles with charge of type 0 particle 

varying from -1e to -10e and charge of type 1 particle fixed at 1e. The mass and size of both 

the particles were held fixed at 1amu and 10Å, respectively. The number of type 0 and type 1 

particles are adjusted to make the whole system electro-neutral.  

As the charge (of type 0 particle) increases (zr increases), the repulsion between two 

type 0 particles increases much more than the attraction between a type 0 and a type 1 

particle. This is clearly visible in the plot of pair correlation of functions for different charge 

asymmetry displayed in Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Variation of pair-correlation functions with different charge asymmetry (zr = 1.0 

to 10.0) for the binary mixture: (a) g00(r), (b) g01(r) and (c) g11(r). There is no mass 

asymmetry (μ=1.0) and no size asymmetry (σr =1.0). 

As the repulsion between two type 0 particles increases, the peak position as well as 

the position of first non-zero value in g00(r) curves shift towards larger interparticle 

distances. For example, the first non-zero value in g00 (probability finding a type 0 particle 
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around another type 0 particle) occurs around r/σ ≈ 1 (at the inter-particle-contact) for zr = 

1.0 to 3.0, and changes to r/σ ≈ 1.5 and 3.0 for zr = 5.0 and 10.0, respectively. Similarly, the 

peak positions in g00 appear around r/σ ≈ 2, 3, 6 for zr = 3.0, 5.0 and 10.0, respectively 

(Figure 2.6(a)). Further we have also discussed the g00 for big colloids i.e colloid-colloid type 

in chapter 3. We have plotted the probability of finding particles of type 0 around another 

particle of same type within a sphere of diameter σ, 2σ,…etc in Figure 2.7(a). This 

probability decreases nearly up to 50% as the charge on the type 0 particle increases from 1e 

to 10e (from zr = 1.0 to 10.0). This indicates that the accumulation of counter-ions (type 1 

particles) on the surface of type 0 particles (counter-ion condensation) may not be 

significant. However, as the charge (on particle of type 0) increases, probability of finding 

the number of counter-ions (type 1 particles) around this particle increases. This is supported 

by an increase in the value of the pair-correlation function g01(r) (which is proportional to the 

number of nearest neighbours) as we move towards the highly asymmetric case (Figure 

2.6(b)). The peak heights increase with increase in charge on the type 0 particles with the 

peak positions nearly same around r/σ ≈ 1. This increase is quite drastic in case of system 

with asymmetry 10:1 (zr = 10.0). With increase in charge on type 0 particle, the g11(r) 

(Figure 2.6(c)) peak becomes broad and peak height increases, peak positions shift to lower 

inter-particle distance. The value of correlation function g11(r) is nearly unity in case of 

system with lower charge asymmetries (zr = 1.0 to 3.0). This may be due to the loose packing 

of the system and a relatively weak long-range interaction as compared to a system with 

larger charge asymmetry, say zr = 5.0 and 10.0. 

 

 

 

 

 

 

 

Figure 2.7: a) Plot of probability of finding a 0-type particle around another 0-type particle 

with different charge asymmetry (zr = 1.0 to 10.0). b) Shift in the position of the first peak of 
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the pair-correlation functions (g00 and g01) for the charged system from the corresponding 

uncharged system. (diameter of both the particles =10Å, Charge Density is in e/Å3, e=1.6 × 

10-19coulombs). 

For selected cases, we have compared the peak positions of pair-correlation functions 

of the charged systems with the corresponding neutral systems in Figure 2.7(b). This plot 

shows how the shift in the position of the first peak for various neutral system from that of 

corresponding charged system in g00(r) and g01(r) as a function of the charge density of the 

bigger particle. The shift in the peak positions increase as the charge asymmetry increases, 

and the shift is about an order of magnitude more for g00(r). 

2.3.1.3. System with only Mass Asymmetry 

Here, we simulated a neutral system with asymmetry in mass (µ = m0/m1) varying from µ = 

1.0 to µ = 500. The size of both the particles are same (σ = 10Å). The packing fraction of the 

system is 0.08481.  

The pair correlation functions (radial distribution functions and the structure factor) 

for the different mass asymmetry are nearly superimposable to one another (not shown here) 

with the first peak occurring around r = 21/6 σ (at the minimum of the interacting potential). 

The peak heights of all the pair-correlation functions for different mass asymmetry are 

collected in Table 2.1.  

Table 2.1. The peak height of pair-correlation functions for various mass asymmetries at 

different temperatures for neutral binary size-symmetric mixture. The packing fraction of the 

system is 0.0848. Note that g00 = g10 = g11. 

Mass asymmetry (µ) 120K 300K 500K 

2 1.254 1.183 1.155 

10 1.254 1.184 1.154 

50 1.255 1.183 1.153 

84 1.253 1.182 1.153 

125 1.257 1.182 1.153 

250 1.254 1.184 1.154 

500 1.253 1.183 1.153 

The values are nearly same for a given temperature and decrease as the temperature 

increases. Thus, mass asymmetry has almost negligible effect on the equilibrium structure 
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arrangement of the system.  This behaviour is expected because the potential of interaction 

between the particles which determines the equilibrium arrangement of the system is 

independent of the mass of the particle. However, the mass influences diffusion coefficient.  

In addition to above, we simulated binary mixtures with asymmetry in (a) both size 

and mass, as well as (b) both charge and mass. The pair-correlation functions and structure 

factors (not shown here) are found to be similar to the cases, respectively, with (a) only size 

asymmetry, and (b) only charge asymmetry, hence supporting the claim that mass of the 

particles have negligible effect on the equilibrium structure arrangement of the studied 

systems. 

2.3.1.4. System with charge and size asymmetry 

This is an interesting case as both charge and size asymmetry effects the equilibrium 

structure arrangement of the particles individually. In this set of simulations, we took binary 

mixture of size ratio (σr) = 5.0 with the charge asymmetry (zr) = 3.0 to 10.0.  

 

  

 

 

 

 

 

Figure 2.8: Variation of the pair-correlation functions (g(r)) and 0-0 structure factor S00(k)  

for size asymmetry (σr = 5.0) and different charge asymmetry (zr = 10.0 to 3.0). There is no 

mass asymmetry (μ=1.0). 

The pair correlation functions for this mixture are plotted in Figure 2.8. On increasing the 

charge and size of type 0 particle in the mixture, the g00(r) show a trend closer to the systems 

with only charge asymmetry (than system with only size asymmetry) - the peak shifts 
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towards larger inter-particle distances. The g01(r) shows similar trend like that of only charge 

asymmetry, i.e. the peak height increases with increasing charge asymmetry. The g11(r) peak 

increases as the charge of bigger particle increases. The structure factor S00(k) shifts towards 

lower wave vector k with increase in charge asymmetry.  

2.3.1.5. Thermodynamic Properties  

The variation of reduced energy and pressure with size asymmetry (σr) for neutral binary 

mixture is displayed in Figure 2.9. The reduced energy as well the pressure of the system 

decreases with increasing the size asymmetry (increasing σr). This variation is similar to 

decreasing the density of the system.  

 

 

 

 

 

 

Figure 2.9: Variation of the reduced (a) energy (E*) and (b) pressure (P*) with size 

asymmetry for neutral binary system with mass symmetric (μ =1.0). 

The variation of reduced excess free energy (βEex/ρ) and the osmotic coefficient (ΦV) 

as a function of charge asymmetry (zr) for the size-symmetric (σr = 1.0) as well as size-

asymmetric (σr = 5.0) binary mixtures are plotted in Figure 2.10. The equation 2.5 and 

equation 2.6 can be written as  
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is the excess energy per ion. This expression is valid for hard-sphere plus coulomb potential. 

But the WCA potential we used to be purely repulsive which often can be used to mimic 

hard-sphere potential.  

Figure 2.10: Variation of reduced excess 

free energy ( ) and osmotic coefficient   (

) with charge asymmetry (zr) for the 

systems with size asymmetry (σr = 5.0, 

solid lines) and without size asymmetry 

(σr = 1.0, broken lines). 

 

 

 βEex/ρ increases (in magnitude) as the charge asymmetry increases (zr increases), and 

the rate of increase is more after zr > 3.0. As zr increases the coulomb interactions between 

the particles increases and become long range. This results in increase of excess free energy 

(βEex/ρ). As the size (σ) of the particle increases (for a given charge asymmetry), the charge 

density decreases and so the long-range interactions. This brings the system close to ideal 

and so magnitude of excess free energy decreases.  The osmotic coefficient (ΦV ) decreases 

as the charge asymmetry increases (zr increases). The values of size symmetric case are 

found to be greater than those corresponding size asymmetric systems at lower charge 

asymmetry. This trend becomes opposite at higher charge (zr > 5).   

2.3.2 Self-Diffusion coefficients 

As mentioned previously, the self-diffusion coefficients of our studied systems are calculated 

from the slope of the mean-square displacement at long time limit.  
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2.3.2.1. System with only mass asymmetry 

The mean square displacement (MSD) for type 0 particle as a function of simulation time for 

different mass asymmetry (µ = m0/m1) at 300 K is plotted in Figure 2.11(a). The MSD 

decreases with increase in the mass asymmetry (increase in µ). The self-diffusion 

coefficients for both type 0 (D) as well as type 1 particles (D1), obtained from the 

corresponding MSD, are presented in Figure 2.11(b). 

 

 

 

 

 

 

 

 

 

Figure 2.11: Plot of (a) mean square displacement (MSD) and (b) diffusion coefficient (D in 

Å2/ps) with mass asymmetry (μ) for size symmetric (σr = 1.0) neutral binary mixture at 300K 

with packing fraction (η = 0.08481). 

The values of D decrease sharply while the values of D1 are nearly constant with 

increase in the mass asymmetry (increase in µ) of the mixture. The value of D changes from 

50.1091 Å2/ps at µ = 1 to 0.0065 Å2/ps at µ = 500 at 300K. The corresponding values of D1 

are 53.551 Å2/ps to 45.832 Å2/ps, respectively. A similar trend in the diffusion coefficients 

with the mass asymmetry (µ) is obtained for other temperatures. The variation of D with 

mass asymmetry is shown in the isotherms of Figure 2.12. The isotherms are found to be 

parallel following the equation (R2 = 0.99)  

 )(45.1)( LogFDLog −=  (2.11) 

The values of the intercept F increase with the temperature and were estimated to be 1.34, 

1.74 and 1.97 for 120K, 300K and 500K respectively.  
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Figure 2.12: The variation of diffusion coefficient (D) of heavier particle with mass 

asymmetry (µ) at different temperatures for size symmetric (σr = 1.0) neutral binary mixture 

with packing fraction (η = 0.08481). 

Further insight is obtained from the Macedo-Litovitz theory [39,40]  which is quite 

successful in describing the diffusion behaviour for glass transition of fluids [41] and in 

polymers [42,43]. This theory is based upon the assumption that diffusion in liquids is 

controlled by two simultaneous events: (1) the existence of an adjacent local free volume of 

certain size into which the molecule can jump, and (2) the acquisition of sufficient energy by 

the molecule in order to escape from the force field of its neighbours. Accordingly, the 

diffusion coefficient is expressed in the following form:  

 )]}/()/[(exp{ 00 RTEvvDD af +−=   (2.12) 

Where, v0 and vf are, respectively, the molar volume and the average free volume per 

molecule, γ is a numerical factor between 0.5 and 1. For our case of mass asymmetry, the 

ratio v0/vf is nearly constant as the size of the particles is constant. For example, the ratio v0/vf 

is found to be 0.68 for the packing fraction of 0.0848 using the Carnahan-Starling equation 

of state [44]. In view of nearly constant free volume term (which can be absorbed in the pre-

factor D0), the the Macedo-Litovit equation reduces to the Arrhenius relationship 

 )}/(exp{0 RTEDD a−=             (2.13) 
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The plot between lnD and the inverse temperature is displayed in Figure 2.13 and the 

extracted activation energy (Ea) and D0 (from the slope and intercept of the plot, 

respectively) for the heavier particle are summarized in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Arrhenius plot (lnD vs 1/T) of neutral binary mixture for different mass 

asymmetry (µ). Other parameters are same as given in figure 2.12. 

Table 2.2: Estimated Arrhenius parameters (Equation 2.13), the activation Energy and pre-

factor (D0), for different mass asymmetries (μ) for neutral binary size-symmetric mixture. 

 

 

 

 

 

 

The values of activation energy vary from 750.6 to 821.2 J/mol (minimum for μ = 50) 

and the pre-factor D0 (which is proportional to the collision frequency of the particles) 

decreases with increase in mass asymmetry. The obtained values of the activation energy are 

comparable to reported values for similar system but with full LJ potential [45]. 

Mass asymmetry (µ) Activation Energy(J/mol) D0 

2 804.17 49.545 

10 796.39 5.012 

50 750.65 0.447 

84 791.04 0.209 

125 763.61 0.119 

250 775.94 0.041 

500 821.18 0.015 
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2.3.2.2. System with only size/charge asymmetry 

The variation of diffusion coefficients with only size asymmetry is shown in Figure 2.14.  

 

 

 

 

 

 

Figure 2.14: The variation of diffusion coefficients of both the particles with size asymmetry 

(σr = 2.5 to 10.0) for the mass symmetric (µ = 1.0) neutral binary mixture. 

With increase in size of type 0 particle (with increase in σr), the values of the 

diffusion coefficient of type 0 particle (D) decrease (in agreement with the Stroke-Einstein 

relationship [36] and that of type 1 particle (D1) increases. Similarly, with increasing the 

charge on the type 0 particle (with keeping the charge of type 1 particle fixed) the diffusion 

coefficient value of the type 0 particle decreases (Figure 2.15(a), σr =1.0 curve).  

2.3.2.3. System with more than one type of asymmetry 

The variation of self-diffusion coefficients (D) studied till now can be summarized as 

follows: the diffusion coefficient value decreases with increase in (i) mass, (ii) size, and (iii) 

charge, of the particle. It will be interesting to see the variation of D with a combination of 

size, charge and mass. Figure 2.15(a) shows the variation of diffusion coefficient (of type 0 

particle) with charge asymmetry for a size symmetric (σr =1.0) and a size asymmetric (σr = 

5.0) system. In both the cases, the diffusion coefficients decrease with increase in charge 

asymmetry (increase in zr). However, the value of D is smaller (about 15%) for the system 

with size asymmetry than the size-symmetric system. Representative results for systems with 

asymmetry in both mass and charge is displayed in Figure 2.15(b). For the system with mass 
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asymmetry µ = 125, the values of diffusion coefficients are closer to the system with only 

mass asymmetry and also the effect of charge comes into picture only for systems with zr > 

3.0. This may be due to the fact that the electrostatic interactions in systems with zr < 3.0 

may not be able to bring much of momentum change for a particle with mass 125amu (µ = 

125) as compared to particle of 1amu mass. This is supported by about two-fold increase in 

the diffusion coefficient values of the lighter (type 1) particle (whose mass is held constant at 

1amu). Although, the diffusion coefficient steadily decreases when either µ or σr increases, 

but the maximum value was found with µ = 1, σr = 2.5 (and not with σr = 1) when both mass 

as well as size of the particles vary simultaneously. Almost similar results are obtained for 

the case with both mass and size asymmetry. The diffusion coefficients follow the trend for 

only mass asymmetry, but the decrease in D is more for the system with additional size 

asymmetry. 

 

 

 

 

 

 

Figure 2.15: The variation of diffusion coefficients with charge asymmetry for binary 

mixture (a) with different size asymmetry (σr = 1.0 and 5.0), for 0-type particle (b) with mass 

asymmetry (µ = 125), for both 0-type and 1-type particles.  The diffusion coefficients of type 

0 particles in figure (b) is multiplied by factor of 10. 
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2.3.2.4. Empirical relations 

We have obtained an empirical relation (Equation 2.14) to predict the diffusion coefficient 

(D) for the systems with asymmetry in both size as well as mass in terms of the diffusion 

coefficients of systems with only mass asymmetry (DM) and diffusion coefficient of system 

with only size asymmetry (DS). The expression is (µ = σr ≠1.0):  
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With a = 1.9, b = 4.99 for 84 < µ < 1.0, where as a = 4.49, b = 5.79 for 500 < µ < 84. 

The prediction of Equation (2.14) is compared with the simulation results in Figure 2.16(a).  

 

Figure 2.16: Correlation plots of diffusion coefficients obtained from current simulation and 

predicted (a) by equation (2.14) and (b) by equation (2.15).  

We have tried to express the diffusion coefficients of charged system (DC) in terms of 

those of corresponding neutral systems (DN). The following empirical relation was obtained: 
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Where z is the charge on the particle, ηN and ηC are the packing fraction of the neutral and the 

charged particle, respectively. This empirical equation (Equation 2.15) reproduces the 

simulation result quite well (Figure 2.16(b)). 
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2.3.2.5 Estimation of System-Size Dependence of diffusion coefficient 

We have estimated the system-size dependence on the diffusion coefficients 

calculated, using Yeh and Hummer equation [46] 

0 2.837297 / (6 )PBC BD D k T L= −    (2.16)  

Where, DPBC is the diffusion coefficient calculated in the simulation, D0 is the diffusion 

coefficient of the particle in an infinite system, kB the Boltzmann constant, T the absolute 

temperature, and ζ the shear viscosity of the solvent. We have calculated the diffusion 

coefficients of a representative system (zr = 5.0, σr = 1.0, μ =1.0 and η = 0.067) with different 

simulation box lengths (L). The values of diffusion coefficients obtained are 37.07, 38.66, 

39.33 and 40.05 Å2/ps, for L = 150, 180, 300 and 375 Å, respectively.  This variation of self-

diffusion coefficient with simulation box lengths is also plotted in Figure 2.17.  

 

Figure 2.17: Variation of self-

diffusion coefficient with 

different simulation box length 

(L) for the system with zr = 5.0, 

σr = 1.0, μ =1.0 and packing 

fraction (η) = 0.067. 

 

 

The diffusion coefficient in the limit of infinite box length (D0), estimated from the 

intercept of this plot (Eq. 2.16), is found to be 41.69 Å2/ps. The estimated deviations of the 

simulated diffusion coefficients from that of D0 for the system considered are about 11% (for 

L = 150 Å), 7% (for L = 180 Å), 5% (for L = 300 Å) and 4% (for L = 375 Å).  Thus, our 

values reported mostly at L = 180 Å (and few cases 300 Å and 375 Å) have a system-size 

dependence error within 7% (or less). Accordingly, we expect a similar deviation (4%–7%) 

in the values of D as well as DM and DS in Eq. (2.14), and DC as well as DN in Eq. (2.15), and 

probably, the numerical constants in these equations may be hardly affected.  
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2.4 Conclusion 

We have reported the molecular dynamics simulation results for binary fluid mixtures 

having asymmetry in size, mass, charge and their combinations. A systematic variations in  

different properties as a function of charge, size and mass asymmetries have been observed. 

Possible explanation for these trends is presented in many cases. The pair correlation 

functions shift to larger inter-particle distances as the size and/or charge increases indicating 

increase in repulsion between particles. The mass variation has practically no effect. This 

may be due to the fact that mass doesn’t appear explicitly in the expression for pair potential 

(Equation 2.1). With increase in size asymmetry, both the energy and pressure of the neutral 

systems decreases, an effect similar to decrease in density of the system. As the charge 

asymmetry increases, the interactions between the particles become long ranged and the 

magnitude of excess free energy increases. For a given charge asymmetry, higher excess free 

energy is found for size symmetric mixture than those of size symmetric case, possibly due 

to reduction in charge density. The self-diffusion coefficients are found to decrease with 

increase in size, charge and mass asymmetries. Arrhenius-type behavior is found for the 

diffusion coefficient. Empirical relations expressing diffusion coefficient of systems having 

more than one type of asymmetry in terms of diffusion coefficient of systems having 

asymmetry of only one type, have been presented. 
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Chapter 3 

Structure and effective interactions of 

model colloidal suspensions 

 

 

 

Structure and properties of model colloidal suspensions (salt free cases as well as with added 

salt) in bulk solutions as well as under confinement have been investigated using molecular 

dynamics simulations. The diameter of colloid ranges from σ0 = 20 - 100 nm, charge of 

colloid Z0 = 10-100e, concentration of colloid C0 = 0.484-2.42 μM and concentration of salt 

Cs = 0 - 7.7 μM. Variation of different properties with system parameters (colloid size, 

charge, concentration etc.) have been investigated.  

 

______________________ 

*Reproduced in part with permission from 

P. Udaykumar, R. N. Behera, “Molecular dynamics simulation study of colloidal suspensions under 

confinement”, Asian Journal of Chemistry, 30(11), 2450-2454, 2018. Copy right CC BY-NC 4.0 license. 
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3.1. Introduction 

The study of highly asymmetric multicomponent colloidal systems remains a challenge from 

last few decades, as different length and time scales are involved for the different 

constituents.  This problem is dealt by coarse graining method which requires elimination of 

degrees of freedom of some of the smaller particles. The multicomponent colloidal system is 

treated as monodisperse system [1,2] i.e. the effective one-component system (OCS) of 

colloidal particles as primitive model (PM). This model contains asymmetric colloids, 

counterions and co-ions which depicts the electrostatic attraction and repulsion between them 

and this level of description is stated as multicomponent primitive model. This model is 

employed to study the colloidal systems by standard techniques like molecular simulations 

and liquid-state theories based on Ornstein Zernike Equation (OZE).  

By employing the primitive model, the attractive potential between the charged colloids 

arising from electrostatic interactions have been found in various theories [3–7] and 

computer simulations [8–10]. In these simulation studies and various theories, the attractive 

force appears to be short range and in few other theoretical studies a long-range attraction is 

present at certain conditions [11]. Simulations have confirmed a presence of short-range 

attraction, which is obtained from spatial correlations between the ions present on surface of 

colloids. The reports on attractive pair potential of a like charged pair of colloids in bulk 

solution and infinite dilution, a pair of plates and a sphere in an electrolyte solution came into 

existence [12–16]. Guldbrand [17] confirmed the attraction between the like-charged 

surfaces immersed in divalent ions in the limit of high surface charge density. Other Monte 

Carlo (MC) simulations [9,18] also showed that attractive interactions between the charged 

wall and spherical poly-ion (both monovalent and divalent). They found that attraction is 

favored by high surface charge density, if counterion is polyvalent, relative permittivity and 

temperature are low. Linse et al.  demonstrated that an aqueous solution with colloid charge 

of 60 at strong electrostatic coupling, the effective attraction between the like-charged 

colloids may lead to phase separation [19,20] MC simulations recently proved that the 

existence of attractive interactions between like-charged surfaces is strongly conditioned by 

finite size of ions [21]. Further a simulation method was developed based on a homogeneous 

background charge density to estimate the density dependent effective pair potential between 
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charged colloids and reported by Bareigts et al [22]. This method works in diluted and 

concentration regimes as well as at low and high electrostatic coupling.  

We employed the molecular dynamics simulations on highly asymmetric colloidal 

suspensions. We present the systematic variations of pair correlation functions, diffusion 

coefficients along with thermodynamic properties, effective potential and potential of mean 

force as a function of charge, size and concentration of colloid in multicomponent colloidal 

system which give insights about the type of interactions which occur at different system 

parameters which resemble and mimic the real colloidal systems like micelles, polystyrene 

latex particles, surfactants etc. We have investigated multicomponent spherical colloidal 

systems in bulk solution with diameter of colloidal particle σ0 = 20 nm-100 nm, charge of 

colloid Z0 = 10e-100e, colloid concentrations C0 = 0.484 µM - 2.42 µM and salt 

concentrations Cs = 0 – 7.7 µM. The surface charge densities 
2

0 /e Z e r = (r is the radius of 

colloid) and the diameter used here nearly resemble those of synaptic vesicles (SV) [23] from 

brain cortex and brush- border- membrane vesicles (BBMV) [24] from small intestine, 

whose diameters are 45nm and 84nm. 

We have divided this chapter into A) Model of colloidal suspensions in bulk solution. 

B) Effect of confinement on model colloidal suspensions. To study the effective interactions 

of colloidal suspensions we present a general definition of effective potential of colloid 

particles of a multicomponent system. In experiments, basically only a set of components are 

observed out of a complex system. This set of components are considered and the pair 

correlations among these are assumed to produce the effective pair potentials. This process is 

paralleled by considering the pair correlations from simulations and using the set of Ornstein 

Zernike equations and reduced to relevant set of equations where correlations appear.  

A) Model of colloidal suspensions in bulk solution 

3.2. Model and Simulation Details  

3.2.1. System Studied 

We have studied spherical anionic colloid (type 0) of molar concentration C0 (charge 

Z0, diameter σ0) with monovalent counterion (type 1) obeying electroneutrality condition      
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Z0C0 +Z1C1 = 0. In addition to these two component (salt free) cases, we have also 

investigated systems with added salt using a three-component model. To make the system 

trackable for simulation, we have used monovalent 1:1 salt (type 2) with that of same 

counterion (type 1). The electroneutrality condition becomes Z1C1 = Z0C0 +Z2C2.  

We have studied both the static properties (pair correlation function), effective direct 

correlation function, effective pair potentials, thermodynamic properties and transport  

property of asymmetric multicomponent colloidal suspensions with the diameter of colloid σ0 

(in nm) = 20, 32, 40, 60, 100, charge of colloid Z0 (in e) = 10, 15, 25, 50, 75, 100, and 

concentration of colloid C0 (in µM) = 0.484, 0.968, 1.452, 1.936 (µM = 10-6 molar) and 

concentration of salt Cs (in µM) = 0.484, 0.968, 1.452, 1.936, 2.42, 4.84, 7.7. The diameters 

and the magnitude of charge of the counterion and co-ions were fixed, respectively at 0.3 nm 

and 1e.  

Classical molecular dynamics simulations were carried out for the above-mentioned 

systems with WCA + Coulomb interaction potential. The details of interaction potentials and 

the simulations were given in chapter 2 (section 2.2). The simulation consisted of total 

number of particles N (2200 to 20200) packed in a cubic box under periodic boundary 

conditions with density in the range 6.413×10-6 atoms/nm3 to 5.889×10-5 atoms/nm3. The box 

sizes were adjusted for the desired density ρ = N/V. The total simulation time is 20.4ns, but 

the properties are calculated from the last 10.4ns of the trajectory with the integration steps 

of at most 300 steps (1.8 ps). The static, thermodynamic and transport property (self-

diffusion coefficient) of the colloidal suspensions were calculated using the standard 

formulae already described in chapter 2 (section 2.2).  

3.2.2. Calculation of effective one-component potential: 

The multicomponent OZ equation in Fourier space given by 


=

=−
m

s

sbsasabab (k)hρ(k)c(k)c(k)h
1

ˆˆˆˆ       (3.1) 

can be solved along with a closure relation which can be written as  
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( ) exp[ ( ) ( ) ( ) ( )] 1,ab ab ab ab abh r u r h r c r B r= − + − + −         (3.2) 

Where ( )abu r  and ( )abB r  are the pair potential and bridge diagram sum, respectively. 

Equation 3.1 can be written as that of an effective one component (colloid only) OZ equation 

[25] as      

00 00 0 00 00
ˆ ˆˆ ˆ( ) ( ) ( ) ( )eff effh k c k h k c k= +                                                 (3.3) 

Where the direct correlation function of the effective one component fluid, 00
ˆ ( )effc k  is given 

by 

00 00
ˆ ˆ( ) ( ) ( )eff

sc k c k v k= +                                                                             (3.4) 

                with          
1

0 0
ˆ ˆ ˆ( ) .(1 ) .T

sv k c c c  −= −            (3.5) 

The elements of the column vector 0ĉ and that of matrix ĉ  in above equations are given by 

0 0
ˆ ˆ[ ] ( )a a ac c k=  and ˆ ˆ ( ), ( , 0)a b abab

c c k a b   =  
. The 00

ˆ ( )effc k  includes the terms as 

colloid-colloid direct correlation function (c00(k)) and the screening function (vs(r)) which 

includes the contributions of particles other than colloid, i.e. counterions and/or co-ions.  

The exact closure of the one component fluid can be given by 

00 00 00 00( ) exp[ ( ) ( ) ( ) ( )] 1eff eff effh r V r h r c r B r= − + − + −                                      (3.6) 

Where Veff (r) is the pair potential of the effective one component system which reproduces 

the h00(r) of the multicomponent system.  

   In the view of Eq. (3.3) and the fact that h00 of Eq. (3.6) is same as that for multicomponent 

one (Eq. 3.2), effV  can be found out as follows. Equating Eq. 3.6 and Eq. 3.2 (a = 0 = b, 

colloid-colloid part) gives  

                 
00 00 00 00 00 00 00( ) ( ) ( ) ( ) ( ) ( ) ( )eff eff effV r h r c r B r u h r c r B r − + − + = − + − +               (3.7) 
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00 00 00 00 00( ) ( ) ( ) ( ) ( ) ( )eff eff effV r B r B r u r c r c r − + − = − + −  

Assuming 
00 00( ) ( )effB r B r  which is quite a good approximation, the above equation gives 

                                            
00 00 00

00

( ) ( ) ( ) ( )

( ) ( )

eff eff

s

V r u r c r c r

u r v r

 

 

− = − + −

= − +
                               (3.8) 

For a two-component system (consisting of type 0 and 1 particles), Equation 3.5 gives  

2

1 10

1 11

( )
( )

1 ( )
s

c k
v k

c k





=

−
          (3.9) 

And for a three-component system consisting of type 0, type 1 and type 2 particle 

          
2 2 2 2

1 01 1 01 2 22 1 2 01 02 12 2 02 2 02 1 11

2

1 11 2 22 12

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
( )

ˆ ˆ ˆ((1 ) (1 ) )
s

c c c c c c c c c
v k

c c c

       


 

− + + −
=

− − −
      (3.10) 

The ( )sv k  from the Equation 3.9 and 3.10 is inverse Fourier transformed to get ( )sv r . 

3.3. Results and discussions 

3.3.1. Variation of Colloid Charge 

The effect of increasing colloid charge (at a fixed σ0 = 32nm and C0 = 0.968µM) on various 

RDFs (colloid-colloid g00(r), colloid-counterion g01(r) and counterion-counterion g11(r)) are 

displayed in Figure 3.1.  For Z0 = 10e, the g00(r) increases smoothly and levels up to unity 

without any peak as the inter colloid distance r increases (Figure 3.1a). This resembles 

closely a vapor like system. As Z0 increases, the value of g00(r) increases, exceeding one and 

peaks start appearing indicating a liquid like structure. The  initial slope has increased 

(stiffer) indicating increasing in repulsive force between the particles. The starting of the 

g00(r) (the distance of closest approach of two colloids) curves shift towards larger inter-

particle distances. The peak height of the first neighbouring peak of g00(r) (the probability of 

finding colloids around another colloid) increases. As the charge of the colloid increases, the 

concentration of counterions increases (for electroneutrality). The effective repulsions 

between the colloids decreases due to screening of the counterions. Thus, the probability of 
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finding a colloid around another colloid (peak height) increases. This is supported by colloid-

counterion RDFs g01(r), showed in Figure 3.1b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Variation of a) colloid-colloid radial distribution functions g00(r) b) colloid-

counterion radial distribution functions g01(r) c) counterion-counterion radial distribution 

functions g11(r) with charge asymmetry at fixed σ0 = 32nm, C0 = 0.968μM and Cs = 0 μM. 

The peak height (probability of finding counterions around a colloid) increases 

substantially as the colloid charge increases. The peak position is roughly at r = σ01 

indicating counterion accumulation on the surface of colloid, resulting decrease in the 

effective charge of the colloid. With increase in Z0, the broad maxima of counterion-

counterion RDFs g11(r)) (Figure 3.1c) increase and the peak positions shift towards lower 

r/σ11, the peak becomes sharper owing to increase in counterion accumulation.  

Almost similar trends in the radial distribution functions with macroion charge has been 

found using MC simulations [26,27], although the system parameters are different than those 
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used here. For example, Linse group [26] have used Z0 = 10e - 80e, σ0 = 2nm and volume 

fraction φ = 0.01. In their studies the peak heights and peak positions are (from 1.05 - 1.25, 

r/σ00 ~ 3.5) for g00(r), (2.3 – 6,  r/σ01 ~ 1) for g01(r), (1 -17, r/σ11 ~ 1) for g11(r). The 

corresponding values for the present case are (1 - 1.4, r/σ00 ~ 4) for g00(r), (2.2 - 7.6, r/σ01 

~1.0) for g01(r),  (0.84 - 11.1, r/σ11 ~ 22.1) for g11(r). A similar behavior is also reported by 

us using integral equation theory [28]. 

The variation of colloid-colloid structure factor S00(k) as a function of Z0 is displayed in 

Figure 3.2.  As colloid charge increases, the peak height of S00(k) increases slightly while the 

peak position remains more or less same. A secondary peak starts appearing with increase in 

charge, indicating particle arrangement in which there is considerable short-range order. 

These behaviors are in consistent with those obtained by the RDFs just discussed.  

It is worth mentioning the results on S00(k) obtained by Fushiki [29] using HNC theory i.e. 

S00(k) = 1.6 and S00(k) obtained by Beresford [30] using Jellium approximation i.e. S00(k) = 

1.5, our S00(k) obtained by MD simulation is underestimated with their theories. The peak 

height of the first peak is obtained at S00(k) = 1.26. The system parameters of our simulations 

are σ0 = 32nm, Z0 = -100e, C0 = 0.968μM and Cs = 0 μM.  

Figure 3.2. Variation of Structure factor 

S00(k) with charge of colloid. The 

parameters used are same  as in Figure 

3.1. 

 

 

 

 

 

The variation of potential of mean force ( 00 00( ) log( ( ))W r g r = − ) with increasing the colloid 

charge Z0, is displayed in Figure 3.3a. 00 ( )W r  is stiffer (repulsive) at large inter-colloid 
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distance. As the colloid charge increases, the 00 ( )W r decreases, becomes negative 

(attractive) and becomes positive (repulsive) with increase in the inter-colloid separation. A 

secondary peak start appearing when the colloid charge increases [31]. The position (r/σ00) 

and depth of the minima as a function of charge are summarized in Table 3.1. With increase 

in colloid charge, the depth at minima of 00 ( )W r  increases and peak position slightly 

decreases. 

 

 

 

 

 

 

 

Figure 3.3. Variation of (a) 00 ( )W r  and (b) ( )effV r with charge asymmetry at fixed σ0 = 

32nm,  C0 = 0.968μM and Cs = 0 μM.  

Table 3.1:  The position (r/σ00) and depth of the minima of  ( )effV r  and 00 ( )W r  as a 

function of colloid charge for two component (salt free) and three component (Cs = 4.484 

μM) systems. Fixed parameters: σ0 = 32nm, C0 = 0.9681 μM. 

Z0 

(e) 

( )effV r  00 ( )W r  

r/σ00 

Two 

component 

system 

r/σ00 

Three 

component 

system 

r/σ00 

Two 

component 

system 

 

r/σ00 

Three 

component 

system 

10 3.939 0.008 3.623 -0.005 4.172      -0.012 3.681 -0.003 

15 3.922 -0.056 3.593 -0.039 3.856 -0.053 3.681 -0.045 

25 3.822 -0.163 3.765 -0.139 3.843 -0.167 3.727 -0.142 

50 3.823 -0.323 3.686 -0.232 3.838 -0.295 3.712 -0.237 

75 3.822 -0.460 3.577 -0.275 3.858 -0.317 3.602 -0.279 

100 4.038 -0.771 3.593 -0.333 3.801 -0.321 3.602 -0.345 
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The variation of effective colloid-colloid potential ( )effV r with colloid charge is 

almost similar to that of potential of mean force and is displayed in Figure 3.3b. However, 

the magnitude at the minima are larger corresponding to the case of 00 ( )W r . This is 

probably due to the fact that additional screening due to other colloids are included in 

( )effV r , but absent in 00 ( )W r . The minima obtained (Table 3.1) are qualitatively similar 

to those obtained by Lobaskin [32] and Anta [33]. The particle charges they used are 20e and 

60e. The diameter of colloid is significantly larger in our work, viz., 20nm to 100nm as 

compared to 4nm in Anta’s work. The minima get deeper with increase in charge of the 

colloidal particle, for 100e it reaches -0.77 at r/σ00 = 4.038.  

The effective colloid-colloid direct correlation function 00 ( )effc r  is studied with 

increasing colloid charge (Figure 3.4a). The effective colloid-colloid direct correlation 

function 00 ( )effc r  (expressed in Equation 3.4 and 3.5) includes the terms as colloid-colloid 

direct correlation function (c00(r)) and the screening function (vs(r)) which includes the 

contributions of other particles i.e. counterions and/or co-ions. The 00 ( )effc r  increases from -

0.999 for charge Z0 =10e to 4.932 for Z0 =100e in salt free colloidal system. The magnitude 

of screening function ( )sv r is positive at smaller r, becomes negative and finally tends to 

zero as r increases (Figure 3.4b). With increase in Z0, the magnitude of ( )sv r  increases. 

The ( )sv r  at r = 71.22 nm for charge Z0 = -10e is -4.2 x 10-4 and at r = 71.22 nm for charge 

Z0 = -100e is -1.180.  
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Figure 3.4. Variation of (a) 00 ( )effc r and (b) ( )sv r  with charge asymmetry at fixed σ0 = 

32nm, C0 = 0.968μM and Cs = 0 μM.  

3.3.2. Variation of Colloid Size: 

The radial distribution function as a function of colloid diameter at a fixed Z0 = -25e and C0 = 

0.9681µM is illustrated in Figure 3.5.  As the diameter of the colloid increases, the peak 

height of g00(r) (Figure 3.5a) increases steadily from 1.14 for σ0 = 20 nm to 1.56 for σ0 = 100 

nm and the peak positions are shifted towards the lower r/σ00: from 6.01 for σ0 = 20 to 1.1 for 

σ0 = 100 nm. Almost similar trends in the radial distribution functions with colloid size has 

been found experimentally and using MC simulations, although the system parameters are 

different than ours [34]. This shifting of peak positions towards the colloid surface with 

increasing σ0 indicates that colloids with smaller diameter show larger repulsion (larger 

colloid charge density). And as the diameter of colloidal particle increases, the broad peak 

becomes narrower indicating accumulation of increasing number of counterions on colloid 

surface. 
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Figure 3.5. Variation of a) colloid-colloid radial distribution functions g00(r) b) colloid-

counterion radial distribution functions g01(r) c) counterion-counterion radial distribution 

functions g11(r) with size asymmetry at fixed Z0 = -25e and C0 = 0.968μM.  

The accumulation of counterion on macroion (colloid) surface is supported by the 

colloid-counterion correlation function g01(r) (Figure 3.5b). The peak appearing around r = 

σ01 and the peak height (probability of finding counterion around a colloid) decreases, as the 

diameter of colloid increases. The accumulation of counter-ions near a colloid surface is 

determined by the product of surface area and the probability of finding the counterion at the 

colloid surface. The contact value of g11(r) in Figure 3.5c decreases as the diameter of 

colloidal particle increases showing repulsions among the counter-ions.  The colloid-colloid 

structure factor in Figure 3.6 shows increase in peak height with increasing size of colloidal 

particle which is similar to g00(r).  
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Figure 3.6. Variation of colloid-colloid structure factor S00(k) with size of the colloid. The 

parameters used are same as in Figure 3.5. 

As diameter of colloidal particle increases, both 00 ( )W r (Figure 3.7a) and ( )effV r  

(Figure 3.7b) become less repulsive, probably due to reduction in colloid charge density. The 

depth of the potential minima increases and shift towards lower inter-colloid distance (r/σ00 = 

6.030 for σ00 =20nm to r/σ00 = 1.160 for σ00 =100nm).  The relevant numerical data is given 

in Table 3.2 for the two-component (salt free) and the three-component (with salt) systems.  

 

 

 

Figure 3.7. Variation of (a) 00 ( )W r  and (b) ( )effV r  with size of colloid. Two component 

system with Z0 = -25e and C0 = 0.968μM. 
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Table 3.2:  The position (r/σ00) and depth of the minima of  ( )effV r  and 00 ( )W r  as a 

function of colloid size for two-component (salt free) and three-component (Cs = 4.484 μM) 

systems. Fixed parameters: Z0 = -25e, C0 = 0.9681 μM. 

 

The effective direct correlation function 00 ( )effc r  and the screening function ( )sv r are 

studied with increase in colloidal size and the plots are displayed in Figure 3.8a & b.  Its 

value decreases from -1.004 for σ0 = 20nm to -0.976 for σ0 = 100nm in salt free colloidal 

system. As the colloid size increases, the peak height in 00 ( )effc r increases and the peak 

position shift towards lower inter-colloid distance. This behavior is similar to the variation in 

g00(r), though the values in the former are negative at lower inter-colloid distance. The 

screening functions ( )sv r  are positive at lower inter-colloid distance, become negative and 

level upto zero as inter-colloid distance increases. They show non-monotonic variation with 

variation in colloid diameters. With increase in diameter of the colloidal particle, the 

magnitude of ( )sv r decreases.  

 

 

 

 

 

 

 

σ0 

(nm) 

( )effV r  00 ( )W r  

r/σ00 

Two 

component 

system 

r/σ00 

Three 

component 

system 

r/σ00 

Two 

component 

system 

 

r/σ00 

Three 

component 

system 

20 6.030 -0.126 6.030 -0.120 6.037     -0.130 6.072 -0.121 

32 3.822 -0.163 3.765 -0.139 3.843 -0.167 3.727 -0.142 

40 2.963 -0.176 3.137 -0.151 2.372 -0.210 3.148 -0.142 

60 1.989 -0.188 1.989 -0.195 2.038 -0.210 1.993 -0.193 

100 1.160 -0.445 1.160 -0.432 1.151 -0.447 1.140 -0.424 
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Figure 3.8. Variation of (a) 00 ( )effc r and (b) ( )sv r  with colloid size. Two component 

systems with Z0 = -25e and C0 = 0.968μM. 

 

3.3.3. Variation of Colloid concentration: 

The effect of varied concentration of colloid (at a fixed parameter of Z0= -25e and σ0= 32nm) 

on different RDFs are presented in Figure 3.9. Increase in colloid concentration has the 

combined effect of increasing counterion concentration (due to electroneutrality) as well as 

increasing the volume fraction. As the concentration of colloid in the solution increases, the 

first neighboring peak of g00(r) (Figure 3.9a) shifts toward the shorter separations with slight 

increase in the peak heights. The g01(r) (Figure 3.9b) is sharply peaked roughly at r/σ11 = 1.0 

and the peak height decreases with increase in the colloid concentration. The g11(r) (Figure 

3.9c) show a broad maxima, probably due to correlations between counterions condensed in 

the surface of same colloid. The colloid-colloid structure factors S00(k) are plotted in Figure 

3.10. The peak height slightly increases and the peak position shifts towards higher 

interparticle distance with increasing concentration of colloidal particles. The variations are 

quite similar to those obtained experimentally. For example, the S00(k) data reported by 

Cebula et al [35] using small-angle neutron scattering (SANS) is displayed in Figure 3.11. 

Although the parameters considered in this study are somewhat different from our 

simulations, the trends are well reproduced (Table 3.3).  

 



  Chapter 3 

77 
 

 

Figure 3.9. Variation of a) colloid-colloid radial distribution functions g00(r) b) colloid-

counterion radial distribution functions g01(r) c) counterion-counterion radial distribution 

functions g11(r) with colloid concentration. Two-component system with Z0 = -25e and σ0 = 

32nm. 

Table 3.3: Comparison of peak positions and peak heights of structure factor S00(k) obtained 

experimentally by Cebula et al. [35] with our system parameters. The experimental 

parameters are σ0 = 32 nm, Z0 = -200e whereas our parameters are σ0 = 32 nm, Z0 = -25e.   

φexp kexp (Å-1) S00(k)exp φsim ksim (Å -1) S00(k)sim 

0.04 0.009 1.65 0.01 0.0067 1.174 

0.08 0.0116 2.06 0.015 0.0072 1.186 

0.13 0.014 2.50 0.02 0.0077 1.204 
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Figure 3.11. Variation of  S00(k) with 

volume fraction (φ) for an ion 

exchanged latex (Cebula et al., [35] ).  

black circle, φ = 0.04; triangle, φ = 

0.08; circle, φ = 0.13.  with system 

parameters σ0 = 32 nm, Z0 = -200e. 

(Copy right is attached)   

 

We have estimated the coordination number (n) of colloid by integrating the 

corresponding radial distribution function 2

0

4 ( )n r g r dr


=  and is displayed in Figure 

3.12. With increase in concentration of colloid (for a fixed volume), the colloids are packed 

more, the probability of finding a colloid around another colloid increases and so the 

coordination number increases. The coordination number increases from 1.3 for C0 = 0.484 

µM and 5.5 for C0 = 1.936 µM.  

 

 

  

Figure 3.10. Variation of Structure 

factor S00(k) with colloid 

concentration. The parameters used are 

same as in Figure 3.9. 
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With increasing the colloid concentration, the general features of 00 ( )W r  (Figure 

3.13a) is similar to variation in charge and size. However, the positions of the minima shift 

towards lower inter-colloid distance as colloid concentration increases. The relevant 

numerical data is given in Table 3.4. With increase in the colloid concentration, the effective 

potential ( )effV r  become less repulsive (Figure 3.13b), show attractive minima (negative) 

and shift towards the lower inter-colloidal particle distance. The depth for minima varies 

from -0.151 for C0 = 0.484µM at r/σ00 = 4.69 to -0.197 for C0 = 2.42 µM at r/σ00 = 2.717 

(Table 3.4). Unlike the attractive minima obtained at very low packing fractions in the 

current study, Bareigts et al. [22] obtained purely repulsive effective pair potential at high 

packing fractions with colloid diameter 4 nm and charge -60e. However, recent experimental 

and simulation results by Ojeda Mendoza et al [16] with colloid diameter 110 nm and charge 

-603e shows attractive effective potentials similar to the current study. As the volume 

fraction increases there is decrease in repulsive tail and at the same time the attractive 

minima develop. The attractive well is obtained for all the concentrations with gradual 

decrease in the repulsive tail. As the concentration of the colloidal particle increases, 

attractive well is followed by the secondary repulsive barrier. Such behavior is caused by 

structural arrangement of smaller particles around the colloids due to the repulsion among 

small ions. 

 

 

Figure 3.12. Variation of coordination 

number of colloid with its 

concentration. The system parameters 

used are same as in Figure 3.9. 
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Figure 3.13. Variation of (a) 00 ( )W r and (b) ( )effV r with colloid concentration at fixed  

Z0 = -25e, σ0 = 32nm and Cs = 0. 

Table 3.4:  The position (r/σ00) and depth of the minima of  ( )effV r  and 00 ( )W r  as a 

function of colloid concentration for two component (salt free) and three component (Cs = 

4.484 μM) systems. Fixed parameter: σ0 = 32nm,  Z0 = -25e. 

C0 

(μM) 

( )effV r  00 ( )W r  

r/σ00 

Two 

comp 

system 

r/σ00 

Three  

comp 

system 

r/σ00 

Two 

Comp 

system 

 

r/σ00 

Three 

comp 

system 

0.484 4.475 -0.151 4.472 -0.111 4.693 -0.151 4.455 -0.106 

0.968 3.822 -0.163 3.765 -0.139 3.843 -0.167 3.727 -0.142 

1.452 3.334 -0.161 3.268 -0.165 3.306 -0.161 3.329 -0.164 

1.936 3.054 -0.172 3.004 -0.175 3.079 -0.168 3.005 -0.174 

2.421 2.746 -0.201 2.856 -0.192 2.745 -0.197 2.796 -0.188 

 

The effective direct correlation function 00 ( )effc r  and screening function ( )sv r  are 

studied with increase in colloid concentration and the results are plotted in Figure 3.14.   
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Figure 3.14. Variation of (a) 00 ( )effc r and (b) ( )sv r  with colloid concentration at fixed       

Z0 = -25e, σ0 = 32nm and Cs = 0. 

 

The increase in colloid number density of the colloidal system is accompanied by an 

increase in counterion concentration which results in an increase in screening between the 

particles. The magnitude of ( )sv r  decreases and become negative and level upto zero. The 

range of screening function (r at which the function is negative) becomes shorter with 

increase in colloid concentration. Because of increasing repulsions between the counterions 

with increase in colloid concentration, the counterions are pushed away nearer to the colloid 

resulting in increased screening.   

 

3.3.4. Effect of counterion valency 

We varied the counterion charge from +1e to +3e and studied the effect on RDF and 

effective potential. The counterion size was kept constant at 0.3nm. The variation of radial 

distribution functions with counterion valency for system with σ0 = 32nm, Z0 = -25e and C0 = 

1.936 µM is displayed in Figure 3.15.  With increase in valency of counterion, the effective 

charge density of the colloid decreases (counterion condensation) and the colloid-colloid 

repulsion decreases. The probability of finding a counterion around colloid increases. The 

counterion-counterion interaction become more repulsive, the displacement of counterion by 
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another counterion increases, result in a broad peak in g11(r). The peak heights in the colloid-

colloid RDFs g00(r) decreases and shows less structured for trivalent counterion. while 

opposite trends were observed in the case of colloid-counterion and counterion- counterion 

RDF. 

 

Figure 3.15. Plot of radial distribution function a) colloid-colloid b) colloid-counterion c) 

counterion-counterion with variation of valency of counterion at fixed σ0 = 32nm, Z0= -25e 

and C0 =1.936µM. 

Similar trends in RDF with counterion valency have been observed using Monte Carlo (MC) 

simulations by Hribar and Vlachy [27,36] and Linse and Lobaskin [20]. We have simulated a 

system with parameters more similar to those used by Hribar and Vlachy and obtained a 

similar trend. The results are given in (Figure 3.16).   
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Figure 3.16. Plot of radial distribution function a) colloid-colloid b) colloid-counterion c) 

counterion-counterion with variation of valency of counterion at fixed σ0 = 2nm, Z0= -12e 

and C0 =0.0005 mol dm-3
.  

 

Figure 3.17. Effective potential ( )effV r

with variation in valency of counterion 

with same system parameters as in Figure 

3.15. 

 

 

 

The effective potential ( )effV r  (Figure 3.17) becomes more repulsive and less attractive 

with increase in counterion valency. The peak position of minima shift towards the lower 
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interparticle distance. This weakening of attractive behavior in charge colloid due to increase 

in counterion valency was reported recently  [11]. 

3.3.5. Effect of Salt Concentration 

The effect of salt concentration on various RDFs is displayed in Figure 3.18. With increase 

in salt concentration, the peak height of colloid-colloid radial distribution function g00(r) 

slightly decreases (Figure 3.18a). The g01(r) plots in Figure 3.18b shows larger values at the 

colloidal surface and the values decreases with increase in salt concentration. The g11(r) 

(Figure 3.18c) shows decrease in peak height with increase in salt concentration. The peaks 

are broader in this case. The magnitude of change in RDF due to colloid concentration is 

much smaller than those due to colloid charge and size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Variation of a) colloid-colloid g00(r) b) colloid-counterion g01(r) c) counterion-

counterion g11(r) with salt concentration at fixed Z0 = -50e, σ0 = 32nm and C0 = 0.968μM. 
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The variation of  00 ( )W r  and ( )effV r  with salt concentration is plotted in Figure 

3.19. The depth of the minima decreases, and the positions shift towards lower interparticle 

distance in both cases; from -0.303 at r/σ00 = 3.86 to -0.242 at r/σ00 = 3.67 for 00 ( )W r  and 

r/σ00 = 3.75 is -0.323 for Cs = 0μM to -0.239 at r/σ00 = 3.75 for Cs = 7.7μM for ( )effV r . 

Figure 3.19. Variation of (a) 00 ( )W r and (b) ( )effV r  with salt concentration at fixed Z0 = -

50e, σ0 = 32nm and C0 = 0.968μM. 

The effective colloid-colloid direct correlation function 00 ( )effc r  is studied with salt 

concentration (Figure 3.20a).  

Figure 3.20. Variation of (a) 00 ( )effc r and (b) ( )sv r  with salt concentration at fixed Z0 = -

50e, σ0 = 32nm and C0 = 0.968μM. 
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The 00 ( )effc r  varies from -0.901 for Cs = 0μM to -1.260 for Cs = 7.7μM. The variation 

of screening function ( )sv r  with salt concentration is illustrated in Figure 3.20b. With 

increase in salt concentration, the screening of counterions increases and ( )sv r  decreases 

(less negative).  

 

3.3.6. Variation in Thermodynamic Properties  

The variation of reduced excess free energy (βEex/ρ) and the osmotic coefficient (ΦV) as a 

function of colloid charge, size and concentration is plotted in Figure 3.21.  

 

 

 

 

 

 

 

 

 

Figure 3.21.  Plot of reduced excess free energy (βEex/ρ) and the osmotic coefficient (ΦV) 

with variation in size, charge and concentration of colloid.  

The magnitude of excess free energy (βEex/ρ) increases when charge as well as 

concentration of colloid particle increases, and as the diameter of the colloidal particle 

decreases. Similar trends with charge and size asymmetry have been explained in chapter 2. 

Osmotic coefficient shows opposite trend with variation in charge and diameter of the 

colloid, but it follows similar trend with increase in concentration of the colloidal particle. 

Similar trends have been reported in the literature [28] including aqueous protein solutions 

[37]. 
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3.3.6.1 Isothermal Compressibility 

The direct correlation function is also associated to the thermodynamic properties of liquids, 

e.g. the isothermal compressibility c  [38,39] 
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ij is defined as the short-ranged part of direct correlation 

functions which tends to zero when →r . 

The variation of isothermal compressibility in charge, size, concentration of colloidal 

particle is displayed in Figure 3.22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Plot of isothermal compressibility c  with variation in (a) charge, (b) size and 

(c) concentration of colloid particle. 

(a) (b) 

(c) 
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For two-component (salt free) systems, c  value starts at 1.002 for Zm = -10e and 

increases to 1.121 for Zm = -100e. In presence of salt (4.48 μM) the value changes from 

1.033 for Zm = -10e to 2.627 for Zm = -100e. With variation in size, the c  values almost 

remain constant ( 0.985 for 20nm colloid  to 0.998 for 100nm colloid). These values change 

from 1.115 for 20nm to 1.025 for 100nm in presence of added salt (4.48 μM). With increase 

in colloid concentration c  ranges between 1.02 for 0.48μM colloid concentration to 0.99 for 

2.42μM colloid concentration.  

 

3.3.7. Self -Diffusion Coefficients 

 We have studied the variation of self-diffusion coefficient as a function of colloid charge, 

size and concentration. The self-diffusion coefficients of colloid (type 0) D0 as well as 

counterion (type 1) D1 for two-component and three-component systems are presented in 

Figure 3.23.  

In case of two-component system (without salt), with increase in charge of colloid 

(Figure 3.23a), the D0 decreases initially and becomes steady at larger colloid charge. With 

addition of salt (three-component), the D0 behaves similar but the value decreases slightly at 

lower colloid charge. In two-component system, the D1 (type 1) slightly increase at lower 

charge and then decreases with increase in charge of the colloid, whereas for the three-

component system the D1 value more or less remains constant.  

With increase in colloid diameter, D0 increases steadily till σ0 = 60nm and then 

decreases (Figure 3.23b). At lower colloid size the D1 increases, becomes steady and 

decreases with increase in size of the colloid. With addition of salt the D1 value decreases 

than increases at σ0 =60nm and steadily decreases as the size of the colloid further increases. 

The D0 decreases with increase in concentration of colloid for both two-component and 

three-component systems (Figure 3.23c). The D1 value slightly increases with colloid 

concentration in case of two-component system and in case of three-component system D1 

steadily increases and then decreases when the concentration is high. 

 



  Chapter 3 

89 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Variation of self - diffusion coefficients of colloid (type 0) as well as counterion 

(type 1) with variation in (a) charge  (b) size and  (c) concentration of colloid. The solid line 

is for two-component system and the dotted line represents three-component system. 

 

B) Effect of confinement on model colloidal suspensions 

3.4. Overview 

The colloidal suspensions under confinement can have very interesting properties [40]. When 

the confining length (the distance between opposing boundaries) becomes comparable to the 

intrinsic length scale of the colloid particle, the confined suspension can behave quite 

differently from an identical suspension in the bulk [41–44].  Narrow confinement tends to 

lower the particle entropy and induces microscopic ordering of colloids into layers parallel to 

the confining walls [45]. This ordering is usually characterized by the density profile ρ(z) 



  Chapter 3 

90 
 

across the confining walls. This density profile gives the distribution of particles across the 

walls and depends on the particle-particle and particle-wall interactions. The effects of 

confinement on structural and dynamics properties of colloids have given rise to many 

interesting phenomena [46–51]. Both simulation [52]  and experimental [53] studies show 

the shift of the glass transition relative to bulk glass transition. Also, the diffusion coefficient 

of the binary colloidal mixtures has been studied in confined geometries [54] slit shaped 

nanochannels [55,56] cylindrical pores [57], rectangular nanotubes [58,59] and within 

spherical cavity [60]. 

We have employed the molecular dynamics simulations to study the molecular 

distribution and diffusion of model colloidal suspensions confined between two parallel 

walls. The walls are separated by a distance h along z-axis and are placed on the top and 

bottom of the simulation box (Figure 3.24 shows schematic representation of the 

confinement). We have focused on the density profiles which are related to the interactions. 

 

 

 

 

 

 

Figure 3.24: Schematic representation of the simulation box and the positions of walls at the 

top and bottom of the simulation box. 

3.5. Model and simulation details: 

The pair potential we used is of similar to the bulk solution. All the simulations were 

carried out with two confining parallel walls, one at the bottom and the other at the top of the 

simulation box (normal of the wall pointing up and down along z-axis), are created using the 

inbuilt function “constraint wall” of the ESPResSO package. Partial periodic boundary 

conditions (along x and y directions) are used. The type of the wall is used like a particle 

type to define the interaction of the walls with the particles. MMM2D algorithm was used for 

confined systems [61]. Simulations were carried out for colloidal suspensions with total 

number of particles N (2100 to 5600) packed in an asymmetric box of dimension LX = LY = 
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1414nm, LZ = 500nm, under partial periodic boundary conditions (along X and Y directions) 

with density in the range 2×10-7 atoms/nm3 to 5.6 x 10-6 atoms/nm3. The number of colloids, 

counterions and the wall charges were adjusted to maintain the electroneutrality condition of 

the entire system. The simulation time taken here are similar to the simulations performed for 

bulk solutions. 

We simulated the colloidal suspensions under the confinement of two parallel walls 

placed at the bottom and top of the simulation box (walls are parallel to xy plane). Both 

charged as well as neutral colloidal suspensions are considered. The diameters and charge 

used for the colloid (type 0 particle) are σ0 = 20, 32, 40, 60nm, and Z0 = 0 (neutral), -10e, -

25e. The diameter and charge of counter ion (type 1 particle) are fixed at σ1 = 0.30nm, and Z1 

= 0 (neutral) or 1e. We use three types of walls: (i) both neutral, (ii) both negatively charged 

(-1e), and (iii) one positively charged (1e) and one negatively charged (-1e). We report the 

variations of density distribution ρi(z) and the self-diffusion coefficient (along the xy plane) 

Di of the constituent particles (i = 0, 1) as a function of colloid diameter (σ0) and colloid 

charge (Z0) in the above chosen systems.  

3.6. Density Profile of Colloids under confinement: 

The density profile of particle α is calculated by expression [62]  

( ),
( )

N z z z
z

A z




+

=


                     (3.6)  

Where ( ),N z z z +  is the average number of particles in a layer of thickness ∆z around z, 

and A is the area of the walls. In our case, .20/ZLz =  We have reported our results in 

terms of reduced density
3  = . In Figure 3.25(a), we have compared the variations of 

colloid density profile (ρ0(z)) for the systems with neutral colloid of different sizes confined 

between neutral walls. For the colloid with σ0 = 20nm, the density is more or less uniform 

except a small build up close to the walls (around 73 & 445nm). As the colloid size increases 

(to 40 and 60nm), there is a clear building up of density at various distances within the walls 

(z = ~50, 200, 400, 450nm), indicating a layered distribution of colloid.  



  Chapter 3 

92 
 

 

 

 

 

 

 

Figure 3.25. Variation of colloid density profiles (ρ0(z)) in neutral colloidal suspensions of 

different diameters in between two walls: (a) neutral walls, (b) negatively charged walls 

(symbols: square denotes σ0 = 20nm, triangle denotes σ0 = 40nm and star denotes σ0 = 

60nm). 

The density is found to be at minimum at around layer of 250 to 300nm (around the middle 

of the walls) and maximum close to the walls (z = 60 and 440nm).  Replacing the neutral 

walls with negatively charged walls, the density profile for the colloid (Figure 3.25b) become 

less structured, the peak for σ0 = 20nm has moved away from the walls.  

 

 

 

 

 

 

Figure 3.26: Variation of small ion/particle density profiles (ρ1(z))  in neutral colloidal 

suspensions of different diameters in between two negatively charged walls. Other 

parameters are same as in Figure 3.25. 
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The density distributions for the counterions (Figure 3.26) show layered distributions, 

shifting toward the upper wall with increase in colloid diameters.  

The variation of colloid density profile with its charge confined between neutral walls 

(with σ0 = 32nm) is shown in Figure 3.27a, and for the charged walls is shown in Figure 

3.28b. We have taken colloid charge of -10e and -25e along with a neutral one (charge zero) 

for comparison.  As clear from the plots, the neutral colloid density profile is more structured 

with build-up of density (roughly around 32, 300 and 450nm). As the charge increases from 

zero to -10e (Figure 3.28a), the colloids are pushed away from the walls (more from the 

bottom wall); two broad peaks (below z = 250nm) merge to one, and the profile becomes 

smooth. On further increase of charge to -25e (Figure 3.27b), a similar build-up of density 

near walls appear. As the charge increases, the density is more of less symmetrical with 

average values at the middle of the walls and maxima around 1/4th from both the walls.  

 

 

 

 

 

 

Figure 3.27: Variation of colloid density profiles (ρ0(z))  with different colloidal charges for 

the colloidal suspensions of diameter σ0 = 32nm: (a) between two neutral walls, b) between 

two negatively charged walls (symbols: square indicates Z0= 0 (neutral), circle indicates Z0 = 

-10e and star indicates Z0= -25e) 

The counter-ion density profile for the charged colloids between charged walls is 

displayed in Figure 3.28. The counterion is distributed in layer roughly in the midway 

between the two walls and shift towards the upper wall as the colloid charge increases.  
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Figure 3.28: Variation of counterion 

density profiles (ρ1(z)) with different 

colloidal charges for the colloidal 

suspensions of diameter σ0 = 32nm 

between two negatively charged walls. 

Other parameters are same as in Figure 

3.27. 

 

In order to see the effects of different kinds of walls (described in the beginning of the 

section) on colloid profile, we carry out simulations for a colloidal suspension with σ0 = 

20nm and Z0 = -25e. The result is shown in Figure 3.29.  

 

 

 

 

 

 

Figure 3.29: Variation of colloid density profiles (ρ0(z)) with different types of walls for the 

colloidal suspensions of diameter σ0 = 20nm and charge Z0 = -25e. (symbols: circle indicates 

neutral wall on both sides, star indicates negatively charged wall on both sides (- -) and 

inverted triangle indicates oppositely charged wall on both sides (+ -)).  

For the case of neutral walls, the density profile increases from zero reaches maxima 

and then fall to an average value as we go away from the wall. For the case of charged walls, 

we find a similar trend in density profile, but the values of maxima differ. For the case of 

both negatively charged walls, the magnitude of maxima close to bottom wall is less and that 

close to upper wall is more compared to the corresponding case for neutral walls; whereas 
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for the case of (bottom positively and top negatively) charged walls, the peak height closer to 

positive wall increase (peak position closer to wall) and that close to negative wall slightly 

decreases. Also, appearance of additional density distributions are found in the midway 

between the walls for oppositely charged walls. 

3.7. Self-diffusion coefficient: 

The diffusion coefficient of particle α is calculated from the slope of mean square 

displacement (MSD) at large times (along xy direction) according to Einstein relation 

 
t

t

t
D

6

)]0()([lim
2





rr −

→
=   (3.7) 

Where, rα (t) is the position of the particle in the xy plane at time t, and <….> denotes the 

ensemble averaging. 

Representative plots for the mean-square displacement (MSD) for type 0 (colloid) 

and type 1 (small ion) particle as a function of simulation time is displayed in Figure 3.30. 

The MSD decreases in case of charged colloidal system/charged walls, as compared to the 

neutral colloidal system/neutral walls. The decrease in type 0 particle (colloid) is more 

compared to that for smaller ion (type 1 particle). 

 

 

 

 

 

 

Figure 3.30: Representative plots for variation of (a) colloid-colloid, (b) counterion-

counterion, mean-square displacement (MSD) with simulation time for the colloidal 

suspension (σ0 = 20nm, Z0 =   -25e) with different confinement. (the first two lines from the 
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top are for systems with neutral colloid in neutral and charged walls, next three lines are for 

systems with charged colloid with three kinds of wall described in Figure 3.29). 

The self-diffusion coefficient of both the colloid and small ion/particle ((D0 and D1) 

for various systems are presented in Figure 3.31. The variation of Di (i = 0, 1) as a function 

of colloid diameter for neutral colloid confined in charged walls is plotted in Figure 3.31(a). 

As the colloid diameter increases, the value of D0 systematically decreases while the value of 

D1 increases and finally levels up. The variations in Di (i = 0, 1) are much similar with 

increase in the charge of colloid (Fig. 3.31b) though the decrease of D0 with Z0 is more 

drastic. Finally, we have compared (in Figure 3.31c) the diffusion coefficients Di for 

different types of colloidal suspensions in different types of walls studied. It is clear from the 

graph that, the value of D0 of neutral colloid is higher than those of charged colloid, 

irrespective of the types of wall. A similar trend in D1 is observed, although the decrease in 

magnitude is very small.  

 

 

 

 

 

 

 

 

 

Figure 3.31: Self-diffusion coefficient of colloid (square) and small ion/particle (star) for 

various colloidal suspensions under confinement: (a) variation with colloid size, (b) variation 

with colloid charge, (c) variation with different types of walls. The wall types are same as in 

Fig 3.29 
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Self-diffusion coefficient of type 0 particle for charged colloidal particle with 

uncharged wall is less compared to the neutral colloidal particle of uncharged wall and the 

trend is same in charged colloid with charged wall when compared to neutral colloid with 

charged wall. The self-diffusion coefficient of type 1 particle for charged colloid system with 

charged and neutral wall is nearly same. However, for neutral colloidal system with charged 

wall the self-diffusion coefficient is less compared to neutral wall. 

3.8. Conclusion: 

We studied the model colloidal suspensions in bulk solutions as well as in between two walls 

using molecular dynamics simulations. The studies were carried out in a wide range of 

colloid charge (10e-100e), diameter (20 nm-100 nm), concentration (0.484 μM - 2.42 μM) 

using a two-component (salt free) and a three component (with added salt) (1.9 μM – 7.7 

μM). A systematic variations in radial distribution functions and effective colloid-colloid 

potential with colloid charge, size and concentration was observed. With increase in colloid 

charge, size and concentration, the peak height in g00(r) systematically increases. The depth 

of minima in the effective colloid-colloid potential are found to increase with increase in 

colloid charge, size and concentration. However, the position of the minima shift to lower 

inter-colloid distance with increase in colloid size and concentration but remain more or less 

unaltered with increase in colloid charge. The effect of salt (in the range investigated) has 

very little effect. With the increase in counterion valency, the effective colloid-colloid 

potential becomes less attractive.  For the cases of colloid suspensions in between two 

parallel walls, the density profiles functions for colloid become oscillatory indicating 

ordering/layering of particles. The oscillatory behavior is found to be pronounced for colloid 

with neutral walls or one positive and one negative wall. A systematic variation in the 

density profile of small particle/ion is also observed. The self-diffusion coefficient of neutral 

colloid is found to be higher than that of charged one irrespective of the nature of walls.  
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      Chapter 4 

Performance of HNC, PY and MS 

integral equations on model colloidal 

suspensions : Comparison with MD 

results 

 

 

 

Numerical results on the structure and equilibrium properties of model colloidal suspensions 

have been presented using integral equation theory. The Ornstein Zernike Equation (OZE) 

has been solved with three different closures, viz. Hypernetted-chain (HNC), Percus Yevick 

(PY) and Martynov Sarkisov (MS) using Newton-GMRES algorithm. Comparison of the 

results among different closures as well as with those of MD simulation have been carried 

out.  
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4.1. Introduction: 

Integral equation theory based on Ornstein-Zernike (OZ) equation provides standard route to 

the structure of fluids [1]. The OZ equation is a basic non-linear Fredholm second-kind 

integral equation employed in the statistical mechanics of fluids to compute the microscopic 

structure from description of the underlying intermolecular forces. Theories based on the OZ 

equation with different closures such as hypernetted chain (HNC), Percus-Yevick (PY) etc. 

have been quite successful in studying different fluids. They are computationally less 

expensive than molecular simulations. However, availability of efficient algorithms that 

improve and accelerate the convergence of the solution of such non-linear integral equations 

are limited. Over the years several attempts were made to improve the performance of the 

theories and extend the validity of the integral equation theory to wide range of parameters. 

 

  Some matrix methods for solution of integral equations which describe 

inhomogeneous fluids was carried out by Chen and Pettit [2]. Homeier and coworkers used 

vector extrapolation technique and illustrated the iterative solution of bulk Ornstein Zernike 

(OZ) type integral equations [3], provides standard against which to compare the Newton-

GMRES algorithm. Zerah [4] described the use of a Newton method for the numerical 

solution of the fluid integral equations in which the linear system is solved efficiently using 

an iterative conjugate gradient (CG) technique [5].  The CG algorithm is usually intended for 

the solution of symmetric positive definite systems. It is generalized to nonsymmetric linear 

systems as carried out by Zerah. The examples considered by Zerah are the solution of the 

Percus-Yevick equation for an inverse twelfth power potential and the hypernetted chain 

(HNC) equation for a Lennard Jones (LJ) potential. Zerah illustrate that the stability and 

efficiency of a Newton iterative method (Newton-CG). With variation in volume fractions 

the effective pair potential for binary mixtures were obtained using HNC approximation, 

which yields attractive well at about -0.5kBT [6]. 

 

  Several methods that have been developed for solving very large systems of non-

linear equations include Newton-iterative methods (also known as truncated Newton 

methods). The crucial ingredient in this type of Newton method is that the linear system 

arising in every iteration of the newton method is not solved by a direct method (which 

require the matrix of coefficients and a significant amount of arithmetic) but by an iterative 
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method. Thus, a truncated Newton method solves a nonlinear system by an outer nonlinear 

iteration, each step of which solves a linear approximation to the problem by an inner linear 

iteration. In this work, we use the Newton-GMRES (Generalized Minimum RESidual) 

algorithm of Saad and Schultz [7] as the linear solver.  

 

  In this chapter, we present numerical calculations of correlation functions of model 

colloidal suspensions using three different closures: HNC, PY and Martynov Sarkisov (MS) 

for a wide range of system parameters. In few cases, we compared with the MD simulation 

results. 

 

4.2. Model and Methods 

4.2.1. Integral equation theory, HNC, PY and MS closures  

We studied the multicomponent asymmetric colloidal system using primitive model. It 

contains negatively charged spherical colloidal particles (as type 0), positively charged 

counter-ions  (as type 1) and negatively charged co-ions (as type 2) interacting with the pair 

potential as described earlier in chapter 2 of section 2.2. 

 

The pair correlation function (for an m-component system) is calculated by solving the OZ 

equation [8]. 

    3

12 12 3 13 32

1

( ) ( ) ( ) ( ),
m

ab ab n an nb

n

h r c r d r c r h r
=

= +                 (4.1) 

    where ,ab a b nr r r number density= − =  

 

Along with the closure, which can be written without any approximation as 

      ( ) exp[ ( ) ( ) ( ) ( )] 1,ij ij ij ij ijh r u r h r c r B r= − + − + −     (4.2) 

where n  is the number density of particle species n, ( ) ( ) 1ij ijh r g r= −  is the total 

correlation function, ( )ijc r is the direct correlation function and ( )ijB r  is the bridge diagram 

sum.  
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By setting  ( ) 0ijB r = , in Eq. 4.3 we obtained HNC closure [9], PY closure [10] is obtained 

by setting ( ) ln[1 ( ) ( )] ( ) ( )ij ij ij ij ijB r h r c r h r c r= + − − −  and MS closure [11] is obtained 

when 1/2( ) [1 2( ( ) ( ))] ( ( ) ( )) 1ij ij ij ij ijB r h r c r h r c r= + − − − − . 

 

4.2.2. Newton GMRES algorithm [12]  

The Newton-Raphson method solves non-linear equations in the form F (x) = 0. An initial 

guess estimate xn is required, one can find the next guess xn+1, using the  equation below.  

      
1 '

( )

( )

n
n n

n

F x
x x

F x
+ = −  

  Because of iteration steps required at each step, the convergence was a problem. To 

overcome the drawback of this method, a new specialized and matrix free method was 

implemented called Newton-GMRES method. It is an inexact Newton method.  

     

  It approximates the solution of linear equation and uses the Newton step as a vector s 

that satisfies the inexact Newton condition. The termination criterion for linear iteration is 

the standard inexact Newton condition 

     '( ) ( ) ( )n n nF x s F x F x+   

 The parameter η can be varied as the Newton iteration progresses. The global and local 

convergence properties of algorithm is influenced by the choice of forcing term (η) called 

Eisenstat-Walker forcing term . We set η = 10-4 for all computations, is a very small forcing 

term which leads to rapid quadratic convergence near the solution. The maximum number of 

nonlinear iterations used are 40. 

The HNC closure (Eq 4.2 with Bij =0) and OZ equation (Eq 4.1) can be written as 

   12 12 12 12( ) 1 exp( ( ) ( ) ( ) 0ab ab ab abh r u r h r c r+ − − + − =    (4.3) 

   12 12 12 12 12( ) 1 exp( ( ) ( ) ( ) ( )( ) 0ab ab ab abc r u r h r c r c h r + − − + − +  =  (4.4) 

Equation 4.4 is a result of adding Eq 4.1 and 4.2.  
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The Newton-GMRES iteration scheme expresses the above two equations in the general 

form [13]. 

 0F M K= − =       
exp( 1

h c
M

u h c h

− 
=  

− + − − − 
         

0

( )
K

c h

 
= −  

 
     (4.5) 

We set  

    12 12 12( , )( ) exp( ( ) ( ) ( ))ab ab abN h c r u r h r c r= − + −  

And N defined is substituted in equation   

     12

12

( ) 1 ( , )( )
( )

( ) 1 ( , )( )

ab

ab

h r N h c r
M r

c r N h c r

 + −
=  

+ − 
, and  

     
0

( )
( )( )

K r
c h r

 
= −  

 
 

 The convolution c * h can be computed using spherical-Bessel transform. The h was defined  

     2

0

ˆ( ) ( )( ) 4
sin( )

( )h k H h k
kr

h r r dr
kr





= =       (4.6) 

and 

     1 2

2

0

ˆ( ) ( )( )
1 sin( ) ˆ( )

2
h r H h r

kr
h k k dk

kr



−
= =       (4.7) 

c * h was computed by discretizing the formula 

      1 ˆˆ( )c h H ch− =        (4.8) 

Where ˆĉh  is the pointwise product of functions. 

 

We used MATLAB (version R2012b) to solve the required equations using the 

Newton-GMRES algorithm. All the functions are evaluated within the range of (0, L). The 

range is then divided into N-1 intervals of equal size r and all the functions are evaluated at 

each mesh point. The periodic nature of sine and cosine functions utilized by imposing the 

condition . / ( 1)r k N  = − , k  is the mesh size in the Fourier space. We used N = 2049. 

The iteration is assumed to be conversed as the tolerances 810a r  −= = .  

 



  Chapter 4 

109 
 

4.3. Results and Discussions 

We have studied the static properties (pair correlation function), direct correlation functions, 

effective pair potentials of model colloidal suspensions with the diameter of colloid (type 0 

particle) σ0 (in nm) = 20, 32, 40, 60, 100, charge of colloid Z0 (in e) = -10, -15, -20, -25, -30, 

and concentration of colloid C0 (in µM) = 0.9681, 1.9362, 2.42, 4.836, 9.681,12.091 (µM = 

10-6 molar) and concentration of salt Cs (in µM) = 4.836, 9.681. The diameters of the 

counterion and co-ion were fixed as 0.3 nm and the charge of the counterion (type 1) and co-

ion (type 2) 1e and -1e. We used the temperature = 298.15K, the Bjerrum length LB = 

0.715nm.  

4.3.1. Two-component colloidal system: HNC Result 

4.3.1.1. Variation in size of colloid 

4.3.1.1.1. Pair correlation functions 

The diameter of the colloid particle is varied from σ0 = 20 to 100 nm at a fixed colloid charge 

Z0 = -25e and concentration of colloid C0 = 0.968μM.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Variation of pair correlation functions (a) g00(r), (b) g01(r) and (c) g11(r) with 

colloid diameter at fixed Z0= -25e and C0 = 0.968 μM.  
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The colloid-colloid (g00(r)), colloid- counterion (g01(r)) and counterion-counterion (g11(r)) 

pair correlation functions are plotted in Figure 4.1 as a function of colloidal diameter. With 

increase in the size of the colloidal particle, the peak height (probability of finding colloid 

around another colloid) increases and the peak shifts towards the shorter interparticle 

distance. The colloid-counterion (Figure 4.1b) contact value decreases as the diameter of the 

colloid increases. This indicates the accumulation of counterions on the surface decreases.  

The counterion-counterion (Figure 4.1c) peaks are broader and peak height increases with 

increase in diameter of the colloid particle. Thus, the HNC results are very similar to those 

obtained by MD simulation in chapter 3. 

4.3.1.1.2. Direct correlation functions  

The variation of direct correlation functions c00(r), c01(r), c11(r) with colloidal diameter is 

shown in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Plots of direct correlation functions (a) colloid-colloid c00(r), (b) colloid-

counterion c01(r) and (c) counterion-counterion c11(r), as a function of  colloid diameter at a 

fixed Z0 = -25e and C0 = 0.968 μM .  
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The colloid-colloid direct correlation function c00(r) in Figure 4.2(a) tends to increase with 

increase in diameter of colloid with the value -20.08 at σ0 = 20nm to -25.5 at σ0 = 100 nm at 

shorter interparticle distance with less oscillations. The c00(r) is negative at shorter 

interparticle distance and it level upto zero at larger interparticle distances. The colloid-

counterion direct correlation function (Figure 4.2b) behave similar to g01(r), however starting 

with negative values and leveling to zero at larger interparticle distances. The counterion-

counterion direct correlation function c11(r) steadily increases from negative value as the 

colloid diameter increases.  

4.3.1.1.3. Effective potential and potential of mean force 

The effective interactions between the colloid-colloid shows repulsions in Figure 4.3(a) for 

all the diameters of the colloids. The ( )effV r shifts towards the lower interparticle distance 

with increase in diameter of the colloid. The 00 ( )W r displayed in Figure 4.3(b) with increase 

in diameter of colloid becomes negative at σ0 = 60nm and σ0 = 100nm shows less repulsions 

and eventually becomes attractive. The 00 ( )W r  shifts towards lower interparticle distance 

with increase in diameter of colloid. The magnitude of 00 ( )W r  decreases from σ0 = 20nm 

and σ0 = 100nm.  

Figure 4.3: Plots of (a) ( )effV r and (b) 00 ( )W r , as a function of colloid diameter at fixed 

Z0= -25e and C0 = 0.968 μM. 
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4.3.1.1.4. Effective direct correlation functions 

We studied the 00 ( )effc r  with increasing diameter of the colloidal particle. Figure 4.4 shows 

that 00 ( )effc r  for σ0 = 20nm is -20.04 and for σ0 = 100nm it is -25.6. The values become 

negative at short inter particle distance. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Plot of  00 ( )effc r , as a function of colloid diameter at fixed Z0= -25e and C0 = 0.968 

μM. 

4.3.1.2. Variation of colloid charge 

4.3.1.2.1. Pair correlation functions 

The effect of increasing colloidal charge was studied at fixed σ0 = 32nm and C0 = 0.968 μM 

and shown in Figure 4.5. The peak height of g00(r) (Figure 4.5a) increases with increase in 

charge of the colloid. The probability of finding a colloid around another colloid occurs at 

r/σ00 =1 and nearly same for all cases. With increase in charge of colloid, the magnitude of 

colloid-counterion correlation function g01(r) (Figure 4.5b) decreases and peak position is at 

r/σ00 =1. The g11(r) (Figure 4.5c) correlation function increases with increase in charge of the 

colloidal particle and it is broader.  
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Figure 4.5: Plots of pair correlation functions (a) colloid-colloid g00(r), (b) colloid-

counterion g01(r), (c) counterion-counterion g11(r),as a function of colloid charge at fixed  

σ0 = 32nm and C0 = 0.968 μM.  

4.3.1.2.2. Direct Correlation functions 

The direct correlation functions c00(r), c01(r), c11(r) as a function of colloidal charge was 

studied and shown in Figure 4.6. With increasing charge of the colloid, the values of c00(r) 

increases from -6.0 at Z0 = -10e to -101.2 at Z0 = -30e. The values of colloid-counterion 

direct correlation functions (Figure 4.6b) ranges from -0.56 at Z0 = -10e to 2.5 at Z0 = -30e. 

The variations are more at shorter interparticle distance.  The c11(r) behaves similar to size 

variation. 
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Figure 4.6: Plots of direct correlation functions (a) colloid-colloid c00(r), (b) colloid-

counterion c01(r) and (c) counterion-counterion c11(r), as a function of colloid charge at fixed 

σ0= 32nm and C0 = 0.968 μM  

 4.3.1.2.3. Effective potential and potential of mean force 

The magnitude of )(rV eff  (Figure 4.7a) increases as Z0 increases and becomes negative for Z0 

= 25e, 30e. The effective colloid-colloid interactions increase with increase in charge of the 

colloidal particle and shows repulsive behavior at Z0 = 10e, 15e and 20e and eventually 

becomes attractive at Z0 = 25e, 30e. The )(rV eff  is negative for Z0 = 25e, 30e at all r. This 

might be because with increase in Z0, the repulsion between the colloidal particles increases 

and the meanwhile the counterion condensation on the colloidal particles also increases. The 

00 ( )W r  (Figure 4.7b) becomes negative with all the cases of colloidal charge.  The depth of 

attractive minima increases with increase in charge of the colloid. The attractive HNC 

minima is found at lower interparticle distance i.e. r/σ00 ~ 1.0.  
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Figure 4.7: Variation of (a) )(rV eff and (b) 
00 ( )W r  as a function of colloid charge at fixed σ0 = 

32nm and C0 = 0.968 μM. 

4.3.1.2.4. Effective direct correlation functions 

With increase in charge of colloid, the 00 ( )effc r  at short interparticle distances becomes 

negative and tends to zero at larger interparticle distance (Figure 4.8). The value at Z0 = -10e 

is -5.57 and at Z0 = -30e is -100.56.  

 

 

 

 

 

 

 

 

 

Figure 4.8: Plot of  00 ( )effc r  as function of  colloid charge at fixed σ0= 32nm and C0 = 0.968 

μM. 
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4.3.1.3. Variation in colloid concentration 

4.3.1.3.1. Pair correlation functions 

The variation of colloid concentration on pair correlation functions was studied at fixed σ0 = 

32nm and Z0 = -25e. As colloid concentration increases, the peak height of the colloid-

colloid (g00(r)) correlation function in Figure 4.9(a) increases and the peak position shifts 

towards shorter interparticle distance. This indicates the repulsion between the similarly 

charged colloids and it has been observed in several studies [14–16]. The colloid 

concentrations of 0.968μM and 1.936μM does not show any structure. The colloid-

counterion correlation function g01(r) in Figure 4.9(b) decreases with increase in colloid 

concentration.  The counterion-counterion correlation function g11(r) is structure less at low 

colloid concentration and shows structure with a broader peak only at 12.091μM.   

Figure 4.9: Plots of pair correlation functions (a) g00(r), (b) g01(r), (c) g11(r), as a function 

colloid concentration at fixed σ0 = 32nm and Z0 = -25e.  
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4.3.1.3.2. Direct correlation functions: 

We studied the direct correlation functions c00(r), c01(r), c11(r) as a function of colloid 

concentration and displayed in Figure 4.10. With increasing concentration of the colloid, the 

values of c00(r) (Figure 4.10a) increases systematically from -20 at C0 = 0.968μM to -66.0 at 

C0 = 12.091μM. The values differ more at lower interparticle distance and become                

indistinguishable at larger distance. The values of c01(r) (Figure 4.10b) ranges from -0.2 at C0 

= 0.968μM to 1.7 at C0 = 12.091μM. It shows the structure at shorter interparticle distance.  

The c11(r) behaves similar to size variation. 

Figure 4.10: Plots of direct correlation functions (a) colloid-colloid c00(r), (b) colloid-

counterion c01(r), (c) counterion-counterion c11(r), as a function of colloid concentration at 

fixed σ0 = 32nm and Z0 = -25e. 
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4.3.1.3.3. Effective potential and potential of mean force 

With increasing colloid concentration, the magnitude of )(rV eff  (Figure 4.11a) increases and 

becomes negative at C0 = 12.091 μM. With colloid concentrations of 0.968 μM, 1.936 μM, 

4.836 μM and 9.681 μM the effective colloid-colloid interaction shows repulsive behavior 

and eventually becomes attractive at C0 = 12.091 μM near r/σ00 = 4.4. The HNC 00 ( )W r  

(Figure 4.11b) is repulsive at 0.968 μM and it becomes negative with increase in colloidal 

concentration.  The depth of 
00 ( )W r   increases from -0.1 at 4.836 μM to -0.4 at 12.091 μM. 

The position of minima in 
00 ( )W r  shift towards lower interparticle distance around r/σ00 ~ 1.0. 

Figure 4.11: Plots of (a) )(rV eff  and (b) 00 ( )W r , as a function of colloid concentration at fixed 

σ0 = 32nm and Z0 = -25e. 

4.3.1.3.4. Effective direct correlation functions 

With increase in concentration of colloid, the 00 ( )effc r  becomes negative at short interparticle 

distances (Figure 4.12) and become negative. The value at C0 = 0.968 μM is -20.0 and at C0 

= 12.091 μM is -62.0.  

 



  Chapter 4 

119 
 

Figure 4.12: Plot of  00 ( )effc r  as a 

function of colloid concentration 

at fixed σ0 = 32nm and Z0 = -25e. 

 

 

 

 

 

 

 

 

 

 

4.3.2. Comparison of different closure approximations and molecular dynamics (MD) 

result in two-component colloidal system: 

 

In this section, we have compared the results of Hypernetted chain (HNC), Percus Yevick 

(PY) Martynov Sarkisov (MS) approximations and MD result for two-component systems.  

4.3.2.1. Size variation 

Here we compare the results of various closures and MD results for two colloid diameters  

σ0 = 20nm and 100nm. 

4.3.2.1.1 Effective potential 

We varied the colloid diameter at fixed Z0 = -25e and C0 = 0.9681μM. We have compared 

the )(rV eff  obtained from various closure relations and MD simulation with σ0 = 20nm and 

100nm in Figure 4.13. The HNC shows repulsive interactions and shifts towards lower 

interparticle distance. MD result shows attractive behavior. The order of repulsive behavior 

of )(rV eff  looks like HNC > PY > MS for σ0 = 20nm. When diameter is increased to σ0 = 

100nm (Figure 4.13b) the order of repulsive behavior of closures changes to HNC > PY = 

MS. The MD result shows attractive behavior. 
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Figure 4.13: Comparison of )(rV eff  with different closures: HNC, PY, MS and MD result 

for two-component system at fixed Z0 = -25e and C0 = 0.9681μM. (a) σ0 = 20nm (b) σ0 = 

100nm. 

4.3.2.1.2. Potential of mean force  

We have studied the 
00 ( )W r  (Figure 4.14a) of the system with same parameters as mentioned 

in Figure 4.13. 00 ( )W r  HNC at σ0 = 20nm shows more repulsive behavior compared to the 

)(rV eff  HNC and shifts towards lower interparticle distance. PY and MS closures tend to 

 

 

 

 

 

 

Figure 4.14: Comparison of 00 ( )W r  with different closures: HNC, PY, MS and MD result 

for two-component system. Other parameters are same as in Figure 4.13.  

become negative and attractive at r/σ00 ≈ 10.0. The MD result shows attractive behavior.  
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The attractive minima for 00 ( )W r  HNC is nearly -0.2. MS and PY closures also show 

secondary peaks which indicates long range interactions at r/σ00 ≈ 16.0.  In Figure 4.14(b) the 

HNC shows good agreement with MD result as the diameter of the colloidal particle 

increased to σ0 = 100nm and shows attractive minima (magnitude -0.5) with secondary 

peaks.  

4.3.2.1.3. Effective direct correlation function  

The effective colloid-colloid direct correlation functions for different closures are plotted in 

Figure 4.15. The value of 00 ( )effc r  HNC at σ0 = 20nm is -20.0 and at σ0 = 100nm is -25.0. The 

value of 00 ( )effc r  PY at σ0 = 20nm is -64.0 and at σ0 = 100nm is -60.0. The value of 00 ( )effc r  

MS at σ0 = 20nm is -30.0 and at σ0 = 100nm is -34.0. The variation of 00 ( )effc r  with colloid 

diameter varies in the order PY > MS > HNC > MD. 

 

 

 

 

 

 

 

Figure 4.15: Comparison of 00 ( )effc r with different closures: HNC, PY, MS and MD result for 

two-component system. Other parameters are same as in Figure 4.13.  

4.3.2.2. Charge variation 

4.3.2.2.1 Effective potential 

We have compared the closures with variation of colloid charge at fixed σ0 = 32nm and C0 = 

0.9681μM. )(rV eff  was studied for Z0 = -10e and Z0 = -25e using different closures. All the 

closures overlap and shows similar behavior at Z0 = -10e (Figure 4.16(a)). The MD result 
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shows attractive minima for larger r. As the charge of the colloid increased to -25e (Figure 

4.16b) the )(rV eff  HNC shows repulsive interactions and shifts towards lower interparticle 

distance which is prominent in charged colloidal suspensions in case of HNC. The order of 

repulsive behavior is similar as in size variation (Figure 4.13a). 

 

 

 

 

 

 

 

Figure 4.16: Comparison of )(rV eff  with different closures: HNC, PY, MS and MD result 

for two-component system at fixed σ0 = 32nm and C0 = 0.9681μM. (a) Z0 = -10e and (b) Z0 = 

-25e. 

4.3.2.2.2 Potential of mean force 

The effective interactions between colloid-colloid 00 ( )W r  of the system with same parameters 

as mentioned in Figure 4.16 was studied. 00 ( )W r  PY and MS behaves exactly same at Z0 =     

-10e. )(rV eff  HNC shifts towards lower interparticle distance. When the charge of the 

colloid increased to Z0 = -25e the PY and MS closures becomes negative and shows 

attractive behavior at long range compared to HNC which shows short range repulsive 

interactions. 
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Figure 4.17: Comparison of 00 ( )W r  with different closures: HNC, PY and MS for two-

component system. Other parameters are same as in Figure 4.16.  

4.3.2.2.3. Effective direct correlation function  

The effective direct correlation function of colloid-colloid 00 ( )effc r  was plotted in Figure 4.18. 

The values of 00 ( )effc r  HNC, 00 ( )effc r  PY and 00 ( )effc r  MS at Z0 = -10e is nearly -2.5. The 

magnitude of the potential is less at short range. When the charge of the colloid increased to 

Z0 = -25e the magnitude of effective direct interactions between colloid-colloid increases and 

value of 00 ( )effc r  HNC is -64.0, 00 ( )effc r PY is -29.0 and 00 ( )effc r  MS is -11.0. 

 

 

 

 

 

 

Figure 4.18: Comparison of 00 ( )effc r with different closures: HNC, PY and MS for two 

component system. Other parameters are same as in Figure 4.16.  
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4.3.2.3. Concentration variation 

4.3.2.3.1 Effective potential 

In this section we have discussed different closures at fixed σ0 = 32nm, Z0 = -25e with 

variation in colloid concentration. The effective potential )(rV eff  (Figure 4.19(a)) shows that 

the closures behave similar to the system with σ0 = 20nm, Z0 = -25e and C0 = 0.9681μM with 

lesser in magnitude compared to it. As the concentration of colloid increased to 4.84 μM 

(Figure 4.19b) the )(rV eff  MS and )(rV eff  PY becomes negative at larger r/σ00 and 

repulsive at smaller r/σ00.  HNC shows repulsive interactions at shorter interparticle distance. 

 

 

 

 

  

 

 

Figure 4.19: Comparison of )(rV eff  with different closures: HNC, PY and MS for two-

component system at fixed σ0 = 32nm and Z0 = -25e. (a) C0= 0.9681μM (b) C0= 4.84μM 

4.3.2.3.2. Effective direct correlation function  

The 00 ( )effc r  of colloid-colloid was plotted in Figure 4.20. The values of 00 ( )effc r  HNC, 00 ( )effc r  

PY and 00 ( )effc r  MS at C0= 0.9681μM is -20.0, -64.0 and -28.0. The magnitude of the potential 

is larger and short range. When the concentration of the colloid increased to C0= 4.84 μM the 

magnitude of effective direct interactions between colloid-colloid decreases and value of 

00 ( )effc r  HNC is -44.0, 00 ( )effc r PY is -51.0 and 00 ( )effc r  MS is -30.0. 
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Figure 4.20: Comparison of 00 ( )effc r  with different closures: HNC, PY and MS for two-

component system. Other parameters are same as in Figure 4.19.  

4.3.3. Three-component system: HNC Results 

4.3.3.1. Variation in colloid size: 

 4.3.3.1.1. Pair correlation functions: 

The diameter of the colloid particle is varied from σ0 = 20 to 100 nm at a fixed Z0 = -

25e, C0 = 0.968 μM and Cs = 4.84 µM. The pair correlation functions are plotted in Figure 

4.21 as a function of colloidal diameter. The peak height increases with increase in the 

diameter of the colloidal particle and the peak position shift towards lower interparticle 

distance Figure 4.21a. There is no structure in case of σ0 = 20nm and σ0 = 40nm. The colloid-

colloid repulsion is reduced with increase in diameter of the colloid. These results are very 

similar to those obtained for two-component systems. The effect of salt concentration (Cs = 

4.84 µM) seems to be negligible in this case. The contact value of colloid-counterion (Figure 

4.21b) decreases as the diameter of the colloid increases. This indicates the accumulation of 

counterions on the surface decreases.  The counterion-counterion (Figure 4.21c) peaks are 

broader and peak height increases with increase in diameter of the colloid particle. The 

colloid-coion (Figure 4.21d) peak height increases steadily with increase in diameter of the 

colloid at r/σ00 = 1.0. The g21(r) i.e. counterion-coion (Figure 4.21e) peak height increases 

with increase in diameter of the colloid and the peaks are sharper. The g22(r) (Figure 4.21e) 

peak is broader and resembles g11(r). 
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Figure 4.21: Variation of pair correlation functions (a) g00(r), (b) g01(r) and (c) g11(r) (d) 

g20(r), (e) g21(r) and (f) g22(r), as a function of colloid diameter at fixed Z0= -25e, C0 = 0.968 

μM and Cs = 4.84 µM.  

4.3.3.1.2. Direct correlation functions: 

The direct correlation functions c00(r), c01(r), c11(r) were studied with variation in colloid 

diameter and presented in Figure 4.22. The colloid-colloid direct correlation function (Figure 

4.22(a)) tends to increase with increase in diameter of colloid (-27.5 at σ0 = 100nm to -20.08 
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at σ0 = 20 nm). The colloid-counterion direct correlation functions c01(r) (Figure 4.22b)  as 

well as counterion-counterion direct correlation functions c11(r) (Figure 4.22c) behaves 

similar to those of respective two-component systems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Plots of direct correlation functions (a) c00(r), (b) c01(r) and (c) c11(r), as a 

function of colloid diameter. Other parameters are same as in Figure 4.21.  

4.3.3.1.3. Effective direct correlation functions: 

The variation of 00 ( )effc r  with increasing colloid diameter is shown in Figure 4.23. The 00 ( )effc r  

start from -20.04 for σ0 = 20nm (-27.6 for σ0 = 100nm) and increases with inter-colloid 

distance and tends to zero. The feature is similar to the effective direct correlation functions 

of two-component system.   
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Figure 4.23: Plot of  00 ( )effc r  as a function 

colloid diameter. Other parameters are 

same as in Figure 4.21 

 

 

 

 

 

4.3.3.1.4. Effective potential and potential of mean force 

The  ( )effV r   shows attractive minima for all the diameters of the colloids (Figure 4.24a). 

The ( )effV r shifts towards the lower interparticle distance with increase in diameter of the 

colloid. We noticed here that the ( )effV r HNC of three-component colloidal system shows 

attractive behavior whereas ( )effV r  HNC of two-component colloidal system shows 

repulsive behavior. The salt concentration plays an important role for these attractive 

interactions in three-component colloidal system.  

 

 

 

 

 

 

Figure 4.24: Plots of (a) ( )effV r and (b) 00 ( )W r , as function of colloid diameter. Other 

system parameters are same as in Figure 4.21. 

The 00 ( )W r displayed in Figure 4.24(b) with increase in diameter of colloid becomes 

negative at σ0 = 60nm, σ0 = 80nm and σ0 = 100nm shows less repulsions and eventually 
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becomes attractive. The 00 ( )W r  shifts towards lower interparticle distance with increase in 

diameter of colloid.  

4.3.3.2. Variation in colloid charge: 

 4.3.3.2.1. Pair correlation functions: 

The effect of increasing colloidal charge was studied at fixed σ0 = 32nm, C0 = 0.968 μM, Cs 

= 4.84 µM and shown in Figure 4.25. The g00(r) (Figure 4.25a) of three-component system is 

structureless and broad compared to the two-component systems. The peaks slightly shift to 

larger interparticle distance with increase in charge of the colloidal particle. With increase in 

charge of colloid, the magnitude of colloid-counterion correlation function g01(r) (Figure 

4.25b) increases and peak position is at r/σ00 =1 whose trend is opposite to the two-

component colloidal system. The g11(r) (Figure 4.25c) correlation function is broader without 

any structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Plots of pair correlation functions (a) g00(r), (b) g01(r), (c) g11(r), as a function 

colloid charge at fixed σ0 = 32nm, C0 = 0.968 μM and Cs = 4.84 µM. 



  Chapter 4 

130 
 

4.3.3.2.2. Direct correlation functions and effective direct correlation function 

The direct correlation functions c00(r), c01(r), c11(r) with varying colloidal charge was studied 

and shown in Figure 4.26. With increasing charge of the colloid, the values of c00(r) 

systematically increases from -2.5 at Z0 = -10e to -20.6 at Z0 = -25e.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Plots of direct correlation functions (a) c00(r), (b) c01(r), (c) c11(r) and (d) 

00 ( )effc r , as a function of colloid charge. Other parameters are same as in Figure 4.25. 

The values of colloid-counterion direct correlation functions (Figure 4.26b) ranges from -0.8 

at Z0 = -10e to -0.25 at Z0 = -25e. The variation is prominent at shorter interparticle distance.  

The c11(r) (Figure 4.26c) doesn’t show any variation with increase in charge of the colloidal 

particle. With increase in charge of colloid, the 00 ( )effc r  at short interparticle distances 

becomes negative with the values -5.57 (at Z0 = -10e) to -20.56 (at Z0 = -25e) (Figure 4.26d). 

The magnitude of potential decreases, becomes negative at smaller r and approaches to zero 

at larger r.  
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4.3.3.2.3. Effective potential and potential of mean force 

The magnitude of )(rV eff  (Figure 4.27a) becomes more negative (attractive) with increase in 

charge. This might be because with increase in Z0, the coulomb repulsion between the 

colloidal particles increases and meanwhile the counterion condensation on the colloidal 

particles also increases. The depth of the minima are smaller compared to the corresponding 

two-component system. The 00 ( )W r  (Figure 4.27b) shows repulsive behavior with all the 

cases of colloidal charge.  

 

 

 

 

 

 

 

Figure 4.27: Plots of (a) )(rV eff and (b) 00 ( )W r , as a function of colloid charge. Other 

parameters are same as in Figure 4.25. 

4.3.3.3. Variation in colloid concentration 

4.3.3.3.1. Pair correlation functions 

We have studied the pair correlation function with variation of colloid concentration at fixed 

σ0 = 32nm and Z0 = -25e. The peak height of colloid-colloid (g00(r)) correlation function 

displayed in Figure 4.28(a) increases with increase in colloid concentration. The peak 

position shifts towards shorter interparticle distance. On addition of salt, the peak heights 

become smaller compared to the corresponding two-component system. The g00(r) for 

colloid concentrations of 0.484 μM, 0.968μM and 1.936μM does not show any peak, similar 

to the two-component system. The contact values of colloid-counterion correlation function 

decreases (Figure 4.28(b)) with increase in colloid concentration. The g11(r) (Figure 4.28c) is 

structureless with  broad peak for all colloid concentrations. 
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Figure 4.28: Plots of pair correlation functions (a) g00(r), (b) g01(r), (c) g11(r), as a function 

of colloid concentration at fixed σ0 = 32nm and Z0 =  -25e.  

4.3.3.3.2. Direct correlation functions and effective direct correlation functions 

We have studied the direct correlation functions c00(r), c01(r), c11(r) with varying colloid 

concentration and presented in Figure 4.29. The values of c00(r) (Figure 4.29a) increases 

from -15.0 at C0 = 0.484μM to -62.0 at C0 = 9.681μM. The values of c01(r) (Figure 4.29b) 

ranges from -0.48 at C0 = 0.484μM to 1.5 at C0 = 9.681μM. The prominent variations are 

observed at short interparticle distance.  The c11(r) behaves similar to size variation. With 

increase in concentration of colloid, the HNC )(00 rC eff  becomes negative at short interparticle 

distances (Figure 4.29(d)). With values -15.0 at C0 = 0.484 μM and -62.0 at C0 = 9.681 μM. 

On addition of salt concentration, the 00 ( )effc r  behaves similar to the two-component colloidal 

system with concentration variation. The effect of salt seems to be negligible. The potential 

is negative at smaller r.  
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Figure 4.29: Plot of direct correlation functions (a) c00(r), (b) c01(r), (c) c11(r), and effective 

direct correlation function (d) 00 ( )effc r as a function of colloid concentration. Other parameters 

are same as in Figure 4.28. 

4.3.3.3.3. Effective potential and potential of mean force 

The magnitude of )(rV eff  (Figure 4.30a) increases with increase in concentration of colloid 

and becomes negative at C0 = 0.9681 μM, 1.936 μM, 4.84 μM, 9.681 μM. The attractive 

minima increase with increase in colloid concentration and reaches -1.2 at r/σ00 = 6.0. With 

the colloid concentration of 0.484 μM the effective colloid-colloid interaction shows 

repulsive behavior. The )(rV eff  shifts towards lower inter-particle distance with increase in 

colloid concentration. The HNC 00 ( )W r  (Figure 4.30b) is repulsive at 0.484 μM, 0.968 μM 

and 1.936 μM and becomes attractive with increase in colloidal concentration (C0 = 4.84 μM, 

9.681 μM) at shorter interparticle distance and becomes repulsive at larger interparticle 
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distance. The position of minima of 00 ( )W r  shifts towards lower interparticle distance and the 

attractive HNC minima is found at r/σ00 ~ 1.0. 

 

  

 

 

 

 

 

Figure 4.30: Plots of (a) )(rV eff  and (b) 00 ( )W r  as function of colloid concentration. Other 

parameters are same as in Figure 4.28. 

4.3.4. Comparison of different closures and MD results in three-component colloidal 

system: 

We have studied the effect of different closure approximations on three-component colloidal 

systems as mentioned in section 4.3.2. 

4.3.4.1. Size variation 

4.3.4.1.1. Effective direct correlation functions 

 

The colloid-colloid effective direct correlation function was studied and plotted in Figure 

4.31. The colloid-colloid effective direct interactions for all three closures merge together 

(HNC=PY=MS). However, the MD results are different from this.  
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Figure 4.31: Comparison of 00 ( )effc r with different closures: HNC, PY and MS for three-

component system at fixed Z0 = -25e, C0 = 0.968 μM and Cs = 4.836 μM. (a) σ0 = 20nm (b) 

σ0 = 100nm 

4.3.4.1.2. Effective potential 

We have compared different closures with variation of colloid diameter at fixed Z0 = -25e, C0 

= 0.9681μM and Cs = 4.836 μM. We studied the )(rV eff  for σ0 = 20nm and 100nm using  

 

 

 

 

 

 

Figure 4.32: Comparison of )(rV eff  with different closures: HNC, PY and MS for three-

component system. Other system parameters are same as mentioned in Figure 4.31. 

different closures. Figure 4.32(a) shows that PY shifts towards lower interparticle distance 

and becomes attractive for larger r. The attractive minima for PY holds for larger r. For the 

(a) (b) 
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closures like HNC and MS the )(rV eff  is repulsive at lower interparticle distance and 

becomes attractive at larger interparticle distance. As the diameter of colloid is increased to 

σ0 = 100nm (Figure 4.32b), the attractive minima for PY )(rV eff  increases at lower 

interparticle distance i.e. r/σ00 = 1.0. On addition of salt, the closure becomes negative at 

larger interparticle distance and the order in the depth of the minima becomes PY > MS > 

HNC. 

4.3.4.1.3. Potential of mean force  

We have studied the 00 ( )W r  (Figure 4.33a) of the system with same parameters as mentioned 

in Figure 4.32. For σ0 = 20nm, the 00 ( )W r  merges for all the closures and become purely 

repulsive. On addition of salt at σ0 = 20nm, the PY and MS results becomes repulsive. There 

is no change with HNC approximation. When the diameter of colloid increased to σ0 = 

100nm (Figure 4.33b) all the closures overlap and shows attractive minima. 

Figure 4.33: Comparison of 00 ( )W r with different closures: HNC, PY and MS for three-

component system. Other parameters are same as in Figure 4.31.  

4.3.4.2. Charge variation 

4.3.4.2.1 Effective potential 

We have studied the effect of closures with variation of colloid charge at fixed σ0 = 32nm 

and C0 = 0.9681μM and Cs = 4.836 μM. The effective potential between the colloids )(rV eff  

was studied for Z0 = -10e and Z0 = -25e using different closures. All the closures show 
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attractive behavior at Z0 = -10e (Figure 4.34(a)) at larger r. In presence of salt, the HNC, PY 

and MS becomes attractive.  When the charge of the colloid increased to -25e (Figure 4.34b), 

the HNC, PY and MS shows attractive interactions and the minima shift towards lower 

interparticle distance. The magnitude of )(rV eff  decreases and becomes negative. On 

addition of salt to the colloidal system, the PY becomes more attractive at lower interparticle 

distance which is opposite to two-component system. The order of attractive behavior is 

similar as the case of  size variation (Figure 4.32a). 

Figure 4.34: Comparison of )(rV eff  with different closures: HNC, PY and MS for three-

component system at fixed σ0 = 32nm, C0 = 0.9681μM and Cs = 4.836 μM. (a) Z0 = -10e and 

(b) Z0 = -25e 

4.3.4.2.2 Potential of mean force 

The colloid-colloid 
00 ( )W r  of the system with same parameters as mentioned in Figure 4.35 

was studied. All the closures overlap and shows repulsive behavior with both charges Z0 =       

-10e and Z0 = -25e. The PY and MS closures which showed attractive behavior in case of 

two-component colloidal system now shows repulsive interactions on addition of salt 

concentration Cs = 4.836 μM. 
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Figure 4.35: Comparison of 
00 ( )W r with different closures: HNC, PY and MS for three-

component system. Other parameters are same as in Figure 4.34.  

4.3.4.2.3. Effective direct correlation function  

The colloid-colloid 00 ( )effc r  was displayed in Figure 4.36. The 00 ( )effc r  for all the closures is 

same even when the charge of the colloid increased to Z0 = -25e.  

 

Figure 4.36: Comparison of 00 ( )effc r with different closures: HNC, PY and MS for three-

component system. Other parameters are same as in Figure 4.34.  
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4.3.4.3. Concentration variation: 

4.3.4.3.1 Effective potential 

We have studied different closures at fixed σ0 = 32nm, Z0 = -25e with variation in colloid 

concentration. The effective potential )(rV eff  (Figure 4.37(a)) shows similar behavior as that 

of system with σ0 = 32nm, Z0 = -25e, C0 = 0.9681μM, Cs = 9.68 μM. As the concentration of 

colloid increased to 9.68 μM (Figure 4.37b) all three closures becomes negative. The PY 

)(rV eff  becomes negative at r/σ00 = 1.25. The PY closure shifts towards shorter interparticle 

distance. 

 

Figure 4.37: Comparison of )(rV eff  with different closures: HNC, PY and MS for three-

component system at fixed σ0 = 32nm and Z0 = -25e. (a) C0 = 0.9681μM (b) C0 = 9.681μM. 

4.3.2.3.2. Effective direct correlation function  

The colloid-colloid 00 ( )effc r  was plotted in Figure 4.38. All the closures behave same 

irrespective of the concentration of colloid. As the concentration of colloid increased to 9.68 

μM (Figure 4.38b). In presence of salt concentration, the 00 ( )effc r  for all the closures behaves 

same without any deviation. However, the MD results are different from integral equation 

results. 
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Figure 4.38: Comparison of 00 ( )effc r with different closures: HNC, PY and MS for three-

component system. Other parameters are same as in Figure 4.37.  

4.3.2.3.3. Potential of mean force  

The 00 ( )W r  for colloid-colloid interaction was studied and plotted in Figure 4.39. At C0 = 

0.9681μM and Cs = 9.681μM, all the closures show repulsive interactions and merged 

together. As the concentration of colloid and salt increased to C0 = 9.681μM and Cs = 

9.681μM (Figure 4.39b), all the closures become negative with attractive minima. 

 

Figure 4.39: Comparison of 00 ( )W r  with different closures: HNC, PY and MS for three-

component system. Other parameters are same as in Figure 4.37.  
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4.4. Conclusion: 

We used the integral equation formalism i.e. Ornstein Zernike Equation and solve it using 

Newton-GMRES algorithm for colloidal suspensions. The pair correlation functions, 

effective colloid potential of colloidal suspensions was studied with three different 

approximations: HNC, PY and MS. The performance of these approximations was analyzed 

with variation in size, charge and concentration of colloid. The pair correlation functions 

show systematic variations with size, charge and concentration of colloid with HNC theory. 

The effective colloid potential becomes repulsive with colloid size in a two-component 

system whereas it becomes attractive in three-component system. With increase in colloid 

charge and concentration, attractive behavior with both two-component and three-component 

colloidal systems were found. The potential of mean force becomes attractive with increase 

in size, charge and concentration of colloid in HNC theory for two-component system. The 

three-component systems behave similar to two-component systems with variation in size 

and concentration of colloid; opposite trends were found with charge variation. With increase 

in size, charge and concentration of the colloidal particle, the performance of HNC theory is 

better than those PY and MS theory. Few cases we compared with the molecular dynamics 

simulation results. HNC shows good agreement with MD simulation results for σ0 = 100nm 

and Z0 = -25e  both for two-component and three-component systems. But PY shows good 

agreement only in three-component (added salt) systems.  Generally, the integral equation 

results deviate substantially from that of simulation results. Among the studied closures, 

HNC seems to be closer to simulation than PY and MS for the studied systems.  
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In this work, we studied the asymmetric binary mixtures with asymmetry in size, charge and 

mass ratio. The structural, thermodynamic properties and self-diffusion coefficient of these 

mixtures were studied using molecular dynamic simulations in chapter 2. These considerations 

were extended to model colloidal suspensions which mimic the realistic colloids in size, charge 

and concentration. The effective interactions between the colloids were discussed and 

compared the interactions between the two-component colloidal systems and three-component 

colloidal systems. We have investigated the structure, thermodynamic properties and self-

diffusion coefficients of charged colloidal suspensions in bulk solutions in chapter 3. We have 

introduced the confinement in bulk solutions to study the influence of confinement on colloidal 

density and diffusion coefficient in chapter 3. In chapter 4, the model colloidal suspensions 

were investigated with formalism of integral equation theory i.e. Ornstein Zernike equation 

which is generalized using Newton-GMRES algorithm. Three different closure 

approximations were employed, and the performance of these approximations were analyzed 

with variation in size, charge and concentration of the colloid particle. These closures were 

compared with the MD results which were obtained in chapter 3.   

We have reported the molecular dynamics simulation results for binary fluid mixtures 

having asymmetry in size, mass, charge and their combinations in chapter 2. A systematic 

variations in  different properties as a function of charge, size and mass asymmetries have been 

observed. Possible explanation for these trends is presented in many cases. The pair correlation 

functions shift to larger inter-particle distances as the size and/or charge increases indicating 

increase in repulsion between particles. The mass variation has practically no effect. This may 

be due to the fact that mass doesn’t appear explicitly in the expression for pair potential. With 

increase in size asymmetry, both the energy and pressure of the neutral systems decreases, an 

effect similar to decrease in density of the system. As the charge asymmetry increases, the 

interactions between the particles become long ranged and the magnitude of excess free energy 

increases. For a given charge asymmetry, higher excess free energy is found for size symmetric 

mixture than those of size symmetric case, possibly due to reduction in charge density. The 

self-diffusion coefficients are found to decrease with increase in size, charge and mass 

asymmetries. Arrhenius-type behavior is found for the diffusion coefficient. Empirical 

relations expressing diffusion coefficient of systems having more than one type of asymmetry 
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in terms of diffusion coefficient of systems having asymmetry of only one type, have been 

presented.  

In chapter 3, we have studied model colloidal suspensions in bulk solutions as well as 

in between two walls using molecular dynamics simulations. The studies are carried out in a 

wide range of charge (10e-100e), diameter  (20 nm-100 nm), colloid concentrations (0.484 μM 

- 2.42 μM) and salt concentrations (0 μM - 7.7 μM).   The correlation functions, effective 

colloid potential and different properties were determined using two-component and three-

component primitive model. With increase in colloid charge, size and concentration, the peak 

height in g00(r) systematically increases. The depth of minima in the effective colloid-colloid 

potential are found to increase with increase in colloid charge, size and concentration. 

However, the position of the minima shifts to lower inter-colloid distance with increase in 

colloid size and concentration but remain more or less unaltered with increase in colloid 

charge. The effect of salt (in the range investigated) has very little effect. With the increase in 

counterion valency, the effective colloid-colloid potential becomes less attractive. For the 

cases of colloid suspensions in between two parallel walls, the density profiles functions for 

colloid become oscillatory indicating ordering/layering of particles. The oscillatory behavior 

is found to be pronounced for colloid with neutral walls or one positive and one negative wall. 

A systematic variation in the density profile of small particle/ion is also observed. The self-

diffusion coefficient of neutral colloid is found to be higher than that of charged one 

irrespective of the nature of walls. 

 We used the integral equation formalism i.e. Ornstein Zernike Equation and solve it 

using Newton-GMRES algorithm for colloidal suspensions. The pair correlation functions, 

effective interactions of colloidal suspensions were studied with three different 

approximations: HNC, PY and MS. The performance of these approximations was analyzed 

with variation in size, charge and concentration of colloid. The pair correlation functions show 

systematic variations with size, charge and concentration of colloid with HNC theory. The 

effective potential becomes repulsive with colloid size in a two-component system whereas it 

becomes attractive in three-component system. With charge and concentration variation, 

attractive behavior with both two-component and three-component colloidal systems are 

found. The potential of mean force becomes attractive with increase in size, charge and 
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concentration of colloid in HNC theory for two-component system. The three-component 

systems behave similar to two-component systems with variation in size and concentration of 

colloid; opposite trends were found with charge variation. With increase in size, charge and 

concentration of the colloidal particle, the performance of HNC theory is better than those PY 

and MS theory. Few cases we compared with the molecular dynamics simulation results. HNC 

shows good agreement with MD simulation results for σ0 = 100nm and Z0 = -25e  both for 

two-component and three-component systems. But PY shows good agreement only in three-

component (added salt) systems.  Generally, the integral equation results deviate substantially 

from that of simulation results. Among the studied closures, HNC seems to be closer to 

simulation than PY and MS for the studied systems.  

 Overall, with respect to “gaps in existing research” identified in chapter 1, we have 

carried out extensive molecular dynamics simulation data on model colloidal suspensions 

using primitive model with range of parameters: charge Z0 =1e - 100e , size σ0 = 0.6 nm – 100 

nm, colloid concentration C0 = 0.484 - 2.42 μM, salt concentration Cs = 0 - 7.7 μM. Variations 

of  effective colloid potential as a function of colloid charge, size and concentration have been 

studied. The effective potential becomes  attractive  as the charge/size/concentration of colloid 

increases. The trends in position and magnitude of the potential minima with system 

parameters have been identified. Alternatively, the structure and effective colloid potential 

have been calculated using Integral equation theories under HNC, PY and MS approximations. 

Using the recently developed Newton GMRES algorithm, we could able to increase the range 

of convergence substantially; e.g. colloid diameter upto 100 nm, concentration upto 12 μM. 

The results of different integral equation theories have been compared with MD simulation 

results. 

Future Scope: 

MD simulations of colloidal suspensions can be extended to wide range of system parameters 

(colloid charge, size, colloid concentration and salt concentration) and properties (e.g. thermal 

conductivity, heat coefficient, viscosity etc.)   
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Behavior of colloidal suspensions under confinement can be extended by varying the (i) charge 

on the confinement, (ii) confinement length, etc. Furthermore, it would be worthwhile to study 

the freezing phenomena in charged as well as uncharged confinement as a future work. 

The quality and performance of the closure approximations can be improved (considering 

different closures, including bridge diagram sum etc, as well as developing robust algorithm).  
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