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Abstract

The Standard Model(SM) of Particle Physics has so far been extremely successful, with a recent major
triumph in discovering and constraining the properties of the last missing bit of the SM, the Higgs bo-
son. Apart from some discrete and isolated hints, it is broadly evasive, lacking any clinching evidence
yet supporting the physics beyond the standard model (BSM) experiment at Large Hadron Collider
(LHC) at the TeV energy scale, exploration of which is one of the primary motives for post-Higgs
LHC. On the other side, it is widely admitted that the Standard Model is valid only up to a scale of
several hundred GeV i.e it is at most a very good description for low energy effective theory which,
in fact, falls short to explain several outstanding issues both in terms of theoretical construction and
elegance as well as experimental observations.

The idea of field theories on the noncommutative (NC) spacetime is rather primeval, yet fascinate by
introducing a fundamental length scale in the model consistent with the symmetry. These ideas are
further revived after realization of their possible connection with quantum gravity, where noncommu-
tativity is perceived as an outcome of certain string theory embedded into a background magnetic field.
Just like the quantization in phase space, the spacetime coordinate in the noncommutative spacetime

gets replaced by an operator z,, which satisfy the commutation relation

A A . .C
[ZL‘“, Iu] = Z@/w =i

A%’
where ©,, is an antisymmetric matrix tensor, which has the dimension of area reflecting the extent to
which the spacetime is fuzzy i.e. noncommutative. c,, is the anti-symmetric constant c-number matrix
which gives a preferred directionality and also a non-vanishing contribution results in deviating from
exact Lorentz invariance is broken at all scale A, the scale of spacetime noncommutativity. The con-
struction of the noncommutative standard model relies on two important blocks: Moyal-Weyl(MW)
*-product of field functions on ordinary spacetime and the Seiberg-Witten(SW) maps. In the SW map,
the field variables and the gauge transformation parameter are defined by a formal power series ex-
pansion of the fields in terms of ©. By means of Weyl-Moyal star product and Seiberg-Witten maps,
the noncommutative standard model to order O(©) have been constructed as the effective theory: the
minimal Nonconcommutative Standard Model(mNCSM) in which the SM vertices are modified and
the non-minimal Nonconcommutative Standard Model(nmNCSM) in which besides those modified

SM vertices, several new interactions also appear which are not present in the standard model.



Since the Lorentz invariance including the rotational invariance around the beam axis is broken by
the spacetime noncommutativity(which defines a preferred direction), the azimuthal distribution of the
cross-section will no longer be isotropic due to its strong ¢ dependence. This azimuthal anisotropy,
absent in most of the beyond the standard models (BSM), can be used to single out spacetime non-
commutativity from other class of BSM physics by looking at processes at the TeV energy colliders.
Besides the fact that the SM vertices get modified in NC space-time, new interactions (e.g. triple neu-
tral gauge boson coupling) also emerge. These vertices as well as directional features incorporated
as new features, present and future colliders certainly can provide an opportunity to verify these new
physics at TeV scale as well constrain different parameters and the NC scale A.

Although theoretically the value of A is not known, however if this effective scale lies somewhere
between hundreds of GeV to few TeV range, then it can be probed by the ongoing proton-proton
Large Hadron Collider or the upcoming electron-positron linear collider. Now most of existing col-
lider searches of spacetime noncommutativity were made in the context of electron-positron collider,
only few were available in the context of LHC. Also the effect of earth rotation was not considered in
most of the phenomenological searches for the sake of simplicity, which however needs to be taken
into account in order to make any serious phenomenological investigation. The present thesis is an

effort to fill those gaps and it aims

1. To widen our understanding of the magnitude of the noncommutative scale A by looking at
processes both at LHC and LC with and without considering the effect of earth rotation into the

analysis and have better understanding of the structure of spacetime at high energy.

2. To see how the anisotropic behaviour of the cross-section arising due to the violation of Lorentz

invariance can throw light in understanding the structure of spacetime at high energy.

Thesis is organized as follows. In chapter 1, we give a brief review of the Standard model of particle
physics, discuss about its gauge structure, particle content and the Higgs mechanism. We discuss about
several limitations of the SM: Theoretical question (e.g. hierarchy problem, baryon asymmetry, gener-
ation problem etc) and Experimental finding (neutrino oscillation, dark matter etc) of and the necessity
of having the beyond the standard model physics(BSM).

In chapter 2, we give a brief introduction of space-time noncommutativity, discuss about the Weyl-
Moyal and Seiberg-Witten approach for doing NC phenomenology, and discuss about the construction
of minimal and non-minimal noncommutative standard model(NCSM).

In chapter 3, we investigate the higgstralung process e*e~ — Zh process at the LC in the nmNCSM.

il



We calculate the cross-section using the the Feynman rules to all orders of the noncommutative param-

eter ©,,,, with special emphasis on including the effect of earth rotation on the orientation of the NC

s
tensor O, on the cross-section and the azimuthal distribution etc corresponding to the machine energy
varying from 0.5 TeV to 3 TeV for A > 0.5 TeV.

In chapter 4, we study the Drell-Yan process at the Large Hadron Collider in the noncommutative
spacetime. We calculate the production cross section to the first order in ©,,,. An outstanding feature
from this nonminimal noncommutative standard model not only modifies the couplings over the SM
production channel, but also allows additional nonstandard vertices which can play a significant role
and in the Drell-Yan process, one also needs to account for the gluon fusion process i.e. the presence
of g — g — v and g — g — Z vertices at the tree level. We find some of the characteristic signatures such
as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings
and explore the noncommutative scale A > 0.4 TeV, considering different machine energy ranging
from 7 TeV to 13 TeV.

In chapter 5, we study the top quark pair production in the noncommutative spacetime in LC. Us-
ing the O(O) Feynman rule, we obtained the cross section and the azimuthal distribution of the top
quark pair production and investigated their sensitivities on the ©,,, distribution of the pair top quark
pair production and investigated their sensitivities in the case of space-time(ST) noncommutativity,
space-space(SS) noncommutativity and space-time & space-space noncommutativity. In the case of
space-space noncommutivity, the fact that (o5 — ogp) < 0.0205),, gives rise the lower bound on
the NC scale A > 0.65 TeV. In the presence of earth rotation, the time-averaged cross section (o (t)) .
attains its maximum value corresponding to the orientation angle 7 = 7/2 (7, the orientation angle of
the NC vector w.r.t the earth axis of rotation(fixed direction)). The azimuthal <d2—g)>T vs ¢ distribu-
tion, completely flat in the SM, shows peaks and troughs in the case of NCSM corresponding 1 = /2
and A = 0.65 TeV at F,.,, = 1 TeV. The oscillatory behaviour of the azimuthal distribution and
the diurnal behaviour of the top-quark production cross section over the period of a complete day and

night can be an useful tool in isolating spacetime noncommutativity from other class of BSM models.

In chapter 6, we summarize our thesis work and conclude.
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Chapter 1

The Standard Model of Particle Physics

” Science is shaped by ignorance. Great questions themselves evolve, of course, because their

answers spawn new and better questions in turn”. - David Gross

1.1 Introduction

The standard model (SM) of elementary particles which describes how the elementary particles
interact with each other has been consistently developed over the last five decades and became com-
patible with the experimental results all the way around. The basic building blocks of the SM i.e. the
particles, are classified into two classes due to their spin: fermions and bosons. Neutrinos, Leptons and
Quarks are the fermionic matter particle which has spin % angular momentum. On the other hand, there
are two types of bosonic matter particles i.e spin 1 vector boson e.g. Photon(v), W= and Z bosons
and spin 0 scalar bosons e.g. Higgs boson (/). In addition, there are eight spin 1 vector bosons called
gluons. Bosons are force carriers between fermionic matter particles.

The standard model accommodate three types of interaction (i) Strong interaction: Gluons are the
force carriers between quark interaction, (i1) Electromagnetic(EM) interaction: Photon (7) is respon-
sible for electromagnetic(EM) interaction between quarks and leptons. (iii) Weak interaction: W=
and Z bosons are responsible for weak interaction between neutrinos, leptons and quarks. Note that
neutrinos do not take part in electromagnetic and strong interactions. These gluons, photon(), weak
bosons W= and Z bosons are all known as gauge bosons. The last one is called Higgs interaction. The
Higgs interaction with the SM particles is responsible for mass of the SM particle. Note that neutrinos

remains massless in the SM.



The Standard model is a theory based on the local SU(3). ® SU(2), ® U(1)y gauge symmetry group

which makes the theory a gauge invariant one.

1.1.1 Symmetry

A symmetry operation is the some sort of transformation on the physical system which leaves the
system unchanged and it leads to the conservation of particular physical quantities. If U is a symmetry
operation on the system described by the Hamiltonian H, then H is invariant if and only if U HUT = H.
According to Noether’s theorem, the parameter of U is a constant of motion. The simplest incarnation
of Noethers theorem, which states that whenever we have a continuous symmetry of Lagrangian, there

1s an associated conservation law.

Symmetry Conserved quantities

Space translation Linear momentum

Time translation Energy

Rotation Angular momentum

I1111

Gauge transform Charge

Table 1.1: Symmetry operation and law of conservation

It is an universal property of the nature which plays a crucial role in condensed matter physics, Particle
physics, String theory, Astrophysics and Cosmology etc. Steven Weinberg interpreted this symmetry
as,

”A law of nature can be said to respect a certain symmetry if that law remains the same when we change
the point of view from which we observe natural phenomena in certain definite ways. The particular
set of ways that we can change our point of view without changing the law defines the symmetry.”

The symmetry transformations are described by the distinct group elements of appropriate symmetry
group. Predominantly, symmetries can be classified into two types: (i) discrete symmetry and (ii)

continuous symmetry.

e Discrete Symmetries: The symmetry transformation parameters can take discrete values. For
example, Parity P , Charge Conjugation C' and Time Reversal 7. The electromagnetic inter-
actions and the strong interactions preserve C , P and T symmetry separately, whereas in weak

interaction C, P and C'P symmetries are not preserved. According to the C'PT" theorem we



know that all interactions has to be invariant under the combined transformation given by C', P

and 7', regardless their order.

e Continuous Symmetries: The symmetry transformation parameters take continuous values. There
are several types of continuous symmetries. For example, space-time symmetries and internal
symmetries are the class of continuous symmetries which play an important role in particle

physics.

— Space-time symmetries: Symmetry transformations that act on the space-time. Typical
examples are translations, rotations, etc. The invariance of time translation, space transla-
tion and space rotation exhibits the homogeneity of time, space and isotropy of the space

respectively in nature.

— Internal Symmetries: The internal symmetries, not the space-time symmetries, are related
to the gauge symmetries which are responsible for interactions/forces in the gauge theory.
The typical examples are electromagnetic charge is responsible for electromagnetic forces,
weak-Isospin symmetry for weak force and Color symmetry for strong force etc. The inter-
nal symmetry operations are the phase transformation of the fields. If the phase is indepen-
dent of space-time then it is called the global phase transformation (global symmetry) and if
the phase is dependent on space-time, then it is called the local phase transformation(local

symmetry). Customarily these internal symmetries are described by Lie groups.

1.2 Gauge theory

The gauge field theory provides an insight about the fundamental interactions of the SM particles.
The interaction between matter fermion is realized as a some kind of phase transformation on the
matter field i.e.t)) = U ¢ where U = exp(—iqf#/hc) is "unitary”. 6 is the phase parameter, ¢, the
matter charge( it can be hy