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ABSTRACT 

  

With the advent of technological advancements in chemical process industries, more and 

more processes are getting interconnected with the objectives of minimizing energy 

consumption, maximizing heat recovery, effective utilization of resources and/or to 

minimize the cost. These interconnections, often result in plants that are too large or too 

complex to control in a conventional manner. The control of such plants necessitates the 

need for disintegrating the whole control system design into independent controller 

subsystems, which will require the minimal plant information and should be capable  of 

handling plants nonlinearities or uncertainties in a robust manner. The disintegrated or 

independent controller subsystem is termed as decentralized control system and is often a 

preferred choice than its centralized counterpart. 

 A decentralized control system consists of multiple input-output control loops. 

These control-loops often interact with each other to the extent that their control becomes 

a daunting task. Thus, inputs and outputs are paired in such a way that the control-loop 

interactions be minimized. The problem is often termed as an input-output pairing 

problem or the control configuration selection problem. The performance of a multi-loop 

control system depends strongly on proper selection of control configuration. The 

selected control configuration must correspond to the control-loops having minimum 

closed-loop interaction. For the analysis of control-loop interaction various tools are 

available in the literature and one of the most popular of them is the steady-state "relative 

gain array (RGA)". The RGA has many advantages over other interaction measures: (i) it 

requires the minimal process information, i.e. the steady-state gains only, (ii) it is 

independent of the input-output scaling, (iii) it represents all the process information in a 

single matrix. It has many algebraic properties and has also found to be linked to many 

closed-loop system properties such as: robustness, integrity, failure tolerance, 

decentralized integral controllability (DIC), etc.  

 Despite its numerous advantages the RGA also suffers from certain limitations 

which restricts its use as a reliable tool. Inconsideration of process dynamics is one such 

limitation of the RGA. Many attempts have been made to extend the applicability of 

RGA to dynamic systems and various tools are available in the literature. In the present 

study the most popular of them have been analyzed for accuracy. A new measure of 

process interaction the "relative response array (RRA)" has also been proposed. The 

proposed measure has four different versions based on: (i) controller-independent/ 

controller-dependent approach, and (ii) time-average/time-varying approach. The 

controller dependent versions are useful from the viewpoint of practical realizability, 

whereas time varying versions are particularly important for detailed dynamic analysis of 

the process. The capability of the proposed measure and other popular methods as a 
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potential tool of dynamic interaction measurement are tested on four case studies (two 

benchmark test problems and two industrial problems) adopted from the literature. It has 

been observed that in one of the case studies the steady-state RGA fails to identify the 

best pairings, whereas in another case study, few popular dynamic measures of 

interaction were unsuccessful in identifying the best pairings. However, the proposed 

interaction measure was successful in identifying the best control configuration for all the 

case studies. In addition to identifying the best pairings, the time-varying versions of the 

proposed measure provided much more detailed information about the process dynamic 

behavior. The resulted pairings are then analyzed for stability and performance based on 

closed-loop simulation behavior obtained from the Internal Model Control (IMC) / 

Integrated Time Average Error (ITAE) controller design and tuning. The Niederlinksi 

Index (NI) has also been used as a measure of closed-loop stability.  

 In most studies on RGA analysis, the process model is frequently assumed. 

However, a mathematical model for the real process can never be perfect and there is 

always some uncertainty associated with the model. The uncertainty may arise due to 

process nonlinearities, external disturbances, change in operating conditions, etc. Still, a 

very few attempts have been made towards the sensitivity of the RGA analysis to model 

uncertainty and is mainly limited to the steady-state systems only. The objective of the 

present study is to gain insights into how the process dynamics can affect control 

configuration decision based on RGA analysis in the face of model uncertainty. For this 

study, parametric uncertainty in the gain and residence time of the process has been 

considered. Analytical expressions for worst-case bounds of uncertainty in steady-state 

and dynamic RGA are derived for two-input, two-output (TITO) plant models. Three of 

the four case studies as mentioned above are adopted from the literature to demonstrate 

the applicability of the proposed approach. Since the proposed approach is currently 

limited to 22  process models only, it could not be extended for one of the case study of 

33 plant model. The obtained bounds of uncertainty in RGA provide valuable 

information pertaining to the maximum tolerable uncertainty for which control loop 

pairing remain unchanged. A further increase in uncertainty beyond the limiting point 

results in ambiguity in pairing decision and may also lead to the change in input-output 

pairing during the time range of interest. The results obtained in the case studies show 

that the tolerable uncertainty increase if the uncertainty analysis is carried out under 

dynamic framework, particularly for the uncertainty in steady-state gains, whereas the 

tolerable uncertainty decreases if the uncertainty is considered in both the process gains 

and the residence times. Thus, the sensitivity analysis carried out for control-loop pairing 

for inaccuracies in model parameters of the considered case studies, ensures the selection 

of robust control configuration. 

Keywords—Decentralized Control, Interaction Measure, Relative Gain Array, Relative 

Response Array, Input-Output Pairing, Control Configuration Selection, Parametric 

Uncertainty, Worst-Case Bounds, Sensitivity Analysis, Residence Time, Robustness. 
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CHAPTER - 1 

INTRODUCTION 

 

1.1 The Choice for Decentralized Control System 

In the past few decades, advancements in industrial processes resulted in complex, 

large scale plants with multiple-input and multi-output (MIMO) that obligates high 

demands on control configuration. Such challenging problems arise in the control of 

interconnected process systems with strong interaction. Often, the interconnection is 

sought in order to employ resources effectively and minimize costs. Sometimes the 

integration of processes are carried out through interconnection with an objective of 

efficient energy utilization. The term large scale plants came into existence when it 

has been realized that such plants cannot be controlled in a straight forward manner. 

This is because the systems to be controlled are too large and the problems to be 

solved are too complex, i.e., they cannot simply be solved by using faster computer 

with larger memory (Bakule, 2008). For the control of such large scale MIMO plants 

the control system community has suggested two kinds of controllers, viz., a 

multivariable centralized controller and a set of decentralized controllers.  

 Multivariable centralized controllers may always outperform decentralized 

controllers, but this performance gain must be traded-off against the cost of obtaining 

and maintaining a sufficiently detailed plant model (Skogestad and Postlethwaite., 

2001). In spite of the centralized controllers having the capability to extract "optimal" 

performance, the use of decentralized controllers for multivariable plants is the rule in 

industrial process control applications (Campo and Morari, 1994). In addition to its 

inherent simplicity, a decentralized control system exhibits several advantages over a 

fully centralized design. In the ideal case, these advantages include: 



2 

 

i. Flexibility of bringing individual subsystems in and out of service during 

process operation in order to handle changing control objectives;  

ii. In case of the failure of another component in the individual subsystem, the 

independent controller will still try to drive its associated variable to its set 

point; 

iii. Flexibility of tuning individual subsystem, in case of slowly varying process 

conditions; 

iv. Ease of designing individual SISO subsystem compare to designing a full 

multivariable system, i.e., fewer design parameters need to be specified for 

SISO subsystems.  

 Decentralized control tries to divide the whole plant into various subsystems 

and designing independent controllers for each subsystem as a way to handle the 

control of overall plant (Figure 1.1). This division may sometimes correspond to a 

real plant or is just a "conceptual" model for control system design (Bakule, 2008). 

Formally a decentralized controller can be defined (Skogestad and Postlethwaite, 

2001) as: 

Decentralized controller is a control system consisting of non-interacting feedback 

controllers, which interconnect a set of output measurements/commands with a subset 

of manipulated inputs. These subsets should not be used by any other controller. 

The task of designing a decentralized control system can be split into two separate 

sub-problems: 

1. Input-output pairing selection, which is often termed as the control 

configuration selection, 

2. Controller design, i.e., designing individual controllers for independent SISO 

subsystems.
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     Figure 1.1. Decentralized multivariable control system with a diagonal controller  

     and a detached input-output pair. 
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 The former problem is often concerned with defining the control system 

structure, i.e., which of the available plant inputs is to be used to control each of the 

plant outputs. For large scale systems, in particular, the decision about the control 

system's structure is fundamental to the achievable performance. A poor choice of 

structure will impose control performance limitations that cannot be overcome by any 

advanced controller. This can be quite complex, since for a given plant there are many 

alternate decentralized control structures possible. For example, for a plant with 'n' 

manipulated inputs and 'n' controlled outputs, there are n! different multi-loop SISO 

decentralized control systems possible (Niederlinski, 1971). Thus, efficient screening 

techniques are needed for eliminating the undesirable control structures and 

determining the best controller pairing from among the large number of possible 

pairing. Foss (1973) encouraged the researchers in the area of control structure design 

to close the gap between theory and applications. But the gap still exists up to some 

extent even today. This study deals with one specific issue in the control structure 

design, namely that of input-output pairing or control configuration selection. 

 

1.2 Interactions and Input-Output Pairing Problem 

As discussed in Section 1.1, the decentralized control system divides a larger set of  

variables grouped into several smaller sets of MIMO subsystem (Figure 1.2). In 

comparison to single-input, single-output (SISO) systems,  the MIMO systems are 

more difficult to control due to the interactions among manipulated inputs and 

controlled outputs. The most serious problems occur when transmission interaction is 

present, in which the effects of one control loop “loop back” through interaction and 

affects the action of other controllers (McAvoy, 1983).  

 To demonstrate the effect of interactions, let us consider a block diagram of 
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Figure 1.2. MIMO system with interaction. 

 

 

 

 Figure 1.3. Block diagram representation of 22  multi-loop control  

 system with    2211   configuration. 
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22  plant model, configuring    2211   (diagonal) pairing (Figure 1.3). The 

pairing is said to be diagonal when input 1u  is used as manipulated variable to control 

output 1y  via process transfer function 11g ; similarly 2u and 2y  forms the pair via 

process transfer function 22g . Any change in input 1u  and 2u  affects output 2y  and 

1y  via the process transfer functions 21g  and 12g  respectively. Thus, each 

manipulated variable affects both controlled variables. Now consider a case where 1y  

deviates from its set point spy ,1  which causes controller 1cg  to take corrective action 

by adjusting the manipulated variable 1u . The change in 1u  propagates to loop 2 via 

21g  and makes 2y  to change from its set point spy ,2 .  To bring 2y  to its set point, the 

controller 2cg  manipulates 2u . The change in 2u  not only affects 2y  but 1y  as well. 

The process interaction thus causes control loop interactions, which sometimes can be 

very severe and drastically reduces control system performance.  

 Figure 1.4 illustrates the performance degradation of an industrial 

polymerization reactor system  (Chien et al., 1999) which may result due to loop 

interactions.  The figure shows the closed-loop response of output signals 1y  and 2y  

for a unit step change in their set point. For control system design, a decentralized PI 

controller is employed in Simulink (Figure 1.5) using IMC based tuning parameters 

(Seborg et al., 2010). Ideally, if there are no closed-loop interactions present, then 1y  

should not be affected when a step change is given in 2y  and vice versa. From Figure 

1.4 it is evident that the outputs are coupled since the step change in 1y  and 2y  

affects 2y  and 1y  respectively, significantly. 

 For industrial processes, the considered MIMO system could be somewhat 

complex. It is quite common for a chemical industry to have complexity of several   
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    (a)                     (b) 

Figure 1.4. Decentralized control output responses of an industrial polymerization reactor (Chien et al., 1999) with a step change in the 

set point of the first output, 1y  [Figure 1.4 (a)] and the second output, 2y  [Figure 1.4 (b)]. 



8 

 

 

 

 

 

 

Figure 1.5. Simulink Model of an Industrial Polymerization Reactor  (Chien et al., 

1999). 
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hundreds of control loops. Even a simple distillation column with five controlled and 

five manipulated variables will have 120 possible control loop pairings. The choice 

for best pairing selection is often not at all obvious. Also, the proper selection of 

pairing is important for the stability of the overall system since a bad pairing may 

result in stable individual loops but the unstable overall system. By appropriate 

pairing of input-output variables the effect of interactions can be minimized and 

improved control system performance can be achieved. Generally, the stronger the 

interactions between the loops, the more difficult would be to obtain a satisfactory 

performance. Evidently, there is a strong need for a measure that not only can select 

the best pairing or reject the worst pairings but also can give some information on the 

extent of interaction present. 

 The control system design procedure for a multivariable plant involves two 

major steps. The first step involves the selection of suitable input and output which 

depends on the type of plant model G , e.g., linear or nonlinear, time-invariant or 

time-varying, physical principles based or black box. The detailed survey of input-

output selection methods are reported in the literature (van de Wal and de Jager, 

2001). The second step involves the selection of control configuration, where it is 

decided which outputs are to be connected to which inputs. van de Wal and de Jager 

(2001) has defined the input-output pairing problem for decentralized control system 

as:  

Establishing which outputs in 'y' are used to determine each input 

in 'u' is often called partitioning or pairing in case of a diagonal 

controller.    

 Analysis and development of tools for input-output pairing problem is the 

focus of this thesis. The aim is to select the control configuration that can generate 
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acceptable performance of the system. Objectives to be taken into account include 

stability, set point tracking, and robustness considering performance specifications for 

subsystems or for the overall system. The aim is also to validate the most commonly 

used tools for this problem. In addition, a number of new tools and corrections to the 

existing ones are proposed in this thesis that can be used to select control 

configurations which allow achieving a specified performance. The tools are also 

tested on several case studies taken from the process industry. The discussion is 

limited to linear quadratic (square) plant models, i.e., models with as many inputs as 

outputs. It is further assumed that the selection of appropriate inputs and outputs has 

already been done and our focus would be on the pairing of those selected variables. 

  

1.3 Interaction Measures and Tools for Control Configuration Selection 

The seminal work of Bristol (1966) on the relative gain array is the first formal 

approach towards measuring the interaction between the various loops of a 

decentralized multi-loop control system. It is one of the most favored and widely used 

tool for the control configuration selection. The best part of RGA is its simplicity, i.e., 

it requires only the crude process model information particularly the steady-state 

gains. However, few researchers have discarded its use, as it does not give good 

results for processes with dominant dynamics. Subsequently, many extensions were 

proposed to overcome its limitations and for wider applicability. McAvoy (1983) and 

Shinskey (1967) presented  many successful industrial applications of RGA.  

 The literature is also replete with the interaction measures which do not follow 

RGA based approach and subsequent extension methodologies. The RGA based 

approaches mostly use transfer function models. The Niederlinski index (1971) is one 

such method, often being used, as a complementary tool to the RGA analysis, as a 
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measure of closed-loop stability. It provides sufficient condition for instability of n-

dimensional closed-loop system under decentralized control. The eigen value based 

methods such as singular value decomposition (SVD) (Morari, 1983) and Jacobi 

iteration matrix (Mijares et al., 1986) are also available. Another common approach is 

the state space based methods using the concept of observability and controllability 

gramian, e.g., the participation matrix (PM) (Conley and Salgado, 2000), and the 

Hankel interaction index array (HIIA) (Wittenmark and Salgado, 2002). As an 

alternative to HIIA, Birk and Medvedev (2003) suggested the use of the system H2 

norm as a base for an interaction measure.  

 

1.3.1 Relative Gain Array 

The relative gain array proposed by Bristol (1966) is the foremost tool for control 

configuration selection. Originally, it was proposed as an empirical tool, and later 

supported by strong theoretical justifications (Tung and Edgar, 1981). It is one of the 

most popular tool for the selection of control configuration (van de Wal and de Jager, 

1995). RGA considers steady-state properties of the plant and gives suggestion on the 

possible solution to the pairing problem for a decentralized (diagonal) control 

structure. RGA is also a good indicator of worst pairings that should be avoided due 

to possible stability and performance issues. Many different ways of defining RGA 

are available in the literature. Bristol in his seminal work (Bristol, 1966) defined RGA 

as: "The ratio of two gains representing first the process gain in an isolated loop ( ij ) 

and, second, the apparent process gain in that same loop when all other control loops 

are closed (
11 

ji ). The ratio of these gains defines an array (RGA) M with elements, 

1 jiijij  ".                                (1.1) 

 Eq. (1.1) can be generalized for the overall plant as given in Eq. (1.2),  
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        T
GGG


 00                                        (1.2) 

 where,  G  is the RGA matrix for plant G ,  denotes element-by-element 

multiplication,  0G  and   T
G


0 are the steady-state gain matrix under open-loop and 

closed-loop, respectively. The Eqs. (1.1) and (1.2) are limited to steady-state systems 

only. 

 Later, many extensions and generalizations of RGA have been proposed in the 

literature to overcome its limitations. The most important of them is its dynamic 

extension to analyze a given plant at non-zero frequencies. Since the pairing decision 

based on steady-state (zero frequency) information alone may sometimes leads to 

faultier variable pairings and thus, underperforming loops sometimes are unstable. 

The dynamic extension of RGA can be obtained by replacing  0G  with  jsG   in 

Eq. (1.2), i.e., as a function of frequency and will be termed as dynamic relative gain 

array (DRGA) as given by Eq. (1.3):  

        T
sGsGG


                                           (1.3) 

 Hence, the dynamic RGA has precisely the same form as the steady-state 

RGA. Noteworthy here is the fact that the dynamic RGA assumes "perfect control", 

which may not be an appropriate assumption, especially at high frequencies.  

 In the past few decades several tools resembling RGA have been developed. 

Few important among them are the dynamic relative gain array (DRGA) proposed by 

Tung and Edgar (1981), Witcher and McAvoy's (1977) relative dynamic array (RDA), 

performance relative gain array (PRGA) as proposed by Hovd and Skogestad (1992), 

partial relative gain (PRG) suggested by Haggblom (1997), relative interaction array 

(RIA) proposed by Zhu (1996), block relative gain (BRG) introduced by 

Manousiouthakis et al. (1986) , disturbance relative gain (DRG) proposed by Stanley 

et al. (1985), effective relative gain array (ERGA) given by Xiong et al. (2005), 
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effective relative energy array (EREA) proposed by Monshizadeh-Naini et al. (2009) , 

relative normalized gain array (RNGA) introduced by He et al. (2009). The detailed 

review of methods are reported in the literature (Kinnaert, 1995 and van de Wal and 

de Jager, 1995). Further extensions are also available for RGA applications to non-

square systems (Chang and Yu, 1990), processes with integrators/differentiators 

(Arkun and Downs, 1990; Hu et al., 2010), non-linear processes (Moaveni and Khaki-

Sedigh, 2007), unstable or non-minimum phase processes (Hovd and Skogestad, 

1994). The soft computing based techniques for RGA analysis also started to gain 

emphasis, the most applied of them are the approaches based on neural network, 

fuzzy-logic and mixed integer linear and non-linear optimization (French et al., 1995; 

Mollov et al., 2001; Paramasivan and Kienle, 2010; Xu and Shin, 2007). 

     

1.4 Motivation 

The selection of suitable control configuration which can minimize the closed-loop 

interaction is vital to the design of a decentralized control system. For a set of 

wrongly paired variables, the control system behaves poorly, even with highly 

sophisticated controllers.  Thus, it is essential to carry out an input-output pairing 

analysis for the robust performance of the control system.  

 The most popular tool for this purpose is the steady-state gain based relative 

gain array (RGA). However, for processes with dominant dynamics it is completely 

inappropriate to carry out  the variable pairing selection based on steady-state gain 

information alone. Thus, it is important to extend the steady-state RGA to processes 

with dominant dynamics, retaining its inherent properties such as the ease of 

calculation and simplicity of analysis.   



14 

 

 Further, there is no process or parameter that does not involve a certain 

amount of uncertainty in measurements. Therefore, it is essential to consider the 

uncertainty in the measurement of process gain, process time constant and time delay 

terms of the plant model. However, so far only the uncertainty in process gains has 

been considered in most of the work reported in the literature on control configuration 

selection for uncertain process models. This motivates us to further extend the work 

on uncertain process models with both steady-state and dynamic frameworks, 

considering uncertainty not only in steady-state gains but also in time constants and 

time delays. 

 

1.5 Objectives 

This thesis focuses on the selection of suitable control configuration for decentralized 

control of multivariable systems, in order to reduce the interaction between individual 

control loops. Accordingly, the goal is to analyze and further develop the well known 

tool for control configuration selection the "Relative Gain Array", and further extend 

it to dynamic systems.  

 To achieve this larger goal the following objectives are set:    

1. Analyze the strength of the relative gain array as a tool for the selection of 

control configuration of processes with dominant dynamics & uncertainty and 

its usefulness as an interaction measure.  

2. Critically review and analyze the strengths and weaknesses of existing 

dynamic RGA (DRGA) methods  and suggest possible improvements and/or 

new measures of loop interaction and control configuration selection for 

dealing with the weaknesses identified.   



15 

 

3. Extend the work on RGA analysis of uncertain steady-state process models to 

dynamic process models considering uncertainty not only in gain (steady-state 

approach) but also in time constant and time delays of the process model.  

 

1.6 Thesis Structure 

After having introduced the basic concepts of decentralized control together with 

discussions on the need of a suitable tool for determining best control configuration, 

Chapter 1 enlists various objectives set for this study.  

 In Chapter 2, the detailed literature review of the work on the applicability of 

notable tool of control configuration selection, the relative gain array to steady-state 

and dynamic process systems is presented. The chapter also discusses the work on the 

applicability of RGA to uncertain process models. Though the thesis focuses on the 

studies on the relative gain array, a brief review of other available tools is also 

presented. At the end of the chapter, the existing gaps in the literature are discussed 

together with the scope of the work carried out in this thesis.    

 Chapter 3 presents various tools in line with the definition of the relative gain 

array and its extensions that are used in this thesis. The new method developed for the 

control configuration selection of dynamic systems, "the relative response array" is 

also presented. For uncertain process models, newer approaches for the selection of 

control configuration considering uncertainty in process gains, time constant and time 

delays are proposed and discussed in this chapter. 

 Chapter 4 introduces various case studies used for the testing of methods, 

existing as well as the proposed ones. The case studies comprise of two benchmark 

test problems (Grosdidier and Morari, 1986; McAvoy, 1983) and two industrial 



16 

 

problems: (i) Shell oil fractionators problem (Adusumilli et al., 1998), and (ii) 

Distillation column control problem (Grosdidier and Morari, 1986).        

 Chapter 5 presents the results and discussion on the case studies. The chapter 

also focuses on the applicability of tools developed in Chapter 3 and its comparison 

with the other popular methods of control configuration selection on various case 

studies. 

 Chapter 6 gives the summary of the thesis. The conclusions drawn on the 

basis of the results obtained in Chapter 5 are also listed in this chapter together with 

the major contributions made through this thesis.          
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CHAPTER - 2 

LITERATURE REVIEW 

 

Various studies reported in literature for the selection of control configuration based on 

steady-state RGA, its extension to dynamic systems, and to plants with uncertain process 

models are discussed in Section 2.1 and other methods of control configuration selection, 

i.e., non-RGA based approaches are discussed in section 2.2. 

   

2.1 RGA Analysis for Control Configuration Selection 

A commonly used tool for solving the control configuration selection problem for multi-

loop (decentralized) SISO controllers is the relative gain array (RGA). It has found 

widespread applicability as a measure of closed-loop interaction supported with sound 

theoretical justification and mathematical proofs (Tung and Edgar, 1981). RGA has a 

number of algebraic properties even at high frequencies, which makes it a potential tool 

for control configuration selection (Grosidier et al., 1985). 

    

2.1.1 Steady-State Approach  

The first formal tool for the selection of control configuration and to measure the process 

interaction was proposed by the Bristol (1966). His definition of the measure, "Relative 

Gain Array" was applicable to linearized, time invariant, multivariable processes 

described by a square gain matrix of steady-state gains between manipulated inputs and 

controlled outputs. The various algebraic properties of measure were also discussed 

together with pairing rules. It is recommended to use the steady-state based RGA for 
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determining the initial design structure first and subsequently the performance be 

analyzed considering process dynamics and nonlinearity. 

 For the stability analysis of the control-loop pairings, a very useful measure called 

Niederlinski Index (NI) is proposed as a theorem (Niederlinski, 1971). It is defined for an 

interacting linear multivariable control system with integrating controllers using  steady-

state process gain matrix as basis. The values of NI need to be positive for stable control 

system. A negative value of NI implies that the system is structurally monotonic unstable. 

The NI can be used to eliminate those input-output pairings which results in a structurally 

monotonic unstable system. This theorem has been found to be very useful and later been 

used as complementary tool with Bristol’s relative gain array for analyzing the stability 

of closed-loop pairings. 

 Jafarey et al. (1979) presented the applicability of RGA for dual composition 

control of binary distillation column. Their approach involves deriving an approximate 

expression for RGA based on the Smoker equation for various control configurations. 

The possible extension of the approach for multi-component distillation column was also 

discussed. 

 The RGA as originally proposed by Bristol (1966) suffers from many 

disadvantages, one of which is its inability to deal with process disturbances. Stanley et 

al. (1985) were the first to propose a dimensionless steady-state measure, the relative 

disturbance gain (RDG) which permits disturbances to be included in the operability 

analysis. The RDG mainly helps in analyzing whether the interactions obtained are 

favorable or unfavorable. It has been suggested that the control configuration should be 

chosen based on RGA from the schemes with best RDGs for the known disturbances.  
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  Grosdidier et al. (1985) presented novel techniques for extracting closed-loop 

system properties based on steady-state gain information. The properties taken up for 

investigation comprise of closed-loop stability, sensor and actuator failure tolerance, 

feasibility of decentralized control structures, and robustness with respect to modeling 

errors. The said properties were developed assuming integral based controller for open-

loop stable systems. The relationship of RGA with the important system performance 

measures such as RHP zeros, Robustness and  Condition number were also shown.  

 Luyben (1987) showed that the closed-loop interaction measure RGA is sensitive 

to the changes in the steady-state gain if an integral action based controller is used. The 

robustness of RGA was analyzed in terms of the control system property integral 

controllability (IC). The analysis was conducted on various distillation configurations. 

The result showed that the plants with large RGA elements go unstable even for small 

changes in gains. The limiting condition (permissible change in gain) for stability of 

closed-loop had also been generated. Later, Luyben (1987) observed similar findings for 

the sensitivity analysis of RGA to the size of manipulated variable increment for 

determining steady-state plant gains. For a conventional R-V distillation column (MVs: 

reflux and vapor boil-up), the studies were carried out for small increments in reflux and 

vapor boil-up (1% to 0.0001%). Based on the gains obtained, RGA was found to vary 

from plus infinity to minus infinity. It was found that the steady-state gain data obtained 

from plant test for a distillation column is not reliable for finding RGA, because of their 

approximate values and high sensitivity RGA to small variations in gain. 

 Papadourakis et al. (1987) extended the RGA to a system with recycle loops. 

Prior to this work, RGA had been applied mainly to individual process units only. It had 
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been clearly demonstrated that the RGA for plants gets significantly affected if the plant 

has recycle loops in place. It was strongly recommended that the RGA calculated for 

individual subunits are not reliable and the other units of the plant must be considered in 

conjunction with the unit under study.  

 For the applicability of RGA to integrating process (eg. liquid level tank system), 

Arkun and Downs (1990) presented a generalized method. Their method involves 

determining steady-state gains for integrating (non-self-regulating) processes based on 

state space and singular value decomposition (SVD) approach. The gains obtained had 

been utilized for finding the RGA matrix. It is then used to systematically synthesize 

control structures for large process flow sheets which contained a subset of integrators.  

The method of finding the RGA for such processes under various conditions (such as 

zero dynamics) had also been shown. The RGA for an integrating process is defined as 

the ratio of the open-loop integrator gain to that of open-loop integrator gain modified by 

closure of other loops  The applicability of the approach was shown with the help of a 

reactor-splitter example.  

 Chang and Yu (1990) were the first to extend the RGA to non-square systems 

(i.e., the systems with unequal number of inputs and outputs). The proposed measure, the 

non-square relative gain (NRG) array, had been defined in the same way as the square 

RGA, i.e., the ratio of open loop gains to that of the closed-loop gain but in least square 

sense. The closed-loop gain under least square sense offers advantage of minimizing the 

steady-state errors. The various properties of NRG array had also been derived. The 

applicability of NRG array had been shown with the help of two distillation column 

examples. In a recent study, Sobana and Panda (2015) performed control configuration 
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selection analysis for a non-square  32  reverse osmosis desalination process for both 

servo and regulatory problems based on realtive gain array.    

 Chiu and Arkun (1990) presented a new necessary condition for decentralized 

closed-loop integrity, i.e., the chosen control structure maintains its nominal stability for 

any combination of control-loop failures. Based on the developed condition, the new 

pairing rules were also defined for which the decentralized closed-loop system remains 

integral controllable. The theoretical results obtained were compared with the existing 

ones available in the literature. The proposed necessary condition is appreciable because 

it depends only on the steady-state gain information of the plant. In the subsequent work 

(Chiu and Arkun, 1991), the stability condition for a two-input-two-output (TITO) 

decentralized control system, where each loop is a single-input-single-output (SISO) 

control loop, was developed. For deriving the generalized stability conditions the 

assumption of stabilization of each individual loop (keeping the other loop open) was 

relaxed here, as was the case with previous work on the relative gain array and the 

Niederlinski index. The results obtained were limited to only 22  plants under MIMO 

decentralized control. 

 Wolff et al. (1992) discussed the procedure for the controllability analysis of 

linear systems, with the review of the tools available for the same. The applicability of 

RGA as a controllability measure was shown with its application to Fluid Catalaytic 

Converter (FCC) reactor. The study was carried out under the light of performance 

limitation measures such as right half plane (RHP) poles and zeros, time delays etc. It 

was recommended to observe the pairing performance in the frequency region around the 

closed-loop bandwidth of the system.  
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 Chang and Yu (1992) proposed a new measure relative disturbance gain (RDG) 

array for analyzing the disturbance rejection capability of all possible control structures 

and consequently selecting the best controller structure. The control structures considered 

in the study are diagonal, block diagonal, triangular or full controller structure. A 

generalized version of relative disturbance gain "generalized relative disturbance gain 

(GRDG)" was also proposed and its application for systems with considerable process 

dynamics was shown.  

 Alkaya et al. (1992) used RGA together with other interaction measures for 

selecting the best control configuration for dual composition control of an industrial, 

multi-component, high-purity ethyl-benzene distillation column. In another study 

(Ariburnu et al., 1993) for the same industrial multi-component distillation system the 

RGA was utilized and the results were verified with IMC based PI control. Similarly, the 

applicability of RGA in finding the non-realistic combination of manipulated and 

controlled variable for the middle vessel column dual composition problem was 

presented by Farschman and Diwekar (1998). For the analysis, a time varying analytical 

expression for the RGA was also derived.  

 Zeghal and Palazoglu (1993) developed automated pairing procedure for a 

decentralized control system using relative gain array and block relative gain. The 

procedure was then implemented as portable software and was tested in solving a heat 

exchanger network problem. The step testing method was used to identify the 77  

transfer function matrix. Individual controller design for fully decentralized system was 

then performed using IMC design procedure for disturbance and set point changes. 

 Campo and Morari (1994) investigated the open loop stable multivariable systems     
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such that there exists a decentralized controller which can provide desired closed-loop 

system properties such as unconditional stability, integrity with respect to actuator and 

sensor failure, and decentralized unconditional stability. Necessary, sufficient, and 

necessary and sufficient conditions were derived based on open loop steady-state gain. 

The connection between D-stability and DIC had also been demonstrated. Their major 

contribution is towards essentially determining the availability of an integral controller 

based on steady-state gain information. The chosen controller should the closed-loop 

system to exhibit required flexibility characteristics and any one of the three properties 

from unconditional stability, decentralized stability, or integrity.      

 Hovd and Skogestad (1994) were the first to generalize the Niederlinski index 

(Niederlinski, 1971) and steady-state relative gain array (Bristol, 1966) based pairing 

criteria for integrity of open-loop unstable systems. The generalization was done on the 

basis of odd and even number of unstable poles in plant transfer function matrix and 

modified (diagonal) transfer function matrix. Two theorems were proposed for relative 

gain array and Niederlinski index. It was found that the RGA is a special case of 

Niederlinski index. The uniqueness of RGA was highlighted in obtaining a good set of 

algebraic properties and its efficacy in deciding appropriate set of pairings in one 

"glance".    

 A detailed survey on control configuration selection tools for linear multi-loop 

control system was presented by Kinnaert (1995). The methods for analyzing the 

suitability of multi-loop control strategy was also presented. The use of dynamic relative 

gain array was also emphasized in cases where steady-state based RGA fails to identify 

the suitable pairings. For dealing with the stability issue of multi-loop control schemes, 
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the use of Niederlinski index (Niederlinski, 1971) is recommended. The results on control 

structure design starting from input-output selection to controller design via control 

configuration selection were reported in the literature (van de Wal and de Jager, 1995; 

Wal, 1994). The popular tools for control configuration selection such as relative gain 

array, block relative gain, performance relative gain and relative sensitivity were 

discussed in brief. The unresolved challenges, some of which had been still unexplored 

were presented.  

 Piette et al. (1995) presented a graphical tool for visualizing interactions among 

the control loops. The interpretation of popular interaction measure such as relative gain 

array and singular value decomposition were described graphically for linear and 

nonlinear processes. The interaction measures were interpreted in terms of constant 

output contours in the input space and the gradients of these outputs. In particular, the 

interactions by RGA analysis are summarized in terms of “relative gain surface plot”. 

These plots can then be used to find the regions of significant interaction and changes in 

the interaction structure.  

 Hwang (1995) presented a new technique for geometric interpretation of RGA, 

evolved from the analysis of the stability boundaries in the proportional gain space. The 

technique was applicable not only for selecting best control configuration but also for the 

controller design. It was reported that their new measure of interaction, the dynamic 

interaction index (DIX) gives quantitative reliable interaction information in comparison 

to RGA, which may mislead in some cases.  

 Zhu (1996) presented a new steady-state interaction measure relative interaction 

array (RIA). The properties of RIA are explored in analogy to RGA. It’s applicability in 



25 
 

analysis of system stability, integrity and robustness was discovered. To overcome the 

dependence of best pairing through RIA over individual loops, a new measure based on 

overall interaction was also proposed. Though the proposed method showed promising 

results for systems at steady-state, its applicability for dynamic systems was not explored.  

 Zhu et al. (1997) presented a novel approach for qualitative and quantitative 

analysis of dynamic and steady-state interaction based on closed-loop structural analysis. 

The new steady-state interaction measure, relative interaction array (RIA) (Zhu, 1996), 

defined analogously to RGA and can give information about the size and direction of the 

interaction and also the one way interaction. The properties and pairing rules based on 

RIA had also been defined. Further, the closed-loop system performance and stability 

were investigated in a classical unified framework and it was recommended that the 

variable pairing corresponding to dominant negative interaction should be avoided. The 

guidelines for ensuring stability under positive feedback by suitable controller design 

were given.  

 Haggblom (1997) developed various analytical relations for partial control of a 

distillation column keeping inventory loops closed. The frequency dependent relative 

gains for different control structures were found by generating transfer function model 

based analytical expression for all control structures. For the same problem, another 

approach based on a new measure of process control structure selection was presented by 

Haggblom (1997a; 1997b). The new measure partial relative gain (PRG) for a subsystem 

was defined as the RGA for the subsystem with the rest of the system under integral 

feedback control, i.e., a partially controlled system. A necessary condition for integral 

controllability with integrity was derived for overall open loop system based on RGA and 
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for relevant subsystem based on PRG. For systems with higher dimensions  33  and 

larger), PRG offers an advantage over RGA, in that it can be used for explicitly 

comparing feasible control structures with each other. 

 An optimization based approach for the control structure selection having 

minimum interaction is presented by Kookos et al. (1999). Their approach utilizes the 

two popular interaction measures RGA and RIA, for formulating mixed integer nonlinear 

programming (MINLP) problem and mixed integer linear programming (MILP) problem, 

respectively. The requirement of integrity and stability in control loops had been used as 

constraints to the optimization problem. Their method is more suitable for systems with 

arbitrary large dimensions, which is difficult to analyze using steady-state RGA, RIA and 

other interaction measures.  

 Johansson (2000; 2002) discussed a multivariable level control problem for a 

quadruple tank system proposed by Johansson and Nunes (1998). The laboratory 

experiments for quadruple tank discusses in particular the performance limitations 

imposed by right half plane zeros (RHP Zeros). The control system performance had 

been studied for both the minimum and non-minimum phase systems. As a part of their 

study, the RGA was generated for quadruple tank system and a condition was developed 

upon linearization, for which the quadruple tank process prefers decentralized control 

structure. The developed laboratory based quadruple tank system had later been adopted 

for many multivariable control system studies. 

 Jørgensen and Jørgensen (2000) proposed an optimization based method for 

automated selection of control structure. Their method involves formulation of control 

structure selection problem as a mixed integer linear programming (MILP) problem 
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based on Parseval’s theorem utilizing the concept of relative gain array (RGA) and 

internal model control (IMC). The proposed method was applied for plant wide control of 

a hydro de-alkylation plant. 

 The RGA has long been considered as an interaction measure suitable only for 

linear systems. The possible extension of RGA to nonlinear systems was proposed by 

Glad (2000), which involves the formation of an array of nonlinear functions.     

 Kariwala et al. (2003) derived new algebraic properties of block relative gain 

(BRG) proposed originally by Manousiouthakis et al. (1986). Further, the new algebraic 

properties had been shown to be related to closed-loop system properties such as closed-

loop stability, controllability, block diagonal dominance, and interactions. It was shown 

that the BRG for strongly interacting systems is nearly unity.  Most of the results 

presented were based on steady-state gain information only and are useful for 

controllability analysis and pairing selection at design stage. 

 The application of RGA to waste water treatment has been addressed by 

Samuelsson et al. (2005) and recently by Vu et al. (2014). Samuelsson et al. (2005) 

studied the degree of channel interaction for nitrate removal in an activated sludge 

process (ASP). The study comprised of decentralized control configuration selection for 

different operating points in a bioreactor model. The part of work also includes the 

centralized control structure study and its comparison with the decentralized control 

strategy whereas Vu et al. (2005) focused on biological neutrient removal process by 

developing a continuous recycle system based on sequencing batch reactor. The 

comparision of proportional intergral controller and generic model control strategies are 

also presened.  
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 Fatehi and Shariati (2007) introduced normalized relative gain array (NRGA) 

matrix obtained through a combination of the original RGA matrix and its selection rules. 

The Hungarian algorithm (Cooper and Steinberg, 1974) used to solve the pairing problem 

which can be interpreted as an assignment problem. The major advantage of their method 

is that the pairing can be performed automatically without a need of human decision. 

Using  this  method,  it  is  possible  to  pair  adaptively  the inputs and outputs in a 

nonlinear and/or time variable process, where the optimal pairing may change from time 

to time. 

 Cheng and Li (2010) proposed a new method of analyzing interactions by means 

of relative gain table and relative gain graph. Their method suggests that there are more 

than one feasible way of pairing with relatively weak interaction if we analyze the 

interactions between any loops by gradually decreasing the other closed-loops. However 

their method is limited only to the steady-state systems with perfect control. 

 Monshizadeh-Naini et al. (2011) introduced a vector which describes popular 

interaction measures [RGA, NI and relative error matrix (REM)] in a parametric form. 

The vector is called descriptive vector whose each element is a certain pairing choice. 

This vector can be used for gaining more insight of plants with interaction, for which the 

Jury Algorithm (Ogata, 1995) was used. 

 Montelongo-Luna et al. (2011) presented a new measure of control loop 

interaction, "relative exergy array (REA)" as a means to compare thermodynamic 

efficiency for control structures of MIMO systems. It was found that the use of exergy in 

RGA calculation gives more detailed information about the interactions in process 

control structures. REA is defined as "the ratio of the gain change in the steady-state 



29 
 

exergy of the stream of  given controlled variable with respect to that of the stream of 

given manipulated variable, when all loops are open to the gain change in the steady-state 

exergy of the stream of given controlled variable with respect to that of the stream of 

given manipulated variable when all other loops are closed in 'perfect control'" 

(Montelongo-Luna et al., 2011). The applicability of the approach is demonstrated for a 

nonlinear MIMO system with the help of a high-purity dual-composition-control 

distillation column problem.    

 Liao et al. (2012) presented a fuzzy logic based approach for the selection of 

control configuration. They have developed an overall T-S Fuzzy model as a collection of 

individual loop T-S Fuzzy models which on linearizing around operating point gives 

steady-state gain and normalized integrated error. The pairing selection was done based 

on minimum interaction offered and applying the rules of RNGA-RGA-NI. Their 

approach is suitable only for centralized controllers. 

  

2.1.2 Dynamic Approach 

The RGA has been well accepted as a tool for control configuration selection. The reason 

behind its popularity is the large number of advantages it offers over other tools of 

interaction measure. However, RGA also has certain limitations which made some of the 

researchers to discard its use as a potential tool. RGA, being dependent on the steady-

state gain information alone, does not give due emphasis to the process dynamics. It may 

lead to the incorrect variable pairing particularly for processes with dominant process 

dynamics. The attempts of extending the steady-state RGA to consider the process 

dynamics in control configuration selection can be divided in two broad categories: (i) 
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the controller independent approach, and (ii) the controller dependent approach. The 

literature review based on these two categories is presented in this section.      

 Bristol (1977) was the first to generalize steady-state RGA (Bristol, 1966) to 

cover the non-zero frequencies by replacing steady-state gains in the definition of RGA 

with the corresponding process transfer function matrices. To consider the dynamics, the 

open and closed-loop gains were calculated individually and the ratio of these gains were 

used to define the dynamic RGA. Various properties of the measure have also been 

discussed in the light of process dynamics. 

 Witcher and McAvoy (1977) proposed a model independent approach for 

defining dynamic RGA. Their approach is based on the calculation of "dynamic 

potential" defined as integral of the open-loop step response to a unit step change in 

input. The interaction measure "relative dynamic array (RDA)" can easily be obtained by 

replacing steady-state gain in the definition of RGA with the "dynamic potential". Since 

the RDA is defined analogous to the RGA, it follows most of the properties of the RGA. 

To demonstrate the applicability of RDA, distillation column and fluid catalytic cracker 

examples are used.  

      Tung and Edgar (1981) were the first to provide a rigorous convergence proof of 

the Bristol's steady-state RGA (Bristol, 1966). Before this theoretical ground the RGA 

was considered more or less to be an empirical tool. Tung and Edgar (1981) also 

extended the RGA to dynamic process systems in both the state space and frequency 

domain. The applicability of the approach had been shown with the help of distillation 

column control example. 
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 Gagnepain and Seborg (1982) presented a new measure of process interaction 

called average relative gains matrix (ARG). Their approach is similar to that presented by 

Witcher and McAvoy (1977), defining relative dynamic array (RDA). However, the 

approach of Gagnepain and Seborg (1982) differs from Witcher and McAvoy (1977) in 

that the open-loop step responses were utilized in quite a different manner such as to 

avoid disadvantages associated with RDA. The simulation studies were carried out for 

three different control schemes: conventional multi-loop control, partial decoupling, and 

complete decoupling.  It was found that the multi-loop control strategy gives best control 

in most cases. 

 The need for the dynamic interaction analysis, particularly in the cases where 

steady-state RGA is insufficient, had been emphasized by McAvoy (1983). The dynamic 

RGA is enforced for the cases where the steady-state RGA varies largely with frequency 

or is widely different from the RGA obtained at natural loop frequency. The strategy to 

analyze interaction in systems having pure integrating element had also been presented in 

this study. The studies were conducted on distillation column control problem with level 

control being the integrating element. This study also emphasized the need for 

considering the control aspects during the design stage itself.  

 Manousiouthakis et al. (1986) defined a new measure of process interaction for 

decentralized control system called block relative gain (BRG). The new measure 

generalized the RGA for block pairing of inputs and outputs rather than essentially 

considering a single input, single output case. Unlike RGA,  the BRG can directly be 

used for analyzing interactions under dynamic framework. Like RGA, the BRG is also 

scaling independent. The authors modeled the properties of BRG and successfully 
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applied to two industrial examples: (i) boiler furnace with four burners and four heating 

coils; and (ii) heat integrated stirred tank reactor. 

 Meeuse and Huesman (2002) presented an extension of the popular interaction 

measure RGA to compare open- and closed-loop step responses in the entire time domain 

of interest. The closed-loop responses were all based on the internal model control with 

best achievable control performance. The open and closed-loop responses are represented 

parametrically for each selected pairing and are shown graphically as an array. The 

usefulness of the results were shown for two examples of 22  plant model for which the 

static RGA failed to identify the correct pairings.  McAvoy et al. (2003) presented a 

novel approach to defining a dynamic RGA (DRGA). Using the available dynamic 

process model, a proportional output optimal controller was designed based on the state 

space approach and the resulting controller gain matrix was used to define a DRGA. 

Several examples in which the normal RGA gives the inaccurate interaction measure and 

wrong pairings were studied, and in all cases the new DRGA method found to give more 

accurate interaction assessment and the best pairings. 

 Xiong et al. (2005) presented a simple, new dynamic loop pairing criterion for 

decentralized control of multivariable processes utilizing both the steady-state gain and 

bandwidth information of the process open loop transfer function elements. The new 

measure effective relative gain array (ERGA) is proposed based on defining effective 

gain matrix and is found to be a useful tool not only for interaction analysis but also for 

designing decentralized control systems. 

 Xiong and Cai (2006) proposed a novel approach for design of a decentralized 

control system for multivariable processes. The measure proposed in the study, effective 
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relative gain array (ERGA), quantifies the interaction effect for a particular loop from all 

other closed-loops through both steady-state gain and critical frequency variations. The 

detuning factor for the controller design was derived and applied to both the normal 

processes and process with unstable zeros has been showed.  

 He et al. (2009) proposed another measure of process interaction, the relative 

normalized gain array (RNGA), based on both the steady-state and transient information 

of the process transfer functions. It was reported that the RNGA gives unique and optimal 

pairing decision. Various properties of the measure were stated by taking analogy to the 

RGA. The integral error (IE) criteria was utilized to evaluate the process dynamic 

properties. However, RNGA had not been applied to higher dimensional systems. 

 Monshizadeh-Naini et al. (2009) proposed an extended criteria compatible with 

the definition of energy for the input-output pairing of MIMO systems. Their approach 

was the extension of the concept of ERGA (Xiong et al., 2005) with reinforced weight on 

the steady-state gain over bandwidth as oppose to equal weighting in ERGA. In defining 

the measure "effective relative energy array (EREA)", the system H2 norm which is 

considered to be the energy of the system impulse response was exploited. The 

applicability of the measure was shown with the help of examples adopted from the 

literature. An important criteria, the bandwidth of the closed-loop system, was analyzed 

for its effect on selected pairings.    

 Sendjaja and Kariwala (2011) designed a decentralized control system for 

selecting the control structure of nonlinear dynamic model of solid oxide fuel cell system 

(SOFC). The performance of designed controller is then compared with advanced control 

strategies. The design of decentralized control involves three steps (i) input-output 
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variable selection, (ii) input-output pairing selection, and (iii) controller tuning. For the 

problem of variable selection, a new method  had been proposed. The method was based 

on keeping all the controlled variables (CVs) at set point and choosing only those CVs 

which facilitates constraint satisfaction for all key variables. The pairing selection was 

done based on well established RGA approach. Finally for controller tuning, simple 

internal model control (SIMC) tuning method was used. They concluded that even under 

the presence of disturbances the proposed control structure closely meets the operational 

objectives.    

 Recently, a novel approach to control configuration selection and to calculate the 

control-loop interactions has been proposed (Sujatha and Panda, 2013), which is based on 

the  comparison  of  areas  of  the  undesirable  responses or the interactive loops. To 

demonstrate the implementation of this approach, various distillation columns have been 

considered by the authors.    

 

2.1.3 Uncertain Process Models 

In most of the studies on the analysis of RGA and its properties, the process model is 

frequently assumed. It is well known that the quality of the control achievable for a given 

control system is strongly depends on the model uncertainty (Skogestad and Morari, 

1985). However, in practice, the models of real systems always have some uncertainty 

associated with them. This uncertainty may be caused by the linearization of non-linear 

real process model, impulsion in physical parameters, and/or unavailablity of acurate 

process model at high frequencies (Skogestad and Postlethwaite., 2001). Thus, process 

models can never be perfect (Chen and Seborg, 2002). Still, the sensitivity of the RGA 
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analysis to model uncertainty has not been given due attention. A system is said to be 

sensitive if it becomes unstable for a small mismatch (uncertainty) in plant and model 

(Grosdidier et al., 1985). For plants with uncertain process models, an incorrect pairing 

decision may result if the RGA analysis is carried out based only on the nominal model 

of the process.   

 A decentralized multi-loop control system may have independent controller in 

each loop, and each controller may be tuned such that the individual loops give 

satisfactory performance and are stable. However, they may result in unstable closed-

loop performance due to loop interactions when both loops are closed together. For such 

systems (open-loop stable), Grosdidier et al. (1985) suggested techniques for analyzing 

closed-loop system (feedback controller with integral action) properties: integral 

stabilizability (IS), integral controllabililty (IC), failuare sensitivity, and robustness with 

respect to modeling errors. It is noteworthy that all  the results were developed with 

regard to the RGA.        

 Skogestad and Morari (1987b) carried out rigorous analysis of control system 

stability and performance for large RGA elements in the context of model uncertainty. 

The emphasis of the study was on correlating the size of  RGA elements to model 

uncertainty. Both independent relative element uncertainty and uncertainty on each 

manipulated input was considered. It was shown that the plants with large RGA elements 

are always ill-conditioned and easily become singular even for small relative errors in 

transfer function matrix elements. It was recommended that the inverse based controller 

for plants with large RGA elements should not be used. Similarly, Yu and Luyben (1987) 

showed that there exists a quantitative relation between the allowable perturbation in each 
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element of the steady-state gain matrix and its corresponding RGA matrix, beyond which 

the closed-loop system becomes unstable (loses integral controllability).     

 Chen et al. (1992) studied the effect of model uncertainties on open-loop system 

properties which ultimately affects the closed-loop system properties. The diagonal 

structured uncertainty was considered for analyzing robustness difficulties associated 

with closed-loop system both for scaled and unscaled plants. Several estimates for the 

worst case deviations were given in terms of scaled plant condition number and the RGA. 

The previous conjecture that the plant with large RGA elements and condition number 

are potentially difficult to control was reinforced. They concluded that the results 

obtained from the RGA and block relative gains under certain cases may be misleading or 

are overly optimistic. Later, Chen et al. (1994), extended the effect of model uncertainties 

on open-loop system properties. Considering the diagonal structured uncertainty in the 

plant input the deviations of the open loop transfer function from its nominal value were 

analyzed for robustness difficulties. For the given uncertainty, the worst case bounds of 

open-loop transfer function were given in terms of structured singular value, condition 

number, relative gain array and block relative gains. It was concluded that the plant with 

large relative gain, block relative gain and structured singular value results in large 

deviation in open loop transfer function w.r.t their nominal values.  

 Chen and Seborg (2002) presented lower and upper bounds on the RGA elements 

 for systems under simultaneous additive perturbations in all the elements of steady-state 

gain matrix. The analytical bounds are derived for 22  control problems and for general 

nn  control problems. For the given uncertainty the worst-case bounds of open-loop 

transfer function were given in terms of relative gain array. The worst-case bounds helps 
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in determining the lower and upper limit on the allowable uncertainty before the RGA 

element changes sign and system loses  integrity. 

 Kariwala et al. (2006) extended RGA to norm-bounded uncertain systems. They 

presented a method for calculating a tight bound on the worst-case relative gain and 

derived necessary and sufficient conditions for the sign change of the relative gain over 

the uncertainty set. A signal based approach for the representation of relative gain to 

uncertain systems was also proposed.  

 Agustriyanto and Zhang (2007) proposed an optimization based method for 

calculating the worst case lower and upper bounds of relative gain array (RGA) and  

relative  disturbance  gain  array  (RDGA)  for  uncertain process  models. The range of 

RGA and RDGA obtained provides information regarding sensitivity to gain 

uncertainties which is important from determining control structure and robustness 

analysis.   

 Haggblom (2008) presented a method for analyzing integral controllability (IC) 

and integrity of uncertain systems under model uncertainty for decentralized control 

system. Their method was beneficial particularly in significantly reducing the worst-case 

combinations of model uncertainty. By the use of the proposed method a tighter bound on 

the allowable uncertainty can be obtained. The more elaborative work on closed-loop 

system properties under uncertainty was presented by Firouzbahrami and Nobakhti 

(2011; 2012). First, a thorough review of work on the analysis of uncertain systems 

(Firouzbahrami and Nobakhti, 2011) was presented. It was then followed by the integrity 

analysis of closed-loop system based on the derived closed-loop system properties such 

as integral controllable (IC), integral controllable with integrity (ICI), and decentralized 
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integral controllable (DIC), using a model of both unstructured and structured 

independent uncertainties. In their subsequent study, Firouzbahrami and Nobakhti (2012) 

extended the integrity properties such as integral stabilizable (IS), integral controllable 

(IC), integral controllable with integrity (ICI) and decentralized integral controllable 

(DIC) to uncertain systems considering the norm bounded additive uncertainties. In tune 

with the previous work (Grosdidier et al., 1985) on integrity of uncertain systems, the 

necessary and sufficient conditions are derived for IS, IC and ICI, whereas only sufficient 

condition was provided for DIC. Though the conditions are derived considering 

unstructured uncertainties, it was found that the results can easily be extended to 

structured uncertainties, and may lead to the increased degree of conservatism. 

 

2.2 Other (Non-RGA based) Methods for Control Configuration Selection  

Relative gain array (RGA) (Bristol, 1966) is the first formal tool for the selection of 

control configuration. It is the most applied method for analyzing  interactions and is 

based on steady-state gain information of MIMO processes. It is independent of process 

model and its dynamics, scaling of inputs and outputs, disturbances and includes all 

possible pairing information in a single matrix. As a rule, the input-output pairing must 

corresponds to the positive relative gains that have values as close to unity as possible.  

 Skogestad and Morari (1987a) used singular value decomposition (SVD) as a 

useful tool to determine if a system is prone to control loop interactions resulting in 

sensitivity problems that arise from model mismatch in process gains. SVD considers 

directional changes in the disturbances. Though SVD has good geometric interpretation 

in terms of selection of measurement and pairing of variables, it depends on input–output 
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scaling. Moreover, with weak interactions and with larger dimensional systems, more 

criteria are to be considered for selection of pairs.   

 Mijores et al. (1986) suggested a criteria for measuring process interaction based 

on the steady-state gain matrix which was later extended to the dynamic systems (Mijores 

et al., 1986). It is based on the difficulty of inverting the process transfer function matrix 

at zero frequency or for any other frequency. This is done by defining a matrix, said to be 

as Jacobi iteration matrix, whose element is a normalized process transfer function 

element, i.e., each element of a row is divided by its corresponding diagonal element. The 

spectral radius of the Jacobi iteration matrix (i.e., the largest magnitude eigen value of 

Jacobi iteration matrix) serves as a convergence criteria (i.e., the spectral radius should be 

less than one) for an iterative method of solving a system of equation      sysusG  .  

The Jacobi eigen value criteria not only provides best pairing but also gives information 

on the stability of a multi-loop control system.  

 Conley and Salgado (2000) and Salgado and Conley (2004) suggested a 

completely different approach based on the state space representation of process, for the 

analysis of closed-loop interaction by considering observability and controllability 

Gramians in so called Participation Matrices (PM). Later, following a similar approach, 

Wittenmark and Salgado (2002) introduced the Hankel Interaction Index Array (HIIA). 

One key property of these methods is that the whole frequency range is taken into 

account in one single measure. Furthermore, these measures seem to give appropriate 

suggestions for controller structures selection. The use of the system H2 norm as a base 

for an interaction measure was proposed by Birk and Medvedev (2003) as an alternative 

to the HIIA. Recently, based on the notion of Gramians a new measure of process 
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interaction and control configuration selection  is proposed for MIMO stochastic systems 

(Shaker and Shaker, 2014). These interaction measures though seem to overcome most of 

the disadvantages of the RGA, they are computationally more demanding and depend on 

the input-output scaling unlike RGA. 

 The summary of all RGA based and non-RGA based methods is shown in Table 

2.1, listing interaction measures with reference, definition and important properties.  

 

2.3 Existing Gaps of Research 

In spite of wide acceptance of the RGA as a tool for control configuration selection and 

as a measure of closed-loop interaction, its applicability to processes with considerable 

dynamics is quite limited. The RGA analysis, if carried out using steady-state gain alone, 

may result in incorrect interaction measures and consequently leads to wrong loop pairing 

decisions.  

 To overcome this limitation of RGA and in generalizing its applicability to 

processes with dominant dynamics, several extensions (based on the very definition of 

RGA) as a measure of control configuration selection have later been proposed. In the 

absence of comparison of these various RGA based methods in terms of merits, 

limitations and applicability, a rigorous analysis of these methods is required for the 

purpose of choosing the appropriate one suitable for a given circumstance, preferably the 

one independent of controller design and tuning. Since, one of the properties of RGA is 

that it is independent of the process disturbances, i.e., it does not give any insight into the  
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Table 2.1. RGA based and Non-RGA based Interaction measures for MIMO processes. 

S. N. Interaction Measure 

(References) 
Definition Important properties 

RGA based Methods 

1. Relative Gain Array 

(RGA) 

(Bristol, 1966) 

The RGA is given as, 

                           T
GG


 00 ; 

where,  0G is the steady-state gain matrix.  

 Independent of process model, scaling 

and disturbances. 

 It fails to identify the existence of non-

diagonal elements. 

2. Relative Dynamic Array 

(RDA) 

(Witcher and McAvoy, 

1977) 

The RDA is given as,     
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 Defined analogous to RGA. 

 Independent of process model, scaling 

and disturbances. 

 Assumes perfect control of closed-

loops.  

3. Average Relative Gain 

(ARG) Matrix 

(Gagnepain and Seborg, 

1982)  

For process transfer function matrix,  
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The ARG Matrix is given as,  
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where,  

1  is the least time for which  tD 1
 exist, 

constant melargest ti1  , 
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
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 Defined based on open-loop step 

response.  

 Assumes perfect control of closed-

loops. 

 Time limits for which averaging was 

conducted is injudicious. 
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S. N. Interaction Measure 

(References) 
Definition Important properties 
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4. Relative Disturbance 

Gain (RDG) 

(Stanley et al., 1985) 

For a 22 system given by,  
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The RDG, 1  is given by,  

   

   21

21

1
over  control no   

control perfect    

21

21

ydu

ydu

uy

yy




  

 Defined similar to RGA. 

 Dimensionless. 

 Independent of scaling and controller 

design. 

 Requires steady-state information 

alone.  

5. Block Relative Gain 

(BRG) 

(Manousiouthakis et al., 

1986) 

The m-dimensional BRG (left and right) is defined 

as, 
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Here, 01 F indicates that the first m loops are open, 

and 12 F  means, the last n-m loops are closed and 

are under perfect control i.e. 02 y . 

 Requires enormous computions, 

particularly for an n dimensional 

system a total of (n!)
2
 BRGs needs to 

be computed.  

 Generalizes RGA to the block pairing 

of inputs and outputs. 

 Defined based on the assumption of 

perfect control.  

 Linked to manhy closed-loop system 

properties. 
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S. N. Interaction Measure 

(References) 
Definition Important properties 

6. Non-square Relative 

Gain (NRG) 

(Chang and Yu, 1990) 

The NRG for a non-square system is defined as, 

                         TN GG   

Where, G is the pseudo-inverse obtained from the 

steady-state closed loop relation, under least square 

perfect control, 
set

yGu  .  

 The sum of NRG elements along the 

longer side of G matrix equals unity. 

 The sum of the elements in each row of 

NRG falls between zero and unity. 

7. Relative Interaction 

Array (RIA) 

(Zhu, 1996) 

The RIA for the plant G is given as,  

                    
 

1
1

1





 T
GG

RIA  

 It is an equivalent interaction measure 

to RGA.  

 the pairing should correspond to RIA 

elements close to zero.  

8. Partial Relative Gain 

(PRG) Array 

(Haggblom, 1997b) 

The PRG for the subsystem  sGm  is given by, 

                  T

mmm
P

m GGGG


  

Where, the subsystem  sGm  is the part of the system 

 sG , and mG  denotes the transfer function matrix of 

the subsystem  sGm  when remaining system is 

under integral feedback control. 

 The PRG is defined analogous to RGA. 

 It provides necessary condition for 

integrity and integral controllability. 

 It may also be used as a tool for 

analyzing systems requiring block 

decentralized control.   

9. Effective Relative Gain 

Array (ERGA) 

(Xiong et al., 2005) 

The ERGA is given as,  

                                    TEE   

Where,    0GE  

 Defined analogous to the RGA.  

 Gives equal weight to steady-state gain 

and bandwidth of the plant.  

10. Effective Relative 

Energy Array (EREA) 

(Monshizadeh-Naini et 

al., 2009) 

The EREA is given by,  

                               T
**EREA


 EE  

Where,      00* GGE  

 Defined analogous to the RGA.  

 Gives more weight to the steady-state 

gain than the bandwidth information. 

11. Normalized Relative 

Gain Array (NRGA) 

(He et al., 2009) 

The NRGA is defined as,  

                          
T

NN KK   

 Integrated error (IE) criterion was used 

for the analysis of process dynamic 

properties.  



44 
 

S. N. Interaction Measure 

(References) 
Definition Important properties 

Where, 
 

ijar

ij

ijN

jg
k

,

,

0


 , and 

ijar,  is the process 

residence time.  

 Defined analogous to RGA.  

 All the properties of RGA are directly 

extendible to NRGA.  

12. Frequency-dependent 

Dynamic Relative Gain 

Array (DRGA) 

(Seider et al., 2009) 

The frequency dependent DRGA is given by,  

                       jsignDRGA ijijij  0  

 The sign of RGA element was 

considered explicitly because it carries 

important information about system 

stability. 

      

 

Non-RGA based Methods 

 

1. Singular Value 

Decomposition 

(Skogestad and Morari, 

1987a) 

 

The SVD is defined as,                            

                           
TVUK  ; 

Where, U and V are orthonormal unitary matrices      

( IUU T  , IVV T  ), and Σ is diagonal matrix of 

“singular  values”. 

 Gives information about the directional 

sensitivity of the process.  

 Depends on the input-output scaling. 

2. Jacobi Eigen value 

criteria 

(Mijores et al., 1986) 

Spectral radius of  jA ,    jA = largest 

magnitude eigen value of  jA . 

Jacobi iteration matrix:  
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Where,       jgjgja iiijij  . 

 Pairing should corresponds to the 

smallest spectral radius. 

    jA <1ensures stability.    

 Suggests unique best pairing.  
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S. N. Interaction Measure 

(References) 
Definition Important properties 

3. Hankel Interaction 

Index Array (HIIA) 

(Wittenmark and 

Salgado, 2002) 

The HIIA is given by,                          

                         ;
||||

||||

Hklkl

Hij

ijH
G

G


  

Where, HijG |||| represents the Hankel norm of 

process transfer function element ijG . 

 The pairing corresponds to the largest 

element in each row of HIIA. 

 Each row of HIIA sums to unity.  

 It is difficult to decide whether an entry 

in the HIIA matrix is large enough to 

be relevant. 

4. Participation Matrix 

(PM)  

(Conley and Salgado, 

2000; Salgado and 

Conley, 2004) 

The PM is defined as,  

                     
 
 

;
trace

trace

PQ

QP ij

ij   

Where, Pj and Qi are the controllability Gramian and 

observability Gramian, respectively;  ijQPtrace  is 

the sum of the squared HSVs of the subsystem with 

input uj and output yi. Note that  PQtrace equals the 

sum of all  ijQPtrace . 

 Sensitive to time delays.   

 The input-output pairing corresponds to 

the unit sum of ij . 

5. 
2  (H2-norm) 

(Birk and Medvedev, 

2003) 

The 2  is defined as,   

                        ;
||||

||||

2

2

2

klkl

ij

ij
G

G


  

Where, 2|||| ijG indicates the H2-norm of ijG . 

 Independent of the selected state space 

realization. 

 The structure of the plant is preserved.  

 Independent of frequency scaling. 

 Unaffected by time delays.  
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effect of such disturbances on control configuration selection problem. However, it is 

clearly shown in the literature that the nature of disturbances has a profound effect on the 

quality of control and how the RGA should be interpreted. The literature on addressing 

this issue is scarce and hence more efforts are required in this direction. 

 Although the effect of model uncertainty on RGA analysis has received 

considerable attention, its extension to the dynamic systems is still in the nascent stage. 

The majority of the work on model uncertainty is limited to the uncertainty in steady-

state gains only, and no significant effort has been made towards uncertainty 

consideration in measurement of process time constant and time delays.  

 Furthermore, other unresolved issues in selection of control configuration based 

on RGA analysis are: (i) From steady-state analysis, only necessary (not sufficient) 

stability conditions are available for closed-loop stability. Not enough work is reported 

towards the development of sufficient stability conditions, (ii) The development of 

effective methods, especially for decentralized control of MIMO systems containing 

integrators, is still in the early stages, (iii) The extension of the concept of  dynamic RGA 

and model uncertainty for non-square systems has not yet been addressed.  

 

2.4 Scope of Work 

Control configuration selection problem for decentralized control of multi-loop plant 

system is addressed. For the selection of best control configuration and analysis of the 

extent of interaction present, the widely accepted and probably the most reported tool the 

"RGA" has been adopted. The focus of the work is on the development of this well 

known tool, and to extend its application by overcoming its limitations.  
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 Various extensions of the RGA, reported in the literature to dynamic systems 

have been compared and critically analyzed. In order to overcome the shortcomings of 

the existing reported measures of process interaction, a new measure, namely, "relative 

response array (RRA)" is proposed in this study. The properties of the RRA have also 

been developed. Further, the proposed RRA approach is successfully applied to two 

benchmark problems (Grosdidier and Morari, 1986; McAvoy, 1983) and two industrial 

problems (Adusumilli et al., 1998; Grosdidier and Morari, 1986). 

 The aim of this work is to gain insights into how process dynamics can affect 

control configuration decision based on RGA analysis in the face of structured model 

uncertainty. Parametric uncertainty in gain and residence time (includes both time 

constant and dead time) of the process has been considered. Analytical expressions for 

worst-case bounds of uncertainty in steady-state and dynamic RGA are derived for TITO 

plant models. Various benchmark problems and a few real industrial problems are 

considered to demonstrate the results obtained using proposed approach for uncertainty 

analysis. The obtained bounds of uncertainty in RGA elements provide valuable 

information pertaining to the necessity of robustness and accuracy in the model of 

decentralized multivariable systems. 

 Throughout the work it has been assumed that the transfer function based model 

of the plant under study is available and that the relevant input and output for the model 

are also available. The work here is focused on suitable pairing of these inputs and 

outputs, which ensure robust performance.   
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CHAPTER - 3 

RELATIVE GAIN ARRAY: THEORY AND 

METHODS 

 

In this chapter, various theoretical concepts and methods of control configuration 

selection are discussed. The chapter is divided into three major sections. Section 3.1 

discusses the steady-state RGA based approach for control configuration selection, 

algebraic properties of RGA, its pairing rules and stability considerations. Section 3.2 

gives the details on the RGA analysis under dynamic framework, and various methods 

utilized in this study. Also, a new measure of process interaction under dynamic 

framework is proposed. Section 3.3 focuses on the sensitivity analysis of RGA elements 

to parametric uncertainty. The research in the area is limited to the uncertainty in process 

gain only. A new approach in dynamic framework for control configuration selection that 

is being proposed in this study considering uncertainty in process gains, time constants 

and time-delays is also discussed. 

  

3.1 Steady-State Approach 

The Relative Gain Array (RGA) (Bristol, 1966) is the first systematic method proposed 

for the analysis of closed-loop interaction and input-output pairing in linear multivariable 

plants. It was originally defined (Bristol, 1966) based on the steady-state gain information 

of the plant, which can easily be obtained from the open-loop step test response of the 

plant. This empirical method is the most widely used control configuration selection 

strategy in the practical designs of process control systems.  
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 In order to express RGA mathematically, a linear, multivariable square plant as 

given by Eq. (3.1) is considered, 

 

(3.1) 

           

 In general, the output  sy  is related to input  su  by the expression,  

           susGsy                                                            (3.2) 

 Each term in the matrix  sG , i.e.,  sgij   nji  ....., ,2 ,1,   represents open-loop 

gain from the input ju  to the output iy  with all other inputs except ju  being constant. 

Rewriting Eq. (3.2) as, 

     sysGsu 1                                                        (3.3) 

 Eq. (3.3) interprets that the gain from ju  to iy  is   jisG 11 
 when all output 

variables except iy  are under tight control and kept at their nominal values (no off-set). 

The relative gain is the ratio of these gains, i.e., "open-loop" to the "closed-loop" gains. 

The matrix combining all the relative gains is termed as the RGA matrix, and can be 

computed as given by Eq. (3.4),  

      TsGsGs 1                                                (3.4)    

 where   denotes element-by-element product (known as Hadamard or Schur 

product). The steady-state form of Eq. (3.4) can be obtained by replacing the transfer 

function matrix  sG with the corresponding steady-state gain matrix K  or  0G . The 
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inverse  sG 1
 may be non-proper and non-casual, and the assumption of perfect control 

may not be meaningful except at steady state (Skogestad and Hovd, 1990). 

  

3.1.1 Important Algebraic Properties of RGA  

The RGA possesses several useful algebraic properties. Some of the most important of 

them are listed below (Bristol, 1966; Kinnaert, 1995): 

Property 1:  Any permutations in the rows and columns of the plant transfer function  

  matrix G  results in the same permutations in RGA matrix.  

Property 2:  It is independent of input-output scaling (, i.e., independent of the units of  

  inputs and outputs). Mathematically,  

        21GDDG      (3.5) 

  where D1 and D2 are diagonal scaling matrices of the same dimension as  

  G . 

Property 3:  The division of  sG  by    sG 11 
 [Eq. (3.4)] normalizes the RGA in  

  such a way that the sum of each row (and each column) of RGA is 1, i.e.,  

  for a nn  RGA: 

 1
11

 


n

j

ij

n

i

ij     (3.6) 

Property 4:  If the transfer function matrix, G , is diagonal or lower or upper triangular  

  (permuted to have non-zero diagonal elements), then the RGA will be  

  identity matrix.  
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Property 5:  The RGA is sensitive to relative element-by-element uncertainty in the  

  process transfer function matrix, G . The mathematical relation between  

  the two is given by Eq. (3.7):  

     
ij

ij

ij

ij

ij

g

dgd





 1     (3.7). 

 

3.1.2 RGA Pairing Rules & Recommendations  

The following rules are recommended for input-output variable pairing (Kinnaert, 1995; 

Skogestad and Postlethwaite., 2001):   

1. 1ij  indicates that the open and closed-loop gain between output iy  and input 

ju  is identical, i.e., there is no interaction of the (i-j)
th

 loop with other control 

loops.  Thus, the pairing of output iy  with input ju  should be a preferred choice. 

2. 0ij  indicates that the manipulated input ju , does not affect the control 

 output iy . Thus, (i-j)
th

 pairing should not be a preferred choice.  

3. 5.0ij  indicates high degree of interaction. The other control loops have 

 the same effect on the output iy , as the manipulated input ju . 

4. 15.0  ij  indicates that there is an interaction between the control loops.  

 However, the open loop gain will dominate and it is preferable to pair input 

 ju  with output iy , as it would minimize the interactions; 

5. 1ij  indicates that the interaction from other loops will reduce the gain of

 the (i-j)
th

 control loop. As ij  increases, the degree of interaction becomes 

 more severe. 
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6. 0ij  indicates conflicting gains, i.e., the open and closed-loop gains will 

 have different signs. Thus, the opening and closing of other loops will have 

 severe undesirable effect on the (i-j)
th

 control  loop. 

  The concise rule for input-output variable pairing as stated by Bristol (1966) is as 

follows: 

The measure corresponding to the paired variables should be 

positive and as close to one as possible. Numbers negative or 

much larger than one are to be avoided and large negative 

numbers are particularly undesirable.    

 In conclusion, the variable pairing should be corresponding to the positive RGA 

elements with values greater than 0.5 and close to 1. 

 

3.1.3 RGA and Stability 

The RGA is one of the most popular tool for the selection of best control configuration. 

However, the selected configuration must be analyzed for closed-loop integrity. The 

integrity of a closed-loop system is defined (Macfarlane, 1972) as "The ability of a 

closed-loop system to remain stable under sensor/actuator failure". The Niederlinski 

theorem (Niederlinski, 1971) often used as a measure of closed-loop integrity and is used 

as complementary tool to RGA. It was originally proposed to eliminate the worst pairings 

that results in structurally monotonic unstable systems. The Niederlinski theorem is 

described below:  

 A linear closed-loop multivariable or a multi-loop control system with integrating 

controllers (I, PI, PID) are structurally monotonic unstable (i.e., unstable for all controller  
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 constants (if and only if) 

  

 
0

0

0det

1






n

i

iig

G
                                                     (3.8) 

 The theorem stated as per Eq. (3.8) has been derived on the basis of two 

assumptions: (i) Any closed-loop in a set of multi-loop control system with feedback 

controllers can be tuned to remain stable even if other n-1 feedback loops are opened, (ii) 

All the elements  sg ij  of the plant transfer function  matrix  sG  are stable rational 

functions. The condition expressed by Eq. (3.8) is necessary and sufficient for plant 

systems of order 22  and smaller, and is only sufficient otherwise (Grosdidier et al., 

1985). The theorem can be generalized in terms of relative gain array for nn  systems 

and followed as pairing rule (Gagnepain and Seborg, 1982): "The pairing corresponding 

to the negative RGA elements produces a low degree of integrity and hence, should be 

avoided". However, the negative RGA elements are sufficient but not necessary for 

instability (Grosdidier et al., 1985).   

 

3.2 Existing Dynamic Approaches 

The RGA has long been used as a measure of closed-loop interaction in multi-loop SISO 

systems. Despite its widespread popularity, its usefulness as a measure of variable pairing 

for systems with significant process dynamics as RGA fails to provide an accurate 

configuration. In has also been observed that in extreme situations, the pairing decision 

based on steady state RGA may lead to underperforming control configuration. In such 

situations, it is necessary to consider the effect of process dynamics so as to avoid 

incorrect loop pairings. McAvoy (1983) found that considering the process dynamics at 
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the design stage leads to loop identification with adverse interaction, and the information 

obtained can be utilized to improve control decisions. Thus, to incorporate the effect of 

process dynamics on variable pairing selection, various extensions of the steady-state 

RGA have been proposed. These methods can be categories as: (i) that involves detailed 

controller design and tuning; and (ii) that is independent of controller design and tuning. 

The methods independent of controller tuning obviously have an edge over controller 

dependent methods as they are simple to calculate, less prone to error and are less 

expensive in terms of computational cost. The most widely used methods under second 

category as mentioned above are discussed in the following sub-sections 3.2.1 through 

3.2.5 (i.e., RDA, ERGA, EREA, Frequency dependent DRGA, RNGA).     

 

3.2.1 Relative Dynamic Array (RDA) 

The relative dynamic array (RDA) as proposed by Witcher and McAvoy (1977) was 

based on the determination of "dynamic potential" ij , which is the integral of open loop 

response  tyi   of controlled variables to a step change of unit magnitude in manipulated 

variable ju  at time 0t , as expressed by Eq. (3.9): 

    ttyiij d 
0




                                                     (3.9) 

 For a nn  square matrix, nji  ......2 ,1,  , Witcher and McAvoy (1977) suggested 

to use the time period 'θ ' to be 20% to 100% of the dominant time constant of the 

process. The dynamic potential ij  can then be used to obtain the element  ij  of the 

relative dynamic array as given by Eq. (3.10): 
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        T

ijijij


                                                 (3.10) 

 Consequently, the best pairing corresponds to the largest positive element in the 

RDA. 

 

3.2.2 Effective Relative Gain Array (ERGA) 

In order to consider the advantages associated with RGA, and to overcome its limitations, 

the concept of effective relative gain array (ERGA) has been introduced (Xiong et al., 

2005). The assumption of "perfect control" underlying in the definition of RGA limits its 

applicability to multi-loop systems at low frequency range only. The ERGA method thus 

considers the finite bandwidth control, i.e., the region around the critical frequency of the 

transfer function. The bandwidth of a transfer function can loosely be defined as the 

frequency range in which the control is effective (Skogestad and Postlethwaite., 2001). 

The ERGA method utilizes both the steady-state gain information and bandwidth 

information of the open-loop transfer function elements to define a dynamic loop pairing 

criterion for decentralized control of multivariable process. It provides a comprehensive 

description of dynamic interaction among individual loops without requiring the 

specification of the controller type and with much less computation. The major advantages 

associated with the ERGA method are: simple calculation, independent of controller 

design and tuning, and easy to implement and understand.   

 Considering a nn  multivariable plant as given by Eq. (3.1), with js  . Let,   

          njijggjg ijijij ,...,2,1,     0 0                              (3.11) 
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 where,  0ijg and  jgij

0 are respectively the steady state gain and the normalized 

transfer function of  ijg , i.e.,   100 ijg  (Xiong et al., 2005). A new gain is defined 

based on the steady state gain and the dynamic information of plant, and will be termed as 

the effective gain, ije , as given by Eq. (3.11): 

   
ijB

djgge ijijij

,

0

00


                                           (3.12) 

 where ijB,  for nji ..., ,2 ,1 ,   are the bandwidths of the transfer function  jg ij

0 . 

The (closed-loop) bandwidth ijB,  is the frequency, where    0707.0 ijij gg   

(Skogestad and Postlethwaite., 2001). Based on approximating the frequency response of 

 ijg  for bandwidth up to ijB,  by rectangular area (Fig 3.1), the Eq. (3.12) yields the 

effective gain ije  as given by Eq. (3.13): 

  njige ijBijij  ..., ,2 ,1,           0 .                             (3.13) 

 Therefore, the effective gain matrix is defined as given by Eq. (3.14): 
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            (3.14) 

 or in a vector form as given by Eq. (3.15): 

   0GE                                                                 (3.15) 

where,  0G  is the steady-state gain matrix, operator   is the Schur product or 
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 Figure 3.1. Response curve and effective energy of  ijg . [Source: Xiong, Q., 

Cai, W. J., and He, M. J., 2005. A Practical Loop Pairing Criterion for 

Multivariable Processes. Journal of Process Control, 15 (7), 741-747.] 
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element-by-element multiplication (Hadamard or Schur product) and   is the bandwidth 

matrix. In the ideal case, when the phase margin equals 90
o
, the. For most practical cases, 

the phase margin is less than 90
o
, thus ijCijB ,,   , and the performance improvement is 

possible under effective control. Beyond a phase margin of 90
o
, no further performance 

improvement can be achieved (Skogestad and Postlethwaite., 2001).   

 Let ijê  be the effective gain between i
th

 output variable and j
th

 input variable with 

all other input-output loops closed. Then, the effective relative gain is defined as given by 

Eq. (3.16): 

 

ij

ij

ij
e

e

ˆ
                                                           (3.16)

                                                                   
 

 Similarly, calculating the effective relative gains for all input/output combinations 

and arranging them in an array result in the matrix that has the same form as the RGA and 

will be called the effective relative gain array (ERGA), as given by Eq. (3.17):  
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                                         (3.17) 

 Alternately, the ERGA can also be calculated from the effective gain matrix as 

given by Eq. (3.15). Then Eq. (3.17) can be expressed as Eq. (3.18): 

TEE                                                     (3.18) 
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 Since, by definition the ERGA has the same form as the RGA (i.e., both are 

defined on the basis of relative gains), all the properties defined for the RGA are directly 

extendible to the ERGA.  

 

3.2.3 Effective Relative Energy Array (EREA)  

The energy of the system impulse response (H2 norm) have been used to define an 

interaction measure, the effective relative energy array (Monshizadeh-Naini et al., 2009) 

which overcomes the limitation associated with the ERGA (Xiong et al., 2005). It was 

found that in the ERGA method the tradeoff between the steady-state gain and bandwidth 

of the plant has not been considered appropriately and thus it fails to suggest correct 

pairing decision.  

 For the given transfer function the 
2H  norm is described as given by Eq. (3.19): 

                   




 


d
2

1 22

2
jhsh                                           (3.19) 

 Approximating the integrator in Eq. (3.19) with a rectangular area, we obtain Eq. 

(3.20) 

     chsh 



22

2
0

1
                                           (3.20) 

 
c  in Eq. (3.20) denotes the critical frequency or the bandwidth of the system. Eq. 

(3.20) reflects the effective energy of a subsystem and for the ij
th

 transfer function element 

as given by Eq. (3.21):  

  ijcijij ge ,

2
0                                                 (3.21) 
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 The effective energy from Eq. (3.21) is a function of square of the steady-state 

gain and bandwidth of the ij
th

 transfer function element. However, squaring the  0g  

results in the loss of essential information and may lead to the wrong input-output pairing 

(Monshizadeh-Naini et al., 2009). Therefore, the definition of effective energy needs to be 

modified as given by Eq. (3.22): 

    
 
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  ijcij

ij

ij

ijcijijij g
g

g
ggsigne ,
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2* 0
0

0
00                 (3.22) 

 on simplifying Eq. (3.19) to Eq. (3.20):  

    ijcijijij gge ,

* 00                                    (3.23) 

 The above definition carries both the steady-state gain and response speed 

information. Based on the definition of effective energy, the effective energy matrix is 

defined as given by Eq. (3.24): 

     00* GGE                                     (3.24) 

where  0G  is expressed by Eq. (3.25): 
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  0G  and   have their usual meaning as defined in Eq. (3.15). Now, the effective 

relative energy array can be defined analogous to that of the RGA in Eq. (3.4), as given by 

Eq. (3.26):  
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  T
**EREA


 EE                                        (3.26) 

 Since the EREA is also defined in the same way as the RGA and the ERGA, it 

follows similar properties and pairing rules as that of the RGA and the ERGA.  

 

3.2.4 Frequency Dependent Relative Gain Array (FDRGA) 

A frequency dependent measure of loop-interaction for dynamic processes is presented by 

Seider et al. (2009). It gives the relative gain array as a function of frequency. For a 

multivariable plant given by Eq. (3.1), the RGA matrix is defined as in Eq. (3.4). Each 

element of this RGA matrix,  sij  is given by Eq. (3.27):  
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      
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sGsg
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ij ,.....2 ,1,     
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




                     (3.27) 

 where,  sGij
 is the matrix  sG  obtained on eliminating i

th
 row and j

th
 column. 

The frequency dependent form of the RGA element given by Eq. (3.28) can be obtained 

by substituting js   in Eq. (3.27). Thus, each element of frequency dependent DRGA 

can be defined as given by Eq. (3.28):     

       jsignDRGA ijijij  0                                   (3.28) 

 where,   is the absolute value of  . The sign associated with RGA element 

carries important information concerning the stability of the system, which has been 

explicitly considered in the definition.     
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3.2.5 Relative Normalized Gain Array (RNGA) 

The effective control of decentralized control system depends strongly on the input-output 

pairing decision. The variables paired are often corresponds to the dominant transfer 

functions of the model. He et al. (2009) developed a new measure of process interaction 

the relative normalized gain array (RNGA), considering both the steady-state and transient 

information of the process. For the analysis of process dynamic properties, the integrated 

error (IE) criterion have been used.  

 Let the ij
th

 element of the process transfer function matrix  sG  be expressed as 

given by Eq. (3.29):  

     sgjgsg
ijijij  0                                            (3.29) 

 where,  0jgij  denotes the steady-state gain and  sg
ij

 is the normalized gain 

such that the   10 jg
ij

. Assume, for a unit step disturbance in input ju  the output i
y  

corresponding to the normalized transfer function element  sg
ij

 goes to unity from its 

resting position at zero. From Figure 3.2 [response curve generated using simulink for a 

simple first order process (Figure 3.2a) and an industrial-scale polymerization reactor 

(Chien et al., 1999) (Figure 3.2b)], the shaded area ijA  can be given by Eq. (3.30):  

    dttyyA
iiij 




0

    (3.30) 

 The ijA  is termed as the average residence time, ijar,  of  sg
ij

, in essence, is an 

accumulation of the difference between the expected and real outputs of the process. The 

larger and smaller values of ijar,  are indicative of the slower and faster process dynamics 

respectively.  
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(a) 

 

(b) 

 Figure 3.2. Typical response of non-oscillatory (a) and oscillatory (b) processes 

 with shaded area representing ijA . 
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 Since, the  input-output pairing decision depends on both the steady-state gain and 

process dynamics information ( ijar, ), to assimilate both these parameter's information, the 

normalized gain (NG) ijNk ,  is defined as given by Eq. (3.31):  

 

ijar

ij

ijN

jg
k

,

,

0


                                                (3.31) 

 For obvious reason of effective control and faster response speed, the pairing 

corresponding to the large normalized gain should be preferred. Based on Eq. (3.31), the 

normalized gain matrix would be  
nnijNN kK


 , . In tune with the definition of relative 

gain (Bristol, 1966), the relative normalized gain is defined as given by Eq. (3.32): 

closed loopsother  allgain with  normalized

open loopsother  allgain with  normalized

ˆ
,

,


ijN

ijN

ij
k

k
            (3.32) 

 Based on the definition of relative normalized gain, the relative normalized gain 

array (RNGA) for all possible combinations of input and output of the plant model can be 

expressed as given by Eq. (3.33): 

T

NN KK                                               (3.33) 

 Since, the RNGA is also defined analogous to the definition of RGA (Bristol, 

1966), all the properties applicable for RGA are directly extendible to the RNGA. The 

pairing of the variable based on RNGA analysis should be corresponding to the positive 

RNGA elements with values close to unity. The pairing corresponding to the large 

RNGA elements should be avoided. 

 Due to various limitations associated with the existing approaches as discussed   
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above, a new measure of dynamic interaction, the relative response array (RRA) is 

proposed in this study which is discussed in detail in section 3.3.  

 

3.3 New Proposed Dynamic Approach: Relative Response Array (RRA)  

A new measure of process interaction "relative response array" (RRA) is introduced in 

this study. The proposed measure is defined based on the approaches presented in 

Witcher and McAvoy (1977), Gagnepain and Seborg (1982), and Meeuse and Huesman 

(2002). Both Witcher and McAvoy's (1977) and Gagnepain and Seborg's (1982) 

approach was based only on the open-loop response of the plant model and assumes 

perfect control of the closed-loop which is impossible to attain for any real process. 

Meeuse and Huesman's (2002) approach being graphical in nature has limited 

applicability. Further, for finding the pairing in given time range of interest, the dynamic 

RGA needs to be calculated at every time instant which is quite cumbersome. In addition, 

normally as per the definition of Laplace inverse, the responses are calculated from 

zeroth time instant to infinite time period which is effectively a very long time duration 

and involves higher computational costs. This may not be required from the practical 

point of view, since the pairing decision is based not only on the stable response but also 

on the fast response. Thus, we are combining these approaches with a new defined time 

period of interest of not more than a combined time including the largest dead time and 

dominant time constant. The details of this proposed new measure is discussed in the 

following sections:  

 RRA is defined as a ratio of integral responses, i.e., the integration of open-loop 

step response to that of the integration of closed-loop step response based on IMC 
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controller. It is assumed that the transfer function model of dynamic process is available. 

Considering a multivariable square plant as given by Eq. (3.34): 
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 where,  TnyyyY  . . .  21  and  nuuuU  . . .  21  are vectors of outputs and inputs 

respectively, for a plant model     sgsG ij . The output response is calculated by 

taking the inverse Laplace transform of the corresponding plant element. 

 

 3.3.1 Integral Open-loop Response 

The open-loop response of the controlled output 
iy  can be obtained by keeping all other 

manipulated inputs constant (i.e., under manual control) except ju  which is under step 

change. Since there will be no response during the time interval [0, ij ], the lower limit of 

time interval should be the corresponding dead time ( ij ) of the element. The decision on 

control loop pairing can be taken only after the response is achieved for the element with 

dominant time constant ( D ) of the process. At the most, it may be possible that the 

largest dead time (
max ) of the process belongs to the element having dominant time 

constant. In order to consider the extreme case, the upper limit of the time interval should 

be the sum of dominant time constant and the largest dead time of the process. The output  

response is thus calculated in time interval   max,  Dij . Thus, the integral response  
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ij  for open loop unit step change in input 
j

u is given by Eq. (3.35):  

   



max

,






D

ij

dttyt olijij                                               (3.35) 

 where,    








 

s
sgty ijolij

1
.1

, L  and  sgij is the ij
th

 element of plant  sG . It is 

recommended to observe the responses for 20% to 100% of the time period,  max D
, 

over which the integration is being performed (Witcher and McAvoy, 1977). The idea is 

to observe all the responses under the limitations of process dead times and time 

constants.  

 

3.3.2 Integral Closed-loop Response 

The closed loop response of a given controlled output can be obtained by keeping all 

other output variables at their set point (i.e., under automatic control). Thus, the  integral 

response  tij

~

  of a closed loop system for a unit step change in input ju  is given by Eq. 

(3.36): 

    
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
max

,

~





D

ij
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 The controller ' Q ' is designed based on IMC principle (Morari and Zafiriou, 

1989). The IMC control structure for a 22  plant model is shown in Figure 3.3. 

Typically, an IMC controller design consists of following three steps (Seborg et al., 

2010):  

i.) The plant model G
~

is to be factorized into two parts as given by Eq. (3.38): 

     sGsGsG 
~~~

                                               (3.38) 

       where G
~

 contains the invertible part of the plant; G
~

contains non-invertible  

       part (R.H.P zeros, Dead times etc.) such that the G
~

 has a stable and      

       realizable inverse  1~

G . 

ii.) In the presence of a model/plant mismatch, a filter as represented by Eq. 

(3.39) is introduced into the IMC structure in order to ensure stability:  

 
 r

s
sF

1

1





                                                  (3.39) 

       and r is chosen to make the controller proper (or semi proper). Filter tuning         

       parameter   is a direct expression of the trade-off between robustness and  

       performance. The smaller value of   results in faster response whereas large 

        indicates more robust closed loop system. It is recommended to use  to  

       be half of the process time constant. 

.


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 Figure 3.3. Block diagram of IMC control structure for 22  plant model.



70 

  (iii) Finally, invert the invertible part of the plant model and cascade it  

         with a filter that makes the controller proper as given by Eq. (3.40):  

     sFsGsQ 1~

                                            (3.40) 

 The Laplace inverse of open and closed loop systems with dead time result in the 

Heaviside step function [  th ]. For open loop system, the value of   in Heaviside 

step function is same as the dead time of the element whereas for the closed loop system, 

it may be much higher because of the combination of various dead times. 

The assumption of 'perfect control' underlying in the definition RGA has been 

relaxed here with a practically realizable controller, i.e., of internal model control (IMC).   

 Based on the above expressions a new interaction measure Relative Response 

Array (RRA) denoted by, ij is given by Eq. (3.41): 
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olij

ij
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ij                                          (3.41) 

 By defining RRA in the form of Eq. (3.41), one of the property of RGA (Property 

3) is lost which was based on the assumption of perfect control. In our approach we have 

considered practically realizable controller, thus losing this general property does not 

affects the pairing decision. 

 The RRA is found to have the following properties: 

i.) the preferred variable pairings is associated with positive RRA elements closest to 

'1';  
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ii.) pairing the variables with negative RRA elements and much greater than 1 should 

be avoided; 

iii.) the RRA asymptotically approaches steady-state RGA when the responses are 

averaged for infinite time period.  

 

3.3.3 Various variants of RRA: 

The RRA defined in Eq. (3.41) consists of open-loop and closed loop responses of the 

process elements. Further, the closed-loop response is calculated based on the assumption 

of IMC controller. The design of IMC controller is required in order to relax the 

assumption of "perfect control", since it is impossible to achieve perfect control in real 

process plants. However, with the assumption of perfect control a good approximation of 

the actual closed-loop response could be achieved.  

 The RRA obtained using closed-loop response under perfect control will be 

independent of controller (IMC) design and is termed as controller-independent relative 

response array (CI-RRA). For the closed-loop response based on IMC controller design 

the corresponding RRA will be called controller-dependent relative response array (CD-

RRA). In certain cases, the change in input-output pairing occurs during the time range of 

interest. In such cases, it is important to analyze the RRA value at different points of 

time, i.e., the RRA is required to be a function of time. For this purpose, a time varying 

RRA is defined for both controller-dependent and controller-independent systems and the 

corresponding RRA will be termed as "controller-dependent time-varying relative 

response array (CD-TV-RRA)" and "controller-independent time-varying relative 

response array (CI-TV-RRA)" respectively. However, a time-varying RRA matrix may 
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pose difficulty in interpretation. Since both the pairing decision and the extent of 

interaction will vary with time. Thus, for general purposes a time-average relative 

response array for both controller-dependent and controller-independent systems are 

defined, and are termed as "controller-dependent time-average relatieve response array 

(CD-TA-RRA)" and "controller-independent time-average relative response array (CI-

TA-RRA)" respectively. 

 In order to extend the applicability of the RRA, the newly proposed four different 

variants of the RRA are defined mathematically in Section 3.3.3.1 through Section 

3.3.3.4. 

 

3.3.3.1 Controller-independent time-average RRA (CI-TA-RRA)  

The CI-TA-RRA is a controller independent measure of closed-loop interaction and is 

based on the concept of open-loop step response discussed in Section 3.3.1. For defining 

CI-TA-RRA, we first need to define the time-average open-loop response based on Eq.  

(3.35) as given by Eq. (3.42): 

 
 






max

,

max

,

1






D

ij

dtty olij

ijD

olij                                 (3.42) 

 Since the controller-independent approach assumes "perfect control" of closed 

loops, Eq. (3.4) of RGA is directly extendible to define CI-TA-RRA as given by Eq. 

(3.43): 

    T

olijolijij


 ,,      (3.43) 
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 where, ij  is the ij
th

 element of the matrix CI-TA-RRA. The CI-TA-RRA is 

defined analogously to the RGA, therefore, all the properties and pairing rules of RGA 

are directly applicable to CI-TA-RRA. 

 

3.3.3.2 Controller-independent time-varying RRA (CI-TV-RRA)  

The CI-TV-RRA has the same form as Eqs. (3.42) and (3.43), except that the open-loop 

response is not averaged, rather generated as a function of time. Therefore, the controller-

independent time-varying open-loop response is as given by Eq. (3.44):  

   



max

,,






D

ij

dttyt olijolij     (3.44) 

 and the corresponding ij
th

 element of the CI-TV-RRA can be expressed 

mathematically as in Eq.  (3.43). The time-varying RRA considers the response in 

various time fragments such as 20%, 30% and so on till 100% of  . max D   

 

3.3.3.3 Controller-dependent time-average RRA (CD-TA-RRA) 

The assumption of "perfect control" underlying in the definition of controller-

independent approaches has been relaxed here and is substituted with a practically 

realizable IMC controller. The use of IMC controller has advantage of achieving best 

possible, faster closed-loop response. The time-average open-loop response for the CD-

TA-RRA is same as that in Eq. (3.42). Since the open-loop response are always 

independent of any controller. The effect of controller-dependence appears in the 

calculations of closed-loop response. Therefore, the controller-dependent time-average 

closed-loop response based on Eq. (3.36), is given by Eq. (3.45):  
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 
 




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,
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~ 1






D

ij

dtty clij

ijD

ij                                (3.45) 

 where,  ty clij ,  has usual meaning as is Eq. (3.37). Based on these definitions of 

time-average open and closed-loop responses, the CD-TA-RRA can be defined based on 

Eq. (3.41) as given by Eq. (3.46):  

ij

ij

ij ~response loop-closed average-time

response loop-open average-time




                     (3.46) 

 

3.3.3.4 Controller-dependent time-varying RRA (CD-TV-RRA) 

The RRA defined in Eq. (3.41), is nothing but the CD-TV-RRA. Thus, the Eq. (3.41) is 

directly applicable as CD-TV-RRA. 

 

3.4 Uncertainty Consideration  

Although for years, in most studies on the analysis of RGA and its properties, the 

availability of a process model is frequently assumed, the sensitivity of the RGA analysis 

to model uncertainty is in nascent stage. However, in practice, the models of real systems 

always have some uncertainty associated with them. Thus, process models can never be 

perfect. For plants with uncertain process models, an incorrect pairing decision may result 

if the RGA analysis is carried out based only on a nominal model of the process. The 

problem further aggravates when a sensitivity analysis of RGA elements to model 

uncertainty is carried out based on steady-state process model alone. 
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 In this Section, analytical expressions are derived for worst-case bounds on 

uncertainty in two-input two-output (TITO) plant models under steady-state and dynamic 

framework. The parametric model uncertainty is considered and is presented in this study 

with the aim to identify the possible input-output selection changes resulting from the 

parameter changes.  

 

3.4.1 Sensitivity Analysis of RGA Elements for Parametric Uncertainty 

Let a multivariable system  sG  with n  controlled variables and n  manipulated variables 

given by Eq. (3.47): 

    

     
   
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                                 (3.47) 

 The normalized gain ijNK ,  for the transfer function element  sgij  as reported in 

(He et al., 2009) are defined as given below: 

i.) For FOPTD process given by,   s

ij

ij

ij
ije

s

k
sg










1
;  ijNK ,  is defined as given by Eq. 

(3.48): 

ijijijar

ijar

ij

ijN

k
K 


 ,

,

,  ,     where;    (3.48) 

ii.) For SOPTD process given by,    s

ijijij

ij

ij
ije

ss

k
sg










1222
; ijNK ,  is defined as 

given by Eq. (3.49): 



76 
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

0         2 ,     where; ,

,

, ijijijijar

ijar

ij

ijN

k
K   (3.49)  

 The process transfer function matrix of a 22  plant model in terms of normalized 

gain can be given as Eq. (3.50): 











22,21,

12,11,

NN

NN

N
KK

KK
K     (3.50) 

 The corresponding matrix of RGA elements in terms 
11  can obtained using 

property 3 (Section 3.1.1) and will be as given by Eq. (3.51): 






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
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1

1








   (3.51) 

 here, 
11  is the relative gain between output 

1y  and input 
1u , i.e., as given by Eqs. 

(3.52) and (3.53): 

 

 
Ny

u

Kuy

uy

ˆ1

1

2

2

11

11

11






    (3.52) 

where, 

 
22,11,

21,12,
1ˆ

NN

NNn

N
KK

KK
K      (3.53)

 

 NK̂ , here is referred to as the normalized interaction quotient and n , is the 

number of negative elements in  sG . For steady-state systems  0sG , the normalized 

interaction quotient would be referred to as steady-state interaction quotient k̂  and would 

be defined as in Eq.  (3.50) replacing normalized gains with corresponding steady-state 

gains. If 1ˆ NK  the RGA matrix would be a singular point.  For odd number of negative 

elements (i.e., number oddn ) the RGA matrix can never be singular as 1ˆ NK .  
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3.4.1.1 For Uncertain Process Gains 

 Steady-state Approach 

A steady-state approach involves only the steady-state gain information of the plant 

model and does not consider the effect of process dynamics (such as residence time). 

Thus, the interaction quotient under steady-state approach can be obtained by 

substituting, KKN  , i.e., the normalized process gain matrix will be substituted with 

the steady-state gain matrix. Further, it is assumed that all the elements of the steady-state 

gain matrix, K  have symmetric upper and lower bounds. Thus, the nominal steady-state 

gain element, ijk  varies within ijij kk  . Let ijijij kk 
 
represents the uncertainty 

bound to the every element of K , then from Eq. (3.53), the steady-state interaction 

quotient under model uncertainty, uck̂  is given by Eq. (3.54), 

 
 
 

 
 
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   (3.54) 

 simplifying Eq. (3.54) gives Eq. (3.55), 
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 the substitution of steady-state based interaction quotient, k̂  in Eq. (3.55) leads to 

Eq. (3.56): 
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
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
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 The respective limits of the uck̂ is represented as given by Eq. (3.57): 

h

uc

l kkk ˆˆˆ       (3.57) 

 where, 
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 For 1ˆ uck , based on (3.54) the RGA element 
11  changes within the uncertainty 

limits as given by Eq. (3.60): 

hl kk ˆ1

1

ˆ1

1
11





     (3.60) 

For 1ˆ uck (singular point), the RGA element
11  passes through discontinuity. Thus the

11 changes within the uncertainty limits as given by Eq. (3.61): 

hk̂1

1
11


   and 


11ˆ1

1


lk
   (3.61) 

 

Dynamic Approach 

In order to understand the effect of process dynamics on input-output pairing decision for 

the processes with uncertain gains, Eq. (3.54) can be used to define a new interaction 

quotient referred to as "dynamic interaction quotient" under model uncertainty, uck̂  and is 

given by Eq. (3.62): 
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 simplifying Eq. (3.62) gives Eq. (3.63): 
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 the substitution of NK̂  and ar̂  in Eq. (3.63) gives Eq. (3.64): 
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 where, 
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N
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 while 

  
  

 ˆ
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
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 Eqns. (3.57) to (3.61) are now directly applicable by replacing uck̂  by 
dyuck ,

ˆ  and k̂  

by NK̂ . 

 

3.4.1.2 For Uncertain Process Gains and Residence Time (Time Constants and Time 

Delays) 

Assuming lower bounds of uncertainty in all the elements of the steady-state gain, K and 

average residence time, 
ar  to be symmetrical with that of higher bounds. Thus, the 

nominal steady-state gain element, ijk  varies within ijij kk   and average residence time, 

ar  within 
arar   . Let ijijij kk   and arijar    represent the uncertainty 

bound to the every element of k  and 
ar  respectively, then from Eq. (3.53) the dynamic 

interaction quotient under model uncertainty, dyuck ,
ˆ  is given by Eq. (3.66): 
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on simplifying Eq. (3.66) gives Eq. (3.67): 
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substitution of interaction quotient in Eq.  (3.64) gives Eq. (3.68): 

 
 












22112112

22112112
,

1

1ˆˆ



Ndyuc Kk    (3.68) 

The corresponding lower and upper limits on the dyuck ,
ˆ  will be as given by Eq. (3.69) and 

(3.70) respectively, 
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 The worst case bounds for the RGA elements can be obtained by substituting lk̂  

and hk̂  from Eqs. (3.69) and (3.70) in Eq.  (3.60) and (3.61), as the case may be. 

 These newly proposed variants of various measures are applied to four case studies 

(2-benchmark test problem and 2-industrial problems) and compared with other 

conventional measures. The case studies considered are presented in Chapter 4 and the 

results obtained are discussed in Chapter 5. 
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CHAPTER - 4 

CASE STUDIES: SELECTED NONLINEAR 

CHEMICAL PROCESSES 

 

Four different case studies are considered for demonstrating the applicability and 

limitations of various RGA based, non-RGA based and newly proposed interaction 

measures which are described in Chapter 3. In this chapter, the considered case studies 

are introduced and described. The case studies comprise of two benchmark test problems 

and two industrial problems reported in the literature (Adusumilli et al., 1998; Grosdidier 

and Morari, 1986; McAvoy, 1983).   

 The benchmark test problems considered for the study are 22  control problems 

having typical process dynamics. The industrial problems adopted for the study are: (i) 

Shell oil fractionators problem reported in the literature (Adusumilli et al., 1998) as a 

22  control problem (ii) Doukas and Luyben distillation column reported in literature 

(Grosdidier and Morari, 1986) as a 33  control problem. The process elements involved 

in the four case studies considered are of first order, first order plus time delay, second 

order and second order plus time delay.    

 

4.1 Benchmark Test Problems 

4.1.1 Case Study-1: 22  Process Model with a Second Order Element  

This case study which describes 22  process model with a second order element was 

introduced as a benchmark test problem by Grosdidier and Morari (1986). The process 

transfer function model is defined as: 
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 The process elements involved in this benchmark problem are of first order, first 

order plus time delay and second order plus time delay. The problem is typical in the 

sense that it has slow off-diagonal dynamics due to the presence of relatively large time 

constants and dead times than its diagonal counterpart. When RGA was applied as 

closed-loop interaction measure it was found to give off-diagonal pairing. However, the 

off-diagonal elements response is sluggish in comparison to the diagonal elements. Thus, 

it would be of interest to analyze the pairing recommendation based on dynamic RGA 

methods for this case study.   

 

4.1.2 Case Study 2: 22  Process Model with typical Process Dynamics 

This case study describes a 22  process model with typical process dynamics which was 

developed by McAvoy (1983) based on material balance for a distillation tower.  

The assumption made in the process model are: (i) analyzer dynamics were modeled as a 

pure dead-time, and (ii) the level of reflux accumulator and reboiler are under perfect 

control. Based on these assumptions and the process dynamics considered following plant 

model is generated [Eq. (4.2)]: 
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 The transfer function elements in this benchmark test problem are of first order, 

second order and second order plus time delay. This case study is quite an important 

benchmark test problem because of its uniqueness in the sense that its dynamics is such 

that the two popular controller-independent measures (ERGA and EREA) failed to 

identify the correct control loop pairings. So, it will be of great interest to test the 

proposed RRA approach on this benchmark test problem.    

 

4.2 Industrial Case Studies 

4.2.1 Case Study-3: Shell Heavy Oil Fractionator Problem 

Shell Heavy Oil Fractionator whose schematic is shown in Figure 4.1 has been 

considered as a case study for the control configuration selection problem. The 

characteristic features of heavy oil fractionator are as follows: 

i.) The fractionator has three product draws (i.e., top draw, side draw and bottoms). 

The compositions of top and side draw product streams are specified on the basis 

of market demands and economics. However, bottoms draw compositions are not 

controlled.   

ii.) The three reflux loops (i.e., upper reflux, intermediate reflux and bottoms reflux) 

plays crucial role in maintaining the product streams at desired specifications and 

also helps in their separation by removing the excess heat. 

iii.) The heat removed by heat exchangers from reflux loops is used to heat other 

columns of the plant. Thus, they cannot be controlled independently, and results 

in reduced degree of freedom for control.   
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iv.) Out of three reflux loops, the bottom reflux loop has an enthalpy controller that 

regulates the heat requirement via steam make, whereas the heat duty 

requirements of the top and intermediate reflux loops acts as a disturbance to the 

fractionator column.    

v.) The feed to the fractionator column is in gas phase and fulfills the heat 

requirement of the column, and also maintains the temperature on the base of 

column below a certain specified value. 

  Thus, for the Shell oil fractionator column the top and side draw endpoint 

compositions are the controlled variables, whereas top draw, side draw and bottoms 

reflux flow rates are available as manipulated variables. 

 A simplified 22 model for the Shell heavy oil fractionator problem with top end 

point and side end point as controlled variables, and top draw and side draw as 

manipulated variable was introduced by Adusumuli et al. (1998) and is given by Eq. 

(4.3): 
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                                       (4.3) 

 The transfer function elements in this simplified model are all first order plus time 

delay. Further, the process has large time constant and time delay associated with each 

element of the process transfer function matrix [Eq. (4.3)]. 
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Figure 4.1. Shell Heavy Oil Fractionator Control Problem. 

(Adopted from: Prett and Garcia, Fundamental Process Control, Butterworths, 1988.) 
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4.2.2 Case Study-4: Distillation Column Control Problem 

A Doukas and Luyben (DL) distillation column producing a liquid side stream product, 

shown in Figure 4.2 has been considered in this study for the control configuration 

selection problem. The column dynamics were originally studied by Doukas and Luyben  

(1978). The objective was to separate and maintain the composition of the three product 

streams (i.e., benzene, toluene, and xylene) at their pre-specified values. The 

concentration of impurities in three product streams are controlled by adjusting three 

process streams (i.e., side stream flow rate, reflux ratio and reboiler heat duty) as 

manipulated variables.  

 The transfer function model of the column expressing the relation between 

controlled and manipulated variables is shown in Table 4.1. 

 The transfer function model  sG  of the DL distillation column in simplified form 

(Grosdidier and Morari, 1986) is given by Eq. (4.4):  
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  (4.4) 

 In the considered DL distillation control problem the transfer function elements 

are of first order plus time delay and second order plus time delay. Interestingly, the 

process has large variations in the time constants and time delays from element to 

element, i.e., the time constants are varying in the range 1 to 400 and time delays are 

varying in the range 1 to 60 min. Such variations in time constants and time delays will 

make the process dynamics typical particularly under closed loop interaction.     
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Figure 4.2. Doukas Luyben Distillation Column. 
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Table 4.1. Process Transfer Function Matrix Elements of DL Distillation Column (case 

study-4). 

Manipulated 
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Controlled 

            Variables 

Reflux Ratio 

 
1u  

Side stream flow

 
2u  

Reboiler heat 

duty  
3u  

Toluene impurity in the 

bottom  
1y   2

75.7

12.22

374.0





s

e s

 
 2

79.3

174.21

3.11



 

s

e s

 
 136.11

811.9 59.1



 

s

e s

 

Toluene impurity in the 

distillate   
2y   2

71.0

167.66

986.1



 

s

e s

 
 1400

24.5 60





s

e s

 
 129.14

984.5 24.2





s

e s

 

Benzene impurity in the 

side stream  
3y   2

59.0

114.7

0204.0





s

e s

 
 2

68.0

138.2

33.0



 

s

e s

 
 2

42.0

143.1

38.2





s

e s
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CHAPTER - 5 

RESULTS AND DISCUSSION: COMPARISON AND 

IMPLEMENTATION OF PROPOSED TECHNIQUES 

 

In this Chapter, case studies (plant models) introduced in Chapter 4 are analyzed for the 

best control configuration. First, the input-output pairing analysis is conducted based on 

conventional steady-state RGA approach. The recommended pairing results are then 

compared with the input-output pairing obtained from dynamic RGA methods such as: 

frequency dependent RGA (FDRGA), effective relative gain array (ERGA), effective 

relative energy array (EREA), and the proposed method "relative response array (RRA)". 

For verifying the correctness of the results (i.e., verifying the chosen pairing for stability 

and response speed), the response curve are generated based on IMC/ITAE controller 

tuning rules for all possible control configurations. All the calculations are performed in 

Matlab/Simulink. The Matlab codes corresponding to each case study are given in 

Appendix I - IV, respectively.    

 The Chapter also presents the sensitivity of RGA analysis (i.e., input-output 

pairing decision) to parametric uncertainty in each element of the plant model considered 

in various case studies. The objective is to observe the effect of model uncertainty on 

pairing decision, i.e., whether the input-output pairing changes within the considered 

uncertainty range. The objective is also to find the limiting point or maximum tolerable 

uncertainty for which the input-output pairing does not change. The model uncertainty in 

the study comprises of uncertainty in process gain, process time constant and time delay. 

The uncertainty in time constant and time delay are taken care of by a collective term of 

residence time as defined in Chapter 3. 
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 5.1 Benchmark Test Problems  

5.1.1 Case Study-1: 22  Process Model with a Second Order Element 

Considering the 22  process transfer function model introduced in Chapter 4, Section 

4.1.1 and given by Eq. (4.1). The steady-state and dynamic RGA analysis of the test 

problem is conducted in Section 5.1.1.1 and 5.1.1.2, respectively, followed by uncertainty 

analysis in Section 5.1.1.3.  

 

5.1.1.1 RGA Analysis: Steady-State Approach 

For the plant model [Eq. (4.1)], the steady-state gain matrix is given by Eq. (5.1): 













14

5.25
K                                                         (5.1) 

 The steady-state RGA matrix corresponding to the steady-state gain matrix [Eq. 

(5.1)], is obtained based on Eq. (3.4) as:  











3333.06667.0

6667.03333.0
                                                  (5.2) 

 The off-diagonal elements of RGA matrix [Eq. (5.2)] are greater than 0.5 and 

close to 1. Therefore, the recommended pairing based on steady-state RGA analysis is 

off-diagonal, i.e., (1-2)/(2-1) output-input pairing. 

  

5.1.1.2 RGA Analysis: Dynamic Approach 

Frequency Dependent RGA (FDRGA) 

Figure 5.1 shows the frequency dependent RGA values for elements 11  and 12  as a 

function of frequency for the plant model [Eq. (4.1)] based on Eq. (3.28). The diagonal  
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Figure 5.1. Frequency dependent RGA for the diagonal (solid line) and off-

diagonal (dashed line) pairing for case study-1 (benchmark test problem 4.1.1). 
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RGA element, 11  [i.e., element RGA(1,1) in Figure 5.1] is less than 0.5 at low 

frequencies and increases to a value of 1 at moderate and high frequencies, whereas off-

diagonal RGA element, 12  [i.e., element RGA(1,2) in Figure 5.1], is close to 0.6 at low 

frequencies and decreases to 0 at high frequencies. Thus, off-diagonal pairing is favored 

at low frequencies, but at moderate and high frequencies the diagonal pairing is more 

favorable. For the given plant model [Eq. (4.1)], most time constants are of the order of 

10, which corresponds to the frequency around 0.1 rad/time and in this frequency range, 

i.e., in the frequency of interest the diagonal RGA elements are greater than 0.5 and close 

to 1. Therefore, the recommended pairing for the given benchmark test problem is 

"diagonal". The results pertaining to the frequency dependent RGA are simulated using 

Matlab. The Matlab code used for the same is given in Appendix-I.  

 

Relative Response Array (RRA)  (Proposed Approach) 

The RRA analysis is conducted based on all four variants for the plant model [Eq. (4.1)] 

as follows:  

i.) Controller-independent time-average RRA (CI-TA-RRA)  

The CI-TA-RRA obtained based on Eqs. (3.42) and (3.43) is given by Eq. (5.3): 











721.0279.0

279.0721.0
TACI         (5.3)  

 The diagonal elements of CI-TA-RRA [Eq. (5.3)] are greater than 0.5 and close to 

1. Therefore, the recommended variable pairing is "diagonal", i.e., (1-1)/(2-2). 
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ii.) Controller-independent time-varying RRA (CI-TV-RRA) 

Table (5.1) shows the values of CI-TV-RRA elements 11  and 12  based on Eqs. (3.44)  

and (3.45) corresponding to 10 to 100 percentage of the maximum time of response 

observation, i.e., the summation of dominant time constant and maximum process dead 

time as discussed in Chapter 3, Section 3.3.3.2. In the whole time range of interest the 

diagonal elements of CI-TV-RRA are greater than 0.5 and close to 1. Thus, as per RRA 

pairing rules (Section 3.3), the pairing recommended using CI-TV-RRA analysis is 

"diagonal". 

 

iii.) Controller-dependent time-average RRA (CD-TA-RRA) 

The CD-TA-RRA for the considered benchmark test problem [Eq. (4.1)] is obtained 

based on Eqs. (3.42), (3.45) and (3.46) is given by Eq. (5.4):  











881.0357.0

357.0888.0
TACD     (5.4) 

 The analysis of CD-TA-RRA [Eq. (5.4)] shows that the diagonal elements are 

greater than 0.5 and close to 1. Therefore, as per RRA pairing rules (Section 3.3), the 

recommended input-output variable pairing is "diagonal", i.e., (1-1)/(2-2).  

 

iv.) Controller-dependent time-varying RRA (CD-TV-RRA)  

The Table (5.2) shows the values of CD-TV-RRA elements for the given plant model 

[Eq. (4.1)] based on Eq. (3.41). All the elements of the CD-TV-RRA, i.e., 11 , 12 , 21  

and 22  are calculated in the range of 10 to 100 percentage of the maximum time of 

response observation, i.e., the sum of dominant time constant and maximum process dead
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Table 5.1. Controller-independent time-varying relative response array (CI-TV-RRA) 

elements for case study-1 (benchmark test problem 4.1.1). 

Percentage 

of 

 maxD θτ   
11ρ  12  

10 1.000 0.000 

20 1.000 0.000 

30 0.999 0.001 

40 0.987 0.013 

50 0.958 0.042 

60 0.916 0.084 

70 0.867 0.133 

80 0.816 0.184 

90 0.767 0.233 

100 0.721 0.279 
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Table 5.2. Controller-dependent time-varying relative response array (CD-TV-RRA) 

elements for case study-1 (benchmark test problem 4.1.1). 

Percentage 

of 

 
max D  

11  12  21  22  

10 1.000 0.000 0.000 1.000 

20 1.000 0.000 0.000 1.000 

30 1.000 0.026 0.052 1.000 

40 1.000 0.076 0.122 1.000 

50 0.999 0.133 0.184 0.999 

60 0.990 0.188 0.238 0.989 

70 0.972 0.239 0.285 0.969 

80 0.948 0.284 0.324 0.943 

90 0.919 0.324 0.358 0.913 

100 0.888 0.357 0.386 0.881 
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time. In the whole time range of interest the diagonal elements 11  and 22  of CD-TV-

RRA [Table (5.2)] are greater than 0.5 and close to 1, whereas off-diagonal elements 12  

and 21  are both less than 0.5. Thus, the recommended pairing based on CD-TV-RRA is 

"diagonal".  

 For both the CD-TA-RRA and CD-TV-RRA, the closed-loop responses are 

calculated based on IMC controller "Q", defined in Eq. (3.40). The filter "F" used to 

make the controller proper is  r
s 11.01  , where, "r" is taken to be 1 and 2 for first and 

second order process elements, respectively. The Matlab codes for the calculation of all 

versions of RRA are given in Appendix-I. 

 For the same problem, i.e., for the plant model given by Eq. (4.1), Monshizadeh-

Naini et al. (2009) based on the effective relative gain array (ERGA) and effective 

relative energy array (EREA) analysis, have also obtained "diagonal" pairing. 

 

Closed-loop Performance  

Table (5.3) shows the IMC based PI controller settings in terms of function block 

parameters for Simulink model (Figure 5.2) of the given plant [Eq. (4.1)]. 

 The simulation results in Figure 5.3 indicates the response of output 1y  and 2y for 

unit step change in set point spy ,1  and spy ,2 . In order to compare the diagonal and off-

diagonal control structures the step change in set point of 1y  and 2y  is given at 5 and 50 

time units respectively. As is evident from Figure 5.3, both 1y  and 2y  show the best set 

point tracking for diagonal pairing and result in stable and faster response in comarison to   
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Table 5.3. IMC based PI controller settings (function block parameters) for Simulink 

model of case study-1 (benchmark test problem 4.1.1). 

Plant Element 
Desired Closed-loop     

Time Constant, c  

Controller Gain, 

cK  

Integral mode gain, 

IcK   

14

5

s
 0.6 1.6667 0.4167 

  11512

5.2
5





ss

e
s

 6 0.4615 0.0308 

120

4
6



 

s

e
s

 5 – 0.7273 – 0.0364 

13

1

s
 0.5 6 2 
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Figure 5.2. Simulink model of diagonal and off-diagonal pairing for case study-1 

(benchmark test problem 4.1.1).  
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Figure 5.3. Comparison of diagonal and off-diagonal pairing results for output (a) 1y  and 

(b) 2y  in case study-1 (benchmark test problem 4.1.1). 

(a) 

(b) 
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off-diagonal pairing, which keeps oscillating and has large settling time. 

 For the benchmark test problem 4.1.1 [Eq. (4.1)], the steady-state RGA analysis 

[Eq. (5.2)] recommends "off-diagonal" pairing, whereas all the dynamic RGA methods 

suggest "diagonal" pairing. The closed-loop performance analysis of diagonal and off-

diagonal pairing clearly shows (Figure 5.3) the diagonal pairing as the best pairing. The 

similar conclusion is drawn by Grosdidier and Morari (1986) based on magnitude and 

phase characteristics of the model. Thus, it can be concluded that the steady-state RGA 

fails to identify the correct control configuration. However, dynamic RGA methods and 

proposed RRA method are successful in finding the best control configuration. Also, for 

the recommended "diagonal" pairing, the Niederlinski index, NI (Niederlinski, 1971) 

given by Eq. (3.8) comes out to be 3, which indicates that the recommended (diagonal) 

pairing is stable. The summary of the input-output pairing results obtained using steady-

state and dynamic RGA methods is presented in Table (5.4).   

 

5.1.1.3 Uncertainty Analysis: Steady-state and Dynamic Approach 

For the plant model given by Eq. (4.1), there is only one negative element. Therefore, 

exponent n  in Eq. (3.53) is 1. The steady-state gain matrix and its corresponding RGA 

matrix for the model [Eq. (4.1)] are given in Eqs. (5.1) and (5.2) respectively. The steady-

state interaction quotient 2ˆ k  (for 1n ) is obtained based on Eq. (3.53) by replacing 

the normalized gain with the steady-state gain. 

 The average residence time corresponding to each element of the plant model [Eq. 

(4.1)] is given in Eq. (5.6): 
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Table 5.4. Comparison of pairing recommendation by various methods for case study-1 (benchmark test problem 4.1.1). 

Plant Model Pairing Method Resulting Array Recommended Pairing 

    




























13

1

120

4

11512

5.2

14

5

6

5

ss

e

ss

e

ssG
s

s

 

RGA 









3333.06667.0

6667.03333.0
 Off-diagonal, i.e., (1-2)/(2-1) 

ERGA 









9265.00735.0

0735.09265.0
 Diagonal, i.e., (1-1)/(2-2) 

EREA 









8631.01369.0

1369.08631.0
EREA  Diagonal, i.e., (1-1)/(2-2) 

Frequency-dependent DRGA Figure 5.1 Diagonal, i.e., (1-1)/(2-2) 

RRA 

(Proposed 

Method) 

CI-TA-RRA 









721.0279.0

279.0721.0
TACI  Diagonal, i.e., (1-1)/(2-2) 

CI-TV-RRA Table 5.1 Diagonal, i.e., (1-1)/(2-2) 

CD-TA-RRA 









881.0357.0

357.0888.0
TACD  Diagonal, i.e., (1-1)/(2-2) 

CD-TV-RRA Table 5.2 Diagonal, i.e., (1-1)/(2-2) 

Closed-loop response analysis Figure 5.3 Diagonal, i.e., (1-1)/(2-2) 
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;411, ar  ;2212, ar  ;2621, ar  322, ar    (5.6) 

 Based on steady-state gain given in Eq. (5.1) and their corresponding average 

residence times from Eq. (5.6), the normalized gain matrix is calculated using Eqs. (3.48) 

and (3.49) for first and second order process elements, respectively, as given in Eq. (5.7): 











3333.01538.0

1136.02500.1
NK     (5.7) 

 The normalized interaction quotient based on normalized gain information from 

Eq. (5.7) is obtained using Eq. (3.53) as 0420.0ˆ NK . 

 The uncertainty in parameters is assumed to vary in the range  1% to  50%. 

For simplicity of understanding the extent of uncertainty in gain    and residence time  

  , of the process have been considered to be same, i.e.,   .  

 Table (5.5) shows the lower and upper bounds on interaction quotient for three 

different cases: (i) Considering uncertainty only in process gains, under steady-state 

framework; (ii) Considering uncertainty only in process gains, under dynamic 

framework; and (iii) Considering uncertainty in both process gains and residence times of 

the process. 

 Now, corresponding to the upper and lower bound on interaction quotient given in 

Table (5.5), the upper and lower bound on RGA element 11  for the above three cases is 

given in Table (5.6), and the following conclusions can be drawn: 

i.) The RGA element 11  for the specific case of uncertainty in steady-state 

gains only, under steady-state framework remains less than 0.5 up to an 

uncertainty of 16.7%. This suggests that the pairing upto an uncertainty of 
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Table 5.5. Lower and upper bounds on interaction quotient under uncertainty for case study-1 (benchmark test problem 4.1.1). 

Percentage 

of 

uncertainty 

%%   or  

 

Interaction Quotient                    

(For uncertain gain under 

Steady-state framework) 

Interaction Quotient                     

(For uncertain gain under 

dynamic framework) 

Interaction Quotient                     

(For uncertain gain and residence time 

under dynamic framework) 

Lower bound 

l
k̂  

Upper bound 

h
k̂  

Lower bound 

l
k̂  

Upper bound 

h
k̂  

Lower bound 

l
k̂  

Upper bound 

h
k̂  

1 -2.0816 -1.9216 -0.0437 -0.0403 -0.0455 -0.0387 

5 -2.4444 -1.6364 -0.0513 -0.0343 -0.0629 -0.0280 

10 -3.0000 -1.3333 -0.0629 -0.0280 -0.0979 -0.0180 

15 -3.7143 -1.0769 -0.0779 -0.0226 -0.1678 -0.0105 

20 -4.6667 -0.8571 -0.0979 -0.0180 -0.3776 -0.0047 

25 -6.0000 -0.6667 -0.1259 -0.0140 -∞ 0 

30 -8.0000 -0.5000 -0.1678 -0.0105 0.0038 0.4615 

35 -11.3333 -0.3529 -0.2378 -0.0074 0.0070 0.2517 

40 -18.0000 -0.2222 -0.3776 -0.0047 0.0097 0.1818 

45 -38.0000 -0.1053 -0.7972 -0.0022 0.0120 0.1469 

50 -∞ 0 -∞ 0 0.0140 0.1259 
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Table 5.6. Lower and upper bound on RGA element 11  under uncertainty for case study-1 (benchmark test problem 4.1.1). 

Percentage 

of 

uncertainty 
%%   or  

 

Lower and Upper bound on RGA element, 11  

For uncertain gain under 

Steady-state 

(Chen and Seborg, 2002) 

For uncertain gain under 

dynamic state 

(Proposed Approach) 

For uncertain gain and residence time 

(Proposed Approach) 

1 3423.03245.0 11    9612.09582.0 11    9627.09565.0 11    

5 3793.02903.0 11     9668.09512.0 11     9728.09408.0 11    

10  4286.02500.0 11     9728.09408.0 11    9823.09108.0 11    

15  4815.02121.0 11     9779.09277.0 11    9896.08563.0 11    

20  5385.01765.0 11     9823.09108.0 11    9954.07259.0 11    

25  6000.01429.0 11     9862.08882.0 11    10 11  
 

30  6667.01111.0 11     9896.08563.0 11    8571.10038.1 11    

35 7391.00811.0 11     9927.08079.0 11     0070.111     &   113364.1   

40  8182.00526.0 11     9954.07259.0 11     0098.111     &   112222.1   

45  9048.00256.0 11     9978.05564.0 11     0121.111     &   111721.1   

50 10 11  
 

10 11  
 

 1440.10142.1 11    
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16.7% should correspond to the off-diagonal elements 12  and 21 . 

However, for the uncertainty above 16.7% the upper range of 11  begins to 

exceed 0.5 and varies in the range 0-1 at 50% uncertainty. This indicates the 

increase in process interaction and the off-diagonal pairing may not be able to 

perfectly control the process.  

ii.) For case-ii, i.e., considering uncertainty in steady-state gains only under 

dynamic framework, the RGA element 11  found to be greater than 0.5 and 

less than 1 for uncertainty up to 46%. Above this limiting uncertainty the 

lower limit of 11  goes below 0.5 and the interaction effects begins to 

increase and the recommended pairing may not be able to control the process 

at its best.  

iii.) For uncertainty in both the steady-state gain and residence time (i.e., time 

constant and time delay) under dynamic framework (case-iii), the RGA 

element 11  remains greater than 0.5 upto an uncertainty of 23%. Beyond 

which the interaction effects increases and at an uncertainty of 35% the 

diagonal element 11  passes through discountinuity. 

 It can be concluded based on uncertainty analysis for above three cases 

that the pairing analysis must be conducted under dynamic framework because 

the steady-state analysis lead to incorrect variable pairing. Further, the tolerable 

uncertainty in process gain increases from 16.7% in steady-state analysis to 46% 

in dynamic. However, with uncertainty in all the model paramters (viz. process 

gain, time constant and time delay) the tolerable uncertainty for chosen control 
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configuration to remain invariant decreases to 23%. Thus, sensitivity analysis of 

control configuration can be misleading if uncertainty is considered in process 

gain alone.   

 

5.1.2 Case Study-2: 22  Process Model with Typical Process Dynamics 

Considering a 22  process model developed based on material balance for a distillation 

tower, as discussed in Chapter 4, Section 4.1.2 and given by Eq. (4.2). For the considered 

model [Eq. (4.2)], the steady-state and dynamic RGA analysis is conducted, followed by 

the uncertainty analysis.  

 

5.1.2.1 RGA Analysis: Steady-state Approach 

For the process model [Eq. (4.2)], the steady-state gain matrix is given by Eq. (5.8): 















055.0465.0

055.0805.0
K                                         (5.8) 

 The corresponding steady-state RGA matrix (Bristol, 1966) is obtained based on 

Eq. (3.4) and is given by Eq. (5.9):  











6339.03661.0

3661.06339.0
                                         (5.9) 

 The diagonal elements of the RGA matrix [Eq. (5.9)] are greater than 0.5 and 

close to 1. Thus, the recommended pairing based on steady-state RGA analysis is 

"diagonal", i.e.,    22/11   variable pairing. In the following section, the RGA 

analysis is conducted based on various dynamic RGA methods discussed in Chapter 3.  
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5.1.2.2 RGA Analysis: Dynamic Approach 

Effective Relative Gain Array (ERGA)  

The ERGA method (Xiong et al., 2005) utilizes both the steady-state gain and bandwidth 

information of the plant model for selecting the best control configuration. The 

bandwidth matrix as defined in Eq. (3.15), for the considered plant model [Eq. (4.2)] is 

given in Eq. (5.10):  











3030.02387.0

3727.00988.0
                                          (5.10) 

 The corresponding effective gain matrix is obtained by substituting steady-state 

gain and bandwidth information from Eqs. (5.8) and (5.10) respectively, into Eq. (3.14) 

as: 

 













0167.01110.0

0205.00795.0
E                                        (5.11) 

 Based on effective gain matrix [Eq. (5.11)], the ERGA matrix is calculated using 

Eq. (3.15), and is given by Eq. (5.12): 











3681.06319.0

6319.03681.0
                                         (5.12) 

 The ERGA follows the same pairing rules as the RGA, therefore the control loop 

variable pairing will correspond to the positive ERGA elements greater than 0.5. For 

model under consideration [Eq. (4.2)] the best pairing corresponds to "off-diagonal" 

elements, i.e.,    12/21  .   
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Effective Relative Energy Array (EREA)  

The effective gain matrix for EREA analysis (Monshizadeh-Naini et al., 2009) is  

calculated based on Eq. (3.24), and is given in Eq. (5.13):  















0009.00516.0

0011.00640.0
*E                                        (5.13) 

 Based on the effective gain matrix given by Eq. (5.13), the EREA matrix is 

obtained using Eq. (3.26) as given by Eq. (5.14): 











5021.04979.0

4979.05021.0
EREA                                      (5.14) 

 The EREA matrix defined by Eq. (3.26) has same form as that of the RGA 

defined by Eq. (3.4), it thus follows same pairing rules as applicable to RGA. The EREA 

matrix [Eq. (5.14)] shows that, both the diagonal and off-diagonal elements are close to 

0.5, i.e., for both the possible control configurations, the closed-loop system will suffer 

from high degree of interaction. In such a situation, no precise pairing could be 

concluded. 

 

Frequency dependent RGA (FDRGA)  

Figure 5.4 shows the frequency dependent RGA (Seider et al., 2009) values for elements 

11  and 12  as a function of frequency for the given plant model [Eq. (4.2)] based on 

Eq. (3.28). 

 It is clearly observable from Figure 5.4 that the diagonal element 11  (= 22 ) is 

greater than 0.5 in the whole frequency range, whereas its off-diagonal counterpart 

remains less than 0.5. Therefore, it can be concluded that as per the frequency dependent  
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 Figure 5.4. Dynamic RGA for the diagonal (solid line) and off-diagonal     

 (dashed line) pairing for case study-2 (benchmark test problem 4.1.2). 
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RGA the "diagonal" pairing is best suited for this model [Eq. (4.2)]. All the calculations 

of frequency dependent RGA are conducted in Matlab  and the corresponding Matlab 

code is given in Appendix-II.    

 

Relative Response Array (RRA)  

The pairing analysis would now be conducted based on all four variants of the proposed 

RRA method:  

i.) Controller-independent time-average RRA (CI-TA-RRA) 

The CI-TA-RRA for the distillation column benchmark test problem [Eq. (5.8)] based on 

Eqs. (3.42) and (3.43) is given in Eq. (5.15):  

 









661.0339.0

339.0661.0
TACI                                        (5.15) 

 The diagonal elements of CI-TA-RRA [Eq. (5.15)] are greater than 0.5 and close 

to 1, whereas both off-diagonal elements are less than 0.5. Therefore, the recommended 

variable pairing is (1-1)/(2-2), i.e., "diagonal". 

 

ii.) Controller-independent time-varying RRA (CI-TV-RRA) 

Table (5.7) shows the values of CI-TV-RRA elements 11  and 12  based on Eqs. (3.43) 

and (3.44) corresponding to 10 to 100 percentage of the maximum time period of 

response observation, i.e., the sum of dominant time constant and maximum process dead 

time. In the whole time range of interest, the diagonal elements of CI-TV-RRA are 

greater than 0.5 and close to 1, thus the recommended pairing is "diagonal". 
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Table 5.7. Controller-independent time-varying relative response array  

 (CI-TV-RRA) for case study-2 (benchmark test problem 4.1.2). 

Percentage 

of 

 
max D  

11  12  

10 0.878 0.122 

20 0.753 0.247 

30 0.703 0.297 

40 0.681 0.319 

50 0.670 0.330 

60 0.665 0.335 

70 0.662 0.338 

80 0.661 0.339 

90 0.661 0.339 

100 0.661 0.339 
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iii.) Controller-dependent time-average RRA (CD-TA-RRA) 

For the distillation column benchmark problem given by Eq. (4.2), the CD-TA-RRA is 

obtained using Eqs. (3.42), (3.45) and (3.46) as: 











696.0318.0

329.0697.0
TACD                                             (5.16) 

 The analysis of CD-TA-RRA [Eq. (5.17)] shows that the pairing corresponding to 

the elements greater than 0.5 and close to 1lies with diagonal elements, i.e., (1-1)/(2-2) 

variable pairing is recommended. 

 

iv.) Controller-dependent time-varying RRA (CD-TV-RRA) 

Table (5.8) shows the values of CD-TV-RRA elements calculated for the distillation 

column benchmark test problem [Eq. (5.8)] based on Eq. (3.41). All the elements of the 

CD-TV-RRA, i.e., 11 , 12 , 21  and 22  are calculated in the range of 10 to 100 

percentage of the maximum time of response observation, i.e., the summation of 

dominant time constant and maximum process dead time. In the whole time range of 

interest the diagonal elements 11  and 22  of CD-TV-RRA are greater than 0.5 and 

close to 1. Thus, as per RRA pairing rules (Section 3.3), the recommended pairing is 

"diagonal".  

 For both the CD-TA-RRA and CD-TV-RRA, the closed-loop response are 

calculated based on IMC controller "Q" defined in Eq. (3.40). The filter "F" used to make 

the controller proper is  r
s 11.01  , where, "r" is taken to be 1 and 2 for first and second 

order process elements respectively. 

 



113 

 

 

 

 

 

Table 5.8. Controller-dependent time-varying relative response  

 array (CD-TV-RRA) for distillation column case  

study-2 (benchmark test problem 4.1.2). 

Percentage 

of 

 
max D  

11  12  21  22  

10 0.951 0.328 0.168 0.935 

20 0.836 0.348 0.268 0.799 

30 0.772 0.353 0.301 0.739 

40 0.739 0.351 0.314 0.714 

50 0.721 0.348 0.319 0.703 

60 0.710 0.344 0.320 0.699 

70 0.704 0.340 0.320 0.697 

80 0.701 0.336 0.320 0.696 

90 0.698 0.332 0.319 0.696 

100 0.697 0.329 0.318 0.696 
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Closed-loop Performance  

Table (5.9) shows the IMC based PI controller settings in terms of function block 

parameters for Simulink model (Figure 5.5) of the distillation column benchmark test 

problem [Eq. (4.2)]. 

 The simulation results in Figure 5.6 indicates the response of output 1y  and 2y for 

unit step change in set point spy ,1  and spy ,2 . In order to compare the diagonal and off-

diagonal control structures the step change in set point of 1y  and 2y  is given at 10 and 

150 time units respectively. It can precisely be concluded from Figure 5.6, that the 

diagonal pairing gives the superior closed-loop performance, i.e., oscillation free better 

set point tracking in comparison to the off-diagonal pairing which has larger overshoot 

and higher settling time. Thus, the variable pairing corresponding to the diagonal 

elements should be a preferred choice, i.e., (1-1)/(2-2) variable pairing is the best pairing 

for the given plant model [Eq. (4.2)].   

 For the benchmark test problem 4.1.2 [Eq. (4.2)], the steady-state RGA analysis 

and frequency dependent RGA both recommends "diagonal" pairing, whereas the  
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Table 5.9. IMC based PI controller settings (function block parameters) for Simulink 

model of case study-2 (benchmark test problem 4.1.2). 

Plant Element 

Desired Closed-

loop Time 

Constant, c  

Controller Gain, 

cK  

Integral mode 

gain, IcK   

  16.513.18

805.0





ss
 6 -1.9597 -0.1071 

  125.1176.5

055.0

 ss
 1.5 38.0826 6.6116 

  162.013.28

465.0
3.0



 

ss

e
s

 3 -15.5256 -0.5486 

13.3

055.0





s
 0.5 -120 -36.3636 
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Figure 5.5. Simulink model of diagonal and off-diagonal pairing for case study-2 

(benchmark test problem 4.1.2). 
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 Figure 5.6. Comparison of diagonal and off-diagonal pairing results for output 

 (a) 1y  and (b) 2y  in distillation column case study-2 (benchmark test problem 

 4.1.2). 
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bandwidth dependent ERGA method gives incorrect pairing results, i.e., recommends 

"off-diagonal" pairing and effective energy based EREA method could not conclude to  

any suitable pairing as both its diagonal and off-diagonal elements are close to 0.5. 

However, the proposed dynamic method relative response array (RRA) and all its 

versions successfully identifies the high performing "diagonal" pairing. The results are 

verified based on the closed-loop performance analysis of diagonal and off-diagonal 

pairing which clearly shows the superiority of diagonal pairing over its off-diagonal 

counterpart. Also, for the recommended "diagonal" pairing the Niederlinski index, NI 

(Niederlinski, 1971) given by Eq. (3.5) comes out to be 0.187 (positive), that indicates 

the stability of recommended (diagonal) pairing. 

 The summary of pairing analysis results for distillation column benchmark test 

problem 4.1.2 [Eq. (4.2)] by steady-state and dynamic RGA methods are given in Table 

(5.10).  

 

5.1.2.3 Uncertainty Analysis: Steady-state and Dynamic Approach 

For the distillation column benchmark problem given by Eq. (4.2), there are three 

negative element, therefore, exponent n  in Eq. (3.53) is 3. The steady-state gain matrix 

and its corresponding RGA matrix for the distillation column model [Eq. (4.2)] are given 

in Eqs. (5.8) and (5.9) respectively. The steady-state interaction quotient  0.5776ˆ k  

(for 3n ) can be obtained based on Eq. (3.53) by replacing normalized gain with the 

steady-state gain. The average residence time corresponding to each element of the 

distillation column benchmark problem [Eq. (4.2)] are:  
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Table 5.10. Comparison of pairing recommendation by various methods for case study-2 (benchmark test problem 4.1.2). 

Plant Model Pairing Method Resulting Array Recommended Pairing 

    

  
















 

162.013.28

465.0

16.513.18

805.0

3.0

ss

e

ss
sG s  

             















13.3

055.0

125.1176.5

055.0

s

ss  

 

RGA 









6339.03661.0

3661.06339.0
 Diagonal, i.e., (1-1)/(2-2) 

ERGA 









3681.06319.0

6319.03681.0
 Off-Diagonal, i.e., (1-2)/(2-1) 

EREA 









5021.04979.0

4979.05021.0
EREA  No unique pairing 

Frequency-dependent DRGA Figure 5.4 Diagonal, i.e., (1-1)/(2-2) 

RRA 

(Proposed Method) 

CI-TA-RRA 









661.0339.0

339.0661.0
TACI  Diagonal, i.e., (1-1)/(2-2) 

CI-TV-RRA Table 5.7 Diagonal, i.e., (1-1)/(2-2) 

CD-TA-RRA 









696.0318.0

329.0697.0
TACD  Diagonal, i.e., (1-1)/(2-2) 

CD-TV-RRA Table 5.8 Diagonal, i.e., (1-1)/(2-2) 

Closed-loop response analysis Figure 5.6 Diagonal, i.e., (1-1)/(2-2) 
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;9.2311, ar  ;01.712, ar  ;22.2921, ar  3.322, ar                    (5.17) 

 Based on steady-state gain given in Eq. (5.9) and their corresponding average 

residence times from Eq. (5.17), the normalized gain matrix is calculated using Eqs. 

(3.48) and (3.49) for first and second order process elements respectively as given in Eq. 

(5.18): 











0167.00159.0

0078.00337.0
NK                                           (5.18) 

 The normalized interaction quotient based on normalized gain information from 

Eq. (5.18) is obtained using Eq. (3.53) as 2224.0ˆ NK . 

 The uncertainty in parameters is assumed to vary in the range  1% to  50%. 

For simplicity of understanding the extent of uncertainty in gain and residence time of the 

process have been considered to be same, i.e.,   .  

 Table (5.11) shows the lower and upper bounds on interaction quotient for three 

different cases:  

i.) Considering uncertainty only in process gains, under steady-state framework; 

ii.) Considering uncertainty only in process gains, under dynamic framework; 

iii.) Considering uncertainty in both process gains and residence times of the process. 

 Now, corresponding to the upper and lower bound on interaction quotient, the 

upper and lower bound on RGA element 11  for the above three cases is given shown in 

Table (5.12). 

 Table (5.12) compares the outcome of uncertainty analysis of steady-state and 

dynamic RGA for distillation column benchmark problem 4.1.2. The following 

observations can be made:  
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Table 5.11. Lower and upper bounds on interaction quotient under uncertainty case study-2 (benchmark test problem 4.1.2). 

Percentage 

of 

uncertainty 

%%   or  

 

Interaction Quotient                     

(For uncertain gain under 

Steady-state framework) 

Interaction Quotient                    

 (For uncertain gain under 

dynamic framework) 

Interaction Quotient                     

(For uncertain gain and residence time 

under dynamic framework) 

Lower bound 

l
k̂  

Upper bound 

h
k̂  

Lower bound, 

l
k̂  

Upper bound 

h
k̂  

Lower bound 

l
k̂  

Upper bound 

h
k̂  

1 -0.6012 -0.5550 -0.2315 -0.2137 -0.2410 -0.2053 

5 -0.7060 -0.4726 -0.2718 -0.1820 -0.3336 -0.1483 

10 -0.8665 -0.3851 -0.3336 -0.1483 -0.5190 -0.0953 

15 -1.0728 -0.3110 -0.4131 -0.1198 -0.8897 -0.0556 

20 -1.3478 -0.2476 -0.5190 -0.0953 -2.0018 -0.0247 

25 -1.7329 -0.1925 -0.6673 -0.0741 -∞ 0 

30 -2.3106 -0.1444 -0.8897 -0.0556 0.0202 2.4466 

50 -∞ 0 -∞ 0 0.0741 0.6673 
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Table 5.12. Lower and upper bound on RGA element 11  under uncertainty for case study-2 (benchmark test problem 4.1.2). 

Percentage 

of 

uncertainty 

%%   or  

 

Lower and Upper bound on RGA element 11  

For uncertain gain under 

Steady-state 

(Chen and Seborg, 2002) 

For uncertain gain under 

dynamic state 

(Proposed Approach) 

For uncertain gain and residence time 

(Proposed Approach) 

1 6431.06245.0 11    8239.08120.0 11    8297.08058.0 11    

5 6791.05862.0 11     8460.07863.0 11     8709.07498.0 11    

10  7220.05358.0 11     8709.07498.0 11     9130.06583.0 11    

15  7628.04824.0 11     8930.07077.0 11     9473.05292.0 11    

20  8016.04259.0 11     9130.06583.0 11     9759.03331.0 11    

25  8385.03659.0 11     9310.05998.0 11    10 11  
 

30  8738.03021.0 11     9473.05292.0 11     6913.011    &  110206.1   

50 10 11  
 

10 11  
 

 0801.111    &  110053.3   
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i.) The RGA element 11  for the specific case of uncertainty in steady-state gains only 

under steady-state framework, remains greater than 0.5 up to an uncertainty of 13%, 

which suggests the pairing should corresponds to the diagonal elements 11  and 22 . 

However, for the uncertainty above 13% the lower limit of 11  goes below 0.5 and varies 

in the range 0-1 at uncertainty of 50%. This indicates the increase in closed-loop 

interaction and the possibility of under-performance of chosen pairing.  

ii.) When considering uncertainty in steady-state gains only under dynamic framework, the 

RGA element 11  is found to be greater than 0.5 and less than 1 for uncertainty up to 

31%, beyond which its lower limit goes below 0.5. At an uncertainty of 50%, the RGA 

element 11  may take any value in the range  0-1 and the chosen pairing performance 

may deteriorate. 

iii.) For uncertainty in both the steady-state gain and residence time (i.e., time constant and 

time delay) under dynamic framework, the RGA element 11  remains greater than 0.5 

for uncertainty up to 15%. Beyond 15% uncertainty, the lower limit of 11  goes below 

0.5 and the performance of the chosen pairing may deteriorate due to increase in closed-

loop interaction. Further, the RGA element 11  changes sign at uncertainty of 26% and 

may cause the system to become unstable. Thus, for the pairing to remain diagonal the 

tolerable uncertainty is 15%.  

 It can be concluded from the above discussion that the uncertainty tolerance 

capability of recommended diagonal pairing [Table (5.10)] can truly be estimated only on 

the dynamic analysis. Further, the consideration of uncertainty in process gain only may 

lead to overly optimistic results on the extent of tolerable uncertainty. Thus, it is 
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important to consider the uncertainty in all model parameters in order to find the 

maximum tolerable plant uncertainty for robust performance.     

 

5.2 Industrial Case Studies 

5.2.1 Case Study-3: Shell Heavy Oil Fractionator Problem 

The Shell heavy oil fractionator control problem introduced in Chapter 4, Section 4.2.1 

and given by Eq. (4.3) is analyzed for the selection of best control configuration using 

steady-state and dynamic RGA based methods. The uncertainty analysis is also 

conducted, so as to find the tolerable uncertainty for which the chosen input-output 

pairing remains unchanged.  

 

5.2.1.1 RGA Analysis: Steady-state Approach 

For the Shell heavy oil fractionator problem [Eq. (4.3)], the steady-state gain matrix is  

given in Eq. (5.19):  











72.539.5

77.105.4
K         (5.19) 

 The corresponding steady-state RGA matrix obtained based on Eqs. (5.19) and 

(3.4) is given in Eq. (5.20):  















7002.17002.0

7002.07002.1
    (5.20) 

 As per RGA pairing rules, the pairing should correspond to positive RGA 

elements greater than 0.5 and close to 1. Therefore, the recommended pairing based on 

steady-state RGA analysis is "diagonal", i.e., (1-1)/(2-2). 
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 5.2.1.2 RGA Analysis: Dynamic Approach 

Now, we will analyze the input-output pairing decision based on dynamic RGA 

approaches: 

 

Effective Relative Gain Array (ERGA) 

The bandwidth matrix for the Shell heavy oil fractionator model [Eq. (4.3)] is given in 

Eq. (5.21):  











017.0020.0

017.0020.0
      (5.21) 

 The corresponding effective gain matrix is obtained by substituting steady-state 

gain and bandwidth information from Eqs. (5.19) and (5.21) respectively, into Eq. (3.15) 

and is given by Eq. (5.22): 











0972.01078.0

0301.00810.0
E     (5.22) 

 Based on effective gain matrix [Eq. (5.22)], the ERGA matrix is calculated using 

Eq. (3.18) and is given in Eq. (5.23): 















7002.17002.0

7002.07002.1
    (5.23) 

 Since the ERGA defined in Eq. (3.18) has the same form as that of the RGA [Eq. 

(3.4)], it follows the same pairing rules as RGA. Therefore, the pairing will correspond to 

the positive ERGA elements greater than 0.5, which lies with the "diagonal" elements of 

the Shell oil fractionator model.   
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Effective Relative Energy Array (EREA) 

The effective gain matrix for EREA analysis is calculated based on Eq. (3.24) and is 

given in Eq. (5.24):  











5562.05810.0

0533.03281.0
*E     (5.24) 

 For effective gain matrix [Eq. (5.24)], the EREA is obtained based on Eq. (3.26), 

and is given in Eq. (5.25): 















2042.12042.0

2042.02042.1
EREA    (5.25) 

 Since the EREA defined by Eq. (3.26) has same form as that of RGA defined by 

Eq. (3.4), it follows same pairing rules as applicable to RGA. Therefore, the input-output 

pairing analysis based on EREA matrix [Eq. (5.25)] suggests "diagonal" pairing, i.e., (1-

1)/(2-2) pairing.  

 

Frequency Dependent RGA (FDRGA) 

The frequency response of RGA elements 11  and 12  for the Shell heavy oil 

fractionator model [Eq. (4.3)] under dynamic framework is shown in Figure 5.7.  

 The analysis of Figure 5.7 shows the dominance of diagonal pairing in the entire 

frequency range. At low frequencies (below 10
-2

 rad/min) the diagonal RGA elements are 

positive and close to 1.6 whereas off-diagonal elements are negative, and the pairing 

corresponding to the negative elements should always be avoided. However, at higher 

frequencies the diagonal RGA elements are slightly greater than 0.5 whereas off-diagonal 

elements remain less than 0.5. Thus, the best input-output variable pairing for the entire 

frequency range is "diagonal", i.e., (1-1)/(2-2). 
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Figure 5.7. Dynamic RGA for the diagonal (solid line) and off-diagonal (dashed line) 

pairing for case study-3 (Shell heavy oil fractionator problem 4.2.1). 
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Relative Response Array (RRA) 

The RRA analysis for the Shell heavy oil fractionator problem [Eq. (4.3)] is conducted 

using its all four variants discussed in Chapter 3, Section 3.3. The RRA analysis is as 

follows: 

i.) Controller-independent time-average RRA (CI-TA-RRA) 

The CI-TA-RRA is obtained based on Eqs. (3.42) and (3.43), and is given by Eq. (5.26):  















638.1638.0

638.0638.1
TACI      (5.26) 

 The diagonal elements of CI-TA-RRA are positive and close to 1, whereas off-

diagonal elements are negative. It is strongly recommended to avoid the pairing of 

variables corresponding to the negative RRA elements. Therefore, the recommended 

pairing based on CI-TA-RRA analysis is "diagonal", i.e., (1-1)/(2-2). 

 

ii.) Controller-independent time-varying RRA (CI-TV-RRA) 

Table (5.13) shows the values of CI-TV-RRA elements 11  and 12  based on Eq. (3.43) 

and (3.44) corresponding to 10 to 100 percentage of the maximum time of response 

observation, i.e., the sum of dominant time constant and maximum process dead time. It 

is observed that up to 30% of the maximum response period of observation no responses 

are obtained, due to singularity of RGA matrix. This is due to the fact that the 30% of the 

maximum response period of observation is less than the largest time delay of the 

fractionator model [Eq. (4.3)]. Therefore, once the largest dead time is over 

(corresponding to the 32% of maximum response period of observation), the RGA matrix 

becomes non-singular and the interaction effects are observed. Thereafter, in the whole  
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Table 5.13. Controller-independent time-varying RRAs (CI-TV-RRA) for case  

study-3 (Shell heavy oil fractionator problem 4.2.1). 

Percentage of  

 
max D  11  12  

10 Undefined Undefined 

20 Undefined Undefined 

30 Undefined Undefined 

40 1.296 -0.296 

50 1.428 -0.428 

60 1.503 -0.503 

70 1.553 -0.553 

80 1.589 -0.589 

90 1.617 -0.617 

100 1.638 -0.638 
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period of response observation, the diagonal elements remain positive and greater than 

0.5 whereas off-diagonal elements remain negative throughout. It is recommended to 

avoid pairing corresponding to the negative RRA elements for the stability of closed-loop  

system. Therefore, the obvious input-output pairing choice is "diagonal" pairing, i.e., (1-

1)/(2-2) variable pairing.  

 

iii.) Controller-dependent time-average RRA (CD-TA-RRA) 

The CD-TA-RRA for the Shell heavy oil fractionator model [Eq. (4.3)] is obtained based 

on Eqs. (3.42), (3.45) and (3.46) and is given in Eq. (5.27):  















182.1218.4

725.1276.1
TACD      (5.27) 

 Since the off-diagonal elements are negative and it is strongly recommended to  

avoid the variable pairing corresponding to negative RRA elements, the recommended  

variable pairing is "diagonal", i.e., (1-1)/(2-2). 

 

iv.) Controller-dependent time-varying RRA (CD-TV-RRA) 

The CD-TV-RRA for the given Shell heavy oil fractionator model [Eq. (4.3)] based on 

Eq. (3.41) is shown in Table (5.14).  

 The RRA elements in the Table (5.14) are defined as the ratio of integral open and 

closed-loop step responses [Eq. (3.41)]. For a particular transfer function element there 

will be no open-loop response available until the process dead time is over. Similarly, the 

closed-loop response for a particular transfer function element [Eq. (3.36)] is also a 

function of various combination of process dead times. Due to these combinations of time 

delay terms the effect of interactions is observable only after the largest combined dead  
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Table 5.14. Controller-dependent time-varying relative response array (CD-TV-RRA)  

for case study-3 (Shell heavy oil fractionator problem 4.2.1). 

Percentage 

of 

 
max D  

11  12  21  22  

10 Undefined Undefined Undefined Undefined 

20 Undefined Undefined Undefined 1.000 

30 Undefined Undefined 1.000 1.000 

40 1.000 1.000 1.000 1.000 

50 1.000 1.094 1.036 1.000 

60 1.032 2.376 1.463 1.015 

70 1.102 30.318 2.607 1.054 

80 1.169 -4.193 7.594 1.098 

90 1.227 -2.305 -13.865 1.142 

100 1.276 -1.725 -4.218 1.182 
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time (sum of process dead time) corresponding to diagonal or off-diagonal pairing is 

passed.  

 For the given example [Eq. (4.3)] the largest possible time delay combination for 

diagonal and off-diagonal pairing are 41 and 46 min, respectively. Therefore, the process 

interaction effects of significance for the Shell oil model [Eq. (5.20)] is observable only 

after 46 minutes, i.e., nearly 53 percentage of maximum response period of observation. 

In Table (5.14), the significant response period of observation is 60 to 100 percentage of 

maximum response period of observation. During this period the CD-TV-RRA clearly 

indicates that the diagonal elements 11  and 22  are greater than 0.5 and close to 1. Also, 

the off-diagonal elements of CD-TV-RRA during the considered period of observation 

change sign and pass through discontinuity which are the characteristics of an unstable 

loop. Thus, it is not favorable to pair variables corresponding to off-diagonal elements. 

Therefore, the obvious choice for pairing is the "diagonal", i.e., (1-1)/(2-2) variable 

pairing. 

 

Closed-loop Performance  

Table (5.15) shows the ITAE controller settings in terms of function block parameters for 

Simulink model (Figure 5.8) of the Shell heavy oil fractionator model [Eq. (4.3)]. 

 The simulation results in Figure 5.9 indicates the response of output 1y  and 2y for 

unit step change in set point spy ,1 . In order to compare the diagonal and off-diagonal 

control structures the step change in set point of 1y  is given at time 10 min. It can 

precisely be concluded from Figure 5.9, that the diagonal pairing, i.e., pairing variables 

11 uy   and 22 uy  gives the stable closed-loop response whereas off-diagonal pairing  
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Table 5.15. ITAE based PI controller settings (function block parameters) for 

 Simulink model of case study-3 (Shell heavy oil fractionator problem 4.2.1). 

Plant Element 
Desired Closed-loop     

Time Constant, c  

Controller Gain, 

cK  

Integral mode gain, 

IcK   

150

05.4
27





s

e
s

 25 0.2544 0.0048 

160

77.1
28





s

e
s

 25 0.6654 0.0106 

150

39.5
18





s

e
s

 16 0.2772 0.0054 

160

72.5
14





s

e
s

 15 0.3885 0.0064 
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Figure 5.8. Simulink model of diagonal and off-diagonal pairing for case study-3 (Shell 

heavy oil fractionator problem 4.2.1). 
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(a) Diagonal Pairing  

 
(b) Off-diagonal Pairing 

 

Figure 5.9. Comparison of diagonal (a) and off-diagonal (b) pairing results in case study-

3 (Shell heavy oil fractionator problem 4.2.1). 
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results in unbounded closed-loop response. Thus, the variable pairing corresponding to 

the diagonal elements should be a preferred choice, i.e., (1-1)/(2-2) variable pairing is the 

best pairing for the Shell heavy oil fractionator model [Eq. (4.3)].   

 For Shell heavy oil fractionator problem 4.2.1 [Eq. (4.3)], the steady-state and 

dynamic methods of RGA analysis all concludes to "diagonal" pairing as shown in Table 

(5.16). In addition, the proposed relative response array (RRA) method gives much more  

information about the robustness of chosen pairing with change in process dynamics 

[Table (5.13) and (5.14)].   

 For the recommended "diagonal" pairing the Niederlinski index, NI (Niederlinski, 

1971) given by Eq. (3.5) comes out to be positive, whereas for the off-diagonal pairing it 

comes out to be negative. This indicates the stability of recommended (diagonal) pairing. 

 

5.2.1.3 Uncertainty Analysis: Steady-state and Dynamic Approach 

For the Shell heavy oil fractionator model given by Eq. (4.3), there are no negative 

element, therefore, exponent n  in equation (3.53) is 0. The steady-state interaction 

quotient k̂  from Eq. (3.53), for 0n  is 0.4118. The average residence time 

corresponding to each element of the fractionator model are given in Eq. (5.28):  

;7711, ar  ;8812, ar  ;6821, ar  7422, ar   (5.28) 

 Based on steady-state gain and average residence time information from Eqs. 

(5.19) and (5.30) respectively, the normalized gain matrix is calculated using Eqs. (3.48) 

and (3.49) for first and second order process elements respectively and is given in Eq. 

(5.29): 
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Table 5.16. Comparison of pairing recommendation by various methods for case study-3 (Shell heavy oil fractionator problem 4.2.1). 

Plant Model Pairing Method Resulting Array Recommended Pairing 

 


























160

72.5

150

39.5
160

77.1

150

05.4

1418

2827

s

e

s

e
s

e

s

e

sG
ss

ss

 

RGA 













7002.17002.0

7002.07002.1
 Diagonal, i.e., (1-1)/(2-2) 

ERGA 













7002.17002.0

7002.07002.1
 Diagonal, i.e., (1-1)/(2-2) 

EREA 













2042.12042.0

2042.02042.1
EREA  Diagonal, i.e., (1-1)/(2-2) 

Frequency-dependent DRGA Figure 5.7 Diagonal, i.e., (1-1)/(2-2) 

RRA 

(Proposed 

Method) 

CI-TA-RRA 













638.1638.0

638.0638.1
TACI  Diagonal, i.e., (1-1)/(2-2) 

CI-TV-RRA Table 5.13 Diagonal, i.e., (1-1)/(2-2) 

CD-TA-RRA 













182.1218.4

725.1276.1
TACD  Diagonal, i.e., (1-1)/(2-2) 

CD-TV-RRA Table 5.14 Diagonal, i.e., (1-1)/(2-2) 

Closed-loop response analysis Figure 5.9 Diagonal, i.e., (1-1)/(2-2) 
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









0773.00793.0

0201.00526.0
NK      (5.29) 

 The normalized dynamic interaction quotient based on normalized gain 

information [Eq. (5.29)] is obtained using Eq. (3.53) as 3921.0ˆ NK . 

 The uncertainty in parameters is assumed to vary in the range  1% to  50%. 

For simplicity of understanding the extent of uncertainty in gain and residence time of the 

process have been considered to be same, i.e.,   .  

 Table (5.17) shows the lower and upper bounds on interaction quotient for three 

different cases:  

i.) Considering uncertainty only in process gains, under steady-state framework; 

ii.) Considering uncertainty only in process gains, under dynamic framework; 

iii.) Considering uncertainty in both process gains and residence times of the process. 

 Now, corresponding to the upper and lower bound on interaction quotient, the 

upper and lower bound on RGA element 11  for the above three cases can be given as is 

shown in Table (5.18). 

The following conclusions can be drawn based on Table (5.18): 

(i) The RGA element 11  for the specific case of uncertainty in steady-state gains only 

under steady-state framework, remains greater than 0.5 up to an uncertainty of 20.83%, 

which suggests the pairing should corresponds to the diagonal elements 11  and 22 . 

However, for uncertainty above 20.83%  the 11  changes sign that makes the pairing 

decision ambiguous or no unique pairing can be obtained. 
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Table 5.17. Lower and upper bounds on interaction quotient under uncertainty for case study-3  

(Shell heavy oil fractionator problem 4.2.1). 

Percentage 

of 

uncertainty 

%%   or  

 

 

Interaction Quotient                     

 (For uncertain gain under 

Steady-state framework) 

(For uncertain gain under dynamic 

framework) 

(For uncertain gain and residence 

time under dynamic framework) 

Lower bound 

l
k̂  

Upper bound 

h
k̂  

Lower bound 

l
k̂  

Upper bound 

h
k̂  

Lower bound 

l
k̂  

Upper bound 

h
k̂  

1 0.3957 0.4286 0.3768 0.4081 0.3620 0.4248 

5 0.3369 0.5033 0.3208 0.4793 0.2614 0.5882 

10 0.2745 0.6177 0.2614 0.5882 0.1681 0.9150 

20 0.1765 0.9609 0.1681 0.9150 0.0436 3.5293 

30 0.1030 1.6473 0.0980 1.5686 -4.3135 -0.0356 

50 0 ∞ 0 ∞ -1.1764 -0.1307 
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Table 5.18. Lower and upper bound on RGA element 11  under uncertainty for case study-3 (Shell oil fractionator problem 4.2.1). 

Percentage 

of 

uncertainty 

%%   or  

 

Lower and Upper bound on RGA element 11  

For uncertain gain under Steady-state 

(Chen and Seborg, 2002) 

For uncertain gain under 

dynamic state 

(Proposed Approach) 

For uncertain gain and 

residence time 

(Proposed Approach) 

1 7502.16547.1 11     6896.16045.1 11    8297.08058.0 11    

5 0134.25082.1 11     9204.14724.1 11     8709.07498.0 11    

10  6160.23785.1 11    4284.23540.1 11     9130.06583.0 11    

20  8593.252143.1 11     7640.112020.1 11    9759.03331.0 11    

30 

 5449.111     & 

 111148.1   

 7588.111    & 

 111087.1   

6913.011    & 

 110206.1   

50 

011    & 

 111   

011    & 

 111   

0801.111     & 

 110053.3   
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(ii) When considering uncertainty in steady-state gains only under dynamic framework, 

the RGA element 11  found to be greater than 0.5 for uncertainty up to 21.83%, beyond 

which the 11  changes sign and the chosen control configuration may not be good 

enough to control the process at the set point. In such a situation no unique pairing could 

be recommended.  

 (iii) For uncertainty in both the steady-state gain gains and residence time (i.e. time 

constant and time delay) under dynamic framework the RGA element 11  remains 

greater than 0.5 only up to an uncertainty of 10.92%, beyond which the 11 changes sign 

and no unique pairing can be recommended.   

 It can be concluded from Table (5.18) that for all three cases of uncertainty the 

recommended pairing remained diagonal only. However, the tolerance to uncertainty in  

steady-state gains increases under dynamic framework from its steady-state counterpart. 

But, for uncertainty in both the gain and residence time the tolerable uncertainty reduces 

drastically. Thus, it is strongly recommended to carryout uncertainty analysis under 

dynamic framework considering uncertainty in all model parameters.  

 

5.2.2 Case Study-4: Distillation Column Control Problem 

Consideringthe Doukas Luyben distillation column discussed in Chapter 4, Section 4.2.2 

given by Eq. (4.4). 

 For the given distillation column plant model [Eq. (4.4)] the selection of best 

control configuration are carried out based on steady-state and various dynamic RGA 

approaches. Since the given distillation column model is a 33  control problem, the 
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controller-dependent RRA methods and uncertainty analysis would not be applicable as 

they are limited to 22  systems only. 

 

5.2.2.1 RGA Analysis: Steady-state Approach 

The steady-state gain matrix for the distillation column model [Eq. (4.4)] is given by Eq. 

(5.30):  

























38.233.00204.0

984.524.5986.1

811.93.11374.0

K    (5.30) 

 The steady-state RGA matrix corresponding to Eq. (5.30) is given in Eq. (5.31):  























8900.01039.00060.0

0117.01043.00926.1

0983.00004.10986.0

   (5.31) 

 As per pairing rules, the pairing will correspond to those elements which are 

greater than 0.5 and non-negative. Therefore, the pairing based on steady-state RGA 

analysis for the given distillation model [Eq. (4.4)] is: (1-2)/(2-1)/(3-3). 

 

5.2.2.2 RGA Analysis: Dynamic Approach 

The dynamic RGA analysis would now be conducted based on methods discussed in 

Chapter 3 (Section 3.2)  as follows: 

 

Effective Relative Gain Array (ERGA) 

The bandwidth matrix [defined in Eq. (3.15)] for the considered distillation column 

problem [Eq. (4.4)] is given in Eq. (5.32) :  
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

















699.0420.0140.0

070.0003.0015.0

088.0046.0045.0

    (5.32) 

 Based on the steady-state gain matrix [Eq. (5.30)] and bandwidth matrix [Eq. 

(5.32)], the effective gain matrix is obtained as per Eq. (3.14) and is given in Eq. (5.33):  

























6636.11386.00029.0

4189.00157.00298.0

8634.05198.00168.0

KE    (5.33) 

 Using effective gain matrix [Eq. (5.33)], the effective relative gain array is 

calculated based on Eq. (3.18) and is given in Eq. (5.34): 





















 

8887.00908.00205.0

0125.00168.00293.1

1238.09260.00497.0
TEE    (5.34) 

Analysis of ERGA [Eq. (5.34)] shows that the elements (1-2), (2-1) and (3-3) are close to 

1 and positive. Therefore, based on ERGA matrix the recommended pairing is (1-2)/(2-

1)/(3-3). 

 

Effective Relative Energy Array (EREA)   

For generating EREA matrix we first need to determine the effective energy array, which 

is obtained using steady-state gain and bandwidth information from Eqs. Eq. (5.30) and 

(5.32) respectively of the DL distillation column [Eq. (4.4)] as given in Eq. (5.35):  

























9594.30457.00001.0

5066.20824.00592.0

4705.88737.50063.0

* KKE   (5.35) 

 Based on the effective energy matrix [Eq. (5.35)], the effective relative energy 

array is calculated as per Eq. (3.26) and is given in Eq. (5.36):  
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



















 

9835.00159.00006.0

0001.00015.00014.1

0164.09586.00020.0
TEEEREA    (5.36) 

 Since the EREA is defined in the same way as the RGA [Eq. (3.4)], it follows the 

same pairing rules as RGA. The analysis of EREA clearly shows that the element 

corresponding to variable pair 21 uy  , 12 uy   and 33 uy   are close to 1 and non-

negative. Therefore, recommended pairing is (1-2)/(2-1)/(3-3). 

 

Frequency Dependent RGA (FDRGA) 

The variation of frequency dependent RGA for all the RGA elements of DL distillation 

column model [Eq. (4.4)] is obtained based on Eq. (3.28) using Matlab, and is shown in 

Figure (5.10 ). The Matlab code for the same is given in Appendix-IV.  

 For the given distillation column model [Eq. (4.4)] the frequency range of interest 

varies within 0.001 to 1. From Figure 5.10 (a)  it can be observed that for output 1y , the 

RGA element (1,1) and (1,3) are close to zero or negative under most frequency range of 

interests, whereas only the RGA element (1,2) remains positive and greater than 0.5. 

Similarly  for Figure 5.10 (b) the RGA element (2,1) is positive and close to 1 in the most 

frequency range of interest whereas elements (2,2) and (2,3) are close to zero and less 

than 0.5. Therefore, variable 12 uy   should be paired. And, for output 3y  from Figure 

5.10 (c), the RGA element (3,3) remains positive and close to 1 in the most frequency 

range of interest. Therefore, variable 33 uy   should be paired. Thus, overall 

recommended variable pairing is: (1-2)/(2-1)/(3-3) and their variations with frequency are 

shown in Figure 5.10 (d).    
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Figure 5.10 (a) RGA elements (1-1)/(1-2)/(1-3) response for various frequencies for case 

study-4 (DL distillation column problem 4.2.2). 

 
Figure 5.10 (b) RGA elements (2-1)/(2-2)/(2-3) response for various frequencies for case 

study-4 (DL distillation column problem 4.2.2). 
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Figure 5.10 (c) RGA elements (3-1)/(3-2)/(3-3) response for various frequencies for case 

study-4 (DL distillation column problem 4.2.2). 

 
Figure 5.10 (d) RGA elements (1-2)/(2-1)/(3-3)] response for various frequencies for 

case study-4 (DL distillation column problem 4.2.2). 
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Relative Response Array (RRA)  

The given distillation column model [Eq. (4.4)] is 33  control problem. As discussed in 

Chapter 3 (Section 3.3) that the controller-dependent versions of relative response array 

could not be defined for 33  systems and are currently limited to 22  systems only. 

Therefore, in the following section we will discuss only the controller-independent 

versions of RRA: 

 

i.) Controller-independent time-average RRA (CI-TA-RRA) 

The CI-TA-RRA is obtained based on Eqs. (3.42) and (3.43), and is given in Eq. (3.37) 

as:  

 























877.0101.0022.0

014.0051.0037.1

109.0950.0059.0

TACI     (5.37) 

 The elements corresponding to variable pair 21 uy  , 12 uy   and 33 uy   of CI-

TA-RRA are greater than 0.5 and close to 1, all other elements are either less than 0.5 or 

are negative. It is recommended to avoid the pairing of variables corresponding to the 

negative and less than 0.5 RGA elements. Therefore, the recommended pairing based on 

CI-TA-RRA analysis is (1-2)/(2-1)/(3-3). 

 

ii.) Controller-independent time-varying RRA (CI-TV-RRA) 

Table (5.19) shows the values of CI-TV-RRA elements based on Eqs. (3.43) and (3.44) 

corresponding to 10 to 100 percentage of the maximum time of response observation, i.e., 

the sum of dominant time constant and maximum process dead time. It can be  
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Table 5.19. Controller-independent time-varying relative response array (CI-TV-RRA) 

for case study-4 (DL distillation column problem 4.2.2). 

Percentage 

of 

 
max D  

11  12  13  
21  22  23  31  32  33  

10 0.005 1.009 -0.014 0.809 0.000 0.191 0.186 -0.009 0.822 

20 -0.003 1.015 -0.012 0.902 -0.008 0.106 0.100 -0.007 0.906 

30 -0.012 1.026 -0.013 0.946 -0.019 0.073 0.067 -0.007 0.940 

40 -0.019 1.033 -0.014 0.968 -0.026 0.058 0.051 -0.007 0.956 

50 -0.023 1.038 -0.015 0.981 -0.031 0.050 0.042 -0.007 0.965 

60 -0.027 1.042 -0.015 0.991 -0.035 0.045 0.036 -0.007 0.971 

70 -0.030 1.046 -0.016 0.998 -0.039 0.041 0.032 -0.007 0.975 

80 -0.033 1.050 -1.016 1.004 -0.043 0.039 0.029 -0.007 0.978 

90 -0.036 1.053 -0.017 1.009 -0.046 0.037 0.027 -0.007 0.980 

100 -0.039 1.056 -0.018 1.013 -0.049 0.036 0.025 -0.007 0.982 
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observed that in the whole period of response observation the elements 12 , 21  and 33  

remains positive and greater than 0.5, whereas all other elements remained either 

negative or less than 0.5 throughout. Thus, the recommended pairing based on CI-TV-

RRA is:  (1-2)/(2-1)/(3-3). 

 

Closed-loop Performance  

Table (5.20) shows the IMC controller settings in terms of function block parameters for 

Simulink model (Figure 5.11) of the given DL distillation column [Eq. (4.4)]. 

 The simulation results in Figure 5.12 indicates the response of outputs 1y , 2y  

and 
3y  for a unit step change in set point. In order to compare all the possible control 

configurations (pairing) the step change in set point of 
3y  is given at 10 minutes. It can 

precisely be concluded from Figure 5.12 (a) - (f), that the pairing (1-2)/(2-1)/(3-3) [Figure 

5.12 (c)] and (1-3)/(2-1)/(3-2) [Figure 5.12 (e)] gives the stable closed-loop response, 

whereas all other pairing results in unbounded closed-loop response. Further compairison 

of the pairing (1-2)/(2-1)/(3-3) [Figure 5.12 (c)] and (1-3)/(2-1)/(3-2) [Figure 5.12 (e)] 

shows: (i) the former pairing is having better set point tracking ability (i.e., in variable  

3y ), (ii) the output 1y is having lower settling time in latter [(1-3)/(2-1)/(3-2)] pairing but 

is having higher overshoot for load rejection, (iii) for output 2y  the latter pairing is 

higher positive and negative overshoot in comparison to the former and will demand high 

control action. Thus, the the variable pairing corresponding to (1-2)/(2-1)/(3-3) elements 

should be a preferred choice, i.e., (1-2)/(2-1)/(3-3) variable pairing is the best pairing for 

the given distillation column model [Eq. (4.4)]. 
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Table 5.20. IMC based PI controller settings (function block parameters) for Simulink 

model of case study-4 (DL distillation column problem 4.2.2). 

Plant Element 

Desired 

Closed-loop     

Time 

Constant, c  

Controller 

Gain, 

cK  

Integral 

mode gain, 

IcK   

Derivative 

mode gain, 

DcK   

 2

75.7

12.22

374.0





s

e
s

 7 8.0486 0.1813 97.7311 

 2

79.3

174.21

3.11



 

s

e
s

 4 -0.4936 -0.0114 -5.3654 

 136.11

811.9
59.1



 

s

e
s

 2 -0.4433 -0.0365 -0.3294 

 2

71.0

167.66

986.1



 

s

e
s

 7 -8.7082 -0.0653 -0.2612 

 1400

24.5
60





s

e
s

 50 1.0258 0.0024 28.6270 

 129.14

984.5
24.2





s

e
s

 2 0.8254 0.0536 0.8573 

 2

59.0

114.7

0204.0





s

e
s

 1 440.2516 30.8299 1571.6982 

 2

68.0

138.2

33.0



 

s

e
s

 0.7 -8.5859 -1.8038 -10.2172 

 2

42.0

143.1

38.2





s

e
s

 0.5 1.3062 0.4567 0.9339 
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Figure 5.11. Simulink model of (1-2)/(2-1)/(3-3) pairing for case study-4 (DL distillation 

column problem 4.2.2). 
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Figure 5.12 (a). Comparison of output responses for (1-1)/(2-2)/(3-3) pairing for case 

study-4 (DL distillation column problem 4.2.2). 

 
Figure 5.12 (b). Comparison of output responses for (1-1)/(2-3)/(3-2) pairing for case 

study-4 (DL distillation column problem 4.2.2). 
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Figure 5.12 (c). Comparison of output responses for (1-2)/(2-1)/(3-3) pairing for case 

study-4 (DL distillation column problem 4.2.2). 

 
Figure 5.12 (d). Comparison of output responses for (1-2)/(2-3)/(3-1) pairing for case 

study-4 (DL distillation column problem 4.2.2). 
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Figure 5.12 (e). Comparison of output responses for (1-3)/(2-1)/(3-2) pairing for case 

study-4 (DL distillation column problem 4.2.2). 

 
Figure 5.12 (f). Comparison of output responses for (1-3)/(2-2)/(3-1) pairing for case 

study-4 (DL distillation column problem 4.2.2). 
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Table 5.21. Comparison of pairing recommendation by various methods for case study-4 (DL distillation column problem 4.2.2). 

Plant Model Pairing Method Resulting Array 
Recommended 

Pairing 

 

 

 

 

   

   

    



























































2

42.0

2

68.0

24.260

59.1

2

79.3

2

59.0

2

71.0

2

75.7

143.1

38.2

138.2

33.0

129.14

984.5

1400

24.5

136.11

811.9

174.21

3.11

114.7

0204.0

167.66

986.1

12.22

374.0

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

sG

ss

ss

ss

s

s

s

 

 

RGA 























8900.01039.00060.0

0117.01043.00926.1

0983.00004.10986.0

 (1-2)/(2-1)/(3-3) 

ERGA 























8887.00908.00205.0

0125.00168.00293.1

1238.09260.00497.0

 (1-2)/(2-1)/(3-3) 

EREA 























9835.00159.00006.0

0001.00015.00014.1

0164.09586.00020.0

EREA  (1-2)/(2-1)/(3-3) 

Frequency-dependent DRGA Figure 5.10 (1-2)/(2-1)/(3-3) 

RRA 

(Proposed 

Method) 

CI-TA-RRA 























877.0101.0022.0

014.0051.0037.1

109.0950.0059.0

TACI  (1-2)/(2-1)/(3-3) 

CI-TV-RRA Table 5.19 (1-2)/(2-1)/(3-3) 

CD-TA-RRA --- 

CD-TV-RRA ---  

Closed-loop response analysis Figure 5.12 (1-2)/(2-1)/(3-3) 
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 For the DL distillation column control problem 4.2.2 [Eq. (4.4)], the steady-state 

and dynamic methods of RGA analysis concludes to "diagonal" pairing. In addition, the 

proposed relative response array (RRA) methods gives much more information regarding 

the process dynamics. The CI-TV-RRA [Table (5.19)] clearly indicates the dominance of 

(1-2)/(2-1)/(3-3) control configuration over all other possible configurations. For the 

recommended pairing the Niederlinski index, NI (Niederlinski, 1971) given by Eq. (3.5) 

comes out to be 1.025 (positive) which shows the high possibility of the recommended 

pairing to remain stable. However, the conclusion can only be drawn from negative NI 

for system of dimensions 33  and higher.  

 The summary of input-output pairing results based on steady-state and dynamic 

methods of RGA analysis for DL distillation column control problem is shown in Table 

(5.21). For the considered industrial problem all the pairing methods both steady-state 

and dynamic results in (1-2)/(2-1)/(3-3) variable pairing. The controller dependent forms 

of RRA are under development for process 33  and higher.   
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CHAPTER - 6 

CONCLUDING REMARKS 

 

In the present study, the most popular tool for control configuration selection, the steady-

state "relative gain array (RGA)" is extended to consider the effect of process dynamics. 

Performing the interaction analysis and taking decision for best control configuration 

based on steady-state information alone may lead to wrong pairings of variables, i.e., the 

resulting pairings may lead to underperformance of overall system. Thus, in the present 

study we have shown with the help of various case studies that it is important to consider 

the effect of process dynamics in control configuration selection. For the purpose of 

extending the steady-state RGA to dynamic systems, a new measure of process 

interaction is proposed in this study.  

 It is more than four decades since RGA has been introduced as a measure of 

closed-loop interaction. Very few attempts have been made towards the sensitivity of 

RGA analysis to model uncertainty and the work is majorly limited to the steady-state 

systems alone. The extension of RGA approach to uncertain process models under 

dynamic framework is proposed in this work. The aim is to gain insights into how 

process dynamics can affect control configuration decision based on RGA analysis in the 

face of model uncertainty.  

 The results obtained from proposed approaches are validated with that available 

in the literature. Also the results are analyzed based on IMC/ITAE controller design and 

tuning. This chapter presents a brief summary of the present work followed by 

conclusions, major contributions and future scope for research in this area. 
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6.1 Summary 

6.1.1 Introduction 

The advancements in chemical process technology have resulted in large scale 

multivariable plants. The control of such plants are carried out either by a centralized or a 

set of decentralized control system. In most industries the use of decentralized control is 

often preferred for handling a multivariable problem, over its centralized control 

counterpart. The reasons attributed to the choice are: ease of handling, independent 

tuning, maintenance flexibility and robustness against failures of individual loops. In 

designing a decentralized multi-loop control system, one has to first deal with the 

problem of obtaining suitable input-output pairings. The pairing should be such that the 

resulting loops are stable individually and together. For an n-dimensional square plant, 

i.e., a plant with n-inputs and n-outputs, there are n! possible pairings. It is a 

computationally challenging task to evaluate the performance of all the pairings. For 

wrongly paired variables the control system performance may get worse even for a highly 

sophisticated controller. Thus, any tool capable of screening out the worst pairings or 

selecting out the best pairing with minimum closed-loop interaction, will greatly reduce 

the computational efforts. For this purpose, a widely accepted tool is the Bristol's 

"relative gain array (RGA)" defined as: 

"The ratio of two gains representing first the process gain in an isolated 

loop ( ij ) and, second, the apparent process gain in that same loop when 

all other control loops are closed (
11 

ji ). The ratio of these gains defines 

an array (RGA) M with elements, 
1 jiijij  ".  
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 The RGA has many advantages over other interaction measures (Birk and 

Medvedev, 2003; Conley and Salgado, 2000; Mijores et al., 1986; Skogestad and Morari, 

1987; Wittenmark and Salgado, 2002), such as: (i) it requires only the steady-state gain 

information of the plant model, (ii) it is independent of the 'units' of input-output 

variables, (iii) it is independent of controller design and tuning, (iv) it contains all the 

process information in one single matrix. It has also found to be associated with many 

closed-loop properties such as robustness, stability, tolerance to the failure of actuators 

and sensors, decentralized integral controllability (DIC) etc. Although the advantages 

offered by RGA are fascinating, it has certain practical limitations that restricts its use as 

a reliable tool. It is a steady-state measure of process interaction and hence does not 

consider the effect of process dynamics in control configuration selection. This may lead 

to wrong variable pairings with inferior performance particularly for processes with 

dominant dynamics. Also it is defined on the assumption of "perfect control" which is 

significant under steady-state conditions only. In the present study, it is our attempt to 

overcome some of these limitations of RGA.  

 

6.1.2 Gaps in Literature  

The past few decades have witnessed numerous attempts of extending the applicability of 

RGA to dynamic processes. These approaches can be categorized either as controller-

independent approach or the one which requires rigorous controller design and tuning. 

The former is often based on the assumption of perfect control which is not realizable 

practically and has no significance particularly for dynamic systems. No serious attempts 
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have been made in generating an interaction measure with the simplicity attributes of 

RGA and also considers the physical realizability of the controller.   

 In most of the studies on the analysis of RGA and its properties, the availability of 

a process model is frequently assumed. However, in practice, the models of real systems 

always have some uncertainty associated with them. Still, the issue of RGA analysis 

sensitivity to model uncertainty has not been adequately addressed. For plants with 

uncertain process models, an incorrect pairing decision may result, if the RGA analysis is 

carried out based only on the nominal model of the process. The problem further 

aggravates when a sensitivity analysis of RGA elements to structured/parametric model 

uncertainty is carried out based on steady-state process model alone.  Further, the 

majority of the work is limited to the uncertainty in steady-state gains only, and no 

significant effort has been made towards uncertainty consideration in measurement of 

process time constant and time delays. 

 

6.1.3 Scope of Work 

In the present study, control configuration selection problem for decentralized control of 

multi-loop plant system is addressed. For the selection of best control configuration and 

analysis of the extent of interaction present, the widely accepted and probably the most 

reported tool the "RGA" has been adopted. The focus of the work is on the development 

of this well known tool, and to extend its application by overcoming its limitations. For 

this purpose various extensions of the RGA, reported in the literature to dynamic systems 

have been critically analyzed and compared. A new measure of process interaction the 

"relative response array (RRA)" is proposed. The properties of the RRA have also been 
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developed. The applicability of the approach is shown with the help of two benchmark 

test problems and two industrial problems. 

 Another major area of focus of the present study is on gaining insights into how 

process dynamics can affect control configuration decision based on RGA analysis in the 

face of structured model uncertainty. Parametric uncertainty in gain and residence time 

(includes both time constant and dead time) of the process has been considered. 

Analytical expressions for worst-case bounds of uncertainty in steady-state and dynamic 

RGA are derived for two input two output (TITO) plant models. Two benchmark test 

problems together with two industrial problems which have been used in several prior 

studies is considered here to demonstrate the effectiveness of the approaches. The 

obtained bounds of uncertainty in RGA provide valuable information pertaining to the 

necessity of robustness and accuracy in the model of decentralized multivariable systems. 

 Throughout the work, it has been assumed that the transfer function based model 

of the plant under study is available and that the relevant input and output for the model 

are also available. The work here is focused on the suitable pairing of these inputs and 

outputs, which can ensure robust performance.   

 

6.1.4 Relative Gain Array: Theory and Methods 

An approach of extending the steady-state relative gain array to consider the effect of 

process dynamics on input-output pairing decision is developed. The proposed measure 

of interaction the relative response array (RRA) is defined by following (i) a controller-

independent approach, and (ii) a controller-dependent approach. The controller-

independent approach is a conventional approach developed on the assumption of 
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"perfect control" of output variables in a feedback control scheme. Though the 

assumption of perfect control is valid only for steady-state systems but can provide a 

good approximation for dynamic systems. In the controller-dependent approach the 

assumption of perfect control is relaxed with a practically implementable controller. For 

this purpose an IMC based controller is designed in a feedback control  scheme.  

 On the basis of controller-independent approach two different variants of relative 

response array are proposed: (i) The controller-independent time-average relative 

response array (CI-TA-RRA), and (ii) The controller-independent time-varying relative 

response array (CI-TV-RRA). The controller-independent measures of RRA are defined 

on the basis of integral open-loop response of controlled outputs for a unit step change in 

their corresponding set-point. In particular, the CI-TA-RRA is based on the time 

weighted average of the response and CI-TV-RRA is defined as a function of time, 

therefore CI-TV-RRA generates RRA matrix at each time instant and provides a better 

representation of the dynamic behavior of the system. Similarly, on the basis of 

controller-dependent approach the version of relative response array proposed are: (i) The 

controller-dependent time-average relative response array (CD-TA-RRA), and (ii) The 

controller-dependent time-varying relative response array (CD-TV-RRA). The controller-

dependent measures of RRA (CD-TA-RRA and CD-TV-RRA) has same meaning as that 

of the corresponding controller-independent measures (CI-TA-RRA and CI-TV-RRA). 

However, for producing controller-dependent measures of RRA the open and closed-loop 

step responses are calculated separately. Further the closed-loop system response is 

obtained considering a IMC controller in the feedback loop. The RRA follows the same 

basic definition as the relative gain array (RGA) i.e. defined as the ratio of open-loop 
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gain with all other loops under manual control to that of closed-loop gain with all other 

loops under automatic control. The various properties of RRA are also stated in this 

thesis. 

 In this study a novel approach is suggested to analyze the effect of process 

dynamics on the sensitivity of RGA elements. For incorporating the effect of process 

dynamics, a dynamic RGA approach available in the literature have been utilized in a 

distinctive manner. Also, the analytical expressions are derived for worst-case bounds on 

uncertainty in steady-state and dynamic RGA elements for TITO plant models. For this 

purpose, the parametric model uncertainty in gain and residence time (combined term for 

time constant and dead time) of the plant has been considered. The work has been carried 

out with the objective of identifying the limiting value of uncertainty for which possible 

pairing changes may occur.  

 

6.1.5 Case Studies: Selected Nonlinear Chemical Processes 

In this work four different case studies are considered for showing the applicability of the 

methods studied and developed. The examples considered comprise of two benchmark 

test problems and two industrial problems reported in the literature. The benchmark test 

problems considered for the study are control problems having typical process dynamics. 

The industrial problems adopted for the study are: (i) Shell oil fractionator problem 

reported in the literature as a control problem (ii) Doukas and Luyben distillation column 

reported in literature as a control problem. The process elements involved in the study of 

both set of problems are of first order, first order plus time delay, second order and 

second order plus time delay. 
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6.1.6 Results and Discussion: Comparison and Implementation of Proposed 

Techniques 

6.1.6.1 RGA Analysis: Steady-state and Dynamic Approach   

Each of the plant model introduced above have been analyzed for the selection of best 

control configuration. First the steady-state RGA analysis is conducted for obtaining 

suitable control configuration. The pairing decision is then analyzed based on dynamic 

RGA methods such as: frequency dependent dynamic RGA, effective relative gain array 

(ERGA), effective relative energy array (EREA), and relative response array (RRA). For 

verifying the correctness of the results (i.e. verifying the chosen pairing for stability and 

response speed) the response curve is generated based on rigorous IMC/ITAE controller 

tuning rules for the pairing decision obtained from steady-state RGA and dynamic RGA 

methods. All the calculations are performed in Matlab/Simulink.  

 It has been observed that in one of the case studies based on benchmark test 

problem, the steady-state RGA fails to identify the best pairings and recommends wrong 

pairings, whereas all the dynamic RGA approaches including all the variants of the 

proposed RRA approach were successful in identifying the best pairing. In another case 

study of benchmark test problem, few of the popular dynamic RGA (ERGA and EREA) 

methods could not conclude to any suitable pairing whereas all the variants of the 

proposed RRA approach successfully found the best pairing with no ambiguity. 

However, for both the real life control problems all the methods successfully identifies 

the best pairings. 

6.1.6.2 RGA Elements Sensitivity under Model Uncertainty 

The case studies considered have also been analyzed for the sensitivity of RGA elements 
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under parametric uncertainty in each element of the plant model. The objective is to 

observe the effect of model uncertainty on pairing decision, i.e., whether the input-output 

pairing changes for the considered uncertainty range. The objective is also to find the 

limiting point or maximum tolerable uncertainty for which the input-output pairing does 

not change. The model uncertainty in the study comprises of uncertainty in process gain, 

process time constant and time delay. The uncertainty in time constant and time delay are 

included in a combined term of residence time. 

 The results of sensitivity analysis on RGA elements clearly show that the input-

output pairing may change depending on the extent of uncertainty present in the model 

parameters. Further it has been observed that for uncertainty in steady-state gains,  the 

tolerable uncertainty for the input-output pairing to remain unchanged increases if the 

RGA analysis is carried out under dynamic framework rather than the steady-state 

framework. However, the tolerable uncertainty is found to be decreasing if the 

uncertainty is considered in all the model parameters (steady-state gain, time constant and 

dead time). Though for the purpose of sensitivity in RGA elements the uncertainty in 

model parameters are considered up to a value of around 50%, the results can easily be 

extended for higher level of uncertainty.   

 

6.2 Conclusions 

Based on the results obtained in the present study, the following conclusions are drawn: 

1. The steady-state RGA does not always gives the correct pairing suggestion about 

the best control configuration.  
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2. It is essential to perform RGA analysis under dynamic framework particularly for 

plants with dominant dynamics. 

3. The popular dynamic methods (ERGA and EREA) available in the literature are 

shown to be true for the set of hypothetically framed examples. However, for one 

of the case studies they completely failed to identify the best control 

configuration.  

4. Proposed measure of control configuration selection the relative response array 

(RRA) is a promising tool. It successfully identifies the best control configuration 

for all the four case studies, even in cases where steady-state RGA and controller 

independent dynamic RGA methods (ERGA and EREA) failed. 

5. The time-varying variants of RRA provides detailed information (eg. information 

regarding passing of RRA elements through discontinuity, sign change of RRA 

elements etc.) about the process dynamic behavior in comparison to other RGA 

methods. 

6. The obtained RGA uncertainty bounds found to be providing valuable 

information about the variation in extent of loop interaction with the change in 

process parameters. 

7. The RGA sensitivity analysis for uncertainty in process gain under steady-state 

framework gives undervalued tolerable uncertainty, whereas the actual plant 

(works under dynamic framework) can tolerate much higher levels of uncertainty 

in plant model, provided the uncertainty in process time constant and dead time 

are tightly controlled. 
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8. The presence of uncertainty in time constant and dead time measurement together 

with the uncertainty in process gain can significantly reduce the tolerable 

uncertainty levels. In such cases, the pairing decision needs to be critically 

analyzed. 

9. The worst-case bounds on RGA elements can provide good estimates of tolerable 

uncertainty in plant model for which the recommended input-output variable 

pairing remain unchanged. 

10. The lower values of tolerable uncertainty emphasizes the need for high accuracy 

in plant model determination. 

 

6.3 Major Contributions 

1. A state-of-the-art review is carried out on the control configuration selection 

methods emphasizing relative gain array as a tool.   

2. A new measure of process interaction the "relative response array (RRA)" and its 

four different variants (CI-TA-RRA, CI-TV-RRA, CD-TA-RRA and CD-TV-

RRA) are proposed. The proposed measure can provide the best control 

configuration for dynamic process systems. 

3. The precision of the proposed measures are tested on four case studies consisting 

of two benchmark test problems with typical process dynamics and two industrial 

control problems.  

4. Simulink models were developed for testing the stability and performance of 

chosen control configuration based on closed-loop response analysis using 

IMC/ITAE controller design and tuning. 
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5. The most popular methods of control configuration selection based on RGA 

approach under steady-state and dynamic framework are studied and compared 

with the proposed RRA approach. 

6. A new approach for the sensitivity analysis of RGA elements for parametric 

uncertainty is proposed.  

7. For sensitivity analysis of RGA elements under dynamic framework the 

uncertainty in process gain, process time constant and dead time have been 

considered together for the first time. The previous studies considered the 

uncertainty in steady-state gain only and the sensitivity analysis is conducted 

under steady-state framework.   

8. A new interaction parameter "dynamic interaction quotient" has also been 

introduced. The dynamic interaction quotient helps in determining the worst-case 

upper and lower bounds on RGA elements under uncertainty. 

9. Analytical expressions are derived for the worst-case bound on RGA elements for 

parametric uncertainty in 22  plant models.   

10. Tolerable uncertainty on plant models (case studies) were determined using 

worst-case bounds of RGA elements under parametric uncertainty, for which the 

control-loop pairing remains unchanged. 

 

6.4 Future Scope of Research 

The future scope of this work is enumerated below: 

1. The controller-dependent variants of the proposed measure "relative response 

array" have been developed for 22  plant models in this study. The approach  
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 can be extended for system having 33  dimension or higher.  

2. The RRA approach can also be extended for plants with integrator and 

differentiators. 

3. The closed-loop response of controller-dependent variants of RRA are defined 

assuming IMC controller. Other model based controllers can also be tried and 

tested. 

4. In the present study, the analytical expression are derived for worst-case bound on 

RGA elements for parametric uncertainty in 22  plant models. The current study 

can be extended to 33  plant models. In addition the other forms of uncertainty 

(say unstructured uncertainty) in plant model can also be considered. 

5. For more rigorous sensitivity analysis of RGA with different uncertainty range for 

each model parameter the optimization approach (conventional, evolutionary 

and/or hybrid methods of optimization) can be developed. 
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APPENDIX - I 
 

MATLAB CODE FOR THE CASE STUDY – 1 

 22  Process Model with a Second Order Element 

 

The Matlab codes used in generating the results for various methods used in this study 

are as follows:  

1. Frequency Dependent RGA 

%Script File for the Computing Dynamic RGA 

%Define a Vector of Frequency Values on a Log Scale 

w=logspace(-3,0,200); 

s=i*w; 

  

%Compute the Frequency Response for each Element of gij 

g11=5./(4*s+1); 

g12=2.5*exp(-5*s)./((2*s+1).*(15*s+1)); 

g21=-4*exp(-6*s)./(20*s+1); 

g22=1./(3*s+1); 

  

%Compute Lambda(i,j) as a Function of Frequency 

L12=-g12.*g21./(g11.*g22-g12.*g21); 

lam12=sign(real(L12)).*abs(L12); 

  

%Using RGA Property of Unity Sum 

lam11=1-lam12; 

  

%Plot the Results 

semilogx(w,lam11,'-k',w,lam12,'--k') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (1,1) and (1,2)') 

  

2. Controller-Independent Time-Average RRA (CI-TA-RRA) 

 

%Variable Initialization and Declaration 

clear all 
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clc 

syms s t; 

  

%Process Transfer Function Elements  

g11=5./(4*s+1); 

g12=2.5*exp(-5*s)./((2*s+1).*(15*s+1)); 

g21=-4*exp(-6*s)./(20*s+1); 

g22=1./(3*s+1); 

  

%Average Integral Open-loop Response   

y11ol=(1/(26-0))*int(ilaplace(g11*(1/s)),t,0,26); 

y12ol=(1/(26-5))*int(ilaplace(g12*(1/s)),t,5,26); 

y21ol=(1/(26-6))*int(ilaplace(g21*(1/s)),t,6,26); 

y22ol=(1/(26-0))*int(ilaplace(g22*(1/s)),t,0,26); 

         

%Overall Open-loop Response Matrix     

yol=[y11ol y12ol; y21ol y22ol]; 

  

%Obtaning CI-TA-RRA  

Roe=yol.*inv(yol)'; 

  

%For-loop for Results Printing 

for i=1:1:2 

    for j=1:1:2 

        fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

    end 

    fprintf('\n'); 

end 

 

3. Controller-Independent Time-Varying RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=5./(4*s+1); 

g12=2.5*exp(-5*s)./((2*s+1).*(15*s+1)); 

g21=-4*exp(-6*s)./(20*s+1); 
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g22=1./(3*s+1); 

  

% For-loop for Open-loop Response 

for p=0.1:0.1:1 

    fprintf('For p=%2.2f \t',p); 

  

    %Average Open-loop Response of Transfer Function Elements   

    y11ol=(1/(26-0))*int(ilaplace(g11*(1/s)),t,0,p*26); 

    y12ol=(1/(26-5))*int(ilaplace(g12*(1/s)),t,5,p*26); 

    y21ol=(1/(26-6))*int(ilaplace(g21*(1/s)),t,6,p*26); 

    y22ol=(1/(26-0))*int(ilaplace(g22*(1/s)),t,0,p*26); 

     

    %Overall Open-loop Response Matrix     

    yol=[y11ol y12ol; y21ol y22ol]; 

  

    %Obtaining CI-TV-RRA 

    Roe=yol.*inv(yol)'; 

  

    %For-loop for Results Printing     

    for i=1:1:2 

        for j=1:1:2 

            fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

        end 

        fprintf('\n'); 

    end 

end 

 

4. Controller-Dependent Time-Average RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration  

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements    

g11=5./(4*s+1); 

g12=2.5*exp(-5*s)./((2*s+1).*(15*s+1)); 

g21=-4*exp(-6*s)./(20*s+1); 

g22=1./(3*s+1); 
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%Average Open-loop Response of Transfer Function Elements   

y11ol=(1/(26-0))*int(ilaplace(g11*(1/s)),t,0,26); 

y12ol=(1/(26-5))*int(ilaplace(g12*(1/s)),t,5,26); 

y21ol=(1/(26-6))*int(ilaplace(g21*(1/s)),t,6,26); 

y22ol=(1/(26-0))*int(ilaplace(g22*(1/s)),t,0,26);     

%IMC Filter Desgin for Closed-loop System  

F11=1/(0.1*s+1);  

P11=g11;  

Q11=F11/P11;   

  

F12=1/(0.1*s+1).^2;  

P12=g12/exp(-5*s); 

Q12=F12/P12; 

  

F21=1/(0.1*s+1);  

P21=g21/exp(-6*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22;  

Q22=F22/P22; 

     

%Average Closed-loop Response of Transfer Function Elements  

y11cl=(1/(26-0))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,0,26); 

y12cl=(1/(26-5))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,5,26); 

y21cl=(1/(26-6))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,6,26); 

y22cl=(1/(26-0))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,0,26); 

     

% Obtaining CD-TA-RRA  

Roe11=y11ol/y11cl; 

Roe12=y12ol/y12cl; 

Roe21=y21ol/y21cl; 

Roe22=y22ol/y22cl; 

     

%Printing CD-TA-RRA Results  

fprintf('Roe11=%6.3f \t Roe12=%6.3f \t Roe21=%6.3f \t Roe22=%6.3f \n',  

         double(Roe11),double(Roe12),double(Roe21),double(Roe22));  

         

5. Controller-Dependent Time-Varying RRA (CD-TV-RRA) 

%Variable Initialization and Declaration  
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clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=5./(4*s+1); 

g12=2.5*exp(-5*s)./((2*s+1).*(15*s+1)); 

g21=-4*exp(-6*s)./(20*s+1); 

g22=1./(3*s+1); 

  

%IMC Filter Desgin for Controller Dependent Open and Closed-loop System  

F11=1/(0.1*s+1);  

P11=g11;  

Q11=F11/P11;   

  

F12=1/(0.1*s+1).^2;  

P12=g12/exp(-5*s); 

Q12=F12/P12; 

  

F21=1/(0.1*s+1);  

P21=g21/exp(-6*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22;  

Q22=F22/P22; 

  

%For-loop for Open and Closed-loop Response  

for p=0.0:0.1:1 

        fprintf('For p=%2.2f \t',p); 

  

        %Average Open-loop Response of Transfer Function Elements      

        y11ol=(1/(26-0))*int(ilaplace(g11*(1/s)),t,0,p*26); 

        y12ol=(1/(26-5))*int(ilaplace(g12*(1/s)),t,5,p*26); 

        y21ol=(1/(26-6))*int(ilaplace(g21*(1/s)),t,6,p*26); 

        y22ol=(1/(26-0))*int(ilaplace(g22*(1/s)),t,0,p*26); 

     

        %Average Closed-loop Response of Transfer Function Elements 

        y11cl=(1/(26-0))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,0,p*26); 

        y12cl=(1/(26-5))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,5,p*26); 
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        y21cl=(1/(26-6))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,6,p*26); 

        y22cl=(1/(26-0))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,0,p*26); 

      

        %Obtaining CD-TV-RRA                       

        Roe11=y11ol/y11cl; 

        Roe12=y12ol/y12cl; 

        Roe21=y21ol/y21cl; 

        Roe22=y22ol/y22cl; 

     

        %Printing CD-TV-RRA Results 

        fprintf('Roe11=%6.3f \t Roe12=%6.3f \t Roe21=%6.3f \t Roe22=%6.3f \n',  

                double(Roe11),double(Roe12),double(Roe21),double(Roe22));  

end 

 

6. Uncertainty Analysis: Steady-State and Dynamic Approach 

 

%Variable Declaration and Initialization 

clc 

k11=5; 

k12=2.5; 

k21=4; 

k22=1; 

tauar11=4; 

tauar12=22; 

tauar21=26; 

tauar22=3; 

n=1; 

  

KN11=k11/tauar11; 

KN12=k12/tauar12; 

KN21=k21/tauar21; 

KN22=k22/tauar22; 

  

%Finding Steady-state and Dynamic Interaction Quotient 

Kcap=((-1)^n)*((k12*k21)/(k11*k22)); 

KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

  

%For-loop for Finding Kh, Kl and Uncertainty Bounds 

for i=1:1:3 

  



189 

 

    if i==1 

        fprintf('Steady-State Analysis:\n'); 

        KNcap=Kcap; 

        factor=2; 

  

    elseif i==2 

        fprintf('Dynamic Analysis:\n');     

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=2; 

         

    elseif i==3 

        fprintf('Uncertain Gain-Residence Time:\n'); 

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=4; 

    end 

  

    if n==1|3 

        fprintf('alpha=0.01\t'); 

        alpha=0.01; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end         

         

                

        fprintf('alpha=0.05\t'); 

        alpha=0.05; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 
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        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

 % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

        fprintf('alpha=0.15\t'); 

        alpha=0.15; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 
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            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.25\t'); 

        alpha=0.25; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 
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        end   

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

  

        fprintf('alpha=0.35\t'); 

        alpha=0.35; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

  



193 

 

        fprintf('alpha=0.4\t'); 

        alpha=0.4; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

        fprintf('alpha=0.45\t'); 

        alpha=0.45; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 
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        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

        fprintf('alpha=1.0\t'); 

        alpha=1; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

  

    else 

        fprintf('alpha=0.01\t'); 

        alpha=0.01; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 
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        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.05\t'); 

        alpha=0.05; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end   

  

        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 
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            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

        fprintf('alpha=0.15\t'); 

        alpha=0.15; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end  

  

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 
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            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

        fprintf('alpha=0.25\t'); 

        alpha=0.25; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end  

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 
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        fprintf('alpha=0.35\t'); 

        alpha=0.35; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

   

        fprintf('alpha=0.4\t'); 

        alpha=0.4; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end  

  

        fprintf('alpha=0.45\t'); 

        alpha=0.45; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 
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        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end  

  

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

         

        fprintf('alpha=1\t'); 

        alpha=1; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

         

        % RGA elements variation range 

        if klmin<khmax 
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            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

 lowerlimit); 

        end 

  

    end 

end 
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APPENDIX - II 

 

MATLAB CODE FOR THE CASE STUDY – 2 

 22  Process Model with typical Process Dynamics 

 

The Matlab codes used in generating the results for various methods used in this study 

are as follows:  

1. Frequency Dependent RGA 

%Script File for the Computing Dynamic RGA 

%Define a Vector of Frequency Values on a Log Scale 

w=logspace(-3,0,100); 

s=i*w; 

  

%Compute the Frequency Response for each Element of gij 

g11=-0.805./((18.3*s+1).*(5.6*s+1)); 

g12=0.055./((5.76*s+1).*(1.25*s+1)); 

g21=-0.465*exp(-0.3*s)./((28.3*s+1).*(0.62*s+1)); 

g22=-0.055./(3.3*s+1); 

  

%Compute Lambda(i,j) as a Function of Frequency 

L12=-g12.*g21./(g11.*g22-g12.*g21); 

lam12=sign(real(L12)).*abs(L12); 

  

%Using RGA Property of Unity Sum 

 lam11=1-lam12; 

   

%Plot the Results 

semilogx(w,lam11,'-k',w,lam12,'--k') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (1,1) and (1,2)') 

  

2. Controller-Independent Time-Average RRA (CI-TA-RRA) 

 

%Variable Initialization and Declaration 

clear all 
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clc 

syms s t; 

  

%Process Transfer Function Elements  

g11=-0.805./((18.3*s+1).*(5.6*s+1)); 

g12=0.055./((5.76*s+1).*(1.25*s+1)); 

g21=-0.465*exp(-0.3*s)./((28.3*s+1).*(0.62*s+1)); 

g22=-0.055./(3.3*s+1); 

  

%Average Integral Open-loop Response  

y11ol=(1/(10.42-0))*int(ilaplace(g11*(1/s)),t,0,10.42); 

y12ol=(1/(10.42-0))*int(ilaplace(g12*(1/s)),t,0,10.42); 

y21ol=(1/(10.42-0.3))*int(ilaplace(g21*(1/s)),t,0.3,10.42); 

y22ol=(1/(10.42-0))*int(ilaplace(g22*(1/s)),t,0,10.42); 

     

%Overall Open-loop Response Matrix     

yol=[y11ol y12ol; y21ol y22ol]; 

  

%Obtaining CI-TA-RRA  

Roe=yol.*inv(yol)'; 

  

%For-loop for Results Printing 

for i=1:1:2 

    for j=1:1:2 

        fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

    end 

    fprintf('\n'); 

end 

 

3. Controller-Independent Time-Varying RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=-0.805./((18.3*s+1).*(5.6*s+1)); 

g12=0.055./((5.76*s+1).*(1.25*s+1)); 

g21=-0.465*exp(-0.3*s)./((28.3*s+1).*(0.62*s+1)); 
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g22=-0.055./(3.3*s+1); 

  

% For-loop for Open-loop Response 

for p=0.1:0.1:1 

    fprintf('For p=%2.2f \t',p); 

  

    %Average Open-loop Response of Transfer Function Elements 

    y11ol=(1/(10.42-0))*int(ilaplace(g11*(1/s)),t,0,p*10.42); 

    y12ol=(1/(10.42-0))*int(ilaplace(g12*(1/s)),t,0,p*10.42); 

    y21ol=(1/(10.42-0.3))*int(ilaplace(g21*(1/s)),t,0.3,p*10.42); 

    y22ol=(1/(10.42-0))*int(ilaplace(g22*(1/s)),t,0,p*10.42); 

     

    %Overall Open-loop Response Matrix 

    yol=[y11ol y12ol; y21ol y22ol]; 

  

    %Obtaining CI-TV-RRA 

    Roe=yol.*inv(yol)'; 

  

    %For-loop for Results Printing 

    for i=1:1:2 

        for j=1:1:2 

            fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

        end 

        fprintf('\n'); 

    end 

end 

 

4. Controller-Dependent Time-Average RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration  

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=-0.805./((18.3*s+1).*(5.6*s+1)); 

g12=0.055./((5.76*s+1).*(1.25*s+1)); 

g21=-0.465*exp(-0.3*s)./((28.3*s+1).*(0.62*s+1)); 

g22=-0.055./(3.3*s+1); 
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%Average Open-loop Response of Transfer Function Elements   

y11ol=(1/(10.42-0))*int(ilaplace(g11*(1/s)),t,0,10.42); 

y12ol=(1/(10.42-0))*int(ilaplace(g12*(1/s)),t,0,10.42); 

y21ol=(1/(10.42-0.3))*int(ilaplace(g21*(1/s)),t,0.3,10.42); 

y22ol=(1/(10.42-0))*int(ilaplace(g22*(1/s)),t,0,10.42); 

     

%IMC Filter Desgin for Closed-loop System 

F11=1/(0.1*s+1)^2;  

P11=g11;  

Q11=F11/P11;   

  

F12=1/(0.1*s+1).^2;  

P12=g12; 

Q12=F12/P12; 

  

F21=1/(0.1*s+1)^2;  

P21=g21/exp(-0.3*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22;  

Q22=F22/P22;   

    

%Average Closed-loop Response of Transfer Function Elements 

y11cl=(1/(10.42-0))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,0,10.42); 

y12cl=(1/(10.42-0))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,0,10.42); 

y21cl=(1/(10.42-0.3))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,0.3,10.42); 

y22cl=(1/(10.42-0))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,0,10.42); 

     

% Obtaining CD-TA-RRA 

Roe11=y11ol/y11cl; 

Roe12=y12ol/y12cl; 

Roe21=y21ol/y21cl; 

Roe22=y22ol/y22cl; 

     

%Printing CD-TA-RRA Results 

fprintf('Roe11=%6.3f \t Roe12=%6.3f \t Roe21=%6.3f \t Roe22=%6.3f \n',  

         double(Roe11),double(Roe12),double(Roe21),double(Roe22));  
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5. Controller-Dependent Time-Varying RRA (CD-TV-RRA) 

%Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=-0.805./((18.3*s+1).*(5.6*s+1)); 

g12=0.055./((5.76*s+1).*(1.25*s+1)); 

g21=-0.465*exp(-0.3*s)./((28.3*s+1).*(0.62*s+1)); 

g22=-0.055./(3.3*s+1); 

  

%IMC Filter Design for Controller Dependent Open and Closed-loop System 

F11=1/(0.1*s+1)^2;  

P11=g11;  

Q11=F11/P11;   

  

F12=1/(0.1*s+1).^2;  

P12=g12; 

Q12=F12/P12; 

  

F21=1/(0.1*s+1)^2;  

P21=g21/exp(-0.3*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22;  

Q22=F22/P22; 

  

% For-loop for Open and Closed-loop Response 

for p=0.1:0.1:1 

    fprintf('For p=%2.2f \t',p); 

  

    %Average Open-loop Response of Transfer Function Elements   

    y11ol=(1/(10.42-0))*int(ilaplace(g11*(1/s)),t,0,p*10.42); 

    y12ol=(1/(10.42-0))*int(ilaplace(g12*(1/s)),t,0,p*10.42); 

    y21ol=(1/(10.42-0.3))*int(ilaplace(g21*(1/s)),t,0.3,p*10.42); 

    y22ol=(1/(10.42-0))*int(ilaplace(g22*(1/s)),t,0,p*10.42); 

     

    %Average Closed-loop Response of Transfer Function Elements 
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    y11cl=(1/(10.42-0))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,0,p*10.42); 

    y12cl=(1/(10.42-0))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,0,p*10.42); 

    y21cl=(1/(10.42-0.3))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,0.3,p*10.42); 

    y22cl=(1/(10.42-0))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,0,p*10.42); 

    %Obtaining CD-TV-RRA                

    Roe11=y11ol/y11cl; 

    Roe12=y12ol/y12cl; 

    Roe21=y21ol/y21cl; 

    Roe22=y22ol/y22cl; 

     

    %Printing CD-TV-RRA Results 

    fprintf('Roe11=%6.3f \t Roe12=%6.3f \t Roe21=%6.3f \t Roe22=%6.3f   

 \n', double(Roe11),double(Roe12),double(Roe21),double(Roe22));  

end 

 

6. Uncertainty Analysis: Steady-State and Dynamic Approach 

 

%Variable Initialization and Declaration 

clc 

k11=0.805; 

k12=0.055; 

k21=0.465; 

k22=0.055; 

tauar11=23.9; 

tauar12=7.01; 

tauar21=29.22; 

tauar22=3.3; 

n=3; 

  

KN11=k11/tauar11; 

KN12=k12/tauar12; 

KN21=k21/tauar21; 

KN22=k22/tauar22; 

  

%Finding Steady-state and Dynamic Interaction Quotient 

Kcap=((-1)^n)*((k12*k21)/(k11*k22)); 

KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

  

%For-loop for Finding Kh, Kl and Uncertainty Bounds 

for i=1:1:3 

  

    if i==1 

        fprintf('Steady-State Analysis:\n'); 

        KNcap=Kcap; 
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        factor=2; 

  

    elseif i==2 

        fprintf('Dynamic Analysis:\n');     

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=2; 

         

    elseif i==3 

        fprintf('Uncertain Gain-Residence Time:\n'); 

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=4; 

    end 

  

    if n==1|3 

        fprintf('alpha=0.01\t'); 

        alpha=0.01; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end         

                        

        fprintf('alpha=0.05\t'); 

        alpha=0.05; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 
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        end   

  

        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end 

  

        fprintf('alpha=0.15\t'); 

        alpha=0.15; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 
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        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end 

  

        fprintf('alpha=0.25\t'); 

        alpha=0.25; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 
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        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

    else 

        fprintf('alpha=0.01\t'); 

        alpha=0.01; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.05\t'); 

        alpha=0.05; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   
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        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.15\t'); 

        alpha=0.15; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end        

         

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 
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            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end 

  

        fprintf('alpha=0.25\t'); 

        alpha=0.25; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 
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        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<= inf\n',upperlimit, 

lowerlimit); 

        end   

  

    end 

end 
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APPENDIX - III 
 

MATLAB CODE FOR THE CASE STUDY – 3 

Shell Heavy Oil Fractionator Problem 

 

The Matlab codes used in generating the results for various methods used in this study 

are as follows: 

1. Frequency Dependent RGA 

%Script File for the Computing Dynamic RGA 

%Define a Vector of Frequency Values on a Log Scale  

w=logspace(-3,0,100); 

s=i*w; 

  

%Compute the Frequency Response for each Element of gij  

g11=4.05*exp(-27*s)./(50*s+1); 

g12=1.77*exp(-28*s)./(60*s+1); 

g21=5.39*exp(-18*s)./(50*s+1); 

g22=5.72*exp(-14*s)./(60*s+1); 

  

%Compute Lambda(i,j) as a Function of Frequency  

L12=-g12.*g21./(g11.*g22-g12.*g21); 

lam12=sign(real(L12)).*abs(L12); 

  

%Using RGA Property of Unity Sum  

lam11=1-lam12; 

  

%Plot the Results 

semilogx(w,lam11,'-k',w,lam12,'--k') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (1,1) and (1,2)') 

 

2. Controller-Independent Time-Average RRA (CI-TA-RRA) 

 

%Variable Initialization and Declaration 

clear all 
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clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=4.05*exp(-27*s)./(50*s+1); 

g12=1.77*exp(-28*s)./(60*s+1); 

g21=5.39*exp(-18*s)./(50*s+1); 

g22=5.72*exp(-14*s)./(60*s+1); 

  

%Average Integral Open-loop Response   

y11ol=(1/(88-27))*int(ilaplace(g11*(1/s)),t,27,88); 

y12ol=(1/(88-28))*int(ilaplace(g12*(1/s)),t,28,88); 

y21ol=(1/(88-18))*int(ilaplace(g21*(1/s)),t,18,88); 

y22ol=(1/(88-14))*int(ilaplace(g22*(1/s)),t,14,88); 

         

%Overall Open-loop Response Matrix     

yol=[y11ol y12ol; y21ol y22ol]; 

  

%Obtaining CI-TA-RRA  

Roe=yol.*inv(yol)'; 

  

%For-loop for Results Printing 

for i=1:1:2 

    for j=1:1:2 

        fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

    end 

    fprintf('\n'); 

end 

 

3. Controller-Independent Time-Varying RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration  

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements  

g11=4.05*exp(-27*s)./(50*s+1); 

g12=1.77*exp(-28*s)./(60*s+1); 

g21=5.39*exp(-18*s)./(50*s+1); 
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g22=5.72*exp(-14*s)./(60*s+1); 

  

% For-loop for Open-loop Response  

for p=0.32:0.1:1 

    fprintf('For p=%2.2f \t',p); 

     

    %Average Open-loop Response of Transfer Function Elements     

    y11ol=(1/(88-27))*int(ilaplace(g11*(1/s)),t,27,p*88); 

    y12ol=(1/(88-28))*int(ilaplace(g12*(1/s)),t,28,p*88); 

    y21ol=(1/(88-18))*int(ilaplace(g21*(1/s)),t,18,p*88); 

    y22ol=(1/(88-14))*int(ilaplace(g22*(1/s)),t,14,p*88); 

     

    %Overall Open-loop Response Matrix    

    yol=[y11ol y12ol; y21ol y22ol]; 

  

    %Obtaining CI-TV-RRA     

    Roe=yol.*inv(yol)'; 

  

    %For-loop for Results Printing     

    for i=1:1:2 

        for j=1:1:2 

            fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

        end 

        fprintf('\n'); 

    end 

end 

 

4. Controller-Dependent Time-Average RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration  

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements    

g11=4.05*exp(-27*s)./(50*s+1); 

g12=1.77*exp(-28*s)./(60*s+1); 

g21=5.39*exp(-18*s)./(50*s+1); 

g22=5.72*exp(-14*s)./(60*s+1); 
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%Average Open-loop Response of Transfer Function Elements    

y11ol=(1/(88-27))*int(ilaplace(g11*(1/s)),t,27,88); 

y12ol=(1/(88-28))*int(ilaplace(g12*(1/s)),t,28,88); 

y21ol=(1/(88-18))*int(ilaplace(g21*(1/s)),t,18,88); 

y22ol=(1/(88-14))*int(ilaplace(g22*(1/s)),t,14,88); 

    

%IMC Filter Desgin for Closed-loop System  

F11=1/(0.1*s+1);  

P11=g11/exp(-27*s);  

Q11=F11/P11;   

  

F12=1/(0.1*s+1);  

P12=g12/exp(-28*s); 

Q12=F12/P12; 

  

F21=1/(0.1*s+1);  

P21=g21/exp(-18*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22/exp(-14*s);  

Q22=F22/P22; 

     

%Average Closed-loop Response of Transfer Function Elements  

y11cl=(1/(88-27))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,27,88); 

y12cl=(1/(88-28))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,28,88); 

y21cl=(1/(88-18))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,18,88); 

y22cl=(1/(88-14))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,14,88); 

    

% Obtaining CD-TA-RRA  

Roe11=y11ol/y11cl; 

Roe12=y12ol/y12cl; 

Roe21=y21ol/y21cl; 

Roe22=y22ol/y22cl; 

  

%Printing CD-TA-RRA Results  

fprintf('Roe11=%6.3f \t Roe12=%6.3f \t Roe21=%6.3f \t Roe22=%6.3f \n',  

  double(Roe11),double(Roe12),double(Roe21),double(Roe22));  
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5. Controller-Dependent Time-Varying RRA (CD-TV-RRA) 

% Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements  

g11=4.05*exp(-27*s)./(50*s+1); 

g12=1.77*exp(-28*s)./(60*s+1); 

g21=5.39*exp(-18*s)./(50*s+1); 

g22=5.72*exp(-14*s)./(60*s+1); 

  

%IMC Filter Desgin for Controller Dependent Open and Closed-loop System  

F11=1/(0.1*s+1);  

P11=g11/exp(-27*s);  

Q11=F11/P11;   

  

F12=1/(0.1*s+1);  

P12=g12/exp(-28*s); 

Q12=F12/P12; 

  

F21=1/(0.1*s+1);  

P21=g21/exp(-18*s); 

Q21=F21/P21; 

  

F22=1/(0.1*s+1);  

P22=g22/exp(-14*s);  

Q22=F22/P22; 

         

% For-loop for Open and Closed-loop Response  

for p=0.1:0.1:1 

    fprintf('For p=%2.2f \t',p); 

  

    %Average Open-loop Response of Transfer Function Elements     

    y11ol=(1/(88-27))*int(ilaplace(g11*(1/s)),t,27,p*88); 

    y12ol=(1/(88-28))*int(ilaplace(g12*(1/s)),t,28,p*88); 

    y21ol=(1/(88-18))*int(ilaplace(g21*(1/s)),t,18,p*88); 

    y22ol=(1/(88-14))*int(ilaplace(g22*(1/s)),t,14,p*88); 

     

    %Average Closed-loop Response of Transfer Function Elements     
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    y11cl=(1/(88-27))*int(ilaplace((g11-g12*Q22*g21)*(1/s)),t,27,p*88); 

    y12cl=(1/(88-28))*int(ilaplace((g12-g11*Q21*g22)*(1/s)),t,28,p*88); 

    y21cl=(1/(88-18))*int(ilaplace((g21-g22*Q12*g11)*(1/s)),t,18,p*88); 

    y22cl=(1/(88-14))*int(ilaplace((g22-g21*Q11*g12)*(1/s)),t,14,p*88); 

   %Obtaining CD-TV-RRA     

    Roe11=y11ol/y11cl; 

    Roe12=y12ol/y12cl; 

    Roe21=y21ol/y21cl; 

    Roe22=y22ol/y22cl; 

     

    %Printing CD-TV-RRA Results 

    fprintf('Roe11=%6.3f\tRoe12=%6.3f\tRoe21=%6.3f\tRoe22=%6.3f\n',   

 double(y11ol),double(y11cl),double(y12ol),double(y12cl));  

end 

 

6. Uncertainty Analysis: Steady-state and Dynamic Approach  

 

%Variable Declaration and Initialization 

clc 

k11=4.05; 

k12=1.77; 

k21=5.39; 

k22=5.72; 

 

tauar11=77; 

tauar12=88; 

tauar21=68; 

tauar22=74; 

  

n=0; 

 

% Normalized Gain Calculation  

KN11=k11/tauar11; 

KN12=k12/tauar12; 

KN21=k21/tauar21; 

KN22=k22/tauar22; 

  

%Finding Steady-state and Dynamic Interaction Quotient 

Kcap=((-1)^n)*((k12*k21)/(k11*k22)); 

KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 
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%For-loop for Finding Kh, Kl and Uncertainty Bounds 

for i=1:1:3, 

  

    if i==1 

        fprintf('Steady-State Analysis:\n'); 

        KNcap=Kcap; 

        factor=2; 

  

    elseif i==2 

        fprintf('Dynamic Analysis:\n');     

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=2; 

         

    else 

        fprintf('Uncertain Gain-Residence Time:\n'); 

        KNcap=((-1)^n)*((KN12*KN21)/(KN11*KN22)); 

        factor=4; 

    end 

  

    if n==1||n==3 

        fprintf('No. of negative elements: %f \t alpha=0.01\t',n); 

        alpha=0.11; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end         

         

                

        fprintf('alpha=0.05\t'); 
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        alpha=0.05; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 
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        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        khmax=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 
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            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end 

    end 

  

    if n==0 

        fprintf('Hello 2 alpha=0.01\t'); 

        alpha=0.11; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.05\t'); 

        alpha=0.05; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 
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        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.1\t'); 

        alpha=0.1; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f \n',klmin, khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.2\t'); 

        alpha=0.2; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 
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            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

  

        fprintf('alpha=0.3\t'); 

        alpha=0.3; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end   

        fprintf('alpha=0.5\t'); 

        alpha=0.5; 

        klmin=KNcap*((1-factor*alpha)/(1+factor*alpha)); 

        khmax=KNcap*((1+factor*alpha)/(1-factor*alpha)); 

        fprintf('klmin=%2.4f \t khmax=%2.4f\n',klmin,khmax); 

 

        % RGA elements variation range 

        if klmin<khmax 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('%2.4f <=lemda11<= %2.4f\n',lowerlimit,upperlimit); 

        else 

            upperlimit=(1/(1-khmax)); 

            lowerlimit=(1/(1-klmin)); 

            fprintf('-inf <=lemda11<= %2.4f & %2.4f <=lemda11<=     

  inf\n',upperlimit, lowerlimit); 

        end  

    end 

end 
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APPENDIX - IV 

 

MATLAB CODE FOR THE CASE STUDY – 4 

DL Distillation Column Control Problem 

 

The Matlab codes used in generating the results for various methods used in this study 

are as follows: 

1. Frequency Dependent RGA 

%Script File for the Computing Dynamic RGA 

%Define a Vector of Frequency Values on a Log Scale 

w=logspace(-3,1,100); 

s=i*w; 

  

%Compute the Frequency Response for each Element of gij 

g11=0.374*exp(-7.75*s)./((22.2*s+1).^2); 

g12=-11.3*exp(-3.79*s)./((21.74*s+1).*(21.74*s+1)); 

g13=-9.811*exp(-1.59*s)./(11.36*s+1); 

g21=-1.986*exp(-0.71*s)./((66.67*s+1).*(66.67*s+1)); 

g22=5.24*exp(-60*s)./(400*s+1); 

g23=5.984*exp(-2.24*s)./(14.29*s+1); 

g31=0.0204*exp(-0.59*s)./((7.14*s+1).*(7.14*s+1)); 

g32=-0.33*exp(-0.68*s)./((2.38*s+1).*(2.38*s+1)); 

g33=2.38*exp(-0.42*s)./((1.43*s+1).*(1.43*s+1)); 

G=(g11.*((g22.*g33)-(g32.*g23)))-(g12.*((g21.*g33)-(g31.*g23))) 

                                +(g13.*((g21.*g32)-(g31.*g22))); 

  

%Compute Lambda(i,j) as a Function of Frequency 

L11= (g11.*((g22.*g33)-(g23.*g32)))./(G); 

L12=-(g12.*((g21.*g33)-(g31.*g23)))./(G); 

L13= (g13.*((g21.*g32)-(g31.*g22)))./(G); 

L21=-(g21.*((g12.*g33)-(g13.*g32)))./(G); 

L22= (g22.*((g11.*g33)-(g31.*g13)))./(G); 

L23=-(g23.*((g11.*g32)-(g31.*g12)))./(G); 

L31= (g31.*((g12.*g23)-(g13.*g22)))./(G); 

L32=-(g32.*((g11.*g23)-(g21.*g13)))./(G); 

L33= (g33.*((g11.*g22)-(g12.*g21)))./(G); 

  

lam11=sign(real(L11)).*abs(L11); 

lam12=sign(real(L12)).*abs(L12); 
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lam13=sign(real(L13)).*abs(L13); 

lam21=sign(real(L21)).*abs(L21); 

lam22=sign(real(L22)).*abs(L22); 

lam23=sign(real(L23)).*abs(L23); 

lam31=sign(real(L31)).*abs(L31); 

lam32=sign(real(L32)).*abs(L32); 

lam33=sign(real(L33)).*abs(L33); 

  

%Plot the Results 

  

semilogx(w,lam11,'k',w,lam12,'r',w,lam13,'b') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (1,1), (1,2) and (1,3)') 

  

semilogx(w,lam21,'k',w,lam22,'r',w,lam23,'b') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (2,1), (2,2) and (2,3)') 

  

semilogx(w,lam31,'k',w,lam32,'r',w,lam33,'b') 

xlabel('Frequency[rad/min]') 

ylabel('RGA (3,1), (3,2) and (3,3)') 

  

%Plotting the Result in the Same Graph 

% subplot(3,1,1),semilogx(w,lam11,'k',w,lam12,'r',w,lam13,'b') 

% subplot(3,1,2),semilogx(w,lam21,'k',w,lam22,'r',w,lam23,'b') 

% subplot(3,1,3),semilogx(w,lam31,'k',w,lam32,'r',w,lam33,'b') 

%  

% subplot(3,1,1),xlabel('Frequency[rad/min]') 

% subplot(3,1,1),ylabel('RGA (1,1), (1,2) and (1,3)') 

%  

% subplot(3,1,2),xlabel('Frequency[rad/min]') 

% subplot(3,1,2),ylabel('RGA (2,1), (2,2) and (2,3)') 

%  

% subplot(3,1,3),xlabel('Frequency[rad/min]') 

% subplot(3,1,3),ylabel('RGA (3,1), (3,2) and (3,3)') 

 

2. Controller-Independent Time-Average RRA (CI-TA-RRA) 

 

%Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements  

g11=0.374*exp(-7.75*s)./(22.2*s+1).^2; 

g12=-11.3*exp(-3.79*s)./(21.74*s+1).^2; 
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g13=-9.811*exp(-1.59*s)./(11.36*s+1); 

g21=-1.986*exp(-0.71*s)./(66.67*s+1).^2; 

g22=5.24*exp(-60*s)./(400*s+1); 

g23=5.984*exp(-2.24*s)./(14.29*s+1); 

g31=0.0204*exp(-0.59*s)./(7.14*s+1).^2; 

g32=-0.33*exp(-0.68*s)./(2.38*s+1).^2; 

g33=2.38*exp(-0.42*s)./(1.43*s+1).^2; 

  

%Average Integral Open-loop Response  

y11ol=(1/(460-7.75))*int(ilaplace(g11*(1/s)),t,7.75,460); 

y12ol=(1/(460-3.79))*int(ilaplace(g12*(1/s)),t,3.79,460); 

y13ol=(1/(460-1.59))*int(ilaplace(g13*(1/s)),t,1.59,460); 

y21ol=(1/(460-0.71))*int(ilaplace(g21*(1/s)),t,0.71,460); 

y22ol=(1/(460-60))*int(ilaplace(g22*(1/s)),t,60,460); 

y23ol=(1/(460-2.24))*int(ilaplace(g23*(1/s)),t,2.24,460); 

y31ol=(1/(460-0.59))*int(ilaplace(g31*(1/s)),t,0.59,460); 

y32ol=(1/(460-0.68))*int(ilaplace(g32*(1/s)),t,0.68,460); 

y33ol=(1/(460-0.42))*int(ilaplace(g33*(1/s)),t,0.42,460); 

     

%Overall Open-loop Response Matrix     

yol=[y11ol y12ol y13ol; y21ol y22ol y23ol; y31ol y32ol y33ol]; 

  

%Obtaning CI-TA-RRA  

Roe=yol.*inv(yol)'; 

  

%For-loop for Results Printing 

for i=1:1:3 

    for j=1:1:3 

        fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

    end 

    fprintf('\n'); 

end 

 

3. Controller-Independent Time-Varying RRA (CI-TV-RRA) 

 

% Variable Initialization and Declaration 

clear all 

clc 

syms s t; 

  

%Process Transfer Function Elements   

g11=0.374*exp(-7.75*s)./(22.2*s+1).^2; 

g12=-11.3*exp(-3.79*s)./(21.74*s+1).^2; 

g13=-9.811*exp(-1.59*s)./(11.36*s+1); 

g21=-1.986*exp(-0.71*s)./(66.67*s+1).^2; 

g22=5.24*exp(-60*s)./(400*s+1); 
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g23=5.984*exp(-2.24*s)./(14.29*s+1); 

g31=0.0204*exp(-0.59*s)./(7.14*s+1).^2; 

g32=-0.33*exp(-0.68*s)./(2.38*s+1).^2; 

g33=2.38*exp(-0.42*s)./(1.43*s+1).^2; 

  

% For-loop for Open-loop Response 

for p=0.0:0.1:1 

    fprintf('For p=%2.2f \t',p); 

     

    %Average Open-loop Response of Transfer Function Elements 

    y11ol=double(int(ilaplace(g11*(1/s)),t,7.75,p*460)); 

    y12ol=double(int(ilaplace(g12*(1/s)),t,3.79,p*460)); 

    y13ol=double(int(ilaplace(g13*(1/s)),t,1.59,p*460)); 

    y21ol=double(int(ilaplace(g21*(1/s)),t,0.71,p*460)); 

    y22ol=double(int(ilaplace(g22*(1/s)),t,60,p*460)); 

    y23ol=double(int(ilaplace(g23*(1/s)),t,2.24,p*460)); 

    y31ol=double(int(ilaplace(g31*(1/s)),t,0.59,p*460)); 

    y32ol=double(int(ilaplace(g31*(1/s)),t,0.68,p*460)); 

    y33ol=double(int(ilaplace(g33*(1/s)),t,0.42,p*460)); 

     

    %Overall Open-loop Response Matrix 

    yol=[y11ol y12ol y13ol; y21ol y22ol y23ol; y31ol y32ol y33ol]; 

  

    %Obtaining CI-TV-RRA 

    Roe=yol.*inv(yol)'; 

  

    %For-loop for Results Printing 

    for i=1:1:3 

        for j=1:1:3 

            fprintf('\t\tRoe%1.0f%1.0f=%3.3f',i,j,double(Roe(i,j))); 

        end 

        fprintf('\n'); 

    end 

end 

 

 

 

 


