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ABSTRACT 
 

Application of scenario planning in various areas of research has undergone a significant 

evolution in terms of management of the resources. It helps resources be available in future with 

least complexities. Scenario development for water resources, the most vital source of life, has 

been considered in the thesis. Water resources are getting extinct gradually due to excessive 

usage and limited replenishment generating worries for its future availability. Scenarios have 

been planned considering different possibilities incorporating prediction and simulation with 

various water balance and climate models. Application of GIS (Geographical Information 

System) adds another dimension to such models.  

Methods encountered in literature are found focusing on either prediction techniques of input 

variables or derivation of outputs with respect to predicted/defined inputs or both. A proper 

classification can be done to check which method is used for prediction or derivation. Prediction 

techniques encountered are found complex having rigorous calculation procedures and difficult 

to understand. Simpler and easier to apply techniques of prediction can be developed since 

scenarios can be considered as approximations. Derivation techniques/models determined the 

states of few of the water resources with respect to predefined scenarios. An integrated state 

variable model can be developed deriving states of all water resources within a watershed for a 

random number of scenarios accounting various combinations of predicted input variables. 

Application of GIS has been found limited to analysis and presentation of the spatial data for 

water resource scenarios and devoid of prediction. Vector/one-dimensional data prediction 

techniques employed in scenario development can be employed to predict 2D/3D data.  

Focusing primarily on the prediction techniques, a simpler and easier to apply technique for 

prediction has been developed using systems Input-Output approach of time domain analysis 

derived from moving average method of forecasting. A case study for the water resource 

management in semi-arid region of nine villages in the Chirawa block of Rajasthan has been 

considered to evaluate the method developed with respect to the reasonable results of ground 

water recharge and demand affected by the climatic variables of rainfall and evaporation. Real 

data for rainfall, temperature, population, and crop land has been collected for the previous years 

to validate the model. Normally, scenarios are difficult to validate and primarily generate 
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reasonable data over a wide range. Cost-benefit analysis has been conducted to suggest the best 

option from the noticed solutions to compensate water requirement with recharge over the 

region. The best option is judged in terms of highest volume of water saved and lowest 

implementation cost incurred from the suggested list of solutions. Prediction of future input 

variables of rainfall, evaporation, crop water requirement, and population by the generalized 

equations is found reasonable with an error close to 6%, 7.5%, 7%, and 1% respectively in the 

business as usual scenario over the nine villages in Chirawa.  

Embedded to the prediction technique developed, a state variable model has been designed in 

MATLAB Simulink that determines the time-invariant states of different water storage 

components within a watershed for a random number of scenarios. The major storage 

components comprise of soil,  aquifers, reaches, and ponds/reservoirs. Parameters affecting the 

hydrological system are inputs to the model. The generalized equations developed for prediction 

are used to predict the input parameters at every time step providing a dynamism in the execution 

of the model. The model is validated over a village area named Ardawta, Rajasthan (India). 

Scenarios for the state of ground water level up to the year 2030 have been generated and five 

among them have been selected from worst to best case situation. The prediction error for the 

ground water level in business as usual (BAU) scenario using the state variable model developed 

is found 0.64% with respect to the ground water level data for the year 2016. 

Further the prediction technique has been deployed over the raster data in GIS to predict future 

rainfall and evaporation maps from their historical interpolated maps. State variable approach 

has been applied to predict the future state of ground water level in the form of ground water 

level maps affected by predicted rainfall, evaporation and ground water draft parameters from 

pixel to pixel. Other inputs defining the characteristics of the hydrological region comprise curve 

number, digital elevation, hydraulic conductivity, and reach distance maps. A dynamic state 

variable GIS model to generate such scenarios has been developed in python of ArcGIS 10.1. An 

error of 0.013% between means of predicted and actual interpolated ground water level map of 

the year 2016 reflects a good estimation. Outputs for the drought, surplus, and business as usual 

scenarios present that ground water draft has 99% effect while rainfall and evaporation have the 

effect of 1% only on the ground water level. 
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Prediction technique developed has proved its significance in the forecast of future input 

variables for hydrological system observed on the basis of results obtained for the change in 

ground water level within a lumped state variable model and GIS based distributed model 

developed covering the physical relations defined for hydrology.  

 

Keywords: Scenario development, Water resource management, Time series extrapolation, State 

variable modeling, Geographical information system. 
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CHAPTER 1: INTRODUCTION 

 
1.1 Problem statement 

 

Future estimation and planning is the basic nature of a human being. Generally, people forecast 

with their intuition for near and far future with respect to various factors affecting any system of 

their interest. Since seeking for a sustainable future is the fundamental right of every person, one 

needs to evaluate the future aspects of his environment either quantitatively or qualitatively. 

Engineering, technology, and management have formulated or coded human future estimation 

intuitions by many statistical, probabilistic, and artificial intelligence techniques which are based 

on certain mathematical functions intending to model the nature. Such mathematical functions to 

model the nature are getting complex enough to be understood and applied by a novice user. In 

light of the complexity of mathematical functions incorporated, their easier to apply counterparts 

with lesser technical parameters of consideration will be more suitable and user-friendly. The 

technical term used for the process of future estimation is known as scenario development.  

 

Scenario development plays a challenging role in identifying the possible circumstances and 

their impact in the future instances (Schoemaker, 1995). A scenario is not a forecast instead a 

possible future outcome (Porter, 1985). Although future cannot be predicted yet forecasts are 

required to manage the possible future conditions. Scenarios force organizational planners to 

consider paradigms that challenge their current thinking focusing on long term and short term 

stories about the future (Chermack et al., 2001). It articulates mental models to help managers to 

make better decisions (Martelli, 2001). It is widely applied in different areas of research for 

estimating the outcomes of the system in different conditions used for strategic planning and 

policy making (Yoe, 2004).  

 

1.1.1 Scenario and water resources 

 

Over-exploitation of water resources compared to their replenishment draws attention towards 

water management for future generations. Rapid economic development coupled with other 

human activities cause this transition of water resources (Kulshreshtha, 1998). Therefore, water 

resource planning can be described as a guiding resource to achieve desired goals of water 
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management (Huaicheng and Beanlands, 1994). Sustainable water resource management 

requires ideally accurate estimations on per capita consumption and a good understanding of the 

factors influencing the consumption (Hussein et al., 2016). Insufficient water resources with 

respect to demands from different agents may cause water conflicts (Oftadeh et al., 2016). 

Balancing human demands for water with environmental requirements to maintain functioning 

ecosystems requires the quantification of ecological water requirements (Yuan et al., 2016). A 

watershed, a ground water or a river basin can be focused for scenario planning and management 

(Barrow, 1998). 

  

Scenario planning is primarily based on a prediction process to generate the possible outcomes in 

future. Various prediction techniques have been used with respect to one or more number of 

factors affecting a hydrological system. A hydrological system for scenario planning requires 

certain prediction and derivation methods. Prediction is required to derive the input variables for 

any system in future time steps. Predictions are carried out through certain soft techniques like 

ANN (Artificial Neural Network), Fuzzy logic, Markov model, GAMLSS (Generalized Additive 

Model for Location, Scale, and Shape), genetic programming, etc.  

 

Besides prediction of input variables for a hydrological system, it is required to get the proper 

estimation of resources affected by them in future. It requires hard techniques (derivation 

methods) or hydrological models (Beijeman et al., 2009). Hard techniques are the techniques 

employing the physical relations of any system deriving the outputs with respect to the inputs, 

e.g. rainfall runoff models, evapotranspiration models, water balance models, etc. in the context 

of water resources. Potential of water resources is dropping due to various factors which include 

socioeconomic, anthropogenic and climatic variables (Wang et al., 2011; Mao et al., 2014). It is 

required to identify future states of these resources to plan for the possibilities that may arise. 

Certain defined/designed water balance models have been used to predict the states of various 

water storage elements (Jiang et al., 2007). Such hard systems consider a watershed as a lumped 

system with no distributed characteristics. Few other researchers have taken watershed as a 

spatially distributed system. Distributed system for water resources employed GIS (Geographical 

Information System) as a very effective tool for widespread analysis and presentation. 



3 

 

Application of SWAT (Soil and Water Assessment Tool) model, a GIS extension is highly 

significant in most of the literature taking watershed as a distributed system.  

 

1.2 Outline of the thesis 

 

The thesis work is divided and organized into seven different chapters. 

 

Chapter 2 Literature Review 

This chapter provides a thorough review of the literature covering the concept of scenario 

development for water resources. Different methods of prediction and derivation are focused to 

identify the research gaps.  

 

Chapter 3 Fundamental Techniques Employed in Scenario Development of Water Resources 

This chapter provides a classification of the fundamental techniques employed for scenario 

development of water resources into predictive and derivative classes. Besides, fundamentals of 

the techniques taken forward for implementation of the research are also presented.  

 

Chapter 4 Scenario Planning for Water Resource Management in Semi Arid Zone 

This chapter introduces the newly developed methodology based on the Input-Output system of 

time domain analysis identified from moving average method of extrapolation. A case study of 

nine villages in Chirawa block of district Jhunjhunu, Rajasthan (India) has been considered to 

examine the technique. This technique has been used to predict various input factors affecting 

the ground water resources. Later ground water recharge and demand has been evaluated with 

respect to predicted variables and certain methods of water conservation have been evaluated to 

compensate the demand. Cost benefit analyses have been conducted to determine the best 

method for water conservation.  

 

Chapter 5 Development of a State Variable Model for Generating Hydrological Scenarios 

This chapter introduces the newly developed hydrological state variable model taking inputs as 

per the method developed in Chapter 4 which can derive the future states of water storage 
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elements within a watershed for various scenarios. A case study of Ardawta village in Chirawa 

block of district Jhunjhunu, Rajasthan (India) has been considered to validate the model. 

 

Chapter 6 GIS Modeling for Scenario Development of Water Resources 

This chapter introduces a newly developed GIS model to evaluate the future state of water 

resources over a region as per the methodologies applied in Chapter 4 and Chapter 5. A case 

study of Chirawa block of district Jhunjhunu, Rajasthan (India) has been used to validate the 

modeling approach.  

 

Chapter 7 Conclusions and Future Scope 

This chapter concludes the findings of the research work with strong theoretical bases for 

accepting and rejecting the methodologies developed. Following the concluding discussions, the 

chapter outlines major findings, contributions, implications, limitations and future scope of the 

study.  
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CHAPTER 2: LITERATURE REVIEW 

 
2.1 Chapter overview 

 

The literature review in this chapter defines the different perspectives of scenario development 

and the importance of the factors required to be considered for any system. Further need, cause, 

and approaches to scenario development of the water resources are discussed. Finally, research 

gaps and thereafter research objectives of the thesis are mentioned at the end of the chapter.   

 

2.2 Introduction 

 

Scenario development is a prediction process to judge the future aspects of any system. There are 

various types of scenarios with respect to the different important factors within a system. 

Description of the types of scenarios with respect to the approach of their development, merits, 

and demerits are presented in section 2.2.1. Further, section 2.2.2 presents a brief overview of the 

factors to be considered for scenario development.    

  

2.2.1 Scenario types 

 

Scenarios can be categorized into the following groups as shown in Figure 2.1. 

 

 

 

 

 

Figure 2.1. Types of scenarios (Mahmoud, 2008) 

 

Modelers and researchers are primarily interested in strategic scenarios aimed to identify the 

inconsistent behavior of a complex system with respect to various disciplines and their 

approaches where explicit assumptions, patterns, and data selected by the disciplines are 

emphasized (Mahmoud, 2008). Exploratory scenarios portray the future based on identified 

courses of change and predictions from past observations (McCarthy et al., 2001). Scenarios 

such as future trend are based on extrapolations of trends, projections, and patterns. Application 

STRATEGIC 

PROJECTIVE 

PROSPECTIVE 

FUTURE TREND EXPLORATORY SCENARIOS 

EXPERT 

JUDGEMENT 

POLICY 

RESPONSIVE 

ANTICIPATORY 
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of such trends is simple but lack to see the future effects of any relevant policy (Godet and 

Roubelat, 1996; Steinitz, 2003). They can either be projective or prospective. Forward 

projections in the future based on the past trends observed is implemented in projective scenarios 

while prospective scenarios anticipate upcoming changes varying significantly from the past 

(Hulse and Gregory, 2001). When the situations for the desired or feared visions to attain or 

avoid are judged with respect to certain events or actions if occur, then the scenarios are termed 

as anticipatory.  There is high subjectivity in such scenarios based on the conditions observed in 

past and likely to arise in future (Godet and Roubelat, 1996; McCarthy et al., 2001). An 

anticipatory approach is followed in policy responsive scenarios where serious issues are 

targeted to outline the policy decisions and then the scenarios corresponding to policy are 

developed to achieve the desired future effects. Governmental and organizational decision 

makers follow the anticipatory approach frequently in order to identify and manage risks in 

better ways (Schwartz, 2000; Steinitz 2003; Baker et al., 2004). Policy responsive scenarios 

again have two dimensions as expert judgment and stakeholders view. When scenarios are 

modeled with respect to scientific facts gained from the conclusions, laws, goals, and principles 

found by scientists and subject experts, then the scenarios are considered as expert judgment. 

Such type of scenarios is based on current thinking projecting future changes incorporating a 

varied significant information and building a scientific agreement. Such scenarios are very 

subjective and lack political reasonability putting them into the biased frame (Houghton et al., 

2001; McCarthy et al., 2001; Hulse et al., 2004). Scenarios involving the stakeholders are 

citizen-driven where there is greater political reasonability and public acknowledgment than 

expert judgment due to the active involvement of the stakeholders in scenario planning and 

development processes (Hulse et al., 2004). However, it is potentially biased as only the most 

committed citizens are usually involved. 

 

2.2.2 Factors affecting scenarios 

 

A term referred to as STEEPV (Social, Technological, Economic (macro), Environment, 

Political, and Values) includes all the variables for any type of scenario building (Tankersley, 

2006). These factors include socioeconomic, anthropogenic and climatic variables (Wong et al., 

2011; Mao et al., 2014; Yuan et al., 2016). All these factors are categorized as predictable, 

unpredictable, important and unimportant as shown in Figure 2.2. The factors which are 
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unimportant and predictable must be excluded from the scenario planning. The factors which are 

important and unpredictable are always considered. All the factors considered will inhibit the 

property of evolution and definitely evolve after a time period. It is required to simulate the 

evolution pattern of these factors in future to analyze their effects on the resources of any system. 

For instance with respect to water resources, population as an anthropogenic factor determines 

the pattern of demand which may arise in future. Land use and land cover as socioeconomic 

factor determine the pattern of ground water recharge based on the impervious cover of any 

region. Temperature and rainfall as climatic factors determine the future condition of water 

availability. All such factors are variable with respect to time as verified by the historic review. 

More or less all these factors are affecting each other in different perspectives. 

   

Predictable 

 

 

 

Unimportant                                                                                     Important 

 

 

 

Unpredictable 

Figure 2.2. Selection chart of factors for scenario development 

 

2.3 Need for scenario development for water resource management 

 

Water resource management is required for future generations as all sources of water are getting 

exploited more in comparison to their replenishment due to various factors in the environment. 

Kulshreshtha (1998) stated that the exploitation of water resources is the effect of socioeconomic 

development. A proper balance between social and environmental water requirements is 

necessary for sustainability (Yuan et al., 2016; Oftadeh et al., 2016). This can be achieved by 



8 

 

quantification of the water consumption for different factors (Hussein et al., 2016). Scenarios are 

found useful to account for uncertainties related to climatic, demographic, economic, social, 

technical and political conditions affecting the performance of water resource systems, future 

water availability, demand and management strategies (Gallopin and Rijsberman, 2000; Alcamo 

and Gallopin, 2009). It helps to explore and analyze future water related issues to support water 

managers and decision makers to find solutions for potential problems (Mahmoud, 2008). Water 

resource planners have learned to plan, design, build and operate structures that increase the 

benefits people can obtain from the water resources (Cooper and Bottcher, 1993).  

 

2.4 Causes of scenario development for water management  

 

Water being one of the important resources for sustainable life on the planet is required to be 

preserved for the future generations. Water for various purposes of mankind is obtained from the 

underground aquifers (ground water), meteorological rainfall (precipitation) and river flows 

(surface water). These resources are getting scarce in their potential due to their excessive usage 

and limited replenishment, climate change, increasing demands and changing land use scenarios 

(Klove et al., 2014). Climate change with high temperature and altered precipitation patterns 

impacts water resource availability and irrigation water demand directly (Chung et al., 2011; 

Falloon and Betts, 2010; Zhu and Ringler, 2012) along with water quality and ecosystem 

stability. The pavement of the land by urban infrastructures generates more runoff instead of 

ground water recharge. Therefore, urban planning and development is suggested based upon the 

microclimatic conditions which are used to plan the further development (Wong et al., 2011). 

Evaporation is increasing relatively due to increasing temperature. This may evolve the condition 

of drought due to multiple climatological and hydrological parameters (Mishra and Singh, 2010; 

Vicente-Serrano et al., 2012). It is required to identify the parameters and their effects on the 

water resources which are causing them to diminish. Hence scenarios are required to be planned 

to identify alternative future states of the water system which facilitate water managers to make 

robust decisions and strategies. This may help to achieve planning objectives such as alleviating 

water stress, improving water quality, maintaining the ecosystem services, etc.  (Lempert et al., 

2006; Groves, 2006). 
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2.5 Approaches for scenario development for water management  

 

There are various approaches for scenario development with respect to the granularity of data 

and stages being considered. It can be bottom up, top down or multistage. Bottom up approach 

focuses on socioeconomic vulnerabilities while top down approach often results into an 

explosion of uncertainties and therefore complicate decision making (Kalaugher et al., 2013). 

Wang et al. (2011) developed a simulation model for change in land use patterns under drought 

scenarios combining top down system dynamics model, bottom up cellular automaton model and 

the artificial neural network model. The multistage approach is like scenario development rules 

to be applied at every time step with respect to the state of the system at that time step. Pallottino 

et al. (2005) devised a Decision Support System (DSS) for water resource management 

incorporating demand and supply as the nodes connected by a junction at some time step as one 

stage. For multiple consecutive time steps, there are multiple similar stages. These stages have 

been optimized for sustainability with respect to various predefined scenarios of demand and 

supply.  Li et al. (2008) applied IMSIP (Inexact Multistage Stochastic Integer Programming) for 

analyses of the multiple policy scenarios that are associated with economic penalties when the 

promised targets are violated as well as the economics of surplus water diversion. Li et al. (2009) 

applied Multistage Fuzzy-Stochastic Quadratic Programming (MFSQP) approach within a 

multilayered scenario tree for agricultural sustainability under uncertainty. Fan et al. (2015) 

developed a generalized fuzzy two-stage stochastic programming (GFTSP) method for planning 

water resources management systems under uncertainty.  

 

Top down, bottom up, and multistage approaches can be considered as viewpoints to solve the 

problem more efficiently and effectively. Ultimately, these viewpoints require certain methods 

including prediction techniques and derivative models to solve the problem. Input variables for 

future time steps require prediction while derivative models generate desired outputs at those 

time steps. It requires a system approach to derive outputs with respect to the supplied inputs. 

These systems can be classified into soft systems and hard systems. Soft systems are the flexible 

tools for describing a system (Checkland and Poulter, 2010) while hard systems integrate the 

physical aspects of the system (Beijeman et al., 2009). Soft systems include various soft 

computing techniques like Artificial Neural Network (ANN), Markov model, Fuzzy logic, 

GAMLSS (Generalized Additive model for location, scale, and shape), etc., while hard systems 
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include system models like hydrological models in the context of water resources. It is observed 

that the integration of soft techniques to predict inputs in future and hard techniques to derive 

outputs corresponding to the predicted inputs can help in the scenario development of any 

system.  

 

A few of the researches performed with prima facie soft techniques of prediction are presented 

here. Suen and Lai (2013) projected the future salinity concentration in rivers using soft 

computing technique of ANN (Artificial Neural Network) with respect to the precipitation and 

stream flow. Kourgialas et al. (2015) forecasted river flows using ANN on an hourly basis 

resolving accurate estimation of extreme flows. Zhang et al. (2017) applied back propagation 

ANN (BP-ANN) method to predict ground water level using 180 monthly GWD (Ground Water 

Depth) data records in districts of Beijing Plain, China. Song et al. (2018) used ELM (extreme 

learning machine (a variant of ANN with high learning rate and single hidden layer)) to forecast 

the ground water flow and salinity level patterns in the coastal aquifers of Baldwin County, 

Alabama. Deo et al. (2017) used ELM over wavelet transformed data of Drought indices (a 

weighted function of rainfall time series to analyze drought risk) to forecast drought indices in 

three hydrological stations in Australia. Lopez and Frances (2013) used another soft technique 

called GAMLSS (Generalized Additive model for location, scale, and shape) for flood frequency 

analysis modeling the non stationary climatic time series data. Serinaldi and Kilsby (2012) 

modeled the monthly log transformation based deseasonalized data of rainfall and stream flow 

using GAMLSS. Candela et al. (2009) used Markov chain to model the rainfall occurrences and 

a probabilistic model for modeling the rainfall amounts. Markov chain method of soft computing 

has been integrated with other soft method called fuzzy logic in few of the studies. Fu et al. 

(2012) developed a fuzzy-Markov-chain based stochastic dynamic programming (FM_SDP) 

method for tackling uncertainties expressed as fuzzy sets and distributions with fuzzy 

probabilities (DFPs) in reservoir operation. Halmy et al. (2015) predicted land use change using 

Markov-CA (Markov Cellular Automaton) method. Ravansalar et al. (2017) used linear genetic 

programming over the DWT (discrete wavelet transformed) time series data of streamflow to 

predict future streamflow in two gauging stations of Beshar River, Iran. Shamaei and Kaedi 

(2016) used an ensemble of genetic programming and neuro-fuzzy prediction models for higher 

accuracy in the prediction of suspended sediments at two stations Rio Valenciano and Quebrada 
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Blanca in the USA. Mehr and Nourani (2018) forecasted stream flow through genetic 

programming with respect to the rainfall data preprocessed by the seasonal algorithm (breaking 

time series into its trend, seasonality and irregularity components) in the Haldizen catchment, 

Trabzon, Turkey. 

 

Above soft computing techniques have been used but not limited to predict future inputs for the 

different variables incorporated within a system with respect to their historical time series data. 

Somewhere these methods have been used to forecast future inputs with respect to historical 

inputs elsewhere they are used to model outputs with respect to predefined future 

inputs/scenarios. Such predefined scenarios are obtained from other sources or models. 

 

With reference to water resource management, input climatic data of rainfall, temperature, etc. 

for various predefined scenarios has been obtained from the climate models referred as GCMs 

(Global climate models) and RCMs (Regional climate models). Global Climate Models are 

commonly used in large scale climate change studies which have been downscaled to Regional 

Climate Models to obtain fine scale studies (Bozkurt and Sen, 2013). Suen and Lai (2013) 

generated future daily precipitation data by statistically downscaling results from seven GCMs: 

CGCM3.1, CSIRO-Mk3.5, ECHAM5, GFDL-CM2.0, GFDLCM2.1, MRI-CGCM2.3.2, and 

MIROC3.2. Average of the downscaled rainfall from seven GCMs had been used to project the 

salinity concentration at several locations in Taiwanese river. Candela et al. (2009) coupled the 

temperature and precipitation data from GCM HadCM3 to a ground water model to estimate 

impacts of climate change on ground water.  

 

Besides the soft prediction techniques there is other class of system specific hard derivative 

techniques. With reference to water resources various water balance models, potential 

evapotranspiration models (PETs) and rainfall runoff models lie in this category. Griffin et al. 

(2013) implemented  USGS Thornthwaite water balance model with estimates of climate change 

and land use change parameters to assess future water resources based on predicted monthly 

fluxes of the water balance. Jiang et al. (2007) compared the results produced by different water 

models such as Vrije Universitet Brussel (VJB), Xinanjiang (XAJ), Guo (GM), WatBal (WM) 

and Schaake (SM) along with Thornthwaite. Bae et al. (2011) compared differences of response 
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for climate change in the Chungju Dam basin of Korea for seven different PET (Potential 

Evapotranspiration) computation methods incorporated in the three distributed hydrological 

models called PRMS (Precipitation-Runoff Modeling System), SLURP (Semi-distributed Land 

Use-based Processes), and SWAT (Soil and Water Assessment Tool). The seven PET methods 

are Hamon and Jensen-Haise methods for PRMS, Penman-Monteith, Granger and Spittlehous-

Black for SLURP, Penman-Monteith, Priestley-Taylor and Hargreaves for SWAT. Simulations 

by the hydrological models for different PET methods induce major differences in the runoff for 

the same climate change projections. Siberstein et al. (2012) used certain rainfall runoff models 

such as SIMHYD, Sacramento, IHACRES, AWBM and SMARG to estimate runoff in 

catchments. Water balance, rainfall runoff, and PET models act as systems or subsystems for any 

hydrological problem. A system dynamic approach can be applied integrating these models to 

simulate the hydrology of a catchment area. System dynamics is a technique to simulate time 

variant state change of different stock variables within a problem specific system.   Wang et al. 

(2011) applied system dynamic approach to simulate land use patterns under a drought transition 

to account for the complexity of driving factors behind land use change and micro level changes 

in land use patterns. Sahin et al. (2016) integrated supply, demand, and asset management 

processes in system dynamics model simulating the proposed changes to water governance. 

These hard systems being applied are the lumped systems. Certain distributed systems for water 

resources have been applied to obtain the distributed outputs over a geographical area. Here 

comes the role of GIS (Geographical Information System). Few of the distributed GIS models 

being studied are ISAT (Impervious Surface Analysis Tool), PRMS, SLURP, and SWAT. Yang 

et al. (2011) applied ISAT to identify the effective impervious area (EIA) based upon the proper 

networking of sewer for better analysis of the runoff. Bae et al. (2011) used and compared 

hydrological responses of PRMS, SLURP, and SWAT with respect to their PET computation 

techniques.  Application of SWAT model is highly significant in the hydrological studies 

conducted by the researchers. Huang and Li (2010) used SWAT to simulate the water cycle 

components associated with crop production, i.e. precipitation, evapotranspiration, available soil 

moisture, deep drainage, and runoff, in breadbasket basins (river basins of Songliao, Hai, Huang, 

Huai, Chang, Dongnan, and Zhu) of China. Yang et al. (2016) used SWAT to examine the water 

quality effects like sediments, total nitrogen and total phosphorus loadings in Black River 

watershed, Southern Ontario, Canada. Pradhanang et al. (2011) used SWAT to simulate 
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snowpack and snowmelt at different elevation bands considering daily precipitation and 

temperature data in the region of Cannonsville watershed, New York, USA. Awotwi et al. (2015) 

applied SWAT to investigate the hydrological impact of possible future climate change in White 

Volta catchment, West Africa. Setegn et al. (2010) tested SWAT for predicting sediment yield 

with respect to subbasin and slope discretization in Anjenigauged watershed, Ethiopia. 

  

Few of the scenario techniques reviewed were based on certain indices related to water 

management system. Pulido-Velazquez et al. (2011) applied a systematic methodology of indices 

like demand satisfaction index, demand reliability index, withdrawal index and withdrawal use 

index to analyze the outcomes in future. Goodarzi et al. (2016) used GRDI (Ground water 

Recharge Drought Index) which could predict the drought in ground water. Kwak et al. (2016) 

applied Standardized Precipitation Index (SPI) time series calculated from Representative 

Control Pathways (RCPs) scenarios and HADGEM3-RA (Hadley Centre Global Environment 

Model version 3) regional climate model to analyze the effect of climate change and spatial 

distribution of the drought in future. Ashofteh et al. (2017) analyzed the reservoir system by 

efficiency indices (EIs) affected by climate change with respect to the demand in Gharanghu 

multi-purpose reservoir system (East Azerbaijan, Iran). 

 

 Beyond the modelling for scenario development sensitivity analysis plays an important role in 

defining the robustness of the model. It is the study of how the uncertainty in the output of a 

mathematical model or system (numerical or otherwise) can be apportioned to different sources 

of uncertainty in its inputs (Saltelli et al., 2008). Sensitivity analysis can be useful for a range of 

purposes (Pannell, 1997) including testing the robustness of the results of a model or system in 

the presence of uncertainty; increased understanding of the relationships between input and 

output variables in a system or model; uncertainty reduction: identifying model inputs that cause 

significant uncertainty in the output (Mahmoud et al., 2009; Bishop et al., 2007); searching for 

errors in the model (by encountering unexpected relationships between inputs and outputs);  

model simplification – fixing model inputs that have no effect on the output, or identifying and 

removing redundant parts of the model structure; finding regions in the space of input factors for 

which the model output is either maximum or minimum or meets some optimum criterion. 

Sensitivity Analysis (SA) may serve validation, optimization, and risk analysis of simulation 

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Robust_decision


14 

 

models (Kleijnen, 2005). An SA technique based on local or global methodologies has been 

applied to assess the effect of climate change and water management interactions on ground 

water dependent ecosystems (Candela et al., 2009). SA defines the robustness of the methods 

which would be based on exploratory bottom up approaches identifying vulnerable scenarios 

prior to assigning likelihoods (Herman et al., 2015).    Variance based global sensitivity analysis 

method, eFAST (extended Fourier Amplitude Sensitivity Testing) has been used to diagnose a 

complex social-ecological system under deep uncertainty in scenarios (Gao et al., 2016). 

 

2.6 Research gaps identified 

 

a) Time series prediction methods like Markov Model, ANN, Fuzzy logic, GAMLSS, genetic 

programming, etc. are found complex and have a rigorous process of prediction with various 

parameters of consideration. GAMLSS simulation involves various functional dependencies 

on mean, standard deviation, and other shape defining parameters in the probability 

distribution of  future data. Markov Model requires determination of the probabilities for the 

change in states and derives the probability of any state to occur in future instead of any 

approximate value. ANN may requires a number of iterations to come up to a reliable system 

to forecast starting with certain arbitrary weights to the inputs and incorporating few other 

parameters like learning rate and bias. Fuzzy logic determines the predictions in future for a 

variable with less or no historical data based on the rules defined by experts with respect to 

other associated data forecasted and derives the fuzzy predictions. Genetic programming 

involves a number of random solutions to evolve into the best solution to a problem and does 

not follow any set of predefined mathematical functions. 

 

b) Hydrological models used have been simulated with respect to predefined scenarios; and 

been specific to a few state variables of a hydrological system. Normally, system behaviour 

is not considered in the development of scenarios and only future input variables are 

predicted.  

 

c) Application of GIS in the area of scenario development for water resources is restricted to 

visual representation of the predicted results over a map of some region. Prediction should 

not only visualize the data in GIS but also estimate its evolution (Castrillón et al., 2011). 
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2.7 Research objectives 

 

a. Study of the various methodologies implemented in scenario development.  

b. Designing of a generic methodology for the scenario development of the water resources for 

future scenarios. 

c. Development of a hydrological state variable model for the methodology designed. 

d. Development of a GIS model for the simulation of the methodology over the spatial data. 

e. Validation and comparison of the results obtained using the methodology developed. 
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CHAPTER 3: FUNDAMENTAL TECHNIQUES EMPLOYED IN 

SCENARIO DEVELOPMENT OF WATER 

RESOURCES  
 

3.1 Chapter overview 

 

Fundamentals of various techniques employed in scenario planning of water resources from 

prediction of future inputs to derivation of corresponding outputs has been presented and 

classified into a broad spectrum of soft and hard techniques. Accuracy and ease of prediction for 

all prediction techniques have been discussed. GIS based techniques employed in scenario 

development of the water resources have also been mentioned and identified whether they have 

been used for the prediction or derivation. Later fundamentals of the techniques employed in the 

thesis have been presented.    

 

3.2  Prediction methods 

 

Various prediction tools like ANN, Markov chains, GAMLSS, Fuzzy logic, and genetic 

programming are used for estimating the future conditions of different parameters of 

consideration (rainfall, evaporation, land use, stream flow, etc.) within a hydrological system. A 

brief summary of the methods employed in different methodologies is required to understand 

their applications in the context of different data of various factors at diverse scales. Complexity 

and ease of use of the prediction methods are the main focus in the thesis. It is required to 

understand the basic components of the developed methods in isolation. The prediction methods 

are the soft systems to estimate the future values of various input variables (Checkland and 

Poulter, 2010). The list of such soft systems encountered in the literature of scenario planning for 

water resources is presented as: 

 

3.2.1 Markov model 

The Markov model deals problems under a probabilistic or statistical framework (Rabinder and 

Juang, 1986; Robertson et al., 2004; Mehrotra and Sharma, 2010). It produces plausible 

predictions (Charles et al., 1999) based on the transition probabilities of a system from one state 

to another state in discrete time steps such that all the states are finite and belong to a defined set. 

The product of the transition probabilities (chain) as per the changes observed at consecutive 

time steps historically will determine the probability of all the states considered one by one at the 
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next time step. The most suitable state as per the analysis can be assumed a future state of the 

system. Land use maps can be predicted using Markov modelling approach to determine surface 

runoff characteristics in future in the context of water resource management (Candela et al., 

2009; Fu et al., 2012; Halmy et al., 2015). The complexity of the method depends upon the order 

of the chain or the number of discrete previous events to be considered for prediction. The 

accuracy of the predictions is judged by hit and trial over different chain orders.  

 

3.2.2 GAMLSS 

GAMLSS (Generalized Additive Model for Location, Scale, and Shape) generates data for the 

future time steps as per the distribution function of the observed data at previous consecutive 

time steps incorporating more parameters besides mean and standard deviation of the distribution 

function. Rigby and Stasinopoulos (2005) extended GAMs (Generalized Additive Models) and 

GLMs (Generalized Linear Models) generating data with respect to mean and standard deviation 

(replicating the historical data for future or assuming the observed distribution stationary) to 

GAMLSS providing the scope for more parameters. Mean and standard deviation corresponds to 

location and scale of the distribution respectively while other parameters will determine the 

shape of the simulated distribution. All such parameters are modeled as monotonic link functions 

relating to the explanatory variable. These functions can be linear or non-linear with or without 

additive random/noise terms. The coupled effect of all the functions will provide distributed 

simulations of the data in future. The distribution for the response variables in GAMLSS can be 

selected from a very general family of distributions including highly skew or kurtotic continuous 

and discrete distributions (Stasinopoulos and Rigby, 2007) for long term survival models (De 

Castro et al., 2010). Modeling of the rainfall data (climatic variables) in the future is performed 

using GAMLSS to generate different scenarios incorporating climate indices and social indices 

as shape parameters other than location and scale. The larger volume of previous data and model 

fitting with appropriate functions will help to provide better accuracy although the modeling 

approach is very complex.  

 

3.2.3 Fuzzy Logic 

Fuzzy logic can be used when there is no sufficient historical data and experience for the 

variables to be predicted (Zadeh, 1973). Various scenarios can be constructed on the subjective 
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and linguistic description of the expected conditions in the future based on the experts' 

knowledge (Nguyen et al., 2007). It predicts based on certain rules defined by the scenario team 

such as low temperature and high humidity may cause high rainfall. It involves the process of 

fuzzification (classification of the input and output data into linguistic descriptive classes); 

definition of rules (to define the class in which output may fall with respect to the classes in 

which inputs will lie); and defuzzification (giving an exact value to the output class based on 

different methods). As the name suggests the predictions are always fuzzy and may deviate from 

the reality. Since scenarios can be considered as approximations, fuzzy logic fits well for the 

purpose of scenario development. In the context of water resource scenarios fuzzy logic has been 

used to judge the future sustainability under uncertainty (Li et al., 2009; Fu et al., 2012). 

Accuracy in the fuzzy logic depends on the knowledge of the scenario team (Nguyen et al., 

2007).   

 

3.2.4 ANN 

Artificial neural networks are motivated by the biological neural network system within a human 

brain attempting to learn the process of predicting the outputs of some system with respect to its 

inputs iteratively. ANN approach evolves into an approximate function dependent on various 

inputs to the system (Haykin, 1999). These networks are generally distributed, adaptive, and 

nonlinear comprising of various nodes/processing elements (Principe et al., 2000). Processing 

elements are classified into three types of layers as one input, one or many hidden, and one 

output layers connected with the links carrying certain weights to scale the inputs from one layer 

to another layer. Input layer processing elements just forward the inputs to its succeeding layer 

while other layers' processing elements process the weighted sum of inputs from its preceding 

layer and produce outputs either for its succeeding layer or output layer. Output layer produces 

the required outputs. If the evaluated outputs do not match the desired outputs then the weights 

are adjusted by applying certain functions in various iterations and this process is termed as the 

learning process of ANN. Training data is used to adjust the weights and it does not follow any 

physical laws governing any system or the statistical distribution of the data observed (Hertz et 

al., 1991; Hagan et al., 1996). ANN in the context of water resources has been applied to predict 

river flows, ground water level, and river salinity concentration with respect to the other 

associated inputs like rainfall, stream flow, etc. (Suen and Lai, 2013; Kourgialas et al., 2015; 
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Zhang et al., 2017). Application of ANN is observed as a very rigorous and complex practice 

implementing an iterative process to adjust weights until the convergence which may lead to the 

better accuracy.    

 

3.2.5 Genetic Programming 

Genetic programming (GP) is a technique of solving a problem through evolution over a 

population of computer programs. It transforms the population of computer programs into a new 

population with a hope to find better and fitter programs by the process of crossover and 

mutation (Poli et al., 2008; Guven, 2009). It automatically solves a problem without any user 

intervention to specify domain specific functions instead a high-level objective is required. Every 

program in GP comprises of a sequence of variable length instructions which operates on one or 

more constants provided as inputs from the user. Various functions in a program are composed 

of arithmetic operators (+, -, *, /), conditional statements, and function calls (ex, x, sin, cos, tan, 

log, sqrt, ln, power). Any program can be represented by a tree/graph like structure where inner 

nodes in the tree represent functions/operators and leaf nodes represent the constants/variables. 

Crossover and mutation are the processes of exchange of subtrees between two trees and change 

of function/operator at some inner node of a tree respectively. This way GP can provide a highly 

nonlinear solution to a problem (Brameier, 2004). The complexity of the GP method is part of 

computer processing and accuracy is a matter of iterations. 

 

3.3 Derivation methods 

 

Hard derivative systems are required to identify the effects of the input variables within a system. 

For scenario development future input variables are predicted using the soft techniques. With 

reference to water resources various water balance models, potential evapotranspiration models 

(PETs) and rainfall runoff models must lie under derivative category (Kalaugher et al., 2013). 

They can be classified as lumped system and distributed systems. Lumped systems assume any 

watershed as a system with no variation over space while distributed systems consider a 

watershed as a spatially distributed system (Vieux, 2001). Application of GIS has proven an 

efficient and effective process for simulating hydrology in distributed environment.  
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3.3.1 Lumped systems 

3.3.1.1 Water balance models 

These are certain hydrological models which can estimate the future scenarios on some predicted 

climatic possibilities under a variety of hydrological conditions (Xu and Singh, 1998). The water 

balance models account the distribution of water among the different modules within a 

hydrologic system.  Thornthwaite and Mather (1955) is a simple model relating climate and 

runoff in one equation while other complex models such as Stanford Watershed model (1966) 

and Sacramento model (1973) are termed as soil  moisture accounting models (Schaake and Liu, 

1989). Simple water balance models assist in understanding complex land surface processes with 

available data to estimate model parameters (Schaake et al., 1996). Monthly temperature and 

rainfall are the inputs to the model and the outputs comprises of evapotranspiration, soil moisture 

storage, snow accumulation, runoff, and surplus. Predicted variables are incorporated in water 

balance models to derive the results to be considered for scenario planning of water resources.  

 

3.3.1.2 Potential Evapotranspiration (PET) Models 

This is another set of hydrological models that contribute to the analysis of estimated potential 

evaporation (mm/month) (Thornthwaite, 1948). It is used to estimate actual evapotranspiration in 

rainfall-runoff and ecosystem modeling considering the soil moisture status (Lu et al., 2005; 

Bormann, 2011). PET can be defined as the water demand by the atmosphere (Rind et al., 1990) 

or the quantity of evaporation which may occur from the unit area of water body surface having 

sufficient water stored. PET can be considered as the fulfilment of moisture requirement of 

atmosphere by the earth surface affected by surface and air temperatures, insolation, and wind. 

For brevity, any place where annual PET exceeds annual precipitation is considered as dry land. 

Therefore, PET models also help in deriving the final outcomes for scenario planning of water 

resources taking evaporation into account. 

 

3.3.1.3 Rainfall Runoff  Models 

Any mathematical hydrological model illustrating the relations of surface runoff to rainfall 

within a catchment/basin/watershed and to estimate the river discharge is considered as a 

rainfall-runoff model (Sun et al., 2010). Various runoff models have several parameters for 

consideration (Vaze et al., 2010). Generally, such models produce runoff hydrograph as a 
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function of the rainfall hydrograph. Runoff models are linear as well as non-linear where linear 

models like linear reservoir have limited applicability in practice. Non-linear models are more 

applicable universally with an assumption that rainfall will be more or less uniformly distributed 

over the area and the size of the watershed to be dependent on the rainfall behaviour within the 

region. Larger the catchment area of the study region, more the number of sub-catchments 

considered to combine various runoff hydrographs using flood routing methods (Reddy, 2005). 

As rainfall hydrographs are seasonal, surface runoff hydrographs can predict runoff in rainfall 

season only. Certain runoff models can derive runoff with respect to rainfall value over a time 

period, say annual/monthly rainfall, and can be used in short/long term scenario planning.  

 

3.3.2 Distributed Systems 

3.3.2.1 ISAT 

Man-made features like concrete pavements and building rooftops which replace the naturally 

pervious soil and hinder precipitation permeation into the soil and evapotranspiration to the 

atmosphere are termed as impervious surfaces (Chabaeva et al., 2009). ISAT (Impervious 

Surface Analysis Tool) is a GIS (Geographical Information System) extension which is used to 

evaluate the percentage of impervious area within the geographical regions like watershed, 

municipalities, etc. (Carter et al., 2005). A correlation between water quality and the impervious 

area is well established within the small watersheds such that increase in impervious area cause a 

decrease in the water quality. ISAT has been applied to predict the impact of different 

management scenarios with respect to the impervious area on local water quality. Here GIS is 

used for impervious area-water quality analysis instead of prediction. 

 

3.3.2.2 SWAT 

SWAT (Soil and Water Assessment Tool) is a distributed model applied on large and complex 

watersheds to measure the impacts of land use practices. It is a publicly available model 

developing and supported by the USDA Agricultural Research Service, Grassland, Soil and 

Water Research Laboratory, Temple, Texas, USA. SWAT is considered as a watershed 

hydrological transport model with the various components like weather data generator, surface 

runoff, base flow, infiltration, evapotranspiration, river transmission losses, ponds and reservoir 

storage, return flow, and reach routing in the context of water resources estimation. There are 



22 

 

other components like crop growth and irrigation, nutrient and pesticide loadings in the context 

of effects of the estimated water resources. This model is used worldwide (Gassman et al., 2007) 

and is continuously under development. It is an analysis tool incorporating various possible 

factors concerned with water and can be classified under a derivative tool rather than a predictive 

one. GIS application of SWAT is to define HRUs (Hydrological Response Units) with respect to 

the elevation, soil, and slope of the region (Neitsch et al., 2011). Time variable states of the water 

storage elements and other hydrological processes are generated for each HRU with respect to 

some weather data generators.  

 

3.3.2.3 PRMS 

PRMS (Precipitation-Runoff Modelling System) evaluates the response of various combinations 

of climate and land use over the river and watershed hydrology incorporating the physical 

processes involved based on various distributed parameters (LaFontaine et al., 2013; Leavesley 

et al., 1983; Leavesley and Stannard, 1995). Its primary goals include (1) simulating 

hydrological procedures covering transpiration, evaporation, infiltration, runoff, and interflow 

based on energy and water budgeting of the plant canopy, snowpack, and soil layers with respect 

to the distributed climatic variables (precipitation, temperature, and solar radiation); (2) 

simulating temporal hydrological water budgets for the watersheds within the ranges lying from 

days to centuries; (3) integrating itself with other models intended for management of the natural 

resources or other scientific discipline models; and (4) providing a library of modules to opt 

alternative hydrologic-process algorithms (Markstrom et al., 2015). It must also be classified 

under the derivative kind of GIS system rather than predictive. 

 

3.3.2.4 SLURP 

Semi-distributed Land Use-based Runoff Processes (SLURP), is a model that simulates the 

hydrological cycle within a basin from rainfall to runoff with its effects on the reservoirs, dams, 

water extractions and irrigation schemes (Kite, 1997; Kite and Droogers, 2000; Wu et al. 2012). 

The model can be used to examine the effects of predicted/proposed climate change or change in 

land cover on different water resource consumers within a basin. It can be simulated with respect 

to the locally available climatic data or public domain data available on the internet. The model 

has the provisions to use satellite images in order to obtain land cover, vegetation index (for leaf 
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area index and evaporation), cloud cover (for distribution of rainfall), and snow extent. 

Windows-based graphical user interface makes the model user-friendly. It is also a kind of 

derivative GIS system incorporating proposed defined/predicted variables. 

 

Based upon the discussions above, the methods are classified as predictive, derivative and being 

a GIS/distributive application as presented in Table 3.1 and Figure 3.1.  

 

Table 3.1. Classification of scenario development methods under predictive, derivative, and GIS 

applications 

Tools Predictive Derivative GIS Application/Distributed model 

Markov Model  √ × × 

GAMLSS  √ × × 

Fuzzy Logic  √ √ × 

ANN  √ √ × 

Genetic Programming  √  √ × 

Water Balance Models ×  √ × 

PET Models ×  √ × 

Rainfall Runoff Models ×  √ × 

ISAT ×  √ √ 

SWAT ×  √ √ 

PRMS ×  √ √ 

SLURP ×  √ √ 
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Figure 3.1. Classification of techniques employed in scenario development of water resources 

 

3.4 Water Indices 

 

Indices are used for analysis of the system over a scale, somewhere defined and somewhere 

developed. Water indices have been used by the researchers to present the state of a hydrological 

system evaluating one input/output variable with respect to other input/output variable or 

variables as found suitable by them with respect to their study. For example, Pulido-Velazquez et 

al. (2011) developed a systematic methodology of indices like demand satisfaction index, 

demand reliability index, withdrawal index and withdrawal use index presenting the results of a 

water management system under expected future scenarios. Other indices developed include 

GRDI (Ground water Recharge Drought Index) predicting ground water drought (Goodarzi et al., 

2016), EIs (Efficiency indices) of a reservoir system (Ashofteh et al., 2017), etc.  

 

3.5 Climate Models 

 

Climate models are used to simulate and characterize the transfer of energy in different parts of 

the ocean, atmosphere, and land. They partition the Earth's surface into a 3-D grid of cells where 

each cell executes process of energy interaction and transfer to its neighbouring cells. 

Computation time for the climate models is inversely proportional to the resolution of grid cells. 

Such models calculate wind, heat transfer, radiation, relative humidity, etc. in each cell based on 

the basic laws of physics and fluid motion. Besides spatial resolution, climate models also 
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include elements of time in minutes, hours, days, and year which also affects the computation 

time. (https://www.climate.gov/maps-data/primer/climate-models dated 22/04/2018). 

 

3.6 Sensitivity Analysis 

 

Sensitivity analysis is the process to determine the effect of various inputs employed within a 

system on the outputs derived by a model. It helps to make a model robust by a check how the 

uncertainty in the output can be apportioned to different sources of uncertainty in its inputs 

(Saltelli et al., 2008). Sensitivity analysis may serve validation, optimization, and risk analysis of 

simulation models (Kleijnen, 2005).  

 

3.7 System Dynamics 

 

System dynamics (SD) is an approach to understand the behaviour of complex systems over time 

(Vlachos et al., 2007). It deals with internal feedback loops and time delays that influence the 

performance of the entire system (Sterman, 2001). It is capable of representing information flows 

through the physical components of the system enabling to understand its non linear dynamic 

behaviour in uncertain conditions (Suryani et al., 2010; Stave, 2003).  

 

3.8 Techniques used in the thesis 

 

In the thesis, the prima facie components applied are required to be explained to get a clear 

picture of the work. Serial description of the techniques and tools used for the design and 

development of the methodology is given in the following subsections: 

 

3.8.1 Moving average prediction 

Moving average is one among various time series techniques of prediction that can be viewed as 

representation of the outcomes of a random variable of concern over a fixed period of time, 

usually taken at equally spaced intervals (Gupta and Nagrath, 2005). Since, a time series is a 

description of the past, a logical procedure for forecasting the future is to make use of the 

historical data. If history is to repeat itself, i.e., if the past data are indicative of what could be 

expected in future, many underlying mathematical models like moving average can be 

postulated. Moving average method of forecasting uses only recent history and represents 

http://en.wikipedia.org/wiki/Complex_system
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multiple observations. It places more weight on the most recent observation (Gupta and Nagrath, 

2005). The steps performed in the method are shown from Equation (3.1) to Equation (3.3). 

                                                  
                       

 
                                                     (3.1) 

                                                 
                        

 
                                                  (3.2) 

                                                                 *                                                        (3.3) 

where;                        and          
             

   
    

In the above equations M(t) and M
2
(t) are SMA (Single Moving Average) and DMA (Double 

Moving Average) respectively.                        ) is the sum of values of 

historical data from t ... t - n + 1, where t is the time step and X(t) is the data value at time step t. 

Y(t + T) is the forecasted value of data at time step T ahead of t. 

 

There are various variants of moving average method of forecasting like simple moving average 

(SMA), cumulative moving average (CMA), and exponential moving average (EMA) defined as 

per the weights assigned to the historical data used. SMA and CMA assign equal weights to all 

the preceding data used in forecasting such that SMA limits the data values whereas CMA 

increases the data values by one to forecast further. EMA method of forecasting assigns weights 

α and (1 - α) to one previous value and one forecasted value respectively, such that (0 < α < 1). 

The moving average method incorporated in the thesis is the two-step moving average (simple 

moving average of simple moving average) which will assign more weights to the recent terms 

among the previous terms, since the incident occurred previously has the highest probability to 

reoccur (Gupta and Nagrath, 2005). 

    

3.8.2 Recurrence/Input-Output relation 

Linear recurrence relations is a class of discrete mathematics where in a set data its every 

element follows a relation with respect to its certain previous terms constrained by some initial 

conditions (Liu, 1986).  A recurrence relation of the form in Equation (3.4), where   
   are 

constants and      are terms at time step r, is called a linear recurrence relation with constant 

coefficients. It is also termed as the linear difference equation. 

                                                                                                             (3.4) 
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Such a recurrence relation is known as kth order recurrence relation provided that both    and    

are non zero. The total solution of a linear difference equation with constant coefficients is the 

sum of two parts, the homogeneous solution, which satisfies the difference equation when the 

right hand side of the equation is set to 0, and the particular solution, which satisfies the equation 

with      on the right hand side.  

 

A homogeneous solution of a linear difference equation with constant coefficients is of the form 

 r

1 where 1 is called a characteristic root and   is a constant to be determined by the initial 

condition/term; i.e.   . For n number of coefficients to be determined n initial terms; i.e.   ...   

are required. Substituting     for    in the difference equation with the right hand side of the 

equation set to 0, we obtain Equation (3.5), which can be simplified to Equation (3.6). 

                                    
        

          
               

                                     (3.5)  

                                     
       

         
                                                          (3.6) 

Equation (3.6) is the characteristic equation of the difference equation. A characteristic equation 

of kth degree has k characteristic roots, providing the homogeneous solution to the difference 

equation (Equation (3.7)), where 1 , 2 , ..., k  are the distinct characteristic roots and   ,   , ..., 

   are constants which are to be determined by the initial conditions. 

                                                             
        

            
                                             (3.7) 

There is no general procedure for determining the particular solution (    ) of a difference 

equation. However, in simple cases, this solution can be obtained by the method of inspection as 

presented from Equation (3.8) to Equation (3.10). 

                                                                         (3.8) 

Subject to:                                

         
       

                         
                                     (3.9) 

Subject to:          
       

                        
                         

             
       

                         
                                  (3.10) 

Subject to:          
       

                        
                              

 

The terms   ,   , ...,      are the constants and   is the degree associated with any time step  . 

  ,   , ...,      are the coefficients to be determined for obtaining the particular solution. 
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Substituting the particular form equation into the original difference equation, the different 

values from P1 ... Pt+1 can be derived. Placing the values of P's obtained back into corresponding 

forms of     , the particular solution for the difference equation will be obtained.  

 

Finally, homogeneous solution and the particular solution are added to obtain the total solution. 

Therefore for the kth order difference equation, the k undetermined coefficients   ,   , ...,    in 

the homogeneous solution can be determined by the initial conditions,                      , 

for any r0. For a difference equation having all roots distinct, the total solution is of the form of 

Equation (3.11), where      is the particular solution. This equation will derive the term at any 

time step r. 

                                           
        

            
                                                      (3.11) 

 

3.8.3 State variable model 

A dynamic system is described by a set of variables called state variables. Models that consist of 

coupled first-order differential equations are said to be in a state-variable form (William, 2010). 

The state variable model of an nth-order linear, time-invariant, discrete-time system comprises of 

state and output equations (3.12) and (3.13) respectively. 

State Equation                                 )()()1( kBrkAxkx                                                    (3.12)      

Output Equation                                )()()( kDrkCxky                                                      (3.13)  

where )(kx = n-dimensional state vector, )(kr = m-dimensional input vector, )(ky = p-

dimensional output vector, A  = (n×n) matrix of constants, B  = (n×m) matrix of constants, C  = 

(p×n) matrix of constants,  D = (p×m) matrix of constants, and k is a discrete time step (Nagrath 

and Gopal, 1982). Matrices of constants define the various characteristics of the system.  

 

3.9 Software Systems used 

 

The techniques comprising of moving average prediction, linear recurrence relation, and state 

variable model have been implemented within the environment of the software systems 

MATLAB, Simulink, and GIS (Geographical Information System)given in the subsections 3.9.1 

to 3.9.3. 

 



29 

 

3.9.1 MATLAB 

MATLAB can be used for a range of applications, including signal processing and 

communications, image and video processing, control systems, test and measurement, 

computational finance, and computational biology. It provides an interactive environment for 

iterative exploration, design and problem solving. It incorporates mathematical functions of 

linear algebra, statistics, Fourier analysis, filtering, optimization, numerical integration, and 

solving ordinary differential equations (https://www.tutorialspoint.com/matlab/matlab_overview. 

htm dated 22/04/2018). 

  

3.9.2 MATLAB-Simulink 

Simulink is a simulation and model-based design environment for dynamic and embedded 

systems, integrated with MATLAB. It is a data flow graphical programming language tool with 

customizable set of libraries for modelling, simulating, and analyzing multi-domain dynamic 

systems. It allows to incorporate MATLAB algorithms into models as well as export the 

simulation results into MATLAB for further analysis (https://www.tutorialspoint.com/matlab/ 

matlab_simulink.htm dated 22/04/2018). 

 

3.9.3 Geographical Information System (GIS) 

GIS is a computer based information system that enables capturing. modeling, manipulation, 

retrieval, analysis and presentation of geographically referenced data (Burrough and McDonnel, 

1998). There are different formats to store the data in GIS. The two primary data types are vector 

and raster. Points, lines and polygons are used to represent the vector data (data that has an exact 

location or hard boundaries) whereas data with no hard boundaries or exact location is 

represented by raster data (https://researchguides.library.wisc.edu/GIS dated 22/04/2018). Raster 

data is pixel oriented presented as series of grid cells with values representing the feature being 

observed. Raster data is appropriate to model surfaces like elevation, temperature, precipitation, 

etc. Certain interpolation techniques like IDW (Inverse Distance Weighted), splines, kriging, etc. 

are used to generate continuous raster data over a surface with respect to distribute point feature 

values (http://www.gisresources.com/types-interpolation-methods_3/ dated 22/04/2018). GIS 

systems include a lot of analytical tools and provide environment to develop such tools 

(http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=618&pid=616&topicname=ArcToolbo
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x_window_basics dated 22/04/2018). Tools can be developed by the hybridization of given tools 

or else can be coded using the python and other programming systems provided by the GIS 

systems.  
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CHAPTER 4: SCENARIO PLANNING FOR WATER 

RESOURCE MANAGEMENT IN SEMI ARID 

ZONE 

 
4.1 Chapter overview 

 

Scenario planning for water resource management in semi arid zone is performed using systems 

Input-Output approach of time domain analysis. This approach derived the future values of input 

variables of the hydrological system from their preceding values. Input variables considered here 

are precipitation, evaporation, population and crop irrigation. Ingles & De Souza's method (Jha 

and Smakhtin, 2008) and Thornthwaite model (Wang et al., 2011) have been used to estimate 

runoff and evaporation respectively. Difference between precipitation inflow and the sum of 

runoff and evaporation has been approximated as ground water recharge. Population and crop 

irrigation derived the total water demand. Compensation of total water demand by groundwater 

recharge has been analyzed. Further compensation has been evaluated by proposing efficient 

methods of water conservation. The best measure to be adopted for water conservation is 

suggested based on the cost benefit analysis. A case study for nine villages in Chirawa region of 

district Jhunjhunu, Rajasthan (India) validates the model. 

 

4.2 Approach for scenario development 

 

The encountered methods of prediction like Markov Model, ANN, Fuzzy logic, GAMLSS, and 

Genetic programming are found complex and have a rigorous process of prediction. Here the 

idea is to generalize such methods so one can apply them with lesser and general information 

(Liu, 1986); e.g. using historical data and time step to forecast. Keeping this in mind a 

generalized method of prediction has been developed using Systems Input-Output approach 

(Nagrath and Gopal, 1982) from a traditional moving average method of forecasting (Gupta and 

Nagrath, 2005).  

 

4.3 Forecasting technique 

 

The technique used for forecasting of the variables is the resultant of two methods, one 

traditional moving average method of forecasting and other generalization of the recurrence 
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relation/Input-Output equation of time domain analysis. The steps involved in moving average 

method of forecasting and generalization of a recursive relation are mentioned in section 3.8.1 

and section 3.8.2 respectively. The term N in moving average method corresponds to the number 

of previous consecutive terms at equal time intervals.   

 

In the thesis, it is assumed that various values of N will take the forecasts to different dimensions 

leading to numerous scenarios. Input-Output/recurrence relations are generalized for different 

values of N. Forecasts obtained using the complete set of historical data is considered under 

Business As Usual (BAU), while forecasts with minimum and maximum averages are reserved 

to be considered for worst and best cases respectively.  

 

4.4 Methodology developed using generalized recursive relation  

 

Data for social, environmental and economic factors in previous years has been collected from 

the region of nine selected villages in Chirawa block. Such chronological data of these factors 

are used to predict their values in future years using time series analyses on annual basis. Here 

the time horizon up to the year 2025 has been forecasted. All data used for prediction ranges 

from years 2007 to 2014. Since the method requires certain initial conditions, hence generalized 

equations are derived considering limitations imposed by the availability of data.  

 

Considering the moving average method of forecasting for N = 2, 3, and 4 as per the section 

3.8.1 and keeping the value of T = 1 in Equation (3.3) recurrence/difference equations obtained 

are (4.1), (4.2), and (4.3) respectively.  

                                                                      (4.1) 

                                                                   (4.2) 

                                                                (4.3) 

All three of the above equations have 0 on their right hand side, and hence their generalized 

solutions to obtain the  th term will be equal to their homogeneous solutions. Corresponding to 

the difference equations (4.1) to (4.3) their characteristic equations are (4.4) to (4.6) respectively.  

                                                                   (4.4) 

                                                                (4.5) 
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                                                            (4.6) 

The roots of a characteristic equation are obtained through MATLAB command prompt using 

'roots' function with its argument as 1×(n+1) matrix storing (n+1) coefficients of an nth degree 

polynomial equation (https://www.mathworks.com/help/matlab/ref/roots.html dated 22/04/2018). 

Therefore, the roots for the characteristic equations (4.4) to (4.6) are obtained as: 

N=2 N=3 N=4 

1 1 1 

1 1 1 

-0.75 -0.3955 -0.7436 

 -0.4134 + 0.6253i -0.0593 + 0.7712i 

 -0.4134 - 0.6253i -0.0593 - 0.7712i 

  -0.2877 + 0.3891i 

  -0.2877 - 0.3891i 

 

The roots obtained are real as well as complex numbers with their conjugates which provide the 

generalized solution as Equation (4.7). 

                                                                         (4.7) 

where,                                                
        

            
                                       (4.8) 

and                        
              

              
              

         +  

       
               

                                                (4.9) 

              are the real roots.  

   =    
    

 
,    = atan2(     ) for  th pair of complex conjugate roots     +   i and    -

   i,   corresponds to the  th term,             , and               are the associated 

coefficients to be determined with respect to (  +2 ) initial conditions.  

 

Since, the current study is performed in time domain the term   is substituted by zΔt and the 

generalized equations derived for the three cases of recursive relations above (i.e., N = 2, 3, and 

4) are presented as Equation (4.10) to Equation (4.12) respectively as per section 3.8.2. Here 

X(zΔt) is the value of a variable at zth time interval Δt.    

                                             X(zΔt) = A.z + B + C.(-0.75)
z                                                                 

(4.10) 
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                X(zΔt) = A.z + B + C.(-0.3955)
z
 + (0.7496)

z
 .(D cos(2.155z) + E sin(2.155z))      (4.11) 

   X(zΔt) = A.z + B + C.(-0.7436)
z
 + (0.7735)

z
 (D cos(1.6475z) + E sin(1.6475z))  

                                       + (0.4839)
z
 (F cos(2.2075z) + G sin(2.2075z))                              (4.12) 

Coefficients (A - G) in above equations will be derived using latest 2N-1 historical data set as 

their initial conditions. Since for the study the past observed data for eight years was available, 

so generalized equations are developed up to N=4. Here it is assumed that Equation (4.12) 

referring the largest set of chronological data will develop BAU scenario. Forecasts obtained by 

any of the above three equations having maximum and minimum means are reserved to be 

considered for best and worst scenarios respectively. The global matrix of scenarios selected is 

defined in Figure 4.1. Six scenarios considered are Business As Usual (BAU), High Demand and 

High Recharge (HDHR), Low Demand and High Recharge (LDHR), Low Demand and Low 

Recharge (LDLR), High Demand and Low Recharge (HDLR) and Drought (DRT). High 

Demand corresponds to scenarios having maximum water requirement and vice versa. High 

Recharge corresponds to scenarios having maximum ground water recharge and inverse for 

scenarios corresponding to Low Recharge. DRT is based on lowest recharge and highest demand 

occurred in historical/predicted data observed/generated by any of the equations from Equation 

(4.10) to Equation (4.12).  

                                                                                           

                                                                                          Water Consumption 

 

                                                                                                                        Water Recharge 

 

                                                                                                                         

Figure 4.1. Global business matrix of scenarios considered 

 

This study is focused on scenario planning for water resource management in a semi arid zone, 

attempting to check and devise solution for the compensation of total water requirement with 

natural ground water recharge. Development of a time series forecasting technique using 

generalized input-output/recurrence relation identified from moving average method of 

2. HDHR 

1. BAU 

5. HDLR 

4. LDLR 3. LDHR 

6. DRT 
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forecasting is the highlight of the proposed methodology. A flowchart of the methodology is 

shown in Figure 4.2 presenting the successive phases of data collection, modeling and prediction, 

analysis/evaluation, design, and optimization. Bulleted list attached with each phase presents a 

set of its feasible factors/techniques, where bold items of the list are incorporated in the study 

and further illustrated in section 4.5. 

 

 

Figure 4.2. Methodology flowchart for scenario planning of water resources 
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4.5 Case study 

 

A region comprising of nine villages in Chirawa tehsil of district Jhunjhunu in the Rajasthan 

state of India has been analyzed. Scenarios have been generated and planned with respect to the 

ground water utilization and replenishment. Name of the villages are Narhar, Ardawata, 

Gidaniya, Swamisei, Lakhu, Gothri Lamba, Gothri, Kidwana and Nuniya Gothra. These villages 

fall under the semi-arid zone of Chirawa. The situation of the study area in Chirawa  has been 

declared as ‘DARK ZONE” due to over-exploitation of ground water and has been restricted for 

new irrigation wells and increasing depth of existing wells. The cause of ground water depletion 

and pollution is rooted in population growth, economic expansion, decline in ground water 

recharge and over-abstraction caused by rapid increase in the number of wells, tube wells, and 

progress in pumping technology. 

 

The total catchment area of the region is 5086629 square meters obtained using hydrology tool 

of ArcGIS 10.1 applied under its boundary. The digital elevation model (DEM) data for the 

region has been taken from USGS (United States Geological Survey) Earth Explorer. Fill → 

flow direction → flow accumulation → pour point selection → watershed area delineation are 

the successive steps followed in ArcGIS 10.1 to obtain the total catchment area. The total 

watershed area identified along with all possible pour points (sinks) is shown in Figure 4.3. The 

boundaries of the villages are obtained from village boundary database collected from Survey of 

India.  
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Figure 4.3. Total watershed area of the selected villages in Chirawa region 
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4.5.1 Data collection 

Primary data for population, rainfall, temperature, and crops from years 2007 to 2014 have been 

collected by field survey from the region. Rainfall and temperature data have been collected 

from the administrative center of Chirawa as shown in Table 4.1 and Table 4.2 respectively. 

Population data has been collected from the courtyard shelters in villages as shown in Table 4.3 

and its distribution village wise is presented in Figure 4.4. Crop data has also been collected from 

the administrative center of Chirawa. Five major crops being cultivated in the region are wheat, 

oat, gram, mustard, and fenugreek. Figure 4.5 and Figure 4.6 present the village wise and crop 

wise distribution of cultivated land in hectares within the region respectively. Cultivation area 

and watering per unit area for every crop is collected, which led to forecast of crop water 

requirement. Locally surveyed economic data associated with the five major crops is shown in 

Table 4.4. 

 

Table 4.1. Rainfall in the Chirawa region from the year 2007 to 2014 (mm) 

Month/Year 2007 2008 2009 2010 2011 2012 2013 2014 

January 0 0 0 4 0 0 19 0 

February 74 0 1 10 42 0 29 34 

March 33 0 15 4 6 0 0 40 

April 20 31 0 0 0 16 10 10 

May 43 78 25 0 45 11 16 21 

June 68 114 41 21 48 3 39 81 

July 62 87 136 84 45 68 138 67 

August 26 233 35 203 182 177 134 155 

September 150 138 44 186 183 39 117 33 

October 0 0 0 10 0 0 15 26 

November 0 0 2 20 0 0 12 0 

December 0 0 0 24 0 4 0 0 

Total 476 681 299 566 551 318 529 467 
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Table 4.2. Average temperature in the Chirawa region from the year 2007 to 2014 (ᵒC) 

Month/Year 2007 2008 2009 2010 2011 2012 2013 2014 

January 13.54 13.61 14.62 11.90 11.40 12.50 12.50 13.00 

February 17.96 17.59 17.95 15.95 16.75 14.80 16.40 15.80 

March 20.91 27.62 23.55 22.10 22.80 22.35 23.15 21.25 

April 30.78 30.32 28.08 29.20 27.90 27.95 28.30 27.65 

May 32.98 30.39 33.57 32.50 34.20 32.70 33.90 31.35 

June 34.14 30.86 33.00 34.20 28.80 23.15 34.55 33.95 

July 31.76 31.23 31.68 31.10 31.10 33.00 32.10 32.65 

August 30.55 29.27 31.30 29.85 29.40 29.40 29.55 30.75 

September 29.13 28.26 28.97 29.65 28.35 30.60 29.70 29.65 

October 26.06 28.23 25.92 26.05 25.90 25.65 26.90 25.40 

November 22.56 21.87 21.50 19.84 22.10 20.20 19.75 21.25 

December 14.47 15.36 18.46 13.30 14.75 15.05 15.95 14.45 

 

 

Table 4.3. Population in the selected villages of Chirawa region from the year 2007 to 2014 

2007 2008 2009 2010 2011 2012 2013 2014 

29751 30241 30788 31387 31859 32346 32766 33253 

 

 

 

Figure 4.4. Yearly village wise distribution of population in selected villages of Chirawa 
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Figure 4.5. Yearly village wise distribution of rabi crop area in selected villages of Chirawa 

 

 

Figure 4.6. Crop wise distribution of rabi crop area sown in selected villages of Chirawa 
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Table 4.4. Economic statistics of the food crops produced in the selected villages of Chirawa 
Crop Name Water Used Per 

Hectare (Kilolitres) 

Investment Per 

Hectare (Rs.) 

Production Per 

Hectare(Quintals) 

Revenue Per 

Hectare (Rs.) 

     

Wheat 17028 10000 40-45 55000-60000 

Oat 17028 8000 45-50 50000-55000 

Gram 12096 9000 18-20 45000-50000 

Mustard 12096 12000 18-20 55000-60000 

Fenugreek 12096 8000 18-20 45000-50000 

 

4.5.2 Experimental analysis 

Further the prediction of data has been conducted for every selected variable using Equation 

(4.10) to Equation (4.12). MATLAB codes to extrapolate data corresponding to the equations are 

presented in Appendix A. The three equations will take predictions into three directions. Time 

series analyses have been performed on few parameters (rainfall, population, evaporation, and 

water requirement for crops) while and other parameters (runoff and water requirement for 

population) have been derived with respect to forecasted values obtained for rainfall and 

population. Water requirement for the population is estimated by an average value of 40 liters of 

water used per person per day given by IS code for communities with population up to 20000. 

Inflow is evaluated by multiplication of total catchment area (m
2
) into rainfall (m). Runoff is 

derived from rainfall using the Ingles & De Souza's method (Jha and Smakhtin, 2008) presented 

by Equation (4.13) and Equation (4.14).  

                                        For hilly area, R = 0.85 P - 30.5                                                       (4.13)  

                                       For plains, R= (P - 17.8) P / 254                                                       (4.14) 

where, R (cm) and P (cm) are runoff and precipitation respectively. The value obtained, being 

converted to meters, is multiplied by total catchment area (m
2
) to estimate total runoff (KL). 

Evaporation has been obtained as the product of catchment area by potential evapotranspiration 

(m). Potential evapotranspiration (Pe) has been evaluated using Thornthwaite model presented by 

Equation (4.15) (Wang et al., 2011). 

                                                         Pe = 1.6 d (10 T / I)
a                                                                                     

(4.15)  

where, T is the monthly average temperature (
ᵒ
C), d is a correction factor that accounts for the 

length of each month obtained by dividing the number of days in a month by 30, I is the total 

heating index in a year such that I =     
   , where i is the monthly average heating index for 
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months January (i = 1) to December (i = 12) such that, i = (T / 5) 
1.514

 , the value of 'a' 

corresponds to the expression, a = 0.49239 + 1.792 * 10
-2

 I - 7.71 * 10
-5

 I
2
 + 6.75 * 10

-7
 I

3
. 

Recharge has been estimated as the difference between inflow and the sum of runoff and 

evaporation, although it may also happen due to the region outside the boundary of the study 

area and other hydrological characteristics due to ground water inflow. Total demand has been 

evaluated as the sum total of water requirement for population and crop water requirement.  

 

Results of predictions for population, rainfall (mm), water requirements for population (KL 

(kiloliters)) and irrigating crops (KL), evaporation (KL), and runoff (KL) under six scenarios (S1 

to S6) are presented from Figure 4.7 to Figure 4.12 over y-axis with respect to years over the x-

axis. S1, S2, S3, S4, S5, and S6 corresponds to the scenarios BAU, HDHR, LDHR, LDLR, 

HDLR, and DRT respectively as shown in Figure 4.1. Observed and predicted data partitioned 

by a vertical line has been plotted before and after the year 2014 respectively for all the scenarios 

in their respective charts. Methods of prediction are shown in Table 4.5. Historical values from 

the year 2007 to the year 2014 and forecasted values from the year 2015 to the year 2025 are 

shown in green, blue, and yellow colored cells for all the scenarios in Table 4.6, where blue 

colored cells are used for validation with respect to actual values of the year 2015. Forecasts are 

generated assuming that within the time frame to evaluate; i.e. until the year 2025, there will be 

no saturation of population over the region. Figure 4.7 and Figure 4.9 are reflecting a rising trend 

for the population and water requirement for the population in all six scenarios with slight 

deviations after the year 2014 since the population data is following an increasing trend every 

year. Figure 4.8 and Figure 4.12 are presenting irregular rainfall and its dependent runoff 

respectively, where both after the year 2014 are declining for the scenarios S1, S4, and S5, 

inclining for the scenarios S2 and S3, and flat at the bottom for scenario S6 (lowest rainfall 

continued ahead). Figure 4.10 is reflecting a decline in crop water requirement for scenarios S1, 

S3, and S4, an incline in scenarios S2 and S5, and flat at the top for scenario S6 (highest water 

requirement for crop taken ahead). Figure 4.11 is presenting slight inclination in evaporation for 

the scenarios S1, S2, and S3, high inclination in scenarios S4 and S5, and flat at the top for 

scenario S6 (highest evaporation continued ahead).  
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Figure 4.7. Forecast graph of population for selected villages in Chirawa 

 

 

Figure 4.8. Forecast graph of rainfall in Chirawa region 
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Figure 4.9. Forecast graph of water usage for human consumption in selected villages of Chirawa 

 

 

Figure 4.10. Forecast graph of crop water use in selected villages of Chirawa 
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Figure 4.11. Forecast graph of evaporation over Chirawa region 

 

 

Figure 4.12. Forecast graph of runoff from selected villages of Chirawa 
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Table 4.5. Scenarios considered and their methods of prediction 
Scenario 1 

(BAU) 

Scenario 2 

(HDHR) 

Scenario 3 

(LDHR) 

Scenario 4 

(LDLR) 

Scenario 5 

(HDLR) 

Scenario 6  

(DRT) 

Population - 

RR (N=4) 

Population - 

Max (Mean 

(RR (N=2,3,4))) 

Population - 

Min (Mean (RR 

(N=2,3,4))) 

Population - 

Min (Mean (RR 

(N=2,3,4))) 

Population - Max 

(Mean (RR 

(N=2,3,4))) 

Population - Max 

(Mean (RR 

(N=2,3,4))) 

 

Precipitation - 

RR (N=4) 

Precipitation - 

Max (Mean 

(RR (N=2,3,4))) 

Precipitation - 

Max (Mean 

(RR (N=2,3,4))) 

Precipitation - 

Min (Mean (RR 

(N=2,3,4))) 

Precipitation - 

Min (Mean (RR 

(N=2,3,4))) 

Precipitation - Min 

(Observed, 

Forecasted (RR 

(N=2,3,4) in year 

2015)) 

Water for 

Crops - RR 

(N=4) 

Water for Crops 

- Max (Mean 

(RR (N=2,3,4))) 

Water for Crops 

- Min (Mean 

(RR (N=2,3,4))) 

Water for Crops 

- Min (Mean 

(RR (N=2,3,4))) 

Water for Crops 

- Max (Mean 

(RR (N=2,3,4))) 

Water for Crops 

Max (Observed, 

Forecasted(RR 

(N=2,3,4) in year 

2015)) 

Evaporation - 

RR (N=4) 

Evaporation - 

Min (Mean (RR 

(N=2,3,4))) 

Evaporation - 

Min (Mean (RR 

(N=2,3,4))) 

Evaporation - 

Max (Mean 

(RR (N=2,3,4))) 

Evaporation - 

Max (Mean (RR 

(N=2,3,4))) 

Evaporation - Max 

(Observed, 

Forecasted(RR 

(N=2,3,4) in year 

2015)) 

Note: RR(Recurrence Relation); Max(Maximum); Min(Minimum) 

RR: Generalized recurrence relation identified from moving average method of forecasting  

RR(N = 4): Forecasts obtained with values of previous seven years, i.e. from the year 2008 to 

the year 2014 

RR(N = 3): Forecasts obtained with values of previous five years, i.e. from the year 2010 to the 

year 2014 

RR(N = 2): Forecasts obtained with values of previous three years, i.e. from the year 2012 to the 

year 2014 

Mean (RR (N = 2, 3, 4)): Mean of forecasts and historical values for RR(N=2), RR(N=3), and 

RR(N=4) 

Max (Mean (RR (N = 2, 3, 4))): Forecasts and historical values with maximum mean for 

RR(N=2), RR(N=3), and RR(N=4) 



47 

 

Min (Mean (RR (N = 2, 3, 4))): Forecasts and historical values with minimum mean for 

RR(N=2), RR(N=3), and RR(N=4) 

Min(Observed, Forecasted(RR (N = 2, 3, 4) in year 2015)): Forecasts after the year 2015 

taking minimum of the value from the historical values or forecasted value of the year 2015.  

Max(Observed, Forecasted(RR (N = 2, 3, 4) in year 2015)): Forecasts after the year 2015 

taking maximum of the value from the historical values or forecasted value of the year 2015.  
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Table 4.6. Forecast statistics for the influencing parameters considered 
Year Population Rainfall (mm) Evaporation (KL) Water for Crops (KL) 

 

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 

2007 29751 29751 29751 29751 29751 29751 476 476 476 476 476 476 946113 946113 946113 946113 946113 946113 97867728 97867728 97867728 97867728 97867728 97867728 

2008 30241 30241 30241 30241 30241 30241 681 681 681 681 681 681 885073 885073 885073 885073 885073 885073 95534424 95534424 95534424 95534424 95534424 95534424 

2009 30788 30788 30788 30788 30788 30788 299 299 299 299 299 299 941026 941026 941026 941026 941026 941026 95342976 95342976 95342976 95342976 95342976 95342976 

2010 31387 31387 31387 31387 31387 31387 566 566 566 566 566 566 874900 874900 874900 874900 874900 874900 98067384 98067384 98067384 98067384 98067384 98067384 

2011 31859 31859 31859 31859 31859 31859 551 551 551 551 551 551 815839 815839 815839 815839 815839 815839 87192900 87192900 87192900 87192900 87192900 87192900 

2012 32346 32346 32346 32346 32346 32346 318 318 318 318 318 318 776262 776262 776262 776262 776262 776262 86891364 86891364 86891364 86891364 86891364 86891364 

2013 32766 32766 32766 32766 32766 32766 529 529 529 529 529 529 939544 939544 939544 939544 939544 939544 87996708 87996708 87996708 87996708 87996708 87996708 

2014 33253 33253 33253 33253 33253 33253 467 467 467 467 467 467 874827 874827 874827 874827 874827 874827 86945472 86945472 86945472 86945472 86945472 86945472 

2015 33770 33770 33690 33690 33770 33770 445 610 610 445 445 299 840820 840820 840820 980193 980193 1270640 81349620 87646295 81349620 81349620 87646295 98067384 

2016 34226 34226 34164 34164 34226 34226 410 599 599 410 410 299 867270 867270 867270 957304 957304 1270640 80886063 87388887 80886063 80886063 87388887 98067384 

2017 34684 34684 34610 34610 34684 34684 459 703 703 459 459 299 914576 914576 914576 1030551 1030551 1270640 80117923 88258749 80117923 80117923 88258749 98067384 

2018 35174 35174 35078 35078 35174 35174 432 721 721 432 432 299 887617 887617 887617 1031568 1031568 1270640 78218303 88282858 78218303 78218303 88282858 98067384 

2019 35659 35659 35529 35529 35659 35659 421 804 804 421 421 299 885073 885073 885073 1087013 1087013 1270640 75371778 88941225 75371778 75371778 88941225 98067384 

2020 36126 36126 35993 35993 36126 36126 408 838 838 408 408 299 902368 902368 902368 1101255 1101255 1270640 74445254 89124078 74445254 74445254 89124078 98067384 

2021 36598 36598 36447 36447 36598 36598 421 909 909 421 421 299 918645 918645 918645 1146526 1146526 1270640 73176942 89814438 73176942 73176942 89814438 98067384 

2022 37080 37080 36908 36908 37080 37080 406 952 952 406 406 299 911524 911524 911524 1168399 1168399 1270640 71503996 90559681 71503996 71503996 90559681 98067384 

2023 37558 37558 37364 37364 37558 37558 398 1016 1016 398 398 299 916611 916611 916611 1208074 1208074 1270640 69796681 91340741 69796681 69796681 91340741 98067384 

2024 38030 38030 37824 37824 38030 38030 391 1064 1064 391 391 299 927292 927292 927292 1234525 1234525 1270640 70247495 92094512 70247495 70247495 92094512 98067384 

2025 38505 38505 38281 38281 38505 38505 391 1124 1124 391 391 299 935431 935431 935431 1270640 1270640 1270640 70447428 92867843 70447428 70447428 92867843 98067384 

Avg. 34200 34200 34120 34120 34200 34200 446 696 696 446 446 378 892674 892674 892674 1014191 1014191 1106875 82178970 90639909 82178970 82178970 90639909 95504220 

               Historical values  

              Predicted values to be compared with its real 

              Predicted values 
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Situations over the study area have been judged with respect to recharge and demand for the six 

scenarios. Overall recharge is very less in all scenarios with respect to demand. Scenario 2 and 3 

reflect rise in recharge while other scenarios 1, 4, 5, and 6, all reflect decline in recharge. There 

is fall in demand in scenario 1, 3 and 4 while scenarios 2, 5 and 6 reflect rise in demand. Figure 

4.13 and Figure 4.14 present conditions of demand and recharge under six scenarios denoting the 

volume of water in KL over y-axis with respect to years over the x-axis. 

 

 

Figure 4.13. Forecast for water demand in selected villages of Chirawa     

 

                   

Figure 4.14. Forecast for ground water recharge in selected villages of Chirawa 
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It has been assumed that for sustainability an average water demand for all six scenarios must be 

compensated by average recharge and water conservation measures. Certain water conservation 

methods are explored as: 

 Reduction of evaporation losses using continuous floating covers, modular systems, shade 

structures and chemical covers. 

 Recharge of water table using rain water harvesting such as creating percolation wells for 

surface runoff & household and village tanks for roof top runoff.  

 Production of alternative crops consuming lesser water and providing same revenue as the 

crops being practiced. 

 Efficient methods of irrigation like the sprinkler and drip irrigation.  

 

Benefits with respect to various alternatives have been analyzed to identify the best set of 

alternatives to be adopted. It has been explored that evaporation can be reduced by 90%, 90%, 

75%, and 30% by using continuous floating covers, modular systems, shade structures and 

chemical covers respectively (Reddy, 2005).  Rain water harvesting can save about 30% of 

drinking and cooking water (Rahman et al., 2014). Water required for drinking and cooking 

purposes is about 8 liters per day per head (Ministry of Drinking Water & Health, Government 

of India, 2013). Alternative food crops can save about 30% of water in our study region. 

Sprinkler irrigation can save about 40% (http://www.agrifarming.in/drip-irrigation-vs-sprinkler 

dated 17/08/2016) and drip irrigation can save about 70% of water (http://vikaspedia.in/agri-

inputs/farm-machinary/drip-irrigation-system dated 17/08/2016). Therefore the benefit of any 

system can be generalized as: 

 

Total water saved = water saved from evaporation + water saved using rain water 

harvesting + water saved using efficient irrigation 

 

Considering average values for all predicted variables from the year 2015 to the year 2025 in 

scenarios S1 to S6 amount of water that can be saved using generalized water saving scheme is 

presented in Table 4.7. Benefits associated with the twelve combinations of above water savings 

schemes in the six scenarios are presented in Table 4.8. 

Table 4.7. Expected saving of water using different measures in Scenarios S1 to S6 
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Water Saving Measures Types of Measures S1 S2 S3 S4 S5 S6 

Water Saved from 

Evaporation (KL) 

Continuous Floating Covers 808655 808655 808655 981816 981816 1113890 

Modular Systems 808655 808655 808655 981816 981816 1113890 

Shade Structures 673879 673879 673879 818180 818180 928242 

Chemical Covers 269552 269552 269552 327272 327272 371297 

Water saved using rain 

water harvesting(K.L.)  

29959 

 

29959 

 

29889 

 

29889 

 

29959 

 

29959 

 

Water saved using 

efficient irrigation(K.L.) 

Alternative Crop 24653691 27191973 24653691 24653691 27191973 28651266 

Sprinkle Irrigation 32871588 36255963 32871588 32871588 36255963 38201688 

Drip Irrigation 

 

57525279 

 

63447936 57525279 57525279 63447936 66852954 

 

Table 4.8. Total water which can be saved using the twelve possible water conservation 

combinations 
S. No. Combinations 

of Alternatives 

Water saved (KL) 

S1 S2 S3 S4 S5 S6 

1 C, R, A 25492305 28030586 25492234 25665396 28203747 29795116 

2 C, R, Sp 33710202 37094577 33710131 33883293 37267738 39345538 

3 C, R, D 58363893 64286550 58363823 58536984 64459711 67996804 

4 M, R, A 25492305 28030586 25492234 25665396 28203747 29795116 

5 M, R, Sp 33710202 37094577 33710131 33883293 37267738 39345538 

6 M, R, D 58363893 64286550 58363823 58536984 64459711 67996804 

7 S, R, A 25357529 27895811 25357459 25501760 28040112 29609467 

8 S, R, Sp 33575426 36959801 33575356 33719657 37104102 39159889 

9 S, R, D 58229117 64151774 58229047 58373348 64296075 67811155 

10 Ch, R, A 24953202 27491483 24953132 25010852 27549204 29052522 

11 Ch, R, Sp 33171099 36555474 33171029 33228749 36613195 38602944 

12 Ch, R, D 57824790 63747447 57824720 57882440 63805167 67254210 

Note: C(Continuous floating covers); M(Modular systems); S(Shade structures); Ch(Chemical covers); 

R(Rain water harvesting); A(Alternative crop); Sp(Sprinkle irrigation); D(Drip irrigation) 

 

Cost benefit analysis with respect to the above solutions has been conducted to select a solution 

with higher benefit in terms of water saved and lower cost in terms of its implementation. It has 

been explored that the lowest implementation cost of floating covers, modular covers, and shade 

structures is about Rs. 234, Rs. 167 and Rs. 500 per square meter respectively covering total 

catchment area. The lowest cost of chemical covers is Rs. 334 per kg, with an application rate of 
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1.5 kg per hectare once in every four days (Craig, 2008). Implementation of rainwater harvesting 

system costs on an average Rs. 2 per liter of water saved 

(http://www.rainwaterharvesting.org/urban /costs.htm dated 18/08/2016). Implementation of drip 

and sprinkler irrigation methods cost about Rs. 45000 per hectare and Rs. 15000 per hectare 

respectively covering average cultivated land since the year 2007 to the year 2025 for all 

scenarios (http://www.ncpahindia.com/applications/pressurisedirrigation/application13.php dated 

18/08/2016). Alternate crops like gram, mustard, and fenugreek which require 12096 Kiloliters 

of water with an average investment of Rs. 9666 per hectare can be produced instead of wheat 

and oat demanding 17028 Kiloliters of water with an average investment of Rs. 9000 per hectare. 

It needs an investment of Rs. 666 per hectare.  Hence comparative graphs for all scenarios 

covering water saved and cost incurred by implementing all the alternatives (given in Table 4.8) 

are shown in Figure 4.15 and Figure 4.16 respectively. The graphs are observed for all scenarios 

leading to a common solution for all with the highest benefit and lowest implementation cost. 

Alternatives 3, 6, 9 and 12 have higher benefits where alternative 12 has the least 

implementation cost. Hence alternative 12, implementing chemical covers for saving 

evaporation, rainwater harvesting system for household purposes and drip irrigation method for 

crop production is well suited for the region in all the six scenarios.  

 

 

Figure 4.15. Water Saved Graph for S1-S6 in selected villages of Chirawa 
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Figure 4.16. Cost Incurred Graph for S1-S6 in selected villages of Chirawa 

 

4.6 Methodology investigation 

 

The methodology applied over the study area has been investigated with respect to the resulting 

difference between predicted and observed values and sensitivity analysis of the driving factors 

(rainfall, evaporation, population and crop water requirement) in developed scenarios. 

 

4.6.1 Results 

 

Normally scenarios are difficult to validate since it predicts the future with no available records. 

Besides, the accuracy of the predicted values can be judged by dividing the historical data into 

two parts, one used for prediction and another for validation. Forecasts evaluated for population, 

rainfall, potential evaporation, and water requirement for crops generated using their respective 

data from the year 2008 to the year 2014 are validated with their actual data obtained for the year 

2015. Errors found in the predicted data with respect to actual data  for the variables are 

presented in Table 4.9. Rainfall and evaporation being the natural processes are highly uncertain 

as compared to the population which is more or less in control of the human beings. Crop water 

requirement is also uncertain in the study region due to changing patterns of the cultivated area 

crop wise and year wise as shown in Figure 4.4 and Figure 4.5.  
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Table 4.9. Percent Error of prediction of variables in Scenarios S1 to S6 for the year 2015 

Variables 
Error (%) 

S1 S2 S3 S4 S5 S6 

Population 0.94 0.94 0.71 0.71 0.94 0.94 

Rainfall 5.92 28.96 28.96 5.92 5.92 36.79 

Evaporation 7.65 7.65 7.65 7.65 7.65 39.66 

Crop water 7.00 0.19 7.00 7.00 0.19 12.11 

 

4.6.2 Sensitivity analysis 

 

Sensitivity analysis aims to describe how much model output values are affected by changes in 

model input values. It is the investigation of the importance of imprecision or uncertainty in 

model inputs in a decision-making or modeling process (Loucks, et al., 2005). Sensitivity 

analysis for the four parameters (rainfall (P1), evaporation (P2), population (P3), and crop water 

(P4)) considered in developed methodology is conducted in terms of water scarcity taken as the 

performance indicator (I). Sum of the products of squares of sensitivity coefficients  
   

   
  and 

variances (       ) of input parameters (  's) determine the total variance (      ) of the 

performance indicator in the system as per Equation (4.16). Sensitivity coefficient of indicator I 

for parameter    is the ratio of the difference of lowest (  ) and highest (  ) values of I and 

difference of lower (   ) and higher (   ) values of    for corresponding lowest and highest 

values of  , as per Equation (4.17). Percentage of every parameter's product of the square of 

sensitivity coefficient and variance with respect to the total variance of indicator derives its 

uncertainty contribution (     ) as per Equation (4.18) and presented in Table 4.10 for the input 

parameters considered in the study. Here rainfall has the significant contribution of about 10 and 

26 percent for uncertainty in water deficit for scenarios S2 and S3 respectively. Evaporation has 

significant contribution in scenario S6 where the population has negligible effect. Crop water 

requirement is highly significant in all scenarios considered. 

 

         
   

   
 
 

        
 
                                                         (4.16) 

 

 
   

   
   

     

       

                                                                   (4.17) 
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                                                             (4.18) 

 

Table 4.10. Percent uncertainty of input parameters in scenarios S1 to S6 

Parameters S1 S2 S3 S4 S5 S6 

Rainfall 0.05 10.05 25.61 0.05 0.57 0.37 

Evaporation 0.06 0.44 0.03 0.07 0.75 57.19 

Population 43.64 22.28 32.61 43.40 12.72 0.43 

Crop Water 56.24 67.23 41.75 56.49 85.96 42.01 

 

4.6.3 Inference of the study 

 

Scenario development of the water resources till the year 2025 in the selected villages falling 

under semi arid zone of Chirawa block reflects the decline in the availability of water reserves 

and rise in demand with respect to varying statistics of precipitation,  evaporation, population 

and crop water requirement. To make the system sustainable, it is required to adopt efficient 

methods of irrigation and production of crops which requires lesser water for their growth. 

Certain other measures which can be adopted are the reduction of evaporation from open surface 

water bodies and replenishment of the ground water table using artificial recharge methods. The 

benefit in terms of total water saved suggests implementing chemical covers to save water from 

evaporation, to create rain water harvesting structures at homes for household purposes and to 

apply drip method of irrigation in crops. About half of the water requirement can be 

compensated by implementing the solution identified and it will cost on an average of Rs. 8.75 

per Kiloliter of water saved. Plans to store surface runoff can also be implemented, developing a 

large community tank which can be networked to household tanks channelizing their overflows. 

Above all water should be used wisely and safely considering its every drop precious.      

 

4.7 Summary of the Chapter 

 

Summary of the chapter includes the following points: 

 

 Development of a generic methodology for scenario development of any time series data 

based on the generalized recurrence relation identified from moving average method of 

forecasting for three different sets of historical data (three, five, and seven). 
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 Forecasting the time series data of rainfall, evaporation, population, and crop water 

requirement into their respective three directions and assigning their forecasted statistics to the 

six scenarios (BAU (business as usual), HDHR (high demand high recharge), LDHR (low 

demand low recharge), LDLR (low demand high recharge), HDLR (high demand low 

recharge), and DRT (drought)) as per the rules defined in Table 4.5. The study is carried over 

a region comprising of nine villages in Chirawa, Rajasthan (India).  

 Derivation of demand for water (total of population and crop water demand) and ground water 

recharge (difference of rainfall and sum of evaporation and runoff) in forthcoming years for 

the six scenarios to derive their expected scarcity of water. 

 Identification of water conservation techniques like evaporation reduction (continuous 

floating covers, modular covers, shade structures, and chemical covers), rain water harvesting, 

and efficient irrigation practices (alternative crops, sprinkler irrigation, and drip irrigation) to 

compensate mean annual forecasted water demand for the six scenarios. Twelve combinations 

of the water saving schemes are presented in Table 4.8. 

 Evaluating the cost of implementation for the twelve alternatives of water saving scheme with 

respect to their benefits (water saved) resulting that alternative implementing chemical covers 

for evaporation reduction, rain water harvesting at households, and drip method of irrigation 

for crops is identified as the low cost-high benefit solution.   
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CHAPTER 5: DEVELOPMENT OF A STATE VARIABLE 

MODEL FOR GENERATING HYDROLOGICAL 

SCENARIOS 

 
5.1 Chapter overview 

 

Extinction of water resources is a serious concern for sustainability. Their uncertain 

replenishment and over exploitation are the root causes for such situation. It is required to predict 

the future states of water resources in order to devise plans for sustainable prospects. Various 

models have been developed and applied to generate scenarios for future states of water 

resources (Griffin et al., 2013; Bae et al., 2011; Silberstein et al., 2012). Most of the models are 

following either state variable or system dynamics approach; both following the similar 

fundamental concept (Jiang et al., 2007; Neitsch et al., 2011; Wang et al., 2011; Sahin et al., 

2016). Such models have been simulated with respect to the predefined scenarios and were 

specific to a few state variables. This study has developed a hydrological model based on state 

variable approach of time domain analysis, that determines the time invariant states of different 

water storage components for a random number of scenarios. Later few among the generated 

random scenarios are selected fitting/reflecting best to the considered scenario definitions. The 

model has been developed and simulated in MATLAB Simulink (https://www.tutorialspoint.com 

/matlab/ matlab_simulink.htm dated 22/04/2018). It is validated over a village area named 

Ardawta, Rajasthan (India). Scenarios for the state of ground water level up to the year 2030 

have been generated and five among them have been selected from worst to best case situation. 

 

5.2 State variable modeling approach 

 

The modeling approach to develop a hydrological state variable system determining the future 

states of various water resources within a watershed includes the prediction of input variables 

affecting the system and designing stocks and flows as per certain defined equations for different 

water resources (soil, aquifers, reaches, and ponds). The basic fundamental of state variable 

model is given in section 3.8.3. Input variables predicted for forthcoming incidents will help to 

derive the states of water storage elements of a hydrological system in future. 
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5.2.1 Prediction of input variables 

 

A set of generalized equations generated from recurrence relation found in moving average 

method of forecasting are used for predicting inputs (Equation (4.10) to Equation (4.12)). These 

equations have been developed as per the availability of the historical data. The method to obtain 

the generalized equations is mentioned in section 3.8.2. In this chapter first 2N-1 values for the 

input variables are taken for prediction with respect to moving average technique as described in 

section 3.8.1.  

 

5.2.2  Development of the hydrological model 
 

A state variable model has been developed incorporating the input variables to produce outputs. 

Model design is based on the water balance hypotheses given by Neitsch et al. (2011) which is 

illustrated further. Precipitation inflow after surface runoff moves to the soil layer. Excess water 

above field capacity of soil percolates to the aquifers. There are two types of aquifers; i.e. 

shallow unconfined and deep confined aquifers. A certain fraction of percolated water goes to 

deep aquifer while remaining stays into the shallow aquifer. Ground water flow from the 

aquifers, surface runoff, and precipitation over the areal extent of reaches and ponds generates 

additional inflow to them (reaches and ponds). There are other losses from aquifers in form of 

evaporation water demand by the soil and water consumption. Reaches lose water in form of 

outflow, transmission losses, and evaporation, while ponds lose water in form of seepage and 

evaporation from their respective surface areas. Transmission losses from reaches and seepage 

from ponds route to aquifer recharge.  

 

Paraphrasing Neitsch et al. (2011), surface runoff within a region is the inherent property of its 

soil,  land use and slope. Water percolation will occur over the whole region. The areal extent 

which routes surface runoff to the main channel is called watershed area. Watershed area over a 

region depends upon the selection of a number of reach outlets. State change relations for soil 

water, shallow and deep aquifers, ground water level, reach and pond storage are given from 

Equation (5.1) to Equation (5.6). 

                         SSW(k+1) = Cfield (SSW(k) + ISW(k) + Brevap.E(k) - E(k))                                     (5.1) 

where, SSW(k) (m):               soil water storage at time step k.  
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ISW(k) (m):                           soil water intake at time step k.   

E(k) (m):                             evapotranspiration at time step k. 

Cfield :                                  field capacity as a fraction of total soil water  volume. 

Brevap :                                     revap coefficient, a fractional value ranging from 0 (no evaporation  

demand of soil from aquifer) to 1 (direct evaporation from 

aquifer).  

Equation (5.1) describes the water balance for soil with certain intermediate equations: 

 to derive soil water intake (ISW(k) (m)) in meters with precipitation (P(k) (m)) and surface 

runoff (R(k) (m)), both expressed in meters as per Equation (5.1a); and  

 to derive surface runoff (R(k) (mm)) in millimetres as per Equation (5.1b) and Equation (5.1c) 

where precipitation (P(k) (mm)), and soil retention parameter (S(k) (mm)) are expressed in 

millimetres.  

ISW(k) = P(k) - R(k)                                                             (5.1a) 

where, P(k) (m):                      precipitation at time step k.  

R(k) (m):                             surface runoff at time step k. 

      
            

         
                                                              (5.1b) 

where,      (mm):                runoff in mm at time step k. 

     (mm):                            precipitation at time step k.  

 (mm):                                   soil retention parameter. 

       
    

  
                                                                (5.1c) 

where,   :                             a specific curve number for some land use and soil.  

                                   VSA(k+1) = VSA(k) + (1-Bdeep).Raq(k)                                                       (5.2) 

where, VSA(k) (m
3
):               shallow aquifer volume at time step k. 

Raq(k) (m
3
):                          aquifer recharge volume at time step k.  

Bdeep :                                   fractional deep aquifer percolation coefficient. 

Equation (5.2) describes the water balance for the shallow aquifer with certain intermediate 

equations: 

 to derive aquifer recharge volume (Raq(k) (m
3
)) in cubic meters with soil water percolation 

(PSW(k) (m
3
)), ground water flow (Qgw(k) (m

3
)), water usage (U(k) (m

3
)), and evaporation (E(k) 

(m
3
)) expressed in cubic meters as per Equation (5.2a);  
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 to derive soil water percolation volume (PSW(k) (m
3
)) in cubic meters with watershed area 

(Atotal (m
2
)), reach area (Areach (m

2
)), and pond area (Apond (m

2
)) expressed in square meters, and 

soil water storage (SSW(k) (m)) and soil water intake (ISW(k) (m)) expressed in meters as per 

Equation (5.2b); and  

 to derive ground water flow (Qgw(k) (mm)) as per Equation (5.2c) where ground water flow has 

been evaluated in millimetres with respect to the hydraulic conductivity of the aquifer (Ksat 

(mm/day)) expressed in millimetres per day, height of water table (hwtbl (m)) and distance from 

sub basin divide to reach (Lgw (m)) both expressed in meters.  

Raq(k) = PSW (k) - Qgw(k) - U(k) - Brevap.E(k)                                  (5.2a) 

where, PSW(k) (m
3
):                 soil water percolation at time step k.  

Qgw(k) (m
3
):                             ground water flow at time step k. 

U(k) (m
3
):                           water use at time step k. 

 PSW(k) = (Atotal - Areach - Apond) (1 - Cfield) (SSW(k) + ISW(k))                           (5.2b) 

where, Atotal (m
2
):                 total area of watershed. 

Areach (m
2
):                           reach area in watershed. 

Apond (m
2
):                           pond area in watershed. 

wtbl

gw

sat
gw h

L

K
kQ

2

.8000
)(  (Hooghoudt, 1940)                                            (5.2c) 

where, Ksat (mm/day):          hydraulic conductivity of aquifer.  

Lgw (m):                              distance from sub basin divide to reach.  

hwtbl (m):                             height of water table. 

Qgw(k) (mm):                      ground water flow into main channel at time step k.  

                                     VDA(k+1) = VDA(k) + Bdeep .Raq(k) + Rtloss(k)                                         (5.3) 

where, VDA(k) (m
3
):                deep aquifer volume at time step k.  

Rtloss(k) (m
3
):                       reach transmission losses at time step k.  

Equation (5.3) describes the water balance for the deep aquifer with certain intermediate 

equations: 

 to derive reach transmission losses (Rtloss(k) (m
3
)) in cubic meters with wetted perimeter of 

reach (Pch (m)) expressed in meters, length of reach (Lch (km)) expressed in kilometres, 

effective hydraulic conductivity of the reach alluvium (Kch (mm/hr)) expressed in millimetres 

per hour, and reach flow travel time (T(k) (hr)) expressed in hours as per Equation (5.3a); and 
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 to derive reach flow travel time (T(k) (s)) in seconds as per Equation (5.3b) with respect to the 

reach storage (Sreach(k) (m
3
)) expressed in cubic meters and reach discharge rate (qout(k) (m

3
/s)) 

expressed in cubic meters per second.  

Rtloss(k) = Kch .T(k).Pch .Lch                                                          (5.3a)  

where, Pch (m):                  wetted perimeter of reach. 

Lch (km):                           length of reach.  

Kch (mm/hr):                     effective hydraulic conductivity of the reach alluvium. 

 T(k) (hr):                          reach flow travel time at time step k in hours.  

   
)(

)(
)(

kq

kS
kT

out

reach                                                                     (5.3b) 

where, Sreach(k) (m
3
):          reach storage at time step k. 

qout(k) (m
3
/s):                     reach discharge rate at time step k. 

T(k) (s):                             reach flow travel time at time step k in seconds.  

                                           Sreach(k+1) = Sreach(k) + Vreachin(k) - Vreachout(k)                               (5.4) 

where, Sreach(k) (m
3
):             reach storage at time step k. 

Vreachin(k) (m
3
):                   total volume of water inflow to reach at time step k. 

Vreachout(k) (m
3
):                  total volume of reach water outflow from reach at time step k. 

Equation (5.4) describes the water balance for the reach with certain intermediate equations: 

 to derive total volume of water inflow to reach (Vreachin(k) (m
3
)) in cubic meters with reach 

inflow volume (Ireach(k) (m
3
)) expressed in cubic meters, area of watershed (Awshed (m

2
)) and 

area of reach (Areach (m
2
)) expressed in meters square, and runoff (R(k) (m)), ground water flow 

(Qgw(k) (m)), and precipitation (P(k) (m)) expressed in meters as per Equation (5.4a); and  

 to derive total volume of water outflow from reach (Vreachout(k) (m
3
)) in cubic meters with reach 

outflow volume (Oreach(k) (m
3
)) and reach transmission losses (Rtloss(k) (m

3
)) expressed in cubic 

meters, evaporation (E(k) (m)) expressed in meters, and area of reach (Areach (m
2
)) expressed in 

meters square as per Equation (5.4b).  

Vreachin(k)= Ireach(k) + Awshed(R(k) + Qgw(k)) + Areach .P(k)                        (5.4a) 

where, Ireach(k) (m
3
):             reach inflow volume derived by product of time interval (s) between 

two consecutive time steps and average of reach inflow rate (m
3
/s) at 

start and end of time interval. 

 Awshed (m
2
):                      watershed area routing to the reach. 



62 

 

Areach (m
2
):                          reach area. 

R(k) (m):                            surface runoff at time step k. 

Qgw(k) (m):                         ground water flow at time step k. 

P(k) (m):                            precipitation at time step k. 

Vreachout(k)  = Oreach(k) + Rtloss(k) + Areach .E(k)                                   (5.4b) 

where Oreach(k) (m
3
):      reach outflow volume derived by the product of time interval (s) 

between two consecutive time steps and average of reach outflow 

rate (m
3
/s) at the start and end of time interval. 

 Rtloss(k) (m
3
):                    reach transmission losses at time step k. 

E(k) (m):                           evapotranspiration at time step k. 

Areach (m
2
):                        reach area. 

                                 Spond(k+1) = Spond(k) + Vpondin(k) - Vpondout(k)                                            (5.5) 

where, Spond(k) (m
3
):              pond storage at time step k.  

Vpondin(k) (m
3
):                    total volume of water inflow to pond at time step k. 

Vpondout(k) (m
3
):                   total volume of water outflow from pond at time step k. 

Equation (5.5) describes the water balance for the pond with certain intermediate equations: 

 to derive total volume of water inflow to pond (Vpondin(k) (m
3
)) in cubic meters with runoff 

(R(k) (m)), ground water flow (Qgw(k) (m)), and precipitation (P(k) (m)) expressed in meters 

and surface area of pond (Apond (m
2
)) and fraction of watershed area routing to pond (Fwshed 

(m
2
)) expressed in meters square as per Equation (5.5a);  

 to derive total volume of water outflow from pond (Vpondout(k) (m
3
)) in cubic meters with pond 

seepage (Oseep(k) (m
3
)) and pond overflow (Oof(k) (m

3
)) expressed in cubic meters, and 

evaporation (E(k) (m)) expressed in meters as per Equation (5.5b);  

 to derive seepage losses (Oseep(k) (m
3
/day)) in cubic meters per day with effective hydraulic 

conductivity of the reservoir/pond (Ksat (mm/hr)) expressed in millimetres per hour and surface 

area of the pond (Apond (ha)) expressed in hectares as per Equation (5.5c); and  

 to derive pond overflow (Oof(k) (m
3
)) in cubic meters with total volume of water inflow to 

pond (Vpondin(k) (m
3
)) and volume of pond (Vpond (m

3
)) both expressed in cubic meters as per 

Equation (5.5d).  

 Vpondin(k) = Apond .P(k) + Fwshed(R(k) + Qgw(k))                                      (5.5a) 

where, Apond (m
2
):               pond surface area. 



63 

 

Fwshed (m
2
):                          fraction of watershed area routing to pond. 

R(k) (m):                             surface runoff at time step k. 

 Qgw(k) (m):                         ground water flow at time step k. 

P(k) (m):                             precipitation at time step k.  

Vpondout(k) = Apond .E(k) + Oseep(k) + Oof(k)                                         (5.5b) 

where, E(k) (m):                  evapotranspiration at time step k. 

Oseep(k) (m
3
):                       pond seepage at time step k. 

Oof(k) (m
3
):                         pond overflow at time step k.  

Oseep(k) = 240.Apond.Ksat                                                                                  (5.5c) 

where, Ksat (mm/hr):           effective saturated hydraulic conductivity of the reservoir/pond. 

Apond (ha):                           surface area of the reservoir/pond. 

Oof (k) = Vpondin(k) - Vpond                                                         (5.5d) 

where,  Vpond (m
3
):              volume of the reservoir/pond. 

                                               
      

      
                                                          (5.6) 

where, DWL(k) (m):                 depth of water level below ground at time step k.  

Raq(k) (m
3
):                         aquifer recharge at time step k.  

Atotal (m
2
):                           area of the geographical region.   

Equation (5.6) describes the water balance of depth of ground water level (DWL(k) (m)) in meters 

with aquifer recharge (Raq(k) (m
3
)) expressed in cubic meters and area of the region (Atotal (m

2
)) 

expressed in meters square.  

 

Few of the output variables that can be evaluated using the state variables are presented from 

Equation (5.7) to Equation (5.10).   

                                            SSWC(k) = (Cfield - Cwilt). SSW(k)                                                       (5.7) 

                                             Vaq(k) = VSA(k) + VDA(k)                                                            (5.8) 

                                          Ssurf(k) = Sreach(k) + Spond(k)                                                         (5.9) 

                                   PSW(k) = (1 - Cfield) (SSW(k) + ISW(k))                                              (5.10) 

where SSWC(k) (m
3
):                soil water available for crop at time step k.  

Vaq(k) (m
3
):                         total aquifer water at time step k. 

Ssurf(k) (m
3
):                        surface water storage at time step k. 

PSW(k) (m
3
):                        soil water percolation at time step k .  
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Cwilt :                                  wilting point as a fraction of total soil water  volume. 

 

Output variables can either be derived from state variables, state variables themselves or can be 

used as input for state variables. However, it is required to be judged that which variables are of 

considerable interest and scenarios with respect to those variables should be generated. Initial 

states of various state variables are mandatory to generate the outputs, if not available, a null 

value can be used. Later meaningful outputs can be used to analyze the scenarios. Simulink 

model developed in MATLAB is presented in Figure 5.1. Matrix representation of the state 

variable model developed as defined by Equation (3.12) is given as Equation (5.11). Similarly, a 

matrix for few of the defined output variables (Equation (5.7) to Equation (5.10)) as per Equation 

(3.13) is given as Equation (5.12).   
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Figure 5.1. State variable hydrological model developed in MATLAB Simulink 
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In Figure 5.1, starting from the extreme left six blocks are developed to supply forecasted input 

data for the variables rainfall, evaporation, population, crop water requirement, reach inflow, and 

reach outflow at discrete equal interval time steps. The complete input block of any variable 

comprises of three subsystems generating forecasted data as per Equation (4.10) (N = 2), 

Equation (4.11) (N = 3), and Equation (4.12) (N = 4) respectively, one bus creator carrying the 

signals from the three subsystems, and one block of index vector to select input signals from any 

one of the three blocks selected by the index variable associated with it. Complete input block 

and the three subsystems to supply input signals for one variable are shown from Figure 5.2 to 

Figure 5.5. Various constants presented in the corresponding block diagrams can be referred 

from Appendix B. Figure 5.3 to Figure 5.5 correspond to the subsystems forecasting the rainfall 

data. Similar subsystems are incorporated for the other input factors in the state variable model.  

 

Figure 5.2. Block diagram to provide forecasted inputs to the state variable model 

 

X(zΔt) = A.z + B + C.(-0.75)z 

X(zΔt) = A.z + B + C.(-0.3955)z + 

(0.7496)z .(D cos(2.155z) + E 

sin(2.155z)) 

X(zΔt) = A.z + B + C.(-0.7436)z + 

(0.7735)z (D cos(1.6475z) + E 

sin(1.6475z)) + (0.4839)z (F 

cos(2.2075z) + G sin(2.2075z))                               
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Figure 5.3. Block diagram to generate forecasts as per Equation (4.10) (N = 2) 

 

 
Figure 5.4. Block diagram to generate forecasts as per Equation (4.11) (N = 3) 
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Figure 5.5. Block diagram to generate forecasts as per Equation (4.12) (N = 4) 

 

Further there are six state variables in Figure 5.1 entitled soil water, shallow aquifer, deep 

aquifer, water level (WL), reach storage, and pond storage shown with a block called 'delay' 

which stores the previous state of a state variable and supplies it to determine next state as per 
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the effect of input variables. Other elements found in the model are operators like sum to add, 

gain to multiply, switches to avoid negative values of water storages for various state variables, 

and constants defined by the user. Blocks on the extreme right are the outputs in the form of 

states of various state variables defined in the model at every time step. There are certain other 

subsystems defined in the model for deriving rainfall runoff by curve number method, ground 

water flow, and reach transmission losses as presented from Figure 5.6 to Figure 5.8.   

 

Figure 5.6. Block diagram to evaluate rainfall runoff by curve number (CN) method 

 

 
Figure 5.7. Block diagram to evaluate ground water flow 
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Figure 5.8. Block diagram to evaluate reach transmission loss 

 

 

5.3 Simulation of state variable model 

 

The methodology has been implemented over a village region named Ardawta, Rajasthan 

(India). This village has been declared under dark zone due to over exploitation of ground water 

and restricted for new irrigation wells and increasing depth of existing wells. It is attempted to 

identify the future state of various water storage elements with respect to the influence of 

forecasted inputs (rainfall, evaporation, population, crop water, reach inflow, and reach outflow) 

over the topography within the village boundary. The topography of a region can be represented 

by its digital elevation model (DEM). DEM with 10 meter spatial resolution for the village 

Ardawta has been collected from NRSC (National Remote Sensing Centre), India. Later DEM-

based watershed area delineation has been performed using the SWAT extension of ArcGIS 

10.1. A single DEM-based stream (reach) has been defined for the entire watershed area 

collecting its runoff water and ground water flow. Rainfall runoff will be routed through the 

stream to its outlet while ground water flow will be routed only if the depth of the stream is more 

than the depth of water table (Neitsch et al., 2011). There is no pond within the village area, 

hence pond statistics are presumed as null. Input data of the factors influencing hydrology of the 

village from the year 2008 to the year 2014 is used to forecast inputs at future time steps. Reach 

inflow and outflow is considered null since there is no such source of inflow and sink for outflow 

like perennial rivers. The hydrological profile of the village is shown in Figure 5.9. It comprises 

of a single stream of length 4.6 kilometers and depth and width of 0.23 meters and 3.14 meters 

respectively. Watershed area with respect to stream is 4415395 meters square. Total area of the 

village is 9124448 meters square. The principal aquifer system over the region is single 

unconfined schist aquifer having thickness of 10-80 meters and transmissivity of 5-84 square 
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meters per day (http://www.india-wris.nrsc.gov.in/LithologApp.html dated 09/03/2018). Using 

average value of thickness and transmissivity, hydraulic conductivity is taken as 365 meters/year 

as per Equation (5.13) (http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm dated 

09/03/2018). 

                                                                    T = K . b                                                               (5.13)  

where T (m
2
/day), K (m/day), and b (m) are transmissivity, hydraulic conductivity, and aquifer 

thickness respectively. There is no deep aquifer in the region so deep aquifer percolation 

coefficient has been taken as null. The curve number corresponding to the sandy soil over the 

region has been considered as 64 (SCS Engineering Division, 1986). Field capacity of the sandy 

soil in the region is taken 0.06 (Neitsch et al., 2011). Revap coefficient has been taken as 1 to 

allow evaporation water requirement from the aquifer. The precipitation, temperature and 

population data over the region are presented from Table 5.1 to Table 5.3. Crop water use has 

been evaluated by the area of various crops cultivated multiplied by their water requirement. The 

height of water table has been considered as the difference between mean sea level and depth of 

ground water table as the configuration of the water table commonly is a replica of the land 

surface topography on a regional scale (http://www.pubs.usgs.gov/circ/circ1186/html/ 

gen_facts.html dated 09/03/2018). The distance from basin divide to reach has been taken as 

2100 meters (square root of the total watershed area).  
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Figure 5.9. Hydrological profile of village Ardawta 
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Table 5.1. Rainfall in the Ardawta region from the year 2007 to 2014 (mm) 

Month/Year 2007 2008 2009 2010 2011 2012 2013 2014 

January 0 0 0 4 0 0 19 0 

February 74 0 1 10 42 0 29 34 

March 33 0 15 4 6 0 0 40 

April 20 31 0 0 0 16 10 10 

May 43 78 25 0 45 11 16 21 

June 68 114 41 21 48 3 39 81 

July 62 87 136 84 45 68 138 67 

August 26 233 35 203 182 177 134 155 

September 150 138 44 186 183 39 117 33 

October 0 0 0 10 0 0 15 26 

November 0 0 2 20 0 0 12 0 

December 0 0 0 24 0 4 0 0 

Total 476 681 299 566 551 318 529 467 

 

Table 5. 2. Average temperature in the Ardawta region from the year 2007 to 2014 (ᵒC) 

Month/Year 2007 2008 2009 2010 2011 2012 2013 2014 

January 13.54 13.61 14.62 11.90 11.40 12.50 12.50 13.00 

February 17.96 17.59 17.95 15.95 16.75 14.80 16.40 15.80 

March 20.91 27.62 23.55 22.10 22.80 22.35 23.15 21.25 

April 30.78 30.32 28.08 29.20 27.90 27.95 28.30 27.65 

May 32.98 30.39 33.57 32.50 34.20 32.70 33.90 31.35 

June 34.14 30.86 33.00 34.20 28.80 23.15 34.55 33.95 

July 31.76 31.23 31.68 31.10 31.10 33.00 32.10 32.65 

August 30.55 29.27 31.30 29.85 29.40 29.40 29.55 30.75 

September 29.13 28.26 28.97 29.65 28.35 30.60 29.70 29.65 

October 26.06 28.23 25.92 26.05 25.90 25.65 26.90 25.40 

November 22.56 21.87 21.50 19.84 22.10 20.20 19.75 21.25 

December 14.47 15.36 18.46 13.30 14.75 15.05 15.95 14.45 
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Table 5.3. Population in the Ardawta region from the year 2007 to 2014 

2007 2008 2009 2010 2011 2012 2013 2014 

3663 3685 3714 3746 3770 3793 3851 3884 

 

 

Data for all the input variables at annual time steps has been supplied to the state variable model 

as per the MATLAB (https://www.tutorialspoint.com/matlab/matlab_overview.htm dated 

22/04/2018) code presented in Appendix B. Consecutive data for seven years from 2008 to 2014 

has been used to extrapolate data for future years. Equation (4.10), Equation (4.11), and Equation 

(4.12) will extrapolate data for future years for all the input variables using their first three, five 

and seven consecutive data values respectively. There will be three scenarios generated by three 

extrapolations of any one input variable and keeping extrapolation of other input variables fixed. 

Various extrapolated combinations of all the six input variables would generate 36 scenarios. 

Since there is no significance of reach inflow and outflow in the region under study, there were 

34 scenarios generated as shown in Appendix C.  

 

Water requirement for the population is estimated by an average value of 40 liters of water used 

per person in a day for communities with population up to 20000 given by IS code. Precipitation 

inflow is evaluated by multiplication of total area of the region into precipitation. Potential 

evapotranspiration (Pe) has been evaluated using Thornthwaite model presented by Equation 

(5.14) (Wang et al., 2011), earlier used in Chapter 4 as Equation (4.15). 

                                                         Pe = 1.6 d (10 T / I)
a                                                                                     

(5.14)    

Initial soil water for the region has been taken as the product of soil depth (150 cm) and soil 

moisture (0.05 m
3
/m

3
) at the end of the year 2007 (http://bhuvan.nrsc.gov.in/data/download/ 

index.php dated 10/01/2018). Initial shallow aquifer and deep aquifer volumes are taken null due 

to unavailability of data. Initial reach storage and pond storage are also taken null due to their 

shallow structures and rainfall fed behavior. The initial ground water level is taken 57.29 meters 

below ground level in the year 2007, from the well located in Khudana near Ardawta 

(http://india-wris.nrsc.gov.in/GWL/GWL.html dated 14/09/2017).    

 

Later scenarios are generated to predict the water level in the region until the year 2030. Three of 

the generated scenarios are selected as best, worst and business as usual (BAU). Closest, least, 
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and highest predicted values of ground water level for the year 2016 with respect to its true level 

corresponds to BAU, best, and worst case scenarios respectively among the 3
4
 scenarios 

generated as per Appendix C. Two more scenarios have been generated termed as drought and 

surplus. Step functions have been used over the input data after the time step from where data is 

unavailable; i.e. from the year 2015 to the year 2030. For drought scenario, rainfall and 

evaporation are stepped to lowest and highest of their observed values respectively. Conversely 

for surplus scenario rainfall and evaporation are stepped highest and lowest of their observed 

values respectively. Population and crop water use have been predicted as per Equation (4.10) to 

Equation (4.12). Among the nine scenarios generated for both the cases, scenarios corresponding 

to lowest and highest value of ground water level in 2030 are selected as drought and surplus 

respectively. The strategic diagram for the scenarios is presented in Figure 5.10.  

 

 

Figure 5.10. Strategic diagram of the scenarios considered for state variable model 

 

5.3.1 Results 

 

The predicted input variables are shown in Table 5.5 where, green and yellow colored cells 

represent historical data used for prediction and predicted data respectively as per the 

corresponding equations defined in Table 5.4. The predicted values are back tracked as per the 

outputs obtained for ground water level in the five scenarios (S1 - S5) defined and presented in 

Table 5.6 along with the observed ground water level from the year 2007 to the year 2016. 

Figure 5.11 is figuring out the level of ground water for the observed scenario from the year 

2007 to the year 2016 and for the five scenarios from the year 2007 to the year 2030. Blue 

colored cells in Table 5.6 are used to check the divergence of results with respect to observed 

ground water level of the year 2016. All the scenarios are projecting a decline of ground water 

level until the year 2030. The error in prediction for the respective scenarios is verified with 

respect to the observed value of ground water level in the year 2016 and presented in Table 5.7.  

 

Scenarios (S1-S5) 

Worst (S1)  Drought (S2) BAU (S3) Surplus (S4) Best (S5) 
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Table 5.4. Scenarios and their methods of prediction as per Equation (4.10) to Equation (4.12) 

and step function for input variables 
Scenario 1 (Worst) Scenario 2 (Drought) Scenario 3 (BAU) Scenario 4 (Surplus) Scenario 5 (Best) 

Population - 

Equation (4.12) 

Population - Equation 

(4.12) 

Population - 

Equation (4.11) 

Population - Equation 

(4.11) 

Population - Equation 

(4.11) 

Precipitation - 

Equation (4.11) 

Precipitation - step to 

lowest observed 

value 

Precipitation - 

Equation (4.12) 

Precipitation - step to 

highest observed value 

Precipitation - 

Equation (4.12) 

Water for Crops - 

Equation (4.10) 

Water for Crops - 

Equation (4.10) 

Water for Crops - 

Equation (4.10) 

Water for Crops - 

Equation (4.12) 

Water for Crops - 

Equation (4.12) 

Evaporation - 

Equation (4.12) 

Evaporation - step to 

highest observed 

value 

Evaporation - 

Equation (4.11) 

Evaporation - step to 

lowest observed value 

Evaporation -  

Equation (4.11) 
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Table 5.5. Historical and predicted input variables for the scenarios S1 to S5 supplied to the state variable model 
Year Population Rainfall (mm) Evaporation (m) Water for Crops (KL) 

 

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

2007 3663 3663 3663 3663 3663 476 476 476 476 476 0.186 0.186 0.186 0.186 0.186 9103284 9103284 9103284 9103284 9103284 

2008 3685 3685 3685 3685 3685 681 681 681 681 681 0.174 0.174 0.174 0.174 0.174 5579712 5579712 5579712 5579712 5579712 

2009 3714 3714 3714 3714 3714 299 299 299 299 299 0.185 0.185 0.185 0.185 0.185 8467236 8467236 8467236 8467236 8467236 

2010 3746 3746 3746 3746 3746 566 566 566 566 566 0.172 0.172 0.172 0.172 0.172 8488944 8488944 8488944 8488944 8488944 

2011 3770 3770 3770 3770 3770 551 551 551 551 551 0.160 0.160 0.160 0.160 0.160 10660000 10660000 10660000 9097272 9097272 

2012 3793 3793 3793 3793 3793 318 318 318 318 318 0.153 0.153 0.153 0.153 0.153 11219000 11219000 11219000 8457840 8457840 

2013 3851 3851 3824 3824 3824 458 529 529 529 529 0.185 0.185 0.144 0.185 0.144 12987000 12987000 12987000 8250336 8250336 

2014 3884 3884 3848 3848 3848 398 467 467 467 467 0.172 0.172 0.133 0.172 0.133 13848000 13848000 13848000 8848548 8848548 

2015 3907 3907 3873 3873 3873 300 299 445 681 445 0.165 0.186 0.125 0.153 0.125 15390000 15390000 15390000 9030500 9030500 

2016 3945 3945 3901 3901 3901 343 299 410 681 410 0.171 0.186 0.116 0.153 0.116 16421000 16421000 16421000 8678300 8678300 

2017 3987 3987 3926 3926 3926 292 299 459 681 459 0.180 0.186 0.106 0.153 0.106 17835000 17835000 17835000 8794300 8794300 

2018 4019 4019 3952 3952 3952 239 299 432 681 432 0.175 0.186 0.097 0.153 0.097 18962000 18962000 18962000 9046900 9046900 

2019 4051 4051 3979 3979 3979 241 299 421 681 421 0.174 0.186 0.088 0.153 0.088 20304000 20304000 20304000 9085900 9085900 

2020 4088 4088 4005 4005 4005 198 299 408 681 408 0.177 0.186 0.079 0.153 0.079 21485000 21485000 21485000 9016700 9016700 

2021 4125 4125 4031 4031 4031 162 299 421 681 421 0.181 0.186 0.070 0.153 0.070 22787000 22787000 22787000 9123800 9123800 

2022 4159 4159 4057 4057 4057 145 299 406 681 406 0.179 0.186 0.060 0.153 0.060 23998000 23998000 23998000 9247500 9247500 

2023 4193 4193 4083 4083 4083 108 299 398 681 398 0.180 0.186 0.051 0.153 0.051 25277000 25277000 25277000 9285100 9285100 

2024 4229 4229 4110 4110 4110 77 299 391 681 391 0.182 0.186 0.042 0.153 0.042 26505000 26505000 26505000 9306600 9306600 

2025 4265 4265 4136 4136 4136 53 299 391 681 391 0.184 0.186 0.033 0.153 0.033 27771000 27771000 27771000 9393800 9393800 

2026 4299 4299 4162 4162 4162 20 299 381 681 381 0.184 0.186 0.023 0.153 0.023 29009000 29009000 29009000 9473800 9473800 

2027 4334 4334 4188 4188 4188 0 299 374 681 374 0.185 0.186 0.014 0.153 0.014 30268000 30268000 30268000 9522000 9522000 

2028 4370 4370 4214 4214 4214 0 299 369 681 369 0.187 0.186 0.005 0.153 0.005 31511000 31511000 31511000 9573300 9573300 

2029 4405 4405 4240 4240 4240 0 299 364 681 364 0.188 0.186 0 0.153 0 32766000 32766000 32766000 9647000 9647000 

2030 4440 4440 4267 4267 4267 0 299 357 681 357 0.189 0.186 0 0.153 0 34012000 34012000 34012000 9713400 9713400 

 

              Historical values used for prediction 

              Predicted values for the subsequent years 
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Table 5.6. Observed and predicted ground water level in the Ardawta region from the year 2007 

to 2030 (mbgl) for scenarios S1 to S5 

Year/Scenarios O S1 S2 S3 S4 S5 

2007 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.96 58.02 58.02 58.02 58.02 58.02 

2009 60.85 59.15 59.15 59.15 59.15 59.15 

2010 62.30 60.26 60.26 60.26 60.26 60.26 

2011 63.67 61.60 61.60 61.60 61.43 61.43 

2012 67.05 63.00 63.00 63.00 62.53 62.53 

2013 67.35 64.62 64.62 64.58 63.63 63.59 

2014 67.11 66.33 66.32 66.24 64.78 64.70 

2015 68.45 68.20 68.21 68.06 65.92 65.82 

2016 69.54 70.19 70.22 69.99 67.02 66.90 

2017  72.34 72.38 72.05 68.14 67.98 

2018  74.62 74.66 74.23 69.28 69.08 

2019  77.04 77.08 76.55 70.42 70.17 

2020  79.61 79.64 78.99 71.56 71.25 

2021  82.32 82.33 81.56 72.71 72.33 

2022  85.17 85.16 84.25 73.87 73.41 

2023  88.17 88.13 87.08 75.04 74.48 

2024  91.33 91.22 90.02 76.20 75.55 

2025  94.63 94.46 93.10 77.38 76.62 

2026  98.10 97.83 96.30 78.56 77.69 

2027  101.75 101.33 99.62 79.75 78.76 

2028  105.60 104.97 103.07 80.94 79.82 

2029  109.76 108.74 106.65 82.14 80.88 

2030  114.85 112.65 110.36 83.34 81.94 

Note: mbgl (meters below ground level) 

 

          Observed ground water level for the year 2016 

          Predicted ground water level for the year 2016 
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Table 5.7. Percent Error of prediction of ground water level (mbgl) in Scenarios S1 to S5 in 

Ardawta region 

GWL (2016) S1 S2 S3 S4 S5 

Predicted 70.1858 70.2159 69.98512 67.023 66.90218 

Observed 69.54 69.54 69.54 69.54 69.54 

% Error 0.92 0.97 0.64 3.61 3.79 

 

 

Figure 5.11. Decline of ground water level in Ardawta region from the year 2007 to 2030 in 

observed and predicted scenarios S1 to S5  

 

5.3.2 Testing the model for defined predicted inputs 

 

Although the model is generating reasonable predictions for the ground water level in various 

scenarios with respect to the combinations of the predicted input variables yet the predictions of 

rainfall in S1 and evaporation in S3 and S5 are not sensible at longer intervals. This can be 

attributed to the uncertain nature or ups and downs of such climatic variables. Either the state 

variable model integrated with input sets defined by Equation (4.10) to Equation (4.12) can be 

considered as a black box model or else the adjacent scenarios to the scenarios selected above 

can be chosen having reasonable predictions. The model is required to be tested whether it will 

go well with the normalized random inputs of higher uncertainty, i.e. rainfall and evaporation. 

Population and crop water requirement are certain in terms of their rising pattern. Equation (4.9) 
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incorporating largest volume of historical data and generating reasonable predictions for all input 

variables up to the time step of year 2030 has been used to forecast population and crop water 

requirement. Maximum difference in annual evaporation found in the data used to forecast (from 

the year 2007 to the year 2014) and the historical data since 1969 procured from IMD (Indian 

Meteorological Department), Pune is of 33 mm and 75 mm respectively. While maximum 

difference in annual rainfall in the data used to forecast and historical data since 1969 is of 382 

mm and 700 mm respectively. Considering the most uncertain variable of rainfall, five rainfall 

scenarios (R1-R5) have been generated. The five rainfall scenarios are: 

 

 R1(lowest rainfall of available data continued further with lowest rainfall once as observed 

from historical data; or drought with disaster);  

 R2 (low rainfall evaluated by normalized random values lying in first one-third of the range of 

rainfall; or drought);  

 R3 ( medium rainfall evaluated by normalized random values lying in second one-third of the 

range of rainfall; or average rainfall);  

 R4 (high rainfall evaluated by normalized random values lying in the last one-third of the 

range of rainfall; or surplus); and  

 R5 (highest rainfall of available data continued further with highest rainfall once as observed 

from historical data; or surplus with flood) 

 

Scenarios R2 to R4 corresponds to the normalized random extrapolated values of rainfall from 

their corresponding ranges while scenarios R1 and R5 used impulse function providing lowest 

(165 mm in the year 2002) and highest (866 mm in the year 1971) rainfall from the historical 

data since 1969 assumed to occur once in the forecasted time frame (let's say in the year 2023) 

respectively. The model simulates the five rainfall extrapolations in combination with one 

normalized random extrapolated values of evaporation within the range of collected data, one 

population, and one crop water requirement, both extrapolated by Equation (4.12). The strategic 

diagram for the rainfall scenarios is presented in Figure 5.12.  
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Figure 5.12. Strategic diagram for the rainfall scenarios considered for state variable model 

 

With respect to the five scenarios defined above over the village Ardawta, results obtained for 

the ground water level are shown in Table 5.9 and linear diagram for the decline is shown in 

Figure 5.13. The overlapping pattern of the five rainfall scenarios are producing reasonable 

results for the ground water level but do not promise for generating scenarios in diverse 

directions or else signify that there is no major role of precipitation and evaporation in the 

decline of ground water level. To identify this sensitivity analysis has been conducted on the 

inputs generated by scenario R3 for all the input variables of rainfall, evaporation, population 

and crop water requirement. Inputs generated for all the scenarios R1 to R5 are presented in 

Table 5.8. The precipitation and evaporation are sensitive to the model by 1% while population 

and crop water requirement are sensitive by about 71% and 27% respectively as presented in 

Table 5.10. Sensitivity analysis method is defined in Chapter 4 and it presents how much the 

variation of input variables from their minimum to maximum values make variations to output 

variables (Loucks, et al., 2005). There is an average error of 4% in prediction of ground water 

level as compared to actual ground water level of the year 2016 for scenarios R1 to R5. 

 

 

 

 

  

Scenarios (R1-R5) 

Drought with   
disaster (R1)

  

Drought (R2) Average (R3) Surplus (R4) 
Surplus with 
flood (S5) 
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Table 5.8. Results of predicted inputs for the scenarios R1 to R5 supplied to the state variable model 
Year Population Rainfall (mm) Evaporation (m) Water for Crops (KL) 

 

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 

2007 3663 3663 3663 3663 3663 476 476 476 476 476 0.186 0.186 0.186 0.186 0.186 9103284 9103284 9103284 9103284 9103284 

2008 3685 3685 3685 3685 3685 681 681 681 681 681 0.174 0.174 0.174 0.174 0.174 5579712 5579712 5579712 5579712 5579712 

2009 3714 3714 3714 3714 3714 299 299 299 299 299 0.185 0.185 0.185 0.185 0.185 8467236 8467236 8467236 8467236 8467236 

2010 3746 3746 3746 3746 3746 566 566 566 566 566 0.172 0.172 0.172 0.172 0.172 8488944 8488944 8488944 8488944 8488944 

2011 3770 3770 3770 3770 3770 551 551 551 551 551 0.160 0.160 0.160 0.160 0.160 9097272 9097272 9097272 9097272 9097272 

2012 3793 3793 3793 3793 3793 318 318 318 318 318 0.153 0.153 0.153 0.153 0.153 8457840 8457840 8457840 8457840 8457840 

2013 3851 3851 3851 3851 3851 529 529 529 529 529 0.185 0.185 0.185 0.185 0.185 8250336 8250336 8250336 8250336 8250336 

2014 3884 3884 3884 3884 3884 467 467 467 467 467 0.172 0.172 0.172 0.172 0.172 8848548 8848548 8848548 8848548 8848548 

2015 3907 3907 3873 3873 3873 299 324 564 718 681 0.189 0.189 0.189 0.189 0.189 9030500 9030500 9030500 9030500 9030500 

2016 3945 3945 3901 3901 3901 299 317 543 674 681 0.182 0.182 0.182 0.182 0.182 8678300 8678300 8678300 8678300 8678300 

2017 3987 3987 3926 3926 3926 299 310 522 630 681 0.175 0.175 0.175 0.175 0.175 8794300 8794300 8794300 8794300 8794300 

2018 4019 4019 3952 3952 3952 299 313 532 652 681 0.179 0.179 0.179 0.179 0.179 9046900 9046900 9046900 9046900 9046900 

2019 4051 4051 3979 3979 3979 299 299 492 567 681 0.165 0.165 0.165 0.165 0.165 9085900 9085900 9085900 9085900 9085900 

2020 4088 4088 4005 4005 4005 299 331 584 761 681 0.196 0.196 0.196 0.196 0.196 9016700 9016700 9016700 9016700 9016700 

2021 4125 4125 4031 4031 4031 299 309 521 628 681 0.175 0.175 0.175 0.175 0.175 9123800 9123800 9123800 9123800 9123800 

2022 4159 4159 4159 4159 4159 299 333 588 770 681 0.197 0.197 0.197 0.197 0.197 9247500 9247500 9247500 9247500 9247500 

2023 4193 4193 4193 4193 4193 165 312 529 645 866 0.177 0.177 0.177 0.177 0.177 9285100 9285100 9285100 9285100 9285100 

2024 4229 4229 4229 4229 4229 299 320 552 694 681 0.185 0.185 0.185 0.185 0.185 9306600 9306600 9306600 9306600 9306600 

2025 4265 4265 4265 4265 4265 299 289 463 506 681 0.155 0.155 0.155 0.155 0.155 9393800 9393800 9393800 9393800 9393800 

2026 4299 4299 4299 4299 4299 299 299 492 566 681 0.165 0.165 0.165 0.165 0.165 9473800 9473800 9473800 9473800 9473800 

2027 4334 4334 4334 4334 4334 299 325 567 725 681 0.190 0.190 0.190 0.190 0.190 9522000 9522000 9522000 9522000 9522000 

2028 4370 4370 4370 4370 4370 299 300 494 572 681 0.166 0.166 0.166 0.166 0.166 9573300 9573300 9573300 9573300 9573300 

2029 4405 4405 4405 4405 4405 299 316 541 670 681 0.182 0.182 0.182 0.182 0.182 9647000 9647000 9647000 9647000 9647000 

2030 4440 4440 4440 4440 4440 299 304 505 594 681 0.169 0.169 0.169 0.169 0.169 9713400 9713400 9713400 9713400 9713400 

 

              Historical values used for prediction 

              Predicted values for the subsequent years 
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Table 5.9. Observed and predicted ground water level in the Ardawta region from the year 2007 

to 2030 (mbgl) for Scenarios R1 to R5 

Year/Scenarios O R1 R2 R3 R4 R5 

2007 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.96 58.39 58.39 58.39 58.39 58.39 

2009 60.85 59.31 59.31 59.31 59.31 59.31 

2010 62.30 60.51 60.51 60.51 60.51 60.51 

2011 63.67 61.53 61.53 61.53 61.53 61.53 

2012 67.05 62.41 62.41 62.41 62.41 62.41 

2013 67.35 63.44 63.44 63.44 63.44 63.44 

2014 67.11 64.37 64.37 64.37 64.37 64.37 

2015 68.45 65.51 65.50 65.49 65.48 65.48 

2016 69.54 66.66 66.65 66.62 66.61 66.61 

2017  67.82 67.81 67.77 67.75 67.75 

2018  69.01 69.00 68.94 68.92 68.92 

2019  70.19 70.18 70.10 70.08 70.07 

2020  71.40 71.38 71.29 71.26 71.26 

2021  72.59 72.58 72.47 72.43 72.43 

2022  73.82 73.80 73.67 73.63 73.63 

2023  75.05 75.01 74.87 74.82 74.82 

2024  76.28 76.23 76.07 76.02 76.01 

2025  77.48 77.44 77.26 77.21 77.19 

2026  78.70 78.65 78.46 78.41 78.39 

2027  79.94 79.90 79.69 79.63 79.61 

2028  81.17 81.13 80.90 80.84 80.82 

2029  82.43 82.38 82.14 82.07 82.04 

2030  83.67 83.62 83.37 83.29 83.27 

Note: mbgl (meters below ground level) 

 

          Observed ground water level for the year 2016 

          Predicted ground water level for the year 2016 
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Figure 5.13. Decline of ground water level in Ardawta region from the year 2007 to 2030 in 

observed and predicted scenarios R1 to R5 

 

Table 5.10. Percent sensitivity of input parameters for the ground water level obtained by state 

variable model 

Parameters Percent sensitivity 

Rainfall 1.04 

Evaporation 1.04 

Population 71.34 

Crop Water 26.58 

 

5.3.3 Inference of the study 

 

Scenario development of the water resources up to the year 2030 in the semi-arid region of 

village Ardawta reflects downfall in the level of ground water in all the scenarios from S1 to S5. 

Scenarios S1, S2, and S3 follow a trend of severe decline as per their nomenclature while S4 and 

S5 are also declining fairly opposed to their taxonomy. Similarly, scenarios R1 to R5 are also 

reflecting the decline of ground water level very close to each other. This declination of ground 

water level forces to develop certain solutions to deal with the problem of water scarcity. Surface 

runoff water should be stored and recharged artificially. This can be implemented by impounding 

a pond at the outlet of reach where all runoff water gets stored and recharged to the ground. 
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Rainfall harvesting and efficient methods of crop irrigation like drip and sprinkler irrigation can 

help to make the water resources sustainable over the region. 

 

The model developed in this study has considered the watershed as a lumped system and valid 

for a small region where input values or characteristics of the watershed are not varying 

significantly. Calibration of the model in our study area assumed evapotranspiration as the 

evaporation, reach alluvium effective hydraulic conductivity and pond effective saturated 

hydraulic conductivity equal to aquifer hydraulic conductivity. For snow, its water equivalent 

can be added to the precipitation data. Hence for a large area model can be simulated by 

partitioning the area into regions of smaller area and can be evaluated with different properties of 

different regions.   

 

Besides the equations (4.10) to (4.12) used to forecast the input variables to simulate the state 

variable model, certain analytical functions can also be used to generate future predictions based 

on the pattern/assumptions as per the historical data. Step and random functions have been used 

in section 5.3.2. Random function can be used for the type of data varying uncertainly within a 

range, e.g. climate data of rainfall, evaporation, etc. Step function can be used with certain 

assumptions for extreme forecasts further like minimum rainfall continued ahead (drought) or 

maximum rainfall continued ahead (surplus). Few of the variables like population can be 

forecasted using ramp function since it generally follows a rising trend. To simulate unexpected 

forecasts like disasters (flood or drought) at an instance of the forecasted data impulse function 

can be used. Table 5.8 shows the rainfall forecasts for scenarios R1 and R5 simulated by step 

function where an impulse function is introduced for the rainfall in year 2023 (assuming lowest 

and highest of previous recorded rainfall to occur once over scenario development timeframe) 

while scenarios R2, R3, and R4 are the random function simulated scenarios based on the 

division of range of historical data into three ranges for low, medium, and high rainfall. Although 

ramp function is not used in the study yet population can be simulated with respect to the slope 

of its observed data trend (Nagrath and Gopal, 1982).  

  

5.4 Summary of the Chapter 

 

Summary of the chapter includes the following points: 
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 Development of a state variable model for generating hydrological scenarios deriving the 

future state of water storage components (soil moisture, shallow aquifer, deep aquifer, reach 

storage, pond storage, and ground water level) with respect to their respective water balance 

equations (Equation (5.1) to Equation (5.6)) within a watershed influenced by various 

forecasted parameters (rainfall, evaporation, population, crop water requirement, reach inflow, 

and reach outflow).  

 Simulation of the model for the various combinations of the forecasted statistics of the input 

parameters over the village region of Ardawta, Rajasthan (India). Forecasted statistics of the 

input parameters are generated by Equation (4.10) to Equation (4.12) with respect to their first 

three, five and seven consecutive historical data values. Few more combinations comprising 

of lowest rainfall and highest evaporation continued further with three forecasted statistics of 

other input parameters (drought) and highest rainfall and lowest evaporation continued further 

with three forecasted statistics of other input parameters (surplus) are generated. 

 Model simulations are analyzed with respect to the ground water level since data for other 

hydrological components was not available for the region. Since there is no reach in the 

region, ground water level scenarios are generated with respect to the forecasted statistics of 

only four input parameters (rainfall, evaporation, population, and crop water requirement) till 

the year 2030. First 81 scenarios are generated for the ground water level corresponding to the 

81 (3×3×3×3) combinations of forecasted statistics of input parameters. Three of them are 

selected as worst, business as usual, and best cases with respect to their forecasted ground 

water level deviation from the actual ground water level in the year 2016.  

 9 scenarios have been generated keeping one forecast direction for both rainfall and 

evaporation (lowest rainfall and highest evaporation from observed data continued ahead) and 

three forecasted statistics for other parameters (1×1×3×3). One with the lowest ground water 

level in the year 2016 is selected as drought scenario. Conversely, one more scenario has been 

selected as surplus scenario from the 9 scenarios generated for ground water level with respect 

to the combinations of highest rainfall and lowest evaporation continued further with three 

forecasted statistics of other parameters.       

 Results of the study show that there will be declining state of ground water level in every 

scenario selected from worst to best concluding that there is very little effect of rainfall and 
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evaporation on the ground water level as compared to crop water requirement and human 

consumption.  
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CHAPTER 6: GIS MODELING FOR SCENARIO 

DEVELOPMENT OF WATER RESOURCES 

 
6.1 Chapter overview 

 

Various models have been incorporated to predict potential of water resources including rainfall 

runoff, potential evapotranspiration, and water balance systems (Jiang et al., 2007; Silberstein et 

al., 2012; Griffin et al., 2013; Sahin et al., 2016). Besides, application of GIS (Geographical 

Information System) based on such systems provided an interactive two/three dimensional 

medium to them where spatially distributed parameters within a large area can be simulated 

suitably (Setegn et al., 2010; Huang and Li, 2010; Bae et al., 2011; Yang et al., 2011; 

Pradhanang et al., 2011; Awotwi et al., 2015; Yang et al., 2016). Review of literature reflects 

that GIS has been restricted to analysis and presentation of the spatial data. This study is an 

approach to generate predicted maps taking inputs in the form of maps. The maps for potential of 

water resources have been generated in the year 2030 for the three scenarios i.e., one business as 

usual (BAU), and two extreme scenarios of drought and surplus. Input data considered include 

rainfall, evaporation, curve number, hydraulic conductivity,  ground water draft, initial ground 

water level, digital elevation,  and reach distance raster maps with the time step at which ground 

water level has to be predicted as output. Pixel by pixel state variable approach has been used to 

derive the future state of ground water level. Future input maps of rainfall and evaporation have 

been predicted using systems Input-Output approach of time domain analysis and step functions 

for BAU and extreme scenarios respectively. A dynamic state variable GIS model to generate 

such scenarios has been developed in Python (http://desktop.arcgis.com/en/arcmap/latest/analyze 

/python/what-is-python-.htm dated 22/04/2018). Its implementation over the study region of 

Chirawa block in the Jhunjhunu district of Rajasthan (India) reflects that stretch of ground water 

level decline is spreading towards south west from north east in the year 2030 as compared to the 

year 2006.  

 

6.2 Scenario approach through GIS 

 

Interpolated maps of rainfall, evaporation and ground water draft for consecutive historical years 

have been used to forecast their maps for the succeeding years. Pixel value for future input maps 

has been forecasted using Equation (4.12) incorporating largest set of historical data (pixel 
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values of seven historical interpolated maps). Other maps defining the characteristics of the 

watershed are the maps for curve number, hydraulic conductivity, digital elevation, reach 

distance, and initial ground water level). Initial ground water level map acts as the initial 

condition, with respect to which ground water level map in future will be determined as per the 

effect of forecasted rainfall, evaporation and ground water draft maps.  

6.2.1 Methodology 

 

Point data of rainfall, temperature, and ground water level from rainfall recording stations, 

temperature recording stations, and observation wells respectively distributed over a 

geographical region at consecutive historical time steps have been used to generate interpolated 

maps of precipitation, evaporation, and ground water level at their respective time steps. As per 

the ground water level maps presented in India-WRIS (http://www.india-wris.nrsc.gov.in/ 

GWLevelApp.html dated 9/03/2018) interpolation of the maps has used inverse distance 

weighted (IDW) method to predict data value at unvisited points derived from the data values at 

visited points using Equation (6.1) (Burrough & McDonnel, 1998). Since the methodology 

requires values of the variables of consideration at each pixel over the map, method of 

interpolation is not a matter of concern and any appropriate interpolation technique can be 

adopted.   

                                                            
 
       

      
                                                    (6.1) 

where,   :              jth point where the surface is to be interpolated.  

             :              ith point with the observed data. 

             :              distance between points    and   .  

             :              data value at point   . 

              :              data value at point   . 

             :          an exponential term influencing the effect of known values over to unknown 

values.  

An interpolated map is composed of a matrix of pixels distributed in rows and columns. IDW 

assigns a value to all the pixels within a map. These interpolated maps act as input to the state 

variable model determining the future state of ground water level. Precipitation, evaporation, and 

ground water draft maps have been forecasted in future time steps pixel by pixel using Equation 

(4.12). 
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6.2.2 Development of the model 

 

Later a state variable approach has been applied to derive the future state of ground water level 

(Nagrath and Gopal, 1982). A Python toolbox has been designed based on certain water balance 

equations with respect to various hydrological components of watershed (Neitsch et al., 2011). 

Precipitation inflow after surface runoff percolates underground. There is an outflow from the 

ground water in form of ground water flow, ground water draft, and evaporation from the 

aquifers. The state change relation for ground water level has been defined in Equation (6.2). 

                                                                   
      

 
                                             (6.2) 

where, DWL(k) (m):        depth of water level in meters below ground level at time step k. 

           Raq(k) (m
3
):        aquifer recharge at time step k.  

                    (m
2
):           area of a pixel.  

Aquifer recharge has been evaluated over the area of a pixel using Equation (6.3). 

                                          Raq(k) = I(k) - R(k) - Qgw(k) - U(k) - E(k)                                         (6.3) 

where, I(k) (m
3
):               precipitation inflow at time step k.  

          R(k) (m
3
):            surface runoff at time step k. 

      Qgw(k) (m
3
):            ground water flow at time step k. 

         U(k) (m
3
):            ground water draft at time step k. 

         E(k) (m
3
):             evaporation at time step k. 

 

Precipitation inflow and evaporation have been derived from the product of precipitation and 

potential evapotranspiration with the area of the pixel respectively. Potential evapotranspiration 

(Pe) has been obtained using Thornthwaite model presented by Equation (6.4) (Wang et al., 

2011) earlier used in Chapters 4 and 5 as equations (4.15) and (5.14) respectively.  

                                                          Pe = 1.6 d (10 T / I)
a                                                                                      

(6.4)    

It is difficult to distribute the ground water draft over to different pixels over a region. Hence, 

distributed ground water draft has been assumed as per the Equation (6.5).  

                                           U(k) =  .Dpy + (I(k) - R(k) - Qgw(k) - E(k))                                    (6.5)    

where, Dpy (m) is ground water level decline per year calculated from the ground water level 

difference of initial year and final year. Ground water flow and surface runoff per unit area have 
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been evaluated using Equation (6.6) (Hooghoudt, 1940) and Equation (6.7) earlier used in 

Chapter 5 as equations (5.2c) and (5.1c) respectively. 

                                                                      
         

   
                                                       (6.6) 

                                                               
            

         
                                                           (6.7) 

As per the availability of data for ground water level, Equation (6.2) is the only state variable 

equation developed for simulations in GIS and a number of output equations can be created for 

the variables dependent upon the state of ground water level.  

 

6.3 Simulation of GIS model 

 

Implementation of the model incorporates the execution of python toolboxes developed as per 

the code presented in Appendix D, taking precipitation and evaporation interpolated maps as 

climatic inputs. Other input maps representing characteristics of the study area under 

consideration are for hydraulic conductivity, curve number, digital elevation, and reach distance. 

Initial ground water level and ground water draft maps are the human induced inputs to the 

system. The model has been executed over a block Chirawa of district Jhunjhunu in the 

Rajasthan state of India. The hydrological profile of Chirawa is presented in Figure 6.1. 

 

DEM (Digital Elevation Model) data with 30 meter spatial resolution for the district Jhunjhunu 

has been downloaded from Bhuvan, an Indian geo-platform of ISRO (Indian Space Research 

Organization) (http://bhuvan.nrsc.gov.in/data/download/index.php dated  10/01/2018). All other 

input maps developed have been set to similar spatial resolution as DEM. Data for rainfall and 

temperature have been procured from IMD (Indian Meteorological Department), India for the 

eight rainfall stations and one surface data station respectively located in district Jhunjhunu from 

the year 2007 to the year 2013 as presented in Table 6.1 and Table 6.2. Ground water level data 

from 16 observation well sites in Jhunjhunu from the year 2006 to the year 2016 is presented in 

Table 6.3 (http://www.india-wris.nrsc.gov.in/GWLevelApp.html dated 9/03/2018). 
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Figure 6.1. Hydrological profile of Chirawa 

 

 

 

 

 



94 

 

Table 6.1. Annual rainfall recorded at rainfall stations located in Jhunjhunu (mm) 

Rainfall Station 2007 2008 2009 2010 2011 2012 2013 

Chirawa 480 681 274 566 545 319 541 

Buhana 561 679 231 578 520 480 476 

Jhunjhunu 442 610 214 828 646 427 487 

Khetri 413 800 547 944 645 519 652 

Malsigar 633 521 295 991 981 503 722 

Nawalgarh 351 550 284 655 752 838 423 

Pilani 455 648 327 414 681 510 506 

Udaipur/Shekha 538 595 187 813 643 540 593 

 

Table 6.2. Average temperature recorded at only surface data station Pilani (ᵒC) 

Month/Year 2007 2008 2009 2010 2011 2012 2013 

January 13.54 13.61 14.62 11.90 11.40 12.50 12.50 

February 17.96 17.59 17.95 15.95 16.75 14.80 16.40 

March 20.91 27.62 23.55 22.10 22.80 22.35 23.15 

April 30.78 30.32 28.08 29.20 27.90 27.95 28.30 

May 32.98 30.39 33.57 32.50 34.20 32.70 33.90 

June 34.14 30.86 33.00 34.20 28.80 23.15 34.55 

July 31.76 31.23 31.68 31.10 31.10 33.00 32.10 

August 30.55 29.27 31.30 29.85 29.40 29.40 29.55 

September 29.13 28.26 28.97 29.65 28.35 30.60 29.70 

October 26.06 28.23 25.92 26.05 25.90 25.65 26.90 

November 22.56 21.87 21.50 19.84 22.10 20.20 19.75 

December 14.47 15.36 18.46 13.30 14.75 15.05 15.95 
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Table 6.3. Ground water level recorded at observation well sites in Jhunjhunu (mgbl) 
Site Name Site Type Well Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Badagaon Tube Well W18362 36.2 37.5 38.85 40.5 41.6 44.42 44.5 46.05 46.25 51.89 50.44 

Birmi Tube Well W18339 38.48 39.79 39 26.13 39.42 39.55 40.18 38.6 42.4 40.22 40.45 

Chowara Tube Well W18363 23.6 25.34 26.58 27.98 30.26 36.41 33.77 42.35 37.1 41.82 43.89 

Churela Tube Well W18340 41.47 41.86 42.25 42.66 43.1 43.39 45.62 44.32 44.8 48.63 46.67 

Dighal Tube Well W18348 48.24 48.95 49.17 50.34 50.67 51.16 53.18 55.93 58.67 56.38 54.36 

Jaisinghpura Tube Well W18349 43.7 44.25 44.55 45.9 45.85 46.11 47.15 47.1 47.69 48.27 48.92 

Jhanjha Tube Well W18343 64.84 69.41 73.44 80.7 83.72 91.27 70.39 49.52 68.56 61.50 51.70 

Jhunjhunu Tube Well W18350 58.15 59.55 60.25 61.55 62.85 64.46 68.1 69.9 65.70 65.69 65.12 

Lakhu Tube Well W18347 58.07 59.7 61.65 62.93 70.45 66.09 68.2 65.55 70 74.45 77.48 

Mandasi Sandasi Tube Well W18352 49.75 50.38 50.93 51.7 52.44 53.18 52.2 54.35 55.7 56.56 57.64 

Mandrela Tube Well W20623 38.46 49.87 50.97 51.56 52.11 52.73 60.35 59.37 61.36 56.82 56.6 

Meghpur Tube Well W18345 59.46 63.45 68.78 74.58 74.08 77.48 84.9 86.05 88.06 91.80 95.75 

Mukundgarh Tube Well W18358 46.75 47.23 47.86 48.05 48.58 49.11 49.97 51.95 52.06 52.18 52.29 

Paporana Dug Well W18357 20.43 23.29 18.02 22.14 22.04 15.64 17.82 20 23.6 26.62 21.65 

Pilani Tube Well W18359 60.3 60.76 62.76 66.51 62.06 76.54 74.98 73.41 73.21 73.40 75.23 

Pipli Tube Well W18360 60.06 61.34 62.58 63.23 54.5 67.32 69.2 65.65 72.24 78.82 97.1 

Note: mbgl (meters below ground level) 

 

        Missing value interpolated as average of its previous term and later term 

        Missing value predicted as per Equation (4.12) with respect to previous seven terms 

 

The entries of Table 6.3 highlighted in green and yellow were missing which have been 

interpolated and extrapolated respectively. Green cells correspond to the missing data which has 

been estimated as the average of its before and after terms. Yellow cells are the data extrapolated 

from the earlier seven data values as per Equation (4.12). 

 

 IDW Interpolated maps with   = 2 (default in IDW interpolation tool of ArcGIS 10.1) for annual 

rainfall from the year 2007 to the year 2013 and ground water level from the year 2006 to the 

year 2016 have been developed. Since there is only one station in Jhunjhunu for temperature 

data, raster maps with same annual evaporation all over the region for the year 2007 to the year 

2013 have been prepared as per Equation (6.4).  

 

Later all the above maps prepared have been clipped within the boundary of Chirawa block 

extracted from the village boundary database of the district Jhunjhunu procured from Survey of 

India. To determine surface runoff as per Equation (6.7), a map for curve number (CN) has been 

generated. CN for the region corresponds to coarse texture soil (http://india-wris.nrsc.gov.in/ 

SoilApp.html dated  9/03/2018) and weighted average land use. 88%, 3%, and 9% of the area fall 
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under crop land, built up, and forest respectively (http://india-wris.nrsc.gov.in/LULCApp.html 

dated 9/03/2018). For one soil group, one CN has been assigned. Therefore, a CN map having 

value as 73 has been used to evaluate surface runoff (SCS Engineering Division, 1986). Ground 

water flow as per Equation (6.6) has been characterized by a hydraulic conductivity map. The 

principal aquifer system over the region is alluvium having thickness of 40-800 meters and 

transmissivity of 200-400 square meters per day (http://www.india-

wris.nrsc.gov.in/LithologApp.html dated 9/03/2018). Using average value of thickness and 

transmissivity, hydraulic conductivity is taken as 261 meters per year as per Equation (6.8) 

(http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm dated 9/03/2018) earlier used in 

Chapter 5 as Equation (5.13). 

                                                                      T = K. b                                                                (6.8)  

The height of water table has been considered as the difference between DEM and depth of 

ground water table as the configuration of the water table commonly is a replica of the land 

surface topography on a regional scale (http://www.pubs.usgs.gov/circ/circ1186/html/ 

gen_facts.html dated 9/03/2018). Map for the reach distance has been developed by converting 

watershed area shape file to raster assigning a value of reach distance to every pixel within a sub 

basin since groundwater flow from a sub basin as per Equation (6.6) requires one value of reach 

distance from sub basin divide. The watershed area delineation has been performed by SWAT 

(Soil and Water Assessment Tool) extension of ArcGIS 10.1 (Neitsch et al., 2011). The final 

raster has been classified into sub basins with the values of their pixels equal to square root of 

their respective areas (reach distance) considering distance from sub basin divide to the reach 

equal to the side of a square equivalent in area to the area of sub basin. The reason for the 

consideration is that if the actual distance from pixels to reach would have been used then the 

ground water flow from the pixels closer to reach would tend to infinity as per Equation (6.6). 

Region which did not fall under watershed has been assigned reach distance value as null. 

Ground water draft raster maps for the year 2007 to the year 2013 have been evaluated as per 

Equation (6.5) where Dpy (m) raster is calculated with respect to the interpolated ground water 

level maps of the year 2006 and the year 2016. 

 

Three python toolboxes have been developed in ArcGIS 10.1 to derive ground water level in the 

year 2030 for three scenarios of drought (S1), BAU (S2), and surplus (S3) with respect to the 
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climate variables (rainfall and evaporation) as presented in Figure 6.2. It is considered that if the 

extreme cases can be monitored then all intermediate cases can be handled effectively whereas 

business as usual cases are necessary to determine the expected outcomes. Rainfall and 

evaporation have been predicted as per Equation (4.12) for BAU. For drought scenario minimum 

of the rainfall and maximum of the evaporation from the year 2007 to the year 2013 has been 

extrapolated till the time step at which ground water level is desired and vice versa for surplus. 

Ground water draft has been forecasted by Equation (4.12) for all the three scenarios since 

climate variables are considered for the development of scenarios.  

 

              Surplus (S3) 

 

                             Observed Data     BAU (S2) 

 

             Drought (S1) 

 

Figure 6.2. Schematic diagram of scenarios developed for GIS state variable model 

 

6.3.1 Results 

 

Interpolated maps of the rainfall for the scenario S2 (BAU), S1 (drought), and S3 (surplus) as per 

the criteria defined from the year 2007 to the year 2030 are shown in Figure 6.3, Figure 6.4, and 

Figure 6.5 respectively. Similarly the interpolated maps of ground water draft from the year 2007 

to the year 2030 common to all scenarios S1, S2, and S3 are shown in Figure 6.6. The rainfall 

and ground water draft maps from the year 2007 to the year 2013 are the interpolated maps 

generated with the available data for their respective years while the maps from the year 2014 to 

the year 2030 are the maps predicted with respect to the generated maps as per Equation (4.12) 

for scenario S2 of rainfall and for all scenarios S1, S2, and S3 of ground water draft. Scenarios 

S1 and S2 of rainfall consider the minimum and the maximum value of rainfall for every pixel 

from the rainfall maps of the year 2007 to the year 2013 to be continued further from the year 

2014 to the year 2030.  
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Figure 6.3. Interpolated maps of rainfall in Chirawa for scenario S2 from the year 2007 to the 

year 2030 
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Figure 6.4. Rainfall map of Chirawa for the scenario S1 from the year 2014 to the year 2030 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Rainfall map of Chirawa for the scenario S3 from the year 2014 to the year 2030 
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Figure 6.6. Ground water draft maps of Chirawa common for the scenarios S1, S2, and S3 from 

the year 2007 to the year 2030 
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Since the evaporation maps developed are the maps with the same value of evaporation at all 

pixels within a map due to the temperature data available from only one surface station (Pilani) 

in the Jhunjhunu district, the evaporation values for the three scenarios are presented in Table 6.4 

(data points not fit for interpolation). Green cells represent the derived values of evaporation 

with respect to the observed temperature data from the year 2007 to the year 2013 while yellow 

cells are the extrapolated values of evaporation from the year 2014 to the year 2030. Evaporation 

in scenario S2 is forecasted as per the Equation (4.12) while in scenarios S1 and S3 maximum 

and minimum values of evaporation from the historical evaporation are continued further from 

the year 2014 to the year 2030.  

 

Resultant maps for the ground water level (GWL) in the year 2030 for the three scenarios have 

been shown from Figure 6.13 to Figure 6.15. GWL is represented by the unit as mbgl (meters 

below ground level).  The GWL maps have been classified into the regions having GWL less 

than 70 meters, 70 - 80 meters, 80 - 90 meters, and greater than 90 meters below ground level. It 

has been assumed that the region falling below 90 meters is most stressed while the region 

falling above 70 meters is sustainable. GWL in the year 2006 presented in Figure 6.12 reflects no 

traces of stressed region. Later stress started spreading outwards towards south-west direction 

with respect to north-east region as the centre, evident from GWL maps from the year 2007 to 

the year 2030 shown in Figure 6.7. Annual mean, standard deviation, and confidence interval 

(95%) of GWL maps from the year 2006 to the year 2030 are presented in Table 6.5.  

 

In the year 2030, scenarios S2 and S3 are very close while S1 is slightly different from them and 

can be judged by very keen observation. Validation of the results has been carried out comparing 

predicted mean GWL in the three scenarios to mean GWL in the year 2016. Predicted and actual 

interpolated maps for the year 2016 are presented from Figure 6.8 to Figure 6.11 respectively. 

Percent error of GWL in the three scenarios with respect to actual GWL in 2016 is presented in 

Table 6.6. No significant difference for the three scenarios in the year 2016 and the year 2030 

indicates that ground water draft is making the biggest contribution in declining GWL while the 

effect of rainfall and evaporation is only about 0.1%. Due to insignificant differences among the 

predicted GWL maps for the three scenarios maps corresponding to scenario S2 (BAU) only are 

presented in Figure 6.7. Maps of  GWL corresponding to scenarios S1 and S3 are close to the 

lookalike of scenario S2. 
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Table 6.4. Predicted data of annual evapotranspiration (mm) in Chirawa from the year 2007 to 

the year 2030 for the scenarios S1 to S3 

Year/Scenarios S1 S2 S3 

2007 186 186 186 

2008 174 174 174 

2009 185 185 185 

2010 172 172 172 

2011 160 160 160 

2012 153 153 153 

2013 185 185 185 

2014 186 160 153 

2015 186 159 153 

2016 186 162 153 

2017 186 168 153 

2018 186 158 153 

2019 186 158 153 

2020 186 159 153 

2021 186 160 153 

2022 186 156 153 

2023 186 155 153 

2024 186 155 153 

2025 186 154 153 

2026 186 152 153 

2027 186 152 153 

2028 186 151 153 

2029 186 150 153 

2030 186 149 153 

 

        Derived value of evaporation from the historical temperature data. 

        Extrapolated value of evaporation with respect to the historical evaporation. 
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Figure 6.7. Ground water level maps of Chirawa for the scenario S2 from the year 2007 to the 

year 2030 
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Figure 6.8. GWL for S1 in the year 2016             Figure 6.9. GWL for S2 in the year 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. GWL for S3 in the year 2016              Figure 6.11. GWL in the year 2016 
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Figure 6.12. GWL in the year 2006                          Figure 6.13. GWL for S1 in the year 2030 

            

 

  

 

 

 

 

 

 

 

 

 

Figure 6.14. GWL for S2 in the year 2030               Figure 6.15. GWL for S3 in the year 2030 
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Table 6.5. Ground water level (mbgl) statistics of Chirawa block for the scenario S1/S2/S3  

 

Year 

Mean GWL 

(μ) 

Standard Deviation 

(σ) 

Confidence Interval (95%)                    

(μ - 2σ, μ + 2σ) 

2006 53.74 5.95 (41.84, 65.64) 

2007 56.51 4.73 (47.05, 65.97) 

2008 58.12 5.07 (47.98, 68.26) 

2009 60.08 5.56 (48.96, 71.2) 

2010 59.38 5.28 (48.82, 69.94) 

2011 64.8 6.8 (51.2, 78.4) 

2012 65.57 5.56 (54.45, 76.69) 

2013 63.04 4.58 (53.88, 72.2) 

2014 68.89 9 (50.89, 86.89) 

2015 70.78 9.45 (51.88, 89.68) 

2016 72.67 9.9 (52.87, 92.47) 

2017 74.57 10.38 (53.81, 95.33) 

2018 76.47 10.85 (54.77, 98.17) 

2019 78.37 11.33 (55.71, 101.03) 

2020 80.27 11.81 (56.65, 103.89) 

2021 82.17 12.3 (57.57, 106.77) 

2022 84.06 12.8 (58.46, 109.66) 

2023 85.96 13.29 (59.38, 112.54) 

2024 87.86 13.79 (60.28, 115.44) 

2025 89.76 14.29 (61.18, 118.34) 

2026 91.66 14.79 (62.08, 121.24) 

2027 93.56 15.3 (62.96, 124.16) 

2028 95.47 15.81 (63.85, 127.09) 

2029 97.37 16.32 (64.73, 130.01) 

2030 99.27 16.83 (65.61, 132.93) 
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Table 6.6. Percent error of prediction of ground water level (mbgl) in Chirawa for scenarios S1 

to S3  

Mean GWL (2016) S1 S2 S3 

Predicted 72.78 72.67 72.64 

Observed 72.66 72.66 72.66 

% Error 0.16 0.013 0.027 

 

6.3.2 Inference of the study 

 

The application of GIS model developed in the study applied over Chirawa block reflects decline 

in ground water level and it is stretching outwards from the north east region as the center. Step 

functions applied for drought and surplus scenarios reflect that ground water draft is playing the 

biggest role for continuous decline whereas with such a ground water draft statistics there is no 

significant effect of rainfall and evaporation over the site. It seems that, in order to alleviate the 

ground water level, ground water draft should be practiced in an efficient manner. Alternative 

measures should be adopted to reduce the draft. Meanwhile, rainfall will make some significant 

changes to the ground water level.   

 

The GIS model developed in the study is different from the lumped state variable model 

developed in Chapter 5 in terms of its application areal extent. It can incorporate the distributed 

characteristics of terrain and climate data over a region with large area. 

   

6.4 Summary of the Chapter 

 

Summary of the chapter includes the following points: 

 

 Development of a state variable GIS model determining the future ground water level map 

with respect to the forecasted maps of influencing parameters (rainfall, evaporation and 

ground water draft maps).  Distributed characteristics of the region are defined by various 

maps developed for initial ground water level, curve number to evaluate rainfall dependent 

runoff, reach distance, hydraulic conductivity, and digital elevation (to evaluate ground water 

flow). 
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 Determining the ground water level map for the year 2030 for the three scenarios (drought, 

business as usual, and surplus). First the interpolated maps for rainfall, evaporation, and 

ground water draft have been generated for the first seven historical years (from the year 2007 

to the year 2013), second the future maps have been forecasted for them applying Equation 

(4.12) from pixel to pixel of their interpolated historical maps. Forecasts of ground water draft 

maps are fixed as per Equation (4.12) for the three scenarios considered. Rainfall and 

evaporation maps are also forecasted as per Equation (4.12) for the business as usual scenario. 

For the drought scenario rainfall and evaporation maps are stepped to lowest of rainfall values 

and highest of evaporation values respectively in their historical maps for the future years. 

Conversely, for surplus scenario rainfall and evaporation maps are stepped to highest of 

rainfall values and lowest of evaporation values respectively in their historical maps for the 

future years.    

 Simulation of the state variable GIS model over the region of Chirawa, Rajasthan (India) for 

the three scenarios initiating over the ground water level map of the year 2006 generates 

resultant ground water level maps for the year 2030 with the declining state falling under 

vulnerable condition as shown from Figure 6.13 to Figure 6.15. It indicates again that ground 

water draft has the most significant effect on ground water level whereas rainfall and 

evaporation are not significant by more than 1%.   
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CHAPTER 7: CONCLUSIONS AND FUTURE SCOPE 

 
7.1 Chapter overview 

 

This chapter finally provides a statement of the work presenting the consolidated findings. 

Section 7.2 and 7.3 present the list of derived models and their effects respectively. Section 7.4 

derives the conclusions of the study while section 7.5 and 7.6 present the limitations and future 

scope respectively.  

 

7.2 The derived models 

 

During the thesis work three different type of models have been derived: 

a) Model to predict the future values of different chronological variables with respect to their few 

of the observed initial values specified in Chapter 4. 

b) A state variable hydrological model to determine the states of various water storage elements 

with respect to their initial states and inputs predicted as per model specified in Chapter 5. 

c) A state variable GIS model to determine the state of ground water resources as per the model 

specified in Chapter 6. 

 

7.3 Discussions  

 

There are certain advantages of the methods and models developed during thesis work which are 

mentioned as per the following sections. 

 

7.3.1 Effect of the recurrence relation method in prediction 

 

The recurrence relation technique has helped to derive a generalized equation for prediction with 

respect to certain initial values or conditions. It has taken moving average method of 

extrapolation from a set of steps to a single step. It made the moving average forecasting method 

simpler and easier to apply with lesser memory utilization to store previous step calculations. 

 

7.3.2 Effect of the state variable modeling for hydrological scenarios 

 

The state variable model developed will act as an integrated system to determine the states of 

various water storage resources for scenarios corresponding to various combinations of the 
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observed/predicted input variables. These input variables are the broad perspective for the factors 

affecting storage and removal of the water flux within the hydrological system. Various 

combinations of different predicted input variables will provide a broad range of possibilities to 

be analyzed for identifying the extreme case scenarios. It is assumed that if the extreme cases can 

be handled efficiently other intermediate cases will be under control.      

 

7.3.3 Effect of the GIS modeling for scenario development 

 

GIS modeling of the state variable hydrological system determining the state of ground water 

resources in future will provide its future maps. Inputs for the climate and socioeconomic 

variables is supplied in the form of maps instead of using some weather generator module as in 

other GIS based hydrological models. GIS based system developed will provide a distributed 

processing environment to the state variable model defined in section 7.3.2.  

 

7.4 Conclusions on research findings 

 

The conclusion on the research is divided into its theoretical and practical counterparts. 

 

7.4.1 Theoretical conclusions 

 

The key theoretical conclusion of the study establishes that: 

a) Certain complex methods applied in the field of prediction and scenario development can be 

generalized and made simpler to apply.  

b) The complexity can be reduced and can be initiated with a lesser volume of historical data.  

c) The steps in moving average method require to store results for the previous step to be 

applied in succeeding step which requires memory. Hence the generalized method being 

solved in one step only will provide a way for efficient memory utilization.  

d) State variable approach provides a way to integrate different social, technical, environmental, 

economic, political, and values aspects altogether as inputs to a system determining the state 

of its various components affected by them (inputs) besides response of the system. There 

might be the situations when the state of system components become undesirable which 

cannot be observed from the response of the system.  



111 

 

e) It can provide a dynamism presenting state of different stocks within a system at every time 

step. 

f) Integration of the hydrological models like rainfall runoff, potential evapotranspiration, 

stream flow, and pond storage models can develop high level models breaking a water 

balance system into various processes occurring within a watershed. Such high level models 

will be lumped models and applicable over a small region with similar characteristics of 

terrain and climate for the whole region. They can be applied over a large distributed 

characteristics region breaking it into chunks of smaller regions with their significant terrain 

and climatic statistics and executing the models for every chunk. 

g) GIS implementation will provide a distributed two/three dimensional observations with 

respect to the interpolated maps of various input variables of a hydrological system. It is 

highly suitable for larger regions with distributed terrain and climatic statistics. It can 

perform simulations over a large area in one step presenting results at every location (pixel) 

on the region. 

h) GIS based hydrological tools like SWAT (Soil and Water Assessment Tool) perform the 

water balance calculations with respect to hydrological response units (HRUs) with different 

areas defined as per the slope, soil, and land use characteristics of the region, while pixel 

based approach opted in our study can take the analysis to any level of uniform spatial 

resolution. The major difference is SWAT generates results for each HRU in the text form 

while in the present study results are generated in the form of maps. 

 

7.4.2 Practical conclusions 

 

a) Application of the generalized equations over the region of nine villages in Chirawa block 

reflects reasonable predictions for the input variables like rainfall, evaporation, crop water 

requirement, and population with an error close to 6%, 7.5%, 7%, and 1% respectively in 

business as usual (BAU) scenario. Rainfall and evaporation being highly uncertain have the 

higher proportion of error as compared to the population which is certain due to its rising 

graph. Crop water requirement is also uncertain in the study area of nine villages due to 

fluctuating land use for various crops. 
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b) State variable model simulated over the village Ardawta reflects predictions for the ground 

water level of the observation well site located in Khudana (nearest to village Ardawta) are 

very close to its actual level. The error of 0.64% for the business as usual (BAU) scenario 

between predicted and actual value of ground water level for the year 2016 presents that the 

model developed can generate reasonable scenarios of ground water level and other storage 

elements of a hydrological system.   

c) Predictions obtained by application of state variable GIS model to determine ground water 

level in Chirawa block also reflects a good match to the actual level for the year 2016 with an 

error of 0.013% for the business as usual (BAU) scenario. As per our data set and study 

region ground water draft has 99% of effect on the ground water resources whereas 

combined effect of rainfall and evaporation is only about 1%.  

 

7.5 Limitations of the study 

 

a) Prediction method developed using generalized equations is applicable for discrete time data 

at regular intervals such that the variables to be predicted must have high probability to occur 

in the time interval. 

b) Accuracy of the predictions is required to be checked for the generalized equation of various 

degrees (i.e., for N=2, 3, 4, 5,…) with respect to the availability of historical data and the 

equation deriving highest accuracy can be taken ahead for further predictions. 

c) Future predictions for the long range will move towards either rising or declining trend which 

could not be promising for the climatic data (data with uncertainty), hence it is suitable for 

short range predictions of rainfall and evaporation. 

d) State variable model developed is a lumped model and to apply it over a region with 

distributed characteristics it is required to be simulated multiple times. 

e) Slope characteristics of the region are assumed to be defined by Curve Number to evaluate 

surface runoff. 

f) Model has been simulated for annual time series inputs over the ground water level data only 

(as per the data available for validation). 

g) GIS model developed also assumes that runoff due to slope can be evaluated by a Curve 

Number layer generated over a region as per the data for soil and land use. 
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7.6 Future scope of the study 

 

The study can be taken further by: 

a) Generalizing other techniques of prediction like ANN, Fuzzy logic, GAMLSS, Markov 

model, and Genetic programming.  

b) Development of a generic model to determine the states of all water storage resources with 

respect to various other climatic variables besides precipitation and temperature (like, wind 

speed, solar radiations, humidity, etc.) and other parameters (like landuse changes, livestock 

population, urbanization, etc.) simulating their uncertain behavior to develop scenarios.    

c) Incorporation of slope characteristics besides soil type and land use to determine runoff as 

per runoff coefficients defined for Rational formula (Q = C.I.A, where Q, C, I, and A are 

peak runoff, coefficient of runoff, intensity of rainfall, and area of catchment respectively), 

etc. 

d) Incorporating state dependent outputs for different sectors, e.g. allocation of the water 

resources to various demanding sites, e.g., derivation of hydro power, production of crops, 

etc.   

e) Implementation of the optimization techniques like genetic algorithm, fuzzy logic, etc. to 

provide better management of the water resources. 
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APPENDICES 

 
Appendix A: Flowchart and MATLAB codes for predicting input variables through 

recurrence relation technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Flowchart for predicting input variables through generalized recursive relation 

 

For N = 2 

 
a = [0  1   1 
1   1   -0.75 
2   1   0.5625]; %matrix defining the constants% 
b = zeros(3,1);  %matrix for initial conditions% 
disp('enter matrix b:'); 
for i=1:3 
    b(i,1)=input(num2str(i)); %input initial conditions% 
end  
x = inv(a)*b; 
t=input('time step limit:'); %input time step up to prediction is desired% 
for n = 1:t 
    y(n,1) = (x(1,1)*n+x(2,1))*1^n+x(3,1)*(-0.75)^n; 
end 
y %output matrix with predicted values up to time step entered% 

 

 

 

 

 

 

Define Matrix 'a' of constants for N=2/3/4 

Define a zero matrix 'b' of size ((2N-1)×1) 

Calculate matrix 'x' as product of inverse of matrix 'a' and matrix 'b' 

Generate predictions at every time step 

Input last (2N-1) historical terms and store in matrix 'b' 

 

Enter number of time steps to be predicted 

 

Output matrix 'y' of size (time steps×1) for predicted terms 
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For N = 3 

 
a = [0  1   1   1   0 
1   1   -0.3955 -0.4134 0.6253 
2   1   0.1564  -0.2201 -0.517 
3   1   -0.0619 0.4143  0.0762 
4   1   0.0245  -0.2189 0.2275]; %matrix defining the constants% 
b = zeros(5,1);                  %matrix for initial conditions% 
disp('enter matrix b:');          

for i=1:5 
    b(i,1)=input(num2str(i));    %input initial conditions% 
end  
x = inv(a)*b; 
t=input('time step limit:'); %input time step up to prediction is desired% 

     
for n = 1:t 
    y(n,1) = (x(1,1)*n+x(2,1))*1^n+x(3,1)*(-

0.3955)^n+(0.7496)^n*(x(4,1)*cos(2.1550*n)+x(5,1)*sin(2.1550*n)); 
end 
y  %output matrix with predicted values up to time step entered% 

 

 

 

For N = 4 
 
a = [0  1   1   1   0   1   0 
1   1   -0.7436 -0.0593 0.7712  -0.2877 0.3891 
2   1   0.5529  -0.5913 -0.0914 -0.0686 -0.2239 
3   1   -0.4112 0.1056  -0.4506 0.1068  0.0377 
4   1   0.3057  0.3412  0.1081  -0.0454 0.0307 
5   1   -0.2274 -0.1036 0.2568  0.0011  -0.0265 
6   1   0.1691  -0.1919 -0.0951 0.01    0.0081]; %matrix defining the 

constants% 
b = zeros(7,1); 
disp('enter matrix b:'); %matrix for initial conditions% 
for i=1:7 
    b(i,1)=input(num2str(i));  %input initial conditions% 
end  
x = inv(a)*b; 
t=input('time step limit:'); %input time step up to prediction is desired% 
for n = 1:t 
  y(n,1) =(x(1,1)*n+x(2,1))*1^n+x(3,1)*(-

0.7436)^n+(0.7735)^n*(x(4,1)*cos(1.6475*n)+x(5,1)*sin(1.6475*n))+(0.4839)^n*(

x(6,1)*cos(2.2075*n)+x(7,1)*sin(2.2075*n)); 
end 
y  %output matrix with predicted values up to time step entered% 
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Appendix B: Flowchart and MATLAB code for the state variable model for generating 

hydrological scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Flowchart of the state variable model generating hydrological scenarios 

Define three matrices of constants for N=2, 3 & 4 respectively 

Define three zero matrices for every input parameter (rainfall, evaporation, population, crop water, reach 

inflow, and reach outflow) of size (3×1), (5×1), & (7×1) to store their first three, five, & seven initial terms  

Define zero matrix to store derived coefficients to predict input parameter (rainfall, evaporation, 

population, crop water, reach inflow, and reach outflow) by generalized equations till the desired time 

step of size (7×3) where first, second, and third columns will store three, five, and seven coefficients  

Derive three sets of coefficients for predicting all input variables (rainfall, evaporation, population, crop 

water, reach inflow, and reach outflow) by multiplication of inverse of matrix of constants and matrix 

with first (2N-1) historical terms as per N=2, 3, & 4 and store them in their respective matrices of 

coefficients into three columns  

Enter first seven consecutive historical data terms of all input parameters (rainfall, 

evaporation, population, crop water, reach inflow, and reach outflow) after the time 

step at which initial states of water storage elements are considered  

 

Enter initial states of soil water storage, shallow aquifer storage, deep 

aquifer storage, reach storage, pond storage, and ground water level   

 

Enter demographic variables as total area of region, watershed area, reach area, pond 

volume, pond area, curve number, field capacity, revap coefficient, deep aquifer 

percolation coefficient, depth of reach, wetted parameter of reach, length of reach, 

hydraulic conductivity of aquifer, fraction of watershed area routing to pond, mean 

sea level, and distance from subbasin divide to reach    

 

Enter water required per person per day 

 

Enter number of time steps to predict water storage state of soil, 

shallow aquifer, deep aquifer, reach, pond, and ground water level 

 

Outputs predicted water storage state of soil, shallow aquifer, deep 

aquifer, reach, pond, and ground water level 
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n2 = [0 1   1 
1   1   -0.75 
2   1   0.5625]; %matrix defining constants for three initial conditions% 
n3 = [0 1   1   1   0 
1   1   -0.3955 -0.4134 0.6253 
2   1   0.1564  -0.2201 -0.517 
3   1   -0.0619 0.4143  0.0762 
4   1   0.0245  -0.2189 0.2275]; %matrix defining constants for five initial 

conditions% 
n4 = [0 1   1   1   0   1   0 
1   1   -0.7436 -0.0593 0.7712  -0.2877 0.3891 
2   1   0.5529  -0.5913 -0.0914 -0.0686 -0.2239 
3   1   -0.4112 0.1056  -0.4506 0.1068  0.0377 
4   1   0.3057  0.3412  0.1081  -0.0454 0.0307 
5   1   -0.2274 -0.1036 0.2568  0.0011  -0.0265 
6   1   0.1691  -0.1919 -0.0951 0.01    0.0081]; %matrix defining constants 

for seven initial conditions% 

  
r2 = zeros(3,1); %matrices for three, five, and seven initial conditions of 

rainfall in mm% 
r3 = zeros(5,1); 
r4 = zeros(7,1); 

  
e2 = zeros(3,1); %matrices for three, five, and seven initial conditions of 

evaporation in m% 
e3 = zeros(5,1); 
e4 = zeros(7,1); 

  
p2 = zeros(3,1); %matrices for three, five, and seven initial conditions of 

population% 
p3 = zeros(5,1); 
p4 = zeros(7,1); 

  
c2 = zeros(3,1); %matrices for three, five, and seven initial conditions of 

crop water required in Kiloliters% 
c3 = zeros(5,1); 
c4 = zeros(7,1); 

  
in2 = zeros(3,1); %matrices for three, five, and seven initial conditions of 

river inflow in meter cube% 
in3 = zeros(5,1); 
in4 = zeros(7,1); 

  
o2 = zeros(3,1);  %matrices for three, five, and seven initial conditions of 

river outflow in meter cube% 
o3 = zeros(5,1); 
o4 = zeros(7,1); 

  
mcr = zeros(7,3); %matrices to store three, five, and seven coefficients 

derived for all input variables%  
mce = zeros(7,3); 
mcp = zeros(7,3); 
mcc = zeros(7,3); 
mcin = zeros(7,3); 
mco = zeros(7,3); 
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disp('For the historical input variables you do not want to include or do not 

have data put all the values as 0'); 

  
disp('enter seven consecutive data of rainfall in mm:'); 
for i=1:7 
    r(i,1)=input(num2str(i)); 
end  
for i=1:3 
    r2(i,1)=r(i,1); 
end  
for i=1:5 
    r3(i,1)=r(i,1); 
end  
for i=1:7 
    r4(i,1)=r(i,1); 
end  

  
disp('enter seven consecutive data of evaporation in meters:'); 
for i=1:7 
    e(i,1)=input(num2str(i)); 
end  
for i=1:3 
    e2(i,1)=e(i,1); 
end  
for i=1:5 
    e3(i,1)=e(i,1); 
end  
for i=1:7 
    e4(i,1)=e(i,1); 
end  

  
disp('enter seven consecutive data of population:'); 
for i=1:7 
    p(i,1)=input(num2str(i)); 
end  
for i=1:3 
    p2(i,1)=p(i,1); 
end  
for i=1:5 
    p3(i,1)=p(i,1); 
end  
for i=1:7 
    p4(i,1)=p(i,1); 
end  

  
disp('enter seven consecutive data of crop water in Kiloliters:'); 
for i=1:7 
    c(i,1)=input(num2str(i)); 
end  
for i=1:3 
    c2(i,1)=c(i,1); 
end  
for i=1:5 
    c3(i,1)=c(i,1); 
end  
for i=1:7 
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    c4(i,1)=c(i,1); 
end  

  
disp('enter seven consecutive data of reach inflow in meter cube:'); 
for i=1:7 
    in(i,1)=input(num2str(i)); 
end  
for i=1:3 
    in2(i,1)=in(i,1); 
end  
for i=1:5 
    in3(i,1)=in(i,1); 
end  
for i=1:7 
    in4(i,1)=in(i,1); 
end  

  
disp('enter seven consecutive data of reach outflow in meter cube:'); 
for i=1:7 
    o(i,1)=input(num2str(i)); 
end  
for i=1:3 
    o2(i,1)=o(i,1); 
end  
for i=1:5 
    o3(i,1)=o(i,1); 
end  
for i=1:7 
    o4(i,1)=o(i,1); 
end  

  
r2x = inv(n2)*r2; %deriving coefficients for rainfall% 
for i=1:3 
    mcr(i,1)=r2x(i,1); 
end  
r3x = inv(n3)*r3; 
for i=1:5 
    mcr(i,2)=r3x(i,1); 
end 
r4x = inv(n4)*r4; 
for i=1:7 
    mcr(i,3)=r4x(i,1); 
end 

  
e2x = inv(n2)*e2; %deriving coefficients for evaporation% 
for i=1:3 
    mce(i,1)=e2x(i,1); 
end  
e3x = inv(n3)*e3; 
for i=1:5 
    mce(i,2)=e3x(i,1); 
end 
e4x = inv(n4)*e4; 
for i=1:7 
    mce(i,3)=e4x(i,1); 
end 
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p2x = inv(n2)*p2; %deriving coefficients for population% 
for i=1:3 
    mcp(i,1)=p2x(i,1); 
end  
p3x = inv(n3)*p3; 
for i=1:5 
    mcp(i,2)=p3x(i,1); 
end 
p4x = inv(n4)*p4; 
for i=1:7 
    mcp(i,3)=p4x(i,1); 
end 

  
c2x = inv(n2)*c2; %deriving coefficients for crop water required% 
for i=1:3 
    mcc(i,1)=c2x(i,1); 
end  
c3x = inv(n3)*c3; 
for i=1:5 
    mcc(i,2)=c3x(i,1); 
end 
c4x = inv(n4)*c4; 
for i=1:7 
    mcc(i,3)=c4x(i,1); 
end 

  
in2x = inv(n2)*in2; %deriving coefficients for river inflow% 
for i=1:3 
    mcin(i,1)=in2x(i,1); 
end  
in3x = inv(n3)*in3; 
for i=1:5 
    mcin(i,2)=in3x(i,1); 
end 
in4x = inv(n4)*in4; 
for i=1:7 
    mcin(i,3)=in4x(i,1); 
end 

  
o2x = inv(n2)*o2;  %deriving coefficients for river outflow% 
for i=1:3 
    mco(i,1)=o2x(i,1); 
end  
o3x = inv(n3)*o3; 
for i=1:5 
    mco(i,2)=o3x(i,1); 
end 
o4x = inv(n4)*o4; 
for i=1:7 
    mco(i,3)=o4x(i,1); 
end 

  
%initial states of hydrological elements% 
SWi=input('Enter initial soil water in meter cube:'); 
SAi=input('Enter initial shallow aquifer volume in meter cube:'); 
DAi=input('Enter initial deep aquifer volume in meter cube:'); 
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WLi = input('Enter initial Ground Water level in meters:'); 
RSi=input('Enter initial reach storage volume in meter cube:'); 
PSi=input('Enter initial pond storage volume in meter cube:'); 

  
%Demographic variables 
A=input('Enter Total Area in meters square:'); 
WA=input('Enter Watershed/Catchment Area in meters square:'); 
RA=input('Enter Reach Area in meters square:'); 
VP=input('Enter volume of pond in meters cube:'); 
PA=input('Enter Pond Area in meters square:'); 
CN=input('Enter Curve Number for land use:'); 
FC=input('Enter Field Capacity of soil:'); 
Brevap=input('Enter revap coefficient:'); 
Bdeep=input('Enter deep aquifer percolation coefficient:'); 
dreach=input('Enter depth of reach in meters:'); 
Pch=input('Enter wetted parameter of reach in meters:'); 
Lch=input('Enter length of reach in Kilometers:'); 
K=input('Enter hydraulic conductivity of the aquifer in meters/year'); 
FrWA=input('Enter fraction of watershed area routing to pond:'); 
MSL=input('Enter Mean Sea Level of the region in meters:'); 
L=input('Enter distance from sub basin divide to reach in meters'); 

  
%Other variables 
WP =input('Enter water required per person per day in liters:'); 

  

  
t=input('Enter the number of time steps to predict water statistics'); 
SWtotal = zeros(t+1,729);SAVtotal = zeros(t+1,729);DAVtotal = 

zeros(t+1,729);WLtotal = zeros(t+1,729); RStotal = zeros(t+1,729);PStotal = 

zeros(t+1,729);i=1; %matrices to store soil water storage, shallow aquifer 

storage, deep aquifer storage, ground water level, reach storage, and pond 

storage for 729 combinations of input variables up to the time step t desired 

for prediction%  
a =0;b=0;c=0;d=0;e=0;f=0;                               

while i<=729                                            

 for a=0:2                                               

    for b=0: 

        for c=0:2 
            for d=0:2 
                for e=0:2 
                    for f=0:2 
                sim('m2'); %m2 is the simulink model developed to execute% 
                x1 = SW.Data; 
                x2 = SAV.Data; 
                x3 = DAV.Data; 
                x4 = WL.Data; 
                x5 = RS.Data; 
                x6 = PS.Data; 
                    for m=1:t+1 
                     SWtotal(m,i)= x1(m,1);  
                     SAVtotal(m,i)= x2(m,1);  
                     DAVtotal(m,i)= x3(m,1);  
                     WLtotal(m,i)= x4(m,1);  
                     RStotal(m,i)= x5(m,1);  
                     PStotal(m,i)= x6(m,1);  
                    end 
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                i=i+1; 
            end 
        end 
    end 
        end 
    end  
 end 
 end 
SWtotal; 
SAVtotal; 
DAVtotal; 
WLtotal; 
RStotal; 
PStotal; 
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Appendix C: 81 (3
4
) ground water level scenarios generated by the state variable hydrological model 

 
Year/Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

2007 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 

2009 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 

2010 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 

2011 61.63 61.46 61.46 61.63 61.46 61.46 61.63 61.46 61.46 61.61 61.44 61.44 61.61 61.44 61.44 61.61 61.44 61.44 61.61 61.44 61.44 61.61 61.44 61.44 

2012 63.04 62.56 62.56 63.04 62.56 62.56 63.04 62.56 62.56 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 

2013 64.65 63.79 63.65 64.65 63.79 63.65 64.65 63.79 63.65 64.59 63.73 63.60 64.59 63.73 63.60 64.59 63.73 63.60 64.63 63.77 63.64 64.63 63.77 63.64 

2014 66.34 65.00 64.80 66.34 65.00 64.80 66.34 65.00 64.80 66.25 64.91 64.71 66.25 64.91 64.71 66.25 64.91 64.71 66.33 64.99 64.79 66.33 64.99 64.79 

2015 68.21 66.22 65.97 68.21 66.22 65.97 68.21 66.22 65.97 68.08 66.09 65.84 68.08 66.09 65.84 68.08 66.09 65.84 68.20 66.21 65.96 68.20 66.21 65.96 

2016 70.18 67.48 67.09 70.18 67.48 67.09 70.18 67.48 67.09 70.01 67.31 66.92 70.00 67.31 66.92 70.01 67.31 66.92 70.18 67.49 67.10 70.18 67.48 67.10 

2017 72.30 68.76 68.23 72.30 68.76 68.23 72.30 68.76 68.23 72.08 68.54 68.01 72.08 68.54 68.01 72.08 68.54 68.01 72.33 68.79 68.26 72.33 68.79 68.25 

2018 74.55 70.06 69.39 74.55 70.06 69.39 74.55 70.06 69.39 74.27 69.78 69.11 74.27 69.78 69.11 74.27 69.78 69.11 74.59 70.10 69.43 74.59 70.10 69.43 

2019 76.94 71.39 70.55 76.94 71.39 70.55 76.94 71.39 70.55 76.59 71.04 70.21 76.59 71.04 70.21 76.59 71.04 70.21 77.00 71.45 70.62 77.00 71.45 70.62 

2020 79.45 72.73 71.71 79.45 72.73 71.71 79.45 72.73 71.71 79.04 72.32 71.29 79.04 72.32 71.29 79.04 72.32 71.29 79.54 72.83 71.80 79.54 72.83 71.80 

2021 82.11 74.10 72.87 82.11 74.10 72.87 82.11 74.10 72.87 81.62 73.61 72.38 81.61 73.61 72.38 81.62 73.61 72.38 82.23 74.23 73.00 82.23 74.23 73.00 

2022 84.89 75.49 74.04 84.89 75.49 74.04 84.89 75.49 74.04 84.32 74.92 73.47 84.32 74.92 73.47 84.32 74.92 73.47 85.05 75.66 74.21 85.05 75.66 74.21 

2023 87.81 76.91 75.22 87.81 76.91 75.22 87.81 76.91 75.22 87.15 76.25 74.56 87.15 76.24 74.56 87.15 76.25 74.56 88.01 77.11 75.42 88.01 77.11 75.42 

2024 90.86 78.35 76.39 90.86 78.34 76.39 90.86 78.35 76.39 90.10 77.59 75.64 90.10 77.59 75.63 90.10 77.59 75.64 91.11 78.59 76.64 91.11 78.59 76.64 

2025 94.05 79.81 77.58 94.05 79.81 77.58 94.05 79.81 77.58 93.19 78.95 76.72 93.19 78.95 76.72 93.19 78.95 76.72 94.35 80.10 77.87 94.34 80.10 77.87 

2026 97.37 81.29 78.77 97.37 81.29 78.77 97.37 81.29 78.77 96.40 80.32 77.80 96.40 80.32 77.80 96.40 80.32 77.80 97.72 81.64 79.11 97.72 81.64 79.11 

2027 100.83 82.80 79.96 100.83 82.80 79.96 100.83 82.80 79.96 99.74 81.71 78.88 99.74 81.71 78.88 99.74 81.71 78.88 101.23 83.20 80.36 101.23 83.20 80.36 

2028 104.41 84.33 81.16 104.41 84.33 81.16 104.42 84.33 81.16 103.21 83.12 79.95 103.21 83.12 79.95 103.21 83.12 79.95 104.87 84.79 81.62 104.87 84.79 81.62 

2029 108.14 85.88 82.36 108.14 85.88 82.36 108.14 85.88 82.36 106.80 84.55 81.03 106.80 84.55 81.03 106.80 84.55 81.03 108.66 86.40 82.89 108.66 86.40 82.88 

2030 111.99 87.46 83.57 111.99 87.46 83.57 111.99 87.46 83.57 110.52 85.99 82.10 110.52 85.99 82.10 110.52 85.99 82.10 112.58 88.05 84.16 112.58 88.05 84.16 

 
Year/Scenario 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

2007 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 

2009 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 

2010 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 

2011 61.61 61.44 61.44 61.62 61.44 61.44 61.62 61.44 61.44 61.62 61.44 61.44 61.60 61.43 61.43 61.60 61.43 61.43 61.60 61.43 61.43 61.60 61.43 61.43 

2012 63.00 62.53 62.53 63.04 62.56 62.56 63.04 62.56 62.56 63.04 62.56 62.56 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 

2013 64.63 63.77 63.64 64.64 63.78 63.65 64.64 63.78 63.65 64.64 63.78 63.65 64.58 63.72 63.59 64.58 63.72 63.59 64.58 63.72 63.59 64.62 63.76 63.63 

2014 66.33 64.99 64.79 66.34 64.99 64.80 66.34 64.99 64.80 66.34 64.99 64.80 66.25 64.90 64.71 66.25 64.90 64.71 66.25 64.90 64.71 66.33 64.98 64.79 

2015 68.20 66.21 65.96 68.21 66.22 65.97 68.21 66.22 65.97 68.21 66.22 65.97 68.08 66.09 65.84 68.08 66.09 65.84 68.08 66.09 65.84 68.20 66.21 65.96 

2016 70.18 67.49 67.10 70.18 67.49 67.10 70.18 67.49 67.10 70.18 67.49 67.10 70.01 67.32 66.93 70.01 67.32 66.93 70.01 67.32 66.93 70.19 67.49 67.10 

2017 72.33 68.79 68.26 72.32 68.78 68.24 72.32 68.78 68.24 72.32 68.78 68.24 72.09 68.55 68.02 72.09 68.55 68.02 72.09 68.55 68.02 72.34 68.80 68.27 

2018 74.59 70.10 69.44 74.57 70.08 69.42 74.57 70.08 69.42 74.57 70.08 69.42 74.29 69.80 69.14 74.29 69.80 69.14 74.30 69.80 69.14 74.62 70.13 69.46 

2019 77.00 71.45 70.62 76.98 71.43 70.60 76.98 71.43 70.59 76.98 71.43 70.60 76.63 71.08 70.25 76.63 71.08 70.25 76.63 71.08 70.25 77.04 71.49 70.66 

2020 79.55 72.83 71.80 79.51 72.79 71.77 79.51 72.79 71.77 79.51 72.79 71.77 79.10 72.38 71.35 79.10 72.38 71.35 79.10 72.38 71.35 79.61 72.89 71.86 

2021 82.23 74.23 73.00 82.19 74.19 72.96 82.19 74.19 72.96 82.19 74.19 72.96 81.70 73.70 72.47 81.70 73.70 72.47 81.70 73.70 72.47 82.32 74.31 73.09 

2022 85.05 75.66 74.21 85.01 75.61 74.16 85.01 75.61 74.16 85.01 75.61 74.16 84.43 75.04 73.59 84.43 75.04 73.59 84.43 75.04 73.59 85.17 75.78 74.32 

2023 88.01 77.11 75.42 87.97 77.07 75.38 87.97 77.07 75.38 87.97 77.07 75.38 87.31 76.41 74.72 87.31 76.40 74.71 87.31 76.41 74.72 88.17 77.27 75.58 

2024 91.11 78.59 76.64 91.08 78.56 76.61 91.08 78.56 76.61 91.08 78.56 76.61 90.32 77.80 75.85 90.32 77.80 75.85 90.32 77.80 75.85 91.32 78.81 76.86 

2025 94.35 80.10 77.87 94.34 80.09 77.86 94.33 80.09 77.86 94.34 80.09 77.86 93.47 79.23 77.00 93.47 79.23 77.00 93.47 79.23 77.00 94.63 80.39 78.16 

2026 97.72 81.64 79.11 97.75 81.67 79.15 97.75 81.67 79.15 97.75 81.67 79.15 96.78 80.70 78.18 96.78 80.70 78.18 96.78 80.70 78.18 98.10 82.02 79.49 

2027 101.23 83.20 80.36 101.35 83.32 80.48 101.34 83.32 80.48 101.35 83.32 80.48 100.26 82.23 79.40 100.26 82.23 79.39 100.26 82.23 79.40 101.75 83.72 80.88 

2028 104.87 84.79 81.62 105.14 85.05 81.88 105.14 85.05 81.88 105.14 85.05 81.88 103.93 83.85 80.68 103.93 83.84 80.67 103.93 83.85 80.68 105.60 85.51 82.34 

2029 108.66 86.41 82.89 109.24 86.98 83.46 109.23 86.98 83.46 109.24 86.98 83.46 107.90 85.65 82.13 107.90 85.64 82.13 107.90 85.65 82.13 109.76 87.50 83.98 

2030 112.58 88.05 84.16 114.26 89.73 85.84 114.26 89.73 85.84 114.26 89.73 85.84 112.79 88.26 84.37 112.79 88.26 84.37 112.79 88.26 84.37 114.85 90.32 86.43 
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Year/Scenario 49 50 51 W(52) 53 54 55 56 57 58 59 60 61 62 63 64 65 66 U(67) 68 B(69) 70 71 72 

2007 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 

2009 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 

2010 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 

2011 61.60 61.43 61.43 61.60 61.43 61.43 61.62 61.44 61.44 61.62 61.44 61.44 61.62 61.44 61.44 61.60 61.43 61.43 61.60 61.43 61.43 61.60 61.43 61.43 

2012 63.00 62.53 62.53 63.00 62.53 62.53 63.04 62.56 62.56 63.04 62.56 62.56 63.04 62.56 62.56 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 

2013 64.62 63.76 63.63 64.62 63.76 63.63 64.64 63.78 63.64 64.64 63.78 63.64 64.64 63.78 63.64 64.58 63.72 63.59 64.58 63.72 63.59 64.58 63.72 63.59 

2014 66.33 64.98 64.79 66.33 64.98 64.79 66.33 64.98 64.79 66.33 64.98 64.79 66.33 64.98 64.79 66.24 64.89 64.70 66.24 64.89 64.70 66.24 64.89 64.70 

2015 68.20 66.21 65.96 68.20 66.21 65.96 68.19 66.20 65.95 68.19 66.20 65.95 68.19 66.20 65.95 68.06 66.07 65.82 68.06 66.07 65.82 68.06 66.07 65.82 

2016 70.19 67.49 67.10 70.19 67.49 67.10 70.16 67.46 67.07 70.16 67.46 67.07 70.16 67.46 67.07 69.99 67.29 66.90 69.99 67.29 66.90 69.99 67.29 66.90 

2017 72.34 68.80 68.27 72.34 68.80 68.27 72.27 68.73 68.20 72.27 68.73 68.20 72.27 68.74 68.20 72.05 68.51 67.98 72.05 68.51 67.98 72.05 68.51 67.98 

2018 74.62 70.13 69.46 74.62 70.13 69.46 74.51 70.02 69.36 74.51 70.02 69.36 74.51 70.02 69.36 74.23 69.74 69.08 74.23 69.74 69.08 74.23 69.74 69.08 

2019 77.04 71.49 70.66 77.04 71.49 70.66 76.90 71.35 70.51 76.90 71.35 70.51 76.90 71.35 70.52 76.55 71.00 70.17 76.55 71.00 70.17 76.55 71.00 70.17 

2020 79.61 72.89 71.86 79.61 72.89 71.86 79.41 72.69 71.66 79.40 72.69 71.66 79.41 72.69 71.66 78.99 72.27 71.25 78.99 72.27 71.25 78.99 72.27 71.25 

2021 82.32 74.31 73.08 82.32 74.32 73.09 82.05 74.05 72.82 82.05 74.04 72.82 82.05 74.05 72.82 81.56 73.56 72.33 81.56 73.55 72.32 81.56 73.56 72.33 

2022 85.17 75.78 74.32 85.17 75.78 74.33 84.83 75.43 73.98 84.83 75.43 73.98 84.83 75.43 73.98 84.25 74.86 73.41 84.25 74.86 73.41 84.25 74.86 73.41 

2023 88.17 77.27 75.58 88.17 77.27 75.58 87.74 76.84 75.15 87.74 76.84 75.15 87.74 76.84 75.15 87.08 76.17 74.48 87.08 76.17 74.48 87.08 76.17 74.49 

2024 91.32 78.81 76.86 91.33 78.81 76.86 90.78 78.26 76.31 90.78 78.26 76.31 90.78 78.27 76.31 90.02 77.51 75.55 90.02 77.50 75.55 90.02 77.51 75.56 

2025 94.63 80.39 78.16 94.63 80.39 78.16 93.96 79.72 77.49 93.96 79.71 77.48 93.96 79.72 77.49 93.10 78.85 76.62 93.10 78.85 76.62 93.10 78.85 76.63 

2026 98.10 82.02 79.49 98.10 82.02 79.50 97.27 81.19 78.66 97.27 81.19 78.66 97.27 81.19 78.66 96.30 80.22 77.69 96.30 80.22 77.69 96.30 80.22 77.69 

2027 101.74 83.72 80.88 101.75 83.72 80.88 100.71 82.68 79.84 100.71 82.68 79.84 100.71 82.68 79.85 99.62 81.60 78.76 99.62 81.59 78.76 99.62 81.60 78.76 

2028 105.60 85.51 82.34 105.60 85.51 82.34 104.28 84.20 81.03 104.28 84.20 81.03 104.28 84.20 81.03 103.08 82.99 79.82 103.07 82.99 79.82 103.08 82.99 79.82 

2029 109.76 87.50 83.98 109.76 87.50 83.99 107.99 85.74 82.22 107.99 85.73 82.22 107.99 85.74 82.22 106.65 84.40 80.88 106.65 84.40 80.88 106.66 84.40 80.88 

2030 114.85 90.31 86.43 114.85 90.32 86.43 111.83 87.30 83.41 111.83 87.29 83.41 111.83 87.30 83.41 110.36 85.83 81.94 110.36 85.82 81.94 110.36 85.83 81.94 

W(52): Worst case scenario; U(67): Business as usual scenario; B(69): Best case scenario 

 
Year/Scenario 73 74 75 76 77 78 79 80 81 

2007 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 

2008 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 

2009 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 59.15 

2010 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 60.26 

2011 61.60 61.43 61.43 61.60 61.43 61.43 61.60 61.43 61.43 

2012 63.00 62.53 62.53 63.00 62.53 62.53 63.00 62.53 62.53 

2013 64.62 63.76 63.63 64.62 63.76 63.63 64.62 63.76 63.63 

2014 66.32 64.97 64.78 66.32 64.97 64.78 66.32 64.97 64.78 

2015 68.18 66.19 65.94 68.18 66.19 65.94 68.18 66.19 65.94 

2016 70.16 67.47 67.08 70.16 67.47 67.08 70.16 67.47 67.08 

2017 72.30 68.76 68.23 72.30 68.76 68.23 72.30 68.76 68.23 

2018 74.56 70.07 69.40 74.56 70.07 69.40 74.56 70.07 69.40 

2019 76.96 71.41 70.58 76.96 71.41 70.58 76.96 71.41 70.58 

2020 79.50 72.78 71.76 79.50 72.78 71.76 79.50 72.78 71.76 

2021 82.18 74.17 72.94 82.18 74.17 72.94 82.18 74.17 72.94 

2022 84.99 75.60 74.14 84.99 75.59 74.14 84.99 75.60 74.14 

2023 87.94 77.04 75.35 87.94 77.04 75.35 87.94 77.04 75.35 

2024 91.03 78.51 76.56 91.03 78.51 76.56 91.03 78.51 76.56 

2025 94.25 80.01 77.78 94.25 80.01 77.78 94.25 80.01 77.78 

2026 97.61 81.53 79.01 97.61 81.53 79.01 97.61 81.53 79.01 

2027 101.11 83.08 80.24 101.11 83.08 80.24 101.11 83.08 80.25 

2028 104.74 84.66 81.49 104.74 84.66 81.49 104.74 84.66 81.49 

2029 108.51 86.26 82.74 108.51 86.26 82.74 108.51 86.26 82.74 

2030 112.42 87.88 84.00 112.42 87.88 84.00 112.42 87.89 84.00 

 

 



143 

 

Appendix D: Python codes and flowcharts for the generation of hydrological scenarios in 

ArcGIS 

 

D.1. Flowchart and Python code for deriving future ground water level in GIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. Flowchart for deriving future ground water level in GIS 
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import arcpy 
import numpy 
import math 
 
class Toolbox(object): 
    def __init__(self): 
        """Define the toolbox (the name of the toolbox is the name of the 
        .pyt file).""" 
        self.label = "Future Water Level" 
        self.alias = "Forecast" 
 
        # List of tool classes associated with this toolbox 
        self.tools = [FutureWaterLevel] 
 
 
class FutureWaterLevel(object): 
    def __init__(self): 
        """Define the tool (tool name is the name of the class).""" 
        self.label = "Future Water Level" 
        self.description = "" 
        self.canRunInBackground = True 
 
    def getParameterInfo(self): 
#First rainfall parameter 
        in_rasterr1 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 1", 
 name = "in_rasterr1", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Second rainfall parameter 
        in_rasterr2 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 2", 
 name = "in_rasterr2", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Third rainfall parameter 
        in_rasterr3 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 3", 
 name = "in_rasterr3", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fourth rainfall parameter 
        in_rasterr4 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 4", 
 name = "in_rasterr4", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fifth rainfall parameter 
        in_rasterr5 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 5", 
 name = "in_rasterr5", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Sixth rainfall parameter 
        in_rasterr6 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 6", 
 name = "in_rasterr6", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Seventh rainfall parameter 
        in_rasterr7 = arcpy.Parameter( 
 displayName = "Input Rainfall Raster 7", 
 name = "in_rasterr7", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#First evaporation parameter 
        in_rastere1 = arcpy.Parameter( 
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 displayName = "Input Evaporation Raster 1", 
 name = "in_rastere1", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Second evaporation parameter 
        in_rastere2 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 2", 
 name = "in_rastere2", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Third evaporation parameter 
        in_rastere3 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 3", 
 name = "in_rastere3", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fourth evaporation parameter 
        in_rastere4 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 4", 
 name = "in_rastere4", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fifth evaporation parameter 
        in_rastere5 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 5", 
 name = "in_rastere5", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Sixth evaporation parameter 
        in_rastere6 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 6", 
 name = "in_rastere6", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Seventh evaporation parameter 
        in_rastere7 = arcpy.Parameter( 
 displayName = "Input Evaporation Raster 7", 
 name = "in_rastere7", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#First ground water draft parameter 
        in_rasterd1 = arcpy.Parameter( 
 displayName = "Input draft Raster 1", 
 name = "in_rasterd1", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Second ground water draft parameter 
        in_rasterd2 = arcpy.Parameter( 
 displayName = "Input draft Raster 2", 
 name = "in_rasterd2", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Third ground water draft parameter 
        in_rasterd3 = arcpy.Parameter( 
 displayName = "Input draft Raster 3", 
 name = "in_rasterd3", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fourth ground water draft parameter 
        in_rasterd4 = arcpy.Parameter( 
 displayName = "Input draft Raster 4", 
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 name = "in_rasterd4", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
#Fifth ground water draft parameter 
        in_rasterd5 = arcpy.Parameter( 
 displayName = "Input draft Raster 5", 
 name = "in_rasterd5", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Sixth ground water draft parameter 
        in_rasterd6 = arcpy.Parameter( 
 displayName = "Input draft Raster 6", 
 name = "in_rasterd6", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Seventh ground water draft parameter 
        in_rasterd7 = arcpy.Parameter( 
 displayName = "Input draft Raster 7", 
 name = "in_rasterd7", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Aquifer hydraulic conductivity parameter 
        in_rasteraq = arcpy.Parameter( 
 displayName = "Input aquifer raster", 
 name = "in_rasteraq", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Curve Number parameter 
        in_rastercn = arcpy.Parameter( 
 displayName = "Input Curve Number Raster", 
 name = "in_rastercn", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Reach distance parameter 
        in_rasterdist = arcpy.Parameter( 
 displayName = "Input Reach distance Raster", 
 name = "in_rasterdist", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Ground water level parameter 
        in_rastergwl = arcpy.Parameter( 
 displayName = "Input Ground water level Raster", 
 name = "in_rastergwl", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Digital Elevation parameter 
        in_rasterdem = arcpy.Parameter( 
 displayName = "Input Source DEM Raster", 
 name = "in_rasterdem", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Time step to forecast parameter 
        in_timestep = arcpy.Parameter( 
 displayName = "Input Time Step", 
 name = "in_timestep", 
 datatype = "long", 
 parameterType = "Required", 
 direction = "Input") 
 
#Output ground water level at the desired time step  
 out_raster = arcpy.Parameter( 
 displayName = "Output Raster", 
 name = "out_raster", 
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 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Output") 
  
#Define a list of parameters to be referred further   
 params = [in_rasterr1, in_rasterr2, in_rasterr3, in_rasterr4, in_rasterr5, 

in_rasterr6, in_rasterr7, in_rastere1, in_rastere2, in_rastere3, in_rastere4, 
in_rastere5, in_rastere6, in_rastere7, in_rasterd1, in_rasterd2, in_rasterd3, 
in_rasterd4, in_rasterd5, in_rasterd6, in_rasterd7, in_rasteraq, in_rastercn, 
in_rasterdist, in_rastergwl, in_rasterdem, in_timestep, out_raster] 

     return params 
 
    def isLicensed(self): 
        """Set whether tool is licensed to execute.""" 
        return True 
 
    def updateParameters(self, parameters): 
        """Modify the values and properties of parameters before internal 
        validation is performed.  This method is called whenever a parameter 
        has been changed.""" 
        return 
 
    def updateMessages(self, parameters): 
        """Modify the messages created by internal validation for each tool 
        parameter.  This method is called after internal validation.""" 
        return 
 
    def execute(self, parameters, messages): 
  
#Input the rainfall interpolated maps for seven consecutive historical years 
 in_rasterr1=parameters[0].ValueAsText 
 in_rasterr2=parameters[1].ValueAsText 
 in_rasterr3=parameters[2].ValueAsText 
 in_rasterr4=parameters[3].ValueAsText 
 in_rasterr5=parameters[4].ValueAsText 
 in_rasterr6=parameters[5].ValueAsText 
 in_rasterr7=parameters[6].ValueAsText 
 
#Input the evaporation interpolated maps for seven consecutive historical years 
 in_rastere1=parameters[7].ValueAsText 
 in_rastere2=parameters[8].ValueAsText 
 in_rastere3=parameters[9].ValueAsText 
 in_rastere4=parameters[10].ValueAsText 
 in_rastere5=parameters[11].ValueAsText 
 in_rastere6=parameters[12].ValueAsText 
 in_rastere7=parameters[13].ValueAsText 
 
#Input the ground water draft interpolated maps for seven consecutive historical years 
 in_rasterd1=parameters[14].ValueAsText 
 in_rasterd2=parameters[15].ValueAsText 
 in_rasterd3=parameters[16].ValueAsText 
 in_rasterd4=parameters[17].ValueAsText 
 in_rasterd5=parameters[18].ValueAsText 
 in_rasterd6=parameters[19].ValueAsText 
 in_rasterd7=parameters[20].ValueAsText 
 
#Input the maps for aquifer conductivity, curve number, reach distance, initial ground water 
level, and digital elevation for the region under study 
 in_rasteraq=parameters[21].ValueAsText 
 in_rastercn=parameters[22].ValueAsText 
 in_rasterdist=parameters[23].ValueAsText 
 in_rastergwl=parameters[24].ValueAsText 
 in_rasterdem=parameters[25].ValueAsText 
 
#Input the time step after initial time step to forecast the ground water level map 
 in_timestep=int(parameters[26].ValueAsText) 
 T = in_timestep 
 
#Output raster of ground water level at the time step desired 
 out_raster = parameters[27].ValueAsText 
 
#Assigning raster maps of rainfall to the variables to be converted into two dimensional arrays 
 inRasr1 = arcpy.Raster(in_rasterr1) 
 inRasr2 = arcpy.Raster(in_rasterr2) 
 inRasr3 = arcpy.Raster(in_rasterr3) 
 inRasr4 = arcpy.Raster(in_rasterr4) 
 inRasr5 = arcpy.Raster(in_rasterr5) 
 inRasr6 = arcpy.Raster(in_rasterr6) 
 inRasr7 = arcpy.Raster(in_rasterr7) 
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#Assigning raster maps of evaporation to the variables to be converted into two dimensional 
arrays 
 inRase1 = arcpy.Raster(in_rastere1) 
 inRase2 = arcpy.Raster(in_rastere2) 
 inRase3 = arcpy.Raster(in_rastere3) 
 inRase4 = arcpy.Raster(in_rastere4) 
 inRase5 = arcpy.Raster(in_rastere5) 
 inRase6 = arcpy.Raster(in_rastere6) 
 inRase7 = arcpy.Raster(in_rastere7) 
 
#Assigning raster maps of ground water draft to the variables to be converted into two 
dimensional arrays 
 inRasd1 = arcpy.Raster(in_rasterd1) 
 inRasd2 = arcpy.Raster(in_rasterd2) 
 inRasd3 = arcpy.Raster(in_rasterd3) 
 inRasd4 = arcpy.Raster(in_rasterd4) 
 inRasd5 = arcpy.Raster(in_rasterd5) 
 inRasd6 = arcpy.Raster(in_rasterd6) 
 inRasd7 = arcpy.Raster(in_rasterd7) 
 
#Assigning raster maps of aquifer coductivity, curve number, reach distance, initial ground water 
level, and digital elevation to the variables to be converted into their respective two 
dimensional arrays 
 inRasaq = arcpy.Raster(in_rasteraq) 
 inRascn = arcpy.Raster(in_rastercn) 
 inRasdist = arcpy.Raster(in_rasterdist) 
 inRasgwl = arcpy.Raster(in_rastergwl) 
 inRasdem = arcpy.Raster(in_rasterdem) 
 
#Defining the spatial reference of the execution system to generate output within the defined 
extent 
 dsc = arcpy.Describe(inRase1) 
 sr = dsc.SpatialReference 
 ext = dsc.Extent 
 ll = arcpy.Point(ext.XMin,ext.YMin) 
 cellSize = inRase1.meanCellWidth 
 
#Conversion of input rainfall maps into two dimensional arrays 
 arrr1 = arcpy.RasterToNumPyArray(inRasr1,nodata_to_value=0) 
 arrr2 = arcpy.RasterToNumPyArray(inRasr2,nodata_to_value=0) 
 arrr3 = arcpy.RasterToNumPyArray(inRasr3,nodata_to_value=0) 
 arrr4 = arcpy.RasterToNumPyArray(inRasr4,nodata_to_value=0) 
 arrr5 = arcpy.RasterToNumPyArray(inRasr5,nodata_to_value=0) 
 arrr6 = arcpy.RasterToNumPyArray(inRasr6,nodata_to_value=0) 
 arrr7 = arcpy.RasterToNumPyArray(inRasr7,nodata_to_value=0) 
 
#Conversion of input evaporation maps into two dimensional arrays 
 arre1 = arcpy.RasterToNumPyArray(inRase1,nodata_to_value=0) 
 arre2 = arcpy.RasterToNumPyArray(inRase2,nodata_to_value=0) 
 arre3 = arcpy.RasterToNumPyArray(inRase3,nodata_to_value=0) 
 arre4 = arcpy.RasterToNumPyArray(inRase4,nodata_to_value=0) 
 arre5 = arcpy.RasterToNumPyArray(inRase5,nodata_to_value=0) 
 arre6 = arcpy.RasterToNumPyArray(inRase6,nodata_to_value=0) 
 arre7 = arcpy.RasterToNumPyArray(inRase7,nodata_to_value=0) 
 
#Conversion of input ground water draft maps into two dimensional arrays 
 arrd1 = arcpy.RasterToNumPyArray(inRasd1,nodata_to_value=0) 
 arrd2 = arcpy.RasterToNumPyArray(inRasd2,nodata_to_value=0) 
 arrd3 = arcpy.RasterToNumPyArray(inRasd3,nodata_to_value=0) 
 arrd4 = arcpy.RasterToNumPyArray(inRasd4,nodata_to_value=0) 
 arrd5 = arcpy.RasterToNumPyArray(inRasd5,nodata_to_value=0) 
 arrd6 = arcpy.RasterToNumPyArray(inRasd6,nodata_to_value=0) 
 arrd7 = arcpy.RasterToNumPyArray(inRasd7,nodata_to_value=0) 
 
#Conversion of input raster maps of aquifer coductivity, curve number, reach distance, initial 
ground water level, and digital elevation into their respective two dimensional arrays 
 arraq = arcpy.RasterToNumPyArray(inRasaq,nodata_to_value=0) 
 arrcn = arcpy.RasterToNumPyArray(inRascn,nodata_to_value=0) 
 arrdist = arcpy.RasterToNumPyArray(inRasdist,nodata_to_value=0) 
 arrgwl = arcpy.RasterToNumPyArray(inRasgwl,nodata_to_value=0) 
 arrdem = arcpy.RasterToNumPyArray(inRasdem,nodata_to_value=0) 
 
#Matrix defining constants for seven initial conditions 
 a = numpy.matrix([[0.0,1.0,1.0,1.0,0.0,1.0,0.0],[1.0,1.0,-0.7436,-0.0593,0.7712,-

0.2877,0.3891],[2.0,1.0,0.5529,-0.5913,-0.0914,-0.0686,-0.2239],[3.0,1.0,-
0.4112,0.1056,-0.4506,0.1068,0.0377],[4.0,1.0,0.3057,0.3412,0.1081,-
0.0454,0.0307],[5.0,1.0,-0.2274,-0.1036,0.2568,0.0011,-0.0265],[6.0,1.0,0.1691,-
0.1919,-0.0951,0.01,0.0081]]) 

 
#Calculate inverse of Matrix a  
               ainv = numpy.linalg.inv(a) 
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#Matrices to store seven initial conditions of rainfall, evaporation and groundwater draft one 
pixel at a time  
 xr = numpy.zeros((7,1)) 
 xe = numpy.zeros((7,1)) 
 xd = numpy.zeros((7,1)) 
 
#Count the number of bands, rows, and columns to be executed   
 l = arcpy.GetRasterProperties_management(in_rasterd1,"BANDCOUNT") 
 m = arcpy.GetRasterProperties_management(in_rasterd1,"ROWCOUNT") 
 n = arcpy.GetRasterProperties_management(in_rasterd1,"COLUMNCOUNT") 
  
 b = int(l.getOutput(0)) 
 r = int(m.getOutput(0)) 
 c = int(n.getOutput(0)) 
  
#Execute the loop number of times equal to the desired time step    
 for t in range (1,T+1): 
 
#Define empty matrices to store the forecasted values of rainfall, evaporation, ground water 
draft at a time step t 
  arrtr = numpy.zeros((r,c)) 
  arrte = numpy.zeros((r,c)) 
  arrtd = numpy.zeros((r,c)) 
 
#Define empty matrices to store the forecasted rainfall dependent surface runoff and forecasted 
ground water level dependent ground water flow at a time step t 
  surro = numpy.zeros((r,c)) 
  gwflow = numpy.zeros((r,c)) 
 
#Forecast the rainfall at every pixel for the time step t 
  for j in range (0,r-1): 
   for k in range (0,c-1): 
    xr[0][0]=arrr1[j][k] 
    xr[1][0]=arrr2[j][k] 
    xr[2][0]=arrr3[j][k] 
    xr[3][0]=arrr4[j][k] 
    xr[4][0]=arrr5[j][k] 
    xr[5][0]=arrr6[j][k] 
    xr[6][0]=arrr7[j][k] 
    yr = ainv*xr 
    arrtr[j][k]=(yr[0][0]*t+yr[1][0])*1**t+yr[2][0]*(-

0.7436)**t+(0.7735)**t*(yr[3][0]*math.cos(1.6475*t)+yr[4][0]*math.sin(1.6475*t))+(
0.4839)**t*(yr[5][0]*math.cos(2.2075*t)+yr[6][0]*math.sin(2.2075*t)) 

 
#Forecast the evaporation at every pixel for the time step t   
    xe[0][0]=arre1[j][k] 
    xe[1][0]=arre2[j][k] 
    xe[2][0]=arre3[j][k] 
    xe[3][0]=arre4[j][k] 
    xe[4][0]=arre5[j][k] 
    xe[5][0]=arre6[j][k] 
    xe[6][0]=arre7[j][k] 
    ye = ainv*xe 
    arrte[j][k]=(ye[0][0]*t+ye[1][0])*1**t+ye[2][0]*(-

0.7436)**t+(0.7735)**t*(ye[3][0]*math.cos(1.6475*t)+ye[4][0]*math.sin(1.6475*t))+(
0.4839)**t*(ye[5][0]*math.cos(2.2075*t)+ye[6][0]*math.sin(2.2075*t)) 

 
#Forecast the ground water draft at every pixel for the time step t 
    xd[0][0]=arrd1[j][k] 
    xd[1][0]=arrd2[j][k] 
    xd[2][0]=arrd3[j][k] 
    xd[3][0]=arrd4[j][k] 
    xd[4][0]=arrd5[j][k] 
    xd[5][0]=arrd6[j][k] 
    xd[6][0]=arrd7[j][k] 
    yd = ainv*xd 
    arrtd[j][k]=(yd[0][0]*t+yd[1][0])*1**t+yd[2][0]*(-

0.7436)**t+(0.7735)**t*(yd[3][0]*math.cos(1.6475*t)+yd[4][0]*math.sin(1.6475*t))+(
0.4839)**t*(yd[5][0]*math.cos(2.2075*t)+yd[6][0]*math.sin(2.2075*t)) 

 
#Calculate surface runoff and ground water flow at every pixel for the time step t 
    s = 25.4*((1000.0/arrcn[j][k])-10) 
    surro[j][k]= ((arrtr[j][k]-0.2*s)**2)/(arrtr[j][k]+0.8*s) 
    if arrdist[j][k]==0: 
     gwflow[j][k] = 0 
    else: 
     gwflow[j][k] = 

((arraq[j][k]*8000)/(arrdist[j][k]**2))*(arrdem[j][k]-arrgwl[j][k]) 
 
#Calculate the ground water level at every pixel for the time step t 
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    arrgwl[j][k] = arrgwl[j][k]-(((((arrtr[j][k]-arrte[j][k]-
surro[j][k]-gwflow[j][k])/1000)*848)-arrtd[j][k])/848) 

#Close the loop 
#Convert ground water level array to raster and get the ground water level map at time step t 
 outras = arcpy.NumPyArrayToRaster(arrgwl,ll,cellSize,value_to_nodata=0) 
 arcpy.DefineProjection_management(outras,sr) 
 outras.save(out_raster) 
  
 return  

 

D.2. Flowchart and Python code for deriving water level decline per year in GIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2. Flowchart for deriving ground water level decline per year in GIS 

 
 
import arcpy 
import numpy 
import math 
 
class Toolbox(object): 
    def __init__(self): 
        """Define the toolbox (the name of the toolbox is the name of the 
        .pyt file).""" 
        self.label = "Water Level Gradient" 
        self.alias = "Grad" 
 
        # List of tool classes associated with this toolbox 
        self.tools = [WLGradient] 
 
 
class WLGradient(object): 
    def __init__(self): 
        """Define the tool (tool name is the name of the class).""" 
        self.label = "Water level Gradient" 
        self.description = "" 
        self.canRunInBackground = True 
 
    def getParameterInfo(self): 
#First gwl parameter 
        in_rasterg1 = arcpy.Parameter( 
 displayName = "Input First Ground water level Raster", 
 name = "in_rasterg1", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Second gwl parameter 
        in_rasterg2 = arcpy.Parameter( 
 displayName = "Input Second Ground water level Raster", 
 name = "in_rasterg2", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Time interval parameter 

Input ground water level map at first time step 

Input ground water level map at last time step 

Input interval between first and last time step 

output ground water level decline per time step 

map  
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        in_timeint = arcpy.Parameter( 
 displayName = "Input Time Interval", 
 name = "in_timeint", 
 datatype = "long", 
 parameterType = "Required", 
 direction = "Input") 
  
#Output ground water decline per time step 
 out_raster = arcpy.Parameter( 
 displayName = "Output Raster", 
 name = "out_raster", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Output") 
 
#Define a list of parameters to be referred further   
 params = [in_rasterg1, in_rasterg2, in_timeint, out_raster] 
     return params 
 
    def isLicensed(self): 
        """Set whether tool is licensed to execute.""" 
        return True 
 
    def updateParameters(self, parameters): 
        """Modify the values and properties of parameters before internal 
        validation is performed.  This method is called whenever a parameter 
        has been changed.""" 
        return 
 
    def updateMessages(self, parameters): 
        """Modify the messages created by internal validation for each tool 
        parameter.  This method is called after internal validation.""" 
        return 
 
    def execute(self, parameters, messages): 
 
#Input the initial and final observed ground water level interpolated maps  
  in_rasterg1=parameters[0].ValueAsText 
 in_rasterg2=parameters[1].ValueAsText 
 
#Input the time interval between initial and final observed ground water level interpolated maps  
 in_timeint=int(parameters[2].ValueAsText) 
 T=in_timeint 
 out_raster = parameters[3].ValueAsText 
 
#Assigning raster maps of initial and final observed ground water level to the variables to be 
converted into two dimensional arrays 
 inRasg1 = arcpy.Raster(in_rasterg1) 
 inRasg2 = arcpy.Raster(in_rasterg2) 
 
#Defining the spatial reference of the execution system to generate output within the defined 
extent 
 dsc = arcpy.Describe(inRasg1) 
 sr = dsc.SpatialReference 
 ext = dsc.Extent 
 ll = arcpy.Point(ext.XMin,ext.YMin) 
 cellSize = inRasg1.meanCellWidth 
 
#Conversion of input ground water level maps into two dimensional arrays 
 arrg1 = arcpy.RasterToNumPyArray(inRasg1,nodata_to_value=0) 
 arrg2 = arcpy.RasterToNumPyArray(inRasg2,nodata_to_value=0) 
  
#Count the number of bands, rows, and columns to be executed   
 l = arcpy.GetRasterProperties_management(in_rasterg1,"BANDCOUNT") 
 m = arcpy.GetRasterProperties_management(in_rasterg1,"ROWCOUNT") 
 n = arcpy.GetRasterProperties_management(in_rasterg1,"COLUMNCOUNT") 
  
 b = int(l.getOutput(0)) 
 r = int(m.getOutput(0)) 
 c = int(n.getOutput(0)) 
 
#Define empty matrices to store the calculated value of ground water fall per unit time 
 gwlgrad =numpy.zeros((r,c)) 
   
#Calculate ground water level decline per unit time at every pixel 
 for j in range (0,r-1): 
  for k in range (0,c-1): 
   gwlgrad[j][k] = (arrg2[j][k]-arrg1[j][k])/T 
  
#Convert ground water level gradient array to raster and get the ground water gradient map 
 outras = arcpy.NumPyArrayToRaster(gwlgrad,ll,cellSize,value_to_nodata=0) 
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 arcpy.DefineProjection_management(outras,sr) 
 outras.save(out_raster) 
  
 return  

 

D.3. Flowchart and Python code for deriving annual ground water draft in GIS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.3. Flowchart for deriving annual ground water draft in GIS 

 
 
import arcpy 
import numpy 
import math 
 
class Toolbox(object): 
    def __init__(self): 
        """Define the toolbox (the name of the toolbox is the name of the 
        .pyt file).""" 
        self.label = "Annual Draft" 
        self.alias = "Draft" 
 
        # List of tool classes associated with this toolbox 
        self.tools = [AnnualDraft] 
 
 
class AnnualDraft(object): 
    def __init__(self): 
        """Define the tool (tool name is the name of the class).""" 
        self.label = "Annual Draft" 
        self.description = "" 
        self.canRunInBackground = True 
 
    def getParameterInfo(self): 
#rainfall parameter 
        in_rasterr = arcpy.Parameter( 
 displayName = "Input Rainfall Raster", 
 name = "in_rasterr", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 

Estimate annual ground water draft 

Output annual ground water draft map  

 

Input rainfall interpolated map for an year 

 

Input evaporation interpolated map for an year 

Input interpolated ground water level map for last year to current year 

years 

 

Input characteristic maps of the terrain (hydraulic conductivity, 

curve number, digital elevation, & reach distance maps) 

years 

 

Input ground water level decline map  

years 
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#evaporation parameter 
        in_rastere = arcpy.Parameter( 
 displayName = "Input Evaporation Raster", 
 name = "in_rastere", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
  
 
#Aquifer Transmissivity parameter 
        in_rasteraq = arcpy.Parameter( 
 displayName = "Input aquifer raster", 
 name = "in_rasteraq", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Curve Number parameter 
        in_rastercn = arcpy.Parameter( 
 displayName = "Input Curve Number Raster", 
 name = "in_rastercn", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Groundflow distance parameter 
        in_rasterdist = arcpy.Parameter( 
 displayName = "Input Reach distance Raster", 
 name = "in_rasterdist", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Initial Groundwater level parameter 
        in_rastergwl1 = arcpy.Parameter( 
 displayName = "Input initial Ground water level Raster", 
 name = "in_rastergwl1", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Groundwater level decline parameter 
        in_rastergwldecpy = arcpy.Parameter( 
 displayName = "Input Ground water level decline Raster", 
 name = "in_rastergwldecpy", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Source DEM parameter 
        in_rasterdem = arcpy.Parameter( 
 displayName = "Input Source DEM Raster", 
 name = "in_rasterdem", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Input") 
 
#Output annual ground water draft 
 out_raster = arcpy.Parameter( 
 displayName = "Output Raster", 
 name = "out_raster", 
 datatype = "Raster Layer", 
 parameterType = "Required", 
 direction = "Output") 
 
#Define a list of parameters to be referred further   
 params = [in_rasterr, in_rastere, in_rasteraq, in_rastercn, in_rasterdist, 

in_rastergwl1, in_rastergwldecpy, in_rasterdem, out_raster] 
     return params 
 
    def isLicensed(self): 
        """Set whether tool is licensed to execute.""" 
        return True 
 
    def updateParameters(self, parameters): 
        """Modify the values and properties of parameters before internal 
        validation is performed.  This method is called whenever a parameter 
        has been changed.""" 
        return 
 
    def updateMessages(self, parameters): 
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        """Modify the messages created by internal validation for each tool 
        parameter.  This method is called after internal validation.""" 
        return 
 
    def execute(self, parameters, messages): 
 
#Input the rainfall, evaporation, aquifer transmissivity, curve number, reach distance, ground 
water level at last time step, ground water gradient, and digital elevation maps  
 in_rasterr=parameters[0].ValueAsText 
 in_rastere=parameters[1].ValueAsText 
 in_rasteraq=parameters[2].ValueAsText 
 in_rastercn=parameters[3].ValueAsText 
 in_rasterdist=parameters[4].ValueAsText 
 in_rastergwl1=parameters[5].ValueAsText 
 in_rastergwldecpy=parameters[6].ValueAsText 
 in_rasterdem=parameters[7].ValueAsText 
 
#Output raster of ground water draft at the current time step 
 out_raster = parameters[8].ValueAsText 
 
#Assigning raster maps of rainfall, evaporation, aquifer transmissivity, curve number, reach 
distance, ground water level at last time step, ground water gradient, and digital elevation maps 
to their respective variables to be converted into two dimensional arrays 
 inRasr = arcpy.Raster(in_rasterr) 
 inRase = arcpy.Raster(in_rastere) 
 inRasaq = arcpy.Raster(in_rasteraq) 
 inRascn = arcpy.Raster(in_rastercn) 
 inRasdist = arcpy.Raster(in_rasterdist) 
 inRasgwl1 = arcpy.Raster(in_rastergwl1) 
 inRasgwldecpy = arcpy.Raster(in_rastergwldecpy) 
 inRasdem = arcpy.Raster(in_rasterdem) 
 
#Defining the spatial reference of the execution system to generate output within the defined 
extent 
 dsc = arcpy.Describe(inRase) 
 sr = dsc.SpatialReference 
 ext = dsc.Extent 
 ll = arcpy.Point(ext.XMin,ext.YMin) 
 cellSize = inRase.meanCellWidth 
 
#Conversion of input raster maps of rainfall, evaporation, aquifer transmissivity, curve number, 
reach distance, ground water level at last time step, ground water gradient, and digital 
elevation maps to their respective two dimensional arrays 
 arrr = arcpy.RasterToNumPyArray(inRasr,nodata_to_value=0) 
 arre = arcpy.RasterToNumPyArray(inRase,nodata_to_value=0) 
 arraq = arcpy.RasterToNumPyArray(inRasaq,nodata_to_value=0) 
 arrcn = arcpy.RasterToNumPyArray(inRascn,nodata_to_value=0) 
 arrdist = arcpy.RasterToNumPyArray(inRasdist,nodata_to_value=0) 
 arrgwl1 = arcpy.RasterToNumPyArray(inRasgwl1,nodata_to_value=0) 
 arrgwldecpy = arcpy.RasterToNumPyArray(inRasgwldecpy,nodata_to_value=0) 
 arrdem = arcpy.RasterToNumPyArray(inRasdem,nodata_to_value=0) 
  
#Count the number of bands, rows, and columns to be executed   
 l = arcpy.GetRasterProperties_management(in_rasterr,"BANDCOUNT") 
 m = arcpy.GetRasterProperties_management(in_rasterr,"ROWCOUNT") 
 n = arcpy.GetRasterProperties_management(in_rasterr,"COLUMNCOUNT") 
  
 b = int(l.getOutput(0)) 
 r = int(m.getOutput(0)) 
 c = int(n.getOutput(0)) 
  
#Define empty matrices to store the rainfall dependent surface runoff, ground water level 
dependent ground water flow, and final ground water draft at current time step 
 surro = numpy.zeros((r,c)) 
 gwflow = numpy.zeros((r,c)) 
 draft =numpy.zeros((r,c)) 
 
#Calculate ground water draft for the current time step at every pixel 
 for j in range (0,r-1): 
  for k in range (0,c-1): 
   s = 25.4*((1000.0/arrcn[j][k])-10) 
   surro[j][k]= ((arrr[j][k]-0.2*s)**2)/(arrr[j][k]+0.8*s) 
   if arrdist[j][k]==0: 
    gwflow[j][k] = 0 
   else: 
    gwflow[j][k] = 

((arraq[j][k]*8000)/(arrdist[j][k]**2))*(arrdem[j][k]-arrgwl1[j][k]) 
   draft[j][k] = arrgwldecpy[j][k]*848+((arrr[j][k]-arre[j][k]-

surro[j][k]-gwflow[j][k])/1000)*848 
#Convert ground water level draft array to raster and get the ground water draft map 
 outras = arcpy.NumPyArrayToRaster(draft,ll,cellSize,value_to_nodata=0) 
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 arcpy.DefineProjection_management(outras,sr) 
 outras.save(out_raster) 
  
 return  
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