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Abstract

Singular integral equations have various applications in several basic fields of engineering mechanics
like elasticity, plasticity, and aerodynamics etc. Many crack problems occurring in the field of fracture
mechanics such as thermoelastic stress problems around an arbitrary number of arbitrarily-located planar
cracks are reducible into singular integral equations or their system. In this thesis, we consider the numerical
solution of two kind of singular integral equations. Firstly, the singular integral equations of first kind with
Cauchy kernel and the system of these equations. Secondly, the hypersingular integral equations of first
kind and their system.

Singular integral equations (SIEs) with Cauchy kernel play a vital role in studying many problems of
aerodynamics, fracture mechanics, neutron transport, wave propagation etc. System of Cauchy singular in-
tegral equations also have great importance as various problems occur in the field of aerodynamics, queuing
system analysis, electrocardiology, elasticity theory etc., can be formulated as system of Cauchy singular
integral equations. The analytic solution of such equations as well as for their system, are known when
these equations are dominant equations. But these analytic solutions are of limited use as it is a nontrivial
task to use it practically due to the presence of singularity in the known solutions itself. Therefore, there is
a necessity to find their approximate solutions.

Analogous to Cauchy singular integral equations, the hypersingular integral equations as well as their
system are equally important. Several problems occurring in the field of aerodynamics, aeronautics, inter-
ference or interaction problems such as wing-tail surfaces problem etc., are reducible into hypersingular
integral equations or their system. Similar to Cauchy singular integral equations, in case of hypersingu-
lar integral equations also, the analytical solution of these equations and their system are known only for
dominant equations. Further, there are many real world problems such as crack problems occurring in the
field of fracture mechanics which may not be always reducible as dominant equations. This is one of the
reason why there is a need to develop numerical methods. Although, various methods are available to find
the approximate solution of Cauchy and hypersingular integral equations. However, search for numerical
methods which are better than the available methods in some sense, is always there. Hence, we propose
numerical methods to find the approximate solution of Cauchy singular integral equations, hypersingular
integral equations and their systems. The proposed methods converts the singular integral equations into a



system of linear algebraic equations which can be solved easily. The convergence of sequence of approxi-
mate solutions is proved for both kind of singular integral equations considered in this thesis. The derived
convergence helps to obtain theoretical error bound for the error between the exact and approximate solu-
tions. Hadamard conditions of well-posedness are also established for each of the system of linear algebraic
equations which is obtained as a result of approximation of corresponding singular integral equations and
their systems. Finally, all the derived theoretical results are validated with the help of numerical examples.
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Matrices

x, y, z, t : Independent variables

ej(t); j = 0, 1, . . . , n : Orthonormalized Legendre polynomial of degree j

E = span{ej(t)}nj=0

u(t), v(t), w1(t), w2(t), θ̂(z) ĥ(z, y), f̂(y), v[c]
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Chapter 1

Introduction

1.1 Background and objective

For more than 20 years, a substantial demand has been increased for the use of singular integral equa-
tions in various fields of science [25, 39, 92, 95, 96, 120, 128] and engineering like fluid dynamics [10, 56],
elasticity [27, 93], electric field [110], acoustic waves [53], fracture mechanics [16], aeronautics [41], elec-
tromagnetic [133] etc. The singular integral equations act as a convenient tool for the solution of most of the
problems arising in above mentioned fields such as electromagnetic waves reflection problem [50] through
irregular medium interface, interference or interaction problems [7], stationary linear problem of ideal fluid
flow around a finite span wing [10], problem of finding the distribution of stresses around a Griffith crack
[83], electromagnetic scattering problems [107] through an orthotropic medium etc.

Various type of singular integral equations are available in literature such as logarithmic singular in-
tegral equation [13], Abel’s singular integral equations [121], Cauchy singular integral equations [42],
hypersingular integral equations [83] etc. The singular integral equations with Abel’s kernel were first en-
countered by Abel [83] in 1825 during the determination of the shape of the curve at the given end points
along which a particle moves under the influence of gravity alone in a given interval of time. In 1963,
Peters [105] has used the solution of Abel’s integral equation, to derive the analytic solution of Cauchy
singular integral equations (CSIEs) for the case when the equations contains only singular integral, that is,
k(x, t) = 0 in equation (1.1). In this thesis, we focus exclusively on Cauchy and hypersingular Fredholm
integral equations of the form respectively

−
∫ 1

−1

u(t)

(t− x)
dt+

∫ 1

−1

k(x, t)u(t)dt = g(x), | x |< 1, (1.1)

and

=

∫ 1

−1

u(t)

(t− x)2
dt+

∫ 1

−1

k(x, t)u(t)dt = g(x), | x |< 1, (1.2)
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where k(x, t) is a known Hölder continuous function over [−1, 1] × [−1, 1], g(x) is a known Hölder con-
tinuous function over the interval [−1, 1] and u(t) is an unknown function to be determined.

If the kernel k(x, t) = 0 in equations (1.1) and (1.2), then these are known as dominant [45] equations.
In equation (1.1), the integral appearing on left hand side is having a singularity at t = x and it does not
exist as a Riemann integral since the integrand becomes unbounded at t = x. Further, this integral does
not exist as an improper integral too, but if we consider in the sense of Cauchy principal value (CPV), the
integral does exist.

The investigations of Cauchy singular integral equations by various mathematicians such as Gakhov
[39], Muskhelishvili [92], Vekua [127], Ivanov [54], Pogorzelski [106], Elliott [29] etc., have had a huge
impact on the further development of the general theory of singular integral equations. These equations
have many applications in various fields of science [87, 92, 93] and engineering such as aerodynamics [70],
fracture mechanics [32], potential theory [18], electromagnetic [107] etc. The system of these equations
is equally important due to their occurrence during the formulation of many boundary value problems of
science and engineering [31, 32, 70, 92]. A complete treatment of the analytical methods for the solution
of CSIEs is given by Gakhov [39] and Muskhelishvilli [92]. Although, an analytic solution for CSIEs of
first kind having only dominant part is derived by Peters [105] in 1963, with the aid of solution of Abel’s
integral equation, but it is not always attainable due to the presence of singularity in the solution itself.
Therefore, researchers have been investigating various numerical methods to find their approximate solu-
tion. For instance, Eshkuvatov et al. [33] have proposed an efficient approximate method for solving the
Cauchy type singular integral equation of the first kind over a finite interval with the help of Chebyshev
polynomials of the first kind, second kind, third kind and fourth kind. Kim used inverse method [63] to find
approximate solution of CSIEs. Gong has used Galerkin method [46], Mandal [81] and Junghanns [57]
have used collocation method etc., to find the approximate solution of CSIEs. Despite of the availability
of various numerical methods, construction and justification of new numerical schemes to find the approx-
imate solution of CSIEs, is still a topic of considerable interest. Also, in last few years, researchers have
proposed various new methods to find the approximate solution of CSIEs such as fast multipole method
[130], reproducing kernel Hilbert space (RKHS) method [28], collocation technique based on Bernstein
polynomials [115] etc., to get numerical solution of Cauchy singular integral equations. For system of
Cauchy type singular integral equations, Bonis and Laurita [26] have proposed a quadrature method and
Turhan [125] has used Chebyshev polynomial based method for the solution of the system of Cauchy type
singular integral equations.

The hypersingular integral equations (HSIEs) which are defined in equation (1.2) are as important as
CSIEs due to their significant role in different areas of applied science and engineering [70]. In equation
(1.2), the definition of CPV for the integral, having the factor 1

(t−x)2
, fails to exist due to the higher singular-

ity. Hence, to handle this kind of singularity, in 1952, the French mathematician Hadamard [48] introduced
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the concept of finite-part integral. The Hadamard finite part integral (HFP) is used to define those inte-
grals where even CPV integral does not exist. The concept of finite-part integrals was firstly introduced by
Hadamard [48], but after many years later, for the evaluation of finite-part singular integrals, in 1975, Kutt
[69] has proposed some numerical formulas. Later in 1983, Golberg [43] has studied the convergence of
several algorithms for solving finite-part singular integrals. Kaya and Erdogan [60, 61] have explored com-
plicated problems of elasticity as well as fracture mechanics which are reducible to the solution of hypersin-
gular integral equations and their system. The hypersingular integral equations are becoming increasingly
important due to their applications in various fields such as fluid mechanics [103], fracture mechanics [86]
and acoustics [77], etc. The HSIEs also play an important role in studying many problems. For instance,
the problem of circulation distribution of a finite span wing [8, 88] which arises in the theory of incom-
pressible flow and the problem of electromagnetic scattering by three-dimensional anisotropic media [114]
etc., are formulated as HSIEs. Further, many boundary value problems, in particular, the reformulation
of the exterior Neumann problem in scattering theory [3] leads to hypersingular equation or their system.
Martin [85] has given a plenty of application areas such as acoustics, potential theory, elastostatics and
hydrodynamics where the hypersingular integral equations quite naturally occur. These HSIEs arise during
the formulation of various problems appearing in the field of applied mathematics, mathematical physics,
engineering [5, 20, 22] etc., have been explored by many researchers using different analytical methods
and approximation techniques. For instance, complex variable function method [14], boundary element
method [64], polynomial approximation [99], modified Adomian decomposition [79], etc. But search for
the methods to find their approximate solution which give better results in some sense as compare to already
exist methods, is still a topic of exposition for many researchers. For last few years, various new numerical
methods have been proposed such as Legendre multiwavelets [104] method, modified homotopy pertur-
bation method [34], best mean-square approximation method [2], piecewise linear approximations [118]
etc., to find the approximate solution of HSIEs. Recently, Kostenko [65] has proposed a numerical method
which includes regularization of operators, interpolation polynomials and quadrature formulas to find the
approximate solution of system of HSIEs of second kind. Similar to Cauchy singular integral equations, the
analytic solution of hypersingular integral equations is also available for the case when the equations are
having only dominant part, that is, when the kernel k(x, t) is identically zero. However, this available ana-
lytic solution practically is of limited use since the operations involved in calculations of analytic solution
can rarely be carried out exactly due to the presence of singularity. Also, there are many physical problems
which are formulated as singular integral equations [19, 21, 36] in which the kernel is not identically zero.
Therefore, it is required to find their approximate solution. Although, as we have mentioned above that
various methods are available to find the approximate solution of hypersingular integral equations. How-
ever, search for better methods than available methods in some sense, is still an interesting as well as a
challenging topic to explore. Also, the literature on numerical methods to find the approximate solution
for the system of singular integral equations of first kind is still scarce. In this thesis, we propose residual
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based Galerkin method with Legendre polynomial as basis function to find the approximate solution of
CSIEs, HSIEs and their systems. We show the convergence of sequence of approximate solutions, which
are obtained with the aid of our proposed method, to the exact solution. Moreover, we also validate all the
derived theoretical results with the help of numerical examples.

1.1.1 Basic definitions and theorem
In this section, we define some useful definitions and important results [49, 73] which are essential in

order to understand the error analysis of the proposed method of solution.

Definition 1.1.1. Legendre polynomial: The nth degree Legendre polynomials over the interval [−1, 1]

are defined as
pn(t) =

1

2nn!

dn

dtn
(t2 − 1)n, (1.3)

where n is a non-negative integer.

Definition 1.1.2. Orthogonal property of Legendre polynomials: The orthogonal property of Legendre
polynomials over the interval [−1, 1] makes them very useful and it can be stated as follows: let pm(t) and
pn(t) be Legendre polynomials of degree m and n respectively, then we have

∫ 1

−1

pm(t)pn(t)dt =

{
0 if m 6= n,

2
2n+1

if m = n,
(1.4)

where m,n are non-negative integers.

Definition 1.1.3. Hölder continuous function: A Hölder continous [92] function u(t) is the function
which satisfies the following condition:

| u(t)− u(x) |≤ c | t− x |α, ∀ t, x ∈ Ω(u), (1.5)

where c denotes a non-negative real constant, α is an exponent of Hölder condition such that 0 < α ≤ 1

and Ω(u) stands for the domain of the function u.

Definition 1.1.4. Cauchy principal value (CPV): If u(t) ∈ C0,α(−1, 1), then

CPV

∫ 1

−1

u(t)

t− x
dt = −

∫ 1

−1

u(t)

t− x
dt = lim

ε→0+

(∫ x−ε

−1

u(t)

t− x
dt+

∫ 1

x+ε

u(t)

t− x
dt

)
, (1.6)

where |x| < 1 and C0,α(−1, 1) is the space of functions which are Hölder continuous on the interval (−1, 1)

with the exponent 0 < α ≤ 1.

The function u(t) needs to be a Hölder continuous function over the interval (−1, 1). This requirement
of Hölder continuity is necessary in order to ensure the existence of Cauchy principal value [17] of integral
equation (1.6).
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Definition 1.1.5. Hadamard finite-part integral (HFP): The HFP definition defined below is given by
Monogato [88] which is a simplified form of the definition of Hadamard finite part integral [48]. For the
function u(t) ∈ C1,α(−1, 1), the Hadamard finite part integral is defined as

HFP
∫ 1

−1

u(t)

(t− x)2
dt =

∫ 1

−1

u(t)− (t− x)u
′
(x)− u(x)

(t− x)2
dt

− u′(x) log

∣∣∣∣1− x1 + x

∣∣∣∣− u(x)
[ 1

1− x
+

1

1 + x

]
, | x |< 1, (1.7)

where C1,α(−1, 1) stands for the space of functions whose first derivatives are Hölder continuous on
the interval (−1, 1) with the exponent 0 < α ≤ 1. The requirement that the function u(t) ∈ C1,α(−1, 1),

is necessary in order to regularized hypersingular integrals [17] appearing in equation (1.7). Few more
properties of finite-part integral can be found in [89].

Definition 1.1.6. Well-posedness conditions by Hadmard: A mathematical problem is called well-posed
(in the sense of Hadmard [48, 122]) if it satisfies the following conditions:

1. it has a solution (existence).

2. the solution is unique (uniqueness).

3. the solution depends continuously on given input data (stability).

Theorem 1.1.1. Bounded inverse theorem: Let H1, H2 be two Hilbert spaces and T : H1 → H2 be a

bijective bounded linear operator. Then the inverse linear map T −1 : H2 → H1 is also bounded (for proof

of the theorem, please refer [68]).

1.2 Outline of the thesis
The thesis is structured as follows: In Chapter 2, we propose a residual based Galerkin method to

find the approximate solution of Cauchy singular integral equations with index zero over the finite interval
[−1, 1]. The test examples are given for illustration of proposed numerical method. The convergence of
sequence of approximate solutions of CSIEs, is shown. Further, the error bound is derived as well as verified
in all the numerical examples.

In Chapter 3, the problem of finding numerical solution for a system of Cauchy type singular integral
equations of first kind with index zero, is considered. A residual based Galerkin method is proposed with
Legendre polynomials as basis functions to find its numerical solution. The theoretical error bound is
derived which can be used to obtain any desired accuracy in the approximate solution of system of Cauchy
singular integral equations. The convergence of sequence of approximate solutions to the exact solution of
system of CSIEs is proved. The derived theoretical error bound is also validated with the help of numerical
examples.
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Chapter 4 proposes a residual based Galerkin method with Legendre polynomials as a basis func-
tions to find the approximate solution of hypersingular integral equations. The convergence of sequence
of approximate solutions is proved and error bound is obtained theoretically. The validation of all derived
theoretical results and implementation of proposed method is also shown with the aid of numerical illustra-
tions.

In Chapter 5, we propose a residual based Galerkin method to calculate approximate solution for
system of hypersingular integral equations which occurs quite naturally during the formulation of many
problems of applied science and engineering. The convergence of sequence of the approximate solutions
is proved which helps to derive theoretical error bound for the error between the exact and approximate
solution. An application of the proposed method in finding numerical solution of hypersingular integral
equation over curves is also shown. Finally, the derived theoretical error bound is numerically calculated
and validated with the help of numerical examples.

Chapter 6 concludes my research work described in this thesis as well as gives the direction for future
work in the field of singular integral equations.

We have used Wolfram Mathematica 11.0 for all the numerical calculations.



Chapter 2

Numerical solution of Cauchy singular integral
equations

2.1 Introduction
Singular integral equations (SIEs) with Cauchy kernel occur frequently in mixed boundary value prob-

lems for partial differential equations. The stationary linear problem of ideal fluid flow around a finite span
wing is reducible to Cauchy singular integral equation (see [10] and the references therein). An interest-
ing and comprehensive survey of applications of SIEs can be found in [25, 128]. It is worth noting that
the methods of exact and approximate solutions of SIEs have been still a challenging problem for the re-
search community. In this chapter, we consider the numerical solution of Cauchy singular integral equations
(CSIEs) of first kind

−
∫ 1

−1

χ
[c]

(t)

t− x
dt−

∫ 1

−1

k
[c]

(x, t)χ
[c]

(t)dt = g
[c]

(x), | x |< 1, (2.1)

with the boundary conditions

χ
[c]

(t) =

{
0 if t = 1,

unbounded if t = −1,
(2.2)

where χ[c]
(t) is unknown function. The functions g[c]

(x) and k[c]
(x, t) are known real valued Hölder con-

tinuous over the interval [−1, 1] and [−1, 1] × [−1, 1] respectively. The first integral in equation( 2.1) is
understood to be exist in the sense of CPV. Also, the function χ[c]

(t) is assumed to be a Hölder continuous
in order to ensure the existence [17] of Cauchy principal value. The Cauchy singular integral equations
have many applications in the field of aerodynamics [70], fracture mechanics [32], neutron transport [87]
etc. CSIEs are also widely used in many areas of mathematical physics such as potential theory [18], elas-
ticity problems as well as electromagnetic scattering [134]. The numerical methods which are developed
for one-dimensional Cauchy type singular integral equations include: Galerkin’s method [9, 116], colloca-
tion method [81], quadrature method [62, 123], inverse method [63], Sinc approximations [1] etc. In this
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chapter, we propose a residual based Galerkin’s method using Legendre polynomial as basis function to
find the numerical solution of equation (2.1).

2.2 Method of solution for CSIEs over [−1, 1]
In order to find the approximate solution of Cauchy singular integral equation (2.1), we write the

unknown function [42] as

χ
[c]

(t) =

√
1− t
1 + t

ξ
[c]

(t), (2.3)

where ξ[c]
(t) is an unknown function of t ∈ [−1, 1]. Now using equation (2.3) in equation (2.1), we obtain

−
∫ 1

−1

√
1− t
1 + t

ξ
[c]

(t)

t− x
dt−

∫ 1

−1

√
1− t
1 + t

k
[c]

(x, t)ξ
[c]

(t)dt = g
[c]

(x), | x < 1. (2.4)

We approximate the function ξ[c]
(t) by orthonormalized Legendre polynomials as follows:

ξ
[c]

(t) ≈ ξ∗n
[c]

(t) =
n∑
j=0

a
[c]

j ej(t), (2.5)

where {ej(t)}nj=0 denotes the set of (n+ 1) orthonormalized Legendre polynomials on [−1, 1] and a[c]

j ; j =

0, 1, 2, . . . , n are unknown constant coefficients.

To get the the values of unknown coefficients a[c]

j , we use residual based Galerkin’s method. On using
the above approximation for ξ[c]

(t) in equation (2.4), the residual errorR[c]
(x, a

[c]

0
, a

[c]

1
, a

[c]

2
, ..., a

[c]

n
) will be

R[c]

(x, a
[c]

0 , a
[c]

1 , a
[c]

2 , ..., a
[c]

n ) =

∫ 1

−1

√
1− t
1 + t

ξ∗n
[c]

(t)

t− x
dt−

∫ 1

−1

√
1− t
1 + t

k
[c]

(x, t)ξ∗n
[c]

(t)dt− g[c]

(x), | x |< 1.

(2.6)
In Galerkin’s method, this residual error R[c]

(x, a
[c]

0
, a

[c]

1
, a

[c]

2
, ..., a

[c]

n
) is assumed to be orthogonal to the

space spanned by orthonormal polynomials {ej(x)}nj=0, that is, we have

〈R[c]

(x, a
[c]

0
, a

[c]

1
, a

[c]

2
, ..., a

[c]

n
), ej〉L2 = 0, ∀j = 0, 1, 2, · · · , n. (2.7)

From equation (2.7), we get a system of (n+1) linear algebraic equations in (n+1) unknowns. The explicit
form of equation (2.7) is as follows:

n∑
r=0

a
[c]

r

(∫ 1

−1

−
∫ 1

−1

√
1− t
1 + t

1

t− x
er(t)eq(x)dtdx−

∫ 1

−1

∫ 1

−1

√
1− t
1 + t

k
[c]

(x, t)er(t)eq(x)dtdx
)

=

∫ 1

−1

g
[c]

(x)eq(x)dx, q = 0, 1, 2, . . . , n,

(2.8)
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where

b
[c]

rq =

∫ 1

−1

−
∫ 1

−1

√
1− t
1 + t

1

x− t
er(x)eq(t)dtdx−

∫ 1

−1

∫ 1

−1

√
1− t
1 + t

k
[c]

(x, t)er(t)eq(x)dtdx, r, q = 0, 1, 2, . . . , n,

g
[c]

q =

∫ 1

−1

g
[c]

(x)eq(x)dx, q = 0, 1, 2, . . . , n.

Finally, the system (2.8) can be written in matrix form as

B
[c]T
A

[c]

= B1
[c]

A
[c]

= G
[c]

, (2.9)

where

B
[c]

1 = B
[c]T
, B

[c]

=


b
[c]

00
b
[c]

01
. . . b

[c]

0n

b
[c]

10
b
[c]

11
. . . b

[c]

1n

...
... . . . ...

b
[c]

n0
b
[c]

n1
. . . b

[c]

nn

 , A
[c]

=


a

[c]

0

a
[c]

1

...
a

[c]

n

 , G
[c]

=


g

[c]

0

g
[c]

1

...
g

[c]

n

 . (2.10)

After solving the system (2.9) which is obtained as a result of approximation of equation (2.4), we get the
values of aj; j = 0, 1, 2, . . . , n. Now, finally substituting the values of aj; j = 0, 1, 2, . . . , n, in equation
(2.5), we get the approximate solution of equation (2.4) and hence, for equation (2.1).

This completes the description of proposed method which we use to find the approximate solution of
equation (2.1).

2.3 Error analysis
In this section, we show the convergence of sequence of approximate solutions in L2 space and we

also derive the error bound for the error between the exact and approximate solution. We write the equation
(2.4) in operator form

(S
[c] −K [c]

)ξ
[c]

(x) = g
[c]

(x), | x |< 1. (2.11)

In the above equation (2.11), the operators S [c] and K [c] are defined as

S
[c]

ξ
[c]

(x) = −
∫ 1

−1

√
1− t
1 + t

ξ
[c]

(t)

t− x
dt, (2.12)

K
[c]

ξ
[c]

(x) =

∫ 1

−1

√
1− t
1 + t

k
[c]

(x, t)ξ
[c]

(t)dt. (2.13)

We assume that ∫ 1

−1

∫ 1

−1

(√1− t
1 + t

k
[c]

(x, t)
)2

dtdx <∞. (2.14)

Now we define the function space L2[−1, 1] as
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L2[−1, 1] =

{
u : [−1, 1]→ R :

∫ 1

−1

(u(t))2dt <∞
}
. (2.15)

The space defined above is a Hilbert space of all square integrable functions over the interval [−1, 1] with
the following norm ‖.‖2

L2 and inner product 〈., .〉L2

‖u‖L2 =
(∫ 1

−1

(
u(t)

)2

dt
)1/2

, for u(t) ∈ L2, (2.16)

〈u, v〉L2 =

∫ 1

−1

u(t)v(t)dt, for u(t), v(t) ∈ L2. (2.17)

We define another function space say, M [c] such that

M
[c]

= {u(t) ∈ L2 :
∞∑
i=0

(d
[c]

i )2〈u, ei〉2L2 <∞}. (2.18)

where d[c]

i =

√
∞∑
j=0

〈S [c]ei, ej〉
2

L2 . Following results [12], the function S [c]
ei(x) is a polynomial of degree at

the most of i and therefore, d[c]

i ∀ i will be a finite number. This space M [c] is a subspace of L2 space which
is made into a Hilbert space with respect to the following norm ‖ · ‖

M
[c] and inner product 〈·, ·〉

M
[c]

‖ u ‖2

M
[c]=

∞∑
i=0

(d
[c]

i )
2
〈u, ei〉2L2 , for u(t) ∈M [c]

, (2.19)

〈u, v〉
M

[c] =
∞∑
i=0

(d
[c]

i )
2
〈u, ei〉L2〈v, ei〉L2 , for u(t), v(t) ∈M [c]

. (2.20)

Let v[c]

k (x) = ek(x)

d
[c]

k

, then ‖ v[c]

k ‖M [c]= 1.

This set {v[c]

k (x)}∞k=0 forms complete orthonormal basis for the Hilbert space M [c]
, that is, if u ∈M [c]

,

then we have

u(x) =
∞∑
k=0

〈u, v[c]

k 〉M [c]v
[c]

k (x). (2.21)

Now with the aid of results in [12], we obtain

S
[c]

en(x) =
n∑
i=0

α
[c]

i ei(x), (2.22)

where the coefficients α[c]

i = 〈S [c]
en, ei〉L2 , i = 0, 1, 2, . . . , n. Using the above result (2.22), the operator
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S
[c]

: M
[c] → L2, can be extended as a bounded linear operator and defined as

S
[c]

ξ
[c]

(x) =
∞∑
i=0

〈ξ[c]

, ei〉L2

i∑
j=0

〈Se[c]i , ej〉L2ej(x) ∈ L2[−1, 1]. (2.23)

Using the orthogonal property of Legendre polynomial, we find the norm of operator S [c]

‖ S [c]

ξ
[c] ‖2

L2=
∞∑
i=0

(d
[c]

i )
2
〈ξ[c]

, ei〉2L2 =‖ ξ ‖2

M
[c] . (2.24)

Therefore, using equation (2.24), we obtain

‖ S [c] ‖= 1. (2.25)

Also, the operator S [c] from M
[c] → L2 is one-one and onto [42]. Hence, the operator (S

[c]
)−1 : L2 →M

[c]

exists as a bounded linear operator by using Bounded Inverse Theorem [68]. This operator (S
[c]

)−1 is
defined as

(S
[c]

)−1ξ
[c]

(x) =
∞∑
i=0

〈ξ[c]
(x), ei(x)〉L2

d
[c]

i

ei(x). (2.26)

Using the above definition (2.26), we find the norm of linear operator S−1

‖ (S
[c]

)−1 ‖= 1. (2.27)

The equation (2.11) has a unique solution if and only if the operator (S
[c] − K [c]

) has a bounded inverse.
We assume that this condition holds on from now on. We consider the mapping Q[c]

n : L2 → L2 which is
defined as

Q
[c]

n ξ
[c]

(x) =
n∑
i=0

〈ξ[c]

, ei〉L2ei(x), (2.28)

where Q[c]

n is the operator of orthogonal projection and n is the degree of orthonormalized Legendre poly-
nomial. With the aid of equation (2.7), we obtain

Q
[c]

n

(
(S

[c] −K [c]

)ξ∗n
[c]

(x)− g[c]

(x)
)

= 0. (2.29)

Since the function ξ∗[c](x) defined in equation (2.5), is a polynomial. Therefore, with the help of the
formulas given in [12], the function S [c]

ξ∗n
[c]

(x) will be a polynomial and by the definition of operator Q[c]

n ,
we obtain

Q
[c]

n S
[c]

ξ∗n
[c]

(x) = S
[c]

ξ∗n
[c]

(x), (2.30)

and hence, the equation (2.29) becomes
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S
[c]

ξ∗n
[c]

(x)−Q[c]

n K
[c]

ξ∗n
[c]

(x) = Q
[c]

n g
[c]

(x). (2.31)

Since the operator (S
[c]

)−1 is bounded and the operator K [c] is compact due to the condition defined in
equation (2.14) and therefore, for all n ≥ n0, the operator (S

[c] − Q
[c]

n K
[c]

)−1 exists as a bounded linear
operator [45]. Hence, the equation (2.31) has a unique solution which is defined as

ξ∗n
[c]

(x) = (S
[c] −Q[c]

n K
[c]

)−1Q
[c]

n g
[c]

(x). (2.32)

From equations (2.11) and (2.32), for all n ≥ n0, we have

ξ
[c]

(x)− ξ∗n
[c]

(x) = (S
[c] −Q[c]

n K
[c]

)−1
(
g

[c]

(x)−Q[c]

n g
[c]

(x) +K
[c]

ξ
[c]

(x)−Q[c]

n K
[c]

ξ
[c]

(x)
)
. (2.33)

Now taking M [c] norm on both the sides of equation (2.33), we obtain

‖ ξ[c] − ξ∗n
[c] ‖

M
[c] ≤‖ (S

[c] −Qn
[c]

K
[c]

)−1 ‖‖ g[c] −Q[c]

n g
[c] ‖L2

+ ‖ (S
[c] −Qn

[c]

K
[c]

)−1 ‖‖ K [c]

ξ
[c]

(x)−Q[c]

n K
[c]

ξ
[c]

(x) ‖L2 . (2.34)

Due the compactness of operator K [c] , we have ‖ K
[c] − Q

[c]

n K
[c] ‖L2→ 0 as n → ∞ [45]. Also, ‖

g
[c] − Q

[c]

n g
[c] ‖L2→ 0 as n → ∞. Therefore ‖ ξ[c] − ξ∗n

[c] ‖[c]M→ 0 as n → ∞. Further, it is noticed
that if ξ[c] ∈M [c] , then we have

‖ ξ[c] ‖L2≤‖ ξ[c] ‖
M

[c] . (2.35)

On using equation (2.35) in equation (2.34), we finally obtain

‖ ξ[c] − ξ∗n
[c] ‖L2 ≤‖ (S

[c] −Qn
[c]

K
[c]

)−1 ‖‖ g[c] −Q[c]

n g
[c] ‖L2

+ ‖ (S
[c] −Qn

[c]

K
[c]

)−1 ‖‖ K [c]

ξ
[c]

(x)−Q[c]

n K
[c]

ξ
[c]

(x) ‖L2 . (2.36)

Hence, the convergence of sequence of approximate solutions {ξ∗n
[c]

(x)}∞n=0 to the exact solution ξ[c]
(x) in

L2 space is proved. Also, the right hand side of equation (2.36) is an error bound for the error between the
exact solution ξ[c]

(x) and the approximate solution ξ∗n
[c]

(x).

2.3.1 Well-posedness
In this subsection, we verify the Hadamard well-posedness of problem (2.31). The existence the oper-

ator (S
[c] −Qn

[c]
K

[c]
)−1 which is already shown above, implies that the problem (2.31) has a solution. We

now show the uniqueness of the solution to the problem (2.31) with the aid of principle of contradiction.

Let us assume that the system (2.31) has two distinct solutions say y1 and y2 . Then we have

S
[c]

y1(x)−Qn
[c]

K
[c]

y1(x) = Qn
[c]

g
[c]

(x), (2.37)
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and
S

[c]

y2(x)−Qn
[c]

K
[c]

y2(x) = Qn
[c]

g
[c]

(x). (2.38)

Taking the difference of equations (2.37) and (2.38), we obtain

(S
[c] −Qn

[c]

K
[c]

)(y1(x)− y2(x)) = 0. (2.39)

In Section 2.3, it is already proved that the operator (S
[c] −Qn

[c]
K

[c]
)−1 exists as a bounded linear operator.

Therefore on applying the inverse operator (S
[c] −Qn

[c]
K

[c]
)−1 on both the sides of equation (2.39), we get

y1(x) = y2(x), | x |< 1. (2.40)

The above equation (2.40) contradicts our assumption. Hence, the problem (2.31) has a unique so-
lution. Also, the boundedness of the inverse operator (S

[c] − Qn
[c]
K

[c]
)−1 implies the continuity of

(S
[c] − Qn

[c]
K

[c]
)−1. This means that a small change in the given data will lead to a small change in

the solution. Hence, the boundedness of the operator (S
[c] − Qn

[c]
K

[c]
)−1 proves that the solution depends

continuously on given data. Since the problem (2.31) satisfies all the conditions of well-posedness therefore
it is a well-posed problem.

2.3.2 Existence and uniqueness of solution for the linear system
In this subsection, we show the existence and uniqueness of solution for linear system (2.9) which

is obtained after applying the proposed method to the equation (2.1). We start the proof by defining the
prolongation operator [45] Pn

[c]
: Rn+1 → E as follows:

Pn
[c]

G
[c]

=
n∑
j=0

〈g[c]

, e
j
〉
L2ej(x) ∈ E, (2.41)

where Rn+1 is a real vector space [67] having (n + 1)-tuples of real numbers as its vectors, E =

span{ej(x)}nj=0 and G[c] is same as defined in equation (2.10). Now using the definition of orthogonal
projection Qn, we obtain

Q
[c]

n g
[c]

(x) =
n∑
j=0

〈g[c]

, e
j
〉
L2ej(x). (2.42)

From equations (2.41) and (2.42), we have

Pn
[c]

G
[c]

= Qn
[c]

g
[c]

(x), g
[c]

(x) ∈ L2, G
[c] ∈ Rn+1, | x |< 1. (2.43)

We further define a restriction operator [45] Rn
[c]

: E → Rn+1 as follows:

Rn
[c]

ξ∗n
[c]

(x) = (〈ξ∗n
[c]

, e0〉L2 , 〈ξ∗n
[c]

, e1〉L2 , . . . 〈ξ∗n
[c]

, en〉L2)T ∈ Rn+1, (2.44)
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where the function ξ∗n
[c]

(x) is same as defined in equation (2.5). On using the orthogonal property of
Legendre polynomials in equation (2.5), we get

aj
[c]

= 〈ξ∗n
[c]

, e
j
〉L2 , j = 0, 1, . . . , n. (2.45)

Therefore, from equations (2.44) and (2.45), we obtain

Rn
[c]

ξ∗n
[c]

(x) = A
[c]

, (2.46)

where the matrix A
[c] is same as defined in equation (2.10). Since system (2.32) has a unique solution

ξ∗n
[c]

(x) due to the existence of bounded linear operator (S
[c]−Qn

[c]
K

[c]
)−1. Therefore, from equation (2.46),

the solution A[c] of system (2.9) exists uniquely. This completes the proof of existence and uniqueness of
solution for system of linear algebraic equation (2.9).

2.4 Illustrative examples
In this section, we find the approximate solution of numerical examples by using the proposed method

discussed in Section 2.2.

Example 2.1 Consider the Cauchy singular integral equation

−
∫ 1

−1

√
1− t
1 + t

ξ
[c]

(t)

t− x
dt− 1

2

∫ 1

−1

√
1− t
1 + t

(x− xt2)ξ
[c]

(t)dt =
1

π

(
xex − J1(1)x2 + 7x5

)
, (2.47)

where J1(1) is Bessel function of first kind of order one. The exact solution of the above problem is not
known. We find its approximate solution by using the method described in Section2.2. It is clear from
Figure 2.1 that as n is increasing, the approximate solutions are coming closer to each other this shows that
the error between the approximate solution and the exact solutions is keep on decreasing.

Table 2.1: The theoretical error bound in case of Example 2.1 for different values of n

Degree of Legendre polynomial Error bound for ‖ξ[c] − ξ∗n
[c]‖L2

n = 1 1.21436

n = 2 1.19832

n = 3 2.51361× 10−1

n = 4 2.51042× 10−1

n = 5 1.5630× 10−4

n = 6 1.2961× 10−5

n = 7 9.22537× 10−7

n = 8 5.75069× 10−8
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Further, it can be seen from Table 2.1. that the error bound is decreasing as n is increasing which indicates
that the sequence of approximate solutions is converging to the exact solution.

Table 2.2: The actual error and theoretical error bound in case of Example 2.2 for different values of n

Degree of Legendre polynomial Actual error ‖ξ[c] − ξ∗n
[c]‖L2 Error bound for ‖ξ − ξ∗[c]‖L2

n = 1 1.00668 3.58307

n = 2 2.40175× 10−1 1.62093

n = 3 2.10905× 10−1 1.02621

n = 4 0 0

Table 2.3: The theoretical error bound in case of Example 2.3 for different values of n

Degree of Legendre polynomial Error bound for ‖ξ[c] − ξ∗n
[c]‖L2

n = 1 1.66512

n = 2 6.33927× 10−1

n = 3 3.47631× 10−1

n = 4 3.05371× 10−2

n = 5 1.75190× 10−2

n = 6 2.09064× 10−4

n = 7 1.19283× 10−5

n = 8 1.00000× 10−8
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Figure 2.1: Comparison of approximate solution for different values of n in case of Example 2.1

Example 2.2 Consider the singular integral equation with Cauchy kernel

−
∫ 1

−1

√
1− t
1 + t

ξ
[c]

(t)

t− x
dt− 1

5

∫ 1

−1

√
1− t
1 + t

(1+x4)(1+t)2ξ
[c]

(t)dt =
1

π

(5179

40
+4x−5x2+7x3+

97x4

20

)
. (2.48)
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The exact solution of this problem is χ[c](x) =
1

π2

√
1− x
1 + x

(
− 120 + x+

3x2

2
+ 7x4

)
. Figure 2.2 shows

that the approximate solution is the exact solution for n = 4. It is also shown in Table 2.2 that actual error
satisfies the error bound which is calculated by using equation (2.36).
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Figure 2.2: Comparison of exact solution and approximate solutions in case of Example 2.2
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Figure 2.3: Comparison of approximate solution for different values of n in case of Example 2.3

Example 2.3 Consider a Cauchy singular integral equation

−
∫ 1

−1

√
1− t
1 + t

ξ
[c]

(t)

t− x
dt− 1

2

∫ 1

−1

√
1− t
1 + t

x(1 + t)ξ
[c]

(t)dt =
1

π

(
x− 5x2 + 7x3

)
sinx. (2.49)

The exact solution of Example 2.3 is not known. We find its approximate solution by proposed method
and the results are detailed in Table 2.3. Figure 2.3 shows that the approximate solutions are getting closer
to each other as n is increasing which verifies the results (2.36). Table 2.3 implies that the sequence of
approximate solutions is converging to the exact solution .



2.5. CSIEs over the half-line 17

2.5 CSIEs over the half-line

In this section, we show that the numerical method described in Section 2.2 can be used to find the
approximate solution of Cauchy singular integral equations over the half-line. These kind of equations occur
quite naturally in the field of fracture mechanics [51, 91]. Also, the singular integral equation with Cauchy
kernel over the half-line arises during the formulation of boundary value problems such as the problems
occurring in the field of fracture mechanics [112], quantum mechanics [100], aerodynamics [124], flow and
heat transfer theory [126] etc. The general theory related to these kind of singular integral equations can be
found in [35, 39]. Our main objective in this section is to determine an approximate solution for a Cauchy
singular integral equation of the form

−
∫ ∞

0

θ̂(z)

z − y
dz −

∫ ∞
0

ĥ(z, y)θ̂(z)dz = f̂(y), 0 < y <∞, (2.50)

where θ̂(z) is Hölder continuous [39] unknown function which vanishes at infinity and becomes unbounded
at zero. The functions f̂(y) and ĥ(z, y) are known real valued Hölder continuous over the interval [0,∞)

and [0,∞)× [0,∞) respectively. The first integral in equation (2.50) is understood in the sense of Cauchy
principal value [35] (CPV) which is defined as

CPV

∫ ∞
0

θ̂(z)

z − y
dz = −

∫ ∞
0

θ̂(z)

z − y
dz = lim

ε→0+

(∫ y−ε

0

θ̂(z)

z − y
dz +

∫ ∞
y+ε

θ̂(z)

z − y
dz

)
, 0 < y <∞. (2.51)

In order to ensure the existence of CPV, the unknown function is assumed to be Hölder Continuous [39]
function over the interval (0,∞). The analytic solution of equation (2.50) can be obtained (for details see
chapter 14 of Mushkelishvili [92]). However, the analytic solution even if it is derived, will be of limited
practical value, since the operations involved in such calculations, can rarely be carried out exactly. Hence,
it is required to find its approximate solution. Also, various numerical methods to find the approximate
solution of Cauchy singular integral equation over finite interval are available such as Galerkin’s method
[117, 129], collocation method [58], quadrature method [55], inverse method [63], real variable method
[15], Sinc approximations [1] etc. However, the numerical methods to find the approximate solution of
Cauchy singular integral equation over the half-line is still scarce. To the best of our knowledge only
few methods are available which use different kind of quadrature rules such as interpolation quadrature on
Chebyshev nodes [108, 109], Gauss-Jacobi [91], Gauss and Radau-Laguerre quadrature rules [52] to find
the approximate solution of Cauchy singular integral equation over the half-line. The quadrature methods,
in principle, are confined to the second kind equations [66]. Therefore, we propose a numerical method
which can be used to find the approximate solution of singular integral equations of the first kind. This
method first transform the singular integral equation over the half-line into a singular integral equation with
Cauchy kernel over a finite interval [−1, 1]. Then we use the numerical method explained in Section 2.2 to
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find the approximate solution of equation (2.50).

2.6 Method of solution for CSIEs over [0,∞)

In order to find the approximate solution of equation (2.50), we start with the following transformation

1

z − y
=

1 + y

(1 + z)(z − y)
+

1

1 + z
, z =

1 + t

1− t
, y =

1 + x

1− x
. (2.52)

We use the above transformation (2.52) in equation (2.50) and write the unknown function χ̂
[c]

(t) = θ̂
(1 + t

1− t

)
which vanishes at t = 1 and becomes unbounded at t = −1, as

χ̂
[c]

(t) =

√
1− t
1 + t

ξ̂
[c]

(t), (2.53)

we obtain

−
∫ 1

−1

√
1− t
1 + t

ξ̂
[c]

(t)

t− x
dt−

∫ 1

−1

√
1− t
1 + t

k̂
[c]

(x, t)ξ̂
[c]

(t)dt = ĝ
[c]

(x)−
∫ 1

−1

ξ̂
[c]

(t)√
1− t2

dt, | x |< 1. (2.54)

In the above equation (2.54), ξ̂[c]
(t) is an unknown function, k̂

[c]

(x, t) =
2ĥ(1+t

1−t ,
1+x
1−x)

(1− t)2
and ĝ(x) = f̂

(1 + x

1− x

)
.

Finally, we transformed the Cauchy singular integral equation (2.50) over the half-line into the Cauchy
singular integral equation (2.54) over the interval [−1, 1]. We assume that∫ 1

−1

∫ 1

−1

(√1− t
1 + t

k̂
[c]

(x, t)
)2

dtdx <∞. (2.55)

We approximate the function ξ̂[c]
(t) by orthonormalized Legendre polynomials as follows:

ξ̂
[c]

(t) ≈ ξ̂∗n
[c]

(t) =
n∑
j=0

âj
[c]

ej(s), (2.56)

where {ej(s)}nj=0 denotes the set of (n+1) orthonormalized Legendre polynomials on [−1, 1] and âj
[c]

; j =

0, 1, 2, . . . , n are unknown constant coefficients. Now in order to get the approximate solution of equation
(2.54), we proceed in the same way as in Section 2.2 with the residual error

R̂
[c]

(x, â0
[c]

, â1
[c]

, â2
[c]

, ..., ân
[c]

) = −
∫ 1

−1

√
1− t
1 + t

ξ̂∗n
[c](t)

t− x
dt+

∫ 1

−1

ξ̂
[c]

(t)√
1− t2

dt−
∫ 1

−1

√
1− t
1 + t

k̂[c](x, t)ξ̂∗n
[c](t)dt

− ĝ[c]

(x), |x| ≤ 1. (2.57)
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Also, since we are using residual based Galerkin’s method which is described in Section 2.2, we have

〈R̂[c]

(x, â0
[c]

, â1
[c]

, â2
[c]

, ..., ân
[c]

), ej〉L2 = 0, ∀j = 0, 1, 2, . . . , n. (2.58)

This equation (2.58) gives a system of linear algebraic equations of order (n + 1) × (n + 1). The matrix
form of (2.58) is

B̂
[c]

1 Â
[c]

= Ĝ
[c]

, (2.59)

where

B̂
[c]

1 = B̂
[c]T
, B̂

[c]

1 =


b̂
[c]

00 b̂
[c]

01 . . . b̂
[c]

0n

b̂
[c]

10 b̂
[c]

11 . . . b̂
[c]

1n

...
... . . . ...

b̂
[c]

n0 b̂
[c]

n1 . . . b̂
[c]

nn

 , Â
[c]

=


â

[c]

0

â
[c]

1
...
â

[c]

n

 , Ĝ
[c]

=


ĝ

[c]

0

ĝ
[c]

1
...
ĝ

[c]

n

 , (2.60)

b̂rq
[c]

=

∫ 1

−1

−
∫ 1

−1

√
1− t
1 + t

er(t)eq(x)

t− x
dtdx

−
∫ 1

−1

∫ 1

−1

√
1− t
1 + t

k̂
[c]

(x, t)er(t)eq(x)dtdx+

∫ 1

−1

∫ 1

−1

er(t)eq(x)√
1− t2

dtdx, r, q = 0, 1, 2, . . . , n,

ĝq =

∫ 1

−1

ĝ
[c]

(x)eq(x)dx, q = 0, 1, 2, . . . , n.

2.7 Application of the method to an antiplane shear crack

In this problem, there are two elastic mediums M1 and M2 shown with florescent green and blue color
in the Figure 2.4. The semi-infinite crack is lying in the medium M1 and the crack is perpendicular to the
interface of mediums M1 and M2. Further, the crack is at the distance h from the interface. The constants
µ1, µ2 represent the shear moduli and while ν1, ν2 represent the Poisson’s ratios for mediums M1 and M2

respectively.

This problem [30, 51] results finally in the form of singular integral equation
1

π
−
∫ ∞
h

θ̂(z1)

z1 − y1

dz1 +

∫ ∞
h

λθ̂(z1)

z1 + y1

dz1 = f̂1(y1), h < y1 <∞, (2.61)

where h is the distance of one crack end from the interface, f̂1(y1) represents the known shear stress along

the crack edges and λ is a constant given by λ =
1−m
1 +m

,m =
µ2

µ1

. In problem (2.61), we take h = 1

and f̂1(y1) =
−1

y3
1

. We now transform the interval [1,∞] to the interval [0,∞] by substituting z1 = z + 1,
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y1 = y + 1, in equation (2.61) and we obtain

1

π
−
∫ ∞

0

χ̂(z)

z − y
dz +

∫ ∞
0

λχ̂(z)

z + y + 2
dz =

−1

(1 + y)3
, 0 < y <∞, (2.62)

where χ̂(z) = θ̂(z + 1).

crack h

Interface

o
Z

Figure 2.4: A semi-infinite straight crack perpendicular to the bimaterial interface

Table 2.4: Stress intensity factor for different materials

M1 M2 m k∗ from Chapter 2 k∗ from Ref. [51]

Aluminum Aluminum 1 0.531 0.531
Rigid Aluminum 0 0.634 0.632
Epoxy Aluminum 23.077 0.503 0.503

Aluminum Epoxy
1

23.077
0.615 0.618

Now we implement the proposed method described in Section 2.6 to solve the above singular integral
equation (2.62) and calculate the stress intensity factor at the crack tip (0, 0). The stress intensity factor
[51] can be calculated by the formula k∗ =

√
2χ̂(0), where χ̂(0) is the solution of the singular integral

equation (2.62) at z = 0. We obtained the stress intensity factors given in Table 2.4, when we approximate
χ̂(z) by the Legendre polynomial of degree 3 while the results shown in the last column of the table have
been obtained by using Radu-Chebyshev method [51] with at least 5 node points.

Conclusion
In this chapter, we have considered the Cauchy singular integral equations over the interval [−1, 1]. A

residual based Galerkin’s method using Legendre polynomial as a basis function is proposed in order to get
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the numerical solution of CSIEs over the finite interval. This method converts the singular integral equation
into a system of linear equations which is easily solvable. The existence and uniqueness of solution for
the system of linear algebraic equations, which is obtained as a result of approximation of Cauchy singular
integral equation over the intervals, are shown. The convergence of sequence of approximate solutions to
the exact solution is proved and the error bound is also obtained. The derived theoretical error bound is also
verified with the help of numerical examples which indicates the good behavior of the proposed method.



Chapter 3

Numerical solution of system of Cauchy
singular integral equations

3.1 Introduction
System of Cauchy singular integral equations occur naturally in physics and engineering during the

formulation of many boundary value problems containing different geometric singularities. Many crack
problems in the field of fracture mechanics are formulated as system of Cauchy singular integral equations
using Green’s function [97]. For instance, in T-stress problem [71] near the tips of a cruciform crack with
unequal arms, the system of Cauchy type singular integral equations arise naturally. Also, it can be obtained
by the decomposition of two dimensional Cauchy singular integral equation over a curve in complex plane
[94]. Problems in the field of aerodynamics [70, 73], queuing system analysis [24], electrocardiology [38],
elasticity theory [74, 93] are modeled as system of CSIEs.

In this chapter, a numerical method to solve the following system of Cauchy singular integral equations
(3.1)

1

−
∫
−1


β11 β12 . . . β

1N

β21 β22 . . . β
2N

...
... . . . ...

β
N1

β
N2

. . . β
NN




ϕ
[cs]

1
(t)

ϕ
[cs]

2
(t)

...
ϕ

[cs]

N
(t)

 1

t− x
dt =


g

[cs]

1
(x)

g
[cs]

2
(x)
...

g
[cs]

N
(x)

 , | x |< 1, (3.1)

is proposed. In system (3.1), the coefficients βij; i, j = 1, 2, . . . , N are known real constants and
g

[cs]

j
(x); j = 1, 2, . . . , N , are known complex valued Hölder continuous functions over the interval [−1, 1].

The functions ϕ[cs]

j
(t); j = 1, 2, . . . , N , are unknown complex valued functions which vanish at t = 1 and

become unbounded at t = −1. The singular integral appearing in each equation of system (3.1) is under-
stood in the sense of Cauchy principal value (CPV). Also, each unknown function ϕ[cs]

j
(t); j = 1, 2, . . . , N ,

is assumed to be Hölder continuous in order to ensure the [17] existence of CPV. In system (3.1), each
Cauchy equation is of index zero [42]. These equations are well studied [42, 59, 73, 93]. They play a vital
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role in the study of mixed boundary value problems for partial differential equations [93] and have many
applications in the field of aerodynamics [70], fracture mechanics [32], neutron transport [87] etc. Singular
integral equations can also be used to determine the existence of travelling-wave solutions [131, 131, 132]
of particular reaction-convection-diffusion equations [40]. The numerical methods developed for these kind
of singular integral equations include: Galerkin’s method [11, 116, 117, 129], collocation method [58, 111],
quadrature-collocation method [123], Nyström method [37], inverse method [63], real variable method [15],
Sinc approximations [1]. However, the literature on numerical methods to find the solution of system of
Cauchy type singular integral equations is still scarce. Although, the basic work related to this kind of sys-
tem can be found in [93, 127]. Bonis and Laurita [26] proposed a quadrature method for system of Cauchy
type singular integral equations. Turhan [125] used Chebyshev polynomial based method for the solution
of the system of Cauchy type singular integral equations of the first kind. The analytic solution (3.3) for
one-dimensional Cauchy type singular integral (3.2) is well known [42]. We use this solution to derive the
analytic solution for system (3.1) in Section 3.2. But still it is of limited use in practical situations. Since
it is not possible to solve the singular integral on the right side of equation (3.4) for every choice of η[cs]

j (t)

due to the presence of singularity. Therefore, it is required to go for numerical solution for system (3.1).
Hence, we propose a residual based Galerkin’s method for solving the system (3.1) of Cauchy type singu-
lar integral equations. The error analysis of the proposed numerical method is also derived and validated
through numerical examples.

3.2 Method for solution of the problem
For one-dimensional case of Cauchy type singular integral equation of first kind

−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt = g

[cs]

1 (x), |x| < 1, (3.2)

with boundary conditions: ϕ[cs]

1
(1) = 0 and ϕ[cs]

1
(−1) is unbounded. The analytical solution [42] of equation

(3.2) is given by

ϕ
[cs]

1
(x) = − 1

π2

√
1− x
1 + x

−
∫ 1

−1

√
1 + t

1− t
g

[cs]

1
(t)

t− x
dt. (3.3)

Extending the above analytic solution for system of Cauchy type singular integral equations of first kind
(3.1), we obtain

ϕ
[cs]

(x) =


ϕ

[cs]

1
(x)

ϕ
[cs]

2
(x)

...
ϕ

[cs]

N
(x)

 = − 1

π2

√
1− x
1 + x


−
∫ 1

−1

√
1+t
1−t

η1 (t)

t−x dt

−
∫ 1

−1

√
1+t
1−t

η2 (t)

t−x dt

...

−
∫ 1

−1

√
1+t
1−t

η
N

(t)

t−x dt

 , (3.4)
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where η[cs]
j (t) =

det(D
[cs]
j (t))

det(β
[cs]

)
; j = 1, 2, . . . , N , det(·) denotes determinant of a matrix, D[cs]

j (t) is an N ×N
matrix which is obtained from matrix

β
[cs]

=


β11 β12 . . . β

1N

β21 β22 . . . β
2N

...
... . . . ...

β
N1

β
N2

. . . β
NN

 , (3.5)

by replacing the jth column of β [cs] with (g
[cs]

1
(x), g

[cs]

2
(x), . . . , g

[cs]

N
(x))T and the superscript T is used to

denote the transpose of a matrix throughout the chapter. Now since the analytical solution (3.4) is of limited
use as discussed in Section 3.1, therefore we propose a numerical method to find the approximate solution
of system (3.1). But we can still take benefit of the known form of analytical solution (3.4) in finding the
numerical solution. That is, each of the unknown functions ϕ[cs]

j
(t), j = 1, 2, . . . , N, in the system (3.1)

can be written [42] as

ϕ
[cs]

j
(t) =

√
1− t
1 + t

ψ
[cs]

j
(t), j = 1, 2, . . . , N, (3.6)

where each ψ[cs]

j
(t), j = 1, 2, . . . , N, is an unknown function of t ∈ [−1, 1]. Using equation (3.6), the

system (3.1) becomes

1

−
∫
−1


β11 β12 . . . β

1N

β21 β22 . . . β
2N

...
... . . . ...

β
N1

β
N2

. . . β
NN




ψ
[cs]

1
(t)

ψ
[cs]

2
(t)

...
ψ

[cs]

N
(t)


√

1− t
1 + t

1

t− x
dt =


g

[cs]

1
(x)

g
[cs]

2
(x)
...

g
[cs]

N
(x)

 . (3.7)

In operator form, the system (3.7) becomes

S
[cs]

β
[cs]

ψ
[cs]

(x) = g
[cs]

(x), |x| < 1, (3.8)

where S [cs] is a linear integral operator defined by

S
[cs]

ψ
[cs]

(x) = −
∫ 1

−1

√
1− t
1 + t

ψ
[cs]

(t)

t− x
dt, (3.9)

the matrix β
[cs]

is already defined in equation (3.5) and g
[cs]

(x) = (g
[cs]

1
(x), g

[cs]

2
(x), . . . , g

[cs]

N
(x))T is an

N × 1 matrix. Now the unknown function ψ[cs]
(t) = (ψ1

[cs](t), ψ2

[cs](t), . . . , ψ
N

[cs](t))T in system (3.7) is
approximated as

ψ
[cs]

(t) ≈ ψ∗
n

[cs](t) = (ψ∗
1n

[cs](t), ψ∗
2n

[cs](t), . . . , ψ∗
Nn

[cs](t))T , (3.10)
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where

ψ∗
jn

[cs](t) =
n∑
k=0

a
[cs]

jk ek(t), ∀j = 1, 2, . . . , N, (3.11)

and {ek(t)}nk=0 denotes the set of n+1 orthonormalized Legendre polynomials on [−1, 1]. In order to solve
the system (3.1) or its equivalent form (3.7), a residual based Galerkin’s method is used. The residual error
is defined as

R[cs]

(x; a
[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn) =

R[cs]

1
(x; a

[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn)

R[cs]

2
(x; a

[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn)

...
R[cs]

N
(x; a

[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn)


, (3.12)

where

R[cs]

j
(x; a

[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn) (3.13)

=
N∑
i=1

−
∫ 1

−1

√
1− t
1 + t

βjiψ
∗
in

[cs](t)

t− x
dt− g[cs]

j
(x),

for j = 1, 2, . . . , N , is assumed to be orthogonal to the finite dimensional vector space E =

span {ek(t)}nk=0. Therefore, we have

〈R[cs]

j
(x; a

[cs]

10 , a
[cs]

11 , . . . , a
[cs]

1n ; a
[cs]

20 , a
[cs]

21 , . . . , a
[cs]

2n ; . . . ; a
[cs]

N0, a
[cs]

N1, . . . , a
[cs]

Nn)

=
N∑
i=1

−
∫ 1

−1

√
1− t
1 + t

βjiψ
∗
in

[cs](t)

t− x
dt− g[cs]

j
(x), ek(x)〉L2 = 0,∀ k = 0, 1, . . . , n; ∀ j = 1, 2, . . . , N, (3.14)

where 〈·, ·〉L2 represents the inner product in L2[−1, 1] space. This will result into a linear system of
N × (n + 1) equations in N × (n + 1) unknowns a[cs]

jk ; j = 1, 2, . . . , N ; k = 0, 1, . . . , n. The explicit
expression for the system of linear algebraic equations is given by

n∑
k=0

N∑
j=1

a
[cs]

jk βij

∫ 1

−1

−
∫ 1

−1

√
1− t
1 + t

e
k
(t)er(x)

t− x
dtdx

=

∫ 1

−1

g
[cs]

i
(x)er(x)dx, r = 0, 1, 2, . . . , n, i = 1, 2, 3, . . . , N. (3.15)
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Now we define

b
[cs]

kr =

∫ 1

−1

−
∫ 1

−1

√
1− t
1 + t

ek(t)er(x)

t− x
dtdx, k = 0, 1, 2, . . . , n, r = 0, 1, 2, . . . , n,

g
[cs]

ir = 〈g[cs]

i
, er〉L2 , i = 1, 2, 3, . . . , N, r = 0, 1, 2, 3, . . . , n.

Finally, the above system in matrix form becomes

β
[cs]

⊗B[cs]T
vec A

[cs]

= vec G
[cs]

, (3.16)

where

A
[cs]

=


a

[cs]

10
a

[cs]

11
. . . a

[cs]

1n

a
[cs]

20
a

[cs]

21
. . . a

[cs]

2n

...
... . . . ...

a
[cs]

N0
a

[cs]

N1
. . . a

[cs]

Nn

 , G
[cs]

=


g

[cs]

10
g

[cs]

11
. . . g

[cs]

1n

g
[cs]

20
g

[cs]

21
. . . g

[cs]

2n

...
... . . . ...

g
[cs]

N0
g

[cs]

N1
. . . g

[cs]
ĝ
Nn

 , B
[cs]

=


b
[cs]

00
b
[cs]

01
. . . b

[cs]

0n

b
[cs]

10
b
[cs]

11
. . . b

[cs]

1n

...
... . . . ...

b
[cs]

n0
b
[cs]

n1
. . . b

[cs]

nn


and the matrix β

[cs]

is same as defined in equation (3.5). In equation (3.16), vec A[cs] and vec G[cs] are
column vectors [47] of order N × (n+ 1) which are defined as

vec A
[cs]

=


A

[cs]

1

A
[cs]

2

...
A

[cs]

N

 , vec G
[cs]

=


G

[cs]

1

G
[cs]

2

...
G

[cs]

N

 , (3.17)

where A[cs]

j
, G[cs]

j
, j = 1, 2, . . . , N, stands for the jth column of matrices A[cs] and G[cs] respectively. We can

further write equation (3.16) as
D̂

[cs]

Ĉ
[cs]

= Ê
[cs]

, (3.18)

where D̂[cs]
= β

[cs]

⊗ B[cs]T , Ĉ [cs]
= vec A

[cs] , Ê [cs]
= vec G

[cs] and symbol ⊗ stands for the Kronecker
product [47] of matrices β

[cs]

and B
[cs]T

. The above linear system (3.18) of algebraic equations can be
solved easily.

3.3 Error Analysis
In this section, firstly we define the suitable function spaces which will be used for error analysis of our

proposed numerical method. Then we prove the well-posedness in the sense of Hadamard for the problem
(3.1) as well as for the system of linear algebraic equations which is obtained as a result of approximation of
problem (3.1). We also show the convergence of sequence of approximate solutions to the exact solution and
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obtain the rate of convergence in L2
N

[cs]

norm. Finally, we derive the error bound for the error ‖ψ[cs]
(x) −

ψ∗
n

[cs]‖
L2
N

[cs] which occurs as a result of approximation of solution of system (3.1). Also, we show that
whenever the known function in system (3.1) is in the form of a polynomial, the approximate solution is an
exact solution.

3.3.1 Function spaces
In this subsection, we initialize the error analysis by defining the space L2

N

[cs]

L2
N

[cs]
= {u(x) = (u1(x), u2(x), ..., uN(x))T : uj(x) ∈ L2[−1, 1]; j = 1, 2, . . . , N}, (3.19)

which is a Hilbert space equipped with the following norm ‖ · ‖
L2
N

[cs] and inner product 〈·, ·〉
L2
N

[cs]

‖ u ‖2

L2
N

[cs]=
1

N

N∑
j=1

‖ uj ‖2
L2 for u(x) ∈ L2

N

[cs]

, (3.20)

〈u, v〉
L2
N

[cs] =
1

N

N∑
j=1

〈uj, vj〉L2
N

[cs] for u(x), v(x) ∈ L2
N

[cs]

, (3.21)

where L2[−1, 1] = {uj : [−1, 1]→ C :
∫ 1

−1
uj(x)uj(x)dx <∞, j = 1, 2, . . . , N} is a Hilbert Space of all

complex valued functions which are square integrable in the interval [−1, 1] equipped with the norm ‖ · ‖2
L2

and inner product 〈., .〉
L2
N

[cs] defined as

‖uj‖2

L2
=

∫ 1

−1

|uj(x)|2dx for uj(x) ∈ L2; j = 1, 2, . . . , N, (3.22)

〈uj, vj〉L2 =

∫ 1

−1

uj(x)vj(x)dx for uj(x), vj(x) ∈ L2; j = 1, 2, . . . , N. (3.23)

Now let us consider the set of functions

M
[cs]

N
= {u(x) ∈ L2

N

[cs]

:
1

N

N∑
j=1

∞∑
k=0

(d
[cs]

k )2|〈uj, ek〉L2|2 <∞}, (3.24)

where

u(x) = (u1(x), u2(x), ..., uN(x))T ∈ L2
N

[cs]

for uj(x) ∈ L2[−1, 1], (3.25)

(d
[cs]

k )2 =
∞∑
i=0

|〈S [cs]

ek, ei〉L2|2. (3.26)
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The set M
[cs]

N
is a subspace of L2

N
which is made into a Hilbert space with the following norm ‖ · ‖

M
[cs]

N

and

inner product 〈·, ·〉
M

[cs]

N

defined as

‖ u ‖2

M
[cs]

N

=
1

N

N∑
j=1

‖ uj ‖2

M
[cs] for u(x) ∈M

[cs]

N
, (3.27)

〈u, v〉
M

[cs]

N

=
1

N

N∑
j=1

〈uj, vj〉
M

[cs] for u(x), v(x) ∈M
[cs]

N
, (3.28)

where M
[cs]

denotes a subspace of L2[−1, 1] such that

M
[cs]

= {uj(x) ∈ L2 :
∞∑
k=0

(d
[cs]

k )2|〈uj, ek〉L2|2 <∞}, (3.29)

and (d
[cs]

k )2 is defined in equation (3.26). This subspace M
[cs]

is a Hilbert space with respect to the norm
‖ · ‖

M
[cs] and inner product 〈·, ·〉

M
[cs] which are defined as

‖ uj ‖2

M
[cs] =

∞∑
k=0

(d
[cs]

k )2|〈uj, ek〉L2|2 for uj(x) ∈M
[cs]

, (3.30)

〈uj, vj〉
M

[cs] =
∞∑
k=0

(d
[cs]

k )2〈u
j
, ek〉L2〈vj, ek〉L2 for uj(x), vj(x) ∈M

[cs]

. (3.31)

3.3.2 Well-posedness of the problems

In this subsection, we show that system of Cauchy singular integral equations (3.1) as well as the
system of linear algebraic equations obtained from its approximation are well-posed in the spaces defined
above. Now operating the integral operator S [cs] (defined in equation (3.9)) on the orthonormalized Legendre
polynomials of degree 0, 1, . . . , n, we get [12] the following results:

S
[cs]

e0(x) = −πe0(x),

S
[cs]

e1(x) = π
[‖ p0 ‖
‖ p1 ‖

e0(x)− e1(x)
]
,

S
[cs]

e2(x) = π
[
− 3

4

‖ p0 ‖
‖ p2 ‖

e0(x) +
3

2

‖ p1 ‖
‖ p2 ‖

e1(x)− e2(x)
]
,

...................................................

S
[cs]

en(x) =
n∑
i=0

ci
[cs]

ei(x); where the coefficients ci
[cs]

= 〈S [cs]

en, ei〉L2 , i = 0, 1, 2, . . . , n,
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where p
k
(x), ek(x), k = 0, 1, . . . , n, are Legendre polynomial and orthonormalized Legendre polynomials

respectively. We define vk
[cs]

(x) =
ek(x)

d
[cs]

k

, ‖ vk
[cs] ‖

M
[cs]= 1, these {vk

[cs]}∞k=0 form complete orthonormal

basis for the space M
[cs]

, i.e. if uj ∈M
[cs] , then we have

uj =
∞∑
k=0

〈uj, vk
[cs]〉

M
[cs]
vk

[cs]

(x). (3.32)

With the help of equation (3.32), we can extend the operator S [cs]
: M

[cs]

N → L2
N

[cs]

as a bounded linear
operator which can be defined as

S
[cs]

β
[cs]

ψ
[cs]

(x) = S
[cs]

φ
[cs]

(x), (3.33)

where

β
[cs]

ψ
[cs]

(x) = φ
[cs]

(x);φ
[cs]

(x) = (φ
[cs]

1 (x), φ
[cs]

2 (x), . . . , φ
[cs]

N (x))T ∈M
[cs]

N
, (3.34)

S
[cs]

φ
[cs]

(x) = (S
[cs]

φ
[cs]

1 (x), S
[cs]

φ
[cs]

2 (x), . . . , S
[cs]

φ
[cs]

N (x))T ∈ L2
N

[cs]

, (3.35)

S
[cs]

φ
[cs]

j (x) =
∞∑
k=0

〈φ[cs]

j , ek〉L2

k∑
i=0

〈S [cs]

ek, ei〉L2ei(x) ∈ L2[−1, 1]. (3.36)

Now using equation (3.36), the norm of the bounded linear operator S [cs] is

‖ S [cs]

φ
[cs]

j ‖2
L2=

∞∑
k=0

(d
[cs]

k )2|〈φ[cs]

j , ek〉L2|2 =‖ φ[cs]

j ‖2

M
[cs] , for j = 1, 2, . . . , N. (3.37)

Hence, using equation (3.37), we obtain
‖ S [cs] ‖= 1. (3.38)

Also, the mapping S [cs] from M
N

[cs] → L2
N

[cs]

is one-one and onto [42].

Hence, by using Theorem 1.1.1, the operator (S
[cs]

)−1 : L2
N

[cs]

→ M
[cs]

N
exists as a bounded linear operator

and can be defined as

(S
[cs]

)−1φ
[cs]

(x) = ((S
[cs]

)−1φ
[cs]

1 (x), (S
[cs]

)−1φ
[cs]

2 (x), . . . , (S
[cs]

)−1φ
[cs]

N (x))T ∈M
[cs]

N
,

where

(S
[cs]

)−1φ
[cs]

j (x) =
∞∑
k=0

〈φ[cs]

j , ek〉L2

d
[cs]

k

ek(x), (3.39)
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‖ (S
[cs]

)−1φ
[cs]

j ‖2

M
[cs]=

∞∑
l=0

(d
[cs]

l )2|〈(S [cs]

)−1φ
[cs]

j , el〉L2|2, for j = 1, 2, . . . , N. (3.40)

Using equation (3.39) in equation (3.40), we obtain

‖ (S
[cs]

)−1φ
[cs]

j ‖2

M
[cs]=

∞∑
l=0

|〈φ[cs]

j , el〉L2|2 =‖ φ[cs]

j ‖2
L2 for j = 1, 2, . . . , N. (3.41)

Hence, using the above equation (3.41), the norm for the bounded linear operator (S
[cs]

)−1 is

‖ (S
[cs]

)−1 ‖= 1. (3.42)

We assume that the matrix β
[cs]

in system (3.8) is a non-singular and well-conditioned matrix. Hence, the
existence of the operator (S

[cs]
)−1 and the matrix (β

[cs]

)−1 show the existence of solution to the system (3.8).
The solution of the system (3.8) is

ψ
[cs]

(x) = (β
[cs]

)−1(S
[cs]

)−1g
[cs]

(x), | x |< 1. (3.43)

Now we will show the uniqueness of solution of the problem (3.8) by the principle of contradiction. If
possible, suppose the problem (3.8) has two solutions w1(x) and w2(x), then both should satisfy equation
(3.8) i.e.

S
[cs]

β
[cs]

w1(x) = g
[cs]

(x), | x |< 1, (3.44)

S
[cs]

β
[cs]

w2(x) = g
[cs]

(x), | x |< 1. (3.45)

Now from equations (3.44) and (3.45), we obtain

S
[cs]

β
[cs]

(w1(x)− w2(x)) = 0, | x |< 1. (3.46)

Operating (β
[cs]

)−1(S
[cs]

)−1 on both sides of equation (3.46), we get

w1(x) = w2(x), | x |< 1. (3.47)

Hence, the equation (3.47) proves the uniqueness of solution of equation (3.8). Also, the inverse operator
(S

[cs]
)−1 is a bounded linear operator and the matrix β

[cs]

is assumed to exist as nonsingular well-conditioned
matrix, which show the stability [66] of the problem. Since the problem (3.8) satisfies all the three condi-
tions, therefore we have proved that the problem (3.8), is a well-posed problem.

Consider the mapping Qn
N

[cs]

: L2
N

[cs]

→ L2
N

[cs]

, where Qn
N

[cs]

is an operator of orthogonal projection defined
as follows:

Qn
N

[cs]

φ
[cs]

(x) = (Qn
[cs]

φ
[cs]

1 (x), Qn
[cs]

φ
[cs]

2 (x), ..., Qn
[cs]

φ
[cs]

N (x))T , (3.48)
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where

Qn
[cs]

φ
[cs]

j (x) =
n∑
k=0

〈φ[cs]

j , ek〉L2ek(x), j = 1, 2, . . . , N, (3.49)

and n is the degree of orthonormalized Legendre polynomial by which φj(x), j = 1, 2, ..., N is approxi-
mated. Substituting equation (3.33) in equation (3.8), we get

S
[cs]

φ
[cs]

(x) = g
[cs]

(x); where φ
[cs]

(x) ∈M
[cs]

N
, g

[cs]

(x) ∈ L2
N

[cs]

. (3.50)

Then it follows from equation (3.14)

Qn
N

[cs]

(S
[cs]

φ∗
n

[cs](x)− g[cs]

(x)) = 0, (3.51)

where

S
[cs]

(x) ≈ φ∗
n

[cs](x) = (φ∗
1n

[cs](x), φ∗
2n

[cs](x), ..., φ∗
Nn

[cs](x))T ,

φ∗
jn

[cs](x) =
N∑
i=1

β
ji
ψ∗

in

[cs](x), j = 1, 2, . . . , N, (3.52)

ψ∗
in

[cs](x); i = 1, 2, . . . , N, are defined in equation(3.11).

Using the fact that
Qn

N

[cs]

S
[cs]

φ∗
n

[cs](x) = S
[cs]

φ∗
n

[cs](x), (3.53)

equation (3.51) becomes
S

[cs]

φ∗
n

[cs](x) = Qn
N

[cs]

g
[cs]

(x). (3.54)

Now using the existence of operator (S
[cs]

)−1 which is defined in equation (3.39), we can say that the system
(3.54) has a unique solution which is

φ∗
n

[cs](x) = (S
[cs]

)−1Qn
N

[cs]

g
[cs]

(x). (3.55)

Using equation (3.33), we obtain

β
[cs]

ψ∗
n

[cs](x) = (S
[cs]

)−1Qn
N

[cs]

g
[cs]

(x). (3.56)

Further, the matrix (β
[cs]

)−1 is assumed to exist, therefore we obtain

ψ∗
n

[cs](x) = (β
[cs]

)−1(S
[cs]

)−1Qn
N

[cs]

g
[cs]

(x). (3.57)
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Also, operator (S
[cs]

)−1 exist as bounded linear operator, this fact ensures the stability [66] of system (3.54).
Hence, the problem (3.54) is also a well-posed problem.

3.3.3 Convergence analysis and error bound

In this subsection, we show the convergence of sequence of approximate solutions. We also derive the
error bound for the error between approximate and exact solution of system (3.1). From equations (3.50)
and (3.54), we get

S
[cs]

(ψ
[cs]

(x)− ψ∗
n

[cs](x)) = g
[cs]

(x)−Qn
N

[cs]

g
[cs]

(x). (3.58)

Using equations (3.33) and (3.52) in equation (3.58), we obtain

S
[cs]

β
[cs]

(ψ
[cs]

(x)− ψ∗
n

[cs](x)) = g
[cs]

(x)−Qn
N

[cs]

g
[cs]

(x). (3.59)

Let (β
[cs]

)−1 exists, then equation (3.59), becomes

ψ
[cs]

(x)− ψ∗
n

[cs](x) = (β
[cs]

)−1(S
[cs]

)−1(g
[cs]

(x)−Qn
N

[cs]

g
[cs]

(x)). (3.60)

Taking norm on both the sides of equation (3.60), we get

‖ ψ[cs] − ψ∗
n

[cs] ‖
M

[cs]

N

≤‖ (β
[cs]

)−1 ‖‖ (S
[cs]

)−1 ‖‖ g[cs] −Qn
N

[cs]

g
[cs] ‖

L2
N

[cs] . (3.61)

Here ‖(β
[cs]

)−1‖ denotes the matrix norm which can be calculated by using [ρ((β
[cs]

)−1)T (β
[cs]

)−1)]1/2,
where ρ((β

[cs]

)−1) = max|λ| defines the spectral radius [45] of the matrix (β
[cs]

)−1 such that λ is an eigen-
value of the matrix (β

[cs]

)−1. Using equation (3.42), the equation (3.61) becomes

‖ ψ[cs] − ψ∗
n

[cs] ‖
M

[cs]

N

≤‖ (β
[cs]

)−1 ‖‖ g[cs] −Qn
N

[cs]

g
[cs] ‖

L2
N

[cs] . (3.62)

Since ‖(β
[cs]

)−1‖ <∞ and ‖g[cs] −Qn
N

[cs]

g
[cs]‖

L2
N

[cs] converges to zero as n→∞, we get

‖ψ[cs] − ψ∗
n

[cs]‖
M

[cs]

N

→ 0 as n→∞. (3.63)

In fact, for all ψ[cs] ∈ M
[cs]

N
, we have ‖ψ[cs]‖

L2
N

[cs] ≤ ‖ψ[cs]‖
M

[cs]

N

, therefore the equations (3.62) and (3.63)

become

‖ψ[cs] − ψ∗
n

[cs]‖
L2
N

[cs] ≤‖ ψ[cs] − ψ∗
n

[cs] ‖
M

[cs]

N

≤‖ (β
[cs]

)−1 ‖‖ g −Qn
N

[cs]

g ‖
L2
N

[cs] , (3.64)

‖ψ[cs] − ψ∗
n

[cs]‖
L2
N

[cs] ≤ ‖ψ[cs] − ψ∗
n

[cs]‖
M

[cs]

N

→ 0 as n→∞. (3.65)
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Hence, the sequence of approximate solutions {ψ∗
n

[cs]}∞n=0 converges to the exact solution ψ[cs] in L2
N

[cs]

norm.

3.3.4 Invertibility of coefficient matrix of system of linear algebraic equations
In this subsection, we show that the linear system (3.18), which is obtained after applying the proposed

method described in Section 3.2 to system of Cauchy singular integral equation (3.1), has a unique solution.
For this, we first define the vector space as

XN×(n+1)

[cs]
= {vec G[cs]

= (G1

[cs]

, G2

[cs]

, ..., G
N

[cs]

)T : G
j

[cs] ∈ Cn+1, j = 1, 2, . . . , N}, (3.66)

where Cn+1 denotes a complex vector space [67] having (n+ 1)-tuples of complex numbers as its vectors,
vec G

[cs] is same as defined in equation (3.17) andG
j

[cs]
= (〈g[cs]

j , e0〉L2 , 〈g[cs]

j , e1〉L2 , . . . , 〈g[cs]

j , en〉L2)T , j =

1, 2, . . . , N.

We further define another vector space Z[cs]
N

as

Z[cs]

N
= {z[cs]

= (z
[cs]

1
, z

[cs]

2
, ..., z

[cs]

N
)T : z

[cs]

j
∈ E, j = 1, 2, . . . , N}, (3.67)

where E = span{e
i
(x)}ni=0. Now consider the operator P n

N

[cs]

: XN×(n+1)

[cs]
→ Z[cs]

N
as

P n
N

[cs]

(vec G
[cs]) = (Pn

[cs]

G
[cs]

1
, Pn

[cs]

G
[cs]

2
, . . . , Pn

[cs]

G
[cs]

N
)T , (3.68)

where the operator Pn
[cs]

: Cn+1 → E denotes the prolongation operator [45] and defined as

Pn
[cs]

G
[cs]

j
=

n∑
i=0

〈g[cs]

j , e
i
〉
L2ei(x) ∈ E, j = 0, 1, . . . , N. (3.69)

We now take the orthogonal projection of function g[cs]
(x) ∈ L2

N

Qn
N

[cs]

g
[cs]

(x) = (Q
[cs]

n g
[cs]

1
(x), Q

[cs]

n g
[cs]

2
(x), . . . , Q

[cs]

n g
[cs]

N
(x))T . (3.70)

In equation (3.70), the operator Q[cs]

n denotes the orthogonal projection onto the finite dimensional vector
space E = span{e

i
(x)}ni=0 and defined as

Qn
[cs]

g
[cs]

j
(x) =

n∑
i=0

〈g[cs]

j
, e

i
〉
L2ei(x). (3.71)

With the aid of equations (3.69) and (3.71), we obtain

Q
[cs]

n g
[cs]

j (x) = Pn
[cs]

G
[cs]

j , j = 1, 2, . . . , N. (3.72)
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Also, from equations (3.68), (3.70) and (3.72), we have

Qn
N

[cs]

g
[cs]

(x) = P n
N

[cs]

(vec G
[cs]

). (3.73)

Now we further define an operator Rn
N

[cs]

: Z[cs]

N
→ XN×(n+1)

[cs]
as

Rn
N

[cs]

ψ∗
n

[cs] = (Rn
[cs]

ψ∗
1n

[cs], Rn
[cs]

ψ∗
2n

[cs], . . . , Rn
[cs]

ψ∗
Nn

[cs])T , (3.74)

where the operator Rn
[cs]

: E → Cn+1 denotes restriction operator [45] and defined as

Rn
[cs]

ψ∗
jn

[cs] = (〈ψ∗
jn

[cs], e0〉L2 , 〈ψ∗
jn

[cs], e1〉L2 , . . . 〈ψ∗
jn

[cs], en〉L2)T ∈ Cn+1, (3.75)

where ψ∗
jn

[cs] is same as defined in equation (3.11). Using orthogonal property of Legendre polynomials in
equation (3.11), we get

a
[cs]

ji = 〈ψ∗
jn

[cs], e
i
〉L2 , i = 0, 1, . . . , n, j = 1, 2, . . . , N. (3.76)

Using the above equation (3.76), the value of A[cs]

j (jth column of matrix A[cs]) is

A
[cs]

j = (〈ψ∗
jn

[cs], e0〉L2 , 〈ψ∗
jn

[cs], e1〉L2 , . . . , 〈ψ∗
jn

[cs], en〉L2)T , j = 1, 2, . . . , N. (3.77)

From equations (3.75) and (3.77), we obtain

vec A
[cs]

= Rn
N

[cs]

ψ∗
n

[cs], (3.78)

where vec A[cs] and Rn
N

[cs]

ψ∗
n

[cs] are already defined in equations (3.17) and (3.74) respectively. Since the
existence and uniqueness of the solution ψ∗

n

[cs] of system (3.57) are already shown in subsection 3.3.2.
Hence, the equation (3.78) implies that the solution vec A[cs] of system (3.16) also exists uniquely. Now
using the value of ψ∗

n

[cs] from equation (3.57) in equation (3.78), we obtain

vec A
[cs]

= Rn
N

[cs]

(β
[cs]

)−1(S
[cs]

)−1Qn
N

[cs]

g
[cs]

(x). (3.79)

On using equations (3.73) and (3.79), we get

vec A
[cs]

= Rn
N

[cs]

(β
[cs]

)−1(S
[cs]

)−1P n
N

[cs]

(vec G
[cs]

). (3.80)

We can rewrite equation (3.80) as

Ĉ
[cs]

= Rn
N

[cs]

(β
[cs]

)−1(S
[cs]

)−1P n
N

[cs]

(vec G
[cs]

). (3.81)
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equation (3.81) implies that the solution Ĉ [cs] of the system D̂
[cs]
Ĉ

[cs]
= Ê

[cs] defined in equation (3.18)
exists uniquely for every given Ê [cs] ∈ XN×(n+1)

[cs]
. Hence, the matrix D̂[cs] is invertible [119].

Theorem 3.3.1. Consider a system of Cauchy type singular integral equations

S
[cs]

β
[cs]

ψ
[cs]

(x) = ĝ
[cs]

(x), |x| < 1, det(β
[cs]

) 6= 0, (3.82)

where β
[cs]

and S
[cs]
ψ

[cs]
(x) are defined in equations (3.5) and (3.9) respectively,

ĝ
[cs]

(x) = (ĝ
[cs]

1 (x), ĝ
[cs]

2 (x), . . . , ĝ
[cs]

N (x))T such that each ĝ
[cs]

j (x) is a polynomial of degree mj; j =

1, 2, . . . , N . If each unknown function ψ
[cs]

j (x); j = 1, 2, ·, N , is approximated as in equation (3.11) by

the orthonormalized Legendre polynomials of degree n = max{m1 ,m2 , . . . ,mN
}, then the approximate

solution of equation (3.82) is an exact solution.

Proof. The residual error in equation (3.82) is

S
[cs]

β
[cs]

ψ∗
n

[cs](x)− ĝ[cs]

(x),

where
ψ

[cs]

(x) ≈ ψ∗
n

[cs](x) = ψ∗
1n

[cs](x), ψ∗
1n

[cs](x), . . . , ψ∗
1n

[cs](x))T . (3.83)

Now with the aid of equation (3.14), its orthogonal projection Qn
N

[cs]

which is defined in equation (3.48),
we get

Qn
N

[cs]

(S
[cs]

β
[cs]

ψ∗
n

[cs](x)− ĝ[cs]

(x)) = 0. (3.84)

Now using equations (3.82) and (3.84), we obtain

S
[cs]

β
[cs]

ψ
[cs]

(x)−Qn
N

[cs]

(S
[cs]

β
[cs]

ψ∗
n

[cs](x)) = ĝ
[cs]

(x)−Qn
N

[cs]

ĝ
[cs]

(x)). (3.85)

Since functions S [cs]
β

[cs]

ψ∗
n

[cs](x) and ĝ[cs]
(x) both are polynomials, therefore, we have

Qn
N

[cs]

(S
[cs]

β
[cs]

ψ∗
n

[cs](x)) = S
[cs]

β
[cs]

ψ∗
n

[cs](x),

Qn
N

[cs]

ĝ
[cs]

(x) = ĝ
[cs]

(x).
(3.86)

From the above results mentioned in equation (3.86), equation (3.85) becomes

S
[cs]

β
[cs]

(ψ
[cs]

(x)− ψ∗
n

[cs](x)) = 0. (3.87)

Now using the existence of the operator (S
[cs]

)−1 and the matrix (β
[cs]

)−1, equation (3.87) becomes

ψ
[cs]

(x)− ψ∗
n

[cs](x) = 0. (3.88)
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Hence, the approximate solution is the exact solution.

3.4 Illustrative examples
In this section, numerical solution of some test examples using method of solution is discussed.

Example 3.1 Consider the following system of Cauchy type singular integral equations

1000

π
−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt+

10

π
−
∫ 1

−1

ϕ
[cs]

2
(t)

t− x
dt = g

[cs]

1
(x),

500

π
−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt+

200

π
−
∫ 1

−1

ϕ
[cs]

2
(t)

t− x
dt = g

[cs]

2
(x),

(3.89)

where

g
[cs]

1
(x) = −990x8 + 1089x7 + 937x6 − 26704x5

25
− 349161x4

1000
+

792327x3

2000
+

1761x2

250
− 53511x

4000

− 53929

2000
+ i
(

990x8 − 1189x7 − 8971x6

10
+

119047x5

100
+

163961x4

500
− 279198x3

625
− 30873x2

10000

+
69533x

4000
+

1130501

40000

)
,

g
[cs]

2
(x) = −300x8 + 330x7 + 215x6 − 2447x5

10
− 8607x4

100
+

735x3

8
− 17253x2

2000
+

29541x

4000
− 14701

1000

+ i
(

300x8 − 380x7 − 197x6 +
1462x5

5
+

9419x4

100
− 27549x3

250
− 183x2

400
− 7957x

2000
+

57853

4000

)
.

Using equation (3.4), the exact solution in this case is given by

ϕ
[cs]

1
(x) =

√
1− x
1 + x

[
x8 − x7

10
− 31x6

20
+

83x5

1000
+

7867x4

10000
− 1891x3

100000
− 147177x2

1000000
+

441x

400000
+

3969

500000

+ i
(
− x8 +

x7

5
+

161x6

100
− 49x5

250
− 343x4

400
+

2401x3

50000
+

165663x2

1000000
− 9x

3125
− 567

62500

)]
,

ϕ
[cs]

2
(x) =

√
1− x
1 + x

[
− x8 +

x7

10
+

19x6

10
− 67x5

500
− 11129x4

10000
+

29x3

800
+

451x2

2000
− 9x

4000
− 63

5000

+ i
(
x8 − x7

10
− 189x6

100
+

213x5

1000
+

2727x4

2500
− 3213x3

25000
− 1339x2

6250
+

97x

6250
+

42

3125

)]
.

On applying the method of solution described in Section 3.2, we obtain the approximate solutions ψ∗
n

[cs](x)

for n = 1, 2, . . . , 8. The actual error ‖ψ[cs] − ψ∗
n

[cs]‖
L2
N

[cs] and the corresponding theoretical error bound
are calculated by using equation (3.64) for different values of n. The results detailed in Table 3.1 show the
good behavior of our proposed numerical method as the actual error in the approximate solution satisfies
the derived theoretical error bound for different values of n. It is also observed from Table 3.1 that ‖ψ[cs] −
ψ∗

n

[cs]‖
L2
N

[cs] → 0 as n → ∞ which verifies our theoretical claim of convergence mentioned in equation
(3.65).
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Table 3.1: The actual error and theoretical error bound in case of Example 3.1 for different values of n

.

Degree of
Legendre polynomial

Actual error
‖ψ[cs] − ψ∗

n

[cs]‖L2
N

[cs]

Error bound for
‖ψ[cs] − ψ∗

n

[cs]‖L2
N

[cs]

n = 1 0.14219 2.63021

n = 2 0.14211 1.96229

n = 3 0.13718 1.34228

n = 4 0.09658 0.85279

n = 5 0.08276 0.52128

n = 6 0.05990 0.28566

n = 7 0.05104 0.11371

n = 8 0 0

Table 3.2: The theoretical error bound in case of Example 3.2 for different values of n

Degree of Legendre polynomial Error bound for ‖ψ[cs] − ψ∗
n

[cs]‖
L2
N

[cs]

n = 1 6.92480

n = 2 5.18346

n = 3 3.58536

n = 4 2.19992

n = 5 1.25032

n = 6 0.63041

n = 7 0.28904

n = 8 0.11840

n = 9 0.04362

Figures 3.1.(a), 3.1.(b), show the comparison of real and imaginary part of the exact solution of ψ1

[cs](x)

with corresponding real and imaginary part of approximate solution ψ∗
1n

[cs](x) for n = 1, 2, . . . , 8. And,
the comparison of real and imaginary part of the exact solution of ψ2

[cs](x) with corresponding real and
imaginary part of approximate solution ψ∗

2n

[cs](x) for n = 1, 2, . . . , 8, is shown in Figures 3.1.(c), 3.1.(d).
Further, it can be observed in all the Figures 3.1.(a), 3.1.(b), 3.1.(c), 3.1.(d) as the value of n increases,
the sequence of approximate solutions converges to the exact solution with respect to L2

N

[cs] norm. This
example also verifies the Theorem 3.3.1.
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Example 3.2 Consider the following system of Cauchy type singular integral equations

6−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt+ 10−

∫ 1

−1

ϕ
[cs]

2
(t)

t− x
dt+ 40−

∫ 1

−1

ϕ
[cs]

3
(t)

t− x
dt = g

[cs]

1
(x),

10−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt+ 50−

∫ 1

−1

ϕ
[cs]

2
(t)

t− x
dt+ 30−

∫ 1

−1

ϕ
[cs]

3
(t)

t− x
dt = g

[cs]

2
(x),

20−
∫ 1

−1

ϕ
[cs]

1
(t)

t− x
dt+ 10−

∫ 1

−1

ϕ
[cs]

2
(t)

t− x
dt+ 25−

∫ 1

−1

ϕ
[cs]

3
(t)

t− x
dt = g

[cs]

3
(x),

(3.90)

where

g
[cs]

1
(x) = e5x + i cos(5x),

g
[cs]

2
(x) = i

(
7x5 + 1

)
e5x,

g
[cs]

3
(x) =

(
90x8 + 45x6 + 1

)
+ ix10.

Using equation (3.4), the analytical solution for the above problem is given by

 ϕ
[cs]

1
(x)

ϕ
[cs]

2
(x)

ϕ
[cs]

3
(x)

 = − 1

π2

√
1− x
1 + x


−
∫ 1

−1

√
1 + t

1− t
η

[cs]
1 (t)

t− x
dt

−
∫ 1

−1

√
1 + t

1− t
η

[cs]
2 (t)

t− x
dt

−
∫ 1

−1

√
1 + t

1− t
η

[cs]
3 (t)

t− x
dt


, (3.91)

where

η
[cs]
1 (t) =

765t8

134
+

765t6

268
− 19e5t

536
+

17

268
+ i

(
17t10

268
− 21

536
e5tt5 − 3e5t

536
− 19

536
cos(5t)

)
,

η
[cs]
2 (t) = −99t8

134
− 99t6

268
− 7e5t

536
− 11

1340
+ i

(
−11t10

1340
+

91

536
e5tt5 +

13e5t

536
− 7

536
cos(5t)

)
,

η
[cs]
3 (t) = −45t8

67
− 45t6

134
+

9e5t

268
− 1

134
+ i

(
− t10

134
− 49

1340
e5tt5 +

9

268
cos(5t)− 7e5t

1340

)
.

For the Example 3.2, although the analytic solution is known but the above analytical solution is of limited
use as described in Section 3.1. Therefore, we solve Example 3.2 by the numerical method described in
Section 3.2. However, in this case it is not possible to calculate the actual error between the approximate
and exact solution, since the available solution (3.91) has no explicit form. But the error bound can be
calculated by using the equation (3.64) for different values of n which is of great importance. As the
error bound decreases to zero with the increase in value of n, it implies that the sequence of approximate
solutions is converging to the exact solution and the same is reflected from the results detailed in Table 3.2
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up to n = 9.
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Figure 3.1: Comparison of exact solution with approximate solutions of Example 3.1.
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Figure 3.2: Comparison of approximate solutions for different values of n in case of Example 3.2.

The comparison of real and imaginary part of the approximate solutions of ψ∗
1n

[cs](x) for n = 1, 2, . . . , 9, is
shown in Figures 3.2.(a), 3.2.(b). Similarly, Figures 3.2.(c), 3.2.(d); 3.2.(e), 3.2.(f) show the comparison of
real and imaginary part of the approximate solutions of ψ∗

2n

[cs](x), ψ∗
3n

[cs](x) respectively for n = 1, 2, . . . , 9.

Conclusion
In this chapter, we have proposed a Legendre polynomial based numerical method to find the approx-

imate solution of system of Cauchy type singular integral equations of first kind with zero index. The
proposed method converts the system of integral equations into a linear system of algebraic equations. It is
shown theoretically and numerically that the proposed method gives the exact solution for the systems hav-
ing known functions in the form of polynomial. The well-posedness conditions in the sense of Hadamard
are verified for the system of Cauchy singular integral equations as well as for the system of linear algebraic
equations which is obtained after applying the proposed method to the system of singular integral equations
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with Cauchy kernel. Further, the derived theoretical error bound is verified with the aid of numerical exam-
ples which implies the good behavior of our proposed numerical method.



Chapter 4

Numerical solution of hypersingular integral
equations

4.1 Introduction
Hypersingular integral equations has great importance in the field of aeronautics [7, 70, 72, 84]. These

singular integral equations occur during the formulation of interference or interaction problems such as
wing and tail surfaces problem, pairs or collections of wings (biplanes or cascades) problems [7]. These
hypersingular integral equations also appeared during the mathematical modeling of vortex wakes behind
aircraft at altitude, near the ground at the time of takeoff and landing operations [41]. Many two dimensional
problems of aerodynamics can be modeled as singular integral equation such as for an inviscid incompress-
ible fluid flow past a rectangular airfoil problem reduces into a hypersingular integral equation [10]. Apart
from problems of aeronautics, the problems of electromagnetic scattering [41], acoustics [53], fluid dy-
namics [113], electromagnetic diffraction [135], elasticity [27] and fracture mechanics [16] are modeled as
hypersingular integral equations. In early nineties, Parsons and Martin [102] used hypersingular integral
equation to study the problem of water wave scattering. Further, these equations for crack problems in the
field of fracture mechanics [5, 20, 22] have been explored by many researchers. Many analytical methods
and numerical methods such as complex variable function method [14], boundary element method [64],
polynomial approximation method [16, 78, 80], reproducing kernel method [23], piecewise linear approx-
imations on a nonuniform grid [118] for solving singular integral equations have been already explored.
However, in order to solve hypersingular integral equations, search for a method which is easy to under-
stand, easy to implement, providing high accuracy, converging fast and numerically stable is always there.
In this article, we propose a residual based Galerkin’s method with Legendre polynomial as basis function
to find the approximate solution of hypersingular integral equations. The hypersingular integral equations
occur during the formulation of many boundary value problems of practical interest are of the form

=

∫ 1

−1

χ
[h]

(t)

(t− x)2
dt−

∫ 1

−1

k
[h]

(x, t)χ
[h]

(t)dt = g
[h]

(x), |x| < 1, (4.1)
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with χ[h]
(±1) = 0. The functions g[h]

(x) and k[h]
(x, t) are known real valued Hölder continuous over the

interval [−1, 1] and [−1, 1]× [−1, 1] respectively. χ[h]
(x) is an unknown function defined over the interval

[−1, 1]. The first integral in equation (4.1) is understood to be exist in the sense of Hadamard finite part
integral. Also, the unknown function χ[h]

(x) is assumed to have the Hölder continuous derivative of first
order which is required in order to ensure the existence of finite-part integral [85].

4.2 Method of solution to the problem

A function χ[h]
(t) defined over the interval [-1,1] in equation (4.1) with χ[h]

(±1) = 0 can be repre-
sented [44] as follows:

χ
[h]

(t) =
√

1− t2ξ[h]

(t), (4.2)

where ξ[h]
(t) is an unknown function defined over the interval ∈ [−1, 1]. Using equation (4.2) in equation

(4.1), we obtain

=

∫ 1

−1

ξ
[h]

(t)
√

1− t2
(t− x)2

dt−
∫ 1

−1

√
1− t2k[h]

(x, t)ξ
[h]

(t)dt = g
[h]

(x), |x| < 1. (4.3)

Now we approximate the function ξ[h]
(t) by orthonormalized Legendre polynomials as follows:

ξ
[h]

(t) ≈ ξ∗n
[h]

(t) =
n∑
j=0

a
[h]

j ej(t), (4.4)

where {ej(t)}nj=0 denotes the set of (n+ 1) orthonormalized Legendre polynomials on [−1, 1] and a[h]

j ; j =

1, 2, . . . , n, are unknown constant coefficients.

On using the approximation defined in equation (4.4) for ξ[h]
(t) in equation (4.3), the residual error

R[h]
(x, a

[h]

0
, a

[h]

1
, a

[h]

2
, ..., a

[h]

n
) is as follows:

R[h]

(x, a
[h]

0
, a

[h]

1
, a

[h]

2
, ..., a

[h]

n
) = =

∫ 1

−1

ξ∗n
[h]

(t)
√

1− t2
(t− x)2

dt−
∫ 1

−1

√
1− t2k[h]

(x, t)ξ∗n
[h]

(t)dt− g[h]

(x), |x| < 1.

(4.5)
In Galerkin’s method, this residual error R[h]

(x, a
[h]

0
, a

[h]

1
, a

[h]

2
, ..., a

[h]

n
) is assumed to be orthogonal to the

space spanned by orthonormal polynomials, say E = span{ej(x)}nj=0, that is, we have

〈R[h]

(x, a
[h]

0
, a

[h]

1
, a

[h]

2
, ..., a

[h]

n
), ej〉L2 = 0, ∀j = 0, 1, 2, . . . , n. (4.6)

Using equation (4.5) for j = 0, 1, 2, . . . , n, equation (4.6) becomes

〈
=

∫ 1

−1

ξ∗n
[h]

(t)
√

1− t2
(t− x)2

dt−
∫ 1

−1

k
[h]

(x, t)ξ∗n
[h]

(t)
√

1− t2dt− g[h]

(x), e0

〉
L2

= 0,
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〈
=

∫ 1

−1

ξ∗n
[h]

(t)
√

1− t2
(t− x)2

dt−
∫ 1

−1

k
[h]

(x, t)ξ∗n
[h]

(t)
√

1− t2dt− g[h]

(x), e1

〉
L2

= 0,

.................................................................................〈
=

∫ 1

−1

ξ∗n
[h]

(t)
√

1− t2
(t− x)2

dt−
∫ 1

−1

k
[h]

(x, t)ξ∗sn
[h]

(t)
√

1− t2dt− g[h]

(x), en

〉
L2

= 0.

(4.7)

In order to evaluate singular integral in each integral equation of system (4.7), we use the results of [61]
(see formula (35) of reference [61]) and we get a linear system of order (n+1)×(n+1). The above system
(4.7) can be written in matrix form as

B
[h]T

A
[h]

= B1
[h]

A
[h]

= G
[h]

, (4.8)

where

B
[h]

1 = B
[h]T

, B
[h]

=


b
[h]

00
b
[h]

01
. . . b

[h]

0n

b
[h]

10
b
[h]

11
. . . b

[h]

1n

...
... . . . ...

b
[h]

n0
b
[h]

n1
. . . b

[h]

nn

 , A
[h]

=


a

[h]

0

a
[h]

1

...
a

[h]

n

 , G
[h]

=


g

[h]

0

g
[h]

1

...
g

[h]

n

 , (4.9)

b
[h]

rq =

∫ 1

−1

(
=

∫ 1

−1

(√1− t2er(t)
(t− x)2

dt−
∫ 1

−1

k
[h]

(x, t)er(t)
√

1− t2dt
)
eq(x)dx, r, q = 0, 1, 2, . . . , n,

g
[h]

q =

∫ 1

−1

g
[h]

(x)eq(x)dx, q = 0, 1, 2, . . . , n.

Now we solve the linear system (4.8) which gives the value of unknown coefficients a[h]

j ; j = 0, 1, 2, . . . , n.
The substitution of these a[h]

j values in equation (4.4) provides the approximate solution of equation (4.3) and
hence, for equation (4.1). This completes the description of proposed method use to find the approximate
solution of equation (4.1).

4.3 Convergence analysis and Error bound
In this section, we show that sequence {ξ∗n

[h]}∞n=0 converges to the exact solution ξ∗n
[h]

(x) in L2 space
and we derive the error bound.

4.3.1 Function Spaces
We initialize this subsection by defining function spaces in which the error analysis analysis of numer-

ical method takes place. L2
[−1, 1] = {u(t) : [−1, 1] → R :

∫ 1

−1

(u(t))2dt < ∞} is a Hilbert space of all
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square integrable real functions over the interval [−1, 1], equipped with the norm ‖ · ‖2
L2 and inner product

〈., .〉L2 defined as

‖u(t)‖L2 =
(∫ 1

−1

(u(t))2dt
)1/2

for u(t) ∈ L2[−1, 1], (4.10)

〈u, v〉L2 =

∫ 1

−1

u(t)v(t)dt for u(t), v(t) ∈ L2[−1, 1]. (4.11)

Now we define the set of functions

M
[h]

= {u(t) ∈ L2

:
∞∑
j=0

(d
[h]

j )
2
〈u, ej〉2L2 <∞}, (4.12)

where

(d
[h]

j )
2

= ‖ S [h]

ej ‖
2

L2 , (4.13)

S
[h]

ej(x) = =

∫ 1

−1

√
1− t2

(t− x)2
ej(t)dt. (4.14)

The set M [h] is a subspace of L2 space which is made into a Hilbert space with the following norm ‖ · ‖
M

[h]

and inner product 〈., .〉
M

[h]

‖ u ‖2

M
[h]=

∞∑
j=0

(d
[h]

j )
2
〈u, ej〉2L2 for u(t) ∈M [h]

, (4.15)

〈u, v〉
M

[h] =
∞∑
j=0

(d
[h]

j )
2
〈u, ej〉L2〈v, ej〉L2 for u(t), v(t) ∈M [h]

, (4.16)

where d[h]

j is same as defined in equation (4.13). Let v[h]

k (x) = ek(x)

d
[h]

k

, then ‖ v
[h]

k ‖
M

[h]= 1. This set

{v
[h](x)
k }∞k=0 forms complete orthonormal basis for the Hilbert space M [h]

, that is, if u ∈M [h]
, then we have

u(x) =
∞∑
k=0

〈u, v[h]

k 〉M [h]v
[h]

k (x). (4.17)

Now operating the operator S [h] , defined in equation (4.14) on orthonormalized Legendre polynomials
ej(x); j = 0, 1, 2, . . . , n and using the results of [61] (see formula (35) of reference [61]), we obtain:

S
[h]

e0(x) = −πe0(x),
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S
[h]

e1(x) = −2πe1(x),

S
[h]

e2(x) = −π

[ √
5

4
√

3
e0(x) + 3e2(x)

]
,

...................................................

S
[h]

en(x) =
n∑
i=0

ci
[h]

ei(x); where ci
[h]

= 〈S [h]

en, ei〉L2 , i = 0, 1, 2, . . . , n. (4.18)

4.3.2 Error Bound

With the help of equation (4.18), we can extend the operator S [h]
: M

[h] → L
2 as a bounded linear

operator defined as

S
[h]

ξ
[h]

(x) =
∞∑
j=0

〈ξ[h]

, ej〉L2

j∑
i=0

〈S [h]

ej, ei〉L2ei(x) ∈ L2

[−1, 1]. (4.19)

Using equation (4.19), we find the norm of bounded linear operator S [h]

‖ S [h]

ξ
[h] ‖2

L2=
∞∑
j=0

(d
[h]

j )
2
〈ξ[h]

, ej〉2L2 =‖ ξ[h] ‖2

M
[h] . (4.20)

Hence, using equation (4.20), we obtain
‖ S [h] ‖= 1. (4.21)

Moreover, the mapping S [h]
: M

[h] → L
2 is one-one and onto. Therefore, following Bounded Inverse Theorem

defined in Theorem 1.1.1, the operator (S
[h]

)−1 : L
2 → M

[h] exists as a bounded linear operator which is
defined as

(S
[h]

)−1ξ
[h]

(x) =
∞∑
j=0

〈ξ[h]
(x), ej(x)〉L2

dj
ej(x). (4.22)

Now, with the aid of equation (4.22), we calculate the norm for linear operator (S
[h]

)−1

‖ (S
[h]

)−1ξ
[h]

(x) ‖
M

[h]=‖ ξ[h]

(x) ‖L2 . (4.23)

Finally, using the above equation (4.23), the norm of bounded operator (S
[h]

)−1 is

‖ (S
[h]

)−1 ‖= 1. (4.24)

Now we consider the mapping Qn
[h]

: L
2 → L

2 , where Qn
[h] is an orthogonal projection operator which is

defined as
Qn

[h]

ξ
[h]

(x) =
n∑
j=0

〈ξ[h]

, ej〉L2ej(x), (4.25)
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where n is the degree of orthonormalized Legendre polynomial by which ξ[h]
(x) is approximated. After

defining all the operators and function spaces, we can finally estimate the error bound for the error which
occurs in approximating the exact solution of equation (4.1) by taking its projection from Hilbert space onto
a vector space spanned by the orthonormalized Legendre polynomials, say E = span{ej(x)}nj=0. Writing
equation (4.3) in an operator equation from the spaces M [h] to L2

(S
[h] −K [h]

)ξ
[h]

(x) = g
[h]

(x), g
[h]

(x) ∈ L2

, ξ
[h]

(x) ∈M [h]

, (4.26)

where the operator S [h] is same as defined in equation (4.14) and we define the operator K [h]
: M

[h] → L
2

is as follows:

K
[h]

ξ
[h]

(x) =

∫ 1

−1

√
1− t2 k[h]

(x, t)ξ
[h]

(t)dt. (4.27)

The operator K [h]
: M

[h] → L
2 defined in equation (4.27) will be a compact operator with the following

assumption: ∫ 1

−1

∫ 1

−1

(
√

1− t2 k[h]

(x, t))2dtdx <∞. (4.28)

The equation (4.26) has a unique solution if and only if the inverse of the operator (S
[h] −K [h]

) exists as a
bounded linear operator. We assume that the bounded linear operator (S

[h] −K [h]
)−1 exists. From equation

(4.6), we have

Qn
[h]
(

(S
[h] −K [h]

)ξ∗n
[h]

(x)− g[h]

(x)
)

= 0. (4.29)

Since the function S [h]
ξ∗n

[h]
(x) is a polynomial therefore following the definition of operator Qn

[h] , we get

Qn
[h]

S
[h]

ξ∗n
[h]

(x) = S
[h]

ξ∗n
[h]

(x). (4.30)

Using the above fact, equation (4.29) becomes

S
[h]

ξ∗n
[h]

(x)−Qn
[h]

K
[h]

ξ∗n
[h]

(x) = Qn
[h]

g
[h]

(x). (4.31)

Since the operator S [h] has a bounded inverse and the operator K [h] is compact due to the condition (4.28),
therefore, for all n arbitrarily large, say n > n0 , (S

[h] − Qn
[h]
K

[h]
)−1 exists as a bounded linear operator

[45]. Hence, equation (4.31) has a unique solution, which is as follows:

ξ∗n
[h]

(x) = (S
[h] −Qn

[h]

K
[h]

)−1Qn
[h]

g
[h]

(x). (4.32)
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Now from equations (4.26) and (4.32), we have

ξ
[h]

(x)− ξ∗n
[h]

(x) = (S
[h] −Qn

[h]

K
[h]

)−1
(
g

[h]

(x)−Qn
[h]

g
[h]

(x) +K
[h]

ξ
[h]

(x)−Qn
[h]

K
[h]

ξ
[h]

(x)
)
. (4.33)

Taking norm of both the sides of equation (4.33), we obtain

‖ ξ[h] − ξ∗n
[h] ‖

M
[h]≤ ‖ (S

[h] −Qn
[h]

K
[h]

)−1 ‖‖ g[h] −Qn
[h]

g
[h] ‖L2

+ ‖ (S
[h] −Qn

[h]

K
[h]

)−1 ‖‖ K [h]

ξ
[h]

(x)−Qn
[h]

K
[h]

ξ
[h]

(x) ‖L2 . (4.34)

Due to the assumption defined in equation (4.28), the operator S [h] is a Hilbert-Schmidt operator [45]
and hence, ‖ K [h] − Qn

[h]
K

[h] ‖L2→ 0 as n → ∞. Also, we have ‖ g[h] − Qn
[h]
g

[h] ‖L2→ 0 as n → ∞.
Thus, we get ‖ ξ[h] − ξ∗n

[h] ‖
M

[h]→ 0 as n→∞.

Further, due to the fact that if ξ[h] ∈M [h] , then we have

‖ ξ[h] ‖L2≤‖ ξ[h] ‖
M

[h] . (4.35)

On using equation (4.35), the equation (4.34 ) can be written as follows:

‖ ξ[h] − ξ∗n
[h] ‖L2≤ ‖ (S

[h] −Qn
[h]

K
[h]

)−1 ‖‖ g[h] −Qng
[h] ‖L2

+ ‖ (S
[h] −Qn

[h]

K
[h]

)−1 ‖‖ Kξ[h]

(x)−Qn
[h]

K
[h]

ξ
[h]

(x) ‖L2 . (4.36)

Also, the sequence {ξ∗n
[h]}∞n=0 converges to the exact solution in L2 space

‖ ξ[h] − ξ∗n
[h] ‖L2→ 0 as n →∞. (4.37)

Hence, the convergence of the sequence {ξ∗n
[h]}∞n=0 is shown.

4.3.3 Well-posedness of linear system
In this subsection, we show that the problem (4.32) is a well-posed problem in the sense of Hadamard.

The problem (4.32) has a solution, this is due to the existence of inverse operator (S
[h] −Q[h]

n K
[h]

)−1 which
is already proved in previous section. In order to prove the uniqueness of solution to the problem (4.32), we
use principle of contradiction. If possible suppose that problem (4.32) has two distinct solutions say y1 and
y2 . Then we obtain

S
[h]

y1(x)−Q[h]

n K
[h]

y1(x) = Q
[h]

n g
[h](x), (4.38)

and
S

[h]

y2(x)−Q[h]

n K
[h]

y2(x) = Q
[h]

n g
[h](x). (4.39)
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From equations (4.38) and (4.39), we get

(S
[h] −Q[h]

n K
[h]

)(y1(x)− y2(x)) = 0. (4.40)

Since the operator (S
[h]−Q[h]

n K
[h]

)−1 exists as a bounded linear operator, then from equation (4.40), we get

y1(x) = y2(x), | x |< 1. (4.41)

Equation (4.41) contradicts our assumption. Hence, we have proved that solution to the problem (4.32)
exists uniquely. Moreover, the continuity of the inverse operator (S

[h] − Q[h]

n K
[h]

)−1 indicates that a small
change in the given data will produce a small change in the solution. As it shown that the problem (4.32)
satisfies all the well-posedness conditions therefore it is a well-posed problem.

4.3.4 Existence and uniqueness of solution to linear system
This subsection shows that the solution of the linear system (4.8) which is obtained after using the

method described in Section 4.2, to the equation (4.1), has a unique solution. We start the proof by defining
the prolongation operator [45] P [h]

n : Rn+1 → E as follows:

P [h]

n G
[h]

=
n∑
j=0

〈g[h]

, e
j
〉
L
2 ej(x) ∈ E, (4.42)

where Rn+1 is a real vector space [67] whose elements are (n + 1)-tuples of real numbers, E =

span{ej(t)}nj=0 and G[h] is already defined in equation (4.9). Now from the definition of orthogonal projec-
tion Q[h]

n , we get

Q
[h]

n g
[h]

(x) =
n∑
j=0

〈g[h]

, e
j
〉
L
2 ej(x). (4.43)

Following equations (4.42) and (4.43), we have

P [h]

n G
[h]

= Q
[h]

n g
[h]

(x), g
[h]

(x) ∈ L2, G
[h] ∈ Rn+1, | x |< 1. (4.44)

Further, we define a restriction operator [45] Rn
[h]

: E → Rn+1 as follows:

Rn
[h]

ξ∗n
[h]

(x) = (〈ξ∗n
[h]

(x), e0〉L2 , 〈ξ∗n
[h]

(x), e1〉L2 , . . . 〈ξ∗n
[h]

(x), en〉L2 )T ∈ Rn+1, (4.45)

where the function ξ∗n
[h]

(x) is already defined in equation (4.4). On using the orthogonal property of Leg-
endre polynomials in equation (4.4), we get

a
[h]

j = 〈ξ∗n
[h]

(x), e
j
〉L2 , j = 0, 1, . . . , n. (4.46)

Therefore, from equations (4.45) and (4.46), we obtain
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Rn
[h]

ξ∗n
[h]

(x) = A
[h]

, (4.47)

where the matrix A[h] is already defined in equation (4.9). Since bounded linear operator (S
[h]−Q[h]

n K
[h]

)−1

exists which is already shown in Section 4.3. This existence of the operator (S
[h] − Q

[h]

n K
[h]

)−1 implies
that ξ∗n

[h]
(x) also exists uniquely. Therefore, from equation (4.47), the solution A[h] of system (4.8) exists

uniquely for every given G[h] . Also, the inverse of matrix B[h]

1 exist [119].

4.4 Illustrative examples
This section shows the efficiency of our proposed numerical method and verification of the theoretical

results obtained in Section 4.3, with the help of numerical illustrations.
Example 4.1 Consider the following equation [23]:

=

∫ 1

−1

ξ
[h]

(t)
√

1− t2
(t− x)2

dt+

∫ 1

−1

xtξ
[h]

(t)
√

1− t2dt = π
(
− 8x3 +

17

8
x− 1

)
, |x| < 1. (4.48)

This problem has an exact solution ξ[h]
(x) = 1 + 2x3. We find the approximate solution with the aid of

proposed method.
Table 4.1: Details of obtained numerical results for different n in case of Example 4.1

n Actual Error (In L2 norm) Error bound

1 0.46595 9.29106
2 0.46595 9.29106
3 0 0

It can been seen from Table 4.1 that the approximate solution obtained by implementing the method dis-
cussed in Section 4.2 is identical to the exact solution at just n = 3.
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Figure 4.1: Comparison of exact solution with approximate solutions of Example 4.1
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Figure 4.2: Comparison of exact solution with approximate solutions of Example 4.2
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Figure 4.3: Comparison of exact solution with approximate solutions of Example 4.3

Although Chen [23] also solved this problem up to n = 25 by using method of reproducing kernel, but his
method did not give the exact solution. In Figure 4.1, the exact solution is compared with the approximate
solutions for different values of n. Further, it can be seen from the Figure 4.1 that the exact and approximate
solutions coincides. The actual error is also calculated for Example 4.1 with respect to L2 norm and detailed
in Table 4.1. These actual error lies under the error bound which is obtained by using equation (4.34).
Example 4.2 We consider another singular integral equation:

=

∫ 1

−1

ξ
[h]

(t)
√

1− t2
(t− x)2

dt+

∫ 1

−1

ξ
[h]

(t)
√

1− t2 exp(t+ x)

12
dt = πg

[h]

(x), |x| < 1, (4.49)

where g[h]
(x) = −9

8
x + 6x3 − 6x5 + 81

64
exp(x)I2(1) − 31

4
exp(x)I3(1), and I2, I3 are modified Bessel

functions of first kind of order two and three respectively. ξ[h]
(x) = 3x

16
− x3 + x5 is the exact solution.
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Table 4.2: Details of obtained numerical results for different n in case of Example 4.2

.

n Actual Error (In L2 norm) Error bound

1 0.06481 1.43228
2 0.06480 1.43183
3 0.05688 1.31111
4 0.05687 1.31110
5 2.19155× 10−14 1.19141× 10−10

The numerical results for actual error and error bound are detailed in Table 4.2. For n = 1, 2, . . . , 5, the
comparison between approximate solutions and exact solution is shown in Figure 4.2. Further the figure
shows the convergence of sequence of approximate solutions to the exact one.

Table 4.3: Details of obtained numerical results for different n in case of Example 4.3

n Actual Error (In L2 norm) Error bound

1 0.38064 8.84521
2 0.37161 8.74921
3 0.37160 8.74689
4 0.28343 7.76302

5 0.27503 7.64867
6 0.25688 7.24213
7 0.25274 7.15094
8 0.00570 0.19899
9 0.00564 0.19739

10 0.00054 0.02196
11 0.00049 0.02053
12 5.95198× 10−16 1.07677× 10−10

Example 4.3 Consider one more hypersingular integral equation:

=

∫ 1

−1

ξ
[h]

(t)
√

1− t2
(t− x)2

dt+

∫ 1

−1

(x+ x2)ξ
[h]

(t)
√

1− t2
36 + 12s

dt = πg
[h]

(x), |x| < 1, (4.50)

where

g
[h]

(x) =
1326099

655360
− 1469711672063x

7864320
+

84573531x

320
√

2
− 1470155415887x2

7864320
+

84573531x2

320
√

2
+

115527x3

10240

+
4953727x4

16384
− 88851x5

2560
− 5394557x6

10240
+

7571x7

320
+

1453239x8

5120
+

327x9

64
− 1793x10

256

− 45x11

16
+

1885x12

128
.
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The exact solution of this example is

ξ
[h]

(x) =
1

640

(
− 252 + 45x+ 4510x2 − 725x3 − 22258x4 + 2680x5 + 38000x6 − 2000x7 − 20252x8

− 252x9 + 45x10 + 150x11 − 725x12
)
.

Table 4.3 shows all the obtained numerical results for Example 4.3. It is clear from Table 4.3 that the error
is decreasing with the increase in the value of n which verifies the result (4.37). The approximate solutions
for n = 1, 2, . . . , 12 are compared with the exact solution in Figure 4.3. And, it can be seen from the Figure
4.3, that the exact solution coincides with the approximate solution. The actual error is also calculated for
Example 4.3 with respect to norm in L2 and it is shown in Table 4.3 that the actual error is lying with in the
error bound which follows from our result defined by equation (4.36).

Conclusion
A residual based Galerkin’s method is proposed to find the numerical solution of hypersingular integral

equation of first kind. The method converts the singular integral equation with hyper kernel into a linear
system. This system can be solved easily. The existence and uniqueness of solution of linear system which
is obtained as a result of approximation of the exact solution of equation (4.1), are shown. The convergence
of sequence of approximate solutions to the exact solution, is proved in L2 space. The error bound for the
error in approximate and exact solution of equation (4.1) is also derived. Moreover, the good behavior of
the proposed method can be seen as all numerical illustrations verify our theoretical claim such as actual
error lies within the theoretical error bound and sequence of approximate solutions is convergent.



Chapter 5

Numerical solution of system of hypersingular
integral equations

5.1 Introduction

Many boundary value problems of applied mathematics, mathematical physics, engineering etc., can
be modeled as system of hypersingular integral equation (HSIE). For instance, crack problems arise in the
field of fracture mechanics [6, 76], thermoelastic stress problems around an arbitrary number of arbitrarily-
located planar cracks [4] are formulated as system of HSIEs. Also, two-dimensional hypersingular integral
equations over a curve in complex plane like water scattering problems [75], curved crack problems [19, 21]
can be decomposed into a system of HSIEs. The hypersingular integral equations in one dimensional occurs
frequently in the field of electromagnetic scattering [90], acoustics [53], aerodynamics [70], elasticity [27]
and fracture mechanics [16]. The numerical methods to find the approximate solution of these equations are
extensively available in literature such as reproducing kernel method [23], quadrature method [101], com-
plex variable function method [14], boundary element method [64], polynomial approximation [78, 80, 82].
However, the literature on numerical methods to find the approximate solution of system of hypersingular
integral equations of first kind is still scarce. Therefore, there is a great need to develop more numerical
methods. In this chapter, we propose residual based Galerkin’s method with Legendre polynomial as basis
function to find the approximate solution of system of HSIEs. In many known physical problems of prac-
tical interest [6, 19, 36] the system of hypersingular integral equations (HSIEs) of first kind occurs in the
following form:
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1

=

∫
−1

1

(t− x)2


ϕ

[hs]

1
(t)

ϕ
[hs]

2
(t)

...
ϕ

[hs]

N
(t)

 dt −
∫ 1

−1


k

[hs]

11
(x, t) k

[hs]

12
(x, t) . . . k

[hs]

1N
(x, t)

k
[hs]

21
(x, t) k

[hs]

22
(x, t) . . . k

[hs]

2N
(x, t)

...
... . . . ...

k
[hs]

N1
(x, t) k

[hs]

N2
(x, t) . . . k

[hs]

NN
(x, t)




ϕ
[hs]

1
(t)

ϕ
[hs]

2
(t)

...
ϕ

[hs]

N
(t)

 dt

=


g

[hs]

1
(x)

g
[hs]

2
(x)

...
g

[hs]

N
(x)

 , (5.1)

| x |< 1, with boundary condition ϕ
j
[hs](±1) = 0, j = 1, 2, . . . , N . ϕ

j
[hs](x), j = 1, 2, . . . , N , is an

unknown complex valued functions defined over the interval [−1, 1]. In system (5.1), the functions k[hs]

ij
(x, t)

, j, i = 1, 2, . . . , N , g[hs]

j
, j = 1, 2, . . . , N , are known complex valued Hölder continuous functions defined

over the interval [−1, 1]×[−1, 1] and [−1, 1] respectively. In the above system (5.1) each HSIE is understood
in the sense of Hadamard finite-part integral (HFP). Also, in order to ensure the existence of HFP each
unknown function ϕ

j
[hs](x), j = 1, 2, . . . , N , is assumed to have the first derivative to be Hölder continuous

[85]. The analytical solution of system (5.1) for the case when the functions k[hs]

ij
(x, t) = 0 , ∀j, i =

1, 2, . . . , N , can be obtained by extending the analytic solution of HISE in one dimension [83] as follows:


ϕ

[hs]

1
(x)

ϕ
[hs]

2
(x)

...
ϕ

[hs]

N
(x)

 =



1
π2

∫ 1

−1

g
[hs]

1
(t) ln

∣∣∣ t−x
1−xt+

√
(1−t2)(1−x2)

∣∣∣dt
1
π2

∫ 1

−1

g
[hs]

2
(t) ln

∣∣∣ t−x
1−xt+

√
(1−t2)(1−x2)

∣∣∣dt
...

1
π2

∫ 1

−1

g
[hs]

N
(t) ln

∣∣∣ t−x
1−xt+

√
(1−t2)(1−x2)

∣∣∣dt


. (5.2)

Firstly, the above analytic solution is for a particular case of more general form (5.1). Secondly, it is of
limited use as it is not possible to solve equation (5.2) for every choice of g[hs]

j (t) due to the presence of
singularity in the solution. Further, the analytical solution of more general form (5.1) where k[hs]

ij
(x, t) 6= 0

, ∀ j, i = 1, 2, . . . , N , is not known. Therefore, in this chapter we propose a numerical method to find its
approximate solution.

5.2 Numerical method
In this section, we describe the numerical method to find an approximate solution of the system (5.1).

In order to find the approximate solution, we replace each [44] unknown function ϕ
j
[hs](t), j = 1, 2, . . . , N,

in the system (5.1) as follows:

ϕ
j

[hs](t) =
√

1− t2ψ
j

[hs](t), j = 1, 2, . . . , N, (5.3)
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where each ψ
j

[hs](t), j = 1, 2, . . . , N, is an unknown function of t ∈ [−1, 1]. Using equation (5.3), the
system (5.1) becomes

1

=

∫
−1

√
1− t2

(t− x)2


ψ1

[hs](t)

ψ2

[hs](t)
...

ψ
N

[hs](t)

 dt

−

1∫
−1

√
1− t2


k

[hs]

11
(x, t) k

[hs]

12
(x, t) . . . k

[hs]

1N
(x, t)

k
[hs]

21
(x, t) k

[hs]

22
(x, t) . . . k

[hs]

2N
(x, t)

...
... . . . ...

k
[hs]

N1
(x, t) k

[hs]

N2
(x, t) . . . k

[hs]

NN
(x, t)




ψ1

[hs](t)

ψ2

[hs](t)
...

ψ∗
1n

[hs](t)

 dt =


g

[hs]

1
(x)

g
[hs]

2
(x)

...
g

[hs]

N
(x)

 .

(5.4)

In operator form equation (5.4) can be written as

(S[hs] −K[hs]

) ψ[hs](x) = g
[hs]

(x), (5.5)

where

ψ
[hs]

(x) =


ψ1

[hs](x)

ψ2

[hs](x)
...

ψ∗
1n

[hs](x)

 , g
[hs]

(x) =


g

[hs]

1
(x)

g
[hs]

2
(x)

...
g

[hs]

N
(x)

 , (5.6)

S[hs]

=


S

[hs]
O . . . O

O S
[hs]

. . . O
...

... . . . ...
O O . . . S

[hs]

 , K[hs]

=


K

[hs]

11
K

[hs]

12
. . . K

[hs]

1N

K
[hs]

21
K

[hs]

22
. . . K

[hs]

2N

...
... . . . ...

K
[hs]

N1
K

[hs]

N2
. . . K

[hs]

NN

 , (5.7)

the symbol O denotes the zero operator and S [hs] , K [hs]

ij
are linear integral operators defined as

S
[hs]

ψ
j

[hs](x) = =

∫ 1

−1

√
1− t2ψ

j

[hs](t)

(t− x)2
dt, j = 1, 2, . . . , N, (5.8)

K
[hs]

ji
ψ

j

[hs](x) =

∫ 1

−1

√
1− t2k[hs]

ij
(x, t)ψ

j

[hs](t)dt, j, i = 1, 2, . . . , N. (5.9)

Now we approximate the unknown function ψ
j

[hs](x) in system (5.5) as

ψ[hs](x) ≈ ψ∗
n

[hs](x) = (ψ∗
1n

[hs](x), ψ∗
2n

[hs](x), . . . , ψ∗
Nn

[hs](x))T , (5.10)
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where

ψ
j

[hs](x) ≈ ψ∗
jn

[hs](x) =
n∑
i=0

a
[hs]

ji ei(x), ∀j = 1, 2, . . . , N, (5.11)

and {e
i
(x)}ni=0 denotes the set of (n + 1) orthonormalized Legendre polynomials on [−1, 1]. In order to

solve the system (5.1) or its equivalent system (5.5), we use residual based Galerkin’s method. We define
the residual error as

R[hs]

(x; a
[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn) =
R[hs]

1
(x; a

[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn)

R[hs]

2
(x; a

[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn)
...

R[hs]

N
(x; a

[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn)

 , (5.12)

where

R[hs]

j
(x; a

[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn) = =

∫ 1

−1

√
1− t2ψ∗

jn

[hs](t)

(t− x)2
dt

−
N∑
i=1

∫ 1

−1

√
1− t2k[hs]

ij
(x, t)ψ∗

in

[hs](t)dt− g[hs]

j (x), j = 1, 2, . . . , N,

(5.13)
is assumed to be orthogonal to the vector space E = span{e

k
(x)}nk=0, which is of finite dimension. There-

fore, we have

〈R[hs]

j
(x; a

[hs]

10 , a
[hs]

11 , . . . , a
[hs]

1n ; a
[hs]

20 , a
[hs]

21 , . . . , a
[hs]

2n ; . . . ; a
[hs]

N0 , a
[hs]

N1 , . . . , a
[hs]

Nn), e
k
(x)〉L2 = 0, (5.14)

∀ k = 0, 1, . . . , n, ∀ j = 1, 2, . . . , N,

where 〈·, ·〉L2 represents the inner product in L2[−1, 1] space. To solve the singular integrals appeared on
the right hand side of equation (5.13), we use the Hadamard finite-part integral formulas (see equation (35)
in reference [61]). Finally, the system of integral equations results into a system of N × (n + 1) linear
algebraic equations in N × (n + 1) unknowns which can be solved easily. The explicit expression for the
system of linear algebraic equations is as follows:

n∑
q=0

a
[hs]

jq

∫ 1

−1

=

∫ 1

−1

√
1− t2eq(t)er(x)

(t− x)2
dtdx−

n∑
q=0

N∑
i=1

∫ 1

−1

∫ 1

−1

√
1− t2k[hs]

ij
(x, t)a

[hs]

iq eq(t)er(x)

=

∫ 1

−1

g
[hs]

j
(x)er(x)dx, r = 0, 1, 2, . . . , n, j = 1, 2, 3, . . . , N.
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In order to write the above system (5.15) in matrix form, we define

êqr = eq(t)er(x), q = 0, 1, 2, . . . , n, r = 0, 1, 2, . . . , n,

ĝ
[hs]

jr = 〈g[hs]

j
, er〉L2 , j = 1, 2, 3, . . . , N, r = 0, 1, 2, 3, . . . , n,

and

K̂
[hs]

ji
êqr =



∫ 1

−1

∫ 1

−1

(
−
√

1− t2k[hs]

ij
(x, t)êqr

)
dtdx, i 6= j,

∫ 1

−1

(
=

∫ 1

−1

√
1− t2

(t− x)2
−
∫ 1

−1

√
1− t2k[hs]

ij
(x, t)

)
êqrdtdx, i = j, i, j = 1, 2, 3, . . . , N.

Therefore, the matrix form of system (5.15) is given by

K̂
[hs] ⊗ E [hs]

T

vec A
[hs]

= vec G
[hs]

, (5.15)

where

K̂
[hs]

=


K̂

[hs]

11
K̂

[hs]

12
. . . K̂

[hs]

1N

K̂
[hs]

21
K̂

[hs]

22
. . . K̂

[hs]

2N

...
... . . . ...

K̂
[hs]

N1
K̂

[hs]

N2
. . . K̂

[hs]

NN

 , G
[hs]

=


g

[hs]

10
g

[hs]

11
. . . g

[hs]

1n

g
[hs]

20
g

[hs]

21
. . . g

[hs]

2n

...
... . . . ...

g
[hs]

N0
g

[hs]

N1
. . . g

[hs]

Nn

 ,

E
[hs]

=


ê00 ê01 . . . ê0n

ê10 ê11 . . . ê1n
...

... . . . ...
ên0 ên1 . . . ênn

 , A
[hs]

=


a

[hs]

10
a

[hs]

11
. . . a

[hs]

1n

a
[hs]

20
a

[hs]

21
. . . a

[hs]

2n

...
... . . . ...

a
[hs]

N0
a

[hs]

N1
. . . a

[hs]

Nn

 .

In equation (5.15), vec A and vec Ĝ are vectors [47] of order N × (n+ 1) which are defined as

vec A
[hs]

=


A

[hs]

1

A
[hs]

2

...
A

[hs]

N

 , vec G
[hs]

=


G

[hs]

1

G
[hs]

2

...
G

[hs]

N

 , (5.16)

where A[hs]

j
, G[hs]

j
, j = 1, 2, . . . , N, denote the jth column of matrices A[hs] and G[hs] respectively. The

equation (5.15) can be further written as

D̂
[hs]

Ĉ
[hs]

= Ê
[hs]

, (5.17)
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where D̂[hs]
= K̂

[hs] ⊗ E [hs]
T

, Ĉ [hs]
= vec A

[hs] , Ê [hs]
= vec G

[hs] and symbol ⊗ denotes the kronecker

[47] of matrices K̂ [hs] and E [hs]
T

. This linear system (5.17) can be solved easily.

5.3 Error analysis
In this section, we initiate the error analysis by defining suitable function spaces which are essential

for deriving error bound of error and showing the convergence of sequence of the approximate solutions
of system (5.1). We further show the well-posedness of system of linear algebraic equations obtained as
a result of approximation of system (5.1). Finally, we prove that under certain condition, the approximate
solution of (5.5) is an exact solution. Further, it should be noted that the elements of the function space
L2

N

[hs]

and M [hs]

N
are in vectorial form.

5.3.1 Function spaces
The function space L2

N

[hs]

can be defined as

L2
N

[hs]

= {u(x) = (u1(x), u2(x), ..., uN(x))T : uj(x) ∈ L2[−1, 1]; j = 1, 2, . . . , N}, (5.18)

which is a Hilbert space with respect to the norm ‖ · ‖[hs]L2
N

‖ u ‖2

L2
N

[hs]=
1

N

N∑
j=1

‖ u
j
‖2
L2 , for u(x) ∈ L2

N

[hs]

, (5.19)

generated by the inner product 〈·, ·〉L2
N

〈u, v〉L2
N

=
1

N

N∑
j=1

〈u
j
, v

j
〉L2 , for u(x), v(x) ∈ L2

N

[hs]

, (5.20)

where L2[−1, 1] = {u
j

: [−1, 1] → C :
∫ 1

−1
u

j
(x)u

j
(x)dx < ∞, j = 1, 2, . . . , N} is a Hilbert Space of all

complex valued functions which are Lebesgue square-integrable in the interval [−1, 1] with respect to the
norm ‖ · ‖2

L2

‖u
j
‖L2 =

( ∫ 1

−1
|u

j
(x)|2dx

)1/2

, for u
j
(x) ∈ L2, j = 1, 2, . . . , N, (5.21)

induced by the inner product

〈u
j
, v

j
〉L2 =

∫ 1

−1
(u

j
(x)v

j
(x))dx, for u

j
(x), v

j
(x) ∈ L2, j = 1, 2, . . . , N. (5.22)

Now we consider the set of functions

M
[hs]

N
= {u(x) ∈ L2

N

[hs]

:
1

N

N∑
j=1

∞∑
k=0

(d
[hs]

k )2|〈u
j
, e

k
〉
L2|2 <∞}, (5.23)
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where

u(x) = (u1(x), u2(x)(x), . . . , u
N

(x))T ∈ L2
N

[hs]

, for u
j
(x) ∈ L2, j = 1, 2, . . . , N, (5.24)

and

(d
[hs]

k )2 =
∞∑
i=0

|〈S [hs]

e
k
, e

i
〉L2 |2. (5.25)

The set M [hs]

N
is a subspace of L2

N which is a Hilbert space with respect to the norm ‖ · ‖
M

[hs]

N

‖ u ‖2

M
[hs]

N

=
1

N

N∑
j=1

‖ u
j
‖2

M
[hs] , for u(x) ∈M [hs]

N
, (5.26)

induced by inner product 〈·, ·〉
M

[hs]

N

〈u, v〉
M

[hs]

N

=
1

N

N∑
j=1

〈u
j
, v

j
〉
M

[hs] , for u(x), v(x) ∈M [hs]

N
, (5.27)

where M [hs] is a subspace of L2[−1, 1] and can be define in a similar manner as in [44, 98]

M
[hs]

= {u
j
(x) ∈ L2 :

∞∑
k=0

(d
[hs]

k )2|〈u
j
, e

k
〉
L2|2 <∞}. (5.28)

In the above equation each e
k
(t) is a polynomial of degree k and l

k
is same as defined in equation (5.25).

This subspace M [hs] is a Hilbert space with respect to the norm ‖ · ‖
M

[hs]

‖ u
j
‖2

M
[hs]=

∞∑
k=0

(d
[hs]

k )2|〈u
j
, e

k
〉
L2|2, for u

j
(x) ∈M [hs]

, (5.29)

induced by inner product 〈·, ·〉
M

[hs]

〈u
j
, v

j
〉
M

[hs] =
∞∑
k=0

(d
[hs]

k )2〈u
j
, e

k
〉L2〈v

j
, e

k
〉
L2 , for u

j
(x), v

j
(x) ∈M [hs]

. (5.30)

5.3.2 Convergence analysis

In this subsection, we show that the sequence of approximate solutions of system (5.1) converges to
the exact solution in L2

N space. With the aid of Hadamard finite-part integral formula (see equation (35) in
reference [61]), we obtain a polynomial

S
[hs]

e
k
(x) =

k∑
i=0

ci
[hs]

e
i
(x), (5.31)
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where the coefficients ci
[hs]

= 〈S [hs]
e
k
, ei〉L2 , i = 0, 1, 2, . . . , k, k = 0, 1, 2, . . . , n. If we define

v
[hs]

k
(x) =

ek(x)

lk
, then ‖ vk ‖B= 1, these {v[hs]

k
}∞k=0 form complete orthonormal basis for the space B,

that is, if ψ
j

[hs] ∈M [hs] , then we have

ψ
j

[hs](x) =
∞∑
k=0

〈ψ
j

[hs], v
[hs]

k
〉
M

[hs]
v

[hs]

k
(x). (5.32)

Using equation (5.31), we extend the operator S[hs]
: M

[hs]

N
→ L2

N

[hs]

as a bounded linear operator

S[hs]

ψ
[hs]

(x) = (S
[hs]

ψ1

[hs](x), S
[hs]

ψ2

[hs](x), . . . , S
[hs]

ψ
N

[hs](x))T ∈ L2
N

[hs]

, (5.33)

where

S
[hs]

ψ
j

[hs](x) =
∞∑
k=0

〈ψ
j

[hs], e
k
〉L2

k∑
i=0

〈S [hs]

e
k
, e

i
〉L2e

i
(x) ∈ L2[−1, 1], j = 0, 1, . . . , N. (5.34)

Since we have

‖ S [hs]

ψ
j

[hs] ‖2
L2=

∞∑
k=0

l2
k
|〈ψ

j

[hs], e
k
〉L2|2 =‖ ψ

j

[hs] ‖2

M
[hs] , for j = 1, 2, . . . , N, (5.35)

therefore, the norm of bounded linear operator S[hs] is

‖ S[hs] ‖= 1. (5.36)

Also, the mapping S[hs]
: M

[hs]

N
→ L2

N

[hs]

is bijective. Using Theorem 1.1.1, the inverse operator (S[hs]
)−1 :

L2
N

[hs]

→M
[hs]

N
exists as a bounded linear operator and defined as

(S[hs]

)−1ψ
[hs]

(x) =
(

(S
[hs]

)−1ψ1

[hs](x), (S
[hs]

)−1ψ2

[hs](x), . . . , (S
[hs]

)−1ψ
N

[hs](x)
)T
,

where

(S
[hs]

)−1ψ
j

[hs](x) =
∞∑
k=0

〈ψ
j

[hs](x), e
k
(x)〉L2

l
k

e
k
(x). (5.37)

Therefore, we obtain the norm for the bounded linear operator (S[hs]
)−1 as

‖ (S[hs]

)−1 ‖= 1. (5.38)

Now we assume that
√

1− t2 k
ji

(x, t), j, i = 0, 1, 2, . . . , N , are Lebesgue square-integrable functions of
x and t
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∫ 1

−1

∫ 1

−1

|
√

1− t2 k[hs]

ij
(x, t)|2dtdx <∞, (5.39)

and therefore, the operator K[hs]
: M

[hs]

N
→ L2

N

[hs]

is a compact operator. Further, with the help of suitable
spaces defined in subsection 5.3.1, reconsider the operator equation (5.5) from M

[hs]

N
to L2

N

[hs]

(S[hs] −K[hs]

)ψ
[hs]

(x) = g
[hs]

(x), g
[hs]

(x) ∈ L2
N

[hs]

, ψ
[hs]

(x) ∈M [hs]

N
. (5.40)

We also assume that the operator (S[hs] − K[hs]
) has a bounded inverse and hence, the system (5.1) has a

unique solution.

We now show the convergence of sequence of approximate solutions ψ∗
n

[hs](x) to the exact solution
ψ

[hs]
(x) with respect to L2

N

[hs]

norm.

From the equation (5.14), we have

Qn
N

[hs]

((S[hs] −K[hs]

)ψ∗
n

[hs](x)− g[hs]

(x)) = 0, (5.41)

where Qn
N

[hs]

is an orthogonal projection from L2
N

[hs]

to L2
N

[hs]

Qn
N

[hs]

ψ
[hs]

(x) = (Qn
[hs]

ψ1

[hs](x), Qn
[hs]

ψ2

[hs](x), . . . , Qn
[hs]

ψ
N

[hs](x))T , (5.42)

such that Qn
[hs] is the orthogonal projection onto the finite dimensional vector space E = span{e

i
(x)}ni=0

and defined as

Qn
[hs]

ψ
j

[hs](x) =
n∑
k=0

〈ψ
j

[hs], e
k
〉L2e

k
(x). (5.43)

Since the function ψ∗
n

[hs](x) defined in equation (5.10), is a polynomial therefore with the aid of equation
(5.31), the function S[hs]

ψ∗
n

[hs](x) is also a polynomial.

Hence, by the definition of Qn
N

[hs]

, we have

Qn
N

[hs]

S[hs]

ψ∗
n

[hs](x) = S[hs]

ψ∗
n

[hs](x). (5.44)

Now using the equation (5.44) in equation (5.41), we get

S[hs]

ψ∗n(x)−Qn
N

[hs]

K[hs]

ψ∗
n

[hs](x) = Qn
N

[hs]

g
[hs]

(x). (5.45)

Since the operator S[hs] has a bounded inverse and the operator K[hs] is compact, it is easy to see that for all
n ≥ n0, (S[hs] − Qn

N

[hs]K[hs]
)−1 exists as a bounded linear operator [45]. Hence, the equation (5.45) has a
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unique solution which is given by

ψ∗
n

[hs](x) = (S[hs] −Qn
N

[hs]

K[hs]

)−1Qn
N

[hs]

g
[hs]

(x). (5.46)

Now using equations (5.40) and (5.45), for all n ≥ n0 we have

ψ
[hs]

(x)−ψ∗
n

[hs](x) = (S[hs]−Qn
N

[hs]

K[hs]

)−1
(
g

[hs]

(x)−Qn
N

[hs]

g
[hs]

(x)+K[hs]

ψ
[hs]

(x)−Qn
N

[hs]

K[hs]

ψ
[hs]

(x)
)
.

(5.47)
Applying norm on both the sides of equation (5.47) with respect to M [hs]

N
space, we obtain

‖ ψ[hs] − ψ∗
n

[hs] ‖
M

[hs]

N

≤ ‖ (S[hs] −Qn
N

[hs]

K[hs]

)−1 ‖‖ g[hs] −Qn
N

[hs]

g
[hs] ‖

L2
N

[hs]

+ ‖ (S[hs] −Qn
N

[hs]

K[hs]

)−1 ‖‖ K[hs]

ϕ(x)−Qn
N

[hs]

K[hs]

ϕ(x) ‖
L2
N

[hs] . (5.48)

Also, it is noticed that if ψ(x) ∈M [hs]

N
, we have the following relation

‖ ψ[hs] − ψ∗
n

[hs] ‖
L2
N

[hs]≤‖ ψ[hs] − ψ∗
n

[hs] ‖
M

[hs]

N

. (5.49)

Using the above relation defined in equation (5.49), the equation (5.48) becomes

‖ ψ[hs] − ψ∗
n

[hs] ‖
L2
N

[hs]≤ ‖ (S[hs] −Qn
N

[hs]

K[hs]

)−1 ‖‖ g[hs] −Qn
N

[hs]

g
[hs] ‖

L2
N

[hs]

+ ‖ (S[hs] −Qn
N

[hs]

K[hs]

)−1 ‖ (K[hs] −Qn
N

[hs]

K[hs]

)ψ
[hs] ‖

L2
N

[hs] . (5.50)

Due to the assumption given in equation (5.39), the operator K[hs] is an Hilbert-Schmidt operator
[45]. Therefore, we obtain ‖ K[hs] − Qn

N

[hs]K[hs] ‖
L2
N

[hs]→ 0 as n → ∞. Also, we have ‖ g
[hs] −

Qn
N

[hs]

g
[hs] ‖

L2
N

[hs]→ 0 as n → ∞. Thus, from equation (5.50), we get ‖ ψ[hs] − ψ∗
n

[hs] ‖
L2
N

[hs]→ 0 as n →
∞. Now using equation (5.3), we define

ϕ
[hs]

(x) =
√

1− x2 ψ
[hs]

(x), (5.51)

where ϕ
[hs]

(x) = (ϕ1

[hs](x), ϕ2

[hs](x), . . . , ϕ
N

[hs](x))T , (5.52)

and the function ψ[hs]
(x) is same as defined in equation (5.6). Similarly, we define

ϕ∗n
[hs](x) =

√
1− x2 ψ∗

n

[hs](x), (5.53)

where
ϕ

[hs]

(x) ≈ ϕ∗
n

[hs](x) = (ϕ∗
1n

[hs](x), ϕ∗
2n

[hs](x), . . . , ϕ∗
Nn

[hs](x))T , (5.54)
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and the function ψ∗
n

[hs] is already defined in equation (5.10). Now with the help of equations (5.51) and
(5.53) we have

‖ ϕ[hs] − ϕ∗
n

[hs] ‖
L2
N

[hs]≤‖
√

1− x2 ‖
L2
N

[hs]‖ ψ[hs] − ψ∗
n

[hs] ‖
L2
N

[hs] . (5.55)

Also, the above equation (5.55) and the fact that ‖ ψ
[hs] − ψ∗

n

[hs] ‖
L2
N

[hs]→ 0 as n → ∞ proves that

‖ ϕ[hs] − ϕ∗
n

[hs] ‖
L2
N

[hs]→ 0 as n → ∞. Hence, the convergence of sequence of approximate solutions of

system (5.1) is shown.

Moreover, using equations (5.50) and (5.55), we obtain

‖ ϕ− ϕ∗n ‖L2
N

[hs]≤‖
√

1− x2 ‖
L2
N

[hs]‖ (S[hs] −Qn
N

[hs]

K[hs]

)−1 ‖ γ[hs], (5.56)

where γ[hs] = (‖ g[hs] − Qn
N

[hs]

g
[hs] ‖

L2
N

[hs] + ‖ (K[hs] − Qn
N

[hs]K[hs]
)ψ

[hs] ‖
L2
N

[hs]). In equation (5.56),

the operator (S[hs] − Qn
N

[hs]K[hs]
)−1 is bounded, ‖

√
1− x2 ‖

L2
N

[hs]= 1.1547 and the sum of norms
(
‖

g
[hs] − Qn

N

[hs]

g
[hs] ‖

L2
N

[hs] + ‖ (K[hs] − Qn
N

[hs]K[hs]
)ψ

[hs] ‖
L2
N

[hs]

)
appearing on right hand side of equation

(5.56) is converging to 0 as n → ∞. Therefore, the right hand side of equation (5.56) will be a finite real
number and hence, it will be the error bound for the error ‖ ϕ[hs] − ϕ∗

n

[hs] ‖
L2
N

[hs] .

5.3.3 Problem is well-posed
In this subsection, we show that the well-posedness of system of linear algebraic equations (5.45)

obtained as a result of approximation of system (5.1).
With reference to subsection 5.3.2, the inverse operator (S[hs] − Qn

N

[hs]K[hs]
)−1 exists which implies that

the solution to the system (5.45) exists. Now we prove the uniqueness of solution of system (5.45) by the
principle of contradiction. If possible, let w1 and w2 be the two distinct solutions of system (5.45). Now
since w1(x) and w2(x) both are its solution, therefore we have

S[hs]

w1(x)−Qn
N

[hs]

K[hs]

w1(x) = Qn
N

[hs]

g
[hs]

(x), (5.57)

S[hs]

w2(x)−Qn
N

[hs]

K[hs]

w2(x) = Qn
N

[hs]

g
[hs]

(x). (5.58)

From equations (5.57) and (5.58), we obtain

(S[hs] −Qn
N

[hs]

K[hs]

)(w1(x)− w2(x)) = 0, | x |< 1. (5.59)

Applying the operator (S[hs] −Qn
N

[hs]K[hs]
)−1 on both sides of equation (5.59), we get

w1(x) = w2(x), | x |< 1. (5.60)
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The above equation (5.60) proves the uniqueness of the solution of system (5.45). Also, the in-
verse operator (S[hs] − Qn

N

[hs]K[hs]
)−1 exists as a bounded linear operator which means that the operator

(S[hs] −Qn
N

[hs]K[hs]
)−1 is continuous. Therefore, a small change in the given data reflects a small change in

the solution. Hence, the boundness of the operator (S[hs] −Qn
N

[hs]K[hs]
)−1 confirms the stability [66] of the

problem. Hence, the problem (5.45) is a well-posed problem.

5.3.4 Solvability of system of linear algebraic equations
In this subsection, we show the linear system (5.17) is solvable (i.e. inverse of the matrix B̂ exists). In

order to show the solvability of system, we define the vector space as

XN×(n+1)

[hs]
= {vec G[hs]

= (G1

[hs]

, G2

[hs]

, ..., G
N

[hs]

)T : G
j

[hs] ∈ Cn+1, j = 1, 2, . . . , N}, (5.61)

where Cn+1 is a complex vector space [67] having (n + 1)-tuple of complex numbers as its vectors,
vec G

[hs] is same as defined in equation (5.16) andG
j

[hs]
= (〈g[hs]

j , e0〉L2 , 〈g[hs]

j , e1〉L2 , . . . , 〈g[hs]

j , en〉L2)T j =

1, 2, . . . , N.

We define another vector space Z[hs]
N

as

Z[hs]
N

= {z[hs]

= (z
[hs]

1
, z

[hs]

2
, ..., z

[hs]

N
)T : z

[hs]

j
∈ E, j = 1, 2, . . . , N}, , (5.62)

where E = span{e
i
(x)}ni=0. Now consider the operator Pn

[hs]
: XN×(n+1)

[hs]
→ Z[hs]

N
as

P n
N

[hs]

(vec G
[hs]

) = (Pn
[hs]

G1

[hs]

, Pn
[hs]

G2

[hs]

, ..., Pn
[hs]

G
N

[hs]

)T , (5.63)

such that Pn
[hs]

: Cn+1 → E is a prolongation operator [45] and defined as

Pn
[hs]

G
j

[hs]

=
n∑
i=0

〈g
j

[hs]

, e
i
〉
L2ei(x) ∈ E, j = 0, 1, . . . , N. (5.64)

We take the orthogonal projection of function g[hs]
(x) ∈ L2

N

Qn
N

[hs]

g
[hs]

(x) = (Qn
[hs]

g
[hs]

1
(x), Qn

[hs]

g
[hs]

2
(x), . . . , Qn

[hs]

g
[hs]

N
(x))T , (5.65)

such that Qn
[hs] is the orthogonal projection onto the finite dimensional vector space E = span{e

i
(x)}ni=0

and defined as

Qn
[hs]

g
[hs]

j
(x) =

n∑
k=0

〈g[hs]

j
, e

k
〉
L2ek(x). (5.66)

Using equation (5.64) and the above equation (5.66), we obtain

Qn
[hs]

g
[hs]

j
(x) = Pn

[hs]

G
[hs]

j
, j = 1, 2, . . . , N. (5.67)
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From equations (5.63), (5.65) and (5.67), we have

Qn
N

[hs]

g
[hs]

(x) = P n
N

[hs]

(vec G
[hs]

). (5.68)

We now define operator Rn
N

[hs]

: Z[hs]
N
→ CN(n+1) as

Rn
N

[hs]

ψ∗
n

[hs] = (Rn
[hs]

ψ∗
1n

[hs], Rn
[hs]

ψ∗
2n

[hs], . . . , Rn
[hs]

ψ∗
Nn

[hs])T , (5.69)

such that Rn
[hs]

: E → Cn+1 is a restriction operator [45] which is as follows:

Rn
[hs]

ψ∗
jn

[hs] = (〈ψ∗
jn

[hs], e0〉L2 , 〈ψ∗
jn

[hs], e1〉L2 , . . . 〈ψ∗
jn

[hs], en〉L2)T ∈ Cn+1, (5.70)

where ψ∗
jn

[hs] is same as defined in equation (5.10). Further, on applying the orthogonal property of Legen-
dre polynomials in equation (5.11), we get

a
[hs]

ji = 〈ψ∗
jn

[hs], e
i
〉L2 , i = 0, 1, . . . , n, j = 1, 2, . . . , N. (5.71)

Using the above equation (5.71), the value of A[hs]

j (jth column of matrix A[hs]) is

A
j

[hs]

= (〈ψ∗
jn

[hs], e0〉L2 , 〈ψ∗
jn

[hs], e1〉L2 , . . . , 〈ψ∗
jn

[hs], en〉L2)T , j = 1, 2, . . . , N. (5.72)

From equations (5.70) and (5.72), we obtain

vec A
[hs]

= Rn
N

[hs]

ψ∗
n

[hs], (5.73)

where vec A[hs] and Rn
N

[hs]

ψ∗
n

[hs] are defined in equations (5.16) and (5.69) respectively.

Since the solution ψ∗
n

[hs] of system (5.45) exist uniquely which is already proved in subsection 5.3.3.
Therefore, from equation (5.73), the solution vec A[hs] of system (5.17) also exists uniquely.

Now substituting the value of ψ∗
n

[hs] from equation (5.46) in system (5.73), we obtain

vec A
[hs]

= Rn
N

[hs]

(S[hs] −Qn
N

[hs]

K[hs]

)−1Qn
N

[hs]

g
[hs]

(x). (5.74)

On using equations (5.68) and (5.74), we get

vec A
[hs]

= Rn
N

[hs]

(S[hs] −Qn
N

[hs]

K[hs]

)−1P n
N

[hs]

(vec G
[hs]

). (5.75)

The above equation (5.75) can be rewritten as

Ĉ
[hs]

= Rn
N

[hs]

(S[hs] −Qn
N

[hs]

K[hs]

)−1P n
N

[hs]

Ê. (5.76)
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From equation (5.76), we can say that the unique solution Ĉ [hs] of the system D̂
[hs]
Ĉ

[hs]
= Ê

[hs] defined in
equation (5.17) exists for every given Ê [hs] ∈ XN×(n+1)

[hs]
. Hence, the matrix D̂[hs] is invertible [119].

Theorem 5.3.1. Consider the system of hypersingular integral equations

(S[hs] −K[hs]

)ψ
[hs]

(x) = f
[hs]

(x), |x| < 1, (5.77)

where the operators S[hs]
and K[hs]

are defined in equation (5.7). In the system (5.77) if k
[hs]

ij
(x, t), ∀j, i =

1, 2, . . . , N , are polynomial functions in x, t and f
[hs]

(x) = (f
[hs]

1
(x), f

[hs]

2
(x), . . . , f

[hs]

N
(x))T is such that

each f
[hs]

j
(x) is a polynomial of degree rj, j = 1, 2, . . . , N . Then the approximate solution of equation

(5.77) is an exact solution if we approximate each unknown function ψ
j

[hs](x), j = 1, 2, · · · , N , as in

equation (5.11) by the orthonormalized Legendre polynomials of degree n = max{r1 , r2 , . . . , rN} and if

the degree of polynomial K
[hs]

ji
ψ∗

j

[hs](x) ≤ n,∀j, i = 1, 2, . . . , N.

Proof. The residual error for system (5.77) is defined as

(S[hs] −K[hs]

)ψ∗
n

[hs](x)− f [hs]

(x), (5.78)

where the function ψ∗
n

[hs](x) is same as defined in equation (5.10). Using equation (5.14), we obtain

Qn
N

[hs]

((S[hs] −K[hs]

) ψ∗
n

[hs](x)− f [hs]

(x)) = 0. (5.79)

From equations (5.77) and (5.79), we obtain

(S[hs] −K[hs]

)ψ
[hs]

(x)−Qn
N

[hs]

((S[hs] −K[hs]

) ψ∗
n

[hs](x)) = f
[hs]

(x)−Qn
N

[hs]

f
[hs]

(x). (5.80)

since the function ψ∗
n

[hs](x) is a polynomial therefore with the help of Hadamard finite-part integral formulas
(see equation (35) in reference [61]), the function S[hs]

ψ∗
n

[hs](x) will be a polynomial.

Also, the functions k[hs]

ij
(x, t), ∀j, i = 1, 2, . . . , N and ψ∗

jn

[hs](x) are polynomial, therefore the prod-
uct k[hs]

ij
(x, t)ψ∗

jn

[hs](x) will be a polynomial. Hence, K[hs]
ψ∗

n

[hs](x) is also a polynomial. Applying the
definition of operator Qn

N

[hs]

as defined in equation (5.42), we obtain

Qn
N

[hs]

(S[hs] −K[hs]

)ψ∗
n

[hs](x) = (S[hs] −K[hs]

)ψ∗
n

[hs](x). (5.81)

Since the function f(x) is also a polynomial, therefore we have

Qn
N

[hs]

f
[hs]

(x) = f
[hs]

(x). (5.82)
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Therefore, using equations (5.81) and (5.82), equation (5.80) becomes

(S[hs] −K[hs]

)(ψ
[hs]

(x)− ψ∗
n

[hs](x)) = 0. (5.83)

Since the operator (S[hs] −K[hs]
)−1 exists, equation (5.83) becomes

ψ
[hs]

(x)− ψ∗
n

[hs](x) = 0. (5.84)

Therefore, the approximate solution is same as the exact solution.

5.4 Application
In this section, we show an application of the proposed method for the solution of some hypersingular

integral equations on two-dimensional curves in the complex plane. This kind of hypersingluar integral
equation occurs quite naturally in crack problems in the field of fracture mechanics [19, 21] where the two
dimensional curves are representing the shape of various cracks existing in the given material. Now we
consider the following hypersingular integral equation

=

∫
Γ

v(y)

(y − z)2
dy = h(z), z ∈ Γ, (5.85)

where the integral is understood in the sense of HFP and is considered over the curve Γ =
N⋃
j=1

Γj where each
Γj denotes smooth simple arc in the complex plane with no common points and each is of finite length. In
the equation (5.85), the functions h(z) and v(y) are complex valued known and unknown functions defined
on the curve Γ respectively. We further use the notations vj(z) and hj(z) if z ∈ Γj, j = 1, 2, . . . , N. Now
we rewrite the equation (5.85) as

N∑
i=1

=

∫
Γi

vi(y)

(y − z)2
dy = hj(z), z ∈ Γj, j = 1, 2, . . . , N. (5.86)

On introducing the parametrization ∆j for each arc Γj

Γj : y = ∆j(t), |t| < 1, j = 1, 2, . . . , N,

the equation (5.86) becomes
N∑
i=1

=

∫ 1

−1

∆′i(t)vi(∆i(t))

(∆i(t)−∆j(x))2
dt = hj(∆j(x)), |x| < 1. (5.87)

On rewriting the last equation in a simplified form as

=

∫ 1

−1

ϕ
j
[hs](t)

(t− x)2
dt+

N∑
i=1

∫ 1

−1

k
[hs]

ji
(x, t)ϕ

j

[hs](t)dt = g
[hs]

j
(x), |x| < 1, (5.88)
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where for j, i = 1, 2, . . . , N,

k
[hs]

ji
(x, t) =


(Âj(x, t)− Âj(x, x))

Âj(x, x)(t− x)2
, j = i,

∆′i(t)

Âj(x, x)(∆i(t)−∆j(x))2
, j 6= i,

Âj(x, t) =
(t− x)2∆′j(t)

(∆j(t)−∆j(x))2
, ∆j(t) 6= ∆j(x),

Âj(x, x) 6= 0,

ϕ
j

[hs](t) = vj(∆i(t)),

g
[hs]

j
(x) =

hj(∆j(x))

Âj(x, x)
.

If the function g[hs]
(x) = (g

[hs]

1
(x), g

[hs]

2
(x), . . . , g

[hs]

N
(x))T satisfies the condition ‖ g[hs] −Qn

N

[hs]

g
[hs] ‖L2→

0 as n → ∞ and k[hs]

ij
(x, t) satisfy the assumption (5.39), then the system of HSIEs obtain from equation

(5.88) for j = 1, 2, . . . , N , can be solved using the method proposed in Section 5.2.

5.5 Illustrative numerical examples

In this section, our aim is to validate the theoretical results derived in Section 5.3 with the help of test
examples.

Example 5.1 Let us consider the hypersingular system of integral equations

=

∫ 1

−1

ϕ1
[hs](t)

(t− x)2
dt+

∫ 1

−1

(1
2

+ t)ϕ1
[hs](t)

16
dt+

∫ 1

−1

(1
4

+ x)ϕ2
[hs](t)

9
dt = g1(x), | x |< 1,∫ 1

−1

(1
3

+ xt)ϕ1
[hs](t)

16
dt+ =

∫
ϕ2

[hs](t)

(t− x)2
dt+

∫ 1

−1

(1
4
− t2)ϕ2

[hs](t)

9
dt = g2(x), | x |< 1, (5.89)

where

g
[hs]

1 (x) = π
(
− 2x8 − 4x7 +

7x6

9
− 9x5

2
− 175x4

36
+

9x3

4
+

19x2

24
− 6049x

9216
− 52169

73728

+ i
(
− 2x8 − 8x7 − 49x6

18
+ 3x5 − 5x4

6
− x3

2
− 101x2

48
− 2387x

1536
+

18749

73728

))
,

g
[hs]

2 (x) = π
(
− 27x8

4
+

7x6

8
− 6x5 − 125x4

32
+ 2x3 +

79x2

64
− 6085x

8192
− 4003

55296

+ i
(
− 9x8

2
− 2x7 +

7x6

4
− 69x5

4
+

5x4

16
+

213x3

40
− 93x2

32
+

10071x

20480
− 13677

28672

))
.

The exact solution of above problem is given by
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ϕ
[hs]

1
(x) =

√
1− x2

(
1 +

x

2
+
x2

4
+ x4 + x5 +

x7

2
+

2x8

9
+ i
( 8

21
+ x+ x2 +

x3

4
+

4x4

9
+
x6

2
+ x7

+
2x8

9

))
,

ϕ
[hs]

2
(x) =

√
1− x2

(1

3
+
x

2
+
x2

6
+ x4 + x5 +

x6

4
+

3x8

4
+ i
(

1 +
x

4
+ x2 +

x3

5
+ 3x5 +

x7

4
+
x8

2

))
.

First we apply the proposed numerical method described in Section 5.2 to the system (5.89) having N = 2

coupled hypersingular equations, we obtain a sequence of approximated vector functions

ϕ∗
n

[hs](x) =

(
ϕ∗

1n

[hs](x)

ϕ∗
2n

[hs](x)

)
=

(
Re[ϕ∗

1n

[hs](x)] + iIm[ϕ∗
1n

[hs](x)]

Re[ϕ∗
2n

[hs](x)] + iIm[ϕ∗
2n

[hs](x)]

)
, n = 1, 2, . . . , 8,

with N = 2 components, where n is the degree of a Legendre polynomial used for approximation. Further,
we will show that the above sequence of vector functions ϕ∗

n

[hs](x) converges to the exact solution

ϕ
[hs]

(x) =

(
ϕ

[hs]

1
(x)

ϕ
[hs]

2
(x)

)
=

(
Re[ϕ

[hs]

1
(x)] + iIm[ϕ

[hs]

1
(x)]

Re[ϕ
[hs]

2
(x)] + iIm[ϕ

[hs]

2
(x)]

)
,

of system (5.89) by showing each ϕ∗
jn

[hs](x) converges to ϕ
[hs]

j
(x) respectively, j = 1, 2. Since each

ϕ∗
jn

[hs](x) is a complex valued function of a real variable x, therefore the sequence ϕ∗
jn

[hs](x) is conver-
gent to ϕ[hs]

j
(x) if and only if the sequence of its corresponding real part Re[ϕ∗

jn

[hs](x)]→ Re[ϕ
[hs]

j
(x)] and

imaginary part Im[ϕ∗
jn

[hs](x)]→ Im[ϕ
[hs]

j
(x)], j = 1, 2. The above can be summarized as follows:

As n→∞, we get

ϕ∗
n

[hs](x)→ ϕ
[hs]

(x) ⇐=


ϕ∗

1n

[hs](x)→ ϕ
[hs]

1
(x) ⇐=

{
Re[ϕ∗

1n

[hs](x)]→ Re[ϕ
[hs]

1
(x)],

Im[ϕ∗
1n

(x)]→ Im[ϕ
[hs]

1
(x)],

ϕ∗
2n

[hs](x)→ ϕ
[hs]

2
(x) ⇐=

{
Re[ϕ∗

2n
(x)]→ Re[ϕ

[hs]

2
(x)],

Im[ϕ∗
2n

(x)]→ Im[ϕ
[hs]

2
(x)].

(5.90)

We computed the actual error ‖ϕ[hs] − ϕ∗
n

[hs]‖
L2
N

[hs] and the corresponding theoretical error bound by us-

ing equation (5.56) for different values of n and the details are shown in Table 5.1 for Example 5.1. The
actual error can never exceed the error bound and this fact is validated in Table 5.1. Further, theoretically
we proved in equation (5.56) that ‖ϕ[hs] − ϕ∗

n

[hs]‖
L2
N

[hs] → 0 as n → ∞ and the same is observed in

Table 5.1. The comparison of real and imaginary part of the exact solution of ϕ1
[hs](x) with correspond-

ing real and imaginary part of approximate solution ϕ∗
1n

[hs](x) for n = 0, 1, 2, . . . , 8, is shown in Figures
5.1(a), 5.1(b). Similarly, Figures 5.1(c), 5.1(d) show the comparison of real and imaginary part of the ex-
act solution of ϕ2

[hs](x) with corresponding real and imaginary part of approximate solution ϕ∗
2n

[hs](x) for
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n = 0, 1, 2, . . . , 8. Further, for each component ϕ
j
[hs](x), j = 1, 2, it can be seen in all the Figures 5.1(a),

5.1(b), 5.1(c), 5.1(d) that as the value of n increases from 0 to 7, the real and imaginary part of approximate
solutions are getting closer to the respective real and imaginary part of exact solution. And, as soon as the
value of n becomes 8, the approximate solution overlaps the exact solution. Hence, due to the fact men-
tioned in equation (5.90), Figure 5.1 shows that the sequence of approximate solutions ϕ∗

n

[hs](x) converges
to the exact solution ϕ[hs]

(x).

Table 5.1: The actual error and theoretical error bound for various values of n for Example 5.1

.

Degree of
Legendre polynomial

Actual error
‖ϕ[hs] − ϕ∗

n

[hs]‖
L2

N

[hs]

Error bound for
‖ϕ[hs] − ϕ∗

n

[hs]‖
L2

N

[hs]

n = 1 1.21590 17.96830
n = 2 0.67989 13.32240
n = 3 0.26737 6.62679
n = 4 0.14942 4.20855
n = 5 0.03684 1.24737
n = 6 0.01028 0.39426
n = 7 0.00393 0.16759
n = 8 0 0

Table 5.2: The theoretical error bound for various values of n for Example 5.2

.

Degree of Legendre polynomial Error bound for ‖ϕ[hs] − ϕ∗
n

[hs]‖
L2
N

[hs]

n = 1 8.09776
n = 2 5.38558
n = 3 1.82725
n = 4 0.25418
n = 5 0.23657
n = 6 0.08312
n = 7 0.01463
n = 8 0.00292
n = 9 0.00148

Example 5.2 Consider the following hypersingular integral equation over the curve

=

∫
Γ

v(y)

(y − z)2
dy = i cos(iz), z ∈ Γ, (5.91)
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where Γ = Γ1

⋃
Γ2 such that Γ1 and Γ2 are two disjoint parabolas with the following parameterizations:

Γ1 : y = ∆1(t) = t+ i(t2 − 1), |t| < 1,

Γ2 : y = ∆2(t) =
1

60

(
t+

i(t2 − 1)

5

)
, |t| < 1.

On following the procedure discussed in Section 5.4, we obtain the following system of HSIEs:

=

∫ 1

−1

ϕ1
[hs](t)

(t− x)2
dt+

∫ 1

−1

k
[hs]

11
(x, t)ϕ1

[hs](t)dt+

∫ 1

−1

k
[hs]

12
(x, t)ϕ2

[hs](t)dt = g
[hs]

1 (x),∫ 1

−1

k
[hs]

21
(x, t)ϕ1

[hs](t)dt+ =

∫ 1

−1

ϕ2
[hs](t)

(t− x)2
dt+

∫ 1

−1

k
[hs]

22
(x, t)ϕ2

[hs](t)dt = g
[hs]

2 (x), (5.92)

where

k
[hs]

11
(x, t) =

1

1− x2 − 2xt− t2 + i(2x+ 2t)
,

k
[hs]

12
(x, t) =

1
60

+ i( x
30

+ t
150

)− xt
75

p12

,

k
[hs]

21
(x, t) =

1
60
− xt

75
+ i( x

150
+ t

30
)

p21

,

k
[hs]

22
(x, t) =

1

25− x2 − 2xt− t2 + i(10x+ 10t)
,

p
[hs]

12
(x, t) = −89401

90000
+ 449x2

150
− x4 − xt

30
− 191t2

30000
+ x2t2

150
− t4

90000
+ i
(
− 299x

150
+ 2x3 + 299t

9000
− x2t

30
− xt2

150
+ t3

9000

)
,

p
[hs]

21
(x, t) = −89401

90000
− 191x2

30000
− x4

90000
− xt

30
+ 449t2

150
+ x2t2

150
− t4 + i

(
299x
9000

+ x3

9000
− 299t

150
− x2t

150
− xt2

30
+ 2t3

)
,

g
[hs]

1 (x) = (i− 2x) cos(ix− x2 + 1),

g
[hs]

2 (x) =
i

60

(
1 +

2ix

5

)
cos
( ix

60
+

(1− x2)

300

)
.

Now we solve the system (5.92) obtain from equation (5.91) by using the method described in Section 5.2.
Similar to Example 5.1, we can obtain a sequence of approximate solutions ϕ∗

n

[hs](x), n = 0, 1, 2, 3, . . .. In
contrast to Example 5.1, the exact solution is not known for Example 5.2. Therefore, we cannot calculate
the actual error which we calculated in Example 5.1. Hence, in order to show the convergence of sequence
of approximate solutions to exact solution, we numerically computed error bound for system (5.92) by using
equation (5.56) and the details are tabulated in Table 5.2. It can be noticed that the error bound decreases
with the increase in value of n which validates ‖ϕ[hs] − ϕ∗

n

[hs]‖
L2
N

[hs] → 0 as n→∞. Figures 5.2(a)
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Table 5.3: The theoretical error bound for various values of n for Example 5.3

.

Degree of Legendre polynomial Error bound for ‖ϕ[hs] − ϕ∗
n

[hs]‖
L2
N

[hs]

n = 1 4.17322
n = 2 1.89030
n = 3 0.73065
n = 4 0.24891
n = 5 0.07662
n = 6 0.02166
n = 7 0.00569
n = 8 0.00140
n = 9 0.00033
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Figure 5.1: Comparison of exact solution with approximate solutions of Example 5.1



5.5. Illustrative numerical examples 74

and 5.2(b) show the comparison of Re[ϕ∗
1n

[hs](x)] and Im[ϕ∗
1n

(x)] respectively for n = 0, 1, 2, . . . , 9. Sim-
ilarly, Figures 5.2(c) and 5.2(d) show the comparison of Re[ϕ∗

2n

[hs](x)] and Im[ϕ∗
2n

[hs](x)] respectively
n = 0, 1, 2, . . . , 9. Further, it is noticed that the approximate solutions are coming closer to each other as
the value of n increases.
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Figure 5.2: Comparison of approximate solutions for different values of n in case of Example 5.2

Example 5.3 Consider the following hypersingular integral equation over the curve:

=

∫
Γ

v(y)

(y − z)2
dy = ie(iz+i z

2

2
), z ∈ Γ. (5.93)

Let us assume that Γ = Γ1

⋃
Γ2

⋃
Γ3, where Γ1, Γ2 and Γ3 are disjoint arcs and have the following param-

eterizations:
∆1 : t ∈ [−1, 1]→ ∆1(t) =

1

18

(t2
2

+ it
)
∈ Γ1,

∆2 : t ∈ [−1, 1]→ ∆2(t) = t+ i
( t2

18
− 3

2

)
∈ Γ2,
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∆3 : t ∈ [−1, 1]→ ∆3(t) = t+ i
( t2

12
+

7

2

)
∈ Γ3.

Following the procedure discussed in Section 5.4, we obtain the following system of HSIEs:

=

∫ 1

−1

ϕ1
[hs](t)

(t− x)2dt
+

∫ 1

−1

k
[hs]

11
(x, t)ϕ1

[hs](t)dt+

∫ 1

−1

k
[hs]

12
(x, t)ϕ2

[hs](t)dt+

∫ 1

−1

k
[hs]

13
(x, t)ϕ3

[hs](t)dt = g
[hs]

1 (x),∫ 1

−1

k
[hs]

21
(x, t)ϕ1

[hs](t)dt+ =

∫ 1

−1

ϕ2
[hs](t)

(t− x)2
dt+

∫ 1

−1

k
[hs]

22
(x, t)ϕ2(t)dt+

∫ 1

−1

k
[hs]

23
(x, t)ϕ3

[hs](t)dt = g
[hs]

2 (x),

(5.94)∫ 1

−1

k
[hs]

31
(x, t)ϕ1

[hs](t)dt+

∫ 1

−1

k
[hs]

32
(x, t)ϕ2

[hs](t)dt+

∫ 1

−1

k
[hs]

33
(x, t)ϕ3

[hs](t)dt+ =

∫ 1

−1

ϕ3
[hs](t)

(t− x)2
dt = g

[hs]

3 (x),

where
k

[hs]

11
(x, t) =

1

−4 + x2 + 2xt+ t2 + i(4x+ 4t)
,

k
[hs]

12
(x, t) =

x
18

+ i( 1
18

+ xt
162

)− t
162

p[hs]

12

,

k
[hs]

13
(x, t) =

x
18
− t

108
+ i( 1

18
+ xt

108
)

p[hs]

13

,

k
[hs]

21
(x, t) =

− x
162

+ t
18

+ i( 1
18

+ xt
162

)

p[hs]

21

,

k
[hs]

22
(x, t) =

1

324− x2 − 2xt− t2 + i(36x+ 36t)
,

k
[hs]

23
(x, t) =

1− xt
54

+ i(x
9

+ t
6
)

p[hs]

23

,

k
[hs]

31
(x, t) =

− x
108

+ t
18

+ i( 1
18

+ xt
108

)

p[hs]

31

,

k
[hs]

32
(x, t) =

1− xt
54

+ i(x
6

+ t
9
)

p[hs]

32

,

k
[hs]

33
(x, t) =

1

144− x2 − 2xt− t2 + i(24x+ 24t)
,

p
[hs]

12
= −9

4
− x

6
− x2

324
+

x4

1296
− x2t

18
+

7t2

6
+
xt2

162
− t4

324
+ i
(x2

12
+

x3

324
− 3t− xt

9
− x2t2

324
+
t3

9

)
,

p
[hs]

13
= −49

4
+

7x

18
− x2

324
+

x4

1296
− x2t

18
+

5t2

12
+
xt2

108
− t4

144
+ i
(
− 7x2

36
+

x3

324
+ 7t− xt

9
− x2t2

216
+
t3

6

)
,

p
[hs]

21
= −−9

4
+

7x2

6
− x4

324
− t

6
+
x2t

162
− t2

324
− st2

18
+

t4

1296
+ i
(
− 3x+

x3

9
− xt

9
+
t2

12
− x2t2

324
+

t3

324

)
,

p
[hs]

23
= −25 +

14x2

9
− x4

324
− 2xt+

t2

6
+
x2t2

108
− t4

144
+ i
(
− 10s+

x3

9
− 10t− x2t

9
− xt2

6
+
t3

6

)
,
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p
[hs]

31
= −49

4
+

5x2

12
− x4

144
+

7t

18
+
x2t

108
− t2

324
− xt2

18
+

t4

1296
+ i
(

7x+
x3

6
− xt

9
− 7t2

36
− x2t2

216
+

t3

324

)
,

p
[hs]

32
= −25 +

x2

6
− x4

144
− 2xt+

14t2

9
+
x2t2

108
− t4

324
+ i
(

10x+
x3

6
− 10t− x2t

6
− xt2

9
+
t3

9

)
,

g
[hs]

1 (x) =
(ix− 1

18

)
e( ix2

36
− x

18
+i

(x
2

36 + ix
18 )2

2
),

g
[hs]

2 (x) =
(
i− x

9

)
e(ix−x2

18
+ 3

2
+i

(x+i(x
2

18−
3
2 ))2

2
),

g
[hs]

3 (x) =
(
i− x

6

)
e(is−x2

12
− 7

2
+i

(x+i(x
2

12 +7
2 ))2

2
).

First we apply the proposed numerical method described in Section 5.2 to the system (5.94) having N = 3

coupled hypersingular equations to obtain a sequence of approximated vector functions ϕ∗
n

[hs](x) which we
need to show that it converges to the exact solution ϕ[hs]

(x), that is, as n→∞, we have

ϕ∗
n

[hs](x)→ ϕ
[hs]

(x) ⇐=



ϕ∗
1n

[hs](x)→ ϕ1
[hs](x) ⇐=

{
Re[ϕ∗

1n

[hs](x)]→ Re[ϕ1
[hs](x)],

Im[ϕ∗
1n

[hs](x)]→ Im[ϕ1
[hs](x)],

ϕ∗
2n

[hs](x)→ ϕ2
[hs](x) ⇐=

{
Re[ϕ∗

2n

[hs](x)]→ Re[ϕ2
[hs](x)],

Im[ϕ∗
2n

[hs](x)]→ Im[ϕ2
[hs](x)],

ϕ∗
3n

[hs](x)→ ϕ3
[hs](x) ⇐=

{
Re[ϕ∗

3n

[hs](x)]→ Re[ϕ3
[hs](x)],

Im[ϕ∗
3n

[hs](x)]→ Im[ϕ3
[hs](x)],

where
ϕ∗

n

[hs](x) =

 ϕ∗
1n

[hs](x)

ϕ∗
2n

[hs](x)

ϕ∗
3n

[hs](x)

 =

 Re[ϕ∗
1n

[hs](x) + iIm[ϕ∗
1n

[hs](x)]

Re[ϕ∗
2n

[hs](x) + iIm[ϕ∗
2n

[hs](x)]

Re[ϕ∗
3n

[hs](x) + iIm[ϕ∗
3n

[hs](x)]

 , n = 0, 1, 2, 3, . . . ,

ϕ
[hs]

(x) =

 ϕ1
[hs](x)

ϕ2
[hs](x)

ϕ3
[hs](x)

 =

 Re[ϕ1
[hs](x)] + iIm[ϕ1

[hs](x)]

Re[ϕ2
[hs](x)] + iIm[ϕ2

[hs](x)]

Re[ϕ3
[hs](x)] + iIm[ϕ3

[hs](x)]

 .

In contrast to Example 5.1 and Example 5.2, here we consider the resultant system (5.94) with N = 3

hypersingular coupled equations. Similar to Example 5.2, we calculated the error bound by using equa-
tion (5.56) and tabulated the details in Table 5.3. It can be observed from Table 5.3 that as the value of n
increases, the error bound decreases which further implies ‖ϕ[hs] −ϕ∗

n

[hs]‖
L2
N

[hs] → 0 as n→∞. The com-

parison of Re[ϕ∗
1n

[hs](x)], Im[ϕ∗
1n

[hs](x)], Re(ϕ∗
2n

[hs](x)), Im[ϕ∗
2n

[hs](x)], Re[ϕ∗
3n

[hs](x)] and Im[ϕ∗
3n

[hs](x)]

is shown in Figures 5.3(a), 5.3(b), 5.3(c), 5.3(d), 5.3(e) and 5.3(f) respectively for n = 0, 1, 2, . . . , 9. Also,
it is observed that as the value of n increases the approximate solutions are getting closer to each other.
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Figure 5.3: Comparison of approximate solutions for different values of n in case of Example 5.3

Conclusion
The Legendre polynomials based numerical method has been proposed to find an approximate solution
for the system of hypersingular integral equations of first kind. The proposed method reduces system of



5.5. Illustrative numerical examples 78

HSIEs to a system of linear algebraic equations for which the well-posedness conditions are proved in the
sense of Hadamard. The theoretically error bound is derived and convergence of sequence of approximate
solutions is proved. The error bound has been calculated numerically and convergence is shown for all the
test examples considered. The specific conditions under which proposed method provides exact solution are
also shown. Finally, the application of the proposed method is shown by finding the approximate solution
of hypersingular integral equation over a two-dimensional curve in complex plane.



Chapter 6

Conclusion and future work
Now we summarize the work presented in this thesis and will address some future possibilities in the

field of singular integral equations.

6.1 Conclusion
In this thesis, we have addressed two kinds of singular integral equations, they are Cauchy singular

integral equations and hypersingular integral equations. In Chapter 1, we have given the background
and the importance of singular integral equations in various areas which motivate us to do research on these
equations. We have also stated some basic definitions and theorems which we have used to obtain theoretical
results such as convergence analysis, well-posedness and error analysis of the proposed method. In Chapter
2, we have found the approximate solution for Cauchy singular integral equations over the finite interval
[−1, 1] as well as over the half-line by residual based Galerkin’s method. An application of the proposed
method is also shown in this chapter by solving an antiplane shear crack problem. After this, in Chapter 3,
the same method is applied to find the approximate solution for system of Cauchy singular integral equations
of first kind. The error bound is obtained and the convergence of sequence of approximate solutions for
CSIEs as well as their system is also shown in their respective chapters. We have proposed a residual
based Galerkin’s method to find the approximate solution of hypersingular integral equations in Chapter
4. The well-posedness for the system of linear algebraic equations which is obtained after applying the
proposed method to the HSIEs, is shown. The convergence of sequence of approximate solutions is proved
and the error bound is derived. In Chapter 5, we solve the system of HSIEs with the aid of residual based
Galerkin’s method. The application of the method is also shown by decomposing a hypersingular integral
equation over the curve in a complex plane into a system of HSIEs. The well-posedness for the system
of linear algebraic equations and convergence of sequence of approximate solutions, are shown. The error
bound is also obtained. In all chapters, the validation of derived theoretical results is shown with the aid of
various numerical examples.

6.2 Future work
There are some fair possibilities to carry forward the research work presented in this thesis in the

following directions:
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• In our research, we have proposed residual Galerkin’s method to find the approximate solution for
system of Cauchy singular integral equations having each equation of index zero. The same method
can be proposed to solve the system of Cauchy singular integral equations of different indices such as
for index -1, 1 or mixed kind. Further, proving the convergence of sequence of approximate solutions
of system of CSIEs of different indices would be an interesting as well as a challenging future task.

• In this thesis, we have used our proposed method to find the approximate solution for system of CSIEs
and HSIEs over the finite interval. This work can be extended by proposing the residual Galerkin’s
method to find the approximate solution for system of CSIEs as well as for system of HSIEs over the
half-line or even over the plane.

• Further, obtaining the error bound, proving the convergence of sequence of approximate solutions for
system of CSIEs and for system of HSIEs over the half-line or even over the plane would be a very
interesting problem to be consider as a future work.
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