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Abstract

Sentiments and their implications play a vital role in our life. People ap-
praise the opinions of others before reaching a conclusion. With the advent
of forums, blogs and social networking sites, there has been a considerable in-
crease in sharing of opinions and sentiments on social media. Netizens exhibit
divergent views on a particular subject and many times end up agreeing to the
disagreement. A substantial amount of research has been done in automated
text analysis, viewpoint analysis and opinion extraction. The increase in usage
of social media in multilingual countries, such as India, has posed challenges
of accommodating multilingual text in addition to monolingual text and its
processing. The immense increase in information overload of viewpoints on
the internet, calls for efficient methods to extract the useful information with
the view to facilitate decision making. Opinion mining or viewpoint excava-
tion has been treated as a classification problem which stratifies documents
or products as good/bad or positive/negative. People may have ambivalent
opinions about the topic or product.

Information overload has lead to increased focus on the need for creating an
alternative approach for representation and selection, of text and multimedia
contents. An efficient framework is needed for representing the essential parts
of the text so that user can decide whether he/she should read the whole text
or not. For such cases, text summarization is a better suited for representing
an opinion.

Although the automated text summarization is focused on text inputs, but
multimedia information, video, images, recorded tracks, online information
or hypertexts can also be considered as inputs.

The thesis focuses on the problem of text summarization which considers vital



parts of the document, extracts utilitarian information, and provides a broad
overview of opinions. This saves the user from going through many doc-
uments to reach a conclusion. Work done also focuses on aspects/features
present in the document and associates opinions with each of them.

Social media content has been used for extracting sentiment, but all the con-
tent cannot be trusted because it can be faked. Distinguishing a fake post from
a genuine post can be challenging at times. The thesis attempts to automate
the problem of spam detection using hybrid sequential models.

Sarcasm inverts the sentiments being expressed and social media being an
informal platform, increases the chances of sarcasm in the text. Detecting sar-
casm is a challenging task even for humans. The thesis aims to automate the
task of sarcasm detection to facilitate identification of true sentiments from the
text.

Due to unofficial nature of social media, there has been an increase in its us-
age. This has resulted in the use of regional languages. People usually mix
their regional language with English or any other language known to them. To
identify the actual sentiment, it is essential to deal with the code mixed text.
Automated processing of code mixed text can be very challenging due to lack
of readily available tools such as named entity recognizer and part of speech
tagger. The thesis attempts to develop necessary tools for processing code
mixed text and further uses these tools for the applications related to code
mixed text. Due to increasing text on social media, it is becoming increasingly
important to focus on finding solutions for above mentioned problems and

challenges.
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Chapter 1

Introduction

With the rapid growth in usage of social media, users are experiencing lesser communica-
tion barriers worldwide. This has not only widened the scope of communication but has
also provided users with a chance of expressing their opinions or views publicly. Opin-
ions or sentiments expressed on social media influences people in a positive or negative
manner. Opinions play a fundamental role in the decision-making process of both indi-
vidual and organizations as it impacts people’s attitudes and beliefs [Liu 2012]. Opinions
make people more aware of their surroundings and views of their fellow beings. This has
led to increased interest in mining and analyzing sentiments.

Sentiment analysis is a computational study of people’s opinions, attitudes and emo-
tions [Medhat ef al. 2014]. Sentiment analysis and opinion mining are often referred
interchangeably by researchers with few exceptions and hence, both the terms have been
referred interchangably in the thesis. There are three primary classification levels in sen-
timent analysis, i.e. document level, sentence level and aspect/feature level. Document-
level sentiment analysis aims to classify an opinionated document expressing a positive
or negative opinion or sentiment. It considers the whole document as basic information
unit about the specific topic of interest. Sentence level sentiment analysis is similar to that
of document-level sentiment analysis where sentences are considered as short documents
[Liu 2012]. Sentence level sentiment analysis identifies subjectivity of a sentence followed
by the classification of a sentence expressing positive, negative or neutral sentiment. Users
do not necessarily express a single opinion in a sentence or document. For example, con-

sider the sentence “iPhone 6 has great features, but it is costly”. In the above example, the



user has expressed both sentiments (negative and positive) in the single sentence. Hence,
the assumption made by the sentence level sentiment analysis is not always necessarily
correct, i.e. a sentence may contain more than one type of opinion for different aspects of
a topic or product. Similarly, a document may contain mixed opinions. Classifying text
at document level or sentence level does not provide all the necessary details that may
be important for the end user. Aspect level sentiment analysis identifies different aspect-
s/features and associates the corresponding opinion with it. Figure [1.1) shows a generic
block diagram of sentiment analysis. A opinionated document is used for object/feature
extraction, opinion holder extraction and subjectivity classification. Information extracted
from all the phases is passed to sentiment classification phase, where sentiments are iden-

tified. This flow of the process is generic and varies upon the level of sentiment analysis.

Object/Feature
Extraction

Opinionated Document Subj_ectlv!ty Sentiment Classification
Classification

Opinion Holder

Extraction

Figure 1.1: Block Diagram for Sentiment Analysis

1.1 Motivation

Sentiment analysis finds its roots in various areas of text processing and extraction. It

has enabled people in business to get insights of opinions of customers about their prod-

ucts without surveys [Hu & Liu 2004]. It has also assisted people in politics

et al. 2010], stocks [Zhang & Skiena 2010] and public policies [Velasquez & Gonzalez 2010].

Over the time, people change their own opinion as well, and different aspects evolve about

2



a topic. Importance of aspect and its opinion keep changing with time, and hence, tempo-
ral opinion mining has become an essential challenge for sentiment analysis and opinion
mining.
With multiple different data sources on the internet, users have a tremendous amount
of text to review and cull out information. The manual process involving a significant
amount of text processing to get to a right set of information is quite laborious. Due to
this, there is a need for processing and representation of the text such that it can present
right set of information. A procedure is needed to identify relevant parts of the text and
remove the redundant information present in it. This can be achieved through text sum-
marization.

According to [Mani ef al. 1999], text summarization is the process of distilling the most
important information from a sources to produce an abridged version of the text for a
particular set of users and tasks. Figure|l.2| represents the process of text summarization.
Text summarization can be classified based on various parameters such as text input, lan-
guage and purpose. Traditionally it focuses on text input, which can range from simple
text to multimedia content. Further, it can also be categorized based on single document
or multiple documents. Apart from these, text summarization has also been classified in
the literature on the basis of language (monolingual, transiting or multilingual), output
(abstract or extract) and purpose (generic or user-focused) [Lloret 2008]||. [Jones et al. 1999
distinguishes three classes of context factors used for effective text summarization: input
(text form, subject type and unit), purpose (situation, audience and use) and output (ma-
terial, format). The main challenges faced in text summarization are of identifying the
similar set of information with little or no difference. As both the challenges are signif-
icant, a decision to choose the correct objective needs to be taken. Text Summarization
algorithms must have capabilities to preserve the information and concisely represent it.
Moreover, existing techniques and algorithms should be able solve the task of summa-
rization for Indian Languages as well. This motivated our work on the problem of text
summarization.

Reviews and opinions expressed on social media have influenced people across the globe.
Opinions or views expressed on these platforms are generated for various reasons. Com-

panies conduct surveys to enhance and improve the image and quality of their product.
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transformation of the generation of the
text representation summary text from

interpretation of the
source text to obtain

. into a summar the summar
a text representation y Y

representation representation

Figure 1.2: Basic procedure of Text Summarization

People participating in these surveys express their views/opinions which can be used for
decision making. While these reviews may be helpful, they cannot be trusted entirely,
because reviews may be faked/biased. According to [Lau et al. 2011]], the BBC and New
York Times have reported that fake reviews are becoming a common problem on the
Web, and a photography company has recently been subjected to hundreds of defama-
tory consumer reviews. In 2014, the Canadian government issued a warning, encouraging
consumers to be wary of fake online endorsements that give the impression that they have
been made by ordinary consumers and estimated that one-third of all online reviews are
fakeﬂ Over the period, few resources such as Consumeristﬁ and MoneyTalksNewsEl have
offered tips to help consumers spot fake reviews. Sufficient amount of work has been

done in email spam detection and web spam, but the area of spam combating in social

media is still not mature enough [Chakraborty et al. 2016a]]. This is mainly due to the fact,

that social media network is ever increasing and has provided marketers with a cheap
and new mode of communication. A surveyEl conducted by brand protector found that
rate of increase in spam during a period from January 2013 to July 2013 has gone up

by 355%. Another studyﬁ also proved that spam proliferation of is rampant. As spam

hinders the utility and performance of social media text [Chakraborty et al. 2016b], it is

essential to identify spam opinions to provide the user with the correct opinion about a

topic/person/product. [Dixit & Agrawal 2013] has categorized spam reviews into un-

truthful reviews, reviews for brands and non-reviews. The unthruthful reviews are the

ones which intentionally donot express geniune opinion for the product. Review for a

Thttp:/ /www.competitionbureau.gc.ca/eic/site/cb-bc.nsf/eng/03782.html

Zhttps:/ /consumerist.com/2010/04 /14 /how-you-spot-fake-online-reviews /

3http:/ /www.moneytalksnews.com/2011/07/25/3-tips-for-spotting-fake-product-reviews-%E2%80%93-
from-someone-who-wrote-them/

4http:/ /www.moneytalksnews.com/2011/07/25/3-tips-for-spotting-fake-product-reviews-%E2%80%93-
from-someone-who-wrote-them/

Shttp:/ /www.baselinemag.com/security / malware-attacks-and-phishing-scams-increase.html



brand, product or specific seller are ones that talk about the company of the product
rather than talikng about the product. The non reviews are the ones pertaining to ad-
vertisement or unrelated text. Identifying fake reviews has been considered as the most
challenging task at hand. [Chakraborty et al. 2016b] have classified social spam into four
significant categories: malicious links (link that damage, deceive or otherwise harm a user
or computer), fake profiles, bulk summaries (known as spam bombs, these are comments
posted multiple times or comments with similar text) and fraudulent reviews (the reviews
written with an intent to falsify the image of product/brand or create a wrong impres-
sion on users). Above mentioned problems and challenges motivated us to work on spam
detection.

Social media provides an informal communication platform for users. This allows users
to express their emotions freely and in an informal way. Sarcasm is a verbal form of
irony that is intended to express contempt and ridiculeﬂ Sarcasm has become an integral
part of the social media text as it is commonly used by people to express their opinion.
Sarcasm is characterized as the ironic and satirical wit that is intended to insult, mock or
amuse [Riloff ef al. 2013]. Sarcasm transforms the polarity of an apparently positive or
negative utterance into its opposite [Gonzélez-Ibanez et al. 2011]. It is usually difficult to
detect sarcasm as it is considered as a graceful and smart way of saying something implic-
itly, whether good or bad. With advancements in automatic processing of social media
text, sarcasm has been a challenge for many Natural Language Processing (NLP) based
systems. Informal nature of social media text has resulted in an unstructured ambiguous
text which contains URL, username, user-defined labels. [Tsytsarau & Palpanas 2012] has

listed following four challenges in sarcasm identification:

1. In spoken statement, sarcasm can be identified with particular tone or facial expres-
sion but for written text, no such clues are available. This makes it difficult to detect

sarcasm in written text.
2. In a sarcastic statement, positive words are used to convey negative opinion.

3. Domain knowledge is required in many cases of sarcasm detection. For example,

“Yet, another mind-blowing performance of Indian team in Sri Lanka."

lwww.freedictionary.com



4. Sometimes sarcasm uses the hyperbole. Hyperbole is the use of exaggeration, i.e.
use of words belonging to a superlative degree. For example “Extraordinary perfor-

mance in exam!!"

Above stated problems and challenges motivated us to take a step towards the problem
of sarcasm detection. Detecting sarcasm can further help in improving sentiment anal-
ysis of the text. Over the period of the time, evolution of social media has provided
new opportunities for information access and language technology, but it has also thrown
new challenges. Few of the challenges being faced commonly are those of understanding
and processing spelling errors, creative spellings (e.g. ‘gr8” for ‘great’), phonetic typing,
word play (e.g. “2 looooooooong" for “too long"), abbreviations (e.g. ‘OMG’ for “Oh
My God!") and code mixing (e.g. “but Jadavpur University te physics nya porte chai"
for “but I wanted to study physics at Jadavpur University" [Das & Gamback 2015]). It
is evident from the above examples that there is a need to develop tools and applica-
tions for the other languages as well. Non-English speakers do not always use Unicode
to write in their native language. They use phonetic typing, frequently insert English
elements (through code mixing and Anglicism), often mix multiple languages to express
their thoughts, making automatic language detection in social media texts very challeng-
ing [Das & Gamback 2015]. Code-switching can be defined as the alternation between two
or more languages, language varieties, or language registers in discourse between people
who have more than one language in common. Code mixing is defined as the alternation
of two or more languages within a sentence [Moradi 2014]. One of the two languages is
commanding language; the primary language is often called the matrix language, while
the minor language is the embedded language [Moradi 2014]. [Ling et al. 2013] found that
people often switch between two or more languages on social media, both at conversa-
tional level and at the message level. Extracting knowledge from such a text is a difficult

task as code mixing occurs at different levels, resulting in the following challenges:

1. Code mixed social media text is multilingual. Due to this, semantics is spread across

languages [San 2009].

2. Social media data does not have specific terminology [Das & Gamback 2014].



There is a growing need to develop automated processing tools and applications that can
analyze code mixed text. This requirement motivated us to develop tools for code mix

social media text and develop applications based on code mix text.

1.2 Research Gaps

Research gaps in the field of sentiment analysis are as follows:

1. India is one of the most diversified countries in terms of languages and population.
A considerable population uses social media for a variety of purposes. In depth
analysis of text containing different Indian languages for the sentiment identification

need to be carried out.

2. With advancements and ever growing changes, it is important to identify different
aspects and their respective opinions being talked about on social media text. It is

essential to identify variation in the sentiments over the period.

3. Extracting opinions from different social media sources and regions can lead to the
higher availability of information. It also brings various challenges with it such as
uniformity, redundancy and language switching. Text summarization may help in
solving few of these problems by summarizing the critical content and removing the

redundancy present in the text.

4. People expressing an opinion may not be genuine all the time. Moreover, advertise-
ments are also included in the text which may not be relevant while evaluating the

sentiment. It has become essential to identify spam in social media text.

5. Social media being an informal platform for communication consists of large amount
of text containing sarcasm. Sarcasm detection has been considered as a challenge in

text processing and sentiment analysis.

6. With a vast number of users spread across the globe, there has been an increase
in usage of code mixing in social media text. There is a lack of efficient tools for

processing code mix text.



1.3 Thesis Goals/Objectives

This thesis addresses the following challenges:

1. Identifying sentiments present in social media text containing monolingual Indian
languages. With changing aspects and their respective sentiments in a social media

text, thesis proposes a solution to the problem of temporal sentiment analysis.

2. Providing precise, unambiguous and vital information is need of the hour and

hence, the problem of text summarization has been targeted.

3. Spam in social media text may hinder the accurate evaluation of sentiments. More-
over, due to informal nature of the social media platform, it is usual for users to
post sarcastic comments or messages. This may reduce effectivness of the automatic
processing of text for sentiment analysis. The thesis aims at identifying spam and

sarcasm in social media text.

4. Code Mixing has been a significant challenge in automated processing of social me-
dia text. The thesis focuses on devlopment of tools and applications for code-mixing.
Part of Speech (POS) taggers are mostly available for all the monolingual languages,
but POS tagging of code mixing text has been a challenge for quite some time now.
Similar to POS tagging, Named Entity Recognition (NER) for code mixed text is
another challenging task. The thesis targets at building POS taggers and named en-
tity recogniser for code mixed text. Question classification is one of the significant
challenges of question answering system. This thesis aims at resolving the prob-
lem of question classification in code mixed social media text. To understand the
text, one has to interpret the meaning of each word to make some sense with the
sentence. Hence, a word level language identifier has been proposed in the thesis.
Research has been going on in the field of sentiment analysis for past decade but
the introduction of code mix text has added many new challenges. The problem of

sentiment analysis in code mix text has been targeted in this thesis.

For achieving these objectives, the thesis focuses on various machine learning classifiers

including deep learning techniques for solving the natural language processing task.



1.4 Scope of Thesis

Sentiment analysis has been a challenge for researchers for a decade and good amount
of research is being carried out addressing various involved issues. The thesis focuses
on sentiment analysis and its challenges such as text summarization, spam detection,
sarcasm detection and code mixing. Learning based approaches have been proposed
for sentiment analysis of monolingual Indian language. With time aspects and opinions
change about a topic or a product, hence it becomes essential to analyze these changes.
The thesis focuses on temporal sentiment analysis as well. However, the thesis has limited
its scope to problems mentioned above. Challenges such as implicit opinion mining and
identification of provoking and controversial statements have not been targeted in the
thesis. The process of manual annotation is complicated in case of spam and sarcasm
due to uncertainty and no clear indication in the text, which is a major reason for lack
of annotated datasets. In case of code mixing, due to lack of sufficient amount of data
available to train the models correctly, code mixed text generation is essential but it is not

included in the thesis.

1.5 Thesis Organization/ Outline

Thesis is organized as follow:

In Chapter 2, background information and related work are detailed. This chapter dis-
cusses the state of art and literature review.

Chapter 3 discusses different proposed solutions for sentiment analysis in Indian lan-
guages and temporal sentiment analysis. Different deep learning based approaches have
been proposed to solve these problems. Approach for sentiment analysis in Indian lan-
guage uses different layers of the neural network to identify the sentiment or opinion
expressed in the text. The approach proposed for temporal sentiment analysis identifies
ever changing aspects and their varying sentiments over the time using clustering and
Convolutional Neural Network (CNN) respectively.

Chapter 4 describes the proposed algorithms for paraphrasing, extractive text summa-

rization and abstractive text summarization in English and Indian Languages. Two algo-



rithms have been proposed for the problems. The first algorithm for paraphrase detection
in Indian languages relies on different machine learning classifiers whereas the second
one relies on CNN(s) and Reccurent Neural Networks. In extractive Text Summarization,
three different approaches have been proposed considering three different scenarios. The
first proposed approach uses the scoring technique, the second approach uses machine
learning technique and the third approach uses fully connected CNN for generating ex-
tractive text summaries of English and Indian Languages. For abstractive summarization
of English text, the sentiment infusion based technique has been proposed in this chapter
which infuses the sentiment to reduce the size of the text and maximize the information
while generating the summaries. This chapter also proposes a generic algorithm for gen-
erating text summaries in English and Indian languages using deep nets.

Chapter 5 describes the proposed algorithm for spam detection in social media text using
deep learning techniques. Different unified architectures of deep learning have been pro-
posed in this chapter followed by their comparison with each other and machine learning
based approach.

Chapter 6 explains proposed solutions to sarcasm detection in English, Indian languages
and code mixed scenario. Proposed algorithms rely on different machine learning and
deep learning techniques. Experiments and comparisons among different proposed algo-
rithm have been discussed in the chapter.

Chapter 7 and 8 highlight the problem and various challenges associated with code mix-
ing. Tools and applications have been built for handling code mixed social media text
such as POS Tagger, named entity recognizer, language identification, question classifica-
tion and sentiment analysis.

Chapter 9 discusses the overall results, contributions and further improvisations are pro-

posed.
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Chapter 2

Related Work

2.1 Sentiment Analysis

Opinions, sentiments and emotions are a significant part of a human’s life choices and
behaviour. Sentiment Analysis (SA) is a fascinating problem since it deals with the study
of one’s emotions expressed via text. Sentiment analysis (also known as opinion mining)
refers to the use of natural language processing, text analysis and computational linguis-
tics to identify and extract subjective information in source materials || User-generated
content has been a valuable source of information for a variety of sources. Sentiment anal-
ysis and opinion mining are two emerging fields and are used interchangeably. However,
few pieces of research consider them different. According to [Tsytsarau & Palpanas 2012],
opinion mining is about determining whether a piece of text contains opinion, a prob-
lem that is also known as subjectivity analysis, whereas the focus of SA is the sentiment
polarity detection by which the opinion of the examined text is assigned a positive or neg-
ative sentiment. [Pang et al. 2008|] presented an extensive survey about challenges tasks
in the field of sentiment analysis. [Tang et al. 2009]] focused on four problems of opinion
mining, i.e. subjectivity classification, word sentiment classification, document sentiment
classification and opinion extraction. Another comprehensive survey on sentiment analy-
sis was done by [Liu & Zhang 2012] where the author discussed all the essential concepts
and topics related to SA. In 2012, [Tsytsarau & Palpanas 2012] presented another sur-

vey with definitions, problem discussion and various approaches. In 2016 [Giachanou &

https:/ /en.wikipedia.org/wiki/Sentiment_analysis
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Crestani 2016|], discussed the challenges(Text length, Topic relevance, Incorrect English,
Data sparsity, Negation, Stopwords, Tokenization, Multilingual content, Multimodal con-
tent) associated with SA in Twitter. [Giachanou & Crestani 2016|] also categorized Twitter
Sentiment Analysis (TSA) approaches into four different classes, machine learning, lexi-
con based, graph-based and hybrid of machine learning and lexicon based.

One of the earliest work done in sentiment analysis is by [Pang et al. 2002]]. They evaluated
several supervised machine learning classifiers like Naive Bayes (NB), Support Vector Ma-
chine (SVM) and maximum entropy classifier on movie review dataset and achieved an
accuracy of 82.9% with SVM and 81.0% using Naive Bayes. Later majority of approaches
dealing with the problem of sentiment analysis has been developed to detect the overall
sentiment polarity of a sentence. In 2009, [Go et al. 2009] employed a distant supervision
technique to perform SA. They used technique demonstrated by [Read 2005] to collect the
data and used emoticons to differentiate between the sentiments. A similar approach was
adopted by [Pak & Paroubek 2010], but they performed multi-class classification instead
of binary classification. [Davidov ef al. 2010] leveraged hashtags and emoticons in tweets
for collecting training data and presented a supervised algorithm similar to K-Nearest
Neighbors (KNN). [Jiang et al. 2011] used combined target dependent and independent
features and defined manual rules for detecting syntactic patterns for identifying if the
term was related to the specific object. [Asiaee T et al. 2012] proposed a three-step cascade
classifier framework for SA where they identified the topic in the first step, in the second
step they identified the sentiment of the tweet and in the last step, they decided the polar-
ity of the tweet. [Hamdan et al. 2013] examined features including concept from DBpedia,
verb groups and adjectives from WordNet [Pedersen et al. 2004] and senti-features from
SentiWordNet (SWN) [Baccianella et al. 2010a]]. Authors also employed a dictionary for
emoticons, abbreviations and slang words. [Aston et al. 2014] represented tweets using
character n-gram and then selected top n features of a gram using different evaluation
algorithms such as chi-squared, gain ratio and info gain.

[Lin & Kolcz 2012] used hashed byte 4-grams and applied linearly combined Logistic Re-
gression (LR) classifiers with different size of ensembles. Another ensemble approach was
proposed by [Da Silva et al. 2014] with more number of classifier (Random Forest (RF),
SVM, Multinomial Naive Bayes (MNB), LR) being involved. In 2013, [Hassan et al. 2013]
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used most common features including uni-grams, bi-grams, POS and semantic features
and proposed a bootstrapping ensemble framework. They also claimed that their frame-
work could be used to build time series as well. In 2016, [Poria et al. 2016b] proposed
an approach for multimodal sentiment analysis where authors used both feature and
decision level features to merge affective information from different sources. [Zimbra
et al. 2016] proposed an approach based on Dynamic Architecture for Artificial Neural
Networks (DAN2). Unique characteristics of Twitter and sentiment expression were used
for feature engineering. [Markle-Hufs ef al. 2017] used rhetoric structure theory to repre-
sent text at document level in a hierarchical manner. Authors proposed a combination of
weights and grid search over the RST tree generated to predict SA.

With the increasing trend of deep learning, [Jiang et al. 2011] proposed adaptive recursive
neural network for SA which used dependency tree to find syntactically related words and
propagate sentiment from sentiment words. [Tang ef al. 2014] learned sentiment specific
word embeddings using indirect supervision whereas citetang2015learning used word
embeddings from a large amounts data to represent the semantic representation of users
and products. [Vo & Zhang 2015] split tweets into two parts and build the model such
that word embeddings of two context were used to identify SA. [Lopez & Kalita 2017
have explained how CNN can be applied to NLP for sentiment analysis. Later [Shirani-
Mehr 2014] analyzed different deep learning methods for sentiment classification of movie
reviews with CNN model using word2vec word embedding performing 88.2% accuracy.
[Araque et al. 2017] proposed deep learning using word embedding and linear machine
learning algorithm. Authors aggregated the proposed approaches and performed experi-
ments on different variants of both the approaches. [Hassan & Mahmood 2017|] proposed
ConvLstm, neural network architecture that employs CNN and Long Short Term Memory

(LSTM) on top of pre-trained word vectors.

2.1.1 Sentiment Analysis in Indian Languages

In recent years, there has been much flow of information in Indian languages on World
Wide Web. It is easy to deduce the sentiment from the spoken text by the tone of the

speaker; whereas, in case of written text, the context becomes the tool for determining
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the polarity. Being low on the resource, SA in Indian languages has been difficult. Senti-
ment analysis is widely applied to reviews and social media for a variety of applications,
ranging from marketing to customer service. In table existing literature survey has
been presented in a tabular form where the references are cited in the second column,
with the language and year in third and first column respectively. The polarity of clas-
sification used is mentioned in the fourth column. The sixth column elaborates on the
techniques and approach used in the respective papers, which can be focused upon by
the reader according to his field of interest. These include machine learning and lexicon
based techniques, and further elaborate on the methodology or approach used. The scope
of the data used for evaluation of the article’s algorithm is mentioned in the fifth column.
It could be reviews collected from the newspapers websites, BBC Hindi, blogs, Twitter

posts, movie songs and text paragraph.
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2014 [Hasan Bengali Text Paragraph Lexicon-Based Approach
et al. 2014]

* WordNet to get the senses of each word according to its parts of
speech and SentiWordNet to get the prior valence (i.e. polarity)
of each word

* Features used: POS tags

2014  [Chowdhury | Bengali Tweets Machine Learning
& Chowd-
: ¢ Semi-supervised bootstrapping approach for the development of
hury 2014

the training corpus which avoids the need for labor intensive

manual annotation
¢ SVM and Maximum Entropy (MaxEnt) for classification
* Construction of a Twitter-specific Bangla sentiment lexicon

¢ Features used: Word n grams (uni and bi gram), emoticons, lex-
icon(bangla), POS tags, Negation. Combination of features is

used



91

Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2016  [Muhammad | Bengali 1500 short Bangla comment Machine Learning
et al. 2016| from various social sites
* TF-IDF (Term Frequency-Inverse Document Frequency)
¢ Features used: Most Frequent Words, Starting and Ending Let-
ters,Sentence Length and Pattern Analysis
2010  [Das & Bengali Dataset consisted of the fol- Machine Learning
Bandyopad- lowing:
s : & * SVM classifier
hyay 2010a]

* news reports that aim
to objectively present

factual information

* opinionated articles
that clearly present
author’s and reader’s
views, evaluation or
judgment about some
specific ~ events  or

persons

* Features used: SentiWordNet(Bengali), Negative Word, Stem-
ming cluster, Functional Word, Chunk, POS, Dependency tree

feature.
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2013  [Mittal Hindi Hindi review websites Lexicon Based
et al. 2013] ) ] ) )
* Rules are devised for handling negation and discourse relation
e Hindi SentiWordNet (HSWN) is used for polarity values of
words
* Improved HSWN is created using assumption, all synonyms are
of same polarity and all antonyms are of reverse polarity
¢ Features used: HSWN, Improved HSWN, Negation, Discourse
relations(Conj_after, Conclusive or Inferential conjunction)
2014  [Sharma Hindi Movie reviews were collected Lexicon Based
et al. 2014| from the Hindi newspapers

) ¢ Unsupervised dictionary approach
website

¢ The polarity of the reviews is determined on the basis of majority

of opinion words

¢ Features used: POS Tags, Opinion words and seed list , Negation
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2014  [Ghosh & Hindi Twitter posts in Hindi Machine Learning and Lexicon Based
Dutta 2014]
* Resource-based approach
* Naive Bayes classifier
¢ Features considered: HSWN, Negation
2015  [Sharma Hindi Hindi tweets Lexicon Based
et al. 2015¢|
* Subjective lexicon method.
¢ SentiWordNet creation which contains adjectives and adverbs
* Features considered: POS Tags, Negation
2015  [Kumar Kannada "182 positive Kannada re- Machine Learning
et al. 2015b| views and 105 negative Kan-

nada reviews reviews were
mainly collected for broad
domains consisting of com-

mercial products”

e (Classifiers used: J48, Random Tree, ADT Tree, Breadth First,
Naive Bayes and SVM

* Features used: Dictionary of positive and negative words, Nega-
tion, POS Tags, Turney’s method [Turney 2002], Sentence based
approach [Khan & Baharum 2011].
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2015  [Anil Kannada Same as [Kumar et al. 2015b] Lexicon based
et al. 2015]
¢ Pattern based approach
* Features used: Kannada dictionary (self generated), Turney’s al-
gorithm [Turney 2002], Negation, Significant Sentence algorithm
[Khan & Baharum 2011]
2015  [Anagha Malayalam  different movie reviews from Machine Learning and Lexicon-based
et al. 2016| various web sites
¢ Maximum Entropy Model is used for tagging
¢ Maximum Entropy Classification ifiAnds out in which class the
review must belong, given a context so that it maximizes the
entropy of the classiitiAcation system.
2016  [Beegum & Malayalam Data sets of movie reviews Lexicon-based
V.A 2016]

* Training phase: Creation of phase dictionary and a polarity dic-

tionary

* In phrase dictionary store the score value and domain of each
single word and its combination. Polarity dictionary contain the

words, combination words and its polarity.
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2012 [Balamurali 2012Marathi Travel Reviews from various Machine Learning
blogs and Sunday travel edi-
. e SVM
torials
* Feature used: WordNet senses
2013  [Deepali & Punjabi Punjabi newspaper sites and Machine Learning and Lexicon-based
Garg 2013 Punjabi blogs
¢ Feature used: N-Gram approach (Frequency)
* Naive Bayes
2014  [Sharma 2014] Punjabi different websites, newspa- Machine Learning and Lexicon-based

pers, blogs

* Feature used: N-Gram approach

* Naive Bayes
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Year

Author

Language

Data Scope/ Text Domain Techniques/ Algo Used

2014

2016

[Kaur & Punjabi

Gupta 2014]

[Se et al. 2016]

Tamil

Text Paragraph Lexicon-based

* Using subjective lexicon created by using Hindi Subjective Lexi-

con.

e three popular methods are used for the generation of subjective

lexicon-

- Use of Bi-Lingual Dictionary
— Machine Translation (MT)
— Use of Word net

¢ Negation Handling

Tamil movie reviews Machine Learning
¢ Classifiers used: SVM, MaxEnt, Decision Tree, Naive Bayes

¢ Features used: Tamil SentiWordNet, Punctuations and Apostro-

phe
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2016  [Kausikaa & Tamil Tweets Machine Learning
V 2016]
* Translation of Tamil Tweets into English Tweets.
* Finding out the semantic similarity using path-length similarity.
e Classification of Sentiments using SVM.
2016  [Phani Tamil, Tweets Machine Learning
et al. 2016] Hindi,
) ¢ Features used: Word n gram, Character n gram, Surface features,
Bengali

SentiWordNet features

¢ Classifier used: Multinomial Naive Bayes, Logistic Regression
(LR), decision tree, Random Forest (RF), SVM, SVC, and SVM
Linear SVC (LS) used



€¢

Year Author

Language

Data Scope/ Text Domain

Techniques/ Algo Used

2012  [Manchala
et al. 2012]

2016  [Mukku
et al. 2016|

Telugu

Telugu

Telugu blog texts and News
headlines of English SemEval
2007

A corpus consisting of
7,21,785 raw Telugu sen-
tences was provided by
Indian Languages Corpora
Initiative (ILCI)2 e Telugu

Newspapers

1 https:/ /radimrehurek.com/genism/index.html

Machine Learning

¢ Conditional Random Field (CRF) based classifier has been ap-

plied for recognizing six basic emotion tags

¢ A score based technique has been adopted to calculate and assign

tag weights to each of the six emotion tags

* A sense based scoring strategy has been applied to identify sen-
tence level emotion scores for the six emotion tags based on the

acquired word level emotion tags.

¢ Feature used: POS, First sentence in a topic, SentiWordNet,
Reduplication, Question Words, Special Punctuations, Quoted

sentences, Emoticons, Uni gram and Bi-gram

Machine Learning

* Classifier used: Naive Bayes, Logistic Regression, SVM, Decision
tree, Random forest, Multi Layer Perceptron(MLP) Neural Net-

work, Adaboost ensemble

¢ Feature used: Doc2Vec
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Year  Author Language  Data Scope/ Text Domain Techniques/ Algo Used
2016  [Abburi Telugu 300 Telugu movie songs and Machine Learning
et al. 2016| lyrics corresponding to each

* Feature used: Lyric Feature, Audio Feature
song are taken : YouTube

¢ SVM, NB and a combination of both these classifiers are devel-

oped to classify the sentiment using the textual lyric features.

e Gaussian Mixture Models (GMM), SVM and a combination of
both these classifiers are developed to classify the sentiment us-

ing audio features.



2.1.2 Temporal Sentiment Analysis

As for temporal analysis, being a relatively new field, so only few research have been
done in it. [An et al. 2014] presented a study to yield insights on climate change sentiment
using social media text. They used existing sentiment analysis algorithms, data-mining
techniques, and time series methods with the aim to detect and track sentiment regard-
ing climate change from Twitter feeds. [Bollen ef al. 2011] mapped everyday tweets to a
six-dimensional mood vector (tension, depression, anger, vigor, fatigue, confusion). They
compared the results to the timeline of cultural, social, economic, and political events that
occurred during the same period. After analyzing the impact of world global events on
the mood of microblog posts, they found that the mood level in posts was correlated with
cultural, political, and other events.

In another study, [O’Connor ef al. 2010] tried to identify the relationship between opinion
expressed in tweets and the public opinion obtained by polls. Authors retrieved relevant
tweets to some specific topics and then estimated the sentiment score of every day. They
used a simple lexicon-based approach and the Multi-Perspective Question Answering
(MPQA) sentiment lexicon [Wiebe et al. 2005] for identifying the sentiment score. Senti-
ment time series were then produced with an average moving window of past k days. It
was found that there was a strong correlation between the time series and the polling data
on customer confidence and political opinion.

[Bifet & Frank 2010] proposed a real-time sentiment analysis model using a data-stream
mining approach. The proposed approach could monitor the evolution of the impact of
words on class predictions. The linear classifier was used to learn the stochastic gradi-
ent descent (SGD) method that had a similar performance with multinomial naive bayes.
[Hao et al. 2011] focused on visual sentiment analysis and explored three different ap-
proaches on a large volume of tweets. They proposed a topic-based text-stream analysis
method to determine the topic of discussion based on a number of opinionated attributes.
[Das et al. 2011] have developed a system called TempkEval, tool for visualizing the change
of opinion with time using machine learning algorithm CRF using sentiment as a feature
of the event. [Bjorkelund & Burnett 2012 has developed a temporal analysis framework

for hotel reviews which used naive bayes and SentiWordNet for sentiment classification.
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[Xia & Zhiwen 2016] also used supervised machine learning algorithms such as naive

bayes and decision tree for temporal sentiment analysis of Twitter data.

2.2 Paraphrase Detection

Paraphrase detection has been a major area of research in the recent times because of
its significance in many areas of natural language processing. Extensive work has been
done on developing machine learning techniques. Most of the previous works in para-
phrase detection carefully engineer syntactic or semantic features or use heuristics. [Islam
& Inkpen 2008] proposed a modified form of Longest Common Sub-sequence (LCS) al-
gorithm whereas [Mihalcea et al. 2006] used corpus-based similarity measures to detect
paraphrases. These techniques fail to take into account the fact that in a sentence, many
short sequences add to the structure and importance of the long sequence regardless of
where they occur in the sentence. Hence, a deep learning technique that identifies a fea-
ture paying little attention to the position of occurrence should be able to help overcome
these shortcomings. [Vo et al. 2015] proposed simple features like n-grams, edit distance
scores, METEOR (Metric for Evaluation of Translation with Explicit Ordering) word align-
ment, BLEU (Bilingual Evaluation Understudy) for detecting paraphrases and semantic
similarity tasks on Twitter data. Similarly, analysis of various similarity measures like
sentence-level edit distance measure, simple n-gram overlap measure, exclusive longest
common prefix (LCP) n-gram measure, BLEU measure and sumo measure along with
paraphrase detection based on abductive machine learning has been proposed in [El-Alfy
et al. 2015]]. [Malakasiotis 2009] proposed three methods for paraphrase detection using
string similarity measures.

One of earliest work for paraphrase detection in deep learning was done by [Sundaram
et al. 2009] where authors proposed an unsupervised feature learning technique with
Recursive Auto-encoders (RAE) for detecting paraphrases on Twitter. In their proposed
technique they first converted data to parse trees using the phrase-structure parser and
then passed it to the RAE for training. The vector generated from the RAE is converted
to form a similarity matrix and thus paraphrase detection is done using this matrix.

[Huang 2011a] has proposed an unsupervised recursive auto-encoder architecture for
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paraphrase detection. The recursive auto-encoder uses tanh as the sigmoid-like activation
function and gives the representation of sentences along with their sub-phrases. These
representations are then used for paraphrase detection. Two approaches are used to ex-
tract the same number of features for different sentence pairs, aggregating representations
to form a single feature and using a similarity matrix approach. With the first approach,
they achieved 66.49% accuracy while with the second method accuracy of 68.06% was
achieved. In 2011, [Socher et al. 2011] proposed an approach where dynamic pooling and
unfolding Recursive Auto Encoders (RAE) were used for the task of paraphrase detection.
The RAE(s) are unsupervised and learn feature vectors for phrases using syntactic trees.
A dynamic pooling layer was used in their approach which computed fixed-sized vectors
from variable input matrices. This fixed size vector was used as an input to the classifier.
Authors achieved an accuracy of 76.8% and F-Measure of 83.6% on the Microsoft Research
Paraphrase Corpus(MSRPC).

In 2014, [Kalchbrenner et al. 2014] proposed a CNN architecture that extracted k top values
from the convolutional filter to get a fixed length output. To achieve multi-granularity,
they stacked several levels of convolutional filters. [Yin & Schiitze 2015] proposed archi-
tecture using double CNN with multi-granular interaction features for paraphrase iden-
tification. The multi-granular features were learned using the CNN. A logistic regression
classifier was used for classifying these features for paraphrase identification. Separate
input matrices that converged at a later step were used for two sentences. In contrast, the
approach defined in this thesis uses a single input matrix for both the sentences.

[He et al. 2015] used a CNN that extracted features at multiple levels of granularity and
used multiple types of pooling. Their model had two layers; layer one used CNN archi-
tecture for capturing different levels of granularity and layer two which compared local
regions in a sentence for similarity measurements. Their approach achieved a 78.60% ac-
curacy on MSRPC. WordNet-based lexical similarity approach was used by[Fernando &
Stevenson 2008]. Each sentence was represented as a one-hot vector, and then a similarity
matrix was built. The matrix was built taking into account all word pairs. The authors
achieved an accuracy of 74.1% with an F-measure of 82.4% on MSRPC. In approach pro-
posed in this thesis, a similar WordNet similarity matrix has been to train the CNN.

When considering Indian languages, paraphrase detection has been done using machine
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learning techniques that use heuristics more than the semantic features. Before [Anand Kur
mar et al. 2016, no work was done on paraphrases for Indian languages because of a lack
of dataset. [Anand Kumar ef al. 2016] opened doors for developing tools to detect para-
phrases in Indian languages. At task of Detecting Paraphrases in Indian Languages(DPIL)
at Forum of Information Retrieval Evaluation (FIRE) 2016 [Anand Kumar et al. 2016, the
techniques usually used features such as Jaccard similarity and METEOR metrics which
are all heuristic based. A few approaches that use semantic features like Soundex codes,
POS taggers, do not perform as well as the heuristic-based approaches because of the error
introduced in these steps. [Kong ef al. 2016] use gradient boosting algorithm for classi-
fication. The features used include Jaccard coefficient, cosine similarity, dice coefficient
and other METEOR based metrics. Their approach performed the best on Punjabi(0.932),
Malayalam(0.785) and Tamil(0.776) languages. [Bhargava ef al. 2016a] implemented a su-
pervised classification model for detecting paraphrases. POS tags, stems of words and
Soundex codes corresponding to the words in sentences were used as features. They
achieved an accuracy of 90.5% and f-measure of 87.6% on the Hindi dataset for DPIL task
at FIRE 2016. [Saini 2016a] use various machine learning approaches including random
forest and SVM(s). Features used include common tokens in two sentences, common IDF
scores and sentence length. Their approach performed best on the Hindi dataset with a

F-measure of 0.907.

2.3 Text Summarization

With the rapid increase in large internet users and the content being generated online,
automatic text summarization has been evolving as a field of research. [Luhn 1958] work
was one of the pioneer work in the area, since then remarkable progress has been made
with the popularity of deep learning approaches ([Rush et al. 2015]], [Chopra et al. 2016]).
A summary is a brief text that is generated from one or more text. The summary contains
the main points from the said text, and the length is usually not more than half of the
original text. Text Summarization is the process which gathers the most information from
the text(s)to generate the abridged version. Traditionally, summarization focuses on text

input, but in the past, there have been systems that accept multimedia input (video or au-
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dio). From time to time different categories have been proposed for text summarization
on the basis of input, output, purpose and kind of information. Major of them being sin-
gle and multi-document, extractive and abstractive, generic and query focused ([Dunlavy
et al. 2007],[Gong & Liu 2001], [Ouyang et al. 2011], [Wan 2008]), supervised and unsu-
pervised ([Riedhammer et al. 2010], [Mani & Maybury 1999]), monolingual, multilingual
and cross-lingual. The summarization systems can be either multi-document [Barzilay
et al. 1999] or single document [Litvak & Last 2008]. A multi-document can be monolin-
gual or multilingual [Radev et al. 2004]. Moreover, the summaries can either be generic or

query based [Park ef al. 2006]. Summarization is traditionally a three-step process:
* Generating a text representation of the source.
¢ Transforming the representation to a summary representation.
¢ Generating a summary of the representation.

Three factors determine the quality of the summarization system: input, output and pur-
pose. The input can be either a generic text or topic based, speech transcripts or news
documents, single document or multiple documents. The purpose of the summary is to
determine the target audience for the summary and if the summary is query based or not.
Output factors define the content of the summary.

The NLP community has been working on the task of text summarization since last sixty
years. [Radev et al. 2002] describe a summary as "a text that is produced from one or more
texts, which conveys important information in the original text(s), and that is no longer
than half of the original text(s) and usually significantly less than that". This definition

throws light on the three essential characteristics of summarization:
¢ The summary can be produced from one or more than one documents.
¢ Relevant information should be preserved in summarization.
¢ The content should be short enough for a quick perusal.

The two most common terms that come up while discussing summarization are extrac-

tion and abstraction. Extraction involves identifying the most important sentences from
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the text and extracting them without any modification. Abstraction aims to present in-
formation in a new form with modifications done like compressing sentences, fusing sen-
tences([Bhargava et al. 2016c]). Abstractive text summarization aims to produce a more
human-like summary.

In the first instances of summarization, extracting features like the position of the sentence
in the text ([Baxendale 1958]]), word and phrase frequency ([Luhn 1958]) and key phrases
([Edmundson 1969])). Extractive summarization focuses on summary content whereas ab-
stractive summarization puts focus on the grammatical correctness of the sentences, the
form of the sentences. One of the issues that summarization systems face is the evaluation.
During the last two decades, various competitions such as DUCﬂ TRECEI and TACEI have
established baseline systems and created training data for evaluating such systems. How-
ever, a universal strategy for evaluating summaries is still not in place. More so in Indian
languages, there is no data, and no unanimously agreed upon measure for evaluating

such summaries.

2.3.1 Extractive Text Summarization

Many approaches have been proposed for Extractive Text Summarization. Few of them
being, statistical approaches ([Ko & Seo 2008]), topic based ([Harabagiu & Lacatusu 2005]),
graph-based ([Radev et al. 2002]), discourse-based ([Chan 2006]) and machine learning
based. [Yeh et al. 2005] proposed a trained summarizer and latent semantic analysis
for summarization of text. They proposed two techniques: Modified corpus-based ap-
proach(MCBA) and Latent Semantic Analysis based Text Relation Map (TRM) technique.
MCBA depends on score function and analyzes important features for generating sum-
maries. Genetic Algorithm trains the score function for obtaining an appropriate com-
bination of feature weights. It also uses LSA to obtain a document’s semantic matrix
and uses sentence’s semantic representation to build relationship map. [Chan 2006] uses
shallow linguistics based techniques. Discourse network is considered where interrelated
parts are represented as a single unit, and textual continuity is used to combine different

phrases using this discourse. [Ko & Seo 2008] uses contextual information and statistical

http:/ /duc.nist.gov/
Zhttp:/ /trec.nist.gov/
Shttps:/ /tac.nist.gov/ /
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approaches. It combines two consecutive sentences into a bi-gram pseudo sentence so
that contextual information is applied to statistical sentence-extraction techniques. The
statistical sentence extraction techniques first select salient bigram pseudo sentences, and
then each selected bi-gram pseudo sentence is separated into two single sentences. The
second sentence-extraction task for the separated single sentences is performed to make
a final text summary. Few works proposed unsupervised approaches ([Lee et al. 2009])
as well for summarization task. Another unsupervised approach was proposed by [Al-
guliev et al. 2011] which uses integer linear programming for identifying relevant text.
The approach was named as Maximum Coverage and Minimum Redundancy (MCMR).
This approach tries to optimize relevance, redundancy and length of the text. A query
based multi-document summarization was proposed by [Ouyang et al. 2011]] where seven
features are used to decide the importance of sentence, in which three features are query
dependent whereas four of them are independent of the query. On the basis of n-gram
pseudo human summary training data and set of documents are compared for relevance
score. [Ouyang et al. 2013|] suggested another approach where all words are organized as
Directed Acyclic Graph (DAG). This approach selects new and relevant sentences in two
ways. First, it uncovered concepts are taken into consideration only during estimation of
the relevance of the sentences to ensure novelty of among sentences. Simultaneously,
the relationship between sentences is utilized to enhance saliency measure. [Ferreira
et al. 2013] used fifteen scoring methods including different sentence scoring, word scor-
ing and graph-based scoring approaches. [Lloret & Palomar 2013|] used lexical, syntactic
and semantic levels of language analysis to find relevant sentences. [Fattah 2014] used
statistical features and trained machine learning techniques, naive bayes classifier, maxi-
mum entropy and SVM. [Yang et al. 2014]] proposed a theme based summarization where
sentences are clustered based on the theme. Each theme cluster is based on a generative
model. [Fang et al. 2015] proposed topic aspect-oriented summarization which is based
on topic factors. Various features are used to represent multiple aspects and preferences
of the topic. Approach targeted text as well as image summarization. [Heu et al. 2015]
proposed FoDoSu, which exploits Flicker tag clusters for selecting important sentences.
Documents are preprocessed, after which the words obtained are used by word analysis

module during which a Word Frequency Table (WFT), where the frequency is computed
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for each word in the documents and words having high semantic relationships are dis-
covered with the help of tag clusters from Flicker. The WFT gets updated when words
having high semantic relationships are discovered. This is calculated using HITS algo-
rithm. After each word’s relevance and contribution is analyzed, score of each sentence
is computed using rel-gram, and each sentence is ranked with word cluster. The system

finally selects highly scored sentences to generate summaries of multiple documents.

2.3.2 Abstractive Text Summarization

Abstractive techniques in text summarization include rule-based approach [Genest & La-
palme 2012], sentence compression ( [Clarke & Lapata 2006], [Knight & Marcu 2002,
[Zajic et al. 2007]), merging sentence based on their semantics ( [Liu et al. 2015]], [Wang
et al. 2008]]). Graph-based algorithms, in particular has been proven to work well on both
summarizing texts containing lots of redundant data ( [Ganesan et al. 2010a] and [Lloret
& Palomar 2011]). [Sankarasubramaniam ef al. 2014] leverage Wikipedia in addition to
graph-based algorithms to generate extractive summaries. They first map all the sen-
tences to corresponding Wikipedia topic and thus a bipartite graph is obtained where one
of vertices represent the Wikipedia topics, and the other set represent the sentences in
the document. [Sankarasubramaniam et al. 2014] then uses an iterative ranking algorithm
to find the best candidate sentences in the document. [Sankarasubramaniam et al. 2014]
also introduces incremental summarization wherein longer summaries are generated in
real-time by simply adding sentences to shorter summaries. Since the summaries gener-
ated are extractive, the precision is less when compared to the results of techniques that
generate abstractive summaries.

[Liu et al. 2015] use the advances in the semantic representation of the text in the form of
Abstract Meaning Representation (AMR) graphs to form summaries. The summarization
framework consists of parsing input sentences to form individual AMR graphs, combin-
ing the individual AMR graphs to form a summary AMR graph and then generating text
from the summary graph. The individual graphs are converted to summary graph using
a perceptron model prediction algorithm which predicts with a high accuracy the sub-

graph that has to be selected for summary generation. [Bhargava et al. 2016c] described
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an approach that used directed graphs. The graphs use the original sentence word order
to generate abstractive summaries. Their technique leverages the graphical form of the
input text to reduce redundancy. If their algorithm finds two sentences that are collapsi-
ble, they use the connectors based on the sentiments of the adjoining sentences. [Ganesan
et al. 2010a] describe an approach that used directed graphs that use the original sentence
word order to generate abstractive summaries. Their technique leverages the graphical
form of the input text to reduce redundancy. If their algorithm finds two sentences that
are collapsible, they use the connectors already present in one of the sentences to be used
as the connector for the collapsed sentence. While this technique is effective, it still has a
drawback since there might be two sentences which are capable of being fused together,
but can’t be fused because of the absence of a pre-existing connector.

[Lloret & Palomar 2011] describes a technique in which they have built a directed weighted
word graph where each word text represents a node in the graph and the edge contains
the adjacency relation between the words. The weight of the edge is determined by using
a combination of their page-rank value and the frequency of the words. To determine
important sentences, the first node consists of the first ten words with highest TF-IDF
score. Sentence correctness are ensured using the basic rules of grammar like the length a
sentence should be greater than three words, a sentence must contain a verb and should
not end in an article or conjunction. A huge flaw with this methodology is that a lot of
important information is lost because of the impositions of grammar on the sentences and
the policy of selecting the ten words with highest TF-IDF scores. Furthermore, a lot of
redundant sentences will still be present in the summary because the TF-IDF scores will
give more importance to them.

[Moawad & Aref 2012] proposed a new method for generating single document abstrac-
tive summaries by reduction using semantic graph. Rich semantic graphs using this
approach which in turns generate abstractive summaries. [Lloret et al. 2013] proposed
two types of COMPENDIUM (abstractive and extractive) in which after choosing impor-
tant sentences, information compression and fusion stage is implemented. Recall Ori-
ented Understudy of Gisting Evaluation (ROUGE)-1 score obtained for COMPENDIUME
and COMPENDIUM, are 44.02% and 38.66% respectively. [Khan et al. 2015] proposed

an abstractive approach in which summary is generated by semantic representation of
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the source documents. Semantic Role Labeling (SRL) was used to represent documents
through predicate-argument structures. Similar structures are clustered on basis of se-
mantic similarity. These structures are then ranked on basis of features weighted and
optimized by genetic algorithm. [Banerjee et al. 2015] proposed an approach wherein
most important document is selected from multiple documents. Then each sentence of
that important document becomes an individual clusters. Sentences of other documents
are then assigned to these clusters based on highest similarities. Using the graph-based
approach, k-shortest path were generated. Sentences belonging to set of shortest path are
then selected using integer linear programming to maximize the content. [Bing et al. 2015]
extracts concepts and facts represented by noun and verb phrases. Phrases are selected
and combined for creation of new sentence which is validated using integer linear opti-
mization. Score for each phrase is calculated on basis of redundancy in document. [Rush
et al. 2015] proposed abstractive summarization with a data-driven approach. Neural
attention model in combination with contextual input encoder is created such that it gen-
erates each summary word based on input sentence.

In the recent past, deep-learning based sequence-to-sequence models, have been success-
ful in many problems such as machine translation ([Bahdanau et al. 2014]), speech recogni-
tion ([Bahdanau et al. 2016]) and video captioning ([Venugopalan et al. 2015]). Much work
has also been done using deep learning for sentence summarization. [Rush et al. 2015]
proposed a method that utilized a local attention-based model that generated each word
of the summary conditioned on the input sentence. While the model was structurally sim-
ple, it could easily be trained end-to-end and scaled to a significant amount of training
data. [Lopyrev 2015] proposed an application of an encoder-decoder recurrent neural net-
work with LSTM units and brought attention to generate headlines from the text of news
articles. The authors use an encoder-decoder model where the encoder was fed as input
to the text of a news article, one word at the time. Each word was first passed through
an embedding layer that transforms the word into a distributed representation. The de-
coder generates, using a softmax layer and the attention mechanism, each of the words
of the headline, ending with an end-of-sequence symbol. After generating each word,
that same word is fed in as input when generating the next word. [Nallapati et al. 2016

described an abstractive text summarization model using attentional encoder-decoder re-
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current neural networks. The authors capture keywords using feature-rich encoder, to
identify a fundamental idea for the summarization and model rare/unseen words using
switching generator-pointer. The authors capture hierarchical document structure with

hierarchical attention to generate a summary.

2.3.3 Text Summarization in Indian Languages

The world wide web has provided us with large data. In the current world, the attention
span of people is continuously decreasing. Information for quick perusal is becoming a
necessity. The efforts to summarize documents in Indian languages have been relatively
recent, with [Patel et al. 2007|] proposing a language agnostic approach to summarization.
All the advancement related to Indian language document summarization has been made

in the past 10 years.

2.3.3.1 Methodology

Various methodologies have been introduced in the past decade for automatic text sum-
marization in Indian languages. Section presents a brief overview of the features
that have been repetitively used by the techniques proposed by various authors for Indian
languages. Section further elaborates the techniques used for Indian language
text summarization. These techniques can be broadly divided into score based, machine
Learning based or graph based. Scoring based approaches assign scores to the sentences
based on features such as sentence length and presence of cue words. Machine learning
based approaches decide the importance of sentences based on features such as TF-IDF
scores and keywords identification, and determine if the sentence should be present in
summary or not. Graph-based approaches convert the source text into a graph and then

generate a summary from the graph.

2.3.3.1.1 Features

1. Relative length
Sentence length determines the importance of the sentences. Sentences of short

length are given lower importance as they contain lesser information.
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. Keywords/Title Keywords identification

Keywords are thematic words containing relevant information. Keywords are identi-
fied by calculating TF-ISF (Term Frequency-Inverse Sentence Frequency) score. Key-
words are also the words that are present in the headline/title of the document to be
summarized. Keywords are topical words containing vital information. Keywords
are distinguished by ascertaining TF-ISF score. Keywords can likewise be the words

that are available in the feature/title of the document to be condensed.

. Numeric data identification
Sentences containing numeric data are given a higher priority since they are consid-

ered an essential part of the text.

. Named Entity Recognition
NER uses lists containing prefixes, suffixes and proper names. Named entity identi-
fication helps in identifying sentences that might contain information about places,

or people.

. Sentence headlines identification

Headlines contains essential information and are always included in the summary.

. Proper Nouns Identification
Proper Nouns imply that a sentence might have relevant information regarding a

person or a place.

. Cue-Phrase Identification
Words such as ‘conclusion’, ‘finally” and ‘hence” in a sentence imply that the sentence

will have more weight.

. Sentence Position
The position of the sentences in the text might determine the importance of the

sentence. Sentences that appear at the beginning or the end have more weight.

. Presence of URLs
Sentences with URL(s) are given higher priority since URLs contain essential infor-

mation that should be present in summary.
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10. Term Frequency-Inverse Document Frequency (TF-IDF) weights
TF-IDF helps in determining the importance of words that occur the most number
of times in the document. TF-IDF also helps in demarcating what words occur

frequently and are not crucial to the summary.

11. Presence of inverted commas
Inverted commas usually indicate essential words/phrases in a sentence, since in-

verted commas are used to place emphasis.

2.3.3.1.2 Techniques used for Summarization

Score Based
Statistical features are used by score based approaches. These features help in finding
the relevant sentences and phrases in the sentence. Linguistic knowledge is not required
for these techniques, and hence they can be relatively language independent. [Gupta
& Kaur 2016] use Features for ranking sentences for Punjabi text summarization.
[Kallimani et al. 2016] use [I|and [10|to rank sentences for summary generation. [Jayashree
et al. 2011 use and GSS coefficient (add reference) for ranking sentences. [Sankar

et al. 2011] use and the sentence weight is calculated by using string patterns.

Machine Learning
Machine Learning approaches can be either unsupervised or supervised or semi-supervised.
The supervised approach uses annotated data to classify each sentence as to whether it
belongs in the summary or not because the absence of annotated data, most approaches
for Indian languages are unsupervised. [Sarkar 2012] use the feature |10, and |8, to rank
sentences in the input document. Top k sentences are then selected as required. [Bhoir
& Gulati 2016] use [1] - Bl and [f] - [§] as features in conjunction with a fuzzy Logic system.
[Desai & Shah 2016]] use[T]- [} [§land [11] as features to SVM model. [Thaokar & Malik 2013]
used features[1|-|3|and |8/ to assign scores to the sentences. Utilizing genetic algorithm, the
best chromosome is chosen after the particular number of generations. At that point uti-
lizing euclidean distance is calculated between the sentence and the fittest chromosome.

Sentences are sorted, and contingent upon the compression rate sentences are chosen to
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create the summary. [Keyan & Srinivasagan 2012 proposed multi-document summariza-
tion using neural networks for Tamil and English. The framework includes three stages.
In an initial step, the sentences of the documents are changed over into vector shape. In
the first step, sentences of the documents are converted into vector form. In the second
stage, based on the sentence features, weights are assigned to the vector. After calculating

similarity and dissimilarity measures, summaries are produced.

Graph Based Approach
Graph based approaches represent the source text as a graph. Generating summaries
involves figuring out the sub-graphs that hold more information and then traversing the
graph to includes those sentences into the summary. [Subramaniam & Dalal 2015] present
a graph based approach for Hindi text summarization. The authors created Rich Semantic
Graph (RSG) of the original document and identified substructures of the graph (using
ontological features) that can extract meaningful sentences for generating a document
summary. [Ajmal & Haroon 2015] proposed a technique in which sentences in the doc-
uments are represented as nodes in an undirected graph. If the cosine similarity for two
sentences is above a threshold, they are connected by an edge. Their approach could
also perform query based summarization. For query based summarization, only the sub-
graph which contains sentences related to the query are selected. [Sankar ef al. 2011]
proposed a graph based technique for generating summaries in Tamil. [Banu et al. 2007]]
proposed a summarization approach that builds a semantic graph by discovering subject,

object and predicate in the sentence.

2.3.3.2 Text Summarization Systems

2.3.3.21 Hindi

[Patel et al. 2007] proposed a language agnostic summarization approach for English,
Hindi, Gujarati and Urdu documents based on statistical features. The algorithm was ap-
plied to DUC dataset for English and news articles were used for the rest of the languages.
The language independence of the algorithm was tested by providing news articles for
summarization, and in almost every case a degree of representativeness of more than 80%

was achieved.
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[Thaokar & Malik 2013] used machine learning technique in for Hindi language using a
genetic algorithm. [Kumar & Yadav 2015] proposed an extractive summarization algo-
rithm which scores sentences based on the co-occurrence of words which adhere to the
theme of the document. The average accuracy of the system was evaluated with a manual
summary and was calculated as 0.85.

[Subramaniam & Dalal 2015] generated a semantic graph from the input text. Heuristic
rules were applied to the semantic graphs to condense them. These rules exploited the
WordNet semantic relations: hypernym, holonym, and entailment. Domain ontology was
used to generate summaries as information needed to generate summaries. WordNet is
then used to generate multiple summaries based on synonyms. The generated multiple
texts are ranked, and the best amongst them is selected for the summary.

[Bhoir & Gulati 2016|] used various features. Sentences with a higher number of title
words are given more weight then sentences with lesser number of title words. Only sen-
tences with subject, object and verb triple are selected for the next step. Sentences with
code mixed text are considered more important and have a higher priority. The sentences
are classified using a fuzzy logic classifier and then ranked for the final summary:.
[Pundlik et al. 2016] use the following features: sentence paragraph position, overall sen-
tence position, numerical data in the sentence, presence of inverted commas, sentence
length, keywords in the sentence. SVM is then applied to sentences in the range from 4
to 1, with ‘4" indicating most important sentence and ‘1’ indicating that sentence is not
important. The sentences are then extracted based on their rank. The dataset used con-
tained text from various online news sources such as zeenews, khabarNDTV and Patrika.
A total of 130 Hindi news articles from different categories of news namely Bollywood,
politics and sports are present. The average number of words in an article is 400-500. The
average result of experiments indicated 72% accuracy at 50% compression ratio and 60%

accuracy at 25% compression ratio.

2.3.3.2.2 Kannada
[Kallimani et al. 2010] proposed a system called ‘AutoSum’. The system makes use of
key terms, like proper nouns, adjectives and adverbs to determine the importance of the

sentence. Each sentence is assigned a score based on the features as mentioned earlier.
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The summary is then generated where the output contains the most important sentences
in the input text (determined by the score).

[Jayashree et al. 2011] proposed a system to generate extractive summaries. Their system
extracts Kannada documents available online for keywords. To score the sentences in
the input text, statistical features like TF-IDF, Galavotti Sebastiani Simi(GSS)[Galavotti
et al. 2000] coefficient are used. The sentences once scored, were sorted in descending
order by the value of the score. Based on the number of sentences specified by the user,
a summary was generated. The summaries were generated based on the number of
sentences determined by the user. The manual evaluation was then done to evaluate the
summaries. The recall values across the categories sports, entertainment and literature,

were 0.76, 0.8 and 0.7 respectively.

2.3.3.2.3 Malayalam

The approach proposed by [Ajmal & Haroon 2015] represents the source text as an undi-
rected graph. In the undirected graph, sentences are represented by nodes. Two nodes
are connected by an edge if the cosine similarity between the two sentences is above a
threshold. The value of the said threshold is calculated by using the number of para-
graphs and the number of sentences in the input document. This approach results in a
graph, where there are sub-graphs which are segregated based on the topics that they
represent. This allows in creating summaries where one can select sentences from each
topic. This way the summary is representative of the whole document. This approach
also eases query-based summarization as sentences from the sub-graph pertaining to the
query can be selected for the summary. The maximum f-measure reported by authors

was 80.18%.

2.3.3.2.4 Tamil

[Banu et al. 2007] proposed a summarization approach that builds a semantic graph by
discovering subject, object and predicate in the sentence. The text documents are com-
pressed by applying syntactical features. Subject, object and predicate triples are identi-
fied for each sentence and a corresponding graph is generated. Normalization is applied

on the subject, object, predicate triples to reduce the frequency of the nodes in the graph,
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thus reducing the size of the graph. SVM algorithm is then used to classify the sentences.
The algorithm identifies which sentences belong to the summary.

[Sankar et al. 2011] proposed an approach that scores sentences based on features like
word frequency, position of terms. Sentence weights are also calculated by using string
patterns. Their approach is domain independent and does not require annotated cor-
pus. The authors used ROUGE ([Lin 2004]) scores to evaluate the generated summaries
and achieved an average ROUGE score of 0.4723. [Keyan & Srinivasagan 2012] pro-
posed multi-document summarization using neural networks for Tamil and English. The
sentence weight value determines if multi-document summarization or single document
summarization is to be performed. Their proposed system was able to summarize both

new articles in Tamil and English.

2.3.3.2.5 Punjabi

[Vishal & Gurpreet 2012] used the following features: title/keywords (identified by using
term frequency-inverse term frequency), NER, numerical data, proper nouns, and cue
phrases. Scores for sentences are generated using these features. The features are as-
signed weights based on their importance. The final score are calculated by the following
equation: wy.f; +wy.fo + ... + Wy.fy, Where fi...f, are different features of sentences and
wy...w, are the corresponding feature weights of sentences. The sentences are then sorted
to generate the final summaries. For news documents in Punjabi, f-measure values ranged
from 0.97 to 0.94 depending on the compression rates. For stories, the f-measure value
was 0.81 for 10% compression, 0.89 for 30% compression and 0.94 for 50% compression.
[Gupta 2013] proposed an extractive automatic text summarization system. Their ap-
proach uses a two step process for summarization. The first step involves pre-processing
where stop words are removed, sentence boundaries are identified and word frequen-
cies are calculated. The next step involves assigning weights to the sentences based on
the features and then generating summaries based on these scores. The authors tested
the proposed system over fifty Punjabi news documents and fifty Punjabi stories. The

accuracy of their system varied from 0.81 to 0.92.
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2.3.3.2.6 Bengali

[Islam & Masum 2004] proposed a summarization approach that was corpus-oriented
for Bengali. Files in the corpus were scored on the premise of highest frequency words
by applying vector-space-term-weighting. Their approach builds a document index and
performs summarization using vector space retrieval method. Their approach built a tok-
enizer which tokenized the documents and then performed ranking and summarization.
The tokenizer was able to handle the dangling anaphora problem which is the result of a
shallow linguistic analysis.

[Das & Bandyopadhyay 2010c] proposed an opinion text summarizer. The sentiments on
the topic were calculated from the input text. The sentiment information was then used in
the generation of the summary. Their approach determines sentiment by implementing
an aggregation model. This model helps in discerning the theme at a discourse level.
The aggregation model uses a k-means clustering algorithm. Sentences for the summary
were chosen based on the graph representation by applying page rank algorithm. Their
approach achieved a precision of 0.72, recall value of 0.67 and f-measure score of 0.69.
[Sarkar 2012]] proposed a sentence extraction technique for summarization. The technique
proposed could be divided into three stages: preprocessing, sentence scoring and sum-
mary generation. In the preprocessing step, stop words were removed, stemming was
done. In the next step, sentences were ranked based on the words present and position.
Sentences containing words that were related to the document theme and had a TF-IDF
score above a certain threshold were given a higher priority. According to the positional
significance, the score of sentence is inversely proportional to its position. The sentences
are ranked on the basis of their scores and the summary is generated by selecting K-top

ranked sentences, where K is specified as the input to the system.

2.3.4 Applications and Challenges

Past research has established that summaries as short as 17% of the text do a good job
in speeding up decision making, as much as by a factor of two ([Mani et al. 2002]) with-
out any decrease in the accuracy. Summaries that are query based also help in making

relevant decisions in a shorter time span. Summaries empower users to discover the
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important content in the document without having to go through the entire text of the
document.While summarizing scientific documents, the objective is two fold, one to iden-
tify relevant documents and second to understand the relationship between the current
document and the articles that the document cites. Phone message synopses are useful
for perceiving the priority of the message, the number to call back, or the caller and out-
lines of threads in forums are valuable in determining if the thread is relevant. Another
surprising application of summarization involves automatic evaluation of GMAT essays
([Burstein et al. 2001]). Summarization improves the topical analysis of an essay signif-
icantly. Summarization allows to reduce redundancy in the essays written under time
constraints, which in turn allows better assessment of the essay.

The first and most challenging task in automatic summarization is gathering dataset for
evaluating the systems. While there has been a radical change in English text summa-
rization in the last 10 years, no breakthrough can be seen for Indian languages. One of
the challenges is the lack of efficient resources such as NER taggers and POS taggers.
Another factor that is deterrent to the development of state of the art resources is that
people who use the internet predominantly use English. While traditional print media
might use English languages, electronic media uses English, and the media that does use
Indian language has a limited demographic. Summarization for code mixed languages is
a field that has not been explored yet. Since the advent of social media platforms such as
Twitter and Facebook there has been no dearth of code mixed content, but since code mix-
ing is usually used in an informal setting, summarization for such content has not been
explored. The summarization systems have to compete with ever increasing vocabulary

as well.

2.4 Spam Detection

Social media has seen increased spamming with the advancement in technology. Many
networks have tried to keep stringent policies for the safety of their customers, but spam-
mers adapt suitably as well. In 2008, Twitter officially announced that performance

of entire system was threatened because of the Follow spam accounts ﬂ [Chakraborty

https:/ /blog.twitter.com/ official /en_us/a/2008 /making-progress-on-spam.html
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et al. 2016b] proposed nine domain-based classifications of spam techniques:

1. E-mail ([Sirivianos et al. 2011, [Zisiadis et al. 2011]])

N

. Blog ([Zhu et al. 2011], [Kantchelian et al. 2012], [Tan et al. 2013])

@

. Microblog ([Ghosh et al. 2012], [Yang et al. 2012], [Chu et al. 2012], [Hu et al. 2013]],

[Fu et al. 2015]], [Zheng et al. 2016])

~

. Bookmarking ([Fakhraei et al. 2015], [Poorgholami et al. 2013]], [Yang & Lee 2011])

5. Social network ([Jin et al. 2011]], [Ahmed & Abulaish 2012], [Bosma et al. 2012], [Tan

et al. 2012]], [Cao et al. 2012], [Yang & Lee 2014])

6. Review ([Sun et al. 2013], [Mukherjee et al. 2013b], [Fei et al. 2013], [Sharma &

[Lin 2013], [Lin ef al. 2014])

N

. Location search ([Aggarwal et al. 2013], [Costa et al. 2013]])

8. Comment based ([Sureka 2011]], [Radulescu et al. 2014])

\O

. Cross-media ([Lumezanu & Feamster 2012], [Wang et al. 2011]))

Another categorization proposed was based on Twitter by [Jeong et al. 2016] on Twitter

spam filtering, link spam filtering ([Becchetti et al. 2006], [Castillo et al. 2007], [Gyongyi

et al. 2004],[Krishnan & Raj 2006]), Sybil Detection ([Shi et al. 2013|], [Gong et al. 2014],

[Cao et al. 2012]]) and data mining approach for spam detection ([Fakhraei et al. 2015],

[Graham 2002], [Hovold 2005], [Kayes et al. 2015], [Sculley & Wachman 2007], [Zhou
et al. 2014])), where Twitter based spam filtering was further categorized as follows:

1. Content-based spam filtering ([Ghosh et al. 2012]], [Benevenuto et al. 2010], [Martinez-|

Romo & Araujo 2013])

2. Social network based Twitter spam filtering ([Jiang et al. 2014, [Stringhini ef al. 2013])

3. Subnetwork based on spam filtering ([Wang 2010], [O’Callaghan et al. 2012], [Akoglul
et al. 2010])
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[Ghosh et al. 2012] proposed approach which used link farming property. However, this
approach can be burdensome as it needs social network data for the entire network and
lead to high computational cost. COMPA [Egele et al. 2013|] used tweeting lingo, time
window and Uniform Resource Locator (URL) to learn the behavioural pattern of each
user for identifying spam. [Yardi ef al. 2009] used behavioural patterns and concluded
that trending topics hashtags are an effective way of spamming strategy. [Benevenuto
et al. 2010] and [Martinez-Romo & Araujo 2013] proposed use of a number of hashtags
and URL(s) or spam URL(s). [Gao et al. 2014] used a template-based approach for match-
ing spam ground truth tweets. [Jiang et al. 2014] analyzed behavioural synchronicity
for identifying fake accounts. [Stringhini et al. 2013] analyzed the patterns in increase
and decrease of number of followers. [Viswanath ef al. 2014] identified intentional fol-
low and like for anomaly detection approach using Principal Component Analysis (PCA).
[O’Callaghan et al. 2012] detected comment spammer in YouTube using video user rela-
tion network. [Akoglu et al. 2010] used discriminating features extracted from weighted
sub-graphs from network to detect spammers. BadRank [Wu & Davison 2005] used spam
labels to lower the rank of spam web pages.

Existing proposed works also employed supervised learning techniques by using features
based on review text, rating and other metadata ([Jindal & Liu 2008], [Ott et al. 2011], [Feng
et al. 2012a], [Mukherjee et al. 2013a]). [Ferrara et al. 2014] stated that smart spammers are
hard to distinguish from legitimate users just via content-based features. [Chu et al. 2010]
used user profile features and behaviour. A social honeypot is used by [Lee ef al. 2011] to
allure spammers for building benchmark dataset. Few of the works focused on cluster-
ing of URL(s) and network graph of spammers ([Wang et al. 2015a], [Wang 2010], [Yang
et al. 2011], [Yang et al. 2012]). [Liu et al. 2016] proposed an approach based on Latent
Dirichlet Allocation (LDA) using local and global information of topic distribution pat-
terns. [Diale et al. 2016] optimized the kernel type and kernel parameters for improving
the performance of SVM. Authors also varied a number of features for SVM, AdaBoost
and random forest to check the effect of their performance. [Mi ef al. 2015] applied stacked
autoencoder for identifying spam detection.

[Jeong et al. 2016] deals with follow spam on Twitter. Authors proposed classification

schemes focusing on cascaded social relations for identifying spammers and devised two
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schemes, TSP-Filtering and SS-Filtering, each of which utilizes Triad Significance Profile
(TSP) and Social status (SS) in a two-hop sub-network centred at each other. An ensemble
technique was also proposed, cascaded-filtering, which combine both TSP and SS proper-
ties. The proposed schemes are scalable because instead of analyzing the whole network,
they inspect user-centered two hop social networks. [Kim et al. 2016] proposed two ways
of spam detection, by comparing the similarity between user comments and publisher
posts; and by learning single representative meta feature such as username or ID. [Shao
et al. 2017] proposed a hybrid method based on image and text spam recognition. In case
of an image, local and global image features are used whereas, in case of text semantic
properties are used. [Li et al. 2017c] proposed neural network based model to learn rep-
resentation of reviews. Authors compute sentence importance and incorporate them to
represent document representation. [Song et al. 2017] proposed methodology exploits a
probabilistic generative model for mining the latent semantics from user-generated com-
ments and an incremental learning approach for tackling the changing feature space. [Li
et al. 2017a] discovered that reviewer’s posting rates (number of reviews written in a pe-
riod of time) follow an interesting distribution pattern. Their posting rates are bi-modal.
Multiple spammers also tend to collectively and actively post reviews to the same set of

products within a short time frame, which they called co-bursting.

2.5 Sarcasm Detection

Earliest work on sarcasm was done by [Tepperman et al. 2006] which deals with sar-
casm detection in speech. Since then there has been an increase in research of automatic
sarcasm detection. With the expansion of communication platforms over different so-
cial media, sarcasm has been expressed in various forms (tweets, reviews and dialogues)
and a variety of approaches has been explored for the same including rule-based, super-
vised and semi-supervised. [Riloff et al. 2013|], [Maynard & Greenwood 2014] and [Mishra
et al. 2017]] used manual annotation for sarcastic tweets whereas some others such as [Tsur
et al. 2010], [Gonzalez-Ibanez et al. 2011]], [Bharti et al. 2015] and [Bamman & Smith 2015]
used hashtag based tweets for sarcasm identifications. [Wallace et al. 2014] and [Wallace

et al. 2015] worked on Reddit comments. Few researchers have also focused on long text
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or reviews such as [Buschmeier et al. 2014], [Filatova 2012], [Reyes & Rosso 2014] and
[Reyes & Rosso 2012

In 2010, [Tsur et al. 2010] worked on hashtag based annotations. They used a semi-
supervised method for sarcasm identification on a Twitter dataset (5.9 million tweets)
and 66,000 product reviews from Amazon. They worked on standalone sentences and
did not consider the context of data as these were standalone sentences. Pattern based
features were extracted to train the model for retrieving sarcastic sentences. [Buschmeier
et al. 2014] used amazon corpus collected by [Filatova 2012] as its dataset for training. A
lot of feature engineering was performed for the machine learning techniques. The best
performance of the system was with input as combination of star-rating feature, bag of
words and specific features. [Gonzélez-Ibanez et al. 2011] worked on hashtag based data
which was divided into three categories (sarcastic, positive sentiment and negative senti-
ment), each containing 900 tweets. Various combinations of uni-grams, dictionary-based
features and pragmatic factors (positive and negative emoticons and user references) fea-
tures were used in conjunction with two classifiers, SVM with Sequential Minimal Op-
timization (SMO) and logistic regression. Work done on Amazon data collected using
crowdsourcing in [Filatova 2012] was used by [Buschmeier et al. 2014]. They formulated
the problem as a supervised classification task and evaluated different classifiers on a
combination of lexical and pragmatic features. They reached an f-measure of 74 % using
logistic regression. They made use of features which were proposed in previous research
works and tried various permutations and combinations of features to train the classifier.
[Bamman & Smith 2015] used an evenly balanced corpus of positive and negative tweets
with 9,767 sarcastic and 9,767 non-sarcastic tweets respectively, totalling to corpus size of
19,534 tweets. As for the labelling of the corpus, #sarcastic or #sarcasm tagged tweets were
marked for sarcasm and not otherwise. The classification is done using binary logistic re-
gression methodology with regularization. Two categories of features were engineered,
tweet based and author based features. Major tweet features were brown cluster uni-
grams and bi-grams, part of speech features, pronunciation features, tweet (whole/word)
sentiment (via Stanford sentiment analyzer [Socher ef al. 2013]) whereas author features
were profile information, historical topics, historical sentiment and historical salient terms.

A brilliant accuracy of 85% was achieved for all the features as the input to the model.
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[Cliche 2014] also worked on Twitter dataset and most important features that came as
a result of his analysis were n-grams, sentiments and topics. They used the python li-
brary genism which implements topic modeling using Latent Dirichlet Allocation (LDA).
Initially, topic was learned by feeding all the tweets to the topic modeller. Then they
decomposed each tweet as a sum of topics, which was used as featuresﬂ [Maynard &
Greenwood 2014] studied sarcastic tweets and their impact to sarcasm classification. Their
experiment used around 600 tweets which are marked for subjectivity, sentiment and sar-
casm. They proposed that hashtag sentiment is a key indicator of sarcasm. Hashtags are
often used by tweet authors to highlight sarcasm, and hence, if the sentiment expressed
by a hashtag does not agree with rest of the tweet, the tweet is predicted as sarcastic.
[Bharti et al. 2015] present two rule-based classifiers. The first uses a parse-based lexicon
generation algorithm that creates parse trees of sentences and identifies situation phrases
that bear sentiment. If a negative phrase occurs in a positive sentence, it is predicted as
sarcastic. The second algorithm aims to capture hyperboles by using interjection and in-
tensifiers occur together. They describe a rule-based approach that predicts a sentence as
sarcastic if a negative phrase occurs in a positive sentence. Another rule-based classifier
was proposed by [Riloff et al. 2013] that look for a positive verb and a negative situation
phrase in a sentence. The set of negative situation phrases are extracted using a well-
structured, iterative algorithm that begins with a bootstrapped set of positive verbs and
iteratively expands both the sets (positive verbs and negative situation phrases). They
experiment with different configurations of rules such as restricting the order of the verb
and situation phrase. They use a set of patterns, specifically positive verbs and negative
situation phrases, as features for a classifier (in addition to a rule-based classifier). [Wang
et al. 2015c] use SVM-HMM to incorporate sequence nature of output labels in a conver-
sation. [Liu ef al. 2014] compare several classification approaches including bagging and
boosting, show results on five data sets. On the contrary, [Joshi et al. 2016b] experimen-
tally validate that for conversational data, sequence labelling algorithms perform better
than classification algorithms.

Few works have also used deep learning techniques. [Joshi et al. 2016c] use similarity be-

tween word embeddings as features for sarcasm detection. They augment features based

1h’ctps: / / github.com/MathieuCliche/Sarcasm_detector
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on similarity of word embeddings related to most congruent and in-congruent word pairs
and report an improvement in performance. The augmentation is key because they ob-
serve that using these features alone does not suffice. [Amir et al. 2016] present a novel
CNN based that learns user embeddings in addition to utterance-based embeddings to
learn user-specific context. [Ghosh & Veale 2016] use a combination of CNN, LSTM fol-
lowed by a deep neural network. One of the latest research in this area, inspecting on
an entirely new approach based on the psycho-linguistic side of sarcasm detection, using
cognitive features extracted with the help of eye-tracking, is by [Mishra et al. 2017]. The
basis is built on the fact that sarcasm often springs from incongruity which forces the
brain to reanalyze it, as a consequence of which eye movement differs upon reading the
text, i.e. distinctive eye-movement patterns may be observed in case of successful process-
ing of sarcasm in the text in contrast to literal texts. The task requires the availability of
affordable eye-trackers which is supported by developments such as Cogisen patent on
"eye-tracking using inexpensive mobile web-cams". Gaze-based features were developed
based on eye scan paths of participants, which were calculated using graph structure -
"saliency graphs". Combined with other lexical and textual features, the model based on
multi-instance logistic regression resulted in an improved average precision and accuracy
of 76.5% and 75.3% respectively. An analysis over the results shows that gaze based fea-
tures alone achieve ample performance superseding the combination of features in some

instances. This is amongst first of works which use cognitive features for NLP task.

2.6 Code Mixing

Earlier code switching used to be considered as a substandard language even on informal
platforms, but with the technological advancements, people started accepting it as a nat-
ural part of multilingual language use. Few studies have been performed for analyzing
the reasons which lead to code mixing. Some studies such as [Li 2000], [San 2009] sug-
gested that code mixing occurs due to the linguistic motivations whereas [Sotillo 2012],
[Bock 2013], [Shatie & Nayan 2013|] and [Goldbarg 2009], suggested that it occurred due
to the social motivations to mark membership in-group in short text messages, chat mes-

sages, Facebook comments and emails respectively. Most of the text processing tools have
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been constrained to the English Language. With increasing trends of code mix text usage
all over the globe, it has become important to develop processing tools for such text. [Fis-
cher 2011]] provided insight on language usage in different parts of the world on Twitter.
A trend was observed that usually the language occurring in social media is code mixed
when at small distances there are large languages present. [Dewaele 2010] claimed that
"strong emotion arousal" increases the frequency of code mixing in the text.

Recent works found out a trend of code-mixed texts in Indian languages. [Gupta et al. 2014]
formally introduced the concept of Mixed Script Information Retrieval (MSIR) and chal-
lenges associated with it. Authors also bridged the gaps by analyzing the web traffic for
MSIR through Bing query logs and thereby deducing the impact of mixed scripting. Their
proposed solution models the recondite representation of terms transverse different lan-
guages through deep learning architecture which ultimately results in equivalent terms
to be closer to each other.

In 2015, MSIR finally attained some attention when two shared tasks were organized.
In shared task organized for the Sentiment Analysis in Indian Languages (SAIL) [Patra
et al. 2015|] three languages were considered, i.e. Bengali, Hindi and Tamil but the data
provided was language specific, and no code mixing was involved. Task had two scenarios
in which participants had to build constrained and unconstrained systems. Constrained
systems were restricted to the data provided, but in unconstrained ones, teams used var-
ious external sources for different languages. It was observed by task organizers that
accuracy of unconstrained systems decreased significantly. Another shared task, MSIR
[Sequiera et al. 2015b] was organized in which participants had to identify 9 different
languages, named entities, punctuations and mix scripts in the text for which significant
results were obtained. Task organizers found that most confusing language pair was that
of Hindi and Gujarati. Also, based on results obtained from participating teams they con-
cluded that performance of the system for each of the category included in the task was
correlated to the number of tokens used for that category. Code mixing has now found
its application in different areas such as query Labeling [Bhargava ef al. 2015], sentiment
analysis [Bhargava et al. 2016d], question classification and various tools are being devel-

oped for the same such as POS tagger, language identifier and name entity recognizer.
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2.6.1 POS Tagging

In the past decade, there has been much increase in code mixed text. At present, there are
parts of speech taggers for English with an accuracy of 97.64% [Choi 2016] using dynamic
feature induction and tested on wall street journal dataset. On the other hand, there are
very few systems present for POS tagging in Indian languages which are less accurate
when compared to English POS taggers. This can be attributed to the lower availability of
resources available publicly for Indian languages. According to [Antony & Soman 2011
work in POS tagging for Indian languages was mainly based on rule-based approaches
in the past. In Hindji, [Singh et al. 2006] designed a POS tagger based on exhaustive mor-
phological analysis backed by high-coverage lexicon and a decision tree based learning
algorithm. This system has achieved an average accuracy of 93.45%. In Bengali, [Ek-
bal et al. 2009] has applied voted approach on three classifiers SVM, CRF and Maximum
Entropy to gain a tag precision of 92.35%. [RamaSree & Kusuma Kumari 2007]] have de-
signed a rule-based POS Tagger for Telugu corpus and have claimed to have achieved an
accuracy of 98.016%. There are POS taggers for Tamil, Marathi, Punjabi, Malayalam. POS
tagging for code mixed data is a relatively new field of research and difficult because of
the absence of tagged code mixed data.

[Solorio & Liu 2008] presented the results on the problem of POS tagging English-Spanish
code-switched discourse by using preexisting taggers for both languages. They worked
on different POS taggers for monolingual languages and used them to predict POS for the
given the word. However, they did not face the problems of text generated through social
media, and hence the accuracy achieved by them was quitesss high. The initial attempt
to tag code mixed texts was made by [Jamatia & Das 2014]. An approach to annotate the
dataset using CRF with 5 fold cross validation along with manual correction is discussed.
The dataset is then trained using various machine learning classifiers such as SVM, Ran-
dom Forests and Naive Bayes classifier. The random forest achieved the best results with
82% in fine-grained and 83% in coarse-grained data. With the advent of social media,
people are encouraged enough to work on POS tagging of mixed languages. One such
attempt was made by [Vyas et al. 2014]. His best effort is recognized as the introduction of

transliteration problem in POS tagging of mixed languages. Their work mainly includes
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formalization of the problems and challenges experienced in Hindi-English POS tagging.
First, POS tagging is done by assuming the knowledge of language information and nor-
malized /transliterated form of the word. This experiment gave an idea of the possible
POS tagging accuracy if all the above information can be found out correctly. The experi-
ment uses two English taggers (Stanford tagger [Toutanova et al. 2003] and CMU ark tweet
Tagger [Owoputi ef al. 2013]]), and both the taggers give an accuracy of 79.02%. The next
experiment assumed only the knowledge of language tag and the other modules such as
back transliteration module and POS Tagger were developed resulting in an accuracy of
74.87%. The third experiment assumed the absence of all information except the word. In
this case, all the modules were developed. The third experiment gave a final accuracy of
65.39%.

Nowadays, people are mixing heuristic operations to improve the performance of POS
taggers of mixed languages further. A language identification system had been devel-
oped by [Gella et al. 2013|] which identified the language of the words and then, used a
simple heuristic to form chunks of the same language. CRF++ was then used to iden-
tify POS Tags. Most of the works done till now have proved the essence of language
identification along with transliteration in the POS tagging of mixed languages. [Jama-
tia et al. 2015|] collected and annotated the data for Code Mix English-Hindi Twitter and
Facebook chat messages and compared the language-specific taggers to that of machine
learning taggers using features based on word-level information. They have drawn a com-
parison between different machine learning techniques such as CRF, minimal sequential
optimization, naive bayes and random forests using different features such as word con-
text and other word-based features. The best performing system was of CRF and RF with
weighted accuracies of 71.6% and 70.6% respectively.

[Gamback & Das 2016] discussed the challenges posed in the evaluation of code mix data
and proposed a formal measure for evaluation. [Wang et al. 2015b] use BLSTM-RNN for
POS tagging. The Recurrent Neural Network (RNN) is word embedded. The authors
achieved an accuracy of 97.40% when tested on the Penn treebank wall street journal test
set. Their approach performed comparably to Stanford POS tagger without using any
language features like morphemes, root words, affixes, intonations and stresses. Given a

sentence wi, wy, ..., W with tags y1, y2, ..., yn, a bidirectional LSTM network was used
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to predict the tag probability distribution of each word. The output layer was a softmax
layer whose dimension was the number of tag types. The output was the tag probability
distribution of input word w;. All weights were trained using back-propagation and gra-
dient descent algorithm to maximize the likelihood of training data.

[Vaswani et al. 2016] used feed-forward neural networks with two hidden layers of recti-
fied linear units for both POS tagging and feed-forward networks. In POS tagging, when
tagging word w;, the authors considered only features from a window of five words, with
w; at the centre. For each word in the window, the authors added the word lowercased
and a string that encodes the basic "word shape" of the word in the window. This was
computed by replacing all sequences of uppercase letters with ‘A’, all sequences of lower-
case letters with ‘a’, all sequences of digits with ‘9’, and all sequences of other characters
with . Finally, two and three letter suffixes and two letter prefix were added for w; only.
[Plank et al. 2016] described a basic bidirectional LSTM tagging model is a context bidi-
rectional LSTM taking as input word embeddings. The authors incorporated sub-token
information using a hierarchical bidirectional LSTM architecture. The sub-token level (ei-
ther characters or uni-code byte) embeddings of words are computed using a sequence
of bidirectional LSTM at the lower level. [Sequiera ef al. 2015a]] proposed an extension to
the existing approaches by introducing a new feature set for transliteration. The system is
tested on naive bayes and maximum entropy approaches and obtained the best accuracy
of 84%. The paper shows that integration of language detection and POS tagging systems
does not improve the accuracy in overall.

Most of the research work was done on the ICON data sets 2015 onwards. [Sarkar 2016b]
have designed a tri-gram based Hidden Markov Model (HMM) for POS tagging. The
system first tokenized the sentences into tokens and attaches meta tags and broad POS
tag information to each token. The meta tag contained the word characteristics by which
it stood differently. The system is later tagged with the tri-gram tagger with the above
features for three different language pairs Bengali-English, Hindi-English and Telugu-
English. [Pimpale & Patel 2016] compared various machine learning algorithms such as
decision tree, random forest, naive bayes and Multilayer Perceptron (MLP) for developing
POS tagger. The system uses the language of the word, the language of the previous

word, the language of the next word, POS tags of the previous two word, POS tags of
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the next two words similar words and position of the word in the sentence as features for
training the system.

[Sharma ef al. 2016] proposed a CRF based POS tagger. The system used context window
words, capital letter based features, affix based features and length of the word as features
to train a CRF classifier in constrained mode and used Hindi transliterator, normalizer,
Twitter POS tag, English word clusters and affixes of normalized Hindi words as features
in unconstrained mode. [Nelakuditi et al. 2016|] designed a POS tagger for Telugu-English
code mixed texts using two approaches. The first approach consists of machine learning
approach with lexical features like prefix, suffix, infix features and presence of postposi-
tions(PSP) word, prefix and suffix of adjacent elements and length of the word. Linear
SVM(s), CRF(s) and multinomial naive bayes classifier are the machine learning models
considered. The second approach consists of having two POS taggers of English and Tel-
ugu combined with a universal language tag set. A language identification system was
trained on lexical features with CRF and is used to identify the words.

[Ghosh et al. 2016] have also designed a system on the same ICON 2015 dataset. The
system uses a chunker and a lexicon dictionary for preprocessing sentences. The system
then extracts features such as words in a context window of size 5, prefix, suffix and some
binary features. The system uses some post-processing rules to identify emoticons, uni-
versal tags and other unidentified words.

In 2016, ICON has conducted another POS tagging sub-task and released the following
dataset. [Gupta et al. 2017] designed a POS tagger using a hybrid approach. The system
uses a rule-based tagger to identify some of the tags. The rest of the tags are identified
using a CRF model. The features used include character n-gram, word normalization,
prefix and suffix, word class features, word probability, stemming, phonetic normaliza-
tion and some binary features. Meanwhile, [Patel et al. 2016] proposed deep learning
approaches to solve the POS tagging problem. Authors compared simple RNN, LSTM,
GRU (gated recurrent unit) a deep LSTM networks using context words embedding as
the input features. The system uses ICON 2016 dataset for training. The system per-
formance is comparable to Stanford tagger [Toutanova et al. 2003] and Hunpos tri-gram
tagger [Halacsy et al. 2007]. [Sarkar 2016a] have designed a CRF model for POS tagging

using the ICON 2016 dataset. The system used language features, orthographic, punctu-
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ation features, word context features and binary features for training on the CRF model.

Finally, [Barman et al. 2016] have come up with three approaches which work on Hindi-
Bengali-English code mixed texts. They have designed a pipelined system using the meth-
ods implemented by [Solorio & Liu 2008|] and [Vyas et al. 2014]. They implemented the
same systems using a stacked approach instead of a pipeline. In stacked approach the out-
put of all the taggers, language identifiers are combined whereas in pipelined approach
the POS tag of a specific language tag is done based on the output of language identifier.
The results of stacked came to better than the pipelined features. The combined approach

uses a SVM directly on the handcrafted features plus stacked features.

2.6.2 Named Entity Recognizer

Information extraction and natural language processing is a field that is widely researched
upon from time to time in the English language as well as other native Indian languages.
Mainly, named entity recognition had significant research done so far in English and
multilingual corpuses. Initial attempts to identify named entities in multilingual cor-
puses was made in shared tasks of CoNLL 2002-03 ([Sang 2002], [Tjong Kim Sang &
De Meulder 2003]). The best systems of that conference were based on machine learn-
ing techniques like hidden markov models and maximum entropy models. The CoNLL
2002 [Sang 2002|] was based on Spanish and Dutch language data sets while CoNLL 2003
[Tjong Kim Sang & De Meulder 2003] was based on English and German data sets. In
2013, [Al-Rfou et al. 2013] have designed a system called POLYGLOT for massive multilin-
gual NLP applications. This system can handle 40 significant languages including some
Indian languages like Bengali, Hindi, Marathi, Punjabi, Tamil and Telugu for NER clas-
sification. The NER system was developed based on a massive Wikipedia database and
applied semi-supervised approach for classification. In the context of Indian languages, a
hybrid maximum entropy model for Hindi and Bengali languages was designed by [Saha
et al. 2008]]. Authors used gazetteer lists and language specific rules in the system. For
Tamil language, NER system based on CRF was designed by [Malarkodi et al. 2012]. When
it comes to NER systems for code-mixed texts in Indian Languages, initial attempts were

made by ESM-IL sub-task of FIRE 2015 [Rao et al. 2015]]. The task consisted of identifying
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named entities in Hindi and English, social media text. CRF baseline system was built,
and other systems were compared with respective to that system. They observed that
most of the systems designed had similar precision, but most of them have improved the
recall making them better systems. [Pallavi ef al. 2015] proposed a system by creating a
set of features and training them using CRF identifying named entities. A system based
on SVM classifier using brown clusters along with POS tags and clusters for identifying
named entities has been developed by [Se et al. 2015]]. [Sarkar 2015] had used POS tag
as a state and developed a system using hidden markov model classifier for identifying
named entities. Later on in CMEE-IL, FIRE 2016 [Rao & Devi 2016] the named entity
recognition was reintroduced for Hindi-English and Tamil-English code mixed sentences.
[Bhat ef al. 2016] have introduced a neural network for identifying the entities. They have
used contextual features like prefix and suffix of words in context window along with
some binary features. [Gupta et al. 2016a|] have used a CRF trained on context features
like prefix, suffix and character n-grams of context window words along with other binary

features.

2.6.3 Question Classification

The first phase of question answering system involves question classification which helps
in reducing the scope of the answer. The machine learning techniques that have been
proposed in the past use different semantic, lexical and syntactic features to classify the
questions. Recent works on code mixed question classification include machine learning
based approaches for question classification. [Bhargava et al. 2016b|] proposed a technique
that uses NER and removes the named entities in the text. They had used three differ-
ent classifiers for three different runs: gaussian naive bayes classifier, logistic regression
classifier, random forest classifier with the random state as 1. The authors achieved the
highest accuracy of 81.12% using gaussian naive bayes approach among all the three runs
submitted.

In the past monolingual question classification has been addressed by [Huang et al. 2008]
who proposed two approaches using SVM classifier and Maximum Entropy Model clas-

sifier. The features used by the authors were ‘wh” words like ‘who’, “what’, ‘why’, head
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words, semantic feature of hypernyms, n-grams and shape of the word such as all upper
case, numbers and all lower case. [Kim 2014] suggests a simple CNN model with hyperpa-
rameter tuning and static vectors. The proposed model achieves good results on multiple
benchmarks. The author proposed learning of task specific vectors which led to increase
in performance. CNN model effectiveness had been proven for NLP and produces good
results in semantic parsing ([Yih ef al. 2014]), search query retrieval ([Shen et al. 2014])
and sentence modelling ([Kalchbrenner & Blunsom 2013]). [Zhang et al. 2015] proposed
character level convolutional networks for text classification. The authors showed that the
convolutional networks did not require any knowledge of the words, the syntactic struc-
ture and semantic structure of the language.

For question analysis of such data, Question classification is done to understand the ques-
tion that allows determining some constraints the question imposes on a possible answer.
[Zhang & Lee 2003] used bag of words and bag of n-grams as features and applied k-NN,
SVM, naive bayes to automate question classification and concluded that with surface
text features the SVM outperforms the other classifiers. [Banerjee et al. 2016b] proposed a
Question Answering (QA) system which takes cross-script (non-native) code-mixed ques-
tions and provides a list of information response to automate the question answering.
Corpus acquisition was done from social media, question acquisition using a cloud based
service without getting bias, corpus annotations and an evaluation scheme suitable to the
corpus annotation. [Li & Roth 2002] proposed question classification using the role of
semantic information developing a hierarchical classifier guided by a layered semantic
hierarchy of answer types.

[M & Soman 2016] proposed two models (run-1 & 2) where, run-1 used bag-of-words
(BoW) model. The run-2 was based on the recurrent neural network. The initial em-
bedding vector was given to RNN, and the output of RNN was fed to logistic regres-
sion for training. Overall, the BoW model outperformed the RNN model by almost 7%
on F-measure. [Ganesh et al. 2016] approached the problem using Vector Space Model
(VSM). Weighted term based on the context was applied to overcome the shortcomings
of VSM. The proposed approach achieved up to 80% accuracy in terms of F-measure.
[Saini 2016b] used term frequency and inverse document frequency (TF-IDF) vector as

a feature. A number of machine learning algorithms, namely SVM, Logistic Regression
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(LR), Random Forest (RF) and gradient boosting were applied using grid Search to come
up with the best parameters and model. The RF model performed the best among all the
three variants. [Bhattacharjee & Bhattacharya 2016] proposed a model based on machine
learning approaches. They trained three separate classifiers namely RF, one-vs-rest and
k-NN, followed by building an ensemble classifier using these three classifiers for the clas-
sification task. The ensemble classifier took the output label from each of the individual
classifiers and selected the majority label as output. In case of a tie, any one label was
chosen at random as output. [Majumder & Pakray 2016] proposed three models (runs)
out of which two were rule based - the first set of direct rules were applied for the run-1
while the second set of dependent rules were used for the run-3. A total of 39 rules were
identified for the rule based runs. Naive bayes classifier was used in run-2 whereas naive

bayes updateable classifier was used in run-3.

2.6.4 Sentiment Analysis in Code Mixed Text

In Indian languages, very less research has been conducted for code mixed sentiment
analysis, until recently. For the Hindi language, [Joshi et al. 2010] were initial contribu-
tors. They introduced the concept of SentiWordNet to Hindi. They have proposed three
approaches to solve the problem one using SentiWordNet, another using machine trans-
lation and the third one using machine learning techniques. The machine learning tech-
nique proved to be effective. In the case of Bengali, [Das & Bandyopadhyay 2009] have de-
signed a CRF model based on SentiWordNet and other features. Similarly, there had been
few research done in past few years which focused on languages such as Hindi [Sharma
et al. 2015b], Hindi and Marathi [Balamurali 2012], Marathi [Sapkal & Shrawankar 2016],
Tamil [Kumar et al. 2015¢], Kannada [Kumar et al. 2015b]. Users expressing views on
social media tend to introduce their native language words into English intentionally or
unintentionally. This results in code mixing and makes it difficult for existing tools to
analyze the text. For a system to understand the sentiment of a sentence, it must first be
able to identify to which language does the utterance belong and hence, language iden-
tification becomes an integral part of code mixed text processing system. The problem

of language identification is a subcategory of text classification. There has been a lot of
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research done in this area. In English, n-grams have been proven to be a very effective
method for text classification. Initial attempts to identify languages using n-grams was
proposed by [Cavnar et al. 1994]. [Ceylan & Kim 2009] have also used n-grams in their
Language identifier for search queries. The other widely used approach is the usage of
the dictionary to predict the language of a sentence. This method of tagging words and
sentences based on the presence of the word in the dictionary of most common words
was initially proposed by [Ingle 1976]. Later on [Rehfifek & Kolkus 2009] have done
some extensive work on the dictionary based approach for language identification but
as pointed out by [Grefenstette 1995] the dictionary method showed the better result for
sentences having more than ten words as compared to the n-gram approach. MSIR, FIRE
2015 [Sequiera et al. 2015b] had proposed the similar task of language identification. It
dealt with word level language labelling in the code-mixed dataset comprising of words
belonging to eight different Indian languages. The dataset comprised of words written
in English or words transliterated from an Indian language. The task was to identify the
language of each word in the dataset. Nine teams provided submissions for the sub-task
1 using supervised machine learning algorithms for language identification. Many of
the submissions involved the use of character n-grams for feature extraction including
[Kumar et al. 2015d] and [Bhargava et al. 2015]. Apart from these techniques, word2vec
and clustering using k-means were also used for the task in hand [Jain 2015]. Different
combinations of machine learning algorithms like SVM, naive bayes classifiers, logistic re-
gression, CRF and random forests were used by different teams for supervised learning,
out of which [Ethiraj et al. 2015] performed best using character n-grams, token features in
combination with the dictionary based approach, along with using rule based and naive
bayes classifier.

Sentiment analysis has attained a tremendous speed in recent times all over the world.
With India being a multilingual nation, sentiment analysis also gained its speed for Indian
languages. One such work is done by [Joshi et al. 2010]. They proposed three approaches
for performing sentiment analysis in Hindi. In the first one, they are using Hindi train-
ing corpus for classifying sentiments. In the second one, they used machine translation
whereas for the third one they build a Hindi SentiWordNet [Joshi et al. 2010] dictionary of

their work. They concluded that first technique outperforms the other two. Since then a
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variety of different algorithm have been proposed in different languages such as [Sharma
et al. 2015b]] in Hindi, [Balamurali 2012]] in Hindi and Marathi, [Sapkal & Shrawankar 2016]
in Marathi, [Kumar et al. 2015¢] in Tamil, [Kumar et al. 2015b] in Kannada and many more
for sentiment analysis.

[Gupta ef al. 2014] in 2014 formally introduced the concept of MSIR and challenges asso-
ciated with it. They also bridged the gaps by analyzing the web traffic for MSIR through
Bing query logs and thereby deducing the impact of mixed scripting. Their proposed solu-
tion, models the recondite representation of terms transverse different languages through
deep learning architecture which ultimately results equivalent terms to be closer to each
other. [Gella et al. 2014] proposed a word level language identification technique which
is a necessary and challenging step in code mixing. [Balahur et al. 2014] specified the
fact that using multilingual data in combination of data obtained via machine translation,
helps in improving sentiment classification. In a similar line of work, [Mihalcea et al. 2007]]
proposed several methods to leverage resources and tools available in English by using
cross lingual projections.

[Vilares et al. 2015] performed sentiment analysis for English and Spanish in variant envi-
ronments of monolingual, multilingual and code switching. [Das & Bandyopadhyay 2009]
proposed a technique in which for language identification, words are matched directly
with the dictionaries of each language transliterated into English and then for those who
do not match, a set of probable words were taken from all the dictionaries taking words
that are closest to the given spelling using the levenshtein algorithm. Then doublet and
triplet words are considered for evaluating the probability. Final probabilities decide the
relevant match.

[Das & Bandyopadhyay 2009]] proposed a computational technique of generating an equiv-
alent SentiWordNet for Bengali from publicly available English sentiment lexicons and
English-Bengali bilingual dictionary. They developed SentiWordNet for a variety of In-
dian languages [Das & Bandyopadhyay 2010b|]: Hindi, Bengali and Telugu. Further, they
proposed Psycho SentiWordNet [Das & Bandyopadhyay 2011] for 56 languages. In con-
tinuation of their effort for improving SentiWordNet dictionaries, they proposed Senti-
mantics [Das & Gamback 2012], where they incorporated contextual information. With

this work, they enlightened the necessity of using dynamic prior polarity with context.
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[Sharma et al. 2015a] proposed an approach comprised of two phases, one of them be-
ing language identification and the second one being sentiment analysis. They segre-
gated Hindi and English words and calculated final sentiment score by lexicon look up
in respective sentiment dictionaries. [Prabhu et al. 2016] learned sub word level repre-
sentations in LSTM architecture instead of character level and word level representations.
[Vilares et al. 2017] created the corpus for multilingual sentiment analysis on Twitter for
English and Spanish. They proposed a multilingual model trained on fused monolingual
corpuses by information fusion techniques to sentiment analysis described by [Balazs &
Velasquez 2016|]. They also proposed a dual monolingual model and a pipeline for deter-

mining the language of the unseen text.
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Chapter 3

Sentiment Analysis

With the growing amount of data generated from the social networking sites, e-commerce
services, blogs, review sites, it has become essential to gain better inisghts of the public
opinion, market sentiment and consumer behaviour. This review data acts as dynamic
feedback for improvement of the services/products and target potential customers. The
emergence of text mining tools with growing data has played an important role in ex-
tracting valuable information. Sentiments refer to the emotions of a person. There has
been a surge in the number of people expressing themselves through tweets in different
languages.

Tweets have been used to give feedback in fields such as critical political issues, new movie
releases and sports. These areas need public input to work on the problems deduced
from reviews. It is necessary to know how many people are in favour (positive review)
or against (negative review) the topic of discussion. Thus, analysis of tweets concerning
the sentiments they reflect is of significant scope. According to Google in collaboration
with KPMG|'| most of the people in India prefer tweeting in their regional languages, and
hence, sentiment analysis of data in Indian languages has become significant. Sentiment
analysis uses statistics, Natural Language Processing (NLP) and machine learning tech-
niques to predict the polarity of a sentence and gauge the correctness of the sentiment
deduced. There has been much research on English tweets but not on the tweets in Indian

languages. One popular research area amongst the researchers is of extracting valuable

Thttps:/ /assets.kpmg.com/content/dam /kpmg/in/pdf/2017/04/Indian-languages-Defining-Indias-
Internet.pdf
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information from highly dynamic data generated from social media. Temporal opinion
mining is the computational process of collecting and analysing the reviews and opinions
to determine the intensity and polarity of the expression/view/feeling/assessment con-
cerning time. This field has received a profound interest in recent times.

Two challenges of sentiment analysis are being targeted in this chapter. Section [3.1] dis-
cusses the approach to handle sentiment analysis in Indian languages using hybrid neural
network architecture. Section 3.2 presents the approach to identify changing sentiments

and aspects over time using deep neural networks.

3.1 Neural Network based Architecture for Sentiment Analysis

The sentiments of monolingual tweets in one of the Indian languages (Hindi, Bengali and
Tamil) is predicted in this section. The problem targeted is considered as a binary classifi-
cation problem with the output being a label: 0 for negative and 1 for positive sentiment.
Traditional machine learning techniques extract features from a sentence to realise its po-
larity, but they do not consider the meaning attached to each word of a sentence [Sun
et al. 2016]. Word embeddings have been used to capture the semantic information of the
text to overcome the drawbacks faced by traditional machine learning techniques [Xun
et al. 2017]].

Word embeddings and neural networks have been used in conjunction to identify sen-
timent of a tweet in the proposed work. The significant contribution of the proposed
approach is the usage of all possible combinations (up to three hidden layers) of the three
neural network layers (RNN [Elman 1990], CNN [Kim 2014] and LSTM [Hochreiter &
Schmidhuber 1997]) and analysing the results in detail. Thirty-nine hybrid models are
proposed for each of the three Indian languages, which are based on vector space. All the

sequential models are tested using uniform parameters for the layers.

3.1.1 Neural Network based Architecture for Sentiment Analysis in Indian

Languages

The proposed approach is a word-level binary classification approach which uses the

vector-space model to predict sentiment of a tweet. The procedure is divided into three
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phases: pre-processing, the creation of sequential model and predictions. These stages

convert the textual data to a label which determines the sentiment of a tweet.

3.1.1.1 Phase I: Pre-Processing

Given a set of L sentences, S = {51, Sy, ..., S. }, each sentence S;, with n words {wy, wy, .., w, },
n € R, where R denotes a set of real numbers, is broken down into its constituent words,
and each word is tokenised, thus creating a dictionary of words wy = {‘w1’, ‘wy’, ..., “w,"}.
Each word or token is assigned an index on frequency basis of its occurrence in the text
file. The indexes are concatenated to return a numerical array for each sentence. The
sentences in the form of numerical arrays are padded to yield sentences of similar dimen-
sions, filling the extra columns added to equalise the dimensions with 0, and returning a

padded array, w,.

3.1.1.2 Phase II: Sequential Model

The padded numerical array, w,, of each sentence, is used as input to the Sequential
model, a linear stack of layers. Each index in the array, w,, is mapped to real-valued
vectors, v; € RY, where v; is a d-dimensional vector in high-dimensional space using the
embedding layer. The Embedding layer is initialized with random weights and will learn
an embedding for all of the words in the training dataset. Mapping of indexes produce
a matrix of feature vectors (word embeddings) V (represented in equation which

captures the semantic and syntactic information about the words.

V= [vll 02, ey Un+k] (31)
vl o} itk
1 2 n—+k
’Z) ’Z) P ’U
_ 2 U2 2 (32)
PR

where, each row represents vectors of a sentence
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In equation k represents the padding done in the particular instance. The output
of the embedding layer, the word embeddings, is input to further layers in the model. The
39 different hybrid models contains selected combination of 1,2,3 layer network compris-

ing of RNN, LSTM and CNN.

3.1.1.2.1 Convolutional Neural Network
CNN [Kim 2014] uses a filter F € R™ over a window of n words to extract overlapping
features throughout the training and testing set consisting of vectors, v;. The convolution

of F and v; produces a new feature, c;:

ci = f(F-v) (3.3)

where, f is a non-linear function and " is element-wise multiplication.

The new features, ¢ = {c1;c; ...;¢;} form a feature map. This feature map acts as an input
to the max-pooling layer. This layer uses a non-overlapping filter of length ‘a” (in case
of one-dimensional pooling layer), and reduces the size of the feature matrix by keeping

only the highest values in each batch [Wiatowski & Bolcskei 2017].

3.1.1.2.2 Recurrent Neural Network

RNN [Elman 1990] uses a memory feature to capture and remember the information it has
learnt so far. It takes i word as input and predicts the probability of (i + 1) word using
a non-linear function. RNN produces a new embedding matrix, including the information

from the previous embedding.

3.1.1.2.3 Long-Short Term Memory

LSTM [Hochreiter & Schmidhuber 1997] is devised to overcome the problem of vanishing
and exploding gradients in SimpleRNN [Elman 1990]. It uses memory cells with three
gates: input, output and forget gate. LSTM decides which information to remember or

forget by assigning appropriate weights to the gates. It also produces a new embedding
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matrix using the information from the previous one.

Each neural network works in a slightly different way from the other. When using a
hybrid of these neural networks, one can increase the efficiency of the model by combining
the advantages of networks. For example, using CNN along with LSTM allows CNN to
learn the features using overlapping sequences resulting in a matrix of word vectors that
contributes to the sentiment of the sentence. This matrix acts as an input to LSTM which
can focus on more important data rather than memorising the whole sentence and hence,
increasing the efficiency of the model. In few cases, combining neural networks can help
form bi-directional networks which can assist in predicting future words. The stacking of
layers can increase the non-linearity of the model to produce better decision boundaries
and hence, more reliable results. Moreover, as linguistics of each language differs from
another, the order of the techniques is also taken into consideration, so that pair of these
techniques can be analyzed for different languages. However, the languages considered
were based on Devanagari script and therefore no prominent difference is observed.

For each layer, parameters are selected to avoid overfitting, which remains fixed across
all the models to compare the results at the end of the experiment. Table shows the
parameter settings for different layers.

In sequential model, two dense layers have been appended after the hybrid layers with
different neuron units as shown in Table These layers are fully connected layers of
the model containing activation functions that connect each input neuron to each neuron
of the next layer. A flatten layer is used before the dense layers to convert the dimensions
of the output from previous layers to usable form in the dense layer. Two dropout layers
have been applied to each of the dense layers to drop some of the connections of neurons
from the dense layer to avoid overfitting (as shown in Figure[3.1). The activation functions
used for dense layers are ReLu and Sigmoid because they do not suffer from the problem

of saturation. The Sigmoid function as shown in equation

S=1/(1+e¢) (3.4)

produces an output from 0 to 1. It converts the embedding matrix from RNN, LSTM or

output from max-pooling layer to a label 0 or 1 which represents negative and positive
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Table 3.1: Parameter settings for Sentiment Analysis

Sr.no Layers PARAMETERS
. input_dim=5000, output_dim=20,
1 Embedding b input_lengt}tlil’ao
2 SimpleRNN Neuron units=100
3 LSTM Neuron units=100
4 CNN nb_filter=20, liter_length=3,
activation= ‘relu
5 Max-pooling pool_length=2
Hindi: 0.8
6 Dropout(Layer 1) units: Bengali: 0.7
Tamil: 0.7
Hindi: 0.5
7 Dropout(Layer 2) units: Bengali: 0.3
Tamil: 0.3
8 Dense(Layer 1) units=20, activation= "relu’
9 Dense(Layer 2) units=1, activation="sigmoid’
10 model.compile() | loss= ‘binary_crossentropy’, optimizer= ‘adam’
11 model.fit() batch_size=32, epochs=8
12 model.predict() batch_size=32, verbose=1
13 model.evaluate() verbose=1

sentiment, respectively. The model is finally compiled with a loss function to yield a
binary classification.

The process of sentiment analysis from a set of sentences to generate a label is shown
in Algorithm where Y represents the matrix of labels for each sentence in test data
(Y_ts) and training data (Y_tr).

Y = [y1,¥2, - VL] (3.5)

where, each column of the matrix represents a label for a given sentence.

0, for negativeS;
yi= (3.6)
1, for positive S;
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Algorithm 3.1: Sentiment Analysis of Indian Languages

Input: x=A set of sentences, S = {51, Sy, ..., Sy } with n-words, {wy, w», ..., wy, }, of
one of the Indian languages
Output: ye{positive : 1 negative : 0}
Assumption: Each document is a monolingual dataset.
foreach S;in S do
Phase I: Pre-Processing
1. Tokenize
wy = f(S;),Si = {wy, wy, ..., w, }€S
Output: wy = {‘w}, ‘W), ..., "w,
2. Pad
wy = g(wy), wy = {'w}, ‘wy, ..., "wy,
Output: If words in the largest sentence= n + k
10 wy, = {‘wy, ‘W), ..., wy,0,0,0..ktimes }
11 Phase II: Sequential Model
12 if S; belongs to training data then

© 0 3 S Ul R W N =

13 | Feed the data: model fit(Y, Y_tr)
14 else
15 | Feed the data: model.predict(Y, Y_ts)

3.1.1.3 Phase III: Predictions

This phase operates only on the test data. The test data is fed to the sequential model
using the function model.predict() as explained in algorithm The sequential model

works upon it and produces labels for each sentence in the test dataset.

3.1.2 Experiments & Results
3.1.2.1 Sentiment Analysis Datasets

The dataset is extracted from Sentiment Analysis of Indian Languages (SAIL) 2015 data
[Patra et al. 2015], containing twitter data from three Indian languages: Hindi, Bengali
and Tamil. Each dataset is divided into two text files: a positive sentences data file and
a negative sentences data file. The whole dataset is split into training and testing data in
the ratio of 70:30. Table [3.2| enlists the number of sentences in training and testing set for
each of the three Indian languages. The dataset contains monolingual tweets in one of
the Indian languages. The textual data is subjected to some transformations referred to as

pre-processing phase as discussed in section [3.1.1}
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Table 3.2: Dataset description

Srno | Dataset | Class Total Data | Training Data | Test Data
1 | Hindi 5222356 iy 508 219
2 | Bengali ;Z;:;er ggi 441 190
3 | Tamil 52;356 gfz 492 211

3.1.2.2 The Experimental Setup

The experiment aims at predicting the sentiment of sentences in one of the three Indian
languages mentioned before and gauges the correctness of model using performance mea-
sures. For this purpose, all possible combinations of RNN, LSTM, CNN are modelled, and
performance measures such as accuracy, F-measure, precision and recall have been calcu-
lated. Over-fitting has been visualised using accuracy versus number of epochs graph.
The experiment uses a vector-space based model that encodes continuous similarities be-
tween words as distances or angle between word vectors in a high-dimensional space
[Maas et al. 2011]. Analysis of short text is complicated due to the limited amount of
contextual data available in the text. Thus, to fill the gap of contextual information in a
scalable manner, it is more suitable to use methods that can exploit prior knowledge from
large sets of unlabelled texts [Dos Santos & Gatti 2014]. Hence, word embedding is used
as the first layer, i.e. the word embedding layer. It takes as input an array of padded
numerical arrays of sentences with each sentence padded to 30 integral words and trans-
forms each one of them to an array of feature vectors, each vector being 20-dimensional.
The embedding layer has been trained using hold out method. The integral words are
projected as random vectors in the 20-dimensional space. The model is kept trainable
so that these vectors get updated and optimised in the word-vector space during back-
propagation while capturing the context of each word.

The next layer is a neural network, which can be a single layer or a combination of RNN
[Elman 1990], LSTM [Hochreiter & Schmidhuber 1997] and CNN [Kim 2014]. This net-
work takes feature vectors as input and processes it. For example, convolutional layer
takes feature vectors as input, breaks them into overlapping sequences which are read us-

ing a filter of fixed window and a feature map is prepared. The feature map is fed to the
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max-pooling layer which returns the largest number in the array as output. This output

is fed to dense layers where activation functions are applied on them, and final output is

given which is a label (0: negative; 1: positive) [Wiatowski & Bolcskei 2017]. Figure

shows the block diagram of the process occurring in the experiment and figure 3.2/ shows

how layers for CNN and LSTM are infused to work together.
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Figure 3.1: Block diagram representing the process of sentiment analysis

W_' 2 fritini L g Output
. L "
s Vector £ 2 Kspu

Figure 3.2: CNN+LSTM model

3.1.2.3 Parameter Setting

For model training, the number of epochs is set to eight otherwise, either the model
is over-fitting or the performance measures are similar. Over-fitting occurs when the
training error is decreasing at a higher rate than the testing error, and thus, the gap
between training and testing accuracy increases, this is observed when epochs are higher
than eight. The gap between training and testing accuracy remains same at eight epochs
in some cases whereas it is decreasing in other cases. Only a few models (three or four out
of 39, that too mostly three-layered networks) underwent over-fitting. However, for Tamil
dataset, there is no over-fitting at eight and seven epochs. Seven epochs has been finally

chosen for the Tamil dataset because the accuracy obtained for seven epochs is better than
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eight epochs. A batch_size of 32 has been chosen as the dataset contains short texts of a

single line.

3.1.2.4 Results and Evaluation

For evaluating the performance of sentiment analysis, accuracy and F-measure are mainly
used to compare the results of different models [Sokolova & Lapalme 2009]. When evalu-
ating sentiment analysis for business interests and political issues, it is important to accu-
rately determine the sentiments, accuracy helps to evaluate the same. F-measure gauges
how well the system is performing which is again needed to keep track of system’s con-
sistency and also, it takes into account precision and recall. The results for different data

sets are discussed below:

3.1.24.1 Hindi dataset

The results of top performing models for Hindi dataset are summarised in Table
Figure and shows accuracy and F-measure for proposed models. The single,
dual or triple layer models of CNN performed well concerning accuracy due to multiple
reasons. First, CNN has a non-linear activation function (ReLu) in itself which captures
element-wise non-linearity while any other model does not. Second, CNN derives n-
grams (sequence of n words) and forms feature maps using them which are fed as input
to max-pooling layer. These n-grams provide non-linear interactions within a local context
and improve the performance of the model [Lei ef al. 2015]. Third, CNN uses multiple
filters with the different window size that move over the word embeddings to perform
I-dimensional convolution. As the filter rolls on, many sequences which capture the
semantic and syntactic features in the filtered n-grams are generated. Many such fea-
tures are combined into the feature map, and further operations are performed in the
pooling layer which increases the efficiency and accuracy of the results. This allows the
model to capture the sentiment of phrases such as ‘not so good’. Fourth, the network can
easily explore the richness of word embeddings produced by unsupervised pre-training
[Dos Santos & Gatti 2014]. Fifth, for small training data, CNN performs better than any
other model [Kadlec et al. 2015]. The models though, lagged behind in terms of F-measure

which indicates that there is no consistency of the system during the iterations (as shown
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Table 3.3: Summary of top performance results for Hindi dataset.

Sr.no Model Accuracy | F-measure
1 CNN 77.63% 67.85%
2 RNN-LSTM 77.63% 67.85%
3 LSTM 74.89% 69.08%
4 | CNN-LSTM-LSTM | 76.26% 70.50%
5 | LSTM-RNN-LSTM | 74.43% 68.8%

in Figure 3.3]and Figure [3.5). When precision and recall are looked upon separately, it is
found that these models lacked precision but have high recall score. This signifies a high
false positive value for few cases which can probably be due to skipping of low-level fea-
tures by CNN that could have played a significant role in predicting the sentiment. This
is another reason why CNN along with LSTM or RNN performed better because RNN
or LSTM can also process low-level features. For Hindi, simple models perform better
than combinations because of less language complexity. However, the dataset used has
small amount of imbalanced data. Complex models may perform better on larger dataset.
Imbalance in Hindi data set is handled by assigning weights to class label such that the
cost function penalizes loss on certain class more severly. This makes the model adapt

better to the characterstics of a minority class.
Table 3.4: Summary of top performance results for Tamil dataset.

Sr.no Model Accuracy | F-measure
1 RNN-CNN-LSTM | 71.56% 69.7%
2 RNN-LSTM-RNN | 69.19% 68.7%
3 RNN-RNN-LSTM | 68.72% 68%
4 RNN-LSTM 67.30% 66%
5 | CNN-LSTM-CNN | 67.77% 49%

The RNN-LSTM model performed equally well as the CNN model. It acts as a bidi-
rectional RNN model which has been shown to improve the performance of a model
[Schuster & Paliwal 1997]]. The feature vectors from the embedding layer are fed to RNN
which reads the whole sentence and stores in its short term memory. The output from
RNN will be fed to LSTM which has memory cells that control whether to keep the data,
read it or forget it, by assigning weights to the data. However, the problem may occur
when this results in loss of information due to error persistence in LSTM as LSTM’s mem-

ory cells are linear neurons and cause the error to be carried forward for a longer time.
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Figure 3.3: Accuracy and F-measure for one and two-layer models(Hindi)
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Figure 3.4: Accuracy and F-measure for three-layer models(Part-1)(Hindi)

This problem can be resolved using RNN layer before LSTM. Since RNN has nodes inter-

connected to other nodes in conjunction to themselves, the information lost from LSTM
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Figure 3.5: Accuracy and F-measure for three-layer models(Part-2)(Hindi)

can be stored in RNN for a while so that it is not lost and can be propagated further if

required during discrepancies [Hakkani-Ttir et al. 2016]. Thus, this network handles the

loss of information using RNN and loss of efficiency using LSTM which can adapt to new
data rapidly [Graves 2013]. LSTM and LSTM-LSTM performed well due to the ability
of LSTM to adapt to new data rapidly [Mikolov et al. 2013a]], but triple layered LSTM

underwent some over-fitting (as shown in Figure [3.3] and Figure B.4). RNN-CNN-LSTM
performed pretty well with an accuracy of 74.43% and F-measure of 68.23% as shown in
Figure CNN and LSTM are complimentary, where CNN captures the local invariant

regularities, LSTM is good at modelling temporal features. The RNN helps to maintain

the memory of the words in the sentence [Wang et al. 2016].

RNN-RNN-CNN gave an accuracy of only 53.88% (as shown in Figure 3.4), which is least
among all the models and is also exceptionally low as all other accuracies range from 60%
to 70%. This is because the model underwent over-fitting with testing accuracy decreas-
ing at a very high rate and training accuracy increasing as shown in Figure

RNN and RNN-RNN did not perform well as compared to CNN and CNN-CNN as

shown in Figure LSTM follows the same trend. This is probably because in case of
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RNN and LSTM, increasing the number of layers would only increase the complexity and
error. This is due to linear stacking of errors that reduce accuracy as the number of layers
increase. While in case of CNN, increasing number of layers increases the ability of CNN
to process even the smallest but relevant information, which can otherwise be missed
during convolution. This means that increasing number of layers of CNN should increase

the accuracy but as the number of layers increases, the error in classification also increases

[Wang et al. 2016] and thus, compensating for the increase in accuracy and resulting in

the same accuracy.

Table 3.5: Summary of top performance results for Bengali dataset.

Sr.no Model Accuracy | F-measure
1 LSTM-CNN 57.37% 45.8%
2 RNN-LSTM 56.84% 45.13%
3 CNN-RNN 56.32% 55.60%
4 RNN-CNN-CNN | 57.37% 57.1%
5 | RNN-LSTM-LSTM | 54.21% 53.80%
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Figure 3.6: Over-fitting in RNN-RNN-CNN model(Hindi)

3.1.2.4.2 Bengali dataset
The Bengali dataset is small as compared to Hindi dataset and hence, to avoid over-fitting,

the dropout units are reduced as shown in Table The number of epochs has been kept
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same as discussed in section B.1.1]
According to the results shown in Figure [3.7) 3.8 and 3.9} models with two hidden layers

are more successful as compared to single or triple hidden layer models. This is because

Bengali is a bit more complicated than Hindi [Bag & Harit 2011] and therefore, the fea-

ture extraction of more curvilinear fonts in Bengali need more complex models. Hence,
dual-layered models performed better than single-layered models but the triple-layered
models underwent error accumulation and in some cases, over-fitting due to the small
dataset. Table 3.5 summarises the results for top performing models. CNN models did

not perform well when compared to CNN models in Hindi dataset.
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Figure 3.7: Accuracy and F-measure for one and two layer models(Bengali)
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LSTM are complimentary, where CNN captures the local invariant irregularities, LSTM
equipped with input, output and forget gates, extract the first order feature representa-
tion using the memory of the whole sentence. This is essential for a complicated language
like Bengali (This feature is missing in RNN, and hence the performance of RNN-CNN
is not at par with LSTM-CNN). LSTM can adapt to new sentences quickly which gives
it an upper edge over models utilising only CNN layers for sentiment classification of
new sentences [Graves 2013]. This is used along with feature extraction by CNN to give a

higher accuracy.
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Figure 3.8: Accuracy and F-measure for three-layer models (Part-1)(Bengali)
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Figure 3.9: Accuracy and F-measure for three-layer models (Part-2)(Bengali)

RNN-CNN-CNN has an accuracy of 57.37% and F-measure of 57.1% (as shown in Figure

3.9) which seems to be the highest among all models but it turns out that the model is

over-fitting due to the small dataset as shown in Figure The training accuracy is

increasing at a higher rate than test accuracy, which is a case of over-fitting.

In Bengali dataset as well, CNN models did not perform well in terms of F-measure for

the same reason as explained (3.1.2.4.1 RNN-RNN-CNN too has a very low F-measure
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due to less consistency of the results which means it predicted some sentiments as positive

while they are negative. This could have been due to small training data.
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Figure 3.10: Over-fitting in RNN-CNN-CNN model(Bengali)
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Figure 3.11: Accuracy and F-measure for one and two layer models(Tamil)
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Figure 3.13: Accuracy and F-measure for three-layer models (Part-2)(Tamil)

3.1.2.4.3 Tamil dataset

Tamil dataset is small as compared to Hindi dataset and hence drop out units are reduced
to avoid over-fitting as shown in Table The results can be seen from Figure
and Table 3.4 summarises the results for top performing models. As can be
seen from Table three hidden layer models gave the best results without over-fitting.
This may be due to the fact that Tamil is even more complicated than Bengali and Hindi

[Mohanty 1998|], due to its curvilinear and multi-tier structure with a contrast of matra
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combinations. Hence, it needs more complex models to get its features extracted to anal-
yse the sentiment of its sentences.

RNN-CNN-LSTM outperformed all other models according to the results, but it turns
out that the model is over-fitting with training accuracy increasing at a higher rate than
testing accuracy as shown in Figure Hence, the top model of proposed approach
became RNN-LSTM-RNN which did not over-fit and gave the highest accuracy as well as
F-measure.

RNN-LSTM performed well on Tamil dataset as well, as shown in Figure The details
of this model have been discussed in section Adding a layer of RNN to this
model only increases the complexity which is needed to extract the features from Tamil
sentences. RNN would not filter the words unlike CNN and LSTM but only provide
memory to the model. It acts as a bidirectional RNN-LSTM which is essential in cases
when future information is as valuable as previous information [Schuster & Paliwal 1997].
The same reasoning applies to RNN-RNN-LSTM model whose accuracy is almost equal
to RNN-LSTM-RNN and F-measure is precisely same (as shown in Figure [3.12). Using
LSTM as the common layer increases the accuracy in case of RNN-LSTM-RNN due to its
tendency to keep a memory of long sentences and filtering techniques.
CNN-LSTM-CNN performed well concerning accuracy but lagged a great deal concern-
ing F-measure and hence, can’t be considered as one of the best models as the results are
being analysed considering both accuracy and F-measure. RNN-RNN model resulted in
over-fitting (as shown in Figure and obtained an accuracy which is not comparable
to other models. It attained its highest accuracy in the early epochs and underwent over-
fitting afterwards. RNN-RNN-CNN resulted in a very low F-measure due to the same
reasons as discussed in section

It is observed that on all the three data sets, RNN-LSTM performed well but the accuracies
and F-measure are different as shown in Figure One can deduce from the bar graph
that more the data available in a dataset, better is the performance of a given model on
the dataset. It also shows that Hindi being the least complex language [Bag & Harit 2011],
to extract features from, performance measures for Hindi dataset are better than for other
two languages. It is worth noting that although Tamil is more complicated than Bengali

in terms of language complexity [Mohanty 1998|], however, Tamil dataset showed more
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accurate results than Bengali dataset. This is because the data available in Tamil dataset

is larger than Bengali dataset and hence, more accurate results are obtained.
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Figure 3.14: Over-fitting in RNN-CNN-LSTM model(Tamil)
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Figure 3.15: Over-fitting in RNN-RNN model(Tamil)

81



90.00%

80.00%

70.00%

60.00% -

50.00%

BACcuracy

5
(=]
=]
3

EFlscore

PErformarce W Easures [%4)

30.00% -

20.00% -

10.00% -

0.00%

Hindi Bengali Tamil
Dataset

Figure 3.16: Comparison of performance of RNN-LSTM on different datasets

3.1.2.5 Comparison with other existing approaches

The best approach obtained in SAIL 2015 shared task [Kumar et al. 2015a] on basis of the

results is used as baseline approach. Most of the approaches in SAIL task used SentiWord-

Net (Indian Languages) for training [Patra ef al. 2015]. Approaches extracted word uni-

grams and bigrams from the dataset, trigrams and quad-grams for word prefixes and suf-
fixes. The lexical expansion is used to take into account the rare and unseen words[Kumar|
et al. 2015a]]. However, the approach proposed in this work obtains better results (as shown
in Table than any of the models used in SAIL 2015. One of the reason is use of neural

networks in proposed approach instead of traditional machine learning techniques. The

highest accuracy scored [Kumar ef al. 2015a] is using five-fold cross-validation technique

using SVM. Instead of K-Fold cross-validation, hold out method is used for evauation,

due to the following reasons|[Krueger et al. 2015]:

1. K-Fold cross-validation is computationally expensive and so, is not worth the trouble

for validating 39 different models for each of the three languages.
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2. The datasets used are small. K-Fold cross-validation undergoes under-fitting on

small datasets.

For comparison, the experiment is performed using five-fold cross-validation. The results
are remarkably good for hybrid models (as shown in Table as compared to the high-
est accuracy model [Kumar et al. 2015a]. Advantages of neural networks over traditional
machine learning techniques are as follows:

Firstly, to predict the sentiment of a sentence, there is a need to look at the sentence as
a whole. The sentiment of a sentence can be entirely different from the sentiment of its
constituent words. Therefore, a memory factor is required to remember the previous and
future (in case of bidirectional neural networks) words to predict the probability of the
present word. This can be achieved using neural networks only.

Secondly, traditional machine learning techniques are non-parametric models and can-
not learn highly complex functions. On the other hand, the neural network is a deep
architecture and can combine lower-level features to high dimensional representations.
Using the concept of co-occurrence dependencies, i.e. words having similar sentiments
occur together in high-dimensional space, the neural network can make progress on high

complexity tasks without human intervention [Bengio et al. 2007].
Table 3.6: Comparison with SAIL 2015

Dataset | Proposed approach (RNN+LSTM) | [Kumar et al. 2015a] |
Hindi 68.51% 55.67%
Bengali 52.62% 43.20%

Tamil 59.88% 39.28%

3.2 Temporal Sentiment Analysis

Temporal and burst analysis helps to identify trending features and their impact on the
market. Hence, presenting an opportunity to the company for coming up with new
features, user satisfaction, user demand and align with the trends. Temporal analysis
can provide list of what all features are trending and which feature has become obso-
lete according to customer’s sentiment towards the brand and aspects. This helps the
companies to identify their strengths and weaknesses. Using this information companies

can improve the user experience and make advancements.Temporal sentiment analysis
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can provide valuable insights and thus help organizations to formulate effective business
strategies. It can help firms to monitor brand and product performances, handle customer
grievances, get in-depth information for strategic analysis. Temporal sentiment analysis
can help to track and come up with effective marketing campaigns. With temporal sen-
timent analysis may increase product quality. Market research teams would be able to
gauge consumer needs and preferences better. Ideas for product improvement can also
be obtained from targeted customers. It can help to identify opportunities for up-selling,
reduce customer churn, increase customer acquisition, improve customer retention and
handle customer grievances. Temporal sentiment analysis opens a whole new avenue and
growth opportunity in terms of a new level of customer engagement and reputation man-
agement. Market shares of brands and products can be regularly monitored. Innovative
need-based products can be delivered and built. Brand awareness and brand reputation
can be monitored by monitoring customer sentiment in real-time and over period of time.
It also helps to identify business problems before they aggravate in proportion. So, smart
product and marketing strategies can be developed by keeping in mind the consumer
needs. It can also be used for keyword monitoring for marketing professionals. It can
also help to identify new business opportunities. Specific phrases and texts used by audi-
ences can be monitored to effectively generate new leads. Competitor performances can
also be evaluated by monitoring mentions of the competing brands. It can also help to
identify marketing campaigns that are not working well. Firms can then effectively mod-
ify or withdraw those campaigns. Such timely preventive actions help the brands to grow
and prevent negative brand image. Temporal sentiment analysis has become the gate-
way to understanding consumer needs, extending the customer base and expectations. It
helps to pinpoint the problem and give solutions effectively. It can also help in customer
segmentation by identifying segments that feel strongly about a brand or service.

A framework has been proposed which targets identification of temporal aspects and their
changing opinions with time. A more general and complex task is to predict the aspect
mentioned in reviews/opinions and the sentiment associated with each one of them. This
task is usually known as fine-grained opinion mining or aspect-based sentiment analysis.
For example, "Food is decent, but service is bad", contains positive sentiment to the fea-

ture/aspect of food but a strong negative opinion for the service. Predicting the overall

84



sentiment for the review would mark it as a negative sentiment overall but it neglects
the opinion that food is good. Feature extraction is identifying various aspects/subjects
which are referred and talked about in the reviews. These features may be directly men-
tioned in the review or may be present implicitly.

The framework based on hybrid techniques has been proposed to tackle the task of fea-
ture extraction, aspect-based opinion mining and analyses them over the time. It uses pre-
trained word embeddings [Pennington et al. 2014] and studies the semantics and syntactic
information encoded in the embeddings. These embeddings help in better initialisation of
deep network in the framework, without any domain-specific feature engineering effort.
The framework also identifies features from the temporal stream of opinions and gain in-
sights such as, how various features and aspect affect the overall sentiment, which essen-
tial features plays a significant role in determining the sentiment and find their variation

with time?

3.2.1 Dataset Description

Dataset has been assembled from the various data sets given by SemEval [Pontiki ef al. 2016]
with additional temporal information. Dataset has approximately 3000 reviews for the

Laptops. The data consists of reviews broken into sentences, and each sentence is anno-

tated with the categories of aspect present and the corresponding polarities of sentiment

for each of the categories. The aspect category consists of various entities E such as a lap-

top, keyboard, battery, screen and attributes A such as performance, design, build. The

E#A pair defines the entity-aspect category. Each of the E#A pair assigned to the review

sentence is given polarity from a set P = {positive, negative, neutral }.

The annotations are assigned at sentence level, taking into consideration the context of

whole review. In the Laptop dataset, there are in total 22 entities and 9 attributes as-

signed to various entities, thus generating (22 x 9) E#A pairs.

3.2.2 Proposed Approach for aspect based temporal opinion mining

The proposed framework for aspect based temporal opinion mining has been divided into

three components:
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1. Aspect based Sentiment Analysis
2. Temporal Unsupervised Feature Extraction
3. Temporal Analysis of Sentiment and Features

Data is preprocessed before aspect-based sentiment analysis. In preprocessing, sentences
of the reviews are tokenised. Numeric or a single character token is discarded to reduce
the noise. This data is then used to generate word embeddings. Further, the aspect class
distribution is analysed, and the aspects which are less frequent in the training dataset
are clubbed together to a newly created aspect class called ‘'OTHER’. As dataset might
contain reviews for which no aspect has been described, another new aspect ‘'NONE’ is
assigned to them. Aspect list includes the frequently common aspects (static) along with
‘OTHER’ and ‘NONE’ aspects, and is further used to train the aspect model. Reviews
which have ‘'OTHER’ and ‘NONE’ aspects are used to identify new aspects in the second

phase of the framework, i.e. temporal feature extraction.

3.2.2.1 Aspect-based Sentiment Analysis

Figure represents the block diagram of aspect-based sentiment analysis model. This
phase is divided into two parts. The first part includes aspect model which will predict

aspect from the reviews whereas the second part predict its associated sentiments.

3.2.21.1 Aspect model

This sub-module takes word embeddings of sentences as input and outputs distribution of
probabilities for the aspect classes. Here, multi-layer perceptron model for the aspect clas-
sification task has been proposed. Pre-trained word embeddings [Pennington et al. 2014]
has been used. These embeddings are kept static and not fine-tuned while training to
avoid overfitting on the small amount of data.

The layered neural network model is used for the identification task. A fully connected
layer of the neural network with ‘ReLu’” activation function is used as a first layer and fol-
lowed by softmax layer which yields the output distribution over the aspect classes. Dense
layer and dropout layer are present in between these layers to avoid overfitting. The rep-

resentation for the sentence is chosen to be the average of the word vectors, for words in
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the sentence. Binary cross entropy is used as the loss function where the output y; = 1, if
the aspect is present and 0 otherwise. A threshold ¢ is taken (for which F-measure score
is maximum) such that aspect is predicted whenever output y; is higher than the thresh-
old. The number of epochs (for which the model is trained) and the threshold ¢ are the

hyperparameters which are fixed by using validation data.

Word Vectors

Aspect Model |::>- |:> Sentiment Model [:> Aspect Based
Sentiment

I

Word Vectors

Figure 3.17: Block diagram for aspect-based Sentiment Analysis

3.2.2.1.2 Sentiment model

Sentiment model considers the probabilities of various aspects predicted by the aspect
model as input and yields the polarity of sentiments attached to each of the aspects as
output. The sentiment is assigned to the predicted aspects by re-scaling the word em-
beddings with factors dependent on the aspects. The sentence representation used in the
aspect model no longer works for the sentiment model as the interaction and location of
the tokens are also essential for predicting sentiments.

CNN architecture is used for this model, which applies a convolution to a window of n
number of consecutive words. Max-over-time pooling is applied to the values which are
obtained as feature map from all the filters. The input passed to the CNN is re-scaled
word vectors of sentences. The largest value out of the feature map is selected by the
pooling layer which implies that the magnitude of the word vectors has a strong influence
on the behaviour of the model. Hence, the impact of the word vector can be enhanced

and dampened, by scaling it up and down respectively.
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For all the predicted aspects, the scaling factor is calculated for each of the tokens. The
scaling factor for the word-vectors is decided by using the probabilistic mass p; of word
i in a sentence towards the particular aspect and distance between the words. The prob-
abilistic mass p; is calculated by passing the single token to the aspect model and cal-
culating the probability for the required aspect. d;; is defined as the distance between
the tokens in the dependency tree obtained from the Stanford parser. p;; denotes the
probability of propagation from word i to word j denoted by equation p; denotes
the aggregated probability for word j. Equations are used to compute the

probabilities mentioned above.

—d2
ij . .
Pimj = Piexp == Vil = j (3.7)
pisi = 1+ pi (3.8)
Pj = Zpisi (3.9)

In equation h is the height of the Stanford dependency parse tree and acts as a nor-

malisation constant to adjust the differences between the shorter and longer sentences.

Vi = p;.V; (3.10)
The re-scaled word embeddings are then passed to the CNN. The learning model is de-
signed as a combination of multiple n-gram convolutional models. The output from
each of the convolutional model is then flattened and concatenated to pass as input to
the fully connected dense layer. The final softmax layer produces the output probabil-
ity distribution over the output classes, i.e. positive, negative and neutral. Overall the

aspect-sentiment model is summarised in Figure 3.18|
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Figure 3.18: Aspect-based Sentiment Model[Wang & Liu 2015]




3.2.2.2 Unsupervised Temporal Feature Extraction

This component deals with the identification of the new aspects from the reviews which
are categorised in the ‘OTHER” and ‘'NONE’ aspect in the preprocessing step stated ear-
lier. This is important as aspects may keep changing with time. Some of them may
become important, and some of them may become obsolete. To encapture the temporal
effect on the aspect, this component has been added in the proposed framework. Here,
unsupervised feature extraction approach has been proposed which uses semantic clus-
tering with word vectors in conjunction with TF-IDF score. This also includes word /token
meaning along with its frequency. The preprocessing step for this module is to extract
various unique nouns present in the reviews by using part of speech tagging and checking
whether tagged nouns are present in the dictionary or not, to remove slang words. Nouns
are further lemmatised to remove the different tenses present. These nouns are passed as

an input to semantic clustering module of the second phase.

3.2.2.2.1 Semantic Clustering

Semantic clustering involves grouping the words that convey the same information or
intent. Two essential requirements for semantic clustering are similarity measure and the
clustering algorithm. Some of the text similarity measures that can be used for semantic
clustering are cosine similarity of TF-IDF vectors, knowledge-based methods, i.e. quanti-
fying the semantic relatedness of words using a semantic network like WordNet and the
word embeddings.

Word embeddings have been used for clustering the aspects. The clustering algorithm
used here is k-means++ clustering [Arthur & Vassilvitskii 2007], which is robust and
straightforward technique and have a better allocation of initial cluster centre than the
traditional k-mean algorithm. The clustering algorithm requires the number of clusters,
i.e. the number of different type of new aspects present in the ‘OTHER’ aspect which are
not known beforehand. The value of k, i.e. number of clusters can be calculated using

following two ways.

1. Assume k= dimension of the sentence (maximum). This is a simple and efficient

way to assume the value of k. However, it is usually efficient in case of large dataset.
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2. Silhouette scores are used to decide k value. This is an efficient technique to calculate

the number of clusters.

Here, Silhouette scores method has been used for evaluating the value of k as the dataset
used is small. k value is assumed to be in 10 — 30% of the distinct nouns present, and
then final value k is decided based on the maximum silhouette score calculated. Higher
silhouette score implies that words in the same clusters are more similar to each other
than the words of another cluster. After generating clusters, a cluster score is defined for

each cluster by equation [3.11]

Cluster_Score = Density x Distance (3.11)

Density is number of words in the cluster and

where, § . . . .
Distance is defined as the distance between clus-

ter centre with the nearest cluster centre

A cluster is defined as good cluster if it has a higher cluster score than a threshold value.
The threshold value is a hyperparameter which is calculated based on the different cluster
score obtained. After extracting good clusters, feature in each cluster is selected based on
maximum TF-IDF score obtained after generating TF-IDF score for each feature in that
cluster. TF-IDF score is calculated as shown in equation where number, fjocument

represents number of the documents in which aspect is appearing.

TF — IDFScore = TF x IDF (3.12)

TF = log (term_frequency_in_all_documents)

N
number_of_document

where,
IDF = log (

3.2.2.3 Temporal analysis of sentiment and features

This phase is important in the framework to capture changing sentiments about an aspect

over time. Considering different possibilities, this phase consists of two subparts.
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1. Temporal Analysis of Single Aspect

2. Temporal Analysis of Multiple Aspects

3.2.2.3.1 Temporal Analysis of Single Aspect
There are two types of temporal analysis proposed in the framework, opinion visualiza-

tion and burst detection.

1. Opinion Visualisation
An essential part of the framework is to visualise the change in sentiment over the
time. The most common way to accomplish the task is to make a two-dimensional
line graph with the y-axis as sentiment value and x-axis as time. For a particular
aspect, there are three types of visualisation proposed: day wise analysis, year wise

analysis and month wise analysis for a particular year.

¢ Day wise visualisation
Given an input of date range, this sub-module visualises the change of senti-
ment score over days. For each day, the sentiment score is taken as average

sentiment score of reviews present in the particular day.

* Year wise visualisation
This sub-module visualises the change of sentiment score over the years. For
each year, the sentiment score is taken as average sentiment score of reviews

present in that particular year.

* Month-wise analysis for a particular year
This sub-module takes year as input. There are two types of analysis proposed

in this sub-module.

(a) Analysis for a particular month.
For a particular month, it extends the day wise visualisation module.

(b) Month-wise analysis
This sub-module visualises the change of sentiment score over months.
The monthly score is calculated by averaging the sentiment score of review

present in that month.
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2. Burst analysis
Burst analysis algorithm has been proposed to detect sudden changes in sentiments
score, i.e. burst. This module extends the previous module as the average monthly
score for all aspect is calculated along with the number of reviews present for that
particular month. If the difference of sentiment score between consecutive months
is higher than a threshold value,and number of reviews for these months is higher

than a threshold count, burst is detected.

3.2.2.3.2 Temporal Analysis of Multiple Aspects
Temporal analysis of multiple aspects has been analysed in this phase. The preprocessing
part of this module involves determining the review score of given aspect list for a year

and later for a month. This module supports two types of opinion visualisation.

1. Year wise
This sub-module visualises the change of sentiment score over the years. For a
given aspect, for each year the sentiment score is taken as average sentiment score

of reviews present in that year.

2. Month-wise
This sub-module visualises the change of sentiment score over a month for a given
year. For each month, the sentiment score is taken as average sentiment score of

reviews present in that month.

3.2.3 Experiments & Results
3.2.3.1 Aspect Model

The data is split randomly into training (80%) and validation set (20%) to select the hy-
perparameters. The number of epochs (100) that yields the lowest validation loss value
is selected as shown in Figure and the threshold which gives the highest F-measure
on the validation set is used. ‘binary_crossentropy’ is considered as loss function and
‘rmsprop” is used as an optimizer. The threshold value is chosen out to be 0.11 as F-
measure is highest at that value as shown in Figure With the mentioned parameters

evaluation measures obtained are a follows:
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Figure 3.19: F-Measure v/s Threshold for aspect-based model
1. Accuracy:- 96.5%

2. F-measure:- 54.3%

3.2.3.2 Sentiment Model

The data is split randomly into training (80%) and validation set (20%) to select the hyper-
parameters, similar to Aspect model. The number of epochs (100) that yielded the lowest
validation loss value is selected, and the threshold which gives the highest F-measure on
the validation set is used. The threshold value is chosen out to be 0.30 as F-measure is
highest at that value as shown in Figure Evaluation obtained using the parameters

are mentioned below.
1. Accuracy:- 83.5%

2. F-measure:- 60.8%
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Figure 3.20: F-Measure v/s Threshold for Sentiment Model

3.2.3.3 Unsupervised Feature Extraction

For k (value = 83), silhouette score obtained is 0.2235. This silhouette score is low because
the framework has been evaluated only on single domain dataset in which nouns present
are quite similar to each other. Hence, silhouette score obtained is not quite good. The
threshold value is a hyperparameter which is calculated as the median of the cluster score.
Aspects extracted are (cluster threshold= 35) shown in Table Selected aspect is chosen

from the aspect list, fed into the aspect model and aspect model is re-trained.

3.2.3.4 Temporal Opinion Mining for Single Aspect

1. Opinion Visualization
Figure represents the day wise analysis of aspect Laptop#General from the start
date (1/1/2008) to end date (6/9/2008). Figure represents year wise analysis of

Laptop#General. Figure represents the month wise analysis for Laptop#General
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Figure 3.21: Validation Loss v/s Number of epochs

Table 3.7: Aspects extracted

S.No | Aspect | TE_IDF_SCORE
1 graphic | 38.5514606589
2 office 27.0335962363
3 power | 43.3703932413
4 thing 66.9271010503
5 game 30.4214820639
6 time 86.3525235395

aspect in the year 2008 whereas Figure represents the analysis for a particular
month (February) in the year 2008.

3.2.3.5 Temporal Opinion Mining for multiple aspects

Figure represents year wise analysis for multiple aspects shown whereas Figure [3.28]

represents the month wise analysis for the year 2009.
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Figure 3.23: Year-wise Analysis of Laptop#General

3.2.3.6 Burst Analysis

Figure[3.27]represents burst obtained with sentiment_threshold:1.0 and count_threshold:10.
Burst is obtained for Laptop#General aspect as this aspect covers about 60% of the dataset.
Table B.§ elaborates the burst obtained.

As from June to July, the difference between the sentiment score is more than the sen-

timent threshold and review count for each month is higher than count threshold and
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Figure 3.24: Month-wise analysis for Laptop#General in the Year 2008
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Figure 3.25: Analysis for a particular month
Table 3.8: Burst obtained
Aspect Duration
Laptop#General June/2009-July /2009

Laptop#General | September/2009- October /2009
Laptop#General | October/2009- November /2009
Laptop#General | January/2010-February/2010

hence, burst is detected. Similarly, from July to August the sentiment score difference is
also higher than the threshold, but the review count for August is less than count thresh-

old, so it is not a burst.
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Figure 3.26: Year-wise analysis of multiple aspects
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Figure 3.27: Burst Analysis
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Figure 3.28: Month-wise analysis for the year 2009 for multiple aspects

3.3 Concluding Remarks

The approach in this chapter presents sentiment analysis of SAIL 2015 data consisting
of monolingual tweets in one of the three Indian languages (Hindi, Bengali and Tamil).
Word embeddings have been used as input to the Sequential model. The approach inves-
tigates 39 different hybrid models of neural network layers (RNN, CNN and LSTM). The
highest accuracy has been obtained using CNN (77.63%) and RNN-LSTM (77.63%) on
Hindi dataset, LSTM-CNN (57.37%) on Bengali dataset and RNN-LSTM-RNN (69.19%)
on Tamil dataset. The results have been carefully scrutinized to conclude that as the com-
plexity of the text in the dataset increases, accuracy decreases for each model. Models
with more number of hidden layers provide better accuracy for more complex text as the
increase in the number of hidden layers adds to the non-linearity of the model to predict
complex situations. It has also been observed that neural networks perform better than
other traditional machine learning techniques such as SVM and decision trees in predict-
ing the polarity of a sentence.

In current scenario, pre-processing of the textual data is done to remove the emoticons,
exclamations. However, they may be playing a role in determining the sentiment of the
sentence. For example: ‘What!” and ‘What?’ represent two different meanings which
can’t be distinguished using present day sentiment analysis approaches as they tend to
pre-process the sentences to remove the punctuation. Few users use only emoticons to

express their sentiments which can be embedded and worked upon for making the senti-
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ment analysis approaches even more reliable. This work can also be extended to classify
sentences into multiple classes such as extremely negative, negative, neutral, positive and
extremely positive, which gives a more precise sentiment to a sentence.

A framework for temporal sentiment analysis has also been proposed. The framework is
divided into three parts: aspect model, temporal feature extraction and temporal analy-
sis. Aspect model is used for identifying the aspects present in the reviews. The model
is tuned and parameters are determined using the validation data. The CNN based sen-
timent model predicts the polarity of the sentiments for each of the aspects, identified
using static pre-trained word vectors for improving the performance and decreasing over-
titting. Aspects are updated from time to time to incorporate the aspect trends that change
with time using semantic clustering. Temporal analysis is done by dividing data into each
segment, as specified by input (day, month and year) and plotting the resultant data on
two dimensional graphs. Yearly, monthly and day wise analysis are shown for individ-
ual aspect as well as for the group of aspects. The individual graph shows the variation
of sentiment score with respect to time. Burst analysis has been done which extracts
the aspects for which there is a sudden variation of sentiment score in the consecutive

months.
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Chapter 4

Text Summarization

Post the advent of the world wide web the amount of data and information that is ac-
cessible has increased tremendously. The extent of information is such that it has now
become practically impossible for any single entity to process all the data and summa-
rize it. Consumers are disinterested in reading a long piece of text and usually tend to
skip important portions. Given this scenario, the need for automated text summarization
arose. Text summarization is condensing of text such that, redundant data is removed
and important information is extracted and represented in a concise manner. With the ex-
plosion of the abundant data present on social media, it has become important to analyze
the text for seeking information and use it to the advantage of various applications and
people. From past few years, the task of automatic summarization has stirred the interest
among communities of natural language processing and text mining. The technique of
text summarization can be classified into two major categories abstractive and extractive.
Another possible classification for text summarization is single [Litvak & Last 2008] vs
multi-document [Barzilay et al. 1999] summarization and mono-lingual vs multi-lingual
summarization [Radev et al. 2004]].

Abstractive text summarization aims to achieve the task of generating summaries closer to
human generated summaries and present the gist of the text. It involves using generative
approaches which can produce meaningful sentences and at the same time preserve the
semantics of the original text. It is viewed as a highly difficult problem to solve and many
new approaches [Nallapati et al. 2016][Lopyrev 2015] are being proposed.

Extractive text summarization is a robust way of generating summaries by selecting salient
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sentences from the given text and presenting it to the user. Each sentence is attached with
some sort of a saliency score and highest scored sentences are chosen to be the part of the
summary. This is relatively simpler in contrast to abstractive summaries which involve
generating phrases and words, organizing them to form meaningful sentences and at the
same time presenting an interpreted gist of the text. It would involve a high degree of
natural language processing and hence, is a much more difficult task.

This chapter aims to summarize important extracts and reduce redundancy. In section
two approaches for paraphrase detection has been explained to identify similar sentences.
Two approaches for extractive text summarization are discussed in section 4.2 using hy-
brid scoring based technique and CNN(s) respectively. In section 4.3/ two approaches are
discussed for abstractive text summarization where the first approach infuses sentences

based on sentiments and second approach uses a generative adversarial network.

4.1 Paraphrase Detection

Paraphrase detection is the task of determining if two sentences convey the same meaning
where sentences need not be of the same length. Paraphrase identification has applica-
tions in question answering [Duboue & Chu-Carroll 2006], [Fader et al. 2013], information
retrieval, text summarization [Barzilay 2003], plagiarism detection, semantic parsing [Be-
rant & Liang 2014] etc. Plagiarized texts usually copy phrases as it is or replace some
words with similar words. Paraphrase detection will help in detecting plagiarized work
and ensure that the documents written are unique and not copied. Question answering
system uses paraphrases to find the appropriate answers to question queried. A lot of
work has been done in paraphrase detection for English language [Vo et al. 2015] [Sun-
daram ef al. 2009]] [Yin & Schiitze 2015]. However, for Hindi and other Indian languages,
not much work has been done for paraphrase detection. In literature, paraphrase detec-
tion has been modelled as a classification problem.

Paraphrase detection can be a useful tool for reducing redundancy in text summarization.

For example, one would want to avoid sentences like the following:

* Amrozi accused his brother, whom he called the witness, of deliberately distorting the evi-

dence.
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® Referring to him as the only witness, Amrozi accused his brother of deliberately distorting

his evidence.

In simple lexical matching approaches, words with similar meanings are not taken into
account. Various tools for measuring the similarity between word pairs are available and
WordNet [Leacock & Chodorow 1998]; [Mihalcea et al. 2006] is one of the most popular
resource used by the researchers. Mreover, similarity amongst word pairs does not im-
ply that the sentences will be paraphrases. In WordNet based measures, correct sense of
words might not necessarily be present in candidate paraphrases.

Machine learning based approaches have used dependency parser [Malakasiotis 2009]
and lesk algorithm [Mihalcea et al. 2006] for paraphrase detection. Indian languages lack
efficient resources such as named entity taggers and POS taggers, which are typically used
for feature detection in machine learning based approaches. Moreover, lack of annotated
datasets has hindered developing state of the art approaches for paraphrase detection
in Indian languages. Deep learning techniques such as recursive auto-encoders [Socher
et al. 2011] and CNN(s) [Yin & Schiitze 2015], [He et al. 2015] have been explored for
monolingual paraphrase detection in foreign languages but to the best of our knowledge,
no attempt has been made for identification of paraphrases in Indian languages using
deep learning based approaches.

Two approaches have been proposed for identifying paraphrases in Indian languages.
First approach presented in section is based on traditional machine learning tech-
niques and uses features such as Soundex, POS tags and stemming. Second approach
explained in section proposes neural network models based on CNN and RNN to

identify the paraphrases.

4.1.1 Hybrid Approach for Paraphrase Detection

The proposed approach HAPD (Hybrid Approach for Paraphrase Detection) has been di-
vided into multiple phases as shown in Figure The first phase processes the training
data to extract important features. The following three features are extracted for the pro-

posed training model:
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1. POS tags: POS tags are labels that are given to words to identify the part of speech
or lexical categories of words. The eight parts of speech are verb, noun, pronoun, ad-
jective, adverb, preposition, conjunction and interjection. Words that have the same
POS tags play similar roles in the grammatical structure of sentences. RDRPOSTag-
gelﬂ [Nguyen et al. 2014] is used for POS tagging of Hindi words. RDRPOSTagger
takes the pair of sentences as input and generates the respective POS tags next to
each word. POS tags corresponding to each word in the sentence are extracted from

the output and appended to form a string of POS tags for each sentence.

2. Stem of the words: Stemming is a process of extracting the ‘word stem” or ‘root” of
the word. For extracting the stem of Hindi words, a Hindi stemmetﬂ is used, which
implements the suffix-stripping algorithm described in [Ramanathan & Rao 2003].
A string for each sentence with the corresponding stems of the Hindi words is

obtained.

3. Soundex codes: Soundex is a phonetic algorithm for indexing names by sound as
pronounced in English. Sounde)ﬂ provides an implementation of the modified ver-
sion of Soundex algorithm for Indian languages including Hindi. A string compris-
ing of Soundex codes corresponding to each sentence is generated using soundex

codes for each word.

After extracting the above features, the similarity scores (of both the sentences) corre-
sponding to each feature is calculated. Each similarity score lies in the range [0,1] and
uses Levenshtein distance to calculate the differences between string sequences. The Lev-
enshtein distanceﬂ between two words is the minimum number of single-character edits
(i.e. insertions, deletions or substitutions) required to change one word to the other. The
similarity score is calculated for each pair of sentences with POS tags (feature 1), sentences
with the stem of the words (feature 2) and sentences with Soundex codes corresponding
to the Hindi words (feature 3). Finally a feature vector is created with the similarity scores

corresponding to the sentence pair.

1https ://rdrpostagger.sourceforge.net
2http://research.variancia.com/hindi_stemmer/
Shttps://pypi.python.org/pypi/soundex/
4https://pypi.python.orqg/pypi/fuzzywuzzy

105


https://rdrpostagger.sourceforge.net
http://research.variancia.com/hindi_stemmer/
https://pypi.python.org/pypi/soundex/
https://pypi.python.org/pypi/fuzzywuzzy

After feature vector generation, different traditional machine learning techniques are used

for training so that the best model for predicting the labels could be chosen after analysis.

| INPUT |

/FEATURE EXTRACTION\
e N

POS TAGS
> < _[ TEST DATA ]
WORD STEMS
o _/
4 N\
SOUNDEX CODES

S 2/
U

FEATURE VECTOR
CREATION

Similarity scores of the above three
features are extracted

/ CLASSIFIER

-

~

LOGISTIC REGRESSION/
NAIVE BAYES/
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RANDOM FOREST

N Y
o 1 /

[ OUTPUT ]

Figure 4.1: Block diagram for Paraphrase Detection
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4.1.1.1 HAPD Algorithm

Proposed algorithm, HAPD takes the pair of sentences as input where each pair (PS[i])
contains two Hindi sentences (PS[i].Sentence) and outputs a label for its corresponding
paraphrases. Each function (PosTags, WordStem and Soundex) take a pair of a sentence (PS)
as its parameter and return the array of corresponding POS tagged sentences, WordStem
sentences and sentences with Soundex codes respectively. SimilarityScore function gener-
ates the similarity score for each of its input array. SimScorel, SimScore2, and SimScore3
are the individual vectors for the three features, which are then passed to the CreateVec-
tor function to form the final FeatureVector. Classifier function takes the FeatureVector as
input, assigns labels to the Pair (PS) and then returns a LabelVector. Classifier function
implements different models (Logistic Regression, Naive Bayes, Support Vector Machine and

Random Forest) for predicting labels.

Algorithm 4.1: Algorithm for Detecting paraphrases

input : Paraphrase P, where all paraphrases have a unique id and contains two
sentences (Hindi)
output: LabelVector gives the corresponding labels for the paraphrases.
Depending upon the task it can have value of P, NP and SP
1 Initialization: SimScorel[]=0,SimScore2[]=0,SimScore3[]=0;

2 fori < 0 to PS.Count do

3 Pos[]=PosTags (PS[i].Sentence);

4 Stem[]=WordStem (PS[i].Sentence);

5 Sound[]=Soundex (PS[i].Sentence);

6 SimScorel.append (SimilarityScore(Pos[]));

7 SimScore2.append (SimilarityScore(Stem[])) ;
8 SimScore3.append (SimilarityScore(Sound[])) ;

9 FeatureVector=CreateVector(SimScorel, SimScore2, SimScore3)
LabelVector=Classifier(FeatureVector)

4.1.1.2 Data Analysis

The dataset [Anand Kumar et al. 2016] is from newspaper domain and contains pairs of
sentences. Dataset has two versions, first version (Dataset;) of dataset has the pair of
sentences labelled with P and NP whereas second version (Dataset,) of dataset contained
sentences classified as P, NP and SP. Example for Paraphrase (P), Not Paraphrases (NP)
and Semi Paraphrases (SP) are shown in Figure 4.2| for Hindi and Tamil languages.
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4.1.1.2.1 Dataset; The pair of sentences in the training dataset contains 1000 ‘Para-
phrases” (P) and 1500 ‘Not Paraphrases” (NP). Test dataset for Dataset; consisted of 900
pairs for the Hindi Language. The number of paraphrases with different number of com-
mon words is shown in Figure For example, a point (5,72) represents 72 paraphrases

which have five common words.

gt Ao fiT qre-agat § qae 725t 47
[The deceased Nisha was eldest of three siblings | P
A qre-agat # wee a=t off g [Fom
[Out of three siblings, deceased Nisha was the eldest]
quﬂl Eﬁ'aﬁ!ﬁﬁt:li 10 QG 7 ﬁ'w35 QG 7 ?;I'TI"E,L%I
Hindi [The basic salary of deputy minister is increased from 10k to 35k] Sp
ITEAT it FfE FqedT 35 A A7 AL 2
[The basic salary of deputy minister is 35k]
Sraafees @ <rar 4th Tifsre 97 )

[Deepa came at 47 position in gymnastics]
11 et e ST arerdt F ar2 7 et § S|
[

[Since independence 11 male athletes have been to Olympics]

NP

L&15BaMuflev 84 sHaTs aurd@liLge)

[84 percent voting in Puducherry] P

L&13@aM) &1 1L_sewi CxiH60lev 84 sxp6f5 g’ BLiLISeuTenrs)

[Puducherry assembly elections recorded 84 percent of the vote]

9ILIF160FHETID HaaTene BlewmBeunmiid euenaHuiled LTHID 6p(F

QFwmHenHBHTeT 9wl S L 1D

[In order to fulfill Abdul Kalam's dream, planning is to send a satellite per month) Sp
Tamil GlFwnensBHTeman L1 Geuewt(RID 6T6dTL (1560 %60 T L0 63T

U] D S| EYR Y

H 60T

[Abdul Kalam's dream was to send a satellite]

emmaEeafed @) mbsih Fensvser, gallwmiser &lenL g6

[Statues and paintings were found from the rooms]

T BITL &6 BL_GHLLL L Frgmameruilsd Qurdgsd 71 &nHlensossr NP

sl Bemsrsst

[A total of 71 stone statues have been recovered in a three day raid]

Figure 4.2: Example for Paraphrase, Not Paraphrase and Semi Paraphrase

4.1.1.2.2 Dataset, In Datasety, training dataset consisted of 1000 pairs of sentences that
are Paraphrases (P), 1000 pairs that are Semi-Paraphrases (SP) and 1500 that are Not
Paraphrases (NP). For test dataset, 1400 pairs of Hindi sentences are provided. The
number of Paraphrases and Semi-Paraphrases with common words versus the number of

common words is shown in Figure
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Figure 4.3: Data Analysis of Paraphrase for Dataset;

4.1.1.3 Experiments and Results

To test the accuracy and F-measure, training dataset is divided into a ratio of 75% and
25% for training and testing respectively. The results (accuracy and F-measure) are eval-
uated using sklearn [Pedregosa et al. 2011b] for the different models (Logistic Regression,
Naive Bayes, Support Vector Machine and Random Forest). Results obtained for Dataset;
are shown in Figure The proposed system gave an accuracy of 90.4% and F-measure
87.6% for Logistic Regression followed by Naive Bayes and Random Forest, both with
89.5% accuracy. Logistic Regression performs better than other traditional machine learn-
ing techniques in case of binary classification because it assigns labels by calculating odds
ratio and then applies a non-linear log transformation. Moreover, the performance can
be fine-tuned by changing and adjusting parameters in the functions provided by sklearn
[Pedregosa et al. 2011b] for Logistic Regression. As Dataset; is a binary classification prob-
lem and hence, results obtained by Logistic Regression are better than others. On the other
hand, Dataset, is a multi-class classification problem (labels-P, NP or SP). Hence, in this
case, the Random Forest gave the best results with 69.2% accuracy and 68.8% F-measure
followed by Naive Bayes (64.6% accuracy and 62.4% F-measure) as shown in Figure
Random Forest calculates labels by using subsamples of the dataset and uses averaging
to improve the accuracy whereas Naive Bayes uses a conditional probability approach for

assigning labels.
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Figure 4.4: Data Analysis of Paraphrase and Semi Paraphrase for Dataset,

Logistic regression and Random forest are chosen as the final classifier for Dataset; and
Dataset, respectively. For testing data, an accuracy of 0.897 and F-measure of 0.89 are ob-
tained as shown in Figure 4.7| for Dataset;. In Dataset,, the proposed technique obtained
accuracy and F-measure of 0.717 and 0.712 as shown in Figure respectively for the

finalized proposed system.

4.1.1.3.1 Error Analysis Errors occurred in classification can be attributed to the fol-

lowing;:

1. [Nguyen et al. 2014] states that the RDRPOSTagger achieves a very competitive ac-
curacy in comparison to the state-of-the-art results but a different Hindi POS tagger
can also be used. RDRPOSTagger can also be combined with an external initial

tagger to increase its accuracy.

2. Similarly, the Hindi stemmer used might have incorrectly returned the stem words,
which can be a reason for wrongly classified Paraphrases. The algorithm for extract-

ing the root words can be improved further to better the results.

3. Other factors that could have led to errors are the accuracy of Soundex library and

similarity measure used.
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Figure 4.5: Results for Dataset; using different classifier for proposed system
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Figure 4.6: Results for Dataset, using different classifier for proposed system
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Figure 4.7: Comparison of proposed approach with existing approaches on Dataset;

4.1.2 Detecting Paraphrase using Deep Learning in Indian Languages

Different approaches are proposed for paraphrase detection. Approaches are tested and

analyzed for English, Hindi, Malayalam, Punjabi and Tamil languages. Microsoft research

paraphrase corpus introduced by [Dolan et al. 2004] is used for English. DPIL@ FIRE 2016

[Anand Kumar et al. 2016] dataset is used for Indian languages.

4.1.2.1 Preprocessing

1. Class labels and sentences are separated from the data. Stemming and case conver-

sion is performed to normalize the text.

2. Two types of input matrices are prepared as the input to the deep learning models.
The first type is used as an input to both CNN and RNN. The second type is used
as an input to CNN-WordNet.

(a) Inputy

i. The pair of sentences to be classified are appended together. The sentence
is then padded to the maximum sentence length. Padding sentences to the
same length are useful because it allows to efficiently batch data since each

example in a batch must be of the same length.
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Figure 4.8: Comparison of proposed work with existing work on Dataset,

amrozi  accused  brother  called witness  deliberately  distorting  evidence]
referring 0 .222 0 0 0 [t} 0 0
witness 0 0 0 0.545 1.0 0 0 0.142
amrozi 1 1] 0 0 1] [t} 0 0
accused ] 1 ] 0.142  0.142 0.333 0.222 0.181
brother 0 0 1 0.6 0.6 0 0 0.166
deliberately 0 0 0 0 0 L0 0 0
distorting 1] 0 0 0.133 0.133 0.285 L0 0. 166
| evidence 0 1] 0 0.142 0142 0 0 L0

Figure 4.9: Matrix built using WordNet

ii. For English, word2vec is used to generate input matrix for the CNN and

RNN. These vectors are pre-trained by [Mikolov et al. 2013b] on Google

news (100 billion wordsﬂ For Indian languages, one hot vector encoding
is used instead of word2vec (since no pre-trained vectors are available for

these languages).
(b) Input,

i. The pair of sentences to be classified are padded individually to the maxi-
mum length. A matrix (as shown in Figure is then built where Word-
Net is used to calculate the similarity between the two words. For Indian

languages, the sentences are translated into English (using Google Trans-

Thttps:/ /code.google.com/p/word2vec/
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late APIEI) to find the WordNet similarity between two words. In CNN-
WordNet (section 4.1.2.2)), this matrix is used as input to CNN.

4.1.2.2 Approach based on Convolutional Neural Network

Two variants of approach are proposed based on CNN, where both of them differ on the
basis of their input used. Variants are named as CNN based and CNN-WordNet based
approach. For CNN approach, consider a sentence of length n which is a concatenation
of the pair sentences to be classified. It comprises of the words 4,42, and so on till a,,.
Let a4 refer to the window of words a;,4;,1,...,4;4j. A convolution operation involves
a filter w which is applied to a window of & words to create another element. For exam-
ple, an element g; is created from a window of words a;.;,, by g¢; = f(wa;;, +b). Here
b € R is a bias term and f is a non-linear function either rectified linear unit (ReLU) or
tan hyperbolic function. This filter is applied to every conceivable window of words in
the sentence ay.y,, axj41, - - - , Aups1n to deliver a feature map = [g1, 92, ..., §un+1), With
c € R"™*1 For CNN-WordNet, filters are convolved over input, obtained from section
and then a feature map g is generated.

A maximum pooling operation is then applied over the feature map and the maximum
value of max{g} is then selected as the feature corresponding to this filter. The idea be-
hind this is to capture the most imperative component of every feature map. The model
uses numerous channels (with shifting window sizes) to obtain multiple features. These
features are accumulated in the last but one layer. The accumulated features are then
passed to the last softmax layer which produces the output. The output is the probabil-
ity distribution over the class labels. Parameters of convolutional layer comprise of an
arrangement of filters that can be learned. Even though each filter is small in scope, it
reaches out through the full depth of the information volume. In the forward pass, the
filter slides over every channel in the input vector and computes the dot products between
the sections of the filters and the input. Filter sliding over the input produces an activation
map that represents the relationship between filter response and spatial position. Feature
detection activates the filters which are learned by the model. After convolutional layer,

pooling is done to ensure that over-fitting does not occur and to reduce the amount of

Thttps:/ /translate.google.com/
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computation and parameters in the network.

The primary layers of CNN insert words into low-dimensional vectors. The following
layer performs convolutions over the inserted word vectors utilizing different filter sizes.
For instance, sliding more than three, four or five words at once. Next, the result of
the convolutional layer is max-pooled into a long feature vector, which includes dropout

regularization. Classification is done by utilizing the final softmax Layer.

4.1.2.3 Approach based on Recursive Neural Network

Bidirectional Long Short-Term Memory Recurrent Neural Network (BRNN) have been
used in the past for various applications that involves sequence learning and have shown
to be very effective. Some application involves predicting sequential data like handwriting
and speech.

Neural network solves the problem of sequential information awareness and the problem
of vanishing gradients. The attraction that deep learning holds is that one does not require
to identify features or build resources like a dictionary for morphemes and other linguistic
units. Second approach based on LSTM and BRNN is described in this section. LSTM
performs better as compared to simple recurrent neural networks, hidden markov models,
and other alternative neural networks because of its ability to learn from past experience.
In BRNN (Figure , the neurons of a standard RNN are split into two directions, a
positive time direction (forward states), and a negative time direction (backward states).
By utilizing two directions, input data from the past and the future of the present time
frame can be utilized. For forward pass, forward states and backward states are passed
tirst, then output neurons are passed. For backward pass, output neurons are passed first,
then forward states and backward states are passed next. After forward and backward
passes are done, the weights are updated.

Traditional neural networks face the problem of rigidity in the sense that the input and
output is a fixed size vector. The number of computational steps in the neural network is
also fixed. The recurrent neural network is superior to traditional neural network because
they can handle sequences. Traditional neural networks are limited by the number of
layers in the model which can only perform a fixed number of computations. The appeal

of recurrent neural network lies in the fact that they can operate on sequences and hence
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are more capable of building intelligent systems. At every state, RNN combines the input
vector with the state vector using a step function to create a new state vector. The output
vector obtained from the RNN is an amalgamation of the current input and the inputs
that are fed into the RNN in the past, ensuring that the RNN remembers the context. The
internal state of the RNN is updated every time step function is called.

Each pair of sentences is mapped into a real vector domain. Words are encoded as real-
valued vectors in a high dimensional space, where the similarity between words in terms

of meaning translates to closeness in the vector space. LSTM is used as the next layer

P
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{
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I'_'_'__‘:\
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Sentence
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Figure 4.10: RNN Model

with 100 memory units (smart neurons). A dense output layer with a single neuron and
a sigmoid activation function are used to make 0 or 1 predictions for the two classes
(paraphrase or not paraphrase). As it is a binary classification problem, logrithmic loss
is used as the loss function. An efficient adam optimization algorithm is used in the

proposed approach.
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4.1.24 Algorithm for Detecting Paraphrase in Indian Languages

Algorithm 4.2|describes the CNN and CNN-WordNet approach for paraphrase identifica-
tion. CNN approach builds the embedding matrix using word2vec [Mikolov et al. 2013b].
CNN-WordNet builds a matrix using WordNet to find similarity between any two words
in pair of sentences to be classified as paraphrases. An example matrix can be seen in
Figure For English, NLTK WordNet library is used. For the Indian languages, trans-
lation to English is performed because WordNet is not avaialble for these languages. The

CNN is initialized with the following hyperparameters.
1. The sequence length is the maximum length of the sentence in the dataset.
2. The number of classes is two. The embedding size is set to 300.

3. filter_size refers to the number of words required in convolutional filters. The value
of the filter size lies in the range [3, 5] which means that the filters will slide over

three, four and five words.

In CNN approach, the function CreateEmbedding() defines the embedding layer which
maps vocabulary word indices to vector representations. This can be equivalent to cre-
ating a look-up table from data. Embedding matrix, W is created during training. In
CNN-WordNet approach, matrix W is used instead of the WordNet score between two
sentences. Figure [4.9/shows a sample matrix for W. Since the filters are of different sizes
and each convolution produces vectors of different shapes, a layer is created for each of
them and results are merged into one feature vector. Once the output vectors are pooled
from each filter size, they are combined to give the final vector. The vector from max-
pooling is used to generate predictions by performing matrix multiplication and then
choosing the class with the maximum score.

Algorithm [4.3| describes an approach based on LSTM. Four variants of LSTMs have been
explored as discussed in section First, an embedding matrix is created for the
pair of sentences using Word2Vec [Mikolov et al. 2013b]. Following functions are used to
update the parameters:

it = (Wilhea, x¢) + bi) (4.1)

fe = (Welhe, x¢] + bg) (4.2)
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g = tanh(Wq[he1, x¢) + by) 4.3)

0t = (Wo [ht-llxt] + bo) (4.4)
ct = ftOce1 +1t O qGe (4.5)
hy = oy © tanh(cy) (4.6)

The function f; in equation 4.2]is a control mechanism that is responsible as to how much
old information is to be remembered in the current cell and it takes care of how much
new information is to be stored. The function o; in equation 4.4| controls the output given
the cell ¢;. The model has a learning rate of 0.001, an embedding size of 300. The final
output vector is calculated by applying a softmax classifier over the hidden state cell h;

(equation and initial word embeddings matrix.

4.1.2.5 Dataset

1. Microsoft Research Paraphrase Corpus(MSRPC)[Dolan et al. 2004]
The MSRPC consists of 5801 pairs of sentences which have been extracted from news
sources. The dataset is split into 4076 training examples and 1725 test examples. The

dataset contains 67% paraphrase pairs and 33% non-paraphrase pairs.

2. Detecting Paraphrases in Indian Languages (DPIL) @ FIRE [Anand Kumar et al. 2016
DPIL dataset for identification of paraphrase or non-paraphrase (Dataset; as men-
tioned in section[4.1.1.2) is used for evaluation. The DPIL dataset consists of four In-
dian languages namely Hindi, Tamil, Malayalam and Punjabi. In Hindi, Malayalam
and Tamil dataset, there are 2500 training and 900 testing sentence pairs. For Punjabi
dataset, there are 1700 training and 500 testing sentence pairs, where training dataset
consists of 700 instances of paraphrases and 1000 instances of non-paraphrases.
Hindi, Malayalam and Tamil dataset contains approximately 40% paraphrase pairs

and 60% non-paraphrase pairs.

118



Algorithm 4.2: Paraphrase Detection using CNN

input : Concatenated pair of sentences, I. Corresponding training class
labels, X.
output: An output sequence P, the predicted class labels.
Initialization: the CNN with sequence_length=25, num_classes = 2,
embedding_size = 128, filter_sizes = [3,4,5], num_filters = 3,
pooled_outputs=[];

[y

2 Preprocessing;
3 if CNN then
4 L CreateEmbedding(l, X);
5 if CNN-WordNet then
6 for sentence pair in input do
7 Wllen(Sentencel)][len(Sentence2)];
8 for wordl in Sentencel do
9 List1 = WordNet.synsets(wordl);
10 for word2 in Sentence2 do
11 List2 = WordNet.synsets(word2);
12 if List is empty or List2 is empty then
13 if wordl == word2 then
14 L Wlwordl][word2] = 1;
15 else
16
17 L Wlword1][word2] = 0;
18 else
19 L Wlword1][word2] = Similarity(word1,word2);
20 for i in filter_sizes.length do
21 Initialize filter matrix F, bias matrix b;
22 conv = CreateConvolutionalLayer(Fb);
23 h = Non-linearity(conv,b);
24 pooled = Max-pool(h);

25 Combine pooled features(pooled);
26 Prediction = max(I*Feature_Vector);
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Algorithm 4.3: Paraphrase Detection using RNN

input : A pair of sentences concatenated together. Corresponding
training class labels Y.
output: An output sequence P, the predicted class labels(0/1).
1 Initialize hidden_dimensions = 128, word_dimensions = Number of
words in vocabulary;

2 CreateEmbedding(W);
3 if 1 Layer LSTM then
4 L update parameters;

5 if 2 Layer LSTM then
update parameters;
7 send parameters as input to Layer 2;

if 1 Layer Bi-LSTM then

9 forward pass for forward state LSTM,;
10 forward pass for backward state LSTM,;
11 update parameters ;

12 if 2 Layer Bi-LSTM then

13 forward pass for forward state LSTM,;
14 forward pass for backward state LSTM,;
15 update parameters;

16 send parameters as input to Layer 2;

17 forward pass for forward state LSTM,;
18 forward pass for backward state LSTM,;
19 update parameters;

@
[

20 output_vector = softmax();
21 Prediction = max(output_vector);

4.1.2.6 Experiments and Analysis

Figure describes the results of RNN. Bidirectional LSTM (Bi-LSTM) with two layers
performs the best for all languages. Bi-LSTM is more context-aware than LSTM, resulting
in it’s better performance. Performance of RNN is better for English than Hindi because
the size of English dataset is approximately twice the size of Hindi dataset. The results for
Hindi and Punjabi are better than Malayalam and Tamil. This may be due to the complex
morphology of Tamil and Malayalam languages. Figure describes the results of CNN.
CNN performs better than CNN-WordNet (Figure , because of the use of word2vec.
For Indian languages, no such tool as word2vec is present. As a consequence, the re-
sults are lower for all Indian languages when compared to English. The results obtained
for CNN based approach are approximately equivalent to RNN based approach. CNN-
WordNet performs equally well as CNN approach and slightly better for English. As can
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be seen from Figure CNN outperforms RNN and CNN-WordNet. Results for En-
glish language are higher than other languages which can be attributed to the availability
of word2vec and better WordNet scores. Results of Hindi-Punjabi and Malayalam-Tamil
are comparable due to the similarity in underlying semantics for the languages pairs of
Hindi-Punjabi and Tamil-Malayalam. RNN model worked well at 14 epochs because it

quickly overfits the data, due to the small amount of data being used for training.
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Figure 4.11: F-measure scores for RNN

4.1.2.6.1 Error Analysis

Due to the incorrect word similarity measures from WordNet scores, errors might have
occured. Similarly, the stemmer used for Indian languages might have incorrectly re-
turned the stem words, which could be a reason for wrongly classified paraphrases. Due
to the mistranslation of few words while creating WordNet scores for Indian languages
errors might have occured. This observation is consistent with the results as can be seen

from Figure The scores from CNN-WordNet are less than CNN for all the Indian

languages.
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Figure 4.14: F-measure scores for all approaches

4.2 Extractive Text Summarization

The goal of automatic summarization is to take an information source, extract important
information from it and present it to the user in a short form and in a manner useful to
the user’s need. The continuing growth of online text resources has resulted in the well-
recognized problem of information overload. As a result, it is especially useful to have
tools which can help users digest information content by presenting the most relevant
information. Extractive summaries are particularly useful in extracting and represent-
ing important snippets of information. The challenge is to generate useful summaries
automatically. The approach, application and the end-objective of summarization of doc-
uments determine the type of summary generated. A generic summary gives a high-level
information of the document’s content while a query based summary returns the text that
is closely related to the input query. Similarly, it can also be categorized based on applica-
tion, to develop a single or multi-document summarization. The widely used technique of
extractive summarization involves selection of a subset of the document sentences which
are representative of its content and creating the summary by concatenating selected ex-

cerpts from the original document. This section proposes an approach which aims to
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achieve the goal of text summarization by generating extractive summaries using deep
learning techniques. This includes processing text and generating the list of sentences
which might be the most useful and contain the major gist of the text. Humans generally
do not perceive summaries as sentences extracted verbatim from the text but rather try
to summarize it in a format that conveys the same meaning as the given text. However,
extractive summaries do contain an important piece of text of the whole content. This
provides an idea of what the text is about and at the same time certain sentences which
can be used to quote or refer to for some other purpose. Another motivation that drives
this work is to try out the approach of abstract generation using data-driven approaches
for Indian languages. The idea of the approach is to generate labels using paraphrasing
algorithm and then use them for extractive summarization.

Approaches involving deep-learning have shifted the focus from manually engineering
the features to a more data-driven approach wherein a neural network with sufficient
depth can be used to extract features and use them to classify sentences as being impor-
tant to be put into the summary or not. The sentences are converted to vectors in a suitable
space and are fed to the network as numbers. It has been observed, given sufficient data
and a suitable network architecture, ANN learns to represent words in the space in such
a manner that it captures various linguistic properties and maps it to simple vector oper-
ations. This representation of words is called embedding and the vectors of the words are
called word vectors [Mikolov et al. 2013b]. The proposed approach uses fully connected
CNN.

Sentences can be viewed as sequences of the word and possess some memory of previous
words seen, this concept has proven to be useful in classification. Regardless of all ap-
proaches mentioned above to achieve the task, one of the major challenges that are faced
in this domain of automatic text summarization is the problem of result evaluation. Most
of the works rely on some form of human intervention to evaluate the results as datasets
with gold standard extractive summaries are a rarity and adding to this even automated
evaluation such as ROUGE depend on human summaries to be provided to them. Hence,
for training purposes, proposed approach uses an approach of generating the labels for
each sentence in whether it should belong to summary or not by using the technique of

paraphrasing on the original text and abstractive gold summaries available for the dataset.
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4.2.1 Workflow for Proposed approach

The proposed approach can be divided into two phases. The first phase generates a true
label for each sentence to be in summary or not whereas the second phase focuses on
model creation for summarizer. The model generation phase can be further divided into
two stages, the first of them being a convolutional layer to act as a feature map generator
and the second being densely connected layers of neurons or otherwise called MLP. It is a
binary classification problem and hence model generates two scores for a given sentence,

one for each class.

/ Label Generation \

Feed
Forward Step

Sentence Cleaning

¥

Aggregation

4

summary sentences Label Qutput

Cartesian Product of
orignal sentences and

—

|

Sentence Scoring

Score Generation

Figure 4.15: Block Diagram showing basic workflow

4.2.2 True Label Generation

Extractive text summarization like any other machine learning task requires that the data
be of appropriate nature. The summaries of the training data presented to the system are

required to be in extractive form for current problem. Most of the available public datasets
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are abstractive in nature and the problem is more so prevalent in the field of Indian lan-
guages which does not have any gold-standard dataset for summarization. For proposed
approach, gold-summaries are generated from the human-generated summaries using the
help of paraphrase detection approach (proposed in section

For the proposed solution, ground truth for a document D is generated by making
|D| X |S| pairs (where |D| stands for number of sentences in document D and |S| stands
for number of sentences in S, abstractive gold summary) and running a paraphrase de-

tection system on all the pairs. The label for a sentence d is given as:

1 ifdeP,
label(d) =

0 otherwise

Here, P denotes the set of tuples which have been detected as paraphrases. The model

used for the summary generation is discussed in detail below.

4.2.3 Model Generation

Convolutional Layer

Document D is fed to the network on a sentence-to-sentence basis, where sentence d
is represented by a list of words. The list is then passed through the embedding layer
which results in the list being converted to a word matrix W € Rf*4, where f stands
for the maximum length of sentence in the corpus and d stands for the dimension of
embedding vector. Each row of the matrix W; is trainable vector representation of the
word in the sentence. The matrix W is then fed to the convolutional layer which performs

a convolution operation between W and a kernel K € R"*¥ of width & as follows:
fi = ReLU(W;. j 14 © K+ D)

where b is the shared-bias and f; is the j" element in feature map f. Following this, a
max-pooling operation is done to select one feature which would represent the sentence
under the kernel.

dx = max f;
J
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Multiple such kernels (K) are used with different widths to produce multiple feature
maps.

Dense Layer

The outputs from each of the max-pooled layers above for different kernels K are then
flattened and concatenated to produce a vector I which is then fed through a fully con-

nected layer and finally a softmax layer designed for two-class classification is applied.

4.2.4 Algorithm: Extractive Text Summarization using Deep Learning

Algorithm 4.4: ETSDL: Extractive Text Summarization using Deep
Learning

1 Function SummarizeTrain(textfile,summaryfile)is
2 | Call LabelGen(textfile,summaryfile); // It produces a file
with all labels

3 (text_batches, label_batches) <— Call BG(textfile,labelfile);
4 | for (text_batch,label_batch) < zip(text_batches,label_batches) do
5 L Call Train(text_batch, label_batch);

6 Function Train(text_batch,label _batch)is

7 (embedding_layer < embeddinglookup(text_batch));

8 | for (i < filter_map) do

9 conv < Conv2D(text_batch);

10 mp2d < MaxPool2D (conv);

11 flatten < flatten(mp2d);

12 flattens < flattens.append(flatten(mp2d));

13 pool < concatenate( flattens);

14 | dropout < dropout(pool);

15 | dense <— Dense(dropout);

16 | softmax < softmax(dense);

17 optimizer(so ftmax, test_labels);

The SummarizeTrain function shown in algorithm creates batches of the dataset
and passes them to the training module. The model presented here is trained via batch
gradient descent. The Train function performs both, a forward pass through the network
to compute the output given by current network on given data and also a back propa-
gation and weight update step to change the weights. It passes the given batch of data
through the network shown in Figure The step shown in SummarizeTrain is for one

iteration through the dataset (one epoch). The same operations are performed for multiple
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epochs. The Train module shows the network feed through in a highly simplified manner
and in the form of functional code. The actual parameters and settings are described in

section

4.2.5 Experiments & Results

The proposed model has many hyperparameters which are tuned for the specific dataset.
Para Multiling 2015 dataset is used for evaluation. This dataset is designed for the pilot
task of Multilingual Single-document Summarization (MSS). The dataset consists of 40
different languages and for each language, 30 documents are given. The documents are
in UTF-8 without markups and images. For each document of the training set, the human-
generated summary is provided along with character length. Indian Language being the
prime target, results have been evaluated in three languages (English, Malayalam, Hindi)

only.

4.2.5.1 Parameters

The given model has hyper-parameters in both the stages, label generation and summary
generation. The model that has been saved is at the point when the loss factor is the
least. The model is checkpointed via a call-back function which after every epoch decides
to the checkpoint if the loss function has improved from the previous best-saved model
instance. For the label generation, hyperparameters used are mentioned in Table

The above mentioned parameters are arrived upon to avoid overfitting because of small

Table 4.1: Parameter settings for Label Generation

Parameters Value

Number of neurons in Dense Layer | 64

Embedding size 128

Kernel sizes [3,4]

Number of maps produced 64

Learning Rate 0.003

Regularization Rate 0.003 (L2 regularization)

dataset. The parameters when set to values higher than current values (number of filters
to 5 and number of maps produced to 128), produced drastic over-fitting. The same is also

expected since increasing value of parameters results in increase of number of trainable
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parameters, which in turn would require a higher amount of data to prevent the network
from over-fitting. The values could be set to values lower as well but that would result in
the decrease in learning capacity of the network. In proposed summarization model, the

Table 4.2: Parameter settings for Summary Generation

Parameters Value
Number of neurons in Dense Layer | 64
Embedding size 128
Kernel sizes [3,4,5]
Number of maps produced 64
Learning Rate 0.003
Regularization (L2) Rate 0.003

learning rate has arrived at this value by using a decaying rate wherein a callback function
is used to decrease the learning rate after every few epochs. Parameters related to building
model are mentioned in Table One more factor that has to be considered is the factor
of drop-out, which is kept to be 0.5. This means that on an average activity of 50% of
the neurons are not passed during the feed forward stage preventing the network from
rote learning the activities and hence reducing the effect of over-fitting to some extent.
The reason for such a high drop-out rate is the fact that the model without the drop-out is
highly volatile and hence is over-fitting heavily even in such a shallow network. A general
value for drop-out would range anywhere between 0.2 to 0.5. Since the size of the matrix
that is fed to a convolutional network has to be fixed, sentences are padded to a length

that is equal to the maximum of all lengths of the training samples.

4.2.5.2 Evaluation & Discussion

This section presents the results of the proposed model and discusses the possible reasons
why certain results are as they have been reported. Results for English dataset are shown
in Table whereas results for Malayalam are shown in Table It can be observed
from the tables that although accuracy is greater than 90%, other evaluation measures are
low. This may be due to the fact that the generated dataset is based on the human-based
summaries. However, for Malayalam dataset a recall of 0.8459 is obtained which shows
the trend that the original gold summaries contained most of the words from the original

text itself. In proposed approach, summary generation is converted to a classification task
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of identifying if the sentence belongs to summary or not and hence, accuracy, precision,
F-measure and recall metric is considered instead of ROUGE.

Table 4.3: Preliminary results for Summary Generation in English

Parameters Value
Training Accuracy 0.9615
Validation Accuracy 0.7063
Testing Accuracy 0.757
Testing Precision 0.25
Testing Recall 0.4287
Testing F-Score 0.3157

Table 4.4: Preliminary results for Summary Generation in Malayalam

Parameters Value
Training Accuracy 0.9114
Validation Accuracy 0.7346
Testing Accuracy 0.5933
Testing Precision 0.3919
Testing Recall 0.8459
Testing F-Score 0.5357

4.3 Abstractive Text Summarization

There is a large amount of data on the web which expresses the same opinion over and
over again and thus summarization of redundant content has become a necessity. While
viewing multi-document summaries or the summaries of highly redundant text, extrac-
tive summarization would not be of any help as the extractive summaries would be very
verbose and biased. Sentences also tend to be longer, hence non-essential parts of the
sentence also get included. Relevant information is spread across the document and this
can’t be captured in the extractive summaries. Extractive summaries also face the prob-
lem of ‘dangling” anaphora, implying that sentences that contain pronouns lose meaning
when extracted out of context, the resolution of this problem is presented in [Steinberger
et al. 2007]].

While there has been a lot of work done in the field of extraction based summarization,
abstraction based summarization is difficult because of the simple reason that while the

computers can statistically select the most important sentence from the text, it is difficult
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for them to combine important sentences and generate a coherent and concise synopsis.
Demand for the high-quality summary is on the rise whether it is regarding summa-
rization of textual content (for example books etc.) or multimedia content like video

transcripts etc. [Ding ef al. 2012]].

4.3.1 Abstractive Text Summarization using Sentiment Infusion

It has been demonstrated that abstractive summaries are better than extractive summaries
[Carenini & Cheung 2008] whenever documents with a lot of redundant content are con-
sidered for summarization (for example, product reviews, blogs and news articles). This
is because abstractive summaries are compact and present the useful information and are
not verbose. However, generating abstract summary is a tougher task than the generation
of extract summary. Single document summarization differs from multi-document sum-
marization since single documents contain lesser data. Hence, more efficient strategies
are required to generate abstractive summaries in case of single documents. An approach
named Abstractive Text Summarization using Sentiment Infusion (ATSSI) is proposed for
compressing and merging information based on word graphs and then summaries are
generated from the resulting sentences. The approach assumes no domain knowledge
and leverages redundancy in the text. The results show that the summaries generated are

agreeable to human compendium and are concise and well formed.

4.3.1.1 Building the word graph

Graph data structure is used in ATSSI to represent the text. Graphs have been frequently
used for abstractive text summarization ([Kumar et al. 2013[|, [Liu et al. 2015]], etc.) and
have shown promising results. In state of art, graphs are used in different form for the
text summarization. [Kumar ef al. 2013] use graph to represent the bi-gram relationship
between the words in the text. In approach proposed by [Liu et al. 2015], semantic infor-
mation is embedded in the graphs. Proposed approach in this work uses graph differently
from above mentioned forms, as each node represents a word in the text along with the
information of the position of the given word in the sentence and the edges represent the

adjacency of the words in the sentence. A document is represented as a directed graph
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where V =v;,0v;11..v, is a set of vertices that represent words in the text. Each vertex
node stores the information about the POS tag of the word in that node, the position of
the word in the sentence and the position of the sentence in the document. The graph
naturally captures the redundancy in the document since words that occur more than
once in the text are mapped to the same vertex. Furthermore, the graph construction does
not require any domain knowledge. The graph also captures the minor variations in the

sentences. For example, Figure [4.19]

appears |4P| to |4P| have I—’I lower |—+| contrast |—>|:|

Kindle’s

n "I on |——>| the H eyes '—FI and has

Figure 4.19: Graph Capturing Redundancy in the text

4.3.1.2 Ensuring the sentence correctness

The correctness of sentence is ensured using the following set of Part of Speech con-

straints:

* A sentence can contain noun followed by a verb and an adjective or an adjective
followed by a noun and a verb or a verb followed by an adjective and a noun or an

adverb followed by an adjective and a noun or an adverb followed by a noun.

¢ The start of the sentence should contain a word whose average position in all sen-
tences is lower than the threshold, called Start Node. This threshold is enforced to
corroborate that the sentences occurring in the summary do not start with words

that occur somewhere in the middle of a sentence.

¢ The sentence should not end in a conjunction like but, yet, etc.

4.3.1.3 Getting abstractive summary

1. Scoring of paths:
The paths are then scored based on the redundancy of the overlapping sentences.

This redundancy can be calculated using the intersection of the position of the words
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in the sentences (P) such that the difference between the positions is no greater than
a threshold, P. This redundancy helps us in deciding the number of sentences
discussing something similar at each point in the path.

The scores can simply be based on the calculation of the overlap or can include
the length of the path as well because if the path is longer, higher redundancy is

expected than in a shorter path since longer paths provide more coverage.

. Fusing sentiments:
A node is considered to fuse sentences if its POS tag is a verb. If a vertex V is being
considered as a node that can be used to fuse sentences, then previous vertices are
traversed in the path currently being considered to look for a connector as shown
in Figure An alternative approach is to calculate the sentiment of both the
sentences to be fused and to look for a connector that can be accurately used. This
sentiment is calculated using SentiWordNet 3.0 [Baccianella et al. 2010b].

Once the sentiment has been calculated, the connector is chosen from a pre-existing

’/,. sCreen having T—n| 3 —a lower x\‘
Kindle's \ / contrast

is ™ easy fal on 1.|’che ™ eyes Rﬁ“‘*lj

Figure 4.20: Example Sentences that can be fused together

list. For example, if the sentiments of the two sentences are contradictory, ‘but’ is
used as a conjunction. If both sentences are positive, then depending upon the

context conjuctions such as ‘and” and ‘or’ may be used.

. Summarization
After all the paths are scored and the sentences have been fused, sentences are
ranked in descending order of their scores. Duplicate sentences are removed from
generated summary using Jaccard similarity coefficient. The remaining top S (num-
ber of sentences specified by the user to be in summary) sentences are chosen for

the summary.
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4.3.1.4 Pseudocode for ATSSI

1. Generate the graph from the text input such that nodes will contain the information
about
(a) The position of the word in the sentence
(b) The position of the sentence in the document
(c) The POS tag of the word.

2. For all nodes in the graph, if node satisfies the constraint of being lesser than Start

Node, the graph is traversed.

3. While traversing the graph, if the path overlap is greater than P, check if the current
node is a valid end node and the current sentence is a valid sentence, if it is, add it

to the list of candidate summaries, else discard it.
4. For all the neighbours of the current node

(a) Calculate the redundancy.
(b) Check if the node can be used to fuse a sentence.

(c) If yes, then calculate the sentiment of the anchor statements, and choose the
connector accordingly from the pre-existing conjunction list. If the node cannot

be used to fuse sentences, graph is traversed again.

5. Graph is again traversed from all the neighbours of the current node to find the

further nodes of the sentence.

6. The new score is computed and the duplicate sentences are removed from the fused
sentences. The resulting fused sentence and its final score are then added to the

original list of candidate summaries.

7. Once all paths have been explored, duplicates are removed. The rest of the sentences
are sorted in descending order of their path scores. The best S candidates are chosen

for the final summary.
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4.3.1.5 Dataset Description

Two datasets are used for the evaluation:

¢ National Institute of Science and Technology (NIST) organizes a conference called
Document Understanding Conference (DUC) every year. The first dataset comprises
of 50 documents from the DUC 200 corpus which has been randomly selected.
The documents contain about 500 words on an average. The dataset contains about
500 news articles in English along with gold summaries for each article. The gold
summaries have also been provided for the corresponding documents and are about

100 words on an average.

* Second dataset [Ganesan et al. 2010a] contains 51 documents pertaining to a single
query, for example, Amazon Kindle: buttons, Holiday Inn, Chicago: staff, etc. There
are about 100 redundant, unordered sentences in the document for every query.

There are 4 peer summaries corresponding to each of these 51 documents.

4.3.1.6 Experiments & Results

ROUGE metric is introduced by [Lin 2004] and has been adopted by the DUC and leading
conferences on Natural Language Processing. ROUGE calculates the overlap between the
candidate summaries and the reference summaries and it has been found that correla-
tion of ROUGE-1 and ROUGE-2 is the most with human summaries ([Lin & Hovy 2003]).
ROUGE-N is a recall measure that computes the number of matches between the can-
didate summaries and the reference summaries. The formula to calculate the ROUGE

scores [Lin 2004] is given as:

ZSE(ReferenceSummuries) ngmnes Countyasen (gmmn)
ZSe(ReferenceSummaries) ngmnes Count(gramn)

ROUGE — N = (4.7)

where match is the maximum number of N-grams that occur in the reference summaries

and the candidate summary. Count is the number of n-grams in the reference summaries.

http:/ /duc.nist.gov/
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The precision, recall and F-measure [Lin 2004] is calculated as follows:

. Match(Sentence)
p = 4.
reciston Match_Candidate(Sentence) (48)
Recal] — Match(Sentence) (4.9)

Match_Best_Candidate(Sentence)

2 % Precision * Recall
F— — 4.10
feasure Precision + Recall ( )

where Matchcandidate is the number of sentences of present in the candidate summary.
Matchpest Candidate 1S the total number of sentences in the best sentences summary. In
experiments, ROUGE-1 and ROUGE-2 are used for comparison with Baseline 1 and for

comparison with Baseline 2 only ROUGE-1 is used.

4.3.1.6.1 Evaluation & Discussion Results are being compared by two baselines on
two different datasets, apart from the comparison with human summaries. Baseline; is
defined by the algorithm implemented by [Ganesan ef al. 2010a] whereas Baseline; is de-
fined by algorithm mentioned in [Lloret & Palomar 2011]. Baseline; and Baseline, have
been chosen for comparison since they have used graph-based algorithms for summa-
rization and proposed algorithm overcomes the limitations of [Ganesan et al. 2010a] and
[Lloret & Palomar 2011]. [Ganesan et al. 2010a] describe an approach that used directed
graphs that use the original sentence word order to generate abstractive summaries. Their
technique leverages the graphical form of the input text to reduce redundancy. If their
algorithm finds two sentences that are collapsible, they use the connectors already present
in one of the sentences to be used as the connector for the collapsed sentence. However,
this technique is effective, but it has a drawback that there might be two sentences which
are capable of being fused together but can’t be fused because of the absence of a pre-
existing connector. The proposed approach (ATSSI) does not face this drawback since
sentiment analysis is used. [Lloret & Palomar 2011] describes a technique where they
have built a directed weighted word graph where each word text represents a node in the
graph and the edge contains the adjacency relation between the words. The weight of the
edge is determined by using a combination of PageRank value and the frequency of the

words. To determine important sentences, first node consists of ten words with highest
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TF-IDF score. Sentence correctness is ensured using the basic rules of grammar like the
length a sentence should be greater than 3 words, a sentence must contain a verb and
should not end in an article or conjunction. A flaw with this methodology is that a lot of
important information is lost because of the impositions of grammar on the sentences and
the policy of selecting the ten words with highest TF-IDF scores. Furthermore, a lot of
redundant sentences will still be present in the summary because the TF-IDF scores will
give more importance to them. Proposed approach (ATSSI) does not face the deficiency
that is faced by [Lloret & Palomar 2011] because it incorporates the redundancies in graph
structure itself.

Figure shows that ATSSI has higher precision over the Baseline;, this is because
proposed approach has overcome the demerit of the approach as stated by [Ganesan
et al. 2010a], that it can only connect the sentences if there is a pre-existing connector. Since
the dataset used by [Ganesan et al. 2010a]] already has redundant data with connectors,
ATSSI is only showing a marginal difference in precision. Dataset [Ganesan et al. 2010a]]
results in low recall as shown in Figure .21 because there is a high presence of redundant
information in the dataset which is leading to infusing large number of sentiments in a
particular sentence. This is resulting in less number of sentences.

Proposed algorithm outperforms Baseline, [Ganesan et al. 2010a] by 13% as shown in
Figure since Baseline, [Ganesan et al. 2010a] describes rigid rules for ensuring sen-
tence correctness and has no provision for fusing sentences. ATSSI outperforms Baseline,
[Ganesan et al. 2010a] by a considerable margin of precision since ATSSI incorporates
sentiment infusion and a provision for removing redundancy. Recall of ATSSI is also
marginally low as that of Baseline, for similar reasons mentioned for Baseline;. Figure
represents the F-measure on the dataset by the proposed algorithm and compares
it with human summary and Baseline; whereas Figure represents the precision and
recall on DUC 2002 dataset with the human-summary and Baseline, respectively.

Finally, it is worth noting that generating summaries that are purely abstractive in nature
is an onerous task, as shown by [Liu & Liu 2009] where F-measure values are in the range

13% to 18%.
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4.3.2 Abstractive Text Summarization using Generative Adversarial Networks

In this section, a deep learning approach has been proposed which uses a generative
model to generate abstractive summaries from the input datasets. Generative Adversarial
Networks (GAN) have been used for caption generation ([Reed et al. 2016]), generating
text from images, face generation, etc.

A GAN can be decomposed into two adversaries, a discriminator, and a generator. The
probability distribution learning problem is posed as a game in between the two, which
is solved using the min-max algorithm. The generator performs the task of generating
samples and the discriminator is a binary classifier with the task of separating the real
samples from the fake ones. GAN(s) was first proposed by [Goodfellow et al. 2014] in
2014. Deep learning holds the promise of building hierarchical models which can repre-
sent the probability distribution of data ranging from text to images. However, most of
the success in the past has been with models that can map the high dimensional input to
a class label. Discriminative models perform better than generative models because of the
use of backpropagation and dropout algorithms.

Generative models are difficult to train because of the approximation involved in deter-
mining the probabilities and maximum likelihood estimations. The model proposed by
[Goodfellow et al. 2014] circumvents these limitations. These models are advantageous
to use because even noisy data can be represented by these models. In contrast, Markov
chains based models require data that can be partitioned easily for the chains to generate
a probability distribution. The other advantage for GANSs is that the network is updated
only by the gradients. Hence, the noise in the input is not propagated forward to the
model. However, training GANs are very difficult as they are very unstable and very
volatile with the slightest change in the hyper parameters[Arjovsky & Bottou 2017].

The alternative to GANs is Wasserstein GAN (WGAN) introduced by [Arjovsky & Bot-
tou 2017]. There are various benefits of WGAN(s) over GAN(s). One of the advantages is
that WGANSs can be trained until optimality. WGANSs specify the point till the generator is
to be trained. WGAN(s) are also more resilient as compared to GANs when the hyperpa-
rameters for the network are varied. Despite being used extensively for image generation,

use of GANSs in natural language processing has not been so widespread. In this section,
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these models are adapted to tackle text summarization which involves generating a short

summary for a longer piece of text.

4.3.2.1 Proposed Approach: Text Generation using Generative Adversarial Networks

(TGGAN)

Paraphrase detection algorithm proposed in section |4.1|is used to reduce the redundancy
in the text by removing duplicate paraphrases. The output generated without redundant
content is then passed as an input to GANs. The building blocks for the GAN are GRU,
and Recurrent Neural Networks are used for comparisons. The number of computations
in GRU(s) are significantly lesser than Long Short Term Memory Networks. The steps

inside a GRU can be broken down into:
e Gate for updating z; = o(W,x; + Uzhy_q)
* Gate for resetting r; = o(W,x¢ + U,hp—1)
e New Memory h; = tanh(ry.Uh;_1 + W)
e Hidden State hy = (1 — z¢).hy + z¢.hy 4

Output of the paraphrase detection (section is passed as an input to the generator, as
shown in Figure Inside the GRU, at every step x; is provided as input sequence to
the network. y; from the previous step is also given to the network. The network updates
the currently hidden state /; based on the previously hidden state. Embeddings from the
text are generated to be passed as the input to the generator. The probability distribution
is then calculated by the network over the next element in the sequence. The softmax layer
on top of the hidden layer generates discrete output. The output sequence, parameterized
by 0, is denoted as Py, (y|x). The output of the generator is discrete and hence can’t be
differentiated by the discriminator. TGGAN has an additional summarization function
S, which is a function of x,y, and ;. S is differentiable and hence can be used by the
discriminator. The generated text is passed to the generator for classification. Function S
also back-propagates from the discriminator to the generate. Algorithm 4.5|discusses the

proposed approach for text summarization using paraphrase detection.
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The discriminator maximizes the probability of differentiating correctly between the out-
put of S on the hidden state versus the input embedding. The loss function used is a

weighted sum of individual loss functions mentioned in equation and

LOSSdiscrimnator = _1/2E(x,y) data [lOg(D(B(X, Y Qg)red))] - 1/2Ey ng [log(l - D(B(x,y, gg)rgd))]
(4.11)

LOSSgenerator — _1/2E(x,y) data [ZOg(P@g)] (4.12)

Once the probability distribution is determined, sentences generated are checked for its
correctness using the following grammar rules. However, these rule vary depending upon

the language.
1. . % (/mn) +. *(fb) +. *(/jj) + .*
2.5 + . (o) + . * (fob) + ¥
3.5 (/rb) +. (/) +. ¥ (fnn) + ¥

4. . *(/rb) +. *(fin) +. * (/nn) + .*

G D
, Real/
b Fake
GRU RNN

Figure 4.23: GAN model for text summarization

4.3.2.2 Dataset

* Multiling 2015 Dataset: This dataset contains hundred news articles from English,

Hindi, Malayalam, etc. amongst the 100 documents, 10 news articles pertaining to
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Algorithm 4.5: Text Summarization using paraphrase detection

NS U W N

o @®

input : A document D to be summarized
output: An output Summ, the summary
Initialization: pooled_S=[];

Preprocessing;

Set Sentence, which contains the sentences already processed,;
for Sentence S in D do

for S” in Sen do

L if S" and S are paraphrases then

L flag = true;

if flag == false then
L Add S to Sen;

Sen is provided as the input to GRU;
Train the GAN, generate Probability distribution P;
S - “" ”;
while Summ <required length do
while s does not specify grammar rules and len(s) <10 do

| s.append(predict(s));

if s satisfies grammar rules then
L Add s to Summ,

one topic. The 10 documents are combined into one document to be given as input

to the approach proposed in this work.

* Opinosis Dataset [Ganesan et al. 2010a]]: This dataset contains product reviews in
English ranging from GPS navigation system, cars, and iPod. There are 51 docu-

ments pertaining to these user reviews and each review has 100 sentences on an

average.

4.3.2.3 Parameter Settings

In RNN of the proposed model, number of layers is fixed to two. The batch size for RNN
and GRU is 50. The decay rate is 0.9 and learning rate starts at 0.002. Adam optimizer

is used to determine the adaptive learning rate. Training for the generator is paused

network is trained for 30 epochs. In Wasserstein GANs, weight clipping is done to make

the network stable. In this network, gradients are clipped at 5. One-sided label smoothing

when the loss is less than 0.5 and for discriminator when the loss is less than 0.3. The

is performed to avoid gradient explosion.
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Figure 4.24: Results for Text Generation using Generative Adversarial Networks

The Garmin is loaded with very fast very accurate . voice tells you where you are
and it's always very are very accurate . It was accurate to use and the line is
usually the quickest, but not always . A lot of simplicity of operation are top .
exact was believe interstate from | updated knew to see how accurate the

directions . After very it an at road GPS only been me continue to get with 100% .

Figure 4.25: Example summary for English generated by Proposed approach (TGGAN)

ISR B T A A § e R ARen O . 3 R gl e
P TP A9 GRal 8 . oHat 1005 91 & Yy gAMt g9 & for amRer #
I ge @ W @ . uFER, sFat €, 1005 @@ FaRt ot gand dita &
forg T @) g & S 1004 @t [ gk e Y@ € . o R smRaR
AR @ ok SR We  u g £

Figure 4.26: Example summary for Hindi generated by Proposed approach (TGGAN)
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Ale® aldM M @ Q) M)WBaieW MA) a)f @ 6T ODTV @ B)S & B @D
@)RLOD “al & MY D a@QQN) QLI @ QI () @ " af)aM 6M QA 8 5@ alel
M) (B alg 8, Haf).af)NV.6)af) OEW NMUNE) “d BU) @ @ @ @) @ 5|Ql) DR
&6 @ aar af)Mm aldH @ @ @)(M) . GRM & B QAUMGHS)S MaPom
@) @ROD @ oo TVDYAOOD @ dh)Oa] SYOMAI ([ @) AU CMRICD ©3 al
& MY M O FVNERSE) aAlCL@ @ @) al @ OAl M W) R M VB A © Al
DOV g]) . alfiE WOM)M N) @RMNU AHEMOD (M) MVIADGED)EME @ & 2l
al @S @R @ £ MBS & EEMO &0 4 6E) @M U6M DM @ aial,
af)s Al) al & T M © Yo @ HEH @ @ al .

Figure 4.27: Example Summary for Malayalam generated by Proposed approach (TGGAN)

4.3.2.4 Evaluation and Discussion

Results of the Multiling dataset are being referred here as English; whereas results of
Opinosis dataset are being referred as English,. For evaluation of the summaries, ROUGE
[Lin 2004] is used. For Opinosis dataset, the result for English summaries is significantly
lesser than that of Multiling English summaries as can be seen from Figure The
reason for this could be that opiniosis dataset contains more redundant sentences and
as such removing them from the dataset greatly reduces the input text to the GAN. For
Hindi and Malayalam, the precision is higher than that of English. It can be seen from
Figure the same pattern between English; and English; is observed for recall as well.
The F-measure score for Hindi is the highest which might be because of the language
semantics being in play. For Opinosis dataset, the F-measure score is the lowest (Figure

4.24) amongst all which is a result of low precision and recall. Figure [4.25] .26/ and [4.27

shows sample summaries generated for English, Hindi, and Malayalam respectively.

44 Concluding Remarks

Two different approaches are proposed for each problem (Paraphrase detection, Extrac-
tive text summarization, and Abstractive text summarization) targeted in this chapter. A
feature vector based approach with three features (POS tags, word stems and Soundex
codes) is discussed for paraphrase detection of Hindi language. Levenshtein distance is

used to calculate the similarity measure. The proposed system achieved an accuracy of
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89.7% and F-measure of 89% for identification of binary class paraphrase detection using
Logistic Regression. For ternary classification, the proposed system gave an accuracy of
71.7% and F-measure of 71.2% using Random Forest classifier. In second proposed ap-
proach for paraphrase detection, a series of experiments with CNN(s) and RNN(s) are
described. Despite little tuning of hyperparameters, a simple CNN with one layer of con-
volution performs on par with the existing Deep Learning Architectures. LSTM(s) and
Bi-LSTM(s) also perform on par with CNN.

The first approach for extractive text summarization outlined present linguistically in-
dependent feature for extracting important text and used a voting based approach to
classify the sentence. A comparison is made with the baselines using RF, SVM, and NB.
The second approach proposed for extractive text summarization using deep learning
where training dataset is built using the algorithm of paraphrase detection such that each
sentence is classified as a summary sentence or not based on the fact that it matches with
the sentence of human-generated gold summary or not. Fully connected CNN is used
to train the model. It is observed that a recall of 0.428 is obtained for English whereas a
recall of 0.846 is obtained for Malayalam.

Evaluation of proposed algorithm ATSSI, using DUC 2002 dataseiﬂ and on the dataset
used by [Ganesan et al. 2010b], outperforms the abstractive summarization algorithms
described by [Lloret & Palomar 2011] and [Ganesan et al. 2010b]]. ATSSI is able to lever-
age the sentence word order to form coherent sentences, and hence generated summaries
are concise and able to communicate the information in conjunction with the ability to
remove the redundancy from the input text. No domain knowledge is required for the
proposed algorithm (ATSSI) to work and hence it is adaptable to different types of content
as well. The second approach proposed for abstractive text summarization, a generative
adversarial network is used to perform multilingual text summarization. The results are
at par with existing deep learning frameworks for summarization. Improvements can be
made in terms of hyper-parameter tuning and size of dataset. The input used to train the
network needs to be larger to achieve better results. The current work uses significantly

lesser data to train the network than the other text generation models.

Thttp:/ /duc.nist.gov/data.html

147



Chapter 5

Spam Detection in Reviews

Opinions influence almost all decisions of humans. The day-to-day choices that we make
in our lives are based on how our peers and friends perceive the world. Be it an orga-
nization or an individual, opinions are an integral part of the decision making process.
The study of emotions, opinions, choices, sentiments and behavioural patterns is known
as opinion mining, also called sentiment analysis. With the growth of social media, or-
ganizations and individuals depend highly on the media content for decision-making.
These online reviews help customers, companies, and vendors to make decisions regard-
ing quality of products and services. Social media allows an individual to post any feed-
back, reviews or comments regarding a product, service or organization anonymously.
Due to this anonymity, people with hidden motives or malicious intentions post decep-
tive opinions or feedback to misguide or wrongly influence people on social media. Such
activities are called opinion spamming [Jindal & Liu 2008]. Such content on social media
falls into the category of opinion spam, and the people are called as opinion spammers. It
is thus essential to address the problem of review spam on social media.The need of the
hour is to have a technique capable of analyzing the truthfulness of reviews to assist with
the decision-making process or for marketing intelligence.

Product reviews are a progressive way of generating online consumer content as they offer
valuable insight into user preferences and requirements. The World Wide Web contains a
vast amount of user reviews and opinions on various products expressed in newsgroups
and sites. As a result, opinion mining has recieved increasing attention over the last few

decades [Jindal & Liu 2008]. The e-commerce websites have made it a practice to let con-
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sumers voice their opinions and publish reviews for various products on their websites
and mobile apps. These reviews give customers the analytical information to broaden
their scope with more competitors who are providing the same product/services [Algur
et al. 2011]. Product manufacturers get to know consumer preferences/interests, as well as
the positive/negative attributes of their products and that of the competitors and hence,
can take necessary action by which profits could be maximized. [Dave et al. 2003].

Several researchers have studied the problem of deceptive spam reviews [Feng et al. 2012b]],
[Li et al. 2014]. Various review filtering systems have been developed and are being used
by companies such as Yelp and Dianping to detect low quality and fake reviews on their
product pages. These systems help alleviate the negative impact of fake reviews. Many
spammers work collectively to promote or demote a set of target products so that they
can work without leaving a trail [Li et al. 2015|]. Experiments of [Ott ef al. 2011] suggested
that an average accuracy of detecting spam by three human judges is 57.33% and hence,
the research for detection of deceptive opinion spam is necessary and meaningful. The
problem of spam is troublesome and poses a security threat as well. However, it is chal-
lenging to filter out a spam review or capture spammer behaviour, even if done manually.
The objective of this chapter is to distinguish whether a review is a spam or truth (not
spam). The task can be transformed into a binary class classification problem. In tradi-
tional machine learning techniques, feature engineering is essential. However, the inher-
ent law of data from a semantic perspective can hardly be learned from it. Deep learning
refers to a set of algorithms that attempt to learn in multiple levels, corresponding to dif-
ferent levels of abstraction. It is nothing but a very large or deep neural network which
automatically learns feature hierarchies with features from higher levels of the hierarchy
formed by the composition of lower level features. Deep learning algorithms have per-
formed well on various natural language processing tasks such as paraphrase detection
[Huang 2011b], POS tagging [Popov 2016|], language modelling [Sutskever et al. 2014]
and sentiment analysis [Socher et al. 2013]. This chapter presents an experimental study
and its analysis on variants of sequential models based on deep network architecture. It
also compares the proposed approach, and its variants explained in section to that
of the baseline approach (discussed in section based on traditional machine learning

techniques to analyze the effectiveness of the proposed approach.
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5.1 Composite Sequential Modeling for Identifying Fake Reviews

Proposed approach composite sequential modeling for identifying fake reviews, com-
prises of multiple phases as shown in Figure In pre-processing phase, the raw reviews
are taken and converted into lower case. The vocabulary of the entire data set is extracted
from the reviews, and overall frequency of each word is calculated. A sorted dictionary
of all the words along with their frequencies is generated, and the most frequent word
is labelled 1, the second most frequent word is labelled 2 and so on. Words in the raw
reviews are replaced by generated labels correspondingly, and in this way, each review is
encoded as a sequence of word indexes (integers). Custom vectorization is used instead
of pretrained vectors, to create context specific word embedding.

In sequential models phase, different sequential models are generated for classification

Qutput

Figure 5.1: Block Diagram for Proposed Approach

of the reviews using architectures explained in section5.1.1,[5.1.2, 5.1.3] The first layer of

each model is an embedding layer, which converts positive integers (indexes) into dense
vectors of fixed size. Word embeddings help in associating a numeric vector to every word
in a dictionary. Ideally, words with similar semantic meaning are closer in the embedding
space. The embedding layer converts each word encoding (index) to a vector in embed-
ding space. The vectors are initialized randomly and then optimized iteratively. The input
parameters for embedding layers are input_dim, output_dim and dropout. The input di-
mension is the size of the vocabulary (20,000 for all the models implemented), and the
output dimension is the dimension of the dense embedding vectors (5612 for all the mod-
els). Dropout is varied between 0 and 1 (0.2 for this specific model), which corresponds

to the fraction of the embeddings to drop.
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5.1.1 Parameter setting for Recurrent Neural Network (RNN)

The parameters set for the RNN layer of the proposed model are dimensionality of the
output layer (256 for this layer), tanh as the activation function and the dropout (fraction of
units to drop for the linear transformation of the inputs) as well as the recurrent_dropout

(fraction of units to drop for the linear transformation of the recurrent state) set at 0.2.

5.1.2 Parameter setting for Long Short Term Memory (LSTM)

The parameters of the LSTM layer are the dimensionality of the output layer (kept at
256), activation function (tanh), the recurrent_activation function (hard_sigmoid), dropout

as well as recurrent_dropout (kept at 0.2).

5.1.3 Parameter setting for Convolutional Neural Network (CNN)

While building CNN architecture, some of the parameters to choose from are input repre-
sentations, i.e. embedding layer, number and size of convolution filters, pooling layer (max
or average) and activation functions (tanh or ReLU). The convolution layer is the primary
building block of a CNN which comprises of a set of independent filters. The pooling
layer progressively reduces the spatial size of the representation to reduce the number of
parameters and computation in the network and operates on each feature map indepen-
dently. After the activation function layer, CNN usually has a fully connected layer at the
end in which neurons in the layer have full connections to all activation in the previous
layer. CNN(s) are usually very fast and give reasonable results for NLP task. 1D Convolu-
tion layer is used, which applies the convolution operator for filtering neighbourhoods of
one-dimensional input. The number of convolution kernels or dimensionality of output
is set as 250, the kernel_size or the length of the 1D Convolution window is kept at 3 with
the activation function ReLu and a stride of 1. There was no padding applied to the input.
The next layer is a GlobalMaxPooling1D layer which does the max pooling operation. A
dropout layer with value 0.2 is added to prevent over-fitting.

In each of the model discussed in section[5.1.3)5.1.2} [5.1.T} the penultimate layer is a Dense

layer, which is an entirely connected neural network with the output as the corresponding

label of the review. The last layer of each model is an activation layer that applies an acti-
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vation function (‘Sigmoid” in the proposed models) to the output. After generation of the
models, they are compiled using an optimizer (‘adam’, for this model) and a loss function
(binary_crossentropy for the implemented model) with an objective that the model tries to
minimize. The optimizer ‘adam’ uses 0.001 as the default learning rate. After compilation,
the model is trained in a batch size of 32. Finally, models are evaluated, batch by batch

for the loss and model accuracy.

5.2 Baseline Approach

Baseline approach is based on traditional machine learning techniques for comparing the
results obtained using the proposed approach. One of the key ingredients for traditional
machine learning techniques to work is the extraction of manually engineered features,
by which the model tries to learn and predict class labels. [Chen et al. 2015] uses shal-
low syntactic features (Bag of words, POS-n-gram, punctuation, hotel name), discourse
parsing features and sentiment features to build the classification model. The baseline
model chosen to compare proposed work implements the shallow features and senti-
ment features along with some more additional features such as Bag of uni-grams and
bi-grams for more contextual information, length of review and subjectivity of the review.
Length of a review and subjectivity are chosen based on some heuristics which suggest
that truthful reviews are usually long and descriptive as compared to spam ones which

are comparatively more vaguer [Li et al. 2014].

5.2.1 Features

1. Bag of Words (Fy):
CountVectorizer [Pedregosa et al. 2011b] is used to convert each review into its corre-

sponding vector for frequencies of each word in the review.

2. Punctuation (F5):

l'/

A binary feature to indicate punctuation (‘?” or ‘") in the review.

3. POS-n-gram (F3):

POS uni-gram and POS bi-gram tags are used as they help maintain the structure of
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the sentence.

. Bag Of Uni-grams and Bi-grams (Fy):
Instead of the bag of words, the bag of uni-grams and bi-grams are considered as
features. CountVectorizer [Pedregosa et al. 2011b] is used for generating the bag of

uni-grams and bi-grams.

. Hotel_Name (F5):

This feature indicates whether Hotel Name appears in the first line of the review.

. Length of the Review (Fg):

An integer indicating the length (number of words) of each review.

. Subjectivity (F;):
TextBlob [Pedregosa et al. 2011b] is used to calculate subjectivity of each review. It
returns a float value [0.0, 1.0]. 0.0 means very objective and 1.0 means very subjec-

tive.

. Sentiment Words (Fg):
Three separate features corresponding to sentiment words are extracted : positive
sentiment words, negative sentiment words and total sentiment words. The average

number of sentiment words used in the review is considered.

. Polarity of the review (Fy):
The range of the polarity is [0.0, 1.0] where 0.0 means the review is entirely negative

and 1.0 means highly positive review.

The feature vector is generated using features (F; to Fg) extracted. Classification tech-

niques such as Logistic Regression, Naive Bayes and Support Vector Machine are used to

build the model.

5.3 Experiments and Results

In this section, data set used for experiments is described along with the results obtained.

The baseline approach is used to evaluate and compare the results obtained by the pro-

posed approach. All the proposed sequential models, as well as the model for the baseline
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approach, are coded in python using machine learning libraries such as scikit-learn [Pe-

dregosa et al. 2011a]] and keras [Chollet et al. 2015].

5.3.1 Data Set Description

The data set used for experimentation is the Deceptive Opinion Spam Corpus v1.4 [Ott
et al. 2011)]. The corpus contains 1600 truthful and deceptive hotel reviews of 20 Chicago
hotels. The data set consists of the review, polarity of review along with the label of the
review (0 for not spam and 1 for spam). There are 400 deceptive and 400 truthful reviews
of positive polarity. Similarly, there are 400 deceptive and 400 truthful reviews of negative
polarity. The best state of art accuracy for the data set "Deceptive Opinion Spam Corpus
v1.4 is 89.5% which is implemented by [Chen ef al. 2015]. Th best model combines Bag of

Words, syntactic features and discourse parsing features.

5.3.2 Evaluation & Discussion

This section discusses the evaluation of the proposed approach and its variants. Dataset
described in Section has been split into 80:20 ratio for training and testing respec-

tively.

5.3.2.1 Results for Baseline Approach

Features play an important role in traditional machine learning techniques and hence, in-
dividual features are evaluated using Logistic Regression model. It can be observed from
Figure the bag of words feature yields the maximum accuracy of 86.25%, followed
by Hotel_Name (64.58%). The rest of the features gives accuracy in the range of 45-55%
as depicted in Figure F-measure for the bag of words is 85.96%. Hotel_Name feature
gave F-measure of 63.52%. Rest of the features yields a result in the interval of 43-60%
for F-measure. The similar trend is observed for precision. However, a slightly different
trend observed for recall values as shown in Figure The maximum recall is obtained
for the bag of words (87.83%). Positive polarity feature yielded the second-best value of
recall (82.61%) followed by the length of review (73.04%). The rest of the features are in

the interval 40-65% for recall. Overall, the bag of words features obtained the best results
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using Logistic Regression. This may be because the data set is engineered for spam detec-
tion and contains words that majorly contribute towards the improvement of the model.

The result for the combined feature vector that is generated using the individual features
is evaluated using three different classifiers (Support Vector Machine, Naive Bayes, and
Logistic Regression) as shown in Figure Logistic Regression gives the best results
concerning accuracy (87%), F-measure (86.58%), precision (86.2%) and recall (86.96%),
followed closely by Naive Bayes which gave an accuracy and F-measure of 73%, precision
70% and recall 77%. The results obtained by logistic regression are better than the others
because spam detection is a binary classification problem. SVM(s) are usually more use-
ful in the case of non-linear classification since they use kernel trick. The results range in

53-56% using SVM.
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Figure 5.2: Results obtained at Feature Level

5.3.2.2 Results for Proposed Approach

The accuracy obtained for different variant sequential models based on LSTM, RNN, and
CNN are shown in Table 5.1} [5.2]and Each model is evaluated using different number
of layers as a varying parameter.

Table and [5.3| discuss results obtained for LSTM, RNN, and CNN respectively for

1, 2 & 3 layers. In all the three cases, the best results are obtained in the case of a single
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Figure 5.3: Comparison of different techniques

layer model as shown in Figure CNN gave an accuracy of 81%, and LSTM gave 80%
accuracy when a single layer is used whereas RNN gave an accuracy of 59% for a single
layer. LSTM performs better than RNN because it considers long-term dependencies
as well. CNN helps in extracting position invariant features whereas RNN and LSTM
are useful for modelling units in sequence. Since the task at hand is to detect spam
reviews, pattern detection is essential. LSTM preserves long-term structure whereas CNN
is good at classification. Hence, CNN gives slightly better results as compared to LSTM.
The results show that increasing the number of layers of a particular model reduces the
accuracy of the model in case of spam detection.

While implementing a two-layer model where each layer is either RNN, LSTM or CNN,
the best results are obtained in the model where the combination of LSTM and CNN is
implemented. Table 5.4 shows the results for two-layered models, where 1 represents the
tirst layer, 2 represents the second layer, and 0 represents no layer. It can be observed that
change in the placement of layer in case of LSTM and CNN model affected the results. The
accuracy of the model with the first layer as LSTM and the second layer as CNN is 76.25%
whereas it is 76.67% when the first layer is CNN layer and the second layer is LSTM. The
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Figure 5.4: Comparison of layered models of different architecture

precision, recall, and F-measure for LSTM-CNN network is 75.65% when CNN is the first
layer whereas precision is 71.32%, recall 84.35% and F-measure 77.29% when LSTM is the
tirst layer. The overall accuracy of the model is comparatively less when a layer of RNN
is introduced in the model because RNN is a less efficient deep learning algorithm as
compared to LSTM. The least accuracy is obtained in the combination of RNN and LSTM
(69% and 74%). CNN is a better network architecture for text classification as discussed
above and hence, poor results are obtained when CNN layer is missing in the architecture.
When the first layer is LSTM, better results are obtained with precision of 71%, recall of
76.52% and F-measure of 73.64%. This is due to the fact that LSTM performs better than
RNN because of long term dependencies. As second layer takes input from the first layer
in a neural network, the more efficient the first layer is, better the feature extraction and
hence, improved results of the overall network.

Table 5.1: Results for different model of LSTM

Model | Accuracy | Precision | Recall | F-Measure
1 Layer 0.79 0.77 0.8 0.78
2 Layers 0.74 0.71 0.79 0.75
3 Layers 0.73 0.68 0.87 0.76
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Table 5.2: Results for different model of RNN

Model | Accuracy | Precision | Recall | F-Measure
1 Layer 0.59 0.57 0.62 0.59
2 Layers 0.53 0.5 0.59 0.54
3 Layers 0.61 0.58 0.63 0.6

Table 5.3: Results for different model of CNN

Model | Accuracy | Precision | Recall | F-Measure
1 Layer 0.81 0.78 0.84 0.81
2 Layers 0.7 0.66 0.8 0.72
3 Layers 0.69 0.65 0.76 0.7

as shown in Table where 1% layer represents that the particular model is used as a 1%
layer of the sequential model. 2" layer and 3" layer depict the respective positions of a
layer in the model. The best result is obtained when CNN is used as the first layer followed
by RNN and LSTM (78.75%). Further, an accuracy of 74.58% is obtained when RNN is
used as the first layer, followed by LSTM and CNN. A common trend is observed that
best results are obtained when CNN is kept as a first layer. This is because CNN performs
better feature extraction than LSTM or RNN. Moreover, worst accuracy is obtained when
the first layer is LSTM, followed by RNN and CNN layer (57.5%). Output dimensions
of embedding layer are also varied to evaluate the effect on accuracy. Best results are
obtained in the proposed approach when the output dimensions are 512 (81.25%). As
the number of dimensions increases in the embedding layer, the accuracy of the neural
network increases, as shown in Table More the dimensions, better is the representation
of the reviews in vector space, and hence the accuracy increases with an increase in the
number of dimensions. However, change in accuracy became near constant after 512
dimensions. Figure [5.5|shows the ROC curve for the best results obtained in the proposed
approach (81.25% accuracy for single-layer CNN model). The AUC or Area under the
ROC Curve is shown in Figure |5.5|is 0.8137.

5.3.2.3 Comparison of Proposed Approach with Baseline Approach

The baseline approach with the variant of Logistic Regression as machine learning tech-

nique gave a maximum accuracy of 87% for the hotel reviews dataset whereas proposed
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Table 5.4: Results for two-layered model

LSTM | SimpleRNN | CNN | Accuracy | Precision | Recall | F-Measure
0 1 2 0.75 0.74 0.76 0.75
0 2 1 0.75 0.71 0.82 0.76
1 0 2 0.76 0.71 0.84 0.77
1 2 0 0.74 0.71 0.77 0.74
2 0 1 0.77 0.76 0.76 0.76
2 1 0 0.69 0.68 0.68 0.68
Table 5.5: Results for three-layered model
LSTM RNN CNN Accuracy | Precision | Recall | F-Measure
1st Layer | 2nd Layer | 3rd Layer 0.575 0.5436 | 0.7044 0.6136
1st Layer | 3rd Layer | 2nd Layer | 0.5792 0.5603 | 0.5652 0.5627
2nd Layer | 1st Layer | 3rd Layer | 0.7167 0.688 0.7478 0.7167
2nd Layer | 3rd Layer | 1st Layer 0.7333 0.6946 | 0.7913 0.7398
3rd Layer | 1st Layer | 2nd Layer | 0.5917 0.5714 | 0.5913 0.5812
3rd Layer | 2nd Layer | 1st Layer 0.7875 0.75 0.8348 0.7901
Table 5.6: Result for different model of CNN
Dimensions | Accuracy | Precision | Recall | F-Measure
512 0.8125 0.7822 | 0.8435 0.8117
256 0.7917 0.748 0.8522 0.7967
128 0.7917 0.77 0.7913 0.7844
64 0.7792 0.7384 | 0.8347 0.7837
32 0.7625 0.7101 | 0.8522 0.7747
16 0.7083 0.6552 | 0.8261 0.7307

54 Concluding Remarks
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proposed approach didn’t surpass the baseline approach.

approach gave a maximum accuracy of 81.25% which is comparable to traditional ma-
chine learning algorithms, if not better. Deep learning algorithms give much better results
with a huge amount of data. Since the data considered for all the above-obtained results

is just 1600 reviews, which is very less for a deep learning model, the results obtained by

The proposed approach suggests that deep learning sequential models perform compara-
bly and are well suited to address the problem of review spam detection. A single layer
LSTM, CNN or RNN model outperforms multi-layer sequential models of LSTM, CNN
or RNN. Single-layer LSTM model and single-layer CNN model give 79% and 81.25%
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Figure 5.5: ROC Curve for single-layer CNN

accuracy respectively whereas single-layer RNN model gives an accuracy of 59%. When
a combination of LSTM, CNN or RNN is used in a two-layered sequential model, the
CNN-LSTM combination gives the best results (77% accuracy). An accuracy of 78.75%
was obtained when the first layer of a three-layered sequential model implemented CNN,
second layer RNN followed by LSTM in the last layer. For the CNN model, results have
improved with an increase in the number of output dimensions of the embedding layer
in the deep network model. Larger networks having more number of dimensions help
capture information better and hence yield better results. An accuracy of §1.25% was
obtained when the number of output dimensions of the embedding layer was 512. A
comparison is drawn between traditional machine learning algorithms and deep learning
algorithms for spam review classification. Baseline approach resulted in an accuracy of
87% using Logistic Regression. The results show that traditional machine learning model
gives a higher accuracy for small sized data. However, the deep learning models are
not far behind. With more massive datasets, deep learning techniques are likely to sur-
pass traditional machine learning algorithms. In future work, the aim is to implement
these sequential deep learning models on more massive datasets and then compare the

performance.
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Chapter 6

Sarcasm Detection

“Sarcasm is the use of words that mean the opposite of what you really want to say
especially to insult someone, to show irritation, or to be funny” as indicated by [Merriam-
Webster 1983]. Automatic sarcasm detection refers to computational ways to detect sar-
casm in text. A computer needs to make sense of what you implied inverse of what you
just said to identify Sarcasm. The onset of Web applications, such as small-scale blogging
sites, forums and social networking sites have given clients a platform to express their
reviews, comments, recommendations, ratings and feedback. These applications have
given the user a stage to express anything they feel about any politician or product or,
people or event. This data if mined can be of great use to companies, politicians, service
providers, social psychologists, analysts and researchers. Usually, companies might want
to know if a user liked their product or not. Sentiment analysis tools perform this task for
a company, but it may provide the company with wrong information, if it cannot analyze
sarcasm in the review. Hence, sarcasm is a challenge for sentiment analysis tools. This
motivates to work on sarcasm detection, which can be used in conjunction with sentiment
analysis tool to give the company a correct idea about the response from the users for its
product. If a system can reliably identify sarcasm and irony in the text to infer the actual
communication intention of the author then it can improve the performance of many nat-
ural language processing systems including summarization, sentiment analysis, opinion
mining and advertising.

Sarcasm is defined as the use of remarks that apparently mean the opposite of what they

say, made to hurt someone’s feelings or to criticize something humorously. Sentiment
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analysis and related fields of study are continually gaining popularity as it captures the
human sentiment underlying in their opinions, reviews for various purposes like opinion
mining for products and polling for a global phenomenon. This creates a need for cor-
rectly determining the hidden sentiment in the text. Thus, sarcasm detection is a crucial
key in this process due to its property of showcasing a false positive sentiment behind a
true negative sentiment and vice-versa.

In the speech, sarcasm is quite indicative as it involves tone, body language and gestures,
which makes its detection relatively easy. However, sarcasm in text is restrictive and can-
not encompass such a range of auxiliary features. Thus, sarcasm detection is challenging
task in the field of NLP. This is apparent from the results reported by the survey [Joshi
et al. 2016al.

Often, knowledge of the universal truth on a given topic is insufficient to detect sarcasm,
since the text may refer to some specific events to express sarcasm. The same sentence can
be sarcastic or not sarcastic depending on the given context. For example, the sentence
"You have been working hard, I see." is difficult to be classified as sarcastic or not sarcastic
without provision of an explicit context. Apart from this, the use of phrases "working
hard" and "I see" express semantic contrast and points to the presence of sarcasm. Thus,
quite often, one needs a considerable amount of facts and contextual knowledge to draw
such a conclusion. This makes it quite difficult for even humans to sense sarcasm.

The high importance of sarcasm detection has motivated researchers to work on the
problem of sarcasm detection. Some earliest work in this field is done by [Iepperman
et al. 2006]. He dealt with speech and text-related features. Sarcasm detection from text
now has been extended to tweets and reviews. Researchers have used several techniques
for sarcasm detection such as rule-based, supervised and semi-supervised. This synergy
has resulted in interesting innovations for automatic sarcasm detection. Pattern based
features [Tsur et al. 2010] are extracted from the text in conjunction with lexical features
for identifying sarcasm in text.

This chapter discusses three proposed solutions for sarcasm detection. The first approach
presented in section |6.1| models the problem of sarcasm detection as a classification task
and uses traditional machine learning techniques. Second approach presented in section

is based on code mixed data and uses deep learning technique to identify the sarcasm
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in code mixed text of English and Indian languages.

6.1 Sarcasm Detection using Machine Learning Techniques

In this section, an approach based on traditional machine learning technique is explained.
Manually engineered features are elaborated in section Further, different variations
and combinations of these features are experimented to identify the best combination of
features in section[6.1.6] The approach observes the results by combining existing features

in state of the art and how they effect the overall results of sarcasm detection.

6.1.1 Dataset Description

The dataset used for training consists of 1,254 Amazon reviews out of which 437 are ironic,
and 817 are non-ironic. It has been acquired by [Filatova 2012] using the crowdsourcing
platform amazon mechanical turk. The process of acquiring data included following
steps. In the first step, employers are asked to find pairs of reviews on the same product
so that one of the reviews is sarcastic, but the other one is not. After that they have to
submit the ID of both reviews, and in the case of an ironic review, they have to provide
the fragment conveying the irony. In the second step, five additional workers annotated
each collected review. Annotated review remained in the corpus if three of the five new
annotators concurred with the initial category, i.e., ironic or non-ironic. This dataset is
most suitable to the problem statement defined above because each review in this corpus

is at least three sentences long.

6.1.2 Data Pre-processing

In pre-processing step, review is tokenized into sentences and sentences are tokenized
into words. Treebank Word Tokenizer was used to tokenize sentences to words and Punkt
Tokenizer was used to tokenize reviews into sentences. These tokenizers are present in
NLTK [Bird & Loper 2004]. With each word, a POS tag is attached. The sentiment is also
attached to each word which indicated the word’s polarity which can be positive, negative
or neutral. Polarity lexicon by [Hu & Liu 2004] which consists of about 6800 words is used

to determine the polarity of words. A sentiment score is assigned to each sentence using
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python library [Li et al. 2017b|]. Therefore, each review is considered as an object with
attributes like words, bi-grams and sentences. Each word has polarity and POS tag. Each

sentence has sentiment score associated with it.

6.1.3 Feature Extraction

Following features are extracted to train the model:

1. Star Rating: With every review, a star rating is attached which signifies how satisfied
is the user with the product. The rating is between 1 and 5. Dataset already contains

the star rating for each review.

2. Star Polarity Discrepancy: If the rating given by the user is high, i.e. 4 or 5 but
the sentiment of the review is negative or vice versa. 1 and 0 is appended for the

presence and absence of this feature respectively.

3. Bag of Words: A dictionary is built which contains all the words present in reviews
which are used for training. A feature vector for each review is then built using this
dictionary. For all the words present in the dictionary, if that word is present in a

given review, 1 is added to feature vector else 0 is added.

4. Bag of bi-grams: A dictionary is built which consists of all the bi-grams present in
reviews which are used for training. A feature vector for each review is then built
using this dictionary. For all the bi-grams present in the dictionary if that bi-gram

is present in a given review 1 is added to feature vector else 0 is added.

5. Hyperbole: It is an extreme exaggeration used to make a point. Presence of it in
a sentence indicates that the sentence can be sarcastic. Therefore if a sequence of
three positive or three negative words was found in a sentence of a review, then 1 is

added to feature vector else 0 is added.

6. Scare Quotes: If two consecutive adjectives or nouns or adverbs having a positive or
negative polarity occurs in quotations in a sentence then 1 is added to feature vector

else 0 is added. It is also considered as exaggeration and an indicator of sarcasm.
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10.

11.

12.

Ellipsis plus Punctuation: When an ellipsis is followed by two or more exclamation
marks or question marks or combination of them in a review then 1 is added to

feature vector else 0 is added.

N-gram plus punctuation: If a span of up-to four positive or four negative words oc-
cur in a row followed by punctuation symbols like an exclamation mark or question

mark or combination of both then, 1 is added to feature vector else 0 is added.

. Emoticons: To extract this feature, a list of emoticons is created. Three annotators

are asked to label these emoticons as positive, negative or sarcastic. Final label is
decided based on the majority count. If an emoticon expressing positive sentiment
occurred in a sentence but the sentiment of the sentence is negative or vice versa
then 1 is added to feature vector else 0 is added. If sentence contained any sarcastic

emoticon, then 1 is added indicating the presence of sarcasm.

Interjections: For extracting this feature, a list containing 155 interjections is built.
Three annotators are asked to label these interjections as positive, negative or neu-
tral. Final label is decided based on the majority count. If an interjection expressing
positive sentiment occurred in a sentence but the sentiment of the sentence was

negative or vice versa then 1 is added indicating the presence of sarcasm.

Capitalization: If a word is written in upper case in a sentence then there is a high
probability that sentence can be sarcastic and hence the number of words present in
the upper case in a review are taken as a feature. The letter ‘I’ is not considered as

upper case word as ‘I" is always capitalized.

Pattern based features: Words whose corpus frequency is less than 2000 words per
million are considered as low frequency words, also called as Content Word (CW).
Remaining words are considered as high frequency words. Punctuation symbols are
also considered as high frequency words. In the review, a content word is replaced
by ‘CW’. After this classification, patterns are extracted from reviews where each
pattern must begin and end with a high frequency word, and there must be one
content word in between them. Patterns of length 3, 4, 5, 6 and 7 are extracted. Each

review is then matched with all the patterns, and thus a feature vector is made for
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each review. Pattern matching assigns a score to each review using the following:
1: (Exact match) all the pattern components match

alpha : (Sparse match) same as an exact match, but additional non matching words
can be inserted between pattern components.

gamma * n/N : (Incomplete match) only n >1 of N pattern components appears in
the sentence, while some non-matching words can be inserted in-between.

0 : No match

alpha and gamma is taken as 0.1. As the patterns are relatively long, exact matches
are uncommon, and taking advantage of partial matches allows us to reduce the
sparsity of the feature vectors significantly. For sentence “Brisbat apparently does
not care much about product quality or customer support”, the value for “Brisbat
CW does not” would be 1 (exact match); for “Brisbat CW not” would be 0.1 (sparse
match due to insertion of ‘does’); and for “Brisbat CW CW does not” would be

0.14/5 = 0.08

6.1.4 Classification

Existing approaches for sarcasm detection have mostly used following traditional machine

learning techniques and hence, these techniques are used to observe the result.

1. Support Vector Machine: It is a supervised learning technique for classification. As
number of dimensions or size of the feature vector is significant in the problem of
the sarcasm classification proposed algorithm has been used as it is effective in high
dimensional spaces. It is additionally, memory efficient as it uses a subset of training

points in the decision function.

2. Logistic Regression: It is a linear model for classification. As the proposed model
contains two classes, binary logistic model is used which estimates the probability

of a binary response based on one or more features.

3. Naive Bayes: Every pair of the feature is assumed to be independent in this tech-
nique. This is the primary reason for lower results than that of other two classifica-

tion techniques as shown in section
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6.1.5 Algorithm: Sarcasm Detection using Machine learning Techniques

The dataset contains a file for each review, which contains the review text and stars given
by the user to the product. For each review, a review object is created which has properties
like star rating, text, polarity and array of sentences. Each sentence has attributes like
sentiment and array of words. Each word has attributes like polarity and POS tag. Bag
of words dictionary is formed which store all the distinct words present in the reviews.
Moreover, a bag of the bi-grams dictionary is formed which stores all the distinct bi-grams
present in the reviews. All the features mentioned in section are extracted, and their
return value is appended to the array for each review. The classifier takes the feature
vector and true label of respective reviews to build a model. This model is then used to

classify other reviews. Algorithm [6.1|discusses the details of the approach.

Algorithm 6.1: Algorithm for identifying Sarcasm using Ma-
chine Learning Technique

input : training array T, test array Test
output: Array of 0’s and 1’s where 0 means non-sarcastic and 1
means sarcastic
Initialization label=[],feature=[], true_label=[], test_feature=[],
feature_name=[list of features mentioned in section ;

2 fori =0 to T.length do

3 | label.append(T|[i].label);
4 feature_list=[];
5
6

[y

for j = 0 to feature_name.length do
L feature_list.append(extract(T[i] feature_namelj]));

7 | feature.append(feature_list);

for i = 0 to Test.length do
true_label.append(T[i].label);

10 | feature_list=[];

11 for j = 0 to feature_name.length do

12 L feature_list.append(extract(T[i] feature_nameljl));

©

13 | test_feature.append(feature_list);

14 clf=Classfier();

15 clf fit(feature label);

16 prediction=clf.predict(test_feature);
17 return prediction;
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6.1.6 Experiments & Results

For training 375 sarcastic and 375 non sarcastic reviews are used. They are randomly
picked from a corpus of 817 non sarcastic reviews and 441 sarcastic reviews. To remove
the bias, an equal number of sarcastic and non-sarcastic sentences are taken for training.
Results are obtained by testing on 66 sarcastic and 66 non-sarcastic reviews. F-measure
achieved using different classifiers on different features has been shown in Figure
It can be observed that highest F-measure of 0.8 is given by bag of words feature using
logistic regression. The reason for this could be the fact that corpus is specially built for
sarcasm detection and contains words that are oftenly used for sarcasm. Figure|6.2|shows
the F-measure achieved using different classifiers on various combination of features.
Highest F-measure of 0.84 is given by all the features together excluding the star rate and
pattern feature by logistic regression. The results given by naive bayes is lower compared
to logistic regression and linear SVM because naive bayes has a higher bias but lower
variance. In case of bag of words or combination of features, the feature set is large and
sparse. Naive bayes technique counts the features that are correlated with each other
because it assumes that each p(x|y) event is independent when they are not. Logistic

regression does a better job by naturally splitting the difference among these correlated

features.
Table 6.1: Result comparison with baseline [Buschmeier et al. 2014]
F-measure F-measure (Baseline)
Interjections 0.62 0.01
Emoticons 0.47 0
NegNGP 0.33 0.01
Ellipsis+Punc | 0.33 0.01
POSSQuotes 0.5 0.02
NegHyper 0.35 0
Imbalance 0.57 0.05
StarRates 0.39 0.72
BOW 0.8 0.69
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Figure 6.1: Feature comparison of different classification Techniques

6.1.6.1 Performance Analysis

Apart from bag of words feature other features like bag of bi-grams and patterns also gives F-
measure of (.77 and 0.7 respectively which is comparable to the best F-measure achieved.
These results show that there is a specific vocabulary associated with sarcastic sentences
and a pattern exists which could help in identifying sarcasm. F-measure of 0.62 is
achieved by interjection feature which indicates that customers or users use interjections
to express sarcasm. Star imbalance gave the F-measure of 0.57 which indicates that other
information about a product like star rating can be useful in identifying sarcastic sen-
tences. Other features resulted F-measure value less than 0.5. F-measure is also calculated
for individual features. Features which gave a high F-measure were chosen and then used
a combination of them to see if the performance of classifier increases. On combining the
bag of words, bag of bi-grams and interjections, F-measure increased to 0.82. When a
combination of all the features is used, F-measure achieved is 0.7. This showed that some
features need to be removed, to get better performance. On removing pattern based fea-

ture and star rating feature, highest F-measure of 0.84 is achieved. Table shows the

comparison between results achieved by proposed approach and [Buschmeier et al. 2014].
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Figure 6.2: Comparison of different feature combination using various classifiers

The work in [Buschmeier et al. 2014] achieved the best F-measure of 0.74 on a combina-

tion of all features including star rating. However, their combination of all features did
not include the features such as patterns, bag of bi-grams, capitalization and interjections

which are included in proposed approach.

6.2 Sarcasm Detection for Monolingual & Code Mix Text

Substantial research exists for detection of sarcasm in languages, particularly English,
while the native languages such as Indian languages have been neglected. This ignorance
directly arises from the lack of annotated corpus in the respective language or from the
fact that it is not being used particularly for digital communication. However, with the ad-
vent of social media, these native languages are being used more often in a mixed fashion
with English resulting in a code-mix genre of language. The approach proposed in this
section primarily aims to identify sarcasm in non-monolingual, code-mix language which
comprises of more than one language. To facilitate this, a code-mixed, bilingual corpus
of English-Hindi (En-Hi) languages has been created as discussed in section [.2.1] Addi-

tionally, techniques for sarcasm detection in monolingual languages are also explored.
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Existing research on sarcasm detection have primarily focused on machine learning tech-
niques with feature engineering performed using n-grams based approach [Tsur et al. 2010],
unsupervised pattern mining approach [Maynard & Greenwood 2014], uni-grams and
emoticons based approach [Carvalho ef al. 2009] amongst others.

Instead, proposed approach uses a deep learning technique that learns sarcasm features
automatically from a corpus using a deep neural network. This methodology uses un-
supervised training of the corpus to propel the supervised classification task for sarcasm
detection. This classification problem is binary with the text being categorized as sarcastic

or non-sarcastic. The main characterstics of the proposed work are as follows:

1. The proposed work detects sarcasm in code-mix genre of language, which is evolv-

ing as the primary language being used by masses for day-to-day communication.

2. A variety of neural net architecture for the classification model are explored to de-

termine the best performing model for the task of sarcasm detection.

3. The use of pre-trained models for feature extraction is another attribute of this work.
In computer vision, for classification task, images are used as direct input to the
network (in the form of pixels). Such a procedure cannot work in the context of
natural language processing. Hence, pre-trained models are used in the proposed

work.

6.2.1 Dataset Description

Code Mixing is a very common phenomenon in social media text. However, to detect
such data in social media has been a current field of research for quite some time now.
Researches have worked on the generation of such text to aid the training of automated
tools to analyze code mix text [Gupta et al. 2012] [Bhatia & Ritchie 2016] [Prabhu ef al. 2016]
[Banerjee et al. 2016c]. [Bali ef al. 2014] worked on Hindi English language pair and had
an interesting observation where they found out, most of the code mixing is occuring for
the words tagged as nouns and verbs. However, there were certain exceptions to that.
Similarly, few other works in literature such as work by [Gupta et al. 2016b]|, [Choudhury
et al. 2007] and [Gupta et al. 2012] suggest the same. Hence, data for code mix sarcasm

detection was synthesized considering the exceptions, and appropriate nouns and verbs
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were translated. Moreover, the synthetic data created was checked by human annotators
to verify if the sentence seemed appropriate or not. In case of disagreement, the sentence
was removed. This was important because there was no such data that existed beforehand
in bulk for the training purpose of deep net models. Since deep learning approach for
classification learns input features on its own, it demands a relatively large dataset. Hence,
for the creation of the code-mixed dataset, most of the English(En) based annotated corpus

are used. The corpora used are as follows:

. ironicQuotes.sourc A dataset collected by Antonio Reyes, it consists of 1,002 sar-

castic quotes in English.

® Sarcasm Corpus v1 [Oraby et al. 2016]: It is a subset of the Internet Argument Corpus
(IAC), which is a corpus for research in the political debate on internet forums, in-
cluding response text from quote-response pairs annotated for sarcasm. The dataset

consists of 1,993 opinions.

¢ Amazon Sarcasm Corpus: The dataset consists of 1,254 Amazon reviews, of which
437 are ironic, and 817 are non-ironic. It has been collected by [Filatova 2012] using

the crowd-sourcing platform Amazon Mechanical Turk.

. Reddiﬂ The dataset is a collection of television sub-reddit comments by users ac-

cumulating to 2,688 comments.

¢ Sarcasm Corpus V2 [Oraby et al. 2016]: Sarcasm corpus V2 is a subset of the IAC, in-
cluding response text from quote-response pairs annotated for sarcasm. The quote-
response pairs are combined to form dataset sample as their combination captures

the sarcastic context.

In total, there are 11,609 samples for training out of which 4,851 are sarcastic and 6,758 are
non-sarcastic samples, corresponding to the vocabulary size of 51,961. Figure|6.3|describes
the distribution of different data used for evaluation.

The complexity in classification can be judged by the data visualization shown in Figure

As seen, the data points are quite overlapping which points to the degree of difficulty

Thttp:/ /users.dsic.upv.es/ grupos/nle/resources/ironicQuotes.source
2http: / /www.parrotanalytics.com/wp-content/uploads/2015/11/Sarcasm-Detection-in-Reddit-
Comments.pdf
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Figure 6.3: Data Distribution

in classifying the data points. The vector for a given data point is calculated as the

cumulative sum of embeddings of its constituent words.

6.2.2 Preprocessing

Preprocessing step revolves around word-level tokenization to conserve only those words
in a given sample which contributes to sarcasm detection. A custom tokenizer removes
the URL(s), HTML tags while preserving the emoticons and interjection cues. The code-
mixed English-Hindi (En-Hi) and Hindi (Hi) datasets are created via translation, benefited
with automated word correction but suffered from a lot of other random disturbances
like the inclusion of non-translatable words, which are manually handled. The tokenizer
also features an English language specific contractions replacer which expands a given

contraction (e.g. isn’t — is not), for better word-level tokenization.
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Figure 6.4: Data Visualization

6.2.3 Approach for Sarcasm detection in Monolingual & Code mixed environ-

ment

Most of the previous works have focused on sarcasm detection in corpora (majorly tweets)
which are monolingual (primarily English). However, with the prevalent code-mix text
on social media it has become essential to handle the code mixing. The proposed work
targets bilingual code mix text. The framework for detecting sarcasm in both of these

variants (Monolingual and Bilingual) have been proposed as follows:

6.2.3.1 Monolingual Text

Significant works have used a machine learning, feature-engineering based approach

for the task in the monolingual text. Existing works based on deep learning technique

[Amir et al. 2016|] used twitter-based corpus and model the task based on CNN(s). Broad

methodology details of the proposed approach are as follows:
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Word-Embedding Representation:

Two variants of monolingual datasets are used: original English dataset and sentence-level
translated Hindi dataset. For both the datasets, word2vec [Mikolov et al. 2013a]] based vec-
tors are used. These vectors are trained on Wikipedia dumps of respective language and
have a dimensionality of 300. Learnable representations of these embeddings are used
during training. This is because Wikipedia uses very formal descriptive language which
does not encompass the informal peculiarities brought in by social-media based dataset.
From the learnable word embeddings, it is meant that the embeddings will be updated
during training to include these subtle differences. Word embeddings are known to very
well capture the syntactic constructs and semantic features of the language of the corpus.
Each sentence of dataset is extended to a one dimensional vector of length n, where n is
the maximum number of words amongst all sentences in the dataset. Dataset created has
value of n equal to 300. Embeddings are used as a feature vector to the network.

Figure 6.5|depicts a portion of visualization of the created embeddings. It can be observed
that the local cluster has verbs in majority, and verbs with the similar sentiment are closer.
(For example: agree, disagree and mean, understand, realize clusters).

Neural Network Schema:

The sequential model is the combination of CNN, RNN and LSTM followed by a dense
(Fully connected) layer with the sigmoidal output. The network can have any layer re-
peated while eliminating others to create a homogeneous network or include other layers
to make the network heterogeneous. The activation («x) in the network is set to be the ReLu
activation function due to its simplicity and efficient functionality to bring non-linearity
in training. As the classification is binary, sigmoidal or, softmax function can be used to
generate an output of the network. The sigmoidal function is used to map output be-
tween a range of 0 and 1. Table [6.2| shows the training parameters of each layer used in
this approach. The maximum depth of neural network reached upto three layers.

LSTM is known to capture long-term dependencies and is expected to capture better
sarcastic context than RNN network which has a relatively low sightedness w.r.t. the
length of the dataset. CNN network is known to be the best-performing networks [Poria
et al. 2016a] when it comes to NLP tasks. With increasing depth of the network, it evolves

over the features learned from previous layers to learn higher dimensional features of the
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Figure 6.5: t-SNE Visualization of Word Embeddings

dataset. Thus, proposed approach uses CNN based models superseded by LSTM based
model which is superseded by RNN based models. For LSTM and RNN models, the effect
of increasing depth is decided under the evaluation section [6.2.4, The overall architecture
of the monolingual model is described in Figure Proposed work exploits the neural
network component for performance enhancement, with little attention to the creation of

embeddings.

6.2.3.2 Bilingual Text

6.2.3.2.1 Hybrid Model

Since, task deals with code-mix corpus (bilingual predominantly), directly using the above
presented methodology for monolingual text is inappropriate and calls for a hybrid ap-
proach which encapsulates the grammatical construct of both the constituent monolingual

languages in the corpus as well as their mixture. Thus, a unique approach is proposed
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Table 6.2: Network Layer configurations. For a neural network layer X (CNN/LSTM/RNN)
and number i (1/2/3), the notation X; means the layer X at i depth in the model

Kernel size | Feature Map
CNN Layer CNN 1 5 128
CNN 2/3 5 64
Kernel Size
Max-Pool Layer 3/5
Nodes
Dense Layer 1/128
Units
LSTM Layer LSTM 1 100
LSTM 2/3 50
Units
RNN Layer RNN 1 100
RNN 2/3 50

namely, Hybrid Multi-Model Weighting (HMMW) which uses the combination of efficient
monolingual deep learning model for code-mix text and its monolingual elements. The
components of the model described in Figure 6.7 are as follows:

Word-Embedding Representation:

Since the corpus is mixed, use of pre-trained embeddings on the sizable monolingual cor-
pus (like Google news) won’t work. Instead, the corpus is pre-trained locally on Word2vec
model with translated code-mix dataset as input. The context window for creating word
embeddings is set to 10. As for monolingual English (En) and Hindi (Hi) data sets, em-
beddings discussed earlier are used. Again the embeddings are non-static during training
and learn to include the sarcastic nuances present in social media data.

Neural Network Schema:

The neural network used is a combination of CNN, RNN and LSTM neural layers, which
came out to be the best performing network of variants described in the evaluation section
Hence, three different neural networks which adapted best to a given dataset are
used in HMMW model.

Aggregator:

The output from each of the three models is combined according to the weight given to

each of the model. The final output is calculated w.r.t. to following equation, where w;
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denotes the weight of the i" sub-model.

W1 * Y1+ Wo * Yo + W3 * Y3
w1 + wy + ws

Y = round (6.1)

6.2.3.2.2 Bilingual Embeddings

Another approach proposed uses cross-lingual word-embeddings, which are implicitly
created during training in the task of machine translation. However, bilingual embeddings
are created explicitly. Previous approaches like monolingual adaptation, bootstrapped
the learning of target language (Hi), which is resource-scarce, from well-trained repre-
sentations of the source language (En), which is resource-abundant. Bilingual mapping
independently learns monolingual representations of each language and then learns a

mapping between them. Bilingual mapping has been used in other applications as well,

and one such work is by [Luong et al. 2015]. The main idea is to jointly learn word

representations of both languages, a technique known as bilingual training rather than
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fixing pre-trained representations on either source or target language side. The procedure
described in Figure [6.8] is approximately the same as that of monolingual methodology,
with the modification of cross-lingual embeddings being used at the first stage of the

methodology.

Raw Text

Bi-V ;
(Code Mixed) =€ Monolingual

Figure 6.8: Model based on bilingual embeddings

6.2.4 Experiment(s) and Result(s)

The corpus of total samples 11,609 is evaluated under the schema of neural networks de-
scribed above. These models are composed of basic layers of CNN, RNN and LSTM. The
corpus is split in 80:20 ratio of training and testing of sizes 9,288 and 2,321 respectively.
The training is done in a batch of 128 samples, for four epochs. Word embeddings are
consistently used as input to the model. The models are evaluated on the test partition

for accuracy, precision, recall and F-measure as metrics.

6.2.4.1 Monolingual Text

For the monolingual text classification task for sarcasm detection, evaluation is carried for

both the original English and translated Hindi data sets.

179



English dataset

The overall results show that a pre-trained CNN with a single layer (1 x CNN) gives
the best performance with an accuracy of 74.30% and F-measure of 67.60% as indicated
by Table Contradicting the hypothesis of learning evolving features with increasing
depth, adding more layers of CNN to the network degrades its performance as shown in
Figure As for LSTM based model, it can be concluded from Figure the results
do not meet the proposed hypothesis, that long-term dependencies are very well cap-
tured, as it resulted in low accuracy and F-measure than CNN based models. However,
LSTM based models show better adaptation to the task with an increase in the depth of
the model. Moreover, the (2 x LSTM) model gives a high recall of 73.68%. LSTM models
perform better than RNN models as expected. RNN models show inconsistent results
with increasing layers in the network as depicted in Figure The performance of 1 X
CNN model is better than other combinations as shown in Figure The dependency
of a word in monolingual text is lesser than that of multi-lingual because of less complex
behavior of monolingual data. It tends to extract more important features in this case
and much context is not needed in terms of longer dependencies. An inspection of the
results obtained by combinational models in Figure 6.9|shows that including a CNN layer
significantly improves the performance of the network.

Hindi Dataset

As the analysis of English dataset suggested, (1 x CNN) model is the best performing
model, Hindi dataset is evaluated under this model for accuracy, precision, recall and
F-measure as metrics. The results presented in Table show the consistent and im-
proved performance over its English contemporary. As shown in Figure the accuracy
achieved is 77.36%, which exceeded the accuracy obtained over English dataset for same
(1 x CNN) model by 3.06%. This points out to the fact that embeddings for the Hindi

language are capturing the context of sarcasm detection better than the English.

6.2.4.2 Bilingual Text

For the bilingual text classification task, model variants are trained over the code-mixed
dataset. An analysis in Table |6.5/shows that the best performing model for monolingual
text, (1 x CNN) model, is outperformed by the combinational model (CNN+LSTM+RNN),
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Table 6.3: Peformance of different models (“i x layer” model denotes i times repeated stack of
the respective layer) for Monolingual (En) dataset

Model Accuracy | Precision | Recall | F-measure

3 x CNN 72.66% 69.94% | 59.36% 63.02%

2 x CNN 73.22% 71.41% 60.00% 64.09%

1 x CNN 74.30% 69.56% | 67.35% 67.60%

3 x LSTM 70.07% 66.44% | 54.17% 58.63%

2 x LSTM 68.78% 59.75% | 73.68% 65.22%

1 x LSTM 67.23% 59.08% | 67.23% 61.81%

3 x RNN 60.37% 51.73% | 51.86% 50.50%

2 x RNN 63.56% 56.02% | 53.49% 53.67%

1 x RNN 61.88% 53.03% | 51.26% 51.33%

CNN + LSTM 72.88% 69.50% | 62.31% 64.67%
CNN + RNN 69.04% 60.76% | 60.76% 63.88%
CNN + LSTM + RNN | 73.44% 69.97% | 63.20% 65.20%
LSTM + CNN 70.25% 63.60% | 66.23% 63.71%
LSTM + RNN 69.99% 63.13% | 64.29% 62.65%
LSTM + CNN + RNN | 69.64% 63.15% | 63.30% 62.09%
LSTM + RNN + CNN | 71.02% 64.03% | 68.45% 65.14%
RNN + LSTM 64.29% 55.88% | 63.35% 58.51%

Table 6.4: Performance measure on Monolingual (Hi) dataset

Accuracy | Precision | Recall | F-measure
77.36% 71.23% | 76.04% | 72.46%

with an accuracy difference of 1.25%. This is because CNN extracts best of the features
and LSTM help in remembering the long term dependencies so that context can be taken
into account. In case of code mix when code switching occurs it becomes important to re-
member the context of data and hence LSTM helped in the same. Overall analysis shows
that (CNN+LSTM) model performs best when precision is considered as evaluation met-
ric and (1 x CNN) model with on-the-fly (only Learnable) training of word embeddings,
performs best for both recall and F-measure metrics. This is justified by the fact that
pre-trained embeddings update themselves while using training data whereas learnable
embeddings entirely mend their parameters according to the train dataset giving a higher
recall. However, for LSTM based models, increasing the depth of the architecture im-

proves the overall performance of the model as shown in Figure This is in contrast
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with RNN based models which shows a decrease in performance with increasing depth,
as depicted in Figure Moreover, Figure models just based on CNN show the
same trend as the RNN based models. Analysis of combinational models suggests that a
CNN layer is the main ingredient to improve overall performance for the task of sarcasm
detection, as shown in Figure Further comparison between the best local performers
over all metrics for the three pure classes of CNN, LSTM and RNN which are 1 x CNN, 3
x LSTM and 1 x RNN respectively shows an almost linear decrease in performance over

all metrics in decreasing order stated in Figure

Table 6.5: Bilingual (Hi-En) results. A i x layer” model denotes i times repeated stack of the
respective layer. Static and learnable represents that only static embeddings and on-the-fly
embeddings are used respectively

Model Accuracy | Precision | Recall | F-measure
3 x CNN 69.34% 62.18% | 64.29% 62.26%
3 x CNN (Learnable Embeddings) | 69.17% 61.32% | 67.75% | 63.24%
3 x CNN (Static Embeddings) 62.27% 55.19% | 39.73% 45.19%
2 x CNN 70.29% 69.08% | 49.19% 56.48%
2 x CNN (Learnable Embeddings) | 68.56% 60.15% | 66.14% 62.16%
1 x CNN 71.28% 65.18% | 63.48% 63.48%
1 x CNN (Learnable Embeddings) | 70.16% 62.03% | 70.89% 65.10%
3 x LSTM 69.69% 65.57% | 55.16% 58.88%
2 x LSTM 69.21% 66.57% | 48.23% 54.91%
1 x LSTM 68.18% 61.22% | 61.35% 60.17%
3 x RNN 58.47% 48.79% | 48.99% 48.03%
2 x RNN 59.59% 50.40% | 49.57% 49.12%
1 x RNN 66.93% 61.71% | 47.78% 52.60%
CNN + LSTM 70.16% 69.13% | 49.85% 56.59%
CNN + RNN 70.63% 65.07% | 59.87% 61.30%
CNN + LSTM + RNN 71.67% 65.44% | 65.04% 64.40%
LSTM + CNN 70.16% 63.32% | 63.52% 62.62%
LSTM + RNN 67.87% 59.83% | 61.62% 59.79%
LSTM + CNN + RNN 69.25% 64.70% | 52.27% 56.97%
LSTM + RNN + CNN 67.40% 60.24% | 57.50% 57.86%
RNN + LSTM 61.54% 52.87% | 47.03% 48.74%
HMMW Model:

With the code-mix (bilingual) model being (CNN+LSTM+RNN) network and the English
model, Hindi model being (1 x CNN) model, the HMMW parallel schema achieved an

accuracy of 76.84% on the test partition of the dataset. Each model is weighted equally.
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Bilingual Embeddings:

To study the effect of using bilingual embeddings in place of regular monolingual embed-
dings, (1 x CNN) model is trained over the code-mixed dataset. Two sets of embeddings
with 100 and 300 dimensions are analyzed upon. As predicted, using embeddings with
higher dimension gives relatively better results as can be seen in Table Another in-
spection shows that extending the period of training jointly optimizes the model for all

evaluation metrics in context shown by the evaluation under 8 epochs of training. Clearly

Table 6.6: Bilingual Embeddings result

Parameters Accuracy | Precision | Recall | F-measure
100 dims, 4 epochs | 68.00% 63.28% | 52.37% | 56.31%
300 dims, 4 epochs | 69.08% 65.77% | 52.59% | 57.16%
300 dims, 8 epochs | 68.26% 61.68% | 63.57% | 61.33%

in Figure bilingual embeddings improve on all the metrics with increased training
and are less optimum than monolingual embeddings. As for Figure [6.21] static embed-
dings represent the pre-trained embeddings which are not trained during model training.
This is the worst performing word embeddings since they do not adapt to the sarcasm-

specific dataset. Moreover, learnable embeddings, which are only trained simultaneously
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with model training, perform better due to their adaptability to sarcasm-specific dataset.
The best performing embeddings are those which are pre-trained as well as post-trained,
along with the model. They are the most generic word representations in terms of their
adaptability to sarcasm as well as plain text data (For Example, Google News, Wikipedia
etc.). Thus, overall comparison between the three approaches reveal that HMMW ap-

proach gave the best result with accuracy as evaluation parameter in consideration.
6.3 Concluding Remarks

This chapter is primarily focused on the idea of sarcasm detection. Using existing fea-
tures in state of the art, first approach is based on traditional machine learning techniques
experiments to detect sarcasm detection in English. The second approach focuses on both
code-mix dataset and monolingual (English) dataset. Further, it also inspects upon a va-
riety of neural network models for best suitability for the task of sarcasm detection. Cur-
rent work limits itself to the existence of two languages in the dataset, English and Hindi.
Experiments are performed with simple word2vec based monolingual embeddings and
expand to using bilingual embeddings. While the usage of former gave expected improve-
ments, experimentation with the latter did not perform well. Coming to the adaptability
of neural models for the task, CNN and LSTM layers improved performance of NLP sys-
tem in general and hence, the model analysis shows the potential of LSTM and CNN
based networks for this task. Experimentation with the weighted model HMMW showed
significant improvements due to the generalization over all the specific trained models.
The code-mix sarcasm dataset which is created from English-based dataset for the task of
code-mix sarcasm detection, with the help of machine translation, lacks in encompassing
the basic construct of real social media text. This is caused by direct machine translation
forced by the scarcity of annotated code-mix social media dataset. Major improvement
can be made by developing a systematic procedure for such a generation. While the real
social media data can mix over a number of languages, the current system is based on
code mixing of two languages only. This implies an expansion of the HMMW model
developed so far. Development of deeper neural network based on CNN, LSTM layers is

also quite promising for the task of sarcasm detection.
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Chapter 7

Code Mixing Tools

The exponential growth in the popularity of social media has created a plethora of tex-
tual data. It has become a severe issue to recognize textual data efficiently for various
reasons. With the significant boost in the technology along with easy availability and
accessibility for gadgets, social media has become a profound platform for people to ex-
press their opinions. The population participating in social media comprises of different
and diverse individuals. People who do not have English as their mother tongue tend
to use their native language to express their thoughts. These words are often written
using phonetic typing or Roman script and are frequently found fused between English
words or phrases, which is widely known as code-mixing or code-switching. The English
language still forms the basis for all the primary social media communication in India.
Owing to language diversities and dialect variations, there is a requirement of developing
technologies for processing other languages in social media text. The use of non-native
script by the users can be attributed to bilingualism and multilingualism existing in the
country. People are usually more familiar with the Roman script while using electronic
gadgets such as smartphones, desktops and laptops. Because of smart phone usage and
easy internet accessibility, it has been found that users are utilizing the Roman script to
write their native language. This form of writing is evolving as a new type of communica-
tion at the social platforms, and there has been significant growth of such type of content.
This kind of text poses a new challenge in the area of text analytics as there is a need to
process such data automatically for various applications.

In formal communication, people are cautious about what they speak and how they speak
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but at informal platforms like Facebook, Twitter and WhatsApp, they tend to use mixed
up words and slang of other languages. These words may be in their native script or
transliterated into English. This trend of mixing words from two or more languages
is called code mixing. Code mixing is embedding of linguistic units such as phrases,
words, morphemes of one language into an utterance of another language whereas code-
switching refers to the co-occurrence of speech extracts belonging to two different gram-
matical systems. Here, code-mixing is used to refer to both unless explicitly stated. With
the introduction of smartphones, people from all over the world have started using social
media platforms, and this has generated a lot of code mixed text.

India is a multilingual country with more than 1600 languages being spoken such as
Hindi, Punjabi, Bengali, Telugu, Marathi, Tamil, Gujarati and many more. With the in-
troduction of Indic keyboards and articles that use Indic languages, people started using
Indic languages in their ordinary conversation, and this has made people converse easily
on the internet. In a country like India, where almost everyone grows up learning at least
two languages, code mixing is inevitable. Processing these code mixed scripts is a task
of massive proportions since the underlying syntactic structure of the languages differs
immensely. Although code mixing is not always considered a right way of communicat-
ing, it is essential to have tools for analyzing code mixed languages with the increasing
demand. There are excellent NLP tools present for English and Spanish languages. In the
recent years, NLP tools have been developed for Indic languages such as Hindi, Bengali,
Telugu, Tamil and Marathi, but there aren’t many tools present for code mixed Indic lan-
guages. These tools can be helpful in extracting useful information in many applications
such as product analysis and symptoms analysis.

In this chapter, algorithms have been proposed for basic NLP tools, such as POS tagging,
named entity recognition and language identification, to process code mixed text. Part
of speech tagging is an essential tool for text processing and is widely used for many
applications. Similarly, named entity recognizer has been an essential tool of NLP and
text mining community for various applications. Though much of the work has been
done for these tools in English and other monolingual languages but there has been an
increase in demand of these tools for processing code mixed text. Section |7.1| discusses

the approaches proposed for POS tagging for code mixed social media text for Indian lan-
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guages. Section [7.2|discusses the approaches and its variants for named entity recognizer

for code mixed social media text for Indian languages.

7.1 POS Tagging for Indian Code Mixed Social Media Text

One of the most fundamental part of linguistic pipeline is POS tagging, a basic form of
syntactic analysis which has countless applications in NLP. POS tagging is the process of
annotating words in a text to their corresponding part of speech based on the context of
the word and the definition of the word. POS tags give a linguistic structure to the sen-
tence. Besides, it is used in many applications such as text to speech conversion, speech
recognition, word sense disambiguation, machine translation, sentiment analysis and in-
formation retrieval.

Much work has been already done for POS tagging in monolingual text and algorithms
have achieved quite high accuracies. With the increase in the code mixed text on so-
cial media, these algorithms do not perform well because of the syntax and grammatical
changes. Hence, it has become important to develop part of speech tagger for code mix
text.

In this section, three approaches have been proposed to build POS tagger for code mixed
social media text. Each of these approaches have their variants. First two proposed algo-
rithms for part of speech tagger used traditional machine learning technique. Most of the
current techniques for POS tagging in monolingual scripts focus on feature engineering.
Hence, first two algorithms identify and engineer features for identifying and associat-
ing correct POS tags. However, feature engineering requires linguistic knowledge, and
people might miss out on the underlying features. Moreover, traditionl machine learning
techniques need to engineer the features on available dataset. Deep learning is a branch
of machine learning and is an emerging field with a lot of interesting work being done in
various domains such as image recognition and text summarization. It uses deep neural
networks with multiple layers which models high level abstractions.

BRNN have been used in the past for various application that involves sequence learning
and were proved quite effective. Few of these applications involved predicting sequential

data like handwriting and speech. POS tagging requires sequential information. The in-
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formation of the tags preceding the current tag and the subsequent tags should be known
to make the correct prediction. Problem of knowing sequential information and the prob-
lem of vanishing gradients is solved using neural networks. The attraction that deep
learning holds is that one does not require to identify features or build resources like a
dictionary for morphemes and other linguistic units.

Third proposed approach for POS tagging is based on BRNN. LSTM performs better as
compared to simple recurrent neural networks, hidden neural networks and other alter-
native neural networks. LSTM network can learn from its past experience, and unlike
traditional RNN(s), LSTM network is well-suited to learn from experience to classify, pro-
cess and predict time series when there are very long time lags of unknown size between
important events. This is one of the primary reasons why LSTM outperforms alternative
RNN(s) and hidden markov models and other sequence learning methods in numerous
applications. Hence, proposed approach is using LSTM with its variant. LSTM and RNN
will be used interchangeably due to the above mentioned explanation in this section.
Two kinds of datasets [Jamatia & Das 2016|] are used for the problem of POS tagging;
Fine grained and Coarse Grained. The fine grained dataset has 39 POS tags present while
coarse grained has 19 POS tags. Corpus is based on three languages pairs, Telugu-English,
Bengali-English and Hindi-English. For each language pair, data is collected using three

different data source namely Facebook, Twitter and WhatsApp.

7.1.1 Approach 1: Ensemble based POS Tagger

A pipelined process has been proposed in this approach which consists of mainly three
phases i.e. pre-processing, feature extraction and classification as shown in Figure
Further, two variants are proposed for this approach named ensemble_v1 and ensem-
ble_v2. The difference in both the algorithms lies in the last phase of classification where

ensemble_v2 uses an additional dictionary to identify the POS Tags.

1. Pre-Processing
Since many Facebook posts, tweets, WhatsApp messages in dataset [Jamatia &
Das 2016] consisted of more than one sentence. They are demarcated into indi-

vidual sentences using the presence of full stop, exclamation mark, question marks
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and words starting with capital letters. After that, all words are converted into

lowercase for normalization.

2. Feature extraction

A lot of importance is given to feature set extraction. Table|7.1|depicts all the features
extracted from this dataset. Features like prefixes, suffixes, bag-of-words which are
popular in many NLP tasks are used in the approach. For this purpose, a list of
suffixes, prefixes and a bag-of-words are created from the training dataset. The
suffixes and prefixes are limited to three letters. The position feature is given by
the position of the word in the sentence divided by the length of that sentence.
It is partitioned into discrete values start, middle and end. For selecting the best
combination of features, the module GridSearchCV [Pedregosa et al. 2011b] is used.
The best combination of features found are startsWith@, startsWith#, contains_digit,
Pos_1, word level information, suffix and the current word.

Table 7.1: Features

Features Description

startsWith@, startsWith#, | Binary Features

startsWith_http, contains_digi

Position Nominal Feature with values start,
middle and end

POS_1, POS_2 Nominal Feature POS_1- POS tag

of previous word, POS_2- POS tag
of previous to previous word
Word Level information of current | Nominal feature

word
Prefix, Suffix and the Current Word | Sparse Matrix

3. Classification for ensemble_v1
After the stages of pre-processing and feature extraction, the model is trained using
three classifiers. For classification, an ensemble of the three classifiers, i.e. random
forest, logistic regression and naive bayes is used, particularly weighted majority

voting with more weights is given to the classifier, which is performing better.

4. Classification for ensemble_v2
For ensemble_v2, few changes are incorporated into the ensemble_v1 system. First

of all, a dictionary of the 100 most common English words along with their POS
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tags is manually constructed both for the fine grained and coarse grained tag set.
These words comprised about 20% of the whole dataset, and led to a noticeable
improvement in the model. Since many sentences resembled the structure of English
sentences and hence a POS tagger for English is used. The NLTK taggerﬂ is used
but since the tag set used by NLTK is different from the tag set used in the dataset,

tags are manually mapped to each other.

Pre-
Processing

Feature
Extraction

Classifier

Figure 7.1: Block diagram of ensemble based POS tagger

Thttp:/ /www.nltk.org/
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7.1.1.1 Algorithm for Approach 1: Ensemble based POS Tagger

Algorithm |7.1|explains the proposed algorithm for POS tagging of code mix social media
text. The algorithm is designed such that it takes given dataset as input and returns POS
tagged words as output for each of the token. Initial preprocessing has been done by the
demarcation of sentences and converting the dataset to lower case using Case_Conversion
function. A bag of words is then created using the create_bag_of words function. Suffix and
prefix dictionary are created using suffix and prefix function which considers n characters,
where n varies from 1 to 3. Tokenize function then separates the words and create a list of
tokens. For each token in the list, features mentioned in Table are extracted using the
feature_extraction function. POS tag of previous token is identified using POStag function,
which has been passed to aid feature extraction. Finally, ensemble classifier of random

forest, logistic regression and naive bayes is used to detect POS tags.

Algorithm 7.1: Algorithm for POS Tag detection

input : Mixed language dataset D with one of
languages(Hindi, Telugu or Bengali) mixed with
English

output: POS tagged words W

Initialization: test_predictions P=[];

[y

Case_Conversion(D);

bag_of words=create_bag_of words(D);

suffix_dict=suffixes(D);

prefix_dict=prefixes(D);

mylist =tokenize(D);

for i = 0 to mylist.length do
listp=POStag(mylist[i-1]);
features=feature_extraction(mylist[i], suffix_dict, prefix_dict,

listp);

10 tag=ensemble.predict(features);

© ®w 9 S Ul B W N

7.1.2 Approach 2: Tree based classifier for POS Tagging

Second approach for POS tagging is also based on traditional machine learning tech-
niques. It is different from approach 1 in terms of the classifier and the usage of features.

Two variations are proposed for the approach 2 as well, named tree_v1 and tree_v2.
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1. Proposed tree_v1 approach
The proposed tree_v1 approach consists of a set of features that comprise the feature

vector for each token. Following features are used:

(a) IsNumberPresent : This is a binary feature which checks for the presence of

digits in the given token. It returns 1 if present and 0 if not present.

(b) ISHashTag Present: This is a binary feature which checks for the presence of

hashtags in the given token. It returns 1 if present and 0 if not present.

(c) IS@Present : This is a binary feature which checks for the presence of the

symbol ‘@’ in the given token. It returns 1 if present and 0 if not present.

(d) IsSymbol Present: All Characters which aren’t either digits or numbers or @ or
hash tag are considered to come into the category of symbols. This is a binary
feature which checks for the presence of the symbols in the given token. It

returns 1 if present and 0 if not present.

(e) Language of Prev word(L.1), Prev Prev Word(L.;), Current word(Lj) & Next
Word(L,;): These features are considered as they help in analyzing the way

words are used.

(f) POS Tag of Prev word(P_1), Prev Prev Word(P_): These features are considered

as they help in analyzing the structure of the sentence.

(g) Position of Word in sentence: There are many ways of representing this feature.

Following formula is used in proposed algorithm:

No_of_Words_present_before_current_word
Total_words_in_sentence

(h) Prefix of the Token(Pry, Pry, Pr3): Presence of most common Prefix is considered
as a feature. Prefixes of length 1 to 3 are considered. The list of most common

prefixes are extracted from the given test data.

(i) Suffix of the Token(S1, Sy, S3): Presence of most common Suffix is considered
as a feature. Suffixes of length 1 to 3 are considered. The list of most common

suffixes are extracted from the given test data.
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The feature vector is built by extracting features for each token in a sentence. Finally,

list of all feature vectors is extracted and trained using random forest.

2. Proposed tree_v2 approach
The tree_v2 approach has the same features as that of the tree_v1, with an addition
of one more extra feature, which is three topmost common POS tags possible for
a given token. This is predicted by using a dictionary which is developed using
the training data of ICON 2015. The resulting feature vectors are trained on an

extremely randomized tree [Pedregosa et al. 2011b].

7.1.2.1 Algorithm for Approach 2: Tree based classifier for POS Tagging

Algorithm[7.2)depicts the working of the tree_v1 and tree_v2. Both of them have the same
algorithm, but the difference exists in the working of Create_Feature_Vector function. In
tree_v2 an extra feature has been added as described in the previous section. The input S
contains a list of sentences, and each sentence is a list of tokens. The list also contains the
respective language of each token. For example, the sentence “I like to watch movies.” is
represented as [T, ‘en’, ‘like’, ‘en’, “to’, ‘en’, ‘watch’, ‘en’, ‘movies’, ‘en’].

The feature vectors are computed for each token of the sentence of the input data (imple-
mented by: Create_Feature_Vector). While creating feature vectors prev and pprev list are
passed as inputs to create the feature vector where prev represents the previous occurring
token and pprev represents the previous to the previous occurring token. These features
are then given to a classifier for predicting the POS Tag. Random forest and extremely

randomized tree classifier are used as a classifier for tree_v1 and tree_v2 respectively.

7.1.3 Approach 3: Bidirectional LSTM based POS Tagger

Traditional neural networks face the problem of rigidity due to fixed size vector of input
and output. The number of computational steps in the neural network is also fixed. Re-
current neural network is superior to traditional neural network because they can handle
sequences. Traditional neural networks are also limited by the number of layers in the

model which can only perform a fixed number of computations.
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Algorithm 7.2: Algorithm for Detecting paraphrases

input : List of Code-Mixed sentences along with their
Language, S, Training class labels, T
output: Predicted Parts of speech Tag, P
1 Initialization: P=[], FV=[];

2 fori =0to S.length do
prev = {};
pprev={};
for j = 0 to (S|i].Length)/2 do
FV = Create_Feature_vector(S[i ][ j 1, prev, pprev);
tag = clf.predict(FV);
pprev =prev;
prev={S[il[2%], S[il[2*j+1], tag };
10 P.append(tag);

O 0 NN N Ul e W

The appeal of recurrent neural networks lies in the fact that they can operate on sequences
and are more capable of building intelligent systems. At every state, RNN also combines
the input vector with the state vector using a step function to create a new state vector.
The output vector obtained from the RNN is an amalgamation of the current input and
the inputs that have been considered in the past. Step function ensures that RNN remem-
bers the context. The internal state of the RNN is updated every time the step function is
called.

Algorithm [7.3|specifies the step function which updates the hidden state of the RNN. The

Algorithm 7.3: Step function for a RNN

def step(self, x):;

# update the state of the RNN;

self.h = tanh(np.dot(self.S_hh, self.h) + dot(self.S_xh, x));
# compute the output vector;

y = np.dot(self.S_hy, self.h);

return y;

N Ul B W N =

parameters are three matrices S_hh, S_xh, S_hy. The hidden state h is initialized with zero
vector. In tanh function, one of the inputs specify the current input, and the other specifies
the state of the previous iteration. The tanh function ensures that the activation range is
normalized in the range from -1 to 1. The final output is dot multiplication of current
state vector and the parameter S_hy. LSTM is a better form of a recurrent neural network

because it has a more powerful update equation and backpropagation algorithm.

200



7.1.3.1 Algorithm for Approach 3: Bidirectional LSTM based POS Tagger

Algorithm [7.4| explains the working of proposed approach 3. Given an input sequence a
= aj, ay, as, ..., task is to generate an output sequence b = by, by, b3, by, ..., where a is the
code mixed data and b is the corresponding POS tags.

For pre processing, tags for the words in training data are stored in a dictionary. The
data is then converted to sentences containing POS tags only. For example, if the given
sentence is Mixed/G_] dabay/G_N Wala/G_PRT, it is converted to G_] G_N G_PRT.
Each POS tag in the input is encoded into a vector using I-of-k encoding (i.e. all zero
except for a single one at the index of the character in the vocabulary) and fed into RNN
one by one using step function. On every output vector, a softmax classifier or cross
entropy loss function is applied at the same time.

The RNN is trained with mini-batch Stochastic Gradient Descent to stabilize the updates.
For RNN, following parameters are chosen based on the performance of training data.
The size of hidden layer is 256, with the number of layers as 8§ and sequence length as 2.
The RNN is trained for 50 epochs with the learning rate as 0.002 and decay rate as 0.97.
At test time, if a word is present in the dictionary, the tag is chosen from the dictionary.
Otherwise, RNN predicts a distribution of next likely tag. Two versions of approach 3 are
proposed named, Bi_LSTM_v1 and Bi_LSTM_v2. Propsed approach, Bi_LSTM_v2 has an

additional dictionary for English words with the corresponding POS tags.

7.1.4 Data Analysis

The dataset for ICON 2016 task [Jamatia & Das 2016] on POS tagging in code mixed
social media text has three different language-pairs, i.e. Hindi-English, Bengali-English,
Telugu-English, each for three different platforms - Facebook, Twitter and WhatsApp.
The training dataset contained all the words in Roman script along with their word level
information and POS tag.Figure 7.2 shows the different tags used at coarse grained and
fine grained level. Table depicts the overall dataset statistics i.e. Facebook, Twitter,
and WhatsApp whereas Table[7.3|depicts only the Facebook dataset statistics. The average

sentence length for each language is calculated. The average sentence length is abnormally
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Algorithm 7.4: Algorithm for POS tagging code mixed text

input : A sequencea = aj, 4y, a3, ..., where a is the code
mixed data with language tags.

output: An output sequence b = by, by, b3, by, ..., where b is
the POS tags corresponding to the input data.

1 Preprocessing;

2 Convert input sequence to V (1-of-k vectors);

3 Feed the vector into the RNN individually with the step function;

4 Use the standard Softmax classifier on every output vector
simultaneously;

5 Train RNN on V;

6 for x; in x do

7 if x; in dictionary then

8 if x; has only one tag then

9 L yi = dictionary[x;];

10 else if dictionary[x;].length>1 then
11 | vi = predict(dictionary[x;]);

12 else

13 | yi = predict(y);

high for Hindi and Bengali as compared to Telugu for Facebook dataset. Table

shows the complete analysis of coarsed grained dataset for Hindi, Telugu and Bengali

respectively.
Table 7.2: Overall Dataset Statistics
Language Words Sentences Average Sentence Length
Hindi 37260 2317 16
Bengali 15326 634 24
Telugu 24460 1576 15
Table 7.3: Facebook Dataset Statistics
Language | Words Sentences Average Sentence Length
Hindi 21386 771 27
Bengali 7609 147 51
Telugu 10780 749 14

As shown in Figure and [7.5] the distribution of language tags are different
for all the three languages. There are differences in the composition of language tags in

testing and training data as well.
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Figure 7.2: Tags used for POS Tagging [Jamatia & Das 2016]

Telugu dataset contains a lot of universal, English and Telugu tags. All the Telugu words
present are transliterated into English. It has some named entities and acronyms present
in small quantities. Though there is some variation in the percentages of tags in testing
data, the composition almost remained the same.

In the case of Bengali dataset, there is a wide range of tags present. Majority of the tags
are Bengali, and these words (Bengali) are transliterated into English. It is followed by
English, universal and undefined tags. There are a significant amount of named entities
present. Moreover, transliterated Hindi words and acronyms are present.

The Hindi dataset has English and Hindi tags. The Hindi words are also transliterated
into English. There are named entities and universal tags in significant quantities along

with acronyms in minute quantities. For Hindi and Telugu languages, testing data is less
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Table 7.4: Analysis of Coarse Grained dataset for Hindi (Facebook, Whatsapp and Twitter

Hindi FB Hindi TWT Hindi WA
No of Sen- | 771 No of Sen- | 1096 No of Sen- | 763
tences tences tences

POS Tag POS Tag POS Tag

G_X 3356 G_X 4156 G_X 589
CcC 671 CC 196 CcC 62
GV 3788 G_V 2466 GV 525
DT 1247 DT 300 DT 38
G_R 1088 G_R 410 G_R 26
G_SYM 153 G_SYM 139 G_SYM 27
G_N 4186 G_N 6689 G_N 1209
G_J 1184 G_J 772 G_J 170
G_PRT 766 G_PRT 249 G_PRT 190
PSP 1894 PSP 708 PSP 174
Null 1 null 1 null 1
G_PRP 2008 G_PRP 1071 G_PRP 192
$ 270 $ 154 $ 15
Language Language Language

Tag Tag Tag

undef 2 en 3731 hi 2539
En 13213 ne 413 en 363
Ne 656 hi 9779 univ 281
Hi 2855 mixed 1 ne 35
mixed 7 m 1

Univ 3628 univ 3354

Acro 251 acro 32

7.1.5 Experiments and Results for Approach 1
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than that of training data, but it is otherwise for the Bengali dataset.

There are some inconsistencies in the datasets of all the three languages like an improper
classification of words into language tags. Universal tags are classified incorrectly in more
than 500 cases. For example, in Telugu corpus the word ‘ntr’ is classified as univ, but univ
tag is given to tokens containing # or @ or symbols. Results evevaluated for all the three

approaches are compared with the 9 baseline systems in paper by [Jamatia & Das 2016]

The problem stated by the ICON-2016 organizers involves part-of-speech tagging of code-
mixed data in three different formats (Hindi-English, Bengali-English, Telugu-English)
belonging to three different platforms Twitter, Facebook and WhatsApp. In all four com-

binations of each system, namely ensemble_v1 and ensemble_v2 both for fine-grained




Table 7.5: Analysis of Coarse Grained dataset for Telugu (Facebook, Whatsapp and Twitter

Telugu FB Telugu TWT Telugu WA
No of Sen- | 743 No of Sen- | 743 No of Sen- | 493
tences tences tences
POS Tag POS Tag POS Tag
$ 133 G_X 4261 G_X 2434
CcC 175 CC 105 CcC 64
G_V 1147 G_V 1127 GV 620
DT 269 DT 193 DT 138
G_R 244 G_R 224 G_R 160
G_SYM 28 G_SYM 33 G_SYM 1
G_N 4160 G_N 3940 G_N 2752
G_]J 597 G_J 543 G_]J 350
G_PRT 162 G_PRT 288 G_PRT 232
PSP 492 PSP 484 PSP 271
Null 71 null 132 null 75
G_PRP 332 G_PRP 537 G_PRP 247
G_X 2204 $ 135 $ 55
Language Language Language
Tag Tag Tag
En 3728 em 1 en 1887
Ne 391 en 3197 unin 1
Eb 1 ne 256 ne 97
Mix 1 nr 1 Te 2104
G_XN 1 mix 2 univ 3302
Te 2642 PSP 1 acro 8
Univ 3210 the 1
Acro 39 te 4046
Unit 1 univ 4472

acro 24

unit 1

variations of ensemble based POS tagger.

7.1.5.1 Evaluation and Discussion
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and coarse-grained. Ensemble classifier with same parameter settings, is used in both the

The system performed well on coarse grained tag sets with an accuracy of 80.6% for
Telugu English dataset but performed comparatively less on the fine grained tag set with
the accuracy dropping to 76.4%. This may be because there is a significantly higher
number of class labels in the fine grained dataset. For the WhatsApp dataset, the results

are comparatively less because of the highly informal language used. Highest accuracy




Table 7.6: Analysis of Coarse Grained dataset for Bengali (Facebook, Whatsapp and Twitter

Bengali FB Bengali TWT Bengali WA
No of Sen- | 147 No of Sen- | 172 No of Sen- | 304
tences tences tences
POS Tag POS Tag POS Tag
G_X 1350 $ 18 G_X 439
CcC 144 CC 64 CcC 95
GV 925 G_V 641 GV 502
DT 85 DT 51 DT 44
G_R 206 G_R 129 G_R 117
G_SYM 131 G_SYM 109 G_SYM 75
G_N 2494 G_N 1035 G_N 1475
G_J 376 G_J 120 G_J 194
G_PRT 253 G_PRT 118 G_PRT 74
PSP 614 PSP 192 PSP 152
Null 1 null 3 G_PRP 303
G_PRP 773 G_PRP 438 $ 42
$ 40 G_X 762 Language
Tag

Language Language en 7
Tag Tag
undef 1 ne+bn_suffix 4 bn 692
En 2199 undef 25 ne 14
Bn 3589 bn 1793 undef 1320
Ne 215 ne 110 univ 1405
Hi 40 en+bn_suffix 4 acro 74
mixed 1 en 979
Univ 1261 hi 10
Acro 86 univ 730

acro 25

achieved with the proposed system is for Telugu-English dataset.

The overall average results of proposed approach on three platforms i.e. Facebook, Twitter

and WhatsApp (both coarse-grained and fine-grained) are depicted in Table[7.7]and

7.1.5.2 Error Analysis

There are a few phases where the proposed approach might have resulted in errors.
Firstly, in the pre-processing step, sentences might not have been appropriately demar-
cated because in platforms like WhatsApp the syntax used is very informal. This might
have also caused the features such as position and POS tag of last word, to be of no sig-

nificance for those particular instances. Moreover, in the training data for Hindi-English,
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Figure 7.3: Language Tags in Telugu Dataset

Table 7.7: F-measure of Coarse Grained dataset using approach 1

ensemble_v1 ensemble_v2
Telugu-English 80.06 77.7
Hindi-English 71.03 71.655
Bengali-English 71.03 71.83

the percentage of English words is very high compared to Hindi, and hence the trained
model could be biased. Similar, is the case of Bengali-English dataset. However, for
Telugu-English dataset, there is a balanced mix of Telugu and English words and hence,

Telugu-English system performed comparatively much better than the others.

7.1.6 Experiments and Results for Approach 2

As shown in Table and tree_v1 has performed more or less the same as com-
pared to the tree_v2 on all the three Bengali datasets. The system achieved the highest
F-measure on the Facebook dataset for both fine grained (74.5803%) and coarse grained
(77.944%) systems respectively.

On the Hindi corpus (as shown in Tables and , there is a decrease in the F-
measure when compared to Bengali (as shown in Tables and and Telugu(as
shown in Tables [7.13| and [7.14) datasets. This might be due to the change in the com-
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Figure 7.4: Language Tags in Bengali Dataset

Table 7.8: F-measure of Fine Grained dataset using approach 1

ensemble_v1 ensemble_v?2
Telugu-English 76.4 76.07
Hindi-English 74.12 79.03
Bengali-English 68.3 71.73

position of Hindi testing and training data. The Hindi dataset has more Hindi words
as compared to English words in the testing data whereas they are almost the same in
the training data. The highest F-measure achieved for Hindi is for the Twitter corpus.
It achieved F-measure of 78.573% in the fine grained system and 77.922% in the coarse
grained part.

The system performed the best on the Telugu datasets (based on average F-measure) in
comparison to all the languages. The system has the highest F-measure on the WhatsApp
data for the fine grained system with a value of 77.602%, as shown in Table but
for the coarse grained model, the Facebook dataset performed the best with a F-measure
77.343%.

It can be concluded from Table [7.9] [7.10} [7.11} [7.12} [7.13| and [7.14] that the proposed sys-

tem has very high recall and low precision for all the three languages. One possible
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if few false negatives are present for a specific class they might have accumulated as false
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Figure 7.5: Language Tags in Hindi Dataset

Table 7.9: Results for Bengali Corpus (tree_v1)

957

Category | Precision | Recall F Score
FB_FG | 0.595 0.999 74.5803
FB_CG | 0.639 0.999 77.94396
TWT_FG | 0.567 0.997 72.28887
TWT_CG| 0.557 0.998 71.512
WA_FG | 0.581 0.996 73.377
WA_CG | 0.619 0.992 76.23191

positive for another class precision.

7.1.6.1 Error Analysis

Some of the features used might have caused misclassification of tags. One of the feature
might be the usage of a dictionary in tree_v2. Due to less data in dictionary created, this

feature might have affected the system’s performance. Hence, for building an efficient

POS Tagger large dictionary is needed.
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Table 7.10: Results for Bengali Corpus (tree_v2)

Category | Precision | Recall F Score
FB_FG 0.595 0.999 74.5803
FB_CG | 0.639 0.999 77.944
TWT_FG | 0.566 0.996 72.1813
TWT_CG| 0.559 0.998 71.67
WA_FG | 0.603 0.996 75.103
WA_CG | 0.627 0.991 76.8056

Table 7.11: Results for Hindi Corpus (tree_v1)

Category | Precision | Recall F Score
FB_FG 0.488 0.978 65.089
FB_CG | 0.481 0.999 64.92

TWT_FG | 0.654 0.989 78.744
TWT_CG| 0.639 0.999 77.922
WA_FG | 0.54 0.989 69.805
WA_CG | 0.618 0.618 61.845

7.1.7 Experiments and Results for Approach 3

For Bi_LSTM_v2, a dictionary is defined based on the data from previous ICON confer-
ences. Approximately no changes are observed in the results obtained by Bi_LSTM_v2
and Bi_LSTM_v1l. For coarse grained tagging, a better F-measure for WhatsApp code
mixed data is obtained as compared to Facebook and Twitter for Hindi, and Bengali code
mixed language. Recall for all the languages is close to 99% as can be seen from Figure
and However, inconsistencies are observed for data (Facebook and Twitter) in Bengali
and Twitter data of Hindi. The system has an F-measure score of 82% for WhatsApp in the
Bi_LSTM_v1 and 80% in the Bi_LSTM_v2. One reason for this can be that training dataset
for Bengali (Facebook and Twitter) has thrice number of Bengali words as compared to
test dataset. As can be inferred from Figure|/.6/and precision is low throughout. The
reason for low precision might be an accumulation of false positives in all the classes of
the POS tags. Usually, in traditional machine learning systems that use feature extraction,
a drop in accuracy is seen from coarse grained tagging to fine grained training because
of the increase in number of classes. However, proposed algorithm overcomes this issue.
The same pattern can be observed for both coarse grained and fine grained POS tagging

in case of English Bengali code mixing. For coarse grained and fine grained tagging for
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Table 7.12: Results for Hindi Corpus (tree_v2)

Category | Precision | Recall F Score
FB_FG 0.493 0.974 65.466
FB_CG | 0.484 0.998 65.173
TWT_FG | 0.652 0.989 78.573
TWT_CG| 0.639 0.999 77.922
WA_FG | 0.526 0.986 68.632
WA_CG | 0.608 0.608 60.848

Table 7.13: Results for Telugu Corpus (tree_v1)

Category | Precision | Recall F Score
FB_FG 0.617 0.992 76.12
FB_CG | 0.631 0.99 77.06

TWT_FG | 0.617 0.983 75.81
TWT_CG| 0.564 0.993 71.94
WA_FG | 0.645 0.976 77.7

WA_CG | 0.608 0.992 75.39

Telugu comparable results are obtained with an F-measure of around 73%. As can be
seen from Figure for coarse grained tagging an F-measure of 70% for WhatsApp and
57% for Twitter and 63% for Facebook is obtained. For fine grained tagging in Hindi, 70%
score for Twitter, 68% for Facebook and 64% for WhatsApp is obtained. The best results

obtained through the proposed algorithm of Bi_LSTM_v1 as well as Bi_LSTM_v2 is 82%.

7.1.7.1 Error Analysis

Recursive neural networks have been used in the past for part of speech tagging but they
have been used mostly for English language. Recurrent neural networks have not been
used to tag code mixed data in the past. Since the performance of the RNN is dependent
on the amount of data used to train it, better performance could be obtained given more
data. Moreover, the noise in the data reduces the performance of the RNN. RNN(s) also
depend on the sequence length of the input. The input of same sequence length has also
given better performance. This also is one possible source of error. If there had been
enough data, sentences of the same length could have been clustered together to train one
RNN model. RNN(s) are good at exploiting patterns in data. With code mixed data, one

problem could be that of missing patterns. In English, a subject is followed by a verb,
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Category | Precision | Recall F Score
FB_FG | 0.594 0.985 74.092
FB_CG | 0.635 0.99 77.343

Table 7.14: Results for Telugu Corpus (tree_v2)

TWT_FG | 0.619 0.977 75.793

TWT_CG| 0.553 0.992 71.0131
WA_FG | 0.646 0.972 77.602
WA_CG | 0.595 0.989 74.29
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Figure 7.6: Precision for Coarse Grained POS Tagging using approach 3

but in Hindi, a subject is followed by an object. Bilingual users do not tend to follow
syntactic rules of the language while writing on social media sites and thus that could be

one source of error.

7.2 Named Entity Recognition for Code Mixed Social Media Text

Entity recognition is a very important sub-task of information extraction and find its ap-
plications in information retrieval, machine translation and other NLP applications such
as co-reference resolution. Named Entities (NE) are names of famous persons, organi-
zations, locations and animals. NER has also found its use in sentiment analysis, where
recognizing named entities is important as they do not add much value to the sentiment

of the statement. Similarly, while tagging articles named entities are required for better
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Figure 7.7: Recall for Coarse Grained POS Tagging using approach 3

search results. There are many such applications where named entities play an important
role in the automatic processing of text. Although, much work has been done in this area
for monolingual text, recognizing named entities in code mixed text for Indian languages
still remains a problem at large, due to the informal nature of the text. In this section,
proposed approaches for the task of entity recognition in code mix tweets for Indian lan-
guages are discussed. Proposed approach identifies named entity in code mix tweets
of English-Hindi and Tamil-English code mixed tweets and can be further extended to
other languages. The problem is to identify the name of various entities such as a person,

organization, movie, location in a given code mixed tweet.
7.2.1 Approach for Named Entity Recognition for Code Mixed Social Media
Text

A word level NE recognition system is designed to recognize named entities in a tweet.
As shown in Figure the proposed methodology involves a pipelined approach for

detecting each NE tag and has been divided into following four phases:
1. Pre-processing
2. Number Based Named Entity Recognition

3. Gazetteer List Based Named Entity Recognition

213



90

82.216
80.639

80

72.227
72.227
73.756
73.756
75.283
75.283

70331
70331

70

60
50
10
30
20
10

0

FB_CG WA _CG TWT €G FB CG WA_CG TWT G FB_CG WA _CG TWT €G

64.512

64.512
63.516
63.559

55.263
54.914
57.771
56.892

F-Measure

BN HI TE
®Bi_(STM_vi ®Bi_LSTM_v2

Figure 7.8: F-measure for Coarse Grained POS Tagging using approach 3

4. Tree Based Named Entity Identifier

7.2.1.1 Pre-Processing

The data is pre-processed before detecting named entities. This is done to ensure that the
data is uniform and the system can benefit from that. String is converted in lowercase.
It also removes all links present in the tweets, if any. These pre-processed tweets, along

with the original tweets are then passed to the next phase.

7.2.1.2 Number Based Named Entity Recognition

This phase identifies number based entity such as date, time, month, day, year, money, pe-
riod, quantity, distance and count using a set of regular expressions. Regular expressions
are designed based on the common patterns observed in the annotations for these tags.
Regular expressions helps in detection for these tags because there are limited variations
possible for each of these tags. For example, the tag ‘Day’ can be only one of the seven
possible days of a week in a language. Hence, detecting them using regular expressions

will be efficient. While identifying the NE tags, there is a possibility of having multiple
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Figure 7.9: Precision for Fine Grained POS Tagging using approach 3

tags attached to the same token. To remove ambiguity, proposed approach checks for tags

in a particular predefined order.

7.2.1.3 Gazetteer Based Entity Recognition

As shown in Table except Entertainment, Location, Person and Organization, rest of
the tags contain very less data that cannot be used to train a classifier. Hence, Gazetteer
lists are used for identifying NE with insufficient training data. Gazetteer lists are created
from the annotations given to the training data. While checking in gazetteer list # and @

symbols are ignored.

7.2.1.4 Classification

The rest of the NE Tags are identified by creating a feature vector for each token of a tweet.
These feature vectors are then trained using a decision tree and extremely randomized tree
classifier. The features considered for building feature vector are mentioned in Table

English dictionary feature is used to identify the presence and absence of an English word,
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Figure 7.10: Recall for Fine Grained POS Tagging using approach 3

i.e. if it is an English word it is labelled as 1, else 0. Python dictionary called pyenchantEl
is used for extracting this feature. Using most common prefixes and suffixes (length =1 to
3), dictionaries are built for prefix suffix features. Presence of these prefixes and suffixes
in tokens are identified using the same. Gazetteer list feature checks for the presence of
the token in gazetteers list of the remaining tags and uses its presence and absence as a
feature. Is Previous token tag is also taken into account to check the structure of the tweet.
Using all features mentioned in Table decision tree and extremely randomized trees

are trained for classification.

7.2.1.5 Algorithm

Algorithm [7.5| explains the proposed approach for NER of code mixed text. The System
tirst pre-processes the input by removing the website and Twitter links (implemented by:
Link_remover() ) and then converts the tweet into lowercase (implemented by: Case_conversion()).
In the second phase, all numerical features like date, time, money, quantity, period, dis-
tance, day and count are identified using check_Numerical(). Before adding it to the final
predictions, tweets are re-checked for overlapping tags and removed if found. This pro-

cess is implemented using add_without_repetition().

Thttp:/ /packages.python.org/pyenchant/
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Figure 7.11: F-measure for Fine Grained POS Tagging using approach 3

In the third phase, tweets are tokenized using the function Tokenize. These token are then
matched to the gazetteer list to check their presence in the list using check_gazetteer_List()
and add them to the final list of tags of that tweet. In the final phase, feature vectors
for each tweet are created and passed for prediction to clf classifier using predict() func-
tion. The classifier (clf) uses two variations of classifier, Decision trees and Extremely

Randomized trees.

7.2.2 Data Analysis

CMEE-IL 2016 organizers has stated the problem of NER in Hindi-English and Tamil-
English code mixed text. CMEE-IL dataset contained two code mix datasets, Tamil-
English and Hindi-English. In each dataset, the training data consisted of two files, a
text file containing raw tweets along with their tweetID and UserID and another text file
containing annotations to the tweets present in the raw tweets file. The raw tweet files
consist of 2700 tweets in the Hindi-English corpus and 3200 tweets in the Tamil-English
corpus. All the tweets in the Hindi-English corpus are already romanized whereas the
Tamil-English corpus has a mixture of both Tamil script and romanized script. There are

21 tags present in the corpus as mentioned in Table
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Named Entity Tag Person, Entertainment and Location occupies the majority of the in-
stances in Tamil-English corpus. Person tag comprises of names of famous actors, ac-
tresses, politicians, news reporters and social media celebrities. Entertainment comprises
of names of famous TV shows and movies while location consists of names of famous
cities, Indian towns and Names of countries. The remaining part of Tamil-English dataset
comprises of some numerical and time based tags. These tags include count, distance, date,
money, month, time and year. Money represents numbers along with a monetary tag like ‘15
dollars’. Organization is another tag which is associated with the names of organizations.
The rest of the tags have very less occurence in the annotated file.

Comparing Hindi-English with Tamil-English, the percentage of minority tags remains
almost same. However, in Hindi-English corpus, entertainment tag has the highest num-
ber of annotations present. It is followed by person tag which is close to entertainment
tag. The rest of order remains the same as that of Tamil-English corpus but with varying

percentages.
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Table 7.15: Frequency of NE in both datasets

Type of NE | Tamil-English | Hindi-English
Artifact 18 25
Count 94 132
Date 14 33
Disease 5 7
Distance 4 0
Entertainment 260 810
Facilities 23 10
Livthings 16 7
Location 188 194
Locomotive 5 13
Materials 28 24
Money 66 25
Month 25 10
Organization 68 109
Period 53 44
Person 661 712
Plants 3 1
Quantity 0 2
Sday 6 23
Time 18 22
Year 54 143
Total 1609 2346

7.2.3 Experiments & Results

Four versions are created for the proposed approach, for each of the language pair. In all
the versions, the numerical feature is detected using the numerical function as explained
in section[7.2.1.2] Rest of the tags are classified using different versions created as specified
in Table The rest of the tags are classified using Gazetteer Based Entity Recognition
phase as mentioned in section This is done because less training data is available
for few tags such as plants, disease and locomotive, as mentioned in Table All the
variations for the proposed algorithm is evaluated using F-measure for each language pair.
Finally, three systems are compared for each of the language pair. Hindi-English used

versions 1, 2 and 4 respectively whereas Tamil-English used versions 1, 3 and 4 respectively.

7.2.3.1 Evaluation & Discussion

As shown in Table and version 3 performed well for Hindi-English and Tamil-

English. Based on the F-measure, it can be concluded that algorithm with more number
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Table 7.16: Features used for creating the feature vector.

Sno| Features

1 Presence of token in English dictionary

2 | Prefixes of length 1 to 3

3 | Suffixes of length 1 to 3

4 Capitalization related features like start-
ing letter capital, all letters capital, other
letters capital.

5 | Features based on presence or absence
of special characters like #, @, numbers,
other symbols.

6 Presence of emoticons

7 | Token present in gazetteer list.

8 Is previous token a NE Tag.

Algorithm 7.5: Algorithm for Identifying Named Entity
Recognition for Code Mixed Text in Indian Language

N

'S

input

: Code-Mixed tweets list , S

output: Predicted Named Entity Labels, P
initialization: P=[]

fori =0 to S.length do

Link_remover(S[i]);
Case_conversion(S[i]);

fori =0 to S.length do

5
6 | d = check_Numerical(S[i]);
7 | add_without_repetition(d);
8 tok = Tokenize(S[i]);
9 for j = 0 to tok.length do
10 g = check_gazetteer_List(tok[f]);
11 add_without_repetition(P , g );
12 f = Create_Feature_vector(tok[ j 1);
13 c=clf.predict(f);
14 add_without_repetition(P,c);
Table 7.17: Different Versions of Proposed System
Version | Tags trained on Classifier Classifier Used
1 Person, Entertainment, Loca- | Decision Tree
tion, Organization
2 Person, Entertainment, Loca- | Extremely = Random-
tion, Organization ized Tree
3 Person, Entertainment, Loca- | Decision Tree
tion, Organization, Artifact,
Facilities
4 Person, Entertainment, Loca- | Extremely Random-
tion, Organization, Artifact, | ized Tree
Facilities
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of gazetteer lists and extremely randomized forest (version 2) performed well in case of
Hindi- English. However, in case of Tamil-English, an algorithm with less number of
gazetteer lists and decision tree (version 3) proved to be effective.

The precision value could be less because of string matching with elements of the gazetteer
lists. It can also be observed that recall value is low for all the versions, this could be due
to less number of named entites for a sentence, which in turn reduces the average recall
value. The recall might have increased if the partial identification of NE is considered.

The proposed system is compared with other existing approaches as shown in Figure
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Figure 7.13: Result comparison with other approaches (Hindi-English)

Table 7.18: Results for Hindi-English Proposed System

Version Precision Recall F-measure
1 58.66 32.93 42.18
2 58.84 35.32 4414
4 59.15 34.62 43.68

Table 7.19: Results for Tamil-English Proposed System

Version Precision Recall F-measure
1 55.86 10.87 18.20
3 58.71 12.21 20.22
4 58.94 11.94 19.86
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Result Comparision with other approaches (Tamil-English)
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Figure 7.14: Result comparison with other approaches (Tamil-English)

7.2.3.2 Error Analysis

Few phases in proposed approach might have attributed to misclassification for few tags.
One such phase can be Gazetteer Based Entity Recognition phase of the proposed ap-
proach which is a dictionary based approach and has disadvantages associated with it.
If the data present in the dictionary is very less, it will correspond to lower precision.
Hence, there is a need for increasing more elements in the list for a better recognition
system. Apart from this, if there is an ambiguity in tags, then there is a chance of misclas-
sification. For example, if there is a token ‘Honey’ it can represent a Person like ‘Honey

Singh’ or as a tag Material. Problem of ambiguity can be resolved using a classifier.

7.3 Concluding Remarks

In this chapter, tools such as POS tagger, NER for code mix text has been proposed.
Three approaches are proposed for POS tagging. Two of them are based on traditional

machine learning techniques such as random forest, extremely randomized tree and en-
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semble method. The system is designed to tackle code mixed scripts for three language
pairs Telugu-English, Hindi-English and Bengali-English. In future, more features can be
added to improve the precision without affecting the recall. The proposed system did not
use clustering, adding it might help in improving the accuracy of the system. WordNet
can also be used to improve the system by clustering the words to its synonyms. Third
proposed algorithm for POS tagger of code mixed data used recurrent neural networks
for tagging. The technique is superior to conventional machine learning methods as no
feature engineering is required but a lot of data is required to improve the results further.
Another tool proposed for code mixed text is Named Entity Recognizer. A hybrid ap-
proach of a dictionary and supervised classification approach is proposed for identifying
entities in code mix text of Indian languages such as Hindi-English and Tamil-English.
The proposed system used a pipelined approach to identify the named entities. There are

four variants of the system based on the number of tags and the classifier used.
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Chapter 8

Code Mixing Applications

With the increasing amount of code mixed data on social media has hindered the auto-
matic analysis of the text. Applications such sentiment analysis, question classification,
recommendation system and many other analysis tools use social media text to aid the
process. However, to automate the process, they have address the challenges posed by
social media text due to informal nature of the text. One such challenge in automated
processing of text is of code mixing. This chapter focuses on applications of code mixed
text i.e question classification and sentiment analysis. Section 8.1) and (8.2 discusses the
applications of code mix text for Indian languages. In section multiple algorithms for
question classification are proposed and their evaluation is discussed. Algorithms for sen-
timent analysis in code mixed text has been discussed in section[8.2] To understand a code
mix text, it is essential to analyze and identify the language at word level, and hence an

algorithm has been proposed to identify the same to aid the process of sentiment analysis.

8.1 Question Classification for Code-Mixed Cross Script Ques-
tion

Nowadays tasks ranging from shopping to medical consultation are performed by chat-
bots. Intelligent home automation systems are in the market which can answer user ques-
tions, place online orders and perform a myriad of other functions. However, these ques-
tion answering frameworks are almost exclusively monolingual. The most basic mecha-

nism in these frameworks is identifying the type of question posed by the user as this
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reduces the scope of search for answer by the system. For example, the question "Which
continent does India belong to?" should be classified as ‘Location’, as the answer to this
question is of type ‘Location’. A lot of existing question answering frameworks contain
rules that have been manually built to map the question to its type, but these frameworks
are not easy to update and maintain.

The interaction using question answering has been researched well in the monolingual
scenario with good results, but not much progress has been made in the case of code
mixed scripts. This can be attributed to the fact that there is no pre-defined standard for
writing spellings in the non-native script. Another reason is that there are no grammat-
ical/syntax rules that are followed by code mixed scripts. Question classification helps
in diminishing the number of candidate answers and furthermore can be utilized to de-
cide the viable answer. Being a classic application of NLP, Question Answering (QA) has
practical applications in various domains such as education, health care and personal as-
sistance. QA is a retrieval task which is more challenging than the task of the standard
search engine because the purpose of QA is to find the accurate and concise answer to
a question rather than just retrieving relevant documents containing the answer [Li &
Roth 2002]. Recently, [Banerjee et al. 2016b|] formally introduced the code-mixed cross-
script QA problem. The first step of understanding the question is to perform a question
analysis. Question classification is an essential task of question analysis which detects the
type of answer expected to the question. Question classification helps not only to filter
out a wide range of candidate answers but also determine answer selection strategies [Li
& Roth 2002]. Furthermore, it has been observed that the performance of question classi-
fication has a significant influence on the overall performance of a QA system.

This section addresses the task of code mixed cross script question classification where ‘Q’
represents set of factoid questions written in romanized Bengali along with English. The
task is to classify each given question into one of the predefined coarse-grained classes.
Two approaches have been proposed for classification of questions in this section. Initially
proposed approach used traditional machine learning classifiers like NB, RF and LR. Four
versions have been proposed for the first approach. The first version uses translation be-
fore NER, the second version uses only NER followed by classifier algorithms, the third

version uses only translation followed by classifier algorithms, and the fourth version uses
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translation after NER.

The second approach uses CNN for classification of the questions. Convolution can be
thought of as a sliding window function being applied to a matrix. CNN(s) are funda-
mentally a few layers of convolutions with non-linear activation functions like ReLU or
tanh connected to the outcomes. In a conventional feed forward neural system, every in-
put neuron is associated to yield a neuron in the following layer. Instead in CNN(s), the
output layer is computed by using convolutions over the input layer. This results in local
associations, where every region of the input is associated with a neuron in the output.
Every layer applies different functions, commonly hundreds or thousands, and combines
their outcomes. During the training phase, depending on the input a CNN automatically
learns the values of its filters. CNN(s) have been used extensively in the past for image
classification and are the core of most computer vision systems today, for example, Face-
book’s automated tagging feature. More recently CNN(s) are being used for NLP tasks

like classification.

8.1.1 Approach 1: Question classification using traditional machine learning

techniques

A word-level n-gram based approach has been proposed to classify code mixed cross
script questions into nine different coarse-grained question type classes. The approach

can be broadly divided into four phases.
1. Preprocessing

(a) Separation of class labels from training dataset.
In the dataset, the questions are labelled with the class they belong to. The
sentences are separated from their class type to build a feature vector for the

questions.

(b) Case Conversion.

To normalize the text, case conversion to lower case is performed.
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2. Named Entity Recognition and removal
With the end goal of classification of the questions into one of the classes, the pres-
ence of these named entities can be insignificant, as these elements may not con-
tribute in building question structure for determining the class type. The prepro-
cessed dataset contains questions which have a lot of Named Entities. Predefined
categories can allude to NE, for example, names of people, currency names, in-
stances of time and locations. Named Entities are recognized utilizing a dictionary-
based approach. The information set used for NER mostly contained the passages

from FIRE 2015 sub-taskl’s dataset [Sequiera et al. 2015b].

3. Translation
In this phase, the romanized Bengali words are transliterated into their native scripts.
The words are further translated into their corresponding English counterpart by
utilizing the Google Translate AP]H This phase helped to build a monolingual
dataset from the code mixed script dataset for efficient classification. For instance,
the question record "Phulera janya kata?" and the record "Phulera how much?",
both allude to a similar question. These sentences utilize a diverse mix of words,
and thus normalizing sentence to its English interpretation, would possibly prompt

to an expansion in the precision.

4. Classification
The input to the classifier is different depending upon the dataset used. In the first
version, translation is performed followed by Named Entity removal. In the second
version, only Named Entity removal is performed, and in the third version, trans-
lation is performed without Named Entity removal. The orders and phases used
by the versions can be inferred from Table n-grams are used to make feature
vectors corresponding to each question in the dataset. The value of n lies from 2 to 4.
The transposed matrix of these feature vectors along with the numerically encoded
class label matrix is then used as input to the classifiers. The following different

classifiers are used:

Ihttps:/ /translate.google.co.in/
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(a) Gaussian Naive Bayes Classifiers
(b) Logistic Regression Classifier
(c) Random Forest Classifier with Random State = 1
Four different versions are created using above mentioned phases as shown in Table

Different versions are created with an attempt to validate which phase in the pipeline

contributes, most to the results.

Table 8.1: Description of versions for Approach 1

Version Number Phases Used in respective order
) Preprocessing, Translation, Named Entity removal, Classi-
Version 1 . L
fication
Version 2 Preprocessing, Translation, Classification
Version 3 Preprocessing, Named Entity removal, Classification
Version 4 [Bhargaval | Preprocessing, Named Entity removal, Translation, Classi-
| let al. 2016b] fication

8.1.2 Approach 2: Question classification using Deep Learning

In this proposed approach, CNN has been used for question classification into nine dif-

ferent classes.

1. Preprocessing

The steps involved in preprocessing are:

(a) Class labels and sentences are separated. Stemming and case conversion is

performed to normalize the text.

(b) Pad each sentence to the maximum sentence length, which is 11 in case of the
dataset [Banerjee et al. 2016a]. <PAD >tokens are appended to sentences with
length lesser than 11 words. Padding sentences to the same length is useful

because it allows to efficiently batch data.

(c) Map each word to an integer between 0 and vocabulary size by building a

vocabulary index. Each sentence can now be represented as a vector of integers.
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2. Deep Learning Model
Let, a; € RF be the k-dimensional word vector corresponding to the i*" word in the
sentence. A sentence of length n comprises of the words a1, a5, and so on till a,,.
Let a;,;,; allude to the window of words a;,4;11, . . . ,a;j. A convolution opera-
tion involves a filter w which is applied to a window of & words to create another
element. For example, an element g; is created from a window of words a;.;, 1 by
gi = f(w*aji +b). Here b € R is a bias term, and f is a non-linear function like
ReLU or tanh function. This filter is applied to every conceivable window of words
in the sentence a1, .41, - - - , Appi1. to deliver a feature map = (g1, 92, -, Suns1),
with ¢ € R"1,
A maximum pooling operation is then applied over the feature map and the max
value of max{g} is then selected as the feature, corresponding to this filter. The idea
behind this is to capture the most imperative component of every feature map. The
model uses numerous channels (with shifting window sizes) to obtain multiple fea-
tures. These features are accumulated in the last but one layer. The accumulated
features are then passed to the last softmax layer which gives the output. The output
is the probability distribution over the class labels.
The convolutional layer’s parameters comprise of an arrangement of filters that can
be learned. Even though each filter is small in scope, it reaches out through the full
depth of the information volume. In the forward pass, filter slides (convolves) over
every channel in the input and computes the dot products between the sections of
the filters and the input. The filter sliding over the input produces an activation
map that represents the relationship between filter response and spatial position.
The system learns filters that are activated when some feature is seen, for example,
the words like “fee’, ‘charge” and ‘taka’, that relate to one class label.
After convolutional layer, pooling is done to ensure that over-fitting does not oc-
cur and to reduce the amount of computation and parameters in the network. The
model built for approach 2 is represented by Figure In the model built for
approach 2, the primary layers insert words into low-dimensional vectors. The fol-
lowing layer performs convolutions over the inserted word vectors utilizing different

filter sizes. For instance, sliding more than 3, 4 or 5 words at once. Next, the result
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Figure 8.1: Convolutional Neural Network Model for Approach 2
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of the convolutional layer is max-pooled into a long feature vector, which includes

dropout regularization. Classification is done by using the final softmax layer.

8.1.3 Algorithms for Question Classification for Code Mixed Cross Script Ques-

tions

Algorithm [8.1| elaborates the traditional machine learning approach for question classifi-
cation. The input contains the questions along with the class labels. First, preprocessing
is performed where the class labels and corresponding questions are separated. This is
implemented by the function, Label_Separation(). Case conversion is done to normalize the
input data by the function, Case_Conversion().

To build the feature vectors, n-gram technique is applied. The function Count_Vectorizer()
converts the text into n-gram tokens, where n ranges from 2 to 4. Analyzer() function
produces n-gram tokens when called on each row of the dataset. The word level n-grams
corresponding to each row is appended (using function append()) to the n-gram list. The
class labels are enumerated with the help of Encode_Class() function. Feature vectors for
these classes are generated using the encoded values.

In the final step, the two feature vectors built in the previous steps are passed to the clas-
sifier. In approach 1, explained in section three classification algorithms, namely
gaussian naive bayes, logistic regression and random forest have been used. The classifier
predicts the class labels for the questions, generated as output.

In algorithm CNN is initialized with the following hyperparameters. The sequence
length is 11 which is the maximum length of the entry in the NER dataset. The number
of classes are nine. The embedding size is set to the default value of 128. filter_size refers
to the number of words required in convolutional filters. In approach 2, mentioned in
section the value of the filter size lies in the range [3, 5], which implies that the
filters slide over 3, 4 and 5 words respectively. The function CreateEmbedding() defines the
embedding layer which maps vocabulary word indices to vector representations. This is
similar to creating a look-up table. Embedding matrix ‘W’ is learned during the training.
Since the filters are of different sizes and each convolution produces vectors of different
shapes, a layer is created for each of them, and the results are then merged into one fea-

ture vector. Once the output vectors are pooled from each filter size, they are combined
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to give the final vector. The vector from max-pooling is used to generate predictions by

performing matrix multiplication and then choosing the class with the maximum score.

Algorithm 8.1: Question Classification using traditional ma-
chine learning

input : Questions code mixed in Bengali and English, Q.
Training class labels T.
output: An output sequence P, the predicted class labels.
1 Initialization: n-grams = [];
2 fori <1 to Q.length do
3 Label_Separation(Q[il);
4 Case_Conversion(Q[i]);
5 if versionl then
6 Translate(Qli]);
7 L NER(QIi]);
8 else if version2 then

9 L Translate(Q[il);

10 else if version3 then

1 L NER(QIi]);

12 else if version4 then
13 NER(QIi]);
14 Translate(Qli]);

15 Vectorizer = Count_Vectorizer(ngram range=(2,4));
16 Analyzer = Vectorizer.Build_Analyzer();

17 fori < 0 to Q.length do

18 row=Analyzer(Q[i]);

19 for j < 0 to row.length do

20 L n-grams.append(rowljl);

21 Matrix_Data = Create_Feature_Vector(n-grams);
22 Class_List = Encode_Class(T);

23 Matrix_Class = Create_Feature_Vector(Class_List),
24 clf = Classifier(Matrix_Data, Matrix_Class);

25 clf.fit(tMatrix_Data, Matrix_Class);

26 P = clf.predict(Matrix_Test);

=

8.1.4 Data Description and Analysis

The dataset [Banerjee et al. 2016a] used for training purpose consisted of 330 questions.
The dataset contains code mixed text of Bengali and English with nine question classes.
The number of words in the dataset varied from 2 to 11. On average, question has an

approximately 6 words. As shown in Figure[8.2} class-types ‘ORG’ and “TEMP’, comprises
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Algorithm 8.2: Question Classification using Deep Learning.

input : Questions code mixed in Bengali and English, X.
Corresponding training class labels Y.
output: An output sequence P, the predicted class labels.

1 Initialize the CNN with sequence_length=11, num_classes =
9, e