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ABSTRACT 

Topology optimization is a powerful method of material minimization. This method 

comprises of the techniques of optimization using finite element method and has been 

primarily used for weight reduction problems for structural, automobile, aircraft 

components and for the design of micro-electro-mechanical systems. Therefore, 

based on the applications, several formulations of topology optimization have been 

developed by researchers in the recent past. For structural and machine components, 

the problems are formulated for the minimization of compliance value. Compliance is 

a performance measure for the structural problems, which is generally considered as 

the reverse of the stiffness. This performance measure depends on many factors such 

as the amount of material to be removed, the material property, applied load, 

dimensions of the material domain, and other boundary conditions. Apart from 

compliance, the maximum deflection is also one of the performance measures, for 

these components. These performance measures are sensitive to the aforesaid factors. 

In real life situations, these factors may not remain constant due to the presence of 

uncertainties. For example, assumed material properties may vary due to material 

uncertainty and manufacturing imperfections. Hence, the topology obtained during 

the theoretical design phase may not suffice the actual working condition. In order to 

capture the effects of these uncertainties, various methodologies of topology 

optimization have been proposed by the different researchers. Based on the available 

work, this thesis identifies the research gaps, which needs further investigation. The 

work presented here is motivated by the identified issues and the investigations are 

carried out by keeping designer’s perspective. Incidentally, designers come across 

several challenges to design an optimal topology that is robust. The optimal 

topologies with less variations in performance measures are called robust. One of the 

requirements for this challenge is to have a thorough knowledge of the effects of each 

factor on the performance measure values while dealing with optimal topologies. 

Another requirement is to adjust the factor values and their tolerances to get targeted 

and robust performance while dealing with the effects of uncertainties. These 

requirements may be driven by aspects like cost, availability, manufacturing, etc. 
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In the present work, the behavior of performance measure of structural problems for 

optimal topologies with respect to the factor values and uncertainties are analyzed. Here 

the uncertainties/noises are considered in terms of direction and point of application of 

applied force, values of modulus of elasticity, and the variations in the values of selected 

factors such as applied force, volume fraction, and aspect ratio. The important point here 

is that the noises identified for the investigations are controllable in computer 

experiments rather than real life experiments. 

Initially, a systematic approach is utilized to investigate the effect of different input 

factors on performances along with effects of uncertainties, for a topologically optimized 

structure. Here, applied force, volume fraction, and aspect ratio of the material domain 

are treated as input or controllable factors. The uncertainties of the material property and 

the point and angle of applied force are treated as the non-controllable factors. To obtain 

optimal topologies for a given problem several methods are available in the literature. 

The present thesis uses one of the widely used topology optimization method i.e. Solid 

Isotropic Microstructure with Penalization (SIMP) method for its computational 

simplicity. In order to investigate the identified research gaps, SIMP methods have been 

applied to simulate performances with the help of Design of Experiments (DOE) 

technique. To analyze the effect on performance at different controllable factors, a 

suitable range is decided for each of the factors. Based on these ranges, the levels of the 

factors are selected, and design combinations of identified factors are obtained using 

DOE technique. This analysis helps to analyze the performance, where level of each of 

the factors varies simultaneously. Each combination is then replicated to incorporate the 

effect of the non-controllable factors. To illustrate the concept, four-benchmark problems 

used in structural topology optimization research are selected. To maintain the 

consistency and efficacy of the proposed methods the same problems are used 

throughout the thesis. Thus, the designed combinations of factors and noises are used to 

simulate the performance values. The simulation results are then analyzed based on 

statistical techniques such as, analysis of mean (ANOM), analysis of variance 

(ANOVA), and signal to noise ratio (SNR). These techniques provide the statistical 

significance of each factor and their impact on the performance values. In addition, this 

investigation also provides the optimal factor values to produce the robust and targeted 

performance for the selected benchmark problems. 
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Based on identified research gaps, the need for a generalized and integrated method 

is felt and is achieved by considering the uncertainties of controllable factors. In this 

approach the variations of controllable factor (i.e. applied force, volume fraction, aspect 

ratio) with the uncertainties that was earlier considered are combined. In order to 

integrate the uncertainties with the reliability concept, the reliability based topology 

optimization (RBTO) method is utilized with DOE approach. The consideration of 

reliability enables the designer to design the component for a specific risk or targeted 

reliability that captures the effect of various uncertainties. At this stage, the combinations 

of the controllable factor and the noises are designed, which are similar to the previous 

discussion. The simulation for the optimal topology with its performance is carried out 

using the RBTO method. This method enables to simulate the performance measure in a 

desired design/controllable-factors space, including the effects of uncertainties, via a 

desired reliability index value. The simulation results are then analyzed using statistical 

techniques. The obtained results are also compared with scenarios and without the effects 

of uncertainties. With reliability based approach, the compliance and deflection values 

change from its initial desirable value. This issue has been dealt systematically with 

detailed analysis and explanation. In this analysis, the optimal value of factors, to 

produce the robust and targeted performance for the selected benchmark problems are 

provided. 

After the selection of the optimal value of factors, it is also desired to analyze the 

effect of tolerance range of the factors on performance measures. The investigation on 

tolerance range provides closest performance values to robust and targeted performance. 

Thus, the tolerance of input factors like applied force, volume fraction, aspect ratio of 

material domain and modulus of elasticity are selected to investigate their effect on 

performance. For simulation, two tolerance ranges are defined for each factor, named as 

loose and tight tolerance. The objective of this investigation is to identify the tolerance 

range combination, which provides the targeted and robust performance. These 

combinations may contain the loose tolerance range of few factors and tight tolerance 

ranges of others. In this way, the designer's effort required to keep all tolerances of 

factors at tight range can be reduced. To incorporate the tolerance range in performance 

range simulation, a cross array design of experiment (CA-DOE) approach is utilized. 

Proposed approach provides a strategy to simulate the performance according to the 

tolerance values and analyze the obtained results using statistical techniques. By the 



-vi- 

proposed tolerance range analysis method, the significant factors are identified. In 

addition, the different tolerance combinations are identified to achieve the targeted and 

robust performance. Similar methodology for tolerance range selection is developed to 

incorporate the effect of uncertainties of the controllable factors, based on RBTO 

method. The combinations are generated subject to the reliability index values, and 

analyzed in the similar way. Finally, the results obtained from both the methods are 

compared, to find out the effect of reliability index on the performances of different 

tolerance combinations. 

The earlier investigations carried out in this thesis, included uncertainties in a very 

generalized way. In line with the earlier development, a particular method to incorporate 

the effect of manufacturing uncertainty is proposed. The rationale behind this 

development is to understand the impact of manufacturing uncertainties in a very 

specific way, so that the characteristic of uncertainties of a specific manufacturing 

process is captured accurately. The effects of manufacturing uncertainty are implemented 

by assuming probabilistic distribution of material. Here, the CA-DOE method is 

modified to suit the purpose and performances are simulated, including the effect of 

uncertainties. The simulated results are analyzed using similar approach as discussed in 

tolerance range selection method. To observe the effect of the uncertainties of 

controllable factors also, the RBTO method is used and the obtained results are 

compared with previous results. 

Throughout the thesis, four benchmark problems have been utilized to illustrate the 

developed methodologies. To validate the developed methodologies, a real life problem 

is selected. For this purpose, a bell crank lever of a formula-one racing car is chosen. It 

was required to reduce the weight of the each component of the car. The design target 

was to reduce the crank lever weight by 13%, without sacrificing its performance. In 

addition to this, a detailed performance behavior was required to select the input factor 

values with their tolerances. The input factors are selected as, options for dimensional 

configurations, material property, and the values of weight reduction. The uncertainties 

due to applied force, angle of applied and output forces, thickness of the lever, material 

property, and weight reduction values are also included in the performance simulation. 

Here the performance values are selected as compliance, deflection and Von-Mises stress 

values. In earlier investigations, the stress values corresponding to benchmark problems 
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were not considered, because the stresses developed were always smaller than yield 

stress of the material. Hence, instead of stress, the deflection values were considered as 

more effective measure to characterize the performance. However, being a critical 

application, the stress values are considered here as one of the performance measures in 

case of bell crank lever. This problem is analyzed using the developed methodologies 

available in thesis. As a result, the performance behavior of bell crank lever is generated 

for the different level of the factors, uncertainties, tolerance, for different reliability 

values. Finally the optimal values of factors and their tolerances are also identified. 

Present work proposes integrated methodologies to simulate the realistic performance 

with uncertain scenarios in design, manufacturing, and application phases for a 

topologically optimized component. Hence, these methodologies help to achieve robust, 

reliable, and targeted performance for the components. The proposed methodologies are 

found to be advantageous compared to the usual robust and reliable topology 

optimization methods by providing the performance at each possible point in the 

controllable factor space. Thus, present thesis provides an off-line design strategy to the 

designer/practitioner. 

Keywords: Topology optimization, Shape/Size Optimization, Computational mechanics, 

Finite element method, Discretization method, SIMP, Structural/beam 

analysis, Performance analysis, RBTO, Robust design, DOE, CA-DOE, 

Tolerance range selection, Manufacturing uncertainty. 
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CHAPTER 1 

TOPOLOGY OPTIMIZATION METHOD 

This chapter presents a short introduction to the topology optimization, along with basic 

methodologies. In this, the need for research is also discussed, including the motivation 

behind this research. The current chapter concludes with the developed framework and 

its contribution to the research community and industry. 

1.1 INTRODUCTION 

Use of material in an efficient way is an important task for designers' in all engineering 

fields. The aim of the designers is to achieve the desired performance that minimizes or 

maximizes selected responses like, cost, weight, stress, natural frequency, etc. 

Traditionally, design engineers rely on predictions and experience in developing designs 

for new problems. A specialized tool, i.e. structural optimization is used to optimize the 

performance of the structures. This technique is based on mathematical programming for 

optimizing the layout of an existing material domain (Bendsøe 1995, 1989; Bendsøe and 

Sigmund 2003). This tool is even extended to optimizing the material microstructure itself 

according to its intended use. Structural optimization is categorized into three main streams 

i.e., sizing optimization, shape optimization, and topology optimization (Herskovits 1995; 

Park 2010). In sizing optimization problems, the material distribution or the design domain 

is established and held fixed. In this case, finding out the optimal size or thickness of 

members or plate, becomes the objective function. In size optimization problem the 

optimal cross-section, length, or thickness of the structural member for weight 

minimization are obtained. In shape optimization problems, the optimal shape is found out. 

The examples can be, to obtain the optimal shape of a notch to reduce the stress 

concentration. With size and shape optimization, the prerequisite is the knowledge of the 

main features of the material domain distribution or topology. Strictly speaking, topology 

refers to the location of material continuity or connections, and the location of voids or 
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holes in the material design space (Bendsøe and Kikuchi 1988). Hence, topology 

optimization is considered as the most general technique because it allows the placement 

of material throughout the design, subject to design constraints (Sigmund 1994a & 1994b). 

The diagrammatic representations of differences of these optimization schemes are 

presented in Fig. 1.1. 

 

 Initial problem Optimized solution 

(a) 

Size 

optimization 
  

   

(b) 

Shape 

optimization 
  

   

(c) 

Topology 

optimization 
  

Fig. 1.1: (a) - (c) Initial material domain and the respective optimum solution for 

different optimization schemes 

Fig. 1.1(a) demonstrates the example of size optimization of a truss system. As a 

result of the size optimization, the thickness of certain members is changed to satisfy 

the strength requirements. Fig. 1.1(b) shows the example of a shape optimization, 

where the shapes of the holes are optimized for weight reduction and strength 

requirements. In Fig. 1.1(c), material or weight minimization is shown subject to the 

strength requirement, using topology optimization method. It can be observed that the 

complete material distribution or the connection and voids are redefined to maximize 

the strength. 

The topology optimization research area is vast because of its applicability. The 

major application areas include numerous design problems such as compliant 

mechanisms (Ananthasuresh et al. 1994), micro-electro-mechanical devices, nano-

structures, off-shore structures, bone remodeling, robot path finding algorithms (Ryu et 

al. 2012), design of frame bracing (Mijar et al. 1998), tunnel supports (Yin and Yang 

2000), biomechanical implants (Folgado and Rodrigues 1997), and structures subjected 
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to local stress constraints (Duysinx and Bendsøe 1998) and buckling constraints (Neves 

et al. 1995). It has also been used in designing of optimal vibration response of structures 

(Díaz and Kikuchi 1992, Tcherniak 2002), improving crashworthiness of vehicles 

(Mayer et al. 1996, Pedersen 2004), and optimizing structural support placement (Buhl 

2002), design piezo-composites (Sigmund et al. 1998) and band-gap materials (Sigmund 

and Jensen 2003). Topology optimization is also used in the design of material 

microstructures. This implies that the material can be tailored to achieve desired or 

extreme properties. The idea here is to treat the microstructure of the material as a small 

structure. In this way, topology optimization methods can be used in the macroscopic 

design problems. For this type of problem, the microstructure cell is designed first and 

the overall material domain is assembled later. This process is opposite to the usual 

approach of homogenization, where the complete material domain is considered first and 

optimization process gives the necessary information for placement of microstructure 

cells. Hence, this approach is called as ‘inverse homogenization’ problem, which was 

proposed by Sigmund (1994a, 1995). Using this approach, the materials can be designed 

to meet prescribed or extreme elastic or thermal expansion properties (Sigmund and 

Torquato 1997). The famous example for such application is a material with negative 

Poisson’s ratio by Sigmund (1994b). Thus, topology optimization technique has spread 

to many areas and gained widespread popularity in academia and industry. Along with 

the applications, there are many studies and approaches available, which are presented to 

enhance and improve the topology optimization methods. These methodologies are 

primarily classified into two groups and these are 'discrete topology optimization 

method' and 'continuum topology optimization method'. 

Discrete topology optimization method: The approach here is to consider the material 

domain consist of all possible truss bar connections, as shown in Fig. 1.2. Here the 

objective is to optimize the weight of structure by eliminating the non-significant truss 

bars (Bendsøe and Sigmund 2003). Along with the truss frames, this method is widely 

used for the synthesis of the compliant mechanisms (Ananthasuresh et al.1994, 

Ananthasuresh & Kota, 1995, Frecker et al. 1997, Howell, 2001, Kota et al. 2001, Javed 

et al. 2007). In Fig. 1.2(a), the initial material domain can be observed, which is made of 

all possible truss bar connections. After the optimization, the possible topology can be 

seen in Fig. 1.2(b). This method is also known as 'ground structure parameterization' 

method (Howell, 2001).  
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(a) (b) 

Fig. 1.2: Topology optimization using discrete method, (a) ground structure, 

(b) optimized topology for the structure (Fatma et al. 1999) 

Continuum topology optimization method: The second type of methodology refers to 

a continuum topology optimization method (Bendsøe 1995, 1989; Bendsøe and Sigmund 

2003). In this method the material domain is continuum. Here, the whole domain is 

discretized into several small material cells. Each of these cells can be a solid material 

cell or a void. Based on this assumption, the optimization is performed to define the 

material cell and voids, in order to achieve the objectives within constraint conditions. 

Thus, an optimal topology is obtained. For illustration, Fig. 1.1(c) can be referred. In this 

problem, the complete material domain was defined with the boundary conditions. It can 

be seen that the obtained optimal topology has a smooth variation of material presence, 

unlike the discrete optimal topology (Fig. 1.2). This type of topology optimization is 

very popular because of its flexibility in assigning the martial cells. The latest 

developments in the field of topology optimization mainly utilizes the continuum 

topology optimization method. In the next section, the basic methodologies related to the 

continuum method of topology optimization are introduced, which are core to the latest 

developments and applications. 

1.2 METHODOLOGIES FOR TOPOLOGY OPTIMIZATION 

Topology optimization has roots in truss design dating back to the early 20th century 

(Michell 1904). Presently it is a very popular tool in the realm of design engineering 

for material optimization, in conceptual design phase. Thus, an overall optimized 

material distribution pattern in the material domain (or design domain) is obtained. 

The obtained material distribution can be utilized as the initial steps for next process 

i.e., size and shape optimization. Topology optimization method exploits the 

mathematical approach for assigning the material in an optimal pattern within the 

fixed design domain, and thus offers the overall topology of the component. This 

F F F
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optimal pattern is obtained by an objective function subject to few constraints. The 

objective function may be minimization of compliance, in the case of structures. 

Where, compliance is the property of a structure, and equivalent to the reciprocal of 

the global stiffness (Bendsøe and Sigmund 2003). Again, objective function can be 

maximization of compliance, if the aim is to design a compliant mechanism 

(Sigmund 1997). In general, the objective of the optimization process may be any 

desired quantity, which is dependent on material distribution. These optimizastion 

problems must be handled carefully because the numbers of variables are very large. 

There are several methods proposed by researchers for solving topology optimization 

problems. Still explorations are going on to upgrade the methods available (Rozvany 

2009). In subsequent section the well-known methodologies for topology 

optimization i.e., Structural Isometric Material with Penalization (SIMP) method, 

Evolutionary Structural Optimization (ESO), Bidirectional ESO method, and Level 

Set method are introduced. 

1.2.1 Structural isometric material with penalization method 

Bendsøe and Kikuchi (1998) developed a homogenization approach using finite 

elements and homogenized materials consisting of solids and voids, which is the 

basis of the present state of art in topology optimization. They presented a technique 

for determining the optimal distribution of the material among elements in the design 

domain. The problem was worked out using a discretized approach, where the whole 

design domain was dealt in element wise manner. Each element was assigned a 

parameter, which decides the existence of “material” or “no material” case. Further, 

the “material” or “no material” case was determined by optimization algorithm, 

confirming the feasibility of the solution by various constraints posed. This design 

parameter, often labeled, as density parameter, which is binary valued. The value, 

one or zero is defined for “material” and “no material” case respectively. To solve the 

optimization problem for binary valued density parameter is quite difficult compared 

to continuous valued parameters (Sigmund and Petersson 1998). The optimization 

difficulty is resolved by considering the density parameters for intermediate values. 

In this way, the value was relaxed over a continuous interval from zero to one. 

Physically, this is equivalent to an intermediate state between solid or void. Strictly 

speaking, this design parameter is the material presence expressed in fractional 

values for each finite element cell. The value of this parameter (or density) is 
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constant within each element cell. Various attempts had been made to capture this 

problem but the results in most of the cases were microscopic holes rather than 

desired finite macroscopic voids. The assumed intermediate densities were purely 

mathematical and cannot be implemented at manufacturing level. To make this 

process feasible, density parameters were penalized using a power-law approach that 

produces an approximate discrete solution. A very high penalization makes the 

elements either filled or empty. Usually penalization power is taken as three. This 

technique is termed as Solid Isotropic Microstructure with Penalization (SIMP) 

(Rozvany and Zhou 1990; Rozvany et al. 1992; Bendsøe 1995, 1989; Bendsøe and 

Sigmund 2003). This method generates a large number of design parameters. Number 

of parameters depends on required smoothness of the solution. However, there was 

no theoretical proof for SIMP method until 2001(Bendsøe 1995). Rietz (2001) proved 

that the finite exponent penalized optimization problem would have same solution as 

a non-penalize discrete problem. There are some typical practical problems observed 

in numerical results. For example, the optimized topology may show the connectivity 

of elements in a peculiar manner, which may not be valid physically. The elements 

can be connected through corners only, called as checkerboard problem or isolated 

hinge. The other common problems, discussed by Sigmund and Petersson (1998) are 

the mesh dependency and local minima. These problems were well recognized from 

the time of development of topology optimization methods itself. There are many 

methods suggested to avoid these numerical instabilities in the final topology result. 

For example, perimeter control, employing filters and slope-constraints (Diaz and 

Sigmund 1995; Sigmund and Petersson 1998; Petersson 1999; Bendsøe and Sigmund 

2003). Presently, various methods are developed that take care of the aforesaid 

problems in topology optimization (Bendsøe and Sigmund 2003). The well-known 

formulation of SIMP is based on finding out the optimal stiffness tensor, which is 

taken as a variable over entire domain Ω (Rozvany and Zhou 1990; Rozvany et al. 

1992). A generalized formulation according to SIMP method is performed by 

considering a material design domain as shown in Fig. 1.3. In this figure, the 

topology is to be generated within the material domain Ω. An external load acts on 

this material domain and the whole domain is fixed by the rigid supports. In the 

generalized material domain the possibilities of some desired solid space and void is 

also assumed. 
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Fig. 1.3: Material domain for general topology optimization problem 

For the posed problem, it is required to find out the optimal topology within the 

material domain. The approach finds out the optimal elasticity tensor ijklE , which is a 

variable within the material domain Ω. Depending on the variable elasticity tensor the 

energy stored in the material domain will also vary. Thus, the energy bilinear form can 

be written based on the internal virtual work, considering Ω as an elastic body, at the 

equilibrium displacement da and for an arbitrary virtual displacement dv 

 Ω= ∫
Ω
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where, g is the body forces, and h is the boundary tractions on the traction part 
TΓ on the 

boundaries. Based on above values, the minimization of compliance or maximization of 

global stiffness problem takes following form 
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where, Ea is the domain for allowable stiffness in the design problem, U
~

 is the domain 

for kinematically admissible displacement fields. In order to solve the above problem the 

complete material domain is discretized into finite elements. The basic equation for 

optimization can be written in the following discretized form.  

 Loads 

Solid region 

Void 

Supports 

Material                                                

domain 

    Ω 
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The compliance value )(xC , is defined as 

 dddF TT KxC ==)(  (1.4) 

where, F is applied force vector, d is the nodal displacement vector andK is the global 

stiffness matrix, x is the density parameter. By coupling this equation for whole design 

domain (for n number of elements) and applying penalization by power-law approach, 

the objective function is converted to the following form 
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where, element stiffness 

 0KK p

ix=  (1.6) 

K0is finite stiffness for the element, xi is the density parameter for element i, p is the 

penalization power and n is total number of elements. Finally, this SIMP based 

optimization is formulated as (Bendsøe and Sigmund 2003) 

 



















≤≤<

=

≤

=∑
=

,….n, , i= xx

f
V

xV

toSubject

ddxxC

i

f

i

T

i

n

i

p

i
x

321,10

)(

,

)(:min

min

1

FKd

K 0

 (1.7) 

Here, V (x) and Vf is thematerial volume and design domain volume, respectively, and f 

is the prescribed volume fraction.Conventionally above problem can be solved using 

optimization methods like, sequential linear programming (SLP), Sequential quadratic 

programming (SQP), optimality criterion (OC) (Zhou and Rozvany 1991) or method of 

moving asymptotes (MMA) (Svanberg 1987). In order to get the solution of this 

optimization problem, the optimization method is integrated with the finite element (FE) 

method. The other topology optimization methods are explained in the subsequent 

sections. 

1.2.2 Evolutionary structural optimization and bidirectional evolutionary 

structural optimization method 

Evolutionary Structural Optimization (ESO) is proposed by Xie and Steven (1993, 

1994, 1997). The basic concept in ESO is the gradual removal of redundant elements 

from the design material domain, to achieve an optimal design. ESO can be 
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easilyimplemented in any generalized finite element analysis routine. Unlike SIMP, 

ESO involves minimum mathematical programming technique in optimization 

process. This approach initiates with the full material domain design and removes the 

non-significant material by considering the constraint of strain or stress energy level 

of the elements. The removal of element is done by assigning them the material 

property number of the removed elements to zero. For the removed elements, the 

material properties are eliminated from the global stiffness matrix. ESO works based 

on a key parameter, called as “Sensitivity number”. This indicates the change in the 

overall stiffness or a specified displacement due to removal of an element, which is 

formulated using a finite element scheme. After the computation of sensitivity 

number of each element, the elements, which are having least sensitivity, are 

removed from the material design domain. This process is repetitive and continues 

until the desired stiffness or displacement of the structure is achieved. Based on this 

removal of material properties of elements, the number of equations solved in each 

iteration, reduces. Finally, this approach generates a clear topology. 

 The computation for sensitivity number is explained using the finite element analysis 

explained here. Using finite element method the nodal displacement vector d and load 

vector Fis related using the global stiffness matrix K as 

 KdF =  (1.8) 

The strain energy St, for the structure is defined as 

 dFT

tS
2

1
=  (1.9) 

 The minimization of this term implies the maximization of stiffness of structure. 

Now by considering the removal of the 'i' th element from a structure having 'n' numbers 

of finite elements. The change in stiffness matrix can be computed as, 

 KK∆K −= *  (1.10) 

where,K
*
 is the stiffness after removal of the element. It can be assumed that the removal 

of the element has no effect on the load vector F. The change of the displacement vector 

from equation (1.8) can be found out as 

 ∆KdK∆d 1−−=  (1.11) 

From equations (1.9) and (1.10), 
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The quantity shown in equation (1.12) is termed as “Sensitivity number”, iα . The term is 

the elemental strain energy. In order to remove the element, the sensitivity number of 

each element is computed and the lowest value is chosen for removal. The overall 

process can be summarized in following steps. 

Step1: Discretization of overall design material domain 

Step2: Performing load analysis using finite element procedure 

Step3: Computation of the sensitivity number for each element 

Step4: Removal of elements, which have the lowest sensitivity numbers and 

refreshing the overall stiffness matrix 

Step5: Repetition of Steps 3-4 until the constraint limits on strain energy or 

displacement limit is reached. 

 ESO is a simple material removal process. However, material elements removed in 

the early stage may be required in the later iterations. The recovery of the removed 

element cell is not possible in basic ESO method. For these complexities, there are 

possibilities of geting a non-optimal topology in the end result. The conventional ESO 

method has few other difficulties such as checkerboard pattern, local minima, mesh 

dependency, etc. To overcome these numerical difficulties, an improved version of ESO 

is developed, known as Bidirectional Evolutional Structural Optimization (BESO) 

(Querin et al. 1998, Yang et al. 1999, Young 1999, Huang and Xie 2007). The BESO 

method uses a filtration scheme to compute the improved sensitivity number. For an 

element sensitivity number, computation is carried out by considering the sensitivity of 

the neighboring elements within a circle of radius minr . The modified formulation for the 

sensitivity,α̂ , is given as 
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where, nc is the number of nodes in the circle of radius minr , and )( ijrw  is the linear weight 

factor defined as 

 )...,2,1()( min ncjrrrw ijij =−=  (1.14) 
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Above modified scheme is purely heuristic, and by employing this scheme the problem 

such as checkerboard pattern, local minima, mesh dependency can be solved. 

 The SIMP, ESO, and BESO methods discussed earlier were FE based methods, 

where the complete material domain of the structure was treated in elements. Unlike this 

approach, there is another method of topology optimization named as level set method. 

This mrthod is based on the scalar surface interaction. A short discussion on this method 

is given in the next section. 

1.2.3 Level set method 

Levelset method was developed by Osher and Sethian (1988). This method was 

initially applied to topology optimization problem by Sethian and Wiegmann (2000), 

Osher and Fedkiw (2001), Wang et al. (2003), and Allaire et al. (2004). Level set 

method is based on the level set models that optimize linear elastic structures. In this 

method, the structure is implicitly represented by a scalar function i.e. the level set 

function. These level sets of higher dimensionality represent the structure in a 

moving boundary. The level sets have the property of remaining to be simple in its 

topology, while the shape and topology of the structure may undergo major changes. 

Hence, the changes in the shape and topology of the structure can be simulated using 

the movement of the design boundaries. Based on this property, this is also referred 

as implicit moving boundary models. These models can easily enable the actions 

required to simulate various topologies such as forming holes, spliting into multiple 

pieces, or merging. To satisfy the required constraint values in the optimization, the 

change in the topology is generated by implementing a mathematical programming 

for the optimization. Mathematically, a surface boundary in an implicit form, can be 

represented as, 

 { }
isosurf keeS =Φ= )(:  (1.15) 

where, e is a point on the iso-surface Φ , and isok  is an arbitrary iso-value. Using this 

relation, a model is created, which enables the level set function to change dynamically. 

The model expressed as 

 
{ }

isosurf kttetetS =Φ= )),((:)()(
 

(1.16) 

Using above dynamic surface, the topology optimization problem is remodeled as, 
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 In this model, the solid domain for the structure is represented by D with its boundary

D∂ . The displacement at the boundary part uD∂  is given as
0ud . In order to model the 

problem using the level set functions, a fixed larger material domain is defined and 

denoted as D , such that the domain fully contains the current material domain D . The 

maximum amount of material that is present in the material domain D  is maxV . Thus, the 

optimization problem is defined to find the optimal boundary D∂  such that the function 

),( ΦudJ  is minimized, which considers a specific physical or geometric type described 

by Ĝ . Here, H is the Heaviside function. The key feature for this scheme is to move the 

design boundary until the objective can be improved further. The optimization problem 

formulated in equation (1.17) can be implemented as a mathematical programming 

problem and the optimal topologies can be generated. 

With emerging requirements and multiphysics applications, new research goals are 

being set in the field of topology optimization. The next section focuses on need for 

research in topology optimization area, and the motivation to pursue research in this area. 

1.3 NEED FOR RESEARCH 

In recent years, extensive efforts have been put in the development and expansion of 

topology optimization procedures to various domains of application. As a result, several 

strategies are developed and a few of them are generalized while many are highly 

problem dependent. The motivation behind the accelerated research in topology 

optimization is its significant practical importance (Bendsøe and Sigmund 2003), which 

can attain greater design improvements and saving, than mere sizing or shape 

optimization. Hence, development took place with increased pace by the help of 

comprehensive software developments in branches of technology and interdisciplinary 

fields. Another reason is, being a complex and intellectually challenging field, topology 

optimization involves basic research, with rather unusual problems in mathematics, 

mechanics, computer technology, and material sciences like, microstructure optimization 

of composites. Special and multidisciplinary applications include design-dependent 
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loads, acoustic coupling, acoustic meta-materials, compliant mechanism mostly used in 

micro-tooling, fluid-solid interaction, bio-mechanics, bone reconstruction, bone adaption, 

micro-thermo-electro-mechanical systems, etc.(Bendsøe and Sigmund 2003). In addition, 

the traditional design and applications are also improved. Namely, design of material 

unit cells for "high frequency" responses, modeling of topology optimization framework 

to nonlinear transient systems, tailoring of stress wave that allows noise control, 

earthquake mitigation, etc. These advancements in topology optimization applications 

resulted in a number of successful algorithms. Also, the extensions of topology 

optimization method reveal other complications, i.e. implementation details, numerical 

instabilities or computational inefficiencies, grey scale control, local stress control, and 

keeping the computational time to a tractable level, which are still under exploration. 

This, being a well-established research fields, various aspects are still open for the 

development and improvement, and a few important ones' are discussed below. 

� One of the important needs of the research in this field is the development of 

accurate and efficient method to manufacture topologically optimized 

component. For example, micro-structural fields are highly heterogeneous and 

therefore may be difficult or costly to manufacture. Hence, manufacturing 

constraints can be implemented to improve the manufacturability of the designs. 

One can probably tailor the manufacturing constraints for the specific 

manufacturing method. 

� During development and manufacturing of the products, the need for measure is 

arise that improve the quality and reliability in a systematic manner without 

exceeding the manufacturing efforts. By looking at the increasing designs and 

applications based on topology optimization method, the rise in demand on the 

reliability, efficiency, and shortened development cycle of a topologically 

optimized product is predictable. Thus, it becomes inevitable to enhance the 

topology optimization method towards new goals. 

� In recent years, reliability and robust design related approaches in the topology 

optimization has been receiving increased attention. These approaches primarily 

deal with uncertainties in the realistic environment. The uncertainties may 

involve in various factors of a topologically optimized components, right from 

the beginning to end of the life cycle, which includes design, manufacturing, and 

application phase. In past, various methods are developed using reliable and 
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robust topology optimization methods. These optimization methods provide 

greater benefits to the designer; however, certain aspects of performance analysis 

are still unexplored. 

 The research presented in this thesis is motivated by above shortcomings in the 

current state of the art. In this work, the aforementioned aspects of reliability and 

robust design of the topologically optimized components are incorporated to provide 

flexibility to designer. 

1.4 THESIS OUTLINE 

This thesis presents the work carried out in identified research gaps. Here, a few 

methodologies are proposed and their applications are discussed with the help of its 

practical and theoretical background. The chapters of thesis are organized in following 

manner, 

 In Chapter 2, detailed literature review is presented. Here, review is divided into two 

parts. The first part discusses about the robust design methodologies of topology 

optimization problems, and the second part discusses about the reliability based topology 

optimization methods. In this chapter the development of the different design 

methodology over the years to improve the performance of topologically optimized 

components are chronicled. Finally, important research gaps in the state of the art are 

highlighted. 

 Chapter 3, discusses and analyzes the performance of topologically optimized 

structures in a realistic environment. For this purpose, design of experiments based 

method is used. To explore the effect of real life scenario, the noises or uncertainties are 

included in the analysis. Based on this methodology, four benchmark problems are 

analyzed and the optimum factor values for robust and targeted performance are 

obtained. 

 Chapter 4, uses the similar design methodology by incorporating the effects of 

uncertainties of design/controllablefactors. Here, the performances of the topologically 

optimized structures are analyzed by combining reliability and design of experiments 

methods. To maintain consistency, same benchmark problems are used for reliability 

based methodology and the optimum factor values are obtained for robust and targeted 

performance. 
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To reduce performance variations further, the tolerance range of controllable factors is 

required to be selected for topologically optimized structures. Chapter 5 aims to identify 

the combinations of the tolerance of factor to achieve the robust and targeted 

performance. For this, cross array design of experiment method for topology 

optimization problems are devised. Tolerance range for controllable factors is also 

obtained by incorporating reliability index values. 

 In Chapter 5, the effect of manufacturing uncertainties was included in a generic 

way. To explore the same in a specific manufacturing process, a simulation technique is 

introduced in Chapter 6.This chapter discusses the simulation approach employed for 

tolerance range selection of controllable factors. Like in the earlier case, tolerance range 

for controllable factors is also obtained by incorporating reliability index values. 

 To emphasize the significance of the developed methodologies, a case study of bell 

crank lever is taken. The real life project is executed using the developed methods and 

obtained results are analyzed in Chapter 7. As a result of this investigation, complete 

performances range of the bell crank lever is available for robust and targeted 

performance requirements. 

 In Chapter 8, the conclusions made in all the chapters are summarized and the future 

perspective of the research is highlighted. 

1.5 CONTRIBUTIONS OF THE THESIS 

As discussed earlier, present research is performed to analyze the effects of uncertainties 

of the various factors involved in the topology optimization problem. In this regard, the 

main contribution of the thesis is the development of design methodologies to achieve 

the robust, reliable, and targeted performance of a structural or machine element. This 

aim is pursued by the integration of design of experiments methods and topology 

optimization techniques. Developed methodologies will enable the simulation of the 

performance of topologically optimized components and determine the optimum factor 

values and their tolerancesranges, considering the various effects of uncertainties. The 

implementations of developed methodologies are illustrated using four benchmark 

problems. These methodologies are an offline tool for the designer to achieve the 

targeted values and the robustness of the performances in the realistic environment. 



CHAPTER 2 

LITERATURE REVIEW 

In the previous chapter, foundation of topology optimization is elaborated with various 

aspects of its applications. The need for reliability and robust design approaches in 

topology optimization problem was also emphasized looking at overall developments 

and applications in this area. The necessity of the reliable and robust design approaches 

are felt to design structures for realistic scenarios. This chapter discusses latest 

developments and attempts of researchers to incorporate effect of uncertainties in 

topology optimization problems. After reviewing literature regarding the uncertainties 

consideration in topology optimization problems, a few research gaps are identified, 

which are the source of motivation for this thesis. 

In last decade or so, there has been renewed focus on the impact of uncertainties 

on topologically optimized structures. The main objective of these studies and 

developments are to ensure robust and reliable performance. In recent years, research 

has been growing on the uncertainties issues of different factors in topology 

optimization. These studies resulted in reliability based topology optimization 

(RBTO) and robust topology optimization (RTO) method. This chapter reviews these 

developments in the area of topology optimization. The chapter presents the review 

in two parts; first section deals with the literatures related to reliability based 

methods in topology optimization problems and second section deals with robust 

design methods in topology optimization problems. As discussed earlier, basic 

topology optimization method for a structural component and compliant mechanisms 

is similar. Therefore, in literature, the RBTO and RTO methods are applied to 

structure and compliant mechanisms simultaneously. Thus, the reliability and robust 

design methods applied to topologically optimized structures and the compliant 

mechanisms are considered in the review.  
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2.1 RELIABILITY BASED TOPOLOGY OPTIMIZATION METHOD 

In past the reliability concept, together with the optimization, received a lot of attention 

from researchers working in design optimization area. The reliability consideration in 

design optimization resulted as reliability based design optimization (RBDO) methods. 

The various methods in RBDO are based on stochastic methods. These methods enable 

the designer to design the component for a specific risk or targeted reliability that 

contains the effect of various uncertainties. Here the main idea is to combine the design 

optimization with the probabilistic constraints. In a usual RBTO problem, extra 

constraint is included, which state the probability of failure (Tu et al. 1999; Youn and 

Choi 2004). When this constraint is deployed in topology optimization problem, the 

deterministic optimization problem (equation (1.7)) is modified as, 

 
















≤≤<

>≥

≤

=∑
=

,….n, , i= xx

PGP

f
V

xV

dKdxxC

i

f

f

i

T

i

n

i

p

i
x

321,10

)0)((

)(
:toSubject

)(:min

min

0

1

ξx,

 (2.1) 

where, C is the compliance value, K0 is the stiffness matrix for an element, xi is the 

density parameter for element i, and p is the penalization power. Vf is the total volume of 

material domain, V(x) is the material volume, and f is the volume fraction. The extra 

constraint fPGP >≥ )0)(( ξx, , denotes the design safety probability based on the limit 

state function )( ξx,G .Where fP .is the probability of failure, x is the density matrix, and 

ξ is the probabilistic variable accounting the uncertainties. A limit state function for 

topology optimization problem can be defined for the compliance, deflection, or stress 

values. For example, a limit state function for deflection is shown in equation (2.2). 

 *)()( ddG −= ξx,ξx,  (2.2) 

where, )( ξx,d  is the maximum deflection, which is dependent on the material 

distribution (density matrix x) and the probabilistic variable ξ. For a safe design, the 

maximum deflection should not exceed a set value d
*
.
 

For
 

topology optimization 

problems, the number of parameters in x and ξ are very large and complex. Usually a 

Taylor series based approximation method is employed to simplify the limit-state 
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function 0)( =ξx,G . Based on the order of Taylor series, the simplification method is 

called as First Order Reliability Method (FORM) and Second Order Reliability Method 

(SORM). FORM is largely applied in topology optimization problems compared to 

SORM. The reason being, SORM improves marginal amount of accuracy by offering 

high computation costs (Maute and Frangopol 2003; Youn and Choi 2004). There are 

two approaches available in FORM to approximate the limit state function, namely, 

Reliability index approach (RIA) and Performance measured approach (PMA). 

Reliability index approach (RIA): The idea for the reliability index approach is to find 

out the minimum distance from the structural response surface i.e. limit-state 

approximation from the origin to the surface in the standard Gaussian space. Hasofer and 

Lind (1974) presented a transformation technique to simplify FORM based reliability 

index method, named as HL transformation (Maute and Frangopol 2003; Kharmanda et 

al. 2004,). In this transformation, the physical random variables are transformed into the 

normalized and independent Gaussian variable. For a limit-state function, 0)( =ξx,G  the 

variables where [ ]T

nξξξξ ....,, 321=ξ are transformed as,  

 
i

ii

iU
σ

µξ −
=  (2.3) 

where, µ i and σi  are the mean and standard deviation of physical variable ξi respectively. 

Ui, are the elements of Gaussian variable, [ ]T

ng UUUU ....,, 321=U . Here, the mean and 

standard deviation of variable ui, are zero and unity, respectively. This transformation is 

presented in Fig. 2.1. The nearest point of failure is termed as Most Probable Point 

(MPP) of failure. The minimum distance from the mean values of variables to the MPP 

is termed as reliability index β. 

For a given value of reliability index, the normalized variable can be estimated based 

on equation (2.4). This optimization problem can be solved using a suitable scheme. 
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Fig. 2.1: HL transformation from physical to Gaussian domain and reliability index 

Using RIA, the optimization is carried out with respect to a desired value of 

reliability index, β
*
. Hence, the topology optimization problem using RIA is expressed 

as, 
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In this approach, the reliability index is estimated using the optimization routine for 

equation (2.4). For each iteration step for equation (2.5), the optimization problem given 

in equation (2.4) is solved. 

Performance measured approach (PMA): According to PMA the reliability index 

problem is modified as, 
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By doing so, the reliability requirement is included in the limit-state function. 

Further, topology optimization is carried out as, 
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There are a few advantages of PMA over RIA. PMA gives more robust results 

compared to RIA as the variations in parameter are lesser (Maute and Frangopol 2003). 

The convergence property of PMA is good compared to RIA, when constraint function 

has non-Gaussian probability distribution. In order to apply reliability concepts in 

topology optimization problems these approaches can be employed. In this section, the 

methodologies developed for RBTO are reviewed and presented below. 

Review on RBTO: 

RBTO is an approach to generate optimal topology subject to uncertainties of the 

factors. The reliability concepts in topology optimization problems were initially 

applied by Bae et al. (2002). They presented a combined model of probabilistic optimal 

design with finite elements method. The topology optimization problem was modified 

and reliability constraint equation was incorporated into optimization problem using 

FORM. The reliability constraint in their work was handled using PMA. Uncertainties 

of Young’s modulus, structure thickness, and loading conditions were considered as 

uncertain variables. After this, a landmark work was reported by Maute and Frangopol 

(2003). This work focused on design of MEMS mechanisms or compliant mechanism 

by considering stochastic loading and boundary conditions as well as material 

properties. They modified topology optimization scheme also, because MEMS 

mechanisms undergo large deformation unlike a usual structural problems. To model 

these mechanisms, co-rotational finite element formulation were incorporated into 

topology optimization problem. In their work, reliability formulation was carried out 

using FORM and PMA.  

Later, Kang et al. (2004) presented a RBTO method for electromagnetic systems. 

These systems are a particular type of compliant mechanisms. For these problems, a 2-D 

magnetostatic finite element model was constructed. Permeability, coercive force, and 

applied current density were considered as uncertain variables. Computation of reliability 

constraint was done using PMA and limit state function was approximated using FORM. 

At the same time, reliability consideration on geometrically non-linear structures was 
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incorporated by Jung and Cho (2004). Here the problem was reformulated by keeping 

minimization of volume fraction as objective function. In this model, uncertainty of 

material property, i.e. elasticity value and external loads were considered and limit-state 

function was modeled using a predefined deflection value and reliability constraint. 

The approaches discussed above required large computations to generate a reliable 

topology. Focusing on computation issue, a different RBTO was proposed by 

Khramanda et al. (2004). They employed Hasofer and Lind transformation technique to 

map uncertain factors from physical to normal Gaussian domain (Hasofer and Lind 

1974). Then, based on the desired reliability index values, the MPP is searched in the 

Gaussian domain and corresponding to the MPP, the factor values are computed. Using 

values of these factors, a reliable topology was generated. This procedure reduced 

computation time to a large extent. Considering issue of computation time, Kim et al. 

(2005) proposed a parallel computing RBTO based on response surface method. The 

methodology was applied to design the components of MEMS. The uncertainties of 

dimensions were considered, reliability constraint was incorporated using PMA, and 

limit state function was developed using a predefined deflection value. 

As discussed earlier, a usual RBTO couples topology optimization scheme with 

reliability consideration. Patel et al. (2005) proposed a decoupled approach to separate 

topology optimization and reliability problem. For this purpose, a hybrid cellular 

automata method was utilized. In this methodology, a deterministic topology 

optimization (DTO) followed by reliability assessment was carried out. To accommodate 

a global constraint for maximum displacement, a mechanism in RBTO was developed. 

In addition, they discussed methodology for the six-sigma design of structures using 

topology optimization. Another hybrid approach for RBTO was proposed by Mohsine et 

al. (2006). They improved classical RBTO, which has high computation time and weak 

convergence. The efficiency of hybrid method was demonstrated on static and dynamic 

cases with extension to the variability of probabilistic model. Unlike usual RBTO, this 

method allowed to handle increased number of uncertain variables by introducing their 

standard deviations. 

On the issue of practical application of RBTO model, Kim et al. (2006) presented a 

reliability based design process for Laser scanned models. They mainly discussed 

process of rapid product development from reverse engineering to create reliable optimal 

design. In their work, response surface methodology was used to characterize uncertainty 
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of dimensions. The reliability constraint in the model was included using PMA and the 

limit state function used maximum allowable deflection and natural frequency. They 

implemented this model on the upper part of a cellular phone. Similarly, Wang et al. 

(2006) dealt with practical issues and presented the applications of RBTO in various 

fields e.g., structures, electromagnetic, heat transfer, and coupled systems. For reliability 

consideration, PMA was utilized and the limit state function was based on allowable 

deflection. Similar to these applications of RBTO, Kim et al. (2007) presented a 

generalized approach for MEMS. In this work, they used topology optimization software 

to generate topology. They were the first to introduce geometric uncertainty due to the 

manufacturing processes. In their implementation, the reliability constraint was handled 

using PMA and limit state function was based on maximum allowable deflection. 

The RBTO scheme is successfully employed on other methods of topology 

optimization apart from SIMP. Kim et al. (2007, 2008) developed RBTO using ESO 

method, where the uncertainties in material property, load, and dimensions were 

considered. The implementation of reliability was performed using RIA and limit state 

function was prepared based on maximum deflection. The limit state function was 

approximated using Monte Carlo simulation and central composite design approach. 

Another work on RBTO was reported by Ouyang et al. (2008), in which topology 

optimization was carried out using level set method. In this work, they proposed a level set 

method for continuous structures. The uncertainties of load, dimensions, and volume 

fraction were included in this model and RIA was used to include the reliability constraint. 

In continuation to RBTO developments, few methods are proposed, which consider 

the non-probabilistic reliability approach. Luo et al. (2009) discussed a non-probabilistic 

RBTO methodology using a mathematical definition of non-probabilistic reliability 

index, based on the multi-ellipsoid convex model. This method was proposed for design 

of continuum structures with uncertain-but-bounded parameters in material properties i.e. 

elasticity value, geometrical dimensions and loading conditions. The problem was 

formulated in double loop where inner loop handled evaluation of non-probabilistic 

reliability index based on RIA, and outer loop treated optimum material distribution 

using SIMP. In continuation to non-probabilistic reliability approach, Kang and Luo 

(2009) proposed a non-probabilistic RBTO optimization method for design of continuum 

structures undergoing large deformations. In this model, variation of structural system 

was treated with multi-ellipsoid convex model. Proposed method gave a realistic 
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description of parameters being inherently uncertain-but-bounded or lacking sufficient 

probabilistic data. 

Recently, a single-loop system RBTO was proposed by Nguyen et al. (2011), in 

which statistical dependence between multiple limit-states were considered. This 

approach used matrix based system reliability method to compute the system failure 

probability and its parameter sensitivities. In order to improve the accuracy of reliability 

calculations with high nonlinearity, proposed method incorporated SORM, unlike 

traditional RBTO methods. To reduce computation costs, multi-resolution topology 

optimization method was used in this work. One more study was reported by Eom et al. 

(2010) recently, which combine BESO and response surface method for 3-D structures. 

Similar to past research on RBTO, this method also uses PMA and limit state function 

using maximum allowable deflection. Similarly, Yoo et al. (2011) developed a RBTO 

method based on BESO and used response surface method and successive response 

surface method to generate limit state function. Another scheme for RBTO was proposed 

by Wang et al. (2011), where they incorporated the uncertainties of loading in the 

structural system by considering the magnitude, angle of direction, and the location of 

applied load. In this model, PMA was utilized and limit state function was developed 

using deflection value. In a very recent work, Li et al. (2014) proposed a RBTO method 

based on interval parameter approach. They modified the equivalent static loads for non 

linear static response structural optimization and solved this problem for dynamic 

reliability. 

This section, presents recent development of methods to use uncertainties for RBTO 

method. In next section, a comparative summary of above review is presented. 

2.1.1 Summary of reliability based topology optimization methods 

RBTO methods developed so far use some of the commonly available techniques and 

approaches. In this section, a summary of developed RBTO methods is given to 

observe the commonalities and differences between techniques and approaches. This 

summary is prepared based on the literature survey presented in the previous section, 

consist of 21 papers. Figures 2.2-2.6 show the comparison of common techniques 

available in the aforementioned research on RBTO.  

Figure 2.shows that SIMP and software based method are highly used in RBTO. 

The remaining optimization methods i.e. BESO, SLP, SQP, and level set method are 

used in 34% of the cases. 
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Fig. 2.2: Comparison on types of topology optimization scheme 

 

Fig. 2.3: Comparison of techniques used for reliability constraint 

Figure 2.3 shows the types of approach used to incorporate reliability constraint in the 

RBTO. It can be observed that PMA is utilized to most of the cases compared to other 

approaches. 

 

Fig. 2.4: Comparison of various parameters considered in RBTO method 

Similarly, Fig. 2.4 shows the percentage of the various uncertainties considered in 

different RBTO methods. Here, the uncertainties of load is considered in most of the 

cases, while other uncertainties such as rigidity of supports and geometrical 

manufacturing error due to manufacturing process are considered in smaller number of 

cases. 
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Fig. 2.5: Comparison of types of problem  

From Fig. 2.5, it can be seen that the structural problems are dealt in most of the cases 

compared to MEMS or compliant mechanisms. 

 

Fig. 2.6: Comparison of the parameters used in limit state function in RBTO methods 

Figure 2.6 represents the percentage of parameters, which are used to define limit state 

function. Majority of RBTO method uses the maximum allowable deflection/displacement 

as limit state function to incorporate reliability constraint in RBTO method. As discussed 

earlier, the consideration of effect of uncertainties in topology optimization leads to 

reliable and robust methods. A review of robust topology optimization method is presented 

in next section. 

2.2 ROBUST DESIGN BASED TOPOLOGY OPTIMIZATION METHODS 

In recent years, extensive research has been carried out to incorporate the effects of 

uncertainty of various factors in topology optimization. Result of such method is termed 

as RTO method, which is based on robust design optimization (Beyer and Sendhoff 

2007). The theoretical foundations of robust design were laid by Genichi Taguchi, a 

Japanese engineer. According to Taguchi’s view, the traditional definitions of quality, 

etc. were inadequate. He developed his own definitions of these concepts and coined the 

definition of a robust design as: “a product or process whose performance is insensitive 
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to the uncertainty of factors, at the lowest possible cost” (Sung 1998; Montgomery 2007; 

Mitra 2008). The concept of robust design and performance is currently applied to 

numerous application and design problems. A general overview of various formulations 

to obtain robust solution for an optimization problem is available in Beyer and Sendhoff 

(2007). 

Recently, the concept of robust design is implemented for topologically optimized 

components. In this case, design is made robust against uncertainty of factors such as 

applied load, material properties, dimensions, manufacturing error, etc. In general, robust 

topology optimization problem is expressed as (Dunning et al. 2011), 
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The equation (2.8) shown above, is obtained by modifying the DTO equation (1.7). 

Here, E[C] is the expected value of compliance. The variation of compliance is limited to 

by its standard deviation, STD[C]. Here, Ŝ is the limiting value of standard deviation of 

compliance. Other terms of equation (2.8) are similar to equation (1.7). Alternatively, 

optimal robust design can be obtained by, 
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Equation (2.9) is an alternate to equation (2.8) (Lazarov et al. 2011;, 2012a; 

Richardson et al. 2013). Here the effects of uncertainties are incorporated in the objective 

function itself. The term κ controls the contribution of the standard deviation in the 

objective function. Other terms of the equation (2.9) are similar to the DTO equation 

(1.7). There are many methods available to evaluate the effect of uncertainties 
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parameters on compliance values, such as, stochastical method, Monte Carlo method, 

generation random process/field, interval analysis, etc. The methodologies developed in 

the field of robust topology optimization are focused on types of uncertainties, 

parameters and the methods to model the uncertainties. A detailed discussion on 

developed methods and approaches are presented next. 

Review on RTO: 

Use of robust design methods in topology optimization problems is initiated by Logo 

(2007). He added a deterministic constraint in topology optimization scheme to include 

allowable variations of compliance. The variations of compliance are observed due to 

random loading. Proposed method was applied using SIMP and OC method. Similarly, 

loading uncertainty was analyzed by Kogiso et al. (2008). They considered uncertainty 

of direction and values of applied load for compliant mechanisms. A sensitivity based 

robust topology optimization method for synthesis of compliance mechanisms was 

proposed by them. Gournay et al. (2008) investigated uncertainties of applied load using 

the worst-case criteria. This methodology was applied using level set method and it was 

supported by examples of 2-D and 3-D structural problems. Similar to load uncertainty, 

there can be uncertainties in other factors also. Lee et al. (2002) analyzed effects of 

uncertainties in material property, i.e. elasticity value and Poisson's ratio, on dynamic 

behavior of topology optimization problems. They used interval analysis method to 

analyze effect of uncertainties. Chen et al. (2010) modeled loading and material 

uncertainties using random fields. The randomness of factors was generated using 

Karhunen-Loeve (KL) expansion. A robust shape and topology optimization method was 

developed, which offered very low computation cost compared to available techniques. 

Dunning et al. (2011) also proposed a robust topology optimization problem based on 

level set method. In their work, uncertainties in load magnitude and its directions were 

considered. These uncertainties were incorporated similar to multiple loadings using 

their weights. The uncertainties in load values were also considered by Takezawa et al. 

(2011) by minimizing robust compliance that is defined as the maximum compliance 

induced by the worst load case. Tootkaboni et al. (2012) proposed a method that 

combined spectral stochastic approach for representation and propagation of 

uncertainties with DTO technique. In this method, extra dimension is added e.g random 

dimension, where the stochastic variability of input parameters and outputs of interest 

can be modeled. 
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Apart from the uncertainties of different factors, uncertainties of manufacturing 

process plays a greater role in the performance of topologically optimized component. 

Manufacturing errors in topologically optimized structures mainly affect the predefined 

geometry of the component, called as geometrical uncertainties. The effect of 

uncertainties due to manufacturing processes was analyzed by Sigmund (2007, 2009) 

and his coworkers. The team implemented uncertainties as either too thin or thick 

distribution of material, and used the morphological operators available in image 

processing literature. Later, a generalized modification for DTO scheme was proposed 

by Schevenels et al. (2011). They proposed a robust topology optimization method by 

incorporating the mean and the standard deviations of uncertain factors. The effects of 

manufacturing uncertainties are simulated as the too thin or too thick distribution of 

material. In this work, the simulations of uncertainties were carried out using a random 

field based projection method. Similar problem on geometric uncertainties was addressed 

by Chen and Chen (2011), using partial differential equation based level set method. 

Here, geometric uncertainties were modeled using random normal boundary velocity 

field. Lazarov et al. (2011) explored issues on projection method that suppresses gray 

scales in topology for compliant mechanisms at micro scale. Use of this method reduced 

robustness against the geometrical errors. To handle this problem, a model was proposed 

with the help of random variables, which used stochastic formulation. The method was 

robust with respect to the uncertainties of production process, i.e. without any hinges or 

small details that create manufacturing difficulties. Wang et al. (2011a) also discussed 

similar issues of mesh convergence and gray scale removal methods. A modified robust 

topology optimization formulation based on the types of projection method i.e. erosion, 

intermediate and dilation is proposed, that ensures both global and local mesh-

convergence. They applied the proposed method with slight modification on the photonic 

crystal waveguides, with consideration of manufacturing uncertainties (Wang et al. 

2011b). Amir et al. (2012) focused on issues of computation cost involved in robust 

topology optimization methods. The effect of uncertainties of manufacturing process is 

captured in their work using worst-case formulation and stochastic formulation approach. 

Lazarov et al. (2012a) considered material and geometric uncertainties. To model these 

uncertainties, stochastic collocation method was utilized. In this paper a memory-less 

spatially varying Gaussian random fields were employed to represent random variations. 

Later, Lazarov et al. (2012b) proposed a methodology that captured the manufacturing 

uncertainty using perturbation techniques. This technique offered lesser computation cost 
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compared to the previous one proposed by them. Connected to manufacturing 

uncertainties, the under and over-etching uncertainties involved in the MEMS was 

handled by Jang et al. (2012). A robust design methodology was proposed by Jansen et 

al. (2013) taking account of deformation of topologically optimized structure. They 

considered the slenderness in optimized structures that creates geometric imperfections 

i.e. misplacement and misalignment of material. In this work, geometric imperfections 

were incorporated in robust optimization scheme using stochastic random fields. 

Recently, Richardson et al. (2013) proposed a robust topology optimization method, 

which uses stochastic finite element method, with a polynomial chaos expansion to 

propagate uncertainties. The uncertain parameters were modeled using a spatially 

correlated random field, which was discretized using the KL expansion. Several 

examples are dealt to demonstrate method on both 2-D and 3-D continuum and truss 

structures. Logo et al. (2013) proposed a numerical method for uncertain loading 

positions. The optimization problem was formulated and solved using volume 

minimization subject to probabilistic compliance constraint. Guo et al. (2013) considered 

the uncertainty of boundary variations via level set approach in topology optimization 

problems. They choose the compliance and fundamental frequency of structure including 

the worst case perturbation as the objective function for ensuring the robustness of the 

optimal solution.  

The presented section elaborates the attempts to consider the effect of uncertainties 

on the topology optimization problem through the robust design methods. In next 

section, a comparative summary of this review is presented. 

2.2.1 Summary of robust design based topology optimization methods 

The developed methods for robust topology optimization utilize some of the available 

techniques and the approaches. Although there are major differences among the available 

RTO methods, but literature are compared based on methods, types of problem and types 

of uncertainties. This summary is prepared based on the literature survey presented in 

the previous section, consist of 23 papers. 

From Fig. 2.7, it is seen that the majority of these literature focus on SIMP approach. 

The reason being compatibility of SIMP with different approaches. 
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Fig. 2.7: Comparison on types of topology optimization methods  

 

Fig. 2.8: Comparison on types of problems handled in RTO methods 

In Fig. 2.8, type of problems dealt in RTO method is presented. Majority of the research 

is carried out using structural problems. A good percentage of the research can also be 

seen that utilized structural as well as compliant mechanism problems. 

 

Fig. 2.9: Comparison based on factors for which uncertainties are considered 

Figure 2.9, presents the percentage of the literature that considers effect of uncertainties. 

Most of the research is focused on effect of uncertainties due to load or force, 

manufacturing error and elasticity value. The literature reviews for reliable and robust 
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methodology in topology optimization highlights recent developments. In addition, a few 

research gaps can also be observed from the research so far, which is presented in the 

next section. 

2.3 GAPS IN THE EXISTING RESEARCH 

Based on the literature survey, gaps in the existing research are identified and discussed 

below 

• Need for a generalized method to incorporate the effect of uncertainties: The 

work carried out in literature related to reliability and robust design methods in 

topology optimization area is found out to very problem dependent. Thus, a 

generalized approach to handle different problem become a necessity. It can be 

seen that in most of the work, uncertainties of a few factors are considered. In 

most of the papers, number of factors considered for uncertainties are not more 

than three. Hence, a generic methodology should be developed, which can 

include effects of uncertainties of large number of important factor 

simultaneously. 

• Analysis of performance: By applying reliable or robust method, one can obtain 

optimal topology with effects of the uncertainties. Optimal topology generated by 

such method is the end result. These methods do not include the intermediate 

results, which may be designer's alternative. In other words, a methodology is 

required that provide performance map at different values of uncertainties of 

factors, to offer greater flexibility to designer. 

• Targeted performance problem: The effort in the available reliable and robust 

topology optimization method is to bring compliance, volume fraction, or 

deflection to its minimum values, especially for structural problems. However, 

there are certain conditions in which the designer requires a particular value of 

these outputs even in uncertain scenario. For example, optimization of a 

component of mechanism, where the deflections have to match with other mating 

part. In addition, it is also observed that, usually by application of RBTO or RTO 

the performance change from that of deterministic values. But, this is undesirable 

from designer/customer perspective. These issues are very important during 

optimization of a mechanical or structural system consisting of several 

components. Therefore, a methodology should be developed, which can address 
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the issues of targeted performance value problem considering designer/customer 

perspective. 

• Manufacturing issues: The concepts to handle manufacturing of the 

topologically optimized structures as well as the 'Design for Manufacturing' are 

still in its infancy. Therefore, specialized methods are required, which can 

generate the optimal topology considering capabilities of manufacturing process. 

Few methodologies are recently available for micro and nano fabrication domain. 

However, there are no methods available for components in macro domain. 

Hence, consideration of effects of uncertainties in macro manufacturing process 

is required to be developed. 

• Computational cost: The computational cost is one of the major concerns in 

topology optimization problems. This cost should be considered while 

developing a method to handle effects of uncertainties. For example, to model the 

effects of various parameters help of Monte Carlo method is usually taken. 

However, implementations of such methods involve huge computation cost. 

Hence, an integrated method is required that reduces computational cost. 

2.4 CONCLUSIONS 

Present chapter discusses fundamentals of reliability and robust topology optimization 

problems, with its developments. There are different methodologies proposed in 

literature and emphasis is given to the effects of manufacturing uncertainties of micro 

and nano scale components. The gaps in the available research are also identified in this 

chapter. As a whole, the work presented in this area is limited to some specific 

applications. From this survey, the need for further research has emerged, i.e. 

development of generalized method, use of statistical method for performance analysis to 

obtain targeted and robust design, manufacturing issues, reducing the computational cost, 

etc. The work presented in this thesis is motivated by these outcomes. The presented 

work takes the whole analysis one step ahead by incorporating designer and 

manufacturer's perspective. 



CHAPTER 3 

ANALYSIS OF THE PERFORMANCE OF TOPOLOGICALLY 

OPTIMIZED STRUCTURES 

3.1 INTRODUCTION 

At conceptual stage, designers/practitioners often face a challenging situation to select 

the various input factors for a targeted performance and topology. In some problems, the 

loading condition and few boundary conditions may be offered to design a component. 

The complete material domain and the amount of material, which is to be removed, are 

decided by the designer based on the compliance and deflection value. This kind of 

problem may be termed as “targeted performance value problem”, where input factors 

are decided by the targeted performance values. In such situations, it is important to 

know the overall impact of input factors on the performances. Again, in real life 

situations, these input factors may vary at manufacturing and application phases. Hence, 

it is essential to investigate the behavior of performances for various factor values. 

Nevertheless, the simulated result should be applicable to the variety of problems, 

considering the different range of factors and uncertainties involved. These results 

provide insight to designers regarding performance behavior within the identified factor 

values. To explore further, the objectives are, 

• To develop a method that explores performance behavior over the possible range 

of the factors in the realistic environment, 

• To observe the sensitivity of each factor, 

• To obtain the values of the factors for a robust design and targeted performance value. 

For this analysis, the level values of a few input factors are defined referring to the 

published literature. The experimental design combinations of input factors are generated 

using full factorial Design of Experiments (DOE) approach. The effects of uncertainties 

are also incorporated in design combinations. The generated combinations are taken as 
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the treatment combinations to topology optimization method that generates topologies 

with performance values. Here, the compliance and deflection values act as performance 

values. Effect of each factor on performance value will help to in identifying the factor, 

which has dominating nature within specified range, and interactions among them. This 

analysis is helpful to define the allowable range of input factor for a given range of 

performance values. Present chapter will become an aid to select the input factor values 

subject to a robust and targeted performance. The description of the methodology and 

analysis is given in subsequent sections. 

3.2 METHODOLOGY 

In order to achieve the objectives of this chapter, a methodology based on the DOE 

approach is developed. DOE is a systematic process to design efficient experiments. The 

objective of the experiments is to analyze the effects of several factors on the response or 

performance of a product or a process. Factors are the parameters that affect the 

performance of the process or product (Montgomery 2007). Using the normal 

experimental process, more number of experiments is required to generate the relation 

between responses and factors in a generalized way. Here, the DOE approach offers a 

scientific way to choose the number and type of experiment to reduce the cost of 

experiment without losing efficiency. This is achieved by merging the several design 

factors in one investigation instead of conducting separate investigation for each factor. 

In such way, the number of experiments decrease and detailed understating of the 

product or performance is achieved. Therefore, the statistical significance of factors can 

easily be identified, and the treatment combinations that have reduced variations in the 

performance can be found out. The steps for the methodology are given as, 

Step 1. Selection of problem and performance measures: In this step, problem is 

selected for analysis, or a given problem is well defined for its boundary 

conditions, etc. The performance measures are defined based on application 

requirements. 

Step 2. Input factors and their level values: Main input factors in the problem are 

identified and their level values are decided based on analysis requirement.  

Step 3. Noise or uncertainties: The noise/uncertainties are identified in this step. In 

normal experimental scenario these noise are difficult to control. 
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Step 4. Experimental combination set: Based on the number of input factors and 

their levels, experimental combination set is generated. 

Step 5. Selection of topology optimization method: A proper method for topology 

optimization is selected to generate optimal topology with performance values. 

Necessary changes are also incorporated in the selected method to 

accommodate uncertainties / noises of factors. 

Step 6. Simulation of performance values: Corresponding to experimental 

combination set with effect of noise, topologies and performance values are 

generated based on topology optimization method.  

Step 7. Analysis of simulated results: Using various statistical techniques the 

simulated results are analyzed. 

For illustration, the above methodology is applied to a few benchmark problems, 

which are available in topology optimization literature. For implementation, the above 

said steps are discussed in next section. 

3.3 IMPLEMENTATION OF PROPOSED METHODOLOGY 

A detailed description of the proposed methodology is presented in this section. 

3.3.1 Selection of problem and performance measures 

3.3.1.1 Description of the chosen benchmark problems 

In order to investigate the effect of input factors on performance value, various 

theoretical experiments are conducted. These experiments are performed on four specific 

types of problems that are usually analyzed by the different researchers (Bendsøe 1995; 

Rozvany 1998; Bendsøe and Sigmund 2003; Kharmanda and Olhoff 2002; Kharmanda et 

al. 2004; Patel et al. 2005; Mozumder et al. 2006; Ouyang et al. 2008; Rozvany 2009; 

Luo et al. 2009, Sigmund 2009; Tootkaboni et al. 2012). The physics of these problems 

are given below, 

Problem-1: MBB-beam with a point load, as shown in Fig. 3.1(a). This problem is a 

reduced form of a simply supported plate and is well analyzed for different formulation 

and fundamental changes, by the various researchers. The problem is named based on a 

German aircraft company “Messerschmidt-Bolkow-Blohm”, and famous as “MBB 

beam” in the literature (Rozvany 1998). 
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Fig. 3.1: Selected benchmark problems (a) MBB-Beam (b) cantilever plate 

(c) cantilever plate with a hole (d) simply supported plate 

Problem-2: The second problem is chosen as a simple cantilever plate, shown in 

Fig. 3.1(b). The lower right end of the plate is subject to a point load. This problem is 

analyzed by the various researchers. Hence, the values of the various factors and 

uncertainties can be directly referred from the available literature. 

Problem-3: The third problem is a variation of a simple cantilever plate and shown in 

Fig. 3.1(c). This problem has a predefine hole in the material domain. Thus, high 

performance values, i.e. compliance and deflections are obtained compared to problem-

2. In other words, the comparative results of problem-2 and 3 will help to analyze the 

effect of a slight change in the shape of the structure for same boundary conditions.  

Problem-4: The fourth problem is a simply supported plate with a point load acting at 

the lower mid part, in downward direction and shown in Fig. 3.1(d). Like cantilever 

plate, this problem is also analyzed by the various researchers. 

These problems are the basic building blocks of any structural system, which provide 

the basic guideline for analysis of structural system. 

3.3.1.2 Performance measures 

In order to analyze the performance of structural problems, maximum deflection and 

minimum compliance values of optimal topology are selected as the performance 

measures. These two measures are frequently used in the available literature as discussed 

in section 2.1.1 and 2.2.1. Since structural problem selected are optimized for the 

minimum compliance, its values can be directly computed from objective function 

(equation 1.7). Similarly, value of maximum deflection is computed using the finite 

element routine in-built in topology optimization scheme. These performance measures 

are obtained as output of simulation, as shown in process diagram Fig. 3.2. 

(a)                                     (b)                                  (c)                                (d) 

F 

F 
F F 
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Fig. 3.2: Process diagram for generation of performance and optimal topology 

3.3.2 Input factors and their level values 

For the selected benchmark problems, applied force, volume fraction, and aspect ratio 

are identified as the input factors. The input factors are selected based on the discussion 

in section 2.1.1 and 2.2.1. Applied force and volume fraction are very sensitive for 

optimal topology and its performance values. Dimensions of the initial material domain 

also play an important role in the generation of optimal topology. In case of 2-D 

problems, the domain is usually kept as rectangular (Bendsøe 1995; Rozvany 1998; 

Bendsøe and Sigmund 2003). Here, the dimensions are considered in terms of aspect 

ratio. For problem-1, material domain with aspect ratio is shown in Fig. 3.3. Similarly, 

material domains are defined for other problems. Different levels of factors values are 

utilized to generate input factor combinations using DOE. The factor combinations are 

input for simulation process, as shown in Fig. 3.1. 

 

Fig. 3.3: MBB beam with aspect ratio (a) 1.2 (b) 1.4 & (c) 1.6 

3.3.3 Uncertainties due to non-controllable factors 

For a particular problem, conditions of applied force and material property are 

considered as non-controllable factors. The details are presented below. 
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3.3.3.1 Uncertainties due to applied force 

In deterministic condition, the load vector is fixed with respect to point of action on the 

body. However, due to the involvement of different imperfections and errors, though 

minor, the location of point of action may change from its desired position. These loads 

may deviate by some small angle or some linear distance or combination of both as 

summarized in Table 3.1. 
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(c) (d) 

Fig. 3.4: Loading conditions for (a) problem-1, (b) problem-2, (c) problem-3, 

(d) problem-4 
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To incorporate these effects in applied force, different cases are assumed, which are 

shown in Fig. 3.4. In case of simply supported plate, only angular deviations are taken 

whereas linear deviations are not considered because this condition will lead to 

unsymmetrical loading. 

Table 3.1: Different loading cases for the bench mark problems 

Case Deviation from exact position 

1 Load at the exact position 

2 +10
0
 angular deviation from the case 1 

3 -10
0
 angular deviation from the case 1 

4 Linear deviation of 10% of the beam length  

5 +10
0
 angular deviation from the case 4  

6 -10
0
 angular deviation from the case 4  

3.3.3.2 Material uncertainty 

Variations in material property are other noises/uncertainties, which are considered in 

present work. It is incorporated by the manipulation of material property i.e. modulus of 

elasticity. To enable perturbation in modulus of elasticity, Gaussian distribution is 

chosen. The range of variation is decided based on the previous work which deals with 

material uncertainty issues (Maute and Frangopol 2003; Jung and Cho 2004; Kharmanda 

et al. 2004). The values of modulus of elasticity are randomized for each finite element 

cell with a mean value and standard deviation of 200 GPa and 6.667 GPa respectively. 

The poison's ratio is taken as 0.3. The process shown in Fig. 3.2 is followed to 

incorporate the effect of material uncertainty in simulation. 

3.3.4 Experimental combination set 

Here, experimental combination set are formed using DOE approach. In order to create a 

space of chosen input factors, technique of full factorial design is adopted. A full 

factorial design is used to evaluate more than one factor simultaneously. It requires the 

selection of performance values and factors with their level values. To generate 

experimental combinations 
k3 full factorial design approach is utilized, where k  is the 

number of input factors and 3 is the number of levels considered for input factors (Mitra 

2008; Montgomery 2007). The rationale behind this selection is to observe the non-linear 
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relationship between the input factors and output (i.e. performance values). For example, 

if there are three factors A, B and C and their levels are a, b , and c  respectively, then 

each replicate contains all cba ×× experimental combinations. One of the special cases 

is that of k  factors, each at three levels. A complete replicate of such design requires 

k3....333 =×××  combinations and called as k3 factorial design. For example, 

experimental combination for two factors (i.e. 2=k ) with three levels is shown in 

Table 3.2. The levels of each factor is represented as +1, 0 and –1, which denotes high, 

middle, and lower level values, respectively. 

Table 3.2: Example of a 23 factorial design 

Combination 

Number 

Factors 

A B 

1 +1 +1 

2 0 +1 

3 –1 +1 

4 +1 0 

5 0 0 

6 –1 0 

7 +1 –1 

8 0 –1 

9 –1 –1 

If more than three level values are selected, then the number of experimental 

combinations and computational burden will increase substantially, to observe the same 

non-linear behavior. For the present investigation, the level values of selected input 

factors are chosen and provided in Table 3.3.  

Table 3.3: The level values of selected input factors 

Level Force (N) Volume fraction Aspect ratio 

1 100 0.4 1.2 

2 120 0.5 1.4 

3 140 0.6 1.6 
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The aim of the presented investigation is to analyze the performance for predefined 

factor levels. This is purely based on the choice of designer. The result of this 

investigation will be valid for the selected levels. In present case, all factor levels are 

uniformly spaced. For, selected problems 3
3
 design is chosen which lead to 27 

combinations of input factors as shown in Appendix A1. It is notable that based on the 

values of forces, stress generated for all problems are in safe region. Thus, stress values 

induced in structures are not used as one of the performance measures. 

3.3.5 Application of SIMP to generate optimal topology 

Out of available methodologies, discussed in Chapter 1, SIMP method is chosen for the 

work presented in this thesis. SIMP is generally accepted by topology optimization 

groups and a plenty of research is carried out on different issues, using this method. As 

a result, many filtering techniques are available for the different complexities such as, 

local minima, gray scale (or intermediate density) removal, mesh-independency, 

checkerboard pattern, one node connected hinges, etc. (Sigmund and Petersson 1998; 

Blaise 2001, Bendsøe and Sigmund 2003; Svanberg and Svard 2013). The usage of 

these techniques is confirmed on different problems by researchers. In addition, SIMP 

based solutions show closeness to analytical optimal truss structures of benchmark 

problems (Rozvany 2009). Due to these characteristics of SIMP, almost all industrial 

applications of topology optimization use this method (Rozvany 2009). 

The discretized topology optimization equation (1.7) was presented in section 1.2.1. 

This equation can be solved by a suitable optimization technique such as SLP, SQP, OC, 

MMA, etc. These optimization techniques require nodal deflections subject to boundary 

conditions. Thus, a FE method based routine is also needed to complete the optimization 

process. For the selected benchmark problems, OC method is chosen for the 

optimization. OC is widely used by the researchers because of its simplicity in 

application and suitability in single constraint problems. In the next section, application 

of OC is explained along with FE procedure. 

3.3.5.1 Optimality criterion method 

OC method aims to prepare an iterative procedure to update the design variables. The 

generalized problem is given in equation (1.7). Here the upper and lower bounds of the 

density parameters are one and xmin, instead of one and zero. The lower bound is assigned 
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a finite minimum value to avoid any possibility of the singularity in the equilibrium 

equation. With Lagrange multipliers, equation (1.7) can be written as, 

 ∑ ∑
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Assuming that, the upper and lower bounds constraints are not active, i.e. 032 == ii λλ , 

and the loads are independent of design, i.e. 0=
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By incorporating these assumptions and putting the values of C from equation (1.5), 

equation (3.2) is written as, 
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By putting the optimality condition in equation (3.5), the design variables can be updated as, 
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This quantity is defined as a heuristic parameter e

kB ,  
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The updating of the design parameter will be carried out as, 
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In order to avoid the abrupt change in design variable a moving limit, m~  is introduced. 

Finally, the heuristic scheme (Bendsøe 1995) is formulated as, 
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where, 2/1=η  is a numerical damping coefficient, m~  is the move limit set as 0.2. 

Presented OC method is applied to compute the density parameter x, iteratively. In order 

to solve force-displacement equation in the topology optimization process, FE method is 

applied, which is explained next. 

3.3.5.2 Finite Element Method 

The chosen benchmark problems are example of plates. Hence, these problems are 

handled using plane stress condition. For these plates the functional of complete potential 

energy is written in following form, 

 ∫∫ −Ω=
Ω L

TT

PE dLdP dFσε
2

1
 (3.10) 

where, ε ,σ, F , andd are the vectors of strain, stress, applied load and displacements, as 

given below. dLd ,Ω are the infinitely small element of two-dimensional area and 

outline. 
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where, xyyx τσσ ,, are normal and tangential stresses, xyyx γεε ,,  are linear and angular 

strains, vu,  are linear displacements of the points on the middle plane of plate 

corresponding to axes X and Y. yx pp , are the vector components of external loading 

corresponding to axes X and Y respectively. For isotropic material, the relation of stress 

and strain is written as, 
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or, Eεσ =  (3.16) 

where, E is the modulus of elasticity andυ is the Poison's ratio 
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or,  Ddε =  (3.18) 

In order to form the stiffness matrix, displacement approximation is required for 

finite element, which relates stiffness matrix with the degrees of freedom. In order to 

select an element type, its applicability in topology optimization is considered. The 

various filtering techniques developed for topology optimization are based on 4-node 

quadrilateral elements (Q4) (Sigmund and Petersson 1998; Blaise 2001, Bendsøe and 

Sigmund 2003; Svanberg and Svard 2013). Thus, it becomes the necessary to choose Q4 

elements (Fig. 3.5) for FE analysis. Following form of polynomials are chosen to 

connect four nodes of Q4 element with necessary quantity of constant coefficients of the 

approximation functions. 

 XYaYaXaaYXu 4321),( +++=  (3.19) 

 XYaYaXaaYYv 8765),( +++=  (3.20) 
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The nodal displacements and nodal reactions are given as, 

 [ ]T
vuvuvuvu 44332211=d  (3.21) 

 [ ]Tyxyxyxyx RRRRRRRR 44332211=R  (3.22) 

The stiffness matrix K of dimension 8×8 connects these vectors as, 

 KdR =  (3.23) 

 

Fig. 3.5: Quadrilateral finite element 

The approximation functions for four nodes is represented in a form of matrix using 

equations (3.19) & (3.20) 
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Equations (3.24) & (3.25) is represented as 

 Cad =  (3.26) 

The coefficients are computed as, 

 dCa 1−=  (3.27) 
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For a Q4 element, approximation functions are given as, 
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where )2,...81,( =id i are degrees of freedom of element, and )8,...2,1( =iN i are nodal 

functions. The approximation function is expanded as, 
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Now, the stiffness matrix is computed based on following relation, 

 ∫
Ω

Ω= rijrij dk εσ)(  (3.32) 

where, jσ  and iε  are stress and strain, respectively. The expression for stiffness is 

obtained using plane stress condition (equations (3.16) & (3.18))  

 ∫ ∫=
a

j

b

T

iij dxdyThk
0 0

)( εEε  (3.33) 

where Th is thickness of the plate. The overall stiffness matrix takes following form, 
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Based on the relation given in equation (3.33) stiffness matrix is computed as, 
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where, 
a

b
m =  (as shown in Fig. 3.5). 

The obtained stiffness matrix is used in the equation (3.23). According to the 

problem domain, elemental equations are assembled and nodal deflections corresponding 

to the boundary condition can be computed. The nodal deflections are then utilized by 

OC method to compute objective function and constraints values iteratively. An 

algorithm is developed to generate optimal topology with performance values using OC 

and FE routine. The steps used for this algorithm are given below, 

Step 1. The objective function and constraints for the problem are defined. Then, domain of 

material, desired volume fraction, force value, material properties i.e. Young’s 

modulus and Poisson's ratio, mesh size of domain, and penalization power are chosen 

Step 2. First iteration is started with initial guess of density parameter x 

Step 3. Stiffness matrix of material domain based on density matrix is computed 

Step 4. The deflection at each node is calculated by finite element formulation, 

incorporating random field of elasticity value to simulate material uncertainty 

Step 5. Objective function is computed and sensitivity analysis is carried out based on 

density matrix. Then, deflection values of each node are computed 

Step 6. Mesh independency and optimality criterion formulations are applied to update 

the density parameter values 

Step 7. The convergence is checked for the result, based on change in density value 

before and after iteration 
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Step 8. If convergence is not achieved, steps 3-7 are repeated. If convergence is 

achieved, then iteration is terminated and the performance values are obtained 

To simulate the results, experimental combinations are generated using DOE 

approach, which is explained in next section. 

3.3.6 Simulation of performance values 

A code is written in MATLAB that uses experimental combinations to simulate the 

performance values. This code is prepared using the optimization and FEM routine 

provided by Sigmund (2001) and Andreassen et al. (2011). To maintain the consistency 

in the results, the same code is utilized throughout the thesis for the generation of 

optimal topology and performance values. The penalization power is chosen as three. For 

detailed discussion on penalization-power work by Bendsøe and Sigmund is referred 

(Bendsøe 1995; Bendsøe and Sigmund 2003). Each combination of input factor is used 

to simulate the performance value, in the environment of loading and material 

uncertainties. Since the loading uncertainties (loading cases 1-6, Table 3.2) were not 

incorporated inside SIMP routine, each combination is repeated for specified loading 

conditions. Thus, for problems-1, 2, and 3, six different performance values are obtained, 

and for problem-4, three performance values are obtained for each combination. The 

simulated results are analyzed using statistical methods.  

3.3.7 Analysis of simulated results 

As mention earlier, for each combination of factors, there are set of performance values 

corresponding to the noise or uncertainty conditions. Analysis of these performance 

values are utilized to generate necessary information regarding the combination. These 

informations are, impact of each factor on the performance, mutual interactions of 

factors, significance of factors, and the most and least sensitive factors in terms of 

performance variation. Along with this information, an important analysis is performed 

which addresses robust and targeted performance for different combinations. In order to 

perform this analysis statistical techniques such as Analysis of Mean (ANOM), Analysis 

of Variance (ANOVA) are used (Mitra 2008; Montgomery 2007). Description of these 

techniques with analysis of simulated result is given in next section. 
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3.4 ANALYSIS AND DISCUSSION 

In this section, optimal topologies of the benchmark problem are presented. 

Subsequently description of techniques such as ANOM, and ANOVA are presented with 

their applications. Analysis of robust and targeted performance and parametric sensitivity 

is described later. 

3.4.1 Optimal topologies of bench mark problems 

In order to generate optimal topology, experimental combinations set with uncertainties are 

utilized in SIMP. The generated optimal topologies are shown in Table 3.4. These results 

are shown only for loading case 1 (Table 3.2) because total number of topologies 

generated for all loading cases are very large (i.e. 567). From this table, differences in 

topologies for various combinations of input factors are easily observed. There are 

variations in optimal topologies because of the factor values and material uncertainties. It 

has been observed that aspect ratio and volume fraction are the factors, which change the 

topology. Effect of force on optimal topology is minimum compared to these factors. In 

present work, compliance and deflection values are comprehensibly analyzed keeping 

optimal topologies in mind. Reason being, optimal topology is nothing but function of 

density parameters, and same density parameter is utilized to compute compliance and 

deflection. The changes in compliance and deflection values indicate either marginal 

change in shape/size of the topology or change in the topology. 

3.4.2 Analysis of mean 

The analysis of obtained results is carried out using analysis of mean (ANOM). ANOM 

is a statistical technique to analyze interaction among the factors, their significance, and 

sensitivity on the performance values (Mitra 2008; Montgomery 2007). In present case, 

ANOM is performed for three factors with three levels of each. In this section ANOM of 

compliance and deflection are presented for all problems. The simulated compliance 

values are used to compute mean for each combinations. Thus, 27 such mean compliance 

values are generated for a single problem. These mean compliance values for four 

benchmark problems are summarized in Appendix A2-A3. Now, these mean compliance 

values are consolidated further to identify the effect of each factor level on compliance. 

Since, three input factors are considered in this work, so three curves are plotted for each 

problem, as shown in Fig. 3.6. Considering problem-1, the combined effect of variation 

of factors is shown in Fig. 3.6(a). 
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Table 3.4: Optimal topologies for loading case 1 for different combination of factor 
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It is observed that all three factors have strong interaction with each other. Meaning 

that effect of a factor on compliance is linked with other factors. And the change of all 

factors affect the compliance value. As the material domain understudy is rectangular, 

obtained results validate obvious relationship of length to width ratio on compliance value. 

Figs. 3.6(b) & (c) show factor effect in the case of problem-2 and problem-3, respectively. 

The behavior is almost same in both cases. However, compliance value in 

Fig. 3.6(c) is high because of the hole in plate. Three factors are have good interaction 

with each other, and almost equally influential. In Fig. 3.6(d), effect of factors can be 

observed for problem-4. Compliance value in this case is lesser than all other problems. 

This difference in compliance value is supported by theory of beams also. For 

problem-4, all the factors have similar behavior compare to other cases. The behavior 

of three factors is similar to other cases. In all these observations impact of factors are 

more or less same because of similar physics of problems.  

  
          (a)             (b) 

  
           (c)           (d) 

Fig. 3.6: Effect of input factors on the compliance value for (a) problem-1, 

(b) problem-2, (c) problem-3, (d) problem-4 
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Similar to compliance, another performance value i.e. maximum deflection of each 

problem is also simulated using SIMP method. ANOM is performed for mean 

deflection and results are presented in Fig. 3.7. It can be observed from Fig. 3.7 that all 

the factors have good interactions. Volume fraction is found to be influential factor and 

force appears to be least influential. Also, volume fraction shows highest nonlinearity, 

while aspect ratio shows a linear behavior. The results shown in Figs. 3.6 & 3.7 can be 

utilized to generate topology for a required value of compliance. For example, to 

design a MBB-beam with a low compliance value, force should be at ‘level 1’; volume 

fraction should be at ‘level 3’ and aspect ratio should be at ‘level 1’. 

  
            (a)              (b) 

  
             (c)               (d) 

Fig. 3.7: Effect of input factors on the deflection values for (a) problem-1, 

(b) problem-2, (c) problem-3, (d) problem-4 

3.4.3 Signal to noise ratio 

In order to capture the variations in performance value for different combinations, a 

statistical measure SNR proposed by Taguchi, is employed (Sung 1998; Mitra 2008; 

Montgomery 2007). The variation in performance value is representation of degree of 

0.00

0.01

0.02

0.03

0.04

0.05

1 2 3

D
e

fl
e

ct
io

n
 (

m
m

)

Level

F A V

0.00

0.01

0.02

0.03

0.04

1 2 3

D
e

fl
e

ct
io

n
(m

m
)

Level

F A V

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3

D
e

fl
e

ct
io

n
(m

m
)

Level

F A V

0.000

0.002

0.004

0.006

0.008

0.010

1 2 3

D
e

fl
e

ct
io

n
(m

m
)

Level

F A V



Analysis of the performance of topologically optimized structures 

-53- 

robustness of design. Hence, based on SNR, robustness of each combination can be 

obtained. In present case, signal refers to performance value i.e. compliance and 

deflection and noise refers to its variation about mean performance values. For chosen 

structural problems, both performance values should be minimum. Hence, SNR with 

"smaller the better" criterion is chosen, and accordingly its computation is carried out. 

Mathematically, SNR is a negative log of mean of squared deviation, as shown in 

equation (3.36), 

 ∑
=

−=
n

i

iC p
n

SNR
1

2

10

1
log10  (3.36) 

where, pi is the performance value for each simulation. In present case, performance 

value is computed corresponding to each loading condition. Hence, for problem-1, 2 

& 3, i =1 to 6, and for problem-4, i =1 to 3 is used in equation (3.36). In this way, 

using equation (3.36), SNR is computed for each combination. The computed SNR 

for each problem are specified in Appendix A2 & A3, for compliance and deflection 

respectively. It is observed that 7th combination has the highest SNR value. It 

indicates that combination 7 is robust compared to others. Also, standard deviation is 

observed to be lowest for the same combination in all considered problems. The 

lowest SNR is observed for 21st combination. Hence, this factor combination 

produces the poor design, which implies a high variation compared to other 

combinations. Similarly, all the combinations can be compared for their robustness of 

design. Thus, SNR analysis can be utilized to select combinations based on required 

robustness of design. 

3.4.4 Analysis of variance 

To investigate the impact of change of factor levels on simulated performance values, 

analysis of variance (ANOVA) technique is used. ANOVA is a statistical technique to 

analyze variation of different group of input factors. Thus, ANOVA helps in identifying 

statistical significance of factors. The procedural details are available in Mitra (2008) and 

Montgomery (2007). In present case, ANOVA is performed using Design Expert 

software (2011) at 5% level of significance. The symbols A, B, and C are used in 

ANOVA to denote aspect ratio, volume fraction and force respectively. Results of 

ANOVA are summarized in Tables 3.5 and 3.6 for compliance and deflection 

respectively. 
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Table 3.5: Statistically significant factors from ANOVA, for compliance 

Bench Mark 

Problems 
Statistically Significant Input factors 

Problem-1 A, B, C, AB, AC, BC 

Problem-2 A, B, C 

Problem-3 A, B, C, AB 

Problem-4 A, B, C 

Table 3.6: Statistically significant factors from ANOVA, for deflection 

Bench Mark 

Problems 
Statistically Significant Input factors 

Problem-1 A, B, C, AB, AC, BC  

Problem-2 A, B, C, AB 

Problem-3 A, B, C, AB 

Problem-4 A, B, C, AB, AC, BC  

Apart from above analysis, half-normal plots (HNP) are also used for these problems. 

HNP, as a part of ANOVA have been provided here to highlight the influence of change 

in level values of input factors on simulated results (Montgomery 2007). In this method, 

responses that are negligible are normally distributed with zero mean and variance, and 

these tend to fall along a straight line for this plot. Whereas statistically significant 

effects will have nonzero means and will not lie along the straight line. Thus, the 

preliminary model will be specified to contain those effects that are apparently nonzero 

means, based on normal probability plot. To plot HNP, help of Design Expert (2011) 

software has been taken. Figs. 3.8 & 3.9 show HNP for compliance and deflection 

respectively. These results are similar to the result available in Tables 3.5 & 3.6. 

While performing ANOVA, a regressive relation among factors and performance 

value is also derived. This relation may be linear or nonlinear based on number of levels 

selected for factors. The linear and nonlinear relations are presented in equations (3.37) 

and (3.38) respectively. 

 rfcfcRe kk εβββ ++++= ˆˆˆ
110 L  (3.37) 
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1

0  (3.38) 

where, Re is response or performance value, fc's are the selected factor. β̂ 's are the 

numerical constants, and ɛr is error. The functional relationships for all the problems are 

presented in Tables 3.7 and 3.8 for compliance and deflection respectively. 
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Fig. 3.8: Half -Normal plot for (a) problem-1, (b) problem-2, (c) problem-3, 

(d) problem-4, considering compliance values 
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Fig. 3.9: Half -Normal plot for (a) problem-1, (b) problem-2, (c) problem-3, 

(d) problem-4, considering deflection values 
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Table 3.7: Functional relationship between compliance values and the input factors  

Benchmark 

Problems 
Functional relationship in coded values* 

Problem-1 

Compliance = 3.214934 -0.87828 × A -0.02643 ×A2 + 0.850433 × B -

0.14788 × B2 -1.01993 × C - 0.05881 × C2 - 0.28209 × AB - 0.00467 × 

A2B + 0.070908 × AB2 + 0.006984 × A2B2 + 0.274867 × AC + 0.006549 × 

A2C + 0.016647 × AC2 - 0.0031 × A2C2 - 0.27009 × BC + 0.045336 × B2C 

- 0.0168 × BC2 + 0.005115 × B2C2 

Problem-2 
Compliance = 2.70664-0.69583 × A + 0.049082 × A2 + 0.844208 × B - 

0.14823 × B2 - 0.86214 × C - 0.05074 × C2 

Problem-3 

Compliance = 3.886914 + 0.482457 × A + 0.141772 × A2 - 0.53836 × B + 

0.082959 × B2 + 0.761738 × C - 0.22716 × C2 - 0.7823 × AB + 0.151402 × 

A2B + 1.537121 × AB2 - 0.36245 × A2B2 + 0.022964 × AC + 0.059304 × 

A2C - 0.03548 × AC2 + 0.019475 × A2C2 - 0.35736 × BC - 0.08214 × B2C 

+ 0.077162 × BC2 + 0.011577× B2C2 

Problem-4 
Compliance =0.80723+0.3123 × A - 0.08274 × A2 - 0.25596 × B - 0.01466 

× B2 + 0.006663 × C - 0.09836 × C2 

*The coded values are: A=[-1, 0, +1], B=[-1, 0, +1] and C=[-1, 0, +1] 

 where -1, 0, +1 refers to the level values 1, 2 and 3 respectively of Table 1. 

 

Table 3.8 Functional relationship between deflection values and the input factors  

Benchmark 

Problems 
Functional relationship in coded values* 

Problem-1 
Deflection=0.03-0.008287 × A-0.000848 × A2+0.010762 × B-0.002457 × 

B2-0.005007 × C-0.003155 × AB-0.000661×A2B +0.000637 × 

AB2+0.001375 × AC+0.000137 × A2C-0.001790 × BC+0.000418 × B2C 

Problem-2 
Deflection=0.025651 -0.006762  × A +0.000245  × A2+0.009785  × B -

0.001919  × B2-0.004279  × C -0.002469  × A B +0.000156  × A2B 

+0.000447  × A B2 

Problem-3 
Deflection=0.040492 -0.007938  × A +0.000883  × A2+0.011037  × B -

0.002831  × B2-0.006681  × C -0.003501  × A +0.001392  × A2B 

+0.000922  × A B2-0.000416  × A2B2 

Problem-4 
Deflection=0.006567 -0.001460  × A -0.000116  × A2+0.002450  × B -

0.000586  × B2-0.001097  × C -0.000935  × A B +0.000234  × A 

B2+0.000234  × A C -0.000398  × B C  

*The coded values are: A=[-1, 0, +1], B=[-1, 0, +1] and C=[-1, 0, +1]  

where -1, 0, +1 refers to the level values 1, 2 and 3 respectively of Table 1. 

3.4.5 Targeted performance values 

One of the important outcomes of presented work is to select the input factor 

combination based on the targeted compliance and deflection value. This investigation 

opens up a very interesting option for designer at conceptual design phase. The targeted 

performances are mean performance values corresponding to each combination. The 
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values of mean compliance and deflection are given in Figs. 3.10 & 3.11 respectively, 

for all the problems. 

 

Fig. 3.10: Comparison of mean compliance against combination numbers 

 

Fig. 3.11: Comparison of mean deflection against combination numbers 

These figures show mean performance value against the combination number. It is 

observed that for each problem, many values of compliance and deflection are close to 

each other. From these values, alternative factor combination can be chosen for a 

targeted performance. Thus, this activity provides flexibility to the designer for selection 

of favorable combinations. 

3.4.6 Parametric sensitivity 

To investigate further, performance values are simulated by incrementing input factors 

individually. While doing so, other factors are held constant. For this purpose, another 

code is written in MATLAB. The range of applied force is selected from 90 N to 150 N 

having increment of 5 N. Volume fraction ranges from 0.1 to 0.8 having increment of 
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0.1. Similarly, range of aspect ratio is selected from 1.0 to 2.0 having increment of 0.2. 

During simulation, value of a factor is incremented whereas the other two factors are 

kept constant at level 2 (Table 3.3). At the same time, effect of force and material 

uncertainties are not used in simulation. The simulated results are presented in Figs. 3.12 

& 3.13, for compliance and deflection respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.12: Variation of compliance for four problems, (a) force, (b) volume fraction 

and, (c) aspect ratio 
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From Fig. 3.12, it is observed that factors are having non-linear relationship with 

compliance value. Force vs compliance variation (Fig. 3.12(a)) is nonlinear and has an 

increasing trend. Compliance value is highest for problem-3 and lowest for problem-4, as 

expected. Effect of volume fraction is observed in Fig. 3.12(b).  

 
(a) 

 
(b) 

 
(c) 

Fig. 3.13: Variation of deflection for four problems, (a) force, (b) volume fraction 

and, (c) aspect ratio 
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The curve is very steep for initial values (0.1-0.3). However, small volume fractions values 

are not usually selected for structural problems. The high value of compliance is obtained 

for problem-3 and small value for problem-4. Fig. 3.12(c) shows effect of aspect ratio 

variation on compliance. The observations are similar to that of previous factors. 

From Fig. 3.13, it is observed that applied force has linear relation, whereas volume 

fraction and aspect ratio have non-linear relation with deflection value. These variations 

are supported by theory of deflection of beams. The relationship of factor with 

compliance and deflection are found to be similar 

The analysis presented here using individual factor helps to emphasize the significance 

of DOE based analysis, performed in earlier sections. The various inferences regarding 

factor vs performance were obtained using DOE approach. These inferences would be very 

difficult to derive from the individual factor analysis. Reason being, DOE method 

facilitates a systematic incorporation of factor levels including uncertainties/noise. Thus, it 

enables various statistical techniques to analyze obtained results efficiently. 

3.5 CONCLUSIONS 

This chapter focuses on the behavior of performance value of topologically optimized 

structure with respect to selected factors. Current analysis helps in identifying the optimum 

values of these factors subject to robust and targeted performance. To achieve these 

objectives, a methodology based on DOE approach is proposed. For this purpose, applied 

force, volume fraction, and aspect ratio of material domain were the selected factors. 

This methodology was applied to four benchmark problems and optimum factor values 

were obtained, which will be utilized further for different investigations. For problem-1, 2, 

and 3, the most and least significant factors are force and aspect ratio, respectively when 

compliance is the performance measure. For same performance measure, aspect ratio and 

force are the most and least significant factor in problem-4. For all the problems, the most 

and least significant factors are volume fraction and force, respectively, when deflection is 

the performance measure. From the analysis of SNR and targeted performance values, it is 

found that 7th combination has highest SNR, with minimum compliance and deflection 

values. Whereas, 21st combination has smaller SNR with highest compliance and 

deflection values. It can also be observed that the combination having low performance 

values show high SNR. To differentiate between deterministic and realistic scenario, 

individual factor analysis was also presented in this chapter. The proposed methodology of 
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performance analysis is one-step ahead of simple deterministic method, because of the 

consideration of noises. These noises are embodiment of realistic scenario of material 

uncertainty and loading conditions, which were modeled based on worst-case scenario. 

The presented analysis of performance can be made more comprehensive by including the 

uncertainty of the design/controllable factors. 



CHAPTER 4 

ANALYSIS OF PERFORMANCE FOR RELIABLE AND 

OPTIMAL TOPOLOGIES OF STRUCTURES 

4.1 INTRODUCTION 

The practical design and applications of structures require specialized and accurate 

approaches to evaluate the effect of uncertainties in applied force, material property, 

geometry, manufacturing processes, and operating conditions. In such scenario, the 

reliability-based methods are applied to improve the safety and performances of the 

structures. As discussed in sections 2.1 and 2.3, the RBTO methods developed so far are 

not generalized for different factors and uncertainties, which can evaluate impact of 

uncertainties on the performance behavior. Present chapter proposes a generic 

methodology that explores the impact of uncertainties of the factors and focuses on the 

issue of analysis of the performance considering reliability aspect. 

Analysis of performance of topologically optimized structures, in a realistic 

environment was already attempted in Chapter 3. In that chapter, applied force, 

volume fraction, and aspect ratio were considered as controllable factors. The effect 

of noises/uncertainties was considered in terms of elasticity values, and angle and 

point of applied force. However, uncertainties of controllable factors were not 

considered earlier. This investigation helped in analyzing impact of each factor in the 

environment where each factor level varies. The analysis carried out by this approach 

was more realistic compared to "one factor at a time" case. In addition, the optimal 

value of factors for targeted and robust performance was also obtained. Hence, 

looking at the usefulness of proposed methodology in previous chapter, it is desired 

to include the uncertainties of controllable factors, to make analysis more realistic 

and robust.  
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In the present chapter, same controllable factors are used to analyze further. There 

are many methods available to incorporate effect of uncertainties of controllable 

factors, such as Monte-Carlo, RBTO, or DOE based method. Monte-Carlo method is 

computationally expensive, more specifically in the topology optimization problems 

(Javed et al. 2011). Hence, this method is avoided. The alternate choice is to use a 

suitable RBTO method, which offers lesser computations, or to use DOE approach 

that can include both types of uncertainties. The background of RBTO and its various 

aspects of applications are reviewed in Chapter 2. RBTO is evolved from a broad 

field of Reliability Based Design Optimization (RBDO) (Tu and Choi 1999). The 

main idea of RBDO is to combine design optimization with probabilistic constraints. 

RBTO schemes easily accommodate uncertainties of controllable factors and 

generate performance values subject to a desired reliability. Looking at an additional 

consideration of reliability aspect, RBTO method is chosen here. However, RBTO is 

inefficient in considering uncertainties of point and angle of applied force and 

elasticity. Also, with RBTO, it is difficult to conduct analysis of performance of 

structural component at each point of a desired design space. To overcome these 

problems, DOE approach is combined with RBTO. Hence, present work proposes a 

methodology that combines advantages of DOE and RBTO. Here, DOE is utilized to 

include uncertainty of point and angle of applied force and elasticity and RBTO is 

utilized to include effect of uncertainties of controllable factors. The performance 

values are simulated based on this methodology and analyzed using statistical 

techniques such as ANOM and ANOVA. In order to emphasize effects of 

uncertainties, the results from this analysis are compared with deterministic results. 

4.2 METHODOLOGY 

As discussed earlier, current work explores impact of both types of 

noise/uncertainties on topologically optimized structures. The process diagram of the 

proposed method is shown in Fig. 4.1. In this figure, the input to the simulation 

process is factor levels, and noises, simulation is performed using RBTO. The output 

from this simulation process is reliable optimal topology with performance values. 

The steps of the proposed methodology are given as, 
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Fig. 4.1: Process diagram of the proposed methodology 

Step 1. Selection of the problem and performance measures 

Step 2. Selection of factors and their level values 

Step 3. Identification of noise or uncertainties 

Step 4. Generation of experimental combination set  

Step 5. Simulation of performance values using RBTO 

Step 6. Analysis of results 

Above steps are used to simulate the performance and reliable optimal topology of 

structure. The implementation of these step are described in the next section. 

4.3 IMPLEMENTATION OF PROPOSED METHODOLOGY 

In the present work, following steps are employed to analyze the performance of reliable 

optimal topology of components. 

Step 1. Selection of the problem and performance measures: For illustration, four 

benchmark problems are chosen as described in section 3.3.1.1. The 

performance measures are selected as compliance and deflection values, 

described in section 3.3.1.2. 

Step 2. Selection of the factors and their level values: The factors selected for 

analysis are, applied force, volume fraction, and aspect ratio. Their level values 

are available in Table 3.3 and the detailed discussion on this selection is 

available in section 3.3.2. 

Step 3. Identification of noise or uncertainties: Effect of noise is incorporated by 

loading conditions and material uncertainties as described in sections 3.3.3.1 
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S 

µ 

and 3.3.3.2. The noise of controllable factors i.e. applied force, volume fraction, 

and aspect ratio, are incorporated using their nominal and standard deviation 

(SD) values. Their nominal values are equal to their level values. The SD's of 

factors are selected in terms of variation around nominal values. These 

variations are assumed as Gaussian distribution (Maute and Frangopol 2003; 

Kang et al. 2004; Jung and Cho 2004; Khramanda et al. 2004). From Fig. 4.2 

the nominal values (µ) can be observed with the spread (S) of Gaussian 

distribution. The spread for each factors are assumed as 10%, 20%, and 30% of 

their nominal values (Maute and Frangopol 2003; Jung and Cho 2004; 

Khramanda et al. 2004). Hence, the SD's are computed for each factor based on 

chosen spread. 

 

Fig. 4.2: Nominal and spread values of a factor 

Step 4. Generation of experimental combination set: Based on number of factors 

and their levels, experimental combination set is designed. As described in 

section 3.3.4, total 27 combinations are generated for this experiment. The 

design combinations are available in Appendix A1. To incorporate the effect of 

noise, corresponding to each loading condition the experiment is replicated. 

Step 5. Simulation of performance values: For each replication and problem, reliable 

optimal topologies with performances are simulated. This simulation is carried 

out using a selected RBTO scheme. Many methods for RBTO are available, as 

discussed in section 2.1. A RBTO method proposed by Kharnmada and Olhoff 

(2002) is selected (Kharmanda and Olhoff 2002; Kharmanda et al. 2004) 
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because of ease of implementation and lower computational cost. The steps for 

the selected RBTO method is given as,  

1. Define the problem 

2. Select the nominal values of controllable factor. The uncertainties of these 

factors are given in terms of spread (S) values  

3. Select a required reliability index (β) value 

4. Use HL-transformation to map the variables from physical to the standard 

Gaussian domain as explained in section 2.1 and equation (2.3) 

5. Compute the Gaussian variable, Ugfor a required reliability index value as, 
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 (4.1) 

6. Using the normalized variable Ug, compute physical variables ξ, by the 

help of equation (2.3). These physical variables are the reliable-

controllable factor values subject to chosen reliability index (β). 

7. Use the revised-controllable factor values to generate the optimal topology 

and performance values. For this simulation, the steps of SIMP method, 

available in section 3.3.5, are utilized. 

The above steps are implemented in MATLAB, where "Trust-region-dogleg" 

algorithm (Matlab Optimization toolbox 2013) is used to compute the normalized 

parameters based on a given reliability index value, shown in equation (4.1). The usual 

SIMP routine is also modified to incorporate,  

• Fractional changes in aspect ratio by the non-square finite elements 

• Selection of loading conditions, based on different cases 

• Randomization of elasticity value for each finite element cell 

• Computation for the maximum deflection and compliance 

The developed code is called in the main DOE routine, where the combination and 

the replications for different loading conditions are used with the reliability scheme. The 

computation process of this simulation is presented in Fig. 4.3. DOE approach is used to 

create experimental combinations. The generated set of combinations use spread (S) of 

controllable factor and reliability index value (β), to apply RBTO. Optimal topology and 

performances are simulated incorporating loading, material, and uncertainties of 
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controllable factors. These performances are analyzed using DOE and statistical 

techniques.  

It is important to note that the selected RBTO method provide the reliable optimal 

topology and performances without increasing the volume fraction value. The RBTO 

applied here, mainly search the MPP of the performance with respect to the chosen 

reliability index and spread. Then the actual values of the factors are found out at that 

MPP. Therefore, the volume fraction value actually decreases in proportion to the 

reliability index and spread to simulate a realistic scenario of uncertainties because volume 

fraction is considered as one of the input controllable factor. As a result, the obtained 

reliable performances, i.e. compliance and deflection increase compared to deterministic 

case. This discussion can be summarized by stating that, the present RBTO scheme 

increases the reliability of the design by sacrificing a little bit of performance. It is 

advantageous from the designer's point of view, as the value of input factor remains same 

for this analysis. 

 

Fig. 4.3: Framework for integrated DOE and RBTO approach 

The presented methodology gives the reliable optimal topology with performance 

values based on the selected reliability index and spread values of factors. Hence, in the 

interest of the designer it becomes vital to observe the effect of these two parameters on 

the outcome. To do so, reliability index and spread values are considered in distinct level 

values. Using the level values, an experimental combination set is generated for their 

combinations. The whole procedure of topology and performance simulation is 

illustrated in Fig. 4.4. 
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Combination No. 1 2 … 27  

Aspect Ratio 1.2 1.4 … 1.6 

Volume fraction 0.4 0.4 … 0.6 

AppliedForce 100 100 … 140 

 

 

 

Combination 

No. 
β S(%) 

RBTO 

Loading cases Mean 

PM(β/S) 

SNR 

PS(β/S) 1 2 3 4 5 6 
1 2 10 P1(2/10) P2(2/10) P3(2/10) P4(2/10) P5(2/10) P6(2/10) PM (2/10) PS (2/10) 

2 2 20 P1(2/20) P2(2/20) P3(2/20) P4(2/20) P5(2/20) P6(2/20) PM(2/20) PS (2/20) 

3 2 30 … … … … … … … … 

4 2.5 10 … … … … … … … … 

5 2.5 20 … … … … … … … … 

6 2.5 30 … … … … … … … … 

7 3 10 … … … … … … … … 

8 3 20 … … … … … … … … 

9 3 30 … … … … … … … … 

10 3.8 10 … … … … … … … … 

11 3.8 20 … … … … … … … … 

12 3.8 30 P1(3.8/30) P2(3.8/30) P3(3.8/30) P4(3.8/30) P5(3.8/30) P6(3.8/30) PM(3.8/30) PS (3.8/30) 

Fig. 4.4: Methodology for the simulation of performance values through combined DOE and RBTO method 
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In this figure, two tables are shown. The table shown at top is for factor 

combination (same as Appendix A1), and table shown below is for reliability index 

(β) and spread (S). In the table below, RBTO methodology is used. Each combination 

is treated for the all combinations of β & S. As stated earlier, input to RBTO process 

are input factor combination, and the β and S values, i.e. a combination of reliability 

factor. Hence, the output of RBTO generates reliable-controllable factor values to 

produce reliable topology and its performance. Each reliable-controllable factor 

value is then replicated for the loading uncertainty conditions. Using the replications 

of experiments, mean and SNR of performances are computed, i.e. PM and PS. In the 

table, simulated performances are shown with the corresponding pair of β and S 

values as P(β/S). Thus, for each factor combination, reliable topology and performance 

values are simulated corresponding to all pair of β and S values. 

4.4 ANALYSIS AND DISCUSSION 

The proposed methodology is used for the selected benchmark problems. The 

performance values in terms of compliance and maximum deflection are simulated 

for reliable optimal topology. For simulation, FE mesh size is varied from coarse to 

fine i.e. 12×10, 24×20, 36×30, and 60×50. It is observed that comparative results 

remain same for the considered mesh sizes. The reason for this observation is mesh 

independency filter used in simulation routine (Bendsøe and Sigmund 2003). Hence, 

it is decided to use a coarse mesh can also be used for the analysis, as the physics of 

the problem do not change. The reliable optimal topologies obtained from simulation 

are shown in Table 4.1. This table shows the topologies of each problem for DTO and 

RBTO based methods. For illustration, RBTO based topologies are generated by 

keeping the reliability index β=3.0, with spread S=10%, and the next set of 

topologies are generated by keeping, β=3.8 with S=20%. It is observed that the 

topologies change slightly when the simulation process is changed from DTO to 

RBTO. This is the reason for the change in the performance values. The performance 

values are analyzed by ANOM and ANOVA. The analysis for robust and targeted 

performances is presented in the next sections. 
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Table 4.1: Optimal topologies for the corresponding combination numbers, 

reliability index (β), and spread (S) 

C. 

No. 

Problem-1 Problem-2 Problem-3 Problem-4 

DTO 
β=2.0 β=3.8 

DTO 
β=2.0 β=3.8 

DTO 
β=2.0 β=3.8 

DTO 
β=2.0 β=3.8 

S=10% S=30% S=10% S=30% S=10% S=30% S=10% S=30% 

1 

    

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
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4.4.1 Analysis of mean 

Analysis of the mean (ANOM) is performed using simulated performance values of 

the problems. The objective of this analysis is to investigate the sensitivity and the 

significance of factors in benchmark problems with RBTO method. Hence, it is desirable 

to compare the ANOM of results obtained from DTO and RBTO based simulation. As 

discussed in methodology, for each combination, all possible simulations are 

performed corresponding to specified β and S values. From these simulations, the 

extreme cases are identified. This identification is based on the maximum and 

minimum variation of performances. The maximum variation of the performance is 

obtained when β=3.8 with S=30%, and minimum variation is obtained when β=2 with 

S=10%. Hence, ANOM of these two extremes are compared with that of 

deterministic case. The ANOM of performances are shown in Figs. 4.5 to 4.8, for all 

the considered problems. In these figures, the ANOM of compliance and deflection 

are presented column wise. 

Fig. 4.5 shows the ANOM for problem-1. It is observed that three factors are 

interacting. When performance measure is compliance, volume fraction is the most 

significant factor and aspect ratio is the least significant factor. However, in 

Fig. 4.5(c) when β=3.8 and S=30%, effect of aspect ratio is slightly higher than 

force. The reason for this change is the increased variation of the factor in presence 

of uncertainties. When performance measure is deflection, volume fraction is the 

most significant factor and force is the least significant factor. For both 

performances, volume fraction shows the nonlinear effect, while force shows linear 

effect. It is also observed that with the increasing value of β and S the performance 

values increase. 

Fig. 4.6 shows the ANOM for problem-2. All three factors are in good interaction. 

When performance measure is compliance, volume fraction is the most significant factor 

and aspect ratio is the least significant factor. When performance measure is deflection, 

volume fraction is the most significant factor and force is the least significant factor. For 

both performances, among all factors, volume fraction shows the most nonlinear, while 
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force shows linear effect. In addition, withincreasing value of β and S, performance 

values also increased, as expected. 

  

              (a) deterministic             (d) deterministic 

  
           (b) β=2, S=10%          (e) β=2, S=10% 

 

  
          (c) β=3.8, S=30%          (f) β=3.8, S=30% 

Fig. 4.5: ANOM of compliance (a), (b), & (c), and ANOM of deflection (in mm) 

(d), (e), & (f) for problem-1 
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(a) deterministic  (d) deterministic 

  
(b) β=2, S=10% (e) β=2, S=10% 

  
(c) β=3.8, S=30% (f) β=3.8, S=30% 

Fig. 4.6: ANOM of compliance (a), (b), & (c), and ANOM of deflection (in mm) (d), 

(e), & (f) for problem-2 
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       (a) deterministic           (d) deterministic 

  
        (b) β=2, S=10%              (e) β=2, S=10% 

  
         (c) β=3.8, S=30%            (f) β=3.8, S=30% 

Fig. 4.7: ANOM of compliance (a), (b), & (c), and ANOM of deflection (in mm) (d), 

(e), & (f) for problem-3 

Fig. 4.7 shows the ANOM for problem-3. Since this problem is similar to the 

problem-2, the inferences are almost similar to that. All the factors show good 

interaction. When performance measure is compliance, force is the most significant and 

aspect ratio is the least significant factor, except for the last case (Fig. 4.7(c)), where 

volume fraction is the most significant factor. When performance measure is deflection, 
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volume fraction is the most significant factor and force is the least significant factor. For 

both performances, volume fraction shows the nonlinear effect, while force shows linear 

effect. 

  
(a) deterministic             (d) deterministic 

  
(b) β=2, S=10%   (e) β=2, S=10% 

  
(c) β=3.8, S=30% (f) β=3.8, S=30% 

Fig. 4.8: ANOM of compliance (a), (b), & (c). and ANOM of deflection (in mm) (d), 

(e), & (f) for problem-4 
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Fig. 4.8 shows the ANOM for problem-4. All the factors are in good interaction. 

When performance measure is compliance, volume fraction and force are equally 

significant and aspect ratio is the least significant factor, except for the last case 

(Fig. 4.7(c)), where only volume fraction is the most significant factor. When 

performance measure is deflection, volume fraction is the most significant factor and 

force is the least significant factor. For both performances, among all factors, volume 

fraction shows nonlinear effect, while force shows linear effect. Similarly, for all the 

problems, performance values show increased trend when β & S are increases. 

From these figures, it is seen that all the factors have good interaction. Volume 

fraction appears as the significant factor in the ANOM of both performances. Whereas, 

aspect ratio and force are the least significant factor in the ANOM of compliance and 

deflection, respectively. The linear and non-linear effect of the factors is explainable by 

theory of beams. It can also be seen that by increasing the reliability index and the 

spread of the factors, the values of compliance and deflection also increase. In addition 

to this observation, the increased values of β and S bring the effects of aspect ratio and 

force closer, when compliance is the performance measure. For deflection, the effect of 

aspect ratio and force are distinct. This is because of the variations of the factor values 

that are introduced by the β and S values. The observations available here provide the 

guidelines to design a reliable optimal topology. 

4.4.2 Signal to noise ratio 

As discussed earlier in section 3.4.3, SNR is computed based on equation (3.36). 

In Fig. 4.9, SNR of compliance is shown for different reliability index and spread 

values. For engineering applications the preferred values reliability index are taken 

3.8 or 3. At the same time, the spread of the factors are not more the 20%. Hence, 

SNR corresponding to β value equal to 2.5 and 2, and S value equal to 30% are 

dropped here to present the realistic values. The legends are given in terms of 

β/Svalue. As for example, 3.8/10 represent, β=3.8 and S=10% around the nominal 

values for the factors. 
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Fig. 4.9(a): SNR of compliance for problem-1 

Fig. 4.9(b): SNR of compliance for problem-2 

Fig. 4.9(c): SNR of compliance for problem-3 

Fig. 4.9(d): SNR of compliance for problem-4  
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Fig. 4.9 shows the SNR of all problems for compliance. It is observed that SNR 

decreases with the increased values ofβ and S. This change in SNR with respect to S is 

more than that of β. The performance variation for β and S implies that there is a tradeoff 

between the reliability and robustness value. The SNR value is highest for the 7th 

combination and lowest for the 21st combination. Hence, the 7th combination offers the 

high and 21st offers the lowest robustness. It is similar to the analysis carried out in 

previous chapter. Hence, the inclusion of the uncertainties of controllable factor does not 

have significant effect on the comparative robustness of the combinations. Similar to the 

SNR of compliance, SNR of deflection is presented for all problems in Fig. 4.10. 

Fig. 4.10(a): SNR of deflection for problem-1 

Fig. 4.10(b): SNR of deflection for problem-2 

Fig. 4.10(c): SNR of deflection for problem-3 
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Fig. 4.10(d): SNR of deflection for problem-4 

From Fig. 4.10, the SNR of all problems for deflection as performance can be 

observed. All observations are similar to that of SNR of compliance. The SNR value 

decreases with increased value of reliability index and spread. It is highest for the 7th 

combination and lowest for the 21st combination. The presented curves for SNR of 

performance can be used to select the factor value and reliability index to achieve a 

desired value of robustness. It is also observed that for 7th combination, variations in the 

performance values are least, while it is highest for 21st combination. The changes in 

performance values are lesser with respect to the β variation, compare to that of with 

respect to S variation. In addition, the effect of change of S value is high when β=3.8 

compared to that of β=3. Using these results, a targeted robust design can also be 

formulated by selecting a proper value of factors, reliability index, and spread of factors. 

This selection will be purely based on the choice and affordability. Thus, the SNR 

analysis provides flexibility to designers' by providing alternate options for robust 

performance. 

4.4.3 Analysis of variance 

As discussed earlier, ANOVA helps to identify the statistically significant factor of a 

design. In the present work, ANOVA is carried out by employing Design Expert 

software, version 8.0.6 (2011). The functional relationship between the performance 

value and the factors are given in Tables 4.2 & 4.3, in terms of the coded values of the 

factors. The symbols A, B and C denote aspect ratio, volume fraction and force 

respectively. The equations are given for the deterministic condition and the extreme 

conditions of reliability based performances for the comparison. 
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Table 4.2: Performance equations for compliance, subject to extreme and 

deterministic conditions 

Problem 1 

Deterministic 

3.593-0.979×A-0.08×A2 +1.28×B-0.293×B2-1.142×C-0.067×C2-0.37×AB-

0.068×A
2
B +0.079×AB

2
 +0.002×A

2
B

2
 +0.31×AC +0.023×A

2
C +0.02×AC

2
 

+0.009×A
2
C

2
-0.406×BC +0.093×B

2
C-0.026×BC

2
 +0.006×B

2
C

2
 

β=2 

S=10% 

3.935-1.077×A-0.084×A2 +1.426×B-0.328×B2-1.253×C-0.071×C2-

0.42×AB-0.072×A
2
B +0.094×AB

2
 +0.004×A

2
B

2
 +0.34×AC +0.026×A

2
C 

+0.022×AC
2
 +0.005×A

2
C

2
-0.462×BC +0.105×B

2
C-0.028×BC

2
-0.001×B

2
C

2
 

β=3.8 

S=30% 

8.233-2.587×A-0.419×A2+3.316×B-0.577×B2-2.625×C-0.157×C2-

1.206×AB-0.362×A
2
B+0.208×AB

2
+0.111×A

2
B

2
+0.834×AC+0.124×A

2
C+ 

0.034×AC
2
+-0.018×A

2
C

2
-1.059×BC+0.188×B

2
C-0.059×BC

2
+0.017×B

2
C

2
 

Problem 2 

Deterministic 

2.975 +0.469×A-0.223×A2 +0.096×B +0.025×B2-0.128×C +0.271×C2 

+0.372×AB-0.315×A
2
B-0.043×AB

2
-0.149×A

2
B

2
 +0.06×AC +0.344×A

2
C 

+0.371×AC
2
-0.508×A

2
C

2
-0.456×BC +0.047×B

2
C +0.494×BC

2
-

0.177×B
2
C

2
-0.091×ABC-0.176×A

2
BC-0.088×AB

2
C +0.127×A

2
B

2
C 

+1.139×ABC
2
-0.234×A

2
BC

2
-0.869×AB

2
C

2
 +0.244×A

2
B

2
C

2
 

β=2 

S=10% 
3.271-0.828×A +0.067×A2 +1.238×B-0.248×B2-1.048×C-0.061×C2 

β=3.8 

S=30% 
6.537-1.568×A-0.327×A

2
+2.681×B-0.528×B

2
-2.083×C-0.117×C

2
 

Problem 3 

Deterministic 

4.774 -0.57×A-0.245×A
2
 +0.092×B +0.013×B

2
-0.124×C +0.252×C

2
 

+0.335×AB-0.347×A
2
B-0.043×AB

2
-0.146×A

2
B

2
 +0.079×AC +0.4×A

2
C 

+0.438×AC
2
-0.651×A

2
C

2
-0.515×BC +0.104×B

2
C +0.445×BC

2
-

0.195×B
2
C

2
-0.197×ABC-0.137×A

2
BC +0.038×AB

2
C +0.042×A

2
B

2
C 

+1.423×ABC
2
-0.273×A

2
BC

2
-1.205×AB

2
C

2
 +0.333×A

2
B

2
C

2
 

β=2 

S=10% 

5.184-0.958×A +0.166×A
2
 +1.414×B-0.363×B

2
-1.646×C-0.099×C

2
-

0.452×BC +0.124×B2C-0.031×BC2 +0.004×B2C2 

β=3.8 

S=30% 

9.011-2.140×A-0.392×A
2
+3.276×B-0.748×B

2
-2.868×C-0.150×C

2
-

0.885×AB-0.290×A
2
B+0.190×AB

2
+0.054×A

2
B

2
-1.07×BC+0.243×B

2
C-

0.052×BC2+0.016×B2C2 

Problem 4 

Deterministic 

0.804-0.175×A-0.01×A
2
 +0.294×B-0.07×B

2
-0.256×C-0.015×C

2
-0.109×AB-

0.002×A
2
B +0.027×AB

2
-0.001×A

2
B

2
-0.093×BC +0.022×B

2
C-0.007×BC

2
 

+0.002×B2C2 

β=2 

S=10% 

0.883-0.195×A-0.012×A
2
 +0.335×B-0.08×B

2
-0.282×C-0.015×C

2
-0.125×AB 

+0.033×AB
2
-0.005×A

2
B

2
-0.105×BC +0.023×B

2
C-0.004×BC

2
 +0.001×B

2
C

2
 

β=3.8 

S=30% 

1.683-0.468×A-0.071×A
2
+0.793×B-0.193×B

2
-0.538×C-0.029×C

2
-

0.296×AB-0.060×A
2
B+0.086×AB

2
+0.021×A

2
B

2
+0.155×AC+0.019×A

2
C 

+.008×AC
2
+0.000×A

2
C

2
+-0.256×BC+0.060×B

2
C-0.005×BC

2
+0.001×B

2
C

2
 

From Tables 4.2 & 4.3, it is observed that the equation corresponding to β=2, 

S=10%, is near to that of deterministic case, while equation corresponding toβ=3.8, 

S=30% is far, which confirms the previous analysis. It is because of the characteristics of 

the selected RBTO method. The linear and quadratic effect of each factor can also be 

seen using the coefficients of the equation. In most of the problems, it is found that the 

volume fraction is the most significant factor. Apart from the relative performance of 

factors, these equations are useful to generate the performance values within the range of 

factor levels. Hence, this equation provides the necessary mathematical relation to 

estimate the approximate performance values.  
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Table 4.3: Performance equations for deflection (in mm), subject to extreme and 

deterministic conditions 

Problem 1 

Deterministic 
0.03-0.008×A-0.001×A2 +0.011×B-0.002×B2-0.005×C -0.003×AB-0.001×A2B 

+0.001×AB
2
 +0.001×AC 

β=2 

S=10% 

0.032-0.009×A-0.001 ×A
2
 +0.012×B-0.003×B

2
-0.005×C-0.003×AB-

0.001×A2B +0.001×AB2 +0.001×AC-0.002×BC 

β=3.8 

S=30% 

0.064-0.020×A-0.003×A
2
+0.026×B-0.005×B

2
-0.011×C-0.010×AB-

0.002×A
2
B+0.002×AB

2
+0.001×A

2
B

2
+0.003×AC-0.004×BC+0.001×B

2
C 

Problem 2 

Deterministic 

0.026 +0.003×A-0.002×A
2
 +0.001×B-0.001×C +0.002×C

2
 +0.002×AB-

0.002×A
2
B-0.002×A

2
B

2
 +0.001×AC +0.002×A

2
C +0.002×AC

2
-0.003×A

2
C

2
-

0.003×BC +0.004×BC
2
-0.001×B

2
C

2
 

β=2 

S=10% 
0.028-0.007×A +0.011×B-0.002×B2-0.005×C-0.003×AB 

β=3.8 

S=30% 

0.053-0.013×A-0.002×A
2
0.022×B+-0.004×B

2
-0.009×C-0.005×AB-

0.001×A
2
B+0.001×AB

2
 

Problem 3 

Deterministic 
0.04 +0.004×A-0.002×A2-0.001×C +0.002×C2 +0.001×AC +0.003×A2C 

+0.002×AC
2
-0.003×A

2
C

2
 

β=2 

S=10% 

0.043-0.009×A +0.001×A
2
 +0.012×B-0.003×B

2
-0.007×C-0.004×AB 

+0.002×A
2
B +0.001×AB

2
 

β=3.8 

S=30% 

0.072-0.018×A-0.003×A2+0.027×B+-0.006×B2-0.012×C-0.007×AB-

0.002×A
2
B+0.001×AB

2
 

Problem 4 

Deterministic 0.007-0.001×A +0×A
2
 +0.002×B-0.001×B

2
-0.001×C-0.001×AB 

β=2 

S=10% 
0.007-0.002×A +0.003×B-0.001×B

2
-0.001×C-0.001×AB 

β=3.8 

S=30% 

0.013-0.004×A-0.001×A2+0.006×B-0.001×B2-0.002×C-

0.002×AB+0.001×AB2+0.001×AC-0.001×BC 

For the detailed observation of significance of factor, the ANOVA results are presented 

in Table 4.4. The significant factors are identified for the deterministic as well as the 

extreme cases of the performance values. In this table, there is a change of significant 

factors, while moving from the deterministic to the reliable scenario. Also, with the change 

of reliability index and spread value, the significant factor remain same in almost all cases. 

Table 4.4: Significantfactor for the extreme values of performances 

Bench 

Mark 

Problems 

Statistically Significant Input factors for compliance 

Deterministic β=3.8, S=30% β=2, S=10% 

Problem-1 A, B, C, AB, BC, AC A, B, C, AB, BC, AC A, B, C, AB, BC, AC 

Problem-2 A, ABC A, B, C, A, B, C, 

Problem-3 A, ABC A, B, C, AB, BC, A, B, C, BC  

Problem-4 A, B, C, AB, BC A, B, C, AB, BC, AC A, B, C, AB, BC  

Bench 

Mark 

Problems 

Statistically Significant Input factors for deflection 

Deterministic β=3.8, S=30% β=2, S=10% 

Problem-1 A, B, C, AB, BC, AC A, B, C, AB, BC, AC A, B, C, AB, BC, AC 

Problem-2 A A, B, C, AB A, B, C, AB 

Problem-3 A A, B, C, AB A, B, C, AB 

Problem-4 A, B, C, AB, BC, AC A, B, C, AB, BC, AC A, B, C, AB, BC, AC 
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As discussed earlier, the values of compliance and deflection are altered by applying 

RBTO method. In such scenario, finding desired or targeted performance value is an 

issue, and the procedure adopted is discussed in the next section. 

4.4.4 Targeted performance values 

From a designer's perspective, it is desired to achieve a targeted value of performance 

subject to high reliability index. However, when the selected RBTO scheme is applied to 

topology optimization problem, the value of performances gets altered. In such scenario, 

the intended performance cannot be achieved with desired reliability. To achieve a 

targeted performance with specified reliability, the design factor must be selected 

properly. This selection is carried out using mean performance value analysis. The mean 

values of performances are computed for each factor combination. In Fig. 4.11, the mean 

compliance values with respect to the different combinations are shown. The mean 

compliance values are computed corresponding to the different pair of β and S values. 

The legends indicate β/S% values in figures. 

Fig. 4.11(a): Mean values of compliance for problem-1 

Fig. 4.11(b): Mean values of compliance for problem-2 
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Fig. 4.11(c): Mean values of compliance for problem-3 

 

Fig. 4.11(d): Mean values of compliance for problem-4 

From Fig. 4.11, it is observed that with increased β and S values the mean 

compliance increases. The compliance value is highest for 21st combination and lowest 

for 7th combination. It can be observed that for a desired value of compliance or 

deflection, there are different combinations of factors available. A targeted performance 

value can be achieved by selecting the available combinations of controllable factors, 

reliability index, and spread value. To illustrate, the compliance values are presented in 

Appendix A4 for problem-1. The values are given corresponding to the combination of 

the factors created by factorial design. From this table it is seen that a desired value of 

compliance and deflection is available at different combinations, β, and S values. 

Similar to mean compliance, the mean deflection is also plotted for all four problems, 

as shown in Fig. 4.12. The legends are shown for β/S%value. 
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Fig. 4.12(a): Mean values of deflection (in mm) for problem-1 

 
Fig. 4.12(b): Mean values of deflection (in mm) for problem-2 

 
Fig. 4.12(c): Mean values of deflection (in mm) for problem-3 

 

Fig. 4.12(d): Mean values of deflection (in mm) for problem-4 
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In Fig. 4.12, all observations are similar to that of compliance. It is observed that 

with increased β and S values, the mean deflection also increases. The deflection value 

is highest for 21st combination and lowest for 7th combination. Here also, a targeted 

performance value can be achieved by selecting the available combinations of 

controllable factors, β, and S values. To illustrate, the values of mean deflection are 

presented in Appendix A5 for problem-1. This analysis provides flexibility to the 

designer to select an optimal topology for desired value of performances at specified 

reliability. 

Similar to the previous performance measure, a few observations are made here. 

For 7th combination, the variation in the performance values are less when β and S 

change, and it is high for 21st combination. The changes in performance values are 

lesser with respect to the β, compared to that of S. In addition, the effect of change of S 

value is high, when β=3.8 compared to β=3. The observation regarding the 

performance verses β and S are because of their level values and the specific 

characteristic of RBTO method. 

4.5 COMPARISON OF RESULTS 

To highlight the significance of the results obtained by including the 

noises/uncertainties of the controllable factors in the simulation, a comparison is 

shown here. As discussed earlier the results of Chapter 3 are obtained with the noise 

of point and angle of applied force and elasticity only. Hence, the simulation results 

are compared between Chapter 3 and 4 for mean and SNR of compliance. For 

problem-1, these values are presented in Fig. 4.13. 

From this comparison, it is observed that the mean values increases and the SNR 

decreases when the noise of controllable factors is included in the simulation. This 

scenario is closer to the realistic situation. However, the comparative performances of the 

combinations are same. For the other problems and performance measure also, the 

similar observation are obtained. Hence, the results obtained in this chapter are realistic 

compared to that of previous chapter. 
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(a) 

(b) 

Fig. 4.13: Comparison of (a) mean compliance and (b) SNR of compliance for 

problem-1 

4.6 CONCLUSIONS 

In this chapter, a DOE based methodology was proposed to analyze the performance of a 

topologically optimized structure with RBTO in the realistic scenario. The methodology 

was illustrated using four benchmark problems. The realistic scenario was created by 

incorporating the uncertainties in the deterministic model. In addition to the performance 

analysis, a method of identifying the optimum values of design factor is developed to 

ensure the robust and targeted performance. It is found that volume fraction is the 

significant factor in almost all cases. It is also observed that the change of reliability and 

spread values change the sensitivity of the factor slightly. The 7th combination 

performed best for robust design and generated the minimum compliance and deflection 

values. Whereas, 21st combination gave maximum values of compliance and deflection, 

and showed minimum robustness. 
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CHAPTER 5 

SELECTION OF TOLERANCE RANGE OF CONTROLLABLE 

FACTORS FOR TOPOLOGICALLY OPTIMIZED STRUCTURES 

5.1 INTRODUCTION 

The analysis of the various factors and their uncertainties on the performance values of a 

topologically optimized structure was described in the previous chapters. The 

controllable factors considered were, force, volume fraction, and aspect ratio. The noise 

or uncertainties such as, elasticity value, angle, and application point of applied force 

were also included in that analysis. A combined approach using DOE and RBTO was 

proposed to analyze the performance. In addition, the optimal values of the factors were 

identified to achieve a targeted and robust performance. Now, to investigate the 

performance around the nominal values, the impact of tolerance ranges of factors on 

performance should be investigated. 

In real life scenario, each factor will have some tolerance range, because of process 

variability. These tolerances affect the performance values. Ideally, the tight or narrow 

tolerance for every factor provides minimum performance variation. However, to 

maintain a very tight tolerance for each factor needs high investment and effort. In such 

situation, the tolerance of only a few factors should be tightened. These factors are the 

ones, which requires lesser effort for tightening the tolerance, or the one, which has the 

statistically significant effect on the performance values. Thus, the selection of such key 

factors becomes an important issue. This issue is dealt in this chapter using a cross array 

design of experiments (CA-DOE) approach. This approach helps to simulate the 

performances by incorporating the factor values along with their tolerance ranges. This 

method provides a simple way to design an efficient and cost effective experiment. For 

illustration, CA-DOE approach is applied to the chosen benchmark problems and the 
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simulated results are analyzed using statistical techniques. This analysis efficiently 

provides the evaluation of performance value at each point of the design space of factor-

tolerance, which is not possible by traditional robust topology optimization methods. 

The importantcontribution of this work is to develop a method, which is used to 

obtain targeted performance for various topology optimization problems. Present 

analysis is helpful for the robust design of topologically optimized components. 

5.2 TOLERANCE RANGE SELECTION USING CA-DOE METHOD 

As described in the previous chapters, DOE refers to a process of systematic design 

and analysis of the experiment, which enables to reach the conclusions efficiently.In 

order to use DOE approach for tolerance range selection, the uncertainties due the 

tolerances of factors are required to be incorporated in the experiments. For such 

condition, a usual DOE technique requires high computation costs. To reduce 

expensive computation, a cross array based DOE approach proposed by Taguchi is 

utilized (Sung 1998; Mitra 2008; Montgomery 2007). In this method, two different 

orthogonal arrays (OA) are designed or selected, termed as inner and outer OA. Here, 

inner and outer OA accommodate the levels of control factors and noise factors 

respectively. The product of these two arrays forms a cross array. Initially, the 

factors, their levels, and interactions need to be determined to design an experiment. 

For the tolerance range selection, each selected factor is considered as statistically 

independent variable. In addition, the random error generated, within a given 

tolerance range of each of these factors is also considered as statistically independent 

variable. This error is treated as noise. Specifically, noises indicate the deviation of 

the tolerance from the nominal value. Thus, the selected variables are assigned a 

limited set of discrete levels. In this method, normally two levels (i.e. loose and tight) 

are recommended to investigate linear variation in the system. Here, the OA'sare 

employed to investigate the controllable factors and their noise in one experiment. 

The role of inner and outer OA's are specifically mentioned here, 

Inner OA: For controllable factors, an inner OA is used. It consists of the all 

combinations of tolerance levels of the controllable factors. If there are 'n' control factors 

with two levels, the total number of combinations will be 2
p
, as shown in Fig. 5.1. 

Outer OA: For noise of above controllable factors, outer OA is used. The number of 

controllable factors, their levels, and the number of selected interactions is required to 
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identify the correct OA that suits the scenario (Sung 1998; Mitra 2008; Montgomery 

2007). Based on this criterion, an OA is selected. This array represents the worst case of 

tolerance deviations in terms of maximum limits of Gaussian distribution, i.e. +3σ and -3σ. 

 Noise factors Orthogonal 

Array 

 

A1 

A2 

... 

... 

An 

1   1  .  .  .  1 

1   2  .  .  .  2 

.  .  .  .  .  .  . 

.  .  .  .  .  .  . 

2   2  .  .  .  2 

Combination 

No. 

Controllable  

Factors 

F1   F2   .....Fp 

Response 

Values 

Mean 

Response  Noise

Signal
 

1 

2 

... 

... 

2
p
=Q 

1    1  .  .  .  1 

1    1  .  .  .  2 

.  .  .  .  .  .  . 

.  .  .  .  .  .  . 

2    2  .  .  .  2 

S11 S12....  S1T 

S21 S21....S2T 

.  .  .  .  .  .  . 

.  .  .  .  .  .  . 

SC1 SC1....SCT 

M1 

M2 

... 

... 

MQ 

SNR1 

SNR2 

... 

... 

SNRQ 

 

Fig. 5.1: Structure of a CA-DOE technique 

The framework for CA-DOE is shown in Fig. 5.1. Here, there are 'p' numbers of 

controllable factors, which may have a few levels of noise. Based on number of factors 

and their number of levels of noise, the outer OA are selected form the Taguchi's OA. 

Taguchi's OA helps to reduce the number of replication required to simulate the 

performance, whereas any other OA will increase the number of replication (Sung 

1998; Mitra 2008; Montgomery 2007). In the selected outer OA, 1 and 2 represents the 

extreme limits of random variable, which have Gaussian distribution. For each 

combination in inner OA, the data for each outer OA noise combination are treated as 

replication. By doing so, the effect of noise is incorporated in each combination of 

inner OA. Thus, a cross array consists of all combinations of levels of control and 

noise factors. Finally, experiments or simulations are conducted for each combination 

of cross array. The obtained results of experiments are analyzed using various 

statistical techniques. The outcome of the experiment is robust because it incorporates 

the effect of noise factors. From this experiment, a response function for the 

performance can also be generated. 

The CA-DOE method is beneficial in many aspects. It is faster, as the use of OAs 

simplifies the experimental design procedure compared to normal DOE approach. It 

Outer OA 

Inner OA 
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simulates the worst-case scenarios and uses lesser computation compared to the Monte 

Carlo simulation. Besides the robust design optimization method, CA-DOE method 

gives the fine resolution of results for the each incremental change of tolerance of factor. 

Since the increments are generated in terms of the each possible combination of 

controllable factor-tolerance, it provides much flexibility to the designer. The details of 

the proposed methodology are given in next section. 

5.3 METHODOLOGY 

In the tolerance range selection problems, it is required to find out the acceptable range 

of variation around the nominal settings of selected factors, based on the performance 

values. The strategy here is to replace the noise factor by the tolerance deviation of the 

controllable factors. Here, the tolerances can be tight or loose based on tradeoff between 

the effort applied in tolerance setting, and performance variations. The steps of the 

methodology are given below,  

Step 1. Selection of problem and performance measures: In this step, problem is 

selected for analysis, or a given problem is well defined for its boundary 

conditions, etc. The performance measures are defined based on application 

requirements. 

Step 2. Input factor and their tolerance range: Main input factors are identified and 

their tolerance values are decided based on the realistic values. While applying 

CA-DOE approach, these factors are considered as controllable factors. 

Step 3. Design of orthogonal array for tolerance of factors: In order to apply CA-

DOE approach, inner and outer arrays are to be designed or selected. This 

selection is made based on the number of factors and their levels (Sung 1998; 

Mitra 2008; Montgomery 2007). 

Step 4. Simulation of performance values: To simulate the performance values and 

optimal topology a topology optimization method is chosen and the simulations 

are performed based on the cross array. 

Step 5. Analysis of simulated results: The simulated performance values are analyzed 

using different statistical measures. In addition, the targeted and robust 

performances are also analyzed. 
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This method attempts to determine optimum tolerance of the chosen structural 

problems. The implementation details of CA-DOE approach has been provided in next 

section. 

5.4 IMPLEMENTATION OF PROPOSED METHODOLOGY 

The tolerance design of a topologically optimized structure is carried out using CA-DOE 

approach. The details of each step of this approach are given in this section. 

5.4.1 Selection of problem and performance measures 

To implement the CA-DOE approach, four-benchmark problems discussed in Chapter 3 

are selected. The rationale behind selecting these four benchmark problems is to provide 

generic prescriptions to designers regarding the impact of the tolerance of input factor on 

topologically optimized structure, and not problem dependent solutions. To analyze the 

impact of the tolerances of input factor on the outcome of simulation, compliance and 

deflection values are selected as performance measures. 

5.4.2 Input factor and their tolerance range 

The tolerance values of applied force, volume fraction, aspect ratio, and elasticity are 

selected to analyze their effects on performance value. The selection of nominal values 

for these factors is based on the results of performance analysis, carried out in Chapter 3 

& 4. The nominal values for each of these factors are provided in Table 5.1. Different 

realistic tolerance ranges are defined for each of these factors, based on literature. The 

tolerances are grouped into two ranges, loose and tight tolerance. The values of these 

tolerances are also available in Table 5.1. The values of these tolerances are generated by 

considering its variation/spread around the nominal value. Hence, this variation will be 

equal to the spread of the normal distribution i.e. within the ±3σ limits. The standard 

deviation σ can be determined from this consideration. A Separate discussion on each of 

these factor tolerances is given in following sections, 

5.4.2.1 Tolerance of applied force 

Applied force is a factor, which is considered at the initial design phase of topology 

optimization. Force has very less effect on the topology but it changes the value of 

compliance and deflection by a large amount, as observed in Chapter 3. To ensure the 

desired performance value, applied force value should not change. However, variations 
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in its value of applied force is always possible in realistic situations, and generally, 10%-

20% variation is considered in the available literature (Jung and Cho 2004; Kim et al. 

2007; Eom et al. 2010). In the present work, a 10% variation from the nominal value of 

force is considered to generate the loose tolerance limit and 5% of that is considered to 

generate the tight tolerance limit. 

5.4.2.2 Tolerance of aspect ratio  

The tolerance of aspect ratio for the considered material domain is chosen as 

another factor. To proceed with this analysis, two different tolerance values are 

assumed for the aspect ratio, named as tight and loose tolerance. Their values are 

dependent on manufacturing process and different for macro and micro domain. A 

suitable range of aspect ratio is selected here, which are given in Table 1. In the 

present work, a 5% variation from the nominal value of aspect ratio is considered to 

generate the loose tolerance limit and 1% of that, is considered for generating the 

tight tolerance limit. 

5.4.2.3 Tolerance of volume fraction 

Volume fraction is an important factor, which affects the topology and performance 

value. It is directly linked to the topology and the uncertainty in the manufacturing 

process (Kharmanda et al. 2004, Sigmund 2009). Like aspect ratio, a suitable range of 

volume fraction is selected and given in Table 5.1. In the present work, a 10% variation 

from the nominal value of volume fraction is considered to generate the loose tolerance 

limit and 5% of that, is considered for generating the tight tolerance limit. 

5.4.2.4 Tolerance of elasticity value 

The tolerance of material property is considered in terms of the modulus of elasticity 

value. Similar to applied force, the value of modulus of elasticity does not change the 

topology but effects compliance value and deflection value. In the available literature,  

10%-20% variation  of modulus of elasticity is considered for topology optimization 

problems (Jung and Cho 2004; Kim et al. 2007; Eom et al. 2010). In the present work, a 

10% variation from the nominal value of elasticity is considered to generate the loose 

tolerance limit and 5% variation for generating the tight tolerance limit. 
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Table 5.1: Nominal values and loose and tight tolerance range for the selected factors 

S. No. Factor 
Nominal 

Value 

Loose 

tolerance 
Tight tolerance 

1 Force (N) 100 ±5 ±2.5 

2 Aspect Ratio 1.2 ±0.03 ±0.006 

3 Elasticity (GPa) 200 ±10 ±5 

4 Volume fraction 0.60 ±0.03 ± 0.015 

It is important to note that, the presented work also focuses on the manufacturing 

uncertainty in the form of tolerances of aspect ratio and volume fraction. This approach 

is also useful where a secondary process like shape, size optimization, or manual 

modification on the optimal topology is performed before the manufacturing. Hence, the 

approach presented in this chapter is a generalized one, where manufacturing 

uncertainties or a secondary modification processes are considered. 

5.4.3 Design of orthogonal array of tolerance 

As stated earlier, based on the number of factors and their tolerance level, the inner and 

outer OA are designed. In the present case, there are four controllable factors and their 

noises are treated at two levels i.e. loose and tight tolerances. Hence, experimental 

combinations are generated based on these values. This combination set is the inner OA, 

as shown in Appendix A5. To select the outer OA, the number of controllable factors and 

their noise levels are required to be identified. The outer OA represents the worst case of 

tolerance deviations in terms of maximum limits of Gaussian distribution, i.e. +3σ and -

3σ. Hence, each factor tolerance is defined with two levels. Thus, for four factors with 

two level of noise, Taguchi's L8 outer OA is selected as shown in Appendix A7 (Mitra 

2008; Sung 1998; Montgomery 2007). The product of the Inner and outer OA is shown 

in Table 5.2. The table at the top shows the outer OA, while the table at bottom shows 

inner OA. It can be seen that the outer OA consist the values of each factor by 

incorporating its maximum variation with the nominal values. Here the notation A, E, F, 

and V, indicates the nominal values of aspect ratio, elasticity, force, and volume fraction 

respectively. In the outer OA, the combination of loose and tight tolerance can be seen. 

The notation L and T represents the loose and tight tolerance respectively. The 

simulations are carried out by considering a combination of the inner OA, replicated by 
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each run of outer OA. The corresponding simulations are shown as Ri,j, where, 'i' is the 

combination of inner OA, and 'j' is the run of outer OA. Finally the mean and SNR of 

each combination of inner OA is obtained, using Ri,j's. The process use to obtain the 

optimal topology with the performance is described in the next section. 

Table 5.2:CA-DOE approach 

 
Run No. 1 2 … 8 

Aspect ratio A-3 σA A-3 σA … A+3 σA 

Elasticity E-3 σE E+3 σE … E+3 σE 

Volume fraction V-3σV V-3σV … V-3σV 

Force F-3 σE F+3 σE

 

… F+3 σE 

Combination 

No. 

Aspect 

ratio 

σA 

Elasticity 

σE 

Volume 

fraction 

σV 

Force 

σF  
Mean SNR 

1 L L L L R1,1 R1,2 … R1,8 M1 S1 

2 L L L T R2,1 R2,1 … R2,8 M2 S2 

… … … … … … … … …   

… … … … … … … … …   

16 T T T T R16,1 R16,2 … R16,8 M16 S16 

5.4.4 Simulation of compliance and deflection using SIMP 

To simulate the performance values and optimal topology, a MATLAB code is written. 

In this code, the finite element routine is made flexible to handle non-square elements, as 

the aspect ratio varies in a small range. The problem of local minima is handled by 

applying an oscillation filter. Here, the filter detects the oscillations in the compliance 

value, which prolongs infinitely and results do not converge. In such scenario, the value 

of minimum compliance from a repetitive oscillation is selected and other values 

(deflection, volume fraction) corresponding to this is recorded. The steps used in code 

for implementation is given below, 

Step 1. The initial data, i.e. mesh size, length and width of material domain, nominal 

values of the factors and their loose and tight tolerances are defined  

Step 2. Inner and outer OAs are selected and their combinations are generated 
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Step 3. Values of each factor are determined using the proposed cross array approach 

Step 4. The topology optimization problem is defined according to SIMP approach. 

Penalty value is set as three 

Step 5. The first iteration is started with initial guess of density parameter 'x'. The 

stiffness matrix of material domain based on density matrix is found out. Using 

this, the deflection at each node is calculated by finite element formulation, 

incorporating non-square elements 

Step 6. The objective function is evaluated  

Step 7. Optimality criterion is applied with mesh independency filter to update the 

density parameter 

Step 8. If convergence is achieved, then iteration is terminated and the compliance, 

deflection value, and topology are recorded. 

Step 9. If convergence is not achieved then the process is repeated from step 5 to 8.  

Step 10. Along with steps 8 and 9, a routine on oscillation filter is implemented to check 

the oscillation in the simulated objective function. If repetition in oscillation is 

observed then, the optimization routine is terminated and the minimum value of 

objective function, topology, and deflection values are stored. 

Based on above steps, topology with the performance values is simulated for the 

considered problems. The methods used to analyze the results are discussed in next 

section. 

5.4.5 Analysis of simulated results 

By the application of CA-DOE and SIMP, the values of performance are obtained. 

The mean and SNR values of compliance and deflections are computed for each 

combination of inner OA. In addition, ANOVA is used and its results are provided 

for the significant factors and the functional relation between performance and 

tolerance values is obtained. The analysis is carried out based on obtained results, 

which is detailed in next section. 

5.5 ANALYSIS AND DISCUSSION 

In this section, the simulated compliance and deflection values for chosen benchmark 

problems are analyzed using different statistical measures. For simulation, FE mesh size 
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is varied i.e. 12×10, 24×20, 36×30, & 60×50, and observed that the trend of 

performances remain same for the different mesh sizes (Javed and Rout 2012). This is 

due to mesh independency filter used in the simulation (Bendsøe and Sigmund 2003). 

For illustration, the topologies at different mesh sizes are shown in Fig. 5.2. In present 

chapter, the mesh size 60×50 is used for analysis. The effect of small changes in the 

tolerances of factors can be captures with such fine mesh size. 

 

Mesh size 12 x 10 Mesh size 24 x 20 Mesh size 36 x 30 Mesh size 48 x 40 Mesh size 60 x 50 
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Fig. 5.2: Optimal topologies with different mesh sizes 

By applying CA-DOE, for each problem and each mesh size, results are observed 

corresponding to the each combination in inner OA. For illustration, one set of the results 

of problem-1, for mesh size 60×50 is provided in Table 5.3. The topologies look alike, 

but the compliance and deflection values differ in each case. This is observed because 

the tolerance values introduce very small change in factor values. The discussion 

regarding performance analysis is given in next section. 
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Table 5.3: Optimal topologies for 60×50 mesh size 

Inner OA 

(C. No.)† 

Outer OA (Run No.) ‡ 

  1                   2                   3                    4                   5                  6                   7                   8 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

12 

 

13 

 

14 

 

15 

 

16 

 

† Refer Appendix Table A6, ‡Refer Appendix Table A7 
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5.5.1 Signal to noise ratio 

As detailed in section 3.4.3, the SNR of compliance is computed from the simulated 

values and shown in Fig. 5.3. 

  

  

Fig. 5.3: SNR of compliance for chosen problems 

The SNR values are shown for each combination in inner OA, for the four benchmark 

problems. It can be observed from the obtained SNR values that the last combination in each 

problem gives the maximum SNR. Hence, the 16
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 combination of tolerance is the robust 

design for the corresponding problems. This is an obvious result for all the problems as all 

factors are in its tight tolerance range. It also represents the ideal situation where the designer 

desires to keep all factors very close to the nominal values. In other words, the noise of each 

factor around its nominal value is very limited. To achieve this condition practically, lot of 

effort is required in terms of cost and time. Hence, to reduce the effort in minimizing the 

effect of noise factors the next highest SNR value should be selected which will be another 

choice for robust design. In the same way, depending upon the degree of robustness other 

combinations can be chosen and analyzed. The tolerance combinations, which provide same 

result, are grouped together. Hence, three groups are formed for each problem. Based on the 

suitability of keeping loose tolerance, any combination of a group can be selected, without 

sacrificing the performance. The combinations of tolerance, which give the best results for 
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problem-1 are, 16, 14, 12, 8, 6, and 4. The group of combination number 2, 10, and 15 

provide satisfactory result. Group of combination number 1, 3, 5, 7, 9, 11, and13, show the 

worst result. For problem 2, group of combination number 16, 14, 12, 10, 8, 6, and 4 

shows best result and group of combination number 1 and 3 show worst result. For 

problem 3, group of combination number 16, 14, 12, 10, 8, and 6 show best result and 

group of combination number 11, 9, 7, 5, 3, and 1 shows worst result. For problem 4, 

group of combination number 16, 14, 12, 10, 8, 6, and 4 shows best result. Group of 

combination number 9, 5, and 1 shows worst result. These observations for SNR of the 

compliance value are summarized in Table 5.4.  

In similar way, SNR for maximum deflection of each problem is plotted using bar 

chart and shown in Fig. 5.4. Using this bar chart, the selection of tolerance combination 

with high SNR for deflection should be selected. This selection is purely based on 

reduced effort to keep a tolerance limit in tight range. It is seen that for problem-4 the 

trend is different from the other problems. It is because of the effect of tolerance values 

for specific physics of the problem. The remaining observation and analysis are similar 

to the case of compliance value. The observations for SNR of the deflection are 

summarized in Table 5.4. 

  

  

Fig. 5.4: SNR of deflection for chosen problems  
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Table 5.4: Tolerance combination group for SNR of performance functions 

SNR of Compliance 

 Group 1 Group 2 Group 3 

Problem 1 16, 14, 12, 8, 6, 4 15, 10, 2 13, 11, 9, 7, 5, 3, 1 

Problem 2 16, 14, 12, 10, 8, 6, 4 15, 13, 11, 9, 7, 5, 2 1, 3 

Problem 3 16, 14, 12, 10, 8, 6 15, 13, 4, 2 11, 9, 7, 5, 3, 1 

Problem 4 16, 14, 12, 10, 8, 6, 4 15, 13, 11, 7, 3, 2 9, 5, 1 

SNR of deflection 

 Group 1 Group 2 Group 3 

Problem 1 16, 15, 14, 12, 8, 7, 6, 5, 4 13, 11 10, 9, 3, 2, 1  

Problem 2 16, 15, 14, 8, 7 13, 12, 11, 9, 5, 3, 2 10, 6, 4, 1 

Problem 3 16, 15, 14, 13, 8, 7, 6 12, 11, 5 10, 9, 4, 3, 2, 1 

Problem 4 13, 10, 7, 6, 5, 3, 2 9, 1 16, 15, 14, 11, 12, 8, 4 

The change in the combination numbers can be seen by comparing the compliance 

and deflection results. It can be concluded that the deflection and compliance values 

change differently for the same values of factors and tolerances. It can be intuitively 

predicted that the trend of SNR of deflection value will be same as SNR of compliance 

value. Logically, with the increasing compliance, the maximum deflection should also 

increase. However, this is not observed from the obtained values. To get an insight, all 

the obtained compliance values are plotted along with its corresponding maximum 

deflection values. In Fig. 5.5(a) the obtained compliance values are arranged in 

ascending order and the corresponding maximum deflections are plotted in Fig. 5.5(b). 

Curve, C1, C2, C3, and C4 represents the compliance values for problem-1, 2, 3 & 4 

respectively, and curve D1, D2, D3 & D4 represents the maximum deflections obtained 

for problem-1, 2, 3 & 4 respectively. It can be observed that the corresponding maximum 

deflections do not increase smoothly, and has small variations, with increasing trend. 

Due to this variation, the intuitive prediction goes wrong and mismatch in the 

combination number is observed. 
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(a) 

(b) 

Fig. 5.5: Variation of (a) compliance and (b) deflection values  

A smooth increasing curve for maximum deflection would have been observed, if 
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0

0.5

1

1.5

2

2.5

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

C
o

m
p

li
a

n
ce

Combination number

C1 C2 C3 C4

0

0.005

0.01

0.015

0.02

0.025

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

D
e

fl
e

ct
io

n
 (

m
m

)

Combination number

D1 D2 D3 D4



Selection of tolerance range of controllable factors for topologically optimized structures 

-102- 

From the results obtained by the CA-DOE approach, the mean value of the 

compliance is computed for each run of inner OA. The bar chart for the four problems 

containing the mean compliance value for each combination is shown in Fig. 5.6. 

  

  

Fig. 5.6: Mean of compliance for chosen problems 

From Fig. 5.6, the combination of tolerance can be selected which show the lowest 

value. These results are more or less similar to the SNR value of compliance, leaving a 

few combinations. In Table 5.5, the observations on mean values of compliance are 

summarized in form of combination groups. Further analysis on mean deflection will 

open the other aspect of selection of combination based on maximum deflection in the 

beam/plates. 

Similar to the mean compliance values, the mean deflection values are presented in 

Fig. 5.7.From these results, the combination that gives a minimum deflection can be 

identified. Similar to SNR of deflection of problem-4 the irregular trend is observed for 

mean deflection of the same problem. As discussed earlier, it is because of the specific 

physics of the problem. For other problems also, the best combinations are different from 

that of the SNR of maximum deflections. The earlier discussion on reasons applies here. 

1.476

1.478

1.480

1.482

1.484

1.486

1.488

1.490

1 3 5 7 9 11 13 15

M
e

a
n

  o
f 

C
o

m
p

li
a

n
ce

Combination number

Problem-1

1.205

1.210

1.215

1.220

1.225

1.230

1 3 5 7 9 11 13 15

M
e

a
n

  o
f 

C
o

m
p

li
a

n
ce

Combination number

Problem-2

1.880

1.885

1.890

1.895

1.900

1 3 5 7 9 11 13 15

M
e

a
n

  o
f 

C
o

m
p

li
a

n
ce

Combination number

Problem-3

0.445

0.446

0.447

0.448

0.449

0.450

1 3 5 7 9 11 13 15

M
e

a
n

  o
f 

C
o

m
p

li
a

n
ce

Combination number

Problem-4



Selection of tolerance range of controllable factors for topologically optimized structures 

-103- 

  
  

  
Fig. 5.7: Mean of deflection for chosen problems 

The summary of tolerance combination for mean values of deflections is provided in Table 

5.5. The variations present in results of fourth problem is very minute, hence the 

combinations can be divided into two groups only. In this table, Group 1 is the best 

performance and the subsequent groups are arranged for descending order of performances. 

Table 5.5: Tolerance combination groups for mean of performance 

Mean of Compliance 

 Group 1 Group 2 Group 3 

Problem 1 16, 14, 12, 8, 4 15, 13, 7, 6, 5 11, 10, 9, 3, 2, 1 

Problem 2 16, 14, 12, 11, 10, 8, 7, 6, 4 15, 13, 9, 5, 2, 1 3 

Problem 3 16, 14, 8, 6 15, 13, 12, 10, 7, 5, 4, 2 11, 9, 3, 1 

Problem 4 16, 15, 14, 13, 12, 11, 10, 8, 7, 6, 4 3, 2 9, 5, 1 

Mean of Deflection 

 Group 1 Group 2 Group 3 

Problem 1 16, 8, 7, 5 15, 14, 13, 12, 11, 6, 4, 3 10, 9, 2, 1 

Problem 2 16, 15, 14, 11, 8, 7, 5, 3 13, 12, 10, 9, 6, 2 4, 1 

Problem 3 16, 15, 14, 13, 11, 8, 7, 6, 5 12, 9, 3, 2 10, 4, 1 

Problem 4 13, 10, 9, 7, 6, 5, 3, 2, 1 16, 15, 14, 12, 11, 8, 4 --- 
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From above, it can be concluded that combination number 16 and 8 are best suited 

for all problems. The significance of factor tolerance will provide more insight about 

these observations, given in next section. 

5.5.3 Analysis of variance 

The obtained values of mean compliance and deflection for four problems are analyzed 

using ANOVA with the help of Design expert software 8.0.7.1 (2011), and the results are 

presented in Table 5.6. In this table, the statistically significant factor, and the regressive 

relationship between the factor-tolerance and performance measure is provided. 

Similarly, statistically significant factors are provided in Table 5.7. From mean 

compliance analysis of all the four problems, it can be observed that all factors are 

statistically significant. By observing the response equation, the effect of each factor can 

also be analyzed separately. For the problems 1-3, volume fraction is statistically 

significant followed by, force, elasticity, and aspect ratio has least effective on 

performance. For problem 4, force is statistically significant followed by, elasticity, 

volume fraction, and aspect ratio has least effective on performance. Hence, for all the 

four problems, the designer can consider a loose tolerance for aspect ratio only. 

Table 5.6: Response equation for different problems 

Analysis type - Mean compliance 

 Response equation 

Problem 1 C1=1.484144– 1.29×10
–3

×F–1.43×10
–3

×V–1.28×10
–3

E+5.78×10
–4 

×A 

Problem 2 C2=1.218823–1.15×10
–3

×F–1.6×10
–3

×V–1.07×10
–3

E+5.19×10
–4

×A 

Problem 3 C3=1.893741–1.73×10
–3

×F–3.8×10
–3

×V–1.69×10
–3

E+6.59×10
–4

×A 

Problem 4 C4=0.447716–2.8×10
–4

×F–1.3×10
–4

×V–2.7×10
–4

E+8.44×10
–5

×A 

Analysis type - Mean deflection 

 Response equation 

Problem 1 D1=0.01483–1.17×10
–5

×V–1.17×10
–5

×E+5.5×10
–6

×A 

Problem 2 
D2=0.01227–9.38×10

–6
×V–1.25×10

–5
×E+1.6×10

–6
×A–1.56×10

–6
×FV 

+1.6×10
–6

×FE+4.7×10
–6

×VE–3.13×10
–6

×VA

Problem 3 D3=0.01894–3.67×10
–5

×V–1.33×10
–5

×E+1.2×10
–5

×A 

Problem 4 D4=0.00477–5.47×10
–6

×FE–3.91×10
–6

×VA+2.3×10
–6

×EA 

C1,…,C4=Compliance, D1,…,D4=Deflection, F=Applied force, V=Volume 

fraction, E= Elasticity value, A=Aspect ratio 
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Table 5.7: Statistically significant factors for different problems 

Bench mark problems Statistically significant input factors for compliance 

Problem 1 V, F, E, A 

Problem 2 V, F, E, A 

Problem 3 V, F, E, A 

Problem 4 F, E, F, A 

Bench mark problems Statistically significant input factors for deflection 

Problem 1 V, E, A 

Problem 2 V, E 

Problem 3 V, E, A 

Problem 4 FE, VA 

F:Applied force, V:Volume fraction, E: Elasticity value, A:Aspect ratio 

The response equation for problems 1-3, indicate volume fraction is the most 

significant factor and aspect ratio is the least significant factor. For problem 4, the 

interaction of force-elasticity and volume fraction-aspect ratio is statistically significant. 

It is seen that the targeted values of performance and, the combination with minimum 

variations in performance value can be achieved by relaxing the tolerance of few factors. 

It is advantageous, because the efforts required to keep tight tolerance are less. Needless 

to say, that the identification of such factors is valid for a particular range.  

5.6 RELIABILITY BASED TOLERANCE RANGE SELECTION OF 

TOPOLOGICALLY OPTIMIZED STRUCTURES 

Similar to Chapter 4, the reliability concept is applied in the present investigation to 

derive the suitable combinations of tolerances for the chosen problems. This will help to 

incorporate the noise of controllable factors. In the present work, the noise of 

controllable factors is treated as their tolerance values. The methodology used to 

generate the tolerance combinations is described below, 

5.6.1 Methodology 

The detail of the RBTO scheme is already discussed in section 4.3. The tolerance 

combinations are used in RBTO methodology to simulate the performances, subject to a 

given reliability index. The simulation method is presented in Table 5.8. 
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Table 5.8: Methodology for reliability based tolerance analysis 

Combination 

No. 

Aspect ratio 

σA 

Elasticity 

σE 

Volume 

fraction σV 

Force 

σF 

RBTO 

Compliance Deflection 

1 L L L L C1 D1 

2 L L L T C2 D2 

… … … … …   

… … … … …   

16 T T T T C16 D16 

From Table 5.8, the application of RBTO in the simulation of tolerance values can be 

observed. Each combination of loose (L) and tight (T) tolerance of the factors is fed to 

the RBTO scheme. As discussed earlier in section 4.3 (Step 5), the RBTO method 

requires the nominal values of factors, their spread or tolerance values and the desired 

reliability index values to simulate the performance. In the present case, the nominal 

values and their tolerance are already defined (section 5.4.2). Using these values and a 

desired reliability index i.e. 3.8 and 3, the performances are simulated. The simulated 

results are provided and implications are discussed in next section. 

5.6.2 Results and discussion 

The simulated result for compliance and deflection at different reliability index are given 

in Figs. 5.8 & 5.9.  

  

  

Fig. 5.8: Compliance values using RBTO approach  
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From Fig. 5.8 it is seen that, by introducing reliability index value, the compliance 

values increase. Also, with increase in reliability index β, the variation of the compliance 

values increases. These changes in the compliance values are because of the specific 

characteristics of the RBTO method, as discussed in section 4.3. The relative 

performance of the each combination is slightly changed compared to a CA-DOE based 

simulation. Therefore, present analysis is helpful to realize the targeted values of the 

performances in the new scenario. 

  

  

Fig. 5.9: Deflection values using RBTO approach 

From Fig. 5.9 it is seen that, by introducing the reliability, the deflection values increase. 

Similar to the compliance, the deflection values also increase because of the RBTO method. 

However, for the fourth problem the observation is different. In this problem, for 

combinations 7, 8, 10, 13, 14, and 16 the deflection values remain same with increased 

values of reliability index. This happens because of the specific physics of problem-4, which 

produces less deflection compared to other problems at same factor tolerance values. 

The results shown above can be utilized in the scenarios where reliability aspect is 

considered for the tolerance range selection. The different tolerance combinations are 

shown here with the corresponding performance values. Based on the performance and 

reliability requirement a suitable tolerance combination can be selected from the shown 

result. 
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5.7 CONCLUSIONS 

In this chapter, a method to select optimum tolerance of input factors for topologically 

optimized structural problem is described. For the tolerance range selection, the tolerance 

of factor are identified and classified as loose and tight range. Using CA-DOE approach, 

the combination of tolerance was generated and the performance of the structure are 

simulated and analyzed in worst cases scenarios. As a result of this analysis, a selection 

process of the tolerance range is developed subject to robust and targeted performance. 

This selection method provides and aid to the designer, which considers the choice and 

affordability of the factor-tolerances. This method is illustrated with the use of 

benchmark problems. For most of the problems, it is found that the tolerance of aspect 

ratio is not significant and tolerance of force is highly significant. In order to include the 

uncertainty of the design factors a reliability based tolerance range selection procedure is 

also developed. The presented methodology can be applied for robust performance of 

realistic applications like, various structural elements; components of MEMS, i.e. micro 

cantilever, micro levers, force amplifier, etc. This methodology is applicable in the cases 

where obtained optimal topology can be reshaped further before manufacturing. There 

are other processes where the optimal topology is forwarded to the manufacturing 

department without any modifications. For such processes, an approach for tolerance 

range selection is presented in the next chapter. 



CHAPTER 6 

TOLERANCE RANGE SELECTION FOR TOPOLOGICALLY 

OPTIMIZED STRUCTURES WITH EFFECTS OF UNCERTAINTIES 

IN MANUFACTURING PROCESS 

6.1 INTRODUCTION 

The investigations on effects of input factors on optimal topologies were carried out in 

the Chapters 3 and 4. In Chapter 5, the effect of tolerance of same factor tolerances 

investigated further to generate the design, which is robust and provides targeted 

performance. In this work, the tolerances of the factors are treated as the uncertainty 

range. Proposed methodology offers flexibility to incorporate any numbers and type of 

the factors, which influence the performance. In addition, the tolerance of aspect ratio 

and volume fraction were included to consider the uncertainties caused by manufacturing 

or any other secondary process of topology modification. Thus, the methodology 

developed in Chapter 5 addressed the manufacturing uncertainties in a very generic way. 

From the literature, it is observed that a stream of current research (2009-2013) moves in 

the direction of uncertainties caused by the manufacturing processes. Various methods 

have been proposed by researchers to deal with the manufacturing uncertainties. In 

course of this investigation, the manufacturing uncertainties, and geometric uncertainties 

caused by the manufacturing processes are considered. Here, basic assumption is that the 

optimal topology should be replicated in the manufacturing process, without any further 

modification i.e. shape/size optimization. This assumption is valid for many of the 

topology-optimized components like, structures in MEMS, compliance mechanisms, etc. 

For such cases, the uncertainties of the manufacturing process have to be dealt 

corresponding to the specific manufacturing process. To address this, a simulation 

technique is required that simulates the uncertainties cause by a specific manufacturing 

process. Thus, a simulation method is proposed here, which is based on the modeling of 
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random placement of the material within the worst-case ranges. The methodology is very 

much similar to what is proposed in Chapter 5. The important difference here is the 

simulation of geometric uncertainty or imperfection due to manufacturing processes. For 

this purpose, the tolerance of volume fraction is utilized in the simulation of part and its 

impact on remaining controllable and non-controllable factors are incorporated in the 

same way, as discussed in Chapter 5. The simulation for uncertainties of manufacturing 

process uncertainty will provide better result compared to the generic approach 

developed. 

6.2 SIMULATION FOR MANUFACTURING UNCERTAINTIES 

In the present work, geometric uncertainty of the processes such as etching, e-beam 

lithography, laser micro-machining and milling processes is considered. The 

uncertainties involved in these processes lead to inaccurate 

deposition/doping/etching/cutting of the material. These inaccuracies are critical for 

topologically optimized components because the intended performance is dependent on 

proper material distribution. In order to simulate these uncertainties, a method based on 

random selection of density parameter is introduced. Usually, an extreme case on 

manufacturing uncertainties produces either too thin or thick members, as investigated 

by Sigmund (2009). This variation in the density parameter provide random volume 

fraction )(xV . Thus, the compliance of the generated topology is also random. 

Mathematically this relation is expressed in equation (6.1). 
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 (6.1) 

where, CD, CR, and CA are the compliance values corresponding to the dense, rare and 

accurate volume fractions and xD , xR , and xA are the density parameters. In actual 

scenario, the inaccuracy may lie within the domain of dense to rare material deposition. 
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Thus, the random density parameter can take any values from this domain. It is assumed 

that each density parameter independently attains a random value. In order to simulate 

the worst-case scenario, the random domain is discretized into three segments i.e. dense, 

rare and the accurate density parameter value. Thus, the simulated density matrix 'xS' can 

be expressed as a probabilistic function of the extreme values.  

 )()()()()()()( 1,,,0 AiBRiBADiAis xxxx ×Π+×Π+×Π= ++ ξξξ εε  (6.2) 

where, iξ  is a random variable, ),( ⋅⋅∏ is Boxcar function (David 2006) that is the 

function on Heaviside step function, H 

 )()()(, BHAHba −−−=∏ ξξξ  (6.3) 
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The Boxcar function acts as a coefficient and its values can be either zero or one, 

which is dependent on random variable iξ . Thus, it randomly selects any one of the 

density parameter in equation (6.2). The Boxcar function, ΠA,B is equal to zero except in 

the interval [A,B] as shown in Fig. 6.1 

 

Fig. 6.1: Boxcar function, ΠA,B 

  

0    A       B             1 

1 

ΠA,B 

Π0, A+t 

ΠB+t,1 
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In order to eliminate the overlapping values at the limits of Boxcar function

adjacent interval limit is 

uniformly distributed and its 

is a random probabilistic variable, 

(6.2) represents a random selection 

selection is made using range

accurate values also. To enable equal probability of the selection of density 

parameters for simulated density

are set as a=0, b=1/3, c=2/3 and d=1, where 

field. 

To illustrate the simulation

Fig. 6.2. The widely used MBB beam is selected and the optimal topologies are 

The exact value of volume

manufacturing process, the extreme cases of volume f

(Sigmund 2009). For this case, the 

of a function of the extreme and exact volume fracti

equation (6.1). Corresponding to the exact volume fraction, the op

shown in Fig. 6.2(c). The topolog

0.5 are shown in Fig 6.2(a) and (b) respectively. 

simulated and shown in Fig 

(a)

(c)

Fig. 6.2: Extreme cases of manufacturing uncertaint

fraction 0.4, and (b) 0.6. 

(d) Example of simulation of manufacturing uncertainty
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In order to eliminate the overlapping values at the limits of Boxcar function

interval limit is incremented by a small value 't'. In this interval, it is 

its probability is equal to one. In equations (6.

is a random probabilistic variable, which lies in the interval [0, 1]. Thus, 

a random selection of density parameter for each element. The 

using range of extreme manufacturing uncertainties including the 

accurate values also. To enable equal probability of the selection of density 

parameters for simulated density matrix xs, the intervals [a, b], [b+t, c] and [c

are set as a=0, b=1/3, c=2/3 and d=1, where t is small increment within the random 

simulation, an example for such manufacturing process 

MBB beam is selected and the optimal topologies are 

olume fraction is kept as 0.5. Due to the uncertaint

the extreme cases of volume fraction may become 

For this case, the randomized material distribution will be in 

function of the extreme and exact volume fraction cases, described by 

Corresponding to the exact volume fraction, the optimal topology is 

topologies for extreme cases of volume fraction, i.e. 0.4 and 

(a) and (b) respectively. Using proposed method, the topology is 

 6.2(d). 

 
(a) (b) 

 
(c) (d) 

Extreme cases of manufacturing uncertainties, equivalent to 

0.6. (c) The accurate topology with volume fraction 0.5

xample of simulation of manufacturing uncertainty  

manufacturing process 

In order to eliminate the overlapping values at the limits of Boxcar function, the 

In this interval, it is 

6.2) & (6.3), ξ 

[0, 1]. Thus, equation 

each element. The 

including the 

accurate values also. To enable equal probability of the selection of density 

, c] and [c+t, d] 

increment within the random 

process is shown in 

MBB beam is selected and the optimal topologies are shown. 

uncertainties in 

may become 0.4 and 0.6 

terial distribution will be in the form 

on cases, described by 

timal topology is 

for extreme cases of volume fraction, i.e. 0.4 and 

Using proposed method, the topology is 

 

 

, equivalent to (a) volume 

The accurate topology with volume fraction 0.5,  
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The amount of uncertainties can be regulated by controlling the intervals of Boxcar 

function. For example, considering small value of uncertainties in manufacturing 

process, the simulation will be close to the accurate volume fraction (or accurate 

manufacturing) compared to the results for upper and lower extremes. Hence for such 

simulation the interval [b+t, c] will be broad compared to [a, b], and [c+ t, d]. Similarly, 

for a highly uncertain manufacturing process the interval [b+ t, c] will be very narrow or 

zero, compared to [a, b], and [c+ t, d]. 

It can be observed from this simulation process that the mesh size plays an important 

role. If the amount of geometric imperfection cause by manufacturing uncertainty is 

smaller than the element size, then it cannot be simulated, as the density parameters have 

constant values for the respective mesh elements. Hence, to simulate it correctly, the 

chosen mesh size should be smaller than or equal to the smallest unit of geometric 

imperfection. In such case, the above procedure is applied by combining the elements on 

the computation space, which forms the smallest unit of geometric imperfection as 

shown in Fig. 6.3. Here, the smallest unit for geometric imperfection is accommodated in 

a sub mesh. Based on the type and quantity of the imperfection, the elements can be 

arranged and, provides flexibility to the designer to simulate the desired manufacturing 

process. 

 

Fig. 6.3: Approximation of smallest unit of manufacturing error on finite element cells 

In order to apply the suggested approximation, the density parameters in 

equation (6.2) are replaced by a group of elements, which accommodates the smallest 

unit for geometric imperfection. Equation (6.5) shows the generalized approach to 

capture these uncertainties, where the geometric imperfection is accommodated in m×n 

mesh size. 

nmAiBnmRiBAnmDiAnmS xxxx ×+×+×× ×Π+×Π+×Π= )()()()()()()( 0,,,0 ξξξ εε  (6.5) 

 Finite 

element 

mesh 

Least material 

deposition 
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The type of geometric imperfection of material can also modeled in the proposed 

simulation method. For illustration, two cases of manufacturing errors and their 

simulations are shown in Fig. 6.4. Figure 6.4 (a) and (c) show the manufacturing error 

approximation in finite element cells, for milling and coarse doping process, 

respectively. The corresponding simulation of manufacturing error of these processes are 

represented in Fig. 6.4 (b) and (d). In these simulations, the freely suspended material 

can be removed after the simulation. While in Fig 6.2 (d) the freely suspended material is 

retained after simulation. It can be generalized by the use of a filtering algorithm 

incorporated in post processing of the simulation. The decision to remove these 

suspended materials depends on the type manufacturing process. 

 

 

 

 

(a) (b) (c) (d) 

Fig. 6.4: The approximation of manufacturing errors (a) & (c) and their 

corresponding simulations (b) & (d) respectively 

The proposed geometric uncertainties or material misplacement simulation is 

suitable for user customization. This method offers the customization for, the 

manufacturing process, type, and amount of least material misplacement, degree of 

smoothness of simulation by the change of the mesh size, retention of removal of 

suspended material, and incorporation of correlated or non-correlated density 

parameters. In addition, the procedure offers the control on the proportion of the 

uncertainties, contributed by the worst and exact (or accurate) cases, in the final 

simulation. By proper control of the intervals of Boxcar-functions, the obtained 

simulation can be shifted to either too thin or thick conditions, shown by Sigmund 

(2009). Apart from these two extremes of too thick and thin, any other extremes can 

also be chosen based on the specific manufacturing process. In the current work, the 

proposed simulation method is used along with CA-DOE based method. Proposed 

method can also be used for other formulations of robust design. The formulation of 

geometric uncertainties caused by manufacturing process is independent of the 
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method used for topology optimization. This method can be applied to any method 

for topology optimization, as long as the whole material domain is discretized. 

In the current work, the proposed simulation approach is incorporated in the 

tolerance range selection approach for topologically optimized structures. For 

illustration, proposed methodology is applied to four benchmark problems and results are 

discussed in subsequent section. 

6.3 IMPLEMENTATION OF PROPOSED METHODOLOGY 

The presented methodology for selection of tolerance range of the factors is based on the 

CA-DOE approach, which was applied earlier. The implementation of each step is 

discussed below. 

Step 1. Selection of problem and performance measures: 

To apply the CA-DOE approach with the geometric uncertainties, four-

benchmark problems, as discussed in section 3.3, are selected. The responses or 

the main performance values are the outcomes, based on which the effects of 

tolerance ranges of factors are examined. For this work, performance measures 

are taken as the compliance and deflection similar to the earlier chapters. 

Step 2. Selection of input factor and their tolerance limits: 

In the present work, the input factors selected are same as in Chapter 5. Their 

nominal values and the loose and tight tolerance limits of these factors are 

selected based on information available in literature (Kharmanda et al. 2004, Jung 

and Cho 2004; Maute and Frangopol 2003; Sigmund 2009). In this case, the 

assumed values are given in Table 6.1. 

Table 6.1: Selected factors with their nominal and tolerance values 

S. No. Factor Nominal Value Loose tolerance Tight tolerance 

1 Force (N) 100  ±5  ±2.5 

2 Aspect Ratio 1.2 ±0.03   ±0.006 

3 Elasticity(GPa) 200  ±10  ±5  

4 Volume fraction 0.60 ±0.075 ±0.045 
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Step 3. Design and selection of orthogonal arrays: 

Based on the number of factors and their tolerance level, the inner and outer OAs 

are designed or selected. In this work, the tolerance of volume fraction is 

considered separately for the simulation of manufacturing uncertainties. Thus, to 

apply CA-DOE method inner OA three factors. For three factors with their two 

levels of tolerances, an inner OA is generated and the design matrix is shown in 

Appendix A8. Similarly, based on the numbers of factor and their tolerances level 

Taguchi's L4 outer OA is selected and the matrix is shown in Appendix A9 (Mitra 

2008; Sung 1998; Montgomery 2007). As stated earlier, the tolerance of volume 

fraction is utilized to perform the simulation of geometric uncertainties. Hence, 

for the loose and tight tolerance range of volume fraction, two set of 

manufacturing uncertainties are realized. For each set of, the inner OA is 

Appendix A10. 

Step 4. Simulation of performances: 

In the presented problem, the well-known optimization scheme discussed in 

earlier chapters i.e. SIMP is applied with optimality criterion approach. The 

optimization problem is given in equation (1.7). Since this work focuses on the 

issue of manufacturing the exact topology for the selected components, hence, it 

is necessary to eliminate the intermediate densities from the optimal topologies. 

There are few methodologies available to suppress the intermediate density 

(Albert and Etman 2009; Sigmund 2007; Svanberg and Werme 2005; Bruns 

2005; Lau et al. 2001). The method suggested by Albert and Etman (2009) is 

adopted here for simplicity and reduced computation time. In this method, they 

proposed a simple heuristic method to eliminate the gray scale of intermediate 

density from the optimal topology by modifying the OC method (Equation 

(1.12)). The modified OC for removing the gray scales is given as, 
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where, the operator )(⋅Γ biases individual gray scale variables towards void densities 

during iterations. Finally, the volume constraint is also satisfied in each iteration. The 

values of gray scale suppression operator is given as, 
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The value of power q in equation (6.18) is suggested as 2 or 3 in order to obtain a 

topology without any other numerical instability. In the present work, the value of q is 

taken as 3. 

The effect of manufacturing uncertainties is simulated out using the process detailed 

in section 6.2. These simulations are carried out for each set of input factor values 

incorporating the randomness of the factors by CA-DOE method. In order to obtain the 

overall behavior, a Monte Carlo based technique is applied. 

Step 5. Analysis of simulated results: 

The obtained results provide compliance and deflection values for the selected 

benchmark problems. There can be two objectives of this analysis, through the 

selection of tolerance combinations. The first one is to achieve the targeted values 

of compliance and deflection. The second objective is to achieve the minimum 

variation of the main performance values i.e. robustness. For targeted values of 

main performance value, the ANOM is performed. For the minimum variations 

of performance value or robust design, SNR is utilized (Mitra 2008; Sung 1998; 

Montgomery 2007). 

Above steps are performed in order to analyze the effect of tolerance ranges of the 

factors. For better illustration, the whole methodology is presented in Fig. 6.5. The 

CA-DOE based experiment is performed by considering the inner OA of four factors 

with two levels loose (L) and tight (T) tolerances, and the outer OA for three factors 

with two levels. In order to enable the simulation, the whole CA-DOE based 

experiment is replicated three times based on the tolerance range of volume fraction 

(VR, VA, and VD). The simulated density parameters (xR's, xA's, and xD's) of the 

corresponding combination and run numbers are utilized to simulate the effect of 

manufacturing uncertainties. The result is obtained as the randomized density 

parameter, xS. Since the density parameter represents a topology, the performance 

values of the topology can be computed by incorporating the boundary conditions to 

the randomized density parameter, xS. In this way corresponding to the each 

combination and run of inner and outer OA respectively, the compliance and 

deflection values are obtained. Finally, the mean and SNR is computed for each 

combination of the inner OA, as the response of the whole experiment. 
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        Three replications of the experiment, for volume fraction tolerances 
 

 

Rare : VR Accurate: VA Dense: VD 

V-3σV V-3σV V-3σV V-3σV V V V V V+3σV V+3σV V+3σV V+3σV 

 Run No. 1 2 3 4 1 2 3 4 1 2 3 4 

Aspect ratio A-3 σA A-3 σA A+3 σA A+3 σA A-3 σA A-3 σA A+3 σA A+3 σA A-3 σA A-3 σA A+3 σA A+3 σA 

Elasticity (Pa)  E-3 σE E+3 σE E-3 σE E+3 σE  E-3 σE E+3 σE E-3 σE E+3 σE  E-3 σE E+3 σE E-3 σE E+3 σE 

Force (N) F-3 σE F+3 σE F+3 σE F-3 σE F-3 σE F+3 σE F+3 σE F-3 σE F-3 σE F+3 σE F+3 σE F-3 σE 

Combination 

No. 

 

Volume 

fraction  

σV 

Aspect 

ratio 

σA 

Elasticity 

(Pa) 

σE 

Force 

(N) 

σF 

   

1 L L L L xR11 … … … xA11 … … … xD11 … … … 

2 L L L T xR21 … … … xA21 … … … xD21 … … … 

… … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … 

16 T T T T … … … xR164 … … … xA164 … … … xD164 

 

 

 

xS11 … … … 

xS21 … … … 

… … … … 

… … … … 

… … … xS164 

 

 

 

 

 

 

Fig. 6.5: Flowchart for simulation method 

CS11,  DS11 … … … 

CS21,  DS21 … … … 

… … … … 

… … … … 

… … … CS164,  DS164 

Responses 

Mean S/N 

CM11,  DM11 CSNR11,  DSNR11 

CM21,  DM21 CSNR21,  DSNR21 

… … 

… … 

CM164,  DM164 CSNR164,  DSNR164 

Simulation for effect of manufacturing uncertainty 

Computation of the compliance & deflection corresponding to the density parameter 

Response 

computation 

Outer OA 

Inner OA 
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The important differences between the present methodology and the methodology 

described in Chapter 5, are made clear in Fig. 6.5. In Chapter 5, the volume fraction 

was also included as factor while generating the outer OA. However here, the volume 

fraction tolerances in not included within the CA-DOE experiment and is applied 

over the cross arrays. The levels of volume fraction are chosen as three different 

values, whereas in Chapter 5 it had two values i.e. loose and tight. These changes 

were necessary to incorporate the effect of manufacturing uncertainties. Thus, the 

final responses are the performance of the randomized topologies. The detailed 

analyses of the responses are presented in next section.  

6.4 ANALYSIS AND DISCUSSION 

The simulations are performed based on proposed method for the four different benchmark 

problems. As stated earlier, a technique proposed by Albert and Etman (2009) is employed 

to suppress the gray scales and to compare the results the simulations are carried out with 

and without intermediate density. For simulation, FE mesh size for the problems are varied 

as, 12×10, 24×20, 36×30, and 60×50. The comparative results remain same for the 

considered mesh sizes, due to mesh independency filter used in the simulation (Javed and 

Rout 2014). For different mesh sizes the topologies are shown in Fig. 6.6. In this chapter, 

the result of mesh size 60×50 is used for simulation and analysis. 

 

Fig. 6.6: Optimal topologies for different mesh size at the nominal values of the factors 
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6.4.1 Signal to noise ratio 

The proposed CA-DOE based methodology is applied and the results are discussed in 

this section. For illustration, the topologies for problem-1, corresponding to 60×50 

mesh is shown in Table 6.2. The SNR of compliance and deflection is computed 

using equation (3.35). Here, the replications are obtained by outer OA i.e. Taguchi's 

L4 OA. 

Table 6.2: Simulated topologies for problem-1, with corresponding volume fraction 

Inner OA 

(Combination 

No.)* 

Outer OA (Run No.)** 

                1                                  2                                  3                               4  

1 

 
         0.6043                                     0.6010                                     0.5976                                       0.6035 

2 

 
0.5974                                 0.5999                                 0.5977                                 0.6004 

3 

 
0.6020                                 0.6027                                 0.5979                                 0.6022 

4 

 
0.5972                                 0.5989                                 0.6091                                 0.6009 

5 

 
0.5981                                 0.5954                                 0.6079                                 0.6049 

6 

 
0.6005                                 0.6004                                 0.6055                                 0.6046 

7 

 
0.6008                                 0.5921                                 0.5968                                 0.5974 

 * Refer Appendix A9, **Refer Appendix A10 



Tolerance range selection for topologically optimized structures with effects of uncertainties in manufacturing process 

-121- 

Inner OA 

(Combination 

No.)* 

Outer OA (Run No.)** 

                1                                  2                                  3                               4  

8 

 
0.6034                                 0.6010                                 0.5980                                 0.5970 

9 

 
0.5999                                 0.6008                                 0.6058                                 0.5987 

10 

 
0.5977                                 0.6047                                 0.6007                                 0.5966 

11 

 
0.6026                                 0.6008                                 0.6046                                 0.5942 

12 

 
0.6052                                 0.6016                                 0.6033                                 0.5965 

13 

 
0.5929                                 0.6000                                 0.5984                                 0.5980 

14 

 
0.5996                                 0.6028                                 0.6041                                 0.6044 

15 

 
0.6008                                 0.6008                                 0.5992                                 0.5976 

16 

 
0.5993                                 0.5935                                 0.5948                                 0.6022 

* Refer Appendix A9, **Refer Appendix A10 
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Hence, for each set of tolerance combinations (Appendix A10), four replications are 

obtained. The SNR value is the consolidated value of replications by using i=1, 2, 3 & 4 

in equation (3.35). The simulated values of SNR for compliance are shown in Fig. 6.7. In 

this figure, value of SNR corresponding to each combination number of inner OA is 

shown in bar chart. 

Fig. 6.7: SNR of compliance values for different tolerance combinations 

From Fig. 6.7, the variations of SNR corresponding to different combinations of the 

tolerances is shown. For problem-1, the highest SNR is observed for 12th combination. 

This observation is different from that of results in Chapter 5 (Fig. 5.3), and it is due to 

the effect of specific manufacturing uncertainties. For other problems, the highest SNR 

value is achieved by the 16th combination. The highest value for SNR represents the 

combination with robust design. Referring to Appendix A10, it can be seen that the 16th 

combination, have factors with tight tolerance range. This is an ideal situation, where the 

designer chooses narrow range for tolerance to minimize the variation in the 
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performance. However, this activity requires a lot of cost and effort. The alternate to this 

situation is to select the combination numbers, which have high SNR value. Based on 

the affordability of tolerance range, the designer should select a suitable tolerance 

combination. 

From these results, it is observed that there are different combination numbers, 

which have high SNR value corresponding to each problem. It can also be identified 

that the gap between nearest SNR values are small. Hence, the tolerance 

combinations can be grouped together based on the similar values of SNR, as it was 

presented in Chapter 5. In this way, a group can represent similar performance 

variations and provide the alternatives to the designer. The grouping based on the 

SNR value is shown in Table 6.3. The SNR values decrease while moving from 

group one to three. 

Table 6.3 Tolerance combination groups for SNR values 

SNR of Compliance  

 Group 1 Group 2 Group 3 

Problem 1 12, 11, 10, 9 16, 15, 14, 13, 4, 2 8, 7, 6, 5, 3, 1 

Problem 2 16, 15, 14, 13, 12, 11, 10 9, 8,  7, 6, 5, 4, 3, 2, 1 

Problem 3 16, 14, 12, 10 15, 13, 11, 9, 8, 6, 4, 2 7, 5, 3, 2, 1 

Problem 4 16, 15, 14, 12, 11, 10 13, 9, 8, 4 7, 6, 5, 3, 2, 1 

SNR of deflection 

 Group 1 Group 2 Group 3 

Problem 1 12, 11, 10, 9 16, 15, 14, 13, 4, 3, 2 8, 7, 6, 5, 1 

Problem 2 16, 15, 14, 12, 11, 10, 9,8  8, 7, 6, 5, 3, 4, 2, 1 

Problem 3 16, 15, 14, 12, 11 13, 10, 9, 8, 7 6, 5, 4, 3, 2, 1 

Problem 4 16, 15, 14,13, 12, 11, 10, 9 8, 7, 6, 5 4, 3, 2, 1 

Similar to compliance value, the SNR of maximum deflection is also shown in 

Fig. 6.8, for selected problems. The important observations in Fig 6.8, are similar to that 

of compliance. For problem-1, the highest SNR is observed for 12th combination. For 

problem-4, highest SNR is observed for 15th combination. This observation is different 

from results available in Chapter 5 (Fig. 5.4). 
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Fig. 6.8: SNR of deflection values for different tolerance combinations 

The consolidated grouping based on SNR values of deflection is shown in Table 6.3. 

These groups represent the comparative robustness offered by the different 

combinations. The SNR values decrease while moving from group one to three. Hence, 

the combinations of group one is desirable to achieve the high level of robustness. 

Similar to the SNR of performance the mean values of the performances are also 

analyzed, which are detailed in the next section. 

6.4.2 Targeted performance value  

The mean values of compliance and deflection help to solve the targeted value problem. 

In these problems, it is required to achieve desired values of the performance. Due to 

changes in tolerance and noise of the factors, the targeted values change from the 

intended one. As discussed earlier, present work provides the variations of performance 

over individual factor tolerance value, to achieve the intended performance by selecting 

the tolerances of factors. For structural problems, the performance is represented by the 

mean values of compliance and deflection. The variation in the mean values of 

compliance and deflection is discussed in this section. Based on the CA-DOE approach, 

the compliance and deflections are consolidated for each combination of inner OA 
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(Appendix A10). The bar charts for the four problems are plotted in Fig. 6.9. The mean 

compliance is shown against combination numbers. These value of compliance and 

deflections are generated using the topologies without gray scale similar to that of SNR. 

  

Fig. 6.9: Mean of compliance values for different tolerance combinations 

For problem-1, the lowest compliance value is observed for 12th combination. This 

observation is different from that of the results available in Chapter 5 (Fig. 5.6). For 

other problems, the lowest compliance value is achieved by the 16th combination. In 

order to reduce the effort spent in tightening the tolerance of all factors, the combinations 

that gives the compliance closer to the minimum value, can be selected. Similar to 

previous cases the grouping of the combination is done here. These groups show the 

similar performance in compliance, and shown in Table 6.4. The mean values of 

performances increase while moving from group one to three. 

The results for mean values of defection are shown in Fig 6.10. The observations for 

mean deflection are similar to mean compliance. 
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Fig. 6.10: Mean of deflection values for different tolerance combinations 

Table 6.4: Tolerance combination groups for mean values 

Mean of Compliance 

 Group 1 Group 2 Group 3 

Problem 1 12, 11, 10, 9 16, 15, 14, 13, 4, 3, 2, 1 8, 7, 6, 5 

Problem 2 16, 15, 14, 12, 11, 10, 9  8, 7, 6, 5, 3, 4, 2, 1 

Problem 3 16, 15, 14, 12, 11, 10 13, 9, 8, 4 7, 6, 5, 4, 3, 2, 1 

Problem 4 16, 15, 14, 12, 11, 10, 9  8, 7, 6, 5, 3, 4, 2, 1 

Mean of Deflection 

 Group 1 Group 2 Group 3 

Problem 1 12, 11, 10, 9 16, 15, 14, 13, 4, 3, 2 8, 7, 6, 5, 1 

Problem 2 16, 15, 14, 12, 11, 10, 9  8, 7, 6, 5, 4, 3, 2, 1 

Problem 3 16, 15, 14, 12, 11, 10 9 8, 7, 6, 5, 4, 3, 2, 1 

Problem 4 15, 12, 11, 10, 9 16, 14, 13, 8, 7, 6, 5 4, 3, 2, 1 
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For problem-1, the lowest deflection value is observed for 12th combination, and 

for problem-4, the lowest deflection value is observed for 15th combination. This 

observation is different from that the results in Chapter 5 (Fig. 5.7). For problems-2 

and 3, the lowest deflection value is achieved by the 16th combination. The results 

for mean compliance and deflections are found to be similar. The effect of tolerance 

on the performance value can be observed from the presented analysis. From the 

grouping of the tolerance combination, it can be concluded that the adjustment in 

tolerances values of factors should be carried out to get desired/intended performance 

or robustness. 

6.5 COMPARISON OF RESULTS 

In order to analyze the significance of the proposed simulation method specific to 

uncertainties due to manufacturing process, the obtained results are compared with 

the results obtained from a generalized approach. As mentioned earlier, Chapter 5 

uses a generalized method to capture the effect of uncertainties due to manufacturing 

or secondary shaping/sizing process in terms of the tolerance of volume fraction and 

aspect ratio.  The results shown above is based on the values available Table 6.1. To 

compare the results of both approaches, the chosen problems are simulated on the 

same nominal and tolerance values of factors already given in Table 5.1. The 

differences in mean and SNR of compliance and deflection are shown in Tables 6.5 

& 6.6 for each combination number. 

It is observed from Tables 6.5 & 6.6 that for all problems, the mean compliance 

and deflection values increase, and SNR decrease, when the specific simulation 

approach is employed. However, for problem 4, the mean deflection value decrease 

and SNR of deflection increase when specific simulation approach is employed. 

These changes point towards the sensitivity of factor and its effect on compliance and 

deflection. Thus to observe the sensitivities, ANOM is used. In the present case, there 

are four factors with two levels of tolerance (loose and tight) each. Therefore, for 

each factor ANOM is performed at two levels. The comparison is shown in Figs. 6.11 

and 6.12 for compliance and deflection values respectively. 
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Table 6.5: Comparison of mean and SNR of compliance for generalized and specific approach 

C. No. 

Problem 1 Problem 2 Problem 3 Problem 4 

Generalized Specific Generalized Specific  Generalized Specific  Generalized Specific  

Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR 

1 1.4881 -3.5139 1.5844 -4.0581 1.2206 -1.7950 1.2897 -2.2754 1.8986 -5.6295 1.9520 -5.8761 0.4490 6.8982 0.4560 6.7652 

2 1.4864 -3.4713 1.5808 -4.0045 1.2216 -1.7698 1.2872 -2.2236 1.8947 -5.5797 1.9481 -5.8241 0.4481 6.9490 0.4551 6.8148 

3 1.4871 -3.5051 1.5813 -4.0314 1.2273 -1.8401 1.2871 -2.2471 1.8976 -5.6256 1.9481 -5.8481 0.4480 6.9180 0.4551 6.7913 

4 1.4830 -3.4489 1.5777 -3.9779 1.2171 -1.7342 1.2847 -2.1977 1.8945 -5.5790 1.9444 -5.7980 0.4474 6.9614 0.4542 6.8405 

5 1.4857 -3.4921 1.6040 -4.1597 1.2198 -1.7806 1.2894 -2.2625 1.8951 -5.6053 1.9497 -5.8543 0.4497 6.8890 0.4559 6.7685 

6 1.4841 -3.4510 1.6019 -4.1156 1.2162 -1.7237 1.2869 -2.2133 1.8911 -5.5553 1.9460 -5.8054 0.4471 6.9761 0.4550 6.8174 

7 1.4851 -3.4857 1.6012 -4.1359 1.2176 -1.7633 1.2874 -2.2412 1.8940 -5.6012 1.9459 -5.8291 0.4469 6.9452 0.4550 6.7934 

8 1.4821 -3.4367 1.5986 -4.0890 1.2151 -1.7120 1.2847 -2.1899 1.8911 -5.5551 1.9423 -5.7805 0.4468 6.9834 0.4542 6.8419 

9 1.4886 -3.5133 1.5609 -3.9260 1.2211 -1.7936 1.2797 -2.2077 1.8970 -5.6153 1.9488 -5.8620 0.4497 6.8789 0.4532 6.8180 

10 1.4868 -3.4709 1.5578 -3.8753 1.2177 -1.7374 1.2771 -2.1554 1.8930 -5.5649 1.9450 -5.8101 0.4477 6.9553 0.4524 6.8676 

11 1.4865 -3.4977 1.5581 -3.9015 1.2179 -1.7682 1.2771 -2.1792 1.8960 -5.6110 1.9450 -5.8343 0.4476 6.9246 0.4524 6.8432 

12 1.4837 -3.4493 1.5541 -3.8460 1.2188 -1.7423 1.2746 -2.1292 1.8928 -5.5641 1.9413 -5.7840 0.4475 6.9608 0.4515 6.8920 

13 1.4856 -3.4886 1.5899 -4.0831 1.2193 -1.7739 1.2778 -2.1843 1.8933 -5.5902 1.9468 -5.8417 0.4475 6.9336 0.4530 6.8249 

14 1.4834 -3.4430 1.5868 -4.0334 1.2173 -1.7279 1.2755 -2.1358 1.8894 -5.5404 1.9432 -5.7926 0.4469 6.9795 0.4521 6.8735 

15 1.4851 -3.4818 1.5868 -4.0579 1.2194 -1.7706 1.2757 -2.1615 1.8926 -5.5875 1.9431 -5.8166 0.4470 6.9445 0.4521 6.8494 

16 1.4811 -3.4260 1.5839 -4.0091 1.2145 -1.7028 1.2731 -2.1115 1.8892 -5.5395 1.9395 -5.7677 0.4467 6.9853 0.4512 6.8990 

Table 6.6: Comparison of mean and SNR of deflection for generalized and specific approach 

C. No. 

Problem 1 Problem 2 Problem 3 Problem 4 

Generalized Specific Generalized Specific Generalized Specific Generalized Specific 

Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR 

1 0.01485 36.537 0.01580 36.000 0.01231 38.162 0.01285 37.792 0.01898 34.407 0.01948 34.178 0.00475 46.438 0.00458 46.770 

2 0.01486 36.537 0.01578 36.022 0.01229 38.188 0.01288 37.783 0.01896 34.421 0.01948 34.189 0.00474 46.468 0.00458 46.777 

3 0.01484 36.547 0.01578 36.022 0.01225 38.208 0.01285 37.800 0.01896 34.414 0.01943 34.210 0.00473 46.486 0.00455 46.829 

4 0.01483 36.562 0.01575 36.045 0.01233 38.166 0.01283 37.826 0.01898 34.416 0.01943 34.219 0.00483 46.324 0.00455 46.835 

5 0.01480 36.574 0.01600 35.895 0.01226 38.205 0.01285 37.799 0.01894 34.432 0.01943 34.210 0.00474 46.468 0.00453 46.866 

6 0.01484 36.559 0.01600 35.903 0.01230 38.187 0.01285 37.808 0.01893 34.446 0.01945 34.208 0.00471 46.522 0.00453 46.873 

7 0.01481 36.569 0.01598 35.916 0.01225 38.220 0.01283 37.825 0.01891 34.445 0.01940 34.229 0.00471 46.518 0.00453 46.873 

8 0.01480 36.584 0.01598 35.925 0.01223 38.244 0.01283 37.833 0.01891 34.453 0.01940 34.238 0.00480 46.372 0.00453 46.881 

9 0.01485 36.540 0.01558 36.127 0.01228 38.192 0.01275 37.859 0.01896 34.419 0.01945 34.190 0.00475 46.438 0.00453 46.866 

10 0.01486 36.540 0.01555 36.149 0.01230 38.184 0.01278 37.851 0.01899 34.416 0.01945 34.199 0.00474 46.467 0.00453 46.873 

11 0.01483 36.558 0.01553 36.163 0.01226 38.205 0.01273 37.886 0.01894 34.432 0.01938 34.233 0.00481 46.345 0.00450 46.920 

12 0.01484 36.558 0.01555 36.157 0.01228 38.205 0.01273 37.894 0.01896 34.428 0.01940 34.231 0.00481 46.345 0.00453 46.881 

13 0.01484 36.555 0.01585 35.976 0.01229 38.191 0.01275 37.867 0.01891 34.451 0.01943 34.210 0.00474 46.468 0.00453 46.866 

14 0.01484 36.564 0.01588 35.971 0.01226 38.219 0.01275 37.876 0.01894 34.448 0.01943 34.218 0.00481 46.350 0.00453 46.873 

15 0.01483 36.565 0.01580 36.012 0.01223 38.241 0.01273 37.893 0.01891 34.451 0.01938 34.241 0.00483 46.326 0.00453 46.873 

16 0.01481 36.581 0.01580 36.021 0.01225 38.231 0.01273 37.901 0.01893 34.454 0.01938 34.250 0.00480 46.372 0.00450 46.931 
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Compliacne vs Tolerance ranges (1: Loose, 2: Tight) 

 Generalized approach  Specific approach  
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Legend - V: Volume fraction,  A: Aspect ratio, E: Elasticity, F: Force 

Fig. 6.11: ANOM of compliance for each problem and approaches 
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Fig. 6.11 shows the ANOM for compliance verses tolerance levels for the four 

problems using both approaches. It is observed that the sensitivities of each factor in 

both cases are different. Also, the most and least influential factors are different for 

each problem and approach. The summary of observations is presented in Table 6.7. 

Table 6.7: Comparison of sensitivities between two approaches with compliance value 

Problem 

No. 

Generalized approach  Specific approach  

Most influential 

factor 

Least influential 

factor 

Most influential 

factor 

Least influential 

factor 

1 F A A E & F 

2 F V V E & F 

3 E V E A 

4 V A V A 

Legend - V: Volume fraction,  A: Aspect ratio, E: Elasticity, F: Force 

Similar to the ANOM of compliance values, the ANOM of deflection values is used 

to compare both approaches. The comparison is presented in Fig. 6.12. It is observed that 

the sensitivities of each factor in both cases are different. Also, the most and least 

influential factors are different for each problem and approach. The summary of 

observation for ANOM of deflection value is presented in Table 6.8. 

The reason for this change is the randomized simulation of density matrix, which was 

not considered in the generalized approach. In specific process approach, the material 

distribution within the topology is altered from the deterministic one (Table 6.2) while in 

the generalized approach, the topology change uniformly (Table 5.6). Hence, significant 

differences in the sensitivity is observed here. Thus, the specific approach discussed in 

the present chapter captures true characteristic of the manufacturing process more 

accurately compared to the generalized approach. Therefore, the accuracy of the obtained 

analysis for tolerance range is useful for specific manufacturing process. 
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 Deflection(mm) vs Tolerance ranges (1:Loose, 2: Tight) 

 Generalized approach  Specific approach  
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V: Volume fraction,  A: Aspect ratio, E: Elasticity, F: Force 

Fig. 6.12: ANOM of deflection for each problem and approaches 
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Table 6.8: Comparison of sensitivities between two approaches with deflection value 

Problem 

No. 

Generalized approach  Specific approach  

Most influential 

factor 

Least influential 

factor 

Most influential 

factor 

Least influential 

factor 

1 F E A F 

2 E & V A & F V F 

3 E F E F 

4 V F V E 

Legend - V: Volume fraction,  A: Aspect ratio, E: Elasticity, F: Force 

6.6 RELIABILITY BASED TOLERANCE RANGE SELECTION WITH 

EFFECTS OF UNCERTAINTIES IN MANUFACTURING PROCESS 

Like earlier discussion in section 5.5, the reliability concept is also applied in the present 

chapter to derive the suitable combinations of tolerances for the chosen problems. The 

reliability method helps to simulate the performances including the uncertainties or noise 

of controllable factors. In present case, these uncertainties are treated as the tolerances. 

Hence, the RBTO method described in Chapter 4 is suitable to simulate the 

performances for the tolerance range election of the controllable factors. The 

methodology for generating the tolerance combinations is described below, 

6.6.1 Methodology 

In order to perform the tolerance range analysis based on reliability concept; the outer 

OA is replaced and the tolerance values are simulated using RBTO method. The 

illustration of the methodology is provided in Fig. 6.13. Figure 6.13, represents 

methodology for reliability based tolerance range selection. The method initiates from 

the inner OA similar to the CA-DOE based method. Each combination is simulated for 

the performance values using RBTO method, with the nominal and tolerance values of 

the factor and a desired reliability index value, as described in section 4.3. In order to 

incorporate the effect of uncertainties of specific manufacturing process, the tolerance 

of volume fraction is utilized. The replication of inner OA is performed for the rare 

accurate and dense volume fractions and the density matrixes are simulated as xR's, xA's, 

and xD's respectively. 
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 Three replications of the experiment, 

for volume fraction tolerance 
 

Rare : VR Accurate: VA Dense: VD 
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No. 

 

Aspect 

ratio 

σA 

Elasticity  

 

σE 

Force  

 

σF  

V-3σV V V+3σV Volume 

fraction 

σV 

1 L L L 
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Fig. 6.13: Methodology for reliability based tolerance range selection 

Using these density matrixes, the simulation of manufacturing uncertainties are 

preformed, as explained in section 6.2. The simulated density matrix (xS's) are then 

further processed to generate the compliance and deflection values using the boundary 

conditions. The obtained compliance and deflection values are the performance 

measures for the tolerance range analysis. The results and discussion of the simulated 

results are given in next section. 

6.6.2 Results and discussion 

The simulated results for compliance and deflection values are given in Fig. 6.14 and 

6.15 respectively, for different values of reliability index. From Fig. 6.14 the compliance 

values for the reliability index equal to 3 and 3.8 is observed. The values of compliance 

increase with increase in reliability index. This is because of the specific characteristic of 

the RBTO method, discussed in section 4.3. 

Simulation for effect of manufacturing uncertainty 

Computation of the compliance & deflection corresponding to density parameter 
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Fig. 6.14: Compliance values for tolerance combinations 

The variations in compliance values for the different combination are also observed, 

similar to that of CA-DOE method (Fig. 6.9). However, the range of compliance 

variations is higher compared to earlier case. This is because of incorporation of the 

spread and reliability index value used in the RBTO simulation. Due to these parameters, 

the factor values become distinct. Hence, high variation in compliance values is 

observed. It is also observed that the minimum compliance value is obtained for 16th 

combination, and a maximum values is obtained for 1st combination. The compliance 

values for different combinations differ from what of obtained from CA-DOE method. 

Hence, the characteristics of the combinations are slightly different with application of 

reliability index. Similar to compliance values, the results are obtained for the deflection 

values as shown in Fig 6.15. 

The deflection values for different reliability index values are shown in Fig 6.15. The 

observations are similar to that of compliance values except for problem-4. In problem-4, 
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for combinations 4, 8, 10, 14, 15, and 16, the deflection values are same for the two 

reliability indexes. This is attributed to specific physics of the problem and the simply 

supported plate is stiff compared to the other chosen problems. Hence, its deflection is less 

sensitive to the input factors. This is the reason why the observed deflection values do not 

change with respect to the different reliability indexes.  

  

  

Fig. 6.15: Deflection values (in mm) for tolerance combinations 

From the presented results of reliability based tolerance range selection, it is 

observed that the performances values of the combinations are slightly different 

compared to that of CA-DOE method. Therefore, to achieve a targeted performance in a 

desired reliable scenario, the above shown results are helpful.  
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6.7 CONCLUSIONS 

Current chapter extends the approach discussed in Chapter 5, by incorporating the 

effect of manufacturing uncertainties for a specific manufacturing process. Here a 

tolerance-range selection method is proposed, where the optimal topology is 

manufactured without any further modification. In this process, a methodology to 

simulate the effect of geometric uncertainties caused by the manufacturing process is 

developed. This simulation methodology is advantageous to the user in terms of its 

customization. In present work, an integrated approach is developed, which integrates 

CA-DOE with proposed method, for the tolerance range selection. The overall 

methodology was illustrated using benchmark problems. Apart from the tolerance 

range selection for robust and targeted performance, the results show that the 

simulations can be performed on coarse mesh, as long as the topology and shape 

remains unchanged. By the comparison of simulated results, it is observed that the 

proposed approach is more realistic and accurate to the specific manufacturing process. 

In addition, a methodology is also presented by integrating the effect of manufacturing 

uncertainties and RBTO method, for tolerance range selection. The obtained result are 

based on the reliability index values, and observed to be different from earlier ones. 

The presented methodology is useful for the development of many critical applications 

of MEMS structures and the compliant mechanisms. 



 

CHAPTER 7 

AN INTEGRATIVE APPROACH TO DESIGN A BELL CRANK 

LEVER FOR FORMULA RACING CAR 

7.1 INTRODUCTION 

The work discussed in the earlier chapters has resulted in development of design 

methodologies, to ensure the robust and targeted performance of a topologically 

optimized structural component. During the development and illustration of these 

methodologies, help of four benchmark problems were taken to maintain consistency. 

These problems are representative and fundamental to several real life applications. For 

example, the MBB beam is an example of aircraft platform used by a German aircraft 

company; and the other benchmark problems i.e. cantilever and simply supported 

beam/plates, can be found in several structural and machine components. In order to 

validate the developed methodologies and emphasize its utility, another real life 

application is considered. This application deal with bell crank lever used in a shock 

absorber of formula-one racing car. The problem is taken from one of the live projects of 

Society of Automotive Engineers (SAE) BITS-Pilani, student's chapter (Mehta 2013). In 

this project, a team of students designed and developed a formula-one racing car to 

participate in various competitions taking place all over the globe. Through these 

participations and design exercise, the required knowledge for real time engineering 

application is imparted to the student community. In this process of application based 

learning, the design of formula-one vehicle evolves from time to time. In the present 

chapter, the challenge in weight reduction of the bell crank lever is taken to illustrate the 

application of developed methodologies. Here the optimal topologies of the bell crank 

lever are obtained for specified design requirements and weight reduction. Subsequently 

optimal topologies with robust, reliable, and targeted performance values are obtained 



An integrative approach to design of a bell crank lever for formula racing car 

-138- 

for this component. The systematic ways in which the problem dealt is discussed in next 

section. 

7.2 PROBLEM FORMULATION 

The bell crank lever is a versatile machine component used in several engineering 

systems to transfer force from one hinge point to another. In this section, the working 

principle of bell crank lever, the design parameters, and challenges faced by designer are 

described. 

7.2.1 Working principle of bell crank lever 

Bell crank levers are very common component in the suspension system of formula-one 

racing cars. Figure 7.1 shows a typical bell crank lever used in a suspension system of a 

racing car. In these racing cars, the spring and damper assembly is located within the 

bodywork due to aerodynamic reasons, which is different from the suspension systems 

used in standard cars. Apart from the aerodynamic reasons, the use of bell crank lever 

offers added control over the vehicle’s ride height or its location in the suspension stroke 

via manipulation of the bell crank’s geometric parameters. 

 

Fig. 7.1: Bell crank lever in a shock absorber mechanism  

The bell crank lever is part of a shock absorber or suspension mechanism. This 

mechanism contains control arms to provide the up and down motion to the wheel 

assembly, and dependent on road conditions and driving skill. The unbalanced forces, 

which are prominent for this type of motions are exerted by the push rod. These 

forces from the pushrod are transferred to the shock absorber through the bell crank 

lever. The Free Body Diagram (FBD) of bell crank lever is shown in Fig. 7.2. 

Track Width 

Bell crank lever 

Control arm

Shock absorber
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Tyre Wheel frame 
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Fig. 7.2: FBD of bell crank lever 

where, Fin is the force acting from the push road and Fo is the force transferred to the shock 

absorber. In order to transfer the force and motion to the shock absorber, the crank lever 

rotates by an angle with respect to the fulcrum. The angle of rotation and leverage 

(mechanical advantage) obtained from the bell crank lever is dependent on several factors 

such as, the specification of the shock absorber, location of the fulcrum and the other fixed 

joints in the mechanism, the dynamic loading, material selection for bell crank and chassis, 

running conditions, etc. In considered bell crank lever, a few design options of the leverage 

available to the designer, which are detailed in the next section. Subsequently the important 

design parameters for this component are identified and are presented in next section. 

7.2.2 Design options for the leverage of bell crank lever 

The leverage required from a bell crank lever, is dependent on several aforesaid 

factors. In the present case, there some design options for leverage are provided to design 

the lever. These options define the different joint locations on the lever, for the push rod, 

shock absorber, and fulcrum. For convenience, these design choice are termed as 

configuration-1, 2, and 3, and shown in Fig. 7.3. This figure shows the joint distances 

from the fulcrum. Other details of the lever design are discussed next. 

Fig. 7.3: The location of various joints in (a) configuration-1, (b) configuration-2, (c) 

configuration-3 
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7.2.3 Loading and material selection 

The bell crank lever is an automotive component, which is subjected to dynamic load. To 

get first cut design of lever and to keep design calculations simple, the design is carried 

out using maximum static load. The justification behind choosing such load is to take the 

effects of dynamic loads into account. These effects are incorporated by increasing the 

value of force to the maximum fluctuating load with a tolerance value. After design 

calculations, the load acting on pushrod joint is assumed to be 1600N. The joints of bell 

crank lever are always designed to increase the strength in bearing, bending and 

shearing. For such condition plates or sheets of bell crank lever is assembled together to 

provide symmetrical loading, as shown in Fig. 7.4. 

 

Fig. 7.4: Bell crank lever Assembly (Mehta 2013) 

From Fig. 7.4, it can be seen that a lever assembly is made using two bell crank lever. 

Thus, the maximum force acting on a bell crank lever will be 800N. Along with the 

maximum force values, the direction of the maximum forces on the push rod and shock 

absorber joint is also specified, for the given configuration, as shown in Fig. 7.5. The 

stress developed in the lever should be able to withstand the available material 

strength. There are several options regarding material are available to manufacture the 

lever. In present case, the available materials are structural steel (ASTM 36), 

Aluminum alloy 6061 T913, and Aluminum alloy 7075 T6. The engineering properties 

of these materials are given in Table 7.1  
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Fig. 7.5: Direction of forces on the different configurations 

Table 7.1: Properties of the materials selected to manufacture the bell crank lever 

Material  
Modulus of 

Elasticity (GPa) 

Poison's 

ratio 

Maximum Yield 

stress (MPa) 

Density 

(gm/cc) 

Structure steel, 

ASTM A36 
200 0.26 250 7.8 

Al 6061 T913 69 0.33 455 2.7 

Al 7075 T6 72 0.33 503 2.81 

With the specified values of forces, materials, and configurations, the important 

dimensions are provided to the designer and details are discussed in next section.  

7.2.4 Dimensions of bell crank lever  

The dimensions of bell crank lever are given in terms of joint-hole diameter, and 

thickness, as shown in Fig. 7.7. The radius of joint hole of shock absorber and push rod 

is provided as 8 mm, the joint hole for fulcrum bearing is provided as 16 mm, and the 

thickness of the bell crank lever is given as 6 mm, based on the assembly constraints. 

These dimensions are found to be safe for the materials available for the design. From 

available initial specifications, the problem for bell crank lever is formulated, and 

details are discussed below. 

7.2.5 Problem statement 

In the earlier sections 7.2.2 to 7.2.4, the initial geometry, forces, material properties, 

diameter of holes, and the thickness of the bell crank lever are provided to the designer. 

The major part of the design that remains unanswered is to give a proper shape or 

topology to the bell crank lever. Intuitively any shape can be selected for bell crank 
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lever, which may confirm its strength against the stress developed. However, weight of 

the component in that case will be higher, and can be lowered by performing shape or 

topology design in multiple iterations. Instead of doing this manually, topology 

optimization procedures are adopted, as weight reduction issue is very critical for design 

of the components of formula one racing cars. 

The weight reduction issue, for the 2012 BITS Pilani team is inspired from the 

competition held in 2005, where the majority of the top ranked vehicles were below 250 

kg in weight. While the 2012 BITS Pilani, entry was heavy at 310 kg, thus the primary 

goal was to achieve weight less than 270 kg. This would represent a weight loss of 

roughly 13% of the entire vehicle (Mehta 2013). Thus, while designing any component 

of the 2012 BITS Pilani formula one car, weight reduction was the prime aim along with 

the other design constraints. It is also evident from the previous discussion that each 

component should reduce the weight at least by 13%. In fact, a high weight-reduction is 

desired for most of the components, to compensate the weight of the other components 

that cannot be lighter more than a limit such as engine, gears, etc. Presently, the BITS 

Pilani formula one car uses a bell crank lever, shown in Fig. 7.6. This component is an 

assembly of two levers. The weight of each lever is approximately 425gm, and its weight 

should be reduced at least by 13%. 

 

Fig. 7.6: The existing bell crank lever in the BITS Pilani formula car (Mehta 2013) 
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Thus, the topology of bell crank lever should be optimized. Application of topology 

method will provide possible solutions, which have reduced weight, with its strength at 

the maximum possible value. Being a critical component, the reliability and consistence 

performance in the realistic scenario is also one of the requirements of the bell crank 

lever. There are possible variations in the different design constraints such as force, 

thickness, force-angles, etc. The final design should be robust and reliable enough 

against these variations. There may be a band of desired performance range, in which the 

lever has to perform. In case of a topologically optimized machine component, the 

performance is stated in terms of compliance, deflection, and stress values. The detailed 

discussion on performance measures is already available in earlier chapters. This 

performance range, or the targeted performance of the bell crank lever, may change with 

the design of other components of the formula one racing car. Hence, the issue is to not 

only provide unique design, but to provide a set of multiple design solutions. This will 

facilitate to choose a correct design while different parameters are adjusted with other 

components, and ensure the desired performance. This approach will in fact optimize the 

overall design and functioning of the BITS-Pilani formula one racing car. 

With the earlier stated design parameters, and issues, the problem statement can now 

be defined as "Generate an optimal topology of the bell crank lever with at least 13% 

weight reduction, which attains different targeted and robust performance requirements." 

The methodology used to solve the posed problem is described in the following section. 

7.3 GENERATION OF OPTIMAL TOPOLOGIES FOR THE BELL CRANK 

LEVER 

Based on the design parameters and conditions discussed in the previous section, the 

optimal topology is generated using SIMP method. The details of topology optimization 

method is already discussed and important steps to obtain the optimal topology for the 

bell crank lever are mentioned sequentially, 

Step 1. Define the initial material domain 

In order to apply topology optimization method, a material domain should be defined. 

The final optimal topology will be obtained within this material domain. Thus, all the 

design and geometric features must be accommodated in this domain. The initial domain 

is defined for the specified configurations and shown in Figs. 7.7(a)-(c). In these figures, 
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notch on the left side is provided, which will avoid the interference of the bell crank 

lever with the shock absorber as indicated in Fig. 7.6. 

 

Fig. 7.7(a): Material domain for the configuration-1 

 

Fig. 7.7(b): Material domain for the configuration-2 
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Fig. 7.7(c): Material domain for the configuration-3 

Step 2. Define material properties, mesh size, forces, and other boundary conditions 

As discusser earlier, the initial material domain is defined. The materials are selected 

based on the options available in Table 7.1. Finally, the forces and other boundary 

conditions are defined to formulate the FE based routine. The boundary conditions 

including the applied force, fixed and free degrees of freedom at different nodes are 

defined in parametric form for different element numbers. So that, a changed mesh size 

can be easily adopted by the FE routine and do not disturb the geometric features and 

boundary conditions. The developed routine allows generation of the topology at 

different mesh size without affecting the physics of the problem. Here the mesh size 

reflects the smoothness of the obtained topology. As it is known already that by 

increasing the mesh size the computation time increase and vice-versa, hence a proper 

tradeoff is required and to obtain smoother boundaries, therefore a mesh size of 160×150 

is selected in present case.  

Step 3. Set the volume fraction value  

The weight reduction issue is already discussed. At this point, volume fraction value for 

the material domain should be defined. For the selection of a proper volume fraction 
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value, the topology is generated at different values. Based on the performance threshold 

values a particular value or range of volume fraction is selected, and discussed at the end. 

Step 4. Start the iterations of optimization 

After setting all the initial parameters, the topology optimization process is initiated and 

the procedure is discussed in section 3.3.5. 

Step 5. Application of filter to suppress gray scale 

Since this is a realistic problem, the gray scale or intermediate densities cannot be accepted 

in the optimal topology. To suppress these grayscale or intermediate densities a Heaviside 

projection filtration (Guest et al. 2004) method is used to update the density parameters. 

Step 6. Check the termination criterion:  

In each iteration, the values of nodal deflection, compliance, and stress values are 

computed. The compliance value is compared to check the error tolerance. After 

achieving the desired tolerance range, the iteration is stopped; otherwise, the steps 4–6 

are repeated. At the termination of the optimization process, the final optimal topology 

with compliance, maximum deflection and maximum Von-Misses stress value are stored 

for suitable use. 

7.3.1 Selection of volume fraction value 

The upper and lower bound for volume fraction values are obtained by performing 

following calculations, 

Weight of present design (Fig. 7.6) = 425gm 

Minimum reduction required = 13% of the present weight 

Hence, the maximum allowable weight = 425× (1-0.13) =369.75 gm 

The weight of the initial material domain (shown in Fig.7.7), is equivalent to a topology 

at volume fraction equal to 1.0, and given in Table 7.2. 

Table 7.2: Weight of material domain for the different material options 

Material Density (gm/cc) 
Wight of material 

domain (gm) 

Structure steel, ASTM A36 7.8 1008 

Al 6061 T913 2.7 346 

Al 7075 T6 2.81 360 
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Now, based on the maximum allowable weight (369.75 gm) the maximum volume 

fraction can be computed for different materials, as below 

Max. volume fraction= Max. allowable weight (i.e. 369.75 gm)/total weight of material 

domain. Hence,  

For structural steel (ASTM A36), maximum volume fraction = 37.0
1008

75.369
=  

For Aluminum alloy (Al 6061 T913), maximum volume fraction = 68.1
346

75.369
=  

For Aluminum alloy (Al 7075 T6), maximum volume fraction = 27.1
360

75.369
=  

In order to compare the design obtained by experimental combination set a common 

volume fraction values is required. Hence, the upper bound for volume fraction can be 

set as 0.37 for chosen materials. 

For the lower bound of volume fraction, the stresses and deflection values are 

considered in terms of factor of safety. In literature, the minimum factor of safety for bell 

crank lever and other components of formula-one car is found out to be equal to 2.5 

(Bos 2010, FIT-PDR 2008, Fornace 2006). Hence, in the present case the same criterion is 

followed to decide the lower bound for volume fraction. To observe the values of stress at 

different volume fractions, various topologies are generated. This process helps in deciding 

the volume fraction value based on the factor of safety. The optimal topologies with 

corresponding to different volume fractions are shown in Fig. 7.8. 

Volume 

fraction & 

weight (gm) 

Configuration-1 Configuration-2 Configuration-3 

0.15 & 151.2 

   

 
C*=56.41, D*=0.0771mm, 

S*=827.3 N/mm2 

C=29.81, D=0.0439mm, 

S=251.8N/mm2 

C=13.55, D=0.0261mm, 

S=234.88 N/mm2 

*C= Compliance, D= Deflection, S= Maximum Von-Mises stress 
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Volume 

fraction & 

weight (gm) 

Configuration-1 Configuration-2 Configuration-3 

0.2 & 201.6 

   

 
C=21.58, D=0.0251mm, 

S=133.7 N/mm2 

C=11.56, D=0.0162mm, 

S=128.9N/mm2 

C=5.53, D=0.0086mm, 

S=61.2N/mm2 

0.25 & 252 

   

 
C=13.72, D=0.0153mm, 

S=75.3 N/mm2 

C=7.37, D=0.0092mm, 

S=57.5N/mm2 

C=3.66, D=0.0045mm, 

S=49.2N/mm2 

0.3 & 302.4 

   

 
C=9.50, D=0.0109mm, 

S=87.8 N/mm2 

C=5.46, D=0.0066m, 

S=38.1 N/mm2 

C=2.66, D=0.0031mm, 

S= 36.8N/mm2 

0.35 & 352.8 

   

 
C=7.65,D=0.0089mm, 

S=54.8 N/mm2 

C=4.33,D=0.0054m, 

S=41.2 N/mm2 

C=2.19,D=0.0024mm, 

S= 32.1N/mm2 

0.4 & 403.2 

   

 
C=7.29,D=0.0074mm, 

S=48.5 N/mm2 

C=3.59,D=0.0043mm, 

S=40.3 N/mm2 

C=1.86,D=0.0019mm, 

S=28.3 N/mm2 

*C= Compliance, D= Deflection, S= Maximum Von-Mises stress 

Fig 7.8 Optimal topologies of the three configurations of bell crank lever, for 

different volume fractions  
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From these results, it can be seen that at the smaller for volume fraction 

i.e. 0.15 & 0.2, and the factor of safety is lesser than 2.5 for structural steel. However, the 

other materials are safe, at these values of volume fraction. As discussed earlier, in order 

to compare the performance of each material at same scale, common values of volume 

fraction is to be defined. Hence, the lower bound for the volume fraction is selected as 

0.25 for all materials. As it can be observed from Fig 7.8, there is a tradeoff is between 

strength and weight. Hence, the upper bound of volume fraction is taken as 0.35. 

It is clear from the given design conditions, i.e. configurations, materials and range of 

volume fraction that there are several ways by which an optimal topology can be 

generated. In such scenario, a systematic approach is required to select the required 

topology for the desired performance values. This type of problems can easily be 

handled using the DOE approach, where the input factors have certain levels instead of a 

single value. This approach also provides the opportunity to incorporate the effects of 

noise factors, thus the solutions become more robust compared to a deterministic case. 

The details of DOE approach are already mentioned in the earlier chapters. The 

application of this approach to design a bell crank lever is presented in the next section. 

7.4 ANALYSIS OF PERFORMANCE MEASURES  

In order to analyze the performance of the bell crank lever design and identify the 

optimal values of the factors, the methodology proposed in Chapter 3 is used here. In this 

case, available configurations, options for material, and allowable weight reduction for 

the bell crank lever are treated as the controllable factors. Three level values for volume 

fraction are selected from the acceptable range of volume fraction. These are 0.25, 0.3, 

and 0.35. Using selected level values of factors, i.e. 3
3
 factorial designs are obtained. 

These treatment combinations are shown in Appendix A11. 

To simulate realistic scenario, identified effects of uncertainties are included, which are 

called as noise (non-controllable) factors. These noise factors are: the thickness of the bell 

crank, force, input force-angle, and output force-angle. The thickness of the bell crank 

lever is assumed to have a total variation of 10% from its nominal value. Similarly, the 

variations of force value and its angle of application are considered with 10% and 10
0
 

deviations from their nominal value, respectively. The way force is applied to the lever is 

shown in Fig. 7.4, and simulations are carried out for each controllable factor combination 

(Appendix A11) and replications are performed using non-controllable factors. As 



An integrative approach to design of a bell crank lever for formula racing car 

-150- 

specified earlier, there are four non-controllable factors, and each of these is has three 

levels of noise. Thus, the number of replications required will be 3
4
. In this case, the total 

number of simulations (or experiments) will be very large, as each combination of the 

controllable factor will undergo 3
4 

replications. Hence, to reduce the total number of 

simulations, the replications are required to be reduced, without losing the inputs from 

non-controllable factors. In such case the orthogonal array (OA) suggested by Taguchi is 

utilized (Sung 1998; Mitra 2008; Montgomery 2007).The column of this OA are assigned 

to non-controllable factor and the rows correspond to the number of replications. Each row 

has distinct combination of level of non-controllable factor. A particular Taguchi's array is 

selected based on the number of non-controllable factors and their levels. In the present 

case, there are four non-controllable factors with three levels. Hence, Taguchi's L9 OA is 

selected (Sung 1998; Mitra 2008; Montgomery 2007). The L9 OA for the present case is 

available in Appendix A12. As per L9 OA, nine replications are generated. By this 

approach, the number of experiments decreases by nine times. Thus, the worst-case 

scenarios can be simulated in lesser computation. The optimal topologies of the bell crank 

lever is generated which gives the performance values. The applied force and the initial 

material domain are set as shown in Figs. 7.5 and 7.7. The SNR and mean values are 

obtained after simulation and presented in Figs. 7.9 and 7.10, respectively. 

It is observed from these results shown in Figs. 7.9 and 7.10, that the combination 

number 27 is the best and 1 is the worst in all criterions of mean and SNR of the 

performances. The other observations made are given below, 

� In these results, a similar trend is observed, especially in the case of compliance and 

deflection. The reason for this trend can be understood by referring to the 

combinations available in Appendix A11. In all the three design configurations, the 

relative effect of the volume fraction and elasticity values is almost same. That is 

why when the combinations with same volume fraction and elasticity values are 

repeated for the three configurations, a similar performance is observed. 

� From these results, the relative performance with respect to the material type can also 

be carried out. It is evident from the compliance and deflection results that the 

increase in elasticity value, leads to increase in structural rigidity. Whereas the stress 

based performance is not very sensitive to these change. The mean and SNR values 

of the Von-Mises stress are almost same in the case of different elasticity values, 

leaving few observations. 
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(a)

(b)

(c) 

Fig. 7.9: Performance values (a) SNR of compliance, (b) SNR of deflection, and (c) 

SNR of Von-Mises stress, against combination number 
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(a) 

 

(b) 

 

(c) 

Fig. 7.10: Performance values (a) mean compliance, (b) mean deflection, and (c) 

mean Von-Mises stress, against combination number 
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� A change in the overall performance can be observed with the shifting of values 

of volume fraction. Compliance is found to be is highly sensitive, while stress 

values are least sensitive. Hence, a high value for volume fraction is desirable; at 

the same time, it should be low to reduce the weight of the component. Therefore, 

a tradeoff ie required for these two parameters, and selected based on desired 

values for performance. 

� The relative performance of the three configurations can also be observed from 

these results. Based on performances, configuration-3 is observed as the best 

performer, at the same time configuration-1 is the worst performer. In case of 

stress values, an abrupt change in the stress values is observed. This is attributed 

to the physics of the configuration-2. In order to avoid such high stress values, 

configuration-2 should be avoided.  

In order to observe the statistical significance of the controllable factors, ANOVA 

is performed. Result of ANOVA is summarized in Table 7.3 for the different 

performance measures. The symbols C, V, and E are used to denote configuration, 

volume fraction, and elasticity respectively. 

Table 7.3: Statistically significant factors from ANOVA 

Performance measure Statistically Significant Input factors 

Compliance  E, V, C, EV, EC, VC, EVC 

Deflection E, V, C, EV, EC, VC 

Stress V, C, VC 

As discussed in earlier chapters, one of the main contributions is select alternate 

combinations of the designs, which delivers desired performance values. From this 

analysis, the alternatives are identified, which have similar performance as the 

desired values. In this section, the performance of the bell crank lever was observed 

by considering the effect of non-controllable factors. In the next section, the same is 

discussed to incorporate the effect of uncertainties present in the design factors for 

specified reliability index and spread.  
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7.5 ANALYSIS OF PERFORMANCE MEASURES BASED ON 

RELIABILITY 

In this section, the performance of the bell crank lever is simulated by including the 

effect of uncertainties of the design factors such as, elasticity values, dimensions, and 

volume fraction. The possible variations of the design factors are selected based on the 

percentage variation around the nominal values. The variations are considered for the 

two spread values (S) i.e. 10% and 20% of the nominal values of the factors. The 

reliability index (β) is taken as 3.8 and 3. For illustration the topologies for β =3.8 and 

S=10% is shown for different volume fraction values in Fig. 7.11. It can be observed that 

the topologies are slightly different compared to the deterministic case shown in Fig. 7.8. 

Volume 

fraction 
Configuration-1 Configuration-2 Configuration-3 

0.25 

   

 
*C=18.2353, D=0.0239mm, 

S=53.31 N/mm2 

C=9.7452,D=0.0125mm, 

S=43.47N/mm2 

C=4.5915,D=0.0064mm, 

S=33.60N/mm2 

0.3 

   

 
C=13.975,D=0.0177mm, 

S=70.07N/mm2 

C=7.2584,D=0.01mm, 

S=31.24N/mm2 

C=3.3979,D=0.0052mm, 

S=30.73N/mm2 

0.5 

   

 
C=5.8829,D=0.0072mm, 

S=22.8N/mm2 

C=3.3036,D=0.0039mm, 

S=20.7N/mm2 

C=1.8094,D=0.0015mm, 

S=17.5N/mm2 

*C= Compliance, D= Deflection, S= Maximum Von-Mises stress 

Fig 7.11: Optimal topologies for the three configurations at different volume 

fractions, with β =3.8, and S=10% 
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As per the methodology detailed in Chapter 4, the performance of the bell crank lever 

is simulated. The results of this simulation, in terms of mean and SNR of the 

performances are given in Figs. 7.12 and 7.13 respectively. In these figures, the legends 

represent the value of reliability index (β)/spread percentage(S). 

(a) 

(b) 

(c) 

Fig 7.12: Performance values for (a) mean compliance, (b) mean deflection, and  

(c) mean Von-Mises stress values, for different values of β and S 
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The simulation results for Mean values of performances are show in Fig 7.12. In 

these figures, the performance values are plotted with respect to different treatment 

combinations, i.e. reliability index and spread values. The overall variation of 

performance is similar to the previous result shown in Figs. 7.9 and 7.10. The 

important observation here is that the mean performance increase when β values 

increase. Also, an increasing trend is observed with increasing values of spread value. 

However, the performance values are more sensitive to the spread values compared to 

the reliability index value. These observations are true for the scenarios when 

compliance and deflection are the performance. On the contrary to these 

observations, when the performance measure is mean Von-Mises stress, the increase 

in reliability index reduces the mean stresses. This indicates that the design is moving 

into safe region, when there is increase in reliability index. A few combinations i.e. 

7th and 8th, show irregularities in the mean stress and this is because of the change of 

the shape or topology at different reliability index and spread values. Since the 

topology change for the different combinations, inconsistency in mean stress values 

are observed here. 

Similar to the mean values, the SNR values are plotted for different β, and S 

values in Fig. 7.13. From Fig 7.13, it is observed that with the change in values of β 

and S, the SNR values change. The sensitivity of the SNR is high for change in S 

values compared to β values. The abrupt changes at combination numbers 7 and 8, 

for β=3 and S=20% are also observed in these results. As discussed earlier, this is 

because of the change in the topology at these combinations. 

The aim of this analysis is to provide alternative options to designer for the 

selection of affordable combinations of the factor and reliability values in order to 

achieve the targeted or robust performances. The robustness and targeted values can 

be improved further by analyzing the tolerance range values of the different factors. 

The implementation of tolerance range selection methodology for the bell crank 

problem is discussed in next section. 
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(a) 

(b) 

(c) 

Fig 7.13: Performance values for (a) SNR of compliance, (b) SNR of deflection, and 

(c) SNR of Von-Mises stress values, for different values of β and S 
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7.6 SELECTION OF TOLERANCE RANGES FOR THE OPTIMAL FACTOR 

It can be seen from the previous analysis that the combination number 27 performs best 

out of the design options. The selection of the combination is entirely dependent on the 

affordability of the combination, and the combination that gives the best performance in 

terms of robust and targeted values. In order to achieve targeted and robust performance 

design, the tolerance ranges are identified. In the present case, for combination number 

27 is chosen to extend the analysis for tolerance range selection. The tolerance ranges for 

each factor is defined in terms of loose and tight tolerance. These values are chosen 

based on real time application. In the present analysis, the non-controllable factors such 

as force, thickness and the angles of force are analyzed for its tolerance range. The 

Figs. 7.8 & 7.11 show that the topologies are complicated to manufacture. Hence, some 

secondary process is required to simplify the obtained topology. This secondary process 

may be shape optimization process, or manual correction process, which should be 

applied on optimal topology to reduce the complexities. Thus, material addition or 

removal in terms of volume fraction is chosen as secondary process here. This variation 

in volume fraction is modeled as the tolerance of the volume fraction in the present case. 

The tight and loose tolerance range is fixed by relaxing the volume fraction from 5% to 

10% of its nominal value, respectively. The tolerance values of each of these factors with 

its nominal values are presented in Table 7.4. 

Table 7.4: Nominal values and loose and tight tolerance limits for the selected factors 

S. No. Factor Nominal Value Loose tolerance Tight tolerance 

1 Thickness(mm) 6  ±0.3 ±0.15 

2 Elasticity(GPa) 200 ±5 ±2.5 

3 Volume fraction 0.35 ±0.0175 ±0.00875 

4 Force(N) 800 ±5 ±2.5 

5 Input Angle 47
0
 ±5

0
 ±2.5

0
 

6 Output Angle 17
0
 ±5

0
 ±2.5

0
 

As already described in section 5.2 (Tolerance-range selection based on CA-DOE 

method), the inner and outer OAs are utilized to simulated the performances. Hence, 

based on the two tolerance ranges, i.e. loose and tight, the inner OA is generated. In the 

present case, there are six factors with two levels of each, therefore 64 (i.e. 2
6
) 
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combinations are generated, and provided in Appendix A13. In order to incorporate the 

actual tolerance values, which are treated as noise, an outer OA is selected. In the present 

case, there are six factors with two levels. Hence, Taguchi's L8 OA is selected to form the 

outer OA (Appendix A14). The analysis for the tolerance range selection is performed 

based on the methodology explained in Chapter 5. The results obtained from simulation 

are given in terms of the mean and SNR values of compliance, deflection and Von-Mises 

stress. The results corresponding to each combination of inner OA and the performance 

measures are shown in Figs. 7.14 and 7.15. 

(a)

(b)

(c) 

Fig. 7.14: Performance values against combination number (a) SNR of compliance, 

(b) SNR of deflection, and (c) SNR of Von-Mises stress 
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From Fig. 7.14 and 7.15, the different tolerance combinations corresponding to the 

minimum compliance, deflection, and Von-Mises stress are identified. In case of targeted 

performance problems, the intended performance values should be selected, by referring to 

possible combinations. Similarly, the robust performance is identified by the SNR values. 

(a) 

(b) 

(c) 

Fig. 7.15: Performance values against combination number (a) mean of compliance, 

(b) mean of deflection, and (c) mean of Von-Mises stress 
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It is observed from these results that the combination number corresponding to the 

SNR and mean of a particular performance is same. Looking at the best three 

combination numbers, the combination numbers 61, 29 and 45 are the found to be best 

combination for mean and SNR of the compliance. Combination numbers 61, 57, and 

31 are the best for mean and SNR of deflection, while combination number 55, 63, and 

44 are the best in mean and SNR of the Von-Mises stress. The actual values of the 

tolerance range for these combinations can be observed from the Appendix A12. Based 

on the affordability of the tolerance of factor a suitable combination for best 

performance/targeted performance can be selected by the designer. In this case, 

combination number 61 is found to provide the best results for compliance, and 

deflection; and combination number 55 is the best for Von-Mises stress values. From 

the present analysis, the effect of each tolerance combination in the three different 

performances in the realistic scenario is explored. The selection of combination 

number is dependent on designer's choice and affordability. 

7.7 CONCLUSIONS 

The developed methodologies, discussed in earlier chapters were used to obtain 

optimal topologies, reliable topologies for targeted compliance, deflection and stress 

values of a bell crank lever. For this design, static conditions with maximum load 

during operation were considered. In this case, the problem was formulated to select 

the configuration, volume fraction, and material that provide the targeted and robust 

performances in terms of compliance, deflection, and Von-Mises stress. The analysis 

was carried out in three major steps. By applying the methodology developed in 

Chapter 3, it was observed that the configuration-3 with volume fraction 0.35 and 

Structure steel-ASTM A36 gives a robust design. For the RBTO based methodology, 

same combinations and the performances variation relative to the each combination are 

found to be robust. By analyzing  the effects of tolerance range of the factors, it was 

obtained that the values of compliance and deflection at combination number 61 is the 

best while combination number 55 found to be best for Von-Mises stress based 

performance. The reason for these combination numbers is explained by the slight non-

linear variation in the performance values against the tolerance combinations. The 

proposed methodology not only gives the design combination and tolerance range but 

also provides a full range of performance for each combination. The simulated data can 

be utilized to fine tune the overall performance of the shock absorbers, or the vehicle 

itself. In this way, the presented work provides an aid to the designer to select the 

combination of factors and tolerance value. 



CHAPTER 8 

CONCLUSIONS AND FUTURE SCOPE 

8.1 CONCLUSIONS 

Present thesis discusses an integrated approach to select values of controllable factors 

and their tolerances to achieve the targeted values of performance and robust 

performance for topologically optimized structural components including effects of 

uncertainties. The impact of change of factors and its uncertainties on topologically 

optimized structures are not very much apparent from the physics of the problems. Thus, 

this thesis provides some worthwhile conclusions based on the investigations carried out 

in all chapters. 

In Chapter 1, the development of topology optimization methods and robust design 

methods are discussed to provide the necessary foundation. In Chapter 2, the published 

literature related to effects of uncertainties in the area of topology optimization problems 

are reviewed. This chapter is organized in two parts. The first part presents the 

developments on the issue of reliability of the topologically optimized components. The 

outcome of the RBTO research is explored chronologically and important outcomes are 

identified. The important outcomes are: FORM is used to approximate the MPP in 

general; the limit state function is modeled using the maximum allowable deflection 

values; the uncertainties of applied force, elasticity, and dimension are considered in 

most of the studies; and in majority of studies, the structural problems are dealt. The 

second part of the literature review is about the application of robust design 

methodologies in topology optimization problems. The research in this area is organized 

in terms of the type of uncertainties and their methods to deal with these uncertainties. 

From the available literatures, it is evident that the current research focuses more on the 

uncertainties caused by the manufacturing processes. For this, different methodologies 

are developed to create the optimal topologies that can be manufactured accurately. From 
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literature, it is observed that the stochastic methods are utilized in the developed methods 

and the majority of work use SIMP method. The examples of structural and compliant 

mechanism problems are used by the researchers in equal proportion.  

Based on above reviews the gaps in research are identified. The important findings 

are, the majority of research is focused on specific applications, rather than providing a 

generalized methodology; the issues of computational cost, performance analysis, 

manufacturing, etc. are rarely addressed in detail; there are very limited attempts to 

incorporate the designer and manufacturer's perspective. 

Present thesis is motivated by the above research gaps. In Chapter 3, the analysis of 

performance of the topologically optimized structures is dealt using DOE approach. In 

this chapter, the investigation on influence of input factors like force, aspect ratio and 

volume fraction on performance values is performed. The performance measure is set as 

compliance and deflection values. The effects of uncertainties are incorporated by 

considering various loading conditions and material uncertainties. Hence, the results 

obtained are practical and representative of real life application. To enable this, various 

performance measures are simulated using combinations generated from DOE approach. 

The effect of individual factor on performance measure is also obtained to indicate the 

importance of DOE based methodology. In addition, statistical methods and tools are 

used to identify the significant input factors and their contributions. The proposed 

methodology is illustrated using the four benchmark problems. For first three problems, 

the most and least significant factors are force and aspect ratio, respectively when 

compliance is the performance measure. For the same performance measure, aspect ratio 

and force are the most and least significant factor in the fourth problem. For all 

problems, the most and least significant factors are volume fraction and force, 

respectively, when deflection is the performance measure. It is found that the seventh 

(7
th

) combination has highest SNR, with minimum compliance and deflection values. 

Whereas, twenty first (21
st
) combination has lowest SNR with highest compliance and 

deflection values. It is also concluded that the combinations of factors, which provide 

minimum compliance and deflection, are robust compared to others. This analysis is 

helpful to select the input factor values and their effect on the targeted performance 

under a specified range, and provides an over-all picture of performance measure 

behavior to the designers. As an important outcome of this analysis, the suitable nominal 
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values of the considered factors are found out, which are utilized in the later part of the 

thesis.  

In Chapter 4, the analysis of performance of the topologically optimized structure is 

carried out using reliability concept. The RBTO method generates reliable optimal 

topology with its performance values, subject to desired reliability index values and 

given uncertainties of controllable factors. In this chapter, a methodology based on DOE 

and RBTO has been integrated to simulate the performance, in a desired range of factors 

including the effects of uncertainties. This work addresses the issues related to achieving 

targeted performance for a given structural problem. The methodology has been 

illustrated using same four benchmark problems available in the literature. The results 

are analyzed using ANOM, SNR, and ANOVA. The sensitivity and the statistical 

significance of the factors are obtained. The equivalence equations are generated, which 

are useful to compute any compliance and deflection values within the selected range of 

factors. It is again observed that the volume fraction is the most significant factor. The 

seventh (7
th

) combination performs best for robust design and provides minimum 

compliance and deflection values. Whereas, twenty first (21
st
) combination provides 

maximum values of compliance and deflection, and shows minimum robustness. In 

addition, it is observed that, for the presented methodology a coarse mesh is sufficient, as 

long as it correctly represents the physics of the problem. The present analysis will be 

helpful to predict the behavior of performance measures and helps in identifying the 

relative robustness of the combinations of factor. This analysis can be used to select 

factor combinations that provide targeted performance measure for topology 

optimization problems, with reliability considerations. The suitable nominal values of the 

considered factors are found out using the proposed approach, which is utilized for the 

selection of tolerance ranges. 

In Chapter 5, an approach is proposed to select optimum tolerance of controllable 

factors for topologically optimized structures. This approach draws inspiration from 

Taguchi’s earlier work on CA-DOE method. Conventionally a CA DOE method is used 

for the noise analysis, but in the present case, the approach was modified by treating the 

tolerances as the noise. Such application of CA-DOE to topology optimization problems 

does not exist in the available literature. This method also explores the possibilities to 

obtain robust topology using statistical methods. To serve this purpose, four factors, i.e. 

applied force, volume fraction, aspect ratio, and modulus of elasticity are selected for 
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their tolerance range selection using CA-DOE approach. The performance measure for 

this analysis is kept same as discussed earlier. The combinations of the tolerance of 

factor are identified in which one or few factors are in their loose tolerance limits, though 

it provides targeted performance or minimum variations of the performance measure. In 

addition, ANOVA is used for identification of statistically significant tolerances of 

factors. Summarily, the tolerance of aspect ratio is not significant and tolerance of force 

is highly significant for the considered problems. In order to integrate the reliability 

concept in the tolerance range selection, a RBTO based methodology is also proposed in 

this chapter. From the simulated results, it is concluded that with increased reliability 

index and spread values, the values of compliance and deflection increases. Also, the 

performance of each tolerance combination changed from that of previous analysis, 

because of the RBTO method. Hence, RBTO based method gives results that are for 

reliability consideration. Apart from tolerance range selection, the whole analysis can be 

used where the effect of uncertainties of selected factors is required to be investigated. In 

such case, the tolerances will act as uncertainties. Present analysis provides a 

comprehensive investigation of the tolerances of factors on different topology 

optimization problems and offers an offline strategy to the designer. In this chapter, the 

uncertainty of manufacturing process is considered in a very generic way. The 

methodology proposed in this chapter, captures the variations in the volume fraction or 

alteration of shape/size due to any secondary process or manufacturing uncertainties on 

the optimal topology. However, to observe the effect of a specific manufacturing 

process, it is necessary to incorporate the uncertainty characteristic of that process. The 

consideration of the uncertainties specific to a manufacturing process is attempted in 

Chapter 6.  

In Chapter 6, the tolerance range selection of the factors is performed, by 

incorporating the effects of geometric uncertainties caused by manufacturing process. A 

methodology is proposed for simulating geometric uncertainties caused by the 

manufacturing process. This method offers several advantages to the designer in terms of 

its customization. It is independent of topology optimization method and can be adopted 

for different type of robust design methodologies. In this chapter, CA-DOE method is 

integrated with the proposed method for the tolerance range selection. The simulated 

results are analyzed similar to the previous chapters and compared with earlier results. 

There are substantial differences observed in this comparison. For all the selected 
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problems, the mean compliance and deflection values are greater, and SNR of that are 

lesser, when the effect of uncertainties due to manufacturing process is introduced. 

However, for problem-4, the mean deflection values are lesser and SNRs of deflection 

are greater. This indicates that the performance is also dependent on the physics of the 

problem. During the analysis, a drastic change in the sensitivity of factor is also 

observed. The most and least significant factors for compliance and deflection are 

observed to be different when the proposed methodology is applied. Thus, it can be 

concluded that, the methodology presented in this chapter models the characteristic of 

manufacturing process more accurately compared the methodology proposed in 

Chapter 5. However, the methodology proposed in the Chapter 5 can be applied to the 

problems where the uncertainties of manufacturing processes are very small compared to 

the uncertainties of other factors. Similar to the previous chapter, a RBTO based 

tolerance range analysis including the effect of manufacturing uncertainties is also 

attempted in this chapter. The results obtained from this methodology are influenced by 

the reliability index and spread of factors. It is observed that the compliance and 

deflection values are slightly higher compared to results obtained without RBTO. In 

addition, the performance of each combination of tolerance become more distinct 

compared to the previous analysis. 

In order to substantiate the significance of the developed methodologies, a real time 

problem is taken from a live project. The problem at hand is to design a bell crank lever 

used in the BITS-formula one racing car. The process of selecting the different level or 

options for factors such as volume fraction, material, configurations, and consideration 

of uncertainties are demonstrated by considering this problem. The various input 

conditions for this design problem are captured after suitable discussion and analysis, i.e. 

the applied force, the materials, dimensional or leverage configurations, and the required 

weight. Being a real life problem the bell crank lever should be designed using factor of 

safety. Thus, the developed stress is also considered as one of the performance measure. 

The performance measures of the bell-crank lever are set as the compliance, deflection 

and the maximum values of Von-Mises stress. The factors considered in this analysis are, 

type of material, dimensional or leverage configuration, and the volume fraction. The 

uncertainties involved in the various factors such as, applied force, angle of input and 

output force, and thickness are also considered here. To simulate the result, a MATLAB 

code is written based on the developed methodologies in the previous chapters. Based on 
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simulated performances, it is observed that the third configuration of bell crank lever 

shows best values for robust and targeted performances. According to materials used for 

investigation, structural steel ASTM A36 shows best results for robust and targeted 

performance. Although the weight of bell crank lever can further be minimized by 

selecting the design combinations comprising other lighter materials i.e. Aluminum 

alloys. For such selection, simulated performance measure values can be compared, and 

for the desired performance, lighter designs can be selected. In the next step of design, 

the performance of the bell crank lever is observed by including the effect of 

uncertainties of the controllable factors such as, elasticity values, dimensions, and 

volume fraction. From the simulated results, it is found that by increasing the reliability 

index and spread values, the compliance and deflection values increase. Here, these 

performance measures are observed to be more sensitive to the spread values compared 

to the change in reliability index values. However, in case of Von-Mises stress, it is 

found that the values are less with increased values of reliability index, which is the 

indication of increased reliability. From the results, it is observed that by applying the 

reliability method, the deflection and compliance value increased, at the same time the 

developed Von-Mises stress is decreased compare to an earlier DOE based approach. 

Such analysis helps the designer to make a proper tradeoff between the performance and 

safety. 

In order to illustrate the tolerance range selection of this problem, one of the optimal 

designs is selected. In this analysis, the tolerance of the factors such as, thickness, 

elasticity, volume fraction, applied force, input and output angles of the applied force are 

considered. From the simulated results, the combination numbers 61, 29 and 45 are the 

found to be best combination for mean and SNR of the compliance. Combination 

numbers 61, 57, and 31 are found to be the best for mean and SNR of deflection, while 

combination number 55, 63, and 44 are found to be the best for mean and SNR of the 

Von-Mises stress. Based on the developed methodologies a range of performances for 

the different tolerance combinations including effect of uncertainties/noise, are 

generated. This performance range provides a simpler approach to designers to select 

tolerances of factors based on their requirements. Presented performance behavior is also 

helpful to tune the overall performance of the racing car, while designing or selecting the 

other components connected to bell crank-lever. 
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From the simulation results it is found that, the optimal topologies are very sensitive 

to the selected factors and types of uncertainties. Therefore, with the change in values of 

factor, the optimal topologies change drastically. Here, each factor combination provides 

a family of optimal topologies. Above observations with respect to considered problem 

was an eye opener, and illustrates the utility and significance of the application of DOE 

and CA-DOE methods, which helps in simulation of the performance values at each 

factor levels, considering the effect of various uncertainties independently. It is also 

observed from above example, that the developed methodologies are well suited even if 

the factors, performance measures, and type of uncertainties changes according to the 

analysis requirement.  

The performance of each problem is simulated at each possible factor levels, and 

uncertainties, with or without the consideration of reliability values. It is concluded that 

the performance behavior is dependent on physics of the problem. The methodology 

explores all possible performance measure of the structure, in terms of targeted values 

and robustness. Thus proposed methods are very handy and useful for many realistic 

applications like various structural elements; micro cantilever, micro levers, force 

amplifier, etc.  

8.2 FUTURE SCOPE 

The presented work provides methodologies for the robust and targeted performance of 

the topologically optimized structures. On similar line, above work can be extended in 

the following directions; 

Implementation for three-dimensional system: The presented work in this thesis deals 

with the two-dimensional (2-D) problems. The methodologies developed were illustrated 

using the 2-D benchmark problems because it is easy to visualize and present the 

changes in 2-D topology, and relate it with performance behavior. Illustration of these 

methodologies can also be applied to three-dimensional (3-D) problems as a future 

scope. It requires the improvements in topology optimization methods that handle the 

non-convergence and numerical instability of problems, with refined FE routine for 3-D 

solution. Another requirement in such implementation will be to identify the real time 

factors and effect of uncertainties during the manufacturing of 3-D systems. However, all 

other steps used in developed methodologies will remain unchanged. 
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Topology optimization for an integrated engineering system: In Chapter 7, the 

proposed methodologies are illustrated using a bell crank lever design. While this 

component is treated individually. However, engineering system such as large structural 

systems or mechanisms can also be analyzed, where multiple components are assembled 

to achieve a desired performance. The performance analysis of such systems will involve 

the preparation of topology optimization method for multiple loading of components 

with interconnected input and outputs in terms of deflection and loading values. Along 

with this, the objective function should minimize compliance for the whole system 

instead of each component. In such problems, the identification of system performance, 

factors, and noise will be different from that of individual components. 

Application area: Current thesis deals with only structural problems. The obvious 

extension is possible to deal different problem domain, where the objective function for 

topology optimization may attempt to maximize force, displacement, heat flux, fluid 

flow, fundamental eigen frequency that are effected by material distribution. For 

example, this work can be extended for the robust and targeted synthesis of compliant 

mechanisms. These problems require modification of the basic optimization problem. In 

case of structural problems, the objective of the optimization is to minimize the 

compliance value subject to the constraint of volume fraction. While in the case of 

complaint mechanisms, the objective function will be to maximize the compliance value, 

or the ratio of deflection values at output to input points of the mechanism. Thus, the 

methodologies required for the compliant mechanisms will be different compared to the 

structural problems. However the used of methods i.e., DOE, RBTO, and CA-DOE 

require same or little modifications. 

Software development: The overall methodology from the optimal factor to tolerance 

selection is coded in MATLAB. The codes are compatible for the change in different 

grid size, rectangular elements, and local minima, etc. These codes can be used 

simultaneously in a single routine and a Graphical User Interface can be developed to 

obtain optimal parameters for robust performance. Presently, commercial software 

packages available for topology optimization with the use of deterministic method and 

these software packages do not consider any type of uncertainty of factors, tolerance, or 

reliability concepts. Even these software packages do not have capability to handle 

manufacturing perspective. Hence, development of user friendly software for these 

considerations will help the designer community. 
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APPENDIX 

Table A1: Combinations of the factors generated by 3
3 

full factorial design 

Combination 

number 

Aspect Ratio 

Length/Width 

A 

Volume 

fraction 

V 

Force  

Applied 

F(N) 

1 1.2 0.4 100 

2 1.4 0.4 100 

3 1.6 0.4 100 

4 1.2 0.5 100 

5 1.4 0.5 100 

6 1.6 0.5 100 

7 1.2 0.6 100 

8 1.4 0.6 100 

9 1.6 0.6 100 

10 1.2 0.4 120 

11 1.4 0.4 120 

12 1.6 0.4 120 

13 1.2 0.5 120 

14 1.4 0.5 120 

15 1.6 0.5 120 

16 1.2 0.6 120 

17 1.4 0.6 120 

18 1.6 0.6 120 

19 1.2 0.4 140 

20 1.4 0.4 140 

21 1.6 0.4 140 

22 1.2 0.5 140 

23 1.4 0.5 140 

24 1.6 0.5 140 

25 1.2 0.6 140 

26 1.4 0.6 140 

27 1.6 0.6 140 
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A-2 

Table A2: Compliance data for bench mark problems for 3
3
 factorial design 

S.N. 
Combinations Problem-1, MBB Problem-2, Cantilever Problem-3, Cantilever with hole Problem-3, Simply supported 

A V F MEAN RANGE SNR SD MEAN MAX SNR SD MEAN RANGE SNR SD MEAN RANGE SNR SD 

1 1.2 0.4 100 2.4084 0.3613 -7.6462 0.1367 2.0779 1.1426 -6.4905 0.4092 3.2681 1.3307 -10.3652 0.4858 0.5555 0.1431 8.0681 0.0725 

2 1.4 0.4 100 3.2051 0.3298 -10.1240 0.1421 2.8786 1.4267 -9.2951 0.5086 4.3294 1.6125 -12.7937 0.5829 0.7392 0.1734 5.5947 0.0875 

3 1.6 0.4 100 4.3689 1.2507 -12.8734 0.5926 3.4503 2.5446 -11.0571 1.0107 4.7749 2.5782 -13.7309 0.9860 0.9542 0.2063 3.3835 0.1032 

4 1.2 0.5 100 1.6358 0.2743 -4.2923 0.1141 1.4040 0.8150 -3.0985 0.2895 2.5350 0.9028 -8.1473 0.3479 0.4009 0.0990 10.9043 0.0499 

5 1.4 0.5 100 2.1882 0.3128 -6.8114 0.1130 1.9228 0.9126 -5.7830 0.3281 3.0989 1.0836 -9.8801 0.3863 0.4886 0.1285 9.1820 0.0643 

6 1.6 0.5 100 2.9386 0.7537 -9.4139 0.3502 2.3246 1.5950 -7.5940 0.6412 3.5051 1.6206 -11.0103 0.6324 0.6078 0.1391 7.2977 0.0696 

7 1.2 0.6 100 1.3181 0.1391 -2.4064 0.0610 1.0674 0.6167 -0.7225 0.2239 2.2324 0.6364 -7.0215 0.2521 0.3304 0.0799 12.5873 0.0400 

8 1.4 0.6 100 1.7810 0.2262 -5.0215 0.0853 1.4588 0.7291 -3.3912 0.2578 2.6380 0.7741 -8.4676 0.2849 0.3945 0.0954 11.0479 0.0477 

9 1.6 0.6 100 2.2540 0.4014 -7.0808 0.1747 1.7573 1.2071 -5.1500 0.4717 3.0425 1.3373 -9.7657 0.5118 0.4678 0.1152 9.5647 0.0577 

10 1.2 0.4 120 3.4692 0.4260 -10.8139 0.1752 2.9961 1.4707 -9.6540 0.5562 4.6661 1.7744 -13.4538 0.6740 0.7904 0.1847 5.0136 0.0924 

11 1.4 0.4 120 4.5979 0.5686 -13.2584 0.2051 4.1058 2.1041 -12.3875 0.7510 6.2234 2.2673 -15.9439 0.8265 1.0592 0.2395 2.4733 0.1207 

12 1.6 0.4 120 6.2782 1.8416 -16.0180 0.8199 4.9524 3.5836 -14.2037 1.4694 6.8223 3.6494 -16.8281 1.3989 1.3702 0.2690 0.2466 0.1354 

13 1.2 0.5 120 2.3640 0.3201 -7.4842 0.1322 2.0158 1.0432 -6.2168 0.3820 3.6436 1.2726 -11.2923 0.4770 0.5724 0.1351 7.8165 0.0677 

14 1.4 0.5 120 3.1720 0.3364 -10.0327 0.1310 2.7519 1.4276 -8.9083 0.4952 4.4457 1.5783 -13.0220 0.5895 0.7090 0.1729 5.9540 0.0866 

15 1.6 0.5 120 4.2605 1.0794 -12.6319 0.4643 3.3778 2.3882 -10.8438 0.9391 5.0277 2.5016 -14.1550 0.9513 0.8753 0.2101 4.1256 0.1052 

16 1.2 0.6 120 1.9052 0.2758 -5.6118 0.1134 1.5313 0.8589 -3.8482 0.3110 3.1782 0.8436 -10.0838 0.3355 0.4876 0.1127 9.2102 0.0570 

17 1.4 0.6 120 2.5576 0.3272 -8.1641 0.1171 2.0984 1.0819 -6.5593 0.3873 3.7904 1.1456 -11.6196 0.4285 0.5568 0.1316 8.0555 0.0659 

18 1.6 0.6 120 3.2656 0.6624 -10.3028 0.2636 2.5296 1.7277 -8.3084 0.6707 4.3207 1.7852 -12.8049 0.6997 0.6658 0.1815 6.4897 0.0910 

19 1.2 0.4 140 4.7214 0.6038 -13.4913 0.2459 4.1362 2.3042 -12.4808 0.8460 6.3898 2.3843 -16.1784 0.8836 1.0916 0.2694 2.2049 0.1348 

20 1.4 0.4 140 6.3371 0.7214 -16.0461 0.3032 5.6453 2.9902 -15.1596 1.0606 8.4436 3.0300 -18.5929 1.1128 1.4305 0.3150 -0.1346 0.1584 

21 1.6 0.4 140 8.5773 2.6930 -18.7379 1.2052 6.7100 4.8076 -16.8349 1.9671 9.3319 4.7828 -19.5469 1.9006 1.8794 0.4120 -2.5049 0.2062 

22 1.2 0.5 140 3.2238 0.4238 -10.1771 0.1685 2.7611 1.4515 -8.9529 0.5300 4.9489 1.5923 -13.9445 0.6085 0.7888 0.1998 5.0251 0.1000 

23 1.4 0.5 140 4.2824 0.4898 -12.6415 0.1977 3.7669 1.7002 -11.6127 0.6070 6.0788 2.2109 -15.7366 0.7866 0.9693 0.2282 3.2405 0.1147 

24 1.6 0.5 140 5.7075 1.5268 -15.1784 0.6689 4.5628 3.1821 -13.4566 1.2708 6.8698 3.1178 -16.8551 1.2390 1.1966 0.3272 1.3977 0.1638 

25 1.2 0.6 140 2.5942 0.3432 -8.2906 0.1398 2.0793 1.1454 -6.5010 0.4162 4.3312 1.2407 -12.7740 0.4663 0.6486 0.1567 6.7283 0.0784 

26 1.4 0.6 140 3.4748 0.4812 -10.8287 0.1839 2.8523 1.4808 -9.2266 0.5286 5.1729 1.4026 -14.3115 0.5234 0.7654 0.1925 5.2866 0.0963 

27 1.6 0.6 140 4.4314 0.8298 -12.9497 0.3198 3.4594 2.4242 -11.0321 0.9263 5.9077 2.3884 -15.5167 0.9275 0.9105 0.2457 3.7722 0.1229 

A= Aspect Ratio, V=Volume Fraction, F=Force 
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Table A3: Deflection data for bench mark problems for 3
3
 factorial design 

S.N. 
Combinations Problem-1, MBB Problem-2, Cantilever Problem-3, Cantilever with hole Problem-3, Simply supported 

A V F MEAN RANGE SNR SD MEAN RANGE SNR SD MEAN RANGE SNR SD MEAN RANGE SNR SD 

1 1.2 0.4 100 0.0245 0.0027 32.2269 0.0011 0.0218 0.0072 33.1921 0.0026 0.0335 0.0103 29.4589 0.0037 0.0055 0.0007 48.1906 0.0004 

2 1.4 0.4 100 0.0327 0.0026 29.7136 0.0011 0.0299 0.0090 30.4396 0.0032 0.0449 0.0106 26.9223 0.0038 0.0074 0.0009 45.6146 0.0005 

3 1.6 0.4 100 0.0448 0.0100 26.9322 0.0050 0.0370 0.0173 28.5169 0.0071 0.0507 0.0167 25.8441 0.0066 0.0097 0.0006 43.3019 0.0003 

4 1.2 0.5 100 0.0166 0.0020 35.6131 0.0009 0.0145 0.0054 36.7126 0.0020 0.0256 0.0073 31.8013 0.0029 0.0040 0.0005 51.0301 0.0003 

5 1.4 0.5 100 0.0223 0.0022 33.0412 0.0009 0.0199 0.0059 33.9777 0.0022 0.0318 0.0078 29.9218 0.0029 0.0049 0.0007 49.2506 0.0004 

6 1.6 0.5 100 0.0301 0.0058 30.4084 0.0029 0.0249 0.0109 31.9727 0.0046 0.0369 0.0112 28.6030 0.0045 0.0061 0.0007 47.3416 0.0004 

7 1.2 0.6 100 0.0133 0.0014 37.5471 0.0006 0.0109 0.0044 39.1784 0.0017 0.0225 0.0049 32.9139 0.0020 0.0033 0.0005 52.7111 0.0003 

8 1.4 0.6 100 0.0179 0.0019 34.9280 0.0008 0.0150 0.0049 36.4343 0.0018 0.0268 0.0058 31.4021 0.0022 0.0039 0.0005 51.2513 0.0003 

9 1.6 0.6 100 0.0230 0.0031 32.7453 0.0014 0.0186 0.0083 34.4836 0.0034 0.0316 0.0096 29.9665 0.0037 0.0046 0.0006 49.6799 0.0003 

10 1.2 0.4 120 0.0293 0.0027 30.6513 0.0012 0.0262 0.0081 31.5954 0.0031 0.0399 0.0118 27.9292 0.0044 0.0066 0.0008 46.5649 0.0004 

11 1.4 0.4 120 0.0391 0.0035 28.1448 0.0013 0.0357 0.0112 28.9008 0.0040 0.0537 0.0128 25.3710 0.0046 0.0089 0.0010 44.0454 0.0005 

12 1.6 0.4 120 0.0536 0.0125 25.3722 0.0060 0.0443 0.0204 26.9414 0.0085 0.0605 0.0196 24.3045 0.0077 0.0116 0.0006 41.7441 0.0003 

13 1.2 0.5 120 0.0199 0.0023 34.0211 0.0010 0.0174 0.0059 35.1274 0.0023 0.0306 0.0086 30.2338 0.0033 0.0047 0.0006 49.4949 0.0003 

14 1.4 0.5 120 0.0268 0.0021 31.4384 0.0009 0.0238 0.0077 32.4084 0.0028 0.0381 0.0093 28.3581 0.0035 0.0059 0.0007 47.5825 0.0004 

15 1.6 0.5 120 0.0362 0.0073 28.7984 0.0034 0.0300 0.0134 30.3415 0.0055 0.0441 0.0139 27.0494 0.0055 0.0073 0.0008 45.6955 0.0004 

16 1.2 0.6 120 0.0159 0.0019 35.9435 0.0009 0.0131 0.0051 37.6059 0.0020 0.0269 0.0056 31.3880 0.0024 0.0040 0.0005 50.9565 0.0003 

17 1.4 0.6 120 0.0215 0.0022 33.3517 0.0009 0.0180 0.0060 34.8446 0.0023 0.0322 0.0071 29.8256 0.0027 0.0046 0.0006 49.6799 0.0003 

18 1.6 0.6 120 0.0277 0.0041 31.1253 0.0018 0.0223 0.0098 32.9118 0.0040 0.0376 0.0108 28.4424 0.0043 0.0055 0.0008 48.1878 0.0004 

19 1.2 0.4 140 0.0342 0.0034 29.3124 0.0015 0.0307 0.0104 30.2050 0.0039 0.0469 0.0137 26.5448 0.0050 0.0077 0.0010 45.2307 0.0005 

20 1.4 0.4 140 0.0460 0.0037 26.7461 0.0017 0.0419 0.0133 27.5079 0.0048 0.0628 0.0144 24.0199 0.0053 0.0103 0.0012 42.7715 0.0006 

21 1.6 0.4 140 0.0628 0.0154 23.9963 0.0073 0.0516 0.0234 25.6266 0.0098 0.0709 0.0223 22.9274 0.0091 0.0135 0.0009 40.3784 0.0005 

22 1.2 0.5 140 0.0233 0.0026 32.6628 0.0011 0.0204 0.0071 33.7566 0.0027 0.0357 0.0095 28.8998 0.0037 0.0056 0.0007 48.0869 0.0004 

23 1.4 0.5 140 0.0311 0.0027 30.1306 0.0012 0.0279 0.0079 31.0415 0.0030 0.0445 0.0110 27.0002 0.0040 0.0069 0.0008 46.2648 0.0004 

24 1.6 0.5 140 0.0418 0.0084 27.5426 0.0041 0.0349 0.0156 29.0334 0.0065 0.0516 0.0152 25.6979 0.0062 0.0085 0.0012 44.3735 0.0006 

25 1.2 0.6 140 0.0186 0.0021 34.6001 0.0010 0.0152 0.0059 36.2828 0.0023 0.0314 0.0068 30.0385 0.0027 0.0046 0.0005 49.8095 0.0003 

26 1.4 0.6 140 0.0250 0.0027 32.0222 0.0011 0.0209 0.0071 33.5249 0.0027 0.0376 0.0077 28.4772 0.0030 0.0054 0.0007 48.3495 0.0004 

27 1.6 0.6 140 0.0323 0.0045 29.8037 0.0019 0.0261 0.0118 31.5485 0.0048 0.0440 0.0125 27.0831 0.0049 0.0065 0.0009 46.7826 0.0005 

A= Aspect Ratio, V=Volume Fraction, F=Force 
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Table A4: Mean values of compliance for Problem-1 

Problem-1 

Compliance 

β  → 2 2.5 3 3.8 

S (%) → 10 20 30 10 20 30 10 20 30 10 20 30 

C. No. A V F                         

1 1.2 0.4 100 2.634 2.881 3.223 2.708 3.035 3.605 2.760 3.241 4.438 2.848 3.600 5.306 

2 1.4 0.4 100 3.546 3.896 4.328 3.641 4.075 5.243 3.715 4.346 6.241 3.885 5.364 7.323 

3 1.6 0.4 100 4.759 5.249 6.549 4.843 6.104 7.994 4.942 6.548 9.246 5.203 8.169 10.965 

4 1.2 0.5 100 1.780 1.958 2.202 1.824 2.037 2.465 1.874 2.180 3.027 1.936 2.445 3.596 

5 1.4 0.5 100 2.392 2.635 3.040 2.449 2.832 3.555 2.514 3.029 4.228 2.629 3.671 5.005 

6 1.6 0.5 100 3.206 3.499 4.239 3.286 3.966 5.159 3.368 4.264 5.981 3.450 5.218 7.056 

7 1.2 0.6 100 1.422 1.542 1.736 1.441 1.595 1.879 1.479 1.741 2.237 1.529 1.879 2.663 

8 1.4 0.6 100 1.936 2.086 2.338 1.953 2.188 2.624 2.000 2.334 3.097 2.065 2.698 3.609 

9 1.6 0.6 100 2.467 2.662 3.132 2.509 2.947 3.706 2.557 3.140 4.244 2.647 3.758 4.946 

10 1.2 0.4 120 3.795 4.127 4.690 3.912 4.355 5.213 3.964 4.703 6.350 4.124 5.218 7.605 

11 1.4 0.4 120 5.118 5.589 6.320 5.205 5.828 7.405 5.340 6.312 9.050 5.533 7.714 10.523 

12 1.6 0.4 120 6.872 7.369 9.382 7.026 8.823 11.614 7.238 9.358 13.423 7.334 11.740 15.869 

13 1.2 0.5 120 2.569 2.827 3.134 2.636 2.964 3.513 2.698 3.164 4.357 2.796 3.537 5.151 

14 1.4 0.5 120 3.462 3.816 4.425 3.561 4.072 5.088 3.625 4.398 6.128 3.744 5.258 7.201 

15 1.6 0.5 120 4.573 5.071 6.114 4.758 5.671 7.384 4.859 6.112 8.663 5.024 7.469 10.195 

16 1.2 0.6 120 2.063 2.203 2.487 2.056 2.308 2.714 2.117 2.526 3.255 2.189 2.722 3.811 

17 1.4 0.6 120 2.775 3.000 3.404 2.813 3.151 3.798 2.869 3.394 4.445 2.978 3.865 5.192 

18 1.6 0.6 120 3.550 3.829 4.536 3.636 4.279 5.314 3.692 4.527 6.154 3.803 5.377 7.133 

19 1.2 0.4 140 5.161 5.671 6.393 5.302 5.918 7.071 5.419 6.277 8.632 5.593 7.076 10.357 

20 1.4 0.4 140 6.951 7.663 8.568 7.114 7.909 10.362 7.272 8.563 12.352 7.554 10.511 14.457 

21 1.6 0.4 140 9.409 10.010 12.841 9.616 11.959 15.851 9.491 12.767 18.190 10.175 16.056 21.534 

22 1.2 0.5 140 3.520 3.835 4.267 3.582 4.025 4.817 3.659 4.327 5.873 3.761 4.804 7.083 

23 1.4 0.5 140 4.728 5.109 5.958 4.787 5.548 6.856 4.909 5.980 8.231 5.109 7.089 9.837 

24 1.6 0.5 140 6.231 6.876 8.359 6.388 7.796 10.103 6.577 8.274 11.698 6.807 10.209 13.775 

25 1.2 0.6 140 2.774 3.011 3.397 2.839 3.130 3.672 2.889 3.373 4.422 3.001 3.710 5.239 

26 1.4 0.6 140 3.754 4.067 4.593 3.832 4.304 5.139 3.923 4.571 6.032 4.086 5.236 7.174 

27 1.6 0.6 140 4.799 5.213 6.175 4.949 5.797 7.252 5.049 6.200 8.285 5.168 7.345 9.673 

A= Aspect Ratio, V=Volume Fraction, F=Force 
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Table A5: Mean values of deflection (in mm) for Problem-1 

Problem-1 

Deflection 

β  → 2 2.5 3 3.8 

S (%) → 10 20 30 10 20 30 10 20 30 10 20 30 

C. No. A V F                         

1 1.2 0.4 100 0.026 0.028 0.032 0.027 0.029 0.037 0.027 0.032 0.043 0.028 0.037 0.050 

2 1.4 0.4 100 0.036 0.038 0.043 0.036 0.041 0.054 0.037 0.043 0.062 0.038 0.054 0.070 

3 1.6 0.4 100 0.048 0.050 0.064 0.049 0.061 0.081 0.050 0.064 0.091 0.051 0.081 0.104 

4 1.2 0.5 100 0.018 0.019 0.022 0.018 0.020 0.025 0.018 0.022 0.029 0.019 0.025 0.034 

5 1.4 0.5 100 0.024 0.026 0.030 0.024 0.028 0.036 0.025 0.030 0.041 0.025 0.037 0.047 

6 1.6 0.5 100 0.032 0.035 0.041 0.033 0.039 0.051 0.033 0.042 0.058 0.034 0.052 0.067 

7 1.2 0.6 100 0.014 0.015 0.017 0.014 0.015 0.019 0.014 0.017 0.022 0.015 0.019 0.025 

8 1.4 0.6 100 0.019 0.020 0.023 0.019 0.022 0.026 0.020 0.023 0.030 0.020 0.027 0.034 

9 1.6 0.6 100 0.025 0.026 0.031 0.025 0.029 0.037 0.025 0.031 0.041 0.026 0.037 0.047 

10 1.2 0.4 120 0.031 0.034 0.038 0.032 0.035 0.044 0.033 0.038 0.052 0.034 0.044 0.059 

11 1.4 0.4 120 0.042 0.046 0.052 0.043 0.049 0.063 0.044 0.052 0.074 0.046 0.066 0.084 

12 1.6 0.4 120 0.058 0.061 0.077 0.059 0.074 0.097 0.060 0.077 0.109 0.061 0.098 0.125 

13 1.2 0.5 120 0.021 0.023 0.026 0.022 0.024 0.030 0.022 0.026 0.035 0.023 0.030 0.041 

14 1.4 0.5 120 0.029 0.031 0.036 0.029 0.034 0.043 0.030 0.036 0.050 0.030 0.044 0.057 

15 1.6 0.5 120 0.039 0.041 0.050 0.039 0.047 0.062 0.040 0.050 0.070 0.041 0.062 0.080 

16 1.2 0.6 120 0.017 0.018 0.020 0.017 0.019 0.023 0.017 0.020 0.026 0.018 0.023 0.030 

17 1.4 0.6 120 0.023 0.024 0.027 0.023 0.026 0.032 0.024 0.027 0.036 0.024 0.032 0.041 

18 1.6 0.6 120 0.030 0.031 0.037 0.030 0.035 0.044 0.031 0.037 0.049 0.031 0.045 0.056 

19 1.2 0.4 140 0.037 0.039 0.045 0.037 0.041 0.051 0.038 0.045 0.061 0.039 0.052 0.069 

20 1.4 0.4 140 0.050 0.053 0.060 0.051 0.057 0.074 0.051 0.060 0.086 0.053 0.077 0.099 

21 1.6 0.4 140 0.067 0.072 0.090 0.068 0.086 0.114 0.070 0.090 0.127 0.071 0.114 0.146 

22 1.2 0.5 140 0.025 0.027 0.030 0.025 0.027 0.035 0.026 0.030 0.041 0.026 0.035 0.048 

23 1.4 0.5 140 0.033 0.036 0.042 0.034 0.040 0.050 0.035 0.042 0.058 0.036 0.051 0.066 

24 1.6 0.5 140 0.045 0.048 0.058 0.046 0.055 0.072 0.047 0.058 0.081 0.048 0.073 0.093 

25 1.2 0.6 140 0.020 0.021 0.024 0.020 0.022 0.027 0.020 0.024 0.031 0.021 0.027 0.035 

26 1.4 0.6 140 0.027 0.028 0.032 0.027 0.031 0.037 0.028 0.032 0.042 0.028 0.038 0.048 

27 1.6 0.6 140 0.035 0.037 0.043 0.035 0.041 0.052 0.036 0.043 0.058 0.037 0.052 0.066 

A= Aspect Ratio, V=Volume Fraction, F=Force 
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Table A6: Inner array of the tolerance combination of the factors 

Combination 

no. 

Aspect ratio 

σA 

Elasticity (GPa) 

σE 

Volume fraction 

σV 

Force (N) 

σF 

1 0.01 3.3333 0.01 1.6667 

2 0.01 3.3333 0.01 0.8333 

3 0.01 3.3333 0.005 1.6667 

4 0.01 3.3333 0.005 0.8333 

5 0.01 1.6667 0.01 1.6667 

6 0.01 1.6667 0.01 0.8333 

7 0.01 1.6667 0.005 1.6667 

8 0.01 1.6667 0.005 0.8333 

9 0.002 3.3333 0.01 1.6667 

10 0.002 3.3333 0.01 0.8333 

11 0.002 3.3333 0.005 1.6667 

12 0.002 3.3333 0.005 0.8333 

13 0.002 1.6667 0.01 1.6667 

14 0.002 1.6667 0.01 0.8333 

15 0.002 1.6667 0.005 1.6667 

16 0.002 1.6667 0.005 0.8333 

 

Table A7: Outer array, based on L8 OA for a particular Inner array combination 

 Column number 

Run no. 1 (Aspect ratio) 2(Elasticity)  3 (Volume fraction) 4 (Force) 

1 A – 3σA E – 3σE V – 3σV F – 3σF 

2 A – 3σA E – 3σE

 

V – 3σV

 

F + 3σF 

3 A – 3σA

 

E + 3σE V + 3σV F – 3σF 

4 A – 3σA

 

E + 3σE V + 3σV F + 3σF 

5 A + 3σA E – 3σE

 

V + 3σV F – 3σF 

6 A + 3σA E – 3σE

 

V + 3σV F + 3σF 

7 A + 3σA E + 3σE V – 3σV

 

F – 3σF 

8 A + 3σA E + 3σE V – 3σV

 

F + 3σF 

A, E, V & F represents the nominal value of Aspect ratio, Elasticity, Volume fraction and 

Force respectively 
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Table A8: Inner OA of factors 

Combination 

No. 
Aspect ratio 

σA 

Elasticity (Pa) 
σE 

Force (N) 
σF 

1 0.01 3333.33 1.6667 

2 0.01 3333.33 0.8333 

3 0.01 1666.67 1.6667 

4 0.01 1666.67 0.8333 

5 0.002 3333.33 1.6667 

6 0.002 3333.33 0.8333 

7 0.002 1666.67 1.6667 

8 0.002 1666.67 0.8333 

 

Table A9: Outer OA of factors tolerance based on Taguchi's L4 OA 

Run No. Aspect ratio Elasticity (Pa) Force (N) 

1 �  3 σA �  3σE �  3σF 

2 �  3 σA + 3σE + 3σF 

3 + 3 σA �  3σE + 3σF 

4 + 3 σA + 3σE �  3σF 

 

Table A10: The combination of factor-tolerances including volume fraction 

Combination 

No. 

Volume fraction 

σV

 Aspect ratio 

σA

 Elasticity (Pa) 

σE

 Force (N) 

σF

 

1 

0.0250 

0.01 3333.33 1.6667 

2 0.01 3333.33 0.8333 

3 0.01 1666.67 1.6667 

4 0.01 1666.67 0.8333 

5 0.002 3333.33 1.6667 

6 0.002 3333.33 0.8333 

7 0.002 1666.67 1.6667 

8 0.002 1666.67 0.8333 

9 

0.0150 

0.01 3333.33 1.6667 

10 0.01 3333.33 0.8333 

11 0.01 1666.67 1.6667 

12 0.01 1666.67 0.8333 

13 0.002 3333.33 1.6667 

14 0.002 3333.33 0.8333 

15 0.002 1666.67 1.6667 

16 0.002 1666.67 0.8333 
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Table A11: The combinations of the factors based on factorial DOE 

Combination 

No. 
Configuration 

Volume fraction, 

V 

Modulus of Elasticity, 

E (GPa) 

1 

Con1 

0.25 69 

2 0.25 72 

3 0.25 200 

4 0.3 69 

5 0.3 72 

6 0.3 200 

7 0.35 69 

8 0.35 72 

9 0.35 200 

10 

Con2 

0.25 69 

11 0.25 72 

12 0.25 200 

13 0.3 69 

14 0.3 72 

15 0.3 200 

16 0.35 69 

17 0.35 72 

18 0.35 200 

19 

Con3 

0.25 69 

20 0.25 72 

21 0.25 200 

22 0.3 69 

23 0.3 72 

24 0.3 200 

25 0.35 69 

26 0.35 72 

27 0.35 200 

 

Table A12: Taguchi's L9 array corresponding to noise 

Experiment 

no. 

Force 

F(N) 

Change in input 

Force angle Ai 

(degree) 

Change in output 

Force angle Ao 

(degree) 

Thickness 

T(mm) 

1 840 5 5 6.3 

2 840 0 0 6 

3 840 -5 -5 5.7 

4 800 5 0 5.7 

5 800 0 -5 6.3 

6 800 -5 5 6 

7 760 5 -5 6 

8 760 0 5 5.7 

9 760 -5 0 6.3 
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Table A13: Inner OA of factors tolerances 

Combination 

No. 
σT σE σV σF σAi σAo 

1 0.1 3.333 0.0058 13.33 0.7833 -0.2833 

2 0.1 3.333 0.0058 13.33 0.7833 -0.14167 

3 0.1 3.333 0.0058 13.33 0.39167 -0.2833 

4 0.1 3.333 0.0058 13.33 0.39167 -0.14167 

5 0.1 3.333 0.0058 6.667 0.7833 -0.2833 

6 0.1 3.333 0.0058 6.667 0.7833 -0.14167 

7 0.1 3.333 0.0058 6.667 0.39167 -0.2833 

8 0.1 3.333 0.0058 6.667 0.39167 -0.14167 

9 0.1 3.333 0.0029 13.33 0.7833 -0.2833 

10 0.1 3.333 0.0029 13.33 0.7833 -0.14167 

11 0.1 3.333 0.0029 13.33 0.39167 -0.2833 

12 0.1 3.333 0.0029 13.33 0.39167 -0.14167 

13 0.1 3.333 0.0029 6.667 0.7833 -0.2833 

14 0.1 3.333 0.0029 6.667 0.7833 -0.14167 

15 0.1 3.333 0.0029 6.667 0.39167 -0.2833 

16 0.1 3.333 0.0029 6.667 0.39167 -0.14167 

17 0.1 1.667 0.0058 13.33 0.7833 -0.2833 

18 0.1 1.667 0.0058 13.33 0.7833 -0.14167 

19 0.1 1.667 0.0058 13.33 0.39167 -0.2833 

20 0.1 1.667 0.0058 13.33 0.39167 -0.14167 

21 0.1 1.667 0.0058 6.667 0.7833 -0.2833 

22 0.1 1.667 0.0058 6.667 0.7833 -0.14167 

23 0.1 1.667 0.0058 6.667 0.39167 -0.2833 

24 0.1 1.667 0.0058 6.667 0.39167 -0.14167 

25 0.1 1.667 0.0029 13.33 0.7833 -0.2833 

26 0.1 1.667 0.0029 13.33 0.7833 -0.14167 

27 0.1 1.667 0.0029 13.33 0.39167 -0.2833 

28 0.1 1.667 0.0029 13.33 0.39167 -0.14167 

29 0.1 1.667 0.0029 6.667 0.7833 -0.2833 

30 0.1 1.667 0.0029 6.667 0.7833 -0.14167 

31 0.1 1.667 0.0029 6.667 0.39167 -0.2833 

32 0.1 1.667 0.0029 6.667 0.39167 -0.14167 

33 0.05 3.333 0.0058 13.33 0.7833 -0.2833 

34 0.05 3.333 0.0058 13.33 0.7833 -0.14167 

35 0.05 3.333 0.0058 13.33 0.39167 -0.2833 

36 0.05 3.333 0.0058 13.33 0.39167 -0.14167 

37 0.05 3.333 0.0058 6.667 0.7833 -0.2833 

38 0.05 3.333 0.0058 6.667 0.7833 -0.14167 

39 0.05 3.333 0.0058 6.667 0.39167 -0.2833 

40 0.05 3.333 0.0058 6.667 0.39167 -0.14167 

41 0.05 3.333 0.0029 13.33 0.7833 -0.2833 
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Combination 

No. 
σT σE σV σF σAi σAo 

42 0.05 3.333 0.0029 13.33 0.7833 -0.14167 

43 0.05 3.333 0.0029 13.33 0.39167 -0.2833 

44 0.05 3.333 0.0029 13.33 0.39167 -0.14167 

45 0.05 3.333 0.0029 6.667 0.7833 -0.2833 

46 0.05 3.333 0.0029 6.667 0.7833 -0.14167 

47 0.05 3.333 0.0029 6.667 0.39167 -0.2833 

48 0.05 3.333 0.0029 6.667 0.39167 -0.14167 

49 0.05 1.667 0.0058 13.33 0.7833 -0.2833 

50 0.05 1.667 0.0058 13.33 0.7833 -0.14167 

51 0.05 1.667 0.0058 13.33 0.39167 -0.2833 

52 0.05 1.667 0.0058 13.33 0.39167 -0.14167 

53 0.05 1.667 0.0058 6.667 0.7833 -0.2833 

54 0.05 1.667 0.0058 6.667 0.7833 -0.14167 

55 0.05 1.667 0.0058 6.667 0.39167 -0.2833 

56 0.05 1.667 0.0058 6.667 0.39167 -0.14167 

57 0.05 1.667 0.0029 13.33 0.7833 -0.2833 

58 0.05 1.667 0.0029 13.33 0.7833 -0.14167 

59 0.05 1.667 0.0029 13.33 0.39167 -0.2833 

60 0.05 1.667 0.0029 13.33 0.39167 -0.14167 

61 0.05 1.667 0.0029 6.667 0.7833 -0.2833 

62 0.05 1.667 0.0029 6.667 0.7833 -0.14167 

63 0.05 1.667 0.0029 6.667 0.39167 -0.2833 

64 0.05 1.667 0.0029 6.667 0.39167 -0.14167 

 

Table A14: Outer OA of factors tolerance based on Taguchi's L8 OA 

Run no.

 

T E V F Ai Ao 

1 �  3 σT �  3 σE �  3 σV �  3 σF �  3 σAi �  3 σAo 

2 �  3 σT �  3 σE �  3 σV + 3 σF + 3 σAi + 3 σAo 

3 �  3 σT + 3 σE + 3 σV �  3 σF �  3 σAi + 3 σAo 

4 �  3 σT + 3 σE + 3 σV + 3 σF + 3 σAi �  3 σAo 

5 + 3 σT �  3 σE + 3 σV �  3 σF + 3 σAi �  3 σAo 

6 + 3 σT �  3 σE + 3 σV + 3 σF �  3 σAi + 3 σAo 

7 + 3 σT + 3 σE �  3 σV �  3 σF + 3 σAi + 3 σAo 

8 + 3 σT + 3 σE �  3 σV + 3 σF �  3 σAi �  3 σAo 

T: Thickness, E: Elasticity, V: Volume fraction, F: Force, Ai: Input force angle, Ao: output force angle 

 



B-1 

 

LIST OF PUBLICATIONS AND PRESENTATIONS 

International journal publications: 

1. Arshad Javed and B.K. Rout, “Investigation on parametric sensitivity of 

topologically optimized structures”, Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(11), 

pp. 2791-2804, DOI: 10.1177/0954406212437513. 

2. Arshad Javed and B.K. Rout, “Tolerance range section of topologically optimized 

structure using combined array design of experiments approach”, Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 

Science, 2012, 227(9), pp. 2023-2038, DOI:10.1177/0954406212468652. 

3. Arshad Javed and B.K. Rout, “Tolerance range selection of topologically optimized 

structures with the effects of uncertainties of manufacturing process”, Proceedings of 

the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 

Science. Online published on April 11, 2014 as doi:10.1177/0954406214528484 

4. Arshad Javed and B.K. Rout, “Reliability based performance analysis of 

topologically optimized structures”, Journal of Mechanical Science and Technology, 

Springer. (Communicated) 

International/National conference publications and presentation: 

1. Arshad Javed and B.K. Rout, “Parametric sensitivity of topologically optimized 

structures using RBTO technique”, In Proceedings of Third Asian Conference on 

Mechanics of Functional Materials and Structures (ACMFMS 2012), Indian Institute 

of Technology, Delhi, India, December 5-8, 2012, pp. 252-255. 

2. Arshad Javed, A.K. Sengar, and B.K. Rout,  “A FEM and image processing based 

method for simulation of manufacturing imperfections”, In Proceedings of 

International Conference on Advancements and Futuristic Trends in Mechanical and 

Materials Engineering, Punjab Technical University, Kapurthala, India, October 5-7, 

2012, pp. 255-229. 

3. Arshad Javed and B.K. Rout, “Issues in design for manufacturing using topology 

optimization method”, Presented in National Conference on Modeling, 



B-2 

 

Computational Fluid Dynamics & Operations Research Under UGC-SAP, DRS-I, 

Birla Institute of Technology & Science, Pilani, Rajasthan, February 4-5, 2012. 

4. Arshad Javed, M. Safal, and B.K. Rout, “Numerical simulation of compliance 

variation for a topology-optimized structure”, In Proceedings of IEEE international 

conference on Process Automation, Control and Computing (PACC), Coimbatore, 

Tamilnadu, India, July 20-22, 2011, pp. 1-5, DOI:10.1109/PACC.2011.5978893. 

5. Arshad Javed, B.K. Rout and R.K. Mittal, “A review on compliant mechanisms for 

MEMS applications”, Presented in 2nd ISSS National Conference on MEMS, 

Microsensors, Smart Materials, Structures and Systems, CEERI-BITS, Pilani, India, 

November 15-17, 2007. 

http://dx.doi.org/10.1109/PACC.2011.5978893


B-3 

 

BRIEF BIOGRAPHY OF THE CANDIDATE 

Mr. Arshad Javed did his B.Tech. in Mechanical Engineering from Bundelkahnd 

Institute of Engineering and Technology (BIET), Jhansi (U.P.) and M.E. from  Birla 

Institute of Technology & Science (BITS) Pilani, Pilani Campus (Rajasthan) in 

Mechanical Engineering. He is presently pursuing Ph.D. at BITS-Pilani, and working as 

a Lecturer with Department of Mechanical Engineering, BITS-Pilani, Pilani campus. He 

has eight years teaching experience at under graduate and postgraduate levels. His areas 

of research interest are Topology optimization, Mechatronics, and Robotic systems. 

BRIEF BIOGRAPHY OF THE SUPERVISOR 

Dr. B.K. Rout is presently working as Associate Professor in the Department of 

Mechanical Engineering as well as Coordinator of Centre for Robotics and Intelligent 

Systems (CRIS) of Birla Institute of Technology and Science (BITS) Pilani, 

Rajasthan. He has been working with BITS Pilani for last fifteen years in various 

capacities and has total of eighteen years of experience in academics and three years 

of experience in industry. He has published several papers in various national and 

international journals, and conferences. His current research interest is in the area of 

rehabilitation robotics; industrial robotics and the use of statistical techniques to 

model, synthesize, and optimize complex dynamic systems; statistical methods for 

system design, parameter design and tolerance design of mechanical equipment. He 

has been guiding research students in mobile robotics, robust design of manipulators, 

topologically optimized compliant structure, and mechanism areas. He is actively 

involved in teaching and consultancy of subjects related to robotics, mechatronics, 

quality engineering and operations research. He is a fellow of professional bodies like 

Institution of Engineers (IE), Indian Institute of Industrial Engineers (IIIE), and 

member of Indian Society for Theoretical and Applied Mechanics (ISTAM). 




