
Group-wise Classification Approach to Improve Malware

Detection Accuracy

THESIS

submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Ashu Sharma

under the supervision of

Dr. Sanjay K. Sahay

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (Rajsthan) INDIA

2018

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Group-wise Classifica-

tion Approach to Improve Malware Detection Accuracy submitted by

Ashu Sharma ID No. 2012PHXF0011G for award of Ph.D. of the Institute,

embodies original work done by her under my supervision.

Signature of the Supervisor

Name : Dr. SANJAY KUMAR SAHAY

Designation : Assistant Professor

Date: 6/07/2018

ACKNOWLEDGEMENT

I would like to acknowledge the love and mercy of the Divine Providence

in the entire work who helped to overcome all the obstacles by guiding and providing

me the needed help through various people, and whose faithfulness is incomprehensible.

I would like to thank my supervisor Dr. Sanjay K. Sahay who encour-

aged and directed me towards the research. He supported me throughout my thesis

with his patience and knowledge whilst allowing me to work in my own way. I could

not have imagined having such a better and friendly supervisor for my Ph.D. work.

I am thankful to BITS, Pilani, K.K. Birla Goa Campus for the Ph.D. schol-

arship No. Ph603226/July 2012/01. I also take this opportunity to thank Prof. G.

Raghurama, Director, Birla Institute of Technology and Science Pilani, K K Birla Goa

Campus, Prof. Souvik Bhattacharyya, Vice Chancellor, BITS, Pilani, Dr. Kumar Man-

galam Birla, Chancellor, BITS, Pilani, for giving me the opportunity to pursue research

for the Ph.D. degree. My heartfelt gratitude to former directors Prof. Sasikumar Pun-

nekkat, and late Prof. Sanjeev K. Aggarwal, BITS, Pilani K K Birla Goa Campus for

their motivation and encouragement.

I wish to thank the Department Research Committee members and the

Convenor Dr. A. Baskar. I also express my sincere thanks to Prof. S. K. Verma,

Dean, Academic Research (Ph.D. Programme), BITS, Pilani, Dr. Prasanta Kumar

Das, Associate Dean, Academic Research, BITS, Pilani K K Birla Goa Campus for

providing the necessary facilities.

My sincere thanks also goes to my Doctoral Advisory Committee members

Dr. Bharat Deshpande, Head of the Department, Computer Science and Informa-

tion Systems and Neena Goveas, Associate Professor, Computer Science and Infor-

mation Systems, BITS Pilani K K Birla Goa Campus for preliminary assessment of the

thesis and helpful suggestions during the seminars. I also thank the faculty members,

research scholars and the staffs of our department for their kind cooperation.

I heartily thank Ex-Director Prof. Ajit Kembhavi and Dean Visitor Prof.

Kandaswamy Subramanian, Inter-University Center for Astronomy and Astrophysics

(IUCAA), Pune for providing hospitality and computation facility at the initial stage

of my research. Also, I would like to thank Malicia project for the Windows malware

dataset and Technische Universitat Braunschweig for providing the Drebin (Android

malware) dataset for the research work.

iii

I heartily thank my friends for their prayers and constant encouragement

to finish this work successfully. I am also thankful to my fellow colleagues whose

challenges and productive criticism, especially to the progress of my research, have

provided improvement in the presentation of the work.

Finally, this thesis is heartily dedicated to my father Shiv Autar, mother

Malti Sharma, brother Rishi Sharma and sister Madhu Sharma who all the time stood

with me.

ASHU SHARMA

iv

ABSTRACT

In today’s information era, most of the computational devices are connected

to the Internet, as a consequence, these devices are very much vulnerable to the cy-

ber threat from the advanced malware. It can penetrate networks, steal confidential

information from desktops and smart devices, bring down servers and can cripple in-

frastructures etc. To combat the threat/attacks from the malware, anti-malware have

been developed. The existing anti-malware are mostly based on the assumption that

the malware structure does not change appreciably. But the recent advancement in

second generation malware which can create millions of its variants have posed a chal-

lenge to anti-malware developers, and it is an indisputable fact that the traditional

approach to combat the threats/attack from the second generation malware with a

technology-centric is ineffective to detect today’s highly sophisticated customized mal-

ware. Therefore, this thesis primarily focuses to improve the detection accuracy of

unknown malware by group-wise classifying the Windows Desktops executables and

Android apps using machine learning techniques. Accordingly, we, discusses the types

of malware and its detection techniques, and the prior works/efforts done by the re-

searchers to detect Windows Desktops and Android based devices malware.

The metamorphic malware variants lead to a huge signature database for

the detection by traditional signature based techniques. Therefore, we investigate the

variation in the size of malware generated by metamorphic malware generator kits viz.

G2, PS-MPC and NGVCK and observed that the variation in the size of malware

generated from the same kit is within 5 Kbytes. Hence, accordingly we partitioned

the data set in the range of 5 KB size to detect the unknown malware by Naive Bayes

classifier, and the obtained results are compared with the regular method. We find that

by group-wise partitioning the data set in the range of 5 KB size, the detection accuracy

is ∼8.7% more accurate than the regular method (without grouping the executables).

To find the best classifier for the detection of unknown malware, with Mali-

cia data set we studied the performance of the popular thirteen classifiers using N-fold

v

cross validation available in machine learning tool WEKA. Among these thirteen classi-

fiers, we studied in-depth top five classifiers (Random forest, Logistic model tree, Naive

Bayesian tree, J48 and Functional Tree) and obtained more than 96.28% accuracy

for the detection of unknown malware, which is better than the detection accuracy

(95.9%) reported by Santos et al. (2013). In this top five classifiers, our approach

obtained 97.95% detection accuracy by the Random forest. As we observed that by

grouping the data, detection accuracy increases, therefore further we grouped the exe-

cutables on the basis of malware sizes by using optimal k-Means clustering algorithm,

and classified the data by the top five classifiers.

Android based smart devices are growing exponentially and are connected

through the Internet accessing billion of online websites. The popularity of these de-

vices encourages malware developer to penetrate the market with malicious apps to

annoy and disrupt the victim. Although, for the detection of malicious apps different

approaches are discussed. However, proposed approaches are not sufficient to detect

the advanced malware to limit/prevent the damages. In this, very few approaches are

based on the opcode occurrence to classify the malicious apps. Therefore, with the

benchmark Drebin dataset, first we investigate the five classifiers using opcodes occur-

rence as the prominent features for the detection of malicious apps and found that FT

detection accuracy (79.27%) is best among the investigated classifiers and the overall

accuracy is majorly affected by the false positives. From the previous investigation we

concluded that group-wise analysis results in high malware detection accuracy. There-

fore, further we experimentally demonstrated how to improve the detection accuracy

by group-wise analyzing the Android apps. The analysis shows that by group-wise

classifying the data based on permissions, improves the overall average accuracy, and

can be achieved up to 97.15% . The obtained results outperform the accuracy obtained

without grouping data, Arp, et al. (94%, 2014), Annamalai et al. (84.29%, 2016), Bah-

man Rashidi et al. (82%, 2017)) and Ali Feizollah, et al. (95.5%, 2017). The analysis

also shows that among the groups, MICROPHONE group detection accuracy is least

while CALENDAR group apps are detected with the highest accuracy.

vi

CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . x

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 5

1.3 Research Gap . 7

1.4 Objectives and Organisation of the Thesis 9

1.5 Contribution . 11

2 Types of Malware and Detection Techniques 12

2.1 Introduction . 12

2.2 Types of Malware . 12

2.3 Detection Techniques . 17

2.3.1 Signature Based Detection . 18

vii

2.3.2 Heuristics Based Detection . 18

2.3.3 Malware Normalization . 19

2.3.4 Machine Learning Techniques . 20

2.4 Summary . 20

3 Literature Survey 21

3.1 Introduction . 21

3.2 Survey on the Detection of Windows Desktops Malware 21

3.3 Survey on the Detection of Android Malicious Apps 27

3.4 Summary . 32

4 Group-wise Classification for the Detection of Windows Desktops

Malware 33

4.1 Introduction . 33

4.2 Data Preprocessing . 34

4.3 Feature Selection . 35

4.4 Detection of Unknown Malware . 46

4.4.1 Naive Bayes classifier . 47

4.4.2 Regular Method . 47

4.4.3 Group-wise Partitioning the Datasets 49

4.5 Summary . 51

5 Classifiers Selection and K-mean Clustering to Improve the Detection

viii

Accuracy 52

5.1 Introduction . 52

5.2 Classifiers selection . 53

5.3 Result Analysis . 55

5.4 Improving the Detection Accuracy by Group-wise Classification using

Optimal K-mean Clustering Algorithm 58

5.5 Summary . 64

6 Group-wise Classification for the Detection of Android Malicious Apps 65

6.1 Introduction . 65

6.2 Data Preprocessing and Feature Selection 66

6.3 Classification Without Grouping the Apps 69

6.4 Grouping of Android Apps . 73

6.5 Group-wise Classification of Android Malicious Apps 75

6.6 Summary . 93

7 Conclusions and Future Directions 94

A Obfuscation Techniques 98

A.1 Register Renaming . 98

A.2 Subroutine Permutation . 99

A.3 Instruction Level Permutation . 99

A.4 Insertion of Jump Instructions . 100

ix

A.5 Subroutine Inlining and Outlining . 101

A.6 Dead Code Insertion . 101

A.7 Equivalent Code Substitution . 102

B Windows Desktops Opcode List 103

C Android Opcode List 115

D Brief Description of the Major Classifiers 120

D.1 J48 . 120

D.2 Random Forest . 121

D.3 Naive Bayes Trees . 121

D.4 Logistic Model Trees . 122

D.5 Functional Tree . 122

LIST OF PUBLICATIONS . 135

BRIEF BIOGRAPHY OF THE CANDIDATE 136

BRIEF BIOGRAPHY OF THE SUPERVISOR 137

x

LIST OF TABLES

5.1 Performance of the top five classifiers. 55

5.2 Number of malware and benign executables for training and testing the

classifier. 58

6.1 Dangerous permissions groups of the Android apps 74

6.2 Number of benign and Android malicious apps used for training and

testing the classifiers. 85

6.3 Average accuracy obtained by the classifiers. 90

6.4 Group-wise maximum accuracy, TP and TN of the classifiers. 90

xi

LIST OF FIGURES

1.1 Market share of desktops Operating System, 2017. 4

1.2 Market share of Android based mobile/smart devices, 2017. 5

1.3 Quater-wise increase in total number of malware from 2015. 6

2.1 First generation malware. 13

2.2 Encrypted malware. 14

2.3 Oligomorphic malware. 15

2.4 Polymorphic malware. 16

2.5 Metamorphic malware. 17

2.6 Traditional detection system. 17

2.7 Malware normalization. 19

4.1 Number of malware with respect to the file size. 34

4.2 Fluctuations in the size of malware generated by NGVCK kit. 35

4.3 Fluctuations in the size of malware generated by G2 kit. 35

4.4 Fluctuations in the size of malware generated by PS-MPC kit. 36

xii

4.5 Normalized opcode occurrence of all the collected malware and benign program

keeping the lower threshold 0.02. 37

4.6 Normalized opcode occurrence of the malware and benign program of size 10-15

KB keeping the lower threshold 0.02. 38

4.7 Normalized opcode occurrence of the malware and benign program of size 140-

145 KB keeping the lower threshold 0.02. 39

4.8 Normalized opcode occurrence of the malware and benign program of size 240-

245 KB keeping the lower threshold 0.02. 40

4.9 Normalized opcode occurrence of the malware and benign program of size 415-

420 KB keeping the lower threshold 0.02. 41

4.10 Opcodes which found more in malware without grouping the dataset. 42

4.11 Opcodes which found more in benign programs without grouping the dataset. . 43

4.12 Difference in the occurrence of respective opcodes between benign and malware

program of size 0-5 KB and 15-20 KB keeping threshold 0.02. 44

4.13 Difference in the occurrence of respective opcodes between benign and malware

program of size 30-35 KB and 55-60 KB keeping threshold 0.02. 45

4.14 Flow chart for the detection of unknown malware without partitioning the

datasets. 48

4.15 Flow chart for the detection of unknown malware by group-wise partitioning

the executables. 49

4.16 Detection accuracy obtained by both the methods. 50

5.1 Flow chart for the detection of unknown malware. 53

5.2 Accuracy of the thirteen classifiers with N-fold cross validation. 54

5.3 FP and FN of the top five classifiers. 56

xiii

5.4 TP and TN of the top five classifiers. 56

5.5 Group-wise classification accuracy of the top five classifiers. 57

5.6 Comparison of the accuracy obtained by our approach and others. 57

5.7 Flow chart for the group-wise classification using optimal K-mean clustering

algorithm. 59

5.8 Best accuracy of the selected five classifiers. 59

5.9 Detection accuracy obtained by the classifiers from group-1 data. 60

5.10 Detection accuracy obtained by the classifiers from group-2 data. 60

5.11 Detection accuracy obtained by the classifiers from group-3 data. 61

5.12 Detection accuracy obtained by the classifiers from group-4 data. 61

5.13 Detection accuracy obtained by the classifiers from group-5 data. 62

5.14 Detection accuracy obtained by the classifiers from group-6 data. 62

5.15 Detection accuracy obtained by the classifiers from group-7 data. 63

5.16 Detection accuracy obtained by the classifiers from group-8 data. 63

5.17 Detection accuracy obtained by the classifiers from group-9 data. 64

6.1 Top 50 opcodes occurrence without forming the groups. 67

6.2 Flow chart for the detection of Android malicious apps without grouping the

data. 69

6.3 Detection accuracy of the selected five classifiers with number of prominent

features. 70

6.4 Best accuracy of the selected five classifiers. 70

xiv

6.5 True positive rate of the selected five classifiers with number of prominent features. 71

6.6 True negative rate of the selected five classifiers with number of prominent

features. 71

6.7 False negative rate of the selected five classifiers with number of prominent

features. 72

6.8 False positive rate of the selected five classifiers with number of prominent

features. 72

6.9 Top 50 opcodes occurrence difference between benign and malicious apps in the

CALENDAR group. 76

6.10 Top 50 opcodes occurrence difference between benign and malicious apps in the

CAMERA group. 77

6.11 Top 50 opcodes occurrence difference between benign and malicious apps in the

COTACTS group. 78

6.12 Top 50 opcodes occurrence difference between benign and malicious apps in the

LOCATION group. 79

6.13 Top 50 opcodes occurrence difference between benign and malicious apps in the

MICROPHONE group. 80

6.14 Top 50 opcodes occurrence difference between benign and malicious apps in the

OTHER group. 81

6.15 Top 50 opcodes occurrence difference between benign and malicious apps in the

PHONE group. 82

6.16 Top 50 opcodes occurrence difference between benign and malicious apps in the

SMS group. 83

6.17 Top 50 opcodes occurrence difference between benign and malicious apps in the

STORAGE group. 84

xv

6.18 Detection accuracy of the classifiers for the CALENDAR group. 85

6.19 Detection accuracy of the classifiers for the CAMERA group. 86

6.20 Detection accuracy of the classifiers for the CONTACTS group. 86

6.21 Detection accuracy of the classifiers for the LOCATION group. 87

6.22 Detection accuracy of the classifiers for the MICROPHONE group. 87

6.23 Detection accuracy of the classifiers for the OTHERS group. 88

6.24 Detection accuracy of the classifiers for the PHONE group. 88

6.25 Detection accuracy of the classifiers for the SMS group. 89

6.26 Detection accuracy of the classifiers for the STORAGE group. 89

6.27 Group-wise best detection accuracy obtained by the classifiers. 91

6.28 Comparisons of accuracy achieved by us with four other authors. 92

6.29 Group-wise best TP and TN of the classifiers. 92

A.1 Register renaming example . 98

A.2 Subroutines permutation . 99

A.3 A snippet C code . 100

A.4 Variation in the C code after using instruction level permutation. 100

A.5 Insertion of jump instructions to create new variants. 100

A.6 Inlining and outlining of subroutines. 101

A.7 Snippet of Evol virus using dead code insertion. 102

xvi

CHAPTER 1

INTRODUCTION

1.1 Background

The development of computer security has a military origin, and since 1950

it is a major concern. Initially, because of national defense and intelligence, US gov-

ernment was “a major force behind security research and technology” [60]. Till 70’s

computers users were small, hence protection of data was easier. But, in 80’s Per-

sonal Computers (PC) came into being which was small enough to fit on a desk, and

in 90’s the Internet has made a revolutionary impact on the PC user, basically due

to its near-instant communication. In 1992, IBM came up with a prototype mobile

computing device (phone) that incorporated Personal Digital Assistant (PDA) features

(demonstrated it in the Computers Dealer’s Exhibition). Later on, Simon Personal

Communicator made the first device that could be really referred as smart device/-

phone which receives calls, sends faxes, emails and more. The smart devices/phone

technology continued to advance throughout early 2000, and in 2007 Android based

smart device was unveiled by Google. Since then the popularity/demand of Android

based devices is continuously growing. Today in the smart devices, Android is the most

dominant OS. An estimate shows that more than 15 billion smart devices are connected

globe-wise and are expected to be reaching 200 billion by end of year 2020 [29].

The ubiquity of the Internet has engendered the prevalence of information

sharing among networked users and organizations, and in today’s information era, most

1

of the computing devices are connected to the Internet, which has rendered possible

countless invasions of privacy/security worldwide from the malware (the term malware

is derived from the word malicious and software, and are often used interchangeably

with the virus, even though the two are not the same. Actually, malware is a condensed,

conjoined term used to refer to a program (viruses, worms, trojan horses, spyware,

adware, rootkits, botnets, etc.) that is inserted into a system, usually covertly, with

the intent of compromising the confidentiality, integrity, or availability of the victim’s

data, applications, or operating system or otherwise annoying or disrupting the victims

[92]). An important feature of these malware is its ability to self-replicate. It is not

known who created the first self-replicating program in the world, but it is clear that the

first malware/virus (Creeper) was created by the Bible Broadcasting Network engineer

Robert (Bob) H. Thomas, probably around 1970 and the first smartphones malware was

created in the year 2004, which was a worm known as Cabir to infect Symbian-based

devices [59].

From the last four decades, malware is continuously evolving with high

complexity to evade the available detection techniques and new variants of malware

are getting evolve every day, as a consequence, malware defense is becoming a diffi-

cult task to protect the computational devices from them. The threat/attack from the

advanced/ second generation malware (Chapter 2) are not only limited to individual

level, but there are state-sponsored highly skilled hackers developing customized mal-

ware to disrupt industries and for military espionage [105]. Attack by such malware

can alter the operation of industrial systems, disrupt power plants, e.g. the StuxNet

and Duqu malware [18], and many countries continue to incur the costly data breaches,

e.g. the two countries who had the highest cost of data breaches in the 2013 was U.S. (

$ 5.4 million) and Germany ($ 4.8 million) [94]. In this, intrusion into Google systems

demonstrates how well-organized attacks are designed to maintain long-term access to

an organizations networks [32].

In August 2014, eleven zero-day vulnerabilities were reported, in which six

were from the industrial control systems [95]. According to McAfee technical report,

in 2014, there were more than 200 million known malware samples [27]. The Symantec

2014 Internet Security Threat report states that 2013 was the mega breach year (62%

2

more breaches then 2012) [94]. The F-secure document reported an increase in malware

attacks against mobile devices based on Android and Apple iOS [35]. This increase

in the threat from malware is due to the wide-spread use of World Wide Web. An

estimate shows that the web-based attacks were increased by 36% with over 4,500 new

attacks each day, annoying/disrupting the victim in terms of confidentiality, integrity,

availability of the victim’s data [105]. In the first quarter of 2017, the highest number

(295 million) of malware samples were detected on the systems of Quick Heal users.

However, compared with the first quarter of 2016, there was a drop of 13.61% in the

detection count [13]. In this year Quick Heal detected a targeted attack on an Indian

government organization. The name of the group behind this attack was “Quarian”

and has been active since 2011. This group targeted an Indian government organization

using spear phishing e-mails loaded with malicious Microsoft Office documents designed

to exploit an old “CVE-2010-3333” vulnerability [12]. On reading the mail, it drops an

executable file on the system, collects system information, and provides remote shell

access to the attacker.

In the last couple of years, cyber-criminals had focused mainly on the bank

customers to steal millions of dollars in a single attack. In 2016, Symantec uncovered

the most effective bank robbers (Banswift group) who stolen the US $81 millions of

dollars from Bangladesh’s central bank by exploiting weaknesses in the bank’s security

[99]. Later on, some more cases were reported in South Asia banks, which were attacked

with same malware code that was used in Bangladesh. In this, Ransomware continues

to plague businesses and consumers, with indiscriminate campaigns pushing out mass.

The average ransom demand in 2016 rises to $1,077, a 366% increased from the previous

year. A growing reliance on cloud services also creates vulnerabilities for organisations

which cause the ability to hackers to hijack tens of thousands of MongoDB databases

and asked for ransom [98]. The number of new ransomware families uncovered during

2016 was 101 i.e. more than three times compared to the year 2015, and Symantec

logged a 36 percent increase in ransomware infections [98], while Quick Heal Labs

detected ten new ransomware families in same quarter [13]. The uptrend shows that

attackers are jumping on the ransomware bandwagon and creating new ransomware

families or modifying existing ones.

3

Since the first virus created in 1970 [106], there is a strong contest between

the malware and anti-malware developer. This rate-race led to the improvement in

malware and the detection techniques. To defend the malware attacks, anti-malware

groups are developing new techniques, on the other hand, malware developers are

adopting new tactics/methods to avoid the sight of scanners. Initially, the tools and

techniques of malware analysis were in the domain of anti-malware vendors. But the

use of malware for espionage, sophisticated cyber attacks, and other crimes motivated

the academicians and digital investigators to develop an advanced method to combat

the threats/attacks from it. However, due to continuously increase of huge data, anti-

malware industries are facing major challenges to check for the potential malicious

content. The reason behind these high volumes of different files is that the malware

creators uses obfuscation techniques to generate an entirely new variant of the malware

after each infection [92].

It’s an indisputable fact that the prolong traditional signature based ap-

proach for combating the threats/attack with a technology-centric are ineffective to

detect the second generation customized malware, and the Internet connected devices

are becoming an attractive target for the online criminals. The attackers are investing

more and more for the sophisticated attacks viz. ransomware or to steal the valuable

personal data from the user device. Recent attacks shows that the security features in

computing devices are not as par to completely stop the adversary [99]. Therefore, if

in time adequate measures not taken, then the consequence of the scale (∼ 317 million

new malware are reported in the year 2014 [95]) at which malware are created will be

Figure 1.1: Market share of desktops Operating System, 2017.

4

Figure 1.2: Market share of Android based mobile/smart devices, 2017.

devastating. Hence, in this thesis, we study and demonstrate how to effectively classify

the unknown advanced/second generation malware of Windows Desktops and Android

based devices, which have ∼90% (Figure 1.11) and ∼64% (Figure 1.21) market share

respectively.

1.2 Motivation

Despite the advancement in the development of anti-malware the number of

malware (Figure 1.3) and cyber-attacks are on an uptrend. An estimate by Symantec

shows that the rate of creation of new instances of malware was 41%, with a total of over

400 million existing new malware instances [93]. According to FireEye survey [1], 47%

of the organization experienced malware security incident/network breaches. Internet

security threat report of 2017 says that the web-based attack is increased 36% with over

4,500 new attacks each day, annoying/disrupting the victim in terms of confidentiality,

integrity, and availability of the victim’s data [93]. As per McAfee technical report

of 2014, there was more than 200 million known malware samples [27] and the year

2013 was the mega breach year [94]. In the last quarter of 2015 a 26% increase in new

ransomware samples has been reported [8] and in the first quarter of 2016 the Quick

Heal Threat Research Lab received more than 340 million malware samples running into

hundreds of thousands of devices [4]. Symantec reported 54 zero-day vulnerabilities,

and it is doubling each year [96]. McAfee reported a new malware which is capable to

1Generated online from https://www.netmarketshare.com/operating-system-market-share.aspx

5

Figure 1.3: Quater-wise increase in total number of malware from 2015.

infect the hard drives and solid state storage device firmware and the infection cannot

be removed even by formatting the devices or reinstalling the operating systems [28].

In the smart devices, Android is the most popular operating systems [40],

and are connected through the Internet accessing billions of online websites (an estimate

shows that 5 out of 6 mobile phones are working on Android OS [97]). The popularity

of Android OS is basically due to its open source, exponential increase in the Android

supported apps, third-party distribution, free rich SDK and the very much suited Java

language. In this growing Android apps market, it is very hard to know which apps are

malicious. As per Statista [104] ∼2 ×106 Android apps are available at Google play

store and many third-party Android apps are also available for the users. Because these

devices are very much convenient to use for the day to day activities, it holds sensitive

information such as personal data, browsing history, financial details etc. In this, the

third-party Android apps which are available for the users may be malicious [8]. Hence

potential of the malicious apps or malware entering these systems is now at never seen

before levels. Thus, attacks on the Android devices is increasing at an unprecedented

rate, mainly due to the ease of generating different malware variants [113]. In 2013,

there was 200% increase in malicious apps, and 3.7 million of variants added in McAfee’s

6

database [28]. In 2015, Kaspersky reported that the growth rate of new malware variant

is 300% with 0.88 million new variants [5]. The number of malicious installations found

in 2015 was around three million and around seven thousand mobile banking trojans

were also found in the same year [2]. In the 3rd quarter of 2015 Quick Heal Threat

Research reported that they had received samples of files at the rate of ∼ 4.2 × 105

samples per day for the Android and Windows platforms [6]. Trend Micro estimated

that the number of malicious mobile apps will reach 20 million by the end of 2017 [3].

To counter/defend the malware, there are many anti-malware defense sys-

tems based on signature matching, code emulation, heuristic code analysis and machine

learning (Chapter 3). Some malware are easy to detect and can be removed from the

system by commonly used signature based anti-malware software. But the signature

based technique can’t detect advanced/second generation or unknown variant of mal-

ware as it uses advanced obfuscation techniques, which exploit the limitations of state-

of-the-art anti-malware products to bypass security protections and eventually evade

detection. However time to time, a number of static and dynamic methods has been

proposed (Chapter 3). But, it appears that so far proposed approaches are not sufficient

to detect the advanced malware to limit/prevent the damages [92] in the fast-growing

Internet and computational devices usage into our daily life. Hence, computational de-

vice security is viewed as one of the most important areas to be addressed. Therefore

understanding the market share of Windows (Figure 1.1) and Android based smart

devices (Figure 1.2), which are an attractive target for computer hackers and criminals

who develop malware, this thesis proposes methodologies for the effective classification

to detect new or previously unknown advanced malware for Windows Desktops and

Android based devices.

1.3 Research Gap

In classification, feature selection plays a vital role, not only to represent

a target concept but also to speed up the learning process. In this, often datasets

are represented by many features, however few of them may be sufficient for both

to speed-up the learning process, and to improve the concept quality. Many feature

7

selection techniques viz. information gain, correlation-based feature selection, relief-

f, and hybrid methods [51] has been studied to reduce the number of features in the

datasets. However, it appears that studied feature selection techniques are not sufficient

to classify the malware with high accuracy. Hence there is a need to develop a feature

selection technique to improve the classification accuracy of the malware with low false

alarm.

Due to the availability of inteligent software to create variants of malware

[92], it appears that malware creators are ahead of the anti-malware developer. The

major challenge to check the potential malicious content is the continuously increasing

huge dataset. Microsoft, nearly real-time anti-malware are present on over 160 Million

computing devices throughout the globe, which analyzes tens of millions of data files

daily [94]. According to a recent Computer Security Institute survey, the average

loss from security attacks was about $ 345,000 per incident [78]. As new variants of

malware getting evolve every day, malware defense becoming difficult task to protect the

computational devices from them [28]. In August 2014 eleven zero-day vulnerabilities

were reported in which six were from the industrial control systems [95].

The advanced malware, in particular, metamorphic malware are getting

more complex which pose a big threat and new challenges to the endpoint security.

Advanced obfuscation techniques helps a malware to evade detection by the traditional

signature-based anti-malware software, and also the number of new malware are increas-

ing significantly. Hence, there is a need to automate the process of malware analysis and

detection. To address effectively the challenges posed by advanced/metamorphic mal-

ware, there is a need to develop new methods and techniques to analyze its behaviour

to make a better detection decision with few false positives. Current techniques for

detecting malware are computationally intensive, have poor detection rates, and are

not sufficient to detect the advanced malware to limit/prevent the damages [92]. Also,

there is no method available to detect zero day attack with 100% accuracy [9]. It has

been reported that there exists malware which cannot be detected by any anti-malware

[41]. Moreover, it is impossible to develop a generic algorithm to detect all possible

malware [110]. Hence regular study is required to put more sophisticated defense to

combat the threat/attacks from the advanced unknown malware. TRsym2014

8

In smart devices, in particular, the most popular Android based devices,

malware are increasing at an unprecedented rate, and it is mainly due to the ease of gen-

erating malware variants [26]. The recent attacks on smart devices show that there is an

urgent need to develop robust anti-malware, in particular for the defense against zero-

day attack [92]. The traditional signature matching approaches are efficient from a time

perspective but not relevant for the variants nor capable to detect continuously grow-

ing zero-day malware attack. Also, to evade the signature-based techniques, malware

developer uses several obfuscation techniques (Appendix refappendix:obfuscation) [94].

However, to detect the Android malicious apps, time to time, a number of static and

dynamic methods has been proposed viz. Droid, Andro-Dumpsys, MADAM, Droidkin,

etc. (Chapter 3). But, it appears that so far proposed approaches are not sufficient to

detect the advanced Android malware to limit/prevent the damages [92] in the fast-

growing Internet and Android based devices usage into our daily life. Hence the smart

device security is viewed as one of the most important areas to be addressed. Also, it

is an open question, how to detect new malware variants in smart devices which are

always hidden in the many different third-party markets [8], and to find out how one

can identify repackaged applications from the vast ocean of apps.

1.4 Objectives and Organisation of the Thesis

The thesis primarily focuses to improve the detection accuracy of new or

previously unknown advanced malware of Windows Desktops and Android based com-

putational devices by group-wise classifying the data using machine learning techniques.

Accordingly, Chapter 2, discusses the types of malware and its detection techniques and

Chapter 3 discusses the prior works/efforts done by the researchers to detect Windows

and Android based devices malware.

In Chapter 4, we investigate the variation in the size of malware generated

by metamorphic malware generator kits viz. G2, PS-MPC and NGVCK and accord-

ingly we group-wise analyzes the data set to detect the unknown malware by Naive

Bayes classifier, and the obtained results are compared with the regular method (with-

out grouping). As feature selection plays a vital role to represent the target concept,

9

therefore in this Chapter we also proposed an approach to find the prominent features

for the classification of malware.

To find the best classifier for the detection of unknown advanced malware,

in Chapter 5, we studied the performance of the popular thirteen classifiers using N-

fold cross-validation with Malicia data set and then selected the top five among them

for the detection of malware. As discussed in Chapter 4 that group-wise classification

improves the detection accuracy, therefore in Chapter 5, we grouped the executables on

the basis of malware sizes by using optimal k-Means clustering algorithm and classified

the data by the top five identified classifier.

Chapter 6 investigates the performance of the top five classifiers for the

effective detection of Android malicious apps, first by classifying the data without

grouping data and then by grouping the data based on permission to improve the

overall detection accuracy. Finally, Chapter 7 contains conclusions of the thesis and

future directions.

10

1.5 Contribution

This thesis brings contributions in the detection of unknown advanced mal-

ware to protect the two most popular computational devices, Windows Desktops and

Android based devices from the uptrend cyber threat/attacks. In this, we empirically

analyzed and show that the detection accuracy of the unknown malware can be im-

proved by Group-wise approach. Following are the published/communicated works

that contribute the material in this thesis:

• Feature selection plays a vital role, not only to represent the target concept but

also to speed-up the learning and testing process. Hence to find the prominent

features for the detection of malware, a simple algorithm has been developed [91].

• Investigated the popular metamorphic malware generator kits viz. G2, PS-MPC

and NGVCK and found that the variation in the size of the malware generated

by this generator is not more than 5 Kilobyte and also shown that the detection

accuracy can be improved by group-wise classification of the data [91], [89].

• In continuation to improve the detection accuracy, we studied the performance

of the popular thirteen classifiers using N-fold cross-validation with Malicia data

set and then selected the top five among them for the detection of malware by

grouping the dataset using Optimal k-Means clustering algorithm [89], [79].

• Understanding the popularity of Android based devices and the cyber threat/at-

tacks on this devices, we investigated for the effective detection of Android ma-

licious apps, first by classifying the data all together i.e. without grouping, and

then shown that how the overall average detection accuracy can be improved to

detect the Android malicious apps by group-wise classifying the apps based on

permissions [88], [90].

11

CHAPTER 2

TYPES OF MALWARE AND DETECTION

TECHNIQUES

2.1 Introduction

Frederick B. Cohen, the inventor of computer virus defense techniques, has

first defined the term “computer virus as a program that can infect other programs by

modifying them to include a possibly evolved copy of itself” [31]. Since then malware

has been continuously evolving with high complexity to evade the detection techniques,

and are classified as first and second generation malware. This Chapter provides an

overview of different types of malware and it’s detection techniques.

2.2 Types of Malware

The first generation malware are broadly classified on the basis of their in-

fection strategy as Viruses (attaches itself to a program and propagates copies of itself

to other programs), Worms (a program that propagates copies of itself to other comput-

ers) and Trojans (a program that contains unexpected additional functionality) [103].

Few other notable first-generation malware are rootkits, spyware, crimeware, adware

etc. (Figure 2.1) [106]. They all exhibit different sort of malicious behaviour on the

target systems, but their structure does not change. But in the second generation,

12

Figure 2.1: First generation malware.

after each infection, the structure of malware changes to create a new variant keeping

the action same [92]. On the basis of the mechanism by which either the code or the

structure varies to conceal the signature of the malware, the second generation mal-

ware are further classified as Encrypted, Oligomorphic, Polymorphic and Metamorphic

malware.

Encrypted Malware

Encryption was the first concealment techniques used for creating the second

generation malware [122]. As shown in Figure 2.2, it consists of two parts, the encrypted

body and a decryption code [75]. In this type of malware, first the decryption part is

executed to decrypt the body (usually the body is XORed with a key to make it difficult

to detect) of the malware and then the code is executed for the action, and after each

infection, encrypted malware makes the body unique by using different key to hide its

signature. However, the decryption routine remains same, hence it can be detected

by analyzing the decryptor. The first encrypted malware was CASCADE [17]. Later

on using the CASCADE technique Win95/Mad and Win95/Zombie were created. The

13

main motivation to use the encryption malware is to evade the signature matching

technique and static code analysis [74].

Figure 2.2: Encrypted malware.

Oligomorphic Malware

The shortcomings of the encrypted malware led to the development of Oligo-

morpic malware and different concealment techniques. In Oligomorphic malware (Fig-

ure 2.3) decryptors are mutated from one variant to other. The simple method to create

Oligomorphic malware is to provide a set of different decryptors. Initially, this type

of malware was capable of changing the decryptor slightly [122], and at the most, this

malware can generate few hundred of different decryptors, e.g. Win95/Memorial had

the ability to build 96 different decryptor patterns [87]. For the detection of Oligomor-

phic malware, signature based techniques can be applied by making the signature of

all the decryptors. However, in general, signature based techniques are not considered

14

as a good approach to detect the Oligomorphic malware [75].

Figure 2.3: Oligomorphic malware.

Polymorphic Malware

To evade the signature based detection technique, polymorphic malware are

able to generate millions of decryptors by changing the instructions in next variant

of the malware [74]. As shown in Figure 2.4, it also consists of two parts, the first

part is the code decryptor to decrypt the second part (body). During the execution of

malware, mutation engine creates a new decryptor which is joined with the encrypted

malware body to construct a new variant of malware [92]. These malware are created

by using different obfuscation techniques viz. Register renaming, Subroutine permu-

tation, Transposition, Changing the control flow, Subroutine inlining and outlining,

Equivalent code substitution, Dead code insertion, etc. (Appendix A) [122]. The first

known polymorphic malware was 1260, written by Mark Washburn in 1990 [75]. Al-

though, a large number of variants of decryptors can be created, still signature scanning

technique can be used to detect the malware by identifying the original program using

15

the emulation techniques [122].

Figure 2.4: Polymorphic malware.

Metamorphic Malware

Metamorphic malware are body-polymorphic (Figure 2.5), i.e. instead of

generating new decryptor, a new instance is created without changing its actions [75].

Similar to polymorphic malware, different obfuscation techniques are used to create new

instances. It is believed that in future it will harm both computers and smart devices

in large scale as it is almost impossible to detect it by the traditional signature based

techniques. However, creating a true metamorphic malware without arbitrarily increas-

ing the size is a challenging task. It has been shown that there are few malware which

exhibits true metamorphic behaviour [16], e.g. Phalcon/Skism Mass-Produced Code

Generator (PS-MPC) [17], Second Generation virus generator (G2) [16], and Virus

Creation Lab for Win32 [116]. The first metamorphic virus was created in 1998 called

as Win95/Regswap [107]. Later in 2000, Win32/Ghost virus was created with 3628800

different variants [122], and one of the strongest metamorphic malware W32/NGVCK

was created in 2001 with the help of Next Generation Virus Creation Kit (NGVCK)

[112].

16

Figure 2.5: Metamorphic malware.

2.3 Detection Techniques

To combat the threat/attacks from the malware, softwares/anti-malware are

developed, which are mostly based on the assumption that the malware structure does

not change appreciably (a schematic of a traditional detection system is shown in

Figure 2.6). But the variant of second generation malware are very much different

to each other. Hence threat/attacks from such malware to the computational devices

are increasing day by day. Therefore, there is a need that both academia and anti-

malware developers should continually work to prevent damages from the evolution of

advanced complex malware. Thus, this section discusses the various techniques used

for the detection of malware.

Figure 2.6: Traditional detection system.

17

2.3.1 Signature Based Detection

The signature based detection technique is the simplest and an effective

way of detecting the known malware [42]. Once the malware is identified, a unique

sequence of bytes are extracted from it, which represents the signature of the mal-

ware, e.g. Aho-Corasick algorithm scan for the exact matching [111]. These sig-

natures are selected long enough to characterize a specific malware with respect to

any other benign program, e.g. Worm/klez.E and Worm/MyP-arty.A signatures are

33be732d4000bd08104000e89eeaffff80bd08 104000be7d2d4000e849eaffff6a00e835000000

64756d6d792e65786500653a5c77696e646f77 735c53795374656d33325c644c6c636163686

55c6464642e65786500ff254c404000ff25544040a and aa328cf24554d90b307c407eca9a4cf02

a4d5a90000332c8b26904ffffb840f97f370080040e 1fba0e00b409cd21b8014c001f027c54686

973c363616e042568d54562e2c876b0ffbf0420444f53 respectively [34]. These techniques

scans the file to find the defined malware signature, if found then an alert of the pres-

ence of malware is sent, but a slight mismatch will escape the detection. Therefore,

Veldamna and Wu-Manber proposed the use of the wildcard for detecting slight variance

in the malware [74]. By this technique some metamorphic malware could be detected,

e.g. W32/Regswap [74]. This method is easy to use, however, the requirement of

scanning becomes costly as the database of malware signature is increasing very fast

[45]. Also, it is a completely reactive technique, therefore unable to combat threats/at-

tack from the new or previously unseen malware until it causes the damages. Gartner

[43] believes that eventually signature-based techniques will be replaced with more ro-

bust approaches, because today’s signature-based anti-malware have marginal value,

as second generation malware easily evades the signature based detection techniques.

2.3.2 Heuristics Based Detection

The heuristic based detection technique is one of the promising technique to

detect the unknown malware [45]. In this method, there are two approaches for the

detection of malware. First, in the static approach suspicious program are disassembled

to find a matching of the known malware pattern, if any, and if the analysis result

crosses the preset threshold then the program is marked as infected [62]. Secondly, in

18

dynamic approach, code emulation techniques are used by simulating the processor and

operating system to detect suspicious operations (an attempt to open other executable

files with the intention of modifying its content, changing the Master Boot Record,

concealing themselves from the operating system, etc.) on a virtual machine. However,

this detection technique is prone to false alarm [116], which may make the system more

vulnerable by taking the real malware as another false alarm. Therefore to reduce

the false alarm, researchers augment the results of this detection technique with other

method [41].

2.3.3 Malware Normalization

The malware generated from advanced toolkits such as Ultimate Packer for

Executables (UPX) and Mitsfall are difficult to detect [120]. For the detection of such

malware, normalization techniques can be used to improve the detection rate of an

existing anti-malware. In this technique, normalizer accepts the obfuscated version of

malware and removes the obfuscation in the program to obtain a normalized executable.

After normalization, the signature of malware is extracted and compared with the

signature of canonical form (Figure 2.7) [118]. Christodorescu et. al. designed a

malware

Figure 2.7: Malware normalization.

normalizer that handles three common obfuscations viz. code reordering, packing,

19

and junk insertion [30]. Later on Armor et. al., [14] proposed a generalized malware

normalizer which can store obfuscation methods in the form of automata structures and

use them for normalizing the metamorphic malware. In 2014, Armoun et. al. proposed

a general malware normalizer which can detect the metamorphic variant up to 81%

accurately by storing lots of obfuscation methods in the form of automata structures

to normalize the metamorphic malware [14].

2.3.4 Machine Learning Techniques

Recently, malware detection with machine learning techniques is gaining

popularity. Tom Mitchell defines machine learning as the study of computer algorithms

that improves through experiments [65]. The advantage of machine learning techniques

is that it will not only detect known malware but also act as knowledge for the detection

of new or previously unseen malware. The popular machine learning techniques among

the researchers for the detection of second generation malware are Naive Bayes [9],

Decision Tree [66], Data Mining [101] , Neural Networks [66], Hidden Markov Models

[48], etc. Generally, machine learning techniques are more computationally demanding

than the standard anti-malware, hence it may not be suitable for the end user. However,

it can be implemented at enterprises gateway level to act as a central anti-malware

engine to supplement anti-malware. Although, infrastructure requirement is costly,

but it can help in protecting valuable enterprises data from the security threat and can

prevent immense financial damages.

2.4 Summary

This Chapter presents an overview of the classification/evolution of malware

and it’s detection techniques. It discusses in details the type of second generation

malware and the popular detection techniques used to detect it viz. Signature matching,

Heuristic methods, Normalization, and Machine Learning techniques. As the thesis is

on the detection of advanced malware, therefore this Chapter elaborated the second

generation malware in more details.

20

CHAPTER 3

LITERATURE SURVEY

3.1 Introduction

The first virus was created in 1970 [106] and since then there is a strong

contest between the attackers and defenders. This rat-race led to the development of

complex malware and its detection techniques. To defend the malware attacks, anti-

malware groups are developing new techniques. On the other hand, malware developers

are adopting new tactics/methods to evade the anti-malware. The complexity of the

malware is continuously growing for the military espionage, sophisticated cyber at-

tacks and other crimes, which motivated the academicians and digital investigators to

develop the advanced method to combat the threats/attacks from it. To combat the

threats/attacks from the second generation malware, time to time, a number of static

and dynamic methods has been proposed by the researchers [56] [46] [61] [80] [77]. In

order to understand various techniques proposed/used for the detection of Windows

Desktops and Android based device malware, a survey has been conducted and are

discussed in this Chapter.

3.2 Survey on the Detection of Windows Desktops Mal-

ware

Static and dynamic analysis are the two main approaches applied for the

detection of malware [92]. In static analysis, without executing the malware, the codes

are analysed to find a malicious pattern by extracting the features/signature such as N-

21

grams, Application Program Interface (API) sequences, opcodes, data flow, resources,

Dynamic-link Library (DLL) usage, etc. Whereas, in the dynamic analysis the program

are examined in a runtime environment by monitoring the dynamic behaviours, such as

network connections, system calls, resources usage, etc. of the programs. However, in

both the approaches selected classifiers are trained with a known dataset to differentiate

the benign and malware programs.

In 2001, Schultz et al. [85] using the data mining methods claimed that their

framework can detect the new unknown executables twice than the detection rate of

traditional signature based techniques. For the classification, they used three different

static features viz. Portable Executable (PE), strings and byte sequences. From the

data set of 3265 malicious and 1001 benign programs, they extracted the features

from DLL residing in the PE files, strings are extracted from the executables that

are encoded in program files and the bytes sequences are extracted from the executable

file. They applied repeated Incremental Pruning to Reduce Error Reduction (RIPPER)

[38] to find the patterns in the DLL data, and Naive Bayes was used to find patterns

in the string data. Finally, n-grams byte sequences were used as input data for the

Multinomial Naive Bayes algorithm and obtained the detection rate of 97.76%

Kolter and Maloof in 2004 [56] uses the techniques of Information Retrieval

(text classification) for the detection of unknown malicious executables. They exper-

imented with 1971 benign and 1651 malware programs, selected 255 millions distinct

n-grams with variety of inductive methods, including Naive Bayes (NB), Decision Trees

(DT) and Support Vector Machines (SVM). Their results from the boosted decision tree

outperformed other methods with an area under the Receiver Operating Characteris-

tic (ROC) curve of 0.996. In 2005, Karim et al. constructed a malware phylogeny

model using n-perms as a feature to match the possible permuted code [54]. They

performed an experiment to compare the relative effectiveness of the vector similarity

measures using n-perms and n-grams to compare the permutated variants programs.

They found that n-perms provides higher similarity scores for permuted programs and

produce comparable phylogeny models. Also, n-perms appear to do a better job in

differentiating related and unrelated similarities in sample sets of permuted variants.

Hence, a better choice for constructing phylogeny models for the presence of malware

22

that has evolved through permutations. Their analysis suggests that the phylogeny

models generated by this technique may be able to reconcile the name inconsistencies

and assist in the investigation of new malicious programs.

In 2006, O. Henchiri et al. [46] proposed a search method to select generic

features for the detection of the computer virus of different families. They used 1512

labeled viruses, 1488 benign program and Iterative Dichotomiser-3 (ID3), j48, Naive

Bayes, Sequential minimal optimization (SMO) classifier for the evaluation. Their result

outperforms the traditional search methods, and the best detection accuracy obtained

was 92.56% by the J48 classifier. They claimed that their approach, which uses a family

of non-specific features, performs very well, while existing techniques for detecting

the previously unseen viruses perform significantly poor. In 2007, Blair [20] discusses

the opcodes as a predictor of malware, he disassembled 67 malware and 20 benign

executables to study the distributions of malware opcode occurrence. He found that

the malware opcode distributions differ statistically significantly from non-malicious

programs and the rare opcodes seem to be a stronger predictor. In 2008, Robert

Moskovitch et al. [66] based on text categorization concepts proposed a methodology

for the detection of unknown malicious code. They performed an extensive evaluation

with ∼30, 000 malicious and benign files to investigate the imbalance problem. Their

results indicate that around 95% accuracy can be achieved through the use of a training

set that contains below 20% malicious file content. Later on, his group [67] proposed

a method to detect the unknown malicious program by using n-grams (3, 4, 5 or 6)

of the opcodes as features, generated by disassembling the executables. To reduce the

number of n-gram features, which ranges from thousands to millions, they first used

the document frequency (DF) measure to select the top 1000 features. Then they

compared the various classifiers by byte-sequence n-grams (3, 4, 5 or 6) and found that

Boosted Decision Tree provides the best accuracy (94.43%). Their analysis shows that

the Fisher Score and DF feature selection were better than the Gain Ratio.

To detect new or previously unseen polymorphic/metamorphic malware,

Yanfang Ye et al. [121] in 2008 analysed the Windows API called by Program exe-

cutables (PE) files to develop a Intelligent Malware Detection System (IMDS) using

Objective-Oriented Association (OOA) mining based classification, which is an inte-

23

grated system consisting of three major modules: PE parser, OOA rule generator, and

rule-based classifier. They conducted a comprehensive experiment on a large collection

of PE files (636 malicious and 1207 benign executables) obtained from the anti-virus lab-

oratory of KingSoft Corporation to compare the various malware detection approaches.

Their experimental results demonstrate that the accuracy and efficiency of the IMDS

system outperform the popular anti-virus software such as Norton AntiVirus, McAfee

VirusScan, and previous data mining based detection systems which employed Naive

Bayes, Support Vector Machine and Decision Tree techniques. In 2008, Tian et al.

[109] discusses Function Length as a Tool for Malware Classification and claimed that

classifying the Trojans on the lengths of their functions will be fast, simple and scalable.

Their result indicates that the function length may play a significant role in classifying

the malware, and if combined with other features, may result in a fast, inexpensive

and scalable method for the classification. But they also showed that it will be unreal-

istic to expect function length information on its own to produce perfect accuracy to

distinguish the families.

Siddiqui et al. [100] applied data mining techniques for the extraction of

variable length instruction sequence to identify the worms from the benign programs.

Their analysis was facilitated by the program control flow information contained in

the instruction sequences. From these instruction sequences, they formulated a binary

classification problem and built tree based classifiers (Decision Tree, Bagging and Ran-

dom Forest). For experimental analysis, a data set of 2774 (1444 worms and 1330

benign files) are used and detected 95.6% malware in the dataset (not used in building

the model). In 2009, S. Momina Tabish et al. [108] proposed a non-signature based

technique which analyzes the byte-level file content. They claimed that such tech-

nique provides implicit robustness against common obfuscation techniques, and also

the framework can classify the given malware family. Their scheme uses the rich fea-

tures set of 13 different statistical and information-theoretic features, computed on 1 -

4 grams of each file. They have tested their approach with 37,420 malware dataset from

VX heaven and 1,800 benign files from different Desktops, and achieved 90% detection

accuracy.

In 2009 Syed Bilal Mehdi et al. [64] advocated the need of sophisticated,

24

efficient, and accurate malware classification techniques that can detect a malware

on the first day of its launch, called In-Execution Malware Analysis and Detection

(IMAD) that not only identify the zero-day malware without any apriori knowledge

but can also detect a malicious process with 90% accuracy while it is executing. Their

results indicates that IMAD can achieve better accuracy with significantly lower false

alarm rate. They also analyzed the fraction of n-grams required by IMAD to classify

an executing malware and shown that approximately ∼50% of malicious processes are

classified within first 20% of their execution. Later on, they [63] proposed hyper-grams,

a variable-length system call representation scheme, that uses IMAD for zero-day mal-

ware detection. Their experimental analysis with 72 benign and malware files shows

that in-execution malware detector with hyper-gram representation achieves low pro-

cessing overheads, but improves the detection accuracy compared to the conventional

n-grams.

In 2011, Santos et al. pointed out that supervised machine learning is

an effective method to detect the unknown malware, but are not efficient because it

requires a significant amount of labeled executables for both malware and benign pro-

grams. Therefore, they proposed a single-class learning method for detecting unknown

malware based on opcode occurrence, which does not require a large amount of labeled

data [82]. They did an empirical study with the dataset comprising 1,000 malicious ex-

ecutables and benign executables each [114]. Their analysis shows that the single-class

learning reduces the detection cost of the unknown malware. Additionally, they found

that it is more important to obtain labeled malware samples than benign programs,

and shown that by labeling 60% of the legitimate programs, one can achieve ∼ 85%

accuracy. In 2012, Chandrasekar Ravi et al. [77] proposed an association mining based

classification which yields higher detection accuracy than previous data mining meth-

ods, by employing Naive Bayes, Support Vector Machine and Decision Tree techniques.

Their detection system uses API call sequence modeled by the third order Markov

chain, and is an iterative learning process combined with the run-time monitoring of

program execution behavior to make it as a dynamic malware detection system. They

compared the accuracy of the proposed malware detection system with the existing

data mining methods and claimed that their proposed system outperforms (90% of ac-

curacy) the existing malware detection systems. In 2013, Chatchai Liangboonprakong

25

et al. [61] proposed a classification of malware families based on N-grams sequential

pattern features. They conducted the experiment with four different sizes of n-grams

(n = 1, 2, 3, and 4) and 3 classification models (C4.5 Decision Tree, Artificial Neural

Network, and Support Vector Machine). From the analysis they concluded that due

to the complexities of malware, the larger n-gram size yields the higher accuracy, and

the proposed feature extraction methods achieves 96.64% accuracy with 4-gram and

Support Vector Machine.

In 2013, Santos et al. proposed a method to detect unknown malware,

based on the occurrence of opcode sequences, and also described a technique to mine

the relevance of each opcode. They experimented with a malware dataset of 13,189

[114] and 13,000 benign executables from different systems and applications viz. text

processors, drawing tools, windows games, Internet browsers, etc. They claimed that

their method provides a good detection ratio of unknown malware with a low false

positive ratio. In addition, they provided an empirical validation of the method, which

is capable of detecting unknown malware, and found that SVM provides an accuracy

of 92.92% and 95.90% for one opcode and two opcode sequence length respectively

[81]. To identify the malicious file Zahra Salehi et al. [80] generated three feature set

based on the runtime behaviour of malicious and benign files from the monitored log

files, including API names, their input arguments and a combination of this files. Then

the features were reduced by removing irrelevant and redundant attributes, which do

not have a significant impact on modeling the binaries. They conducted the exper-

iment with 385 benign (collected from Windows system files as well from the wide

range of portable benign tools) and 826 malware files (collected from seven categories:

backdoors, constructors, exploits, hacktools, Peer-to-Peer (P2P) worms, trojans and

viruses). For the classification, they used Rotation Random Forest, Random Forest,

J48, FT and Naive Bayes classifiers, and 10-fold cross-validation for training and test-

ing. They obtained highest True positive rate (94.6%) from Random forest by taking

only API calls as features, whereas when the only argument was taken as features they

found 98.1% true positive rate [80].

26

3.3 Survey on the Detection of Android Malicious Apps

Similar to the Detection of Windows Desktops malware, static and dynamic

analysis are the two main approaches applied for the detection of Android malicious

apps [53], and in both the approaches classifiers are trained with a known dataset for

the classification of apps. In static analysis, without executing the apps, the codes are

analysed to find a malicious pattern by extracting the features such as permissions, APIs

used, control flow, data flow, broadcast receivers, intents, hardware components etc.

Whereas, in the dynamic analysis the apps are examined in the runtime environment

by monitoring the dynamic behaviour (resources usage, tracing system calls, API call,

network traffic, etc.) of the apps and the system response.

In Android, the application can share their code and resources with other

applications, but sharing is tightly controlled by the permissions. However, in gen-

eral, users do not understand what applications will do with their data/resources, and

therefore not able to decide which permissions shall be allowed to the application to

run with. Therefore Fuchs, et al., [37]. developed a tool called SCANDROID (suppose

to be the first program analysis tool for the Android based devices) which can extracts

security specifications from manifests that accompany such applications, and checks

whether data flows through those applications are consistent with those specifications

or not.

In 2012 Sanz. et al. [83] proposed an approach that can automatically

characterise the different types of applications to detect the Android malicious apps by

categorizing Android applications through machine-learning techniques. For the clas-

sification, their feature sets were (i) frequency of the occurrence of printable strings,

(ii) different permissions of the application, and (iii) permissions of the application

extracted from the Android Market. Their experiment with 7 different categories (820

samples) and five classifiers (DT, KNN, BN, RF and SVM) shows that among the se-

lected five classifiers, Bayes Tree Augmented Naive Bayes (TAN) was the best classifier

(0.93 Area Under the ROC Curve), while Random Forest was the second best classifier

with an AUC of 0.9. Among the analysed classifier, Decision Tree with J48 perform

worst (0.64 AUC).

27

In 2012, Wu. et al. proposed DroidMat, a static feature-based mechanism

for the detection of Android malware which analyzes AndroidManifest.xml and the

systems calls. For the experiment, they used 238 malicious and 15000 benign pro-

grams and claimed that their approach is effective (97.87% accuracy), scalable and

efficient [117]. In 2013 Michael Spreitzenbarth et al. proposed a Mobile-Sandbox to

automatically analyze the Android apps in two steps. In the first step (static analysis),

applications Manifest files are parsed and decompiled, then it is determined that the

applications are using suspicious permissions/intents or not. In the next step, sandbox

performs the dynamic analysis, where the application was executed in order to log all

performed actions including those stemming from the native API calls. They evaluated

the system on more than 36,000 applications from Asian third-party mobile markets

and found that 24% of all applications actually use native calls in their code. [102]. Min

Zheng et al. [123] proposed a signature based analytic system called DroidAnalytics for

collecting the malware automatically, and to generate signatures for the identification

of the malicious code segment. They conducted extensive experiments with 150,368

Android applications, and successfully determine 2,494 Android malware from 102 dif-

ferent families, in which 342 of them being zero-day malware samples from six different

families. They claimed that their methods have significant advantages over the tradi-

tional MD5 hash based signature, and can be a valuable tool for the classification of

Android malicious apps.

In 2014, Quentin et al. proposed a feature based detection mechanism

relying on opcode-sequences. They tested the machine learning algorithms such as lib-

svm and SVM classifier with the reduced data set (11,960 malware and 12,905 benign

applications) and obtained 0.89% F-measure. However, their approach is not capable

to detect completely different malware [50]. In 2014, Kevin Allix et al. [10] devised

several machine learning classifiers that rely on the set of features that are built from

the applications control flow graphs (CFGs). They analysed their techniques with a

sizeable dataset of over 50,000 Android applications and claimed that their approach

outperformed existing machine learning approaches. Also from the analysis, they con-

cluded that the 10-fold validation on the usual dataset sizes is not a reliable performance

indicator for the realistic malware detectors.

28

Smartphone can act as a zombie device, controlled by the hackers via com-

mand and control servers. It has been found that mobile malware are targeting Android

devices to obtain root level access to execute instructions from the remote server. Hence,

such type of malware can be a big threat to homeland security. Therefore Seo, et al. [86]

discusses the defining characteristics inherent in mobile, and shown the feasible mobile

attack scenario against the Homeland security. They analyzes various mobile malware

samples viz. banking, flight tracking and booking, home and office monitoring, from

both the official market and the unofficial markets to discover the potential vulnerabili-

ties. Their analysis discovered that two banking apps (mellat bank and axis bank app)

were disguised to charge SMS for malicious purposes and two banking apps (KFH bank

and S bank app) was modified to get the permissions without consent. Finally, they

discusses a methodology that mitigates mobile malware threats against the Homeland

Security.

In 2015, Jehyun Lee et al. proposed an Android malware detection mecha-

nism that uses automated family signature extraction and family signature matching.

They claimed that compare to previous behavior analysis techniques for the family

detection, their proposed family signature matching have higher detection accuracy

and can detect new variants of known malware more efficiently and accurately than

the legacy signature matching. The experimental analysis was done with 5846 real

world Android malware samples belonging to 48 families, collected in April 2014 and

achieved 97% accuracy. In 2015, Smita Naval, et al. [71] addressed the problem of

system-call injection attack, which allows the malicious binaries to inject irrelevant

and independent system-calls during the program execution, thus modifying the ex-

ecution sequences defeating the existing system-call-based detection. Therefore, they

proposed an evasion-proof solution that is not vulnerable to system-call injection at-

tacks. Their approach characterizes program semantics using asymptotic equipartition

property, which allows to extracting the information-rich call sequences that are fur-

ther quantified to detect the malicious binaries. Their analysis demonstrated that the

semantically-relevant paths can be used to infer the malicious behavior and also to

detect the numerous new and unseen malware samples. They claimed that the pro-

posed solution is robust against the system-call injection attacks and are effective in

identifying the real malware instances.

29

In 2016, Saracino, et al. [84] proposed a Multi-Level Anomaly Detector

for Android Malware (MADAM), a host-based malware detection system for Android

devices which simultaneously analyzes and correlates features at four levels: kernel,

application, user and package to detect and stop malicious behaviours of 125 existing

malware families, encompasses most of the known malware. MADAM takes into ac-

count of behaviours characteristics for almost every real malware which can be found

in the wild. They claimed that it can block more than ∼96% of malicious apps, which

come from the three large datasets. Their analysis on a testbed of 9,804 genuine apps

shows low false alarm rate, negligible performance overhead, and limited battery con-

sumption (4% energy overhead). They claimed that MADAM is the first system which

aims to detect and stop any kind of malware at run-time, without focusing on a specific

security threat by using a behavior-based and multi-level approach. BooJoong et al.

[52], proposed an n-opcode based static analysis for the classification and categorising

the Android malware. Their approach does not utilize the defined features viz. API

calls, permissions intents, and other application properties, rather it automatically dis-

covers the features that eliminate the need of expert or domain knowledge to find the

required features. Empirically they showed that by using frequency n-opcodes with low

n, good classification accuracy can be achieved. For n = 3 and n = 4, they achieved

maximum F-measure of ∼98% for both malware classification and categorization.

Based on inter-component communication (ICC) related features, Ke Xu, et

al. [119] proposed a malware detection method called ICCDetector, which can capture

the interaction between the components or cross application boundaries. They eval-

uated the performance of their approach with 5264 malware and 12026 benign apps

and achieved an accuracy of 97.4%. Also, after manually analyzing false positives, they

discovered 43 new malware from the benign data set and reduced the number of false

positives to seven. Jae-wook Jang, et al. [49] proposed Andro-Dumpsys, a feature-rich

hybrid anti-malware system, which can detect and classify the malware samples of simi-

lar behaviour groups. Their experimental results demonstrate that the Andro-Dumpsys

is scalable and performs well in detecting the malware and classifying the malware fami-

lies with low false positives and false negatives. It is also capable of responding zero-day

threats as well. Gerardo Canfora, et al. [23] evaluated two techniques for detecting the

Android malware; the first one was based on Hidden Markov Model, while the second

30

one exploits structural entropy. They claimed that their approach is effective for PCs

viruses, and are also successful to classify the malicious apps. Experimentally they

obtain a precision of 0.96 to discriminate a malware application and 0.978 to identify

the malware family [23]. Sanjeev Das, et al. [33] proposed a hardware enhanced ar-

chitecture, GuardOL to detect the malware at runtime. It is a combined approach,

uses processor and field-programmable gate array. Their approach first extracts the

system calls and constructs the features based on the high-level semantics of malicious

behavior. Then the features are used to train machine learning classifier and multilayer

perceptron to detect the malware at runtime. The advantage of their design was that

the approach can detect 46% of malware within first 30% of their execution, while 97%

of the samples at 100% of their execution, with 3% false positives. [33].

Recently, Ali Feizollah, et al. [36] proposed AndroDialysis to evaluate the

effectiveness of Android Intents (explicit and implicit) as a distinguishing feature to

identify the malicious apps and shown that Intents are semantically rich features to

encode the intentions of malware when compared to other well-studied features, such

as permissions. They also argue that this type of feature is not the ultimate solution,

and it should be used in conjunction with other known features. They conducted

experiments using a dataset of 7406 applications that comprise 1846 clean and 5560

infected applications. Their approach obtained a detection rate of 91% using Android

Intent, 83% using Android permission and by combining both the features they obtained

the detection rate of 95.5%. They claimed that for the malware detection, Android

Intent is indeed more effective than Android permission. Bahman Rashidi et al. [76]

proposed an Android resources usage risk assessment called XDroid. They showed that

the use of temporal behavior tracking can significantly improve the malware detection

accuracy, and the HMM can generate security alerts when suspicious behaviors are

detected. Also, they claim that their model can inform users about the risk level of

their apps in real-time, and can dynamically update the parameters of the model by

using an on-line algorithm and users preferences. They conducted the experiment on

the Drebin benchmark malware dataset and demonstrated that the proposed model can

accurately (∼82%) assess the risk levels of malicious applications and provide adaptive

risk assessment based on user input.

31

3.4 Summary

Time to time, number of static and dynamic methods are proposed by

the researchers for the detection of Windows Desktops and Android based devices

has been discussed in this Chapter. However, to evade the detection techniques the

malware writers changes the obfuscations more than the behaviour of the malware.

From the literature survey, we understand that all the malware are not built with

the same functionality. Therefore, if one can separate the malware family with its

functionality then the malware detection accuracy can be improved. Hence, in this

thesis, we systematically develop and proposed new techniques to detect the advanced

malware with high accuracy for the Windows Desktops and Android based devices.

32

CHAPTER 4

GROUP-WISE CLASSIFICATION FOR THE

DETECTION OF WINDOWS DESKTOPS

MALWARE

4.1 Introduction

The advanced malware, in particular, metamorphic variants with the same

malicious behavior (family), can obfuscate themselves to look different from each other.

Therefore, the prolong traditional signature matching technique to combat the threat-

s/attacks from such an advanced malware is no more effective. Also, to detect the

unknown malware with high accuracy is always a challenging task. Therefore, to de-

tect the advanced malware with high accuracy, in this Chapter we study variation in

the size of malware generated by the three popular advanced malware creator kits viz.

Next Generation Virus Creation Kit (NGVCK) [112], Phalcon-Skism Mass-Produced

Code Generator (PS-MPC) [17] and Second generation virus generator (G2) [16], and

then classified the unknown malware by two methods. In the first/regular method

(without grouping), similar to other authors [77] [64] [68] approaches, we selected the

features by taking all the dataset together, and in the second method, we selected the

features after group-wise partitioning the executables in 5 KB size for the classification

of unknown malware.

33

4.2 Data Preprocessing

For the study, we downloaded 11088 malware (2014) from the Malicia project

[69] and collected 4006 benign programs (also verified from virustotal.com [24]) from

different Windows Desktops. In the malware dataset, we observed that 97.18% malware

are below 500 KB (Figure 4.1), hence for the analysis, we took the dataset (both

malware and benign executables) which are below 500 KB. Then we converted all

the selected executables (10558 malware and 2454 benign) to their assembly codes

by objdump utility available in the Linux system and found that the executables are

basically based on 1147 opcodes. To simplify the analysis we uniquely mapped the

opcodes with a fixed integer (Appendix B).

For the classification, we investigated the size of the malware variant gen-

erated by the advanced malware generator kits, by generating 100 malware each from

the NGVCK, PS- MPC and G2 (fig 4.2 - 4.4). From the figure, we observed that the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600

N
u
m

b
e
r

o
f
M

a
lw

a
re

 →

Size in Kilobytes →

Figure 4.1: Number of malware with respect to the file size.

34

variation in the size of malware generated from same kits are within 5 KB. Hence, we

partitioned the data in 100 groups in 5 KB range. To compare the regular method with

the partitioning method we randomly selected 750 malware and 610 benign programs

from all the groups, such that at least five executables from each group can be randomly

tested by the trained classifiers.

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e
 i
n

 K
ilo

b
y
te

s
 →

Files →

Figure 4.2: Fluctuations in the size of malware generated by NGVCK kit.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e
 i
n

 K
ilo

b
y
te

s
 →

Files →

Figure 4.3: Fluctuations in the size of malware generated by G2 kit.

4.3 Feature Selection

35

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e
 i
n

 K
ilo

b
y
te

s
 →

Files →

Figure 4.4: Fluctuations in the size of malware generated by PS-MPC kit.

For the detection of malware, feature selection plays a vital role,

not only to represent the target concept but also to speed-up the learning and testing

process. In this, often datasets are represented by many features, however, few of them

may be sufficient to improve the concept quality, and also limiting the features will

speed-up the classification. The analysis (Sec. 4.2) shows that the executables are

based on 1147 opcodes (Appendix B), hence executable can be represented as a vector

of 1147 opcodes, and some of these opcodes can be used as features for the effective

and efficient detection of malware. Therefore, to find the prominent features which can

represent the target concept, opcodes of the collected executables are obtained by using

freely available objdump utility available in the Linux system. Then we computed the

normalized opcode occurrence of the malware and benign programs in all together (i.e.

without grouping) and also for each group separately. We observed that the opcode

occurrence in the malware and benign programs without grouping the executables

differ in large (Figure 4.5) as well in each formed groups, e.g. Figures 4.6, 4.7, 4.8

and 4.9 shows the normalized opcode occurrence for the group 10-15, 140-145, 240-245

and 415-420 KB size respectively keeping the lower threshold 0.02. We also separated

the opcodes of the datasets (without grouping) which occur more in malware and

benign programs (Figures. 4.10 and 4.11). The above analysis shows that the opcode

occurrence in any group differs significantly when compared with the opcode occurrence

obtained without forming the groups and also between the groups (e.g. Figure 4.12

36

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2
6
7

12
50
59
74
75
78
79
80

101
104
179
418
426
431
432
441
448
451
454
457
461
473
479
482
494
508
514
515
525
530
531
538
555
567
578
624
625
632
639
692
737
743
781
834
839
887
888
889
891
893
906

1128
1135
1136

Normalized Frequency →

O
p
c
o
d
e
 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4.
5:

N
or

m
al

iz
ed

op
co

d
e

o
cc

u
rr

en
ce

o
f

a
ll

th
e

co
ll

ec
te

d
m

a
lw

a
re

a
n

d
b

en
ig

n
p

ro
g
ra

m
ke

ep
in

g
th

e
lo

w
er

th
re

sh
o
ld

0
.0

2
.

37

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2

7

12

50

74

75

101

104

179

324

325

386

387

426

431

432

437

438

441

451

454

461

467

470

476

479

480

482

494

514

567

571

578

589

599

603

607

624

625

632

639

640

641

692

693

737

743

781

782

834

893

906

1128

1136

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

4
.6

:
N

or
m

al
iz

ed
op

co
d

e
o
cc

u
rr

en
ce

of
th

e
m

a
lw

a
re

a
n

d
b

en
ig

n
p

ro
g
ra

m
o
f

si
ze

1
0
-1

5
K

B
ke

ep
in

g
th

e
lo

w
er

th
re

sh
o
ld

0
.0

2
.

38

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2
3
4
5
6
7

12
18
19
50
59
61
74
75
78
79
80
81
84

101
104
114
115
160
161
179
181
193
194
204
324
325
377
386
387
418
420
426
431
432
434
437
438
440
441
442
445
448
451
454
457
461
464
467
470
473
476
479
482
485
488
491
494
497
503
506
508
514
515
518
525
530
531
538
539
542
549
555
567
578
588
593
624
625
632
639
640
641
692
693
695
737
738
740
743
764
765
773
774
781
828
834
839
877
878
887
888
889
891
893
906

1128
1135
1136

Normalized Frequency →

O
p

c
o

d
e

 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4.
7:

N
or

m
al

iz
ed

op
co

d
e

o
cc

u
rr

en
ce

of
th

e
m

a
lw

a
re

a
n

d
b

en
ig

n
p

ro
g
ra

m
o
f

si
ze

1
40

-1
4
5

K
B

ke
ep

in
g

th
e

lo
w

er
th

re
sh

o
ld

0
.0

2
.

39

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2

3

6

7

12

50

59

74

75

78

79

80

101

104

126

127

159

160

161

179

193

194

204

207

208

426

431

432

434

437

438

441

451

454

461

467

479

482

494

503

508

514

525

530

531

538

549

555

567

571

578

604

624

625

632

639

640

641

692

693

737

738

740

743

781

834

839

877

878

888

889

891

893

906

1128

1136

Normalized Frequency →

O
p

c
o

d
e

 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4.
8:

N
or

m
al

iz
ed

op
co

d
e

o
cc

u
rr

en
ce

of
th

e
m

a
lw

a
re

a
n

d
b

en
ig

n
p

ro
g
ra

m
o
f

si
ze

2
40

-2
4
5

K
B

ke
ep

in
g

th
e

lo
w

er
th

re
sh

o
ld

0
.0

2
.

40

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2

7

12

50

74

75

101

104

179

426

431

432

441

454

461

479

482

514

567

578

632

639

692

737

743

781

834

864

893

906

1128

1136

Normalized Frequency →

O
p

c
o

d
e

 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4.
9:

N
or

m
al

iz
ed

op
co

d
e

o
cc

u
rr

en
ce

of
th

e
m

a
lw

a
re

a
n

d
b

en
ig

n
p

ro
g
ra

m
o
f

si
ze

4
15

-4
2
0

K
B

ke
ep

in
g

th
e

lo
w

er
th

re
sh

o
ld

0
.0

2
.

41

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

2

3

4

5

6

7

12

18

19

50

59

61

78

79

80

84

101

114

115

159

161

179

193

194

204

207

208

418

426

431

432

479

525

538

555

632

639

692

737

834

839

887

888

889

891

893

1128

1135

1136

Normalized Frequency →

O
p
c
o
d
e
 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4
.1

0:
O

p
co

d
es

w
h

ic
h

fo
u

n
d

m
o
re

in
m

a
lw

a
re

w
it

h
o
u

t
g
ro

u
p

in
g

th
e

d
a
ta

se
t.

42

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

74

75

441

461

480

482

514

571

578

604

607

624

625

782

906

907

Normalized Frequency →

O
p
c
o
d
e
 →

B
e
n
ig

n
M

a
lw

a
re

F
ig

u
re

4
.1

1
:

O
p

co
d

es
w

h
ic

h
fo

u
n

d
m

o
re

in
b

en
ig

n
p

ro
g
ra

m
s

w
it

h
o
u

t
g
ro

u
p

in
g

th
e

d
a
ta

se
t.

43

-1

-0
.5 0

 0
.5 1

2

3

6

7

12

50

59

61

74

75

78

79

80

81

84

101

104

115

159

160

161

179

204

291

324

325

357

358

359

377

386

387

418

420

426

431

432

434

437

438

440

441

445

448

451

454

457

461

464

467

470

473

479

480

482

485

488

491

494

503

508

514

525

530

531

538

539

542

549

555

567

578

589

593

595

624

625

632

639

640

641

692

693

695

737

738

740

743

773

774

781

782

834

839

887

888

889

891

893

1128

1135

Difference of Normalized Frequency →

O
p

c
o

d
e

 →

0
-5

K
B

1
5

-2
0

K
B

F
ig

u
re

4
.1

2:
D

iff
er

en
ce

in
th

e
o
cc

u
rr

en
ce

of
re

sp
ec

ti
ve

o
p

co
d

es
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
lw

a
re

p
ro

g
ra

m
o
f

si
ze

0
-5

K
B

a
n

d
1
5
-2

0
K

B
ke

ep
in

g
th

re
sh

o
ld

0.
02

.

44

-1

-0
.5 0

 0
.5 1

2

3

5

6

7

12

13

50

52

59

61

74

75

81

84

101

102

104

115

159

160

161

179

204

220

268

286

291

324

325

357

358

377

386

387

418

426

431

432

437

438

441

442

448

451

454

457

461

464

470

473

476

479

480

482

485

491

494

497

503

508

514

515

525

538

539

549

555

567

571

578

588

589

607

624

625

632

639

640

641

692

693

698

737

738

740

743

781

782

817

818

828

829

834

839

858

864

877

878

891

893

906

907

1128

1136

Difference of Normalized Frequency →

O
p

c
o

d
e

 →

3
0

-3
5

K
B

5
5

-6
0

K
B

F
ig

u
re

4.
13

:
D

iff
er

en
ce

in
th

e
o
cc

u
rr

en
ce

of
re

sp
ec

ti
ve

o
p

co
d
es

b
et

w
ee

n
b

en
ig

n
a
n

d
m

a
lw

a
re

p
ro

g
ra

m
o
f

si
ze

3
0
-3

5
K

B
a
n

d
5
5
-6

0
K

B
ke

ep
in

g
th

re
sh

o
ld

0.
02

.

45

and Figure 4.13 shows the difference in the occurrence of respective opcodes between

benign and malware program of sizes 0-5 KB & 15-20 KB and 30-35 KB & 55-60

KB keeping the lower threshold 0.02). Finally, the features are selected after ordering

the opcodes by their occurrence difference (Algorithm 4.1) in all together and in each

group separately for the classification of malware by the regular method and group-wise

partitioning the data respectively.

Algorithm 4.1 : Feature Selection

INPUT: Pre-processed data
Nb: Number of benign executables, Nm: Number of malware executables, n: Number
of features required
OUTPUT: List of features

BEGIN
for all benign data do

Add all frequency fi of each opcode o and Normalize them with respect to Nb

Fb(oj) = (
∑

fi(oj))/Nb

end for
for all malware data do

Add all frequency fi of each opcode o and Normalize them with respect to Nm

Fm(oj) = (
∑

fi(oj))/Nm

end for
for all opcode oj do

Find the difference of each opcode normalized frequency D(oj).

D(oj) = |Fb(oj)− Fm(oj)|

end for
return n number of opcodes with highest D(o).

4.4 Detection of Unknown Malware

To study the classification of unknown malware by the regular method and

our novel group-wise partitioning the data, we selected the malware and benign pro-

gram of below 500 KB size (10558 malware and 2454 benign executables). For the

classification, we used Naive Bayes classifier which can handle an arbitrary number of

independent variables and is briefly described below.

46

4.4.1 Naive Bayes classifier

Given a set of features (opcodes), O = o1, o2, o3..., on, the Naive Bayes clas-

sifier gives the posterior probability for class C (malware/benign) and can be written

as

P (C|o1, o2, ..on) =
P (C)P (o1, o2, ..on|C)

P (o1, o2, ..on)
(4.1)

where, P (C|o1, o2, ..on) is a posterior probability of the class membership,

i.e. probability of a test executable that belongs to class C. Since Naive Bayes assumes

that the conditional probabilities of independent variables are statistically independent,

we can decompose the likelihood to a product of terms as

P (o1, o2, ..on|C) =

n∏
i=1

P (oi|C) (4.2)

Here, P (oi|C) is the probable similarity of occurrence of feature oi of class

C and can be computed by the equation

P (oi|C) =
1√

2πσ2C)
e−

(o− µC)2

2σ2C
(4.3)

where o denotes the feature oi opcode of the test executable and µC , σC are the mean

and variance of class C.

From the above, classification can be done by comparing the posterior prob-

ability between both the class models, if the malware class posterior probability of test

executable is high then it is classified as malware else classified as benign programs.

4.4.2 Regular Method

Figure 4.14 shows the regular method for the classification of unknown mal-

ware. In this method, for the classification, the promising features are obtained by

computing the difference in the normalized opcodes frequency between benign and

47

malware executables (Figure 4.5). Then we trained the classifier by 9808 malware and

1844 benign executables and tested with 750 malware and 610 benign programs.

Testing data

Results
analysis

Collected datasets

Traning data

Feature
selection

Train the
Naive Bayes

classifier

Test the
trained

classifier

Figure 4.14: Flow chart for the detection of unknown malware without partitioning the
datasets.

For the classification, we have used Waikato Environment for Knowledge

Analysis (WEKA) (a well suited open source software for machine learning which con-

tains the implementation of various data mining algorithms. It provides algorithms for

data pre-processing, classification, regression, clustering, association rules and visuali-

sation that are meant for the applications which can use machine learning techniques

to solve various real-world problems [47]). We have chosen the Naive Bayes classifier

for the study, and its performance is measured by computing the detection accuracy

given as

Accuracy(%) =
TP + TN

TM + TB
× 100 (4.4)

where,

TP −→ True positive, the number of malware correctly classified.

TN −→ True negative, the number of benign correctly classified.

TM −→ Total number of malware.

TB −→ Total number of benign.

48

The performance of the Naive Bayes classifier has been investigated with

the testing data (750 malware 610 benign programs) which are not used for the training

with 20 - 200 best features incrementing 5 features at each step, and the results obtained

are shown in the Figure 4.16. We observed that the accuracy of the classifier is almost

flat if the number of features is more than 90, and the best accuracy obtained by this

method is 78.33%.

4.4.3 Group-wise Partitioning the Datasets

In this method as shown in Figure 4.15, we group-wise partitioned the col-

lected dataset in the 5 KB size range. The partition size is based on the study (Sec.

4.2) that the size of malware generated by NGVCK, PS-MPC and G2 kits does not

vary by more than 5 KB.

Collected datasets

Select training data Select testing data

Partition the collected dataset in the range of 5 KB size, separately for malware and benign
programs

Select
feature

from
 Group 1

Train the Naive Bayes classifier separately
for each group

Result Analysis

Select
feature

from
Group 2

Select
feature

from
Group 3

Select
feature

from
Group

100

Test the trained
classifier separately

for each group

Figure 4.15: Flow chart for the detection of unknown malware by group-wise partitioning the
executables.

For the comparative analysis, we took the same training and testing data

which were used in the regular method. However, to improve the detection accuracy we

49

obtained the features from each group, then serially trained the Naive Bayes classifier

and classified the test data which are not used for the training with 20 - 200 best

features incrementing 5 features at each step, and the results obtained are shown in

Figure 4.16. We found that the accuracy obtained by this method outperformed the

regular method and the best accuracy obtained is 87.02% i.e. the detection accuracy

is ∼8.7% more compared to the regular method.

 70

 75

 80

 85

 90

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200

A
c
c
u

ra
c
y
 →

Number of features →

Regular Method
Partitioning Method

Figure 4.16: Detection accuracy obtained by both the methods.

50

4.5 Summary

For the detection of malware, feature selection plays a vital role, not only

to represent the target concept but also to speed-up the learning and testing process.

Therefore, we proposed an approach to find prominent features for the classification

of malware. To improve the malware detection accuracy, we investigated the variation

in the size of malware generated by G2, PS-MPC and NGVCK and found that the

variation in the size of malware generated from the same kit is within 5 KB range.

Therefore we partitioned the collected dataset in 100 groups, each in 5 KB range of size

and then selected the feature from each group to train the classifier for the detection of

unknown malware. We found that, if features are selected by group-wise partitioning

the dataset in the range of 5 KB then the malware can be detected ∼ 8.7% more

accurately then the regular method.

51

CHAPTER 5

CLASSIFIERS SELECTION AND K-MEAN

CLUSTERING TO IMPROVE THE

DETECTION ACCURACY

5.1 Introduction

In the previous Chapter, we demonstrated that group-wise classification sig-

nificantly improves malware detection accuracy. Nevertheless, the detection accuracy

also depends on the performance of the classifier. Therefore, in this Chapter, we study

the performance of the popular thirteen classifiers viz. RF, J48, REPTREE, LMT,

Decision stump, ADT, NBT, FT, LAD, Random Tree, Simple CART, BFT and J48

Graft using N-fold cross-validation (a popular statical procedure to estimate and com-

pare the effectiveness of machine learning algorithms, in which dataset is randomly

divided into N chunks of almost equal sizes and then classification model is trained and

tested N times. Each time it is trained on (N - 1) parts and tested on the remaining

single part. Finally, effectiveness/accuracy of the model is obtained by averaging the N

individual accuracy [22]). Among these thirteen classifiers further we studied in-depth

the top five classifiers (RF [21], J48 [19], LMT [58], FT [57] and NBT [55]) to improve

the detection accuracy by grouping the executables using Optimal k-Means clustering

algorithm and then classified the data with the promising features obtained from each

of the cluster/groups. For the analysis same Malicia dataset (Sec. 4.2) and the feature

52

selection technique (Sec. 4.3) has been used.

5.2 Classifiers selection

In order to select the classifiers, we investigate the performance of classifier,

(a schematic of our novel approach is shown in the Figure 5.1). It involves finding

the promising features (Algorithm 4.1), training of classifiers and finally finding the

detection accuracy of the classifiers. For the purpose, first we have chosen the popular

thirteen classifiers and selected the effective features from the formed 100 groups (Sec.

4.3) by taking the union of the top ten features from each group. Then with these

features the chosen popular thirteen tree based classifiers viz. RF, J48, REPTREE,

LMT, Decision stump, ADT, NBT, FT, LAD, Random Tree, Simple CART, BFT and

J48 Graft available in WEKA has been tested by N-fold cross-validation process.

Figure 5.1: Flow chart for the detection of unknown malware.

53

Figure 5.2 shows the accuracy obtained by all the thirteen investigated

classifiers for n = 2, 4, 6..., 16 folds. We observed that RF is the best classifier and its

accuracy is almost flat after n = 2. Rest twelve classifiers accuracy fluctuates. However,

after ten-fold cross-validation, the fluctuations in all the classifiers are least and observe

maximum detection accuracy at ten-fold cross-validation by RF.

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16

A
c
c
u
ra

c
y
 →

Folds →

randomforest
j48

reptree
lmt

decisionstump
adt
nbt

ft
lad

randomtree
simplecart

bft
j48graft

Figure 5.2: Accuracy of the thirteen classifiers with N-fold cross validation.

Now, among the thirteen investigated classifier, we selected the top five

viz. RF, LMT, NBT, J48, and FT to understand its performance in view of that if

our approach is implemented for detection of unknown malware, then what will be the

accuracy of our approach. Therefore to study the overall performance of these five

classifiers, we randomly selected 750 malware and 610 benign programs from all the

54

groups, such that at least five executables from each group can be randomly tested by

the trained classifiers (training is done by 9808 malware and 1844 benign executables)

for the detection of unknown malware. Table 5.1 shows the result obtained in terms of

True Positive Ratio (TPR), True Negative Ratio (TNR), False Positive Ratio (FPR),

False Negative Ratio (FNR), and the detection accuracy.

Classifiers TPR FNR FPR TNR Detection Accuracy

RF 98.53 1.47 2.81 97.19 97.95

LMT 97.87 2.13 4.04 95.96 97.04

NBT 97.07 2.93 3.33 96.67 96.89

J48 97.20 2.80 4.04 95.96 96.66

FT 97.20 2.80 4.91 95.09 96.28

Table 5.1: Performance of the top five classifiers.

5.3 Result Analysis

From the investigation, it is clear that RF is the best classifier for identi-

fication of unknown malware. Nevertheless, the other classifiers are also reasonably

good (accuracy > 96.2%) for the detection of unknown malware. We observed that the

NBT, J48 and FT classifiers have almost same True positive ratio. In this, the overall

accuracy of Functional Tree classifier is lowest, which is basically due to high False

positive ratio. Figure 5.3 shows the variation of False positive and False negative of

the studied classifiers. We found that False positives ratio of RF is almost double than

the False positive ratio of LMT however, for overall accuracy both (FP and FN) has to

be low. From Figure 5.4 we find that the True positives of all the classifiers are more

than the TN, i.e. malware are more correctly classified then the benign programs. The

best accuracy obtained by the selected five classifiers are shown in Figure 5.5, and the

comparison of our results with Santos et al., Siddiqui et al., Asaf Shabtai et. al. for

RF and Mehdi et al., Santos et al., Olivier Henchiri et al. for J48 are shown in Figure

5.6. Among these authors, our approach uncovers the malware with the best accuracy

(97.95%).

55

 1

 2

 3

 4

 5

RandomForest LMT NBT J48 FT

M
e
a
s
u
re

s
 →

Classifiers →

FN

FP

Figure 5.3: FP and FN of the top five classifiers.

 95

 96

 97

 98

 99

RandomForest LMT NBT J48 FT

M
e
a
s
u
re

s
 →

Classifiers →

TP

TN

Figure 5.4: TP and TN of the top five classifiers.

56

 95

 95.5

 96

 96.5

 97

 97.5

 98

RandomForest LMT NBT j48 FT

A
c
c
u
ra

c
y
 →

Classifiers →

Figure 5.5: Group-wise classification accuracy of the top five classifiers.

Figure 5.6: Comparison of the accuracy obtained by our approach and others.

57

5.4 Improving the Detection Accuracy by Group-wise Clas-

sification using Optimal K-mean Clustering Algorithm

To improve the detection accuracy, further we group-wise partitioned the

malware dataset on the basis of their sizes into nine groups by the Optimal k-Means

clustering algorithm, and the benign programs are accordingly grouped with the cluster

sizes. The number of clusters (value of K) is obtained by the Bayesian information

criterion [25]. Then each group created has been divided into two sets, one set is used

for training of the classifiers, and the other set is used for finding the detection accuracy.

The details of the dataset i.e. the number of malware and benign executables for

Cluster No. of malware No. of benign No. of malware No. of benign
for training for training for testing for testing

1 322 43 55 18

2 1234 20 221 9

3 1489 20 265 9

4 714 71 128 13

5 335 2227 61 402

6 886 36 158 11

7 2716 40 481 11

8 1148 33 204 11

9 18 156 4 21

total 8862 2646 1577 505

Table 5.2: Number of malware and benign executables for training and testing the
classifier.

training and testing the classifiers are given in Table 5.2, and the Figure 5.7 represents

the procedure to group-wise partitioning the dataset, finding the promising features

from each formed group and the classification of unknown malware by RF, J48, LMT,

FT and NBT classifiers.

In the experimental analysis, we ensure that at least 15% of the executables

in the cluster which is not used for training purpose are taken for the testing of the

classifiers. For training and testing of the five classifiers, we selected the promising

features from each group as described in Algorithm 4.1. To measure the effectiveness

of the classifiers with the number of features we took 20, 40, 60, 80 and 100 number of

best features for the classification, and obtained the detection accuracy for each groups

58

Figure 5.7: Flow chart for the group-wise classification using optimal K-mean clustering algo-
rithm.

using the respective test data. We found that all the five classifiers detection accuracy

is more than 98%, in which NBT give the highest accuracy of 99.11% (Figure 5.8). The

Figure 5.9 - 5.17 shows the performance of classifiers for each group with respect to

different numbers of features.

 97

 97.5

 98

 98.5

 99

 99.5

NBT RF FT J48 LMT

A
cc

ur
ac

y
→

Classifiers →

Figure 5.8: Best accuracy of the selected five classifiers.

59

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.9: Detection accuracy obtained by the classifiers from group-1 data.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u
ra

c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.10: Detection accuracy obtained by the classifiers from group-2 data.

60

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.11: Detection accuracy obtained by the classifiers from group-3 data.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u
ra

c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.12: Detection accuracy obtained by the classifiers from group-4 data.

61

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.13: Detection accuracy obtained by the classifiers from group-5 data.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u
ra

c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.14: Detection accuracy obtained by the classifiers from group-6 data.

62

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.15: Detection accuracy obtained by the classifiers from group-7 data.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.16: Detection accuracy obtained by the classifiers from group-8 data.

63

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
c
c
u

ra
c
y
 →

Number of features →

j48
RF

LMT
FT

NBT

Figure 5.17: Detection accuracy obtained by the classifiers from group-9 data.

5.5 Summary

Extensive experimental analysis has been done to study the performance

of the classifiers viz. RF, LMT, NBT, J48, and FT in terms of TPR, TNR, FPR,

FNR and detection accuracy by analyzing benchmark Malicia project dataset and

collected benign programs from different Windows desktops. By our approach, all five

classifiers are able to uncover unknown malware with greater than 96.28% accuracy,

which is better than the maximum detection accuracy (95.9%) reported by Santos et.

al. (2013). Among these classifiers, we found that RF is the best (97.95%) classifier to

detect the unknown malware. Further to improve the detection accuracy we group-wise

partitioned the executables in nine groups using Optimal k-Means clustering algorithm

and accordingly obtained the features from each group to test the classifiers (RF, J48,

LMT, FT, and NBT) for the classification of malware. We found that all classifiers

detection accuracy is more than 98%, in which NBT give the highest accuracy of 99.11%.

64

CHAPTER 6

GROUP-WISE CLASSIFICATION FOR THE

DETECTION OF ANDROID MALICIOUS

APPS

6.1 Introduction

The attractive features and mobility of smart devices have drastically changed

the today’s environment. Many functionalities of these devices are similar to the tradi-

tional information technology system, and can also access the enterprise’s applications

and data, enabling employees to do their work remotely. Also, due to the ease of

use, these devices hold sensitive information such as personal data, browsing history,

shopping history, financial details, etc. [6] i.e. users are ever more frequent to use

the Internet, as a consequence, these devices are a bullseye for the cyber attacks. The

security risks of these devices are not only limited to Bring Your Own Smart Device

(BYOSD) scenarios but also for the devices which are adopted on an ad hoc basis.

The recent attack shows that the security features in these devices are not as par to

completely stop the adversary [99]. Hence smart devices are becoming an attractive

target for online criminals, and they are investing more and more for the sophisticated

attacks viz. ransomware or to steal the valuable personal data from the user devices.

65

In the fast-growing smart devices, Android is the most popular OS, and

the popularity of these devices which are connected through the Internet accessing

billion of online websites encourages malware developer to penetrate the market with

malicious apps to annoy and disrupt the victim. Therefore, any security gap in these

devices means that the information stored or accessing smart devices are at high risk

of being breached. To combat the threat/attack from the malware generally, the tradi-

tional approaches based on the signature matching are used. These signature matching

techniques are efficient from a time perspective but are not effective for the variant and

nor capable to detect continuously growing zero-day malware attack. Also, to evade

the signature-based techniques, malware developer uses several obfuscation techniques.

However, to detect the Android malicious apps, time to time, a number of static and

dynamic methods has been proposed [15], [70],[76], [36] and is viewed as one of the most

important areas to be addressed. However, proposed approaches are not sufficient to

detect the advanced malware to limit/prevent the damages, and very few approaches

are based on opcode occurrence to classify the malicious apps. Therefore, using Drebin

benchmark malware dataset, in this chapter first we investigate the top five classifiers

viz. FT, RF, J48, LMT and NBT (Chapter 5) using opcodes occurrence as the promi-

nent features for the detection of malicious apps, and then to improve the detection

accuracy we group-wise classified the Android apps after grouping the dataset based

on permissions.

6.2 Data Preprocessing and Feature Selection

For the experimental analysis, we downloaded 5531 Drebin [15] benchmark

malware dataset and 4235 benign apps (cross verified from virustotal.com [7]) from

google play store. These apps can be represented as a vector of 256 opcodes [73], and

some of these opcodes can be used as features for the effective and efficient detection of

Android malicious apps. As discussed in Chapter 4 feature selection plays a vital role in

the data classification, and often datasets are represented by many features, however,

few of them may be sufficient to improve the concept quality. Therefore, to find the

prominent features which can represent the target concept, opcodes of the collected

Android apps are extracted as follows

66

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

8

B

F

13

18

1A

1C

1F

20

26

27

28

2E

2F

45

46

49

50

52

53

54

55

58

65

68

6A

6B

70

73

74

78

82

83

84

85

87

88

89

8F

9E

9F

A4

A6

B4

B5

BC

CE

DB

FC

FE

Normalized Frequency →

O
p

c
o

d
e

 →

M
a

lw
a

re
B

e
n

ig
n

F
ig

u
re

6.
1:

T
o
p

5
0

o
p

co
d

es
o
cc

u
rr

en
ce

w
it

h
o
u

t
fo

rm
in

g
th

e
g
ro

u
p

s.

67

1. The .apk files (Android apps) has been decompiled by using freely available apk-

tool [115].

2. From the decompiled data, we kept only the .smali files and discarded other data,

and then

3. Opcodes are extracted from the .smali files.

We analysed the opcode occurrence of all the Android apps and found

that the occurrence of many opcodes in malware and benign apps differ in large (e.g.

the normalized top 50 opcodes whose occurrence significantly differ in malicious and

benign apps is shown in Figure 6.1. The mapping of the opcodes with hexadecimal

representation has been kept same as given by the Android developers (Appendix F

[73])). The prominent opcodes (features), which suppose to distinguish the malicious

and benign Android apps are obtained as described in the Algorithm 6.1. For the

Algorithm 6.1 : Feature Selection

INPUT: Pre-processed data
NB: Number of benign Android apps, NM: Number of Android malicious apps,
n: Total number of prominent features required.
OUTPUT: List of prominent features

BEGIN
for all benign apps do

Compute sum of the frequencies fi of each opcode Op and normalize it.

FB(Opj) = (
∑

fi(Opj))/NB

end for
for all malware data do

Compute sum of the frequencies fi of each opcode Op and normalize it.

FM (Opj) = (
∑

fi(Opj))/NM

end for
for all opcode Opj do

Find the difference of the normalized frequencies for each opcode D(Opj).

D(Opj) = |FB(Opj)− FM (Opj)|

end for
return n number of prominent opcodes as features with high D(Op).

68

classification, we used the same Waikato Environment for Knowledge Analysis (WEKA

[47]), and on the basis of investigation results of previous Chapters, we selected the best

classifier (RF , LMT , NBT, J48, and FT) for analysis, first without grouping the apps,

and then to improve the detection accuracy we classified the apps after grouping the

collected datasets based on permissions.

6.3 Classification Without Grouping the Apps

A novel approach to classify the Android malicious apps is shown in Figure

6.2, which involves finding the promising features (Algorithm 6.1), and the detection

processes. The five selected classifiers are analysed without grouping the apps by

Select testing dataData preprocessing

Feature selection

Supervised learning using
WEKA

Classifiers

Results

Android malware apps from Drebin project Android benign apps from google play store

Selected features

Select training data

Figure 6.2: Flow chart for the detection of Android malicious apps without grouping the data.

applying supervised machine learning technique. For the analysis, we first obtained

the top 200 promising features. Then the performance of the classifier (Equation 4.4)

has been studied by taking 20% of available data (not used for training) with 20 - 200

best features, incrementing 20 features at each step and the results obtained are shown

69

in Figure 6.3. From the analysis, we find that the best accuracy is obtained by FT,

Random forest, J48, LMT, and NBT is approximately 79.27, 74.95, 71.73, 70.51 and

68.87 (Figure 6.4) respectively. Among these classifiers with the variation in features

the

 45

 50

 55

 60

 65

 70

 75

 80

 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y
→

Features →

RandomForest
J48

FT
LMT

NBTree

Figure 6.3: Detection accuracy of the selected five classifiers with number of prominent fea-
tures.

 60

 65

 70

 75

 80

FT RandomForest J48 LMT NBTree

A
cc

ur
ac

y
→

Classifiers →

Figure 6.4: Best accuracy of the selected five classifiers.

least fluctuation is observed in Random forest (Figure 6.3). Figure 6.5 shows the TPR

(malware detection rate) of all five classifiers with the number of prominent features.

We found that compared to other classifiers, the RF gives maximum TPR with least

70

fluctuation.

 40

 50

 60

 70

 80

 90

 100

20 40 60 80 100 120 140 160 180 200

M
e

a
s
u

re
s
 →

features →

J48

RandomForest

NBT

FT

LMT

Figure 6.5: True positive rate of the selected five classifiers with number of prominent features.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

20 40 60 80 100 120 140 160 180 200

M
e

a
s
u

re
s
 →

features →

J48

RandomForest

NBT

FT

LMT

Figure 6.6: True negative rate of the selected five classifiers with number of prominent features.

71

Figure 6.6 shows the TNR (benign detection rate) for all five classifiers with

number of prominent features. Here with some exception, we observed that FT with

the number of prominent features detected the benign better than the other classifiers.

 0

 10

 20

 30

 40

 50

 60

20 40 60 80 100 120 140 160 180 200

M
e
a
su

re
s

→

features →

J48

RandomForest

NBT

FT

LMT

Figure 6.7: False negative rate of the selected five classifiers with number of prominent features.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 40 60 80 100 120 140 160 180 200

M
e
a
su

re
s

→

features →

J48

RandomForest

NBT

FT

LMT

Figure 6.8: False positive rate of the selected five classifiers with number of prominent features.

Figure 6.7 shows the false negative rate of all the selected classifier, we find that,

compared to other classifiers the RF is good, and also fluctuates least with the number

of features. Figure 6.8 shows the false positive rate of the analysed classifiers, and here

72

we observed that all the five classifier does not gives a good result, hence very much

affects the final accuracy. However, although the false negative rate of RF is not as par,

but the fluctuation with the number of features is least compared to other classifiers.

6.4 Grouping of Android Apps

Android is a privilege-separated operating system in which each application

runs as a separate process with unique user/group ID, and operates in an application

sandbox so that apps execution can be kept in isolation from other apps and the system.

Hence, to access the user data or resources from the system, apps need additional capa-

bilities that are not provided by the basic sandbox. To access data or resources outside

the sandbox, the apps have to explicitly request the needed permission. Depending on

how sensitive the area/data is, the requested permission may be granted automatically

by the system or ask the user to approve or reject the request. In Android, these per-

missions can be found in Manifest.permission file, e.g. an app that needs to monitor

incoming SMS messages would specify:

< manifestxmlns : Android = ”http : //schemas.Android.com/apk/res/Android”

package = ”com.Android.app.myapp” >

< uses − permissionAndroid : name = ”android.permission.RECEIV E SMS”/ >

...

< /manifest >

In total there are 235 permissions out of which 163 are hardware accessible

and remaining are for user information access [72]. In terms of security, all these

permissions can be put into two categories i.e. normal and dangerous permissions [11].

Therefore it will be important to study the classification of Android malicious apps

after grouping them into dangerous (Table 6.1) and normal/other permissions.

In Android, if an application need to access resources or data outside its

sandbox, and if there’s very little/no risk to the user’s privacy or in the operation

of other apps, then such permissions are called normal permission. If the requested

permission belongs to normal permission group, then the permission is automatically

73

Permission Group Permissions

CALENDAR READ CALENDAR
WRITE CALENDAR

CAMERA CAMERA

CONTACTS READ CONTACTS
WRITE CONTACTS
GET ACCOUNTS

LOCATION ACCESS FINE LOCATION
ACCESS COARSE LOCATION

MICROPHONE RECORD AUDIO

PHONE READ PHONE STATE
CALL PHONE
READ CALL LOG
WRITE CALL LOG
ADD VOICEMAIL
USE SIP
PROCESS OUTGOING CALLS

SENSORS BODY SENSORS

SMS SEND SMS
RECEIVE SMS
READ SMS
RECEIVE WAP PUSH
RECEIVE MMS

STORAGE READ EXTERNAL STORAGE
WRITE EXTERNAL STORAGE

Table 6.1: Dangerous permissions groups of the Android apps

granted to the app, e.g. permission to access the time zone is a normal permission,

and if an app request permission to access time zone, then it is granted automatically.

Whereas, if an application needs to access resources or data outside its sandbox which

could potentially affect the user’s privacy/data, or in the operation of other apps,

then such permission are called dangerous permission. If the requested permissions

belongs to a dangerous permission group, then the user has to approve/reject the

permission, e.g. the permission to access the user’s contacts is a dangerous permission,

and if an application request permission to access users contacts, then the user has to

approve/reject the permission.

To improve the detection accuracy of Android malicious apps we grouped

the Drebin [15] 5531 benchmark malware dataset and 4235 benign apps available at

Google play store. Our analysis shows that the Drebin dataset does not contain any

apps which need BODY SENSOR permission, therefore we ignored the SENSOR group

74

in our experimental analysis, and made total nine groups (eight groups of dangerous

permissions and one group of normal/other permissions) for the classification of Android

apps.

6.5 Group-wise Classification of Android Malicious Apps

Similar to section 6.2 we studied the occurrence of opcodes in both benign

and malicious Android apps, separately in each formed group. Then using the Algo-

rithm 6.1 we obtain differences in the opcodes occurrence between benign and malicious

apps and the group-wise top 50 opcodes whose occurrence significantly differ are shown

in Figures 6.9 - 6.17 for the CALENDAR, CAMERA, CONTACTS, LOCATION, MI-

CROPHONE, OTHERS, PHONE, SMS, and STORAGE group respectively, whereas,

difference in the opcodes occurrence without forming the group is shown in Figures 6.1.

From the analysis (Figures 6.9 - 6.17) we find that the opcode occurrence between any

group differs significantly when compared with the opcode occurrence obtained without

forming the groups, and also between any two groups. Hence, the final features are

selected after ordering the opcodes by their occurrence difference in each group and

used it for the classification of Android apps.

For the classification, the detail distribution (No. of training and testing

malicious and benign apps, Total No. of apps in the group used for the classification)

of the collected dataset is given in Table 6.2. For the group-wise classification, we

used same WEKA tool, and on the basis of previous investigation (Chapter 5), we

selected the same classifier (Random Forest, Logistic model trees, Naive-Bayes Tree,

J48 and Functional Tree) for the analysis, but prominent features to train and test the

classifiers, the data are taken from the considered group only (Table 6.2). To measure

the goodness of trained models, we evaluate the detection accuracy as discussed in

Section 4.4.2.

The performance of the classifier has been investigated for each group by

taking randomly 20% of the collected data (other than the training) with 20 - 200

best features incrementing 20 features at each step, and the results obtained are shown

75

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

5

7

8

0A

0B

0C

0E

0F

11

12

13

14

16

1A

1F

21

22

27

28

29

2B

36

38

46

4B

4D

50

52

54

55

56

58

59

5B

60

62

69

70

71

72

74

82

8E

B5

B6

B7

D8

DC

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6
.9

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
C

A
L

E
N

D
A

R
g
ro

u
p

.

76

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0B

0C

0D

0E

0F

11

12

14

1A

1C

1E

1F

22

23

27

28

29

33

34

38

44

46

4D

4F

52

53

54

55

59

62

6E

70

71

72

74

77

82

91

B1

B5

B6

B7

D8

DF

E1

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6.
10

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n
d

m
a
li

ci
o
u

s
a
p

p
s

in
th

e
C

A
M

E
R

A
g
ro

u
p

.

77

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0C

0E

0F

11

12

13

14

16

1A

1C

1E

1F

21

22

23

27

28

29

33

34

38

46

4D

4F

50

52

53

54

55

59

5B

5C

62

67

69

70

71

72

74

77

B5

B6

B7

D8

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6
.1

1:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
C

O
T

A
C

T
S

g
ro

u
p

.

78

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0C

0D

0E

0F

11

13

15

1A

1C

1E

1F

21

22

23

27

28

29

33

34

39

44

46

4B

4D

4F

50

52

54

55

59

5B

62

6E

70

71

72

74

76

77

B5

B6

B7

D8

DF

E1

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6.
12

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
L

O
C

A
T

IO
N

g
ro

u
p

.

79

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0B

0C

0D

0E

0F

11

12

13

14

1A

1F

21

22

23

27

28

29

33

34

35

36

38

39

46

48

49

4D

4F

52

53

54

55

59

62

71

72

74

76

B0

B1

B5

B6

B7

D8

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6.
13

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
M

IC
R

O
P

H
O

N
E

g
ro

u
p
.

80

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0C

0D

0E

11

12

13

14

1A

1F

20

21

22

23

27

28

29

32

33

35

37

38

39

3A

3B

46

4D

52

54

59

5B

62

69

6E

6F

70

71

72

74

77

91

B5

B6

B7

D8

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6
.1

4:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
O

T
H

E
R

g
ro

u
p

.

81

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0C

0E

0F

11

12

13

14

15

1A

1C

1E

1F

21

22

23

27

29

33

34

39

44

46

4B

4D

4F

52

54

55

59

5B

62

69

6E

70

71

72

74

76

77

B1

B5

B6

B7

D8

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6
.1

5:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n
d

m
a
li

ci
o
u

s
a
p

p
s

in
th

e
P

H
O

N
E

g
ro

u
p

.

82

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

0A

0C

0D

0E

0F

11

12

13

14

16

1A

1E

1F

20

22

23

27

28

29

33

34

38

46

48

4D

4F

52

53

54

55

59

5B

62

67

69

70

71

72

74

77

B1

B5

B6

B7

D8

DF

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6.
16

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
S

M
S

g
ro

u
p

.

83

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

1

2

7

8

10

12

13

14

15

17

18

19

20

21

26

28

30

31

33

34

35

39

41

51

52

57

68

70

75

77

79

82

84

85

89

91

98

103

105

110

112

113

114

116

119

181

182

183

216

223

Normalized Frequency →

O
p

c
o

d
e

 →

B
e

n
ig

n
M

a
lw

a
re

F
ig

u
re

6.
17

:
T

op
50

op
co

d
es

o
cc

u
rr

en
ce

d
iff

er
en

ce
b

et
w

ee
n

b
en

ig
n

a
n

d
m

a
li

ci
o
u

s
a
p

p
s

in
th

e
S

T
O

R
A

G
E

g
ro

u
p

.

84

in Figures 6.18 - 6.26 for the CALENDAR, CAMERA, CONTACTS, LOCATION,

MICROPHONE, OTHERS, PHONE, SMS and STORAGE group respectively.

No. of No. of No. of No. of Total No.
Groups malicious apps benign apps malicious apps benign apps of apps

for the for the for the for the
training training testing testing

CAlENDAR 59 57 14 14 144

CAMERA 179 423 44 106 752

CONTACTS 1073 356 268 89 1786

LOCATION 1538 68 383 18 2007

MICROPHONE 95 218 23 55 391

OTHERS 110 891 27 223 1251

PHONE 3981 1453 986 373 6793

SMS 2712 239 677 60 3688

STORAGE 2923 837 730 210 4700

Table 6.2: Number of benign and Android malicious apps used for training and testing
the classifiers.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u
ra

c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.18: Detection accuracy of the classifiers for the CALENDAR group.

85

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u
ra

c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.19: Detection accuracy of the classifiers for the CAMERA group.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u

ra
c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.20: Detection accuracy of the classifiers for the CONTACTS group.

86

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u
ra

c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.21: Detection accuracy of the classifiers for the LOCATION group.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u

ra
c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.22: Detection accuracy of the classifiers for the MICROPHONE group.

87

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u
ra

c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.23: Detection accuracy of the classifiers for the OTHERS group.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u

ra
c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.24: Detection accuracy of the classifiers for the PHONE group.

88

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u
ra

c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.25: Detection accuracy of the classifiers for the SMS group.

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

A
c
c
u

ra
c
y
 →

Features →

J48
RandomForest

NBT
FT

LMT

Figure 6.26: Detection accuracy of the classifiers for the STORAGE group.

89

No. of Features J48 Random Forest NBT FT LMT

20 93.69 95.01 90.37 93.32 94.28

40 95.28 96.26 92.26 93.78 93.45

60 95.51 96.10 94.24 94.01 94.31

80 94.83 96.32 94.44 95.38 95.46

100 95.15 96.24 94.41 95.43 85.47

120 94.48 95.96 92.96 94.57 94.23

140 95.12 96.08 93.68 93.53 94.76

160 95.39 95.16 94.97 95.16 94.29

180 94.94 95.73 93.93 95.18 94.56

200 94.71 95.78 93.24 94.98 94.71

Maximum 95.51 96.32 94.97 95.43 95.47

Minimum 93.69 95.01 90.37 93.32 93.45

Table 6.3: Average accuracy obtained by the classifiers.

The average accuracy obtained (here, the average accuracy means the sum of accuracy

obtained by the classifier in the individual group with a fixed number of features divided

by the total number of groups) by the selected classifier are shown in Table 6.3. The

analysis shows that the RF average detection accuracy is best among the five classifiers

and fluctuates least with the number of features, whereas NBT performance is worst

and fluctuate maximum with the number of features. However, the maximum average

accuracy obtained by the selected five classifiers does not fluctuate much (94.97% -

96.32%) but minimum average accuracy fluctuation is high (90.37% - 95.01%), and for

the best performance one shall take top 80 - 100 features, for the training and testing.

The best accuracy obtained by the classifier in all the groups are given in Table 6.4.

We find that the detection accuracy is maximum in the CALENDAR group and

Groups Best Classifier Accuracy Features Required TN TP

CALENDAR RF 100.00 20 1.00 1.00

CAMERA FT 96.67 40 0.93 0.98

CONTACTS RF 96.08 120 0.99 0.89

LOCATION FT 99.25 60 0.99 0.94

MICROPHONE FT 93.59 120 0.87 0.96

OTHERS LMT 96.80 160 0.85 0.98

PHONE RF 96.54 60 0.98 0.92

SMS FT 98.51 100 1.00 0.80

STORAGE LMT 96.91 140 0.99 0.88

Table 6.4: Group-wise maximum accuracy, TP and TN of the classifiers.

minimum in the MICROPHONE group (Figure 6.27) obtained by FT and RF classifier

90

respectively. The overall average maximum accuracy comes to 97.15%, which is very

much better than the obtained accuracy without grouping the dataset (Sec. 6.3),

Bahman Rashidi et. al. [76], Annamalai et. al [70], Arp, et. al. [15] and Ali Feizollah,

et. al. [36] (Figure 6.28). In terms of TP i.e. detection rate of malicious apps, the

CALENDAR group are best classified by RF and SMS group are least by FT, while

in terms of TN i.e. benign detection rate, CALENDAR and SMS group are best

classified by RF and FT classifier respectively, while OTHER group containing normal

permissions is best classified by the LMT classifier. The group-wise best results of TP

and TN obtained by the classifiers which give the best accuracy is shown in Table 6.4

and is depicted in Figure 6.29.

 93

 94

 95

 96

 97

 98

 99

 100

MICROPHONE CONTACTS PHONE CAMERA OTHERS STORAGE SMS LOCATION CALENDAR

FT RF RF FT LMT LMT FT FT RF

Groups

Classifiers

Figure 6.27: Group-wise best detection accuracy obtained by the classifiers.

91

Figure 6.28: Comparisons of accuracy achieved by us with four other authors.

Figure 6.29: Group-wise best TP and TN of the classifiers.

92

6.6 Summary

The threats/attacks from the malicious apps in Android devices are now

never seen at before levels, as millions of android apps are available officially and by

the third party. Some of these available apps may be malicious, hence these devices

are very much vulnerable to cyber threat/attack. The consequence will be devastating

if in time counter-measures are not developed. Therefore, in this chapter, using Drebin

benchmark malware dataset, first without grouping the data we investigated the five

classifiers (FT, RF, J48, LMT, and NBT) for the detection of malicious apps. We

found that among the studied classifiers, FT is the best classifiers to detect the malware

(∼ 79.27% accuracy). However, true positives i.e. malware detection rate is highest

(∼ 99.91%) by RF and fluctuate least with the different number of prominent features

compared to other studied classifiers, and is better than the BooJoong et. al., F-

measure (98%) [52]. The analysis shows that overall accuracy is majorly affected by

the false positives of the classifier.

Later, we group-wise analyzed the dataset based on permissions, and ex-

perimentally demonstrated how to improve the detection accuracy of Android malicious

apps, and achieved up to 97.15% overall average accuracy. The obtained results out-

performed the accuracy achieved by without grouping the data (79.27%, 2017), Arp,

et. al. (94%, 2014), Annamalai et. al. (84.29%, 2016), Bahman Rashidi et. al. (82%,

2017)) and Ali Feizollah, et. al. (95.5%, 2017). Among these groups, the MICRO-

PHONE group detection accuracy is least while CALENDAR group apps are detected

with maximum accuracy and for the best performance, one shall take top 80 - 100

features for the training and testing. In terms of TP i.e. detection rate of malicious

apps, CALENDAR group is best classified by RF, and SMS group is least by FT, while

in terms TN i.e. benign detection rate, CALENDAR, and SMS group are best clas-

sified by RF, and FT classifier respectively, while OTHER group containing normal

permissions is best classified by the LMT classifier.

93

CHAPTER 7

CONCLUSIONS AND FUTURE

DIRECTIONS

Nowadays most of the computational devices are connected to the Internet,

as a consequence, these devices are very much vulnerable to the cyber threat/attack

from the advanced malware. It can penetrate networks, steal confidential information

from desktops and smart devices, bring down servers and can cripple infrastructures

etc. To combat the threat/attacks from the malware, anti-malware have been devel-

oped. The existing anti-malware are mostly based on the assumption that the malware

structure does not change appreciably. But the recent advancement in second gener-

ation malware, which can create millions of its variants have posed challenges to the

anti-malware developers, and it is an indisputable fact that the traditional approach to

combat the threats/attack from today’s highly sophisticated customized second gener-

ation malware with a technology-centric are ineffective.

For the detection of malware, feature selection plays a vital role, not only

to represent the target concept but also to speed-up the learning and testing process.

In this, often datasets are represented by many features, however, few of them are

sufficient to improve the concept quality, and also limiting the features will speed-up

the classification. Therefore, to find the prominent features which can represent the

target concept, we studied the occurrence of opcodes in both benign and malware

separately and found that the occurrence of many opcodes in malware and benign

executables differ in large. Thus for the detection of malware, we selected the top

94

opcodes as features, whose occurrence significantly differ between the malware and

benign executables.

The metamorphic malware variants lead to a huge signature database for

the detection by traditional signature based techniques. Therefore, for the effective

detection of unknown advanced malware for Windows Desktops, we present a novel

approach by first investigating the variation in the size of malware generated by meta-

morphic malware generator kits and then group-wise classifying the collected dataset

in 100 groups. We found that, if features are selected by partitioning dataset in the

range of 5 KB and then classified, the malware are detected with 8.7% more accurate

then the regular method.

To find the best classifier for the detection of unknown/advanced mal-

ware, we studied the performance of the popular thirteen classifiers using N-fold cross-

validation available in machine learning tool WEKA with the Malicia data set. Among

these thirteen classifiers, we did an extensive experiment to study the performance of

the top five classifiers viz. RF, LMT, NBT, J48, and FT in terms of TPR, TNR, FPR,

FNR, and accuracy by analyzing benchmark Malicia dataset and benign programs col-

lected from different systems. By our approach, all five classifiers are able to uncover

unknown malware with more than 96.28% accuracy, which is better than the detection

accuracy (95.9%) reported by Santos et. al. (2013). Among these classifiers, we found

that RF is the best (97.95%) classifier to detect the unknown malware. Thus, our

approach outperforms to detect the unknown malware. Hence, it can be an effective

technique to complement the signature based mechanism or dynamic approach for the

detection of unknown/advanced malware.

According to our study, group-wise classification of data improves the de-

tection accuracy of unknown malware. Therefore, we partitioned the executables in nine

groups using Optimal k-Means Clustering algorithm and then features are selected sep-

arately from each formed groups by finding the difference of opcode occurrence between

benign and malware executables. Then we used the top five studied classifiers viz. RF,

J48, LMT, FT, and NBT for the detection of malware and found that all of them

give more than 98% of detection accuracy, whereas NBT gives the highest accuracy

(99.11%).

95

The threat/attack from the malicious apps in Android based devices is

now never seen at before levels, as millions of Android apps are available officially and

unofficially. Some of these available apps may be malicious, hence these devices are very

much vulnerable to cyber threat/attack. The consequence will be devastating if in time

counter-measures are not developed. Therefore, similar to Windows Desktops malware

analysis, first without making the groups, we investigated the five classifiers (FT, RF,

J48, LMT, and NBT) for the detection of malicious apps using Drebin benchmark

dataset. We found that among the five studied classifiers, FT is the best classifier and

detect the malware with 79.27% accuracy. However, highest TP (99.91) is obtained

by RF, and it fluctuates least with the number of prominent features compared to

other classifiers. The obtained result is better than the BooJoong et. al. F-measure

(98%), and the analysis shows that overall accuracy is majorly affected by the FP of

the classifiers.

The experimental analysis of the Windows Desktops executables shows that

group-wise classification improves the detection accuracy. Therefore we group-wise

analyzed the collected dataset based on permissions, and experimentally demonstrated

how to improve the detection accuracy of Android malicious apps. The obtained results

(97.15% average accuracy) outperformed the accuracy achieved by without grouping

the data (79.27%, 2017), Arp, et. al. (94%, 2014), Annamalai et. al. (84.29%, 2016),

Bahman Rashidi et. al. (82%, 2017)) and Ali Feizollah, et. al. (95.5%, 2017). Among

the groups, the MICROPHONE group detection accuracy is least while CALENDAR

group apps are detected with maximum accuracy. In term of TP i.e. detection rate of

malicious apps, CALENDAR group is best classified with RF, and SMS group is least

by FT, while in terms TN i.e. benign detection rate, CALENDAR, and SMS group are

best classified with RF and FT classifier respectively, while OTHER group containing

normal permissions is best classified by the LMT classifier.

To detect the advanced malware generally machine learning techniques are

used. However, recent development in deep learning, which has been proved very suc-

cessful in other fields can be applied for the effective classification of advanced malware

to decrease the FP and FN to improve the overall detection accuracy. In this, different

architectures and combinations of the algorithms, using different parameters can be

96

investigated. Grid Search Cross-Validation or other similar methods shall be studied

with different combinations of the architectures and then select the best algorithm to

design a cognitive system for the detection of advanced malware. Also, the feasibility of

integrating our solution can be explored with dynamic detection techniques by profiling

dynamic features like system calls, network connections, resources usage, etc.

From the investigations, we concluded that the group-wise detection of

malware is more effective than without grouping the data. However, if the attacker

knows the internal parameters, then it will be prone to adversary attacks because the

approach of the malware detection uses the size of binaries or dangerous permissions

as a criterion for building the group based models. The attacker can change these

parameters in the adversary sample, which may reduce the accuracy of the classifiers.

Also, in the individual group’s number of training samples may not be sufficient, which

may effect the accuracy of the results. Further, for the efficient classification of malware,

in-depth study is required to optimize the feature selection, identifying the best-suited

classifier for the group-by-group analysis, and to implement the developed approach

together with the traditional technique in general-purpose graphics processing unit can

make the detection more efficient. The work presented in the thesis can be extended to

the other growing operating systems (IOS, LINUX etc) for the detection of malware.

97

APPENDIX A

OBFUSCATION TECHNIQUES

To evade the traditional signature based malware detection technique, the

Polymorphic and Metamorphic malware uses obfuscation techniques to change their

internal structure which makes them look different, but the functionality remains same.

Below we discuss some of the obfuscation techniques.

A.1 Register Renaming

In this technique after each infection, the mutation engine renames the reg-

isters or memory variables used in the malware, which changes in the internal structure

of the malware variant and can bypass the detection technique.

Figure A.1: A variant of RegWswap virus code by register renaming.

98

This technique was first used in the Win95/Regswap virus, which was de-

veloped by Vecna. Whenever this virus propagates, the mutation engine transforms

the code by using different register names in its variant. An example (RegSwap virus)

of register renaming by mutation engine is shown in Figure A.1. The bold hexadecimal

code in the figure shows the similarity between two the variants.

A.2 Subroutine Permutation

In this obfuscation technique, the malware code is first divided into indepen-

dent subroutines (blocks of codes). Then the mutation engine changes the order of these

subroutines without modifying the functionality of code (Figure A.2). This technique

can generate n! numbers of variants where n is the number of independent subroutines.

For e.g. Win32/Ghost have 10 subroutines and can make 10! different permutation.

Thus generates a large number (3628800) of variants of the Win32/Ghost malware.

Figure A.2: Subroutines permutation.

A.3 Instruction Level Permutation

In this technique, the malware variant code is created by changing the order

of instructions, such that there is no dependency among the instructions, e.g. as shown

in Figure A.3 and A.4, the result of final computation of the variant of malware does

not change.

99

int x=5;
int y=2;
int z=x+y;

Figure A.3: Simple C code.

int y=2;
int x=5;
int z=x+y;

Figure A.4: Variation in the C code after using instruction level permutation.

A.4 Insertion of Jump Instructions

This obfuscation technique is used in many metamorphic malware which

inserts jump statements after a block of instructions such that the control flow of the

program remains same (e.g. Figure A.5). WIn95/Zperm is one of the malware which

uses this technique.

[Original Program]
instruction 1 ; entry point
instruction 2
instruction 3
instruction 4
instruction 5

[Transformed program]
instruction 4
jump 5
instruction 2
jump 3
instruction 3
jump 4
instruction 1 ; entry point
jump 2
instruction 5

Figure A.5: Insertion of jump instructions to create new variants.

100

A.5 Subroutine Inlining and Outlining

In this technique, calls of the subroutines are replaced by its codes, e.g. an

inline of the subroutines are shown in Figure A.6, in which code variant A is transformed

to code variant B and �vice-versa for subroutine outlining.

/∗ some instructions ∗/ /∗ some instructions ∗/
call Function 1 mov eax, ebx
call Function 2 add eax, 12h
/∗ some instructions ∗/ push eax
Function 1: mul ecx
mov eax, ebx mov edx, eax
add eax, 12h /∗ some instructions ∗/
push eax
ret

Function 2:
mul ecx
mov edx, eax
ret

(a) Code variant A (b) Code variant B

Figure A.6: Inlining and outlining of subroutines.

A.6 Dead Code Insertion

Dead code/garbage insertion is a technique in which ineffective instruction-

s/subroutine are inserted in the malware code to create a new variant. Adding the dead

codes in malware is an easy way to transform it to different variant without changing

its functionality, e.g. NOPs opcodes, the addition of 0 value to a variable, assigning

same value to register, using jump instruction for next instruction, etc. obfuscate the

malware and a create new variant. Win32/Evol virus (Figure A.7 shows its snippet) is

a metamorphic malware which used this technique.

101

Figure A.7: Snippet of Evol virus using dead code insertion.

A.7 Equivalent Code Substitution

In this technique, the variants are created by exchanging some instructions

with other equivalent set of instructions so that the functionality of code remains same

for e.g. below given instructions

• mov ebx, 0

• xor ebx, ebx

• and ebx, 0

• sub ebx, ebx

are similar in operation i.e. assigning ebx register to value 0.

102

APPENDIX B

WINDOWS DESKTOPS OPCODE LIST

ID Opcode ID Opcode ID Opcode

1 .byte 20 addr32 39 addr64

2 (bad) 21 addsubps 40 addsd

3 aaa 22 addr32csrex.B 41 addss

4 aad 23 addr32csrex.RXB 42 addsubpd

5 aam 24 addr32fsrex.RX 43 addw

6 aas 25 addr32gsrex.R 44 aesdec

7 adc 26 addr32gsrex.RXB 45 aesdeclast

8 adcb 27 addr32gsrex.W 46 aesenc

9 adcl 28 addr32gsrex.WRB 47 aesenclast

10 adcq 29 addr32gsrex.WRX 48 aesimc

11 adcw 30 addr32rex 49 aeskeygenassist

12 add 31 addr32rex.B 50 and

13 addb 32 addr32rex.R 51 andb

14 addl 33 addr32rex.RXB 52 andl

15 addpd 34 addr32rex.WR 53 andnpd

16 addps 35 addr32rex.WRB 54 andnps

17 addq 36 addr32rex.WRX 55 andpd

18 addr16 37 addr32rex.WXB 56 andps

19 adcx 38 addr32rex.X 57 andq

103

ID Opcode ID Opcode ID Opcode

58 andw 90 cmovg 122 comisd

59 arpl 91 cmovge 123 comiss

60 blcfill 92 cmovl 124 cpuid

61 bound 93 cmovle 125 cqto

62 bsf 94 cmovne 126 cs

63 bsr 95 cmovno 127 cvtpd2dq

64 bswap 96 cmovnp 128 csrex.B

65 bt 97 cmovns 129 csrex.R

66 btc 98 cmovo 130 csrex.RB

67 btcl 99 cmovp 131 csrex.RXB

68 btl 100 cmovs 132 csrex.W

69 btr 101 cmp 133 csrex.WB

70 btrl 102 cmpb 134 csrex.WR

71 bts 103 cmpeqsd 135 csrex.WRB

72 btsl 104 cmpl 136 csrex.WRX

73 btsq 105 cmpltpd 137 csrex.WX

74 call 106 cmpltsd 138 csrex.WXB

75 callq 107 cmpltss 139 csrex.X

76 callw 108 cmpneqpd 140 csrex.XB

77 cbtw 109 cmpneqps 141 cvtdq2pd

78 clc 110 cmpnlepd 142 cvtdq2ps

79 cld 111 cmppd 143 cvtpd2ps

80 cli 112 cmpps 144 cvtpi2ps

81 cltd 113 cmpq 145 cvtps2pd

82 cltq 114 cmpsb 146 cvtps2pi

83 clts 115 cmpsl 147 cvtsd2si

84 cmc 116 cmpsq 148 cvtsd2ss

85 cmova 117 cmpsw 149 cvtsi2sd

86 cmovae 118 cmpunordps 150 cvtsi2sdq

87 cmovb 119 cmpw 151 cvtsi2ss

88 cmovbe 120 cmpxchg 152 cvtss2sd

89 cmove 121 cmpxchg8b 153 cvttpd2dq

ID Opcode ID Opcode ID Opcode

154 cvttpd2pi 185 divb 216 extrq

155 cvttps2pi 186 divl 217 f2xm1

156 cvttsd2si 187 divpd 218 fabs

157 cvttss2si 188 divps 219 fadd

158 cwtd 189 divq 220 faddl

159 cwtl 190 divsd 221 faddp

160 daa 191 divss 222 fadds

161 das 192 divw 223 fbld

162 data16 193 d3d8 224 fbstp

163 data16addr32rex.WRB 194 ds 225 fchs

164 data16data16rex.R 195 dsrex 226 fclex

165 data16data16rex.WXB 196 dsrex.R 227 fcmovb

166 data16gsrex.RXB 197 dsrex.RXB 228 fcmovbe

167 data16gsrex.WRB 198 dsrex.WB 229 fcmove

168 data16rex 199 dsrex.WR 230 fcmovnb

169 data16rex.B 200 dsrex.WRB 231 fcmovnbe

170 data16rex.R 201 dsrex.WRX 232 fcmovne

171 data16rex.W 202 dsrex.WRXB 233 fcmovnu

172 data16rex.WB 203 emms 234 fcmovu

173 data16rex.WRB 204 enter 235 fcom

174 data16rex.WRX 205 enterq 236 fcomi

175 data16rex.WRXB 206 enterw 237 fcomip

176 data16rex.WXB 207 es 238 fcoml

177 data16rex.XB 208 encls 239 fcomp

178 data32 209 esrex.RB 240 fcompl

179 dec 210 esrex.RX 241 fcompp

180 decb 211 esrex.W 242 fcomps

181 decl 212 esrex.WB 243 fcoms

182 decq 213 esrex.WRX 244 fcos

183 decw 214 esrex.X 245 fdecstp

184 div 215 esrex.XB 246 fdiv

105

ID Opcode ID Opcode ID Opcode

247 fdivl 278 fistpll 309 fnsave

248 fdivp 279 fisttp 310 fnsaves

249 fdivr 280 fisttpl 311 fnsetpm(287

250 fdivrl 281 fisttpll 312 fnstcw

251 fdivrp 282 fisub 313 fnstenv

252 fdivrs 283 fisubl 314 fnstenvs

253 fdivs 284 fisubr 315 fnstsw

254 femms 285 fisubrl 316 fpatan

255 ffree 286 fld 317 fprem

256 ffreep 287 fld1 318 fprem1

257 fiadd 288 fldcw 319 fptan

258 fiaddl 289 fldenv 320 frndint

259 ficom 290 fldenvs 321 frstor

260 ficoml 291 fldl 322 frstors

261 ficomp 292 fldl2e 323 frstpm(287

262 ficompl 293 fldl2t 324 fs

263 fidiv 294 fldlg2 325 fstp1

264 fidivl 295 fldln2 326 fsave

265 fidivr 296 fldpi 327 fscale

266 fidivrl 297 flds 328 fsfsrex

267 fild 298 fldt 329 fsfsrex.RX

268 fildl 299 fldz 330 fsfsrex.WRB

269 fildll 300 fmul 331 fsfsrex.WXB

270 fimul 301 fmull 332 fsgsrex.W

271 fimull 302 fmulp 333 fsgsrex.WB

272 fincstp 303 fmuls 334 fsgsrex.WR

273 finit 304 fnclex 335 fsin

274 fist 305 fndisi(8087 336 fsincos

275 fistl 306 fneni(8087 337 fsqrt

276 fistp 307 fninit 338 fsrex

277 fistpl 308 fnop 339 fsrex.B

106

ID Opcode ID Opcode ID Opcode

340 fsrex.R 371 ftst 402 gsgsrex.R

341 fsrex.RB 372 fucom 403 gsgsrex.W

342 fsrex.RX 373 fucomi 404 gsrex

343 fsrex.RXB 374 fucomip 405 gsrex.B

344 fsrex.W 375 fucomp 406 gsrex.R

345 fsrex.WB 376 fucompp 407 gsrex.RB

346 fsrex.WR 377 fwait 408 gsrex.RXB

347 fsrex.WRB 378 fxam 409 gsrex.W

348 fsrex.WRX 379 fxch 410 gsrex.WB

349 fsrex.WRXB 380 fxrstor 411 gsrex.WR

350 fsrex.WX 381 fxsave 412 gsrex.WRB

351 fsrex.WXB 382 fxtract 413 gsrex.WRX

352 fsrex.XB 383 fyl2x 414 gsrex.WRXB

353 fst 384 fyl2xp1 415 gsrex.WXB

354 fstcw 385 getsec 416 gsrex.X

355 fstenv 386 gs 417 gsrex.XB

356 fstl 387 gdiplus 418 hlt

357 fstp 388 gsaddr32rex.R 419 hsubps

358 fstpl 389 gsaddr32rex.WXB 420 icebp

359 fstps 390 gscsrex.RXB 421 idiv

360 fstpt 391 gsdata16rex 422 idivb

361 fsts 392 gsdsrex.R 423 idivl

362 fstsw 393 gsdsrex.RXB 424 idivq

363 fsub 394 gsdsrex.WRB 425 idivw

364 fsubl 395 gsdsrex.WRX 426 imul

365 fsubp 396 gsesrex.W 427 imulb

366 fsubr 397 gsfsrex.B 428 imull

367 fsubrl 398 gsfsrex.RB 429 imulq

368 fsubrp 399 gsfsrex.W 430 imulw

369 fsubrs 400 gsfsrex.WR 431 in

370 fsubs 401 gsfsrex.WRB 432 inc

107

ID Opcode ID Opcode ID Opcode

433 incb 464 jecxz 495 jo,pn

434 incl 465 jecxz,pn 496 jo,pt

435 incq 466 jecxz,pt 497 jp

436 incw 467 jg 498 jp,pn

437 insb 468 jg,pn 499 jp,pt

438 insl 469 jg,pt 500 jrcxz

439 insw 470 jge 501 jrcxz,pn

440 int 471 jge,pn 502 jrcxz,pt

441 int3 472 jge,pt 503 js

442 into 473 jl 504 js,pn

443 invd 474 jl,pn 505 js,pt

444 invlpg 475 jl,pt 506 lahf

445 iret 476 jle 507 lar

446 iretq 477 jle,pn 508 lcall

447 iretw 478 jle,pt 509 lcallq

448 ja 479 jmp 510 lcallw

449 ja,pn 480 jmpq 511 lddqu

450 ja,pt 481 jmpw 512 ldmxcsr

451 jae 482 jne 513 lds

452 jae,pn 483 jne,pn 514 lea

453 jae,pt 484 jne,pt 515 leave

454 jb 485 jno 516 leaveq

455 jb,pn 486 jno,pn 517 leavew

456 jb,pt 487 jno,pt 518 les

457 jbe 488 jnp 519 lfs

458 jbe,pn 489 jnp,pn 520 lgdt

459 jbe,pt 490 jnp,pt 521 lgdtl

460 jcxz 491 jns 522 lgs

461 je 492 jns,pn 523 lidt

462 je,pn 493 jns,pt 524 lidtl

463 je,pt 494 jo 525 ljmp

108

ID Opcode ID Opcode ID Opcode

526 ljmpq 556 lretq 586 movntq

527 ljmpw 557 lretw 587 movq

528 lldt 558 lsl 588 movsb

529 lmsw 559 lss 589 movsbl

530 lock 560 ltr 590 movsbq

531 lock 561 maskmovq 591 movsbw

532 lockrex 562 maxps 592 movsd

533 lockrex.B 563 minpd 593 movsl

534 lockrex.WB 564 minps 594 movsldup

535 lockrex.WR 565 minss 595 movslq

536 lockrex.X 566 montmul 596 movsq

537 lockrex.XB 567 mov 597 movss

538 lods 568 movabs 598 movsw

539 loop 569 movapd 599 movswl

540 loop,pn 570 movaps 600 movswq

541 loop,pt 571 movb 601 movupd

542 loope 572 movd 602 movups

543 loope,pn 573 movdq2q 603 movw

544 loope,pt 574 movdqa 604 movzbl

545 loopel 575 movdqu 605 movzbq

546 loopew 576 movhlps 606 movzbw

547 loopew,pn 577 movhps 607 movzwl

548 loopl 578 movl 608 movzwq

549 loopne 579 movlhps 609 movzww

550 loopne,pn 580 movlpd 610 mul

551 loopne,pt 581 movlps 611 mulb

552 loopnel 582 movmskps 612 mull

553 loopnew 583 movntdq 613 mulpd

554 loopw 584 movnti 614 mulps

555 lret 585 movntps 615 mulq

109

ID Opcode ID Opcode ID Opcode

616 mulsd 647 paddd 678 pi2fw

617 mulss 648 paddq 679 pinsrb

618 mulw 649 paddsb 680 pinsrw

619 neg 650 paddsw 681 pmaddubsw

620 negb 651 paddusb 682 pmaddwd

621 negl 652 paddusw 683 pmaxsw

622 negq 653 paddw 684 pmaxub

623 negw 654 palignr 685 pminsw

624 nop 655 pand 686 pminub

625 nopq 656 pandn 687 pmovmskb

626 nopl 657 pause 688 pmulhuw

627 nopw 658 pavgb 689 pmulhw

628 not 659 pavgw 690 pmullw

629 notb 660 pcmpeqb 691 pmuludq

630 notl 661 pcmpeqd 692 pop

631 notw 662 pcmpeqw 693 popa

632 or 663 pcmpgtb 694 popaw

633 orb 664 pcmpgtd 695 popf

634 orl 665 pcmpgtw 696 popfq

635 orpd 666 pcmpistri 697 popfw

636 orps 667 pextrw 698 popl

637 orq 668 pf2id 699 popq

638 orw 669 pf2iw 700 popw

639 out 670 pfcmpeq 701 por

640 outsb 671 pfcmpgt 702 prefetch

641 outsl 672 pfrsqit1 703 prefetchnta

642 outsw 673 phaddbd 704 prefetcht0

643 packssdw 674 phaddd 705 prefetcht1

644 packsswb 675 phadduwq 706 prefetcht2

645 packuswb 676 phsubbq 707 prefetchw

646 paddb 677 pi2fd 708 psadbw

110

ID Opcode ID Opcode ID Opcode

709 pshufb 740 pushf 771 repnzrex.WRXB

710 pshufd 741 pushfq 772 repnzrex.XB

711 pshuflw 742 pushfw 773 repz

712 pshufw 743 pushl 774 repz

713 pslld 744 pushq 775 repzcsrex.XB

714 psllq 745 pushw 776 repzrex.WRB

715 psllw 746 pxor 777 repzrex.WX

716 psrad 747 rcl 778 repzrex.WXB

717 psraw 748 rclb 779 repzrex.X

718 psrld 749 rcll 780 repzrex.XB

719 psrldq 750 rclq 781 ret

720 psrlq 751 rclw 782 retq

721 psrlw 752 rcpps 783 retw

722 psubb 753 rcpss 784 rex

723 psubd 754 rcr 785 retnw

724 psubq 755 rcrb 786 rex.B

725 psubsb 756 rcrl 787 rglpsz

726 psubsw 757 rcrq 788 rex.R

727 psubusb 758 rcrw 789 rex.RA

728 psubusw 759 rdmsr 790 rex.RB

729 psubw 760 rdpmc 791 rex.RBA

730 punpckhbw 761 rdtsc 792 rex.RX

731 punpckhdq 762 rep 793 rglpsz

732 punpckhqdq 763 repe 794 rex.RXB

733 punpckhwd 764 repnz 795 rguid

734 punpcklbw 765 repnz 796 rex.W

735 punpckldq 766 repnzrex.R 797 riid

736 punpcklwd 767 repnzrex.RX 798 rex.WB

737 push 768 repnzrex.RXB 799 rsts

738 pusha 769 repnzrex.W 800 rex.WR

739 pushaw 770 repnzrex.WRX 801 roundpd

111

ID Opcode ID Opcode ID Opcode

802 rex.WRB 833 sarw 864 shr

803 rsldt 834 sbb 865 shrb

804 rex.WRX 835 sbbb 866 shrd

805 roundsd 836 sbbl 867 shrl

806 rex.WRXB 837 sbbq 868 shrq

807 rsldt 838 sbbw 869 shrw

808 rex.WX 839 scas 870 shufps

809 rsqrtss 840 seta 871 sidt

810 rex.WXB 841 setae 872 sidtl

811 rsts 842 setb 873 sldt

812 rex.X 843 setbe 874 smsw

813 rex.RXB 844 sete 875 sqrtpd

814 rex.XB 845 setg 876 sqrtps

815 rueu 846 setge 877 ss

816 rol 847 setl 878 sz

817 rolb 848 setle 879 ssfsrex.W

818 roll 849 setne 880 ssrex.B

819 rolq 850 setno 881 ssrex.RXB

820 rolw 851 setnp 882 ssrex.WB

821 ror 852 setns 883 ssrex.WRB

822 rorb 853 seto 884 ssrex.WX

823 rorl 854 setp 885 ssrex.WXB

824 rorq 855 sets 886 ssrex.X

825 rorw 856 sgdt 887 stc

826 rsm 857 sgdtl 888 std

827 rsqrtps 858 shl 889 sti

828 sahf 859 shlb 890 stmxcsr

829 sar 860 shld 891 stos

830 sarb 861 shll 892 str

831 sarl 862 shlq 893 sub

832 sarq 863 shlw 894 subb

112

ID Opcode ID Opcode ID Opcode

895 subl 926 vandnps 957 vdivpd

896 subpd 927 vandpd 958 vdivps

897 subps 928 vandps 959 vdivsd

898 subq 929 vcmpltpd 960 vdivss

899 subsd 930 vcmpngess 961 vdpps

900 subss 931 vcmppd 962 verr

901 subw 932 vcmpps 963 verw

902 syscall 933 vcmpsd 964 vfmadd213pd

903 sysenter 934 vcmpss 965 vfmadd231pd

904 sysexit 935 vcomisd 966 vfmadd231ss

905 sysret 936 vcomiss 967 vfnmsubpd

906 test 937 vcvtdq2pd 968 vfrczsd

907 testb 938 vcvtdq2ps 969 vfrczss

908 testl 939 vcvtpd2dq 970 vgatherqpd

909 testq 940 vcvtpd2dqx 971 vhaddpd

910 testw 941 vcvtpd2dqy 972 vhaddps

911 ucomisd 942 vcvtpd2psx 973 vhsubpd

912 ucomiss 943 vcvtps2dq 974 vhsubps

913 ud1 944 vcvtps2pd 975 vlddqu

914 ud2 945 vcvtps2ph 976 vmaskmovdqu

915 unpckhpd 946 vcvtsd2si 977 vmaxpd

916 unpckhps 947 vcvtsd2ss 978 vmaxps

917 unpcklpd 948 vcvtsi2sd 979 vmaxsd

918 unpcklps 949 vcvtsi2ssl 980 vmaxss

919 vaddpd 950 vcvtss2sd 981 vminpd

920 vaddps 951 vcvtss2si 982 vminps

921 vaddsd 952 vcvttpd2dq 983 vminsd

922 vaddsubpd 953 vcvttpd2dqy 984 vminss

923 vaddsubps 954 vcvttps2dq 985 vmload

924 vaesdec 955 vcvttsd2si 986 vmmcall

925 vandnpd 956 vcvttss2si 987 vmovapd

113

ID Opcode ID Opcode ID Opcode

988 vmovaps 1019 vpackssdw 1050 vphsubwd

989 vmovd 1020 vpacksswb 1051 vpinsrw

990 vmovddup 1021 vpackuswb 1052 vpmacsdqh

991 vmovdqa 1022 vpaddb 1053 vpmacsdql

992 vmovdqu 1023 vpaddd 1054 vpmacssdql

993 vmovhpd 1024 vpaddq 1055 vpmacsswd

994 vmovhps 1025 vpaddsb 1056 vpmacssww

995 vmovlpd 1026 vpaddusb 1057 vpmacswd

996 vmovlps 1027 vpaddusw 1058 vpmaddwd

997 vmovmskpd 1028 vpaddw 1059 vpmaxsw

998 vmovmskps 1029 vpand 1060 vpmaxub

999 vmovntdq 1030 vpandn 1061 vpminsw

1000 vmovntpd 1031 vpavgb 1062 vpminub

1001 vmovntps 1032 vpavgw 1063 vpmovmskb

1002 vmovq 1033 vpcmpeqb 1064 vpmulhuw

1003 vmovsd 1034 vpcmpeqd 1065 vpmulhw

1004 vmovshdup 1035 vpcmpeqw 1066 vpmulld

1005 vmovsldup 1036 vpcmpgtb 1067 vpmullw

1006 vmovss 1037 vpcmpgtd 1068 vpmuludq

1007 vmovupd 1038 vpcmpgtw 1069 vpor

1008 vmovups 1039 vpcomud 1070 vpperm

1009 vmptrld 1040 vpcomw 1071 vprotb

1010 vmptrst 1041 vpextrw 1072 vprotd

1011 vmread 1042 vphaddbd 1073 vpsadbw

1012 vmulpd 1043 vphaddbw 1074 vpshab

1013 vmulps 1044 vphaddubq 1075 vpshld

1014 vmulsd 1045 vphaddubw 1076 vpshlw

1015 vmulss 1046 vphadduwq 1077 vpshufb

1016 vmwrite 1047 vphaddwq 1078 vpshufhw

1017 vorpd 1048 vphsubbw 1079 vpshuflw

1018 vorps 1049 vphsubdq 1080 vpslld

114

ID Opcode ID Opcode ID Opcode

1081 vpsllq 1105 vrsqrtps 1129 xcrypt-cbc

1082 vpsllw 1106 vrsqrtss 1130 xcrypt-cfb

1083 vpsrad 1107 vshufpd 1131 xcrypt-ctr

1084 vpsraw 1108 vshufps 1132 xcrypt-ecb

1085 vpsrld 1109 vsqrtpd 1133 xcrypt-ofb

1086 vpsrlq 1110 vsqrtps 1134 xgetbv

1087 vpsrlw 1111 vsqrtsd 1135 xlat

1088 vpsubb 1112 vsqrtss 1136 xor

1089 vpsubq 1113 vsubpd 1137 xorb

1090 vpsubsb 1114 vsubps 1138 xorl

1091 vpsubsw 1115 vsubsd 1139 xorpd

1092 vpsubusb 1116 vsubss 1140 xorps

1093 vpsubusw 1117 vucomisd 1141 xorq

1094 vpsubw 1118 vucomiss 1142 xorw

1095 vpunpckhbw 1119 vunpckhps 1143 xrstor

1096 vpunpckhdq 1120 vunpcklpd 1144 xsave

1097 vpunpckhqdq 1121 vunpcklps 1145 xsaveopt

1098 vpunpckhwd 1122 vxorpd 1146 xsha1

1099 vpunpcklbw 1123 vxorps 1147 xsha256

1100 vpunpckldq 1124 vzeroupper

1101 vpunpcklqdq 1125 wbinvd

1102 vpunpcklwd 1126 wrmsr

1103 vrcpps 1127 xadd

1104 vrcpss 1128 xchg

115

115

APPENDIX C

ANDROID OPCODE LIST

ID Opcode ID Opcode ID Opcode

0 nop 14 const 28 goto

1 move 15 const/high16 29 goto/16

2 move/from16 16 const-wide/16 2A goto/32

3 move/16 17 const-wide/32 2B packed-switch

4 move-wide 18 const-wide 2C sparse-switch

5 move-wide/from16 19 const-wide/high16 2D cmpl-float

6 move-wide/16 1A const-string 2E cmpg-float

7 move-object 1B const-string-jumbo 2F cmpl-double

8 move-object/from16 1C const-class 30 cmpg-double

9 move-object/16 1D monitor-enter 31 cmp-long

A move-result 1E monitor-exit 32 if-eq

B move-result-wide 1F check-cast 33 if-ne

C move-result-object 20 instance-of 34 if-lt

D move-exception 21 array-length 35 if-ge

E return-void 22 new-instance 36 if-gt

F return 23 new-array 37 if-le

10 return-wide 24 filled-new-array 38 if-eqz

11 return-object 25 filled-new-array-range 39 if-nez

12 const/4 26 fill-array-data 3A if-ltz

13 const/16 27 throw 3B if-gez

116

ID Opcode ID Opcode ID Opcode

3C if-gtz 5B iput-object 7A unused 7A

3D if-lez 5C iput-boolean 7B neg-int

3E unused 3E 5D iput-byte 7C not-int

3F unused 3F 5E iput-char 7D neg-long

40 unused 40 5F iput-short 7E not-long

41 unused 41 60 sget 7F neg-float

42 unused 42 61 sget-wide 80 neg-double

43 unused 43 62 sget-object 81 int-to-long

44 aget 63 sget-boolean 82 int-to-float

45 aget-wide 64 sget-byte 83 int-to-double

46 aget-object 65 sget-char 84 long-to-int

47 aget-boolean 66 sget-short 85 long-to-float

48 aget-byte 67 sput 86 long-to-double

49 aget-char 68 sput-wide 87 float-to-int

4A aget-short 69 sput-object 88 float-to-long

4B aput 6A sput-boolean 89 float-to-double

4C aput-wide 6B sput-byte 8A double-to-int

4D aput-object 6C sput-char 8B double-to-long

4E aput-boolean 6D sput-short 8C double-to-float

4F aput-byte 6E invoke-virtual 8D int-to-byte

50 aput-char 6F invoke-super 8E int-to-char

51 aput-short 70 invoke-direct 8F int-to-short

52 iget 71 invoke-static 90 add-int

53 iget-wide 72 invoke-interface 91 sub-int

54 iget-object 73 unused 73 92 mul-int

55 iget-boolean 74 invoke-virtual/range 93 div-int

56 iget-byte 75 invoke-super/range 94 rem-int

57 iget-char 76 invoke-direct/range 95 and-int

58 iget-short 77 invoke-static/range 96 or-int

59 iput 78 invoke-interface-range 97 xor-int

5A iput-wide 79 unused 79 98 shl-int

117

ID Opcode ID Opcode ID Opcode

99 shr-int B8 shl-int/2addr D7 xor-int/lit16

9A ushr-int B9 shr-int/2addr D8 add-int/lit8

9B add-long BA ushr-int/2addr D9 sub-int/lit8

9C sub-long BB add-long/2addr DA mul-int/lit8

9D mul-long BC sub-long/2addr DB div-int/lit8

9E div-long BD mul-long/2addr DC rem-int/lit8

9F rem-long BE div-long/2addr DD and-int/lit8

A0 and-long BF rem-long/2addr DE or-int/lit8

A1 or-long C0 and-long/2addr DF xor-int/lit8

A2 xor-long C1 or-long/2addr E0 shl-int/lit8

A3 shl-long C2 xor-long/2addr E1 shr-int/lit8

A4 shr-long C3 shl-long/2addr E2 ushr-int/lit8

A5 ushr-long C4 shr-long/2addr E3 unused E3

A6 add-float C5 ushr-long/2addr E4 unused E4

A7 sub-float C6 add-float/2addr E5 unused E5

A8 mul-float C7 sub-float/2addr E6 unused E6

A9 div-float C8 mul-float/2addr E7 unused E7

AA rem-float C9 div-float/2addr E8 unused E8

AB add-double CA rem-float/2addr E9 unused E9

AC sub-double CB add-double/2addr EA unused EA

AD mul-double CC sub-double/2addr EB unused EB

AE div-double CD mul-double/2addr EC unused EC

AF rem-double CE div-double/2addr ED unused ED

B0 add-int/2addr CF rem-double/2addr EE execute-inline

B1 sub-int/2addr D0 add-int/lit16 EF unused EF

B2 mul-int/2addr D1 sub-int/lit16 F0 invoke-direct-empty

B3 div-int/2addr D2 mul-int/lit16 F1 unused F1

B4 rem-int/2addr D3 div-int/lit16 F2 iget-quick

B5 and-int/2addr D4 rem-int/lit16 F3 iget-wide-quick

B6 or-int/2addr D5 and-int/lit16 F4 iget-object-quick

B7 xor-int/2addr D6 or-int/lit16 F5 iput-quick

118

ID Opcode ID Opcode ID Opcode

F6 iput-wide-quick FA invoke-super-quick FE unused FE

F7 iput-object-quick FB invoke-super-quick/range FF unused FF

F8 invoke-virtual-quick FC unused FC

F9 invoke-virtual-quick/range FD unused FD

119

APPENDIX D

BRIEF DESCRIPTION OF THE MAJOR

CLASSIFIERS

Decision Trees are one of the machine learning techniques for the supervised

classification [47]. It uses the tree structure, which has a root (starting point) and nodes

(containing branches and leaves). The tree is built, starting from the root and grown

by adding branches until the leave nodes are reached. These branches are the segment,

which connects root to leaves, and these branches (non-terminal nodes) represent the

decision tests/conditions on one or more attributes to traverse the tree to reach leaf

(terminal node), which are the outcome of the classifier. Here, finally, all leaf nodes

represents a certain characteristic or outcome class and the branches represent a range

of values. Below are the brief descriptions of the five major tree-based classifiers.

D.1 J48

J48 is a C4.5 decision tree classification algorithm implemented in Java

and is available in WEKA tool, and can be applied only for the numerical data [19].

It constructs a decision tree using the information entropy. In this at every node

120

of the tree, data points are divided into multiple subsets on the basis of one of the

attributes in the data. The attribute is selected by evaluating its information gain. At

every split the new child subsets will always have low entropy then its parent and this

splitting continue until the entropy of the child subset become minimum or less than a

threshold set by the programmer. This condition depends on the information gain of

the attribute. This algorithm has the limitation of handling numeric data only.

D.2 Random Forest

Random forest is an ensemble method decision tree classifier [44]. In this classifier

individual decision tree are generated using a random vector sampled independently

and with the same distribution for all tree in the forest. During the classification, each

tree votes and the most popular class is returned. A Random forest can be built using

bagging in tandem with random attribute selection. It generally, exhibits a substantial

performance improvement over the singletree classifier such as CART and C4.5 and

the accuracy are comparable to AdaBoost, yet are most robust to errors and outliers.

The accuracy of the Random forest depends on the strength of the individual classifiers

and a measure of the dependencies between them. The generalization error for a forest

converges as long as the number of trees in the forest is large. Thus, overfitting is not

a problem [21].

D.3 Naive Bayes Trees

The Naive Bayesian Tree (NBT) is a classifier, which combines the two classification

methods (Decision Tree and Naive Bayes classifier). It uses decision trees of a certain

height, and then in the bottom of tree leaves, Naive Bayes models are implemented

[55]. The tree is grown in a top-down fashion by splitting the data points according to

the information gain value. During the construction of the tree, at each node a decision

is taken, whether the data at that node should be divided or not. If not divided then

the node will be the leaf node and will be trained accordingly to the data at the node.

Here, in pruning phase at each node is done by comparing the accuracy of the Naive

121

Bayes model implemented at that node to the sum of the accuracy of its leaves. The

split is done on any node if there are at least 30 data samples at the node and the error

reduced by splitting is more than 5%. It has been seen in general that Naive Bayes

trees often perform better than the decision trees.

D.4 Logistic Model Trees

Logistic Model Tree classifier combines the logistic regression models and decision tree

[58]. It basically consists of a standard decision tree structure with logistic regression

functions at the leaves similar to the Naive Bayes classifier in NBT. Also, as in ordinary

decision trees, a test on one of the attributes is associated with every inner node. For a

nominal attribute of ‘k’ values, the node will have ‘k’ number of child, and depending

on the attribute values the instance is sorted down to one of the branches. The test for

the numerical data is done by comparing the attribute value to a set threshold, and if

the attribute value is smaller than the set threshold, the instance is sorted down to the

left branch else to the right branch.

D.5 Functional Tree

The functional tree is a multivariate tree for regression and classification problems

[39]. It can deal with binary and multi-class target variables, numeric and nominal

attributes. The nodes in this tree are built while growing the tree and leaves are built

during the pruning of the tree. Hence, in this model, it is possible to derive algorithms

able to use functional decision nodes and functional leaf nodes for the classification.

122

REFERENCES

[1] The need for speed: 2013 incident response survey. Technical report, FireEye,

2013.

[2] Red alert: Kaspersky lab reviews the malware situation in q3. Technical report,

Kaspersky Lab, 2014.

[3] Continued rise in mobile threats for 2016, Nov 2015.

[4] Quick heal quarterly threat report q2 2015. Technical report, Quick Heal, Febru-

rary 2015.

[5] Securelist: Mobile malware evolution. Technical report, Kaspersky Lab, 2015.

[6] Threat report 3rd quarter, 2015, 2015.

[7] Virustotal - free online virus, malware and url scanner, june 2016.

[8] 9apps. Free android apps download, August 2016.

[9] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab.

Zero-day malware detection based on supervised learning algorithms of api call

signatures. In Proceedings of the Ninth Australasian Data Mining Conference-

Volume 121, pages 171–182. Australian Computer Society, Inc., 2011.

[10] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein, Yves

Le Traon, et al. Large-scale machine learning-based malware detection: con-

fronting the 10-fold cross validation scheme with reality. In Proceedings of the 4th

ACM conference on Data and application security and privacy, pages 163–166.

ACM, 2014.

123

[11] Android-developers. Normal and dangerous permissions requesting permissions.

Technical report, Android labs, 2017.

[12] Ladkat Anita, Zure Dipali, and Mathew Lishoy. Annual threat report 2017.

Technical report, Quick Heal, 2017.

[13] Ladkat Anita, Zure Dipali, Mathew Lishoy, More Pranali, Moon Prashil, Dhasade

Priyanka, Kadam Sagar, Khedkar Shraddha, Girme Tejas, Chaudhari Leena, Su-

dame Prachi, Temgire Sanket, Borse Sandip, and Pharate Swati. Quick heal

quarterly threat report — q1 2017. Technical report, Quick Heal, 2017.

[14] Seyed Emad Armoun and Sattar Hashemi. A general paradigm for normalizing

metamorphic malwares. In Frontiers of Information Technology (FIT), 2012 10th

International Conference on, pages 348–353. IEEE, 2012.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. Drebin: Effective and explainable detection of android malware in your

pocket. In NDSS, pages 1–15, 2014.

[16] Thomas H Austin, Eric Filiol, Sebastien Josse, and Mark Stamp. Exploring

hidden markov models for virus analysis: a semantic approach. In System Sciences

(HICSS), 2013 46th Hawaii International Conference on, pages 5039–5048. IEEE,

2013.

[17] Philippe Beaucamps. Advanced polymorphic techniques. International Journal

of Computer Science, 2(3):194–205, 2007.

[18] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi. Duqu:

A stuxnet-like malware found in the wild. CrySyS Lab Technical Report, 14, 2011.

[19] Neeraj Bhargava, Girja Sharma, Ritu Bhargava, and Manish Mathuria. Decision

tree analysis on j48 algorithm for data mining. Proceedings of International Jour-

nal of Advanced Research in Computer Science and Software Engineering, 3(6),

2013.

[20] Daniel Bilar. Opcodes as predictor for malware. International Journal of Elec-

tronic Security and Digital Forensics, 1(2):156–168, 2007.

124

[21] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[22] Michael W Browne. Cross-validation methods. Journal of mathematical psychol-

ogy, 44(1):108–132, 2000.

[23] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. An hmm

and structural entropy based detector for android malware: An empirical study.

Computers & Security, 61:1–18, 2016.

[24] Julio Canto, Marc Dacier, Engin Kirda, and Corrado Leita. Large scale malware

collection: lessons learned. In IEEE SRDS Workshop on Sharing Field Data and

Experiment Measurements on Resilience of Distributed Computing Systems, 2008.

[25] Scott Shaobing Chen and Ponani S Gopalakrishnan. Clustering via the bayesian

information criterion with applications in speech recognition. In Acoustics, Speech

and Signal Processing, 1998. Proceedings of the 1998 IEEE International Con-

ference on, volume 2, pages 645–648. IEEE, 1998.

[26] Beek Christiaan, Frosst Douglas, Greve Paula, Gund Yashashree, and Moreno

Francisca. Mcafee threats report. Technical report, McAfee, June 2012.

[27] Beek Christiaan, Frosst Douglas, Greve Paula, Gund Yashashree, and Moreno

Francisca. Mcafee labs threats report. Technical report, McAfee, June 2014.

[28] Beek Christiaan, Frosst Douglas, Greve Paula, Gund Yashashree, and Moreno

Francisca. Mcafee labs threats report. Technical report, McAfee, May 2015.

[29] Beek Christiaan, Frosst Douglas, Greve Paula, Gund Yashashree, and Moreno

Francisca. McAfee Labs Threats Report. Technical report, 2017.

[30] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Stefan Katzenbeisser, and

Helmut Veith. Malware normalization. Technical report, University of Wisconsin,

2005.

[31] Fred Cohen. Computer viruses: theory and experiments. Computers & security,

6(1):22–35, 1987.

[32] Michael K Daly. Advanced persistent threat. Usenix, Nov, 4, 2009.

125

[33] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chandramohan. Semantics-

based online malware detection: Towards efficient real-time protection against

malware. IEEE Transactions on Information Forensics and Security, 11(2):289–

302, 2016.

[34] Ddcreateur. Antivirus 2004, [database on the internet], March 2014.

[35] F-Secure. Threat report. Technical report, F-Secure labs, 2013.

[36] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and

Steven Furnell. Androdialysis: Analysis of android intent effectiveness in malware

detection. Computers & Security, 65:121–134, 2017.

[37] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated

security certification of android. Technical report, University of Maryland De-

partment of Computer Science, 2009.

[38] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Rule learning in a

nutshell. In Foundations of Rule Learning, pages 19–55. Springer, 2012.

[39] João Gama. Functional trees. Machine Learning, 55(3):219–250, 2004.

[40] Nisarg Gandhewar and Rahila Sheikh. Google android: An emerging software

platform for mobile devices. International Journal on Computer Science and

Engineering, 1(1):12–17, 2010.

[41] Aditya Govindaraju. Exhaustive statistical analysis for detection of metamorphic

malware. 2010.

[42] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-Cker Chiueh. Automatic genera-

tion of string signatures for malware detection. In Recent advances in intrusion

detection, pages 101–120. Springer, 2009.

[43] N. Del Grosso. It’s time to rethink your corporate malware strategy. White

paper, SANS Institute Reading Room site, 2002.

[44] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-

niques. Elsevier, 2011.

126

[45] David Harley and Andrew Lee. Heuristic analysis–detecting unknown viruses.

http://www. eset. com/download/whitepapers/HeurAnalysis (Mar2007) Online.

pdf, 2007.

[46] Olivier Henchiri and Nathalie Japkowicz. A feature selection and evaluation

scheme for computer virus detection. In Data Mining, 2006. ICDM’06. Sixth

International Conference on, pages 891–895. IEEE, 2006.

[47] Geoffrey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine learning

workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994

Second Australian and New Zealand Conference on, pages 357–361. IEEE, 1994.

[48] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of malware:

from a survey towards an established taxonomy. Journal in computer Virology,

4(3):251–266, 2008.

[49] Jae-wook Jang, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang

Kim. Andro-dumpsys: anti-malware system based on the similarity of malware

creator and malware centric information. computers & security, 58:125–138, 2016.

[50] Quentin Jerome, Kevin Allix, Radu State, and Thomas Engel. Using opcode-

sequences to detect malicious android applications. In 2014 IEEE International

Conference on Communications (ICC), pages 914–919. IEEE, 2014.

[51] Alan Jović, Karla Brkić, and Nikola Bogunović. A review of feature selection

methods with applications. In Information and Communication Technology, Elec-

tronics and Microelectronics (MIPRO), 2015 38th International Convention on,

pages 1200–1205. IEEE, 2015.

[52] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer. N-opcode analysis for

android malware classification and categorization. In 2016 International Con-

ference On Cyber Security And Protection Of Digital Services (Cyber Security),

pages 1–7, June 2016.

[53] Ankita Kapratwar. Static and dynamic analysis for android malware detection.

Master’s thesis, San Jose State University, 2016.

127

[54] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. Mal-

ware phylogeny generation using permutations of code. Journal in Computer

Virology, 1(1-2):13–23, 2005.

[55] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree

hybrid. In KDD, volume 96, pages 202–207. Citeseer, 1996.

[56] Jeremy Z Kolter and Marcus A Maloof. Learning to detect malicious executables

in the wild. In Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 470–478. ACM, 2004.

[57] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. In Machine

Learning: ECML 2003, pages 241–252. Springer, 2003.

[58] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine

Learning, 59(1-2):161–205, 2005.

[59] Neal Leavitt. Mobile phones: the next frontier for hackers? Computer, 38(4):20–

23, 2005.

[60] R. Lehtinen and G.T. Gangemi. Computer Security Basics: Computer Security.

O’Reilly Media, 2006.

[61] Chatchai Liangboonprakong and Ohm Sornil. Classification of malware families

based on n-grams sequential pattern features. In Industrial Electronics and Ap-

plications (ICIEA), 2013 8th IEEE Conference on, pages 777–782. IEEE, 2013.

[62] Kirti Mathur and Saroj Hiranwal. A survey on techniques in detection and ana-

lyzing malware executables. International Journal of Advanced Research in Com-

puter Science and Software Engineering, 3(4):422–428, 2013.

[63] Bilal Mehdi, Faraz Ahmed, Syed Ali Khayyam, and Muddassar Farooq. Towards

a theory of generalizing system call representation for in-execution malware detec-

tion. In Communications (ICC), 2010 IEEE International Conference on, pages

1–5. IEEE, 2010.

[64] Syed Bilal Mehdi, Ajay Kumar Tanwani, and Muddassar Farooq. Imad: in-

execution malware analysis and detection. In Proceedings of the 11th Annual

128

conference on Genetic and evolutionary computation, pages 1553–1560. ACM,

2009.

[65] Tom M Mitchell. Machine learning. wcb, mcgraw-hill boston, ma, 1997.

[66] Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown com-

puter worms based on behavioral classification of the host. Computational Statis-

tics & Data Analysis, 52(9):4544–4566, 2008.

[67] Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina Gitelman,

Shlomi Dolev, and Yuval Elovici. Unknown malcode detection using opcode

representation. In Intelligence and Security Informatics, pages 204–215. Springer,

2008.

[68] Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina Gitelman,

Shlomi Dolev, and Yuval Elovici. Unknown malcode detection using opcode

representation. In Intelligence and Security Informatics, pages 204–215. Springer,

2008.

[69] Antonio Nappa, M Zubair Rafique, and Juan Caballero. Driving in the cloud:

An analysis of drive-by download operations and abuse reporting. In Detection

of Intrusions and Malware, and Vulnerability Assessment, pages 1–20. Springer,

2013.

[70] Annamalai Narayanan, Liu Yang, Lihui Chen, and Liu Jinliang. Adaptive and

scalable android malware detection through online learning. In Neural Networks

(IJCNN), 2016 International Joint Conference on, pages 2484–2491. IEEE, 2016.

[71] Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj Singh Gaur, and

Mauro Conti. Employing program semantics for malware detection. IEEE Trans-

actions on Information Forensics and Security, 10(12):2591–2604, 2015.

[72] K Olmstead and M Atkinson. Apps permissions in the google play store. Technical

report, Pew Research Center, 2016.

[73] Gabor Paller. Dalvik opcodes, 2017.

129

[74] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. Evolution of com-

puter virus concealment and anti-virus techniques: a short survey. arXiv preprint

arXiv:1104.1070, 2011.

[75] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. Camouflage in mal-

ware: from encryption to metamorphism. International Journal of Computer

Science and Network Security, 12(8):74–83, 2012.

[76] Bahman Rashidi, Carol Fung, and Elisa Bertino. Android resource usage risk as-

sessment using hidden markov model and online learning. Computers & Security,

65:90–107, 2017.

[77] Chandrasekar Ravi and R Manoharan. Malware detection using windows api

sequence and machine learning. International Journal of Computer Applications,

43(17):12–16, 2012.

[78] Richardson Robert. 14th annual csi/fbi computer crime and security survey-

2009. Technical report, 2019.

[79] Sanjay K Sahay and Ashu Sharma. Grouping the executables to detect malwares

with high accuracy. Procedia Computer Science, 78:667–674, 2016.

[80] Zahra Salehi, Ashkan Sami, and Mahboobe Ghiasi. Using feature generation from

api calls for malware detection. Computer Fraud & Security, 2014(9):9–18, 2014.

[81] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Opcode

sequences as representation of executables for data-mining-based unknown mal-

ware detection. Information Sciences, 231:64–82, 2013.

[82] Igor Santos, Javier Nieves, and Pablo G Bringas. Semi-supervised learning for un-

known malware detection. In International Symposium on Distributed Computing

and Artificial Intelligence, pages 415–422. Springer, 2011.

[83] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, and Pablo Gar-

cia Bringas. On the automatic categorisation of android applications. In 2012

IEEE Consumer communications and networking conference (CCNC), pages 149–

153. IEEE, 2012.

130

[84] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli. Madam: Effective and

efficient behavior-based android malware detection and prevention. IEEE Trans-

actions on Dependable and Secure Computing, PP(99):1–1, 2017.

[85] Matthew G Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J Stolfo. Data

mining methods for detection of new malicious executables. In Security and

Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49.

IEEE, 2001.

[86] Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed Sallam, Elisa Bertino, and

Kangbin Yim. Detecting mobile malware threats to homeland security through

static analysis. Journal of Network and Computer Applications, 38:43–53, 2014.

[87] Abhishek Shah. Approximate Disassembly using Dynamic Programming. PhD

thesis, Citeseer, 2010.

[88] Ashu Sharma and Sanjay Sahay, K. An investigation of the classifiers to de-

tect android malicious apps. In Information and Communication Technology,

Proceedings of ICICT 2016, volume 625. Springer (in press), 2017.

[89] Ashu Sharma and Sanjay K Sahay. An effective approach for classification of

advanced malware with high accuracy. International Journal of Security and Its

Applications, 10(4):249–266, 2016.

[90] Ashu Sharma and Sanjay K Sahay. Group-wise classification to improve the

detection accuracy of android malicious apps. International Journal of Network

Security, 2018 (in press).

[91] Ashu Sharma, Sanjay K Sahay, and Abhishek Kumar. Improving the detection

accuracy of unknown malware by partitioning the executables in groups. In

Advanced Computing and Communication Technologies, pages 421–431. Springer,

2016.

[92] Ashu Sharma and Sanjay Kumar Sahay. Evolution and Detection of Polymor-

phic and Metamorphic Malwares: A Survey. International Journal of Computer

Applications, 90(2):7–11, March 2014.

131

[93] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report. Technical report, Symantec Corporation,

April 2012.

[94] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report. Technical report, Symantec, April 2014.

[95] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report. Technical report, Symantec Corporation,

2015.

[96] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report 2016. Technical report, Symentec, 2016.

[97] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio Jon.

Internet security threat report 2016. Technical report, Symantec Corporation,

2016.

[98] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report. Technical report, Symantec Corporation,

2017.

[99] Aimoto Shaun, AlKhatib Tareq, Coogan Peter, Corpin Mayee, and DiMaggio

Jon. Internet security threat report 2017. Technical report, Symentec, 2017.

[100] Muazzam Siddiqui, Morgan C Wang, and Joohan Lee. Detecting internet worms

using data mining techniques. Journal of Systemics, Cybernetics and Informatics,

6(6):48–53, 2008.

[101] Muazzam Siddiqui, Morgan C Wang, and Joohan Lee. A survey of data mining

techniques for malware detection using file features. In Proceedings of the 46th

annual southeast regional conference on xx, pages 509–510. ACM, 2008.

[102] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and

Johannes Hoffmann. Mobile-sandbox: having a deeper look into android applica-

tions. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,

pages 1808–1815. ACM, 2013.

132

[103] William Stallings. Network security essentials: applications and standards. Pear-

son Education India, 2007.

[104] Statista. Number of available applications in the google play store from december

2009 to february 2016, August 2016.

[105] Richard Stone. A call to cyber arms. Science, 339(6123):1026–1027, 2013.

[106] Peter Szor. The art of computer virus research and defense. Pearson Education,

2005.

[107] Peter Szor and Peter Ferrie. Hunting for metamorphic. In Virus bulletin confer-

ence, pages 123–144, 2001.

[108] S Momina Tabish, M Zubair Shafiq, and Muddassar Farooq. Malware detection

using statistical analysis of byte-level file content. In Proceedings of the ACM

SIGKDD Workshop on CyberSecurity and Intelligence Informatics, pages 23–31.

ACM, 2009.

[109] Ronghua Tian, Lynn Margaret Batten, and SC Versteeg. Function length as

a tool for malware classification. In Malicious and Unwanted Software, 2008.

MALWARE 2008. 3rd International Conference on, pages 69–76. IEEE, 2008.

[110] Annie H Toderici and Mark Stamp. Chi-squared distance and metamorphic virus

detection. Journal of Computer Virology and Hacking Techniques, 9(1):1–14,

2013.

[111] Nhat-Phuong Tran and Myungho Lee. High performance string matching for se-

curity applications. In ICT for Smart Society (ICISS), 2013 International Con-

ference on, pages 1–5. IEEE, 2013.

[112] Ashwini Venkatesan. Code Obfuscation and Virus Detection. PhD thesis, San

Jose State University, 2008.

[113] Timothy Vidas, Nicolas Christin, and Lorrie Cranor. Curbing android permission

creep. In Proceedings of the Web, volume 2, pages 91–96, 2011.

[114] webmaster@vxheaven.org. Viruses don’t harm, ignorance does.

http://vx.netlux.org, 2017.

133

[115] R Winsniewski. Android–apktool: A tool for reverse engineering android apk

files, 2012.

[116] Wing Wong and Mark Stamp. Hunting for metamorphic engines. Journal in

Computer Virology, 2(3):211–229, 2006.

[117] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.

Droidmat: Android malware detection through manifest and api calls tracing. In

Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on, pages

62–69. IEEE, 2012.

[118] J-Y Xu, Andrew H Sung, Patrick Chavez, and Srinivas Mukkamala. Polymorphic

malicious executable scanner by api sequence analysis. In Hybrid Intelligent Sys-

tems, 2004. HIS’04. Fourth International Conference on, pages 378–383. IEEE,

2004.

[119] Ke Xu, Yingjiu Li, and Robert H Deng. Iccdetector: Icc-based malware de-

tection on android. IEEE Transactions on Information Forensics and Security,

11(6):1252–1264, 2016.

[120] Ming Xu, Lingfei Wu, Shuhui Qi, Jian Xu, Haiping Zhang, Yizhi Ren, and Ning

Zheng. A similarity metric method of obfuscated malware using function-call

graph. Journal of Computer Virology and Hacking Techniques, 9(1):35–47, 2013.

[121] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. An in-

telligent pe-malware detection system based on association mining. Journal in

computer virology, 4(4):323–334, 2008.

[122] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In

2010 International conference on broadband, wireless computing, communication

and applications, pages 297–300. IEEE, 2010.

[123] Min Zheng, Mingshen Sun, and John CS Lui. Droid analytics: a signature based

analytic system to collect, extract, analyze and associate android malware. In

Trust, Security and Privacy in Computing and Communications (TrustCom),

2013 12th IEEE International Conference on, pages 163–171. IEEE, 2013.

134

LIST OF PUBLICATIONS

INTERNATIONAL JOURNALS

1. Ashu Sharma, Sanjay K. Sahay, Group-wise Classification to Improve the De-

tection Accuracy of Android Malicious Apps, International Journal of Network

Security, 2018 (in press).

2. Ashu Sharma, Sanjay K. Sahay, An Effective Approach for Classification of Ad-

vanced Malware with High Accuracy, International Journal of Security and Its

Applications, Vol. 10, No. 4, pp. 249-266, 2016.

3. Ashu Sharma, Sanjay K. Sahay, Evolution and Detection of Polymorphic and

Metamorphic malware: A Survey, International Journal of Computer Applica-

tions, Vol., 90, No. 2, pp. 7-11, 2014.

INTERNATIONAL CONFERENCES

1. Ashu Sharma, Sanjay K.Sahay, Investigation of the classifiers to detect android

malicious apps, Springer, Information and Communication Technology, pp. 207-

217, 2017, Proceedings ICICT-2016.

2. Sanjay K. Sahay, Ashu Sharma, Grouping the Executables to Detect malware with

High Accuracy, Elsevier, Procedia Computer Science, Vol. 78, pp. 667-674, 2016,

Proceedings ICISP-2015.

3. Ashu Sharma, Sanjay K. Sahay, Abhishek Kumar, Improving the detection ac-

curacy of unknown malware by partitioning the executables in groups, Springer,

Advanced Computing and Communication Technologies, pp. 421-431, 2016, Pro-

ceedings 9th ICACCT-2015.

135

BRIEF BIOGRAPHY OF THE CANDIDATE

Ashu Sharma was born in Jhansi, Uttar Pradesh, India. He received

his Bachelor’s degree in Computer Science and Engineering from Uttar Pradesh

Technical University and Master’s degree in Information Security from Atal Bihari

Vajpayee Indian Institute of Information Technology and Management, Gwalior.

In 2012 he joined the Department of Computer Science and Information Systems,

BITS, Pilani, K.K. Birla Goa Campus, India as a full-time research scholar for

the Ph.D. degree under the supervision of Dr. Sanjay K. Sahay.

136

BRIEF BIOGRAPHY OF THE SUPERVISOR

Dr. Sanjay Kumar Sahay is working as an Assistant Professor in

the Department of Computer Science and Information Systems, BITS, Pilani,

K.K. Birla Goa Campus. His research interests are Data Science, Information

Security, and Gravitational Waves. After submitting his Ph.D. thesis on “Stud-

ies in Gravitational Wave Data Analysis” during 2002-2003, he continued his

work on Data Analysis of Gravitational Waves as a Project Scientist at Inter-

University Centre for Astronomy and Astrophysics, Pune, India. In 2003-2005

at Raman Research Institute, Bangalore, India he worked as Project Associate

on the multi-wavelength astronomy project (ASTROSAT). In 2005 he worked as

Post Doctoral Fellow at Tel Aviv University, Israel, and since 2006, he is working

as Assistant Professor in the Department of Computer Science and Information

Systems, BITS, Pilani, K.K. Birla Goa Campus, India. He has published many

papers in reputed journals and conferences and supervised Ph.D. student and

many Postgraduate and Undergraduate projects.

137

