
Design and Synthesis of Carbon Nanotube
Field Effect Transistor (CNFET)-based

Ternary Logic Circuits

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Chetan Kumar V

ID No. 2009PH230006H

Under the Supervision of

Prof. M. B. Srinivas

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE,

PILANI

2018

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE,

PILANI

CERTIFICATE

This is to certify that the thesis titled Design and Synthesis of Carbon Nanotube Field

Effect Transistor (CNFET)-based Ternary Logic Circuits and submitted by Chetan

Kumar V ID No 2009PH230006H for award of PhD of the Institute embodies original

work done by him under my supervision.

Signature of the Supervisor

Name: Dr. M. B. SRINIVAS

Designation: Professor

Date:

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. M. B. Srinivas for his constant support, patience and valuable guidance through

out my work.

I would also like to thank my Doctoral Advisory Committee members, Prof. BVVSN

Prabhakar Rao, Dr. Surya Shankar Dan and Prof. Y Yoganandam for their time and

their constructive comments and suggestions.

Next I would like to express my deep sense of gratitude to BITS Pilani, Hyderabad

Campus for providing all the necessary facilities and support to complete the research

work.

I am thankful to Sai Phaneendra P. for the help I received in developing the circuit

simulation framework. I also appreciate the help from Goutham M, Avinash S Vaidya

and Ganesh Kumar, during different stages of my work.

Furthermost, I would like to thank all members of Department of Electrical Engi-

neering at BITS-Pilani, Hyderabad Campus, who have supported me by their sugges-

tions and discussions.

Finally, I dedicate this work to my parents Pampana Gowda and Vishalakshi.

Words can not express my gratitude to them for their constant support, inspiration

and love. I deeply value the encouragement and support from my wife, Nydhili and

my sister, Swetha.

Hyderabad Chetan Kumar V

iii

Abstract

Multi-Valued Logic (MVL) circuits have attracted the attention in recent times because

of the advantages they offer in reducing the interconnect complexity and increasing the

information content per unit area. Ternary Logic is a special case of MVL that has

three logic levels. Implementation of voltage mode ternary logic circuits requires tran-

sistors with different threshold voltages. Since traditional Metal-Oxide-Semiconductor

(MOS) transistors use body biasing to change the threshold voltage, design of ternary

logic circuits using MOS transistors becomes complex. On the otherhand, Carbon-

Nanotube Field Effect Transistor (CNFET) are becoming popular in the implementa-

tion of ternary logic circuits. This is because Carbon-Nanotube (CNT) is used as a

conduction channel in CNFET and variations of the diameter of CNT results in vari-

ation in threshold voltage of CNFET. This property of CNFET makes it suitable for

implementation of MVL circuits in general and ternary logic circuits in particular.

In this thesis, we initially present three general design approaches to implement

basic ternary logic circuits. The first design approach avoids the use of decoder and

uses a novel low-power encoder resulting in ternary circuits that have low transistor

count when compared to existing approaches. The second design approach uses a delay

optimized decoder and low-power encoder leading to energy efficient ternary circuits.

The third design approach uses 2:1 multiplexers to realize basic ternary logic circuits.

This approach leads to ternary circuits which have low power consumption but large

delay. Basic 2-input circuits are implemented and their design parameters are compared

with that of existing approaches.

The second contribution of this thesis is two design techniques to implement multi-

iv

v

digit adders. The first technique is a half-adder based ripple carry adder, in which

outputs (instead of main inputs) are used for carry-out computation resulting in delay-

optimized carry propagation path. The second design technique uses the concept of

carry propagate-generate. In this thesis, a technique is presented, which enables the

use of propagate-generate concept and aids in realizing ternary prefix adders. The

proposed adder designs are compared with existing CNFET-based multi-digit ternary

adders with respect to different design parameters.

The analysis of ternary adders shows that, the ternary encoder is a critical element

and contributes significantly to the overall power consumption of the ternary circuit.

In this thesis, new designs for CNFET-based ternary encoders, which are optimized

for delay and power consumption, are presented. These designs are used to develop

encoder based optimization algorithms which choose appropriate encoder for different

outputs of a ternary logic circuit. The proposed algorithms are applied on an example

ternary circuit to show their advantages in optimizing the design parameters of the

circuit.

Apart from novel designs, this thesis also presents a synthesis technique to imple-

ment ternary logic circuits. Traditionally Binary Decision Diagram (BDD) and Ternary

Decision Diagram (TDD) based algorithms have been used to synthesize binary and

ternary logic functions respectively. This thesis presents a synthesis technique based

on proposed Ternary-Transformed Binary Decision Diagram (TBDD), to implement

ternary logic circuits using 2:1 multiplexers. This technique is used to synthesize a set

of benchmark ternary functions and the resulting circuits are compared with circuits

synthesized using existing techniques.

v

Contents

Acknowledgements iii

Abstract iv

Contents vi

List of Figures ix

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Background and Related Work 6

2.1 Ternary Logic . 6

2.2 Carbon-Nanotube Field Effect Transistor (CNFET) 7

2.3 Ternary Logic Circuits using CNFETs 11

2.4 Research Gaps, Objectives and Scope of Current Work 15

3 Design Approaches for Basic Ternary Circuits 17

3.1 Introduction . 17

3.2 Existing Design Approaches . 18

vi

CONTENTS vii

3.2.1 Decoder-Encoder based approach 18

3.2.2 Multiplexer based approach . 20

3.3 Novel Approaches to Design Ternary Logic Circuits 21

3.3.1 Approach I: Using Low-power Encoder and without Decoder . . 21

3.3.1.1 Overview . 21

3.3.1.2 Steps Involved . 23

3.3.1.3 Function Simplification 23

3.3.1.4 Implementation of Unary Functions 25

3.3.1.5 Low-power Encoder 27

3.3.2 Approach II: Using low-delay Decoder and low-power Encoder . 30

3.3.2.1 Low-Delay Decoder . 32

3.3.2.2 Alternate Representation of Logic Expressions 32

3.3.3 Approach III: Using 2:1 Multiplexers 35

3.3.3.1 Basic Idea . 35

3.3.3.2 Ternary circuits using CNFET-based 2:1 Multiplexers 37

3.4 Implementation and Simulation . 39

3.4.1 Simulation Environment . 39

3.4.2 Results and Discussion . 42

3.4.2.1 Impact of Process, Voltage and Temperature (PVT)

Variations . 47

3.4.2.2 Noise Immunity Analysis 49

3.5 Conclusions . 50

4 Design of Multi-digit Ternary Adders 52

4.1 Introduction . 52

4.2 Previous Work on CNFET-based Ternary Adders 53

4.2.1 Single-Digit Adders . 53

4.2.2 Multi-digit Adders . 55

4.3 Proposed Half-Adder Based Ripple-carry Ternary Adders 59

4.3.1 Basic Idea . 59

vii

CONTENTS viii

4.3.2 Implementation using CNFET 60

4.3.2.1 Designs for Decoder and Half-Adder 60

4.3.2.2 Design of Carry Generator Block 63

4.3.2.3 Design of Final Half-Sum Generator 65

4.3.2.4 Design of Low-Power Encoder 65

4.4 Proposed Ternary Prefix Adder designs 67

4.4.1 Concept of Carry Propagate-Generate in Binary Addition 67

4.4.2 Basic Idea for Ternary Prefix Adders 69

4.4.3 Proposed Implementation of Ternary Prefix Adders using CNFET 71

4.4.3.1 Propagate and Generate for Ternary Adders 72

4.4.3.2 Carry Generation using Binary Prefix networks 74

4.4.3.3 Final Sum and Carry Computation 75

4.5 Simulation Results . 78

4.5.1 Results and Discussion . 78

4.6 Conclusions . 86

5 Encoder-based Optimization of Ternary Circuits 88

5.1 Introduction . 88

5.2 Review of Ternary Encoders . 89

5.3 Proposed CNFET-based Ternary Encoders 91

5.4 Effects of varying chiralities of CNFETs that are used in Encoders . . . 95

5.5 Algorithms for choosing appropriate Encoders in Ternary Circuits . . . 99

5.5.1 Problem Formulation . 99

5.5.2 Power optimization . 102

5.5.3 Delay Optimization . 103

5.5.4 PDP Optimization . 104

5.6 Example: Encoder-based Optimization of Multi-Digit Ternary Adder . 106

5.7 Conclusions . 112

viii

CONTENTS ix

6 Synthesis of Ternary Logic Circuits using 2:1 Multiplexers 113

6.1 Introduction . 113

6.2 Preliminaries . 114

6.2.1 Binary Decision Diagrams . 114

6.2.2 Ternary Decision Diagrams . 115

6.3 Proposed Synthesis Methodology . 116

6.3.1 General Ternary-Transformed Binary Decision Diagrams (TBDD) 116

6.3.2 TBDD-based synthesis for 1-input ternary functions (Unary Op-

erators) . 120

6.3.3 TBDD-based synthesis for 2-input ternary functions 125

6.3.4 TBDD-based synthesis for n-input ternary functions 129

6.4 Algorithm for 2:1 Multiplexer based Synthesis 130

6.5 Synthesis using CNFETs . 133

6.6 Results . 136

6.6.1 Synthesis . 136

6.6.2 SPICE Simulation . 138

6.7 Conclusions . 141

7 Summary and Future Work 143

7.1 Summary . 143

7.2 Future Work . 145

ix

List of Figures

2.1 Unrolled sheet of graphite and the rolled lattice structure of CNT [42] 8

2.2 3D view of Carbon-Nanotube Field Effect Transistor (CNFET) . . . 8

2.3 I-V Characteristics of N-CNFET . 12

2.4 I-V Characteristics of N-CNFET . 12

3.1 Realization of a ternary function using existing decoder-encoder based

approach . 19

3.2 Implementation of function shown in Table 3.1 using 3:1 Mux based

approach [60] . 20

3.3 Transistor level Implementation of 3:1 Multiplexer [60] 21

3.4 Implementation of F 2 and F 1 in proposed approach 22

3.5 K-Map simplification for function F 24

3.6 Transistor level realization of X0, X1 and X2 unary terms 26

3.7 Transistor level realization of X0 +X1, X1 + X2 and X0 +X2 unary

terms . 27

3.8 Implementation of F 2, F 1 and F 0 using proposed approach 28

3.9 Encoder with F 2 and F 1 as inputs ((F 2, F 1)-Encoder) 29

3.10 Encoder design for (F 2, F 0) and (F 1, F 0) combination 30

3.11 Implementation of Half-Sum using Decoderless approach 31

3.12 Implementation of Half-Sum using Existing Decoder-encoder based ap-

proach (all CNFETs have chirality as (19, 0)) 31

3.13 Decoder Implementations . 33

x

LIST OF FIGURES xi

3.14 Implementation of Half-Sum with reduced Transistor Stacking (all CN-

FETs have chirality as (19, 0)) . 35

3.15 A 3:1 Multiplexer operation using 2:1 Multiplexers 37

3.16 CNFET-based Implementation of NTI-Mux and PTI-Mux 37

3.17 2:1 Multiplexer based Implementation for Ternary Function in Table

3.4 . 38

3.18 Half-Adder using Existing Decoder-Encoder based Approach (all CN-

FETs have chirality as (19, 0)) . 40

3.19 Half-Adder using Existing 3:1 Multiplexer based Approach 40

3.20 Half-Adder using Proposed Decoderless Approach (I) 41

3.21 Half-Adder using Proposed Decoder-Encoder based Approach (II) (all

CNFETs have chirality as (19, 0)) . 41

3.22 Half-Adder using Proposed 2:1 Multiplexer based Approach (III) . . . 42

3.23 Simulation Waveforms for Half-Adder 43

3.24 Propagation Delay Vs Output Load for Half-adder 46

3.25 Monte-Carlo Simulations for (a) Delay (b) Power 48

3.26 (a) Delay (b) Power for Supply Voltage Variation 48

3.27 (a) Delay (b) Power for Temperature Variation 49

3.28 Noise Immunity Curve for Half-Adders 50

4.1 Design techniques used to implement Multi-digit adders 54

4.2 Proposed design technique to implement Multi-digit adders 58

4.3 Decoder Implementation . 61

4.4 Gate-level Implementation to generate Half-Adder outputs [36] 62

4.5 Transistor-level Implementation for HSi2 62

4.6 Proposed Transistor-Level Implementation of Half-carry Generator and

half-sum Generator I (all transistors with chirality of (19, 0)) 63

4.7 Delay-Optimized Carry Propagation Path with Proposed Carry Gen-

erator Blocks (all transistors with chirality of (19, 0)) 65

xi

LIST OF FIGURES xii

4.8 Transistor-level implementation of Half-sum generator II (all transis-

tors with chirality of (19, 0)) . 66

4.9 Designs for Encoder . 67

4.10 Table showing Carry Propagate and Generate conditions for Binary

addition . 68

4.11 Example of ternary addition using proposed transformation 69

4.12 Table showing Carry Propagate and Generate conditions for ternary

addition . 70

4.13 Table showing Carry Propagate and Generate conditions after pro-

posed transformation . 71

4.14 Block-level Implementation of Proposed Ternary Adders 72

4.15 CNFET-based Implementation of Simplified Half-Adder (all CNFETs

have chirality of (19, 0)) . 74

4.16 Prefix Networks used for Carry Computation in 6-digit Ternary Adder 76

4.17 CNFET-based Implementation of Cells used in Prefix Networks (all

CNFETs have chirality of (19, 0)) . 77

4.18 Simulation Waveforms for Kogge-Stone Prefix Adder 80

4.19 A Comparison of Power consumption 81

4.20 A Comparison of Propagation Delay for FO4 load 82

4.21 Propagation delay vs load for 12-digit adder 84

4.22 A Comparison of PDP . 85

5.1 Ternary Encoders . 90

5.2 Proposed Encoder (with inputs X2 and X0) 92

5.3 Proposed Low-Power Encoder (with inputs X2 and X0) 93

5.4 Proposed Low-Delay Encoder (with inputs X2 and X0) 93

5.5 I-V Characteristics of N-CNFET . 96

5.6 Power Consumption for Encoders with Transistors of Different Chirality 97

5.7 Propagation Delay for Encoders with Transistors of Different Chirality 98

5.8 Ternary Circuit as a Graph . 100

xii

LIST OF FIGURES xiii

5.9 Multi-digit adder presented in [58]. 107

5.10 Power Consumption Vs Propagation Delay for 9-digit Ternary Adders 112

6.1 Binary and Ternary Decision Diagrams 114

6.2 BDD and its 2 : 1 Mux based implementation for a given Truth-table 115

6.3 TDD and its 3 : 1 Mux based implementation for a given Truth-table 115

6.4 Ternary-Transformed Binary Decision Diagram 118

6.5 2 : 1 Multiplexer based implementation of TBDD 118

6.6 Illustration for Rule 1 . 119

6.7 K-map for 1-input Ternary Function 121

6.8 TBDDs for 1-input Ternary Function 121

6.9 TBDD for FA0 = 2, FA1 = 0 and FA2 = 0 122

6.10 Multiplexer-based implementation of Reduced TBDD in Figure 6.9

and its equivalent Ternary Gate . 122

6.11 TBDD templates, their 2:1 multiplexer based implementations and

equivalent gates. 122

6.12 TBDD Example for Proposition 6.4 123

6.13 K-map Representation of 2-input Function 125

6.14 K-map Representation of of 2-input Function using 1-input Functions 126

6.15 An Example for 2-input Function . 127

6.16 TBDD representation when decomposed w.r.t A 127

6.17 TBDD representation when decomposed w.r.t B 128

6.18 TBDD representation for 2 input function in Figure 6.15 128

6.19 An Example for 2-input Function . 129

6.20 TBDD representation for function in Figure 6.19, when decomposed

w.r.t A . 129

6.21 TBDD representation for function in Figure 6.19, when decomposed

w.r.t B . 130

6.22 TBDD for Ternary Full Adder . 134

6.23 Implementation of 2:1 Multiplexers 135

xiii

LIST OF FIGURES xiv

6.24 Implementation of TBDD in Figure 6.18 136

6.25 Implementation of Ternary Full Adder 137

xiv

List of Tables

2.1 Ternary Inverters [36] . 7

2.2 Logic Symbols . 7

2.3 Relation Between Chirality, CNT Diameter and Threshold Voltage [44] 10

2.4 Technology Parameters for CNFET model in [44,45,53] 11

3.1 Truth Table (Example 1) . 19

3.2 Truth Table (Example 2) . 24

3.3 Half-Sum (HS) . 30

3.4 Ternary Function (Example 1) . 38

3.5 Truth-Table for basic Ternary Circuits 39

3.6 Simulation Results for Basic Circuits 44

3.7 Propagation Delay vs Load . 46

3.8 ANTE for Ternary Half-Adders . 50

4.1 Half-Adder Karnaugh Maps . 61

4.2 Truth-Table for Carry-Out . 64

4.3 Average Power Consumption for N -digit Adders 79

4.4 Propagation (FO4) Delay for N -digit Adders 81

4.5 Delay for N -digit Adders for different output loads 83

4.6 Power-Delay Product for N -digit Adders 84

4.7 Number of Transistors required for N -digit Adders 85

5.1 A Comparison of Encoders . 94

5.2 Encoder Mapping for Ternary Adders 108

xv

LIST OF TABLES xvi

5.3 Simulation Results for N -digit Ternary Adders 111

6.1 Unary Operators . 124

6.2 Comparison of Transistor Count of Proposed 2:1 Multiplexer based

Algorithm with that of Exitsing 3:1 Multiplexer based Algorithm [41] 139

6.3 Simulation Results for Ternary Benchmark Circuits 140

6.4 Comparison of Ternary Adders . 141

6.5 Comparison of Existing Manual Designs with those Generated using

the Proposed Algorithm . 142

xvi

List of Abbreviations

ANTE Average Noise Threshold Energy

BDD Binary Decision Diagram

CMOS Complementary Metal-Oxide-Semiconductor

CNFET Carbon-Nanotube Field Effect Transistor

CNT Carbon-Nanotube

CSA Conditional Sum Adder

HC Half-Carry

HS Half-Sum

IC Integrated circuit

MHTA Multi-Digit Half-Adder based Ternary Adder

MOS Metal-Oxide-Semiconductor

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

MSD Most Significant Digit

MTA Multi-Digit Ternary Adders

MTPA Multi-Digit Ternary Prefix Adder

MVL Multi-Valued Logic

xvii

LIST OF TABLES xviii

NIC Noise Immunity Curve

NWFET Nano-Wire Field Effect Transistor

PDP Power-Delay Product

qFET Quantum-dot gate field effect transistor

QROBDD Quasi Reduced BDD

QROTDD Quasi Reduced TDD

RBDD Reduced BDD

RTDD Reduced TDD

TBDD Ternary-Transformed Binary Decision Diagram

TDD Ternary Decision Diagram

VLSI Very Large Scale Integrated Circuit

xviii

Chapter 1

Introduction

1.1 Overview and Motivation

Integrated circuit (IC) technology has enabled rapid advances in design and imple-

mentation of innovative devices, and systems that have changed the way we live and

communicate. Integration of more transistors increases the computing power and helps

in building efficient systems [1]. The number of transistors that can be integrated on

a chip has been doubling every 1-2 years as predicted by the Gordon Moore, an in-

dustry pioneer, in 1960s [2]. This prediction, famously known as Moore’s Law, has

been proven correct, time and again. This has been made possible mainly due the con-

tinuous scaling or miniaturization of components that are integrated onto a chip [3].

For example, in CMOS technology, the gate length of a Metal-Oxide Semiconductor

Field Effect Transistor (MOSFET) has been scaling by a factor of 0.7 every two years.

Over the last few years, FinFET [4] (a variation of MOSFET) based devices have

been fabricated at 22nm and the 14nm technology is foreseen to be reached in near

future [5]. CMOS technology scaling beyond deep sub-micron/nano range, while en-

abling higher integration of VLSI designs, has caused various reliability issues. Some

of the issues of CMOS scaling beyond nanometer range are increased leakage current,

processes variations etc [6]. These non-idealities have caused the I-V characteristics

of MOSFETs to be different from what is expected. It has become more difficult to

improve performance by technology scaling.

1

1.1. Overview and Motivation 2

This has led to the emergence of alternate computing paradigms (reversible com-

puting [7], multi-valued logic (MVL) computing [8]) coupled with emerging devices

(carbon-nanotube field effect transistor (CNFET) [9], Quantum-dot gate field effect

transistor (qFET) [10]etc). Researchers have also been investigating new materials

and devices in sub-10nm which could possibly replace MOS based transistors. Based

on ITRS road map [5], some of the emerging devices that have the characteristics to

replace traditional MOS based devices are Carbon-Nanotube Field Effect Transistor

(CNFET) [11, 12], Nanowire Field Effect Transistor (NWFET) [13], Graphene Tran-

sistor [14, 15] and III-V compound semiconductor [16,17].

One of the computing paradigms that has received considerable attention over the

last few decades is MVL [18]. Three-valued or Ternary Logic, which is a special case of

MVL has attracted considerable interest over the last couple of decades. A recent sur-

vey presents various contemporary aspects related to MVL [8]. Some of the advantages

of MVL include reduced interconnect complexity, less device count etc. This is due

to the fact that more information is embedded per digit. For example, it is possible

to represent a 14-digit (N-digit) binary number using only 9 (log3(2
N − 1)) ternary

digits . Ternary logic is a special case of MVL with three significant states. There have

been many CMOS-based implementations for ternary logic [19,20]. It has been shown

that the performance of CMOS-based designs is enhanced by adding Multi-Valued

Logic (MVL) blocks to binary designs [21,22]. A design for ternary memory units and

sequential circuits has been presented in [23]. A CMOS based ternary Wallace-tree

multiplier has been implemented in [24]. Apart from the works which focus on novel

designs [23–26], there have been many works which focus on synthesis of MVL logic

circuits [27–29].

The CMOS implementations of MVL are mainly classified as current-mode cir-

cuits [30] which require transistor biasing and voltage-mode circuits [22] which require

additional voltage sources to create multi-threshold transistors. Due to the problems

in MOS-based devices and non-availability of appropriate devices, design of efficient

MVL circuits has for long remained a concern [18]. But, the emergence of several new

1.2. Contributions 3

device technologies [9, 10, 31] has led to renewed interest in ternary and quaternary

logic in particular.

CNFETs have been used widely in the implementation of ternary logic circuits.

CNFET is one of the promising alternatives to MOSFET due to their unique one-

dimensional band-structure that suppresses backscattering and makes near-ballistic

operation a realistic possibility [32–35]. CNFETs use single walled CNT as a conduct-

ing channel, which is conducting or semiconducting depending on the angle of atom

arrangement along the tube also called as chirality vector. Unlike in MOS technol-

ogy, where body biasing is used to control threshold voltages, in CNFET technology

the threshold voltage is controlled by changing the diameter of CNT which in turn

depends on the chirality vector. [36]. This dependence makes CNTFET suitable for

implementation of MVL circuits.

There have been many CNFET-based design [36–40] and synthesis techniques [41]

that are used to realize ternary logic circuits. The existing work on CNFET-based

ternary logic circuits is relatively recent and there is scope to explore new design

techniques to realize efficient ternary circuits. Therefore in this thesis, new design

and synthesis techniques, which aid in realizing efficient CNFET-based ternary logic

circuits, have been investigated.

1.2 Contributions

In this thesis, design and synthesis techniques for ternary logic circuits, which exploit

the threshold voltage variability of CNFETS, are investigated. Initially, design ap-

proaches for basic ternary circuits are presented. Based on the analysis of these basic

circuits, ternary adders have been implemented using one of the proposed approaches

resulting in energy efficient circuits. Ternary encoder is a critical element which ef-

fects the power consumption of the ternary circuit. Hence new low-power encoders

are designed and their performance studied. In addition to design techniques, a new

synthesis technique is also presented which is used to implement ternary logic circuits.

The main contributions of the thesis are listed below:

1.3. Thesis Outline 4

1. New designs for low-power ternary encoders, which help in designing low-power

and energy efficient ternary circuits.

2. A new decoderless design approach to implement ternary circuits.

3. A novel ternary prefix-adder design which uses for carry generation/propagation.

4. Algorithms to choose appropriate encoders for different output stages of a ternary

circuit, such that the circuit is optimized with respect to delay or power consump-

tion.

5. A novel Ternary-Transformed Binary Decision Diagram (TBDD) is presented

which can be used to implement ternary logic circuits using 2 : 1 Multiplexers.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents the background related to ternary logic and CNFETs. This

chapter also presents a brief review of earlier work related to design and implementation

of CNFET-based ternary logic circuits available in literature.

Chapter 3 presents three general design approaches to implement basic ternary

logic circuits, resulting in reduced area, power consumption and delay. The first ap-

proach avoids the use of decoder and uses a novel low-power encoder. The second

approach uses a delay optimized decoder and low-power encoder leading to energy effi-

cient ternary circuits while the third approach uses 2:1 multiplexers for realizing basic

ternary logic circuits. Basic ternary circuits namely half-adder and 1-digit multiplier

are implemented using different approaches and important metrics such as propagation

delay, power consumption and power-delay product are quantified and compared.

In Chapter 4, two designs of multi-digit ternary adders, which use one of the

proposed design approaches, are presented. In the first design, the half-adder out-

puts (instead of main inputs) are used to compute carry-out at each digit-adder stage

resulting in delay optimized carry propagation path. The second design is based on

1.3. Thesis Outline 5

the concept of carry Propagate-Generate, which is used in the design of binary pre-

fix adders. Since this concept cannot be applied directly to implement ternary prefix

adders. A novel technique that enables the use of Propagate-Generate resulting in

design of ternary prefix adders, is developed. Proposed and existing CNFET-based

adder designs are implemented and their design parameters are compared to quantify

the performance.

The analysis of ternary adders showed that, the ternary encoder is an integral part

of the designs and contributes significantly to the overall power consumption of the

ternary circuit. Chapter 5 presents improved encoder designs used in implementation

of ternary logic circuits. This chapter also presents optimization algorithms, which

map appropriate encoders for different output stages of a multi-output ternary logic

circuit resulting in a circuit which is optimized for power consumption or propagation

delay or power-delay product.

In Chapter 6, novel algorithms which are used to synthesize ternary logic circuits

using 2 : 1 Multiplexers, are presented. Traditionally Binary Decision Diagram (BDD)

based algorithms have been used to synthesize binary logic functions. A BDD can

be transformed into circuit implementation by replacing each node in the BDD with

a 2:1 multiplexer. Similarly a Ternary Decision Diagram (TDD) can be transformed

in to circuit implementation using 3:1 Multiplexers. In Chapter 6 a methodology,

which transforms a 2-input ternary logic function in to a Ternary-Transformed Binary

Decision Diagram (TBDD), is presented. This TBDD aids in realizing any ternary

logic function using 2:1 multiplexers. This TBDD-based approach is used to develop

a synthesis algorithm which is applied on a set of ternary functions and the resulting

circuits are compared with 3 : 1 multiplexers based circuits.

Finally, Chapter 7 summarizes the key findings and contributions of this thesis,

and proposes some recommendations for future work.

Chapter 2

Background and Related Work

This chapter provides an overview of ternary logic and CNFETs. A brief review of

existing CNFET-based implementations of ternary logic circuits is also presented in

this chapter.

2.1 Ternary Logic

Binary logic, when given a significant third value is called ternary logic or three valued

logic and functions realized with three values are called ternary logic functions. The

values 0, 1 and 2 form the nomenclature to denote the ternary values in this work.

A function f(X) is defined as a ternary logic function mapping {0, 1, 2}n to {0, 1, 2}

where X is given by X1,, Xn. When Xi,Xjε{0, 1, 2}, the basic operations of ternary

logic can be defined as:

Xi +Xj = max{Xi, Xj} (2.1)

Xi ·Xj = min{Xi, Xj} (2.2)

where equations (2.1) and (2.2) indicate OR and AND operations respectively for

ternary logic [36]. Another important logic function in ternary logic is a ternary

inverter. Table 2.1 shows the outputs of different ternary inverters that are used

6

2.2. Carbon-Nanotube Field Effect Transistor (CNFET) 7

in ternary logic. Corresponding to each of the outputs three inverters are defined

namely, Negative Ternary Inverter (NTI), Standard Ternary Inverter (STI) and Posi-

tive Ternary Inverter (PTI) respectively. The logic values assumed for different voltage

levels are shown in Table 2.2 where, voltages 0, V dd/2 and V dd correspond to logic

values 0, 1 and 2 respectively.

Table 2.1: Ternary Inverters [36]

Input x NTI (x) STI (x) PTI (x)
0 2 2 2
1 0 1 2
2 0 0 0

Table 2.2: Logic Symbols

Voltage Level Logic Value
0 0

V dd/2 1
V dd 2

Implementation of ternary logic circuits requires transistors with different threshold

voltages. Hence CNFET technology, where the threshold voltage of transistor can be

modified by changing its physical dimensions, is suitable to implement ternary logic

circuits [36]. The following section presents a brief overview of CNFET.

2.2 Carbon-Nanotube Field Effect Transistor (CN-

FET)

A single-walled carbon nanotube (SWCNT) is obtained by rolling up a sheet of graphite

along a roll-up vector C = na+mb, as shown in Figure 2.1, where m and n are positive

integers which specify the chirality of the tube and ′a′ and ′b′ are lattice unit vectors [42].

The angle of atom arrangement along the tube, also called as chiral angle or roll-up

vector or chirality vector in a single wall CNT (SWCNT), is represented by an integer

pair (n,m). The value of (n,m) determines if CNT is metallic or semiconducting.

2.2. Carbon-Nanotube Field Effect Transistor (CNFET) 8

Chiral(n,n) armchair

(n,0) zigzag

Figure 2.1: Unrolled sheet of graphite and the rolled lattice structure of CNT [42]

SWCNT is further classified into three groups, depending on the angle of atom

arrangement, i.e. chirality vector, along which the CNT is rolled. The three groups

of CNT are named as armchair CNT if CNT has n = m, zigzag CNT if n = 0 or

m = 0 and chiral CNT if m and n are different and nonzero. All armchair CNTs

behave as conductors. On the other hand, zigzag and chiral CNTs show metallic

(conducting) behavior when n = m or n–m = 3i, where i is an integer, otherwise they

show semiconducting behavior. Hence zigzag and chiral CNTs are used in realizing a

CNTFET [43]. The chirality vector (n,m) also sets the diameter of the CNT.

Carbon-Nanotube Field Effect Transistor (CNFET) is a transistor which makes use

of semiconducting carbon nanotubes as channel material between two metal electrodes

that act as source and drain contacts. The operating principle of CNFET is similar

to that of MOS transistors. As shown in Figure 2.2, this three (or four) terminal

device consists of a semiconducting nanotube, acting as conducting channel, bridging

the source and drain contacts. The device is turned on or off electrostatically via the

gate. The drain current is directly proportional to the number of CNTs connected

between the source and the drain and their respective diameters [44,45].

Figure 2.2: 3D view of Carbon-Nanotube Field Effect Transistor (CNFET)

Three types of CNTFET devices have been reported in the literature. They are

known as schottky barrier CNTFET (SB-CNTFET), MOSFET-like CNTFET (M-

2.2. Carbon-Nanotube Field Effect Transistor (CNFET) 9

CNTFET) and band-to-band tunneling CNTFET (T-CNTFET). Due to the similar-

ities of M-CNTFET with MOSFET in terms of operation and intrinsic attributes, it

has been used in implementation of logic circuits [45]. The gate width of CNTFET

can be approximated using equation below [44]:

W ≈ min(Wmin, N × S) (2.3)

In equation (2.3), Wmin is the minimum gate width, N is the number of tubes and

S the distance between the centers of two adjoining CNTs under the same gate, also

called as Pitch. The diameter of CNT, DCNT , which depends on the chirality vector

(n,m) can be calculated using equation below:

DCNT =

√
3a0
π

(
√
n2 +m2 +mn) (2.4)

where a0 = 0.142nm is the inter atomic distance between each carbon atom and its

neighbour. The threshold voltage, which is the voltage needed to turn ON the device

electrostatically via the gate, can be approximated to the first order as the half band

gap and can be calculated by equation (2.5) [44].

Vth ≈
Eg
2e

=
1√
3

aVπ
eDCNT

=
0.43

DCNT (nm)
(2.5)

In the above equation, Vπ(= 3.033eV) is the carbon π - π bond energy in the tight

bonding model, a(= 0.249nm) is the carbon-carbon atom distance and e is the unit

electron charge. If the chirality vector of CNT changes then the threshold voltage of the

CNTFET will also change. Assuming the m value in the chirality vector is always zero,

the ratio of the threshold voltages of two CNTFETs with different chirality vectors can

be represented by equation below:

Vth1
Vth2

=
DCNT2

DCNT1

=
n2

n1

(2.6)

Equation (2.6) shows that threshold voltage of CNFET is inversely proportional

2.2. Carbon-Nanotube Field Effect Transistor (CNFET) 10

to the diameter of CNT which, as mentioned above, depends on its chirality vector.

It is the threshold voltage controlability of CNFET that makes it well suited for the

implementation of multi-valued logic circuits.

The relationship between chirality, CNT diameter and threshold voltage can be

derived from relations presented in [44] and is shown in Table 2.3. There have been

advances in the manufacturing processes of well controlled CNTs [46, 47]. While tech-

niques exist to synthesize CNFETs of desired chirality [48, 49], those with three chi-

ralities i.e. (19, 0), (13, 0) and (10, 0) are normally used in the implementation of

CNFET-based ternary logic circuits [36].

Table 2.3: Relation Between Chirality, CNT Diameter and Threshold Voltage [44]

Chirality Diameter
of CNT

Threshold Voltage
of N-CNTFET

Threshold Voltage
of P-CNTFET

(19, 0) 1.487nm 0.289V −0.289V
(17, 0) 1.330nm 0.328V −0.328V
(16, 0) 1.253nm 0.348V −0.348V
(14, 0) 1.100nm 0.398V −0.398V
(13, 0) 1.018nm 0.428V −0.428V
(11, 0) 0.861nm 0.506V −0.506V
(10, 0) 0.783nm 0.559V −0.559V

While there are many CNTFET device models in the literature [44, 45, 50–52],

Stanford CNFET device models reported in [53] which are based on work presented

in [44,45] have been widely used for the implementation of CNFET-based circuits. Thus

this CNFET model is used for simulations in this work. The technology parameters of

CNTFET along with their brief description and numeric value are given in Table 2.4.

The characteristics of CNFET and the effect of chirality variations is studied with

the help of input and output characteristics of a N-CNFET which are simulated in

HSPICE using the CNFET model in [53]. The CNFET is configured to have three

CNTs (all with same chirality) and all parameters set to their default value. Figures 2.3

and 2.4 show the output characteristics for a fixed VGS of 0.45 and input characteristics

for a fixed VDS of 0.45 for CNFET with different chirality. As seen from Figure 2.3, for

a fixed VGS (VGS of 0.45 chosen as an example), the drain current (IDS) is proportional

to the diameter of CNTs, which in turn is proportional to value of n in chirality vector.

2.3. Ternary Logic Circuits using CNFETs 11

Table 2.4: Technology Parameters for CNFET model in [44,45,53]

Parameter Description Value
Lch Physical channel length 32nm
Lgeff Mean free path in the intrinsic CNT channel region 100nm
Lss Length of doped CNT source-side extension region 32nm
Ldd Length of doped CNT drain-side extension region 32nm
Efi Fermi level of the doped S/D tube 0.6eV
Kgate Dielectric constant of high-k top gate dielectric

material
16

Tox Thickness of high-k top gate dielectric material 4.0nm
Csub Coupling capacitance between the channel region

and the substrate
40pF/m

Vfbn & Vfbp Flat-band voltage for n-CNTFET and p-CNTFET,
respectively

0eV, 0eV

L_channel Physical gate length 32nm
Pitch Distance between the centers of two adjacent CNTs 20nm
Leff Mean free path in p+/n+ doped CNT 15nm

phi_M Work function of Source/Drain metal contact 4.6eV
phi_S CNT work function 4.5eV

Also, it is clear from Figure 2.4 that the threshold voltage of CNFET varies with

diameter of CNTs which in turn is proportional to value of n in chirality vector. This

feature of CNFET makes it well suited for the implementation of multi-valued logic

circuits. A review of CNFET-based ternary logic circuits is presented in the next

section.

2.3 Ternary Logic Circuits using CNFETs

In ternary logic circuits, transistors with different threshold voltages are required for

implementation of basic ternary gates like NTI, PTI, encoder, decoder etc. Unlike in

MOS technology, where body biasing is used to control threshold voltages, in CNFET

technology the threshold voltage is controlled by changing the diameter (i.e. Vth depen-

dent on physical dimension) of CNT which in turn depends on the chirality vector. This

dependence makes CNTFET suitable for implementation of MVL circuits. While in-

terest in design of CNFET-based logic circuits waned over recent years due to complex

fabrication technology and reliability issues, recent demonstration of a CNFET-based

2.3. Ternary Logic Circuits using CNFETs 12

140p

120p

100p

80p

60p

40p

20p

0

0 200m 400m 600m 800m

(16,0)

(17,0)

(19,0)

8p

6p

4p

2p

0

(10,0)

(14,0)

(11,0)

(13,0)

0 200m 400m 600m 800m

Figure 2.3: I-V Characteristics of N-CNFET

-2u

0

2u

4u

6u

8u

10u

12u

14u

16u

18u

20u

22u

24u

26u

28u

30u

32u

34u

36u

38u

40u

42u

44u

46u

48u

0 200m 400m 600m 800m

(19,0)

(17,0)

(16,0)

(14,0)

(13,0)

(11,0)

(10,0)

Figure 2.4: I-V Characteristics of N-CNFET

2.3. Ternary Logic Circuits using CNFETs 13

processor/computer by Stanford researchers [54] has reignited the interest.

CNFET-based ternary logic circuits using resistive loads have been presented in [55].

The disadvantage of this approach however is that it needs large off-chip resistances.

A more efficient design methodology, which eliminates the need for large resistances

by employing an active load with p-type CNFETs, has been presented in [36,37]. This

work presented designs for ternary NAND and NOR gates simulated using HSPICE

with Stanford CNTFET model of [53]. A design technique which uses both ternary

logic gates and binary logic gates can also be found in this work. This technique can be

divided in to three main stages: In the first stage, a ternary decoder is used to convert

a ternary signal into mutually exclusive unary functions. These decoder outputs can

take only two logic values i.e., logic 2 and logic 0, corresponding to logic 1 and logic

0 in binary logic. These outputs are combined using binary logic gates in the second

stage. In the third and final stage, the outputs of the second stage are combined using

an encoder to generate the ternary outputs. The ternary encoder consists of a level

shifter and a ternary OR gate. It was shown that this technique leads to a reduction

in power-delay product, for example, a ternary half adder and a 1-bit multiplier with

respect to their counterparts designed using CNTFET based ternary gates only.

Another CNFET-based design methodology for ternary and quaternary circuits,

which uses pseudo N-type CNFETs, has been presented in [56]. Recently there have

been many implementations of CNFET-based ternary arithmetic circuits (Adders [38,

39,57–60] and ALU [40]) that focus on optimizing the design parameters. An improved

version of the ternary adder has been presented in [58]. This adder uses an encoder

with reduced complexity and a fast carry generation unit resulting in less propagation

delay for multi-digit adders. Although the encoder used in [58] has reduced delay and

complexity, it consumes large power resulting in designs such as multi-digit adders that

consume very high power.

Energy efficient single-digit and multi-digit adders have been presented in [39]. In

single-digit adder designs, positive and negative ternary complements of inputs are

generated in the first stage. Intermediate outputs are then generated from first stage

2.3. Ternary Logic Circuits using CNFETs 14

outputs and original inputs using a network of transistors with different chiralities.

These outputs, which are binary in nature, are converted in to ternary outputs using

a transistor-based voltage divider. The multi-digit adder presented in [39] uses two

half-adders to generate sum whereas it uses a standalone circuit to generate carry.

This carry is ternary in nature and has to propagate to the next adder stage. The

major disadvantage of this design however is that at each adder stage, ternary carry is

generated using a voltage divider circuit resulting in a multi-digit adder that has large

delay and power consumption.

Low-delay and low-power single-digit and multi-digit adders have been presented

in [60]. In this work, unary operators are implemented using efficient circuits, which

are further used in the design of 3 : 1 multiplexer-based single-digit adders. These

adders have low-propagation delay and least PDP when compared to other existing

designs. This work also presented efficient conditional sum and carry look-ahead-

based ternary multi-digit adders. At each digit-adder stage of Conditional Sum Adder

(CSA), three different sums and carry-outs , corresponding to carry-in of 0, 1 and 2

are computed using 3:1 multiplexer-based single-digit adders. Further, depending on

the actual carry-in, an array of 3:1 multiplexers is used to compute the final sum digits

(Sumi) and carry-out (Cout). In Carry-Lookahead Adder (CSA) presented in [60],

four propagate functions (pi1, pi2, pi3 and pi
4), which correspond to different carry-

in and carry-out conditions are generated at each digit-adder stage. These single-digit

propagate functions are given as inputs to carry-lookahead generator, which implements

a set of logic expressions [60] to compute group propagate functions and carry-out

signals. Finally the carry-out signals and inputs are given to a 3 : 1 multiplexer-based

single-digit adders, which generate the final sum digits. Although multi-digit CSA and

CLA designs have low-propagation delays and least PDP, they have complex carry

propagation path and consume large power when compared to other designs.

Ternary multiplier, implemented using unary operators and 3 : 1 multiplexers, has

been presented in [61]. This design is based on the classical Wallace multiplier and

includes a novel 3 : 1 ternary multiplexer design that requires only a small number of

2.4. Research Gaps, Objectives and Scope of Current Work 15

CNFETs. Two ternary full-adder configurations have also been proposed based on an

examination of the multiplier structure. Additionally, the design includes a new single-

digit and multi-digit multipliers. Apart from the effort to build novel designs, there

have also been attempts to develop synthesis algorithms for CNFET-based ternary logic

circuits. Recently, a synthesis technique for ternary logic circuits, which exploits the

advantages of CNFET, has been presented in [41]. This technique combines the cube

representation [62] and the unary operators [63] to arrive at a 3 : 1 multiplexer based

synthesis procedure. This work also presented a procedure for obtaining expressions

for two and three variable functions using the unary operators. Ternary functions with

three (or more) variables are handled by a decomposition procedure based on work

presented in [64].

2.4 Research Gaps, Objectives and Scope of Current

Work

Based on the literature review presented above, a few of the gaps and issues in CNFET-

based ternary logic design are addressed in this thesis. A summary of these is presented

below:

1. Generalized design approaches to implement ternary logic circuits have been lim-

ited in the literature so far. Thus, there is a need to develop techniques to design

CNFET-based ternary circuits optimized for different design parameters. one

of the objectives of this thesis is to develop designs for the implementation of

ternary circuits

2. Most of the CNFET-based adder designs in the literature have complex carry

propagation paths. In this thesis, two new techniques to implement ternary

adders that have efficient carry propagation paths, are proposed. One of these

approaches uses binary prefix networks for carry propagation leading to adder

designs that have logarithmic delay as apposed to linear delay of the existing

designs.

2.4. Research Gaps, Objectives and Scope of Current Work 16

3. Ternary encoder is an important block which is used in many CNFET-based

ternary circuits. This block contributes significantly to the overall propagation

delay and power consumption of the logic circuits. Hence there is need for low-

power low-delay encoder designs, as well as a methodology which uses appropriate

encoder designs depending on the design constraints such as power, delay or

power-delay product.

4. Automatic synthesis leads to accelerated development of logic circuits. There

are synthesis techniques available in literature that can be used to implement

ternary circuits, but very few of them take the advantages of special properties of

CNFET. In this thesis, we propose novel techniques to synthesize ternary circuits

using 2:1 multiplexers.

Chapter 3

Design Approaches for Basic Ternary

Circuits

3.1 Introduction

The CNFET based ternary circuit design presented in [36] is a generalized approach

which could be used for implementing any ternary function. This approach however

uses a complex encoder and requires a ternary decoder for each input, resulting in

large area and power consumption for higher operand sizes. Another approach pre-

sented in [41] uses multiplexers to implement ternary logic circuits which have low

power consumption but large propagation delay. Thus this thesis focuses on devel-

oping techniques for designing CNFET-based ternary circuits optimized for multiple

design parameters.

In this chapter three general design approaches, which can be used to implement

basic ternary logic circuits, are presented. The first approach avoids the use of decoder

and uses a novel low-power encoder resulting in ternary circuits with low transistor

count compared to existing approaches. This approach results in circuits which are

optimized for two design parameters namely area and power consumption. The next

approach uses a delay optimized decoder and low-power encoder leading to energy

efficient ternary circuits. Finally, the third design approach uses 2:1 multiplexers for

17

3.2. Existing Design Approaches 18

realizing basic ternary logic circuits leading to ternary circuits, which have low power

consumption. Basic 2-input circuits are implemented using proposed design approaches

and their design parameters are compared to that of existing approaches.

3.2 Existing Design Approaches

3.2.1 Decoder-Encoder based approach

The decoder-encoder based approach presented in [36] can be divided in to three main

stages. In first stage, a ternary decoder is used to convert a ternary signal into mutually

exclusive unary functions which will have two logic levels, logic 0 and logic 2. The

relation between ternary input X and decoder outputs (indicated by X0, X1, X2) is

given by

Xk =

2, if X = k

0, if X 6= k

(3.1)

These decoder outputs can take only two logic values i.e., logic 2 and logic 0,

corresponding to logic 1 and logic 0 in binary logic. The outputs of these ternary

decoders are combined using binary logic gates in the second stage. In the third and

final stage, the outputs of the second stage are combined using an encoder to generate

the ternary outputs. This ternary encoder consists of a level shifter and a ternary OR

gate.

As an example, consider the ternary function shown in Table 3.1, where A and B

are ternary inputs and F is ternary output. The output function F is equal to logic 2

for the input signals A = 1 and B = 0 or A = 2 and B = 0 while it is equal to logic 1

for signal values A = 0 and B = 1 or A = 0 and B = 2. F is equal to logic 0 in all the

remaining cases. Using Table 3.1 output function F can be written as

3.2. Existing Design Approaches 19

Table 3.1: Truth Table (Example 1)

Decimal Equivalent A B F

0 0 0 0
1 0 1 1
2 0 2 1
3 1 0 2
4 1 1 0
5 1 2 0
6 2 0 2
7 2 1 0
8 2 2 0

decoder decoder

T

Binary Logic Gates

Encoder

Figure 3.1: Realization of a ternary function using existing decoder-encoder based
approach

F = 2 ·
∑

(3, 6) + 1 ·
∑

(1, 2) + 0 ·
∑

(0, 4, 5, 7, 8) (3.2)

F = 2 · (A1B0 + A2B0) + 1 · (A0B1 + A0B2) (3.3)

where Ak and Bk (k = 0, 1, 2) represent unary outputs of the ternary signals A and

B. F 2 and F 1 represent unary signals of output F which are combined in the final

stage using an encoder, which consists of a level shifter and a ternary OR gate, to

generate ternary output F . Ternary logic gates are usually represented with a � (dot)

on the gate. The implementation of the function F following the methodology in [36]

is shown in Figure 3.1.

3.2. Existing Design Approaches 20

Vdd

(10,0)

(19,0)

NTI

Vdd

(13,0)

(13,0)

(19,0)

(10,0)

(19,0)

Figure 3.2: Implementation of function shown in Table 3.1 using 3:1 Mux based
approach [60]

3.2.2 Multiplexer based approach

Another approach, that uses unary operators and 3 : 1 multiplexers for implementing

ternary logic circuits has been presented in [60,61]. To illustrate this approach, consider

again the ternary function shown in Table 3.1. Since it has two inputs, one of the inputs

is chosen as select line for a 3:1 multiplexer and the other input is used in generation

of unary operators. If input A is chosen as the select signal and A = 0, then (0, 1, 2)

is transformed into (0, 1, 1) with respect to input B. Similarly when A = 1 or A = 2

, (0, 1, 2) is transformed into (2, 0, 0) with respect to input B. These transformations,

also called unary operators, have been implemented in such a way that they have

low power consumption [60]. Figure 3.2 illustrates the implementation using the 3:1

multiplexers and unary operators. This design requires 18 CNFETs as shown in Figure

3.3.

3.3. Novel Approaches to Design Ternary Logic Circuits 21

Vdd

(19,0)

(10,0)

Vdd

(10,0)

(19,0)

PTI

NTI

Vdd

(19,0)

(10,0)

(19,0)

(19,0)

(10,0)

(19,0)

(10,0)

(19,0)

(10,0)

(19,0)

Figure 3.3: Transistor level Implementation of 3:1 Multiplexer [60]

3.3 Novel Approaches to Design Ternary Logic Cir-

cuits

3.3.1 Approach I: Using Low-power Encoder and without De-

coder

3.3.1.1 Overview

As seen from the existing decoder-encoder based approach, each of the inputs is con-

verted into mutually exclusive binary signals using ternary decoders. As the number of

inputs increases, there will be an increase in the number of decoders needed resulting in

more area and power consumption. In the example discussed earlier two decoders were

needed for two inputs A and B in the implementation of the function F . The approach

being proposed obviates the need for a decoder by optimally grouping the terms in

equation (3.3). Considering the earlier example, the function F can be represented as

F = 2 · ((A1 + A2)B0) + 1 · (A0(B1 +B2)) = 2.F 2 + 1.F 1 (3.4)

where F 2 and F 1 are the unary signals of output function F , which can take the

values of logic 2 (logic high) or logic 0 (logic low). In the above equations, F 2 = 2, if

3.3. Novel Approaches to Design Ternary Logic Circuits 22

Vdd

M1

M2 (10,0)

(19,0)
M3 M4

(19,0)

(19,0)

(a) F 2Implementation

Vdd

M1 (19,0)

M2 (10,0)

(19,0)
M3 M4

(19,0)

(b) F 1Implementation

Figure 3.4: Implementation of F 2 and F 1 in proposed approach

B0 = 2 and (A1 + A2) = 2. The term B0 = 2, if B = 0. The other term of F 2 i.e.

(A1 + A2) = 2, if A = 1 or 2. Thus the complete term(A1 + A2)B0 of the function F 2

can be realized using NTI gates and CNFET transistors, as shown in Figure 3.4(a).

It consists of one NTI gate and four additional transistors M1, M2, M3 and M4.

M1 and M2 are p-type CNFETs, whereas M3 and M4 are of n-type. The chiralities of

the respective transistors are also shown in the figure. Accordingly, M1, M2, M3 and

M4 transistors have threshold voltages equivalent to −0.428V , −0.559V , 0.428V and

0.289V respectively. Input A is given through an NTI gate and connected to base of

M1 and M3. Since M1 has a threshold voltage of −0.428V , M1 is ON only when the

output of NTI is logic 0 (i.e. when A is logic 1 or logic 2). M3 has a threshold voltage

of 0.428V and thus M3 is ON only when output of NTI gate is logic 2 (i.e. when A

is logic 0). Similarly, the base of transistors M2 and M4 are connected to input B.

Since M2 and M4 have their threshold voltages as −0.559V and 0.289V respectively,

M2 is ON when B is logic 0 and M4 is ON when B is logic 1 or logic 2. The overall

output F 2 is logic 2 when both M1 and M2 are ON and F 2 is logic 0 when either M3

or M4 are ON . Similar analysis can be carried out for the circuit implementation of

F 1 shown in Figure 3.4(b).

As seen from the above example, the use of decoder circuit for each ternary input

can be avoided using the proposed approach. This results in less number of transistors

as well as less delay and power consumption when compared to the existing decoder-

encoder approach. The above analysis can be described more formally as below:

3.3. Novel Approaches to Design Ternary Logic Circuits 23

Proposition 3.1. Without the loss of generality, let F (A, B) be any ternary function

with A and B as inputs. If it is possible to represent the unary terms of the inputs A

and B using any combination of transistors, PTI and NTI gates, then the use a decoder

for any input (at the initial stage) is redundant.

3.3.1.2 Steps Involved

Based on the above Proposition 3.1 an approach for implementation of CNFET based

ternary circuits without decoder is presented below.

1. Initially, a given function F is represented using a K-map appropriate equations

are determined.

2. Equations can then be used to determine the components (such as NTI and PTI,

etc.) required for CNFET based implementation. Also, the number of transistors

required for implementation of unary signals of F , that is, F 2, F 1 and F 0 are

determined. Since unary signals are mutually exclusive, implementation of any

two out of three functions is enough. The selection of functions is made in such

a way that least number of transistors is required for the implementation.

3. Based on the unary functions chosen, an optimized encoder circuit is used to

generate the final ternary output.

In what follows, the above steps are described in detail.

3.3.1.3 Function Simplification

The given function F is first represented using K-map and the equations in terms of

unary functions. The terms in the K-map can then be grouped or the equations can

be simplified such that the terms in final simplified equation can be realized using the

ternary inputs directly. This is achieved by using a combination of NTI gates, binary

inverters and transistors. As an example, consider a function F (A,B) represented by

the truth table shown in Table 3.2. It can be observed from the table that, the output

is logic 0 when A = B, is logic 1 when A < B and logic 2 when A > B. This function

3.3. Novel Approaches to Design Ternary Logic Circuits 24

Table 3.2: Truth Table (Example 2)

Decimal Equivalent A B F

0 0 0 0
1 0 1 1
2 0 2 1
3 1 0 2
4 1 1 0
5 1 2 1
6 2 0 2
7 2 1 2
8 2 2 0

A/B 1 2

0 0 1 1

1 2 0 1

2 2 2 0

0

F2 = (A1+A2).B0 + A2 .(B0+B1)

F1 = A0 .(B1+B2) + (A0+A1).B2

F0 = A0B0 + A1B1 + A2B2

Figure 3.5: K-Map simplification for function F

can be represented using the K-map as shown in Fig 3.5. To get the unary functions

corresponding to three levels, the 1s, 2s and 0s are grouped separately. This results

in minimized functions for F 2, F 1 and F 0. The grouping of terms can be carried out

using the K-map shown in Fig 3.5.

The functions can also be derived using the simplification of equation as illustrated

below:

F = 2 ·
∑

(3, 6, 7) + 1 ·
∑

(1, 2, 5) + 0 ·
∑

(0, 4, 8) (3.5)

which can be expressed as

F = 2·(A1B0+A2B0+A2B1)+1·(A0B1+A0B2+A1B2)+0·(A0B0+A1B1+A2B2) (3.6)

or

3.3. Novel Approaches to Design Ternary Logic Circuits 25

F = 2·(A1+A2)B0+A2(B0+B1))+1·(A0(B1+B2)+B2(A0+A1))+0·(A0B0+A1B1+A2B2)

(3.7)

resulting in

F = 2 · F 2 + 1 · F 1 + 0 · F 0 (3.8)

3.3.1.4 Implementation of Unary Functions

Functions F 2, F 1 and F 0 in equation (3.8) represent the unary functions of output F

and are mutually exclusive. Thus any two of the three unary functions are enough to

generate the final output F . As mentioned earlier, the two functions that are to be

implemented are chosen in such a way that realization of the circuit results in least

number of transistors. After this simplification is carried out, the resulting expressions

would contain either individual unary terms of the inputs, i.e. A0, B0, A1 etc. or group

terms such as (A1 +A2), (B0 +B1), etc. These terms can be realized using PTI gates,

NTI gates and transistors.

For example, A0 indicates that the output function is logic 2 when input A is logic 0

i.e. a connection to V DD is made possible when A is logic 0. This pull-up functionality

is realized by designing a p–type CNFET with a threshold voltage of −0.559V i.e. a

chirality equivalent to (10, 0). Such a transistor will however be OFF when gate voltage

is greater than 0.341V and hence for logic 1 (0.45V) and logic 2 (0.9V), it will be in

OFF state. The values of input for which the output remains logic 0 are considered

for designing the n-type CNFET structure. In case of A0, the output remains logic 0

when the input is at logic 1 or logic 2. This pull-down functionality is realized with an

n-type CNFET having a threshold voltage of 0.289V which is equivalent to a chirality

of (19, 0). Such a transistor will be ON when gate voltage is greater than 0.289V and

hence for logic 1(0.45V) and logic 2 (0.9V), it remains in ON state. A similar analysis

can be carried out to to design p-type and n-type structures for different terms of the

3.3. Novel Approaches to Design Ternary Logic Circuits 26

P-Type CNFET

X (10,0) X (19,0)

N-Type CNFETFunction

X0

(Transistors Required)

X1

(19,0)X
X (10,0)

X

X

X2 X X

(2)

(6)

(4)

(19,0)

(19,0)

(19,0)

(19,0)

Figure 3.6: Transistor level realization of X0, X1 and X2 unary terms

simplified equation. Figures 3.6 and 3.7 show the realization of different unary terms

(individual and group) that might appear in any simplified equation corresponding

to input X. To realize the output unary functions, the p-type CNFET structures

corresponding to the input unary terms are placed in series to realize AND (·) function

and in parallel to realize OR (+) function. On the otherhand n-type CNFET structures

are placed in series to realize OR (+) function and in parallel to realize the AND (·)

function.

Figures 3.6 and 3.7 also show the number of transistors required to implement the

individual and group unary terms corresponding to an input X. This information is

used to calculate the number of transistors required to implement the unary functions

F 2, F 1and F 0 as shown in Figure 3.8.

The simplified function of F 2 contains (A1 + A2)B0 as the first term and thus the

p-type structure corresponding to B0 is placed in series with that of (A1 + A2). The

resulting circuit is then placed in series with the structure corresponding to A2(B0+B1)

to get the final p-type CNFET circuit. A process similar to complementary logic style

is followed to design the n-type circuit resulting in the design shown in Figure 3.8. The

realization of all unary functions F 2, F 1 and F 0 results in 12, 12 and 24 transistors

respectively.

3.3. Novel Approaches to Design Ternary Logic Circuits 27

P-Type CNFET

X (10,0)X(19,0)

N-Type CNFETFunction
(Transistors Required)

(19,0)X

X (10,0)
X

X

X XX1+ X2

X0 + X1

X0 + X2

(4)

(2)

(6)

(19,0) (19,0)

(19,0)
(19,0)

Figure 3.7: Transistor level realization of X0 +X1, X1 +X2 and X0 +X2 unary terms

3.3.1.5 Low-power Encoder

In the final stage, an encoder is used to combine the unary signals resulting in a final

ternary output getting generated. An encoder generates logic 2 and logic 0 respectively

by a direct connection to V DD and GND. But for generation of logic 1 at output,

a direct path from V DD to GND is created. One of the major disadvantages of

the existing ternary adder designs [39, 58] is that they use encoders which have low

resistance path between V DD and GND to generate logic 1. This results in a large

static current and hence large static power consumption. The encoder design in existing

approach [36] (shown in Figure 3.1) uses a level shifter and a ternary OR gate. Hence it

requires large number of transistors and also has large power consumption. The power

consumption is mainly because of multiple direct paths, that exist from V DD to GND,

while generating logic 1. An improved encoder, which has lower power consumption

when compared to encoders in [36, 39, 58], is presented in this section. Figure 3.9

shows the proposed encoder, which has unary functions F 2 and F 1as inputs. Since the

functions F 2 and F 1 are unary function and can be either logic 0 or logic 2, simple

binary inverters can be used to get their complements. Implementation of a simple

binary inverter is also shown in Figure 3.9.

Existing encoder and the encoder shown in Figure 3.9 use F 1 and F 2 as inputs to

3.3. Novel Approaches to Design Ternary Logic Circuits 28

(10,0)

A A

(19,0)B B

B

(19,0)B
F2

VDD

(10,0)

(19,0)(19,0)

(19,0)

(19,0)

(a) F 2 Implementation

(10,0)

B B

(19,0)A A

A

(19,0)A
F1

VDD

(10,0)

(19,0) (19,0)

(19,0)

(19,0)

(b) F 1 Implementation

(10,0)

(10,0) (19,0)A

A

(19,0)B

B

A

BB

A

(19,0) (19,0)

(10,0) (10,0) B

A B

A B

A A B

VDD

F0

(19,0) (19,0)

(19,0) (19,0)

(19,0)

(19,0)

(19,0)

(19,0)

(c) F 0 Implementation

Figure 3.8: Implementation of F 2, F 1 and F 0 using proposed approach

3.3. Novel Approaches to Design Ternary Logic Circuits 29

Vdd

Vdd

(13,0)

(19,0)

(19,0)

(13,0)

(13,0)

(13,0) (13,0)

(13,0) (13,0)

Figure 3.9: Encoder with F 2 and F 1 as inputs ((F 2, F 1)-Encoder)

generate ternary output F . Hence, if any other pair of functions, i.e. F 2 and F 0 or F 1

and F 0, are implemented to reduce the number of transistors as explained in Section

3.3.1.4, F 1 or F 2 have to be generated using binary NOR gate. To avoid this, two more

encoders are proposed that take combinations of (F 2, F 0) or (F 1, F 0) as inputs. Figure

3.10 shows encoder designs for the function pairs (F 1, F 0) and (F 2, F 0). As in the

case of (F 2, F 1)-encoder, simple binary inverters can be used to get the complement of

unary functions for encoders presented. For the example under consideration (equation

3.7), implementation of F 2 and F 1 results in least number of transistors and hence the

encoder design presented in Figure 3.9 is used in the final stage. As seen from the

proposed approach any ternary function can be realized without decoders resulting

in reduced area. Although the proposed approach is explained using an example of

a 2-input function, the same methodology can be extended to any number of inputs.

However, care should be taken to avoid stacking of multiple transistors.

3.3. Novel Approaches to Design Ternary Logic Circuits 30

Vdd

F0

F2

F2

F0

F

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(a) (F 2, F 0)-Encoder

Vdd

F1

F1

F0

F

F1

F0

(13,0) (13,0)

(13,0) (13,0)

(13,0)

(13,0)

(13,0)

(b) (F 1, F 0)-Encoder

Figure 3.10: Encoder design for (F 2, F 0) and (F 1, F 0) combination

3.3.2 Approach II: Using low-delay Decoder and low-power En-

coder

The previous section presented a decoderless approach to design ternary logic circuits.

Although this approach results in reduced area due to the elimination of decoders,

it results in large transistor stacking leading to higher propagation delay for some

circuits. To illustrate this, consider an example ternary function shown in Table 3.3

which computes the Half-sum (HS) of two ternary digits A and B.

Table 3.3: Half-Sum (HS)

A/B 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Based on Table 3.3 the logical expressions for half-adder outputs can be determined

as below:

HS2 = A2B0 + A1B1 + A0B2 (3.9)

HS1 = A2B2 + A1B0 + A0B1 (3.10)

3.3. Novel Approaches to Design Ternary Logic Circuits 31

Vdd

(10,0)

(10,0)

(10,0)

(10,0)

(19,0)

(19,0)
(19,0)

(19,0)

(19,0)

(19,0)

(19,0) (19,0)

(19,0) (19,0)

(19,0)(19,0)

Figure 3.11: Implementation of Half-Sum using Decoderless approach

Vdd

decoder

decoder

Figure 3.12: Implementation of Half-Sum using Existing Decoder-encoder based ap-
proach (all CNFETs have chirality as (19, 0))

HS0 = A2B1 + A1B2 + A0B0 (3.11)

Since HS2, HS1 and ,HS0 are mutually exclusive, circuit implementations are re-

quired only for two of these signals. The third signal can be then generated using

NOR operation. For example, if HS2, HS1 are available then HS0 can be generated

as HS2 +HS1. The transistor level implementation of HS1 using the decoderless ap-

proach is shown in the Figure 3.11. Alternatively, assuming a decoder is used, HSi1 can

be directly implemented at transistor-level using complementary logic style as shown

in Figure 3.12.

3.3. Novel Approaches to Design Ternary Logic Circuits 32

In both these cases, the circuits have increased transistor stacking (three transis-

tors) for pull-up/pull-down network as evident from Figure 3.12 and 3.11. Similarly

implementations of HS2 and HS0 also result in circuits with large transistor stacking.

Thus in this section, we propose an implementation with reduced transistor stacking,

leading to lower delay, by exploiting the mutually exclusive property of the decoder

outputs. This section also presents a low-delay decoder which aids further in reducing

the delay of the ternary circuit.

3.3.2.1 Low-Delay Decoder

The approach presented in this section uses a decoder to generate mutually exclusive

binary signals (as in equation 3.1). The existing design of the decoder [36], [58], which

uses NTI, PTI, binary inverter and binary NOR gate, is shown in Figure 3.13(a). This

design, which has two inverters and one binary NOR gate in its critical path, can be

improved further to achieve better delay. Figure 3.13(b) shows the delay-optimized

design for the decoder. In this design, a NOR like structure is used to generate A1

using A0 and ternary input A instead of A0 and A2. Ternary input A is connected to

N-CNFET which switches ON when A is logic 2. A is also connected to P-CNFET

which switches ON when A is either logic 0 or logic 1. As evident from the circuit, A1

will be logic 2 when both the transistors in the pull up network of NOR like structure

are ON . This happens only when A0 is logic 0 and A is logic 1. The critical path of

this decoder, which includes one inverter and a NOR like structure, is better than the

existing decoder implementation [36,58].

3.3.2.2 Alternate Representation of Logic Expressions

The basic idea behind this approach is to modify the logic equations for a given ternary

function so that it results in reduced transistor stacking. This is illustrated with the

ternary function considered earlier, which computes Half-Sum (HS) of two ternary

digits, A and B. The logic expressions for half-sum are represented by equations

(3.9) - (3.11). A direct implementation of these equations leads to increased transistor

3.3. Novel Approaches to Design Ternary Logic Circuits 33

Vdd

(19,0)

(10,0)

Vdd

(10,0)

(19,0)

Vdd

(19,0)

(19,0)

(19,0)(19,0)

Binary NOR

Vdd

(19,0)

(19,0)

Binary Inverter

PTI NTI

(a) Existing Decoder [36,58]

Vdd

(19,0)

(10,0)

(19,0)

(19,0)

(b) Proposed Decoder

Figure 3.13: Decoder Implementations

stacking as seen in Figures 3.11 and 3.12. Hence instead of using equations (3.9) - (3.11)

directly, they are modified to product-of-sum form using properties of unary operators

to optimize the pull-up/pull-down network. The product-of-sum expression for HS2

can be derived either using the K-map or by representing HS2 as HS1 +HS0, where

HS1 and HS0 are given by equations (3.10) and (3.11) respectively. The modification

of logical expression for HS2 is shown below:

HS2 = HS1 +HS0 (3.12)

3.3. Novel Approaches to Design Ternary Logic Circuits 34

HS2 = A2B2 + A1B0 + A0B1 + A2B1 + A1B2 + A0B0 (3.13)

HS2 = A2(B2 +B1) + A1(B0 +B2) + A0(B1 +B0) (3.14)

HS2 = A2B0 + A1B1 + A0B2 (3.15)

HS2 = (A2 +B0)(A1 +B1)(A0 +B2) (3.16)

A similar process is used to modify the expressions for HS1 and HS0, resulting in

the expressions below:

HS1 = (A2 +B2)(A1 +B0)(A0 +B1) (3.17)

HS0 = (A2 +B1)(A1 +B2)(A0 +B0) (3.18)

Equations (3.9), (3.10) and (3.11) which are in product-of-sum form, represent

the modified logical expressions of equations (3.16), (3.17) and (3.18) which are in

sum-of-product form, respectively. For optimal implementation of pull-up/pull-down

network both product-of-sum and sum-of-product expressions are used appropriately.

For example, equation (3.10) can be used to implement the pull-down network and an

equivalent equation (3.17) can be used to implement the pull-up network of HSi1, lead-

ing to lower transistor stacking. Figure 3.14 shows the transistor-level implementations

to generate unary signals for the half-sum output.

The proposed implementation of half-adder needs Bi
2, Bi

1 and Bi
0 , which can be

generated using binary inverters along with the proposed decoder. Hence the decoder

circuit for Bi has two inverters and one binary NOR like structure in the critical path

which is similar to the existing decoder circuit presented in [36, 58]. However, our

approach results in a balanced pull-up and pull-down network with reduced transistor

3.3. Novel Approaches to Design Ternary Logic Circuits 35

Vdd

Figure 3.14: Implementation of Half-Sum with reduced Transistor Stacking (all CN-
FETs have chirality as (19, 0))

stacking when compared to existing decoder-encoder based approach and the decoder-

less approach which is presented in Section 3.3.1. After generating the unary functions

of outputs, the encoder design presented in Section 3.3.1.5 is used to generate final

ternary output.

The approach presented in this section uses a delay optimized decoder and alternate

expressions for logic expression to implement basic ternary logic circuits which have low

delay when compared to existing design approaches. However, this approach requires

more number of CNFETs when compared to decoderless approach presented in Section

3.3.1.

3.3.3 Approach III: Using 2:1 Multiplexers

In this section, an approach which uses 2:1 multiplexers for implementation of ternary

logic circuits, is presented.

3.3.3.1 Basic Idea

The basic idea involved in this approach is presented using Proposition given below:

Proposition 3.2. A 3:1 multiplexer can be implemented using two 2:1 multiplexers

Proof. Consider the expression for a 3:1 multiplexer (shown in Figure 3.2), which is

3.3. Novel Approaches to Design Ternary Logic Circuits 36

represented as Y = S0 ·D0 + S1 ·D1 + S2 ·D2, where D0, D1 and D2 represent inputs

while S represents select signal. S0, S1 and S2 are related to S according to equation

(3.1) and can be generated as shown in the Figure 3.3.

Y = S0 ·D0 + S1 ·D1 + S2 ·D2 (3.19)

Y = S0 ·D0 + (S1 + S0) · (S1 + S2) ·D1 + S2 · (S1 + S2) ·D2 (3.20)

∵ S1 = (S1 + S0) · (S1 + S2), S2 · S2 = S2, and S2 · S1 = 0

Y = S0 ·D0 + (S1 + S2) · ((S1 + S0) ·D1 + S2 ·D2) (3.21)

Y = S0 ·D0 + S0 · (S2 ·D1 + S2 ·D2) (3.22)

∵ (S1 + S2) = S0, (S1 + S0) = S2, where S0, S1 and S2 represent the binary NOT

of signals S0, S1 and S2 respectively as given by equation (3.23).

Sk =

2 ifSk = 0

0 ifSk = 2

(3.23)

Alternatively equation (3.19) can also be represented as equation (3.24) and (3.25).

Y = S2 · (S0 ·D0 + S0 ·D1) + S2 ·D2 (3.24)

Y = S1 · (S0 ·D0 + S0 ·D2) + S1 ·D1 (3.25)

The relation in equations (3.22), (3.24) and (3.25) are similar to relation for a 2:1

multiplexer, Y = S̄ ·D0 + S ·D1, where D0 and D1 are inputs and S is the select line.

Hence a 3:1 multiplexer can be implemented using two 2:1 multiplexers as shown in

the Fig 3.15.

3.3. Novel Approaches to Design Ternary Logic Circuits 37

(a) Using Equation (3.22) (b) Using Equation (3.24)

Vdd

(19,0)

(10,0)

(19,0)

(19,0)

(c) Using Equation (3.25)

Figure 3.15: A 3:1 Multiplexer operation using 2:1 Multiplexers

Vdd

PTI

(19,0)

(19,0)

(19,0)

(10,0)

(10,0)

(19,0)

(a) PTI-Mux

Vdd

NTI

(19,0)

(19,0)

(19,0)

(10,0)

(10,0)

(19,0)

(b) NTI-Mux

Figure 3.16: CNFET-based Implementation of NTI-Mux and PTI-Mux

3.3.3.2 Ternary circuits using CNFET-based 2:1 Multiplexers

As evident from Figure 3.15, equations (3.22) and (3.24) are less complex to implement,

when compared to equation (3.25) because generation of S0, S0, S2 and S2requires PTI

and NTI whereas implementation of S1 and S1 requires complex NOR like structure

in addition to a NTI. Hence circuits shown in Figures 3.15(a) and 3.15(b) are used

for implementing ternary functions. These circuits use two types of 2:1 multiplexers

namely PTI-Mux and NTI-Mux, which are implemented using CNFETs as shown in

Figures 3.16(a) and 3.16(b) respectively.

A 3:1 multiplexer presented in [41] requires18 transistors. However, proposed 2:1

multiplexers with inverters (NTI-Mux and PTI-Mux), which are equivalent to one 3:1

3.3. Novel Approaches to Design Ternary Logic Circuits 38

Figure 3.17: 2:1 Multiplexer based Implementation for Ternary Function in Table 3.4

multiplexer, requires only 12 transistors. Further PTI-Mux and NTI-Mux ares used

in the implementation of ternary logic circuits. To illustrate 2:1 multiplexer based

approach consider the same example ternary function represented in Table 3.1, which

was used to show 3:1 multiplexer based approach. The K-map for this ternary function

is shown in Table 3.4.

Table 3.4: Ternary Function (Example 1)

A/B 0 1 2

0 0 1 1
1 2 0 0
2 2 0 0

For this ternary function A and B are ternary inputs and F is ternary output. In 2:1

multiplexer based approach, similar to 3:1 multiplexer based approach, one of the inputs

is chosen as the select line and second input is used to realize the unary operators. But

unlike in 3:1 multiplexer based approach, the proposed approach implements the unary

operators using 2:1 multiplexers, PTI and NTI. Figure 3.17 shows the implementation

of ternary function shown in Table 3.4, where A is chosen as the select line and unary

operator is realized using 2:1 multiplexer. This implementation requires 12 CNFETs

when compared to 3:1 multiplexer based implementation, which requires 25 transistors.

Since both decoders and encoders are avoided in this approach, it results in low area and

power consumption when compared to design approaches presented earlier. However,

Since this approach uses transmission gates for realizing multiplexers, it results in

ternary circuits with large propagation delay.

3.4. Implementation and Simulation 39

Table 3.5: Truth-Table for basic Ternary Circuits

Inputs Half-Adder 1-digit Multiplier
A B Sum Carry Product Carry

0 0 0 0 0 0
0 1 1 0 0 0
0 2 2 0 0 0
1 0 1 0 0 0
1 1 2 0 1 0
1 2 0 1 2 0
2 0 2 0 0 0
2 1 0 1 2 0
2 2 1 1 1 1

3.4 Implementation and Simulation

For a comparison of the proposed approaches with the existing ones [36, 60], basic

ternary logic functions namely half-adder and 1-digit multiplier have been implemented

using different approaches and circuit parameters like delay, power, and number of

transistors have been compared to understand relative performance. The functionality

of the basic circuits is represented by Table 3.5.

As seen from this table, half-adder has two outputs (Sum and Carry) and 1-

digit multiplier has two outputs (Product and Carry). As an example, the circuit

implementations for Half-adder using different approaches is shown in Figures 3.18,

3.19, 3.20, 3.21 and 3.22. These circuits along with the circuits for multiplier have been

implemented using CNTFET model available at [53] and simulated using HSPICE. The

following sub-sections explain the simulation environment and the results obtained.

3.4.1 Simulation Environment

All the circuits are simulated in HSPICE using the CNTFET model of [44, 45, 53] at

0.9V power supply and room temperature. The CNFETs used in the implementation

are configured to have three tubes and a default pitch value equal to 20nm. All the

other parameters are set to their default values as presented in Table 2.4. In this work,

ternary logic values 0, 1 and 2 correspond to voltages 0, V dd/2 and V dd respectively.

For binary logic gates the logic values 0 and 1 correspond to voltages 0 and V dd

3.4. Implementation and Simulation 40

Vdd Vdd

Vdd

decoder
Existing

decoder
Existing

Encoder
Existing

Shifter
Level

Figure 3.18: Half-Adder using Existing Decoder-Encoder based Approach (all CNFETs
have chirality as (19, 0))

Vdd

(13,0)

(13,0)

(19,0)

(10,0)

(19,0)

Vdd

(13,0)

(13,0)

(19,0)

(10,0)

(19,0)

Vdd

(13,0)

(13,0)
(10,0)

(19,0)

(10,0)

(10,0)

(10,0)

Vdd

(13,0)

(13,0)

(10,0)

(10,0) (10,0)

(10,0)

(19,0)

Figure 3.19: Half-Adder using Existing 3:1 Multiplexer based Approach

3.4. Implementation and Simulation 41

Vdd

(10,0)

(10,0)

(10,0)

(10,0)

(19,0)

(19,0)
(19,0)

(19,0)

(19,0)

(19,0)

(19,0) (19,0)

(19,0) (19,0)

(19,0)(19,0)

(19,0)

(19,0)

(19,0)

Vdd

(19,0)

(19,0)

(19,0)

(10,0)

(10,0)

(10,0) (19,0)

(10,0) (19,0)

(19,0) (19,0)

(19,0)

(19,0)

Vdd

(19,0)

(19,0)

(19,0)

(19,0)

(19,0)

(10,0) (19,0) (19,0)

(19,0) (19,0)

Encoder
Proposed

Encoder
Proposed

Figure 3.20: Half-Adder using Proposed Decoderless Approach (I)

Vdd Vdd

Vdd

decoder
Proposed

decoder
Proposed

Encoder
Proposed

Encoder
Proposed

Figure 3.21: Half-Adder using Proposed Decoder-Encoder based Approach (II) (all
CNFETs have chirality as (19, 0))

3.4. Implementation and Simulation 42

Figure 3.22: Half-Adder using Proposed 2:1 Multiplexer based Approach (III)

respectively. Binary gates are implemented using transistors, which are connected

in complementary logic style and have chirality of (19, 0). Different ternary circuits

are implemented using proposed and existing approaches and the design parameters

are compared. For fair comparison, all the circuits have been simulated with same

test pattern. Power consumption results are obtained by simulating the circuits with

random input patterns at switching frequency of 500MHz. Propagation delay results

for different circuits are obtained by finding the worst case Fan-Out of 4 (FO4) delay

of the critical path. FO4 delay is calculated by loading the output node with four

STI gates (implementation of STI gate is presented in [36]). In this section Proposed

Approach I, II and III refer to decoderless, decoder-encoder based and 2:1 multiplexer

based approaches respectively.

3.4.2 Results and Discussion

Table 3.6 summarizes the simulation results of different parameters for various ternary

functions namely ternary half-adder and multiplier, which are implemented using ex-

isting and proposed approaches. In this table, Approach I, II and III refer to proposed

decoderless, decoder-encoder based and 2:1 multiplexer based approaches respectively.

These approaches are compared with existing decoder-encoder based approach [36]

and 3:1 multiplexer based approach [41, 60]. Fig. 3.23 presents the logical simulation

waveforms of half-adder implemented using 2:1 multiplexer based approach to show

3.4. Implementation and Simulation 43

0

200m

400m

600m

800m

0

200m

400m

600m

800m

0

500m

0

200m

400m

Time (lin) (TIME)
0 5n 10n 15n 20n 25n 30n 35n

Figure 3.23: Simulation Waveforms for Half-Adder

the correctness of the design. The same is also true with other proposed designs.

The existing decoder-encoder based approach uses a decoder for each input and a

complex encoder for each ternary output resulting in large propagation delay, power

consumption and transistor count when compared to other approaches. The problem

of increased transistor count is addresses in existing 3:1 multiplexer based approach

[41,60]. But the disadvantage of this approach is that it uses a complex implementation

for realizing unary operators resulting in large power consumption, when compared to

decoder-encoder based approach in [36].

Approach I uses a decoderless implementation and a low-power encoder to realize

ternary logic circuits. This implementation shows a reduction of up to 18% in transis-

tor count and up to 40% in power consumption when compared to existing approach

in [36]. Approach I also shows reduction in propagation delay (up to 7%) and power

consumption (up to 54%), but requires more transistors (up to 38% more) for imple-

mentation when compared to 3:1 multiplexer based approach [41, 60]. However, for

some circuits like ternary half-adder, the decoderless approach results in circuits with

large transistor stacking leading to higher propagation delay. This problem is solved in

Approach II by using both sum-of-product and product-of-sum expressions of ternary

3.4. Implementation and Simulation 44

Table 3.6: Simulation Results for Basic Circuits

Design Approach Half-Adder 1-digit
Multiplier

Power Consumption (in µW)
Decoder-Encoder Based [36] 1.24 (100%) 0.780 (100%)
3:1 Multiplexer based [41,60] 1.62(131%) 0.779(100%)

Approach I 0.745(60%) 0.372(48%)
Approach II 0.828(67%) 0.417(53%)
Approach III 0.121(10%) 0.069(9%)

Propagation (FO4) Delay (in ps)
Decoder-Encoder Based [36] 42.4(100%) 35.7(100%)
3:1 Multiplexer based [41,60] 47.0(111%) 26.4(74%)

Approach I 43.0(101%) 25.3(71%)
Approach II 31.61(74%) 19.5(55%)
Approach III 44.2(104%) 17.5(49%)
Power-Delay Product (PDP) (in ×10−17J)

Decoder-Encoder Based [36] 5.25(100%) 2.78(100%)
3:1 Multiplexer based [41,60] 7.62(145%) 2.06(74%)

Approach I 3.20(61%) 0.94(34%)
Approach II 2.62(50%) 0.81(29%)
Approach III 0.53(10%) 0.12(4%)

Number of CNFETs
Decoder-Encoder Based [36] 88(100%) 66(100%)
3:1 Multiplexer based [41,60] 52(59%) 40(61%)

Approach I 72(82%) 50(76%)
Approach II 82(93%) 62(94%)
Approach III 36(41%) 30(45%)

3.4. Implementation and Simulation 45

circuits appropriately to reduce transistor stacking.

Approach II also uses a optimized decoder and low power encoder resulting in re-

duction upto 7% in transistor count, 45% in propagation delay and 47% in power

consumption when compared to existing decoder-encoder based approach in [36]. This

approach also shows improvement with respect to propagation delay and power con-

sumption when compared to existing 3:1 multiplexer based approach. However, this

approach uses decoder and hence requires more number of transistors to implement

the circuit when compared to decoderless approach.

Approach III uses 2:1 multiplexer in the implementation of ternary logic circuits and

resulting circuits show a reduction of up to 30% transistor, 34% in propagation delay

and 91% power consumption when compared to existing 3:1 multiplexer based approach

[41, 60]. This is because, unlike in the existing 3:1 multiplexer based approach, where

unary operators are implemented using complex circuits that have multiple direct paths

between V DD and GND, in the proposed approach, unary operators are implemented

using 2:1 multiplexers resulting in low power consumption. The 2:1 multiplexer based

approach has least power consumption and transistor count when compared to existing

and other proposed approaches. However, since 2:1 multiplexer based approach uses

transmission gates, ternary circuits designed using this approach cannot drive large

load capacitance.

To check the dependence propagation delay on load capacitance, ternary logic cir-

cuits designed using different approaches have been simulated with varying loads. Table

3.7 shows the propagation delay results for ternary circuits with load capacitance of

1fF , 2fF and 3fF . As an example Figure 3.24 shows a graph of variation in propa-

gation delay of a half-adder with respect to changes in the output load.

As seen from this figure, the propagation delay is heavily dependent on load for the

half-adder circuit designed using existing and proposed multiplexer based approaches.

These approaches result in circuits with large propagation delay for large load. For

ternary half-adders designed using other existing and proposed approaches, the prop-

agation delay is less dependent on load variations.

3.4. Implementation and Simulation 46

Table 3.7: Propagation Delay vs Load

Propagation Delay (in ps) for Half-Adder
Load Capacitance

Design Approach 1fF 2fF 3fF
Decoder-Encoder Based [36] 65.15 92.36 119.5
3:1 Multiplexer based [41,60] 120.1 226.8 333.4
Approach I 66.68 101.6 137.3
Approach II 54.26 89.8 123.9
Approach III 110.7 201.1 291.2
Propagation Delay (in ps) for 1-bit Multiplier
Decoder-Encoder Based [36] 58.38 85.69 113.1
3:1 Multiplexer based [41,60] 74.70 138.5 202.8
Approach I 34.44 59.40 85.90
Approach II 37.34 62.37 88.94
Approach III 47.79 88.53 129.5

3E-11

8E-11

1.3E-10

1.8E-10

2.3E-10

2.8E-10

3.3E-10

FO4 1 f F 2 f F 3 f F

P
ro

pa
ga

ti
on

 D
el

ay
 (

s)

Output Load

Exitsing Decoder-Encoder based

Exitsing 3:1 Multiplexer Based

Proposed Approach I

Proposed Approach II

Proposed Approach III

Figure 3.24: Propagation Delay Vs Output Load for Half-adder

3.4. Implementation and Simulation 47

As seen from Table 3.6 and Table 3.7, a ternary half-adder implemented using

proposed Approach II has least propagation delay and lower power consumption when

compared to existing approaches. Although, this half-adder consumes more power, it

is less dependent on load variations when compared to half-adder implemented using

2:1 multiplexer based approach.

3.4.2.1 Impact of Process, Voltage and Temperature (PVT) Variations

The performance metrics such as delay and power consumption are impacted by varia-

tions in process parameters, voltage and temperature (PVT). Thus in this section, we

present the results of variation in delay and power due to PVT variations for half-adders

which are implemented using proposed and existing design approaches. Diameter vari-

ation is a significant issue in CNFET-based ternary logic circuits since they consist of

CNFETs with different CNT diameter. To examine the effect of diameter variation

on the performance of the adder, Monte Carlo simulations have been performed with

upto ±15% Gaussian distribution, variations at ±3σ level and 30 iterations for each

simulation. The significance of 30 iterations has been discussed in [65]. Figure 3.25

illustrates the variations in delay and power in the existing and proposed full adders as

a function of diameter variation. It is clear from the figure that the half-adder imple-

mented using the Approach I (i.e. decoderless) is least sensitive to diameter variations

when compared to those implemented using other existing and proposed approaches.

The proposed and existing decoder-encoder based approaches show similar variation

in delay and power with respect to variation in diameter. Figure 3.25 also shows that

multiplexer based approaches are more sensitive to diameter variations when compared

to decoder-encoder based approaches.

Another aspect of interest in CNFET-based circuits is the impact of voltage vari-

ations. Figure 3.26 illustrates the propagation delay and power consumption in full

adders for different supply voltages. The multiplexer based approaches are excluded

from this analysis because The increase in the supply voltage increases the current

drawn by the circuit. As the current through CNFET increases the propagation delay

3.4. Implementation and Simulation 48

1E-12

6E-12

1.1E-11

1.6E-11

2.1E-11

2.6E-11

3.1E-11

3.6E-11

5% 10% 15%M
ax

im
um

 v
ar

ia
ti

on
 in

 P
ro

pa
ga

ti
on

 D
el

ay
 (

s)

Diamater Variation

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(a)

1E-09

5.1E-08

1.01E-07

1.51E-07

2.01E-07

2.51E-07

3.01E-07

3.51E-07

4.01E-07

4.51E-07

5% 10% 15%

M
ax

im
um

 v
ar

ia
ti

on
 in

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Diamater Variation

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(b)

Figure 3.25: Monte-Carlo Simulations for (a) Delay (b) Power

decreases while the power consumption increases. It is clear from the Figure 3.26 that

the half-adders implemented using the proposed and existing approaches show similar

variation in design metrics for variation in supply voltage.

2.5E-11

3.5E-11

4.5E-11

5.5E-11

6.5E-11

7.5E-11

0 . 8 0 . 9 1

P
ro

pa
ga

tio
n

D
el

ay
 (

s)

Supply Voltage (V)

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(a)

5E-08

5.5E-07

1.05E-06

1.55E-06

2.05E-06

2.55E-06

3.05E-06

3.55E-06

0 . 8 0 . 9 1

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Supply Voltage (V)

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(b)

Figure 3.26: (a) Delay (b) Power for Supply Voltage Variation

Apart from process and voltage, temperature variations also impact the perfor-

mance of CNFET-based circuits. Figure 3.27 illustrates the propagation delay and

power consumption in full adders for different temperatures. The increase in temper-

ature increases the current and thus propagation delay is directly proportional while

power consumption is inversely proportional to temperature. It is clear from the Fig-

ure 3.27 that the half-adders implemented using the proposed and existing approaches

show similar variation in design metrics for variation in temperature.

3.4. Implementation and Simulation 49

2.5E-11

3E-11

3.5E-11

4E-11

4.5E-11

5E-11

0 ° C 2 0 ° C 4 0 ° C 6 0 ° C

P
ro

pa
ga

tio
n

D
el

ay
 (

s)

Temperature

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(a)

5E-08

5.5E-07

1.05E-06

1.55E-06

2.05E-06

0 ° C 2 0 ° C 4 0 ° C 6 0 ° C

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Temperature

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

(b)

Figure 3.27: (a) Delay (b) Power for Temperature Variation

3.4.2.2 Noise Immunity Analysis

Noise tolerance is a term commonly used to describe the ability of logic circuits to

function properly in the presence of noise pulses. Noise pulses are characterized by

their width and amplitude and a pulse with adequate width and amplitude may cause

a glitch (spurious switching). Noise immunity curve (NIC) is typically used to measure

the noise tolerance of a logic gate in presence of such pulses. The horizontal and

vertical axes in the NIC curve correspond to noise width (Tnoise) and noise amplitude

(Vnoise), respectively and any point lying above the curve is indicative of a glitch at

the output. Noise immunity curves have been obtained through simulations using

techniques described in [65, 66]. Figure 3.28 presents the noise immunity curves for

half adders implemented using proposed and existing approaches. It is clear from this

figure that the half-adder implemented using proposed decoderless approach (Approach

II) shows better noise immunity when compared to those implemented using decoder-

encoder based and multiplexers based approaches. The ternary half-adder implemented

using proposed decoder-encoder and multiplexer based approaches have noise immunity

characteristics similar to half-adder implemented using existing decoder-encoder and

multiplexer based approaches respectively.

Another quantitative measure, known as, average noise threshold energy (ANTE)

derived from NIC curve is also used to quantify the noise immunity. It is equal to

E(V 2
noise×Tnoise), where E() denotes the expectation operator. A higher ANTE measure

3.5. Conclusions 50

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

5 0 1 0 0 1 5 0 2 0 0

N
oi

se
 P

ul
se

 A
m

pl
itu

de
 (

V
)

Noise Pulse Width (ps)

Existing Decoder-Encoder based Existing 3:1 Multiplexer Based

Proposed Approach I Proposed Approach II

Proposed Approach III

Figure 3.28: Noise Immunity Curve for Half-Adders

Table 3.8: ANTE for Ternary Half-Adders

Design Approach ANTE (in V2-ps)
Decoder-Encoder Based [36] 4.15
3:1 Multiplexer based [41,60] 3.29

Approach I 4.44
Approach II 4.15
Approach III 3.29

implies better immunity to input noise. The ANTE for the different half-adders are

shown in Table 3.8. It is clear from the table that the proposed decoderless approach

has better noise immunity when compared to decoder-encoder and multiplexer based

approaches.

3.5 Conclusions

This chapter presented three general design approaches, which can be used to im-

plement basic ternary logic circuits. These approaches lead to ternary circuits which

are optimized for one more design parameters. Simulation results indicate that ba-

sic ternary circuits, namely half-adder and 1-digit multiplier, which have been imple-

mented using proposed approaches result in up to 91% reduction in power consumption,

up to 45% reduction in delay and 30% reduction in transistor count when compared

to the existing design approaches. Based on the analysis of simulation results the

following conclusions are drawn:

3.5. Conclusions 51

• Approach I, which uses a low-power encoder and does not use a decoder, leads to

efficient ternary logic circuits with respect to transistor count, power consumption

and drive capability. This approach also leads to circuits which are less sensitive

to diameter variations and have better noise immunity.

• Approach II, which uses delay optimized decoder, and uses both sum-of-product

and product-of-sum expressions, leads to implementation of ternary logic circuits

which have least propagation delay, and are less dependent on load variations.

• Approach III, which uses 2:1 multiplexers for implementing ternary circuits, leads

to circuits which are optimized for power consumption and transistor count, but

are heavily dependent on output load.

Chapter 4

Design of Multi-digit Ternary Adders

4.1 Introduction

In Chapter 3, three new design approaches to design ternary logic circuits have been

presented. Simulation results show that a ternary half-adder, which is implemented

using Approach II, has least propagation delay, and is less dependent on load varia-

tions. Hence in this chapter, half-adder implemented using Approach II is used in the

implementation of ternary adders.

Adder is the basic building block of Arithmetic and Logical Unit (ALU), which in

turn is an integral part of any general purpose processor. Adders are also used in many

hardware implementations like logarithmic converters, address generators etc. There

have been many implementations of CNFET-based adder circuits [38, 39, 57–60] that

focus on optimizing the design parameters. Most of the multi-digit ternary adders in

literature are ripple-carry based and/or have complex carry propagation paths leading

to large delay. The adder designs presented in [38,39,58,59] also consume large power

due to the complexity involved in generating logic 1.

This chapter presents two new techniques that can be used to implement multi-

digit ternary adders. In the first technique, the ternary adders are implemented using

half-adders (implemented using Approach II), which generate Half-Sum (HS) and Half-

Carry (HC). These half-adder outputs (instead of main inputs) are used to compute

carry-out at each digit-adder stage using a delay optimized carry generator. The half-

52

4.2. Previous Work on CNFET-based Ternary Adders 53

sum and carry-out are then used to compute final sum at each digit-adder stage with

the help of a sum generator and low-power encoders. Employing delay optimized

carry generator along with low-power encoder results in energy efficient multi-digit

ternary adder design. The second technique is based on the concept of carry Propagate-

Generate, which used in implementation of ternary prefix adders. The carry propagate-

generate concept cannot be directly applied in the implementation of ternary prefix

adders. In this work a technique, which enables the use of carry Propagate-Generate

concept in multi-digit ternary adders, is presented.

4.2 Previous Work on CNFET-based Ternary Adders

There have been many CNFET-based ternary adder designs proposed in the literature.

A brief overview of these adders is presented in the following subsections.

4.2.1 Single-Digit Adders

The ternary adder presented in [36] uses a ternary decoder in the first stage to generate

binary versions of inputs. The ternary decoder is a one-input, three-output circuit and

generates unary functions for an input X. The relation between ternary input X and

decoder outputs (indicated by X0, X1, X2) is given by equation (3.1). These decoder

outputs can take only two logic values i.e., logic 2 and logic 0, corresponding to logic

1 and logic 0 in binary logic. The decoder outputs are used to compute intermediate

binary outputs with the help of binary logic gates. Finally ternary sum and carry are

generated from binary outputs using a combination of ternary buffers and/or encoder.

A modified and improved version of the above adder has been presented in [58]. This

adder uses an encoder with reduced complexity and a fast carry generation unit result-

ing in less propagation delay for multi-digit adders. Although the encoder used in [58]

has reduced delay and complexity, it consumes large power resulting in multi-digit

adders with very high power consumption.

A ternary single-digit adder (full adder), which does not use decoders, has been

4.2. Previous Work on CNFET-based Ternary Adders 54

Carry
Generator

Sum
Generator

STI STI STI

Carry
Generator

Sum
Generator

STI STI

Carry
Generator

Sum
Generator

STI STI STI

Carry
Generator

Sum
Generator

STI STI

(a) Multi-digit adder design based on Single-
digit adder of [38].

Carry

Generator

Sum

Generator

Carry

Generator

2-digit Sum

Generator

Sum

Generator

2-digit Sum

Generator

Carry

Generator

Sum

Generator

Carry

Generator

2-digit Sum

Generator

Sum

Generator

2-digit Sum

Generator

PTI NTI PTI NTI PTI NTI PTI NTI

PTI NTI PTI NTIPTI NTI PTI NTI

(b) Multi-digit adder presented in [39].

Decoder Decoder

Decoder
Sum

Generator

Encoder

Carry
Generator

Decoder Decoder

Sum
Generator

Encoder

Carry
Generator

Decoder Decoder

Sum
Generator

Encoder

Carry
Generator

Encoder

(c) Multi-digit adder presented in [58].

Two 3:1 Mux
Two 3:1 Mux

FA
Digit Sum and CoutDigit Sum and Cout

3:1 Mux

Two 3:1 Mux

3:1 Mux3:1 Mux

Digit Sum and CoutDigit Sum and Cout Digit Sum and Cout

 3:1 Mux
 3:1 Mux

 3:1 Mux

Two 3:1 Mux
Two 3:1 Mux

Two 3:1 Mux

Two 3:1 Mux
Two 3:1 Mux

Two 3:1 Mux

3:1 Mux3:1 Mux3:1 Mux 3:1 Mux
Carry Path
Sum Path

(d) Multi-digit Conditional Sum Adder (CSA) presented in [60]

3-digit CLA3-digit CLA

6-digit CLA

6-digit CLA

Propagate Propagate Propagate

Sum
Generator

Carry-Lookahead Generator

3-digit CLA

Carry-Lookahead Generator

Carry-Lookahead Generator

(e) Multi-digit carry look-ahead Adder (CLA) presented in [60]

Figure 4.1: Design techniques used to implement Multi-digit adders

4.2. Previous Work on CNFET-based Ternary Adders 55

presented in [38]. In this design, inputs and their standard ternary complements are

given as inputs to the sum generator and carry generator blocks. These blocks, which

compute ternary sum and carry, are implemented using a network of transistors with

different chiralities. This design avoids using a separate encoder and hence has least

power consumption when compared to other designs. The disadvantage of this design

is that it has large propagation delay as a result of complex sum generator and carry

generator blocks. A modified version of this adder has been presented in [59] with

lesser number of transistors. This design has ternary decoder in first stage and uses a

symmetrical pull up and pull down network with voltage divider to generate ternary

sum and carry.

Energy efficient single-digit and multi-digit adders have been presented in [39].

In single-digit adder design, positive and negative ternary complements of inputs are

generated in the first stage. Intermediate outputs are then generated from first stage

outputs and original inputs using a network of transistors with different chiralities.

The intermediate outputs, which are binary in nature, are converted in to ternary

outputs using a transistor-based voltage divider. Single-digit adder presented in [39]

have moderate power consumption and PDP when compared to other existing designs.

A low-delay and low-power single-digit and multi-digit adders have been presented

in [60]. In this work, unary operators are implemented using efficient circuits, which

are further used in the design of 3 : 1 multiplexer-based single-digit adders. These

adders have low-propagation delay and least PDP when compared to other existing

designs.

4.2.2 Multi-digit Adders

Figure 4.1 illustrates design techniques available in literature that are used to im-

plement multi-digit (N -digit) adders. Here A(AN−1...A1A0), B(BN−1...B1B0), Cin are

ternary inputs and Sum(SumN−1...Sum1Sum0), Cout are ternary outputs. CoutN−2...

Cout0 represent intermediate ternary carries. Only single-digit adder design is pre-

sented in [38], which can be connected in series to implement multi-digit adder (shown

4.2. Previous Work on CNFET-based Ternary Adders 56

in Figure 4.1(a)). A similar technique can be used to implement multi-digit adder

based on one-digit adder presented in [59].

The multi-digit adder presented in [39] is shown in Figure 4.1(b). This design uses

two half-adders to generate sum, whereas it uses a standalone circuit to generate carry.

This carry is ternary in nature and has to propagate to the next adder stage. The

major disadvantage of designs in [38,39,59] is that at each adder stage, ternary carry is

generated using a voltage divider circuit resulting in a multi-digit adder that has large

delay and power consumption.

Design presented in [58] is shown in Figure 4.1(c), where intermediate binary signals

are represented using Xi
j notation. Here Xi

j corresponds to ith digit-adder stage whose

value is either logic 2 (if X = j) or logic 0 (if X 6= j), where jε{0, 1, 2}. For example

A0
1 corresponds to input of 0th digit-adder stage whose value is logic 2 only if ternary

signal A is equal to logic 1. Also, {} is used to represent a group of binary signals and

its complements. In multi-digit adder of the same work, the sum generation is similar

to other existing designs, whereas carry generation/propagation is optimized for delay

by avoiding redundant encoder-decoder pairs. At each digit-adder stage, binary carry

signals (i.e. Couti
2, Couti

0) are generated using a low-delay carry generator block.

Unlike other multi-digit adder designs where ternary carries are generated for every

digit-adder stage, design in [58] computes ternary carry (Couti) only for the final (i.e.

N − 1th) digit-adder stage. Although this design has least propagation delay, it has

large power consumption and power-delay product when compared to similar designs

in literature. This is because the encoder used in [58] consumes large static power.

Efficient conditional sum and carry look-ahead-based ternary multi-digit adders

have been presented in [60]. Figure 4.1(d) shows ternary multi-digit Conditional Sum

Adder (CSA) presented in [60]. At each digit-adder stage of CSA three different sums

(Si0, Si1, Si2) and carry-outs (Ci0, Ci1, Ci2), corresponding to carry-in of 0, 1 and 2 are

computed using 3 : 1 multiplexer-based single-digit adders. Further depending on the

actual carry-in, an array of 3 : 1 multiplexers are used to compute the final sum digits

(Sumi) and carry-out (Cout).

4.2. Previous Work on CNFET-based Ternary Adders 57

Figure 4.1(e) shows shows the block level implementation of multi-digit Carry-

Lookahead Adder (CLA) presented in [60], where 3-digit CLA is used as basic unit to

design multi-digit adders. In this design four propagate functions (pi1, pi2, pi3 and pi4),

which correspond to different carry-in and carry-out conditions are generated at each

digit-adder stage.pi1 corresponds to the input carry of 0 producing an output carry of

1. This happens when the sum of Ai and Bi is greater than 2. pi2 corresponds to carry

out of 1 for an input carry of 1 which happens when the sum of Ai and Bi is greater

than 1. Similarly, pi3 corresponds to an input carry of 2 and an output carry of 1.

Further, pi4 corresponds to input carry of 2 and output carry of 2. The definitions of

propagate signals are given in equations (4.1)-(4.4), where Ai0, Ai1 and Ai2 correspond

to Ai = 0, 1 and 2 respectively, and Bi
0, Bi

1 and Bi
2 correspond to Bi = 0, 1 and 2

respectively.

pi
1 = Ai

2 · (Bi
1 +Bi

2) + Ai
1 ·Bi

2 (4.1)

pi
2 = Ai

0 ·Bi
2 + Ai

1 · (Bi
1 +Bi

2) + Ai
2 (4.2)

pi
3 = Ai

0 · (Bi
1 +Bi

2) + Ai
1 + Ai

2 · (Bi
0 +Bi

1) (4.3)

pi
4 = Ai

2 ·Bi
2 (4.4)

These single-digit propagate functions are given as inputs to carry-lookahead gen-

erator, which implements a set of logic expressions [60] to compute group propagate

functions (Pi:j1,Pi:j2 ,Pi:j3 and Pi:j4) and carry-out signals. The group propagate func-

tions and carry-out for implementation of 3-digit CLA are obtained from single-digit

propagate functions as given by equations (4.5)-(4.9), where C3 represents carry-out,

Cin0, Cin1, Cin2 represent Cin (carry-in) being 0, 1 and 2.

4.2. Previous Work on CNFET-based Ternary Adders 58

Half-Adder

Decoder Decoder

Half-Sum
Generator I

Half-Carry
Generator NTI & PTI

Half-Sum
Generator II

Carry
Generator

Encoder

Half-Adder

Decoder Decoder

Half-Carry
Generator

Carry
Generator

Encoder

Half-Adder

Decoder Decoder

Half-Carry
Generator

Carry
Generator

EncoderEncoder

0th Digit-Adder1st Digit-Adder
(N-1)th Digit-Adder

Half-Sum
Generator I

Half-Sum
Generator II

Half-Sum
Generator II

Half-Sum
Generator I

Figure 4.2: Proposed design technique to implement Multi-digit adders

P2:0
1 = p2

2(p2
1 + p1

1 + p1
2p0

1) (4.5)

P2:0
2 = p2

2(p2
1 + p1

1 + p1
2p0

2) (4.6)

P2:0
3 = (p1

1 + p1
2p0

3 + p1
3p0

4)(p2
1 + p2

2p1
3 + p2

3p1
4) (4.7)

P2:0
4 = p0

4p1
4p2

4 (4.8)

C3 = 1.(P0
1Cin0 + P0

2Cin1 + P0
3Cin2) + P0

4Cin2 (4.9)

Finally the carry-out signals (Couti−1) and inputs (Ai, Bi) are given to a 3 : 1

multiplexer-based single-digit adders, which generate the final sum digits (Sumi). Al-

though multi-digit CSA and CLA designs have low-propagation delays and least PDP,

they have complex carry propagation path and consume large power when compared

to other existing designs.

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 59

4.3 Proposed Half-Adder Based Ripple-carry Ternary

Adders

The overview of existing adder designs presented in previous section shows that they

are optimized either to reduce propagation delay [58,60] or power consumption [38] or

PDP [39,60]. In this work, we present new designs for CNFET-based multi-digit adders

which are optimized to reduce all the design parameters i.e. delay, power and power-

delay product. Section 4.3.1 presents the proposed design technique to implement

multi-digit adders while Sections 4.3.2.1 to 4.3.2.4 provides the implementation details

of different blocks used in the design.

4.3.1 Basic Idea

The proposed technique used to implement N -digit adder is shown in Figure 4.2. Here

A(AN−1...A1A0), B(BN−1...B1B0), Cin are ternary inputs and Sum (SumN−1.. Sum0),

Cout are ternary outputs. Intermediate binary signals are represented using the same

notation as explained in section 4.2.2.

This technique differs from existing techniques mainly in the way carry genera-

tion/propagation are handled. Existing designs [38,39,58] implement the carry gener-

ation block, which computes carry-out signals for ith digit-adder stage using inputs Ai,

Bi and carry signals from (i − 1)thstage. This results in a complex carry generation

circuit leading to a large delay in carry propagation chain.

The proposed carry generation block computes carry-out signals of ith stage from

half-adder outputs of ith stage (instead of inputs Ai, Bi) and carry signals from (i−1)th

stage. It uses a delay optimized half-adder that consists of a half-sum generator and a

half-carry generator. This half-adder generates binary signals corresponding to ternary

Half-Sum (HSi) and Half-Carry (HCi) for inputs Ai and Bi.

While generation of carry-out becomes more complex due to the usage of two blocks

(i.e. half-adder and carry generator) instead of one, there is a reduction in the delay of

the carry propagation path. This is due to two main factors: First is the fact that the

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 60

half-adder outputs for all digit-adder stages are computed in parallel, resulting in only

one half-adder contributing to critical path delay. Second, since a part of the carry-out

generation logic is already implemented within the half-adder, it results in the reduced

complexity of the carry generator block leading to reduced delay in carry propagation.

The final sum computation at each digit-adder stage is carried out using another

half-sum generator and an encoder. Further, the multi-digit adder design avoids re-

dundant encoder-decoder pairs in the carry propagation path and generates ternary

carry-out only for the final (i.e. N − 1th) digit-adder stage similar to the design pre-

sented in [58].

4.3.2 Implementation using CNFET

4.3.2.1 Designs for Decoder and Half-Adder

The decoder and half-adder circuits are implemented using Approach II, which is pre-

sented in Section 3.3.2. This approach uses a low-delay decoder which is shown in

Figure 4.3. The mutually exclusive binary signals generated by the decoder are used

as inputs to a half-adder which consists of a half-sum generator I to compute Half-

Sum (HS) and a half-carry generator to compute Half-Carry (HC). The outputs of

half-sum generator I are further used to generate final sum digit (Sumi) with the help

of another half-sum generator denoted as half-sum generator II. Instead of generating

ternary signal HS, mutually exclusive binary signals HS2, HS1, HS0 are generated

and used as inputs to the half-sum generator II. This avoids the use of encoder-decoder

pair after the first half-sum generator. The half-carry generator generates binary signal

HC1 which is used in computing the carry-out.

Half-adder in ith digit-adder stage computes the mutually exclusive binary signals

HSi
2, HSi

1, HSi
0 and HCi

1, that correspond to half-sum and half-carry of ternary

digits Ai, Bi. Since addition of two ternary digits will result in a carry of either 0 or

1, only one signal HCi1 is used to represent the output of half-carry generator block.

The Karnaugh maps (K-map) of ternary Half-Sum (HS) and Half-Carry (HC)

are shown in Table 4.1(a) and 4.1(b) respectively. Based on Table 4.1 the logical

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 61

Vdd

(19,0)

(13,0)(10,0)

(19,0)

Figure 4.3: Decoder Implementation

Table 4.1: Half-Adder Karnaugh Maps

(a) Half-Sum (HS)

A/B 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(b) Half-Carry (HC)

A/B 0 1 2
0 0 0 0
1 0 0 1
2 0 1 1

expressions for half-adder outputs can be determined as below:

HSi
2 = Ai

2Bi
0 + Ai

1Bi
1 + Ai

0Bi
2 (4.10)

HSi
1 = Ai

2Bi
2 + Ai

1Bi
0 + Ai

0Bi
1 (4.11)

HSi
0 = Ai

2Bi
1 + Ai

1Bi
2 + Ai

0Bi
0 (4.12)

HCi
1 = Ai

2Bi
1 + Ai

2Bi
2 + Ai

1Bi
2 (4.13)

Figure 4.4 shows the existing gate-level implementation (in [36]) to generate half-

adder outputs HSi2, HSi1, HSi0 and HCi1. The logic gates are implemented at transis-

tor level using complementary logic style. Alternatively, equations (4.10) - (4.13) can

be directly implemented at transistor-level using complementary logic style. Figure 4.5

shows the implementation of HSi2 using the equation (4.10). Similar transistor-level

implementations can be used to implement HSi1 and HCi1 with the help of equations

(4.11) and (4.13) respectively. Direct transistor-level implementations would result in

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 62

decoder decoder
Binary Logic Gates

Figure 4.4: Gate-level Implementation to generate Half-Adder outputs [36]

Vdd

Figure 4.5: Transistor-level Implementation for HSi2

a circuit with increased transistor stacking (three transistors) for pull-up network as

evident from Figure 4.5. Hence Approach II presented in Section 3.3.2 is used to de-

rive alternate equivalent logical expressions, which help in reducing transistor stacking.

Equations (4.14), (4.15) and (4.16) are alternate logic expressions which are equivalent

to equations (4.10), (4.11) and (4.13) respectively. Figure 4.6 shows the transistor-level

implementations to generate half-adder outputs.

HSi
2 = (Ai

2 +Bi
0)(Ai

1 +Bi
1)(Ai

0 +Bi
2) (4.14)

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 63

HSi
1 = (Ai

2 +Bi
2)(Ai

1 +Bi
0)(Ai

0 +Bi
1) (4.15)

HCi1 = (Ai2 +Bi
1)(Ai

0 +Bi
2) (4.16)

Vdd

Vdd

Vdd

Vdd

Half-Adder
Half-Carry
Generator

Half-Sum
Generator I

Figure 4.6: Proposed Transistor-Level Implementation of Half-carry Generator and
half-sum Generator I (all transistors with chirality of (19, 0))

4.3.2.2 Design of Carry Generator Block

The proposed carry generator block uses outputs of the half-adder in the ith stage and

carry signals from i − 1th stage to compute carry-out signals for the ith stage. The

relation between carry-out of ith stage and half-adder outputs for different cases of

carry-in is shown below:

Case 1 (carry-in = 0 i.e. Couti−1 = 0): For this case, Couti is equal to 1 if sum of

Ai and Bi is greater than or equal to 3, else Couti is equal to 0.

Case 2 (carry-in = 1 i.e. Couti−1 = 1): For this case, Couti is equal to 1 if sum of

Ai and Bi is greater than or equal to 2, else Couti is equal to 0.

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 64

Case 3 (carry-in = 2 i.e. Couti−1 = 2): For this case, Couti is equal to 1 if sum of

Ai and Bi is greater than or equal to 1 but less than 4, Couti is equal to 2 if sum of

Ai and Bi is greater than or equal to 4 , else Couti is equal to 0.

Based on the above relations, truth-table for carry-out signal can be obtained and

is shown in Table 4.2. Here half-adder outputs HSi and HCi represent the sum of Ai

and Bi.

Table 4.2: Truth-Table for Carry-Out

Sum of
Ai, Bi

HCi HSi
Couti

Couti−1 = 0 Couti−1 = 1 Couti−1 = 2

0 0 0 0 0 0
1 0 1 0 0 1
2 0 2 0 1 1
3 1 0 1 1 1
4 1 1 1 1 2

Table 4.2 is used to derive the expressions for ith stage carry-out signals as shown

by logic equations (4.17) and (4.18). These equations are used to implement the carry

generator blocks in the proposed design.

Couti
0 = HCi1(HSi2 + Couti−1

0)(HSi
0 + Couti−12) (4.17)

Couti
2 = HCi

1HSi
1Couti−1

2 (4.18)

Figure 4.7 shows the proposed delay optimized carry propagation path with transistor-

level implementation of carry generator blocks. As seen in the Figure 4.7, carry gen-

erator block in ith digit-adder stage generates Couti0and Couti
2 when i is EV EN .

Similarly it generates Couti0and Couti2when i is ODD. This avoids the usage of extra

inverters in the carry propagation path.

The transistor-level implementation of the carry generator block has lower transistor

stacking with a maximum of 3 stacked transistors when compared to the carry generator

design presented in [58], which has a maximum of 7 stacked transistors. Due to the

lower transistor stacking in the proposed carry generator block, the carry propagation

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 65

Carry
Generator

Carry
Generator

0th Stage1st Stage

Vdd

Vdd

Vdd

Vdd

Even Stage

Odd Stage

Half-Adder outputs Half-Adder outputs

Figure 4.7: Delay-Optimized Carry Propagation Path with Proposed Carry Generator
Blocks (all transistors with chirality of (19, 0))

path has lower delay.

4.3.2.3 Design of Final Half-Sum Generator

Outputs of half-sum generator I and carry generator blocks are further used to obtain

final sum digit with the help of half-sum generator II. Figure 4.8 shows the transistor-

level implementation of half-sum Generator II.

In this implementation, Couti−12 (if i is EVEN) or Couti−10 (if i is ODD) is gen-

erated using a binary inverter and Couti−1
1 is generated using a NOR gate. Binary

signals corresponding to final ternary sum i.e. Sumi
2 and Sumi

1 are generated using

transistor-level circuits similar to that of half-sum generator I.

4.3.2.4 Design of Low-Power Encoder

An improved encoder, which uses transistors of same chiralities has been presented in

Section 3.3. This encoder is used to compute final ternary Sum and Carry. Figure

4.9 shows the implementation of the encoder, where presence of additional back to

4.3. Proposed Half-Adder Based Ripple-carry Ternary Adders 66

Vdd

Vdd

Vdd

OR

if i is EVEN

if i is ODD

Half-Sum
Generator II

Figure 4.8: Transistor-level implementation of Half-sum generator II (all transistors
with chirality of (19, 0))

back connected transistor creates a high resistance path between V DD and GND to

generate logic 1 at the output. This high resistance path while limiting the static

current thereby reducing the static power consumption, however, causes the increase

in encoder delay. This encoder delay contributes to the overall propagation delay of the

proposed multi-digit adders, albeit, at lower operand sizes. However at higher operand

sizes, the same delay is dominated by the carry propagation delay and thus is not

relevant. Figure 4.9 shows the implementation of two encoders used in the proposed

design of multi-digit adders. The encoder shown in Figure 4.9(a) is used to generate

the ternary sum digits (Sumi) at each digit-adder stage. In this circuit, if Sumi
2 is

equal to logic 2 then transistor M1 switches ON and logic 2 is obtained at the output.

Instead, if Sumi
1is equal to logic 2 then a direct path from V DD to GND is created

(via transistors M2-M5) causing logic 1 to appear at Sumi. If neither of Sumi
2 and

Sumi
1 are logic 2 then transistors M6 and M7 switch ON pulling output node to logic

0. An encoder, shown in Figure 4.9(b) is used to generate the final carry-out (CoutN−1)

of the adder.

4.4. Proposed Ternary Prefix Adder designs 67

Vdd

(13,0)

(13,0)

(13,0)

(13,0) (13,0)

(13,0) (13,0)

M1

M2

M3

M4

M5

M6

M7

(a) Encoder for Sumi

Vdd

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(b) Encoder for CoutN−1

Figure 4.9: Designs for Encoder

4.4 Proposed Ternary Prefix Adder designs

The main disadvantage of the CLA in [60] is the generation of four propagate functions

pi
1,pi

2,pi
3 and pi4 (refer equations (4.1)-(4.4)) , which correspond to different carry-in

and carry-out conditions. Four different propagate functions are required because of

the ternary nature of carry-in and carry-out. This results in a complex carry-lookahead

generator (refer equations (4.5)-(4.9)) which is used to compute group propagate func-

tions and carry-out signals. In this section a new technique to implement ternary

adders, which use binary carry propagation networks, is presented.

4.4.1 Concept of Carry Propagate-Generate in Binary Addition

The carry Propagate-Generate technique is widely used in the implementation of carry-

lookahead [67] and binary prefix adders [68]. To illustrate this, consider a binary

addition where addition of inputs A(AN−1...A1A0), B(BN−1...B1B0) and carry-in Cin

results in Sum(SumN−1...Sum1Sum0) and carry-out CoutN−1. Assume intermediate

carry-out generated at ith digit-adder stage is represented as Couti . At each digit-

adder stage, the inputs and outputs are related according to the table shown in Figure

4.10.

This table clearly shows that at ith stage, carry-out Couti is either equal to carry-

in Couti−1or to half-carry (HCi) which is generated by adding Ai and Bi. Based on

this dependency, two conditions are defined namely Carry Propagate (when carry-

in Couti−1 propagates as carry-out Couti) and Carry Generate (carry-out Couti is

4.4. Proposed Ternary Prefix Adder designs 68

SumCarry
Half-Adder

Carry Propagate

Carry Propagate

Carry Generate

Carry Generate

Figure 4.10: Table showing Carry Propagate and Generate conditions for Binary ad-
dition

generated from inputs Ai , Bi).

In binary addition, the carry propagate and carry generate conditions are used to

compute propagate (pi) and generate (gi) signals using equations (4.19) and (4.20)

respectively.

pi = HSi = Ai ⊕Bi (4.19)

gi = HCi = Ai.Bi (4.20)

Carry computation at each digit-adder stage can now be transformed to a prefix

problem [69] using the associative operator ◦, which associates pairs of generate and

propagate signals as shown by equation (4.21).

(gi, pi) ◦ (gj, pj) = (gi + pi · gj, pi · pj) = (G[i:j], P[i:j]) (4.21)

where i > j, G[i:j] and P[i:j] represent group propagate and generate functions respec-

tively. Here + and · indicate logical OR and AND operations respectively.

Using the operator ◦ consecutive propagate and generate pairs can be grouped to

generate carry-out at ith digit-adder stage by using equation (4.22).

Couti = G[i:0] = (gi, pi) ◦ (gi−1, pi−1) ◦(g0, p0) (4.22)

After the carries are generated, the sum at each digit-adder stage is computed by

4.4. Proposed Ternary Prefix Adder designs 69

e.g.HA
HA

Figure 4.11: Example of ternary addition using proposed transformation

using equation (4.23).

Sumi = pi ⊕ Couti−1 (4.23)

Several variants of binary prefix adders can be found in the literature [68–72]

which while using different prefix networks, use the same principle of carry “Propagate-

Generate” given in equations (4.21) and (4.22).

4.4.2 Basic Idea for Ternary Prefix Adders

Consider an example of ternary addition illustrated in Figure 4.11. Here N -digit

ternary inputs A(AN−1...A1A0), B(BN−1...B1B0) are added with carry-in Cin resulting

in a ternary Sum(SumN−1...Sum1Sum0) and carry-out CoutN−1. The intermediate

carries which propagate to next stage are represented by CoutN−2...Cout0.

Since Ai, Bi, Cin and Couti ε{0, 1, 2}, using the concept of carry Propagate-

Generate in ternary addition is not as straightforward as it is in conventional binary

addition [68]. To demonstrate this, consider the table shown in Fig 4.12, which lists

all possible inputs and outputs at each digit-adder stage. Here the output carry Couti

is equal to input carry Couti−1(carry propagate condition) or carry (HCi) which is

generated by adding Ai and Bi (carry generate condition), only for some cases. Hence

the concept of carry Propagate-Generate cannot be used directly in ternary addition.

To solve this problem, the CLA presented in [60] uses four different propagate func-

tions corresponding to different carry-in and carry-out conditions, thus increasing the

4.4. Proposed Ternary Prefix Adder designs 70

complexity. A careful observation of table in Figure 4.12 however reveals that the carry

propagate or carry generate conditions fail when Couti = 2. Hence, if the carries that

propagate to next stage are restricted to 0 or 1, then the concept of carry Propagate-

Generate can be applied to ternary addition. To accomplish this, the original operands

A(AN−1...A1A0), B(BN−1...B1B0) and Cin are transformed to intermediate operands

which are represented as (HSN−1...HS1HS0) and (HCN−1...HC0Cin). This transfor-

mation, shown in Figure 4.11, is achieved by adding Aiand Bi resulting in Half-Sum

(HSiε{0, 1, 2}) and Half-Carry (HCiε{0, 1}). After the transformation the addition at

each digit-stage will result in a transformed carry-out TCoutiε{0, 1}, which propagates

to the next stage. Since these variables can assume values 0 or 1, the binary tech-

nique of carry Propagate-Generate can now be applied. The final carry-out CoutN−1

is generated by adding HCiε{0, 1} and TCoutiε{0, 1}.

Carry Propagate

Carry Propagate

Carry Propagate

Carry Generate

Carry Generate

Carry Generate

Carry Generate

None

None

None

None

None

None

SumCarry
Half-Adder

Figure 4.12: Table showing Carry Propagate and Generate conditions for ternary ad-
dition

The conditions, under which the transformed input carry (TCouti−1) propagates

4.4. Proposed Ternary Prefix Adder designs 71

SumCarry
Half-Adder

Carry Propagate

Carry Propagate

Carry Propagate

Carry Generate

Carry Generate

Carry Generate

Carry Generate

Figure 4.13: Table showing Carry Propagate and Generate conditions after proposed
transformation

as output carry (TCouti), are defined with the help of the table shown in Figure 4.13.

Here THCi and THSi represent half-carry and half-sum of transformed inputs HSi

and HCi−1. As seen from the table, the carry-in propagates as carry-out, if THSi

is equal to 2. In other cases, the output carry (TCouti) is equal to the half-carry

THCi that is generated by adding transformed inputs. This is similar to the concept

of carry Propagate-Generate which is used in implementation of binary prefix adders

(refer section 4.4.1). This similarity enables the use of prefix-based carry propagation

networks in the implementation of ternary adders.

4.4.3 Proposed Implementation of Ternary Prefix Adders using

CNFET

In this subsection CNFET-based designs of multi-digit ternary adders, based on the

concept of Propagate-Generate, are presented. Figure 4.14 illustrates the block level im-

plementation of the proposed ternary adders. Here A(AN−1...A1A0), B(BN−1...B1B0),

Cin are ternary inputs and Sum(SumN−1...Sum1Sum0), Cout are ternary outputs.

The intermediate binary signals, which are represented by notation Xi
j, correspond

to a ternary signal Xi. Binary Signal, Xi
j corresponds to ith digit-adder stage whose

4.4. Proposed Ternary Prefix Adder designs 72

Half-Adder

Decoder Decoder

Half-Sum
Generator

Half-Carry
Generator

Half-Adder

Decoder Decoder

Half-Carry
Generator

Encoder

Half-Adder

Decoder Decoder

Half-Carry
Generator

Encoder Encoder

0th Digit-Adder1st Digit-Adder
(N-1)th Digit-Adder

Half-Sum
Generator

Half-Sum
Generator

Decoder

Half-Adder
Half-Sum
Generator

Half-Carry
Generator

Simplified Half-Adder
Simplified
Half-Sum
Generator

Simplified
Half-Carry
Generator

Simplified Half-Adder
Simplified
Half-Sum
Generator

Simplified
Half-Carry
Generator

Prefix-Based Carry Propagation Network

Simplified
Half-Sum
Generator

Encoder

Simplified
Half-Sum
Generator

Stage 2

Stage 1

Stage 3

Stage 4

Stage 5

Stage 6

Figure 4.14: Block-level Implementation of Proposed Ternary Adders

value is either logic 2 (if Xi = j) or logic 0 (if Xi 6= j), where jε{0, 1, 2}. For example,

A0
1corresponds to the input of 0th digit-adder stage whose value is logic 2, only if

ternary signal A0 is equal to logic 1. Binary logic values, 0 and 1 correspond to ternary

logic values 0 and 2. Also, {} is used to represent a group of binary signals and their

complements.

4.4.3.1 Propagate and Generate for Ternary Adders

In Stage 1 of the proposed adders, the ternary inputs are converted to binary us-

ing ternary decoders. The CNFET-based decoder circuit is shown in Figure 3.13b is

used at this stage. In Stage 2, the mutually exclusive binary signals corresponding to

original ternary inputs, A(AN−1...A1A0), B(BN−1...B1B0) and Cin are transformed

to binary signals corresponding to intermediate operands, (HSN−1...HS1HS0) and

(HCN−1...HC0Cin). This transformation is achieved by using Half-Adder (HA) which

in turn consists of half-sum generator and a half-carry generator. Since HCiε{0, 1}

for i > 0, only one signal HCi1 is used to represent the output of half-carry generator

block. The implementation of Half-Adder used in Stage 2 is shown in Figure 4.5, which

4.4. Proposed Ternary Prefix Adder designs 73

uses equations (4.14), (4.15) and (4.16).

In Stage 3 the binary signals, which represent the half-sum (THSi) and half-carry

(THCi), are generated by adding the transformed inputs HSi and HCi−1. Since HCi

can either be logic 0 or 1 (for i > 0), simplified half-adders which have less complexity

than those in Stage 2 are used for computing the binary signals corresponding to THSi

and THCi. Only exception is for the 0th digit-adder stage, where Cin(HC−1)ε{0, 1, 2}

and thus, normal half-adder shown in Figure 3.21 is used to generate THS0 and THC0.

Similar to HCi, the half-carry (THCi) generated at this stage is either 0 or 1. Thus,

one binary signal i.e. THCi
1 is used to represent the half-carry generated in stage

3. Using table shown in Figure 4.13, the logical expressions for simplified half-adder

outputs at ithstage (for i > 0) can be determined as below:

THSi
2 = HSi

1 ·HCi−11 +HSi
2 ·HCi−11 (4.24)

THSi
1 = HSi

1 ·HCi−11 +HSi
0 ·HCi−11 (4.25)

THCi
1 = HSi

2 ·HCi−11 (4.26)

Based on the carry propagate and generate conditions shown in Figure 4.13, if the

half-sum THSiis equal to 2 then the input carry propagates to output. Otherwise

carry is generated and is equal to half-carry THCi. Thus for ith stage, Propagate (pi)

and Generate (gi) are defined by equations (4.27) and (4.28) respectively. Figure 4.15

shows the CNFET-based implementation of simplified half-adder along with pi and gi.

pi = THSi
2 (4.27)

gi = THCi
1 (4.28)

Further carry-out, group propagate and generate signals can be defined by equations

4.4. Proposed Ternary Prefix Adder designs 74

Vdd

Simplified Half-Adder
Simplified
Half-Carry
Generator

Simplified
Half-Sum
Generator

Vdd

Vdd

Vdd

Figure 4.15: CNFET-based Implementation of Simplified Half-Adder (all CNFETs have
chirality of (19, 0))

(4.29), (4.30) and (4.31) respectively.

G[i:0] = TCouti
1 = gi + pi · TCouti−11 = THCi

1 + THSi
2 · TCouti−11 (4.29)

P[i:j] = pi.pj = THSi
2.THSj

2 (4.30)

G[i:j] = gi + pi · gj = THCi
1 + THSi

2 · THCj1 (4.31)

4.4.3.2 Carry Generation using Binary Prefix networks

Carry computation for ternary addition has now transformed in to prefix problem

similar to that of binary addition. Hence the equations (4.21) and (4.22) can be used

for carry generation. This enables the use of prefix-based carry propagation networks,

like Kogge-Stone [69], Ladner-Fischer [70] etc., as Stage 4 in the proposed multi-digit

4.4. Proposed Ternary Prefix Adder designs 75

ternary adders. In this work, we have used three different types of carry propagation

networks namely Ripple-based, Kogge-Stone and Carry lookahead-based. It should be

noted that any parallel prefix-network [68], which follows equation (4.21) and (4.22),

can used in Stage 4 of the proposed ternary adders. Figure 4.16 shows different types

of networks that are used for carry computation in 6-digit ternary adder. The CNFET-

based implementation of cells, which are used in carry propagation networks, are shown

in Figure 4.17.

4.4.3.3 Final Sum and Carry Computation

After all the carries (TCouti1) are computed, the binary signals corresponding to Sumi

are computed in Stage 5 by using a simplified half-sum generator (shown in Figure 4.15)

which implements the logical expressions given below:

Sumi
2 = THSi

2 · TCouti1 + THSi
1 · TCouti1

Sumi
1 = THSi

1 · TCouti1 + THSi
0 · TCouti1

SinceHCiε{0, 1} and TCoutiε{0, 1}, the binary signals corresponding to final carry-

out CoutN−1, are generated by using binary NAND and NOR gates. The logical

expressions for binary signals CoutN−12 and CoutN−10 which are needed as inputs in

final stage are given below:

CoutN−12 = HCN−11 · TCoutN−11

CoutN−1
0 = HCN−11 + TCoutN−11

The last stage, Stage 6, of proposed adder consists of ternary encoders. Figure 4.9

shows the encoders, which are used to compute final ternary (SumN−1...Sum1Sum0)

and carry-out (CoutN−1). The encoders shown in Figures 4.9(a) and 4.9(b) are used

to generate the ternary sum digits (Sumi) and final carry-out (CoutN−1) respectively.

4.4. Proposed Ternary Prefix Adder designs 76

(a) Ripple-based Prefix Network

(b) Kogge-Stone Prefix Network [69]

(c) Carry Lookahead-based Prefix Network

Figure 4.16: Prefix Networks used for Carry Computation in 6-digit Ternary Adder

4.4. Proposed Ternary Prefix Adder designs 77

Vdd

Vdd

(a)

Vdd

Vdd

(b)

Figure 4.17: CNFET-based Implementation of Cells used in Prefix Networks (all CN-
FETs have chirality of (19, 0))

4.5. Simulation Results 78

4.5 Simulation Results

In this section, simulation results for the proposed and existing designs of CNFET-

based multi-digit adders are presented. All the circuits are simulated in HSPICE using

the CNTFET model of [44, 45, 53] at 0.9V power supply and room temperature. The

CNFETs used in the implementation are configured to have three tubes and a default

pitch value equal to 20nm. All the other parameters are set to their default values

as presented in Table 2.4. In this work, ternary logic values 0, 1 and 2 correspond

to voltages 0, V dd/2 and V dd respectively. For binary logic gates the logic values 0

and 1 correspond to voltages 0 and V dd respectively. Binary gates are implemented

using transistors, which are connected in complementary logic style and have chirality

of (19, 0). Different ternary circuits are implemented using proposed and existing

approaches and the design parameters are compared. For fair comparison, all the

adders have been simulated with same test pattern.

Power consumption results are obtained by simulating the circuits with random test

input patterns at switching frequency of 500MHz. To measure the delay of the designs,

test patterns have been chosen in such a way that the signal change propagates through

the critical path and the maximum delay is measured. FO4 delay is calculated by

loading the output node with four STI gates (implementation of STI gate is presented

in [36]). The power-delay product is the product of worst-case propagation delay and

average power consumption. Multi-digit adders of different operand sizes are realized

and circuit parameters are compared to understand the relative performance. The

following sub-section explains the results obtained.

4.5.1 Results and Discussion

Multi-Digit Ternary Adders (MTA), which are implemented using half-adders and the

concept of Carry Propagate-Generate, are compared with other designs to evaluate

the relative performance. In this section, MTA-1 and MTA-2 refer to the ripple-carry

multi-digit adders presented in [58] and [39], whereas MTA-3 and MTA-4 refer to ripple-

carry adders designed using single-digit adders presented in [38] and [59] respectively.

4.5. Simulation Results 79

Two different multi-digit adders, Conditional Sum Adder (CSA) and Carry-Lookahead

Adder (CLA), are presented in [60] and are indicated as MTA-5 and MTA-6 respec-

tively. The Multi-digit half-adder based ternary adder design is represented as MHTA.

The designs of Multi-digit Ternary Prefix Adder (MTPA), which use ripple-based,

Kogge-Stone and carry lookahead-based prefix networks, are represented as MTPA-1,

MTPA-2 and MTPA-3 respectively. Fig. 4.18 presents the logical simulation wave-

forms of the Kogge-Stone based prefix adder to show the correctness of the proposed

structure. The same is also true with other proposed adders.

Table 4.3: Average Power Consumption for N -digit Adders

Power Consumption (in µW)
N 3 6 9 12

MTA-1 [58] 51.10 103.7 134.3 212.4
MTA-2 [39] 8.20 16.69 23.41 31.85
MTA-3 [38] 5.69 12.18 17.61 22.64
MTA-4 [59] 28.88 60.89 83.62 117.0
MTA-5 [60] 6.68 13.36 20.17 27.07
MTA-6 [60] 15.10 30.06 43.92 67.15

Proposed MHTA 3.21 5.83 8.41 11.37
Proposed MTPA-1 2.97 5.30 7.48 10.03
Proposed MTPA-2 3.03 5.52 7.98 10.88
Proposed MTPA-3 2.97 5.38 7.62 10.30

Improv. in MHTA w.r.t. MTA-3 44% 52% 52% 50%
Improv. in MTPA-1 w.r.t. MTA-3 48% 57% 58% 56%
Improv. in MTPA-2 w.r.t. MTA-3 47% 55% 55% 52%
Improv. in MTPA-3 w.r.t. MTA-3 48% 56% 57% 54%

Table 4.3 shows the average power consumption for existing and proposed multi-

digit ternary adders with different operand sizes. To measure power, all multi-digit

adder designs are simulated with same random test patterns and the average power

consumption is determined. The large power consumption in MTA-1, MTA-2 and

MTA-4 is due to low resistance path created between V DD and GND while generating

logic 1. The complexity involved in conditional sum and carry-lookahead logic results

in large power consumption of MTA-5 and MTA-6.

The proposed designs result in up to 58% reduction in power consumption when

compared to MTA-3, which has least power consumption among all the designs existing

4.5. Simulation Results 80

0

500m

0

500m

0

500m

0

500m

0

500m

0

500m

0

500m

0

500m

0

500m

0
200m
400m
600m

Time (lin) (TIME)
0 5n 10n 15n 20n 25n 30n

Figure 4.18: Simulation Waveforms for Kogge-Stone Prefix Adder

4.5. Simulation Results 81

6E-11

5E-06

1E-05

1.5E-05

2E-05

2.5E-05

3-digit 6-digit 9-digit 12-digit

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Operand Size

MTA-3

MHTA

MTPA-1

MTPA-2

MTPA-3

Figure 4.19: A Comparison of Power consumption

in literature. Figure 4.19 illustrates the reduction in power consumption of proposed

adder designs when compared to MTA-3 for different operand sizes. This reduction in

power consumption is mainly due to the use of low-power encoders.

Table 4.4 compares the propagation delay of the proposed and existing ternary

adders. To measure the delay of the multi-digit adders, test patterns have been chosen

in such a way that the signal change propagates through the critical path and the

maximum delay is measured. FO4 delay is calculated by loading each of the output

nodes in the critical path with four STI gates.

Table 4.4: Propagation (FO4) Delay for N -digit Adders

Propagation (FO4) Delay (in ps)
N 3 6 9 12

MTA-1 [58] 63.76 117.2 170.7 223.7
MTA-2 [39] 97.52 205.4 313.4 422.6
MTA-3 [38] 290.5 526.9 762.5 997.9
MTA-4 [59] 108.7 206.1 303.3 381.4
MTA-5 [60] 64.50 93.07 125.9 132.5
MTA-6 [60] 81.84 126.3 143.3 163.7

Proposed MHTA 62.84 93.77 124.4 155.6
Proposed MTPA-1 51.06 75.48 101.2 131.4
Proposed MTPA-2 45.10 55.22 64.03 64.63
Proposed MTPA-3 49.08 65.02 76.34 88.25

Improv. in MHTA w.r.t. MTA-5 3% 1% 1% −17%
Improv. in MTPA-1 w.r.t. MTA-5 20% 18% 19% 0%
Improv. in MTPA-2 w.r.t. MTA-5 30% 40% 49% 51%
Improv. in MTPA-3 w.r.t. MTA-5 23% 30% 39% 33%

Among the existing designs MTA-1, MTA-2, MTA-3 and MTA-4 are ripple-carry

4.5. Simulation Results 82

4.20E-11

6.20E-11

8.20E-11

1.02E-10

1.22E-10

1.42E-10

3-digit 6-digit 9-digit 12-digit

P
ro

pa
ha

ti
on

 D
el

ay
 (

s)

Operand Size

MTA-5

MHTA

MTPA-1

MTPA-2

MTPA-3

Figure 4.20: A Comparison of Propagation Delay for FO4 load

based and thus have large delay. Multi-digit ternary adder designs MTA-5, MTA-6 and

proposed designs use Conditional sum, carry lookahead and prefix-based approaches

respectively thus resulting in low delay.

Among the proposed designs, ternary adder MTPA-2, which uses Kogge-Stone [69]

prefix network for carry computation, has least propagation delay. As expected, the

design MHTA, which is ripple-carry based, has large delay when compared to other

proposed designs. The proposed ternary adder MTPA-2 has up to 51% less delay when

compared to MTA-5, which has least delay among existing designs. In Kogge-Stone

prefix network, which is used in MTPA-2, the number of cells in the critical path is

equal to log2N , where N is operand length. Hence for linear increase in operand length,

there is logarithmic increase in propagation delay of MTPA-2. Figure 4.20 illustrates

the reduction in propagation delay for prefix-based designs when compared to MTA-5

for different operand sizes. This reduction is mainly due to the use of prefix-based

networks in carry computation.

Different multi-digit adders have different complexity in the the final stage, due to

which the propagation delay depends on the output load. To test this dependency,

propagation delays of delay optimized designs are compared with that of proposed

half-adder based ripple carry adder (MHTA) and ripple-based prefix adder (MTPA-1),

which have large delay among proposed designs, under different load conditions. Table

4.5 shows the propagation delays for multi-digit adders with output load capacitance

4.5. Simulation Results 83

Table 4.5: Delay for N -digit Adders for different output loads

N 3 6 9 12
Propagation Delay with a load of 1fF (in ps)

MTA-1 [58] 68.47 121.5 175.2 228.0
MTA-5 [60] 120.3 158.0 190.7 205.4
MTA-6 [60] 117.5 163.2 179.3 200.1
MHTA 79.58 110.7 141.2 172.7
MTPA-1 68.86 93.91 118.8 149.4

Propagation Delay with a load of 2fF (in ps)
MTA-1 [58] 74.95 128.2 181.3 234.6
MTA-5 [60] 198.3 251.7 287.2 313.5
MTA-6 [60] 159.5 206.6 221.8 242.2
MHTA 101.9 132.6 162.7 193.8
MTPA-1 91.12 115.8 140.3 170.2

Propagation Delay with a load of 3fF (in ps)
MTA-1 [58] 81.45 134.3 188.2 242.0
MTA-5 [60] 277.0 347.0 378.9 421.9
MTA-6 [60] 210.9 255.9 264.6 284.1
MHTA 122.7 154.1 184.3 214.9
MTPA-1 111.9 137.3 161.9 191.3

of 1fF , 2fF and 3fF . Comparison is shown only with three designs (i.e MTA-1,

MTA-5 and MTA-6), which have lower propagation delay when compared to other

existing designs. As the load increases, MTA-1 and proposed designs have less delay

when compared to MTA-5 and MTA-6. This is mainly due to the fact that MTA-5 and

MTA-6 use a transmission gate-based 3 : 1 multiplexer, which does not supply enough

current to the load limiting its driving capability. Ternary adder designs MHTA and

MTPA-1 have lower delay (up to 40%) when compared to MTA-1 for FO4 load. Even

as the load increases, the proposed designs have lower delay when compared to MTA-1,

but only for larger operand size (> 3). This is because, for lower operand sizes the

delay of low-power encoder (Shown in Figure 4.9) becomes a major contributor to the

overall delay. As operand size increases, the delay-optimized carry propagation path

dominates the overall propagation delay, thus resulting in reduced delay for proposed

designs.

Figure 4.21 shows the analysis of variation in propagation delay with respect to

change in load for different 12-digit adders. The propagation delay of MDA-5 is heavily

dependent on the load variations because it uses array of 3 : 1 multiplexers with limited

4.5. Simulation Results 84

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

4.00E-10

4.50E-10

FO4 1 F 2 F 3 F

P
ro

pa
ga

ti
on

 D
el

ay
 (

s)

Load Capacitance

MTA-1

MTA-5

MTA-6

MHTA

MTPA-1

Figure 4.21: Propagation delay vs load for 12-digit adder

driving capability. Since MDA-6 uses 3 : 1 multiplexer only in final stage, its delay is

less dependent on load variations when compared to that of MDA-5. Among all the

designs, MDA-1, which uses a low-complexity encoder, has the best drive capability and

hence its delay is least dependent on load variations. The proposed designs (MHTA,

MTPA-1) use a low-power encoder, which is more complex than the encoder in MDA-1

but has a better driving capability when compared to 3 : 1 multiplexer. Hence delay

of proposed designs is relatively more dependent on load variations when compared to

that of MDA-1 but less dependent when compared to that of MDA-5 and MDA-6.

Table 4.6: Power-Delay Product for N -digit Adders

PDP (in fJ)
N 3 6 9 12

MTA-1 [58] 3.26 12.2 22.9 47.5
MTA-2 [39] 0.80 3.43 7.34 13.4
MTA-3 [38] 1.66 6.42 13.4 22.6
MTA-4 [59] 3.14 12.6 25.4 44.6
MTA-5 [60] 0.43 1.24 2.54 3.59
MTA-6 [60] 1.24 3.80 6.29 11.0

Proposed MHTA 0.20 0.55 1.05 1.77
Proposed MTPA-1 0.15 0.41 0.76 1.32
Proposed MTPA-2 0.14 0.31 0.52 0.72
Proposed MTPA-3 0.15 0.36 0.60 0.93

Improv. in MHTA w.r.t. MTA-5 53% 56% 59% 51%
Improv. in MTPA-1 w.r.t. MTA-5 64% 67% 70% 63%
Improv. in MTPA-2 w.r.t. MTA-5 67% 75% 80% 80%
Improv. in MTPA-3 w.r.t. MTA-5 65% 71% 77% 74%

4.5. Simulation Results 85

5E-19

2.001E-15

4.001E-15

6.001E-15

8.001E-15

1E-14

3-digit 6-digit 9-digit 12-digit

P
ow

er
 D

el
ay

 P
ro

du
ct

 (
J)

Operand Size

MTA-5

MHTA

MTPA-1

MTPA-2

MTPA-3

Figure 4.22: A Comparison of PDP

Table 4.7: Number of Transistors required for N -digit Adders

Transistor Count
N 3 6 9 12

MTA-1 [58] 364 724 1084 1444
MTA-2 [39] 288 576 864 1152
MTA-3 [38] 396 792 1188 1584
MTA-4 [59] 234 468 702 936
MTA-5 [60] 357 798 1239 1726
MTA-6 [60] 541 1128 1877 2266

Proposed MHTA 385 760 1135 1510
Proposed MTPA-1 425 854 1283 1712
Proposed MTPA-2 439 938 1465 2020
Proposed MTPA-3 429 892 1373 1878

Table 4.6 presents the PDP for the existing and proposed multi-digit ternary adders

with different operand sizes. The power-delay product is the product of worst-case

propagation delay and average power consumption. The prefix-based designs result in

up to 80% reduction in PDP when compared to MTA-5, which has least PDP among

existing designs. Figure 4.22 shows the reduction achieved in PDP for different operand

sizes. This reduction is due to: 1) reduced complexity of carry propagation technique

when compared to other existing ones 2) use of a low-power encoder.

Table 4.7 compares the transistor count, which gives an indication of area, for the

proposed and existing adders. Among the existing designs MTA-1, MTA-2, MTA-3

and MTA-4 are ripple-carry based and thus require lesser number of transistors when

compared to MTA-5 (CSA) and MTA-6 (CLA). The proposed prefix based designs re-

4.6. Conclusions 86

quire more transistors for implementation when compared to the existing ripple carry

adders. This is mainly due to the extra half-adder stage which is required to transform

the inputs and enable the use of Propagate-generate technique. However, when com-

pared to the existing Carry-lookahead adder, MTA-6, the proposed CLA based prefix

adder requires up to 20% less transistors for its implementation. Though the prefix

based adders perform better with respect to power consumption, propagation delay

and PDP, they require up to 25% more CNFETs for implementation when compared

to half-adder based ternary adder.

4.6 Conclusions

In this chapter we presented two techniques to implement the CNFET-based multi-digit

ternary adders. The first design technique results in a ternary adder which is ripple-

carry based and uses half-adder, delay optimized carry generator, a sum generator and

low-power encoders. In this ternary adder, reduction in delay has been achieved in

multi-digit adders by optimizing the carry propagation path and reduction in power

has been achieved by using a low-power encoder. The second technique enabled the

use of carry Propagate-Generate concept in ternary addition resulting in multi-digit

ternary prefix adders. Three different ternary prefix adders, which use ripple-based,

Kogge-Stone and carry lookahead-based prefix networks, have been implemented using

CNFETs.

Existing and the proposed multi-digit adders with varied operand sizes have been

implemented in HSPICE. Simulation results show that there is a significant reduction in

power consumption (up to 52%) and PDP (up to 58%) in the half-adder based ternary

adders when compared to the existing adders. Results also showed a reduction in FO4

delay (up to 30%) for proposed adder when compared to other ripple-carry multi-digit

adders. For ternary prefix adders, simulation results show that there is reduction in

power consumption (up to 58%), propagation delay (up to 50%) and PDP (up to 80%)

in the proposed prefix-based ternary adders when compared to the existing adders.

Analysis of design metrics of proposed ternary adders showed that there is signifi-

4.6. Conclusions 87

cant reduction in power consumption mainly due to the use of low power encoder. A

ternary encoder is a critical element and contributes significantly to the overall power

consumption of the ternary circuit. Hence in the next chapter we develop new designs

for ternary encoders. These designs are used to develop encoder based optimization

algorithms which choose appropriate encoder for different outputs of a multi-output

ternary logic circuit to optimize the circuit with respect to different design metrics.

Chapter 5

Encoder-based Optimization of

Ternary Circuits

5.1 Introduction

As explained in the earlier chapters, an encoder generates logic 2 and logic 0 by a direct

connection to V DD and GND respectively. But for generation of logic 1 at output,

a direct path from V DD to GND is created resulting in large static current. If this

direct path has low resistance it leads to lower delay and large power consumption.

else it leads to large delay and low power consumption. Hence the choice of encoder

effects the overall propagation delay and power consumption of ternary circuit. There

is need for encoders which are optimized for different design constraints. There is also

a need to develop a methodology to choose appropriate encoders such that the design

constraints are met..

This chapter presents improved encoder designs which are used in implementation

of ternary logic circuits. A detailed analysis is carried out on encoders to understand

the effect of using CNFETs with CNTs of different diameter on the overall propagation

delay and power consumption of encoder. Based on this analysis, algorithms are pre-

sented, which map appropriate encoders for different output stages of a multi-output

ternary logic circuit in such a way that design constraints are met. A ripple-carry based

88

5.2. Review of Ternary Encoders 89

ternary adder is taken as an example and the proposed algorithms are used to obtain

different encoder mapping resulting in ternary adder designs which are optimized ei-

ther for power consumption, propagation delay or Power-Delay Product (PDP). These

designs are compared with other ternary ripple-carry based adders in literature with

respect to different design parameters.

5.2 Review of Ternary Encoders

The design technique presented in [36] uses a ternary decoder in the first stage to

generate binary versions of inputs. The ternary decoder is a one-input, three-output

circuit and generates unary functions for an input X. The relation between ternary

input X and decoder outputs (indicated by X0, X1, X2) is given by

Xk =

2, ifX = k

0, ifX 6= k

(5.1)

These decoder outputs can take only two logic values i.e., logic 2 and logic 0, corre-

sponding to logic 1 and logic 0 in binary logic. The decoder outputs are used to com-

pute intermediate binary outputs with the help of binary logic gates. Finally ternary

outputs are generated from binary signals using a combination of ternary buffers and/or

encoder. This technique has been used in implementation of multi-digit ternary adder

presented in [58]. This adder used a different encoder which has reduced complexity

when compared to the design presented in [36]. One of the major disadvantages of the

encoder design that is presented in [58] is the existence of low resistance path between

V DD and GND while generating logic 1. This results in a large static current and

hence large static power consumption. Although the encoder used in [36] has high

resistance path between V DD and GND while generating logic 1, there exist multiple

such paths leading to large power consumption as well as large propagation delay.

5.2. Review of Ternary Encoders 90

T

Vdd

(13,0)

(13,0)

(19,0) (10,0)

(19,0) (10,0)

(19,0) (19,0) (10,0) (10,0)

Vdd
(13,0)

(13,0)

Vdd

(13,0)

(13,0) (13,0)

Vdd

(13,0)

(13,0)

(19,0) (10,0)

(19,0)

(10,0)

STITernaryNOR

(19,0)

(19,0)

(a) Encoder presented in [36]

(13,0)

(13,0)

Vdd

(13,0)

(b) Encoder presented in [58]

Figure 5.1: Ternary Encoders

5.3. Proposed CNFET-based Ternary Encoders 91

Although the encoder used in [58] has reduced delay and complexity, it consumes

large power resulting in multi-digit adders with very high power consumption. Figures

5.1(a) and 5.1(b) show the encoders presented in [36] and [58] respectively.

5.3 Proposed CNFET-based Ternary Encoders

Encoder is a critical element in the design of ternary logic circuits and is used to convert

intermediate binary signals to final ternary outputs. An encoder generates logic 2 or

logic 0 by a direct connection to V DD or GND respectively. But for generation of

logic 1 at output, a direct path from V DD to GND is created. The existing encoder

designs either consume large power or require large number of transistors for their

implementation. Improved encoders, which use transistors of same chiralities have been

presented in Section 3.3. Figure 5.2 shows the implementation of the proposed encoder,

where presence of additional diode connected P-CNFET and N-CNFET transistors

create a high resistance path between V DD andGND to generate logic 1 at the output.

This high resistance path, while limiting the static current, thereby reducing the static

power consumption, however, causes the increase in encoder delay when compared to

encoder in [58]. Also unlike the encoder used in [36], the improved encoder has only

one direct path between V DD and GND while generating logic 1.

The encoder shown in Figure 5.2 is used to generate the ternary output (X) from

binary inputs X2 and X0. In this circuit, if X0 is equal to logic 2 then transistor M6

switches ON and logic 0 is obtained at the output. Instead, if X2 is equal to logic 0

(i.e. X2 is logic 2) then M3 will be ON pulling output node to logic 2. If neither of X0

and X2 are logic 2 then a direct path from V DD to GND is created (via transistors

M1-M2-M4-M5) causing logic 1 to appear at X.

The encoder presented in Figure 5.2 is further improved by varying the resistance of

path which is created between V DD and GND while generating logic 1 at the output.

If the resistance of V DD − GND path is increased then it will result in an encoder

which is optimized for power consumption. The resistance of V DD − GND path is

increased by adding additional diode connected transistors in series. Figure 5.3 shows

5.3. Proposed CNFET-based Ternary Encoders 92

Vdd

M1

M2

M4

M5

M3

M6

(13,0)

(13,0)

(13,0)

(13,0)
(13,0)

(13,0)

Figure 5.2: Proposed Encoder (with inputs X2 and X0)

the implementation of the encoder (with inputs X2 and X0), which is optimized for

power consumption. Although, the high resistance path between V DD−GND results

in reduced power consumption, it causes increase in propagation delay of encoder.

Another encoder which is optimized for propagation delay is presented in Figure 5.4.

In this design, diode connected transistor pair are connected in parallel to achieve low

resistance in V DD −GND path of the encoder.

The proposed encoders are compared with the other existing encoder designs [36,

58]. Since the outputs of encoder are ternary in nature, FO4 delay is calculated by

connecting four STI gates (as load) at the outputs. Power consumption is measured

by simulating all the encoders with a random pattern such that they generate same

output. In all encoders designs, a direct path from V DD to GND is created while

generating logic 1 resulting in large static power. This is the reason due to which

encoder power is the major contributor to the overall power consumption of ternary

logic circuits.

Different encoder designs are implemented in HSPICE using the simulation environ-

ment presented in Section 3.4.1. Table 5.1 shows the comparison of different encoders

with respect to propagation delay, power consumption and PDP. The encoder design

5.3. Proposed CNFET-based Ternary Encoders 93

Vdd

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

(13,0)

Figure 5.3: Proposed Low-Power Encoder (with inputs X2 and X0)

Vdd

(13,0)
(13,0)

(13,0)(13,0)

(13,0)
(13,0)

(13,0)

(13,0)

Figure 5.4: Proposed Low-Delay Encoder (with inputs X2 and X0)

5.3. Proposed CNFET-based Ternary Encoders 94

presented in [36] (shown in Figure 5.1(a)), which uses a level-shifter and a ternary

NOR gate, is indicated as Encoder-1. This design has moderate power consumption

and large delay when compared to other designs. A low-complexity encoder design,

which is presented in [58] (shown in Figure 5.1(b)), is indicated as Encoder-2. This de-

sign has least propagation delay and large power consumption due to the low resistance

V DD−GND path. The proposed encoders use additional diode connected transistors

to create a high resistance path between V DD and GND to generate logic 1 at the

output. This high resistance path results in encoder with lower power consumption

but higher propagation delay when compared to the encoder presented in [58]. As

seen in Table 5.1, proposed encoders achieve 44 – 68% reduction in propagation delay,

45 – 80% reduction in power and 82 – 89% reduction in power-delay product when

compared to the encoder presented in [36]. When compared to the encoder presented

in [58], the proposed encoders result in 94 – 97% reduction in power and 90 – 94%

reduction in power-delay product. However, proposed encoders have 57 – 175% more

delay when compared to Encoder-2 [58] which has least delay among existing designs.

Table 5.1: A Comparison of Encoders

Encoder (FO4) Delay
(in ps)

Power
(in µW)

PDP
(in10−18J)

Encoder-1 [36] (Fig.
5.1(a))

25.2 (100%)
0.99

(100%)
25.2 (100%)

Encoder-2 [58] (Fig.
5.1(b))

5.09 (20.20%)
9.31

(940%)
47.3 (187%)

Proposed Encoder-1 (Fig.
5.2)

10.33 (41.0%)
0.33

(33.33%)
3.40 (13.49%)

Proposed Encoder- 2
(Low-Power Encoder)

(Fig. 5.3)

14.03
(55.67%)

0.19
(19.19%)

2.68 (10.63%)

Proposed Encoder- 3
(Low-Delay Encoder)

(Fig. 5.4)

8.03 (31.87%)
0.54

(54.55%)
4.34 (17.22%)

5.4. Effects of varying chiralities of CNFETs that are used in Encoders 95

5.4 Effects of varying chiralities of CNFETs that are

used in Encoders

In this section, a detailed analysis is carried out on encoders to understand the effect of

using CNFETs with CNTs of different diameter on the overall propagation delay and

power consumption of the encoder. The effect of chirality variations on an N-CNFET

is studied with the help of the I − V characteristics of transistor, which are simulated

in HSPICE using the CNTFET model in [53]. The CNFET is configured to have three

CNTs (all with same chirality) and a default pitch value equal to 20nm. Figure 5.5

shows the I − V characteristics for a VGS of 0.45V , where x-axis indicates the drain-

to-source voltage (VDS) and y-axis indicates the drain current (IDS). As seen from this

figure, for a fixed VGS, the drain current (IDS) is proportional to the diameter of CNTs,

which in turn is proportional to value of n in chirality vector (see Table 2.3). The drain

current (IDS) of transistors, which are used in implementation of ternary logic circuits,

directly effects the power consumption and propagation delay of the circuits.

In the proposed encoders (shown in Figures 5.2, 5.3 and 5.4) and existing encoder

[58] (shown in Figure 5.1(b)) transistors of chirality (13, 0) (Diameter of CNTs 1.018nm)

have been used. However, transistors with any chirality (shown in Table 2.3) can

be used in the implementation of these encoders. For a detailed analysis, different

encoder designs with different chiralities are implemented in HSPICE using the CNFET

model of [53]. All encoders operate at 0.9V power supply and room temperature. The

CNFETs used in the implementation are configured to have three CNTs (all with same

chirality) and a default pitch value equal to 20nm. Power consumption results are

obtained by simulating the circuits with random input patterns at switching frequency

of 500MHz. Propagation delay results for different circuits are obtained by finding

worst case Fan-Out of 4 (FO4) delay. The encoder design which is shown in Figure

5.1(a) is excluded from this analysis because it uses ternary OR gate and STI, which

requires transistors of specific chirality.

Figures 5.6 and 5.7 show the comparison of different encoders, which use transistors

5.4. Effects of varying chiralities of CNFETs that are used in Encoders 96

140p

120p

100p

80p

60p

40p

20p

0

0 200m 400m 600m 800m

(16,0)

(17,0)

(19,0)

8p

6p

4p

2p

0

(10,0)

(14,0)

(11,0)

(13,0)

0 200m 400m 600m 800m

Figure 5.5: I-V Characteristics of N-CNFET

5.4. Effects of varying chiralities of CNFETs that are used in Encoders 97

4.
19

E
-0

6

6.
22

E
-0

6

9.
33

E
-0

6
1.

04
E

-0
5

1.
18

E
-0

5
1.

28
E

-0
5

1.
73

E
-0

5

6.
00

E
-1

1

2.
00

E
-0

6

4.
00

E
-0

6

6.
00

E
-0

6

8.
00

E
-0

6

1.
00

E
-0

5

1.
20

E
-0

5

1.
40

E
-0

5

1.
60

E
-0

5

1.
80

E
-0

5

(1
0,

0)
(1

1,
0)

(1
3,

0)
(1

4,
0)

(1
6,

0)
(1

7,
0)

(1
9,

0)

Power Consumption (W)

C
hi

ra
lit

y

E
nc

od
er

-2

P
ro

po
se

d
E

nc
od

er
-

1

P
ro

po
se

d
E

nc
od

er
-

2

P
ro

po
se

d
E

nc
od

er
-

3

(1
0,

0)
(1

1,
0)

(1
3,

0)
(1

4,
0)

(1
6,

0)
(1

7,
0)

(1
9,

0)

P
ro

po
se

d
E

nc
od

er
-

1
2.

65
E

-0
8

5.
05

E
-0

8

3.
30

E
-0

7
5.

64
E

-0
7

1.
08

E
-0

6
1.

37
E

-0
6

2.
19

E
-0

6

P
ro

po
se

d
E

nc
od

er
-

2
2.

18
E

-0
8

5.
40

E
-0

8

1.
91

E
-0

7
3.

34
E

-0
7

6.
68

E
-0

7
8.

71
E

-0
7

1.
38

E
-0

6

P
ro

po
se

d
E

nc
od

er
-

3
3.

63
E

-0
8

8.
67

E
-0

8
5.

40
E

-0
7

8.
92

E
-0

7
1.

64
E

-0
6

2.
07

E
-0

6
3.

27
E

-0
6

6.
00

E
-1

1

5.
00

E
-0

7

1.
00

E
-0

6

1.
50

E
-0

6

2.
00

E
-0

6

2.
50

E
-0

6

3.
00

E
-0

6

3.
50

E
-0

6

Power Consumption (W)

C
hi

ra
lit

y

P
ro

po
se

d
E

nc
od

er
-

1

P
ro

po
se

d
E

nc
od

er
-

2

P
ro

po
se

d
E

nc
od

er
-

3

F
ig
ur
e
5.
6:

P
ow

er
C
on

su
m
pt
io
n
fo
r
E
nc
od

er
s
w
it
h
Tr

an
si
st
or
s
of

D
iff
er
en
t
C
hi
ra
lit
y

5.4. Effects of varying chiralities of CNFETs that are used in Encoders 98

(10,0) (11,0) (13,0) (14,0) (16,0) (17,0) (19,0)

Encoder-2 1.68E-11 9.62E-12 5.09E-12 4.21E-12 3.35E-12 3.15E-12 2.38E-12

Proposed Encoder- 1 2.37E-11 1.54E-11 1.03E-11 8.99E-12 7.44E-12 6.64E-12 5.10E-12

Proposed Encoder- 2 3.53E-11 2.23E-11 1.40E-11 1.23E-11 9.87E-12 8.82E-12 6.56E-12

Proposed Encoder- 3 1.74E-11 1.15E-11 8.03E-12 7.15E-12 6.04E-12 5.46E-12 4.28E-12

2.20E-12

7.20E-12

1.22E-11

1.72E-11

2.22E-11

2.72E-11

3.22E-11

P
ro

pa
ga

ti
on

 D
el

ay
 (

F
O

4
D

el
ay

)
(s

)

Chirality

Encoder-2

Proposed Encoder- 1

Proposed Encoder- 2

Proposed Encoder- 3

Figure 5.7: Propagation Delay for Encoders with Transistors of Different Chirality

of different chirality (i.e. transistors with CNTs of different diameter), with respect to

power consumption and propagation delay respectively. The chiralities (12, 0), (15, 0)

and (18, 0) are not considered because they result in metallic CNTs. Figure 5.6 shows

the variation in power consumption of the encoders with respect to variation in chirality

vector of transistors. As seen from this figure, the power consumption is directly

proportional to the value of n in chirality vector of transistors used in encoder. Figure

5.7 shows the variation in propagation delay of the encoders with respect to variation

in chirality vector of transistors used in encoder. The propagation delay decreases as

the n value of chirality vector of transistors (diameter of CNTs) increases. The increase

in power consumption and decrease in propagation delay due to increase in n value of

chirality vector of transistors is mainly because of increase in drain current (IDS) of

transistors.

The analysis of design parameters of encoders with respect to variations in tran-

sistor chirality show that there are 28 different encoders corresponding to 7 chirality

variations for one existing [58] and three proposed designs. These encoders have a

trade-off between propagation delay and power consumption i.e. encoders with low

propagation delay have large power consumption and vice-versa. Hence there is a need

for a methodology or an algorithm, which chooses appropriate encoders for generating

different ternary outputs in multi-output ternary logic circuit, such that the overall

circuit is optimized with respect to power, delay and/or PDP.

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 99

5.5 Algorithms for choosing appropriate Encoders in

Ternary Circuits

5.5.1 Problem Formulation

The existing methodology, which is used to implement ternary circuit, has three main

stages [36]. The first stage uses a ternary decoder to convert ternary signal into mu-

tually exclusive binary signals which are given as inputs to binary computation stage.

The outputs of binary stage are converted into ternary output using encoders. This

ternary circuit can be modeled as a directed acyclic graph (ternary circuit graph),

which is represented as G = (V,E) where V is vertex (or node) set and E is edge

set. Edge eij is called an outgoing edge with respect to node vi and an incoming edge

with respect to node vj. In the graph (V,E), Primary Inputs (PIs) are nodes with no

incoming edges and Primary Outputs (POs) are the nodes with no outgoing edges. In

addition to these nodes there are additional special nodes defined for ternary circuit

graph namely Decoder nodes (DNs) and Encoder nodes (ENs). Decoder nodes are

the nodes which have one incoming edge that is connected to primary input and any

number of outgoing edges. Encoder nodes are the nodes which have one outgoing edge

that is connected to primary output and any number of incoming edges. A directed

path p in graph (V,E) is a sequence (or set) of nodes (from primary input to primary

output) which are connected by directed edges. A set of all the paths in the graph is

represented by P .

In the graph (V,E), associated with each node vi ∈ V , there is a delay variable

dvi ≥ 0, whose value represents the propagation delay. The delay for all primary inputs

and outputs is equal to zero, i.e. dvi = 0 ∀vi ∈ PI ∪ PO. The delay of path p ∈ P is

summation of delays of all the nodes in the path i.e.
∑

vi∈pdvi. The path which has

largest delay among all the paths in the graph is called critical path (pc).

In the graph (V,E), the incoming edge of decoder node (which is outgoing edge for

primary input) and the outgoing edge of a encoder node (which is incoming edge for

primary output, represents a ternary signal. The nodes vi ∈ V −(PI∪PO∪DN∪EN)

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 100

Decoder Nodes

Encoder Nodes

Computation Nodes

Primary Inputs

Primary Outputs

Decoder Decoder

Sum
Generator

Encoder

Carry
Generator

Encoder

Figure 5.8: Ternary Circuit as a Graph

represent binary computation elements (a complex gate or combination of gates) whose

incoming edges and outgoing edges represent a group of mutually exclusive binary

signals (X0, X1, and X2) corresponding to a ternary signal (X). Figure 5.8 shows an

example of a ternary half-adder and its graph representation.

In ternary logic circuit, encoder is a critical element and is used to convert inter-

mediate binary signals to final ternary outputs. One of the major disadvantages of

the ternary encoder is the existence of low resistance path between V DD and GND

while generating logic 1. This results in a large static current and hence large static

power consumption. Thus the average power consumption of ternary circuit can be

approximated as the sum of average power consumption of encoders used in the circuit.

Hence in addition to variable dvi, associated with encoder nodes vi ∈ EN , there is a

variable pvi > 0, whose value represents the power consumption. Since any one of

the encoders with chirality variations (presented in Section 5.4) can be used in imple-

mentation of ternary circuit, let there be a set ED which consists of different encoder

designs. In this work, the elements of set ED are represented using notation ed(i,n),

where i = 1, 2, 3, or4 represents existing encoder-2 [58], proposed encoder-1, proposed

encoder-2 (low-power encoder) or proposed encoder-3 (low-delay encoder) respectively

and n is equal to the n value of chirality vector (refer Section 2.2) of transistors used

in encoder. For example ed(1,13) represents encoder-2 [58] that is implemented using

transistors of chirality (13, 0). Each element ed(i,n) of this set is associated with two

values namely ded(i,n) and ped(i,n) representing the delay and power consumption of

the encoder designs. When an element ed(i,n) ∈ ED is selected as (mapped to) encoder

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 101

node vj ∈ EN then the values ded(i,n) and ped(i,n) are assigned to variables dvj and

pvjrespectively.

The problem of selecting suitable encoder to optimize design parameters of a ternary

circuit is formulated as below:

Problem Statement: Given a ternary circuit graph G = (V,E) for which path

delays, i.e.
∑

vi∈p−ENdvi ∀p ∈ P , are known and set of encoder designs ED are

available, map ed(i,n) ∈ ED to vj ∈ EN such that to optimize power,

min(
∑
vi∈EN

pvi) (5.2)

to optimize delay,

min(
∑
vi∈pc

dvi) (5.3)

∑
vi∈p

dvi ≤
∑
vi∈pc

dvi ∀p ∈ P − {pc} (5.4)

min(
∑

vi∈EN∩(P−{pc})

pvi) (5.5)

or to optimize PDP

min(
∑
vi∈pc

dvi ×
∑
vi∈EN

pvi) (5.6)

Here equations (5.2-5.6) specify the constraints on the encoder mapping such that

the resulting ternary circuit, which is represented by the ternary graph, is optimized

for power consumption, propagation delay or PDP. The following sections present al-

gorithms for selecting suitable encoder for a ternary circuit while optimizing different

design parameters.

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 102

5.5.2 Power optimization

Since the average power consumption of ternary circuit can be approximated as the

sum of average power consumption of encoders used in the circuit, for optimization

with respect to power, encoders should be selected such that the sum of average power

consumption of encoders, which are used in the circuit, is minimum. This optimization,

which is specified by equation (5.2), is implemented using Algorithm 5.1.

Algorithm 5.1 Algorithm for Power Optimization
1: Inputs: (V,E) with

∑
vi∈p−ENdvi ∀p ∈ P , ED

2: Output: (V,E) with values for dvi, pvi ∀vi ∈ EN
3: begin
4: P ′ = maxpaths_oneperencoder(P)
5: ed′ = get_Encoder_MinPower(ED)
6: for each p ∈ P ′ do
7: map_ED_EN(p, ed′)
8: end for
9: return (V,E)
10: end

The inputs to Algorithm 5.1 are ternary circuit graph (V,E) (where all the de-

lays of nodes are known) and the list of encoder designs with power and delay values

for each. Initially the power (pvi) and delays (dvi) variables of all encoder nodes,

i.e.vi ∈ EN , are set to default values. Since an encoder node might exist in multiple

paths (e.g. in Fig 5.8, each encoder node is part of two different paths), a function P ′ =

maxpaths_oneperencoder(P) is used to identify a path which has maximum delay (ex-

cluding encoder delay) among all paths which have same encoder node. This function

returns a set P ′ which consists of maximum delay paths (one per encoder node) corre-

sponding to the respective encoder nodes. A function get_Encoder_MinPower(ED)

gets the encoder ed′ which has least power consumption among the list of encoder de-

signs (ED). This least power encoder is mapped to encoder nodes for all the paths such

that each path has one encoder mapped. The output of Algorithm 5.1 is a graph (V,E)

with mapping information for all encoder nodes. As seen from the analysis in Section

5.4, the proposed encoder-2 (Figure 5.3) which uses transistors of chirality (10, 0) (i.e.

ed(3,10)) has least power consumption. Hence this encoder is used to generate ternary

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 103

output for all the paths of ternary circuit.

5.5.3 Delay Optimization

The delay refers to the propagation delay of the critical path in the ternary circuit.

As seen from Figures 5.6 and 5.7, the existing and proposed encoders have a trade

off between propagation delay and power consumption. Hence to achieve optimization

with respect to delay, encoders with least delay (and large power consumption) can

be used in critical paths whereas encoders with low power consumption (and large

delay) can be used in non-critical paths of ternary circuit. This optimization, which is

specified by equations (5.3-5.5), is implemented using Algorithm 5.2.

Algorithm 5.2 Algorithm for Delay Optimization
1: Inputs: (V,E) with

∑
vi∈p−ENdvi ∀p ∈ P , ED

2: Output: (V,E) with values for dvi, pvi ∀vi ∈ EN
3: begin
4: P ′ = maxpaths_oneperencoder(P)
5: Max_pathDelay = 0
6: for each p ∈ P ′ do
7: if

∑
vi∈p−ENdvi > Max_pathDelay then

8: Max_pathDelay =
∑

vi∈p−ENdvi
9: pc = p
10: end if
11: end for
12: ed′ = get_Encoder_MinDelay(ED)
13: map_ED_EN(pc, ed

′)
14: Max_Delay = Max_pathDelay + delay(ed′),
15: ED′ = sort_ascending_power(ED)
16: for each p ∈ P ′ − {pc} do
17: for each ed(i,n) ∈ ED′ do
18: path_delay =

∑
vi∈p−ENdvi + delay(ed(i,n))

19: if path_delay ≤Max_Delay then
20: map_ED_EN(p, ed(i,n))
21: break
22: end if
23: end for
24: end for
25: return (V,E)
26: end

The inputs to Algorithm 5.2 are ternary circuit graph (V,E) (where all the delays of

nodes are known) and the list of encoder designs with power and delay values for each.

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 104

As explained earlier (in Section 5.5.2), the function P ′ = maxpaths_oneperencoder(P)

returns a set P ′ which consists of maximum delay paths corresponding to the each of

the encoder nodes. All the paths in P ′ are traversed and the path with largest delay

in the graph (excluding the encoder delay) , i.e. pc, is found along with its delay

Max_pathDelay. The encoder node in path pc is mapped with an encoder design ed′,

which has least delay, using function get_Encoder_MinDelay(ED). The function

delay(ed′) returns the delay of encoder design ed′. The critical path delay (including

the encoder delay) is now referred to as Max_Delay. The set ED is now sorted using

function sort_ascending_power(ED) such that the resulting set, ED′, has encoder

designs which are arranged in increasing order of their power consumption. For all

the remaining paths, p ∈ P ′ − {pc}, encoders are selected from ED′ and mapped to

encoder nodes such that the encoder design has least power while restricting the delay

of these paths to a value that is less than or equal to Max_Delay. As seen from

Figures 5.3 and 5.4, encoder-2 [58] that is implemented using transistors of chirality

(19, 0) (ed(1,19)) , has least propagation delay, but has large power consumption when

compared to other proposed encoders. Hence this encoder is used in the critical path of

the circuit. For non-critical paths, encoders are mapped such that the encoder design

has least power while restricting the delay of these paths to value which is less than

critical path delay.

5.5.4 PDP Optimization

Power-Delay Product of a circuit is defined as the product of worst-case propagation

delay (i.e. delay of critical path) and the average power consumption of the circuit.

Since majority of the power consumption happens in the encoder, PDP can be approx-

imated as the product of critical path delay and sum of average power consumption

of encoders used in the circuit. The optimization with respect to PDP is given as

equation (5.6) and is implemented using Algorithm 5.3. The inputs to Algorithm 5.3

are ternary circuit graph (V,E) (where all the delays of nodes are known) and the list

of encoder designs with power and delay values for each.

5.5. Algorithms for choosing appropriate Encoders in Ternary Circuits 105

Algorithm 5.3 Algorithm for PDP Optimization
1: Inputs: (V,E) with

∑
vi∈p−ENdvi ∀p ∈ P , ED

2: Output: (V,E) with values for dvi, pvi ∀vi ∈ EN
3: begin
4: optimize_power((V,E), ED)
5: ED′ = sort_ascending_power(ED)
6: ed′ = get_Encoder_MinPower(ED′)
7: P ′ = maxpaths_oneperencoder(P)
8: pc = get_critical_path(P ′)
9: pdpnew = (

∑
vi∈pcdvi ×

∑
vi∈ENpvi)

10: repeat
11: pdpold = pdpnew
12: EN ′ = Save_Mapping(EN,P ′)
13: ed′ = get_one_lower(ED′, ed′)
14: map_ED_EN(pc, ed

′)
15: Max_Delay =

∑
vi∈pcdvi

16: for each p ∈ P ′ − {pc} do
17: for each ed(i,n) ∈ ED′ do
18: path_delay =

∑
vi∈p−ENdvi + delay(ed(i,n))

19: if path_delay ≤Max_Delay then
20: map_ED_EN(p ∩ EN, ed(i,n))
21: break
22: end if
23: end for
24: end for
25: pc = get_critical_path(P ′)
26: pdpnew = (

∑
vi∈pcdvi ×

∑
vi∈ENpvi)

27: until pdpold < pdpnew
28: map_saved(EN ′, P ′)
29: return (V,E)
30: end

Initially the function optimize_power((V,E), ED), which implements Algorithm

5.1, is used to map all the encoder nodes to encoder design with least power consump-

tion. As explained earlier (in Section 5.5.2), the function P ′ = maxpaths_oneperencoder(P)

returns a set P ′ which consists of maximum delay paths corresponding to the each of the

encoder nodes. Functions sort_ascending_power(ED) and get_Encoder_MinPower(ED′)

return list of encoder designs ED′sorted in order of increasing power consumption and

design with least power consumption ed′. The set of maximum delay paths P ′ corre-

sponding to the each of the encoder nodes is computed by usingmaxpaths_oneperencoder(P).

The critical path among paths in P ′ is found using function get_critical_path(P ′) and

the approximate power-delay product (product of critical path delay and summation

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 106

of power consumption of encoders) is calculated.

The mapping information of the encoder nodes is saved by using function EN ′ =

Save_Mapping(EN,P ′). Now the least power encoder design in the critical path pc

is replaced with a design which has slightly higher power consumption (i.e. second

encoder design in ED′) and lower delay. For all the remaining paths, p ∈ P ′ − {pc},

encoder designs from ED′ are mapped to encoder nodes such that the encoder design

has least power while restricting the delay of these paths to a value that is less than

or equal to delay of path pc. The new value of approximate power-delay product is

compared with earlier value to see if there is increase in PDP. This process is repeated

as long as the approximate power-delay product keeps reducing. Once the approximate

PDP starts increasing the mapping information of encoder nodes with least PDP is

mapped back to EN by using function map_saved(EN ′, P ′).

5.6 Example: Encoder-based Optimization of Multi-

Digit Ternary Adder

The optimization algorithms presented in Section 5.5 are applied on ternary adder,

which is implemented using the methodology presented in [58]. Figure 5.9 shows the

multi-digit (N -digit) adder design where A(AN−1...A1A0), B(BN−1...B1B0), Cin are

ternary inputs and Sum(SumN−1...Sum1Sum0), Cout are ternary outputs. CoutN−2...

Cout0 represent intermediate ternary carries. Here Xi
j corresponds to ith digit-adder

stage whose value is either logic 2 (if X = j) or logic 0 (if X 6= j), where jε{0, 1, 2}.

For example A0
1 corresponds to input of 0th digit-adder stage whose value is logic 2

only if ternary signal A is equal to logic 1. Also, {} is used to represent a group of

binary signals and its complements. In multi-digit adder of the same work, the sum

generation is similar to other existing designs, whereas carry generation/propagation

is optimized for delay by avoiding redundant encoder-decoder pairs. At each digit-

adder stage, binary carry signals (i.e. Couti2, Couti0) are generated using a low-delay

carry generator block. Unlike other multi-digit adder designs where ternary carries are

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 107

Decoder Decoder

Decoder
Sum

Generator

Encoder

Carry
Generator

Decoder Decoder

Sum
Generator

Encoder

Carry
Generator

Decoder Decoder

Sum
Generator

Encoder

Carry
Generator

Encoder

Figure 5.9: Multi-digit adder presented in [58].

generated for every digit-adder stage, design in [58] computes ternary carry (Couti)

only for the final (i.e. N − 1th) digit-adder stage.

The decoder, sum generator and the carry generator blocks are implemented as

presented in [58]. HSPICE simulations are carried out without encoders and the worst-

case delays for different blocks and different paths are tabulated. The delays of different

blocks along with the delays and power consumption of different encoder designs (in

Figures 5.6 and 5.7) are given as inputs to the algorithms which are presented in Section

5.5. Algorithms 5.1 – 5.3 have been implemented using Python. The output of these

algorithms is the encoder mapping information, which specifies the encoder designs

that are to be used for generating different outputs such that the ternary adders are

optimized for delay, power consumption and PDP.

Table 5.2 specifies the encoder mapping information, which is result of Algorithms

5.2 and 5.3, for 3-digit, 6-digit and 9-digit ternary adders. Here different encoder de-

signs are represented using notation ed(i,n), where i = 1, 2, 3, or4 represents existing

encoder-2 [58], proposed encoder-1, proposed encoder-2 (low-power encoder) or pro-

posed encoder-3 (low-delay encoder) respectively and n is equal to the n value of chi-

rality vector (refer Section 2.2) of transistors used in encoder. For power optimization

the encoder design ed(3,10)is used to generate all the outputs of ternary adders.

The mapping information in Table 5.2 is used to implement the delay optimized,

power optimized and PDP optimized ternary adders. These optimized adders are simu-

lated in HSPICE and results are compared with other ternary ripple-carry based adders

in literature.Table 5.3 shows the comparison of different Multi-Digit Ternary Adders

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 108

Table 5.2: Encoder Mapping for Ternary Adders

(a) Encoders used for 3-digit Ternary Adder

Encoders used to
generate

Delay
Optimization

(Algorithm 5.2)

PDP
Optimization

(Algorithm 5.3)
Sum0 ed(2,10) ed(3,10)
Sum1 ed(4,10) ed(3,10)
Sum2 ed(1,16) ed(2,10)
Cout2 ed(1,19) ed(2,10)

(b) Encoders used for 6-digit Ternary Adder

Encoders used to
generate

Delay
Optimization

(Algorithm 5.2)

PDP
Optimization

(Algorithm 5.3)
Sum0 ed(3,10) ed(3,10)
Sum1 ed(3,10) ed(3,10)
Sum2 ed(3,10) ed(3,10)
Sum3 ed(3,10) ed(3,10)
Sum4 ed(4,10) ed(3,10)
Sum5 ed(1,16) ed(2,10)
Cout5 ed(1,19) ed(2,10)

(c) Encoders used for 9-digit Ternary Adder

Encoders used to
generate

Delay
Optimization

(Algorithm 5.2)

PDP
Optimization

(Algorithm 5.3)
Sum0 ed(3,10) ed(3,10)
Sum1 ed(3,10) ed(3,10)
Sum2 ed(3,10) ed(3,10)
Sum3 ed(3,10) ed(3,10)
Sum4 ed(3,10) ed(3,10)
Sum5 ed(3,10) ed(3,10)
Sum6 ed(3,10) ed(3,10)
Sum7 ed(4,10) ed(3,10)
Sum8 ed(1,16) ed(2,10)
Cout8 ed(1,19) ed(2,10)

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 109

(MTA) with respect to propagation delay, power consumption and PDP. In this section,

MTA-1 refers to the ripple-carry multi-digit adder presented in [39], whereas MTA-2

and MTA-3 refer to ripple-carry adders designed using single-digit adders presented

in [38] and [59] respectively. The adder architecture presented in [58], which is used

as an example in our work is referred as MTA-4. The ternary adder presented in [58],

does not specify chirality of transistors used in its encoder design. Hence results for

two adder designs one which uses encoder ed(1,19) and the other with encoder ed(1,10)

are presented. The existing adders are compared with the ternary adder MTA-4, which

uses encoder mapping obtained from proposed Algorithms 5.1, 5.2 and 5.3. Results for

ternary adder MTA-4, which uses proposed encoders (ed(2,10),ed(2,10),ed(3,19), ed(4,10),

ed(4,19)) to generate all ternary outputs, are also presented.

To measure power, all multi-digit adder designs are simulated with same random

test patterns at switching frequency of 500MHz and the average power consumption

is determined. To measure the delay of the multi-digit adders, test patterns have been

chosen in such a way that the signal change propagates through the critical path and

the maximum delay is measured. FO4 delay is calculated by loading each of the output

nodes in the critical path with four STI gates. The power-delay product is the product

of worst-case propagation delay and average power consumption.

The power optimized implementation of MTA-4 uses Algorithm 5.1, which maps

proposed encoder-2 (low-power encoder), i.e. ed(3,10) to all paths of the circuit. Hence

this ternary adder has least power consumption when compared to other ripple-carry

based designs. The proposed encoder-based power optimization results in a ternary

adder which has 73 – 79% reduction in power consumption when compared to MTA-2,

which has least power consumption among all the designs existing in literature. The

reduction in power consumption of power optimized design is mainly due to the use

of a low-power encoder (ed(3,10)), where logic 1 is generated at the output by creating

a high-resistance path between V DD and GND. The power optimized design also

shows 70 – 75% reduction in propagation delay and 92 – 94% reduction in PDP when

compared to MTA-2.

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 110

The delay optimized implementation of MTA-4 is obtained by mapping encoder

designs as shown in Table 5.2, which is a result of Algorithm 5.2. This algorithm maps

least delay encoders to critical path and least power encoders for non-critical paths.

The resulting delay optimized design has similar delay when compared to MTA-4 of [58]

which uses encoder ed(1,19) for all paths. Unlike the implementation of MTA-4 with only

ed(1,19) encoders, the power consumption of the MTA-4, which is implemented using

Algorithm 5.2, increases marginally with increase in operand size. This is because

the encoder design ed(1,19), which has least delay and large power consumption, is used

only for critical paths and for non-critical paths proposed encoders (ed(3,10) and ed(4,10)),

which have lower power consumption when compared to ed(1,19), are used. Hence the

delay optimized design has up to 53 – 78% lower power consumption and PDP when

compared to design presented in [58].

The PDP optimized implementation of MTA-4 is obtained by using using encoder

mapping, which is a result of Algorithm 5.3 and is shown in Table 5.2,.The PDP

optimization of ternary adder results in at least 86 – 90% reduction in PDP when

compared to MTA-1, which has least PDP among existing ripple-carry based ternary

adder designs. The PDP optimized design also shows 81 – 84% reduction in power

consumption and 21 – 41% reduction in propagation delay when compared to MTA-1.

Figure 5.10 shows a plot of power consumption v/s propagation delay, for different

9-digit ternary adders. In this figure, x-axis represents the power consumption and y-

axis represents propagation delay. This figure clearly shows that MTA-4 designs which

are implemented using proposed encoders and/or algorithms are optimized with respect

to power consumption and propagation delay. Although the Algorithms 5.1, 5.2 and

5.3 are used in implementation of ternary adders, they can be used for implementation

of any ternary logic circuit which needs encoders.

5.6. Example: Encoder-based Optimization of Multi-Digit Ternary Adder 111

Ta
bl
e
5.
3:

Si
m
ul
at
io
n
R
es
ul
ts

fo
r
N
-d
ig
it
Te

rn
ar
y
A
dd

er
s

N
3-
di
gi
t

6-
di
gi
t

9-
di
gi
t

Te
rn
ar
y
A
dd

er
D
es
ig
ns

P
ow

er
(µ
W

)
D
el
ay

(p
s)

P
D
P

(f
J
)

P
ow

er
(µ
W

)
D
el
ay

(p
s)

P
D
P

(f
J
)

P
ow

er
(µ
W

)
D
el
ay

(p
s)

P
D
P

(f
J
)

M
TA

-1
[3
9]

8.
20

97
.5

2
0.

80
16
.6

9
20

5.
4

3.
43

23
.4

1
31

3.
4

7.
34

M
TA

-2
[3
8]

5.
69

29
0.

5
1.

66
12
.1

8
52

6.
9

6.
42

17
.6

1
76

2.
5

13
.4

M
TA

-3
[5
9]

28
.8

8
10

8.
7

3.
14

60
.8

9
20

6.
1

12
.6

83
.6

2
30

3.
3

25
.4

M
TA

-4
w
it
h
en
co
de
r
ed

(1
,1
9
)
[5
8]

51
.1

0
63
.7

6
3.

26
10

3.
7

11
7.

2
12
.2

13
4.

3
17

0.
7

22
.9

M
TA

-4
w
it
h
en
co
de
r
ed

(1
,1
0
)
[5
8]

19
.1

2
78
.9

1
1.

51
29
.7

0
13

0.
8

3.
88

32
.6

9
18

3.
8

6.
01

M
TA

-4
w
it
h
pr
op

os
ed

en
co
de
r
ed

(2
,1
9
)

10
.9

0
66
.0

0
0.

72
17
.0

3
11

9.
4

2.
03

19
.4

8
17

2.
7

3.
36

M
TA

-4
w
it
h
pr
op

os
ed

en
co
de
r
ed

(2
,1
0
)

1.
51

76
.7

3
0.

12
2.

66
12

8.
7

0.
34

4.
30

18
1.

6
0.

78
M
TA

-4
w
it
h
pr
op

os
ed

en
co
de
r
ed

(3
,1
9
)

7.
47

69
.0

6
0.

52
11
.7

0
12

3.
0

1.
44

13
.9

0
17

6.
5

2.
44

M
TA

-4
w
it
h
pr
op

os
ed

en
co
de
r
ed

(4
,1
9
)

15
.6

0
65
.8

7
1.

03
24
.2

0
11

8.
9

2.
87

27
.0

3
17

2.
2

4.
65

M
TA

-4
w
it
h
pr
op

os
ed

en
co
de
r
ed

(4
,1
0
)

1.
54

74
.4

6
0.

12
2.

68
12

7.
9

0.
33

4.
24

18
1.

4
0.

77
P
ow

er
op

ti
m
iz
ed

M
TA

-4
us
in
g
A
lg
or
it
hm

5.
1

1.
50

84
.3

1
0.

13
2.

53
13

6.
9

0.
35

4.
17

18
9.

1
0.

79
D
el
ay

op
ti
m
iz
ed

M
TA

-4
us
in
g
A
lg
or
it
hm

5.
2

23
.5

5
63
.7

2
1.

50
25
.8

2
11

7.
5

3.
03

28
.6

0
17

1.
0

4.
89

P
D
P

op
ti
m
iz
ed

M
TA

-4
us
in
g
A
lg
or
it
hm

5.
3

1.
51

76
.7

1
0.

11
2.

52
12

8.
8

0.
32

4.
18

18
1.

8
0.

76
Im

pr
.
of

M
TA

-4
(u
si
ng

A
lg
o.

5.
1)

w
.r
.t
.
M
TA

-2
74

%
71

%
92

%
79

%
74

%
94

%
76

%
75

%
94

%
Im

pr
.
of

M
TA

-4
(u
si
ng

A
lg
o.

5.
2)

w
.r
.t
.
M
TA

-4
(w

it
h

ed
(1
,1
9
))

54
%

0%
54

%
75

%
0%

75
%

79
%

0%
79

%

Im
pr
.
of

M
TA

-4
(u
si
ng

A
lg
o.

5.
3)

w
.r
.t
.
M
TA

-1
82

%
21

%
86

%
85

%
37

%
90

%
82

%
42

%
90

%

5.7. Conclusions 112

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

P
ro

p
ag

at
io

n
 D

el
ay

 (
p

s)

Power Consumption (μW)

Figure 5.10: Power Consumption Vs Propagation Delay for 9-digit Ternary Adders

5.7 Conclusions

Encoder is a critical element in the design of ternary logic circuits and is used to convert

intermediate binary signals to final ternary outputs. This chapter presents improved

encoder designs which are used in implementation of ternary logic circuits. A detailed

analysis is carried out on encoders to understand the effect of using CNFETs with

CNTs of different diameter on the overall propagation delay and power consumption.

Based on this analysis, optimization algorithms are presented which choose suitable

encoders for different output stages of a ternary circuit while optimizing delay, power

or power-delay product. Ternary ripple-carry based adder is taken as an example and

the proposed encoder mapping algorithms are applied on it. The resulting ternary

adder designs are implemented in HSPICE and compared with other ternary adders

in literature with respect to different design parameters. Simulation results indicate

that the ternary adder designs, which use encoder mapping obtained from proposed

algorithms, result in 54 – 82% reduction in power consumption, 0 – 75% in propagation

delay and 54 – 94% in power-delay product when compared to different existing ripple

carry-based ternary adders.

Chapter 6

Synthesis of Ternary Logic Circuits

using 2:1 Multiplexers

6.1 Introduction

Design approaches for ternary circuits can be classified into two main categories namely

decoder-encoder based and multiplexer based. Chapter 3 presented an overview of ex-

isting decoder-encoder based and 3:1 multiplexer based approaches. Additionally this

chapter presented three design approaches, two of which was encoder based, and the

third approach was multiplexer based. Scaling existing and proposed design approaches

to implement more complex ternary circuits, requires development of synthesis algo-

rithms.

The encoder based approaches rely on using binary circuits to implement the expres-

sions for unary functions of ternary outputs. These binary circuits can be synthesized

using existing binary synthesis algorithms. A synthesis approach which uses 3:1 mul-

tiplexers has been presented in [41]. In this chapter a new synthesis technique, which

aids in implementation of complex ternary circuits, is presented. This novel technique

uses “2:1 multiplexers” for implementing ternary logic circuits, and is based on transfor-

mation of a Ternary Decision Diagram (BDD) into a Binary Decision Diagram (BDD).

This transformed TDD is then used to implement the ternary logic function using

113

6.2. Preliminaries 114

(a) BDD (b) TDD

Figure 6.1: Binary and Ternary Decision Diagrams

2:1 multiplexers. This chapter also presents a procedure which decomposes ternary

functions with three (and more) inputs into multiple 1-input ternary functions. This

methodology is used to design a synthesis algorithm, which is used to synthesize various

ternary benchmark functions.

6.2 Preliminaries

6.2.1 Binary Decision Diagrams

A binary decision diagram (BDD) is used to represent a two-valued logic function F .

Let F = x̄ ·F0 + x ·F1 be the Shannon expansion of F with respect to variable x. The

BDD for F is represented as shown in Figure 6.1(a), where F0and F1 represent the

sub-graphs.

A BDD for a function F , whose truth table is known, is constructed by a procedure

as shown in Figure 6.2 which has one-to-one correspondence between 2n rows of the

table and the 2n paths to the outputs of the diagram. These outputs may then be

labeled with the corresponding binary values of f resulting in the required diagram.

Figure 6.2 also shows the implementation of BDD using 2:1 multiplexers. With n

variables, there will initially be 2n − 1 nodes in a BDD. There are several ways in

which the number of nodes can be reduced [73]. The decision diagrams with reduced

nodes are called as Quasi Reduced BDD (QRBDD) or Reduced BDD (RBDD).

6.2. Preliminaries 115

Figure 6.2: BDD and its 2 : 1 Mux based implementation for a given Truth-table

Figure 6.3: TDD and its 3 : 1 Mux based implementation for a given Truth-table

6.2.2 Ternary Decision Diagrams

A general-TDD is a natural extension of the BDD to the three-valued case. Let F =

x0 · F0 + x1 · F1 + x2 · F2 be the three-valued version of the Shannon expansion of an

arbitrary three-valued function F : T n → T, T = {0, 1, 2} with respect to variable x.

The TDD for F is represented as shown in Figure 6.1(b), where F0, F1 and F2 represent

the sub-graphs and the relation between values x0, x1, x2 and x is given by equation

(6.1). As seen from this equation, the values x0, x1, x2 are binary in nature and are

equal to 2 or 0.

xk =

2 ifx = k

0 ifx 6= k

(6.1)

6.3. Proposed Synthesis Methodology 116

Similar to a BDD, the truth table for a function F can be translated into a TDD,

which can be implemented using 3 : 1 multiplexers. Figure 6.3 shows an example truth

table along with TDD and its implementation using multiplexers. With n variables,

there will initially be 3n−1
2

nodes in a TDD, which can be reduced. The decision di-

agrams with reduced nodes are called as Quasi Reduced TDD (QRTDD) or Reduced

TDD (RTDD). Recently, a 3:1 multiplexer based synthesis procedure has been pre-

sented in [41]. This procedure is similar to TDD based implementation (in Figure

6.3) except for the last stage, where the multiplexers were replaced with equivalent

realization of unary operators.

6.3 Proposed Synthesis Methodology

The proposed synthesis technique for ternary logic circuits is based on transforming a

TDD into a BDD. First, a general procedure to transform TDD to BDD is presented.

This enables the implementation of ternary logic circuits using 2:1 multiplexers. The

transformed TDD is called as Ternary-Transformed Binary Decision Diagram (TBDD).

This TBDD representation is then used in the synthesis of ternary functions. Initially,

TBDD-based synthesis techniques for handling one and two variable (2-input) functions

are presented. These techniques are further used in synthesis of circuits with more than

two inputs.

6.3.1 General Ternary-Transformed Binary Decision Diagrams

(TBDD)

The basic idea behind TDD to BDD transformation is based on Proposition 3.2, and

is presented using Proposition 6.1.

Proposition 6.1. A TDD can be transformed to a BDD.

Proof. Consider the general TDD relation F = x0 · F0 + x1 · F1 + x2 · F2, which is

represented in the Figure 6.1(b), where F0, F1 and F2 represent the sub-graphs, signals

x0, x1 and x2 are mutually exclusive and are related to x according to equation (6.1).

6.3. Proposed Synthesis Methodology 117

F = x0 · F0 + x1 · F1 + x2 · F2 (6.2)

F = x0 · F0 + (x1 + x0) · (x1 + x2) · F1 + x2 · (x1 + x2) · F2

∵ x1 = (x1 + x0) · (x1 + x2), x2 · x2 = x2, and x2 · x1 = 0

F = x0 · F0 + (x1 + x2) · ((x1 + x0) · F1 + x2 · F2) (6.3)

F = x0 · F0 + x0 · (x2 · F1 + x2 · F2) (6.4)

∵ (x1 + x2) = x0, (x1 + x0) = x2, where x0, x1 and x2 represent the binary NOT of

signals x0, x1 and x2 respectively as given by equation (6.5).

xk =

2 ifxk = 0

0 ifxk = 2

(6.5)

Alternatively equation (6.2) can also be represented as equation (6.6) and (6.7).

F = x2 · (x0 · F0 + x0 · F1) + x2 · F2 (6.6)

F = x1 · (x0 · F0 + x0 · F2) + x1 · F1 (6.7)

The relation in equations (6.4), (6.6) and (6.7) are similar to BDD relation, F =

x̄ · F0 + x · F1 and hence can be represented as the graph similar to that of a BDD.

Figure 6.4 shows the TBDDs for equations (6.4) and (6.6). A similar procedure can be

followed to develop TBDD for (6.7).

The graphs shown in Figure 6.4 can be implemented using 2:1 multiplexers. This

implementation differs from multiplexer based implementation of BDD, with respect

to the selection signal. Here, the selection signal is three-valued and hence there should

6.3. Proposed Synthesis Methodology 118

(a) TBDD for equation (6.4) (b) TBDD for equation (6.6)

Figure 6.4: Ternary-Transformed Binary Decision Diagram

(a) Implementation for TBDD
represented in eq. (6.4)

(b) Implementation for TBDD
represented in eq. (6.6)

Figure 6.5: 2 : 1 Multiplexer based implementation of TBDD

be a way to differentiate between three possible values i.e. 0, 1 and 2. This can be

achieved for TBDD representation of equations (6.4) and (6.6), by passing the selection

signal through the NTI and PTI gates. But for implementation of TBDD in equation

(6.7), a NOR like structure is needed to generate x1and x1 (See Figure 3.15(c)) , which

increases the complexity. Hence, in this work, only TBDDs represented in Figures

6.4(a) and 6.4(b) are used. Figures 6.5(a) and 6.5(b) show the implementation of

TBDDs in Figures 6.4(a) and 6.4(b) respectively, using 2:1 multiplexers and ternary

inverter gates. To differentiate between the two different multiplexers, 2:1 multiplexer

with NTI gate is referred as NTI-Mux and the one with PTI gate is referred as PTI-

Mux.

The TBDDs shown in Figure 6.4 are reduced, depending on F0, F1 and F2, with

the help of rule and propositions presented below:

6.3. Proposed Synthesis Methodology 119

(a) TBDD

(b) Reduced TBDD

Figure 6.6: Illustration for Rule 1

Rule 1. In a TBDD, if the children of a node are identical then the node is removed

from the graph and its incoming edges are directed to the child.

Rule 1 is derived from BDD reduction rules presented in [73]. This rule is illustrated

with an example below:

Example 1. In the TBDD shown in Figure 6.4(a), let F1 = F2 = F12. The corre-

sponding TBDD is shown in Figure 6.6(a), where the node N2 has identical children.

By applying Rule 1, the node N2 is replaced with function F12. The reduced TBDD

is shown in Figure 6.6(b). It is possible to achieve TBDD reduction with the help of

equation (6.4). This equation is simplified as below:

F = x0 · F0 + x0 · (x2 · F1 + x2 · F2) (6.8)

F = x0 · F0 + (x1 + x2) · ((x1 + x0) · F1 + x2 · F2)

F = x0 · F0 + (x1 + x2) · ((x1 + x0) · F12 + x2 · F12)

F = x0 · F0 + (x1 + x2) · F12 (6.9)

Equation (6.9) corresponds to a TBDD shown in Figure 6.6(b). Rule 1 helps in

choosing one among the two possible TBDDs shown in Figures 6.4(a) and 6.4(b), such

6.3. Proposed Synthesis Methodology 120

that the TBDD leads to an optimal implementation. To fully exploit Rule 1, a set of

propositions, which lead to optimized implementation, are presented below:

Proposition 6.2. For a general TDD (represented in Figure 6.1(b)), if F1 = F2 then

TBDD represented by equation x0 ·F0 + x0 · (x2 ·F1 + x2 ·F2) (shown in Figure 6.4(a))

leads to optimal implementation.

Proof. Consider Example 1, where F1 = F2 = F12. Here, equation x0 ·F0+x0 ·(x2 ·F12+

x2 ·F12) can be simplified by applying Rule 1 resulting in equation x0 ·F0+(x1+x2)·F12,

leading to a reduced TBDD as shown in Figure 6.6(b). Representing the same function

using equation x2 · (x0 · F0 + x0 · F12) + x2 · F12 (shown in Figure 6.4(b)) does not lead

to reduction since Rule 1 is not applicable.

Proposition 6.3. For a general TDD (represented in Figure 6.1(b)), if F0 = F1 then

TBDD represented by equation x2 · (x0 ·F0 + x0 ·F1) + x2 ·F2 (shown in Figure 6.4(b))

leads to optimal implementation.

If the conditions required for applying Proposition 6.2 (F1 = F2) or Proposition

6.3 (F0 = F1) are not met, then TBDD shown in Figure 6.4(b) or 6.4(b) is used for

representing the ternary function.

6.3.2 TBDD-based synthesis for 1-input ternary functions (Unary

Operators)

The TBDD synthesis technique for 1-input ternary functions, also called as unary

operators, uses Karnaugh-map (K-map) representation. Consider a 1-input function

represented by a K-map shown in the Figure 6.7, where A is ternary inputs and F is

ternary output. The notation, FAx , is used to represent the entries of the K-map, where

FAx is ternary output when A = x and x ∈ {0, 1, 2}. The K-map can be transformed

into TBDD in two ways, according to equations (6.4) and (6.6), as shown in Figure

6.8.

Propositions 6.2 and 6.3 are used to choose one of the two TBDDs shown in Figures

6.8(a) and 6.8(b) and Rule 1 is used to reduce them. The resulting TBDD is imple-

6.3. Proposed Synthesis Methodology 121

Figure 6.7: K-map for 1-input Ternary Function

(a) TBDD based on eq. (6.4) (b) TBDD based on eq. (6.6)

Figure 6.8: TBDDs for 1-input Ternary Function

mented using 2:1 multiplexers. Some of the 2:1 multiplexer based implementations

are optimized further by replacing multiplexers with equivalent ternary gates. This is

illustrated with the help of an example, where FA0 = 2, FA1 = 0 and FA2 = 0. Figures

6.9(a) and 6.9(b) show the initial TBDD and reduced TBDD after applying Rule 1.

Here the output,F = 2, if A = 0 and F = 0, if A = 1 or 2. This is equivalent to the

output of an NTI gate with A as input. Hence the 2:1 multiplexer based implemen-

tation of reduced TBDD can be replaced with an NTI gate as shown in Figure 6.10.

Apart from this, there are three more TBDD templates, which, along with their 2:1

multiplexer based implementations and equivalent gates are shown in Figure 6.11. The

binary NOT gate shown here corresponds to the equation (6.5).

To fully exploit Rule 1 and the templates, a set of propositions, which lead to

optimized implementation of 1-input ternary function, are presented below:

Proposition 6.4. For a 1-input ternary function (represented in Figure 6.7), if FA0 6=

FA1 and FA1 = 2, FA2 = 0 or FA1 = 0, FA2 = 2 then TBDD represented by equation A0 ·

FA0 +A0 ·(A2 ·FA1 +A2 ·FA2) (shown in Figure 6.8(a)) leads to optimal implementation.

6.3. Proposed Synthesis Methodology 122

(a) Initial TBDD

(b) Reduced TBDD

Figure 6.9: TBDD for FA0 = 2, FA1 = 0 and FA2 = 0

Figure 6.10: Multiplexer-based implementation of Reduced TBDD in Figure 6.9 and
its equivalent Ternary Gate

Figure 6.11: TBDD templates, their 2:1 multiplexer based implementations and equiv-
alent gates.

6.3. Proposed Synthesis Methodology 123

Proof. Consider a 1-input ternary function with FA0 = 1, FA1 = 2 and FA2 = 0. Let

this function be represented by equation A0 ·FA0 +A0 · (A2 ·FA1 +A2 ·FA2) as shown in

Figure 6.12(a), where sub-graph N is equivalent to one of templates shown in Fig 6.11

and hence a PTI gate is required for its implementation instead of a multiplexer. But

implementation of TBDD represented by equation A2 · (A0 · FA0 +A0 · FA1) +A2 · FA2

(shown in Figure 6.12(b)) requires two multiplexers.

(a) TBDD based on eq. (6.4) (b) TBDD based on eq. (6.6)

Figure 6.12: TBDD Example for Proposition 6.4

Proposition 6.5. For a 1-input ternary function (represented in Figure 6.7), if FA1 6=

FA2 and FA0 = 2, FA1 = 0 or FA0 = 0, FA1 = 2 then TBDD represented by equation A2 ·

(A0 ·FA0 +A0 ·FA1)+A2 ·FA2 (shown in Figure 6.8(b)) leads to optimal implementation.

Any 1-input ternary function can be implemented using propositions 6.2, 6.3, 6.4

and 6.5. There are 27 1-input ternary functions (unary operators) for ternary case [41],

which are shown in Table 6.1 for an input A. The operators are arranged in increasing

order of complexity of implementation and can be divided into seven groups namely

Group − 0, 1, 2, 3, 4, 5, 6. The complexity of different groups shown in Table 6.1 are

summarized below:

• Group−0: Implementation of unary operators T0, T1, T2 and T3 does not require

any circuit elements. This is because T0, T1, T2 are constant functions and T3 is

identity function.

6.3. Proposed Synthesis Methodology 124

Table 6.1: Unary Operators

(a) Group 0 to 3

Grp. 0 1 2 3
A T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

0 0 1 2 0 2 2 0 0 0 0 0 1 1 1 1 2
1 0 1 2 1 2 0 0 2 0 0 1 0 1 1 2 2
2 0 1 2 2 0 0 2 2 1 2 1 0 0 2 2 1

(b) Group 4 to 6

Grp. 4 5 6
A T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26

0 0 2 1 2 0 1 0 1 1 2 2
1 2 0 2 0 2 0 1 0 2 1 1
2 0 2 0 1 1 2 0 1 1 0 2

• Group− 1: Implementation of T4 and T5requires NTI or PTI gates. (Use Propo-

sition 6.2 or 6.3, apply Rule 1 and use templates)

• Group− 2: Implementation of T6 and T7 requires a binary NOT gate in addition

to NTI or PTI gates. (Use Proposition 6.2 or 6.3, apply Rule 1 and use templates)

• Group − 3: Implementation of each of the operators T8 − T15 requires either an

NTI-Mux or a PTI-Mux. (Use Proposition 6.2 or 6.3 and apply Rule 1)

• Group− 4: Implementation of each of the operators T16 − T19 requires either an

NTI-Mux or a PTI-Mux in addition to NTI or PTI gate. (Use Proposition 6.4

or 6.5, apply Rule 1 and use templates)

• Group− 5: Implementation of T20 and T21 requires either an NTI-Mux or a PTI-

Mux, an NTI or a PTI gate and a binary NOT gate. (Use Proposition 6.4 or 6.5,

apply Rule 1 and use templates)

• Group− 6: Implementation of each of the operators T22 − T26 requires two mul-

tiplexers, an NTI-Mux and a PTI-Mux.

6.3. Proposed Synthesis Methodology 125

6.3.3 TBDD-based synthesis for 2-input ternary functions

The TBDD synthesis technique for 2-input ternary circuit uses Karnaugh-map (K-map)

representation, which is similar to cube representation in [41, 62]. Consider a 2-input

function represented by a K-map shown in the Figure 6.13, where A, B are ternary

inputs and F is ternary output. The notation, FAxBy , is used to represent the entries

of the K-map, where FAxBy is ternary output when A = x, B = y and x, y ∈ {0, 1, 2}.

For example, when A = 0, B = 1, the corresponding K-map entry is represented as

FA0B1 .

The K-map can be transformed into TBDD in many ways depending on the se-

lection variable (A or B) and the relation (equation (6.4) or (6.6)) used on it. The

Propositions 6.2 and 6.3 can be applied by decomposing a 2-input function into three

1-input functions, which are then implemented using processes as explained in Section

6.3.2. The K-map shown in Figure 6.13 can also be represented in terms of 1-input row

functions or 1-input column functions depending on inputs. Figure 6.14 shows alter-

nate representations of 2-input function. Here, FA0(B), FA1(B) and FA2(B) represent

1-input row functions, which are dependent on value of B. Similarly let FB0(A), FB1(A)

and FB2(A) represent 1-input column functions, which are dependent on value of A.

These functions are related to K-map entries in Figure 6.13 according to equations

(6.10) and (6.11).

FAx(y) = FAxBy where x, y ∈ {0, 1, 2} (6.10)

Figure 6.13: K-map Representation of 2-input Function

6.3. Proposed Synthesis Methodology 126

(a) Row Functions (b) Column Functions

Figure 6.14: K-map Representation of of 2-input Function using 1-input Functions

FBy(x) = FAxBy where x, y ∈ {0, 1, 2} (6.11)

The choice of decomposition (into 1-input row functions or 1-input column func-

tions), depends on whether Proposition 6.2 or 6.3 is applicable for TBDD representation

of 2-input function. The following propositions are used to choose one of the input vari-

ables A or B such that the TBDD representation of 2-input function leads to optimal

implementation.

Proposition 6.6. For a 2-input ternary function F (A,B), if FA0(B) = FA1(B) or

FA1(B) = FA2(B), then decomposition along input A (row functions) leads to a reduced

TBDD.

Proof. If FA1(B) = FA2(B) orFA0(B) = FA1(B) then Proposition 6.2 or 6.3 can be

applied leading to reduced TBDD.

Corollary 6.1. For a 2-input ternary function F (A,B), if FB0(A) = FB1(A) or

FB1(A) = FB2(A), then decomposition along input B (column functions) leads to a

reduced TBDD.

Proposition 6.6 is illustrated with an example, whose K-map representation is shown

in Figure 6.15. Since FA1(B) = FA2(B), decomposing along input A and using Propo-

sition 6.2 leads to reduced TBDD, shown in Figure 6.16, which has only one node.

Decomposing this 2-input function along in input B leads to TBDD with two nodes as

shown in Figure 6.17. After decomposing along A, the resulting 1-input row/column

6.3. Proposed Synthesis Methodology 127

Figure 6.15: An Example for 2-input Function

Figure 6.16: TBDD representation when decomposed w.r.t A

functions are further represented by TBDD using Rule 1 and Propositions 6.2 - 6.5.

Figure 6.18 shows the final TBDD for 2-input function (in Figure 6.15) which is used

for implementation using 2:1 multiplexers.

If the conditions required for Proposition 6.6 or Corollary 6.1 are not satisfied, then

the decomposition is done by using the propositions described below:

Proposition 6.7. For a 2-input ternary function F (A,B), if FA0(B) is constant func-

tion or FA2(B) is constant function (i.e. function value is same irrespective of value

of B) decomposition along input A leads to a reduced TBDD.

Corollary 6.2. For a 2-input ternary function F (A,B), if FB0(A) is constant function

or FB2(A) is constant function (i.e. value of function is same irrespective of value of

A) decomposition along input B leads to a reduced TBDD.

6.3. Proposed Synthesis Methodology 128

Figure 6.17: TBDD representation when decomposed w.r.t B

Figure 6.18: TBDD representation for 2 input function in Figure 6.15

Proposition 6.7 is illustrated with an example, whose K-map representation is shown

in Figure 6.19. Since FA2(B) = 2, irrespective of value of B, decomposing along input

A and using Proposition 6.2 leads to TBDD, which has four nodes as shown in Figure

6.20. Decomposing this function along input B results in TBDD, shown in Figure 6.21,

which has six nodes. Hence decomposing with respect to input B leads to reduced

TBDD.

The propositions presented in this subsection along with propositions presented in

Section 6.3.2 are used to construct a TBDD for any 2-input function. The TBDD is

further used circuit implementation using 2:1 multiplexers.

6.3. Proposed Synthesis Methodology 129

Figure 6.19: An Example for 2-input Function

Figure 6.20: TBDD representation for function in Figure 6.19, when decomposed w.r.t
A

6.3.4 TBDD-based synthesis for n-input ternary functions

The approach presented to implement a 2-input function can be extended to handle

n-input ternary functions. This is achieved by decomposing an n-input function into

multiple 1-input functions using Propositions 6.6, 6.7 and related Corollaries 6.1, 6.2

successively. For example, a 3-input function will be decomposed into multiple 2-

input functions, which are further decomposed into multiple1-input functions. As seen

earlier, a 2-input function can be decomposed in two ways with respect to inputs (A,

B). Similarly, n-input function can be decomposed into (n-1)-input functions in n-

ways. One of these n ways is chosen for decomposition with respect to corresponding

input using propositions presented below:

Proposition 6.8. For an n-input ternary function F (x1, x2, x3...xn), if Fx0i (x1..xi−1xi+1..xn) =

Fx1i (x1..xi−1xi+1..xn) = Fx2i (x1..xi−1xi+1..xn) , then decomposition along input xi leads

6.4. Algorithm for 2:1 Multiplexer based Synthesis 130

Figure 6.21: TBDD representation for function in Figure 6.19, when decomposed w.r.t
B

to reduced TBDD.

Proposition 6.9. For an n-input ternary function F (x1, x2, x3...xn), if Fx0i (x1..xi−1xi+1..xn) =

Fx1i (x1..xi−1xi+1..xn) or Fx1i (x1..xi−1xi+1..xn) = Fx2i (x1..xi−1xi+1..xn) , then decomposi-

tion along input xi leads to reduced TBDD expressed in terms of (n−1)-input functions.

Proposition 6.10. For an n-input ternary function F (x1, x2, x3...xn), if Fx0i (x1..xi−1xi+1..xn)

is constant function or Fx2i (x1..xi−1xi+1..xn) is constant function decomposition along

input xi leads to reduced TBDD expressed in terms of(n− 1)-input functions.

For an n-input function, if conditions for Proposition 6.8 are satisfied, then Rule 1

can be applied on its TBDD, which is represented in terms of (n− 1)-input functions,

leading to a reduction. Propositions 6.9 and 6.10 are derived from Propositions 6.6

and 6.7 respectively. The decomposition process is repeated until an n-input function

is decomposed into multiple 1-input functions. A TBDD is constructed by appending

nodes at each level of decomposition similar to the process used in the 2-input case

which is shown in Figure 6.20. At each step of decomposition, the input corresponding

to the decomposition is chosen as the decision variable for appended nodes.

6.4 Algorithm for 2:1 Multiplexer based Synthesis

In this section, we present an algorithm which can be used to generate TBDD graph

for an n-input ternary function. The inputs to this algorithm, i.e. Algorithm 6.1, are

6.4. Algorithm for 2:1 Multiplexer based Synthesis 131

the list of inputs and the truth table for the ternary function.

Initially a list is created which has a mapping between inputs and the truth table.

This is indicated by a function create_List(X,O) in Algorithm 6.1. An empty TBDD-

graph (number of nodes is equal to zero) namely, TBDD, is created initially, which will

be updated with nodes and edges. The ternary truth table of n-input ternary function

is now decomposed into three truth tables corresponding to (n − 1)-input ternary

functions. As discussed earlier, for a n-input ternary function, there are n-ways in

which it can be decomposed. One of these ways is selected based on the Propositions

6.8, 6.9 and 6.10. If the decomposition is possible with at least one of these propositions

then, decompose is set to 1 and the corresponding input is removed from the input list

(X ′ = remove(i,X ′)). A new list, listnew is created (using functions emptylist(),

append()), which now consists of truth tables and input list corresponding to (n − 1)

inputs. Also, TBDD is updated (indicated by function updateGraph()), with the help

of Propositions 6.2 and 6.3, by choosing an input, which is used for decomposition, as

selection signal.

If the conditions for Propositions 6.8, 6.9 are not met 6.10 (decompose = 0), then

the default decomposition is done along the input corresponding to Most Significant

Digit (MSD). The listnew and TBDD-graph are updated accordingly. There is a

possibility that the listnew contains duplicate functions. Hence duplicate functions are

removed and the corresponding nodes in the TBDD-graph (TBDD) are merged. This

process is represented in Algorithm 6.1 by a function remove_fun(TBDD, listnew),

which returns the updated list and TBDD graph.

The new list containing decomposed functions is copied to out_list. The process of

decomposition is repeated until the original function is decomposed into 1-input func-

tions. This condition is checked by extracting the size of truth tables from out_list.,

and checking if it is equal to 3. Once an n-input function is decomposed into 1-input

functions, TBDD graphs for these functions are created using Propositions 6.2, 6.3, 6.4

and 6.5, and are appended to the original graph represented as TBDD. Finally the

Algorithm 6.1 returns the TBDD graph which can be used for circuit implementation

6.4. Algorithm for 2:1 Multiplexer based Synthesis 132

Algorithm 6.1 Algorithm for Synthesis
1: Input1: list of Inputs X = (x1,x2,x3..xn)
2: Input2: Truth table as a list O = (O0,O1...O3n−1)
3: Output: TBDD graph corresponding to Ternary function
4: begin
5: out_list = create_List(X,O) //creates a list [[X,O]]
6: out_length = get_Size(O) //get the truth table size
7: TBDD = Create_emptygraph()
8: while (out_length > 3) do //check for 1-input function
9: for each list in out_list do
10: X ′ = get_inputs(list)
11: O′ = get_output_truthtable(list)
12: listnew = emptylist() //creates an empty list
13: decompose = 0 //Start Decomposition
14: for each i in X ′do
15: (O′i=0,O′i=1,O′i=2)=Decompose(O′, i)
16: if (O′i=0 = O′i=1 = O′i=2) then //Proposition 6.8
17: X ′ = remove(i,X ′)
18: append(listnew, [[X ′, O′i=0]])
19: decompose = 1
20: updateGraph(TBDD, i, O′i=0)
21: end if
22: break
23: else if (O′i=0 = O′i=1) then //Proposition 6.9 & 6.3
24: X ′ = remove(i,X ′)
25: append(listnew, [[X ′, O′i=0], [X

′, O′i=2]])
26: decompose = 1
27: updateGraph(TBDD, i, [O′i=0, O

′
i=2]) Use Proposition 6.2 or 6.3

28: end if
29: break

//Similarly check for Proposition 6.10
30: end for
31: if (decompose = 0) then

// i.e. if conditions for Propositions 6.8, 6.9 and 6.10
are not met then decompose along MSD
//update listnew and TBDD graph

32: end if
33: end for
34: (TBDD, listnew) = remove_fun(TBDD, listnew)
35: out_list = listnew
36: O′ = get_output_truthtable(listnew)
37: out_length = get_Size(O′)
38: end while
39: for each list in out_list do
40: X ′ = get_inputs(list)
41: O′ = get_output_truthtable(list)
42: TBDD = fun_one_input(X ′, O′, TBDD)
43: end for
44: return TBDD
45: end

6.5. Synthesis using CNFETs 133

using 2:1 multiplexers. As an example, TBDD graphs for ternary full adder obtained

from the proposed synthesis algorithm is shown in Figure 6.22. Ternary adder has three

inputs A, B and C and two outputs Sumand Carry. Figures 6.22(a) and 6.22(b) show

the decomposition of 3-input Sum and Carry function resulting in 1-input functions,

whose TBDDs are shown in Figures 6.22(c) and 6.22(d) .

Algorithm 6.1 decomposes the n-input ternary function into 3 (n − 1)-input func-

tions using one of the possible n-ways. In the worst case the algorithm iterates through

all the possible n-ways corresponding to n inputs, available for decomposition. Further

the algorithm decomposes each of the (n − 1)-input ternary functions into (n − 2)-

input functions using one of the possible (n − 1)-ways. This process is repeated until

the original function is decomposed into 1-input functions. For a single output ternary

function, the algorithm complexity for decomposing a n-input ternary function into 1-

input functions is O(n3n). In the worst case, for any value of n, there can be 27 unique

1-input functions. Hence the time complexity for implementing 1-input functions is in-

dependent of n value and does not contribute to the overall complexity of the algorithm.

For an n-input, m-output ternary function the complexity of algorithm is O(mn3n).

This complexity can be reduced by selecting the input variable for decomposition ran-

domly, instead of iterating through all the inputs. Although this technique reduces the

complexity of the algorithm to O(m3n), it might lead to sub-optimal circuits.

Algorithm 6.1 can be used to synthesize ternary logic circuits using 2:1 multiplexer,

Binary NOT, PTI and NTI gates. In this work, the proposed algorithm is used to syn-

thesize CNFET-based ternary logic circuits and is compared with the existing CNFET-

based ternary synthesis algorithm. However, the proposed algorithm is not limited to

CNFET technology and can be applied to any device technology which supports the

implementation of 2:1 multiplexer, Binary NOT, PTI and NTI gates.

6.5 Synthesis using CNFETs

In the proposed TBDD-based approach, TBDD is converted into circuit implementa-

tion by replacing the nodes with 2:1 multiplexers. Hence this approach needs circuit

6.5. Synthesis using CNFETs 134

(a) Sum Function Decomposition

(b) Carry Function Decomposition

(c) 1-input functions for Sum

(d) 1-input functions for Carry

Figure 6.22: TBDD for Ternary Full Adder

6.5. Synthesis using CNFETs 135

Vdd

PTI

(19,0)

(19,0)

(19,0)

(10,0)

(10,0)

(19,0)

(a) PTI-Mux

Vdd

NTI

(19,0)

(19,0)

(19,0)

(10,0)

(10,0)

(19,0)

(b) NTI-Mux

Figure 6.23: Implementation of 2:1 Multiplexers

implementations for 2:1 multiplexers (NTI-Mux and PTI-Mux), NTI and PTI. As ex-

plained in Section 6.3, two types of 2:1 multiplexers are used in synthesis of ternary

circuits. Figures 6.23a and 6.23b show the implementation of these multiplexers, PTI

and NTI using CNFETs. Each of the multiplexers require two transmission gates (4

transistors) and a PTI or an NTI (2 transistors) for implementation. In addition to

these circuits, a binary NOT gate is also used to implement templates shown in Figure

6.11. The binary NOT gate can be implemented with transistors, which use CNTs of

any of the diameters shown in Table 2.3. In this work, binary NOT gate is implemented

using transistors which use CNTs with diameter 1.487nm.

The procedure to implement the TBDD using CNFET-based 2:1 multiplexers is

illustrated with an example. Consider a 2-input ternary function shown in Figure

6.15 and its TBDD shown in the Figure 6.18. Here each node corresponds to a 2:1

multiplexer. However, some of the nodes which are equivalent to one of the templates

shown in 6.10 and 6.11 are replaced with their equivalent circuits. Figure 6.24 shows

block-level and transistor-level implementation of TBDD shown in Figure 6.18. It

should be noted that if two multiplexers have same select signal then the total number

of transistors required is equal to 18 (four transmission gates plus one inverter) and

not 24.

Figure 6.25 shows the block-level implementation of ternary adder TBDDs (shown

in Figure 6.22) with three inputs A, B and C and two outputs Sum and Carry.

The implementation of ternary adder using the proposed approach requires 21 2:1

multiplexers (10 for Sum and 11 for Carry), where each multiplexer requires two

transmission gates (4 transistors). The select signals generated depend on the number

6.6. Results 136

of inputs. In a ternary adder, 3 NTI and 3 PTI gates are required for select signal

generation. Hence a ternary full adder, implemented using the proposed approach

requires (21 × 4) + (6 × 2), i.e. a total of 96 CNFETs which is less when compared

to 3:1 multiplexer based implementation [41] which requires 105 CNFETs. Different

benchmark ternary circuits have been synthesized using the proposed approach and

algorithm. The synthesis and simulation results of the benchmark circuits have been

presented in next section.

(a)

Vdd

NTI

Vdd

PTI

Vdd
NTI

(10,0)
(10,0) (10,0)

(10,0)

(10,0)

(10,0)

(b)

Figure 6.24: Implementation of TBDD in Figure 6.18

6.6 Results

6.6.1 Synthesis

The proposed algorithm (Algorithm 6.1) has been implemented using Python 3.5 in

Scientific PYthon Development EnviRonment (Spyder) on Windows 10 running on a

Intel(R) Core(TM) i5−5200U CPU 64-bit@2.2GHz and 4GB of RAM. The algorithm

takes the truth table along with inputs and generates the TBDD graph which is used for

circuit implementation. In the proposed approach, each node in the TBDD is equivalent

to one 2:1 multiplexer (two transmission gates) and the selection signals for these are

generated from inputs. The selection signal is generated by using either an NTI or a PTI

6.6. Results 137

(a) Sum Implementation (b) Carry Implementation

Figure 6.25: Implementation of Ternary Full Adder

gate. Hence in the worst case, the number of inverters required to generate all required

selection signals is equal to two multiplied by number of inputs. In addition, there might

be a need of binary NOT gates to replace some of the templates with equivalent signals.

Each binary NOT gate requires two CNFETs for implementation. For testing the

efficiency of the proposed 2:1 multiplexer based synthesis, ternary benchmark functions

[29, 41] have been considered. The functions include (i) sumi, which outputs the sum

of i ternary inputs (ii) prodi, which finds the product of i ternary inputs (iii) avgi to

calculate the average of i ternary inputs (iv) ncyr which corresponds to a ternary sum-

of-product expression of n input variables taken r at a time and (v) counteri which

counts number of 1’s and 2’s in a given i digit ternary number. As in the case of work

presented in [41], we have chosen n ≥ 8 and r ≥ 5 for ncyr and i ≥ 8 for other functions

to evaluate the performance of the proposed approach.

Table 6.2 shows the comparison of the proposed 2:1 multiplexer based synthesis

approach with 3:1 multiplexer (and unary operator) based synthesis approach presented

in [41], for different ternary benchmark functions. This table also shows the execution

time of the proposed algorithm for different benchmarks. It can be observed that

the execution times are consistent with the complexity analysis carried out on the

algorithm presented in Section 6.4. Synthesis results of ternary benchmark functions

using the proposed approach show a significant reduction (up to 99%) in the number

6.6. Results 138

of CNFETs used when compared to [41]. This improvement is mainly due to two

factors 1) use of 2:1 multiplexers based approach 2) proposed algorithm (Algorithm 6.1)

eliminates duplicate functions, which is equivalent to merging equivalent sub-graphs

(nodes), which is not the case in [41].

6.6.2 SPICE Simulation

In addition to synthesis, the benchmark circuits have been simulated in HSPICE. A

program, which is used to convert the TBDD into a spice netlist which uses sub-

circuits for 2:1 multiplexers and inverter gates, is implemented in Python 3.5. The

resulting netlist have been simulated using Synopsys HSPICE. All the circuits are

simulated using the CNTFET model of [44, 45, 53] at 0.9V power supply and room

temperature. The CNFETs used in the implementation are configured to have three

tubes and a default pitch value equal to 20nm. All the other parameters are set to

their default values as presented in Table 2.4. In this work, ternary logic values 0, 1

and 2 correspond to voltages 0, V dd/2 and V dd respectively. For binary logic gates the

logic values 0 and 1 correspond to voltages 0 and V dd respectively. Binary gates are

implemented using transistors, which are connected in complementary logic style and

have chirality of (19, 0). Different ternary circuits are implemented using proposed and

existing approaches and the design parameters are compared. For fair comparison, all

the adders have been simulated with same test pattern.

Power consumption results are obtained by simulating the circuits with random

test input patterns at switching frequency of 500MHz. To measure the delay of the

designs, test patterns have been chosen in such a way that the signal change propagates

through the critical path and the maximum delay is measured. FO4 delay is calcu-

lated by loading the output node with four STI gates (implementation of STI gate is

presented in [36]). The power-delay product is the product of worst-case propagation

delay and average power consumption. Table 6.3 shows the propagation delay, power

consumption and power-delay product of the simulated ternary benchmark circuits.

Although, the work presented in [41] shows the HSPICE simulation results, it does

6.6. Results 139

Table 6.2: Comparison of Transistor Count of Proposed 2:1 Multiplexer based Algo-
rithm with that of Exitsing 3:1 Multiplexer based Algorithm [41]

Ternary
Function I/O No. of

2:1
MUXes

No.of CNFETs Improv. Exec.
time
(s)

Proposed
Approach

3:1 MUX
based

approach
[41]

sum8 8/3 194 812 960 15.4% 0.8

sum9 9/3 240 1000 2346 57.4% 2.4

sum10 10/3 299 1240 6822 81.8% 8.2

sum11 11/3 358 1480 19968 92.6% 28.3

sum12 12/3 417 1720 59346 97.1% 93.0

sum13 13/3 476 1960 177× 103 98.9% 307.1

prod8 8/6 210 876 934 6.2% 1.0

prod9 9/6 290 1200 2404 50.1% 3.6

prod10 10/7 385 1584 6796 76.7% 13.5

prod11 11/7 496 2032 19936 89.8% 45.9

prod12 12/8 629 2568 59320 95.7% 170.1

prod13 13/9 803 3268 177× 103 98.2% 621.2

avg8 8/1 68 308 871 64.6% 0.2

avg9 9/1 86 384 2341 83.6% 0.7

avg10 10/1 105 464 6727 93.1% 2.4

avg11 11/1 127 556 19861 97.2% 8.1

avg12 12/1 150 652 59239 98.9% 26.1

avg13 13/1 176 760 177× 103 99.6% 105.6

8cy5 8/1 143 608 908 33.0% 0.2

9cy5 9/1 238 992 2378 58.3% 0.8

10cy6 10/1 295 1224 6764 81.9% 2.9

11cy9 11/1 161 692 19898 96.5% 9.2

12cy8 12/1 533 2184 61258 96.4% 33.7

13cy7 13/1 1118 4528 177× 103 97.4% 114.9

14cy8 14/1 1256 5084 531× 103 99.0% 387.6

counter8 8/4 142 604 958 36.9% 0.5

counter9 9/6 203 852 2508 66.0% 2.5

counter10 10/6 266 1108 6924 84.0% 9.5

counter11 11/6 329 1364 20098 93.2% 31.7

counter12 12/6 392 1620 59521 97.3% 103.7
counter13 13/6 455 1876 177× 103 98.9% 381.2

6.6. Results 140

Table 6.3: Simulation Results for Ternary Benchmark Circuits

Ternary
Function

Propagation
Delay/FO4-

Delay
(ps)

Power Con-
sumption
(µW)

Power-Delay
Product
(fJ)

sum8 173.3 1.46 0.252
sum10 235.0 2.07 0.485
sum12 298.1 2.55 0.761
prod8 235.9 2.14 0.503
prod10 349.3 3.03 1.06
prod12 490.4 4.37 2.14
avg8 163.7 0.334 0.055
avg10 245.4 0.519 0.127
avg12 343.0 0.692 0.237

8cy5 168.0 0.659 0.111

10cy6 197.0 1.29 0.254

12cy8 302.3 1.66 0.502
counter8 104.7 1.35 0.141
counter10 144.8 2.42 0.350
counter12 166.2 3.26 0.541

not mention the simulation environment like number of tubes used in CNFET, input

switching frequency etc. Moreover the circuits synthesized using algorithm in [41] are

available only for ternary adder and not for other circuits. Hence, a direct comparison of

simulation results is presented for ternary full adder. Table 6.4 shows the comparison

of simulation results for ternary adder synthesized using the proposed and existing

approaches with different loads. As seen from the table, ternary adder implemented

using the proposed synthesis approach has up to 87% less power consumption and 86%

less PDP when compared to adder implemented using 3:1 multiplexer based synthesis

approach [41]. This is mainly because, the 3:1 multiplexer based approach uses complex

circuits, which have large power consumption, for implementing unary operators. The

proposed approach uses transmission gate based 2:1 multiplexers for implementing

the unary operators. For FO4 load, ternary adder implemented using the proposed

approach has 7% more propagation delay when compared to 3:1 multiplexer based

approach. However as the load increases, 2:1 multiplexer based ternary adder achieves

a reduction of up to 17% in delay when compared to 3:1 multiplexer based adder.

In addition to the above comparison, we also present a comparison of some of the

6.7. Conclusions 141

Table 6.4: Comparison of Ternary Adders

Load Propagation
Delay/FO4-

Delay
(ps)

Power Con-
sumption
(µW)

Power-Delay
Product
(fJ)

[41] FO4 62.31 2.14 0.133
1fF 135.8 2.24 0.305
2fF 242.5 2.46 0.596
3fF 349.2 2.67 0.933

Proposed FO4 66.53 0.28 0.019
1fF 124.3 0.40 0.050
2fF 205.5 0.58 0.119
3fF 289.7 0.76 0.220

existing manual designs of ternary circuits (presented in [36, 60, 61, 74]) with those

generated from the proposed synthesis algorithm. Table 6.5 shows the comparison

for half-adder, 1-digit multiplier and 1-digit comparator. As seen from this table,

the proposed algorithm results in half-adder, 1-digit multiplier and 1-digit comparator

circuits that require least number of CNFETs for implementation when compared to

existing designs. A half-adder implemented using the proposed synthesis algorithm

has least power consumption and power-delay product when compared to the existing

designs presented in [36, 60]. It is also evident from Table 6.5 that 1-digit multiplier

synthesized using the proposed algorithm is better than existing designs presented

in [36, 61], with respect to all design parameters. However for 1-digit comparator,

the existing design presented in [74] has less propagation delay, power consumption

and power-delay product when compared to the one synthesized using the proposed

algorithm.

6.7 Conclusions

This chapter presented a methodology to transom a TDD to BDD. The transformed de-

cision diagram, also called as Ternary-Transformed Binary Decision Diagram (TBDD),

is then used to implement the ternary logic functions using 2:1 multiplexers. This

methodology is used to develop a synthesis algorithm, which is used to synthesize

6.7. Conclusions 142

Table 6.5: Comparison of Existing Manual Designs with those Generated using the
Proposed Algorithm

Propagation
Delay (ps)

Power Con-
sumption
(µW)

Power-Delay
Product
(in

×10−17J)

Number of
CNFETs

Half- Adder
[36] 42.4 1.24 5.25 88
[60] 47.0 1.62 7.62 52

Proposed 44.2 0.121 0.53 36
1-digit Multiplier

[36] 35.7 0.780 2.78 66
[61] 26.4 0.779 2.06 40

Proposed 17.5 0.069 0.12 30
1-digit Comparator

[36] 34.3 0.294 1.01 52
[74] 19.7 0.201 0.40 32

Proposed 35.5 0.249 0.88 28

various ternary benchmark functions. Synthesis results for ternary benchmark func-

tions indicate that the proposed algorithm results in circuits that have, on an average

79%and up to 99% less transistors when compared to recent 3:1 multiplexer based

algorithm. The synthesized circuits have been implemented using Carbon-Nanotube

Field Effect Transistors and simulated in HSPICE. Simulation results for ternary adder

show that the proposed synthesis approach results in upto 17% reduction (for load of

3fF) in propagation delay, 87% reduction in power consumption and 86% reduction

in power-delay product when compared to 3:1 multiplexer based synthesis approach.

Chapter 7

Summary and Future Work

7.1 Summary

This thesis presented new design and synthesis techniques to implement ternary logic

circuits using CNFET. Initially, three new design approaches (Approach I, II and III)

were presented which are used in the implementation of ternary logic circuits. In addi-

tion, new designs for ternary decoder and low-power encoder are presented. Simulation

results of the resulting circuits show reduction in different design metrics such as power

consumption, propagation delay and power-delay product, when compared to existing

design approaches. A ternary half-adder implemented using Approach II, which uses

delay optimized decoder, and both sum-of-product and product-of-sum expressions,

has the least delay. This adder has less dependency on load variations and has lower

power consumption when compared to the existing designs. Thus, this half-adder has

been used in the implementation of multi-digit ternary adders.

The existing multi-digit adders have complex carry propagation paths. Hence,

two new techniques have been proposed, which lead to implementation of multi-digit

ternary adders with optimized carry propagation/generation path. The first technique

uses half-adder outputs instead of original inputs for carry computation thus resulting

in a carry generation/propagation circuit with less complexity. The second technique

uses the concept of propagate-generate to implement ternary prefix adders. HSPICE

simulation results show that the proposed ternary prefix adders have up to 58% less

143

7.1. Summary 144

power consumption and 50% less propagation delay when compared to existing multi-

digit ternary adders.

Analysis of different adder designs shows that ternary encoder contributes signif-

icantly to the overall propagation delay and power consumption. Hence different en-

coder designs have been presented which are optimized for different design parameters.

Also algorithms have been developed to choose appropriate encoders for output stages

of ternary circuits such that the overall circuit is optimized for delay or power or

power-delay product. These algorithms have been validated by applying them on an

example ternary circuit. Simulation results show that the proposed encoder design and

algorithms aid in optimizing the ternary logic circuits.

Techniques available for designing ternary logic circuits are mainly classified as

encoder based and multiplexer based. For scaling these approaches to implement more

complex ternary logic circuits, efficient synthesis algorithms are required. Encoder

based approach relies on binary circuits which are then transformed to final ternary

outputs with the help of encoders. Hence existing binary synthesis techniques can

be used implement ternary circuits. But for scaling the multiplexer based approaches

there is a need for new synthesis algorithms. In this work we presented a novel synthesis

technique to implement ternary logic circuits using “2:1 multiplexers”. This technique

uses a transformation which converts a TDD in to BDD. This transformed TDD is

then used to implement the ternary logic function using 2:1 multiplexers.

A procedure to decompose ternary functions with three (or more) inputs to multi-

ple 1-input ternary functions has also been presented in this work. This procedure is

developed into a synthesis algorithm, which is further used in the synthesis of bench-

mark ternary functions. Synthesis results of these functions indicate that the proposed

algorithm results in circuits that have, on an average, 79% and up to 99% less transis-

tors when compared to the existing 3:1 multiplexer based designs. Simulation results

for ternary adder, implemented using proposed algorithm, show that there is upto 17%

reduction (for load of 3fF) in propagation delay, 87% reduction in power consumption

and 86% reduction in power-delay product when compared with adder implemented

7.2. Future Work 145

using 3:1 multiplexers.

7.2 Future Work

Any technology, where it is possible to have transistors with atleast two different thresh-

old voltages (0 < Vth1 < VDD/2, V DD/2 < Vth2 < VDD), can be used to implement

the ternary logic circuits. It would be interesting to explore the proposed techniques

in context of these new device technologies. The existing literature on ternary logic

mainly focuses on design of combinational ternary circuits. Hence new design and

synthesis techniques to implement sequential ternary circuits can also be explored.

In Chapter 5, we proposed some designs of ternary encoder that are optimized for

different design parameters. Encoder is a critical element that significantly affects the

overall power consumption and propagation delay of a ternary circuit. It would be

interesting to explore the possibility of designing more efficient encoders which would

aid in designing more efficient ternary circuits.

In Chapter 6 a novel technique to implement ternary circuits using “2:1 multiplex-

ers” has been presented. This approach can be further extended to implement other

MVL circuits using 2:1 multiplexers. In this context, it would be interesting to explore

more generalized synthesis techniques which use 2:1 multiplexers for implementation

of any MVL circuit.

Bibliography

[1] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective,

4th ed. USA: Addison-Wesley Publishing Company, 2010.

[2] E. Mollick, “Establishing moore’s law,” IEEE Ann. Hist. Comput., vol. 28, no. 3,

pp. 62–75, Jul. 2006. [Online]. Available: http://dx.doi.org/10.1109/MAHC.2006.

45

[3] M. Horowitz, “Scaling, power and the future of cmos,” in Proceedings of

the 20th International Conference on VLSI Design Held Jointly with 6th

International Conference: Embedded Systems, ser. VLSID ’07. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 23–. [Online]. Available:

http://dx.doi.org/10.1109/VLSID.2007.140

[4] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson,

H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and

C. Hu, “Sub-50 nm p-channel finfet,” IEEE Transactions on Electron Devices,

vol. 48, no. 5, pp. 880–886, May 2001.

[5] “International technology roadmap for semiconductors 2.0 2015 edition executive

report,” Available: http://www.itrs.net, Tech. Rep., 2015.

[6] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mech-

anisms and leakage reduction techniques in deep-submicrometer cmos circuits,”

Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb 2003.

146

http://dx.doi.org/10.1109/MAHC.2006.45
http://dx.doi.org/10.1109/MAHC.2006.45
http://dx.doi.org/10.1109/VLSID.2007.140

Bibliography 147

[7] E. P. DeBenedictis, J. K. Mee, and M. P. Frank, “The opportunities and contro-

versies of reversible computing,” Computer, vol. 50, no. 6, pp. 76–80, 2017.

[8] V. Gaudet, “A survey and tutorial on contemporary aspects of multiple-valued

logic and its application to microelectronic circuits,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 6, no. 1, pp. 5–12, March 2016.

[9] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor

based on a single carbon nanotube,” Nature, vol. 393, no. 6680, pp. 49–52, May

1998.

[10] S. Karmakar, J. A. Chandy, and F. C. Jain, “Design of ternary logic

combinational circuits based on quantum dot gate fets,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 21, no. 5, pp. 793–806, May 2013. [Online]. Available:

http://dx.doi.org/10.1109/TVLSI.2012.2198248

[11] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube

field-effect transistors,” Nature, vol. vol. 424, pp. 654–657, 2003.

[12] J. Deng, N. Patil, K. Ryu, A. Badmaev, C. Zhou, S. Mitra, and H. S. P. Wong,

“Carbon nanotube transistor circuits: Circuit-level performance benchmarking

and design options for living with imperfections,” in 2007 IEEE International

Solid-State Circuits Conference. Digest of Technical Papers, Feb 2007, pp. 70–

588.

[13] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance

silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152,

2003. [Online]. Available: http://dx.doi.org/10.1021/nl025875l

[14] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-

temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect

transistors,” Phys. Rev. Lett., vol. 100, p. 206803, May 2008. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.100.206803

http://dx.doi.org/10.1109/TVLSI.2012.2198248
http://dx.doi.org/10.1021/nl025875l
https://link.aps.org/doi/10.1103/PhysRevLett.100.206803

Bibliography 148

[15] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect

device,” IEEE Electron Device Letters, vol. 28, no. 4, pp. 282–284, April 2007.

[16] T. Ashley, A. R. Barnes, L. Buckle, S. Datta, A. B. Dean, M. T. Emery, M. Fearn,

D. G. Hayes, K. P. Hilton, R. Jefferies, T. Martin, K. J. Nash, T. J. Phillips, W. A.

Tang, P. J. Wilding, and R. Chau, “Novel insb-based quantum well transistors for

ultra-high speed, low power logic applications,” in Proceedings. 7th International

Conference on Solid-State and Integrated Circuits Technology, 2004., vol. 3, Oct

2004, pp. 2253–2256 vol.3.

[17] C. I. Kuo, H. T. Hsu, C. Y. Wu, E. Y. Chang, Y. Miyamoto, Y. L. Chen, and

D. Biswas, “A 40-nm-gate inas/in0.7ga0.3as composite-channel hemt with 2200

ms/mm and 500-ghz ft,” in 2009 IEEE International Conference on Indium Phos-

phide Related Materials, May 2009, pp. 128–131.

[18] S. L. Hurst, “Multiple-valued logic: its status and its future,” IEEE Transactions

on Computers, vol. C-33, no. 12, pp. 1160–1179, Dec 1984.

[19] P. C. Balla and A. Antoniou, “Low Power Dissipation MOS Ternary Logic Family,”

IEEE Journal of Solid-State Circuits, vol. 19, no. 5, pp. 739–749, Oct 1984.

[20] A. Heung and H. T. Mouftah, “Depletion/enhancement CMOS for a Lower Power

Family of Three-valued Logic Circuits,” IEEE Journal of Solid-State Circuits,

vol. 20, no. 2, pp. 609–616, Apr 1985.

[21] D. A. Rich, “A Survey of Multivalued Memories,” IEEE Trans. Comput., vol. 35,

no. 2, pp. 99–106, Feb. 1986. [Online]. Available: http://dx.doi.org/10.1109/TC.

1986.1676727

[22] Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Real-

ization of Quaternary Logic Circuits by n-channel MOS Devices,” IEEE Journal

of Solid-State Circuits, vol. 21, no. 1, pp. 162–168, Feb 1986.

[23] I. Jordan and H. Mouftah, “Design of ternary cos/mos memory and sequential

circuits,” IEEE Transactions on Computers, vol. 26, pp. 281–288, 1977.

http://dx.doi.org/10.1109/TC.1986.1676727
http://dx.doi.org/10.1109/TC.1986.1676727

Bibliography 149

[24] D. Mateo and A. Rubio, “Design and implementation of a 5 times;5 trits multiplier

in a quasi-adiabatic ternary cmos logic,” IEEE Journal of Solid-State Circuits,

vol. 33, no. 7, pp. 1111–1116, Jul 1998.

[25] I. Halpern and M. Yoeli, “Ternary arithmetic unit,” Electrical Engineers, Proceed-

ings of the Institution of, vol. 115, no. 10, pp. 1385–1388, October 1968.

[26] S. Kawahito, M. Kameyama, T. Higuchi, and H. Yamada, “A 32*32-bit multiplier

using multiple-valued mos current-mode circuits,” IEEE Journal of Solid-State

Circuits, vol. 23, no. 1, pp. 124–132, Feb 1988.

[27] S. Y. H. Su and P. T. Cheung, “Computer minimization of multivalued switching

functions,” IEEE Transactions on Computers, vol. C-21, no. 9, pp. 995–1003, Sept

1972.

[28] H. M. Wang, C. L. Lee, and J. E. Chen, “Algebraic division for multilevel logic syn-

thesis of multi-valued logic circuits,” in Multiple-Valued Logic, 1994. Proceedings.,

Twenty-Fourth International Symposium on, May 1994, pp. 44–51.

[29] M. Hawash, M. Lukac, M. Kameyama, and M. Perkowski, “Multiple-valued re-

versible benchmarks and extensible quantum specification (xqs) format,” in 2013

IEEE 43rd International Symposium on Multiple-Valued Logic, May 2013, pp. 41–

46.

[30] K. W. Current, “Current-mode cmos multiple-valued logic circuits,” IEEE Journal

of Solid-State Circuits, vol. 29, no. 2, pp. 95–107, Feb 1994.

[31] M. Klein, J. A. Mol, J. Verduijn, G. P. Lansbergen, S. Rogge, R. D. Levine,

and F. Remacle, “Ternary logic implemented on a single dopant atom field effect

silicon transistor,” Applied Physics Letters, vol. 96, no. 4, p. 043107, 2010.

[Online]. Available: http://dx.doi.org/10.1063/1.3297906

[32] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nanotran-

sistors,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1853–1864,

Sept 2003.

http://dx.doi.org/10.1063/1.3297906

Bibliography 150

[33] Y.-M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, “High-performance

carbon nanotube field-effect transistor with tunable polarities,” IEEE Trans.

Nanotechnol., vol. 4, no. 5, pp. 481–489, Sep. 2005. [Online]. Available:

http://dx.doi.org/10.1109/TNANO.2005.851427

[34] A. Akturk, G. Pennington, N. Goldsman, and A. Wickenden, “Electron transport

and velocity oscillations in a carbon nanotube,” IEEE Transactions on Nanotech-

nology, vol. 6, no. 4, pp. 469–474, July 2007.

[35] H. Hashempour and F. Lombardi, “Device Model for Ballistic CNFETs Using the

First Conducting Band,” IEEE Des. Test, vol. 25, no. 2, pp. 178–186, Mar. 2008.

[Online]. Available: http://dx.doi.org/10.1109/MDT.2008.34

[36] S. Lin, Y. B. Kim, and F. Lombardi, “CNTFET-Based Design of Ternary Logic

Gates and Arithmetic Circuits,” IEEE Transactions on Nanotechnology, vol. 10,

no. 2, pp. 217–225, March 2011.

[37] ——, “A Novel CNTFET-based Ternary Logic Gate Design,” in 2009 52nd IEEE

International Midwest Symposium on Circuits and Systems, Aug 2009, pp. 435–

438.

[38] P. Keshavarzian and R. Sarikhani, “A Novel CNTFET-based Ternary Full Adder,”

Circuits, Systems, and Signal Processing, vol. 33, no. 3, pp. 665–679, 2014.

[39] R. F. Mirzaee, K. Navi, and N. Bagherzadeh, “High-Efficient Circuits for

Ternary Addition,” VLSI Design, vol. 2014, Article ID 534587, 15 pages, 2014.

doi:10.1155/2014/534587, vol. 2014, 2014.

[40] S. L. Murotiya and A. Gupta, “Hardware-Efficient Low-power 2-bit Ternary

ALU Design in CNTFET Technology,” International Journal of Electronics, vol.

103, no. 5, pp. 913–927, 2016. [Online]. Available: http://dx.doi.org/10.1080/

00207217.2015.1082199

http://dx.doi.org/10.1109/TNANO.2005.851427
http://dx.doi.org/10.1109/MDT.2008.34
http://dx.doi.org/10.1080/00207217.2015.1082199
http://dx.doi.org/10.1080/00207217.2015.1082199

Bibliography 151

[41] B. Srinivasu and K. Sridharan, “A synthesis methodology for ternary logic circuits

in emerging device technologies,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 64, no. 8, pp. 2146–2159, Aug 2017.

[42] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon

Nanotubes. Imperial College Press, London, 1998.

[43] J. Appenzeller, “Carbon Nanotubes for High-Performance Electronics - Progress

and Prospect,” Proceedings of the IEEE, vol. 96, no. 2, pp. 201–211, Feb 2008.

[44] J. Deng and H. S. P. Wong, “A Compact SPICE Model for Carbon-Nanotube

Field-Effect Transistors Including Nonidealities and Its Application-Part I: Model

of the Intrinsic Channel Region,” IEEE Transactions on Electron Devices, vol. 54,

no. 12, pp. 3186–3194, Dec 2007.

[45] ——, “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors

Including Nonidealities and Its Application-Part II: Full Device Model and Circuit

Performance Benchmarking,” IEEE Transactions on Electron Devices, vol. 54,

no. 12, pp. 3195–3205, Dec 2007.

[46] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, Journal of Physical

Chemistry B Materials, vol. 105, no. 46, pp. 11 424–11 431, 11 2001.

[47] A. Lin, N. Patil, K. Ryu, A. Badmaev, L. G. D. Arco, C. Zhou, S. Mitra, and

H. S. P. Wong, “Threshold voltage and on-off ratio tuning for multiple-tube carbon

nanotube fets,” IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 4–9, Jan

2009.

[48] Y. Ohno, S. Kishimoto, T. Mizutani, T. Okazaki, and H. Shinohara,

“Chirality Assignment of Individual Single-walled Carbon Nanotubes in Carbon

Nanotube Field-effect Transistors by Micro-photocurrent Spectroscopy,” Applied

Physics Letters, vol. 84, no. 8, pp. 1368–1370, 2004. [Online]. Available:

http://scitation.aip.org/content/aip/journal/apl/84/8/10.1063/1.1650554

http://scitation.aip.org/content/aip/journal/apl/84/8/10.1063/1.1650554

Bibliography 152

[49] B. Wang, C. H. P. Poa, L. Wei, L.-J. Li, Y. Yang, and Y. Chen, “(n,m) Selectivity

of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Co-Mo

Catalysts,” Journal of the American Chemical Society, vol. 129, no. 29, pp. 9014–

9019, 2007.

[50] G. Gelao, R. Marani, R. Diana, and A. G. Perri, “A semiempirical spice model

for n-type conventional cntfets,” IEEE Transactions on Nanotechnology, vol. 10,

no. 3, pp. 506–512, May 2011.

[51] S. Fregonese, H. C. d’Honincthun, J. Goguet, C. Maneux, T. Zimmer, J. P.

Bourgoin, P. Dollfus, and S. Galdin-Retailleau, “Computationally efficient physics-

based compact cntfet model for circuit design,” IEEE Transactions on Electron

Devices, vol. 55, no. 6, pp. 1317–1327, June 2008.

[52] R. Marani, G. Gelao, and A. G. Perri, “Modelling of carbon nanotube

field effect transistors oriented to spice software for a/d circuit design,”

Microelectronics Journal, vol. 44, no. 1, pp. 33 – 38, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0026269211001613

[53] S. University, Stanford University CNFET model Website. Stanford University,

Stanford, CA [Online], 2008, http://nano.stanford.edu/model.php?id=23.

[54] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H. S. P. Wong, and

S. Mitra, “Carbon Nanotube Computer,” Nature, vol. 501, no. 7468, pp. 526–530,

Sep 2013, letter. [Online]. Available: http://dx.doi.org/10.1038/nature12502

[55] A. Raychowdhury and K. Roy, “Carbon-Nanotube-based Voltage-mode Multiple-

valued logic design,” IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp.

168–179, March 2005.

[56] J. Liang, L. Chen, J. Han, and F. Lombardi, “Design and Evaluation of Mul-

tiple Valued Logic Gates using pseudo N-Type Carbon Nanotube FETs,” IEEE

Transactions on Nanotechnology, vol. 13, no. 4, pp. 695–708, 2014.

http://www.sciencedirect.com/science/article/pii/S0026269211001613
http://dx.doi.org/10.1038/nature12502

Bibliography 153

[57] S. A. Ebrahimi, P. Keshavarzian, S. Sorouri, and M. Shahsavari, “Low Power

CNTFET- Based Ternary Full Adder Cell for Nanoelectronics,” International

Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 2, pp. 291–295,

2012.

[58] K. Sridharan, S. Gurindagunta, and V. Pudi, “Efficient multiternary digit adder

design in CNTFET technology,” IEEE Transactions on Nanotechnology, vol. 12,

no. 3, pp. 283–287, 2013.

[59] S. L. Murotiya and A. Gupta, “Design of High Speed Ternary Full Adder

and Three-Input XOR Circuits Using CNTFETs,” 2015 28th International

Conference on VLSI Design, pp. 292–297, 2015. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7031749

[60] B. Srinivasu and K. Sridharan, “Carbon nanotube FET-based low-delay and

low-power multi-digit adder designs,” IET Circuits, Devices & Systems, pp. 1–13,

2016. [Online]. Available: http://digital-library.theiet.org/content/journals/10.

1049/iet-cds.2016.0013

[61] ——, “Low-complexity multiternary digit multiplier design in cntfet technology,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 8, pp.

753–757, Aug 2016.

[62] S. L. Hurst, “An extension of binary minimization techniques to ternary equa-

tions,” Computers Journal, vol. 11, no. 3, pp. 277–286, 1968.

[63] M. H. Moaiyeri, A. Doostaregan, and K. Navi, “Design of Energy-Efficient and

Robust Ternary Circuits for Nanotechnology,” IET Circuits, Devices Systems,

vol. 5, no. 4, pp. 285–296, July 2011.

[64] T. Sasao, “Multiple-valued decomposition of generalized boolean functions and the

complexity of programmable logic arrays,” IEEE Transactions on Computers, vol.

C-30, no. 9, pp. 635–643, Sept 1981.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7031749
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7031749
http://digital-library.theiet.org/content/journals/10.1049/iet-cds.2016.0013
http://digital-library.theiet.org/content/journals/10.1049/iet-cds.2016.0013

Bibliography 154

[65] R. F. Mirzaee, T. Nikoubin, K. Navi, and O. Hashemipour, “Differential cascode

voltage switch (dcvs) strategies by cntfet technology for standard ternary logic,”

Microelectronics Journal, vol. 44, no. 12, pp. 1238 – 1250, 2013. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0026269213001808

[66] F. Sharifi, M. H. Moaiyeri, K. Navi, and N. Bagherzadeh, “Robust and

energy-efficient carbon nanotube fet-based mvl gates: A novel design approach,”

Microelectronics Journal, vol. 46, no. 12, Part A, pp. 1333 – 1342, 2015. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0026269215002323

[67] A. Weinberger and J. L. Smith, “A logic for high-speed addition,” National Bureau

of Standards Circulation, vol. Vol. 591, pp. 3–12, 1958.

[68] D. Harris, “A taxonomy of parallel prefix networks,” in The Thrity-Seventh Asilo-

mar Conference on Signals, Systems Computers, 2003, vol. 2, Nov 2003, pp. 2213–

2217 Vol.2.

[69] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of

a general class of recurrence equations,” IEEE Transactions on Computers, vol.

C-22, no. 8, pp. 786–793, Aug 1973.

[70] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,

vol. 27, no. 4, pp. 831–838, Oct. 1980. [Online]. Available: http:

//doi.acm.org/10.1145/322217.322232

[71] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans-

actions on Computers, vol. C-31, no. 3, pp. 260–264, March 1982.

[72] T. Han and D. A. Carlson, “Fast area-efficient vlsi adders,” in 1987 IEEE 8th

Symposium on Computer Arithmetic (ARITH), May 1987, pp. 49–56.

[73] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on Computers, vol.

C-27, no. 6, pp. 509–516, June 1978.

http://www.sciencedirect.com/science/article/pii/S0026269213001808
http://www.sciencedirect.com/science/article/pii/S0026269215002323
http://doi.acm.org/10.1145/322217.322232
http://doi.acm.org/10.1145/322217.322232

Bibliography 155

[74] C. Vudadha, P. P. Sai, V. Sreehari, and M. B. Srinivas, “CNFET Based

Ternary Magnitude Comparator,” in Communications and Information Technolo-

gies (ISCIT), 2012 International Symposium on, Oct 2012, pp. 942–946.

Related Journal Publications

1. Chetan Vudadha, Srinivasan Rajagopalan, Aditya Dusi, Sai Phaneendra P

and M B Srinivas, “Encoder-Based Optimization of CNFET-Based Ternary Logic

Circuits,” in IEEE Transactions on Nanotechnology, vol. 17, no. 2, pp. 299-310,

March 2018. DOI: 10.1109/TNANO.2018.2800015

2. Chetan Vudadha, Sai Phaneendra Parlapalli, M.B. Srinivas, “Energy efficient

design of CNFET-based multi- digit ternary adders”, Microelectronics Journal

(Elsevier), Volume 75, pp. 75-86, May 2018. DOI:10.1016/j.mejo.2018.02.004

3. Chetan Vudadha and M.B. Srinivas “Design of High Speed and Power Efficient

Ternary Prefix Adders using CNFETs,” in IEEE Transactions on Nanotechnol-

ogy, vol. 17, no. 4, pp. 772-782, July 2018. DOI: 10.1109/TNANO.2018.2832649

4. Chetan Vudadha, Ajay Surya K, Saurabh Agrawal and M.B. Srinivas “Syn-

thesis of Ternary Logic Circuits using 2:1 Multiplexers,” (accepted for publica-

tion in IEEE Transactions on Circuits and Systems I: Regular Papers) DOI:

10.1109/TCSI.2018.2838258

156

Related Conference Publications

1. C. K. Vudadha and M. Srinivas, “Design Methodologies for Ternary Logic Cir-

cuits,” 2018 IEEE 48th International Symposium on Multiple-Valued Logic (IS-

MVL), Linz, 2018, pp. 192-197.

2. C. Vudadha, P. S. Phaneendra and M. B. Srinivas, “An Efficient Design Method-

ology for CNFET Based Ternary Logic Circuits,” 2016 IEEE International Sym-

posium on Nanoelectronic and Information Systems (iNIS), Gwalior, 2016, vol.,

no., pp. 278-283, 19 -21 Dec 2016.

3. Vudadha, C.; Katragadda, S.; Phaneendra, P.S., “2:1 Multiplexer based design for

ternary logic circuits,” IEEE Asia Pacific Conference on Postgraduate Research

in Microelectronics and Electronics (PrimeAsia), 2013, vol., no., pp.46-51, 19-21

Dec. 2013. (won “Bronze Leaf Certificate”)

4. Vudadha, Chetan; Sai, Phaneendra P; Sreehari, V; Srinivas, M B, “CNFET based

ternary magnitude comparator,” International Symposium on Communications

and Information Technologies (ISCIT),2012, vol., no., pp.942-946, 2-5 Oct. 2012.

5. Vudadha, Chetan; Sreehari, V.; Srinivas, M. B.; , “Multiplexer Based Design for

Ternary Logic Circuits,” ,2012 8th Conference on Ph.D. Research in Microelec-

tronics and Electronics (PRIME), vol., no., pp.1-4, 12-15 June 2012.

6. Vudadha, C.; Phaneendra P, S.; Makkena, G.; Sreehari, V.; Muthukrishnan,

N.M.; Srinivas, M.B.; , “Design of CNFET based ternary comparator using group-

ing logic,” 2012 IEEE Faible Tension Faible Consommation (FTFC), vol., no.,

pp.1-4, 6-8 June 2012.

157

Other Publications

1. Parlapalli, Sai Phaneendra and Vudadha, Chetan and Srinivas, M. B., “An ESOP

Based Cube Decomposition Technique for Reversible Circuits”, Springer Inter-

national Publishing (2017), 127--140.

2. Parlapalli, Sai Phaneendra and Vudadha, Chetan and Srinivas, M. B., “Optimiz-

ing the Reversible Circuits Using Complementary Control Line Transformation”,

Springer International Publishing (2017), 111--126.

3. Pal, Subhankar; Vudadha, Chetan; Phaneendra, P.Sai; Veeramachaneni, Sree-

hari; M.B. Srinivas, “A New Design of an N-Bit Reversible Arithmetic Logic

Unit,” in Fifth International Symposium on Electronic System Design (ISED),

2014 , vol., no., pp.224-225, 15-17 Dec. 2014.

4. Phaneendra, P.S.; Vudadha, C.; Sreehari, V.; Srinivas, M.B., “An Optimized

Design of Reversible Quantum Comparator,” 27th International Conference on

VLSI Design and 2014 13th International Conference on Embedded Systems, 2014

, vol., no., pp.557,562, 5-9 Jan. 2014.

5. Vudadha, Chetan; Phaneendra, P. Sai; Sreehari, V.; Ahmed, Syed Ershad; Muthukr-

ishnan, N. Moorthy; Srinivas, M.B.; , “Design of Prefix-Based Optimal Reversible

Comparator,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI),2012,

vol., no., pp.201-206, 19-21 Aug. 2012.

6. Vudadha, Chetan; Phaneendra, P. Sai; Sreehari, V.; Ahmed, Syed Ershad; Muthukr-

ishnan, N. Moorthy; Srinivas, M.B.; , “Design and Analysis of Reversible Ripple,

158

Bibliography 159

Prefix and Prefix-Ripple Hybrid Adders,” IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI),2012, vol., no., pp.225-230, 19-21 Aug. 2012.

7. Vudadha, C.; Makkena, G.; Nayudu, M.V.S.; Phaneendra, P.S.; Ahmed, S.E.;

Veeramachaneni, S.; Muthukrishnan, N.M.; Srinivas, M.B.; , “Low-Power Self

Reconfigurable Multiplexer Based Decoder for Adaptive Resolution Flash ADCs,”

2012 25th International Conference on VLSI Design (VLSID), vol., no., pp.280-

285, 7-11 Jan. 2012.

8. Kumar, V. Chetan; Phaneendra, P. Sai; Ahmed, Syed Ershad; Sreehari, V.;

Muthukrishnan, N. Moorthy; Srinivas, M.B.;, “A Reconfigurable INC/DEC/2’s

Complement/Priority Encoder Circuit with Improved Decision Block,” Interna-

tional Symposium on Electronic System Design (ISED), 2011, vol., no., pp.100-

105, 19-21 Dec. 2011.

9. Chetan Kumar, V; Sai Phaneendra, P; Ershad Ahmed, S; Sreehari, V; Moorthy

Muthukrishnan, N; Srinivas, M.B.; , “Higher radix sparse-2 adders with improved

grouping technique,” TENCON 2011 - 2011 IEEE Region 10 Conference , vol.,

no., pp.676-679, 21-24 Nov. 2011.

10. Phaneendra, P.S.; Vudadha, C.; Ahmed, S.E.; Sreehari, V.; Muthukrishnan,

N.M.; Srinivas, M.B.; “Increment/decrement/2’s complement/priority encoder

circuit for varying operand lengths,” 11th International Symposium on Commu-

nications and Information Technologies (ISCIT), 2011 , vol., no., pp.472-477,

12-14 Oct. 2011.

11. Vudadha, C.; Veeramachaneni, S.; Srinivas, M.B.; “Non-linear partitioning for

decimal logarithm approximation,” Asia Pacific Conference on Postgraduate Re-

search in Microelectronics and Electronics (PrimeAsia), 2011, vol., no., pp.102-

105, 6-7 Oct. 2011.

12. Chetan Kumar, V.; Sai Phaneendra, P.; Ershad Ahmed, S.; Veeramachaneni, S.;

Moorthy Muthukrishnan, N.; Srinivas, M.B.; , “A Prefix Based Reconfigurable

Bibliography 160

Adder,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2011,

vol., no., pp.349-350, 4-6 July 2011.

13. Chetan Kumar, V.; Sai Phaneendra, P.; Ahmed, S.E.; Veeramachaneni, S.; Moor-

thy Muthukrishnan, N.; Srinivas, M.B.; , “A Unified Architecture for BCD and

Binary Adder/Subtractor,” 14th Euromicro Conference on Digital System Design

(DSD), 2011, vol., no., pp.426-429, Aug. 31 2011-Sept. 2 2011.

Biographies

Candidate Biography

Chetan Kumar V received his M. E. (Microelectronics) degree in 2011 from Birla

Institute of Technology and Science (BITS)-Pilani, Hyderabad Campus, India, where

he is currently working as a faculty in the Depertment of Electrical and Electronics

Engineering. His current research interests include CNFET based Multi-Valued Logic

Design, Computer Arithmetic and reversible logic circuits.

Supervisor Biography

Prof. M. B. Srinivas received his PhD from the Indian Institute of Science, Bangalore,

India. He is currently a Professor and Dean, School of Engineering and Technology at

BML Munjal University, Gurgaon, India. His research interests include nano-scale cir-

cuit design, VLSI arithmetic, data converters and ICT for healthcare. He has served as

Chairman of IEEE Hyderabad Section during 2007 and 2008 and founding Chairman

CAS/EDS Joint Chapter, Hyderabad Section, during 2012 and 2013. He is a recip-

ient of Microsoft Research ’Digital Inclusion’ award in 2006 and Stanford Medicine

’MedTech Innovation’ award in 2017.

161

