Incident Handling in IaaS Cloud Environment

using Digital Forensic Practices

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY
by

BKSP KUMAR RAJU ALLURI
ID. No. 2013PHXF0411H

Under the supervision of

Dr. G. Geethakumari

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
2018

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis titled Incident Handling in IaaS Cloud Environment
using Digital Forensic Practices and submitted by BKSP KUMAR RAJU ALLURI ID
No 2013PHXF0411H for award of Ph.D. of the Institute embodies the original work done

by him under my supervision.

Signature of the Supervisor
Name in capital letters DR. G. GEETHAKUMARI
Designation Asst Professor, Dept. of CSIS

Date:

Acknowledgements

Foremost, I would like to express my deepest thanks to my supervisor Dr. G.Geethakumari
for all her suggestions and constant support during this research. Her valuable guidance
and encouragement throughout the period were critical factors which contributed towards
completion of the work. Through her untiring efforts, she helped me to critically analyse
the problems in a systematic manner and consider innovative approaches to evolve practical

solutions.

I would like to thank MeitY, Govt. of India, for sponsoring my work. I would like to express
my gratitude to the PRSG Chairman Prof. PJ Narayanan, Director, IIIT Hyderabad, for his

valuable suggestions throughout the course of my Ph.D. and project work.

I would also like to thank Prof. R. Gururaj and Prof. Thatagata Ray, members of my doc-
toral advisory committee for their constant review and invaluable suggestions in steering
the work. I would also like to express my gratitude to other members of the faculty in the
Department of Computer Science and Information Systems Prof. Chittaranjan Hota, Prof.
Bhanu Murthy, Dr. Aruna Malapati, Mr. KCS Murti, for all their suggestions and encour-
agement during various presentations and whenever I interacted with them. I would also
like to thank each researcher in the department for all the wonderful time we shared during

our work.

Finally, my sincere acknowledgement of the sacrifices and support made by each member
of my family during this period. They were my pillars of strength, always understanding

and encouraging me. Without their support, this work would never have been completed.

BITS Pilani, Hyderabad Campus BKSP Kumar Raju Alluri
April, 2018

iii

Abstract

Cloud computing, as a computational paradigm, has enticed the information technology
community to facilitate various services with less operational and maintenance costs. How-
ever, the occurrence of various cloud incidents is affecting the trust of users on the cloud
environment. The scope of our work is to handle security incidents occurring at the In-
frastructure as a Service (IaaS) cloud systems. Incident handling in cloud is relatively new
and involves various technical, organizational and legal challenges. Traditional incident
handling approaches cannot be directly applied to the cloud environment due to its unique
aspects like multi-tenancy, physical inaccessibility, lack of transparency and rapid elasticity.
In this thesis, we handle cloud incidents using the stages of digital forensics as this would
increase the availability of evidences of the occurred incident which in turn would be the
key factor in effective incident handling.

We acquired various cloud specific evidences (VRAM, Service logs, Snapshots and
vDisk) at the IaaS user level and proposed the corresponding analysis approaches to han-
dle cloud incidents. Since the integrity and availability of the VRAM evidence acquired at
the virtual machine level is questionable, we proposed a trigger-based introspection model
to capture reliable and relevant VRAM events without compromising on its transparency.
Cloud systems introduce additional incident handling challenges with new evidences like
service logs. We identified the role of service logs for effective incident handling and pro-
posed a model which can allow the incident handler to analyze the service logs effectively.
Virtual Machine (VM) snapshots in the cloud are generally used for backup and restoration
purposes. We made use of these snapshots to handle cloud incidents by proposing a prove-
nance system. Finally, we came up with a methodology for correlating multiple evidences,
which can help the incident handler arrive at quick logical findings about the occurred cloud
incident. The proposed models for cloud incident handling are validated using an Openstack

cloud test bed.

Table of Contents

Certificate

Acknowledgements

Abstract

Table of Contents

1 Introduction

1.1

1.2

1.3

1.4
1.5

1.6
1.7

Incident Handling,
1.1.1 Whatisanincident?
1.1.2 Phases in the Incident Handling
Incident Handling in the Cloud Environment
1.2.1 Cloud Computing v it e e
1.2.2 Significance of Cloud Incident Handling
1.2.3 Why Cloud Incident Handling is more challenging ?
Using Digital Forensic Science Approaches for Handling Cloud Incidents .
1.3.1 Background on Digital Forensics
1.3.2 Using Digital Forensic approaches for Cloud Incident Handling

Challenges in using Digital Forensic Principles for Cloud Incident Handling
Contributions of the Thesis
1.5.1 Objectivesof theresearch
1.5.2 Scope and Assumptions
1.5.3 Thesis contributionso
Organization of the Thesis
Summary e

2 Background and Related Work

2.1
22
2.3

2.4

2.5

Incident Handling in Traditional Digital Environment
Cloud Incident Handling and its Research Challenges
Using Digital Forensic aspects for Effective Cloud Incident Handling
2.3.1 Digital Forensic Models
2.3.2 Cloud Incident Handling Challenges: A Forensic Perspective
2.3.3 Incident Handling in IaaS Cloud Environment using Digital Foren-
sicPractices o
Current Solutions and Open Issues for Cloud Incident Handling using Dig-
ital Forensic Practices
Summary

v

i o
=23 =t
=13 =13

[,
<

\O 00 OO0 O\ W W W N N DN =

10

11
11
12
14
16

17
17
18
20
20
21

3 Handling Cloud VM’s Volatile Traces by Improving their Availability 31
3.1 Introduction 31
3.2 Proposed Trigger based Introspection Model for Cloud Instance Incident
Handling 32
3.2.1 Drawbacks of existing hybrid introspection approaches 33
3.2.2 Proposed trigger based introspection model using logic analyzer . . 33
3.3 Rule and Graph based Approaches for Trigger Module 36
3.3.1 Rule based approach for introspection 36

3.3.2 Graph based approach for effective interpretation of introspection
EVENLS o i e e e e e e e e e e e e e 39
3.4 Root Cause Analysis through Complex Event Processing 40
34.1 ExistingworkonCEP 40

3.4.2 Proposed architecture for root cause analysis targeting effective in-
trospectionof VMs L Lo L Lo 40
3.5 Evaluationofour Work oo 42
3.5.1 Detecting the variation of known incidents 43
3.5.2 A scenario depicting root cause analysis 44
3,53 Meritsoftheapproach 47
3.6 ALTRA- Proposed Model to Address Lack of Transparency 48
3.6.1 Remote logcreationandsyncing 49
3.6.2 Automatic detection of suspicious events from the CFIlogs 50
3.7 Approaches for Finding Suspicious Events Performed by the Incident Handler 50
3.7.1 Identified challenges 50

3.7.2 Building a causality model from cloud forensic application logs to
identify forensically relevantevents 50
3.7.3 Comparison of SeMS annd CoPS 53
3.8 Automatic Identification of Suspicious Events: A Typical Scenario 53
3.8.1 Scenario description 53
3.8.2 Challenges to handle in the above scenario 55

3.8.3 Applying the proposed approaches to find suspicious events in CFI
logs e 55
3.8.4 Advantages of the proposedmodel 58
3.9 Summary 59

4 A Model for Effective Event Reconstruction using Cloud Service Logs 60

4.1 Background and Motivation oL Lo 60
4.1.1 Whatare servicelogs? 60
4.1.2 Effective event reconstruction of cloud service logs 62
4.2 Hypothesis Generation from Cloud Service Logs 64
4.3 SEASER: Proposed Model for Effective Event Reconstruction of Cloud
Service Logs L 65
4.4 Proposed Evidence/Event Segregation Approaches for Cloud Service Logs . 67

4.5

Proposed Evidence/Event Aggregation Approaches for Effective Event Re-

CONSIIUCHION . . .« . v v v vttt e it e et e e e 70

4.5.1 Scenario to show the role of aggregation for effective event recon-
SIIUCHION o o e e e e e e e e e e e e 71

4.5.2 Proposed algorithms for aggregating the events in cloud service logs
4.5.3 Resultsand Discussion
4.6 SUMMATY o i e e e e e e e e e e

Incident Handling using Cloud VM Snapshot Objects
5.1 Introduction L
5.2 Improving the Availability of the Cloud Virtual Machine Snapshots
5.2.1 Detecting the suspicious resource consumption of virtual machines
in the cloud environment Lo
5.2.2 Scenario testing: over-resource consumption of a VM in openstack
cloud
5.3 Proposed Model to Handle Data Gravity of Cloud VM Snapshots
5.3.1 Modulesof the SNAPS
5.3.2 Spatio-Temporal model for efficient storage of cloud VM snapshots
5.3.3 Resultsand Discussion

vi

73

90
91

5.4 Building a Provenance aware System for Analyzing the Cloud VM Snapshots 94

5.4.1 Proposed taxonomy for existing provenance systems for cloud and
non-cloud environments
5.4.2 Novelty of proposed SNAPS
5.4.3 SNAPS approach to build provenance
5.4.4 Resultsand Discussion Lo
5.4.5 Advantages of our provenance system
5.5 Applying the Proposed Provenance System for cloud incident handling . . .
5.5.1 Scenario-1: Giving a recommendation about digital forgery
5.5.2 Scenario-2: Identifying the backdoors created
5.5.3 Scenario-3: Identifying suspicious activities
5.5.4 Scenario-4: Detecting the obfuscated files
5.6 Incident Handling using Deleted Cloud VM Snapshot Objects
5.6.1 Can we recover a deleted object from cloud VM Snapshot ?
5.6.2 Experimental observations on openstack VM snapshots
5.6.3 Proposed approach to recover deleted objects using NLP techniques
5.6.4 Validation of the proposed approach using Openstack VM snapshots
57 Summary e e e

Handling Cloud VM incidents using Event Correlation

6.1 Background and Motivation
6.1.1 Event correlation across evidences from single CSP
6.1.2 Event correlation across multiple cloud providers
6.1.3 Novelty of our event correlation approach

6.2 Proposed Segregation Model for Cloud Event Correlation

6.3 Performing Homogeneous Correlation in the Incident Unknown Case
6.3.1 Importance of this scenario from forensic based incident handling .
6.3.2 Detailed scenario description and methodology employed

6.4 Performing Heterogeneous Correlation in the Incident Known Case
6.4.1 Proposed approach for heterogeneous event correlation in cloud . .
6.4.2 Resultsand Analysis

98
99

114
114
115
117
117
117

. 119

119
119

. 122

122

6.5 Heterogeneous Event Correlation when the Incident is not Known
6.5.1 Correlation of cloud VM artifacts-incident not known
6.5.2 Resultsand Analysis o L.

6.6 Summary

7 Conclusion and Future Scope
7.1 Summary of Contributions L.
7.2 Future Scopeofthe Work L.

7.3 Concluding Remarks
List of Publications
Bibliography
Appendix 1

Appendix 2

vii

132
132
133
133

135

138

152

154

List of Tables

2.1
2.2
2.3
24
2.5

3.1

32
33
34

4.1
4.2
4.3
4.4
4.5

4.6

5.1
5.2
5.3
54

6.1

6.2

Summary of Incident Handling Models
Summary of Digital Forensic Models
Summary of the existing forensictools
Summary of the existing cloud forensic solutions
Major unaddressed Issues in Cloud Incident Handling using Forensic Prin-

ciples . . . L

Benefits and drawbacks of various introspection models (Out-band, In-band,

Derivation) e
Notations used for introspection rule generation
Comparison between SeMS and CoPS for the application logs
Comparison between SeMSand CoPS

Statistics on Service log events of Openstack cloud
Number of events in the training and testingdata
Service logs created for each service of Openstack cloud
Number of alerts in major service logs of Openstack
Number of raw alerts and hyper alerts (LFy1) for major service logs of
Openstackcloud
Number of raw alerts and hyper alerts (L Fy5) for major service logs of

Openstackcloud

Time for building the provenance chains
Response time for sample queries
Precision and Recall of the proposed provenance system

Before and after applying filters

Time taken for transferring evidences from the cloud to incident handler’s
(IH) environment e e e e e

List of possible symptoms for rootkit identification

viii

6.3
6.4
6.5
6.6

iX

An ideal codebook forrootkito oo 125
Codebook after incident(rootkit) 125
Supported formats for Disk analysis (do not support cloud vDisk analysis) . 128

Role of cloud service logs in incident handling 130

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1

22

3.1
3.2
33
34
3.5

3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15
3.16

Domain Specific Incident Handling [7-10]
Cloud Service and Deployment Models
Digital Forensic Framework [28]
Using Digital Forensic (DF) Techniques for Cloud Incident Handling (CIH)
Objectives of the Research

Integrated model of our contributions

Taxonomy of Security Incident Management and Incident Handling (Com-
piled from [42][43])
Cloud Incident Handling Challenges

A trigger based introspection processincloudo
Shell code injection in Linux based virtualization environment
Proposed architecture for root cause identification using CEP
(a) CR3 events (b) User and Kernel Process Structure details
(a) Identifying suspicious processes (b) Identifying kernel based malware

PIOCESSES . . v v v v e e e e e e e e e e e e
Introspecting the system calls for OpenStack VM
Identified fake binary patho o L.
Alert generationusingCEP oL
(a) Enumerating the target process details (b) Populating the DTB value . .
Root cause identification for fake binaries
Proposed model to improve the transparency between the incident handler

andthe CSP L
Experiments conducted to decide the k value for different data sets
Events in the CFI log after pre-processing
Frequent top-k sequences identified using SeMS
DAG constructed from the healthy causalities of CFllog
Suspicious sequences identified by SeMSo oL

O o0 W W

3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12
5.13

xi

Suspicious sequences identifiedby CoPS, 58
A sample service log event in the Openstack cloud 61
Identified service log events with forensic relevance to incident handling . . 61
Proposed model for cloud event reconstruction 66
Segregating the service log events for each instance 68
Identified demo user events using session based segregation 68
New events in the Nova are predicted with class labels (AorE) 70

Naive Bayes and SVM: Classification accuracy of various openstack services 70
Decision Tress and Random Forest: Classification accuracy of various open-

stack services L. 71
Ceilometer-agent-compute.log of Openstack cloud: Generating multiple sim-
tlarevents L. 72

Nova-network.log of Openstack cloud: A single event generating multiple

similaralertso 73
Output clusters (hyper alerts) after applying Algorithm 4- LFyy 77
Output clusters (hyper alerts) after applying Algorithm 5- LFyo 78
Time consumed by LFy4 and LFy - for aggregation 80
Oultliers identified by log clustering tool (SLCT) 80
Outlier detection by the proposed aggregation algorithms 81
Deciding the minsup value for detecting the outliers effectively 81
CPU utilization of the target VM 87
Read-write cycles calculated for the target VM 87
No. of non-target VM error events in the servicelogs 88
No. of target VM error events increased drastically in service logs 88
Log events showing multiple login failures &9
Organization of iIRSM and iISTSM Modules 91
Snapshot regeneration time for all the three approaches 92
Space consumed by the VM snapshots for all the three approaches 93
Data loss incurred during snapshot transfer for all the three approaches . . . 93
The proposed high level taxonomy for the existing provenance systems . . . 94

Building the provenance system from multiple snapshots acquired from the
cloud 96
Protocol followed by the incident handler after acquiring the snapshots . . . 97

Recommendation about whether a queried object is copiedornot 99

Xii

5.14 A visual representation of the queried object copy history 100
5.15 Backdoor is detected from the acquired VM snapshots of Openstack cloud . 102

5.16 Change in access control policy was detected on the system files of the

target VM . . . L L e 102
5.17 Recommendations about the obfuscated objects in multiple snapshots . . . 104
5.18 Statusof adeletedobject 106
5.19 Identifying the mapping strategy followed by Openstack cloud VM snapshot 107
5.20 Showing the deleted and reallocated objects in cloud VM snapshot 107
5.21 Direct blocks associated with the inode number 107
5.22 Reallocated object with newly allocated direct blocks 108
5.23 Memory window of cloud VM snapshot showing allocated and unallcoated

dataunits 111
5.24 Unallocated data unit based logical grouping for text and PDF files 112
5.25 Unallocated data unit based logical grouping for doc files 112
6.1 High level taxonomy for event correlation applications 115
6.2 Proposed model for event correlation in cloud environment 118

6.3 Using MongoDB service log to extract metadata associated with each instance 120
6.4 Applying normalization phase to the cloud logs in different formats 121
6.5 Prioritized host IPs used for accessing the target cloud instance 121

6.6 Features representing the kernel buffer messages for baseline and affected

system (here, Dmesg indicates events in kernel message buffers) 124
6.7 Checking for event bursts in target suspicious VM 126
6.8 Observed traces of the anomaly in cloud servicelogs 127
6.9 Timeline showing the description of VRAMevents 128
6.10 Timeline showing the description of Service logsevents 129
6.11 Timeline showing the description of vDiskevents 129
A.1 Openstack cloud test bed setupinourlab 154

A.2 Conceptual model for the developed CFItool 156

Chapter 1
Introduction

We do not need a hard disk in the computer if we can get to the server faster and carrying

around these non-connected computers is byzantine by comparison.
-Steve Jobs

Incident Handling is an integral part of security incident management of an organiza-
tion. It starts with preparing the target environment to reduce the risks of the incident and
ends with eradicating similar incidents in future [1]. The technological advancements in the
information technology changed the directions in the way data is stored, processed and an-
alyzed. This benefits the end user to receive highly valued services with less cost, less time
and with more accuracy. On the other side, this opens up opportunities to the adversaries to
intrude the network and compromise the target system(s) in the organization’s environment.

Over the last few years, security threats have increased drastically in terms of numbers,
level of sophistication and disruption. Some reported incidents include: in the year 2016,
Yahoo announced that 500 million user accounts were hacked and their data was available
for sale in the dark web [2]. A hacker group from Russia compromised the Oracle MICROS
point of sale systems which is among the top three gateways globally [3]. In 2014, eBay
was affected by a data breach in which more than 230 million users sensitive data was stolen
[4]. Alone in 2014, Computer Emergency Response Team (CERT) of Malaysia received
complaints about more than 4000 incidents [5].

Risk assessment strategies do exist to reduce the effect of the occurred incident. Since
new incidents are being reported frequently, it is not possible to completely prevent them.
Incident handling capabilities are therefore required to identify and analyze all the threat
aspects and reduce its impact on the organizational assets and services. Incidents differ
based upon the type and the targeted domain. Generalizing, the adversary can perform
incidents like unauthorized access, inappropriate usage, malicious code injection, resource

exploitation and multi-component threat strategies.

Handling the incidents in a timely fashion would benefit the organization in terms of
identifying relevant incident response strategy, quickly recovering from the incident and

improving the existing security policies.

1.1 Incident Handling

1.1.1 Whatis an incident ?

There are several definitions for ”Incident” and it varies from one organization to the other.
Generalizing all of them, SANS (System Administration, Networking and Security Insti-
tute) gave a definition for incident as, an adverse event in an information system which is an
attempt to harm the system. According to CERT (Computer Emergency Response Team)
guidelines, the organization can conform the occurrence of an incident if atleast one of the

following with respect to the violation of the security policies happens:

An attempt to obtain unauthorized access

Modifications without the actual owner instruction or knowledge

Denial of resources

Unauthorized use

1.1.2 Phases in the Incident Handling

Effective incident handling can mitigate the occurred incident and can aim to stop similar

incidents in the future. Incident Handling consists of four stages:

1. Preparation: The effect of the incident could be minimized by (i) establishing check-
lists for incident handling, (ii) notification process for the incident, and (iii) activating

risk assessment approaches for identifying incident response strategies.

2. Detection and Analysis: Each and every incident cannot be prevented using the prepa-
ration phase. The detection phase starts immediately after a suspicious activity has
been reported by the people or by any tool. The analysis is performed to conform the
claims made during the detection phase. Additionally, this also identifies the impact

of the incident on the organization’s assets and services.

3. Incident Response (Containment, Eradication, and Recovery): The initial step over
here is to reduce the extent of incident spread in the target environment. The attack
vector is closed to eradicate the same or similar incidents. Finally, the affected system

1s rolled back to its latest safe state.

4. Post Incident: In this, postmortem analysis is conducted to understand the necessity
of changing/updating the existing security policies. Thus, the chances of the intruder

attacking the target system can be reduced.

Incident Handling approaches for various emerging domains like, Mobile Computing,
Cloud Computing and IoT is being explored in the literature [7-10][14]. We classify the
incident handling strategies according to the domains i.e. Traditional and Emerging (Figure
1.1). In this thesis, we focus on addressing the cloud incident handling issues due to its
unique challenges in terms of multi-tenancy, lack of control and rapid elasticity. Also, the
fact that other emerging technologies like, Mobile Computing and IoT directly or indirectly
use cloud services. This motivated us to take up Cloud Incident Handling as our problem
statement.

 Memory organization

/- Netwark Characteristics

Mobile Computing [— Evidence Preservation

\ Preventing N/W communication

o Ok P

Evidence Availability

, Multi-tenancy

ing
Traditional pmel® Cloud Computing "?\,_ Rapid Elasticity

\ Lack of Transparency

ITradItionaI digital Environment Domain Specific Incident Handling

" Legal Issues

T - Security Policies

/
- Threat Analysis

Grid Computing 1
\ Vulnerability Model
S,
Grid Workflow Analysis

@Eb'
)
o A Proprietary Data Formats

Y Drabacal

<|Ir|ternet of Things Ii\

\ Physical Interfaces

Provenance system

Figure 1.1: Domain Specific Incident Handling [7-10]

1.2 Incident Handling in the Cloud Environment

1.2.1 Cloud Computing

Technically the cloud paradigm evolved from grid computing. Several computers work
parallely in the grid to solve an individual problem whereas in cloud, the Cloud Service
Provider (CSP) delivers the end user with a unified service by leveraging multiple comput-
ing resources. Multiple definitions of cloud computing have been introduced in the litera-
ture [11][12] and the most widely accepted definition is given by the National Institute of
Standards and Technology (NIST) [13].

Definition

Cloud computing is a model for enabling ubiquitous, convenient, on demand network ac-

cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction. [11]

The cloud model is composed of five essential characteristics:

1.

On-Demand self service: The capabilities like, processing power, storage, and net-

work usage can be unilaterally provisioned without human intervention.

Broad network access: All the computing capabilities can be consumed by the user

via a network through heterogeneous thin or thick clients.

. Resource pooling: The multi-tenant model of cloud can facilitate many cloud con-

sumers to use its virtually available infinite computing resources through dynamic

provisioning.

Rapid elasticity: The resources can highly scale outward and inward to satisfy the
dynamic demands of the cloud consumers in terms of storage and computational ca-

pabilities.

. Measured service: The metering capability can monitor, control and measure the

cloud resources consumed by the user.

Cloud Service Models and Deployment Models

The cloud environment in general is referred to as XaaS (Anything as a Service) provider.

The major service models encompassed in cloud include [12]:

» Software as a Service (SaaS): The applications at the cloud provider can be utilized

by the cloud user without much concern about the maintenance overheads. The data,
runtime environment, middleware, operating system, virtualization, servers, storage,
networking, and individual application capabilities are controlled and managed by
the cloud service provider (CSP). Examples include Concur, Google Apps, Citrix
GoToMeeting, Workday, Cisco WebEx, and Salesforce.

Platform as a service (PaaS): The consumer can create applications using the libraries,
languages and tools supported by the CSP or can deploy the developed applications.
The consumers of this service can have a control on the deployed application and
data. The rest of the layers is managed by the CSP. Examples include Windows
Azure, AWS Elastic Beanstalk, Google App Engine, and Heroku.

Infrastructure as a service (IaaS): The resources like, processing, network, and storage

can be provisioned by the consumer to install and run arbitrary softwares. The CSP

manages the cloud virtualization, servers, storage, and networking. The consumer
can control the applications, data, runtime environment, middleware and operating
system. Examples include Amazon Web Services (AWS), Microsoft Azure, Open-
stack, Cisco Metapod, Google Compute Engine (GCE) and Joyent.

The level of access varies based on the service model (Figure 1.2). Each service model
can be configured with any one of the following deployment models [12]:

* Private cloud: It is generally provisioned and maintained by a single or group of
organizations. Multiple business units of the organization can exclusively use the

cloud infrastructure.

* Community cloud: Consumers with shared requirements in terms of security, policy
and compliance prefer to use the community cloud. The cloud can be owned and

managed by one or multiple organizations, a third party or some combination of them.

* Public cloud: The cloud is owned and maintained by a single or group of entities
(academics, business or government). The cloud infrastructure is open to general

public and capable enough to exhibit high rapid elasticity.

* Hybrid cloud: More than one cloud infrastructure is used to form hybrid cloud and
accordingly it preserves the proprietary technology to achieve data and application
portability.

|

Cloud Models

g Z y . “~_h Applications
- <\ S \ PaaS- Managed
d SaaS [laaS) Paa y by users
\ A i Data
A . 2 laas

o Private o Hybrid e Public g by users Runtime
+ Less Maintenance| p + Quick Deployment Middleware
w= Lack of Trust - m— Security - o
\ Operating System SaaS- Managed
+ Cost Efﬁciency‘ - + Almost Unlimited by CSP
=rLack of Support‘ /== DownTime Virtualization PEESLM:::EEd
Yy
|
+ Quick Access ‘ L +Backup & Recovery
laas-Managed SENES
On Demand « Resource by Csp
Self Service Pooling Storage
Broad Netwt Rapid
Access . Elasticity Networking

Figure 1.2: Cloud Service and Deployment Models

1.2.2 Significance of Cloud Incident Handling

Cloud computing is one of the most profound developments in the field of information tech-

nology. With the advent of this technology, the computational cost, software integration,

information access, and scaling of services were made easier and faster. A cloud service
pools the resources and provides them across multiple tenants, delivers the resources with-
out human intervention, monitors and measures the consumers resource usage accurately
[1]. Moreover, it is accessible from heterogeneous thin or thick clients.

Market research media predicted an annual growth rate of 30 % for cloud computing and
that this technology is expected to produce $270 billion by 2020. According to RightScale’s
cloud statistics of early 2016, almost 95 % of companies/respondents are using the cloud
services for their business operations [15]. Moreover, the popular analyst firm Forrester
estimated that for the year 2017, $463 billion will be spent on softwares among which $119
billion is solely spent in the domain of cloud computing [23].

On the contrary, cloud services are constantly being compromised by the intruders and
the recent cloud attacks prove the same. A few examples of reported cloud incidents are:
Amazon cloud was affected with a botnet in 2009 [17]. In 2013, hackers used the dropbox
platform to perform advanced persistent threats (APTs) [18]. In October 2015, students
at Worcester Polytechnic Institute hacked an instance in AWS which led to a data breach
[19]. In 2016, Amazon was hit by Denial of Service and it was achieved by compromising
the Domain Name System [20]. According to a survey conducted by [16], 56 % of cloud
incidents are non-transparent. Similar attacks may continue in the future as well if the
underlying isolation and cache management policies are not improved at both the hardware
and software levels.

From the above, it is evident that the cloud services are not always secured. In reality,
not every incident can be prevented. The incident handling in the cloud environment should
be performed at the tenant level in a timely fashion such that the target cloud user’s trust
on the cloud environment should be improved. It is important note that, cloud incidents can
happen at the cloud level and cloud tenant level and in this thesis, we focus on handling the

cloud incidents at the IaaS tenant level.

1.2.3 Why Cloud Incident Handling is more challenging ?

In a traditional environment, the Incident Handler can reach the physical location for de-
tecting, analyzing and eradicating similar incidents in the future. On the contrary, most
of these activities are not directly applicable for Cloud Incident Handling (CIH) due to its
distributed and rapid elasticity properties. This introduces many new challenges for cloud
incident handling [21][22]. They are:

* Evidence Availability: During Cloud Incident Handling, the availability of the evi-
dences is not always ensured as it is reactive in nature. Without the evidence, it is
highly impossible to arrive at accurate logical findings about the occurred incident.

This in turn would lead to inefficient containment and eradication strategies.

* Multi-tenancy: As the cloud systems facilitate the services to multiple tenants from

the same infrastructure, it would be difficult to identify the events specific to the target

user. The evidence heterogeneity in the cloud would further complicate the incident
handling.

* Admissibility of the evidence: The evidence collected should be legally admissible
in the court of law. To achieve this, the evidence should be complete and its integrity
should not be violated. This may not be always ensured due to the high dynamic

nature of the cloud environment.

The other reasons to conclude that cloud incident handling is difficult are briefed below
[21][24]:

 Service Logs which act as one of the major cloud evidences do not have unified format

and this introduces difficulties in acquiring and analyzing them.

* Deleted data is a good source of evidence for Cloud Incident Handing. It is difficult to
recover the deleted data from the cloud environment due to its dynamic resource allo-
cation and reallocation feature. Additionally, attributing the deleted data to a specific

user is still a challenge.

* Selective data acquisition is difficult as the Cloud Incident Handler may not know the

complete details of the occurred incident.

* Cloud confiscation and resource seizure may affect the business continuity of the

cloud.

* Cloud incident handling is highly challenging especially when the source of attack

instance is terminated.

* Due to the rapid elasticity property of cloud, it is laborious to find the traces of an
incident, especially when the process of Incident Handling is not initiated in a timely

manner.

* In general, the size of the cloud evidences starts from gigabytes and so, locating the

suspicious events related to the incident requires more time and human effort.

* Incident Handling on a live system may alter the state of the existing evidences and
in effect, it makes the target entity to arrive at inaccurate logical findings about the

occurred incident.

Deduction: We address the afore mentioned challenges of cloud incident handling using
digital forensic science practices. In this thesis, the term Incident Handling/Handler refers
to address various forensic challenges associated with the occurred cloud incident at IaaS

VM or user level.

1.3 Using Digital Forensic Science Approaches for Han-
dling Cloud Incidents

We use the Digital Forensic (DF) aspects to address the challenges of cloud incident han-
dling. Also, using DF practices for CIH would increase the evidence availability for the

incident handler.

1.3.1 Background on Digital Forensics

With the growing number of devices and threats, conducting forensic investigation gained
the attention of security professionals as well as incident responders. The process to conduct
digital forensic investigation was initially devised by FBI (Federal Bureau of Investigation)
and other law enforcement agencies in early 1984. Later, many digital forensic models were
developed from which an appropriate model could be chosen based on the investigator's
requirement [25][26].

Definition

Digital Forensics can be defined as, the use of scientifically derived and proven meth-
ods toward the preservation, collection, validation, identification, analysis, interpretation,
documentation, and presentation of digital evidence derived from digital sources for the
purpose of facilitation or furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disruptive to planned operations
[27].

The common phases followed for performing forensic investigation in the digital envi-

ronment are shown in the Figure 1.3 [28].

X e Locating the
Collection .. Data
Examination .
e Data extraction

e Using various

Forensic tools

e Relevant
Sources e Alternative
e Chain of explanations
Custody e Audience
e Volatility e Correlation of considerations
multiple data e Actionable
sources information
e Event
Reconstruction
e Verify evidence Analysis) Reporting
integrity

Figure 1.3: Digital Forensic Framework [28]

* Collection: The most relevant data sources pertaining to the incident should be iden-
tified and preserved without violating its integrity. Moreover, chain of custody should

be followed to ensure legal admissibility of the acquired evidences.

* Examination: From each acquired data source, files/events/processes of interest are
identified. This involves various activities like, using file viewers, uncompressing
files, displaying directory structure, identifying known files and accessing file meta-
data.

* Analysis: Logical findings are drawn from the collected evidence. The data from
multiple sources are correlated for quick interpretation. The integrity of the evidences

should be verified at the end of the analysis phase.

* Reporting: The results from the above phases are presented in the form of a document.
It also includes actionable information using which the investigator can acquire new
evidences. Preparation of the report should be done keeping in mind the objective of
the investigation and the purpose for which the analysis results are generated.

1.3.2 Using Digital Forensic approaches for Cloud Incident Handling

Existing works on cloud incident handling do not focus on evidence collection and analysis
due to which several questions remain unanswered like: how the incident occurred ?, from
where it originated ?, and what data was accessed/tampered with?.

There are a few research papers which discussed the integration of digital forensic as-
pects for improving traditional incident response capabilities [28][29][30]. Taking these as
base, we suggest that the aspects of digital forensics can be used for handling cloud incident
challenges. In CIH, evidence availability and its admissibility cannot always be ensured.
So when the digital forensic aspects are used for cloud incident handling then the chances
of evidence availability would increase due to the forensic readiness aspect in the digital
investigation domain. The same is pictorially shown in the Figure 1.4. The forensic aspects

which are used for cloud incident handling are discussed as below:

Level
Forensic 0 | Level 1 Forensic

Readiness i Analysis

e =8

. 5 Detection Accurate
Increases Preparation ! " R
Evidence and Analysis logical

Availability conclusions
Using DF for
CIH
Effective Eradica.tion
Adaptive Post- Incident ?f S‘Imllal’
Learning Incident i ResPonse\ incidents
P i Evidence
fesemtation Level 3 Level 2 Handling

Figure 1.4: Using Digital Forensic (DF) Techniques for Cloud Incident Handling (CIH)

10

* Level O (Preparation phase of CIH uses Forensic Readiness aspect): Taking the foren-
sic readiness perspective of digital forensics and applying that to the cloud incident
handling would maximize the chances of evidence availability and helps the incident

handler to improve the risk management strategies.

* Level 1 (Detection and Analysis of CIH uses Forensic Analysis practices): Immedi-
ately after the incident is detected, the incident handler will start through the selective
evidence acquisition process such that its integrity is ensured. The forensic based in-
cident analysis on the collected evidences is started so as to evaluate the impact of the

occurred incident.

* Level 2 (Incident response of CIH considers Evidence Handling aspects): The as-
sets and services of an organization that are affected with the incident are recovered.

Inclusion of the evidence handling aspects makes the incident response effective.

* Level 3 (Post incident activity of CIH includes presentation phase of DF domain):
The findings from the above three hybrid phases are included in the form of a report
and presented to the court of law. The incident handler would go through the adaptive
learning process based on the logical findings made from the previous incidents. This
would finally improve the existing security policies of the target organization.

In this thesis, we address the challenges in Level 0 and Level 1. The reason is, address-
ing the technical aspects of these two levels would automatically help the incident handler to
reduce the difficulties in Level 2 and Level 3. It is important to note that, we use forensic as-
pects for cloud incident handling to mainly increase the evidence availability. This can even
be achieved by other proactive solutions. We only chose forensic aspects for performing

incident handling because of its legal admissibility.

1.4 Challenges in using Digital Forensic Principles for Cloud

Incident Handling

We identified that, applying digital forensic practices for cloud incident handling involves a
lot of challenges. We organized them into three categories:

* Architecture (Diversity, Complexity, Data segregation, Multi-tenancy, etc.) [31][32][33]:
This should deal with the variability in cloud architectures, building and maintaining
provenance systems such that the chain of custody is preserved, compartmentalization
of the on-demand resources, seizure of the cloud evidences without disrupting other
tenants, etc. The approaches to handle each of these needs to be designed ensuring

admissibility of the evidence.

11

* Analysis (Reconstruction, Anti-Forensics, Logs, Timelines, Correlation, Metadata,
etc.) [34][35][36]: We need to design correlation approaches for analyzing the data or
events of multiple artifacts of the same or different tenant(s). Handling anti-forensic
techniques (countermeasures employed by the intruder to divert the forensic inves-
tigator) in cloud, reconstructing the events/data of the acquired artefact, analyzing
cloud specific evidences like, service logs and snapshots, handling the issue of time
synchronization especially when VM resources are spread across multiple locations

are the issues which need to be considered for effective evidence analysis.

» Legal (Service level agreements, Subpoenas, Jurisdictions, Privacy ethics, etc.) [37][38]:
There are various legal issues to conduct cloud forensic based incident handling. A
few of them are, lack of international cooperation, missing terms in Service Level
Agreements (SLAs) and lack of cooperation among the cloud providers. Also, with-
out the proper knowledge of location of the physical resources, it is difficult to issue

subpoenas.

Among the above, we focus on the major challenges in Analysis and Architectural cate-
gories. The multi-jurisdiction issues for cloud incident handling through forensics is not in
the scope of our work.

1.5 Contributions of the Thesis

1.5.1 Objectives of the research

* Handling volatile evidences in cloud VM instances with trigger based introspection

approaches

* Devising event reconstruction and provenance approaches for various [aaS VM arti-

facts for handling cloud incidents

* Designing event correlation approaches for various cloud artifacts

1.5.2 Scope and Assumptions

* Our emphasis is on solving major analysis and architectural challenges of forensic

based incident handling at the [aaS tenant level.

* We test and validate the proposed cloud incident handling approaches using private
[aaS cloud test bed.

* The cross border legal issues which might emerge during the forensic based incident

handling are out of scope for this work.

12

* We assume that the Incident Handler (IH) gets the forensic support from various cloud
actors like the Cloud Service Provider (CSP).

* We also assume that the target cloud environment is enabled with the Cloud Forensic
Readiness (CFR) model(s).

1.5.3 Thesis contributions

The focus of this thesis is on addressing the major challenges in Data Analysis category by

considering Architectural issues for handling the incidents at the IaaS user level.

1. Handling the volatile evidences: The thumb rule in forensic based incident handling
is that the evidence acquisition should start from volatile artifacts. In reality, when we
image the target virtual machine memory from the user level, it may undergo many
changes which in turn can lead to inaccurate logical findings. The incident handler
should perform live forensics without altering the evidences in the VRAM (virtual
RAM) of the virtual machine which is possible through a technique called as Virtual
Machine Introspection (VMI). VMI monitors the state of the virtual machine from the
hypervisor level [39]. The CSP may not allow the incident handler to perform VMI on
the target virtual machine as it requires hypervisor access. We handle this by propos-
ing a model named ALTRA (Addressing Lack of Transparency) which addresses the
issue of lack of transparency between the incident handler and the CSP.

The incident handler can perform VMI to acquire memory events of the target virtual
machine. It is important to note that, VMI is not a new technique to capture memory
events and can have many delivery models to achieve the same [41]. We propose
a trigger based introspection model for efficient capture of the target VM memory
events. Finally, we propose improvisations for interpretation of the introspected data.

2. Devising approaches for event reconstruction and provenance: The evidences identi-
fied are segregated and transferred to the incident handler's environment for analysis.
The incident handler selects the analysis technique based on the artifact and the in-
cident type. In this work, we propose event reconstruction and provenance based

analysis techniques and applied on cloud service logs and VM snapshots respectively.

* Cloud Service logs: The cloud is managed by many inter-operable services. For
each service there is an associated log created at the cloud node(s). We propose
a model called SEASER (Applying Segregation, Aggregation on Cloud Service
logs) using which one can arrive at effective hypothesis without violating the
privacy of other users. The model addresses three major issues of service log

analysis i.e.

— Service logs contain events of multiple users and we propose approaches to

automatically identify the events pertaining to the target user/instance.

13

— All the service log events may not be of interest to the incident handler.
We apply various supervised machine learning algorithms to automatically

identify the events of interest to the incident handler.

— In general, every service log contains millions of events and it is extremely
time consuming to analyze all of those events. We address this problem
through aggregation. We propose two new aggregation algorithms namely
Leader-Follower Version 1 (LF);) and version 2 (LF};»).

* Virtual machine Snapshots: Snapshots are the richest source of evidence for the
forensic based incident handling. We address the major challenges involved in

snapshot acquisition and analysis.

— Inreality, snapshots for a VM may not always exist. To increase their avail-
ability, we suggest the use of Cloud Forensic Readiness (CFR) models in
which the snapshots are collected before the actual incident.

— The captured snapshots have to be transferred to the isolated incident han-
dler’s environment via network and it may lead to the problem of data grav-
ity (i.e. network and analysis overhead involved in cloud incident handling
is referred as data gravity) [40]. We resolve this problem by designing a
framework named SNAPS (Snapshots based Provenance System) which is
derived from the existing spatio-temporal models and is then customized to
suit the requirements of Cloud Incident Handling (CIH).

— The acquired snapshots need to be analyzed and the proposed framework
SNAPS achieve the same using provenance. Also, SNAPS can be used
to address various forensic based incident handling challenges and we il-
lustrate the same using VM snapshots acquired from the Openstack Cloud
Environment.

— On the other hand, using deleted objects for incident handling may give
clues about the occurred incident. Retrieving them in the cloud environ-
ment is challenging and we address this using Natural Language Processing
(NLP) techniques.

3. Performing Event Correlation: The term event correlation indicates or exposes the
relation between two or more events. It can be used to gain higher level of knowledge
from a huge number of events, to identify the faults and filter out the redundant,
irrelevant and spurious messages, and make predictions about the future trends [41].
In comparison with the existing work on event correlation, our proposed correlation

approach differs in the following aspects:

» The first and obvious difference is, our event correlation approach is specific
to the cloud environment and uses cloud specific artifacts like service logs for

incident handling.

14

* We correlate events effectively from all the major evidences available in the
target VM and the specific artifact to be investigated vary depending on the case

under consideration.

* Most of the existing correlation approaches deal with identifying the relations
among the events present in the same artifact. We extend the correlation capabil-
ities to identify the associations among the events present in multiple artifacts.
We also discuss the correlation approaches in both incident - known and un-

known cases.

The proposed approaches for handling cloud incidents would address many other cloud
architectural and analysis challenges. The same is shown in Figure 1.5.

Incident Handling in 1aa$S Cloud
using Digital Forensic Practices

|

Architectural & Data
Analysis

Handling Volatile Event Reconstruction
Evidences & Provenance

Imaging and Log Format Lack of Limited Knowledge
Locating Evidence Isolating Data Unification Use of Metadata e e Live Forensics on Cloud Logs
v

Detection of Potential Evidence Deletion in the Ry e B D Evidence Integrity Hypothesis Data available for
Malicious Act Segregation Cloud Preservation Generation limited time

Figure 1.5: Objectives of the Research

1.6 Organization of the Thesis

The thesis comprises seven chapters and the outline of each is described below.

* Chapter 2 discusses various incident handling and digital forensic models and their
current research thrust areas. We discuss the challenges, current solutions and open

issues of using digital forensic science practices for cloud incident handling.

* In chapter 3, first we describe the proposed hybrid introspection approach which can
handle volatile evidences of the target instance. The hybrid approach is proposed by
taking the analogy of logic analyzer. To identify the root cause of the incident from
the captured introspection events, we use Complex Event Processing (CEP). We add a
new module to the introspection flow process and this populates the events of forensic
relevance which can help the incident handler reduce the time spent on analyzing the

volatile evidences.

The second part deals with the proposed model which can address the lack of trans-

parency between the incident handler and Cloud Service Provider (CSP). We discuss

15

the proposed approaches - SeMS (Sequence Mining on user Sequences) and CoPS
(Conditional Probability on user Sequences) to detect suspicious events from the tar-
get application logs. Finally, we validate both the approaches using a typical inves-

tigative scenario.

* Chapter 4 describes the identified role of cloud service logs during incident handling.
We then discuss various approaches for segregating the target user events from other
users. We detect the events of incident handler relevance using various supervised
machine learning algorithms. We discuss the proposed aggregation approaches for
service log analysis and we validate them using Openstack cloud logs. Finally, we

discuss the identified application of the proposed approaches.

* Chapter 5 discusses the proposed approach to increase the availability of the virtual
machine snapshots to the incident handler. Further, we handle the issue of data grav-
ity using spatio-temporal models. We discuss the proposed provenance system for
snapshot analysis. Finally, we recover the deleted objects from the VM snapshots
using NLP techniques.

* Chapter 6 presents a framework for performing cloud event correlation. Event Corre-
lation can be homogeneous (same artifact is used) or heterogeneous (different artifacts
are used) and each of these can occur with the incident-known and incident- unknown
cases. Based on this, we derived four cases. In this work we address the follow-
ing three cases: Homogeneous-incident unknown based correlation, Heterogeneous-
incident known based correlation and Heterogeneous-incident unknown based corre-

lation.

* Chapter 7 summarizes the entire work with a discussion on the future scope.

An integrated model of our contributions is shown in Figure 1.6.

Evidence Order Evidence Handling
Acquisition | of Volatility | Analysis Incidents

Event
Reconstruction

Trigger based
VMI

X

Cloud Incident
Handling
Building Using
Provenance |Digital Forensic
Practices

Segregation
Challenges

Improving
Transparency

X

Event
Correlation

<

~_

Figure 1.6: Integrated model of our contributions

16

1.7 Summary

The way data is stored and processed has changed with the advent of cloud computing. It
facilitates virtually infinite computing resources using which an intruder can compromise
the resources of other tenants/users. Evidence availability plays a significant role in effective
incident handling. Using digital forensic science principles for handling cloud incidents
ensures evidence availability. Performing forensic investigation in the cloud environment
involves various Architectural, Analysis and Legal challenges. In this work, we address the
major issues in the Architectural and Analysis categories.

In this chapter we introduced the challenges of cloud incident handling and gave an
insight into the cloud incident handling using digital forensic practices. In the next chapter,
we discuss various incident handling and digital forensic models and highlight the open

research issues for cloud incident handling even after using digital forensic practices.

17

Chapter 2

Background and Related Work

”Going Forward, It’s a mobile first, cloud-first world”
-Microsoft

As discussed in chapter 1, Cloud Incident Handling using the forensic aspects helps in
better containment, eradication and recovery of the incident. In this chapter, we discuss
the capabilities of Incident Management and Incident Handling in the traditional digital
environment. We then describe the challenges and existing solutions involved in laaS based
cloud incident handling. Finally, we discuss the open forensic problems for the same.

2.1 Incident Handling in Traditional Digital Environment

Incident Management comprises many activities like, handling vulnerabilities, conducting
training programs to increase security awareness, managing events and generating alerts
[45]. The taxonomy for security incident management is shown in Figure 2.1. Incident
Handling (IH) falls under the category of security incident management.

Incident Handling can be performed in multiple ways based on various guidelines and
standards given by the most popular security agencies/organizations (Table 2.1) and the
same are briefed below:

* Computer Emergency Response Team/Coordination Centre (CERT/CC): Detailed guide-
lines to handle security incidents are discussed by [44]. It contains various phases
namely, incident alert/report, triage, incident response, analysis. All these phases

include 14 sub-phases for incident handling.

* National Institute of Standards and Technology (NIST) is a renowned standards labo-
ratory and it suggested a four phase Incident Handling process which includes prepa-

ration, detection and analysis, incident response and post incident activity [43]. The

18

Vulnerability
Handling
Event Artefact
Managment Incident Handling
—————— | | ——

Management

Incident Handling A - Alerting

e INcident Handling

Detection and Incident
Preparation Analysis _ _ Response Post-Incident

sa101|0d
Anoas
uiurel] ye1s
JUBWISSISSY
Anoas
uonoaleQ
|enue|y 1o [00]
AupijeA spoday
sjossy
uo yoedw|
sypedw|
21e3MN
SJUBPIOU| PIOAY
asuodsay
EINGETTE|
sjealyy
MaN Ayiausp|
uo019910.1d
anosdwi|
HI @noadwi)

Figure 2.1: Taxonomy of Security Incident Management and Incident Handling (Compiled
from [42][43])

second and third phases are conducted iteratively for better containment and eradica-

tion of the occurred incident.

* International Organization for Standardization (ISO): This suggested five phases
for Incident Handling which comprises planning and preparation, detection and re-
porting, assessment and decision making, response and lessons learned [47]. These
phases can also be used for managing the vulnerabilities and security events.

» European Network and Information Security Agency (ENISA) : This is a European
agency which guides the organizations to meet the network security and informa-
tion requirements [46]. It suggested a six phase process for incident handling which
includes phases namely, incident report, registering the report, triage, incident resolu-

tion, incident closure, and post analysis.

In this thesis, we follow the process suggested by NIST and apply it for cloud incident
handling. It is important to note that, incident handling models which we find today have
close similarity with the NIST incident handling guidelines [49][50].

2.2 Cloud Incident Handling and its Research Challenges

Governments of many countries have started focusing on cloud incident handling as they
realize about the dangers of intruder actions [52]. Till now, Cloud Incident Handling is
not fully understood and explored due to its inherent characteristics like distributed, rapid

19

Table 2.1: Summary of Incident Handling Models

Incident Handling Standards and Guidelines
CERT/CC [44] BIP 0107:2008 [42] ENISA [46]
Reporting and detection Incident detection and | Incident report registration
recording
Triage Classification and initial | Triage
support
Analysis Investigation and diagno- | Incident resolution
sis
Incident response Resolution and recovery Incident closure post-
analysis
ISO/IEC 27035:2011 [47] | SANS (Kral, 2011) [48] NIST SP 800-61 [43]
Plan and prepare Preparation Preparation
Detection and reporting Identification Detection and analysis
Responses Containment, Eradication | Containment, Eradication
and Recovery and Recovery
Lessons learned Lessons learned Post-incident activity

elasticity and multi-tenancy [53]. This inturn makes the incident recovery difficult and time
consuming. For instance, on February 28" 2017, AWS suffered an outage incident that
lasted for many hours and they could not immediately find the appropriate reasons behind
it. Incidents in cloud are frequently reported and unfortunately, 56 % of them are non-
transparent [55].

In the traditional incident handling, the experts can shutdown the system immediately
after the incident. In cloud, this is not possible and requires a new strategy to handle the
incidents. There are only a few papers which explored the possibilities for cloud incident

handling and the same are briefed below:

* The challenges of cloud IH are presented using five phases namely, detection, analy-

sis, containment, eradication and recovery, and continuous improvement [1].

* The authors in [21] concluded that, at the high level, the cloud IH is same as traditional
IH. The way we perform each phase of the incident handling in the cloud is different
when compared with the traditional IH process. This is due to its unique challenges

like, multi-tenancy, lack of transparency and having no physical access.

* The authors discussed the new challenges in the domain of cloud security and then
suggested that, there should be more cooperation among various cloud actors to de-
ploy policies and procedures as a monitoring solution. Since there exist no proper
policies for cloud incident handling, it can lead to privacy violation and thereby affect
the availability of the cloud services [56]. For example, the FBI during its investiga-
tion on fraud detection powered off the whole data center in Texas and it affected the

data availability of many users [51].

20

The extensive literature review on cloud incident handling has helped us compile a
comprehensive taxonomy of the challenges as depicted in Figure 2.2 [57][58][59].

Resource

Service Level

Location Agreement
Evidence Evidence =z Shared
Identification Availability < Data Control Responsibility
"_
. o
Data Vulnerabilities- §
Segregation shared nature S Authentication | Unknown Profile
Multi-Tenancy Cloud Incident Handling User Control
) Challenges
Service Level
Heterogeneity Agreement Malicious Insider | System Monitoring
S
Virtualization- | Unknown Risk ©
. . o
Hypervisor Profile S Account Control Trust Issues
é
=}
=

Compliance Monitoring

Figure 2.2: Cloud Incident Handling Challenges

Deduction: Cloud Incident Handling in its present form responds to the incidents with-
out emphasizing on the relevant evidence collection. Without this due consideration, recur-
rence of the incidents cannot be prevented. We use the digital forensic practices for cloud

incident handling to address these aspects.

2.3 Using Digital Forensic aspects for Effective Cloud In-
cident Handling

Since we use Digital Forensic (DF) principles as a methodology for effective cloud incident
handling, we initially discuss the existing DF models. We discuss the challenges of applying

the digital forensic practices for cloud incident handling.

2.3.1 Digital Forensic Models

In Digital Forensics (DF), computer and other digital media crimes are investigated through
a scientific process to answer several forensically relevant questions pertaining to the oc-
curred incident. Apart from identifying and imaging the digital evidence, it can attribute the
digital evidences to exhibit and produce them in the court of law.

In the early 21% century, various cyber-security bodies have proposed several guide-
lines to investigate the digital crimes. Some of the popular digital forensic models are
summarized in Table 2.2. Using these models and forensic tools, the FBI is successfully

investigating thousands of digital cases reported every year in the USA [60].

21

Table 2.2: Summary of Digital Forensic Models

Guidelines for Performing Digital Forensic investigation
Martini [61] Choo et al. [62] Quick et al. [63]

Commence Prepare and | Commence Prepare and

response response

Evidence source identifi- | Identification and collec- | Evidence source identifi-

cation and preservation tion cation and preservation
Collection Collection
Examination and analysis | Preservation Analysis Examination and analysis

Reporting and presenta- | Presentation Feedback | Reporting and presenta-

tion Complete tion Feedback

The investigative agencies solved many interesting cases over the years using digital
forensic principles and practices like, Dennis Reader [64], Scott Tyree [65], Brad Cooper
[66] and James [67]. Recently, Clinton's Bombshell case was defused using digital forensics
[68]. Also, Cyber Forensics division in India solved many interesting cases using the stan-
dard digital forensic models [69]. In this thesis, we take the DF model proposed by Quick
et al., as a base and use it to address the challenges of the cloud incident handling.

It is important to note that, using digital forensic aspects for handling cloud incidents
would not solve all the challenges of it (CIH). The same are discussed in the subsequent

sections.

2.3.2 Cloud Incident Handling Challenges: A Forensic Perspective

Handling cloud incidents using digital forensic science differs from one service model to

another as the level of penetration and evidence availability significantly vary.

Cloud Incident Handling in (SaaS) vs (PaaS) vs (IaaS) - A forensic perspective

Forensic based Cloud Incident Handling for each service model of cloud is briefed below:

* SaaS (Eg - Salesforce, Cisco WebEx, Citrix GoToMeeting, etc.)[13][70]: The Cloud
Provider owns all the layers (Servers, Storage, Networking, Virtualization, Operating
System, Middeleware, Runtime, Data, Application) due to which customers’ mainte-
nance cost is significantly reduced. SaaS applications leave very limited traces at the
client end. The incident handler should rely on the logs stored at the cloud side and
that detailed information acts as a valuable source of evidence during forensic based

incident handling.

* PaaS (Eg - Apprenda, Heroku, Google App Engine, etc.)[13][71]: The customers use

the middleware components to develop their own applications. A full control on the

22

application layer will be with the customer including the application dependencies.
Due to this, the customer can create and maintain a detailed application log which

can definitely aid the incident handler.

* laaS (Eg - Amazon Web Services, Microsoft Azure, Openstack, etc.)[13][72-77]: In
IaaS cloud, the virtual machines will be managed (location, scaling, security etc.)
by the cloud provider to satisfy the consumer requirements. The layers - Application,
Data, Runtime, Middleware, Operating System will be under the control of consumer;

the virtualization and hardware will be controlled by the cloud provider.

From the above discussion, it is evident that, the level of access control to the target user
differs from one service model to the other and among which, laaS users will have more
penetration to the cloud resources. This may in turn increases the possibility of performing
an incident/suspicious activity by the intruder. In this thesis, we focus on addressing the

challenges in forensic based incident handling in IaaS environment.

2.3.3 Incident Handling in IaaS Cloud Environment using Digital Foren-

sic Practices

It is important to note that, even though cloud forensic investigation follows the same se-
quence of phases as traditional digital forensics, the process behind each forensic phase
differs in cloud due to its unique characteristics. This introduces several new challenges
during forensic based incident handling and we brief all of them phase wise as below:
Identification Phase: In this phase, the incident handler searches for likely value evi-

dences pertaining to the occurred incident and the challenges involved in it are:

* Logs as a source of Evidence: In general, the traces of cloud incident spreads across
multiple logs (Service logs, OS logs, Firewall logs, Network Logs, etc.) and then
automatically identifying the exact source of evidence still remains a challenge [78].
In [79], the authors suggested logging guidelines (what, where, and when to log)
to aid the cloud incident handler. In [80], the authors developed their own logging
mechanism in Eucalyptus cloud to easily identify forensically relevant events. In
[81], the authors devised an encrypted logging model and the logs generated using
this model are transferred to the central server in the encrypted format. All these logs
will be completely under the control of the consumer. The common drawback while
implementing the above cloud logging solutions is, the existing IaaS environment of

the CSP should undergo significant changes and it may not be feasible in reality.

* Volatile evidences [61][82]: Focusing on volatile evidences like, VRAM can help
the incident handler find forensically valued information (user names, passwords, en-
cryption/decryption keys, etc.) and then properly performing volatile memory anal-

ysis gives quick logical findings about the occurred incident. The vRAM evidence

23

may undergo a few changes during its imaging from the cloud virtual machine and
in this case, the modified evidence diverts the incident handler to generate inaccurate

inferences.

Data Collection and Preservation Phase: Once a VM in laaS cloud gets compro-
mised, its identified evidences should be acquired without violating their integrity so that
the chances of legal admissibility would increase. From the literature, we identified that
there are five possible ways of acquiring the evidences from the IaaS cloud infrastructure
[78][79] i.e.

* Use the existing tools [83]: The standard traditional forensic tools like, Encase, FTK,
and Memoryze can be used to acquire vDisk/VRAM of the target virtual machine.
The main drawback with this approach is, remote acquisition through these tools may
not be trustworthy and cannot be legally admissible. Moreover, these tools cannot
acquire the cloud service logs (without violating privacy) and snapshots of the target

cloud instance (virtual machine).

¢ Use Trusted Platform Modules (TPM) [84]: TPMs can be installed on the cloud nodes
so that the hardware in each node can know the health status of the hosted guest virtual
machines. Once a TPM based hardware finds the suspicious activity in a certain VM
then its evidences can be preserved securely. The main drawback associated with the
TPM based acquisition is, there are chances that a VM process can be altered without
being known to the TPM modules. Moreover, till now, no cloud provider hosted their
virtual machines in the TPM based hardware. In the future, we expect that customers
may show keen interest on a cloud provider who has TPM modules integrated in to

the hardware.

* Management plane based acquisition: Cloud services are received by the end users
through the management plane. Using this, the incident handler/user can acquire the
evidences pertaining to the target VM [85]. The drawbacks associated with this type
of acquisition are, all the possible evidences cannot be acquired through management
plane. Also, this may open up a new attack surface and may not always ensure reliable
evidence collection.

* Forensics-as-a-Service (FaaS) [86]: The cloud provider collects the required evi-
dences and gives them to the target user/incident handler. Since the cloud provider
controls the complete infrastructure, the evidences gathered through this may be
legally admissible. The drawbacks associated with this type of acquisition are, there
is no standard protocol devised for facilitating FaaS to the end user, the response
time is high and the CSP may not monitor the target VM events at low level and so

preserving evidences is not possible in all the cases.

24

* Legal Solutions: Issuing legal warrants to the CSP and asking him to provide the
evidences of the affected virtual machine only works when laws satisfying multiple
jurisdictions are framed and executed [83]. Till date, no cloud provider has announced

its support for the law enforcement.

Depending on the context (type of incident, cloud provider policy, legal, acts etc.,),
any one of the above acquisition approaches can be chosen. Before which the following
acquisition related issues need to be considered and handled by the incident handler i.e.

* Preserving privacy [83][87]: Due to the multi-tenancy nature of cloud, it can host
evidences of several users. During evidence collection, the evidences pertaining to
the target user should be identified and isolated. If the evidence segregation is not
done properly then it leads to the privacy violation of other users. In [87], the authors
proposed three isolation techniques namely Instance relocation, Server farming and
Sandboxing. These approaches lacks practical feasibility.

* Ensuring data integrity [89]: Preserving the integrity of the evidence increases the
admissibility of the findings made through the forensic examination and analysis.
There is a likelihood of integrity errors being generated due to the involvement of

multiple cloud actors in the forensic investigation.

* Lack of thorough knowledge [92][93]: Since cloud is relatively a new and emerging
area, the digital forensic experts may not have detailed knowledge about the data
organization in the cloud, its architecture, policies, etc. This indeed leads to improper

negotiation with the CSP and needs special training.

* Chain of custody [91]: It is the process describing how the evidence is collected,
preserved and analyzed so that the admissibility of the collected evidences will be
strengthened in the court of law. In cloud, ensuring chain of custody is challenging

due to its multi-layered and distributed architecture.

Analysis Phase: Conducting forensic based incident analysis on the cloud evidences
is very challenging. The two major reasons for it are - (i) Volume of the cloud evidences
is generally very high when compared with the traditional digital environment and each
evidence contains a vast number of objects/events. Analyzing all those is challenging espe-
cially in time critical investigations. (ii) The data exported to the cloud is internally stored
in cloud’s native format and it is difficult for the incident handler to analyze them. The other

issues to be handled during this phase are:

* Lack of specialized tools: Due to rapid elasticity of cloud,its distributed nature and
lack of transparency properties, the existing digital forensic tools cannot be applied to
the cloud environment. There is a huge demand for dedicated cloud forensic tools to

enable the incident handler perform forensic investigation [92]. In [94], the authors

25

conducted a survey to know the expectations from cloud forensic tools and 58 % of
respondents replied that, automatic evidence analysis approaches (traditional/cloud)
should be developed. The applicability of various forensic tools to the cloud environ-

ment is assessed and the same is shown in the Table 2.3.

Correlating the evidences gathered from multiple sources [95][97]: An incident trace
may spread across multiple artifacts and analyzing all of them to understand the asso-
ciations among the events is challenging in terms of time and human effort involved.
There are no proper evidence correlation approaches devised to handle the cloud inci-
dents. The event correlation among the evidences will give a comprehensive picture of
the occurred incident and may lead to quick appropriate findings. Unfortunately, the

challenges of performing effective cloud event correlation still remain unaddressed.

Maintaining provenance for cloud evidences [88]: Provenance stores the history of
each object present in the target evidence. It is a proactive approach and intruder can
easily disable the provenance system deployed at VM level. Moreover, for a basic
user, storing provenance at object level adds to the space and cost overheads.

Time Synchronization [90]: In forensic based incident handling, time related meta-
data can act as a crucial source of evidence. Generally, the cloud evidences spread
across multiple systems which are having different time zones. The issue of time

synchronization is especially challenging in the public cloud environments.

Reconstructing the crime scene [91]: Knowing the sequence of suspicious activities
performed by the intruder is possible through Event Reconstruction. Reconstruction
of the crime scene is not always possible especially when the intruder restarts/terminates
the virtual machine after the incident. In [96], the authors suggested that, event re-
construction in this case could be possible by considering snapshots of the virtual
machine. Incident reconstruction may not be effective when the events in the evi-

dences are incomplete and the chances of that happening in the cloud are more.

26

Table 2.3: Summary of the existing forensic tools

Existing Forensic Tools

Tool Use Cloud/General
Based
Encase Remote | Remote Acquisition General
Agent [83]
FTK Remote Agent | Remote acquisition General
[83]
X-Ways [98] Live system based acquisition for Win- | General
dows and Linux systems
Sleuthkit [99] Can analyze forensic images of the hard | General
disk

E-discovery Suite | Can investigate the network or computer | General
(Encase) [100] offline
FTK imager [101] Can image the memory and disk of the | General

target system

Snort [80] Network intrusion detection system for | General
Windows and Linux systems

Wireshark [102] Analyzes the to and fro network packets | General
of the target system

OWADE [103] User visited websites and can know | Cloud Based
whether they contain any data stores in
the cloud

FROST [104] Acquisition tool integrated into the Open- | Cloud Based

stack management plane

2.4 Current Solutions and Open Issues for Cloud Incident

Handling using Digital Forensic Practices

Focusing on the challenges in each phase of cloud incident handling using forensics prin-
ciples, researchers proposed several solutions and the same have been summarized in the
Table 2.4.

Table 2.4: Summary of the existing cloud forensic solutions

27

Existing Solutions

Phase and challenges Proposed Solution/Approach Ref.
Identification
Access to the evidence Eucalyptus framework (OS and logs) [80]
Extraction of the status of the relevant | [105]
data
A log based model [106]
An advanced logging model embedded | [24]
with encryption
Dependence on the CSP
Trust Issue Layers of trust model [83]
Data acquisition TrustCloud [107]
Compliance Cloud Management Plane [85]
Logs Service Level Agreements (SLAs) [108]
Volatile Data Cloud Persistent Storage [105]
API based continuous synchronization [109]
Preservation and Collection
Data Integrity Trusted Platform Modules [83][84]
Time Synchronization Unified time system [105]
Cloud literacy of incident handlers | Improving the skills of incident handlers | [93]
Chain of Custody Trained staff [92]
Ephemeral nature Snapshot acquisition and analysis [38]
Distributed storage VM location identification through in- | [72]
stance tagging
Analysis and Examination
Lack of standard forensic tools FROST, OWADE [103][104]
Lack of log framework Suggested complete log management sys- | [83][110]
tem
Evidence Time lining A partial solution by AWS Trail [111]
Encrypted Data Cloud key management infrastructure [112]
Presentation
Technical comprehension of jury Training [89]
Jurisdiction Cross border Laws and Legal Agreements | [113]
(Eg: MLAT)
Chain of custody Well defined principles and guidelines | [114][115]

(Eg: ACPO- UK)

28

Open Issues in Forensic based Cloud Incident Handling

Handling cloud incidents using digital forensic science aspects is relatively a new method-
ology and has lot of issues which still need to be addressed and the same is shown in Table
2.5. Each of those issues is discussed below:

Table 2.5: Major unaddressed Issues in Cloud Incident Handling using Forensic Principles

S. Gaps Identified for Cloud Forensic Inves-
No. tigation in IaaS
1 Lack of standard and dedicated tools

Evidence correlation and Timeline analy-
sis from multiple sources

3 Cross border Issues

4 Automatic analysis of cloud evidences

5 Handling the volatile evidences of the tar-
get virtual machine

6 Crime scene reconstruction

7 Technical comprehension of the jury

1. Lack of standard and dedicated tools [92][103][104]: From the Table 2.3, it is evident
that only two tools can perform forensic investigation in the cloud environment. There

are a lot of drawbacks for these tools i.e.

FROST: This is a forensic tool that was integrated into the Openstack cloud envi-
ronment. It can acquire the evidences from the content management plane without
interacting with the guest OS. The drawbacks associated with FROST tool are, it
only works in Openstack cloud and cannot be applied to other cloud platforms, it
requires significant changes in the Openstack cloud, it does not provide analysis ca-
pabilities for the acquired evidences, and it assumes the trust from multiple entities

(CSP, provider’s infrastructure etc.).

OWADE: This tool was developed by the researchers in Stanford university and was
launched in BlackHat Conference. It can store the websites visited, can track most
of the internet activities, can search the online identities, etc. OWADE is still in
development and only the basic version was released with the minimal features. The
major drawback associated with this tool is, it can only track the web related data
and cannot acquire the cloud specific artifacts like, Service logs and Snapshots. In

addition to this, the tool capabilities for analysis need to be improved.

From the above, it shows the necessity for developing a comprehensive cloud foren-
sic tool which should identify the distributed evidences, acquire all of them by em-
ploying proper preservation techniques and analyze (basic, advanced) the preserved

evidences.

29

. Evidence correlation and Timeline Analysis [95][97]: Timeline analysis can sequence
the occurred events using which the incident handler can know various details like,
when, where and how an event had generated. If the events from multiple sources are
considered for timeline analysis then several issues need to be handled like, how to
interpret the events and how the events with different logging structure can be repre-
sented in a timeline without much data loss. Additionally, the cloud incident handler
should correlate the events in several evidences and identify the events pertaining to
the target incident. This correlation helps reduce the time for detecting and analyzing

the occurred incident.

. Cross Border Issues [37][38]: Due to the distributed nature of cloud, the evidences
of victim/intruder virtual machine may spread to multiple locations. This gets worse,
when multiple evidences from different jurisdictions need to be acquired. Cross bor-
der issues hinder the process of developing new approaches for cloud forensic in-
vestigation. This shows the importance and necessity for framing global laws for

conducting forensic investigation in the cloud environment.

. Automatic analysis of Cloud evidences [34][35][36]: The acquired cloud evidences
will have its own format. Consequently, this introduces new difficulties during the
analysis phase. For instance, the vDisk acquired from the Openstack cloud environ-
ment is in QCOW?2 format and it cannot be analyzed by the existing digital forensic
tools. In addition to that, the cloud evidences will be of huge size and time taken to
analyze them is generally very high. New cloud forensic techniques should be devel-
oped to automate and reduce the time and human effort required for cloud evidence

analysis.

. Handling volatile evidences of the target instance [82][109]: The basic principle in
forensics is to start investigation in the order of volatility. Acquiring volatile evidences
is always not possible as the intruder may restart/terminate the cloud virtual machine
after the occurrence of the incident. New approaches need to be devised to capture
the events from volatile memory of the target instance. Moreover, these approaches
should have analysis capabilities using which the incident handler can quickly know
the intricacies of the occurred incident.

. Crime scene Reconstruction [91][96]: Reconstructing the crime scene can make the
incident handler to know about how, when, and where an incident occurred. There
are no existing approaches or algorithms for performing cloud event reconstruction.
Additionally, this introduces new difficulties for the incident handler when the events

from any of the evidences are missing.

. Technical comprehension by the jury [89]: The findings from the cloud forensic ex-

amination and analysis should be presented as a report in the court of law. The report

30

should contain many details like, crime scene location, resources used by the vic-
tim/intruder, and legally admissible analysis format. To know all these information
from the cloud is would be challenging owing to its complex architecture. Compre-
hension of the technical findings by a non-technical jury member adds much more

complexity to the entire presentation stage.

2.5 Summary

In this chapter, we initially discussed various Incident Handling and Digital Forensic mod-
els. We discussed all the major forensic challenges in IaaS environment. We then described
the existing solutions and open issues for handling IaaS cloud incidents using forensic as-
pects. In this thesis, among all the above open forensic problems, we address the following

issues:

* Handle volatile evidences of the target cloud VM

* Devise effective event reconstruction and provenance approaches for various cloud

instance artifacts

* Perform correlation among the cloud virtual machine evidences

Chapter 3 discusses the proposed approaches for handling volatile evidences by address-

ing the lack of transparency between incident handler and the CSP.

31

Chapter 3

Handling Cloud VM’s Volatile Traces by
Improving their Availability

“Cloud is about how you do computing, not where you do computing”

- VMware

3.1 Introduction

The thumb rule in forensics based incident handling is to start investigation in the order of
volatility. One of the most volatile evidences in the virtual machine/instance is VRAM. It
contains valuable information like running process information, encryption keys, open files
for each process, unpacked versions of a program, memory resident malwares, user names
and passwords, and network connections. The main challenge while considering the VRAM

for incident handling is:

”After the incident, it is difficult to have the traces in the cloud virtual machine’s vRAM

as the intruder may restart/terminate the virtual machine”.

Our objective is to ensure the seamless availability of the vVRAM evidence and analyze
it for handling cloud VM incidents. Accordingly, the chapter is divided into two parts and

the same are briefed below:

1. Proactively capture vVRAM events from the target user cloud virtual machine and we
use Virtual Machine Introspection (VMI) technique to achieve this. VMI is a process
used to monitor and analyze the state of the virtual machine from hypervisor level.
We discuss the approaches proposed for analyzing the captured vVRAM events.

32

2. Capturing events through VMI requires the incident handler to access the hypervisor
which also contains the content of other users. Intentionally or unintentionally, the
incident handler should not access the data of the non-target users as it violates the
privacy of those users. It is the responsibility of the existing cloud actors (specifically,
CSP) to make sure to track the activities being performed by the incident handler at
the hypervisor level. Accordingly, the motivation for the second part is as follows.

We propose a model called ALTRA (Addressing lack of Transparency) which can
record all the activities performed by the Incident Handler. If the incident handler
performs any suspicious activity then the ALTRA model will automatically alert the
Cloud Service Provider (CSP). The CSP can take necessary action on the incident
handler.

Organization of Part 1: In Section 3.2, we propose a design for effective introspection by
taking the analogy of logic analyzer. In Section 3.3, we discuss various introspection rules
from the identified categories along with their structural representations. In the same sec-
tion, we propose a mechanism based on static call graphs to increase the incident detection
capabilities from introspection data. We propose an approach for root cause identification
using Complex Event Processing (CEP) and the same is discussed in Section 3.4. In section

3.5, we present the experimental results.

3.2 Proposed Trigger based Introspection Model for Cloud

Instance Incident Handling

There are two main challenges in capturing the virtual memory of a cloud instance from
virtual machine level. (i) After the incident, the target virtual machine may not be in the
on state and so the virtual memory cannot be imaged (ii) Even though, the virtual machine
is in the running state, imaging the memory or collecting the information about the target
modules can change the state of the existing system and so the acquired evidences may not
be legally admissible.

To handle the above, a new method of monitoring and analyzing the state of a virtual
machine from hypervisor is introduced and it is named as Virtual Machine Introspection
(VMI) [116]. A major advantage of VMI is, the contamination of the acquired virtual
memory events is very less [117]. Moreover, VMI is a proactive technique which can ensure
the availability of vVRAM data and can increase the reliability of the overall forensic based
incident handling process [118][119]. There are three types of delivery models for VMI
namely in-band delivery, derivation based and out-of-band delivery [120].

* In-Band Delivery: Guest software in the virtual machine provides the semantic knowl-
edge to the introspection module at VMM.

33

* Derivation-Based Model: Semantic data generation component derives the informa-
tion based on the hardware architecture.

* Qut-of-band: The semantic knowledge of the guest OS is supplied to the introspection
module from external entity.

There are certain libraries to perform VMI. For example, LibVMI [121] supports Xen
and also KVM. VMI-PL [120] is another monitoring language that has additional features in
comparison with the LibVMI like, introspecting the data stream events. This library suffers
with performance and stability issues.

Since the monitoring is done outside the virtual machines, the semantic knowledge per-
taining to each VM may not be known and this can badly affect the data collection and
extent of analysis [122][123]. This indeed leads to various advantages and disadvantages
during the process of introspection. The same are summarized and shown in Table 3.1.

It is evident from Table 3.1 that, a single delivery model may not be sufficient in all
the cases [124]. For example, if a target virtual machine is affected with memory resident
malware then the data given by in-band delivery may not be comprehensive and reliable as
it modifies the events in memory. Thus hybrid introspection approaches have been projected
as a viable alternative. The technique, though, comes with its own issues.

3.2.1 Drawbacks of existing hybrid introspection approaches

Our intention is to take the aid of introspection for performing memory forensics based
incident handling on virtual machines. The hybrid introspection techniques in the current
state cannot serve our purpose as they are [124]:

* Unaware of the scenarios for proper capture of the events in accordance with time

* Unable to identify the effective combination(s) of hybrid model based on the context

Our emphasis is on the first issue. For this, we start with redesigning the concept of
introspection technique. Based on the extensive interdisciplinary study we have done, the
broad functionality of logic analyzer suits our requirement. We discuss the use of logic

analyzer for designing an effective introspection approach in the following subsection.

3.2.2 Proposed trigger based introspection model using logic analyzer

Logic analyzers are electronic devices used for digital measurements containing numerous
signals [125]. It is used for debugging the hardware in prototype digital systems. When
a logic analyzer is connected to the digital circuit, the trigger module in it continuously
monitors the logic state of the signal and sends out an alert when the defined signal pattern

has been observed. This motivated us to use the concept of logic analyzer for devising

34

Table 3.1: Benefits and drawbacks of various introspection models (Out-band, In-band,

Derivation)

S. No

Delivery
Model

Advantage(s)/Disadvantage(s)

Out-of-
Band

Advantages

e Compromised VM will have less affect on the out-of-band
based introspection.

e The guest OS may not need to run during the time of in-
terpretation by introspection module.

Disadvantages

e The non-binding nature of the out-of-band delivery model
cannot have precise analysis when the guest software was
changed or replaced.

Derivation
Based

Advantages

e The model can work independent of the guest OS since
the binding is from the hardware level.

e Malicious entity cannot change the virtual hardware ar-
chitecture, so the external view generation function is not
affected.

Disadvantages

e It is difficult to retrieve more relevant information by mon-
itoring the hardware state.

In-Band
Based

Advantage

e There is no semantic gap at all

Disadvantages

e When the guest OS functionality is compromised then the
semantic knowledge given by it will not act as a reliable
source of information

e The semantic data generation component cannot function
when the virtual machine is powered off

e Some contents gets modified/erased by which the reliabil-
ity of the evidence(s) is questionable.

35

M1 VM3 VMn

. VM2 . . .
! Guest 0S| | Guest 0S| I Guest0S | I Guest0S |

N
’

Virtual

T Virtual Machine Memory

Monitor

Introspection . Trigger
Module ad Module

Timing

Hardware

o i i o it e S e T

Figure 3.1: A trigger based introspection process in cloud

trigger based introspection approach. The modules of the proposed model are shown in
Figure 3.1 and each of them is briefed below:

Introspection module: This module is a facilitator for all the three delivery models. It
is the incident handler’s choice to pick up the required delivery model(s) to form the hybrid
model using which the data from the targeted virtual memory is collected.

Trigger Module: The trigger module is the main component of our proposed model. The
introspected virtual memory events will be piped through this module. The events which
satisfy the introspection rules mentioned in the trigger module will be stored and analyzed
first. In the following sections, we will elucidate the challenges involved in generating
introspection rules for memory events.

Sampler: After the specified triggers are satisfied, the basic functionality of the sampler
would be to take the image of the target virtual memory using VMI and perform the analysis.
Instead of taking the entire image, selective acquisition of virtual memory regions based on
the occurred incident can also be done. For example, if the trigger module at the hypervisor
identifies some suspicious events of a Linux VM after it is connected with the external drive
then the Common Internet File System (CIFS) regions can only be captured and analyzed
instead of capturing the whole VM memory.

Analysis and reporting: Correlating the data from the collected artifacts and knowing
what exactly has happened to the targeted virtual machine is the primary goal of this module.

The trigger module enhances the relevant data collection pertaining to the incident by
invoking the corresponding rule set. We do not discuss explicitly about the functionality
of the introspection module as there is a lot of work which describes the internals of this
module [122][123]. On other side, adding our trigger module to the introspection process
will have significant benefits which are listed and justified accordingly in Section 3.5. We
have used the Out-of-Band and In-Band Models of hybrid introspection and put emphasis

on the virtual memory events like, process events and system call events.

36

3.3 Rule and Graph based Approaches for Trigger Module

Irrespective of the delivery model(s) chosen, we identified that the VMI should handle the

following issues:

* The rate of introspection events of virtual memory is very high, especially in highly
virtualized environment like cloud and finding the events of interest is difficult and

time consuming.

* In most of the cases, the generated introspection data is difficult to interpret as it is

not semantically organized to reflect the real incidents.

We address the first issue with the aid of our trigger module whereas the data interpreta-
tion is done using other components-CEP engine and break points (we will discuss all these
components in the rest of the chapter).

3.3.1 Rule based approach for introspection

The main idea in addressing the first issue is adding the rules to the trigger module. When
a defined rule gets satisfied with the captured introspection events, then those events can be
treated as suspicious and correlating them would be sufficient to have a logical conclusion
about the occurred incident. For representation of the rules we use more formal notations
[126] and they are summarized in the Table 3.2.

Any combination of the above operators can occur like, events occurring at the same
location and one after the other is denoted as <>; and events occurring at different locations
and concurrently is denoted as ><]||, etc. Existing rule language framework(s) do not focus
on events occurring at the same location. We even consider this in our rule generation
process. We have formulated a few rules based on the literature and the important ones are
described below:

Rule-1: UPX <>; Section_headers =0

This rule comes under the spatio-temporal category which indicates that an obfuscated
malware may use some packers like UPX and can remove the section header details. These
events happen one after the other and on the same process by which we used <>; operator.

Rule-2: a. Access to GOT <> strycpy / memcpy <> Overwrite Symbol Addresses

b. Access to GOT <> setuid/setgid <> Escalating privileges

The above rule (a) says that when there is an access to Global Offset Table (GOT) such
that there is a change in the symbol address with unprivileged access then the trigger module
at hypervisor confirms that a malware is trying to overwrite the symbol addresses. Rule (b)
says that, when there is an access to GOT with a modification of UID then it indicates
that malware is trying to escalate privileges. Similar things can happen when there are
modifications in the Process Linkage Table (PLT).

Rule-3: Access to /sys <>; Access to /kernel <>; ASLR=0

Table 3.2: Notations used for introspection rule generation

’ S. No ‘ Category Notion Comment
1 Spatial E, <>FE, | Events happening at the same loca-
tion
2 Spatial E, ><FE, | Events occurring at remote or dis-
tinct locations
3 Temporal E.;E, Events occurring one after the other
in sequence
4 Temporal | E,||E, Events occurring at the same time
or concurrently
5 Temporal | A(t,, Ey,t.)| Occurrence of an event E, will be
triggered during the time period of
ty,and t,
6 Temporal P(E,, Occurrence of F, for every time pe-
T(Ey), E,) | riod of T and this starts when £,
has occurred and stops until £, hap-
pens.
7 Temporal P*(E,, Once FE, has occurred then the
T(L,), E.) | readings are taken for every time
period of T and the cumulative re-
sults are submitted once F, has
happened.
8 Temporal | ={t,, E,,t,}| Non-occurrence of an event be-
tween the time intervals of ¢, and
t, are recorded.
9 General N,V Conjunction and disjunction opera-
tors
10 General ANY(n, Occurrence of n events from t
E., E, --- |eventsie [t|> = |n|
Ey)
11 General ALL(E,, Triggering will happen when all the
E,---E) | teventsoccurred

37

38

There will be a huge and wide variety of information in procfs and sysfs file systems
and intruders try to generate rootkits in these file systems. These rootkits can violate the
integrity of the system as the data from these file systems are used by many utilities.

This rule falls under the category of Spatio-Temporal rule set and it says that, all the three
events are accessing and modifying the entities in the same file system /proc by following a
certain sequence i.e. initially, rootkits access the /sys, then the /kernel file system is accessed
and finally the Address Space Layout Randomization (ASLR) is made zero using which the
trigger module confirms the suspicious activity.

Rule-4: P(select kernel process, t,.[DTB], Identify malicious process)

This rule helps the trigger module to identify whether the selected process is a malicious
user process or not. For this, it checks the Directory Table Base (DTB) value and if this value
is non zero for the kernel process then it indicates that the process is actually user based but
trying to blend itself as kernel process.

Rule-5: Any (1, (E1) V (E2) V (E3)) where

* El: Getting the details and modifying the shadow files (contains passwords hashes)

» E2: Malicious process after stealing of keystrokes has to be stored in some files like
key loggers before they are actually sent to the target system through the network.

* E3: Also, malware can use the xmodulepath package to gain the root privileges

Any access/modification to confidential files acts like an input to the trigger module as
they aid in the process of incident handling.
Rule-6: Absence_ I NT ERP,—{Dynamic_Linker_Funct}, Packer
The trigger module alerts the investigator when there is an absence of INTERP header
and presence of the packer during which if dynamic linker is malfunctioning then it can be
treated as suspicious under obfuscated malware.
Rule-7: Access_to_VM(el) ><; mount_to_host(e2) ><; Any_newConnection
Whenever there is an entity downloaded from the virtual machine and mounted on the
host machine then that is treated as suspicious by the trigger module especially, if it is
behaving unusually like, establishing a new network connection and sending details to the
target system/effecting the host system.
Rule-8: Access(ANY [(tmpfs) V (/dev/shm)]) <> Modification/ Deletion
There are certain memory resident malwares using which the artifacts are made visible
only in temporary file system (/tmpfs) of virtual memory. Intruders prefer to hide the data
by storing the related content in the /tmpfs and the trigger module focuses on this too.
These rules are specific to VMs with Linux guest OS. The rules can still be applied to
other guest operating systems with few modifications. We use complex event processing
engine to generate automatic rules using both the positive and negative traces (discussed
in the subsequent sections). The advantage of these sort of rule generation is the accuracy

involved in detecting the specified introspection events. Irrespective of any number of rules

39

generated, a variation of those suspicious events cannot be detected by the trigger module.
To overcome this, we add the feature of pattern matching to the trigger module and the

details are explained in the following subsection.

3.3.2 Graph based approach for effective interpretation of introspec-

tion events

We identified that detecting the incidents with the rules especially in the context of intro-
spection is difficult as the intruder can use n possibilities. In reality, knowing all those
possibilities and writing the rules accordingly may not result in increasing the detection
accuracy if:

* We are not able to capture some events during introspection

* Variation of suspicious events are captured in comparison with the ideal possible sus-

picious sequences

To address these issues, we draw a static call graph. It is a graph depicting all the
possible paths for the occurrence of an incident. For example, we identified different paths
for performing shell code injection. The corresponding static call graph is drawn and the
same is shown in Figure 3.2. To accomplish shell code injection, the intruder follows four

generic steps:

* Handle is created with the target process (using ptrace).

* Within the target process, both writable and executable memory regions have to be

identified (one of the ways is to use mmap)

* Once the memory region is found, shellcode is written into it (using poketext or pro-

cess_vm_writev)

* The inserted shell code is made to execute (using ptrace_getregs, ptrace_setregs and

ptrace_con).

Ptrace_Get_regs

Peek_text

ey

X

ocess_vm_read_v l

Process_vm_write_v

find_Hole

Ptrace

Overwrite malloc

copy_IP

Figure 3.2: Shell code injection in Linux based virtualization environment

40

Figure 3.2 shows the granularity of system call level. From the captured events, we draw
the introspection graph and correlate that with the existing static call graph(s). This helps
us to know whether the incident occurred or not and also, the path followed to accomplish

the corresponding incident. Detailed analysis and its results are discussed in Section 3.5.

3.4 Root Cause Analysis through Complex Event Process-
ing

We discussed the approaches involved in detecting the suspicious events/incidents. Detec-
tion alone is not sufficient for most of the incident handling challenges [127]. We add the
feature of basic root cause identification to the trigger based introspection. To accomplish
this, we use complex event processing (CEP) approach. CEP systems analyze large flows of
primitive events received from a monitoring environment to timely detect composite events
(CE) [128]. Every event trace can be a positive or a negative. A trace is said to be positive

when the defined composite event has been satisfied else it is a negative trace.

3.4.1 Existing work on CEP

To the best of our knowledge, the research on CEP has focused only on the processing
efficiency of complex events. The issue which has taken less attention is, how to devise
mechanisms for generating effective rules. In general, knowing sequence of events and
the relative events with the information they carry may not be known. This difficulty is

addressed by our approach.

3.4.2 Proposed architecture for root cause analysis targeting effective

introspection of VMs

The challenges involved with CEP in knowing the sequence of events can be addressed by
the process of introspection. Until now, CEP techniques have focused only on the positive
traces for automated rule generation [128]. We devise our approach by considering the
negative traces as well so that the root cause of the occurred incident can be identified. The
proposed process is depicted through the architecture in Figure 3.3.

Break points are generic, composite events and provide them to act as input to the CEP
engine. In the introspection process, we consider each set of events with atleast one primary

key as an individual trace. Some examples of break points:
* Gaining root privileges by accessing the packages like xmodulepath at bash shell
* Observing changes in current shell path

* Frequent accessing of password hashes from shadow files

41

T VM1 Y \ | CEP | Break
__Guestos Engine Points
_____ vM2TTTTY e
__Guestos = ~ =
Lo [e . Introspection| [events) 2
_____________ . | mow | Hypervisor < » . [row K=Y 9
:’ VM3) B \ N _,"‘ yp lerarv \ our J E
__Guest0s / L . S >
______________ = N\ =
m
[
CTTTNMRTTTTY | | Triggering y o o s "
{__gi_u_e_s_t_c_)_s__‘,: —H Module ~<_TC_Satisfied] Analysis
Post
7| Triggers
Sampling [
™ Imaging

Figure 3.3: Proposed architecture for root cause identification using CEP

* Handle creation by a process targeting another process

These are a few break points pertaining to Linux operating system and according to the
incident handler requirements, there is scope of developing new break points.

Once the event trace under consideration satisfies the break point(s) then the CEP engine
follows the process in Algorithm 1 to identify the root cause of the incident. This knowledge
is given as an input to the trigger module for new and effective rule generation which finally

helps in detecting the previously unknown incidents.

Algorithm 1 Root cause identification using complex event processing

1: Si[1={ Ba, By, B,...until t} > 1 <=t <= number of break points
2: procedure FLOW_EVENTS(E1,FEs....Ey) > Captured through Introspection process
3: for all t break points in .S; do

4: if S; == true then

5: R;[] < Store(S;_1,.5;)

6: Epi, [1 4 findPrimary_key(Ts,)

7: K, < Identify NT in R; based on E,,

8: Pg <—Search_NT in other buckets based on E,,

9: end if
10: end for

11: event_aggregation(;,K,, P3)
12: end procedure

Explanation: Based on the break points, the CEP engine can identify, store and process

the events in two levels.
* Level-1(#L1): Identify the event trace and store at composite event level.

e Level-2 (#L2): Accumulate the stored traces for better correlation.

42

#L.1: Define the break points before the actual introspection process starts (5;[]). The
CEP engine checks for the break point satisfaction in each trace. Once it is satisfied, we
store all the event traces starting from the previously satisfied break points (S;_;) to the
current satisfied break point (.5;), irrespective of trace type-positive or negative.

#L2: Initially, identify the key F,, for the satisfied composite event trace Ts,. Based
on L, search for negative traces (NT) in the same bucket where the composite event is
satisfied. The same negative trace search is applicable for other buckets also. This search
results in identifying the positive and negative traces based on the key of satisfied break
point. All these filtered traces (RR;,K,, Pg) are aggregated and correlated to get the root
cause of the incident.

Once the new trigger conditions (TC) are satisfied then incident handler can still con-
tinue and enhance the analysis by invoking the sampler module. This module will provide
the facility of taking the image of virtual memory from hypervisor level. Moreover, the pro-
cess of introspection can still be continued after the incident and can check for consequent
events happening in relation with the incident (post triggers). Once these post conditions are

satisfied then re-invoking sampler module is required for taking further necessary action.

3.5 Evaluation of our Work

We have done extensive experiments to increase the effectiveness of introspection by reduc-
ing the semantic gap that was part of the existing approaches. We installed LibVMI which
is an introspection library in host OS with Linux 14.04 server and deployed all virtual ma-
chines with Ubuntu 14.04 servers. Initially, we ran the existing examples of memory events
in the LibVMI library. The corresponding observations are:

* Figure 3.4(a) gives pid and CR3 details (when paging is enabled, the processor uses
CR3 register to find the page table directory for the current process and it is finally
used for converting linear addresses into physical addresses of the corresponding pro-

cess)
* Figure 3.4(b) shows pid, pname and structure address details of each process

¢ The common deductions from both:

— Semantic interpretation of introspection data is difficult and may not help the

incident handler in all the cases.

— We observed that the rate of generated introspection events is very high and this
can make the job of incident handler difficult especially in finding the events of

interest.

We address these issues with the designed scenarios and the same are discussed below:

43

° Swapper/@ (struct addr: TTTfT17iB1c15480)
B I
N o Lo T1781726300 1 init (struct addr:fffBE0@3bcadden)
vepu B MSRCSTAR oo F{Fffftfai7282d0 2 kthreadd (struct addr:‘fffBBe83bcallfe)
Vehu © MSR_SYSENTER_IP wo 1ff1f1ff31728020 3 ksoftirqd/@ (struct addr:+ffiB80@3bca2fed)
e a3 Sysenter Target mv FF{Ff7ffa1728128 2 kworker/0:@ (struct addr:<fffEBe@3bcadice)
A R 5 kworker/@:@H (struct addr: fffB80@3bca5fce)
Phyeicot CoTAR —= 1728240 5 kworker/u256:@ (struct addr:<fffBB0@3bcdBOBR)
Phyeical SYSENTER IP oe 1728080 7 rcu_sched (struct addr::fffBBEB3bcd%778)
v < e 8 rcuos/@ (struct addr:fffBB0@3bcdafed)
Physical 1a32_sysenter_target == Tf{ffff81728120 : B e A oonabeaarce)
Sy aeall s o8 18 rcuns/2 (struct addr:*fTfEE0@3bcddfce)
CoTAR Phycical PEN o= 1728 11 rcuos/3 (struct addr::fffBE@3bceBOOB)
SYSENTER IP Physical PFN o= 1728 12 rcuos/a (struct addr::fifBBD@3bced7 o)
e nevzcall hycical FRN — 1082 13 rcuos/5 (struct addr::fifBBD@3bceafed)
phy:_1;§; < (Emz; target Physical PFN == 1728 14 rcuos/6 (struct addr:*fff8B083bcecidd)
[Pk R st ¥ 15 rcuns/7 (struct addr:*fffBE0D3bcedfcd)
wﬂumi for ewents. .. 16 rcuos/8 (struct addr:<fffEB0@3bcfERER)
PID 958 with CR: <029 exccuting on vepu 1. Previous CR3=0 17 reuos/3 ([struct addr:{fff88eesociorre)
Waiting for eve 18 rcuos/18 (struct addr::fffBBO@3bcfafed)
Waiting far evenis 261 rcuob/124 (struct addr::fffBEEB3bI7EREB)
PID 1427 with CR3=301B7008 executing on vcpu 1. Previous CR3=B 262 B e e o oeacayorre)
Haiting for events. . £ Fse (I i ieene i
i : R reuol struct adar:® <
TID.3ii7 with CR3-39eckd0d executing on vepu 1. Previous (R3-8 265 migration/@ (struct addr:<fffB80@3087afce)
H o 266 watchdog/@ (struct addr: fff88003b5888GR)
 crae 267 watchdog/1 (struct addr::fffBB0@3bbfc7de)
000 executing on vepu 1. Previous CR3=0 268 migration/1 (struct addr:*fffBB@@3bbTdfce)
269 ksoftirgd/l (struct addr:ffiB8003b428000)
0 . cra- 271 kworker/1:0H (struct addr:?fff88083b42afed)
16000 executing on vepu 1. Previous CR3=0 272 khelper (struct addr:*fffB8p@3b4zcide)
273 kdevtmpfs (struct addr::fffBBO@3b42dfce)
274 netns (struct addr:<f{fBB0@3b4a008R)
275 xenwatch ({struct addr:‘fffBB@83b4alife)
o Jp— 278 xenbus [struct addr::f{f88083bdazied)
D 996 with R €000 exscuting on vcpu 1. Previeus CR3=0 1027 polkitd (struct addr:*fff88003a4cB000)
i o s 1874 getty (struct addr:*fffBBe@3b3cciae)
Waiting for evenis 1878 getty (struct addr::fffBBO@361e57cB)
r - eRas 1884 getty (struct addr::f{fBBO@366727ed)
PID 1477 with CR3-39ect000 executing on vepu L. Previous CR3-0 1o5e e TtTucy 2aaviiiifeseaseeaatce)
w:i&:g st 1088 getty (struct addr:*ffTBB0036692feb)
S - cae 1132 anacron ({struct addr:*f{fBE0B3Bb22fed)
;ﬂ(}kzlfziﬁzvizijﬂm““ executing on vepu 8. Previous (R3=8 1147 kerneloops (struct addr:*fffBE0@3scaates)
- e RA 1149 acpid (struct addr::fffBBO@3BD11778)
PID 956 with CR3-3a7Lc00 executing on vepu 1. Previous CR3-0 e Srabatenes (oirect S9arii1ioeoaanosseon)
w:i&:g st 1156 lightdm (struct addr:fffBBBB38b25fcB)
PID 1160 with CR3-30B16008 executing on vcpu 1. Previous CR3=B 170 cups—browsed (struct addr:ffffB80838a3c7ds)

(a) (b)

Figure 3.4: (a) CR3 events (b) User and Kernel Process Structure details

Scenario-1: We populated high level information of each process using VMI. Figure
3.5(a) depicts parent id, child id, process name and these details enhance the semantic inter-
pretation of introspection events. For example, if we know the white list of the processes,
then identifying suspicious processes becomes easier. Moreover, if a parent process is sus-
picious then finding all of its children can be done automatically. This can reduce the time
invested in the analysis phase of forensic based incident handling.

Scenario-2: When there is a kernel-based malware in the target virtual machine’s mem-
ory then the incident handler wants a list of kernel processes in less time. This can be
achieved easily from VM level but getting the similar information using VMI is difficult.
We achieved this by accessing the required kernel data structures of the target VM. The
same is shown in the Figure 3.5(b).

From the above, it is evident that detecting and analyzing the events that satisfied the
rules configured in Trigger module helps the incident handler to generate accurate logical
findings. When there is a variation of known incident, this rule based approach may not
detect the incident. This issue was discussed theoretically using a graph based approach in

Section 3.3.2 and it is validated in the following subsection.

3.5.1 Detecting the variation of known incidents

In reality, the intruder may create a variation of the known incident by which the chances of
being caught would be reduced. To detect these sort of incidents, we introspected the event
traces at the system call level. In this context, there are three possibilities: (1) Introspected
system call trace of the target process can follow the exact sequence with one of the paths in
static call graphs. (2) The captured system calls of the target process can be incomplete as

all the events may not be properly introspected. (3) The introspected system call sequence

44

pid ppid process name
-] 2 swapper/e
1 1] init
2] kthreadd
3 2 ksoftirqd/® PID PPID PROCESS NAME
4 2 kworker/@:8 2 2] [kthreadd 1
5 z kworker/@: 8H 3 2 [ksoftirgd/@ 1
[3 2 kworker/u256:8 4 2 [kworker/@:0 1
7 2 rcu sched 5 2 %kwu rker/®:@H %
= 6 2 kworker/u256: 8
a 2 rcuns/ 7 2 [reu_sched 1
g 2 rcuos/1l B 2 [rcuos/e]
18 2 rcuos/2z El 2 [rcuos/1]
11 2 rcuos/3 1@ 2 [rcuos/2]
12 2 rcuos/4 11 2 [reuos/s3]
13 2z rcuos/5s 12 2 [rcuos/4 1
14 2 rcuos/6 13 2 [rcuos/5 1
15 2 rcuos/7 14 2 %FCUOS;E %
rcuos
ig % rcuus/g 16 2 [rcuos/B 1
rcuos/ 17 2 [rcuos/9 1
261 2z rcuob/124 18 2 [rcuos/1@ 1
262 2 rcuob/125 261 2 [rcuocb/124 1
263 2 rcuob/126 262 2 [rcuob/125 1
264 2 rcuob/s127 263 2 [rcucb/126]
265 2 migration/@ ;g;‘ g Erﬁuoh/!ﬂm %
migration.
ggg % :::22333;? 286 2 [watchdog/@]
! . 267 2 [watchdog/1]
268 2 migration/1 268 2 [migration/1]
269 2 ksoftirqd/1 269 2 [ksoftirgd/1 1
271 2 kworker/1:@H 271 2 [kworker/1:@0H 1
272 2 khelper 272 2 [khelper]
273 2 kdevtmpTs 273 2 [kdevtmpTs]
274 2 netns 274 2 %netns %
275 2 xenwatch
g;g % xenwatch 276 2 [xenbus |
xenbus .
1027 1 polkitd 277 2 [kworker/@:1 1
278 2 [writeback]
1874 1 getty 279 2 [kintegrityd 1
1078 1 getty 280 2 [bioset]
1084 1 getty 281 2 [kworker/u257:8]
1885 1 getty 282 2 [kblockd 1
1008 1 S e)
ata_s
ﬁi; ;"L kermmlcone 285 2 [khubd 1
erneloops 286 > [md 1
1149 1 R acpid 287 2 [devfreg_wg 1
i115@ 1 irgbalance 289 2 [khungtaskd]
1156 1 lightdm 290 2 [kswapd® 1
(@) (b)

Figure 3.5: (a) Identifying suspicious processes (b) Identifying kernel based malware pro-
cesses

may not exactly match with any one of the paths in the corresponding static call graph.

In all the above possibilities, we suggest that incident detection is possible through pat-
tern matching algorithms. For illustration, we considered shell code injected vVRAM of the
target virtual machine. Each introspected event trace of system calls at the process level
(Figure 3.6) is correlated against the pattern in the paths of the corresponding static call
graph (Figure 3.2). Finally we identified that, in the process id 1417, the shell code was

injected using the below sequence:
pid(1417) : ptrace_set_regs — ptrace_get_regs — process_vm_write v — sys_mmap

The logical finding from this approach is, the incident handler can know the sequence
of steps followed by the intruder to accomplish an incident. In reality, root cause analysis
would further help the incident handler to answer many forensically relevant questions and
can increase the event interpretation of the target system. Taking its forensic relevance, we
discuss that in the following subsection.

3.5.2 A scenario depicting root cause analysis

Scenario: Identifying the fake binaries
We detect the fake binaries using complex event processing.

 Fake binaries are generally placed in the temporary file system so that detection is not

possible once the virtual machine is turned off. Figure 3.7 shows the identified fake

45

Pid System call
1153 sys_poll

1417 sys_mmap

1456 sys_ioctl

1673 5Ys_access

1217 sys_mmap

1673 sys_shmat

1346 sys_bind

1346 sys_listen

1417 process_vm_write_v
1457 sys_fork

1278 SYS_access

1343 sys_ioctl

1457 sys_pipe

1417 process_get_regs
1321 sys_getittime
1278 sys_poll

1417 ptrace_set_regs
1468 sys_shmat

1135 Sys_access

1642 sys_semop

Figure 3.6: Introspecting the system calls for OpenStack VM

1132 1 rmmod Jsbin/rmmod

1147 2 vim Susr/bin/vim

1145 2 ls /bin/ls

1150 1 cat /bin/cat

1156 1 df [bin/df

1179 1 insmod Jsbin/rmmod
[1215 1156 rm Jtmp/rm |

Figure 3.7: Identified fake binary path

binary with the aid of full path and the incident handler can identify that, /tmp/rm is a
fake binary created by the pid=1215 as the original path should be /bin/rm.

We added this break point to the CEP engine. Our CEP engine uses Esper which is one
of the popular complex event processing softwares [133]. When the defined break point is
satisfied, it generates a warning along with time. We identify the primary key of the fake
binary event trace (i.e. pid). Once the key is known, then we search other buckets for event
traces with the same primary key value (here pid=1215). A screenshot depicting the same
is shown in Figure 3.8.

1| WARN: Event of interest-fake binaries

2| Time: Tue Mar 7 12:07:16 CEST 2015

3| Pid 1215 is the primary key for the current trace
4| Performing primary key based search...

5] Performing primary key based search...

6] Performing primary key based search...

71 Storing all the identified event traces: Time Tue Mar 7 12:07:59 CEST 2015

Figure 3.8: Alert generation using CEP

46

PID PPID PROCESS NAME FID FFID PROCESS NAME OTB VALUE
1 a init Q Q swapper /0
531 1 upstart-udev-br 1 0 init 0x36309880
537 1 systend-udevd 2 0 kthreadd -
666 1 upstart-socket 3 2 ksoftirgd/o -——
835 i upstart-file-br 4 2 kworker /0:0 ----
B4G 1 rsyslog 5 kwarker /0:0H

854 1 dbus-daemon 1] z kworker /u256:0 ----
920 1 ModeManager 7 2 rcu_sched -——
939 1 systend-1ogind & 2 reues,/ 0 -——
f41 1 buetoothd 9 2 reuos;1 —
958 1 avahi-daemon 10 2 FEUos, 2

963 958 avahi -daemon 1 2 reues, 3 -
870 1 Networ kmanager 265 2 migration/o -—--
1027 1 polkitd 266 2 wat chdog,/0 ---
1074 i getty 267 watchdog,1

1078 1 getty 268 z migration/1

1084 1 getty 269 2 ksaftirgd/1

1085 1 getty 270 2 kworker /1:0 ———-
1088 1 getty 2mn 2 kworker /1:0H —
1132 1 anacron 272 khelper ——

147 1 kerneloops 331 1 upstart-udev-br 0x36308a80
1149 1 acpid 537 1 systemd-udevd 0x36308700
1150 1 irgbalance 576 2 kpsmoused -——

1156 1 htd 578 2 TTm_swap -
1179 1 cups-browsed 666 1 upstart-scoket 0x3b396¢80
1215 1156 oF 939 1 :%:lemd-'lugird 0x3b395600
1218 1 accounts-daemon 941 1 bluetoothd 0x3b390e00
1230 1 cron a55 2 krfcommd o

247 1 Ty 958 1 avahi-daemon 0x3674aa00
1263 1 whoopsie 963 958 avahi-daemon 0x3630e900
1277 1156 lightdm 1132 1 anacron 0x2Ba61500
1292 1277 lightdm-greeter 1147 1 kerneloops 0x3BaB2al0d
1300 1 dbus-daemon 1149 1 acpi 0x3b395400
1301 1292 unity-greeter 1150 1 irgbalance 0x3b391c00
1305 1 at-spi-bus-Taun 1156 1 Tightam 0x3b394400
1309 1305 dbus-dameon 1179 1 cups-browsed 0x3Ba63100
1313 1 at-spi2-registr 1215 1156 xorg —

13117 1 gvfsd 1218 1 accounts-dameon 0x3630e580
1321 i wfsd-fuse 1230 1 cron 0x3630des0
1332 1 gcorf-ser\uice 1247 1 gerty 0x38a61c00
1342 1156 Tlightdm 1263 1 whoopsie 0x38a62d80
1146 1 init 1277 1156 Tightdm 0x3Ba61880
1348 1 mm-applet 1285 2 kauditd ————

1351 1346 indicator-messa 1292 1277 Tightdm-greeter 0x3630aa00
1352 1346 indicator-bluet 1300 1 dbus -daemon 0x2Ba62300

() (b)

Figure 3.9: (a) Enumerating the target process details (b) Populating the DTB value

To make the illustration simple, we considered only two CEP buckets in this case study.
The first CEP bucket gives the process name if the input is pid. The other one gives the
DTB (Directory Table Base) value of the corresponding process. System.map file is used in
identity paging to convert some of the static addresses. The drawback is, it cannot translate
addresses pertaining to all the regions of the memory. In most of the cases, list walking
and taking process memory details needs the potential to convert virtual addresses. To
accomplish this, we can use Directory Table Base (DTB) and the observations from the

victim virtual machine are:

* We identified the process name of the pid=1215 as xorg and the same is shown in
Figure 3.9(a).

* To know more about the process xorg, we populated its DTB (Directory Table Base)
value and we identified that, it does not have a DTB value (Figure 3.9(b)). The pro-
cesses which are not having DTB value can be treated as kernel processes.

* In the process of identifying the root cause, the next challenge is to understand as
to how the intruder created a fake binary with xorg kernel process ? To answer this,
we have taken the memory image of the victim virtual machine through VMI. The
acquired image bash history is correlated with the VMI results and we identified that,

the intruder aliased the bash kernel process to xorg and created fake binaries.

Finally, we parsed and stored each bucket (introspection file) in MySQL database along
with time. The incident handler can submit customized queries to identify the root cause of
the incident.

Example Query: Select pid, ppid, pname, DTB_Time, path, trigger_Time by joining the

47

results from DTB bucket, pname bucket and path bucket where pid=1215. The result of it
is shown in Figure 3.10 and the observations are:

Fake binary is inserted by a process with pid=1215 and pname=xorg

DTB _time is the time when the corresponding event trace is parsed and stored in the
database

trigger_Time is the time when the defined break point was satisfied

We identified the root cause of the incident from the above analysis i.e. a kernel
process is aliased to create fake binary

This scenario shows the capabilities of the proposed trigger module and CEP engine
when they are integrated into the introspection process. The same concept can be applied
for any type of incident by considering the positive traces and the negative traces for the
root cause identification.

Some more implementation details: We treat each of the populated introspected data
as a separate bucket. Accordingly, we stored it as a separate entity in the database by
adding timeline i.e. the time of parsing each trace and the time of trigger generation given

by the CEP engine. This resulted in improving the semantic interpretation for root cause

identification.
pid ppid pname DTB_time path trigger_Time
1215 1156 Xorg Mar 17 2015 12:06:59 /tmp/rm Mar 17 2015 12:07:16

Figure 3.10: Root cause identification for fake binaries

3.5.3 Merits of the approach

Our main objective is to increase the semantic interpretation of introspection events in the
cloud environment. From our theoretical formulations and the experimental results, our

approaches have the following advantages:

Independent of the type of the introspection model, the trigger module and CEP en-

gine can identify the irrelevant events pertaining to the occurred incident.

» With the aid of CEP engine, we created the flexibility of automatic updates to the rule

sets present in the trigger module .

* Analysis time for the incident handler can be reduced as only the suspicious and more

relevant events are passed to the correlation engine.

* Devised root cause identification and it drives the incident handler to effectively iden-

tify the primary source of failure.

48

O 1 .
Register
@ Cloud 4
Incident Handler 2 SLA
Cloud Forensic Investigator 3 Created Logs by our
(CF1) > CFlin cloud
Acquire Evidences 5

Interactions between
> — =~~~ ¥ Incident Handler and
cloud entities

Interactions between cloud
entities and Incident - —— <
Handler

4

FORensic Analytical 6
engine for Logs (FORAL)

Automated identification of

L — Log synching and storage
suspicious events E sy J &
v
why,
Hypothesis Generation > i :|7'\ wh::]h:,t’here
#Further "
. and How

Analysis

Figure 3.11: Proposed model to improve the transparency between the incident handler and
the CSP

The rest of the chapter discusses the part 2 and its contributions.

Organization of Part 2: We discuss the proposed model ALTRA in Section 3.6 which
can increase the transparency between the incident handler and the CSP. We discuss the two
proposed approaches (SeMS and CoPS) as part of our model and these can automatically
detect suspicious events performed by the incident handler (Section 3.7). In Section 3.8, we

validate both the approaches using a typical investigative scenario.

3.6 ALTRA- Proposed Model to Address Lack of Trans-

parency

The Cloud Incident Handler (CIH) should go through the process of registration for each
incident which should be standard and legally admissible. The registration will be reviewed
by the cloud entities and then accordingly SLAs are prepared. From then, the incident
handler can start the process of incident handling using any cloud forensic toolkit. We test
the proposed ALTRA model using CFI tool (Cloud Forensic Investigator). CFI is a tool
developed by us to perform forensic investigation in IaaS cloud [129]. More details about
the CFI are mentioned in Appendix II.

When CFI or any cloud forensic tool is used by the Incident Handler then there could
be two possibilities: (1) The CIH can be trustworthy and uses the forensic tool (here, CFI)
to perform all the healthy activities. (2) The CIH can be untrusted and performs suspicious

49

activities using the cloud forensic tool (here, CFI). Here, we classify an activity as healthy
or suspicious based on the access control policies given to the incident handler. If the
incident handler violates those policies then it comes in the category of suspicious else it is
treated as a healthy activity. For example, if he/she accessed the data of a tenant for which
there is no permission then it falls under the category of suspicious. Currently, no cloud
provider is facilitating advanced incident handling services to the end user because of many
architectural and legal challenges. One of the main architectural challenges for the cloud
provider is to handle when the CIH is not trusted.

Since the incident handler is given the access for the cloud infrastructure during the
incident handling process, he/she can exploit the opportunity to perform any suspicious
activity. The CSP should be aware of the activities being performed by the incident handler
when using any CFI. We propose to achieve this by creating a CFI log at the cloud side.
This log is basically an application log and contains information like, the time at which
the incident handler started the process of acquisition, locations accessed by the incident
handler, the objects read along with the corresponding time, the list of artifacts acquired,
the time elapsed to acquire each artifact, the IP from which the incident handler accessed the
cloud, the objects modified by the incident handler along with its access and modification
time, the time at which the incident handler completed, etc.

the process of evidence acquisition.

By analyzing the CFI log in cloud, the CSP can know whether the activities performed
by the incident handler are suspicious or not. Manually, it consumes a lot of time to analyze
the events in the CFI logs. We reduce this time with our Forensic Analytical engine for
Logs (FORAL). It contains two modules as shown in Figure 3.11 and we brief each of them
as below:

3.6.1 Remote log creation and syncing

The log created by the CFI will be stored in the cloud. In the worst case, the incident
handler can even access and modify the events in the log as he/she can access the cloud
infrastructure during forensic investigation. Our model handles this using the concept of
remote syslog. In our context, the cloud itself acts as a rsyslog client (node 1) whereas
rsyslog server is the dedicated host assigned for the purpose of storing the CFI logs (node
2). Once both the nodes are configured with rsyslog then all the events recorded in node 1
will be continuously synced and stored in the specified node 2 as well. The CFI log in node
1 is accessible to both the incident handler and the CSP but the CFI log events in node 2
can be accessed only by the CSP. This policy of replicating the log events helps the CSP to
always have the valid logs with high availability.

50

3.6.2 Automatic detection of suspicious events from the CFI logs

The common drawback across multiple log analyzer tools like Cloudlytics [130], Google
Analytics [131] is, they are mostly used for statistical knowledge extraction and cannot be
directly applied to answer forensic questions. Our approach of log analysis is well suited
for incident handling.

Most of the relevant work which detect suspicious events are at the level of system logs
but not at the level of application logs. For example, in [132], the authors found suspi-
cious events from the system logs using known black list and whitelist. This approach of
detecting suspicious activities cannot be applied in our case, as individually, the events in
the application may seem healthy but when we interpret them as a sequence, they may be
categorized as suspicious. We handle this problem using Causality Models and its details
are described in the subsequent subsection.

3.7 Approaches for Finding Suspicious Events Performed
by the Incident Handler

Various challenges are involved in automatically finding suspicious events from any appli-
cation log (here, CFI application log). In this context, the following points are worthy of

mention.

3.7.1 Identified challenges

* There are numerous events in the CFI logs and it is very difficult for the CSP to find

the events of interest.

* Analyzing all the events to generate the hypothesis consumes a lot of time and some-

times may even lead to wrong hypothesis generation.

We address the above issues by using the concept of causality models [150].

3.7.2 Building a causality model from cloud forensic application logs

to identify forensically relevant events

Causality models are used to show the cause-effect relationship between the events/processes.
We construct this causality using Directed Acyclic Graphs (DAG). The major advantage
with DAGs is, it can represent different associations starting from simple to complex ones
like confounding, endogenous association, and d-separation [134]. This makes one to use
DAG for modeling the relations for any type of application irrespective of its complex logic
behind event generation. Our idea is to construct a DAG from the logs of the corresponding
application. For this, we apply the proposed approaches- SeMS/CoPS.

51

Optimal threshold value for TKS algorithm

Accuracy

Data Set 2

Datasetl Data Set 3

Figure 3.12: Experiments conducted to decide the k value for different data sets

Applying Sequence Mining to identify and build causal relations between the events
(SeMS)

Applying sequence mining to build causalities will work due to the following reasons:

* In every application, a sequence of events will occur starting from its launch time
to termination/closing time. If two events e, and e, occurred in a sequence of an
application session then we can say that ¢, is the outcome of the cause e,.

* The events in the sequence which are not co-occurring frequently can be identified
easily through sequence mining. Those sort of events can be treated as outliers and
will be forensically relevant.

There are many sequence mining algorithms but we used TKS (Top-k Sequences) as
it 1s more suitable for dense data sets. We used TKS to initially get the top-k frequent
item sequences. Here, k is the count of the most relevant sequences out of all the se-
quences. We arrived at a K value of 10 percentage of the data set after a series of trials
and observed accuracy improvement (Figure 3.12). Now, Algorithm 2 is applied to get
the suspicious sequences. Say, the CSP is interested to know the suspicious sequences in
CFlI log, then each new sequence in the log during Time Window T is compared with the
frequent item sequences (freq_seq). If a mismatch occurs, the percentage of fraction left
(per_fractionLe ft) will increase and if it is more than the user threshold (¢/.,) value then
it is considered as suspicious sequence.

It is always tricky to decide the exact value of threshold. For the current problem, we
identified various threshold value decision parameters like, history about the suspicious
sequences generated from the target application, investigating entity experience, and the
environment in which the log is stored. The only problem with SeMS is, it cannot quantify

the prediction of suspicious sequences. We proposed another approach called CoPS.

52

Algorithm 2 Finds suspicious sequences from cloud forensic application logs using SeMS

Input: A set of cloud forensic application sequences during TimeWindow T, th.,
Output: Suspicious sequences Sy, S, ..., S, where each sequence contains set of events.
freq_seq|| = apply_seqMining()
for each sequence S; in TimeWindow T do
for each sequence S; from freq_seq do
for each item I in S; do
if S; contains I then
remove [from S;
end if
end for
end for
residue = original_length(S;) — new_length(S;)
per_fractionLe ft = (residue/original len) % 100
if per_fractionLeft > thg., then
consider S; as suspicious
end if
end for

Building the causalities between the application events using conditional probability
(CoPS)

We also identify the suspicious sequences of a cloud forensic application using conditional
probability. A conditional probability can be simply defined as:

“The extent of belief of the occurrence of an event I/, when E, was given [135]”

This will work because there is a cause and effect association between the log events of
any application (here CFI). The extent of a cause leading to effect can be decided with the
associated probabilities. Once the probabilities are calculated then deciding the suspicious
sequence is a trivial job.

Here also, we take all the new sequences in the time window T and initially construct a
trie tree. The reasons for using trie tree are: (a) It is an ordered tree where keys are generally
strings. (b) Descendants of any node will have some common prefix which can be useful in
sequence matching.

For each node in trie tree, we calculate the conditional probability (P) using equation
3.7.1.

P = (C(n;)/C(ny)) (3.7.1)

where n; is the current node, n; is the parent node of n; and C(n;), C(n;) indicate
the respective node count. If the probability of an item in the sequence is less than the
predefined threshold (th.,) then the sequence is treated as suspicious (Algorithm 3).

53

Algorithm 3 Finds suspicious sequences from cloud forensic application logs using CoPS

Input: A set of cloud forensic application sequences during TimeWindow T, Threshold
thseq,
Output: Suspicious sequences S,, Sy, ..., S, where each sequence contains set of events.
for each sequence S; in TimeWindow T do
for each item I, in sequence S; do
calculate the probability P of /, node considering the occurrence of previous item
I, node for all S
end for
if P(1,) < ths., then
consider \S; as suspicious
end if
end for

3.7.3 Comparison of SeMS annd CoPS

Both the approaches have been applied to find the suspicious events in CFI logs. Based on
the CSP’s requirement, an appropriate method can be chosen. To take up this decision, a

comparison between the two approaches is made and the same is briefed in Table 3.3.

3.8 Automatic Identification of Suspicious Events: A Typ-

ical Scenario

To validate the proposed approaches (SeMS and CoPS), we have taken our own application-
Cloud Forensic Investigator (CFI) which is developed for performing incident handling in

the IaaS cloud environment [129]. The detailed scenario is given below.

3.8.1 Scenario description

A cloud user virtual machine V' M, is compromised by the intruder’s virtual machine V' M;.
Then V' M,’s user raises a complaint to the CSP. The CSP employs an internal incident han-
dler to start examining the incident. In this case, the incident handler can use our proposed
model which involves major activity of running the cloud forensic application. The capa-
bilities of our CFI tool are briefed in Appendix II. More fine grained sequence of steps are

briefed below:

* New Case (Step 1): The incident handler creates a new case based on the registered

complaint. In this stage, the CIH enters various details about the case.

* Configuration Settings (Step 2): Here, the incident handler can enter credentials for
various cloud nodes. For example, when the cloud forensic application runs in the
openstack cloud, then the incident handler should enter the cloud compute node cre-
dentials. The compute node acts like a hypervisor in the openstack and this node

Table 3.3: Comparison between SeMS and CoPS for the application logs

S. || SeMS (using Sequence Mining for | CoPS (using Conditional
No| finding Suspicious sequences) Probability for finding Suspicious
sequences)

1 || Finds the top-k frequent item se- | Finds out the conditional probabil-
quences and calculates the residue | ities of all events in the input se-
by comparing with the sequences in | quences of time window T
Time window T

2 || Input sequences above the thresh- | Input sequences of conditional
old are suspicious probability below the threshold are

suspicious

3 || Memory efficient when the data set | Memory efficient when the data set
is small is large

4 | Time complexity of finding top-k | Time complexity of building trie
frequent patterns: O(M*N) where O(N*L), where L is length of
N is user sequences and M is input | largest sequence and N is number of
sequences user sequences

5 || Time complexity of finding outlier: | Time complexity of finding out-
O(N*k*L) where N is number of | liers: O(N) where N is number of
user sequences, L is the maximum | user sequences
length of frequent sequence

6 | Accuracy is governed by threshold | Accuracy is governed by threshold

and value of k. If value of k is
not set correctly, then certain suspi-
cious sequences may be reported as
healthy

alone.

54

contains the vDisk and service logs of the target and non-target instances. The con-

figuration should also accept the Openstack cloud user’s dashboard credentials by

which the target virtual machine’s VRAM can be acquired. There is a chance of trust

violation in this step which we describe in the next section.

Selective acquisition (Step 3): The incident handler can select the required evidences

and transfer them to an isolated environment. To prove to the court of law regarding

the admissibility of the acquired evidences, the checksum is calculated at the cloud

side and recalculated at the incident handlers node. If both the checksums are equal

then it is legally accepted otherwise not.

Analysis (Step 4): All the acquired evidences can be examined using the CFI analysis

capabilities and then the results are exported for legal proceedings.

55

3.8.2 Challenges to handle in the above scenario

There are certain issues that can be raised during Step 2 and Step 3. For example in step 2, to
acquire the introspection based vVRAM events of the V' M, user, the incident handler needs to
enter the compute node (hypervisor) details. Since the cloud is a multi-tenant environment,
the incident handler can introspect the VRAM events of non-target users and this leads to
the privacy violation of those users. We developed CFI with the basic assumption that the
incident handler is trustworthy. In reality, always this assumption may not hold good i.e. if
the incident handler is not a trusted entity then he/she can perform any suspicious activity

like acquiring other users’ data.

3.8.3 Applying the proposed approaches to find suspicious events in
CF1I logs

We setup Openstack cloud with high end configuration following its legacy networking
architecture. We emulated the role of a bad incident handler and then performed suspicious
activities using CFI tool in the Openstack cloud. The activities performed using CFI tool are
logged at the cloud side. SeMS and CoPS are then used to detect the suspicious activities in
CFI log.

SeMS

We pre-processed the log by assigning a unique number for each event and the same is
shown in Figure 3.13. For example, presence of event 1" in the pre-proceesed log indicates
that new case object has been invoked, number 72" indicates that the details of the case are
entered by the incident handler and like these, each number in Figure 3.13 represents an
event generated by the incident handler (-1 is used as separator between every two events
and We have taken a minimum number range of 10 and maximum of 2 million). After giving
the pre-processed CFI log as input to the sequence mining algorithm, we got top-k frequent
sequences at one instance of time (Figure 3.14). The DAG is constructed by running the
TKS for multiple instances (Figure 3.15). Each user sequence in Time T is given as input to
Algorithm 2 and then it checks whether the input sequence is suspicious or not. The same
is shown in Figure 3.16 (here, user threshold value is taken as 25 %). We decide this as

threshold value based on the number of event types in the CFI application log.

CoPS

We represented the sequences in a given Time window T using trie data structure (ordered
tree with a common prefix to the descendants of each node). We iterated through trie for
each non-T sequence of the application and updated the count of each node for the matching

prefix. Finally, the probability of event occurrence P in the sequence is calculated. If the

56

R

-
K B3
. -
USRS
U
U

-
'
[
U

-

e
U
U

[

(ST N ¥
"
U U

[
b

L e S S S
1Y)
1
-
Ky

b
e
AL

1B
U
P

O e
|

|
[

[A A R S R SR A}

e e =R S S I O SR

|

B R N
|

o

N
S8
.
[
U
-

-
!
|
-
|
()

X
0 L W W W

1
1

[*R*Y
U

[
[ERSH N

R e e e
RN

U
O e e e I N
b

ks b3 b R B
|

m
|
|
s

Figure 3.13: Events in the CFI log after pre-processing

1400

1300

n 1071 1071

Support

300

200

@ > 3 o el &) o Qv o o o) (@] [e v

Patterns

Figure 3.14: Frequent top-k sequences identified using SeMS

probability of any event is less than the given threshold then we considered that as suspi-
cious. For the same input file in Figure 3.13, CoPS identified the suspicious events and the
same is shown in Figure 3.17.

The comparison between SeMS and CoPS is shown in Table 3.4. Summarizing it, ex-
ecution time for SeMS is high than CoPS and the memory consumption for CoPS is high
when compared with SeMS.

Since the same CFI log events are given as input to both the SeMS and CoPS, the same
sequence is detected as suspicious by both the approaches (Figure 3.16 and Figure 3.17).
Describing the suspicious sequence found i.e. (Seq: {1} -1 {2} -1 {3} -1 {5} -1 {6} -1
{7} -1 {8} -1 {9} -1 {13} -1 {4}), the incident handler created a new case object (item
1), then details of the case were entered (item 2), did basic enumeration about the target
VM (item 3), acquired the vdisk of the target VM (item 5), modified the nova.api log at
/var/log/ of compute node (item 6), modified the keystone-all log at /var/log/ of compute

node (item 7), acquired non-target VM vdisk (item 8), did advanced enumeration about the

<

=

<74
Load_Artifact

@
LN

Y
Add_Cas

MNew Case \

“

Open_Case Yp-_!
7

Inv._Nal

<

(D

v.
LS

Case_Location

-
N

K

[

@~
Hyp._IP!

W
s

!

|

\

Lead _conf

D,

L5 Horizon_|P

It}
>

@
b

AV

O
57

Case_Name

Close Case

vDisk:

i
Herizen_pwd

/&

Horizon_User

Figure 3.15: DAG constructed from the healthy causalities of CFI log

Table 3.4: Comparison between SeMS and CoPS

No. of se- | Total Time | Peak Mem- | Total Peak Mem-
quences (ms) for | ory (mb) for | Time(ms) ory (mb) for
SeMS SeMS for CoPS CoPS)

10 22 1.81805603 | 11 1.890281577
1450 130 6.30869293 | 91 7.572235107
4350 184 15.12903595| 162 19.5663223

142100 709 79.12886047| 519 81.42918396
2121600 7356 709.9880905 | 3797 711.2549823

57

non target VM (item 9), modified the host OS logs (item 13), terminated the application

without closing the case (item 4). It is important to note that, each item details mentioned

above are the message descriptions about the event in CFI log and can vary based on the

application. When the suspicious sequences are identified by SeMS/CoPS, then it indicates

that the incident handler who had accessed the cloud for evidence acquisition is not trusted

and CSP can further proceed with legal actions.

Correctness of SeMS and CoPS: We gave all the events generated from the suspicious
activities to both SeMS and CoPS. We observed that, both the approaches achieved an
average accuracy of 82.3 %.

So SeMS and CoPS alert the CSP whenever the incident handler performs any suspi-

cious activity in cloud. Analyzing the detected suspicious activities can make the cloud

provider to generate the hypothesis quickly by which he/she can get the answers for several

questions like, when, what and where the suspicious activities are performed by the incident

handler.

58

<terminated> LogMiner2 [Java Application| fusr/lib/jvm/java-7-openjdk-amd64/binfjava (30-May-2016, 12:55:26 pm)
Enter input file path:

1ome/batman/ tksin2. txt
Enter output fil

batman/tkso

path:
t2.txt

18

=============Algorithm TKS v0.97 - STATISTICS =============
Minsup after preprocessing : 374

Max candidates: 9 Candidates explored : 19

Pattern found count : 10

Time preprocessing: 57 ms

Total time: 73 ms

Max memory (mb) : 6.308692932128906

Final minsup value: 692

Intersection count @

Number of patterns: 18
Enter file containing sequences from date range:
ome/batman/tksseq. txt

Mismatches:

1
User seq: 12356789134
Fraction Left: 60.080004%
Sequence left: 56 78 9 13
Verdict: Suspicious

User seq: 12 11 1@ 4
Fraction Left: 20.0%
Sequence left: 10
Verdict: Healthy

Figure 3.16: Suspicious sequences identified by SeMS

<terminated> cfiCondi [Java Application] /usr/lib/jvmfjava-7-openjdk-amd64/binfjava (31-Mar-2016, 10:45:30 am)
Enter user seqguence file:

Enter input file:

________________ e—————————
User seq: 1 2 3 5 1] 7] 9 13 4
Cond prb: 47 100 100 92 77 68 100 68 5 100
Verdict: Suspicious

A T— =
User seq: 12 11 10 4
Cond prb: 52 93 32 94

Verdict: Healthy

Figure 3.17: Suspicious sequences identified by CoPS

3.8.4 Advantages of the proposed model

There are several aspects considered by the proposed model. Some of them are briefed
below:

* For any user: Even though, the approaches are validated to identify untrusted incident
handler, they can be used to identify any user with bad intentions. In that case, SeMS
or CoPS takes the events from the cloud system logs/VM logs.

* Completeness: Our model gives the complete process involved in cloud incident han-

dling starting from the incident handler registration to report generation.

* High availability and reliability: Our CFI application uses the concept of remote log-
ging at multiple nodes. This ensures that CSP can rely on the log entries in the node
which is not accessible to the incident handler. Due to the redundant sync logging

feature, the log events are always available.

* Accurate hypothesis generation: Without applying SeMS or CoPS, the number of
events on the event reconstruction timeline will be very high and this will create diffi-

culties in generating hypothesis. After applying our approaches, the number of events

59

on the timeline reduced drastically and they are forensically relevant. This finally
would lead to arrive at accurate hypothesis about the occurred incident.

* Automatic identification of suspicious events: The suspicious events from the CFI log
are identified automatically without much human effort.

3.9 Summary

The contributions of this chapter have been organized into two parts. The first part deals
with increasing the availability of the volatile evidence VRAM and then analyzing it to have
accurate logical findings. The second part addresses the architectural issue pertaining to the
first part which can make the CSP to asses the trust aspect of the incident handler activities.

The volatile evidences play a key role during the forensic based incident handling. Its
availability cannot be always ensured. In this chapter, we focused on capturing the mem-
ory events from VMM level through Virtual Memory Introspection (VMI). The approach
of introspection reduces the changes in the target instance virtual memory and this may in-
crease the legal admissibility of the acquired memory events. We observed that the number
of introspected events of a VM is usually high and this introduces new difficulties for the
incident handler in finding events of forensic relevance. We reduced the challenges in this
issue by designing a trigger based introspection model. This can detect the known incidents
and variants of known incidents. It is important to note that, detection alone is not sufficient
and requires the incident handler to find the root cause of the incident. We achieved this
using Complex Event Processing (CEP). During the process of handling cloud incidents,
incident handler can perform suspicious activities and once it happens, FORAL engine of
our model detects and alerts the CSP using the proposed approaches- SeMS or CoPS. Thus,
the model improves the transparency between the incident handler and the CSP.

The work presented in this chapter is accepted and published work in [PUB4], [PUB6],
[PUBY9, [PUBI10] and [PUB11] (refer page no. 136-137). In the next chapter, we discuss

the proposed approaches for analyzing cloud service logs for incident handling.

60

Chapter 4

A Model for Effective Event
Reconstruction using Cloud Service Logs

“Cloud services help organizations move faster, lower IT costs, and scale”

- Amazon

In Chapter 3, we discussed the devised solutions for handling volatile evidences. In
the current chapter, we discuss the proposed approaches for analyzing the cloud specific
artifact named service logs which can serve as evidences for incident handling. Firstly,
we discuss their role during forensic based cloud incident handling. We then describe the
proposed segregation approaches and finally apply the proposed aggregation approaches on
the events of service logs which can lead to effective incident handling.

4.1 Background and Motivation

In this chapter, we consider cloud service logs as evidence for incident handling as we

identified many events which are relevant to the occurred incident at VM level.

4.1.1 What are service logs?

The IaaS cloud solutions are provided by many inter-operable services. For each service,
there is an associated log created at the cloud node(s). Each log contains events of mul-
tiple tenants, multiple users and multiple virtual machines. An example service log event

reflecting the same from Openstack cloud is shown in Figure 4.1.

61

Process id Service name

[\
2015-12-17 07:00:46.764 54671 INFO nova.virt.libvirt.driver [-] [instance:a3f7b4a4-47c1-51f3-18c6-156ef6704507]

Y N /
Event Type ‘

Date and Time Instance spawned successfully VM id, req ID etc.
\P’_/

Event Message

Figure 4.1: A sample service log event in the Openstack cloud

I