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ABSTRACT 

Zebrafish models are rapidly becoming popular in pharmaceutical and 

disease biology research. Several neuroscience models have been developed 

and recent regulatory decisions have created a strong case for their use for 

neuropharmacology and drug discovery research. Furthermore, zebrafish 

genome has been fully sequenced with high conservation to humans. This 

has furthered the scope to use this model for disease biology, target 

identification & validation, genetically modified models and similar research 

areas.  

 

The major shortcoming in zebrafish research has been the ability to correlate 

the zebrafish data to humans or other species for drug discovery decision 

making. Especially for “phenotypic drug discovery”, where efficacy/potency 

and therapeutic index are critical parameter to decide the fate of drug there 

has been a major gap in zebrafish research. Therefore, our focus in this thesis 

work and manuscript was to generate the efficacy data in terms of milligrams 

per kilograms using oral or intra-peritoneal drug administration and then 

correlate this data to higher species including human beings. We used the 

adult zebrafish model, over the more popular embryo-larval model, for this 

work due to several advantages; especially; the fact that the blood brain 

barrier is fully developed in adult fish and behavioral phenotypes are clearer in 

an adult.   

 

The models studied are described below:  
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1. Multiple Sclerosis Model:  A novel experimental autoimmune 

encephalomyelitis (EAE) model in adult zebrafish was developed and 

validated and is the first such model reported and published by our 

laboratory. We proposed a simple protocol and validated it using known 

drugs for efficacy. Further the data between zebrafish has been correlated 

with the published data in rodents and humans for dose and to some 

extent for mechanism.  

 

2. Pentylenetetrazole (PTZ) induced Epilepsy Model: This model is a well 

characterized and validated model of epilepsy and is gaining acceptance 

by regulators as well. We have evaluated known antiepileptic drugs and 

correlated the data on dose with humans for dose. We further tried to 

demonstrate that drugs that work though certain mechanisms and show 

selective efficacy in rodent PTZ model also show efficacy in zebrafish 

model. Similarly drugs that do not show efficacy in rodent PTZ model 

(attributed to different mechanisms) did not show efficacy in zebrafish 

model with one drug as an exception that showed partial efficacy.    

 

3. Light/Dark Model of Anxiety: The study was conducted to evaluate known 

anxiolytic drugs in adult zebrafish light/dark or scototaxis model. Similar to 

other models the data from zebrafish was correlated with rodents and 

humans.  

 

4. Pharmacokinetics & Brain Penetration: Understanding pharmacokinetics 

and brain penetration is critical component of neuropharmacology 
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program. We conducted adult zebrafish PK and brain penetration studies 

on two known compounds (irinotecan and lorcaserin) with distinct PK and 

brain penetration properties and correlated key parameters with the data 

from rodents, primates and humans.  

 

We have also attempted to extrapolate the dose from zebrafish to humans 

have proposed a formula for dose conversion between zebrafish and humans. 

The formula that has emerged out of real time data is very similar to the 

theoretical extrapolation using the formulae from body surface area based 

extrapolations. In summary, we have attempted to address a major gap in 

zebrafish research; that of; data correlation with humans. This work and 

publications from it, we believe, will contribute to further improve the utilization 

of zebrafish for neuropharmacology research and drug discovery. 
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CHAPTER 1:  

INTRODUCTION 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Zebrafish  

The zebrafish (Danio rerio), is a small fish, belonging to the genus Danio, which is a 

part of the Cyprinidae family.  It is a tropical fish that is found mainly in the Indian 

sub-continent in various rivers, lakes and freshwater bodies. The important 

characteristics that have made zebrafish popular in research are as follows:  

(1) Fully sequenced genome with high conservation to humans (Howe et al., 2014) 

(2) High spawning frequency (Kimmel et al., 1995; Briggs, 2002) 

(3) Ex-vivo fertilization (Kimmel et al., 1995; Briggs, 2002) 

(4) High fecundity (Kimmel et al., 1995; Briggs, 2002) 

(5) Transparent embryos (Kimmel et al., 1995; Briggs, 2002) 

(6) Short generation time (Kimmel et al., 1995; Briggs, 2002) 

(7) Ease of genetic/chemical manipulation (Scholz et al., 2008) 

(8) Ease of housing and low husbandry time and costs (Grone & Baraban, 2015)  

(9) Well documented anatomical characteristics (ZFIN Atlas) 

(10) Increasing use in drug discovery (MacRae & Peterson, 2015) 

 

All the above characteristics make zebrafish very interesting model for drug 

discovery and disease biology. In terms of disease areas, zebrafish models have 

been developed and are being used by various researchers in academia and industry 

for neurology, cardiology, gastroenterology, nephrology, infectious diseases, 

inflammation, immunology and many other areas (MacRae & Peterson, 2015). 

 

Figure 1.1 shows the pictures of various stages of zebrafish individually and in 

groups. 
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Figure 1.1.: Zebrafish pictures

24 hour old embryo; (B) 7 day old larvae
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Figure 1.1.: Zebrafish pictures  from Dr. Reddy’s Institute of Life Sciences

(B) 7 day old larvae; and; (C) adult (> 3 months old)
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1.1.2 Zebrafish in Pharmaceutical Research 

Zebrafish models have been increasingly being used in pharmaceutical industry 

worldwide and Table 1.1 provides a snapshot of research areas studied using the 

zebrafish models by major pharmaceutical companies. The table represents excerpts 

from Fleming & Alderton, 2013. The authors point out the following major advantages 

seen by the pharmaceutical companies for using zebrafish: 

(a) Time advantage to screen drugs in zebrafish as compared to other conventional 

mammalian models.  

(b) Zebrafish offer an ethical advantage as the larval model is considered as humane 

alternatives for in-vivo research. 

(c) Zebrafish are being increasingly used for drug repurposing to identify new uses 

for existing or clinical candidate molecules.  

(d) As zebrafish are amenable and easy for genomic/proteomic manipulations, they 

are being used for target identification and target validation  

 

Recently, the United States Food and Drug Administration (USFDA) allowed Orphan 

Drug Designation for a drug discovered using zebrafish. In this case, lorcaserin, a 

marketed drug is being repurposed for patients suffering from Dravet Syndrome, a 

rare epileptic disease and has shown efficacy in a small pediatric trial. This was the 

first instance of “aquarium to bedside approach”, wherein a drug, though repurposed, 

was tested in humans directly after establishing efficacy in zebrafish model (NIH, 

2017).  This research was sponsored by the National Institute of Neurological 

Disorders and Stroke (NINDS) which is a part of the National Institutes of Health 

(NIH), USA. Furthermore, the NIH has ranked zebrafish as the third most important 

experimental organism after rats and mice, and the US FDA's National Center for 

Toxicological Research (NCTR) has set up a zebrafish laboratory to study "predictive 

toxicology" (USFDA, 2013). 
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These developments suggest the growing acceptance of zebrafish in scientific 

community, pharmaceutical industry as well as by regulators. 

Table 1.1. Snapshot of research areas studied using  the zebrafish models by 

major pharmaceutical companies . The table represents excerpts from compilation of 

publications (2006–2012) by pharmaceutical companies using zebrafish assays by 

Fleming & Alderton, 2013. 

Assay  Pharmaceutical company  

Cardiac function Abbott 

Visual function AstraZeneca 

Seizure liability AstraZeneca 

Tauopathy AstraZeneca 

ADME AstraZeneca 

Ototoxicity AstraZeneca 

Embryotoxicity/ teratogenicity Bristol-Myers Squibb 

Bone formation Eli Lilly 

Primordial germ cell Eli Lilly 

Embryotoxicity/teratogenicity GlaxoSmithKline 

Hepatotoxicity J & J; Pfizer 

Embryotoxicity/ teratogenicity J & J 

Embryotoxicity/ teratogenicity Merck KGaA 

Developmental biology Novartis 

Gastrointestinal motility Novatis 

Toxicology; MoA Novartis 

Safety pharmacology Pfizer 

ADME Pfizer 
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1.1.3 Zebrafish Models of Neurosciences 

Researchers, for a long time, considered fish behaviors as stereotyped or simple 

(Rose, 2002, 2007), however, voluminous research in last decade has demonstrated 

that context-dependent complex behavioral responses can be elucidated and 

modeled in zebrafish (Kalueff et al., 2014; Stewart et al., 2014). Furthermore, it has 

been discovered that zebrafish possess all major neurotransmitters, hormones and 

receptors and many pathways of neurological disorders are conserved when 

compared to humans (Alsop & Vijayan, 2009; Mueller et al., 2004; Panula et al., 

2006). Wide range of the neurodegenerative and neurobehavioral diseases that are 

currently being studied in zebrafish include, Alzheimer’s,  Parkinson’s, Huntington’s, 

Dravet’s, multiple sclerosis, epilepsy, anxiety, sleep, sociality, cognition, etc.. Though 

most of the well established zebrafish models are in larvae, recent evidence using 

adult zebrafish strongly supports the use of adult zebrafish for phenotypic drug 

discovery and disease biology research (Maximino et al., 2010; Stewart et al., 2014).  

 

Neuropharmacological correlation of various biomarkers and neurochemicals with the 

behavioral phenotypes suggests a strong correlation of both phenotypes as well as 

molecular mechanisms between zebrafish models and their analogous of other 

mammals (especially rodents) and humans. (Egan et al., 2009; Lau et al., 2011; 

Teles et al., 2013).  

 

The risk- benefit evaluation of various zebrafish neuropharmacology models has 

been carried out in a recent review by Kauleef et al. (2014), where the authors have 

compiled the data on large number of studies and stated that “the advantages of 

using zebrafish in neuroscience outweigh the risks and limitations”. In this review the 

authors have also compiled and compared the number of zebrafish publications with 

publications using other common species such as dogs, mouse, rats, fruit flies and 
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worms (C. elegans) over a 10 year period between 2004 and 2013.  They report that 

zebrafish based publications have doubled over the decade which is the highest 

incremental increase in all in-vivo based publications. This suggests a wide 

acceptance of zebrafish models amongst academicians. 

 

In summary, zebrafish models have emerged over years as useful models for 

translational neurosciences. As the research community overcomes the gaps in 

existing research and further reduced the limitations of this model, its use in 

pharmaceutical industry will become more visible.  

 

1.2 GAPS IN EXISTING RESEARCH 

Although zebrafish have become very popular in recent years, a major gap in 

research has been the fact that predictive value of these models has not been 

established (Peterson & McRae, 2012). Apart from factors associated with genetics 

and physiological systems, most important aspect in establishing predictivity is 

validation of robust zebrafish protocols and correlation of data to conventional animal 

models (Kulkarni et al. (2014)). The inability to correlate data from zebrafish to 

humans makes it difficult use data from zebrafish studies for taking decisions in drug 

discovery research, especially with respect to selecting hits or leads for further 

investigation. This has hampered the optimal utilization of zebrafish in drug discovery 

research.  

 

Therefore, this thesis work has been focused on developing and validating robust 

protocols for select neurological diseases and correlating the data with other 

mammalian models including humans. The aim of this work is to contribute towards 

understanding the predictivity and optimum utilization of zebrafish for 

neuropharmacology research. 
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1.3 OBJECTIVES 

The objectives of this thesis work were as follows: 

1. Standardizing adult zebrafish based neuropharmacology models for Multiple 

Sclerosis, Epilepsy, Anxiety and Blood Brain Barrier Penetration. 

2. Evaluating known and approved drugs in these models to validate these models 

as relevant models for these diseases and to determine efficacy dose for the 

drugs in these models.  

3. To correlate the data between zebrafish and higher mammals including humans 

based on published literature. 

 

1.4 GENERAL METHODOLOGY 

1.4.1 Statement of Animal Ethics  

All zebrafish experiments were performed following institutional guidelines of Dr. 

Reddy’s Institute of Life Sciences, Hyderabad, India; as per the animal ethics laws of 

India; and; under the supervision of a licensed veterinarian.  

 

1.4.2 General Care and Maintenance of Zebrafish 

Zebrafish maintenance was performed based on guidelines published by the National 

Institutes of Health for care and use of zebrafish and procedures mentioned in the 

Zebrafish book (Westerfield, 2000). Wild type zebrafish were procured from Vikrant 

Aquaculture, Mumbai, India and maintained in re-circulatory system with controlled 

environment conditions with a temperature of 28ºC, and a light/dark cycle of ~ 14/10 

hours. They were fed thrice with live hatched brine shrimp and dry food. The age, sex 

and other experimental specifications for each model have been described in the 

relevant chapters. 
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1.4.3 Rationale for use of Adult Zebrafish 

Adult zebrafish have been used for the experiments conducted for this thesis work, 

despite of the fact that larval model has been more popular in drug screening 

research, based on the following rationale:  

a) The larval brain at five days post fertilization (dpf) is less than 500 µm thick and 

1.5 mm long (Friedrich et al. 2010; Banote et al. 2013), while the adult zebrafish 

brain is 4.5 mm long and between 0.4 and 2 mm thick (Rup et al., 1996; 

Wullimann, 1996) making almost all neurons accessible.  

b) Adult zebrafish has fully developed brain regions (Ullmann et al., 2010) including 

neurotransmitter systems (Kily et al., 2008; Norton & Bally-Cuif, 2010; Panula et 

al., 2006; Rico et al., 2009; Rico et al., 2011) and blood-brain-barrier (BBB) 

(Eliceiri et al., 2011; Jeong et al., 2008), whereas larval zebrafish has an 

incompletely developed brain and the BBB starts functioning after 10 dpf 

(Fleming et al., 2013).  

c) Moreover, poorly soluble drugs cannot be tested in larval zebrafish owing to 

precipitation and non-absorption, whereas, in adult zebrafish such experiments 

can be conducted by oral (Kulkarni et al., 2014) or intraperitoneal administration 

(Chaudhari et al., 2013).  

 

1.4.4 Models, Studies and Analysis 

1. Multiple Sclerosis Model: Development, standardization and validation of novel 

Multiple Sclerosis model in adult zebrafish and correlating data with humans. 

2. Epilepsy Model: Standardizing and evaluating known antiepileptic in the 

Pentylenetetrazol induced Epilepsy model and correlating data with humans.  

3. Anxiety Model: Standardizing and evaluating known anxiolytic compounds in the 

Dark/Light Box model and correlating data with humans.  
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4. Blood-Brain-Barrier Penetration Model: Standardizing and validating Blood-brain-

barrier penetration model and correlating data with conventional models including 

humans. 

5. Conclusions comprising of robust protocols and data correlation and proposing 

formula for data extrapolation from zebrafish to humans.  

 

1.4.5 Minimum Efficacy Dose 

The efficacy dose that was established and used for correlation for each 

pharmacological model was based on the principle of Minimum Effective Dose 

(MED). “The MED has been defined by the Encyclopedia of Biopharmaceutical 

Statistics as the lowest dose level of a pharmaceutical product that provides a 

clinically significant response in average efficacy, which is also statistically 

significantly superior to the response provided by the placebo” (Liu, 2010). This was 

chosen over the older concept of ED50 as ED50 is a "median effective dose" and 

represents an all or nothing effect (quantal effect) in 50% of population, and, has 

limited use to understand efficacy for the entire sample size. Guidelines from 

International Conference on Harmonization of Technical Requirements for 

Registration of Pharmaceuticals for Human Use regarding Dose-Response 

Information to Support Drug Registration (ICH-E4, 1994) state the use of MED, 

along-with other safety and kinetic parameters for determining the therapeutic 

regimen. The ICH-E4 guidelines are accepted by all major regulatory agencies 

across the globe including the USFDA (USFDA, 2003). 

 

Therefore, for each drug evaluated in various zebrafish models, we have tried to 

identify parameters to establish the MED and correlate it with human MED.  
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1.4.6 Data Correlation and Extrapolation 

We have tried to correlate the data obtained from zebrafish studies to higher 

mammals and humans based on the parameters of potency ranking, MED and 

mechanism of action. In the last chapter on conclusions, we have also attempted to 

and proposed a formula to extrapolate zebrafish dose data to humans. 

 

1.5 CONCLUSION 

This thesis work is focused on validating robust protocols for selected 

neuropharmacological models and correlating the data with higher species, 

especially humans. The anticipated impact of this work is to plug some of the gaps in 

the existing research and propose a framework for future research. Overall, the work 

will contribute towards better understanding of zebrafish neuropharmacology models 

and help their optimal utilization in drug discovery, pharmaceutical research as well 

as disease biology. 
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CHAPTER 2:  

ZEBRAFISH MULTIPLE SCLEROSIS MODEL 
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CHAPTER 2: ZEBRAFISH MULTIPLE SCLEROSIS MODEL  

2.1 INTRODUCTION 

2.1.1 Background:  

Multiple Sclerosis (MS) is neurodegenerative disease and is the leading cause of 

autoimmune neurological disability with a prevalence of 2.3 million patients worldwide 

as per the World Health Organization (WHO) Atlas of MS, 2013. The data shows that 

the prevalence of this disease in growing not just amongst developed countries but 

also amongst developing ones (Browne et al., 2014).  

 

MS is disease wherein there is neurodegeneration which is mediated by autoimmune 

response. The disease affects the central nervous system and is mainly 

characterized by inflammation and demyelination in the brain and spinal cord leading 

to dysfunction of motor and sensory and disability (Compston & Coles, 2008). The 

clinical presentation of the disease is seen by affecting the following (Compston & 

Coles, 2008): (a) sensation, examples: loss of sensitivity, numbness; (b) muscle 

strength and mobility, examples: muscle weakness, spasms, speech & swallowing 

problems, bladder and bowel difficulties; (c) balance, examples: ataxia, feeling tired, 

acute or chronic pain; and; (d) vision, examples: blurred vision, nystagmus, optic 

neuritis or double vision 

 

The pathophysiology of this disease is not fully understood; however, T lymphocyte 

(T-cell) mediated autoimmune mechanisms has be considered as the major trigger 

for disease initiation (Nylander & Hafler, 2012; Hartley et al., 2014). 

 

2.1.2 Animal Models of Multiple Sclerosis: 

Experimental autoimmune encephalomyelitis (EAE) is the condition wherein immune 

and neuropathological pathways cause disease features similar to MS (Prineas et al., 
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1984; Raine & Wu, 1993; Constantinescu et al., 2011). Many self antigens such as 

myelin-associated glycoprotein (MAG), myelin basic protein (MBP), myelin 

oligodendrocyte glycoprotein (MOG), or proteolipid protein (PLP) have been used as 

immunizing agents to create EAE in rodent models (Tuohy et al., 1988; Amor et al., 

1994; Johns et al., 1995). EAE models are routinely used in drug discovery for MS 

and many approved drugs were tested in this model (Constantinescu et al., 2011). 

 

EAE is known to be a T-cell dependent disease and it has been shown in-vitro that 

adoptive transfer of activated myelin-reactive CD4+ T cells induces the disease 

(Olsson, 1995; Weir et al., 2002). Myelin oligodendrocyte glycoprotein peptide 

residues 35-55 (MOG) is a commonly used protein to induce EAE. MOG is a myelin 

component that activates T-cells in mice and humans which results in CNS tissue 

destruction due to T-cell trafficking to the brain and spinal cord (Koehler et al., 2002; 

Weir et al., 2002).  

 

2.1.3 Zebrafish Models of Multiple Sclerosis: 

Although there have been several studies on myelination/de-myelination, including 

the ones for drug screening as well as pathobiological understanding (Buckley et al., 

2008; Raphael & Talbot, 2011; Karttunen et al., 2017); there wasn’t a published 

zebrafish model for MS.  We were the first group to develop, standardize, validate 

and report the zebrafish EAE model with a robust protocol and detailed methodology. 

This chapter is recreated based on our publication i.e. Kulkarni et al., 2017.   

 

2.1.4 Zebrafish EAE Model of Multiple Sclerosis: 

Zebrafish, have emerged as a promising model to study neuro-degeneration related 

to autoimmune demyelination (Buckley et al., 2008; Fang et al., 2015).  This work 

reported here, demonstrates the standardization and validation of a zebrafish model 
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of EAE. We report a robust protocol comprising of the regimen of MOG for disease 

induction; designation of the clinical scores and, other assessments like body weight 

and histopathology changes in the fish. The model has been standardized by 

assessing the rescue of the clinical symptoms by using approved drug fingolimod 

hydrochloride. Furthermore, the model has been validated using approved drugs or 

drugs under development for the treatment of MS which have shown efficacy in the 

rodent EAE model. 

 

Mouse models of EAE are laborious, expensive and take long time they take 4-8 

weeks for induction of symptoms and monitoring of drug responses, as well as 

require high amounts of drug for long duration studies (Merrill, 2009; Getts et al., 

2012). Thus, the experiments conducted here were to develop a model that will be 

useful as a quick in vivo screen for MS.  

 

2.2 GAP IN EXISTING RESEARCH 

Zebrafish have been known to be a good model to study the myelin sheet, however, 

there has been no published protocol for use of zebrafish as a model for MS, and 

therefore, the gap in existing research was as follows: 

1. Lack of a robust zebrafish EAE model for MS. 

2. No report on efficacy of known MS drugs and their dosage.  

3. No data on correlation between zebrafish to humans. 

 

2.3 OBJECTIVES OF THE STUDY 

1. Development, standardization and validation of the zebrafish EAE model. 

2. Evaluating known drugs to validate the model as relevant models for MS. 

3. To determine efficacy dose for the drugs in terms of mg/kg. 
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4. To correlate the data between zebrafish and higher mammals including humans 

based on published literature. 

 

2.4 MATERIALS AND METHODS 

2.4.1 Animal care and maintenance 

Zebrafish were maintained as following general care and maintenance details 

mentioned in Chapter I. Four to six months old male fish were used for these 

experiments. 

 

2.4.2 Chemicals, drugs and drug administration 

Test drugs and Complete Freund’s adjuvant (CFA) (Cat. No. F5881) were procured 

from Sigma Aldrich, USA. Routine laboratory chemicals were purchased from Sisco 

Research Laboratories, Hyderabad, India. MOG (Sequence: 

MEVGWYRSPFSRVVHLYRNGK) was procured from GenScript HK Limited, Hong 

Kong. The drugs were administered either orally (Kulkarni et al., 2014) or intra-

peritoneally (Chaudhari et al., 2013). The drugs were administered daily for the 

duration of treatment in the morning hours between 9.00 – 10.00 AM. 

 

2.4.3 Optimization of immunization dose 

Experimental autoimmune encephalomyelitis (EAE) was induced using myelin 

oligodendrocyte glycoprotein – 35-55 (MOG). MOG in CFA was injected 

subcutaneously (s.c.) in the mid spine regions near the end of the precaudal 

vertebrae (Figure 1) using 10µl bevel-tipped Hamilton syringe with a volume of 

5µl/fish.  
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Figure 2.1: Depiction of Site of Injection for Dise ase Induction.  Adult zebrafish 

are immunized with myelin oligodendrocyte glycoprotein – 35-55 (MOG) in Complete 

Freund’s adjuvant (CFA) by subcutaneous (s.c.) injection in the mid spine regions 

near the end of the precaudal vertebrae to induce experimental autoimmune 

encephalomyelitis (EAE). 

 

Three concentrations; 0.3, 0.6 and 1 mg/ml of MOG; were tested to standardize the 

dose. The criteria for selection of immunization dose were efficiency for induction of 

clinical symptoms, body weight reduction and low mortality. The different groups 

were the following: vehicle control (CFA s.c.), MOG in CFA 0.3 mg/ml s.c., MOG in 

CFA 0.6 mg/ml s.c and MOG in CFA 1 mg/ml s.c. The clinical scores were assigned 

as: 1: Normal, 2: Loss of Gait, 3: Mild Paralysis, 4: Total Paralysis. Each of the 

clinical signs can be seen in Video 1 of the publication of this model (Kulkarni et al., 

2017). All fish were observed for clinical scores, body weight and mortality for 7 days 

post treatment. 

 

2.4.4 Validation with the fingolimod hydrochloride (hereafter referred as 

fingolimod) 

Zebrafish were immunized on day 1 with standardized concentration i.e. 0.6 mg/ml 

s.c. of MOG. Fingolimod hydrochloride (Trade Name: Gilenya) is a sphingosine 1-

phosphate receptor modulator, is a marketed MS drug used for relapsing MS 

(Brinkmann, 2009; Chiba & Adachi, 2012). Fingolimod was administered orally using 
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two regimens; treatment starting immediately after immunization called the 

progressive regimen (P); and; treatment starting after disease development on day 3 

called therapeutic regimen (T). The doses of 0.1, 0.3 and 1 mg/kg of fingolimod using 

dose volumes of 5µl p.o. were administered orally (p.o.) for 7 days in both the 

regimens. All fish were observed daily for clinical symptoms and mortality for 7 days 

of treatment. Body weights were recorded on days 1 and 7 of treatment. Qualitative 

scoring of EAE signs were done in blinded fashion using video recordings of 3-7 

minutes. In the therapeutic regimen (T), the treatment was starting day 3, hence 

observations made on day 7 of treatment were day 9 post immunization, and 

therefore, the data reported is with respect to the days of treatment. Statistical 

analysis for clinical scores was performed using GraphPad Prism® software using 

Kruskal-Wallis analysis followed by Dunn's multiple comparison test. Statistical 

analysis for body weight loss was performed using One-way ANOVA followed by 

Dunnet’s Post-hoc test. 

 

The study for each regimen was conducted separately with twelve fish per group 

assigned in six treatment groups at the beginning of treatment. The different groups 

were: vehicle control (CFA s.c. + water p.o.), MOG control (MOG 0.6 mg/ml s.c. + 

water p.o.), Fingolimod 0.1 mg/kg (MOG 0.6 mg/ml s.c.+ Fingolimod 0.1 mg/kg p.o.), 

Fingolimod 0.3 mg/kg (MOG 0.6 mg/ml s.c.+ Fingolimod 0.3 mg/kg p.o.), Fingolimod 

1 mg/kg (MOG 0.6 mg/ml s.c.+ Fingolimod 1 mg/kg p.o.). 

 

The spinal sections (representative samples) of zebrafish were assessed for 

histopathological evaluation to study the extent of inflammation, neurodegeneration 

and demyelination with and without fingolimod treatment. Four groups were studied: 

vehicle control, MOG, Fingolimod 1 mg/kg from progressive regimen (P) and 
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Fingolimod 1 mg/kg from therapeutic regimen (T). Standardized protocols were used 

for issue processing and staining and various parameters were analyzed as follows:  

(a) Infiltration cells in the hematoxylin and eosin stained sections were counted by 

using ImageJ Analysis Software, according to method suggested by Skundric et 

al., 2008.  

(b) Glial cell in the crystal violet stained sections were counted using ImageJ 

Analysis Software, as per the method suggested by Kluver & Barrera, 1954.  

(c) Myelination intensity of luxol fast blue stained region was measured using RGB 

Plug-in in ImageJ Analysis Software Kiernan, 2007. 

Statistical analysis was performed using GraphPad Prism® software using One-way 

ANOVA followed by Dunnet’s Post-hoc test. 

 

2.4.5 Detailed validation with additional drugs 

Detailed validation of model was conducted in the prophylactic regimen (P) using 

three drugs: dimethyl fumarate, dexamethasone and SR1001 in following manner:  

(a) Dimethyl fumarate is an approved drug for MS (Chen et al., 2014); and was 

tested orally at doses of 15, 30 and 60 mg/kg.  

(b) Dexamethasone has been reported to be efficacious in rodent EAE mdoels 

(Donia et al., 2010); and was tested after intra-peritoneal injection at 0.3, 1 and 3 

mg/kg doses.  

(c) SR1001 is a RAR-related orphan receptor (ROR) ligand, being developed by The 

Scripps Research Institute, and has proven efficacious in rodent EAE (Solt et al., 

2011). It was tested after intra-peritoneal injection at 25, 50 and 75 mg/kg doses. 

 

Statistical analysis for clinical scores was performed using GraphPad Prism® 

software using Kruskal-Wallis analysis followed by Dunn's multiple comparison test. 
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Statistical analysis for body weight loss was performed using One-way ANOVA 

followed by Dunnet’s Post-hoc test. 

 

2.4.5 Correlation of data with higher mammals and humans 

Genetic correlation of was conducted using gene sequence comparison for particular 

genes using NCBI, USA and Ensembl, UK databases by selecting homologue option. 

Pair wise alignments were generated using BLAST. The percentage homology was 

checked for zebrafish v/s mouse & zebrafish v/s human. The efficacy data in rodents 

and humans for dose correlation was obtained from published literature and USFDA 

pharmacology reviews. Furthermore, zebrafish minimal efficacy dose (MED) was 

correlated with human minimal efficacy dose (MED) using Linear Regression 

analysis of GraphPad Prism® Software. 

 

2.5 RESULTS 

2.5.1 Optimization of immunization dose 

Acute onset of EAE was observed after MOG immunization and clinical signs stated 

appearing in 3 – 4 days. The mean clinical scores increased gradually (Figure 

2.2.(a)) at various doses of MOG and at day 7 post immunization the mean clinical 

scores in the groups of Vehicle Control, MOG (0.3mg/ml), MOG (0.6mg/ml) and 

MOG (1mg/ml) were 1.0 + 0.0, 2.0 + 0.2, 3.9 + 0.1 and 1.3 + 0.2 respectively (Figure 

2.2. (b)). The survival data (Figure 2.2 (c)) showed that there was 100% survival in 

vehicle control and MOG (0.3mg/ml) groups whereas the survival in MOG (0.6mg/ml) 

and MOG (1mg/ml) groups was 70% and 60% respectively (Figure 2.2. (c)). A dose 

of 0.6 mg/kg MOG in CFA was standardized based on parameters of efficiency to 

induce clinical symptoms, body weight reduction and low. An unexpected lower mean 

clinical score was observed at 1 mg/kg dose of MOG, which could be attributed to 

local accumulation or spillage at higher concentration. This aspect was not probed 



Zebrafish Models for Neuroscience Drug Discovery 2018 

 

 
 Page 41 of 140 

 

further as 0.6 mg/kg dose satisfied the conditions for reasonable induction of 

disease. We also performed Kaplan-Meier survival analysis to know survival 

probability after administration of MOG 0.6 mg/kg in 36 fish and observed that there 

was a constant 70% survival over a 7 days period post immunization with no 

increase in mortality after day 3 (Figure 2.2. (d)). With respect to the perspective of 

animal ethics, mortality observed was similar to those observed in mouse models of 

EAE (Thell et al., 2016).  

 

 

 

Figure 2.2: Standardization of immunization dose wi th myelin oligodendrocyte 

glycoprotein (MOG):  (a) Effects of MOG (0.3 mg/kg, 0.6 mg/kg and 1 mg/kg) as 

mean clinical score of paralysis like activity seen every day from day 1 to day 7. 
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Figure 2.2: Standardization of immunization dose wi th myelin oligodendrocyte 

glycoprotein (MOG):  (b) Mean clinical score on Day 7. (*p<0.05, **p<0.01 and 

***p<0.001) (n=10 at the beginning of treatment). 

 

 

Figure 2.2: Standardization of immunization dose wi th myelin oligodendrocyte 

glycoprotein (MOG):  (c) Effects of MOG on survival. Data are represented as 

Percentage Survival on day 7 post immunization (n=10).  
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Figure 2.2: Standardization of immunization dose wi th myelin oligodendrocyte 

glycoprotein (MOG):  (d) Kaplan-Meier survival analysis performed to know survival 

probability after administration of MOG 0.6 mg/kg (n=36 at the beginning of 

treatment). 

The figures and legends have been adapted from Kulkarni et al., Multiple Sclerosis 

and Related Disorders 11 (2017) 32–39. 

 

2.5.2 Validation with fingolimod: 

The results of study with fingolimod are presented in Figure 3. The survival data for 

the groups vehicle control, MOG control, fingolimod 0.1 mg/kg, fingolimod 0.3 mg/kg 

and fingolimod 1 mg/kg was 100%, 60%, 60%, 70% and 80% respectively in 

prophylactic regimen and 100%, 70%, 70%, 80% and 90% in the therapeutic regimen 

(Figure 2.3. (a) and (b)). Daily clinical scores are depicted in Figure 2.3 ((c) and (d)) 

and the mean clinical scores on day 7 post initiation of treatment were 1.0 ± 0.0, 3.9 

± 0.1, 3.0 ± 0.4, 1.3 ± 0.2 and 1.0 ± 0.0 in the pr ophylactic regimen and 1.0 ± 0.0, 3.2 

± 0.2, 2.9 ± 0.3, 2.4 ± 0.3 and 1.6 ± 0.2 in the th erapeutic regimen respectively for the 

groups of vehicle control, MOG control, fingolimod 0.1 mg/kg, fingolimod 0.3 mg/kg 

and fingolimod 1 mg/kg (Figure 2.3 (e) and (f)). In terms of percent body weight 
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reduction the data for groups of vehicle control, MOG control, fingolimod 0.1 mg/kg, 

fingolimod 0.3 mg/kg and fingolimod 1 mg/kg was 0.0 ± 2.3 %, 34.7 ± 4.0 %, 23.4 ± 

2.1 %, 19.6 ± 2.0 % and 5.2 ± 2.3% for prophylactic regimen and -0.8 ± 2.3 %, 42.2 ± 

2.2 %, 33.5 ± 2.0 %,16.0 ± 2.8% and 4.7 ± 2.4% for therapeutic regimen respectively 

(Figure 2.3 (g) and (g)). 

 

Doses of 0.3 and 1 mg/kg showed improvement in percentage survival of ~ 10% and 

20% respectively, in comparison to MOG group on day 7. Fingolimod treatment 

showed daily improvement in mean clinical scores as compared to the MOG group. 

At doses of 0.3 and 1 mg/kg of fingolimod, there was statistically significant 

improvement in body weight loss data. At 1 mg/kg group the fingolimod, the mean 

clinical score and body weight loss data was similar to the vehicle control group on 

day 7 demonstrating it as dose successful in rescuing disease symptoms and 

demonstrating absolute efficacy. 

 

 

Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (a) Percent 

Survival on Day 7 in Prophylactic Regimen. 
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Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (b) Percent 

Survival on Day 7 in Therapeutic Regimen. 

 

 

Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (c) Mean 

Clinical Score over 7 Days in Prophylactic Regimen. (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 
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Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (d) Mean 

Clinical Score over 7 Days in Therapeutic Regimen. (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 

 

Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (e) Mean 

Clinical Score on Day 7 in Prophylactic Regimen.  (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 
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Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (f) Mean 

Clinical Score on Day 7 in Therapeutic Regimen.  (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 

 

 

Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (g) Percent 

Body Weight Loss on Day 7 in Prophylactic Regimen. (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 
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Figure 2. 3: Phenotypic effects seen in validation with fingolimod.  (h) Percent 

Body Weight Loss on Day 7 in Therapeutic Regimen. (Mean ± S.E.M.) (*p<0.05, 

**p<0.01 and ***p<0.001) (n=12 at the beginning of treatment) 

The figures and legends have been adapted from Kulkarni et al., Multiple Sclerosis 

and Related Disorders 11 (2017) 32–39. 

 

The results of histopathological evaluation of spinal sections (performed in four 

groups viz. vehicle control, MOG control, fingolimod 1 mg/kg (P) and fingolimod 1 

mg/kg (T), where P = prophylactic regimen and T = therapeutic regimen) are 

depicted in figure 2.5 and representative sections have been depicted in figure 2.4. 

The infiltration cell/section numbers for groups vehicle control, MOG control, 

fingolimod 1 mg/kg (P) and fingolimod 1 mg/kg (T) were 97.0 ± 4.7,121.0 ± 6.7, 97.7 

± 3.9 and 96.3 ± 3.2 respectively (Figure 2.5. (a)). This clearly indicates that MOG 

immunized fish had higher extent of inflammation that was statistically significant 

when compared to vehicle control whereas fingolimod treatment (in both regimens) 

showed similar number of infiltration cells as controls. There was statistically 

significant decrease in glial cell count per section of MOG immunized fish which was 

not the case in vehicle and fingolimod groups. The number of glial cells per section 



Zebrafish Models for Neuroscience Drug Discovery 2018 

 

 
 Page 49 of 140 

 

was 46.7 ± 4.1, 31.7 ± 2.6, 46.0 ± 1.5 and 45.3 ± 1 .5 for vehicle control, MOG 

control, fingolimod 1 mg/kg (P) and fingolimod 1 mg/kg (T) respectively. Loss of 

myelin indicated by luxol fast staining indicated reduction in intensity in MOG group 

when compared to vehicle control and fingolimod treatments. The staining intensity 

for the groups vehicle control, MOG control, fingolimod 1 mg/kg (P) and fingolimod 1 

mg/kg (T) was 197.0 ± 2.5, 185.0 ± 6.5,194.7 ± 2.3 and 193.7 ± 3.2 respectively.  

 

Figure 2.4: Black and white images of representativ e spinal cord 

histopathological sections (40X magnification) . Groups: vehicle control, MOG 

control, Fingolimod 1 mg/kg (P) and Fingolimod 1 mg/kg (T) seen on day 7 of 

treatment in validation study with Fingolimod. The arrows (→) point towards 

examples of cells counted or blue intensity measured using ImageJ. The figures 

and legends have been adapted from Kulkarni et al., Multiple Sclerosis and Related 

Disorders 11 (2017) 32–39. 
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Figure 2.5: Histopathological effects seen on day 7  of treatment in validation 

with fingolimod. (a) Number of Infiltrated Cells 

 

Figure 2.5: Histopathological effects seen on day 7  of treatment in validation 

with fingolimod. (b) Number of Glial Cells 
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Figure 2.5: Histopathological effects seen on day 7  of treatment in validation 

with fingolimod. (c) Intensity of Luxol Fast Staining.   

 

Data are represented using mean and standard error of the mean (± S.E.M.). 

GraphPad Prism® software was used for conducting One-way ANOVA followed by 

Dunnet’s Post-hoc test comparing all other groups with Vehicle Control (*p<0.05, 

**p<0.01 and ***p<0.001; n=3).  

The figures and legends have been adapted from Kulkarni et al.2017. 

 

All the observations suggest that fingolimod was able to reverse the effects of EAE in 

zebrafish model. These observations concur with those reported in conventional 

rodent models. 

 

2.5.3 Detailed validation with additional drugs: 

The data for detailed validation is represented in Table 1. Major observations were as 

follows: 
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Table 2.1: Validation Study with Known Drugs: Pheno typic effects seen on day 

7.  (*p<0.05, **p<0.01 and ***p<0.001). The table has been adapted from Kulkarni et 

al., Multiple Sclerosis and Related Disorders 11 (2017) 32–39. 

Groups  Drugs 

No. of 

fish at 

the start 

of study 

(n) 

Drug 

Doses 

(mg/kg 

of 

body 

weight)  

Major Parameters on Day 7 Post 

Immunization 

Survival 
Clinical 

Score 

Body 

Weight Loss  

(%) 
(Mean ± 

S.E.M.) 

(%)  

(Mean ± 

S.E.M.) 

Vehicle 

Control 
- 36 - 100 

1.00 ± 

0.0 
0.49  ±  1.19 

MOG 

Control 
- 36 - 68 

3.7 ± 0.2 

*** 

31.66  ± 

3.21*** 

Positive 

Control 
Fingolimod 36 1 82 

1.0  ±  

0.0 
5.22 ± 2.33 

Test 

Drugs 

Dimethyl 

Fumerate 
12 

15 40 
2.0 ±  

0.6* 
2.77 ± 1.06 

30 64 
2.7  ± 0.6 

*** 
1.98 ± 2.32 

60 70 
2.5 ± 0.7 

*** 
4.67 ± 1.85 

Dexametha

sone 
12 

0.3 67 
2.4  ± 0.2 

** 
1.98 ± 2.32 

1 67 1.4  ± 0.2 4.67 ± 1.85 

3 75 
3.8  ± 0.3 

** 
6.68 ± 1.40 * 

SR1001 12 

25 50 
2.1 ± 0.2 

* 
6.68 ± 1.40 * 

50 67 1.2 ± 0.1 2.41 ± 1.10 

75 33 
2.4 ± 0.3 

* 

10.57 ± 2.31 

*** 
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(a) Dimethyl fumerate treatment showed dose dependent improvement in survival 

rates. There was improvement in clinical scores and body weight parameters and 

the data looked like a saturated effect at the doses tested as the clinical scores 

though better than MOG group, were similar at all doses.  

(b) Dexamethasone treatment also showed improvement in survival rates, clinical 

scores and body weight loss when compared to MOG groups. At highest dose, 

however, the clinical score and body weight loss increased, which could be due 

to  immunosuppression.  

(c) SR1001, showed improvement in survival rate at one dose i.e. 50 mg/kg and 

improvement in clinical score and body weight loss at all doses. However, severe 

mortality at the highest dose was seen.   

 

In summary, chemical classes of drugs with different mechanisms, and different 

administration routes at different doses have been tested to validate the model.  

 

2.5.4 Correlation of data with respect to mechanism of action: 

When correlating the data with conventional models the genetic correlation is 

depicted in Table 2. It is clear that zebrafish express orthologues of spingosine-1-

phosphate receptors that are targets for fingolimod (Tobia et al., 2012). Similarly, 

glucocorticosteroid receptors which mediate the effect of dexamethasone (Schaaf et 

al., 2012), Nrf2 which is the major target for dimethyl fumerate (Mukaigasa et al., 

2012) and ROR genes that are modulated by SR1001 (Katsuyama et al., 2007), are 

all expressed in zebrafish. Thus suggesting that all major pathways for disease 

modulation of MS and associated disorders are present in zebrafish and drugs acting 

though those mechanisms show efficacy in the EAE model. 
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Table 2.2: Genetic correlation (percentage homology ) of zebrafish with mouse 

and humans.  This analysis was conducted using gene sequence comparison for 

particular genes using NCBI, USA and Ensembl, UK databases by selecting 

homologue option. Pair wise alignments were generated using BLAST.  

Drug Drug Target 

Genetic Homology 

Zebrafish v/s 

Mouse  

Zebrafish v/s 

Human  

Fingolimod  

SPHK2 65% 67% 

S1PR1 84% 84% 

S1PR3 79% 82% 

S1PR4 68% 65% 

S1PR5 69% 70% 

Dimethyl fumarate  NRF2 59% 60% 

Dexamethazone  

NR3C1 88% 88% 

NR0B1 65% 65% 

ANXA1 88% 89% 

NOS2 81% 80% 

SR1001 
ROR ALPHA 95% 95% 

ROR GAMA 64% 64% 

 

2.5.5 Correlation of data with respect to potency and dose: 

The correlation of efficacy dose of these drugs has been depicted in Table 2.3. The 

data suggests that the rank order of potency of various drugs is similar in zebrafish 

as compared to rodents and humans. The minimum effective dose (MED) was 

identified as the dose that showed rescue of symptoms and statistical significance. 

Furthermore, linear regression analysis (Figure 2.6) demonstrated that there was a 

correlation between the zebrafish and human MED and the coefficient of 
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determination of 0.98 for efficacious drugs suggests a 98% data correlation between 

data on zebrafish and human doses. This suggests that effect of various candidate 

drugs candidates zebrafish EAE model can be useful in prioritizing the candidates for 

further evaluation. 

Table 2.3: Minimum e fficacious dose  (MED) in zebrafish, mouse and humans.   

Drug  
Zebrafish  

(mg/kg)  

Rodents 

(mg/kg)  

Human 

(mg/kg/day)*  

Gilenya 1 0.1 a 0.2 a 

Dimethyl Fumarate 60 15 b 2 b 

Dexamethasone 1 4 c 0.03 c 

SR1001 50 25 d 2 e 

a USFDA, 2010; b USFDA, 2014; c Donia et al., 2010; d Solt et al., 2011; e Dose 

extrapolation from mouse to humans based USFDA, 2005 guidelines.  

 

2.6 DISCUSSION  

2.6.1 Major advantages of the model: 

The novel model for MS that has been developed and validated here has the 

following advantages: (i) Quick: in a span of 7 days the efficacy of a candidate drug 

can be evaluated as against 6-8 weeks required for conventional rodent models; (ii) 

Low Compound Requirement: the quantity of test compound required for efficacy 

evaluation is very low, for example, in rodent studies, for a 10 mice having average 

weight of 25g with an average dose of 10 mg/kg/day dose for 4 weeks, the total test 

compound required will be 70g. Whereas, for similar experimental design in the 

zebrafish model the requirement will be 350 µg for the 7 day study. (iii) Inexpensive 

In vivo Data: the low cost of maintaining zebrafish, compound usage, labor required 

and time saved makes this model suitable for screening higher number of 

compounds in-vivo. 
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Figure 2.6: Linear regression analysis of MED for z ebrafish with respect to 

humans.  Straight (–) lines represent the linear regression, whereas, dotted (….) lines 

represent the 95% confidence interval with respect to liner regression. r2 = coefficient 

of determination.  

 

2.6.2. Relevance in drug discovery: 

The EAE model has been under question with respect of translational potential of the 

animal data in MS patients. However, EAE is the most widely used in vivo model and 

almost all approved MS drugs have been tested in this model (Constantinescu et al., 

2011). The zebrafish model for EAE can be used preceding rodent models as a filter 

at lead optimization stage and most promising compounds selected using this screen 

can be further tested in conventional systems.  

 

Zebrafish MOG has not been reported thus far. However, it has previously been 

reported that antibodies to MOG cross react with other butyrophilin (BTN) family 
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proteins in mammals and this has been implicated in MS (Guggenmos et al., 2004). 

The fact that zebrafish have butyrophilin-like proteins (e.g. NCBI Sequence ID: 

NP_001103953.1), justifies use of MOG to elicit immune response in zebrafish. 

Furthermore, it has been observed that clinical signs of MS using MOG induction and 

have seen the effect of known drugs in reversing them.  

 

There is scope for further refinement in this model in the aspects of larger set of 

drugs, detailed histo and immune pathology, biomarkers, follow-up MOG injections, 

etc. will need to be further investigated to refine this model for optimal utilization.  

 

2.7 CONCLUSIONS 

This is the first report, suggesting an in vivo adult zebrafish EAE model. In these 

studies, the model has been developed, standardized and validated. The data has 

been correlated with data from other conventional models including humans. This 

model will undergo a wider validation and there is scope to for improvement. 

However, this work will be the starting point of all such efforts.  
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CHAPTER 3:  

PENTYLENETETRATZOLE INDUCED ZEVBRAFISH 

EPILEPSY MODEL 
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Chapter 3: Pentylenetetratzole Induced Zebrafish Ep ilepsy Model  

3.1 INTRODUCTION 

3.1.1 Background:  

Epilepsy is a neurological disorder outlined by transient occurrence of seizures as a 

consequence of aberrant neuronal activity (Fisher et al., 2014), and due to variance 

in excitatory/inhibitory neurotransmission (White & Smith, 2009). Based upon current 

statistics 50 million people worldwide have epilepsy and it accounts for 0.75% of the 

global essence disease (Ngugi et al., 2010; WHO, 2004). Inspite of advances in 

epilepsy treatment ample seizure restraint has not been acquired in certain portion of 

populations due to limited knowledge on genetic & neurobiology mechanisms of 

epilepsy (Goldsmith, 2004; Romanelli, 2012). Even though animal models like 

rodents are being used as universal seizure model due to their homology with 

humans there is need for reliable animal models that are easy to use, can help 

understanding of underlying molecular mechanisms (Kupferberg, 2001; Loscher & 

Schmdit, 2011; Kwan, 2010) and which will be helpful for discovery and subsequent 

development of novel anti-epileptic drugs (AEDs). Furthermore, there is a need to 

have animal models that can act as quick in-vivo screen in AED drug discovery due 

to the constrains of rodent models in terms of fulfilling the 3R requirements, cost, 

time and labor intensiveness. 

 

3.1.2 Animal Models of Epilepsy:  

The two most regularly used and extensively studied model of epilepsy in rodent 

models that are well established are as follows: 

(1) Maximal electroshock (MES) model: In this model the electric shock generates 

brainstem mediated tonic–clonic seizures. At molecular level, in this model, there 

are changes observed in immediate early genes, however, one major limitation of 
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this model is that electrophysiological data cannot be recorded due to high 

seizure intensity seen in this model (Cavarsan et al., 2015).   

(2) Pentylenetetrazole (PTZ) induced model: PTZ is a chemo-convulsant acts by 

binding to the picrtoxin site of GABAA which leads to the increase in glutamate 

levels to induce seizures. PTZ induced seizure model of rodents is extensively 

used for development of several AEDs (Mandhane et al., 2007; Loscher, 2011). 

In rodent model, behavioral analysis of seizure stage scoring has been correlated 

to abnormal electric activity in brain through EEG (Sarkisian, 2011; Watanabe et 

al., 2010) but due to the drawbacks described above, there is an urge for 

developing promising small vertebrate models. 

 

3.1.3 Zebrafish Models of Epilepsy: 

Zebrafish are becoming a powerful tool in AED research because of its high genetic 

homology with rodents & humans (Shin & Fishman, 2002; Dooley & Zon, 2000; 

Brittijin et al., 2009; Egan et al., 2009; Barbazuk et al., 2000). Recent reports 

emphasize the scope of zebrafish larvae in neurological disorders research such as 

epilepsy-like behaviour and for development of novel AEDs (Bergmans et al., 2007; 

Goldsmith, 2004; Langheinrich, 2003). Because of limitations like small and 

underdeveloped brain, BBB functioning only after 7 days post fertilization and 

difficulty in validating the larval model due to non-correlation to EEG; adult zebrafish 

epilepsy prototypes have emerged as popular beneficial approach for evaluation of 

pro-convulsants drugs over the embryo-larval models (Stewart et al., 2010; Friedrich 

et al., 2010; Goldsmith & Fleming, 2007; Eliceiri & Baird, 2011; Jeong et al., 2008).  

 

In this study we investigate the usefulness of adult zebrafish as promising seizure 

model. PTZ is well known conventional chemo-convulsant inducer in all animal 

models like rodents, other species (Akula et al., 2009; Carmody & Brennan, 2009) 
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including larval (Baraban et al., 2007; Tiedeken & Ramsdell, 2009; Hortopan et al., 

2010) and adult zebrafish (Wong et al., 2010; Braida et al., 2012; Desmond et al., 

2012; Siebel et al., 2011). This is the study to report the effect of various anti-

convulsants when administrated orally against intra-peritoneally injected PTZ induced 

seizures in adult zebrafish. Furthermore, we have attempted to correlate the data in 

zebrafish to those in higher mammals including humans for understanding the 

predictive value of this model in human AED drug discovery.  

 

We had attempted to create a MES model in zebrafish, however, due to the fact that 

zebrafish is water borne organism and the electric conduction in water creates 

severe effects on entire body leading to difficulty and inconsistencies in scoring 

seizures and avoiding conditions like paralysis and death. This could be the reason 

that there have been no reports of zebrafish MES models published, to the best of 

our knowledge. 

 

3.2 GAP IN EXISTING RESEARCH 

PTZ induced epilepsy model has been well established and validated including 

molecular and mechanistic validation (Grone & Baraban, 2015), however, there are 

the following gaps in the existing research: 

1. There is only one report; Banote et al., 2013 from our own laboratory, which has 

reported efficacy doses in terms of mg/kg for one drug i.e. gabapentine. 

2. There is very limited of data correlation between zebrafish to humans. 

 

3.3 OBJECTIVES OF THE STUDY 

1. Evaluating known drugs to validate the PTZ model. 

2. To determine efficacy dose for the drugs in terms of mg/kg. 
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3. To correlate the data between zebrafish and higher mammals including humans 

based on published literature. 

 

3.4 MATERIALS AND METHODS 

3.4.1 Animal care and maintenance: 

Zebrafish were maintained as following general care and maintenance details 

mentioned in Chapter I. Four to six months old male fish were used for these 

experiments. 

 

3.4.2 Chemicals, drugs and drug administration: 

Pentylenetetrazol (PTZ) for disease induction and AEDs viz.  carbamazepine (CBZ), 

ethosuximide (ETS), felbamate (FBM), lamotrigine (LTG), levetiracetam (LVT), 

phenytoin (PHT) tiagabine (TGB) and Valproic acid (VPA) were purchased from 

Sigma Aldrich, USA. PTZ, at concentration of 220mg/kg, was administered 

intraperitoneal (i.p.) injection (dose volume: 15µL) for disease induction (Banote etl., 

al., 2013). Anti-covulsants were administered orally (p.o.) route using reported 

method (Kulkarni et al., 2014). ETS, LEV, PHT, TGB and VPA were dissolved in 

nanopure water. CBZ, FBM and LTG were prepared as suspension in 0.5 % 

methylcellulose. Zebrafish were randomly divided into groups (n=8/group) for study.  

 

3.4.3 Validation and evaluation of antiepileptic drugs in zebrafish PTZ seizure 

model: 

Adult zebrafish PTZ seizure model was validated using wide spectrum of 

conventional antiepileptic drugs (AEDs) which act via various mechanisms. Anti-

covulsants like ETS, FBM, LTG, TGB, VPA act effectively in PTZ induced epilepsy 

pathway where as CBZ, LEV, PHT show their potency in MES induced epilepsy 

(Mandhane et al., 2007; Löscher, 2011). Drug doses were selected based upon 
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literature review from various sources and preliminary experiments for safety dose 

assessment of each candidate. Efficacy was determined by rescue of symptoms and 

statistically significant reduction of the seizure scores in a treatment group as 

compared to PTZ group. All behavioral tests done between 11 a.m. to 4 p.m. as 

explained (Banote et al., 2013) by recording videos using a digital camera attached 

to a dial-gauge stand looking down at the observation tank. Qualitative seizure 

scoring was conducted by observers in a blinded fashion. Evaluation of seizure like 

behavior for each fish was done using 8 minutes recorded video. Score was 

assigned as follows for each fish according to scale: 

Stage1: intermittent immobility and hyperventilation 

Stage 2: rotational swimming 

Stage 3: side-to-side movements 

Stage 4: visible muscular spasms and contractions 

Stage 5: quick convulsions of the entire body 

Stage 6: spasms and high frequency convulsions including sinking of fish  

Stage 7: complete immobility and death  

 

This method of scoring has been validated and its correlation to zebrafish cephalic 

field potential has been well established (Afrikanova et al., 2013; Banote et al., 2013).  

As the main objective of this work was to provide methodologies for data correlation 

other parameters were considered necessary for the purpose of establishment of 

efficacy. Statistical analysis of this data was performed using GraphPad Prism® 

Software using Kruskal-Wallis analysis followed by Dunn's multiple comparison tests. 

The drugs were administered half an hour before PTZ and recording were carried out 

half an hour after PTZ administration. 

 

3.4.4 Correlation with rats for confirming the mechanism of action: 

Zebrafish data was correlated for efficacy with respect to rodent PTZ data especially 

comparing the performance of molecules based on their mechanism of action. The 
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rodent data was retrieved from published literature (Löscher & Schmidt, 2011); 

wherein the authors provide a compilation of drugs based on the mechanism of 

action and whether they were efficacious in the rat PTZ model or the rat MES model. 

Furthermore, gene homology for the genes encoding these mechanistic pathways 

was also correlated to establish the mechanistic validity of this model. The gene 

sequences encoding the principle drug targets were retrieved from the national 

center for the biotechnology information data base (NCBI) and the gene homology or 

the percentage identity between rat, human and zebrafish was calculated using the 

BLAST option of NCBI. 

 

3.4.4 Data correlation with including humans: 

Zebrafish data was correlated for efficacy with respect to rodent PTZ data especially 

comparing the performance of molecules based on their mechanism of action. 

Furthermore, zebrafish minimum effective dose (MED) (mg/kg) was correlated with 

human dose (mg/kg/day) by Linear Regression analysis using GraphPad Prism® 

Software. The data on human MED was based on clinical label data as compiled and 

reported by Rosati et al. (2015). Correlation of optimal dose between zebrafish and 

rodents was not possible due to variability of rodent data in literature. 

 

3.5 RESULTS 

3.5.1 Validation and evaluation of antiepileptic drugs in zebrafish PTZ seizure 

model: 

The results of seizure score assessment of various AEDs in zebrafish PTZ model 

have been presented in Figure 4.1. The mean seizer scores for various treatment 

groups were as follows:  
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For untreated control group it was 0 + 0, whereas for the positive control group of 

PTZ (220 mg/kg i.p.) was 5.2 ± 0.1. For CBZ (PTZ + CBZ) treatment the seizure 

scores for dose groups of 200 mg/kg, 400 mg/kg and 600 mg/kg were 4.5 ± 0.2, 3.3 ± 

0.2 and 1.7 ± 0.2 respectively. In case of ETS (PTZ + ETS); for 150 mg/kg, 300 

mg/kg and 500 mg/kg the scores were 3.6 ± 0.2, 2.4 ± 0.4 and 0.1 ± 0.1 respectively.  

The doses for FBM (PTZ + FBM) were 500 mg/kg, 750 mg/kg and 1000 mg/kg and 

scores were 3.8 ± 0.4, 2.3 ± 0.3 and 0.1 ± 0.1. LEV (PTZ + LEV) was tested at 100 

mg/kg, 250 mg/kg and 500 mg/kg and the mean seizure scores observed were 3.5 ± 

0.3, 2.4 ± 0.3 and 1.2 ± 0.1 respectively. LTG (PTZ + LTG) was tested at 50 mg/kg, 

100 mg/kg and 200 mg/kg and the mean seizure scores observed were 3.5 ± 0.1, 2.5 

± 0.2 and 0.0 ± 0.0 respectively. For PHT (PTZ + PHT) treatment the seizure scores 

for dose groups of 250 mg/kg, 500 mg/kg and 750 mg/kg were 3.0 ± 0.2, 2.4 ± 0.2 

and 1.3 ± 0.1 respectively. In case of TGB (PTZ + TGB); for 5 mg/kg, 10 mg/kg and 

20 mg/kg the scores were 4.0 ± 0.4, 3.3 ± 0.2 and 0.3 ± 0.1 respectively. Finally, for 

the widely used AED, VPA (PTZ + VPA) the test doses were 150 mg/kg, 300 mg/kg 

and 600 mg/kg and the observed seizure scores were 2.4 ± 0.3, 1.9 ± 0.1 and 0.0 ± 

0.0 respectively. 

 

Ethosuximide (ETS), felbamate (FBM), lamotrigine (LTG), tiagabine (TGB) and 

valproic acid (VPA) were found to be efficacious based on total rescue of symptoms 

and statistically significant reduction of the seizure scores as compared to PTZ 

group. Carbamazepine (CBZ) and phenytoin (PHT) did reduce the seizure scores, 

however, were considered non efficacious due to non-rescue and statistical non-

significance. Levetiracetam (LVT) was considered to be partially efficacious due to 

relatively lower statistical and symptomatic significance.  
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3.5.2 Correlation with rats for confirming the mechanism of action: 

The correlation of data for between zebrafish and rats has been presented in Table 

3.1. It can be interpreted that the compounds that were efficacious in rat PTZ model 

were also efficacious in zebrafish PTZ model and the same correlation applied to non 

efficacious compounds except for LEV which was partially efficacious in zebrafish 

although its shown to be non efficacious in both the rat models. This confirmed the 

mechanistic correlation of zebrafish to mammals (Table 3.1. (A)). Similarly, data on 

gene homology suggested a high degree of genetic conservation between zebrafish 

and rats, humans with respect to genes encoding the major AED targets (Table 3.1. 

(B)). 

 

Table 3.1:  Correlation of mechanism of action between rats and  zebrafish is 

presented in this table.  (A) The correlation pathway based efficacy of AEDs in Rat 

PTZ, Rat MES and Zebrafish PTZ models has been shown.  

Compound  
Models 

Rat PTZ* Rat MES* Zebrafish PTZ 

CBZ N.E. E N.E. 

ETS E N.E. E 

FBM E E E 

LEV N.E. N.E. P.E. 

LTG E E E 

PHT N.E. E N.E. 

TGB E N.E. E 

VPA E E E 

* Löscher et al., 2011; E = efficacious; P.E. = partially efficacious; N.E. = not 

efficacious. 
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Table 3.1:  Correlation of mechanism of action between rats and  zebrafish is 

presented in this table. . (B) Correlation of zebrafish with rats based on gene 

homology of genes encoding these mechanisms. 

Compound  
Mechanism of 

Action 
Encoding genes 

Zebrafish 

v/s rat % * 

Zebrafish 

v/s humans 

% * 

CBZ 
Na+ & Ca2+ 

channel activity 

Scn1a,2a,3a,4a,5a,8

a,9a, α1G, α1H, α1I 
58 – 82 % 59 – 82 % 

ETS 
Ca2+ channel 

activity 
α1G, α1H, α1I 58 – 78% 59 – 79 % 

FBM 

Mixed activity 

(Na+, Ca2+, 

GABA) 

Scn1a,2a,3a,4a,5a,8

a,9a, α1G, α1H, α1I, 

SLC6A1 

58 – 85 % 59 – 85 % 

LEV 

Presynaptic 

Ca2+ channel 

inhibition 

SV2A 78 % 79 % 

LTG 
Na+ & Ca2+ 

channel activity 

Scn1a,2a,3a,4a,5a,8

a,9a, α1G, α1H, α1I 
58 – 82 % 59 – 82 % 

PHT 
Na+ & Ca2+ 

channel activity 

Scn1a,2a,3a,4a,5a,8

a,9a, α1G, α1H, α1I 
58 – 82 % 59 – 82 % 

TGB GABA activity SLC6A1 85 % 85 % 

VPA 

Mixed activity 

(Na+, Ca2+, 

GABA) 

Scn1a,2a,3a,4a,5a,8

a,9a, α1G, α1H, α1I, 

SLC6A1 

58 – 85 % 59 – 85 % 

*Gene homology has been presented as % identity as a range to cover all encoding 

genes. 
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3.5.3 Correlation with humans and formulae for extrapolation: 

The dose at which the seizures were completely rescued with statistical significance 

under the experimental conditions was designated as the MED.  The zebrafish MEDs 

for absolutely efficacious drugs i.e. ETS, FBM, LTG, TGB and VPA were 750, 1000, 

200, 20 and 600 mg/kg body weight respectively. Similarly, human MEDs was 

calculated for absolutely efficacious drugs as the arithmetic mean of the human daily 

dose and compiled based on clinical label data (Rosati et al., 2015). The human 

MEDs were 25, 27.5, 10, 1.25 and 27.5 mg/kg/day for ETS, FBM, LTG, TGB and 

VPA respectively. For the purpose of dose correlation, linear regression analysis was 

conducted. The results of the analysis suggest that there was a correlation between 

the zebrafish and human MED (Figure 3.2). The coefficient of determination (r2) of 

0.87 for efficacious drugs suggests an 87% data correlation between data on 

zebrafish and human doses. It was also observed that the potency ranking for all the 

AEDs were similar between zebrafish and humans.  

 

Figure 3.2.: Linear regression analysis of MED betw een zebrafish and humans.   

r2 = coefficient of determination. Straight (–) lines represent the linear regression, 

whereas, dotted (….) lines represent the 95% confidence interval with respect to liner 

regression. 
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3.6 DISCUSSION AND CONCLUSIONS 

The PTZ model in zebrafish along with its phenotypic and molecular validity, has 

been well established for quite some time (Grone & Baraban, 2015). The present 

study illustrates the validation and evaluation of wide spectrum of anti-epileptic drugs 

(AEDs) in adult zebrafish PTZ seizure model via oral drug administration. There have 

been several reports on adult zebrafish PTZ model, however, effect of oral dosing 

and correlation of data between zebrafish and higher mammals has not been 

elucidated. This is the first study, to the best of our knowledge, to report correlation in 

terms of drug doses with respect to rats and humans respectively. Similarly, we have 

tried to indirectly correlate the mechanism of action comparing the efficaciousness 

and non-efficaciousness of drugs acting through different mechanisms between 

zebrafish and rats. We have also tried to use the gene homology data for correlation 

of mechanism of action; however, demonstration of the molecular changes post drug 

administration in zebrafish will be required for a definitive validation of this model. 

 

We have generated zebrafish pharmacological data in terms of milligrams per 

kilograms for various AEDs in adult zebrafish. The availability of the data on dosage 

in an in vivo model helps the drug discovery process in terms of ranking of test 

compounds and taking decisions for drug discovery. We have also demonstrated a 

good correlation with other higher mammals including humans. The logical next steps 

for research community working on zebrafish epilepsy models would be further 

experiments such as molecular analysis and pharmacokinetic analysis of AEDs in 

zebrafish. These studies can provide information about metabolism and 

pharmacokinetic – pharmacokinetic modeling to establish zebrafish seizure models 

for in-vivo drug discovery.  
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CHAPTER 4:  
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CHAPTER 4: ZEBRAFISH LIGHT/DARK MODEL OF ANXIETY  

4.1 INTRODUCTION 

4.1.1 Background:  

Anxiety disorder is a state of apprehension and/or fear resulting from the anticipation 

of events or situation. Anxiety disorders have been estimated to have approximately 

29% prevalence amongst mental health problems and thus can be called as the most 

the most common mental health problem in the recent times (Kessler et al., 2005). 

Anxiety disorders include various conditions such as Generalized Anxiety Disorder, 

Panic Disorder, Social Phobia, Post-Traumatic Stress Disorder, Adult Separation 

Disorder, Agoraphobia, and Specific Phobia. WHO World Mental Health (WMH) 

survey suggests that approximately one in every four human beings suffers from 

some form of mental disorders (Kessler et al., 2009). The data from WMH combined 

with the data on anxiety suggests that that anxiety disorders amount to approximately 

7-8% of the global disease burden. Furthermore, anxiety disorders not only impact 

daily lives of the individuals affected but also the impact family members, colleagues 

and other interacting individuals leading to significant socio-economic burden 

(Whiteford et al., 2013). Cognitive Behaviour Therapy (CBT) along with symptomatic 

anxiolytic drugs has shown improvement in therapy outcomes, however, there is 

significant scope to improve treatments and thus an unmet need to find novel 

therapeutic solutions (Osmanağaoğlu et al., 2017).  

 

In terms of pathophysiology, almost all neurotransmitters pathways have been shown 

to have been associated with anxiety disorders. The neurotransmitters pathways 

involved are the GABA-ergic system, opioidergic system, serotonergic system, 

cholinergic system, histaminergic system, glutamatergic system and adenosine and 

its receptors (Stewart et al., 2011). In most cases there is no single system that is 

involved in symptoms shown by any particular patient, therefore, making therapeutic 
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choices difficult. Although, various drugs targeting these systems are available in 

market and are prescribed by physicians, however, all the therapies are symptomatic 

and short term with patients needing to be treated for long term. This emboldens the 

quest for disease modifying therapies for anxiety disorders (Leichsenring et al., 

2017). 

 

4.1.2 Animal Models of Anxiety:  

The classical models of anxiety in rodent models are the open field test, elevated 

plus maze, elevated T-maze, holeboards, dark/light transition, active and passive 

avoidance tests, separation-induced vocalizations (pups), stress-induced vocalization 

(adults), defensive (probe or prod) burying, startle response test and many tests that 

are similar to or versions of these tests. These tests can be categorized as 

unconditioned response tests and conditioned response tests. Tests wherein no 

training is required are called unconditioned response tests and considered to have 

high eco/ethological validity. Tests that require extensive training are conditioned 

response tests and are questioned for validity they do not represent the spontaneous 

or uncertainty aspect of human anxiety (Steimer, 2011). All marketed anxiolytics 

have been tested in one or more of these models and have shown efficacy in these 

models. Therefore, the rationale for use of zebrafish models for anxiety despite the 

availability of several rodent models are as follows (Stewart et al., 2012): 

(a) Zebrafish anxiety models have ability to test of large number of candidate drugs 

at very low cost in terms of maintenance, breeding and low compound 

requirement. 

(b) The possibility of correlating the mechanism of action by creating follow-up 

mechanistic models (through genetic/chemical manipulations or by tracking 

mechanisms in transparent larval or adult zebrafish) with comparatively quick 

turnaround time.      
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4.1.3 Zebrafish Models of Anxiety: 

Commonly used paradigms for assessing anxiety related behavior in adult zebrafish 

include open field test, light-dark box test, social preference test; shoaling, boldness 

and novel object approaching, predator avoidance. It has been demonstrated though 

various studies that zebrafish anxiety-like behaviors can be modulated (in both 

anxiogenic and anxiolytic direction) by drugs affecting almost all the neurotransmitter 

pathways involved in human anxiety disorders (Stewart et al., 2011). 

 

4.1.4 Zebrafish Light/Dark Model of Anxiety: 

The dark/light preference test, also, known as scototaxis, is a behavioral model 

wherein animal (rodent, fish, etc.) is placed in a central compartment of a half-black, 

half-white box/tank. The behaviour is observed for a period of time (specifically 

standardized for the species) and the important parameters assessed are the 

number and duration of entries in each compartment (white or black) (Bourin & 

Hascöett, 2003). Zebrafish, due to the uncertainty arising from sudden introduction to 

a non-familiar environment, show a preference for the dark compartment that reflects 

anxiety behavior. An increase in activity in the white compartment thus reflects 

anxiolytic behavior (Maximino et al., 2010). This test is one of the most well validated 

zebrafish tests and a defined protocol published in reputed journals including Nature 

Protocols. 

 

Figure 4.1: Depiction of the principle of the light /dark preference test in 

zebrafish.  
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4.2 GAP IN EXISTING RESEARCH 

Zebrafish models for anxiety and especially the light/dark preference test have been 

well established and validated, however, there are the following gaps in the existing 

research: 

1. All the reported pharmacological data is based on drug exposure through 

aquarium water and there is no report, to the best of our knowledge, which has 

reported efficacy doses in terms of mg/kg. 

2. There is a paucity of data correlation between zebrafish to humans limiting the 

use of this model in drug discovery decision making. 

 

4.3 OBJECTIVES OF THE STUDY 

1. Evaluating known drugs to validate the model as relevant models for anxiety. 

2. To determine efficacy dose for the drugs in these models in terms of mg/kg. 

3. To correlate the data between zebrafish and higher mammals including humans 

based on published literature. 

 

4.4 MATERIALS AND METHODS 

4.4.1. Animal care and maintenance: 

Zebrafish were maintained as following general care and maintenance details 

mentioned in Chapter I. Four to six months old male fish were used for these 

experiments. 

 

4.4.2. Chemicals, drugs and drug administration: 

Anxiolytics viz. Busporin, Clonidine, Fluoxetine, Hyroxazine, Imipramine and a 

negative control anxiogenic Capsaicin were purchased from Sigma Aldrich, USA. All 

drugs were dissolved in water and administered orally (p.o.) using reported method 
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(Kulkarni et al., 2014). Zebrafish were randomly divided into groups (n=8/group) for 

study. 

 

4.4.3. Validation and evaluation of anxiolytics in zebrafish light/dark model: 

Adult zebrafish light/dark model was validated using known anxiolytics and Capsaisin 

(10 mg/kg) as a negative control. The negative control and its dose has been 

standardized in our laboratory and the data on the same has been published by us in 

a report by Dulla et al. (2014). The study was conducted by introducing the fish to the 

light/dark aquarium and recording videos for 15 minutes duration. Animals were 

placed in the centre of white and dark compartment using an intersection 

compartment which was removed after an acclimatization period of 5 minutes. The 

fish were then allowed to explore for 15 min. The test was conducted between 11 

a.m. to 4 p.m. as explained before (Dulla et al., 2014) by recording videos using a 

digital camera.  Drug doses were selected based upon literature review from various 

sources and preliminary experiments for safety dose assessment of each candidate. 

The drugs were administered an hour before the video recordings. Statistical analysis 

of this data was performed using GraphPad Prism® Software using One-way 

ANOVA followed by Dunnet’s Post-hoc test. 

 

4.4.4 Correlation for the mechanism of action: 

Zebrafish data for most of these molecules by dissolving the drugs in water is already 

reported through different publications and the mechanistic validity of zebrafish 

model is well established in a recent review (Stewart et al., 2014). We have further 

established the mechanistic validity by gene homology analysis. The gene 

sequences encoding the principle drug targets were retrieved from the national 

center for the biotechnology information data base (NCBI) and the gene homology or 
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the percentage identity between rat, human and zebrafish was calculated using the 

BLAST option of NCBI. 

 

4.4.5 Data correlation with including humans: 

Zebrafish minimum effective dose (MED) (mg/kg) was correlated with human dose 

(mg/kg/day) by Linear Regression analysis using GraphPad Prism® Software. The 

data on human MED was difficult to establish as most of the drugs have different 

therapeutic regimens for different patients based on their clinical condition of acute 

anxiety, chronic anxiety, depression, chronic depression and other such disorders. 

Therefore, we considered the minimum starting dose for acute forms of anxiety 

behaviors (acute anxiety, panic, etc.) based on the drug data base at Drugs.com 

accessed in August 2017. The dose in terms of mg/kg/day was calculated 

considering 60 kg body weight for average human. 

 

4.5 RESULTS 

4.5.1 Validation and evaluation of anxiolytic drugs in light/dark model: 

The results of percentage time spent in light have been presented in Figure 4.1. The 

percent time spent in light by the untreated control fish was 19.9 ± 4.1 % whereas in 

the positive control group administered Capsaicin 10 mg/kg was 9.5 ± 4.2 %. The 

percentage time spent in light for Busporine at doses of 1 mg/kg, 5 mg/kg and 10 

mg/kg was 29.9 ± 3.3, 49.7 ± 2.9 and 44.1 ± 4.2 %; Clonidine at doses of 2.5 µg/kg, 5 

µg/kg and 10 µg/kg was 16.3 ± 1.6, 44.9 ± 5.1 and 91.0 ± 5.9 %; Fluoxictine at doses 

of 15 mg/kg, 30 mg/kg and 45 mg/kg was 56.7 ± 13.2, 80.5 ± 3.9 and 65.0 ± 5.6 %; 

Hydroxazine at doses of 25 mg/kg, 50 mg/kg and 75 mg/kg was 44.8 ± 7.3, 45.2 ± 

4.0 and 69.5 ± 8.7 %; and;  Imipramine at doses 1 mg/kg, 5 mg/kg and 10 mg/kg was 

48.3 ± 5.3, 29.9 ± 3.3 and 33.1 ± 4.4 % respectively. 
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All known anxiolytic drugs showed efficacy in this model and the negative control 

Capsaicin showed anxiogenic activity. A negative control for this model was felt 

necessary as there was no disease induction per say and the fact that control 

zebrafish in new/uncertain situation naturally prefer the dark compartment; therefore, 

a negative control data validated the experimental conditions and assessment by 

blinded observers. Minimum Effective Dose (MED) dose was assigned as the 

minimum dose at which the fish spent atleast 50% time in the light compartment of 

the tank and statistical significance.  Thus the MEDs for busporine, clonidine, 

fluoxetine, hydroxazine and imipramine were 5, 0.005, 15, 25 and 1 mg/kg 

respectively.    

 

4.5.2 Correlation for the mechanism of action: 

The gene homology data presented in Table 4.1 suggested a high degree of genetic 

conservation between zebrafish and rats, humans with respect to genes encoding 

the major targets. 

Table 4.1:  Correlation of zebrafish with rats and humans based on gene homology 

of genes encoding these mechanisms. 

Compound Mechanism of Action 
Encoding 

genes 

Zebrafish 

v/s rat % * 

Zebrafish v/s 

humans % * 

Buspiron 5-HT1A agonist   HTR1A 75% 75% 

Clonidine α2 agonist  α2A, α2C 72-91% 56-73% 

Fluoxetine Selective serotonin 

reuptake inhibitor  

SLC6A4 68% 70% 

Hydroxazine H1 inverse agonist  HRH1 44% 42% 

Imipramine Non selective inhibitor 

of monoamine uptake. 

SLC6A4, 68% 70% 

*Gene homology has been presented as % identity as a range of encoding genes. 
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3.5.3 Correlation of doses with humans: 

As mentioned above zebrafish MED dose was the statistically significant minimum 

dose at which the fish spent atleast 50% time in the light compartment.  Thus the 

MEDs for busporine, clonidine, fluoxetine, hydroxazine and imipramine were 5, 

0.005, 15, 25 and 1 mg/kg respectively.   The human MEDs based on the minimum 

starting dose for acute forms of anxiety based on the drug data base at Drugs.com 

were 0.25, 0.003, 0.16, 3.33 and 0.400 mg/kg/day for busporine, clonidine, 

fluoxetine, hydroxazine and imipramine respectively. The results of the liner 

regression (Figure 4.2) show that the coefficient of determination (r2) was 0.68 

suggesting an 68% data correlation between data on zebrafish and human doses. It 

was also observed that the potency rankings were similar between zebrafish and 

humans.  

 

Figure 4.2.: Linear regression analysis of MEDs for  anxiolytics between 

zebrafish and humans.  r2 = coefficient of determination. Straight (–) lines represent 

the linear regression, whereas, dotted (….) lines represent the 95% confidence 

interval with respect to liner regression. 
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4.6 DISCUSSION AND CONCLUSIONS 

The present study was conducted to evaluate of a set of known anxiolytic drugs in 

adult zebrafish light/dark model via oral drug administration. There have been several 

reports on adult zebrafish anxiety models; however, this is the first study, to report 

efficacious oral dose and data correlation with humans. The correlation of many of 

the pathways between zebrafish and other species including humans has been 

validated before and most of the pathways through which the drugs tested here act 

have been shown to be conserved and active in zebrafish (Stewart et al., 2012).    

 

The data on dosage in an in-vivo model helps the drug discovery process in terms of 

ranking of test compounds and taking decisions for lead optimization. We have also 

demonstrated a good correlation with other higher mammals including humans. The 

logical next steps for research community working on zebrafish anxiety models would 

be further experiments towards pharmacokinetic – pharmacokinetic modeling. 
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CHAPTER 5: ZEBRAFISH PHARMACOKINETICS & BRAIN PENET RATION 

5.1 INTRODUCTION 

5.1.1 Background 

Pharmacokinetics (PK) is a time course study of drug absorption, distribution, 

metabolism and excretion (ADME) and how these processes affect the time course 

and intensity of therapeutic or toxic effects of drugs. PK data in an in-vivo system has 

always considered more valuable and useful, over in-vitro or in-silico predictions, with 

most drug discovery scientists considering it as a necessary step before detailed 

pharmacological characterization (Austel et. al., 1989, Panchagnula et. al., 2000; 

Jang et. al., 2001). For drugs that are especially targeting the central nervous system 

need PK evaluation to ascertain their brain penetration as in absence of this property 

the drugs cannot be moved forward in drug discovery process, however potent they 

may be towards their molecular target. 

 

An important development in PK research in the last couple of decades has been the 

development of biopharmaceutical classification system (BCS) to classify drug 

substances according to their solubility, permeability, dissolution properties and for 

the prediction of in-vivo PK (Amidon et al., 1995; Karalis et. al., 2010; Reddy et. al., 

2011). In another important development, Dried Blood Spot (DBS) technique has 

been introduced for PK as it helps analysis of test drugs by using small volumes of 

blood or tissue samples (Beaudette et. al., 2004; Li et. al., 2010). We have used DBS 

technique in the experiments described here. 

 

5.1.2 Zebrafish pharmacokinetics  

Adult zebrafish are being used for various pharmacological and safety evaluation 

including neuropharmacology, infectious diseases, cancer models, cardiovascular 

safety, seizure liability, etc. (MacRae & Peterson; 2015; Sridevi et al., 2014; Khan et 
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al., 2017). However, understanding pharmacokinetics (PK) and tissue distribution is 

essential to carry out pharmacokinetic – pharmacodynamic (PK-PD) correlation and 

optimize the utilization of zebrafish (Kulkarni et al., 2014; Kalueff et al., 2015; Kim et 

al., 2017). An understanding of PK-PD correlation in an in vivo data has multiple 

benefits over theoretical predictions of drug design as it helps in not just determining 

the drugability of a candidate molecules, but also provides information about dosage, 

probable dosing intervals and designing of experiments in conventional animal 

models with minimizing repetitions, following 3Rs of animal ethics and reduced costs 

of experimentation (Jang et al., 2001).  

 

There have been plenty of experimental reports on adult zebrafish pharmacology and 

toxicology; however, there have been very few PK reports with our laboratory being 

the first to report oral drug administration method and detailed PK procedure using 

Dried Blood Spots (DBS) (Kulkarni et al., 2014). The present manuscript is in 

continuation with our effort to study the predictive value of zebrafish for human drug 

discovery. In the present study we have attempted to correlate PK and brain 

penetration data of adult zebrafish with higher mammals including humans. For the 

purpose of this study, two compounds with distinct PK properties were selected; viz 

Irinotecan, and Lorcaserin. Irinotecan was selected as a compound that was 

metabolised to SN-38 and the brain penetration of both these compounds was below 

the level of detection. Lorcaserin was selected as compound that had very high brain 

penetration and retention.  

 

5.2 GAP IN EXTSING RESEARCH 

1. There have been very few reports in PK and brain penetration studies in 

zebrafish, necessitating a need to generate more data with probe molecules 

having distinctive PK characteristics. 
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2. The PK data needs to be correlated with higher mammals to understand if 

zebrafish can be predictive of the trend of the data so as to take decisions in drug 

discovery. 

 

5.3 OBJECTIVES 

1. Evaluating drugs with distinct PK properties like irinotecan and lorcaserin,in 

zebrafish for PK and brain penetration. 

2. To determine the key PK parameters. 

3. To correlate the data between zebrafish and higher mammals including humans 

based on published literature. 

 

5.4 METHODS 

5.4.1. Animal care and maintenance 

Zebrafish were maintained as following general care and maintenance details 

mentioned in Chapter I. Four to six months old male fish were used for these 

experiments. 

 

5.4.2 Drugs, Chemicals, Instruments and Materials 

All drugs were purchased from Sigma Aldrich, USA. Heparin and other routine 

chemicals were purchased from Sisco Research Laboratories, Hyderabad, India. The 

drugs were administered using either oral (p.o.) (Kulkarni et al., 2014) or intra-

peritoneal (i.p.) drug administration (Chaudhari et al., 2013) routes. These methods 

ensured the delivery of exact doses of the drugs in terms of milligrams per kilograms 

(mg/kg) of body weight. 

 

The HPLC system consisted of an Agilent 1200 quaternary pump, auto sampler with 

thermostat, column oven, and online degasser , triple quadrupole mass spectrometer 
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(Mass hunter software version B.03.01) with multimode source (Agilent 

Technologies, Inc. 2850 Centerville Rd. Willington, DE 19808-1644, USA). FTA® 

Elute blood spot cards (DMPK type-B cards) were supplied by Whatman (Sanford, 

USA), Ultrasonic bath from Bandelin sonorex sonicator, centrifuge from Eppendorf 

(model# Centrifuge 5810), and Milli Q Water system from Millipore (model #Gradient 

A10). 

 

5.4.3 Pharmacokinetic studies 

We conducted zebrafish PK and brain penetration studies on two known compounds 

with distinct PK properties.  The details of the methodology for extraction and 

measurement of Irinotecan and Loracserin has been described in Table 5.1. 

Irinotecan was administered i.p. at a dose of 100 mg/kg and blood and brain samples 

were collected at 0, 0.08, 0.17, 0.5, 1, 2, 4 and 8 h. Lorcaserin was administered by 

two routes i.p. and p.o. at a dose of 10 mg/kg and blood and brain samples were 

collected at 0, 0.08, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 h. 

 

5.4.4 Preparation and analysis of blood and brain samples 

At every time point, three adult male fish were sacrificed using an aesthetic tricaine 

(MS-222) for blood and brain sample collection. Blood and brain were collected and 

processed using reported methods (Jagadeeswaran & Sheehan 1999; De´glonet al., 

2012; Kulkarni et al., 2014). In brief, blood (7 – 10µl/fish) was collected by cardiac 

puncture using heparin rinsed insulin syringes and collected in heparin containing 

tubes. Brain was collected by incising the head portion followed by removal of eyes 

and skull with forceps. Thereafter, the brain homogenate was prepared in Dulbecco’s 

Phosphate Buffer Saline (DPBS) using Qiagen’s Tissue homogenizer 
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Whatman FTA® DMPK Cards were used for drug analysis using a method described 

before (De´glonet al., 2012; Kulkarni et al., 2014). In brief, 7µL aliquots of sample 

from blood and homogenized brain were spotted on the DMPK type-B cards, 

followed by, punching out of a 3 mm diameter disc from the centre of each DBS, 

followed by extraction using a protocol described for each drug in Table 5.1.  

Table 5.1: Details methodology for PK and brain pen etration studies. Dose, 

route of administration, sampling time points, methodology for extraction and 

LCMS/MS protocol for measurement of Irinotecan and Loracserin have been 

described in this table. The table has been adapted from Kulkarni et al., Journal of 

Pharmacological and Toxicological Methods 88 (2017) 147–152. 

Drug 
Dose; 

Route 

Time 

Points (h)  

Extraction 

Method 

LC-MS/MS 

Protocol 

Irinotecan 

 

(SN – 38 by 

chromatograph

ic assessment)  

100 

mg/kg; 

i.p. 

0, 0.08,  

0.17, 0.5, 

1, 2, 4, 8 

Extracting 

Solvent : 

Acetonitile  

Centrifugation:  

14000rpm, 

10min. 

Volume 

Separation : 5 µL 

Column:  Zorbax 

Bonus RP 

50x4.6mm, i.d-

3.5µm.  

Run Time:  6min 

Mobile Phase:   

A: 5 mM Ammonium 

Acetate  

B: Acetonitile 

Volume of Injection 

in LCMS/MS:  20µl 

Ion Mode:  MRM 

mixed mode. 

Internal Standard:  

Indinavir 
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Lorcaserin 10 

mg/kg; 

i.p., p.o. 

0, 0.08, 

0.25, 0.5, 

1, 2, 4, 6, 

8, 24 

Extracting 

Solvent : 

Acetonitile 

Centrifugation:  

14000rpm, 

10min. 

Volume 

Separation : 5 µL 

Column:  X Bride TM 

C-18, 46x5.0mm, 

i.d-3.5µm.  

Run Time: 8min 

Mobile phase:  

A: 0.1% Formic Acid 

in Water  

B: Acetonitile 

Volume of injection 

in LCMS/MS: 5µl 

Ion Mode:  ESI 

positive MRM. 

Internal Standard:  

Rolipram 

 

5.4.5 Pharmacokinetic parameter calculation and correlation with other species 

PK parameters of blood and brain were calculated using PKSolver; an add-in 

program for in Microsoft Excel using non-compartmental analysis (Zhang et al., 

2010). Key PK parameters for each drug were correlated with literature data about 

rats, primates and humans. Key parameters for each drug were as follows: 

Irinotecan: percent metabolism to SN-38, plasma half life and brain to blood ratio; 

and; Lorcaserin: plasma and brain half life, brain to blood ratio and relative 

bioavailability.  

 

5.5 RESULTS 

The results of analysis of blood and brain for levels of the test drugs at various time 

points have been presented in Figure 5.1 and the PK parameters in Table 5.2: 
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Figure 5.1.: Zebrafish PK of Irinotecan and Lorcase rin.  (A) Blood and brain for 

levels of Irinotecan at various time points have been presented as Mean ± S.E.M. 

with the line graph on kinetics in blood and brain. 

 

Figure 5.1.: Zebrafish PK of Irinotecan and Lorcase rin.  (B) Blood and brain for 

levels of SN-38 at various time points have been presented as Mean ± S.E.M. with 

the line graph on kinetics in blood and brain. 
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Figure 5.1.: Zebrafish PK of Irinotecan and Lorcase rin.  (C) Blood and brain for 

levels of Loracserin (p.o.) at various time points have been presented as Mean ± 

S.E.M. with the line graph on kinetics in blood and brain. 

 

Figure 5.1.: Zebrafish PK of Irinotecan and Lorcase rin.  (C) Blood and brain for 

levels of Loracserin (i.p.) at various time points have been presented as Mean ± 

S.E.M. with the line graph on kinetics in blood and brain.  

The figures and legends have been adapted from Kulkarni et al., Journal of 

Pharmacological and Toxicological Methods 88 (2017) 147–152. 
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5.5.1 Irinotecan 

Irinotecan was administered to zebrafish i.p. and blood and brain concentrations 

were measured at different time points. The peak blood concentration (Cmax) of 10.67 

ng/ml was observed at 10 minutes (Tmax) time point with a half life (t½) of 6.9 h and 

exposure (AUC (0-t)) of 618.45 ng/ml*h. Similarly, peak brain concentration (Cmax) of 

491 ng/ml was observed at 5 minutes time point (Tmax) with a half life (t½) of 1.89 h 

and exposure (AUC (0-t)) of 29.61 ng/ml*h. 

Table 5. 2: Pharmacokinetic  parameters derived from zebrafish blood and 

brain. The table has been adapted from Kulkarni et al., Journal of Pharmacological 

and Toxicological Methods 88 (2017) 147–152. 

(A) Irinotecan and its metabolite (SN – 38) 

Parameter  Unit  Irinotecan  SN - 38 

  Blood Brain Blood Brain 

Lambda_z 1/h 0.10 0.37 0.29 - 

t1/2 h 6.94 1.89 2.36 - 

Tmax h 0.17 0.08 0.50 - 

Cmax ng/ml 491.00 10.67 26.33 - 

Tlag h 0.00 0.00 0.00 - 

Clast_obs/Cmax   0.11 0.06 0.04 - 

AUC 0-t ng/ml*h 618.45 29.61 40.14 - 

AUC 0-inf_obs ng/ml*h 1155.94 31.43 43.54 - 

AUC 0-t/0-inf_obs   0.54 0.94 0.92 - 

AUMC 0-inf_obs ng/ml*h^2 

11539.3

3 105.81 135.32 - 

MRT 0-inf_obs h 9.98 3.37 3.11 - 

Vz/F_obs (mg/kg)/(ng/ml) 0.87 8.68 7.81 - 

Cl/F_obs (mg/kg)/(ng/ml)/h 0.09 3.18 2.30 - 
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Irinotecan has a major active metabolite SN – 38 and thus is an important analyte to 

study (Ramesh et al., 2010). The important blood kinetic parameters of SN – 38 

were: Cmax = 10.67 ng/ml; Tmax = 0.5 h; t½ = 2.36 h; AUC (0-t)= 40.14 ng/ml*h. The 

levels in brain were below the quantification threshold that could not be analysed 

using our method.  

 

Zebrafish data was correlated with rats, primates and humans (based on literature 

data in case of the later three species) for the key parameters of plasma half life and 

% blood : brain ratio. The data in primates and humans was after intravenous 

infusion of 30 minutes and 90 minutes respectively (USFDA, 2015). The data has 

been presented in Table 5.3 and correlation has been discussed in the discussion 

section. 

 

5.5.2 Lorcaserin 

Lorcaserin was administered to zebrafish by two routes, p.o. and i.p.; blood and brain 

concentration were measured at different time points. The i.p. administration and PK 

evaluation was conducted with a purpose to assess bioavailability after oral 

administration with respect to parenteral administration.  

 

The important blood kinetic parameters of lorcaserin after oral administration were: 

Cmax = 12.24 & 233.16 ng/ml for blood and brain respectively; Tmax = 0.08 h for both 

blood and brain; t½ = 7.73 & 7.95 hfor blood and brain respectively; AUC (0-t) = 71.29 

& 424.03 ng/ml*h for blood and brain. All the PK parameters in blood and brain after 

intraperitoneal administration of lorcaserin are presented in Table 5.2, however, the 

key parameter to report here is an AUC (0-t)of 99.22 ng/ml*h.  
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Data correlation in case of lorcaserin was conducted for the key parameters of 

plasma and brain half life, % blood: brain ratio and % bioavailability. The data has 

been presented in Table 5.3 and correlation has been discussed in the discussion 

section. 

Table 5. 2: Pharmacokinetic  parameters derived from zebrafish blood and brain.  

The table has been adapted from Kulkarni et al., Journal of Pharmacological and 

Toxicological Methods 88 (2017) 147–152.  

(B) Locarserin by both routes oral and intraperiton eal 

Parameter Unit 
Locarserin - Oral 

Loracserin - 

Intraperitoneal  

Blood Brain Blood Brain 

Lambda_z 1/h 0.09 0.09 0.07 0.03 

t1/2 h 7.73 7.95 10.17 26.40 

Tmax h 0.08 0.08 0.08 1.00 

Cmax ng/ml 12.24 233.16 18.00 176.00 

Tlag h 0.00 0.00 0.00 0.00 

Clast_obs/Cmax   0.07 0.02 0.11 0.06 

AUC 0-t ng/ml*h 71.29 424.03 99.22 730.66 

AUC 0-inf_obs ng/ml*h 81.22 472.43 128.58 1149.62 

AUC 0-t/0-inf_obs   0.88 0.90 0.77 0.64 

AUMC 0-inf_obs ng/ml*h^2 825.35 4077.66 1968.18 30206.40 

MRT 0-inf_obs h 10.16 8.63 15.31 26.28 

Vz/F_obs (mg/kg)/(ng/ml) 1.37 0.24 1.14 0.33 

Cl/F_obs (mg/kg)/(ng/ml)/h 0.12 0.02 0.08 0.01 
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5.6 DISCUSSION AND CONCLUSIONS 

Adult zebrafish pharmacokinetics has been largely a neglected aspect of zebrafish 

research despite a large number of pharmacological models being developed and 

reported using this model. There is a need to generate more data and publish it in for 

the purpose of understanding the validity and predictive ability of zebrafish data by 

scientific community. The first pharmacokinetic report, to the best of our knowledge 

was by Zang et al. (2011), wherein, the efficiency of oral delivery of felbinac through 

gluten granules was confirmed using a HPLC -based method. Thereafter, we 

published the first report describing oral drug administration, use of DBS cards for 

extraction of analyte and measurement using LCMS/MS method (Kulkarni et al., 

2014). The most recent report on this subject was by Kim et al. (2017). This study 

was conducted to investigate the possibility of using zebrafish as a screening tool to 

estimate partition coefficient (Kp,brain) to predict drug brain penetration in humans. All 

these studies are suggestive of the fact that zebrafish can act as model organism for 

studying PK and brain penetration aspects which are essential for taking decisions 

during the process of drug discovery. In the present study, we choose compounds 

that show distinct PK properties, especially properties that led to their pharmaceutical 

development and therapeutic regimen. 

 

In case of irinotecan (Table 5.3. (A)); zebrafish data was correlated for the key 

parameters of plasma half life, and % blood:brain ratio. The parameters of plasma 

half life and % blood : brain ratio were correlated as these determine the dosing 

frequency and tissue distribution to an organ which is separated by blood brain 

barrier. The plasma half life of irinotecan in zebrafish suggested a profile of a once a 

day drug. This data, if it had been generated in zebrafish during the process of drug 

discovery, correlated with primates and human but not with rats. Despite the fact that 

the data in primates and humans is based on intravenous infusion of 30 and 90 
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minutes, the data in zebrafish is predictive of a once a day administration regimen. 

Similarly, the data on brain penetration suggests zebrafish to be better predictor for 

primates and humans when compared to rats. Though there is high inter-species 

variability, the irinotecan data in rats is suggestive of negligible brain penetration 

whereas zebrafish data suggests the brain penetration being low but not negligible, a 

trend observed in primates too. This result has been vindicated by the clinical reports 

(that do not clearly provide brain concentrations) of use of irinotecan in glioma 

patients wherein, efficacy has been attributed to irinotecan permeability across the 

blood brain barrier and conversion to SN – 38 in brain (Vredenburgh et al., 2009).  

Conversion of irinotecan to SN – 38 was higher in zebrafish as compared to other 

species (zebrafish: 7%; rats: 0.8% (USFDA, 2015); primates: 2.4% (Blaney et al., 

1998); and; humans: 2.3% (USFDA, 2014)); however, the data still indicates a low 

metabolism of irinotecan, which is consistent with other spices. Also, it re-

emphasises conservation of metabolic pathways and blood brain barrier permeability 

in zebrafish with respect to higher mammals (Alderton et al.; 2010; Jeong et al., 

2008; Kim et al., 2017). 

Table 5.3: Correlation of key (distinct) pharmacoki netic parameters. (A) 

Irinotecan and (B) Lorcaserin in zebrafish, rats, primates and humans. 

(A) Irinotecan 

Species 
Dose/ 

Route 

Plasma half life 

(t½) 

% Brain : Blood Ratio 

(based on AUC 0-t) 

Zebrafish 100 mg/kg i.p. 6.9 4.78 

Rat  130 mg/kg i.v. a 2.1 a > 1% a 

Primate 225 mg/m2 i.v. inf. b 4.9 b 13 b 

Human 125 mg/m2 i.v. inf. c 5.8 c n.a. 

a USFDA, 2015;  b Blaney et al., 1998; c USFDA 2014. n.a. – not accessible 
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(B) Lorcaserin  

Species 
Dose/ 

Route 

Plasma 

half life 

(t½) 

Brain 

half life 

(t½) 

% Brain : 

Blood Ratio 

(based on 

AUC0-t) 

% 

Bioavailability  

p.o.: i.p./i.v. 

(based on 

AUC0-t) 

Zebrafish 10 mg/kg 

p.o. 

7.7 8.0 595 72 

Rat 10 mg/kg 

p.o. d,e 

4.9 d 4.7 d 1374 d 93 e 

Primate 10 mg/kg 

d,e p.o. 

n.a. n.a. 1010 e 51 e 

Human 10 mg/kg 

p.o. e 

11 e n.a. 170 e n.a. 

d Thomsen et al., 2008; e USFDA, 2011. n.a. – not accessible 

The table has been adapted from Kulkarni et al., Journal of Pharmacological and 

Toxicological Methods 88 (2017) 147–152. 

 

Lorcaserin, a selective 5-hydroxytryptamine (5-HT2C) receptor agonist, an appetite 

lowering drug; has distinguishing PK properties of high brain penetration, long half 

life in both blood an brain and good bioavailability (Thomsen et al., 2008). As the 

drug acts on the central nervous system, these parameters are essential drugable 

properties of this drug. The data in zebrafish shows that these parameters correlate 

with all mammalian species including humans. Even though the actual ratios of these 

parameters have high inter species variability, the trend demonstrates that, if 

zebrafish data was available during the process of drug discovery, it would have 

helped in decision making regarding drugability of the candidate.  
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In conclusion, zebrafish PK has been an understated and understudied aspect in 

zebrafish research. It needs to be explored in details across various laboratories for 

optimal utilization of zebrafish model organism for pharmaceutical and disease 

biology research. The experiments reported in this manuscript demonstrate the 

correlation of zebrafish PK data to higher mammalian species including humans. 

Despite the variations in the actual values, this study suggests the utility of zebrafish 

in understanding the trend of pharmacokinetic data of candidate drugs in early drug 

discovery process. 
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CHAPTER 6: SUMMARY, DATA EXTRAPOLATION AND CONCLUSI ONS 

6.1 SUMMARY 

6.1.1 Introduction 

Zebrafish models are becoming increasing popular in academic and pharmaceutical 

research. There are a few thousand zebrafish publications published every year and 

zebrafish research publications in last many years the statistics for annual increase in 

zebrafish publications have topped the number of publications published using other 

experimental animal models. Furthermore, recent decisions by regulatory agencies 

have emboldened the belief of their use for drug discovery research. The sequencing 

of zebrafish genome has further improved the scope for utilization of zebrafish in 

disease biology research, drug target identification & validation, creation of 

genetically modified models and many other research avenues. 

 

Neuroscience research in zebrafish has been a fertile area due to the fact that 

zebrafish have complex brain capable of performing context specific functions with 

conserved neurotransmitters and other molecular mechanisms when compared to 

higher mammalian species. Therefore, many models have been developed over last 

few years that are analogues to the conventional mammalian models and have 

measurable and definable phenotypes.  

 

The major gap in zebrafish research is the ability to use zebrafish data for decision 

making in human drug discovery research. Even though the decision to use a 

preclinical model for screening in “target based drug discovery” is on considerations 

of molecular and genetic validity of the model, however, the decisions to filter 

molecules for development is based largely on considerations of potency and 

therapeutic index (taking in account toxicity). In case of “phenotypic drug discovery”, 

the molecular mechanisms are given consideration much later in the development 
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process. The important parameters of potency and therapeutic index are solely 

related to the drug dose. Therefore, accurate identification of the drug dose in an in-

vivo model is the fundamental parameter for the fate of drug candidates in the 

process. The paucity of data on this fundamental parameter and its use in making 

decisions, we believe, has been a major gap that has deterred the more visible use 

of zebrafish by pharmaceutical industry.  

 

The relevance of the dose (efficacy as well as safety) has to complement with the 

pharmacokinetic parameters that qualify the accuracy of the dose. A drug candidate 

that is highly potent in in-vitro assays might not be suitable for development over a 

drug that has comparative low potency in that assay due to the fact that its 

pharmacokinetic parameters are unknown. Moreover, in neuropharmacology the key 

parameter of brain permeability might deter such a highly potent (in-vitro) drug 

candidate from actually being useful in in-vivo situation. The adult zebrafish model 

could help in overcoming this challenge wherein the efficacy dose will have factored 

in the bioavailability and brain penetration potential of the candidate drug, thus 

making the decision based on potency easier. However, strong experimental 

evidence is required to conclude that metabolism and drug distribution can get 

factored in a zebrafish efficacy models.  

 

The above arguments have been vindicated by a very recent report by Brock et al., 

2017; published during the process of preparation of this thesis manuscript. The 

study involved scientists from major pharmaceutical companies like Pfizer and 

Astrazeneca and they studied the value of the zebrafish conditioned place preference 

model for predicting human abuse potential. The study was conducted in adult 

zebrafish and the drug administration was performed by solubilizing the test drugs in 

aquarium water with the data obtained as mg/L. the authors concluded that zebrafish 
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model for abuse liability had high concordance with respect to specificity and 

negative prediction values but had low sensitivity. The parameter for sensitivity is 

directly related to dose. The authors discuss the possibility of lower and uneven 

absorption as possible reasons for the low positive predictions and sensitivity. These 

results strengthen our arguments of using oral or injection routes of administration, 

generating data in terms of mg/kg and correlating it humans.   

 

The summary of each of the models studied is as follows: 

 

6.1.2 Zebrafish Multiple Sclerosis Model 

Pre-clinical drug discovery for multiple sclerosis (MS) in rodent models is a 

cumbersome and highly laborious activity to perform. The time required for disease 

induction is long and thereafter, treatment effects need to be observed for many 

days, thus required about 4-8 weeks to study a drug candidate. We have developed 

a novel experimental autoimmune encephalomyelitis (EAE) model in adult zebrafish 

based which is a simple protocol and offers to be a quick screen between in-vitro and 

conventional in-vivo experiments. The disease induction to create the EAE model 

was using myelin oligodendrocyte glycoprotein, 35-55 (MOG). The observation 

conducted were survival, clinical signs and body weight changes. We first validated 

the model using the most widely used known drug fingolimod followed by a detailed 

validation using dimethyl fumarate, dexamethasone and SR1001. We demonstrated 

the validation of disease symptoms with histopathological evaluation in the study 

conducted for fingolimod, and the detailed validation with other known drugs showed 

that our results were in agreement with those in rodent models. The data on genetic 

correlation based on gene homology analysis as well as literature reports related to 

mechanism of actions of the tested drugs, suggested a good mechanistic correlation 

between zebrafish and other higher mammals. Furthermore, the correlation of the 
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minimum effective dose between zebrafish and humans suggested at 98% coefficient 

of determination. In summary, we have developed a new model, standardized and 

validated it and correlated the data with rodents and humans.  

 

6.1.3 Pentylenetetratzole Induced Zebrafish Epilepsy Model 

 Adult zebrafish model of epilepsy using pentylenetetrazole (PTZ) is gaining 

acceptance in scientific community and by regulators. This model in both larvae and 

adults has been very well characterized and validated from both phenotypic as well 

as molecular perspectives. We have evaluated known antiepileptic drugs (AEDs) in 

adult zebrafish PTZ model after oral dosing to arrive at a minimum efficacy dose in 

terms of milligram per kilogram (mg/kg) of body weight. Thereafter, we have tried to 

correlate the data on dose with humans (based on published literature) using linear 

regression. To validate that mechanism of action of AEDs in zebrafish is similar to 

that in mammals we correlated the efficacy data of underlying pathways between 

zebrafish to rats. The data on dose correlation between zebrafish and humans 

suggested at 87% coefficient of determination. The correlation data proposed here 

can be useful in ranking of test compounds and selection of doses for further in-vivo 

characterization. In case of rare disease “aquarium to bedside” approach it could also 

be helpful in arriving at starting dose for human studies for new drugs as well as 

repurposed candidates. 

 

6.1.4 Zebrafish Light/Dark Model of Anxiety 

The study was conducted to evaluate of a set of known anxiolytic drugs in adult 

zebrafish light/dark model via oral drug administration. The dark/light test, or 

scototaxis, is one in which a behavioral of the animal (in this case zebrafish) is 

observed in half-black, half-white box/tank. A normal zebrafish will tend to spend 

more time in dark light after introduction to such a tank owing to fear of new, 
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unknown and uncertain environment. This display of anxiety can be rescued using 

anxiolytics wherein treated fish show light exploration over dark preference. All 

known anxiolytics were found to be efficacious in this model, whereas, the negative 

control Capsaicin showed anxiogenic activity. There have been several reports on 

adult zebrafish anxiety models; and the molecular mechanisms have also been well 

established. However, we believe this to be the first study, to report efficacious oral 

dose and data correlation (68% coefficient of determination) with humans. The data 

on dosage in an in-vivo model helps the drug discovery process in terms of ranking 

of test compounds and taking decisions for drug discovery. 

 

6.1.5 Zebrafish Pharmacokinetics & Brain Penetration 

Adult zebrafish neuropharmacology is evolving rapidly; however, there is very limited 

research in understanding pharmacokinetics (PK) and brain penetration in adult 

zebrafish. We conducted adult zebrafish PK and brain penetration studies on two 

known compounds (irinotecan and lorcaserin) with distinct PK and brain penetration 

properties using validated LCMS/MS method. Irinotecan was studied at a dose of 

100 mg/kg i.p. and levels of the parent drug and active metabolite SN - 38 were 

measured. Loracserin was studies at a dose of 10 mg/kg by two routes i.p. and p.o. 

Zebrafish PK and brain penetration profiles for both compounds were very similar to 

that of higher mammals including humans. Irinotecan was metabolised to SN-38 and 

the compound had long half life with very low brain penetration in our studies. 

Loracasin was highly permeable in brain as compared to the exposure in blood, with 

long half life and high relative bioavailability, similar to other mammalian species 

including humans. The zebrafish data for key parameters of irinotecan and loracserin 

shows a high correlation to the data from higher species, including human. This 

report validates the use of adult zebrafish as a predictive PK tool for higher animal 

studies. 
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6.2 EXTRAPOLATION 

6.2.1 Zebrafish to Human Dose Extrapolation 

Data extrapolation is a routine exercise during drug discovery and development 

process. The data on dose is extrapolated from a lower species to higher for the 

purpose of selecting doses for the second stage pharmacological and toxicological 

characterization including in clinical trials. The relevance of data extrapolation from 

zebrafish to humans has been discussed in the subsequent sections, however, we 

have made an attempt to extrapolate data based on the experiments reported in this 

manuscript wherein minimum effective doses (MEDs) 14 drugs that were efficacious 

in various zebrafish models were correlated with the human MEDs (established using 

various publications reported earlier).  

 

The graph in Figure 6.1 shows represents the liner regression analysis of data of 

MEDs between zebrafish and humans. Coefficient of determination (r2) and slope of 

the line have been calculated and presented in the title of the graph. The coefficient 

of determination (r2) of 0.94 for suggests a high (94 %) data correlation between data 

on zebrafish and human doses across different models and different classes of 

compounds. The slope of the regression line (with 95% confidence interval) was 

used to propose a formula of extrapolation between zebrafish and humans. We here 

propose the formula as follows: 

 

 
Human dose (mg/kg/day) = (0.026 ± 0.04) x Zebrafish  dose (mg/kg) 
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Figure 4.2.: Linear regression analysis of MEDs bet ween zebrafish and 

humans.   

Coefficient of determination (r2) and Slope of the line have been calculated and 

presented in the title of the graph. Straight (–) lines represent the linear regression, 

whereas, dotted (….) lines represent the 95% confidence interval with respect to liner 

regression. 

 

6.2.2 Dose Conversion using the Formula for Extrapolation  

This formula for extrapolation suggested by us is very similar to the body surface 

area (BSA) conversion suggested by USFDA, 2005. A comparison of the formulae is 

presented below 

Formula derived from this thesis work: 

Human dose (mg/kg/day) = (0.026 ± 0.04) x Zebrafish  dose (mg/kg) 
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Formula derived based on body surface area calculations (USFDA, 2005): 

Human dose (mg/kg/day) = 0.022 x Zebrafish dose (mg /kg) 

(calculated as HED = animal dose in mg/kg x (animal weight in kg/human weight in 

kg) 0.33, for 0.006 kg (600 mg) zebrafish and 60 kg human).  

 

Combining the two suggest that zebrafish dose is approximately 1/40th the human 

dose or human dose can be obtained by diving the zebrafish dose by an 

extrapolation factor of 40. 

 

6.2.3 Relevance of Dose Extrapolation 

The process of data extrapolation from animals to humans is mainly to give direction 

of the starting dose for “first-in-humans” clinical trials. The USFDA has provided 

Guidance for Industry for Estimating the Maximum Safe Starting Dose in Initial 

Clinical Trials for Therapeutics in Adult Healthy Volunteers (USFDA, 2005). The main 

objectives of the guidance, in brief, are to provide common conversion factors from 

animals to humans for deriving a human equivalent dose (HED). USFDA in this 

guidance suggests the use of an algorithm or formulae based approach as scientific 

simulation for each drug might vary based on multiple factors influencing efficacy and 

pharmacokinetic parameters across species. Therefore, a formula based approach 

can help reviews, regulators and developers with a framework wherein a clinical trial 

can be initiated keeping in mind minimum toxicity as well as attainment of the human 

assessment objectives.  

 

Although the formula for extrapolation suggested by USFDA is based on the No 

Observed Adverse Effect Level (NOAEL) dose, we have tried to use this approach 

for pharmacological data based on the following rationale: 
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The first rationale is based on a recent development in regulatory acceptance of 

zebrafish. Zebrafish model of Dravet’s syndrome, a rare epileptic disease, has 

recently being recognized by the regulators to grant approval for efficacy clinical trials 

for repurposing of an already marketed drug, Lorcaserin (NIH, 2017). Considering the 

limitations of recruiting patients for rare diseases for Phase II clinical trials, the 

availability of dose extrapolation can be useful in determining a starting dose for such 

clinical trials as the safety dose for such repurposed doses is known and risk will 

already have been factored. 

 

Secondly, the zebrafish models are being proposed as bridging steps between in-

vitro and in-vivo experiments.  A formula for extrapolation and conversion of 

zebrafish dose to other animals will save time and costs involved in conducting range 

finding studies. A recent publication calculates the cost/day of using zebrafish to be ~ 

$0.01 in comparison to ~$0.20 for rats and $27.30 and $19.75 for dogs and monkeys 

respectively (Grone & Baraban, 2015). This indirectly means that 20 in-vitro hits can 

be screened in zebrafish in the cost required to screen one drug in rats. With the 

ability to obtain and extrapolate data in terms of mg/kg, further time and costs can be 

saved as well as the 3R principle of animal use can be practiced. The fact that the 

zebrafish data would have factored in bioavailability and brain penetration, the dosing 

regimen can also be determined using this approach. 

 

Finally, we are for the proposing a framework for using zebrafish data optimally. A 

larger validation with large set of compounds across different laboratories will help in 

arriving at a more methodology for correlating and extrapolating zebrafish data to 

various species including humans. A question can be asked on the ideal sample size 

for conducting such extrapolations and proposing such formulae. The USFDA 

evolved the guidance and the algorithms over a period; however, the guidance 
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document mentions that the first attempt for such correlation was conducted by 

Freireich et al., 1966; wherein they compared the toxicity of 18 anticancer agents and 

found that doses could be correlated based on body surface area of the species. Our 

extrapolation based on 14 neuroactive drugs can thus be a valid beginning of such 

work related to zebrafish. 

 

6.3 CONCLUSIONS 

This thesis work aims to address gaps in existing research that hamper the utilization 

of zebrafish optimally in neuropharmacology and drug discovery research. We have 

attempted to address two major aspects though this work, viz., robust protocols and 

methodology to obtain drug dosage data in terms of mg/kg; correlation and 

extrapolation of data that can be used for drug discovery decisions making. We 

believe this to be the first such concentrated effort and will lead to more such efforts 

by research community to optimize the use of zebrafish research in general and 

neuropharmacology research in particular. 
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FUTURE DIRECTIONS 

Future directions for the research conducted in this thesis work are suggested as 

follows: 

- The novel Experimental Autoimmune Encephalomyelitis (EAE) of Multiple 

Sclerosis (MS) can be improved for disease induction and validation with 

zebrafish native proteins other than Myelin Oligodendrocyte Glycoprotein 

(MOG35-55); and; histopathological and molecular characterization of the same. 

 

- Similarly, for the pentalenetetrazole (PTZ) induced epilepsy model and light/dark 

model of anxiety, more molecular characterization can help in optimizing these 

models and correlating them to higher species including human beings.  

 

- In terms of pharmacokinetics (PK) and blood-brain-barrier (BBB) penetration, 

conducting PK evaluation of various drugs screened in the different models and 

correlating the pharmacokinetic-pharmacodynamic (PK-PD) paradigm to higher 

mammals including humans is required to provide assurance to scientists about 

the predictive ability of these models in drug discovery research. 

 

- There is also scope for utilizing these models for identifying newer targets and 

validating them using genomic and proteomic approaches to make them useful 

for academic as well as industrial research. 
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A B S T R A C T

Introduction: Pre-clinical drug discovery for multiple sclerosis (MS) is a labor intensive activity to perform in
rodent models. This is owing to the long duration of disease induction and observation of treatment effects in an
experimental autoimmune encephalomyelitis (EAE) model. We propose a novel adult zebrafish based model
which offers a quick and simple protocol that can used to screen candidates as a step between in vitro
experiments and rodent studies. The experiments conducted for this manuscript were to standardize a suitable
model of EAE in adult zebrafish and validate it using known modulators.
Methods: The EAE model was developed by disease induction with myelin oligodendrocyte glycoprotein – 35–
55 (MOG) and observation of survival, clinical signs and body weight changes. We have validated this model
using fingolimod. We have further performed detailed validation using dimethyl fumarate, dexamethasone and
SR1001, which are known modulators of rodent EAE.
Results: The immunization dose for the disease induction was observed to be 0.6 mg/ml of MOG in CFA
(Complete Freund's adjuvant), injected subcutaneously (s.c.) near spinal vertebrae. In the validation study with
fingolimod, we have demonstrated the modulation of disease symptoms, which were also confirmed by
histopathological evaluation. Furthermore, detailed validation with three other known drugs showed that our
observations concur with those reported in conventional rodent models.
Discussion: We have standardized and validated the adult zebrafish EAE model. This model can help get a
quick idea of in vivo activity of drugs in a week using very low quantities of candidate compounds. Further work
will be required to define this model particularly as it is found that zebrafish may not express a MOG
homologue.

1. Introduction

Experimental autoimmune encephalomyelitis (EAE) is the condi-
tion in which interaction between neurological and immune patholo-
gical pathways result in features such as axon loss, inflammation and
demyelination similar to that of multiple sclerosis (MS) (Prineas et al.,
1984; Raine and Wu, 1993; Constantinescu et al., 2011). Experimental
autoimmune encephalomyelitis can be induced by immunization with
self antigens derived from central nervous system (CNS) myelin
components, such as myelin-associated glycoprotein (MAG), myelin
oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) or
proteolipid protein (PLP) (Tuohy et al., 1988; Amor et al., 1994; Johns
et al., 1995). Most of the current drugs that are used for MS have been

efficacious in EAE models (Constantinescu et al., 2011).
Mouse models of EAE typically develop within 1–3 weeks following

induction, but are often monitored for 4–8 weeks to monitor drug
responses, which may require significant quantities of test drug
following long duration studies (Merrill, 2009; Getts et al., 2012).
This makes these studies labor, time and cost intensive.

Zebrafish (Danio rerio), have emerged as a promising model to
study autoimmune demyelination and neuro-degeneration (Buckley
et al., 2008; Fang et al., 2015). The rationale for the experiments
conducted in this manuscript was to develop a model that will be useful
as a quick whole organism screen for drugs being developed for
multiple sclerosis and associated disorders. We believe that a zebrafish
based model can act as a preliminary in vivo model which can help in
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selecting molecules for further in vivo evaluation in conventional
mouse models. A step between in vitro and in conventional mamma-
lian models will help reduce late stage attrition of drug candidates and
help select better candidates for detailed in vivo experimentation.
Thus, we believe that the proposed model will exhibit 3 R benefits.

Myelin oligodendrocyte glycoprotein peptide residues 35–55 is a
myelin component that activates T cells in mice and humans (Koehler
et al., 2002; Weir et al., 2002). This results in T-cell trafficking to the
brain and spinal cord, where these cells initiate CNS tissue destruction
(Weir et al., 2002). Experimental autoimmune encephalomyelitis is
known to be a T-cell dependent disorder because adoptive transfer of in
vitro activated myelin-reactive CD4+ T cells have shown to induce the
disease (Olsson, 1995; Weir et al., 2002). MOG is a commonly used
protein to induce EAE in animal experiments.

Fingolimod hydrochloride (Trade Name: Gilenya) is a marketed
multiple sclerosis drug used for treatment of relapsing multiple
sclerosis to reduce the frequency of relapses. Fingolimod is a sphingo-
sine 1-phosphate receptor modulator, and is a first in class orally
administered drug (Brinkmann, 2009; Chiba and Adachi, 2012).

In this manuscript, we have standardized the regimen of MOG for
disease induction; we have monitored the clinical scores, body weight
and histopathology changes in the fish. We have assessed the rescue of
the clinical symptoms seen due to induction of the disease by using an
approved and marketed drug fingolimod hydrochloride. We have
further validated this model by testing a group of drugs marketed or
under development for the treatment of MS which have been shown to
be efficacious in the EAE model.

2. Animal ethics statement

All zebrafish experiments were performed following animal ethics
guidelines of the institution as per the animal ethics laws of India. A
licensed veterinarian supervised all the experimentation.

3. Materials and Methods

3.1. Animal care and maintenance

Wild type zebrafish (Danio rerio) were procured from local vendor
(Vikrant Aquaculture, Mumbai, India) and maintained in re-circulatory
system with controlled environment conditions with a temperature of
28 °C, and a light/dark cycle of ~14/10 h. They were fed thrice with live
hatched brine shrimp and dry food (supplied by Vikrant Aquaculture,
Mumbai, India) and were maintained as previously described (Banote
et al., 2013). Four to six months old fish were used for these
experiments.

3.2. Chemicals, drugs and drug administration

All drugs were purchased from Sigma Aldrich, USA. All other
routine chemicals were purchased from Sisco Research Laboratories,
Hyderabad, India. Complete Freund's adjuvant (CFA) was also pro-
cured from Sigma Aldrich, USA (Cat. No. F5881). MOG (Sequence:
MEVGWYRSPFSRVVHLYRNGK) was purchased from GenScript HK
Limited, Hong Kong. The drugs were administered using either oral
(Kulkarni et al., 2014) or intra-peritoneal drug administration
(Chaudhari et al., 2013) routes. These methods ensured the delivery
of exact doses of the drugs in terms of milligrams per kilograms (mg/
kg) of body weight.

3.3. Optimization of immunization dose

Experimental autoimmune encephalomyelitis (EAE) was induced
by immunization with myelin oligodendrocyte glycoprotein – 35–55
(MOG). MOG in CFA was injected subcutaneously (s.c.) in the mid
spine regions (near the end of the precaudal vertebrae as depicted in

the Graphical Abstract) using 10 µl bevel-tipped Hamilton syringe with
a volume of 5 µl/fish. Three concentrations of MOG: 0.3, 0.6 and 1 mg/
ml were tested to standardize the dose that showed maximum
efficiency for induction of clinical symptoms, body weight reduction
with low mortality. The vehicle control was injected CFA at the same
site as MOG injection. The different groups were the following: vehicle
control (CFA s.c.), MOG in CFA 0.3 mg/ml s.c., MOG in CFA 0.6 mg/
ml s.c and MOG in CFA 1 mg/ml s.c. The clinical signs were assigned
scores to the surviving fish in the following order: 1: Normal, 2: Loss of
Gait, 3: Mild Paralysis, 4: Total Paralysis. Each of the clinical signs can
be seen in Video 1. All fish were observed for 7 days post treatment for
clinical scores, body weight and mortality.

Supplementary material related to this article can be found online
at http://dx.doi.org/10.1016/j.msard.2016.11.010.

3.4. Validation with the fingolimod hydrochloride (hereafter referred
as fingolimod)

In this study immunization of zebrafish was done on the 1st day
with standardized concentration of MOG. Fingolimod treatment was
performed using two regimens (I) progressing regimen wherein the
treatment started immediately after immunization; and, (II) therapeu-
tic regimen wherein treatment started after disease development on
day 3. The doses of 0.1, 0.3 and 1 mg/kg of fingolimod were
administered orally (p.o.) for 7 days in both the regimens (Dose
volume used: MOG – 10 µl s.c.; fingolimod – 5 µl p.o.). Control group
was injected with CFA s.c. and water p.o.. All fish were observed daily
for 7 days of treatment for clinical symptoms, mortality and body
weights were recorded on days 1 and 7 of treatment. Qualitative
scoring of EAE signs were done in blinded fashion. To ensure that the
scoring is conducted in blinded fashion, video recordings (3–7 min)
were performed each day by the personnel performing drug adminis-
tration, the videos was coded by the supervisor, and the qualitative
scoring was performed by trained personnel not involved in experi-
mental design or immunization or drug administration. In the ther-
apeutic regimen, the treatment started on day 3, hence all observations
that were made on day 7 of treatment were day 9 post immunization,
however, the data reported has been with respect to the days of
treatment. Statistical analysis for clinical scores was performed using
GraphPad Prism® software using Kruskal-Wallis analysis followed by
Dunn's multiple comparison test. Statistical analysis for body weight
loss was performed using One-way ANOVA followed by Dunnet's Post-
hoc test.

The study for each regimen was conducted separately wherein fish
were assigned in six treatment groups with twelve fish per group at the
beginning of treatment. The different groups were the following:
vehicle control (CFA s.c. + water p.o.), MOG control (MOG 0.6 mg/
ml s.c. + water p.o.), Fingolimod 0.1 mg/kg (MOG 0.6 mg/ml s.c.+
Fingolimod 0.1 mg/kg p.o.), Fingolimod 0.3 mg/kg (MOG 0.6 mg/ml
s.c.+ Fingolimod 0.3 mg/kg p.o.), Fingolimod 1 mg/kg (MOG 0.6 mg/
ml s.c.+ Fingolimod 1 mg/kg p.o.).

The spinal sections from four groups of zebrafish: control, MOG,
Fingolimod 1 mg/kg (from prophylactic regimen) and Fingolimod
1 mg/kg (from therapeutic regimen) were analyzed for histopathologi-
cal assessment at the end of the study to know the extent of
inflammation, neurodegeneration and demyelination and also the
effect of fingolimod treatment. The histological evaluation was per-
formed on representative sample of spinal tissue taken from fixed
tissue. Tissue processing and staining was performed as per standard
sequential staining protocols. Infiltration cells were counted by using
ImageJ Analysis Software in the hematoxylin and eosin stained
sections. The region of interest was converted to 8 bit type to clearly
visualize infiltrated cells as intense dark spots and the cells in each
section were counted accordingly (Skundric et al., 2008). Glial cell
count per section was also performed using ImageJ Analysis Software,
in the sections stained using crystal violet stain. In this case, back-
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ground subtraction of the selected area was performed and the cyton
and nucleus in neuron which appear as dark purple spots were counted
(Kluver and Barrera, 1954)). For myelination, the intensity of blue
stained region of spinal cord section, in the luxol fast stained sections,
was measured using RGB Plug-in in ImageJ Analysis Software
(Kiernan, 2007). Statistical analysis was performed using GraphPad
Prism® software using One-way ANOVA followed by Dunnet's Post-hoc
test.

3.5. Detailed validation with additional drugs

Further validation of model was conducted in the prophylactic
regimen of this model. Three drugs: dimethyl fumarate, dexametha-
sone and SR1001; were selected for the validation. Dimethyl fumarate
is a drug approved and marketed for MS and related disorders (Chen
et al., 2014); it was administered orally at doses of 15, 30 and 60 mg/kg
and effects were evaluated for a period of seven days. Dexamethasone is
a corticosteroid and has been shown to be effective in prevention and
treatment of EAE in rodents (Donia et al., 2010); it was tested after
intra-peritoneal administration at 0.3, 1 and 3 mg/kg doses. SR1001 is
a ligand of RAR-related orphan receptors (ROR), which has been
demonstrated to suppress Th17 cell differentiation and cytokine
expressions. It is being developed by The Scripps Research Institute,
and has been proven efficacious in rat model of EAE (Solt et al., 2011).
It was tested in the zebrafish EAE model through intra-peritoneal
administration at 25, 50 and 75 mg/kg doses.

4. Results

4.1. Optimization of immunization dose

Acute onset of EAE in zebrafish after immunization with mylein
oligodendrocyte glycopeptide (MOG), known to develop progressive
paralysis, began to show clinical signs 3 – 4 days from the day of

immunization. The dose of MOG in CFA was standardized as 0.6 mg/
kg, based upon efficiency to induce clinical symptoms, a significant
reduction in percent body weight reduction with low incidence of
mortality (See Fig. 1). The lower mean clinical score to 1 mg/kg dose of
MOG could be attributed to local accumulation or spillage at higher
concentration; however, we did not probe it further as 0.6 mg/kg dose
satisfied the conditions for reasonable disease induction. The vehicle
control group (CFA s.c.) did not show any clinical signs. From the
animal ethics perspective, disease induction in zebrafish resulted in
mortality numbers similar to those observed in conventional mouse
models of EAE published in recent studies (Thell et al., 2016).

4.2. Validation with fingolimod

The phenotypic results of validation study with fingolimod in the
prophylactic and therapeutic regimens have been depicted in Fig. 2 and
can be appreciated in Video 1. We would reiterate here that, the
treatment started on day 3 in the therapeutic regimen, thus, observa-
tions made on day 7 of treatment were day 9 post immunization, and,
data reported has been with respect to the days of treatment.
fingolimod at doses of 0.3 and 1 mg/kg showed marked improvement
of ~10% and 20% respectively, in percentage survival as compared to
MOG immunized group on day 7 post immunization (Fig. 2: (a) & (b)).
Mean clinical scores showed daily improvement with fingolimod
treatment (Fig. 2: (c) & (d)) and on day 7 (Fig. 2: (e) & (f)) showed
statistically significant dose dependent improvement in the clinical
score as compared to the MOG immunized group. The body weight loss
data (Fig. 2: (g) & (h)) suggests dose dependent and statistically
significant improvement in this parameter at doses 0.3 and 1 mg/kg of
fingolimod as compared to MOG group. In the fingolimod 1 mg/kg
group, on day 7, the mean clinical score and body weight loss data was
similar to the vehicle control group suggesting the efficacy of fingoli-
mod upon clinical progression of disease. The phenotypic effects,
recorded on Day 7 of treatment in the prophylactic regimen of the

Fig. 1. Standardization of immunization dose with myelin oligodendrocyte glycoprotein (MOG): (a) Effects of MOG (0.3 mg/kg, 0.6 mg/kg and 1 mg/kg) as mean clinical score of
paralysis like activity seen every day from day 1 to day 7. (b) Mean clinical score on Day 7. Statistical analysis for clinical scores was performed using GraphPad Prism® software using
Kruskal-Wallis analysis followed by Dunn's multiple comparison test comparing all other groups with Vehicle Control. Data are represented using mean and standard error of the mean (
± S.E.M.) clinical score on day 7 post immunization (*p < 0.05, **p < 0.01 and ***p < 0.001) (n=10 at the beginning of treatment). (c) Kaplan-Meier survival analysis performed to know
survival probability after administration of MOG 0.6 mg/kg (n=36 at the beginning of treatment). (d) Effects of MOG on survival. Data are represented as Percentage Survival on day 7
post immunization (n=10).
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Fig. 2. Phenotypic effects seen in validation with fingolimod. Graph labels are: Percent Survival on Day 7, Mean Clinical Score over 7 Days, Mean Clinical Score on Day 7 and Percent
Body Weight Loss on Day 7 in Prophylactic Regimen (a, c, e, g) and Therapeutic Regimen (b, d, f, h). Survival data are represented as Percentage Survival. Clinical score and body weight
loss are represented using mean and standard error of the mean ( ± S.E.M.). For Mean Clinical Score on Day 7 statistical analysis for clinical scores was performed using GraphPad
Prism® software using Kruskal-Wallis analysis followed by Dunn's multiple comparison test comparing all other groups with Vehicle Control. For Percent Body Weight Loss on Day 7;
GraphPad Prism® software was used for conducting One-way ANOVA followed by Dunnet's Post-hoc test comparing all other groups with Vehicle Control (*p < 0.05, **p < 0.01 and ***p
< 0.001) (n=12 at the beginning of treatment).
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model, of Control (untreated), MOG induced EAE and Fingolimod
1 mg/kg body weight treatment in adult zebrafish can be seen in Video
1.

The histopathological evaluation of spinal sections was performed
on four groups: control, MOG, Fingolimod 1 mg/kg (from prophylactic
regimen) and Fingolimod 1 mg/kg (from therapeutic regimen). The
infiltration cell number (Figs. 3(a) and 4(a)) clearly indicates that the
extent of inflammation was more and statistically significant in MOG
immunized fish when compared to vehicle control and fingolimod
treatment at 1 mg/kg (in both prophylactic and therapeutic regimens).
The histopathology of spinal cord region of MOG immunized fish also
showed statistically significant decrease in glial cell count per section
(Figs. 3(b) and 4(b)) when compared to vehicle control and the glial cell
density was found to be within normal limit in 1 mg/kg fingolimod
treated. Luxol fast staining indicates the extent of loss of myelin based
on reduction in intensity of staining (Figs. 3(c) and 4(c)). MOG
immunized fish were found to show slightly low intensity, though
statistically not significant, of myelination when compared to vehicle
control and fingolimod treatments in both regimens. These are aspects
of further refinement of this model; however, in our judgment, the
phenotypic effects and other histopathological changes satisfy the
conditions to consider it as a reasonable and quick screening model
for further investigation.

The efficacy data on fingolimod, as reported to the USFDA suggest
that it has been shown to be efficacious in various rodent models of
EAE (US FDA, 2010). Thus the observations in zebrafish model concur
with those reported in conventional rodent models.

4.3. Detailed validation with additional drugs

Three known drugs have been evaluated, as a part of validation of
the model, and the data is represented in Table 1. Dimethyl fumerate
when administered orally at doses of 5, 15 and 60 mg/kg showed dose
dependent improvement in survival rates. Clinical scores and body
weight loss parameters also improved when compared to the MOG
group, however there was no dose dependence and the data looked like
a saturated effect at the doses tested. Dexamethasone was administered
intra-peritoneally at doses 0.3, 1 and 3 mg/kg. There was an improve-
ment in survival rates, clinical scores and body weight loss when
compared to MOG treated groups; however, at highest dose the clinical
score and body weight loss increased, which could be because of
immunosuppressant effect of dexamethosone. SR1001, a synthetic
ROR ligand, showed improvement in survival rate at one dose i.e.
50 mg/kg when compared to MOG treated group. It showed improve-
ment in clinical score and body weight loss at all doses, however, not in
a dose dependent manner. This could be because the highest dose had
severe mortality.

In summary we have tested wide chemical classes of drugs, which
have different mechanisms of action, through different routes of
administration and at different doses to validate the model.

5. Discussion and conclusions

5.1. Major advantages of the model

We have developed and validated, a novel zebrafish EAE model,
that can be used to test drug candidates for MS and related disorders.
The model proposed by us has the following advantages: (i) Quick: the
efficacy of candidate drugs can be evaluated in a short span of 7 days;
(ii) Low Compound Requirement: the efficacy evaluation can be
performed using very little amounts of test compound, for example,
compound requirement to test at 10 mg/kg dose (sample size of 10 fish
weighing approximately 0.5 g each) for 7 days will be 350 µg. This is a
minuscule quantity as compared to that required for a rodent EAE
study; and; (iii) Inexpensive In vivo Data: the cost of maintaining
zebrafish is very low as compared to rodents and in vivo data can be

Fig. 3. Histopathological effects seen on day 7 of treatment in validation with fingolimod
with four groups: Vehicle control, MOG control, Fingolimod 1 mg/kg (from prophylactic
regimen abbreviated as P) and Fingolimod 1 mg/kg (from therapeutic regimen abbre-
viated as T). Graph labels are: (a) Number of Infiltrated Cells (b) Number of Glial cells (c)
Intensity of Luxol Fast Staining. Data are represented using mean and standard error of
the mean ( ± S.E.M.). GraphPad Prism® software was used for conducting One-way
ANOVA followed by Dunnet's Post-hoc test comparing all other groups with Vehicle
Control (*p < 0.05, **p < 0.01 and ***p < 0.001; n=3).
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obtained quickly and with low quantities of test compound, further
making it inexpensive.

5.2. Relevance in drug discovery

The EAE model has been used for pre-clinical evaluation of

candidates being screened for MS and associated disorders for quite
some time; however, there has been a question on the translational
potential of the animal efficacy data in clinics. Despite this skepticism
EAE is the most widely used model for in vivo efficacy evaluation and
almost all drugs approved for MS were tested in this model before
selecting them as clinical candidates (Constantinescu et al., 2011).

Fig. 4. Black and white images (see electronic supplementary data for colored images) of representative spinal cord histopathological sections for vehicle control, MOG control,
Fingolimod 1 mg/kg (P) and Fingolimod 1 mg/kg (T) seen on day 7 of treatment in validation study with Fingolimod. The arrows (→) point towards examples of cells counted or blue
intensity measured using ImageJ.

Table 1
Validation Study with Known Drugs: Phenotypic effects seen on day 7. Data are represented as mean and standard error of the mean ( ± S.E.M.). Statistical analysis for clinical scores
was performed using GraphPad Prism® software using Kruskal-Wallis analysis of variance followed by Dunn's multiple comparison test, whereas, statistical analysis for body weight loss
was performed using One-way ANOVA followed by Dunnet's Post-hoc test. Comparison is between all other groups with Vehicle Control (*p < 0.05, **p < 0.01 and ***p < 0.001).

Groups Drugs Route of
administration

Number of fish at
the start of study

Drug doses (mg/
kg of body
weight)

Major parameters on Day 7 post immunization

Surival Clinical score Body weight loss
(%) (Mean±S.E.M.) (%) (Mean±S.E.M.)

Vehicle
Control

– Same as Drug 36 – 100 1.00 ± 0.0 0.49 ± 1.19

MOG
Control

– Subcutaneously at Mid
Spine

36 – 68 3.7 ± 0.2 *** 31.66 ± 3.21 ***

Positive
Control

Fingolimod Per Oral 36 1 82 1.0 ± 0.0 5.22 ± 2.33

Test Drugs Dimethyl Fumerate Per Oral 12 15 40 2.0 ± 0.6 * 2.77 ± 1.06
30 64 2.7 ± 0.6 *** 1.98 ± 2.32
60 70 2.5 ± 0.7 *** 4.67 ± 1.85

Dexamethasone Per Oral 12 0.3 67 2.4 ± 0.2 ** 1.98 ± 2.32
1 67 1.4 ± 0.2 4.67 ± 1.85
3 75 3.8 ± 0.3 ** 6.68 ± 1.40*

SR1001 Intra-peritoneal 12 25 50 2.1 ± 0.2 * 6.68 ± 1.40*
50 67 1.2 ± 0.1 2.41 ± 1.10
75 33 2.4 ± 0.3 * 10.57 ± 2.31***
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Therefore, we believe that this model will play a significant role in pre-
clinical evaluation of drug candidates in the near future as well. The
zebrafish model for EAE can be used preceding the use of the rodent
EAE models. This model can be used as a filter at lead optimization
stage wherein substantial number of compounds selected through in
vitro screening can be filtered using this model. The most promising
compounds thereafter can be screened in the rodent models. Using all
the advantages of the zebrafish models stated above, late stage attrition
of compounds and associated costs can be saved, furthermore, the
possibility of oral/intra-peritoneal drug administration can indicate the
their dose range for rodent testing.

There is an obvious question related to the translation of zebrafish
data to conventional mammalian models. Zebrafish are being increas-
ingly proposed as screening tools for potential remyelination therapies
due to their regenerative abilities, suggesting its relevance as a
screening tool for MS and related disorders (Preston and Macklin,
2015). However, all the models suggested are larval models, which
even though act as alternative to animal experimentation, have
limitations of (i) not having fully developed organ systems, (b) inability
to test poorly soluble drugs, and, (c) inability to evaluate drug kinetics
and carrying out pharmacokinetic – pharmacodynamic correlation. All
these factors attribute to the questions relating to translation of
zebrafish data to other mammals. The use of adult zebrafish and its
ability to overcome the limitations of a larval model have been
suggested in several publications before (Banote et al., 2013;
Chaudhari et al., 2013; Kulkarni et al., 2014). Thus, the model
suggested here promises to overcome most of these limitations.

The study was performed using a mouse MOG peptide previously
shown to be encephalitogenic in mice (Bernard et al., 1997), however
upon analysis of the zebrafish genome, it appears that a direct
homologue of MOG has not been reported yet and is unlikely to be
present (Birling and Nussbaum, 1995). Homology searches of the
peptide used showed some similarity (~40%) with zebrafish butyro-
philin-like molecules (NCBI Sequence ID: NP_001103953.1), involved
in lipid metabolism, and cross-reactive antibodies between MOG and
butyrophilin have been reported (Guggenmos et al., 2004). However,
whilst this peripheral antigen could account for molecular mimicry
triggering MOG-reactive autoimmunity, it is not clear how this would
manifest as a CNS restricted disease. Alternatively this peptide could
induce an unusual cross reactivity at the T cell level, as it has been
reported that T cells specific for MOG 35–55 peptide can also react
with neurofilament medium 18–30 and such that the MOG peptide can
induce disease in MOG-deficient mice (Krishnamoorthy et al., 2009).
Repetition of these results in this study can confirm the value of the
model and further work will be needed to determine the target auto-
antigen driving the paralysis in the zebrafish.

Zebrafish express orthologues of glucocorticosteroid receptors
(Schaaf et al., 2009), Nrf2 (Mukaigasa et al., 2012) and ROR genes
(Katsuyama et al., 2007), which could mediate the effects of the
immunomodulatory drugs (dexamethasone, dimethyl fumarate and
SR1001 respectively) used here. In addition, although zebrafish have
spingosine-1-phosphate receptors (Tobia et al., 2012), they do not have
lymph nodes (Renshaw and Trede, 2012). As limiting egress of
lymphocytes from lymph nodes is a main mechanism of action of
fingolimod in mammals (Brinkmann, 2009), it remains to be estab-
lished whether the mechanism of action of fingolimod in zebrafish is via
influences of egress from the spleen or other surrogate lymphoid tissue
present in zebrafish (Renshaw and Trede, 2012). Alternatively, there
could be direct influences on CNS endothelial (Tobia et al., 2012), as
occurs in mammals (Spampinato et al., 2015).

An argument can be made regarding the relation of paralysis
observed in fish to demyelination as the phenotypes seen in fish might
be due to inflammation near the site of injection. This argument can be
countered by the following facts of the experiment: (a) the control
group was injected with CFA s.c. at the same site as MOG injected
groups and did not show the paralytic phenotypes suggesting that the

paralysis was due to MOG; (b) MOG induced inflammation is an
established method for creating an EAE models; and; (c) the MOG
induction has shown that on day 7 post immunization the intensity of
myelination was slightly reduced in the luxol fast stained sections. The
aspects of detailed pathological assessment, booster injections, larger
set of drugs, biomarkers, endpoints other than mortality, culling the
animals before death, etc. will need to be further investigated to refine
this model for optimal utilization.

We propose this model to be a potential tool for quick assessment of
candidate drugs and also to study disease pathobiology. The present
manuscript can be inspiring to researchers in the field to explore and
refine this model further as larger network of laboratories will be
required to make it robust for use of industry and academia.

6. Conclusions

This is the first report, to the best of our knowledge, suggesting an
in vivo adult zebrafish EAE model. It is possibly the quickest and most
inexpensive in vivo model proposed for drug discovery of MS and
related disorders. This model will need to undergo a wider validation
by using larger set of drugs, identification of biomarkers and through
larger network of zebrafish laboratories. There is scope to further
improve this model for drug screening as well as for biological
research; however, this will be the starting point of all such efforts.
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A B S T R A C T

Introduction: Adult zebrafish pharmacology is evolving rapidly for creating efficacy and safety models for drug
discovery. However, there is very limited research in understanding pharmacokinetics (PK) in adult zebrafish.
Methods for understanding PK will help in conducting pharmacokinetic – pharmacodynamic (PK-PD) correla-
tions and improving the quality and applicability of data obtained using zebrafish.
Methods: We conducted adult zebrafish PK and brain penetration studies on two known compounds (irinotecan
and lorcaserin) with distinct PK and brain penetration properties using validated LCMS/MS method. Irinotecan
was studied at a dose of 100 mg/kg i.p. and levels of the parent drug and active metabolite SN-38 were mea-
sured. Loracserin was studies at a dose of 10 mg/kg by two routes i.p. and p.o.
Results: Zebrafish PK and brain penetration profiles for both compounds were very similar to that of higher
mammals including humans. Irinotecan was metabolised to SN-38 in ratios similar to ratios seen in other species
and the compound had long half life with very low brain penetration in our studies. Loracasin was highly
permeable in brain as compared to the exposure in blood, with long half life and high relative bioavailability,
similar to other mammalian species including humans.
Discussion: Adult zebrafish PK studies are relatively an unexplored area of zebrafish research. The zebrafish data
for key parameters of irinotecan and loracserin shows a high correlation to the data from higher species, in-
cluding human. This report explores and discusses the use of adult zebrafish as a predictive PK tool for higher
animal studies.

1. Introduction

Adult zebrafish are being used for various pharmacological and
safety evaluation including neuropharmacology, infectious diseases,
cancer models, cardiovascular safety, seizure liability, etc. (Khan et al.,
2017; MacRae & Peterson, 2015; Sridevi, Anantaraju, Kulkarni,
Yogeeswari, & Sriram, 2014). However, understanding pharmacoki-
netics (PK) and tissue distribution is essential to carry out pharmaco-
kinetic – pharmacodynamic (PK-PD) correlation and optimize the uti-
lization of zebrafish (Kulkarni et al., 2014; Kalueff et al., 2016; Kim
et al., 2017). Literature reports have demonstrated that factors that
impact absorption, distribution, metabolism and excretion (ADME)
properties of drugs are conserved in zebrafish. These factors include

structural and functional aspects of intestine and kidneys, phase I and II
metabolism and blood-brain-barrier structure (Alderton et al., 2010;
Kim et al., 2017; MacRae & Peterson, 2015). However, an under-
standing of PK-PD correlation in an in vivo data has multiple benefits
over theoretical predictions of drug design as it helps in not just de-
termining the drugability of a candidate molecules, but also provides
information about dosage, probable dosing intervals and designing of
experiments in conventional animal models with minimizing repeti-
tions, following 3Rs of animal ethics and reduced costs of experi-
mentation (Jang, Harris, & Lau, 2001).

There have been plenty of experimental reports on adult zebrafish
pharmacology and toxicology; however, there have been very few PK
reports with our laboratory being the first to report oral drug
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administration method and detailed PK procedure using Dried Blood
Spots (DBS) (Kulkarni et al., 2014). The present manuscript is in con-
tinuation with our effort to study the predictive value of zebrafish for
human drug discovery. In the present study we have attempted to
correlate PK and brain penetration data of adult zebrafish with higher
mammals including humans. For the purpose of this study, two com-
pounds with distinct PK properties were selected; viz. Irinotecan, and
Lorcaserin. Irinotecan was selected as a compound that was metabo-
lised to SN-38 and the brain penetration of both these compounds was
below the level of detection. Lorcaserin was selected as compound that
had very high brain penetration and retention.

2. Methods

2.1. Animal ethics statement

All experiments were performed following animal ethics guidelines
of Dr. Reddy's Institute of Life Sciences, Hyderabad, India. These
guidelines are as per the animal ethics laws of India. A licensed veter-
inarian supervised all the experimentation.

2.2. Animal care and maintenance

Wild type zebrafish (Danio rerio) were procured from local vendor
(Vikrant Aquaculture, Mumbai, India) and maintained in re-circulatory
system with controlled environment conditions with a temperature of
28 °C, and a light/dark cycle of ~14/10 h. They were fed thrice with
live hatched brine shrimp and dry food and were maintained as pre-
viously described (Banote, Koutarapu, Chennubhotla,
Chatti, & Kulkarni, 2013; Kulkarni et al., 2017). Four to six months old
fish were used for these experiments.

2.3. Drugs, chemicals, instruments and materials

All drugs were purchased from Sigma Aldrich, USA. Heparin and
other routine chemicals were purchased from Sisco Research
Laboratories, Hyderabad, India. The drugs were administered using
either oral (p.o.) (Kulkarni et al., 2014) or intra-peritoneal (i.p.) drug
administration (Chaudhari, Chennubhotla, Chatti, & Kulkarni, 2013)
routes. These methods ensured the delivery of exact doses of the drugs
in terms of milligrams per kilograms (mg/kg) of body weight.

The HPLC system consisted of an Agilent 1200 quaternary pump,
auto sampler with thermostat, column oven, and online degasser, triple
quadrupole mass spectrometer (Mass hunter software version B.03.01)
with multimode source (Agilent Technologies, Inc. 2850 Centerville Rd.
Willington, DE 19808-1644, USA). FTA® Elute blood spot cards (DMPK
type-B cards) were supplied by Whatman (Sanford, USA), Ultrasonic
bath from Bandelin sonorex sonicator, centrifuge from Eppendorf
(model# Centrifuge 5810), and Milli Q Water system from Millipore
(model #Gradient A10).

2.4. Pharmacokinetic studies

We conducted zebrafish PK and brain penetration studies on two
known compounds with distinct PK properties. The details of the
methodology for extraction and measurement of Irinotecan and
Loracserin has been described in Table 1. Irinotecan was administered
i.p. at a dose of 100 mg/kg and blood and brain samples were collected
at 0, 0.08, 0.17, 0.5, 1, 2, 4 and 8 h. Lorcaserin was administered by two
routes i.p. and p.o. at a dose of 10 mg/kg and blood and brain samples
were collected at 0, 0.08, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 h. The doses for
the study were selected considering the ability to correlate data with
other species based on literature reports. The doses that were closest to
most of data available on humans were selected for the zebrafish stu-
dies. As compared to loracserin, irinotecan was studied for lesser

Table 1
Details of dose, route of administration, sampling time points, methodology for extraction and LCMS/MS protocol for measurement of Irinotecan and Loracserin has been described in this
table.

Drug Dose & route Time points (h) Extraction method LC-MS/MS protocol

Irinotecan (SN-38 by chromatographic
assessment)

100 mg/kg; i.p. 0, 0.08, 0.17, 0.5, 1, 2,
4, 8

Extracting solvent: acetonitile
Centrifugation: 14,000 rpm,
10 min
Volume separation: 5 μl

Column: Zorbax Bonus RP 50 × 4.6 mm, i.d-
3.5 μm.
Mobile phase:
A: 5 mM ammonium acetate
B: acetonitile
Volume of injection in LCMS/MS: 20 μl
Flow rate: 0.6 ml/min
Run time: 6 min
Ion mode: MRM mixed mode.
Internal standard: indinavir
T/%B (Gradient): 0/25, 0.10/25, 0.15/95,
6.0/95
MRM: irinotecan 587 > 167.1 (polarity-
positive)
SN-38392.8 > 349.1 (polarity-positive)
Indinavir 614.1 > 421.1 (polarity-negative)
LLOQ: 5 ng/ml (irinotecan) and 2.5 ng/ml
(SN-38)

Lorcaserin 10 mg/kg; i.p., p.o. 0, 0.08, 0.25, 0.5, 1, 2,
4, 6, 8, 24

Extracting solvent: acetonitile
Centrifugation: 14,000 rpm,
10 min
Volume separation: 5 μl

Column: X Bride™ C-18, 46 × 5.0 mm, i.d-
3.5 μm
Run time: 8 min
Mobile phase:
A: 0.1% formic acid in water
B: acetonitile
Volume of injection in LCMS/MS: 5 μl
Ion mode: ESI positive MRM
Internal standard: Rolipram
T/%B (gradient): 0/20, 0.50/20, 2/98, 8/98
MRM:
Lorcaserine 196 > 129.1 (polarity-positive)
Rolipram 276 > 191 (polarity-negative)
LLOQ: 5 ng/ml (loracaserin)
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number of time points and shorter duration of 8 h considering the fact
that irinotecan was administered by i.p. and thus its PK profile might be
shorter than that of lorcaserin that was tested both p.o. and i.p.

2.5. Preparation and analysis of blood and brain samples

At every time point, three adult male fish were sacrificed using an
aesthetic tricaine (MS-222) for blood and brain sample collection.
Blood and brain were collected and processed using reported methods
(Déglon, Thomas, Mangin, & Staub, 2012; Jagadeeswaran & Sheehan,
1999; Kulkarni et al., 2014). In brief, blood (7–10 μl/fish) was collected
by cardiac puncture using heparin rinsed insulin syringes and collected
in heparin containing tubes. Brain was collected by incising the head
portion followed by removal of eyes and skull with forceps. Thereafter,
the brain homogenate was prepared in Dulbecco's Phosphate Buffer
Saline (DPBS) using Qiagen's Tissue homogenizer.

Whatman FTA® DMPK Cards were used for drug analysis using a
method described before (Déglon et al., 2012; Kulkarni et al., 2014). In
brief, 7 μl aliquots of sample from blood and homogenized brain were
spotted on the DMPK type-B cards, followed by, punching out of a 3 mm
diameter disc from the centre of each DBS, followed by extraction using
a protocol described for each drug in Table 1. The details of calibration
curves and representative chromatograms have been provided in Sup-
porting information.

2.6. Pharmacokinetic parameter calculation and correlation with other
species

PK parameters of blood and brain were calculated using PKSolver;
an add-in program for in Microsoft Excel using non-compartmental
analysis (Zhang, Huo, Zhou, & Xie, 2010). Key PK parameters for each
drug were correlated with literature data about rats, primates and

humans. Key parameters for each drug were as follows: Irinotecan:
percent metabolism to SN-38, half life and brain to blood ratio; and;
Lorcaserin: blood/plasma and brain half life, brain to blood ratio and
relative oral exposure.

3. Results

The results of analysis of blood and brain for levels of the test drugs
at various time points have been presented in Figs. 1 & 2 (Fig. 2 has a
semi-log graph where the logarithmic concentrations have been de-
picted to reflect the differences in blood and brain) and the PK para-
meters have been presented in Table 2. The results of the correlation of
data between zebrafish and other species have been presented in
Table 3. Results of each of the drugs tested in this study are being de-
scribed as follows:

3.1. Irinotecan

Irinotecan was administered to zebrafish i.p. and blood and brain
concentrations were measured at different time points. The peak blood
concentration (Cmax) of 10.67 ng/ml was observed at 10 min (Tmax)
time point with a half life (t½) of 6.9 h and exposure (AUC(0–t)) of
618.45 h*ng/ml. Similarly, peak brain concentration (Cmax) of 491 ng/
ml was observed at 5 min time point (Tmax) with a half life (t½) of
1.89 h and exposure (AUC(0–t)) of 29.61 h*ng/ml.

Irinotecan has a major active metabolite SN-38 and thus is an im-
portant analyte to study (Ramesh, Ahlawat, & Srinivas, 2010). The im-
portant blood kinetic parameters of SN-38 were: Cmax = 26.33 ng/ml;
Tmax = 0.5 h; t½ = 2.36 h; AUC(0–t) = 40.14 h*ng/ml. The levels in
brain were below the quantification threshold that could not be ana-
lysed using our method.

Zebrafish data was correlated with rats, primates and humans

Fig. 1. Concentrations (ng/ml) of the test drugs at various time points have been presented as mean ± S.D. The graphs have been assigned alphabetical order as A. Irinotecan, B. SN-38,
C. Loracserin – Oral, and, D. Lorcaserin – Intraperitoneal. Sample size; n = 3 fish/time point.
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(based on literature data in case of the later three species) for the key
parameters of half life, percentage metabolism to SN-38 and %
blood:brain ratio. The data in primates and humans was after in-
travenous infusion of 30 min and 90 min respectively (USFDA, 2015).
The data has been presented in Table 3 and correlation has been dis-
cussed in the discussion section.

3.2. Lorcaserin

Lorcaserin was administered to zebrafish by two routes, p.o. and
i.p.; blood and brain concentration were measured at different time
points. The i.p. administration and PK evaluation was conducted with a
purpose to assess bioavailability after oral administration with respect
to parenteral administration. The important blood kinetic parameters of
lorcaserin after oral administration were: Cmax = 12.24 & 233.16 ng/ml
for blood and brain respectively; Tmax = 0.08 h for both blood and
brain; t½ = 7.73 & 7.95 h for blood and brain respectively;

AUC(0–t) = 71.29 & 424.03 h*ng/ml for blood and brain. All the PK
parameters in blood and brain after intraperitoneal administration of
lorcaserin are presented in Table 2, however, the key parameter to
report here is an AUC(0–t)of 99.22 h*ng/ml.

Data correlation in case of lorcaserin was conducted for the key
parameters of blood/plasma and brain half life, % blood:brain ratio and
% relative oral exposure. The data has been presented in Table 3 and
correlation has been discussed in the Discussion section.

4. Discussion

Adult zebrafish pharmacokinetics has been largely a neglected as-
pect of zebrafish research despite a large number of pharmacological
models being developed and reported using this model. There is a need
to generate more data and publish it in for the purpose of understanding
the validity and predictive ability of zebrafish data by scientific com-
munity. The first pharmacokinetic report, to the best of our knowledge

Fig. 2. Logarithmic concentrations of the test drugs at various time points have been presented as mean ± S.D. The graphs have been assigned alphabetical order as A. Irinotecan, B. SN-
38, C. Loracserin – Oral, and, D. Lorcaserin – Intraperitoneal. Sample size; n = 3 fish/time point.

Table 2
Pharmacokientic parameters of Irinotecan, SN-38, Locarserin – Oral, Loracserin – Intraperitoneal derived from zebrafish blood and brain samples. Sample size: n = 3 fish/time points.

Parameter Unit Irinotecan SN-38 Locarserin – oral Loracserin – intraperitoneal

Blood Brain Blood Brain Blood Brain Blood Brain

Lambda_z 1/h 0.10 0.37 0.29 – 0.09 0.09 0.07 0.03
t½ h 6.94 1.89 2.36 – 7.73 7.95 10.17 26.40
Tmax h 0.17 0.08 0.50 – 0.08 0.08 0.08 1.00
Cmax ng/ml 491.00 10.67 26.33 – 12.24 233.16 18.00 176.00
Tlag h 0.00 0.00 0.00 – 0.00 0.00 0.00 0.00
Clast_obs/Cmax 0.11 0.06 0.04 – 0.07 0.02 0.11 0.06
AUC0–t h*ng/ml 618.45 29.61 40.14 – 71.29 424.03 99.22 730.66
AUC0–inf_obs h*ng/ml 1155.94 31.43 43.54 – 81.22 472.43 128.58 1149.62
AUC0–t/0-inf_obs 0.54 0.94 0.92 – 0.88 0.90 0.77 0.64
AUMC0–inf_obs ng/ml*h^2 11,539.33 105.81 135.32 – 825.35 4077.66 1968.18 30,206.40
MRT0–inf_obs h 9.98 3.37 3.11 – 10.16 8.63 15.31 26.28
Vz/F_obs (mg/kg)/(ng/ml) 0.87 – – – 1.37 – 1.14 –
Cl/F_obs (mg/kg)/(ng/ml)/h 0.09 – – – 0.12 – 0.08 –
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was by Zang, Morikane, Shimada, Tanaka, and Nishimura (2011),
wherein, the efficiency of oral delivery of felbinac through gluten
granules was confirmed using a HPLC -based method. Thereafter, we
published the first report describing oral drug administration, use of
DBS cards for extraction of analyte and measurement using LCMS/MS
method (Kulkarni et al., 2014). The most recent report on this subject
was by Kim et al. (2017). This study was conducted to investigate the
possibility of using zebrafish as a screening tool to estimate partition
coefficient (Kp, brain) to predict drug brain penetration in humans. All
these studies are suggestive of the fact that zebrafish can act as model
organism for studying PK and brain penetration aspects which are es-
sential for taking decisions during the process of drug discovery. In the
present study, we choose compounds that show distinct PK properties,
especially properties that led to their pharmaceutical development and
therapeutic regimen.

In case of irinotecan; zebrafish data was correlated for the key
parameters of half life, percentage metabolism to SN-38 and % blood:-
brain ratio. The parameters of half life and % blood:brain ratio were
correlated as these determine the dosing frequency and tissue distribu-
tion to an organ which is separated by blood brain barrier. Furthermore,
irinotecan is also considered as a pro-drug from the clinical and ther-
apeutic perspective due to it is metabolised to SN-38 which is 100–1000
fold more potent than irinotecan (Ramesh et al., 2010). Therefore, the
percentage metabolism to SN-38 in zebrafish was essential to determine
the predictive value of zebrafish for metabolic conversion. This data
supplements the observations of Alderton et al. (2010); where authors
had demonstrated that zebrafish perform phase I and phase II metabo-
lism reactions similar to other mammals. The blood half life of irinotecan
in zebrafish suggested a profile of a once a day drug. This data, if it had
been generated in zebrafish during the process of drug discovery, cor-
related with primates and human but not with rats. Despite the fact that
the data in primates and humans is based on intravenous infusion of 30
and 90 min, the data in zebrafish is predictive of a once a day admin-
istration regimen. We would like to put a caveat here, that, irinotecan
has an active metabolite with variable pharamcokinetics and in clinical
situation the dosage regimen is decided specific to patient depending on
metabolism and half life of both irinotecan as well as SN-38 (Mathijssen
et al., 2001). Similarly, the data on brain penetration suggests zebrafish
to be better predictor for primates (which are closer to humans) when
compared to rats. Though there is high inter-species variability, the ir-
inotecan data in rats is suggestive of negligible brain penetration

whereas zebrafish data suggests the brain penetration being low but not
negligible, a trend observed in primates too. This result has been vin-
dicated by the clinical reports (that do not clearly provide brain con-
centrations) of use of irinotecan in glioma patients wherein, efficacy has
been attributed to irinotecan permeability across the blood brain barrier
and conversion to SN-38 in brain (Vredenburgh, Desjardins,
Reardon, & Friedman, 2009). Furthermore, the large difference in blood
and brain t½ (6.94 and 1.89 h, respectively) in zebrafish irinotecan data
suggests the possible impact of P-glycoprotein efflux on irinotecan, trend
known to impact brain penetration of irinotecan in higher species in-
cluding humans (Adkins et al., 2015).

Conversion of irinotecan to SN-38 was higher in zebrafish as com-
pared to other species; however, the data still indicates a low meta-
bolism (~7%) of irinotecan, which is consistent with other spices. It re-
emphasises conservation of metabolic pathways and blood brain barrier
permeability in zebrafish with respect to higher mammals (Alderton
et al., 2010; Jeong et al., 2008; Kim et al., 2017). It is important to note
that the metabolism, elimination and distribution of irinotecan are
highly complicated though various enzymes like carboxylesterases
UGT1A1 mediating glucuronidation, CYP3A4, P-glycoprotein, etc. and
vary from patient to patient (Mathijssen et al., 2001). Therefore, one of
the important next steps of this manuscript may be evaluating these
mechanisms in zebrafish.

Lorcaserin, a selective 5-hydroxytryptamine (5-HT2C) receptor ago-
nist, an appetite lowering drug; has distinguishing PK properties of high
brain penetration, long half life in both blood an brain and good bioa-
vailability (Thomsen et al., 2008). As the drug acts on the central ner-
vous system, these parameters are essential drugable properties of this
drug. The data in zebrafish shows that these parameters correlate with
all mammalian species including humans. Even though the actual ratios
of these parameters have high inter species variability, the trend de-
monstrates that, if zebrafish data was available during the process of
drug discovery, it would have helped in decision making regarding
drugability of the candidate. In terms of metabolism, multiple pathways
including involvement of almost all cytochrome P450 enzymes (CYP)
(Gustafson, King, & Rey, 2013) are involved in Loracaserin and study of
drug interactions through these pathways could be a logical next step to
this manuscript.

The limitations of using DBS cards for studying tissue penetration
especially brain penetration is that the data obtained for apparent tissue
distribution (Kp) is a surrogate representation of unbound brain-to-

Table 3
Key (distinct) pharmacokinetic parameters of (A) irinotecan and (B) lorcaserin in zebrafish, rats, primates and humans. Abbreviations: p.o. – per os (oral); i.p. – intraperitoneal injection;
i.v. – intravenous, i.v. inf. – intravenous infusion, n.a. – not available/accessible.

Species Dose/route Key (distinct) pharmacokinetic parameters

(A) Irinotecan
Plasma/blood half life (t½) % Metabolism to SN-38 (based on AUC0–t) % Brain:blood ratio (Kp, based on AUC0–t)

Zebrafish 100 mg/kg i.p. 6.9 6.4 4.78
Rat 130 mg/kg i.v.a 2.1a 0.8a < 1%a

Primate 225 mg/m2 i.v. inf.b 4.9b 2.4b 13b

Human 125 mg/m2 i.v. inf.c 5.8c 2.3c n.a.

(B) Lorcaserin
Plasma/blood half life (t½) Brain half life (t½) % Brain:blood ratio (based on AUC0–t) % Relative oral exposure

p.o.: i.p./i.v. (Kp, based on AUC0–t)
Zebrafish 10 mg/kg p.o. 7.7 8.0 595 72
Rat 10 mg/kg p.o.d,e 4.9d 4.7d 1374d 93e

Primate 10 mg/kg p.o.d,e n.a. n.a. 1010e 51e

Human 10 mg/kg p.o.e 11e n.a. 170e n.a.

a USFDA, 2015.
b Blaney et al., 1998.
c USFDA, 2014.
d Thomsen et al., 2008.
e USFDA, 2011.
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plasma concentration (Kp, uu). The acceptability of surrogate data is
dependent on the variability in the unbound faction between tissues.
Therefore, in case on new chemical entities it has been advised to carry
out in vitro assessment of this variability and then use appropriate
conversion to calculate tissue distribution (Rowland & Emmons, 2010).

A major limitation of using adult zebrafish for PK studies is the dif-
ficulty to conduct intravenous (i.v.) drug administration and thus in-
ability to directly evaluate the PK parameters after administration in the
blood vessel/s. There has been one report by Pugach, Li, White, & Zon,
2009; wherein retro-orbital injection has been attempted to deliver cells
directly in the blood vessels, however, there have been no reports on
using this technique to deliver drugs. While the retro-orbital route could
be a subject of further study, i.p. route has been considered as a pre-
ferable parenteral route of administration in zebrafish for various
pharmacological studies. Intrapertinoeal (i.p.) route is not an in-
travascular route and first pass metabolism may be similar to oral, yet
relative analysis of p.o. v/s i.p. does provide confidence about the gut
absorption (as compared to parenteral) and resulting relative oral drug
exposure during discovery of orally administered drugs. This informa-
tion can be helpful as it is a major decision criterion for establishing the
drugability of oral drug candidate. Similarly the half-life data obtained
after i.p. administration for a drugs meant to be administered i.v. might
not reflect the correct trend due the quicker onset of metabolism. In such
cases in silico or in vitro information about metabolism could be used
along with zebrafish data for taking decisions in drug discovery. Ex-
perimentation and correlation of such compounds will be required to
further improve the utility of this model. While these limitations are
overcome, the adult zebrafish model for PK can definitely help in PK-PD
correlation where the efficacy has been studied in adult zebrafish, a field
that is rapidly developing especially for neuropharmacology.

In conclusion, zebrafish PK has been an understated and under-
studied aspect in zebrafish research. It needs to be explored in details
across various laboratories for optimal utilization of zebrafish model
organism for pharmaceutical and disease biology research. The ex-
periments reported in this manuscript demonstrate the correlation of
zebrafish PK data to higher mammalian species including humans.
Despite the variations in the actual values, this study suggests the utility
of zebrafish in understanding the trend of pharmacokinetic data of
candidate drugs in early drug discovery process.
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