
Object Oriented Software Quality Estimation Using

Maintainability

Metric and Genetic Algorithms

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

Nirmal Kumar Gupta

Under the Supervision of

Prof. Mukesh Kumar Rohil

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2014

Object Oriented Software Quality Estimation Using

Maintainability Metric and Genetic Algorithms

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

Nirmal Kumar Gupta

Under the Supervision of

Prof. Mukesh Kumar Rohil

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2014

II

I wish to dedicate this thesis to My Family

 for their continued support

and encouragement

 III

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

C E R T I F I C A T E

This is to certify that the thesis entitled ―Object Oriented Software Quality

Estimation Using Maintainability Metric and Genetic Algorithms‖ and submitted

by Nirmal Kumar Gupta ID. No. 2005PHXF424P for award of Ph.D. Degree of the

Institute, embodies original work done by him under my supervision.

 (Signature in full of the supervisor)

 PROF. MUKESH KUMAR ROHIL

 Associate Professor

Date: Computer Science and Information Systems Department

 Work Integrated Learning Programmes Division

 Birla Institute ofTechnology and Science-Pilani

 Pilani – 333 031 (Rajasthan) INDIA

 IV

Acknowledgements

First of all, I wish to thank my supervisor Prof. Mukesh Kumar Rohil, Associate Professor,

Computer Science and Information Systems Department, Birla Institute of Technology and Science,

Pilani, Rajasthan, India, for his valuable guidance, encouragement and moral support. It has been a

great pleasure to be associated with him on this work.

Special thanks are due to Prof. B. N. Jain, Vice Chancellor; Prof. G.Raghurama, Director; Prof.

Ranendra N. Saha, Dean, Sponsored Research and Consulting Division; Prof. S K Verma, Dean,

Academic Research Division, Birla Institute of Technology and Science, Pilani (BITS Pilani), (Raj.),

for giving me an opportunity and encouraging research in the Institute. Further, I sincerely

acknowledge the encouragement and help received from Prof. J. P. Mishra, Unit Chief, Information

Processing Unit, Prof. Navneet Goyal, Head of Department and Chairman, Doctoral Research

Committe, Prof. Sudeept Mohan, Convernor, Doctoral Research Committe, Department of Computer

Science & Information Systems, BITS-Pilani, at various stages of the work. Further, I sincerely thank

member of the doctoral advisory committee, Prof. Sundar Balasubramaniam and Dr. Yashvardhan

Sharma for their suggestions and for helping me in improving the work. I also thank my former

supervisor, Dr. Dinesh Kumar Saini, Associate Professor, Sohar University Oman for his support and

advice during preliminary stage of the research.

Sincere thanks are also due to Dr. Virendra Singh Nirban, Assistant Professor, Publications and

Media Relations Unit, BITS Pilani, Further, I sincerely thank all the persons who directly or

indirectly helped me at various stages of the work. I extend my thanks to all the faculty members of

the Department of Computer Science & Information Systems, BITS Pilani for their suggestions

during the departmental research seminars.

Finally, but most deeply, the author thanks his parents, his wife, his daughter, his son and other

family members for their love and moral support during the entire period of this research work with

which this work is successfully completed.

(Nirmal Kumar Gupta)

 V

Abstract

The software developers are facing a major challenge that over 70% of the software development effort is

spent in testing and maintenance of software. Software testing is the most common software quality

assessment technique. Software quality cannot be added to the software by testing it, instead software

must be developed in a way that guarantees that the software has high quality in every phase. High

quality software can be assured by applying the appropriate measurement and testing techniques during

software development. Quality Attributes such as maintainability, reusability & testability are useful to

find out the extent to which software is useful to undergo changes during the usage phase. At unit testing

level, measuring how well a software class can be reused and maintained helps programmers to write

reusable and maintainable software, and also helps to identify reusableormaintainable class components.

It is widely agreed that there is a direct relationship between poor maintainability and high coupling. In

software design there can be various kinds of connections which comprise a coupling relationship. One of

such hidden connections between any two seemingly unrelated parts of the system gives rise to indirect

form of coupling.

To investigate the relationship between indirect coupling and maintenance effort of the object oriented

software, this research proposes a metric called Indirect Path Coupling that measures coupling of a class

through indirect coupling paths to other classes in the system. The proposed metric takes into account all

the indirect coupling paths which are formed between any two classes in the software by considering

independent, multiple or partially overlapping multiple indirect coupling paths into account. Extensive

case studies have been conducted on several releases of nine open source software to provide empirical

software maintenance effort. Indirect path coupling for various classes has been computed by taking into

account the various indirect paths formed of different lengths. It is found that the indirect path coupling is

correlated to maintenance effort at a statistically significant level and the proposed metric can be used as

a measure of maintenance effort in software.

Another aspect of software quality is its testing using some test criteria. Software testing is an expensive

process, therefore automated Test Data generation has become vital in Software Testing process.

Automating the generation of object-oriented unit test-cases for structural testing techniques has been

challenging many researchers because of the various factors like cost saving and improvement in test

quality. Testing process requires test sequences to be generated, each of which models a particular

scenario in which the class under test is examined. Basically two kinds of input test data are required for

 VI

testing object oriented software. The first kind of data has to produce the right sequences of method calls,

and the second kind is required to bring the object under test in the required state for testing. To handle

the state problem of Object-Oriented programs it requires the development of carefully fine-tuned

methodologies that could promote the transversal of problematic structures and difficult control-flow

paths.

To promote the transversal of such problematic structures and difficult control-flow paths, the presented

research proposes techniques for generating test cases using a model based on finite state machine

specification and by applying genetic algorithms. The fitness of test cases has been evaluated using

genetic algorithms leading to the improvement of search process by achieving higher coverage and

evolving more number of infeasible test cases into feasible ones. Quality of both feasible and infeasible

test cases are considered and the proposed technique helps to improve those infeasible test cases which

have better possibility to be developed into feasible ones at certain stages, promoting diversity and

enhancing the possibility of achieving full coverage.

An algorithmhas been presented for testing an object oriented software class based on genetic algorithms.

It uses potential solutions to encode as tree structure genetic individuals which facilitate to apply

mutation and crossover operators over them. This representation is particularly suited to represent and

evolve object oriented programs which can be represented as method call trees. In order for a test

sequence to be executed, the method call tree must be decoded into test program. Test program fitness

evaluation involves the instrumented method under test in order to collect information about program

behavior during execution. The structural testing involves Control Flow Graph (CFG) analysis of this

instrumented code. The proposed approach introduces some parameters such as hit-count factor, path

factor, weight factor etc. to compute the fitness of feasible as well as infeasible test cases. This approach

works more efficiently with maximum improvement once the defined parameters are selected accurately.

The proposed technique has been validated through various case studies over triangle classification

program and on various other classes from util-package of standard java library. The results of the case

studies show that by selecting the defined parameters appropriately one can maximize the improvement

of feasible as well as infeasible test cases with maximum coverage. For triangle classification program a

highest value of improvement factor 2.16 is obtained for feasible test cases and 0.92 is obtained for

infeasible test cases. Similarly for various other classes of the util package a highest value of

improvement factor 1.57 is obtained for feasible test cases and 0.88 is obtained for infeasible test cases.

 VII

Table of Contents

Title Page I

Dedications II

Certificate III

Acknowledgements IV

Abstract V – VI

Table of Contents VII – X

List of Mathematical Notations XI

List of Abbreviations XII

List of Figures XIV

List of Tables XVI

Chapter 1: Introduction-- 1

1.1 Characteristics of Software Quality -- 2

1.2 Software Quality, Testing and Metrics --- 3

1.2.1 Types of Software Testing --- 4

1.2.2 Software test automation --- 5

1.2.3 Quality of Object-Oriented Class Unit --- 5

1.2.4 Software Quality and Metrics --- 6

1.3 Metrics for Object-Oriented Programs --- 8

1.3.1 Complexity and software maintainability --9

1.3.2 Coupling Metrics -- 10

1.3.3 Cohesion Metrics --11

1.4 Class Level Test Case Generation -- 12

1.5 State-of-the-Art of Software MaintainabilityMetrics --------------------------------- 13

1.6 State-of-the-Art of Class Level Test Case Generation --------------------------------- 15

1.7 Research Agenda -- 16

1.8 Organization of the Thesis --- 19

Chapter 2: Software Quality Metrics and Test Data generation

─ A Literature Review--- 21

2.1 Estimation of Software Quality --- 21

 VIII

2.2 Software Quality Metric Models and Maintainability ---------------------------------- 22

2.3 Software Test Data Generation Techniques --30

2.4 Research Gaps --- 34

2.5 Objectives of the Research -- 35

Chapter 3: Software Maintenance and Test Case Generation --------------------------- 37

3.1 Quality Factors for Object Oriented paradigm -- 38

3.2 Code and Design Metrics -- 39

3.2.1 Software Maintainability and Maintenance --- 40

3.2.2 Reusability --- 41

3.3 Metrics for Maintainability -- 42

3.3.1 Coupling Metrics -- 43

3.3.2 Cohesion Metrics --44

3.4 Software Testing --- 47

3.4.1 Levels of Testing -- 47

3.4.2 Types of Testing -- 48

3.5 Analysis of Structural Testing -- 50

3.5.1 Code Coverage Analysis --- 50

3.5.2 Automatic Generation of Test Data -- 51

3.6 Evolutionary Algorithms -- 52

3.6.1 Genetic Algorithms --- 52

3.7 Evolutionary Testing -- 54

3.7.1 Structural Evolutionary Testing for Methods --- 55

3.7.2 The State Problem -- 58

3.7.3 Evolutionary Testing to Generate Method Call Sequences -------------------------------- 58

3.8 Genetic Algorithms for Class Testing --- 59

3.8.1 Chromosome -- 59

3.8.2 Constructing Initial Population -- 61

3.8.3 Mutation and Crossover --- 61

3.9 Summary -- 63

Chapter 4: Research Methods and Experimental Design---------------------------------- 64

4.1 Software Quality Measurement --- 64

4.1.1 Indirect Coupling and Software Maintainability -- 65

4.1.2 Automated Test Data Generation --- 66

4.1.3 Coverage --- 67

4.1.4 Coverage Measures --- 69

 IX

4.1.5 Data Analysis and validity --- 69

4.2 Summary --- 70

Chapter 5: A New Metric for Software Maintenance in presence of

Indirect Coupling-- 71

5.1 Levels of Coupling -- 72

5.1.1 Mechanisms that Constitute Coupling --- 73

5.1.2 Direction of Coupling -- 73

5.1.3 Direct and Indirect Coupling -- 74

5.1.4 Existing Coupling Measures and Importance of Indirect Coupling Measure ------------ 74

5.2 Direct Coupling --- 78

5.3 Indirect Coupling --- 82

5.4 Indirect Coupling Path (ICP) --- 84

5.5 Relationship between Indirect Coupling and Maintenance Effort ------------------- 84

5.6 Experimental Setup --- 88

5.6.1 Softwares Considered for Case Studies -- 88

5.6.2 Data Acquisition -- 91

5.7 Case Studies --- 92

5.7.1 Correlation --- 95

5.8 Data Analysis and Validation --- 98

5.9 Threats to Validity --- 102

5.10 Summary --- 103

Chapter 6: Improvements in Automated Test Data Generation Techniques----------- 104

6.1 Class Level Test Case Generation -- 104

6.1.1 Class Specification -- 105

6.1.2 Class State Space Partition ---107

6.1.3 Partition of Input-Space -- 110

6.1.4 Generation of Test Cases ---111

6.1.5 Analysis -- 112

6.2 Genetic Programming Technique for Test Case Generation ------------------------- 113

6.3 Encoding and Decoding of Chromosome --- 114

6.3.1 Encoding --- 116

6.3.2 Decoding --- 117

6.4 Fitness Evaluation -- 118

6.5 Case Studies --- 122

 X

6.5.1 Case Study 1 --- 122

6.5.2 Other Case Studies -- 128

6.6 Summary --- 130

Chapter 7: Conclusions and Suggestions for Future Research --------------------------- 132

7.1 Summary of Achievements -- 132

7.2 Conclusions -- 135

7.3 Limitations --- 136

7.4 Suggestions for Future work --- 137

List of References 139 – 153

Appendix A 154 – 186

Appendix B 187 – 202

List of Publications by Author 203

Brief Biography of the Candidate 204

Brief Biography of the Supervisor 205

 XI

List of Mathematical Notations

Notations Details

D(M) The domain D over set of methods Mfor the genes, defined as maximum number of test cluster methods.

SC Ordered set of constructors (c1,c2,....cr)

SM Ordered set of methods (m1,m2,....mn)

ℕ Set of all natural numbers.

D(Ti) The domain D of target genes for some statementsi

i

t
O Ordered set of objects which are instances of class t and have been created by the statements

which are called before statementsi

D(Ri) Domain of receiver objects defined as the objects created by method call in statement si.

mk kth method in SM

Gj Gene encoded for method mj

ρ Function which assigns each value of gene to corresponding target object.

ξ Function which assigns each value of gene to a primitive value or object reference.

𝑁𝑛𝑖
 Hit Count Factor

𝛼 Weight Factor

𝐻𝑡 Set of nodes which are traversed by the test-case 𝑡.

𝛽 Infeasibility Factor

𝐻𝑑
𝑛𝑒 Set of all nodes which are descendants of node 𝑛𝑒 in CFG.

𝐼𝐹𝐹 Improvement Factor for feasible test cases.

𝐼𝐹𝐼 Improvement Factor for infeasible test cases.

 XII

List of Abbreviations

Abbreviation Details or Expanded Form

CBO Coupling Between Objects

CC Cyclomatic complexity

CCC Complexity, Coupling, and Cohesion

CCM Class Coupling Metrics

CFG Control Flow Graph

CK metrics Chidamber & Kemerer Metrics

CMMI Capability Maturity Model Integration

CR Combination Rate

CTC Composite Transitive Coupling

CUT Class Under Test

DAC Data Abstraction Coupling

DIT Depth of Inheritance Tree

EA Evolutionary Algorithm

ES Evolution Strategies

ET Evolutionary Testing

GA Genetic Algorithm

GP Genetic Programming

HCF Hit Count Factor

IEEE Institute of Electrical and Electronics

Engineers

ICAMA Indirect Coupling and Maintenance Analyzer

IF Improvement Factor

IPC Indirect Path Coupling

ISO International Organization for Standardization

LCOM Lack of Cohesion of Methods

LoC Lines of Code

MCS Method Call Sequence

MOOD Metrics for Object Oriented Design

MPC Message Passing Coupling

MR Mutation Rate

MUT Method Under Test

NUCD Number of used classes by dependency relation

OO Object Oriented

 XIII

Abbreviation Details or Expanded Form

PF Path Factor

QMOOD Quality Model for Object Oriented Design

RNUCD Ratio of NUCD

SDLC Software Deveelopment Life Cycle

SE Software Engineering

SRCC Spearman Rank Correlation Coefficient

SQA Software Quality Assurance

STC Simple Transitive Coupling

STGP Strongly Typed Genetic Programming

SUT Software Under Test

UML Unified Modeling Language

WF Weight Factor

 XIV

List of Figures

Figure Caption Page No.
1.1 Classification of software testing 4

3.1 McCall‘s Model for Maintainability and Reusability 40

3.2 Maintainability factors 41

3.3 Cohesion in a class and metric values 46

3.4 Example of Program Flow Analysis 51

3.5 Flow of a Typical Genetic Algorithm 53

3.6 Crossover 54

3.7 Mutation 54

3.8 A sample test Class Cluster 60

3.9 Tree Representation of Chromosome 61

3.10 Tree Before Applying Mutation 62

3.11 Tree After Applying Mutation 62

5.1 Classes directly coupled in different ways 79

5.2 The coupling relations between the classes in Figure 5.1 79

5.3 Interpreting Indirect Coupling 82

5.4 Path Illustration 87

5.5 Algorithm for computing indirect path coupling Cp when multiple, possibly overlapping

coupling paths exist between two classes.

87

5.6 Variation of Change metric with increasing Indirect Path Coupling for different classes in (a)

EasyMock (b) DrJava (c) Hibernate (d) jEdit

96

5.7 Variation of Change metric with increasing Indirect Path Coupling for different classes in (a)

jFlex (b) jFreeChart (c) Apache Tiles (d) Apache Velocity

97

5.8 Variation of Change metric with increasing Indirect Path Coupling for different classes in

JUnit

98

5.9 Correlation of indirect path coupling against Maintenance effort for (a) EasyMock (b) DrJava

(c) Hibernate (d) jEdit

100

5.10 Correlation of indirect path coupling against Maintenance effort for (a) jFlex (b) jFreeChart

(c) Apache Tiles (d) Apache Velocity

101

5.11 Correlation of indirect path coupling against Maintenance effort for JUnit 102

6.1 Process of Generating Test Data 105

6.2 Functional tier of the class Account 106

6.3 The conditional tier of the class Account 107

6.4 The state-space partition of class Account 108

6.5 The Test Model of the class Account 109

 XV

Figure Caption Page No.
6.6 Partition of Input-space for each method of Account class 111

6.7 Algorithm for class testing using proposed approach based on GA 114

6.8 Flowchart for test data generation using proposed approach based on GA 115

6.9 CFG of method considered for case study 1 and its code 123

6.10 Variation of Improvement factor for feasible test cases 127

6.11 Variation of Improvement factor for infeasible test case 127

6.12 Improvent for feasible test cases in different case studies 129

6.13 Improvent for infeasible test cases in different case studies 129

 XVI

List of Tables

Table. Caption Page No.
2.1 Software maintainability predictors gathered at source code level 27

2.2 Summary of Maintainability Metrics 28

3.1 Cohesion Metrics Based on the Connection Type 44

5.1 Mechanism that constitutes coupling 73

5.2 Different available coupling measures 76

5.3 Softwares considered for case study 92

5.4 Correlation coefficient for various software in study 98

6.1 Coverage obtained for different values of population size 124

6.2 – 6.4 Results obtained using different combinations of α and β parameters 125-126

6.5 Improvement factor for feasible test cases (IF) 127

6.6 Improvement factor for infeasible test cases (IU) 127

6.7 Results obtained for various methods of classes from Java util package 128

1

CHAPTER
Introduction

1

oday, software plays an important role because a substantial proportion of all products, both

commercial products and other application domains, contain some kind of software. And the

trend is that each product contains more and more software features every year. One major factor,

independent of the field of application of the software, is the quality of the software product. If the

product quality is below expectations the customers will shortly find a substitute product that better

suits his or her needs. Therefore, software development organizations are forced to ensure that their

products are of acceptable quality and not exceeding the budget of the customer. There is no standard

definition for good software quality in industry but it is considered as the value (satisfaction) it

provides to the users, mekes profit for developers, its capability to generate as few as possible

number of complaints and in some way its contribution to the goals of humanity [Boehm 2003].

Software metrics are proposed as potential tool in the endeavor to improve the quality of computer

software.In general, such requirements for good quality needs to be satisfied by the people involved

in the development and support of these software systems through various Software Quality

Assurance (SQA) activities, and the claims for good quality need to be supported by evidence based

on concrete measurements and analyses.

SQA consists of a means of monitoring the software engineering processes and methods used to

ensure quality. The methods by which this is accomplished are many and varied, and may include

ensuring conformance to one or more standards, such as ISO 9126 or CMMI. One of the most

important parts of SQA and most commonly performed SQA activities is software testing. Software

testing involves the execution of software and the observation of the program behavior or outcome.

Software testing by itself does not improve software quality. Software test results are an indicator of

quality, but in and of themselves, they don‘t improve it.

The presented research addresses the issue of improving software quality. Software organizations use

Software Quality Assurance activities to ensure producing quality software. Ensuring quality

software has two aspects, first how to measure quality in software and second, how to test software

T

 2

which can help in improving software quality. In this research the work is broadly divided in two

parts, the first part investigates the metrics which can predict some aspect of software quality in

software development process which may help to build quality software. The second part investigates

the techniques which automate the process of test data generation. The generated data can be used to

test the software and build confidence in it.

1.1 Characteristics of Software Quality

Software quality can be divided into internal and external quality characteristics. External quality

characteristics are those that the users are aware of, including the following [Lincke and Lowe 2006]:

 Correctness Absence of defects in specification, design, and implementation of a system.

 Accuracy Absence of errors in a system, especially with respect to quantitative outputs.

Accuracy differs from correctness; Accuracy determines how well system does the job it was

built for, correctness determines whether it was built correctly.

 Usability Ease of use and low learning curve of a system.

 EfficiencyOptimised use of system resources, including memory and execution time.

 Reliability The ability of a system to perform its required functionality at all times.

 Integrity Proper protection of a system‘s programs and data from unauthorized access.

 Adaptability System‘s ability to perform, without modifications, in environments that it was

not designed for.

 Robustness System‘s ability to continue performing with invalid inputs and in stressful

conditions.

Some of these external quality characteristics overlap and some conflict with each other, e.g. having

a highly efficient system usually means that the system is not very adaptable. Internal quality

characteristics are those that the users are not aware of. However, developers constantly deal with

internal quality characteristics and care about them. Internal quality characteristics include.

 Maintainability Ease of changing the system, adding capabilities, improving performance, or

correcting defects.

 FlexibilityThe ease with which a software component or software system can be modified for

use in some applications or in an environments which is not specifically designed for it.

 3

 PortabilityThe degree to which software running on one platform can easily be converted to

run on another platform.

 Reusability Possibility and easiness of using parts of the system in other systems.

 Readability Ease of reading and understanding low-level source code of the system.

 TestabilityAbility of software system to be tested on different levels, especially in unit

testing and system testing.

 Understandability Ease of comprehending the system at both low-level and high-level.

Users care only about the external quality characteristics, but external quality characteristics often

result from the internal quality characteristics. In order to have a high quality product, internal

quality characteristics must be in a good shape, otherwise the external quality will slowly but surely

deteriorate [Lincke and Lowe 2006].

1.2 Software Quality, Testing and Metrics

There are five major views (transcendental, user, manufacturing, product, and value-based views) of

software quality [Garvin 1984]:

1. In the transcendental view, quality is hard to define or describe in abstract terms, but can be

recognized if it is present. It is generally associated with some intangible properties (ease of

use, easy to install, less number of crashes etc. from user‘s point of view) that delight users.

2. In the user view, quality is fitness for purpose or meeting user's needs.

3. In the manufacturing view, quality means conformance to process standards.

4. In the product view, the focus is on inherent characteristics in the product itself in the hope

that controlling these internal quality indicators (or the so-called product-internal metrics)

will result in improved external product behavior (quality in use).

5. In the value-based view, quality is the customers' willingness to pay for software.

Different standards organizations have different definition for their quality standards. IEEE and ISO

are the most widely used standards for computer science. There is a standard quality model, called

ISO 9126 [ISO 2001]. In this standard, the quality of software is defined to be:

The totality of features and characteristics of a software product that bear on its

ability to satisfy stated or implied needs.

 4

A significant role is played by the software testing achieving and assessing the quality of a software

product [Osterweil 1996]. Generally organizations improve the quality of the products as they repeat

a test–find defects–fix cycle during development also they assess how good the software system is, by

performing system level tests before releasing a product. Therefore, Friedman and Voas [1995] have

described software testing as a verification process for assessment of software quality and its

improvement.

For determing the software faults, the software testing has been proved to be an important and

valuable activity performed during development cycle. Three levels of software testing are defined:

namely unit/component level testing, integration testing and system level testing [Myers 1979]. The

objective of testing at each of these three levels is different. At unit/component level the aim is to

show whether the unit/component satisfies its functional specification and/or whether its

implemented structure matches the intended design structure. In integration testing the aim is to show

whether there are inconsistencies between units or components.At System level the main concern is

about those issues and behaviors that can only be exposed by testing the entire integrated system or a

major part of it [Binder 1996]. Also there are two general testing approaches called as white-box and

black-box testing. Out of these two approaches the white box testing approaches, which involves

branch testing and path testing; requires the implementation knowledge of the source code. On the

other hand, Black-box approaches, which involve functional testing and random testing, require

knowledge of the specification details. These two approaches are complementary to each other

[Mathur 2008].

1.2.1 Types of Software Testing

In general, two types of software testing methodology are adopted (i) Execution-based testing

(dynamic testing) and (ii) non execution-based testing (static testing).In Execution-based testing the

software must actually be compiled and run while non execution-based testing involves examination

of the program‘s code and its associated documentation but the software isn‘t actually executed. The

latter is basically the verification portion of Verification and Validation while former is the validation

portion of it. Figure 1.1 shows broadly the different types of software testing techniques [Binder

1996].

 5

Figure 1.1 Classification of software testing

1.2.1.1 Functional Testing

This is a dynamic test method based on specificationsof the software. This is also called as Black

Box Testing, because it assumes no knowledge of how the system or component is structured inside

the box.In essence, the tester is concerned with what the software does, not how it does [Mathur

2008].

1.2.1.2 Structural Testing

Structural testing uses the internal structure of the software to derive test cases. It is also commonly

called Glass Box or White Box technique. Since it requires knowledge of how the software is

implemented, structural testing considers the program code, and test cases are designed based on the

logic of the program so that every element of the logic is covered. [Pressman 2005]

1.2.2 Software test automation

When software testing is done manually by a person who primarily creates and executes test cases,

then the results of test execution are compared with the expected output and if any defects are

detected then such defects are logged. All the above process is performed manually. There are

several manual testing methods exist in literature [Jorgensen 2002].

The activities like executing the test cases, comparison of results and logging of defects are

performed automatically without human intervention in automated software testing. In recent time

the automated software testing has received a lot of attention as a means to reduce testing costs, find

more number of defects, and save valuable development time. In simpler words it can be said as

―writing code to test code‖. Specialized testing tools are used to perform most of the test automation

Software Testing

Structural

Testing

Functional

Testing

Static Testing Dynamic Testing

Inspection Walkthrough

 6

process. But the use of automated tools requires more specialized skills than those needed for manual

testing.

1.2.3 Quality of Object-Oriented Class Unit

Unit testing is the process of testing the individual units (functions, classes) of a program in isolation

in order to find faults. The most basic way to write unit tests is to write a set of simple methods or

procedures which exercises the unit under test. These tests can then be manually executed to ensure

that the code is properly tested. Although this is perfectly valid way to do unit testing, frameworks

exist for most languages which can help automate the process of running unit tests, and provide some

of the boiler-plate code that the tester has to write. In addition a framework can also automatically

setup the environment in which the test is run to ensure that each test is run in isolation. Units that

are tested can be single functions, modules, or combination of modules. Unit tests are done in

isolation. Most common way to do unit testing is to automate the tests. Automated unit tests are tests

that run a piece of code, check the result, compare it to the expected and report the status of the tests.

Defects found using unit testing is usually easy to fix, and when developers fix their own defects, the

rest of the software is not affected by these defects. Usually unit testing finds defects in the external

quality characteristics, but it can also find defects in the internal quality characteristics, especially in

testability. Depending on the framework used, unit testing can be very easy to use, but if there is not

any framework available, it could take too much effort to write and execute unit tests.

1.2.4 Software Quality and Metrics

ISO 9126 [ISO 2001] provides a hierarchical framework for quality definition, organized into quality

characteristics and sub-characteristics. There are six top-level quality characteristics, with each

associated with its own exclusive (non-overlapping) sub characteristics:

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 7

 Portability

There are broadly two different sets for the product quality characteristics mentioned above. These

two sets are: external and internal. External quality characteristics such as: functionality, reliability,

usability, efficiency, flexibility, friendliness, simplicity etc. are of more concern from a customer‘s

point of view. The reason for this is because these are the characteristics which are easily explored by

use of the product.

On the other hand, software developers are more concerned about the internal quality characteristics

such as: maintainability, reusability, portability, testability, etc. since these are the characteristics

which are related the software development effort.

Most of the quality characteristics discussed above cannot be measured before the system is used for

a certain period of time. However, there exist some software attributes that can be measured during

the software development cycle, and which can be used as indicators of them. Examples include

cohesion and coupling. To illustrate how certain software quality attributes can be indicators of some

quality characteristics, consider the example of maintainability of a software component (a class in

an object-oriented system, for example). Assessing the maintainability of a software product is very

important because it helps produce high quality software more quickly [Basili et al. 1996]. It is not

possible to directly measure maintainability. However, the coupling (software components depend on

each other for completion of a task) of a software component can be a good indicator of its

maintainability. Coupling is a directly measurable quality, maintainability is not.

In order to determine quality of software we must have some metrics to measure quality.

Measurement enables the organization to improve the software process; assist in planning, tracking

and controlling the software project and assess the quality of the software thus produced. By

controlling, it is meant that one can assess the status of the process, observe trends to predict what is

likely to happen and take corrective actions for modifying our practices. Measurement is an essential

element of management; there is little chance of controlling what we can not measure.

 8

Therefore organizations developing software products, need some measurement techniques to check

the extent to which the product satisfies the above specified quality characteristic, or the

characteristics specified by some other standard. This is when the metrics comes in to existence. Its

purpose is to make assessments during and after the software development, so as to know whether

the software quality requirements are being met or not.

1.3 Metrics for Object-Oriented Programs

Object oriented software development methodology is becoming more pervasive, therefore it is

expected from software engineers to use quantitative measurements for software design quality

assessment at both the architectural as well as components level. The software designers may be able

to use these measures to access the software early in the process, which will make the changes to

reduce complexity and improve the continuing capability of the product. Object-oriented design

exhibits four main features: inheritance, data abstraction, dynamic binding, and information hiding

[Lewis and Wiener 1998]. These features allow software developers to cope with the complexity of

large software and develop a manageable software design. But to achieve expected benefits and

advantages of such inherent features of object-oriented methodology, it is necessary to establish

some basic standards and guiding principles that the developer should follow. This methodology may

be used in measurement of the metrics for object-oriented software. There exist a number of design

methodologies that suggest the guiding principle for various ways for the development of object-

oriented software system. The measurement process is to drive the software measures and metrics

that are appropriate for the representation of software that is being measured [O‘Regan 2002].

Software metrics deal with the measurement of the software product and the development

process.Software metrics provide measurement for certain aspects of software. The usage of metrics

will reduce the subjectivity during the assessment of software quality and it provides quantitative

basis for making decisions about the software quality.

As the development of object-oriented software is rising, researchrs in this field are introducing more

and more metrics for object-oriented languages. Various metrics have been proposed related to

various object-oriented constructs like class, coupling, cohesion, inheritance, information hiding and

polymorphism. Some of the important methods of evaluating an object-oriented design quality can be

through the use of measures for coupling and cohesion.

 9

Software metrics evaluate different aspects of the complexity of a software product. Software

complexity was originally defined as ―a measurement of the resources that must be expended in

developing, testing, debugging, maintenance, user training, operation, and correction of software

products‖ [Shooman 1983]. Complexity cannot be directly avoided in design. There are many factors

that contribute to the complexity. The complexity influences some of the wanted quality

characteristics mentioned in section 1.2.4.

1.3.1 Software Complexity and Maintainability

Software complexity is assumed to be a multi dimensional construct [Henry and Wake 1991]. The

complexity of a program depends upon its magnitude, the complexity of its control structure, and the

complexity of its data flows [Basili and Hutchens 1983]. Other researchers add other factors to this

list, such as the degree of modularity [Bowen 1978]. Munson and Khoshgoftaar [1989] conclude that

four or five such complexity factors suffice to describe the multi-dimensional complexity of a

program.

Basili [Basili et al. 1996] defines software complexity as "...a measure of the resources expended by

another system whileinteracting with a piece of software. If the interacting system is people, the

measures are concerned withhuman efforts to comprehend, to maintain, to change, to test, etc..that

software.". Complexity in software code tends to increase the human efforts used to comprehend,

maintain, change or to test the software code. Factors that increase maintenance effort will increase

the overall cost of the software, since maintenance costs are most directly a function of the

professional labor component of maintenance activities.

Maintainability is one key external attribute that significantly affects software development. In

today‘s industry it is expected for a system to change continuously to accommodate new features or

to adapt to changing requirements. Maintenance is in fact one of the biggest factors of cost, with

figures reported to be around 60 to 80% [Erdil 2003]. Thus it is important to look into what makes

maintenance so difficult. To understand the difference between maintenance and maintainability we

consider the following definitions:

 10

Software maintenance is defined as ―the process of modifying a software system or component after

delivery to correct faults, improve performance or other attributes, or adapt to a changed

environment‖ [IEEE 2006].

Software maintainability is defined as ―the ease with which a software system or component can be

modified to correct faults, improve performance or other attributes, or adapt to a changed

environment‖ [IEEE 2006].

It is clear from the above definitions that the maintenance is the process performed as part of the

Software Development Life Cycle (SDLC) whereas maintainability is the quality attribute associated

with the software product. These are two inherently different but interrelated concepts. The cost of a

software system is influenced by the maintainability of a software system. Therefore, it is important

to be able to forecast a software system‘s maintainability so that the costs could be managed

effectively.

1.3.2 Coupling Metrics

Coupling was first introduced in the context of structured development techniques [Stevens et al.

1974]. Here coupling is defined as ―the measure of the strength of association established by a

connection from one module to another‖. High coupling between classes is considered as bad design

while low coupling between classes is advocated by Pfleeger and Atlee [2006]. Strong coupling

complicates a system since a module is harder to understand, change or correct, if it is interrelated

with other modules. A good design of coupling between classes allows classes to change its

functionality during maintenance without affecting the other classes it is coupled with. Therefore,

ideally it should be modified without taking the change of other classes into account.

Classes or objects may be coupled three ways:

 The objects are called to be coupled, whenever a message is passed from one object to

another.

 There exists a coupling between classes, whenever methods declared in one class use

methods or attributes from the other classes.

 A strong coupling is shown between super classes and their subclasses because of inheritance.

 11

Coad and Yourdon [1991] extended the principle of low coupling to object-oriented software.

Coupling Between Objects (CBO) and Cyclomatic Complexity have long been used to measure

software quality and predict maintainability and reliability of software systems prior to release. CBO

is a count of the number of other classes to which a class is coupled. The measurement of CBO is

performed by counting the number of distinct non-inheritance related class hierarchies on which a

class depends. The more number of couplings is undesirable as it is opposite to the philosophy of

modular design and prevents reuse [Kearney et al. 1986]. In particular, CBO has been shown to

correlate with fault-proneness and maintainability of a system at the class level. However, the CBO

metric is based on a static analysis of class code, and the ability of the CBO metric to accurately

predict the actual amount of coupling between objects is as yet unproven.

1.3.3 Cohesion Metrics

The cohesion of a module is the extent to which its individual components are needed to perform the

same task [Fenton and Pfleeger 1998]. In object oriented paradigm of software development, class

cohesion can be thought as ―the measurement of relatedness among the members of class‖ [Bieman

and Kang 1995]. The word ―relatedness‖ in object oriented context means the similarity in the

methods exposed by a class implementation. High cohesion indicates good class subdivision. There

are seven categories of cohesion which range from the most desirable (functional) to least the

desirable (coincidental) [Yourdon and Constantine 1979]. It is possible for a class to exhibit more

than one type of cohesion. It is desirable that a good software design must have highly cohesive

classes i.e. preferably functional. Effective object-oriented designs maximize cohesion since it

promotes encapsulation.

The software complexity may increase because of lack of cohesion or low cohesion; therefore it

increases the likelihood of errors during development. Software classes having lower value of

cohesion could possibly be subdivided into two or more subclasses with increased cohesion.

Efficiency and Reusability are evaluated by using this metric [Sharble et al. 1993; Hudli et al. 1994;

Lorenz and Kidd 1994]. The existing class cohesion metrics can be categorized into two types,

namely implementation metrics and design metrics. The implementation metrics are those metrics

 12

which are computed from the source code, whereas the design metrics are computed from the design

of a system.

There are at least two ways to measure cohesion:

 For each data field in a class, calculate the percentage of methods that use that data field.

Average the percentages, then subtract from 100 percent. Lower percentages indicate greater

data and method cohesion within the class [Rosenberg and Hyatt 1997].

 Methods are more similar if they operate on the same attributes. Count the disjoint sets

produced from the intersection of the sets of attributes used by the methods [Rosenberg and

Hyatt 1997].

In CK metrics suite [Chidamber and Kemerer 1991] Lack of Cohesion of Methods (LCOM) metric

was used for class cohesion. A high value of cohesion indicates good class subdivision. The

complexity of software design increases because of Lack of cohesion or low cohesion, therefore it

increases the possibility of errors during the software development process.

1.4 Class Level Test Data Generation

Class is considered as the basic unit in object oriented software. Testing can be done at four different

levels of abstraction found in object oriented software. These are the method level, class level, cluster

level, and system level. The method level considers the code for each operation in a class. The class

level is composed of the interactions of methods and data that are encapsulated within a given class.

The cluster level consists of the interactions among cooperating classes, which are grouped to

accomplish some tasks. The system level is composed of all the clusters [Smith and Robson 1992].

Object-oriented programs contain various features which require specific attention while performing

software testing: the hidden state of objects, inheritance, polymorphism, dynamic binding, and

exception handling. The test cases generated must be complemented with test cases generated using

approaches which are specifically designed for addressing various object-oriented features. The

different test suites generated for dealing with different characteristics of the application under test is

generally good practice. Inheritance must be considered carefully and it allows reducing the testing

effort by avoiding retesting those methods which are already tested in the ancestor classes. If the

 13

inheritance is simply ignored by flattening class hierarchies it may simply result in the generation of

redundant test cases. Specific techniques, such as the testing history approach presented in [Harrold

and McGregor 1992], can be used to reduce the number of test cases to be generated.

Testing object-oriented programs in presence of polymorphism and dynamic binding requires

considering different bindings for each polymorphic call. Such bindings can be computed with

specialized techniques (e.g., the technique proposed in [Orso and Pezze 1999]). Additional test-case

specifications could be generated by the presence of information about bindings needed to test.

Software testing is complicated by exception-handling constructs due to the presence of implicit

transfers of control that occur when exceptions are raised. Researchers have introduced the testing

techniques which are specifically designed for addressing exception handling (e.g., the technique

proposed in [Sinha and Harrold 1999]).

1.5 State-of-the-Art of Software Maintainability Metrics

One of the earliest software product quality models was suggested by McCall [McCall et al. 1977]

and his colleagues. McCall's quality model defines software-product qualities as a hierarchy of

factors, criteria, and metrics and was the first of several models of the same form. International

efforts have also led to the development of a standard for software-product quality measurement, ISO

9126. It defines the following six characteristics: functionality, reliability, usability, efficiency,

maintainability and portability.

In order to better quantify the concept of quality, researchers have developed various indirect models

that attempt to measure software product quality by using a set of quality attributes, characteristics,

and metrics. While defining these quality models, an important assumption is that the internal

product characteristics (internal quality indicators) influence external product attributes (quality in

use), and by evaluating a product's internal characteristics some reasonable conclusions can be drawn

about the product's external quality attributes. This product-based approach is frequently adopted by

software-metrics advocates because it offers an objective and context independent view of quality

[Kitchenham and Pfleeger 1996; Bansiya 2002].

 14

Maintainability is an important characteristic of object oriented software. Maintainability can be

measured by considering two broad approaches, which are reflecting external and internal views of

the attribute. Maintainability is an important quality factor, and it depends not only on the product

itself but also on the programmer performing the maintenance. Maintainability can be measured by

using a external and more direct approach which requires to define measures of the maintenance

process and then collect the opinion of the programmers who participate in this process. But the

problem with this approach is that it is time consuming and depends on conducting a survey, which

may be of a high cost. Also such kind of surveys generally requires the improvement of the accuracy

and the interpretation of their input and their derived results [Rosenberg and Hyatt 1997]. Another

alternative internal approach using the internal metrics and expect that these are metrics predict the

programmers‘ opinion of the maintainability of a software product. Another advantage is that, in this

approach, the measures can be gathered earlier and easier. Generally it happens that while

performing the software maintenance process the structure of the system usually degrades. Random

patches applied by members of the maintenance department often result in a low quality system

structure. It becomes more difficult to maintain the system with time. The degradation of a system

can be controlled by software metrics in order to keep the quality of the maintenance process at a

high level.

The maintenance effort for a software application depends on measurable metrics that can be derived

from the software development process. The maintainability index [Oman and Hagemeister 1994]

which determines the maintainability of software system and which is based upon the status of the

source code shows high correlation between assessment automated models and some expert

evaluation. The data of maintenance is collected by Binkley and Schach for the development of

project written in any language like C, C++, COBOL etc and produce a level of interaction between

modules, having low coupling were subjected for less number of maintenance effort and fewer

maintenance fault and failures [Binkley and Schach 1998].

Genero et al. [2003] proposed some internal and some external attributes which can be used in early

development of Object-Oriented (OO) software to analyze structural complexity and size of UML.

They also serve as maintainability indicators and can be used to gather empirical data to turn in the

basis of current study and also define some measuring properties of object-oriented software such as

 15

inheritance, cohesion and coupling [Genero et al. 2003]. Hayes et al. [2004] proposed the adaptive

maintenance effort model which can be used to determine the line of code change and also describe

the regression model for adaptive maintenance, which can provide the useful information for

manager and maintainer.

The way in which various software components are related provides the key for various quality

attributes. Coupling is such a metric which can be used to estimate various quality attributes such as

maintainability, complexity, and reliability. One of the important features of object oriented

languages is that they are designed to minimize the dependencies between classes which further

reduce the coupling [Offutt et al. 2008].

CBO is an Object-Oriented metric that measures the different coupling relationship between objects.

This original metric assigns a measurement of one to each coupling relationship. However, when

CBO is paired with the Cyclomatic Complexity (CC) it can help measure the weight of a coupling

connection. These connections modify the strength of the relationship and therefore must be taken

into account when defining the coupling complexity between objects.

In recent years, many new coupling metrics have been introduced - with and without empirical

validation [Arisholm 2002; Gui and Scott 2006]. The goal is to fuse two metrics together; CC and an

Object-Oriented metric, CBO, and propose novel metrics which combine the two to measure class

quality (defect or error-proneness of a class).

1.6 State-of-the-Art of Class Level Test Case Generation

Class is the basic unit of testing in object oriented software. Testing of the class involves testing of

the methods defined in the class and their impact on the state of the class/objects. Different

approaches are used to test the methods of the class. In the effort to improve the existing testing

infrastructure, a number of techniques have been developed to automate the test execution; however,

the automation of test data generation is still a topic under research. Recently, a number of methods

such as metaheuristic search, random test generation and static analysis have been used to completely

automate the testing process, but the application of these techniques to real software is still limited.

Random test case generation has been used to automate the generation of test cases, but a number of

 16

studies found a genetic algorithm (evolutionary testing) to be more efficient and to outperform

random testing [Watkins 1995; Michael and McGraw 1998] for structural testing of the software.

The study of genetic algorithms as a technique for automating the process of test case generation is

often referred to as evolutionary testing in the literature. Since the early 1990s, a number of studies

have been done on evolutionary testing [Baresel et al. 2002; Tonella 2004; Harman and McMinn

2007]. The complexity and applicability of these studies vary. In order to classify the relevance of

past research for this project, a number of studies have been classified according to the complexity of

the test cases being generated and the optimization parameter used by the genetic algorithm. The

complexity of the test cases being generated is important because to generate test cases for structured

programs that only take simple input, such as numbers, is simpler than generating test cases for

object-oriented programs, which is one of the goals of this research.

Branch coverage was the most common optimization parameter used to drive the evolution of test

cases. However, there is little evidence of a correlation between branch coverage and the number of

uncovered faults. Although code coverage is a useful test suite measure, the number of faults a test

suite unveils is a more important measure. Past research has shown that evolutionary testing is a

good approach to automate the generation of test cases for structured programs [Watkins 1995;

Michael and McGraw 1998; Wappler and Lammermann 2005]. To make this approach attractive to

industry, however, the system must be able to automatically generate test cases for object-oriented

programs and to use the number of faults found as the main optimization parameter.

One of the problems when evolving test cases for object-oriented programs is the initialization of an

object into a specific state. The object may recursively require other objects as parameters and the

typing must match. Tonella [2004] solved this problem by defining a grammar for the chromosome

and defining the mutation and crossover operations based on it. Another problem when generating

test cases for object-oriented program is the lack of software specification to check if a test has

passed. Wappler and Wegener [2006a] used software exceptions as an indication of a fault and

Alander et al. [1998] used the time needed for execution.

 17

In particular several issues in the current state-of-art of test data generation for object-oriented

software can be pointed out, namely:

 little work has been done using optimization algorithms.

 empirical tests have always been performed on a very small clusters of classes, this causes to

reduce the reliability of the results.

 no common benchmark cluster exists which can be used to test and compare the different

techniques.

 there are no comparisons between different optimization algorithms on the testing of the same

classes.

1.7 Research Agenda

Much research has been done in the object oriented area which has been involved with the

development and evaluation of quality software products. The structural attribute measures which

intended to quantify important characteristics of object-oriented software, such as size,

polymorphism, inheritance, coupling, and cohesion are needed to relate with the external quality

indicators such as fault proneness, change impact, reusability, development effort and maintenance

effort. Much study has been done in literature to study the relationships between coupling and

cohesion with external quality factors of object-oriented software. Clear empirical relationships have

been identified between class level coupling and fault proneness of the class. The purpose of this

research is to investigate a special type of coupling namely indirect coupling and its relationship to

maintenance effort and to explore the nature of this relationship so that better quality software can be

produced having good maintainability. The quality of developed software must be tested by

executing it with good test cases, which increases the confidence of a developer in developed

software. In this research it is also investigated that how genetic algorithms can be applied to

generate better test cases for object oriented software. This research will try to find answers to

following research questions:

How is Software Quality related to coupling between classes?

Maintainability of software is a key quality concept while coupling is a way to determine how

independent a class is from the others in the software. If a class has strong coupling with other

classes then it increases the complexity of the software and it becomes less maintainable, which

 18

ultimately affects its overall quality. However, study of various forms of coupling and their impact

on quality metrics is still a topic of research and the presented research explores this relation to a

greater detail.

What is indirect class coupling and how can it be measured?

A form of coupling that has so far received little attention is indirect coupling that is, coupling

between entities that are not directly related. Indirect coupling through a class makes an indirect

coupling path, the length and coupling through this path decides how strongly a class is coupled with

other classes in the software. In the presented thesis we propose a metric which may be used to

measure this form of coupling.

What are the possible relationships which may exist between indirect path coupling and class

maintenance effort?

The indirect path coupling is based on the idea that the longer the path connecting two modules, the

more hidden the dependencies are. Consequently it becomes more difficult to detect such indirect

coupling. Furthermore, such coupling is expected to increase the overall effort when maintenance

activities are performed. Through the work in this research we establish this relationship using the

proposed metrics. We attempt to find mutual relationships between this maintenance effort and

indirect coupling in this research.

How can the quality of class level test data be improved?

Object-oriented software development raises important and challenging class level testing issues that

cannot be solved directly by existing testing techniques [Beizer 1990; Roper 1994; Beizer 1995] for

conventional programming languages. The enhancement of the existing techniques is necessary, and

new testing processes specific to object-oriented programs need to be established [Harrold and

McGregor 1992; Smith and Robson 1992; Hoffman and Strooper 1993; Binder 1996]. Various test

data generation techniques are described in literature [Baresel et al. 2002; Harman and McMinn

2007; Ferrer et al. 2012]. This research explores evolutionary testing techniques to be applied for test

data generation.

How can fitness evaluation technique be improved in evolutionary testing?

 19

A fitness function guides search into promising, unevaluated areas of the search space. In

evolutionary algorithms formulation of test goal is achieved through designing a good fitness

function. This research focuses on a more effective fitness evaluation technique which can be used to

generate better test cases.

Can we devise a technique to generate test sequences that increases feasible coverage using a

genetic algorithm?

In search based test data generation, test data is generated to meet the requirements of a particular

test adequacy criterion like coverage. The generation of maximum feasible test cases to meet such

criteria is always a challenge. In this thesis we propose a technique to increase the feasible test cases

to maximize the selected coverage criterion.

1.8 Organization of the Thesis

A brief introduction to software quality, metrics for object oriented software, software testing, test

automation and the research questions investigated in this thesis are discussed in this introductory

chapter. The metrics for object oriented software; features of software test data generation and

importance of measurement and testing of software have also been discussed in this chapter. State-

of-the-art of the metrics and software test data generation approaches are also discussed briefly.

In chapter 2, detailed literature survey has been presented on object oriented software metrics,

measurement and testing. Various metrics models, various techniques in object-oriented approach to

the design of testing strategies are discussed. Several testing issues are unique to O-O software,

research which empirically explores the relationships between existing object-oriented coupling,

cohesion, and inheritance measures and the probability of fault detection in system classes during

testing are explored. The difficulties in automated test data generation, various techniques are

surveyed.

Chapter 3 explains the about code and design metrics, reusability, maintainability and their

relationship with coupling and cohesion. Various types of couplings are explained. The concept of

indirect coupling is elaborated and the metrics used to measure indirect coupling are decribed.

Relation of indirect coupling with software maintainability has also been discussed. This chapter also

 20

explains software testing and various levels of software testing. We discuss why and how the

evolutionary techniques could be applied at class level.

Chapter 4 describes the methodology chosen for this thesis.It first explores the research questions

and theninvestigates the steps taken to answer the research questions by

describingtheuseofthemethods which are the most appropriate, given the aims and nature of the

research.

Chapter 5 discusses the proposed indirect coupling metric. Simple Transitive form of indirect

coupling has been considered and experiments are conducted to correlate with maintenance effort.

Different versions of open source software are considered and the proposed metric is measured using

various tools and it is correlated with maintenance effort which has been derived from the analysis of

source code of different versions of the softwares taken in case study.

Chapter 6 explains the automated techniques to generate test cases at class level. A technique of test

case generation for object oriented software class has been proposed by applying finite state machine

specification and genetic algorithms. It also shows that genetic algorithms are useful in reducing the

number of infeasible test cases by generating test cases for object oriented software. Furthermore, it

has been established that the proposed technique is good for structural testing for generating more

suitable test cases.

Chapter 7 concludes the thesis by summarizing the achievements of the work and provides

limitations, critical analysis of the work and suggests further investigations of the presented work.

Following the chapter 7, the List of References, Appendix A, Appendix B, List of publications by

author and biosketches of the author & his supervisor are appended.

 21

CHAPTER Software Quality Metrics and Test Data generation

─ A Literature Review 2

he measurements represented by a quality metrics can be obtained during all phases of the

software development to provide an indication of progress towards the desired product quality.

Various metrics have been proposed for measuring properties of object-oriented software such as

size, complexity, cohesion and coupling. These object-oriented metrics can be used as significant

predictors for the maintainability of software. Also to gain confidence in quality of the software,

various methods exist, for example static analysis, code reviews, formal specifications, refinement

and proof. However, testing remains the primary method [DeMillo and Offutt 1991], particularly in

industry.

This chapter provides a survey of object oriented metric models, software quality measurement

approaches and techniques used to guide the selection of test data. Suitable application of these

measurements and testing techniques are critical components of any high quality software.

2.1 Estimation of Software Quality

Since the last few decades in software engineering research area the estimation of software quality

has become one of the most interesting research area. Software quality estimation is used to identify

the errors that might have been introduced during software development cycle because the cost can

be reduced significantly if the errors could be identified at earlier stages and therefore can help to

enhance software quality.

Since quality of software directly affects the application and maintenance of software therefore it is

important to consider methods scientifically evaluate the software quality [Yang and Zhang 2009].

The evaluation of software quality involves various activities to be carried out during software

development process. These are continuous measurement of quality throughout development process,

determining current status of software, prediction of follow up development trend of software quality

and provide effective means for developer, customer and evaluator. Generally some set of evaluation

activities are defined in software quality specification of project plan as well as related specifications

T

 22

for software quality. The developer may apply quality evaluation on the finished product as well as

on semi finished products at each phase of development by identifying the difference between

current quality level and the required quality level of product, by taking timely corrective actions. It

ensures the quality to be incorporated at each level of development and product can meet the final

level of quality requirements.

Software quality is measured with the help of several quality factors. Software coupling which

designates the way in which various software components are connected, may be used to estimate a

number of quality factors, including maintainability, complexity and reliability [Offutt et al. 2008].

Since long time software coupling has been used to evaluate software. The coupling information can

be obtained from design document before software could be implemented or even from the source

after it has been implemented. Both ways have their merits and demerits. If coupling information id

obtained before implementation then it the information and measurements could be used in project

planning, implementation and test preparation. On the other hand coupling information obtained after

implementation can help to incorporate decisions and reflects changes made during the

implementation.

2.2 Software Quality Metric Models and Maintainability

Large amount of research has been done during last four decades for determining measurable

properties and defining mathematical relationships between product qualities and process quantities.

A quantitative study has much importance to be able to assess, predict and control software process

characteristics. The Object Oriented (OO) approach is based upon modeling the real world in terms

of its objects. This approach differs from traditional approach which emphasizes a function oriented

view where data and procedures are separated. Therefore the views in these two notions are

fundamentally different and that‘s why the metrics developed for traditional methods do not work

with classes, encapsulation, inheritance or dynamic binding.

The study reported in [Boehm et al. 1976] establishes a conceptual framework and some key initial

results in the analysis of the characteristics of software quality. It shows that explicit attention to

characteristics of software quality can lead to significant savings in software life-cycle costs.

Adefinitive hierarchy of well-defined, well-differentiated characteristics of software quality is

 23

developed. Various software quality-evaluation metrics have been defined, classified, and evaluated

according to their potential benefits, quantifiability, and ease of automation.

Later on, working on a framework for software quality measurement, Cavano and McCall [1978]

describe a quality framework which can potentially provide significant benefits to SQA programs. It

enforces a life cycle management viewpoint on quality assurance activities and provides early

indications of quality problems. Since formal relationships between the metrics and their related

quality factors have not been validated so they suggests that there are indications based on a limited

sample that such relationships can be established. Since the software quality cannot be measured

directly, software metrics are used to measure the parameters which establish software quality. There

are basically two general types of criticism applicable to current software metrics. The first category

is associated with conventional software metrics as they are applied to traditional, non object-

oriented software design and development. Kearney [Kearney et al. 1986] criticized the existing

software complexity metrics in their research for being without solid theoretical bases and lacking

appropriate properties. Vessey and Weber [1984] also commented on the general lack of indepth

theoretical work in the structured programming literature. According to Prather [1984] and Weyuker

[1988], the traditional software complexity metrics do not possess appropriate mathematical

properties, and therefore they consequently fail to display the normal predictable behavior. There is

also a second category of criticism which is about Object Oriented (OO) design and development.

Basically the OO approach involves modeling the objects of the real world, while more traditional

approaches emphasize a function-oriented view where data and procedure is treated separately.

Chidamber and Kemerer [1994] argue that, because these two approaches have fundamentally

different inherent notions, the software metrics which are developed with traditional methods

keeping in mind are not appropriate for the notions such as classes, inheritance, encapsulation, and

message passing. Therefore it can be said that current software metrics are subject to some general

criticism and are easily seen as not supporting key OO concepts, it seems appropriate to have new

validated metrics which are especially designed to measure the unique aspects of the OO design

[Abreu and Carapuca 1994; Abreu and Fernando 1995; Basili et al. 1996; Lorenz and Kidd 1994].

Study by Kafura and Reddy [1987] relates seven different software complexity metrics to the

experience of maintenance activities performed on a medium size software system. Three different

 24

versions of the system that evolved over a period of three years were analyzed in this study. Several

theoretical discussions [Booch 1991; Kim and Lerch 1991] have speculated that OO approaches may

even induce different problem-solving behavior and cognitive processing in the design process.

Because of the fundamentally different notions inherent in these two views, Wilde and Huitt [1992]

find that software metrics which are developed with traditional methods in mind do not readily find

place with OO notions such as classes, inheritance, encapsulation and message passing.

At the same time Fenton‘s work [Fenton 1991] categorizes software measures along two orthogonal

axes. The first is the process/product axis: a metric may measure an attribute of software product,

(e.g., quality of code), or an attribute of software development process (e. g., cost of design review

meetings). Another, orthogonal axis is the internal/external axis. A metric may measure an internal

attribute (e. g., the number of loops in a module), or an external attribute (e. g., maintainability of a

module). Because of the shortcomings of existing metrics, new metrics which are especially designed

for OO software are suggested by various authors. Tegarden [Tegarden et al. 1992] and Bilow

[Bilow 1992] have suggested for a theoretical research in the design of OO metrics. Some initial

proposals for such kind of metrics are referred by Morris [1988], although they are not tested. A

more formal attempt is performed by Lieberherr and his colleagues [Lieberherr et al. 1988] who

present at defining the rules of correct object oriented programming style, building on concepts of

coupling and cohesion that are used in traditional programming. Similarily Coplien [1993] suggests a

number of rules of thumb for OO programming in C++. Three metrics for OO graphical information

systems are suggested by Moreau and Dominick [1989], but they do not provide formal, testable

definitions. The need for new measures is also suggested by Pfleeger [Pfleeger et al. 1990], and they

use simple counts of objects and methods to develop and test a cost estimation model for OO

development. Metrics for measurement of inheritance in C++ environments is prescribed by Lake

and Cook [1994], and they have gathered data from an experimental system using an automated tool.

The various other authors [Chidamber and Kemerer 1991; Sheetz et al. 1992; Whitmire 1992]

propose metrics which are based primarily upon pragmatic insights and recommendations from

[Lorenz and Kidd 1994], but they do not offer any empirical data. Also Rajaraman and Lyu [1992]

and Li and Henry [1993] test the metrics proposed in [Chidamber and Kemerer 1991] and measured

them for applications developed by university students. Despite of having the active interest in this

area, no empirical metrics data from commercial object oriented applications have been published in

 25

the archival literature. The earliest measures which were based on code analysis; the most

fundamental was count of the number of Lines of Code (or LoC). Although various researchers

criticize it for various reasons it remained as a measure of complexity because of its simplicity.

The CK metrics [Chidamber and Kemerer 1994] are empirically investigated by Basili et al. [1996]

and results of this study are presented to assess these metrics as predictors of fault-prone classes and,

therefore, determine whether they can be used as early quality indicators. Several of Chidamber and

Kemerer's OO metrics [Chidamber and Kemerer 1994] appear to be useful to predict class fault-

proneness during the early phases of the life-cycle.

The ways to test for the essential OO language features of inheritance and polymorphism was looked

for by the researchers, finally. Several different ideas have been put forward, each with advantages

and disadvantages. [Murphy et al. 1994] established that using object-oriented technology,

constructing a highly available, stable and robust system requires new techniques and tools to test the

software, particularly at the class level. Tool support for object-oriented testing is also discussed

including specification editing, test cases generation, and test cases execution and validation.

Gulezian [1991] addresses the development of a unified view and structure for a proactive approach

toward software quality improvement during development. He has shown that by introducing a

reformulated concept of process maturity which is strictly measurement-oriented, it is possible to

provide a proper reference frame and a clearer guide toward requirements relating to implementation.

For this purpose a model for software product quality is defined in [Dromey 1995]. A set of quality-

carrying properties have been associated with each of the structural forms which are used to define

statements and statement components of a programming language. These properties having quality

information are in turn linked to the high-level quality attributes as specified by the International

Standard for Software Product Evaluation ISO 9126. The model given by Dromey [1995] also

supports the incorporation of quality into software, systematically classifying quality defects,

definition of language-specific coding standards and the development of automated code auditors for

detecting defects in software.

 26

The results of an investigation into a set of metrics for object-oriented design, called the MOOD

metrics is described in [Harrison et al. 1998]. A measurement theory viewpoint has been considered

for the merits of each of the six MOOD metrics, which takes into account the recognized object-

oriented features which Harrison et al. [1998] were intended to measure: encapsulation, inheritance,

coupling, and polymorphism. The relationships between existing object-oriented coupling, cohesion,

and inheritance measures and the probability of fault detection have been explored empirically by

Briand et al. [1998] in system classes during testing. Results show that many of the measures capture

similar dimensions in the data set, thus reflecting the fact that many of them are based on similar

principles and hypotheses. For fault-proneness, the method invocations frequency and the depth of

inheritance hierarchies are also the main driving factors oher than the size of classes.

Many organizations want to predict the number of defects or faults in software systems, before they

are deployed, to gauge the likely delivered quality and maintenance effort. For this purpose statistical

models are developed. Authors [Fenton and Neil 1999] argue that such models are weak because of

their inability to cope with the unknown relationship between defects and failures. They recommend

holistic models for software defect prediction, using Bayesian Belief Networks, as alternative

approaches to the single-issue models used at present. [Fenton and Neil 1999] also argue for research

into a theory of "software decomposition" in order to test hypotheses about defect introduction and

help construct a better science of software engineering.

The study by Tang [Tang et al. 1999] investigates the correlation between object-oriented design

metrics and the likelihood of the occurrence of object oriented faults. The CK metrics suite

[Chidamber and Kemerer 1994] is validated using these faults. They also proposed a set of new

metrics that can serve as an indicator of how strongly object-oriented a program is, so that the

decision to adopt object oriented testing techniques can be made, to achieve more reliable testing and

also minimize redundant testing efforts. A criterion for analyzing and testing the polymorphic

relationships that occur in object-oriented software is described by Alexander and Offutt [1999]. The

techniques adapt traditional data flow coverage criteria to consider definitions and uses among state

variables of classes, particularly in the presence of inheritance and polymorphic overriding of state

variables and methods. By applying these criteria an increased ability to find faults can be resulted

and they create higher quality software.

 27

In order to provide a quantitative approach to relate measurable object-oriented characteristics to the

higher-level desirable software quality attributes, Bansiya [2002] extended the Dromey‘s generic

quality model [Dromey 1995] to propose a hierarchical model for an object-oriented design quality

assessment approach, called QMOOD. Godfrey and German [2008] discuss the concept of software

evolution from several perspectives. They have examined how it relates to and differs from software

maintenance. They discuss insights about software evolution arising from Lehman‘s laws of software

evolution and the staged lifecycle model of Rajlich and Bennett [2000].

There are several studies which have identified clear empirical relationships between class-level

coupling and the fault-proneness of the classes. Static code analysis is a common way to quantify the

coupling. However, the resulting static coupling measures only capture certain underlying

dimensions of coupling. There exist some other dependencies regarding the dynamic behavior of

software they can only be inferred from run-time information. Arisholm [2002] describes how

several dimensions of dynamic coupling can be calculated by tracing the flow of messages between

objects at run-time. Arisholm [2002] also describes a simple algorithm for collecting the measures.

Maintainability of a program can be enhanced by using program refactoring technique. A

quantitative evaluation method has been proposed by Kataoka et al. [2002] to measure the

maintainability enhancement effect of program refactoring. They focused on the coupling metrics to

evaluate the refactoring effect. The degree of maintainability enhancement could be evaluated by

comparing the coupling before and after the refactoring. It was shown that their method was effective

to quantify the refactoring effect and helped to choose appropriate refactoring. Table 2.1 presents a

list of software maintainability predictors reported in various studies, which are measured at source

code level or project‘s post-implementation stage [Riaz et al. 2009]. Similarly the Table 2.2

summarizes various maintainability metrics defined in literature.

Marinescu [2005] defines a detection strategy mechanism so that deviations from good-design

principles and heuristics can be quantified in form of metrics-based rules. Classes or methods

affected by a particular design flaw (e.g. God Class) can directly be localized by using detection

strategies by an engineer, rather than having to infer the real design problem from a large set of

 28

abnormal metric values. Marinescu [2005] proposes a quality model, called Factor-Strategy which

relates explicitly the quality of a design to its conformance with a set of essential principles, rules and

heuristics, which are quantified using detection strategies. Ostrand et al. [2005] used historical data

from two large software systems with up to 17 releases to predict the files with the highest defect

density in the following release. A negative binomial regression model has been developed and used

to predict the expected number of faults in each file of the next release of a system. For each release,

the 20% of the files with the highest predicted number of defects contained between 71% and 92% of

the defects being detected.

Table 2.1 software maintainability predictors gathered at source code level [Ostrand et al. 2005]

S.No. Metrics S.No. Metrics

1 Halstead‘s Effort ‗E‘ 23 Mean tokens per method

2 Avg. effort per module ‗ave-E‘ 24 Mean no. of decisions per method

3 Halstead‘s volume ‗V‘ 25 Lack of Cohesion of Methods ‗LCOM‘

4 Lines of code ‗LOC‘, ‗SIZE1‘ 26 Halstead's difficulty ‗D‘

5 Halstead‘s predicted length ‗N^‘ 27 Data Abstraction Coupling ‗DAC‘

6 Avg. volume per module ‗ave-V‘ 28 Halstead‘s program vocabulary ‗n‘

7 Avg. no. of comment lines per module

‗ave-CMT‘
29 Halstead‘s unique operands count ‗n2‘

8 Avg. LOC per module ‗ave-LOC‘ 30 Halstead‘s unique operands count ‗n1‘

9 Avg. extended cyclomatic complexity

per module ‗ave-V(g)‘
31 Maximum number

of operations

10 Avg. predicted length per module ‗ave-

N^‘
32 No. of overridden methods

11 Avg. length per module ‗ave-N‘ 33 Percentage of private

member

12 extended cyclomatic complexity ‗V(G)‘ 34 Depth of Inheritance

Tree ‗DIT‘

13 Total purity ratio ‗PR‘ 35 No. of Children ‗NOC‘

14 Avg. purity ratio per module ‗ave-PR‘ 36 Response For a Class ‗RFC‘

15 Sum of the avg. variable spans ‗SPN‘ 37 Weighted Method per Class-‗WMC‘

16 Total no. of executable semicolons

‗NES‘
38 Message Passing Couple ‗MPC‘

17 Number of comment lines ‗CMT 39 No. Of Methods ‗NOM‘

18 average variable span per module ‗ave-

SPN‘
40 Number of properties ‗SIZE2‘

19 Avg. no. of executable semicolons ‗ave-

NES‘
41 Avg. complexity per method ‗OSAVG‘

20 cyclomatic complexity 42 Avg. no. of methods per class ‗CSO‘

21 Median lines of code per object method 43 Avg. attributes per

class ‗CSA‘

22 Type of object 44 Avg. no. of children per class ‗SNOC‘

 29

Software coupling can be used to estimate a number of quality factors, including maintainability,

complexity, and reliability. [Offutt et al. 2008] discusses software couplings based on object-oriented

relationships between classes, which specifically focuses on types of couplings that are not available

until after the implementation is completed, and a static analysis tool is presented which measures

couplings among classes in Java packages. Design documents can be used to derive coupling

information which allows the information to be available earlier (pre-implementation) and therefore

it is more useful for predictive purposes, whereas derivation of coupling information from source

code allows the information to be more precise and it reflects decisions which were made during

implementation and are not specified in the design documents.

Table 2.2 Summary of Maintainability Metrics [Ostrand et al. 2005]

Authors Measures/Metrics for Maintainability

[Oman and Hagemeister 1994]
Subjective assessment (ordinal scale metric) by using the U.S Air

Force Operational Test and Evaluation Center‘s AFOTEC software

maintainability evaluation instrument, which provides a rating as well

as categorizes maintainability as low, medium or high.

[Schneberger 1997]

[Genero et al. 2001]
Expert opinion using an ordinal scale

[Misra 2005]

[Zhou and Xu 2008]
Maintainability Index (MI)

[Lim et al. 2005] 1. Total effort in person-minutes to comprehend, modify, and test the

artifacts related to the system

2. Volume of changes made to software artifacts. Change volume

was measured as:

a. The number of pages changed in a document

b. The number of modified executable LOC

c. The number of test cases constructed

d. The LOC written to construct test scripts

e. The number of files needed to be compiled

f. The number of files needed to be deployed

[Koten and Gray 2006]

[Zhou and Leung 2007]
CHANGE metric: count of LOC changed during a 3-year

maintenance period.

[Shibata et al. 2007] G(u) = 1–exp(- v^u), according to Mt/M/∞ framework

Offutt et al. [2008] calculated the Spearman rank correlation between the various selected quantities

which is shown in Table 2.3. It was found that there was statistically significant correlation at the

95% level of confidence between the number of lines of code (LOC) and the number of instances of

each type of coupling (parameter coupling per class (PCC), Global coupling (GCC), and inheritance

 30

coupling per class (ICC)). Therefore it concludes that, the more code, the more is the coupling. But

from the observation it can be noted that this does not mean one can use LOC to infer the amount of

coupling.

Table 2.3 Correlations in terms of Spearman rank correlation R values [Offutt et al. 2008]

Spearman rank correlation NOC LOC PCC GCC ICC TCC

NOC 1 0.597 0.542 0.603 0.792 0.542

LOC 1 0.982 0.875 0.767 0.982

PCC 1 0.834 0.767 1

GCC 1 0.558 0.834

ICC 1 0.767

TCC 1

The fact which was deduced from above table 2.3 indicates that NOC was not correlated with

parameter couplings. It is interesting finding. This lack of correlation leads the authors to deduce

that, for the sample of 11 open-source Java projects they had examined, parameter coupling is

primarily used within classes, whereas global and inheritance coupling has been primarily used

among classes [Offutt et al. 2008].

2.3 Software Test Data Generation Techniques

Software test-data generation is the process of identifying a set of data, which satisfies a given testing

criterion. For solving this difficult problem a lot of research work has been done in the past. The

most commonly encountered are random test-data generation, symbolic test-data generation,

dynamic test-data generation, and recently, test-data generation based on genetic algorithms. Sultan

et al. [2010] gives a survey of the majority of software test-data generation techniques based on

genetic algorithms. They also compare and classify the surveyed techniques according to the genetic

algorithms features and parameters. Also, their research shows and classifies the limitations of these

techniques.

Several techniques proposed in the object-oriented approach on the design of testing strategies are

reviewed in [Gu et al. 1994]. In particular, they focus on the test case selection problem in class

testing and investigate the impact of object-oriented approach on the design of testing strategies. Due

to the nature of software faults, in any software testing, a software fault is exposed only when the

statement where the fault resides is executed under certain operational environment. For a class, its

 31

state space is a major component in its operational environment. Detailed state of the art in object

oriented software testing is described in [Binder 1996]. Several testing issues are unique to OO

software. A number of researchers have asserted that some traditional testing techniques are not

effective for object-oriented software [Berard 1994; Firesmith 1993; Gu et al. 1994] and that

traditional software testing methods test the wrong things. Researchers have been developing new

methods and techniques to test OO software for a number of years. Early work focused on testing of

data abstraction and state behavior [Cheatham and Mellinger 1990; Firesmith 1993]. Subsequent

work looked into testing of classes and issues such as what kind and how many objects should be

instantiated and the order in which classes should be tested [Chen et al. 1998; Harrold and McGregor

1992]. More recently, researchers have looked at integration issues of OO software and testing of

complete classes [Gallagher and Offutt 2004].

A technique which generates test cases for class-level object-oriented software testing and integrates

the testing techniques based on algebraic specifications, model-based specifications, and finite state

machines is given by Tse and Xu [1996]. The formal object-oriented specifications are used to guide

the test case construction process. In this approach, testers first analyze the formal specification of a

class to partition the state space of the class. It requires to identify a test model that is based on finite-

state machines, then the class specification needs to be analyzed and the test model is used to select a

set of test data for each method of the class, and finally the test cases of the class are prepared from

the test model by following various well-developed testing criteria.

Chen et al. [2000] proposed an integrated approach for selecting fundamental pairs of equivalent

ground terms as class-level test cases for object-oriented programs and applying observable context

technique to determine whether the objects resulting from the execution of a test case are

observationally equivalent. It first utilizes the fundamental pair approach of Chen et al. [1998],

combined with regularity and uniformity hypotheses, to generate a finite number of test cases. To

determine observational equivalence of objects resulting from the set of fundamental pairs, a series

of methods called the relevant observable context is constructed from the implementation of a given

algebraic specification.

 32

[Briand et al. 2002] presents an improved strategy to devise optimal integration test orders in object-

oriented systems. Minimizing the complexity of stubbing during integration testing is important as

this has been shown to be a major source of expenditure. Their strategy to do so is based on the

combined use of inter-class coupling measurement and genetic algorithms. The former is used to

assess the complexity of stubs and the latter is used to minimize complex cost functions based on

coupling measurement.

An automated and simplified genetic programming (GP) based decision tree modeling technique is

presented by Liu [Liu and Khoshgoftaar 2003] for calibrating the software quality classification

models. This technique is based on multi-objective optimization using strongly typed GP. To

optimize the classification accuracy, two fitness functions are used and tree size of the classification

models is calibrated for a real-world high-assurance software system. They have shown that the GP-

based decision tree technique yielded better classification models. Khoshgoftaar [Khoshgoftaar et al.

2000] in their paper present an empirical case study to show how principal components analysis can

improve a classification-tree model.

Some techniques use optimization based techniques (e.g. genetic algorithms) for automated test case

generation. In [Tonella 2004] a genetic algorithm has been used to automatically produce test cases

for the unit testing of classes in a generic usage scenario. In this approach the test cases are

represented by chromosomes, which include information about the objects which are to be created,

the methods to be invoked and values which are used as inputs. The proposed algorithm in [Tonella

2004] mutates the represented chromosomes with the aim of maximizing a given coverage measure.

Tonella [2004] used genetic algorithms for generating unit tests of Java programs. Solutions are

modeled as sequences of function calls with their inputs and caller (an object instance or a class if the

method is static). The literature proposes special crossover and mutation operators to enforce the

feasibility of the generated solutions. Similar work with genetic algorithms has been done by

Wappler and Lammermann [2005], but they used standard evolutionary operators. Infeasible

individuals may be resulted in this approach, which are penalized by the fitness function. Mcminn

[2004] has shown that Evolutionary Testing can be successful in automatically generating relevant

unit test cases for procedural software. Applying these techniques can increase efficiency and quality

of the usually costly test data generation process [Sthamer et al. 2002]. Liu et al. [2005] use a hybrid

 33

approach, in which ant colony optimization is exploited to optimize the sequence of function calls.

Multi-agent Genetic Algorithm is then used to optimize the input parameters of those function calls.

Object-oriented unit tests consist of sequences of method invocations. The response of an invocation

depends on the method‘s arguments and the state of the receiver at the beginning of the invocation.

Also there are two tasks involved in generating unit tests: the first is generating method sequences

that build relevant receiver object states and the second is generating relevant method arguments.

[Xie et al. 2005] proposes a framework that achieves both test generation tasks using symbolic

execution of method sequences with symbolic arguments. Their paper defines symbolic states of

object-oriented programs and comparisons of states. Given a set of methods from the class under test

and a bound on the length of sequences, the framework systematically explores the object-state space

of the class and prunes this exploration based on the state comparisons. Software metrics can provide

us with information regarding the quality of software. The ripple effect metric shows what impact

changes to software will have on the rest of the system. It can be used during software maintenance

to keep the system at a high level of quality. The research in [Bilal and Black 2006] focuses on

implementing ripple effect measurement for object oriented software.

In literature the researchers have successfully applied evolutionary algorithms to software testing.

Method call sequences that realize interesting test scenarios are required to be generated for testing

object oriented programs. Any arbitrary method call sequence is not necessarily feasible due to call

dependences which exist among the methods that potentially appear in a method call sequence.

Wappler and Wegener [2006b] described an approach to automatically generating test cases for

structure-oriented unit testing of object oriented software. They have used strongly-typed genetic

programming for the generation of method call sequences. The generation of method call sequence

forms the basis of the test cases.

The empirical evidence for the effectiveness of evolutionary testing consists largely of small scale

laboratory studies. Harman and McMinn [2007] present a first theoretical analysis of the scenarios in

which evolutionary algorithms is suitable for structural test case generation. In their work, this

theoretical analysis is supported by an empirical study which considers real world programs and the

search spaces which are several orders of magnitude larger than those considered earlier.

 34

There are two main challenges in object-oriented programs while achieving high structural coverage

such as branch coverage. First, some branches involve complex program logics and for testing such

branches the testing logic require deep knowledge of the program structure and semantics to generate

tests to cover them. Second, covering some branches requires special method sequences to lead the

receiver object or non-primitive arguments to specific desirable states. Therefore, to overcome

problems of earlier approaches Inkumsah and Xie [2007] propose a framework called Evacon that

integrates evolutionary testing (used to search for desirable method sequences) and concolic testing

(used to generate desirable method arguments). Their experimental results show that the tests

generated using their framework can achieve higher branch coverage than evolutionary testing or

concolic testing alone.

While performing evolutionary testing the nested predicates can cause problems, because

information needed for guiding the search only becomes available as each nested condition is

satisfied. This means that the search process can overfit to early information, making it harder, and

sometimes nearly impossible, to satisfy constraints and they become apparent later in the search. In

[McMinn et al. 2009] a testability transformation is presented that allows the evaluation of all nested

conditionals at once.

Lochmann [2010] presented an approach that relies on a quality model, that defines software quality

and that serves as a structured knowledge-base. This quality model is integrated with a use-case

based approach for eliciting and analyzing quality requirements. This way an effective

communication with stakeholders as well as the quantification of quality requirements can be

assured.

2.4 Research Gaps

In the view of the literature review we identify the following research gaps:

1. There is a lack of quantitative measures of relationship between the software maintainability

and the internal characteristics of the software.

2. Most of existing metrics are not intuitive. It requires education on the users‘ side to have

numerical thinking about the quality of software and how to apply them.

 35

3. Some internal attributes of the software are still to be explored to understand their

relationship with quality.

4. Existing definitions of coupling do not capture the full essence of the original notion posed by

Yourdon and Constantine [1979].

5. Existing approaches to test at unit level of object oriented software are not much effective in

terms of achievable structural coverage.

6. Design defects within a class are discussed more in literature than design defects of a class

cluster and at behavioral level.

7. There is a lack of the availability of standard testing process measurement method for

evaluating the effectiveness of a test process.

8. There is inefficiency in test generation process due to infeasible test sequences.

2.5 Objectives of the Research

To reduce some of these gaps, the present research is aimed at:

 Defining a simple object-oriented metric to quantify the maintainability of object oriented

software classes. The metric should be able to relate software maintenance with internal

product characteristics.

 Developing an approach to automate the software testing process to enable the generation of

test sequences that can create arbitrary objects that serve as arguments for succeeding

methods. The approach should allow the application of automatic test generation to classes

having primitive as well as object type arguments.

 Design objective function which can provide sufficient guidance even in presence of runtime

exceptions, which prematurely terminate the evaluation of a test case.

To target these aims, there has been an intensive literature survey on software quality metrics and its

measurements from various journals, web sites, books, conference publications etc. A greater

emphasis is given on the software test generation techniques at unit level testing of object oriented

software.

In this chapter we have discussed how from their first appearance, automatically computable metrics

have become an important tool for assessing attributes of software and software-related activities.

 36

Metrics are characterized in different categories like process metrics for measuring characteristics of

software development processes, product metrics for assessing software products, and resource

metrics for measuring characteristics of software-related resources. Maintainability is an important

aspect of software quality and is highly related to complexity of large software systems. We have

discussed the work done which relates maintainability with coupling between its modules and size.

We also discussed work done to automate the test data generation using evolutionary techniques.

The next chapter discusses the important theory of software maintenance, maintainability metrics,

coupling, and evolutionary techniques to generate automated test data in software testing.

 37

CHAPTER
Software Maintenance and Test Case Generation

3

here has been an increased awareness in recent years of the critical problems that have been

encountered in the development of large scale software systems. These problems not only

include the cost and schedule overruns typical of development efforts, and the poor performance of

the systems once they are delivered, but also include the high cost of maintaining the systems, the

lack of portability, and the high sensitivity to changes in requirements. The potential of the software

metric concepts can be realized by their inclusion in SQA. Their impact on quality assurance is to

provide a more disciplined, engineering approach to quality assurance and to provide a mechanism

for taking a life cycle viewpoint of software quality. The benefits derived from their application are

realized in life cycle cost reduction.

The actual measurement of software quality is accomplished by applying software metrics (or

measurements) to the design and source code produced during a software development. These

measurements are part of the established model of software quality and through that model it can be

related to various user oriented aspects of software quality. The measurement concepts complement

Quality Assurance and testing practices. They are not a replacement for any current techniques

utilized in normal quality assurance programs. For example, a major objective of quality assurance is

to assure conformance with user requirements. The software metrics add formality and quantification

to design and code developed during software life cycle. When one talks about the Object-Oriented

(OO) paradigm which has grew out of a need to meet the challenges of past practices using standard

structured programming, becoming clear about these challenges, one can better understand the

advantages of OO programming, as well as gain a better understanding of this mechanism. Testing of

OO software is different from testing software created using procedural languages. Several new

challenges are posed and new techniques have been developed.

T

 38

3.1 Quality Factors for Object-Oriented Paradigm

OO design and development is a popular concept in today‘s environment for software development.

They are often referred to as best solution to software problems. Although in reality it is not

miraculous, OO technology has proven its value for systems that undergo maintenance and changes

often after deployment.Since their introductionin 1970, software metrics which could be computed

automatically using tools for assessment of software attributes have become important. Fenton

[1991] has categorized these metrics as follows:

 process metrics for measuring characteristics of software development processes.

 product metrics for assessing software products such as components, procedures and

programs.

 resource metrics for measuring characteristics of software-related resources such as hardware

and personnel.

Fenton also differentiated between internal and external metrics. Internal software metrics are those

which are used to measure software attributes which can be measured directly by examining the

software code on its own irrespectively of its behavior. External product metrics are those used to

measure attributes of the software that can be measured only with respect to how the software relates

to its environment. Using this terminology, this work is focused on internal software metrics for OO

software. Rocacher [1988] suggested that traditional metrics cannot be considered sufficient for

assessing the attributes of OO software, because they are not designed to deal with the OO concepts

like encapsulation, inheritance, polymorphism etc. One of the most important aspects of OO metrics

is its ability to focus on the combination of function and data in terms of integrated objects, while,

traditional metrics measure the design structures and data structures independently.

Whenever we consider the quality factors exercised during implementation and maintenance phase,

this requires focusing on quality aspects like maintainability and reusability. In literature this is

generally expressed in terms of a hierarchy of factors and criteria [Frappier et al. 1994]. The factors

which are assigned in higher level of this hierarchy generally represent the management‘s view point

while the lover level factors are related to the measurement issues of the software code. The quality

factors related to software code have an important place in defining the overall software quality.

Measuring such metrics can represent the software quality progress towards the desired level.

 39

Reusability and maintainability such two factors which are a good indication of software quality used

during software development and applied on code.

Chowdhury and Zulkernine [2010] related the above quality factors reusability and maintainability

with the code related metrics which are Complexity, Coupling, and Cohesion and investigated

whether these metrics can be utilized as early indicators of software vulnerabilities. It was found by

them that these metrics are correlated to vulnerabilities at a statistically significant level. Therefore

we can say that means these metrics are direct indicators of vulnerabilities and if there are

vulnerabilities it will require more effort during maintenance. Hence it suggests that there must be

some relationship between the above metrics and maintenance effort. These metrics can provide a

measure of maintenance effort in terms of coupling and cohesion. This work focuses on indirect form

of software coupling metrics and analyzed its relationship with the maintenance effort.

3.2 Code and Design Metrics

Chidamber and Kemerer are two of the leading researchers in software metrics and have introduced

their work by providing a basic suite for colleting OO code and design metrics called as CK metric

suite [Chidamber and Kemerer 1991]. Their research claims to help designers and managers in better

decision making by using several of their metrics collectively. A significant amount of interest has

been generated by CK metrics and these are currently the most well known suite of measurements for

OO software [Fenton and Pfleeger 1998]. Measures for coupling and cohesion are included in CK

metrics suite, the suite provides descriptive power for administrative concern. Mainly high level of

coupling and low level of cohesion are associated with maintainability problems. For example, CBO

is the number of other class with which a class is coupled. Class Coupling Metrics (CCM) measures

the coupling between class and other class; Message Passing Coupling (MPC) measures the

complexity of message passing between classes as well as objects. In object oriented programs the

messages are passed among objects, but the types of messages passed are defined is class.

Abreu and Fernando [1995] defined Metrics for Object Oriented Design (MOOD) metrics. A basic

structural mechanism of the OO paradigm such as encapsulation, inheritance, polymorphism, and

message passing is referred by MOOD metrics. In this metric suite, each metric is expressed as a

 40

measure where the numerator represents the actual use of one of those feature for a given design.

MOOD metrics model uses two main features in every metrics which are methods and attributes.

The first quality model was proposed by McCall et al. [1977]. They presented a Software Quality

Factor Framework and classified the quality attributes into three groups namely Product Revision,

Product Operation and Product Transition. In this quality model McCall attempts to bridge the gap

between users and developers by focusing on a number of software quality factors that reflect both

the user‘s views and the developers‘ priorities. Figure 3.1 shows how he mapped quality factors

Maintainability and Reusability to corresponding quality criteria.

3.2.1 Software Maintainability and Maintenance

Software maintenance forms an essential component of software development.

IEEE [IEEE 2006] defines software maintenance as:

The modification of a software product after delivery to correct faults, to improve

performance or other attributes or to adapt the product to a modified environment.

Figure 3.1 McCall’s Model for Maintainability and Reusability

Software maintenance includes all the changes which are done after deployment. In this reference,

maintainability refers to the easiness or toughness of the effort which is required to do the changes.

Before any changes can be made to a software product, the It must be fully understood. It also

requires testing the software thoroughly after the changes have been applied. For this reason,

maintainability can be thought of as having three attributes: understandability, modifiability, and

Maintainability

Machine

Independence

Software System

Independence

Generality

Self Descriptive

Modularity

Conciseness

Simplicity

Reusability

 41

testability. According to Harrison software complexity is the primary factor affecting these three

attributes [Harrison et al. 1982], while modularity, information hiding, coupling, and cohesion are

closely related to the complexity.

Figure 3.2 Maintainability factors

It‘s agreed that maintenance accounts for a large portion of software product's cost, if properly

improved, it has a great potential to reduce the total software cost. If we want to improve

maintainability we need to have a meaningful measure of maintainability [Harrison et al. 1982].

Although maintainability can only be accurately measured after the software product has been fully

developed, previous work has shown that structural software attributes such as coupling and cohesion

can influence maintainability of the final products [Briand et al. 2000; Card et al. 1986; Dagpinar and

Jahnke 2003].

3.2.2 Reusability

Whenever it is required to write a reusable code, who is going to use it in what manner should be

identified. If the code is having such a functionality which most of the users are expected to use then

duplicating the code every time may result in such code which would be too expensive to produce

and much difficult to use. This gives raise the need for code reuse but there are many difficulties

associated with code reuse [Chang 2000]:

1. Code identification: Difficult to identify a piece of reusable code is termed as code

identification difficulty. Many times, programmers reuse only a small fraction of their own or

their colleagues‘ code.

2. Code validation and verification: The other difficulty is about correctness of the code. There

is usually little assurance that the reused code is correct.

Maintainability

Understandability

Modifiability

Testability

Complexity

Modularity

Coupling

Cohesion

 42

3. Code dependency: This task is associated to separate a desired piece of code from an

entangled chunk of software having complex dependency.

4. Code modification: Even if the code is changed in new context, the reused code may

implicitly conflict with the new context.

5. Execution environment: The assumptions used in reused code may be invalid in new

environment. These assumptions may not be true in the new environment and therefore this

may result in degraded performance.

This will require a careful planning and implementation which may avoid many of the above

difficulties. This requires a reusable code to possess certain properties that can be measured using

appropriate metrics. When implementation is completed just a static analysis of a source code may

provide an instant feedback to the programmer, about the quality of the code in terms of reusability.

This would encourage programmers to ensure that the completed code provides good reusability

quality before it is discovered too late. The manager of a software project can also evaluate the

quality using this measurement and can manage the project accordingly.

3.3 Metrics for Maintainability

Software maintainability is a difficult factor to quantify. Its measurement can be done indirectly by

considering measures of design structure and software metrics. Logical complexity and program

structure are claimed to have a strong correlation to the maintainability of the resultant software

[Kafura and Reddy 1987; Rombach 1987]. Moreover, as Fenton says ―Good internal structure

provides good external quality‖. In order to define the maintainability of software product it must be

determined that up to what point and in which cases can we rely on software metrics [Fenton 1991].

For measuring the maintainability of one specific product, the internal metrics are selected according

to the nature of that specific product and the programming language used during its implementation.

In order to estimate the level of the maintainability of a software product, the broadly used metrics

like Halstead‘s software science metrics [Halstead 1975], cyclomatic complexity [McCabe 1982],

Tsai‘s data structure complexity metrics [Tsai et al. 1986], lines of code, lines of comments, fan–in,

fan–out, etc. can always be applied. To get a more reliable and acceptable measurement, the

programs implemented in some specific type of programming language the software metrics which

 43

can be applied only to that type should be used. For example, in the case of OO programming

languages, the metrics that can also be used are: weighted methods per class, lack of cohesion of

methods, coupling between objects, depth of inheritance tree, number of children, etc. [Hudli et al.

1994].

Achieving the desired level of quality is critical for all software development. Consequently, there is

a large body of research in the area of software measurement in procedural and OO development,

resulting in a large number of metrics having been proposed for measuring various aspects of the

internal (structural) quality attributes of software such as coupling and cohesion [Baig 2004]. These

structural attributes can be characterized by the following generic definitions: i) Coupling is a

measure of the extent to which interdependencies exist between software modules; ii) Cohesion is the

extent to which elements of a module contribute to one and only one task. In the following sub-

sections, these metrics are described in some detail.

3.3.1 Coupling Metrics

Coupling is described as a ―measure of the strength of interconnection between modules‖ [Yourdon

and Constantine 1979]. The terms strength and interconnection have various interpretations,

according to the various coupling metrics introduced in the literature. It is widely accepted that the

coupling must be as low as possible, the reasons is to ensure changes to one part of the system should

have minimal impact on the rest of the system. But it is also true that no system can be devised with

zero coupling using OO concepts because there are always some connections needed between system

components (like classes and methods) which are required to exist for system to work. The strength

of coupling is an important factor, which signifies that some forms of coupling is stronger than the

others, this may be due to the number of connections or the nature of the connections.

There may be various forms of dependencies which may exist in OO software. A form of

dependency that is greatly likely to impact maintenance is one that is complex in nature and is

difficult to detect. The important thing is to understand that how exactly the presence of such

dependencies could influence the tasks of understanding and modification. The problem with

defining a complexity measure is that it is not sufficient to provide an arbitrary quantification of

some aspect of the program. Instead there needs to be a sensible theory or model as to how certain

 44

aspects affect understandability and modifiability, which could later be corroborated through

empirical observation. This is part of a proper software measurement process.

According to [Booch et at. 1999], in OO design there are three types important relationships among

the classes, namely dependency, inheritance and association relationships. Dependency relationship

represents the using kind of relationships between the classes; inheritance relationship connects

generalized classes to their specialized classes; and association relationship shows the structural

relationship among the objects. According to Baig [2004] we can define various metrics to compute

the measure of above relationships. He provided the following metrics in his research:

 Number of used classes by dependency relation (NUCD)

 Total number of evidences for ‗Used classes by dependency relation‘ (TNUCD)

 Ratio of NUCD to TNUCD (RNUCD)

 Number of user classes for a class through dependency relation (NUCC)

 Total number of evidences for ‗User classes through dependency relation‘ (TNUCC):

 Ratio of NUCC to TNUCC (RNUCC)

When the dependency relationship between classes is not directly evident from the code, but some

indirect form of dependency exists between two classes such type of dependency is termed as

Indirect dependency or Indirect coupling between classes. In such case changing code of one class

does not creates any problem in compilation of the other class, but on execution the incorrect results

are generated or Exceptions occurs. Such type of relation has been discussed in detail in the next

chapter and metrics is proposed to measure them.

3.3.2 Cohesion Metrics

One of the important properties of OO software is abstraction at class level. The attribute which

captures the quality of this abstraction is cohesion for the class under consideration. A high value of

cohesion typically represents a good abstraction by the class. One measure of OO cohesion measure

given by Chidamber and Kemerer [1991] represents inverse measure of cohesion which they called

as Lack of Cohesion in methods (LCOM) and defined as the number of pairs of methods operating

on disjoint sets of instance variables, reduced by the number of method pairs acting on at least one

shared instance variable.

 45

According to the IEEE Standard Terminology, ―cohesion is the degree to which the tasks performed

by a single module are functionally related.‖ A class is said to exhibit a high degree of cohesion if

the attributes and methods in that class exhibit a high degree of semantic relatedness. The high

cohesion software development pattern suggests keeping the highest level of cohesion possible in

OO classes. In other words, each element in the class shall be essential for that class to achieve its

purpose.

Cohesion metrics can be defined on various criterions. For example one criterion can be connection

types. Lee defines three cohesion metrics with different connection types among the components of a

class (i.e., methods and attributes) in a class. cohAR(c) measures the number of attribute reference

connections of a class c, cohMI(c) measures the number of method invocation connections of a class,

and cohAS(c) measures the number of attribute sharing connections of a class [Lee 2007]. Table 3.1

shows the three cohesion metrics based on the connection type.

Table 3.1 Cohesion Metrics Based on the Connection Type

Symbol Connection Type Element 1 Element 2 Description

cohAR(C) Attribute reference Method m of class c Attribute a of class c

Attribute

reference: m

references a

cohMI(C) Method invocation Method m of class c Method m' of classc

Method

invocation: m

invokes m'

cohAS(C) Attribute sharing Method m of class c
Method 𝑚′of class

c, 𝑚 ≠ 𝑚′

Attribute sharing:

m and m' reference

an attribute a

Another criterion for cohesion can be based on domains of measure and we can apply above metrics

to class and class cluster domains. For example, aCohAR(s) can be defined as the averaged

CohAR(c) of classes in some class cluster C and measures the averaged attribute reference cohesion

metrics of classes in the system.

A third criterion based on Direct or indirect connections also can be applied for cohesion, which can

only choose direct connection and measure the direct connection. Cohesion is the degree to which the

methods and attributes in a class are related. The higher connectivity between methods and attributes

means the higher cohesion, and a low cohesive class has been assigned many unrelated

 46

responsibilities. Consequently, the low cohesive class is more difficult to understand and harder to

maintain and reuse.

Therefore classes having a low cohesion value should be considered for refactoring. For example we

can extract parts of the functionality to separate classes with clearly defined responsibilities. Let us

consider a sample code (Figure 3.3) showing cohesion in a class and cohesion metric values obtained

by the system. Class A has two methods 𝑚1 and 𝑚2, and method 𝑚1 makes a method invocation

connection by invoking method 𝑚2, thus the system calculates a choMI metric value of one

(cohMI(A) = 1). For the cohAS metric, methods 𝑚1 and 𝑚2 establish an attribute sharing connection

by sharing an attributes 𝑦 and 𝑧, thus cohAS cohesion metric value of the class is calculated

(cohAS(A) =2).

Cohesion in a class Metric Value

public class A {

 int x,y,z;

 A(){

 x = 10;

 y = 15;

 z = 20;

 }

 public void m1(){

 m2(); //cohMI

 x = x + 2; //cohAR

 y = z – 3; //cohAS

 }

 public void m2(){

 z = y – 3; //cohAS

 }

}

cohMI(A) = 1

cohAS(A) = 2

cohAR(A) = 1

Figure 3.3 Cohesion in a class and metric values

Coupling and Cohesion among the classes in OO software plays an important role in effort done on

testing of class units. Classes having a low value of cohesion and tight coupling require more tests to

be performed as compared to simple classes having high cohesion and loose coupling. Therefore

writing effective test cases at unit level is an important issue. The next subsection discusses software

testing and automatic test case generation techniques at class level.

 47

3.4 Software Testing

One of the most used quality assessment methods for software is testing. While testing OO software

there are two important steps. The first is to initialize it with a set of values and then second step to

provide the test data. The first state takes the test object in a single test state for the software. These

values can be any primitive values like an integer or complex values like an object. Once the object

is initialized its methods under test are invoked with proper test data in second step. If methods take

some other objects as parameters then they are also required to be initialized with appropriate values.

We can use software specification to determine the validity of test cases. It is generally not possible

to test all the states of an object as the number of states may be very large therefore some criteria is

used to test some selected states only which may be of interest. There are various types of testing but

broadly we can divide them as black box and white box testing. Each of them can be applied at the

different levels of testing stages.

3.4.1 Levels of Testing

There are basically three levels of testing i.e. Unit Testing, Integration Testing and System Testing.

Various types of testing come under these levels.

 Unit Testing is done to verify a single program or a section of a single program. According

to Koomen and Pol [1999] a unit test is ―a test, executed by the developer in a laboratory

environment that should demonstrate that the program meets the requirements set in the

design specification‖. Whittaker [2000] states that ―unit testing tests individual software

components or a collection of components. Testers define the input domain for the units in

question and ignore the rest of the system. Unit testing sometimes requires the construction of

throwaway driver code and stubs and is often performed in a debugger‖.

 Integration Testing is performed to verify interaction between system components.

Prerequisite for this level is that unit testing must be completed on all components that

compose a system. Integration test is the testing to ensure that interfaces to code external to

the class being integrated with the other classes in the software are correct. Techniques used

 48

are similar to unit testing and system test techniques can also be applied. Usually there is a

nontrivial overlap between the unit and integration test activities.

In general, drivers and stubs are simplified versions of the units that, upon completion, will be

used in the desired software system. The simplification allows one to establish a controlled

environment and to test the units at an early stage. Simplification also limits unit testing as

the use of drivers and stubs, in general, it fails to reproduce the complete environment where

the unit being tested would be if it was interacting with the actual units in the software

system.

 System Testing is done to verify and validate behaviors of the entire system against the

original system objectives. System testing involves the complete system comprising software,

hardware, databases and network resources. System testing is done after software has been

created. Most people understand by testing as system testing only. It is the process of

executing the software with the intent of finding errors [Myers 1979]. Basically it includes

finding those errors which are related to software‘s external quality characteristics. System

testing serves to compare the system to its original specifications. Original documentation is

required for system testing to be completed. Usually System testing is performed at the end of

the project that means that every defect found during system testing often requires more

efforts.

3.4.2 Types of Testing

Software testing methods are traditionally divided into white box and black box testing. These two

approaches are used to describe the point of view that a test engineer takes when designing test cases.

 Functional testing or black box testing is ―testing that ignores the internal mechanism of a

system or component and focuses solely on the outputs generated in response to selected

inputs and execution conditions‖ [Gao et al. 2003]. Functional testing is directed at executing

test cases on the functional requirements of software to determine if the results are

acceptable. For functional testing equivalence class is a common technique. According to

Jorgensen [2002]:

 49

―The use of equivalence classes as the basis for functional testing has two motivations: we

would like to have the sense of complete testing, and at the same time, we would hope that we

are avoiding redundancy‖

 Structural testing or white box testing is done to test the functionality of the program with

test cases based on the structure and logic of the design and source code. Complete structural

testing exercises the program‘s data structures (such as configuration tables) and its control

and procedural logic at the different testing levels. There are two benefits of structural testing;

the first is the creation of test cases based on the logic of the application. The second is the

detection of how successful tests are by examining how many different paths through a

program were executed. ―In path testing, a major difficulty is that there are too many feasible

paths in a program. Path-testing techniques use only structural information to derive a finite

subset of those paths, and often it is very difficult to derive an effective subset of paths‖ [Gao

et al. 2003].

The use of test cases based on the logic of programs would require a graph of the nodes and

connecting paths. Then some equivalent methodologies will be needed to determine about

test cases to be created and metrics needed to decide how effective the test cases are. The

tester will need to select the appropriate test data to cover each path at least once as per the

coverage criteria. But it cannot guarantee to detect all the errors because the program logic

may contain a large number of paths through the program. To increase the rate of error

detection a number of metrics can be calculated to evaluate just how successful test cases are.

 Hybrid testing orgray boxtesting technique combines both structural and functional

information to perform the tests [McMinn 2004]. It works like a Black Box test; however, the

tester has a limited knowledge about the implementation details, or about the algorithm of the

code. This type oftest iswidely usedin applications that requireserveras a database, and

systems thathave databasesas a repositoryof information.

 50

3.5 Analysis of Structural Testing

Each approach in testing has one or more criteria to check whetherthe test cases used are actually

covering the requirements of the test in problem. This section points out some of the main criteria

used by theWhite Box approach, which is described in this work.

3.5.1 Code Coverage Analysis

To measure how well the program has been exercised by a test suite, one or more coverage criteria

can be used. Code coverage analysisis a criterion often used in structural testing, and consists of a

process that covers three main activities:

1. Find areas of a program not exercised by a set of test cases.

2. Create test cases to increase coverage, and

3. Provide a quantitative measure of code coverage, which consists of an indirect measure of

quality [Cornett 2002].

Analysis of coverage does not guarantee the quality of software being developed, but it is about the

quality of test set sthat are testing the software. This technique is useful in evaluating the results of

unit tests, which directly analyze the behavior of the code. There are a number of coverage criteria,

among those Statement coverage, Branch Coverage, Condition Coverage, Path coverage are main.

The complexity of the logic is determined by the number of different nodes and the number of

different possible paths through the program code. Using the above metrics it enables a tester to

determine the extent to which the code has been executed. Statement coverage measures the number

of unique statements which have been executed. The main advantage of statement coverage is that it

can be measured directly from program code. But it is too simplistic and usually not a good testing

evaluation criteria [Silva and Someren 2010].

Branch coverage measures the unique evaluation of Boolean expression from conditional statements.

It is simple to compute and it is stronger than statement coverage. Full branch coverage implies full

statement coverage. However, it is insensitive to complex Boolean expression and it does not take

into account the sequence of statements. Similarly, condition coverage measures the unique

evaluation of each atomic Boolean expression independently of others. It provides a more sensitive

 51

analysis compared to branch coverage. Full condition coverage does not imply full branch coverage

since branches might exist that is unreachable. Another criteria using path coverage measures unique

paths a program execution can take. It requires thorough testing to achieve a good path coverage, it is

very expensive, and in many situation unfeasible, since the number of paths is exponential to the

number of branches and there are paths that are impossible to execute. For instance in Figure 3.4, it is

not possible to execute a program that has S2 and S6 on its path.

Figure 3.4 Example of Program Flow Analysis

3.5.2 Automatic Generation of Test Data

Automated testing plays a great role in software development due to the efficiency and accuracy of

the executed output. It gives the software developers the assurance of producing reliable and quality

software that is easy to use and understand by the end users. Themanual wayis the mostlyused, but it

has the disadvantage of being expensive (long time of preparation of the data, long time to run the

software). The best alternative is then automatically generating the data. Automatic generationof data

canbe randomor throughcertaintechniques createdto find agood set oftest data.It is consideredagood

setof dataas thatwhich coversthe criteria forthe test in problem, how to achieveahighcode coverage.

Some of the techniquesused are: alternating variable method [Ferguson and Korel1996], iterative

relaxation method [Gupta et al. 1998], simulated annealing [Tracey et al. 1998], genetic algorithms

[Michael and McGraw 1998], rule-based [Deason et al. 1991] etc. Genetic Algorithms (GAs) are

discussed in detail in section 3.6.1.

S0

if (A and B) then

 S1

if (Not C and D) then

S2

else

S3

endif

else

 S4

endif

S5

if (C) then

 S6

endif

S7

S0

S1

S2 S3 S4

S5

S6

S7

if

if

if

 52

In the following section we will discuss optimization techniques based on evolutionary search which

transforms the test data generation into an optimization problem.

3.6 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search techniques based on meta-heuristics theory of survival of

the fittest, Charles Darwin. These techniques simulate the evolution as a search strategy to generate

candidate solutions using operators inspired by genetics and natural selection [McMinn 2005]. EAs

can be effective in finding local maxima of complex andn on-continuous problems that are very

difficult to resolve [Rela 2004]. Among the methods which compose the group of EAs, we can name:

genetic algorithms, Evolution Strategies, Cultural Algorithms and Genetic Programming [Mantero

and Alander 2005].

GAs are the best known form of EAs, and were initially studied and presented by Holland [1975].

GAs are explained in more detail in the next subsection. Genetic Programming (GP) is a machine

learning technique used to optimize a population of programs in accordance with an objective

function, which is based on a problem that the programs require candidates to resolve. Evolution

Strategies (ES) work with vectors of real numbers as a representation of the solutions, and uses

selection and mutation as operators. Mutation rates are usually self-adaptive.

3.6.1 Genetic Algorithms

GAs are search and optimization techniques inspired by evolution, the best known EA [Whitley

1993]. These algorithms are based on the principle of natural selection and survival of the fittest.

Figure 3.5 shows a typical GA. GAs work with populations where each individual‘s population

corresponds to a solution in search space is represented by a chromosome. The chromosome is

usually represented by a string of bits that are part of the solution of optimization problem in

question. The representation of a solution in the form of a chromosome is dependent on the problem.

The first step in a GA, as shown in Figure3.5, is to generate an initial population. This generation is

usually random, unless there is prior knowledge of the search space. Then the initial population of

each chromosome is evaluated according to an objective function, and new populations are evolved

iteratively, which involves following steps:

 53

(1) Selection: This involves selectingthe best individualsof the current population, i.e., those

withthe highest value ofthe objective function.In the nomenclature of GAs, the objective

function is usually called the fitness function (or fitness).The individuals selected are stored

in an intermediate population.

Figure 3.5 Flow of a Typical Genetic Algorithm

(2) Crossover: a new population is generated from the crossing over the fittest individuals

selected in the previous step. In crossover operation, a pair of individuals in the intermediate

population is selected at a time and their chromosomes are combined. This combination is

made, in general, choosing a random point of separation along the length of each

chromosome. Figure 3.6 illustrates the use of this operator. In the figure we can observe that

each parent chromosome (represented by bit strings) is cut at a certain point. Then the first

part of parent-1 chromosome is concatenated to the second part of parent-2 chromosome and

the first part of parent-2 chromosome is concatenated to the second part of parent-1

chromosome, generating two new child chromosomes [Duda et al. 2000]. The crossover is

applied with agiven probability for each chromosome pair; this probability is called the

Create initial

Population

Determine Fitness of

each Individual

Termination

Criteria met?

Determine Fitness of

each Individual

Selection of Promising

candidate Solutions

Apply Crossover

Apply Mutation

Y

N

 54

crossover rate. When there is no crossover, the children are the same as parents and certain

features are preserved with it. The crossover operator is applied successively for different

pairs of individuals selected until a complete new population of individuals is generated.

Figure 3.6 Crossover Figure 3.7 Mutation

(3) Mutation: here each bit in a chromosome has a small chance of being changed from 1 to 0,

or vice versa [Duda 2000]. This operation aims to increasethe diversity of solutions

generatedfrom one population to another.The mutation operatoris also applied with a given

probability, the mutation rate. To avoid too abrupt change from one population to another, it

is recommended the use of small mutation rates [Lacerda and Carvalho 1999]. Figure3.7

illustrates the use of this operator, where some bits of the child chromosomes are modified

as the mutation rate.

(4) Re-evaluation: The chromosomesof thenew populations are re-evaluated according to

thefitness function, so that anew population isgenerated fromoperatorsmentioned above,

until astop conditionis satisfied.

The basic idea of GA is that new points of search are defined through a combination of successful

solutions of past populations, as occurs in nature.The rate of mutation is to explore new regions of

search space and avoid premature convergence. Other operators can be also used as Elitism [Dejong

1975], which is to keep the best chromosome from one generation to another while using the

algorithm, with the intention of preserving the best solution found so far.

3.7 Evolutionary Testing

Optimizing search techniques such as EAs are used by Evolutionary Testing (ET) to generate test

data. The search space becomes the input domain of the test object, where each individual or

potential solution is encoded set of inputs to that test object. The fitness function is designed to find

test data for the type of test that is being undertaken. As mentioned earlier, testing is a critical step in

software quality. Yet it is an expensive process to consume much of the cost and effort involved in

0 1 0 1 1 1 0 0 1

0 1 0 0 1 1 0 0 0

Mutation in Binary String

0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0

0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0

Parents

Children

 55

software development. Thus, the useof techniques and strategiesto reduce costsassociated with each

phase of testing, as well as thetime spent is of great importance and relevance for the ET.

Software Engineering (SE) as awhole contains a variety of problems that have a lot of possible

solutions. To find the ideal solution in many situations it is theoretically impossible or intractable in

practice [Harman and Jones2001]. This problem needs to use the optimization techniques and seeks

trong candidates to find solutions to the problems of the SE. Software Testing can be seen as one of

the problems that need SE solutions for its techniques to be implemented and its phases to be

executed in the best possible way. There are some ways to streamline the process of Software

Testing, without lack of quality. One of these forms is the automation or semi-automation of tests,

which transfers the efforts manual part of building test cases of developers and testers for using their

expertise in developing the automation tools that would work for them.

The automatic generation of test data usingEAs, also called the Evolutionary Test has given an

important contribution to the automation process of test generation [Baresel etal2002]. The technique

consists in generating input data to cover certain structural or functional criteria of a program, using

EAs to perform a search in the space of possible inputs of the system.

As we discussed earlier that testing an OO software class requires broadly two stages, first is to bring

it into required test state. This will require certain method call sequences and constructor calls to be

generated. There can be various call sequences in general. We have to generate only those call

sequences which are of interest as per some defined criteria. In second stage of testing we need to

pass appropriate parameters to Method Under Test (MUT) and perform structural testing of that

method according to some coverage criteria. We use GAs for both of these cases which are discussed

in next subsections.

3.7.1 Structural Evolutionary Testing for Methods

The process of generating relevant test cases for a given software unit is considered to be the most

important task in software engineering area. If performed manually, it is time consuming and error-

prone, therefore it becomes very costly. Evolutionary structural testing [Baresel et al. 2002] is an

approach to automate the process of test case generation. The task of generating the appropriate input

 56

data which may lead to the execution of a particular program element is formulated as an

optimization problem which is tried to be solved using an EA.

An EA is a meta-heuristic optimization technique that is inspired from the principles of the

Darwinian theory of biological evolution. The workflow of a simple EA has been described in Figure

3.5. At the initial level, a set of candidate solutions for the given optimization problem has to be

generated randomly. This initial set is called population it is further modified iteratively in order to

find an ideal solution. As the next step, this candidate solution is evaluated by use of a fitness

function. The fitness function is used to assign each candidate solution a quantitative value which is

according to the ability of the candidate solution to solve the optimization problem.

The assigned fitness value determines the creation of new individuals, therefore the fitness function

becomes the most important part of EA and it also has a crucial role in the success of the

optimization. After evaluating the candidate solutions, if ideal solution is not found then two

modification steps are taken which are known as crossover and mutation operations. To perform

crossover, the two eligible candidate solutions are chosen according to their fitness value. A

candidate solution associated with a better fitness value has more probability to be selected for

crossover. The crossover operation over two candidate solutions produces two offspring candidate

solutions which have similarity with their parents and have a better ability to solve the optimization

problem. Then mutation operation is performed over candidate solutions which mean that some of

their part is randomly changed. After these two operations the candidate solution is again evaluated

for fitness using fitness function. This cycle of crossover, mutation, and evaluation, is repeated until

some termination criterion, such as the optimized solution is found or resources are exhausted.

When EA is applied to structural testing, it aims to generate test cases that cover a particular program

element. Typically these program elements are statements or branches of the program under test,

which further depends upon the selected test adequacy criterion. For example, if a test case generator

is expected to provide a set of test cases which can give high branch coverage then an individual

evolutionary search for each program branch needs to be performed. The complete set of test cases

generated by EA provides the final test suite.

 57

Whenever some test goal is defined by the tester it requires the definition of an individual fitness

function. The fitness function is based on the distance of the execution flow which is produced by a

candidate solution with that of the targeted program element. There are two popular metrics for

defining this distance: approximation level and branch distance [McMinn 2003]. An approximation

level is defined to measure the number of correct branches taken to reach a desired program

construct. It is defined in terms of the control flow graph of the program under test. Solutions with

higher approximation levels get better fitness values. Approximation level measures the number of

potential problem nodes of the shortest path from the problem node to the targeted program element

where the problem node is that node of the control flow graph at which execution diverged down a

branch (the critical branch) which makes it impossible to ever reach the target.

Branch distance is concerned with the condition assigned at the concerned node to express the

closeness of execution in taking the other branch and avoiding critical branch. For each relational

operator occurring in a condition, a particular distance function will be applied [McMinn 2003]. For

instance, in case of a condition if (𝑎 == 200) the distance function for the equality operator is

defined as 𝑑 = 𝑎 − 200 , mapped into the range [0, 1]. The evolutionary search tries to minimize

the approximation level and branch distance. In this case 0 indicates that the candidate test case has

covered the test goal of interest.

Measurement of structural coverage [Weiser et al. 1985] of code is a means of assessing the

thoroughness of testing. Coverage metric is expressed in terms of a ratio of the paths executed or

evaluated at least once to the total number of paths. This is usually expressed as a percentage.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑝𝑎𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑠

The aim of applying evolutionary testing to structural testing is the generation of a quantity of test

data, leading to the best possible coverage of the respective structural test criterion. The structural

test criteria are divided into four categories, depending on control-flow graph and required test

purpose [Sthamer et al. 2002]:

• node-oriented methods

• path-oriented methods

• node-path-oriented methods, and

 58

• node-node-oriented methods.

Tests are separated into partial aims and fitness function is defined for completion of partial aims.

For achieving a preferably large coverage of the selected structural test criterion, each partial aim

needs to be executed, as an example all test object statements are passed through to achieve a higher

degree of statement coverage. Therefore, for the evolutionary test, divide the test into partial aims

that result from each of the specified structural test criterion. Control-flow graph of the program

under test is used to define the partial aims.

3.7.2 The State Problem

Object oriented software components can store internal data, and can exhibit different behaviours

based on the state of that data. The existence of state behaviour in test objects [McMinn 2005]

presents new challenges for evolutionary test data generation. Certain strategies may require the

generation of input sequences. States in test objects present two major challenges for evolutionary

structural test data generation. The standard evolutionary approach generates input vectors for single

function calls. Test objects with states may require a sequence of method calls to be generated in

order for certain structures to be covered. This sequence may include calls to several different

functions.

3.7.3 Evolutionary Testing to Generate Method Call Sequences

For unit testing of OO software using search based techniques has not been investigated

comprehensively. There are mainly three approaches available in literature [Wappler and Wegener

2006a]. The test case generation problem is formulated as a search problem and then this problem is

tried to solve using EAs. In unit testing of OO software it requires to create test cases which have a

method call sequence which realizes some test scenario. These test cases cannot be used directly to

be applied for EAs. They are required to undergo some representation which is compatible for EAs

to be applied. Since the search space for the test programs is large and they are required to evolve as

a better solution a fitness function is used to guide them during the search process.

Strongly Typed Genetic Programming (STGP) is an approach [Montana 1995] which is used to

generate the OO test programs. In this approach method call sequences are represented by method

 59

call trees. The call dependencies of the methods which are relevant for a given test object can be

expressed using these trees. Call dependency in this representation is preserved while applying

evolutionary operators when they work on the method call trees. This approach can be applied to

generate test cases which satisfy branch coverage of Java classes. Not only that, it can be easily

adapted to work for other coverage criteria also.

3.8 Genetic Algorithms for Class Testing

The complexity of objects is increased in ET representation, therefore to deal with this enhanced

complexity of objects the chromosome representations must be enriched which are capable to deal

with these more complex entities [Tonella 2004]. Some grammar is needed which can add structure

to the chromosome during evolution that can be mapped directly to an executing program. In

[Tonella 2004] various notations are introduced which can work as a base for structuring the

chromosomes while applying genetic approach to OO software.

A random initial population of chromosomes is chosen for the GAs to start with. Selection process is

used to choose the chromosomes to be recombined and then these are mutated out of this initial

population. The selected individuals in recombination reproduce other individuals by exchanging

their information in pair-wise manner. This exchange of information is called crossover. A small

change to each selected chromosome is applied uring mutation process. The resulting chromosomes

are then evaluated through a fitness function. This transfer the information encoded in the

chromosome, the so-called genotype, into an execution of the Software Under Test (SUT), the so-

called phenotype. The fitness function measures how well the chromosome satisfies the test criterion.

In this case it is the coverage of test code. The implementation of the fitness function follows earlier

standards in ET, described in other articles, i.e., [McMinn 2004, Gross and Mayer 2002, Tonella

2004].

3.8.1 Chromosome

The GA is required to generate test programs, but since they don‘t have understanding of programs,

statement or objects therefore some kind of encoding of the GA components is required to be defined

which allows this representation of a test program as a chromosome. These chromosomes can be

used with the GA. The chromosomes in GP represent hierarchically structured computer programs

 60

made up of arithmetic operations mathematical functions, boolean and conditional operations, and

terminal symbols, such as types, numbers, and strings. The fact that GP is based on hierarchically

organized trees requires specialized genetic operators for crossover and mutation [Gross and Mayer

2002]. In presented research test case sequence is represented using trees. The information of

methods which should be called in sequence is encoded in these trees. It also contains the

information about target objects and parameter objects which should be used for the individual

method calls. Every operation refers to some object, which is associated with some type. Some input

parameter values as well as their type is also associated with the operations. These must be created

by the GP process and added as leaves to the nodes in the tree representation of the test cases. A sub

tree is used to map each statement is to the entire GP hierarchy, which includes constructors and

input values for the required object. Besides the user defined object types, the basic primitive types

such as boolean, integer, real etc. must also be permitted. These object types and the basic primitive

types are used primarily to denote input and return values.

For example consider the Figure 3.8 which shows an example test cluster for class B which is

considered Class Under Test (CUT) here. The test cluster consists of class A and class B.

class A

{

 private int x;

 public A(int x){this.x=x;}

 public int getx(){return x;}

 public void setx(int x){this.x=x;}

}

class B

{

 private int y;

 public B(A a){y=a.getx()*a.getx();}

 public void test(A a,Boolean b)

 {

 if(a.getx()>10)

 System.out.println("Greater than 10");

 else

 System.out.println("Less than 10");

 if(b==true)

 System.out.println("true");

 else

 System.out.println("false");

 }

}

Figure 3.8 A sample test Class Cluster

 61

The objects of class A are used as parameter for the constructor of B and for method test and

therefore they are required when we test CUT test. Figure 3.9 shows an example tree shaped

representation of a GP chromosome that translates into the following test case:

A a1 = new A(3);

A a2 = new A(11);

B b = new B(a1);

b.test(a1, false);

Figure 3.9 Tree Representation of Chromosome

The test scenario consists of the creation of two instances of class A and one instance of class B

where one instance of A is used as the parameter object. Then test(A, Boolean) is called with second

instance of A and a Boolean parameter. We are interested in those test cases which may cover all the

paths in method test.

3.8.2 Constructing Initial Population

The first initial population may either be created randomly or it may be a population based on

execution traces. The initial population which is created randomly contains randomly selected input

values as well as the initial method invocations are also random. If execution traces are used for

generating the population then it uses the existing knowledge for executing the SUT. In this manner

an initial population is generated which can already cover many of the SUT‘s runtime paths for a

typical usage profiles. The performance of test generation is significantly increased by using this

method.

3.8.3 Mutation and Crossover

Mutation is a genetic operator, when applied it alters one or more gene values in a chromosome from

its initial state. This can result in entirely new gene values to be added to the gene pool. GA may be

able to arrive at better solution with these new gene values, than was previously possible. Mutation is

Type

'int'

Testcase

Recr

'a1'

Constr
'A'

Value

'3'

Recr

'a2'

Constr
'A'

Type

'int'

Value

'11'

Recr

'b'

Constr
'B'

Type

'A'

Value

'a1'

Method

'test'

Value
'b'

Type

'A'

Value

'a1'

Value

'false'

Type

'Boolean'

 62

an important part of the genetic search as it helps to prevent the population from stagnating at any

local optima [Piszcz and Soule 2006]. A separate mutation operator is required in GP, each of which

may be subjected to mutation according to a predefined mutation rate. Three types of mutation

operators can be identified for OO software, the first type of operator is used to create a new building

block, second type is that makes changes to an existing one and the third is used to delete an existing

building block. These three operators are are generated and used for each of the components of the

test case statement. Applying these operators to a constructor, it can be created, deleted or changed to

a different constructor. Similarily, by applying to the normal methods they can also be created or

deleted. By applying these operators to method parameters their value can be altered. Whenever a

method or constructor is created or deleted, it constructs or deletes its subtree and input parameters

also. Constructor is the method which needs to be called for creating any object before any of its

methods are called. Figure 3.10 and 3.11 show the process of mutation when applied to a tree

representation.

The crossover is applied in GP at the nodes which represent genes of the chromosome tree. The

nodes over which crossover is to be applied can be determined randomly, if they are found

compatible then the crossover operator can be applied and as a result of this operation their subtrees

are exchanged. The compatibility of two nodes is same if they have same type of root node. The

simplest way of crossover is the case where the node representing entire method including its input

parameters in exchanged. The node comprising of input parameter genes may also be exchanged if

their type matches. When crossover and mutation are applied many times they can generate

chromosomes of arbitrary length, just by simply adding more and more trees. This overgrow of

chromosome tree is undesirable and can be regulated by the introduction of penalty on the overall

fitness for larger individuals.

Figure 3.10 Tree Before Applying Mutation

Figure 3.11 Tree After Applying Mutation

Testcase

Recr

'b'

Constr

'B'

Value

'a1'

Method

'test'

Value

'b'

Type

'A'

Value

'a1'

Value

'false'

Type

'Boolean'

Type

'A'

Type

'A'

Type

'int'

Value

'10'

Recr

'a1'

Type

'A'

Testcase

Recr

'b'

Constr

'B'

Constr

'A'

Type

'int'

Value

'10'

Method

'test'

Value

'b'

Type

'A'

Value

'a1'
Value

'false'

Type

'Boolean'

 63

3.9 Summary

For a programmer it is important to identify reusable and maintainable classes in OO software. In

this chapter we discussed metrics which are extensively studied and statistically analyzed to show

internal characteristics from classes in OO software. These metrics also define the complexity of a

class. The more complex a class is, it will need more effort during testing. There are different ways

to lowerthe testing effort by automation of certain phases of the test with the automatic generation of

test data or programs. Such techniques are widely used in recent decades. We also discussed meta-

heuristics techniques that are dynamic and can be adapted to different test objectives. The algorithms

in the Hill Climbing and simulated Annealing were briefly discussed and EAs have been presented as

the most effective framework to accomplish this form of automated testing, especially GAs. The

principal technique was exposed in ET, which aims to unite some EA and data generation for testing.

Using this technique alone an automation or semi-automation of the testing process can be achieved

and the results can be very satisfactory as confirmed in several previous works.

In the next chapter we discuss the research methodology which has been followed in this thesis.

 64

CHAPTER
Research Methods and Experimental Design

4

his chapter discusses the different measurement and testing methodologies which are used in

this thesis which can help to improve the quality of the object oriented software.

4.1 Software Quality Measurement

One important question that arises in software engineering is how software quality can be measured.

What, where and when we assess and assure quality, are still open issues. Many views have been

expressed about software quality attributes including maintainability, evolvability, portability,

robustness, reliability, usability, and efficiency. During software development process testing has

always been a vital part, but thorough testing of software is a cumbersome job for a tester. Therefore

the test cases are generated according to some test adequacy criteria. This thesis is about establishing

a relationship between indirect coupling and maintainability, because accurately measuring the

former enables the prediction of the latter. Also, an approach which may guide the search into

promising, unevaluated areas of the search space has been proposed, thus generating improved

quality of software test cases.

Indirect coupling has an important role in maintainability of the software. Therefore the exact nature

of this form of coupling is important to understand. The quality of developed software is tested

through software testing activities, for which various testing techniques have been developed in past.

This chapter discusses the methodology used in this research to relate indirect coupling with software

maintainability and also the methodology used to improve the fitness of feasible as well as unfeasible

test cases in automatic generation of test cases. This chapter also provides the methodology used for

data analysis and its validation.

T

 65

4.1.1 Indirect Coupling and Software Maintainability

The following methodology is chosen, consistent with the philosophy of software measurement and

testing presented by key researchers [Baker et al. 1990; Myers 1979; Fenton 1991]. Essentially the

methodology comprises the following key steps:

1. Define the attribute to measure (indirect coupling).

2. Develop a theory or hypothesis on a causal relationship between the attribute and another

important quality attribute (maintainability).

3. Empirically confirm the theory or hypothesis. The results may suggest a refinement to the

theory to more accurately reflect the reality, or lead to the discovery of other interesting

related factors that affect maintainability. In either case the process will be repeated until a

satisfactory, empirically validated theory is achieved.

The success of the above methodology lies in doing proper measurement, i.e. defining attributes on

an unambiguous, theoretically sound basis and making any assumptions about the measurement

explicit. While we are ultimately interested in being able to predict tangible external attributes such

as time and cost, it cannot be done without accurate measurements of the relevant product attribute.

To put it in the context of our research, ensuring accurate measurement of indirect coupling (step 1

above) must precede any empirical validation effort.

There is a common misconception that a measure is only valid (hence worth studying) after it is

shown to be statistically related to some data pertaining to an external software attribute [Baker et al.

1990]. Indeed there are many studies (discussed in chapter 2) that attempt to establish predictive

capabilities of internal metrics such as coupling to external attributes such as fault-proneness by

statistical regression tests. Such models focus on establishing a posteriori relationships between the

internal measure and external measures [Melton 1996]. Without a thorough understanding of the

exact reason for such correlations, we would very likely end up misusing our metrics. If the measure

is not properly defined and there are no specific grounds as to expect the measure to be correlated

with the data, then that correlation would not be saying anything meaningful [Fenton 1994; Baker et

al. 1990].

 66

In order to be able to predict, we need a priori theories as to why such a relationship would occur in

the first place, which can then be empirically confirmed or falsified and refined until a satisfactory

causative relationship is established [Baker et al. 1990]. Of course this is not a trivial process, but the

importance in investigating exactly what it is about the internal attributes that would give effect to

external attributes is significant. We want to have a clear model of how the attributes are mutually

related so that we can better understand and predict them.

4.1.2 Automated Test Data Generation

In the presented strategy class specification is used to obtain class state space, which is partitioned

into substates. A test model is to be developed which is composed of a set of states and a set of

transitions among the states. State space partitioning of the class is required to perform and each state

is obtained by using it. Each transition consists of a method, which can change the value of an object

from source state to target state. The input space of each method is the sets of values for the input

parameters of the method. This input space is required to be partitioned. The input space partition

values can be used with test model to obtain the test data. Finally this test data can be used for the

generation of test cases.

We apply genetic algorithms, which is a kind of evolutionary algorithm. The basic idea of a genetic

algorithm is to start with a randomly initialized population of individuals. Each individual is a

potential candidate solution of a given problem. A fitness function is used to evaluate the adequacy

and quality of each individual. After this, a selection process, which is based on the fitness associated

to each individual, extracts a subset from the current population. This means that fitter solutions are

more likely to be selected. These selected individuals are combined to form a new generation of

population. The combination is usually done through a crossover operation, which takes two

individuals and exchanges their information at a random selected position. Often a mutation process

is applied, to prevent that individuals become too similar and thus the population is evaluated again,

and the process is repeated until a specific termination condition is satisfied.

Unlike procedural programs, in object oriented software an object encapsulates a state and its

behavior at runtime, depends not only on arguments, it has received but also on its current state. With

our evaluation methodology, the quality of a particular Test Program has been related to the Control

 67

Flow Graph (CFG) nodes of the method which are the targets of the evolutionary search at the

current stage of the search process; Test Programs that exercise less explored (or unexplored) CFG

nodes and paths must be favored by this approach.

Control Flow Graph: A control flow graph is a flow graph representing the possible control flow of

a program and taking into account the label of each statement. So, a node in the control flow graph

corresponds to a statement with its label in the program and edges represent the possible transfer of

control flow between statements. The difference with the flow graph is that for the control flow

graph we consider only the possible paths regarding inputs of the program. We define the Label

function in order to associate each node to each label.

A control flow graph describes the sequence in which the different instructions of a program get

executed. In other words, a control flow graph describes how the control flows through the program.

In order to draw the control flow graph of a program, all the statements of a program must be

numbered first. The different numbered statements serve as nodes of the control flow graph. An edge

from one node to another node exists if the execution of the statement representing the first node can

result in the transfer of control to the other node. In order to understand the path coverage-based

testing strategy, it is very much necessary to understand the CFG of a program.

Linearly independent path: A linearly independent path is any path through the program that

introduces at least one new edge that is not included in any other linearly independent paths. If a path

has one new node compared to all other linearly independent paths, then the path is also linearly

independent. This because, any path having a new node automatically implies that it has a new edge.

Thus, a path that is subpath of another path is not considered to be a linearly independent path.

4.1.3 Coverage

In the field of software testing, coverage of source code is a measurement of how much code has

been explored through executing test cases. This measurement is normally given in percentages.

There are many different coverage criteria.

 68

Code Coverage: The degree to which the source code under test has been tested defines the code

coverage. There are different ways of defining coverage and different interpretations will yield

distinct results.

Path Coverage: This research uses path coverage as a measure for test case effectiveness. It is

suggested that path coverage should be sufficiently fine-grained that reductions in test case

effectiveness will likely introduce significant decreases in path coverage of the SUT. Path coverage

generally acts as a test for regressions, checking for a decrease in quality of the test cases, rather than

a method for exposing faults that have been present in different runs of test cases. We discuss below

the possibility of using path coverage results to suggest ―improvements‖ to the test cases. The path

coverage-based testing strategy requires us to design test cases such that all linearly independent

paths in the program are executed at least once. A linearly independent path can be defined in terms

of the CFG of a program.

Measuring Path Coverage: We use our custom tool to instrument the SUT in order to record path

coverage information. In our approach while measuring path coverage it is considered to be a simple

end-to-end measure, for SUTs in which test cases consist of an input value which produces an

execution and output. However, for the stateful systems that are perhaps most suitable for random

testing and model-driven verification, a test sequence typically consists of a series of function calls.

We choose to measure path coverage at the granularity of top-level function calls. That is, we

maintain a set of paths covered for each top-level-entry function that is called by the test harness. A

separate set of path record is maintained for each test execution of the called method. Path is

recorded as a bit vector, containing every if-then decision made by the execution of the function,

from entry until return to the test harness. This bit vector includes all decisions made in functions

called by the top-level function, recursively, and therefore records all path information.

In general the number we will use to measure tester effectiveness is simply the total number of

unique paths through functions executed during a test run.

 69

4.1.4 Coverage measures

Because complete paths cover a certain number of nodes or edges, it‘s possible to define two

percentages, representing the node coverage and edge coverage of a set of paths.

Definition: Let Π be a set of complete paths in the graph G having set of nodes N, set of edgs E and

set of initial states n1 represented by G (N, E, n1). The Node coverage of Π is the percentage of

different nodes that is covered by at least one path in Π:

𝑁𝑜𝑑𝑒𝐶𝑜𝑣 𝐺,Π =
𝑁(Π)

𝑁
× 100% (4.1)

Edge coverageis the percentage of different edges that is covered by at least one path in Π:

𝐸𝑑𝑔𝑒𝐶𝑜𝑣 𝐺,Π =
𝐸(Π)

𝐸
× 100% (4.2)

In a graph, many different complete paths exist. Two percentages called path coverage and simple

path coverage can be defined.

4.1.5 Data Analysis and validity

The experimental data obtained will be represented using tables. The data for maintenance and

indirect coupling must be correlated for the validity of the model. This needs a correlation analysis of

the data obtained. The correlation analysis is conducted to examine the relationship (correlation)

between, in this case, software maintenance and indirect coupling. The correlation between two sets

of data can simply be checked by just drawing a scatter plot and the relationship between the two sets

can be determined by visual inspection. There exist other more rigorous approaches also; one of

these methods uses the statistical methods. This approach can be performed in two ways: by

generating measures of association which indicates the similarity of two data sets. The second way is

by generating an equation which describes the relationship between two data sets. In the presented

analysis the scatter plot and the generating measures of association approaches will be used. There

exist different ways which can be used to calculate the measure of association. The Spearman Rank

Correlation Coefficient (SRCC) is a good method to use for software metrics, since it has ability to

handle non-normally distributed data [Richard 1999]. If a correlation calculated by using this

method results in a linear correlation then it indicates that the two sets of data follow each other in a

 70

linear manner. Whenever using the scatter plot approach the two data sets are drawn in the same

diagram with one set at the x-axis and the other at the y-axis. If there is a clear linear trend or pattern

between the two sets it appears visually.

Spearman’s rank correlation coefficient (SRCC): The value of SRCC always lies between between 1

and –1. A value which is nearby to 1 indicates a strong positive correlation and values lying near –1

indicate a strong negative correlation. Values lying near zero indicate weak or no correlation. For

computing the SRCC (R) following equation is used:

𝑅 = 1 −
6 𝑑2

𝑛3 − 𝑛
 (4.3)

The above equation contains d and n as the only unknown values. To get n just count the number of

paired items in the two sets. To get d the two data sets must be ranked separately in either ascending

or descending order (from 1 to n or from n to 1) [Richard 1999].

4.2 Summary

This chapter looked at the research methodologies used in this research. Justifications on why the

researcher chose to use those methodologies were given. Empirical study has been followed to gather

relevant data to achieve the research objectives. Experiments are conducted on small and large size

Java open source projects and over standard Java libraries. The results are analyzed using

correlations and graphical techniques.

The next chapter discusses indirect coupling and maintainability of the OO software. Then we

propose our metrics which can relate indirect coupling and maintenance effort in OO software.

 71

CHAPTER A New Metric for Software Maintenance in presence

of Indirect Coupling 5

ne notion of quality in software design is how easy or difficult it is for the design to cope with

change. A concept that is widely associated with quality is coupling, which is a ―measure of

the strength of association established by a connection from one module to another‖ [Stevens et al.

1974]. Several studies have identified clear empirical relationships between class-level coupling and

class fault-proneness [Arisholm 2002, Baig 2004; Gui and Scott 2006; Offutt et al. 2008]. Previous

research has shown that complex coupling relationships among OO software classes are among the

critical factors that make testing and maintenance difficult and costly [Kung et al. 1995]. Therefore,

analyzing and measuring software class relationship has gained increasing importance [Fenton and

Pfleeger 1998; Li and Henry 1993]. In this chapter a metric and an algorithm is proposed to estimate

the maintenance effort for software with indirect coupling between classes.

After the release of a software product the maintenance phase keeps the software up to date with the

environment changes and user requirements [Erdil 2003]. The earlier phases particularly the design

phase must be completed in such a manner that the product could be easily maintained. One major

concern which affects a good object oriented software design is coupling between classes. Coupling

is described as the degree to which one class is dependent on the other class [Briand et al. 1999]. If a

class is having high coupling value then it is highly interdependent on other classes and vice versa. If

a class is highly interdependent then any change in the class requires significant changes in other

classes to which it is coupled [Weisfeld 2000]. Hence highly coupled classes require high

maintenance effort. It can be noted that a system cannot completely be devoid of coupling for the

proper functioning of software. There is some need of some connections among various sub classes

of software. Hence maintaining loose coupling among classes is desirable characteristics of good

software design [Hitz and Montazeri 1995].

Among the existing coupling measures, very few measures investigate indirect coupling [Yang and

Tempero 2007b] connections. Most of the research has been applied only to direct coupling that is,

coupling between modules that have some direct relationship. However little investigation has been

O

 72

done into indirect coupling which can be described as coupling between modules that have no direct

relationship. It is considered that indirect coupling is little more than the transitive closure of direct

coupling which takes the path of the data flow between classes also into account.

In this chapter a metric based on this indirect coupling has been proposed. The proposed metrics are

modifications of established metrics. The established metrics will be discussed along with a unified

way of representing these metrics. There is also a description of exactly which aspects of the system

they attempt to measure. It is explored that indirect coupling minimization defined by considering

coupling paths we are able to relate indirect coupling to maintenance effort [Gupta and Rohil 2012].

This gives us a clear idea, how indirect coupling affects maintenance effort.

5.1 Levels of Coupling

Coupling is defined by the state of an object (state is represented as the value of its attributes at a

given moment at run-time), and the state of an object‘s implementation (class interface and body at a

given time in the development cycle) by Hitz and Montazeri [1995]. From these definitions, the

authors derive two ―levels‖ of coupling:

 Class level coupling (CLC): During the development lifecycle, the coupling which results

from the state dependencies between two classes in a system is termed as Class Level

Coupling.

 Object level coupling (OLC): During the run-time of a system, the coupling which results

from the state dependencies between two objects in a system is termed as Object Level

Coupling.

According to Hitz and Montazeri [1995], CLC is important when considering maintenance and

change dependencies because changes in one class may lead to changes in other classes which use it.

For these levels of couplings the authors have identified some factors which determine the strength

of coupling. In CLC if a method of a class A invokes a method or references or an attribute of

another class B then the following factors determine the strength of CLC between A and B

Type of access

 ―Access to interface‖: A invokes a method of B.

 ―Access to implementation‖: A references an attribute of B

 73

5.1.1 Coupling Constitution Mechanisms

Table 5.1 presents the mechanisms that constitute coupling between classes in some frameworks

[Briand et al. 1999]. One mechanism is represented in each row; an ―X‖ indicates that the mechanism

is covered by the framework in the respective column. For reference purpose numbers are assigned to

the mechanisms.

Table 5.1 Mechanisms that constitute coupling

No. Mechanism
Eder et al.

1994

Hitz and Montazeri

1995

Briand et al.

1997

1 methods share data (public attributes etc.) X

2 method references attribute X

3 method invokes method X X X

4 method receives pointer to method X

5 class is type of a class' attribute

(aggregation)
X X X

6 class is type of a method's parameter or

return type
X X X

7 class is type of a method's local variable X X

8 class is type of a parameter of a method X

9 invoked from within another method X X

5.1.2 Direction of Coupling

The framework given by by Briand et al. [1997] explicitly distinguishes between import and export

coupling. Let us consider the two classes C and D being coupled through one of the mechanisms

mentioned above. We may consider it as a form of client-server-relationship between the classes: the

client class uses (imports services) and the server class is being used (exports services). Such a

distinction between these classes has its importance. It may be difficult to reuse a class which mainly

imports services in another context because it depends on many other classes. On the other hand, for

a class which mainly exports services, the defects are particularly critical as they may propagate

more easily to other parts of the system and are more difficult to isolate. We can make the conclusion

that the direction of coupling measured directly influences the possible goals of measurement.

 74

5.1.3 Direct and Indirect Coupling

Eder et al. [1994] used the transitive closure of direct interaction relationships to derive ―indirect

interaction relationships between methods‖ from ―direct interaction relationships‖. The same idea

can be applied to all kinds of coupling. That means, if a class C1 uses a class C2, which in turn uses

another class C3, then class C1 is said to be indirectly coupled with class C3. Therefore in such a case

any defect or modification made in class C3 may not only affect the directly coupled class C2, but

also the indirectly coupled class C1. We can generalize the same by considering an extreme case

where a number of classes are indirectly coupled in a chained manner. Consider a circular chain of

coupled classes (class Ci uses class Ci + 1 for i = 1, 2, ..., n – 1, and class Cn uses C1). By considering

both export and import coupling it can be identified that each class in this chain is directly coupled

with two of the other classes. Also, it can be observed that each class in the chain indirectly uses and

is also being used by every other class.

The work described by Briand et al. [1997] was based upon high-level design measures for coupling

and cohesion in object-based systems. The above work was also validated with respect its capability

in identifying the fault-proneness of modules. The metrics to meaure coupling described in above

work included measures for direct and indirect coupling. The direct coupling measures were found to

be useful predictors, but not those for indirect coupling. The work of Briand et al. [1997] has

primarily been defined to derive coupling measures for the identification of fault-prone classes, they

did not include the distinction between direct and indirect coupling.

5.1.4 Existing Coupling Measures and Importance of Indirect Coupling Measure

Various coupling measures have been defined by different researchers in the literature. In 1992, Chi-

damber and Kemerer [1991] defined numerous metrics for object-oriented software design; some of

them were related to coupling. Three different types of relationships were identified by Eder et al.

[1994] identified namely interaction relationships between methods, component relationships

between classes, and inheritance between classes. Their work identifies different dimensions of

couplings by using these three relationships according to strength of coupling.

Hitz and Montazeri [1995] presented two types of coupling. The first type is object level coupling,

which is determined by the state of an object; and the other is class level coupling, determined by the

 75

state of an objects implementation. Different coupling strengths are also proposed in their study. In

1997, Briand et al. [1997] defined coupling as interactions between classes. The coupling strength is

determined by the type of the interaction, the relationship between the classes, and the direction of

the interaction.

Some of these important coupling measures are discussed in following section.

Coupling between objects (CBO)

Measure CBO is defined in [Chidamber and Kemerer 1991] as follows: ―CBO for a class is a count

of the number of non inheritance related couples with other classes.‖ An object of a class is coupled

to another, if methods of one class use methods or attributes of the other. In [Chidamber and

Kemerer 1994], a revised definition is proposed: ―CBO for a class is a count of the number of other

classes to which it is coupled.‖ At another place in a footnote it says that ―this includes coupling due

to inheritance.‖

Response for class (RFC)

According to original definition in [Chidamber and Kemerer 1994]: 𝑅𝐹𝐶 = |𝑅𝑆| where RS is the

response set for the class. The response set can be expressed as

𝑅𝑆 = {𝑀} {𝑅𝑖}

𝑎𝑙𝑙 𝑖

Where {𝑅𝑖} is the set of methods called by method i, and {M} is the set of all methods in the class.

The response set of a class is a set of methods that can potentially be executed in response to a

message received by an object of that class.

Message passing coupling (MPC)

Measure MPC [Li and Henry 1993] is defined as the ―number of send statements defined in a class.‖

According to the authors ―The number of send statements sent out from a class may indicate how

dependent the implementation of the local methods is on the methods in other classes.‖ According to

this definition MPC only counts invocations of methods of other classes, not invocations of the class‘

own methods. Also, in this method only send statements in ―local methods‖ are counted. According

to Li and Henry [1993] : ―The local methods of a class constitute the interface increment.‖ Inherited

 76

methods are not part of the interface increment; therefore the inherited methods having send

statements are not counted.

Data abstraction coupling (DAC)

Measure DAC [Li and Henry 1993] has been defined as ―the number of abstract data types (ADTs)

defined in a class.‖ In this context, an ADT is a class in the system. An ADT can also be defined in

some class, if it is the type of an attribute of class that class. According to the authors ―The number

of variables (attributes) having an ADT type may indicate the number of data structures dependent

on the definitions of other classes.‖

Measures for Indirect coupling

Most of the coupling measures available in literature consider direct coupling only. Indirect way of

coupling is accounted in another sense. This is done by defining RFC‘ [Chidamber and Kemerer

1991]. RFC‘ is the number of methods that can possibly be invoked by sending a message to a class

C. This definition also includes methods of C, methods invoked by the methods of C, the methods

these in turn invoke, etc. RFCα [Churcher and Shepperd 1995] is another measure which counts such

nested method invocations up to a specified level α. New measures can easily be derived that account

for indirect coupling from measures that do not account for it (only possible if such consideration

makes a sense). A relation called direct coupling can be described on a set of elements (e.g., a

relation ―invokes‖ on the set of all methods of the system, or a relation ―uses‖ on the set of all classes

of the system). Indirect coupling can be accounted by just considering the use the transitive closure

of that relation.

Table 5.2 summarizes the coupling measures. For each measure, the type of coupling it uses, factors

determine the strength of coupling, whether an import or export coupling measure, whether indirect

coupling is accounted for, has been indicated.

Table 5.2 Different available coupling measures

Coupling measure Coupling type
Strength of

Coupling

Import/Export

coupling

Indirect

coupling

CBO (Coupling Between

Objects)

[Chidamber and Kemerer 1994]
method Invocation,

attribute reference

No. of

coupled

classes

both no

CBO‘ [Chidamber and Kemerer

1991]

RFCα (Response for Class) method Invocation No. of import depends

 77

Coupling measure Coupling type
Strength of

Coupling

Import/Export

coupling

Indirect

coupling

[Churcher and Shepperd 1995] methods

invoked RFC [Chidamber and Kemerer

1994]
no

RFC‘ [Chidamber and Kemerer

1991]
yes

MPC (Message Passing

Coupling)

[Li and Henry 1993]

method Invocation

No. of

methods

invoked

import no

DAC (Data Abstraction

Coupling)

[Li and Henry 1993] type of attribute

No. of

attributes
import no

DAC‘

[Li and Henry 1993]

No. of

distinct types
import no

COF (Coupling Factor)

[Abreu et al. 1995]

method Invocation,

attribute reference

No. of

coupled

classes

both no

ICP (information flow based

coupling)

[Lee et al. 1995]

method Invocation

No. of

invocations

and

parameters

passed

import

no

IH-ICP (information-flow-

based non-inheritance coupling)

[Lee et al. 1995]

no

NIH-ICP (information-flow-

based inheritance coupling)

[Lee et al. 1995]

no

IFCAIC

[Briand et al. 1997]

type of attribute
No. of

attributes

import

no

ACAIC

[Briand et al. 1997]
no

OCAIC

[Briand et al. 1997]
no

FCAEC

[Briand et al. 1997]

export

no

DCAEC

[Briand et al. 1997]
no

OCAEC

[Briand et al. 1997]
no

IIFCMIC

[Briand et al. 1997]

type of parameter
No. of

parameters

import

no

ACMIC

[Briand et al. 1997]
no

OCMIC

[Briand et al. 1997]
no

FCMEC

[Briand et al. 1997]
export no

IC_OC

[Arisholm 2002] method Invocation

No. of

method

invocations

import no

IC_OD import no

 78

Coupling measure Coupling type
Strength of

Coupling

Import/Export

coupling

Indirect

coupling

[Arisholm 2002]

EC_OC

[Arisholm 2002]
export no

EC_OD

[Arisholm 2002]
export no

CoupT

[Gui and Scott 2006]

method and attribute

invocation

No. of

methods and

attribute

invocations

export yes

CCC

[Chowdhury and Zulkernine

2010]

method and attribute

invocation

No. of

method

invocations

both no

It is clear from the above table that only a few measures take indirect coupling into account. It

suggests more investigation to be done to completely understand the nature of indirect coupling in

object oriented systems.

5.2 Direct Coupling

To describe the concept of ―Direct Coupling‖ [Yang et al. 2005] which deals with connections that

are of ―direct‖ nature, let us first consider the ambiguity of the definition given by [Briand et al.

1999], about direct coupling.

According to Briand et al.‘s definition:

Direct coupling describes a relation on a set of elements (e.g., a relation “invokes” on the

set of all methods of the system, or a relation “uses” on the set of all classes of the system).

To account for indirect coupling, we need only use the transitive closure of that relation”.

[Briand et al. 1999].

The problem with this definition is that it is not precise as to what relations may be considered as

coupling. To understand the issue, consider the example shown in Figure 5.1.

class A{

 B obB = new B();

 E obE = new E();

 void methA(){

 obB.methB();

 obE.methE();

 }

class B{

 C obC = new C();

 void methB(){

 obC.methC();

 }

}

 79

}

class C{

 D obD;

 C(){

 obD = new D();

 }

 void methC(){

 //no uses of obD

 }

}

class E{

 void methE(){

 //...

 }

}

Figure 5.1 Classes directly coupled in different ways

Several classes are shown that are directly coupled in different ways. Now, consider the relation

―calls method‖, such a relation holds between the two classes if a method from one class calls a

method of the other. This is the possibility of one coupling relationship. It should be noted that this

relation is transitive but not symmetric. The two classes A and B are directly coupled by this relation,

similar is the case for B and C, and also for A and E; however, A is not coupled to C, and nor E

coupled to B or C. It can also be seen that class D is not related to any of the other classes; other

classes are also not related to D. If we give meaning to the relation ―creates instance‖, that means one

class creates a new instance of another class, then that relation may hold between a number of

classes, but it is in particular between C and D. Although this relationship can not be considered to be

that much different from ―calls method‖, it is believed that such distinction is sufficient. Figure 5.2

shows these relationships.

Figure 5.2 The coupling relations between the classes in Figure 5.1

 80

If there is a new relation which can be regarded as the transitive closure of the ―calls method‖

relation, then one may conclude that A is somehow coupled to C and it is also established that A is

indirectly coupled with C since these are not coupled directly. However, even under this definition of

indirect coupling still none of these classes are coupled with D. It must be noted that sometimes it is

important to consider both import coupling (e.g., when some service from some module is needed by

another module) and export coupling (when some service is provided by some module to another

module) [Briand et al. 1999]. In the context of the above example, it can translated as whether a class

contains the call to a method belonging to another class, or provides a method that is called by

another class. If one consideres the export version of ―calls method‖, call it ―method called‖, then

again it may be concluded that A, B, C are coupled, but now in the other direction, so that C is

coupled to B, B to A, and E to A, but not A to C and D still is not coupled.

Consider now another relation, namely ―calls method or method called‖, which is considered as a

composition of the two relations discussed as above. Considering this relation, we get both A

indirectly coupled with C and vice versa. This new relation is really just the composition of the

export and import versions of the same connection, and therefore it may be argued that this kind of

composition is reasonable. Further we may add ―creates instance‖, and its export version, ―instance

constructed by‖, to the existing composition. Under this relation, A, B, C, and D all indirectly

coupled together, but this may be regarded questionable since there is no justification to support the

claim that A is coupled to D. But another problem arises and that is when to stop - if ―creates

instance‖ with ―calls method‖ cannot be composed. There may be other classes also having such

relationship. There remains the question to identify such relations.

The export/import aspect of the argument used above may be regarded as good criteria for allowing

composition, but it also can have problems. Considering the earlier example and the ―calls method or

method called‖ which is a composite relation, it may also be concluded that, since A is coupled with

E by this relation, and further A is coupled with C by using the same relation, E and C can be said to

be coupled indirectly. But, in fact E and C have seemingly not related to each other, and so it seems

unreasonable to consider them coupled. Therefore, it becomes difficult to justify compositing

relations that are related by one being the export (import) version of the other. If we consider indirect

coupling to be the transitive closure of the relation consisting of the composition of all direct

 81

coupling relations, then it may be observed that most of the modules in a system might be coupled

with each other, which does not seem very useful for understanding where designs compromise

modifiability. A Simple Transitive Coupling (STC) is identified by the transitive closure of a single

relation, while Composite Transitive Coupling (CTC) is identified by the transitive closure of more

than one relation.

The coupling metric that takes account of the degree of coupling, functional complexity and

transitive (i.e. indirect) coupling between classes in an object-oriented software system can be

regarded as a directed graph [Gui and Scott 2006]. The classes comprising the system can be dnoted

as the vertices in the graph. Consider a system which is comprising a set of classes 𝐶 ≅

{𝐶1,𝐶2 … .𝐶𝑚 }. Let 𝑀𝑗 represents the set of methods of the class 𝐶𝑗 , and 𝑉𝑗 represents the set of

instance variables of class 𝐶𝑗 . 𝑀𝑉𝑗 ,𝑖 represents the set of methods as well as instance variables in

class 𝐶𝑖 which are invoked by class 𝐶𝑗 for j ≠i (𝑀𝑉𝑗 ,𝑗 is defined to be null). Then the edge from 𝐶𝑗 to

𝐶𝑖 exists if and only if 𝑀𝑉𝑗 ,𝑖 is not null. Therefore in its graph representation an edge of the graph

reflects the direct coupling of one class to another. The graph obtained in such a manner is directed

since 𝑀𝑉𝑗 ,𝑖 is not necessarily equal to 𝑀𝑉𝑖,𝑗 . 𝑀𝑉𝑗 , the set of all methods and instance variables in

other classes that are invoked by class 𝐶𝑗 , can be defined as [Gui and Scott 2006]:

MVj = MVj,i

1≤i≤m

 (5.1)

The extent of direct coupling from class 𝐶𝑖 to class 𝐶𝑗 depends upon the number of methods and

variables in the set 𝑀𝑉𝑖 ,𝑗 . The class is said to be coupled strongly if this value is large.

Using the above notations we can define direct coupling from class 𝐶𝑖 to class 𝐶𝑗 as [Gui and Scott

2006]:

𝐶𝐷
𝑖 ,𝑗

=
 𝑀𝑉𝑖,𝑗

 𝑀𝑉𝑖 + 𝑀𝑖 + 𝑉𝑖
 (5.2)

In the above equation denominator represents the total number of methods and variables used by

class 𝐶𝑖 , which accounts for the total functionality of class 𝐶𝑖 . This guarantees that the direct

coupling from class 𝐶𝑖 to class 𝐶𝑗 , 𝐶𝐷
𝑖 ,𝑗

 is independent of class size. In this context 𝑑𝑖𝑟𝑒𝑐𝑡𝑃𝑎𝑡 is

 82

defined as the path between classes which are coupled as per equation (5.2). The value of 𝐶𝐷
𝑖 ,𝑗

 in

equation (5.2) will always be in the range from zero to one.

5.3 Indirect Coupling

Indirect coupling can be defined as ―any coupling that is not direct coupling‖. This definition is

appealing in its simplicity, but there are some problems associated with this definition. The first

problem is, it is not an operational definition, and since we don‘t have an operational definition for

what ―coupling‖ is (which is basically the goal of much of the research on coupling which aims to

measure some form of coupling), what we can do is use the above definition to identify a subset of

indirect coupling that we can be defined in an operational manner. This is also one of the goals of the

presented research.

class A

{

 public static void main(String[] args)

 {

 B aB = new B();

 aB.setString();

 C aC = new C();

 aC.readB(aB);

 }

}

class B

{

 String str;

 D aD;

 B()

 {

 aD = new D();

 }

 void setString()

 {

 str = aD.retVal();

 }

 String getString()

 {

 return str;

 }

}

class C

{

 void readB(B aB)

 {

 aB.getString().trim();

 }

}

class D

{

 String str;

 String retVal()

 {

 //str = “Hi”;

 return str;

 }

}

Figure 5.3 Interpreting Indirect Coupling

Aside from STC another form of Indirect coupling is defined by [Yang and Tempero 2007b] as use-

def relationships. These use-def relationships will extend from one class to some other class in a

class cluster. In this particular form of indirect coupling we focus on its definition which is defined as

 83

―a given class C is indirectly coupled via data flow to another class D if and only if there exists a

value used in class C that is defined in class D‖ [Yang and Tempero 2007b]. The fundamental

property of this indirect coupling is that the behavior of class C is potentially dependent on the value

generated by class D. Therefore applying any changes by modifying some value defined in class D

may affect the behavior of class C. For example let us consider class definition in Figure 5.3.

It is clear from Figure 5.3 that class A is directly dependent on classes B and C as it is creating their

instances and calling their methods. If we try to rename classes B or C it will affect class A, as it

would then require recompilation of A. Now indirect dependence is the complement of direct

dependence. While indirect dependence may be thought of as just the transitive closure of direct

dependences we find that this is not sufficient [Yang and Tempero 2007a]. By same definition of

‗dependent‘, we observe that C and D are not dependent. For example, removing D from the program

would not cause compilation of C to fail. However a closer inspection reveals that a different kind of

dependence exists between D and C. If we execute the program (through A‘s main method) results in

a null pointer exception thrown by C because it tries to dereference the function

aB.getString(), which evaluates to null. This is caused because D fails to initialize the value of

the field str which is used by B through retVal() method. Now, if we uncomment the statement

str = "Hi" in D we can avoid the null pointer exception in C. In other words there is a change to

D that affects C, which signifies dependence, and which is an indirect dependency.

This type of dependency as described above w.r.t. Figure 5.3 requires additional effort on the part of

developer while performing any maintenance in the existing code. The concept of chains is

introduced by [Yang and Tempero 2007b] to define the metrics for such indirect coupling. A chain

can be expressed in terms of graph vocabulary. Each statement in program would correspond to a

node, while each immediate data flow from a definition site to a usage site corresponds to edges. We

can define ―length‖ of chains based on the granularity level of measurement. This notion of distance

can be mapped to maintenance effort, since the longer the chain of the flow of values across the

system, the more work will be required to trace this flow, potentially having to switch between

different methods and different classes or methods. The level of granularity can be determined by the

level of boundary being considered, whether it is in terms of classes, methods or blocks. Selection of

granularity of chains depends upon at what level we want to quantify the effort. In such case it is not

 84

a straight measure and depends upon the developer. For example using distance in terms of class

boundaries is a simple measure, if we want to consider the coupling interactions between the classes.

But this may be inappropriate if there are various self calls within same method and this effort cannot

be taken into account at this level. To account for this one has to increase granularity at method level.

Therefore a trade-off is required between maintenance effort and notion of chain length based on its

granularity.

5.4 Indirect Coupling Path (ICP)

In the system comprising set of classes 𝐶 ≅ {𝐶1,𝐶2 … .𝐶𝑚} designating the vertices and direct

coupling relationships as the edges of a graph as described in section 5.1, we can define Indirect

Coupling Path (ICP) as a path which starts and ends in different classes, i.e. the class in which the

path starts is indirectly coupled to the class in which the path ends. Furthermore, ICP is defined to be

a subset of all Coupling Paths where each member path starts in a class that contains no explicit

reference to the class in which the path ends, i.e. the former class is indirectly coupled to the latter.

Formally we can define a Coupling Path and Indirect Coupling Path as:

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑃𝑎𝑡 = 𝑐 𝑐 ∈ 𝑃𝑎𝑡𝑠⋀𝑠𝑡𝑎𝑟𝑡𝐶𝑙𝑎𝑠𝑠(𝑐) ≠ 𝑒𝑛𝑑𝐶𝑙𝑎𝑠𝑠(𝑐)}

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑃𝑎𝑡 = 𝑐 𝑐 ∈ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑃𝑎𝑡 ⋀ (𝑠𝑡𝑎𝑟𝑡𝐶𝑙𝑎𝑠𝑠 𝑐 , 𝑒𝑛𝑑𝐶𝑙𝑎𝑠𝑠(𝑐) ∉ 𝑑𝑖𝑟𝑒𝑐𝑡𝑃𝑎𝑡)

Where startClass() and endClass() are the functions which return the starting class and

ending class to which argument belongs.

In this research the ICP existing between various classes in a class cluster because of STC are

considered. It is argued that since the maintenance effort tends to increase as the ICP length increases

between any two classes, as one has to explore more number of classes. Therefore total effort will

increase along with the ICP through the class. Similarly if multiple ICPs exist between any two

classes, then the value of indirect coupling must consider all such existing paths instead of

considering only path with highest indirect coupling value.

 85

5.5 Relationship between Indirect Coupling and Maintenance Effort

Suppose that the two direct coupling values 𝐶𝐷
𝑖 ,𝑗

 and 𝐶𝐷
𝑗 ,𝑘

 for classes 𝐶𝑖 , 𝐶𝑗 and 𝐶𝑘 , but the value of

direct coupling 𝐶𝐷
𝑖 ,𝑘

 is zero. Even though there is a dependency between classes 𝐶𝑖 and 𝐶𝑘 because 𝐶𝑖

is depending upon 𝐶𝑗 which in turn depends upon class 𝐶𝑘 . Because of this indirect dependency any

modification done in class 𝐶𝑘 may affect class 𝐶𝑖 . Therefore at the time of maintenance activities

such indirect relations must be considered and the maintenance effort will depend upon the coupling

path between 𝐶𝑘and 𝐶𝑖 . This maintenance effort depends upon the fact that how strongly the

individual classes are coupled together. Therefore we can define Indirect Path Coupling (IPC)

between 𝐶𝑘 and 𝐶𝑖 as:

𝐶𝑝
𝑖 ,𝑘 = 𝐶𝐷

𝑖 ,𝑗
+ 𝐶𝐷

𝑗 ,𝑘
 (5.3)

The Indirect coupling between two classes exists if there is a path from one to the other made up of

edges whose direct coupling values 𝐶𝐷 are all non-zero. The maintenance effort required depends

upon the sum of all those 𝐶𝐷 values. Thus we define Indirect Path Coupling (IPC) because of this

indirect coupling between classes 𝐶𝑖 and 𝐶𝑗 due to a specific path p, as:

𝐶𝑝
𝑖 ,𝑘

 = 𝐶𝐷
𝑠,𝑡

𝑒𝑠,𝑡∈ 𝑝

 =
 𝑀𝑉𝑠,𝑡

 𝑀𝑉𝑠 + 𝑀𝑠 + 𝑉𝑠
𝑒𝑠,𝑡∈𝑝

 (5.4)

Here 𝑒𝑠,𝑡 denotes the edge between vertices s and t.

Since direct coupling between any two classes is always be less than 1, according to equation (5.2) so

indirect dependency due to longer paths will lead to increase. Longer will be the path, higher will be

the indirect coupling through that path and vice versa. Here we measure Maintenance effort in terms

of value of indirect coupling which is directly proportional to indirect coupling through path p, i.e.

Effort α Indirect Coupling

Higher the value of indirect coupling, greater maintenance effort required in tracing and modification

and vice versa. Effort is associated with the sum of direct coupling measured along each path in the

set of paths which exist among different software classes [Briand et al. 1999]. According to Yang

[Yang et al. 2005] effort is directly proportional to length of the path. Effort is associated with the

 86

sum of lengths measured in terms of edges in the set of edges. Therefore greater is the length of the

path, more effort will be required to trace it.

Since effort is associated with the set of paths according to Yang [Yang et al. 2005], effort is directly

proportional to number of paths that exists between different software classes. The length of path

between any two classes having indirect coupling may or may not be same. Since, multiple path or

relationship exists between source and destination, so effort required in getting the work done will be

more. Similarly if there are multiple paths existing between different software classes, which may or

may not have an overlapping edge in common and even path length may vary, then maintenance

effort required in tracing the path and modification will cost more. Thus, effort required in this

situation can be determined using the following algorithm shown in Figure 5.5. This algorithm

considers that if there are multiple paths between two classes and partially they are overlapping then

redundant effort for such common edges must be removed.

Below introduces functions pathsFrom, pathsTo and pathsBetween, all of which return a subset of

ICP. pathsFrom(C) returns paths that start within class C; pathsTo(C) returns paths that end within

class C; pathsBetween(C1, C2) returns paths that start within class C1 and end within class C2.

𝑝𝑎𝑡𝑠𝐹𝑟𝑜𝑚 𝐶 = {𝑝|𝑝 ∈ 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑃𝑎𝑡 ⋀ 𝐶 = 𝑠𝑡𝑎𝑟𝑡𝐶𝑙𝑎𝑠𝑠 𝑝 }

𝑝𝑎𝑡𝑠𝑇𝑜 𝐶 = {𝑝|𝑝 ∈ 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑃𝑎𝑡 ⋀ 𝐶 = 𝑒𝑛𝑑𝐶𝑙𝑎𝑠𝑠 𝑝 }

𝑝𝑎𝑡𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐶1,𝐶2 = 𝑝𝑎𝑡𝑠𝐹𝑟𝑜𝑚(𝐶1) ∩ 𝑝𝑎𝑡𝑠𝑇𝑜(𝐶2)

Figure 5.4 helps to illustrate the relationship between paths and their constructed indirect coupling

graphs. This figure shows a set of classes represented by C1, C2, …C8, methods represented by a, b, c

…n, arrows represent direct coupling (edges) and paths comprising of edges. All paths identified

from this program below, are those involved in indirect coupling:

The set of all ICPs= {(a,d,g,l),(a,d,h,m),(b,e,i,n),(c,e,i,n),(d,f,j,m),(d,f,k,n)}

 pathsFrom(C1)={(a,d,g,l),(a,d,h,m),(b,e,i,n)}

 pathsFrom(C2)={(c,e,i,n),(d,f,j,m),(d,f,k,n)}

 pathsTo(C7)={(a,d,g,l),(a,d,h,m),(d,f,j,m)}

 pathsTo(C8)={(b,e,i,n),(c,e,i,n),(d,f,k,n)}

 pathsBetween(C1,C7)={(a,d,g,l),(a,d,h,m)}

 87

 pathsBetween(C1,C8)={(b,e,i,n)}

 pathsBetween(C2,C7)={(d,f,j,m)}

 pathsBetween(C2,C8)={(c,e,i,n),(d,f,k,n)}

Figure 5.4 path illustration

Assume for the two classes 𝐶𝑖 and 𝐶𝑗 various coupling paths ps (s > 0) exist and partially they may be

overlapping. Each path in ps may consists of a certain number of overlapped edges because of

multiple paths between classes 𝐶𝑖and 𝐶𝑗 . Each edge which corresponds to direct coupling between

any two class is also associated to be a Boolean variable denoted by rd and initialized to false. Here

ns is the total number of edges along path some path 𝑝 ∈ 𝑝𝑠 . If the indirect path coupling along path p

is denoted by Cp then the algorithm can be written as shown in Figure 5.5.

for each path 𝑝 ∈ 𝑝𝑠 = 𝑝𝑎𝑡𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐶𝑖 ,𝐶𝑗)

 for each edge 𝑑 ∈ 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠(𝑝)

 initialize 𝑟𝑑 = 𝑓𝑎𝑙𝑠𝑒
𝑖 = 𝑠𝑡𝑎𝑟𝑡𝐶𝑙𝑎𝑠𝑠 𝑑
𝑗 = 𝑒𝑛𝑑𝐶𝑙𝑎𝑠𝑠 𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝐷
𝑖 ,𝑗

=
 𝑀𝑉𝑖,𝑗

 𝑀𝑉𝑖 + 𝑀𝑖 + 𝑉𝑖

 endfor

endfor

for each path 𝑝 ∈ 𝑝𝑎𝑡𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐶𝑖 ,𝐶𝑗)

 for each edge 𝑑 ∈ 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠(𝑝)

 if 𝑟𝑑 == 𝑓𝑎𝑙𝑠𝑒

 Cp(new) = Cp(old) + 𝐶𝐷
𝑖 ,𝑗

𝑟𝑑 == 𝑡𝑟𝑢𝑒
 endif

 endfor

endfor
Figure 5.5 Algorithm for computing indirect path coupling Cp when

multiple, possibly overlapping coupling paths exist between two classes.

C1

a

b

C3

d

C4

e

f

C2

c

d

C5

g

h

i

C6

j

k

C7

l

m

C8

n

 88

Thus increasing the number of paths or connections between different software classes will increase

indirect coupling which results in increase in the maintenance effort required in modification or

extending the functionality of the class and tracing the path.

5.6 Experimental Setup

The purpose of this section is to introduce the software used for case studies and the methodology to

validate the proposed metrics by data acquisition and metrics calculation. These softwares have been

developed using OO programming in Java and available on www.sourceforge.net or

www.apache.com. These softwares are from different functional domains having reasonable number

of classes of different sizes, easy access to its source-code and availability of its different versions

with the release notes made us select them as input software for our planned experiments.

5.6.1 Softwares Considered for Case Studies

This section describes the various softwares considered for case study.

EasyMock

EasyMock is the name of an open source software that we have used as an input to perform our

metrics calculation. EasyMock is an open source library that provides an easy to use API to generate

mock objects for given interfaces. Mock objects are created dynamically, allowing the returning of a

specific result for a specific input.

EasyMock software was started in year 2003, and up till now nineteen versions of source code have

been published on software website. We have selected five consecutive versions of EasyMock

(version 2.0 through version 2.4) which are released in duration of three years.

Overall number of classes has been increased from 55 in version 2.0 to 63 in version 2.4 for

EasyMock. Some new classes have been added and some of the old classes were dropped from the

first version to last selected version. Code modification and addition are the ways through which

most of the changes are performed in the internal implementation of classes. These changes, among

the subject versions, are also reflected through class coupling metrics in our study.

http://www.sourceforge.net/
http://www.apache.com/

 89

Hibernate

Hibernate, is an Object/ Relational Mapping solution for Java environment. The term

Object/Relational Mapping refers to the technique of mapping data between object model

representations to a relational data model representation. Hibernate was started in year 2001, and up

till now its sixty two versions of source code have been published. We have selected fifteen

consecutive versions of Hibernate (version 3.0alpha through version 3.2.5) which are released in

duration of three years. Overall number of classes has been increased from 592 in version 3.0alpha to

1049 in version 3.2.5. This study considers 325 classes of Hibernate having indirect coupling.

DrJava

DrJava is a simple and powerful Java development environment. It is written in Java, and runs on

any Java 2 version 1.3-compatible virtual machine. (DrJava has been tested on Windows XP,

Windows 2000, Windows 98, Linux, Solaris and MacOS X.) It is available for free, and it is

distributed under the open source General Public License. Links to download DrJava and its source

code are available from its Web page, http://drjava.sourceforge.net

Initial version of DrJava eclipse plugin was released in 2003, and up till now seven versions of

source code have been published on software website. We have selected six consecutive versions of

DrJava (version 0.9.0 through version 0.9.8) which are released in duration of three years. In this

study 231 classes of DrJava consisting of 34566 average lines of Java source code in each version

has been analyzed.

Apache Tiles

This is an HTML templating framework based on the “Composite” model. It allows for the HTML

page to be broken up into multiple pagelets, called Templates, Definitions and Composing pages. At

run time the pagelets are stitched together to generate the final HTML. It is available at

http://tiles.apache.org/.Initial version of Apache Tiles was released in year 2007 and up till now 17

versions of source code have been published on software website. We have selected 13 consecutive

versions (version 2.0.3 through version 2.2.2) which are released in duration of six years. In this

http://drjava.sourceforge.net/
http://tiles.apache.org/

 90

study 35 classes of Apache Tiles consisting of 2104 average lines of Java source code for each

version havs been analyzed.

Apache velocity

Apache Velocity is a Java-based template engine that provides a template language to reference

objects defined in Java code. It is an open source software project directed by the Apache Software

Foundation and aims to ensure clean separation between the presentation tier and business tiers in a

Web application (the model–view–controller design pattern). It is available at

http://velocity.apache.org/ and up till now 27 stable/beta versions of source code have been

published. For this case study seventeen consecutive stable/beta versions (version 1.0.1 through

version 1.7) which are released in duration of four years. Apache velocity consists of approximately

118 classes implemented and 93 classes are considered in this study with an average of 15929 lines

of Java source code for each version has been analyzed.

jEdit

jEdit is a text editor for programmers, available under the GNU General Public License version 2.0.

It is written in Java and runs on any operating system with Java support. It uses the Swing toolkit for

the GUI and can be configured as a rather powerful IDE through the use of its plugin architecture.

The source code of jEdit is available at http://sourceforge.net/projects/jedit/. Ten versions (version

4.3.0 through version 5.0.0) of jEdit releases in duration of four years have been considered in this

study. Approximately 378 classes of jEdit with an average of 94863 lines of java code in each

version are analyzed.

jFlex

JFlex is a lexical analyser generator for Java written in Java. It is also a rewrite of the very useful tool

JLex which was developed by Elliot Berk at Princeton University. As Vern Paxson states for his

C/C++ tool flex: they do not share any code though. jFlex can be downloaded from

http://sourceforge.net/projects/jflex/. We have selected ten consecutive versions of jFlex (version

http://velocity.apache.org/
http://sourceforge.net/projects/jedit/
http://sourceforge.net/projects/jflex/

 91

1.3.0 through version 1.4pre5) which are released in duration of three years. This is small size

software with 21 classes with 6248 lines of average java code, which are considered in this study.

jFreeChart

JFreeChart is a Java chart library that makes it easy for developers to display professional quality

charts in their applications. It is distributed under the terms of the GNU Lesser General Public

Licence (LGPL), which permits use in proprietary applications. jFreeChart is available at

http://sourceforge.net/projects/jfreechart/. We have selected 12 consecutive versions of jFreeChart

(version 1.0.1 through version 1.0.12) which are released in duration of three years. In this study 148

classes of jFreeChart have been considered with an average of 28550 lines of java code in each

version of jFreeChart.

jUnit

JUnit is a unit testing framework for the Java programming language. JUnit has been important in the

development of test-driven development, and is one of a family of unit testing frameworks which are

collectively known as xUnit that originated with SUnit. jUnit is available at

http://sourceforge.net/projects/junit/. For this study seven versions of jUnit released in duration of

three years have been selected. Approximately 74 clases of jUnit with 3875 average lines of java

code in each version have been considered.

5.6.2 Data Acquisition

One of the most difficult and time taking part of the experiment was the data acquisition. In this part

of the experiment, a tool called Indirect Coupling and Maintenance Analyzer (ICAMA) has been

developed which can analyze the various classes of a release and identify the different indirect

coupling paths for each class by analyzing its Java source code and computes value of IPC for each

class. Following class declaration information for each class is collected:

 Member Attribute

o Attribute Type

o Scope of Attribute (e.g. public, private and protected)

 Member Method

http://sourceforge.net/projects/jfreechart/
http://sourceforge.net/projects/junit/

 92

o Parameter List

o Return Type

o Scope of Method (e.g. public, private and protected)

Following class implementation information is also collected for each class analyzed:

 Variables used by Member Method

o Used Member Attribute of the class

 Types instantiated in the implementation of member method

 Methods used by Member Method

o Classes containing these methods

 Type of return variable by the member method of class

 Variables used in parameter list in the member method of class

To gather the data and analyze the code our custom tool ICAMA uses libraries from a Java 1.5 Parser

under GNU Lesser General Public License (http://code.google.com/p/javaparser/). It gathers the data

specified above for each class of a release, finds dependency of a class on other classes and following

data is computed for each class. The coupling relationship of a class with other classes is seen as a

graph with classes as nodes and the coupling between them as edges.

 Number of indirect coupling paths

 Details of each indirect coupling path

o List of involved classes

o Number of edges

o Nodes (Classes) connected through each edge (coupling)

 Common edges, if any between any two indirect coupling paths

The above information is used to compute IPC for each class in a release using equation (5.4) and

algorithm in Figure 5.5.

5.7 Case Studies

The proposed metrics are empirically evaluated on different releases of source code in open-source

projects from industry. A total of nine open-source Java projects are analyzed. The case studies with

different releases of these open source software are considered for validation of the proposed metrics.

http://code.google.com/p/javaparser/

 93

These versions are released in duration of three or more years. The details of the different releases of

these softwares considered in case studies are given in Table 5.3.

Table 5.3 Software considered for case study

EasyMock

Versions v2.0 v2.1 v2.2 v2.3 v2.4

No. of

Classes
55 55 56 60 63

Hibernate

Versions v3.0alpha v3.0beta v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1alpha v3.1beta

No. of

Classes
592 677 784 793 800 802 842 857

Versions v3.1 v3.2 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5

No. of

Classes
909 971 1032 1034 1045 1045 1049

DrJava

Versions v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5

No. of

Classes
349 402 403 415 510

Tiles

Versions v2.0.3 v2.0.4 v2.0.5 v2.0.6 v2.0.7 v2.1.0 v2.1.1 v2.1.2

No. of

Classes
83 84 85 88 88 109 118 122

Versions v2.1.3 v2.1.4 v2.2.0 v2.2.1 v2.2.2 v3.0.0

No. of

Classes
122 123 176 150 150 122

Velocity

Versions v1.0 v1.0.1 v1.1 v1.2 v1.3 v1.3.1 v1.4 v1.5

No. of

Classes
151 152 160 176 184 185 196 214

Versions v1.6 v1.6.1 v1.6.2 v1.6.3 v1.6.4 v1.7

No. of

Classes
229 229 229 229 229 236

jEdit

Versions v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1

No. of

Classes
483 483 483 483 504 504 520 520

Versions v4.5.2 v5.0.0

No. of

Classes
520 535

jFlex

Versions v1.3.0 v1.3.1 v1.3.2 v1.3.3 v1.3.4 v1.3.5 v1.4pre1 v1.4pre3

No. of

Classes
39 39 39 43 43 43 42 42

Versions v1.4pre4 v1.4pre5

No. of

Classes
56 54

jFreeChart

Versions v1.0.1 v1.0.2 v1.0.3 v1.0.4 v1.0.5 v1.0.6 v1.0.7 v1.0.8

No. of

Classes
736 491 491 500 503 514 538 538

Versions v1.0.9 v1.0.10 v1.0.11 v1.0.12

No. of

Classes
538 544 559 561

jUnit

Versions v4.5 v4.6 v4.7 v4.8 v4.8.1 v4.9 v4.10

No. of

Classes
130 137 152 154 154 160 162

 94

Across all these projects it was required to categorize the changes that were made in each version

into set of steps that could be used to describe how the maintenance activities performed. Steps of

code changes seek to describe changes in functionality, where functionality is defined as the scope of

things which the program is able to do. For example if a new conditional is added to deal with

negative numbers, then the functionality of the program has increased. Conversely if that same

conditional is later removed the functionality has decreased. There are some steps of code changes

that do not change functionality. These steps aim to be able to completely describe the differences

between two versions of a java source file. The maintenance effort has been measured by the number

of lines changed per class (Change metric) in duration of three years of software development and

maintenance [Koten and Gray 2006; Zhou and Leung 2007]. A line change could be an addition or a

deletion. A change of the content of a line is counted as a deletion and an addition.

The case study performed over EasyMock from versions v2.0 through v2.4 which has been released

in duration of three years, it is assumed that a continuous maintenance process is applied throughout

the various releases. Earlier versions of EasyMock were intended to combine the precise control of

mock objects with the convenience of mock objects library. The most important change was

observed in v2.3 in EasyMock class that a mock object could expect the same method to be called

more than once and with different arguments. Constraints over arguments and other rules were now

used to dispatch invocations to expectations. Such changes increase the complexity of the software

and it tends to increase the cost of software maintenance. ICAMA is used to analyze different

releases of the software, it analyzes each class in different versions and computes the change metric.

It may also identify the different indirect coupling paths for each class by analyzing its java source

code and can compute value of IPC for each class.

Figure 5.6 (a) shows the variation of Change metric with increasing Indirect Path Coupling for

different classes in EasyMock. It can be observed from this plot that most of the classes (around 36)

have IPC value less than 20% of maximum value. When we compare this data with Change metric it

is observed that for most classes (around 50) it is within 20% of maximum. There is only a single

peak in plot of change metric that signifies that one class has undergone significant change as

compared to others. Overall the observation is that the change metric does not change as change in

 95

observed IPC for EasyMock. Similarily Figure 5.6 (b) shows the variation of Change metric with

increasing Indirect Path Coupling for different classes in DrJava. Here the value of change metric

corresponds to IPC value in a more coherent manner and it changes significantly with an increase in

IPC. Most of the classes having high value of IPC also show high average value of change metric.

Hibernate and jEdit have a large number of classes and the value of change metric varies in more

significant manner with IPC in Hibernate as compared to jEdit as shown in Figure 5.6 (c) & (d)

respectively. In jEdit around 100 classes are there which haven‘t gone under change in their releases,

correspondingly their IPC value also small. For classes having IPC value more than 20% of

maximum the change metric has greater variations.

Figure 5.7 (a) to (d) and Figure 5.8 show the variation of Change metric with increasing IPC value

for jFlex, jFreeChart, Apache Tiles, Apache Velocity and JUnit respectively. The detailed result data

for all the above discussed softwares has been tabulated in appendix A.The change metric is used in

this study as measurement of maintenance effort of the object oriented software. The IPC metric is

calculated for each source code base and the results consider if a correlation exists between the

metric and the change identified per class.

It is observerved from these figures that there are some classes which undergo heavy maintenance as

compared to other classes. Also, the number of classes which received 50% or more maintenance is

within 10% of the total classes. Based on the variation pattern of maintenance we may categorize

software in following categories:

• Category 1: Shift in maintenance range is observed for a certain range of classes.

• Category 2: Almost linearly varying pattern is observed for the classes.

• Category 3: No specific variation pattern is observed.

• Category 4: Maintenance required only after a threshold value of IPC

These observations help us to understand the relation with required maintenance and IPC metric.

This relation can help to categorize the software into different categories. Once these categories are

defined then for these defined set of categorized software, specific design rules can be specified to

get more maintainable software.

 96

5.7.1 Correlation

Different techniques are used to analyze the resulted data from the case studies. The data has been

shown in tabular form and graphs. Pearson‘s Correlation Coefficient has been used to analyze the

linear relationship among subject metrics.

Pearson‘s Correlation Coefficient is measurement of strength of linear relationship between any two

variables X and Y. Pearson‘s Correlation Coefficient ‗r‘ lies in the interval of ─1 to 1 inclusively. i.e.

─1 ≤ r ≤ 1 where r represent Pearson‘s Correlation Coefficient.

The direction of correlation between X and Y is indicated by negative or positive sign of coefficient.

A negative sign indicated an inverse relationship. On occurrence of an inverse relationship one

variable increases while the other variable decreases and vice-versa. Whenever the magnitude of

coefficient becomes 1 it refers to the perfect relationship between two variables and the coefficient of

magnitude 0 indicates the absence of relationship between two variables [Richard 1999].

97

(a)

(b)

(c)

(d)

Figure 5.6 Variation of Change metric with increasing Indirect Path Coupling for different classes in (a) EasyMock (b) DrJava

(c) Hibernate (d) jEdit

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

P
e

rc
e

n
ta

ge

Classes

EasyMock Indirect Path Coupling

Change metric

0

20

40

60

80

100

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

P
e

rc
e

n
ta

ge

Classes

DrJava Indirect Path Coupling

Change metric

0

20

40

60

80

100

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

P
e

rc
e

n
ta

ge

Classes

Hibernate Indirect Path Coupling

Change metric

0

20

40

60

80

100

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

P
e

rc
e

n
ta

ge

Classes

jEdit Indirect Path Coupling
Change metric

 98

(a)

(b)

(c)

(d)
Figure 5.7 Variation of Change metric with increasing Indirect Path Coupling for different classes in (a) jFlex (b) jFreeChart

(c) Apache Tiles (d) Apache Velocity

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
e

rc
e

n
ta

ge

Classes

jFlex Indirect Path Coupling
Change metric

0

20

40

60

80

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

P
e

rc
e

n
ta

ge

Classes

jFreeChart Indirect Path Coupling
Change metric

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

P
e

rc
e

n
ta

ge

Classes

Apache Tiles Indirect Path Coupling
Change metric

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

P
e

rc
e

n
ta

ge

Classes

Apache Velocity
Indirect Path Coupling
Change metric

99

Figure 5.8 Variation of Change metric with increasing Indirect Path Coupling for different classes in

JUnit

According to [Cohen 1988], assuming a large data set, the correlation of magnitude 0.5 is large, the

correlation of magnitude 0.3 is moderate and the correlation of magnitude 0.1 is small. Hopkins

ranks the interval of correlation, according to him, correlation magnitude r ≤ |1. 0| is trivial and it is

as good as garbage, correlation magnitude 0.1 - 0.3 is minor, correlation magnitude 0.3 - 0.5 is low,

correlation magnitude 0.5 - 0.7 is moderate, the correlation magnitude 0.7 - 0.9 is very good and

correlation magnitude 0.9 - 1 is almost perfect [Hopkins 2003].

5.8 Data Analysis and Validation

To study the relationship between indirect path coupling and maintenance effort, the graphs have

been plotted between computed indirect path coupling and the change metrics for the various

versions of source code and also correlation coefficient has been calculated. The correlation

coefficient for these softwares is tabulated in Table 5.4.

Table 5.4 Correlation coefficient for various softwares in study

Software Correlation coefficient

 EasyMock 0.5

 DrJava 0.722

 Hibernate 0.66

 jEdit 0.649

 jFlex 0.574

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

P
e

rc
e

n
ta

ge

Classes

JUnit Indirect Path Coupling

Change metric

 100

 jFreeChart 0.56

 Apache Tiles 0.573

 Apache Velocity 0.7

 JUnit 0.57

Figure 5.9, Figure 5.10 and Figure 5.11 demonstrate the correlation of proposed metric Indirect Path

Coupling and maintenance effort (measured through change metric) for different software considered

in this study. These graphs are plotted using the data from Appendix A. Indirect path coupling value

computed for different classes is taken on x-axis while the change metric computed for

corresponding class is taken on y-axis of the plot.

Using the Spearman‘s correlation coefficient we get correlation coefficient greater than 0.5 for all the

softwares in study. For DrJava and Apache Velocity the correlation is found to be very good while

for others it is moderate. With the first case study with EasyMock which has 55 classes in initial

version taken and increased to 63 in last version, aroung 35 classes are having IPC value less than 5

and they also have undergone fewer changes in further releases. Only a few classes are there which

have high value of IPC, but they also have undergone considerable amount of changes thereby

causing more maintenance effort in future releases. For DrJava a very good correlation is found

between IPC and maintenance effort. Other case study performed on open source software Hibernate

over various releases from version 3.0 alpha through version 3.2.5 in duration of three years. The

difference of this study with earlier case study with EasyMock and DrJava is that Hibernate is a large

project as compared to them. The number of classes analyzed in Hibernate is 327 which are much

larger as compared to 55 in EasyMock and 230 in DrJava. Here the correlation coefficient is 0.66 for

this study. Similarily the graph is drawn for other softwares and the results of this study for

computing change metric and indirect path coupling are given in Appendix A. Based on results from

correlation, we argue that there is a strong correlation between IPC value and maintenance effort of

the software.

101

(a)

(b)

(c)

(d)

Figure 5.9 Correlation of indirect path coupling against Maintenance effort for (a) EasyMock (b) DrJava (c) Hibernate (d) jEdit

Correlation Coefficient R = 0.5

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

EasyMock Correlation Coefficient R = 0.722

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

DrJava

Correlation coefficient R = 0.66

0

10

20

30

40

50

60

70

80

0 10 20 30 40

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

Hibernate Correlation coefficient R = 0.649

0

50

100

150

200

250

300

350

400

0 2 4 6 8

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

jEdit

 102

(a)

(b)

(c)

(d)

Figure 5.10 Correlation of indirect path coupling against Maintenance effort for (a) jFlex (b) jFreeChart (c) Apache Tiles (d) Apache

Velocity

Correlation coefficient R = 0.574

0

40

80

120

160

200

240

0 1 2 3 4

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

jFlex Correlation coefficient R = 0.56

0

40

80

120

160

200

240

0 1 2 3 4 5 6 7

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

jFreeChart

Correlation coefficient R = 0.573

0

30

60

90

120

150

180

0 1 2 3 4 5

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

Apache Tiles Correlation coefficient R = 0.7

0

60

120

180

240

300

360

420

0 1 2 3 4 5 6

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

Apache Velocity

103

Figure 5.11 Correlation of indirect path coupling against Maintenance effort for JUnit

5.9 Threats to Validity

To ensure validity of this study, the design and methods recommended by Yin [2002] have been

followed, and in this section we discuss the possible threats to validity.

Construct validity which refers to the degree to which inferences can be made from the

operationalizations in the study to the theoretical constructs on which those operationalizations were

based. It ensures correct operation for the concepts in the study. It is assured that the only varying

factor is software system itself, there is no other factor which may influence the outcome of this

study.

Internal validity reflects the extent to which a causal conclusion based on a study is warranted. Here

we can say that there is no threat to internal validity as an exploratory study has been performed

instead of explaining causal relationships. Interference because of any person which can lead to

difference in result is not possible, as the results are not dependent upon the date or person in study.

External validity ensures the generalizability of the finding in this research beyond to the immediate

case study. The most obvious open source software projects have been considered in this study.

These are expected to represent a good fraction of software which is used in practice. Also there are a

Correlation coefficient R = 0.570

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
ai

n
te

n
an

ce
 E

ff
o

rt

Indirect Path Coupling

JUnit

104

large number of software available in commercial domain. In this study the selected software are

from different categories and varying sizes selected randomly from open source software repository.

Reliability ensures that the operations involved in the study, such as the data collection procedure

can be repeated to give the same results. It is very important as at a later point of time; if some

investigator decides to repeat the experiments same results and conclusions should be obtained

following the same procedure. A straightforward and simple approach has been followed, with

documenting all the important deisions and intermediate results as well as the procedures for the

analysis. Link to additional resources that contain additional details are given at appropriate places.

5.10 Summary

In this chapter STC form of indirect coupling has been considered which is significantly correlated

with maintenance effort for systems having little interactions. Different versions of nine open source

software are considered and the proposed metric is measured using various tools and it is correlated

with maintenance effort which has been derived from the analysis of source code of different

versions of the softwares taken in case study. The two results are correlated on scatter plot and the

computed correlation coefficient validates the proposed metric with the maintenance effort.

The next chapter proposes a technique based on genetic algorithms for generating test cases in object

oriented software class unit.

105

CHAPTER Improvements in Automated Test Data Generation

Techniques 6

xtensive tests can only be achieved through a test automation process [Sthamer et al. 2002]. The

benefits achieved through test automation include lowering the cost of tests and consequently,

the cost of whole process of software development. Static analysis techniques analyze the software

being tested without executing the program code, either manual or automatic. Symbolic Execution

techniques are the most widely known example of static analysis to generate test data. Several studies

have been performed using this technique for automation in generating test data [Carlos et al. 2008;

Howden 1982] but this technique is expensive and cannot be applied properlytoprogramshaving

complex structures. This thesis proposes two approaches to automate the test data generation process.

The first approach proposes a test model which is based on finite state machine specification.In this

work the class specification and the test model is analyzed to select a set of test data for each method

of the class, and finally the test cases can be generated using other testing techniques like finite-state

testing or data-flow testing. The second approach uses Genetic Algorithms (GAs) which have been

successfully applied in the area of software testing. Since, previous approaches in the area of object-

oriented testing are limited in terms of test case feasibility due to call dependences and runtime

exceptions. In this research, an approach to automatically generate test cases for object-oriented

software is presented which relies on a tree-based representation of method call sequences. This

research proposes a strategy for evaluating both feasible and infeasible test cases. With the presented

approach improvements have been done to the fitness function leading to the improvement of

evolutionary search by achieving higher coverage and evolving more number of infeasible test cases

into feasible ones.

The next section presents a test model which is based on finite state machine specification for

generation of test cases at class level.

6.1 Class Level Test Case Generation

A software testing model summarizes how one should think about test development. It tells about

how to plan the testing effort, what purpose tests serve, when they're created, and what sources of

E

106

information should be used to create them. Here we have extracted our test model from the formal

specification. In this strategy class specification is used to obtain class state space, which is

partitioned into substates. A set of states and a set of transitions among the states compose a test

model. Each state is obtained through the state space partition of the class. The value of an object

from source state to target state can be changed by some transition which basically consists of some

method. The input space of each method, which is the sets of values for the input parameters of the

method, is partitioned. The input space partition values are used with test model to obtain the test

data. Finally this test data can be used for the generation of test cases. The process of generating test

cases at the class level is illustrated schematically in Figure 6.1.

6.1.1 Class Specification

The problem of precisely specifiying software modules is discussed in [Parnas 1972]. An approach

for generating the test cases using state space model is given in [Tse and Xu 1996]. The limitation of

their work is that if the number of states become large and for each state there exists a large input

space then it becomes a deciding factor in selection of test case generation method [Gupta and Saini

2008]. The Larch Interface Language [Guttag et al. 1993] may be thought of as an approach to

formal specification of program modules. This approach is an extension of Hoare's ideas for program

specification [Hoare 1972]. Its distinguishing feature is that it uses two ―tiers‖ (or layers). A class

specification consists of two layers, that we will call a functional tier and a conditional tier. The

abstract values of objects are defined by an algebraic specification and are called as the functional

tier. An algebraic specification generally consists of a number of modules. Each module is used to

specify a collection of related types. The properties of the operations (or functions) related to a

particular type is specified by a set of equational axioms. A base type of a class is basically the type

for the abstract values of objects.

Figure 6.1 Process of generating test data

ClassState

Space
Partition

Method

Transitions
Test Model Class

Specification

Input Space

Partition

Test

Data

107

MinimumBalance = 1000

class Account has Balance

 operation GetBalance() returns Balance

 return Balance;

 endoperation

 operation Deposit(Amount X)

 Balance = X + GetBalance();

 endoperation

 operation Charge()

 if 500 <= GetBalance() < 1000 then

 Balance = GetBalance() – 10;

 endif

 if 20 <= GetBalance() < 500 then

 Balance = GetBalance() – 20;

 endif

 if 0 <= GetBalance() < 20 then

 Balance = 0;

 endif

 endoperation

 operation Withdraw(Amount Y)

 Balance = GetBalance() – Y;

 endoperation

endclass

Figure 6.2 Functional tier of the class Account

Figure 6.2 shows the functional tier of the class Account in pseudo-code form, which specifies the set

of abstract values for objects of this class. Class Account has various operations (methods). The

operation GetBalance returns the current balance of any Account object. The operation Deposit

takes some amount X and adds it to previous value of Balance. Every Account object is

supposed to maintain a minimum balance of amount 1000, otherwise a charge of amount 10 is

deducted if balance is between 500 and 1000. Amount of 20 is deducted if balance found less than

500. The Charge is applied on a monthly basis. The next operation Withdraw receives some

amount Y. If the account has sufficient balance then this amount Y is deducted from current value of

balance.

In the conditional tier, the class name, invariant, pre and post conditions of methods of each class are

specified. A Class is a template for describing the attributes and behavior of its objects. At any

certain moment the attribute values of an object assigned to it is called state of that object. An object

can change its state by calling mutable operations. A state invariant is a condition, or constraint

which is true of all possible states. Each method has its own syntax and pre- and post-conditions.

108

class Account

invariant {Balance >= 0}

constructor Account()

ensures {Balance == 0}

method Deposit (Amount X)

requires {X > 0}

ensures {Balance(post-operation) == Balance(pre-operation) + X}

method Withdraw (Amount Y)

requires {Balance(pre-operation) >= Y}

ensures {Balance(post-operation) == Balance(pre-operation) - Y}

method GetBalance() returns Balance

ensures {Balance(post-operation) == Balance(pre-operation)}

endclass

Figure 6.3 The conditional tier of the class Account

Figure 6.3 shows the conditional tier of the class Account. The invariant clause specifies an

invariant property that must be true of all values of the type [Leino 2008]. The invariant condition for

the Account class is defined by invariant clause. This invariant says here that Balance must be

non-negative in any state of Account object. The method clause declares syntax for each method.

The requires clause is used to state a predicate that follows from the precondition. The ensures

clause follows the post-conditions of the method. The names pre-operation and post-operation denote

the value of the respective attribute before and after calling the method respectively.

6.1.2 Class State Space Partition

Partition analysis, that assists in program testing by incorporating information from both a formal

specification and an implementation of procedures [Richardson and Clarke 1981]. We will improve

this strategy so that it can be applied in class-level testing with formal specifications. Depending

upon the values of attributes a class object may acquire various states. All such states form state

space [VanderBrug and Minker 1975] of a class. In our approach, the state space of a class will be

partitioned into sub states. For each sub state the input space of each method will be partitioned into

sub-domains. Partition testing or sub domain testing comprises a broad class of software testing

methods that call for dividing a program's input domain into sub domains and then selecting a small

number of tests (usually one) from each of them [Weyuker and Jeng 1991].

Here we first consider the partition analysis of state space. Depending upon the valid values of

attributes of a class it will have a certain set of states which is called its state space. Since the state

109

space of a class may be very large, it may become difficult to test all the states. We can subdivide it

into some finite number of substates based on the class specifications. For the purpose of testing,

these substates will have similar behavior. Using the state-space partition, a test model for the class

can be constructed, which can further be used to generate the test cases.

Let us consider the class Account. The state space of this class is partitioned into following substates:

the balance is less than 1000 and the balance is greater than 1000.

self.Balance < 1000, self.Balance > 1000

Taking into account the clauses in Figure 6.3, the state space is further partitioned into five substates.

In Figure 6.4, five substates are shown.

self.Balance < 0 (invalid), self.Balance = 0, 0 < self.Balance < 500,

self.Balance = 500, 500 < self.Balance < 1000, self.Balance = 1000, self.Balance

> 1000.

Figure 6.4 The state-space partition of Account class

No further partitioning is necessary in this simple example. It is assumed that an object behaves

uniformly in each substate. The test model in this example class is a finite-state machine, which

describes the state-dependent behaviors of individual objects of the class. The test model has a set of

states and a set of transitions along with the states. These states are obtained through the state-space

partition of the class. Every transition between the states consists of a method, which changes the

value of an object from the source state to the target state of the transition, and a guard predicate

derived from the pre-condition of the method. There are two special states, namely initial state and

final states. The initial state represents the state before the object has been created and the final state

represents the state after an object is destroyed. A class Account has the test model as shown in

Figure 6.5. There are seven states:

S0 = {unborn}, S1 = {b = 0}, S2 = {0 < b < 500}, S3 = {b = 500}, S4 =

{500 < b < 1000}, S5 = {b = 1000}, S6 = {b > 1000}

110

Figure 6.5 The Test Model of the class Account

Where S0 is initial state and b denotes the attribute Balance. The transitions are shown below:

t0=Account(),t1=Deposit(X) {0<X<500}, t2=Deposit(X) {X=500},t3=Deposit(X)

{500<X<1000},t4=Deposit(X) {X=1000},t5=Deposit(X) {X>1000},t6=Deposit(X) {b+X=500},

t7=Deposit(X) {500<b+X<1000}, t8=Deposit(X) {b+X=1000}, t9=Deposit(X) {b+X>1000}, t10=Deposit(X)

{500<X<1000}, t11=Deposit(X) {X=500}, t12=Deposit(X) {X>500}, t13=Deposit(X) {b+X=1000},

t14=Deposit(X) {b+X>1000}, t15=Deposit(X) {X>0}, t16=Withdraw(Y) {b-Y=0}, t17=Withdraw(Y)

{0<Y<500}, t18=Withdraw(Y) {Y=500}, t19=Withdraw(Y) {b-Y=500}, t20=Withdraw(Y) {0<b-Y<500},

t21=Withdraw(Y) {b-Y=0}, t22=Withdraw(Y) {0<Y<500}, t23=Withdraw(Y) {Y=500}, t24=Withdraw(Y)

{500<Y<1000}, t25=Withdraw(Y) {Y=1000}, t26=Withdraw(Y) {b-Y=1000}, t27=Withdraw(Y) {500<b-

Y<1000}, t28=Withdraw(Y) {b-Y=500}, t29=Withdraw(Y) {0<b-Y<500}, t30=Withdraw(Y) {b-Y=0},

t31=GetBalance(), t32=GetBalance(), t33=GetBalance(), t34=GetBalance(), t35=GetBalance(),

t36=GetBalance(), t37=Charge() {510<b<1000}, t38=Charge() {b=510}, t39=Charge() {500<b<510},

t40=Charge() {b=500}, t41=Charge() {20<b<500}, t42=Charge() {b<=20}.

During partition analysis, we need to distinguishbetween four kinds of methods: mutators (such as

Deposit (Amount X) and Withdraw (Amount Y)), observers (such as GetBalance()),

constructors (such as Account ()), and destructors. We need to unfold the complex denotations

by introducing observable contexts [Bernot et al. 1991]. Our test model can be turned into a complete

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9 t1

0

t1

1

t1

2

t1

3

t14

t1

5

t1

6 t1

7

t1

8

t1

9

t2

0

t21

t2

2

t2

3
t2

4

t2

5

t2

6

t27

t2

8

t2

9

t3

0

t3

1

t32

 t33

t34

t35

t36

t37

t38

t39

t40

t41

t42

S0

S1

S2

S3

S4

S5

S6

111

finite-state machine by adding error states, error transitions, undefined states, and undefined

transitions.

6.1.3 Partition of Input-Space

Input space of each method is also required to partition when we partition the state space of the class.

The input space is the sets of values for the input parameters of the method. A valid input space for a

method is the subset of the input space satisfying the pre-condition of the corresponding method. The

input space of a method can be partitioned at least into two sub-domains, whether valid or invalid

values. Test data can then be drawn from each sub-domain [Chen et al. 1998].

While considering the partition the input spaces of methods it becomes important to consider the type

of each input variable. In above discussed example of class account, the input space of Deposit

(Amount X) or Withdraw (Amount Y) the type of input is amount. The pre-condition of

Deposit (Amount X) will give its valid input space which is applied for the input values of

amount. Similarly for the method Withdraw (Amount Y), the pre-condition of this method will

give its valid input space. The input-space partition of each method is also related with the state-

space partition of the class since methods are used to manipulate the states of objects. When we do

the input-space partition of a method the state or some attributes of the class may be considered as

implied parameters of the method. Based on the functional tier, the conditional tier, and the test

model in figures 6.2, 6.3, and 6.5, we can partition the input space of each method as shown in figure

6.6.

Input-space partition of Deposit (Amount X)

In State S1:

p1 = {0<X<500}, p2 = {X=500}, p3 = {500<X<1000}, p4 = {X=1000}, p5 = {X>1000}

In State S2:

p6 = {0<X<500 and b+X<500}, p7 = {0<X<500 and b+X=500}, p8 = {0<X<500 and 500<b+X<1000}, p9

= {X=500 and 500<b+X<1000}, p10 = {500<X<1000 and 500<b+X<1000}, p11 = {500<X<1000 and

b+X=1000}, p12 = {500<X<1000 and 1000<b+X<1500}, p13 = {X=1000}, p14 = {X>1000}

In State S3:

p15 = {0<X<500}, p16 = {X=500}, p17 = {X>500}

112

In State S4:

p18 = {0<X<500 and 500<X+b<1000}, p19 = {0<X<500 and X+b=1000}, p20 = {0<X<500 and

X+b>1000}, p21 = {X=500}, p22 = {X>500}

In State S5:

p23 = {X>0}

In State S6:

p24 = {X>0}

Input-space partition of Withdraw (Amount Y)

In State S2:

p25 = {0<Y<500}

In State S3:

p26 = {0<Y<500}, p27 = {Y=500}

In State S4:

p28 = {0<Y<500}, p29 = {Y=500}, p30 = {500<Y<1000}

In State S5:

p31 = {0<Y<500}, p32 = {Y=500}, p33 = {500<Y<1000}, p34 = {Y=1000}

In State S6:

p35 = {0<Y<500}, p36 = {Y=500}, p37 = {500<Y<1000}, p38 = {Y=1000}, p39 = {Y>1000}

Figure 6.6 Partition of Input-space for each method of Account class

The test data for each input parameter of a method can be selected from every sub-domain using

existing testing techniques. It is important here to make a little assumption. In the simplest manner

we can assume that the method under test behaves uniformly in each sub-domain. Based on the

above assumption, we need to select one value randomly which will work as representative from

each sub-domain, and for each method we can obtain a set of test data.

6.1.4 Generation of Test Cases

The test cases generated in this way have various method sequence invocations utilizing the different

sets of test data. The various methods of class interact to change the state of the class object. Thus the

generated test cases are actually used to test the various scenarios which are dependent on the change

of state which in turn is depending upon the interaction of methods. Here let us first use finite-state

113

testing techniques to generate test cases [Offutt et al. 2008]. A test case is generated by traversing the

test model from the initial state. Method sequences are derived from the traversed transitions. A set

of test cases are required to be generated so that it can cover the test model in the form of state

coverage, transition coverage, and path coverage. For example, the test case

Account(), Deposit(600), Deposit(400), Withdraw(700), Deposit(1000)

covers the six states in the following sequence: S0, S1, S4, S5, S2, S6

We may also use data-flow testing techniques to generate test cases. Here the test cases will be

generated according to def-use criteria [Weyuker 1982] of attributes in the test model. Each attribute

used in the method is classified as being defined or used. It is called as defined at a transition if the

value of the attribute is changed by the method of the transition and is said to be used if the method

of the transition only refers to the value of the attribute. A set of test cases is generated according to

certain data-flow testing criteria, which covers such def-use paths with regard to each attribute.

Various testing techniques based on finite-state machines can be found in literature [Cheng and

Krishnakumar 1983; Friedman et al. 2002; Naik 1997].

6.1.5 Analysis

In this section we discussed a technique which can be used to generate the test cases at class level

testing for object oriented programs. The testing technique based on class specification is used in this

method. This technique provides the test model which can be integrated to other existing techniques

to generate the test cases. The generation of test cases, its execution and test result analysis can be

done in a systematic and in an effective way using this test model. Since the test model is generated

based on the behavior of the class as specified by the class specification, therefore the actual intended

behavior is also represented by the test model.

The proposed technique can be used for:

a. Implementing an object oriented test tool to generate test data.

b. Research can be done for other testing techniques at cluster-level and system-level by

extending the current work.

c. Evaluation can be done on some real life application problems so that the achieved results

could be used to compare with existing methods.

114

The next section applies genetic programming technique to generate the test cases for object oriented

software.

6.2 Genetic Programming Technique for Test Case Generation

The Genetic Algorithms based on principle of natural evolution are generalizations of the approach

which can be actually implemented by computers are known as Genetic Programming (GP) approach

[Koza 1992]. In our genetic programming approach we represent the test cases as trees. A test case in

object oriented program is a sequence of method calls. A test case in object oriented software

contains the numeric test data in form of parameters as well as the sequence of constructor and

method calls is also necessary. The reasons for this are following:

1. Multiple objects may be involved in a single test case. Therefore the additional objects may

be required as parameters or whose methods may be required for Class Under Test (CUT) for

execution of its test case. Further it may also be the case that creation of these objects may

need to create more additional objects. Test cluster classes are the set of all these classes from

which different class instances are required.

2. In order to process any particular test scenario in desired way the objects must be taken to

some specific state (e.g. using code coverage criteria certain objects must be in a particular

state). Therefore the participating objects are required to be put in those special states to

process the test case. Then method calls will be required to be issued for the test cluster

objects.

Therefore, a test case for any object oriented software is required to consist of the definition of

testing prerequisites, a test program consisting parameters, their types and their values, method calls

as well as the test oracle. This test oracle is used for validation of test results. Each test case can be

considered as a sequence of statements S={s1, s2, ... sn}. A statement consists of the following

essential components:

• target object

• method

• parameters

• receiver

The above specified information will be needed to encode a genotype individual or chromosome. A

method in a statement can be a class method or it may be a constructor. The component parameters

115

will hold the type of the variable. The type of variable in parameter may be primitive or also it may

be user defined. The corresponding values of associated types are also required. The method which

holds the parameters with their types and values are called on the target object in a statement. The

value returned by the method of the target object is hold by the receiver component. Typically any

statement si can only be executed if an appropriate target object and all the required parameter

objects for its method have been created in advance, i.e. during the calls of s1 to si-1. Obviously there

exists a call dependency among the methods which must be taken into account when writing

statements for test cases. Therefore it may be concluded that any arbitrary sequence of statements is

not feasible, but only those which respect the call dependencies.

Algorithm

Input: class under test

Output: test case suite

For each class under test do

 For each method under test do

 Generate method call sequence

 Encode to tree representation

 Create CFG of method

 Instrument method as per CFG

 Create Initial Random Population

 Repeat

 For each individual in population do

 Decode to method call sequence

Synthesize Test program

 Compile and execute test program

 Compute fitness

 Compute coverage

 Select individuals to reproduce

Apply Crossover, Mutation

 Select next generation

 Until stopping criteria is met

Figure 6.7 Algorithm for class testing using proposed approach based on GA

An algorithm for test case generation based on GA and has been used in this research is given in

Figure 6.7. A flowchart is also shown in Figure 6.8 explaining this test data generation process.

6.3 Encoding and Decoding of Chromosome

The components of each test case statement are encoded using genes while chromosomes are

constructed. This encoding assigns some number to each corresponding gene. At the time of

decoding, the integer values of the genes identify the components such as method to be called and the

target object to be used for the invocation. Usually the methods in a test cluster have parameter lists

116

with different lengths; this requires that multiple genes to be assigned to represent the parameters for

a method. The data type for a parameter gene depends on the parameter to which it is assigned.

Figure 6.8 Flowchart for test data generation using proposed approach based on GA

For each MUT

do

Generate MCS

Encode as tree

representation

Create Initial

Random Population

Parameter

files

Generate CFG

Instrument the

code

For each

generation do

For each

individual do

Synthesize test

program

Compile and execute

test program

Trace CFG node

traversal

Evaluate fitness and

coverage

All individuals

evaluated?

Stopping

criteria met?

Select individuals to

reproduce

Apply genetic

operators

Generate new

population END

Start

no

yes

yes

no

 117

If the assignment is not clear at the time of encoding, that data type must be used which would allow

for every possible decoding. Furthermore, a statement from a test program can be represented by a

gene indicating the method to be called, a gene indicating the target object for which to call this

method, and a number of variables which are used as parameters for the method call. A gene

indicating the receiver object is also assigned if it exists in the statement.

These all such genes will make a chromosome, which will form the various nodes of the tree

representation of test case.

6.3.1 Encoding

For the genetic algorithm techniques to be applied, all the components of a test case statement are

must be encoded into genes to form a chromosome. For encoding the constructor and methods they

are serially numbering to form an ordered set of constructors and methods in the test cluster classes.

In the chromosomes a gene is assigned to represent a constructor or a method appearing in test

program. The domain D(M) for the genes can be defined as maximum number of test cluster

methods:

|]|,1[)(
MC

SSMD ⊂ℕ (6.1)

Where SC = (c1,c2,....cr) and SM = (m1,m2,....mn)is the ordered set of constructors and methods

respectively of the test cluster class. ℕ is the set of all natural numbers.

Similarly a gene must be assigned in the chromosome to represent a target object for which some

method will be called by objects of test class cluster. In programming languages this is a kind of

object reference based on natural numbers. If the number of candidate target objects for a statement si

is known then only the domain for the genes of target object will be possible. This number is directly

dependent upon the object creating methods which are called before statement si is called. The

domain D(Ti) of target genes for statement si can be defined as:

 |]|,1[)(
i

ti
OTD ℕ (6.2)

where, t ∈C, the set of all classes in test cluster, is the required target object and i is the index of

current statement, i

t
O = (o1, o2,…. on) which is the ordered set of objects and are instances of class t

and have been created by the statements which are called before si.

 118

The encoding of receiver object can be done by assigning a gene for the receiver object used in the

statement. The domain of receiver objects can be defined as the objects created by method call in

statement si.

|]|,1[)(BORD
i

ri
 (6.3)

where r ∈C, the set of all classes in test cluster, },....,{
21 r

i

r
oooO the ordered set of objects

created by method call in statement si. B is the ordered set of basic types available in the language. A

gene is assigned in the chromosome for each required parameter. The definition of its domain

depends on the data type of the parameter it represents which may be primitive or object type

parameters. The domain is same as the data type ranges and precision used in language for primitive

data types. For object type parameters a similar object reference mechanism can be used as for the

target objects.

6.3.2 Decoding

The chromosome contains the various genes which represent the various operations as identified. The

gene representing a method can be described by a function γ which maps each value of method gene

to a particular method, associated with it. Suppose mk∈SM, the kth method in SM then:

γ: Gj mj

Where Gj is the gene which was encoded for method mj.

Now, when decoding for target methods the values must be adjusted to the actual number of

candidate target objects. If target Ti was encoded as:

D(Ti) = RTi

Then decoding can be done by defining a function ρ which assigns each value t of gene Gt , such that

t∈RTi to a target object i

t
Oo :

ρ: RTi
i

t
O

andtot where ot∈
i

t
O

While decoding parameter genes, Gp, a function ξ can be defined which assigns value to each value

of Gp which may refer to a primitive value or object reference. If it is a primitive value then no

mapping will need, same value can be directly used as parameter value. If the parameter is of object

type then a mapping of RPi to object reference must take place:

 119

ξ: RPi
i

p
O

pop

where, op is the pth object of the ordered set i

p
O .

6.4 Fitness Evaluation

The fitness function is constructed on the basis of the software to be tested. This fitness function

itself is not of interest for the problem, but here the goal is to find test data that fit the test criteria. A

well-constructed fitness function can:

 effectively increase the chance of finding the optimal solution and a better coverage of the

program under test is obtained and

 search process is better guided and therefore the solution optimizes within less number of

iterations.

Other work on designing fitness functions and the results of the optimization process can be found in

[Jones et al. 1996], which investigates the use of various distance functions like Hamming distance,

reciprocal function and their influence on optimization performance. In [Jones et al. 1996], hamming

distance is considered better and the authors used genetic algorithms with a bit representation of all

parameters in their approach.

Modifying the distance function of branch conditions is one of the possible mechanisms for

modifying the fitness function. In our research we argue that more general alterations to the fitness

function may lead to better results in Evolutionary Testing. This increases the chance to find the

solution and optimization process also gives a better performance in general. Work of Baresel et al.

[2002] discusses dependencies within loop iterations and introduces fitness functions with an

improved behavior for optimizing test data for target nodes in loops. We use this approach to

improve the methodology proposed by Carlos et al. [2008] for evaluating the quality of both feasible

and infeasible test cases i.e., those test cases whose execution is completed effectively and terminate

with a call to the method under test, and those tests which abort prematurely because some runtime

exception has been during test case execution. In their approach, instead of simply refusing the

infeasible test cases these are also considered at certain stages of the evolutionary search, therefore

promoting diversity and enhancing the possibility to achieve full coverage. In their work weights of

 120

Control Flow Graph (CFG) nodes are reevaluated by multiplying it three factors defined in their

work. But their work hasn‘t considered the dependencies within loop iterations as described by

Baresel et al. [2002]. This may cause to deteriorate the efforts done towards evolutionary testing.

This may happen because guidance to appropriate test data lacks which may result in loop iteration

even if it is closer to the unexplored node. In most of the cases, this situation may lead to a random

search where the chance of finding a solution becomes very low if the search space is large. In the

presented research we solve this problem by adding dependencies of one loop iteration to the fitness

function. We can observe this information for all the iterations and fitness may be calculated from it

while monitoring the execution of the test object as described by Baresel et al. [2002]. This may lead

to improve the chance of finding a solution.

In the presented approach, the test case quality is related to the CFG nodes of Method Under Test

(MUT) since these nodes serve as targets during evolutionary search process. Those test cases which

execute an unexplored (or less explored) path or a node in CFG graph need to be favored. The basic

aim of test generation process is to find a set of test cases which may achieve full code coverage of

the test object in minimum number of generations. If a runtime exception occurs while executing the

test case, it may be aborted prematurely. Whenever it happens, the structural behavior of MUT is

impossible to be traced because the final instruction of Method Call Sequence (MCS) is unable to be

executed. Therefore the test cases broadly are divided into following two categories:

 Feasible Test Cases, which are effectively executed, and are terminated by executing the final

instruction of MCS.

 Infeasible Test Cases are those which terminate prematurely because a runtime exception has

been thrown by some instruction of the MCS.

In general, it has been observed that longer and more intricate test cases are more prone to throw

runtime exceptions [Carlos et al. 2008]. However, to elaborate state scenarios and traverse certain

problem nodes complex method call sequences are oftenly needed. These complex method call

sequences may generate infeasible test cases, which may need to be penalized. But blindly penalizing

the infeasible test cases will discourage the definition of elaborate state scenarios. In this research,

the issue of approaching the search towards the traversal of new and interesting paths and CFG nodes

has been addressed by assigning weights to the CFG nodes. In this approach higher weight of a node

 121

means that the cost of exercising it will also be higher and therefore higher cost is associated to

transverse the corresponding control-flow path.

During the start of the first generation the weight of each CFG node is initialized to 𝑊𝑖𝑛𝑖𝑡 , then in

each successive generations the weight of each CFG node is reevaluated to accommodate the

following factors:

1. The Hit Count Factor (HCF), which is computed as
𝑁𝑡−𝑁𝑛𝑖

𝑁𝑡
 . It accounts for deteriorating the

weight of recurrently hit nodes of CFG. Here 𝑁𝑛𝑖
 parameter contains the count of how many

times node𝑛𝑖 was exercised by the test programs of the previous generations. 𝑁𝑡 represents

the number of test cases produced in the previous generation. Here the value of HCF remains

between 0 and 1. If a node is hit more number of times, HCF will be close to 0 which

decreases weight of corresponding node more rapidly.

2. The Path Factor (PF) which is used to improve the weight of nodes which lead to interesting

nodes and thus belong to interesting paths. We compute PF as

𝑊𝑥
𝑊𝑖𝑛𝑖𝑡

 𝑥𝜖 𝑆𝑢𝑐 𝑛𝑖

 𝑆𝑢𝑐𝑛𝑖
 . It computes

the average value of ratio of change in weight of a node with its initial value of weight for all

successor nodes of corresponding node 𝑛𝑖 . 𝑆𝑢𝑐𝑛𝑖 represents set of all successor nodes of 𝑛𝑖 in

CFG graph and 𝑆𝑢𝑐𝑛𝑖 represents count of all successor nodes of 𝑛𝑖 . Therefore PF will

decrease the weight of node 𝑛𝑖 in reevaluation if the overall weight of its successor nodes has

been decreased from their initial value, otherwise it will increase. That means if node 𝑛𝑖 leads

to unexplored or interesting CFG nodes then PF will increase its weight.

3. The Weight Factor (WF), we represent it as 𝛼 is needed in node reevaluation because HCF

will always decrease the weight of node 𝑛𝑖 for each test case while PF may increase or

decrease it. Therefore, to intensify the path search we need to ensure that the weight of node

𝑛𝑖 should be restrained. To accomplish this we use WF whose value should be selected

properly which can lead to enhance the search process taking minimum number of

generations.

Therefore, considering all the above factors the weight of each CFG node is reevaluated in every

generation according to following equation:

 122

𝑊𝑛𝑖 = 𝛼𝑊𝑛𝑖
𝑁𝑡 − 𝑁𝑛𝑖

𝑁𝑡

𝑊𝑥

𝑊𝑖𝑛𝑖𝑡
 𝑥𝜖𝑆𝑢𝑐𝑛𝑖

 𝑆𝑢𝑐𝑛𝑖
 (6.4)

The fitness of feasible test cases is computed on the basis of their trace information, which includes

the nodes which are hit by that test case. If 𝐻𝑡 denotes the set of nodes which are traversed by a test

case 𝑡, and thus 𝐻𝑡 denotes the number of nodes along this path then the fitness of this test case is

evaluated as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹 𝑡 =
 𝑊∈𝐻𝑡

 𝐻𝑡
 (6.5)

Using this strategy the fitness of those test cases which traverse the same path which has been

traversed already deteriorates in subsequent traversals because the weight of frequently hit nodes is

increased thus worsens the fitness of those test cases who execute through that path.

The fitness of infeasible test cases is computed as the ratio of weights of all the remaining possible

nodes in CFG where runtime exception occurred with the weights of all those nodes which have been

exercised by that test case before the runtime exception occurred. If exception occurs at node 𝑛𝑒 and

𝐻𝑑
𝑛𝑒 denotes the set of all nodes which are descendants of node 𝑛𝑒 in CFG and 𝐻𝑡

𝑛𝑒 denotes the set of

all nodes which are traversed by the test case before the exception occurs.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐼(𝑡) = 𝛽 +
((𝑊)/∈𝐻𝑑

𝑛𝑒 𝐻𝑑
𝑛𝑒) ∗ 𝑊𝑖𝑛𝑖𝑡

(𝑊)/|𝐻𝑡
𝑛𝑒 |∈𝐻𝑡

𝑛𝑒

(6.6)

In this manner the fitness of infeasible test cases is also depending upon infeasibility factor 𝛽 which

is added to penalize the fitness of infeasible test cases. The infeasible test cases are selected to

improve into feasible test cases at certain point of evolutionary search, which favors the diversity and

complexity of MCSs. If 𝛽 is large, more number of infeasible test cases may be selected for next

generation which may reduce the possibility of a better feasible test case to be selected for next

generation. If 𝛽 is very small, then only few infeasible test cases will be selected for next generation

which diminishes the overall idea of giving weights to CFG nodes for computing fitness. Therefore

this value must be selected very carefully for better results.

 123

6.5 Case Studies

The approach outlined in this thesis involves the generation of test programs and data to be used as

parameters of the test object and its evolution through a GA based strategy. The proposed method

uses a hybrid version of ET, using characteristics of Conventional ET and Object Oriented ET, and

that one goal of its construction is to improve performance of unit tests. Case study is conducted to

evaluate the technique. In this study we perform experiments comparing the improvement in test

cases achieved by Evolutionary Testing by varying various parameters. For the purpose of

experimental study a tool EpochX v 1.4.1 (URL: http://www.epochx.org/index.php) has been used.

This tool is an open source genetic programming framework. It is designed specifically for the task

of analyzing evolutionary automatic programming.

6.5.1. Case Study 1

For conducting the case study the example shown in Figure 6.9 has been considered. This is a

classical example used by many researchers in software testing area to test the code coverage

[Ammann and Offutt 2008]. This example is a simple program for classification of triangles. The

class for which test cases are to be generated is TriangleTest class and the method under test is

Triang() which takes three parameters of type Side. If these three parameters define an invalid

triangle then it has been considered as exception and program terminates.

Firstly an experiment is conducted to investigate the importance of Combination Rate (CR) and

Mutation Rate (MR) on the efficiency of the genetic algorithm. Another parameter that might most

obviously affect performance is the size of the population. For the experiment population size is

varied among the values 100, 150, 200 and 300. To establish that the values chosen for the mutation

and crossover rates were reasonable, these two parameters are jointly varied over a range of values.

Initial experiments showed that mutation and crossover rates less than 0.1 or greater than 0.8 did not

improve performance, so these experiments limited crossover and mutation rates to values within this

range. Crossover and mutation rates were thus varied between 0.1 to 0.8 per generation. For this

initial experiment the values of α and β are 1 and 0 respectively. These values ensure that they don‘t

put their own impact while computing the fitness of feasible and infeasible test cases as their impact

is considered in separate experiments.

http://www.epochx.org/index.php

 124

S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

F

static void Triang (Side Side1, Side Side2, Side Side3)

{

 // triOut and triexcept are the class variables

 // Triang = 1 if triangle is scalene

 // Triang = 2 if triangle is isosceles

 // Triang = 3 if triangle is equilateral

 if (Side1.getSide() <= 0 || Side2.getSide() <= 0 ||

Side3.getSide() <= 0) {

 triexcept = true;

 return;

 }

 triOut = 0;

 if (Side1.getSide() == Side2.getSide())

 triOut = triOut + 1;

 if (Side1.getSide() == Side3.getSide())

 triOut = triOut + 2;

 if (Side2.getSide() == Side3.getSide())

 triOut = triOut + 3;

 if (triOut == 0) {

 if (Side1.getSide() + Side2.getSide() <= Side3.getSide()

 || Side2.getSide() + Side3.getSide() <=

Side1.getSide()

 || Side1.getSide() + Side3.getSide() <=

Side2.getSide()) {

 triexcept = true;

 return;

 }

 else

 triOut = 1;

 return;

 }

 if (triOut > 3)

 triOut = 3;

 else if (triOut == 1 && Side1.getSide() + Side2.getSide() >

Side3.getSide())

 triOut = 2;

 else if (triOut == 2 && Side1.getSide() + Side3.getSide() >

Side2.getSide())

 triOut = 2;

 else if (triOut == 3 && Side2.getSide() + Side3.getSide() >

Side1.getSide())

 triOut = 2;

 else

 triexcept = true;

 return;

} // end Triang

Figure 6.9 CFG of method considered for case study 1 and its code

S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

E

 125

The results of these experiments are shown in Table 6.1 for different combinations of CR and MR.

The coverage is computed after 200 generations for different values of population size N. From the

Table 6.1 it is observed that maximum value of coverage 59.09% is achieved at CR=0.7, MR=0.2

with population size 200, other values, if exist can be rejected if corresponding population size is

larger than 200.

Table 6.1 Coverage obtained for different values of population size

N
CR=0.6

MR=0.1

CR=0.6

MR=0.2

CR=0.6

MR=0.3

CR=0.7

MR=0.1

CR=0.7

MR=0.2

CR=0.7

MR=0.3

CR=0.8

MR=0.1

CR=0.8

MR=0.2

CR=0.8

MR=0.3

100 36.36 36.36 40.91 40.91 36.36 36.36 40.91 45.45 40.91

150 45.45 45.45 40.91 45.45 50.00 40.91 45.45 50.00 45.45

200 50.00 54.55 50.00 45.45 59.09 45.45 48.00 52.50 44.50

250 52.00 55.55 49.20 46.45 55.09 44.25 50.00 54.55 45.45

300 54.55 54.55 45.45 50.00 59.00 45.45 45.45 59.09 50.00

The remaining experiments are conducted by varying other parameters which are weight decrease

factor 𝛼 and infeasibility factor 𝛽 keeping CR=0.7 and MR=0.2 which is their optimum value

obtained in this case study. Table 6.2, 6.3 and 6.4 summarize the results obtained for various

combinations of 𝛼 and 𝛽. These experiments are conducted for a population size of 200 individuals

per generation. The maximum number of generations is 200, if full coverage is achieved earlier then

program terminates. The first generation which has 200 individuals is generated randomly. For

crossover operation these 200 individuals are divided into two groups of 100 individuals each. Each

individual from first group performs crossover operation with a single individual from second group

with probability decided according to crossover rate. If crossover operation takes place between these

two individuals as explained in section 6.1.4 then two offspring are also added into the current

population. Therefore this operation increases the population size. The next operation which is

performed is mutation and it operates as explained in section 6.1.4. For evaluation of the fitness each

individual in converted back to method call sequence with instrumented MUT and is executed with

associated parameters. The program traces the nodes which are covered by the corresponding test

case. If the test case is feasible its fitness is computed according to equation 6.5, otherwise if

infeasible then its fitness is computed according to equation 6.6. At the end of each experiment we

compute improvement factor for feasible and infeasible test cases so that the most efficient

combination of α and β can be identified. Improvement factor for feasible (IFF) is computed as:

 126

𝐼𝐹𝐹 =
𝑁𝑙𝑎𝑠𝑡
𝐹𝑒𝑎𝑠 − 𝑁𝑓𝑖𝑟𝑠𝑡

𝐹𝑒𝑎𝑠

𝑁𝑓𝑖𝑟𝑠𝑡
𝐹𝑒𝑎𝑠 (6.7)

where

𝑁𝑙𝑎𝑠𝑡
𝐹𝑒𝑎𝑠 is the number of selected feasible test cases in last generation, and

𝑁𝑓𝑖𝑟𝑠𝑡
𝐹𝑒𝑎𝑠 is the number of selected feasible test cases in first generation.

similarly the improvement factor of infeasible test cases (IFI) is computed as

𝐼𝐹𝐼 =
𝑁𝑓𝑖𝑟𝑠 𝑡
𝑈𝑛𝑓𝑒𝑎𝑠

− 𝑁𝑙𝑎𝑠𝑡
𝑈𝑛𝑓𝑒𝑎𝑠

𝑁𝑓𝑖𝑟𝑠𝑡
𝑈𝑛𝑓𝑒𝑎𝑠

 (6.8)

where

𝑁𝑙𝑎𝑠𝑡
𝑈𝑛𝑓𝑒𝑎𝑠

 is the number of selected infeasible test cases in last generation, and

𝑁𝑓𝑖𝑟𝑠𝑡
𝑈𝑛𝑓𝑒𝑎𝑠

 is the number of selected infeasible test cases in first generation.

Table 6.5 summarizes the improvement of feasible test cases for different values of α and β which

are based upon the results obtained from experiments discussed above. It is clear from Figure 6.10

which represents Table 6.5 graphically, it can be observed that highest improvement in feasible test

cases is obtained for α=1.4 and β=70. Similarly from Figure 6.11 it is observed that for the same

combination of α and β maximum improvement is obtained for infeasible test cases also. This is

obvious because if number of feasible test cases increases then number of infeasible test cases will

reduce and this improves overall generation.

Table 6.2 Results obtained using different combinations of α and β parameters

α=1.2, β=50 α=1.2, β=70 α=1.2, β=90

Gen# Feasible Infeasible Coverage Feasible Infeasible Coverage Feasible Infeasible Coverage

10 71 129 22.73 72 128 18.18 51 149 18.18

20 133 67 31.82 101 99 18.18 123 77 27.27

30 124 76 31.82 84 116 18.18 94 106 36.36

40 114 86 31.82 63 137 18.18 95 105 45.45

50 102 98 40.91 77 123 27.27 82 118 50.00

60 93 107 40.91 82 118 31.82 88 112 59.09

70 104 96 45.45 117 83 40.91 84 116 63.64

80 115 85 45.45 62 138 50.00 66 134 63.64

90 108 92 45.45 103 97 59.09 102 98 68.18

100 135 65 50.00 113 87 63.64 81 119 68.18

110 127 73 59.09 115 85 72.73 105 95 72.73

120 128 72 63.64 137 63 77.27 83 117 72.73

130 121 79 72.73 134 66 77.27 106 94 81.82

 127

α=1.2, β=50 α=1.2, β=70 α=1.2, β=90

Gen# Feasible Infeasible Coverage Feasible Infeasible Coverage Feasible Infeasible Coverage

140 140 60 77.27 171 29 81.82 111 89 81.82

150 146 54 86.36 160 40 90.91 87 113 86.36

160 147 53 86.36 144 56 100.00 119 81 86.36

170 123 77 95.45 102 98 90.91

180 159 41 95.45 114 86 95.45

190 153 47 95.45 125 75 100.00

200 192 8 100.00

Feasible : 1.70

Infeasible: 0.94

Feasible : 1.0

Infeasible: 0.56

Feasible : 1.45

Infeasible: 0.49

Table 6.3 Results obtained using different combinations of α and β parameters

α=0.8, β=50 α=0.8, β=70 α=0.8, β=90

Gen# Feasible Infeasible Coverage Feasible Infeasible Coverage Feasible Infeasible Coverage

10 71 129 13.64 91 109 22.73 101 99 22.73

20 82 118 13.64 83 117 27.27 143 57 31.82

30 131 69 22.73 71 129 27.27 133 67 40.91

40 66 134 27.27 86 114 27.27 164 36 40.91

50 83 117 27.27 116 84 36.36 132 68 40.91

60 91 109 27.27 51 149 36.36 145 55 40.91

70 96 104 31.82 102 98 45.45 120 80 45.45

80 131 69 36.36 104 96 50 102 98 45.45

90 104 96 40.91 96 104 59.09 101 99 54.55

100 111 89 45.45 102 98 59.09 128 72 54.55

110 123 77 50 134 66 63.64 83 117 54.55

120 124 76 54.55 126 74 68.18 102 98 59.09

130 125 75 54.55 132 68 68.18 78 122 68.18

140 121 79 63.64 122 78 77.27 111 89 72.73

150 165 35 68.18 91 109 81.82 113 87 72.73

160 131 69 77.27 152 48 81.82 135 65 72.73

170 150 50 86.36 103 97 81.82 155 45 81.82

180 113 87 90.91 141 59 81.82 142 58 86.36

190 162 38 95.45 183 17 90.91 104 96 86.36

200 168 32 100 135 65 90.91 121 79 95.45

Feasible : 1.36

Infeasible: 0.75

Feasible : 0.48

Infeasible: 0.40

Feasible : 0.19

Infeasible: 0.20

Table 6.4 Results obtained using different combinations of α and β parameters

α=1.4, β=50 α=1.4, β=70 α=1.4, β=90

Gen# Feasible Infeasible Coverage Feasible Infeasible Coverage Feasible Infeasible Coverage

10 82 118 22.73 62 138 18.18 63 137 13.64

20 102 98 27.27 103 97 18.18 132 68 18.18

30 123 77 27.27 102 98 18.18 84 116 27.27

40 122 78 31.82 130 70 18.18 86 114 31.82

50 95 105 31.82 121 79 27.27 102 98 31.82

60 82 118 40.91 101 99 36.36 104 96 36.36

70 84 116 40.91 132 68 36.36 124 76 36.36

80 102 98 45.45 115 85 36.36 125 75 45.45

 128

α=1.4, β=50 α=1.4, β=70 α=1.4, β=90

Gen# Feasible Infeasible Coverage Feasible Infeasible Coverage Feasible Infeasible Coverage

90 91 109 54.55 111 89 45.45 107 93 45.45

100 127 73 59.09 183 17 45.45 111 89 50

110 135 65 63.64 114 86 50 160 40 54.55

120 120 80 72.73 125 75 50 132 68 63.64

130 125 75 81.82 110 90 54.55 124 76 63.64

140 154 46 86.36 82 118 63.64 145 55 68.18

150 121 79 90.91 104 96 68.18 123 77 77.27

160 131 69 90.91 151 49 72.73 182 18 77.27

170 174 26 95.45 170 30 81.82 191 9 81.82

180 162 38 100 141 59 90.91 145 55 81.82

190 143 57 95.45 143 57 81.82

200 192 8 100 146 54 86.36

Feasible : 0.98

Infeasible: 0.67

Feasible : 2.09

Infeasible: 0.94

Feasible : 1.32

Infeasible: 0.60

Table 6.5 Improvement factor for feasible test cases (IFF)

 α
β

0.8 1.2 1.4

50 1.36 1.70 0.98

70 0.48 1 2.09

90 0.19 1.45 1.32

Figure 6.10 Variation of Improvement factor for feasible test cases

Table 6.6 Improvement factor for infeasible test cases (IFI)

α
β

0.8 1.2 1.4

50 0.75 0.94 0.67

70 0.40 0.56 0.94

90 0.2 0.49 0.60

0

0.5

1

1.5

2

2.5

0.8 1.2 1.4

Im
p

ro
ve

m
e

n
t

Fa
ct

o
r

Weight Factor α

β=50

β=90

β=130

 129

Figure 6.11 Variation of Improvement factor for infeasible test case

6.5.2. Other Case Studies

To validate the approach more case studies have been performed. Some selected methods from the

four classes in java library are identified for the analysis. These four classes are ArrayList, HashMap,

LinkedList and HashTable classes. These classes are chosen from util package of the standard Java

library. Various methods from these classes which are considered for Method Under Test (MUT) are

shown in table 6.7. For each MUT in these classes the experiments are performed as done in case

study 1. The final result of all these experiments is tabulated in table 6.7 which shows values of CR,

MR, α and β for which maximum improvement obtained through our improved approach as

compared to exiting approach [Carlos et al. 2008]. As with the earlier case study 1, for these case

studies there are 200 individuals per generation. From the table 6.7 we observe that there are 9

methods out of 16 for which the value of β is 90. For 4 methods β is 70. There are 2 methods which

have β=50 and only 1 method with β=120. In our formulation β decides how many infeasible test

cases will be considered for next generation by increasing their fitness value. Similarly α is

responsible for keeping the weight of nodes at reasonable value for each test case execution. It has

been observed that for those methods which have complex structure of CFG, the value of α is high.

Table 6.7 Results obtained for various methods of classes from Java util package
Class/Method CR MR α β IFF IFI

ArrayList Class Existing Improved Existing Improved

trimToSize() 0.8 0.1 1.2 50 0.60 0.64 0.64 0.78

ensureCapacity(int) 0.6 0.2 1.2 70 0.63 0.58 0.71 0.88

indexOf(Object) 0.7 0.2 1.4 70 0.70 0.89 0.72 0.73

remove(int) 0.8 0.3 1 70 0.58 0.60 0.55 0.60

0

0.2

0.4

0.6

0.8

1

0.8 1.2 1.4

Im
p

ro
ve

m
e

n
t

Fa
ct

o
r

Weight Factor α

β=50

β=90

β=130

 130

Class/Method CR MR α β IFF IFI

remove(Object) 0.7 0.3 1.3 90 0.78 1.00 0.53 0.67

HashMap Class

containsValue(Object) 0.7 0.2 1.4 90 0.62 0.55 0.98 0.67

removeMapping(Object) 0.6 0.3 1.4 70 0.53 0.40 0.67 0.40

LinkedList Class

remove(Object) 0.7 0.3 1.2 90 0.91 1.43 0.59 0.77

clear() 0.6 0.3 1 50 0.56 0.44 0.74 0.36

indexOf(Object) 0.8 0.2 1.2 70 0.83 1.25 0.53 0.83

lastIndexOf(object) 0.7 0.3 1.4 50 0.75 1.00 0.79 0.82

removeLastOccurence(Object) 0.8 0.1 1.2 90 0.93 1.57 0.76 0.85

HashTable Class

contains(Object) 0.7 0.1 1 50 1.40 1.50 0.61 0.64

containsKey(Object) 0.8 0.2 1.2 70 0.65 1.13 0.72 0.75

get(Object) 0.6 0.1 1.2 70 0.67 0.50 0.81 0.75

remove(Object) 0.7 0.2 1.4 90 0.51 0.42 0.71 0.63

Table 6.7 has been graphically represented in Figure 6.12. It can be observed that for most of the

case studies 10 out of 16, the improvement factor is greater in our improved approach as compared to

existing approach by Carlos et al. [2008].

Figure 6.12 Improvement for feasible test cases in different case studies

Similarily, Figure 6.13 represents the improvements obtained for infeasible test cases in various case

studies. Here also 11 out of 16 case studies have a greater improvement factor as compared to

existing approach.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Existing 0.6 0.6 0.7 0.5 0.7 0.6 0.5 0.9 0.5 0.8 0.7 0.9 1.4 0.6 0.6 0.5

Improved 0.6 0.5 0.8 0.6 1 0.5 0.4 1.4 0.4 1.2 1 1.5 1.5 1.1 0.5 0.4

Feasible Improvement

IF
F

 131

Figure 6.13 Improvement for infeasible test cases in different case studies

These results support our assumption described in section 6.4 that dependencies within loop

iterations cause problems while guiding the fitness function and must be solved during structural

testing.

6.6 Summary

In this chapter a technique of test case generation for object oriented software class has been

discussed by applying genetic algorithms. The simplicity involved in unit testing using genetic

algorithm is its greatest merit. During each of the iteration of the genetic algorithm a generation of

individuals is generated. The iterations performed in the algorithm should be limited so that the

computation time may not rise indefinitely. The problem may be because of this limited number of

generations the solution obtained by genetic algorithms might be trapped in a local optimua and due

to this it may fail to locate the required global optima. The test cases generated using such method

may be trapped around some unwanted paths and in this manner may fail to find the new and

interesting paths but when the distribution of test cases of the first generations are normally

distributed then the possibility of being trapped in local optima is very low.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Existing 0.6 0.7 0.7 0.5 0.5 0.9 0.6 0.5 0.7 0.5 0.7 0.7 0.6 0.7 0.8 0.7

Improved 0.7 0.8 0.7 0.6 0.6 0.6 0.4 0.7 0.3 0.8 0.8 0.8 0.6 0.7 0.7 0.6

Infeasible Improvement

IF
I

 132

This research with improved strategy shows that genetic algorithms are useful in reducing the

number of infeasible test cases by generating test cases for object oriented software. Furthermore, we

improved genetic algorithm for structural testing and for generating more suitable test cases. Path

testing weight reevaluation strategy is employed to develop infeasible test cases into feasible test

cases at the later generations.

 133

CHAPTER
Conclusions and Suggestions for Future Research

7

his chapter concludes the thesis by summarizing the achievements of this work, conclusions,

limitations and giving directions for future work.

7.1 Summary of Achievements

The major achievement of this research is a novel and object oriented metric for maintenance relating

it to indirect coupling and another is the development of an approach to automatically generate

object-oriented unit tests.

On reviewing the state of the art in the research on coupling metrics, it is concluded that there are

inherent ambiguities with many of the definitions of the metrics and thus the metrics cannot be

measured objectively. Also a form of coupling that has not been explored very well — indirect

coupling has been identified and argued that its potential impact on maintenance is significant and

thus is worthy of study. To gather evidence in support of this and to find this relationship a

methodology based on the philosophy of software measurement by key researchers is followed. This

research idntifies the internal attributes of object oriented software that comprises indirect coupling

and relates it with maintainability.

Also the algorithm presented in chapter 5 (Figure 5.5) provides solution in complex and seemingly

infeasible situations. The specific sub-characteristic of maintainability of interest is the effort to trace

the indirect coupling connections for the purposes of understanding and modification. The metric is

applied to nine open source Java softwares to validate the proposed metrics. The initial results help

significantly towards achieving a refined model of the relationship between indirect coupling and

maintainability.

Statistical analysis is employed in this study and simple linear regression is the dominating statistical

tool used for validation.

T

 134

The results of the analyses of the nineobject oriented softwares show that:

1. There is a strong relationship between the proposed metrics and the maintenability in the

object oriented software.

2. The metrics in combinations which are collected from the source code are able to predict the

maintenance effort in software development.

3. The correlation is successfully validated.

In chapter 6 of this thesis genetic algorithm are applied to generate test cases for object oriented class

units. Nine different combinations of weight factor 𝛼 and infeasibility factor 𝛽 and for each

combination 20 generations or until full coverage are obtained. The existing work in this area is

limited and this motivated for the exploration of the new approach. Because of these limitations such

as the applicability of the existing approaches (e.g. able to handle only a particular type of classes

effectively), in terms of achievable code coverage (suboptimal value) and in terms of maintainability

of results, this research suggests the evolutionary class testing approach to address such limitations.

The class testing approach used in evolutionary testing is basically a search based approach which is

used to generate the test sequences which may use class type arguments for method calls for object

oriented programs. The test sequences generated in this way include calls to the public methods of

the classes on which they operate upon and they do not try to access non-public methods and thus

possibility of breaking encapsulation is avoided. These causes the tests to be more maintainable

because applying any refractoring involving non public methods do not break their integrity.

The test sequences which do not lead to generate an executable test sequence are rarely defined by

the representation which is used in this work to encode the test sequences for allowing evolutionary

search. Call dependencies which are very significant to be preserved are kept as required as the test

sequences are encoded as method call trees which regard the call depencies among the methods. This

representation also ensures that the genetic operators like mutation and crossover do not disturb the

executability of test sequences. Therefore, the check and corrections in representation to maintain the

test sequences does not required at all.

 135

The object oriented programs have state problem [McMinn 2005] therefore testing them requires the

definition of methologies which could enhance the coverage of problematic structures and those

paths of control flow graph which have less probability to be covered. In this reference, this thesis

proposes the method to handle this problem by defining weighted control flow graph nodes and

adapting the weight of nodes constantly in the search direction. This strategy also causes the fitness

of feasible Test cases to fluctuate throughout the search process, and allows infeasibletest test

sequences to be considered at certain points of the evolutionary search – namely, once the feasible

test cases are no more interesting because they exercise recurrently traversed paths through the

structure.

The approach presented in this research enables the application of an established and well proven

genetic programming approach. The test sequences which are chosen to be represented by method

call trees enable the application of other genetic programming techniques. Therefore in combination

of other tools the presented technique may be used as an evolutionary test sequence generator. The

presented approach basically is more general in nature and does not depend upon any particular

genetic programming technique therefore; it is open for further improvements and other ideas to be

incorporated from the field of evolutionary computation.

An empirical investigation in the effectiveness of the approach shows that it can perform well when

the various parameters are set properly. The approach has been tested over various standard methods

of java classes, giving effective results. Therefore, a significant contribution of this work is in

proposing an approach which can generate arbitrary test sequence which is highly feasible for some

given set of classes. These generated test sequences are very interesting while considering in the

context of various other testing techniques.

The test case generation strategy discussed is validated for four classes which are taken from Java

Utilities library. Different combination of mutation rate and crossover rates are taken for finding the

average number of generations which are attaining full structural coverage as well as percentage of

runs which are attaining full structural coverage in different generations. It has been observed that

maximum coverage has been obtained for smaller value of mutation rate and average value of

crossover rate. The research presented in this regard is a novel approach for the automatic unit test

 136

generation tailored to object oriented systems. In particular, the proposed method tackles the test-

generation problem as a search problem, solved using a holistic evolutionary algorithm.

7.2 Conclusions

The presented research addresses the issue of software quality measurement and test generation for

its improvement. The main contributions of this research are twofold: at first we define an approach

for determining the software quality through maintainability metrics by considering indirect form of

coupling into account. Secondly it explores evolutionary testing techniques to be applied for test data

generation. In this regard, this research focuses on a more effective fitness evaluation technique

which can be used to generate better test cases.

Indirect form of coupling helps to address some of the problems in the status of coupling research.

One problem is that the existing definitions of coupling do not capture the full essence of the original

notion posed by Yourdon and Constantine [1979]. The indirect coupling form is one of them. The

other problem is that the relationship between coupling (mostly Coupling Between Objects) and

quality has not been explored much beyond statistical correlations, thus the presented approach

toward establishing a precise relationship between indirect coupling and maintainability for better

understanding and prediction presents a viable blueprint for research on other coupling metrics,

direct or indirect.

This research summarizes a technique using Evolutionary Testing which can generate test sequences

which are able to create arbitrary objects which may further be used to serve as arguments for

succeeding methods. The presented approach can be used to generate automatic test cases where

method parameters can accept primitive as well as object type arguments. The presented approach

also proposes the technique to evaluate fitness of feasible as well as infeasible test cases, which

provides sufficient guidance even in presence of runtime exceptions. The proposed technique is

applied to various case studies involving methods from different classes of Java util library. The

research shows that by selecting the defined parameters appropriately one can maximize the

improvement of feasible as well as infeasible test cases also maximize the coverage. In our study for

triangle classification program a highest value of improvement factor 2.16 is obtained for feasible

 137

test cases and 0.92 is obtained for infeasible test cases. Similarly for other classes selected from util

package of standard java library a highest value of improvement factor 1.57 is obtained for feasible

test cases and 0.88 is obtained for infeasible test cases. The results obtained are compared with the

results using existing technique and it was found that the technique proposed in this research gives

much better results as compared to existing technique.

7.3 Limitations

Despite the promisingresults obtained, there are several points to improve the implemented

evolutionary strategy. From the stand point of using an evolutionary optimization technique, which is

the case of GAs to solve problems in evolutionary testing, in which case is tomaximize coverage of

tests automatically generated, the aim here has been reached. Despite this, GAs in software testing

have already been done previously by various researchers, the approach utilized here is different and

equally efficient, considering the studies in Chapter6. But thinking more on the side of the

evolutionary testing, from the stand point of evolutionary technique improvements are identified to

be added to the presented approach. These improvements are explained below.

1. The study of metrics in chapter 5 must be expanded to cover a more representative sample of

software systems. This includes non-open-source and commercial systems, and systems

written in programming languages other than Java.

2. Indirect coupling forms other than simple transitive coupling should also be explored to

further close the gap in the existing coupling definitions in the research field. For example

when two classes A and B are coupled through a similar mechanism, except that in the

middle there is persistency or a remote communication involved. This would be more

difficult to systematically define and automatically detect through a tool, but this presents a

significant burden to maintenance.

3. The presented approach requires a deeper analysis of the methods of the class being tested, in

addition to knowing which object to instantiate, and know what methods to call the dependent

object to certain points in the code are met (i.e., leave the object in the desired state for the

preconditions of the test are made).

 138

4. The strategy based on GA presented in chapter 6 is dependent upon structure of the MUT.

The parameters α and β must be fine tuned to get the maximum improvement in test cases.

The values of parameters α and β can not be generalized for all software.

7.4 Suggestions for future work

There is a high correlation for smaller path lengths, however the accuracy for predicting maintenance

effort more experiments are required. The testing and structural coverage of non-public methods (via

an object‘s public interface) is an important issue. Therefore, the future work may address the

software testing challenges faced because of core principles of object orientation based upon

concepts of abstraction, encapsulation and polymorphism.

The researchers in software testing area are yet studying the importance of abstraction and

polymorphism in development of object oriented software and the ways in which it impacts the

software testing process. Polymorphism concept refers to the ability of a variable or object type to

take on multiple forms. Therefore the object oriented language having this feature allows the

developers to develop programs more in general rather than being specific.

Our technique to compute indirect coupling relations takes into account static dependencies only.

Implicit dependencies due to dynamic dependencies are not considered. Because of this the

independent changes may be overestimated. Therefore in future work it would be interesting to

explore dynamic dependencies as well as other types of dependencies also such as dependencies

based on data flow and due to inheritance.

Our work considers the first level of method call dependencies, i.e. the indirect dependencies due to

direct form of dependencies. We expect that the dependencies due to further levels are smaller due

to information hiding. Therefore, such dependencies could be explored in future work.

Further the case studies were performed on various open source projects, therefore to generalize the

findings of this study to encompass commercial projects; therefore the study over various

commercial and other open source projects can be performed in future.

 139

Future research may also involve addressing the oracle generation problem, and investigating the

possibility of automating a mechanism for checking if the output of a program is correct given some

input; in fact, the frequent non-existence of an oracle threatens to undo much of the progress made in

automating Test Data generation, as a human tester is still required to perform this task manually.

 140

LIST
References

of

1. [Abreu and Carapuca 1994] F.Abreu F. and Carapuca R., ―Object-oriented software

engineering: Measuring and controlling the development process‖, In Proceedings of the

4th International Conference on Software Quality, 1994.

2. [Abreu and Fernando 1995] Abreu F., Fernando B. ―Design metrics for OO software

system‖, ECOOP‘95, Quantitative Methods Workshop, 1995.

3. [Abreu et al. 1995] Abreu F., Goulão M., and Esteves R., ―Toward the Design Quality

Evaluation of Object-Oriented Software Systems,‖ Proceedings of Fifth International

Conference on Software Quality, Austin, Texas, Oct. 1995.

4. [Alander et al. 1998] Alander J., Mantere T. and Turunen P. ―Genetic Algorithm Based

Software Testing, in Artificial Neural Nets and Genetic Algorithms‖, Springer-Verlag,

Wien, Austria, pp. 325-328, 1998.

5. [Alexander and Offutt 1999] Alexander R. and Offutt A. ―Analysis techniques for testing

polymorphic relationships‖, Thirtieth International Conference on Technology of Object-

Oriented Languages and Systems(TOOLS30), Santa Barbara, CA, pp. 104–114, 1999.

6. [Ammann and Offutt 2008] Ammann P. and Offutt J. ―Introduction to Software Testing‖,

Cambridge University Press, Cambridge, UK, 2008.

7. [Arisholm 2002] Arisholm E. ―Dynamic Coupling Measures for Object-Oriented

Software‖, Proceedings of the 8th International Symposium on Software Metrics

(METRICS '02), IEEE Computer Society, Washington, DC, USA, pp. 33-42, 2002.

8. [Baig 2004] Baig I., ―Measuring Cohesion and Coupling of Object-Oriented Systems‖,

School of Engineering Blekinge Institute of Technology, Thesis No: MSE-2004:29, pp. 20-

26, August 2004.

9. [Baker et al. 1990] Baker A., Bieman J., Fenton A., Gustafson D., Melton A. and Whitty R.

―A philosophy for software measurement‖, Journal of Systems and Software, vol. 12, no. 3,

pp. 389 – 416, July 1990.

10. [Bansiya 2002] Bansiya J. ―A Hierarchical Model for object-oriented Design Quality

Assessment‖, IEEE Transaction on Software Engineering, vol.28, no.1, 2002.

11. [Baresel et al. 2002] Baresel A., Sthamer H. and Schmidt M. ―Fitness function design to

improve evolutionary structural testing‖, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2002), New York, USA, pp. 1329–1336, 2002.

12. [Basili and Hutchens 1983] Basili V. and Hutchens D., ―An Empirical Study of a Syntactic

Complexity Family‖, IEEE Transasctions on Software Engineering, vol. 9, no.6, pp.664-

672, 1983.

 141

13. [Basili et al. 1996] Basili V., Briand L. and Melo W. ―A validation of object-oriented

design metrics as quality indicators‖, Software Engineering, IEEE Transactions on, vol.22,

no.10, pp. 751-761, 1996.

14. [Berard 1994] Berard E. ―Issues in the testing of object-oriented software‖, Electro‘94

International, IEEE Computer Society Press, pp. 211–219, 1994.

15. [Bernot et al. 1991] Bernot G., Gaudel M. and Marre B. ―Software testing based on formal

specifications: a theory and a tool‖, Software Engineering Journal, vol. 6, no. 6, pp. 387-

405, 1991.

16. [Bieman and Kang 1995] Bieman J. and Kang B., ―Cohesion and Reuse in an Object-

Oriented System‖, Proceedings of ACM Symposium, Software Reusability (SSR‘94),

pp.259-262, 1995.

17. [Beizer 1990] Beizer, B., ―Software Testing Techniques‖, 2nd edition. Boston, MA:

International Thomson Computer Press.

18. [Beizer 1995] Beizer B., ―Black-Box Testing: Techniques for Functional Testing of

Software and Systems‖, John Wiley & Sons, Inc., New York, NY, USA, 1995.

19. [Bilal and Black 2006] Bilal H. and Black S. ―Computing ripple effect for object oriented

software‖, Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE),

Nantes, France, July 2006.

20. [Bilow 1992] Bilow S. ―Applying graph-theoretic analysis models to object oriented system

models‖, OOPSLA 92, Workshop on Metrics for Object Oriented Software Eng., Position

Paper, 1992.

21. [Binder 1996] Binder R. ―Testing object-oriented software: A survey‖, Journal of Software

Testing, Verification & Reliability, vol. 6, no. 3, pp. 125–252, 1996.

22. [Binkley and Schach 1998] Binkley A. and Schach S., ―Validation of the coupling

dependency metrics as a predictor of run time failures and maintainability measures‖,

Proceedings of 20th International conference of software engineering, pp. 452-455, 1998.

23. [Boehm 2003] Barry Boehm, ―Value-Based Software Engineering,‖ Software Engineering

Notes, vol. 28, no. 2, ACM, March 2003.

24. [Boehm et al. 1976] Boehm B., Brown J. and Lipow M. ―Quantitative evaluation of

software quality‖, Proceedings of the 2nd international conference on Software engineering

(ICSE '76), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 592-605, 1976.

25. [Booch 1991] Booch G. ―Object Oriented Design with Applications‖, Benjamin-Cummings

Publication Co., Inc., Redwood City, CA, USA.

26. [Booch et al. 1999] Booch G., Rumbaugh J. and Jacobson I., ―The Unified Modeling

Language User Guide‖, Addison- Wesley, Rational Software Corporation, 1999.

27. [Bowen 1978] Bowen J., "Are Current Approaches Suffcient for Measuring Software

Quality?" Proceedings of the ACM Software Quality Assurance Workshop, pp. 148-155,

November 1978.

 142

28. [Briand et al. 1997] Briand L., Devanbu P. and Melo W., ―An Investigation into Coupling

Measures for C++,‖ Proc. 19th Int‘l Conf. Software Eng., ICSE‗97, Boston, pp. 412-421,

May 1997.

29. [Briand et al. 1998] Briand L., Daly W. and Wust J. ―Unified Framework for Cohesion

Measurement in Object-Oriented Systems‖, Empirical Software Engineering, vol. 3, pp.65-

117, 1998.

30. [Briand et al. 1999] Briand L, Daly W. and Wust J. ―A Unified Framework for Coupling

Measurement in Object-Oriented Systems‖, IEEE Transactions on software Engineering,

vol. 25, no. 1, pp. 91-121, 1999.

31. [Briand et al. 2000] Briand L, Wust J. and Daly W. ―Exploring the relationship between

design measures and software quality in object-oriented systems‖, Journal of Systems and

Software, vol. 51, no. 3, pp. 245-273, 2000.

32. [Briand et al. 2002] Briand L., Feng J. and Labiche Y. ―Using genetic algorithms and

coupling measures to devise optimal integration test orders‖, Proceedings of the 14
th

International Conference on Software Engineering and Knowledge Engineering, Ischia,

Italy, IEEE Computer Society Press, pp. 43-50, 2002.

33. [Card et al. 1986] Card D., Church V. and Agresti W. ―An Empirical Study of Software

Design Practices‖, IEEE Transactions on Software Engineering, vol. 12, no. 2, 1986.

34. [Carlos et al. 2008] Carlos J., Ribeiro B., Rela Z. and Vega F. ―A strategy for evaluating

feasible and unfeasible test cases for the evolutionary testing of object-oriented software‖,

Proceedings of the 3rd international workshop on Automation of software test (AST '08),

New York, NY, USA, ACM, pp.85-92, 2008.

35. [Cavano and McCall 1978] Cavano J. and McCall J. ―A Framework for the Measurement of

Software Quality‖, Proceedings of ACM Software Quality Assurance Workshop, pp. 133–

139, 1978.

36. [Chang 2000] Chang K. ―Reusability and maintainability metrics for object-oriented

software‖, Proceedings of the 38th annual on Southeast regional conference (ACM-SE 38).

ACM, New York, NY, USA, pp. 88-94, 2000.

37. [Cheatham and Mellinger 1990] Cheatham T. and Mellinger L. ―Testing object-oriented

software systems‖, Proceedings of the Eighteenth Annual Computer Science Conference,

ACM Press, New York, pp. 161–165, 1990.

38. [Chen et al. 1998] Chen H., Tse T., Chan F. and Chen T. ―In black and white: An integrated

approach to class-level testing‖, ACM Transactions on Software Engineering and

Methodology, vol. 7, no. 3, pp. 250–295, 1998.

39. [Chen et al. 2000] Chen H., Tse T. and Deng Y. ―ROCS: An object-oriented class-level

testing system based on the relevant observable contexts technique‖, Information and

Software Technology, vol. 42, no. 10, pp. 677–686, 2000.

40. [Cheng and Krishnakumar 1983] Cheng K. and Krishnakumar A. ―Automatic functional

test generation using the extended finite state machine model‖, Proceedings of the 30th

International Conference on Design Automation (Dallas, Texas, United States, June 14 - 18,

1993), DAC '93, ACM Press, New York, NY, pp. 86-91, 1983.

 143

41. [Chidamber and Kemerer 1991] Chidamber S. and Kemerer C. ―Towards a Metrics Suite

for Object Oriented design‖, Proceedings of Conference on Object-Oriented Programming:

Systems, Languages and Applications (OOPSLA‘91), Published in SIGPLAN Notices, vol.

26, no. 11, pp. 197-211, 1991.

42. [Chidamber and Kemerer 1994] Chidamber S. and Kemerer C. ―A Metrics Suite for Object-

Oriented Design‖, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493,

1994.

43. [Chowdhury and Zulkernine 2010] Chowdhury I. and Zulkernine M. ―Using complexity,

coupling, and cohesion metrics as early predictors of vulnerabilities‖, Journal of Systems

Architecture, vol. 57, no. 3, pp. 294-313, 2010.

44. [Churcher and Shepperd 1995] Churcher N. and Shepperd M., ―Towards a Conceptual

Framework for Object Oriented Software Metrics,‖ Software Engineering Notes, vol. 20,

no. 2, pp. 69-76, 1995

45. [Coad and Yourdon 1991] Coad P. and Yourdon E. ―Object-Oriented Design‖, Yourdon

Press, Upper Saddle River, NJ, USA.

46. [Coleman et al. 1994] Coleman D., Ash D., Lowther B. and Oman P., ―Using Metrics to

Evaluate Software System Maintainability‖, IEEE Computer, vol. 27, no. 8, pp. 44-49.

1994.

47. [Coleman et al. 1995] Coleman D., Lowther B. and Oman P. ―The Application of Software

Maintainability Models in Industrial Software Systems‖, Journal of Systems and Software,

vol. 29, no. 1, pp. 3-16, 1995.

48. [Cohen 1988] Cohen J. ―Statistical Power Analysis for the Behavioral Sciences‖, 2nd

edition, Hillsdale NJ: Lawrence Erlbaum, 1988.

49. [Coplien 1993] Coplien J., ―Looking over one‘s shoulder at a c++ program‖, AT&T Bell

Labs, Tech. Memo., Jan. 1993.

50. [Cornett 2002] Cornett S., ―Code Coverage Analysis‖, Bullseye Testing Technology 2002,

available at: http://www.bullseye.com/coverage.html

51. [Dagpinar and Jahnke 2003] Dagpinar M. and Jahnke J. ―Predicting Maintainability with

Object-Oriented Metrics - An Empirical Comparison‖, 10th Working Conference on

Reverse Engineering, British Columbia, Canada, 2003.

52. [Deason et al. 1991] Deason W., Brown D., Chang K. and Cross J. ―A Rule-Based Software

Test Data Generator‖, IEEE Trans. on Knowledge and Data Engineering, vol. 3, no. 1, pp.

108-117, 1991.

53. [Dejong 1975] Dojong, K. ―Analysis of the behavior of a class of genetic adaptive

systems‖, Ph. D. thesis, University of Michigan, Ann Arbor, 1975.

54. [DeMillo and Offutt 1991] DeMillo R. and Offutt A., ―Constraint-Based Automatic Test

Data Generation‖, IEEE Transactions on Software Enginering, vol. 17, no. 9, pp. 900-910,

1991.

55. [Dromey 1995] Dromey G. ―A Model for Software Product Quality‖, IEEE Transactions on

Software Engineering, vol. 21, no. 2, pp. 146-162, 1995.

 144

56. [Duda et al. 2000] Duda, R., Hart, P. and Stork D., ―Pattern Classification‖ (2nd Edition),

Wiley-Interscience, pp. 433 – 439, 2000.

57. [Eder et al. 1994] Eder J., Kappel G. and Schrefl M., ―Coupling and Cohesion in Object-

Oriented Systems,‖ Technical Report, Univ. of Klagenfurt, 1994.

58. [Erdil 2003] Erdil K., Finn E., Keating K., Meattle J., Park S. and Yoon D. ―Software

Maintenance As Part of the Software Life Cycle‖, Comp180, Software Engineering Project,

December 16, 2003.

59. [Fenton 1991] Fenton E. ―Software Metrics: A Rigorous Approach‖, International Thomson

Computer Press, Boston, MA, USA.

60. [Fenton 1994] Fenton N. ―Software measurement: A necessary scientific basis‖, IEEE

Transactions on Software Engineering, vol. 20, no. 3, pp. 199 – 206, March 1994.

61. [Fenton and Neil 1999] Fenton N. and Neil M. ―A Critique of Software Defect Prediction

Models‖, IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 675-689, 1999.

62. [Fenton and Pfleeger 1998] Fenton N. and Pfleeger S. ―Software Metrics - A Rigorous &

Practical Approach‖, 2
nd

 Edition, PWS Pub. Co., Boston, MA, USA, 1998.

63. [Ferguson and Korel 1996] Ferguson R. and Korel B. ―The chaining approach for software

test data generation‖, ACM Transactions on Software Engineering and Methodology, vol.

5, no. 1, pp. 63-86, 1996.

64. [Ferrer et al. 2012] Ferrer J., Kruse P., Chicano F. and Alba E., ―Evolutionary algorithm

for prioritized pairwise test data generation‖, In Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference (GECCO '12), Terence

Soule (Ed.). ACM, New York, NY, USA, pp. 1213-1220, 2012.

65. [Firesmith 1993] Firesmith D. ―Testing object-oriented software‖, Eleventh International

Conference on Technology of Object-Oriented Languages and Systems, Prentice-Hall,

Englewood Cliffs, New Jersey, pp. 407-426, 1993.

66. [Frappier et al. 1994] Frappier M., Matwin S. and Mili A. ―Maintainability: Factors and

Criteria‖, Software Metrics Study, Tech. Memo. 1, Canadian Space Agency, St-Hubert,

Canada, 1994.

67. [Friedman and Voas 1995] Friedman M. and Voas J. ―Software Assessment: Reliability,

Safety and Testability‖, John Wiley and Sons, 1995.

68. [Friedman et al. 2002] Friedman G., Hartman A., Nagin K., and Shiran T. ―Projected state

machine coverage for software testing‖, Proceedings of the 2002 ACM SIGSOFT

international Symposium on Software Testing and Analysis (Roma, Italy, July 22 - 24,

2002), ISSTA '02. ACM Press, New York, NY, pp. 134-143, 2002.

69. [Gallagher and Offutt 2004] Gallagher L. and Offutt J. ―Integration Testing of Object-

oriented Components Using FSMS: Theory and Experimental Details‖, Technical report

ISE-TR-04-04, Department of Information and Software Engineering, George Mason

University, Fairfax, VA, July 2004.

70. [Gao et al. 2003] Gao J., Tsao J. and Wu Y. ―Testing and Quality Assurance for

Component-Based Software‖, USA: Artech House, 2003.

 145

71. [Garvin 1984] Garvin D., ―What does ‗product quality‘ really mean?‖ Sloan Management

Review, vol. 26, pp. 25–45.

72. [Genero et al. 2001] Genero M., Olivas J., Piattini M. and Romero F. ―Using metrics to

predict OO information systems maintainability‖, Proceedings of the 13th International

Conference on Advanced Information Systems Engineering, Springer-Verlag, London, UK,

pp. 388-401, 2001.

73. [Genero et al. 2003] Genero M., Piattini M., Manso E. and Cantone G. ―Building UML

class diagram maintainability prediction models based on early metrics‖, Proceedings of the

9th International Symposium on Software Metrics (Metrics 2003), IEEE Computer Society,

Sidney, Australia, pp. 263–275, 2003.

74. [Godfrey and German 2008] Godfrey M., German D. ―The past, present, and future of

software evolution‖, Frontiers of Software Maintenance, FoSM 2008, pp.129-138, 2008.

75. [Gross and Mayer 2002] Gross H. and Mayer N. ―Evolutionary Testing in Component-

Based Real-Time System Construction‖, Genetic and Evolutionary Computation

Conference (GECCO), Search-based Software Engineering Track, New York, N.Y., pp.

207-214, 2002.

76. [Gu et al. 1994] Gu D., Zhong Y. and Ali S. ―On testing of classes in object-oriented

programs‖, Proceedings of the 1994 conference of the Centre for Advanced Studies on

Collaborative research (CASCON '94), John Botsford, Ann Gawman, Morven Gentleman,

Evelyn Kidd, Kelly Lyons, Jacob Slonim, and Howard Johnson (Eds.), IBM Press, pp. 22-

30, 1994.

77. [Gui and Scott 2006] Gui G. and Scott P. ―Coupling and Cohesion Measures for Evaluation

of Component Reusability‖, Proceedings of International Workshop on Mining Software

Repositories, Shanghai, China, pp. 18-21, 2006.

78. [Gulezian 1991] Gulezian R. ―Reformulating and calibrating COCOMO‖, Journal of

Systems and Software, vol. 16, no. 3, pp. 235–242, 1991.

79. [Gupta and Rohil 2012] Gupta N. and Rohil M. ―Exploring Possibilities of Reducing

Maintenance Effort in Object Oriented Software by Minimizing Indirect Coupling‖,

Proceedings of the Second International Conference on Computer Science, Engineering &

Applications (ICCSEA 2012), May 25-27, 2012, New Delhi, India, Published as Book

chapter in Advances in Computer Science, Engineering & Applications, Springer

Berlin/Heidelberg, pp.959-965, 2012.

80. [Gupta and Saini 2008] Gupta N. and Saini D. ―Class Level Test Case Generation in Object

Oriented Software Testing‖, International Journal of Information Technology and Web

Engineering, IGI Publishing, Hershey, Pennsylvania, USA, vol. 3, no. 2, pp.19-26, 2008.

81. [Gupta et al. 1998] Gupta N., Mathur A. and Soffa A. ―Automated test data generation

using an iterative relaxation method‖, SIGSOFT Software Engineering Notes, vol. 23, no.

6, pp. 231-244, 1998.

82. [Guttag et al. 1993] Guttag J., Horning J., Garland S., Jones K., Modet A. and Wing J.

―Larch: Languages and Tools for Formal Specification Texts and Monographs‖, Computer

Science series Springer-Verlag, NY, 1993.

 146

83. [Halstead 1975] Halstead H. ―Elements of Software Science‖, Elsevier Publications, N-

Holland, 1975.

84. [Harman and Jones 2001] Harman M. and Jones B. ―Search-based software engineering,

Information & Software Technology‖, vol. 43, no.14, pp. 833-839, 2001.

85. [Harman and McMinn 2007] Harman M. and McMinn P. ―A theoretical & empirical

analysis of evolutionary testing and hill climbing for structural test data generation‖,

Proceedings of the 2007 international symposium on Software testing and analysis (ISSTA

'07), ACM, New York, NY, USA, pp. 73-83, 2007.

86. [Harrison et al. 1982] Harrison W., Magel K., Kluczny R. and DeDock A. ―Applying

Software Complexity Metrics to Program Maintenance‖, IEEE Computer, vol. 15, no. 9, pp.

65-79, 1982.

87. [Harrison et al. 1998] Harrison R., Counsell S. and Nithi R. ―An Evaluation of MOOD set

of Object-Oriented Software Metrics‖, IEEE Transactions on Software Engineering, vol.

24, no.6, pp. 491-496, 1998.

88. [Harrold and McGregor 1992] Harrold M., McGregor J. ―Incremental testing of object-

oriented class structures‖, Proceedings of the 14th International Conference on Software

Engineering (ICSE), Melbourne, Australia, IEEE Computer Society Press, Los Alamitos,

CA, May 1992; pp. 68–80, 1992.

89. [Hayes et al. 2004] Hayes J., Patel S. and Zhao L. ―A Metrics-Based Software Maintenance

Effort Model,‖ Proceedings of 8th European Conference on Software Maintenance and

Reengineering (CSMR'04), 24 – 26 Mar. 2004, IEEE Computer Society, pp. 254 – 258,

2004.

90. [Henry and Wake 1991] Henry S. and Wake S., ―Predicting Maintainability with Software

Quality Metrics,‖ Software Maintenance: Research and Practice, vol. 3, pp. 129-143, 1991.

91. [Hitz and Montazeri 1995] Hitz M. and Montazeri B. ―Measuring coupling and cohesion in

object-oriented systems‖, Proceedings of International Symposium on Applied Corporate

Computing, Monterrey, Mexico, 1995.

92. [Hoare 1972] Hoare C. ―Proof of correctness of data representations‖, Acta Informatica,

vol. 1, no. 4, pp. 271-281, 1972.

93. [Hoffman and Strooper 1993] Hoffman D. and Strooper P., "Graph-based module testing",

In Proceedings of the 16th Australian Computer Science Conference, pp. 479—487,

February 1993.

94. [Holland 1975] Holland J. ―Adaptation in Natural and Artificial Systems‖, University of

Michigan Press, Ann Arbor, 1975.

95. [Hopkins 2003] Hopkins W. ―A New View of Statistics‖, SportScience, Dunedin, New

Zealand, 2003, available at: http://www.sportsci.org/resource/stats

96. [Howden 1982] Howden W. ―Weak Mutation Testing and Completeness of Test Sets‖,

IEEE Transactions on Software Engineering, vol. 8, pp. 371-379, 1982.

97. [Hudli et al. 1994] Hudli R., Hoskins C. and Hudli A. ―Software Metrics for Object

Oriented Designs‖, IEEE, 1994.

http://www.sportsci.org/resource/stats

 147

98. [IEEE 2006] IEEE, ―IEEE Standard for Software Maintenance‖, IEEE Std 14764- 2006.

The Institute of Electrical and Electronics Engineers, Inc. 2006.

99. [ISO 2001] ISO 9126:2001 ―Quality management systems - Fundamentals and vocabulary‖,

2001.

100. [Inkumsah and Xie 2007] Inkumsah K. and Xie T. ―Evacon: a framework for integrating

evolutionary and concolic testing for object-oriented programs‖, Proceedings of the twenty-

second IEEE/ACM international conference on Automated software engineering (ASE '07),

ACM, New York, NY, USA, pp. 425-428.

101. [Jones et al. 1996] Jones B. et al. ―Automatic Structural Testing Using Genetic

Algorithms‖, Software Engineering Journal, vol. 11, no. 5, 1996.

102. [Jorgensen 2002] Jorgensen P., ―Software Testing: A Craftmans approach‖, 2nd Edition,

CRC Press, USA, 2002.

103. [Kafura and Reddy 1987] Kafura D. and Reddy R. ―The Use of Software Complexity

Metrics in Software Maintenance‖, IEEE Trans. Software Engineering, vol. SE-13, no. 3,

pp. 335-343, 1987.

104. [Kataoka et al. 2002] Kataoka Y., Imai T., Andou H. and Fukaya T. ―A Quantitative

Evaluation of Maintainability Enhancement by Refactoring‖, International Conference on

Software Maintenance (ICSM'02), pp. 576-585, 2002.

105. [Kearney et al. 1986] Kearney J. et al., ―Software complexity measurement,‖

Communications of the ACM, vol. 29, no. 11, pp. 1044-1050, 1986.

106. [Khoshgoftaar et al. 2000] Khoshgoftaar T., Shan R. and Allen E. ―Improving Tree-Based

Models of Software Quality with Principal Components Analysis‖, Proceedings of the 11th

International Symposium on Software Reliability Engineering (ISSRE '00). IEEE Computer

Society, Washington, DC, USA, pp. 198-209, 2000.

107. [Kim and Lerch 1991] Kim J. and Lerch J. ―Cognitive processes in logical design:

Comparing object-oriented and traditional functional decomposition software

methodologies,‖ Working Paper, Camegie Mellon Univ. Graduate School of Industrial

Admin., 1991.

108. [Kitchenham and Pfleeger 1996] Kitchenham B. and Pfleeger S. ―Software Quality: The

Elusive Target‖, IEEE Software, vol. 13, no. 1, pp. 12-21, 1996.

109. [Koomen and Pol 1999] Koomen T. and Pol M. ―Test Process Improvement—A Practical

Step-by-Step Guide to Structured Testing‖, Addison-Wesley, USA, 1999.

110. [Koten and Gray 2006] Koten C. and Gray A. ―An Application of Bayesian Network for

Predicting Object-Oriented Software Maintainability‖, Information and Software

Technology, vol. 48, no. 1, pp. 59 – 67, 2006.

111. [Koza 1992] Koza D. ―Genetic Programming: On the Programming of Computers by

Means of Natural Selection‖, MIT Press, Cambridge, MA, 1992.

112. [Kung et al. 1995] Kung D., Gao J., Hsia P., Toyoshima Y., Chen C., Kim Y. and Song Y.

―Developing an object-oriented software testing and maintenance environment‖,

Communications of the ACM, vol. 38, no. 10, pp. 75–87, 1995.

 148

113. [Lacerda and Carvalho 1999] Lacerda E.and Carvalho, A. ―Introduction to genetic

algorithms‖, XIX National Congress of the Brazilian Computer Society, Proceedings, vol.

2, p. 51-125, 1999.

114. [Lake and Cook 1994] Lake A. and Cook C. ―Use of factor analysis to develop OOP

software complexity metrics‖, Proc. 6th Annual Oregon Workshop on Software Metrics,

Silver Falls, Oregon, 1994.

115. [Lee 2007] Lee Y., ―Automated Source Code Measurement Environment for Software

Quality‖, Dissertation, Auburn Univeristy, 2007.

116. [Lee et al. 1995] Lee Y., Liang B., Wu S. and Wang F., ―Measuring the Coupling and

Cohesion of an Object-Oriented Program Based on Information Flow,‖ Proceedings of

International Conference on Software Quality, Maribor, Slovenia, 1995.

117. [Leino 2008] Leino M. ―Specification and verification of object-oriented software‖,

Engineering Methods and Tools for Software Safety and Security, NATO Science for Peace

and Security Series D: Information and Communication Security, IOS Press, vol. 22, pp.

231–266, 2009.

118. [Lewis and Wiener 1998] Lewis J. and Wiener R. ―An Introduction to Object-oriented

Programming and Smalltalk‖, Addison- Wesley, pp. 49-60, 1988.

119. [Li and Henry 1993] Li W. and Henry S. ―Object-oriented metrics that predict

maintainability‖, The Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, 1993.

120. [Lieberherr et al. 1988] Lieberherr K., Holland I., and Riel A., ―Object oriented

programming: An objective sense of style‖, Conference proceedings on Object-oriented

programming systems, languages and applications (OOPSLA '88), Norman Meyrowitz

(Ed.). ACM, New York, NY, USA, pp. 323-334.

121. [Lim et al. 2005] Lim J., Jeong S. and Schach S. ―An empirical Investigation of the Impact

of the Object-Oriented Paradigm on the Maintainability of Real-World Mission-Critical

Software‖, Journal of Systems and Software, vol. 77, no. 2, pp. 131-138, 2005.

122. [Lincke and Lowe 2006] Lincke R. and Lowe W. ―Validation of a standard- and metric-

based software quality model‖, Proceedings of the 10th ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering (QAOOSE 2006), pp. 81-90, 2006.

123. [Liu and Khoshgoftaar 2003] Liu Y. and Khoshgoftaar T. ―Building Decision Tree

Software Quality Classification Models Using Genetic Programming‖, Proccedings of the

Genetic and Evolutionary Computation Conference (GECCO ‘03), Springer, vol. LNCS-

2724, pp. 1808-1809, 2003.

124. [Liu et al. 2005] Liu X., Wang B. and Liu H. ―Evolutionary search in the context of object-

oriented programs‖, MIC2005, The Sixth Metaheuristics International Conference,

September 2005.

125. [Lochmann 2010] Lochmann K. ―Engineering Quality Requirements Using Quality

Models‖, Proceedings of the 2010 15th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS '10). IEEE Computer Society, Washington, DC,

USA, pp. 245-246, 2010.

 149

126. [Lorenz and Kidd 1994] Lorenz M. and Kidd J. ―Object-Oriented Software Metrics‖,

Prentice Hall, Upper Saddle River, New Jersey, USA, 1994.

127. [Mantero and Alander 2005] Mantere T. and Alander J. ―Evolutionary software

engineering, a review‖, Applied Soft Computing, vol. 5, no. 3, pp. 315-331, 2005.

128. [Marinescu 2005] Marinescu R. ―Measurement and Quality in Object-Oriented Design‖,

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM

'05). IEEE Computer Society, Washington, DC, USA, pp. 701-704, 2005.

129. [Mathur 2008] Mathur A. ―Foundations of Software Testing‖, Pearson Education, 2008.

130. [McCabe 1982] McCabe T. ―Structured Testing‖, IEEE Computer Society Press, Silver

Spring, Maryland, 1982.

131. [McCall et al. 1977] McCall J., Richards P. and Walters G. ―Factors in Software Quality‖,

vol. 1, 2, and 3, AD/A-049-014/015/055, National Tech. Information Service, 1977.

132. [McMinn 2003] McMinn P. and Holcombe M. ―The state problem for evolutionary

testing‖, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2003), Lecture Notes in Computer Science 2274, Chicago, USA, Springer-Verlag, pp.

2488–2498, 2003.

133. [McMinn 2004] McMinn P. ―Search-based test data generation: A survey‖, Journal on

Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156, 2004.

134. [McMinn 2005] McMinn P. ―Evolutionary Search for Test Data in the Presence of State

Behavior‖, PhD Thesis, University of Sheffield, 2005.

135. [McMinn et al. 2009] McMinn P., Binkley D., Harman M. ―Empirical evaluation of a

nesting testability transformation for evolutionary testing‖, ACM Trans Software

Engineering and Methodology, vol. 18, no. 3, pp. 1–26, 2009.

136. [Melton 1996] A. Melton, editor, "Software Measurement", International Thomson

Computer Press, 1996.

137. [Michael and McGraw 1998] Michael C. and McGraw G. ―Automated software test data

generation for complex programs‖, Proceedings of IEEE International Conference on

Automated Software Engineering (ASE‘98), IEEE Computer Society, pp. 136–146, 1998.

138. [Misra 2005] Misra S. ―Modelling Design/Coding Factors that Drive Maintainability of

Software Systems‖, Software Quality Journal, vol. 13, pp. 297-320, 2005.

139. [Montana 1995] Montana D. ―Strongly typed genetic programming‖, Evolutionary

Computation, vol. 3, no. 2, pp. 199-230, 1995.

140. [Moreau and Dominick 1989] Moreau D. and Dominick W. ―Object-Oriented Graphical

Information Systems: Research Plan and Evaluation Metrics‖, Journal of Systems and

Software, vol.10, pp. 23-28, 1989.

141. [Morris 1988] Morris K., ―Metrics for object oriented software development,‖ Masters

thesis, M.I.T., Sloan School of Management, Cambridge, MA, 1988.

142. [Munson and Khoshgoftaar 1989] Munson J. and Khoshgoftaar T., "The Dimensionality of

Program Complexity", Proceedings of the International Conference on Software

Engineering, pp. 245-253, 1989.

 150

143. [Murphy et al. 1994] Murphy G., Townsend P. and Wong P. ―Experiences with cluster and

class testing‖, Communications of the ACM, vol. 37, no. 9, pp. 39-47, 1994.

144. [Myers 1979] Myers G. ―The Art of Software Testing‖, John Wiley and Sons, New York,

1979.

145. [Naik 1997] Naik K. ―Efficient computation of unique input/output sequences in finite-state

machines‖, IEEE/ACM Transactions on Networking, vol. 5, no. 4, pp. 585-599, Aug. 1997.

146. [Offutt et al. 2008] Offutt J., Abdurazik A. and Schach S.R. ―Quantitatively measuring

object-oriented couplings‖, Software Quality Control, vol. 16, no. 4, pp. 489-512, 2008.

147. [Oman and Hagemeister 1994] Oman P. and Hagemeister J. ―Construction and Testing of

Polynomials Predicting Software Maintainability‖, Journal of Systems and Software, vol.

24, no. 3, pp. 251 – 266, 1994.

148. [OOTC 1993] IBM Object-Oriented Technology Council, ―IBM Object-Orienied Metrics‖,

IBM internal technical paper, February 2, 1993.

149. [O'Regan 2002] O'Regan G. ―A practical approach to software quality‖, Springer, 1 edition,

2002.

150. [Orso and Pezze 1999] Orso A. and Pezze M. ―Integration testing of procedural object-

oriented languages with polymorphism‖, Proceedings of the 6th International Conference

on Testing Computer Software: Future Trends in Testing (TCS'99), Washington, DC, June

1999.

151. [Osterweil 1996] Osterweil L. ―Strategic Directions in Software Quality‖, ACM Computing

Surveys, vol. 28, no. 4, pp. 738-750, 1996.

152. [Ostrand et al. 2005] Ostrand T., Weyuker E. and Bell R. ―Predicting the location and

number of faults in large software systems‖, IEEE Transactions on Software Engineering,

vol. 31, no. 4, pp. 340–355, 2005.

153. [Parnas 1972] Parnas D. ―On the Criteria to be Used in Decomposing Systems into

Modules‖, Communications of the ACM, vol. 15, no. 12, Dec 1972.

154. [Pfleeger and Atlee 2006] Pfleeger S. and Atlee J. ―Software Engineering -Theory and

Practice‖, Pearson and Prentice Hall, 2006.

155. [Pfleeger et al. 1990] Pfleeger S. and Palmer J. ―Software estimation for object-oriented

systems‖, International Function Point Users Group Fall Conference, San Antonio, TX,

1990, pp. 181-196.

156. [Piszcz and Soule 2006] Piszcz A. and Soule T. ―A survey of mutation techniques in

genetic programming‖, Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation (Seattle, Washington, USA, July 08 - 12, 2006). GECCO '06.

ACM, New York, NY, pp. 951-952, 2006.

157. [Prather 1984] Prather R. ―An axiomatic theory of software complexity measures‖, The

Computer Journal, vol. 27, no. 4, pp, 340-346, 1984.

158. [Pressman 2005] Pressman R. ―Software Engineering: A Practitioner‘s Approach‖, 6th

edition, McGraw-Hill, New York, 2005.

 151

159. [Rajaraman and Lyu 1992] Rajaraman C., Lyu M. ―Reliability and Maintainability Related

Software Coupling Metrics in C++ Programs‖, Proceedings 3rd IEEE International

Symposium on Software Reliability Engineering (ISSRE'92), pp. 303-311, 1992.

160. [Rajlich and Bennett 2000] Rajlich T. and Bennett K. ―A Staged Model for the Software

Life Cycle‖, Computer, vol. 33, no. 7, pp. 66-71, 2000.

161. [Rela 2004] Rela L. ―Evolutionary computing in search-based software engineering‖,

Master‘s thesis, Lappeenranta University of Technology, Department of Technology, 2004.

162. [Riaz et al. 2009] Riaz M., Mendes E. and Tempero E. ―A Systematic Review of Software

Maintainability Prediction and Metrics‖, Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement (ESEM '09), IEEE

Computer Society, Washington, DC, USA, pp. 367-377.

163. [Richard 1999] Richard L. ―Concepts and Application of Inferential Statistics‖,

http://faculty.vassar.edu/lowry/webtext.html, 1999.

164. [Richardson and Clarke 1981] Richardson D. and Clarke L. ―A partition analysis method to

increase program reliability‖, Proceedings of the 5th international Conference on Software

Engineering (San Diego, California, United States, March 09 - 12), International

Conference on Software Engineering. IEEE Press, Piscataway, NJ, pp. 244-253, 1981.

165. [Rocacher 1988] Rocacher D., ―Metrics definition for smalltalk‖, Technical report,

European Union ESPRIT Research Report 1257, 1988.

166. [Rombach 1987] Rombach D. ―A Controlled Experiment on the Impact of Software

Structure on Maintainability‖, IEEE Transactions of Software Engineering, vol. SE-13, no.

3, pp. 344-354, 1987.

167. [Roper 1994] Roper M., "Software testing", London: McGraw-Hill Book Co., 1994.

168. [Rosenberg and Hyatt 1997] Rosenberg L. and Hyatt L. ―Software Quality Metrics for

Object-oriented Environments‖, Crosstalk Journal, vol. 10, no. 4, Software Technology

Support Center, Hill, UT.

169. [Schneberger 1997] Schneberger S. ―Distributed computing environments: effects on

software maintenance difficulty‖, Journal of Systems and Software, vol. 37, no. 2, pp. 101 –

116, 1997.

170. [Sharble et al. 1993] Sharble R. and Samuel C. ―The Object-Oriented Brewery: A

Comparison of Two Object-Oriented Development Methods‖, Software Engineering Notes,

vol. 18, no. 2, pp 60 -73, 1993.

171. [Sheetz et al. 1992] Sheetz S., Tegarden D. and Monarchi D. ―Measuring object oriented

system complexity‖, Working Paper, Univ. of Colorado, 1992.

172. [Shibata et al. 2007] Shibata K., Rinsaka K., Dohi T. and Okamura H. ―Quantifying

Software Maintainability Based on a Fault-Detection/Correction Model‖, Proceedings of

the PRDC 2007, pp. 35 – 42, 2007.

173. [Shooman 1983] Shooman M. ―Software Engineering: Reliability, Development, and

Management‖, McGraw-Hill Inc., New York, NY, USA, 1983.

 152

174. [Silva and Someren 2010] Silva L. and Someren M. ―Evolutionary testing of object-

oriented software‖, Proceedings of the 2010 ACM Symposium on Applied Computing

(SAC '10). ACM, New York, NY, USA, pp. 1126-1130, 2010.

175. [Sinha and Harrold 1999] Sinha S. and Harrold M. ―Criteria for testing exception-handling

constructs in Java programs‖, Proceedings of the International Conference on Software

Maintenance, pp. 265-274, 1999.

176. [Smith and Robson 1992] Smith M. and Robson D. ―A Framework for Testing Object-

Oriented Programs‖, Journal of Object-Oriented Programming, vol. 5, no. 3, pp. 45 – 53,

June 1992.

177. [Stevens et al. 1974] Stevens W., Myers G. and Constantine L. ―Structured design‖, IBM

Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

178. [Sthamer et al. 2002] Sthamer H., Wegener J. and Baresel A. ―Using evolutionary testing to

improve efficiency and quality in software testing‖, Proceedings of the 2nd Asia-Pacific

Conference on Software Testing Analysis and Review (AsiaSTAR), pp. 22-24, 2002.

179. [Sultan et al. 2010] Sultan H., Ahmed S. and Mohammed E. ―The limitations of genetic

algorithms in software testing‖, Proceedings of the ACS/IEEE International Conference on

Computer Systems and Applications - AICCSA 2010 (AICCSA '10), IEEE Computer

Society, Washington, DC, USA, pp. 1-7, 2010.

180. [Tang et al. 1999] Tang M., Kao M. and Chen M. ―An Empirical Study on Object Oriented

Metrics,‖ Proceedings of Sixth International Software Metrics Symposium, pp. 242-249,

1999.

181. [Tegarden et al. 1992] Tegarden D., Sheetz S. and Monarchi D. ―Effectiveness of

traditional software metrics for object oriented systems‖, Proceedings of the Twenty-Fifth

Hawaii International Conference on System Sciences, vol. 4, pp. 359 – 368, 1992.

182. [Tonella 2004] Tonella P. ―Evolutionary testing of classes‖ SIGSOFT Software

Engineering Notes, vol. 29, no. 4, pp. 119-128, 2004.

183. [Tracey et al. 1998] Tracey N., Clark J. and Mander K. ―Automated program flaw finding

using simulated annealing‖, Software Engineering Notes, vol. 23, no. 2, pp. 73–81, 1998.

184. [Tsai et al. 1986] Tsai T., Lopez A., Rodreguez V., Volovik D. ―An Approach to Measuring

Data Structure Complexity‖, COMPSAC86, pp. 240-246, 1986.

185. [Tse and Xu 1996] Tse T. and Xu Z. ―Test case generation for class-level object-oriented

testing‖, Proceedings of the 9th International Software Quality Week, San Francisco, CA,

May 1996. Software Research Inc., San Francisco, CA, pp. 4T4.0–4T4.12, 1996.

186. [VanderBrug and Minker 1975] VanderBrug G. and Minker J. ―State-space problem-

reduction, and theorem proving—some relationships‖, Communications of the ACM, vol.

18, no. 2, pp. 107-119, 1975.

187. [Vessey and Weber 1984] Vessey and R. Weber, ―Research on structured programming: An

empiricist‘s evaluation,‖ IEEE Trans. Software Eng., vol. SE-IO, pp. 394-407, 1984.

188. [Wappler and Lammermann 2005] Wappler S. and Lammermann F. ―Using evolutionary

algorithms for the unit testing of object-oriented software‖, Proceedings of the 2005

 153

conference on Genetic and evolutionary computation (GECCO '05), Hans-Georg Beyer

(Ed.). ACM, NY, USA, pp. 1053-1060, 2005.

189. [Wappler and Wegener 2006a] Wappler S. and Wegener J. ―Evolutionary unit testing of

object-oriented software using strongly-typed genetic programming‖, Proceedings of the

8th annual conference on Genetic and evolutionary computation (GECCO '06). ACM, NY,

USA, pp. 1925-1932, 2006.

190. [Wappler and Wegener, 2006b] Wappler S. and Wegener J. ―Evolutionary unit testing of

object-oriented software using a hybrid evolutionary algorithm‖, Proceedings of the IEEE

World Congress on Computational Intelligence (WCCI-2006), Vancouver, Canada, IEEE

Press, pp. 3193–3200, 2006.

191. [Watkins 1995] Watkins A. ―The Automatic Generation of Software Test Data using

Genetic Algorithms‖, Proceedings of the Fourth Software Quality Conference, pp. 300-309,

July 1995.

192. [Weiser et al. 1985] Weiser M., Gannon J.and McMullin P., ―Comparison of structural test

coverage metrics‖, IEEE Software, vol. 2, no. 2, pp. 80-85, Mar. 1985.

193. [Weisfeld 2000] Weisfeld M. ―The Object-Oriented Thought Process‖, SAMS Publishing,

2000.

194. [Welker and Oman 1997] Welker K. and Oman P. ―Development and Application of an

Automated Source Code Maintainability Index‖, Journal of Software Maintenance:

Research and Practice, vol. 9, no. 3, pp. 127 – 159, 1997.

195. [Weyuker 1982] Weyuker E. ―On testing non-testable programs‖, The Computer Journal,

vol. 25, no. 4, pp. 465–470, November 1982.

196. [Weyuker 1988] Weyuker E. ―Evaluating software complexity measures‖, IEEE

Transactions on Software Engineering, vol. 14, pp. 1357-1365, 1988.

197. [Weyuker and Jeng 1991] Weyuker E. and Jeng B. ―Analyzing Partition Testing

Strategies‖, IEEE Transactions on Software Engineering, vol. 17, no. 7, pp. 703-711, Jul.

1991.

198. [Whitley 1993] Whitley L. ―Cellular Genetic Algorithms‖, Proceedings of the 5th

International Conference on Genetic Algorithms, Stephanie Forrest (Ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 658-665, 1993.

199. [Whitmire 1992] Whitmire S. ―Measuring complexity in object-oriented software‖, Third

International Conference Applications and Software Measurement, La Jolla, CA, 1992.

200. [Whittaker 2000] Whittaker J. ―What Is Software Testing? And Why Is It So Hard?‖, IEEE

Software, vol. 17, no. 1, pp. 70-79, 2000.

201. [Wilde and Huitt 1992] Wilde N. and Huitt R. ―Maintenance support for object-oriented

programs,‖ IEEE Transactions on Software Engineering, vol. 18, no. 12, pp. 1038-1044,

1992.

202. [Xie et al. 2005] Xie T., Marinov D., Schulte W. and Notkin D. ―Symstra: a framework for

generating object-oriented unit tests using symbolic execution‖, Proceedings of the 11th

 154

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pp. 365–381, 2005.

203. [Yang and Tempero 2007a] Yang H. and Tempero E. ―Indirect Coupling As a Criteria for

Modularity‖, Proceedings of the First International Workshop on Assessment of

Contemporary Modularization Techniques (ACoM '07), IEEE Computer Society,

Washington, DC, USA, pp. 10-11, 2007.

204. [Yang and Tempero 2007b] Yang H. and Tempero E. ―Measuring the strength of indirect

coupling‖, Australian Software Engineering Conference, pp. 319-328, 2007.

205. [Yang et al. 2005] Yang H., Tempero E. and Berrigan R. ―Detecting Indirect Coupling‖,

Australian Software Engineering Conference, pp. 212-221, 2005.

206. [Yang and Zhang 2009] Yang A. and Zhang W., ―Based on Quantification Software

Quality Assessment Method‖, Journal of Software, Vol 4, No 10, pp. 1110-1118, 2009

207. [Yin 2002] Yin, R., ―Case Study Research, Design and Methods‖, 3rd ed. Newbury Park,

Sage Publications, 2002.

208. [Yourdon and Constantine 1979] Yourdon E. and Constantine L. ―Structured Design:

Fundamentals of a Discipline of Computer Program and System Design‖, Prentice-Hall,

1979.

209. [Zhou and Leung 2007] Zhou Y. and Leung H. ―Predicting Object-Oriented Software

Maintainability using Multivariate Adaptive Regression Splines‖, Journal of Systems and

Software, vol. 80, no. 8, pp. 1349 – 1361, 2007.

210. [Zhou and Xu 2008] Zhou Y. and Xu B. ―Predicting the Maintainability of Open Source

Software using Design Metrics‖, Wuhan University Journal of Natural Sciences, vol. 13,

no. 1, pp. 14 – 21, 2008.

 155

APPENDIX
Experimental Results for EasyMock and Hibernate

A

A1. Experiments with EasyMock

a). Following table tabulates LOC measure, IPC and Change metric of each class in different releases

of EasyMock from versions 2.0 through version 2.5.

S.No. Class Name v2.0 v2.1 v2.3 v2.4 v2.5 IPC Change

1 AbstractMatcher 25 25 25 25 27 5.12 2

2 AlwaysMatcher 4 4 4 4 5 0.58 1

3 And 14 14 14 14 16 3.44 2

4 Any 5 5 5 5 7 2.74 2

5 ArgumentsMatcher 3 3 3 3 3 0 0

6 ArrayEquals 29 29 29 29 30 5.1 1

7 ArrayMatcher 7 7 7 7 8 2.36 1

8 AssertionErrorWrapper 4 4 4 4 5 0.44 1

9 Contains 6 6 6 6 8 1.22 2

10 EasyMock 202 205 205 220 238 24.74 36

11 EndsWith 6 6 6 6 8 1.01 2

12 Equals 16 16 16 16 18 3.11 2

13 EqualsMatcher 2 2 2 2 3 0 1

14 EqualsWithDelta 9 9 9 9 11 1.98 2

15 ExpectedInvocation 43 43 43 42 44 10.4 3

16 ExpectedInvocationAndResult 7 7 7 7 9 1.18 2

17 ExpectedInvocationAndResults 8 8 8 8 10 0.27 2

18 Find 7 7 7 7 9 1.03 2

19 GreaterOrEqual 6 6 6 4 5 1.53 3

20 GreaterThan 6 6 6 4 5 1.05 3

21 InstanceOf 6 6 6 6 8 2.09 2

22 Invocation 35 38 38 50 57 10.57 22

23 IProxyFactory 3 3 3 3 3 0 0

24 JavaProxyFactory 4 4 4 4 4 0.28 0

25 LastControl 39 49 49 49 49 5.91 10

26 LegacyMatcherProvider 17 17 17 17 17 0.78 0

27 LessOrEqual 6 6 6 4 5 1.59 3

28 LessThan 6 6 6 4 5 0.25 3

29 Matches 6 6 6 6 8 2.98 2

30 MockControl 63 63 63 63 63 12.19 0

31 MockInvocationHandler 11 11 11 11 13 1.97 2

32 MocksBehavior 44 44 44 44 50 5.44 6

33 MocksControl 70 70 73 77 87 13.45 17

34 Not 8 8 8 8 10 1.24 2

35 NotNull 5 5 5 5 7 1.29 2

36 Null 5 5 5 5 7 1.03 2

37 ObjectMethodsFilter 21 21 21 25 37 6.45 16

38 Or 14 14 14 14 16 1.18 2

39 Range 18 18 18 18 20 3.6 2

40 RecordState 131 132 138 138 139 24.53 8

41 ReplayState 23 23 30 30 35 6.67 12

42 Result 15 18 10 10 17 8.14 18

43 Results 29 29 29 29 31 7.26 2

44 RuntimeExceptionWrapper 4 4 4 4 5 1.27 1

45 Same 12 12 12 12 14 2.1 2

46 StartsWith 6 6 6 6 8 2.56 2

 156

S.No. Class Name v2.0 v2.1 v2.3 v2.4 v2.5 IPC Change

47 ThrowableWrapper 4 4 4 4 5 1.63 1

48 UnorderedBehavior 30 30 30 30 32 5.63 2

A2. Experiments with Apache Tiles

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of

Apache Tiles from versions 2.0.3 through version 2.2.2.

S.No. Class Name v2.0.3 v2.0.4 v2.0.5 v2.0.6 v2.0.7 v2.1.0 v2.1.1 v2.1.2 v2.1.3 v2.1.4 v2.2.0 v2.2.1 v2.2.2 IPC Change

1 AddAttributeTag 48 47 47 47 47 67 67 66 66 66 46 46 49 2.66 45

2 AddListAttributeTag 36 37 37 37 33 34 30 30 30 30 31 31 31 2.85 11

3 Attribute 94 101 101 134 134 146 146 183 187 187 225 225 237 2.65 143

4 BasicAttributeContext 98 106 106 109 109 56 56 56 56 56 56 56 56 2.69 64

5 BasicPreparerFactory 31 31 31 31 31 29 29 29 29 29 29 29 29 0.96 2

6 BasicPreparerFactoryTest 21 19 19 19 19 18 18 18 18 18 18 18 18 0.69 3

7 BasicTilesContainer 311 308 313 351 351 353 357 321 324 324 330 330 330 1.01 97

8 BasicTilesContainerTest 42 68 103 103 103 102 105 106 106 106 102 102 102 2.27 70

9 CachingTilesContainer 40 39 39 39 39 35 33 33 33 33 33 33 33 0.61 7

10 ChainedTilesContextFactory 73 81 85 85 85 89 97 97 91 91 91 91 91 1.73 30

11 ClassUtil 30 32 32 32 17 36 15 15 15 15 15 15 15 2.65 57

12 DefaultLocaleResolver 23 23 23 23 23 21 21 21 21 21 21 21 21 1.39 2

13 DefinitionManager 134 122 122 119 119 132 132 132 132 132 131 131 131 1.28 29

14 DefinitionsFactoryUtil 25 25 25 25 25 28 28 24 24 24 24 24 24 1.24 7

15 DefinitionTag 97 99 99 98 99 123 124 126 126 126 61 61 61 2.34 96

16 DigesterDefinitionsReader 117 136 151 159 159 202 202 221 221 221 226 226 226 1.56 109

17 ImportAttributeTag 39 38 38 38 43 60 65 65 65 68 49 49 49 2.18 50

18 InitContainerTag 194 193 193 193 194 201 211 211 211 211 206 206 206 1.08 24

19 InsertAttributeTag 57 57 57 57 58 64 66 109 109 109 87 87 90 1 77

20 JspTilesContextFactory 37 36 36 36 36 32 19 19 19 19 19 19 19 2.89 18

21 JspTilesRequestContext 41 42 42 38 38 38 45 68 68 68 68 68 68 2.31 35

22 JspUtil 44 45 45 19 19 53 53 85 85 85 143 143 143 3.35 151

23 JspWriterResponse 21 20 20 20 20 20 20 20 20 20 20 20 20 1.4 1

24 ListAttribute 28 28 28 28 28 11 11 11 11 11 11 11 11 1.29 17

25 MapEntry 42 42 42 42 42 42 42 42 42 42 42 42 42 0 0

26 MockDefinitionsReader 20 20 20 20 20 19 19 19 19 19 19 19 19 1.14 1

27 MockOnlyLocaleTilesContext 45 45 45 45 45 45 49 64 64 64 69 69 69 1.63 24

28 PutAttributeTag 55 54 54 54 55 39 40 34 34 34 61 61 61 2.68 52

29 PutListAttributeTag 37 38 38 38 38 53 53 53 53 53 53 53 56 1.61 19

30 RollingVectorEnumeration 24 24 24 24 24 25 25 25 25 25 25 25 25 1.97 1

31 SimpleMenuItem 52 52 52 52 52 52 52 52 52 52 52 52 52 0 0

32 TilesAccess 68 70 70 70 66 72 72 80 80 80 81 81 81 2.58 21

33 TilesAccessTest 26 26 26 26 26 39 39 33 33 33 33 33 33 1.13 19

34 TilesContainerFactory 161 161 161 161 161 187 277 277 277 277 286 286 286 4.63 125

35 UseAttributeTag 41 40 40 40 40 39 39 39 39 39 78 78 78 2.07 41

157

A3. Experiments with Hibernate

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of Hibernate from versions 3.0a

through version 3.2.5.

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

1 AbstractBatcher 139 149 159 160 161 161 164 164 186 191 191 191 191 191 191 20.46 52

2 AbstractComponentType 14 15 18 18 18 18 18 18 19 19 19 19 19 19 19 30.19 5

3 AbstractEvent 5 5 6 6 6 6 5 5 5 5 5 5 5 5 5 10.75 2

4 AbstractLazyInitializer 34 29 29 29 30 30 33 33 39 39 41 41 41 41 41 28.63 17

5 AbstractLockUpgradeEventListener 20 20 26 26 26 26 26 26 26 28 28 28 28 28 28 9.58 8

6 AbstractPropertyMapping 70 72 79 79 79 79 79 79 81 81 81 85 85 85 85 10.91 15

7 AbstractReassociateEventListener 23 23 25 25 25 25 27 27 27 27 27 26 26 26 26 8.82 5

8 AbstractSaveEventListener 80 94 96 96 96 96 107 112 113 122 122 122 122 122 122 26.54 42

9 AbstractType 23 27 39 39 39 39 46 46 46 46 46 46 46 46 46 9.84 23

10 AbstractVisitor 27 28 34 34 34 34 34 30 30 30 30 30 30 30 30 11.42 11

11 AnyType 87 91 95 96 96 97 98 105 109 109 109 109 109 109 109 6.19 22

12 ArrayType 45 46 48 48 48 48 47 48 49 49 49 49 49 49 49 14.49 6

13 Assigned 9 9 15 15 15 15 14 14 14 14 14 14 14 14 14 9.13 7

14 AssociationType 12 12 12 13 13 14 14 14 14 14 14 14 14 14 14 5.95 2

15 ASTPrinter 57 76 78 78 78 78 91 92 92 92 92 92 92 92 92 9.08 35

16 AutoFlushEvent 7 7 8 8 8 8 7 7 10 10 10 10 10 10 10 10.56 5

17 BagType 10 10 19 19 19 19 19 19 19 19 19 19 19 19 19 13.5 9

18 BasicCollectionPersister 73 76 81 81 102 102 97 97 97 97 103 103 103 103 103 17.14 40

19 BasicLazyInitializer 41 42 46 46 46 46 46 46 42 43 43 43 43 43 43 16.77 10

20 BasicPropertyAccessor 94 98 101 101 101 101 101 102 102 102 102 102 102 102 102 10.88 8

21 Batcher 24 25 28 28 28 28 30 30 32 33 33 33 33 33 33 21.3 9

22 BatcherFactory 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 4.19 2

23 BatchingBatcher 32 29 32 34 34 34 34 34 35 35 26 26 26 26 26 9.36 18

24 BatchingBatcherFactory 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 4.28 2

25 BatchingCollectionInitializer 45 44 40 40 40 40 40 40 40 40 40 40 40 40 40 16.81 5

26 BatchingEntityLoader 48 48 44 44 44 44 44 44 44 44 44 44 44 44 44 10.94 4

27 BigDecimalType 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 10.71 2

28 BlobImpl 28 33 33 33 33 33 33 33 33 33 33 33 33 33 33 12.01 5

29 BlobType 22 23 43 43 43 43 43 45 46 46 46 46 46 46 46 7.97 24

30 BooleanType 16 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17.97 3

31 BytesHelper 26 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5.42 20

32 ByteType 17 22 22 22 22 22 22 22 24 24 24 24 24 24 24 10.82 7

33 C3P0ConnectionProvider 58 60 60 60 61 61 61 61 61 61 61 83 83 83 83 1.57 25

34 Cache 17 17 20 20 21 21 21 21 21 21 21 21 21 21 21 6.38 4

35 CacheConcurrencyStrategy 18 19 17 17 17 17 17 17 17 19 19 19 19 19 19 2.42 5

36 CacheEntry 28 29 32 32 32 32 33 33 41 41 41 41 41 41 41 1.53 13

37 CacheProvider 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 10.6 3

 158

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

38 CacheSynchronization 11 26 31 32 32 32 32 32 37 37 37 37 37 37 37 7.36 26

39 CalendarDateType 30 38 40 40 40 40 40 40 40 40 40 40 40 40 40 13.59 10

40 CalendarType 35 49 51 51 51 51 51 51 52 52 52 52 52 52 52 9.05 17

41 CGLIBLazyInitializer 36 36 42 42 42 42 50 50 59 61 61 61 64 64 64 10.48 28

42 CGLIBProxyFactory 21 21 24 24 24 24 23 23 23 25 25 25 25 25 25 4.13 6

43 CharacterType 18 20 20 20 20 20 20 20 21 21 21 21 21 21 21 11.16 3

44 ClassMetadata 28 28 31 31 31 31 35 36 36 36 36 36 36 36 36 13.83 8

45 ClassType 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 10.42 2

46 ClobImpl 34 39 41 41 41 41 41 41 41 41 41 41 41 41 41 14.59 7

47 ClobType 22 23 47 47 47 47 47 49 50 50 50 50 50 50 50 10.87 28

48 CollectionAction 30 34 38 38 38 38 42 42 42 45 45 45 45 45 45 18.55 15

49 CollectionEntry 107 108 100 100 100 100 91 91 91 102 102 102 102 102 102 23.71 29

50 CollectionKey 17 20 28 28 28 28 28 28 28 37 37 37 37 37 37 9.98 20

51 CollectionPersister 50 52 57 57 61 60 65 65 70 70 71 71 71 71 71 12.35 23

52 CollectionProperties 13 13 21 21 21 21 21 21 21 21 21 21 21 21 21 7.27 8

53 CollectionPropertyMapping 49 49 41 41 41 41 41 41 41 41 41 41 41 41 41 7.74 8

54 CollectionRemoveAction 12 12 12 12 12 12 15 15 15 15 15 15 15 15 15 21.42 3

55 CollectionStatistics 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13.34 2

56 CollectionUpdateAction 25 25 25 25 25 25 28 28 28 28 28 28 28 28 28 14.95 3

57 Column 57 68 77 77 78 78 81 81 102 102 103 103 103 103 103 7.27 46

58 ColumnMetadata 19 19 19 19 19 19 19 19 23 23 23 23 23 23 23 1.79 4

59 Component 77 89 99 99 99 99 99 111 111 114 102 102 102 102 102 6.79 49

60 CompositeCustomType 77 77 81 81 81 81 80 89 91 91 91 91 91 91 91 15.32 16

61 CompositeUserType 22 24 24 24 23 23 23 23 23 23 23 23 23 23 23 4.77 3

62 ConfigHelper 32 32 32 32 32 32 32 32 42 42 52 52 52 52 52 20.46 20

63 Configurable 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 17.15 4

64 ConnectionProviderFactory 42 42 42 42 42 42 42 61 61 61 61 61 61 61 61 9.09 19

65 Constraint 25 27 28 28 28 28 28 28 28 28 32 32 32 32 32 9.78 7

66 Criteria 39 39 36 36 36 35 35 35 35 39 39 39 39 39 39 31.68 8

67 CriteriaImpl 218 218 199 199 199 199 205 203 203 209 209 209 209 209 209 11.31 33

68 CurrencyType 41 39 39 39 39 39 39 39 40 40 40 40 40 40 40 1.43 3

69 CustomType 43 44 59 59 59 59 59 61 63 63 67 67 67 67 67 15.94 24

70 DatabaseMetadata 46 51 51 51 51 51 51 51 54 58 70 70 70 70 70 15.99 24

71 DatasourceConnectionProvider 28 28 28 28 29 29 29 31 31 31 31 31 31 31 31 6.38 3

72 DateType 34 36 37 37 37 37 41 41 42 42 42 42 42 42 42 8.52 8

73 DefaultAutoFlushEventListener 23 18 22 22 22 22 22 22 21 21 21 21 21 21 21 2.26 10

74 DefaultDirtyCheckEventListener 17 12 14 14 14 14 14 14 13 13 13 13 13 13 13 2.04 8

75 DefaultEvictEventListener 30 31 36 36 36 36 37 37 38 38 38 38 38 38 38 8.02 8

76 DefaultInitializeCollectionEventListener 32 31 44 44 44 44 45 45 45 45 45 45 45 45 45 7.19 15

77 DefaultLockEventListener 26 28 27 27 27 27 29 29 29 29 29 29 29 29 29 11.11 5

78 DefaultNamingStrategy 9 9 9 9 9 9 9 9 18 18 18 18 18 18 18 3.31 9

79 DefaultRefreshEventListener 42 45 50 50 50 50 51 57 61 61 61 61 61 61 61 14.04 19

80 DefaultReplicateEventListener 36 48 51 51 51 51 55 55 55 55 55 56 56 56 56 15.84 20

81 DefaultSaveEventListener 24 13 15 15 15 15 15 15 15 15 15 15 15 15 15 11.21 13

 159

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

82 DefaultUpdateEventListener 49 15 17 17 17 17 17 17 17 17 17 17 17 17 17 11.75 36

83 Delete 23 23 23 23 23 23 30 30 30 30 33 33 33 33 33 11.02 10

84 DeleteEvent 13 13 14 14 14 14 13 15 15 15 15 15 15 15 15 19.42 4

85 DeleteEventListener 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 16.59 2

86 DenormalizedTable 13 13 13 13 13 13 13 13 30 30 30 33 33 33 33 2.46 20

87 DependantValue 7 8 14 14 14 14 14 14 14 14 14 14 14 14 14 4.22 7

88 DetailedSemanticException 23 23 19 19 19 19 19 19 19 19 19 19 19 19 19 0.3 4

89 DirectPropertyAccessor 38 40 43 43 43 43 43 44 44 44 50 50 50 51 51 13.03 13

90 DirtyCheckEvent 2 2 3 3 3 3 2 2 5 5 5 5 5 5 5 17.53 5

91 DirtyCollectionSearchVisitor 16 19 20 20 20 20 21 21 21 21 21 21 21 21 21 13.42 5

92 DoubleType 13 15 15 15 15 15 15 15 16 16 16 16 16 16 16 12.1 3

93 DriverManagerConnectionProvider 74 71 71 71 72 72 72 72 72 72 72 72 72 72 72 8.42 4

94 DTDEntityResolver 26 26 27 27 27 27 27 27 28 37 36 36 36 36 36 28.47 12

95 EhCache 46 41 52 52 53 53 53 53 53 53 54 54 54 54 54 9.09 18

96 EhCacheProvider 6 22 23 23 23 23 23 25 25 25 36 36 36 36 36 0 30

97 EntityAction 29 33 33 33 33 33 33 33 34 35 35 35 35 36 36 30.32 7

98 EntityDeleteAction 32 37 47 47 47 47 45 45 64 66 67 67 67 67 67 11.35 39

99 EntityEntry 58 58 53 53 53 53 67 71 70 102 102 102 102 102 102 2.08 56

100 EntityIdentityInsertAction 22 27 27 27 27 27 27 27 48 58 59 59 59 59 59 16.57 37

101 EntityInsertAction 25 32 41 41 42 42 42 42 65 66 67 67 67 68 68 6.17 43

102 EntityKey 21 24 35 35 35 35 35 35 35 54 54 54 54 54 54 9.52 33

103 EntityLoader 37 41 49 49 49 46 42 42 21 21 21 21 21 21 21 8.64 40

104 EntityPersister 76 78 85 86 86 86 90 91 103 105 120 123 123 123 123 18.13 47

105 EntityStatistics 11 11 13 13 13 13 13 13 15 15 15 15 15 15 15 16.37 4

106 EntityUniqueKey 18 21 25 25 25 25 28 28 33 42 42 42 42 42 42 8.73 24

107 EntityUpdateAction 43 50 61 61 61 61 61 61 84 87 89 89 89 89 89 14.74 46

108 Environment 132 139 143 143 144 144 144 144 149 169 171 172 172 173 173 10.51 41

109 ErrorCounter 31 36 34 34 34 34 30 30 30 30 30 30 30 30 30 27.28 11

110 EvictEvent 6 6 7 7 7 7 6 6 6 6 6 6 6 6 6 11.12 2

111 EvictVisitor 6 22 23 23 23 23 23 23 23 23 23 23 23 23 23 30.51 17

112 Example 108 108 113 113 113 113 113 113 117 117 120 120 120 120 120 14.5 12

113 Expression 36 39 6 6 6 6 6 6 6 6 6 6 6 6 6 12.17 36

114 Fetchable 3 4 4 4 4 6 6 6 6 6 6 6 6 6 6 14.49 3

115 FetchMode 17 19 17 17 17 17 17 17 17 17 17 17 17 17 17 5.16 4

116 Filter 4 4 7 7 7 7 7 7 9 9 9 9 9 9 9 0.81 5

117 FilterDefinition 13 13 16 16 17 17 17 17 16 16 17 17 17 17 17 11.09 6

118 FilterImpl 23 23 33 33 35 35 39 37 38 38 38 38 38 38 38 4.39 19

119 FloatType 13 15 15 15 15 15 15 15 16 16 16 16 16 16 16 11.01 3

120 FlushEvent 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2 10.66 2

121 FlushMode 20 20 20 20 20 20 20 20 20 21 24 24 24 24 24 8.99 4

122 FlushVisitor 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15 17.88 4

123 ForeignGenerator 22 21 23 23 23 23 27 27 27 27 27 27 27 27 27 5.3 7

124 ForeignKey 38 40 40 40 40 40 55 55 55 55 55 55 55 55 55 2.11 17

125 ForeignKeyDirection 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 16.97 2

 160

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

126 ForeignKeys 46 54 66 67 67 67 67 67 67 67 68 68 68 68 68 13.69 22

127 Formula 16 17 17 17 17 17 17 17 17 17 18 18 18 18 18 1.56 2

128 ForUpdateFragment 36 33 33 33 33 33 34 34 34 34 34 34 34 34 34 5.25 4

129 FromReferenceNode 23 28 32 32 32 32 32 33 33 33 33 33 33 33 33 2.6 10

130 FrontBaseDialect 23 23 23 23 23 23 23 23 25 32 32 32 32 32 32 0 9

131 GetGeneratedKeysHelper 27 27 27 27 27 27 27 27 25 28 28 28 28 28 28 7.99 5

132 Getter 7 8 10 10 10 10 10 11 11 11 11 11 11 11 11 20.16 4

133 GUIDGenerator 22 22 22 22 23 23 22 22 22 22 22 22 22 22 22 8.18 2

134 HashtableCache 16 16 20 20 21 21 21 21 21 21 21 21 21 21 21 4.14 5

135 HibernateProxyHelper 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1.57 9

136 HibernateService 105 105 54 54 54 54 54 54 54 54 54 54 54 54 54 9.82 51

137 HibernateServiceMBean 60 60 64 64 64 64 64 64 64 64 64 66 66 66 66 0.84 6

138 HqlLexer 23 20 14 14 14 14 16 19 19 19 19 19 19 19 19 5.67 14

139 HqlParser 98 102 126 127 127 127 133 137 141 141 141 141 141 141 141 2 43

140 HSQLDialect 96 105 113 113 113 113 128 129 126 141 141 143 146 146 146 13.55 56

141 IdentifierBagType 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13 5.16 3

142 IdentifierGenerator 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 2.82 2

143 IdentifierGeneratorFactory 44 42 49 49 52 52 54 54 54 55 55 55 55 55 55 20.76 15

144 IdentityGenerator 6 7 7 7 7 7 7 7 7 52 52 52 52 52 52 12.83 46

145 IdentityMap 67 80 80 80 80 80 81 87 87 87 87 87 87 87 87 8.66 20

146 ImmutableType 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 11.28 2

147 ImprovedNamingStrategy 14 14 14 14 14 14 14 14 23 23 23 23 23 23 23 28.82 9

148 IncrementGenerator 40 43 43 43 54 54 54 54 50 50 50 50 50 50 50 20.09 18

149 Index 30 34 36 36 36 36 36 36 36 36 36 36 36 36 36 29.26 6

150 IndexedCollection 19 19 29 29 29 29 29 29 29 29 29 29 29 29 29 12.55 10

151 IndexNode 33 46 57 57 57 57 57 59 59 59 59 59 59 59 59 6.29 26

152 InformixDialect 40 40 41 41 41 41 67 68 68 68 68 68 68 68 68 1.04 28

153 InFragment 36 36 35 35 35 35 36 36 36 36 36 36 36 36 36 22.64 2

154 InitializeCollectionEvent 6 6 7 7 7 7 6 6 6 6 6 6 6 6 6 2.63 2

155 Insert 40 40 44 44 44 44 44 44 44 45 45 45 45 45 45 2.71 5

156 InstantiationException 6 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10.83 4

157 IntegerType 17 22 22 22 22 22 22 22 24 24 24 24 24 24 24 16.81 7

158 InterbaseDialect 31 31 31 31 31 32 32 34 40 40 40 40 40 40 40 10.11 9

159 Interceptor 15 15 18 18 18 18 18 18 22 22 22 22 22 22 22 3.31 7

160 IteratorImpl 66 66 67 67 63 63 65 65 65 65 65 65 65 65 67 15.63 9

161 JDBCExceptionReporter 14 29 29 29 33 33 33 33 33 33 34 34 34 34 34 21.03 20

162 JDBCTransaction 49 53 84 84 84 87 87 87 96 96 96 96 96 96 96 9.68 47

163 JDBCTransactionFactory 8 8 8 8 8 10 10 10 10 14 13 13 13 13 13 5.88 7

164 Join 51 58 59 59 59 59 59 59 59 59 69 69 69 69 69 8.58 18

165 JoinedSubclass 13 14 14 14 14 14 14 16 16 16 16 16 16 16 16 2.46 3

166 JoinedSubclassEntityPersister 260 241 240 240 240 240 252 252 252 252 262 262 263 263 263 3.53 43

167 JoinFragment 19 25 29 29 29 29 29 29 29 29 29 29 29 29 29 10.21 10

168 JoinHelper 22 27 28 28 28 28 28 28 28 28 28 28 28 28 28 5.17 6

169 JoinProcessor 54 42 56 56 56 56 56 58 60 60 60 60 60 60 60 5.59 30

 161

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

170 JoinSequence 97 99 101 101 112 112 114 114 114 114 114 114 114 114 114 9.07 17

171 JTATransaction 82 90 96 97 97 104 104 104 113 114 114 114 114 114 114 18.94 32

172 JTATransactionFactory 28 28 25 25 25 27 27 27 27 37 38 38 38 38 38 5.79 16

173 KeyValue 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 4.9 2

174 LazyInitializationException 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5.46 2

175 LazyInitializer 14 14 14 14 15 15 17 17 17 17 17 17 17 17 17 10.18 3

176 LinkedHashCollectionHelper 18 18 18 18 18 18 18 18 18 18 40 40 40 40 40 12.92 22

177 ListType 9 9 23 23 23 23 23 23 23 23 23 23 23 23 23 5.47 14

178 Loadable 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 14.38 3

179 LoadEvent 30 30 31 31 31 31 30 30 33 33 33 33 33 33 33 3.56 5

180 LoadEventListener 12 12 12 12 12 31 31 31 31 31 31 31 31 31 31 15.07 19

181 LocaleType 23 25 26 26 26 26 26 26 27 27 27 27 27 27 27 6.13 4

182 LockEvent 16 16 17 17 17 17 16 16 16 16 16 16 16 16 16 7.62 2

183 LockMode 23 23 23 23 23 23 23 23 23 26 26 26 26 26 26 10.95 3

184 LongType 17 22 22 22 22 22 22 22 24 24 24 24 24 24 24 27.1 7

185 ManyToOne 8 9 9 12 12 12 24 24 24 24 24 24 24 24 24 6.54 16

186 ManyToOneType 35 35 40 43 43 45 46 50 63 63 61 61 61 61 61 17.31 30

187 MapAccessor 18 18 21 21 21 21 21 21 21 21 21 21 21 21 21 19.75 3

188 MapProxy 20 21 21 21 21 21 21 21 21 24 24 24 24 24 24 8.86 4

189 MapProxyFactory 9 9 10 10 10 10 10 10 10 14 14 14 14 14 14 10.44 5

190 MapType 23 23 34 34 34 34 33 34 34 34 34 34 34 34 34 2.56 13

191 MatchMode 24 24 22 22 22 22 22 22 22 22 22 22 22 22 22 8 2

192 MckoiDialect 30 30 44 44 44 44 44 45 45 52 52 52 52 52 52 11.63 22

193 MessageHelper 37 37 84 84 84 84 84 84 84 90 90 90 90 90 90 24.14 53

194 MetaType 36 35 41 41 41 41 41 42 43 43 43 43 43 43 43 13.25 9

195 MethodNode 23 38 70 70 72 72 72 74 74 74 74 74 74 74 74 4.04 51

196 MutableType 6 6 10 10 10 10 11 11 11 11 11 11 11 11 11 17.25 5

197 MySQLDialect 141 151 161 160 160 160 164 166 168 169 170 174 174 174 174 11.58 35

198 NamedQueryDefinition 21 22 22 22 22 22 22 26 38 38 38 38 38 38 38 14.43 17

199 NamedQueryLoader 25 24 24 24 24 24 24 24 26 26 26 26 26 26 26 13.14 3

200 NamedSQLQueryDefinition 24 10 18 18 18 18 18 25 29 29 23 23 23 23 23 19.38 39

201 NameGenerator 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 17.42 12

202 NamingStrategy 6 6 6 6 6 6 6 6 11 11 11 11 11 11 11 9.84 5

203 NestableRuntimeException 29 29 29 29 29 29 29 29 36 36 36 36 36 36 36 4.4 7

204 NoArgSQLFunction 12 12 17 17 18 18 18 18 18 18 18 18 18 18 18 8.8 6

205 NonBatchingBatcher 8 8 9 9 9 9 9 9 10 10 9 9 9 9 9 7.85 3

206 NonBatchingBatcherFactory 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 2.9 2

207 NonstrictReadWriteCache 36 37 39 39 39 39 39 39 39 37 37 37 37 37 37 1.65 5

208 NullableType 36 36 43 43 43 43 43 45 49 61 61 64 64 64 64 8.89 28

209 OneToMany 27 28 33 37 37 37 37 37 37 37 37 37 37 37 37 16.89 10

210 OneToManyPersister 90 93 96 96 96 96 100 100 102 102 118 118 118 118 118 10.47 28

211 OneToOne 26 27 32 32 36 36 36 36 36 36 36 36 36 36 36 9.77 10

212 OneToOneType 26 26 26 25 37 37 37 38 39 39 39 39 39 39 39 13 15

213 OnLockVisitor 18 18 19 19 19 19 18 18 18 18 18 18 18 18 18 10.5 2

 162

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

214 OnReplicateVisitor 17 17 19 19 19 21 21 21 21 21 21 20 20 20 20 8.91 5

215 OnUpdateVisitor 19 19 21 21 21 21 19 19 19 19 19 18 18 18 18 5.7 5

216 OracleDialect 14 20 33 33 33 33 33 25 29 29 29 29 29 29 34 18.2 36

217 OracleJoinFragment 43 43 45 45 45 45 44 44 44 44 44 44 44 44 44 12.02 3

218 Order 15 15 18 18 18 18 18 30 30 30 30 30 30 30 30 4.36 15

219 OSCache 25 25 29 29 30 30 30 30 30 30 30 30 30 30 30 7.92 5

220 OuterJoinableAssociation 46 46 47 47 58 57 57 57 57 57 57 57 57 57 57 4.62 13

221 OuterJoinLoadable 13 14 16 16 16 16 18 18 20 20 20 20 20 20 20 9.71 7

222 PathExpressionParser 215 215 210 210 210 210 210 210 210 210 210 210 210 210 210 10.82 5

223 PersistentIdentifierGenerator 10 10 10 10 14 14 14 14 14 14 14 14 14 14 14 7.85 4

224 PersisterFactory 39 39 44 44 44 44 44 44 44 44 44 44 44 44 44 41.57 5

225 PointbaseDialect 21 21 21 21 21 21 21 21 21 28 28 28 28 28 28 1.58 7

226 PostgreSQLDialect 90 91 97 97 102 104 112 113 135 135 136 137 138 138 138 21.78 48

227 PreprocessingParser 58 59 58 58 58 58 58 58 58 58 58 58 58 58 58 33.84 2

228 PropertiesHelper 25 25 25 25 25 25 25 25 55 55 54 54 54 54 54 1.29 31

229 Property 66 70 58 58 58 58 58 58 92 94 95 95 95 95 95 9.94 53

230 PropertyAccessorFactory 17 19 36 36 36 36 36 36 39 39 39 39 39 39 39 12.89 22

231 ProxoolConnectionProvider 71 71 65 65 66 66 66 66 66 66 66 66 66 66 66 18.85 7

232 ProxyFactory 8 8 9 9 9 9 9 9 9 14 14 14 14 14 14 13.22 6

233 ProxyVisitor 15 15 16 16 16 16 18 18 18 18 18 18 18 18 18 10.36 3

234 Query 78 80 82 86 86 85 85 85 85 87 89 89 89 89 89 3.45 13

235 Queryable 8 8 9 9 9 9 17 17 19 19 26 26 26 26 26 4.03 18

236 QueryableCollection 11 12 14 14 14 14 14 14 15 15 16 16 16 16 16 3.29 5

237 QueryCache 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 8.57 2

238 QueryImpl 43 43 42 42 42 42 42 42 43 43 43 43 43 43 43 13.43 2

239 QueryJoinFragment 35 37 37 37 37 37 37 37 37 37 37 37 37 37 37 11.02 2

240 QueryKey 59 64 67 67 69 69 69 69 69 76 76 76 76 76 76 14.92 17

241 QueryNode 46 29 43 43 43 43 49 40 40 40 40 40 40 40 40 3.2 46

242 QuerySplitter 48 49 49 49 49 55 55 55 57 57 57 57 57 57 57 17.4 9

243 QueryStatistics 19 19 24 24 24 24 24 24 24 25 25 25 25 25 25 18.97 6

244 QueryTranslator 22 23 28 29 29 29 32 32 35 36 36 36 36 36 36 22.93 14

245 QueryTranslatorFactory 29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4.63 24

246 QueryTranslatorImpl 461 454 457 458 460 460 465 465 463 467 467 469 469 469 469 3.45 26

247 ReadOnlyCache 31 32 34 34 34 34 34 34 34 34 34 34 34 34 34 0.17 3

248 ReadWriteCache 108 117 123 123 123 123 123 123 123 123 123 123 123 123 123 6.97 15

249 ReattachVisitor 18 18 28 28 28 28 28 24 24 24 24 27 27 27 27 15.32 17

250 ReflectHelper 92 93 97 97 97 97 98 98 102 80 78 78 78 78 78 8.58 34

251 RefreshEvent 12 12 13 13 13 13 12 12 12 12 12 12 12 12 12 12.11 2

252 RefreshEventListener 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 11.89 2

253 ReplicateEvent 18 18 19 19 19 19 18 18 18 18 18 18 18 18 18 5.46 2

254 ReplicationMode 26 26 24 24 24 24 24 24 24 24 24 24 24 24 24 6.46 2

255 RootClass 71 72 73 73 80 80 89 89 93 93 93 93 93 93 93 14.33 22

256 SchemaExportTask 90 90 90 90 90 90 90 90 89 89 89 89 89 91 91 22.85 3

257 SchemaUpdate 82 85 85 85 85 85 85 90 91 84 84 84 84 84 84 9.48 16

 163

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

258 SchemaUpdateTask 78 78 77 77 77 77 77 77 78 78 78 78 78 80 80 12.46 4

259 ScrollableResults 43 43 43 45 45 45 45 45 45 45 45 45 45 45 45 17.2 2

260 SecondLevelCacheStatistics 16 16 27 27 27 27 27 27 27 27 27 27 27 27 27 1.89 11

261 Select 41 54 59 59 59 59 58 58 58 58 58 58 58 58 58 2.66 19

262 SelectFragment 56 61 63 63 63 63 63 63 63 63 63 63 63 63 63 14.15 7

263 SequenceGenerator 46 45 45 45 45 45 45 45 44 45 45 45 45 45 45 13.23 3

264 SequenceHiLoGenerator 27 26 26 26 26 26 26 26 26 26 29 29 29 29 29 4.14 4

265 SerializableProxy 31 24 27 27 27 27 27 27 27 27 27 27 27 27 27 3.58 10

266 SerializableType 30 29 30 30 30 30 30 30 30 30 30 30 30 30 30 6.65 2

267 SerializationHelper 32 49 49 49 49 49 49 49 49 51 51 51 51 51 51 13.3 19

268 Session 66 70 75 75 75 75 78 79 77 77 77 78 78 79 79 11.84 17

269 SessionFactory 30 32 33 37 37 38 40 40 41 41 41 41 41 41 41 5.49 11

270 SessionFactoryHelper 41 83 79 79 80 80 80 86 87 88 88 88 88 88 88 16.72 55

271 SessionFactoryImplementor 40 46 37 38 38 38 39 42 49 49 53 53 53 53 53 35.2 31

272 SessionFactoryStub 61 61 59 60 60 61 64 64 68 68 68 68 68 68 68 7.52 11

273 Setter 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 11.2 2

274 Settings 93 113 123 123 126 127 127 127 133 137 145 148 148 151 151 32.76 58

275 SetType 9 9 17 17 17 17 17 17 17 17 17 17 17 17 17 24.99 8

276 ShortType 17 22 22 22 22 22 22 22 24 24 24 24 24 24 24 30.57 7

277 SimpleExpression 26 26 28 28 28 28 28 39 40 40 40 40 40 40 40 16.28 14

278 SimpleSelect 85 85 85 85 85 85 84 84 85 85 85 85 85 85 85 10.65 2

279 SimpleValue 75 83 93 93 103 103 103 103 104 104 104 104 104 104 104 12.3 29

280 SortedMapType 14 14 21 21 23 23 23 23 23 23 23 23 23 23 23 5.94 9

281 SortedSetType 14 14 20 20 22 22 22 22 22 22 22 22 22 22 22 13.9 8

282 SQLFunction 7 7 9 9 10 10 10 10 10 10 11 11 11 11 11 7.1 4

283 SqlGenerator 15 21 47 47 50 50 50 53 72 72 74 74 74 74 74 14.59 59

284 SqlNode 8 10 9 9 9 9 9 9 9 9 9 9 9 9 9 16.97 3

285 StandardQueryCache 48 51 54 54 54 54 54 54 65 65 67 67 67 67 67 9.22 19

286 StandardSQLFunction 9 9 21 21 21 21 21 21 21 21 25 25 25 25 25 18.21 16

287 Statistics 34 34 38 38 40 40 40 40 42 42 42 42 42 42 42 5.1 8

288 StatisticsImpl 177 177 204 204 212 214 214 214 225 226 226 226 226 226 226 22.05 49

289 StatisticsImplementor 20 20 23 23 25 25 25 25 26 26 26 26 26 26 26 15.88 6

290 StatisticsService 79 79 83 83 85 85 85 85 87 87 87 87 87 87 87 26.26 8

291 Status 17 19 19 19 19 19 20 20 20 21 21 21 21 21 21 9.08 4

292 StringHelper 108 111 135 135 135 135 136 149 150 150 156 156 156 156 156 4.39 48

293 StringType 16 14 14 14 14 14 14 14 15 15 15 15 15 15 15 5.81 3

294 Subclass 62 63 63 63 64 64 65 69 72 72 79 79 79 79 79 23.22 17

295 SwarmCache 23 23 27 27 28 28 28 28 28 28 28 28 28 28 28 9.63 5

296 SwarmCacheProvider 9 15 16 16 16 16 16 16 16 16 16 16 16 16 16 8.7 7

297 SybaseDialect 72 72 87 86 87 88 89 89 100 100 100 120 122 122 122 2.33 52

298 TableHiLoGenerator 26 25 27 27 27 27 27 27 27 27 27 27 28 28 28 7.28 4

299 TableMetadata 65 68 68 68 68 68 68 68 68 68 63 63 63 63 63 9.14 8

300 TimestampType 46 50 51 51 54 52 52 52 54 54 54 54 54 54 54 11.3 12

301 TimeType 32 38 39 39 39 39 44 44 45 45 45 45 45 45 45 21.69 13

 164

S.No. Class Name v3.0a v3.0b v3.0 v3.0.1 v3.0.2 v3.0.3 v3.1.0a v3.1.0b v3.1.0 v3.2.0 v3.2.1 v3.2.2 v3.2.3 v3.2.4 v3.2.5 IPC Change

302 TimeZoneType 18 17 18 18 18 18 18 18 19 19 19 19 19 19 19 22.56 3

303 ToOne 18 20 23 26 26 29 32 32 32 32 32 32 32 32 32 3.01 14

304 Transaction 5 5 7 7 7 8 8 8 10 13 13 13 13 13 13 22.18 8

305 TransactionalCache 32 33 35 35 35 35 35 35 35 38 38 38 38 38 38 10.86 6

306 TransactionFactory 7 7 15 15 15 17 17 17 19 22 22 22 22 22 22 4.62 15

307 TreeCache 40 24 45 45 60 60 60 63 63 66 66 66 66 66 66 0.96 58

308 TreeCacheProvider 4 24 27 27 27 27 27 27 27 36 38 38 38 38 38 9.89 34

309 TwoPhaseLoad 42 47 51 51 51 51 52 52 63 64 64 64 64 64 64 5.71 22

310 Type 34 39 46 46 46 46 48 49 51 51 51 51 51 51 51 12.99 17

311 TypedValue 20 21 22 22 22 22 22 22 22 22 22 22 22 22 22 13.13 2

312 UnionSubclass 12 15 15 15 16 16 16 16 16 16 16 16 16 16 16 14.05 4

313 UniqueKey 14 14 19 19 19 19 19 19 19 19 29 29 29 29 29 18.85 15

314 UniqueKeyLoadable 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 11.19 3

315 Update 60 60 64 64 64 64 81 81 84 84 84 84 84 84 84 28.16 24

316 UpdateTimestampsCache 33 36 42 42 42 42 42 42 42 42 42 42 42 42 42 9.15 9

317 UserSuppliedConnectionProvider 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 3.02 2

318 UserType 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 14.16 2

319 Value 18 20 22 22 22 22 22 22 22 22 22 22 22 22 22 4.11 4

320 Versioning 26 31 31 31 31 31 31 31 31 31 31 32 32 32 32 5.62 6

321 VersionType 3 5 6 6 6 6 6 6 7 7 7 7 7 7 7 4.39 4

322 WebSphereTransactionManagerLookup 21 21 21 21 21 21 21 21 26 26 26 26 26 26 26 2.96 5

323 WhereParser 217 217 227 227 227 227 227 227 227 227 227 227 227 227 227 6.09 10

324 WrapVisitor 52 51 54 54 54 54 55 55 55 55 55 55 55 55 55 13.02 5

325 XMLHelper 29 29 32 32 32 32 32 32 40 40 40 40 40 40 40 7.5 11

A4. Experiments with Apache Velocity

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of Apache Velocity from versions

1.0 through version 1.7.

S.No. Class Name v1.0 v1.0.1 v1.1 v1.2 v1.3 v1.3.1 v1.4 v1.5 v1.6 v1.6.1 v1.6.2 v1.6.3 v1.6.4 v1.7 Change IPC

1 AbstractContext 77 77 81 74 74 74 74 71 72 72 72 72 72 72 15 0.49

2 AnakiaTask 278 278 278 291 291 291 290 384 384 384 384 384 384 384 108 2.53

3 ArrayIterator 30 30 30 30 36 36 36 36 36 36 36 36 36 36 6 0.38

4 ASTAddNode 45 45 45 46 46 46 46 60 34 34 34 34 34 34 41 1.06

5 ASTAndNode 31 42 47 46 46 46 46 47 42 42 42 42 42 42 23 0.58

6 ASTBlock 29 29 29 32 32 32 32 33 32 32 32 32 32 32 5 0.19

7 ASTDirective 73 73 74 76 76 76 75 117 118 118 118 118 118 142 71 0.9

8 ASTDivNode 53 53 53 54 54 54 54 63 34 34 34 34 34 34 39 0.57

9 ASTElseIfStatement 31 31 31 34 34 34 34 35 34 34 34 34 34 34 5 0.47

10 ASTElseStatement 24 24 24 24 24 24 22 23 22 22 22 22 22 22 4 0.29

11 ASTEQNode 51 51 51 52 52 52 58 82 82 82 82 82 82 82 31 0.83

 165

S.No. Class Name v1.0 v1.0.1 v1.1 v1.2 v1.3 v1.3.1 v1.4 v1.5 v1.6 v1.6.1 v1.6.2 v1.6.3 v1.6.4 v1.7 Change IPC

12 ASTEscape 33 33 33 33 33 33 34 37 36 36 36 36 36 33 8 0.38

13 ASTEscapedDirective 26 26 26 26 26 26 26 30 29 29 29 29 29 26 8 0.26

14 ASTExpression 29 29 29 29 29 29 29 30 29 29 29 29 29 29 2 0.5

15 ASTFalse 26 26 27 27 27 27 27 28 27 27 27 27 27 27 3 0.11

16 ASTGENode 28 47 47 48 48 48 54 62 59 59 70 70 70 70 48 1.07

17 ASTGTNode 28 47 47 48 48 48 54 62 59 59 70 70 70 70 48 0.52

18 ASTIdentifier 77 77 92 92 96 96 117 122 136 136 136 136 136 136 59 0.46

19 ASTIfStatement 43 43 43 46 46 46 46 47 46 46 46 46 46 46 5 0.18

20 ASTIntegerRange 56 56 56 55 55 55 55 59 57 57 57 57 57 57 7 0.23

21 ASTLENode 28 47 47 48 48 48 54 62 59 59 70 70 70 70 48 0.87

22 ASTLTNode 28 47 47 48 48 48 54 62 59 59 70 70 70 70 48 0.63

23 ASTMethod 102 102 129 131 131 131 121 199 227 227 227 227 227 181 191 3.89

24 ASTModNode 51 51 51 52 52 52 52 63 34 34 34 34 34 34 41 1.12

25 ASTMulNode 44 44 44 45 45 45 45 55 18 18 18 18 18 18 48 0.88

26 ASTNENode 37 48 48 49 49 49 55 81 83 83 83 83 83 83 46 0.76

27 ASTNotNode 27 27 27 27 32 32 32 33 32 32 32 32 32 32 7 0.21

28 ASTObjectArray 31 31 31 31 31 31 31 33 32 32 32 32 32 32 3 0.45

29 ASTOrNode 30 30 35 35 35 35 35 36 35 35 35 35 35 35 7 0.47

30 ASTReference 268 268 325 342 355 355 322 396 476 473 479 485 485 577 381 1.01

31 ASTSetDirective 61 61 80 80 80 80 78 102 118 118 118 118 118 118 61 0.47

32 ASTStringLiteral 66 66 65 65 65 65 64 114 150 150 150 150 150 175 113 1.27

33 ASTSubtractNode 44 44 44 45 45 45 45 55 18 18 18 18 18 18 48 0.45

34 ASTText 36 36 36 36 36 36 36 41 40 40 40 40 40 37 9 0.36

35 ASTTrue 26 26 27 27 27 27 27 28 27 27 27 27 27 27 3 0.15

36 AvalonLogSystem 73 75 67 82 78 78 76 8 8 8 8 8 8 8 99 1.18

37 BaseVisitor 189 189 189 194 194 194 192 263 263 263 263 263 263 257 84 1.05

38 ClassMap 99 99 99 242 260 260 260 192 193 193 199 199 200 200 237 3.06

39 ClasspathResourceLoader 41 41 41 41 41 41 40 50 50 50 50 50 50 50 11 0.74

40 ContentResource 31 31 31 30 30 30 51 51 55 55 55 55 55 55 26 0.57

41 DataSourceResourceLoader 164 164 164 164 166 166 166 232 243 243 243 243 243 269 105 1.18

42 Directive 36 36 36 39 39 39 40 41 41 51 51 51 51 103 67 0.5

43 Escape 46 46 46 46 46 46 46 50 50 50 50 50 50 50 4 0.32

44 FileResourceLoader 117 117 117 116 116 116 122 203 234 234 237 237 237 237 122 3.04

45 FileUtil 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 0

46 Foreach 136 151 151 155 155 155 86 230 200 200 208 208 208 264 326 4.04

47 Generator 198 198 213 213 259 259 264 275 275 275 275 275 275 275 77 0.71

48 GetExecutor 27 27 39 41 41 41 47 47 50 50 50 50 50 50 23 0.79

49 Include 88 88 100 119 119 119 114 125 131 129 129 129 129 133 59 0.54

50 InternalContextAdapterImpl 76 76 102 102 102 102 102 114 143 143 143 143 143 135 75 0.66

51 InternalContextBase 39 39 61 61 61 61 61 68 106 106 106 106 106 97 76 1.07

52 Introspector 47 47 47 55 44 44 45 56 49 49 49 49 49 49 38 1.18

53 JarHolder 99 99 94 96 96 96 92 101 106 106 106 106 106 106 25 0.8

54 JarResourceLoader 106 106 119 118 118 118 109 119 122 122 122 122 122 122 36 0.57

 166

S.No. Class Name v1.0 v1.0.1 v1.1 v1.2 v1.3 v1.3.1 v1.4 v1.5 v1.6 v1.6.1 v1.6.2 v1.6.3 v1.6.4 v1.7 Change IPC

55 JJTParserState 82 82 82 82 82 82 82 82 82 82 82 82 82 82 0 0

56 Literal 29 29 29 30 30 30 31 33 33 33 33 33 33 37 8 0.26

57 Log4JLogSystem 158 158 158 164 164 164 162 8 8 8 8 8 8 8 162 2.18

58 LogManager 31 31 31 35 79 79 79 114 150 150 150 150 150 163 132 4.95

59 Macro 102 102 102 102 97 97 116 129 97 97 97 97 97 103 75 1.1

60 MethodInvocationException 29 29 29 29 29 29 29 52 52 52 52 52 52 51 24 0.83

61 MethodMap 65 65 65 68 144 222 238 236 235 242 242 242 243 243 184 1.87

62 Node 38 38 38 40 40 40 39 41 41 41 41 41 41 42 6 0.42

63 NodeUtils 68 68 68 68 105 105 104 107 128 128 128 128 128 128 62 1.14

64 NodeViewMode 172 172 172 172 172 172 171 235 235 235 235 235 235 230 70 1.09

65 OutputWrapper 25 25 25 25 25 25 24 28 28 28 28 28 28 28 5 0.36

66 Parse 78 78 78 107 107 107 99 120 143 142 142 142 145 148 88 0.84

67 ParseException 131 131 109 110 110 110 110 111 111 111 111 111 111 111 24 1.15

68 Parser 2807 2807 2790 3014 3014 3014 2884 2974 3020 3020 3030 3030 3030 3240 727 10.44

69 ParserConstants 134 134 134 134 134 134 134 147 147 147 147 147 147 158 24 0.86

70 ParserTokenManager 3718 3718 3758 3768 3773 3773 3788 4239 4454 4454 4536 4536 4536 5622 1904 8.62

71 ParserTreeConstants 82 82 82 82 82 82 82 88 88 88 88 88 88 90 8 0.11

72 ParserVisitor 39 39 39 39 39 39 39 86 45 45 45 45 45 44 89 0.87

73 PropertyExecutor 46 46 82 103 98 98 57 66 69 69 69 69 69 69 115 4.96

74 Resource 87 87 96 92 92 92 87 87 96 96 96 96 96 96 27 0.64

75 ResourceLoader 44 44 44 47 47 47 45 74 118 118 118 118 118 118 78 0.98

76 ResourceLoaderFactory 28 28 28 28 28 28 28 28 28 28 28 28 28 26 2 0.32

77 ResourceManager 158 158 221 230 14 14 13 13 13 13 13 13 13 13 289 4.7

78 SimpleNode 196 196 196 197 197 197 195 221 235 235 235 235 235 239 47 0.81

79 SimplePool 45 45 45 45 45 45 45 49 49 49 49 49 49 49 4 0.1

80 StringUtils 267 267 285 308 310 310 310 343 343 343 343 343 343 343 76 0.54

81 Template 109 109 122 121 121 121 119 123 164 164 164 164 164 222 119 5.28

82 TexenTask 174 174 199 275 287 287 290 314 314 314 314 314 314 314 140 1.57

83 Token 22 22 19 19 19 19 19 19 19 19 19 19 19 19 3 0.33

84 TokenMgrError 87 87 72 72 72 72 72 72 72 72 72 72 72 72 15 0.74

85 TreeWalker 28 28 28 28 28 28 26 26 26 26 26 26 26 26 2 0.19

86 VelocimacroProxy 163 163 165 187 188 188 183 216 170 170 170 170 170 172 111 1.09

87 Velocity 201 201 233 227 231 231 231 257 176 176 176 176 176 170 155 2.04

88 VelocityContext 49 49 49 49 59 59 59 60 60 60 60 60 60 60 11 0.64

89 VelocityFormatter 166 166 166 185 182 182 180 180 180 180 180 180 180 180 24 1.13

90 VelocityServlet 176 176 197 195 210 210 256 249 249 249 249 249 249 249 91 0.67

91 VelocityWriter 172 172 172 172 172 172 170 161 161 161 161 161 161 161 11 0.45

92 WebMacro 146 146 176 181 181 181 181 179 179 179 179 179 179 179 37 0.58

93 XPathTool 34 34 34 27 27 27 25 25 25 25 25 25 25 25 9 0.13

 167

A5. Experiments with DrJava

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of DrJava from versions 0.9.0

through version 0.9.5.

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

1 AboutDialog 248 248 253 253 256 8 0.3

2 AbstractConsoleController 113 234 234 234 231 124 4.15

3 AbstractMasterJVM 126 136 137 137 179 53 0.96

4 AbstractReducedModel 131 129 129 129 129 2 0.12

5 AbstractSlaveJVM 43 47 47 47 49 6 0.25

6 ActionBracePlus 40 41 41 41 41 1 0.4

7 ActionBracePlusTest 148 147 147 147 147 1 0.14

8 ActionDoNothingTest 36 33 33 33 33 3 0.27

9 ActionStartCurrStmtPlus 25 26 26 26 26 1 0.33

10 ActionStartPrevLinePlus 31 32 32 32 32 1 0.41

11 ActionStartPrevLinePlusTest 79 79 79 79 79 0 0.37

12 ActionStartPrevStmtPlus 82 83 83 83 83 1 0.16

13 ActionStartPrevStmtPlusTest 94 91 91 91 91 3 0.34

14 ActionStartStmtOfBracePlus 31 32 32 32 32 1 0.23

15 BackSlashTest 297 297 297 297 292 5 0.5

16 BooleanOption 21 21 21 21 20 1 0.13

17 BooleanOptionComponent 24 33 33 33 33 9 0.36

18 BooleanOptionComponentTest 44 44 44 44 42 2 0.4

19 BooleanOptionTest 34 34 34 34 34 0 0

20 Brace 142 141 141 141 141 1 0.38

21 BraceTest 81 80 80 80 75 6 0.26

22 Breakpoint 74 74 74 74 70 4 0.21

23 ClasspathFilter 27 29 29 29 29 2 0.25

24 ColoringView 113 113 113 113 169 56 1.02

25 ColorOption 25 25 25 25 25 0 0

26 ColorOptionComponent 77 115 115 115 115 38 0.96

27 ColorOptionComponentTest 44 44 44 44 42 2 0.31

28 ColorOptionTest 38 38 38 38 38 0 0.55

29 CommandLineTest 231 269 269 269 269 38 0.96

30 CommentTest 120 120 120 120 115 5 0.49

31 CompilerError 102 102 102 102 102 0 0.21

32 CompilerErrorModel 212 273 274 277 280 68 0.72

33 CompilerErrorModelTest 304 288 288 288 288 16 0.7

34 CompilerErrorPanel 157 151 152 139 135 24 1.09

35 CompilerProxy 93 91 91 89 99 14 0.7

36 CompilerRegistry 112 126 126 115 108 32 0.51

37 CompilerRegistryTest 133 133 133 132 134 3 0.12

38 CompoundUndoManager 113 115 115 125 132 19 0.49

 168

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

39 ConfigFileTest 33 34 34 34 34 1 0.21

40 ConfigFrame 378 534 534 540 569 191 3.76

41 ConfigPanel 88 87 87 87 85 3 0.16

42 Configuration 38 38 38 38 38 0 0.43

43 ConsoleController 140 136 136 136 134 6 0.27

44 ConsoleControllerTest 79 79 79 79 74 5 0.36

45 ConsoleDocument 174 180 180 180 185 11 1.15

46 DebugAction 61 61 61 61 53 8 0.29

47 Debugger 38 40 40 40 40 2 0.24

48 DebugPanel 604 728 728 728 742 138 4.02

49 DebugTest 1221 507 507 507 490 731 4.82

50 DebugThreadData 46 63 67 67 67 21 0.69

51 DebugWatchData 50 72 72 72 71 23 0.59

52 DefaultInteractionsModel 111 78 78 81 75 42 1.04

53 DefaultOptionMap 40 40 40 40 40 0 0

54 DefaultPlatform 25 99 99 99 102 77 0.83

55 DefinitionsDocument 1353 1396 1396 1396 698 741 3.95

56 DefinitionsDocumentTest 758 775 775 772 766 26 0.72

57 DefinitionsEditorKit 29 29 29 29 26 3 0.38

58 DefinitionsPane 657 654 662 700 771 120 3.04

59 DefinitionsPaneTest 140 199 199 298 308 168 3.75

60 DelegatingAction 110 111 111 111 111 1 0.44

61 DocumentDebugAction 77 82 82 82 80 7 0.36

62 DocumentOutputStream 31 31 31 31 30 1 0.1

63 DrJava 373 451 457 477 520 147 4.35

64 DrJavaBook 85 85 85 85 86 1 0.5

65 DrJavaBookTest 47 47 47 47 47 0 0.43

66 DummyOpenDefDoc 124 130 130 130 404 280 3.74

67 DynamicJavaAdapter 280 310 310 299 310 52 0.84

68 ErrorPanel 268 338 338 423 422 156 4.1

69 EvaluationVisitorExtension 355 380 428 434 448 93 1.06

70 EventHandlerThread 190 196 196 196 194 8 0.49

71 EventNotifier 51 34 34 34 34 17 0.95

72 EventNotifierTest 69 69 69 69 69 0 0.22

73 ExceptionResult 27 27 27 27 33 6 0.28

74 ExecJVM 101 144 144 144 145 44 0.99

75 ExecJVMTest 48 48 48 48 42 6 0.14

76 FileConfiguration 26 26 26 26 26 0 0

77 FileOption 30 30 30 30 30 0 0

78 FileOptionComponent 121 114 114 114 51 70 0.66

79 FileOptionComponentTest 45 47 47 47 46 3 0.16

80 FindReplaceDialog 366 413 413 437 456 90 0.58

81 FindReplaceMachine 233 314 314 92 89 306 1.75

 169

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

82 FindReplaceMachineTest 212 313 313 347 341 141 3

83 FontChooser 173 173 173 173 170 3 0.13

84 FontOption 25 25 25 25 29 4 0.31

85 FontOptionComponent 63 70 70 70 70 7 0.29

86 FontOptionComponentTest 44 44 44 44 39 5 0.37

87 FontOptionTest 23 23 23 23 18 5 0.11

88 Free 24 24 24 24 24 0 0

89 Gap 93 93 93 93 93 0 0

90 GapTest 35 35 35 35 28 7 0.12

91 GJv6Compiler 114 112 112 112 114 4 0.4

92 GlobalIndentTest 167 179 179 179 154 37 1.2

93 GlobalModel 62 65 65 65 90 28 1.09

94 GlobalModelCompileTest 627 215 215 215 212 415 2.55

95 GlobalModelIOTest 953 982 1025 1025 1011 86 0.61

96 GlobalModelJUnitTest 307 459 460 460 493 186 5.26

97 GlobalModelListener 40 19 19 20 27 29 0.76

98 GlobalModelOtherTest 416 492 495 495 443 131 3.68

99 GlobalModelTestCase 628 672 675 690 704 76 0.96

100 HelpFrame 52 56 56 56 56 4 0.37

101 HighlightManager 146 146 146 146 146 0 0

102 HighlightStatus 27 27 27 27 27 0 0

103 History 136 135 138 186 179 59 0.94

104 HistorySaveDialog 68 45 45 45 38 30 1.05

105 HistoryTest 114 117 116 199 185 101 2.69

106 HTMLFrame 180 269 270 270 270 90 0.75

107 Indenter 69 75 75 75 75 6 0.33

108 IndentFiles 83 83 83 83 82 1 0.26

109 IndentHelperTest 305 335 335 335 335 30 1.19

110 IndentInfo 28 28 28 28 28 0 0.31

111 IndentInfoTest 54 54 54 54 62 8 0.2

112 IndentRuleQuestion 33 33 33 33 33 0 0

113 IndentRulesTestCase 35 32 32 32 43 14 0.48

114 IndentRuleWithTrace 52 54 54 54 54 2 0.48

115 IndentRuleWithTraceTest 40 37 37 37 37 3 0.23

116 IndentTest 745 713 713 713 713 32 0.68

117 InsideBlockComment 24 24 24 24 24 0 0

118 InsideDoubleQuote 32 32 32 32 32 0 1.15

119 InsideLineComment 25 25 25 25 25 0 0.46

120 InsideSingleQuote 32 32 32 32 33 1 0.23

121 IntegerOptionComponent 34 43 43 43 43 9 0.18

122 IntegerOptionComponentTest 44 44 44 44 39 5 0.35

123 IntegerOptionTest 33 33 33 33 33 0 0

124 IntegratedMasterSlaveTest 137 128 131 131 125 18 0.51

 170

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

125 InteractionsController 147 318 323 344 422 275 3.02

126 InteractionsDocument 195 181 181 205 220 53 0.87

127 InteractionsDocumentTest 89 89 89 89 71 18 0.57

128 InteractionsHistoryFilter 28 28 28 28 28 0 1.15

129 InteractionsModel 262 349 349 393 403 141 3.48

130 InteractionsModelCallback 22 23 23 23 26 4 0.23

131 InteractionsModelTest 86 217 217 229 367 281 2.08

132 InteractionsPane 46 54 54 54 143 97 0.92

133 InteractionsPaneTest 149 149 149 180 216 67 0.91

134 InterpreterJVM 347 442 439 434 462 131 1.8

135 InterpreterJVMTest 113 113 113 113 113 0 0

136 Javac141FromSetLocation 32 32 32 29 28 4 0.2

137 JavacFromSetLocation 32 32 32 32 31 1 0.4

138 JavaDebugInterpreter 40 404 404 404 414 374 1.99

139 JavaDebugInterpreterTest 26 397 397 397 391 377 1.27

140 JavadocErrorPanel 116 98 99 86 69 49 1.02

141 JavadocFrame 26 97 97 97 96 72 0.48

142 JavaInterpreter 25 26 26 26 26 1 0.43

143 JavaInterpreterTest 218 275 325 344 315 155 5.26

144 JavaSourceFilter 32 32 32 32 48 16 1.08

145 JPDADebugger 1357 1433 1459 1457 1433 128 3.56

146 JSR14FromSetLocation 31 31 31 31 30 1 0.1

147 JSR14v12FromSetLocation 31 31 31 31 30 1 0.13

148 JSR14v20FromSetLocation 31 31 31 32 31 2 0.14

149 JUnitError 25 31 31 31 33 8 0.41

150 JUnitErrorModelTest 69 96 99 99 197 128 4.04

151 JUnitPanel 291 394 395 394 395 106 3.81

152 JUnitTestManager 101 148 148 148 167 66 0.49

153 JUnitTestRunner 72 69 69 69 69 3 0.46

154 KeyBindingManager 213 230 230 230 232 19 0.99

155 KeyStrokeOption 99 99 99 99 98 1 0.47

156 KeyStrokeOptionComponent 195 199 199 199 198 5 0.33

157 KeyStrokeOptionTest 98 98 98 98 97 1 0.19

158 LimitingClassLoader 31 31 31 31 31 0 0.71

159 LineEnumRule 48 75 75 75 73 29 0.95

160 MainFrameTest 332 288 288 288 326 82 1.1

161 MainJVM 359 482 487 509 516 157 1.5

162 MixedQuoteTest 65 65 65 65 60 5 0.2

163 ModelList 239 242 242 242 241 4 0.29

164 ModelListTest 237 237 237 237 229 8 0.49

165 MultiThreadedTestCase 23 25 25 25 20 7 0.1

166 NewJVMTest 255 250 250 250 251 6 0.36

167 NoCompilerAvailable 34 34 34 34 38 4 0.45

 171

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

168 NoDebuggerAvailable 101 107 107 107 107 6 0.32

169 NonNegativeIntegerOption 21 21 21 21 20 1 0.25

170 OpenDefinitionsDocument 50 54 54 54 79 29 0.93

171 Option 35 37 37 37 37 2 0.1

172 OptionComponent 51 59 59 59 59 8 0.31

173 OptionConstants 247 424 452 457 506 259 4.23

174 OptionMapLoader 48 47 52 52 55 9 0.4

175 OptionMapLoaderTest 44 44 44 44 44 0 0

176 OptionParseException 21 21 21 21 21 0 0.8

177 PagePrinter 48 48 48 48 48 0 0.49

178 PendingRequestManager 87 87 87 87 83 4 0.43

179 PlatformFactory 26 26 26 26 26 0 0

180 PreventExitSecurityManager 56 56 56 56 56 0 0

181 PreviewFrame 340 340 340 340 335 5 0.42

182 QuestionBraceIsCurlyTest 92 91 91 91 91 1 0.34

183 QuestionCurrLineStartsWith 27 27 27 27 27 0 0.84

184 QuestionInsideCommentTest 51 48 48 48 48 3 0.33

185 QuestionLineContainsTest 52 49 49 49 49 3 0.42

186 QuestionNewParenPhrase 35 35 35 35 35 0 0

187 QuestionNewParenPhraseTest 80 77 77 77 77 3 0.45

188 QuestionPrevLineStartsWith 28 28 28 28 28 0 0.84

189 QuestionStartAfterOpenBrace 39 39 39 39 39 0 0

190 QuestionStartingNewStmt 31 31 31 31 31 0 0

191 QuestionStartingNewStmtTest 78 75 75 75 75 3 0.32

192 RecentFileManager 88 109 109 109 126 38 0.82

193 RecentFileManagerTest 81 119 119 127 118 55 0.86

194 ReducedModelBrace 348 347 363 363 358 22 0.99

195 ReducedModelComment 326 324 324 324 322 4 0.17

196 ReducedModelControl 224 222 222 222 228 8 0.3

197 ReducedModelDeleteTest 329 329 329 329 64 265 2.99

198 ReducedModelState 60 60 60 60 51 9 0.13

199 ReducedModelTest 799 799 799 799 778 21 0.63

200 ReducedToken 68 68 68 68 67 1 0.5

201 RMIInteractionsModel 50 61 61 64 67 17 0.68

202 SavableConfiguration 52 52 52 52 48 4 0.12

203 SimpleInteractionsModel 91 93 93 95 82 17 0.59

204 SimpleInteractionsWindow 73 82 82 86 88 15 1.18

205 SingleDisplayModel 231 11 11 11 15 224 5.55

206 SingleDisplayModelTest 253 256 262 262 239 32 0.73

207 SingleQuoteTest 297 297 297 297 275 22 0.6

208 SlaveJVMRunner 40 40 60 60 72 32 1.2

209 Step 49 54 54 54 50 9 0.43

210 StickyClassLoader 73 83 83 89 89 16 0.98

 172

S.No. Class Name v0.9.0 v0.9.2 v0.9.3 v0.9.4 v0.9.5 Change IPC

211 StickyClassLoaderTest 61 78 78 78 71 24 0.77

212 StrictURLClassLoaderTest 39 39 39 39 33 6 0.33

213 StringOptionComponent 23 34 34 34 34 11 0.75

214 StringOptionTest 24 24 24 24 24 0 0.5

215 SwingDocumentAdapter 81 84 84 84 84 3 0.15

216 SwingDocumentAdapterTest 73 73 73 73 73 0 0

217 SwingWorker 84 84 84 84 83 1 0.36

218 SyntaxErrorResult 42 42 42 42 58 16 1.18

219 TabbedPanel 48 55 55 55 53 9 0.31

220 TokenList 372 371 371 371 348 24 0.55

221 ToolbarOptionComponent 77 100 100 100 124 47 0.61

222 ToolsJarClassLoader 75 75 75 75 76 1 0.5

223 ToolsJarClassLoaderTest 21 21 21 21 18 3 0.26

224 TstampGMT 27 27 27 27 27 0 0

225 UncaughtExceptionWindow 76 77 78 78 76 4 0.18

226 UneditableTableModel 28 28 28 28 23 5 0.34

227 VectorOption 70 70 70 70 70 0 1.07

228 VectorOptionComponent 134 85 85 85 82 52 1.08

229 VectorOptionTest 72 71 71 71 70 2 0.45

231 Version 24 24 24 24 24 0 0.54

A6. Experiments with jEdit

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of jEdit from versions 4.3.0 through

version 5.0.0.

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

1 AbbrevEditor 170 170 170 170 170 170 170 170 170 170 0 0

2 Abbrevs 400 400 400 400 400 400 400 400 400 400 0 1.16

3 AbbrevsOptionPane 385 385 385 385 385 385 385 385 385 385 0 0

4 AboutDialog 254 254 254 253 261 261 261 261 261 260 10 1.56

5 AbstractContextOptionPane 219 219 219 219 219 219 229 229 229 229 10 2.64

6 AbstractInputHandler 220 220 220 220 220 220 220 220 220 223 3 1.94

7 AbstractOptionPane 196 196 196 196 196 196 196 196 196 183 13 2.23

8 ActionBar 445 445 445 445 435 435 435 435 435 435 10 2.8

9 ActionListHandler 128 128 128 128 128 128 128 128 128 128 0 0

10 ActionSet 109 109 109 109 109 109 109 109 109 111 2 0.98

11 AddAbbrevDialog 92 92 92 92 92 92 92 92 92 92 0 0.94

12 AllBufferSet 50 50 50 50 50 50 50 50 50 50 0 0

13 Anchor 63 63 63 63 63 63 63 63 63 95 32 2.81

14 AnimatedIcon 72 72 72 72 72 72 72 72 72 72 0 1.16

15 AntiAlias 47 47 47 47 47 47 67 67 67 67 20 2.02

 173

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

16 AppearanceOptionPane 192 192 192 192 199 199 205 205 205 190 28 0.6

17 AutoDetection 123 123 123 123 123 123 123 123 123 123 0 0

18 Autosave 55 55 55 55 55 55 55 55 55 55 0 0

19 BeanShell 281 281 281 281 281 281 257 257 257 257 24 0.38

20 BeanShellAction 122 122 122 122 122 122 122 122 122 122 0 0

21 BeanShellFacade 183 183 183 183 188 188 188 188 188 188 5 1.3

22 BlockNameSpace 54 54 54 54 54 54 54 54 54 54 0 1.15

23 BoyerMooreSearchMatcher 146 146 146 146 147 147 164 164 164 167 21 1.45

24 BracketIndentRule 148 148 148 148 148 148 119 119 119 119 29 0.33

25 BrowserColorsOptionPane 304 304 304 304 304 304 304 304 304 304 0 0

26 BrowserCommandsMenu 227 227 227 227 227 227 251 251 251 260 33 1.4

27 BrowserOptionPane 111 111 111 111 111 111 111 111 111 111 0 0

28 BrowserView 552 552 552 552 564 564 568 568 568 568 16 2.82

29 BSHAllocationExpression 193 193 193 193 193 193 193 193 193 193 0 0

30 BSHAmbiguousName 57 57 57 57 57 57 57 57 57 57 0 0.65

31 BSHArrayDimensions 68 68 68 68 68 68 68 68 68 68 0 1.11

32 BSHArrayInitializer 76 76 76 76 76 76 76 76 76 76 0 0.41

33 BSHAssignment 108 108 108 108 108 108 108 108 108 108 0 0

34 BSHBinaryExpression 89 89 89 89 89 89 89 89 89 89 0 0

35 BSHBlock 79 79 79 79 79 79 79 79 79 79 0 0.6

36 BSHClassDeclaration 46 46 46 46 46 46 46 46 46 46 0 1.03

37 BshClassLoader 66 66 66 66 66 66 66 66 66 66 0 0.43

38 BshClassManager 297 297 297 297 297 297 297 297 297 297 0 0

39 BshClassPath 534 534 534 534 534 534 534 534 534 534 0 1.16

40 BSHEnhancedForStatement 78 78 78 78 78 78 78 78 78 78 0 0.95

41 BSHFormalParameter 26 26 26 26 26 26 26 26 26 26 0 0

42 BSHFormalParameters 57 57 57 57 57 57 57 57 57 57 0 0

43 BSHForStatement 68 68 68 68 68 68 68 68 68 68 0 0

44 BSHIfStatement 38 38 38 38 38 38 38 38 38 38 0 0

45 BSHImportDeclaration 42 42 42 42 42 42 42 42 42 42 0 0

46 BSHLiteral 81 81 81 81 81 81 81 81 81 81 0 0

47 BshMethod 222 222 222 222 222 222 222 222 222 222 0 0.65

48 BSHMethodDeclaration 95 95 95 95 95 95 95 95 95 95 0 0.72

49 BSHMethodInvocation 44 44 44 44 44 44 44 44 44 44 0 0

50 BSHPrimaryExpression 54 54 54 54 54 54 54 54 54 54 0 0.64

51 BSHPrimarySuffix 185 185 185 185 185 185 185 185 185 185 0 0

52 BSHReturnType 26 26 26 26 26 26 26 26 26 26 0 0

53 BSHSwitchStatement 76 76 76 76 76 76 76 76 76 76 0 0

54 BSHTryStatement 96 96 96 96 96 96 96 96 96 96 0 0

55 BSHType 112 112 112 112 112 112 112 112 112 112 0 0

56 BSHTypedVariableDeclaration 56 56 56 56 56 56 56 56 56 56 0 0

57 BSHUnaryExpression 80 80 80 80 80 80 80 80 80 80 0 0

58 BSHVariableDeclarator 28 28 28 28 28 28 28 28 28 28 0 0

 174

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

59 BSHWhileStatement 48 48 48 48 48 48 48 48 48 48 0 0

60 Buffer 1318 1318 1390 1390 1346 1346 1308 1308 1308 1385 231 5.34

61 BufferAutosaveRequest 60 60 60 60 60 60 64 64 64 64 4 0.35

62 BufferChanging 23 23 23 23 23 23 23 23 23 23 0 1.12

63 BufferHandler 303 303 303 303 303 304 304 304 304 289 16 1.74

64 BufferHistory 336 336 336 336 336 353 356 356 356 356 20 0.57

65 BufferInsertRequest 74 74 74 74 74 74 74 74 74 74 0 1.1

66 BufferIORequest 292 292 292 292 292 292 284 284 284 284 8 0.88

67 BufferListSet 83 83 83 83 83 83 83 83 83 126 43 1.72

68 BufferLoadRequest 288 288 288 288 288 288 288 288 288 288 0 0.97

69 BufferOptionPane 246 246 246 246 246 246 255 255 255 261 15 0.5

70 BufferOptions 67 67 67 67 67 67 67 67 67 67 0 1.12

71 BufferPrintable 304 304 304 304 304 304 305 305 305 305 1 1.96

72 BufferPrinter1_3 67 67 67 67 67 67 67 67 67 67 0 0.34

73 BufferPrinter1_4 131 131 131 131 131 131 131 131 131 131 0 0

74 BufferSaveRequest 143 143 143 143 144 144 151 151 151 159 16 1.88

75 BufferSegment 74 74 74 74 74 74 74 74 74 74 0 0

76 BufferSet 258 258 258 258 241 241 241 241 241 241 17 0.78

77 BufferSetManager 225 225 225 225 262 280 280 280 280 280 55 2.8

78 BufferSetWidgetFactory 113 113 113 113 104 104 104 104 104 104 9 1.07

79 BufferSwitcher 76 76 76 76 86 86 90 90 90 86 18 1.89

80 BufferUpdate 42 42 42 42 42 42 42 42 42 42 0 0

81 ByteVector 144 144 144 144 144 144 144 144 144 144 0 0.51

82 CallStack 62 62 62 62 62 62 62 62 62 62 0 0.78

83 Capabilities 52 52 52 52 52 52 52 52 52 52 0 0

84 CharsetEncoding 34 34 34 34 34 34 34 34 34 34 0 0.53

85 Chunk 220 220 224 224 351 351 351 341 341 551 351 5.56

86 ChunkCache 494 494 494 494 494 494 496 496 496 496 2 1.29

87 ClassGenerator 33 33 33 33 33 33 33 33 33 33 0 0

88 ClassGeneratorImpl 228 228 228 228 228 228 228 228 228 228 0 0.75

89 ClassGeneratorUtil 707 707 707 707 707 707 707 707 707 707 0 0

90 ClassManagerImpl 270 270 270 270 270 270 270 270 270 270 0 1.06

91 ClassVisitor 21 21 21 21 21 21 21 21 21 21 0 0

92 ClassWriter 398 398 398 398 398 398 398 398 398 398 0 0

93 ClockWidgetFactory 92 92 92 92 92 92 92 92 92 92 0 0.85

94 CloseBracketIndentRule 112 112 112 112 112 112 107 107 107 107 5 1.52

95 CloseDialog 193 193 193 193 193 193 193 193 193 193 0 0.28

96 CodeVisitor 25 25 25 25 25 25 25 25 25 25 0 0

97 CodeWriter 968 968 968 968 968 968 968 968 968 968 0 0

98 CollectionIterator 28 28 28 28 28 28 28 28 28 28 0 0.55

99 CollectionManager 93 93 93 93 93 93 93 93 93 93 0 0.55

100 CollectionManagerImpl 31 31 31 31 31 31 31 31 31 31 0 0

101 ColorWellButton 134 134 134 134 134 134 77 77 77 77 57 1.83

 175

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

102 CommandLineReader 44 44 44 44 44 44 44 44 44 44 0 0

103 CompleteWord 377 377 377 377 377 377 376 376 376 376 1 1.75

104 CompletionPopup 313 313 313 313 334 334 334 334 334 344 31 1.89

105 Constants 182 182 182 182 182 182 182 182 182 182 0 0

106 ContentManager 147 147 147 147 147 147 147 147 147 147 0 0

107 ContextAddDialog 155 155 155 155 171 171 173 173 173 173 18 0.7

108 ContextOptionPane 25 25 25 25 18 18 20 20 20 34 23 1.08

109 CopyFileWorker 30 30 30 30 42 42 42 42 42 182 152 1.87

110 CurrentBufferSet 28 28 28 28 28 28 28 28 28 39 11 1.14

111 DeepIndentRule 160 160 160 160 160 160 160 160 160 160 0 1.15

112 DefaultInputHandler 143 143 143 143 143 143 143 143 143 143 0 1.19

113 DefaultTokenHandler 57 57 57 57 57 57 57 57 57 57 0 0

114 DelayedEvalBshMethod 48 48 48 48 48 48 48 48 48 48 0 0.5

115 dir 72 72 72 72 72 72 72 72 72 72 0 0

116 DirectoryListSet 108 108 108 108 108 108 108 108 108 108 0 0.27

117 DirectoryProvider 110 110 110 110 110 110 110 110 110 110 0 0

118 DiscreteFilesClassLoader 36 36 36 36 36 36 36 36 36 36 0 0

119 DisplayManager 581 581 581 581 581 611 632 644 644 626 81 1.86

120 DisplayTokenHandler 146 146 146 146 145 145 148 148 148 478 334 4.42

121 DockableLayout 355 355 355 355 355 355 350 350 350 350 5 1.01

122 DockablePanel 233 233 233 233 233 233 233 233 233 233 0 0.37

123 DockableWindowFactory 401 401 401 401 401 401 401 401 401 407 6 0.43

124 DockableWindowManager 437 437 437 437 435 435 435 435 435 439 6 0.8

125 DockableWindowManagerImpl 768 768 768 768 768 768 768 768 768 773 5 0.86

126 DockableWindowUpdate 34 34 34 34 34 34 34 34 34 34 0 0

127 DockingLayoutManager 241 241 241 241 241 241 241 241 241 241 0 0

128 DockingOptionPane 304 304 304 304 304 304 304 304 304 333 29 0.38

129 EditAbbrevDialog 115 115 115 115 115 115 115 115 115 115 0 0

130 EditingOptionPane 336 336 336 336 336 336 348 348 348 413 77 1.63

131 EditorExitRequested 23 23 23 23 23 23 23 23 23 23 0 0.78

132 EditPaneUpdate 31 31 31 31 31 31 31 31 31 31 0 1.17

133 EncodingServer 83 83 83 83 83 83 83 83 83 83 0 0.51

134 EncodingsOptionPane 164 164 164 164 132 132 124 124 124 124 40 1.45

135 EncodingWidgetFactory 50 50 50 50 50 50 50 50 50 50 0 0

136 EncodingWithBOM 121 121 121 121 121 121 121 121 121 121 0 0

137 EnhancedButton 69 69 69 69 69 69 69 69 69 69 0 0

138 EnhancedCheckBoxMenuItem 120 120 120 120 131 131 131 131 131 145 25 1.32

139 EnhancedDialog 121 121 121 121 121 121 121 121 121 133 12 2.23

140 EnhancedMenu 120 120 120 120 119 119 119 119 119 119 1 0.9

141 EnhancedMenuItem 122 122 128 128 132 132 132 132 132 146 24 2.45

142 ErrorListDialog 151 151 151 151 151 151 151 151 157 162 11 1.28

143 ErrorsWidgetFactory 221 221 221 221 221 234 234 234 234 239 18 1.9

144 EvalError 88 88 88 88 88 88 88 88 88 88 0 0.41

 176

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

145 ExplicitFoldHandler 51 51 51 51 51 51 51 51 51 51 0 0

146 ExtendedGridLayout 796 796 796 796 796 796 796 796 796 796 0 1.04

147 ExtensionManager 120 120 120 120 120 120 120 120 120 120 0 0

148 ExternalNameSpace 106 106 106 106 106 106 106 106 106 106 0 0.35

149 FavoritesProvider 68 68 68 68 68 68 69 69 69 69 1 1.71

150 FavoritesVFS 132 132 132 132 132 132 171 171 171 174 42 0.91

151 FileCellRenderer 199 199 199 199 199 199 208 208 208 208 9 0.7

152 FilePropertiesDialog 241 241 241 241 248 248 268 268 268 268 27 1.51

153 FileRootsVFS 106 106 106 106 106 106 106 106 106 107 1 0.4

154 FilesChangedDialog 327 327 327 327 327 327 331 331 331 331 4 1.35

155 FileVFS 443 443 443 443 448 448 447 447 447 424 29 1

156 FilteredListModel 157 157 157 157 157 157 157 157 157 157 0 0

157 FilteredTableModel 150 150 150 150 150 150 150 150 150 154 4 1.22

158 FirewallOptionPane 78 78 78 78 78 78 78 78 78 78 0 0.89

159 FirstLine 263 263 263 263 263 263 263 263 263 395 132 2.31

160 FloatingWindowContainer 149 149 149 149 149 149 149 149 149 149 0 0

161 FoldHandler 47 47 47 47 47 47 45 45 45 45 2 1.9

162 FoldWidgetFactory 50 50 50 50 50 50 50 50 50 50 0 0

163 FontSelector 353 353 353 353 99 99 99 99 99 99 254 1.17

164 GeneralOptionPane 180 180 180 180 180 180 157 157 157 198 64 1.75

165 GlobalOptions 76 76 76 76 76 76 66 66 66 66 10 1.6

166 GlobVFSFileFilter 51 51 51 51 51 51 51 51 51 51 0 1.04

167 GrabKeyDialog 370 370 370 370 366 366 372 372 372 373 11 1.24

168 Gutter 759 759 759 759 763 763 767 767 767 769 10 2.34

169 GutterOptionPane 281 281 281 281 281 281 262 262 262 262 19 1.78

170 HelpHistoryModel 171 171 171 171 171 171 171 171 171 171 0 0.93

171 HelpIndex 280 280 280 280 280 280 280 280 280 280 0 0

172 HelpSearchPanel 223 223 223 223 223 223 223 223 223 223 0 0

173 HelpTOCPanel 330 330 345 345 347 347 351 351 351 351 21 0.62

174 HelpViewer 401 401 401 401 411 411 411 411 411 420 19 0.69

175 HistoryButton 124 124 124 124 124 124 124 124 124 124 0 0.66

176 HistoryModel 84 84 84 84 104 104 139 139 139 139 55 2.32

177 HistoryText 248 248 248 248 248 248 248 248 248 248 0 0.79

178 HistoryTextArea 119 119 119 119 119 119 119 119 119 119 0 0

179 HistoryTextField 225 225 225 225 226 226 226 226 226 226 1 1.38

180 HyperSearchFileNode 55 55 55 55 55 55 55 55 55 55 0 0

181 HyperSearchFolderNode 29 29 29 29 29 29 29 29 29 29 0 0.54

182 HyperSearchOperationNode 170 170 170 170 170 170 173 173 173 173 3 1.23

183 HyperSearchRequest 224 224 224 224 221 221 223 223 223 223 5 0.62

184 HyperSearchResult 138 138 138 138 181 181 181 181 181 181 43 1.61

185 HyperSearchResults 901 901 901 901 861 861 864 864 864 881 60 1.19

186 IndentAction 126 126 126 126 126 126 126 126 126 126 0 0.7

187 IndentFoldHandler 68 68 68 68 68 68 68 68 68 68 0 1.2

 177

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

188 IndentRuleFactory 59 59 59 59 59 59 59 59 59 59 0 0

189 InputHandler 334 334 334 334 334 334 329 329 329 329 5 0.33

190 InputMethodSupport 208 208 208 208 208 208 208 208 208 208 0 0

191 InstallPanel 936 936 936 936 935 935 1087 1087 1087 1085 155 5.77

192 IntegerArray 44 44 44 44 44 44 44 44 44 44 0 0.95

193 Interpreter 628 628 628 628 628 628 628 628 628 628 0 0.38

194 IOProgressMonitor 145 145 145 145 147 147 147 147 147 147 2 1.93

195 IOUtilities 167 167 167 167 168 168 168 168 168 168 1 0.31

196 Item 98 98 98 98 98 98 98 98 98 98 0 0.59

197 JARClassLoader 380 380 380 380 381 381 368 368 368 368 14 1.78

198 JavaCharStream 447 447 447 447 447 447 447 447 447 447 0 0

199 JCheckBoxList 245 245 245 245 245 245 245 245 245 245 0 0.76

200 jEdit 2774 2774 2774 2774 2793 2817 2820 2820 2820 2976 202 6.04

201 JEditAbstractEditAction 34 34 34 34 34 34 34 34 34 34 0 0

202 JEditActionContext 78 78 78 78 78 78 78 78 78 78 0 1.09

203 JEditActionSet 184 184 184 184 179 179 179 179 179 179 5 1.15

204 JEditBeanShellAction 122 122 122 122 122 122 122 122 122 122 0 1.14

205 JEditBuffer 1737 1737 1678 1678 1699 1699 1794 1794 1794 1807 188 2.8

206 JEditHistoryModelSaver 156 156 156 156 156 156 156 156 156 156 0 0.6

207 JEditKillRing 142 142 142 142 142 153 164 164 164 164 22 2.33

208 JEditMode 55 55 55 55 82 82 82 82 82 82 27 0.43

209 JEditRegisterSaver 133 133 133 133 133 133 133 133 133 133 0 0.67

210 JEditTextArea 339 375 375 375 375 375 300 306 306 294 129 4.42

211 JJTParserState 81 81 81 81 81 81 81 81 81 81 0 1.12

212 JThis 159 159 159 159 159 159 159 159 159 159 0 0

213 KeyEventTranslator 370 370 370 370 365 365 355 355 355 402 62 2

214 KeyEventWorkaround 285 285 285 285 285 285 285 285 285 285 0 0.65

215 KeywordMap 128 128 128 128 128 128 128 128 128 128 0 0

216 KillRing 193 193 193 193 193 193 199 199 199 199 6 0.82

217 Label 103 103 103 103 103 103 103 103 103 103 0 0

218 LHS 158 158 158 158 158 158 158 158 158 158 0 0

219 LineManager 240 240 240 240 240 240 240 240 240 253 13 0.86

220 LineSepWidgetFactory 68 68 68 68 68 68 68 68 68 68 0 1.03

221 ListModelEditor 100 100 100 100 100 100 100 100 100 100 0 0.69

222 Log 386 386 386 386 386 386 387 387 387 387 1 0.36

223 LogViewer 298 298 298 298 438 438 456 456 456 456 158 1.48

224 Macros 604 604 604 606 615 617 617 617 617 716 112 2.24

225 MacrosProvider 53 53 53 53 53 53 63 63 63 63 10 2.79

226 ManagePanel 1073 1073 1073 1073 1063 1064 1080 1080 1080 1084 31 1.95

227 Marker 43 43 43 43 43 43 43 43 43 43 0 0

228 MarkersProvider 125 125 125 125 125 125 125 125 125 125 0 0

229 MarkersSaveRequest 86 86 86 86 86 86 86 86 86 86 0 0

230 MarkerViewer 207 207 207 207 207 207 207 207 207 221 14 0.42

 178

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

231 MemoryStatusWidgetFactory 166 166 166 166 166 166 166 166 166 168 2 0.75

232 MenuItemTextComparator 26 26 26 26 26 26 26 26 26 26 0 0

233 MirrorList 117 117 117 117 127 127 127 127 127 127 10 1.17

234 MirrorListHandler 98 98 98 98 98 98 98 98 98 98 0 0.27

235 MiscUtilities 1013 1013 1013 1013 1002 1006 798 798 798 930 355 1.17

236 Mode 261 261 261 261 272 272 293 293 293 293 32 1.28

237 ModeCatalogHandler 63 63 63 63 61 61 61 61 61 61 2 1.68

238 ModeProvider 129 129 129 129 183 183 189 189 189 161 88 1.73

239 ModeWidgetFactory 50 50 50 50 50 50 50 50 50 50 0 0.22

240 Modifiers 67 67 67 67 67 67 67 67 67 67 0 0

241 MouseActions 29 29 29 29 29 29 29 29 29 29 0 0

242 MouseHandler 115 115 115 115 115 115 118 118 118 118 3 0.38

243 MouseOptionPane 98 98 98 98 98 98 98 98 98 93 5 0.37

244 MultiSelectWidgetFactory 65 65 65 65 71 71 71 71 71 71 6 0.24

245 Name 541 541 541 541 541 541 541 541 541 541 0 0

246 NameSpace 811 811 811 811 811 811 811 811 811 811 0 0

247 NumericTextField 28 28 28 28 28 28 28 28 28 28 0 0

248 OpenBracketIndentRule 54 54 54 54 54 54 54 54 54 54 0 0.54

249 OperatingSystem 226 226 226 226 226 226 212 212 212 209 17 2.66

250 OptionGroup 108 108 108 108 108 108 108 108 108 108 0 0.66

251 OptionsDialog 532 532 532 532 532 532 536 536 536 544 12 1.62

252 OverwriteWidgetFactory 63 63 63 63 73 73 73 73 73 73 10 2.85

253 PanelWindowContainer 713 713 713 713 713 713 713 713 713 713 0 0

254 ParseException 149 149 149 149 149 149 149 149 149 149 0 1.05

255 Parser 5319 5319 5319 5319 5319 5319 5319 5319 5319 5319 0 0

256 ParserConstants 269 269 269 269 269 269 269 269 269 269 0 0.2

257 ParserRule 280 280 280 280 283 283 289 289 289 289 9 0.87

258 ParserRuleSet 256 256 256 256 256 256 246 246 246 246 10 2.99

259 ParserTokenManager 2099 2099 2099 2099 2099 2099 2099 2099 2099 2099 0 0.31

260 ParserTreeConstants 82 82 82 82 82 82 82 82 82 82 0 0.36

261 PasteFromListDialog 179 179 179 179 179 179 222 222 222 222 43 2.79

262 PatternSearchMatcher 114 120 120 120 120 120 131 131 131 131 17 0.36

263 PerspectiveManager 248 248 248 248 268 268 270 270 270 270 22 1.12

264 PluginDetailPanel 53 53 53 58 58 58 58 58 58 58 5 0.96

265 PluginJAR 1246 1246 1246 1246 1252 1252 1260 1260 1266 1401 155 3.88

266 PluginList 419 419 419 419 416 416 443 443 443 492 79 2.16

267 PluginListHandler 207 207 207 207 207 207 207 207 207 207 0 0.56

268 PluginManager 265 265 265 265 218 223 223 223 223 223 52 0.75

269 PluginManagerOptionPane 269 269 269 269 287 287 287 287 287 287 18 1.55

270 PluginManagerProgress 145 145 145 145 149 149 138 137 137 137 16 1.22

271 PluginOptions 93 93 93 93 93 93 80 80 80 80 13 2.81

272 PluginResURLConnection 93 93 93 93 93 93 93 93 93 100 7 1.48

273 PluginsProvider 138 138 138 138 138 138 112 112 112 112 26 2.63

 179

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

274 PluginUpdate 36 36 36 36 47 47 47 47 47 47 11 2.04

275 PositionManager 125 125 125 125 125 125 125 125 125 125 0 0.4

276 Primitive 716 716 716 716 716 716 716 716 716 716 0 0

277 PrintOptionPane 71 71 71 71 71 71 71 71 71 71 0 0.81

278 PropertiesBean 181 181 181 181 181 181 181 181 181 181 0 0

279 PropertiesChanging 21 21 21 21 21 21 21 21 21 21 0 0.99

280 PropertyManager 123 123 123 123 123 123 123 123 123 152 29 2.43

281 RangeMap 350 350 350 350 350 350 350 350 350 350 0 0

282 RecentDirectoriesProvider 92 92 92 92 92 92 92 92 92 92 0 0.75

283 RecentFilesProvider 126 126 126 126 142 142 143 143 143 143 17 1.91

284 RectSelectWidgetFactory 65 65 65 65 73 73 73 73 73 73 8 1.57

285 Reflect 598 598 598 598 598 598 598 598 598 598 0 0

286 ReflectManager 27 27 27 27 27 27 27 27 27 27 0 0

287 RegexEncodingDetector 50 50 50 55 55 55 55 55 55 55 5 1.34

288 RegexpIndentRule 109 109 109 109 109 109 103 103 103 103 6 0.4

289 RegisterChanged 25 25 25 25 25 25 25 25 25 25 0 0

290 Registers 370 370 370 370 576 576 576 576 576 538 244 6.34

291 RegisterViewer 310 310 310 310 310 310 310 310 310 343 33 1.26

292 ReloadWithEncodingProvider 101 102 102 102 102 102 102 102 102 106 5 0.4

293 Remote 126 126 126 126 126 126 126 126 126 126 0 0

294 ReverseCharSequence 37 37 37 37 37 37 37 37 37 37 0 1.16

295 RolloverButton 78 78 78 78 78 78 78 78 78 78 0 0

296 Roster 346 346 346 346 346 346 346 346 343 348 8 0.34

297 SaveBackupOptionPane 124 124 124 124 126 126 128 128 128 135 11 1.14

298 ScreenLineManager 76 76 76 76 76 76 76 76 76 76 0 0

299 ScrollLayout 149 149 149 149 149 149 149 149 149 149 0 0.87

300 ScrollLineCount 30 30 30 30 30 30 30 30 30 90 60 1.35

301 SearchAndReplace 874 874 874 874 886 886 910 910 910 915 41 2.84

302 SearchBar 338 338 338 338 338 338 350 350 350 360 22 1.09

303 SearchDialog 794 794 794 794 803 803 812 812 812 816 22 2.15

304 SegmentBuffer 32 32 32 32 32 32 32 32 32 32 0 0.46

305 SegmentCharSequence 46 46 46 46 46 46 35 35 35 35 11 0.62

306 Selection 499 499 499 499 499 499 499 499 499 507 8 0.72

307 SelectionManager 275 275 275 275 275 275 275 275 275 275 0 0

308 SelectLineRange 124 124 124 124 124 124 124 124 124 124 0 0

309 ServiceListHandler 94 94 94 94 94 94 94 94 94 94 0 0.46

310 ServiceManager 162 162 162 162 170 170 170 170 170 174 12 2.95

311 SettingsReloader 56 56 56 56 54 54 54 54 54 54 2 1.51

312 SettingsXML 84 84 84 84 84 84 84 84 84 84 0 0.77

313 ShapedFoldPainter 46 46 46 46 47 47 47 47 47 47 1 0.56

314 ShortcutPrefixActiveEvent 45 45 45 45 45 45 45 45 45 45 0 0

315 ShortcutsOptionPane 365 365 365 365 365 377 382 382 382 601 236 4.7

316 SimpleNode 106 106 106 106 106 106 106 106 106 106 0 0

 180

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

317 SplashScreen 142 142 142 142 142 142 142 142 142 144 2 1.24

318 StandaloneTextArea 437 437 437 437 447 447 447 447 447 449 12 1.67

319 StandardUtilities 442 442 442 442 473 473 473 473 473 473 31 0.69

320 StatusBar 343 343 347 347 349 349 349 349 349 354 11 1.94

321 StatusBarOptionPane 367 367 367 367 379 379 429 451 451 447 88 1.92

322 StringList 77 77 77 77 73 73 73 73 73 73 4 0.22

323 StringUtil 58 58 58 58 58 58 58 58 58 58 0 0

324 StructureMatcher 152 152 152 152 152 152 152 152 152 152 0 0.95

325 StyleEditor 126 126 126 126 169 169 169 169 169 169 43 0.64

326 SyntaxHiliteOptionPane 213 213 213 213 213 213 213 213 213 213 0 0

327 SyntaxStyle 27 27 27 27 27 27 27 27 27 27 0 0

328 SyntaxUtilities 26 26 26 26 26 26 26 26 26 26 0 0.82

329 SyntaxUtilities 137 137 137 137 137 137 138 138 138 138 1 0.39

330 TargetError 74 74 74 74 74 74 74 74 74 74 0 1.02

331 TextArea 4048 4048 4051 4052 4063 4073 4143 4338 4338 4340 292 1.4

332 TextAreaBorder 25 25 25 25 25 25 25 25 25 25 0 0.77

333 TextAreaDialog 81 81 81 81 81 81 81 81 81 81 0 0

334 TextAreaDropHandler 57 57 57 57 54 54 54 54 54 54 3 0.91

335 TextAreaExtension 30 30 30 30 30 30 30 30 30 30 0 0.94

336 TextAreaInputHandler 245 245 245 245 245 245 245 245 245 241 4 1.71

337 TextAreaMouseHandler 450 450 450 450 447 447 474 474 474 474 30 2.13

338 TextAreaOptionPane 177 177 177 177 336 336 350 350 350 376 199 2.73

339 TextAreaPainter 698 698 698 698 865 865 847 847 847 847 185 5.62

340 TextAreaTransferHandler 364 364 364 375 370 370 379 379 379 379 25 1.55

341 TextUtilities 606 606 606 606 627 627 632 632 632 632 26 1.59

342 This 130 130 130 130 130 130 130 130 130 130 0 0.85

343 TipOfTheDay 105 105 105 105 105 105 105 105 105 105 0 0.28

344 Token 79 79 79 79 79 79 79 79 79 79 0 0

345 TokenMarker 674 674 674 674 691 691 734 740 740 740 66 0.33

346 TokenMgrError 72 72 72 72 72 72 72 72 72 72 0 0

347 ToolBarManager 70 70 70 70 70 70 70 70 70 70 0 0

348 ToolBarOptionPane 605 605 605 605 613 613 613 613 613 613 8 1.76

349 TriangleFoldPainter 40 40 40 40 41 41 41 41 41 41 1 0.81

350 Type 303 303 303 303 303 303 303 303 303 303 0 0.9

351 Types 253 253 253 253 253 253 253 253 253 253 0 0.23

352 UndoManager 347 347 347 347 346 346 346 346 346 346 1 0.63

353 UrlVFS 51 51 51 51 51 51 64 64 64 64 13 2.85

354 UtilEvalError 24 24 24 24 24 24 24 24 24 24 0 0

355 UtilTargetError 21 21 21 21 21 21 21 21 21 21 0 0.85

356 Variable 74 74 74 74 74 74 74 74 74 74 0 0

357 VFS 522 522 522 522 540 540 498 498 498 600 162 3.76

358 VFSBrowser 1524 1524 1524 1524 1509 1513 1529 1529 1528 1557 65 0.63

359 VFSDirectoryEntryTable 527 527 527 527 530 530 530 530 531 531 4 1.94

 181

S. No. Class Name v4.3.0 v4.3.1 v4.3.2 v4.3.3 v4.4.1 v4.4.2 v4.5.0 v4.5.1 v4.5.2 v5.0.0 Change IPC

360 VFSDirectoryEntryTableModel 288 288 288 288 288 288 288 288 288 288 0 0.3

361 VFSFile 291 291 291 291 301 301 292 292 292 292 19 1.39

362 VFSFileChooserDialog 448 448 448 448 451 451 451 451 451 469 21 0.85

363 VFSFileNameField 214 214 214 214 214 214 214 214 214 214 0 0

364 VFSManager 248 248 248 248 254 254 199 199 267 275 137 6.6

365 VFSPathSelected 26 26 26 26 26 26 26 26 26 26 0 1.16

366 VFSUpdate 21 21 21 21 21 21 21 21 21 21 0 0

367 View 1447 1446 1446 1455 1467 1467 1460 1460 1460 1474 43 0.88

368 ViewOptionPane 197 197 197 197 197 197 204 204 204 204 7 0.42

369 ViewUpdate 29 29 29 29 29 29 29 29 29 29 0 0

370 WhitespaceRule 32 32 32 32 32 32 32 32 32 32 0 0

371 WorkRequest 61 61 61 61 64 64 64 64 64 64 3 1.31

372 WorkThread 149 149 149 149 150 150 150 150 150 150 1 1.35

373 WorkThreadPool 293 293 293 293 291 291 291 291 291 291 2 0.95

374 WrapWidgetFactory 66 66 66 66 74 74 74 74 74 84 18 2.54

375 XMLEncodingDetector 56 56 56 56 56 56 56 56 56 56 0 0

376 XMLUtilities 112 112 112 112 112 112 104 104 104 104 8 0.21

377 XModeHandler 597 597 597 597 597 597 603 603 603 608 11 1.08

378 XThis 87 87 87 87 87 87 87 87 87 87 0 0

A7. Experiments with jFlex

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of jFlex from versions 1.3.0

through version 1.4pre5.

S.No. Class Name v1.3.0 v1.3.1 v1.3.2 v1.3.3 v1.3.4 v1.3.5 v1.4pre1 v1.4pre3 v1.4pre4 v1.4pre5 Change IPC

1 Action 30 30 30 31 31 31 31 31 38 38 8 1.76

2 GeneratorThread 31 31 31 31 31 31 31 31 40 40 9 0.24

3 GridPanel 106 106 106 106 106 106 106 106 106 106 0 0

4 IntCharSet 216 216 216 216 216 216 216 216 260 260 44 1.09

5 IntPair 22 22 22 22 22 22 22 22 22 22 0 0.31

6 LexicalStates 22 22 22 22 30 30 30 30 30 30 8 1.37

7 LexParse 1383 1382 1382 1382 1382 1417 1417 1391 1379 1379 74 2.39

8 LexScan 2160 2169 2239 2498 2540 2545 2545 2532 2289 2289 641 2.9

9 Macros 70 70 70 70 70 70 70 80 80 80 10 0.35

10 Main 195 213 213 237 240 240 240 240 226 226 59 0.93

11 MainFrame 171 171 171 171 171 171 171 171 187 187 16 1.05

12 NFA 470 514 514 514 507 507 507 540 557 557 101 3.12

13 Out 149 154 154 167 167 167 167 167 189 189 40 2.48

14 RegExps 83 83 83 83 83 83 83 97 97 97 14 1.03

15 ScannerException 30 30 30 30 30 30 30 30 30 30 0 0

 182

S.No. Class Name v1.3.0 v1.3.1 v1.3.2 v1.3.3 v1.3.4 v1.3.5 v1.4pre1 v1.4pre3 v1.4pre4 v1.4pre5 Change IPC

16 SemCheck 144 163 163 163 163 163 163 163 163 163 19 1.83

17 Skeleton 311 311 311 313 313 313 313 313 91 91 224 3.5

18 StatePairList 41 41 41 41 41 41 41 41 40 40 1 0.97

19 StateSet 169 169 169 169 169 169 169 196 196 196 27 1.91

20 StateSetEnumerator 58 58 58 58 58 58 58 70 70 70 12 1.23

21 sym 48 48 48 48 48 48 48 50 50 50 2 0.23

A8. Experiments with jfreechart

S.No. Class Name v1.0.1 v1.0.2 v1.0.3 v1.0.4 v1.0.5 v1.0.6 v1.0.7 v1.0.8 v1.0.9 v1.0.10 v1.0.11 v1.0.12 Change IPC

1 AbstractBlock 235 235 237 237 263 263 263 263 263 263 263 263 28 1.11

2 AbstractDataset 77 77 72 72 72 72 72 72 72 72 69 69 8 1.14

3 AbstractIntervalXYDataset 36 36 36 36 36 36 36 36 36 36 36 36 0 0.97

4 AbstractRenderer 1307 1277 1277 1277 1278 1351 1351 1351 1364 1364 1490 1490 243 6.18

5 AbstractSeriesDataset 25 25 25 25 25 25 25 25 25 25 23 23 2 1.84

6 AbstractXYAnnotation 65 65 65 64 74 74 74 74 74 74 74 74 11 1.23

7 AbstractXYDataset 25 25 25 25 25 25 25 25 25 25 25 25 0 0

8 AbstractXYItemRenderer 796 788 800 819 946 949 958 958 958 969 974 974 194 1.56

9 AreaRenderer 158 158 163 169 169 173 173 173 173 173 183 183 25 2

10 AreaRendererEndType 48 48 48 48 48 48 48 48 48 48 45 45 3 1.02

11 ArrowNeedle 71 71 71 71 71 71 71 77 77 77 77 77 6 0.76

12 Axis 561 561 544 544 544 544 544 544 544 549 546 587 66 1.86

13 AxisCollection 47 47 47 47 47 47 47 47 47 47 47 47 0 1.15

14 AxisLocation 75 75 75 72 74 74 74 74 74 74 74 74 5 1.04

15 AxisSpace 186 186 186 186 186 186 186 186 186 186 186 186 0 0.92

16 AxisState 59 59 59 59 59 59 59 59 59 59 59 59 0 0

17 BarChartDemo1 102 102 96 96 96 96 96 96 96 96 96 96 6 0.82

18 BarRenderer 568 551 551 554 554 560 560 560 560 579 672 675 141 4.64

19 BarRenderer3D 456 456 422 447 447 450 450 450 450 449 449 449 63 0.91

20 BlockBorder 101 101 101 101 101 101 101 101 101 101 101 101 0 0

21 BlockContainer 122 122 122 122 122 122 122 122 122 122 120 120 2 1.28

22 BlockParams 29 29 29 29 29 29 29 29 29 29 29 29 0 0

23 BorderArrangement 414 414 414 414 414 414 414 414 369 369 369 369 45 1.14

24 BoxAndWhiskerCalculator 112 112 121 121 121 121 121 121 121 121 121 121 9 0.73

25 BoxAndWhiskerItem 107 107 111 109 109 109 117 117 117 117 117 117 14 1.12

26 BoxAndWhiskerRenderer 563 563 499 503 503 510 510 510 516 497 503 506 109 5.14

27 CandlestickRenderer 393 393 404 404 428 428 445 445 445 445 445 445 52 1.61

28 CategoryAnchor 44 44 44 44 44 44 44 44 44 44 44 44 0 0.54

29 CategoryAxis 644 644 654 654 644 644 665 665 665 664 677 678 56 0.93

30 CategoryAxis3D 101 101 96 95 95 95 95 95 95 95 95 95 6 0.98

31 CategoryDatasetHandler 46 46 46 46 46 46 46 46 46 46 46 46 0 0.96

32 CategoryItemEntity 69 69 69 69 69 116 116 116 116 116 116 116 47 2.27

33 CategoryItemRenderer 204 204 204 204 204 203 203 203 203 203 188 188 16 0.87

 183

S.No. Class Name v1.0.1 v1.0.2 v1.0.3 v1.0.4 v1.0.5 v1.0.6 v1.0.7 v1.0.8 v1.0.9 v1.0.10 v1.0.11 v1.0.12 Change IPC

34 CategoryItemRendererState 24 24 24 24 24 24 24 24 24 24 32 32 8 1.32

35 CategoryLabelPosition 120 120 120 120 120 111 111 111 111 111 111 111 9 0.89

36 CategoryLabelPositions 264 264 264 264 264 264 264 264 264 264 264 264 0 1.17

37 CategoryLabelWidthType 44 44 44 44 44 44 44 44 44 44 44 44 0 0.92

38 CategoryLineAnnotation 185 185 185 185 195 195 196 196 196 197 197 197 12 0.37

39 CategoryMarker 52 52 61 61 61 61 61 61 61 61 61 61 9 1.98

40 CategoryPlot 1685 1701 1751 1756 1787 1791 1882 1882 1882 1951 2146 2201 516 2.82

41 CategorySeriesHandler 56 56 56 56 56 56 56 56 56 56 56 56 0 0.92

42 CategoryStepRenderer 123 123 123 126 170 171 171 171 171 170 176 176 55 2.63

43 CategoryTableXYDataset 114 114 114 114 114 114 114 114 114 124 124 124 10 2.88

44 CategoryTextAnnotation 122 122 111 111 119 119 119 119 119 120 120 120 20 1.35

45 CategoryTick 55 55 55 55 55 55 55 55 55 55 55 55 0 0.83

46 CategoryToPieDataset 92 92 149 149 149 149 149 149 149 149 149 149 57 1.03

47 CenterArrangement 141 141 137 137 137 137 137 137 137 137 137 137 4 1.45

48 ChartChangeEvent 31 31 31 31 31 31 31 31 31 31 31 31 0 0.64

49 ChartChangeEventType 47 47 47 47 47 47 47 47 47 47 47 47 0 0.51

50 ChartDeleter 34 34 34 35 35 35 35 35 35 35 35 35 1 1.76

51 ChartEntity 178 178 178 174 174 174 181 181 184 184 184 184 14 0.99

52 ChartProgressEvent 33 33 33 33 33 33 33 33 33 33 33 33 0 0

53 ClusteredXYBarRenderer 153 153 148 154 154 180 180 180 180 180 195 195 52 2.06

54 ColorBar 243 243 243 245 245 228 228 228 228 228 228 228 19 0.85

55 ColorBlock 21 21 21 21 54 54 55 55 55 63 63 63 42 1.13

56 ColorPalette 216 216 216 217 217 217 217 217 217 217 217 217 1 0.52

57 ColumnArrangement 207 207 206 206 206 206 206 206 206 206 206 206 1 1.91

58 CombinedDataset 235 235 235 235 235 235 235 235 235 235 233 233 2 1.34

59 CombinedDomainCategoryPlot 322 322 316 316 316 336 336 336 336 345 345 345 35 0.62

60 CombinedDomainXYPlot 321 321 321 321 321 341 341 341 341 347 340 340 33 1.83

61 CombinedRangeCategoryPlot 298 298 292 292 292 292 292 292 292 292 292 292 6 1.72

62 CombinedRangeXYPlot 309 309 304 304 304 325 326 326 326 330 326 326 35 0.62

63 CompassFormat 36 36 36 36 36 36 36 36 36 36 36 36 0 0

64 CompassPlot 428 428 428 428 444 444 444 444 444 444 444 445 17 0.55

65 CompositeTitle 65 65 65 65 65 65 65 65 63 63 91 91 30 1.71

66 ContourEntity 36 36 36 36 36 38 38 38 38 38 38 38 2 0.48

67 ContourPlot 938 938 938 893 893 893 893 893 893 893 890 892 50 2.09

68 CrosshairState 76 76 94 117 117 117 117 117 117 117 124 124 48 1.32

69 CSV 96 96 96 96 96 96 96 96 96 96 96 96 0 0

70 CustomPieURLGenerator 92 92 92 93 93 93 93 93 93 93 91 91 3 0.37

71 CustomXYToolTipGenerator 75 75 75 75 75 75 75 75 75 75 73 73 2 1.53

72 CustomXYURLGenerator 78 78 78 78 78 78 78 78 78 86 86 86 8 1.91

73 CyclicNumberAxis 675 675 675 675 675 675 676 676 676 676 672 672 5 1.75

74 CyclicXYItemRenderer 264 264 252 252 252 252 252 252 252 252 252 252 12 1.38

75 DatasetGroup 35 35 35 35 35 35 35 35 35 35 35 35 0 0.81

76 DatasetReader 59 59 59 59 59 59 59 59 59 59 59 59 0 0

 184

S.No. Class Name v1.0.1 v1.0.2 v1.0.3 v1.0.4 v1.0.5 v1.0.6 v1.0.7 v1.0.8 v1.0.9 v1.0.10 v1.0.11 v1.0.12 Change IPC

77 DatasetRenderingOrder 39 39 39 39 39 39 39 42 42 42 42 42 3 1.86

78 DatasetUtilities 876 876 876 876 887 887 885 885 885 916 916 939 67 1.25

79 DataUtilities 69 69 69 69 69 69 69 69 69 69 69 69 0 0

80 DateAxis 1014 1014 945 955 955 986 986 986 986 986 1004 1067 191 6.69

81 DateRange 37 37 37 37 37 37 37 37 37 37 43 43 6 0.41

82 DateTick 32 32 32 32 32 32 32 32 32 32 32 37 5 0.23

83 DateTickMarkPosition 44 44 44 44 44 44 44 44 44 44 44 44 0 0.78

84 DateTickUnit 147 147 147 147 153 166 166 166 166 160 160 160 25 0.36

85 DateTitle 48 48 48 39 39 39 39 39 39 39 39 39 9 1.76

86 Day 153 153 168 168 168 168 168 168 168 168 168 168 15 1.88

87 DefaultAxisEditor 220 220 220 220 220 220 220 220 220 220 220 222 2 0.33

88 DefaultCategoryDataset 132 132 132 132 137 137 137 137 137 138 138 138 6 0.56

89 DefaultChartEditor 137 137 137 137 137 137 137 137 137 137 137 139 2 1.92

90 DefaultColorBarEditor 111 111 111 111 111 111 111 111 111 111 111 113 2 1.67

91 DefaultContourDataset 218 218 218 219 219 219 219 219 219 219 219 219 1 0.31

92 DefaultDrawingSupplier 258 258 246 246 246 268 268 268 268 268 268 268 34 2.64

93 DefaultHighLowDataset 105 105 105 141 141 141 141 141 141 142 142 142 37 2.11

94 DefaultKeyedValue 50 50 50 50 50 53 53 53 53 56 55 55 7 0.48

95 DefaultKeyedValueDataset 74 74 74 74 74 74 74 74 74 74 73 73 1 0.36

96 DefaultKeyedValues 150 150 154 154 154 176 202 200 200 200 199 199 55 0.57

97 DefaultKeyedValues2D 234 234 234 239 239 242 242 260 260 260 259 259 27 2.81

98 DefaultNumberAxisEditor 196 196 196 196 196 196 196 196 196 196 196 198 2 0.56

99 DefaultOHLCDataset 104 104 104 104 104 104 104 104 104 111 111 111 7 1.8

100 DefaultPieDataset 108 108 119 119 119 126 126 126 126 126 124 124 20 0.88

101 DefaultPlotEditor 413 413 413 413 413 413 415 415 415 415 411 413 8 1.39

102 DefaultTableXYDataset 275 275 275 275 275 275 275 275 275 292 292 292 17 1.75

103 DefaultTitleEditor 158 158 158 158 158 158 158 158 158 158 158 160 2 1.12

104 DefaultValueDataset 43 43 43 41 41 41 41 41 41 41 39 39 4 0.96

105 DefaultWindDataset 126 126 176 176 176 176 176 176 176 177 177 177 51 2.17

106 DisplayChart 59 59 57 57 57 57 57 57 57 57 57 57 2 1.27

107 DomainOrder 46 46 46 46 46 46 46 46 46 46 46 46 0 0.51

108 DrawableLegendItem 68 68 68 68 68 68 68 68 68 68 68 68 0 0

109 DynamicTimeSeriesCollection 396 396 396 396 396 396 396 396 396 396 396 396 0 0

110 EmptyBlock 22 22 22 22 22 22 22 22 22 30 30 30 8 1.91

111 EncoderUtil 54 54 54 54 54 54 54 54 54 54 54 54 0 0

112 ExtendedCategoryAxis 62 62 62 62 105 105 106 106 106 106 106 106 44 2.54

113 FixedMillisecond 96 96 98 98 98 98 98 98 98 98 98 98 2 1.68

114 FlowArrangement 233 233 232 232 232 232 232 232 232 232 232 232 1 1.74

115 GanttRenderer 362 363 363 363 353 353 353 353 353 353 360 360 18 2.61

116 GridArrangement 145 145 145 145 145 145 145 145 145 145 145 242 97 2.21

117 GroupedStackedBarRenderer 251 251 251 251 251 241 241 241 218 218 222 225 40 2.71

118 HighLowItemLabelGenerator 98 98 98 98 98 98 96 96 96 100 100 100 6 1.49

119 HighLowRenderer 247 247 241 241 241 241 241 241 241 260 245 247 42 2.12

 185

S.No. Class Name v1.0.1 v1.0.2 v1.0.3 v1.0.4 v1.0.5 v1.0.6 v1.0.7 v1.0.8 v1.0.9 v1.0.10 v1.0.11 v1.0.12 Change IPC

120 HistogramBin 52 52 51 51 51 51 51 51 51 51 51 51 1 1.25

121 HistogramDataset 196 196 198 198 198 198 198 198 198 203 203 203 7 1.21

122 HistogramType 50 50 50 50 50 50 50 50 50 50 50 50 0 0

123 Hour 162 162 176 176 176 176 176 176 176 176 180 180 18 2.6

124 ImageEncoderFactory 62 62 62 62 62 62 62 62 62 62 62 62 0 0

125 ImageMapUtilities 82 82 82 73 73 73 73 73 106 106 106 106 42 0.89

126 ImageTitle 139 139 139 139 139 139 139 139 139 160 160 160 21 2.5

127 IntervalBarRenderer 167 167 167 158 158 157 157 157 157 135 129 134 43 2.27

128 IntervalXYDelegate 169 169 169 169 169 169 169 169 169 169 168 168 1 0.97

129 ItemHandler 60 60 60 60 60 60 60 60 60 60 60 60 0 0

130 ItemLabelAnchor 155 155 155 155 155 155 155 155 155 155 155 155 0 1.04

131 ItemLabelPosition 76 76 76 72 72 72 72 72 72 72 72 72 4 1.08

132 JDBCCategoryDataset 139 139 139 139 139 139 140 140 140 140 140 140 1 1.22

133 JDBCPieDataset 106 106 106 106 106 106 107 107 107 107 107 107 1 0.45

134 JDBCXYDataset 270 270 270 270 270 270 270 270 270 270 268 268 2 0.38

135 JFreeChart 877 834 834 837 850 874 875 875 881 886 890 892 101 3.83

136 KeyHandler 50 50 50 50 50 50 50 50 50 50 50 50 0 1.13

137 KeypointPNGEncoderAdapter 41 41 41 41 41 41 41 41 41 41 41 41 0 0

138 NonGridContourDataset 108 108 108 110 110 110 110 110 110 110 110 110 2 0.35

139 PaletteChooserPanel 21 21 21 23 23 23 23 23 23 23 23 23 2 1.48

140 PaletteSample 64 64 64 66 66 66 66 66 66 66 66 66 2 0.69

141 PieChartDemo1 53 53 53 53 53 53 52 52 52 52 49 49 4 0.84

142 PieDatasetHandler 43 43 43 43 43 43 43 43 43 43 43 43 0 0

143 RootHandler 38 38 38 38 38 38 38 38 38 38 38 38 0 0

144 ServletUtilities 199 183 184 184 184 184 184 184 184 184 184 184 17 2.16

145 SunJPEGEncoderAdapter 37 37 56 56 56 56 56 56 56 56 56 56 19 0.86

146 SunPNGEncoderAdapter 33 33 33 33 33 33 33 33 33 33 33 33 0 0

147 TimeSeriesChartDemo1 112 112 110 110 110 110 110 110 110 110 111 111 3 0.62

148 ValueHandler 57 57 57 57 57 57 57 57 57 57 57 57 0 0

A9. Experiments with jUnit

Following table tabulates LOC measure, IPC and Change metric of each class in different releases of jUnit from versions 4.5 through

version 4.10.

S.No. Class Name v4.5 v4.6 v4.7 v4.8 v4.8.1 v4.9 v4.10 Change IPC

1 ActiveTestSuite 52 52 52 52 52 52 52 0 0

2 AllMembersSupplier 100 99 99 99 99 99 100 2 0.49

3 AnnotatedBuilder 36 36 36 36 36 36 36 0 0

4 ArrayComparisonFailure 36 36 36 36 36 36 36 0 0.63

5 Assert 146 146 146 147 147 151 151 5 0.37

6 Assert 238 259 223 223 223 225 225 59 0.49

 186

S.No. Class Name v4.5 v4.6 v4.7 v4.8 v4.8.1 v4.9 v4.10 Change IPC

7 Assignments 99 99 101 101 101 101 101 2 0.24

8 Assume 23 23 23 23 23 23 23 0 0

9 AssumptionViolatedException 32 32 32 32 32 32 32 0 0

10 BaseTestRunner 236 236 235 235 235 235 235 1 0.35

11 BlockJUnit4ClassRunner 166 163 213 213 213 199 207 75 0.51

12 ClassRoadie 65 65 65 65 65 65 65 0 0

13 CombinableMatcher 26 26 26 26 26 26 26 0 0

14 ComparisonCompactor 60 60 60 60 60 60 60 0 0.55

15 ComparisonFailure 22 22 22 22 22 22 22 0 0

16 ComparisonFailure 81 81 81 81 81 81 81 0 0

17 Description 82 111 114 114 114 113 115 35 0.92

18 Each 20 20 20 20 20 20 20 0 0

19 EachTestNotifier 34 34 34 34 34 38 38 4 0.36

20 ErrorReportingRunner 51 50 50 50 50 50 50 1 0.23

21 ExpectException 28 28 28 28 28 31 31 3 0.22

22 FailOnTimeout 50 50 36 36 36 36 54 32 0.88

23 Failure 37 37 37 37 37 37 39 2 0.17

24 FailureList 23 23 23 23 23 23 23 0 0

25 Filter 23 40 40 40 40 64 64 41 1.04

26 FilterRequest 26 26 26 26 26 26 26 0 0

27 FrameworkMethod 84 84 80 80 80 80 85 9 0.38

28 InitializationError 20 20 20 20 20 20 20 0 0.2

29 IsCollectionContaining 54 54 54 54 54 54 54 0 0

30 JUnit38ClassRunner 108 142 134 134 134 134 134 42 0.77

31 JUnit4ClassRunner 117 117 117 117 117 117 117 0 0

32 JUnit4TestAdapter 66 66 66 66 66 66 66 0 0.64

33 JUnit4TestAdapterCache 67 67 67 67 67 67 67 0 0

34 JUnit4TestCaseFacade 23 23 23 23 23 23 23 0 0.36

35 JUnitCore 81 87 87 87 87 87 87 6 0.33

36 JUnitMatchers 32 32 32 32 32 32 32 0 0.45

37 MethodRoadie 138 138 138 138 138 138 138 0 0.55

38 MethodValidator 72 72 72 72 72 72 72 0 0

39 Parameterized 93 93 94 94 94 94 99 6 0.16

40 ParameterizedAssertionError 38 38 38 38 38 38 38 0 0

41 ParameterSignature 71 71 71 71 71 71 71 0 0

42 ParentRunner 155 155 171 171 171 204 207 52 1.13

43 PotentialAssignment 25 25 25 25 25 25 25 0 0.11

44 PrintableResult 32 32 32 32 32 33 33 1 0.3

45 RepeatedTest 28 28 28 28 28 28 28 0 0

46 Request 66 57 56 56 56 56 56 10 0.63

47 Result 63 59 59 61 61 61 63 8 0.47

48 ResultMatchers 41 41 41 41 41 41 41 0 0

49 ResultPrinter 92 92 92 92 92 92 92 0 0.45

 187

S.No. Class Name v4.5 v4.6 v4.7 v4.8 v4.8.1 v4.9 v4.10 Change IPC

50 RunAfters 38 38 34 34 34 34 33 5 0.49

51 RunBefores 20 20 20 20 20 20 20 0 0.8

52 RunListener 20 20 20 20 20 20 20 0 0

53 RunnerBuilder 44 44 44 44 44 48 48 4 0.2

54 RunNotifier 93 93 93 97 97 97 97 4 0.34

55 Sorter 22 22 22 22 22 22 22 0 0

56 SortingRequest 20 20 20 20 20 20 20 0 0

57 StringContains 20 20 20 20 20 20 20 0 0

58 SubstringMatcher 20 20 20 20 20 20 20 0 0.57

59 Suite 54 55 63 63 63 63 63 9 0.39

60 SuiteMethod 24 24 24 24 24 24 24 0 0.42

61 SuiteMethodBuilder 20 20 20 20 20 20 20 0 0.5

62 TestCase 81 81 81 81 81 81 81 0 0

63 TestClass 81 81 81 81 81 81 81 0 0

64 TestClass 82 82 85 85 85 104 108 26 0.48

65 TestDecorator 26 26 26 26 26 26 26 0 0

66 TestFailure 36 36 36 36 36 36 36 0 0.34

67 TestMethod 51 51 51 51 51 51 51 0 0

68 TestResult 100 100 100 100 100 100 100 0 0

69 TestRunner 124 124 124 124 124 124 124 0 0

70 TestSetup 24 24 24 24 24 24 24 0 0

71 TestSuite 164 164 164 164 164 173 173 9 0.16

72 TextListener 73 73 73 73 73 73 73 0 0

73 Theories 155 158 159 159 159 165 165 10 1.18

74 TypeSafeMatcher 34 34 34 34 34 34 34 0 0

188

APPENDIX
Source Code

B

B1. Source code of Triangle classification program used for case study 1 in chapter 5.

// Jeff Offutt -- Java version Feb 2003

// Classify triangles

import java.io.*;

class Side

{

 int length;

 Side()

 {

 length = 0;

 }

 void setSide(int x)

 {

 length = x;

 }

 int getSide()

 {

 return length;

 }

}

class TriangleTest

{

 private static String[] triTypes = { "", "scalene",

"isosceles", "equilateral", "not a valid triangle"};

 private static String instructions = "This is the ancient

" +

 "TriangleTest program.\nEnter three integers that

represent the " +

 "lengths of the sides of a triangle.\nThe triangle will be

" +

 "categorized as either scalene, isosceles, equilateral\n"

+

 "or invalid.\n";

public static void main (String[] argv)

{ // Driver program for TriangleTest

 Side A = new Side();

 Side B = new Side();

 Side C = new Side();

 int T;

 System.out.println (instructions);

 System.out.println ("Enter side 1: ");

 A.setSide(getN());

 System.out.println ("Enter side 2: ");

 B.setSide(getN());

 System.out.println ("Enter side 3: ");

 C.setSide(getN());

 T = Triang (A, B, C);

 System.out.println ("Result is: " + triTypes[T]);

}

// ====================================

// The main triangle classification method

static int Triang (Side Side1, Side Side2, Side Side3)

{

 int triOut;

 // triOut is output from the routine:

 // Triang = 1 if triangle is scalene

 // Triang = 2 if triangle is isosceles

 // Triang = 3 if triangle is equilateral

 // Triang = 4 if not a triangle

 // After a quick confirmation that it's a legal

 // triangle, detect any sides of equal length

 if (Side1.getSide() <= 0 || Side2.getSide() <= 0 ||

Side3.getSide() <= 0)

 {

 triOut = 4;

 return (triOut);

 }

 triOut = 0;

 if (Side1.getSide() == Side2.getSide())

 triOut = triOut + 1;

 if (Side1.getSide() == Side3.getSide())

 triOut = triOut + 2;

 if (Side2.getSide() == Side3.getSide())

 triOut = triOut + 3;

 if (triOut == 0)

 { // Confirm it's a legal triangle before declaring

 // it to be scalene

 if (Side1.getSide() + Side2.getSide() <=

Side3.getSide()

 || Side2.getSide() + Side3.getSide()

<= Side1.getSide()

 || Side1.getSide() + Side3.getSide()

<= Side2.getSide())

 triOut = 4;

 else

 189

 triOut = 1;

 return (triOut);

 }

 /* Confirm it's a legal triangle before declaring */

 /* it to be isosceles or equilateral */

 if (triOut > 3)

 triOut = 3;

 else if (triOut == 1 && Side1.getSide() +

Side2.getSide() > Side3.getSide())

 triOut = 2;

 else if (triOut == 2 && Side1.getSide() +

Side3.getSide() > Side2.getSide())

 triOut = 2;

 else if (triOut == 3 && Side2.getSide() +

Side3.getSide() > Side1.getSide())

 triOut = 2;

 else

 triOut = 4;

 return (triOut);

} // end Triang

// ====================================

// Read (or choose) an integer

private static int getN ()

{

 int inputInt = 1;

 BufferedReader in = new BufferedReader (new

InputStreamReader (System.in));

 String inStr;

 try

 {

 inStr = in.readLine ();

 inputInt = Integer.parseInt(inStr);

 }

 catch (IOException e)

 { // JDK requires the IOException to be caught.

 System.out.println ("Could not read input, choosing

1.");

 }

 catch (NumberFormatException e)

 {

 System.out.println ("Entry must be a number,

choosing 1.");

 }

 return (inputInt);

 } // end getN

} // end TriangleTest class

B2. Following is the program code used for test case generation in case study 1 in chapter 6.

package genut;

import genut.encoding.tree.*;

import java.util.*;

public class GARunner

{

 private static int num_cases = 0;

 private static int maxIteration = 20;

 private static int populationSize = 40;

 private static int iterationCounter = 0;

 private static int covered_nodes;

 private static int num_visit;

 private static int cur_node;

 private static int genNo;

 private static float sum_wt;

 private static double galat = 0.001;

 private static boolean stopFactor = false;

 private static double crossover_rate= 0.6;

 private static double mutation_rate= 0.1;

 private static RecordFile recFile = new RecordFile();

 private static ArrayList<TreeChromosome>

population = new ArrayList();

 private static ReplacementScheme

replacementScheme;

 private static SelectionScheme selection;

 private static Random randGenerator = new

Random();

 public static TreeChromosome[]

runIteration(TreeChromosome[] currentGeneration,

TreeChromosome t1)

 {

 TreeChromosome[] selectedPopulation =

selection.select(currentGeneration);

 List<TreeChromosome> parentsList = new

ArrayList<>();

 Triangle[] tri = new Triangle[populationSize];

 Node[] nodes = new Node[22];

 Record record;

 setReplacementScheme(new

ReplacementScheme());

 int T;

 double coverage;

 double denom;

 initializeNodes(nodes);

 for(int i=0;i<populationSize;i++)

 {

 t1 = population.get(i);

 190

 tri[i] = new

Triangle(t1.getElement(0).intval,t1.getElement(1).intval

,t1.getElement(2).intval);

 T = Triang (tri[i].gets1(), tri[i].gets2(),

tri[i].gets3(),nodes);

 coverage = ((float)covered_nodes/22)*100;

 t1.setCoverage(coverage);

 if(T==4)

 {

 denom =

((double)sum_wt/num_visit)*Node.init_wt;

 t1.setFeasible(false);

t1.setFitness(compute_num(cur_node,nodes)/denom);

 }

 else

 {

 t1.setFeasible(true);

 t1.setFitness((double)sum_wt/num_visit);

 }

 record = new Record(genNo, i, coverage,

t1.getFeasible());

 recFile.addRecord(record);

 }

 for (TreeChromosome parentCandidate:

selectedPopulation)

 {

 if (randGenerator.nextDouble() <=

crossover_rate)

 {

 parentsList.add(parentCandidate);

 }

 }

 TreeChromosome[] offsprings = new

TreeChromosome[parentsList.size()];

 TreeChromosome[] currentOffsprings;

 int offspringCounter = 0;

 int crossoverCounter;

 int stopCrossover;

 int parentsSize = parentsList.size();

 if (parentsSize % 2 == 0)

 {

 stopCrossover = parentsSize;

 }

 else

 {

 stopCrossover = parentsSize - 1;

 }

 for(crossoverCounter = 0; crossoverCounter <

stopCrossover; crossoverCounter += 2)

 {

 currentOffsprings =

parentsList.get(crossoverCounter).crossover(parentsList

.get(crossoverCounter+1));

 for (TreeChromosome currentOffspring:

currentOffsprings)

 {

 offsprings[offspringCounter++] =

currentOffspring;

 }

 }

 if (parentsSize %2 != 0)

 {

 currentOffsprings =

parentsList.get(crossoverCounter).crossover(parentsList

.get(crossoverCounter));

 offsprings[offspringCounter] =

currentOffsprings[0];

 }

 if (mutation_rate > 0.00)

 {

 for(TreeChromosome c: offsprings)

 {

 c.mutate(mutation_rate);

 }

 }

 iterationCounter++;

 stopFactor = checkStopFactor(currentGeneration,

offsprings);

 currentGeneration =

replacementScheme.replace(currentGeneration,

offsprings);

 return currentGeneration;

 }

 public static void

runGeneticAlgorithm(ArrayList<TreeChromosome>

initPopulation, TreeChromosome t1)

 {

 genNo = 0;

 TreeChromosome[] chromo =

(TreeChromosome[])initPopulation.toArray();

 do

 {

 genNo++;

 chromo = runIteration(chromo, t1);

 }

 while(!getStopFactor());

 }

 private static void initializeNodes(Node[] nodes)

 {

 191

 for(int i=0;i<22;i++)

 {

 nodes[i] = new Node(i+1);

 }

 }

 public static void

setReplacementScheme(ReplacementScheme

repScheme)

 {

 if (replacementScheme != null)

 {

 replacementScheme = repScheme;

 }

 }

 public static boolean getStopFactor()

 {

 return stopFactor;

 }

 public static boolean

checkStopFactor(TreeChromosome[] parents,

TreeChromosome[] offsprings)

 {

 if (iterationCounter >= maxIteration)

 {

 return true;

 }

 else

 {

 Comparator comparator = new

FitnessComparator();

 Arrays.sort(parents, comparator);

 Arrays.sort(offsprings, comparator);

 if (Math.abs(parents[parents.length-1].fitness()

- offsprings[offsprings.length-1].fitness()) <= galat)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 }

 public static void populate(int

population_size,TreeChromosome tree)

 {

 ArrayList<TreeChromosome> lst = tree.getList();

 int i;

 NodeGene z1;

 for (i=0;i<population_size;i++)

 {

 while((z1=tree.getElement(i))!=null)

 {

 traverse(z1);

 i++;

 }

 }

 }

 static void crossover(ArrayList<TreeChromosome>

pop)

 {

 int val;

 int size;

 ArrayList<TreeChromosome> temp = new

ArrayList();

 FitnessComparator fitComp = new

FitnessComparator();

 TreeFitnessFunction treeFit = new

TreeFitnessFunction();

 TreeChromosome[] offSprings;

 TreeCrossover crossObj = new

TreeCrossover(treeFit);

 TreeChromosome t1;

 TreeChromosome t2;

 while(pop.isEmpty())

 {

 t1 = pop.remove(0);

 t2 = pop.remove(1);

 if((t1!=null)&&(t2!=null))

 {

 val = fitComp.compare(t1, t2);

 if(val<0)

 {

 temp.add(t2);

 temp.add(t1);

 }

 else

 {

 temp.add(t1);

 temp.add(t2);

 }

 }

 else

 {

 temp.add(t1);

 }

 }

 size=temp.size()/2;

 for(int i=0;i<size;i=i+2)

 {

 offSprings = crossObj.crossover(temp.get(i),

temp.get(i+1));

 pop.add(temp.get(i));

 pop.add(temp.get(i+1));

 pop.add(offSprings[0]);

 pop.add(offSprings[1]);

 }

 192

 }

 static void mutation(ArrayList<TreeChromosome>

pop)

 {

 int i=0;

 int j;

 TreeChromosome tr1;

 NodeGene elm;

 NodeGene elm1;

 MethodNodeGene elm2;

 while(pop.get(i)!=null)

 {

 tr1 = pop.get(i);

 j=0;

 while(tr1.getElement(j)!=null)

 {

 elm = tr1.getElement(i);

 switch (elm.type) {

 case "Constr":

 elm1 = (NodeGene)elm;

 ConstrNodeMutation.mutate(elm1);

 break;

 case "Method":

 elm2 = (MethodNodeGene)elm;

 MethodNodeMutation.mutate(elm2);

 break;

 }

 j++;

 }

 i++;

 }

 }

 public static void traverse(NodeGene z)

 {

 int i = 0;

 switch (z.type) {

 case "int":

 z.intval=recFile.assgnintval();

 break;

 case "float":

 z.floatval=recFile.assgnfloatval();

 break;

 case "boolean":

 z.boolval=recFile.assgnboolval();

 break;

 }

 }

 static int Triang (Side Side1, Side Side2, Side Side3,

Node[] nodes)

 {

 int triOut;

 float hcf;

 sum_wt=(float)0.0;

 num_visit=0;

 covered_nodes=0;

 num_cases++;

 // triOut is output from the routine:

 // Triang = 1 if triangle is scalene

 // Triang = 2 if triangle is isosceles

 // Triang = 3 if triangle is equilateral

 // Triang = 4 if not a triangle

 call_visit(0,nodes);

 if (Side1.getSide() <= 0 || Side2.getSide() <= 0 ||

Side3.getSide() <= 0)

 {

 call_visit(1,nodes);

 triOut = 4;

 return (triOut);

 }

 triOut = 0;

 call_visit(2,nodes);

 call_visit(3,nodes);

 if (Side1.getSide() == Side2.getSide())

 {

 triOut = triOut + 1;

 call_visit(4,nodes);

 }

 call_visit(5,nodes);

 if (Side1.getSide() == Side3.getSide())

 {

 triOut = triOut + 2;

 call_visit(6,nodes);

 }

 call_visit(7,nodes);

 if (Side2.getSide() == Side3.getSide())

 {

 triOut = triOut + 3;

 call_visit(8,nodes);

 }

 call_visit(9,nodes);

 if (triOut == 0)

 {

 call_visit(10,nodes);

 if (Side1.getSide() + Side2.getSide() <=

Side3.getSide()

 || Side2.getSide() + Side3.getSide()

<= Side1.getSide()

 || Side1.getSide() + Side3.getSide()

<= Side2.getSide())

 {

 triOut = 4;

 call_visit(11,nodes);

 }

 else

 193

 {

 triOut = 1;

 call_visit(12,nodes);

 }

 return (triOut);

 }

 call_visit(13,nodes);

 if (triOut > 3)

 {

 triOut = 3;

 call_visit(14,nodes);

 call_visit(15,nodes);

 }

 else if (triOut == 1 && Side1.getSide() +

Side2.getSide() > Side3.getSide())

 {

 triOut = 2;

 call_visit(16,nodes);

 call_visit(17,nodes);

 }

 else if (triOut == 2 && Side1.getSide() +

Side3.getSide() > Side2.getSide())

 {

 triOut = 2;

 call_visit(18,nodes);

 call_visit(19,nodes);

 }

 else if (triOut == 3 && Side2.getSide() +

Side3.getSide() > Side1.getSide())

 {

 triOut = 2;

 call_visit(20,nodes);

 }

 else

 {

 triOut = 4;

 call_visit(21,nodes);

 }

 return (triOut);

 }

 static void call_visit(int n, Node[] nodes)

 {

 float hcf;

System.out.println("Node:"+nodes[n].getNumber());

 nodes[n].incVisit();

 System.out.println("visited:"+nodes[n].getVisit());

 covered_nodes++;

 hcf = (float)(num_cases -

nodes[n].getVisit())/num_cases;

 nodes[n].sethcf(hcf);

 compute_pf(n, nodes);

 nodes[n].wt_reval();

 sum_wt+=nodes[n].getWeight();

 num_visit++;

 cur_node=n;

 }

 static float compute_num(int n, Node[] nodes)

 {

 float den=(float)0.0;

 float temp=(float)0.0;

 int i;

 if(nodes[n].getNumber()==1)

 {

for(i=1;i<22;i++)temp+=(float)nodes[n].getWeight();

 den=temp/21;

 }

 if(nodes[n].getNumber()==2)

 den=1;

 if(nodes[n].getNumber()==3)

 {

 for(i=3;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/19;

 }

 if(nodes[n].getNumber()==4)

 {

 for(i=4;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/18;

 }

 if(nodes[n].getNumber()==5)

 {

 for(i=5;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/17;

 }

 if(nodes[n].getNumber()==6)

 {

 for(i=6;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/16;

 }

 if(nodes[n].getNumber()==7)

 {

 for(i=7;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/15;

 }

 if(nodes[n].getNumber()==8)

 {

 for(i=8;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/14;

 }

 if(nodes[n].getNumber()==9)

 {

 for(i=9;i<22;i++)

 194

 temp+=(float)nodes[n].getWeight();

 den=temp/13;

 }

 if(nodes[n].getNumber()==10)

 {

 for(i=10;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/12;

 }

 if(nodes[n].getNumber()==11)

 {

 for(i=11;i<13;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/2;

 }

 if(nodes[n].getNumber()==12)

 den=1;

 if(nodes[n].getNumber()==13)

 den=1;

 if(nodes[n].getNumber()==14)

 {

 for(i=14;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/8;

 }

 if(nodes[n].getNumber()==15)

 den=1;

 if(nodes[n].getNumber()==16)

 {

 for(i=16;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/6;

 }

 if(nodes[n].getNumber()==17)

 den=1;

 if(nodes[n].getNumber()==18)

 {

 for(i=18;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/4;

 }

 if(nodes[n].getNumber()==19)

 den=1;

 if(nodes[n].getNumber()==20)

 {

 for(i=20;i<22;i++)

 temp+=(float)nodes[n].getWeight();

 den=temp/2;

 }

 if(nodes[n].getNumber()==21)

 den=1;

 if(nodes[n].getNumber()==22)

 den=1;

 return den;

 }

 static void compute_pf(int n, Node[] nodes)

 {

 float ppf=(float)0.0;

 float temp=(float)0.0;

 int i;

 if(nodes[n].getNumber()==1)

 {

 for(i=1;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/21;

 }

 if(nodes[n].getNumber()==2)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==3)

 {

 for(i=3;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/19;

 }

 if(nodes[n].getNumber()==4)

 {

 for(i=4;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/18;

 }

 if(nodes[n].getNumber()==5)

 {

 for(i=5;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/17;

 }

 if(nodes[n].getNumber()==6)

 {

 for(i=6;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/16;

 }

 if(nodes[n].getNumber()==7)

 {

 195

 for(i=7;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/15;

 }

 if(nodes[n].getNumber()==8)

 {

 for(i=8;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/14;

 }

 if(nodes[n].getNumber()==9)

 {

 for(i=9;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/13;

 }

 if(nodes[n].getNumber()==10)

 {

 for(i=10;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/12;

 }

 if(nodes[n].getNumber()==11)

 {

 for(i=11;i<13;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/2;

 }

 if(nodes[n].getNumber()==12)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==13)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==14)

 {

 for(i=14;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/8;

 }

 if(nodes[n].getNumber()==15)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==16)

 {

 for(i=16;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/6;

 }

 if(nodes[n].getNumber()==17)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==18)

 {

 for(i=18;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/4;

 }

 if(nodes[n].getNumber()==19)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==20)

 {

 for(i=20;i<22;i++)

 {

temp+=(float)nodes[n].getWeight()/Node.init_wt;

 }

 ppf=temp/2;

 }

 if(nodes[n].getNumber()==21)

 {

 ppf=1;

 }

 if(nodes[n].getNumber()==22)

 {

 ppf=1;

 }

 nodes[n].setpf(ppf);

 }

 public static void main (String[] args)

 196

 {

 TreeChromosome tree = recFile.encodeTree();

 populate(populationSize,tree);//Initial Population

 runGeneticAlgorithm(population,tree);

 recFile.printRecords();

 }

}

//Class FitnessComparator

package genut;

import genut.encoding.tree.TreeChromosome;

import java.util.Comparator;

public class FitnessComparator implements

Comparator<TreeChromosome>

{

 public int compare(TreeChromosome a,

TreeChromosome b)

 {

 double fitnessA = a.fitness();

 double fitnessB = b.fitness();

 if (fitnessA < fitnessB)

 {

 return Integer.MIN_VALUE;

 }

 else if (fitnessA > fitnessB)

 {

 return Integer.MAX_VALUE;

 }

 else

 {

 return 0;

 }

 }

}

//Class Node

package genut;

public class Node

{

 public static int init_wt = 300;

 private static float weight_factor=(float)1.0;

 private static float alpha = (float)1.0;

 private float weight;

 private float hcf;

 private float pf;

 private float wf;

 private int visit;

 private int number; //node number

 Node(int num)

 {

 weight = init_wt;

 hcf = (float)0.0;

 pf = wf = (float) 0.0;

 visit = 0;

 number = num;

 }

 public void wt_reval()

 {

 weight=alpha*weight*weight_factor*pf*hcf;

 }

 public void setWeiht(int wt)

 {

 weight = wt;

 }

 public void incVisit()

 {

 visit++;

 }

 public void setNumber(int num)

 {

 number = num;

 }

 public float getWeight()

 {

 return weight;

 }

 public int getVisit()

 {

 return visit;

 }

 public int getNumber()

 {

 return number;

 }

 public void sethcf(float val)

 {

 hcf = val;

 }

 public void setpf(float val)

 {

 pf = val;

 }

 public float gethcf()

 {

 return hcf;

 }

}

//Class Record

package genut;

class Record

{

 private int generationNo;

 private int individualNo;

 private double coverage;

 197

 private boolean ifFeasible;

 public Record(int generationNo, int individualNo,

double coverage, boolean ifFeasible)

 {

 this.generationNo = generationNo;

 this.individualNo = individualNo;

 this.coverage = coverage;

 this.ifFeasible = ifFeasible;

 }

 public double getCoverage() {

 return coverage;

 }

 public void setCoverage(double coverage) {

 this.coverage = coverage;

 }

 public boolean isIfFeasible() {

 return ifFeasible;

 }

 public void setIfFeasible(boolean ifFeasible) {

 this.ifFeasible = ifFeasible;

 }

 public int getIndividualNo() {

 return individualNo;

 }

 public void setIndividualNo(int individualNo) {

 this.individualNo = individualNo;

 }

 public int getGenerationNo() {

 return generationNo;

 }

 public void setGenerationNo(int generationNo) {

 this.generationNo = generationNo;

 }

 public String print() {

 return "Record{" + "generationNo=" +

generationNo + ", individualNo=" + individualNo + ",

coverage=" + coverage + ", ifFeasible=" + ifFeasible +

'}';

 }

}

//Class RecordFile

package genut;

import genut.encoding.tree.NodeGene;

import genut.encoding.tree.TreeChromosome;

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.util.*;

public class RecordFile

{

 Random ran;

 String fName;

 ArrayList<Record> records;

 RecordFile()

 {

 ran = new Random();

 fName = "C:\\mcs_file.txt";

 records = new ArrayList();

 }

 public TreeChromosome encodeTree()

 {

 TreeChromosome tree = new TreeChromosome();

 String tmp,tmp1,tmp2;

 String name;

 int x;

 int i;

 String type=null;

 ArrayList<String> tlist1 = new ArrayList();

 ArrayList<String> tlist2 = new ArrayList();

 try

 {

 FileInputStream fstream;

 fstream = new FileInputStream(fName);

 try (DataInputStream in = new

DataInputStream(fstream))

 {

 BufferedReader br = new

BufferedReader(new InputStreamReader(in));

 String strLine;

 while ((strLine = br.readLine()) != null)

 {

 StringTokenizer st = new

StringTokenizer(strLine," (),");

 x=0;

 while (st.hasMoreTokens())

 {

 tmp = st.nextToken();

 if("new".equals(tmp)) {

 type = "constr";

 x++;

 }

 if(x==1)

 {

 name=tmp;

 x++;

 }

 198

 tlist1.add(tmp);

 }

 StringTokenizer sr = new

StringTokenizer(strLine,".()");

 while (sr.hasMoreTokens())

 {

 tmp = sr.nextToken();

 tlist2.add(tmp);

 type="method";

 }

 for(i=0;tlist1.get(i)!=null;i++)

 {

 tmp = tlist1.get(i);

 if("new".equals(tmp)) {

 break;

 }

 }

 i++;

 NodeGene z1 = new

NodeGene(tlist1.get(i),type);

 tree.add(z1);

 while(tlist1.get(i)!=null)

 {

 i++;

 tmp1 = tlist1.get(i);

 i++;

 tmp2 = tlist1.get(i);

 i+=2;

 NodeGene z2 = new

NodeGene(tmp2,tmp1);

 tree.add(z2);

 }

 }

 }

 }catch (Exception e)

 {

 System.err.println("Error: " + e.getMessage());

 }

 return tree;

 }

 public int assgnintval()

 {

 int val = ran.nextInt();

 while((val<0)||(val>20)) //checking as per

specifications

 {

 val = ran.nextInt();

 }

 return val;

 }

 public float assgnfloatval()

 {

 float val = ran.nextFloat();

 while((val<0.0)||(val>20.0)) //checking as per

specifications

 {

 val = ran.nextInt();

 }

 return val;

 }

 public Boolean assgnboolval()

 {

 boolean val = ran.nextBoolean();

 return val;

 }

 void addRecord(Record record) {

 records.add(record);

 }

 void printRecords()

 {

 Record rec = records.remove(0);

 while(! records.isEmpty())

 {

 rec.print();

 rec = records.remove(0);

 }

 }

}

//Class ReplacementScheme

package genut;

import genut.encoding.tree.TreeChromosome;

import java.util.Arrays;

import java.util.Comparator;

public class ReplacementScheme

{

 @SuppressWarnings("unchecked")

 public TreeChromosome[]

replace(TreeChromosome[] parents,

TreeChromosome[] offsprings)

 {

 Comparator fitnessComp = new

FitnessComparator();

 Arrays.sort(parents, fitnessComp);

 Arrays.sort(offsprings, fitnessComp);

 TreeChromosome[] newGenerations = new

TreeChromosome [parents.length];

 int parentCounter = parents.length-1;

 int offspringCounter = offsprings.length-1;

 for (int newGenCounter=0; newGenCounter <

newGenerations.length; newGenCounter++)

 {

 if (offsprings[offspringCounter].fitness() <

parents[parentCounter].fitness())

 {

 199

 newGenerations[newGenCounter] =

parents[parentCounter];

 parentCounter--;

 }

 else

 {

 newGenerations[newGenCounter] =

offsprings[offspringCounter];

 offspringCounter--;

 }

 }

 return newGenerations;

 }

}

//Class SelectionScheme

package genut;

import genut.encoding.tree.TreeChromosome;

import java.util.HashMap;

import java.util.Map;

import java.util.Random;

public class SelectionScheme

{

 public TreeChromosome[] select(TreeChromosome[]

population)

 {

 double sumFitness = 0.0;

 Map<TreeChromosome, Double> fitnessTable =

new HashMap();

 for(TreeChromosome c: population)

 {

 fitnessTable.put(c, c.fitness());

 sumFitness += fitnessTable.get(c);

 }

 Map<TreeChromosome, Double> sumEVTable =

new HashMap();

 sumEVTable.put(population[0], fitnessTable.get(

population[0]) / sumFitness * population.length);

 for(int counter=1; counter < population.length;

counter++)

 {

 double ev = fitnessTable.get(

population[counter]) / sumFitness * population.length;

 sumEVTable.put(population[counter],

sumEVTable.get(population[counter-1]) + ev);

 }

 TreeChromosome[] selectedPopulation;

 selectedPopulation = new

TreeChromosome[population.length];

 Random randGenerator = new Random();

 for (int counter=0; counter <

selectedPopulation.length; counter++)

 {

 double randomValue =

randGenerator.nextDouble() * population.length;

 for (TreeChromosome c: sumEVTable.keySet())

 {

 if (randomValue <= sumEVTable.get(c))

 {

 selectedPopulation[counter] = c;

 }

 }

 }

 return selectedPopulation;

 }

}

//Class Side

package genut;

class Side

{

 int length;

 Side() {

 length = 0;

 }

 Side(int x) {

 length = x;

 }

 void setSide(int x) {

 length = x;

 }

 int getSide() {

 return length;

 }

}

//Class Triangle

package genut;

class Triangle

{

 private Side side1;

 private Side side2;

 private Side side3;

 Triangle(int x,int y, int z)

 {

 side1 = new Side(x);

 side2 = new Side(y);

 side3 = new Side(z);

 }

 Side gets1()

 {

 return side1;

 200

 }

 Side gets2()

 {

 return side2;

 }

 Side gets3()

 {

 return side3;

 }

 public void print()

 {

 System.out.println("Side1:"+side1.getSide()+"

Side2:"+side2.getSide()+" Side3:"+side3.getSide());

 }

}

//Class NodeGene

package genut.encoding.tree;

import java.util.ArrayList;

public class NodeGene implements Cloneable

{

 protected ArrayList<NodeGene> list;

 public String name;

 public String type;

 public String recr;

 public String recrType;

 public int intval;

 public float floatval;

 public Boolean boolval;

 public Object objval;

 private NodeGene parent;

 public NodeGene() {

 list = null;

 }

 public NodeGene(String na, String ty) {

 name = na;

 type = ty;

 list = new ArrayList();

 }

 public void addGene(NodeGene z) {

 list.add(z);

 }

 public void deleteGene(NodeGene z) {

 list.remove(z);

 }

 public NodeGene readGene(int index) {

 return (NodeGene)list.get(index);

 }

 public NodeGene getParent() {

 return parent;

 }

 public ArrayList<NodeGene> getGeneList()

 {

 return list;

 }

 public void deleteGeneList()

 {

 list.clear();

 }

 public boolean addGeneList(ArrayList<NodeGene>

newList)

 {

 return list.addAll(newList);

 }

 void setParent(NodeGene parent) {

 this.parent = parent;

 }

}

//Class NodeMutation

package genut.encoding.tree;

import java.util.Random;

public class NodeMutation

{

 public static void mutate(NodeGene gene)

 {

 Random randGenerator = new Random();

 if (NodeGene.isVariable(gene))

 {

 if (randGenerator.nextBoolean())

 {

 gene.setValue(randGenerator.nextDouble() *

ConstrNodeGene.maxValue);

 }

 else

 {

 gene.setValue(randGenerator.nextDouble() *

ConstrNodeGene.maxValue * -0.1);

 }

 }

 else

 {

 if (randGenerator.nextBoolean())

 {

 if (randGenerator.nextBoolean())

 {

 gene.setValue(randGenerator.nextDouble()

* ConstrNodeGene.maxValue);

 }

 else

 {

 gene.setValue(randGenerator.nextDouble()

* ConstrNodeGene.maxValue * -0.1);

 }

 }

 else

 201

 {

gene.setValue(ConstrNodeGene.VARIABLE);

 }

 }

 }

 public static void mutate(MethodNodeGene gene)

 {

 Random randGenerator = new Random();

 int mutatedValue =

randGenerator.nextInt(MethodNodeGene.MAX_NUM

BER_OF_OPERATOR);

 while (mutatedValue == gene.getValue())

 {

 mutatedValue =

randGenerator.nextInt(MethodNodeGene.MAX_NUM

BER_OF_OPERATOR);

 }

 gene.setValue(mutatedValue);

 }

}

//Class TreeChromosome

package genut.encoding.tree;

import java.util.ArrayList;

import java.util.Random;

public class TreeChromosome

{

 private static NodeGene

createRandomNode(NodeGene parent) {

 throw new UnsupportedOperationException("Not

yet implemented");

 }

 private ArrayList<NodeGene> list;

 double coverage;

 boolean ifFeasible;

 private NodeGene root;

 private TreeFitnessFunction fitnessFunction;

 private TreeCrossover treeCrossover;

 private double fitness;

 private static Random randGenerator = new

Random();

 private static int maxOperatorNodes = 15;

 private static int currentMaxOperatorNodes;

 private static int usedOperatorNodes;

 public double getCoverage()

 {

 return coverage;

 }

 public TreeChromosome()

 {

 list = new ArrayList();

 fitness = (float)0.0;

 coverage = (float)0.0;

 }

 public TreeChromosome(NodeGene root,

TreeFitnessFunction fitnessFunction)

 {

 setTreeFitnessFunction(fitnessFunction);

 setRoot(root);

 }

 public void setFeasible(boolean b)

 {

 ifFeasible = b;

 }

 public void setFitness(double fit)

 {

 fitness = fit;

 }

 public void setCoverage(double cov)

 {

 coverage = cov;

 }

 public void add(NodeGene z)

 {

 list.add(z);

 }

 public void delete(NodeGene z)

 {

 list.remove(z);

 }

 public ArrayList getList()

 {

 return list;

 }

 public NodeGene getElement(int index)

 {

 return (NodeGene)list.get(index);

 }

 public double fitness() {

 return fitness;

 }

 public void setRoot(NodeGene root)

 {

 if (root != null)

 {

 this.root = root;

 }

 calcFitness();

 }

 202

 public void

setTreeFitnessFunction(TreeFitnessFunction

fitnessFunction)

 {

 if (fitnessFunction != null)

 {

 this.fitnessFunction =

fitnessFunction;

 calcFitness();

 }

 }

 public void setTreeCrossover(TreeCrossover

treeCrossover)

 {

 if (treeCrossover != null)

 {

 this.treeCrossover =

treeCrossover;

 }

 }

 public NodeGene getRoot()

 {

 return root;

 }

 public TreeFitnessFunction

getTreeFitnessFunction()

 {

 return fitnessFunction;

 }

 public TreeCrossover getTreeCrossover()

 {

 return treeCrossover;

 }

 public TreeChromosome[]

crossover(TreeChromosome pair)

 {

 if (treeCrossover == null)

 {

 treeCrossover = new

TreeCrossover(fitnessFunction);

 }

 return treeCrossover.crossover(this, pair);

 }

 private static void

createRandomChildren(NodeGene parent)

 {

 if (usedOperatorNodes <

currentMaxOperatorNodes)

 {

 NodeGene leftChild =

createRandomNode(parent);

 if (leftChild instanceof

NodeGene)

 {

 usedOperatorNodes++;

 createRandomChildren((NodeGene) leftChild

);

 }

 if (usedOperatorNodes <

currentMaxOperatorNodes)

 {

 NodeGene

rightChild = createRandomNode(parent);

 if (rightChild

instanceof NodeGene)

 {

 usedOperatorNodes++;

 createRandomChildren((NodeGene)

rightChild);

 }

 }

 }

 }

 private void calcFitness() {

 throw new UnsupportedOperationException("Not

yet implemented");

 }

 public boolean getFeasible() {

 return ifFeasible;

 }

 public void mutate(double mutation_rate) {

 throw new UnsupportedOperationException("Not

yet implemented");

 }

}

//Class TreeCrossover

package genut.encoding.tree;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class TreeCrossover

{

 203

 private Random randGenerator;

 private TreeFitnessFunction fitnessFunction;

 public TreeCrossover(TreeFitnessFunction

fitnessFunction) {

 this.fitnessFunction = fitnessFunction;

 }

 public TreeChromosome[]

crossover(TreeChromosome parentA, TreeChromosome

parentB)

 {

 TreeChromosome[] offsprings = new

TreeChromosome[2];

 NodeGene rootDuplicateA = null;

 NodeGene rootDuplicateB = null;

 List<NodeGene> duplicateListA = new

ArrayList();

 List<NodeGene> duplicateListB = new

ArrayList();

 duplicateListB.add(rootDuplicateB);

 randGenerator = new Random();

 NodeGene crossPointA = duplicateListA.get(

randGenerator.nextInt(duplicateListA.size()-2) + 1);

 NodeGene crossPointB = duplicateListB.get(

randGenerator.nextInt(duplicateListB.size()-2) + 1);

 NodeGene tempParent = (NodeGene)

crossPointB.getParent();

 if(crossPointA.type == null ? crossPointB.type

== null : crossPointA.type.equals(crossPointB.type))

 {

 ArrayList<NodeGene> tempList1 =

crossPointA.getParent().getGeneList();

 crossPointA.getParent().deleteGeneList();

 ArrayList<NodeGene> tempList2 =

crossPointB.getParent().getGeneList();

 crossPointB.getParent().deleteGeneList();

crossPointA.getParent().addGeneList(tempList2);

crossPointB.getParent().addGeneList(tempList1);

 crossPointA.setParent(tempParent);

 offsprings[0x0] = new

TreeChromosome((NodeGene) rootDuplicateA,

fitnessFunction);

 offsprings[0x1] = new

TreeChromosome((NodeGene) rootDuplicateB,

fitnessFunction);

 return offsprings;

 }

 return crossover(parentA, parentB);

 }

}

 204

List of Publications by Author

Journals

1. Gupta N., Saini D. and Saini H.,―Class Level Test Case Generation in Object Oriented Software

Testing‖, International Journal of Information Technology and Web Engineering, IGI Publishing,

Hershey, Pennsylvania, USA, Vol. 3, No. 2, pp.19-26, April-June 2008.

2. Gupta N. and Rohil M., ―Using Genetic Algorithm for Unit Testing of Object Oriented Software‖,

International Journal of Simulation: Systems, Science & Technology, EDAS London, Vol. 10, No. 3,

pp. 97-102,May 2009.

3. Gupta N. and Rohil M., ―An Approach for Detection and Correction of Design Defects in Object

Oriented Software‖ International Journal of Information Technology & Knowledge Management

(ISSN: 0973-4414), Volume-4, Number-I, pp.63-67, January-June 2011.

4. Gupta N. and RohilM., ―Measuring Maintenance Effort in Object Oriented Software with Indirect

Coupling‖, International journal of Computer Applications, Foundation of Computer Science, USA,

Vol. 54, No. 2, pp.19-24, September 2012.

Conferences

1. Gupta N. and Rohil M. ―Using Genetic Algorithm for Unit Testing of Object Oriented Software‖,

Proceedings of the International Conference on Emerging Trends in Engineering and Technology,

2008. ICETET '08 on 16-18 July 2008, Nagpur (India), IEEE Computer Society, pp. 308 – 313, July

2008.

2. Gupta N. and Rohil M. ―Issues and Problems in Generation of Automated Test Data for Object

Oriented Systems‖, Proceedings of IEEE International Advance Computing Conference (IACC 2009)

Patiala, India, 6–7 March 2009, IEEE Computer Society, pp.1868 – 1871, March 2009.

3. Gupta N. and Rohil M. ―Exploring Possibilities of Reducing Maintenance Effort in Object Oriented

Software by Minimizing Indirect Coupling‖, Proceedings of the 2
nd

International Conference on

Computer Science, Engineering & Applications (ICCSEA 2012), May 25-27, 2012, New Delhi, India,

Published by Springer in Advances in Intelligent and Soft Computing, Vol. 166, pp.959-965, May

2012.

4. Gupta N. and Rohil M., ―Object Oriented Software Maintenance in presence of Indirect Coupling‖,

Proceedings of the 5
th
 International Conference on Contemporary Computing, August 6-8, 2012,

Noida, India, Published by Springer in Communications in Computer and Information Science Vol.

306, pp. 442 – 451, August 2012.

5. Gupta N. and Rohil M., ―Software Quality Measurement for Reusability‖, In Proceedings of

International Conference on Software Engineering and Mobile Application Modelling and

Development, 19-21 Dec 2012, Chennai, pp. 49-61, December 2012.

6. Gupta N. and Rohil M., ―Improving GA based Automated Test Data Generation Technique for Object

Oriented Software‖, In Proceedings of 3rd IEEE International Advance Computing Conference

(IACC-2013), 22-23 Feb. 2013, Ghaziabad, Print ISBN: 978-1-4673-4527-9, pp. 249 – 253, 2013.

 205

Brief Biography of the Candidate

Nirmal Kumar Gupta received his B.E. in Electronics and Instrumentation

Engineering from Bundelkhand Institute of Engineering and Technology, Jhansi

– 284001 (Uttar Pradesh), Indiain 1998 and M.Tech degree in Computer Science

& Technology from Indian Institute of Technology Roorkee, Roorkee – 247667

(Uttarakhand) India in 2002.

He served at Babu Banarasidas National Institute of Technology and Management, Lucknow as

Lecturer during Apr 2002 to Jan 2004, at Institute of Technology and Management, Gurgaon during

Feb 2004 to Dec 2004, as Sr. Lecturer and since Jan 2005 he is working as Lecturer with Department

of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani –

333031, Rajasthan, India. His area of research interest includes Software Engineering and Testing,

Object Oriented Technologies and Soft Computing Techniques. He has published 10 research papers

in conferences and in Journals of international repute.

 206

Brief Biography of the Supervisor

Mukesh Kumar Rohil received the M.Sc. (Hons) degree in Physics, the B.E.

(Hons) degree in Civil Engineering, the M.E. degree in Systems & Information

and the Ph.D. degree in Computer Science & Engineering from the Birla Institute

of Technology and Science, Pilani – 333 031, Rajasthan, India, in 1993, 1993,

1995 and 2004 respectively.

He served M/s Asia Polytex India Limited, Mumbai (earlier Bombay) as Systems

Analyst-cum-Programmer during Aug-Nov, 1993. He worked as ASSISTANT

LECTURER during June 1995 and Dec 1998, as Lecturer during Jan 1998 and May2006, Assistant

Professor from June 2006 to January 2013 and since February 2013 he is working as Associate

Professor with Computer Science and Information Systems Group, Birla Institute of Technology and

Science, Pilani – 333 031, Rajasthan, India. His area of research interest includes artificial

intelligence and expert systems, computer graphics, digital image processing of remote sensing data,

GIS, Applications of Artificial Intelligence in Software Engineering and pattern recognition.

Dr. Rohil has published 29 articles in conferences, journals and book-chapters. Dr. Rohil is a life

member of Indian Society of Remote Sensing (ISRS). Dr. Rohil received OPTO-MECH award for

the best paper presented titled ―Exploring possible applications of fuzzy logic in simulation of three-

dimensional visualization using remote sensing data‖ presented in annual convention of ISRS, in

Nov 2000. Dr. Rohil has received commendation certificate for the article ―Digital Imaging in

Teaching Construction Process‖ presented in 6
th

 Annual Convention & Seminar on ―Education and

Training of Building Professionals‖, New Delhi; April 20-22, 2000 & published in the Journal of

Indian Buildings Congress; New Delhi; April 2000, 7:1, 47-53

