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Abstract

Quantum transport has become an emerging field in research day by

day. Its pure mesoscopic study. We have used two approaches NEGF

& RMT. Quantum transport model is presented using the NEGF(non-

equilibrium Green’s function) formalism. The non-equilibrium Green’s

function(NEGF) formalism provides a natural framework for describing

quantum transport. The NEGF method originated from the seminal

works of Martin and Schwinger (1959), Kadanoff and Baym (1962) and

others who used the methods of many-body perturbation theory to de-

scribe the distributed entropy generating processes. In our bottom-up

approach we have used elastic resistors for which entropy-driven pro-

cesses are confined to the contacts and problem of our system channel

here can be treated within a one-electron picture by connecting contacts

to the Schrodinger equation here.

In recent years it has been a revival of interest in Random Matrix

Theory (RMT), which has been discussed in second part of the the-

sis. In this thesis we have studied quantum transport corresponding

to different systems like one-dimensional wire, CNT(Carbon Nanotube),

GNR(Graphene Nanoribbon) and finally disordered one dimensional wire

with Random Matrix Theory (RMT) approach. We have used non-

equilibrium Green’s function approach in our work also. This thesis has

been divided into two parts, in first part we have studied transport corre-

sponding to CNT, GNR and other systems. In second part of the thesis

we have studied disordered wire in one-dimensional case, where applica-

tion wise it leads to high mobility devices. It is pure mesoscopic study

and has a lot of applications in spintronic fields. Random Matrix Theory
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(RMT) has a lot of applications in different fields like in Quantum me-

chanics, statistics, condensed matter physics and many more areas like

wireless communication etc. It deals with statistical properties of large

matrices. In second part of the thesis, we have studied level spacing

distributions of finite-sized one-dimensional disordered systems. As the

system evolves from a quasi-ballistic to a strongly localized regime, the

system crosses over from a strongly non-Wigner-Dyson type level spac-

ing distribution to a universal Poisson distribution in the thermodynamic

limit. It goes in between through regimes where the distribution seems

to be a mixture of Wigner-Dyson type and Poisson distributions, thus

indicating the existence of pre-localized states before the thermodynamic

limit sets in.
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Preface

About the thesis This thesis presents a theoretical study of the

CNT, GNR and level spacing distributions of finite-sized one-dimensional

disordered systems. We have used TBH(tight binding Hamiltonian) ap-

proach in our work, as well as Random Matrix Theory in our work.

To the reader

The reader is assumed to be associated or working in theoretical con-

densed matter physics. The main prerequisite for the reader is to have

basic knowledge of statistical mechanics, Quantum mechanics and nu-

merical techniques. The thesis requires some basic algebra which may

make reader comfortable in relating our studies with the real physical

processes.

Thesis outline

This thesis is divided into eight chapters, where the first, respectively

are meant as background to the particular fields in devices and physics

studied. In chapters (2-8), we discuss the research work that has been

carried out. Here is brief discussion about the organization of the thesis.

• In chapter 1 We discuss the basic structure and dynamics of the

devices. A detailed literature review of the theoretical as well as

the experimental studies that is related to our work is also present

in this chapter.

• The details of the comparison between self-consistent Quantum &

Semi-classical methods in chapter 2.

• In chapter 3 We studied certain technologically important Nano-

scale MOSFETs as closed & open Quantum systems.
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• In chapter 4 We studied coherent transport with scatterers in low

dimensional systems.

• In chapter 5 & 6 We studied the conductance & transport prop-

erties of ZGNR(zigzag graphene nanoribbon) using NEGF method.

• In chapter 7 Introduction about Random Matrix Theory and Quan-

tum chaos have been discussed.

• In chapter 8 Mesoscopic Fluctuations, Two parameter Scaling and

Concommitant Unusual Level Spacing Distributions in Finite 1D

disordered Systems have been discussed.

• Finally, the research work is summarized in chapter “Conclusions

and Future work”. Here, we outline some conclusions and the future

scope of the work.
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Chapter 1

Introduction

1.1 Introduction to Nano-scale devices and

Approaches

Due to the rapid advancements in the field of Electronics and Computer technologies,

it is now possible to incorporate lots of FETs in a Laptop. FET is a three terminal

device whose resistance can be controlled. This resistance can be measured by two

contacts. So in a nutshell, the resistance is the channel. The two contacts are the

source and the drain and the controlling part is the Gate of the FET. There is an

insulator between the Gate and the channel which prevents any flow of current.

But the applied Gate potential changes the condition of the channel. So we have

a Gate voltage which controls the resistance of the channel and a Drain voltage

which drives the current in the device. Now, the resistance can be varied between

10KΩ when the device is ON to 100MΩ when it is OFF. Hence, we can use it as

a switch. In a laptop, there will be lot of such switches which do all the logical

operations. Tremendous progress has occurred in last 50 years in the field of VLSI

fabrication technologies. The channel length ‘L’ is reduced from 10µm in 1960 to

of the order of less than 20nm in present day. This allows chip designers to pack
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10,000 times more FETs into a chip of a given surface area. This in turn boosts

the computing power several folds. What is the limit of the downscaling? Nobody

knows but one thing is certain. We have to understand how to model and describe

the electronic properties of the futuristic Nano-Scale devices. In order to model the

flow of current in a Nano-Scale device. The first step is to draw an equilibrium

energy level diagram and locate the electrochemical potential set by the source and

drain contacts. To understand the flow of electrons in the channel. The first thing

which is of primary importance is the availability of electronic states in the vicinity

of the chemical potential. This decides the resistance of the channel. Which can be

controlled by the gate voltage. The following figure describes the situation in the

channel.

Figure 1.1: Allowed Energy Levels inside the channel (Active region) of the device. A
positive Gate Voltage VG moves the energy levels down and brings the empty energy
states in the vicinity of the chemical potential µ. The electrochemical potential is
fixed by the source and drain contacts. In this case the contacts are under thermal
equilibrium.

If we connect a battery which lowers the energy levels in the drain contact with
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respect to the source contact. It maintains them at distinct electrochemical poten-

tials separated by qVD, i.e, µ1-µ2=qVD. We obtain two distinct Fermi functions:

f1(E) =
1

1 + exp((E − µ1)/kBT )
(1.1)

f2(E) =
1

1 + exp((E − µ2)/kBT )
(1.2)

for source and drain contacts. Now, each contact will try to bring the channel into

equilibrium with itself. The source will keep on pumping electrons into the channel

and the drain will keep pulling out electrons from the channel thereby establishing

current in the device.

A nano-scale device is a functional structure with nanoscale dimensions which

performs some useful operation, for example a Nano-FET. The schematic of a Nano-

FET is shown in the Fig.(1.2). The nature of the transport in such a nano-device

depends on the characteristic length scales of the active region of the device. If the

scattering events are very frequent as carrier travels through the active region of

the device. The carrier transport will be diffusive in nature. This will be reason-

ably approximated by the semi-classical Boltzmann Transport Equation (BTE) [1].

Energy dissipation occurs throughout the device. The contacts are simply injectors

and extractors of carriers under steady-state conditions. In contrast, if there is very

little or no scattering from source to drain, the transport is then said to be ballistic.

The wave nature of the charge carriers become important in terms of quantum me-

chanical reflection and interference from the structure itself. The overall description

of the transport is given in terms of quantum mechanical fluxes and transmission [2].

The energy is no longer dissipated in the active region of the device. It dissipates

at the contacts.

Describing the flow of current in these modern nano-scale devices involves some
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Figure 1.2: The schematic of a generic Nano-scale FET device consisting of source
and drain for charge carriers and a gate which controls the transfer characteristics
of the active region.

of the most advanced concepts of non-equilibrium statistical mechanics. The appli-

cation of non-equilibrium Green’s Function (NEGF) formulation provides a rigorous

framework for the development of quantum device models. This actually bridges

the gap between the fully coherent quantum transport models to fully incoherent

Boltzmann transport models of device physics. It is only with the advent of meso-

scopic physics in 1980’s. The importance of the contacts in interpreting experiments

became widely recognized. Prior to that, it was a common practice to ignore the con-

tacts as minor experimental distractions. A model introduced by Landauer gained

increasing popularity [3]. In this model, the conductor itself is assumed to be a wire

free of all interactions. And irreversibility and dissipation arise from the connection

to the contacts. This Landauer model seems relevant to the modeling of the elec-

tronic devices as they scale down to atomic dimensions. A simple quantum mechan-

ical treatment of scattering in nano-transistors has been presented by R. Venugopal

et.al [4]. Under this, they have presented a computationally efficient two dimensional
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quantum mechanical simulation scheme. For modeling dissipative electron transport

in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simula-

tion scheme solves the NEGF self consistently with Poisson’s equation. By treating

the effects of scattering, we use a simple approximation inspired by Buttiker probes

which is often used in mesoscopic physics. Another work by the same group of R.

Venugopal et.al. on quantum mechanical analysis of channel access geometry on

nano-scale device performance has been carried out. This is based on an expan-

sion of the device Hamiltonian in coupled mode space [5]. An efficient program for

all-quantum simulation of nanometer FET using Landauer-Buttiker approach for

ultra-thin body FET. The channel imperfection has been developed by V.Vyrurkov

et.al. [6]. Recently, a Two-Dimensional Quantum Mechanical simulation to explore

the source/drain contacts in Silicon-on Insulator(SOI) MOSFET. The dependen-

cies of the contact resistance on the contact length, Schottky barrier height, doping

concentration, SOI thickness have been investigated [7]. The study of quantum

transport models for a two-dimensional nano-size double gate(DG) MOSFET using

NEGF and Wigner distribution has been studied by Haiyan Jaing and Wei Cai [8].

An elementary introduction of the NEGF method has been given by P. Vogl and

T. Kubis [9]. This is extremely important for consistent carrier dynamics calcula-

tions of open nanosystems, where quantum effects and incoherent scattering plays a

comparable role. A theoretical investigation of the effects of dephasing in molecular

junctions using atomistic first principles has been carried out by Jesse Maassen et.al.

[10]. Under this, a comparison between Buttiker probe model and a more micro-

scopic dephasing model has been carried out. A Green’s function approach to study

the transport through a gate-surrounded by Si nanowires with impurity scattering

has been carried out by Jung Hyun Oh et.al. [11]. One of the most important work

on dephasing in quantum transport using NEGF based model is done by Roksana

Golizadeh-Mojarad and Supriyo Datta [12].
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Apart from theoretical and simulations of nano-structure devices, there has been

a rapid progress over last decade realizing functional nano-scale electronic devices

based on self-assembled structures such as semiconductor nano-wires and carbon

nano-tubes [13]. Semiconductor nano-wires(NWs) have been studied over the past

decade. In terms of their transport properties and for nano-device applications such

as resonant tunneling diodes, single electron transistors [14], and FETs. Recently,

there has been a dramatic increase in interest in NWs due to the demonstration of

directed self-assembly of NWs via in-situ epitaxial growth [15, 16]. Such semicon-

ductor NWs can be epitaxial Si, Ge or III-V semiconductors. Where it has been

demonstrated that such wires may be controllably doped during the growth, and

abrupt compositional changes can form high-quality 1D hetrojunctions. Nano-wire

FETs, bipolar devices and complementary inverters have been synthesized using

such techniques. The ability to controllably fabricate heterostructure nano-wires

has lead to the demonstration of nanoscale devices such as resonant tunneling diodes

and single electron transistors. The scalability of arrays of such nano-wires to cir-

cuits and architectures have also been addressed. However, the primary difficulty at

present is in the ability to grow and orient NWs with desired location and direction.

Another material which is very useful for fabrication of nano-scale devices is car-

bon nanotubes. Singled-walled (SW) carbon nano-tubes(CNTs) are a tubular form

of carbon with diameters as small as 1nm and lengths of a few nm to microns. Due

to their remarkable electronic and mechanical properties, CNT’s are currently of

interest. For a number of application including interconnects, CNT-based molecu-

lar electronics, AFM based imaging, nanomanipulation, nanotube sensors for force

and pressure. The chemical nature, nanotube biosensors, molecular motors, na-

noelectromechanical systems, hydrogen and lithium storage, and field emitters for

instrumentation including flat panel displays. In terms of transport properties, ex-

periments have demonstrated very high mobilities and nearly ballistic transport
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[17, 18]. Complimentary n and p channel transistors have been fabricated from

CNTs and basic logic functions have been demonstrated [19]. Again as with semi-

conductor nanowires, the primary difficulty faced today in a fabrication technology

is the directed growth of CNTs with desired chirality and positioning on a semicon-

ductor surface, suitable for large scale production.

1.2 Introduction to NEGF and RMT

1.2.1 NEGF Method

Now, we may begin by considering a small device with one energy level in the channel

as shown in Fig.(1.3). If we consider γ1
h̄

and γ2
h̄

as the rates at which an electron

placed initially in the level ε will escape into the source and drain contacts. The

steady current in the one level channel can be given as

I =
2q

h̄

γ1γ2

γ1 + γ2

[f1(E)− f2(E)] (1.3)

We apply a small voltage (VD) across the contacts which split the electrochemical

potential as shown Fig.(1.3). We may write the current through this device by

assuming µ1 > ε > µ2. Here, the temperature is low enough so that f1(ε) ≈ 1 and

f1(ε) ≈ 0. Hence, the expression of the current through the channel becomes,

I =
2q

h̄

γ1γ2

γ1 + γ2

=
qγ1

h̄
(1.4)

if γ1=γ2. Therefore, we can pump unlimited current through this device by increas-

ing the value of γ1. However, there is a limit to the maximum value of conductance

(G0) for a one level device [20].

What we have missed is the broadening of the level that is due to the coupling

of the channel with the contacts. The broadening causes the part of the energy level
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Figure 1.3: A one-level device channel with energy ε.

to spread outside the energy range between µ1 and µ2.

Figure 1.4: Coupling of channel with the contacts broadens the energy level, thereby
spreading part of the energy level outside the range between µ1 and µ2.
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The actual current will now be given as:

I =
2q

h̄

∫ ∞
−∞

Dε(E)
γ1γ2

γ1 + γ2

[f1(ε)− f2(ε)]dE (1.5)

where, Dε(E) is the broadened density of states(DOS).

So far we have talked about one-level channel for small conductors. This model

helps us to identify important concepts underlying the flow of current through a

channel, namely the location of the electrochemical potential relative to the DOS.

The broadening of the levels due to coupling with the contacts and existence of a

conduction maximum G0. Now, the challenge will be to make a transition from

one-level to multi-level channels with N energy levels. This is bottom-up approach,

i.e. from small scale atomistic transport to intermediate ballistic transport to finally

diffusive transport.

Under this, we have the following changes. The single energy level ε will become

N×N Hamiltonian matrix [H]. The term γ1,2 which is the broadening term will

become a broadening matrix, [Γ1,2(E)]. The effect of the contacts will be described

by the ‘self energy’ matrix,
∑

1,2(E). Now, all the above quantities can be worked

out using NEGF method which is described and applied in chapter 3 and 4 and 5

of this thesis. The Fig.(1.5) shows a schematic for multilevel channel. There is an

enormous amount of physics behind general matrix model. These issues have taken

up in this thesis which give an in-depth view of the transport in Nano-Scale devices.

Which establishes a bottom up view of the things i.e., from ‘Ballistic Transport to

Ohms law’.
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Figure 1.5: A general matrix model of a multi-level channel. The ‘s-contact’ de-
scribes the incoherent scattering processes.

1.2.2 Random Matrix Theory

Random matrix theory (RMT) was developed in the (1950-1960) by Wigner, Dyson,

Mehta and others. In basic statistical mechanics a commensurable renunciation of

exact knowledge is made. By surmising all states of a very large ensemble to be

equally probable. One can obtain useful information about the over-all behavior of

an intricate system, when the observation of the state of the system in all its detail is

infeasible. This kind of statistical mechanics is clearly no enough for the discussion

of nuclear energy levels. We wish to make verbal expressions about the fine detail of

the level structure. Such verbal expressions cannot be made in terms of an ensemble

of states. What is here required is an incipient kind of statistical mechanics. In

which we renounce exact knowledge, not of the state of the system but of the nature

of the system itself. We picture an intricate nucleus as a “black box” in which a

large number of particles are interacting according to unknown laws. The problem
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is then to define in a mathematically precise way an ensemble of systems in which

all possible laws of interaction are equally probable [21].

Originally conceived to bring some order into the spectra of complex nuclei.

The attraction in random matrix theory was renewed enormously when Bohigas,

Giannoni and Schmit conjectured that it should be applicable to the spectra of all

chaotic systems [22]. In the following years a lot of evidence has been obtained that

this conjecture is true [23].

We study level spacing distributions of finite-sized one-dimensional disordered

systems. Density of states of finite-sized one-dimensional disordered system has

been discussed for various system sizes and different strength of the disorder system.

Disorder effects have started to show up somewhat more prominently in the sense

that the level broadening is relatively larger and the overlap between two broadened

levels are now enough to rule out any energy-gap between them. One notices that N

very prominent peaks therein corresponding to N distinct energy levels in the pure

case (disorder is zero). Although the charge carriers are still quasi-ballistic, because

the N peaks are quite well-separated except near their bottommost parts. We are

putting together the random spectra of many different configurations, not for any

averaging process, but just for a clearer visualization of the DOS. For the pure case,

the sharp levels at the two ends of the spectrum cause vertical drops of the DOS

to zero at the two band edges. But in the impure case, the levels at the ends of

the spectrum (just like others) do get broader, and the sharp drop of the density of

states is softened by an exponential drop to zero. It is observed in our work that

the DOS at the two outer peaks have increased from a value of slightly less than

0.8 (for N=31) to a value of slightly larger than 0.8 (for N=41). Of course, this has

happened at the cost of lowering the DOS at the band-centre (E=0) slightly.

As the system evolves from a quasi-ballistic to a strongly localized regime, the

system crosses over from a strongly non-Wigner-Dyson type level spacing distribu-
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tion to a universal Poisson distribution in the thermodynamic (length of the chain

approaches to infinity) limit. In between it goes through regimes where the distri-

bution seems to be a mixture of Wigner-Dyson type and Poisson type distributions,

thus indicating the existence of prelocalized states before the thermodynamic limit

sets in. In the case of a finite, closed quantum system, we did look at the finite

number of random energy eigenstates and the corresponding finite number of ran-

dom nearest level spacings. Kubo formula indicates that the random level spacing

distribution should also be unusual in the same regime in which the mesoscopic con-

ductance fluctuations is so, i.e., in the two parameter scaling regime. Introduction of

RMT has been briefly explained in Chap.7 and calculation part has been discussed

in Chap.8 of the thesis.

1.3 Organization of the Thesis

This thesis is organized into eight chapters. After this chapter on general intro-

duction on Nano-scale devices and approaches, Chap.2 gives a detailed compari-

son between Self-Consistent Quantum and Semi-classical methods. Under this, a

self-consistent scheme is used to solve the Schrodinger-Poisson equations inside the

channel of a Nano-Scale dual gate MOSFET. In Chap.3, we study certain techno-

logically important Nano-scale MOSFETs as Closed and Open Quantum systems.

Here, we explain and apply NEGF method on SWCNT-based MOSFET. In Chap.4,

we studied coherent transport with Scatterers in low dimensional systems. In Chap.5

and Chap.6 we studied the conductance and transport properties of ZGNR under

certain conditions using NEGF method. In Chap.7 and Chap.8 we studied level

spacing distributions of finite-sized one-dimensional disordered systems.
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Chapter 2

Comparison of the Self-Consistent

Quantum & Semi-classical

Methods & Size Quantization

effect in Nano-Scale dual

gate-MOSFET

2.1 Introduction

Because of the quick headways in the field of electronics and Computer advance-

ments, it is now possible to incorporate lots and lots of FETs in the core of a tablet

[2]. FET is a three terminal device where gate voltage controls the channel resis-

tance. Gate and the channel are separated by insulator that prevents any flow of

current which essentially isolates it from the channel. The current-voltage relation-

ship for a MOSFET can be modeled with Ohm’s law j = σE, where the channel

conductivity is given by σ = qµnn3D, where µn is the electron mobility in the channel
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and n3D is the electron density in the inversion layer. This model works very well for

microelectronic devices with diffusive transport. However, for very clean Nano-Scale

devices of the future, the transport properties will be governed by quantum effects

[24]. One of the most pronounced effect will be the distribution of the channel elec-

tron density as a function of channel thickness and temperature. Since the channel

electron density changes as a function of the applied gate voltage, hence it becomes

extremely important to study the variation of the channel electron density which

will finally dictate the I-V characteristics of the futuristic Nano-Scale devices.

Due to the advancement of high-performance computers, it is now possible to

do very advanced simulations using Finite-Difference and Finite Element Methods

[24]. Hence, a Self-Consistent scheme for the determination of the channel electron

density of a Nano-Scale device is extremely important. Lot of very good work has

been done on self-consistent schemes using self-consistent Schrodinger-Poisson and

Semi-classical methods. Several of these schemes have been successfully applied on

various quantum structures [25]. Also there exist various commercial tools for mi-

croelectronic device simulations for the current industrial requirements. Hence, it is

of greater academic interest that the codes for the futuristic Nano-Scale devices are

developed with a view to serve the future needs. Hence, knowledge of the simulation

and the discretization procedures are extremely important for understanding the in-

ner workings and physical viability of these codes. The generic device which we will

use for our analysis will be a dual gate MOS capacitor which is shown in Fig.(2.1).

For Nano-Scale devices, the channel electron density at room temperature should

be calculated from the diagonal elements of the density matrix using Self-Consistent

Schrodinger-Poisson method. Another method will be the Semi-Classical approach

where the electron density n is given as n3D = 2(2m∗ekT
2πh̄2

)f1/2(Ec−µ+U(z)
kBT

) where f1/2

is the Fermi Dirac integral of the order j=1/2. Similarly, the 2D electron density

can be calculated using the Semi-Classical method. Effect of the size quantization is
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very well reflected when we calculate the electron density using Schrodinger-Poisson

approach. However, when we increase the channel thickness, the result obtained by

Schrodinger-Poisson approach matches with the Semi-Classical approach. Hence,

it is extremely important to understand the strength and weaknesses of these sim-

ulation methods as required for calculating the channel electron densities under

different regimes. This will be required for the correct interpretation of the I-V

characteristics of the futuristic Nano-Scale devices.

Figure 2.1: A dual gate Nano-Scale MOSFET with source and drain grounded to
zero potential.

2.2 Theoretical Background

To understand the flow of electrons in a channel, the first thing which is of prime

importance is the availability of electronic states in the vicinity of the chemical

potential µ [2, 26]. This distinguishes metals from semiconductors. For metals, ac-

cording to band theory, there is unfilled band which gives a lot of available states for

the conduction electrons. On the other hand for a semiconductor there may be fewer
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or no available states around the chemical potential. Therefore, positive/negative

gate voltage is required to bring the empty/filled electronic states in the vicinity

of µ. Fig.(2.2) shows the available empty/filled states in the vicinity of the chem-

ical potential. The role of the gate voltage here is to bring the electronic states

near the chemical potential µ. This electro-chemical potential is fixed by the source

and drain contacts. For this analysis, it is assumed that the contacts are under

thermal equilibrium with the channel and are grounded. Although the gate is not

under equilibrium with the channel, however the insulator between gate electrode

and the channel blocks the flow of electrons from gate to the channel. The gate

voltage moves the energy bands up and down around µ to condition the channel

resistance. The aim of this work is to calculate the electron distribution, n(z) in the

channel as a function of applied gate voltage by using self-consistent Quantum and

Semi-Classical simulation methods.

Figure 2.2: A comparison of the available electronic states in the vicinity of the
chemical potential µ for (a) metal and (b) Semiconductor channel under zero, posi-
tive and negative gate voltages.
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2.3 Self Consistent Quantum and Semi-Classical

Simulation Methods

2.3.1 Self Consistent Quantum Methods Using Schrodinger-

Poisson Equations

Here, we are modeling a dual gate MOS capacitor with channel thickness of the

order of few nanometers. The problem has quantum confinement along z-axis and

we apply periodic boundary conditions (PBC) in the x-y plane. This is a good

approximation as the channel length and width dimensions are much larger than its

thickness. Hence, the eigenfunction in the channel can be given as

ψN(kx, ky,m) = Aeikxxeikyyχm(z) (2.1)

Therefore Schrodinger equation becomes

(
− h̄2

2m∗e

d2

dx2
− h̄2

2m∗e

d2

dy2
− h̄2

2m∗e

d2

dz2
+ Ec + U(z)

)
ψN = ENψN (2.2)

Here, Ec is the conduction band edge and U(z) is variation of the potential due

to applied gate voltages along z-axis. Since, we are applying PBC in the x-y plane,

hence, the above equation becomes effectively a 1D problem, where it can be solved

using numerical methods for any given values of kx and ky, so we can obtain the

value of EN as

EN = Em +
h̄2

2m∗e
(k2
x + k2

y) (2.3)

Here, Em is calculated from the 1D version of Eq.(2.2) given as

(
− h̄2

2m∗e

d2

dz2
+ Ec + U(z)

)
χm = Emχm (2.4)
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[Hz + U ]χm(z) = Emχm(z) (2.5)

So the problem reduces to solving one-dimensional Schrodinger-Poisson equation.

Here, ‘Hz’ is the Hamiltonian for the Oxide/Semiconductor/Oxide material without

any gate bias and ‘U(z)’ is the variation of the potential along z-axis due to the

applied gate voltages. Here the device is working at room temperature. Hence, the

eigenstates will be partially occupied and the channel electron density at equilibrium

can be given as,

n2D(z) =
2

L2

∑
m

∑
kx,ky

|χm(z)|2f(EN − µ) (2.6)

where

f(EN − µ) =
1

1 + exp(EN − µ)/kBT
(2.7)

is the Fermi-Dirac distribution function. Now, the summation over kx and ky in the

Eq.(2.6) can be reduced to an integral form as

1

L2

∑
kx,ky

f(EN − µ)→ 1

L2

∑
kx,ky

1

1 + exp(∆/kBT )
=
∫ ∞

0

2πkdK

4π2

1

1 + exp(∆/kBT )

(2.8)

where, Em + h̄2

2m∗e
(k2
x + k2

y − µ) = ∆

f2D(Ec + U(z)− µ) =
m∗ekBT

2πh̄2 ln

(
1 + exp

(
−Ec + U(z)− µ

kBT

))
(2.9)

Hence, we have the final form of n(z) as,

n2D(z) = 2
∑
m

|χm(z)|2f2D(Ec + U(z)− µ) (2.10)

Now, this reduces to an interesting electrostatic problem where the solution to the

Poisson’s equation can be uniquely determined for a given boundary condition [1, 2].
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In this case, the gate voltages VG1 and VG2 provide the boundary conditions for this

problem. The Poisson’s equation will be given as,

∇2U =
−q2

εrε0
(n2D(z)− n0) (2.11)

Here, n0 is the background concentration. Now, the Schrodinger equation and

the Poisson equation are to be solved self-consistently for obtaining the channel

electron concentration, n(z), Eq.(2.5),(2.10) and Eq.(2.11). Fig.(2.3) shows the self

consistent scheme for Quantum method using Schrodinger-Poisson’s equations.

Figure 2.3: Self-Consistent Procedure for Quantum Method.

2.4 Self-Consistent Semi-Classical Methods Us-

ing Periodic Boundary Conditions (PBC)

Generally PBC’s are used for approximating a very large system by small term called

unit cell, while here we have assumed that the last point is connected back to the

starting point of our system, so that there are no ends now. We are interested in

the properties of the interior of structure, so what we are assuming at the bound-

aries should not affect our results physically [27]. The Semi-Classical approach is
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used when we assume periodic boundary condition along all the directions. The

eigenfunction in the channel can be given as,

ψN(~k, ~r) = Ae
~ik.~r (2.12)

Now, the electron density will be

n3D =
2

L3

∑
kx,ky ,kz

f(EN − µ) (2.13)

with

EN = Ec +
h̄2(k2

x + k2
y + k2

z)

2m∗e
+ U(z) (2.14)

2

L3

∑
kx,ky ,kz

f(EN − µ)→ 2
∫ ∞

0

4πk2

8π3

dk

1 + exp(Ec − µ+ h̄2k2

2m∗e
+ U(z))

(2.15)

=⇒ 2(
m∗ekBT

2πh̄2 )3/2 2√
π

∫ ∞
0

dζ
√
ζ

1 + exp(Ec − µ+ U(z)/kBT )

1

exp(ζ)
(2.16)

where

ζ =
h̄2k2

2mckBT
(2.17)

which becomes

2

(
m∗ekBT

2πh̄2

)3/2

f1/2

(
Ec − µ+ U(z)

kBT

)
(2.18)

The electron density in the channel will vary in the presence of the potential U(z).

Fig.(2.4) and Fig.(2.5) represents the scheme for calculating the channel densities

using semiclassical methods. Here, the integration is performed over all the three

directions in k-space. Ec is the energy of the conduction band edge and F1/2 is

the Fermi-Dirac integral of the order j = 1
2
. This will be required for calculating

the 3D channel electron concentration of the device. It is not possible to solve f1/2
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analytically.

Figure 2.4: Self-Consistent Procedure for Semi-Classical Method for determining 3D
electron density.

However, it is very easy to calculate it numerically. The electron density in the

channel will vary in the presence of the potential U(z).

Figure 2.5: Self Consistent Procedure for Semi-Classical Method for determining 2D
electron density.
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2.5 Discretization Techniques

2.5.1 Discretization Procedure for the Self-Consistent Quan-

tum Method

The 1D Schrodinger equation [Hz + U ]χm(z) = Emχm(z), which we obtained in

earlier section can be discretized by finite-difference method [28].

Figure 2.6: 1D discretized picture of the dual gate MOS capacitor along z-axis.

Fig.(2.6) shows the 1D discretized picture of the dual gate MOS capacitor along

z-axis. We use central difference method for calculating the second derivative of

the wave function. The space is discretized by n+2 points which is shared between

the insulators and the channel thickness of the dual MOS capacitor. The distance

between two consecutive points is a and if there are k points inside the channel,

then the channel thickness is (k+1)a. The term Hz + U is given as Hz + U →

− h̄2

2m∗e

d2

dz2
+ Ec + U(z), where Ec is the energy of the conduction band edge and

U(z) is the variation in the potential due to applied gate voltages. Now, by finite-

differencing the term
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(
− h̄2

2m∗e

d2

dz2
+ Ec + U(z)

)
χm(z) = Emχm(z)

we obtain a set of ’n’ linear equations as shown below [29]

(
− h̄2

2m∗e

d2

dz2
+ Ec + U(z)

)
χm(z) = Emχm(z) (2.19)

→ −h̄2

2m∗ea
2
(χn+1 − 2χn + χn−1) + Ecχn + Unχn = Enχn (2.20)

−h̄2

2m∗ea
2
(χn − 2χn−1 + χn−2) + Ecχn−1 + Un−1χn−1 = En−1χn−1 (2.21)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−h̄2

2m∗ea
2
(χk − 2χk−1 + χk−2) + Ecχk−1 + Uk−1χk−1 = Ek−1χk−1 (2.22)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−h̄2

2m∗ea
2
(χ2 − 2χ1 + χ0) + Ecχ1 + U1χ1 = E1χ1 (2.23)

Now, a N ×N tridiagonal Hamiltonian Matrix [H] can be constructed by trun-

cating χn+1 and χ0 terms as

H =



h̄2

m∗ea
2 + Ec + Un

−h̄2
2m∗ea

2 . . . 0 0

−h̄2
2m∗ea

2
h̄2

m∗ea
2 + Ec + Un−1 . . . 0 0

0 −h̄2
2m∗ea

2 . . . −h̄2
2m∗ea

2 0

. . . . . . . . . h̄2

m∗ea
2 + Ec + U2

−h̄2
2m∗ea

2

0 0 . . . −h̄2
2m∗ea

2
h̄2

m∗ea
2 + Ec + U1


(2.24)

From this Hamiltonian Matrix, the electron density n(z) can be calculated from
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the diagonal elements of the density matrix given as [1, 30]

ρ(z, ź) =
∑
m

χm(z)f2D(H − µI)χ∗m(ź) (2.25)

While solving the above Hamiltonian matrix [H], care must be taken while entering

the values of the effective masses. For the two oxide sides, it is m∗e (oxide) and in be-

tween for the channel, it should be m∗e(channel). However, at the boundary between

the oxide and channel, there is an abrupt change in the value of the effective masses.

This is reflected as a small peak in the electron density at the oxide/semiconductor

interface [31]. Similarly, the Poisson’s equation is discretized in the same manner

using finite difference method as:

−d2U(z)

dz2
=

q2

εrε0
(n(z)− n0)→ (2.26)

−1

a2
(Un+1 − 2Un + Un−1) =

q2

εrε0
(nn − n0) (2.27)

−1

a2
(Un − 2Un−1 + Un−2) =

q2

εrε0
(nn−1 − n0) (2.28)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−1

a2
(Uk − 2Uk−1 + Uk−2) =

q2

εrε0
(nk−1 − n0) (2.29)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−1

a2
(U2 − 2U1 + U0) =

q2

εrε0
(n1 − n0) (2.30)

Now, by incorporating the boundary conditions i.e., the gate voltages VG1 and VG2

the following matrix equation will determine the solution of the discretized version

of the Poisson’s equation. The matrix equation is given as
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

2εr −εr . . . 0 0

−εr 2εr . . . 0 0

0 −εr . . . −εr 0

. . . . . . . . . 2εr −εr
0 0 . . . −εr 2εr





Un

. . .

. . .

. . .

U1


=
q2a2

ε0



nn − n0

. . .

. . .

. . .

n1 − n0


(2.31)

Here we have to enter the values of εr (oxide) for the oxide layer and εr (channel) for

the channel respectively. This matrix equation will require the electron densities ni

’s as inputs which can be obtained from the diagonal elements of the density matrix

ρ(z, ź). Now, by the self-consistent procedure shown in Fig.(2.4-2.5) the values of

Ui’s and ni ’s at the discrete points in the channel will be obtained.

2.6 Discretization Procedure for the Self-Consistent

Semi-Classical Methods

The semi-classical electron density in 3D can be discretized as

n3D(z) = 2

(
m∗ekBT

2πh̄2

)3/2

f1/2

(
Ec − µ+ U(z)

kBT

)
(2.32)

→



nn

. . .

nk

. . .

n1


= 2

(
m∗ekBT

2πh̄2

)3/2



f1/2(Ec−µ+U(z)
kBT

)

. . .

f1/2(Ec−µ+U(z)
kBT

)

. . .

f1/2(Ec−µ+U(z)
kBT

)


(2.33)

Now, the 3D electron density in the channel can be obtained by the self-consistent

procedure illustrated in Fig.(2.5). Similarly, the semi-classical electron density in

2D can be discretized as
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n2D(z) =

(
m∗ekBT

π2h̄2

)
ln

(
1 + exp(−Ec − µ+ U(z)

kBT
)

)
(2.34)

→



nn

. . .

nk

. . .

n1


=

(
m∗ekBT

π2h̄2

)


ln(1 + exp(−Ec−µ+Un

kBT
))

. . .

ln(1 + exp(−Ec−µ+Uk

kBT
))

. . .

ln(1 + exp(−Ec−µ+U1

kBT
))


(2.35)

Now, the 2D electron density in the channel can be obtained by using the Self-

Consistent procedure for the semi-classical methods illustrated in Fig.(2.7). The

discretization procedure for the Poisson’s equation will be similar as shown in the

section 2.6.

2.7 Results and Discussions

2.7.1 Simulation results for Quantum methods

Fig.(2.7), shows the channel electron density for channel thicknesses of 3nm, 6nm

and 9nm respectively under symmetric gate bias. The parameters for the oxide layers

are εox = 3.9 and m∗ = 0.41me. The effective mass of electron in SiO2 thin film is

reported to be about 0.41me [32]. For the channel, we have taken ε to be equal to 11.7

and varied the effective mass of the electron. The simulations were performed for

effective masses, m∗e=m, m∗e = 0.22me, me = 0.12me and me = 0.067me respectively.

It will be a good idea to vary ε for different values of effective masses as well. For

3nm and 6nm thick channels, the electron densities show a V-shaped valley while

for 9nm channel the electron density splits into two wide peaks. This anomalous

result is due to the fact that we have taken the effective mass of the electron in the

channel to be equal to the mass of the free electron.
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However, when we vary the effective masses between and we obtain a peak in

the middle of the channel. This is related to the size quantization which is reflected

well for 3nm and 6nm thick channels. There are two small additional peaks that

occur at the boundaries between the oxide/semiconductor interfaces. This occurs

due to the abrupt change in the values of ε’s and at the boundary between the

oxide and the semiconductor channel. One may interpret it as the accumulation of

charges at the interface. For 9nm thick channel, the size quantization effect begins to

disappear and the electron distribution shifts more towards the gates and less in the

middle of the channel. This result can also be reproduced by self consistent Semi-

Classical simulation. This is shown in the next section which is on Semi-Classical

results. Fig.(2.9), shows the variation of the channel electron concentration under

asymmetric gate bias. The channel thicknesses are 3nm, 6nm and 9nm respectively.

The effective mass of the electron is taken to be equal to 0.22m∗e for 3nm and 9nm

channel thicknesses and it is taken to be equal to 0.067m∗e for 6nm thick channel.

The effect due to the application of the asymmetric gate bias is seen as a slight

shift in the peak for 3nm and 6nm thick channels. However for the 9nm channel,

the effect is quite profound as asymmetric gate bias invokes asymmetric electron

distribution in the channel. The asymmetric electron distribution for the 9nm case

can be reproduced using semi-classical methods as well.
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Figure 2.7: Channel electron concentration for (a) 3nm, (b) 6nm and (c) 9nm
channel thicknesses. The calculations are performed using self-consistent Quan-
tum Method for different values of the effective masses of electrons in the chan-
nel. The inverted arrows (↓) show two small peaks at the boundary between the
oxide/semiconductor interfaces.
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Figure 2.8: it shows Variation of the channel electron density for (a) 3nm, (b) 6nm
and (c) 9nm channel thicknesses under symmetric and asymmetric bias. The cal-
culations are performed using self-consistent Quantum Method. The effective mass
for the electron in the channel is taken to be equal to 0.22me for 3nm and 9nm thick
channel and it is taken to be equal to 0.067me for 6nm thick channel. The inverted
triangle (∇) show the slight shift in the main peak for 3nm and 6nm thick channels
under asymmetric bias. For 9nm thick channel, the variation due to asymmetric
bias to quite profound.
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2.7.2 Simulation Results for the Semi-Classical Procedure

Fig.(2.7), shows the variation of 2D channel electron density using semi-classical

method for channel thicknesses of 3nm, 6nm and 9nm respectively. The effective

mass of the channel is taken to be equal to 0.22m∗e. The electrons are more accu-

mulated towards the oxide/channel interface for all the three channel widths. The

size quantization effect for 3nm and 6nm channel thicknesses which were observed

when we used Quantum methods is not observed in this case. Also, the channel

electron concentration shows variation with the asymmetric gate bias. On simi-

lar lines, Fig.(2.10), shows the variation of 3D channel electron density for channel

thicknesses of 3nm, 6nm and 9nm respectively.

Here, again the effective mass of the channel is taken to be equal to 0.22m∗e. In

this case also, the size-quantization effect is not observed for 3nm and 6nm thick

channels. The channel electron concentration varies with the asymmetric gate bias

and the electrons are more accumulated towards the oxide/semiconductor interface.
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Figure 2.9: Variation of the 2D channel electron density for (a) 3nm, (b) 6nm and
(c) 9nm channel thicknesses under symmetric and asymmetric bias. The calculations
are performed using self-consistent Semi-Classical Method. The effective mass for
the electron in the channel is taken to be equal to 0.22m∗e for all the cases.
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Figure 2.10: Variation of the 3D channel electron density for (a) 3nm, (b) 6nm and
(c) 9nm channel thicknesses under symmetric and asymmetric bias. The calculations
are performed using self-consistent Semi-Classical Method. The effective mass for
the electron in the channel is taken to be equal to 0.22m∗e for all the cases.
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2.8 Conclusions

We have applied Self-Consistent Quantum and Semi-Classical methods for determin-

ing the channel electron density of Nano-Scale MOSFETs. The thickness of the chan-

nel was varied between 3nm to 9nm. The size quantization effect is observed for 3nm

and 6nm thick channels, but it slowly disappears as the channel thickness is increased

to 9nm and further. This effect could be seen, when we apply the self-consistent

Quantum method. The size quantization effect is not seen, when we apply the

Semi-Classical methods. However, the results of the Quantum and Semi-Classical

methods begin to match, when the channel thickness is increased to 9nm and above.

The results of the Quantum Method for thin channels between 3nm to 6nm are quite

sensitive to the values of the electron effective masses in the channel. The channel

electron concentration varies with asymmetric gate voltages. This variation is more

for thicker channels, when the size quantization effect disappears with the increase of

the channel thickness. Self-Consistent Quantum methods have been used for simu-

lating the channel electron density of a Nano-Scale MOSFET. The size quantization

effect is seen for 6nm thick device but it slowly disappears as we increase the channel

width. The simulations obtained from the Quantum methods are compared with the

Semi-Classical methods. The semi-classical methods fail to capture the size quanti-

zation effect in 3nm thick devices. Hence, the Quantum method based on determin-

ing the channel electron concentration from the density matrix of the device Hamil-

tonian is best suitable for the Nano-Scale devices. The semiclassical method fails to

capture size effects because we have taken n3D(z) = 2
(
m∗ekBT

2πh̄2

)3/2
f1/2

(
Ec−µ+U(z)

kBT

)
.

This comes from the fact that we treat the system as a free electron gas in 3D,

where the eigenfunction is taken as ψN(~k, ~r) = Ae
~ik.~r= Aeikxxeikyyeikzz. Whereas in

the case of quantum approach, the eigenfunction in the channel is taken to be equal

to ψN(kx, ky,m) = Aeikxxeikyyχm(z).
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Chapter 3

Study of Certain Technologically

Important Nano-Scale MOSFETs

as Closed and Open Quantum

Systems

3.1 Introduction

Rapid advancements in the miniaturization of integrated circuits in the field of Elec-

tronics and Computer technologies have shrunk the Gate length of the present day

MOSFET to an order of 25 nm or so. In device simulation of CNTFETs a lot of

research has been extensively done. After the discovery of CNTs by Iijima in 1991,

lot of progress has been done in engineering application. As the overall dimensions

of the FET decrease, the role of the MOSFET channel and the interesting physics

of source and drain contacts and the scattering issues due to electron-phonon in-

teraction in the channel affecting the overall device performance has become an

important area of research in Nano-Scale device physics [1, 2, 24, 26]. Several stud-
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ies have been performed on various gate geometries starting from a planar single

and dual gate MOSFET to SWCNT based MOSFETs [25, 27]. The reason for such

rigorous studies which involve advanced concepts of quantum and non-equilibrium

statistical mechanics is due to the very fundamental nature of the bottom up ap-

proach which is applied here to study the device physics from the atomic scale to

the molecular scale which will be the possible length scales of the futuristic devices

[33–36].

Up to now, the present devices are modeled with the drift-diffusive transport theory.

This is because the development of the devices happened in the top down manner.

It is shown experimentally that the gate length can be reduced to the molecular

level by the substitution of silicon with CNT and DNA based structures [36–39]. As

we know that CNT is basically a rolled up graphene sheet only [19] and honeycomb

lattice rolled into a cylinder. Since the diameter of the CNTs are of the order of

nanometer size while the length of the nanotube can be more than 1µm. Diameter

of the nanotube is very much smaller in size than the most of the semiconductor

devices so far, so the CNT plays very important role in semiconductor physics due

to very special electronic properties [40]. The most important property of the CNT

is the electronic structure and dependence lies on geometry.

We have discussed here in this chapter on SWCNT. Most of the observed single-wall

CNTs have diameters less than 2nm. The interesting thing about the structure of

CNT is the orientation of six membered carbon ring, so called hexagon in the hon-

eycomb lattice relative to the axis of nanotubes [40]. CNTs are either metallic or

semiconducting depends upon the diameter and chirality is defined by single vector

called the chirality vector and its shape is in helical geometry. Energy gap of semi-

conducting CNT can varies between 1 eV to 0 eV by varying the nanotube diameter

[40]. Under such circumstances, the nature of the carrier transport and the device

performance cannot be understood properly from the present Ohm’s law based on
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Figure 3.1: Schematic diagrams for Dual Gate Nano-MOSFET.

drift-diffusive transport models.

In order to develop the understanding and the theory for these futuristic devices,

NEGF procedure is followed, where the role of the source and drain contacts with

the device is understood in terms of the self-energy matrices [2, 24, 26]. Under this

approach the modeling is done by treating the device as an open quantum system

where the Schrodinger equation in the channel is given as [E−H−Σ] |ψ〉=[S], where

S is the source term and Σ is the self-energy term in the Hamiltonian. Here, we ap-

ply an effective simulation procedure to study the Physics of the Nano-Scale devices

using Self Consistent Quantum Methods (SCQM) and Non-Equilibrium Green’s

Function (NEGF) method [28, 30, 32, 41–52]. We calculate the channel densities of

a dual gate Nano-Scaled MOSFET and the output characteristics of a Nano-Scaled

Single-Walled Carbon Nano Tube (SWCNT) based Transistor.

The first device we study is a dual gate MOSFET, which is shown in Fig.(3.1).

In this case, the size quantization effect is observed as a peak in the electron density

for ultra thin channels, where the thicknesses are of the order of (3-6)nm. However,

this peak begins to disappear as we increase the effective mass of the electron in the
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Figure 3.2: Schematic diagrams for SWCNT-Based Coaxially Gated Nano-MOSFET

channel.

The second device we study here is a SWCNT based MOSFET which is shown

in Fig.(3.2). We study the output characteristics of this device using the self-

consistent NEGF procedure. When we combine Newton mechanics with entropy

driven processes it becomes Boltzman equation which is widely accepted in semi-

classical transport theory [39], similarly when quantum dynamics is combined with

entropy driven processes, it will be solved with NEGF and some times called as

Quantum Boltzman equation [53]. The idea behind the development of the NEGF

was the metal-insulator-metal tunneling experiments, which got a lot of attention

in the 1960s [39]. The non-equilibrium Green’s function solves Schrodinger equa-

tion under non-equilibrium conditions [2] until self-consistency is obtained. NEGF

can be used to model flow of current. This method originated basically from the

contribution of Martin and Schwinger (1959), Kadanoff and Baym (1962), Keyldish

(1965) and many more who used the methods of many-body perturbation theory to

describe processes along the channel [53]. NEGF is believed to be an esoteric tool
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for researchers. NEGF goes beyond ballistic approach of Landauer, where electrons

are not interacting to just add inelastic scattering and also correlation effects at an

molecular level. For a more discussion one can follow the Green’s function method

by Supriyo Datta [54]. We have used bottom-up approach in our work, since the

validity of top-down approach is questionable at molecular level [55]. It was started

with elastic resistors for which entropy driven processes are confined to the contacts

of source with channel and drain with channel. Now the problem of resistance can

be tackled with a one electron picture by connecting contacts to the Schrodinger

equation [56].

Also the first two sub-bands responsible for the carrier transport in the CNT chan-

nel are calculated by simulating the potential profile. When we vary VDS from 0

to 1V, the device almost replicates the behavior of a normal MOSFET showing the

ON-OFF and saturation regimes. The sub-bands are modulated according to the

applied bias. Application of positive gate bias lowers the overall sub-band ener-

gies. This work is divided into the five sections. Section(3.2) present the theory,

discretization scheme and the self-consistent procedures. Section(3.2.1) present the

simulation results when the device is treated as a closed quantum system. Sec-

tion(3.7) presents simulation results when the device is treated as an open quantum

system. Section(3.8) summaries the results.

3.2 Theoretical Background and the Discretiza-

tion Schemes

3.2.1 Modeling of the Nano-MOSFET as a Closed System

For modeling the device as a closed system, the drain and the gate electrodes are

grounded to zero potential [57–59]. There is no flow of current in the device. Only

38



the gate voltage is varied. Positive gate bias lowers the overall energy states in the

channel. The channel thickness is taken to be of the order of few nm. We apply

periodic boundary conditions (PBC) for the x-y plane and neglect all the boundary

effects. This is a valid for ultrathin devices where the planar dimensions are much

larger than the lateral dimension. The channel eigenvalue equation is written as,

[
− h̄2

2m
∇.
(

1

m(r)
∇
)

+ Ec(r) + U(r)

]
ψN(r) = ENψN(r) (3.1)

HψN(r) = ENψN(r) (3.2)

Here, we apply finite difference procedure on the eigenvalue equation and obtain

a N ×N block diagonal matrix for the Hamiltonian which is given as:

[H] =



α1 β . . . 0

β α2 . . . . . .

. . . . . . . . . β

0 . . . β αn


(3.3)

where [αi] and [βi] are the matrices representing the discretization of the device in

the computational domain. The finite difference method can be used on a differential

operator
(
∂2f
∂x2

)
x=xn

as 1
a2

(f(xn+1)− 2f(xn) + f(xn−1)). Here, ‘a’ is the distance

between the two discrete points. The discretization procedure for the device can

be understood from Fig.(3.3). The matrix [αi] is the discretization of the device as
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Figure 3.3: Discretization scheme for the Nano-Scale device.

along z-axis and it is given as

[αi] =



h̄2

m∗ea
2 + Ec + Un

−h̄2
2m∗ea

2 . . . 0 0

−h̄2
2m∗ea

2
h̄2

m∗ea
2 + Ec + Un−1 . . . 0 0

0 −h̄2
m∗ea

2 . . . −h̄2
m∗ea

2 0

. . . . . . . . . h̄2

m∗ea
2 + Ec + U2

−h̄2
m∗ea

2

0 0 . . . −h̄2
2m∗ea

2
h̄2

m∗ea
2 + Ec + U1


(3.4)

The matrix [β] is the coupling term between the slices of [αi] and it is given as

[β] =



−h̄2
2m∗ea

2 0 . . . 0

0 −h̄2
2m∗ea

2 . . . . . .

. . . . . . . . . 0

0 0 0 −h̄2
2m∗ea

2


(3.5)

[αi] gives the local electron density along the z-axis for a particular value x (see

Fig.(3.2)) in the channel. It is calculated from the diagonal elements of the density
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matrix [ρi] which is given as

[ρi] =
1

1 + exp(β(αi − µ))
(3.6)

This is the Fermi function of the Hamiltonian Matrix for [αi].

Now, to satisfy the charge-neutrality condition in the channel, the Schrodinger equa-

tion is solved in tandem with the Poisson’s equation. The gate voltages VG1 and

VG2 impose the boundary conditions on the system which insures the convergence.

3.3 Open systems

The more active, and thus the more interesting, product of technology are systems

that operate far from thermal equilibrium [60]. Few examples of such systems shows

that they are generally open, in the sense that they exchange matter with their en-

vironment. There are many established techniques for dealing with open systems

in fields such as fluid dynamics, neutron transport, and electronics. All these fields

are concerned with the transport of (usually) conserved particles. People have used

different theoretical approaches to open quantum systems. By far the most common

approach to define the boundary conditions on a transport problem is to circumvent

the issue entirely. Applications of the Boltzmann equation have most often been re-

stricted to the case of uniform driving fields [61, 62]. When the Boltzmann equation

has been applied to nonuniform systems [63–65], techniques requiring that the equa-

tion be recast in terms of the Lagrange variables have generally been employed [60].

Our objective here is to obtain an equation of the form

E[ψ] = [H + Σ][ψ] + [S] (3.7)
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Figure 3.4: A semi-infinite wire described by a one-band effective mass Hamiltonian.
The first point “0” is treated as the channel and the rest as the contact

.

which describes an open system, unlike the equation Eψ = Hψ that we have used

for closed system. As shown in Fig.(3.4), we have a semi-infinite 1D wire described

by a one-band effective mass Hamiltonian.

We treat the first point of the wire by giving name “0” as our channel and rest

of the wire labeled n, n < 0, as the contact [2]. When the channel is decoupled from

the contact it would be described by

Eψ = (Ec + 2t0)ψ (3.8)

When we couple the channel with contact, equation becomes

Eψ = (Ec + 2t0)ψ − t0φ−1 (3.9)
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where the contact wavefunctions φn satisfy an infinite series of equations

Eψn = −t0φn−1 + (Ec + 2t0)ψn − t0φn+1 (3.10)

The solution of these equations consist of an incident wave from the contact and a

reflected wave back from the channel, so we have

φn = BeiKna + Ce−iKna (3.11)

where

E = Ec + 2t0(1− cosKa) (3.12)

From Eq.(3.11) we can write

ψ ≡ φ0 = B + C (3.13)

φ−1 = Be−iKa + CeiKa (3.14)

Now, we have

φ−1 = ψeiKa +B[eiKa − e−iKa] (3.15)

By using in Eq.(3.9) we have

Eψ = (Ec + 2t0)ψ − t0eiKaψ + t0B[eiKa − e−iKa] (3.16)

Now comparing Eq.(3.16) with Eq.(3.7) we get

Σ = t0e
iKa (3.17)

S = i2t0BsinKa (3.18)

The self-energy Σ is non-hermitian and is independent of the amplitudes B, C of
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the contact wavefunction. The channel wavefunction can leak out into the contact.

The source term S, on the other hand, represents the excitation of the channel by

the contact and is proportional to B.

3.4 General formulation

Figure 3.5: Channel contains no electrons and is disconnected from the contact where
the electrons occupy the states described by φR.
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Figure 3.6: On connecting to the contact, the contact wavefunctions φR “spill over ”
into the device giving rise to a wavefunction ψ in the channel which in turn generates
a scattered wave χ in the contact.

First consider a channel with no electrons and it is disconnected from the contacts

as shown in Fig.(3.5). The electrons in the contact have wavefunction φR that obey

the Schrodinger equation for the isolated contact

[EIR −HR][φR] = [0] (3.19)

where HR is the contact Hamiltonian and IR is an identity matrix of the same

size as HR . Now we may modify the above equation as

[EIR −HR + iη][φR] = [SR] (3.20)

where η=0+IR is a small positive infinitesimal times identity matrix. The term

i[η]φR on the left of Eq.(3.20) represents the extraction of electrons from the contact

while the term SR on the right of Eq.(3.20) represents the reinjection of electrons

from external sources: such extraction and reinjection are essential to maintain the
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contact at a constant electrochemical potential. The transition from the Schrodinger

equation to Eq.(3.20) represents a fundamental change in viewpoint. E is no longer

an eigen energy, but an independent variable representing the energy of excitation

from external sources. With the Schrodinger equation, the φR are essentially the

eigen- functions of [HR] that are non-zero only when the energy E matches one of

the eigen- energies of [HR]. On the other hand, the φR in Eq.(3.20) are non-zero for

all energies E with peaks around the eigenenergies of [HR], whose sharpness depends

on the infinitesimal 0+. When coupling is done the contact wavefunctions will “spill

over” giving rise to a wavefunction ψ inside the device which in turn will excite

scattered waves χ. Full wavefunction will satisfy Schrodinger’s equation.

 EIR −HR + iη −τ+

−τ EI −H


 φR + χ

ψ

 =

 SR

0

 (3.21)

where [H] is the device Hamiltonian. The different quantities appearing in

Eq.(3.21) are not numbers(except for the energy E). They are matrices of differ-

ent sizes: Contact Hamiltonian [HR], identity matrix [IR ], damping [η]: (R×R).

Channel Hamiltonian [H], identity matrix [I]: (d×d). Coupling Hamiltonian (τ):

(d×R), (τ+): (R×d). Column vectors: Contact wavefunction φR, χ, source SR :

(R×1). Going from Eq.(3.20) to Eq.(3.21), the term SR on the right-hand side,

representing the reinjection of electrons from external sources, is assumed to remain

unchanged. It allows us to make use of Eq.(3.20) to eliminate SR from Eq.(3.21) to

write

[EIR −HR + iη][χ]− [τ+][ψ] = [0] (3.22)

[EI −H][ψ]− [τ ][χ] = [τ ][φR] (3.23)
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χ can be written in terms of ψ from the first equation

[χ] = GRτ
+[ψ] (3.24)

where

GR ≡ [EIR −HR + iη]−1 (3.25)

[η] = 0+[IR] (3.26)

so, we have

[EI −H − Σ][ψ] = [S] (3.27)

where Σ ≡ τGRτ
+ and S≡ φR. GR represents a property of the isolated contact

since it only involves the contact Hamiltonian HR.

3.5 Modeling of the SWCNT-based MOSFET as

an Open Quantum System

The problem we address here is the modeling of the device as an open quantum

system. The device we study for this is a coaxially gated SWCNT based transistor.

In this device, the diameter of the CNT is varied between 1-2 nm. The width of the

dielectric layer is taken to be equal to 2nm. The gate length is taken to be equal to

25 nm. Schrodinger equation for the device under active operation becomes

[E −H − Σs − ΣD − Σsc] |ψ〉 = [S] (3.28)

The Schrodinger equation of the channel which is for the closed system gets modified

under device operation. The Green’s function [G] for channel is obtained from
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Eq.(3.28)

[E −H − Σs − ΣD − Σsc] |ψ〉 = [S] (3.29)

|ψ〉 = [E −H0 − U − Σs − ΣD − Σsc]
−1[S] (3.30)

|ψ〉 = [G][S] (3.31)

ΣS, ΣD, and ΣSC are the self-energy matrices for the source contact, drain contact

and the electron-phonon scattering in the device channel. The transmission function,

T(E) for the channel is given as T (E) = Trace(Γ1GΓ2G
†). Here, Γ1 and Γ2 are

the broadening terms which arise due to the coupling between the contacts and the

device channel. Using the above expressions, the output characteristics of the device

is calculated from the following relation

I =
∫ ∞
−∞

dET (E)[fS(E)− fD(E)] (3.32)

Here fS(E) and fD(E) are the Fermi-functions for the source and drain which differs

by an amount qVDS for low bias. I-V characteristics of device are finally obtained

from the self-consistent procedure where we solve the quantum transport and the

Poisson’s equations in an iterative manner. The device current and the local electron

density of the channel are obtained from the transport equation and the diagonal

elements of the density matrix, [ρ]. We have already seen the calculation for [ρ]

in section(3.2). Now, when the device is ON, the density matrix for the device is

calculated from the correlation function Gn(E), which is the electron density per

unit energy in the channel. The density matrix is now given as

[ρ] =
1

2π

∫
dEGn(E) (3.33)
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Figure 3.7: Self-consistent procedure for calculating output characteristics of
SWCNT-based MOSFET using NEGF procedure.

Here, Gn(E) is given as

Gn = G(Γ1fS(E) + Γ2fD(E))G† (3.34)

3.6 Simulation results for the Ultra Thin Chan-

nel Density of the Dual Gate Nano MOSFET

The channel electron densities are calculated for the ultra-thin channel using the

self-consistent procedure. Fig.(3.5) shows the electron concentration for 3nm thin

channel for different effective masses which is varied from m∗ = 0.11me to m∗ = me.

For the effective mass of 0.11me, 0.22me and 0.33me, the channel density peaks up

in the middle.

This is due to the quantum confinement of the carriers. However, when the

effective mass is taken to be equal to the free electron mass, the size quantization

effect begins to disappear as the distribution of the electrons shifts towards the

oxide/channel interface. This effect also can be explained in terms of the conduction
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Figure 3.8: Channel electron concentration for a 3nm thin channel for different
electron effective masses. The arrow (↑) points toward increasing effective mass.

Figure 3.9: The Conduction Band Profiles inside the channel for different electron
effective masses. The arrow (↑) points toward increasing effective mass.
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band profile. Fig.(3.6) shows the conduction band profile inside the channel for

different effective masses in real space. From the band profiles, it is quite evident

that the electrons with higher effective masses will tend to localize more towards the

oxide/channel interface since the slope of the downhill for the band profile is more

for the higher effective masses.

3.7 Simulation Results for SWCNT-based MOS-

FET as an Open Quantum System

This section presents the simulation results for SWCNT-based MOSFET. Fig.(3.5)

show the Channel Electron concentration of the SWCNT-based MOSFET for 25nm

Gate length. The inset of the Fig.(3.7) shows the sub-band profiles (1 and 2) under

zero drain bias. Fig.(3.8) shows the lowering of sub-band 1, when a positive gate bias

is applied. The energy bands are lowered as the gate voltage is varied from -0.6V to

0.3V. The lowering of the bands plays an important role in the conductivity of the

channel. The conductivity of the channel gets enhanced as lowering of the bands

bring more available energy states in the vicinity of the Fermi-level for conduction.

The position of the Fermi-Level is fixed here by the Drain voltage. If the Drain

voltage, VDS is fixed at zero voltage, then it would be an equilibrium condition.

However, if VDS is non-zero, then the difference in the Fermi functions would be

equal to qVDS in this case under low bias.

Fig.(3.9) shows the plot of the Sub-Bands responsible for current flow in the

CNT based MOSFET device of 25nm gate length. The Gate voltage is fixed at 0.3

V while the Drain Voltage is fixed at 0.4V. The sub-bands are modulated according

to the applied drain bias. The barrier for the electrons gets lowered in the source

side leading to an increase in the transmission T(E) which results in higher current

values. Fig.(3.10) shows output characteristics of the device, when it is treated as
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Figure 3.10: Channel Electron Concentration when the device is OFF under zero
drain bias. The inset of the figure shows the sub-band (1 and 2) profile of the CNT
channel under OFF condition. The gate length of the device is taken to be 25nm in
our simulation.

Figure 3.11: Modulation of sub-bands under applied drain voltages 0.4V. The lower-
ing of the barrier in the source side increases the transmission T(E) for the electrons
in the channel.
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Figure 3.12: Sub-band 1 profiles (CB) for the channel of the device under the applied
gate bias from -0.6V to 0.3V. The device is in OFF state. The lowering of the bands
due to the applied gate bias will increase the channel conductivity and will lower the
turn-on voltage of the device.

Figure 3.13: The output characteristics of Nano-Scale MOSFET under low drain
bias.
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an open quantum system. The behavior of the device is similar to the conventional

MOSFETs with ON-OFF and saturation regions.
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3.8 Conclusions

The devices under operation are discretized using finite-difference method and rep-

resented as block diagonal matrices in the computational domain and are mod-

eled as a closed and open quantum system. This gives a lot of insight into the

Physics and the modeling of these technologically important Nano-scale devices.

The size quantization for thin channels is seen here. The output characteristics

are obtained from NEGF procedure using a self-consistent method where the trans-

port and the Poisson’s equation are solved. This procedure simulates the I-V curve

for device showing the ON-OFF and saturation regime. We get a clearer picture

of the sub-bands responsible for the transport in the device. These sub-bands

get modulated according to the applied drain voltage and get lowered in energy

when positive gate voltage is applied on it. Quantum effects have been captured

in the work. Current non-equilibrium approach is constrained to work in single

particle picture and also a mean field theory. The field of graphene( CNT) has

benifited a lot from the rapid progress of experiments in last century. The self en-

ergies for the general inelastic scattering procedure in the channel are given as :∑in
sc(E) =

∫∞
0

d(h̄ω)
2π
{Dem(h̄ω).Gn(E + h̄ω) + Dab(h̄ω).Gn(E − h̄ω)}, where Dem &

Dab are the phonon-emission & absorption function. In our calculation for the I-V

characterstics of the Nano-scale MOSFETs [66, 67], we have taken
∑
sc to be equal

to zero. We have done calculation for coherent transport only.
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Chapter 4

Self-Consistent NEGF Procedure

to Study the Coherent Transport

with Scattering in Low

Dimensional Systems

4.1 Introduction

Most of the theory based work in these days has been based on the Landauer ap-

proach [68] assuming coherent transport. In order to study Quantum Transport

in Low-Dimensional Systems, the first device we take into our consideration is a

Single-Moded Nanowire with two or more scatterers. For a single moded nanowire,

if the scatterers are separated by a quarter of a wavelength, then it will lead to a de-

structive interference and peak in the transmission in the reflections of the electron

waves and if the scatterers are separated by half of a wavelength then it will lead to

a constructive interference and dip in the transmission. The aim of this work is to

understand the coherent transport in the presence of scatterers in low dimensional
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Figure 4.1: (a) A Schematic of a Single-Moded Nano-Scale Device with Scatterers
at “1” and “2”. (b) Transmission, T(E) for the device which is obtained from the
NEGF procedure.

systems. Here, we have applied a self consistent NEGF procedure to calculate the

transmission, T(E) for this single-moded system. In this chapter we have shown

that how the Quantum transport equations can be used to model conductors with

phase breaking processes [2].

Fig.(4.1(a)) shows a schematic of a single-moded low dimensional small Nanowire

device with two scatterers. A small bias is being applied across the device and we

assume that the potential due to the applied bias varies linearly across the device

[69]. This is just one particular case with two scatterers as localized impurity poten-

tials. Fig.(4.1(b)) shows the Transmission function, T(E) which has been obtained

from the self-consistent NEGF procedure for the device shown in Fig.(4.1(a)). The

dip and the peak in the transmission correspond to the destructive and constructive

interference from the reflected electron waves in the device.

We can generalize this for many scatterers and also for Multi-Moded low dimensional
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Figure 4.2: (a) A Schematic of a Single-Moded Nano-scale Device with Scatterers at
“1”, “2”, “3” and “4” (b)Transmission, T(E) for the device which is obtained from
the NEGF procedure.

devices with Phase-Breaking Scatterers. Fig.(4.2(a)) shows a schematic of a single-

moded low dimensional small Nanowire device with four scatterers. A small bias is

being applied across the device and it is again assumed that the potential due to the

applied bias varies linearly across the device. Fig.(4.2(b)) shows the Transmission

function, T(E) which has been obtained from the self-consistent NEGF procedure

for the device shown in Fig.(4.2(a)). The dips and the peaks in the transmission

function again correspond to the destructive and constructive interference from the

reflected electron waves in the device. In this case, the Transmittance T(E) has the

maximum value of 0.8657 which corresponds to an electron energy of 0.121eV.

In both the cases, we have applied a self-consistent NEGF procedure to calculate

T(E). This procedure which involves an iterative calculation of the “Non-Equilibrium

Green’s Function” for the device is described in the next section.
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4.2 Self-Consistent Non-Equilibrium Green’s Func-

tion Method (NEGF) for Calculating the Trans-

mission Function T(E)

The device is discretized and the Hamiltonian Matrix for the device is constructed

using a tight binding method [69]. Fig.(4.3) shows the discretized single-moded

wire device with scattering centers at the lattice sites 1, 2, 3 and 4 respectively.

Presently, we are treating the device as a two terminal device with an applied VDS.

We assume that the potential across the device varies linearly. The self-energies of

the source and drain contacts are given as ΣS and ΣD. The device is treated here as

an open-quantum system and the Schrodinger equation in the device will be given

as [12]:

[EI −H0 − U(z)− ΣS − ΣD][ψ] = [S] (4.1)

Now, the solution to the above inhomogeneous equation will be given as:

[ψ] = [EI −H0 − U(z)− ΣS − ΣD]−1[S] (4.2)

Here, the solution can further be written in a compact form as:

[ψ] = [G][S] (4.3)

The factor [G] is the Green’s function for the device. We calculate the broadening

matrices Γ1 and Γ2 from the following relation [70] which is given as:

Γ1 = i[ΣS − Σ†S] (4.4)
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Figure 4.3: The Schematics for the discretization of the single-moded device with
scatterers at lattice sites 1, 2, 3, and 4 respectively. The Hamiltonian for the device
can be constructed using the tight-binding method. The self-energies ΣS and ΣD and
the broadening terms Γ1 and Γ2 will be required for the calculation of [G] and T(E).

Γ2 = i[ΣD − Σ†D] (4.5)

The Transmission function T(E) is finally worked out using the flowchart shown

in Fig.(4.4) which describes the NEGF procedure. Here, Γ1 and Γ2 are the broad-

ening terms which describe the ease with which carriers can flow from the contact

electrodes to the device and ΣS and ΣD are the self energies for the source and drain

contacts. The Green’s Function [G] for the device is obtained in a self-consistent

iterative manner [71] with the Poisson equation. The transmission function T(E) is

given as:

T (E) = Trace(Γ1GΓ2G
†) (4.6)
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Figure 4.4: The Self-Consistent Scheme for solving iteratively the Green’s Function
and the Poisson Equation inside the device for calculating T(E).

Figure 4.5: T(E) for individual scattering centers 1 and 2. In some cases, the
composite value of T(E) will exceed from the individual T(E)’s.
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4.3 Conclusions

We have seen the application of NEGF procedure to study the coherent transport of

a low dimensional device with localized impurity scatterers. The transmission T(E)

has been calculated and one can study the I-V characteristics of this low dimensional

device from this. The phase breaking scattering in this low-dimensional system can

be studied by incorporating additional energy dissipation in the device which will

correspond to an additional self-energy term ΣDissipation in the Green’s function, [G].

We can calculate the transmission function T(E) through each individual scattering

centers and compare it with the composite value of T(E) which we have calculated

using NEGF method. When the scatterers are spaced by half a wavelength the

reflections from the two scatterers interfere constructively, leading to a dip in the

transmission. But if they are spaced by a quarter of wavelength, the reflections

interfere destructively, leading to a peak in the transmission. This shows up as large

oscillations in the transmission as a function of energy (which determines the de

Broglie wavelength of the electrons)[66, 72, 73]. The oscillations occur in case of

Fig.(4.1(b) & 4.2(b)) due to interference between two scatterers, while it does not

happen in case of Fig.(4.5), because there is no interference. There is one scatterer

at one time, so no interference occurs here and no oscillations are seen in this case.
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Chapter 5

NEGF Formulation for Studying

the Conductance and Transport in

GNR under Ballistic Regime

5.1 Introduction

Advancements in the field of Nano-Scale technologies have resulted in the fabrication

of GNR and CNT based devices. These novel devices may dominate the future of

electronics and computer industries. Hence, it becomes extremely important to

study the Physics and the Modeling of these GNR and CNT based devices. The

most important thing that one should study first is the conductance of these novel

materials which will take the role of the channel in the futuristic Nano-Scale devices.

In this chapter, we have explained the NEGF procedure for studying the conductance

in GNR.
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Figure 5.1: (a) A simple two terminal device with zigzag GNR as channel (b) The
discretization procedure involving [α], [β], [ΣS] and [ΣD] matrices.

5.2 The Discretization Procedure

The discretization for the zigzag GNR can be very easily understood in terms of

super cells and the matrices [α] and [β] for the zigzag GNR which is shown in

Fig.(5.2).

Figure 5.2: Super cells for Zigzag GNR. [αi] matrix corresponds to the discretization
of a particular super cell and [βi] corresponds to the coupling between the super cells.
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Now, by tight binding method, the matrices [αi] and [βi] for the zigzag GNR

which is shown are given as

[αi] =



0 −t 0 0 −t 0 0 0

−t 0 0 0 0 −t 0 0

0 0 0 −t 0 0 −t 0

0 0 −t 0 0 0 0 −t

−t 0 0 0 0 0 0 0

0 −t 0 0 0 0 −t 0

0 0 −t 0 0 −t 0 0

0 0 0 −t 0 0 0 0



(5.1)

[βi] =



0 0 0 0 −t 0 0 0

0 0 0 0 0 −t 0 0

0 0 0 0 0 0 −t 0

0 0 0 0 0 0 0 −t

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(5.2)

Now, the Hamiltonian obtained from the discretization of the zigzag GNR can

be represented as a block-diagonal Matrix [H] which is shown below.

[H] =



[α1] [β1] . . . . . . [0]

[β2] [α2] . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . [βn−1]

[0] . . . . . . [βn−1] [αn]


(5.3)
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5.3 The Self Consistent Procedure

The Transmission function and the I-V characteristics for this device can be ob-

tained by using a self-consistent procedure involving the NEGF method [74]. The

transmission function T(E) and the I-V characteristics for the GNR based device can

be obtained from iterative scheme shown below. Γ1 and Γ2 are the broadening terms

Figure 5.3:

of the two terminal device which describe the ease at which carriers can flow from

the contact electrodes to the GNR channel of the device. The source and the drain

contacts with the channel are manifested as the self energy terms which are given as

Σs and ΣD respectively. The Green’s Function G(E) for the device is obtained in a

self-consistent iterative manner with the Poisson equation. The potential U(z) takes

into account the electron-electron interaction. The difference in the Fermi function

is taken to be equal to the applied low bias across the device [75].
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Figure 5.4: Conductance of a zigzag nanoribbon obtained from the above self-
consistent NEGF procedure.

5.4 Ballistic and diffusive transport in GNR

The relationships between characteristic lengths determine the three transport regimes:

ballistic, diffusive, and classic transport. Ballistic transport consists of single elec-

tron conduction with no phase and momentum relaxation. In a ballistic con-

ductor, wavefunction of an electron is determined over the sample by solution of

Schrödinger’s equation. While in case of diffusive motion, many elastic scattering

events occur. Since, the phase relaxation length is much longer than the mean free

path in diffusive motion, localization of the wavefunction comes into picture. For

ballistic transport we consider an ideal case where we have no electron scattering in

the channel connected to two contacts. Elastic mean free path is the key parameter

which dictates the crossover between ballistic and diffusive regime. The behavior of

elastic mean free path in nanotubes and nanoribbons exhibit unique scaling features

and can vary by orders of magnitude under a small Fermi level shift [76].

Systems which follow normal heat conduction also undergo a crossover from diffu-

67



sive to ballistic regime when the length of the system is lowered. Length independent

thermal current and linear dependence of thermal conductivity are considered as the

signatures of ballistic transport. There are several experiments which show ballistic

to diffusive crossover in low-dimension systems. In case of graphene nanoribbons

it has been found that short, quarter-micron graphene samples approach the bal-

listic thermal conductance limit even at room temperature, due to the relatively

large phonon mean free path (∼100nm) in substrate-supported graphene. However,

patterning similar samples into nanoribbons leads to diffusive heat-flow [77]. Thus

one observes a ballistic to diffusive heat transport as a function of the length (and

also width) of the nano-ribbons. Different phenomenological approaches have been

adopted in recent studies for the description of the ballistic to diffusive transport

seen in many models and in experiments. People have used NEGF approach apart

from other approaches like Boltzman transport equation, Buttiker formalism, Scal-

ing theory etc. Thermal transport in atomistic systems with nonlinear interaction

has been studied using the nonequilibrium Green’s function which is quite powerful

in mesoscopic systems and is applicable for both phonons as well as for electrons.

However, we have not incorporated these interactions in our work. The nonlinear-

ity is taken care of by using perturbative techniques or the mean field theory. This

method works well for low temperatures but not for high temperatures and describes

the quasi-ballistic transport in short carbon nanotubes at low temperature. This is

in qualitative agreement with experiments [78].

5.5 Conclusions

We have presented the complete discretization and a NEGF based self-consistent

procedure to simulate the conductance of a two terminal zigzag GNR based Nano-

Scale device. This procedure can be extended for simulating armchair GNR and

CNT based Nano-scale devices. We can also incorporate defects like atomic vacan-
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cies in our system and study its effect on the conductance and its I-V characteristics.

The simulation procedure for defect related GNRs will be more challenging where we

have to construct matrices for local [α] and [β] by taking into account the vacancies.

NEGF procedure has been discussed in detail to study the conductance in GNR.

The discretization procedure for the GNRs and CNTs for zig-zag configurations has

been discussed in detail. We have explained this with a block diagram where each

block represents a block diagonal matrix. We have used tight-binding procedure to

obtain the block diagonal matrices for GNRs. We have applied a recursive method

to obtain the Green’s function for GNR based channels.
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Chapter 6

Transport properties of Zigzag

Graphene Nanoribbons in the

confined region of Potential well

6.1 Introduction

We report and adduced bandstructure by applying an external electrostatic potential

inside the potential well or confined region, also outside the potential well. The local

density of states (LDOS) has been shown in this chapter, how the Transmission

occurs in zigzag graphene nanoribbon(GNR) inside the confined region of well. We

want to study the confined (bound) states of an electron trapped inside the quantum

well. We have studied the single subband in our system and calculated Transmission

as well as the Local density of states and charge distribution. The nearest neighbour

tight-binding model based on pz orbital forms the Hamiltonian in our case. We

have used Non equilibrium Green’s function(NEGF) in our calculation to obtain

the results. Transmission curves show oscillations with the increase of layers of

unit cell in the confined region, as it happens in Fabry-Perot resonances. Charge
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distribution for the case of bound states has been discussed.

Quantum Transport in mesoscopic devices is becoming a topic of much research.

We are interested in ZGNR since experimental-wise the zigzag GNR are relatively

very easy to produce and their edges are very much favorable to form bonds with

other atoms and as well with compounds [79–81]. Advancements in the field of Nano-

Scale technologies have resulted in the fabrication of GNR and CNT-based devices.

These novel devices may dominate the future of electronics and computer industries.

Hence, it becomes extremely important to study Physics and the modeling of these

GNR and CNT based devices. The most important thing that one should study first

is conductance of these novel materials which will take the role of the channel in the

futuristic nano-scale devices. As we know that nanoelectronics as well spintronics

are rapidly emerging fields, and people have determined current corresponding to

even a single molecule [2]. This is due to its application in diverse fields, so that our

devices can become more efficient and powerful.

Graphene layers have honeycomb lattice of covalent-bond carbon atoms. It can

be treated as two different sublattices, which can be labeled A and B as shown in

Fig.(6.3).

Graphite-related materials have long been a subject of interest. Graphene has su-

perb electrical properties as well as thermal properties. In case of graphene nanorib-

bon(GNR) people have observed band gap, which was not there in case of a graphene

sheet, so that it can be used for as device purposes, since we know that band gap

is inversely proportional to width of GNR [79]. Edge states of ZGNR has been

discussed in this work, since finite graphite systems having a zigzag edge exhibit

special edge states [82]. People have investigated the microscopic understanding

of the conductance reduction [83]. Due to special bandstructure, it has not high

mobility, but lot of other extraordinary properties. It has opened a new possibility

in the fields of microelectronics, semiconductors and other novel applications.
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Here, we study transport across a quantum dot created electrostatically by exter-

nal potential as shown in Fig.(6.4). The red line indicates the energy of the quasi

particle potential well. We have obtained the bandstructure in first Brillouin zone.

The object of investigation is to study the transport properties of ZGNR of finite

length/ZGNR based quantum dot is created electrostatically and which in principle

is tunable.

Similar work has been done by applying gate voltage, where electric conductance

of graphite ribbon with locally applied gate voltage has been studied in the form of

Landauer approach. Nanographite ribbon with zigzag boundaries exhibits the single

electronic transport channel due to the edge states with perfect transmission. In this

work region, the region sandwiched by the barriers plays the role of a quantum dot,

while in our work we have created potential well by fixing constant energy with red

line Fig.(6.4) [84].

Researchers have studied GNR as bulk modes(BM), which are basis solutions to

the Schrodinger equation. They have established a complete set of bulk modes for

graphene ribbons at arbitrary energy within efficient electronic transport simulation

of graphene based electronic devices [85]. They have also applied mode-matching

approach to study the current blocking effect in GNR. It has been shown that the

randomness of the interface tilting destroys the parity effect, if the spread of tilting

parameter is larger than the lattice constant [86].

Our main motive is to show that GNR shows the metallic behavior inside the con-

fined region of a potential well. We have also shown here that zigzag GNRs are

metallic structures as it follows [87], but apart from that number of transmission

peaks increases with the increase of number of layers of unit cells(M). Also it has

been shown that proposed scheme matches with the ones already existing in litera-

ture, such as Fabry-Perot resonances curves.

We have studied only the single subband problem in our work. It has been shown in
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this chapter that graphite ribbon with a zigzag edge intrinsically possesses the edge

states and it does not happen for the armchair case [87]. We have discussed only

zigzag case and it matches with the above work. We have tried to study the bound

states charge distribution of an electron trapped inside the quantum well. We have

shown that maximum transmission occurs, when k.a=nπ, where n is the integer. We

have investigated that number of peaks in transmission increases with the increase

of a number of layers of unit cells(called M onwards). Van Hove singularities of the

LDOS have been shown in the work. Furthermore latest studies proposed ZGNR as

a strong candidate for application in spintronics devices [88]. We have investigated

by using the TBGF(tight binding Green function) charge transport by calculating

the low temperature conductance. To calculate the the wavefunction inside the well,

we have used Eq.(6.3) where value of k is determined by the constant energy line

that crosses the band structure as shown in Fig.(6.4) and also n which is called

band number or transverse modes. The wavefunction ψnk is therefore the associ-

ated eigenstate corresponding to E(k,n). Now the overall wavefunction inside the

quantum well is a linear combination of ψnk eigenstates whose energy is crossed by

E=constant, it is the same energy which is shown with a red line in Fig.(6.4). Now

the wavefunction becomes ψ =
∑
ankψnk where sum runs over n and k quantum

numbers of the crossed states. As shown in Fig.(6.4), e.g. in this figure E=constant

line(red line) intersects 9 bands with n=1:5. Therefore for this E value, the overall

wave function inside the quantum well is a linear combination of 9 ψnk eigenstates.

GNR is a good one-dimensional structure, having low effective mass, smaller effec-

tive masses and momentum relaxation rates in the zigzag edge ribbons results in

the electron mobility as much as an order of magnitude larger than the armchair

edge ribbons [89] and also tunable band-gap. We have created a potential well by

applying an external electrostatic potential like in our quantum mechanics potential

barrier problem or finite potential well. Three regions have been created as shown

73



in Fig.(6.4). We are only interested in a middle region called as confined region.

We have used tight-binding method(TBM) in our work [90], since it gives atomic

details and is also a real space approach. The low-energy band structure of graphene

is gapless. We have studied in our work charge distribution for the case of bound

states, when the bound states are formed in our system, instead of bandstructure,

discrete energy levels will be formed, as we know from quantum dot case. We can

see clearly from our charge distribution graphs that local charge distribution on the

lattice is shown in color shapes, where the size of the circles is proportional to the

amount of charge localized on the lattice points. We have compared in this work

the results of a symmetric and asymmetrical cases(LDOS as well as Transmission).

By using the TBGF (tight-binding Green’s function) [82] formalism, we have tried

to focus on the ballistic case, where no scattering plays any role and calculated the

low-temperature conductance [91]. The electronic properties of GNR are sensitive

to the geometry of their edges and the number of carbon atoms N across the rib-

bon [52]. The chapter is organized as follows. First we have shown the theoretical

method including the Hamiltonian of the system, which is tridiagonal in form. We

have shown the Quantum well in Fig.(6.4), how it is created by using an external

potential and how the bandstructure differs in different regions of the potential well.

We have tried to investigate the results of LDOS, transmission and charge distribu-

tion in the results and discussion section. In the last section, we have summarized

the results.

6.2 Method

The geometry of the potential is given in Eq.(6.1) since

Htot = HGNR + V [θ(x)− θ(x− L)] (6.1)
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where θ(x) is the Heaviside function & V is constant. For V >0 the electrostatic

potential takes the form of rectangular barrier, whereas for V <0 the potential is in

the form of a quantum well. To model a quantum well, we assume that there is an

external electrostatic potential, so that band-structure inside the well and outside

will be different due to presence of external potential. We assume that there is an

external potential in this form

V (x) =


V0 if x <0 & L<x ;

0 if 0 ≤ x ≤ L.
(6.2)

Here, V0 is the problem variable and its value is equal to 0.5eV. We have obtained

the bandstrcuture by combining tight binding Hamiltonian with Bloch theorem.

After diagonalizing the Hamiltonian and plotting the eigen values as a function of

k yields the bandstrcuture as shown in Fig.(6.1). For the middle region (called

confined region) V=0, so according to Bloch’s theorem k-dependent Hamiltonian

can be written as

Hk = H00 +H01e
ika +H10e

−ika (6.3)

Which yields an energy and eigen states of the evanescent Bloch waves. Where H00

means when layer 0(inside confined region) is connected to 0 layer of the unit cells,

similarly H01 is the layer 0 is connected to 1 of the unit cells and similarly for other

layers of unit cells. Here lattice constant has been taken as 3.89A0. In the confined

region general solution eikx and e−ikx are the oscillatory solutions, where k indicates

confined states. Going from one layer to next layer or previous one, wavefunction

gains a shift in phase.
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Figure 6.1: The bandstructure of Graphene nanoribbon with terminated zigzag edges
for number of atoms per unit cells=12.

H00 in matrix form can be written as

[H00] =



0 −t 0 0 0 0 0 0 0 0 0 0

−t 0 −t 0 0 0 0 0 0 0 0 0

0 −t 0 −t 0 0 0 0 0 0 0 0

0 0 −t 0 −t 0 0 0 0 0 0 0

0 0 0 −t 0 −t 0 0 0 0 0 0

0 0 0 0 −t 0 −t 0 0 0 0 0

0 0 0 0 0 −t 0 −t 0 0 0 0

0 0 0 0 0 0 −t 0 −t 0 0 0

0 0 0 0 0 0 0 −t 0 −t 0 0

0 0 0 0 0 0 0 0 −t 0 −t 0

0 0 0 0 0 0 0 0 0 −t 0 −t

0 0 0 0 0 0 0 0 0 0 −t 0



(6.4)

similarly H10 in matrix form can be written as
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[H01] =



0 −t 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −t 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −t 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −t 0 0 0 0 0

0 0 0 0 0 0 0 −t 0 −t 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −t 0



(6.5)

where H10 is the hermitian conjugate of H01.

For the two end regions (first and third)

Hα = H00 +H01e
αa +H10e

−αa (6.6)

As it is clear from this equation that ik has been replaced by a pure real value say α.

This guarantees that ψ will drop exponentially and α is called decaying constant.

Here we have taken the length of the well is 50nm and barrier height is 10meV.

Now the full Hamiltonian in the confined region becomes

[H] =



[H00] [H01] . . . . . . [0]

[H10] [H00] . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . [H01]

[0] . . . . . . [H10] [H00]


(6.7)
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Figure 6.2: The bandstructure in case of a Graphene nanoribbon in first and third
region of quantum well, with terminated zigzag edges for number of atoms per unit
cells=12.

Figure 6.3: Schematics of the transport channel connected to two semi-infinite Zigzag
nanoribbons(shaded regions), in unit cell as shown in rectangle, having number of
atoms per unit cells 12.
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Figure 6.4: Potential well created by applying an external potential, where red line
shows the fixed energy.

We have taken the distance between sublattices A and B to be equal to 0.46A0,

as shown in Fig.(6.3). Configuration of our system is like iterative cells, where it is

connected to two semi infinite zigzag nanoribbons towards left and right sides.

We use the non equilibrium Green function (NEGF) method for calculating DOS &

the transmission function of our system. Here, the Green’s function is calculated by

using the method given in Datta’s book [26],

Gr = (EI −H − Σr
L,R)−1 (6.8)

where Gr is the retarded Green function and Ga is the advance Green function.

Also, (Gr)†=Ga. Σr
L,R are the self energy matrices. At the ends, the surface Green’s

function includes the effect of semi-infinite surface layers and it is calculated by

Lopez Sancho algorithm [92].

Σr
L = H†LCG

0
LHLC (6.9)

Similarly for right side, we can write Σr
R which is the coupling matrix to the leads.
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Transmission function can be written as [93]

T = Tr(ΓLG
rΓRG

a) (6.10)

which indicates transmission per energy channel between left and right leads and

ΓL and ΓR are the broadening functions corresponding to left and right sides which

are given as

ΓL = i[ΣL − Σ†L] (6.11)

ΓR = i[ΣR − Σ†R] (6.12)

6.3 Results And Discussion

DOS is equal to [94]

DOS =
−Im(Tr(G))

π
(6.13)

where Im indicates the imaginary part.

As we can see clearly from Fig.(6.7) that Van Hove singularities occurs, which is

non-smooth in the curve and reflect the onset of quasi-1D energy subbands, which

have been observed experimentally. It is also observed in similar 1D structures such

as for ordered case of grain boundaries of graphene [95] and also in case of carbon

nanotubes [96]. Fermi energy of the structures has been taken equal to zero (refer-

ence point). The longest peak in the density of states indicates the localized edge

states of zigzag nanoribbon, which does not occur in case of armchair. Fig.(6.5(a))

and Fig.(6.5(b)) shows the results for symmetric & asymmetric cases.

For symmetric case, the number of layers between left and right is M=20, while

N (number of atoms per unit cell)=12 and VL = VR.

The number of layers for asymmetric case is also the same (M=20). The only
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Figure 6.5: Transmission in case of symmetric potential well (a) VL = VR & asym-
metric case (b) VL 6= VR, energy is in eV.

difference is that here we have taken VL 6= VR.

We can show here also that how the charge distribution occurs in the confined

case.

Fig.(6.6) shows the charge distribution results for symmetric case, where VL =

VR. Here the size of circles is proportional to the amount of charge localized on

the lattice points. Fig.(6.7(a)) show the LDOS in case of symmetric VL = VR &

Fig.(6.7(b)) show asymmetric case VL 6= VR.

When we increase N (number of atoms per unit cells) additional subbands (trans-

verse modes) will contribute to electron transport and as a result the number of

plateaus (step like conductance transition) increases. Conductance is quantized as

one should expect, this curve has a type of step function and it also matches with

the basic concept of quantum conductance. We see from Fig.(6.8) that number of

oscillations is proportional to M (number of layers of unit cells). The transmission

function oscillates with energy due to the resonance effect caused by confined states.

This is similar to Ramsauer-Townsend effect [97]. We see that resonances give 100%

transmission at certain energies. Resonances occur [97], when the distance covered

by the particle in traversing the well back 2L is an integral multiple of the de-Broglie

wavelength of the particle inside the potential.
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Figure 6.6: Charge distribution in case of symmetric potential well, when N=12,
M=20, tt=2.7eV(hopping), a = 2.46Å(lattice constant), VL = 20 meV, VR = 20
meV (x-axis=x-atoms, y-axis=y-atoms).
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Figure 6.7: LDOS in case of (a) symmetric and (b) asymmetric case, Energy is in
eV.
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Figure 6.8: Transmission oscillations increases with M.

For E >V0 reflections at potential discontinuities are not accompanied by any

phase change. Therefore, the resonances correspond to formations of standing waves

with in the potential well.

At resonance the waves incident on the potential at x=0, and the waves reflecting

between the walls of the potential are in phase and reinforce each other. Far from

resonances, standing waves can’t be formed. Here, waves reflecting between both

walls of the potential at x=0 and x=L, and the waves transmitted at x=0 are out

of phase and corresponds to the destructive interference. The physics here is same

as it used to happen in Fabry-Perot interferometer in optics, where the resonance

condition and functional form of Transmission coefficient are the same.

Here T(E) and it is easy to know for which E values the transmission function is

maximum. For n=1, k=1.884, so energy from this k value is E(6)=-1.043eV. From

the above Fig.(6.9), we can see clearly that maxima occurs at E=-1.043 eV, which

is also there in maximum transmission values as shown in Fig.(6.5). As shown in

Fig.(6.9) with arrow also, upper arrow is for E(6)=-1.043, while lower arrow is for

E(7).

In literature people usually know of a graphene quantum well as a p-n-p structure,

as we have shown in Fig.(6.5-6.7), for symmetric as well as asymmetric case.
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Figure 6.9: Bandstructure a=2.46, N=12, M=12, VL = VR=10 mev.

The local charge distribution is shown in Fig.(6.6) as well as in Fig.(6.10) in

color scales. In Fig.(6.8) the oscillations in Transmission function mean that the

probability of transmission is a function of energy. Physically speaking, it means

that tunneling depends upon resonance like conditions. Here, we don’t need to

go beyond the energy limits (-2,2) as shown in Fig.(6.9), since it is single channel

problem. Transmission function oscillates with E, so the maxima of these oscillations

should coincide with the energies obtained through the Hamiltonian corresponding

to

k =
nπ

Ma
(6.14)

where k is the wave vector, M is the number of layers of unit cell in transverse

direction and ‘a’ is the lattice constant. Transmission is clearly positive and indicates

the metallic behavior.

We have studied transport in the confined region of a potential well by giving
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Figure 6.10: Local charge distribution on the lattice points is shown in color and size
is proportional to the amount of charge localized on the lattice points, when N=8,
M=20, VL = 20, VR=10 mev(x-axis=x-atoms, y-axis=y-atoms).

an external potential of 0.5 eV. Initially we have fixed the energy. We have created

three regions in the graphene sheet. We have given left potential as well as right

potential, including height of the barrier. We have focussed in the middle region

of the well, where electrons have been confined. We have seen transport properties

in the confined region. Edge states have been formed in this system. We have

taken the number of atoms in the unit cell (N=12). These slices of unit cells are

denoted M here onwards. We have seen in our transmission curves that when we are

increasing M, number of peaks are increasing accordingly. Physically this happenes

in case of Fabry Perot resonance curves. Where we have seen that resonance occurs

at particular frequency [98]. At particular energy resonance occur in our system. It

happens exactly like in the case of potential well. We can see from Eq.(6.14) that k is

inversely proportional to M. For a fixed value of energy we have different k’s in first

Brillouin zone. Since it is a single subband problem, so we are not going for multi

subbands. Perfect transmission occurs in our system. Bound states of the charge

distribution have been shown at lattice points in the confined region of potential well.
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The wavefunction outside the quantum well is exponentially damping, because we

are only interested in confined states. When we are moving from one unit cell to the

next in confined region, there is a phase shift in wavefunction. Phase shift is eikx in

the forward direction and e−ikx in the backward direction.

6.4 Conclusions

We have studied the electronic structure of ZGNR in a quantum well, which has

been created by giving an external electrostatic potential. By using Tight binding

Hamiltonian we first showed the band structure inside the middle region (confined

region) of well, where stationary states have been formed. Later we have shown

the behavior of LDOS, transmission as well as how the charge is distributed on

the lattice points for symmetric and asymmetric cases. LDOS provided us the

information about the distribution of electrons in the system. LDOS curve indicates

that localized edge states make a sharp peak near the Fermi level, since there are few

states near the Fermi level. Transmission and LDOS curves show that edge states

clearly depend on the number of atoms in a unit cell, where electronic properties of

the system are very sensitive to width and edges. The conducting behavior which

we clearly show is also confirmed from the high transmission peak at the Fermi level

peak in the LDOS. We can conclude from the Fig.(6.9) that spectrum is almost

symmetric about the Fermi level and large transmission platforms continues until

the energy reach +1.66eV and -1.66eV transmission coefficient undergoes drastic

increase. Large peak is observed in the LDOS curves at the Fermi level and it

corresponds to first quantized conductance band magnitude 2e2

h
, while other peaks

in the LDOS curves shows the quantized steps in the conductance curves.

In the limit of infinitely large number of atoms in the unit cell the conductivity

of the system under consideration should converge to that of graphene. Although

graphene has notoriously high conductivity, it is not a superconductor. It is known
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that intercalation by Ca is necessary to make it superconductive [99].
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Chapter 7

Random Matrix Theory and

Quantum Chaos

Random matrices first appeared in mathematical statistics in the 1930’s, but got

very less attention at that time. Inspite of huge success of statistical methods in

describing the macroscopic thermodynamic behavior of physical systems, its relation

to the underlying microscopic dynamics has remained a subject of debate [100]. It

was very much clear since the beginning that we cannot directly apply the classical

notion of chaos to quantum mechanical systems [101], for the simple reason that

Schrodinger’s equation is linear and cannot have exponentially departing trajecto-

ries. The theory became a cornerstone of modern physics. One should concentrate

on the statistical properties of energy levels. Wigner’s ideas were further extended

by the seminal work of Dyson [102], who contributed towards the symmetry classifi-

cation of Hamiltonians and showed the existence of three major symmetry classes of

random matrices, orthogonal, unitary and simplectic. RMT was designed by Wigner

to deal with the statistics of eigenvalues and eigenfunctions of complex many-body

quantum systems [103]. In 1951, Wigner proposed the use of RMT to describe some

properties of excited states of atomic nuclei and it was the first time this theory was
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used to model physical reality [103]. RMT became a powerful tool of mathematical

physics in 1960’s, notably given by Wigner, Dyson, Mehta and Gaudin. Mehta and

Gaudin [104] developed the method of orthogonal polynomials. Mehta, Gaudin,

Porter and Rosenzweig followed the ideas of Wigner. The idea behind it was to un-

derstand the statistics (particularly) of the distributions of spacings between energy

levels of heavy nuclei, measured in nuclear reactions. In recent years there is huge

interest in RMT mainly because of two reasons. Firstly, the Wigner-Dyson ensemble

applies generally to chaotic systems [105, 106]. The RMT of quantum transport is a

statistical theory of the transmitted eigenvalues of an open system [107], and RMT

established by Wigner and Dyson addresses the statistics of energy levels in a closed

systems.

7.1 Quantum Chaos-RMT

Chaos refers to the non-linear and irregular, deterministic behavior of a system that

is very sensitive to the initial conditions. By chaos, we mean an irregular complex

motion whose long behavior in detail is not predictable. The long term behavior

in a non-linear system may become ultrasensitive to the initial conditions. Initial

conditions play very important role in integrable motion, since we can predict the

future path of the system with initial condition. Classical chaos is considered to be

a property of bounded macroscopic systems. A small change in the initial conditions

may completely change the future path of the system and hence the resulting motion

is not predictable. Here, the system is classical and hence its motion is governed

by the laws of classical mechanics. Thus, the motion is completely deterministic,

but its long term behavior is chaotic. This is why the phenomenon of chaos is

called deterministic chaos. Further in chaos, specific solutions change exponentially

in response to small changes in the initial conditions. It is to be understood that

the chaotic motion is not completely random. In a random sequence, the successive
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terms are governed by a definitive probability distribution, but are not completely

determined. According to the Bohigas-Giannoni-Schmit (BGS) conjecture [108],

classical chaos is a sufficient condition for the applicability of RMT. RMT describes

the statistical fluctuations in the universal regime. Instead of trying to explain

individual eigenfunctions, RMT discusses about the statistical behavior [103]. It

took a large number of numerical studies to confirm the BGS conjecture. The BGS

conjecture states that quantum spectra of classical chaotic systems are universally

correlated according to the Wigner-Dyson random matrix ensemble [109]. In 1984,

BGS gave proof that the quantum energy level sequence of systems with chaotic

classical counterparts have statistical properties that fit the prediction of RMT [110].

The Kicked rotator is a model for chaos and quantum chaos studies. The model

is described by the Hamiltonian

H(p, x, t) =
p2

2
+K cos(x)

∞∑
n=−∞

δ(t− n) (7.1)

Where δ is the Dirac delta function, x is the angular position, p is the momentum,

K is the kicking strength as shown in Fig.(7.1) for different K’s. Fig.(7.1) shows an

area-preserving map for two canonical dynamical variables momentum and position

(p,x) for different values of K [111], where large value of K green region is the main

chaotic region of the map. Dynamics of K is described by the standard map

pn+1 = pn +K sin(xn), xn+1 = xn + pn+1 (7.2)

With the caveat that p is not periodic as shown in the Fig.(7.1). Fig.(7.2)

shows the system becomes more chaotic as dynamical symmetries are broken by

increasing the quantum defect. Regular classical dynamics is manifested by a Poisson
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Figure 7.1: Orbits of the standard map for K = 0.6(Top left), K=0.972(Top right),
K=1.2(Bottom left), K=2(Bottom right) (Image taken from wikipedia commons)

distribution of energy levels

P (s) = e−s (7.3)

the systems which show chaotic classical motion are expected to be characterized

by the statistics of random matrix eigenvalues ensembles. If the normalized spac-

ing between two energy levels is s, the normalized distribution of spacing is well

approximated by

P (s) =
π

2
e−π

s2

4 (7.4)

Although many Hamiltonian systems which are classically integrable (non-chaotic)
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have been found to have quantum solutions that exhibit nearest neighbor distribu-

tions. The systems which exhibit classical chaos have been found with quantum

solutions yielding a Wigner quasiprobability distribution.

Figure 7.2: Nearest neighbor distribution for Rydberg atom energy level spectra in
an electric field as Quantum defect is increased from 0.04 (a) to 0.32 (h). The
system becomes more chaotic as dynamical symmetries are broken by increasing
the Quantum defect; consequently, the distribution evolves from nearly a Poisson
distribution (a) to a quasiprobability distribution (h). (Image taken from wikipedia
commons)

Recently, there have been studies [112], where scattering of electromagnetic waves

in a billiard like system has become a standard experimental tool for studying prop-

erties associated with quantum chaos. RMT describes statistics of eigenvalues and

eigenfunctions in quantum mechanical language and remains one of the pillars of

theoretical understanding of quantum chaotic systems. RMT is a natural tool for
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quantum information theory as well [113]. It is of importance for both its concep-

tual and its predictive powers. Many essential tools have been developed to analyze

properties of random matrices.

Recently, more and more disciplines of science and engineering have found RMT

valuable. RMT is rapidly progressing day by day and there are an increasing number

of applications in the context of information theory and communication systems,

especially in studying the properties of complex networks.

RMT aims to understand correlations between eigenvalues independently of the

variations of level spacings. In random matrices, one is concerned with the question

that given a large matrix whose elements are random variables with given proba-

bility laws, then what can be said about the probability of some of its eigenvalues

and eigenvectors? This question is of pertinence to the understanding of the statis-

tical behavior of slow neutron resonances in nuclear physics, where it was studied

intensively by Physicists. This question gained importance later in other areas of

physics and mathematics like characterization of chaotic systems, conductivity in

disordered metals and many more areas of research. In case of bulk metals, at high

temperature the electronic energy levels lie very near to each other and are broad

enough to overlap and form a continuous spectrum. When we decrease the size of

the sample, spectrum becomes discrete and when there is reduction in temperature,

the width of the individual levels decreases. When the metallic particles are minute

enough at low temperature, the spacing of the electronic energy levels may eventu-

ally become larger than the other energies, like the level widths and thermal energy

kbT . The thermal and electromagnetic properties of the fine metallic particles may

deviate considerably from those of the bulk metal.
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7.2 GOE and GUE

Wigner distributions for nearest neighbour level spacings are observed in a large

variety of very different systems, ranging from the atomic nucleus to the microwave

billiard. In random matrix theory this fact is accounted for by replacing the Hamil-

tonian by a matrix whose elements are randomly chosen. We are not completely

free in fixing the matrix elements. The universality class restriction for the matrix

elements have to be obeyed [22]. In a fully chaotic system one set of basis functions

is a priori suited as well as the other. The correlated probability p(H11, ..., HNN)

for the matrix elements should therefore not depend on the set of basis functions

applied. This leads to the invariance property

p(H11, ..., HNN) = p(H
′

11, ..., H
′

NN) (7.5)

H
′

is obtained from H by an orthogonal transformation H
′
=OHOT with OOT=1.

By means of Eq.(7.5) the number of possible forms for p(H11, ..., HNN) is radically

reduced. Functions of the Hnm being invariant under orthogonal transformations can

depend only on the traces of powers of H. This is a consequence of the commutative

property

Tr(OAOT ) = Tr(AOTO) = Tr(A) (7.6)

of the trace. Thus p(H11, ..., HNN) can be expressed as

p(H11, ..., HNN) = f [Tr(H), T r(H2), ...]. (7.7)

Moreover, we demand that the matrix elements are uncorrelated

p(H11, ..., HNN) = p(H11)p(H22)...p(HNN) (7.8)
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The only possible functional form for p(H11, ..., HNN) obeying both Eq.(7.7) and

Eq.(7.8) is given by

p(H11, ..., HNN) = Cexp[−BTr(H)− ATr(H2)] (7.9)

Without loss of generality we may take B=0 as it is always possible to shift the

average energy, 1/N Tr(H), to be zero. The prefactor C is mixed with the help of

the normalization condition

∫
p(H11, ..., HNN)dH11...dHNN = 1 (7.10)

For the orthogonal case the nondiagonal matrix elements occur twice in the

exponential function each yielding a normalization prefactor
√

2A/π, whereas the

normalization factor for the diagonal elements is given by
√
A/π.

p(H11, ..., HNN) = (A/π)N/2(2A/π)N(N−1)/2exp(−A
∑
n,m

H2
nm) (7.11)

The constant A may be expressed in terms of the variance either of the diagonal

matrix elements

< H2
nm >=

√
A/π

∫
H2
nmexp(−AH2

nn)dHnn = 1/2A (7.12)

for nondiagonal elements

< H2
nm >=

√
2A/π

∫
H2
nmexp(−2AH2

nm)dHnm = 1/4A (7.13)

The set of all real random matrices with matrix elements obeying the distribu-

tion function (7.11) defines the Gaussian Orthogonal Ensemble (GOE). In complete

analogy we obtain the Gaussian Unitary Ensemble (GUE) and the Gaussian Sym-
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plectic Ensemble (GSE) by the demand that the distribution of the matrix elements

is invariant under unitary and symplectic transformations, respectively. For the

correlated distribution of matrix elements of the GUE we get

p(H11, ..., HNN) = (A/π)N/2(2A/π)N(N−1exp{−A
∑
nm

[(HR)2
nm + (HI)

2
nm]} (7.14)

where (HR)nm and (HI)nm are the real and imaginary parts of Hnm, respectively.

7.3 Applications

The theory has applications in biology, like in sequence matching, RNA folding, gene

expression network. It also has applications in other fields of interest like in eco-

nomics and finance, time series analysis, and in statistics, like in case of multivariate

statistics, principal component analysis (PCA), image processing, data compression,

Bayesian model selection. Random matrices are now used in fields such as condensed

matter physics, statistical physics, chaotic system and many more areas [114]. RMT

can be applied in number of fields including quantum dots (artificial atoms) quan-

tum chaos, as well as application to Andreev billiards-quantum dots with induced

superconductivity [115]. RMT has been widely used in physics in various areas like

in disorder and localization, mesoscopic transport, optics, quantum entanglement,

neutral networks, gauge theory, QCD, matrix models, cosmology, string theory, sta-

tistical physics (growth models) [116]. Applications of RMT to condensed matter

physics search for universal features in the electronic properties of metals originat-

ing from the universality of eigenvalue repulsion [117]. In condensed matter physics

applications of RMT fall into two broad categories. In the first case, one studies the

thermodynamic properties of closed systems, such as metal grain or semiconductor

quantum dots. The random matrix being the Hamiltonian (H), while in the second

case one studies the transport properties of open systems, such as metal wires or
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quantum dots with point contacts. In this case the random matrix is the scattering

matrix S. Both these categories have flourished with the development of nanotech-

nology. In case of quantum wires and quantum dots confinement of electrons at the

nanoscale in wire geometries and box geometries respectively preserve their phase

coherence [117], which is required for RMT to be applicable. Since RMT deals with

the statistical properties of large matrices with randomly distributed element, it

can be used to calculate the correlation functions of eigenvalues and eigenvectors

from probability distributions [107]. Secondly, the discovery of a relation between

universal properties of large matrices and universal conductance fluctuation [107],

in disordered conductors [118, 119]. The RMT of quantum transport is concerned

with the mesoscopic systems, which are at the borderline between the microscopic

and macroscopic world [107]. RMT relates the universality of transport proper-

ties to the universality of correlation functions of transmission eigenvalues. It is

worthwhile to recall the fundamental development of nuclear theory preceding it.

In case of scattering of slow neutrons by medium-weight and heavy nuclei, narrow

resonances had been observed. Each of these resonances corresponds to a long lived

“compound state”, in the famous paper of Niels Bohr, on the compound nucleus, as

a system of strongly interacting neutrons and protons [120]. In this way, Bohr laid

the ground for Wigner’s work and RMT can be seen as a formal implementation of

Bohr’s compound nucleus hypothesis [103].

The relation between classical and quantum chaos was first identified in 1984

and stated that the statistical quantal fluctuations of a classically chaotic system

are described by RMT. Statistical properties of chaotic systems follow the prediction

of RMT [105]. RMT differs in a fundamental way from the conventional statistical

approach. RMT has no scale, its physical parameter is determined by the mean

level spacing and leads to universal predictions [108]. Just as, like charges repel

each other, same thing happens in case of eigenvalues. To understand, the connec-
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tions between classical and quantum physics, statistical analysis of the eigenvalues of

quantum systems has become an important tool [110]. The eigenvalues of random

hermitian matrices have some statistical properties like those of chaotic classical

systems. As explained in [110], for the last 40 years researchers have been inves-

tigating whether there are any qualitative differences between quantum systems,

whose classical counterparts are chaotic and those whose classical counterparts are

regular. Most of the numerical techniques and experimental work supports these

conjecture, although some researchers have taken the statistical properties of the

spectra as the definition of quantum chaos, but this is not universally accepted.

Quantum chaos, a mysterious counterpart of the classical dynamical chaos, is one

of the most intriguing problems in contemporary physics, currently under extensive

study by many researchers throughout the world [121]. The qualitative sequence

has also found applications in areas outside physics like in mathematics. In number

theory, e.g the sequence of prime numbers is statistically similar to a sequence of

random numbers, while the imaginary part of nontrivial zeros of Riemann zeta func-

tions have statistical properties that fit into the prediction of RMT [110, 122]. It

indicates connections between quantum mechanics and number theory as well. The

eigenvalues of a quantum system, whose classical counterpart is integrable, are not

correlated at all and they exhibit level clustering and statistical properties similar

to those of random numbers [110]. In contrast, the eigenvalues of a quantum system

whose classical counterpart is chaotic as well as strongly correlated, exhibit level

repulsion and are statistically similar to the eigenvalues of random matrices. RMT

also describes statistical properties of interacting systems at high enough excitation.

In our 1D disordred system the Hamiltonian matrix is relevant for analyzing

spectral statistics of disordered or classically chaotic systems. We have focussed in

our work only on the disordered case. In our work, we are not going beyond 1D

(disordered wire case), so we are not discussing here about 2D and 3D systems.
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The description of RMT can be modified by the absence of complex phase factors.

Random matrix is designed for an ensemble of chaotic scatterers and scattering

is due to disorder, while all the different members of an ensemble have different

disorder configurations [115]. RMT discusses many universal properties and there

are a variety of systems to which it might be applied. We have shown in the next

chapter that a 1D disordered system gives interesting properties in the mesoscopic

regime.
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Chapter 8

Mesoscopic fluctuations,

two-parameter scaling and

concommitant unusual level

spacing distributions in finite 1D

disordered systems

8.1 Introduction

As we discussed in the previous chapter, the Random Matrix Theory (RMT) deals

with the statistical properties of very big matrices. We study the evolution of the

random level spacing distribution in a finite-sized, disordered chain as it crosses over

from a ballistic to the strongly localized regime (as a closed 1D quantum system).

In a disordered chain with random but real-valued site-potentials, almost all the

states are exponentially localized and hence an incident plane wave (∼ eikx) propa-

gating in the positive x-direction is completely backscattered due to the well-known

100



localization effects [123]. Because the hamiltonian is random, its eigenvalues (energy

levels) are also random. There have been a lot of works [124] on the level spacing

distribution (LSD) as well in such random disordered systems. The motivation for

such studies come from the original works of Wigner [125], Dyson [126], and Mehta

[127] on the nuclear level spectra of heavy elements, where the number of levels

are so large that they warrant a statistical description. But, for a disordered sys-

tem, whose hamiltonian may be represented by random matrices, randomness in the

spectra and consequently the randomness in the level spacings come in a natural

way.

It was known for a long time that in the disordered metallic regime, the LSD

becomes one of the three Wigner-Dyson types (depending upon the three possible

symmetry classes), whereas in the insulating regime it assumes a Poissonian form.

These four universal behaviours were the only known ones to exist in the large length

(‘thermodynamic’) limit. More recent works [128] indicate that asymptotically close

to the critical disorder strength for the Anderson’s metal-insulator (M-I) transition

(which occurs only above 2D if the electrons are non-interacting and if there is

no magnetic field), the LSD is neither Wigner-Dysonian on the metallic side, nor

Poissonian in the insulating (localized) side, but it takes one of the universal forms

as one renormalizes to the large infinite length limit. Further, the behaviour at the

transition with a critical disorder, if there is one, is non-universal (i.e., none of the

above four) even in the thermodynamic limit. As in these discussions, our studies

below pertain to effectively non-interacting electrons.

One of the characteristic features of disordered mesoscopic systems is the statis-

tics of its anomalously large conductance fluctuations and its universality in the

diffusive regime. A lot of works [129] have been done in this area starting with the

numerical work of Stone and Lee and the analytical work of Altshuler and others

[130], to demonstrate that in the diffusive (disordered but metal-like) regime the
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sample-to-sample fluctuations of the two-probe conductance or the transmittance

becomes universal. This is called the universal conductance fluctuation (UCF). The

universality relates to the fact that the fluctuation (say, the standard deviation) is

independent of the size of the system, the strength of disorder, the Fermi energy of

the charge carriers, or the type of hamiltonian (say, Schrodinger with Kronig-Penney

model, or the nearest neighbour tight binding one). Hence the UCF is expected to

be independent of the specific material parameters, but does depend on the dimen-

sionality of the system. For a long time, it was believed that, strictly speaking,

the UCF occurs only in 3D, 2D and quasi-1D; but UCF cannot occur in 1D. But,

in a series of recent works (starting with ref [131]), we have shown that an almost

diffusive regime does occur even in 1-D (where ξ = 4le) and hence UCF is achieved

in 1D as well starting from a length L of about 2le and persisting upto a length

of about 5le (slightly larger than ξ). To put things in perspective, we quote the

UCF values (in units of 2e2/h, considering electrons of two spin varieties): they are

about 0.544, 0.431, 0.365 [130] and 0.30 [131] in three, two, quasi-1D, and exactly

1D respectively.

More interestingly, we observed [131, 132] an inadequacy of one parameter scaling

[129] in ‘finite-sized’ 1D samples from the quasi-ballistic through quasi-diffusive to a

mildly localized regime which we find to be about twice the localization length. The

phrase ‘mild localization’ has been used to imply stronger than weak localization

(‘dirty’ metallic or quasi-diffusive as discussed above) which appears in the length

regime le<L<ξ.

In our previous work [133] (referred to as I from now on), we had reported that

there are at least two relevant parameters for describing the conductance in this

regime in the sense that the mean and the variance of the entity u=ln(1+R4(L))=-

lnT(L), increase as a function of the length L with two distinct power-law exponents.

Here T(L) is the transmittance and R4(L) is the four-probe resistance of a sample
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of size L. Inside the mildly localized regime, 〈u〉 ∼ L for any Fermi-energy (EF ), but

var(u)∼ Lκ, where κ depends upon the EF and is always greater than 1. Beyond this

length scale (L > app. 7ξ in our work), the behaviour slowly crosses over towards

the one parameter scaling behaviour in the thermodynamic limit in the sense that

both 〈u〉 and var(u) diverge with the same exponent 1, irrespective of the EF . In I,

we had presented a typical case of W/V=1.0 and EF/V=1.6 where V is the hopping

term and found that κ =1.57. We give here the values of κ for some other Fermi

energies (but the same W): (i) for EF/V=0.1, κ=1.54, (ii) for EF/V=0.5, κ=1.68,

and (iii) for EF/V=1.9, κ=1.39. Thus, it appears that from the quasi-ballistic to the

mildly localized regime, the var(u) increases in an independent and faster power-law

fashion than 〈u〉 does and that other than the disorder strength (or, equivalently, the

Thouless energy) there is another relevant energy scale, namely the Fermi energy

itself. We reiterate that our main focus is on the finite-size effects on the scaling

and the level spacing distributions.

Next, one observes that conductance as a probe, samples the local LSD in the

vicinity of the Fermi-energy. This is explicitly seen in the Kubo formula for conduc-

tivity which connects the properties of an open quantum system (conductance or

reflectance) to those of a closed quantum system (spectrum of the allowed random

energy levels). For transport to take place in a Fermi system, a particle from a

state below the EF , must be excited to a state above it, thereby creating a particle-

hole pair. The steady-state dynamics of such pairs is responsible for the conduction

(transmittance) in the sample. Since conductance in finite-sized systems is non-

universal (beyond one-parameter scaling theory; as discussed above), we had con-

jectured in I that the LSD for finite-sized 1D systems should also be non-universal

upto about the same length scale (i.e., about 2ξ) for the state with the largest ξ (usu-

ally the band centre E = 0 of a pure system obeying a tight binding hamiltonian).

Thus, we focus on presenting the LSD of finite and closed quantum chains. The
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results presented below should amply support our conjecture in I. The other reason

for focussing on finite chains is that many of the current experiments on mesoscopic

fluctuations and quantum chaos are indeed done on low-dimensional and small-sized

systems (even zero-dimensional, for a quantum dot).

8.1.1 Model

We consider a quantum chain of N lattice points (lattice constant unity), represented

by the standard single band, tight binding equation:

(E − εn)cn = V (cn−1 + cn+1) (8.1)

Here E is the fermionic energy , V is the constant nearest neighbour hopping

term, εn is the random site-energy, and cn is the site amplitude at the n-th site.

Without any loss of generality, we choose V=1 to set the energy scale. Further,

we choose εn randomly from an uniform distribution with P(εn)=1/W only inside

the real, symmetric interval [-W/2,W/2]. The N×N tridiagonal matrix (random

in the diagonal entry) represented by the above equation is diagonalized using the

standard procedures to obtain the N energy levels for various configurations with

the same W. Since we are dealing with disorder, we have not used any periodic

boundary condition and kept it free. Thus we get a set random energy-levels (En;

n = 1, 2,....., N) for each configurations is then sorted in an increasing order. In

the Figs.8.1(a)-8.1(j), we show the evolution of the density of states (DOS) with the

size of the chain, for a fixed (mild) disorder of W = 1.0 and for N = 3, 5, 11, 21,

31, 41, 51, 101, 501, and 1001 respectively. It may be noted here that for this 1D

tight binding model, one has a bounded spectrum within [-2,2] in the pure case. In

an impure sample, the spectrum will have its bounds expanded since
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Figure 8.1: Density of states (DOS) in arbitrary units for samples with a fixed,
mild disorder of W=1.0 (in units of the hopping term V) and for different chains of
sizes (N) equal to (a)3, (b)5, (c)11, (d)21, (e)31, (f)41, (g)51, (h)101, (i)501, and
(j)1001.
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the localized states start appearing above or below the pure band depending

on the sign, positive or negative, of the impurity potential. But still the width of

these spectra remain bounded. For W=1.0, the width of the spectra remain bounded

within [-2.5,+2.5], in units of V, in compliance with the Gershgorin’s theorem. Thus,

it is clear that a particular realization of a sample of size N will have only N discrete

eigenstates, and it will be very difficult to get an idea of the shape of the DOS

for that finite size system. Indeed, to demonstrate a smooth enough curve for the

DOS of a disordered chain of a small size, we should try to get the eigenstates of

as many random realizations for that particular size as possible. In this particular

problem, one is in a happy situation because one needs to use a very large number

of configurations for a very small N, and a much smaller number of realizations for

a large enough N. For example, for any fixed disordered chain of N=3, we have

only three states in a energy-domain of width about 5 (in units of V), whereas for

an arbitrary configuration with N=1001, we would have a random sample of 1001

states in about the same energy domain. Thus, in the first case of a randomly chosen

sample of three possible energy eigenstates, we cannot get any idea of how the DOS,

as a probability density function of the parent population, for N=3, looks like. But,

in the latter case of one random sampling of 1001 possible energy eigenstates, inside

an almost identical bounded energy domain, the shape of the probability density

(DOS for N=1001) of the parent population is reasonably clear, even though some

fluctuations do still remain prominent. For example, to obtain a reasonably smooth

DOS (histogram), for a fixed disorder of W=1.0 (Fig.(8.1)), we have used, with

hindsight, 5000 configurations for N=41 and 5000 configurations only for N=1001.

The DOS (in arbitrary units) for N = 3 as shown in the Fig.8.1(a), demonstrates

that the three sharp energy eigenstates for the pure system has broadened substan-

tially due to the mild disorder of W = 1, but there are still gaps in the spectrum

between any two consecutive broadened levels. These gaps imply that the system
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certainly responds to the presence of a disorder by broadening each of the three

sharp energy levels and yet it cannot ‘forget’ the predominant effects of order in this

case, and reveals it through the finite gaps between any two consecutive broadened

levels [as shown in Fig.8.1(a)]. In other words, the energy-states in this system,

whose localization lengths are more than three (in lattice units) are much larger in

number than those whose localization lengths are less than or equal to three. Thus

most of the electronic states in this system of size three, are unaffected by disorder,

and so they are almost ballistic in nature.

Fig.8.1(b) shows the DOS for N = 5 and one notices five very prominent peaks

therein corresponding to five distinct energy levels in the pure case. But, disorder

effects have started to show up somewhat more prominently in the sense that the

level broadening is relatively larger and the overlap between two broadened levels

are now large enough to rule out any energy-gap between them. The charge carriers

are still quasi-ballistic though, since the five peaks are quite well-separated except

near their bottommost parts. It may be stressed again that we are putting together

the random spectra of many different configurations, not for any averaging process,

just for a clearer visualization of the DOS.

The situation changes a little for N=11 [Fig.8.1(c)], since the overlaps are no more

confined near the bottom of two consecutive levels. Instead, they move progressively

upwards to the peaks themselves, as one moves away from the centre towards either

end of the of the spectrum. Indeed, this disorder-induced broadening effect is so

substantial near the edges of the spectrum (already for N = 11), that each pair of

levels at the two ends of the spectrum have now almost completely merged to form

one broad peak each. We know for the pure case, the sharp levels at the two ends of

the spectrum cause vertical drops of the DOS to zero at the two band edges. But in

the impure case, the levels at the ends of the spectrum (just like the others) do get

broader, and the sharp drop of the DOS is softened by an exponential drop to zero.
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Consequently, there is a concommitant increase of the spectral width (consistent

with similar observations in many previous works). In this case, the exponential

tails increases the spectral width from 4V to about 4.5V. The states around the

middle of the spectrum, on the other hand, are much less affected by the disorder

and, their localization lengths are still much larger than the system size (N = 11

here). Clearly, they are the ones to get localized much later (implying, at a larger

disorder, as we keep on hiking up the W progressively). In any case, for N = 11,

the system is still in the quasi-ballistic regime.

Next, for N=21 [Fig.8.1(d)], all the levels have become so much broadened, that

they are not distinguishable any more. So, the quasi-ballistic behaviour has been

completely defeated by the disorder effects, and the only remnants of the quasi-

ballisticity of the 21 sharp energy levels for any arbitrary configurations (including

the pure case) appear, collectively for a finite yet large number of configurations

(used at least 5000 of them to make this histogram for N=21) in the form of large

random fluctuations near the central one-third portion of the spectrum. So, the

system is not quasi-ballistic anymore, but is in the weakly localized regime for

the states around the centre of the spectrum and strongly localized for states near

the edges. For example, using the Thouless formula (demonstrated to be quite

reasonable in our previous works with such a mild disorder like W/V=1.0), we find

the localization length, for an eigenstate with energies close to the band-centre, to be

about 24. So, this is consistent with the behaviour we find in the Fig.8.1(d) with a

system-size quite close to the maximum localization length of the system. The DOS

shown in the Figs.8.1(e) and 8.1(f), for N = 31 and N = 41 looks only qualitatively

similar and they show some small quantitative changes. From the Figs.8.1(g)-8.1(j),

it is demonstarted further that the DOS as a probability density function changes

even more imperceptibly for sizes beyond a few hundreds, and give us no further

information about the localization (or lacks thereof) properties.
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Next, we look at the level spacing distribution (LSD). We obtain (N-1) level

spacings (s=En+1 − En) for each configuration. Next we obtain the normalized

histogram P(x) representing the LSD with the scaled dimensionless level spacings

x=s/〈s〉, where 〈s〉 is the average (nearest neighbour) level spacing. The more the

number of configuration we choose, the smoother is the LSD. We would like to

present our results in two different ways. In the former, keeping the length L =

(N-1) fixed, we will keep on changing the disorder W from very small to quite large

values. In the latter presentation we will do just the opposite, namely, that we will

hold the disorder W fixed and change L from very small to fairly large values. As we

find out, both the ways of presentation has some complementary aspects to display.

In the Figs.8.2(a)-8.3(j), we present the LSD for systems of size N = 51 us-

ing 5,000-10,000 configurations for various W starting from an almost pure (quasi-

ballistic) sample with W=10−5 to a fairly strong disordered system with W = 10.0.

In the case of the Fig.8.2(a), the system is almost periodic and the P(x) has a highly

peaked structure with large gaps for small x. The gaps tend to disappear only near

large x. All the peaks have the same height equal to 100, except a slightly smaller

single one in the middle reminding us that there is minute disorder in the system.

In the Fig.8.2(b), where W = 10−3, the gaps are almost as before, but the maximum

peak height is smaller (about 80), and hence the peaks have become broader (indeed

at large x some of them have even merged together). Further, peak heights have

become more random in response to the stronger disorder than in Fig.8.2(a). In the

next Fig.8.1(c) for W=10−2, the peak heights become even smaller but wider, with

the largest peak very close to the upper bound of x, where P(x) drops down to zero

with a very sharp band-edge like discontinuity.
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Figure 8.2: Normalized level spacing distributions P(x) (as the function of a dimen-
sionless level spacing x=s/〈s〉; where 〈s〉 is the level spacing for a particular case)
of a 1-D disordered system of a fixed size N= 51 and varying disordered strengths
(W/V) equal to (a) 0.00001, (b) 0.001, (c) 0.01, (d) 0.05,(e) 0.1,(f) 0.5.
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Figure 8.3: Normalized level spacing distributions P(x) (as the function of a dimen-
sionless level spacing x=s/〈s〉; where 〈s〉 is the level spacing for a particular case)
of a 1-D disordered system of a fixed size N= 51 and varying disordered strengths
(W/V) equal to (g) 1.0, (h) 2.5, (i) 5.0, and (j) 10.0.

But, it may be noted that the fragmented structure of P(x) still remains, as a

memory of its relatively ordered situation. The concommitant gaps are the signa-
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tures of an almost ballistic regime, which implies that the localization lengths of

almost all the states are larger than the system size chosen (L = 50). In Fig.8.2(d)

for W = 0.05, the gaps between the peaks have completely disappeared, and the

distribution at low x has a very interesting oscillatory form, but for a strong repul-

sion (gap) upto x ≤ x0 ' 0.06. This seems to be the typical behaviour of P(x) in

the quasi-ballistic regime. In this regime, the band-edge like behaviour (at large x)

beyond the largest peak has transformed into a less sharp decay. In Fig.8.2(e) for

W = 0.1, the oscillatory pattern of P(x) has completely vanished, indicating that

the localization effects have started becoming prominent. But, the behaviour is still

metal-like in the sense that P(x = 0) =0 (level-repulsion).

Yet, the LSD is qualitatively different from a Wigner-Dyson (WD) type, first

because P(x) = 0 upto x0 = 0.03 (note that x0 is smaller than the same for W =

0.05) and next because a small hump appears near x = 0.2 followed by a relatively

large quasi-flat region leading to a much larger second peak (at x ' 1.5) which finally

decays very sharply quite close to zero near x ' 1.7. Thus this case still indicates

a much stronger level repulsion than in the case of a Wigner-Dyson distribution,

particularly because P(x) has an interesting double-peaked structure. This double

peaked structure is more prominent in Fig.8.2(f) for W = 0.5. But, the peaks have

come closer together with the smaller one at x ' 0.5 and the larger one at x ' 1.2.

Further the decay beyond the larger peak is slower than before (P(x > 2.4) ' 0),

and while P(x = 0) = 0, P(x > 0) > 0. Clearly, this LSD is approaching a WD

distribution, even though it is qualitatively very different from a WD form. For a

mild disorder W = 1.0 as in Fig.8.3(g), the double-peaked structure has disappeared

(the two peaks merge), and the LSD is qualitatively quite similar to a WD type. In

the case of both the Fig.8.3(h) and Fig.8.3(i) for W = 2.5 and 5.0 respectively, again

we have something very different from a WD in the sense that P(x = 0) > 0 (level

repulsion has disappeared), but on the other hand there is a single, broad peak at
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a finite x > 0, indicating the presence of some remnants of metal-like correlations.

Thus these two P(x)’s seem to be a combination of a WD distribution and a Poisson

distribution. Physically, this seems to indicate that some of the states are localized

and others are extended for this finite sized sample. It is reminiscent of the existence

of pre-localized states [134]. Finally, for a large disorder (W = 10.0) as shown in

Fig.8.3(j), even the largest localization length at E = 0 is much smaller than the

system size (L = 50). Hence all the states are strongly localized, and we get back

the universal (Poisson) distribution in 1D in the thermodynamic (N →∞) limit.

Next, we would like to show pictorially in the Figs.(8.4-8.5), the evolution of the

LSD as a function of the system size N, for a fixed, mild disorder strength W/V =

1.0 (V = 1.0 as stated before). Note that for this disorder, ξ '100. In contrast with

Figs.(8.2-8.3), all the LSD’s are continuous here because we are probing the quasi-

ballistic regime not with an extremely small disorder, but with a mild disorder and

very small length of, say N = 3, as in Fig.8.4(a). The LSD shows no fragmentation

or any oscillatory behaviour and is rather narrow with a single global peak at x '

1.0 and a fast decay practically to zero beyond x = x0 ' 1.4. Thus there is no

sign of quasi-ballisticity and the effect of disorder is felt even at this small length.

But the P(x) shows a much stronger level repulsion than in the WD case in the

sense that P(x) = 0 upto any x ≤ x0 ' 0.7 [compare with the cases of Fig.8.2(d)

and Fig.8.2(e)]. Almost similar is the case of Fig.8.4(b) for N = 11, where the very

strong level repulsion is somewhat reduced in the sense that the initial gap in P(x)

extends only upto an x0 ' 0.075 (this is not so clear from the figure, but becomes

evident on a log-log plot, which gives a power-law behaviour for small x: P(x) ∼

(x− 0.075)β with β ' 2.2).
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Figure 8.4: Normalized level spacing distributions (as in fig.1) of a 1-D disordered
system for a fixed and small disorder W/V = 1.0 and varying sizes (N) equal to (a)
3, (b) 11, (c) 21 ,(d) 31, (e) 41, and (f) 51.
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Figure 8.5: Normalized level spacing distributions (as in fig.1) of a 1-D disordered
system for a fixed and small disorder W/V = 1.0 and varying sizes (N) equal to ,
(g) 101,(h) 201, (i) 501, and (j) 1001.

The cases of Figs.8.4(c-f) for N = 21, 31, 41 and 51 respectively, looks qualita-

tively like WD, but the exponent β keeps decreasing from about 2 to 0.58 for these

cases. To be more explicit, we show in Fig.(8.6) the double-logarithmic plots of some

of these P(s)’s for small s ≤ 0.1. While a β < 1 indicates a weaker level repulsion

than in WD and hence seems surprising, one may find its origin in the Fig.8.2(e-f)

115



-2.5

-2

-1.5

-1

-0.5

0

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

lo
g
(P

(s
))

log (Shifted Level Spacing, (s-0.03))

130.0(s− 0.03)2.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.9 -1.7 -1.5 -1.3 -1.1 -1
lo

g
(P

(s
))

log (Level Spacing, (s))

80.0s1.4

Figure 8.6: Double-logarithmic plots of the level spacing distributions for small x.

and Fig.8.3(g), where the weaker peak at small x slowly comes closer to the stronger

peak and gives the LSD a convex shape upto the single global peak (implying a β

< 1). For still larger sizes of N = 101, 201, and 501 as shown in the Figs.8.5(g-i)

respectively, the LSD seems to be a mixture of WD and Poisson type distributions

and hence seems to indicate the existence of pre-localized states [134] as in the cases

of the Figs.8.3(h) and Figs.8.3(i). Finally, in the case of Fig.8.5(j) for N = 1001, L

' 10ξ(E = 0), but the LSD does not yet seem to have reached the universal Poisson

form (consistent with I). In contrast, for the case of Fig.8.3(j), L ' 20 ξ (E = 0)

and hence in conformity with our work in I, shows a Poisson distribution.

8.2 Conclusion and summary

To summarise and to draw some conclusions, we hope to have shown that finite-sized

1-D disordered systems do possess interesting properties in the mesoscopic regime
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(either for L→ ∞ at a temperature T → 0+, or L< lφ, where lφ is the inelastic

scattering length or the phase decoherence length due to scatterings with phonons

at a T > 0). For example, we had already shown that a UCF of about 0.3e2/h does

occur in the 1-D disordered system [131] around the quasi-diffusive to the weakly

localized regime (L∼ ξ/2 to about ξ). Further, from the ballistic to the mildly

localized regime (∼ 2ξ, independent of the Fermi energy EF ), we observe a two-

parameter scaling [133], in the sense that the average 〈u〉 ∼ L almost right from the

quasi-ballistic regime onwards. But, as we show in I as well as with additional work

here, var(u)∼ Lκ where κ = κ(EF ) >1 is an independent exponent in the regime

L=0 to L ' 2 ξ. Of course, in the asymptotic limit L→∞ (indeed for L≥ 20ξ), the

behaviour crosses over to κ → 1+, which is consistent with one-parameter scaling

[129]. The reason for the above behaviour for finite size open quantum systems

was found to be that the phase (coherent wave nature) φ of the electron’s reflection

co-efficient follows a distribution PL(φ) which is most of the times far from uniform,

and continues evolving as a function of L towards its stationary form P∞(φ) only

for L� 2ξ. In the case of a finite, closed quantum system, we did look at the finite

number of random energy eigenstates and the corresponding finite number of random

nearest level spacings (s). Kubo formula indicates that the PL(s) (random LSD)

should also be unusual in the same regime in which the mesoscopic conductance

fluctuation is so, i.e., in the two-parameter scaling regime. Indeed, one observes a

very strong level-repulsion (much stronger than in the case of Wigner-Dyson) in the

quasi-ballistic regime. We have seen that the deviations from Wigner (mean LSD) in

quasi-ballistic to quasi-diffusive domains, which means that quasi-UCF exists. Level

spacing distribution crosses over to the regular Poisson (exponentially) distribution

at large length limit. Typically, the exponent β in the power-law prefactor of PL(x)

where x=s/〈s〉 is the scaled level spacing, as obtained from small x is significantly

larger than unity. As the system crosses over through the diffusive regime, β seems
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to decrease to values less than unity. In the mildly localized regime (L∼ 2ξ), there

seems to be a non-zero probability of having x=0, and yet there is a Wigner-Dyson-

like peak before the eventual decay of the PL(x) for large x. This is certainly quite

unusual and seems to indicate that there are small clusters of pre-localized states

[134] in some energy regime and some infinite clusters of extended states in another

energy regime. Finally, in the large length/disorder limit, the extended states vanish,

and one gets back the universal Poissonian behaviour for PL→∞(x). We have a

disordered quantum chain (d=1):meso/nano system. E is the fermionic energy and

ε is the random disorder. Our hamiltonian is random, so energy values are also

random in this case. In our calculation we have worked out two cases. Firstly we

changed disorder slowly and fixed the sample size. In the other case we have changed

sample size slowly and fixed the disorder. In both the ways of presentation has some

complementary aspects to display. In our observation we have seen that LSD shows

WD distibution behavior for enough sample size and when sample size is large it

shows PD behavior. For intermediate disorder or intermediate sample size we see

that LSD seems to be a combination of a WD distribution and Poisson distribution.

It is known that PD shows localized states and WD distribution shows extended

states. Thus, in the intermediate regime level spacing statistics seems to indicate

that some of the states are localized and others are extended for finite sized sample.

It is reminiscent of the existence of pre-localized states, before the thermodynamic

limit sets in. The problem of transition between localized and extended states in

disordered system is analogous to the phase transition problem in several aspects.

It may be expected that the state at the localization transition point should exhibit

some critical behavior [135]. Since our system follows Power law behavior. It has

been discussed in [134] that the multifractality is due to the existence of prelocalized

states which are characterized by a power law form of statistically averaged. We

have seen in our results that the deviations from Wigner in quasi-ballistic to quasi-
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diffusive domains, which means that quasi-UCF exists. Whereas pre-localized states

exists when distribution is a mixture of WD distribution and PD.
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Conclusions and Future Scope

In this thesis, we have investigated Nano-Scale physics using NEGF and RMT meth-

ods. Under NEGF method, we investigated the device channel, output characteris-

tics and transmission of dual gate nanoscale MOSFETs and SWCNT based MOS-

FETs. We also studied the transmission of ZGNR using NEGF method. The device

is modeled as an Open Quantum System and the Schrodinger equation for the chan-

nel gets modified as [EI-H-
∑

](ψ)=S, which is responsible for the broadening of the

channel density of states and for invoking eigenstates of finite lifetimes. The Physics

of the Nano-Scale device is studied here using Density Matrix formalism. The device

is first treated as a closed system and its channel density obtained as a function of

gate voltages. Here, we see the role of the effective mass and how it is related to the

size quantization. We apply a self-consistent scheme to solve the Schrodinger and

Poisson equations in tandem. Next, we treated the device as a open quantum system

and studied its output characteristics using NEGF method. We could reproduce all

the relevant Physics of these devices. We also studied the transport properties of

ZGNR based system. Under this, we studied its transport properties in the confined

region of potential well.

In the second part of the thesis we have shown that finite-sized 1-D disordered

systems do possess interesting properties in the mesoscopic regime. For example we

had already shown that a UCF of about 0.3 e
2

h
does occur in the 1-D sytem [131]

around the quasi-diffusive to the weakly localized regime. Further, from the ballistic
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to the mildly localized regime, we observe a two-parameter scaling [133], in the sense

that the average 〈u〉 ∼ L almost right from the quasi-ballistic regime onwards. But,

as we show in I as well as with additional work here, var(u)∼ Lκ where κ = κ(EF )

> 1 is an independent exponent in the regime L=0 to L ' 2 ξ. Of course, in

the asymptotic limit L→ ∞ (indeed for L≥ 20ξ), the behaviour crosses over to

κ → 1+, which is consistent with one-parameter scaling [129]. The reason for the

above behaviour for finite size open quantum systems was found to be that the phase

(coherent wave nature) φ of the electron’s reflection co-efficient follows a distribution

PL(φ) which is most of the times far from uniform, and continues evolving as a

function of L towards its stationary form P∞(φ) only for L� 2ξ. In the case of a

finite, closed quantum system, we did look at the finite number of random energy

eigenstates and the corresponding finite number of random nearest level spacings

(s). Kubo formula indicates that the PL(s) (random LSD) should also be unusual

in the same regime in which the mesoscopic conductance fluctuation is so, i.e., in

the two-parameter scaling regime. Indeed, one observes a very strong level-repulsion

(much stronger than in the case of Wigner-Dyson) in the quasi-ballistic regime. We

have seen that the deviations from Wigner (mean LSD) in quasi-ballistic to quasi-

diffusive domains, which means that quasi-UCF exists. Level spacing distribution

crosses over to the regular Poisson (exponentially) distribution at large length limit.

Typically, the exponent β in the power-law prefactor of PL(x) where x=s/〈s〉 is

the scaled level spacing, as obtained from small x is significantly larger than unity.

As the system crosses over through the diffusive regime, β seems to decrease to

values less than unity. In the mildly localized regime (L∼ 2ξ), there seems to be

a non-zero probability of having x=0, and yet there is a Wigner-Dyson-like peak

before the eventual decay of the PL(x) for large x. This is certainly quite unusual

and seems to indicate that there are small clusters of pre-localized states [134] in

some energy regime and some infinite clusters of extended states in another energy
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regime. Finally, in the large length/disorder limit, the extended states vanish, and

one gets back the universal Poissonian behaviour for PL→∞(x).
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