
Study in Data Reduction and Multi-Class Classification for
Distributed Data

THESIS

submitted in partial fulfilment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

GOVADA ARUNA

under the supervision of

Prof. Sanjay K. Sahay

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (Rajsthan) INDIA

2018

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Study in Data Reduction and

Multi-Class Classification for Distributed Data submitted by Govada Aruna

ID No. 2009PHXF0008G for award of Ph.D. of the Institute, embodies original work

done by her under my supervision.

Signature of the Supervisor

Name : Dr. SANJAY KUMAR SAHAY

Designation : Associate Professor

Date: 15/10/2018

Declaration

I, Govada Aruna, declare that this thesis titled, Study in Data Reduction

and Multi-Class Classification for Distributed Data, submitted by me under the

supervision of Prof. Sanjay K. Sahay is a bonafide research work. I also declare that

it has not been submitted previously in part or in full to this University or any other

University or Institution for the award of any degree.

Signature of the student :

Name of the student : Govada Aruna
ID number of the student : 2009PHXF0008G
Date : 15/10/2018

.

Dedicated

To

Almighty God,
My Parents - Radha & Wilson,

My Husband - John Sekhar,

My Children - Jessy & Hassy.

ACKNOWLEDGEMENT

I would like to acknowledge the love and mercy of the Divine Providence in the

entire work who helped to overcome all the obstacles by guiding and providing me the needed

help through various people and whose faithfulness is incomprehensible. This thesis would not

have been possible without the guidance and the help of several individuals who in one way or

another contributed and extended their valuable assistance in the preparation and completion of

this study. It is a pleasure to convey my gratitude to them all in my humble acknowledgement.

I would like to thank my supervisor Prof. Sanjay K. Sahay who encouraged and

directed me towards the research. He supported me throughout my thesis with his patience and

knowledge whilst allowing me to work in my way. I could not have imagined having such a

better and friendly supervisor for my Ph.D. work.

I also take this opportunity to thank Prof. G. Raghurama, Director, Birla Insti-

tute of Technology and Science Pilani, K. K. Birla Goa Campus, Prof. Srinivasan Ashwin,

HOD, Department of Computer Science & Information Systems, BITS, Pilani, K. K. Birla Goa

Campus, Prof. Souvik Bhattacharyya Vice Chancellor, BITS, Pilani, Dr. Kumar Mangalam

Birla, Chancellor, BITS, Pilani, for giving me the opportunity to serve in this prestigious in-

stitute as a faculty while pursuing my research. My heartfelt gratitude to Prof. SasiKumar

Punnekkat and late Prof. Sanjeev K. Aggarwal former directors, BITS, Pilani, K. K. Birla

Goa Campus for their motivation and encouragement.

I wish to thank the Department Research Committee members and the Convenor

Dr. A. Baskar. I also express my sincere thanks to Prof. Srinivas Krishnaswamy, Dean,

Academic Research (Ph.D. Programme), BITS, Pilani, Prof. Bharat Deshpande, Associate

Dean, Academic Research, BITS, Pilani, K. K. Birla Goa Campus for providing the necessary

facilities. I also wish to thank Prof. Biju Raveendran, Faculty In charge, Computer Center

for providing me the required computational facilities.

My sincere thanks also goes to my Doctoral Advisory Committee (DAC) members

Prof. Bharat M. Deshpande, Associate Professor, Department of Computer Science and

Information Systems and Prof. Chandradew Sharma, Assistant Professor, Department of

Physics, BITS Pilani, K. K. Birla Goa CPmpus for preliminary assessment of the thesis and

v

helpful suggestions.

I would like to thank Prof. Neena Goveas, Professor, Department of Computer

Science and Information Systems, BITS Pilani, K. K. Birla Goa Campus for her moral support

and guidance. I also thank the faculty members and research scholars of the Department of

Computer Science and Information Systems, BITS, Pilani, K. K. Birla Goa Campus for their

kind cooperation.

I would like to thank Prof. Ajit Kembhavi, former Director, Prof. Kandaswamy

Subramanian, Dean Visitor Academic Programmes and Prof. Dipankar Bhattacharya, Se-

nior Professor Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune for

providing the hospitality and computation facilities. Also, I would like to thank Microsoft

Research India for providing the travel grant to present the paper at the 11th International con-

ference on MLDM at Hamburg, Germany.

I heartily thank all my family members, relatives and my friends for their prayers

and constant encouragement to finish this work successfully. I would like to thank my siblings

Bhaskar Govada & Kalyani Nedurumalli for their immense love, care and support. I would like

to take this opportunity to express my deep gratitude to my mother Radha Govada and to my

father Wilson Govada who took the lead to heaven before the completion of this work. Without

their guidance, love and support my dream could have never become true.

Finally, I would like to thank my beloved husband John Sekhar Garikimukku for

his immeasurable love and support. I am forever indebted to my wonderful children Soumini

John Garikimukku and Samulya John Garikimukku for their love and understanding. This

journey would not have been possible without their understanding and constant support.

GOVADA ARUNA

vi

ABSTRACT

In today’s information era, a tremendous amount of data are getting collected with

a very high rate at different locations by various scientific projects, business organizations, so-

cial sites, etc. These data may not be useful and hard to interpret unless it is analyzed efficiently

and accurately. To extract useful knowledge from the collected large data is challenging, even

if processing power doubles in every two years. Hence, data mining (a collection of the set

of tools) is becoming very much popular to deal with such a large amount of data for the

knowledge discovery. In this, traditional approach, i.e., centralized processing of data is chal-

lenging and inefficient (limited bandwidth and expensive computational resources) to analyze

distributed large data sets to find out the hidden patterns in it. Therefore, traditional data mining

techniques have to be redesigned to analyze the data in a distributed fashion.

The knowledge discovery from these large data will not be achieved unless novel

distributed data mining algorithms are developed to analyze decentralized petascale data flows,

often from multiple distributed archives. Although several distributed computing frameworks

are being developed for such applications, there is a need for scalable data mining algorithms

that can operate in distributed computing environments with low communication cost and good

accuracy. Therefore, this thesis discusses some novel algorithms/approaches/methods for data

reduction and efficient classification by using both supervised and semi-supervised learning

techniques.

First, a bottom-up approach is discussed in chapter 2 to estimate the covariance

matrix for vertically partitioned data in a decentralized manner. The speed-up in the computa-

tion of covariance matrix is obtained by computing local covariances in parallel and distributing

the cross-covariances among the nodes. Then in chapter 3, we present a data reduction tech-

nique named Distributed Load Balancing Principal Component Analysis for distributing the

computational load among the available nodes to minimize the transmission and downloading

cost for the end user. The experimental analysis is done with different publicly available data

sets. As our approach is for vertical partition data, therefore, in addition to Fundamental Plane

and Gadotti data, we conducted the experiment with high column (649) Mfeat data (because if

vii

overhead and communication cost is neglected, then the speed-up only depends on the number

of sites/nodes and the number of columns). However, we also analyzed the Protein Homology

data set in HP Z420 workstation by taking 50000 rows and 56 columns data from the available

more than two lakhs rows and 78 columns [79]. In terms of transmission cost, our approach

performs better than Qe. et al. [31] and Yue. et al. [34].

Support Vector Machine (SVM) is one of the accurate methods to classify the

data accurately because of its high generalization property to classify the unknown instances.

It is generally used for binary classification. However, it can be used for multi-class classifica-

tion, e.g., One-vs-One (OVO), One-vs-All (OVA), Directed Acyclic Graph and Error correcting

codes. Although, N-class classification using SVM has got considerable research attention but

getting a minimum number of classifiers at the time of training and testing is still a research

area where one should focus. Therefore, in chapter 4 we propose a novel algorithm named

Centroid-based Binary Tree Structured SVM (CBTS-SVM) which addresses these issues. In

this, based on similarity of the class labels a binary tree model has been built by finding their

distance from the corresponding centroids at the root level and dividing at the midpoint at the

interior levels. We experimented with the data sets having up to 20000 instances, and the

analysis shows that CBTS-SVM accuracy is comparable with OVO but better than OVA with

reduced training and testing time. Furthermore, CBTS-SVM is also scalable. Hence it can

handle the large data sets. In this chapter, we also propose another distributed approach for

multi-class SVM, which builds a global SVM model by merging the local SVMs named as

Distributed SVM (DSVM). The global SVM communicated to each site and made it available

for further classification. In this case, we took up to 75000 instances for analysis, and the re-

sults show that accuracy obtained by the DSVM is almost equivalent to both centralized and

ensemble method but due to the parallel construction of local SVMs, the time taken to build

the global model is reduced significantly.

In chapter 5, a distributed approach for rule-based classification (DiRUC) is dis-

cussed. In this, first, the local rule sets are constructed for the data distributed at multiple

locations and then for the given n sites the best rules of the local models are sent to the next

consecutive site for (n - 1) iterations. Finally, the global model is constructed by efficiently

merging these local models and made available at each site for further prediction of the class

labels. The model is tested with the five distinct data sets having instances up to 12960, 36

viii

columns and 2-7 class labels and the analysis show that DiRUC outperforms normal RIPPER

and Ishibuchi et al. [50] island model in terms of accuracy and time taken to build the final

model.

Finally, in chapter 6 a semi-supervised learning technique has been used to design

a hybrid model by SVM and label propagation (LP) to label the unlabeled data. In this model at

each step, SVM is trained to minimize the error for the improvement in the prediction quality.

The approach has been analyzed using twelve datasets of different sizes ranging from 3 - 4

orders and found that the proposed model outperforms logistic regression. The parallel version

of the proposed approach is also analyzed. Hence training time decreases significantly from

the serial version.

ix

CONTENTS

ACKNOWLEDGEMENT . v

ABSTRACT . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xvi

1 Introduction 1

1.1 Background . 1

1.2 Data Mining Techniques . 6

1.3 Literature Survey . 7

1.3.1 Dimension Reduction . 8

1.3.2 Multi-Class Classification . 9

1.3.3 Semi-Supervised Classification . 10

1.4 Gaps in the Research . 12

1.5 Objectives and Organization of the Thesis . 13

1.6 Contribution . 14

2 Estimation of Covariance Matrix For Vertically Partitioned Distributed Data 16

2.1 Introduction . 16

2.2 Covariance Matrix for Heterogeneous Data sets 17

2.3 Illustration of Global Covariance Matrix . 20

2.3.1 Covariance Matrix by Centralized Approach 20

x

2.3.2 Global Covariance Matrix by DCM 20

2.4 Speed-up of DCM . 21

2.4.1 Computational Time of the Centralized Method 22

2.4.2 Computational Time of DCM . 22

2.4.3 Speed-up . 23

2.5 Efficient Communication Among the Sites . 24

2.6 Experimental Analysis . 25

2.7 Summary . 34

3 Data Reduction For The Distributed High Dimensional Data 35

3.1 Introduction . 35

3.2 Principal Component Analysis . 36

3.3 PCA for Heterogeneous Data . 37

3.4 Cost Estimation . 40

3.5 Experimental Analysis . 41

3.5.1 Fundamental Plane Data . 42

3.5.2 Gadotti Data . 43

3.5.3 Protein Homology Data . 44

3.5.4 Mfeat Data . 46

3.6 Summary . 49

4 Distributed Multi-Class Support Vector Machine for Classification 50

4.1 Introduction . 50

4.2 Support Vector Machine . 51

4.2.1 Model Evaluation . 53

4.3 Centroid Based Binary Tree Structured SVM 54

4.3.1 Training Model . 55

xi

4.3.2 Testing Model . 55

4.3.3 Illustration . 56

4.3.4 Experimental Analysis . 57

4.4 Distributed Multi-Class . 61

4.4.1 Graphical Representation . 62

4.4.2 Experimental Analysis . 63

4.5 Summary . 66

5 Distributed Mutli-Class Rule Based Classification 68

5.1 Introduction . 68

5.2 Repeated Incremental Pruning to Produce Error Reduction 68

5.3 Distributed Multi-Class Rule Based Classification 69

5.4 Illustration . 73

5.5 Experimental Analysis . 74

5.5.1 DiRUC with Different Parameters . 74

5.5.2 DiRUC and Normal RIPPER . 81

5.5.3 DiRUC and Island model . 82

5.6 Summary . 83

6 Hybrid Approach for Semi-Supervised Classification 84

6.1 Introduction . 84

6.2 Label Propagation . 85

6.3 Hybrid Approach for Inductive Semi-Supervised Learning using LP and SVM . 86

6.4 Experimental Analysis . 87

6.5 Summary . 99

7 Conclusion and Future Direction 100

REFERENCES . 103

xii

LIST OF PUBLICATIONS . 110

BRIEF BIOGRAPHY OF CANDIDATE . 111

BRIEF BIOGRAPHY OF SUPERVISOR . 112

xiii

LIST OF TABLES

2.1 Organization of the vertical partitioned data at different nodes. 26

2.2 Computational time taken to compute the local and cross-covariances for the
data at 2 nodes. 27

2.3 Computational time taken to compute the local and cross covariances for the
data at 3 nodes. 27

2.4 Computational time taken to compute the local and cross-covariances for the
data at 4 nodes. 28

2.5 Computational time taken to compute the local and cross-covariances for the
data at 5 nodes. 28

2.6 Computational time taken to compute the local and cross-covariances for the
data at 6 nodes. 28

2.7 Computational time taken to compute the local and cross-covariances for the
data at 7 nodes. 29

2.8 Computational time taken to compute the local and cross-covariances for the
data at 8 nodes. 29

2.9 Computational time taken to compute the local and cross-covariances for the
data at 9 nodes. 29

2.10 Computational time taken to compute the local and cross-covariances for the
data at 10 nodes. 30

2.11 Communication cost of the data received by a site from its predecessors for
Mfeat data set. 30

2.12 Communication cost of the data received by a site from its predecessors for
Protein Homology data set for the partitions 2 to 8. 31

2.13 Communication cost of the data received by a site from its predecessors for
Protein Homology data set for the partitions 9 to 10. 32

xiv

2.14 Comparison of computational time taken by centralized approach and DCM. . 33

3.1 Global PCs taken for the reconstruction of the data from different combinations
of local PCs. 43

3.2 Different combinations of local PCs taken for computing the global PC’s to
reduce the downloading cost. 45

3.3 Mfeat transmission cost for the various combinations of local PC’s 46

3.4 Transmission cost w.r.t. angle/error between actual and calculated PC’s. 49

4.1 Confusion matrix . 54

4.2 Details of the UCI data sets. 58

4.3 Training and testing time for the 12 UCI data sets by CBTS-SVM, OVO and
OVA. 59

4.4 Accuracy, Gamma (γ), Cost (C) of CBTS, OVO, and OVA for 12 UCI datasets. 60

4.5 Number of binary SVMs required for a single classification. 60

4.6 Accuracy, Gamma (γ), Cost (C), training and testing time of CBTS, OVO and
OVA for different size of SDSS data set. 60

4.7 Description of the analyzed data sets. 63

4.8 Training Accuracy and training time taken after distributing the three different
data sets by DSVM. 63

4.9 The best global model of Mfeat-Fac dataset by DSVM:SVM2. 65

4.10 The best global model of Pendigits data set by DSVM:SVM1. 65

4.11 The best global model of SDSS data set by DSVM: SVM4. 65

4.12 Accuracy of the ensemble model after distributing the three different datasets. . 66

4.13 Accuracy, training and testing time of the centralized, ensemble and DSVM. . . 66

5.1 Data sets description. 74

6.1 Data sets description. 87

xv

LIST OF FIGURES

1.1 The process of KDD . 2

1.2 An architecture of DDM . 3

1.3 A schematic of the homogeneous distributed data mining. 4

1.4 A schematic of the heterogeneous distributed data mining. 4

2.1 The architecture of DCM. 18

2.2 Transfer of data between even number of sites. 24

2.3 Transfer of data between odd number of sites. 24

2.4 Distribution of the No. of columns data to different nodes/sites of Mfeat data
set between the partitions 2− 6. 26

2.5 Distribution of the No. of columns data to different nodes/sites of Protein Ho-
mology data set between the partitions 2− 10. 27

2.6 Variance of the eigen components of covariance matrix of Mfeat data set by Central-
ized and DCM approach. 32

2.7 Variance of the eigen components of covariance matrix of Protein Homology data set
by Centralized and DCM approach. 32

2.8 Speed-up of Mfeat and Protein Homology data set of DCM with No. of partitions. 33

3.1 Load balancing for even no.of sites. 38

3.2 Load balancing for odd no.of sites. 38

3.3 All three PCs of FP data. 42

3.4 Comparison of the original data and reconstructed data with two dominant PCs
of the FP data. 43

xvi

3.5 Error in the PC’s and reduction in the downloading cost with different combi-
nations of local PC’s of Gadotti data. 44

3.6 Variance in the PCs of the partitioned data. 45

3.7 The estimated error between the original and our global PCs computed by
DLPCA . 45

3.8 Mfeat-fac data PCs variances. 46

3.9 Mfeat-fou data PCs variances. 46

3.10 Mfeat-kar data PCs variances. 47

3.11 Mfeat-mor data PCs variances. 47

3.12 Mfeat-pix data PCs variances. 47

3.13 Mfeat-zer data PCs variances. 47

3.14 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC1 with our approach. 47

3.15 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC2 with our approach. 47

3.16 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC3 with our approach. 48

3.17 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC4 with our approach. 48

3.18 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC1 without load balancing. 48

3.19 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC2 without load balancing. 48

3.20 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC3 without load balancing. 49

3.21 Comparison of the transmission cost w.r.t. angle between actual and calculated global
PC4 without load balancing. 49

4.1 Possible classifiers . 51

4.2 A maximum margin classifier . 51

4.3 An illustration of CBTS-SVM. 56

xvii

4.4 The hyperplanes. 57

4.5 The architecture of DSVM. 62

4.6 SVMs of ith site w.r.t the test data of jth site. 62

5.1 Architecture of DiRUC. 71

5.2 Accuracy of DiRUC w.r.t. DDN for the five distinct data sets. 75

5.3 Time taken for rule generation by DiRUC for five distinct data sets w.r.t. DDN. 76

5.4 Accuracy of DiRUC w.r.t transferred rules. 77

5.5 Time taken by DiRUC w.r.t transferred rules. 77

5.6 Accuracy of Satimage data set at each iteration. 78

5.7 Coverage of Satimage data set at each iteration. 78

5.8 Accuracy of Car data set at each iteration. 79

5.9 Coverage of Car data set at each iteration. 79

5.10 Accuracy of Tic-Tac-Toe data set at each iteration. 80

5.11 Coverage of Tic-Tac-Toe data set at each iteration. 80

5.12 Testing Accuracy w.r.t. DDN with all the five data sets. 81

5.13 Accuracy of DiRUC and Normal RIPPER for the five distinct data sets. 81

5.14 Time taken for rule generation by of DiRUC and Normal RIPPER for the five
distinct data sets. 82

5.15 Accuracy of DiRUC and Island Model. 83

6.1 F-measure by varying threshold of the probability matrix for 12 different data
sets. 91

6.2 Percentage of the labeled data by the final iteration. 91

6.3 Training time of the model when SVM and Logreg classifiers are used. 92

6.4 Percentage of increase in labeled records for every iteration for twelve different
data sets. 93

6.5 F-measure of the Vowel data set by changing the percentage of initial unlabeled
records for Logreg and SVM. 93

xviii

6.6 F-measure of the Irisscalerandom data set by varying the percentage of initially
unlabeled records for Logreg and SVM. 94

6.7 F-measure of the Satimage data set by varying the percentage of initially unla-
beled records for Logreg and SVM. 94

6.8 F-measure of the 1000-SDSS data set by varying the percentage of initially
unlabeled records for Logreg and SVM. 95

6.9 F-measure of the Glassscalrandom data set by varying the percentage of ini-
tially unlabeled records for Logreg and SVM. 95

6.10 F-measure of the Mfeat data set by varying the percentage of initially unlabeled
records for Logreg and SVM. 96

6.11 F-measure of the skewed data sets for different set thresholds. 96

6.12 F-measure of our approach with the label propagation for twelve different data
sets. 97

6.13 F-measure of the proposed approach with supervised OVO SVM for twelve
different data sets. 98

6.14 Time taken by serial and parallel versions of our approach for twelve different
data sets. 98

6.15 Training time with the number of parallel tasks. 99

xix

CHAPTER 1

INTRODUCTION

1.1 Background

The rate of data collection is increasing exponentially, and an estimate shows that by 2020,

there will be a ∼ 4300% increase in annual data generation [1]. This data are some facts,

numbers or text that can be processed by the computers. From this large data sets, information

can be extracted viz. patterns, associations or relationships among the data and finally infor-

mation can be converted into knowledge. The complete automated mechanism to extract the

hidden patterns to discover the unknown relationships in the data is known as Data Mining

(DM) and is also popularly known as Knowledge Discovery from Data (KDD). It is applicable

to all kinds of data viz. relational, transactional, streams, sensor, series, temporal, sequence,

graphs, spatial, text, images, etc.

Data mining provides the required data to the users from the large high dimen-

sional data for the analysis and identification of patterns among them. The term “Data mining”

was introduced in the year 1990, and since then a lot of progress and success in both data

mining research and on its application has been taken place. The initial journey of these meth-

ods was to identify patterns in data, includes Baye’s theorem (1700s) and regression analysis

(1800s). Due to the pervasiveness and rapid growth in the processing speed, the rate of data

collection, storage, and its operations has been increased proportionally. Hence, due to the

massive size and distribution of the collected data, there was a necessity of intelligent methods

to analyze the datasets [2]. This requirement has been addressed by other explorations in com-

puter science, such as neural networks, clustering, genetic algorithms (1950s), decision trees

1

(1960s), and support vector machines (1990s) [3]. Today data mining is in widespread use,

capable of capturing dependencies and complex patterns much better than the other techniques

viz. probability, statistical and is reigniting some of the biggest challenges in Data Science and

Artificial Intelligence [4].

Data Mining not only turns the data into knowledge but learns from the knowledge

and predicts, summarizes and find the associations among the patterns and is the confluence

of other disciplines like statistics, artificial intelligence, and machine learning. As shown in

Fig.1.1 the process of KDD is done in three steps. First, raw data is preprocessed to transform

into the suitable format (generally in pre-processing data is cleaned, i.e., noise and duplicates

are removed, missing values are filled, and appropriate features are selected). Then, the data

mining techniques are implemented to find the hidden patterns in the data. Finally, by post-

processing, these extracted patterns are presented in the form of knowledge. [5].

Figure 1.1: The process of KDD

The pace at which the volume of data is being generated has produced a data

deluge and became a challenge for the KDD. Therefore, the regular effort is required with the

pace of data accumulation to preserve, organize, and to maintain the precious long-term data

for the analysis. Hence distributed computing or distributed data mining (DDM) plays a vital

role for the KDD, which explores various DM techniques for efficient and effective analysis

of the data in a non-centralized manner. An architecture of DDM is shown in Fig. 1.2, which

consists of multiple/distributed computers/nodes that interact each other over the network and

is classified into two major types, homogeneous and heterogeneous distributed data mining [6].

2

Figure 1.2: An architecture of DDM

In homogeneous distributed data mining (HMDDM) as shown in Fig. 1.3, the

number of attributes is constant at all the locations, but the number of instances may vary

and referred as horizontal partitioning of the distributed data sets. Most of the early DDM

algorithms were developed for this kind of data sets. In this, if the data is distributed among t

sites, say S0, S1 . . . St−1, then data can be represented as,

[X]l×m = (X0, X1, X2, . . . Xt−1)

where, data Xj is a (lj ×m) matrix residing at the site Sj and l =
t−1∑
j=0

lj .

In heterogeneous distributed data mining (HTDDM) as shown in Fig. 1.4, the

number of instances is constant at all the locations, but the number of attributes may vary and

referred as vertical partitioning of the distributed data sets. The records are linked through an

index column or a common identifier across various tables, e.g., sky survey data is generally

recorded in terms of source location, i.e., right ascension (RA) and declination (DEC). Similar

to HMDDM, if the data is distributed among t sites, say S0, S1, . . . St−1, then the data can be

represented as,

[X]l×m = (X0, X1, X2,Xt−1)

where, data Xj is a (l ×mj) matrix residing at the site Sj and m =
t−1∑
j=0

mj .

3

Figure 1.3: A schematic of the homogeneous distributed data mining.

Figure 1.4: A schematic of the heterogeneous distributed data mining.

4

In DDM, irrespective of the model (HMDDM/HTDDM), in general, the problem

is divided into smaller subsets to be solved by individual computers/nodes to find the local

solutions/models. From these local models, a global model/solution can be obtained by merg-

ing/integrating the local models. The merging/integration involves either sending all the local

models to a central site, or the local models can be moved among the nodes. Finally, the

global model can be made available to every distributed site for knowledge discovery. The

performance of the DDM task mainly depends on how optimally one uses the computational

resources. Therefore, in this thesis, while implementing our DDM algorithms, we assumed

that the computers/nodes are homogeneous and tried to get the best performance by wisely

distributing the work load among all the nodes. Generally, there is a trade-off between compu-

tation and communication, i.e., if the number of nodes is increased the computational time will

be reduced because of parallel execution of the sub tasks, but at the same time, the communi-

cation overhead may increase.

The three major challenges in DDM is scalability, high dimensionality, and dis-

tributed data, e.g., the Sky Kilometer Array will collect the data from the telescopes located

at Australia, Netherlands and South Africa [7]. The Large Synoptic Survey Telescope (LSST)

takes repeated images of the night sky in every 20 seconds for many years [8] and will generate

30 terabytes of calibrated imagery every night. Assimilating this large data into models and us-

ing it to drive scientific measurement is computationally intensive. Similarly, in oceanography,

the parameters that cause the tsunami was considered very hard using traditional mathematical

modeling whereas DM made it possible [9]. In earth science, climate variability, etc., e.g.,

CORAL, SWOT, WISE, JASD, AACR [10, 11, 12, 13, 14] where data is not only large but the

dimensions are also high. In bioinformatics and medicine, data mining enables the extraction

and analysis of interesting patterns [15]. The NASA Earth Observing System (EOS), a data col-

lector for a number of satellites, are geographically distributed by the different EOS Data and

Information System (EOSDIS) [16] sites. An online mining system for this EOS data streams

may not scale if a centralized DM is used. Hence, mining the distributed EOS repositories and

the associated information with other environmental databases may benefit from DDM.

As discussed in [18, 19] traditional DM requires a large amount of computational

resources to extract the hidden patterns in the data, and it has to be available at one location.

But in today’s era, the data are often inherently distributed in several databases. Therefore,

5

the above challenges can be handled by developing efficient and effective DDM algorithms

that distribute the workload seamlessly among the available nodes/sites to meet the growing

demand for the analysis of distributed data sets and relevant findings from it [17].

1.2 Data Mining Techniques

Data mining techniques are broadly categorized as Classification, Association Analysis, Clus-

ter Analysis and Anomaly Detection [5]. To validate the DM models generally ∼ 70% of the

given data instances are considered for training the model and remaining ∼ 30% are consid-

ered for testing the model [20, 21]. However, case to case it may differ, e.g., in the boost-strap,

63.2%, and 36.8% data are recommended for training and testing [22].

In classification [5, 22], objects are assigned to well-known categories knows as

class labels. These class labels are well defined for all the instances of the input, hence also

known as supervised learning. By classification, a model is built for the class label as a function

of other attributes of the dataset. The model can be used as a tool to differentiate the objects of

different classes (descriptive modeling) and to predict the class label of given records (predic-

tive modeling).

In association analysis (Market Basket Analysis) [5, 22], patterns are discovered

between the strongly associated attributes. These patterns are described in terms of certain

rules. The complete search of these rules is exponential in nature [5]. Hence only the interesting

patterns are extracted. For the given item set I = i1, i2, . . . id and the transaction set T =

t1, t2, . . . tN , the patterns between the items are discovered and represented in the form of

rules. If X and Y are the set of items, then the interestingness of the patterns (X −→ Y) are

decided by Support (s) and Confidence (c), given as

s(X −→ Y) =
σ(X

⋃
Y)

N

c(X −→ Y) =
σ(X

⋃
Y)

σ(X)

where, σ = |{ti|X ⊆ ti, ti ∈ T}|

6

and refers to the number of transactions that contain a set of particular items.

In Cluster analysis [5, 22], objects are grouped based on their similarity and are

commonly known as clusters. The clusters are formed in such a manner that the objects be-

longing to the same cluster are more similar to each other than the objects belonging to other

clusters. Here, no class labels are defined. Hence it is an unsupervised learning. For the given

data input of m attributes (xi1, xi2, xi3, . . . xim), i = 1, 2, . . . n, the key idea is to find out

K clusters such that the intra-cluster distance d(Ci) has to be minimum and the inter-cluster

distance d(Ci, Cj) should be maximum.

d(Ci) =
∑

x∈Ci,y∈Ci

distance(x, y)

d(Ci, Cj) =
∑

x∈Ci,y∈Cj

distance(x, y)

where distance (x, y) can be Euclidean distance or any other function which measures the

distance between the two objects x, and y.

In anomaly detection [5, 22], the objects which are significantly different from

the rest of the objects are identified and are known as anomalies or outliers. In general, the

anomaly detection is unsupervised and it is assumed that in the data there are considerably

more normal objects than anomalous objects.

1.3 Literature Survey

Since the introduction of DM in 1990 and later on the advancement in the computing and com-

munication technology, researchers are exploring various aspects for the effective and efficient

DDM viz. dimension reduction for efficient downloading of the data, classification, labeling a

large amount of unlabeled data, etc. Therefore, to understand the various techniques in DDM,

a survey has been conducted and are discussed below.

7

1.3.1 Dimension Reduction

The exponential increase in the data collection from the various sources makes KDD a chal-

lenging task. One of the major challenges of the scientific community is how to use the compu-

tational resources optimally and the available bandwidth to mine the large distributed data. In

literature, various techniques have been proposed for the analysis of these distributed data sets

viz. for astronomical data, Srivastava et al. proposed an efficient, scalable and multi-threaded

distributed algorithm based on Hadoop/MapReduce [23]. Giannella et al. [24] described the

architecture of a system called Distributed Exploration of Massive Astronomy Catalogs for

the distributed data mining of large astronomical catalogs. The system is designed to sit on

the top of the existing National Virtual Observatory (NVO) environment to provide tools for

distributed data mining without downloading the data to a centralized server. A cloud based

data mining system CANFAR+Skytree is proposed by Canadian Astronomy Data Centre [25].

For massive astronomical data analysis distributed CPU-GPU architecture is also proposed to

handle the data in petabyte scale. [26].

To download the high dimensional data efficiently, data reduction is an important

part of DM, i.e., instead of downloading the complete data set, reduced data set is downloaded.

The reduction in data size is done basically by removing the dimension which may be redundant

due to the relationship between them, and only a few dimensions may be sufficient to extract

the hidden patterns. To reduce the dimension of the data, covariance is one of the measures

which finds the relationship between the data and after that principal component analysis (PCA)

can be used to reduce the dimensionality of data. In this, Nik et al. discussed the estimation

of covariance based on divide and conquer approach to reduce the computational cost using

a regularized and blocking estimator of high dimensional covariance and Barndorff Nielson

Hansen estimator [27]. Zheng et al. discussed a modified Cholesky decomposition method

for the estimation of covariance for high dimensional data with limited sample size [28]. Qi

Guo et al. proposed a divide and conquer approach based on feature space decomposition [29].

Cho et al. discussed l1-regularized Gaussian maximum likelihood estimator to recover a sparse

inverse covariance matrix for high-dimensional data [30]. Qi. et al. discussed a distributed PCA

algorithm based on the integration of local covariance matrices for the horizontal partitioned

distributed data sets [31]. Nathan et al. discussed a randomized PCA for the datasets which

are too large to store in the Random Access Memory (RAM) [32]. Kargupata et al. proposed

8

a solution for distributed clustering using collective principal component analysis [33]. Their

work is mainly focused to obtain a good estimation of the global covariance matrix with a trade-

off between communication cost and information loss. Yue. et al. [34] proposed a better DDM

than Qi. et al. [31] in which one can achieve a better accuracy with the same communication

cost.

1.3.2 Multi-Class Classification

For predictive modeling, classification is one of the powerful data mining technique. In many

applications, classification plays a major role to come up with the best solution, e.g., to catego-

rize a cell as normal or malignant which causes cancer. For the classification, SVM is one of

the important classifiers to classify the binary data. But many real-time data sets are of multi-

class, therefore SVM is extended to handle this kind of data sets. Although a decent amount

of work has been done in multi-class SVM and parallel/distributed binary SVM, it shall be

explored more for the distributed multi-class problems. Hence, there is continuous attention

on SVM, because it has been proved that it is one of the best classifiers for classification in

several applications [35]. In this, Han et al. discussed a model for coupling the estimation

of class probabilities for each pair of classes [36]. They used classifiers which include linear

discriminant, nearest neighbors, and SVM. In 2010 Stefano et al. discussed the construction of

an SVM based on the Minimal Enclosing Ball (MEB) by partitioning the data at several loca-

tions [38]. They have shown that the union of local core-sets provides a close approximation

to a global core-set from which the SVM can be recovered. In 2011, Ahmed et al. designed

a hybrid ensemble model for credit risk by combining both the clustering and classification

[39]. In their approach SVM classifiers are the members of the ensemble model. A multi-class

classification approach for large data sets is discussed by using SVM based on MEB method

[40]. Also, Hian et al. discussed the significance of handling a large amount of data for DM

[37]. In terms of execution time, solving a single optimization problem for the multi classes is

very expensive. Therefore, Han et al. discussed a distributed parallel training approach for this

single optimization problem [41].

In 2010, Murmann et al. discussed a modified classification algorithm for spam-

mer detection, which is very much useful for social network data analysis [42]. Salma et al.

9

performed the improvisation on a genetic algorithm for better classification and compared it

with repeated incremental pruning to produce error reduction (RIPPER) [43]. Alex et al. pro-

posed a method to improve the fact retrieval (i.e., rule making) for web-scale business analytics

[44]. Sikora et al. discussed a method for enhanced pruning of rules and also proposes adaptive

selection for measuring the rule quality [45]. The rule based classification is also used in dif-

ferent contexts and in different applications. In this, Jiang et al. discussed the fault diagnosis in

large rotating machinery using the modified RIPPER data mining rule learning algorithm [46].

In health care systems, the rule based systems are widely used in which S. J. et al. examined

the health care datasets using RIPPER algorithm [47]. The distributed methods for rule based

classification are few in literature in which Diego et al. discussed the methodology for knowl-

edge discovery from inherently distributed data without moving it from its original location

completely or partially to other locations [48]. Cho et al. discussed a distributed rule based

classifier which selects k best rules out of the n built rules [49]. In their approach, all the data

is fragmented equal in size at each site. They also argued empirically that the chosen k rules

are sufficient to come up with a good ensemble classifier. In this, Ishibuchi et al. discussed

a distributed method to evaluate the rules by assigning n number of data sets to n nodes for

evaluating the given rules [50]. The data sets are rotated among n nodes, and also the rule sets

are sent from one node to another node to achieve the better accuracy.

1.3.3 Semi-Supervised Classification

Recently, semi-supervised learning methods have gained importance because of the time in-

volved in labeling the unlabeled data by human experts. In literature, many approaches are

proposed by using semi-supervised learning, where the unlabeled data plays a major role to

label the data which is very large as compared to the labeled data. In this connection, Castelli

et al. [51], [52] and Ratsaby et al. [53] showed that unlabeled data could predict better if the

model assumption is correct. But if the model assumption is wrong, unlabeled data may reduce

the accuracy. Cozman et al. [54] in their work discussed the deterioration in performance with

the increase in unlabeled data and observed that the bias is adversely affected in such situations.

Another technique that can be used to get the model correct is to down-weight the unlabeled

data (Corduneanu et al.[55]). Callison-Burch et al. [56] used the down-weighing scheme

to estimate word alignment for machine translation. Also, algorithms have been designed to

10

make use of abundant unlabeled data in which Nigam et al. [57] applied the Expectation Max-

imization algorithm [58] on a mixture of multinomial for the task of text classification and

showed that the resulting classifiers predict better than classifier trained only on labeled data.

Clustering techniques are also employed over the years to make use of unlabeled data along

with the labeled data in which datasets are clustered, and then each cluster is labeled with

the help of labeled data. Demiriz et al. [59] and Dara et al. [60] used this cluster and label

approach successfully to increase the prediction performance. A popular technique used for

semi-supervised learning is self-training. In this, a classifier is initially trained with the small

quantity of labeled data, and then the classifier is used to classify the unlabeled data. After

that, the unlabeled instances which are classified with maximum confidence are added to the

training set. The procedure is repeated after re-training the classifier until all the unlabeled

data is labeled. By applying self training Yarowsky et al. significantly reduced the word sense

disambiguation [61]. Rosenberg et al. had shown that parsing and machine translation is also

done with the help of self-training methods for the detection of object systems [62].

In semi-supervised learning, a method which stands apart from already mentioned

above is Co-training. Co-training [63] assumes that (i) features can be divided into two sets, (ii)

each sub-feature set is sufficient to train a good classifier and (iii) the two sets are conditionally

independent of the given class. In this, Balcan et al. [64] showed that co-training could be quite

effective and in the extreme case, only one labeled point is needed to learn the classifier. A very

effective way to combine labeled data with unlabeled data is described by Xiaojin Zhu et al.

[65] in which labels are propagated from labeled data points to unlabeled ones. An approach

based on the linear neighborhood model is discussed by Fei Wang et al. [66] in which labels can

be propagated from the labeled points to the whole data set using the linear neighborhoods with

sufficient smoothness. Zhu et al. proposed a graph based method in which vertices represent the

labeled/unlabeled records, and weight of edges denote the similarity between them [67]. Their

extensive work uses the label propagation to label the unlabeled data. They also discussed the

role of active learning in choosing the labeled data by using hyper parameter learning to learn

good graphs and handle scalability using harmonic mixtures.

11

1.4 Gaps in the Research

Even though DDM covers many of the issues associated with centralized approach, modern re-

quirements in data mining inspired by emerging applications lead to many challenges, e.g., in

astronomy, earth sciences, etc. data are generally high dimensional and distributed geograph-

ically [68]. In astronomy, efforts have been made to handle these data sets but still DDM is a

prominent topic of the research e.g., F-MASS [69], the Auton Astro-statistics Projects [70], etc.

However, this project does not fully based on DDM. A project called Grid Based Data Mining

for Astronomy [71] was the first attempts for large scale data mining in astronomy. Projects in

Virtual Observatories such as Japanese Virtual Observatory, US National Virtual Observatory,

European Virtual Observatory and International Virtual Observatory, basically integrate and

federate archive systems dispersed in a Grid by standardizing XML schema, data access layer

and query language of the archival data [71]. In this NVO has developed an information tech-

nology infrastructure which enables easy and robust access to distributed astronomical archives

from which users can search and gather data from multiple repositories with basic statistical and

visualization functions. Generally astronomers download the data to a central location before

the analysis. However, it is not required to download the complete data set because some of the

dimensions may be redundant due to the relationship between them and only a few dimensions

may be sufficient to extract the hidden patterns. We addressed this communication/download

cost issue in chapter 2 and 3.

In DDM each site performs local computation on its own and finally either a

central site communicates with each distributed site to compute the global model, or a node-to-

node architecture is used [72, 73]. In the earlier case, there is a risk of loosing the global model

aggregation because of the failure of the central server. In the later case as the global model

may not be available for all the nodes as the communication is only between the pairs. Hence,

there is a need for the balanced approach. Therefore, we proposed a hybrid model such that

both the architectures are merged so that the communication is possible in either node-to-node

or even to a central node. DDM approach maximizes the efficiency by parallelizing the task

such that each computing node must have approximately the same amount of workload, which

is one of the challenge in DDM [74, 75]. Therefore, in this thesis, we addressed the static load

balance in our distributed dimension reduction algorithm.

12

The rate at which data is collected every day all over the globe, choosing the best

classification technique may not be sufficient. Hence we have to also focus on the efficient clas-

sification of the data, e.g., to classify the astronomical objects viz. stars, galaxies, quasars, etc.

Although a decent amount of work has been done in multi-class SVM and parallel/distributed

binary SVM [40, 41, 76]. However, for efficient distributed multi-class classification with SVM

has to be studied in depth. Hence, there is continuous attention on SVM, because it has been

proved that it is one of the best classifiers for classification in several applications [35]. There-

fore, we proposed an approach for the efficient and effective hybrid distributed multi-class

classification for both qualitative and quantitative data using SVM. In supervised classification

the class labels of the objects are well defined, but in many applications, the human intervention

is required to define the class labels of the datasets. Hence, semi-supervised learning methods

are in focus to reduce the large expenses and time involved in labeling the unlabeled data by

human experts. Therefore, in this thesis, we present an inductive approach to label the unla-

beled data using a hybrid model with label propagation (LP) and SVM to minimize the cost

incurred and time taken for labeling the unlabeled data.

1.5 Objectives and Organization of the Thesis

The two main objectives of the thesis are data reduction and efficient classification of the dis-

tributed data. Accordingly, in chapter 2, we propose a bottom-up approach to estimate the co-

variance matrix for vertically partitioned data in a decentralized manner, i.e., without bringing

the data to a centralized site. The speed-up in the computation of covariance matrix is obtained

by computing local covariances in parallel and distributing the cross-covariances among the

nodes. Reducing the dimensions of interrelated data will reduce the downloading cost of the

end users. Hence, in chapter 3 the concept of PCA has been used to reduce the dimensionality

of data, which in turn reduces the communication and downloading cost for the end users. For

the purpose, we followed a top-down approach in terms of receiving/sending the data from/to

the consecutive sites (predecessors/successors) and also load is balanced among the sites.

SVM is one of the best binary supervised classification technique for quantitative

data. Although N-class classification using SVM has considerable research attention, getting

a minimum number of classifiers at the time of training and testing is also very important.

13

Hence, in chapter 4 and 5, we present and discuss novel approaches for distributed multi-class

classification using SVM. Chapter 4 approach is for quantitative data in which a multi-class

SVM is discussed using binary approach. Also, an approach is discussed in which a global

SVM is constructed by merging the local SVMs of the data distributed horizontally among t

sites. Chapter 5 is basically for qualitative data in which a distributed rule based classification

is discussed by initially constructing the local rules for all the distributed sites. Then these local

rule systems are migrated from one site to another site so that every rule system is validated by

every other data set to get the global rule system efficiently.

In data mining, semi-supervised learning methods have gained importance, ba-

sically due to the large expenses and time involved in labeling the unlabeled data by human

experts. Therefore, in chapter 6, a semi-supervised classification method is discussed to label

the unlabeled data sets. For the purpose, a hybrid approach has been proposed using SVM and

label propagation. Finally, chapter 7 contains the conclusions of the thesis and future direc-

tions.

1.6 Contribution

This thesis brings contributions to data reduction and efficient classification for distributed data.

Following are the published works that contribute the material in this thesis:

• In many applications, the data may be distributed geographically, hence to download

this data effeciently we proposed a distributed covariance matrix algorithm and was

published in Springer, Studies in Computational Intelligence, 17th IEEE conference on

SNPD, Shanghai, China and contributes to the material of chapter 2.

• To reduce the dimensions of vertically partitioned data, a distributed PCA algorithm is

designed. This contribution was published in Elsevier, Astronomy and Computing, 2016

and contributes to the material of chapter 3.

• We designed two multi-class classification algorithms for horizontally partitioned dis-

tributed data using Support Vector Machine. This work is published in the IEEE Xplore,

Fourth IEEE International Conference on Advances in Computing, Communications and

14

Informatics and ACM, Third International Symposium on Women in Computing and In-

formatics and contributes to the material of chapter 4.

• We developed a distributed rule based classifier for multi-class classification for quali-

tative data and is published in IEEE Xplore, 16th IEEE conference on CIT, Fiji Islands

and contributes to the material of chapter 5.

• Semi-supervised learning methods have gained importance in today’s world because of

large expenses and time involved in labeling the unlabeled data by human experts. We

developed an algorithm for inductive semi-supervised learning using label propagation

and SVM, which is published in Springer, LNCS, 11Th International Conference on

MLDM Hamburg, Germany and contributes to the material of chapter 6. This paper is

also supported by Microsoft India Research travel grant.

15

CHAPTER 2

ESTIMATION OF COVARIANCE MATRIX FOR
VERTICALLY PARTITIONED DISTRIBUTED DATA

2.1 Introduction

Data collections from the various sources are rapidly growing because it can be accumulated

inexpensively from different locations and devices.To bring such data sets to a centralized site

for the knowledge discovery will be a tedious task (limited bandwidth), and also analyzing

these data sets with traditional data mining approaches will be computationally expensive.

However, high dimensional data can be reduced by identifying the correlations between the

column’s data. Therefore, in this chapter we present a novel approach for the efficient com-

putation of covariance matrix using heterogeneous DDM for vertically partitioned data in a

decentralized manner (i.e., without bringing the data to one location/site) which can be useful

for the data reduction (Chapter 3) and compared our distributed approach with the centralized

method. We found that our distributed approach provides exactly same results but in terms of

time required, our approach outperforms the centralized method. The reason for the reduction

in the time taken is because of the parallel computation of local covariances and distributing

the cross-covariances among the nodes/sites.

16

2.2 Covariance Matrix for Heterogeneous Data sets

The DDM architecture to compute the global covariance matrix for heterogeneous data sets by

merging the local and cross-covariances is shown in Figure 2.1. The corresponding distributed

covariance matrix (DCM) algorithm is given in Algorithm 2.1 and the steps are described below

1. Let the data be distributed among t sites with an equal number of instances, having

different number of columns i.e., vertically partitioned and the data Xj at each site Sj is

represented as,

[X]l×m = (X0, X1, X2, . . . Xt−1)

where data Xj is a l ×mj matrix residing at the site Sj and m =
t−1∑
j=0

mj

2. Calculate the local covariances between every column of all the t sites in parallel.

3. If the number of sites is 2, then either send the data of S0 to S1 or S1 to S0 to calculate

the cross-covariances.

4. If the number of sites is more than 2, then calculate the cross-covariances Cjk by receiv-

ing the Xj data of Sj to the site Sk as follows.

• If the number of sites is even, i.e., t = 2r, then

– j = (t+ k − s) mod t,∀ 0 ≤ k ≤ (r − 1) and 1 ≤ s ≤ (r − 1) and

– j = (k − s), ∀ r ≤ k ≤ (2r − 1) and 1 ≤ s ≤ r.

• If the number of sites is odd, i.e., t = (2r + 1), then

– j = (t+ k − s) mod t,∀ 0 ≤ k ≤ 2r and 1 ≤ s ≤ r.

5. Merge the local and cross-covariances to get the global covariance matrix.

6. Estimate the eigen components of the global covariance matrix.

17

Figure 2.1: The architecture of DCM.

Algorithm 2.1 : DCM

INPUT: Data Xj of all the sites Sj
OUTPUT: Eigen Vectors

1: for each site j, compute the local covariances do

2: Compute µj mean of all columns of Xj data

3: Compute the covariance matrix Cpqjj =

∑i=n
i=1 (Xp

ji
−µpj)(Xq

ji
−µqj)

n−1 where, µpj , µ
q
j is the

mean of the pth and qth column of the the Xj matrix.

4: end for

5: if the number of sites is say t = 2 then

6: SendX0 of S0 to S1 and calculate the cross-covariances C01 / SendX1 of S1 to S0 and
calculate the cross-covariances C01

7: end if

18

8: if the number of sites is more than 2 then
9: Send Xj of Sj to Sk as follows

10: if the number of sites is even t = 2r, r > 1 then
11: for k = 0 to (t− 1) do
12: if k ≤ (r − 1) then
13: p = k
14: for i = 1 to (r − 1) do
15: j = Predecessor(P)
16: print(j)
17: p = j
18: end for
19: end if
20: if k ≥ r then
21: p = k
22: for i = 1 to r do
23: j = Predecessor(P)
24: print(j)
25: p = j
26: end for
27: end if
28: end for
29: end if
30: if the number of sites is odd say t = (2r + 1), r ≥ 1 then
31: for k = 0 to (t− 1) do
32: p = k
33: for i = 1 to r do
34: j = Predecessor(P)
35: print(j)
36: p = j
37: end for
38: end for
39: end if
40: end if

41: Compute the cross-covariances Cuvjk = C(Suj , S
v
k); u = 1, 2, 3, ...mr

j ; v =
1, 2, 3, ...mr

k j 6= k
42: Merge the local and cross-covariances to make the Global Covariance matrix covG
43: Estimate the eigenvectors and corresponding eigenvalues by solving

covG(EG) = λ(EG); |covG − λI| = 0 where, EG is the eigenvector corresponding to
eigen value λ and I is the identity matrix of the same order as covG

44: function PREDECESSOR(node k)
45: if k = 0 then
46: return (t− 1)
47: else
48: return (k − 1)
49: end if
50: end function

19

2.3 Illustration of Global Covariance Matrix

2.3.1 Covariance Matrix by Centralized Approach

Let us consider three nodes/sites n0, n1 and n2 in which n0 consists of two columns data

labeled as x and y, n1 consists of two columns data labeled as z and w and n2 consists of

single column data labeled as v. Then the covariance matrix by centralized approach can be

written as, (only upper triangular matrix is sufficient as covariance matrix is symmetric).

xx xy xz xw xv

− yy yz yw yv

− − zz zw zv

− − − ww wv

− − − − vv

(2.1)

2.3.2 Global Covariance Matrix by DCM

As discussed in Section 2.2 first the local covariances has to be calculated of all the considered

sites and then the cross-covariances has to be computed. Therefore, for the three assumed

sites, let the local covariance matrix of the sites n0, n1 and n2, be n0
cov, n1

cov and n2
cov

respectively, given as

n0
cov =

xx xy

− yy

 (2.2)

n1
cov =

zz zw

− ww

 (2.3)

n2
cov =

[
vv
]

(2.4)

20

Now, let n0n1
cov, n1n2

cov and n0n2
cov be the cross-covariances of the sites and can be com-

puted as follows

n0n1
cov =

xz xw

yz yw

 (2.5)

n1n2
cov =

zv
wv

 (2.6)

n0n2
cov =

xv
yv

 (2.7)

By substituting equations Eq. 2.2 - 2.7 in Eq. 2.1, the global covariance matrix can be written

as
n0

cov n0n1
cov n0n2

cov

− n1
cov n1n2

cov

− − n2
cov

 (2.8)

i.e., the global covariances computed by the DCM is exactly same as centralized method.

2.4 Speed-up of DCM

In distributed computing, speed-up (reduction in the computational time due to parallel exe-

cution of the sub-tasks) plays an important role. Mathematically, speed-up can be written as,

Sp = Tc/Tp, where Tc is the time taken to execute the sequential program and Tp is the time

taken to execute the program in parallel with P number of computers/nodes [77]. However,

due to the exchange of the intermediate results or the communication overhead in finding out

the global solution, the speed-up may not always be linear by increasing the number of nodes .

21

2.4.1 Computational Time of the Centralized Method

In the centralized method the data are made available at one location, and can be represented

in a single matrix as

[X]l×m = (X0, X1, . . . Xt−1)

Therefore, if T ccm is the time taken to receive the data from all the sites, then the computational

time (Tc), to compute the covariance matrix by centralized method can be given as

Tc =
m(m− 1)

2
+ T ccm (2.9)

For simplicity, assuming that the number of columns at each site is Γ then Tc can be written as

Tc =
(tΓ)(tΓ− 1)

2
+ T ccm (2.10)

2.4.2 Computational Time of DCM

Similar to the centralized method, in this case the data set are distributed among t different

sites and can also be represented as

[X]l×m = (X0, X1, . . . Xt−1)

Now, if the communication cost, the time required to compute local covariances and cross-

covariances are T dcm, Tl, Tcr respectively, then the time taken for computing the global/distributed

covariance matrix (Td) can be given as

Td = Tl + Tcr + T dcm

= Max

{
mj(mj−1)

2

}
+Max

[∑t−1
k=0

∑
i
{(mk ×mi) +mi}

] (2.11)

22

where i is the predecessor of k. Similar to the centralized method assuming that each site

contains Γ number of columns and a unit time is required to send/receive one column data,

then

Td =
Γ(Γ− 1)

2
+ r.Γ + r.Γ (2.12)

2.4.3 Speed-up

Generally speed-up (S) is given as [77],

S =
Tc
Td

(2.13)

Therefore, by substituting Eq. 2.10 and Eq. 2.12 in Eq. 2.13, we get

S =
(tΓ)(tΓ−1)

2 + t.Γ
(Γ)(Γ−1)

2 + r.Γ + r.Γ
=

t(tΓ + 1)

Γ− 1 + 4r
(2.14)

Case 1: If t = 2r; r ∈ N , then

S =
(2r)(2rΓ + 1)

Γ− 1 + 4r
=

4r2Γ + 2r

4r + Γ− 1
(2.15)

Case 2: If t = (2r + 1); r ∈ N , then

S =
(2r + 1)((2r + 1)Γ + 1)

(Γ− 1) + 4r
=

4r2Γ + (1 + 4r)Γ + 2r + 1

4r + Γ− 1
(2.16)

i.e., the speed up depends on the number of sites and the number of columns data at each

site. This also indicates that increasing the data size by simply increasing the number of rows,

speed-up does not change (neglecting the overhead).

23

2.5 Efficient Communication Among the Sites

The distributed data is transferred between the sites as defined in section 2.2, so that the avail-

able resources can be used optimally and also the computational load can be balanced between

the sites to improve the speed-up. In the case, when the number of sites is even, i.e., 2r, then

the first r sites will receive the data from their immediate (r− 1) predecessors and the remain-

ing r sites will receive the data from their immediate r predecessors, e.g., transferring the data

between the 4 sites, i.e., r = 2 is shown in Fig. 2.2. Here, the first two sites S0 and S1 will

receive the data from its immediate (r − 1) predecessors, i.e., S0 will receive the data from S3

while S1 will receive data from S0 . The other two sites S2 and S3 will receive the data from its

immediate r predecessors, i.e., S2 will receive the data from S1 and S0, while S3 will receive

the data from S2, S1.

When the number of sites is odd, then all the (2r + 1) sites will receive the data

from their immediate r predecessors, e.g., transferring the data between the five sites, i.e.,

r = 2 is shown in Fig. 2.3. Here, all the five sites from S0 to S4 will receive the data from

its immediate r predecessors, i.e., S0 will receive the data from S4 and S3, S1 will receive the

data from S0 and S4, S2 will receive the data from S1 and S0, S3 will receive data from S2 and

S1. Hence in all the cases, the number of sites that has to transfer the data will be at most r,

i.e., any of the sites does not require to have data of all the other remaining sites.

Figure 2.2: Transfer of data between even number of sites.

Figure 2.3: Transfer of data between odd number of sites.

24

2.6 Experimental Analysis

For the efficient computation of the global covariance matrix of our proposed approach, we

first implemented it in Dell inspiron laptop Intel(R) Core(TM)2 Duo 2GHz, 32-bit Ubuntu

Operating System, with the well known publicly available high dimensional (as our approach

is for vertical partition data) Mfeat data set taken from UCI machine learning repository [78].

It contains 649 columns and 2000 rows and is distributed in six data files as follows

1. Mfeat-fac: 216 profile correlations,

2. Mfeat-fou: 76 Fourier coefficients of the character,

3. Mfeat-kar: 64 Karhunen–Love coefficients,

4. Mfeat-mor: 6 morphological features,

5. Mfeat-pix: 240 pixel averages in 2 x 3 windows,

6. Mfeat-zer: 47 Zernike moments.

From section 2.4, we understand that, if overhead and communication cost is ne-

glected then the speed-up depends only on the number of sites and number of columns data

and does not depend on the number of rows. However, later on, we also analyzed the Protein

Homology data set in HP Z420 workstation, Intel Xeon ES-1607, 64-bit Ubuntu OS by taking

50000 rows and 56 columns data from the available more than 2 lakhs rows and 78 columns

[79].

For the experimental analysis, we used Java Agent DEvelopment framework (JADE)

[80]. It simplifies the implementation of multi-agent systems through a middle-ware that com-

plies with the “Foundation for Intelligent Physical Agents” (FIPA) specifications (FIPA is an

IEEE Computer Society standards organization that promotes agent-based technology and the

interoperability of its standards with other technologies) and through a set of graphical tools

that supports the debugging and deployment phases. The agent platform can be distributed

across machines (which not even need to share the same OS) and the configuration can be

controlled via a remote GUI. The configuration can be even changed at runtime by moving

agents from one machine to another one, as and when required. Using JADE, we created the

25

agents/nodes and distributed the downloaded data accordingly to each node which is virtually

connected over the network so that the number of computational nodes is equal to the number of

sites. To transfer the data, a communication channel is established between them using JADE.

It also provides a time command which can be used to display the time taken to complete the

given job.

For the analysis of Mfeat and Protein Homology data sets, we made 2 − 6 and

2 − 10 (from different P1-P10) vertical partitions
(
Table 2.1

)
and the number of columns data

assigned in each partition are shown in the Fig. 2.4 and Fig. 2.5 respectively.

Datasets No. of No. of No. of Columns considered at each node/site

Rows Columns. Partitions

2 Fact-Fou-Kar, Mor-Pix-Zer

3 Fact,Fou-Kar,Mor-Pix-Zer

Mfeat 2000 649 4 Fact,Fou-Kar,Mor-Pix,Zer

5 Fact,Fou,Kar,Mor-Pix,zer

6 Fact,Fou,Kar,Mor,Pix,zer

2 P1 to P4, P5 to P10

3 P1 to P4, P5 to P7, P8 to P10

4 P1 to P2, P3 to P4, P5 to P7, P8 to P10

Protein 50000 56 5 P1 to P2, P3 to P4, P5 to P6, P7 P8 to P10

Homology 6 P1 to P2, P3 to P4, P5 to P6, P7, P8 to P10

7 P1 to P2, P3 to P4, P5 to P6, P7, P8, P9, P10

8 P1 to P2, P3 to P4, P5, P6, P7, P8, P9, P10

9 P1 to P2, P3, P4, P5, P6, P7, P8, P9, P10

10 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

Table 2.1: Organization of the vertical partitioned data at different nodes.

Figure 2.4: Distribution of the No. of columns data to different nodes/sites of Mfeat data set
between the partitions 2− 6.

26

Figure 2.5: Distribution of the No. of columns data to different nodes/sites of Protein Homol-
ogy data set between the partitions 2− 10.

For different partitioned data the time taken to compute the local and cross covari-

ances are shown in Table 2.2 - 2.10 and the communication cost for a given site/node to receive

the data from its predecessors of Mfeat data set and Protein Homology data set are shown in

Table 2.11 and 2.13 respectively.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : Fact-Fou-Kar S0S0 : 3570 S0S1 : 2561

Mfeat S1 : Mor-Pix-Zer S1S1 : 3704 -

Protein S0 : P1 to P4 S0S0 : 4970 S0S1 : 1352

Homology S1 : P5 to P10 S1S1 : 1514 -

Table 2.2: Computational time taken to compute the local and cross-covariances for the data at
2 nodes.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : Fact S0S0 : 3439 S0S2 : 3542

Mfeat S1 : Fou-Kar S1S1 : 1415 S1S0 : 2354

S2 : Mor-Pix-Zer S2S2 : 3704 S2S1 : 2108

S0 : P1 to P4 S0S0 : 497 S0S2 : 732

Protein S1 : P5 to P7 S1S1 : 375 S1S0 : 724

Homology S2 : P8 to P10 S2S2 : 397 S2S1 : 584

Table 2.3: Computational time taken to compute the local and cross covariances for the data at
3 nodes.

27

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : Fact S0S0 : 3439 S0S3 : 1500 -

Mfeat S1 : Fou-Kar S1S1 : 1415 S1S0 : 2354 -

S2 : Mor-Pix S2S2 : 4186 S2S1 : 3400 S2S0 : 3142

S3 : Zer S3S3 : 528 S3S2 : 1543 S3S1 : 1013

S0 : P1 to P2 S0S0 : 272 S0S3 : 505 -

Protein S1 : P3 to P4 S1S1 : 227 S1S0 : 379 -

Homology S2 : P5 to P7 S2S2 : 258 S2S1 : 448 S2S0 : 490

S3 : P8 to P10 S3S3 : 395 S3S2 : 574 S3S1 : 480

Table 2.4: Computational time taken to compute the local and cross-covariances for the data at
4 nodes.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : Fact S0S0 : 3439 S0S4 : 1500 S0S3 : 3142

S1 : Fou S1S1 : 708 S1S4 : 796 S1S0 : 1877

Mfeat S2 : Kar S2S2 : 684 S2S1 : 896 S2S0 : 1301

S3 : Mor-Pix S3S3 : 4186 S3S2 : 1445 S3S1 : 2081

S4 : Zer S4S4 : 528 S4S3 : 1543 S4S2 : 749

S0 : P1 to P2 S0S0 : 272 S0S4 : 504 S0S3 : 322

Protein S1 : P3 to P4 S1S1 : 227 S1S4 : 471 S1S0 : 380

Homology S2 : P5 to P6 S2S2 : 271 S2S1 : 382 S2S0 : 410

S3 : P7 S3S3 : 206 S3S2 : 326 S3S1 : 290

S4 : P8 to P10 S4S4 : 388 S4S3 : 424 S4S2 : 501

Table 2.5: Computational time taken to compute the local and cross-covariances for the data at
5 nodes.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : Fact S0S0 : 3439 S0S5 : 1500 S0S4 : 3165 -

S1 : Fou S1S1 : 708 S1S5 : 796 S1S0 : 1877 -

Mfeat S2:Kar S2S2 : 684 S2S1 : 896 S2S0 : 1301 -

S3 : Mor S3S3 : 250 S3S2 : 526 S3S1 : 488 S3S0 : 804

S4 : Pix S4S4 : 3822 S4S3 : 647 S4S2 : 1963 S4S1 : 1965

S5 : Zer S5S5 : 528 S5S4 : 1548 S5S3 : 436 S5S2 : 749

S0 : P1 to P2 S0S0 : 272 S0S5 : 431 S0S4 : 322 -

S1:P3 to P4 S1S1 : 227 S1S5 : 404 S1S0 : 379 -

Protein S2 : P5 to P6 S2S2 : 271 S2S1 : 382 S2S0 : 410 -

Homology S3 : P7 S3S3 : 206 S3S2 : 326 S3S1 : 290 S3S0 : 343

S4 : P8 S4S4 : 249 S4S3 : 282 S4S2 : 321 S4S1 : 283

S5 : P9 to P10 S5S5 : 281 S5S4 : 340 S5S3 : 350 S5S2 : 428

Table 2.6: Computational time taken to compute the local and cross-covariances for the data at
6 nodes.

28

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : P1 to P2 S0S0 : 272 S0S6: 358 S0S5 : 331 S0S4 : 322

S1 : P3 to P4 S1S1 : 227 S1S0 : 379 S1S6 : 302 S1S5 : 294

Protein S2 : P5 to P6 S2S2 : 271 S2S1 : 382 S2S0 : 410 S2S6 : 341

Homology S3 : P7 S3S3 : 206 S3S2 : 326 S3S1 : 290 S3S0 : 343

S4 : P8 S4S4 : 249 S4S3 : 282 S4S2 : 321 S4S1 : 283

S5 : P9 S5S5 : 232 S5S4 : 249 S5S3 : 254 S5S2 : 339

S6 : P10 S6S6 : 225 S6S5 : 267 S6S4 : 254 S6S3 : 260

Table 2.7: Computational time taken to compute the local and cross-covariances for the data at
7 nodes.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : P1 to P2 S0S0 : 272 S0S7: 358 S0S6 : 331 S0S5 : 322 -

S1 : P3 to P4 S1S1 : 227 S1S0 : 379 S1S7 : 302 S1S6 : 294 -

S2 : P5 S2S2 : 213 S2S1 : 295 S2S0 : 329 S2S7 : 266 -

Protein S3 : P6 S3S3 : 195 S3S2 : 245 S3S1 : 281 S3S0 : 337 -

Homology S4 : P7 S4S4 : 206 S4S3 : 244 S4S2 : 255 S4S1 : 290 S4S0 : 343

S5 : P8 S5S5 : 204 S5S4 : 282 S5S3 : 277 S5S2 : 253 S5S1 : 283

S6 : P9 S6S6 : 232 S6S5 : 249 S6S4 : 254 S6S3 : 253 S6S2 : 271

S7 : P10 S7S7 : 225 S7S6 : 267 S7S5: 254 S7S4 : 254 S7S3 : 255

Table 2.8: Computational time taken to compute the local and cross-covariances for the data at
8 nodes.

Datasets Sites Local Covariances Cross-Covariances

(milliseconds) (milliseconds)

S0 : P1 to P2 S0S0 : 272 S0S8: 355 S0S7 : 331 S0S6 : 320 S0S5 : 327

S1 : P3 S1S1 :179 S1S0 : 304 S1S8 : 249 S1S7 : 235 S1S6 : 253

S2 : P4 S2S2 : 200 S2S1 : 262 S2S0 : 325 S2S8 : 253 S2S7 : 248

S3 : P5 S3S3 : 213 S3S2 : 246 S3S1 : 231 S3S0 : 346 S3S8 : 266

Protein S4 : P6 S4S4 : 195 S4S3 : 245 S4S2 : 238 S4S1 : 250 S4S0 : 343

Homology S5 : P7 S5S5 : 206 S5S4 : 244 S5S3 : 255 S5S2 : 245 S5S1 : 271

S6 : P8 S6S6 : 204 S6S5 : 282 S6S4 : 277 S6S3 : 253 S6S2 : 236

S7 : P9 S7S7 : 232 S7S6 : 249 S7S5: 254 S7S4: 253 S7S3 : 271

S8 : P10 S8S8 : 225 S8S7 : 267 S8S6 : 254 S8S5 : 260 S8S4 : 255

Table 2.9: Computational time taken to compute the local and cross-covariances for the data at
9 nodes.

29

Datasets Sites Local Cross

Covariances Covariances

(milliseconds) (milliseconds)

S0 : P1 S0S0 : 219 S0S9 : 316 S0S8 : 298 S0S7 : 322 S0S6 : 336 -

S1 : P2 S1S1 :210 S1S0 : 299 S1S9 : 331 S1S8 : 313 S1S7 : 285 -

S2 : P3 S2S2 : 179 S2S1 : 272 S2S0 : 277 S2S9 : 249 S2S8 : 235 -

S3 : P4 S3S3 : 200 S3S2 : 262 S3S1 : 288 S3S0 : 346 S3S9 : 253 -

Protein S4:P5 S4S4 : 213 S4S3 : 246 S4S2 : 231 S4S1 : 295 S4S0 : 312 -

Homology S5 : P6 S5S5 : 195 S5S4 : 245 S5S3 : 238 S5S2 : 250 S5S1 : 289 S5S0 : 285

S6 : P7 S6S6 : 206 S6S5 : 244 S6S4 : 255 S6S3 : 245 S6S2 : 271 S6S1 : 363

S7 : P8 S7S7 : 204 S7S6 : 282 S7S5: 277 S7S4: 253 S7S3 : 236 S7S2 : 253

S8 : P9 S8S8 : 232 S8S7 : 249 S8S6 : 254 S8S5 : 253 S8S4 : 271 S8S3 : 248

S9 :
P10

S9S9 : 225 S9S8 : 267 S9S7 : 254 S9S6 : 260 S9S5 : 255 S9S4 : 266

Table 2.10: Computational time taken to compute the local and cross-covariances for the data
at 10 nodes.

No. of Site Communication Cost

Partitions (milliseconds)

2
S0 : Fact-Fou-Kar S1 : 2660

S1 : Mor-Pix-Zer -

3
S0 : Fact S2: 2660

S1 : Fou-Kar S0 : 1950

S2 : Mor-Pix-Zer S1 : 1280

4

S0 : Fact S3 : 430

S1 : Fou-Kar S0 : 1950

S2 : Mor-Pix S1 : 1280 S0: 1950

S3 : Zer S2: 2240 S1: 1280

5

S0 : Fact S4 : 430 S3 : 2240

S1 : Fou S0 : 1950 S4 : 430

S2 : Kar S1: 685 S0: 1950

S3 : Mor-Pix S2 : 570 S1: 685

S4 : Zer S3: 2240 S2: 570

6

S0 : Fact S5: 430 S4: 2165

S1 : Fou S0 : 1950 S5 : 430

S2 : Kar S1 : 685 S0: 1950

S3 : Mor S2 : 570 S1 : 685 S0 : 1950

S4 : Pix S3 : 45 S2: 570 S1 : 685

S5 : Zer S4: 45 S3 : 570 S2: 685

Table 2.11: Communication cost of the data received by a site from its predecessors for Mfeat
data set.

30

.

No. of Partitions Site Communication Cost (milliseconds)

2
S0 : P1 to P4 S1 : 207

S1 : P5 to P10 -

3
S0 : P1 to P4 S2: 95

S1 : P5 to P7 S0 : 103

S2 : P8 to P10 S1 : 100

4

S0 : P1 to P2 S3 : 146

S1 : P3 to P4 S0 : 82

S2 : P5 to P7 S1 : 95 S0: 82

S3 : P8 to P10 S2: 152 S1: 95

5

S0 : P1 to P2 S4: 146 S3 : 69

S1 : P3 to P4 S0 : 82 S4 :146

S2 : P5 to P6 S1: 95 S0: 82

S3 : P7 S2 : 91 S1: 95

S4 : P8 to P10 S3: 69 S2: 91

6

S0 : P1 to P2 S5: 84 S4: 82

S1 : P3 to P4 S0 : 82 S5 : 84

S2 : P5 to P6 S1 : 95 S0: 82

S3 : P7 S2 : 91 S1 : 95 S0 : 82

S4 : P8 S3 : 69 S2: 91 S1 : 95

S5 : P9 to P10 S4: 82 S3 : 69 S2: 91

7

S0 : P1 to P2 S6: 82 S5: 93 S4: 82

S1 : P3 to P4 S0 : 82 S6 : 82 S5 : 93

S2 : P5 to P6 S1 : 95 S0: 82 S6:82

S3 : P7 S2 : 91 S1 : 95 S0 : 82

S4 : P8 S3 : 69 S2: 91 S1 : 95

S5 : P9 S4: 82 S3 : 69 S2: 91

S6 : P10 S5: 93 S4 : 82 S3: 69

8

S0 : P1 to P2 S7: 82 S6: 93 S5: 82

S1 : P3 to P4 S0 :82 S7 :82 S6: 92

S2 : P5 S1 : 95 S0 :82 S7 :82

S3 : P6 S2 : 86 S1 : 95 S0 :82

S4 : P7 S3 : 93 S2 : 86 S1 : 95 S0 :82

S5 : P8 S4: 69 S3 : 93 S2 : 86 S1 : 95

S6 : P9 S5: 82 S4: 69 S3 : 93 S2 : 86

S7 : P10 S6: 93 S5: 82 S4: 69 S3 : 93

Table 2.12: Communication cost of the data received by a site from its predecessors for Protein
Homology data set for the partitions 2 to 8.

31

No. of Partitions Site Communication Cost (milliseconds)

9

S0 : P1 to P2 S8: 82 S7: 93 S6 : 82 S5: 69

S1 : P3 S0 : 82 S8: 82 S7: 93 S6 : 82

S2 : P4 S1 : 67 S0 : 82 S8: 82 S7: 93

S3 : P5 S2 : 78 S1 : 67 S0 : 82 S8: 82

S4 : P6 S3 : 86 S2: 78 S1 : 67 S0 : 82

S5 : P7 S4: 93 S3 : 86 S2: 78 S1 : 67

S6 : P8 S5:69 S4: 93 S3 : 86 S2: 78

S7 : P9 S6: 82 S5:69 S4: 93 S3 : 86

S8 : P10 S7: 93 S6: 82 S5:69 S4: 93

10

S0 : P1 S9: 87 S8:93 S7 : 82 S6 : 69

S1 : P2 S0: 92 S9: 87 S8: 93 S7 : 82

S2 : P3 S1 : 86 S0: 92 S9:87 S8: 93

S3 : P4 S2 : 67 S1 : 86 S0 : 92 S9 : 87

S4 : P5 S3 : 78 S2: 67 S1 : 86 S0 : 92

S5 : P6 S4: 86 S3 :78 S2:67 S1 :86 S0: 92

S6 : P7 S5: 93 S4 : 86 S3:78 S2 : 67 S1 : 86

S7 : P8 S6: 69 S5 : S4: 86 S3 :78 S2: 67

S8 : P9 S7: 82 S6 : 69 S5: 93 S4:86 S3:78

S9 : P10 S8: 93 S7 : 82 S6: 69 S5: 93 S4:86

Table 2.13: Communication cost of the data received by a site from its predecessors for Protein
Homology data set for the partitions 9 to 10.

Finally, the total time taken to compute the global covariance matrix by the cen-

tralized method and DCM of both the data sets is given in Table 2.14. From the analysis, we

concluded that the global covariances computed by both the approaches will be same. Hence,

we computed the eigen components and variance of both the data sets and are shown in Fig 2.6

and 2.7.

Figure 2.6: Variance of the eigen components of
covariance matrix of Mfeat data set by Centralized
and DCM approach.

Figure 2.7: Variance of the eigen components of
covariance matrix of Protein Homology data set by
Centralized and DCM approach.

32

Dataset No. of Centralized (milliseconds) Distributed
Partitions (milliseconds) (milliseconds)

Mfeat
2 8855 8791
3 9937 9641
4 15311 13958
5 15582 11498
6 18486 9347

Protein Homology
2 4349 3074
3 4337 1586
4 4464 1753
5 4479 1710
6 4551 1865
7 4641 1941
8 4728 2021
9 4781 2285
10 4882 2250

Table 2.14: Comparison of computational time taken by centralized approach and DCM.

From the computational time taken to compute the global covariance matrix by

centralized and by our approach (Table 2.14) for both the data sets, we calculated the speed-up

by increasing the number of partitions and is shown in the Fig 2.8. Our analysis shows that in

general speed-up increases, if the number of partitions increase. However, the dips appear in

the Protein Homology data set may be due to unequal number of columns in the partitioned

data set and may be also due to the overhead.

Figure 2.8: Speed-up of Mfeat and Protein Homology data set of DCM with No. of partitions.

33

2.7 Summary

In this chapter, we proposed an algorithm (DCM) to compute the global covariance matrix

efficiently by merging the local and cross covariances of the data at distributed nodes/sites.

We first conducted the experiment with high column (649) Mfeat data set and later on with

50, 000 row data set from more than 2 lakh Protein Homology data set. As our analysis is for

vertical partitioned data, therefore, if overhead and communication cost are neglected, then the

speed-up only depends on the number of sites/nodes and the total number of columns. The ex-

perimental results show that the eigen components of the covariance matrix of DCM is exactly

same as the centralized approach but significant reduction in the time taken for computing the

global covariance matrix. The computational time of DCM decreases with the increase in the

number of partitions and better speed-up is basically due to the parallel computation of local

covariances, distribution of the cross covariances and load balancing between the nodes/sites.

The speed-up can be further increased by making number of columns equal at every node/site

and also by computing the cross-covariances in parallel within the site. Hence, the proposed

approach can be useful for data reduction and is discussed in the next chapter.

34

CHAPTER 3

DATA REDUCTION FOR THE DISTRIBUTED HIGH
DIMENSIONAL DATA

3.1 Introduction

In the previous chapter, we discussed the computation of global covariance matrix for the

vertically partitioned distributed data sets. In this chapter, based on the principal component

analysis (PCA) an approach is discussed to reduce the dimensionality of the data. The ap-

proach, discussed in the previous chapter was bottom-up, whereas in this chapter we present

a top-down approach for receiving/sending the data from/to the consecutive sites (predeces-

sors/successors).

Most of the scientific data, in particular, astronomical data are of high dimensions

[8, 18], and in such high dimensional data, some of the column data may be interrelated.

Therefore, reduction in the dimensionality of the data will reduce the downloading cost of end

users, and to reduce the dimension of data, a technique called principal component analysis is

used in many fields [81]. The technique is linear as its components are linear combinations of

the original variables, but non-linearity is preserved in the dataset. It reduces the dimensionality

of the data set of interrelated variables retaining the variation present in the data [82, 83].

In this, Ravindran Kannan et al. [84] proposed an approach for saving the communication

cost for the semantic analysis of the collection of documents distributed on many servers.

But, our approach presented in this chapter is for numerical/quantitative data distributed at

number of sites/servers, which reduces the transmission (cost incurred for distributing the data

among the computational nodes) and downloading cost from the globally distributed sites,

35

named as Distributed Load Balancing Principal Component Analysis (DLPCA). The algorithm

is scalable and distributes the computational load among the available resources.

3.2 Principal Component Analysis

Principal component analysis is a simple non-parametric method which is used to reduce the

dimension of datasets of possibly correlated variables into a smaller number of uncorrelated

variables. The first principal component (PC) has maximum variabilities and then it decreases

with the PC’s. It is abundantly used in many fields viz. astronomy, computer graphics, etc. To

describe PCA mathematically, let us consider the dataset given as

[X]n×m = (X0, X1, . . . Xl−1)

where, Xj is a n×mj matrix and mj is the number of columns in Xj . For the given data set,

covariance matrix can be computed by the eq.

covpqj =

i=n∑
i=1

(Xp
ji
− µpj)(X

q
ji
− µqj)

n− 1

where µpj , µ
q
j is the mean of the pth and qth column of the Xj matrix.

The covariance matrix is a symmetric square matrix, and if two columns of data is

completely uncorrelated, then the covariance will be zero. However, there may be a non-linear

dependency between two variables that have zero covariance. Since the covariance matrix is

symmetric, its eigenvalues and eigenvectors can be obtained by solving the equations

covpqj E = λ; |covpqj − λI| = 0

where E is the eigenvector corresponding to the eigenvalue λ and I is the identity matrix of

the same order as covpqj .

In PCA the computed eigenvectors are ordered according to its significance. Hence,

if P is the matrix whose columns are the eigenvectors of the covariance matrix, then the least

36

significant eigenvectors are ignored and the reduced dataset can be computed as,

Reduced dataset (n × l matrix) = Original dataset (say n × m matrix) - mean × Reduced

eigenvector matrix (say m× l matrix)

From the reduce dataset the original dataset can be computed as follows

Original dataset (n × m matrix) = Reduced dataset (n × l matrix) × (Reduced eigenvector

matrix)T (l ×m matrix)+ original mean.

where n is the number of rows, m is the number of columns and l is the reduced number of

columns.

3.3 PCA for Heterogeneous Data

A novel communication efficient and scalable DDM for the analysis of high dimensional ver-

tical partitioned data based on PCA is given in Algorithm 3.1 and the steps followed for the

computation of distributed PCA are given below

i) Let the vertically partitioned data of the l-sites be represented as

[X]n×m = (X0, X1, . . . Xl−1)

where data Xj is a n×mj matrix resides at the site Sj and m =
l−1∑
j=0

mj .

ii) Locally normalize all the columns data of every site Sj .

iii) Compute the covariance between all the column data of every considered site, represented

as

covpqj = cov(Spj , S
q
j); p 6= q = 1, 2, 3,mj

where, mj is the number of columns of the site j.

iv) Locally find the eigenvectors and eigenvalues from the covariance matrix of each site.

v) Compute the projected data from the dominant local principal components of all the sites

Sj and then send the data as follows

37

• If the total number of sites is even, say 2r; r ≥ 1, then send the data of each column

Sj to Sk, where

– k = j + s, ∀ 0 ≤ j ≤ (r − 1) and 1 ≤ s ≤ r and

– k = (j + s) mod 2r, ∀ r ≤ j ≤ (2r − 1) and 1 ≤ s ≤ (r − 1).

• If the total number of sites is odd, say 2r + 1; r ≥ 1, then send Sj to Sk, where

– k = (j + s) mod (2r + 1) for all 0 ≤ j ≤ 2r and 1 ≤ s ≤ r.

This approach balances the computational load among the available sites, e.g., Fig. 3.1 and

3.2 depict the load balancing for four (even) and five (odd) number of sites respectively.

vi) Compute the global covariance matrix from the projected data as follows

covuvjk = cov(Suj , S
v
k); u = 1, 2, 3, ...mr

j ; v = 1, 2, 3, ...mr
k ; j 6= k

where mr
j and mr

k are the reduced number of columns in the jth and kth site respectively.

vii) Using global eigenvectors, project the data on global principal component axis.

viii) Now the user can download the global eigenvectors, local eigenvectors and the global

dominant projected data and can reconstruct the data from it for the final analysis.

Figure 3.1: Load balancing for even no.of sites. Figure 3.2: Load balancing for odd no.of sites.

38

Algorithm 3.1 DLPCA
INPUT: Data Xj of all the sites Sj
OUTPUT: Global PC’s

1: for each site j, compute the PC’s do
2: Compute µj the mean of the data of the columns of Xj

3: Compute the covariance matrix covpqj =

i=n∑
i=1

(Xp
ji
−µpj)(Xq

ji
−µqj)

n−1 where, µpj , µ
q
j is the mean

of the pth and qth column of the matrix Xj .
4: Compute Eigenvectors covpqj El = λ; |covpqj − λI| = 0 where, El is the eigenvector

corresponding to eigenvalue λ and I is the identity matrix of the same order as covpqj
5: Compute Principal components PCj = [[Ej]

T * [Xj]
T] T

6: end for
7: if the number of sites is even say 2r, r ≥ 1 then
8: for j = 0 to (r − 1) do
9: for s = 1 to r do

10: k = j + s and send PCj of Sj to Sk
11: end for
12: end for
13: for j = r to (2r − 1) do
14: for s = 1 to (r − 1) do
15: k = (j + s)%2r and send PCj of Sj to Sk
16: end for
17: end for
18: end if
19: if the number of sites is odd say 2r + 1, r ≥ 1 then
20: for j = 0 to 2r do
21: for s = 1 to r do
22: k = (j + s)%(2r + 1) and send PCj of Sj to Sk
23: end for
24: end for
25: end if
26: Compute the cross-covariances

covuvjk = cov(Suj , S
v
k); u = 1, 2, . . .mr

j ; v = 1, 2, . . .mr
k j 6= k

and then Global Covariance matrix covEG
27: Compute the global Eigenvectors covEG = λ; |covG − λI| = 0 where, EG is the

eigenvector corresponding to the eigenvalue λ and I is the identity matrix of the same
order of covG and project the data on Global PC’s

39

3.4 Cost Estimation

The computation and communication cost to compute the global PC’s of the data distributed at

l sites are estimated as follows.

Computational Cost

Assume that the vertically partitioned data are distributed geographically and represented as

S
nmj

j , where n and mj are the numbers of rows and columns of the jth site.

For simplicity, let all the sites have same computational resources and Tcov be the

time required to compute the covariance between two columns of any considered site. Then,

the total time required to compute the local covariances between columns of all the considered

sites can be written as

j=l−1∑
j=0

mj(mj − 1)

2
.Tcov (3.1)

Now, the total computational cost to compute the cross-covariances of all the sites can be given

by

mr
j ×mr

k.Tcov (3.2)

where mr
j and mr

k are the reduced number of columns of the jth and kth site.

Communication Cost

The total communication/transmission cost to compute global PC’s can be given by,

l−1∑
j=0

Trj .mj .n.Tcom (3.3)

where,

Trj is the number of transfers of the data in the jth site to other sites,

mj is the number of reduced columns of jth site,

40

n is the number of rows of jth site which is same for all the sites, and

Tcom is the communication cost to send one column data from one site to another.

Therefore, the total computational cost of DLPCA can be written as

l−1∑
j=0

mj(mj − 1)

2
.Tcov + (mr

j ×mr
k)Tcov +

l−1∑
j=0

Trj .mj .n.Tcom

Taking Tcov and Tcom as unit cost, the total cost of DLPCA can be written as

=
∑j=l−1

j=0
mj(mj−1)

2 + (mr
j ×mr

k) +
∑j=l−1

j=0 Trj .mj .n

=
∑j=l−1

j=0
mj(mj−1)

2 + (mr
j ×mr

k) +K.mj .n

(3.4)

K =

l(l2); if l is odd

l
2(l − 1); if l is even

(3.5)

3.5 Experimental Analysis

Experimental analysis of the proposed algorithm is done by using well-known publicly avail-

able data sets i) fundamental plane data (3 columns and 224 rows) [85], ii) Gadotti data (7

columns and 946 rows) [86], iii) Protein homology data (due to the limitation of the computa-

tional facility, we took 56 columns and 50000 rows of the data from the full data set) [79], iv)

Mfeat data (distributed in 6 files having 649 columns and 2000 rows) [78]. For experimental

analysis, we used Java Agent Development Framework [80], which simplifies the implementa-

tion of multi-agent systems through a middle-ware and complies the Foundation for Intelligent

Physical Agents specifications. The local principal components are computed and communi-

cated among the created multiple agents for computing the global principal component and the

analysis is focused on two major aspects.

• Reduction in transmission cost among the computational nodes by wisely applying the

concept of PCA. The observed results are compared with Qi. et al. and Yue. et al.

[31, 34].

41

• Reduction in downloading cost of the end user, so that the limitation of the network

bandwidth can be minimized for the final analysis.

3.5.1 Fundamental Plane Data

In astronomy finding a correlation between the observed quantities plays an important role be-

cause it can explain the formations/evolutions of the observed astronomical objects and can

provide a method to measure different quantities. The fundamental plane (FP) [85] is a linear

relationship between the effective radius (re), the average surface brightness within the effec-

tive radius (µe) and the velocity dispersion (σe) of normal elliptical galaxies. Hence, from the

measured quantities viz. µe and σe, one can find the approximated value of re, a difficult task

in observational astronomy.

To test our approach and the developed code, we computed the known FP data

[85] by computing all the three PC’s and cross verified with the online IUCAA VO observatory

and found that it lies in the same plane
(
Fig. 3.3

)
. Also, the computed PC’s obtained by

our method are same as given in the IUCAA VO observatory. We reconstructed the FP data

with two dominant PC and found that it is almost same as the original data
(
Fig. 3.4

)
, hence

reconstructing the FP data from the two dominant PC’s will reduce the downloading cost by

∼33%.

Figure 3.3: All three PCs of FP data.

42

Figure 3.4: Comparison of the original data and reconstructed data with two dominant PCs of
the FP data.

3.5.2 Gadotti Data

To study the error in the global PCs and the reduction in the downloading cost for the end users,

we took Gadotti data which consists of seven columns [86]. For the analysis, we computed

the global PCs from different combinations of local PCs
(
Table 3.1

)
. The estimated error

between the actual global PCs and computed global PCs by DLPCA are shown in Fig. 3.5. We

found that error in the global PCs reduces significantly and after (2, 3) combination, the error is

negligible [∼ 10−2% for (2,3) and∼ 10−4% for (3, 3)]. Therefore, it will suffice to reconstruct

the original data by taking only the five local dominant PCs, which will reduce the downloading

cost by ∼ 24%. The complete trade-off in error of the taken PCs and the downloading cost is

shown in Fig. 3.5. From the analysis we find that the global PC1 error is less compared to other

PCs, this is basically because the mean of the data in the first column is very high compared

to the data in the other six columns
(
mean of the data in respective columns are 20.195, 0.070,

1.484, 0.072, 2.999, 0.473 and 0.4728
)
.

No. of Local PCs from GS0 No. of Local PCs from GS1 No. of Global PCs taken for
the reconstruction of data

2 (4) 2 (3) 4
2 (4) 3 (3) 5
3(4) 3 (3) 6
4 (4) 3 (3) 7

Table 3.1: Global PCs taken for the reconstruction of the data from different combinations of
local PCs.

43

Figure 3.5: Error in the PC’s and reduction in the downloading cost with different combinations
of local PC’s of Gadotti data.

3.5.3 Protein Homology Data

We further analyze the Protein Homology data set [79] which consists of more than 2 lakhs

rows and 78 columns. However due to the limitation of the computational resources we took

50000 rows and 56 columns. These 56 columns are divided into five vertical partitions viz.

Partition1 (P1), Partition2 (P2), Partition3 (P3), Partition4 (P4), Partition5 (P5) containing 12,

9, 11, 11, 13 number of columns respectively.

Similar to the previous analysis, initially the local PC’s are computed for all the

vertical partitioned data. We computed the variance of local PCs (Fig. 3.6) and observed that

after top 8, 3, 5, 8, and 5 PCs of P1, P2, P3, P4, P5 respectively, the variance in PCs are not

significant. Then, we computed the global PCs by taking different combinations of local PCs(
Table 3.2

)
, and estimated the error between the actual top four global PCs and the top four

global PCs computed by the DLPCA (Fig. 3.7). We found that the error in the global PCs

reduces significantly for the local PC’s 8, 3, 5, 8, 5 for P1, P2, P3, P4, P5 respectively. Hence,

it is sufficient to reconstruct the original data by taking only the 29 local dominant PCs, which

can reduce the downloading cost by ∼ 48%.

44

Figure 3.6: Variance in the PCs of the partitioned data.

Figure 3.7: The estimated error between the original and our global PCs computed by DLPCA

P1 P2 P3 P4 P5 No. of Global PCs taken for Downloading cost
the reconstruction of data

1 1 1 1 1 5 8.92
3 2 3 3 3 14 25
6 2 4 6 4 22 39.28
8 3 5 8 5 29 51.78

Table 3.2: Different combinations of local PCs taken for computing the global PC’s to reduce
the downloading cost.

45

3.5.4 Mfeat Data

By our approach, the reduction in the cost is proportional to the reductions in the number

columns of the data set (vertical partitioned) and does not depend on the number of rows.

Therefore, to study the performance of our approach on a high dimensional data, we took

Mfeat data (649 columns) (section 2.6). Following our method described in section 3.3 we

computed the transmission cost with the error (angle between the actual and global dominant

PCs)
(
Fig. 3.14 - 3.17

)
. For the purpose, we first computed the variance in PCs of all the six

datasets
(
Fig. 3.8 - 3.13

)
and studied various combinations of the dominant PCs

(
Table 3.3

)
to find the best combination among them.

fac fou kar mor pix zer Transmission Cost Among the Nodes
1 1 1 1 1 1 3.0×104

4 1 1 1 4 1 6.0×104

6 2 2 1 6 2 9.6×104

10 4 4 1 10 4 1.46×105

10 4 4 1 13 6 1.84×105

14 5 7 1 14 8 2.46×105

15 6 10 1 20 10 3.08×105

Table 3.3: Mfeat transmission cost for the various combinations of local PC’s
.

Figure 3.8: Mfeat-fac data PCs variances. Figure 3.9: Mfeat-fou data PCs variances.

From the computed variance in PCs, we observed that after top 15, 6, 10, 1, 20

and 10 PCs of fac, fou, kar, mor, pix, zer respectively, the variance in PCs are almost negligible.

Hence, following our approach we calculated the transmission cost (Eq. 3.3) with the angle

46

Figure 3.10: Mfeat-kar data PCs variances. Figure 3.11: Mfeat-mor data PCs variances.

Figure 3.12: Mfeat-pix data PCs variances. Figure 3.13: Mfeat-zer data PCs variances.

Figure 3.14: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC1 with our approach.

Figure 3.15: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC2 with our approach.

47

Figure 3.16: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC3 with our approach.

Figure 3.17: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC4 with our approach.

between the actual and four dominant global PCs and compared the results with Qi. et al. [31]

and Yue. et al. [34]
(
Fig. 3.14 - 3.17

)
. The analysis shows that except PC4, our algorithm

outperforms Qi. et al. in terms of transmission cost and as far as the accuracy is concerned it is

more or less same.

If the local PC’s are not distributed among the computational nodes then our ap-

proach outperforms
(
Fig. 3.18 - 3.21

)
Qi. et al. and Yue. et al. with the exception of PC1(

Fig. 3.18
)

when compared with Yue. et. al. The less accuracy compared to Yue. et al. may

be due to the high variance in the data.

Figure 3.18: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC1 without load balancing.

Figure 3.19: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC2 without load balancing.

48

Figure 3.20: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC3 without load balancing.

Figure 3.21: Comparison of the transmission cost
w.r.t. angle between actual and calculated global
PC4 without load balancing.

Method
Transmission Cost

PC1 PC2 PC3 PC4
DLPCA(Without Load Balancing) 6.6× 104 8.9× 104 1.2× 105 9.7× 104

DLPCA (With Load Balancing) 1.4× 105 2.4× 105 2.0× 105 2.2× 105

Yue. et al. 2.0× 104 1.2× 105 3.2× 105 8.3× 104

Qi. et al. 1.7× 105 2.2× 105 2.0× 105 2.2× 105

Table 3.4: Transmission cost w.r.t. angle/error between actual and calculated PC’s.

3.6 Summary

In this chapter we presented and discussed a load balancing algorithm to compute PCA for the

distributed data to reduce the downloading cost for the end users. The algorithm is validated

with fundamental plane data and further experimental analysis is done with Gadotti, Protein

Homology and high dimensional Mfeat data set. The proposed load balancing algorithm gives

the better results with reduced communication cost when compared with the results of Yue.

et al. [34] and Qi. et al. [31] and also reduces the downloading cost with negligible loss in

the information (Table 3.4). The approach is scalable, as we can easily add any number of

sites, and even simply increasing the number of rows the downloading cost will not change

as long as variance does not change significantly. If mf is the number of final columns to

be downloaded by the end user, then our downloading cost is O(mf) where mf � m. Our

experimental analysis shows that downloading cost can be reduced by ∼ 33% for FP data, ∼

27% for Gadotti data,∼ 48% for protein homology data and∼ 90% for Mfeat data with a good

accuracy in the reconstructed data.

49

CHAPTER 4

DISTRIBUTED MULTI-CLASS SUPPORT VECTOR
MACHINE FOR CLASSIFICATION

4.1 Introduction

Classification is one of the important aspects of Data Mining. Choosing a right classification

technique can predict the best class labels. However, understanding the rate at which data is

collected every day all over the globe, choosing the best classification technique may not be

sufficient, hence we have to also focus on the efficient classification of the data. Therefore in

this chapter, we discuss one of the accurate and widely used classification technique called Sup-

port Vector Machine (SVM) for horizontally partitioned distributed data. The two approaches

discussed in this chapter are centroid based binary tree structured SVM (CBTS-SVM) and

Distributed SVM (DSVM).

In SVM, for the given labeled training data (supervised learning), the algorithm

finds an optimal hyperplane which classifies the unseen instances [87, 88]. It has been shown

that SVM can be one of the best classifiers for binary classification [89]. Nevertheless, it is also

equally applicable to multi-class (N -Class) classification, e.g., to classify the astronomical ob-

jects viz. stars, galaxies, quasars, etc. There are two major approaches for solving the N-class

problem, i) a single large optimization problem [90, 76], and ii) decomposing the N-class prob-

lem into multiple binary classification problems. But in terms of computational time, solving a

single large optimization problem will be expensive, hence may not be suitable for practical ap-

plications. However, there are algorithms based on the second approach for solving the N-class

problem, but they are computationally intensive, e.g., One-versus-One (OVO), One-versus-All

50

(OVA), etc, [91, 92]. Therefore, in this chapter, we present two algorithms, first CBTS-SVM

which decomposes the single N -class problem into multiple binary-class problems. In this

algorithm, less number of binary classifiers are required compared to the OVO and OVA algo-

rithms and gives better accuracy. The second proposed algorithm constructs the local models

first and then merges them to find the global model.

4.2 Support Vector Machine

Support Vector Machine is a supervised learning technique for binary classification, in which

an input is a set of objects with the associated class labels [5]. To understand SVM, let the

objects be denoted by (xi, yi), where xi = (xi1, xi2 . . . xim)T corresponds to the attribute set

for xi and yi ∈ {−1,+1} denotes its class label for i = 1, 2, . . . N . The classification is done

by constructing a hyperplane that separates these two classes. However, as shown in Fig. 4.1,

there are many possibilities for such hyperplanes, but SVM constructs a hyperplane to achieve

maximum separation between the classes as shown in Fig. 4.2 and the least margin between

the two classes ensure the least generalization error.

Figure 4.1: Possible classifiers Figure 4.2: A maximum margin classifier

The learning task in binary SVM can be represented as the following optimization problem [5],

minw =
‖ w ‖2

2
(4.1)

subject to yi(w.xi + b) ≥ 1, i = 1, 2, . . . N

51

where w and b are parameters of the model for total N number of instances.

The above Eq. 4.1 can be solved using Lagrange multiplier (Lp) method, given as

Lp =
‖ w ‖2

2
−

k∑
i=1

λi(yi(w.xi + b)− 1) (4.2)

where, λi are known as the Lagrange multipliers.

To minimize Lp, the derivatives are taken w.r.t w and b and equated to zero:

∂Lp
∂w

= 0⇒ w =
N∑
i=1

λiyixi, (4.3)

∂Lp
∂b

= 0⇒
N∑
i=1

λiyi = 0 (4.4)

Since the Lagrange multipliers are still unknown, both w and b cannot be solved. Hence, the

inequality constraints are converted to equality constraints using Karush-Kuhn-Tucker condi-

tions as follows [5]

λi ≥ 0 (4.5)

λi[yi(w.xi + b)− 1] = 0 (4.6)

which implies that either Lagrange multiplier λi is zero or the training instance xi satisfies the

equation yi(w.xi + b) = 1. Such training instance, with λi > 0 lies along the hyperplanes (Fig

4.2) and is known as a support vector. To solve the above optimization problem Eq. 4.2 has to

be transformed into a function of Lagrange multipliers only, which can be done using the dual

of Lp.

LD =

N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjxi.xj (4.7)

After solving the dual problem using quadratic programming, SVM will be ob-

tained. Once the SVM model is built, the class label of a testing object z can be predicted as

52

follows

f(z) = sign
∑

i=1...N

(λiyixi.z + b) (4.8)

If f(z) ≥ 0, z will be predicted as +ve else -ve class.

Multi-Class SVM: One-versus-All

For OVA, the simple approach is to decompose the N -Class classification problem into N bi-

nary problems, where each problem differentiates a given class from the other (N − 1) classes

[93]. In this, K = N binary classifiers are required, and the N th classifier is trained with

positive instances belonging to class N , while all the other (N − 1) classes are considered as

negative instances. When an unknown object is to be predicted, the classifier which achieves

the maximum output is considered as the best choice and the corresponding class label is as-

signed to that test object. This technique is simple [93], and also provides the performance that

is comparable to other more complicated approaches when the binary classifier is tuned well.

[5]

Multi-Class SVM: One-versus-One

In this approach, each class is compared to every other class and a binary classifier is built

to differentiate each pair of classes while discarding rest of the classes. This requires building
N(N−1)

2 binary classifiers. To test a new object, a voting is performed among the classifiers and

the class with the maximum number of votes will be considered as the best choice. It has been

found that this technique, in general, perform better than the one-versus-all approach [91, 94].

4.2.1 Model Evaluation

In classification, once the model is built, it has to be validated for its reliability. The effec-

tiveness of the classifier can be determined by computing the accuracy (Eq. 4.9). However,

metrics such as F-measure (Eq. 4.10) is widely used to evaluate the classifier, when the class

distribution is not balanced in the training data set, and it is defined as the harmonic mean of

53

precision (p) and recall (r). Suppose there are two classes, then the class of interest is consid-

ered as positive and remaining as negative and can be represented as a confusion matrix (Table

4.1).

Predicted Class
+ve -ve

Actual Class
+ve TP FN
-ve FP TN

Table 4.1: Confusion matrix

Accuracy =
TP + TN

TP + FN + FP + TN
(4.9)

where,

TP = True positive

TN = True Negative

FP = False Positive

FN = False Negative

F-Measure =
2.p.r

p+ r
=

2× TP
2× TP + FP + FN

(4.10)

where,

p =
TP

TP + FP
(4.11)

and

r =
TP

TP + FN
(4.12)

4.3 Centroid Based Binary Tree Structured SVM

The complexity of testing and training of OVO and OVA are O(N2) and O(N) respectively

[94]. Hence, in this section, we present an approach CBTS-SVM which significantly reduces

the time taken for the training and testing by decomposing N -class problem into multiple

binary-class problems in a binary tree-structured manner. To build the root node of the model,

we used K-Means clustering algorithm (suitable for finding the spherically shaped clusters but

54

this may not be able to identify the convex regions accurately because of including the noise

and outliers in the clusters. This means it may not work accurately when the clusters are in the

arbitrary shapes) for the estimation of similarities between the class labels, which divide the

class labels into two disjoint sets and built the SVM for the root node. Thereafter, every node

is divided at the midpoint for creating disjoint sets, then the order of class labels is computed

on the basis of the sum of squared errors (SSE) in which, the least will be first in the list and

the maximum will appear in the last. This way (N − 1) binary SVMs will be built with (N−1)
2

SVMs to evaluate the unclassified record which is better than the worst case (N − 1) of OVA

and N(N−1)
2 of OVO. Below we describe the steps of our approach to train and test the model.

4.3.1 Training Model

1. Add all the training objects to the root node and let the class labels be 1, 2, . . . N for N

classes. Now divide the training objects, i.e., the root node into two clusters/nodes IL

(left node) and IR (right node) by centroid-based k-Means clustering technique.

2. Adjust the objects to IL as positive class and IR as negative class based on the majority

of their class labels from the two clusters.

3. Now for IL and IR calculate the SSE of every class label and sort them in the ascending

order.

4. For both IL and IR repeat, if

(a) the number of class labels of the node are two then construct the binary classifier.

(b) the number of class labels is more than two then divide each node exactly at the

mid-point and then construct the binary SVM and repeat this till the node left with

two class labels only.

4.3.2 Testing Model

1. Evaluate the test object on the root node of the binary tree of SVMs.

2. Repeat

• If the value is positive, then traverse to IL else to IR.

55

3. Until the leaf node is reached.

4. Classify the test object into the class label of the leaf node.

4.3.3 Illustration

Let us consider eight classes of a multi-class problem as shown in Fig. 4.3. First, we run

k-means clustering for k = 2 to divide the data objects according to their distribution. Now,

with the cluster distribution and based on the majority count of the class we know which class

labels fall on the left side and which goes to the right side. As shown in Fig. 4.3, set IL {1,

3, 7} to the positive class and rest of the class labels, IR {4, 6, 8, 2, 5} are set to the negative

class (the order of class labels within the node shall be in ascending order of the SSE). Then

build an SVM model by constructing a binary SVM between IL and IR.

Figure 4.3: An illustration of CBTS-SVM.

Now, the left child of root node contains all the data objects that belong to class

56

labels in IL , i.e., {1, 3, 7}. After this, divide exactly at the midpoint to obtain new IL and

IR sets for this node. Hence, here new IL is {1, 3} and IR is {7}. Now consider all the data

objects which are positive class labels in IL to build an SVM model. This SVM model will

act as the left child of the root node. In this way, one can build the whole binary tree of SVM

functions recursively for both left and right nodes till leaf node is reached. Now, when an

unseen object has to be classified, the search starts from the root node and then it moves to left

or right depending on the evaluation function recursively till the leaf node is reached. Then,

assign the corresponding class label to the test object. Fig. 4.4 shows the possible hyperplanes

of different class labels by our approach.

Figure 4.4: The hyperplanes.

4.3.4 Experimental Analysis

We tested the algorithm with twelve data sets (Glass, Iris, Letter, Mfeat-fac, Mfeat-fou, Mfeat-

kar and Mfeat-mor, Pendigits, Satimage, Segment, Shuttle and Vowel) of UCI [78]) having

150-20000 instances, 4-216 features and 3-26 class labels and compared the accuracy of the

model, training and testing time with OVO and OVA. The detailed properties of the data sets are

57

given in Table 4.2. For Letter, Shuttle and Satimage data set, the training and testing file have

been used as given at UCI but for the rest of the data sets 2/3 part of the data is considered for

training and 1/3 is considered for testing [20]. All the data sets are normalized and randomized

so that similar class labels data shall not appear together. In the analysis, we used radial basis

function kernel because it works best for any kind of the problem [95] and chosen the range

of gamma (γ) values from 2−10 to 24, cost (C) from 2−2 to 212. In all the three approaches

OVO, OVA and CBTS, the best combination of γ and C are chosen from the mentioned range

to provide the best accuracy and less testing and training time. All the computations are done

in Ubuntu OS with 1.60GHz Intel i5-4200U Dual-core processor with RAM of 6GB and used

LIBSVM software [96].

Dataset Features Instances Class Labels
Glass 9 214 6
Iris 4 150 3

Letter 16 20000 26
Mfeat-Fac 216 2000 10
Mfeat-Fou 76 2000 10
Mfeat-Kar 64 2000 10
Mfeat-Mor 6 2000 10
Pendigits 16 10992 9
Satimage 36 6435 6
Segment 19 2310 7
Shuttle 9 214 6
Vowel 10 640 10

Table 4.2: Details of the UCI data sets.

The training and testing time of the UCI data sets by CBTS, OVO and OVA are

given in Table 4.3 and we found that CBTS outperforms OVA. The training time and testing

time of CBTS are little more than OVO, but accuracy is more or less same with less cost (C)

and high γ (Table 4.4). A higher value of C implies more samples of support vectors. But

limiting the support vectors, i.e., the lower value of C will use minimum possible memory and

the prediction will be faster. For a good model, γ cannot be too small or too large. If γ is too

small then the model is restricted and cannot capture the complexity or “shape” of the data.

If γ is too large, then there is a possibility that model will overfit the data [97]. CBTS has

intermediate γ value but for OVO it is too small. In Table 4.5, the number of binary classifiers

58

required for one classification is shown for OVO, OVA, and CBTS and we observe that CBTS

requires less number of binary classifiers compared to OVO and OVA.

Dataset CBTS OVO OVA
Train Test Train Test Train Test

Glass 0.009 0.004 0.0028 0.0012 0.025 0.013
Iris 0.003 0.0017 0.001 0.0008 0.0072 0.0061

Letter 0.535 0.2595 5.268 4.281 10.23 2.76
Mfeat-Fac 1.0079 0.5077 0.3246 0.2122 1.656 0.729
Mfeat-Fou 0.6857 0.3179 0.2591 0.1624 0.962 0.423
Mfeat-Kar 0.4391 0.2221 0.1491 0.0887 1.244 0.552
Mfeat-Mor 0.0823 0.0545 0.0652 0.0349 0.4773 0.0726
Pendigits 0.794 0.657 0.225 0.175 0.7748 0.2398
Satimage 0.535 0.2595 0.2596 0.173 1.006 0.3503
Segment 0.125 0.071 0.078 0.034 0.244 0.0669
Shuttle 3.9367 9.0613 2.221 0.394 4.491 0.606
Vowel 0.028 0.0131 0.0131 0.006 0.057 0.032

Table 4.3: Training and testing time for the 12 UCI data sets by CBTS-SVM, OVO and OVA.

In addition to the above, we also analyzed the Sloan Digital Sky Survey (SDSS)

data [98] which is a major multi-filter imaging and spectroscopic redshift survey using a dedi-

cated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United

States. It has six class labels with many features from which we took 5 features viz. u, g, r, i,

z to analyze the model and results are shown in Table 4.6. We found that CBTS outperforms

both OVA and OVO w.r.t accuracy and training time with the best gamma and cost. The out-

performance of the CBTS is mainly because the classes are grouped into two clusters based on

their similarity. By considering the two clusters as positive and negative class, SVM is trained.

But in OVA, SVM is trained with positive instances belonging to class N and negative instances

belonging to the other (N-1) classes without any similarity between them.

When the instances are varied from 30,000 to 75,000 OVA couldn’t able to build

the classifiers whereas OVO and CBTS easily build the required classifiers without any problem

and gives a better accuracy with reduced training time.

59

Dataset CBTS OVO OVA
γ C Acc. γ C Acc. γ C Acc.

Glass 24 2−1 73.61 2−3 25 76.38 2−1 29 68.49
Iris 24 2−1 98 2−10 212 98 21 22 98.03

Letter 24 20 93.68 21 24 96.68 20 210 91.88
Mfeat-Fac 22 2−2 97.75 2−8 211 98.2 2−3 212 97.15
Mfeat-Fou 24 2−2 82.46 2−4 212 85.75 2−4 23 80.08
Mfeat-Kar 24 2−2 98.05 2−10 29 97.00 2−3 212 96.25
Mfeat-Mor 24 2−2 72.26 2−6 212 73.31 2−1 210 68.41
Pendigits 24 2−2 99.67 2−4 26 99.67 2−3 25 99.31
Satimage 23 2−2 88.35 2−3 23 88.50 2−2 22 84.82
Segment 24 20 96.88 2−1 212 97.66 2−1 211 95.33
Shuttle 24 25 99.93 24 211 99.99 23 211 99.96
Vowel 22 21 97.15 2−1 26 98.29 20 25 93.22

Table 4.4: Accuracy, Gamma (γ), Cost (C) of CBTS, OVO, and OVA for 12 UCI datasets.

Dataset OVO OVA CBTS
Glass 36 9 8
Iris 6 4 3

Letter 120 16 15
Mfeat-Fac 23220 216 215
Mfeat-Fou 2850 76 75
Mfeat-Kar 2016 64 63
Mfeat-Mor 15 6 5
Pendigits 120 16 15
Satimage 630 36 35
Segment 171 19 18
Shuttle 36 9 8
Vowel 45 10 9

Table 4.5: Number of binary SVMs required for a single classification.

SDSS Algorithm Acc. γ C Tr.Time Te.Time
OVA 80.42 24 2−2 19.05 4.78

30,000 OVO 86.61 21 26 11.37 3.23
CBTS 86.75 21 26 10.65 6.24
OVA 85.06 24 211 785.31 9.57

50,000 OVO 87.08 24 26 34.99 9.94
CBTS 87.13 21 26 33.18 22.99
OVA X X X X X

75,000 OVO 86.98 23 20 67.96 32.32
CBTS 86.26 21 22 60.59 49.95

Table 4.6: Accuracy, Gamma (γ), Cost (C), training and testing time of CBTS, OVO and OVA
for different size of SDSS data set.

60

4.4 Distributed Multi-Class

For efficient classification, testing time plays a vital role. Hence, we propose a distributed

multi-class SVM (DSVM) which testing time is comparatively less than the ensemble model.

Here the global model is built by merging the local SVMs, and the global model is made

available to each local site so that it can be used in future for the classification of unseen

objects. The experimental analysis is done in both centralized, and distributed manner using

our approach by considering different data sets of different size. For the taken data sets our

proposed approach succeeded in building the global SVM whereas in the centralized approach

could not able to build the training model for some cases.

The architecture of our approach is shown in Fig. 4.5 and the steps followed for

DSVM are described below.

1. Let the data be horizontally partitioned and distributed among z sites, given as

[X]p×q = (X1, X2, X3,Xz)

where data Xj is a pj × q matrix residing at the site Sj and p =
n∑
j=1

pj

2. At all z sites, build the local SVMs say SVM1, SV M2, . . . SVMz .

3. Assuming each site as a vertex, construct a directed graph as follows

• Edge (i → j) refers to the training model of SVMi w.r.t test data at site j. where,

i, j = 1 to n and i 6= j

• Label the edge with the accuracy of the SVMi, j.

4. Now merge the local models as follows

(a) For each vertex j, find the maximum labeled edge among all the edges from i to j,

where, i = 1 to n, i 6= j and store the values in z × 2 matrix as follows

• For (k = 1 to z) do

– best [k][1] = i;

– best [k][2] = j;

61

(b) Find the element which has maximum frequency among best[i][1]. Finally, the

corresponding SVM model is decided as the global/merged model.

Figure 4.5: The architecture of DSVM.

4.4.1 Graphical Representation

Fig. 4.6 is a representation of DSVM in which each vertex is a site and the edge from the vertex

i to j represents the accuracy of the SVM model for the training data at site i w.r.t. the test data

at site j.

Figure 4.6: SVMs of ith site w.r.t the test data of jth site.

The accuracy matrix Aij is a z × z matrix which can be written as

62

Aij =

a11 a12 a13 a1z

a21 a22 a23 a2z

a31 a32 a33 a3z

..

..

az1 az2 az3 azz

(4.13)

Let k-max be the maximum of each column of Aij matrix, where k = i to z. Then select the

SVM which has the maximum count hence the final global model.

4.4.2 Experimental Analysis

Experimental analysis is done with the Mfeat-Fac, Pendigits [78] and SDSS data sets [98].

First Mfeat, Pendigit and SDSS data sets are divided into 3, 4 and 4 partitions respectively and

then DSVM is compared with centralized SVM and ensemble SVM.

The description of the data sets that are analyzed is given in Table 4.7. The training

accuracy and time taken after distributing the data sets is shown in Table 4.8. The accuracy

Dataset Features Training Testing Class At At At At
Size Size Labels Site 1 Site 2 Site 3 Site 4

Mfeat-Fac 216 1800 200 10 500 800 500 -
Pendigits 16 7514 3478 9 1800 2000 1494 2200

SDSS 5 175000 1000 5 20000 30000 50000 75000

Table 4.7: Description of the analyzed data sets.

Dataset Site 1 Site 2 Site 3 Site 4
Acc. Time Acc. Time Acc. Time Acc. Time

Mfeat-Fac 100 0.1365 100 0.256 100 0.143 - -
Pendigits 100 0.062 99.53 0.110 100 0.049 100 1.0132

SDSS 100 49.996 89.09 115.76 89.13 369.93 89.76 1728.097

Table 4.8: Training Accuracy and training time taken after distributing the three different data
sets by DSVM.

matrices of Mfeat-Fac with three sites, Pendigits and SDSS with four sites is given in Eq.

4.14, 4.15, 4.16 respectively. The best model obtained for Mfeat-Fac, Pendigits and SDSS are

63

selected based on the maximum count and are given in Table 4.9, 4.10 and 4.11 respectively.

−1 96 96.8

98.2 −1 98

97 96.3 −1

 (4.14)

−1 99.45 99.70 99.30

99.50 −1 99.60 99.40

99.60 99.25 −1 99.20

99.50 99.35 99.5 −1

 (4.15)

−1 68.38 68.39 68.52

37.45 −1 89.16 89.02

37.45 89.53 −1 89.37

37.47 89.63 89.66 −1

 (4.16)

We also analyze the three data sets with ensemble method (Table 4.12) in which

data is predicted every time with all the available training models and then the class label is

decided by the voting approach. We found that the testing time of DSVM is significantly less

than the ensemble SVM, because in DSVM the final global model is constructed from all the

local models, and whenever an unseen object has to be classified, it is tested with only one

global model.

Finally, DSVM is compared with centralized, OVO multi-class SVM and ensem-

ble model (Table 4.13). The results show that the accuracy of DSVM is almost equivalent to

centralized SVM with reduced training time and testing time. The training time of DSVM is

taken as the maximum time of the local SVMs, because the local SVMs can be constructed in

parallel. We also found that increasing the data size, centralized approach is not able to build

the model with the given resources but DSVM able to built the model (Table 4.13).

64

Test Data Training Model Acc. Best Model

Site1
SVM2 98.2

SVM2SVM3 97.0

Site2
SVM1 96.0

SVM3SVM3 96.3

Site3
SVM1 96.8

SVM2SVM2 98.0

Table 4.9: The best global model of Mfeat-Fac dataset by DSVM:SVM2.

Test Data Training Model Accuracy Best Model

Site1

SVM2 99.50
SVM3SVM3 99.60

SVM4 99.50

Site2

SVM1 99.45
SVM1SVM3 99.25

SVM4 99.35

Site3

SVM1 99.70
SVM1SVM2 99.60

SVM4 99.50

Site4

SVM1 99.30
SVM2SVM2 99.40

SVM3 99.20

Table 4.10: The best global model of Pendigits data set by DSVM:SVM1.

Test Data Training Model Accuracy Best Model

Site1

SVM2 37.45
SVM4SVM3 37.45

SVM4 37.47

Site2

SVM1 68.38
SVM4SVM3 89.53

SVM4 89.63

Site3

SVM1 68.39
SVM4SVM2 89.16

SVM4 89.66

Site4

SVM1 68.52
SVM3SVM2 89.02

SVM3 89.37

Table 4.11: The best global model of SDSS data set by DSVM: SVM4.

65

Data Set Local Site Accuracy Voting Model

Mfeat-Fac
Site1 97.50

SVM2Site2 98.00
Site3 97.00

Pendigits
Site1 10.40

SVM1Site2 10.37
Site3 10.37
Site4 10.37

SDSS
Site1 85.80

SVM4Site2 53.30
Site3 53.30
Site4 87.10

Table 4.12: Accuracy of the ensemble model after distributing the three different datasets.

Dataset Centralized Ensemble DSVM
Acc. Tr. Te. Acc. Tr. Te. Acc. Tr. Te.

Time Time Time Time Time Time
Mfeat-Fac 99 0.667 0.133 98 0.234 0.204 98 0.234 0.077
Pendigits 10.40 0.477 0.190 10.40 0.243 0.868 10.40 0.243 0.135

SDSS - - - 89 227.24 5.52 89 227.24 2.94

Table 4.13: Accuracy, training and testing time of the centralized, ensemble and DSVM.

4.5 Summary

In this chapter, we presented two approaches for constructing a multi-class classifier using

SVM. In the first approach, the data of initial two clusters are horizontally partitioned by k-

Means clustering algorithm and then partitioned in a binary tree model to get the final classifi-

cation. For the analysis, we took twelve different data sets having 150-20000 instances, 4-216

features, and 3-26 class labels. The experimental results show that OVO is almost same with

little increase in training time (due to the overhead of k-Means clustering). When compared

with OVA, CBTS gave a better accuracy with almost same training time. However, our ap-

proach testing time is always less than the both OVO, and OVA and its complexity is given by

O(logN),O(N2),O(N) respectively for given N classes.

In the second approach, we have constructed a global SVM from the available

local SVMs, and once the global SVM is constructed, the model is sent to every local site

for further predictions. Our DSVM approach takes less time for training and testing than the

66

centralized SVM with almost same accuracy. When it is compared with the ensemble, there is

∼60% speed-up in testing time with the same accuracy.

67

CHAPTER 5

DISTRIBUTED MUTLI-CLASS RULE BASED

CLASSIFICATION

5.1 Introduction

Data are generally divided into qualitative/categorical and quantitative/numerical type. For

efficient classification of these data with high accuracy, various techniques are available [5]. In

the previous chapter using SVM we discussed distributed approaches for the classification of

quantitative data. In this chapter, we present a Distributed Rule-based Classification (DiRUC),

an approach for efficient multi-class classification for the horizontally partitioned qualitative

data. We use Repeated Incremental Pruning to Produce Error Reduction (RIPPER) to build the

set of rules at the local level and then merge them into a global level in a distributed manner.

The algorithm first constructs the local rule sets for the distributed data then at each iteration

the local models are sent from one location to other. Finally, the global model is constructed

efficiently by merging these local models and is made available at each site for the prediction

of class labels.

5.2 Repeated Incremental Pruning to Produce Error Reduction

Repeated Incremental Pruning to Produce Error Reduction algorithm is one of the widely used

rule-based classifier. It can handle the noisy data sets by using a valid data set to prevent

68

over-fitting and also works well for the imbalanced class distributions. It is also scalable with

respect to the number of instances in the data set and can be used for both binary and multi-

class classification. In binary class problem, RIPPER considers the majority class as default

and learns the rules for the minority class. In multi-class problem, if there are n class labels, say

y1, y2, y3.....yn, in the increasing order of frequency, then in the first iteration y1 will become

the positive class and the rest will be the negative class [5]. Then it learns the rules for y2,

y3 and so on. These rules grow in a general-to-specific strategy and use First Order Inductive

Logic information (FOIL) [5] gain to choose the best conjunct into the rule antecedent. It stops

adding the conjuncts when it starts covering the negative instances, e.g., if R0 is the initial rule

and R1 is the rule after adding the conjunct, then mathematically FOIL’s information gain is

given as:

t(log2

p1

p1 + n1
− log2

p0

p0 + n0
)

where,

t: number of positive instances covered by both R0 and R1

p0 : number of positive instances covered byR0

n0 : number of negative instances covered byR0

p1 : number of positive instances covered byR1

n1 : number of negative instances covered byR1

In this, the pruning of new rule is done on the basis of the performance of valid data set and the

metric used for the pruning is given by
p− n
p+ n

where, p is the number of positive instances, and n is the number of negative instances in

the testing data set covered by the rule, once the rule is generated it is added to the rule set.

Different stopping conditions are used for the rule set viz. minimum description length, the

error rate of the rule on the validation (min. 50%).

5.3 Distributed Multi-Class Rule Based Classification

Let us consider that the data is distributed homogeneously among z sites, i.e., each site has the

equal number of columns/dimensions but have different number of instances. The architecture

69

of the same is shown in Fig. 5.1, an algorithm of the same is given in Algorithm 5.1 and the

steps are described below

1. Similar to the previous chapter, assume that the data is distributed among z sites and

given as,

[X]n×m = (X0, X1, X2,X(z−1))

where data Xj is a nj ×m matrix residing at the site Sj and n =
z−1∑
j=0

nj

2. Independently build the local rule-based classifiers at all z sites using RIPPER algorithm

containing l number of rules at each site denoted as R0, R1 . . . R(z−1) .

3. Evaluate the rules based on its score (accuracy + coverage) and arrange the rules in

descending order at each site.

4. For j = 1 to (z − 1) do

• migrate the top best k rules from Ri to R(i+1) mod z where, i = 0, 1, . . . (z − 1).

• at each site, prune these k rules with the corresponding new training data set.

• construct the new (l − k) rules.

• evaluate and arrange them in descending order according to the computed score.

5. Finally, merge the local models into the global model as follows

• put the duplicate rules among all local models into the merged model.

• find the rules which are subsets of rules in other local models.

• put these subsets as relevant rules to the merged model.

• add all remaining rules from all the local models to the merged/global model.

70

.

Figure 5.1: Architecture of DiRUC.

71

Algorithm 5.1 : DiRUC
INPUT: Data Xj of all the sites Sj where j = 0 to (z − 1)
OUTPUT: Global Rule Set

1: Begin
2: for each site i do
3: CONSTRUCT()
4: Rule set evaluation() (RSE())
5: end for
6: for i = 0 to (z-1) do do
7: MIGRATE(Ri, R(i+1) mod z, k)
8: PRUNE()
9: CONSTRUCT()

10: RSE()
11: end for
12: MERGE()
13: End

14: procedure CONSTRUCT
15: INPUT: All the Data Xj of Sj
16: OUTPUT: Local Rule Set
17: Begin
18: use RIPPER algorithm to construct the rules for corresponding data chunk.
19: End
20: end procedure

21: function RSE
22: INPUT: Rule set Rj
23: OUTPUT: Ordered Rule Set
24: Begin
25: use RIPPER algorithm to construct rules for corresponding data chunk.
26: score (Rj) = accuracy + coverage
27: return Rj in descending order of score
28: End
29: end function

30: procedure MIGRATE
31: INPUT: Rule Set Ri
32: OUTPUT: Best Rule Set Rj
33: Begin
34: Send top k rules based on best score from Ri to the node of Rj
35: End
36: end procedure

72

37: procedure PRUNE
38: INPUT: Rule Set Ri
39: OUTPUT: Pruned Rule Set Rj
40: Begin
41: uses RIPPER algorithm to prune the migrated rules
42: End
43: end procedure

44: function MERGE
45: INPUT: Rule sets R0, R1....R(z − 1)
46: OUTPUT: Global Rule Set RG
47: Begin
48: RTemp = find duplicate rules among R0, R1....R(z − 1)
49: RG = NULL
50: RG = RG ∪RTemp
51: RTemp = find rules of each Ri which are ⊆ the other local rule sets
52: RG = RG ∪RTemp
53: RTemp = all remaining rules in all the local rules sets.
54: RG = RG ∪RTemp
55: return RG
56: End
57: end function

5.4 Illustration

Let us consider five sites S0, S1, . . . S4 and the corresponding local rule sets R0, R1, . . . R4

each containing l = 10 rules each. Now evaluate the rules at each site based on its score and

arrange it in descending order. Send the top best k = 6 rules from Ri to R(i+1) mod 5 and

prune these rules with the new data set of the corresponding site and also at every site. Now

remaining l − k = 4 rules are built so that the total number of rules are always ten. Repeat the

above steps, until the rule set migrated to every site as shown below

R0 −→ R1 −→ R2 −→ R3 −→ R4

R′4 −→ R′0 −→ R′1 −→ R′2 −→ R′3

R′′3 −→ R′′4 −→ R′′0 −→ R′′1 −→ R′′2

R′′′2 −→ R′′′3 −→ R′′′4 −→ R′′′0 −→ R′′′1

R′′′′1 −→ R′′′′2 −→ R′′′′3 −→ R′′′′4 −→ R′′′′0

(5.1)

Once the migration is completed, the local rule sets are merged as described in section 5.3.

73

5.5 Experimental Analysis

We analyzed our approach with different parameters and compared the result with normal

RIPPER and Ishibuchi et al. model [50]. The algorithm has been implemented in HADOOP

with publicly available five distinct data sets having instances up to 12960, 36 columns and

2-7 class labels (Table 6.1) [78] for different number of distributed data at various sites/nodes

(DDN).

data set Instances Dimensions Class Labels
Car 1728 6 4

Monk 432 6 2
Nursery 12960 8 5

TicTacToe 958 9 2
Satimage 6435 36 7

Table 5.1: Data sets description.

5.5.1 DiRUC with Different Parameters

To understand the significance of DiRUC, following performance analysis has been done with

different parameters.

1. Accuracy and time taken for the rule generation w.r.t. DDN and the number of transferred

rules.

2. Accuracy and coverage in each iteration.

3. Testing accuracy w.r.t. DDN.

Accuracy and Time Taken for Rule Generation w.r.t. DDN

For five distinct data sets, we calculated the accuracy of DiRUC by increasing the number of

DDN and is shown in the Fig. 5.2. We observed increase or almost have the same accuracy

for the three data sets (car, tic-tac-toe, satimage) and decrease in the nursery, monk data sets

after 3-5 iterations respectively. The decrease in accuracy is because the number of DDN affect

the number of instances in an isolated DDN. This affects the locality across which a pattern is

74

being recognized and if this locality decreases, the probability of the patterns with the global

data set decreases.

Figure 5.2: Accuracy of DiRUC w.r.t. DDN for the five distinct data sets.

If Ti is the time taken to complete the ith iteration, i.e., time taken for an isolated

node to process the incoming rule set (concurrently running across all isolated nodes), and if

n is the total number of iterations, then the time taken ‘T ’ of the model can be computed by

(neglecting merging time of all the final local models),

T =
i=n∑
i=1

Ti

The time taken for rule generation of DiRUC has been computed to test the model

by increasing the number of DDN for all five data sets, and the obtained result is shown in Fig.

5.3. The analysis shows that the time taken by DiRUC with DDN are affected by

1. Increase in the number of DDN, decreases the number of instances per isolated DDN.

Thus, the data size across which the rule set has to be determined also decreases, resulting

in a decrease in time per iteration (Ti).

75

2. Number of iterations = Number of DDN, this is because the developed rule set in an

isolated DDN has to traverse through all the remaining DDN and to be validated as a

global rule set. Although, the number of instances per isolated DDN decreases, the

overhead may increase due to the increase in the number of iterations.

Figure 5.3: Time taken for rule generation by DiRUC for five distinct data sets w.r.t. DDN.

Accuracy and Time taken by DiRUC w.r.t. Transferred Rules

The accuracy and time taken to build the model by DiRUC for the different number of trans-

ferred rule sets from Ri to Ri+1 are shown in Fig. 5.4 and 5.5 respectively and are computed

by the eq.

Ti = k ∗ p+ (l − k) ∗ c (5.2)

where,

l = Maximum rules that can be present in DDN.

k = Number of best rules that must be transferred to the next node.

Ti = Time taken at ith iteration.

= Time taken for an isolated node to process the incoming rule set (concurrently running across

all the isolated nodes).

76

p = time taken to prune a rule.

c = time taken to construct a rule and is always greater than p.

Figure 5.4: Accuracy of DiRUC w.r.t transferred rules.

Figure 5.5: Time taken by DiRUC w.r.t transferred rules.

From the Eq. 5.2, we can say that for every iteration after the local model construction, k

rules are pruned and (l− k) new rules are constructed. Initially, the time Ti decreases with the

increase in the number of transferred rules (k), because (l−k) decreases and later Ti increases

77

as (l − k) ∗ c is no longer able to counter the affect of k ∗ p.

Accuracy and Coverage of DiRUC of Each Iteration

The accuracy and coverage obtained for each of the seven classes at each iteration of satimage

data set is shown in Fig. 5.6 and 5.7 respectively. We observed that the accuracy fluctuates

Figure 5.6: Accuracy of Satimage data set at each iteration.

Figure 5.7: Coverage of Satimage data set at each iteration.

78

(±5%) due to the over/under-fitting but slowly the fluctuation reduces and a balanced rule set

is obtained to represent the whole data set. Except class 3, the average accuracy of all 6 classes

in the final iteration is 90 ± 5%. The accuracy of class 3 is below ∼ 70%, may be due to the

complex distribution of the data. Similarly, the accuracy and coverage of car and tic-tac-toe

data sets have been obtained and shown in Fig. 5.8 - 5.11.

Figure 5.8: Accuracy of Car data set at each iteration.

Figure 5.9: Coverage of Car data set at each iteration.

79

Figure 5.10: Accuracy of Tic-Tac-Toe data set at each iteration.

Figure 5.11: Coverage of Tic-Tac-Toe data set at each iteration.

Testing Accuracy of DiRUC

From the above analysis, it is evident that DiRUC training accuracy is significant. Hence, in

the same line, we analyzed the model to find the testing accuracy. Fig. 5.12 shows the testing

accuracy of DiRUC for different number of DDN of all the five data sets.

80

Figure 5.12: Testing Accuracy w.r.t. DDN with all the five data sets.

5.5.2 DiRUC and Normal RIPPER

Accuracy and time taken for the rule generation by normal RIPPER and DiRUC for all the five

data sets are shown in Fig. 5.13 and 5.14. We observe that except for the tic-tac-toe data set

Figure 5.13: Accuracy of DiRUC and Normal RIPPER for the five distinct data sets.

81

our approach outperforms normal RIPPER with a significant increase in the accuracy and de-

crease in the time taken for rule generation. The time taken by RIPPER is high because the

construction of the rules on the whole data is done in a centralized manner. But in DiRUC it

reduces because the local models are constructed in parallel.

Figure 5.14: Time taken for rule generation by of DiRUC and Normal RIPPER for the five
distinct data sets.

5.5.3 DiRUC and Island model

DiRUC is further analyzed by sending the set of rules in each iteration from one site to the

other site and is tested with satimage data set. The obtained result has been compared (Fig

5.15) with island model given by Ishibuchi et al. [50], in which rules are migrated and also

data are rotated among the sites.

The analysis shows that DiRUC outperforms the Ishibuchi et al. model for both

the training and testing data. We also found that till ∼ 20 seconds DiRUC training accuracy

mostly remain above ∼ 90% and after ∼ 30 seconds the accuracy reaches to ∼ 100%. But

Ishibuchi et al. model accuracy remain (85.3% ± 0.2%). The observed initial fluctuation and

sudden deep between 20−30 seconds in the performance of DiRUC may be due to over/under-

fitting. We also find that the testing accuracy of DiRUC (96.96%) is better than the Ishibuchi

et al. (83± 2%) model.

82

Figure 5.15: Accuracy of DiRUC and Island Model.

5.6 Summary

A distributed algorithm for rule-based classification has been implemented in HADOOP. Using

RIPPER, sets of rules are constructed for each of the sites, then the rules of z sites are optimized

by migrating to the other sites in (z−1) rotations so that every set of rules is validated by every

other data set of the site. After (z − 1) rotations the global rule set is found by merging all

these local rules. For accuracy and time efficiency the analysis is done with five data sets with

different parameters. The proposed approach DiRUC outperforms the normal RIPPER and

island model.

83

CHAPTER 6

HYBRID APPROACH FOR SEMI-SUPERVISED
CLASSIFICATION

6.1 Introduction

So far we presented and discussed our distributed approaches for the data reduction and su-

pervised classification for DDM. In supervised classification, the class labels of the objects are

well defined, but in many applications, the human intervention is required to define the class

labels of the data sets. Hence, semi-supervised learning methods are in focus to reduce the

large expenses and time involved in labeling the unlabeled data by human experts. Therefore,

in this chapter, we present an inductive approach to label the unlabeled data using a hybrid

model with label propagation (LP) and SVM to minimize the cost incurred and time taken for

labeling the unlabeled data.

Semi-supervised learning methods are mainly classified into two broad classes

known as Inductive and Transductive. In both inductive and transductive, the learner has

both labeled training data set
(
(xi, yi)i=1...l denoted as p(x, y)

)
and unlabeled training data

set
(
(xi)i=l+1...l+u denoted as p(x); l � u

)
. The inductive learner learns a predictor f : X→

Y, f ∈ F, where F is the hypothesis space in which x ∈ X , is an input instance, and y ∈ Y

its class label. The predictor learns and predicts the future test data better than what the pre-

dictor learned from the labeled data alone. The transductive learning, labels the unlabeled data

{(xi)i=l+1...l+u} without generalizing the model to the future test data. In this, gaussian pro-

cesses, transductive SVM and graph-based methods fall in the later category. On the other

hand, the former models are based on joint distribution, e.g., expectation maximization.

84

In many cases, it is easy to collect a large amount of unlabeled data (x), e.g., the

catalog of the celestial objects can be made from different sky surveys, geospatial data from

satellites, etc. and many related documents can be downloaded from the web. However, their

corresponding labels (y) for the prediction, such as classification of the galaxies, prediction

of the climate conditions, categories of documents are often required expensive laboratory

experiments, human expertise and a lot of time. This labeling problem results in inefficiency

in labeled data, with an excess of unlabeled data left over. Therefore, labeling the unlabeled

data along with the limited labeled data in constructing the generalized predictive models is

desirable. In this, semi-supervised learning model can be built by first training the model on

unlabeled data and then using the labeled data to induce class labels or vice versa.

6.2 Label Propagation

In many applications, label propagation has been proven to be an effective semi-supervised

learning approach. The key idea behind LP is to first construct a graph in which each node

represents a data point and each edge is assigned a weight, often computed as the similarity

between data points. Then the class labels of labeled data are propagated to neighbors in the

constructed graph in order to make predictions, i.e., label propagation aims to “propagate”

labels of the labeled data points to the unlabeled data points [65] and the algorithm works as

follows

1. If Y is the class labels of all the instances, then propagate Y ← TY

where,

Y =

YL
YU

T =

Tll Tlu

Tul Tuu

85

Tij is the probability to jump from node j to i and given as,

Tij =
wij

l+u∑
k=1

wkj

(6.1)

Here, wij is the weight of the edge such that closer the nodes i, j (Euclidean distance),

larger the weight wij and is given as

wij = exp

(
−

D∑
d=1

(xdi − xdj)2

σ2

)
(6.2)

where, σ = d0/3 (d0 is the length of the first edge that connects two components with

different labels).

2. Row-normalize Y

3. Clamp the labeled data until convergence [65].

6.3 Hybrid Approach for Inductive Semi-Supervised Learning us-

ing LP and SVM

To build an inductive semi-supervised learning model for labeling the unlabeled data either in

serial (Algo. 6.1) or parallel (Algo. 6.2) can be done, and are described below:

1. while the number of labeled records < number of training records

(a) run label propagation on the training data and get probability matrix for the remain-

ing unlabeled instances.

(b) train SVM/Logreg on the labeled instances and get the predicted class labels for

unlabeled instances of the training data.

(c) now find the unlabeled instances which satisfy both the following conditions and

label them with the ‘class’

• class = predicted class by the SVM.

86

• label propagation probability (class) ≥ given threshold value.

• break the loop if no record is eligible to label according to the above condi-

tions.

2. Test the resulting SVM/Logreg with test data set and find the F-measure.

6.4 Experimental Analysis

For the experimental analysis, we took twelve different multi-class data sets and used OVO

multi-class SVM for the classification. The data sets along with their number of attributes

(excluding the class label) and instances are described as data set : (no. of attributes, no. of

records, no. of class labels) and are given below

data set No. of attributes No. of records No. of class labels
Vowel 10 528 11
Letter 16 10500 26

Segment 18 2310 7
Iris scale random 4 149 3

Satimage 36 1331 6
10000-SDSS 7 10000 3
1000-SDSS 7 1000 3

Glass scale random 9 214 6
Letter1 16 4500 26
Mfeat 216 2000 10

Pendigits 16 7494 9
Shuttle 9 12770 6

Table 6.1: Data sets description.

First, records of all the data sets are shuffled in which ∼ 70% taken for training

and the rest has been used for testing. In the total taken training data ∼ 80% of the data has

been unlabeled and the algorithm has been implemented in serial (Algo. 6.1) as well as in

parallel (Algo. 6.2) versions. Our serial version is compared with

87

Algorithm 6.1 : Serial Algorithm

INPUT: Classifier, Threshold
OUTPUT: F-measure

1: (labeled records, unlabeled records) = select next train folds()
// Each fold of data is split into labeled and unlabeled records with 20:80 ratio
// unlabeled records have their class field set to -1

2: test records = select next test fold()
// Concatenate labeled and unlabeled records to get the train records

3: train records = labeled records + unlabeled records
4: newly labeled = 0
5: while len(labeled records) < len (train records) do
6: lp probability matrix = run lp(labeled records + unlabeled records)
7: model = fit classifier(classifier, labeled records)
8: labeled at least one = False
9: for each record in the unlabeled records do

10: classifier out = model.predict class(record.feature vector)
// Test for LP and classifier agreement

11: if lp probability matrix[record.feature vector][classifier out] ≥ threshold then
12: unlabeled records.remove(record)
13: record.class label = classifier out → label the record
14: labeled records.add(record) → add the newly labeled record to set of

labeled records
15: newly added += 1

// Set labeled atleast one flag to True if at least one new record is labeled in current iteration
of while loop

16: labeled at least one = True
17: end if
18: end for

// Break the loop if no new record is labeled in current iteration of while loop
19: if labeled at least one == False then
20: break
21: end if
22: end while

// Compute F-measure of constructed model
23: test records features = test records.get feature vectors()
24: test records labels = test records.get labels()
25: predicted labels = model.predict(test records features)
26: f-measure = compute f-measure(predicted labels, test records labels)

88

Algorithm 6.2 : Parallel Algorithm

INPUT: Classifier, Threshold, No of tasks, Number of parallel processes
OUTPUT: F-measure

1: newly labeled = 0
2: while len(labeled records) < len(train records) do
3: lp train records = labeled records + unlabeled records
4: lp probability matrix = []; classifier out = []
5: lp process = new process(target = run lp, args = (lp train records,

lp probability matrix))
6: lp process.start()
7: classifier process = new process(target = fit classifier, args = (classifier, labeled

records, unlabeled records, classifier all out))
8: classifier process.start()
9: lp process.join()

10: classifier process.join()
11: at least one labeled = False
12: chunk size = len(unlabeled records) / No of tasks
13: all pids = []
14: None initialize(labeled lists, No of tasks)
15: None initialize(unlabeled copies, No of tasks)
16: for i do in range(len(labeled lists)):
17: start = i * chunk size
18: end = (i+1) * chunk size
19: unlabeled copies = unlabeled records[start : end]
20: lp probabilities = lp probability matrix[start : end]
21: classifier outs = classifier all outs[start : end]
22: label records process = new process(func = label data, args = (unlabeled copies[i],

labeled lists[i], lp probabilities, classifier outs, threshold))
23: label records process.start()
24: all pids.append(label records process)
25: end for
26: unlabeled records = []
27: done processes = []
28: while len(done pids) < len(all pids) do
29: for i in range(len(all pids)) do
30: if not all pids[i].is alive() and (i not in done pids) then
31: done processes.append(i)
32: unlabeled records += unlabeled copies[i]
33: labeled records += labeled lists[i]
34: end if
35: end for

89

36: if at least one labeled == False then
37: break
38: end if
39: end while
40: end while

// Compute F-measure of constructed model
41: predicted labels = []
42: test records features = test records.get feature vectors()
43: test records labels = test records.get labels()
44: run parallel classifier(predicted labels, labeled records, test records features, classifier,

no of tasks)
45: f-measure = compute f-measure(predicted labels, test records labels)

1) Zhu et al. approach [65],

2) supervised learning classifier SVM, and

3) our own parallel version.

Before doing the detailed analysis of above, we analyzed the serial version of our hybrid ap-

proach with

i) different values of set threshold of the probability matrix of LP,

ii) percentage of initially considered labeled data,

iii) SVM and Logreg, and

iv) skewed data sets.

The analysis is done by setting the threshold of the probability matrix of LP up

to 50% and obtained the F-measure by incrementing the threshold up to 100% (Fig. 6.1). We

found that except two data sets (Vowel, Glass scale random), changing the threshold of the

LP doesn’t effect the F-measure significantly. If only LP is considered, then increase in the

threshold may lead to improper labeling and also there is an increase in precision and decrease

in recall. Similarly, the decrease in the probability threshold leads to the increase in the number

of unlabeled records which are considered for labeling. Hence LP increases the labeling rate of

the records. But when SVM is used with LP, then the precision and recall cannot be changed

90

significantly, because a record can be labeled only when SVM and LP agree on the class label.

Therefore, unlabeled records marked by label propagation for labeling with low confidence

Figure 6.1: F-measure by varying threshold of the probability matrix for 12 different data sets.

are discarded in the output of SVM. Hence, in the majority of the data sets, the percentage of

labeled data at the end of final iteration fluctuates very little for all the set thresholds (Fig. 6.2).

Therefore, change in the thresholds, has little effect on F-measure of our model.

Figure 6.2: Percentage of the labeled data by the final iteration.

91

Analysis of 1000-SDSS, 10000-SDSS, mfeat, pendigits and shuttle data sets show

(Fig. 6.1 - Fig 6.2) that the percentage of labeled data is very low 0− 20%, but F-measures are

reasonably high (0.67−0.9). This shows that high F-measure may not require the high amount

of unlabeled data to be labeled as long as the algorithm is able to label representative records

in the data set.

To understand the effect of dimension and the number of records in the data set,

we studied (Fig. 6.3) the training time with respect to the third order of records in the data set

for two classifiers. We found that there is a polynomial increase in training time as the number

of instances increases. This may be due to neglecting the lower order terms in the complexity

of SVM and Logreg models. Here, we also observed an increase in labeled records for every

iteration. Fig. 6.4 shows that the increase in labeled records decreases exponentially with the

number of iterations, which means that as the loop progresses, not much data is labeled. This is

because of LP and SVM not able to decide the same class label to the unlabeled record. While

labeling the unlabeled record, there is a low chance of misclassification by SVM, because it is

always trained on labeled data which means that the quality of labeling done by LP decreases

significantly as the iterations progress. This deterioration in LPs quality always has a very little

effect on the algorithms overall prediction quality because SVM predicts accurately at every

Figure 6.3: Training time of the model when SVM and Logreg classifiers are used.

92

step of labeling the unlabeled records which leads to a better performance of our hybrid ap-

proach than LP.

Figure 6.4: Percentage of increase in labeled records for every iteration for twelve different
data sets.

Further, we analysed our approach for different percentages of initially unlabeled

data sets (Vowel, Irisscalerandom, Satimage, 1000-SDSS, Glassscalerandom, Mfeat) and the

obtained results are shown in Fig. 6.5 - 6.10. From the figures, we observe that F-measure

Figure 6.5: F-measure of the Vowel data set by changing the percentage of initial unlabeled
records for Logreg and SVM.

93

Figure 6.6: F-measure of the Irisscalerandom data set by varying the percentage of initially
unlabeled records for Logreg and SVM.

Figure 6.7: F-measure of the Satimage data set by varying the percentage of initially unlabeled
records for Logreg and SVM.

94

Figure 6.8: F-measure of the 1000-SDSS data set by varying the percentage of initially unla-
beled records for Logreg and SVM.

Figure 6.9: F-measure of the Glassscalrandom data set by varying the percentage of initially
unlabeled records for Logreg and SVM.

95

Figure 6.10: F-measure of the Mfeat data set by varying the percentage of initially unlabeled
records for Logreg and SVM.

of the model in general falls as the percentage of initially unlabeled data increases. Also as

the amount of initial labeled data increases, the algorithm is able to learn the pattern present

in a representative sample of the data set. Hence, we can say that the model can successfully

generalize the pattern to the test data and due to which there is an overall increase in F-measure.

The proposed approach is also tested on skewed data sets. The proportion of class

labels in the skewed data set is at least 1 : 8. We found that the F-measure of 10000-SDSS drops

∼ 0.1. But Shuttle data set shows exceptional behavior and it’s F-measure remains almost the

same. This shows that the skewness of the data has little or no effect on F-measure in our

model. It can be also inferred from the Fig. 6.11 that the distribution of data plays a

Figure 6.11: F-measure of the skewed data sets for different set thresholds.

96

major role in the performance of the semi-supervised algorithm. Hence, the performance (F-

measure) of the proposed approach is compared with the LP algorithm [65] for all the taken data

sets and are shown in Fig. 6.12. Here in LP, all the unlabeled records were labeled according

to the class corresponding to highest LP probability.

Figure 6.12: F-measure of our approach with the label propagation for twelve different data
sets.

In all the data sets, the proposed approach outperforms LP with a large margin.

The high performance can be attributed to SVM using together with LP to label the unlabeled

instances. No unlabeled instance is labeled without the influence of both SVM and LP. Hence,

it significantly reduces the pitfalls caused by LP and in turn, increases the overall prediction

quality of our approach. The analysis shows that the F-measure of our approach is mostly

comparable with the supervised SVM (Fig. 6.13).

We also analyzed the parallel version of our approach and the obtained result is

shown in Fig 6.14. We found that parallelizing the algorithm, in general, improve the training

time of the algorithm. Two most expensive steps in our model are the training of SVM and LP

on the data, but implementing both in parallel reduces training time significantly.

The proposed hybrid approach has been applied to SDSS data set for different

sample sizes and the obtained results are shown in Fig 6.15. We observed the training time for

each sample for the different number of parallel tasks and found that the number of parallel

tasks has a reasonable effect on training time when data set size exceeds a certain threshold

(around ∼ 60000 records in this case). Further, for each data set, there is an optimum number

97

of

Figure 6.13: F-measure of the proposed approach with supervised OVO SVM for twelve dif-
ferent data sets.

Figure 6.14: Time taken by serial and parallel versions of our approach for twelve different
data sets.

parallel tasks which takes minimum training time, and if the number of parallel tasks is above

this optimum level, then the cost of maintaining these parallel tasks exceeds the gain earned by

parallel computation. On the other hand, if the number of parallel tasks is set to a value less

than the optimum level, system resources are poorly utilized. Therefore, it is very important

98

to find the optimum level of parallel tasks for getting maximum utilization of the available

resources.

Figure 6.15: Training time with the number of parallel tasks.

6.5 Summary

In this chapter, the proposed approach uses SVM and LP algorithm to yield a high prediction

quality. At every step in the process, it fits the model to minimize the error and thus improve the

prediction quality. Our approach uses a small amount of labeled data to label the large quantity

of unlabeled data with a high F-measure. It has a very small margin of error because it labels

the unlabeled data using both SVM and LP. From the analysis with twelve different data sets

we found that our approach performs much better than the LP and F-measure is almost twice

of it. We also compared our model with the supervised SVM and found that the performance

of our model is almost same as SVM. Finally, we implemented the algorithm in parallel which

reduces the training time significantly.

99

CHAPTER 7

CONCLUSION AND FUTURE DIRECTION

Since the introduction of data mining in the 90s, a lot of progress and success in both data

mining research and on its application had taken place. However, due to the pervasiveness

and rapid growth in the processing speed has increased the rate of data collection, storage, and

its operations. Hence due to the large size and distribution of the data, efficient and effective

DDM is the need of time. Therefore in this thesis, we design and implement some algorithms

for data reduction, efficient and effective classification of the data by both supervised and semi-

supervised learning.

For the data reduction, efficient computation of covariance matrix plays a vital

role. Hence in chapter 2, an algorithm DCM, has been discussed to estimate the global co-

variance matrix for vertical partition data by merging the local and cross-covariances that are

distributed at different nodes/sites. The results show that accuracy of the covariance matrix is

same as the centralized approach with improved speed-up. The result of DCM is same as the

centralized approach because we are not losing any data during the transmission. The compu-

tational time of DCM decreases with the increase in the number of partitions. It is also capable

of handling large data sets when computed in parallel, hence scalable. The speed-up can be

further increased by making the number of columns equal at every node/site and also in parallel

by computation of the cross-covariances within the node/site.

In chapter 3, the dimensionality of distributed data has been reduced by using PCA

which in turn reduces the communication and downloading cost of the data by developing a

communication efficient and scalable DDM using DLPCA. The algorithm uses distributed load

balancing PCA to reduce the transmission cost among the computational nodes and download-

100

ing cost with negligible loss in the information. In our approach the number of transfers of the

PCs is half of the number of sites, i.e., it is not required that all the sites should have the PCs

of all the other sites but in Qi. et al. [31] the local PCs are sent to one centralized site and then

the global PC’s are estimated and Yue. et al. [34] approach does not balance the load among

the sites.

Our approach is also scalable, i.e., one can easily add any number of new parti-

tioned data. The computational load for the computation of cross-site covariances is optimally

distributed among the computational resources of the nodes/sites. If mf is the number of final

columns to be downloaded by the end user then our downloading cost is O(mf) (neglecting

the cost of global and local eigenvectors). The results also show that the transmission cost be-

tween the computational nodes is less than the Yue et al. approach. The experimental analysis

indicates that the downloading cost will be reduced by ∼ 33% for FP data, ∼ 27% for Gadotti

data, ∼ 48% for protein homology data and ∼ 90% for Mfeat data with a good accuracy of the

reconstructed data. The reduction in cost will be more depends on how much end users can

afford the loss in information and the volume of data suppose to be downloaded.

Supervised learning is one of the important approaches in DM to classify any

data. But choosing the best classification technique may not suffice. Hence we have to fo-

cus on the efficient and effective classification of the data. Therefore in chapter 4, two novel

algorithms have been discussed for the efficient and effective classification of the distributed

multi-class data using SVM. In this chapter, first, a binary tree structured CBTS algorithm has

been proposed. The model is tested with twelve different classification data sets having 150-

20000 instances, 4-216 features, and 3-26 class labels. The analysis shows that the accuracy

of CBTS is comparable with OVO approach but outperforms the OVA accuracy, training and

testing time. The testing time for all OVO and OVA is linear, i.e., O(N) but our algorithm

is O(logN) as it needs only (N−1)
2 classifiers to predict the class label to test the object. It

is also capable of handling large datasets, hence scalable. In this algorithm, other than the

k-Means techniques may be explored at the root level where the data is not well partitioned.

In this chapter, the second approach DSVM builds a global SVM by merging the local SVMs

that are distributed at different sites. The analysis shows that the performance of DSVM is

better than the centralized and ensemble model. Although ensemble method can also handle

large datasets, the training and testing time will be very costly as it has to be tested with every

101

training model (which are available at different locations) and follow voting mechanism. But

DSVM will have only one global model and it is scalable for training as well as for testing.

A further enhancement is possible by considering the vertical partition of the data at different

sites.

In chapter 5, we proposed a distributed approach for multi-class classification,

named as Distributed Rule-Based Classification for horizontal partition qualitative data. In

DiRUC, initially, the local rule sets are constructed for each of the data chunk using RIPPER.

For the given number of sites ‘z’, the local rule sets are optimized by migrating the rule sets to

other sites in (z - 1) number of rotations, so that every rule set is validated by every other data

chunk. After (z - 1) number of rotations, the global rule set is found by merging all these local

rule sets. The analysis is done with various parameters and compared with normal RIPPER and

Ishibuchi et al. model [50]. Our algorithm outperforms both the methods in terms of accuracy

and time taken for generating the final rule set. The analysis can be extended to skewed datasets

and on the data partitions which contains related instances.

In supervised classification, the class labels of the objects are well defined, but in

many applications, the human intervention is required to define the class labels of the datasets.

Hence semi-supervised learning methods have gained importance, basically due to the large

expenses and time involved in labeling the unlabeled data by human experts. Hence in chapter

6, we proposed an approach for semi-supervised classification which uses SVM along with

Label Propagation algorithm to yield a very high prediction quality. It can use a small amount

of labeled data along with a large quantity of unlabeled data to yield a high F-measure. It

has a small margin for error because it labels the unlabeled data using both the SVM and

LP. Experimental analysis of the twelve different datasets shows that the proposed approach

outperforms the label propagation. Further, we designed and analyzed the parallel version of

our approach by which the training time decreases significantly. In future, further research on

the role of supervised algorithms in the field of semi-supervised learning may be relevant for

DM.

102

REFERENCES

[1] https://www.linkedin.com/pulse/4300-increase-annual-data-generation-2020-calls-
change-yaron-haviv.

[2] U. Fayyad, G. Piatesky-Shapiro & P. Smyth, From data mining to knowledge discovery
in databases, AI Magazine, Vol.17, No. 3, pp. 37-54, 1996.

[3] https://rayli.net/blog/data/history-of-data-mining./

[4] Frans Coenen The knowledge engineering review, Cambridge university press Vol.00:0,
pp:1-24, 2004.

[5] Pang-Ning Tan, Vipin Kumar, Michael Steinbach Introduction to data mining, Pearson
Education Inc.

[6] H.Kargupata et. al., Data Mining : Next generation challenges and future directions,
PHI, ISBN-81-203-2794-2 pp 10-12, 2005.

[7] Square Kilometre Array https://www.skatelescope.org/

[8] Large Synoptic Survey Telescope www.lsst.org.

[9] Alexander V. Avdeev, Mikhail M. Laaverntiev, Jr., Andrei G. Marchuk, Elder V. Go-
tyunov, Konstant V. Simonov and Viktor A. Okhonin, Complex analysis of ocean tsunami
observation data for solution of the inverse problem, ITS Proceeding, Session Vol. 7,
pp. 7-11, 2001.

[10] http://science.nasa.gov/missions/coral/.

[11] https://swot.jpl.nasa.gov/mission/.

[12] www.jpl.nasa.gov/wise.

[13] http://science.nasa.gov/about-us/smd-programs/joint-agency-satellite-division/.

[14] http://www.aacr.org/AboutUs/Pages/default.aspx.

[15] Kamath, Chandrika. Scientific data mining : a practical perspective, SIAM Proceed-
ings, pp.18-21, 2009.

[16] Park, Byung-hoon, Kargupta, Hillol, Distributed Data Mining: Algorithms, Systems, and
Applications, Data Mining Handbook, pp. 341-358, 2002.

103

[17] Vladi Kolici, Fatos Xhafa, Leonard Barolli, Scalability, Memory Issues and Challenges in
Mining Large Data Sets, IEEE Conference on Intelligent Networking and Collaborative
Systems, pp. 268-273, 2014.

[18] Asim Roy, A Classification Algorithm for High-dimensional Data, Procedia Computer
Science, Vol. 53, pp. 345-355, 2015.

[19] Bhadani. A, Jothimani. D, Big data: Challenges, opportunities and realities, In Singh,
M.K., & Kumar, D.G. (Eds.), Effective Big Data Management and Opportunities for Im-
plementation, Pennsylvania, USA, IGI Global, pp. 1-24, 2016.

[20] Isabelle Guyon, A scaling law for the validation-set training-set size ratio, In AT & T
Bell Laboratories, 1997.

[21] Antonio Mucherino, Petraq Papajorgji, Panos M. Pardalos, Data Mining in Agriculture,
Springer.

[22] Jiawei Han, Micheline Kamber, Jian Pei, Data Mining- Concepts and Techniques, Mor-
gan Kaufmann, 2012.

[23] Srivatsava Daruru, Sankari Dhandapani, Gunjan Gupta et al., Distributed, scalable clus-
tering for detecting halos in terascale astronomy datasets, ICDM Workshops pp. 138-
147, 2010.

[24] H Dutta, C Giannella, K Borne et al., Distributed top-K outliers detection from astronomy
catalogs using the DEMAC system , In Proceedings of SDM07, pp. 473-478, 2007.

[25] Ball N M., CANFAR+Skytree: A cloud computing and data mining system for astronomy,
Astronomical Data Analysis Software and Systems XXII, Vol. 475, p.391 - 394, 2013.

[26] A H Hassan, Christopher J Fluke, David G Barnes, Unleashing the power of distributed
CPU/GPU architectures: Massive astronomical data analysis and visualization case
study, CoRR abs/1111.6661, 2011.

[27] Nikolaus Hautsch1, Lada M. Kyj and Roel C. A. Oomen, A blocking and regulariza-
tion approach to high-dimensional realized covariance estimation, Journal of Applied
Econometrics Vol. 27, No. 4, pp. 625–645, June/July 2012.

[28] Zheng Hao, Large Dimensional Covariance Matrix Estimation with Decomposition-
based Regularization, https://books.google.co.in/books?id=SsL2jgEACAAJ, pp. 129,
2014.

[29] Qi Guo, Bo-Wei Chen, Feng Jiang, Xiangyang Ji, Sun-Yuan Kung, Efficient divide-and-
conquer classification based on feature-space decomposition, IEEE Systems Journal,
2015.

[30] Hsieh, Cho-Jui and Sustik, Matyas A and Dhillon, Inderjit S and Ravikumar, Pradeep
K and Poldrack, Russell, Sparse inverse covariance estimation for a million variables,
Advances in Neural Information Processing Systems 26, 2013.

[31] Hairong Qi, Tsei-Wei Wang, J Douglas Birdwell, Global principal component analy-
sis for dimensionality reduction in distributed data mining, University of Tennessee
Knoxville, CRC Press, pp. 324-337, 2003.

104

[32] Nathan Halko, Per-Gunnar Martisson, Yoel Shkolnisky et al., An algorithm for the prin-
cipal component analysis of large data sets , SIAM Journal on Scientific Computing,
Vol. 33, No. 5, pp. 2580-2594, 2011.

[33] H Kargupta, W Huang, K Sivakumar et. al, Distributed clustering using collective prin-
cipal component analysis, Knowledge and Information Systems, Vol. 3, No. 4 pp.422
- 448, 2001.

[34] Yue-Fei Guo,Xiaodong Lin,Zhouu Teng, Xiangyang Xue,Jianping Fan, A covariance-free
iterative algorithm for distributed principal component analysis on vertically partitioned
data, Pattern Recognition Vol. 3, pp.1211-1219, 2012.

[35] Jason D. M. Rennie and Ryan Rifkin, Improving multi-class text classification with the
support vector machine, Massachusetts Institute of Technology, 2001.

[36] Han.X, Berg.A.V., Classification by pairwise Coupling, Advances in Neural Informa-
tion Processing, Vol.10, No. 2, pp 291-301, 1998.

[37] Hian Chye Kob and Gerald Tan, Data mining applications in healthcare, Journal of
Healthcare Information Management, Vol. 19, No. 2, pp. 64-72, 2005.

[38] Stefano Lodi , Ricardo Nanculef, Claudio Sartori, Single-pass distributed learning of
multi-class SVMs using core-sets, SDM Proceedings, pp 257-268, 2010.

[39] Ahmad Ghodselahi , A hybrid support vector machine ensemble model for credit scoring,
International Journal of Computer Applications, Vol. 17, No. 5, pp. 0975-0979, 2011.

[40] Jair Cervantes and Xiaoou Li and Wen Yu, Multi-class SVM for large data sets consid-
ering models of classes distribution, International Conference on Data Mining, pp.
257-268, 2008.

[41] Han.X, Berg.A.C, DCMSVM: Distributed parallel training for single-machine multi-
class Classifiers, IEEE Computer Vision and Pattern recognition Proceedings, pp.
3554-3561, 2012.

[42] Moh, T.-S., Murmann, A. J Can you judge a man by his friends? - enhancing spammer
detection on the twitter microblogging platform using friends and followers. Commu-
nications in Computer and Information Science, Vol. 54, pp. 210–220, 2010.

[43] SalmaTuzJakirin, Abu Ahmed Ferdaus, Mehnaj Afrin Khan A genetic algorithm ap-
proach using improved fitness function for classification rule mining, International
Journal of Computer Applications Vol. 97, No.23, pp. 12-18, 2014.

[44] Alexander Löser, Sebastian Arnold, Tillmann Fiehn, The GoOLAP Fact Retrieval Frame-
work, Lecture Notes in Business Information Processing, Vol. 96, pp. 84-97, 2012.

[45] Sikora, M.,Wróbel, Ł, Data-driven adaptive selection of rules quality measures for im-
proving the rules induction algorithm, In Lecture Notes in Computer Science : Rough
Sets, Fuzzy Sets, Data Mining and Granular Computing, Vol. 6743, pp. 278–285, 2011.

[46] Jiang’hong, S., Xiao’li, X.,. Large rotating machinery fault diagnosis and knowledge
rules acquiring based on improved RIPPER, Second International Conference on in-
telligent Computation Technology and Automation, pp 549–552, 2009.

105

[47] S Jaganathan, V Krishnaveni, A novel data Mining approach for health care applications,
Journal of NanoScience and NanoTechnology, Vol. 2, No. 1, pp. 364-369, 2014.

[48] Diego M. Escalante , Miguel Angel Rodriguez , Antonio Peregrin,An evolutionary
ensemble-based method for rule extraction with distributed data, Lecture Notes in Com-
puter Science : Hybrid Artificial Intelligence Systems, Vol. 5572, pp. 638-645, 2009.

[49] Vincent Cho , Beat Wüthrich, Distributed mining of classification rules, Knowledge and
Information Systems, Vol. 4, No. 1, pp. 1-30, 2002.

[50] H. Ishibuchi, M. Yamane, and Y. Nojima, Ensemble fuzzy rule-based classifier designed
by parallel distributed fuzzy GBML algorithms, Lecture Notes in Computer Science :
Simulated Evolution and Learning, Vol.7673, pp. 93-103, 2012.

[51] Castelli, V., Cover, T., The exponential value of labeled samples, Pattern Recognition
Letters, Vol. 16, pp. 105–111, 1995.

[52] Castelli, V., Cover, T., The relative value of labeled and unlabeled samples in pattern
recognition with an unknown mixing parameter, IEEE Transactions on Information
Theory, Vol. 42, pp. 2101–2117, 1996.

[53] Ratsaby, J., Venkatesh, S., Learning from a mixture of labeled and unlabeled examples
with parametric side information, Proceedings of the Eighth Annual Conference on
Computational Learning Theory, pp. 412–417, 1995.

[54] Cozman, Fabio Gagliardi, Ira Cohen, and Marcelo Cesar Cirelo, Semi-supervised learn-
ing of mixture models, Proceedings of the Twentieth International Conference on Ma-
chine Learning, 2003.

[55] Corduneanu, A., Jaakkola, T., Stable mixing of complete and incomplete information,
Technical Report AIM-2001-030, MIT AI Memo, 2001.

[56] Callison-Burch, C., Talbot, D., Osborne, M., Statistical machine translation with word-
and sentence-aligned parallel corpora, Proceedings of the ACL, pp. 175-182, 2004.

[57] Nigam, K., McCallum, A. K., Thrun, S., Mitchell, T., Text classification from labeled and
unlabeled documents using EM. V, Machine Learning, Vol. 39, pp. 103–134, 2000.

[58] Dempster, A., Laird, N., Rubin, D., Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, pp.1.38,
1977.

[59] Bennett, K., Demiriz, A., Semi-supervised support vector machines, Advances in Neural
Information Processing Systems, Vol. 11, pp. 368–374, 1999.

[60] Dara, R., Kremer, S., Stacey, D., Clustering unlabeled data with SOMs improves classifi-
cation of labeled real-world data, Proceedings of the World Congress on Computational
Intelligence, 2002.

[61] Yarowsky, D., Unsupervised word sense disambiguation rivaling supervised methods,
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguis-
tics, pp. 189–196, 1995.

106

[62] Rosenberg, C., Hebert, M., Schneiderman, H., Semi-supervised self training of object
detection models, Seventh IEEE Workshop on Applications of Computer Vision, 2005.

[63] Blum, A., Mitchell, T., Combining labeled and unlabeled data with co-training, Pro-
ceedings of the Workshop on Computational Learning Theory, pp.92-100, 1998.

[64] Balcan, M-F., Blum,A., An augmented pac model for semi-supervised learning, Semi-
Supervised Learning MIT Press, pp. 61-89, 2006.

[65] Xiaojin Zhu and Zoubin Ghahramani, Learning from labeled and unlabeled data with
label propagation, Technical Report CMU-CALD-02-107, Carnegie Mellon University,
2002.

[66] Fei Wang, Changshui Zhang, Label propagation through linear neighborhoods, IEEE
Transactions on Knowledge and data engineering, Vol. 20, No. 1, pp. 55-67, 2008.

[67] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld, Semi-supervised learning with graphs,
PhD. Dissertation, Carnegie Mellon University, Language Technologies Institute, School
of Computer Science, 2005.

[68] G.Bruce Berriman, Steven L.Groom, How will astronomy archives survive the data
tsunami?, Communications of the ACM Vol. 54, No. 12, pp. 52-56, 2011.

[69] The ClassX Project: Classifying the High-Energy Universe,
http://heasarc.gsfc.nasa.gov/classx/

[70] The AUTON Project, http://www.autonlab.org/autonweb/19702.html.

[71] Joseph C Jacob, Daniel S Katz, Craig D Miller et al., Grist: Grid-based data mining for
astronomy, Astronomical Data Analysis Software and Systems XIV, ASP Conference
Series, Vol. 347, 2005.

[72] S.V.S.Ganga Devi, A survey on distributed data mining and its trends, International Jour-
nal of Research in Engineering & Technology, Vol. 2, No. 3, pp. 107-120, 2014.

[73] Rekha Sunny T, Sabu M. Thampi, Survey on Distributed Data Mining in P2P Networks,
CoRR, abs/1205.3231, 2012.

[74] Tzung-Pei Hong et. al A load-balanced distributed parallel mining algorithm, Expert
Systems with Applications, Vol. 37, No. 3, pp. 2459-2464, 2010.

[75] S.F.El-Zoghdy and S.Ghoniemy A Survey of Load Balancing In High-Performance Dis-
tributed Computing Systems International Journal of Advanced Computing Research
Vol. 1, pp. 23-33, 2014.

[76] Y.Guermeur, Combining discriminant models with new-multi-class SVMs, Pattern Anal-
ysis & Applications, Vol. 5, No. 2, pp. 168-179, 2002.

[77] Michael J. Quinn, Parallel computing: Theory and practice, Tata McGraw Hill, pp.
80-83, 2002.

[78] UCI machine learning data set : https://archive.ics.uci.edu/ml/datasets.html.

[79] Rich Caruana, Thorsten Joachims, Lars Backstrom, KDD cup 2004 ACM SIGKDD
Explorations Newsletter Homepage archive , pp. 95-108, Vol. 6, No. 2, 2004.

107

[80] Java Agent DEvelopment framework : jade.tilab.com.

[81] I.T. Joliffe, Principal component analysis, Springer-Verlag, 1986.

[82] K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical
Magazine series, Vol. 2, No. 11, pp. 559-572, 1901.

[83] H Hotelling, Analysis of a complex of statistical variables into principal components,
Journal of Educational Psychology, Vol. 24, No. 6, pp. 417 - 441, 1933.

[84] Ravi Kannan, Santosh Vempala, David Woodruff, Principal Component Analysis and
Higher Correlations for Distributed Data Proceedings of The 27th Conference on
Learning Theory, PMLR Vol. 35, pp. 1040-1057, 2014.

[85] Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per, The Fundamental Plane for cluster E
and S0 galaxies, Monthly Notices of the Royal Astronomical Society, Vol. 280, No. 1,
pp. 167-185, 1996.

[86] Gadotti, Dimitri A., Structural properties of pseudo-bulges, classical bulges and elliptical
galaxies : a Sloan Digital Sky Survey perspective, Monthly Notices of the Royal
Astronomical Society, Vol. 393, No. 4, pp. 1531-1552, 2008.

[87] C.Cortes and V. Vapnik, Support vector networks, Journal of Machine Learning, Vol.
20, No. 3, pp. 273-297, 1995.

[88] V. Vapnik, The nature of statistical learning Theory, NY: Springer-Verlag, 1995.

[89] Hwanjo Yu, Sungchul Kim, SVM Tutorial - Classification, Regression and Ranking
Handbook of Natural Computing, Springer, pp. 479-506, 2012.

[90] V.N.Vapnik, Statistical learning theory, John Wiley and Sons, New York, 1998.

[91] Chih-Wei Hsu and Chih-jen Lin., A comparison of methods for multi class support vector
machines, IEEE Transactions on Neural Networks, Vol. 13, NO. 2, 2002.

[92] Abe, Shigeo, Analysis of multi support vector machines. Proc. International Confer-
ence on Computational Intelligence for Modelling Control and Automation, pp. 385-396,
2003.

[93] Ryan Rifkin ,Aldebano Klautau, In defense of one-vs-all classification, Journal of
Machine Learning Research, Vol. 5, pp.101-141, 2004.

[94] Erin Allwein, Robert Shapire, and Yoram Singer, Reducing multi-class to binary: A uni-
fying approach for margin classifiers, Journal of Machine Learning Research, pp.
113–141, 2000.

[95] K.P.Soman, R.Loganathan, and V.Ajay, Machine Learning with SVM and Other Kernel
Methods, PHI, pp. 153-155, 2011.

[96] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines,
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, Software avail-
able at http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2011.

108

[97] Buitinck et al., API design for machine learning software: experiences from the
scikit-learn project, Available at http://scikit-learn.org/autoexamples/svm/plot-rbf-
parameters.html, 2013.

[98] http://skyserver.sdss.org/dr7/en/tools/search/sql.asp.

109

LIST OF PUBLICATIONS

1. Aruna Govada, Sanjay K.Sahay, A Communication efficient distributed data mining for
Astronomical Data, Elsevier, Astronomy and Computing , Vol.16, pp. 166-173, 2016.
(SCIe-2016, Scopus)

2. Aruna Govada, Sanjay.K.Sahay, Covariance Estimation for vertically partitioned Data
in a Distributed Environment, Studies in Computational Intelligence, Vol. 653, pp.
151-164, 2016, IEEE Xplore, 17th IEEE conference on SNPD, Shanghai, China. (Core
C, Scopus)

3. Aruna Govada, Bhavul Gauri, Sanjay.K.Sahay, Distributed Multi-Class SVM for Large
Data Sets, ACM Digital Library, Proceedings of the Third International Symposium
on Women in Computing and Informatics, pp. 54-58, 2015. (Scopus)

4. Aruna Govada, Bhavul Gauri ,Sanjay.K.Sahay, Centroid Based Binary Tree Structured
SVM for Multi Classification, IEEE Xplore, 4Th IEEE International Conference on
Advances in Computing, Communications and Informatics, pp. 258-262, 2015. (Scopus)

5. Aruna Govada, Pravin Joshi, Sahil Mittal, Sanjay Kumar Sahay, Hybrid Approach for
Inductive Semi Supervised Learning Using Label Propagation and Support Vector Ma-
chine, Springer, LNAI Vol. 9166, pp. 199-213, 2015, 11Th International Conference
on MLDM Hamburg, Germany. (Scopus)

6. Aruna Govada, Varsha S. Thomas, Ipsita Samal, Sanjay K. Sahay, Distributed multi-
class rule based classification using RIPPER, IEEE Xplore, 16th IEEE conference on
CIT, Fiji Islands, pp 303-309, 2016. (Core C, Scopus)

7. Aruna Govada, Abhinav Patluri, Atmika Honnalgere, Association Rule Mining using
Apriori for Large and Growing Datasets under Hadoop ACM Digital Library, Proceed-
ings of the 6th International Conference on Network, Communication and Computing,
pp. 14-17, 2017. (Scopus)

8. Aruna Govada, Shree Ranjani, Aditi Viswanathan, Sanjay Kumar Sahay, A novel ap-
proach to distributed multi-class svm, Transactions on Machine Learning and Artificial
Intelligence, Vol. 2, No. 5, pp. 72-79, 2014.

110

BRIEF BIOGRAPHY OF CANDIDATE

Govada Aruna formerly served as a Lecturer in the Department of Computer

Science and Information Systems, BITS Pilani, K. K. Birla Goa Campus, Goa. She received

her Bachelor’s degree in Computer Science Engineering in 1999 from Bapatla Engg. College,

Nagarjuna University, Andhra Pradesh. She did her Masters degree in Computer Science En-

gineering in 2000 from Pondicherry University, Pondicherry. She started her research career

at Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus in 2009. She

has attended several international conferences and has presented papers. Two of her research

papers have been published in international journals and five in international conferences. She

has 8.5 years of teaching experience in BITS Pilani, K. K. Birla Goa Campus, Goa and around

six years before joining BITS Pilani, K. K. Birla Goa Campus. At present she is working as

Associate Professor & HOD, Computer Engineering, Government Polytechnic, Department of

Technical Education, U.T of Daman & Diu, Govt. of India.

111

BRIEF BIOGRAPHY OF SUPERVISOR

Prof. Sanjay Kumar Sahay is working as an Associate Professor in the Depart-

ment of Computer Science and Information Systems, BITS, Pilani, K.K. Birla Goa Campus. He

is also a Visiting Associate of IUCAA, Pune. His research interests are Information Security,

Data Science, and Gravitational Waves. He basically teaches Network Security, Cryptography,

Computer Networks, and Data Mining courses. Before joining BITS, Pilani, and after submit-

ting his Ph.D. thesis on “Studies in Gravitational Wave Data Analysis” during 2002-2003, he

continued his work on Data Analysis of Gravitational Waves as a Project Scientist at IUCAA,

Pune, India. In 2003-2005 at Raman Research Institute, Bangalore, India he worked as Project

Associate on the multi-wavelength astronomy project (ASTROSAT), where he worked on the

data pipeline of Scanning Sky Monitor. In 2005 he worked as Post Doctoral Fellow at Tel Aviv

University.

112

