
Learning-based Approaches for Addressing
Challenges in Sentiment Analysis

THESIS

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

RUPAL BHARGAVA

Under the Supervision of

Dr. Yashvardhan Sharma

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI (RAJASTHAN) INDIA

February 2019

http://www.bits-pilani.ac.in
http://www.bits-pilani.ac.in

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI, RAJASTHAN

CERTIFICATE

This is to certify that the thesis entitled "Learning-based Approaches for Addressing
Challenges in Sentiment Analysis", submitted by Rupal Bhargava ID No. 2013PHXF0009P
for the award of Ph.D degree of the Institute and embodies original work done by her un-
der my supervision.

Signature of the supervisor : ___________________

Name : DR. YASHVARDHAN SHARMA
Designation : Associate Professor,

Department of Computer Science
BITS Pilani, Pilani Campus
Pilani

Date : __________

Dedicated To
My Parents

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Yashvardhan

Sharma for the continuous support during my PhD course and related re-

search assistance. His patience, motivation, and immense knowledge helped

me to overcome the difficulties during the course. His guidance helped me

every time during the research and drafting this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Poonam Goyal, Prof. Aruna M for their insightful comments and encourage-

ment, and also for their deep-diving queries which incented me to widen my

research from various perspectives. My sincere thanks also goes to Prof. J.P

Mishra and Prof. Sudeept Mohan for their continuous support and encour-

agement. Without their precious support it would not have been possible to

conduct this research. I would like to express my gratitude to Prof. Navneet

Goyal and Prof. Rahul Banerjee for their constant guidance, help, support and

well-wishes. I thank my fellow research scholars for the stimulating discus-

sions and for all the fun we have had in the past four years.

Last but not the least, I would like to thank my parents, my brother, my hus-

band,inlaws and other family members for supporting me throughout the the-

sis drafting and my life in general.

Abstract

Sentiments and their implications play a vital role in our life. People ap-

praise the opinions of others before reaching a conclusion. With the advent

of forums, blogs and social networking sites, there has been a considerable in-

crease in sharing of opinions and sentiments on social media. Netizens exhibit

divergent views on a particular subject and many times end up agreeing to the

disagreement. A substantial amount of research has been done in automated

text analysis, viewpoint analysis and opinion extraction. The increase in usage

of social media in multilingual countries, such as India, has posed challenges

of accommodating multilingual text in addition to monolingual text and its

processing. The immense increase in information overload of viewpoints on

the internet, calls for efficient methods to extract the useful information with

the view to facilitate decision making. Opinion mining or viewpoint excava-

tion has been treated as a classification problem which stratifies documents

or products as good/bad or positive/negative. People may have ambivalent

opinions about the topic or product.

Information overload has lead to increased focus on the need for creating an

alternative approach for representation and selection, of text and multimedia

contents. An efficient framework is needed for representing the essential parts

of the text so that user can decide whether he/she should read the whole text

or not. For such cases, text summarization is a better suited for representing

an opinion.

Although the automated text summarization is focused on text inputs, but

multimedia information, video, images, recorded tracks, online information

or hypertexts can also be considered as inputs.

The thesis focuses on the problem of text summarization which considers vital

parts of the document, extracts utilitarian information, and provides a broad

overview of opinions. This saves the user from going through many doc-

uments to reach a conclusion. Work done also focuses on aspects/features

present in the document and associates opinions with each of them.

Social media content has been used for extracting sentiment, but all the con-

tent cannot be trusted because it can be faked. Distinguishing a fake post from

a genuine post can be challenging at times. The thesis attempts to automate

the problem of spam detection using hybrid sequential models.

Sarcasm inverts the sentiments being expressed and social media being an

informal platform, increases the chances of sarcasm in the text. Detecting sar-

casm is a challenging task even for humans. The thesis aims to automate the

task of sarcasm detection to facilitate identification of true sentiments from the

text.

Due to unofficial nature of social media, there has been an increase in its us-

age. This has resulted in the use of regional languages. People usually mix

their regional language with English or any other language known to them. To

identify the actual sentiment, it is essential to deal with the code mixed text.

Automated processing of code mixed text can be very challenging due to lack

of readily available tools such as named entity recognizer and part of speech

tagger. The thesis attempts to develop necessary tools for processing code

mixed text and further uses these tools for the applications related to code

mixed text. Due to increasing text on social media, it is becoming increasingly

important to focus on finding solutions for above mentioned problems and

challenges.

Table of Contents

List of Figures x

List of Tables xv

List of Abbreviations/Symbols xx

1 Introduction 1

1.1 Motivation . 2

1.2 Research Gaps . 7

1.3 Thesis Goals/Objectives . 8

1.4 Scope of Thesis . 9

1.5 Thesis Organization/ Outline . 9

2 Related Work 11

2.1 Sentiment Analysis . 11

2.1.1 Sentiment Analysis in Indian Languages 13

2.1.2 Temporal Sentiment Analysis . 25

2.2 Paraphrase Detection . 26

2.3 Text Summarization . 28

2.3.1 Extractive Text Summarization . 30

2.3.2 Abstractive Text Summarization . 32

2.3.3 Text Summarization in Indian Languages 35

2.3.4 Applications and Challenges . 42

2.4 Spam Detection . 43

2.5 Sarcasm Detection . 46

v

2.6 Code Mixing . 49

2.6.1 POS Tagging . 51

2.6.2 Named Entity Recognizer . 55

2.6.3 Question Classification . 56

2.6.4 Sentiment Analysis in Code Mixed Text 58

3 Sentiment Analysis 62

3.1 Neural Network based Architecture for Sentiment Analysis 63

3.1.1 Neural Network based Architecture for Sentiment Analysis in In-

dian Languages . 63

3.1.2 Experiments & Results . 68

3.2 Temporal Sentiment Analysis . 83

3.2.1 Dataset Description . 85

3.2.2 Proposed Approach for aspect based temporal opinion mining . . . 85

3.2.3 Experiments & Results . 93

3.3 Concluding Remarks . 100

4 Text Summarization 102

4.1 Paraphrase Detection . 103

4.1.1 Hybrid Approach for Paraphrase Detection 104

4.1.2 Detecting Paraphrase using Deep Learning in Indian Languages . . 112

4.2 Extractive Text Summarization . 123

4.2.1 Workflow for Proposed approach . 125

4.2.2 True Label Generation . 125

4.2.3 Model Generation . 126

4.2.4 Algorithm: Extractive Text Summarization using Deep Learning . . 127

4.2.5 Experiments & Results . 129

4.3 Abstractive Text Summarization . 131

4.3.1 Abstractive Text Summarization using Sentiment Infusion 133

4.3.2 Abstractive Text Summarization using Generative Adversarial Net-

works . 141

4.4 Concluding Remarks . 146

vi

5 Spam Detection in Reviews 148

5.1 Composite Sequential Modeling for Identifying Fake Reviews 150

5.1.1 Parameter setting for Recurrent Neural Network (RNN) 151

5.1.2 Parameter setting for Long Short Term Memory (LSTM) 151

5.1.3 Parameter setting for Convolutional Neural Network (CNN) 151

5.2 Baseline Approach . 152

5.2.1 Features . 152

5.3 Experiments and Results . 153

5.3.1 Data Set Description . 154

5.3.2 Evaluation & Discussion . 154

5.4 Concluding Remarks . 159

6 Sarcasm Detection 161

6.1 Sarcasm Detection using Machine Learning Techniques 163

6.1.1 Dataset Description . 163

6.1.2 Data Pre-processing . 163

6.1.3 Feature Extraction . 164

6.1.4 Classification . 166

6.1.5 Algorithm: Sarcasm Detection using Machine learning Techniques . 167

6.1.6 Experiments & Results . 168

6.2 Sarcasm Detection for Monolingual & Code Mix Text 170

6.2.1 Dataset Description . 171

6.2.2 Preprocessing . 173

6.2.3 Approach for Sarcasm detection in Monolingual & Code mixed en-

vironment . 174

6.2.4 Experiment(s) and Result(s) . 179

6.3 Concluding Remarks . 190

7 Code Mixing Tools 191

7.1 POS Tagging for Indian Code Mixed Social Media Text 193

7.1.1 Approach 1: Ensemble based POS Tagger 194

7.1.2 Approach 2: Tree based classifier for POS Tagging 197

vii

7.1.3 Approach 3: Bidirectional LSTM based POS Tagger 199

7.1.4 Data Analysis . 201

7.1.5 Experiments and Results for Approach 1 204

7.1.6 Experiments and Results for Approach 2 207

7.1.7 Experiments and Results for Approach 3 210

7.2 Named Entity Recognition for Code Mixed Social Media Text 212

7.2.1 Approach for Named Entity Recognition for Code Mixed Social Me-

dia Text . 213

7.2.2 Data Analysis . 217

7.2.3 Experiments & Results . 219

7.3 Concluding Remarks . 222

8 Code Mixing Applications 224

8.1 Question Classification for Code-Mixed Cross Script Question 224

8.1.1 Approach 1: Question classification using traditional machine learn-

ing techniques . 226

8.1.2 Approach 2: Question classification using Deep Learning 228

8.1.3 Algorithms for Question Classification for Code Mixed Cross Script

Questions . 231

8.1.4 Data Description and Analysis . 232

8.1.5 Experiments . 235

8.2 Sentiment Analysis for Code Mixed Social Media Text 241

8.2.1 Building SentiWordNet Dictionaries for Indian Languages 243

8.2.2 Proposed Approach for Sentiment Analysis of Code Mixed Social

Media Text . 247

8.2.3 Algorithm for Sentiment Analysis for Code Mixed Social Media Text 254

8.2.4 Data Description and Analysis . 258

8.2.5 Experiments and Results . 260

8.3 Concluding Remarks . 266

9 Conclusion & Future Work 267

9.1 Conclusion . 267

viii

9.2 Thesis Contributions . 269

9.3 Future Work . 270

References 272

Publications 313

Biographies 316

ix

List of Figures

1.1 Block Diagram for Sentiment Analysis . 2

1.2 Basic procedure of Text Summarization . 4

3.1 Block diagram representing the process of sentiment analysis 70

3.2 CNN+LSTM model . 70

3.3 Accuracy and F-measure for one and two-layer models(Hindi) 73

3.4 Accuracy and F-measure for three-layer models(Part-1)(Hindi) 73

3.5 Accuracy and F-measure for three-layer models(Part-2)(Hindi) 74

3.6 Over-fitting in RNN-RNN-CNN model(Hindi) 75

3.7 Accuracy and F-measure for one and two layer models(Bengali) 76

3.8 Accuracy and F-measure for three-layer models (Part-1)(Bengali) 77

3.9 Accuracy and F-measure for three-layer models (Part-2)(Bengali) 77

3.10 Over-fitting in RNN-CNN-CNN model(Bengali) 78

3.11 Accuracy and F-measure for one and two layer models(Tamil) 78

3.12 Accuracy and F-measure for three-layer models (Part-1)(Tamil) 79

3.13 Accuracy and F-measure for three-layer models (Part-2)(Tamil) 79

3.14 Over-fitting in RNN-CNN-LSTM model(Tamil) 81

3.15 Over-fitting in RNN-RNN model(Tamil) . 81

3.16 Comparison of performance of RNN-LSTM on different datasets 82

3.17 Block diagram for aspect-based Sentiment Analysis 87

3.18 Aspect-based Sentiment Model[Wang & Liu 2015] 89

3.19 F-Measure v/s Threshold for aspect-based model 94

3.20 F-Measure v/s Threshold for Sentiment Model 95

x

3.21 Validation Loss v/s Number of epochs . 96

3.22 Day Wise Analysis of Laptop#General . 97

3.23 Year-wise Analysis of Laptop#General . 97

3.24 Month-wise analysis for Laptop#General in the Year 2008 98

3.25 Analysis for a particular month . 98

3.26 Year-wise analysis of multiple aspects . 99

3.27 Burst Analysis . 99

3.28 Month-wise analysis for the year 2009 for multiple aspects 100

4.1 Block diagram for Paraphrase Detection . 106

4.2 Example for Paraphrase, Not Paraphrase and Semi Paraphrase 108

4.3 Data Analysis of Paraphrase for Dataset1 . 109

4.4 Data Analysis of Paraphrase and Semi Paraphrase for Dataset2 110

4.5 Results for Dataset1 using different classifier for proposed system 111

4.6 Results for Dataset2 using different classifier for proposed system 111

4.7 Comparison of proposed approach with existing approaches on Dataset1 . 112

4.8 Comparison of proposed work with existing work on Dataset2 113

4.9 Matrix built using WordNet . 113

4.10 RNN Model . 116

4.11 F-measure scores for RNN . 121

4.12 F-measure scores for CNN . 122

4.13 F-measure scores for CNN-WordNet . 122

4.14 F-measure scores for all approaches . 123

4.15 Block Diagram showing basic workflow . 125

4.16 Network Architecture as a block diagram . 128

4.17 Training loss vs number of epochs . 132

4.18 Validation loss vs number of epochs . 132

4.19 Graph Capturing Redundancy in the text . 134

4.20 Example Sentences that can be fused together 135

4.21 Evaluated results on dataset [Ganesan et al. 2010a] with human summary

and Baseline 1 vs ATSSI . 140

xi

4.22 Evaluated results on DUC2002 dataset with human summary and Baseline

2 vs ATSSI . 140

4.23 GAN model for text summarization . 143

4.24 Results for Text Generation using Generative Adversarial Networks 145

4.25 Example summary for English generated by Proposed approach (TGGAN) 145

4.26 Example summary for Hindi generated by Proposed approach (TGGAN) . 145

4.27 Example Summary for Malayalam generated by Proposed approach (TG-

GAN) . 146

5.1 Block Diagram for Proposed Approach . 150

5.2 Results obtained at Feature Level . 155

5.3 Comparison of different techniques . 156

5.4 Comparison of layered models of different architecture 157

5.5 ROC Curve for single-layer CNN . 160

6.1 Feature comparison of different classification Techniques 169

6.2 Comparison of different feature combination using various classifiers . . . 170

6.3 Data Distribution . 173

6.4 Data Visualization . 174

6.5 t-SNE Visualization of Word Embeddings . 176

6.6 Neural Network Architecture . 178

6.7 Hybrid Multi Model Weighting . 179

6.8 Model based on bilingual embeddings . 179

6.9 Monolingual Heterogeneous Models . 181

6.10 Monolingual CNN Models . 181

6.11 Monolingual LSTM Models . 182

6.12 Monolingual RNN Models . 182

6.13 Comparison among best models of different architecture for Monolingual

text . 183

6.14 Comparison among 1 layered CNN models of Hindi and English 183

6.15 Bilingual Heterogeneous Model . 186

6.16 Bilingual CNN Model . 186

xii

6.17 Bilingual LSTM Models . 187

6.18 Bilingual RNN models . 187

6.19 Comparison among best models of different architecture for Bilingual text 188

6.20 Bilingual CNN model with different settings 189

6.21 Bilingual CNN Variants Models . 189

7.1 Block diagram of ensemble based POS tagger 196

7.2 Tags used for POS Tagging [Jamatia & Das 2016] 203

7.3 Language Tags in Telugu Dataset . 207

7.4 Language Tags in Bengali Dataset . 208

7.5 Language Tags in Hindi Dataset . 209

7.6 Precision for Coarse Grained POS Tagging using approach 3 212

7.7 Recall for Coarse Grained POS Tagging using approach 3 213

7.8 F-measure for Coarse Grained POS Tagging using approach 3 214

7.9 Precision for Fine Grained POS Tagging using approach 3 215

7.10 Recall for Fine Grained POS Tagging using approach 3 216

7.11 F-measure for Fine Grained POS Tagging using approach 3 217

7.12 Block Diagram for Proposed Algorithm . 218

7.13 Result comparison with other approaches (Hindi-English) 221

7.14 Result comparison with other approaches (Tamil-English) 222

8.1 Convolutional Neural Network Model for Approach 2 230

8.2 Class Distribution of Training dataset . 234

8.3 Comparison of accuracy with existing work and proposed approach 236

8.4 Comparison of F-measure for Organization and Money class with existing

work and proposed approach . 236

8.5 Comparison of F-measure with existing work and proposed approach for

various classes . 237

8.6 F-measure for the class ‘PER’ . 240

8.7 F-measure for the class ‘MONEY’ . 241

8.8 F-measure for the class ‘NUM’ . 242

8.9 F-measure for the class ‘LOC’ . 243

xiii

8.10 F-measure for the class ‘DIST’ . 244

8.11 F-measure for the class ‘TEMP’ . 245

8.12 F-measure for the class ‘OBJ’ . 247

8.13 F-measure for the class ‘ORG’ . 248

8.14 F-measure for the class ‘MISC’ . 249

8.15 Comparing F-measure for v1, v2 and v3 for approach1 (averaged) and ap-

proach2 . 250

8.16 Number of Sentences per Language . 260

8.17 Number of Subjective/Objective Sentences per Language 261

8.18 Comparison of all the three proposed approach for Language Identification 262

8.19 Comparison of all the three proposed approach for Sentiment Analysis . . 262

xiv

List of Tables

3.1 Parameter settings for Sentiment Analysis 67

3.2 Dataset description . 69

3.3 Summary of top performance results for Hindi dataset. 72

3.4 Summary of top performance results for Tamil dataset. 72

3.5 Summary of top performance results for Bengali dataset. 75

3.6 Comparison with SAIL 2015 . 83

3.7 Aspects extracted . 96

3.8 Burst obtained . 98

4.1 Parameter settings for Label Generation . 129

4.2 Parameter settings for Summary Generation 130

4.3 Preliminary results for Summary Generation in English 131

4.4 Preliminary results for Summary Generation in Malayalam 131

5.1 Results for different model of LSTM . 157

5.2 Results for different model of RNN . 158

5.3 Results for different model of CNN . 158

5.4 Results for two-layered model . 159

5.5 Results for three-layered model . 159

5.6 Result for different model of CNN . 159

6.1 Result comparison with baseline [Buschmeier et al. 2014] 168

xv

6.2 Network Layer configurations. For a neural network layer X (CNN/LST-

M/RNN) and number i (1/2/3), the notation Xi means the layer X at ith depth

in the model . 177

6.3 Peformance of different models ("i x layer" model denotes i times repeated

stack of the respective layer) for Monolingual (En) dataset 184

6.4 Performance measure on Monolingual (Hi) dataset 184

6.5 Bilingual (Hi-En) results. A "i x layer" model denotes i times repeated

stack of the respective layer. Static and learnable represents that only static

embeddings and on-the-fly embeddings are used respectively 185

6.6 Bilingual Embeddings result . 188

7.1 Features . 195

7.2 Overall Dataset Statistics . 202

7.3 Facebook Dataset Statistics . 202

7.4 Analysis of Coarse Grained dataset for Hindi (Facebook, Whatsapp and

Twitter . 204

7.5 Analysis of Coarse Grained dataset for Telugu (Facebook, Whatsapp and

Twitter . 205

7.6 Analysis of Coarse Grained dataset for Bengali (Facebook, Whatsapp and

Twitter . 206

7.7 F-measure of Coarse Grained dataset using approach 1 207

7.8 F-measure of Fine Grained dataset using approach 1 208

7.9 Results for Bengali Corpus (tree_v1) . 209

7.10 Results for Bengali Corpus (tree_v2) . 210

7.11 Results for Hindi Corpus (tree_v1) . 210

7.12 Results for Hindi Corpus (tree_v2) . 211

7.13 Results for Telugu Corpus (tree_v1) . 211

7.14 Results for Telugu Corpus (tree_v2) . 212

7.15 Frequency of NE in both datasets . 219

7.16 Features used for creating the feature vector. 220

7.17 Different Versions of Proposed System . 220

xvi

7.18 Results for Hindi-English Proposed System 221

7.19 Results for Tamil-English Proposed System 221

8.1 Description of versions for Approach 1 . 228

8.2 Distribution of classes in the dataset. 234

8.3 Class wise score for all the runs submitted 238

8.4 Results for Approach 1 (A1) and Approach 2 (A2) 251

8.5 Features used for Sentiment Analysis using traditional machine learning

approach . 253

8.6 Number of tokens and their percentages in the testing and training data . . 259

8.7 Results for Language Identification . 263

8.8 Results for Sentiment Analysis . 264

xvii

List of Algorithms

3.1 Sentiment Analysis of Indian Languages . 68

4.1 Algorithm for Detecting paraphrases . 107

4.2 Paraphrase Detection using CNN . 119

4.3 Paraphrase Detection using RNN . 120

4.4 ETSDL: Extractive Text Summarization using Deep Learning 127

4.5 Text Summarization using paraphrase detection 144

6.1 Algorithm for identifying Sarcasm using Machine Learning Technique . . . 167

7.1 Algorithm for POS Tag detection . 197

7.2 Algorithm for Detecting paraphrases . 200

7.3 Step function for a RNN . 200

7.4 Algorithm for POS tagging code mixed text 202

7.5 Algorithm for Identifying Named Entity Recognition for Code Mixed Text

in Indian Language . 220

8.1 Question Classification using traditional machine learning 232

8.2 Question Classification using Deep Learning. 233

8.3 Generation of SentiWordNet Dictionaries . 246

8.4 Language Identification using ng_SVM . 254

8.5 Language Identification using h_ng_SVM . 255

8.6 Language Identification using CRF . 256

8.7 Language Identification using CRF . 256

8.8 SA_Count . 257

xviii

8.9 SA_Score . 258

8.10 SA_RF . 259

xix

List of Abbreviations/Symbols

Term Definition
ATSSI Abstractive Text Summarization using Sentiment Infusion

ANN Artificial Neural Network

BRNN Bidirectional Long Short Term Memory Recurrent Neural Network

CRF Conditional Random Field

CNN Convolutional Neural Network

DPIL Detecting Paraphrases in Indian Language

DUC Document Understanding Conference

FIRE Forum of Information Retrieval Evaluation

GRU Gated Recurrent Units

GAN Generative Adversial Networks

HAPD Hybrid Approach for Paraphrase Detection

HMM Hidden Markov Model

HMMW Hybrid Multi Model Weighting

LR Logistic Regression

LSTM Long Short Term Memory

LCS Longest Common Subsequence

MT Machine Translation

MSIR Mixed Script Information Retrieval

MLP Multilayer Perceptron

MSS Multilingual Single Document Summarization

NB Naive Bayes

NE Named Entities

NER Named Entity Recognition

NLP Natural Language Processing

NASA Neural Network Based Architecture for Sentiment Analysis

POS Part of Speech

ROUGE Recall Oriented Understudy of Gisting Evaluation

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SWN SentiWordNet

SDDL Spam Detection based on Deep Learning

SDML Spam Detection based on Machine Learning

SVM Support Vector Machine

TGGAN Text Generation using Generative Adversial Networks

WGAN Wasserstein Generative Adversial Networks

xx

Chapter 1

Introduction

With the rapid growth in usage of social media, users are experiencing lesser communica-

tion barriers worldwide. This has not only widened the scope of communication but has

also provided users with a chance of expressing their opinions or views publicly. Opin-

ions or sentiments expressed on social media influences people in a positive or negative

manner. Opinions play a fundamental role in the decision-making process of both indi-

vidual and organizations as it impacts people’s attitudes and beliefs [Liu 2012]. Opinions

make people more aware of their surroundings and views of their fellow beings. This has

led to increased interest in mining and analyzing sentiments.

Sentiment analysis is a computational study of people’s opinions, attitudes and emo-

tions [Medhat et al. 2014]. Sentiment analysis and opinion mining are often referred

interchangeably by researchers with few exceptions and hence, both the terms have been

referred interchangably in the thesis. There are three primary classification levels in sen-

timent analysis, i.e. document level, sentence level and aspect/feature level. Document-

level sentiment analysis aims to classify an opinionated document expressing a positive

or negative opinion or sentiment. It considers the whole document as basic information

unit about the specific topic of interest. Sentence level sentiment analysis is similar to that

of document-level sentiment analysis where sentences are considered as short documents

[Liu 2012]. Sentence level sentiment analysis identifies subjectivity of a sentence followed

by the classification of a sentence expressing positive, negative or neutral sentiment. Users

do not necessarily express a single opinion in a sentence or document. For example, con-

sider the sentence “iPhone 6 has great features, but it is costly”. In the above example, the

1

user has expressed both sentiments (negative and positive) in the single sentence. Hence,

the assumption made by the sentence level sentiment analysis is not always necessarily

correct, i.e. a sentence may contain more than one type of opinion for different aspects of

a topic or product. Similarly, a document may contain mixed opinions. Classifying text

at document level or sentence level does not provide all the necessary details that may

be important for the end user. Aspect level sentiment analysis identifies different aspect-

s/features and associates the corresponding opinion with it. Figure 1.1 shows a generic

block diagram of sentiment analysis. A opinionated document is used for object/feature

extraction, opinion holder extraction and subjectivity classification. Information extracted

from all the phases is passed to sentiment classification phase, where sentiments are iden-

tified. This flow of the process is generic and varies upon the level of sentiment analysis.

Figure 1.1: Block Diagram for Sentiment Analysis

1.1 Motivation

Sentiment analysis finds its roots in various areas of text processing and extraction. It

has enabled people in business to get insights of opinions of customers about their prod-

ucts without surveys [Hu & Liu 2004]. It has also assisted people in politics [Tumasjan

et al. 2010], stocks [Zhang & Skiena 2010] and public policies [Velásquez & Gonzalez 2010].

Over the time, people change their own opinion as well, and different aspects evolve about

2

a topic. Importance of aspect and its opinion keep changing with time, and hence, tempo-

ral opinion mining has become an essential challenge for sentiment analysis and opinion

mining.

With multiple different data sources on the internet, users have a tremendous amount

of text to review and cull out information. The manual process involving a significant

amount of text processing to get to a right set of information is quite laborious. Due to

this, there is a need for processing and representation of the text such that it can present

right set of information. A procedure is needed to identify relevant parts of the text and

remove the redundant information present in it. This can be achieved through text sum-

marization.

According to [Mani et al. 1999], text summarization is the process of distilling the most

important information from a sources to produce an abridged version of the text for a

particular set of users and tasks. Figure 1.2 represents the process of text summarization.

Text summarization can be classified based on various parameters such as text input, lan-

guage and purpose. Traditionally it focuses on text input, which can range from simple

text to multimedia content. Further, it can also be categorized based on single document

or multiple documents. Apart from these, text summarization has also been classified in

the literature on the basis of language (monolingual, transiting or multilingual), output

(abstract or extract) and purpose (generic or user-focused) [Lloret 2008]. [Jones et al. 1999]

distinguishes three classes of context factors used for effective text summarization: input

(text form, subject type and unit), purpose (situation, audience and use) and output (ma-

terial, format). The main challenges faced in text summarization are of identifying the

similar set of information with little or no difference. As both the challenges are signif-

icant, a decision to choose the correct objective needs to be taken. Text Summarization

algorithms must have capabilities to preserve the information and concisely represent it.

Moreover, existing techniques and algorithms should be able solve the task of summa-

rization for Indian Languages as well. This motivated our work on the problem of text

summarization.

Reviews and opinions expressed on social media have influenced people across the globe.

Opinions or views expressed on these platforms are generated for various reasons. Com-

panies conduct surveys to enhance and improve the image and quality of their product.

3

Figure 1.2: Basic procedure of Text Summarization

People participating in these surveys express their views/opinions which can be used for

decision making. While these reviews may be helpful, they cannot be trusted entirely,

because reviews may be faked/biased. According to [Lau et al. 2011], the BBC and New

York Times have reported that fake reviews are becoming a common problem on the

Web, and a photography company has recently been subjected to hundreds of defama-

tory consumer reviews. In 2014, the Canadian government issued a warning, encouraging

consumers to be wary of fake online endorsements that give the impression that they have

been made by ordinary consumers and estimated that one-third of all online reviews are

fake1. Over the period, few resources such as Consumerist2 and MoneyTalksNews3 have

offered tips to help consumers spot fake reviews. Sufficient amount of work has been

done in email spam detection and web spam, but the area of spam combating in social

media is still not mature enough [Chakraborty et al. 2016a]. This is mainly due to the fact,

that social media network is ever increasing and has provided marketers with a cheap

and new mode of communication. A survey4 conducted by brand protector found that

rate of increase in spam during a period from January 2013 to July 2013 has gone up

by 355%. Another study5 also proved that spam proliferation of is rampant. As spam

hinders the utility and performance of social media text [Chakraborty et al. 2016b], it is

essential to identify spam opinions to provide the user with the correct opinion about a

topic/person/product. [Dixit & Agrawal 2013] has categorized spam reviews into un-

truthful reviews, reviews for brands and non-reviews. The unthruthful reviews are the

ones which intentionally donot express geniune opinion for the product. Review for a

1http://www.competitionbureau.gc.ca/eic/site/cb-bc.nsf/eng/03782.html
2https://consumerist.com/2010/04/14/how-you-spot-fake-online-reviews/
3http://www.moneytalksnews.com/2011/07/25/3-tips-for-spotting-fake-product-reviews-%E2%80%93-

from-someone-who-wrote-them/
4http://www.moneytalksnews.com/2011/07/25/3-tips-for-spotting-fake-product-reviews-%E2%80%93-

from-someone-who-wrote-them/
5http://www.baselinemag.com/security/malware-attacks-and-phishing-scams-increase.html

4

brand, product or specific seller are ones that talk about the company of the product

rather than talikng about the product. The non reviews are the ones pertaining to ad-

vertisement or unrelated text. Identifying fake reviews has been considered as the most

challenging task at hand. [Chakraborty et al. 2016b] have classified social spam into four

significant categories: malicious links (link that damage, deceive or otherwise harm a user

or computer), fake profiles, bulk summaries (known as spam bombs, these are comments

posted multiple times or comments with similar text) and fraudulent reviews (the reviews

written with an intent to falsify the image of product/brand or create a wrong impres-

sion on users). Above mentioned problems and challenges motivated us to work on spam

detection.

Social media provides an informal communication platform for users. This allows users

to express their emotions freely and in an informal way. Sarcasm is a verbal form of

irony that is intended to express contempt and ridicule1. Sarcasm has become an integral

part of the social media text as it is commonly used by people to express their opinion.

Sarcasm is characterized as the ironic and satirical wit that is intended to insult, mock or

amuse [Riloff et al. 2013]. Sarcasm transforms the polarity of an apparently positive or

negative utterance into its opposite [González-Ibánez et al. 2011]. It is usually difficult to

detect sarcasm as it is considered as a graceful and smart way of saying something implic-

itly, whether good or bad. With advancements in automatic processing of social media

text, sarcasm has been a challenge for many Natural Language Processing (NLP) based

systems. Informal nature of social media text has resulted in an unstructured ambiguous

text which contains URL, username, user-defined labels. [Tsytsarau & Palpanas 2012] has

listed following four challenges in sarcasm identification:

1. In spoken statement, sarcasm can be identified with particular tone or facial expres-

sion but for written text, no such clues are available. This makes it difficult to detect

sarcasm in written text.

2. In a sarcastic statement, positive words are used to convey negative opinion.

3. Domain knowledge is required in many cases of sarcasm detection. For example,

“Yet, another mind-blowing performance of Indian team in Sri Lanka."

1www.freedictionary.com

5

4. Sometimes sarcasm uses the hyperbole. Hyperbole is the use of exaggeration, i.e.

use of words belonging to a superlative degree. For example “Extraordinary perfor-

mance in exam!!"

Above stated problems and challenges motivated us to take a step towards the problem

of sarcasm detection. Detecting sarcasm can further help in improving sentiment anal-

ysis of the text. Over the period of the time, evolution of social media has provided

new opportunities for information access and language technology, but it has also thrown

new challenges. Few of the challenges being faced commonly are those of understanding

and processing spelling errors, creative spellings (e.g. ‘gr8’ for ‘great’), phonetic typing,

word play (e.g. “2 looooooooong" for “too long"), abbreviations (e.g. ‘OMG’ for “Oh

My God!") and code mixing (e.g. “but Jadavpur University te physics nya porte chai"

for “but I wanted to study physics at Jadavpur University" [Das & Gambäck 2015]). It

is evident from the above examples that there is a need to develop tools and applica-

tions for the other languages as well. Non-English speakers do not always use Unicode

to write in their native language. They use phonetic typing, frequently insert English

elements (through code mixing and Anglicism), often mix multiple languages to express

their thoughts, making automatic language detection in social media texts very challeng-

ing [Das & Gambäck 2015]. Code-switching can be defined as the alternation between two

or more languages, language varieties, or language registers in discourse between people

who have more than one language in common. Code mixing is defined as the alternation

of two or more languages within a sentence [Moradi 2014]. One of the two languages is

commanding language; the primary language is often called the matrix language, while

the minor language is the embedded language [Moradi 2014]. [Ling et al. 2013] found that

people often switch between two or more languages on social media, both at conversa-

tional level and at the message level. Extracting knowledge from such a text is a difficult

task as code mixing occurs at different levels, resulting in the following challenges:

1. Code mixed social media text is multilingual. Due to this, semantics is spread across

languages [San 2009].

2. Social media data does not have specific terminology [Das & Gambäck 2014].

6

There is a growing need to develop automated processing tools and applications that can

analyze code mixed text. This requirement motivated us to develop tools for code mix

social media text and develop applications based on code mix text.

1.2 Research Gaps

Research gaps in the field of sentiment analysis are as follows:

1. India is one of the most diversified countries in terms of languages and population.

A considerable population uses social media for a variety of purposes. In depth

analysis of text containing different Indian languages for the sentiment identification

need to be carried out.

2. With advancements and ever growing changes, it is important to identify different

aspects and their respective opinions being talked about on social media text. It is

essential to identify variation in the sentiments over the period.

3. Extracting opinions from different social media sources and regions can lead to the

higher availability of information. It also brings various challenges with it such as

uniformity, redundancy and language switching. Text summarization may help in

solving few of these problems by summarizing the critical content and removing the

redundancy present in the text.

4. People expressing an opinion may not be genuine all the time. Moreover, advertise-

ments are also included in the text which may not be relevant while evaluating the

sentiment. It has become essential to identify spam in social media text.

5. Social media being an informal platform for communication consists of large amount

of text containing sarcasm. Sarcasm detection has been considered as a challenge in

text processing and sentiment analysis.

6. With a vast number of users spread across the globe, there has been an increase

in usage of code mixing in social media text. There is a lack of efficient tools for

processing code mix text.

7

1.3 Thesis Goals/Objectives

This thesis addresses the following challenges:

1. Identifying sentiments present in social media text containing monolingual Indian

languages. With changing aspects and their respective sentiments in a social media

text, thesis proposes a solution to the problem of temporal sentiment analysis.

2. Providing precise, unambiguous and vital information is need of the hour and

hence, the problem of text summarization has been targeted.

3. Spam in social media text may hinder the accurate evaluation of sentiments. More-

over, due to informal nature of the social media platform, it is usual for users to

post sarcastic comments or messages. This may reduce effectivness of the automatic

processing of text for sentiment analysis. The thesis aims at identifying spam and

sarcasm in social media text.

4. Code Mixing has been a significant challenge in automated processing of social me-

dia text. The thesis focuses on devlopment of tools and applications for code-mixing.

Part of Speech (POS) taggers are mostly available for all the monolingual languages,

but POS tagging of code mixing text has been a challenge for quite some time now.

Similar to POS tagging, Named Entity Recognition (NER) for code mixed text is

another challenging task. The thesis targets at building POS taggers and named en-

tity recogniser for code mixed text. Question classification is one of the significant

challenges of question answering system. This thesis aims at resolving the prob-

lem of question classification in code mixed social media text. To understand the

text, one has to interpret the meaning of each word to make some sense with the

sentence. Hence, a word level language identifier has been proposed in the thesis.

Research has been going on in the field of sentiment analysis for past decade but

the introduction of code mix text has added many new challenges. The problem of

sentiment analysis in code mix text has been targeted in this thesis.

For achieving these objectives, the thesis focuses on various machine learning classifiers

including deep learning techniques for solving the natural language processing task.

8

1.4 Scope of Thesis

Sentiment analysis has been a challenge for researchers for a decade and good amount

of research is being carried out addressing various involved issues. The thesis focuses

on sentiment analysis and its challenges such as text summarization, spam detection,

sarcasm detection and code mixing. Learning based approaches have been proposed

for sentiment analysis of monolingual Indian language. With time aspects and opinions

change about a topic or a product, hence it becomes essential to analyze these changes.

The thesis focuses on temporal sentiment analysis as well. However, the thesis has limited

its scope to problems mentioned above. Challenges such as implicit opinion mining and

identification of provoking and controversial statements have not been targeted in the

thesis. The process of manual annotation is complicated in case of spam and sarcasm

due to uncertainty and no clear indication in the text, which is a major reason for lack

of annotated datasets. In case of code mixing, due to lack of sufficient amount of data

available to train the models correctly, code mixed text generation is essential but it is not

included in the thesis.

1.5 Thesis Organization/ Outline

Thesis is organized as follow:

In Chapter 2, background information and related work are detailed. This chapter dis-

cusses the state of art and literature review.

Chapter 3 discusses different proposed solutions for sentiment analysis in Indian lan-

guages and temporal sentiment analysis. Different deep learning based approaches have

been proposed to solve these problems. Approach for sentiment analysis in Indian lan-

guage uses different layers of the neural network to identify the sentiment or opinion

expressed in the text. The approach proposed for temporal sentiment analysis identifies

ever changing aspects and their varying sentiments over the time using clustering and

Convolutional Neural Network (CNN) respectively.

Chapter 4 describes the proposed algorithms for paraphrasing, extractive text summa-

rization and abstractive text summarization in English and Indian Languages. Two algo-

9

rithms have been proposed for the problems. The first algorithm for paraphrase detection

in Indian languages relies on different machine learning classifiers whereas the second

one relies on CNN(s) and Reccurent Neural Networks. In extractive Text Summarization,

three different approaches have been proposed considering three different scenarios. The

first proposed approach uses the scoring technique, the second approach uses machine

learning technique and the third approach uses fully connected CNN for generating ex-

tractive text summaries of English and Indian Languages. For abstractive summarization

of English text, the sentiment infusion based technique has been proposed in this chapter

which infuses the sentiment to reduce the size of the text and maximize the information

while generating the summaries. This chapter also proposes a generic algorithm for gen-

erating text summaries in English and Indian languages using deep nets.

Chapter 5 describes the proposed algorithm for spam detection in social media text using

deep learning techniques. Different unified architectures of deep learning have been pro-

posed in this chapter followed by their comparison with each other and machine learning

based approach.

Chapter 6 explains proposed solutions to sarcasm detection in English, Indian languages

and code mixed scenario. Proposed algorithms rely on different machine learning and

deep learning techniques. Experiments and comparisons among different proposed algo-

rithm have been discussed in the chapter.

Chapter 7 and 8 highlight the problem and various challenges associated with code mix-

ing. Tools and applications have been built for handling code mixed social media text

such as POS Tagger, named entity recognizer, language identification, question classifica-

tion and sentiment analysis.

Chapter 9 discusses the overall results, contributions and further improvisations are pro-

posed.

10

Chapter 2

Related Work

2.1 Sentiment Analysis

Opinions, sentiments and emotions are a significant part of a human’s life choices and

behaviour. Sentiment Analysis (SA) is a fascinating problem since it deals with the study

of one’s emotions expressed via text. Sentiment analysis (also known as opinion mining)

refers to the use of natural language processing, text analysis and computational linguis-

tics to identify and extract subjective information in source materials 1. User-generated

content has been a valuable source of information for a variety of sources. Sentiment anal-

ysis and opinion mining are two emerging fields and are used interchangeably. However,

few pieces of research consider them different. According to [Tsytsarau & Palpanas 2012],

opinion mining is about determining whether a piece of text contains opinion, a prob-

lem that is also known as subjectivity analysis, whereas the focus of SA is the sentiment

polarity detection by which the opinion of the examined text is assigned a positive or neg-

ative sentiment. [Pang et al. 2008] presented an extensive survey about challenges tasks

in the field of sentiment analysis. [Tang et al. 2009] focused on four problems of opinion

mining, i.e. subjectivity classification, word sentiment classification, document sentiment

classification and opinion extraction. Another comprehensive survey on sentiment analy-

sis was done by [Liu & Zhang 2012] where the author discussed all the essential concepts

and topics related to SA. In 2012, [Tsytsarau & Palpanas 2012] presented another sur-

vey with definitions, problem discussion and various approaches. In 2016 [Giachanou &

1https://en.wikipedia.org/wiki/Sentiment_analysis

11

Crestani 2016], discussed the challenges(Text length, Topic relevance, Incorrect English,

Data sparsity, Negation, Stopwords, Tokenization, Multilingual content, Multimodal con-

tent) associated with SA in Twitter. [Giachanou & Crestani 2016] also categorized Twitter

Sentiment Analysis (TSA) approaches into four different classes, machine learning, lexi-

con based, graph-based and hybrid of machine learning and lexicon based.

One of the earliest work done in sentiment analysis is by [Pang et al. 2002]. They evaluated

several supervised machine learning classifiers like Naive Bayes (NB), Support Vector Ma-

chine (SVM) and maximum entropy classifier on movie review dataset and achieved an

accuracy of 82.9% with SVM and 81.0% using Naive Bayes. Later majority of approaches

dealing with the problem of sentiment analysis has been developed to detect the overall

sentiment polarity of a sentence. In 2009, [Go et al. 2009] employed a distant supervision

technique to perform SA. They used technique demonstrated by [Read 2005] to collect the

data and used emoticons to differentiate between the sentiments. A similar approach was

adopted by [Pak & Paroubek 2010], but they performed multi-class classification instead

of binary classification. [Davidov et al. 2010] leveraged hashtags and emoticons in tweets

for collecting training data and presented a supervised algorithm similar to K-Nearest

Neighbors (KNN). [Jiang et al. 2011] used combined target dependent and independent

features and defined manual rules for detecting syntactic patterns for identifying if the

term was related to the specific object. [Asiaee T et al. 2012] proposed a three-step cascade

classifier framework for SA where they identified the topic in the first step, in the second

step they identified the sentiment of the tweet and in the last step, they decided the polar-

ity of the tweet. [Hamdan et al. 2013] examined features including concept from DBpedia,

verb groups and adjectives from WordNet [Pedersen et al. 2004] and senti-features from

SentiWordNet (SWN) [Baccianella et al. 2010a]. Authors also employed a dictionary for

emoticons, abbreviations and slang words. [Aston et al. 2014] represented tweets using

character n-gram and then selected top n features of a gram using different evaluation

algorithms such as chi-squared, gain ratio and info gain.

[Lin & Kolcz 2012] used hashed byte 4-grams and applied linearly combined Logistic Re-

gression (LR) classifiers with different size of ensembles. Another ensemble approach was

proposed by [Da Silva et al. 2014] with more number of classifier (Random Forest (RF),

SVM, Multinomial Naive Bayes (MNB), LR) being involved. In 2013, [Hassan et al. 2013]

12

used most common features including uni-grams, bi-grams, POS and semantic features

and proposed a bootstrapping ensemble framework. They also claimed that their frame-

work could be used to build time series as well. In 2016, [Poria et al. 2016b] proposed

an approach for multimodal sentiment analysis where authors used both feature and

decision level features to merge affective information from different sources. [Zimbra

et al. 2016] proposed an approach based on Dynamic Architecture for Artificial Neural

Networks (DAN2). Unique characteristics of Twitter and sentiment expression were used

for feature engineering. [Märkle-Huß et al. 2017] used rhetoric structure theory to repre-

sent text at document level in a hierarchical manner. Authors proposed a combination of

weights and grid search over the RST tree generated to predict SA.

With the increasing trend of deep learning, [Jiang et al. 2011] proposed adaptive recursive

neural network for SA which used dependency tree to find syntactically related words and

propagate sentiment from sentiment words. [Tang et al. 2014] learned sentiment specific

word embeddings using indirect supervision whereas citetang2015learning used word

embeddings from a large amounts data to represent the semantic representation of users

and products. [Vo & Zhang 2015] split tweets into two parts and build the model such

that word embeddings of two context were used to identify SA. [Lopez & Kalita 2017]

have explained how CNN can be applied to NLP for sentiment analysis. Later [Shirani-

Mehr 2014] analyzed different deep learning methods for sentiment classification of movie

reviews with CNN model using word2vec word embedding performing 88.2% accuracy.

[Araque et al. 2017] proposed deep learning using word embedding and linear machine

learning algorithm. Authors aggregated the proposed approaches and performed experi-

ments on different variants of both the approaches. [Hassan & Mahmood 2017] proposed

ConvLstm, neural network architecture that employs CNN and Long Short Term Memory

(LSTM) on top of pre-trained word vectors.

2.1.1 Sentiment Analysis in Indian Languages

In recent years, there has been much flow of information in Indian languages on World

Wide Web. It is easy to deduce the sentiment from the spoken text by the tone of the

speaker; whereas, in case of written text, the context becomes the tool for determining

13

the polarity. Being low on the resource, SA in Indian languages has been difficult. Senti-

ment analysis is widely applied to reviews and social media for a variety of applications,

ranging from marketing to customer service. In table 2.1 existing literature survey has

been presented in a tabular form where the references are cited in the second column,

with the language and year in third and first column respectively. The polarity of clas-

sification used is mentioned in the fourth column. The sixth column elaborates on the

techniques and approach used in the respective papers, which can be focused upon by

the reader according to his field of interest. These include machine learning and lexicon

based techniques, and further elaborate on the methodology or approach used. The scope

of the data used for evaluation of the article’s algorithm is mentioned in the fifth column.

It could be reviews collected from the newspapers websites, BBC Hindi, blogs, Twitter

posts, movie songs and text paragraph.

14

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2014 [Hasan

et al. 2014]

Bengali Text Paragraph Lexicon-Based Approach

• WordNet to get the senses of each word according to its parts of

speech and SentiWordNet to get the prior valence (i.e. polarity)

of each word

• Features used: POS tags

2014 [Chowdhury

& Chowd-

hury 2014]

Bengali Tweets Machine Learning

• Semi-supervised bootstrapping approach for the development of

the training corpus which avoids the need for labor intensive

manual annotation

• SVM and Maximum Entropy (MaxEnt) for classification

• Construction of a Twitter-specific Bangla sentiment lexicon

• Features used: Word n grams (uni and bi gram), emoticons, lex-

icon(bangla), POS tags, Negation. Combination of features is

used

15

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2016 [Muhammad

et al. 2016]

Bengali 1500 short Bangla comment

from various social sites

Machine Learning

• TF-IDF (Term Frequency-Inverse Document Frequency)

• Features used: Most Frequent Words, Starting and Ending Let-

ters,Sentence Length and Pattern Analysis

2010 [Das &

Bandyopad-

hyay 2010a]

Bengali Dataset consisted of the fol-

lowing:

• news reports that aim

to objectively present

factual information

• opinionated articles

that clearly present

author’s and reader’s

views, evaluation or

judgment about some

specific events or

persons

Machine Learning

• SVM classifier

• Features used: SentiWordNet(Bengali), Negative Word, Stem-

ming cluster, Functional Word, Chunk, POS, Dependency tree

feature.

16

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2013 [Mittal

et al. 2013]

Hindi Hindi review websites Lexicon Based

• Rules are devised for handling negation and discourse relation

• Hindi SentiWordNet (HSWN) is used for polarity values of

words

• Improved HSWN is created using assumption, all synonyms are

of same polarity and all antonyms are of reverse polarity

• Features used: HSWN, Improved HSWN, Negation, Discourse

relations(Conj_after, Conclusive or Inferential conjunction)

2014 [Sharma

et al. 2014]

Hindi Movie reviews were collected

from the Hindi newspapers

website

Lexicon Based

• Unsupervised dictionary approach

• The polarity of the reviews is determined on the basis of majority

of opinion words

• Features used: POS Tags, Opinion words and seed list , Negation

17

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2014 [Ghosh &

Dutta 2014]

Hindi Twitter posts in Hindi Machine Learning and Lexicon Based

• Resource-based approach

• Naive Bayes classifier

• Features considered: HSWN, Negation

2015 [Sharma

et al. 2015c]

Hindi Hindi tweets Lexicon Based

• Subjective lexicon method.

• SentiWordNet creation which contains adjectives and adverbs

• Features considered: POS Tags, Negation

2015 [Kumar

et al. 2015b]

Kannada "182 positive Kannada re-

views and 105 negative Kan-

nada reviews reviews were

mainly collected for broad

domains consisting of com-

mercial products"

Machine Learning

• Classifiers used: J48, Random Tree, ADT Tree, Breadth First,

Naive Bayes and SVM

• Features used: Dictionary of positive and negative words, Nega-

tion, POS Tags, Turney’s method [Turney 2002], Sentence based

approach [Khan & Baharum 2011].

18

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2015 [Anil

et al. 2015]

Kannada Same as [Kumar et al. 2015b] Lexicon based

• Pattern based approach

• Features used: Kannada dictionary (self generated), Turney’s al-

gorithm [Turney 2002], Negation, Significant Sentence algorithm

[Khan & Baharum 2011]

2015 [Anagha

et al. 2016]

Malayalam different movie reviews from

various web sites

Machine Learning and Lexicon-based

• Maximum Entropy Model is used for tagging

• Maximum Entropy Classification ïňĄnds out in which class the

review must belong, given a context so that it maximizes the

entropy of the classiïňĄcation system.

2016 [Beegum &

V.A 2016]

Malayalam Data sets of movie reviews Lexicon-based

• Training phase: Creation of phase dictionary and a polarity dic-

tionary

• In phrase dictionary store the score value and domain of each

single word and its combination. Polarity dictionary contain the

words, combination words and its polarity.

19

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2012 [Balamurali 2012]Marathi Travel Reviews from various

blogs and Sunday travel edi-

torials

Machine Learning

• SVM

• Feature used: WordNet senses

2013 [Deepali &

Garg 2013]

Punjabi Punjabi newspaper sites and

Punjabi blogs

Machine Learning and Lexicon-based

• Feature used: N-Gram approach (Frequency)

• Naive Bayes

2014 [Sharma 2014] Punjabi different websites, newspa-

pers, blogs

Machine Learning and Lexicon-based

• Feature used: N-Gram approach

• Naive Bayes

20

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2014 [Kaur &

Gupta 2014]

Punjabi Text Paragraph Lexicon-based

• Using subjective lexicon created by using Hindi Subjective Lexi-

con.

• three popular methods are used for the generation of subjective

lexicon-

– Use of Bi-Lingual Dictionary

– Machine Translation (MT)

– Use of Word net

• Negation Handling

2016 [Se et al. 2016] Tamil Tamil movie reviews Machine Learning

• Classifiers used: SVM, MaxEnt, Decision Tree, Naive Bayes

• Features used: Tamil SentiWordNet, Punctuations and Apostro-

phe

21

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2016 [Kausikaa &

V 2016]

Tamil Tweets Machine Learning

• Translation of Tamil Tweets into English Tweets.

• Finding out the semantic similarity using path-length similarity.

• Classification of Sentiments using SVM.

2016 [Phani

et al. 2016]

Tamil,

Hindi,

Bengali

Tweets Machine Learning

• Features used: Word n gram, Character n gram, Surface features,

SentiWordNet features

• Classifier used: Multinomial Naive Bayes, Logistic Regression

(LR), decision tree, Random Forest (RF), SVM, SVC, and SVM

Linear SVC (LS) used

22

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2012 [Manchala

et al. 2012]

Telugu Telugu blog texts and News

headlines of English SemEval

2007

Machine Learning

• Conditional Random Field (CRF) based classifier has been ap-

plied for recognizing six basic emotion tags

• A score based technique has been adopted to calculate and assign

tag weights to each of the six emotion tags

• A sense based scoring strategy has been applied to identify sen-

tence level emotion scores for the six emotion tags based on the

acquired word level emotion tags.

• Feature used: POS, First sentence in a topic, SentiWordNet,

Reduplication, Question Words, Special Punctuations, Quoted

sentences, Emoticons, Uni gram and Bi-gram

2016 [Mukku

et al. 2016]

Telugu A corpus consisting of

7,21,785 raw Telugu sen-

tences was provided by

Indian Languages Corpora

Initiative (ILCI)2 e Telugu

Newspapers

Machine Learning

• Classifier used: Naive Bayes, Logistic Regression, SVM, Decision

tree, Random forest, Multi Layer Perceptron(MLP) Neural Net-

work, Adaboost ensemble

• Feature used: Doc2Vec 1

1https://radimrehurek.com/genism/index.html

23

Year Author Language Data Scope/ Text Domain Techniques/ Algo Used

2016 [Abburi

et al. 2016]

Telugu 300 Telugu movie songs and

lyrics corresponding to each

song are taken : YouTube

Machine Learning

• Feature used: Lyric Feature, Audio Feature

• SVM, NB and a combination of both these classifiers are devel-

oped to classify the sentiment using the textual lyric features.

• Gaussian Mixture Models (GMM), SVM and a combination of

both these classifiers are developed to classify the sentiment us-

ing audio features.

24

2.1.2 Temporal Sentiment Analysis

As for temporal analysis, being a relatively new field, so only few research have been

done in it. [An et al. 2014] presented a study to yield insights on climate change sentiment

using social media text. They used existing sentiment analysis algorithms, data-mining

techniques, and time series methods with the aim to detect and track sentiment regard-

ing climate change from Twitter feeds. [Bollen et al. 2011] mapped everyday tweets to a

six-dimensional mood vector (tension, depression, anger, vigor, fatigue, confusion). They

compared the results to the timeline of cultural, social, economic, and political events that

occurred during the same period. After analyzing the impact of world global events on

the mood of microblog posts, they found that the mood level in posts was correlated with

cultural, political, and other events.

In another study, [O’Connor et al. 2010] tried to identify the relationship between opinion

expressed in tweets and the public opinion obtained by polls. Authors retrieved relevant

tweets to some specific topics and then estimated the sentiment score of every day. They

used a simple lexicon-based approach and the Multi-Perspective Question Answering

(MPQA) sentiment lexicon [Wiebe et al. 2005] for identifying the sentiment score. Senti-

ment time series were then produced with an average moving window of past k days. It

was found that there was a strong correlation between the time series and the polling data

on customer confidence and political opinion.

[Bifet & Frank 2010] proposed a real-time sentiment analysis model using a data-stream

mining approach. The proposed approach could monitor the evolution of the impact of

words on class predictions. The linear classifier was used to learn the stochastic gradi-

ent descent (SGD) method that had a similar performance with multinomial naive bayes.

[Hao et al. 2011] focused on visual sentiment analysis and explored three different ap-

proaches on a large volume of tweets. They proposed a topic-based text-stream analysis

method to determine the topic of discussion based on a number of opinionated attributes.

[Das et al. 2011] have developed a system called TempEval, tool for visualizing the change

of opinion with time using machine learning algorithm CRF using sentiment as a feature

of the event. [Bjørkelund & Burnett 2012] has developed a temporal analysis framework

for hotel reviews which used naive bayes and SentiWordNet for sentiment classification.

25

[Xia & Zhiwen 2016] also used supervised machine learning algorithms such as naive

bayes and decision tree for temporal sentiment analysis of Twitter data.

2.2 Paraphrase Detection

Paraphrase detection has been a major area of research in the recent times because of

its significance in many areas of natural language processing. Extensive work has been

done on developing machine learning techniques. Most of the previous works in para-

phrase detection carefully engineer syntactic or semantic features or use heuristics. [Islam

& Inkpen 2008] proposed a modified form of Longest Common Sub-sequence (LCS) al-

gorithm whereas [Mihalcea et al. 2006] used corpus-based similarity measures to detect

paraphrases. These techniques fail to take into account the fact that in a sentence, many

short sequences add to the structure and importance of the long sequence regardless of

where they occur in the sentence. Hence, a deep learning technique that identifies a fea-

ture paying little attention to the position of occurrence should be able to help overcome

these shortcomings. [Vo et al. 2015] proposed simple features like n-grams, edit distance

scores, METEOR (Metric for Evaluation of Translation with Explicit Ordering) word align-

ment, BLEU (Bilingual Evaluation Understudy) for detecting paraphrases and semantic

similarity tasks on Twitter data. Similarly, analysis of various similarity measures like

sentence-level edit distance measure, simple n-gram overlap measure, exclusive longest

common prefix (LCP) n-gram measure, BLEU measure and sumo measure along with

paraphrase detection based on abductive machine learning has been proposed in [El-Alfy

et al. 2015]. [Malakasiotis 2009] proposed three methods for paraphrase detection using

string similarity measures.

One of earliest work for paraphrase detection in deep learning was done by [Sundaram

et al. 2009] where authors proposed an unsupervised feature learning technique with

Recursive Auto-encoders (RAE) for detecting paraphrases on Twitter. In their proposed

technique they first converted data to parse trees using the phrase-structure parser and

then passed it to the RAE for training. The vector generated from the RAE is converted

to form a similarity matrix and thus paraphrase detection is done using this matrix.

[Huang 2011a] has proposed an unsupervised recursive auto-encoder architecture for

26

paraphrase detection. The recursive auto-encoder uses tanh as the sigmoid-like activation

function and gives the representation of sentences along with their sub-phrases. These

representations are then used for paraphrase detection. Two approaches are used to ex-

tract the same number of features for different sentence pairs, aggregating representations

to form a single feature and using a similarity matrix approach. With the first approach,

they achieved 66.49% accuracy while with the second method accuracy of 68.06% was

achieved. In 2011, [Socher et al. 2011] proposed an approach where dynamic pooling and

unfolding Recursive Auto Encoders (RAE) were used for the task of paraphrase detection.

The RAE(s) are unsupervised and learn feature vectors for phrases using syntactic trees.

A dynamic pooling layer was used in their approach which computed fixed-sized vectors

from variable input matrices. This fixed size vector was used as an input to the classifier.

Authors achieved an accuracy of 76.8% and F-Measure of 83.6% on the Microsoft Research

Paraphrase Corpus(MSRPC).

In 2014, [Kalchbrenner et al. 2014] proposed a CNN architecture that extracted k top values

from the convolutional filter to get a fixed length output. To achieve multi-granularity,

they stacked several levels of convolutional filters. [Yin & Schütze 2015] proposed archi-

tecture using double CNN with multi-granular interaction features for paraphrase iden-

tification. The multi-granular features were learned using the CNN. A logistic regression

classifier was used for classifying these features for paraphrase identification. Separate

input matrices that converged at a later step were used for two sentences. In contrast, the

approach defined in this thesis uses a single input matrix for both the sentences.

[He et al. 2015] used a CNN that extracted features at multiple levels of granularity and

used multiple types of pooling. Their model had two layers; layer one used CNN archi-

tecture for capturing different levels of granularity and layer two which compared local

regions in a sentence for similarity measurements. Their approach achieved a 78.60% ac-

curacy on MSRPC. WordNet-based lexical similarity approach was used by[Fernando &

Stevenson 2008]. Each sentence was represented as a one-hot vector, and then a similarity

matrix was built. The matrix was built taking into account all word pairs. The authors

achieved an accuracy of 74.1% with an F-measure of 82.4% on MSRPC. In approach pro-

posed in this thesis, a similar WordNet similarity matrix has been to train the CNN.

When considering Indian languages, paraphrase detection has been done using machine

27

learning techniques that use heuristics more than the semantic features. Before [Anand Ku-

mar et al. 2016], no work was done on paraphrases for Indian languages because of a lack

of dataset. [Anand Kumar et al. 2016] opened doors for developing tools to detect para-

phrases in Indian languages. At task of Detecting Paraphrases in Indian Languages(DPIL)

at Forum of Information Retrieval Evaluation (FIRE) 2016 [Anand Kumar et al. 2016], the

techniques usually used features such as Jaccard similarity and METEOR metrics which

are all heuristic based. A few approaches that use semantic features like Soundex codes,

POS taggers, do not perform as well as the heuristic-based approaches because of the error

introduced in these steps. [Kong et al. 2016] use gradient boosting algorithm for classi-

fication. The features used include Jaccard coefficient, cosine similarity, dice coefficient

and other METEOR based metrics. Their approach performed the best on Punjabi(0.932),

Malayalam(0.785) and Tamil(0.776) languages. [Bhargava et al. 2016a] implemented a su-

pervised classification model for detecting paraphrases. POS tags, stems of words and

Soundex codes corresponding to the words in sentences were used as features. They

achieved an accuracy of 90.5% and f-measure of 87.6% on the Hindi dataset for DPIL task

at FIRE 2016. [Saini 2016a] use various machine learning approaches including random

forest and SVM(s). Features used include common tokens in two sentences, common IDF

scores and sentence length. Their approach performed best on the Hindi dataset with a

F-measure of 0.907.

2.3 Text Summarization

With the rapid increase in large internet users and the content being generated online,

automatic text summarization has been evolving as a field of research. [Luhn 1958] work

was one of the pioneer work in the area, since then remarkable progress has been made

with the popularity of deep learning approaches ([Rush et al. 2015], [Chopra et al. 2016]).

A summary is a brief text that is generated from one or more text. The summary contains

the main points from the said text, and the length is usually not more than half of the

original text. Text Summarization is the process which gathers the most information from

the text(s)to generate the abridged version. Traditionally, summarization focuses on text

input, but in the past, there have been systems that accept multimedia input (video or au-

28

dio). From time to time different categories have been proposed for text summarization

on the basis of input, output, purpose and kind of information. Major of them being sin-

gle and multi-document, extractive and abstractive, generic and query focused ([Dunlavy

et al. 2007],[Gong & Liu 2001], [Ouyang et al. 2011], [Wan 2008]), supervised and unsu-

pervised ([Riedhammer et al. 2010], [Mani & Maybury 1999]), monolingual, multilingual

and cross-lingual. The summarization systems can be either multi-document [Barzilay

et al. 1999] or single document [Litvak & Last 2008]. A multi-document can be monolin-

gual or multilingual [Radev et al. 2004]. Moreover, the summaries can either be generic or

query based [Park et al. 2006]. Summarization is traditionally a three-step process:

• Generating a text representation of the source.

• Transforming the representation to a summary representation.

• Generating a summary of the representation.

Three factors determine the quality of the summarization system: input, output and pur-

pose. The input can be either a generic text or topic based, speech transcripts or news

documents, single document or multiple documents. The purpose of the summary is to

determine the target audience for the summary and if the summary is query based or not.

Output factors define the content of the summary.

The NLP community has been working on the task of text summarization since last sixty

years. [Radev et al. 2002] describe a summary as "a text that is produced from one or more

texts, which conveys important information in the original text(s), and that is no longer

than half of the original text(s) and usually significantly less than that". This definition

throws light on the three essential characteristics of summarization:

• The summary can be produced from one or more than one documents.

• Relevant information should be preserved in summarization.

• The content should be short enough for a quick perusal.

The two most common terms that come up while discussing summarization are extrac-

tion and abstraction. Extraction involves identifying the most important sentences from

29

the text and extracting them without any modification. Abstraction aims to present in-

formation in a new form with modifications done like compressing sentences, fusing sen-

tences([Bhargava et al. 2016c]). Abstractive text summarization aims to produce a more

human-like summary.

In the first instances of summarization, extracting features like the position of the sentence

in the text ([Baxendale 1958]), word and phrase frequency ([Luhn 1958]) and key phrases

([Edmundson 1969]). Extractive summarization focuses on summary content whereas ab-

stractive summarization puts focus on the grammatical correctness of the sentences, the

form of the sentences. One of the issues that summarization systems face is the evaluation.

During the last two decades, various competitions such as DUC1, TREC2 and TAC3 have

established baseline systems and created training data for evaluating such systems. How-

ever, a universal strategy for evaluating summaries is still not in place. More so in Indian

languages, there is no data, and no unanimously agreed upon measure for evaluating

such summaries.

2.3.1 Extractive Text Summarization

Many approaches have been proposed for Extractive Text Summarization. Few of them

being, statistical approaches ([Ko & Seo 2008]), topic based ([Harabagiu & Lacatusu 2005]),

graph-based ([Radev et al. 2002]), discourse-based ([Chan 2006]) and machine learning

based. [Yeh et al. 2005] proposed a trained summarizer and latent semantic analysis

for summarization of text. They proposed two techniques: Modified corpus-based ap-

proach(MCBA) and Latent Semantic Analysis based Text Relation Map (TRM) technique.

MCBA depends on score function and analyzes important features for generating sum-

maries. Genetic Algorithm trains the score function for obtaining an appropriate com-

bination of feature weights. It also uses LSA to obtain a document’s semantic matrix

and uses sentence’s semantic representation to build relationship map. [Chan 2006] uses

shallow linguistics based techniques. Discourse network is considered where interrelated

parts are represented as a single unit, and textual continuity is used to combine different

phrases using this discourse. [Ko & Seo 2008] uses contextual information and statistical

1http://duc.nist.gov/
2http://trec.nist.gov/
3https://tac.nist.gov//

30

approaches. It combines two consecutive sentences into a bi-gram pseudo sentence so

that contextual information is applied to statistical sentence-extraction techniques. The

statistical sentence extraction techniques first select salient bigram pseudo sentences, and

then each selected bi-gram pseudo sentence is separated into two single sentences. The

second sentence-extraction task for the separated single sentences is performed to make

a final text summary. Few works proposed unsupervised approaches ([Lee et al. 2009])

as well for summarization task. Another unsupervised approach was proposed by [Al-

guliev et al. 2011] which uses integer linear programming for identifying relevant text.

The approach was named as Maximum Coverage and Minimum Redundancy (MCMR).

This approach tries to optimize relevance, redundancy and length of the text. A query

based multi-document summarization was proposed by [Ouyang et al. 2011] where seven

features are used to decide the importance of sentence, in which three features are query

dependent whereas four of them are independent of the query. On the basis of n-gram

pseudo human summary training data and set of documents are compared for relevance

score. [Ouyang et al. 2013] suggested another approach where all words are organized as

Directed Acyclic Graph (DAG). This approach selects new and relevant sentences in two

ways. First, it uncovered concepts are taken into consideration only during estimation of

the relevance of the sentences to ensure novelty of among sentences. Simultaneously,

the relationship between sentences is utilized to enhance saliency measure. [Ferreira

et al. 2013] used fifteen scoring methods including different sentence scoring, word scor-

ing and graph-based scoring approaches. [Lloret & Palomar 2013] used lexical, syntactic

and semantic levels of language analysis to find relevant sentences. [Fattah 2014] used

statistical features and trained machine learning techniques, naive bayes classifier, maxi-

mum entropy and SVM. [Yang et al. 2014] proposed a theme based summarization where

sentences are clustered based on the theme. Each theme cluster is based on a generative

model. [Fang et al. 2015] proposed topic aspect-oriented summarization which is based

on topic factors. Various features are used to represent multiple aspects and preferences

of the topic. Approach targeted text as well as image summarization. [Heu et al. 2015]

proposed FoDoSu, which exploits Flicker tag clusters for selecting important sentences.

Documents are preprocessed, after which the words obtained are used by word analysis

module during which a Word Frequency Table (WFT), where the frequency is computed

31

for each word in the documents and words having high semantic relationships are dis-

covered with the help of tag clusters from Flicker. The WFT gets updated when words

having high semantic relationships are discovered. This is calculated using HITS algo-

rithm. After each word’s relevance and contribution is analyzed, score of each sentence

is computed using rel-gram, and each sentence is ranked with word cluster. The system

finally selects highly scored sentences to generate summaries of multiple documents.

2.3.2 Abstractive Text Summarization

Abstractive techniques in text summarization include rule-based approach [Genest & La-

palme 2012], sentence compression ([Clarke & Lapata 2006], [Knight & Marcu 2002],

[Zajic et al. 2007]), merging sentence based on their semantics ([Liu et al. 2015], [Wang

et al. 2008]). Graph-based algorithms, in particular has been proven to work well on both

summarizing texts containing lots of redundant data ([Ganesan et al. 2010a] and [Lloret

& Palomar 2011]). [Sankarasubramaniam et al. 2014] leverage Wikipedia in addition to

graph-based algorithms to generate extractive summaries. They first map all the sen-

tences to corresponding Wikipedia topic and thus a bipartite graph is obtained where one

of vertices represent the Wikipedia topics, and the other set represent the sentences in

the document. [Sankarasubramaniam et al. 2014] then uses an iterative ranking algorithm

to find the best candidate sentences in the document. [Sankarasubramaniam et al. 2014]

also introduces incremental summarization wherein longer summaries are generated in

real-time by simply adding sentences to shorter summaries. Since the summaries gener-

ated are extractive, the precision is less when compared to the results of techniques that

generate abstractive summaries.

[Liu et al. 2015] use the advances in the semantic representation of the text in the form of

Abstract Meaning Representation (AMR) graphs to form summaries. The summarization

framework consists of parsing input sentences to form individual AMR graphs, combin-

ing the individual AMR graphs to form a summary AMR graph and then generating text

from the summary graph. The individual graphs are converted to summary graph using

a perceptron model prediction algorithm which predicts with a high accuracy the sub-

graph that has to be selected for summary generation. [Bhargava et al. 2016c] described

32

an approach that used directed graphs. The graphs use the original sentence word order

to generate abstractive summaries. Their technique leverages the graphical form of the

input text to reduce redundancy. If their algorithm finds two sentences that are collapsi-

ble, they use the connectors based on the sentiments of the adjoining sentences. [Ganesan

et al. 2010a] describe an approach that used directed graphs that use the original sentence

word order to generate abstractive summaries. Their technique leverages the graphical

form of the input text to reduce redundancy. If their algorithm finds two sentences that

are collapsible, they use the connectors already present in one of the sentences to be used

as the connector for the collapsed sentence. While this technique is effective, it still has a

drawback since there might be two sentences which are capable of being fused together,

but can’t be fused because of the absence of a pre-existing connector.

[Lloret & Palomar 2011] describes a technique in which they have built a directed weighted

word graph where each word text represents a node in the graph and the edge contains

the adjacency relation between the words. The weight of the edge is determined by using

a combination of their page-rank value and the frequency of the words. To determine

important sentences, the first node consists of the first ten words with highest TF-IDF

score. Sentence correctness are ensured using the basic rules of grammar like the length a

sentence should be greater than three words, a sentence must contain a verb and should

not end in an article or conjunction. A huge flaw with this methodology is that a lot of

important information is lost because of the impositions of grammar on the sentences and

the policy of selecting the ten words with highest TF-IDF scores. Furthermore, a lot of

redundant sentences will still be present in the summary because the TF-IDF scores will

give more importance to them.

[Moawad & Aref 2012] proposed a new method for generating single document abstrac-

tive summaries by reduction using semantic graph. Rich semantic graphs using this

approach which in turns generate abstractive summaries. [Lloret et al. 2013] proposed

two types of COMPENDIUM (abstractive and extractive) in which after choosing impor-

tant sentences, information compression and fusion stage is implemented. Recall Ori-

ented Understudy of Gisting Evaluation (ROUGE)-1 score obtained for COMPENDIUME

and COMPENDIUMA are 44.02% and 38.66% respectively. [Khan et al. 2015] proposed

an abstractive approach in which summary is generated by semantic representation of

33

the source documents. Semantic Role Labeling (SRL) was used to represent documents

through predicate-argument structures. Similar structures are clustered on basis of se-

mantic similarity. These structures are then ranked on basis of features weighted and

optimized by genetic algorithm. [Banerjee et al. 2015] proposed an approach wherein

most important document is selected from multiple documents. Then each sentence of

that important document becomes an individual clusters. Sentences of other documents

are then assigned to these clusters based on highest similarities. Using the graph-based

approach, k-shortest path were generated. Sentences belonging to set of shortest path are

then selected using integer linear programming to maximize the content. [Bing et al. 2015]

extracts concepts and facts represented by noun and verb phrases. Phrases are selected

and combined for creation of new sentence which is validated using integer linear opti-

mization. Score for each phrase is calculated on basis of redundancy in document. [Rush

et al. 2015] proposed abstractive summarization with a data-driven approach. Neural

attention model in combination with contextual input encoder is created such that it gen-

erates each summary word based on input sentence.

In the recent past, deep-learning based sequence-to-sequence models, have been success-

ful in many problems such as machine translation ([Bahdanau et al. 2014]), speech recogni-

tion ([Bahdanau et al. 2016]) and video captioning ([Venugopalan et al. 2015]). Much work

has also been done using deep learning for sentence summarization. [Rush et al. 2015]

proposed a method that utilized a local attention-based model that generated each word

of the summary conditioned on the input sentence. While the model was structurally sim-

ple, it could easily be trained end-to-end and scaled to a significant amount of training

data. [Lopyrev 2015] proposed an application of an encoder-decoder recurrent neural net-

work with LSTM units and brought attention to generate headlines from the text of news

articles. The authors use an encoder-decoder model where the encoder was fed as input

to the text of a news article, one word at the time. Each word was first passed through

an embedding layer that transforms the word into a distributed representation. The de-

coder generates, using a softmax layer and the attention mechanism, each of the words

of the headline, ending with an end-of-sequence symbol. After generating each word,

that same word is fed in as input when generating the next word. [Nallapati et al. 2016]

described an abstractive text summarization model using attentional encoder-decoder re-

34

current neural networks. The authors capture keywords using feature-rich encoder, to

identify a fundamental idea for the summarization and model rare/unseen words using

switching generator-pointer. The authors capture hierarchical document structure with

hierarchical attention to generate a summary.

2.3.3 Text Summarization in Indian Languages

The world wide web has provided us with large data. In the current world, the attention

span of people is continuously decreasing. Information for quick perusal is becoming a

necessity. The efforts to summarize documents in Indian languages have been relatively

recent, with [Patel et al. 2007] proposing a language agnostic approach to summarization.

All the advancement related to Indian language document summarization has been made

in the past 10 years.

2.3.3.1 Methodology

Various methodologies have been introduced in the past decade for automatic text sum-

marization in Indian languages. Section 2.3.3.1.1 presents a brief overview of the features

that have been repetitively used by the techniques proposed by various authors for Indian

languages. Section 2.3.3.1.2 further elaborates the techniques used for Indian language

text summarization. These techniques can be broadly divided into score based, machine

Learning based or graph based. Scoring based approaches assign scores to the sentences

based on features such as sentence length and presence of cue words. Machine learning

based approaches decide the importance of sentences based on features such as TF-IDF

scores and keywords identification, and determine if the sentence should be present in

summary or not. Graph-based approaches convert the source text into a graph and then

generate a summary from the graph.

2.3.3.1.1 Features

1. Relative length

Sentence length determines the importance of the sentences. Sentences of short

length are given lower importance as they contain lesser information.

35

2. Keywords/Title Keywords identification

Keywords are thematic words containing relevant information. Keywords are identi-

fied by calculating TF-ISF (Term Frequency-Inverse Sentence Frequency) score. Key-

words are also the words that are present in the headline/title of the document to be

summarized. Keywords are topical words containing vital information. Keywords

are distinguished by ascertaining TF-ISF score. Keywords can likewise be the words

that are available in the feature/title of the document to be condensed.

3. Numeric data identification

Sentences containing numeric data are given a higher priority since they are consid-

ered an essential part of the text.

4. Named Entity Recognition

NER uses lists containing prefixes, suffixes and proper names. Named entity identi-

fication helps in identifying sentences that might contain information about places,

or people.

5. Sentence headlines identification

Headlines contains essential information and are always included in the summary.

6. Proper Nouns Identification

Proper Nouns imply that a sentence might have relevant information regarding a

person or a place.

7. Cue-Phrase Identification

Words such as ‘conclusion’, ‘finally’ and ‘hence’ in a sentence imply that the sentence

will have more weight.

8. Sentence Position

The position of the sentences in the text might determine the importance of the

sentence. Sentences that appear at the beginning or the end have more weight.

9. Presence of URLs

Sentences with URL(s) are given higher priority since URLs contain essential infor-

mation that should be present in summary.

36

10. Term Frequency-Inverse Document Frequency (TF-IDF) weights

TF-IDF helps in determining the importance of words that occur the most number

of times in the document. TF-IDF also helps in demarcating what words occur

frequently and are not crucial to the summary.

11. Presence of inverted commas

Inverted commas usually indicate essential words/phrases in a sentence, since in-

verted commas are used to place emphasis.

2.3.3.1.2 Techniques used for Summarization

Score Based

Statistical features are used by score based approaches. These features help in finding

the relevant sentences and phrases in the sentence. Linguistic knowledge is not required

for these techniques, and hence they can be relatively language independent. [Gupta

& Kaur 2016] use Features 1-8 for ranking sentences for Punjabi text summarization.

[Kallimani et al. 2016] use 1 and 10 to rank sentences for summary generation. [Jayashree

et al. 2011] use 10 and GSS coefficient (add reference) for ranking sentences. [Sankar

et al. 2011] use 8, 10 and the sentence weight is calculated by using string patterns.

Machine Learning

Machine Learning approaches can be either unsupervised or supervised or semi-supervised.

The supervised approach uses annotated data to classify each sentence as to whether it

belongs in the summary or not because the absence of annotated data, most approaches

for Indian languages are unsupervised. [Sarkar 2012] use the feature 10 and 8, to rank

sentences in the input document. Top k sentences are then selected as required. [Bhoir

& Gulati 2016] use 1 - 3 and 5 - 8 as features in conjunction with a fuzzy Logic system.

[Desai & Shah 2016] use 1 - 3, 8 and 11 as features to SVM model. [Thaokar & Malik 2013]

used features 1 - 3 and 8 to assign scores to the sentences. Utilizing genetic algorithm, the

best chromosome is chosen after the particular number of generations. At that point uti-

lizing euclidean distance is calculated between the sentence and the fittest chromosome.

Sentences are sorted, and contingent upon the compression rate sentences are chosen to

37

create the summary. [Keyan & Srinivasagan 2012] proposed multi-document summariza-

tion using neural networks for Tamil and English. The framework includes three stages.

In an initial step, the sentences of the documents are changed over into vector shape. In

the first step, sentences of the documents are converted into vector form. In the second

stage, based on the sentence features, weights are assigned to the vector. After calculating

similarity and dissimilarity measures, summaries are produced.

Graph Based Approach

Graph based approaches represent the source text as a graph. Generating summaries

involves figuring out the sub-graphs that hold more information and then traversing the

graph to includes those sentences into the summary. [Subramaniam & Dalal 2015] present

a graph based approach for Hindi text summarization. The authors created Rich Semantic

Graph (RSG) of the original document and identified substructures of the graph (using

ontological features) that can extract meaningful sentences for generating a document

summary. [Ajmal & Haroon 2015] proposed a technique in which sentences in the doc-

uments are represented as nodes in an undirected graph. If the cosine similarity for two

sentences is above a threshold, they are connected by an edge. Their approach could

also perform query based summarization. For query based summarization, only the sub-

graph which contains sentences related to the query are selected. [Sankar et al. 2011]

proposed a graph based technique for generating summaries in Tamil. [Banu et al. 2007]

proposed a summarization approach that builds a semantic graph by discovering subject,

object and predicate in the sentence.

2.3.3.2 Text Summarization Systems

2.3.3.2.1 Hindi

[Patel et al. 2007] proposed a language agnostic summarization approach for English,

Hindi, Gujarati and Urdu documents based on statistical features. The algorithm was ap-

plied to DUC dataset for English and news articles were used for the rest of the languages.

The language independence of the algorithm was tested by providing news articles for

summarization, and in almost every case a degree of representativeness of more than 80%

was achieved.

38

[Thaokar & Malik 2013] used machine learning technique in for Hindi language using a

genetic algorithm. [Kumar & Yadav 2015] proposed an extractive summarization algo-

rithm which scores sentences based on the co-occurrence of words which adhere to the

theme of the document. The average accuracy of the system was evaluated with a manual

summary and was calculated as 0.85.

[Subramaniam & Dalal 2015] generated a semantic graph from the input text. Heuristic

rules were applied to the semantic graphs to condense them. These rules exploited the

WordNet semantic relations: hypernym, holonym, and entailment. Domain ontology was

used to generate summaries as information needed to generate summaries. WordNet is

then used to generate multiple summaries based on synonyms. The generated multiple

texts are ranked, and the best amongst them is selected for the summary.

[Bhoir & Gulati 2016] used various features. Sentences with a higher number of title

words are given more weight then sentences with lesser number of title words. Only sen-

tences with subject, object and verb triple are selected for the next step. Sentences with

code mixed text are considered more important and have a higher priority. The sentences

are classified using a fuzzy logic classifier and then ranked for the final summary.

[Pundlik et al. 2016] use the following features: sentence paragraph position, overall sen-

tence position, numerical data in the sentence, presence of inverted commas, sentence

length, keywords in the sentence. SVM is then applied to sentences in the range from 4

to 1, with ‘4’ indicating most important sentence and ‘1’ indicating that sentence is not

important. The sentences are then extracted based on their rank. The dataset used con-

tained text from various online news sources such as zeenews, khabarNDTV and Patrika.

A total of 130 Hindi news articles from different categories of news namely Bollywood,

politics and sports are present. The average number of words in an article is 400-500. The

average result of experiments indicated 72% accuracy at 50% compression ratio and 60%

accuracy at 25% compression ratio.

2.3.3.2.2 Kannada

[Kallimani et al. 2010] proposed a system called ‘AutoSum’. The system makes use of

key terms, like proper nouns, adjectives and adverbs to determine the importance of the

sentence. Each sentence is assigned a score based on the features as mentioned earlier.

39

The summary is then generated where the output contains the most important sentences

in the input text (determined by the score).

[Jayashree et al. 2011] proposed a system to generate extractive summaries. Their system

extracts Kannada documents available online for keywords. To score the sentences in

the input text, statistical features like TF-IDF, Galavotti Sebastiani Simi(GSS)[Galavotti

et al. 2000] coefficient are used. The sentences once scored, were sorted in descending

order by the value of the score. Based on the number of sentences specified by the user,

a summary was generated. The summaries were generated based on the number of

sentences determined by the user. The manual evaluation was then done to evaluate the

summaries. The recall values across the categories sports, entertainment and literature,

were 0.76, 0.8 and 0.7 respectively.

2.3.3.2.3 Malayalam

The approach proposed by [Ajmal & Haroon 2015] represents the source text as an undi-

rected graph. In the undirected graph, sentences are represented by nodes. Two nodes

are connected by an edge if the cosine similarity between the two sentences is above a

threshold. The value of the said threshold is calculated by using the number of para-

graphs and the number of sentences in the input document. This approach results in a

graph, where there are sub-graphs which are segregated based on the topics that they

represent. This allows in creating summaries where one can select sentences from each

topic. This way the summary is representative of the whole document. This approach

also eases query-based summarization as sentences from the sub-graph pertaining to the

query can be selected for the summary. The maximum f-measure reported by authors

was 80.18%.

2.3.3.2.4 Tamil

[Banu et al. 2007] proposed a summarization approach that builds a semantic graph by

discovering subject, object and predicate in the sentence. The text documents are com-

pressed by applying syntactical features. Subject, object and predicate triples are identi-

fied for each sentence and a corresponding graph is generated. Normalization is applied

on the subject, object, predicate triples to reduce the frequency of the nodes in the graph,

40

thus reducing the size of the graph. SVM algorithm is then used to classify the sentences.

The algorithm identifies which sentences belong to the summary.

[Sankar et al. 2011] proposed an approach that scores sentences based on features like

word frequency, position of terms. Sentence weights are also calculated by using string

patterns. Their approach is domain independent and does not require annotated cor-

pus. The authors used ROUGE ([Lin 2004]) scores to evaluate the generated summaries

and achieved an average ROUGE score of 0.4723. [Keyan & Srinivasagan 2012] pro-

posed multi-document summarization using neural networks for Tamil and English. The

sentence weight value determines if multi-document summarization or single document

summarization is to be performed. Their proposed system was able to summarize both

new articles in Tamil and English.

2.3.3.2.5 Punjabi

[Vishal & Gurpreet 2012] used the following features: title/keywords (identified by using

term frequency-inverse term frequency), NER, numerical data, proper nouns, and cue

phrases. Scores for sentences are generated using these features. The features are as-

signed weights based on their importance. The final score are calculated by the following

equation: w1.f1 +w2.f2 + ... + wn.fn, where f1...fn are different features of sentences and

w1...wn are the corresponding feature weights of sentences. The sentences are then sorted

to generate the final summaries. For news documents in Punjabi, f-measure values ranged

from 0.97 to 0.94 depending on the compression rates. For stories, the f-measure value

was 0.81 for 10% compression, 0.89 for 30% compression and 0.94 for 50% compression.

[Gupta 2013] proposed an extractive automatic text summarization system. Their ap-

proach uses a two step process for summarization. The first step involves pre-processing

where stop words are removed, sentence boundaries are identified and word frequen-

cies are calculated. The next step involves assigning weights to the sentences based on

the features and then generating summaries based on these scores. The authors tested

the proposed system over fifty Punjabi news documents and fifty Punjabi stories. The

accuracy of their system varied from 0.81 to 0.92.

41

2.3.3.2.6 Bengali

[Islam & Masum 2004] proposed a summarization approach that was corpus-oriented

for Bengali. Files in the corpus were scored on the premise of highest frequency words

by applying vector-space-term-weighting. Their approach builds a document index and

performs summarization using vector space retrieval method. Their approach built a tok-

enizer which tokenized the documents and then performed ranking and summarization.

The tokenizer was able to handle the dangling anaphora problem which is the result of a

shallow linguistic analysis.

[Das & Bandyopadhyay 2010c] proposed an opinion text summarizer. The sentiments on

the topic were calculated from the input text. The sentiment information was then used in

the generation of the summary. Their approach determines sentiment by implementing

an aggregation model. This model helps in discerning the theme at a discourse level.

The aggregation model uses a k-means clustering algorithm. Sentences for the summary

were chosen based on the graph representation by applying page rank algorithm. Their

approach achieved a precision of 0.72, recall value of 0.67 and f-measure score of 0.69.

[Sarkar 2012] proposed a sentence extraction technique for summarization. The technique

proposed could be divided into three stages: preprocessing, sentence scoring and sum-

mary generation. In the preprocessing step, stop words were removed, stemming was

done. In the next step, sentences were ranked based on the words present and position.

Sentences containing words that were related to the document theme and had a TF-IDF

score above a certain threshold were given a higher priority. According to the positional

significance, the score of sentence is inversely proportional to its position. The sentences

are ranked on the basis of their scores and the summary is generated by selecting K-top

ranked sentences, where K is specified as the input to the system.

2.3.4 Applications and Challenges

Past research has established that summaries as short as 17% of the text do a good job

in speeding up decision making, as much as by a factor of two ([Mani et al. 2002]) with-

out any decrease in the accuracy. Summaries that are query based also help in making

relevant decisions in a shorter time span. Summaries empower users to discover the

42

important content in the document without having to go through the entire text of the

document.While summarizing scientific documents, the objective is two fold, one to iden-

tify relevant documents and second to understand the relationship between the current

document and the articles that the document cites. Phone message synopses are useful

for perceiving the priority of the message, the number to call back, or the caller and out-

lines of threads in forums are valuable in determining if the thread is relevant. Another

surprising application of summarization involves automatic evaluation of GMAT essays

([Burstein et al. 2001]). Summarization improves the topical analysis of an essay signif-

icantly. Summarization allows to reduce redundancy in the essays written under time

constraints, which in turn allows better assessment of the essay.

The first and most challenging task in automatic summarization is gathering dataset for

evaluating the systems. While there has been a radical change in English text summa-

rization in the last 10 years, no breakthrough can be seen for Indian languages. One of

the challenges is the lack of efficient resources such as NER taggers and POS taggers.

Another factor that is deterrent to the development of state of the art resources is that

people who use the internet predominantly use English. While traditional print media

might use English languages, electronic media uses English, and the media that does use

Indian language has a limited demographic. Summarization for code mixed languages is

a field that has not been explored yet. Since the advent of social media platforms such as

Twitter and Facebook there has been no dearth of code mixed content, but since code mix-

ing is usually used in an informal setting, summarization for such content has not been

explored. The summarization systems have to compete with ever increasing vocabulary

as well.

2.4 Spam Detection

Social media has seen increased spamming with the advancement in technology. Many

networks have tried to keep stringent policies for the safety of their customers, but spam-

mers adapt suitably as well. In 2008, Twitter officially announced that performance

of entire system was threatened because of the Follow spam accounts 1. [Chakraborty

1https://blog.twitter.com/official/en_us/a/2008/making-progress-on-spam.html

43

et al. 2016b] proposed nine domain-based classifications of spam techniques:

1. E-mail ([Sirivianos et al. 2011], [Zisiadis et al. 2011])

2. Blog ([Zhu et al. 2011], [Kantchelian et al. 2012], [Tan et al. 2013])

3. Microblog ([Ghosh et al. 2012], [Yang et al. 2012], [Chu et al. 2012], [Hu et al. 2013],

[Fu et al. 2015], [Zheng et al. 2016])

4. Bookmarking ([Fakhraei et al. 2015], [Poorgholami et al. 2013], [Yang & Lee 2011])

5. Social network ([Jin et al. 2011], [Ahmed & Abulaish 2012], [Bosma et al. 2012], [Tan

et al. 2012], [Cao et al. 2012], [Yang & Lee 2014])

6. Review ([Sun et al. 2013], [Mukherjee et al. 2013b], [Fei et al. 2013], [Sharma &

Lin 2013], [Lin et al. 2014])

7. Location search ([Aggarwal et al. 2013], [Costa et al. 2013])

8. Comment based ([Sureka 2011], [Rădulescu et al. 2014])

9. Cross-media ([Lumezanu & Feamster 2012], [Wang et al. 2011])

Another categorization proposed was based on Twitter by [Jeong et al. 2016] on Twitter

spam filtering, link spam filtering ([Becchetti et al. 2006], [Castillo et al. 2007], [Gyöngyi

et al. 2004],[Krishnan & Raj 2006]), Sybil Detection ([Shi et al. 2013], [Gong et al. 2014],

[Cao et al. 2012]) and data mining approach for spam detection ([Fakhraei et al. 2015],

[Graham 2002], [Hovold 2005], [Kayes et al. 2015], [Sculley & Wachman 2007], [Zhou

et al. 2014]), where Twitter based spam filtering was further categorized as follows:

1. Content-based spam filtering ([Ghosh et al. 2012], [Benevenuto et al. 2010], [Martinez-

Romo & Araujo 2013])

2. Social network based Twitter spam filtering ([Jiang et al. 2014], [Stringhini et al. 2013])

3. Subnetwork based on spam filtering ([Wang 2010], [O’Callaghan et al. 2012], [Akoglu

et al. 2010])

44

[Ghosh et al. 2012] proposed approach which used link farming property. However, this

approach can be burdensome as it needs social network data for the entire network and

lead to high computational cost. COMPA [Egele et al. 2013] used tweeting lingo, time

window and Uniform Resource Locator (URL) to learn the behavioural pattern of each

user for identifying spam. [Yardi et al. 2009] used behavioural patterns and concluded

that trending topics hashtags are an effective way of spamming strategy. [Benevenuto

et al. 2010] and [Martinez-Romo & Araujo 2013] proposed use of a number of hashtags

and URL(s) or spam URL(s). [Gao et al. 2014] used a template-based approach for match-

ing spam ground truth tweets. [Jiang et al. 2014] analyzed behavioural synchronicity

for identifying fake accounts. [Stringhini et al. 2013] analyzed the patterns in increase

and decrease of number of followers. [Viswanath et al. 2014] identified intentional fol-

low and like for anomaly detection approach using Principal Component Analysis (PCA).

[O’Callaghan et al. 2012] detected comment spammer in YouTube using video user rela-

tion network. [Akoglu et al. 2010] used discriminating features extracted from weighted

sub-graphs from network to detect spammers. BadRank [Wu & Davison 2005] used spam

labels to lower the rank of spam web pages.

Existing proposed works also employed supervised learning techniques by using features

based on review text, rating and other metadata ([Jindal & Liu 2008], [Ott et al. 2011], [Feng

et al. 2012a], [Mukherjee et al. 2013a]). [Ferrara et al. 2014] stated that smart spammers are

hard to distinguish from legitimate users just via content-based features. [Chu et al. 2010]

used user profile features and behaviour. A social honeypot is used by [Lee et al. 2011] to

allure spammers for building benchmark dataset. Few of the works focused on cluster-

ing of URL(s) and network graph of spammers ([Wang et al. 2015a], [Wang 2010], [Yang

et al. 2011], [Yang et al. 2012]). [Liu et al. 2016] proposed an approach based on Latent

Dirichlet Allocation (LDA) using local and global information of topic distribution pat-

terns. [Diale et al. 2016] optimized the kernel type and kernel parameters for improving

the performance of SVM. Authors also varied a number of features for SVM, AdaBoost

and random forest to check the effect of their performance. [Mi et al. 2015] applied stacked

autoencoder for identifying spam detection.

[Jeong et al. 2016] deals with follow spam on Twitter. Authors proposed classification

schemes focusing on cascaded social relations for identifying spammers and devised two

45

schemes, TSP-Filtering and SS-Filtering, each of which utilizes Triad Significance Profile

(TSP) and Social status (SS) in a two-hop sub-network centred at each other. An ensemble

technique was also proposed, cascaded-filtering, which combine both TSP and SS proper-

ties. The proposed schemes are scalable because instead of analyzing the whole network,

they inspect user-centered two hop social networks. [Kim et al. 2016] proposed two ways

of spam detection, by comparing the similarity between user comments and publisher

posts; and by learning single representative meta feature such as username or ID. [Shao

et al. 2017] proposed a hybrid method based on image and text spam recognition. In case

of an image, local and global image features are used whereas, in case of text semantic

properties are used. [Li et al. 2017c] proposed neural network based model to learn rep-

resentation of reviews. Authors compute sentence importance and incorporate them to

represent document representation. [Song et al. 2017] proposed methodology exploits a

probabilistic generative model for mining the latent semantics from user-generated com-

ments and an incremental learning approach for tackling the changing feature space. [Li

et al. 2017a] discovered that reviewer’s posting rates (number of reviews written in a pe-

riod of time) follow an interesting distribution pattern. Their posting rates are bi-modal.

Multiple spammers also tend to collectively and actively post reviews to the same set of

products within a short time frame, which they called co-bursting.

2.5 Sarcasm Detection

Earliest work on sarcasm was done by [Tepperman et al. 2006] which deals with sar-

casm detection in speech. Since then there has been an increase in research of automatic

sarcasm detection. With the expansion of communication platforms over different so-

cial media, sarcasm has been expressed in various forms (tweets, reviews and dialogues)

and a variety of approaches has been explored for the same including rule-based, super-

vised and semi-supervised. [Riloff et al. 2013], [Maynard & Greenwood 2014] and [Mishra

et al. 2017] used manual annotation for sarcastic tweets whereas some others such as [Tsur

et al. 2010], [González-Ibánez et al. 2011], [Bharti et al. 2015] and [Bamman & Smith 2015]

used hashtag based tweets for sarcasm identifications. [Wallace et al. 2014] and [Wallace

et al. 2015] worked on Reddit comments. Few researchers have also focused on long text

46

or reviews such as [Buschmeier et al. 2014], [Filatova 2012], [Reyes & Rosso 2014] and

[Reyes & Rosso 2012]

In 2010, [Tsur et al. 2010] worked on hashtag based annotations. They used a semi-

supervised method for sarcasm identification on a Twitter dataset (5.9 million tweets)

and 66,000 product reviews from Amazon. They worked on standalone sentences and

did not consider the context of data as these were standalone sentences. Pattern based

features were extracted to train the model for retrieving sarcastic sentences. [Buschmeier

et al. 2014] used amazon corpus collected by [Filatova 2012] as its dataset for training. A

lot of feature engineering was performed for the machine learning techniques. The best

performance of the system was with input as combination of star-rating feature, bag of

words and specific features. [González-Ibánez et al. 2011] worked on hashtag based data

which was divided into three categories (sarcastic, positive sentiment and negative senti-

ment), each containing 900 tweets. Various combinations of uni-grams, dictionary-based

features and pragmatic factors (positive and negative emoticons and user references) fea-

tures were used in conjunction with two classifiers, SVM with Sequential Minimal Op-

timization (SMO) and logistic regression. Work done on Amazon data collected using

crowdsourcing in [Filatova 2012] was used by [Buschmeier et al. 2014]. They formulated

the problem as a supervised classification task and evaluated different classifiers on a

combination of lexical and pragmatic features. They reached an f-measure of 74 % using

logistic regression. They made use of features which were proposed in previous research

works and tried various permutations and combinations of features to train the classifier.

[Bamman & Smith 2015] used an evenly balanced corpus of positive and negative tweets

with 9,767 sarcastic and 9,767 non-sarcastic tweets respectively, totalling to corpus size of

19,534 tweets. As for the labelling of the corpus, #sarcastic or #sarcasm tagged tweets were

marked for sarcasm and not otherwise. The classification is done using binary logistic re-

gression methodology with regularization. Two categories of features were engineered,

tweet based and author based features. Major tweet features were brown cluster uni-

grams and bi-grams, part of speech features, pronunciation features, tweet (whole/word)

sentiment (via Stanford sentiment analyzer [Socher et al. 2013]) whereas author features

were profile information, historical topics, historical sentiment and historical salient terms.

A brilliant accuracy of 85% was achieved for all the features as the input to the model.

47

[Cliche 2014] also worked on Twitter dataset and most important features that came as

a result of his analysis were n-grams, sentiments and topics. They used the python li-

brary genism which implements topic modeling using Latent Dirichlet Allocation (LDA).

Initially, topic was learned by feeding all the tweets to the topic modeller. Then they

decomposed each tweet as a sum of topics, which was used as features.1. [Maynard &

Greenwood 2014] studied sarcastic tweets and their impact to sarcasm classification. Their

experiment used around 600 tweets which are marked for subjectivity, sentiment and sar-

casm. They proposed that hashtag sentiment is a key indicator of sarcasm. Hashtags are

often used by tweet authors to highlight sarcasm, and hence, if the sentiment expressed

by a hashtag does not agree with rest of the tweet, the tweet is predicted as sarcastic.

[Bharti et al. 2015] present two rule-based classifiers. The first uses a parse-based lexicon

generation algorithm that creates parse trees of sentences and identifies situation phrases

that bear sentiment. If a negative phrase occurs in a positive sentence, it is predicted as

sarcastic. The second algorithm aims to capture hyperboles by using interjection and in-

tensifiers occur together. They describe a rule-based approach that predicts a sentence as

sarcastic if a negative phrase occurs in a positive sentence. Another rule-based classifier

was proposed by [Riloff et al. 2013] that look for a positive verb and a negative situation

phrase in a sentence. The set of negative situation phrases are extracted using a well-

structured, iterative algorithm that begins with a bootstrapped set of positive verbs and

iteratively expands both the sets (positive verbs and negative situation phrases). They

experiment with different configurations of rules such as restricting the order of the verb

and situation phrase. They use a set of patterns, specifically positive verbs and negative

situation phrases, as features for a classifier (in addition to a rule-based classifier). [Wang

et al. 2015c] use SVM-HMM to incorporate sequence nature of output labels in a conver-

sation. [Liu et al. 2014] compare several classification approaches including bagging and

boosting, show results on five data sets. On the contrary, [Joshi et al. 2016b] experimen-

tally validate that for conversational data, sequence labelling algorithms perform better

than classification algorithms.

Few works have also used deep learning techniques. [Joshi et al. 2016c] use similarity be-

tween word embeddings as features for sarcasm detection. They augment features based

1https://github.com/MathieuCliche/Sarcasm_detector

48

on similarity of word embeddings related to most congruent and in-congruent word pairs

and report an improvement in performance. The augmentation is key because they ob-

serve that using these features alone does not suffice. [Amir et al. 2016] present a novel

CNN based that learns user embeddings in addition to utterance-based embeddings to

learn user-specific context. [Ghosh & Veale 2016] use a combination of CNN, LSTM fol-

lowed by a deep neural network. One of the latest research in this area, inspecting on

an entirely new approach based on the psycho-linguistic side of sarcasm detection, using

cognitive features extracted with the help of eye-tracking, is by [Mishra et al. 2017]. The

basis is built on the fact that sarcasm often springs from incongruity which forces the

brain to reanalyze it, as a consequence of which eye movement differs upon reading the

text, i.e. distinctive eye-movement patterns may be observed in case of successful process-

ing of sarcasm in the text in contrast to literal texts. The task requires the availability of

affordable eye-trackers which is supported by developments such as Cogisen patent on

"eye-tracking using inexpensive mobile web-cams". Gaze-based features were developed

based on eye scan paths of participants, which were calculated using graph structure -

"saliency graphs". Combined with other lexical and textual features, the model based on

multi-instance logistic regression resulted in an improved average precision and accuracy

of 76.5% and 75.3% respectively. An analysis over the results shows that gaze based fea-

tures alone achieve ample performance superseding the combination of features in some

instances. This is amongst first of works which use cognitive features for NLP task.

2.6 Code Mixing

Earlier code switching used to be considered as a substandard language even on informal

platforms, but with the technological advancements, people started accepting it as a nat-

ural part of multilingual language use. Few studies have been performed for analyzing

the reasons which lead to code mixing. Some studies such as [Li 2000], [San 2009] sug-

gested that code mixing occurs due to the linguistic motivations whereas [Sotillo 2012],

[Bock 2013], [Shafie & Nayan 2013] and [Goldbarg 2009], suggested that it occurred due

to the social motivations to mark membership in-group in short text messages, chat mes-

sages, Facebook comments and emails respectively. Most of the text processing tools have

49

been constrained to the English Language. With increasing trends of code mix text usage

all over the globe, it has become important to develop processing tools for such text. [Fis-

cher 2011] provided insight on language usage in different parts of the world on Twitter.

A trend was observed that usually the language occurring in social media is code mixed

when at small distances there are large languages present. [Dewaele 2010] claimed that

"strong emotion arousal" increases the frequency of code mixing in the text.

Recent works found out a trend of code-mixed texts in Indian languages. [Gupta et al. 2014]

formally introduced the concept of Mixed Script Information Retrieval (MSIR) and chal-

lenges associated with it. Authors also bridged the gaps by analyzing the web traffic for

MSIR through Bing query logs and thereby deducing the impact of mixed scripting. Their

proposed solution models the recondite representation of terms transverse different lan-

guages through deep learning architecture which ultimately results in equivalent terms

to be closer to each other.

In 2015, MSIR finally attained some attention when two shared tasks were organized.

In shared task organized for the Sentiment Analysis in Indian Languages (SAIL) [Patra

et al. 2015] three languages were considered, i.e. Bengali, Hindi and Tamil but the data

provided was language specific, and no code mixing was involved. Task had two scenarios

in which participants had to build constrained and unconstrained systems. Constrained

systems were restricted to the data provided, but in unconstrained ones, teams used var-

ious external sources for different languages. It was observed by task organizers that

accuracy of unconstrained systems decreased significantly. Another shared task, MSIR

[Sequiera et al. 2015b] was organized in which participants had to identify 9 different

languages, named entities, punctuations and mix scripts in the text for which significant

results were obtained. Task organizers found that most confusing language pair was that

of Hindi and Gujarati. Also, based on results obtained from participating teams they con-

cluded that performance of the system for each of the category included in the task was

correlated to the number of tokens used for that category. Code mixing has now found

its application in different areas such as query Labeling [Bhargava et al. 2015], sentiment

analysis [Bhargava et al. 2016d], question classification and various tools are being devel-

oped for the same such as POS tagger, language identifier and name entity recognizer.

50

2.6.1 POS Tagging

In the past decade, there has been much increase in code mixed text. At present, there are

parts of speech taggers for English with an accuracy of 97.64% [Choi 2016] using dynamic

feature induction and tested on wall street journal dataset. On the other hand, there are

very few systems present for POS tagging in Indian languages which are less accurate

when compared to English POS taggers. This can be attributed to the lower availability of

resources available publicly for Indian languages. According to [Antony & Soman 2011]

work in POS tagging for Indian languages was mainly based on rule-based approaches

in the past. In Hindi, [Singh et al. 2006] designed a POS tagger based on exhaustive mor-

phological analysis backed by high-coverage lexicon and a decision tree based learning

algorithm. This system has achieved an average accuracy of 93.45%. In Bengali, [Ek-

bal et al. 2009] has applied voted approach on three classifiers SVM, CRF and Maximum

Entropy to gain a tag precision of 92.35%. [RamaSree & Kusuma Kumari 2007] have de-

signed a rule-based POS Tagger for Telugu corpus and have claimed to have achieved an

accuracy of 98.016%. There are POS taggers for Tamil, Marathi, Punjabi, Malayalam. POS

tagging for code mixed data is a relatively new field of research and difficult because of

the absence of tagged code mixed data.

[Solorio & Liu 2008] presented the results on the problem of POS tagging English-Spanish

code-switched discourse by using preexisting taggers for both languages. They worked

on different POS taggers for monolingual languages and used them to predict POS for the

given the word. However, they did not face the problems of text generated through social

media, and hence the accuracy achieved by them was quitesss high. The initial attempt

to tag code mixed texts was made by [Jamatia & Das 2014]. An approach to annotate the

dataset using CRF with 5 fold cross validation along with manual correction is discussed.

The dataset is then trained using various machine learning classifiers such as SVM, Ran-

dom Forests and Naive Bayes classifier. The random forest achieved the best results with

82% in fine-grained and 83% in coarse-grained data. With the advent of social media,

people are encouraged enough to work on POS tagging of mixed languages. One such

attempt was made by [Vyas et al. 2014]. His best effort is recognized as the introduction of

transliteration problem in POS tagging of mixed languages. Their work mainly includes

51

formalization of the problems and challenges experienced in Hindi-English POS tagging.

First, POS tagging is done by assuming the knowledge of language information and nor-

malized/transliterated form of the word. This experiment gave an idea of the possible

POS tagging accuracy if all the above information can be found out correctly. The experi-

ment uses two English taggers (Stanford tagger [Toutanova et al. 2003] and CMU ark tweet

Tagger [Owoputi et al. 2013]), and both the taggers give an accuracy of 79.02%. The next

experiment assumed only the knowledge of language tag and the other modules such as

back transliteration module and POS Tagger were developed resulting in an accuracy of

74.87%. The third experiment assumed the absence of all information except the word. In

this case, all the modules were developed. The third experiment gave a final accuracy of

65.39%.

Nowadays, people are mixing heuristic operations to improve the performance of POS

taggers of mixed languages further. A language identification system had been devel-

oped by [Gella et al. 2013] which identified the language of the words and then, used a

simple heuristic to form chunks of the same language. CRF++ was then used to iden-

tify POS Tags. Most of the works done till now have proved the essence of language

identification along with transliteration in the POS tagging of mixed languages. [Jama-

tia et al. 2015] collected and annotated the data for Code Mix English-Hindi Twitter and

Facebook chat messages and compared the language-specific taggers to that of machine

learning taggers using features based on word-level information. They have drawn a com-

parison between different machine learning techniques such as CRF, minimal sequential

optimization, naive bayes and random forests using different features such as word con-

text and other word-based features. The best performing system was of CRF and RF with

weighted accuracies of 71.6% and 70.6% respectively.

[Gambäck & Das 2016] discussed the challenges posed in the evaluation of code mix data

and proposed a formal measure for evaluation. [Wang et al. 2015b] use BLSTM-RNN for

POS tagging. The Recurrent Neural Network (RNN) is word embedded. The authors

achieved an accuracy of 97.40% when tested on the Penn treebank wall street journal test

set. Their approach performed comparably to Stanford POS tagger without using any

language features like morphemes, root words, affixes, intonations and stresses. Given a

sentence w1, w2, ..., wn with tags y1, y2, ..., yn, a bidirectional LSTM network was used

52

to predict the tag probability distribution of each word. The output layer was a softmax

layer whose dimension was the number of tag types. The output was the tag probability

distribution of input word wi. All weights were trained using back-propagation and gra-

dient descent algorithm to maximize the likelihood of training data.

[Vaswani et al. 2016] used feed-forward neural networks with two hidden layers of recti-

fied linear units for both POS tagging and feed-forward networks. In POS tagging, when

tagging word wi, the authors considered only features from a window of five words, with

wi at the centre. For each word in the window, the authors added the word lowercased

and a string that encodes the basic "word shape" of the word in the window. This was

computed by replacing all sequences of uppercase letters with ‘A’, all sequences of lower-

case letters with ‘a’, all sequences of digits with ‘9’, and all sequences of other characters

with ‘*’. Finally, two and three letter suffixes and two letter prefix were added for wi only.

[Plank et al. 2016] described a basic bidirectional LSTM tagging model is a context bidi-

rectional LSTM taking as input word embeddings. The authors incorporated sub-token

information using a hierarchical bidirectional LSTM architecture. The sub-token level (ei-

ther characters or uni-code byte) embeddings of words are computed using a sequence

of bidirectional LSTM at the lower level. [Sequiera et al. 2015a] proposed an extension to

the existing approaches by introducing a new feature set for transliteration. The system is

tested on naive bayes and maximum entropy approaches and obtained the best accuracy

of 84%. The paper shows that integration of language detection and POS tagging systems

does not improve the accuracy in overall.

Most of the research work was done on the ICON data sets 2015 onwards. [Sarkar 2016b]

have designed a tri-gram based Hidden Markov Model (HMM) for POS tagging. The

system first tokenized the sentences into tokens and attaches meta tags and broad POS

tag information to each token. The meta tag contained the word characteristics by which

it stood differently. The system is later tagged with the tri-gram tagger with the above

features for three different language pairs Bengali-English, Hindi-English and Telugu-

English. [Pimpale & Patel 2016] compared various machine learning algorithms such as

decision tree, random forest, naive bayes and Multilayer Perceptron (MLP) for developing

POS tagger. The system uses the language of the word, the language of the previous

word, the language of the next word, POS tags of the previous two word, POS tags of

53

the next two words similar words and position of the word in the sentence as features for

training the system.

[Sharma et al. 2016] proposed a CRF based POS tagger. The system used context window

words, capital letter based features, affix based features and length of the word as features

to train a CRF classifier in constrained mode and used Hindi transliterator, normalizer,

Twitter POS tag, English word clusters and affixes of normalized Hindi words as features

in unconstrained mode. [Nelakuditi et al. 2016] designed a POS tagger for Telugu-English

code mixed texts using two approaches. The first approach consists of machine learning

approach with lexical features like prefix, suffix, infix features and presence of postposi-

tions(PSP) word, prefix and suffix of adjacent elements and length of the word. Linear

SVM(s), CRF(s) and multinomial naive bayes classifier are the machine learning models

considered. The second approach consists of having two POS taggers of English and Tel-

ugu combined with a universal language tag set. A language identification system was

trained on lexical features with CRF and is used to identify the words.

[Ghosh et al. 2016] have also designed a system on the same ICON 2015 dataset. The

system uses a chunker and a lexicon dictionary for preprocessing sentences. The system

then extracts features such as words in a context window of size 5, prefix, suffix and some

binary features. The system uses some post-processing rules to identify emoticons, uni-

versal tags and other unidentified words.

In 2016, ICON has conducted another POS tagging sub-task and released the following

dataset. [Gupta et al. 2017] designed a POS tagger using a hybrid approach. The system

uses a rule-based tagger to identify some of the tags. The rest of the tags are identified

using a CRF model. The features used include character n-gram, word normalization,

prefix and suffix, word class features, word probability, stemming, phonetic normaliza-

tion and some binary features. Meanwhile, [Patel et al. 2016] proposed deep learning

approaches to solve the POS tagging problem. Authors compared simple RNN, LSTM,

GRU (gated recurrent unit) a deep LSTM networks using context words embedding as

the input features. The system uses ICON 2016 dataset for training. The system per-

formance is comparable to Stanford tagger [Toutanova et al. 2003] and Hunpos tri-gram

tagger [Halácsy et al. 2007]. [Sarkar 2016a] have designed a CRF model for POS tagging

using the ICON 2016 dataset. The system used language features, orthographic, punctu-

54

ation features, word context features and binary features for training on the CRF model.

Finally, [Barman et al. 2016] have come up with three approaches which work on Hindi-

Bengali-English code mixed texts. They have designed a pipelined system using the meth-

ods implemented by [Solorio & Liu 2008] and [Vyas et al. 2014]. They implemented the

same systems using a stacked approach instead of a pipeline. In stacked approach the out-

put of all the taggers, language identifiers are combined whereas in pipelined approach

the POS tag of a specific language tag is done based on the output of language identifier.

The results of stacked came to better than the pipelined features. The combined approach

uses a SVM directly on the handcrafted features plus stacked features.

2.6.2 Named Entity Recognizer

Information extraction and natural language processing is a field that is widely researched

upon from time to time in the English language as well as other native Indian languages.

Mainly, named entity recognition had significant research done so far in English and

multilingual corpuses. Initial attempts to identify named entities in multilingual cor-

puses was made in shared tasks of CoNLL 2002-03 ([Sang 2002], [Tjong Kim Sang &

De Meulder 2003]). The best systems of that conference were based on machine learn-

ing techniques like hidden markov models and maximum entropy models. The CoNLL

2002 [Sang 2002] was based on Spanish and Dutch language data sets while CoNLL 2003

[Tjong Kim Sang & De Meulder 2003] was based on English and German data sets. In

2013, [Al-Rfou et al. 2013] have designed a system called POLYGLOT for massive multilin-

gual NLP applications. This system can handle 40 significant languages including some

Indian languages like Bengali, Hindi, Marathi, Punjabi, Tamil and Telugu for NER clas-

sification. The NER system was developed based on a massive Wikipedia database and

applied semi-supervised approach for classification. In the context of Indian languages, a

hybrid maximum entropy model for Hindi and Bengali languages was designed by [Saha

et al. 2008]. Authors used gazetteer lists and language specific rules in the system. For

Tamil language, NER system based on CRF was designed by [Malarkodi et al. 2012]. When

it comes to NER systems for code-mixed texts in Indian Languages, initial attempts were

made by ESM-IL sub-task of FIRE 2015 [Rao et al. 2015]. The task consisted of identifying

55

named entities in Hindi and English, social media text. CRF baseline system was built,

and other systems were compared with respective to that system. They observed that

most of the systems designed had similar precision, but most of them have improved the

recall making them better systems. [Pallavi et al. 2015] proposed a system by creating a

set of features and training them using CRF identifying named entities. A system based

on SVM classifier using brown clusters along with POS tags and clusters for identifying

named entities has been developed by [Se et al. 2015]. [Sarkar 2015] had used POS tag

as a state and developed a system using hidden markov model classifier for identifying

named entities. Later on in CMEE-IL, FIRE 2016 [Rao & Devi 2016] the named entity

recognition was reintroduced for Hindi-English and Tamil-English code mixed sentences.

[Bhat et al. 2016] have introduced a neural network for identifying the entities. They have

used contextual features like prefix and suffix of words in context window along with

some binary features. [Gupta et al. 2016a] have used a CRF trained on context features

like prefix, suffix and character n-grams of context window words along with other binary

features.

2.6.3 Question Classification

The first phase of question answering system involves question classification which helps

in reducing the scope of the answer. The machine learning techniques that have been

proposed in the past use different semantic, lexical and syntactic features to classify the

questions. Recent works on code mixed question classification include machine learning

based approaches for question classification. [Bhargava et al. 2016b] proposed a technique

that uses NER and removes the named entities in the text. They had used three differ-

ent classifiers for three different runs: gaussian naive bayes classifier, logistic regression

classifier, random forest classifier with the random state as 1. The authors achieved the

highest accuracy of 81.12% using gaussian naive bayes approach among all the three runs

submitted.

In the past monolingual question classification has been addressed by [Huang et al. 2008]

who proposed two approaches using SVM classifier and Maximum Entropy Model clas-

sifier. The features used by the authors were ‘wh’ words like ‘who’, ‘what’, ‘why’, head

56

words, semantic feature of hypernyms, n-grams and shape of the word such as all upper

case, numbers and all lower case. [Kim 2014] suggests a simple CNN model with hyperpa-

rameter tuning and static vectors. The proposed model achieves good results on multiple

benchmarks. The author proposed learning of task specific vectors which led to increase

in performance. CNN model effectiveness had been proven for NLP and produces good

results in semantic parsing ([Yih et al. 2014]), search query retrieval ([Shen et al. 2014])

and sentence modelling ([Kalchbrenner & Blunsom 2013]). [Zhang et al. 2015] proposed

character level convolutional networks for text classification. The authors showed that the

convolutional networks did not require any knowledge of the words, the syntactic struc-

ture and semantic structure of the language.

For question analysis of such data, Question classification is done to understand the ques-

tion that allows determining some constraints the question imposes on a possible answer.

[Zhang & Lee 2003] used bag of words and bag of n-grams as features and applied k-NN,

SVM, naive bayes to automate question classification and concluded that with surface

text features the SVM outperforms the other classifiers. [Banerjee et al. 2016b] proposed a

Question Answering (QA) system which takes cross-script (non-native) code-mixed ques-

tions and provides a list of information response to automate the question answering.

Corpus acquisition was done from social media, question acquisition using a cloud based

service without getting bias, corpus annotations and an evaluation scheme suitable to the

corpus annotation. [Li & Roth 2002] proposed question classification using the role of

semantic information developing a hierarchical classifier guided by a layered semantic

hierarchy of answer types.

[M & Soman 2016] proposed two models (run-1 & 2) where, run-1 used bag-of-words

(BoW) model. The run-2 was based on the recurrent neural network. The initial em-

bedding vector was given to RNN, and the output of RNN was fed to logistic regres-

sion for training. Overall, the BoW model outperformed the RNN model by almost 7%

on F-measure. [Ganesh et al. 2016] approached the problem using Vector Space Model

(VSM). Weighted term based on the context was applied to overcome the shortcomings

of VSM. The proposed approach achieved up to 80% accuracy in terms of F-measure.

[Saini 2016b] used term frequency and inverse document frequency (TF-IDF) vector as

a feature. A number of machine learning algorithms, namely SVM, Logistic Regression

57

(LR), Random Forest (RF) and gradient boosting were applied using grid Search to come

up with the best parameters and model. The RF model performed the best among all the

three variants. [Bhattacharjee & Bhattacharya 2016] proposed a model based on machine

learning approaches. They trained three separate classifiers namely RF, one-vs-rest and

k-NN, followed by building an ensemble classifier using these three classifiers for the clas-

sification task. The ensemble classifier took the output label from each of the individual

classifiers and selected the majority label as output. In case of a tie, any one label was

chosen at random as output. [Majumder & Pakray 2016] proposed three models (runs)

out of which two were rule based - the first set of direct rules were applied for the run-1

while the second set of dependent rules were used for the run-3. A total of 39 rules were

identified for the rule based runs. Naive bayes classifier was used in run-2 whereas naive

bayes updateable classifier was used in run-3.

2.6.4 Sentiment Analysis in Code Mixed Text

In Indian languages, very less research has been conducted for code mixed sentiment

analysis, until recently. For the Hindi language, [Joshi et al. 2010] were initial contribu-

tors. They introduced the concept of SentiWordNet to Hindi. They have proposed three

approaches to solve the problem one using SentiWordNet, another using machine trans-

lation and the third one using machine learning techniques. The machine learning tech-

nique proved to be effective. In the case of Bengali, [Das & Bandyopadhyay 2009] have de-

signed a CRF model based on SentiWordNet and other features. Similarly, there had been

few research done in past few years which focused on languages such as Hindi [Sharma

et al. 2015b], Hindi and Marathi [Balamurali 2012], Marathi [Sapkal & Shrawankar 2016],

Tamil [Kumar et al. 2015c], Kannada [Kumar et al. 2015b]. Users expressing views on

social media tend to introduce their native language words into English intentionally or

unintentionally. This results in code mixing and makes it difficult for existing tools to

analyze the text. For a system to understand the sentiment of a sentence, it must first be

able to identify to which language does the utterance belong and hence, language iden-

tification becomes an integral part of code mixed text processing system. The problem

of language identification is a subcategory of text classification. There has been a lot of

58

research done in this area. In English, n-grams have been proven to be a very effective

method for text classification. Initial attempts to identify languages using n-grams was

proposed by [Cavnar et al. 1994]. [Ceylan & Kim 2009] have also used n-grams in their

Language identifier for search queries. The other widely used approach is the usage of

the dictionary to predict the language of a sentence. This method of tagging words and

sentences based on the presence of the word in the dictionary of most common words

was initially proposed by [Ingle 1976]. Later on [Řehůřek & Kolkus 2009] have done

some extensive work on the dictionary based approach for language identification but

as pointed out by [Grefenstette 1995] the dictionary method showed the better result for

sentences having more than ten words as compared to the n-gram approach. MSIR, FIRE

2015 [Sequiera et al. 2015b] had proposed the similar task of language identification. It

dealt with word level language labelling in the code-mixed dataset comprising of words

belonging to eight different Indian languages. The dataset comprised of words written

in English or words transliterated from an Indian language. The task was to identify the

language of each word in the dataset. Nine teams provided submissions for the sub-task

1 using supervised machine learning algorithms for language identification. Many of

the submissions involved the use of character n-grams for feature extraction including

[Kumar et al. 2015d] and [Bhargava et al. 2015]. Apart from these techniques, word2vec

and clustering using k-means were also used for the task in hand [Jain 2015]. Different

combinations of machine learning algorithms like SVM, naive bayes classifiers, logistic re-

gression, CRF and random forests were used by different teams for supervised learning,

out of which [Ethiraj et al. 2015] performed best using character n-grams, token features in

combination with the dictionary based approach, along with using rule based and naive

bayes classifier.

Sentiment analysis has attained a tremendous speed in recent times all over the world.

With India being a multilingual nation, sentiment analysis also gained its speed for Indian

languages. One such work is done by [Joshi et al. 2010]. They proposed three approaches

for performing sentiment analysis in Hindi. In the first one, they are using Hindi train-

ing corpus for classifying sentiments. In the second one, they used machine translation

whereas for the third one they build a Hindi SentiWordNet [Joshi et al. 2010] dictionary of

their work. They concluded that first technique outperforms the other two. Since then a

59

variety of different algorithm have been proposed in different languages such as [Sharma

et al. 2015b] in Hindi, [Balamurali 2012] in Hindi and Marathi, [Sapkal & Shrawankar 2016]

in Marathi, [Kumar et al. 2015c] in Tamil, [Kumar et al. 2015b] in Kannada and many more

for sentiment analysis.

[Gupta et al. 2014] in 2014 formally introduced the concept of MSIR and challenges asso-

ciated with it. They also bridged the gaps by analyzing the web traffic for MSIR through

Bing query logs and thereby deducing the impact of mixed scripting. Their proposed solu-

tion, models the recondite representation of terms transverse different languages through

deep learning architecture which ultimately results equivalent terms to be closer to each

other. [Gella et al. 2014] proposed a word level language identification technique which

is a necessary and challenging step in code mixing. [Balahur et al. 2014] specified the

fact that using multilingual data in combination of data obtained via machine translation,

helps in improving sentiment classification. In a similar line of work, [Mihalcea et al. 2007]

proposed several methods to leverage resources and tools available in English by using

cross lingual projections.

[Vilares et al. 2015] performed sentiment analysis for English and Spanish in variant envi-

ronments of monolingual, multilingual and code switching. [Das & Bandyopadhyay 2009]

proposed a technique in which for language identification, words are matched directly

with the dictionaries of each language transliterated into English and then for those who

do not match, a set of probable words were taken from all the dictionaries taking words

that are closest to the given spelling using the levenshtein algorithm. Then doublet and

triplet words are considered for evaluating the probability. Final probabilities decide the

relevant match.

[Das & Bandyopadhyay 2009] proposed a computational technique of generating an equiv-

alent SentiWordNet for Bengali from publicly available English sentiment lexicons and

English-Bengali bilingual dictionary. They developed SentiWordNet for a variety of In-

dian languages [Das & Bandyopadhyay 2010b]: Hindi, Bengali and Telugu. Further, they

proposed Psycho SentiWordNet [Das & Bandyopadhyay 2011] for 56 languages. In con-

tinuation of their effort for improving SentiWordNet dictionaries, they proposed Senti-

mantics [Das & Gambäck 2012], where they incorporated contextual information. With

this work, they enlightened the necessity of using dynamic prior polarity with context.

60

[Sharma et al. 2015a] proposed an approach comprised of two phases, one of them be-

ing language identification and the second one being sentiment analysis. They segre-

gated Hindi and English words and calculated final sentiment score by lexicon look up

in respective sentiment dictionaries. [Prabhu et al. 2016] learned sub word level repre-

sentations in LSTM architecture instead of character level and word level representations.

[Vilares et al. 2017] created the corpus for multilingual sentiment analysis on Twitter for

English and Spanish. They proposed a multilingual model trained on fused monolingual

corpuses by information fusion techniques to sentiment analysis described by [Balazs &

Velásquez 2016]. They also proposed a dual monolingual model and a pipeline for deter-

mining the language of the unseen text.

61

Chapter 3

Sentiment Analysis

With the growing amount of data generated from the social networking sites, e-commerce

services, blogs, review sites, it has become essential to gain better inisghts of the public

opinion, market sentiment and consumer behaviour. This review data acts as dynamic

feedback for improvement of the services/products and target potential customers. The

emergence of text mining tools with growing data has played an important role in ex-

tracting valuable information. Sentiments refer to the emotions of a person. There has

been a surge in the number of people expressing themselves through tweets in different

languages.

Tweets have been used to give feedback in fields such as critical political issues, new movie

releases and sports. These areas need public input to work on the problems deduced

from reviews. It is necessary to know how many people are in favour (positive review)

or against (negative review) the topic of discussion. Thus, analysis of tweets concerning

the sentiments they reflect is of significant scope. According to Google in collaboration

with KPMG 1, most of the people in India prefer tweeting in their regional languages, and

hence, sentiment analysis of data in Indian languages has become significant. Sentiment

analysis uses statistics, Natural Language Processing (NLP) and machine learning tech-

niques to predict the polarity of a sentence and gauge the correctness of the sentiment

deduced. There has been much research on English tweets but not on the tweets in Indian

languages. One popular research area amongst the researchers is of extracting valuable

1https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/04/Indian-languages-Defining-Indias-
Internet.pdf

62

information from highly dynamic data generated from social media. Temporal opinion

mining is the computational process of collecting and analysing the reviews and opinions

to determine the intensity and polarity of the expression/view/feeling/assessment con-

cerning time. This field has received a profound interest in recent times.

Two challenges of sentiment analysis are being targeted in this chapter. Section 3.1 dis-

cusses the approach to handle sentiment analysis in Indian languages using hybrid neural

network architecture. Section 3.2 presents the approach to identify changing sentiments

and aspects over time using deep neural networks.

3.1 Neural Network based Architecture for Sentiment Analysis

The sentiments of monolingual tweets in one of the Indian languages (Hindi, Bengali and

Tamil) is predicted in this section. The problem targeted is considered as a binary classifi-

cation problem with the output being a label: 0 for negative and 1 for positive sentiment.

Traditional machine learning techniques extract features from a sentence to realise its po-

larity, but they do not consider the meaning attached to each word of a sentence [Sun

et al. 2016]. Word embeddings have been used to capture the semantic information of the

text to overcome the drawbacks faced by traditional machine learning techniques [Xun

et al. 2017].

Word embeddings and neural networks have been used in conjunction to identify sen-

timent of a tweet in the proposed work. The significant contribution of the proposed

approach is the usage of all possible combinations (up to three hidden layers) of the three

neural network layers (RNN [Elman 1990], CNN [Kim 2014] and LSTM [Hochreiter &

Schmidhuber 1997]) and analysing the results in detail. Thirty-nine hybrid models are

proposed for each of the three Indian languages, which are based on vector space. All the

sequential models are tested using uniform parameters for the layers.

3.1.1 Neural Network based Architecture for Sentiment Analysis in Indian

Languages

The proposed approach is a word-level binary classification approach which uses the

vector-space model to predict sentiment of a tweet. The procedure is divided into three

63

phases: pre-processing, the creation of sequential model and predictions. These stages

convert the textual data to a label which determines the sentiment of a tweet.

3.1.1.1 Phase I: Pre-Processing

Given a set of L sentences, S = {S1, S2, ..., SL}, each sentence Si, with n words {w1, w2, .., wn},

n ∈ R, where R denotes a set of real numbers, is broken down into its constituent words,

and each word is tokenised, thus creating a dictionary of words wt = {‘w1’, ‘w2’, ..., ‘wn’}.

Each word or token is assigned an index on frequency basis of its occurrence in the text

file. The indexes are concatenated to return a numerical array for each sentence. The

sentences in the form of numerical arrays are padded to yield sentences of similar dimen-

sions, filling the extra columns added to equalise the dimensions with 0, and returning a

padded array, wp.

3.1.1.2 Phase II: Sequential Model

The padded numerical array, wp, of each sentence, is used as input to the Sequential

model, a linear stack of layers. Each index in the array, wp, is mapped to real-valued

vectors, vi ∈ Rd, where vi is a d-dimensional vector in high-dimensional space using the

embedding layer. The Embedding layer is initialized with random weights and will learn

an embedding for all of the words in the training dataset. Mapping of indexes produce

a matrix of feature vectors (word embeddings) V (represented in equation 3.1) which

captures the semantic and syntactic information about the words.

V = [v1, v2, .., vn+k] (3.1)

=



v1
1 v2

1 · · · vn+k
1

v1
2 v2

2 · · · vn+k
2

...
...

...
...

v1
L v2

l · · · vn+k
L


(3.2)

where, each row represents vectors of a sentence

64

In equation 3.2, k represents the padding done in the particular instance. The output

of the embedding layer, the word embeddings, is input to further layers in the model. The

39 different hybrid models contains selected combination of 1,2,3 layer network compris-

ing of RNN, LSTM and CNN.

3.1.1.2.1 Convolutional Neural Network

CNN [Kim 2014] uses a filter F ∈ Rn over a window of n words to extract overlapping

features throughout the training and testing set consisting of vectors, vi. The convolution

of F and vi produces a new feature, ci:

ci = f (F · vi) (3.3)

where, f is a non-linear function and ‘.’ is element-wise multiplication.

The new features, c = {c1; c2; ...; ci} form a feature map. This feature map acts as an input

to the max-pooling layer. This layer uses a non-overlapping filter of length ‘a’ (in case

of one-dimensional pooling layer), and reduces the size of the feature matrix by keeping

only the highest values in each batch [Wiatowski & Bölcskei 2017].

3.1.1.2.2 Recurrent Neural Network

RNN [Elman 1990] uses a memory feature to capture and remember the information it has

learnt so far. It takes ith word as input and predicts the probability of (i + 1)th word using

a non-linear function. RNN produces a new embedding matrix, including the information

from the previous embedding.

3.1.1.2.3 Long-Short Term Memory

LSTM [Hochreiter & Schmidhuber 1997] is devised to overcome the problem of vanishing

and exploding gradients in SimpleRNN [Elman 1990]. It uses memory cells with three

gates: input, output and forget gate. LSTM decides which information to remember or

forget by assigning appropriate weights to the gates. It also produces a new embedding

65

matrix using the information from the previous one.

Each neural network works in a slightly different way from the other. When using a

hybrid of these neural networks, one can increase the efficiency of the model by combining

the advantages of networks. For example, using CNN along with LSTM allows CNN to

learn the features using overlapping sequences resulting in a matrix of word vectors that

contributes to the sentiment of the sentence. This matrix acts as an input to LSTM which

can focus on more important data rather than memorising the whole sentence and hence,

increasing the efficiency of the model. In few cases, combining neural networks can help

form bi-directional networks which can assist in predicting future words. The stacking of

layers can increase the non-linearity of the model to produce better decision boundaries

and hence, more reliable results. Moreover, as linguistics of each language differs from

another, the order of the techniques is also taken into consideration, so that pair of these

techniques can be analyzed for different languages. However, the languages considered

were based on Devanagari script and therefore no prominent difference is observed.

For each layer, parameters are selected to avoid overfitting, which remains fixed across

all the models to compare the results at the end of the experiment. Table 3.1 shows the

parameter settings for different layers.

In sequential model, two dense layers have been appended after the hybrid layers with

different neuron units as shown in Table 3.1. These layers are fully connected layers of

the model containing activation functions that connect each input neuron to each neuron

of the next layer. A flatten layer is used before the dense layers to convert the dimensions

of the output from previous layers to usable form in the dense layer. Two dropout layers

have been applied to each of the dense layers to drop some of the connections of neurons

from the dense layer to avoid overfitting (as shown in Figure 3.1). The activation functions

used for dense layers are ReLu and Sigmoid because they do not suffer from the problem

of saturation. The Sigmoid function as shown in equation 3.4,

S = 1/(1 + e−x) (3.4)

produces an output from 0 to 1. It converts the embedding matrix from RNN, LSTM or

output from max-pooling layer to a label 0 or 1 which represents negative and positive

66

Table 3.1: Parameter settings for Sentiment Analysis

Sr.no Layers PARAMETERS

1 Embedding
input_dim=5000, output_dim=20,

input_length=30
2 SimpleRNN Neuron units=100
3 LSTM Neuron units=100

4 CNN nb_filter=20,
filter_length=3,

activation= ‘relu’
5 Max-pooling pool_length=2

6 Dropout(Layer 1) units:
Hindi: 0.8

Bengali: 0.7
Tamil: 0.7

7 Dropout(Layer 2) units:
Hindi: 0.5

Bengali: 0.3
Tamil: 0.3

8 Dense(Layer 1) units=20, activation= ‘relu’
9 Dense(Layer 2) units=1, activation=‘sigmoid’
10 model.compile() loss= ‘binary_crossentropy’, optimizer= ‘adam’
11 model.fit() batch_size=32, epochs=8
12 model.predict() batch_size=32, verbose=1
13 model.evaluate() verbose=1

sentiment, respectively. The model is finally compiled with a loss function to yield a

binary classification.

The process of sentiment analysis from a set of sentences to generate a label is shown

in Algorithm 3.1, where Y represents the matrix of labels for each sentence in test data

(Y_ts) and training data (Y_tr).

Y = [y1, y2, ..., yL] (3.5)

where, each column of the matrix represents a label for a given sentence.

yi =


0, for negative Si

1, for positive Si

(3.6)

67

Algorithm 3.1: Sentiment Analysis of Indian Languages
Input: x=A set of sentences, S = {S1, S2, ..., Sn} with n-words, {w1, w2, ..., wn}, of

one of the Indian languages
Output: yε{positive : 1 negative : 0}

1 Assumption: Each document is a monolingual dataset.
2 for each Si in S do
3 Phase I: Pre-Processing
4 1. Tokenize
5 wt = f (Si), Si = {w1, w2, ..., wn}εS
6 Output: wt = {‘w′1, ‘w′2, ..., ‘w′n}
7 2. Pad
8 wp = g(wt), wt = {‘w′1, ‘w′2, ..., ‘w′n}
9 Output: If words in the largest sentence= n + k

10 wp = {‘w′1, ‘w′2, ..., ‘w′n, 0, 0, 0...ktimes}
11 Phase II: Sequential Model
12 if Si belongs to training data then
13 Feed the data: model.fit(Y, Y_tr)
14 else
15 Feed the data: model.predict(Y, Y_ts)

3.1.1.3 Phase III: Predictions

This phase operates only on the test data. The test data is fed to the sequential model

using the function model.predict() as explained in algorithm 3.1. The sequential model

works upon it and produces labels for each sentence in the test dataset.

3.1.2 Experiments & Results

3.1.2.1 Sentiment Analysis Datasets

The dataset is extracted from Sentiment Analysis of Indian Languages (SAIL) 2015 data

[Patra et al. 2015], containing twitter data from three Indian languages: Hindi, Bengali

and Tamil. Each dataset is divided into two text files: a positive sentences data file and

a negative sentences data file. The whole dataset is split into training and testing data in

the ratio of 70:30. Table 3.2 enlists the number of sentences in training and testing set for

each of the three Indian languages. The dataset contains monolingual tweets in one of

the Indian languages. The textual data is subjected to some transformations referred to as

pre-processing phase as discussed in section 3.1.1.

68

Table 3.2: Dataset description

Sr.no Dataset Class Total Data Training Data Test Data

1 Hindi
Positive

Negative
168
559

508 219

2 Bengali
Positive

Negative
277
354

441 190

3 Tamil
Positive

Negative
387
316

492 211

3.1.2.2 The Experimental Setup

The experiment aims at predicting the sentiment of sentences in one of the three Indian

languages mentioned before and gauges the correctness of model using performance mea-

sures. For this purpose, all possible combinations of RNN, LSTM, CNN are modelled, and

performance measures such as accuracy, F-measure, precision and recall have been calcu-

lated. Over-fitting has been visualised using accuracy versus number of epochs graph.

The experiment uses a vector-space based model that encodes continuous similarities be-

tween words as distances or angle between word vectors in a high-dimensional space

[Maas et al. 2011]. Analysis of short text is complicated due to the limited amount of

contextual data available in the text. Thus, to fill the gap of contextual information in a

scalable manner, it is more suitable to use methods that can exploit prior knowledge from

large sets of unlabelled texts [Dos Santos & Gatti 2014]. Hence, word embedding is used

as the first layer, i.e. the word embedding layer. It takes as input an array of padded

numerical arrays of sentences with each sentence padded to 30 integral words and trans-

forms each one of them to an array of feature vectors, each vector being 20-dimensional.

The embedding layer has been trained using hold out method. The integral words are

projected as random vectors in the 20-dimensional space. The model is kept trainable

so that these vectors get updated and optimised in the word-vector space during back-

propagation while capturing the context of each word.

The next layer is a neural network, which can be a single layer or a combination of RNN

[Elman 1990], LSTM [Hochreiter & Schmidhuber 1997] and CNN [Kim 2014]. This net-

work takes feature vectors as input and processes it. For example, convolutional layer

takes feature vectors as input, breaks them into overlapping sequences which are read us-

ing a filter of fixed window and a feature map is prepared. The feature map is fed to the

69

max-pooling layer which returns the largest number in the array as output. This output

is fed to dense layers where activation functions are applied on them, and final output is

given which is a label (0: negative; 1: positive) [Wiatowski & Bölcskei 2017]. Figure 3.1

shows the block diagram of the process occurring in the experiment and figure 3.2 shows

how layers for CNN and LSTM are infused to work together.

Figure 3.1: Block diagram representing the process of sentiment analysis

Figure 3.2: CNN+LSTM model

3.1.2.3 Parameter Setting

For model training, the number of epochs is set to eight otherwise, either the model

is over-fitting or the performance measures are similar. Over-fitting occurs when the

training error is decreasing at a higher rate than the testing error, and thus, the gap

between training and testing accuracy increases, this is observed when epochs are higher

than eight. The gap between training and testing accuracy remains same at eight epochs

in some cases whereas it is decreasing in other cases. Only a few models (three or four out

of 39, that too mostly three-layered networks) underwent over-fitting. However, for Tamil

dataset, there is no over-fitting at eight and seven epochs. Seven epochs has been finally

chosen for the Tamil dataset because the accuracy obtained for seven epochs is better than

70

eight epochs. A batch_size of 32 has been chosen as the dataset contains short texts of a

single line.

3.1.2.4 Results and Evaluation

For evaluating the performance of sentiment analysis, accuracy and F-measure are mainly

used to compare the results of different models [Sokolova & Lapalme 2009]. When evalu-

ating sentiment analysis for business interests and political issues, it is important to accu-

rately determine the sentiments, accuracy helps to evaluate the same. F-measure gauges

how well the system is performing which is again needed to keep track of system’s con-

sistency and also, it takes into account precision and recall. The results for different data

sets are discussed below:

3.1.2.4.1 Hindi dataset

The results of top performing models for Hindi dataset are summarised in Table 3.3.

Figure 3.3, 3.4 and 3.5 shows accuracy and F-measure for proposed models. The single,

dual or triple layer models of CNN performed well concerning accuracy due to multiple

reasons. First, CNN has a non-linear activation function (ReLu) in itself which captures

element-wise non-linearity while any other model does not. Second, CNN derives n-

grams (sequence of n words) and forms feature maps using them which are fed as input

to max-pooling layer. These n-grams provide non-linear interactions within a local context

and improve the performance of the model [Lei et al. 2015]. Third, CNN uses multiple

filters with the different window size that move over the word embeddings to perform

1-dimensional convolution. As the filter rolls on, many sequences which capture the

semantic and syntactic features in the filtered n-grams are generated. Many such fea-

tures are combined into the feature map, and further operations are performed in the

pooling layer which increases the efficiency and accuracy of the results. This allows the

model to capture the sentiment of phrases such as ‘not so good’. Fourth, the network can

easily explore the richness of word embeddings produced by unsupervised pre-training

[Dos Santos & Gatti 2014]. Fifth, for small training data, CNN performs better than any

other model [Kadlec et al. 2015]. The models though, lagged behind in terms of F-measure

which indicates that there is no consistency of the system during the iterations (as shown

71

Table 3.3: Summary of top performance results for Hindi dataset.

Sr.no Model Accuracy F-measure
1 CNN 77.63% 67.85%
2 RNN-LSTM 77.63% 67.85%
3 LSTM 74.89% 69.08%
4 CNN-LSTM-LSTM 76.26% 70.50%
5 LSTM-RNN-LSTM 74.43% 68.8%

in Figure 3.3 and Figure 3.5). When precision and recall are looked upon separately, it is

found that these models lacked precision but have high recall score. This signifies a high

false positive value for few cases which can probably be due to skipping of low-level fea-

tures by CNN that could have played a significant role in predicting the sentiment. This

is another reason why CNN along with LSTM or RNN performed better because RNN

or LSTM can also process low-level features. For Hindi, simple models perform better

than combinations because of less language complexity. However, the dataset used has

small amount of imbalanced data. Complex models may perform better on larger dataset.

Imbalance in Hindi data set is handled by assigning weights to class label such that the

cost function penalizes loss on certain class more severly. This makes the model adapt

better to the characterstics of a minority class.
Table 3.4: Summary of top performance results for Tamil dataset.

Sr.no Model Accuracy F-measure
1 RNN-CNN-LSTM 71.56% 69.7%
2 RNN-LSTM-RNN 69.19% 68.7%
3 RNN-RNN-LSTM 68.72% 68%
4 RNN-LSTM 67.30% 66%
5 CNN-LSTM-CNN 67.77% 49%

The RNN-LSTM model performed equally well as the CNN model. It acts as a bidi-

rectional RNN model which has been shown to improve the performance of a model

[Schuster & Paliwal 1997]. The feature vectors from the embedding layer are fed to RNN

which reads the whole sentence and stores in its short term memory. The output from

RNN will be fed to LSTM which has memory cells that control whether to keep the data,

read it or forget it, by assigning weights to the data. However, the problem may occur

when this results in loss of information due to error persistence in LSTM as LSTM’s mem-

ory cells are linear neurons and cause the error to be carried forward for a longer time.

72

Figure 3.3: Accuracy and F-measure for one and two-layer models(Hindi)

Figure 3.4: Accuracy and F-measure for three-layer models(Part-1)(Hindi)

This problem can be resolved using RNN layer before LSTM. Since RNN has nodes inter-

connected to other nodes in conjunction to themselves, the information lost from LSTM

73

Figure 3.5: Accuracy and F-measure for three-layer models(Part-2)(Hindi)

can be stored in RNN for a while so that it is not lost and can be propagated further if

required during discrepancies [Hakkani-Tür et al. 2016]. Thus, this network handles the

loss of information using RNN and loss of efficiency using LSTM which can adapt to new

data rapidly [Graves 2013]. LSTM and LSTM-LSTM performed well due to the ability

of LSTM to adapt to new data rapidly [Mikolov et al. 2013a], but triple layered LSTM

underwent some over-fitting (as shown in Figure 3.3 and Figure 3.4). RNN-CNN-LSTM

performed pretty well with an accuracy of 74.43% and F-measure of 68.23% as shown in

Figure 3.4. CNN and LSTM are complimentary, where CNN captures the local invariant

regularities, LSTM is good at modelling temporal features. The RNN helps to maintain

the memory of the words in the sentence [Wang et al. 2016].

RNN-RNN-CNN gave an accuracy of only 53.88% (as shown in Figure 3.4), which is least

among all the models and is also exceptionally low as all other accuracies range from 60%

to 70%. This is because the model underwent over-fitting with testing accuracy decreas-

ing at a very high rate and training accuracy increasing as shown in Figure 3.6.

RNN and RNN-RNN did not perform well as compared to CNN and CNN-CNN as

shown in Figure 3.3. LSTM follows the same trend. This is probably because in case of

74

RNN and LSTM, increasing the number of layers would only increase the complexity and

error. This is due to linear stacking of errors that reduce accuracy as the number of layers

increase. While in case of CNN, increasing number of layers increases the ability of CNN

to process even the smallest but relevant information, which can otherwise be missed

during convolution. This means that increasing number of layers of CNN should increase

the accuracy but as the number of layers increases, the error in classification also increases

[Wang et al. 2016] and thus, compensating for the increase in accuracy and resulting in

the same accuracy.

Table 3.5: Summary of top performance results for Bengali dataset.

Sr.no Model Accuracy F-measure
1 LSTM-CNN 57.37% 45.8%
2 RNN-LSTM 56.84% 45.13%
3 CNN-RNN 56.32% 55.60%
4 RNN-CNN-CNN 57.37% 57.1%
5 RNN-LSTM-LSTM 54.21% 53.80%

Figure 3.6: Over-fitting in RNN-RNN-CNN model(Hindi)

3.1.2.4.2 Bengali dataset

The Bengali dataset is small as compared to Hindi dataset and hence, to avoid over-fitting,

the dropout units are reduced as shown in Table 3.1. The number of epochs has been kept

75

same as discussed in section 3.1.1.

According to the results shown in Figure 3.7, 3.8 and 3.9, models with two hidden layers

are more successful as compared to single or triple hidden layer models. This is because

Bengali is a bit more complicated than Hindi [Bag & Harit 2011] and therefore, the fea-

ture extraction of more curvilinear fonts in Bengali need more complex models. Hence,

dual-layered models performed better than single-layered models but the triple-layered

models underwent error accumulation and in some cases, over-fitting due to the small

dataset. Table 3.5 summarises the results for top performing models. CNN models did

not perform well when compared to CNN models in Hindi dataset.

LSTM-CNN network is an excellent network for query classification as CNN and

Figure 3.7: Accuracy and F-measure for one and two layer models(Bengali)

LSTM are complimentary, where CNN captures the local invariant irregularities, LSTM

equipped with input, output and forget gates, extract the first order feature representa-

tion using the memory of the whole sentence. This is essential for a complicated language

like Bengali (This feature is missing in RNN, and hence the performance of RNN-CNN

is not at par with LSTM-CNN). LSTM can adapt to new sentences quickly which gives

it an upper edge over models utilising only CNN layers for sentiment classification of

new sentences [Graves 2013]. This is used along with feature extraction by CNN to give a

higher accuracy.

76

Figure 3.8: Accuracy and F-measure for three-layer models (Part-1)(Bengali)

Figure 3.9: Accuracy and F-measure for three-layer models (Part-2)(Bengali)

RNN-CNN-CNN has an accuracy of 57.37% and F-measure of 57.1% (as shown in Figure

3.9) which seems to be the highest among all models but it turns out that the model is

over-fitting due to the small dataset as shown in Figure 3.10. The training accuracy is

increasing at a higher rate than test accuracy, which is a case of over-fitting.

In Bengali dataset as well, CNN models did not perform well in terms of F-measure for

the same reason as explained 3.1.2.4.1. RNN-RNN-CNN too has a very low F-measure

77

due to less consistency of the results which means it predicted some sentiments as positive

while they are negative. This could have been due to small training data.

Figure 3.10: Over-fitting in RNN-CNN-CNN model(Bengali)

Figure 3.11: Accuracy and F-measure for one and two layer models(Tamil)

78

Figure 3.12: Accuracy and F-measure for three-layer models (Part-1)(Tamil)

Figure 3.13: Accuracy and F-measure for three-layer models (Part-2)(Tamil)

3.1.2.4.3 Tamil dataset

Tamil dataset is small as compared to Hindi dataset and hence drop out units are reduced

to avoid over-fitting as shown in Table 3.1. The results can be seen from Figure 3.11,

3.12 and 3.13. Table 3.4 summarises the results for top performing models. As can be

seen from Table 3.4, three hidden layer models gave the best results without over-fitting.

This may be due to the fact that Tamil is even more complicated than Bengali and Hindi

[Mohanty 1998], due to its curvilinear and multi-tier structure with a contrast of matra

79

combinations. Hence, it needs more complex models to get its features extracted to anal-

yse the sentiment of its sentences.

RNN-CNN-LSTM outperformed all other models according to the results, but it turns

out that the model is over-fitting with training accuracy increasing at a higher rate than

testing accuracy as shown in Figure 3.14. Hence, the top model of proposed approach

became RNN-LSTM-RNN which did not over-fit and gave the highest accuracy as well as

F-measure.

RNN-LSTM performed well on Tamil dataset as well, as shown in Figure 3.11. The details

of this model have been discussed in section 3.1.2.4.1. Adding a layer of RNN to this

model only increases the complexity which is needed to extract the features from Tamil

sentences. RNN would not filter the words unlike CNN and LSTM but only provide

memory to the model. It acts as a bidirectional RNN-LSTM which is essential in cases

when future information is as valuable as previous information [Schuster & Paliwal 1997].

The same reasoning applies to RNN-RNN-LSTM model whose accuracy is almost equal

to RNN-LSTM-RNN and F-measure is precisely same (as shown in Figure 3.12). Using

LSTM as the common layer increases the accuracy in case of RNN-LSTM-RNN due to its

tendency to keep a memory of long sentences and filtering techniques.

CNN-LSTM-CNN performed well concerning accuracy but lagged a great deal concern-

ing F-measure and hence, can’t be considered as one of the best models as the results are

being analysed considering both accuracy and F-measure. RNN-RNN model resulted in

over-fitting (as shown in Figure 3.15) and obtained an accuracy which is not comparable

to other models. It attained its highest accuracy in the early epochs and underwent over-

fitting afterwards. RNN-RNN-CNN resulted in a very low F-measure due to the same

reasons as discussed in section 3.1.2.4.1.

It is observed that on all the three data sets, RNN-LSTM performed well but the accuracies

and F-measure are different as shown in Figure 3.16. One can deduce from the bar graph

that more the data available in a dataset, better is the performance of a given model on

the dataset. It also shows that Hindi being the least complex language [Bag & Harit 2011],

to extract features from, performance measures for Hindi dataset are better than for other

two languages. It is worth noting that although Tamil is more complicated than Bengali

in terms of language complexity [Mohanty 1998], however, Tamil dataset showed more

80

accurate results than Bengali dataset. This is because the data available in Tamil dataset

is larger than Bengali dataset and hence, more accurate results are obtained.

Figure 3.14: Over-fitting in RNN-CNN-LSTM model(Tamil)

Figure 3.15: Over-fitting in RNN-RNN model(Tamil)

81

Figure 3.16: Comparison of performance of RNN-LSTM on different datasets

3.1.2.5 Comparison with other existing approaches

The best approach obtained in SAIL 2015 shared task [Kumar et al. 2015a] on basis of the

results is used as baseline approach. Most of the approaches in SAIL task used SentiWord-

Net (Indian Languages) for training [Patra et al. 2015]. Approaches extracted word uni-

grams and bigrams from the dataset, trigrams and quad-grams for word prefixes and suf-

fixes. The lexical expansion is used to take into account the rare and unseen words[Kumar

et al. 2015a]. However, the approach proposed in this work obtains better results (as shown

in Table 3.6) than any of the models used in SAIL 2015. One of the reason is use of neural

networks in proposed approach instead of traditional machine learning techniques. The

highest accuracy scored [Kumar et al. 2015a] is using five-fold cross-validation technique

using SVM. Instead of K-Fold cross-validation, hold out method is used for evauation,

due to the following reasons[Krueger et al. 2015]:

1. K-Fold cross-validation is computationally expensive and so, is not worth the trouble

for validating 39 different models for each of the three languages.

82

2. The datasets used are small. K-Fold cross-validation undergoes under-fitting on

small datasets.

For comparison, the experiment is performed using five-fold cross-validation. The results

are remarkably good for hybrid models (as shown in Table 3.6) as compared to the high-

est accuracy model [Kumar et al. 2015a]. Advantages of neural networks over traditional

machine learning techniques are as follows:

Firstly, to predict the sentiment of a sentence, there is a need to look at the sentence as

a whole. The sentiment of a sentence can be entirely different from the sentiment of its

constituent words. Therefore, a memory factor is required to remember the previous and

future (in case of bidirectional neural networks) words to predict the probability of the

present word. This can be achieved using neural networks only.

Secondly, traditional machine learning techniques are non-parametric models and can-

not learn highly complex functions. On the other hand, the neural network is a deep

architecture and can combine lower-level features to high dimensional representations.

Using the concept of co-occurrence dependencies, i.e. words having similar sentiments

occur together in high-dimensional space, the neural network can make progress on high

complexity tasks without human intervention [Bengio et al. 2007].

Table 3.6: Comparison with SAIL 2015

Dataset Proposed approach (RNN+LSTM) [Kumar et al. 2015a]
Hindi 68.51% 55.67%

Bengali 52.62% 43.20%
Tamil 59.88% 39.28%

3.2 Temporal Sentiment Analysis

Temporal and burst analysis helps to identify trending features and their impact on the

market. Hence, presenting an opportunity to the company for coming up with new

features, user satisfaction, user demand and align with the trends. Temporal analysis

can provide list of what all features are trending and which feature has become obso-

lete according to customer’s sentiment towards the brand and aspects. This helps the

companies to identify their strengths and weaknesses. Using this information companies

can improve the user experience and make advancements.Temporal sentiment analysis

83

can provide valuable insights and thus help organizations to formulate effective business

strategies. It can help firms to monitor brand and product performances, handle customer

grievances, get in-depth information for strategic analysis. Temporal sentiment analysis

can help to track and come up with effective marketing campaigns. With temporal sen-

timent analysis may increase product quality. Market research teams would be able to

gauge consumer needs and preferences better. Ideas for product improvement can also

be obtained from targeted customers. It can help to identify opportunities for up-selling,

reduce customer churn, increase customer acquisition, improve customer retention and

handle customer grievances. Temporal sentiment analysis opens a whole new avenue and

growth opportunity in terms of a new level of customer engagement and reputation man-

agement. Market shares of brands and products can be regularly monitored. Innovative

need-based products can be delivered and built. Brand awareness and brand reputation

can be monitored by monitoring customer sentiment in real-time and over period of time.

It also helps to identify business problems before they aggravate in proportion. So, smart

product and marketing strategies can be developed by keeping in mind the consumer

needs. It can also be used for keyword monitoring for marketing professionals. It can

also help to identify new business opportunities. Specific phrases and texts used by audi-

ences can be monitored to effectively generate new leads. Competitor performances can

also be evaluated by monitoring mentions of the competing brands. It can also help to

identify marketing campaigns that are not working well. Firms can then effectively mod-

ify or withdraw those campaigns. Such timely preventive actions help the brands to grow

and prevent negative brand image. Temporal sentiment analysis has become the gate-

way to understanding consumer needs, extending the customer base and expectations. It

helps to pinpoint the problem and give solutions effectively. It can also help in customer

segmentation by identifying segments that feel strongly about a brand or service.

A framework has been proposed which targets identification of temporal aspects and their

changing opinions with time. A more general and complex task is to predict the aspect

mentioned in reviews/opinions and the sentiment associated with each one of them. This

task is usually known as fine-grained opinion mining or aspect-based sentiment analysis.

For example, "Food is decent, but service is bad", contains positive sentiment to the fea-

ture/aspect of food but a strong negative opinion for the service. Predicting the overall

84

sentiment for the review would mark it as a negative sentiment overall but it neglects

the opinion that food is good. Feature extraction is identifying various aspects/subjects

which are referred and talked about in the reviews. These features may be directly men-

tioned in the review or may be present implicitly.

The framework based on hybrid techniques has been proposed to tackle the task of fea-

ture extraction, aspect-based opinion mining and analyses them over the time. It uses pre-

trained word embeddings [Pennington et al. 2014] and studies the semantics and syntactic

information encoded in the embeddings. These embeddings help in better initialisation of

deep network in the framework, without any domain-specific feature engineering effort.

The framework also identifies features from the temporal stream of opinions and gain in-

sights such as, how various features and aspect affect the overall sentiment, which essen-

tial features plays a significant role in determining the sentiment and find their variation

with time?

3.2.1 Dataset Description

Dataset has been assembled from the various data sets given by SemEval [Pontiki et al. 2016]

with additional temporal information. Dataset has approximately 3000 reviews for the

Laptops. The data consists of reviews broken into sentences, and each sentence is anno-

tated with the categories of aspect present and the corresponding polarities of sentiment

for each of the categories. The aspect category consists of various entities E such as a lap-

top, keyboard, battery, screen and attributes A such as performance, design, build. The

E#A pair defines the entity-aspect category. Each of the E#A pair assigned to the review

sentence is given polarity from a set P = {positive, negative, neutral}.

The annotations are assigned at sentence level, taking into consideration the context of

whole review. In the Laptop dataset, there are in total 22 entities and 9 attributes as-

signed to various entities, thus generating (22 x 9) E#A pairs.

3.2.2 Proposed Approach for aspect based temporal opinion mining

The proposed framework for aspect based temporal opinion mining has been divided into

three components:

85

1. Aspect based Sentiment Analysis

2. Temporal Unsupervised Feature Extraction

3. Temporal Analysis of Sentiment and Features

Data is preprocessed before aspect-based sentiment analysis. In preprocessing, sentences

of the reviews are tokenised. Numeric or a single character token is discarded to reduce

the noise. This data is then used to generate word embeddings. Further, the aspect class

distribution is analysed, and the aspects which are less frequent in the training dataset

are clubbed together to a newly created aspect class called ‘OTHER’. As dataset might

contain reviews for which no aspect has been described, another new aspect ‘NONE’ is

assigned to them. Aspect list includes the frequently common aspects (static) along with

‘OTHER’ and ‘NONE’ aspects, and is further used to train the aspect model. Reviews

which have ‘OTHER’ and ‘NONE’ aspects are used to identify new aspects in the second

phase of the framework, i.e. temporal feature extraction.

3.2.2.1 Aspect-based Sentiment Analysis

Figure 3.17 represents the block diagram of aspect-based sentiment analysis model. This

phase is divided into two parts. The first part includes aspect model which will predict

aspect from the reviews whereas the second part predict its associated sentiments.

3.2.2.1.1 Aspect model

This sub-module takes word embeddings of sentences as input and outputs distribution of

probabilities for the aspect classes. Here, multi-layer perceptron model for the aspect clas-

sification task has been proposed. Pre-trained word embeddings [Pennington et al. 2014]

has been used. These embeddings are kept static and not fine-tuned while training to

avoid overfitting on the small amount of data.

The layered neural network model is used for the identification task. A fully connected

layer of the neural network with ‘ReLu’ activation function is used as a first layer and fol-

lowed by softmax layer which yields the output distribution over the aspect classes. Dense

layer and dropout layer are present in between these layers to avoid overfitting. The rep-

resentation for the sentence is chosen to be the average of the word vectors, for words in

86

the sentence. Binary cross entropy is used as the loss function where the output yi = 1, if

the aspect is present and 0 otherwise. A threshold t is taken (for which F-measure score

is maximum) such that aspect is predicted whenever output yi is higher than the thresh-

old. The number of epochs (for which the model is trained) and the threshold t are the

hyperparameters which are fixed by using validation data.

Figure 3.17: Block diagram for aspect-based Sentiment Analysis

3.2.2.1.2 Sentiment model

Sentiment model considers the probabilities of various aspects predicted by the aspect

model as input and yields the polarity of sentiments attached to each of the aspects as

output. The sentiment is assigned to the predicted aspects by re-scaling the word em-

beddings with factors dependent on the aspects. The sentence representation used in the

aspect model no longer works for the sentiment model as the interaction and location of

the tokens are also essential for predicting sentiments.

CNN architecture is used for this model, which applies a convolution to a window of n

number of consecutive words. Max-over-time pooling is applied to the values which are

obtained as feature map from all the filters. The input passed to the CNN is re-scaled

word vectors of sentences. The largest value out of the feature map is selected by the

pooling layer which implies that the magnitude of the word vectors has a strong influence

on the behaviour of the model. Hence, the impact of the word vector can be enhanced

and dampened, by scaling it up and down respectively.

87

For all the predicted aspects, the scaling factor is calculated for each of the tokens. The

scaling factor for the word-vectors is decided by using the probabilistic mass pi of word

i in a sentence towards the particular aspect and distance between the words. The prob-

abilistic mass pi is calculated by passing the single token to the aspect model and cal-

culating the probability for the required aspect. di,j is defined as the distance between

the tokens in the dependency tree obtained from the Stanford parser. pi→j denotes the

probability of propagation from word i to word j denoted by equation 3.7. pj denotes

the aggregated probability for word j. Equations 3.7, 3.8, 3.9 are used to compute the

probabilities mentioned above.

pi→j = pi exp
−d2

ij

2h
∀i! = j (3.7)

pi→i = 1 + pi (3.8)

pj = Σpi→j (3.9)

In equation 3.7, h is the height of the Stanford dependency parse tree and acts as a nor-

malisation constant to adjust the differences between the shorter and longer sentences.

~V j = p̂j.~V j (3.10)

The re-scaled word embeddings are then passed to the CNN. The learning model is de-

signed as a combination of multiple n-gram convolutional models. The output from

each of the convolutional model is then flattened and concatenated to pass as input to

the fully connected dense layer. The final softmax layer produces the output probabil-

ity distribution over the output classes, i.e. positive, negative and neutral. Overall the

aspect-sentiment model is summarised in Figure 3.18.

88

Figure 3.18: Aspect-based Sentiment Model[Wang & Liu 2015]

89

3.2.2.2 Unsupervised Temporal Feature Extraction

This component deals with the identification of the new aspects from the reviews which

are categorised in the ‘OTHER’ and ‘NONE’ aspect in the preprocessing step stated ear-

lier. This is important as aspects may keep changing with time. Some of them may

become important, and some of them may become obsolete. To encapture the temporal

effect on the aspect, this component has been added in the proposed framework. Here,

unsupervised feature extraction approach has been proposed which uses semantic clus-

tering with word vectors in conjunction with TF-IDF score. This also includes word/token

meaning along with its frequency. The preprocessing step for this module is to extract

various unique nouns present in the reviews by using part of speech tagging and checking

whether tagged nouns are present in the dictionary or not, to remove slang words. Nouns

are further lemmatised to remove the different tenses present. These nouns are passed as

an input to semantic clustering module of the second phase.

3.2.2.2.1 Semantic Clustering

Semantic clustering involves grouping the words that convey the same information or

intent. Two essential requirements for semantic clustering are similarity measure and the

clustering algorithm. Some of the text similarity measures that can be used for semantic

clustering are cosine similarity of TF-IDF vectors, knowledge-based methods, i.e. quanti-

fying the semantic relatedness of words using a semantic network like WordNet and the

word embeddings.

Word embeddings have been used for clustering the aspects. The clustering algorithm

used here is k-means++ clustering [Arthur & Vassilvitskii 2007], which is robust and

straightforward technique and have a better allocation of initial cluster centre than the

traditional k-mean algorithm. The clustering algorithm requires the number of clusters,

i.e. the number of different type of new aspects present in the ‘OTHER’ aspect which are

not known beforehand. The value of k, i.e. number of clusters can be calculated using

following two ways.

1. Assume k= dimension of the sentence (maximum). This is a simple and efficient

way to assume the value of k. However, it is usually efficient in case of large dataset.

90

2. Silhouette scores are used to decide k value. This is an efficient technique to calculate

the number of clusters.

Here, Silhouette scores method has been used for evaluating the value of k as the dataset

used is small. k value is assumed to be in 10− 30% of the distinct nouns present, and

then final value k is decided based on the maximum silhouette score calculated. Higher

silhouette score implies that words in the same clusters are more similar to each other

than the words of another cluster. After generating clusters, a cluster score is defined for

each cluster by equation 3.11.

Cluster_Score = Density ∗ Distance (3.11)

where,


Density is number of words in the cluster and

Distance is defined as the distance between clus-

ter centre with the nearest cluster centre

A cluster is defined as good cluster if it has a higher cluster score than a threshold value.

The threshold value is a hyperparameter which is calculated based on the different cluster

score obtained. After extracting good clusters, feature in each cluster is selected based on

maximum TF-IDF score obtained after generating TF-IDF score for each feature in that

cluster. TF-IDF score is calculated as shown in equation 3.12, where numbero fdocument

represents number of the documents in which aspect is appearing.

TF− IDFScore = TF ∗ IDF (3.12)

where,


TF = log (term_ f requency_in_all_documents)

IDF = log (
N

number_o f _document
)

3.2.2.3 Temporal analysis of sentiment and features

This phase is important in the framework to capture changing sentiments about an aspect

over time. Considering different possibilities, this phase consists of two subparts.

91

1. Temporal Analysis of Single Aspect

2. Temporal Analysis of Multiple Aspects

3.2.2.3.1 Temporal Analysis of Single Aspect

There are two types of temporal analysis proposed in the framework, opinion visualiza-

tion and burst detection.

1. Opinion Visualisation

An essential part of the framework is to visualise the change in sentiment over the

time. The most common way to accomplish the task is to make a two-dimensional

line graph with the y-axis as sentiment value and x-axis as time. For a particular

aspect, there are three types of visualisation proposed: day wise analysis, year wise

analysis and month wise analysis for a particular year.

• Day wise visualisation

Given an input of date range, this sub-module visualises the change of senti-

ment score over days. For each day, the sentiment score is taken as average

sentiment score of reviews present in the particular day.

• Year wise visualisation

This sub-module visualises the change of sentiment score over the years. For

each year, the sentiment score is taken as average sentiment score of reviews

present in that particular year.

• Month-wise analysis for a particular year

This sub-module takes year as input. There are two types of analysis proposed

in this sub-module.

(a) Analysis for a particular month.

For a particular month, it extends the day wise visualisation module.

(b) Month-wise analysis

This sub-module visualises the change of sentiment score over months.

The monthly score is calculated by averaging the sentiment score of review

present in that month.

92

2. Burst analysis

Burst analysis algorithm has been proposed to detect sudden changes in sentiments

score, i.e. burst. This module extends the previous module as the average monthly

score for all aspect is calculated along with the number of reviews present for that

particular month. If the difference of sentiment score between consecutive months

is higher than a threshold value,and number of reviews for these months is higher

than a threshold count, burst is detected.

3.2.2.3.2 Temporal Analysis of Multiple Aspects

Temporal analysis of multiple aspects has been analysed in this phase. The preprocessing

part of this module involves determining the review score of given aspect list for a year

and later for a month. This module supports two types of opinion visualisation.

1. Year wise

This sub-module visualises the change of sentiment score over the years. For a

given aspect, for each year the sentiment score is taken as average sentiment score

of reviews present in that year.

2. Month-wise

This sub-module visualises the change of sentiment score over a month for a given

year. For each month, the sentiment score is taken as average sentiment score of

reviews present in that month.

3.2.3 Experiments & Results

3.2.3.1 Aspect Model

The data is split randomly into training (80%) and validation set (20%) to select the hy-

perparameters. The number of epochs (100) that yields the lowest validation loss value

is selected as shown in Figure 3.21 and the threshold which gives the highest F-measure

on the validation set is used. ‘binary_crossentropy’ is considered as loss function and

‘rmsprop’ is used as an optimizer. The threshold value is chosen out to be 0.11 as F-

measure is highest at that value as shown in Figure 3.19. With the mentioned parameters

evaluation measures obtained are a follows:

93

Figure 3.19: F-Measure v/s Threshold for aspect-based model

1. Accuracy:- 96.5%

2. F-measure:- 54.3%

3.2.3.2 Sentiment Model

The data is split randomly into training (80%) and validation set (20%) to select the hyper-

parameters, similar to Aspect model. The number of epochs (100) that yielded the lowest

validation loss value is selected, and the threshold which gives the highest F-measure on

the validation set is used. The threshold value is chosen out to be 0.30 as F-measure is

highest at that value as shown in Figure 3.20. Evaluation obtained using the parameters

are mentioned below.

1. Accuracy:- 83.5%

2. F-measure:- 60.8%

94

Figure 3.20: F-Measure v/s Threshold for Sentiment Model

3.2.3.3 Unsupervised Feature Extraction

For k (value = 83), silhouette score obtained is 0.2235. This silhouette score is low because

the framework has been evaluated only on single domain dataset in which nouns present

are quite similar to each other. Hence, silhouette score obtained is not quite good. The

threshold value is a hyperparameter which is calculated as the median of the cluster score.

Aspects extracted are (cluster threshold= 35) shown in Table 3.7. Selected aspect is chosen

from the aspect list, fed into the aspect model and aspect model is re-trained.

3.2.3.4 Temporal Opinion Mining for Single Aspect

1. Opinion Visualization

Figure 3.22 represents the day wise analysis of aspect Laptop#General from the start

date (1/1/2008) to end date (6/9/2008). Figure 3.23 represents year wise analysis of

Laptop#General. Figure 3.24 represents the month wise analysis for Laptop#General

95

Figure 3.21: Validation Loss v/s Number of epochs

Table 3.7: Aspects extracted

S.No Aspect TF_IDF_SCORE
1 graphic 38.5514606589
2 office 27.0335962363
3 power 43.3703932413
4 thing 66.9271010503
5 game 30.4214820639
6 time 86.3525235395

aspect in the year 2008 whereas Figure 3.25 represents the analysis for a particular

month (February) in the year 2008.

3.2.3.5 Temporal Opinion Mining for multiple aspects

Figure 3.26 represents year wise analysis for multiple aspects shown whereas Figure 3.28

represents the month wise analysis for the year 2009.

96

Figure 3.22: Day Wise Analysis of Laptop#General

Figure 3.23: Year-wise Analysis of Laptop#General

3.2.3.6 Burst Analysis

Figure 3.27 represents burst obtained with sentiment_threshold:1.0 and count_threshold:10.

Burst is obtained for Laptop#General aspect as this aspect covers about 60% of the dataset.

Table 3.8 elaborates the burst obtained.

As from June to July, the difference between the sentiment score is more than the sen-

timent threshold and review count for each month is higher than count threshold and

97

Figure 3.24: Month-wise analysis for Laptop#General in the Year 2008

Figure 3.25: Analysis for a particular month

Table 3.8: Burst obtained

Aspect Duration
Laptop#General June/2009-July/2009
Laptop#General September/2009- October/2009
Laptop#General October/2009- November/2009
Laptop#General January/2010-February/2010

hence, burst is detected. Similarly, from July to August the sentiment score difference is

also higher than the threshold, but the review count for August is less than count thresh-

old, so it is not a burst.

98

Figure 3.26: Year-wise analysis of multiple aspects

Figure 3.27: Burst Analysis

99

Figure 3.28: Month-wise analysis for the year 2009 for multiple aspects

3.3 Concluding Remarks

The approach in this chapter presents sentiment analysis of SAIL 2015 data consisting

of monolingual tweets in one of the three Indian languages (Hindi, Bengali and Tamil).

Word embeddings have been used as input to the Sequential model. The approach inves-

tigates 39 different hybrid models of neural network layers (RNN, CNN and LSTM). The

highest accuracy has been obtained using CNN (77.63%) and RNN-LSTM (77.63%) on

Hindi dataset, LSTM-CNN (57.37%) on Bengali dataset and RNN-LSTM-RNN (69.19%)

on Tamil dataset. The results have been carefully scrutinized to conclude that as the com-

plexity of the text in the dataset increases, accuracy decreases for each model. Models

with more number of hidden layers provide better accuracy for more complex text as the

increase in the number of hidden layers adds to the non-linearity of the model to predict

complex situations. It has also been observed that neural networks perform better than

other traditional machine learning techniques such as SVM and decision trees in predict-

ing the polarity of a sentence.

In current scenario, pre-processing of the textual data is done to remove the emoticons,

exclamations. However, they may be playing a role in determining the sentiment of the

sentence. For example: ‘What!’ and ‘What?’ represent two different meanings which

can’t be distinguished using present day sentiment analysis approaches as they tend to

pre-process the sentences to remove the punctuation. Few users use only emoticons to

express their sentiments which can be embedded and worked upon for making the senti-

100

ment analysis approaches even more reliable. This work can also be extended to classify

sentences into multiple classes such as extremely negative, negative, neutral, positive and

extremely positive, which gives a more precise sentiment to a sentence.

A framework for temporal sentiment analysis has also been proposed. The framework is

divided into three parts: aspect model, temporal feature extraction and temporal analy-

sis. Aspect model is used for identifying the aspects present in the reviews. The model

is tuned and parameters are determined using the validation data. The CNN based sen-

timent model predicts the polarity of the sentiments for each of the aspects, identified

using static pre-trained word vectors for improving the performance and decreasing over-

fitting. Aspects are updated from time to time to incorporate the aspect trends that change

with time using semantic clustering. Temporal analysis is done by dividing data into each

segment, as specified by input (day, month and year) and plotting the resultant data on

two dimensional graphs. Yearly, monthly and day wise analysis are shown for individ-

ual aspect as well as for the group of aspects. The individual graph shows the variation

of sentiment score with respect to time. Burst analysis has been done which extracts

the aspects for which there is a sudden variation of sentiment score in the consecutive

months.

101

Chapter 4

Text Summarization

Post the advent of the world wide web the amount of data and information that is ac-

cessible has increased tremendously. The extent of information is such that it has now

become practically impossible for any single entity to process all the data and summa-

rize it. Consumers are disinterested in reading a long piece of text and usually tend to

skip important portions. Given this scenario, the need for automated text summarization

arose. Text summarization is condensing of text such that, redundant data is removed

and important information is extracted and represented in a concise manner. With the ex-

plosion of the abundant data present on social media, it has become important to analyze

the text for seeking information and use it to the advantage of various applications and

people. From past few years, the task of automatic summarization has stirred the interest

among communities of natural language processing and text mining. The technique of

text summarization can be classified into two major categories abstractive and extractive.

Another possible classification for text summarization is single [Litvak & Last 2008] vs

multi-document [Barzilay et al. 1999] summarization and mono-lingual vs multi-lingual

summarization [Radev et al. 2004].

Abstractive text summarization aims to achieve the task of generating summaries closer to

human generated summaries and present the gist of the text. It involves using generative

approaches which can produce meaningful sentences and at the same time preserve the

semantics of the original text. It is viewed as a highly difficult problem to solve and many

new approaches [Nallapati et al. 2016][Lopyrev 2015] are being proposed.

Extractive text summarization is a robust way of generating summaries by selecting salient

102

sentences from the given text and presenting it to the user. Each sentence is attached with

some sort of a saliency score and highest scored sentences are chosen to be the part of the

summary. This is relatively simpler in contrast to abstractive summaries which involve

generating phrases and words, organizing them to form meaningful sentences and at the

same time presenting an interpreted gist of the text. It would involve a high degree of

natural language processing and hence, is a much more difficult task.

This chapter aims to summarize important extracts and reduce redundancy. In section 4.1

two approaches for paraphrase detection has been explained to identify similar sentences.

Two approaches for extractive text summarization are discussed in section 4.2 using hy-

brid scoring based technique and CNN(s) respectively. In section 4.3 two approaches are

discussed for abstractive text summarization where the first approach infuses sentences

based on sentiments and second approach uses a generative adversarial network.

4.1 Paraphrase Detection

Paraphrase detection is the task of determining if two sentences convey the same meaning

where sentences need not be of the same length. Paraphrase identification has applica-

tions in question answering [Duboue & Chu-Carroll 2006], [Fader et al. 2013], information

retrieval, text summarization [Barzilay 2003], plagiarism detection, semantic parsing [Be-

rant & Liang 2014] etc. Plagiarized texts usually copy phrases as it is or replace some

words with similar words. Paraphrase detection will help in detecting plagiarized work

and ensure that the documents written are unique and not copied. Question answering

system uses paraphrases to find the appropriate answers to question queried. A lot of

work has been done in paraphrase detection for English language [Vo et al. 2015] [Sun-

daram et al. 2009] [Yin & Schütze 2015]. However, for Hindi and other Indian languages,

not much work has been done for paraphrase detection. In literature, paraphrase detec-

tion has been modelled as a classification problem.

Paraphrase detection can be a useful tool for reducing redundancy in text summarization.

For example, one would want to avoid sentences like the following:

• Amrozi accused his brother, whom he called the witness, of deliberately distorting the evi-

dence.

103

• Referring to him as the only witness, Amrozi accused his brother of deliberately distorting

his evidence.

In simple lexical matching approaches, words with similar meanings are not taken into

account. Various tools for measuring the similarity between word pairs are available and

WordNet [Leacock & Chodorow 1998]; [Mihalcea et al. 2006] is one of the most popular

resource used by the researchers. Mreover, similarity amongst word pairs does not im-

ply that the sentences will be paraphrases. In WordNet based measures, correct sense of

words might not necessarily be present in candidate paraphrases.

Machine learning based approaches have used dependency parser [Malakasiotis 2009]

and lesk algorithm [Mihalcea et al. 2006] for paraphrase detection. Indian languages lack

efficient resources such as named entity taggers and POS taggers, which are typically used

for feature detection in machine learning based approaches. Moreover, lack of annotated

datasets has hindered developing state of the art approaches for paraphrase detection

in Indian languages. Deep learning techniques such as recursive auto-encoders [Socher

et al. 2011] and CNN(s) [Yin & Schütze 2015], [He et al. 2015] have been explored for

monolingual paraphrase detection in foreign languages but to the best of our knowledge,

no attempt has been made for identification of paraphrases in Indian languages using

deep learning based approaches.

Two approaches have been proposed for identifying paraphrases in Indian languages.

First approach presented in section 4.1.1 is based on traditional machine learning tech-

niques and uses features such as Soundex, POS tags and stemming. Second approach

explained in section 4.1.2 proposes neural network models based on CNN and RNN to

identify the paraphrases.

4.1.1 Hybrid Approach for Paraphrase Detection

The proposed approach HAPD (Hybrid Approach for Paraphrase Detection) has been di-

vided into multiple phases as shown in Figure 4.1. The first phase processes the training

data to extract important features. The following three features are extracted for the pro-

posed training model:

104

1. POS tags: POS tags are labels that are given to words to identify the part of speech

or lexical categories of words. The eight parts of speech are verb, noun, pronoun, ad-

jective, adverb, preposition, conjunction and interjection. Words that have the same

POS tags play similar roles in the grammatical structure of sentences. RDRPOSTag-

ger1 [Nguyen et al. 2014] is used for POS tagging of Hindi words. RDRPOSTagger

takes the pair of sentences as input and generates the respective POS tags next to

each word. POS tags corresponding to each word in the sentence are extracted from

the output and appended to form a string of POS tags for each sentence.

2. Stem of the words: Stemming is a process of extracting the ‘word stem’ or ‘root’ of

the word. For extracting the stem of Hindi words, a Hindi stemmer2 is used, which

implements the suffix-stripping algorithm described in [Ramanathan & Rao 2003].

A string for each sentence with the corresponding stems of the Hindi words is

obtained.

3. Soundex codes: Soundex is a phonetic algorithm for indexing names by sound as

pronounced in English. Soundex3 provides an implementation of the modified ver-

sion of Soundex algorithm for Indian languages including Hindi. A string compris-

ing of Soundex codes corresponding to each sentence is generated using soundex

codes for each word.

After extracting the above features, the similarity scores (of both the sentences) corre-

sponding to each feature is calculated. Each similarity score lies in the range [0,1] and

uses Levenshtein distance to calculate the differences between string sequences. The Lev-

enshtein distance4 between two words is the minimum number of single-character edits

(i.e. insertions, deletions or substitutions) required to change one word to the other. The

similarity score is calculated for each pair of sentences with POS tags (feature 1), sentences

with the stem of the words (feature 2) and sentences with Soundex codes corresponding

to the Hindi words (feature 3). Finally a feature vector is created with the similarity scores

corresponding to the sentence pair.

1https://rdrpostagger.sourceforge.net
2http://research.variancia.com/hindi_stemmer/
3https://pypi.python.org/pypi/soundex/
4https://pypi.python.org/pypi/fuzzywuzzy

105

https://rdrpostagger.sourceforge.net
http://research.variancia.com/hindi_stemmer/
https://pypi.python.org/pypi/soundex/
https://pypi.python.org/pypi/fuzzywuzzy

After feature vector generation, different traditional machine learning techniques are used

for training so that the best model for predicting the labels could be chosen after analysis.

INPUT

FEATURE EXTRACTION

POS TAGS

WORD STEMS

SOUNDEX CODES

TEST DATA

FEATURE VECTOR

CREATION

Similarity scores of the above three

features are extracted

CLASSIFIER

OUTPUT

LOGISTIC REGRESSION/

NAÏVE BAYES/

SUPPORT VECTOR MACHINE/

RANDOM FOREST

Figure 4.1: Block diagram for Paraphrase Detection

106

4.1.1.1 HAPD Algorithm

Proposed algorithm, HAPD takes the pair of sentences as input where each pair (PS[i])

contains two Hindi sentences (PS[i].Sentence) and outputs a label for its corresponding

paraphrases. Each function (PosTags, WordStem and Soundex) take a pair of a sentence (PS)

as its parameter and return the array of corresponding POS tagged sentences, WordStem

sentences and sentences with Soundex codes respectively. SimilarityScore function gener-

ates the similarity score for each of its input array. SimScore1, SimScore2, and SimScore3

are the individual vectors for the three features, which are then passed to the CreateVec-

tor function to form the final FeatureVector. Classifier function takes the FeatureVector as

input, assigns labels to the Pair (PS) and then returns a LabelVector. Classifier function

implements different models (Logistic Regression, Naive Bayes, Support Vector Machine and

Random Forest) for predicting labels.

Algorithm 4.1: Algorithm for Detecting paraphrases
input : Paraphrase P, where all paraphrases have a unique id and contains two

sentences (Hindi)
output: LabelVector gives the corresponding labels for the paraphrases.

Depending upon the task it can have value of P, NP and SP
1 Initialization: SimScore1[]=0,SimScore2[]=0,SimScore3[]=0;

2 for i← 0 to PS.Count do
3 Pos[]=PosTags (PS[i].Sentence);
4 Stem[]=WordStem (PS[i].Sentence);
5 Sound[]=Soundex (PS[i].Sentence);
6 SimScore1.append (SimilarityScore(Pos[]));
7 SimScore2.append (SimilarityScore(Stem[])) ;
8 SimScore3.append (SimilarityScore(Sound[])) ;

9 FeatureVector=CreateVector(SimScore1, SimScore2, SimScore3)
LabelVector=Classifier(FeatureVector)

4.1.1.2 Data Analysis

The dataset [Anand Kumar et al. 2016] is from newspaper domain and contains pairs of

sentences. Dataset has two versions, first version (Dataset1) of dataset has the pair of

sentences labelled with P and NP whereas second version (Dataset2) of dataset contained

sentences classified as P, NP and SP. Example for Paraphrase (P), Not Paraphrases (NP)

and Semi Paraphrases (SP) are shown in Figure 4.2 for Hindi and Tamil languages.

107

4.1.1.2.1 Dataset1 The pair of sentences in the training dataset contains 1000 ‘Para-

phrases’ (P) and 1500 ‘Not Paraphrases’ (NP). Test dataset for Dataset1 consisted of 900

pairs for the Hindi Language. The number of paraphrases with different number of com-

mon words is shown in Figure 4.3. For example, a point (5,72) represents 72 paraphrases

which have five common words.

Figure 4.2: Example for Paraphrase, Not Paraphrase and Semi Paraphrase

4.1.1.2.2 Dataset2 In Dataset2, training dataset consisted of 1000 pairs of sentences that

are Paraphrases (P), 1000 pairs that are Semi-Paraphrases (SP) and 1500 that are Not

Paraphrases (NP). For test dataset, 1400 pairs of Hindi sentences are provided. The

number of Paraphrases and Semi-Paraphrases with common words versus the number of

common words is shown in Figure 4.4.

108

Figure 4.3: Data Analysis of Paraphrase for Dataset1

4.1.1.3 Experiments and Results

To test the accuracy and F-measure, training dataset is divided into a ratio of 75% and

25% for training and testing respectively. The results (accuracy and F-measure) are eval-

uated using sklearn [Pedregosa et al. 2011b] for the different models (Logistic Regression,

Naive Bayes, Support Vector Machine and Random Forest). Results obtained for Dataset1

are shown in Figure 4.5. The proposed system gave an accuracy of 90.4% and F-measure

87.6% for Logistic Regression followed by Naive Bayes and Random Forest, both with

89.5% accuracy. Logistic Regression performs better than other traditional machine learn-

ing techniques in case of binary classification because it assigns labels by calculating odds

ratio and then applies a non-linear log transformation. Moreover, the performance can

be fine-tuned by changing and adjusting parameters in the functions provided by sklearn

[Pedregosa et al. 2011b] for Logistic Regression. As Dataset1 is a binary classification prob-

lem and hence, results obtained by Logistic Regression are better than others. On the other

hand, Dataset2 is a multi-class classification problem (labels-P, NP or SP). Hence, in this

case, the Random Forest gave the best results with 69.2% accuracy and 68.8% F-measure

followed by Naive Bayes (64.6% accuracy and 62.4% F-measure) as shown in Figure 4.6.

Random Forest calculates labels by using subsamples of the dataset and uses averaging

to improve the accuracy whereas Naive Bayes uses a conditional probability approach for

assigning labels.

109

Figure 4.4: Data Analysis of Paraphrase and Semi Paraphrase for Dataset2

Logistic regression and Random forest are chosen as the final classifier for Dataset1 and

Dataset2 respectively. For testing data, an accuracy of 0.897 and F-measure of 0.89 are ob-

tained as shown in Figure 4.7 for Dataset1. In Dataset2, the proposed technique obtained

accuracy and F-measure of 0.717 and 0.712 as shown in Figure 4.8 respectively for the

finalized proposed system.

4.1.1.3.1 Error Analysis Errors occurred in classification can be attributed to the fol-

lowing:

1. [Nguyen et al. 2014] states that the RDRPOSTagger achieves a very competitive ac-

curacy in comparison to the state-of-the-art results but a different Hindi POS tagger

can also be used. RDRPOSTagger can also be combined with an external initial

tagger to increase its accuracy.

2. Similarly, the Hindi stemmer used might have incorrectly returned the stem words,

which can be a reason for wrongly classified Paraphrases. The algorithm for extract-

ing the root words can be improved further to better the results.

3. Other factors that could have led to errors are the accuracy of Soundex library and

similarity measure used.

110

Figure 4.5: Results for Dataset1 using different classifier for proposed system

Figure 4.6: Results for Dataset2 using different classifier for proposed system

111

Figure 4.7: Comparison of proposed approach with existing approaches on Dataset1

4.1.2 Detecting Paraphrase using Deep Learning in Indian Languages

Different approaches are proposed for paraphrase detection. Approaches are tested and

analyzed for English, Hindi, Malayalam, Punjabi and Tamil languages. Microsoft research

paraphrase corpus introduced by [Dolan et al. 2004] is used for English. DPIL@ FIRE 2016

[Anand Kumar et al. 2016] dataset is used for Indian languages.

4.1.2.1 Preprocessing

1. Class labels and sentences are separated from the data. Stemming and case conver-

sion is performed to normalize the text.

2. Two types of input matrices are prepared as the input to the deep learning models.

The first type is used as an input to both CNN and RNN. The second type is used

as an input to CNN-WordNet.

(a) Input1

i. The pair of sentences to be classified are appended together. The sentence

is then padded to the maximum sentence length. Padding sentences to the

same length are useful because it allows to efficiently batch data since each

example in a batch must be of the same length.

112

Figure 4.8: Comparison of proposed work with existing work on Dataset2

Figure 4.9: Matrix built using WordNet

ii. For English, word2vec is used to generate input matrix for the CNN and

RNN. These vectors are pre-trained by [Mikolov et al. 2013b] on Google

news (100 billion words)1. For Indian languages, one hot vector encoding

is used instead of word2vec (since no pre-trained vectors are available for

these languages).

(b) Input2

i. The pair of sentences to be classified are padded individually to the maxi-

mum length. A matrix (as shown in Figure 4.9) is then built where Word-

Net is used to calculate the similarity between the two words. For Indian

languages, the sentences are translated into English (using Google Trans-

1https://code.google.com/p/word2vec/

113

late API1) to find the WordNet similarity between two words. In CNN-

WordNet (section 4.1.2.2), this matrix is used as input to CNN.

4.1.2.2 Approach based on Convolutional Neural Network

Two variants of approach are proposed based on CNN, where both of them differ on the

basis of their input used. Variants are named as CNN based and CNN-WordNet based

approach. For CNN approach, consider a sentence of length n which is a concatenation

of the pair sentences to be classified. It comprises of the words a1, a2, and so on till an.

Let ai:i+j refer to the window of words ai, ai+1, ..., ai+j. A convolution operation involves

a filter w which is applied to a window of h words to create another element. For exam-

ple, an element gi is created from a window of words ai:i+h by gi = f (wai:i+h + b). Here

b ∈ R is a bias term and f is a non-linear function either rectified linear unit (ReLU) or

tan hyperbolic function. This filter is applied to every conceivable window of words in

the sentence a1:h, a2:h+1, . . . , anh+1:n to deliver a feature map = [g1, g2, ..., gnh+1], with

c ∈ Rnh+1. For CNN-WordNet, filters are convolved over input2 obtained from section

4.1.2.1 and then a feature map g is generated.

A maximum pooling operation is then applied over the feature map and the maximum

value of max{g} is then selected as the feature corresponding to this filter. The idea be-

hind this is to capture the most imperative component of every feature map. The model

uses numerous channels (with shifting window sizes) to obtain multiple features. These

features are accumulated in the last but one layer. The accumulated features are then

passed to the last softmax layer which produces the output. The output is the probabil-

ity distribution over the class labels. Parameters of convolutional layer comprise of an

arrangement of filters that can be learned. Even though each filter is small in scope, it

reaches out through the full depth of the information volume. In the forward pass, the

filter slides over every channel in the input vector and computes the dot products between

the sections of the filters and the input. Filter sliding over the input produces an activation

map that represents the relationship between filter response and spatial position. Feature

detection activates the filters which are learned by the model. After convolutional layer,

pooling is done to ensure that over-fitting does not occur and to reduce the amount of

1https://translate.google.com/

114

computation and parameters in the network.

The primary layers of CNN insert words into low-dimensional vectors. The following

layer performs convolutions over the inserted word vectors utilizing different filter sizes.

For instance, sliding more than three, four or five words at once. Next, the result of

the convolutional layer is max-pooled into a long feature vector, which includes dropout

regularization. Classification is done by utilizing the final softmax Layer.

4.1.2.3 Approach based on Recursive Neural Network

Bidirectional Long Short-Term Memory Recurrent Neural Network (BRNN) have been

used in the past for various applications that involves sequence learning and have shown

to be very effective. Some application involves predicting sequential data like handwriting

and speech.

Neural network solves the problem of sequential information awareness and the problem

of vanishing gradients. The attraction that deep learning holds is that one does not require

to identify features or build resources like a dictionary for morphemes and other linguistic

units. Second approach based on LSTM and BRNN is described in this section. LSTM

performs better as compared to simple recurrent neural networks, hidden markov models,

and other alternative neural networks because of its ability to learn from past experience.

In BRNN (Figure 4.10), the neurons of a standard RNN are split into two directions, a

positive time direction (forward states), and a negative time direction (backward states).

By utilizing two directions, input data from the past and the future of the present time

frame can be utilized. For forward pass, forward states and backward states are passed

first, then output neurons are passed. For backward pass, output neurons are passed first,

then forward states and backward states are passed next. After forward and backward

passes are done, the weights are updated.

Traditional neural networks face the problem of rigidity in the sense that the input and

output is a fixed size vector. The number of computational steps in the neural network is

also fixed. The recurrent neural network is superior to traditional neural network because

they can handle sequences. Traditional neural networks are limited by the number of

layers in the model which can only perform a fixed number of computations. The appeal

of recurrent neural network lies in the fact that they can operate on sequences and hence

115

are more capable of building intelligent systems. At every state, RNN combines the input

vector with the state vector using a step function to create a new state vector. The output

vector obtained from the RNN is an amalgamation of the current input and the inputs

that are fed into the RNN in the past, ensuring that the RNN remembers the context. The

internal state of the RNN is updated every time step function is called.

Each pair of sentences is mapped into a real vector domain. Words are encoded as real-

valued vectors in a high dimensional space, where the similarity between words in terms

of meaning translates to closeness in the vector space. LSTM is used as the next layer

Figure 4.10: RNN Model

with 100 memory units (smart neurons). A dense output layer with a single neuron and

a sigmoid activation function are used to make 0 or 1 predictions for the two classes

(paraphrase or not paraphrase). As it is a binary classification problem, logrithmic loss

is used as the loss function. An efficient adam optimization algorithm is used in the

proposed approach.

116

4.1.2.4 Algorithm for Detecting Paraphrase in Indian Languages

Algorithm 4.2 describes the CNN and CNN-WordNet approach for paraphrase identifica-

tion. CNN approach builds the embedding matrix using word2vec [Mikolov et al. 2013b].

CNN-WordNet builds a matrix using WordNet to find similarity between any two words

in pair of sentences to be classified as paraphrases. An example matrix can be seen in

Figure 4.9. For English, NLTK WordNet library is used. For the Indian languages, trans-

lation to English is performed because WordNet is not avaialble for these languages. The

CNN is initialized with the following hyperparameters.

1. The sequence length is the maximum length of the sentence in the dataset.

2. The number of classes is two. The embedding size is set to 300.

3. filter_size refers to the number of words required in convolutional filters. The value

of the filter size lies in the range [3, 5] which means that the filters will slide over

three, four and five words.

In CNN approach, the function CreateEmbedding() defines the embedding layer which

maps vocabulary word indices to vector representations. This can be equivalent to cre-

ating a look-up table from data. Embedding matrix, W is created during training. In

CNN-WordNet approach, matrix W is used instead of the WordNet score between two

sentences. Figure 4.9 shows a sample matrix for W. Since the filters are of different sizes

and each convolution produces vectors of different shapes, a layer is created for each of

them and results are merged into one feature vector. Once the output vectors are pooled

from each filter size, they are combined to give the final vector. The vector from max-

pooling is used to generate predictions by performing matrix multiplication and then

choosing the class with the maximum score.

Algorithm 4.3 describes an approach based on LSTM. Four variants of LSTMs have been

explored as discussed in section 4.1.2.3. First, an embedding matrix is created for the

pair of sentences using Word2Vec [Mikolov et al. 2013b]. Following functions are used to

update the parameters:

it = (Wi[ht-1, xt] + bi) (4.1)

f t = (Wf[ht-1, xt] + bf) (4.2)

117

qt = tanh(Wq[ht-1, xt] + bq) (4.3)

ot = (Wo[ht-1, xt] + bo) (4.4)

ct = f t � ct-1 + it � qt (4.5)

ht = ot � tanh(ct) (4.6)

The function ft in equation 4.2 is a control mechanism that is responsible as to how much

old information is to be remembered in the current cell and it takes care of how much

new information is to be stored. The function ot in equation 4.4 controls the output given

the cell ct. The model has a learning rate of 0.001, an embedding size of 300. The final

output vector is calculated by applying a softmax classifier over the hidden state cell ht

(equation 4.6) and initial word embeddings matrix.

4.1.2.5 Dataset

1. Microsoft Research Paraphrase Corpus(MSRPC)[Dolan et al. 2004]

The MSRPC consists of 5801 pairs of sentences which have been extracted from news

sources. The dataset is split into 4076 training examples and 1725 test examples. The

dataset contains 67% paraphrase pairs and 33% non-paraphrase pairs.

2. Detecting Paraphrases in Indian Languages (DPIL) @ FIRE [Anand Kumar et al. 2016]

DPIL dataset for identification of paraphrase or non-paraphrase (Dataset1 as men-

tioned in section 4.1.1.2) is used for evaluation. The DPIL dataset consists of four In-

dian languages namely Hindi, Tamil, Malayalam and Punjabi. In Hindi, Malayalam

and Tamil dataset, there are 2500 training and 900 testing sentence pairs. For Punjabi

dataset, there are 1700 training and 500 testing sentence pairs, where training dataset

consists of 700 instances of paraphrases and 1000 instances of non-paraphrases.

Hindi, Malayalam and Tamil dataset contains approximately 40% paraphrase pairs

and 60% non-paraphrase pairs.

118

Algorithm 4.2: Paraphrase Detection using CNN
input : Concatenated pair of sentences, I. Corresponding training class

labels, X.
output: An output sequence P, the predicted class labels.

1 Initialization: the CNN with sequence_length=25, num_classes = 2,
embedding_size = 128, filter_sizes = [3,4,5], num_filters = 3,
pooled_outputs=[];

2 Preprocessing;
3 if CNN then
4 CreateEmbedding(I, X);

5 if CNN-WordNet then
6 for sentence pair in input do
7 W[len(Sentence1)][len(Sentence2)];
8 for word1 in Sentence1 do
9 List1 = WordNet.synsets(word1);

10 for word2 in Sentence2 do
11 List2 = WordNet.synsets(word2);
12 if List is empty or List2 is empty then
13 if word1 == word2 then
14 W[word1][word2] = 1;

15 else
16

17 W[word1][word2] = 0;

18 else
19 W[word1][word2] = Similarity(word1,word2);

20 for i in f ilter_sizes.length do
21 Initialize filter matrix F, bias matrix b;
22 conv = CreateConvolutionalLayer(F,b);
23 h = Non-linearity(conv,b);
24 pooled = Max-pool(h);

25 Combine pooled features(pooled);
26 Prediction = max(I*Feature_Vector);

119

Algorithm 4.3: Paraphrase Detection using RNN
input : A pair of sentences concatenated together. Corresponding

training class labels Y.
output: An output sequence P, the predicted class labels(0/1).

1 Initialize hidden_dimensions = 128, word_dimensions = Number of
words in vocabulary;

2 CreateEmbedding(W);
3 if 1 Layer LSTM then
4 update parameters;

5 if 2 Layer LSTM then
6 update parameters;
7 send parameters as input to Layer 2;

8 if 1 Layer Bi-LSTM then
9 forward pass for forward state LSTM;

10 forward pass for backward state LSTM;
11 update parameters ;

12 if 2 Layer Bi-LSTM then
13 forward pass for forward state LSTM;
14 forward pass for backward state LSTM;
15 update parameters;
16 send parameters as input to Layer 2;
17 forward pass for forward state LSTM;
18 forward pass for backward state LSTM;
19 update parameters;

20 output_vector = softmax();
21 Prediction = max(output_vector);

4.1.2.6 Experiments and Analysis

Figure 4.11 describes the results of RNN. Bidirectional LSTM (Bi-LSTM) with two layers

performs the best for all languages. Bi-LSTM is more context-aware than LSTM, resulting

in it’s better performance. Performance of RNN is better for English than Hindi because

the size of English dataset is approximately twice the size of Hindi dataset. The results for

Hindi and Punjabi are better than Malayalam and Tamil. This may be due to the complex

morphology of Tamil and Malayalam languages. Figure 4.12 describes the results of CNN.

CNN performs better than CNN-WordNet (Figure 4.13), because of the use of word2vec.

For Indian languages, no such tool as word2vec is present. As a consequence, the re-

sults are lower for all Indian languages when compared to English. The results obtained

for CNN based approach are approximately equivalent to RNN based approach. CNN-

WordNet performs equally well as CNN approach and slightly better for English. As can

120

be seen from Figure 4.14, CNN outperforms RNN and CNN-WordNet. Results for En-

glish language are higher than other languages which can be attributed to the availability

of word2vec and better WordNet scores. Results of Hindi-Punjabi and Malayalam-Tamil

are comparable due to the similarity in underlying semantics for the languages pairs of

Hindi-Punjabi and Tamil-Malayalam. RNN model worked well at 14 epochs because it

quickly overfits the data, due to the small amount of data being used for training.

Figure 4.11: F-measure scores for RNN

4.1.2.6.1 Error Analysis

Due to the incorrect word similarity measures from WordNet scores, errors might have

occured. Similarly, the stemmer used for Indian languages might have incorrectly re-

turned the stem words, which could be a reason for wrongly classified paraphrases. Due

to the mistranslation of few words while creating WordNet scores for Indian languages

errors might have occured. This observation is consistent with the results as can be seen

from Figure 4.14. The scores from CNN-WordNet are less than CNN for all the Indian

languages.

121

Figure 4.12: F-measure scores for CNN

Figure 4.13: F-measure scores for CNN-WordNet

122

Figure 4.14: F-measure scores for all approaches

4.2 Extractive Text Summarization

The goal of automatic summarization is to take an information source, extract important

information from it and present it to the user in a short form and in a manner useful to

the user’s need. The continuing growth of online text resources has resulted in the well-

recognized problem of information overload. As a result, it is especially useful to have

tools which can help users digest information content by presenting the most relevant

information. Extractive summaries are particularly useful in extracting and represent-

ing important snippets of information. The challenge is to generate useful summaries

automatically. The approach, application and the end-objective of summarization of doc-

uments determine the type of summary generated. A generic summary gives a high-level

information of the document’s content while a query based summary returns the text that

is closely related to the input query. Similarly, it can also be categorized based on applica-

tion, to develop a single or multi-document summarization. The widely used technique of

extractive summarization involves selection of a subset of the document sentences which

are representative of its content and creating the summary by concatenating selected ex-

cerpts from the original document. This section proposes an approach which aims to

123

achieve the goal of text summarization by generating extractive summaries using deep

learning techniques. This includes processing text and generating the list of sentences

which might be the most useful and contain the major gist of the text. Humans generally

do not perceive summaries as sentences extracted verbatim from the text but rather try

to summarize it in a format that conveys the same meaning as the given text. However,

extractive summaries do contain an important piece of text of the whole content. This

provides an idea of what the text is about and at the same time certain sentences which

can be used to quote or refer to for some other purpose. Another motivation that drives

this work is to try out the approach of abstract generation using data-driven approaches

for Indian languages. The idea of the approach is to generate labels using paraphrasing

algorithm and then use them for extractive summarization.

Approaches involving deep-learning have shifted the focus from manually engineering

the features to a more data-driven approach wherein a neural network with sufficient

depth can be used to extract features and use them to classify sentences as being impor-

tant to be put into the summary or not. The sentences are converted to vectors in a suitable

space and are fed to the network as numbers. It has been observed, given sufficient data

and a suitable network architecture, ANN learns to represent words in the space in such

a manner that it captures various linguistic properties and maps it to simple vector oper-

ations. This representation of words is called embedding and the vectors of the words are

called word vectors [Mikolov et al. 2013b]. The proposed approach uses fully connected

CNN.

Sentences can be viewed as sequences of the word and possess some memory of previous

words seen, this concept has proven to be useful in classification. Regardless of all ap-

proaches mentioned above to achieve the task, one of the major challenges that are faced

in this domain of automatic text summarization is the problem of result evaluation. Most

of the works rely on some form of human intervention to evaluate the results as datasets

with gold standard extractive summaries are a rarity and adding to this even automated

evaluation such as ROUGE depend on human summaries to be provided to them. Hence,

for training purposes, proposed approach uses an approach of generating the labels for

each sentence in whether it should belong to summary or not by using the technique of

paraphrasing on the original text and abstractive gold summaries available for the dataset.

124

4.2.1 Workflow for Proposed approach

The proposed approach can be divided into two phases. The first phase generates a true

label for each sentence to be in summary or not whereas the second phase focuses on

model creation for summarizer. The model generation phase can be further divided into

two stages, the first of them being a convolutional layer to act as a feature map generator

and the second being densely connected layers of neurons or otherwise called MLP. It is a

binary classification problem and hence model generates two scores for a given sentence,

one for each class.

Figure 4.15: Block Diagram showing basic workflow

4.2.2 True Label Generation

Extractive text summarization like any other machine learning task requires that the data

be of appropriate nature. The summaries of the training data presented to the system are

required to be in extractive form for current problem. Most of the available public datasets

125

are abstractive in nature and the problem is more so prevalent in the field of Indian lan-

guages which does not have any gold-standard dataset for summarization. For proposed

approach, gold-summaries are generated from the human-generated summaries using the

help of paraphrase detection approach (proposed in section 4.1.2)

For the proposed solution, ground truth for a document D is generated by making

|D| X |S| pairs (where |D| stands for number of sentences in document D and |S| stands

for number of sentences in S, abstractive gold summary) and running a paraphrase de-

tection system on all the pairs. The label for a sentence d is given as:

label(d) =


1 if d ∈ P,

0 otherwise

Here, P denotes the set of tuples which have been detected as paraphrases. The model

used for the summary generation is discussed in detail below.

4.2.3 Model Generation

Convolutional Layer

Document D is fed to the network on a sentence-to-sentence basis, where sentence d

is represented by a list of words. The list is then passed through the embedding layer

which results in the list being converted to a word matrix W ∈ R f×d, where f stands

for the maximum length of sentence in the corpus and d stands for the dimension of

embedding vector. Each row of the matrix Wi is trainable vector representation of the

word in the sentence. The matrix W is then fed to the convolutional layer which performs

a convolution operation between W and a kernel K ∈ Rh×d of width h as follows:

f j = ReLU(Wj : j+h � K + b)

where b is the shared-bias and f j is the jth element in feature map f . Following this, a

max-pooling operation is done to select one feature which would represent the sentence

under the kernel.

dK = max
j

f j

126

Multiple such kernels (K) are used with different widths to produce multiple feature

maps.

Dense Layer

The outputs from each of the max-pooled layers above for different kernels K are then

flattened and concatenated to produce a vector I which is then fed through a fully con-

nected layer and finally a softmax layer designed for two-class classification is applied.

4.2.4 Algorithm: Extractive Text Summarization using Deep Learning

Algorithm 4.4: ETSDL: Extractive Text Summarization using Deep
Learning

1 Function SummarizeTrain(textfile,summaryfile)is
2 Call LabelGen(text f ile, summary f ile); // It produces a file

with all labels
3 (text_batches, label_batches)← Call BG(text f ile, label f ile);
4 for (text_batch, label_batch)← zip(text_batches, label_batches) do
5 Call Train(text_batch, label_batch);

6 Function Train(text_batch, label_batch)is
7 (embedding_layer ← embeddinglookup(text_batch));
8 for (i← f ilter_map) do
9 conv← Conv2D(text_batch);

10 mp2d← MaxPool2D(conv);
11 f latten← f latten(mp2d);
12 f lattens← f lattens.append(f latten(mp2d));

13 pool ← concatenate(f lattens);
14 dropout← dropout(pool);
15 dense← Dense(dropout);
16 so f tmax ← so f tmax(dense);
17 optimizer(so f tmax, test_labels);

The SummarizeTrain function shown in algorithm 4.4 creates batches of the dataset

and passes them to the training module. The model presented here is trained via batch

gradient descent. The Train function performs both, a forward pass through the network

to compute the output given by current network on given data and also a back propa-

gation and weight update step to change the weights. It passes the given batch of data

through the network shown in Figure 4.16. The step shown in SummarizeTrain is for one

iteration through the dataset (one epoch). The same operations are performed for multiple

127

Figure 4.16: Network Architecture as a block diagram

128

epochs. The Train module shows the network feed through in a highly simplified manner

and in the form of functional code. The actual parameters and settings are described in

section 4.2.5.2.

4.2.5 Experiments & Results

The proposed model has many hyperparameters which are tuned for the specific dataset.

Para Multiling 2015 dataset is used for evaluation. This dataset is designed for the pilot

task of Multilingual Single-document Summarization (MSS). The dataset consists of 40

different languages and for each language, 30 documents are given. The documents are

in UTF-8 without markups and images. For each document of the training set, the human-

generated summary is provided along with character length. Indian Language being the

prime target, results have been evaluated in three languages (English, Malayalam, Hindi)

only.

4.2.5.1 Parameters

The given model has hyper-parameters in both the stages, label generation and summary

generation. The model that has been saved is at the point when the loss factor is the

least. The model is checkpointed via a call-back function which after every epoch decides

to the checkpoint if the loss function has improved from the previous best-saved model

instance. For the label generation, hyperparameters used are mentioned in Table 4.1.

The above mentioned parameters are arrived upon to avoid overfitting because of small

Table 4.1: Parameter settings for Label Generation

Parameters Value
Number of neurons in Dense Layer 64
Embedding size 128
Kernel sizes [3,4]
Number of maps produced 64
Learning Rate 0.003
Regularization Rate 0.003 (L2 regularization)

dataset. The parameters when set to values higher than current values (number of filters

to 5 and number of maps produced to 128), produced drastic over-fitting. The same is also

expected since increasing value of parameters results in increase of number of trainable

129

parameters, which in turn would require a higher amount of data to prevent the network

from over-fitting. The values could be set to values lower as well but that would result in

the decrease in learning capacity of the network. In proposed summarization model, the

Table 4.2: Parameter settings for Summary Generation

Parameters Value
Number of neurons in Dense Layer 64
Embedding size 128
Kernel sizes [3,4,5]
Number of maps produced 64
Learning Rate 0.003
Regularization (L2) Rate 0.003

learning rate has arrived at this value by using a decaying rate wherein a callback function

is used to decrease the learning rate after every few epochs. Parameters related to building

model are mentioned in Table 4.2. One more factor that has to be considered is the factor

of drop-out, which is kept to be 0.5. This means that on an average activity of 50% of

the neurons are not passed during the feed forward stage preventing the network from

rote learning the activities and hence reducing the effect of over-fitting to some extent.

The reason for such a high drop-out rate is the fact that the model without the drop-out is

highly volatile and hence is over-fitting heavily even in such a shallow network. A general

value for drop-out would range anywhere between 0.2 to 0.5. Since the size of the matrix

that is fed to a convolutional network has to be fixed, sentences are padded to a length

that is equal to the maximum of all lengths of the training samples.

4.2.5.2 Evaluation & Discussion

This section presents the results of the proposed model and discusses the possible reasons

why certain results are as they have been reported. Results for English dataset are shown

in Table 4.3, whereas results for Malayalam are shown in Table 4.4. It can be observed

from the tables that although accuracy is greater than 90%, other evaluation measures are

low. This may be due to the fact that the generated dataset is based on the human-based

summaries. However, for Malayalam dataset a recall of 0.8459 is obtained which shows

the trend that the original gold summaries contained most of the words from the original

text itself. In proposed approach, summary generation is converted to a classification task

130

of identifying if the sentence belongs to summary or not and hence, accuracy, precision,

F-measure and recall metric is considered instead of ROUGE.

Table 4.3: Preliminary results for Summary Generation in English

Parameters Value
Training Accuracy 0.9615
Validation Accuracy 0.7063
Testing Accuracy 0.757
Testing Precision 0.25
Testing Recall 0.4287
Testing F-Score 0.3157

Table 4.4: Preliminary results for Summary Generation in Malayalam

Parameters Value
Training Accuracy 0.9114
Validation Accuracy 0.7346
Testing Accuracy 0.5933
Testing Precision 0.3919
Testing Recall 0.8459
Testing F-Score 0.5357

4.3 Abstractive Text Summarization

There is a large amount of data on the web which expresses the same opinion over and

over again and thus summarization of redundant content has become a necessity. While

viewing multi-document summaries or the summaries of highly redundant text, extrac-

tive summarization would not be of any help as the extractive summaries would be very

verbose and biased. Sentences also tend to be longer, hence non-essential parts of the

sentence also get included. Relevant information is spread across the document and this

can’t be captured in the extractive summaries. Extractive summaries also face the prob-

lem of ‘dangling’ anaphora, implying that sentences that contain pronouns lose meaning

when extracted out of context, the resolution of this problem is presented in [Steinberger

et al. 2007].

While there has been a lot of work done in the field of extraction based summarization,

abstraction based summarization is difficult because of the simple reason that while the

computers can statistically select the most important sentence from the text, it is difficult

131

Figure 4.17: Training loss vs number of epochs

Figure 4.18: Validation loss vs number of epochs

132

for them to combine important sentences and generate a coherent and concise synopsis.

Demand for the high-quality summary is on the rise whether it is regarding summa-

rization of textual content (for example books etc.) or multimedia content like video

transcripts etc. [Ding et al. 2012].

4.3.1 Abstractive Text Summarization using Sentiment Infusion

It has been demonstrated that abstractive summaries are better than extractive summaries

[Carenini & Cheung 2008] whenever documents with a lot of redundant content are con-

sidered for summarization (for example, product reviews, blogs and news articles). This

is because abstractive summaries are compact and present the useful information and are

not verbose. However, generating abstract summary is a tougher task than the generation

of extract summary. Single document summarization differs from multi-document sum-

marization since single documents contain lesser data. Hence, more efficient strategies

are required to generate abstractive summaries in case of single documents. An approach

named Abstractive Text Summarization using Sentiment Infusion (ATSSI) is proposed for

compressing and merging information based on word graphs and then summaries are

generated from the resulting sentences. The approach assumes no domain knowledge

and leverages redundancy in the text. The results show that the summaries generated are

agreeable to human compendium and are concise and well formed.

4.3.1.1 Building the word graph

Graph data structure is used in ATSSI to represent the text. Graphs have been frequently

used for abstractive text summarization ([Kumar et al. 2013], [Liu et al. 2015], etc.) and

have shown promising results. In state of art, graphs are used in different form for the

text summarization. [Kumar et al. 2013] use graph to represent the bi-gram relationship

between the words in the text. In approach proposed by [Liu et al. 2015], semantic infor-

mation is embedded in the graphs. Proposed approach in this work uses graph differently

from above mentioned forms, as each node represents a word in the text along with the

information of the position of the given word in the sentence and the edges represent the

adjacency of the words in the sentence. A document is represented as a directed graph

133

where V =vi, vi+1...vn is a set of vertices that represent words in the text. Each vertex

node stores the information about the POS tag of the word in that node, the position of

the word in the sentence and the position of the sentence in the document. The graph

naturally captures the redundancy in the document since words that occur more than

once in the text are mapped to the same vertex. Furthermore, the graph construction does

not require any domain knowledge. The graph also captures the minor variations in the

sentences. For example, Figure 4.19.

Figure 4.19: Graph Capturing Redundancy in the text

4.3.1.2 Ensuring the sentence correctness

The correctness of sentence is ensured using the following set of Part of Speech con-

straints:

• A sentence can contain noun followed by a verb and an adjective or an adjective

followed by a noun and a verb or a verb followed by an adjective and a noun or an

adverb followed by an adjective and a noun or an adverb followed by a noun.

• The start of the sentence should contain a word whose average position in all sen-

tences is lower than the threshold, called Start Node. This threshold is enforced to

corroborate that the sentences occurring in the summary do not start with words

that occur somewhere in the middle of a sentence.

• The sentence should not end in a conjunction like but, yet, etc.

4.3.1.3 Getting abstractive summary

1. Scoring of paths:

The paths are then scored based on the redundancy of the overlapping sentences.

This redundancy can be calculated using the intersection of the position of the words

134

in the sentences (P) such that the difference between the positions is no greater than

a threshold, P. This redundancy helps us in deciding the number of sentences

discussing something similar at each point in the path.

The scores can simply be based on the calculation of the overlap or can include

the length of the path as well because if the path is longer, higher redundancy is

expected than in a shorter path since longer paths provide more coverage.

2. Fusing sentiments:

A node is considered to fuse sentences if its POS tag is a verb. If a vertex V is being

considered as a node that can be used to fuse sentences, then previous vertices are

traversed in the path currently being considered to look for a connector as shown

in Figure 4.20. An alternative approach is to calculate the sentiment of both the

sentences to be fused and to look for a connector that can be accurately used. This

sentiment is calculated using SentiWordNet 3.0 [Baccianella et al. 2010b].

Once the sentiment has been calculated, the connector is chosen from a pre-existing

Figure 4.20: Example Sentences that can be fused together

list. For example, if the sentiments of the two sentences are contradictory, ‘but’ is

used as a conjunction. If both sentences are positive, then depending upon the

context conjuctions such as ‘and’ and ‘or’ may be used.

3. Summarization

After all the paths are scored and the sentences have been fused, sentences are

ranked in descending order of their scores. Duplicate sentences are removed from

generated summary using Jaccard similarity coefficient. The remaining top S (num-

ber of sentences specified by the user to be in summary) sentences are chosen for

the summary.

135

4.3.1.4 Pseudocode for ATSSI

1. Generate the graph from the text input such that nodes will contain the information

about

(a) The position of the word in the sentence

(b) The position of the sentence in the document

(c) The POS tag of the word.

2. For all nodes in the graph, if node satisfies the constraint of being lesser than Start

Node, the graph is traversed.

3. While traversing the graph, if the path overlap is greater than P, check if the current

node is a valid end node and the current sentence is a valid sentence, if it is, add it

to the list of candidate summaries, else discard it.

4. For all the neighbours of the current node

(a) Calculate the redundancy.

(b) Check if the node can be used to fuse a sentence.

(c) If yes, then calculate the sentiment of the anchor statements, and choose the

connector accordingly from the pre-existing conjunction list. If the node cannot

be used to fuse sentences, graph is traversed again.

5. Graph is again traversed from all the neighbours of the current node to find the

further nodes of the sentence.

6. The new score is computed and the duplicate sentences are removed from the fused

sentences. The resulting fused sentence and its final score are then added to the

original list of candidate summaries.

7. Once all paths have been explored, duplicates are removed. The rest of the sentences

are sorted in descending order of their path scores. The best S candidates are chosen

for the final summary.

136

4.3.1.5 Dataset Description

Two datasets are used for the evaluation:

• National Institute of Science and Technology (NIST) organizes a conference called

Document Understanding Conference (DUC) every year. The first dataset comprises

of 50 documents from the DUC 20021 corpus which has been randomly selected.

The documents contain about 500 words on an average. The dataset contains about

500 news articles in English along with gold summaries for each article. The gold

summaries have also been provided for the corresponding documents and are about

100 words on an average.

• Second dataset [Ganesan et al. 2010a] contains 51 documents pertaining to a single

query, for example, Amazon Kindle: buttons, Holiday Inn, Chicago: staff, etc. There

are about 100 redundant, unordered sentences in the document for every query.

There are 4 peer summaries corresponding to each of these 51 documents.

4.3.1.6 Experiments & Results

ROUGE metric is introduced by [Lin 2004] and has been adopted by the DUC and leading

conferences on Natural Language Processing. ROUGE calculates the overlap between the

candidate summaries and the reference summaries and it has been found that correla-

tion of ROUGE-1 and ROUGE-2 is the most with human summaries ([Lin & Hovy 2003]).

ROUGE-N is a recall measure that computes the number of matches between the can-

didate summaries and the reference summaries. The formula to calculate the ROUGE

scores [Lin 2004] is given as:

ROUGE− N =
∑Sε(Re f erenceSummaries) ∑gramnεS Countmatch(gramn)

∑Sε(Re f erenceSummaries) ∑gramnεS Count(gramn)
(4.7)

where match is the maximum number of N-grams that occur in the reference summaries

and the candidate summary. Count is the number of n-grams in the reference summaries.

1http://duc.nist.gov/

137

The precision, recall and F-measure [Lin 2004] is calculated as follows:

Precision =
Match(Sentence)

Match_Candidate(Sentence)
(4.8)

Recall =
Match(Sentence)

Match_Best_Candidate(Sentence)
(4.9)

F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4.10)

where MatchCandidate is the number of sentences of present in the candidate summary.

MatchBest_Candidate is the total number of sentences in the best sentences summary. In

experiments, ROUGE-1 and ROUGE-2 are used for comparison with Baseline 1 and for

comparison with Baseline 2 only ROUGE-1 is used.

4.3.1.6.1 Evaluation & Discussion Results are being compared by two baselines on

two different datasets, apart from the comparison with human summaries. Baseline1 is

defined by the algorithm implemented by [Ganesan et al. 2010a] whereas Baseline2 is de-

fined by algorithm mentioned in [Lloret & Palomar 2011]. Baseline1 and Baseline2 have

been chosen for comparison since they have used graph-based algorithms for summa-

rization and proposed algorithm overcomes the limitations of [Ganesan et al. 2010a] and

[Lloret & Palomar 2011]. [Ganesan et al. 2010a] describe an approach that used directed

graphs that use the original sentence word order to generate abstractive summaries. Their

technique leverages the graphical form of the input text to reduce redundancy. If their

algorithm finds two sentences that are collapsible, they use the connectors already present

in one of the sentences to be used as the connector for the collapsed sentence. However,

this technique is effective, but it has a drawback that there might be two sentences which

are capable of being fused together but can’t be fused because of the absence of a pre-

existing connector. The proposed approach (ATSSI) does not face this drawback since

sentiment analysis is used. [Lloret & Palomar 2011] describes a technique where they

have built a directed weighted word graph where each word text represents a node in the

graph and the edge contains the adjacency relation between the words. The weight of the

edge is determined by using a combination of PageRank value and the frequency of the

words. To determine important sentences, first node consists of ten words with highest

138

TF-IDF score. Sentence correctness is ensured using the basic rules of grammar like the

length a sentence should be greater than 3 words, a sentence must contain a verb and

should not end in an article or conjunction. A flaw with this methodology is that a lot of

important information is lost because of the impositions of grammar on the sentences and

the policy of selecting the ten words with highest TF-IDF scores. Furthermore, a lot of

redundant sentences will still be present in the summary because the TF-IDF scores will

give more importance to them. Proposed approach (ATSSI) does not face the deficiency

that is faced by [Lloret & Palomar 2011] because it incorporates the redundancies in graph

structure itself.

Figure 4.21 shows that ATSSI has higher precision over the Baseline1, this is because

proposed approach has overcome the demerit of the approach as stated by [Ganesan

et al. 2010a], that it can only connect the sentences if there is a pre-existing connector. Since

the dataset used by [Ganesan et al. 2010a] already has redundant data with connectors,

ATSSI is only showing a marginal difference in precision. Dataset [Ganesan et al. 2010a]

results in low recall as shown in Figure 4.21 because there is a high presence of redundant

information in the dataset which is leading to infusing large number of sentiments in a

particular sentence. This is resulting in less number of sentences.

Proposed algorithm outperforms Baseline2 [Ganesan et al. 2010a] by 13% as shown in

Figure 4.22, since Baseline2 [Ganesan et al. 2010a] describes rigid rules for ensuring sen-

tence correctness and has no provision for fusing sentences. ATSSI outperforms Baseline2

[Ganesan et al. 2010a] by a considerable margin of precision since ATSSI incorporates

sentiment infusion and a provision for removing redundancy. Recall of ATSSI is also

marginally low as that of Baseline2 for similar reasons mentioned for Baseline1. Figure

4.21 represents the F-measure on the dataset by the proposed algorithm and compares

it with human summary and Baseline1 whereas Figure 4.22 represents the precision and

recall on DUC 2002 dataset with the human-summary and Baseline2 respectively.

Finally, it is worth noting that generating summaries that are purely abstractive in nature

is an onerous task, as shown by [Liu & Liu 2009] where F-measure values are in the range

13% to 18%.

139

Figure 4.21: Evaluated results on dataset [Ganesan et al. 2010a] with human summary and
Baseline 1 vs ATSSI

Figure 4.22: Evaluated results on DUC2002 dataset with human summary and Baseline 2 vs
ATSSI

140

4.3.2 Abstractive Text Summarization using Generative Adversarial Networks

In this section, a deep learning approach has been proposed which uses a generative

model to generate abstractive summaries from the input datasets. Generative Adversarial

Networks (GAN) have been used for caption generation ([Reed et al. 2016]), generating

text from images, face generation, etc.

A GAN can be decomposed into two adversaries, a discriminator, and a generator. The

probability distribution learning problem is posed as a game in between the two, which

is solved using the min-max algorithm. The generator performs the task of generating

samples and the discriminator is a binary classifier with the task of separating the real

samples from the fake ones. GAN(s) was first proposed by [Goodfellow et al. 2014] in

2014. Deep learning holds the promise of building hierarchical models which can repre-

sent the probability distribution of data ranging from text to images. However, most of

the success in the past has been with models that can map the high dimensional input to

a class label. Discriminative models perform better than generative models because of the

use of backpropagation and dropout algorithms.

Generative models are difficult to train because of the approximation involved in deter-

mining the probabilities and maximum likelihood estimations. The model proposed by

[Goodfellow et al. 2014] circumvents these limitations. These models are advantageous

to use because even noisy data can be represented by these models. In contrast, Markov

chains based models require data that can be partitioned easily for the chains to generate

a probability distribution. The other advantage for GANs is that the network is updated

only by the gradients. Hence, the noise in the input is not propagated forward to the

model. However, training GANs are very difficult as they are very unstable and very

volatile with the slightest change in the hyper parameters[Arjovsky & Bottou 2017].

The alternative to GANs is Wasserstein GAN (WGAN) introduced by [Arjovsky & Bot-

tou 2017]. There are various benefits of WGAN(s) over GAN(s). One of the advantages is

that WGANs can be trained until optimality. WGANs specify the point till the generator is

to be trained. WGAN(s) are also more resilient as compared to GANs when the hyperpa-

rameters for the network are varied. Despite being used extensively for image generation,

use of GANs in natural language processing has not been so widespread. In this section,

141

these models are adapted to tackle text summarization which involves generating a short

summary for a longer piece of text.

4.3.2.1 Proposed Approach: Text Generation using Generative Adversarial Networks

(TGGAN)

Paraphrase detection algorithm proposed in section 4.1 is used to reduce the redundancy

in the text by removing duplicate paraphrases. The output generated without redundant

content is then passed as an input to GANs. The building blocks for the GAN are GRU,

and Recurrent Neural Networks are used for comparisons. The number of computations

in GRU(s) are significantly lesser than Long Short Term Memory Networks. The steps

inside a GRU can be broken down into:

• Gate for updating zt = σ(Wzxt + Uzht−1)

• Gate for resetting rt = σ(Wrxt + Urht−1)

• New Memory ht = tanh(rt.Uht−1 + Wxt)

• Hidden State ht = (1− zt).ht + zt.ht−1

Output of the paraphrase detection (section 4.1) is passed as an input to the generator, as

shown in Figure 4.23. Inside the GRU, at every step xt is provided as input sequence to

the network. yt from the previous step is also given to the network. The network updates

the currently hidden state ht based on the previously hidden state. Embeddings from the

text are generated to be passed as the input to the generator. The probability distribution

is then calculated by the network over the next element in the sequence. The softmax layer

on top of the hidden layer generates discrete output. The output sequence, parameterized

by θg is denoted as Pθg(y|x). The output of the generator is discrete and hence can’t be

differentiated by the discriminator. TGGAN has an additional summarization function

S, which is a function of x, y, and θg. S is differentiable and hence can be used by the

discriminator. The generated text is passed to the generator for classification. Function S

also back-propagates from the discriminator to the generate. Algorithm 4.5 discusses the

proposed approach for text summarization using paraphrase detection.

142

The discriminator maximizes the probability of differentiating correctly between the out-

put of S on the hidden state versus the input embedding. The loss function used is a

weighted sum of individual loss functions mentioned in equation 4.11 and 4.12.

Lossdiscrimnator = −1/2E(x,y) data[log(D(B(x, y, θg), θd))]− 1/2Ey Pθg
[log(1−D(B(x, y, θg), θd))]

(4.11)

Lossgenerator = −1/2E(x,y) data[log(Pθg)] (4.12)

Once the probability distribution is determined, sentences generated are checked for its

correctness using the following grammar rules. However, these rule vary depending upon

the language.

1. . * (/nn) + . * (/vb) + . * (/jj) + .*

2. . * (/jj) + . * (/to) + . * (/vb) + .*

3. . * (/rb) + . * (/jj) + . * (/nn) + .*

4. . * (/rb) + . * (/in) + . * (/nn) + .*

Figure 4.23: GAN model for text summarization

4.3.2.2 Dataset

• Multiling 2015 Dataset: This dataset contains hundred news articles from English,

Hindi, Malayalam, etc. amongst the 100 documents, 10 news articles pertaining to

143

Algorithm 4.5: Text Summarization using paraphrase detection
input : A document D to be summarized
output: An output Summ, the summary

1 Initialization: pooled_S=[];

2 Preprocessing;
3 Set Sentence, which contains the sentences already processed;
4 for Sentence S in D do
5 for S’ in Sen do
6 if S’ and S are paraphrases then
7 flag = true;

8 if flag == false then
9 Add S to Sen;

10 Sen is provided as the input to GRU;
11 Train the GAN, generate Probability distribution P;
12 s = “";
13 while Summ <required length do
14 while s does not specify grammar rules and len(s) <10 do
15 s.append(predict(s));

16 if s satisfies grammar rules then
17 Add s to Summ;

one topic. The 10 documents are combined into one document to be given as input

to the approach proposed in this work.

• Opinosis Dataset [Ganesan et al. 2010a]: This dataset contains product reviews in

English ranging from GPS navigation system, cars, and iPod. There are 51 docu-

ments pertaining to these user reviews and each review has 100 sentences on an

average.

4.3.2.3 Parameter Settings

In RNN of the proposed model, number of layers is fixed to two. The batch size for RNN

and GRU is 50. The decay rate is 0.9 and learning rate starts at 0.002. Adam optimizer

is used to determine the adaptive learning rate. Training for the generator is paused

when the loss is less than 0.5 and for discriminator when the loss is less than 0.3. The

network is trained for 30 epochs. In Wasserstein GANs, weight clipping is done to make

the network stable. In this network, gradients are clipped at 5. One-sided label smoothing

is performed to avoid gradient explosion.

144

Figure 4.24: Results for Text Generation using Generative Adversarial Networks

Figure 4.25: Example summary for English generated by Proposed approach (TGGAN)

Figure 4.26: Example summary for Hindi generated by Proposed approach (TGGAN)

145

Figure 4.27: Example Summary for Malayalam generated by Proposed approach (TGGAN)

4.3.2.4 Evaluation and Discussion

Results of the Multiling dataset are being referred here as English1 whereas results of

Opinosis dataset are being referred as English2. For evaluation of the summaries, ROUGE

[Lin 2004] is used. For Opinosis dataset, the result for English summaries is significantly

lesser than that of Multiling English summaries as can be seen from Figure 4.24. The

reason for this could be that opiniosis dataset contains more redundant sentences and

as such removing them from the dataset greatly reduces the input text to the GAN. For

Hindi and Malayalam, the precision is higher than that of English. It can be seen from

Figure 4.24, the same pattern between English1 and English2 is observed for recall as well.

The F-measure score for Hindi is the highest which might be because of the language

semantics being in play. For Opinosis dataset, the F-measure score is the lowest (Figure

4.24) amongst all which is a result of low precision and recall. Figure 4.25, 4.26 and 4.27

shows sample summaries generated for English, Hindi, and Malayalam respectively.

4.4 Concluding Remarks

Two different approaches are proposed for each problem (Paraphrase detection, Extrac-

tive text summarization, and Abstractive text summarization) targeted in this chapter. A

feature vector based approach with three features (POS tags, word stems and Soundex

codes) is discussed for paraphrase detection of Hindi language. Levenshtein distance is

used to calculate the similarity measure. The proposed system achieved an accuracy of

146

89.7% and F-measure of 89% for identification of binary class paraphrase detection using

Logistic Regression. For ternary classification, the proposed system gave an accuracy of

71.7% and F-measure of 71.2% using Random Forest classifier. In second proposed ap-

proach for paraphrase detection, a series of experiments with CNN(s) and RNN(s) are

described. Despite little tuning of hyperparameters, a simple CNN with one layer of con-

volution performs on par with the existing Deep Learning Architectures. LSTM(s) and

Bi-LSTM(s) also perform on par with CNN.

The first approach for extractive text summarization outlined present linguistically in-

dependent feature for extracting important text and used a voting based approach to

classify the sentence. A comparison is made with the baselines using RF, SVM, and NB.

The second approach proposed for extractive text summarization using deep learning

where training dataset is built using the algorithm of paraphrase detection such that each

sentence is classified as a summary sentence or not based on the fact that it matches with

the sentence of human-generated gold summary or not. Fully connected CNN is used

to train the model. It is observed that a recall of 0.428 is obtained for English whereas a

recall of 0.846 is obtained for Malayalam.

Evaluation of proposed algorithm ATSSI, using DUC 2002 dataset1 and on the dataset

used by [Ganesan et al. 2010b], outperforms the abstractive summarization algorithms

described by [Lloret & Palomar 2011] and [Ganesan et al. 2010b]. ATSSI is able to lever-

age the sentence word order to form coherent sentences, and hence generated summaries

are concise and able to communicate the information in conjunction with the ability to

remove the redundancy from the input text. No domain knowledge is required for the

proposed algorithm (ATSSI) to work and hence it is adaptable to different types of content

as well. The second approach proposed for abstractive text summarization, a generative

adversarial network is used to perform multilingual text summarization. The results are

at par with existing deep learning frameworks for summarization. Improvements can be

made in terms of hyper-parameter tuning and size of dataset. The input used to train the

network needs to be larger to achieve better results. The current work uses significantly

lesser data to train the network than the other text generation models.

1http://duc.nist.gov/data.html

147

Chapter 5

Spam Detection in Reviews

Opinions influence almost all decisions of humans. The day-to-day choices that we make

in our lives are based on how our peers and friends perceive the world. Be it an orga-

nization or an individual, opinions are an integral part of the decision making process.

The study of emotions, opinions, choices, sentiments and behavioural patterns is known

as opinion mining, also called sentiment analysis. With the growth of social media, or-

ganizations and individuals depend highly on the media content for decision-making.

These online reviews help customers, companies, and vendors to make decisions regard-

ing quality of products and services. Social media allows an individual to post any feed-

back, reviews or comments regarding a product, service or organization anonymously.

Due to this anonymity, people with hidden motives or malicious intentions post decep-

tive opinions or feedback to misguide or wrongly influence people on social media. Such

activities are called opinion spamming [Jindal & Liu 2008]. Such content on social media

falls into the category of opinion spam, and the people are called as opinion spammers. It

is thus essential to address the problem of review spam on social media.The need of the

hour is to have a technique capable of analyzing the truthfulness of reviews to assist with

the decision-making process or for marketing intelligence.

Product reviews are a progressive way of generating online consumer content as they offer

valuable insight into user preferences and requirements. The World Wide Web contains a

vast amount of user reviews and opinions on various products expressed in newsgroups

and sites. As a result, opinion mining has recieved increasing attention over the last few

decades [Jindal & Liu 2008]. The e-commerce websites have made it a practice to let con-

148

sumers voice their opinions and publish reviews for various products on their websites

and mobile apps. These reviews give customers the analytical information to broaden

their scope with more competitors who are providing the same product/services [Algur

et al. 2011]. Product manufacturers get to know consumer preferences/interests, as well as

the positive/negative attributes of their products and that of the competitors and hence,

can take necessary action by which profits could be maximized. [Dave et al. 2003].

Several researchers have studied the problem of deceptive spam reviews [Feng et al. 2012b],

[Li et al. 2014]. Various review filtering systems have been developed and are being used

by companies such as Yelp and Dianping to detect low quality and fake reviews on their

product pages. These systems help alleviate the negative impact of fake reviews. Many

spammers work collectively to promote or demote a set of target products so that they

can work without leaving a trail [Li et al. 2015]. Experiments of [Ott et al. 2011] suggested

that an average accuracy of detecting spam by three human judges is 57.33% and hence,

the research for detection of deceptive opinion spam is necessary and meaningful. The

problem of spam is troublesome and poses a security threat as well. However, it is chal-

lenging to filter out a spam review or capture spammer behaviour, even if done manually.

The objective of this chapter is to distinguish whether a review is a spam or truth (not

spam). The task can be transformed into a binary class classification problem. In tradi-

tional machine learning techniques, feature engineering is essential. However, the inher-

ent law of data from a semantic perspective can hardly be learned from it. Deep learning

refers to a set of algorithms that attempt to learn in multiple levels, corresponding to dif-

ferent levels of abstraction. It is nothing but a very large or deep neural network which

automatically learns feature hierarchies with features from higher levels of the hierarchy

formed by the composition of lower level features. Deep learning algorithms have per-

formed well on various natural language processing tasks such as paraphrase detection

[Huang 2011b], POS tagging [Popov 2016], language modelling [Sutskever et al. 2014]

and sentiment analysis [Socher et al. 2013]. This chapter presents an experimental study

and its analysis on variants of sequential models based on deep network architecture. It

also compares the proposed approach, and its variants explained in section 5.1 to that

of the baseline approach (discussed in section 5.2) based on traditional machine learning

techniques to analyze the effectiveness of the proposed approach.

149

5.1 Composite Sequential Modeling for Identifying Fake Reviews

Proposed approach composite sequential modeling for identifying fake reviews, com-

prises of multiple phases as shown in Figure 5.1. In pre-processing phase, the raw reviews

are taken and converted into lower case. The vocabulary of the entire data set is extracted

from the reviews, and overall frequency of each word is calculated. A sorted dictionary

of all the words along with their frequencies is generated, and the most frequent word

is labelled 1, the second most frequent word is labelled 2 and so on. Words in the raw

reviews are replaced by generated labels correspondingly, and in this way, each review is

encoded as a sequence of word indexes (integers). Custom vectorization is used instead

of pretrained vectors, to create context specific word embedding.

In sequential models phase, different sequential models are generated for classification

Figure 5.1: Block Diagram for Proposed Approach

of the reviews using architectures explained in section 5.1.1, 5.1.2, 5.1.3. The first layer of

each model is an embedding layer, which converts positive integers (indexes) into dense

vectors of fixed size. Word embeddings help in associating a numeric vector to every word

in a dictionary. Ideally, words with similar semantic meaning are closer in the embedding

space. The embedding layer converts each word encoding (index) to a vector in embed-

ding space. The vectors are initialized randomly and then optimized iteratively. The input

parameters for embedding layers are input_dim, output_dim and dropout. The input di-

mension is the size of the vocabulary (20,000 for all the models implemented), and the

output dimension is the dimension of the dense embedding vectors (512 for all the mod-

els). Dropout is varied between 0 and 1 (0.2 for this specific model), which corresponds

to the fraction of the embeddings to drop.

150

5.1.1 Parameter setting for Recurrent Neural Network (RNN)

The parameters set for the RNN layer of the proposed model are dimensionality of the

output layer (256 for this layer), tanh as the activation function and the dropout (fraction of

units to drop for the linear transformation of the inputs) as well as the recurrent_dropout

(fraction of units to drop for the linear transformation of the recurrent state) set at 0.2.

5.1.2 Parameter setting for Long Short Term Memory (LSTM)

The parameters of the LSTM layer are the dimensionality of the output layer (kept at

256), activation function (tanh), the recurrent_activation function (hard_sigmoid), dropout

as well as recurrent_dropout (kept at 0.2).

5.1.3 Parameter setting for Convolutional Neural Network (CNN)

While building CNN architecture, some of the parameters to choose from are input repre-

sentations, i.e. embedding layer, number and size of convolution filters, pooling layer (max

or average) and activation functions (tanh or ReLU). The convolution layer is the primary

building block of a CNN which comprises of a set of independent filters. The pooling

layer progressively reduces the spatial size of the representation to reduce the number of

parameters and computation in the network and operates on each feature map indepen-

dently. After the activation function layer, CNN usually has a fully connected layer at the

end in which neurons in the layer have full connections to all activation in the previous

layer. CNN(s) are usually very fast and give reasonable results for NLP task. 1D Convolu-

tion layer is used, which applies the convolution operator for filtering neighbourhoods of

one-dimensional input. The number of convolution kernels or dimensionality of output

is set as 250, the kernel_size or the length of the 1D Convolution window is kept at 3 with

the activation function ReLu and a stride of 1. There was no padding applied to the input.

The next layer is a GlobalMaxPooling1D layer which does the max pooling operation. A

dropout layer with value 0.2 is added to prevent over-fitting.

In each of the model discussed in section 5.1.3, 5.1.2, 5.1.1, the penultimate layer is a Dense

layer, which is an entirely connected neural network with the output as the corresponding

label of the review. The last layer of each model is an activation layer that applies an acti-

151

vation function (‘Sigmoid’ in the proposed models) to the output. After generation of the

models, they are compiled using an optimizer (‘adam’, for this model) and a loss function

(binary_crossentropy for the implemented model) with an objective that the model tries to

minimize. The optimizer ‘adam’ uses 0.001 as the default learning rate. After compilation,

the model is trained in a batch size of 32. Finally, models are evaluated, batch by batch

for the loss and model accuracy.

5.2 Baseline Approach

Baseline approach is based on traditional machine learning techniques for comparing the

results obtained using the proposed approach. One of the key ingredients for traditional

machine learning techniques to work is the extraction of manually engineered features,

by which the model tries to learn and predict class labels. [Chen et al. 2015] uses shal-

low syntactic features (Bag of words, POS-n-gram, punctuation, hotel name), discourse

parsing features and sentiment features to build the classification model. The baseline

model chosen to compare proposed work implements the shallow features and senti-

ment features along with some more additional features such as Bag of uni-grams and

bi-grams for more contextual information, length of review and subjectivity of the review.

Length of a review and subjectivity are chosen based on some heuristics which suggest

that truthful reviews are usually long and descriptive as compared to spam ones which

are comparatively more vaguer [Li et al. 2014].

5.2.1 Features

1. Bag of Words (F1):

CountVectorizer [Pedregosa et al. 2011b] is used to convert each review into its corre-

sponding vector for frequencies of each word in the review.

2. Punctuation (F2):

A binary feature to indicate punctuation (‘?’ or ‘!’) in the review.

3. POS-n-gram (F3):

POS uni-gram and POS bi-gram tags are used as they help maintain the structure of

152

the sentence.

4. Bag Of Uni-grams and Bi-grams (F4):

Instead of the bag of words, the bag of uni-grams and bi-grams are considered as

features. CountVectorizer [Pedregosa et al. 2011b] is used for generating the bag of

uni-grams and bi-grams.

5. Hotel_Name (F5):

This feature indicates whether Hotel_Name appears in the first line of the review.

6. Length of the Review (F6):

An integer indicating the length (number of words) of each review.

7. Subjectivity (F7):

TextBlob [Pedregosa et al. 2011b] is used to calculate subjectivity of each review. It

returns a float value [0.0, 1.0]. 0.0 means very objective and 1.0 means very subjec-

tive.

8. Sentiment Words (F8):

Three separate features corresponding to sentiment words are extracted : positive

sentiment words, negative sentiment words and total sentiment words. The average

number of sentiment words used in the review is considered.

9. Polarity of the review (F9):

The range of the polarity is [0.0, 1.0] where 0.0 means the review is entirely negative

and 1.0 means highly positive review.

The feature vector is generated using features (F1 to F9) extracted. Classification tech-

niques such as Logistic Regression, Naive Bayes and Support Vector Machine are used to

build the model.

5.3 Experiments and Results

In this section, data set used for experiments is described along with the results obtained.

The baseline approach is used to evaluate and compare the results obtained by the pro-

posed approach. All the proposed sequential models, as well as the model for the baseline

153

approach, are coded in python using machine learning libraries such as scikit-learn [Pe-

dregosa et al. 2011a] and keras [Chollet et al. 2015].

5.3.1 Data Set Description

The data set used for experimentation is the Deceptive Opinion Spam Corpus v1.4 [Ott

et al. 2011]. The corpus contains 1600 truthful and deceptive hotel reviews of 20 Chicago

hotels. The data set consists of the review, polarity of review along with the label of the

review (0 for not spam and 1 for spam). There are 400 deceptive and 400 truthful reviews

of positive polarity. Similarly, there are 400 deceptive and 400 truthful reviews of negative

polarity. The best state of art accuracy for the data set "Deceptive Opinion Spam Corpus

v1.4 is 89.5% which is implemented by [Chen et al. 2015]. Th best model combines Bag of

Words, syntactic features and discourse parsing features.

5.3.2 Evaluation & Discussion

This section discusses the evaluation of the proposed approach and its variants. Dataset

described in Section 5.3.1 has been split into 80:20 ratio for training and testing respec-

tively.

5.3.2.1 Results for Baseline Approach

Features play an important role in traditional machine learning techniques and hence, in-

dividual features are evaluated using Logistic Regression model. It can be observed from

Figure 5.2, the bag of words feature yields the maximum accuracy of 86.25%, followed

by Hotel_Name (64.58%). The rest of the features gives accuracy in the range of 45-55%

as depicted in Figure 5.2. F-measure for the bag of words is 85.96%. Hotel_Name feature

gave F-measure of 63.52%. Rest of the features yields a result in the interval of 43-60%

for F-measure. The similar trend is observed for precision. However, a slightly different

trend observed for recall values as shown in Figure 5.2. The maximum recall is obtained

for the bag of words (87.83%). Positive polarity feature yielded the second-best value of

recall (82.61%) followed by the length of review (73.04%). The rest of the features are in

the interval 40-65% for recall. Overall, the bag of words features obtained the best results

154

using Logistic Regression. This may be because the data set is engineered for spam detec-

tion and contains words that majorly contribute towards the improvement of the model.

The result for the combined feature vector that is generated using the individual features

is evaluated using three different classifiers (Support Vector Machine, Naive Bayes, and

Logistic Regression) as shown in Figure 5.3. Logistic Regression gives the best results

concerning accuracy (87%), F-measure (86.58%), precision (86.2%) and recall (86.96%),

followed closely by Naive Bayes which gave an accuracy and F-measure of 73%, precision

70% and recall 77%. The results obtained by logistic regression are better than the others

because spam detection is a binary classification problem. SVM(s) are usually more use-

ful in the case of non-linear classification since they use kernel trick. The results range in

53-56% using SVM.

Figure 5.2: Results obtained at Feature Level

5.3.2.2 Results for Proposed Approach

The accuracy obtained for different variant sequential models based on LSTM, RNN, and

CNN are shown in Table 5.1, 5.2 and 5.3. Each model is evaluated using different number

of layers as a varying parameter.

Table 5.1, 5.2 and 5.3 discuss results obtained for LSTM, RNN, and CNN respectively for

1, 2 & 3 layers. In all the three cases, the best results are obtained in the case of a single

155

Figure 5.3: Comparison of different techniques

layer model as shown in Figure 5.4. CNN gave an accuracy of 81%, and LSTM gave 80%

accuracy when a single layer is used whereas RNN gave an accuracy of 59% for a single

layer. LSTM performs better than RNN because it considers long-term dependencies

as well. CNN helps in extracting position invariant features whereas RNN and LSTM

are useful for modelling units in sequence. Since the task at hand is to detect spam

reviews, pattern detection is essential. LSTM preserves long-term structure whereas CNN

is good at classification. Hence, CNN gives slightly better results as compared to LSTM.

The results show that increasing the number of layers of a particular model reduces the

accuracy of the model in case of spam detection.

While implementing a two-layer model where each layer is either RNN, LSTM or CNN,

the best results are obtained in the model where the combination of LSTM and CNN is

implemented. Table 5.4 shows the results for two-layered models, where 1 represents the

first layer, 2 represents the second layer, and 0 represents no layer. It can be observed that

change in the placement of layer in case of LSTM and CNN model affected the results. The

accuracy of the model with the first layer as LSTM and the second layer as CNN is 76.25%

whereas it is 76.67% when the first layer is CNN layer and the second layer is LSTM. The

156

Figure 5.4: Comparison of layered models of different architecture

precision, recall, and F-measure for LSTM-CNN network is 75.65% when CNN is the first

layer whereas precision is 71.32%, recall 84.35% and F-measure 77.29% when LSTM is the

first layer. The overall accuracy of the model is comparatively less when a layer of RNN

is introduced in the model because RNN is a less efficient deep learning algorithm as

compared to LSTM. The least accuracy is obtained in the combination of RNN and LSTM

(69% and 74%). CNN is a better network architecture for text classification as discussed

above and hence, poor results are obtained when CNN layer is missing in the architecture.

When the first layer is LSTM, better results are obtained with precision of 71%, recall of

76.52% and F-measure of 73.64%. This is due to the fact that LSTM performs better than

RNN because of long term dependencies. As second layer takes input from the first layer

in a neural network, the more efficient the first layer is, better the feature extraction and

hence, improved results of the overall network.

Table 5.1: Results for different model of LSTM

Model Accuracy Precision Recall F-Measure
1 Layer 0.79 0.77 0.8 0.78
2 Layers 0.74 0.71 0.79 0.75
3 Layers 0.73 0.68 0.87 0.76

In case of three-layered model variant, different combinations are build and evaluated

157

Table 5.2: Results for different model of RNN

Model Accuracy Precision Recall F-Measure
1 Layer 0.59 0.57 0.62 0.59
2 Layers 0.53 0.5 0.59 0.54
3 Layers 0.61 0.58 0.63 0.6

Table 5.3: Results for different model of CNN

Model Accuracy Precision Recall F-Measure
1 Layer 0.81 0.78 0.84 0.81
2 Layers 0.7 0.66 0.8 0.72
3 Layers 0.69 0.65 0.76 0.7

as shown in Table 5.5, where 1st layer represents that the particular model is used as a 1st

layer of the sequential model. 2nd layer and 3rd layer depict the respective positions of a

layer in the model. The best result is obtained when CNN is used as the first layer followed

by RNN and LSTM (78.75%). Further, an accuracy of 74.58% is obtained when RNN is

used as the first layer, followed by LSTM and CNN. A common trend is observed that

best results are obtained when CNN is kept as a first layer. This is because CNN performs

better feature extraction than LSTM or RNN. Moreover, worst accuracy is obtained when

the first layer is LSTM, followed by RNN and CNN layer (57.5%). Output dimensions

of embedding layer are also varied to evaluate the effect on accuracy. Best results are

obtained in the proposed approach when the output dimensions are 512 (81.25%). As

the number of dimensions increases in the embedding layer, the accuracy of the neural

network increases, as shown in Table 5.6. More the dimensions, better is the representation

of the reviews in vector space, and hence the accuracy increases with an increase in the

number of dimensions. However, change in accuracy became near constant after 512

dimensions. Figure 5.5 shows the ROC curve for the best results obtained in the proposed

approach (81.25% accuracy for single-layer CNN model). The AUC or Area under the

ROC Curve is shown in Figure 5.5 is 0.8137.

5.3.2.3 Comparison of Proposed Approach with Baseline Approach

The baseline approach with the variant of Logistic Regression as machine learning tech-

nique gave a maximum accuracy of 87% for the hotel reviews dataset whereas proposed

158

Table 5.4: Results for two-layered model

LSTM SimpleRNN CNN Accuracy Precision Recall F-Measure
0 1 2 0.75 0.74 0.76 0.75
0 2 1 0.75 0.71 0.82 0.76
1 0 2 0.76 0.71 0.84 0.77
1 2 0 0.74 0.71 0.77 0.74
2 0 1 0.77 0.76 0.76 0.76
2 1 0 0.69 0.68 0.68 0.68

Table 5.5: Results for three-layered model

LSTM RNN CNN Accuracy Precision Recall F-Measure
1st Layer 2nd Layer 3rd Layer 0.575 0.5436 0.7044 0.6136
1st Layer 3rd Layer 2nd Layer 0.5792 0.5603 0.5652 0.5627
2nd Layer 1st Layer 3rd Layer 0.7167 0.688 0.7478 0.7167
2nd Layer 3rd Layer 1st Layer 0.7333 0.6946 0.7913 0.7398
3rd Layer 1st Layer 2nd Layer 0.5917 0.5714 0.5913 0.5812
3rd Layer 2nd Layer 1st Layer 0.7875 0.75 0.8348 0.7901

Table 5.6: Result for different model of CNN

Dimensions Accuracy Precision Recall F-Measure
512 0.8125 0.7822 0.8435 0.8117
256 0.7917 0.748 0.8522 0.7967
128 0.7917 0.77 0.7913 0.7844
64 0.7792 0.7384 0.8347 0.7837
32 0.7625 0.7101 0.8522 0.7747
16 0.7083 0.6552 0.8261 0.7307

approach gave a maximum accuracy of 81.25% which is comparable to traditional ma-

chine learning algorithms, if not better. Deep learning algorithms give much better results

with a huge amount of data. Since the data considered for all the above-obtained results

is just 1600 reviews, which is very less for a deep learning model, the results obtained by

proposed approach didn’t surpass the baseline approach.

5.4 Concluding Remarks

The proposed approach suggests that deep learning sequential models perform compara-

bly and are well suited to address the problem of review spam detection. A single layer

LSTM, CNN or RNN model outperforms multi-layer sequential models of LSTM, CNN

or RNN. Single-layer LSTM model and single-layer CNN model give 79% and 81.25%

159

Figure 5.5: ROC Curve for single-layer CNN

accuracy respectively whereas single-layer RNN model gives an accuracy of 59%. When

a combination of LSTM, CNN or RNN is used in a two-layered sequential model, the

CNN-LSTM combination gives the best results (77% accuracy). An accuracy of 78.75%

was obtained when the first layer of a three-layered sequential model implemented CNN,

second layer RNN followed by LSTM in the last layer. For the CNN model, results have

improved with an increase in the number of output dimensions of the embedding layer

in the deep network model. Larger networks having more number of dimensions help

capture information better and hence yield better results. An accuracy of 81.25% was

obtained when the number of output dimensions of the embedding layer was 512. A

comparison is drawn between traditional machine learning algorithms and deep learning

algorithms for spam review classification. Baseline approach resulted in an accuracy of

87% using Logistic Regression. The results show that traditional machine learning model

gives a higher accuracy for small sized data. However, the deep learning models are

not far behind. With more massive datasets, deep learning techniques are likely to sur-

pass traditional machine learning algorithms. In future work, the aim is to implement

these sequential deep learning models on more massive datasets and then compare the

performance.

160

Chapter 6

Sarcasm Detection

“Sarcasm is the use of words that mean the opposite of what you really want to say

especially to insult someone, to show irritation, or to be funny” as indicated by [Merriam-

Webster 1983]. Automatic sarcasm detection refers to computational ways to detect sar-

casm in text. A computer needs to make sense of what you implied inverse of what you

just said to identify Sarcasm. The onset of Web applications, such as small-scale blogging

sites, forums and social networking sites have given clients a platform to express their

reviews, comments, recommendations, ratings and feedback. These applications have

given the user a stage to express anything they feel about any politician or product or,

people or event. This data if mined can be of great use to companies, politicians, service

providers, social psychologists, analysts and researchers. Usually, companies might want

to know if a user liked their product or not. Sentiment analysis tools perform this task for

a company, but it may provide the company with wrong information, if it cannot analyze

sarcasm in the review. Hence, sarcasm is a challenge for sentiment analysis tools. This

motivates to work on sarcasm detection, which can be used in conjunction with sentiment

analysis tool to give the company a correct idea about the response from the users for its

product. If a system can reliably identify sarcasm and irony in the text to infer the actual

communication intention of the author then it can improve the performance of many nat-

ural language processing systems including summarization, sentiment analysis, opinion

mining and advertising.

Sarcasm is defined as the use of remarks that apparently mean the opposite of what they

say, made to hurt someone’s feelings or to criticize something humorously. Sentiment

161

analysis and related fields of study are continually gaining popularity as it captures the

human sentiment underlying in their opinions, reviews for various purposes like opinion

mining for products and polling for a global phenomenon. This creates a need for cor-

rectly determining the hidden sentiment in the text. Thus, sarcasm detection is a crucial

key in this process due to its property of showcasing a false positive sentiment behind a

true negative sentiment and vice-versa.

In the speech, sarcasm is quite indicative as it involves tone, body language and gestures,

which makes its detection relatively easy. However, sarcasm in text is restrictive and can-

not encompass such a range of auxiliary features. Thus, sarcasm detection is challenging

task in the field of NLP. This is apparent from the results reported by the survey [Joshi

et al. 2016a].

Often, knowledge of the universal truth on a given topic is insufficient to detect sarcasm,

since the text may refer to some specific events to express sarcasm. The same sentence can

be sarcastic or not sarcastic depending on the given context. For example, the sentence

"You have been working hard, I see." is difficult to be classified as sarcastic or not sarcastic

without provision of an explicit context. Apart from this, the use of phrases "working

hard" and "I see" express semantic contrast and points to the presence of sarcasm. Thus,

quite often, one needs a considerable amount of facts and contextual knowledge to draw

such a conclusion. This makes it quite difficult for even humans to sense sarcasm.

The high importance of sarcasm detection has motivated researchers to work on the

problem of sarcasm detection. Some earliest work in this field is done by [Tepperman

et al. 2006]. He dealt with speech and text-related features. Sarcasm detection from text

now has been extended to tweets and reviews. Researchers have used several techniques

for sarcasm detection such as rule-based, supervised and semi-supervised. This synergy

has resulted in interesting innovations for automatic sarcasm detection. Pattern based

features [Tsur et al. 2010] are extracted from the text in conjunction with lexical features

for identifying sarcasm in text.

This chapter discusses three proposed solutions for sarcasm detection. The first approach

presented in section 6.1 models the problem of sarcasm detection as a classification task

and uses traditional machine learning techniques. Second approach presented in section

6.2 is based on code mixed data and uses deep learning technique to identify the sarcasm

162

in code mixed text of English and Indian languages.

6.1 Sarcasm Detection using Machine Learning Techniques

In this section, an approach based on traditional machine learning technique is explained.

Manually engineered features are elaborated in section 6.1.3. Further, different variations

and combinations of these features are experimented to identify the best combination of

features in section 6.1.6. The approach observes the results by combining existing features

in state of the art and how they effect the overall results of sarcasm detection.

6.1.1 Dataset Description

The dataset used for training consists of 1,254 Amazon reviews out of which 437 are ironic,

and 817 are non-ironic. It has been acquired by [Filatova 2012] using the crowdsourcing

platform amazon mechanical turk. The process of acquiring data included following

steps. In the first step, employers are asked to find pairs of reviews on the same product

so that one of the reviews is sarcastic, but the other one is not. After that they have to

submit the ID of both reviews, and in the case of an ironic review, they have to provide

the fragment conveying the irony. In the second step, five additional workers annotated

each collected review. Annotated review remained in the corpus if three of the five new

annotators concurred with the initial category, i.e., ironic or non-ironic. This dataset is

most suitable to the problem statement defined above because each review in this corpus

is at least three sentences long.

6.1.2 Data Pre-processing

In pre-processing step, review is tokenized into sentences and sentences are tokenized

into words. Treebank Word Tokenizer was used to tokenize sentences to words and Punkt

Tokenizer was used to tokenize reviews into sentences. These tokenizers are present in

NLTK [Bird & Loper 2004]. With each word, a POS tag is attached. The sentiment is also

attached to each word which indicated the word’s polarity which can be positive, negative

or neutral. Polarity lexicon by [Hu & Liu 2004] which consists of about 6800 words is used

to determine the polarity of words. A sentiment score is assigned to each sentence using

163

python library [Li et al. 2017b]. Therefore, each review is considered as an object with

attributes like words, bi-grams and sentences. Each word has polarity and POS tag. Each

sentence has sentiment score associated with it.

6.1.3 Feature Extraction

Following features are extracted to train the model:

1. Star Rating: With every review, a star rating is attached which signifies how satisfied

is the user with the product. The rating is between 1 and 5. Dataset already contains

the star rating for each review.

2. Star Polarity Discrepancy: If the rating given by the user is high, i.e. 4 or 5 but

the sentiment of the review is negative or vice versa. 1 and 0 is appended for the

presence and absence of this feature respectively.

3. Bag of Words: A dictionary is built which contains all the words present in reviews

which are used for training. A feature vector for each review is then built using this

dictionary. For all the words present in the dictionary, if that word is present in a

given review, 1 is added to feature vector else 0 is added.

4. Bag of bi-grams: A dictionary is built which consists of all the bi-grams present in

reviews which are used for training. A feature vector for each review is then built

using this dictionary. For all the bi-grams present in the dictionary if that bi-gram

is present in a given review 1 is added to feature vector else 0 is added.

5. Hyperbole: It is an extreme exaggeration used to make a point. Presence of it in

a sentence indicates that the sentence can be sarcastic. Therefore if a sequence of

three positive or three negative words was found in a sentence of a review, then 1 is

added to feature vector else 0 is added.

6. Scare Quotes: If two consecutive adjectives or nouns or adverbs having a positive or

negative polarity occurs in quotations in a sentence then 1 is added to feature vector

else 0 is added. It is also considered as exaggeration and an indicator of sarcasm.

164

7. Ellipsis plus Punctuation: When an ellipsis is followed by two or more exclamation

marks or question marks or combination of them in a review then 1 is added to

feature vector else 0 is added.

8. N-gram plus punctuation: If a span of up-to four positive or four negative words oc-

cur in a row followed by punctuation symbols like an exclamation mark or question

mark or combination of both then, 1 is added to feature vector else 0 is added.

9. Emoticons: To extract this feature, a list of emoticons is created. Three annotators

are asked to label these emoticons as positive, negative or sarcastic. Final label is

decided based on the majority count. If an emoticon expressing positive sentiment

occurred in a sentence but the sentiment of the sentence is negative or vice versa

then 1 is added to feature vector else 0 is added. If sentence contained any sarcastic

emoticon, then 1 is added indicating the presence of sarcasm.

10. Interjections: For extracting this feature, a list containing 155 interjections is built.

Three annotators are asked to label these interjections as positive, negative or neu-

tral. Final label is decided based on the majority count. If an interjection expressing

positive sentiment occurred in a sentence but the sentiment of the sentence was

negative or vice versa then 1 is added indicating the presence of sarcasm.

11. Capitalization: If a word is written in upper case in a sentence then there is a high

probability that sentence can be sarcastic and hence the number of words present in

the upper case in a review are taken as a feature. The letter ‘I’ is not considered as

upper case word as ‘I’ is always capitalized.

12. Pattern based features: Words whose corpus frequency is less than 2000 words per

million are considered as low frequency words, also called as Content Word (CW).

Remaining words are considered as high frequency words. Punctuation symbols are

also considered as high frequency words. In the review, a content word is replaced

by ‘CW’. After this classification, patterns are extracted from reviews where each

pattern must begin and end with a high frequency word, and there must be one

content word in between them. Patterns of length 3, 4, 5, 6 and 7 are extracted. Each

review is then matched with all the patterns, and thus a feature vector is made for

165

each review. Pattern matching assigns a score to each review using the following:

1 : (Exact match) all the pattern components match

alpha : (Sparse match) same as an exact match, but additional non matching words

can be inserted between pattern components.

gamma * n/N : (Incomplete match) only n >1 of N pattern components appears in

the sentence, while some non-matching words can be inserted in-between.

0 : No match

alpha and gamma is taken as 0.1. As the patterns are relatively long, exact matches

are uncommon, and taking advantage of partial matches allows us to reduce the

sparsity of the feature vectors significantly. For sentence “Brisbat apparently does

not care much about product quality or customer support”, the value for “Brisbat

CW does not” would be 1 (exact match); for “Brisbat CW not” would be 0.1 (sparse

match due to insertion of ‘does’); and for “Brisbat CW CW does not” would be

0.14/5 = 0.08

6.1.4 Classification

Existing approaches for sarcasm detection have mostly used following traditional machine

learning techniques and hence, these techniques are used to observe the result.

1. Support Vector Machine: It is a supervised learning technique for classification. As

number of dimensions or size of the feature vector is significant in the problem of

the sarcasm classification proposed algorithm has been used as it is effective in high

dimensional spaces. It is additionally, memory efficient as it uses a subset of training

points in the decision function.

2. Logistic Regression: It is a linear model for classification. As the proposed model

contains two classes, binary logistic model is used which estimates the probability

of a binary response based on one or more features.

3. Naive Bayes: Every pair of the feature is assumed to be independent in this tech-

nique. This is the primary reason for lower results than that of other two classifica-

tion techniques as shown in section 6.1.6

166

6.1.5 Algorithm: Sarcasm Detection using Machine learning Techniques

The dataset contains a file for each review, which contains the review text and stars given

by the user to the product. For each review, a review object is created which has properties

like star rating, text, polarity and array of sentences. Each sentence has attributes like

sentiment and array of words. Each word has attributes like polarity and POS tag. Bag

of words dictionary is formed which store all the distinct words present in the reviews.

Moreover, a bag of the bi-grams dictionary is formed which stores all the distinct bi-grams

present in the reviews. All the features mentioned in section 6.1.3 are extracted, and their

return value is appended to the array for each review. The classifier takes the feature

vector and true label of respective reviews to build a model. This model is then used to

classify other reviews. Algorithm 6.1 discusses the details of the approach.

Algorithm 6.1: Algorithm for identifying Sarcasm using Ma-
chine Learning Technique

input : training array T, test array Test
output: Array of 0’s and 1’s where 0 means non-sarcastic and 1

means sarcastic
1 Initialization label=[],feature=[], true_label=[], test_feature=[],

feature_name=[list of features mentioned in section 6.1.3];

2 for i = 0 to T.length do
3 label.append(T[i].label);
4 feature_list=[];
5 for j = 0 to f eature_name.length do
6 feature_list.append(extract(T[i],feature_name[j]));

7 feature.append(feature_list);

8 for i = 0 to Test.length do
9 true_label.append(T[i].label);

10 feature_list=[];
11 for j = 0 to f eature_name.length do
12 feature_list.append(extract(T[i],feature_name[j]));

13 test_feature.append(feature_list);

14 clf=Classfier();
15 clf.fit(feature,label);
16 prediction=clf.predict(test_feature);
17 return prediction;

167

6.1.6 Experiments & Results

For training 375 sarcastic and 375 non sarcastic reviews are used. They are randomly

picked from a corpus of 817 non sarcastic reviews and 441 sarcastic reviews. To remove

the bias, an equal number of sarcastic and non-sarcastic sentences are taken for training.

Results are obtained by testing on 66 sarcastic and 66 non-sarcastic reviews. F-measure

achieved using different classifiers on different features has been shown in Figure 6.1.

It can be observed that highest F-measure of 0.8 is given by bag of words feature using

logistic regression. The reason for this could be the fact that corpus is specially built for

sarcasm detection and contains words that are oftenly used for sarcasm. Figure 6.2 shows

the F-measure achieved using different classifiers on various combination of features.

Highest F-measure of 0.84 is given by all the features together excluding the star rate and

pattern feature by logistic regression. The results given by naive bayes is lower compared

to logistic regression and linear SVM because naive bayes has a higher bias but lower

variance. In case of bag of words or combination of features, the feature set is large and

sparse. Naive bayes technique counts the features that are correlated with each other

because it assumes that each p(x|y) event is independent when they are not. Logistic

regression does a better job by naturally splitting the difference among these correlated

features.

Table 6.1: Result comparison with baseline [Buschmeier et al. 2014]

F-measure F-measure (Baseline)
Interjections 0.62 0.01
Emoticons 0.47 0
NegNGP 0.33 0.01
Ellipsis+Punc 0.33 0.01
POSSQuotes 0.5 0.02
NegHyper 0.35 0
Imbalance 0.57 0.05
StarRates 0.39 0.72
BOW 0.8 0.69

168

Figure 6.1: Feature comparison of different classification Techniques

6.1.6.1 Performance Analysis

Apart from bag of words feature other features like bag of bi-grams and patterns also gives F-

measure of 0.77 and 0.7 respectively which is comparable to the best F-measure achieved.

These results show that there is a specific vocabulary associated with sarcastic sentences

and a pattern exists which could help in identifying sarcasm. F-measure of 0.62 is

achieved by interjection feature which indicates that customers or users use interjections

to express sarcasm. Star imbalance gave the F-measure of 0.57 which indicates that other

information about a product like star rating can be useful in identifying sarcastic sen-

tences. Other features resulted F-measure value less than 0.5. F-measure is also calculated

for individual features. Features which gave a high F-measure were chosen and then used

a combination of them to see if the performance of classifier increases. On combining the

bag of words, bag of bi-grams and interjections, F-measure increased to 0.82. When a

combination of all the features is used, F-measure achieved is 0.7. This showed that some

features need to be removed, to get better performance. On removing pattern based fea-

ture and star rating feature, highest F-measure of 0.84 is achieved. Table 6.1 shows the

comparison between results achieved by proposed approach and [Buschmeier et al. 2014].

169

Figure 6.2: Comparison of different feature combination using various classifiers

The work in [Buschmeier et al. 2014] achieved the best F-measure of 0.74 on a combina-

tion of all features including star rating. However, their combination of all features did

not include the features such as patterns, bag of bi-grams, capitalization and interjections

which are included in proposed approach.

6.2 Sarcasm Detection for Monolingual & Code Mix Text

Substantial research exists for detection of sarcasm in languages, particularly English,

while the native languages such as Indian languages have been neglected. This ignorance

directly arises from the lack of annotated corpus in the respective language or from the

fact that it is not being used particularly for digital communication. However, with the ad-

vent of social media, these native languages are being used more often in a mixed fashion

with English resulting in a code-mix genre of language. The approach proposed in this

section primarily aims to identify sarcasm in non-monolingual, code-mix language which

comprises of more than one language. To facilitate this, a code-mixed, bilingual corpus

of English-Hindi (En-Hi) languages has been created as discussed in section 6.2.1. Addi-

tionally, techniques for sarcasm detection in monolingual languages are also explored.

170

Existing research on sarcasm detection have primarily focused on machine learning tech-

niques with feature engineering performed using n-grams based approach [Tsur et al. 2010],

unsupervised pattern mining approach [Maynard & Greenwood 2014], uni-grams and

emoticons based approach [Carvalho et al. 2009] amongst others.

Instead, proposed approach uses a deep learning technique that learns sarcasm features

automatically from a corpus using a deep neural network. This methodology uses un-

supervised training of the corpus to propel the supervised classification task for sarcasm

detection. This classification problem is binary with the text being categorized as sarcastic

or non-sarcastic. The main characterstics of the proposed work are as follows:

1. The proposed work detects sarcasm in code-mix genre of language, which is evolv-

ing as the primary language being used by masses for day-to-day communication.

2. A variety of neural net architecture for the classification model are explored to de-

termine the best performing model for the task of sarcasm detection.

3. The use of pre-trained models for feature extraction is another attribute of this work.

In computer vision, for classification task, images are used as direct input to the

network (in the form of pixels). Such a procedure cannot work in the context of

natural language processing. Hence, pre-trained models are used in the proposed

work.

6.2.1 Dataset Description

Code Mixing is a very common phenomenon in social media text. However, to detect

such data in social media has been a current field of research for quite some time now.

Researches have worked on the generation of such text to aid the training of automated

tools to analyze code mix text [Gupta et al. 2012] [Bhatia & Ritchie 2016] [Prabhu et al. 2016]

[Banerjee et al. 2016c]. [Bali et al. 2014] worked on Hindi English language pair and had

an interesting observation where they found out, most of the code mixing is occuring for

the words tagged as nouns and verbs. However, there were certain exceptions to that.

Similarly, few other works in literature such as work by [Gupta et al. 2016b], [Choudhury

et al. 2007] and [Gupta et al. 2012] suggest the same. Hence, data for code mix sarcasm

detection was synthesized considering the exceptions, and appropriate nouns and verbs

171

were translated. Moreover, the synthetic data created was checked by human annotators

to verify if the sentence seemed appropriate or not. In case of disagreement, the sentence

was removed. This was important because there was no such data that existed beforehand

in bulk for the training purpose of deep net models. Since deep learning approach for

classification learns input features on its own, it demands a relatively large dataset. Hence,

for the creation of the code-mixed dataset, most of the English(En) based annotated corpus

are used. The corpora used are as follows:

• ironicQuotes.source1: A dataset collected by Antonio Reyes, it consists of 1,002 sar-

castic quotes in English.

• Sarcasm Corpus v1 [Oraby et al. 2016]: It is a subset of the Internet Argument Corpus

(IAC), which is a corpus for research in the political debate on internet forums, in-

cluding response text from quote-response pairs annotated for sarcasm. The dataset

consists of 1,993 opinions.

• Amazon Sarcasm Corpus: The dataset consists of 1,254 Amazon reviews, of which

437 are ironic, and 817 are non-ironic. It has been collected by [Filatova 2012] using

the crowd-sourcing platform Amazon Mechanical Turk.

• Reddit2: The dataset is a collection of television sub-reddit comments by users ac-

cumulating to 2,688 comments.

• Sarcasm Corpus V2 [Oraby et al. 2016]: Sarcasm corpus V2 is a subset of the IAC, in-

cluding response text from quote-response pairs annotated for sarcasm. The quote-

response pairs are combined to form dataset sample as their combination captures

the sarcastic context.

In total, there are 11,609 samples for training out of which 4,851 are sarcastic and 6,758 are

non-sarcastic samples, corresponding to the vocabulary size of 51,961. Figure 6.3 describes

the distribution of different data used for evaluation.

The complexity in classification can be judged by the data visualization shown in Figure

6.4. As seen, the data points are quite overlapping which points to the degree of difficulty

1http://users.dsic.upv.es/grupos/nle/resources/ironicQuotes.source
2http://www.parrotanalytics.com/wp-content/uploads/2015/11/Sarcasm-Detection-in-Reddit-

Comments.pdf

172

Figure 6.3: Data Distribution

in classifying the data points. The vector for a given data point is calculated as the

cumulative sum of embeddings of its constituent words.

6.2.2 Preprocessing

Preprocessing step revolves around word-level tokenization to conserve only those words

in a given sample which contributes to sarcasm detection. A custom tokenizer removes

the URL(s), HTML tags while preserving the emoticons and interjection cues. The code-

mixed English-Hindi (En-Hi) and Hindi (Hi) datasets are created via translation, benefited

with automated word correction but suffered from a lot of other random disturbances

like the inclusion of non-translatable words, which are manually handled. The tokenizer

also features an English language specific contractions replacer which expands a given

contraction (e.g. isn’t→ is not), for better word-level tokenization.

173

Figure 6.4: Data Visualization

6.2.3 Approach for Sarcasm detection in Monolingual & Code mixed environ-

ment

Most of the previous works have focused on sarcasm detection in corpora (majorly tweets)

which are monolingual (primarily English). However, with the prevalent code-mix text

on social media it has become essential to handle the code mixing. The proposed work

targets bilingual code mix text. The framework for detecting sarcasm in both of these

variants (Monolingual and Bilingual) have been proposed as follows:

6.2.3.1 Monolingual Text

Significant works have used a machine learning, feature-engineering based approach

for the task in the monolingual text. Existing works based on deep learning technique

[Amir et al. 2016] used twitter-based corpus and model the task based on CNN(s). Broad

methodology details of the proposed approach are as follows:

174

Word-Embedding Representation:

Two variants of monolingual datasets are used: original English dataset and sentence-level

translated Hindi dataset. For both the datasets, word2vec [Mikolov et al. 2013a] based vec-

tors are used. These vectors are trained on Wikipedia dumps of respective language and

have a dimensionality of 300. Learnable representations of these embeddings are used

during training. This is because Wikipedia uses very formal descriptive language which

does not encompass the informal peculiarities brought in by social-media based dataset.

From the learnable word embeddings, it is meant that the embeddings will be updated

during training to include these subtle differences. Word embeddings are known to very

well capture the syntactic constructs and semantic features of the language of the corpus.

Each sentence of dataset is extended to a one dimensional vector of length n, where n is

the maximum number of words amongst all sentences in the dataset. Dataset created has

value of n equal to 300. Embeddings are used as a feature vector to the network.

Figure 6.5 depicts a portion of visualization of the created embeddings. It can be observed

that the local cluster has verbs in majority, and verbs with the similar sentiment are closer.

(For example: agree, disagree and mean, understand, realize clusters).

Neural Network Schema:

The sequential model is the combination of CNN, RNN and LSTM followed by a dense

(Fully connected) layer with the sigmoidal output. The network can have any layer re-

peated while eliminating others to create a homogeneous network or include other layers

to make the network heterogeneous. The activation (α) in the network is set to be the ReLu

activation function due to its simplicity and efficient functionality to bring non-linearity

in training. As the classification is binary, sigmoidal or, softmax function can be used to

generate an output of the network. The sigmoidal function is used to map output be-

tween a range of 0 and 1. Table 6.2 shows the training parameters of each layer used in

this approach. The maximum depth of neural network reached upto three layers.

LSTM is known to capture long-term dependencies and is expected to capture better

sarcastic context than RNN network which has a relatively low sightedness w.r.t. the

length of the dataset. CNN network is known to be the best-performing networks [Poria

et al. 2016a] when it comes to NLP tasks. With increasing depth of the network, it evolves

over the features learned from previous layers to learn higher dimensional features of the

175

Figure 6.5: t-SNE Visualization of Word Embeddings

dataset. Thus, proposed approach uses CNN based models superseded by LSTM based

model which is superseded by RNN based models. For LSTM and RNN models, the effect

of increasing depth is decided under the evaluation section 6.2.4. The overall architecture

of the monolingual model is described in Figure 6.6. Proposed work exploits the neural

network component for performance enhancement, with little attention to the creation of

embeddings.

6.2.3.2 Bilingual Text

6.2.3.2.1 Hybrid Model

Since, task deals with code-mix corpus (bilingual predominantly), directly using the above

presented methodology for monolingual text is inappropriate and calls for a hybrid ap-

proach which encapsulates the grammatical construct of both the constituent monolingual

languages in the corpus as well as their mixture. Thus, a unique approach is proposed

176

Table 6.2: Network Layer configurations. For a neural network layer X (CNN/LSTM/RNN)
and number i (1/2/3), the notation Xi means the layer X at ith depth in the model

CNN Layer
Kernel size Feature Map

CNN 1 5 128
CNN 2/3 5 64

Max-Pool Layer
Kernel Size

3/5

Dense Layer
Nodes
1/128

LSTM Layer
Units

LSTM 1 100
LSTM 2/3 50

RNN Layer
Units

RNN 1 100
RNN 2/3 50

namely, Hybrid Multi-Model Weighting (HMMW) which uses the combination of efficient

monolingual deep learning model for code-mix text and its monolingual elements. The

components of the model described in Figure 6.7 are as follows:

Word-Embedding Representation:

Since the corpus is mixed, use of pre-trained embeddings on the sizable monolingual cor-

pus (like Google news) won’t work. Instead, the corpus is pre-trained locally on Word2vec

model with translated code-mix dataset as input. The context window for creating word

embeddings is set to 10. As for monolingual English (En) and Hindi (Hi) data sets, em-

beddings discussed earlier are used. Again the embeddings are non-static during training

and learn to include the sarcastic nuances present in social media data.

Neural Network Schema:

The neural network used is a combination of CNN, RNN and LSTM neural layers, which

came out to be the best performing network of variants described in the evaluation section

6.2.4.2. Hence, three different neural networks which adapted best to a given dataset are

used in HMMW model.

Aggregator:

The output from each of the three models is combined according to the weight given to

each of the model. The final output is calculated w.r.t. to following equation, where wi

177

Figure 6.6: Neural Network Architecture

denotes the weight of the ith sub-model.

Y = round
w1 ∗ y1 + w2 ∗ y2 + w3 ∗ y3

w1 + w2 + w3
(6.1)

6.2.3.2.2 Bilingual Embeddings

Another approach proposed uses cross-lingual word-embeddings, which are implicitly

created during training in the task of machine translation. However, bilingual embeddings

are created explicitly. Previous approaches like monolingual adaptation, bootstrapped

the learning of target language (Hi), which is resource-scarce, from well-trained repre-

sentations of the source language (En), which is resource-abundant. Bilingual mapping

independently learns monolingual representations of each language and then learns a

mapping between them. Bilingual mapping has been used in other applications as well,

and one such work is by [Luong et al. 2015]. The main idea is to jointly learn word

representations of both languages, a technique known as bilingual training rather than

178

Figure 6.7: Hybrid Multi Model Weighting

fixing pre-trained representations on either source or target language side. The procedure

described in Figure 6.8 is approximately the same as that of monolingual methodology,

with the modification of cross-lingual embeddings being used at the first stage of the

methodology.

Figure 6.8: Model based on bilingual embeddings

6.2.4 Experiment(s) and Result(s)

The corpus of total samples 11,609 is evaluated under the schema of neural networks de-

scribed above. These models are composed of basic layers of CNN, RNN and LSTM. The

corpus is split in 80:20 ratio of training and testing of sizes 9,288 and 2,321 respectively.

The training is done in a batch of 128 samples, for four epochs. Word embeddings are

consistently used as input to the model. The models are evaluated on the test partition

for accuracy, precision, recall and F-measure as metrics.

6.2.4.1 Monolingual Text

For the monolingual text classification task for sarcasm detection, evaluation is carried for

both the original English and translated Hindi data sets.

179

English dataset

The overall results show that a pre-trained CNN with a single layer (1 x CNN) gives

the best performance with an accuracy of 74.30% and F-measure of 67.60% as indicated

by Table 6.3. Contradicting the hypothesis of learning evolving features with increasing

depth, adding more layers of CNN to the network degrades its performance as shown in

Figure 6.10. As for LSTM based model, it can be concluded from Figure 6.11, the results

do not meet the proposed hypothesis, that long-term dependencies are very well cap-

tured, as it resulted in low accuracy and F-measure than CNN based models. However,

LSTM based models show better adaptation to the task with an increase in the depth of

the model. Moreover, the (2 x LSTM) model gives a high recall of 73.68%. LSTM models

perform better than RNN models as expected. RNN models show inconsistent results

with increasing layers in the network as depicted in Figure 6.12. The performance of 1 X

CNN model is better than other combinations as shown in Figure 6.13. The dependency

of a word in monolingual text is lesser than that of multi-lingual because of less complex

behavior of monolingual data. It tends to extract more important features in this case

and much context is not needed in terms of longer dependencies. An inspection of the

results obtained by combinational models in Figure 6.9 shows that including a CNN layer

significantly improves the performance of the network.

Hindi Dataset

As the analysis of English dataset suggested, (1 x CNN) model is the best performing

model, Hindi dataset is evaluated under this model for accuracy, precision, recall and

F-measure as metrics. The results presented in Table 6.4 show the consistent and im-

proved performance over its English contemporary. As shown in Figure 6.14, the accuracy

achieved is 77.36%, which exceeded the accuracy obtained over English dataset for same

(1 x CNN) model by 3.06%. This points out to the fact that embeddings for the Hindi

language are capturing the context of sarcasm detection better than the English.

6.2.4.2 Bilingual Text

For the bilingual text classification task, model variants are trained over the code-mixed

dataset. An analysis in Table 6.5 shows that the best performing model for monolingual

text, (1 x CNN) model, is outperformed by the combinational model (CNN+LSTM+RNN),

180

Figure 6.9: Monolingual Heterogeneous Models

Figure 6.10: Monolingual CNN Models

181

Figure 6.11: Monolingual LSTM Models

Figure 6.12: Monolingual RNN Models

182

Figure 6.13: Comparison among best models of different architecture for Monolingual text

Figure 6.14: Comparison among 1 layered CNN models of Hindi and English

183

Table 6.3: Peformance of different models ("i x layer" model denotes i times repeated stack of
the respective layer) for Monolingual (En) dataset

Model Accuracy Precision Recall F-measure
3 x CNN 72.66% 69.94% 59.36% 63.02%
2 x CNN 73.22% 71.41% 60.00% 64.09%
1 x CNN 74.30% 69.56% 67.35% 67.60%
3 x LSTM 70.07% 66.44% 54.17% 58.63%
2 x LSTM 68.78% 59.75% 73.68% 65.22%
1 x LSTM 67.23% 59.08% 67.23% 61.81%
3 x RNN 60.37% 51.73% 51.86% 50.50%
2 x RNN 63.56% 56.02% 53.49% 53.67%
1 x RNN 61.88% 53.03% 51.26% 51.33%

CNN + LSTM 72.88% 69.50% 62.31% 64.67%
CNN + RNN 69.04% 60.76% 60.76% 63.88%

CNN + LSTM + RNN 73.44% 69.97% 63.20% 65.20%
LSTM + CNN 70.25% 63.60% 66.23% 63.71%
LSTM + RNN 69.99% 63.13% 64.29% 62.65%

LSTM + CNN + RNN 69.64% 63.15% 63.30% 62.09%
LSTM + RNN + CNN 71.02% 64.03% 68.45% 65.14%

RNN + LSTM 64.29% 55.88% 63.35% 58.51%

Table 6.4: Performance measure on Monolingual (Hi) dataset

Accuracy Precision Recall F-measure
77.36% 71.23% 76.04% 72.46%

with an accuracy difference of 1.25%. This is because CNN extracts best of the features

and LSTM help in remembering the long term dependencies so that context can be taken

into account. In case of code mix when code switching occurs it becomes important to re-

member the context of data and hence LSTM helped in the same. Overall analysis shows

that (CNN+LSTM) model performs best when precision is considered as evaluation met-

ric and (1 x CNN) model with on-the-fly (only Learnable) training of word embeddings,

performs best for both recall and F-measure metrics. This is justified by the fact that

pre-trained embeddings update themselves while using training data whereas learnable

embeddings entirely mend their parameters according to the train dataset giving a higher

recall. However, for LSTM based models, increasing the depth of the architecture im-

proves the overall performance of the model as shown in Figure 6.17. This is in contrast

184

with RNN based models which shows a decrease in performance with increasing depth,

as depicted in Figure 6.18. Moreover, Figure 6.16 models just based on CNN show the

same trend as the RNN based models. Analysis of combinational models suggests that a

CNN layer is the main ingredient to improve overall performance for the task of sarcasm

detection, as shown in Figure 6.15. Further comparison between the best local performers

over all metrics for the three pure classes of CNN, LSTM and RNN which are 1 x CNN, 3

x LSTM and 1 x RNN respectively shows an almost linear decrease in performance over

all metrics in decreasing order stated in Figure 6.19.

Table 6.5: Bilingual (Hi-En) results. A "i x layer" model denotes i times repeated stack of the
respective layer. Static and learnable represents that only static embeddings and on-the-fly
embeddings are used respectively

Model Accuracy Precision Recall F-measure
3 x CNN 69.34% 62.18% 64.29% 62.26%

3 x CNN (Learnable Embeddings) 69.17% 61.32% 67.75% 63.24%
3 x CNN (Static Embeddings) 62.27% 55.19% 39.73% 45.19%

2 x CNN 70.29% 69.08% 49.19% 56.48%
2 x CNN (Learnable Embeddings) 68.56% 60.15% 66.14% 62.16%

1 x CNN 71.28% 65.18% 63.48% 63.48%
1 x CNN (Learnable Embeddings) 70.16% 62.03% 70.89% 65.10%

3 x LSTM 69.69% 65.57% 55.16% 58.88%
2 x LSTM 69.21% 66.57% 48.23% 54.91%
1 x LSTM 68.18% 61.22% 61.35% 60.17%
3 x RNN 58.47% 48.79% 48.99% 48.03%
2 x RNN 59.59% 50.40% 49.57% 49.12%
1 x RNN 66.93% 61.71% 47.78% 52.60%

CNN + LSTM 70.16% 69.13% 49.85% 56.59%
CNN + RNN 70.63% 65.07% 59.87% 61.30%

CNN + LSTM + RNN 71.67% 65.44% 65.04% 64.40%
LSTM + CNN 70.16% 63.32% 63.52% 62.62%
LSTM + RNN 67.87% 59.83% 61.62% 59.79%

LSTM + CNN + RNN 69.25% 64.70% 52.27% 56.97%
LSTM + RNN + CNN 67.40% 60.24% 57.50% 57.86%

RNN + LSTM 61.54% 52.87% 47.03% 48.74%

HMMW Model:

With the code-mix (bilingual) model being (CNN+LSTM+RNN) network and the English

model, Hindi model being (1 x CNN) model, the HMMW parallel schema achieved an

accuracy of 76.84% on the test partition of the dataset. Each model is weighted equally.

185

Figure 6.15: Bilingual Heterogeneous Model

Figure 6.16: Bilingual CNN Model

186

Figure 6.17: Bilingual LSTM Models

Figure 6.18: Bilingual RNN models

187

Figure 6.19: Comparison among best models of different architecture for Bilingual text

Bilingual Embeddings:

To study the effect of using bilingual embeddings in place of regular monolingual embed-

dings, (1 x CNN) model is trained over the code-mixed dataset. Two sets of embeddings

with 100 and 300 dimensions are analyzed upon. As predicted, using embeddings with

higher dimension gives relatively better results as can be seen in Table 6.6. Another in-

spection shows that extending the period of training jointly optimizes the model for all

evaluation metrics in context shown by the evaluation under 8 epochs of training. Clearly

Table 6.6: Bilingual Embeddings result

Parameters Accuracy Precision Recall F-measure
100 dims, 4 epochs 68.00% 63.28% 52.37% 56.31%
300 dims, 4 epochs 69.08% 65.77% 52.59% 57.16%
300 dims, 8 epochs 68.26% 61.68% 63.57% 61.33%

in Figure 6.20, bilingual embeddings improve on all the metrics with increased training

and are less optimum than monolingual embeddings. As for Figure 6.21, static embed-

dings represent the pre-trained embeddings which are not trained during model training.

This is the worst performing word embeddings since they do not adapt to the sarcasm-

specific dataset. Moreover, learnable embeddings, which are only trained simultaneously

188

Figure 6.20: Bilingual CNN model with different settings

Figure 6.21: Bilingual CNN Variants Models

189

with model training, perform better due to their adaptability to sarcasm-specific dataset.

The best performing embeddings are those which are pre-trained as well as post-trained,

along with the model. They are the most generic word representations in terms of their

adaptability to sarcasm as well as plain text data (For Example, Google News, Wikipedia

etc.). Thus, overall comparison between the three approaches reveal that HMMW ap-

proach gave the best result with accuracy as evaluation parameter in consideration.

6.3 Concluding Remarks

This chapter is primarily focused on the idea of sarcasm detection. Using existing fea-

tures in state of the art, first approach is based on traditional machine learning techniques

experiments to detect sarcasm detection in English. The second approach focuses on both

code-mix dataset and monolingual (English) dataset. Further, it also inspects upon a va-

riety of neural network models for best suitability for the task of sarcasm detection. Cur-

rent work limits itself to the existence of two languages in the dataset, English and Hindi.

Experiments are performed with simple word2vec based monolingual embeddings and

expand to using bilingual embeddings. While the usage of former gave expected improve-

ments, experimentation with the latter did not perform well. Coming to the adaptability

of neural models for the task, CNN and LSTM layers improved performance of NLP sys-

tem in general and hence, the model analysis shows the potential of LSTM and CNN

based networks for this task. Experimentation with the weighted model HMMW showed

significant improvements due to the generalization over all the specific trained models.

The code-mix sarcasm dataset which is created from English-based dataset for the task of

code-mix sarcasm detection, with the help of machine translation, lacks in encompassing

the basic construct of real social media text. This is caused by direct machine translation

forced by the scarcity of annotated code-mix social media dataset. Major improvement

can be made by developing a systematic procedure for such a generation. While the real

social media data can mix over a number of languages, the current system is based on

code mixing of two languages only. This implies an expansion of the HMMW model

developed so far. Development of deeper neural network based on CNN, LSTM layers is

also quite promising for the task of sarcasm detection.

190

Chapter 7

Code Mixing Tools

The exponential growth in the popularity of social media has created a plethora of tex-

tual data. It has become a severe issue to recognize textual data efficiently for various

reasons. With the significant boost in the technology along with easy availability and

accessibility for gadgets, social media has become a profound platform for people to ex-

press their opinions. The population participating in social media comprises of different

and diverse individuals. People who do not have English as their mother tongue tend

to use their native language to express their thoughts. These words are often written

using phonetic typing or Roman script and are frequently found fused between English

words or phrases, which is widely known as code-mixing or code-switching. The English

language still forms the basis for all the primary social media communication in India.

Owing to language diversities and dialect variations, there is a requirement of developing

technologies for processing other languages in social media text. The use of non-native

script by the users can be attributed to bilingualism and multilingualism existing in the

country. People are usually more familiar with the Roman script while using electronic

gadgets such as smartphones, desktops and laptops. Because of smart phone usage and

easy internet accessibility, it has been found that users are utilizing the Roman script to

write their native language. This form of writing is evolving as a new type of communica-

tion at the social platforms, and there has been significant growth of such type of content.

This kind of text poses a new challenge in the area of text analytics as there is a need to

process such data automatically for various applications.

In formal communication, people are cautious about what they speak and how they speak

191

but at informal platforms like Facebook, Twitter and WhatsApp, they tend to use mixed

up words and slang of other languages. These words may be in their native script or

transliterated into English. This trend of mixing words from two or more languages

is called code mixing. Code mixing is embedding of linguistic units such as phrases,

words, morphemes of one language into an utterance of another language whereas code-

switching refers to the co-occurrence of speech extracts belonging to two different gram-

matical systems. Here, code-mixing is used to refer to both unless explicitly stated. With

the introduction of smartphones, people from all over the world have started using social

media platforms, and this has generated a lot of code mixed text.

India is a multilingual country with more than 1600 languages being spoken such as

Hindi, Punjabi, Bengali, Telugu, Marathi, Tamil, Gujarati and many more. With the in-

troduction of Indic keyboards and articles that use Indic languages, people started using

Indic languages in their ordinary conversation, and this has made people converse easily

on the internet. In a country like India, where almost everyone grows up learning at least

two languages, code mixing is inevitable. Processing these code mixed scripts is a task

of massive proportions since the underlying syntactic structure of the languages differs

immensely. Although code mixing is not always considered a right way of communicat-

ing, it is essential to have tools for analyzing code mixed languages with the increasing

demand. There are excellent NLP tools present for English and Spanish languages. In the

recent years, NLP tools have been developed for Indic languages such as Hindi, Bengali,

Telugu, Tamil and Marathi, but there aren’t many tools present for code mixed Indic lan-

guages. These tools can be helpful in extracting useful information in many applications

such as product analysis and symptoms analysis.

In this chapter, algorithms have been proposed for basic NLP tools, such as POS tagging,

named entity recognition and language identification, to process code mixed text. Part

of speech tagging is an essential tool for text processing and is widely used for many

applications. Similarly, named entity recognizer has been an essential tool of NLP and

text mining community for various applications. Though much of the work has been

done for these tools in English and other monolingual languages but there has been an

increase in demand of these tools for processing code mixed text. Section 7.1 discusses

the approaches proposed for POS tagging for code mixed social media text for Indian lan-

192

guages. Section 7.2 discusses the approaches and its variants for named entity recognizer

for code mixed social media text for Indian languages.

7.1 POS Tagging for Indian Code Mixed Social Media Text

One of the most fundamental part of linguistic pipeline is POS tagging, a basic form of

syntactic analysis which has countless applications in NLP. POS tagging is the process of

annotating words in a text to their corresponding part of speech based on the context of

the word and the definition of the word. POS tags give a linguistic structure to the sen-

tence. Besides, it is used in many applications such as text to speech conversion, speech

recognition, word sense disambiguation, machine translation, sentiment analysis and in-

formation retrieval.

Much work has been already done for POS tagging in monolingual text and algorithms

have achieved quite high accuracies. With the increase in the code mixed text on so-

cial media, these algorithms do not perform well because of the syntax and grammatical

changes. Hence, it has become important to develop part of speech tagger for code mix

text.

In this section, three approaches have been proposed to build POS tagger for code mixed

social media text. Each of these approaches have their variants. First two proposed algo-

rithms for part of speech tagger used traditional machine learning technique. Most of the

current techniques for POS tagging in monolingual scripts focus on feature engineering.

Hence, first two algorithms identify and engineer features for identifying and associat-

ing correct POS tags. However, feature engineering requires linguistic knowledge, and

people might miss out on the underlying features. Moreover, traditionl machine learning

techniques need to engineer the features on available dataset. Deep learning is a branch

of machine learning and is an emerging field with a lot of interesting work being done in

various domains such as image recognition and text summarization. It uses deep neural

networks with multiple layers which models high level abstractions.

BRNN have been used in the past for various application that involves sequence learning

and were proved quite effective. Few of these applications involved predicting sequential

data like handwriting and speech. POS tagging requires sequential information. The in-

193

formation of the tags preceding the current tag and the subsequent tags should be known

to make the correct prediction. Problem of knowing sequential information and the prob-

lem of vanishing gradients is solved using neural networks. The attraction that deep

learning holds is that one does not require to identify features or build resources like a

dictionary for morphemes and other linguistic units.

Third proposed approach for POS tagging is based on BRNN. LSTM performs better as

compared to simple recurrent neural networks, hidden neural networks and other alter-

native neural networks. LSTM network can learn from its past experience, and unlike

traditional RNN(s), LSTM network is well-suited to learn from experience to classify, pro-

cess and predict time series when there are very long time lags of unknown size between

important events. This is one of the primary reasons why LSTM outperforms alternative

RNN(s) and hidden markov models and other sequence learning methods in numerous

applications. Hence, proposed approach is using LSTM with its variant. LSTM and RNN

will be used interchangeably due to the above mentioned explanation in this section.

Two kinds of datasets [Jamatia & Das 2016] are used for the problem of POS tagging;

Fine grained and Coarse Grained. The fine grained dataset has 39 POS tags present while

coarse grained has 19 POS tags. Corpus is based on three languages pairs, Telugu-English,

Bengali-English and Hindi-English. For each language pair, data is collected using three

different data source namely Facebook, Twitter and WhatsApp.

7.1.1 Approach 1: Ensemble based POS Tagger

A pipelined process has been proposed in this approach which consists of mainly three

phases i.e. pre-processing, feature extraction and classification as shown in Figure 7.1.

Further, two variants are proposed for this approach named ensemble_v1 and ensem-

ble_v2. The difference in both the algorithms lies in the last phase of classification where

ensemble_v2 uses an additional dictionary to identify the POS Tags.

1. Pre-Processing

Since many Facebook posts, tweets, WhatsApp messages in dataset [Jamatia &

Das 2016] consisted of more than one sentence. They are demarcated into indi-

vidual sentences using the presence of full stop, exclamation mark, question marks

194

and words starting with capital letters. After that, all words are converted into

lowercase for normalization.

2. Feature extraction

A lot of importance is given to feature set extraction. Table 7.1 depicts all the features

extracted from this dataset. Features like prefixes, suffixes, bag-of-words which are

popular in many NLP tasks are used in the approach. For this purpose, a list of

suffixes, prefixes and a bag-of-words are created from the training dataset. The

suffixes and prefixes are limited to three letters. The position feature is given by

the position of the word in the sentence divided by the length of that sentence.

It is partitioned into discrete values start, middle and end. For selecting the best

combination of features, the module GridSearchCV [Pedregosa et al. 2011b] is used.

The best combination of features found are startsWith@, startsWith#, contains_digit,

Pos_1, word level information, suffix and the current word.

Table 7.1: Features

Features Description
startsWith@, startsWith#,
startsWith_http, contains_digi

Binary Features

Position Nominal Feature with values start,
middle and end

POS_1, POS_2 Nominal Feature POS_1- POS tag
of previous word, POS_2- POS tag
of previous to previous word

Word Level information of current
word

Nominal feature

Prefix, Suffix and the Current Word Sparse Matrix

3. Classification for ensemble_v1

After the stages of pre-processing and feature extraction, the model is trained using

three classifiers. For classification, an ensemble of the three classifiers, i.e. random

forest, logistic regression and naive bayes is used, particularly weighted majority

voting with more weights is given to the classifier, which is performing better.

4. Classification for ensemble_v2

For ensemble_v2, few changes are incorporated into the ensemble_v1 system. First

of all, a dictionary of the 100 most common English words along with their POS

195

tags is manually constructed both for the fine grained and coarse grained tag set.

These words comprised about 20% of the whole dataset, and led to a noticeable

improvement in the model. Since many sentences resembled the structure of English

sentences and hence a POS tagger for English is used. The NLTK tagger1 is used

but since the tag set used by NLTK is different from the tag set used in the dataset,

tags are manually mapped to each other.

Figure 7.1: Block diagram of ensemble based POS tagger

1http://www.nltk.org/

196

7.1.1.1 Algorithm for Approach 1: Ensemble based POS Tagger

Algorithm 7.1 explains the proposed algorithm for POS tagging of code mix social media

text. The algorithm is designed such that it takes given dataset as input and returns POS

tagged words as output for each of the token. Initial preprocessing has been done by the

demarcation of sentences and converting the dataset to lower case using Case_Conversion

function. A bag of words is then created using the create_bag_of_words function. Suffix and

prefix dictionary are created using suffix and prefix function which considers n characters,

where n varies from 1 to 3. Tokenize function then separates the words and create a list of

tokens. For each token in the list, features mentioned in Table 7.1 are extracted using the

feature_extraction function. POS tag of previous token is identified using POStag function,

which has been passed to aid feature extraction. Finally, ensemble classifier of random

forest, logistic regression and naive bayes is used to detect POS tags.

Algorithm 7.1: Algorithm for POS Tag detection
input : Mixed language dataset D with one of

languages(Hindi, Telugu or Bengali) mixed with
English

output: POS tagged words W
1 Initialization: test_predictions P=[];

2 Case_Conversion(D);
3 bag_of_words=create_bag_of_words(D);
4 suffix_dict=suffixes(D);
5 prefix_dict=prefixes(D);
6 mylist =tokenize(D);
7 for i = 0 to mylist.length do
8 listp=POStag(mylist[i-1]);
9 features=feature_extraction(mylist[i], suffix_dict, prefix_dict,

listp);

10 tag=ensemble.predict(features);

7.1.2 Approach 2: Tree based classifier for POS Tagging

Second approach for POS tagging is also based on traditional machine learning tech-

niques. It is different from approach 1 in terms of the classifier and the usage of features.

Two variations are proposed for the approach 2 as well, named tree_v1 and tree_v2.

197

1. Proposed tree_v1 approach

The proposed tree_v1 approach consists of a set of features that comprise the feature

vector for each token. Following features are used:

(a) IsNumberPresent : This is a binary feature which checks for the presence of

digits in the given token. It returns 1 if present and 0 if not present.

(b) ISHashTag Present: This is a binary feature which checks for the presence of

hashtags in the given token. It returns 1 if present and 0 if not present.

(c) IS@Present : This is a binary feature which checks for the presence of the

symbol ‘@’ in the given token. It returns 1 if present and 0 if not present.

(d) IsSymbol Present: All Characters which aren’t either digits or numbers or @ or

hash tag are considered to come into the category of symbols. This is a binary

feature which checks for the presence of the symbols in the given token. It

returns 1 if present and 0 if not present.

(e) Language of Prev word(L-1), Prev Prev Word(L-2), Current word(L0) & Next

Word(L+1): These features are considered as they help in analyzing the way

words are used.

(f) POS Tag of Prev word(P-1), Prev Prev Word(P-2): These features are considered

as they help in analyzing the structure of the sentence.

(g) Position of Word in sentence: There are many ways of representing this feature.

Following formula is used in proposed algorithm:

No_o f _Words_present_be f ore_current_word
Total_words_in_sentence

(h) Prefix of the Token(Pr1, Pr2, Pr3): Presence of most common Prefix is considered

as a feature. Prefixes of length 1 to 3 are considered. The list of most common

prefixes are extracted from the given test data.

(i) Suffix of the Token(S1, S2, S3): Presence of most common Suffix is considered

as a feature. Suffixes of length 1 to 3 are considered. The list of most common

suffixes are extracted from the given test data.

198

The feature vector is built by extracting features for each token in a sentence. Finally,

list of all feature vectors is extracted and trained using random forest.

2. Proposed tree_v2 approach

The tree_v2 approach has the same features as that of the tree_v1, with an addition

of one more extra feature, which is three topmost common POS tags possible for

a given token. This is predicted by using a dictionary which is developed using

the training data of ICON 2015. The resulting feature vectors are trained on an

extremely randomized tree [Pedregosa et al. 2011b].

7.1.2.1 Algorithm for Approach 2: Tree based classifier for POS Tagging

Algorithm 7.2 depicts the working of the tree_v1 and tree_v2. Both of them have the same

algorithm, but the difference exists in the working of Create_Feature_Vector function. In

tree_v2 an extra feature has been added as described in the previous section. The input S

contains a list of sentences, and each sentence is a list of tokens. The list also contains the

respective language of each token. For example, the sentence “I like to watch movies.‘’ is

represented as [‘I’, ‘en’, ‘like’, ‘en’, ‘to’, ‘en’, ‘watch’, ‘en’, ‘movies’, ‘en’].

The feature vectors are computed for each token of the sentence of the input data (imple-

mented by: Create_Feature_Vector). While creating feature vectors prev and pprev list are

passed as inputs to create the feature vector where prev represents the previous occurring

token and pprev represents the previous to the previous occurring token. These features

are then given to a classifier for predicting the POS Tag. Random forest and extremely

randomized tree classifier are used as a classifier for tree_v1 and tree_v2 respectively.

7.1.3 Approach 3: Bidirectional LSTM based POS Tagger

Traditional neural networks face the problem of rigidity due to fixed size vector of input

and output. The number of computational steps in the neural network is also fixed. Re-

current neural network is superior to traditional neural network because they can handle

sequences. Traditional neural networks are also limited by the number of layers in the

model which can only perform a fixed number of computations.

199

Algorithm 7.2: Algorithm for Detecting paraphrases
input : List of Code-Mixed sentences along with their

Language, S, Training class labels, T
output: Predicted Parts of speech Tag, P

1 Initialization: P=[], FV=[];

2 for i = 0 to S.length do
3 prev = {};
4 pprev= {};
5 for j = 0 to (S[i].Length)/2 do
6 FV = Create_Feature_vector(S[i][j], prev, pprev);
7 tag = clf.predict(FV);
8 pprev =prev;
9 prev= {S[i][2*j], S[i][2*j+1], tag };

10 P.append(tag);

The appeal of recurrent neural networks lies in the fact that they can operate on sequences

and are more capable of building intelligent systems. At every state, RNN also combines

the input vector with the state vector using a step function to create a new state vector.

The output vector obtained from the RNN is an amalgamation of the current input and

the inputs that have been considered in the past. Step function ensures that RNN remem-

bers the context. The internal state of the RNN is updated every time the step function is

called.

Algorithm 7.3 specifies the step function which updates the hidden state of the RNN. The

Algorithm 7.3: Step function for a RNN

1 def step(self, x):;
2 # update the state of the RNN;
3 self.h = tanh(np.dot(self.S_hh, self.h) + dot(self.S_xh, x));
4 # compute the output vector;
5 y = np.dot(self.S_hy, self.h);
6 return y;

parameters are three matrices S_hh, S_xh, S_hy. The hidden state h is initialized with zero

vector. In tanh function, one of the inputs specify the current input, and the other specifies

the state of the previous iteration. The tanh function ensures that the activation range is

normalized in the range from -1 to 1. The final output is dot multiplication of current

state vector and the parameter S_hy. LSTM is a better form of a recurrent neural network

because it has a more powerful update equation and backpropagation algorithm.

200

7.1.3.1 Algorithm for Approach 3: Bidirectional LSTM based POS Tagger

Algorithm 7.4 explains the working of proposed approach 3. Given an input sequence a

= a1, a2, a3, ..., task is to generate an output sequence b = b1, b2, b3, b4, ..., where a is the

code mixed data and b is the corresponding POS tags.

For pre processing, tags for the words in training data are stored in a dictionary. The

data is then converted to sentences containing POS tags only. For example, if the given

sentence is Mixed/G_J dabay/G_N Wala/G_PRT, it is converted to G_J G_N G_PRT.

Each POS tag in the input is encoded into a vector using 1-of-k encoding (i.e. all zero

except for a single one at the index of the character in the vocabulary) and fed into RNN

one by one using step function. On every output vector, a softmax classifier or cross

entropy loss function is applied at the same time.

The RNN is trained with mini-batch Stochastic Gradient Descent to stabilize the updates.

For RNN, following parameters are chosen based on the performance of training data.

The size of hidden layer is 256, with the number of layers as 8 and sequence length as 2.

The RNN is trained for 50 epochs with the learning rate as 0.002 and decay rate as 0.97.

At test time, if a word is present in the dictionary, the tag is chosen from the dictionary.

Otherwise, RNN predicts a distribution of next likely tag. Two versions of approach 3 are

proposed named, Bi_LSTM_v1 and Bi_LSTM_v2. Propsed approach, Bi_LSTM_v2 has an

additional dictionary for English words with the corresponding POS tags.

7.1.4 Data Analysis

The dataset for ICON 2016 task [Jamatia & Das 2016] on POS tagging in code mixed

social media text has three different language-pairs, i.e. Hindi-English, Bengali-English,

Telugu-English, each for three different platforms - Facebook, Twitter and WhatsApp.

The training dataset contained all the words in Roman script along with their word level

information and POS tag.Figure 7.2 shows the different tags used at coarse grained and

fine grained level. Table 7.2 depicts the overall dataset statistics i.e. Facebook, Twitter,

and WhatsApp whereas Table 7.3 depicts only the Facebook dataset statistics. The average

sentence length for each language is calculated. The average sentence length is abnormally

201

Algorithm 7.4: Algorithm for POS tagging code mixed text
input : A sequencea = a1, a2, a3, ..., where a is the code

mixed data with language tags.
output: An output sequence b = b1, b2, b3, b4, ..., where b is

the POS tags corresponding to the input data.

1 Preprocessing;
2 Convert input sequence to V (1-of-k vectors);
3 Feed the vector into the RNN individually with the step function;
4 Use the standard Softmax classifier on every output vector

simultaneously;
5 Train RNN on V;
6 for xi in x do
7 if xi in dictionary then
8 if xi has only one tag then
9 yi = dictionary[xi];

10 else if dictionary[xi].length>1 then
11 yi = predict(dictionary[xi]);

12 else
13 yi = predict(y);

high for Hindi and Bengali as compared to Telugu for Facebook dataset. Table 7.4, 7.5,

7.6 shows the complete analysis of coarsed grained dataset for Hindi, Telugu and Bengali

respectively.

Table 7.2: Overall Dataset Statistics

Language Words Sentences Average Sentence Length
Hindi 37260 2317 16
Bengali 15326 634 24
Telugu 24460 1576 15

Table 7.3: Facebook Dataset Statistics

Language Words Sentences Average Sentence Length
Hindi 21386 771 27
Bengali 7609 147 51
Telugu 10780 749 14

As shown in Figure 7.3, 7.4 and 7.5 the distribution of language tags are different

for all the three languages. There are differences in the composition of language tags in

testing and training data as well.

202

Figure 7.2: Tags used for POS Tagging [Jamatia & Das 2016]

Telugu dataset contains a lot of universal, English and Telugu tags. All the Telugu words

present are transliterated into English. It has some named entities and acronyms present

in small quantities. Though there is some variation in the percentages of tags in testing

data, the composition almost remained the same.

In the case of Bengali dataset, there is a wide range of tags present. Majority of the tags

are Bengali, and these words (Bengali) are transliterated into English. It is followed by

English, universal and undefined tags. There are a significant amount of named entities

present. Moreover, transliterated Hindi words and acronyms are present.

The Hindi dataset has English and Hindi tags. The Hindi words are also transliterated

into English. There are named entities and universal tags in significant quantities along

with acronyms in minute quantities. For Hindi and Telugu languages, testing data is less

203

Table 7.4: Analysis of Coarse Grained dataset for Hindi (Facebook, Whatsapp and Twitter

Hindi FB Hindi TWT Hindi WA
No of Sen-
tences

771 No of Sen-
tences

1096 No of Sen-
tences

763

POS Tag POS Tag POS Tag
G_X 3356 G_X 4156 G_X 589
CC 671 CC 196 CC 62
G_V 3788 G_V 2466 G_V 525
DT 1247 DT 300 DT 38
G_R 1088 G_R 410 G_R 26
G_SYM 153 G_SYM 139 G_SYM 27
G_N 4186 G_N 6689 G_N 1209
G_J 1184 G_J 772 G_J 170
G_PRT 766 G_PRT 249 G_PRT 190
PSP 1894 PSP 708 PSP 174
Null 1 null 1 null 1
G_PRP 2008 G_PRP 1071 G_PRP 192
$ 270 $ 154 $ 15
Language
Tag

Language
Tag

Language
Tag

undef 2 en 3731 hi 2539
En 13213 ne 413 en 363
Ne 656 hi 9779 univ 281
Hi 2855 mixed 1 ne 35
mixed 7 rn 1
Univ 3628 univ 3354
Acro 251 acro 32

than that of training data, but it is otherwise for the Bengali dataset.

There are some inconsistencies in the datasets of all the three languages like an improper

classification of words into language tags. Universal tags are classified incorrectly in more

than 500 cases. For example, in Telugu corpus the word ‘ntr’ is classified as univ, but univ

tag is given to tokens containing # or @ or symbols. Results evevaluated for all the three

approaches are compared with the 9 baseline systems in paper by [Jamatia & Das 2016]

7.1.5 Experiments and Results for Approach 1

The problem stated by the ICON-2016 organizers involves part-of-speech tagging of code-

mixed data in three different formats (Hindi-English, Bengali-English, Telugu-English)

belonging to three different platforms Twitter, Facebook and WhatsApp. In all four com-

binations of each system, namely ensemble_v1 and ensemble_v2 both for fine-grained

204

Table 7.5: Analysis of Coarse Grained dataset for Telugu (Facebook, Whatsapp and Twitter

Telugu FB Telugu TWT Telugu WA
No of Sen-
tences

743 No of Sen-
tences

743 No of Sen-
tences

493

POS Tag POS Tag POS Tag
$ 133 G_X 4261 G_X 2434
CC 175 CC 105 CC 64
G_V 1147 G_V 1127 G_V 620
DT 269 DT 193 DT 138
G_R 244 G_R 224 G_R 160
G_SYM 28 G_SYM 33 G_SYM 1
G_N 4160 G_N 3940 G_N 2752
G_J 597 G_J 543 G_J 350
G_PRT 162 G_PRT 288 G_PRT 232
PSP 492 PSP 484 PSP 271
Null 71 null 132 null 75
G_PRP 332 G_PRP 537 G_PRP 247
G_X 2204 $ 135 $ 55
Language
Tag

Language
Tag

Language
Tag

En 3728 em 1 en 1887
Ne 391 en 3197 unin 1
Eb 1 ne 256 ne 97
Mix 1 nr 1 Te 2104
G_XN 1 mix 2 univ 3302
Te 2642 PSP 1 acro 8
Univ 3210 the 1
Acro 39 te 4046
Unit 1 univ 4472

acro 24
unit 1

and coarse-grained. Ensemble classifier with same parameter settings, is used in both the

variations of ensemble based POS tagger.

7.1.5.1 Evaluation and Discussion

The system performed well on coarse grained tag sets with an accuracy of 80.6% for

Telugu English dataset but performed comparatively less on the fine grained tag set with

the accuracy dropping to 76.4%. This may be because there is a significantly higher

number of class labels in the fine grained dataset. For the WhatsApp dataset, the results

are comparatively less because of the highly informal language used. Highest accuracy

205

Table 7.6: Analysis of Coarse Grained dataset for Bengali (Facebook, Whatsapp and Twitter

Bengali FB Bengali TWT Bengali WA
No of Sen-
tences

147 No of Sen-
tences

172 No of Sen-
tences

304

POS Tag POS Tag POS Tag
G_X 1350 $ 18 G_X 439
CC 144 CC 64 CC 95
G_V 925 G_V 641 G_V 502
DT 85 DT 51 DT 44
G_R 206 G_R 129 G_R 117
G_SYM 131 G_SYM 109 G_SYM 75
G_N 2494 G_N 1035 G_N 1475
G_J 376 G_J 120 G_J 194
G_PRT 253 G_PRT 118 G_PRT 74
PSP 614 PSP 192 PSP 152
Null 1 null 3 G_PRP 303
G_PRP 773 G_PRP 438 $ 42
$ 40 G_X 762 Language

Tag
Language
Tag

Language
Tag

en 7

undef 1 ne+bn_suffix 4 bn 692
En 2199 undef 25 ne 14
Bn 3589 bn 1793 undef 1320
Ne 215 ne 110 univ 1405
Hi 40 en+bn_suffix 4 acro 74
mixed 1 en 979
Univ 1261 hi 10
Acro 86 univ 730

acro 25

achieved with the proposed system is for Telugu-English dataset.

The overall average results of proposed approach on three platforms i.e. Facebook, Twitter

and WhatsApp (both coarse-grained and fine-grained) are depicted in Table 7.7 and 7.8.

7.1.5.2 Error Analysis

There are a few phases where the proposed approach might have resulted in errors.

Firstly, in the pre-processing step, sentences might not have been appropriately demar-

cated because in platforms like WhatsApp the syntax used is very informal. This might

have also caused the features such as position and POS tag of last word, to be of no sig-

nificance for those particular instances. Moreover, in the training data for Hindi-English,

206

Figure 7.3: Language Tags in Telugu Dataset

Table 7.7: F-measure of Coarse Grained dataset using approach 1

ensemble_v1 ensemble_v2
Telugu-English 80.06 77.7
Hindi-English 71.03 71.655
Bengali-English 71.03 71.83

the percentage of English words is very high compared to Hindi, and hence the trained

model could be biased. Similar, is the case of Bengali-English dataset. However, for

Telugu-English dataset, there is a balanced mix of Telugu and English words and hence,

Telugu-English system performed comparatively much better than the others.

7.1.6 Experiments and Results for Approach 2

As shown in Table 7.9 and 7.10, tree_v1 has performed more or less the same as com-

pared to the tree_v2 on all the three Bengali datasets. The system achieved the highest

F-measure on the Facebook dataset for both fine grained (74.5803%) and coarse grained

(77.944%) systems respectively.

On the Hindi corpus (as shown in Tables 7.11 and 7.12), there is a decrease in the F-

measure when compared to Bengali (as shown in Tables 7.9 and 7.10) and Telugu(as

shown in Tables 7.13 and 7.14) datasets. This might be due to the change in the com-

207

Figure 7.4: Language Tags in Bengali Dataset

Table 7.8: F-measure of Fine Grained dataset using approach 1

ensemble_v1 ensemble_v2
Telugu-English 76.4 76.07
Hindi-English 74.12 79.03
Bengali-English 68.3 71.73

position of Hindi testing and training data. The Hindi dataset has more Hindi words

as compared to English words in the testing data whereas they are almost the same in

the training data. The highest F-measure achieved for Hindi is for the Twitter corpus.

It achieved F-measure of 78.573% in the fine grained system and 77.922% in the coarse

grained part.

The system performed the best on the Telugu datasets (based on average F-measure) in

comparison to all the languages. The system has the highest F-measure on the WhatsApp

data for the fine grained system with a value of 77.602%, as shown in Table 7.14 but

for the coarse grained model, the Facebook dataset performed the best with a F-measure

77.343%.

It can be concluded from Table 7.9, 7.10, 7.11, 7.12, 7.13 and 7.14, that the proposed sys-

tem has very high recall and low precision for all the three languages. One possible

208

Figure 7.5: Language Tags in Hindi Dataset

Table 7.9: Results for Bengali Corpus (tree_v1)

Category Precision Recall F Score
FB_FG 0.595 0.999 74.5803
FB_CG 0.639 0.999 77.94396
TWT_FG 0.567 0.997 72.28887
TWT_CG 0.557 0.998 71.512
WA_FG 0.581 0.996 73.377
WA_CG 0.619 0.992 76.23191

explanation can be, if one-vs-all approach is used while calculating precision, then even

if few false negatives are present for a specific class they might have accumulated as false

positive for another class precision.

7.1.6.1 Error Analysis

Some of the features used might have caused misclassification of tags. One of the feature

might be the usage of a dictionary in tree_v2. Due to less data in dictionary created, this

feature might have affected the system’s performance. Hence, for building an efficient

POS Tagger large dictionary is needed.

209

Table 7.10: Results for Bengali Corpus (tree_v2)

Category Precision Recall F Score
FB_FG 0.595 0.999 74.5803
FB_CG 0.639 0.999 77.944
TWT_FG 0.566 0.996 72.1813
TWT_CG 0.559 0.998 71.67
WA_FG 0.603 0.996 75.103
WA_CG 0.627 0.991 76.8056

Table 7.11: Results for Hindi Corpus (tree_v1)

Category Precision Recall F Score
FB_FG 0.488 0.978 65.089
FB_CG 0.481 0.999 64.92
TWT_FG 0.654 0.989 78.744
TWT_CG 0.639 0.999 77.922
WA_FG 0.54 0.989 69.805
WA_CG 0.618 0.618 61.845

7.1.7 Experiments and Results for Approach 3

For Bi_LSTM_v2, a dictionary is defined based on the data from previous ICON confer-

ences. Approximately no changes are observed in the results obtained by Bi_LSTM_v2

and Bi_LSTM_v1. For coarse grained tagging, a better F-measure for WhatsApp code

mixed data is obtained as compared to Facebook and Twitter for Hindi, and Bengali code

mixed language. Recall for all the languages is close to 99% as can be seen from Figure 7.7

and 7.9. However, inconsistencies are observed for data (Facebook and Twitter) in Bengali

and Twitter data of Hindi. The system has an F-measure score of 82% for WhatsApp in the

Bi_LSTM_v1 and 80% in the Bi_LSTM_v2. One reason for this can be that training dataset

for Bengali (Facebook and Twitter) has thrice number of Bengali words as compared to

test dataset. As can be inferred from Figure 7.6 and 7.8, precision is low throughout. The

reason for low precision might be an accumulation of false positives in all the classes of

the POS tags. Usually, in traditional machine learning systems that use feature extraction,

a drop in accuracy is seen from coarse grained tagging to fine grained training because

of the increase in number of classes. However, proposed algorithm overcomes this issue.

The same pattern can be observed for both coarse grained and fine grained POS tagging

in case of English Bengali code mixing. For coarse grained and fine grained tagging for

210

Table 7.12: Results for Hindi Corpus (tree_v2)

Category Precision Recall F Score
FB_FG 0.493 0.974 65.466
FB_CG 0.484 0.998 65.173
TWT_FG 0.652 0.989 78.573
TWT_CG 0.639 0.999 77.922
WA_FG 0.526 0.986 68.632
WA_CG 0.608 0.608 60.848

Table 7.13: Results for Telugu Corpus (tree_v1)

Category Precision Recall F Score
FB_FG 0.617 0.992 76.12
FB_CG 0.631 0.99 77.06
TWT_FG 0.617 0.983 75.81
TWT_CG 0.564 0.993 71.94
WA_FG 0.645 0.976 77.7
WA_CG 0.608 0.992 75.39

Telugu comparable results are obtained with an F-measure of around 73%. As can be

seen from Figure 7.8, for coarse grained tagging an F-measure of 70% for WhatsApp and

57% for Twitter and 63% for Facebook is obtained. For fine grained tagging in Hindi, 70%

score for Twitter, 68% for Facebook and 64% for WhatsApp is obtained. The best results

obtained through the proposed algorithm of Bi_LSTM_v1 as well as Bi_LSTM_v2 is 82%.

7.1.7.1 Error Analysis

Recursive neural networks have been used in the past for part of speech tagging but they

have been used mostly for English language. Recurrent neural networks have not been

used to tag code mixed data in the past. Since the performance of the RNN is dependent

on the amount of data used to train it, better performance could be obtained given more

data. Moreover, the noise in the data reduces the performance of the RNN. RNN(s) also

depend on the sequence length of the input. The input of same sequence length has also

given better performance. This also is one possible source of error. If there had been

enough data, sentences of the same length could have been clustered together to train one

RNN model. RNN(s) are good at exploiting patterns in data. With code mixed data, one

problem could be that of missing patterns. In English, a subject is followed by a verb,

211

Table 7.14: Results for Telugu Corpus (tree_v2)

Category Precision Recall F Score
FB_FG 0.594 0.985 74.092
FB_CG 0.635 0.99 77.343
TWT_FG 0.619 0.977 75.793
TWT_CG 0.553 0.992 71.0131
WA_FG 0.646 0.972 77.602
WA_CG 0.595 0.989 74.29

Figure 7.6: Precision for Coarse Grained POS Tagging using approach 3

but in Hindi, a subject is followed by an object. Bilingual users do not tend to follow

syntactic rules of the language while writing on social media sites and thus that could be

one source of error.

7.2 Named Entity Recognition for Code Mixed Social Media Text

Entity recognition is a very important sub-task of information extraction and find its ap-

plications in information retrieval, machine translation and other NLP applications such

as co-reference resolution. Named Entities (NE) are names of famous persons, organi-

zations, locations and animals. NER has also found its use in sentiment analysis, where

recognizing named entities is important as they do not add much value to the sentiment

of the statement. Similarly, while tagging articles named entities are required for better

212

Figure 7.7: Recall for Coarse Grained POS Tagging using approach 3

search results. There are many such applications where named entities play an important

role in the automatic processing of text. Although, much work has been done in this area

for monolingual text, recognizing named entities in code mixed text for Indian languages

still remains a problem at large, due to the informal nature of the text. In this section,

proposed approaches for the task of entity recognition in code mix tweets for Indian lan-

guages are discussed. Proposed approach identifies named entity in code mix tweets

of English-Hindi and Tamil-English code mixed tweets and can be further extended to

other languages. The problem is to identify the name of various entities such as a person,

organization, movie, location in a given code mixed tweet.

7.2.1 Approach for Named Entity Recognition for Code Mixed Social Media

Text

A word level NE recognition system is designed to recognize named entities in a tweet.

As shown in Figure 7.12 the proposed methodology involves a pipelined approach for

detecting each NE tag and has been divided into following four phases:

1. Pre-processing

2. Number Based Named Entity Recognition

3. Gazetteer List Based Named Entity Recognition

213

Figure 7.8: F-measure for Coarse Grained POS Tagging using approach 3

4. Tree Based Named Entity Identifier

7.2.1.1 Pre-Processing

The data is pre-processed before detecting named entities. This is done to ensure that the

data is uniform and the system can benefit from that. String is converted in lowercase.

It also removes all links present in the tweets, if any. These pre-processed tweets, along

with the original tweets are then passed to the next phase.

7.2.1.2 Number Based Named Entity Recognition

This phase identifies number based entity such as date, time, month, day, year, money, pe-

riod, quantity, distance and count using a set of regular expressions. Regular expressions

are designed based on the common patterns observed in the annotations for these tags.

Regular expressions helps in detection for these tags because there are limited variations

possible for each of these tags. For example, the tag ‘Day’ can be only one of the seven

possible days of a week in a language. Hence, detecting them using regular expressions

will be efficient. While identifying the NE tags, there is a possibility of having multiple

214

Figure 7.9: Precision for Fine Grained POS Tagging using approach 3

tags attached to the same token. To remove ambiguity, proposed approach checks for tags

in a particular predefined order.

7.2.1.3 Gazetteer Based Entity Recognition

As shown in Table 7.15, except Entertainment, Location, Person and Organization, rest of

the tags contain very less data that cannot be used to train a classifier. Hence, Gazetteer

lists are used for identifying NE with insufficient training data. Gazetteer lists are created

from the annotations given to the training data. While checking in gazetteer list # and @

symbols are ignored.

7.2.1.4 Classification

The rest of the NE Tags are identified by creating a feature vector for each token of a tweet.

These feature vectors are then trained using a decision tree and extremely randomized tree

classifier. The features considered for building feature vector are mentioned in Table 7.16.

English dictionary feature is used to identify the presence and absence of an English word,

215

Figure 7.10: Recall for Fine Grained POS Tagging using approach 3

i.e. if it is an English word it is labelled as 1, else 0. Python dictionary called pyenchant1

is used for extracting this feature. Using most common prefixes and suffixes (length = 1 to

3), dictionaries are built for prefix suffix features. Presence of these prefixes and suffixes

in tokens are identified using the same. Gazetteer list feature checks for the presence of

the token in gazetteers list of the remaining tags and uses its presence and absence as a

feature. Is Previous token tag is also taken into account to check the structure of the tweet.

Using all features mentioned in Table 7.16, decision tree and extremely randomized trees

are trained for classification.

7.2.1.5 Algorithm

Algorithm 7.5 explains the proposed approach for NER of code mixed text. The System

first pre-processes the input by removing the website and Twitter links (implemented by:

Link_remover()) and then converts the tweet into lowercase (implemented by: Case_conversion()).

In the second phase, all numerical features like date, time, money, quantity, period, dis-

tance, day and count are identified using check_Numerical(). Before adding it to the final

predictions, tweets are re-checked for overlapping tags and removed if found. This pro-

cess is implemented using add_without_repetition().

1http://packages.python.org/pyenchant/

216

Figure 7.11: F-measure for Fine Grained POS Tagging using approach 3

In the third phase, tweets are tokenized using the function Tokenize. These token are then

matched to the gazetteer list to check their presence in the list using check_gazetteer_List()

and add them to the final list of tags of that tweet. In the final phase, feature vectors

for each tweet are created and passed for prediction to clf classifier using predict() func-

tion. The classifier (clf) uses two variations of classifier, Decision trees and Extremely

Randomized trees.

7.2.2 Data Analysis

CMEE-IL 2016 organizers has stated the problem of NER in Hindi-English and Tamil-

English code mixed text. CMEE-IL dataset contained two code mix datasets, Tamil-

English and Hindi-English. In each dataset, the training data consisted of two files, a

text file containing raw tweets along with their tweetID and UserID and another text file

containing annotations to the tweets present in the raw tweets file. The raw tweet files

consist of 2700 tweets in the Hindi-English corpus and 3200 tweets in the Tamil-English

corpus. All the tweets in the Hindi-English corpus are already romanized whereas the

Tamil-English corpus has a mixture of both Tamil script and romanized script. There are

21 tags present in the corpus as mentioned in Table 7.15.

217

Figure 7.12: Block Diagram for Proposed Algorithm

Named Entity Tag Person, Entertainment and Location occupies the majority of the in-

stances in Tamil-English corpus. Person tag comprises of names of famous actors, ac-

tresses, politicians, news reporters and social media celebrities. Entertainment comprises

of names of famous TV shows and movies while location consists of names of famous

cities, Indian towns and Names of countries. The remaining part of Tamil-English dataset

comprises of some numerical and time based tags. These tags include count, distance, date,

money, month, time and year. Money represents numbers along with a monetary tag like ‘15

dollars’. Organization is another tag which is associated with the names of organizations.

The rest of the tags have very less occurence in the annotated file.

Comparing Hindi-English with Tamil-English, the percentage of minority tags remains

almost same. However, in Hindi-English corpus, entertainment tag has the highest num-

ber of annotations present. It is followed by person tag which is close to entertainment

tag. The rest of order remains the same as that of Tamil-English corpus but with varying

percentages.

218

Table 7.15: Frequency of NE in both datasets

Type of NE Tamil-English Hindi-English
Artifact 18 25
Count 94 132
Date 14 33

Disease 5 7
Distance 4 0

Entertainment 260 810
Facilities 23 10
Livthings 16 7
Location 188 194

Locomotive 5 13
Materials 28 24

Money 66 25
Month 25 10

Organization 68 109
Period 53 44
Person 661 712
Plants 3 1

Quantity 0 2
Sday 6 23
Time 18 22
Year 54 143
Total 1609 2346

7.2.3 Experiments & Results

Four versions are created for the proposed approach, for each of the language pair. In all

the versions, the numerical feature is detected using the numerical function as explained

in section 7.2.1.2. Rest of the tags are classified using different versions created as specified

in Table 7.17. The rest of the tags are classified using Gazetteer Based Entity Recognition

phase as mentioned in section 7.2.1.3. This is done because less training data is available

for few tags such as plants, disease and locomotive, as mentioned in Table 7.15. All the

variations for the proposed algorithm is evaluated using F-measure for each language pair.

Finally, three systems are compared for each of the language pair. Hindi-English used

versions 1, 2 and 4 respectively whereas Tamil-English used versions 1, 3 and 4 respectively.

7.2.3.1 Evaluation & Discussion

As shown in Table 7.18 and 7.19, version 3 performed well for Hindi-English and Tamil-

English. Based on the F-measure, it can be concluded that algorithm with more number

219

Table 7.16: Features used for creating the feature vector.

Sno Features
1 Presence of token in English dictionary
2 Prefixes of length 1 to 3
3 Suffixes of length 1 to 3
4 Capitalization related features like start-

ing letter capital, all letters capital, other
letters capital.

5 Features based on presence or absence
of special characters like #, @, numbers,
other symbols.

6 Presence of emoticons
7 Token present in gazetteer list.
8 Is previous token a NE Tag.

Algorithm 7.5: Algorithm for Identifying Named Entity
Recognition for Code Mixed Text in Indian Language

input : Code-Mixed tweets list , S
output: Predicted Named Entity Labels, P

1 initialization: P=[]

2 for i = 0 to S.length do
3 Link_remover(S[i]);
4 Case_conversion(S[i]);

5 for i = 0 to S.length do
6 d = check_Numerical(S[i]);
7 add_without_repetition(d);
8 tok = Tokenize(S[i]);
9 for j = 0 to tok.length do

10 g = check_gazetteer_List(tok[j]);
11 add_without_repetition(P , g);
12 f = Create_Feature_vector(tok[j]);
13 c=clf.predict(f);
14 add_without_repetition(P,c);

Table 7.17: Different Versions of Proposed System

Version Tags trained on Classifier Classifier Used
1 Person, Entertainment, Loca-

tion, Organization
Decision Tree

2 Person, Entertainment, Loca-
tion, Organization

Extremely Random-
ized Tree

3 Person, Entertainment, Loca-
tion, Organization, Artifact,
Facilities

Decision Tree

4 Person, Entertainment, Loca-
tion, Organization, Artifact,
Facilities

Extremely Random-
ized Tree

220

of gazetteer lists and extremely randomized forest (version 2) performed well in case of

Hindi- English. However, in case of Tamil-English, an algorithm with less number of

gazetteer lists and decision tree (version 3) proved to be effective.

The precision value could be less because of string matching with elements of the gazetteer

lists. It can also be observed that recall value is low for all the versions, this could be due

to less number of named entites for a sentence, which in turn reduces the average recall

value. The recall might have increased if the partial identification of NE is considered.

The proposed system is compared with other existing approaches as shown in Figure 7.13

& 7.14.

Figure 7.13: Result comparison with other approaches (Hindi-English)

Table 7.18: Results for Hindi-English Proposed System

Version Precision Recall F-measure
1 58.66 32.93 42.18
2 58.84 35.32 44.14
4 59.15 34.62 43.68

Table 7.19: Results for Tamil-English Proposed System

Version Precision Recall F-measure
1 55.86 10.87 18.20
3 58.71 12.21 20.22
4 58.94 11.94 19.86

221

Figure 7.14: Result comparison with other approaches (Tamil-English)

7.2.3.2 Error Analysis

Few phases in proposed approach might have attributed to misclassification for few tags.

One such phase can be Gazetteer Based Entity Recognition phase of the proposed ap-

proach which is a dictionary based approach and has disadvantages associated with it.

If the data present in the dictionary is very less, it will correspond to lower precision.

Hence, there is a need for increasing more elements in the list for a better recognition

system. Apart from this, if there is an ambiguity in tags, then there is a chance of misclas-

sification. For example, if there is a token ‘Honey’ it can represent a Person like ‘Honey

Singh’ or as a tag Material. Problem of ambiguity can be resolved using a classifier.

7.3 Concluding Remarks

In this chapter, tools such as POS tagger, NER for code mix text has been proposed.

Three approaches are proposed for POS tagging. Two of them are based on traditional

machine learning techniques such as random forest, extremely randomized tree and en-

222

semble method. The system is designed to tackle code mixed scripts for three language

pairs Telugu-English, Hindi-English and Bengali-English. In future, more features can be

added to improve the precision without affecting the recall. The proposed system did not

use clustering, adding it might help in improving the accuracy of the system. WordNet

can also be used to improve the system by clustering the words to its synonyms. Third

proposed algorithm for POS tagger of code mixed data used recurrent neural networks

for tagging. The technique is superior to conventional machine learning methods as no

feature engineering is required but a lot of data is required to improve the results further.

Another tool proposed for code mixed text is Named Entity Recognizer. A hybrid ap-

proach of a dictionary and supervised classification approach is proposed for identifying

entities in code mix text of Indian languages such as Hindi-English and Tamil-English.

The proposed system used a pipelined approach to identify the named entities. There are

four variants of the system based on the number of tags and the classifier used.

223

Chapter 8

Code Mixing Applications

With the increasing amount of code mixed data on social media has hindered the auto-

matic analysis of the text. Applications such sentiment analysis, question classification,

recommendation system and many other analysis tools use social media text to aid the

process. However, to automate the process, they have address the challenges posed by

social media text due to informal nature of the text. One such challenge in automated

processing of text is of code mixing. This chapter focuses on applications of code mixed

text i.e question classification and sentiment analysis. Section 8.1 and 8.2 discusses the

applications of code mix text for Indian languages. In section 8.1, multiple algorithms for

question classification are proposed and their evaluation is discussed. Algorithms for sen-

timent analysis in code mixed text has been discussed in section 8.2. To understand a code

mix text, it is essential to analyze and identify the language at word level, and hence an

algorithm has been proposed to identify the same to aid the process of sentiment analysis.

8.1 Question Classification for Code-Mixed Cross Script Ques-

tion

Nowadays tasks ranging from shopping to medical consultation are performed by chat-

bots. Intelligent home automation systems are in the market which can answer user ques-

tions, place online orders and perform a myriad of other functions. However, these ques-

tion answering frameworks are almost exclusively monolingual. The most basic mecha-

nism in these frameworks is identifying the type of question posed by the user as this

224

reduces the scope of search for answer by the system. For example, the question "Which

continent does India belong to?" should be classified as ‘Location’, as the answer to this

question is of type ‘Location’. A lot of existing question answering frameworks contain

rules that have been manually built to map the question to its type, but these frameworks

are not easy to update and maintain.

The interaction using question answering has been researched well in the monolingual

scenario with good results, but not much progress has been made in the case of code

mixed scripts. This can be attributed to the fact that there is no pre-defined standard for

writing spellings in the non-native script. Another reason is that there are no grammat-

ical/syntax rules that are followed by code mixed scripts. Question classification helps

in diminishing the number of candidate answers and furthermore can be utilized to de-

cide the viable answer. Being a classic application of NLP, Question Answering (QA) has

practical applications in various domains such as education, health care and personal as-

sistance. QA is a retrieval task which is more challenging than the task of the standard

search engine because the purpose of QA is to find the accurate and concise answer to

a question rather than just retrieving relevant documents containing the answer [Li &

Roth 2002]. Recently, [Banerjee et al. 2016b] formally introduced the code-mixed cross-

script QA problem. The first step of understanding the question is to perform a question

analysis. Question classification is an essential task of question analysis which detects the

type of answer expected to the question. Question classification helps not only to filter

out a wide range of candidate answers but also determine answer selection strategies [Li

& Roth 2002]. Furthermore, it has been observed that the performance of question classi-

fication has a significant influence on the overall performance of a QA system.

This section addresses the task of code mixed cross script question classification where ‘Q’

represents set of factoid questions written in romanized Bengali along with English. The

task is to classify each given question into one of the predefined coarse-grained classes.

Two approaches have been proposed for classification of questions in this section. Initially

proposed approach used traditional machine learning classifiers like NB, RF and LR. Four

versions have been proposed for the first approach. The first version uses translation be-

fore NER, the second version uses only NER followed by classifier algorithms, the third

version uses only translation followed by classifier algorithms, and the fourth version uses

225

translation after NER.

The second approach uses CNN for classification of the questions. Convolution can be

thought of as a sliding window function being applied to a matrix. CNN(s) are funda-

mentally a few layers of convolutions with non-linear activation functions like ReLU or

tanh connected to the outcomes. In a conventional feed forward neural system, every in-

put neuron is associated to yield a neuron in the following layer. Instead in CNN(s), the

output layer is computed by using convolutions over the input layer. This results in local

associations, where every region of the input is associated with a neuron in the output.

Every layer applies different functions, commonly hundreds or thousands, and combines

their outcomes. During the training phase, depending on the input a CNN automatically

learns the values of its filters. CNN(s) have been used extensively in the past for image

classification and are the core of most computer vision systems today, for example, Face-

book’s automated tagging feature. More recently CNN(s) are being used for NLP tasks

like classification.

8.1.1 Approach 1: Question classification using traditional machine learning

techniques

A word-level n-gram based approach has been proposed to classify code mixed cross

script questions into nine different coarse-grained question type classes. The approach

can be broadly divided into four phases.

1. Preprocessing

(a) Separation of class labels from training dataset.

In the dataset, the questions are labelled with the class they belong to. The

sentences are separated from their class type to build a feature vector for the

questions.

(b) Case Conversion.

To normalize the text, case conversion to lower case is performed.

226

2. Named Entity Recognition and removal

With the end goal of classification of the questions into one of the classes, the pres-

ence of these named entities can be insignificant, as these elements may not con-

tribute in building question structure for determining the class type. The prepro-

cessed dataset contains questions which have a lot of Named Entities. Predefined

categories can allude to NE, for example, names of people, currency names, in-

stances of time and locations. Named Entities are recognized utilizing a dictionary-

based approach. The information set used for NER mostly contained the passages

from FIRE 2015 sub-task1’s dataset [Sequiera et al. 2015b].

3. Translation

In this phase, the romanized Bengali words are transliterated into their native scripts.

The words are further translated into their corresponding English counterpart by

utilizing the Google Translate API1. This phase helped to build a monolingual

dataset from the code mixed script dataset for efficient classification. For instance,

the question record "Phulera janya kata?" and the record "Phulera how much?",

both allude to a similar question. These sentences utilize a diverse mix of words,

and thus normalizing sentence to its English interpretation, would possibly prompt

to an expansion in the precision.

4. Classification

The input to the classifier is different depending upon the dataset used. In the first

version, translation is performed followed by Named Entity removal. In the second

version, only Named Entity removal is performed, and in the third version, trans-

lation is performed without Named Entity removal. The orders and phases used

by the versions can be inferred from Table 8.1. n-grams are used to make feature

vectors corresponding to each question in the dataset. The value of n lies from 2 to 4.

The transposed matrix of these feature vectors along with the numerically encoded

class label matrix is then used as input to the classifiers. The following different

classifiers are used:

1https://translate.google.co.in/

227

(a) Gaussian Naive Bayes Classifiers

(b) Logistic Regression Classifier

(c) Random Forest Classifier with Random State = 1

Four different versions are created using above mentioned phases as shown in Table 8.1.

Different versions are created with an attempt to validate which phase in the pipeline

contributes, most to the results.

Table 8.1: Description of versions for Approach 1

Version Number Phases Used in respective order

Version 1
Preprocessing, Translation, Named Entity removal, Classi-
fication

Version 2 Preprocessing, Translation, Classification
Version 3 Preprocessing, Named Entity removal, Classification
Version 4 [Bhargava
et al. 2016b]

Preprocessing, Named Entity removal, Translation, Classi-
fication

8.1.2 Approach 2: Question classification using Deep Learning

In this proposed approach, CNN has been used for question classification into nine dif-

ferent classes.

1. Preprocessing

The steps involved in preprocessing are:

(a) Class labels and sentences are separated. Stemming and case conversion is

performed to normalize the text.

(b) Pad each sentence to the maximum sentence length, which is 11 in case of the

dataset [Banerjee et al. 2016a]. <PAD >tokens are appended to sentences with

length lesser than 11 words. Padding sentences to the same length is useful

because it allows to efficiently batch data.

(c) Map each word to an integer between 0 and vocabulary size by building a

vocabulary index. Each sentence can now be represented as a vector of integers.

228

2. Deep Learning Model

Let, ai ∈ Rk be the k-dimensional word vector corresponding to the ith word in the

sentence. A sentence of length n comprises of the words a1, a2, and so on till an.

Let ai:i+j allude to the window of words ai,ai+1, . . . ,ai+j. A convolution opera-

tion involves a filter w which is applied to a window of h words to create another

element. For example, an element gi is created from a window of words ai:i+h1 by

gi = f (w ∗ ai:i+h1 + b). Here b ∈ R is a bias term, and f is a non-linear function like

ReLU or tanh function. This filter is applied to every conceivable window of words

in the sentence a1:h, a2:h+1, . . . , anh+1:n to deliver a feature map = [g1, g2, ..., gnh+1],

with c ∈ Rnh+1.

A maximum pooling operation is then applied over the feature map and the max

value of max{g} is then selected as the feature, corresponding to this filter. The idea

behind this is to capture the most imperative component of every feature map. The

model uses numerous channels (with shifting window sizes) to obtain multiple fea-

tures. These features are accumulated in the last but one layer. The accumulated

features are then passed to the last softmax layer which gives the output. The output

is the probability distribution over the class labels.

The convolutional layer’s parameters comprise of an arrangement of filters that can

be learned. Even though each filter is small in scope, it reaches out through the full

depth of the information volume. In the forward pass, filter slides (convolves) over

every channel in the input and computes the dot products between the sections of

the filters and the input. The filter sliding over the input produces an activation

map that represents the relationship between filter response and spatial position.

The system learns filters that are activated when some feature is seen, for example,

the words like ‘fee’, ‘charge’ and ‘taka’, that relate to one class label.

After convolutional layer, pooling is done to ensure that over-fitting does not oc-

cur and to reduce the amount of computation and parameters in the network. The

model built for approach 2 is represented by Figure 8.1. In the model built for

approach 2, the primary layers insert words into low-dimensional vectors. The fol-

lowing layer performs convolutions over the inserted word vectors utilizing different

filter sizes. For instance, sliding more than 3, 4 or 5 words at once. Next, the result

229

Volvo
bus

Service
kohon

start
hoi

?

Sentence

Matrix

3 window sizes of [3, 4,

5]. 3 filters for each

region

3 feature maps

for each region

size

9 univariate vectors

concatenated to

form a single

feature vector

9 classes

Convolution

Activation Function

Max Pooling

Regularization

Figure 8.1: Convolutional Neural Network Model for Approach 2

230

of the convolutional layer is max-pooled into a long feature vector, which includes

dropout regularization. Classification is done by using the final softmax layer.

8.1.3 Algorithms for Question Classification for Code Mixed Cross Script Ques-

tions

Algorithm 8.1 elaborates the traditional machine learning approach for question classifi-

cation. The input contains the questions along with the class labels. First, preprocessing

is performed where the class labels and corresponding questions are separated. This is

implemented by the function, Label_Separation(). Case conversion is done to normalize the

input data by the function, Case_Conversion().

To build the feature vectors, n-gram technique is applied. The function Count_Vectorizer()

converts the text into n-gram tokens, where n ranges from 2 to 4. Analyzer() function

produces n-gram tokens when called on each row of the dataset. The word level n-grams

corresponding to each row is appended (using function append()) to the n-gram list. The

class labels are enumerated with the help of Encode_Class() function. Feature vectors for

these classes are generated using the encoded values.

In the final step, the two feature vectors built in the previous steps are passed to the clas-

sifier. In approach 1, explained in section 8.1.1, three classification algorithms, namely

gaussian naive bayes, logistic regression and random forest have been used. The classifier

predicts the class labels for the questions, generated as output.

In algorithm 8.2, CNN is initialized with the following hyperparameters. The sequence

length is 11 which is the maximum length of the entry in the NER dataset. The number

of classes are nine. The embedding size is set to the default value of 128. filter_size refers

to the number of words required in convolutional filters. In approach 2, mentioned in

section 8.1.2, the value of the filter size lies in the range [3, 5], which implies that the

filters slide over 3, 4 and 5 words respectively. The function CreateEmbedding() defines the

embedding layer which maps vocabulary word indices to vector representations. This is

similar to creating a look-up table. Embedding matrix ‘W’ is learned during the training.

Since the filters are of different sizes and each convolution produces vectors of different

shapes, a layer is created for each of them, and the results are then merged into one fea-

ture vector. Once the output vectors are pooled from each filter size, they are combined

231

to give the final vector. The vector from max-pooling is used to generate predictions by

performing matrix multiplication and then choosing the class with the maximum score.

Algorithm 8.1: Question Classification using traditional ma-
chine learning

input : Questions code mixed in Bengali and English, Q.
Training class labels T.

output: An output sequence P, the predicted class labels.
1 Initialization: n-grams = [];

2 for i← 1 to Q.length do
3 Label_Separation(Q[i]);
4 Case_Conversion(Q[i]);
5 if version1 then
6 Translate(Q[i]);
7 NER(Q[i]);

8 else if version2 then
9 Translate(Q[i]);

10 else if version3 then
11 NER(Q[i]);

12 else if version4 then
13 NER(Q[i]);
14 Translate(Q[i]);

15 Vectorizer = Count_Vectorizer(ngram range=(2,4));
16 Analyzer = Vectorizer.Build_Analyzer();
17 for i← 0 to Q.length do
18 row=Analyzer(Q[i]);
19 for j← 0 to row.length do
20 n-grams.append(row[j]);

21 Matrix_Data = Create_Feature_Vector(n-grams);
22 Class_List = Encode_Class(T);
23 Matrix_Class = Create_Feature_Vector(Class_List);
24 clf = Classifier(Matrix_Data, Matrix_Class);
25 clf.fit(Matrix_Data, Matrix_Class);
26 P = clf.predict(Matrix_Test);

8.1.4 Data Description and Analysis

The dataset [Banerjee et al. 2016a] used for training purpose consisted of 330 questions.

The dataset contains code mixed text of Bengali and English with nine question classes.

The number of words in the dataset varied from 2 to 11. On average, question has an

approximately 6 words. As shown in Figure 8.2, class-types ‘ORG’ and ‘TEMP’, comprises

232

Algorithm 8.2: Question Classification using Deep Learning.
input : Questions code mixed in Bengali and English, X.

Corresponding training class labels Y.
output: An output sequence P, the predicted class labels.

1 Initialize the CNN with sequence_length=11, num_classes =
9, embedding_size = 128, filter_sizes = [3,4,5], num_filters
= 3;

2 Initialize a matrix W with a random distribution.;
3 Initialization: pooled_outputs=[];

4 CreateEmbedding(W, X);
5 for i in f ilter_sizes.length do
6 Initialize filter matrix F, bias matrix b ;
7 conv = CreateConvolutionalLayer(F,b);
8 h = Non-linearity(conv,b);
9 pooled_outputs = Max-pool(h);

10 Combine pooled features(pooled);
11 Prediction = max(W*Feature_Vector);

the majority of the instances. Each of these classes represents a particular type of question

related to specific entities. These classes help in reducing the scope that automated system

has to look at when searching for an answer. For example, Class type ‘MNY’ stands

for Money related questions and the instances comprises of words like ‘fare’, ‘price’ and

helping words like ‘koto’ (bn) and “how much”. Class type ‘PER’ stands for person related

questions mostly comprising of words like ‘who’ and ‘whom’ implying for the subject of

the sentence being a person. Class type ‘TEMP’ implies time related questions mainly

comprising of words like ‘when’ and ‘at’. Class type ‘OBJ’ stands for the entity/object

implying that subject of the sentence is an entity and mainly comprising of words like

‘what’ and ‘kon’. Class type ‘NUM’ stands for numeric entity related questions and

mainly involves usage of words like ‘how many’ and ‘koto’. Class type ‘DIST’ stands for

distance and implies that question is related to the distance between places. Class type

‘LOC’ stands for location and thereby mainly comprises of words like ‘where’ and ‘jabe’.

Class type ‘ORG’ stands for organization and relates to questions centred on a particular

organization, team or any other group of people and these questions mainly comprises

of words like ‘which’, ‘what’ and ‘team’. Class type ‘MISC’ stands for miscellaneous, this

class has the minimum representation in the dataset and relates to a variety of questions.

The entire dataset has sentences in a code-mixed format, consisting of words which are

233

Figure 8.2: Class Distribution of Training dataset

either in Bengali or English dialect. The dataset does not contain any code-mixing at

word level. There are no punctuations in the dataset except that of the question mark (?).

The dataset has a considerable amount of NE in both English and Bengali language. A

detailed distribution of classes and its count for code mixed question classification task is

mentioned in Table 8.2.

Table 8.2: Distribution of classes in the dataset.

Class Number of instances Proportion
ORG 67 20%
TEMP 61 18%
PER 55 17%
NUM 45 14%
MNY 26 8%
LOC 26 8%
DIST 24 7%
OBJ 67 6%
MISC 5 2%
Total 330 100%

234

8.1.5 Experiments

Two approaches are proposed for question classification. The first approach used tradi-

tional machine learning classifiers, and four versions are created. All four variations of

Approach 1 are different from each other in terms of classifiers used (Gaussian Naive

Bayes, Logistic Regression and Random Forest Classifiers). For example, variations of

fourth version are named as 4.1, 4.2 and 4.3. For version 4.1 (gaussian naive bayes classi-

fier), an accuracy of 81.12% is obtained, version 4.2 (using logistic regression), an accuracy

of 80% is obtained and version 4.3 (random forest classifier), an accuracy of 72.78% is ob-

tained. All the versions performed comparably, albeit version 1 and version 2 work better

than version 3. Approach 2 performs better than approach 1 for few labels and overall

comparable with approach 1.

8.1.5.1 Evaluation and Discussion

A comparison of accuracy is performed with existing work as shown in Figure 8.3.Version

4.1 achieved a second highest accuracy of 81.12% while the highest accuracy achieved is

83.34% by [Bhattacharjee & Bhattacharya 2016]. Choice of gaussian naive bayes classifier

leads to the maximum accuracy attainment, as the proposed algorithm deals with the

problem involving continuous attributes. Usage of naive bayes helps in building simplis-

tic and highly scalable models, which are fast and scale linearly with number of predictors

and rows. Moreover, the process of building a naive bayes model is highly parallelized,

even at the level of scoring. It is also observed from the results, that the proposed algo-

rithm generated highest F-measure scores for the classes of ‘ORG’, ‘MNY’ and ‘MISC’.

Figure 8.4 shows the comparison of the F-measure obtained for the class organization with

other existing approaches. The proposed algorithm (version 4.1) got the highest scores of

0.74418 using gaussian naive bayes approach. This implies that the questions mainly

being framed with words like ‘which’ and ‘what’, related to the organization could be

efficiently classified. These scores can be attributed to the fact that the instances of the

class ‘ORG’ are maximum in the dataset (67 out of 330). Proposed algorithm involves the

formation of word level n-grams due to which words and phrases like ‘which’, ‘team’,

‘series’ and ‘sponsor’, got associated, and thus might have contribute to an increase in

score.

235

Figure 8.3: Comparison of accuracy with existing work and proposed approach

Figure 8.4: Comparison of F-measure for Organization and Money class with existing work
and proposed approach

236

Figure 8.4 also shows the comparison of F-measure obtained for the class ‘MNY’ with

other existing approaches. Version 4.2 achieved the highest scores of 1 and hence, all the

questions relating to money, being framed with words like "how much", ‘price’ and ‘fare’,

could be efficiently classified. These high F-measures could be attributed to the efficient

deployment of the word level n-gram techniques which in a way linked the words like

‘fare’, ‘how’, ‘much’ and ‘price’, and thus might contributed to an increase in accuracy.

The evaluated results also show that only two approaches (Version 4 of approach 1 and

[Majumder & Pakray 2016]) are able to identify instances belonging to ‘MISC’ class. This

may be because there are only 5 out of 330 instances of ‘MISC’ class in the training dataset.

The proposed approach (version 4.1) got the highest scores of 0.2, which may be because

of the simplistic approach of gaussian naive bayes classifiers and the efficient deployment

of the word level n-gram technique. Figure 8.5 shows a comparison of accuracy obtained

Figure 8.5: Comparison of F-measure with existing work and proposed approach for various
classes

for classifying each of the nine classes. As evident from the Figure 8.5, the proposed

approach (version 4) works well in identifying the correct class labels particularly in the

cases of ‘MISC’, ‘ORG’, ‘MNY’, ‘NUM’ and ‘OBJ’ classes with an F-measure of 1 obtained

for the class ‘MNY’. Table 8.3 shows the scores of precision, recall and F-measure for each

of the nine different classes, for the proposed algorithm (version 4 and its variations).

The results are further evaluated on the gold dataset for the MSIR sub-task1 in FIRE 2016

[Banerjee et al. 2016a]. All the variants of approach 1 and approach 2 are compared to an-

237

Table 8.3: Class wise score for all the runs submitted

Classes Scores Runs

version
4.1

version
4.2

version
4.3

PER Precision 0.574 0.52 0.456
Recall 1 0.963 0.963
F-measure 0.73 0.675 0.619

LOC Precision 0.8 0.889 0.889
Recall 0.695 0.695 0.695
F-measure 0.744 0.780 0.780

ORG Precision 0.842 0.8 0.933
Recall 0.667 0.667 0.583
F-measure 0.744 0.727 0.718

NUM Precision 1 0.897 0.684
Recall 0.923 1 1
F-measure 0.96 0.945 0.8125

TEMP Precision 0.92 0.96 0.954
Recall 0.92 0.96 0.84
F-measure 0.92 0.96 0.894

MONEY Precision 0.889 1 1
Recall 1 1 0.875
F-measure 0.941 1 0.933

DIST Precision 1 1 1
Recall 0.904 0.81 0.476
F-measure 0.95 0.895 0.645

OBJ Precision 0.667 0.75 0.8
Recall 0.4 0.3 0.4
F-measure 0.5 0.429 0.533

MISC Precision 0.5 0 0
Recall 0.125 0 0
F-measure 0.2 NA NA

alyze the results. It can be seen from Figure 8.6, F-measure for version 1, version 2 and 4

is comparable for class ‘PER’ whereas approach 2 outperforms the rest. The class ‘MNY’

(Figure 8.7) has distinctive words in the questions. For example, the words ‘fee’ (en),

‘charge’ (en), ‘taka’ (bn), ‘khoroch’ (bn), appear only in questions that belong to ‘MNY’

class. For the class ‘NUM’, version 2 naive bayes approach performs the best. As can be

inferred from Figure 8.8, approach 2 achieves an F-measure of 0.95. The class ‘LOC’ has

the best score from approach 2. For the class ‘LOC’ approach 2 and approach 1 version 2

give comparable results with the F-measure score as 0.8 (Figure 8.9). For both ‘PER’ and

‘LOC’ classes, approach 2 outperforms the rest because of the ability of the filters to learn

238

the spatial patterns of the words in the questions belonging to this class. Another factor

is that the training dataset has the most number of example queries corresponding to this

class.

For class ‘DIST’, approach 2 and approach 1 version 1.1 and version 2.1 are comparable,

with F-measure of 0.95, as can be seen from Figure 8.10. Version 1.2 and version 2.2 gives

F-measure of 0.96 for the class ‘TEMP’ (Figure 8.11). In the case of class ‘OBJ’ random

forest classifier of version 1 and version 2 give the best F-measure of around 0.53. Naive

bayes classifier also gives comparable performance to random forest classifier for the class

label ‘OBJ’(Figure 8.12). For the class ‘MISC’(Figure 8.14) owing to the lesser number of

training instances only version 2 naive bayes classifier can predict one instance in the test

set. Overall results of version 1 are comparable to the results of version 4. In version 1,

a pipeline with translation followed by named entity removal is proposed as opposed to

the pipeline with named entity removal followed by translation proposed by [Bhargava

et al. 2016b].

As can be observed from Table 8.4, versions using Gausian Naive Bayes classifier and

approach 2 results in maximum F-measure. Naive bayes is helpful in building scalable

models, and the model scales linearly with the number of classes in a comparably faster

way. The Bengali word ‘ki’ appears 22 times in the training data out of which the class

label for the corresponding question is ‘ORG’ 9 times, ‘OBJ’ 7 times, and ‘PER’ 4 times.

Out of the 9 times, the word ‘ki’ appears in the question instances of the class ‘ORG’ 6

times the question ends with the word ‘ki’. Approach 2 can exploit all such patterns that

exist in the data, provided that there are sufficient number of such instances.

Figure 8.15 shows the comparison between all versions of approach 1 and approach 2.

F-measure of approach 1 version 2 is very close to approach 1 version 4. This is under-

standable as named entity removal followed by translation should be no different from

translation followed by named entity removal. For the classes ‘ORG’ and ‘DIST’, ap-

proach 2 outperforms the rest. This is because neural network can learn the patterns for

each class.

In approach 1, version 3, where only named entity removal is performed, the performance

is least among all proposed approaches. This can be because there is no normalization

of the words in the text. For example, the words ‘chalu’ and ‘start’ mean the same, but

239

are considered different by the classifier and thus the accuracy is reduced. Approach 1,

version 2 performed better in most cases than version 1 and version 4. This might be

because the named entities do contribute in differentiating between the classes. Table 8.4

shows the scores of precision, recall and F-measure for each of the nine different classes,

for the proposed approaches, approach 1 and approach 2.

Figure 8.6: F-measure for the class ‘PER’

8.1.5.2 Error Analysis

The first approach includes a lexicon based strategy for named entity recognition for

which the corpus utilized has limited number of entries because of which a portion of

the entities may not have been recognized. Additionally, the information set has named

entities which refer to same entity but has different spellings. For example, in the infor-

mation set, words ‘masjid’ and ‘mosjid’ both alluded to a similar word inferring ‘mosque’

yet, has distinctive spelling. Since the proposed approach utilized a corpus for NER,

these elements could not be eliminated unless all possible spellings of these words are

added to the corpus. The proposed approach additionally includes the utilization of an

interpretation framework (Google Translation API) for deciphering expressions of Ben-

gali to English, yet since the interpretation framework did not consider the semantics of

240

Figure 8.7: F-measure for the class ‘MONEY’

the sentence where the word is being utilized, it might have happened that the specific

Bengali word would have been inaccurately interpreted. The given information set did

not have a uniform distribution of classes, as shown in Table 8.2. The dataset included

1.51% of ‘MISC’ class while ‘ORG’ class includes 20% of the passages in the information

set because of which the model prepared could be biased. Due to the lesser number of

instances of class ‘MISC’, apart from two instances in the proposed approach, no version

can predict its instance in the test data. For the second approach proposed, the training

dataset has relatively a small number of entries for a deep learning technique to perform

well. Since the dataset is not balanced, the deep learning model is more biased towards

the classes that have more instances in the training data. Since, one can only make a deep

learning network as big as the system can manage, building a more extensive network is

not possible, which might have contributed to the training error in the model.

8.2 Sentiment Analysis for Code Mixed Social Media Text

Large amount of data is being produced everyday corresponding to customer reviews,

social media monitoring, user responses and survey feedbacks, which could be efficiently

used for business analytics, computation of customer satisfaction metrics, where identi-

fying sentiments or opinions for a given entity becomes integral. Sentiment analysis as

241

Figure 8.8: F-measure for the class ‘NUM’

a part of text processing is therefore very useful, particularly as large quantities of data

could be analyzed efficiently. This data usually comprises of code-mixed entries with

records being written in more than one language and hence, there is a growing demand

of efficient technologies for code-mix sentiment analysis. In this section, an approach has

been proposed for sentiment analysis using language identification for code-mixed cross

script data. For each sentence, words are first annotated with language tag they belong to,

using the proposed approach of language identification. These words are transliterated,

and sentiments of these words are computed using the proposed approach for sentiment

analysis.

For the text processing of social media communications, in a way to understand a state-

ment written in any social media text (blog, micro-blog, WhatsApp messages, tweets or

posts), containing words belonging to different languages, the system must identify to

which language, does the given utterance belong to. A statement like "Bhai this work

requires zyada efforts, tu su kare che?", (translation: "Brother, this work requires more

efforts on your part, what are you doing?"), represents the code mixing of three different

languages of English, Gujarati and Hindi. Hence, language identification becomes an es-

sential task for automated text processing system in a way, for extracting the sentiments

of the statement.

242

Figure 8.9: F-measure for the class ‘LOC’

8.2.1 Building SentiWordNet Dictionaries for Indian Languages

SentiWordNet dictionary is well known for sentiment analysis, but there is lack of such

dictionaries for Indian Languages. [Das & Bandyopadhyay 2010b] has proposed an ap-

proach to create SentiWordNet dictionary for Bengali, Hindi, Telugu and Tamil language.

There is a demand for SentiWordNet dictionaries for other languages as well. In this sec-

tion, SentiWordNet dictionaries are created for thirteen different Indian languages includ-

ing Gujarati, Marathi, Punjabi, Urdu, Kashmiri, Konkani, Kannada, Malayalam, Bengali,

Tamil, Telugu, Assamese and Manipuri.

Two sets of SentiWordNet dictionaries are created. The first set of dictionaries has a

structure similar to that of dictionaries proposed by [Das & Bandyopadhyay 2010b]. The

dictionary is divided into four parts, i.e. POSITIVE (words having positive sentiments),

NEGATIVE (words having negative sentiments), NEUTRAL (words having neutral sen-

timents) and AMBIGUOUS (words having ambiguous sentiments), by their respective

polarity scores.

In second set of SentiWordNet dictionary, each record comprises of POS tag, followed

by the corresponding word and then its synset ID, positive and negative polarity score.

These SentiWordNet dictionaries are generated by using the bilingual mapping dataset

243

Figure 8.10: F-measure for the class ‘DIST’

[Singh et al. 2016] and the English SentiWordNet dictionary[Baccianella et al. 2010c].

The dataset of bilingual mapping comprised of records such that words of one language

are indexed to different synonymous words of another language. Bilingual mapping with

English as their first language is used to create SentiWordNet. The English words in the

English-Indian_Language mapping are looked up in the English language SentiWordNet,

and their corresponding POS tag, positive and negative polarity scores are hashed to the

particular word. These hashed values are then added for each of the synonyms (belong-

ing to the Indian_Language) in the bilingual mapping, and thereby a new entry is created

in the proposed Indian_Language SentiWordNet for each of these words. For duplicate

entries (Indian_Language words that are synonymous with more than one English word),

the largest polarity scores (both for positive and negative) are considered as the polarity

score for that word. Moreover, using the reverse mapping (i.e. Indian_Language to En-

glish), a cross reference is made to measure the positive and negative scores accurately

in the new Indian_Language SentiWordNet dictionary. These dictionaries are used for

different versions of the proposed algorithm of sentiment analysis.

244

Figure 8.11: F-measure for the class ‘TEMP’

8.2.1.1 Algorithm for Generation of SentiWordNet Dictionaries

Algorithm 8.3 describes the approach used for creating both sets of dictionaries. The pro-

posed algorithm takes as input the bilingual mapping dataset of En-Indian_Language and

English SentiWordNet(SWN) dictionary. The words in the English SWN are hashed to get

values of the corresponding synsets, POS tag, positive and negative polarity scores. The

corresponding English word in the mapping is then indexed to get the values of the fields

mentioned above, and the same values are added for each of the synonymous words, in

the mapping, thereby forming entries of the new Indian_Language-SentiWordNet dictio-

nary. Finally, a redundancy check is applied using the function Has_duplicates, that checks

if a word has a duplicate entry in the SWN generated. If word is duplicate, then highest

score is added as polarity (both positive and negative) score for the given word. The du-

plicate entry (indexed by di, extracted through function Duplicate_Index()) is removed by

the function remove(). The final word count is decremented.

245

Algorithm 8.3: Generation of SentiWordNet Dictionaries
input : Bilingual Mapping dataset, En-IND_lan, English

SentiWordNet dictionary En_Swn
output: Indian Language SentiWordNet Dictionary

(IND_lan_Swn)
1 Initialization Hash_Synset=[], Hash_POS=[],

Hash_Positive=[], Hash_Negative=[], word_count=0;

2 for i to En_Swn.length do
3 en_word =En_Swn[i].word;
4 Hash_Synset[en_word] =En_Swn[i].Synset;
5 Hash_POS[en_word] =En_Swn[i].POS;
6 Hash_Positive[en_word] =En_Swn[i].positive;
7 Hash_Negative[en_word] =En_Swn[i].negative;

8 for j to En-IND_lan.length do
9 en_word=En-IND_lan[j].word;

10 ind_words=En-IND_lan[j].mapping;
11 for k to ind_words.length do
12 IND_lan_Swn[word_count].word=ind_words[k];
13 IND_lan_Swn[word_count].Synset

=Hash_Synset[en_word];
14 IND_lan_Swn[word_count].POS

=Hash_POS[en_word];
15 IND_lan_Swn[word_count].positive

=Hash_positive[en_word];
16 IND_lan_Swn[word_count].negative

=Hash_negative[en_word];
17 word_count=word_count+1;

18 for i to IND_lan_Swn do
19 if IND_lan_Swn[i].word.Has_Duplicate() then
20 di=IND_lan_Swn[i].Duplicate_Index();
21 IND_lan_Swn[i].positive=

max(IND_lan_Swn[i].positive,IND_lan_Swn[di].positive);

22 IND_lan_Swn[i].negative=
max(IND_lan_Swn[i].negative,IND_lan_Swn[di].negative);

23 IND_lan_Swn.remove(di);
24 word_count=word_count-1;

246

Figure 8.12: F-measure for the class ‘OBJ’

8.2.2 Proposed Approach for Sentiment Analysis of Code Mixed Social Media

Text

The proposed approach has been divided into three phases: language identification,

transliteration and sentiment analysis. The first phase of language identification anno-

tates each word in a sentence to their respective language. In the second phase, each

sentence is transliterated to their native languages based on the annotation available from

language identification phase. In the final phase, sentiment analysis is performed for in-

dividual languages based on the information available from previous two phases. All the

phases are further explained below in detail:

8.2.2.1 Language Identification

Language Identification is an essential phase of the proposed approach where languages

are identified at the word level. The proposed language identification system handle eight

Indian languages namely Tamil, Telugu, Hindi, Bengali, Marathi, Gujarati, Kannada and

Malayalam in combination with English. As named entities, emoticons and punctuations

do not belong to any of the languages, they need to be classified separately. Named En-

tities are tagged as NE and Emoticons and Punctuations are tagged as X. In this section

two approaches have been proposed for Language Identification. The first approach uses

character n-gram and SVM whereas the second approach uses different features in combi-

247

Figure 8.13: F-measure for the class ‘ORG’

nation with CRF classifier for identification. For the first approach, two different versions

are proposed to evaluate the system.

8.2.2.1.1 Approach 1 - Language Identification using n-grams

Named entities and punctuations marks do not add much information to sentiment anal-

ysis which is the final goal of section 8.2 and hence, they are identified separately. To

identify NE, a dictionary containing NE and famous abbreviations are used as proposed

in [Bhargava et al. 2015], and for identifying punctuations, the CMU ARK tagger [Owoputi

et al. 2013] is used. The rest of the words are classified for different languages using two

versions proposed below:

• Version 1 (ng_SVM): ng_SVM uses character n-grams where n varies from 1 to 4.

Character n-grams are then collected for each language to create separate sparse

matrices. These matrices are used to train one vs one multiclass SVM.

• Version 2 (h_ng_SVM): Majority of sentences in the dataset has less code switching

and the number of languages in the a particuar sentence are only two. Hence, an-

other function H1 is added to version ng_SVM. Function H1 keeps track of number

of words of a particular language in a sentence. Named Entities and punctuations

248

Figure 8.14: F-measure for the class ‘MISC’

are excluded in the count. For the remaining words, majority voting is taken and

the most common language tag is chosen. In case of a tie, most common language

is chosen randomly. The rest of the Indian language tags are replaced with the most

common tag.

8.2.2.1.2 Approach 2- Language Identification using Conditional Random Field

The second approach extracted features for each word and trained the classifier. The

following features are extracted for each word.

• Prefix and Suffix of a word: The prefix and suffix of lengths 2 and 3 are extracted

for the given word.

• Prefix and Suffix for words in context window: A context window having 3 previous

words and 3 upcoming words is considered.

• Presence of word in dictionary: The presence of the current word in English dictio-

nary (pyenchant1) has been used as a feature.

• Presence of context window words in Dictionary: Similar to the previous feature, the

presence of context window words in English dictionary has been used as features.

1https://pypi.python.org/pypi/pyenchant

249

Figure 8.15: Comparing F-measure for v1, v2 and v3 for approach1 (averaged) and approach2

• POS Tags of current word: The CMU ARK tagger has been used to find out the POS

tag of the current word.

• POS Tags of Context Window words: The POS tags of the previous and upcoming

words have been used as features.

• Language Tags of previous three words: The language tags of the previous words

that are predicted by the CRF are used.

In total for each word in a sentence, 45 features are computed (4+4*6+1+6+1+6+3). These

feature vectors are trained on a CRF.

8.2.2.2 Transliteration

In the second phase, each word is transliterated back to their native language script using

the language annotations provided by the output of the first phase. Transliteration is per-

formed using Google Transliteration API [Ruscoe 2009]. This transliterator is considered

one of the best sources available for transliteration. It works on a dictionary based pho-

netic transliteration approach. However, accuracy of this phase cannot be evaluated due

lack of knowledge of algorithm used by Google. Algorithm used by Google is continually

250

Table 8.4: Results for Approach 1 (A1) and Approach 2 (A2)

Class Score A1 A2
Version1 Version2 Version3 Version4
NB LR RF NB LR RF NB LR RF NB LR RF

PER
P 0.58 0.51 0.49 0.59 0.62 0.57 0.52 0.54 0.51 0.57 0.52 0.46 0.75
R 1 0.95 0.95 0.94 0.92 0.96 0.97 0.91 0.92 1.00 0.96 0.96 0.89
F 0.73 0.66 0.65 0.72 0.74 0.72 0.68 0.68 0.66 0.73 0.68 0.62 0.81

LOC
P 0.81 0.86 0.79 0.84 0.9 0.87 0.76 0.83 0.81 0.8 0.89 0.89 0.82
R 0.68 0.72 0.65 0.74 0.72 0.69 0.61 0.61 0.67 0.69 0.69 0.69 0.79
F 0.74 0.78 0.71 0.79 0.8 0.77 0.68 0.7 0.73 0.74 0.73 0.72 0.8

ORG
P 0.83 0.78 0.94 0.86 0.84 0.96 0.77 0.72 0.81 0.84 0.8 0.93 0.88
R 0.66 0.67 0.58 0.69 0.71 0.62 0.61 0.61 0.59 0.67 0.67 0.58 0.55
F 0.74 0.72 0.72 0.77 0.77 0.75 0.68 0.66 0.68 0.74 0.73 0.72 0.68

NUM
P 0.98 0.89 0.69 1 0.91 0.73 0.89 0.91 0.63 1 0.89 0.68 0.94
R 0.94 1 1 0.98 0.98 1 0.84 0.89 0.89 0.92 1 1 0.96
F 0.96 0.94 0.82 0.99 0.94 0.84 0.86 0.9 0.74 0.96 0.94 0.81 0.95

TEMP
P 0.92 0.96 0.95 0.92 0.96 0.95 0.92 0.96 0.95 0.92 0.96 0.95 0.91
R 0.92 0.96 0.84 0.92 0.96 0.84 0.92 0.96 0.84 0.92 0.96 0.84 0.90
F 0.92 0.96 0.89 0.92 0.96 0.89 0.92 0.96 0.89 0.92 0.96 0.89 0.9

MNY
P 0.88 0.98 1 0.93 1 1 0.82 0.92 0.92 0.89 1 1 0.91
R 1 1 0.89 1 1 0.9 0.92 0.94 0.86 1 1 0.88 0.9
F 0.94 0.99 0.94 0.96 1 0.95 0.87 0.93 0.89 0.94 1 0.93 0.9

DIST
P 1 0.99 0.97 0.96 1 1 0.96 0.92 0.91 1 1 1 0.98
R 0.91 0.79 0.5 0.93 0.84 0.47 0.90 0.77 0.47 0.90 0.80 0.48 0.94
F 0.95 0.88 0.66 0.94 0.91 0.64 0.93 0.84 0.62 0.95 0.89 0.64 0.96

OBJ
P 0.67 0.74 0.8 0.73 0.77 0.84 0.64 0.71 0.79 0.67 0.75 0.8 0.69
R 0.4 0.32 0.4 0.41 0.33 0.42 0.37 0.3 0.38 0.4 0.3 0.4 0.34
F 0.5 0.45 0.53 0.53 0.46 0.56 0.47 0.42 0.51 0.5 0.43 0.53 0.46

MISC
P 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0
R 0 0 0 0.12 0 0 0 0 0 0.12 0 0 0
F NA NA NA 0.2 NA NA NA NA NA 0.2 NA NA NA

updated. This phase results in the transliterated sentences of the input file generated by

the first phase.

8.2.2.3 Sentiment Analysis

In final phase, sentiment analysis for code mixed text is performed. For sentiment anal-

ysis, two approaches are proposed. The first approach uses SentiWordNet dictionaries

(proposed in section 8.2.1). The second approach uses traditional machine learning tech-

niques along with the usage of SentiWordNet dictionaries generated.

251

8.2.2.3.1 Approach 1: Sentiment Analysis using Dictionary based Approach

In this approach, each sentence in the transliterated form along with its annotation are

passed to the analyzer. Since the data used is from social media, there would be many

emoticons present. Emoticons are very good at depicting the sentiment of a sentence.

Hence, sentiments from emoticons are also extracted and are given top priority. If emoti-

cons are not present then, the analyzer searches for each word of the sentence, in SWN

dictionary. To reduce the search time and narrow the search, the language annotation tag

is used. As per the annotation tag, words are searched in the corresponding dictionary. If

there is an entry for the given word in the SWN dictionary, then the polarity of the word

contributes to overall sentiment of the sentence. This is done in two ways, based on the

score and count of positive and negative words, and thereby two different versions of the

algorithm are implemented. Finally, the polarity scores of each word contribute towards

the computation of the sentiment of the sentence.

• Version 1 (SA_Count): In this version of the algorithm, the sentiment of a sentence is

taken as the major polarity obtained by word count. If the number of positive words

in the sentence is greater than the number of negative words, then the sentence is

classified with positive sentiment, if the number of positive and negative words are

equal then it is termed neutral, else it is classified with negative sentiment. The

SentiWordNet dictionaries used for this purpose has the same structure as those

created by [Das & Bandyopadhyay 2010b]. Each word is then looked up in the

four different sub-versions (pos, neg, neu and ambi) of SentiWordNet dictionary

of corresponding language. If the word belongs to ‘pos’ sub-version, the count of

positive words is incremented, if it is found in the ‘neg’ sub-version, the count of

negative words is incremented. However, the words belonging to ‘neu’ or ‘ambi’

sub-versions do not contribute towards the sentiment of the sentence. Finally, a

comparison of the count of positive and negative words is made, such that the

larger count (positive or negative) corresponds to the sentiment of the sentence, and

if they are equal, then the sentence is said to be neutral.

• Version 2 (SA_Score): In this version, the sentiment is computed by polarity scores

for each word in the sentence. The positive and negative polarity scores of each word

252

is added, and finally, if the total positive score is greater than the total negative score,

the sentence is classified with positive sentiment, if the total negative score is greater

than the positive counterpart, the sentence is classified with negative sentiment, else

the sentence is said to be neutral. The SentiWordNet dictionaries used in this version

of the algorithm, are the ones generated using algorithm 8.3, containing both the

positive and negative polarity scores for each word. The positive and negative scores

are added separately for each word of the sentence, and finally, the greater one is

said to be the sentiment for the given sentence. Using this approach, the contextual

information is not lost, as total of polarity scores (both negative and positive) are

used to evaluate the sentiments.

8.2.2.3.2 Approach 2: Sentiment Analysis using traditional machine learning

In this approach, sentiment analysis is performed using traditional machine learning tech-

nique. Features for the same are built using SentiWordNet (created in Section 8.2.1). Each

word in a sentence is checked for the presence in the SentiWordNet. If present, its positive

and negative score are obtained and based on its polarity, the count of the respective po-

larity is increased. The sentence is also checked for presence of emoticons. This detection

is implemented by a dictionary based approach. Separate counts for positive, negative

and neutral emoticons are maintained. For each sentence, eleven features are extracted

(as shown in Table 8.5) and a feature vector is build using the same. This feature vector is

then passed through a random forest classifier to classify the sentiments of the particular

sentence.

Table 8.5: Features used for Sentiment Analysis using traditional machine learning approach

S.No Features
1 Count of positive, negative and neutral words
2 Scores of positive, negative and neutral words
3 Positive and negative scores of Ambiguous words
4 Count of positive, negative and neutral emoticons

253

8.2.3 Algorithm for Sentiment Analysis for Code Mixed Social Media Text

In this section, algorithm for language identification and sentiment analysis has been

explained.

8.2.3.1 Language Identification

Algorithm 8.4 discusses the approach of version 1, ng_SVM. List of code-mixed sentences,

S is fed to the algorithm as input such that each sentence is represented as a list of words.

Hence, S becomes a list of lists. On similar lines, the annotations of the input sentences

(represented by P) is also a list of lists. For each sentence, the POS tag of each word is

computed using the CMU ARK tagger (represented by the function: Tagger()) and stored

in the array POS. Now for each word, if the word is punctuation the Tagger function

returns X. For identifying named entity, dictionary is used (represented by NE, initiated

by function: Named_Entity_dictionary()) which searches for the presence of current word

(implemented by function: ispresent()). If the word is a named entity or punctuation, then

it is directly added to the final prediction. Otherwise, its character n-grams are built where

n varies from 2 to 4 (implemented by function: compute_char_n_grams()) and are passed

to the SVM classifier (already trained, represented by clf) for prediction of the language

tag (implemented by function: predict()). The tag is updated to the final prediction list.

The proposed approach of h_ng_SVM is explained in algorithm 8.5. Here, list of code-

Algorithm 8.4: Language Identification using ng_SVM
input : Code-Mixed sentences, S
output: Predicted Language Annotations, P

1 Initialization P=[], svm_data=[];

2 NE = Named_Entity_dictionary();
3 for i = 0 to S.length do
4 POS= Tagger(S[i]);
5 for j = 0 to S[i].length do
6 if NE.ispresent(POS[i][j]) or POS[j] =‘X’ then
7 P[i][j]=POS[j];

8 else
9 n_grams= compute_char_n_grams(S[i][j]);

10 P[i][j] = clf.predict(n_grams) ;

mixed sentences S is passed as input, which is a list of lists similar to algorithm 8.4.

254

The input sentences are passed through the ng_SVM classifier (implemented by function:

ng_SVM()) and the predicted sentences are stored in a list of lists, svm_data. For each word

in a sentence, counter (represented by cnt, initialized by counter()) increments the count of

respective tags, if token is not a punctuation (X) or named entity(NE), as shown in step 9 of

algorithm 8.4. After counting all the words in a sentence, the most common language tag

is obtained (implemented by function: most_common()). Then, all other Indian language

tags are replaced with the majority tag. The final updated tags are stored in the list, P.

Second proposed approach for language identification uses CRF model as explained in

Algorithm 8.5: Language Identification using h_ng_SVM
input : Code-Mixed sentences, S
output: Predicted Language Annotations, P

1 Initialization P=[], svm_data=[];

2 svm_data=ng_SVM(S);
3 for i=0 to svm_data.length do
4 cnt = counter();
5 for j = 0 to svm_data[i].length do
6 if svm_data[i][j]!=‘NE’ or svm_data[i][j] !=‘X’ then
7 cnt[svm_data[i][j]]+= 1;

8 lang_tag = cnt.most_common(1);
9 for j = 0 to svm_data[i].length do

10 if svm_data[i][j]!=‘NE’ or svm_data[i][j]!=‘X’ or
svm_data[i][j]!=‘en’ then

11 P[i][j]=lang_tag;

12 else
13 P[i][j]=svm_data[i][j];

algorithm 8.7. The code mixed input sentences are present in the list S. Each sentence

in the input data is already tokenized and stored in a list. S is a list of lists and each

sentence is represented by S[i], where i is the index of the array. For each word in a

sentence (represented by S[i][j]), feature vectors are computed (implemented by function:

Build_Feature_Vector()). While computing the feature vector, the information of previous

language tags are required, so a list prev is used to store the previous tags. These feature

vectors are given to the CRF classifier for predicting the appropriate tag (implemented by

function: predict()). After prediction, the current tag is updated in the prev list for the next

word.

255

Algorithm 8.7: Language Identification using CRF
input : Code-Mixed sentences, S
output: Predicted Language Annotations, P

1 Initialization P=[], FV=[];

2 clf = CRF_classifier();
3 for i = 0 to S.length do
4 prev=[];
5 sent_tag=[];
6 for j = 0 to S[i].length do
7 FV = Build_Feature_Vector(S[i], prev);
8 tag = clf.predict(FV);
9 sent_tag.append(tag);

10 prev.append(tag);

11 P.append(sent_tag);

8.2.3.2 Sentiment Analysis

Algorithm 8.8 implements the proposed approach for sentiment analysis using count of

SentiWordNet dictionary (SA_Count). The proposed algorithm computes the sentiment

of a code-mixed sentence by majority word count supporting the required polarity. Code

mixed sentences and predicted language annotations are passed as input. For each sen-

tence, count of words with positive and negative sentiment are maintained separately.

Each word in the sentence is looked up in the SentiWordNet dictionary of corresponding

language using predicted language annotations. Each SWN dictionary is divided into

four parts as described in section 8.2.1. If the word is found in the POS subversion, the

count of positive sentiment is incremented else if the word belongs to NEG subversion,

the count of negative sentiment is incremented. If the word is found in NEU or AMBI

subversion or is not found in the SWN dictionary, then it does not contribute towards

sentiment of the sentence. Finally, the count of positive and negative sentiments are com-

pared, and the prominent sentiment of the input sentence is considered, else sentence is

classified as neutral.

Algorithm 8.9 discusses the approach followed by SA_Score. The proposed algorithm

computes the sentiment of a code-mixed sentence by the sum of polarity scores of each

word in the sentence. The code mixed sentences and predicted language annotations are

passed as input. For each sentence, the total positive and negative score of the words

are maintained separately. Each word in the sentence is looked up in the SentiWordNet

256

Algorithm 8.8: SA_Count
input : Code-Mixed sentences, S, Predicted Language

Annotations, P, Indian SentiWordNet Dictionaries
(without scores), IND_Swn

output: Sentiment of Input sentences, SE
1 Initialization SE=[];

2 for i = 0 to S.length do
3 positive_count=negative_count=0;
4 for j= 0 to S[i].length do
5 word= S[i][j];
6 lang_tag=P[word];
7 lang_Swn=Indian_Swn[lang_tag] ;
8 if word in lang_Swn.POS then
9 positive_count=positive_count+1;

10 else if word in lang_Swn.NEG then
11 negative_count=negative_count+1 ;

12 if positive_count > negative_count then
13 SE[i]=positive;

14 else if positive_count < negative_count then
15 SE[i]=negative;

16 else
17 SE[i]=neutral;

dictionary of corresponding language, using predicted language annotations. If there is

an entry of that word in the SWN dictionary, then the positive and negative polarity score

of that word is added separately to the total positive and negative scores of the sentence.

Finally, total positive and negative scores computed for the sentence are compared. The

greater one is regarded as the sentiment of the input sentence. If the count is equal, sen-

timent of the sentence is classified as neutral.

Algorithm 8.10 explains the proposed traditional machine learning approach for senti-

ment analysis. The sentences S, are constructed as a list of lists. For each sentence the

number of positive, negative, neutral words are found out by searching each word in the

SentiWordNet(s) (represented by SWN, loaded by the function: load_SentiWordNets()) of

the respective language by the function find_SWNcounts(). The positive, negative, am-

biguous positive and ambiguous negative scores are found out for all the sentences using

function find_SWNscores(). Emoticons in the sentence are identified, and a total num-

ber of positive, negative and neutral emoticons are returned (implemented by function:

257

Algorithm 8.9: SA_Score
input : Code-Mixed sentences, S, Predicted Language

Annotations, P, Indian SentiWordNet Dictionaries
(without scores), IND_Swn_Score

output: Sentiment of Input sentences, SE
1 Initialization SE=[];

2 for i = 0 to S.length do
3 positive_score=negative_score=0;
4 for j= 0 to S[i].length do
5 word= S[i][j];
6 lang_tag=P[word];
7 lang_Swn=Indian_Swn[lang_tag] ;
8 if word in lang_Swn then
9 positive_score=positive_score

+lang_Swn[word].positive;
10 negative_score=negative_score

+lang_Swn[word].negative;

11 if positive_score > negative_score then
12 SE[i]=positive;

13 else if positive_score < negative_score then
14 SE[i]=negative;

15 else
16 SE[i]=neutral;

find_emoticons()). Using the information extracted feature_vectors are built (implemented

by function: Build_Feature_Vector()) and the sentiment is predicted (implemented by func-

tion: predict()).

8.2.4 Data Description and Analysis

MSIR, FIRE 2015 dataset is used for building the models. The training data has 2908

sentences, and the test data has 792 sentences. The dataset consists of nine languages

(Bengali, English, Gujarati, Hindi, Malayalam, Marathi, Kannada, Tamil, Telugu) and all

the words are present in the transliterated form.

As shown in Table 8.6, utterances has majority of English tags followed by punctuation

tags in both train and test data but there is a change in the composition of Indian language

words. In the training data, there are many Telugu words (12.57%), but in test data of

Telugu, the percentage of words dropped to 4.36%. In case of Tamil, there is a similar

258

Algorithm 8.10: SA_RF
input : Code-Mixed sentences, S
output: Predicted Sentiment Analysis, P

1 Initialization P=[], FV=[];

2 clf = RandomForestClassifier();
3 SWN = load_SentiWordNets();
4 for i = 0 to S.length do
5 counts = find_SWNcounts(S[i], SWN);
6 scores = find_SWNscores(S[i], SWN);
7 emoticons = find_emoticons(S[i]);
8 FV = Build_Feature_Vector(counts, scores, emoticons);
9 senti = clf.predict(FV);

10 P.append(senti);

Table 8.6: Number of tokens and their percentages in the testing and training data

Training data Testing data

Language
Token
Count

Percentage
Token
Count

Percentage

Bengali (bn) 3562 6.91 1368 11.40
English (en) 17952 34.85 4048 33.73
Gujarati (gu) 890 1.72 185 1.54
Hindi (hi) 4456 8.65 1601 13.34
Malayalam (ml) 1159 2.25 231 1.92
Marathi (mr) 1960 3.80 454 3.78
Kannada (kn) 1671 3.24 598 4.98
Tamil (ta) 3170 6.15 543 4.52
Telugu (te) 6477 12.57 524 4.36
Punctuation (X) 7712 14.97 1872 15.60
Named Entities
(NE)

2414 4.68 551 4.59

MIX 69 0.13 24 0.02
Others 14 0.02 0 0
Total 51506 100.00 11999 100.00

trend but not that distinguishable. The drop is from 6.15% to 4.52%. In case of Bengali

words, there are only 6.9% words in the training data, but in the testing data, the number

of words have spiked up to 11.4%. The Hindi words have a variation similar to Bengali.

For other Indian languages, there is a small change in their respective compositions. All

these languages have less than 4% of the training data and the change in their percentages

is not that distinguishable.

Figure 8.16 presents the amount of code switching present in a sentence. The figure

259

Figure 8.16: Number of Sentences per Language

excludes the presence of named entities and punctuations. If the number of languages in

a sentence is zero, it implies that the whole sentence has only NE and X tags. Sentences

with two or more languages are code mixed. As shown in Table 8.6, most of the sentences

in the dataset are either monolingual or bilingual. There are very few sentences with three

languages.

As depicted in Figure 8.17, the dataset has many sentences with English words followed

by Hindi, Bengali, Kannada and Telugu. There are very few instances for rest of the

languages. All the languages that have fewer sentences, have more subjective sentences.

Telugu tag is associated with more subjective sentences. Difference in the number of

subjective and objective sentence varies from language to language as shown in Figure

8.17.

8.2.5 Experiments and Results

In this section, the language detection and sentiment analysis are done on the MSIR

2015 dataset [Sequiera et al. 2015b]. For language identification, three versions are pro-

posed. The first one used character n-grams as features and classified using SVM classifier

260

Figure 8.17: Number of Subjective/Objective Sentences per Language

(ng_SVM). The second model (h_ng_SVM) is an extended version of the first model. There

is an extra majority voting done on the first model. The third model is CRF based Lan-

guage detector. Similarly, three different approaches have been evaluated for sentiment

analysis of code mixed data. Two of them uses SentiWordNet dictionaries of different

Indian languages for sentiment analysis. The first approach computes the majority word

count favouring a particular sentiment for a given sentence whereas the second approach

uses polarity scores of each word for evaluating sentiment of the code mixed sentence.

In the third approach, sentiment analysis is performed using traditional machine learn-

ing techniques. Features for traditional machine learning are built using SentiWordNet

dictionaries as discussed in section 8.2.2.3.2. Section 8.2.5.1 provides results along with

discussion and error analysis for each of the approaches mentioned.

8.2.5.1 Evaluation & Discussion

From Table 8.7, it is evident that the average precision for CRF is high compared to the

other two models for language identification but while considering average F-measure

261

Figure 8.18: Comparison of all the three proposed approach for Language Identification

Figure 8.19: Comparison of all the three proposed approach for Sentiment Analysis

262

Table 8.7: Results for Language Identification

Precision Recall F-measure
ng_
SVM

h_ng_
SVM

CRF
ng_
SVM

h_ng_
SVM

CRF
ng_
SVM

h_ng_
SVM

CRF

en 0.831 0.794 0.696 0.791 0.788 0.973 0.811 0.791 0.812
NE 0.225 0.225 0.18 0.399 0.399 0.728 0.288 0.288 0.288
X 0.791 0.791 0.88 0.926 0.926 0.956 0.853 0.853 0.916
bn 0.737 0.846 0.817 0.596 0.729 0.402 0.659 0.784 0.539
gu 0.101 0 1 0.092 0 0.158 0.096 0 0.273
hi 0.641 0.765 0.838 0.505 0.609 0.341 0.565 0.678 0.485
kn 0.67 0.88 0.786 0.473 0.699 0.452 0.555 0.779 0.574
ml 0.497 0.844 0.333 0.394 0.563 0.083 0.44 0.675 0.133
mr 0.535 0.909 0.667 0.423 0.815 0.047 0.472 0.859 0.088
ta 0.576 0.735 1 0.788 0.886 0.521 0.666 0.804 0.685
te 0.408 0.649 0.606 0.578 0.803 0.336 0.478 0.718 0.433
Avg 0.5466 0.6762 0.71 0.542 0.656 0.454 0.534 0.657 0.475

and average recall the h_ng_SVM performs the best. This trend is not followed for in-

dividual languages. As shown in Figure 8.17, for English and named entities all the

versions performed approximately same. In case of punctuation and Gujarati, the CRF

based model performed better than other two models. For the rest of the language tags

the h_ng_SVM outperforms the rest of the models but h_ng_SVM has a zero F-measure

for the Gujarati words. This can be explained as follows: ng_SVM classifier might have

marked only some of the Gujarati words in a sentence but when h_ng_SVM applies major-

ity voting, the count of Gujarati words may not be the majority tag. Hence, all the Gujarati

words annotations are replaced. The poor classification of Gujarati words could be due to

the fact stated by [Sequiera et al. 2015b], that Hindi-Gujarati is found to be most confusing

language pair in MSIR 2015 dataset. Results of approaches for sentiment analysis have

been discussed below:

8.2.5.1.1 SA_Count

A language wise detailed description of average precision, recall and F-measure for

SA_Count (as described in algorithm 8.8) is shown in Table 8.8. It is evident from Figure

8.19 that word instances of Hindi language obtained highest F-measure. This approach

also works well for sentiment analysis of English, Telugu and Bengali languages. The

263

Table 8.8: Results for Sentiment Analysis

Average Precision Average Recall Average F-measure

SA_
Score

SA_
Count

SA_
RF

SA_
Score

SA_
Count

SA_
RF

SA_
Score

SA_
Count

SA_
RF

en 0.548 0.539 0.517 0.538 0.511 0.506 0.541 0.519 0.504
X 0.482 0.486 0.461 0.478 0.464 0.459 0.476 0.46 0.455
NE 0.518 0.497 0.471 0.508 0.462 0.474 0.509 0.471 0.463
te 0.559 0.576 0.412 0.723 0.754 0.36 0.493 0.530 0.363
ta 0.333 0 0.167 0.167 0 0.333 0.222 0 0.222
ml 0.667 0.333 0.667 0.583 0.25 0.5 0.619 0.286 0.557
mr 0.333 0 0.267 0.0477 0 0.190 0.083 0 0.222
kn 0.497 0.552 0.451 0.449 0.471 0.383 0.425 0.443 0.372
hi 0.531 0.566 0.412 0.515 0.526 0.513 0.511 0.536 0.428
gu 0.667 0.333 0.25 0.5 0.333 0.5 0.557 0.333 0.333
bn 0.546 0.546 0.571 0.478 0.478 0.523 0.497 0.497 0.539
MIX 0.722 0.611 0.517 0.857 0.690 0.524 0.731 0.598 0.5
Overall 0.539 0.532 0.503 0.507 0.485 0.489 0.515 0.494 0.49

lower F-measure scores of Gujarati and Malayalam instances could be attributed to the

lower number of sentences of these languages. It can be seen that proposed approach

works relatively better for instances where code-mixing is involved. Highest precision

score is obtained for sentences with words of Kannada and Hindi languages, while high-

est recall is observed for Telugu language instances.

8.2.5.1.2 SA_Score

A detailed description of precision, recall and F-measure scores obtained for each lan-

guage using the approach of SA_Score (as described in algorithm 8.9) is shown in Table

8.8. It can be observed from Figure 8.19 that the highest F-measure scores are obtained for

instances belonging to Malayalam language. The approach also works well for sentiment

analysis of languages of Hindi, English and Gujarati. F-measure score of 0.731 is observed

for the code mixed sentences. The highest precision scores are found for utterances be-

longing to Gujarati language and highest recall are found for Telugu instances. It is also

evident that the F-measure scores for words belonging to neutral category is consistently

higher in case of most of the languages.

8.2.5.1.3 SA_RF

F-measure, recall and precision scores obtained using the approach of random forest (as

264

described in Algorithm 8.10) classifier for sentiment analysis is shown in Table 8.8. It can

be observed from Figure 8.19, that highest F-measure scores are obtained for sentences

with words of Malayalam language. This approach also performs well for Bengali and

English language instances. It is evident that this algorithm performs relatively better

for code mixed sentences. Using this approach, the highest precision and F-measure are

observed for Bengali language instances.

As evident from Figure 8.19, SA_Score version of algorithm performs relatively better

as compared to the others, for sentiment analysis of most of the languages. It is seen

that sentiment analysis of code-mixed sentences has a higher F-measure as compared to

the other individual languages. It can also be observed that SA_Count approach per-

formed best for Hindi and Telugu language instances, SA_RF approach performed best

for Bengali language instances, while sentiment analysis for all the other languages is best

achieved using SA_Score approach. This could be attributed to the fact that using scores

for sentiment analysis does incorporate contextual information and negation, as positive

and negative scores both are involved for computing sentiment of a sentence.

8.2.5.2 Error Analysis

For a better sentiment analysis model, perfect transliteration and language annotation

are needed, but some errors might have crept in both the phases. The current language

identification approach relies on a dictionary for identification of named entities. Since the

NE is traversed from various languages, it would be difficult to maintain a record of all of

them. Hence, there is a possibility of missing some Named Entities. A better NER System

would decrease the risk of misclassification. Even though Google API is considered the

best transliterator, but there may be few errors in the transliteration. This is because

users write there native language in English, even a small change in the alphabets may

result in wrong transliteration. This could cause problems while searching for the word

in the SentiWordNet as only string matching is being performed. In code mixed text, it is

common to have punctuations written without spaces, causing two or more words to be

combined. This can lead to wrong language detection, resulting in the absence of a word

in SentiWordNet.

265

8.3 Concluding Remarks

In conclusion, algorithms are proposed for some of the applications of code mixed text

such as question classification and sentiment analysis. For question classification, two

approaches are proposed. First approach is based on word level n-gram and second is

based on CNN(s) to classify code mixed cross script questions into nine different classes.

The proposed algorithm based on deep Learning performs at par with the traditional ma-

chine learning based approach. It can be further improved if a larger dataset is available.

Version 2 of approach 1 performed best overall for the available dataset. The reason is

that translations used in the approach, normalized the text. Further, not removing named

entities helped the classifiers in identifying the correct classes. Deep learning techniques

performed best for classes with more number of instances, such as in case of ‘ORG’ class.

Sentiment analysis for code mixed social media text is another application discussed in

this chapter. An algorithm is proposed for language identification to improve the sen-

timent analysis of code mixed text. Three different approaches have been proposed for

both language identification and sentiment analysis. Approaches are proposed to identify

eight different languages with the highest achieved F-measure of 65.7%. The proposed

approaches for sentiment analysis are also able to classify the code mixed sentences into

positive, negative and neutral sentiments for eight different code mixed Indian languages.

266

Chapter 9

Conclusion & Future Work

9.1 Conclusion

The thesis set out to solve challenges of sentiment analysis. It starts with the discussion

of motivations, research questions and objectives in the area of sentiment analysis. A

detailed literature review of sentiment analysis and its related challenges are discussed

in the thesis. Problems of sentiment analysis in Indian languages, temporal sentiment

analysis, paraphrasing, text summarization and spam detection are focused in the thesis.

Few aspects of code mixing are also covered. Tools for code mixed text such as part of

speech tagger and named entity recognizer are proposed, and few applications related

to code mixing such as question classification and sentiment analysis in code mixed text

have also been targeted. The thesis also focuses on the problem of sarcasm detection in

monolingual and code mixed social media text.

This thesis targets the problem of sentiment analysis in Indian languages and temporal

sentiment analysis. Variants of neural network architectures have been proposed and

compared. A hybrid architecture is adopted for the sentiment analysis in Indian lan-

guages where CNN, LSTM and RNN are used to create 39 different sequential models. It

is observed that depending upon the size of data and the complexity of language, these

combinations work well for identifying sentiments. The proposed approach is tested with

three Indian languages namely, Hindi, Bengali and Tamil. An aspect based temporal sen-

timent analysis approach has also been proposed which keeps track of changing aspects

and its respective sentiments with time. CNN and clustering based approach is used for

267

identifying the changing important aspects and sentiments with an accuracy of 96.5% and

83.5% respectively.

Approaches are discussed for text summarization and paraphrase detection in English

and Indian languages. A significant amount of social media text needs to be summa-

rized for finding the right set of information and reducing redundancy. Two approaches

have been proposed for paraphrase detection. In first approach, classifiers such as Lo-

gistic Regression, Support Vector Machine, Naive Bayes and Random Forest are used.

Logistic Regression gives a maximum accuracy of 89% for paraphrase identification. The

second approach for paraphrase detection uses deep learning techniques such as LSTM,

Bi-directional LSTM, RNN and CNN. A variant of CNN with WordNet is also proposed

which performed better as compared to other approaches. Sequential model of two

LSTM(s) also performed at par with CNN for few languages including Malayalam and

Punjabi.

Extractive and abstractive text summarization have also been explored in the thesis. Pro-

posed paraphrasing approach has been used to generate labels for annotation of sentences

in extractive text summarization. Fully connected CNN has been used to generate extrac-

tive summaries. For abstractive text summarization, two approaches are proposed. The

first approach uses graph based sentiment infusion, where sentences are merged on the

basis of their syntactic and semantic similarity using appropriate connectors whereas in

second approach generative adversarial networks are used to predict next word in ab-

stractive summaries.

Two approaches are proposed for spam detection in English. The first approach uses clas-

sifiers such as LR, NB and SVM whereas the second approach uses a sequential model

where deep learning techniques such as RNN, CNN and LSTM are combined to yield

a hybrid architecture for detecting spam. Sarcasm detection in English and code mixed

social media text (English and Hindi) has also been explored in the thesis. Bilingual word

embeddings are used to project and map similar words in different languages in same

feature vector space such that similar words are placed nearby. A sequential model has

been proposed using deep learning techniques to generate a hybrid model. Different vari-

ants for sequential models are experimented. It is found that a model with CNN followed

by LSTM and RNN gave the highest accuracy among all.

268

Algorithms have been proposed for developing tools for code mixed text. Two problems

have been targeted here, Part of Speech tagging for code mix text (Hindi, Telugu and Ben-

gali) and Named Entity Recognizer for code mix text (Hindi-English and Tamil English).

POS tagging is targeted for three Indian languages namely, Hindi, Bengali and Telugu.

The first approach for POS tagging proposes an ensemble based POS tagger whereas the

second approach proposes tree based POS tagger. The third approach uses bidirectional

LSTM to predict POS tag of next word in combination with a dictionary based approach.

Named Entity Recognizer is developed for English code mixed with Hindi and Tamil.

Four variants of approach are proposed for predicting NER. Decision tree and extremely

randomized tree are used as classifiers.

Few applications of code mixed text are also discussed in the thesis. Two applications

have been discussed here, i.e. question classification and sentiment analysis. Two ap-

proaches have been proposed for classifying code mixed cross script questions. The first

approach uses NER and translation based approach for classifying questions in nine dif-

ferent classes whereas the second approach uses CNN for question classification in code

mixed text. An approach has also been proposed for code mixed sentiment analysis.

Languages are identified in the text using the algorithm proposed for language identifi-

cation where each word is tagged with a language and transliterated to its original script.

Sentiment analysis is then performed using the SentiWordNet dictionaries of different

Indian languages. SentiWordNet dictionaries are built using the bilingual mapping for

different Indian languages. Three variants of algorithm (SA_Count, SA_Score, SA_RF)

are proposed for sentiment analysis where SA_Score outperformed the other mentioned

algorithms.

9.2 Thesis Contributions

Main contributions of the thesis are as follows:

1. Sequential neural network based model has been proposed to evaluate the senti-

ments in Indian languages.

269

2. An algorithm has been proposed to identify paraphrases in text and improve the

process of text summarization.

3. An abstractive text summarization approach has been proposed to summarize mono-

lingual text (including Indian languages) using GAN and sentiment infusion.

4. A hybrid sequential model has been proposed for spam detection using deep learn-

ing techniques.

5. An approach for sarcasm detection in code mixed text has been proposed.

6. Algorithms have been proposed for NLP tools such as NER and POS tagger for code

mixed text.

7. An approach has been proposed for classifying cross script questions in nine differ-

ent classes.

8. An approach has been proposed for sentiment analysis of code mixed text for mul-

tiple language pairs.

9.3 Future Work

This thesis focuses on different challenges faced while evaluating sentiments for social

media text. However, all the aspects have not been covered. Few of them being implicit

opinion mining and comparative opinion mining. One interesting future work would be,

how important characteristic features for different problems can be embedded in a neural

network based approaches to improvise the model further. Few approaches proposed

in thesis use translation, though translation and transliteration have not attained a very

high accuracy yet. Code mixing is present in social media text in sufficient quantity, but

there is a lack of large dataset, which is typically required by deep learning techniques.

Code mix text generation tools can generate the synthesized code mix data to solve above

mentioned problem. It has been observed that code mixing often follows grammar rules

of its own. This can be used to an advantage to improve the algorithms proposed further.

270

This can also help in building code mix text generation tools. Spam and Sarcasm de-

tection algorithms can be further improved using author profilation. Many studies have

shown that Word2Vec and GloVe embeddings work well as compared to word embed-

dings. However, they are not available for Indian languages and hence, word embeddings

using algorithms followed by Word2Vec and GloVe can be proposed for Indian languages

as well.

271

References

[Abburi et al. 2016] Harika Abburi, Eswar Sai Akhil Akkireddy, Suryakanth V Gan-
gashetty and Radhika Mamidi. Multimodal sentiment analysis of telugu songs. In
Proceedings of the 4th Workshop on Sentiment Analysis where AI meets Psychol-
ogy (SAAIP 2016), pages 48–52, 2016. 24

[Aggarwal et al. 2013] Anupama Aggarwal, Jussara Almeida and Ponnurangam Ku-
maraguru. Detection of spam tipping behaviour on foursquare. In Proceedings of the
22nd International Conference on World Wide Web, pages 641–648. ACM, 2013. 44

[Ahmed & Abulaish 2012] Faraz Ahmed and Muhammad Abulaish. An mcl-based ap-
proach for spam profile detection in online social networks. In 11th International Con-
ference on Trust, Security and Privacy in Computing and Communications (Trust-
Com), pages 602–608. IEEE, 2012. 44

[Ajmal & Haroon 2015] EB Ajmal and Rosna P Haroon. Summarization of Malayalam Doc-
ument Using Relevance of Sentences. International Journal of Latest Research in En-
gineering and Technology, pages 8–13, 2015. 38, 40

[Akoglu et al. 2010] Leman Akoglu, Mary McGlohon and Christos Faloutsos. Oddball:
Spotting anomalies in weighted graphs. Advances in Knowledge Discovery and Data
Mining, pages 410–421, 2010. 44, 45

[Al-Rfou et al. 2013] Rami Al-Rfou, Bryan Perozzi and Steven Skiena. Polyglot: Distributed
word representations for multilingual nlp. arXiv preprint arXiv:1307.1662, 2013. 55

[Alguliev et al. 2011] Rasim M Alguliev, Ramiz M Aliguliyev, Makrufa S Hajirahimova
and Chingiz A Mehdiyev. MCMR: Maximum coverage and minimum redundant text
summarization model. Expert Systems with Applications, vol. 38, no. 12, pages
14514–14522, 2011. 31

[Algur et al. 2011] Siddu P Algur, Amit P Patil, PS Hiremath and S Shivashankar. WEB
BASED CUSTOMER REVIEW SPAM DETECTION USING CONCEPTUAL LEVEL
SIMILARITY MEASURE AND SHINGLING TECHNIQUE. International Journal of
Innovative Research in Science and Techniques (IJIRST), pages 1–9, 2011. 149

272

[Amir et al. 2016] Silvio Amir, Byron C Wallace, Hao Lyu and Paula Carvalho Mário J
Silva. Modelling context with user embeddings for sarcasm detection in social media.
arXiv preprint arXiv:1607.00976, 2016. 49, 174

[An et al. 2014] Xiaoran An, Auroop R Ganguly, Yi Fang, Steven B Scyphers, Ann M
Hunter and Jennifer G Dy. Tracking climate change opinions from twitter data. In
Workshop on Data Science for Social Good, 2014. 25

[Anagha et al. 2016] M Anagha, Raveena R Kuma, K Sreetha and PC Reghu Raj. A Novel
Hybrid Approach Based on Maximum Entropy Classifier for Sentiment Analysis of Malay-
alam Movie Reviews. International Journal of Scientific Research, vol. 4, no. 6, pages
1–2, 2016. 19

[Anand Kumar et al. 2016] M. Anand Kumar, S. Shiv Karan, Kavirajan and K P Soman.
DPIL@FIRE2016: Overview of shared task on Detecting Paraphrases in Indian Lan-
guages. In Working notes of FIRE 2016 - Forum for Information Retrieval Evalu-
ation, Kolkata, India, December 7-10, 2016, CEUR Workshop Proceedings. CEUR-
WS.org, 2016. 28, 107, 112, 118

[Anil et al. 2015] Kumar K.M Anil, Poojari Asmita and Kumari M Mohana. Pattern based
Approach for Mining Users Opinion from Kannada Web Documents. Discovery, vol. 45,
pages 138–143, 2015. 19

[Antony & Soman 2011] PJ Antony and KP Soman. Parts of speech tagging for Indian lan-
guages: a literature survey. International Journal of Computer Applications (0975-
8887), vol. 34, no. 8, pages 22–29, 2011. 51

[Araque et al. 2017] Oscar Araque, Ignacio Corcuera-Platas, J Fernando Sánchez-Rada
and Carlos A Iglesias. Enhancing deep learning sentiment analysis with ensemble
techniques in social applications. Expert Systems with Applications, vol. 77, pages
236–246, 2017. 13

[Arjovsky & Bottou 2017] Martin Arjovsky and Léon Bottou. Towards principled methods
for training generative adversarial networks. In NIPS 2016 Workshop on Adversarial
Training. In review for ICLR, volume 2016, 2017. 141

[Arthur & Vassilvitskii 2007] David Arthur and Sergei Vassilvitskii. k-means++: The ad-
vantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and
Applied Mathematics, 2007. 90

[Asiaee T et al. 2012] Amir Asiaee T, Mariano Tepper, Arindam Banerjee and Guillermo
Sapiro. If you are happy and you know it... tweet. In Proceedings of the 21st ACM
international conference on Information and knowledge management, pages 1602–
1606. ACM, 2012. 12

273

[Aston et al. 2014] Nathan Aston, Jacob Liddle and Wei Hu. Twitter sentiment in data
streams with perceptron. Journal of Computer and Communications, pages 11–16,
2014. 12

[Baccianella et al. 2010a] Stefano Baccianella, Andrea Esuli and Fabrizio Sebastiani. Senti-
WordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.
In LREC, volume 10, pages 2200–2204, 2010. 12

[Baccianella et al. 2010b] Stefano Baccianella, Andrea Esuli and Fabrizio Sebastiani. Senti-
WordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.
In LREC, volume 10, pages 2200–2204, 2010. 135

[Baccianella et al. 2010c] Stefano Baccianella, Andrea Esuli and Fabrizio Sebastiani. Senti-
WordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.
In LREC, volume 10, pages 2200–2204, 2010. 244

[Bag & Harit 2011] Soumen Bag and Gaurav Harit. Topographic Feature Extraction for Ben-
gali and Hindi Character Images. arXiv preprint arXiv:1107.2723, 2011. 76, 80

[Bahdanau et al. 2014] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neu-
ral machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014. 34

[Bahdanau et al. 2016] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon
Brakel and Yoshua Bengio. End-to-end attention-based large vocabulary speech recogni-
tion. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on, pages 4945–4949. IEEE, 2016. 34

[Balahur et al. 2014] Alexandra Balahur, Marco Turchi, Ralf Steinberger, José
Manuel Perea Ortega, Guillaume Jacquet, Dilek Küçük, Vanni Zavarella and
Adil El Ghali. Resource Creation and Evaluation for Multilingual Sentiment Analysis
in Social Media Texts. In LREC, pages 4265–4269, 2014. 60

[Balamurali 2012] AR Balamurali. Cross-lingual sentiment analysis for Indian languages using
linked wordnets. In In proceedings of COLING, pages 73–82. Citeseer, 2012. 20, 58,
60

[Balazs & Velásquez 2016] Jorge A Balazs and Juan D Velásquez. Opinion mining and in-
formation fusion: a survey. Information Fusion, vol. 27, pages 95–110, 2016. 61

[Bali et al. 2014] Kalika Bali, Jatin Sharma, Monojit Choudhury and Yogarshi Vyas. " I am
borrowing ya mixing?" An Analysis of English-Hindi Code Mixing in Facebook. In Pro-
ceedings of the First Workshop on Computational Approaches to Code Switching,
pages 116–126, 2014. 171

274

[Bamman & Smith 2015] David Bamman and Noah A Smith. Contextualized sarcasm detec-
tion on twitter. In Ninth International AAAI Conference on Web and Social Media,
2015. 46, 47

[Banerjee et al. 2015] Siddhartha Banerjee, Prasenjit Mitra and Kazunari Sugiyama. Multi-
document abstractive summarization using ilp based multi-sentence compression. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, pages
1208–1214, 2015. 34

[Banerjee et al. 2016a] Somnath Banerjee, Kunal Chakma, Sudip Kumar Naskar, Amitava
Das, Paolo Rosso, Sivaji Bandyopadhyay and Monojit Choudhury. Overview of the
Mixed Script Information Retrieval (MSIR) at FIRE. In Working notes of FIRE 2016 -
Forum for Information Retrieval Evaluation, Kolkata, India, December 7-10, 2016,
volume 1737 of CEUR Workshop Proceedings, pages 94–99. CEUR-WS.org, 2016. 228,
232, 237

[Banerjee et al. 2016b] Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso and Sivaji
Bandyopadhyay. The first cross-script code-mixed question answering corpus. In Pro-
ceedings of the workshop on Modeling, Learning and Mining for Cross/Multilin-
guality (MultiLingMine 2016), co-located with The 38th European Conference on
Information Retrieval (ECIR), pages 56–65, 2016. 57, 225

[Banerjee et al. 2016c] Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso and Sivaji
Bandyopadhyay. The First Cross-Script Code-Mixed Question Answering Corpus. In
MultiLingMine@ ECIR, pages 56–65, 2016. 171

[Banu et al. 2007] M Banu, C Karthika, P Sudarmani and TV Geetha. Tamil Document Sum-
marization Using Semantic Graph Method. In Conference on Computational Intelli-
gence and Multimedia Applications, 2007. International Conference on, volume 2,
pages 128–134. IEEE, 2007. 38, 40

[Barman et al. 2016] Utsab Barman, Joachim Wagner and Jennifer Foster. Part-of-speech
Tagging of Code-mixed Social Media Content: Pipeline, Stacking and Joint Modelling.
EMNLP 2016, pages 30–39, 2016. 55

[Barzilay et al. 1999] Regina Barzilay, Kathleen R McKeown and Michael Elhadad. Infor-
mation fusion in the context of multi-document summarization. In Proceedings of the
37th annual meeting of the Association for Computational Linguistics on Com-
putational Linguistics, pages 550–557. Association for Computational Linguistics,
1999. 29, 102

[Barzilay 2003] Regina Barzilay. Information fusion for multidocument summarization: para-
phrasing and generation. PhD thesis, Columbia University, 2003. 103

275

[Baxendale 1958] Phyllis B Baxendale. Machine-made index for technical literatureâĂŤan ex-
periment. IBM Journal of Research and Development, vol. 2, no. 4, pages 354–361,
1958. 30

[Becchetti et al. 2006] Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi
and Ricardo A Baeza-Yates. Link-Based Characterization and Detection of Web Spam.
In AIRWeb, pages 1–8, 2006. 44

[Beegum & V.A 2016] Aleena Beegum and Noorjahan V.A. Sentence level sentiment analysis
in Malayalam. International Journal of Science & Technoledge, vol. 4, pages 106–
109, 2016. 19

[Benevenuto et al. 2010] Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues and Vir-
gilio Almeida. Detecting spammers on twitter. In Collaboration, electronic messag-
ing, anti-abuse and spam conference (CEAS), volume 6, pages 12–20, 2010. 44,
45

[Bengio et al. 2007] Yoshua Bengio, Yann LeCunet al. Scaling learning algorithms towards
AI. Large-scale kernel machines, vol. 34, no. 5, pages 1–41, 2007. 83

[Berant & Liang 2014] Jonathan Berant and Percy Liang. Semantic Parsing via Paraphrasing.
In ACL (1), pages 1415–1425, 2014. 103

[Bhargava et al. 2015] Rupal Bhargava, Yashvardhan Sharma, Shubham Sharma and Ab-
hinav Baid. Query Labelling for Indic Languages using a hybrid approach. In Working
notes of FIRE 2015 - Forum for Information Retrieval Evaluation, Gandhinagar,
India, December, 2015, volume 1587 of CEUR Workshop Proceedings, pages 40–42.
CEUR-WS.org, 2015. 50, 59, 248

[Bhargava et al. 2016a] Rupal Bhargava, Anushka Baoni, Harshit Jain and Yashvardhan
Sharma. Paraphrase Detection in Hindi Language using Syntactic Features of Phrase. In
Working notes of FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata,
India, December 7-10, 2016, CEUR Workshop Proceedings, pages 239–243. CEUR-
WS.org, 2016. 28

[Bhargava et al. 2016b] Rupal Bhargava, Shubham Khandelwal, Akshit Bhatia and
Sharma Yashvardhan. Modeling Classifier for Code Mixed Cross Script Questions. In
In workshop proceedings of Forum of Information Retrieval and Evaluation 2016,
volume 1737 of CEUR Workshop Proceedings, pages 109–114. CEUR-WS.org, 2016.
56, 228, 239

[Bhargava et al. 2016c] Rupal Bhargava, Yashvardhan Sharma and Gargi Sharma. ATSSI:
Abstractive Text Summarization Using Sentiment Infusion. Procedia Computer Sci-
ence, vol. 89, pages 404–411, 2016. 30, 32

276

[Bhargava et al. 2016d] Rupal Bhargava, Yashvardhan Sharma and Shubham Sharma. Sen-
timent analysis for mixed script Indic sentences. In Advances in Computing, Com-
munications and Informatics (ICACCI), 2016 International Conference on, pages
524–529. IEEE, 2016. 50

[Bharti et al. 2015] Santosh Kumar Bharti, Korra Sathya Babu and Sanjay Kumar Jena.
Parsing-based sarcasm sentiment recognition in Twitter data. In Advances in Social
Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM International Con-
ference on, pages 1373–1380. IEEE, 2015. 46, 48

[Bhat et al. 2016] Irshad Ahmad Bhat, Manish Shrivastava and Riyaz Ahmad Bhat. Code
Mixed Entity Extraction in Indian Languages using Neural Networks. In Working notes
of FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata, India, Decem-
ber 7-10, 2016, CEUR Workshop Proceedings, pages 296–297. CEUR-WS.org, 2016.
56

[Bhatia & Ritchie 2016] Tej Bhatia and William Ritchie. Multilingual language mixing and
creativity. Languages, vol. 1, no. 1, page 6, 2016. 171

[Bhattacharjee & Bhattacharya 2016] Debjyoti Bhattacharjee and Paheli Bhattacharya. En-
semble Classifier based approach for Code-Mixed Cross-Script Question Classification. In
Working notes of FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata,
India, December 7-10, 2016, CEUR Workshop Proceedings, pages 119–121. CEUR-
WS.org, 2016. 58, 235

[Bhoir & Gulati 2016] Arti S Bhoir and Archana Gulati. Multi-document Hindi Text Sum-
marization using Fuzzy Logic Method. International Journal of Advance Research in
Science and Engineering, vol. 4, no. 01, pages 468–476, 2016. 37, 39

[Bifet & Frank 2010] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twit-
ter streaming data. In International Conference on Discovery Science, pages 1–15.
Springer, 2010. 25

[Bing et al. 2015] Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo and Rebecca J Pas-
sonneau. Abstractive multi-document summarization via phrase selection and merging.
arXiv preprint arXiv:1506.01597, 2015. 34

[Bird & Loper 2004] Steven Bird and Edward Loper. NLTK: the natural language toolkit. In
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions,
page 31. Association for Computational Linguistics, 2004. 163

[Bjørkelund & Burnett 2012] Eivind Bjørkelund and Thomas Hoberg Burnett. Temporal
opinion mining. Master’s thesis, NTNU-Trondheim Norwegian University of Sci-
ence and Technology, 2012. 25

277

[Bock 2013] Zannie Bock. Cyber socialising: Emerging genres and registers of intimacy among
young South African students. Language Matters, vol. 44, no. 2, pages 68–91, 2013.
49

[Bollen et al. 2011] Johan Bollen, Huina Mao and Alberto Pepe. Modeling public mood and
emotion: Twitter sentiment and socio-economic phenomena. ICWSM, vol. 11, pages
450–453, 2011. 25

[Bosma et al. 2012] Maarten Bosma, Edgar Meij and Wouter Weerkamp. A framework for
unsupervised spam detection in social networking sites. In European Conference on
Information Retrieval, pages 364–375. Springer, 2012. 44

[Burstein et al. 2001] Jill Burstein, Claudia Leacock and Richard Swartz. Automated evalu-
ation of essays and short answers. 2001. 43

[Buschmeier et al. 2014] Konstantin Buschmeier, Philipp Cimiano and Roman Klinger. An
impact analysis of features in a classification approach to irony detection in product reviews.
In Proceedings of the 5th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 42–49, 2014. xv, 47, 168, 169, 170

[Cao et al. 2012] Qiang Cao, Michael Sirivianos, Xiaowei Yang and Tiago Pregueiro. Aid-
ing the detection of fake accounts in large scale social online services. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation,
pages 15–15. USENIX Association, 2012. 44

[Carenini & Cheung 2008] Giuseppe Carenini and Jackie Chi Kit Cheung. Extractive vs.
NLG-based abstractive summarization of evaluative text: The effect of corpus controver-
siality. In Proceedings of the Fifth International Natural Language Generation
Conference, pages 33–41. Association for Computational Linguistics, 2008. 133

[Carvalho et al. 2009] Paula Carvalho, Luís Sarmento, Mário J Silva and Eugénio
De Oliveira. Clues for detecting irony in user-generated contents: oh...!! it’s so easy;-. In
Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis
for mass opinion, pages 53–56. ACM, 2009. 171

[Castillo et al. 2007] Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock
and Fabrizio Silvestri. Know your neighbors: Web spam detection using the web topol-
ogy. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 423–430. ACM, 2007. 44

[Cavnar et al. 1994] William B Cavnar, John M Trenkleet al. N-gram-based text categorization.
Ann Arbor MI, vol. 48113, no. 2, pages 161–175, 1994. 59

[Ceylan & Kim 2009] Hakan Ceylan and Yookyung Kim. Language identification of search
engine queries. In Proceedings of the Joint Conference of the 47th Annual Meet-

278

ing of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2, pages 1066–1074, 2009. 59

[Chakraborty et al. 2016a] Manajit Chakraborty, Sukomal Pal, Rahul Pramanik and
C Ravindranath Chowdary. Recent developments in social spam detection and com-
bating techniques: A survey. Information Processing & Management, vol. 52, no. 6,
pages 1053–1073, 2016. 4

[Chakraborty et al. 2016b] Manajit Chakraborty, Sukomal Pal, Rahul Pramanik and
C Ravindranath Chowdary. Recent developments in social spam detection and com-
bating techniques: A survey. Information Processing & Management, vol. 52, no. 6,
pages 1053–1073, 2016. 4, 5, 44

[Chan 2006] Samuel WK Chan. Beyond keyword and cue-phrase matching: A sentence-based
abstraction technique for information extraction. Decision Support Systems, vol. 42,
no. 2, pages 759–777, 2006. 30

[Chen et al. 2015] Changge Chen, Hai Zhao and Yang Yang. Deceptive Opinion Spam De-
tection Using Deep Level Linguistic Features. In Natural Language Processing and
Chinese Computing, pages 465–474. Springer, 2015. 152, 154

[Choi 2016] Jinho D Choi. Dynamic feature induction: The last gist to the state-of-the-art. In
Proceedings of NAACL-HLT, pages 271–281, 2016. 51

[Chollet et al. 2015] François Cholletet al. Keras. https://github.com/fchollet/

keras, 2015. 154

[Chopra et al. 2016] Sumit Chopra, Michael Auli, Alexander M Rush and SEAS Harvard.
Abstractive sentence summarization with attentive recurrent neural networks. Proceed-
ings of NAACL-HLT16, pages 93–98, 2016. 28

[Choudhury et al. 2007] Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh Mukher-
jee, Sudeshna Sarkar and Anupam Basu. Investigation and modeling of the structure
of texting language. International Journal of Document Analysis and Recognition
(IJDAR), vol. 10, no. 3-4, pages 157–174, 2007. 171

[Chowdhury & Chowdhury 2014] Shaika Chowdhury and Wasifa Chowdhury. Perform-
ing sentiment analysis in Bangla microblog posts. In Informatics, Electronics & Vision
(ICIEV), 2014 International Conference on, pages 1–6. IEEE, 2014. 15

[Chu et al. 2010] Zi Chu, Steven Gianvecchio, Haining Wang and Sushil Jajodia. Who
is tweeting on Twitter: human, bot, or cyborg? In Proceedings of the 26th annual
computer security applications conference, pages 21–30. ACM, 2010. 45

[Chu et al. 2012] Zi Chu, Indra Widjaja and Haining Wang. Detecting social spam campaigns
on twitter. In International Conference on Applied Cryptography and Network
Security, pages 455–472. Springer, 2012. 44

279

https://github.com/fchollet/keras
https://github.com/fchollet/keras

[Clarke & Lapata 2006] James Clarke and Mirella Lapata. Models for sentence compression:
A comparison across domains, training requirements and evaluation measures. In Pro-
ceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, pages
377–384. Association for Computational Linguistics, 2006. 32

[Cliche 2014] Mathieu Cliche. The sarcasm detector. PhD thesis, Cornell University, 2014.
48

[Costa et al. 2013] Helen Costa, Fabricio Benevenuto and Luiz HC Merschmann. Detecting
tip spam in location-based social networks. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 724–729. ACM, 2013. 44

[Da Silva et al. 2014] Nadia FF Da Silva, Eduardo R Hruschka and Estevam R Hruschka.
Tweet sentiment analysis with classifier ensembles. Decision Support Systems, vol. 66,
pages 170–179, 2014. 12

[Das & Bandyopadhyay 2009] Amitava Das and Sivaji Bandyopadhyay. Subjectivity detec-
tion in english and bengali: A crf-based approach. Proceeding of ICON, 2009. 58,
60

[Das & Bandyopadhyay 2010a] Amitava Das and Sivaji Bandyopadhyay. Opinion-polarity
identification in bengali. In International Conference on Computer Processing of
Oriental Languages, pages 169–182, 2010. 16

[Das & Bandyopadhyay 2010b] Amitava Das and Sivaji Bandyopadhyay. SentiWordNet for
Indian languages. In 8th workshop on asian language resources, pages 56–63, 2010.
60, 243, 252

[Das & Bandyopadhyay 2010c] Amitava Das and Sivaji Bandyopadhyay. Topic-based Ben-
gali opinion summarization. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pages 232–240. Association for Computational
Linguistics, 2010. 42

[Das & Bandyopadhyay 2011] Amitava Das and Sivaji Bandyopadhyay. Dr Sentiment
knows everything! In Proceedings of the 49th annual meeting of the association
for computational linguistics: human language technologies: systems demonstra-
tions, pages 50–55. Association for Computational Linguistics, 2011. 60

[Das & Gambäck 2012] Amitava Das and Björn Gambäck. Sentimantics: conceptual spaces
for lexical sentiment polarity representation with contextuality. In Proceedings of the
3rd Workshop in Computational Approaches to Subjectivity and Sentiment Anal-
ysis, pages 38–46. Association for Computational Linguistics, 2012. 60

[Das & Gambäck 2014] Amitava Das and Björn Gambäck. Identifying languages at the word
level in code-mixed indian social media text. In Proceedings of the 11th International

280

Conference on Natural Language Processing, Goa, India, pages 169–178. Citeseer,
2014. 6

[Das & Gambäck 2015] Amitava Das and Björn Gambäck. Code-Mixing in Social Media
Text: The Last Language Identification Frontier? TAL, vol. 54, pages 41–64, 2015. 6

[Das et al. 2011] Dipankar Das, Anup Kolya, Asif Ekbal and Sivaji Bandyopadhyay. Tem-
poral analysis of sentiment events–a visual realization and tracking. Computational
Linguistics and Intelligent Text Processing, pages 417–428, 2011. 25

[Dave et al. 2003] Kushal Dave, Steve Lawrence and David M Pennock. Mining the peanut
gallery: Opinion extraction and semantic classification of product reviews. In Proceedings
of the 12th international conference on World Wide Web, pages 519–528. ACM,
2003. 149

[Davidov et al. 2010] Dmitry Davidov, Oren Tsur and Ari Rappoport. Enhanced sentiment
learning using twitter hashtags and smileys. In Proceedings of the 23rd international
conference on computational linguistics: posters, pages 241–249. Association for
Computational Linguistics, 2010. 12

[Deepali & Garg 2013] Deepali and Navneet Garg. Movie Review Mining in Punjabi. In-
ternational Journal of Application or Innovation in Engineering & Management,
vol. 2, pages 372–375, 2013. 20

[Desai & Shah 2016] Nikita Desai and Prachi Shah. Automatic Text Summarization using
Supervised using Supervised Machine Learning Technique for Hindi language. Inter-
national Journal of Research in Engineering and Technology, vol. 5, no. 6, pages
361–367, 2016. 37

[Dewaele 2010] J Dewaele. Emotions in multiple languages. Springer, 2010. 50

[Diale et al. 2016] Melvin Diale, Christiaan Van Der Walt, Turgay Celik and Abiodun
Modupe. Feature selection and support vector machine hyper-parameter optimisation
for spam detection. In Pattern Recognition Association of South Africa and Robotics
and Mechatronics International Conference (PRASA-RobMech), 2016, pages 1–7.
IEEE, 2016. 45

[Ding et al. 2012] Duo Ding, Florian Metze, Shourabh Rawat, Peter Franz Schulam, Su-
sanne Burger, Ehsan Younessian, Lei Bao, Michael G Christel and Alexander
Hauptmann. Beyond audio and video retrieval: towards multimedia summarization. In
Proceedings of the 2nd ACM International Conference on Multimedia Retrieval,
pages 2:1–2:8. ACM, 2012. 133

[Dixit & Agrawal 2013] Snehal Dixit and AJ Agrawal. Survey on review spam detection.
International Journal of Computer & Communication Technology, vol. 4, pages
68–72, 2013. 4

281

[Dolan et al. 2004] Bill Dolan, Chris Quirk and Chris Brockett. Unsupervised construction of
large paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of
the 20th international conference on Computational Linguistics, pages 350:1–350:7.
Association for Computational Linguistics, 2004. 112, 118

[Dos Santos & Gatti 2014] Cícero Nogueira Dos Santos and Maira Gatti. Deep Convolu-
tional Neural Networks for Sentiment Analysis of Short Texts. In COLING, pages 69–78,
2014. 69, 71

[Duboue & Chu-Carroll 2006] Pablo Ariel Duboue and Jennifer Chu-Carroll. Answering
the question you wish they had asked: The impact of paraphrasing for question answering.
In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 33–36. Association for Computational
Linguistics, 2006. 103

[Dunlavy et al. 2007] Daniel M Dunlavy, Dianne P OâĂŹLeary, John M Conroy and Ju-
dith D Schlesinger. QCS: A system for querying, clustering and summarizing docu-
ments. Information processing & management, vol. 43, no. 6, pages 1588–1605,
2007. 29

[Edmundson 1969] Harold P Edmundson. New methods in automatic extracting. Journal of
the ACM (JACM), vol. 16, no. 2, pages 264–285, 1969. 30

[Egele et al. 2013] Manuel Egele, Gianluca Stringhini, Christopher Kruegel and Giovanni
Vigna. Compa: Detecting compromised accounts on social networks. In NDSS, pages
1–17, 2013. 45

[Ekbal et al. 2009] Asif Ekbal, Mohammed Hasanuzzaman and Sivaji Bandyopadhyay.
Voted Approach for Part of Speech Tagging in Bengali. In PACLIC, pages 120–129,
2009. 51

[El-Alfy et al. 2015] El-Sayed M El-Alfy, Radwan E Abdel-Aal, Wasfi G Al-Khatib and
Faisal Alvi. Boosting paraphrase detection through textual similarity metrics with ab-
ductive networks. Applied Soft Computing, vol. 26, pages 444–453, 2015. 26

[Elman 1990] Jeffrey L Elman. Finding structure in time. Cognitive science, vol. 14, no. 2,
pages 179–211, 1990. 63, 65, 69

[Ethiraj et al. 2015] Rampreeth Ethiraj, Sampath Shanmugam, Gowri Srinivasa and
Navneet Sinha. NELIS-Named Entity and Language Identification System: Shared Task
System Description. In FIRE Workshops, pages 43–46, 2015. 59

[Fader et al. 2013] Anthony Fader, Luke S Zettlemoyer and Oren Etzioni. Paraphrase-
Driven Learning for Open Question Answering. In ACL (1), pages 1608–1618. Citeseer,
2013. 103

282

[Fakhraei et al. 2015] Shobeir Fakhraei, James Foulds, Madhusudana Shashanka and Lise
Getoor. Collective spammer detection in evolving multi-relational social networks. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1769–1778. ACM, 2015. 44

[Fang et al. 2015] Hanyin Fang, Weiming Lu, Fei Wu, Yin Zhang, Xindi Shang, Jian Shao
and Yueting Zhuang. Topic aspect-oriented summarization via group selection. Neuro-
computing, vol. 149, pages 1613–1619, 2015. 31

[Fattah 2014] Mohamed Abdel Fattah. A hybrid machine learning model for multi-document
summarization. Applied intelligence, vol. 40, no. 4, pages 592–600, 2014. 31

[Fei et al. 2013] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos and
Riddhiman Ghosh. Exploiting Burstiness in Reviews for Review Spammer Detection.
ICWSM, vol. 13, pages 175–184, 2013. 44

[Feng et al. 2012a] Song Feng, Ritwik Banerjee and Yejin Choi. Syntactic stylometry for
deception detection. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume 2, pages 171–175. Association
for Computational Linguistics, 2012. 45

[Feng et al. 2012b] Song Feng, Longfei Xing, Anupam Gogar and Yejin Choi. Distributional
Footprints of Deceptive Product Reviews. ICWSM, vol. 12, pages 98–105, 2012. 149

[Fernando & Stevenson 2008] Samuel Fernando and Mark Stevenson. A semantic simi-
larity approach to paraphrase detection. In Proceedings of the 11th Annual Research
Colloquium of the UK Special Interest Group for Computational Linguistics, pages
45–52. Citeseer, 2008. 27

[Ferrara et al. 2014] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer and
Alessandro Flammini. The rise of social bots. arXiv preprint arXiv:1407.5225, 2014.
45

[Ferreira et al. 2013] Rafael Ferreira, Luciano de Souza Cabral, Rafael Dueire Lins,
Gabriel Pereira e Silva, Fred Freitas, George DC Cavalcanti, Rinaldo Lima, Steven J
Simske and Luciano Favaro. Assessing sentence scoring techniques for extractive text
summarization. Expert systems with applications, vol. 40, no. 14, pages 5755–5764,
2013. 31

[Filatova 2012] Elena Filatova. Irony and Sarcasm: Corpus Generation and Analysis Using
Crowdsourcing. In LREC, pages 392–398, 2012. 47, 163, 172

[Fischer 2011] Eric Fischer. Language communities of Twitter, 2011. 50

[Fu et al. 2015] Hao Fu, Xing Xie and Yong Rui. Leveraging careful microblog users for spam-
mer detection. In Proceedings of the 24th International Conference on World Wide
Web, pages 419–429. ACM, 2015. 44

283

[Galavotti et al. 2000] Luigi Galavotti, Fabrizio Sebastiani and Maria Simi. Experiments on
the use of feature selection and negative evidence in automated text categorization. In
International Conference on Theory and Practice of Digital Libraries, pages 59–68.
Springer, 2000. 40

[Gambäck & Das 2016] Björn Gambäck and Amitava Das. Comparing the level of code-
switching in corpora. In Proceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016), pages 1850–1855, 2016. 52

[Ganesan et al. 2010a] Kavita Ganesan, ChengXiang Zhai and Jiawei Han. Opinosis: a
graph-based approach to abstractive summarization of highly redundant opinions. In Pro-
ceedings of the 23rd international conference on computational linguistics, pages
340–348. Association for Computational Linguistics, 2010. xi, 32, 33, 137, 138, 139,
140, 144

[Ganesan et al. 2010b] Kavita Ganesan, ChengXiang Zhai and Jiawei Han. Opinosis: a
graph-based approach to abstractive summarization of highly redundant opinions. In Pro-
ceedings of the 23rd international conference on computational linguistics, pages
340–348. Association for Computational Linguistics, 2010. 147

[Ganesh et al. 2016] Barathi HB Ganesh, Kumar M Anand and KP Soman. Distributional
semantic representation in health care text classification. In Working notes of FIRE 2016
- Forum for Information Retrieval Evaluation, Kolkata, India, December 7-10, 2016,
CEUR Workshop Proceedings, pages 126–130. CEUR-WS.org, 2016. 57

[Gao et al. 2014] Hongyu Gao, Yi Yang, Kai Bu, Yan Chen, Doug Downey, Kathy Lee and
Alok Choudhary. Spam ain’t as diverse as it seems: throttling OSN spam with templates
underneath. In Proceedings of the 30th Annual Computer Security Applications
Conference, pages 76–85. ACM, 2014. 45

[Gella et al. 2013] Spandana Gella, Jatin Sharma and Kalika Bali. Query word labeling and
back transliteration for indian languages: Shared task system description. FIRE Working
Notes, vol. 3, pages 1–6, 2013. 52

[Gella et al. 2014] Spandana Gella, Kalika Bali and Monojit Choudhury. âĂIJye word kis
lang ka hai bhai?âĂİ Testing the Limits of Word level Language Identification. In Pro-
ceedings of the Eleventh International Conference on Natural Language Process-
ing, pages 130–139, 2014. 60

[Genest & Lapalme 2012] Pierre-Etienne Genest and Guy Lapalme. Fully abstractive ap-
proach to guided summarization. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short Papers-Volume 2, pages 354–358.
Association for Computational Linguistics, 2012. 32

284

[Ghosh & Dutta 2014] Aanusha Ghosh and Indranil Dutta. Real time Sentiment Analysis
of Hindi Tweets. In 35th Conference of the Linguistic Society of Nepal, pages 1–8,
2014. 18

[Ghosh & Veale 2016] Aniruddha Ghosh and Tony Veale. Fracking sarcasm using neural
network. In Proceedings of NAACL-HLT, pages 161–169, 2016. 49

[Ghosh et al. 2012] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar
Sharma, Gautam Korlam, Fabricio Benevenuto, Niloy Ganguly and Krishna Phani
Gummadi. Understanding and combating link farming in the twitter social network. In
Proceedings of the 21st international conference on World Wide Web, pages 61–70.
ACM, 2012. 44, 45

[Ghosh et al. 2016] Souvick Ghosh, Satanu Ghosh and Dipankar Das. Part-of-speech Tag-
ging of Code-Mixed Social Media Text. Second Workshop on Computational Ap-
proaches to Code Switching, pages 90–97, 2016. 54

[Giachanou & Crestani 2016] Anastasia Giachanou and Fabio Crestani. Like it or not: A
survey of twitter sentiment analysis methods. ACM Computing Surveys (CSUR),
vol. 49, no. 2, pages 28:1–28:41, 2016. 12

[Go et al. 2009] Alec Go, Richa Bhayani and Lei Huang. Twitter sentiment classification using
distant supervision. CS224N Project Report, Stanford, vol. 1, no. 12, pages 1–6, 2009.
12

[Goldbarg 2009] Rosalyn Negrón Goldbarg. Spanish English code switching in Email com-
munication. Language@ internet, vol. 6, no. 3, pages 1–21, 2009. 49

[Gong & Liu 2001] Yihong Gong and Xin Liu. Generic text summarization using relevance
measure and latent semantic analysis. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 19–25. ACM, 2001. 29

[Gong et al. 2014] Neil Zhenqiang Gong, Mario Frank and Prateek Mittal. Sybilbelief: A
semi-supervised learning approach for structure-based sybil detection. IEEE Transactions
on Information Forensics and Security, vol. 9, no. 6, pages 976–987, 2014. 44

[González-Ibánez et al. 2011] Roberto González-Ibánez, Smaranda Muresan and Nina
Wacholder. Identifying sarcasm in Twitter: a closer look. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies: Short Papers-Volume 2, pages 581–586. Association for Com-
putational Linguistics, 2011. 5, 46, 47

[Goodfellow et al. 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. Genera-

285

tive adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014. 141

[Graham 2002] Paul Graham. A plan for spam. http://paulgraham. com/spam. html, 2002.
44

[Graves 2013] Alex Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013. 74, 76

[Grefenstette 1995] Gregory Grefenstette. COMPARING TWO LANGUAGE IDENTIFICA-
TION SCHEM ES. In 3rd International conference on statistical analysis of textual
data, pages 1–6, 1995. 59

[Gupta & Kaur 2016] Vishal Gupta and Narvinder Kaur. A novel hybrid text summarization
system for Punjabi text. Cognitive Computation, vol. 8, no. 2, pages 261–277, 2016.
37

[Gupta et al. 2012] Kanika Gupta, Monojit Choudhury and Kalika Bali. Mining Hindi-
English Transliteration Pairs from Online Hindi Lyrics. In LREC, pages 2459–2465,
2012. 171

[Gupta et al. 2014] Parth Gupta, Kalika Bali, Rafael E Banchs, Monojit Choudhury and
Paolo Rosso. Query expansion for mixed-script information retrieval. In Proceedings
of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 677–686. ACM, 2014. 50, 60

[Gupta et al. 2016a] Deepak Gupta, Shubham Tripathi, Asif Ekbal and Pushpak Bhat-
tacharyya. A Hybrid Approach for Entity Extraction in Code-Mixed Social Media Data.
In FIRE 2016, pages 298–303. CEUR-WS, 2016. 56

[Gupta et al. 2016b] Sakshi Gupta, Piyush Bansal and Radhika Mamidi. Resource creation
for hindi-english code mixed social media text. In The 4th International Workshop
on Natural Language Processing for Social Media in the 25th International Joint
Conference on Artificial Intelligence, 2016. 171

[Gupta et al. 2017] Deepak Gupta, Shubham Tripathi, Asif Ekbal and Pushpak Bhat-
tacharyya. SMPOST: Parts of Speech Tagger for Code-Mixed Indic Social Media Text.
arXiv preprint arXiv:1702.00167, 2017. 54

[Gupta 2013] Vishal Gupta. Hybrid algorithm for multilingual summarization of Hindi and
Punjabi documents. In Mining Intelligence and Knowledge Exploration, pages 717–
727. Springer, 2013. 41

[Gyöngyi et al. 2004] Zoltán Gyöngyi, Hector Garcia-Molina and Jan Pedersen. Combating
web spam with trustrank. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pages 576–587. VLDB Endowment, 2004. 44

286

[Hakkani-Tür et al. 2016] Dilek Hakkani-Tür, Gökhan Tür, Asli Celikyilmaz, Yun-Nung
Chen, Jianfeng Gao, Li Deng and Ye-Yi Wang. Multi-Domain Joint Semantic Frame
Parsing Using Bi-Directional RNN-LSTM. In INTERSPEECH, pages 715–719, 2016.
74

[Halácsy et al. 2007] Péter Halácsy, András Kornai and Csaba Oravecz. HunPos: an open
source trigram tagger. In Proceedings of the 45th annual meeting of the ACL on in-
teractive poster and demonstration sessions, pages 209–212. Association for Com-
putational Linguistics, 2007. 54

[Hamdan et al. 2013] Hussam Hamdan, Frederic Béchet and Patrice Bellot. Experiments
with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro-
blogging. In Second Joint Conference on Lexical and Computational Semantics (*
SEM), volume 2, pages 455–459, 2013. 12

[Hao et al. 2011] Ming Hao, Christian Rohrdantz, Halldór Janetzko, Umeshwar Dayal,
Daniel A Keim, Lars-Erik Haug and Mei-Chun Hsu. Visual sentiment analysis on
twitter data streams. In Visual Analytics Science and Technology (VAST), 2011 IEEE
Conference on, pages 277–278. IEEE, 2011. 25

[Harabagiu & Lacatusu 2005] Sanda Harabagiu and Finley Lacatusu. Topic themes for
multi-document summarization. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 202–209. ACM, 2005. 30

[Hasan et al. 2014] KM Azharul Hasan, Mosiur Rahmanet al. Sentiment detection from
Bangla text using contextual valency analysis. In Computer and Information Tech-
nology (ICCIT), 2014 17th International Conference on, pages 292–295. IEEE, 2014.
15

[Hassan & Mahmood 2017] Abdalraouf Hassan and Ausif Mahmood. Deep Learning ap-
proach for sentiment analysis of short texts. In Control, Automation and Robotics
(ICCAR), 2017 3rd International Conference on, pages 705–710. IEEE, 2017. 13

[Hassan et al. 2013] Ammar Hassan, Ahmed Abbasi and Daniel Zeng. Twitter sentiment
analysis: A bootstrap ensemble framework. In Social Computing (SocialCom), 2013
International Conference on, pages 357–364. IEEE, 2013. 12

[He et al. 2015] Hua He, Kevin Gimpel and Jimmy Lin. Multi-Perspective Sentence Similar-
ity Modeling with Convolutional Neural Networks. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pages 1576–1586,
Lisbon, Portugal, September 2015. Association for Computational Linguistics. 27,
104

287

[Heu et al. 2015] Jee-Uk Heu, Iqbal Qasim and Dong-Ho Lee. FoDoSu: Multi-document
summarization exploiting semantic analysis based on social Folksonomy. Information
Processing & Management, vol. 51, no. 1, pages 212–225, 2015. 31

[Hochreiter & Schmidhuber 1997] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, vol. 9, no. 8, pages 1735–1780, 1997. 63, 65,
69

[Hovold 2005] Johan Hovold. Naive Bayes Spam Filtering Using Word-Position-Based At-
tributes. In CEAS, pages 41–48, 2005. 44

[Hu & Liu 2004] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 168–177. ACM, 2004. 2, 163

[Hu et al. 2013] Xia Hu, Jiliang Tang, Yanchao Zhang and Huan Liu. Social spammer detec-
tion in microblogging. In Twenty-Third International Joint Conference on Artificial
Intelligence, pages 2633–2639, 2013. 44

[Huang et al. 2008] Zhiheng Huang, Marcus Thint and Zengchang Qin. Question classifi-
cation using head words and their hypernyms. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 927–936. Association
for Computational Linguistics, 2008. 56

[Huang 2011a] Eric Huang. Paraphrase detection using recursive autoencoder.
Source:[http://nlp. stanford. edu/courses/cs224n/2011/reports/ehhuang.
pdf], pages 1–8, 2011. 26

[Huang 2011b] Eric Huang. Paraphrase detection using recursive autoencoder.
Source:[http://nlp. stanford. edu/courses/cs224n/2011/reports/ehhuang.
pdf], 2011. 149

[Ingle 1976] C Ingle Norman. A language identification table. The Incorporated Linguist
15(4), 1976. 59

[Islam & Inkpen 2008] Aminul Islam and Diana Inkpen. Semantic text similarity using
corpus-based word similarity and string similarity. ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 2, no. 2, pages 10:1–10:25, 2008. 26

[Islam & Masum 2004] T Islam and SMA Masum. Bhasa: A Corpus Based Information Re-
trieval and Summarizer for Bengali Text. Macquarie University, 2004. 42

[Jain 2015] Devanshu Jain. DA-IICT in FIRE 2015 Shared Task on Mixed Script Information
Retrieval. In FIRE Workshops, pages 51–54, 2015. 59

288

[Jamatia & Das 2014] Anupam Jamatia and Amitava Das. Part-of-speech tagging system for
Indian social media text on Twitter. In Proceedings Workshop on Language Tech-
nologies For Indian Social Media (SOCIAL-INDIA), pages 21–28, 2014. 51

[Jamatia & Das 2016] Anupam Jamatia and Amitava Das. TASK REPORT: TOOL CON-
TEST ON POS TAGGING FOR CODE-MIXED INDIAN SOCIAL MEDIA (FACE-
BOOK, TWITTER, AND WHATSAPP) TEXT @ ICON 2016. In Proceedings of 13th
International Conference on Natural Language Processing,ICON 2016, 2016. xiii,
194, 201, 203, 204

[Jamatia et al. 2015] Anupam Jamatia, Björn Gambäck and Amitava Das. Part-of-Speech
Tagging for Code-Mixed English-Hindi Twitter and Facebook Chat Messages. In RANLP,
pages 239–248, 2015. 52

[Jayashree et al. 2011] R Jayashree, Srikanta K Murthy and K Sunny. Keyword Extraction
Based Summarization of Categorized Kannada Text Documents. International Journal
on Soft Computing, vol. 2, no. 4, pages 81–93, 2011. 37, 40

[Jeong et al. 2016] Sihyun Jeong, Giseop Noh, Hayoung Oh and Chong-kwon Kim. Follow
spam detection based on cascaded social information. Information Sciences, vol. 369,
pages 481–499, 2016. 44, 45

[Jiang et al. 2011] Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu and Tiejun Zhao. Target-
dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 151–160. Association for Computational Linguistics, 2011. 12,
13

[Jiang et al. 2014] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang
Yang. Catchsync: catching synchronized behavior in large directed graphs. In Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 941–950. ACM, 2014. 44, 45

[Jin et al. 2011] Xin Jin, C Lin, Jiebo Luo and Jiawei Han. A data mining-based spam detection
system for social media networks. Proceedings of the VLDB Endowment, vol. 4, no. 12,
pages 1458–1461, 2011. 44

[Jindal & Liu 2008] Nitin Jindal and Bing Liu. Opinion spam and analysis. In Proceedings of
the 2008 International Conference on Web Search and Data Mining, pages 219–230.
ACM, 2008. 45, 148

[Jones et al. 1999] K Sparck Joneset al. Automatic summarizing: factors and directions. Ad-
vances in automatic text summarization, pages 1–12, 1999. 3

289

[Joshi et al. 2010] Aditya Joshi, AR Balamurali and Pushpak Bhattacharyya. A fall-back
strategy for sentiment analysis in hindi: a case study. Proceedings of ICON, pages 1–6,
2010. 58, 59

[Joshi et al. 2016a] Aditya Joshi, Pushpak Bhattacharyya and Mark James Carman. Auto-
matic sarcasm detection: A survey. arXiv preprint arXiv:1602.03426, 2016. 162

[Joshi et al. 2016b] Aditya Joshi, Vaibhav Tripathi, Pushpak Bhattacharyya and Mark Car-
man. Harnessing sequence labeling for sarcasm detection in dialogue from tv series
’friends’. CoNLL 2016, pages 146–155, 2016. 48

[Joshi et al. 2016c] Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya
and Mark Carman. Are Word Embedding-based Features Useful for Sarcasm Detection?
arXiv preprint arXiv:1610.00883, 2016. 48

[Kadlec et al. 2015] Rudolf Kadlec, Martin Schmid and Jan Kleindienst. Improved deep
learning baselines for ubuntu corpus dialogs. arXiv preprint arXiv:1510.03753, 2015.
71

[Kalchbrenner & Blunsom 2013] Nal Kalchbrenner and Phil Blunsom. Recurrent convolu-
tional neural networks for discourse compositionality. arXiv preprint arXiv:1306.3584,
2013. 57

[Kalchbrenner et al. 2014] Nal Kalchbrenner, Edward Grefenstette and Phil Blunsom. A
convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188,
2014. 27

[Kallimani et al. 2010] Jagadish S Kallimani, KG Srinivasaet al. Information retrieval by text
summarization for an Indian regional language. In Natural Language Processing and
Knowledge Engineering (NLP-KE), 2010 International Conference on, pages 1–4.
IEEE, 2010. 39

[Kallimani et al. 2016] Jagadish S Kallimani, KG Srinivasa and B Eswara Reddy. Statistical
and analytical study of guided abstractive text summarization. CURRENT SCIENCE,
vol. 110, no. 1, pages 69–72, 2016. 37

[Kantchelian et al. 2012] Alex Kantchelian, Justin Ma, Ling Huang, Sadia Afroz, Anthony
Joseph and JD Tygar. Robust detection of comment spam using entropy rate. In Pro-
ceedings of the 5th ACM Workshop on Security and Artificial Intelligence, pages
59–70. ACM, 2012. 44

[Kaur & Gupta 2014] Amandeep Kaur and Vishal Gupta. Proposed algorithm of sentiment
analysis for punjabi text. Journal of Emerging Technologies in Web Intelligence,
vol. 6, no. 2, pages 180–184, 2014. 21

290

[Kausikaa & V 2016] N Kausikaa and Uma V. Sentiment Analysis of English and Tamil
Tweets using Path Length Similarity based Word Sense Disambiguation. IOSR Journals
(IOSR Journal of Computer Engineering), vol. 1, pages 82–89, 2016. 22

[Kayes et al. 2015] Imrul Kayes, Nicolas Kourtellis, Daniele Quercia, Adriana Iamnitchi
and Francesco Bonchi. The social world of content abusers in community question an-
swering. In Proceedings of the 24th International Conference on World Wide Web,
pages 570–580. ACM, 2015. 44

[Keyan & Srinivasagan 2012] M Karthi Keyan and KG Srinivasagan. Multi-Document and
Multi-Lingual Summarization using Neural Networks. In Proceedings of International
Conference on Recent Trends in Computational Methods, Communication and
Controls, pages 11–14, 2012. 38, 41

[Khan & Baharum 2011] Aurangzeb Khan and Baharudin Baharum. Sentiment classifica-
tion by sentence level semantic orientation using sentiwordnet from online reviews and
Blogs. International Journal of Computer Science & Emerging Technologies, vol. 2,
no. 4, pages 539–552, 2011. 18, 19

[Khan et al. 2015] Atif Khan, Naomie Salim and Yogan Jaya Kumar. A framework for multi-
document abstractive summarization based on semantic role labelling. Applied Soft Com-
puting, vol. 30, pages 737–747, 2015. 33

[Kim et al. 2016] Jong Myoung Kim, Zae Myung Kim and Kwangjo Kim. An approach to
spam comment detection through domain-independent features. In Big Data and Smart
Computing (BigComp), 2016 International Conference on, pages 273–276. IEEE,
2016. 46

[Kim 2014] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014. 57, 63, 65, 69

[Knight & Marcu 2002] Kevin Knight and Daniel Marcu. Summarization beyond sentence
extraction: A probabilistic approach to sentence compression. Artificial Intelligence,
vol. 139, no. 1, pages 91–107, 2002. 32

[Ko & Seo 2008] Youngjoong Ko and Jungyun Seo. An effective sentence-extraction technique
using contextual information and statistical approaches for text summarization. Pattern
Recognition Letters, vol. 29, no. 9, pages 1366–1371, 2008. 30

[Kong et al. 2016] Leilei Kong, Kaisheng Chen, Liuyang Tian, Zhenyuan Hao, Zhongyuan
Han and Haoliang Qi. HIT2016@ DPIL-FIRE2016: Detecting Paraphrases in Indian
Languages based on Gradient Tree Boosting. In Working notes of FIRE 2016 - Forum
for Information Retrieval Evaluation, Kolkata, India, December 7-10, 2016, CEUR
Workshop Proceedings, pages 260–265. CEUR-WS.org, 2016. 28

291

[Krishnan & Raj 2006] Vijay Krishnan and Rashmi Raj. Web spam detection with anti-trust
rank. In AIRWeb, volume 6, pages 37–40, 2006. 44

[Krueger et al. 2015] Tammo Krueger, Danny Panknin and Mikio Braun. Fast cross-
validation via sequential testing. The Journal of Machine Learning Research, vol. 16,
no. 1, pages 1103–1155, 2015. 82

[Kumar & Yadav 2015] K Vimal Kumar and Divakar Yadav. An Improvised Extractive Ap-
proach to Hindi Text Summarization. In Information Systems Design and Intelligent
Applications, pages 291–300. Springer, 2015. 39

[Kumar et al. 2013] Niraj Kumar, Kannan Srinathan and Vasudeva Varma. A knowledge
induced graph-theoretical model for extract and abstract single document summarization.
In International Conference on Intelligent Text Processing and Computational Lin-
guistics, pages 408–423. Springer, 2013. 133

[Kumar et al. 2015a] Ayush Kumar, Sarah Kohail, Asif Ekbal and Chris Biemann. IIT-
TUDA: System for sentiment analysis in indian languages using lexical acquisition. In In-
ternational Conference on Mining Intelligence and Knowledge Exploration, pages
684–693. Springer, 2015. 82, 83

[Kumar et al. 2015b] KM Anil Kumar, N Rajasimha, Manovikas Reddy, A Rajanarayana
and Kewal Nadgir. Analysis of users’ Sentiments from Kannada Web Documents. Pro-
cedia Computer Science, vol. 54, pages 247–256, 2015. 18, 19, 58, 60

[Kumar et al. 2015c] M Anand Kumar, S Rajendran and KP Soman. Cross-Lingual Prepo-
sition Disambiguation for Machine Translation. Procedia Computer Science, vol. 54,
pages 291–300, 2015. 58, 60

[Kumar et al. 2015d] Rahul Venkatesh Kumar, M Anand Kumar and KP Soman. Amri-
taCEN_NLP@ FIRE 2015 Language Identification for Indian Languages in Social Media
Text. In FIRE Workshops, pages 26–28, 2015. 59

[Lau et al. 2011] Raymond YK Lau, SY Liao, Ron Chi-Wai Kwok, Kaiquan Xu, Yunqing
Xia and Yuefeng Li. Text mining and probabilistic language modeling for online review
spam detection. ACM Transactions on Management Information Systems (TMIS),
vol. 2, no. 4, pages 25:1–25:30, 2011. 4

[Leacock & Chodorow 1998] Claudia Leacock and Martin Chodorow. Combining local con-
text and WordNet similarity for word sense identification. WordNet: An electronic
lexical database, vol. 49, no. 2, pages 265–283, 1998. 104

[Lee et al. 2009] Ju-Hong Lee, Sun Park, Chan-Min Ahn and Daeho Kim. Automatic generic
document summarization based on non-negative matrix factorization. Information Pro-
cessing & Management, vol. 45, no. 1, pages 20–34, 2009. 31

292

[Lee et al. 2011] Kyumin Lee, Brian David Eoff and James Caverlee. Seven Months with the
Devils: A Long-Term Study of Content Polluters on Twitter. In ICWSM, pages 185–192,
2011. 45

[Lei et al. 2015] Tao Lei, Regina Barzilay and Tommi Jaakkola. Molding cnns for text: non-
linear, non-consecutive convolutions. arXiv preprint arXiv:1508.04112, 2015. 71

[Li & Roth 2002] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the
19th international conference on Computational linguistics-Volume 1, pages 1–7.
Association for Computational Linguistics, 2002. 57, 225

[Li et al. 2014] Jiwei Li, Myle Ott, Claire Cardie and Eduard H Hovy. Towards a General
Rule for Identifying Deceptive Opinion Spam. In ACL (1), pages 1566–1576. Citeseer,
2014. 149, 152

[Li et al. 2015] Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Liu and Jidong Shao.
Analyzing and Detecting Opinion Spam on a Large-scale Dataset via Temporal and Spatial
Patterns. In ICWSM, pages 634–637, 2015. 149

[Li et al. 2017a] Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Arjun Mukher-
jee and Jidong Shao. Bimodal distribution and co-bursting in review spam detection.
In Proceedings of the 26th International Conference on World Wide Web, pages
1063–1072. International World Wide Web Conferences Steering Committee, 2017.
46

[Li et al. 2017b] Lingxiao Li, Shaozi Li, Donglin Cao and Dazhen Lin. SentiNet: Mining
Visual Sentiment from Scratch. In Advances in Computational Intelligence Systems,
pages 309–317. Springer, 2017. 164

[Li et al. 2017c] Luyang Li, Bing Qin, Wenjing Ren and Ting Liu. Document representation
and feature combination for deceptive spam review detection. Neurocomputing, pages
33–41, 2017. 46

[Li 2000] David Li. Cantonese-English code-switching research in Hong Kong: a Y2K review.
World Englishes, vol. 19, no. 3, pages 305–322, 2000. 49

[Lin & Hovy 2003] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries
using n-gram co-occurrence statistics. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 71–78. Association for Computational
Linguistics, 2003. 137

[Lin & Kolcz 2012] Jimmy Lin and Alek Kolcz. Large-scale machine learning at twitter. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, pages 793–804. ACM, 2012. 12

293

[Lin et al. 2014] Yuming Lin, Tao Zhu, Hao Wu, Jingwei Zhang, Xiaoling Wang and Aoy-
ing Zhou. Towards online anti-opinion spam: Spotting fake reviews from the review
sequence. In Advances in Social Networks Analysis and Mining (ASONAM), 2014
IEEE/ACM International Conference on, pages 261–264. IEEE, 2014. 44

[Lin 2004] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out: Proceedings of the ACL-04 workshop, volume 8,
pages 1–8. Barcelona, Spain, 2004. 41, 137, 138, 146

[Ling et al. 2013] Wang Ling, Guang Xiang, Chris Dyer, Alan W Black and Isabel Trancoso.
Microblogs as Parallel Corpora. In ACL (1), pages 176–186, 2013. 6

[Litvak & Last 2008] Marina Litvak and Mark Last. Graph-based keyword extraction for
single-document summarization. In Proceedings of the workshop on Multi-source
Multilingual Information Extraction and Summarization, pages 17–24. Association
for Computational Linguistics, 2008. 29, 102

[Liu & Liu 2009] Fei Liu and Yang Liu. From extractive to abstractive meeting summaries: Can
it be done by sentence compression? In Proceedings of the ACL-IJCNLP 2009 Con-
ference Short Papers, pages 261–264. Association for Computational Linguistics,
2009. 139

[Liu & Zhang 2012] Bing Liu and Lei Zhang. A survey of opinion mining and sentiment
analysis. In Mining text data, pages 415–463. Springer, 2012. 11

[Liu et al. 2014] Peng Liu, Wei Chen, Gaoyan Ou, Tengjiao Wang, Dongqing Yang and Kai
Lei. Sarcasm detection in social media based on imbalanced classification. In International
Conference on Web-Age Information Management, pages 459–471. Springer, 2014.
48

[Liu et al. 2015] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh and Noah A
Smith. Toward abstractive summarization using semantic representations. 2015. 32, 133

[Liu et al. 2016] Linqing Liu, Yao Lu, Ye Luo, Renxian Zhang, Laurent Itti and Jianwei
Lu. Detecting" Smart" Spammers On Social Network: A Topic Model Approach. arXiv
preprint arXiv:1604.08504, 2016. 45

[Liu 2012] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human
language technologies, vol. 5, no. 1, pages 1–167, 2012. 1

[Lloret & Palomar 2011] Elena Lloret and Manuel Palomar. Analyzing the use of word
graphs for abstractive text summarization. In Proceedings of the First International
Conference on Advances in Information Mining and Management, Barcelona,
Spain, pages 61–6, 2011. 32, 33, 138, 139, 147

294

[Lloret & Palomar 2013] Elena Lloret and Manuel Palomar. Tackling redundancy in text
summarization through different levels of language analysis. Computer Standards &
Interfaces, vol. 35, no. 5, pages 507–518, 2013. 31

[Lloret et al. 2013] Elena Lloret, María Teresa Romá-Ferri and Manuel Palomar. COM-
PENDIUM: A text summarization system for generating abstracts of research papers.
Data & Knowledge Engineering, vol. 88, pages 164–175, 2013. 33

[Lloret 2008] Elena Lloret. Text summarization: an overview. Paper supported by the Span-
ish Government under the project TEXT-MESS (TIN2006-15265-C06-01), 2008. 3

[Lopez & Kalita 2017] Marc Moreno Lopez and Jugal Kalita. Deep Learning applied to NLP.
arXiv preprint arXiv:1703.03091, 2017. 13

[Lopyrev 2015] Konstantin Lopyrev. Generating news headlines with recurrent neural net-
works. arXiv preprint arXiv:1512.01712, 2015. 34, 102

[Luhn 1958] Hans Peter Luhn. The automatic creation of literature abstracts. IBM Journal of
research and development, vol. 2, no. 2, pages 159–165, 1958. 28, 30

[Lumezanu & Feamster 2012] Cristian Lumezanu and Nick Feamster. Observing common
spam in Twitter and email. In Proceedings of the 2012 ACM conference on Internet
measurement conference, pages 461–466. ACM, 2012. 44

[Luong et al. 2015] Thang Luong, Hieu Pham and Christopher D Manning. Bilingual word
representations with monolingual quality in mind. In Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Processing, pages 151–159, 2015.
178

[M & Soman 2016] Anand Kumar M and KP Soman. Amrita_CEN@ MSIR-FIRE2016:
Code-Mixed Question Classification using BoWs and RNN Embeddings. In Working
notes of FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata, In-
dia, December 7-10, 2016, CEUR Workshop Proceedings, pages 122–125. CEUR-
WS.org, 2016. 57

[Maas et al. 2011] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, An-
drew Y Ng and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1, pages 142–150. Association for
Computational Linguistics, 2011. 69

[Majumder & Pakray 2016] Goutam Majumder and Partha Pakray. NLP-NITMZ@ MSIR
2016 System for Code-Mixed Cross-Script Question Classification. In Working notes of
FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata, India, December
7-10, 2016, CEUR Workshop Proceedings, pages 100–104. CEUR-WS.org, 2016. 58,
237

295

[Malakasiotis 2009] Prodromos Malakasiotis. Paraphrase recognition using machine learning
to combine similarity measures. In Proceedings of the ACL-IJCNLP 2009 Student
Research Workshop, pages 27–35. Association for Computational Linguistics, 2009.
26, 104

[Malarkodi et al. 2012] CS Malarkodi, RK Pattabhi and Lalitha Devi Sobha. Tamil ner–
coping with real time challenges. In 24th International Conference on Computational
Linguistics, pages 23–37, 2012. 55

[Manchala et al. 2012] Sadanandam Manchala, D Chandra Mohan and A Nagesh. Word
and Sentence Level Emotion Analyzation in Telugu Blog and News. International Jour-
nal of Computer Science, Engineering and Applications, vol. 2, pages 183–197,
2012. 23

[Mani & Maybury 1999] Inderjeet Mani and Mark T Maybury. Advances in automatic
text summarization, volume 293. MIT Press, 1999. 29

[Mani et al. 1999] Inderjeet Mani, David House, Gary Klein, Lynette Hirschman, Therese
Firmin and Beth Sundheim. The TIPSTER SUMMAC text summarization evaluation.
In Proceedings of the ninth conference on European chapter of the Association for
Computational Linguistics, pages 77–85. Association for Computational Linguis-
tics, 1999. 3

[Mani et al. 2002] Inderjeet Mani, Gary Klein, David House, Lynette Hirschman, Therese
Firmin and Beth Sundheim. SUMMAC: a text summarization evaluation. Natural
Language Engineering, vol. 8, no. 01, pages 43–68, 2002. 42

[Märkle-Huß et al. 2017] Joscha Märkle-Huß, Stefan Feuerriegel and Helmut Prendinger.
Improving Sentiment Analysis with Document-Level Semantic Relationships from
Rhetoric Discourse Structures. In Proceedings of the 50th Hawaii International Con-
ference on System Sciences, pages 1142–1151, 2017. 13

[Martinez-Romo & Araujo 2013] Juan Martinez-Romo and Lourdes Araujo. Detecting ma-
licious tweets in trending topics using a statistical analysis of language. Expert Systems
with Applications, vol. 40, no. 8, pages 2992–3000, 2013. 44, 45

[Maynard & Greenwood 2014] Diana Maynard and Mark A Greenwood. Who cares about
Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis. In LREC,
pages 4238–4243, 2014. 46, 48, 171

[Medhat et al. 2014] Walaa Medhat, Ahmed Hassan and Hoda Korashy. Sentiment analysis
algorithms and applications: A survey. Ain Shams Engineering Journal, vol. 5, no. 4,
pages 1093–1113, 2014. 1

[Merriam-Webster 1983] Inc Merriam-Webster. Webster’s ninth new collegiate dictionary.
Merriam-Webster, 1983. 161

296

[Mi et al. 2015] Guyue Mi, Yang Gao and Ying Tan. Apply stacked auto-encoder to spam
detection. In International Conference in Swarm Intelligence, pages 3–15. Springer,
2015. 45

[Mihalcea et al. 2006] Rada Mihalcea, Courtney Corley, Carlo Strapparavaet al. Corpus-
based and knowledge-based measures of text semantic similarity. In AAAI, volume 6,
pages 775–780, 2006. 26, 104

[Mihalcea et al. 2007] Rada Mihalcea, Carmen Banea and Janyce Wiebe. Learning multilin-
gual subjective language via cross-lingual projections. In Annual meeting-association
for computational linguistics, volume 45, pages 976–983, 2007. 60

[Mikolov et al. 2013a] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013. 74, 175

[Mikolov et al. 2013b] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado and Jeff
Dean. Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013. 113,
117, 124

[Mishra et al. 2017] Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal Dey and Push-
pak Bhattacharyya. Harnessing Cognitive Features for Sarcasm Detection. arXiv
preprint arXiv:1701.05574, 2017. 46, 49

[Mittal et al. 2013] Namita Mittal, Basant Agarwal, Garvit Chouhan, Nitin Bania and Pra-
teek Pareek. Sentiment analysis of hindi review based on negation and discourse relation.
In proceedings of International Joint Conference on Natural Language Processing,
pages 45–50, 2013. 17

[Moawad & Aref 2012] Ibrahim F Moawad and Mostafa Aref. Semantic graph reduction
approach for abstractive Text Summarization. In Computer Engineering & Systems
(ICCES), 2012 Seventh International Conference on, pages 132–138. IEEE, 2012. 33

[Mohanty 1998] SK Mohanty. The formulation of parameters for type design of Indian scripts
based on calligraphic studies. In Electronic Publishing, Artistic Imaging, and Digital
Typography, pages 157–166. Springer, 1998. 79, 80

[Moradi 2014] Hamzeh Moradi. A Survey on Code-Mixing, Code Switching, Language Al-
teration and Interference. International Journal of Applied Research, vol. 4, no. 10,
pages 1–3, 2014. 6

[Muhammad et al. 2016] Mahmudun Nabi Muhammad, Tanzir Altaf Md. and Sabir Is-
mail. Detecting Sentiment from Bangla Text using Machine Learning Technique and
Feature Analysis. International Journal of Computer Applications, vol. 153, pages
28–34, 2016. 16

297

[Mukherjee et al. 2013a] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Me-
ichun Hsu, Malu Castellanos and Riddhiman Ghosh. Spotting opinion spammers
using behavioral footprints. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 632–640. ACM, 2013.
45

[Mukherjee et al. 2013b] Arjun Mukherjee, Vivek Venkataraman, Bing Liu and Natalie
Glance. Fake review detection: Classification and analysis of real and pseudo reviews.
Technical Report UIC-CS-2013–03, University of Illinois at Chicago, Tech. Rep.,
pages 1–11, 2013. 44

[Mukku et al. 2016] Sandeep Sricharan Mukku, Nurendra Choudhary and Radhika
Mamidi. Enhanced Sentiment Classification of Telugu Text using ML Techniques. In
SAAIP@ IJCAI, pages 29–34, 2016. 23

[Nallapati et al. 2016] Ramesh Nallapati, Bing Xiang and Bowen Zhou. TEXT SUMMA-
RIZATION. arXiv preprint arXiv:1602.06023, 2016. 34, 102

[Nelakuditi et al. 2016] Kovida Nelakuditi, Divya Sai Jitta Jitta and Radhika Mamidi. Part-
of-Speech Tagging for Code mixed English-Telugu Social media data. In 17th Interna-
tional Conference on Intelligent Text Processing and Computational Linguistics
(CICLING 2016), 2016. 54

[Nguyen et al. 2014] Dat Quoc Nguyen, Dang Duc Pham Dai Quoc Nguyen and Son Bao
Pham. RDRPOSTagger: A ripple down rules-based part-of-speech tagger. In Proceed-
ings of the Demonstrations at the 14th Conference of the European Chapter of
the Association for Computational Linguistics, EACL 2014, pages 17–20. Citeseer,
2014. 105, 110

[O’Callaghan et al. 2012] Derek O’Callaghan, Martin Harrigan, Joe Carthy and Pádraig
Cunningham. Network analysis of recurring youtube spam campaigns. arXiv preprint
arXiv:1201.3783, 2012. 44, 45

[O’Connor et al. 2010] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R Rout-
ledge and Noah A Smith. From tweets to polls: Linking text sentiment to public opinion
time series. ICWSM, vol. 11, no. 122-129, pages 1–2, 2010. 25

[Oraby et al. 2016] Shereen Oraby, Vrindavan Harrison, Lena Reed, Ernesto Hernandez,
Ellen Riloff and Marilyn Walker. Creating and Characterizing a Diverse Corpus of
Sarcasm in Dialogue. In 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 31–41, 2016. 172

[Ott et al. 2011] Myle Ott, Yejin Choi, Claire Cardie and Jeffrey T Hancock. Finding decep-
tive opinion spam by any stretch of the imagination. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Language

298

Technologies-Volume 1, pages 309–319. Association for Computational Linguistics,
2011. 45, 149, 154

[Ouyang et al. 2011] You Ouyang, Wenjie Li, Sujian Li and Qin Lu. Applying regression
models to query-focused multi-document summarization. Information Processing &
Management, vol. 47, no. 2, pages 227–237, 2011. 29, 31

[Ouyang et al. 2013] You Ouyang, Wenjie Li, Renxian Zhang, Sujian Li and Qin Lu. A
progressive sentence selection strategy for document summarization. Information Pro-
cessing & Management, vol. 49, no. 1, pages 213–221, 2013. 31

[Owoputi et al. 2013] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel,
Nathan Schneider and Noah A Smith. Improved part-of-speech tagging for online
conversational text with word clusters. pages 380–391. Association for Computational
Linguistics, 2013. 52, 248

[Pak & Paroubek 2010] Alexander Pak and Patrick Paroubek. Twitter as a Corpus for Sen-
timent Analysis and Opinion Mining. In LREc, volume 10, 2010. 12

[Pallavi et al. 2015] KP Pallavi, K Srividhya, Rexiline Ragini John Victor and MM Ramya.
HITS@ FIRE task 2015: Twitter based Named Entity Recognizer for Indian Languages.
In FIRE Workshops, pages 81–84, 2015. 56

[Pang et al. 2002] Bo Pang, Lillian Lee and Shivakumar Vaithyanathan. Thumbs up?: sen-
timent classification using machine learning techniques. In Proceedings of the ACL-02
conference on Empirical methods in natural language processing-Volume 10, pages
79–86. Association for Computational Linguistics, 2002. 12

[Pang et al. 2008] Bo Pang, Lillian Leeet al. Opinion mining and sentiment analysis. Foun-
dations and Trends® in Information Retrieval, vol. 2, no. 1–2, pages 1–135, 2008.
11

[Park et al. 2006] Sun Park, Ju-Hong Lee, Chan-Min Ahn, Jun Hong and Seok-Ju Chun.
Query based summarization using non-negative matrix factorization. In Knowledge-
Based Intelligent Information and Engineering Systems, pages 84–89. Springer,
2006. 29

[Patel et al. 2007] Alkesh Patel, Tanveer Siddiqui and Uma Shanker Tiwary. A language
independent approach to multilingual text summarization. In Large scale semantic ac-
cess to content (text, image, video, and sound), pages 123–132. LE CENTRE DE
HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE DOCUMENTAIRE,
2007. 35, 38

[Patel et al. 2016] Raj Nath Patel, Prakash B Pimpale and M Sasikumat. Recurrent Neural
Network based Part-of-Speech Tagger for Code-Mixed Social Media Text. arXiv preprint
arXiv:1611.04989, 2016. 54

299

[Patra et al. 2015] Braja Gopal Patra, Dipankar Das, Amitava Das and Rajendra Prasath.
Shared task on sentiment analysis in indian languages (sail) tweets-an overview. In In-
ternational Conference on Mining Intelligence and Knowledge Exploration, pages
650–655. Springer, 2015. 50, 68, 82

[Pedersen et al. 2004] Ted Pedersen, Siddharth Patwardhan and Jason Michelizzi. Word-
Net:: Similarity: measuring the relatedness of concepts. In Demonstration papers at
HLT-NAACL 2004, pages 38–41. Association for Computational Linguistics, 2004.
12

[Pedregosa et al. 2011a] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, vol. 12, pages 2825–
2830, 2011. 154

[Pedregosa et al. 2011b] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourget al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, vol. 12, no. Oct, pages 2825–2830, 2011. 109, 152, 153,
195, 199

[Pennington et al. 2014] Jeffrey Pennington, Richard Socher and Christopher D Manning.
Glove: Global Vectors for Word Representation. In EMNLP, volume 14, pages 1532–
1543, 2014. 85, 86

[Phani et al. 2016] Shanta Phani, Shibpur IIEST, Shibamouli Lahiri and Arindam Biswas.
Sentiment Analysis of Tweets in Three Indian Languages. WSSANLP 2016, vol. 1001,
pages 93–102, 2016. 22

[Pimpale & Patel 2016] Prakash B Pimpale and Raj Nath Patel. Experiments with POS
Tagging Code-mixed Indian Social Media Text. arXiv preprint arXiv:1610.09799, 2016.
53

[Plank et al. 2016] Barbara Plank, Anders Søgaard and Yoav Goldberg. Multilingual Part-
of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary
Loss. arXiv preprint arXiv:1604.05529, 2016. 53

[Pontiki et al. 2016] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageor-
giou, Ion Androutsopoulos and Suresh Manandhar. SemEval-2016 task 5: Aspect
based sentiment analysis. Proceedings of SemEval,Association for Computational
Linguistics, pages 19–30, 2016. 85

[Poorgholami et al. 2013] Maryam Poorgholami, Mehrdad Jalali, Saeed Rahati and Taha
Asgari. Spam detection in social bookmarking websites. In Software Engineering and

300

Service Science (ICSESS), 2013 4th IEEE International Conference on, pages 56–59.
IEEE, 2013. 44

[Popov 2016] Alexander Popov. Deep Learning Architecture for Part-of-Speech Tagging with
Word and Suffix Embeddings. In International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, pages 68–77. Springer, 2016. 149

[Poria et al. 2016a] Soujanya Poria, Erik Cambria, Devamanyu Hazarika and Prateek Vij.
A deeper look into sarcastic Tweets using deep convolutional neural networks. arXiv
preprint arXiv:1610.08815, 2016. 175

[Poria et al. 2016b] Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang
and Amir Hussain. Fusing audio, visual and textual clues for sentiment analysis from
multimodal content. Neurocomputing, vol. 174, pages 50–59, 2016. 13

[Prabhu et al. 2016] Ameya Prabhu, Aditya Joshi, Manish Shrivastava and Vasudeva
Varma. Towards Sub-Word Level Compositions for Sentiment Analysis of Hindi-English
Code Mixed Text. arXiv preprint arXiv:1611.00472, 2016. 61, 171

[Pundlik et al. 2016] Sumitra Pundlik, Prasad Dasare, Prachi Kasbekar, Akshay Gawade,
Gajanan Gaikwad and Purushottam Pundlik. Multiclass classification and class based
sentiment analysis for Hindi language. In Advances in Computing, Communications
and Informatics (ICACCI), 2016 International Conference on, pages 512–518. IEEE,
2016. 39

[Radev et al. 2002] Dragomir R Radev, Eduard Hovy and Kathleen McKeown. Introduction
to the special issue on summarization. Computational linguistics, vol. 28, no. 4, pages
399–408, 2002. 29, 30

[Radev et al. 2004] Dragomir R Radev, Timothy Allison, Sasha Blair-Goldensohn, John
Blitzer, Arda Celebi, Stanko Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam, Danyu
Liuet al. MEAD-A Platform for Multidocument Multilingual Text Summarization. In
LREC, 2004. 29, 102

[Rădulescu et al. 2014] Cristina Rădulescu, Mihaela Dinsoreanu and Rodica Potolea. Iden-
tification of spam comments using natural language processing techniques. In Intelligent
Computer Communication and Processing (ICCP), 2014 IEEE International Con-
ference on, pages 29–35. IEEE, 2014. 44

[Ramanathan & Rao 2003] Ananthakrishnan Ramanathan and Durgesh D Rao. A
lightweight stemmer for Hindi. In the Proceedings of EACL, 2003. 105

[RamaSree & Kusuma Kumari 2007] RJ RamaSree and P Kusuma Kumari. Combining pos
taggers for improved accuracy to create telugu annotated texts for information retrieval.
Dept. of Telugu Studies, Tirupathi, India, pages 1–12, 2007. 51

301

[Rao & Devi 2016] Pattabhi RK Rao and Sobha Lalitha Devi. CMEE-IL: Code Mix En-
tity Extraction in Indian Languages from Social Media Text@ FIRE 2016–An Overview.
pages 289–295, 2016. 56

[Rao et al. 2015] Pattabhi RK Rao, CS Malarkodi, R Vijay Sundar Ram and Sobha Lalitha
Devi. ESM-IL: Entity Extraction from Social Media Text for Indian Languages@ FIRE
2015-An Overview. In FIRE Workshops, pages 74–80, 2015. 55

[Read 2005] Jonathon Read. Using emoticons to reduce dependency in machine learning tech-
niques for sentiment classification. In Proceedings of the ACL student research work-
shop, pages 43–48. Association for Computational Linguistics, 2005. 12

[Reed et al. 2016] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele and Honglak Lee. Generative adversarial text to image synthesis. In Proceed-
ings of The 33rd International Conference on Machine Learning, volume 3, pages
1060–1069, 2016. 141

[Řehůřek & Kolkus 2009] Radim Řehůřek and Milan Kolkus. Language identification on
the web: Extending the dictionary method, pages 357–368. Berlin, Heidelberg,
2009. 59

[Reyes & Rosso 2012] Antonio Reyes and Paolo Rosso. Making objective decisions from sub-
jective data: Detecting irony in customer reviews. Decision Support Systems, vol. 53,
no. 4, pages 754–760, 2012. 47

[Reyes & Rosso 2014] Antonio Reyes and Paolo Rosso. On the difficulty of automatically de-
tecting irony: beyond a simple case of negation. Knowledge and Information Systems,
vol. 40, no. 3, pages 595–614, 2014. 47

[Riedhammer et al. 2010] Korbinian Riedhammer, Benoit Favre and Dilek Hakkani-Tür.
Long story short–global unsupervised models for keyphrase based meeting summarization.
Speech Communication, vol. 52, no. 10, pages 801–815, 2010. 29

[Riloff et al. 2013] Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan
Gilbert and Ruihong Huang. Sarcasm as Contrast between a Positive Sentiment and
Negative Situation. In EMNLP, volume 13, pages 704–714, 2013. 5, 46, 48

[Ruscoe 2009] Tony Ruscoe. Google Translator Toolkit, 2009. 250

[Rush et al. 2015] Alexander M Rush, Sumit Chopra and Jason Weston. A neural attention
model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.
28, 34

[Saha et al. 2008] Sujan Kumar Saha, Sanjay Chatterji, Sandipan Dandapat, Sudeshna
Sarkar and Pabitra Mitra. A hybrid approach for named entity recognition in indian
languages. In Proceedings of the IJCNLP-08 Workshop on NER for South and
South East Asian languages, pages 17–24, 2008. 55

302

[Saini 2016a] Anuj Saini. Anuj@ DPIL-FIRE2016: A Novel Paraphrase Detection Method in
Hindi Language using Machine Learning. In Working notes of FIRE 2016 - Forum
for Information Retrieval Evaluation, Kolkata, India, December 7-10, 2016, CEUR
Workshop Proceedings, pages 270–274. CEUR-WS.org, 2016. 28

[Saini 2016b] Anuj Saini. Code Mixed Cross Script Question Classification. In Working notes
of FIRE 2016 - Forum for Information Retrieval Evaluation, Kolkata, India, Decem-
ber 7-10, 2016, CEUR Workshop Proceedings, pages 115–118. CEUR-WS.org, 2016.
57

[San 2009] Hong Ka San. Chinese-English code-switching in blogs by Macao young people.
2009. 6, 49

[Sang 2002] Erik F Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: language-
independent named entity recognition, proceedings of the 6th conference on Natural lan-
guage learning. August, vol. 31, pages 1–4, 2002. 55

[Sankar et al. 2011] Sankar, Sundar Vijay and Sobha Lalitha Devi. Text Extraction for an
Agglutinative Language. Language in India, vol. 11, no. 5, pages 56–59, 2011. 37, 38,
41

[Sankarasubramaniam et al. 2014] Yogesh Sankarasubramaniam, Krishnan Ramanathan
and Subhankar Ghosh. Text summarization using Wikipedia. Information Processing
& Management, vol. 50, no. 3, pages 443–461, 2014. 32

[Sapkal & Shrawankar 2016] Krutika Sapkal and Urmila Shrawankar. Transliteration of
Secured SMS to Indian Regional Language. Procedia Computer Science, vol. 78, pages
748–755, 2016. 58, 60

[Sarkar 2012] Kamal Sarkar. An approach to summarizing Bengali news documents. In pro-
ceedings of the International Conference on Advances in Computing, Communi-
cations and Informatics, pages 857–862. ACM, 2012. 37, 42

[Sarkar 2015] Kamal Sarkar. A hidden markov model based system for entity extraction from
social media english text at fire 2015. arXiv preprint arXiv:1512.03950, 2015. 56

[Sarkar 2016a] Kamal Sarkar. A CRF Based POS Tagger for Code-mixed Indian Social Media
Text. arXiv preprint arXiv:1612.07956, 2016. 54

[Sarkar 2016b] Kamal Sarkar. Part-of-speech tagging for code-mixed indian social media text at
ICON 2015. arXiv preprint arXiv:1601.01195, 2016. 53

[Schuster & Paliwal 1997] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neu-
ral networks. IEEE Transactions on Signal Processing, vol. 45, no. 11, pages 2673–
2681, 1997. 72, 80

303

[Sculley & Wachman 2007] David Sculley and Gabriel M Wachman. Relaxed online SVMs
for spam filtering. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 415–422.
ACM, 2007. 44

[Se et al. 2015] Shriya Se, R Vinayakumar, M Anand Kumar and KP Soman. AMRITA-
CEN@ SAIL2015: Sentiment Analysis in Indian Languages. In International Confer-
ence on Mining Intelligence and Knowledge Exploration, pages 703–710. Springer,
2015. 56

[Se et al. 2016] Shriya Se, R Vinayakumar, M Anand Kumar and KP Soman. Predicting
the Sentimental Reviews in Tamil Movie using Machine Learning Algorithms. Indian
Journal of Science and Technology, vol. 9, no. 45, 2016. 21

[Sequiera et al. 2015a] Royal Sequiera, Monojit Choudhury and Kalika Bali. Pos tagging
of hindi-english code mixed text from social media: Some machine learning experiments.
In Proceedings of International Conference on NLP. NLPAI, December, pages 233–
242, 2015. 53

[Sequiera et al. 2015b] Royal Sequiera, Monojit Choudhury, Parth Gupta, Paolo Rosso,
Shubham Kumar, Somnath Banerjee, Sudip Kumar Naskar, Sivaji Bandyopad-
hyay, Gokul Chittaranjan, Amitava Das and Kunal Chakma. Overview of FIRE-2015
Shared Task on Mixed Script Information Retrieval. In Working notes of FIRE 2015 -
Forum for Information Retrieval Evaluation, Gandhinagar, India, December, 2015,
volume 1587 of CEUR Workshop Proceedings, pages 19–25. CEUR-WS.org, 2015. 50,
59, 227, 260, 263

[Shafie & Nayan 2013] Latisha Asmaak Shafie and Surina Nayan. Languages, code-
switching practice and primary functions of Facebook among university students. Studies
in English Language Teaching, vol. 1, no. 1, pages 187–199, 2013. 49

[Shao et al. 2017] Yeqin Shao, Marcello Trovati, Quan Shi, Olga Angelopoulou, Eleana
Asimakopoulou and Nik Bessis. A hybrid spam detection method based on unstructured
datasets. Soft Computing, vol. 21, no. 1, pages 233–243, 2017. 46

[Sharma & Lin 2013] Kuldeep Sharma and King-Ip Lin. Review spam detector with rating
consistency check. In Proceedings of the 51st ACM Southeast Conference, pages
34:1–34:6. ACM, 2013. 44

[Sharma et al. 2014] Richa Sharma, Shweta Nigam and Rekha Jain. Polarity detection movie
reviews in hindi language. arXiv preprint arXiv:1409.3942, 2014. 17

[Sharma et al. 2015a] Shashank Sharma, PYKL Srinivas and Rakesh Chandra Balaban-
taray. Sentiment analysis of code-mix script. In Computing and Network Communi-
cations (CoCoNet), 2015 International Conference on, pages 530–534. IEEE, 2015.
61

304

[Sharma et al. 2015b] Shashank Sharma, PYKL Srinivas and Rakesh Chandra Balaban-
taray. Text normalization of code mix and sentiment analysis. In Advances in Comput-
ing, Communications and Informatics (ICACCI), 2015 International Conference
on, pages 1468–1473. IEEE, 2015. 58, 60

[Sharma et al. 2015c] Yakshi Sharma, Veenu Mangat and Mandeep Kaur. A practical ap-
proach to Sentiment Analysis of hindi tweets. In Next Generation Computing Tech-
nologies (NGCT), 2015 1st International Conference on, pages 677–680. IEEE, 2015.
18

[Sharma et al. 2016] Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush Bansal, Man-
ish Srivastava, Radhika Mamidi and Dipti M Sharma. Shallow Parsing Pipeline for
Hindi-English Code-Mixed Social Media Text. arXiv preprint arXiv:1604.03136, 2016.
54

[Sharma 2014] Anu Sharma. Sentiment Analyzer using Punjabi Language. International
Journal of Innovative Research in Computer and Communication Engineering,
vol. 2, pages 5904–5909, 2014. 20

[Shen et al. 2014] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng and Grégoire Mesnil.
A latent semantic model with convolutional-pooling structure for information retrieval. In
Proceedings of the 23rd ACM International Conference on Conference on Infor-
mation and Knowledge Management, pages 101–110. ACM, 2014. 57

[Shi et al. 2013] Lu Shi, Shucheng Yu, Wenjing Lou and Y Thomas Hou. Sybilshield: An
agent-aided social network-based sybil defense among multiple communities. In INFO-
COM, 2013 Proceedings IEEE, pages 1034–1042. IEEE, 2013. 44

[Shirani-Mehr 2014] Houshmand Shirani-Mehr. Applications of Deep Learning to Sentiment
Analysis of Movie Reviews, 2014. 13

[Singh et al. 2006] Smriti Singh, Kuhoo Gupta, Manish Shrivastava and Pushpak Bhat-
tacharyya. Morphological richness offsets resource demand-experiences in constructing
a POS tagger for Hindi. In Proceedings of the COLING/ACL on Main conference
poster sessions, pages 779–786. Association for Computational Linguistics, 2006.
51

[Singh et al. 2016] Meghna Singh, Rajita Shukla, Jaya Saraswati, Laxmi Kashyap, Diptesh
Kanojia and Pushpak Bhattacharyya. Mapping it differently: A solution to the linking
challenges. pages 406–413, 2016. 244

[Sirivianos et al. 2011] Michael Sirivianos, Kyungbaek Kim and Xiaowei Yang. Socialfilter:
Introducing social trust to collaborative spam mitigation. In INFOCOM, 2011 Proceed-
ings IEEE, pages 2300–2308. IEEE, 2011. 44

305

[Socher et al. 2011] Richard Socher, Eric H Huang, Jeffrey Pennington, Andrew Y Ng and
Christopher D Manning. Dynamic Pooling and Unfolding Recursive Autoencoders for
Paraphrase Detection. In NIPS, volume 24, pages 801–809, 2011. 27, 104

[Socher et al. 2013] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christo-
pher D Manning, Andrew Y Ng, Christopher Pottset al. Recursive deep models for
semantic compositionality over a sentiment treebank. In Proceedings of the conference
on empirical methods in natural language processing (EMNLP), pages 1631–1642,
2013. 47, 149

[Sokolova & Lapalme 2009] Marina Sokolova and Guy Lapalme. A systematic analysis of
performance measures for classification tasks. Information Processing & Management,
vol. 45, no. 4, pages 427–437, 2009. 71

[Solorio & Liu 2008] Thamar Solorio and Yang Liu. Learning to predict code-switching
points. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 973–981. Association for Computational Linguistics, 2008.
51, 55

[Song et al. 2017] Long Song, Raymond Yiu Keung Lau, Ron Chi-Wai Kwok, Kristijan
Mirkovski and Wenyu Dou. Who are the spoilers in social media marketing? Incre-
mental learning of latent semantics for social spam detection. Electronic Commerce
Research, vol. 17, no. 1, pages 51–81, 2017. 46

[Sotillo 2012] Susanna Sotillo. Ehhhh utede hacen plane sin mi???:@ im feeling left out:(Form,
Function and Type of Code Switching in SMS Texting. In ICAME, volume 33, pages
309–310, 2012. 49

[Steinberger et al. 2007] Josef Steinberger, Massimo Poesio, Mijail A Kabadjov and Karel
Ježek. Two uses of anaphora resolution in summarization. Information Processing &
Management, vol. 43, no. 6, pages 1663–1680, 2007. 131

[Stringhini et al. 2013] Gianluca Stringhini, Gang Wang, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, Haitao Zheng and Ben Y Zhao. Follow the green: growth
and dynamics in twitter follower markets. In Proceedings of the 2013 conference on
Internet measurement conference, pages 163–176. ACM, 2013. 44, 45

[Subramaniam & Dalal 2015] Manjula Subramaniam and Vipul Dalal. Test Model for Rich
Semantic Graph Representation for Hindi Text using Abstractive Method. International
Research Journal of Engineering and Technology (IRJET), vol. 2, no. 2, pages 113–
116, 2015. 38, 39

[Sun et al. 2013] Huan Sun, Alex Morales and Xifeng Yan. Synthetic review spamming and
defense. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1088–1096. ACM, 2013. 44

306

[Sun et al. 2016] Xiao Sun, Chengcheng Li and Fuji Ren. Sentiment analysis for Chinese
microblog based on deep neural networks with convolutional extension features. Neuro-
computing, vol. 210, pages 227–236, 2016. 63

[Sundaram et al. 2009] Mahalakshmi Shanmuga Sundaram, Kumar Madasamy and So-
man Kotti Padannayil. : Paraphrase Detection for Twitter using Unsupervised Feature
Learning with Recursive Autoencoders. In Workshop Proceedings of the International
Workshop on Semantic Evaluation 2015 (Sem Eval-2015), Denver, Colorado, US,
pages 45–50. Citeseer, 2009. 26, 103

[Sureka 2011] Ashish Sureka. Mining user comment activity for detecting forum spammers in
youtube. arXiv preprint arXiv:1103.5044, 2011. 44

[Sutskever et al. 2014] Ilya Sutskever, Oriol Vinyals and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information processing sys-
tems, pages 3104–3112, 2014. 149

[Tan et al. 2012] Enhua Tan, Lei Guo, Songqing Chen, Xiaodong Zhang and Yihong Zhao.
Spammer behavior analysis and detection in user generated content on social networks.
In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International Confer-
ence on, pages 305–314. IEEE, 2012. 44

[Tan et al. 2013] Enhua Tan, Lei Guo, Songqing Chen, Xiaodong Zhang and Yihong Zhao.
Unik: Unsupervised social network spam detection. In Proceedings of the 22nd ACM
international conference on Information & Knowledge Management, pages 479–
488. ACM, 2013. 44

[Tang et al. 2009] Huifeng Tang, Songbo Tan and Xueqi Cheng. A survey on sentiment
detection of reviews. Expert Systems with Applications, vol. 36, no. 7, pages 10760–
10773, 2009. 11

[Tang et al. 2014] Duyu Tang, Furu Wei, Bing Qin, Ting Liu and Ming Zhou. Coooolll:
A deep learning system for twitter sentiment classification. In Proceedings of the 8th
International Workshop on Semantic Evaluation (SemEval 2014), pages 208–212,
2014. 13

[Tepperman et al. 2006] Joseph Tepperman, David R Traum and Shrikanth Narayanan. "
yeah right": sarcasm recognition for spoken dialogue systems. In Ninth International
Conference on Spoken Language Processing, pages 1838–1841, 2006. 46, 162

[Thaokar & Malik 2013] Chetana Thaokar and Latesh Malik. Test model for summarizing
hindi text using extraction method. In Information & Communication Technologies
(ICT), 2013 IEEE Conference on, pages 1138–1143. IEEE, 2013. 37, 39

307

[Tjong Kim Sang & De Meulder 2003] Erik F Tjong Kim Sang and Fien De Meulder. In-
troduction to the CoNLL-2003 shared task: Language-independent named entity recogni-
tion. In Proceedings of the seventh conference on Natural language learning at
HLT-NAACL 2003-Volume 4, pages 142–147. Association for Computational Lin-
guistics, 2003. 55

[Toutanova et al. 2003] Kristina Toutanova, Dan Klein, Christopher D Manning and
Yoram Singer. Feature-rich part-of-speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human Language Technology-Volume
1, pages 173–180. Association for Computational Linguistics, 2003. 52, 54

[Tsur et al. 2010] Oren Tsur, Dmitry Davidov and Ari Rappoport. ICWSM-A Great Catchy
Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews.
In ICWSM, pages 162–169, 2010. 46, 47, 162, 171

[Tsytsarau & Palpanas 2012] Mikalai Tsytsarau and Themis Palpanas. Survey on mining
subjective data on the web. Data Mining and Knowledge Discovery, vol. 24, no. 3,
pages 478–514, 2012. 5, 11

[Tumasjan et al. 2010] Andranik Tumasjan, Timm Oliver Sprenger, Philipp G Sandner and
Isabell M Welpe. Predicting elections with twitter: What 140 characters reveal about
political sentiment. ICWSM, vol. 10, no. 1, pages 178–185, 2010. 2

[Turney 2002] Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 417–424. Association for Compu-
tational Linguistics, 2002. 18, 19

[Vaswani et al. 2016] Ashish Vaswani, Yonatan Bisk, Kenji Sagae and Ryan Musa. Su-
pertagging with LSTMs. In Proceedings of the Human Language Technology Con-
ference of the NAACL, pages 232–237, 2016. 53

[Velásquez & Gonzalez 2010] Juan D Velásquez and Pablo Gonzalez. Expanding the pos-
sibilities of deliberation: The use of data mining for strengthening democracy with an
application to education reform. The Information Society, vol. 26, no. 1, pages 1–16,
2010. 2

[Venugopalan et al. 2015] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue,
Raymond Mooney, Trevor Darrell and Kate Saenko. Sequence to sequence-video to
text. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4534–4542, 2015. 34

[Vilares et al. 2015] David Vilares, Miguel A Alonso and Carlos Gómez-Rodrıguez. Senti-
ment analysis on monolingual, multilingual and code-switching twitter corpora. In 6TH

308

WORKSHOP ON COMPUTATIONAL APPROACHES TO SUBJECTIVITY, SEN-
TIMENT AND SOCIAL MEDIA ANALYSIS WASSA 2015, pages 2–8, 2015. 60

[Vilares et al. 2017] David Vilares, Miguel A Alonso and Carlos Gómez-Rodríguez. Su-
pervised sentiment analysis in multilingual environments. Information Processing &
Management, vol. 53, no. 3, pages 595–607, 2017. 61

[Vishal & Gurpreet 2012] Gupta Vishal and Singh Lehal Gurpreet. Automatic Punjabi text
extractive summarization system. In 24th International Conference on Computational
Linguistics, pages 191–198. Citeseer, 2012. 41

[Viswanath et al. 2014] Bimal Viswanath, Muhammad Ahmad Bashir, Mark Crovella,
Saikat Guha, Krishna P Gummadi, Balachander Krishnamurthy and Alan Mislove.
Towards Detecting Anomalous User Behavior in Online Social Networks. In USENIX Se-
curity Symposium, pages 223–238, 2014. 45

[Vo & Zhang 2015] Duy-Tin Vo and Yue Zhang. Target-Dependent Twitter Sentiment Classi-
fication with Rich Automatic Features. In IJCAI, pages 1347–1353, 2015. 13

[Vo et al. 2015] Ngoc Phuoc An Vo, Simone Magnolini and Octavian Popescu. Paraphrase
identification and semantic similarity in twitter with simple features. In The 3rd Interna-
tional Workshop on Natural Language Processing for Social Media, pages 10–19,
2015. 26, 103

[Vyas et al. 2014] Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali and Mono-
jit Choudhury. POS Tagging of English-Hindi Code-Mixed Social Media Content. In
EMNLP, volume 14, pages 974–979, 2014. 51, 55

[Wallace et al. 2014] Byron C Wallace, Laura Kertz Do Kook Choe, Laura Kertz and Eu-
gene Charniak. Humans Require Context to Infer Ironic Intent (so Computers Probably
do, too). In ACL (2), pages 512–516, 2014. 46

[Wallace et al. 2015] Byron C Wallace, Do Kook Choe and Eugene Charniak. Sparse, Con-
textually Informed Models for Irony Detection: Exploiting User Communities, Entities
and Sentiment. In ACL (1), pages 1035–1044, 2015. 46

[Wan 2008] Xiaojun Wan. Using only cross-document relationships for both generic and topic-
focused multi-document summarizations. Information Retrieval, vol. 11, no. 1, pages
25–49, 2008. 29

[Wang & Liu 2015] Bo Wang and Min Liu. Deep Learning for Aspect-Based Sentiment Anal-
ysis, 2015. x, 89

[Wang et al. 2008] Dingding Wang, Tao Li, Shenghuo Zhu and Chris Ding. Multi-document
summarization via sentence-level semantic analysis and symmetric matrix factorization. In
Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 307–314. ACM, 2008. 32

309

[Wang et al. 2011] De Wang, Danesh Irani and Calton Pu. A social-spam detection framework.
In Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse
and Spam Conference, pages 46–54. ACM, 2011. 44

[Wang et al. 2015a] Bo Wang, Arkaitz Zubiaga, Maria Liakata and Rob Procter. Making
the most of tweet-inherent features for social spam detection on Twitter. arXiv preprint
arXiv:1503.07405, 2015. 45

[Wang et al. 2015b] Peilu Wang, Yao Qian, Frank K Soong, Lei He and Hai Zhao. Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Recurrent Neural Network.
arXiv preprint arXiv:1510.06168, 2015. 52

[Wang et al. 2015c] Zelin Wang, Zhijian Wu, Ruimin Wang and Yafeng Ren. Twitter sar-
casm detection exploiting a context-based model. In International Conference on Web
Information Systems Engineering, pages 77–91. Springer, 2015. 48

[Wang et al. 2016] Jin Wang, Liang-Chih Yu, K Robert Lai and Xuejie Zhang. Dimensional
sentiment analysis using a regional cnn-lstm model. In The 54th Annual Meeting of
the Association for Computational Linguistics, pages 225–230, 2016. 74, 75

[Wang 2010] Alex Hai Wang. Don’t follow me: Spam detection in twitter. In Security and
Cryptography (SECRYPT), Proceedings of the 2010 International Conference on,
pages 1–10. IEEE, 2010. 44, 45

[Wiatowski & Bölcskei 2017] Thomas Wiatowski and Helmut Bölcskei. A mathematical
theory of deep convolutional neural networks for feature extraction. IEEE Transactions
on Information Theory, 2017. 65, 70

[Wiebe et al. 2005] Janyce Wiebe, Theresa Wilson and Claire Cardie. Annotating expressions
of opinions and emotions in language. Language resources and evaluation, vol. 39,
no. 2, pages 165–210, 2005. 25

[Wu & Davison 2005] Baoning Wu and Brian D Davison. Identifying link farm spam pages.
In Special interest tracks and posters of the 14th international conference on World
Wide Web, pages 820–829. ACM, 2005. 45

[Xia & Zhiwen 2016] Jianhong Cecilia Xia and S Zhiwen. Spatial and Temporal Sentiment
Analysis of Twitter data. In European Handbook of Crowdsourced Geographic In-
formation, pages 205–221. London: Ubiquity Press, 2016. 26

[Xun et al. 2017] Guangxu Xun, Yaliang Li, Wayne Xin Zhao, Jing Gao and Aidong Zhang.
A correlated topic model using word embeddings. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence.[doi> 10.24963/ijcai. 2017/588],
2017. 63

310

[Yang & Lee 2011] Hsin-Chang Yang and Chung-Hong Lee. Post-level spam detection for
social bookmarking web sites. In Advances in Social Networks Analysis and Mining
(ASONAM), 2011 International Conference on, pages 180–185. IEEE, 2011. 44

[Yang & Lee 2014] Hsin-Chang Yang and Chung-Hong Lee. Detecting tag spams for social
bookmarking Websites using a text mining approach. International Journal of Informa-
tion Technology & Decision Making, vol. 13, no. 02, pages 387–406, 2014. 44

[Yang et al. 2011] Chao Yang, Robert Chandler Harkreader and Guofei Gu. Die free or live
hard? empirical evaluation and new design for fighting evolving twitter spammers. In
International Workshop on Recent Advances in Intrusion Detection, pages 318–
337. Springer, 2011. 45

[Yang et al. 2012] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin and
Guofei Gu. Analyzing spammers’ social networks for fun and profit: a case study of
cyber criminal ecosystem on twitter. In Proceedings of the 21st international confer-
ence on World Wide Web, pages 71–80. ACM, 2012. 44, 45

[Yang et al. 2014] Libin Yang, Xiaoyan Cai, Yang Zhang and Peng Shi. Enhancing sentence-
level clustering with ranking-based clustering framework for theme-based summarization.
Information sciences, vol. 260, pages 37–50, 2014. 31

[Yardi et al. 2009] Sarita Yardi, Daniel Romero, Grant Schoenebecket al. Detecting spam in
a twitter network. First Monday, vol. 15, no. 1, pages 1–9, 2009. 45

[Yeh et al. 2005] Jen-Yuan Yeh, Hao-Ren Ke, Wei-Pang Yang and I-Heng Meng. Text sum-
marization using a trainable summarizer and latent semantic analysis. Information pro-
cessing & management, vol. 41, no. 1, pages 75–95, 2005. 30

[Yih et al. 2014] Wen-tau Yih, Xiaodong He and Christopher Meek. Semantic Parsing for
Single-Relation Question Answering. In ACL (2), pages 643–648. Citeseer, 2014. 57

[Yin & Schütze 2015] Wenpeng Yin and Hinrich Schütze. Convolutional Neural Network for
Paraphrase Identification. In HLT-NAACL, pages 901–911, 2015. 27, 103, 104

[Zajic et al. 2007] David Zajic, Bonnie J Dorr, Jimmy Lin and Richard Schwartz. Multi-
candidate reduction: Sentence compression as a tool for document summarization tasks.
Information Processing & Management, vol. 43, no. 6, pages 1549–1570, 2007. 32

[Zhang & Lee 2003] Dell Zhang and Wee Sun Lee. Question classification using support
vector machines. In Proceedings of the 26th annual international ACM SIGIR con-
ference on Research and development in informaion retrieval, pages 26–32. ACM,
2003. 57

[Zhang & Skiena 2010] Wenbin Zhang and Steven Skiena. Trading Strategies to Exploit Blog
and News Sentiment. In ICWSM, pages 375–378, 2010. 2

311

[Zhang et al. 2015] Xiang Zhang, Junbo Zhao and Yann LeCun. Character-level convolu-
tional networks for text classification. In Advances in Neural Information Processing
Systems, pages 649–657, 2015. 57

[Zheng et al. 2016] Xianghan Zheng, Xueying Zhang, Yuanlong Yu, Tahar Kechadi and
Chunming Rong. ELM-based spammer detection in social networks. The Journal of
Supercomputing, vol. 72, no. 8, pages 2991–3005, 2016. 44

[Zhou et al. 2014] Bing Zhou, Yiyu Yao and Jigang Luo. Cost-sensitive three-way email spam
filtering. Journal of Intelligent Information Systems, vol. 42, no. 1, pages 19–45,
2014. 44

[Zhu et al. 2011] Linhong Zhu, Aixin Sun and Byron Choi. Detecting spam blogs from blog
search results. Information Processing & Management, vol. 47, no. 2, pages 246–262,
2011. 44

[Zimbra et al. 2016] David Zimbra, Manoochehr Ghiassi and Sean Lee. Brand-related Twit-
ter sentiment analysis using feature engineering and the dynamic architecture for artificial
neural networks. In System Sciences (HICSS), 2016 49th Hawaii International Con-
ference on, pages 1930–1938. IEEE, 2016. 13

[Zisiadis et al. 2011] Dimitris Zisiadis, Spyros Kopsidas, Argyris Varalis and Leandros
Tassiulas. Mailbook: A social network against spamming. In Internet Technology and
Secured Transactions (ICITST), 2011 International Conference for, pages 245–249.
IEEE, 2011. 44

312

Publications

Conference Papers

1. Rupal Bhargava, Bapiraju Vamsi Tadikonda, Yashvardhan Sharma, "Named Entity
Recognition for Code Mixed SentencesâĂIJ, In proceedings of International con-
ference on Machine learning, Image processing, Network security and Data Sci-
ences(MIND), March 2019. (accepted)

2. Rupal Bhargava, Yashvardhan Sharma, Ayushi Agarwal, "FAID: Feature Aftermath
for Irony Discernment", In proceedings of International conference on Cloud Com-
puting, Data Science and Engineering, CONFLUENCE 2019, IEEE, January 2018.

3. Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma, "Deep Paraphrase Detection
in Indian Languages", In proceedings of International Conference on Advances in
Social Networks Analysis and Mining, ASONAM 2017,IEEE/ACM, August 2017,
pp. 1152-1159 .

4. Rupal Bhargava, Yashvardhan Sharma, "MSATS: Multilingual Sentiment Analysis
via Text Summarization", In proceedings of Seventh International Conference on
Cloud Computing, Data Science & Engineering (CONFLUENCE-2017), IEEE, Jan-
uary 2017, pp.71-76.

5. Rupal Bhargava, Yashvardhan Sharma, Shubham Sharma, "Sentiment Analysis for
Mixed Script Indic Sentences", In proceedings of Fifth International Conference on
Advances in Computing, Communications & Informatics, IEEE,September 2016,
pp.524-529.

6. Rupal Bhargava, Yashvardhan Sharma, Gargi Sharma, "ATSSI: Abstractive Text Sum-
marization using Sentiment Infusion", In proceedings of Twelfth International Multi
Conference on Information Processing, Procedia Computer Science, Vol 89C, August
2016, pp. 404-411.

7. Rupal Bhargava, Yashvardhan Sharma, "Analyzing Sentiments through Text Sum-
marization", In Proceedings of International Conference on Evidence Based Man-
agement, ISBN: 978-93-84935-18-4, Vol II, March 2015, pp 769 -772.

8. Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma, "BITS _PILANI _TEAM3@POS
Tagging for Code Mix Indian Social Media", In NLP Tool Contest on POS Tagging
for Code Mixed Indian Social Media (Facebook, Twitter, and WhatsApp) TEXT @
ICON 2016, International Conference on Natural Language Processing, December
2016.

313

9. Rupal Bhargava, Bapiraju Vamsi Tadikonda, Yashvardhan Sharma, "BITS_PILANI_
TEAM2@POS Tagging for Code Mix Indian Social Media", In NLP Tool Contest on
POS Tagging for Code Mixed Indian Social Media (Facebook, Twitter, and What-
sApp) TEXT @ ICON 2016, International Conference on Natural Language Process-
ing, December 2016.

10. Rupal Bhargava, Raghav Bhartia, Indrajeet Mishra, Yashvardhan Sharma, "BITS _PI-
LANI _ TEAM1@POS Tagging for Code Mix Indian Social Media", In NLP Tool
Contest on POS Tagging for Code Mixed Indian Social Media (Facebook, Twitter,
and WhatsApp) TEXT @ ICON 2016, International Conference on Natural Language
Processing, December 2016.

11. Rupal Bhargava, Anushka Baoni, Harshit Jain, Yashvardhan Sharma, "BITS _PI-
LANI@DPIL -FIRE2016: Paraphrase Detection in Hindi Language Using Syntactic
Features of Phrase". In workshop proceedings of Forum of Information Retrieval
and Evaluation 2016, CEUR Workshop Proceedings, Vol-1737, pp. 239-243, Decem-
ber 2016.

12. Rupal Bhargava, Shubham Khandelwal, Akshit Bhatia, Yashvardhan Sharma, "Mod-
eling Classifier for Code Mixed Cross Script Questions". In workshop proceedings of
Forum of Information Retrieval and Evaluation 2016, CEUR Workshop Proceedings,
Vol-1737, pp. 109-114, December 2016.

13. Rupal Bhargava, Bapiraju Vamsi Tadikona, Yashvardhan Sharma, "Named Entity
Recognition for Code Mixing in Indian Languages using Hybrid Approach". In
workshop proceedings of Forum of Information Retrieval and Evaluation 2016, CEUR
Workshop Proceedings, Vol-1737, pp. 313-317, December 2016.

14. Rupal Bhargava, Yashvardhan Sharma, Shubham Sharma, Abhinav Baid, "Query La-
belling for Indic Languages using a hybrid approach". In workshop proceedings of
Forum of Information Retrieval and Evaluation 2015, CEUR Workshop Proceedings,
Vol 1587, pp. 40-42, December 2015.

15. Rupal Bhargava, Yashvardhan Sharma, "User Modeled Aspect Based Sentiment
Analysis", In proceedings of National Conference on Emerging Trends of Research
in Applied Sciences, Experimental and Computational Techniques, IJERT, February
2015, pp 21-24.

16. Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma, "Deep Text Summarization
using Generative Adversarial Networks in Indian Languages", International Confer-
ence on Computational Science, 2019, Portugal, (Communicated)

314

Journal Papers

1. Rupal Bhargava, Shivangi Arora, Yashvardhan Sharma, "NASAIL: Neural networks
based architecture for Sentiment Analysis in Indian Languages", Journal of Intelli-
gent Systems (In press).

2. Rupal Bhargava, Anushka Baoni, Yashvardhan Sharma, "Composite Sequential Mod-
elling for Identifying Fake Reviews", In International Journal of Intelligent Systems
(IJISys) (In press).

3. Rupal Bhargava, Yashvardhan Sharma, Bapiraju Vamsi Tadikonda, Shubham Khan-
delwal, " Identification of Indian Languages and Sentiments in Code Mixed Text",
IJCSE, Inderscience (Communicated).

4. Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma, "Strategies for Modelling
Code Mixed Cross Script Question Classification", IJAISC (Communicated).

315

Biographies

Brief Biography of the Supervisor

Dr. Yashvardhan Sharma is currently Associate Professor in the Department of Computer
Science and Information Systems at BITS, Pilani. He is also Faculty-Incharge at Informa-
tion Processing Center, Software Development and Educational Technology, BITS, Pilani.
Dr. Sharma obtained his doctorate in Computer Science from BITS, Pilani in 2008. Pre-
viously he completed his M.E. in Software Systems in 2001. At BITS, Pilani he has been
involved in teaching, research and administration. He has published more than 40 re-
search papers in national and international conferences/ journals in Software Engineer-
ing, databases, data warehousing and data mining. He has teaching experience of more
than 19 years at BITS, Pilani. He presently teaches courses on Object Oriented Analysis
and Design, Database systems, Data warehousing, and Data mining. He has successfully
completed three major research projects sponsored by UGC, DST and BITS, Pilani over a
worth of one crore. His current research interests include Natural Language Processing
(NLP), Data Mining, Machine Learning, Sentiment Analysis, Social Media Analytics, NLP
for Indian Languages.

Brief Biography of the Candidate

Rupal Bhargava is currently a full time research scholar in the Department of Computer
Science at Birla Institute of Technology & Science, Pilani, Rajasthan, India. She is pursuing
her Ph.D under supervision of Dr. Yashvardhan Sharma. She has completed her M.Tech
in Computer Science from Bansathali Vidyapeeth, Rajasthan in 2013. She had been asso-
ciated as a Junior Research Fellow with DST funded project -"Design and Development
of Opinion Mining Framework" (PI: Dr. Yashvardhan Sharma) during tenure of August
2014-January 2017. Her current research interests are in areas of Natural Language Pro-
cessing, Data Mining, Information Retrieval, Machine Learning and Deep Learning. She
has various publications in International Conferences and Journals.

316

	List of Figures
	List of Tables
	List of Abbreviations/Symbols
	1 Introduction
	1.1 Motivation
	1.2 Research Gaps
	1.3 Thesis Goals/Objectives
	1.4 Scope of Thesis
	1.5 Thesis Organization/ Outline

	2 Related Work
	2.1 Sentiment Analysis
	2.1.1 Sentiment Analysis in Indian Languages
	2.1.2 Temporal Sentiment Analysis

	2.2 Paraphrase Detection
	2.3 Text Summarization
	2.3.1 Extractive Text Summarization
	2.3.2 Abstractive Text Summarization
	2.3.3 Text Summarization in Indian Languages
	2.3.4 Applications and Challenges

	2.4 Spam Detection
	2.5 Sarcasm Detection
	2.6 Code Mixing
	2.6.1 POS Tagging
	2.6.2 Named Entity Recognizer
	2.6.3 Question Classification
	2.6.4 Sentiment Analysis in Code Mixed Text

	3 Sentiment Analysis
	3.1 Neural Network based Architecture for Sentiment Analysis
	3.1.1 Neural Network based Architecture for Sentiment Analysis in Indian Languages
	3.1.2 Experiments & Results

	3.2 Temporal Sentiment Analysis
	3.2.1 Dataset Description
	3.2.2 Proposed Approach for aspect based temporal opinion mining
	3.2.3 Experiments & Results

	3.3 Concluding Remarks

	4 Text Summarization
	4.1 Paraphrase Detection
	4.1.1 Hybrid Approach for Paraphrase Detection
	4.1.2 Detecting Paraphrase using Deep Learning in Indian Languages

	4.2 Extractive Text Summarization
	4.2.1 Workflow for Proposed approach
	4.2.2 True Label Generation
	4.2.3 Model Generation
	4.2.4 Algorithm: Extractive Text Summarization using Deep Learning
	4.2.5 Experiments & Results

	4.3 Abstractive Text Summarization
	4.3.1 Abstractive Text Summarization using Sentiment Infusion
	4.3.2 Abstractive Text Summarization using Generative Adversarial Networks

	4.4 Concluding Remarks

	5 Spam Detection in Reviews
	5.1 Composite Sequential Modeling for Identifying Fake Reviews
	5.1.1 Parameter setting for Recurrent Neural Network (RNN)
	5.1.2 Parameter setting for Long Short Term Memory (LSTM)
	5.1.3 Parameter setting for Convolutional Neural Network (CNN)

	5.2 Baseline Approach
	5.2.1 Features

	5.3 Experiments and Results
	5.3.1 Data Set Description
	5.3.2 Evaluation & Discussion

	5.4 Concluding Remarks

	6 Sarcasm Detection
	6.1 Sarcasm Detection using Machine Learning Techniques
	6.1.1 Dataset Description
	6.1.2 Data Pre-processing
	6.1.3 Feature Extraction
	6.1.4 Classification
	6.1.5 Algorithm: Sarcasm Detection using Machine learning Techniques
	6.1.6 Experiments & Results

	6.2 Sarcasm Detection for Monolingual & Code Mix Text
	6.2.1 Dataset Description
	6.2.2 Preprocessing
	6.2.3 Approach for Sarcasm detection in Monolingual & Code mixed environment
	6.2.4 Experiment(s) and Result(s)

	6.3 Concluding Remarks

	7 Code Mixing Tools
	7.1 POS Tagging for Indian Code Mixed Social Media Text
	7.1.1 Approach 1: Ensemble based POS Tagger
	7.1.2 Approach 2: Tree based classifier for POS Tagging
	7.1.3 Approach 3: Bidirectional LSTM based POS Tagger
	7.1.4 Data Analysis
	7.1.5 Experiments and Results for Approach 1
	7.1.6 Experiments and Results for Approach 2
	7.1.7 Experiments and Results for Approach 3

	7.2 Named Entity Recognition for Code Mixed Social Media Text
	7.2.1 Approach for Named Entity Recognition for Code Mixed Social Media Text
	7.2.2 Data Analysis
	7.2.3 Experiments & Results

	7.3 Concluding Remarks

	8 Code Mixing Applications
	8.1 Question Classification for Code-Mixed Cross Script Question
	8.1.1 Approach 1: Question classification using traditional machine learning techniques
	8.1.2 Approach 2: Question classification using Deep Learning
	8.1.3 Algorithms for Question Classification for Code Mixed Cross Script Questions
	8.1.4 Data Description and Analysis
	8.1.5 Experiments

	8.2 Sentiment Analysis for Code Mixed Social Media Text
	8.2.1 Building SentiWordNet Dictionaries for Indian Languages
	8.2.2 Proposed Approach for Sentiment Analysis of Code Mixed Social Media Text
	8.2.3 Algorithm for Sentiment Analysis for Code Mixed Social Media Text
	8.2.4 Data Description and Analysis
	8.2.5 Experiments and Results

	8.3 Concluding Remarks

	9 Conclusion & Future Work
	9.1 Conclusion
	9.2 Thesis Contributions
	9.3 Future Work

	References
	Publications
	Biographies

